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1.1 Overview on human brain tumours (HBT)

1.1.1 Incidence and mortality of HBT

Cancer genetics and cancer progression are processes not completely understood

yet. Genetic and epigenetic alterations result in a molecular cascade of events

leading to several subtypes of tumours[2]. HBT are not an exception. Its study at

the molecular level still remains poorly developed, even though great improvement

has been achieved lately[2, 3].

By definition, HBT are tumours arising from central nervous system cells (CNS),

or their meningeal covering[3]. Diagnoses of these tumours are devastating for the

patient, and prognoses are yet difficult to determine[2, 4, 5, 6]. In 2002, the world-

wide incidence of HBT was 189485 cases, and 141650 the estimated mortality[7],

which represents the 1.7% of new cancers and 2.1% of cancer deaths, respectively.

The highest rates are observed in developed areas (Australia/New Zealand, Europe,

and North America) and the lowest in Africa and the Pacific islands[7]. In Europe,

the incidence in 2004 was 37200 cases and 28600 the estimated mortality[8]. Both

incidence and mortality are higher in males than in females[7, 8].

Although HBT are less common than other cancers, interest in these tumours

has increased in the preceding years[3] (see figure 1.1). This is explained by four

main reasons:

1. Nowadays, HBT are the leading cause of death from cancer in children under
the age of 15, and the second one in young people from 15 to 34[3, 9].

2. HBT are among the most aggressive and intractable tumours[6].

3. Neuroncology is increasingly attracting the interest of neuroscientists, typ-
ically focused in the past on neurodegenerative diseases and developmental
disorders[3].

4. The aging population in developed countries increases incidence of adult brain
cancers.

1.1.2 Description of HBT

1.1.2.1 Diagnosis of HBT in current clinical practice

Commonly HBT are detected by neurological examination, unfortunately once the

tumour mass is widely developed[10]. The difficulty of HBT diagnosis relies on the



4 INTRODUCTION

Figure 1.1: Worldwide cancer statistics from GLOBALCAN 2002. Estimated incidence and
mortality of cancer types for developed and developing countries. Separated statistics by sex are
shown. Figure extracted from reference [7].

lack of early symptoms detectable by clinicians. Typical symptoms in advanced

stages are headache, seizures, fatigue and focal deficits[4, 10]. Currently, diagnosis

of HBT is assessed in a first step by magnetic resonance imaging (MRI)[11]. In

the clinical practice, this examination enables to delimit the extent of the tumour

mass and to determine relevant morphological parameters to propose a prelimi-

nary diagnosis. Nevertheless, diagnosis is usually confirmed by histopathological

examination, which is considered the gold-standard to classify HBT[12].
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1.1.2.2 Overview on HBT classification

HBT are classified by the WHO in twelve histological types[13]. As can be seen

in figure 1.2, there are three tumours types accounting in average for 75% of the

prevalence of HBTs: gliomas (45%), meningiomas (15%) and metastasis (15%).

The complete list of HBTs is depicted in table 1.1.

Although HBT account for a relative small percentage of worldwide cancer cases,

their usual malignant transformation and their dramatic clinical course for both

the patient and its family have driven to thorough investigation to improve patient

healthcare. As in other cancers, the formation of HBT is a complex process involv-

ing an accumulation of genetic alterations[14]. Since specific alterations have been

described in almost each HBT, the concept of different molecular pathways lead-

ing to different types of tumors has gained general acceptance. This means that

molecular information from surgically resected tumours may have diagnostic value.

Even more, it could be a substitute for the traditional histopathological diagno-

sis, if some technical and ethical problems could be overcome. A more extensive

explanation on this topic is developed in section 1.5.

1.1.3 World Health Organization (WHO) classification cri-

teria

1.1.3.1 Historical overview

The international classification of human tumours published by the WHO was

promoted during the decade of 1950s with a clear objective valid until today: to

establish a classification and grading of human tumours that is accepted world-

wide. Definition of histological and clinical diagnostic criteria were indispensable

for epidemiological studies and clinical trials to be conducted beyond institutional

and national boundaries. The WHO publishes the classification of HBT and other

tumour types in the WHO Blue Book Series[13].

Since the first edition on the histological typing of tumours of the nervous sys-

tem appeared in 1979, posterior editions have progressively incorporated immuno-

chemistry and genetics profiles into diagnostic[16, 17]. Precisely, the third edition

published in 2000 included concise sections on epidemiology, clinical signs and

symptoms, imaging, prognosis and predictive factors[18]. The classification was

based on the consensus of an international Working Group in all editions[19].

The WHO classification of HBT covers tumours of the central system, including
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Figure 1.2: Prevalence of HBT types. Estimated prevalence of the most frequents HBT types.
Gliomas comprise almost half of the diagnosed cases. Meningiomas and metastasis are the second
tumours most frequently diagnosed with similar prevalence. Also, neurinomas and hypophysis
adenomas have a similar prevalence. Data obtained from reference [15].

tumours of cranial and paraspinal nerves, whereas those of the peripheral nervous

system are covered in other volumes of the WHO classification books. In the con-

text of the WHO, the International Classification of Diseases for Oncology (ICD-O)

assures that incidence and mortality data of population stratified histopathologi-

cally become available for epidemiological and oncological studies. The codes of

ICD-O are an interface between pathologists and cancer registries. The fourth

edition of the Blue Book Series, which appeared in 2007, introduced preliminary

codes for several new entities, variants and patterns[19].

1.1.3.2 Entities, variants and patterns

A new entity must be characterised by distinctive morphology, location, age distri-

bution and biologic behaviour, and not simply by an unusual histopathological pat-

tern. Variants were defined as being reliably identified histologically and having

some relevance for clinical outcome, but as still being part of a previously defined,

overarching entity. Finally, patterns of differentiation were considered identifiable

histological appearances, but did not have a clinical or pathological significance.

Two or more reports from different institutions were considered mandatory for a

new entity, variant or pattern to be included in the WHO classification. The fourth

edition includes 8 new entities, 3 new variant and 2 patterns of differentiation[19].
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Histological grading is a means of predicting the biological behaviour of a neo-

plasm with the purpose of facilitating the choice of a therapy and predicting the

outcome. Each human tumour has an associated malignancy grade (see table 1.1).

The grading scheme included in the WHO classification of tumours of the nervous

system accounts for the malignancy of the neoplasms rather than being a strict

histological grading system[16, 20]. The WHO classification is widely used, but

not a mandatory application.

1.1.3.3 Malignancy grade schemes

The assignment of malignancy grades for the new entities proposed by the WHO

Working Group in the 2007 edition remains preliminary, since publication of addi-

tional data and long-term follow-up is pending[13]. Grade I applies to potentially

proliferative lesions and the possibility of cure following surgical resection alone.

Grade II are generally infiltrative tumours in nature and tend to progress to higher

grades of malignancy. Grade III are commonly lesions with histological evidence of

malignancy, including atypia and brisk mitotic activity. Diagnosed patients with

a tumour of this grade receive adjuvant radiation and/or chemotherapy. WHO

grade IV is assigned to cytologically malignant, mitotically active, necrosis-prone

neoplasms typically associated with rapid pre- and post-surgery disease evolution

and a fatal outcome[13].

1.1.3.4 Differences between classification schemes

Being the WHO classification the most widely used in the clinical practise, there

are other valid classification schemes that slightly differs from the WHO one. In

particular, the WHO 2007 scheme grades diffusely infiltrative astrocytic tumours

in a three-tiered system similar to that of the Ringertz[21], St Anne/Mayo[22]

and the previously published WHO schemes[16]. The major difference between

WHO and St Anne/Mayo classification lies in grade I[22]. The WHO classification

assigns grade I to the more circumscribed pilocytic astrocytoma, whereas the St

Anne/Mayo classification assigns grade I to an exceedingly rare diffuse astrocytoma

without atypia[13]. Separation of grade II from grade III tumours following the

WHO scheme, is supposed to be reliably achieved by determination of Mindbomb

1 (MIB-1) labelling indices rather than determination of mitosis[23, 24]. Similarly,

some authors only accept the criterion of endothelial proliferation to assign grade

IV, while WHO classification also accepts glomeruloid microvascular proliferation

and any type of necrosis[13].
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Astrocytic tumours I II III IV ICD-O I II III IV ICD-O

Subependymal giant cell · 9384/1 Central neurocytoma · 9506/1
∗

astrocytoma Extraventricular neurocytoma · 9506/1
∗

Pilocytic astrocytoma · 9421/1
1

Cerebellar liponeurocytoma · 9509/1
1

Pilomyxoid astrocytoma · 9425/3
∗

Paraganglioma of the spinal cord · 8680/1

Diffuse astrocytoma · 9400/3 Papillary glioneuronal tumour · 9509/1
∗

Pleomorphic xanthroastrocytoma · 9424/3 Rosette-forming glioneuronal · 9509/1
∗

Anaplastic astrocytoma · 9401/3 tumour of the fourth ventricle

Glioblastoma · 9440/3

Giant cell glioblastoma · 9441/3 Pineal tumours

Gliosarcoma · 9442/3 Pineocytoma · 9361/1

Pineal parenchymal tumour · · 9362/3
Oligodendroglial tumours of intermediate differentiation

Oligodendroglioma · 9450/3 Pineoblastoma · 9362/3

Anaplastic oligodendroglioma · 9451/3 Papillary tumour · · 9395/3
∗

of the pineal region
Oligoastrocytic tumours

Oligoastrocytoma · 9382/3 Embryonal tumours

Anaplastic oligoastrocytoma · 9382/3 Medulloblastoma · 9470/3

CNS primitive neuroectodermal · 9473/3
Ependymal tumours tumour (PNET)

Subependymoma · 9383/1 Atypical teratoid/rhabdoid tumour · 9508/3

Myxopapyllary ependymoma · 9394/1

Ependymoma · 9391/3 Tumours of the cranial

Anaplastic ependymoma · 9392/3 and paraspinal nerves

Schwanoma · 9560/0

Choroid plexus tumours Neurofibroma · 9540/0

Choroid plexus papilloma · 9390/0 Perineurinoma · · · 9540/0

Atypical choroid plexus papilloma · 9390/1
∗

Malignant peripheral nerve · · · 9540/3

Choroid plexus carcinoma · 9390/3 sheath tumour (MPNST)

Other neuroepithelial tumours Meningeal tumours

Angiocentric glioma · 9431/1
∗

Meningioma 9530/0

Choroid glioma of · 9444/1 Atypical meningioma · 9539/1

the third ventricle Anaplastic/malignant meningioma · 9530/3

Haemangiopericytoma · 9150/1

Neuronal and mixed Anaplastic haemangiopericytoma · 9150/3

neuronal-glial tumours Haemangioblastoma · 9161/1

Gangliocytoma · 9492/0

Ganglioglioma · 9505/1 Tumours of the sellar region

Anaplastic ganglioglioma · 9505/3 Chraniopharyngioma · 9350/1

Desmoplastic infantile · 9412/1 Granullar cell tumour · 9582/0
astrocytoma/gangliglioma of the neurohypophysis

Dysembryoplastic · 9413/0 Pituicytoma · 9432/1
∗

neuroepithelial Spindle cell oncocytoma · 8291/0
∗

tumour of the adenohypophysis

Table 1.1: WHO grading of tumours of the Central Nervous System reprinted from [19].
Summary of histological tumour types of the CNS and malignancy grade for each specimen
(I–IV). The International Code of Diseases for Oncology (ICD-O) is also depicted.

1
Morphology code of the International Classification of Diseases for Oncology (ICD-O) 614A and the Sys-
tematized Nomenclature of Medicine (http://snomed.org). Behaviour is coded /0 for benign tumours, /3
for malignant tumours and /1 for borderline or uncertain behaviour.

* Provisional codes proposed for the 4th edition of ICD-O. While they are expected to be incorporated into
the next ICD-O edition, they currently remain subject to change.
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1.1.3.5 Survival of patients suffering from HBT

The WHO grade contributes to an overall estimation of prognosis combined with

a set of clinical findings, such as age of patient, neurologic performance status

and tumour location; radiological features such as contrast enhancement, extent

of surgical resection; proliferation indices; and genetic alterations. Despite these

variables, patients with WHO grade II tumours typically survive more than 5

years and those with grade III tumours survive 2-3 years[13]. The prognosis of

patients with WHO grade IV tumours depends largely upon availability of effective

treatment regimens. Most of glioblastoma patients succumb to the disease within

a year, whereas for the other grade IV neoplasms the outlook may be considerably

better.
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1.2 HBT targets for genetic diagnosis implemen-

tation

Among HBTs, the most representative candidates for genetic diagnosis in the clin-

ical practise appears to be oligodendroglial tumors, astrocytic tumours leading to

glioblastoma, and meningiomas[14]. They have been extensively investigated in

the past decade because they are the most frequent tumours. The huge amount

of data obtained was compared with histopathological and clinical features, to

produce models of multi-step carcinogenesis.

1.2.1 Glial tumours

1.2.1.1 Overview on gliomas

Human gliomas are the most frequent primary tumour of the CNS[12], but their

incidence is low compared to other human cancers. However, an increase in glioma

cases have been reported in the last years, in part due to the improvement of

diagnostic techniques and the increase of life expectancy[25]. Human gliomas are

classified according to their hypothesized line of differentiation. That is, whether

they display features of astrocytic, oligodendroglial, or ependymal cells[13, 26].

The paradigm of glioma development was based on the progressively dediffer-

entiation of any of the formerly cited cellular type from its mature form until

resembling their precursor cells[27] (see figure 1.3). Nonetheless, such a paradigm

is under revision since new molecular events have been described and neural stem

cells discovered. Moreover, histological stand-alone classification can not predict

neither the clinical course of the pathology, nor the response to therapy of diag-

nosed gliomas[12, 27].

1.2.1.2 Malignancy grades

Gliomas affecting the cerebral hemispheres of adults are termed diffuse gliomas

because of their propensity to infiltrate throughout the brain[26]. The diffuse

gliomas are classified histologically as astrocytomas, oligodendrogliomas, or tu-

mours with morphological features of both astrocytes and oligodendrocytes, termed

oligoastrocytomas[26]. Astrocytic tumors are subsequently graded as pilocytic as-

trocytoma, grade I; astrocytoma grade II; anaplastic astrocytoma, grade III; and
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Figure 1.3: Normal development of glial cells and pathological transformation. The panoply
of glial tumours is suposed to arise from a common neural stem cell progenitor that produces
a glial progenitor to form the glial lineage, which can turn into malignant progression yielding
gliomas. Black arrows indicate the hypothesized normal development and red arrows the supposed
progression of CNS tumours. Dotted blue arrows emphasizes the role of neural stem cells in
normal development and potentially in the formation of brain tumours. Figure extracted from
reference [3].

glioblastoma (Gbm), grade IV. Oligodendrogliomas and oligoastrocytomas are sub-

sequently graded as grade II and anaplastic, grade III.

Seventy percent of grade II gliomas transform into grade III and IV tumors

within 5-10 years of diagnosis and then behave clinically like the higher-grade

tumors[26]. This particular feature of gliomas implies that grade I and II tumours

should be well characterized at both histological and molecular level to predict

their malignant transformation when detected in the clinical practice.

Currently, there are two clinically-distinguishable types of grade IV glioma:

the primary and the secondary Gbm. The primary appears to arise de novo

by accumulation of genetic alterations of a progenitor glial cell with stem-cell

properties[26, 27]. The secondary Gbm would correspond to a malignant trans-

formation of a diffuse glioma within 5-10 years after diagnosis of the low grade

tumour[26] (see figure 1.4).

Despite genetic alterations producing both Gbm types differ, molecular path-

ways triggered by these alterations seem to be the same[26]. Corroborating this

similitude, both primary and secondary Gbm are clinically indistinguishable since

the survival associated with their diagnoses is almost identical[26]. The fact that
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Figure 1.4: Genetic and histological alterations from low to high grade gliomas. The develop-
ment of glial tumours from differentiated glial cells to high grades of malignancy is a sequential
process. Genetic alterations (mutations, loss of heterozigosity, amplifications,. . . ) are accumu-
lated, distinct therapy responses are displayed and a decreased survival time is expected. Figure
extracted from reference [26].

two Gbm types can share the same molecular pathways driving to malignant trans-

formation may be explained as a result of the capacity of mature astrocytes to ded-

ifferentiate into their stem-like progenitor cells, the radial glia[28, 29]. The scheme

of genetic alterations leading to the transformation from low grade glioma to Gbm

is depicted at figure 1.4.

1.2.1.3 Molecular genetics

Platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) are

elements thought to be important in malignant transformation of gliomas: PDGF

in glioma development, EGF in neural stem cell proliferation and survival[26, 2].

The prominent overexpression of PDGF in low-grade gliomas and EGF receptor

(EGFR) in Gbms suggests that these receptor tyrosine kinase (RTK) signalling

pathways are critical targets in gliomagenesis[26].

Primary Gbm often affects the elderly population, it generally shows overex-

pression of EGFR and lack of mutation of tumour protein 53 (TP53), whilst the
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secondary Gbm behaves inversely[26, 27, 30]. EGFR is the starting point of the

EGFR/PTEN/Akt/mTOR pathway, which is a key signalling pathway in the de-

velopment of primary glioblastoma[30]. EGFR becomes activated through the

binding of growth factors (epidermal growth factor, transforming growth factor-α)

to its extracellular domain, resulting in recruitment of PI3K to the cell membrane

(see figure 1.5).

PI3K phosphorylates phosphatidynositol-4,5-bisphosphate to the respective 3,4,5-

trisphosphate form (PIP3), which activates downstream effector molecules such as

AKT (protein kinase B) and mTOR, the mammalian target of rapamycin. This

results in cell proliferation and increased cell survival by blocking apoptosis. PTEN

inhibits the PIP3 signal[31], thereby inhibiting cell proliferation (see figure 1.5).

In addition, the EGFR variant 3 (EGFRvIII) is exclusively expressed in Gbm

and constitutively activated[30]. The EGFRvIII is the most abundant truncated

form of EGFR, and lacks exons 2 and 7.

Concerning PDGF, during embryogenesis, neurons and astrocytes express PDGF

[32], whereas glial progenitors and neurons express the PDGF-receptor (PDGFR)

[33]. During the postnatal period, as glial progenitors differentiate into oligodendro-

cytes, PDGFR expression is down-regulated. As an example of the relevance of this

receptor, PDGFR-α-expressing cells seems to be present in oligodendrogliomas[26],

raising the possibility that these cells may be precursors of some oligodendroglio-

mas.

Furthermore, low-grade gliomas usually overexpress PDGF ligand and receptor,

as well as harbor the TP53 mutation. This results in important genetic interac-

tions between PDGF and p53[26]. The proliferative stimulus provided by PDGF

signaling through the Ras/MAPK pathway is capable of promoting reentry into the

cell cycle. This allows to speculate that simultaneous mutational inactivation of

p53 and PDGF overexpression serves to promote the survival of aberrantly cycling

premalignant cells[26].

Nevertheless, overexpression of this potent growth factor is associated with a

very low proliferative rate in low-grade gliomas in vivo[26]. This contradictory

finding may be explained by different reasons such as the presence of inhibitors

operating at the level of the core cell-cycle machinery; an insufficient stimulation

of PDGF to promote a robust cell-cycle entry in glioma cells; and involvement of

several pathways (PI3K, JAK-STAT or PLC-γ) in addition to Ras[26].

Perhaps the most important role of PDGF in low-grade tumors may be to induce

tumor cell migration through activation of PI3-K and PLC-γ. Both proteins have
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Figure 1.5: Main signalling pathways involved in glioblastoma formation. The EGFR signalling
pathway starts at the plasmic membrane and transduces the signal up to the nucleus, where
transcription factors are activated. The particular combination of genetic alterations at different
levels of the signaling cascade characterizes each glioblastoma subtype. pGBM indicates primary
glioblastoma and sGBM corresponds to secondary glioblastoma. Figure extracted from reference
[30].

been implicated in migration and scattering[34], notably in oligodendrogliomas

rather than astrocytomas[35], for which further investigation is necessary[26].

1.2.1.4 Treatment of gliomas

Surgical resection can be curative in some brain tumours, but not for malignant

gliomas[36, 37]. Malignant gliomas usually infiltrate into the brain tissue sur-

rounding the tumour mass. Thus, surgical removal appears not to be a curative
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treament[37]. A combination of chemotherapy and radiotherapy is undergone prior

and/or after tumour removal[37, 38]. The chemotherapeutic agent and the radio-

therapy dose are selected depending on the tumour type.

Whilst temozoladamide is the most used drug to treat Gbm, grade III gliomas

are more likely to be treated with carmustine, carbazine, lomustine and/or vin-

cristine [38, 39, 40]. At any rate, delivery of drugs into the brain is difficult,

since it produces systemic side effects[41]. Despite the continuous investigation

about malignant glioma therapy, there was not an evident increase of patient sur-

vival in the past four decades[37]. Inhibitors targeting molecular key points of the

malignant transformation process of gliomas, mainly angiogenesis and EGFR sig-

nalling pathway, have been tested in phase II of clinical trials without a noticeable

amelioration[39].

1.2.2 Meningeal tumours

1.2.2.1 Overview on meningiomas

Meningiomas are the second HBT with the highest incidence after glial tumours,

ranging between the 20 and 30% cases of intracranial tumours[42, 43]. The neopla-

sia in meningiomas arises from arachnoidal (meningothelial) cap cells, which are

cells composing the meninges[42, 43, 44].

They remains in benign stages in approximately 90% of diagnosed cases, and

predominantly appear in the elderly population and affect more females than males

(2:1)[42, 43]. Unlike gliomas, meningiomas display well defined edges that permit

complete resection, curative depending on location[44, 45].

1.2.2.2 Malignancy grades

Classification is most often based on WHO criteria, which establishes three grades

of malignity: benign (grade I), atypical (grade II) and anaplastic (grade III)[13, 44].

The first editions of the WHO classification graded meningiomas based on quali-

tative criteria. In contrast, the more recent editions (2000 and 2007), incorporate

quantitative parameters to estimate the tumour grade, which were proposed at the

end of the past decade by investigators at the Mayo clinic[44].
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1.2.2.3 Genetic alterations

Meningiomas have long been a subject of intense genetic and biological interest[46].

As a result, meningiomas are among the cytogenetically best characterised cancers

[46]. The most widely accepted cytogenetic abnormality that meningiomas exhibit

is the loss of heterozigosity (LOH) of the long arm of the chromosome 22[43, 44, 46].

Extensive molecular studies in meningiomas enabled the identification of the

tumour suppressor gene NF2, responsible for neurofibromatosis 2 disease. NF2 en-

codes a cytoeskeleton-associated protein, called schwannomin/merlin protein (also

known as moesin-, ezrin-, radixinlike protein). The reduced expression of the

NF2 gene in meningiomas implies a decrease in cell adhesion and increased cell

tumourogenesis[43]. Furthermore, mutations in NF2 gene within grade I menin-

giomas can be detected from 25% to 80% of cases depending on the histological

type[43]. As atypical and anaplastic meningiomas show a mutation rate in NF2

similar to benign meningiomas, the NF2 mutation appears to be an important

event for tumour formation, rather than for tumour progression (see figure 1.6).

Figure 1.6: Molecular and genetic alterations leading the meningioma progression. Accumula-
tion of sequential molecular alterations (mutations, losses and gains of heterozigosity) appear to
be the key mechanism for meningioma formation and progression. Figure modified from reference
[46].

On the contrary, in sporadic meningiomas, mutations of NF2 or deletion of its

locus, occurs notably less often than LOH of chromosome 22. This demonstrates

lack of complete correlation of the two events and points to another altered locus

with a role in meningioma biology[43]. Cytogenetic studies revealed that in prox-

imity to the NF2 locus, a series of genes presented abnormalities: Beta-adaptin-

meningioma gene on chromosome 22 (BAM22 ), Acetylglucosaminyl transferase-like
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protein (LARGE ), Meningioma 1 gene (MN1 ) and Integrase interactor 1 (INI1 ).

Aside from the LOH of chromosome 22, alterations on other chromosomes have

also been described in meningiomas. This results in an onset of changes, which all

conjointly characterize formation and progression of meningioma (see figure 1.6).

The chromosome 1 is the second chromosome accumulating more alterations in such

tumour type[43, 46]. It appears to be involved, together with deletions of chro-

mosomes 10 and 14, in malignant progression of meningioma[47, 48]. Frequency

of deletions in chromosome 1 increase whith the malignancy grade, occurring in

13% to 26% of grade I, in 40% to 76% of grade II, and 70% to 100% of grade III

meningiomas[46].

1.2.2.4 Treatment of meningiomas

The mainstay of treatment for meningiomas is complete resection, being curative

in most cases, notably in low grades. Also, there is a dependency on both patient-

related factors (age, performance status, medical comorbidities) and treatment-

related factors (reasons for symptoms, patient respectability, and goals of surgery)[42,

49]. Radiation after the surgery was shown to improve progression-free survival of

patients when partial removal of tumour mass is performed[42].

Nonetheless, the decision to undertake adjuvant radiotherapy should be weighed

against the potential for symptomatic recurrence (considering the slow growth

rate of most meningiomas) in the patient lifetime, versus potential side effects

of radiation (for example, leukoencephalopathy and cognitive symptoms, necrosis,

and focal neurological injury)[42, 49].

Chemotherapeutical agents are principally administrated to patiens suffering

from meningioma recurrence, being the compounds used in clinical trials hydrox-

yurea, temozolomide, somastatin analogs and multidrug treatment, amongst others[42].

1.2.3 Mouse models to study HBT

1.2.3.1 Xenograft tumour models

Development of effective drugs to treat HBT requires a profound knowledge of

the underlying molecular events driving to tumour formation, progression and

recurrence[50]. A combination of cell cultures and mouse models are used to test

the experimental hypothesis, prior a candidate drug can be subjected to clinical

trials[50].
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Xenograft tumour models consists in implantation or injection of primary tu-

mour cells or cell lines into the animal model[51, 52]. It can be performed sub-

cutaneously or orthotopically (into the native tumour site), to immunosuppressed,

immunodeficient, or newborn immunonaive target mice[51, 52].

In vitro cell cultures together with in vivo xenograft brain tumour models pro-

vides a quick and efficient way of testing novel therapeutic agents and targets. The

knowledge generated can be translated and tested in more sophisticated models

such as genetically engineered mice (GEM). This particular mice model is expected

to result in high quality clinical trials, which provide better treatment outcomes

and reduced drug toxicities for patients[50].

1.2.3.2 Genetically engineered mice (GEM)

GEM are strains of mice forming spontaneous tumors due to mutations in the char-

acteristic genes of malignancy[50]. They are an opportunity to discern the involve-

ment of a certain gene, or a combination of genes, in the molecular and physiological

events occurring in HBT tumourogenesis (angiogenesis, tumour-host interactions

and metastasis to distant sites), because of predictability of the tumour-initiating

lesion(s), immunocompetence, and tumour development at the appropriate site[53].

Furthermore, GEM enable to enlarge the dataset of those studies, in which there

is a limited patient population[50].

1.2.3.3 Application of mice xenografts to model ischaemia in HBT

Schwaninger and collaborators generated a series of mice models to investigate the

role of NF-κB signalling pathway in the onset of cerebral ischaemia[54]. Among

other findings, they identified the pro-apoptotic cytokine TWEAK that binds Fn14,

a member of the TNF receptor familly[55], which activates in turn the IKK complex

and thus the translocation of NF-κB from the cytosol to the nucleus[56, 57].

Alternatively, Iadecola and collaborators characterised the function of inducible

nitric oxid synthase (iNOS) producing cerebral ischaemia by oclusion of the middle

cerebral artery in mice lacking expression of the iNOS gene[58]. Reduction of cere-

bral ischaemia injuries were demonstrated by a major recovery of motor functions

of iNOS knockout mice compared to wild-type, although the glial response and the

upturn of the cerebral blood flow were comparable in both animal conditions[58].
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1.3 Microarray technology

1.3.1 An insight on microarray technology

1.3.1.1 Historical remarks

The begining of microarray experiments dates back to the second half of the 1980s

when the first assays using fluorescent labelled antibodies were generated to detect

protein levels in a “multi-analyte” approach[59, 60]. Translation of such initial ap-

proaches to nucleic acid hybridisation was first performed by Fodor and collabora-

tors in 1993 by creating a biological chip with in situ synthesized probes[61]. Later,

Brown and collaborators developed in 1995 a quantitative method to determine the

levels of mRNA spotting cDNA probes onto glass-slides[62]. Nevertheless, the se-

quence of the human genome presented in 2001 by the Human Genome Project

Consortium together with the Celera Genetics company, largely enhanced the use

of the microarray technology broadly opening the “post-genome era”[63, 64].

1.3.1.2 Principle of the technology

The principle of gene-expression microrray or microchip technology is based on

the binding capacity by sequence complementarity of single chains of nucleic acids

molecules[65]. A microarray is a solid surface with immobilized gene-probes cov-

ering completely or partially a certain genome[65]. In a microarray experiment

the messenger RNA (mRNA) is copied into complementary DNA (cDNA) or RNA

(cRNA), and labelled with a fluorochrome or other stainning method depending

on the technology used[65]. Labelled material is hybridized onto the gene-probes

immobilyzed at the microarray and the signal quantified by a laser scanner[65] (see

figure 1.7).

1.3.1.3 Impact of gene-expression microarrays in research

The development of high throughput technologies, such as mass spectometry, CGH

arrays and protein arrays among others, conjointly with gene-expression microar-

rays have changed the paradigm of experimental molecular biology. Investigation

about biological molecular mechanisms in a high throughput manner needs the

collaboration of scientists covering a wide range of disciplines, which is the case of

gene-expression microarrays[66].
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Figure 1.7: Microarray protocols. Microarray technology can be divided into two main groups:
in situ synthesized and spotted-based microarrays. The former consists in growing up compu-
tationally designed sequences as can be seen in picture (b). For spotted-based microarrays, the
gene-probes are cDNA molecules from a library (a), or synthesized oligonucleotides (c), which
are spotted onto the glass surface. Figure extracted from reference [65].
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The ability of gene-expression microarrays to screen simultaneously the tran-

script level of the whole genome in a single experiment has attracted the interest

of clinicians to search for gene signatures able to improve the understanding of mo-

lecular mechanisms of complex diseases, like neurological disorders and cancer[67].

Currently, several studies have revealed cancer subtypes[68], correlated gene sig-

natures with patient survival[69] and allowed to determine the response of the

organism to the treatment received[70].

1.3.1.4 Validation of gene-expression microarrays

Standardisation among microarray technologies remains a key point under discus-

sion, noticeably when whishing to extrapollate its results for clinical application[71,

72]. Normally, experimental validation of microarray data is performed through

real time-PCR (RT-PCR)[73]. However, compliance of clinical trials conditions

requires of further validation. Otherwise, the results generated can not be ac-

cepted as a testable target with therapeutic purposes[74, 75, 76]. This point is

more extensively considered in section 1.5.3.

1.3.1.5 Type of microarray experiments

There are two main possible types of microarray experiments:

1. Single-labelling.

A single-labelling experiment consists in hybridizing onto a microarray cDNA

or cRNA from a single condition labelled with a single dye (i.e. Cy3). From

this experiment a single fluorescence intensity from each probe is obtained as

gene-expression measurement.

2. Double-labelling.

A double-labelling experiment is a competitive experiment between cDNA

or cRNA from two different conditions, which are labelled with two different

fluorochromes (i.e., Cy3 and Cy5). Labelled cDNA or cRNA solutions are

mixed and hybridised onto a microarray.

Double labelling experiments permit pairwise comparisons of each RNA sam-

ple (or condition) versus the rest of RNA samples (or conditions). Also, each

RNA sample can be compared to a reference sample, which is RNA isolated

from a sample considered a neutral condition with respect to the biological

conditions evaluated.
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See next sections for a more detailed explanation on the application of each

approach.

1.3.2 Spotted-based microarrays

1.3.2.1 Introductory insights

As explained in the previous section, since the beginning of the microarray tech-

nonology two methods has prevailed in their manufacturing: in situ synthesized

and spotted-based microarrays[62, 61]. The former was developed by the Affyme-

trix company (www.affymetrix.com); and its manufacturing method is explained

at section 1.3.3. Spotted-based microarrays were proposed by Brown and collabo-

rators at the Stanford University Medical Center with the aim of creating a tech-

nology to be self-manufactured by researchers that could be accessible worldwide

and economically affordable[62].

1.3.2.2 Manufacturing

The manufacture of the spotted-based microarrays begins by generating a library of

cDNA clones. After growing up the clones, DNA fragments are purified and ampli-

fied by PCR. Finally, they are robotically spotted (also called printed) onto nylon

fiber or a modified-glass slide[65]. Alternatively, computer assisted oligonucleotide-

design and synthesis of sequences is a possible method of microarray manufacture[65].

Printed sequences are electrostatically fixed onto the modified-glass slide, and

crosslinked by heat or UV[65]. Covalent binding of the 5’-end sequences with

the amine or other active groups on the modified-glass slides is feasible[65]. Such a

procedure results in a microarray containing up to 50,000 features with a diameter

ranging from 20 to 200 µm and spaced each other 50 µm, which enables printing

of sequences that cover all human genes[65, 77]. Despite the first spotted microar-

rays were made in research laboratories, nowadays there is great availability of

commercial products[65].

1.3.2.3 Sample labelling, hybridisation and image scanning

Labelling is initiated by retrotranscribing the mRNA into cDNA with an oligod(T)-

primer, which enables incorporation of a dye into the growing sequence by using

a labelled nucleotide. Usually nucleotides are labelled with a fluorochrome, but

could be some other dye. This method is called direct or first strand labelling[78].
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Conversely, rather than being labelled, the nucleotide can be chemically modified

with an amino-allyl group, which in a further step binds the dye. This method is

called indirect or second strand labelling[78].

At any rate, two different experiments can be performed when dealing with

spotted-microarrays: single- or double-labelling[78, 79]. That is, labelling one

RNA sample to hybridize onto one microarray, or separatelly labelling two differ-

ent RNA samples with two different fluorochromes (usually Cy3 and Cy5), mix the

solutions containing the labelled cDNA and do competitive hybridisation onto one

microarray. Spotted-microarrays are typically performed with the double-labelling

method[78].

Finally, after overnight hybridisation, the intensity signals are quantified by

a laser scanner, and a specific software transforms into images the fluorescence

intensity signals of fluorochromes such as cyanine 3 (Cy3) and cyanine 5 (Cy5)[77].

The gain of both the laser and the photomultiplier can be selected by the user. This

allows a manual optimization of fluorescence signals within the detection range of

the experiment. In contrast, optimization of signals is an automated process in

Affymetrix microchips.

1.3.3 In situ synthesized-based microarrays

1.3.3.1 Introductory insights

Two main microarray types based on in situ synthesis are currently available: Affy-

metrix and Agilent technologies microarrays. In the case of the pioneers Affymetrix,

back in 1991[77], the in situ synthesis was an adaptation of the photolithography

production of computer chips to the gene expression studies, which resulted in the

GeneChip name.

The second approach to in situ synthesize oligonucleotide was inspired in the

ink-jet technology used on electronic printing devices that was adapted to gene ex-

pression studies by Rosetta Inpharmatics and licensed to Agilent technologies[77].

1.3.3.2 Manufacturing of Affymetrix microchips

Synthetic linkers with photolabile protecting groups are attached to a glass sub-

strate, and a mask is used to direct light to predetermined areas on the substrate

to remove the exposed groups. These de-protected groups are then available for re-

action with bi-functional deoxynucleosides, resulting in chemical coupling. A new
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mask is used to direct coupling at other sites, and the step is repeated until the

desired sequence and length of oligonucleotide is synthesized[65] (see figure 1.8).

As a result, sequences of 25 bases in length are produced and grouped together

on an area of 18 x 18 µm, which defines a probe cell. A probeset in the mi-

crochip is composed of 11-20 perfect match (PM) probe cells and 11-20 miss match

(MM) counterparts. MM sequences are the same than their corresponding PM but

with the central nucleotide changed with the purpose of detecting false positive

hybridisations[80]. High-density oligonucleotide microchips can contain between

106 and 107 probe cells[65].

Figure 1.8: Photolitography-based oligonucleotide microarrays from Affymetrix technolo-
gies. The photolithographic process was inspired in the manufacturing of electronic mi-
crochips. The oligonucleotide sequence is synthesized by solid phase chemistry, and pro-
tected with lithographic masks. By applying light on the protected sequences, the
mask is removed and the synthesis can continue. Repeated cycles are performed un-
til obtaining the complete sequence. Figure extracted from the Affymetrix webpage
(http://www.affymetrix.com/technology/manufacturing/index.affx).

1.3.3.3 Manufacturing of Agilent technologies microchips

In this method, modified ink-jet pumps, similar to those used in printers, are used

to dispense 100-picoliter reagent droplets onto a hydrophobic surface containing

chemically active hydroxyl groups. The droplets contain phosphoramidite DNA

monomers that react and are covalently bounded. After washing and de-protection,

the process is repeated until the desired oligonucleotide length is reached (see figure

1.9). The synthesis of oligonucleotides based on phosphoramidite chemistry is the

standard technique since the 1980s, and it has other applications than microarrays.

The advantages of the in situ inkjet method are that no masks are required,

synthesis is faster because each cycle attaches one base (four cycles per base are

required with photolithography), and new arrays can be created by simply program-

ming the computer with directions on how to synthesize the new set of oligonu-
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cleotide sequences[65, 81, 82]. The disadvantage is the reduced number of elements,

176,000 in the latest chips, that can be synthesized compared to the Affymetrix

technology, which can achieve 107 elements.

1.3.3.4 Sample labelling, hybridisation and image scanning

For Affymetrix experiments, labelling begins as in the case of spotted-based mi-

croarrays by generating a double-stranded cDNA, but carrying a transcriptional

start site for the T7 RNA polymerase. cDNA molecules are transcribed in vitro,

and biotin-labelled nucleotides are incorporated into the synthesized cRNA mole-

cules. Each target sample is hybridized to a separate microarray and target binding

is detected by staining with a fluorescent dye coupled to streptavidin[83, 84]. Sig-

nal intensities of probesets on different microchips are used to calculate relative

mRNA abundance for each evaluated condition[65]. Affymetrix provides the one-

and two- cycle amplification assays, which are selected depending on the amount

of starting material available.

Figure 1.9: Ink-jet-based oligonucleotide microarrays from Agilent technologies. The ink-jet
technology to manufacture microarrays is based in the same principles that governs the paper
printing. In this case, repetitive cycles of synthesis based on solid-phase phosphoramidite chem-
istry are performed onto the glass surface, yielding the gene-probes composing the microarray.
Figure extracted from reference[81].

Similarly, labelling for Agilent microchips consists in converting the mRNA into

double strand cDNA using a oligod(T)-T7 primer, which serves as a promoter
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for the amplification step using a T7 polymerase. cDNA is converted into cRNA

incorporating cytosines labelled with either Cy3 or Cy5[85]. Unlike Affymetrix

labelling, Agilent microchips allows both single- and double-labelling experiments.

In both cases, an overnight incubation is required. However, intensity signals of

fluorescence from Affymetrix microchips can only be quantified by the scanner

provided by the company, while intensity signals from Agilent microchips can be

quantified by most commercial scanners for microarrays.

1.3.3.5 Other in situ synthesis-based microchips

Aside from the Affymetrix and Agilent microchips technologies, there are three

additional methods to produce microchips. First, GE Healthcare developed a

microarray based in applying oligonucleotides of 30 bases in length to a three-

dimensional polyacrylamide gel matrix by way of a non-contact, propietary piezo-

electric dispensing method. Through covalent attachment, the oligonucleotides are

immobilized to the active functional groups of the slide surface[86].

Also, an evolution of pholitographic masks used by Affymetrix for in situ oligonu-

cleotides synthesis is the digital mirror device (DMD, or digital light processor,

DLP), which synthesized oligonucleotides without requirement of a mask. Such a

technology is commercialized by NimbleGen Systems, Febit and Xeotron companies

[78].
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1.4 Microarray data analysis

1.4.1 R language

1.4.1.1 Language definition

R is a programming language derived from the S language, which was designed

in the 1980s and both R and S are widely used by the statistical community.

Since 1998, the popularity of R was increased when its principal designer, John M.

Chambers, was awarded with the ACM Software Systems Award for S[87].

R provides an integrated suite of software facilities for data manipulation, cal-

culation and graphical display[88]. R must be understood as an “environment”

affording a fully planned and coherent system, rather than an incremental accre-

tion of very specific and inflexible tools, as is frequently the case with other data

analysis software.

1.4.1.2 Advantages

In comparison with other statistical software packages such as SAS or SPSS, R has

the advantage of performing the statistical analysis in steps, resulting in interme-

diate results stored in objects. R being an object-oriented programming language,

gives minimal output and stores the results in a fit object for subsequent interroga-

tion by further R functions. In contrast, SAS and SPSS will give copious outputs,

which complicate their interrogation in further analysis[88].

1.4.1.3 Use of R

The most convenient way to use R is with a graphic workstation running on a

windowing system[88]. R can run under UNIX, Windows and MacOS computers.

In any of these operating systems, computation is performed through command-

lines, which permits a larger interaction with the system as compared to other

softwares, and gives the possibility of creating functions to systemize repetitive

work tasks[87].

The R environment is supplied with a series of packages, which are a collection

of functions to work on specific topics. The great flexibility of R has allowed

the development of packages covering a wide range of scientific areas requiring

statistical assessment. The aim underlying R is to generate a vehicle for newly



28 INTRODUCTION

developing methods of interactive data analysis, which can be freely accessible

worldwide.

R developers can contribute to add-on packages to the repository at the Compre-

hensive R Archive Network (CRAN) (http://cran.r-project.org/) webpage, where

new packages are stored. In parallel, some projects have created repositories storing

packages focusing on specific topics.

1.4.1.4 The Bioconductor repository

Bioconductor (http://www.bioconductor.org/) is an R project that provides a

package repository for the analysis and comprehension of genomic data, which

is continuously under development. There are two releases each year that cor-

responds to the released version of R. Packages are mainly developed to cover

gene-expression microarray-data analysis.

Nonetheless, an increased number of packages have been uploaded to deal with

other high throughput technologies such as SNP microarrays and mass spectometry.

Regarding the topic concerning this thesis, Bioconductor contains a large number of

packages allowing statistical analysis of microarrays that ranges from the processing

of fluorescense intensity signals from scan images to the development of classifiers

for different biological groups.

In addition, experimental data from different laboratories are available in Bio-

conductor, which usually exemplifies methods proposed in packages. Therefore, the

available experimental data increases the facility of users to rapidly apply packages

to their own data.

1.4.2 Data pre-processing

1.4.2.1 Spotted-based microarrays image processing

The processing of images generated using spotted-based microarrays can be divided

in three steps: adressing or gridding, segmentation and intensity extraction[89].

There are several softwares enabling these steps, in a manual and/or automatic

manner (e.g., Genepix, ImaGene, ScanAlyze and QuantArray)[89].

Gridding

This step consists in assigning the coordinates to each spot onto the image.

For that, a grid composed of empty circles is fitted to the spots of the microarray
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Figure 1.10: Segmentation and Background estimation. On the left, segmentation
based on adaptative shape is shown by the region inside the white line. On the
right, the region inside the circle delimited by the dashed line represents the fore-
ground signal obtained by fix circle segmentation, and the other regions bounded by
lines represent local background estimation by different methods. Images extracted
from reference [89].

image.

Segmentation

Segmentation of a microarray image is the classification of pixels as a foreground

or background signals, so that fluorescence intensities can be calculated as measures

of transcript abundance[89]. The foreground signal pixels can be delimited by four

principal methods: fixed circle, adaptative circle, adaptative shape and histogram

segmentation (see figure 1.10).

The two first consist in delimiting each spot with a circle that can be fix for all

spots or automatically adapted. Adaptative shape is an evolution of the adaptative

circle segmentation, since the edges of the mask are adapted to the spot shape, thus

eliminating unspecific signal that could arise from using a circle mask for a non-

circular spot.

The histogram segmentation method is based on using for all spots a circle mask

with the size of the spot largest on the microarray. A histogram of pixel intensities

is computed for each spot with the aim of arbitrary selecting a low intensity rank

to assign the background signal and a high intensity rank corresponding to the

foreground signal[89].
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Background estimation

On the other hand, delimitation of an area to estimate background intensity

signal is slightly more sophisticated. A general procedure consists in consider-

ing as background the signal that can be detected on the area surrounding or

nearby to a determined spot (local background), with the aim of removing it from

the foreground signal in either natural or logarithmic scale. Less frequently, the

background is not estimated and uncorrected foreground signals are used[89]. Nev-

ertheless, these assumptions are not always satisfactory[89]. There are three dif-

ferent methods of background estimation that can be considered the most widely

accepted:

• local background: the background area can be delimited depending on the

software by two concentric circles around the spot, the outer part of a square

centered at the spot center or four rombs as depicted at figure 1.10.

• morphological opening: a non-linear filter is obtained by computing a form

of local minimum filter (an erosion) followed by a form of local maximum

filter (a dilation), producing a background image from the raw image.

• constant background: it assumes that a better measure of background sig-

nal is to use the average intensity signals of negative controls spotted onto

the microarray, for example specific gene sequences of plants onto a human

microarray.

Additionally, Edwards and collaborators developed a background correction

method for single-labelling microarray experiments sensitive to the difference be-

tween foreground and background quantified signals, thus, avoiding negative signals

that can generate problems in data normalization[90]. That is, when foreground is

larger than background signal, the difference is computed, otherwise the intensity

signal is computed by interpolation of a smooth monotonic function that is linear

to background intensities in logarithmic scale.

Intensity extraction

Finally, intensity extraction or quantification of both the foreground and back-

ground signal enables the estimation of the gene expression measure for each spot.

The intensity of each spot is determined as the sum or mean (both are possible)

of pixel intensities contained within the area delimited during the segmentation
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step. When working with double-labelling microarray experiments, calculations of

expression measures are based in ratios, which can be computed as the quotient

between the sum or mean of pixels from each channel. Alternatively, the ratio of

medians is not associated with any biological meaning but can be seen as a robust

variant of ratios of means[89].

Quality of hybridisation

The quality of cDNA microarrays or batch reproducibility can be assessed by

comparison of the intensity signal of all microarrays hybridised for a certain study.

High signal-to-noise ratios, foreground to background signal, is a measure of a

correct hybridisation[91]. However, artefactually increased signals can arise from

cross-hybridisation or the unspecific binding of fluorochromes to cDNA probes[92].

Finally, spiking external controls at different stages of a microarray experiments

allows monitoring of possible pitfalls during the whole process[91]. The basis of

such an approach consists in spotting a series of dilutions of a gene not expressed

in the studied biological condition, for instance the large subunit of RuBisCO onto

a human microarray. The cDNA sequence of the spiked control is included in the

labelling step, which serves to monitor any downstream alteration, and specifically

enables detection of cross-hybridisations[93].

1.4.2.2 Affymetrix GeneChip image processing

Gridding

The focus of the data pre-processing will be on the Affymetrix GeneChips be-

cause they are the in situ-synthesized microarrays used in this thesis. Affymetrix

provides the GeneChip Operating System (GCOS) software, formerly named Mi-

croarray Suite (MAS), which controls the cRNA labelling, hybridisation and scan-

ning processes. The raw image obtained by the scanner is also transformed by

GCOS to a .dat file by means of an automatic process that consists of placing a

grid on the image. Gridding is guided by the signal of the hybridisation control β2

sequences on the corners of the microchip[94, 95].

Intensity extraction

The grid is divided into squares corresponding to each probe cell of the mi-

crochip (see figure 1.11). The pixels placed at the perimeter of a probe cell are

discarded, since the optimal hybridisation occurs in its central zone. Furthermore,
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misalignment of a probe cell carrying signal from other probe cells is more likely

to occur on the edges[95]. As a result, the 75th percentile of total pixels is reported

as the estimate intensity of each probe cell.

Each probe cell has thousands of a certain 25-mer oligonucleotide sequence,

which is called perfect match (PM). Each PM has an associated miss match (MM)

probel cell, which has the same sequence than the PM, but with the central nu-

cleotide changed. A probe set is composed of 11-20 probe pairs PM-MM. Quan-

tification of all probe pair PM-MM from a probeset results in the generation of the

.cel file[95]. Such a computation is performed by the GCOS Affymetrix software

through a two-step process: the detection and the signal algorithms[94].

Detection algorithm

The detection algorithm consists of assigning the vote of present, absent or

marginal call for each probe pair based on the computation of the discriminant

score (R). Evaluation of the statistical significance of the R score is performed

by comparison with an arbitrary parameter Tau, which by default is set to 0.015

and must be a small positive value. Considering the MM a measure of unspecific

hybridisations, R accounts for the relevance of PM signal in each probe pair:

R =
(PM −MM)

(PM +MM)

By comparing the R values from a probeset with the Tau parameter defined

value by the user, a p-value is computed using a One-Side Wilcoxon’s Signed Rank

test. The value of the Tau parameter is adjusted depending on wanting to increase

or decrease specificity and/or sensitivity(see figure 1.11 and 1.12). The higher the

Tau, the higher the specificity but the lower the sensitivity.

Figure 1.11: Intensity extraction in Affymetrix microchips. At the right side, a hypothetical
probeset composed of 10 probe pairs PM-MM. Each probe pair is composed of one probe cell PM
and MM. The curve represented at the right side is derived from the intensities obtained from
each probe pair. Image extracted from reference [94].
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Additionally, two more arbitrary parameters, α1 and α2, are selected by GCOS

among the computed p values to define the marginal vote or range. Probe pairs

that are above or below the marginal vote for a determined probe set will be

considered present or absent calls, respectively (see figure 1.12).

M a r g i n a l A b s e n tP r e s e n t

α1 α2

p- value
0 0.02 0.04 0.06 0.08

Figure 1.12: Graphical representation of the detection algorithm. Diagram of p-values computed
from the Tau parameter defined by the user. The additional α1 and α2 paramers serves to set
the marginal region. Image extracted from reference [94].

Signal algorithm

On the other hand, the signal algorithm operates in a similar way to the detec-

tion algorithm. However, the purpose in this case is to provide an estimation of the

intensity signal for each probe set that represents the relative level of expression

of a transcript[94]. Signal is calculated using the One-Step Tukey’s Biweight Esti-

mate which yields a robust weighted mean that is relatively insensitive to outliers,

even when extreme. The signal for a probe set is computed depending on the level

of PM and MM intensities of each probe pair following three rules:

1. Rule 1: If the MM value is less than the PM value, then the MM value is

considered informative and the intensity value is used directly as an estimate

of background signal.

2. Rule 2: If the MM probe cells are generally informative across the probe

set, with the exception of only a few MMs, an adjusted MM value is used for

uninformative MMs based on the biweight mean of the PM and MM ratio.

3. Rule 3: If the MM probe cells are generally uninformative, the uninformative

MMs are replaced with a value that is slightly smaller than the PM. These

probe sets are generally called Absent by the Detection algorithm.

Quality of hybridisation

When dealing with multiple chips during the .dat file generation a target value

(TGT ) must be fixed by the user, by default 500 a.u., in order for the intensities
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of the microchips to be comparable[94]. As a result, a .cel file is generated for each

microchip, which is scaled to the intensity set with the TGT value.

Moreover, there are a series of parameters and internals controls within the

microchip to ensure the quality of the experiment and the comparability of all

microchips of a certain study. Such an information is stored at the .chp file and it

is summarized at the .rpt file. The most important parameters or steps are:

• Visual inspection of the image derived from the .dat file must be performed

to detect possible artifacts and to verify that the β2 control sequences display

an intensity signal close to saturation.

• The average background and the noise value provide respectively a mea-

sure of the unsignificative signal and the electrical noise of the scanner. The

average background values must range between 20 and 100 a.u. and the

noise must not vary significantly between experiments, since it is an inherent

parameter of the scanner.

• The number of probe sets called “Present” relative to the total number of

probe sets on the array should be similar between experiments and never too

low, which may indicate poor sample quality.

• The scale factor (SF) accounts for the variability among a set of experi-

ments. The SF is the coefficient to be applied to the trimmed mean signal

(a method to compute the average signal) of an experiment to fit the TGT,

set by the user, for all the considered experiments of a study[96].

• The normalisation factor (NF) performs similarly than the SF. In this

case, the NF is a coefficient used to normalize the trimmed mean of a sin-

gle experiment to an arbitrary normalization value[96]. Large discrepancies

among scaling/normalization factors (e.g., three-fold or greater) may indicate

significant assay variability or sample degradation leading to noisier data[94].

• The poly-A RNA controls can be used to monitor the entire process of

labelling and hybridisation. Lys, phe, ther and dap genes from B. subtilis

were modified to include a poly-A tail, which serves as starting transcription-

site for T3 RNA polymerase. Labelled poly-A controls are included into the

hybridisation cocktail and must be called “Present” with increasing signal

values from Lys to dap genes.
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• The hybridisation controls BioB, BioC, BioD and Cre genes are provided

by the manufacturer and spiked in the hybridisation cocktail. They must dis-

play increasing signal values from BioB to Cre, since increased concentrations

are furnished with the kit.

• The internal controls of GAPDH and β-actin measure the efficiency of

labelling by computation of the 3’-end to 5’-end ratio. They indicate degraded

RNA or inefficient transcription of double-strain cDNA or biotinylated cRNA,

when the ratio is higher than 3 for the one-cycle amplification protocol.

1.4.2.3 Alternative methods for image processing for Affymetrix Gene-

Chips

Once the .cel file is generated and the set of experiments accomplishes the quality

controls explained above, alternative background correction methods have been

proposed to optimize the detection of the foreground signal. The R language-based

software offers a collection of methods to correct background within the affy and

affyPLM packages. They allow to apply the same methods used by the Affymetrix

software, which is named MAS5 within the mentioned packages. Additionally,

alternative correction methods, such as the robust microarray analysis (RMA) and

gcRMA, were developped by scientists making them available worldwide through

the R repository Bioconductor.

While MAS5 uses both the PM and MM to estimate the individual signal of

probe sets as explained above, RMA and gcRMA neglects the MM signals. The

expression values are computed by inferring a linear model that accounts for the

binding affinity of the sequence synthesized in each probe cell and the combi-

nation of probe cells signals calculated using a median polish[97, 98]. Likewise,

gcRMA also considers the guanine and cytosine content of the sequence synthe-

sized in each probe cell, in an attempt to correct the signal provided by unspecific

hybridisations[99].

1.4.3 Data normalisation

1.4.3.1 Scope of normalisation

The purpose of data normalisation consists in correcting intensity bias within and

between microarray experiments[90, 100]. Such a bias may arise from the intrinsic

variability of the microarray technology, RNA isolation, labelling and hybridisation,
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rather than from biological differences, which are of interest to preserve. The

general hypothesis for microarray data normalisation is that the level of expression

of measured genes in a certain experiment does not vary neither within nor between

experiments[101].

1.4.3.2 Global or scale normalisation

Each experiment can be scaled to an arbitrary intensity value and consequently

all experiments should be comparable with each other. Typically, this strategy is

named globlal median normalisation and used to normalise single-labelling micro-

array experiments, both spotted- and in situ synthesized-based microarrays. To

note, Affymetrix, through the GCOS software, adjusts intensity of microchip exper-

iments to an arbitrary scale factor (TGT) as explained in section 1.4.2.2. However,

such an approach can not correct the bias that usually appears at low intensity

signal range, so more sophisticated normalization methods have been developed to

account for this[102, 103].

1.4.3.3 Local weighted and scatterplot smoothing (lowess) normalisa-

tion

Originally designed to normalise double-labelling cDNA microarray experiments,

this normalisation process can be visualized through an MA plot (see figure 1.13).

Considering G as the intensity signals from the sample labelled with Cy3, normally

depicted green, and R as those from the labelled with Cy5, usually depicted red,

the MA plot displays along the y axis the

M = log R− log G

, and the

A =
(log R + log G)

2

along the x axis [100].

A linear regression is locally fitted within selected intensity signal ranges as to

cover the whole intensity range of the experiment. For each range, the intensity

signal of I is the result of a linear function applied to G :

I = g(G) + εi

where g is the local regression function and εi is a random error value[104]. Since
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the lowess method enables to select discrete ranges of fluorescence signals, print-tip

lowess normalization can be performed over groups of spots printed with the same

tip. Thus, spots with a great probability of showing a similar variation due to

technological effects can be normalised separately[100].

An extension of this method to single-labelling cDNA microarrays was proposed

by Edwards and collaborators, who replaced the second labelled sample of a double-

labelling experiment by an average chip computed from all the microarrays consid-

ered in their experiments[90]. Another lowess method to deal with single-labelling

experiments is the cyclic lowess[105, 106]. This is an iterative method fitting the

lowess regression in pairs of experiments as to perform all pairwise comparisons.

1.4.3.4 Quantile normalisation

Similarly to lowess, quantile normalisation corrects intensity bias by means of a

linear model. In this case, intensity signals of the considered microarrays are in-

creasingly or decreasingly ordered. Consequently, a matrix composed of as many

columns as considered microarrays is obtained. Rows are ranked by value of inten-

sity signal, thus it may not correspond to the same gene or feature in each column.

For each row, the average is computed across all columns and the value of the

whole row is replaced by such an average. Finally, undoing the order applied to

each column the normalized matrix is obtained[105, 106].

1.4.3.5 Non-linear normalisation

The idea underlying non-linear methods is approximately the same than the linear

methods, but differing in their computation. To scale the intensity signal of the

microarrays, a baseline is set and rather than linear regression or scaling, non-

linear methods as smoothing splines[108] or a piecewise running median line[109],

are applied.

1.4.4 Feature selection

1.4.4.1 Introductory remarks

Transcriptomic analysis using microarray experiments has the advantage of gen-

erating a huge amount of gene-expression data expected to improve accuracy of

tumour classification. Nevertheless, proper gene or feature selection among the

thousands of genes available in a microarray experiment must be performed. The
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Figure 1.13: Display of lowess normalisation. The MA plot enables visualization of the normal-
isation produced by the lowess method. The upper plot represents non-normalised data, whereas
the lower one depicts data after lowess normalisation. R indicates the intensities values obtained
from the sample labelled with Cy5, whereas G those values obtained from the sample labelled
with Cy3. At both plots, the x axis harbors the sum of logarithmic intensities, or log10R ∗ G,
for each gene and labelled sample (A values). In contrast, along the y axis, the difference of
logarithmic intensities, or log2R/G, is plotted (M values). Images extracted from reference [107].

major drawback of the feature selection relies on detecting those genes that are

differentially expressed between the classes compared.
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1.4.4.2 Fold-change ratio

The fold-change ratio between the averaged expression of genes between two classes

can be used to select features. Usually, a cutoff value is set and genes with a

fold-change higher than 2 or lower than 0.5, respectively, are selected for further

analysis. Feature selection by means of fold-change must be complemented with

the assessment of statistical significance[107]. That is, computation of a statistic

with an associated probability accounting for the significance of the gene-expression

between two classes.

1.4.4.3 Statistical significance analysis

Common statistical tests assume normal distribution and equal variance-covariance

between the two groups, as in the case of the t-test. However, such conditions are

rarely accomplished when dealing with microarray experiments[110].

Microarray experiments generates data with high dimensionality. The number

of genes in each experiment is much higher than the cases analysed. This produces

that the above mentioned conditions to perform common significance tests can not

be accomplished[111]. Furthermore, this may produce false detection of differen-

tially expressed genes, since a high statistical significance can result from random

effects when simultaneously performing multiple tests[111]. As a consequence, sev-

eral statistical tests addressing the particularities of high throughput experiments

have been developed.

Non-parametric tests

Non-parametric statistical tests, such as the Wilcoxon/Mann-Whitney, allow to

compute a statistic irrespective of the distribution of data. To evaluate the differ-

ence between two groups, this test ranks the values of each group[112]. If all the

ranked values of one group are smaller than the other, this indicates that the groups

analysed are different and a p-value is calculated based on these grounds[112].

1.4.4.4 Multiple-test adjustment

P-values must be adjusted to reduce the error derived from a multiple-test ana-

lysis. For this purpose, developed methods can be divided in three groups: those

controlling the family-wise-error-rate (FWER), the false discovery rate (FDR), and

the positive false discovery rate (pFDR)[113, 114, 115].
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Family-wise error rate (FWER)

Similarly to uncorrected p-values, FWER accounts for the false positive rate

(FPR). That is, the rate for truly null genes (truly non-differentially expressed

genes) to be called significant[114, 115], but considering the multiple test conditions

to compute the statistic[113]. The most popular methods for this are the Bonferroni

correction and resampling-based tests[113]. The former consists in dividing the

cutoff p-value to call a gene differentially expressed, usually p<0.05, by the number

of genes being analysed[113].

Resampling tests are based on permuting the columns of the gene-expression

matrix, where columns are cases and rows are genes, without regard to the their

class[114]. Such a procedure results in a determination of the p-values irrespective

with the distribution of data and minimizing the FPR.

False discovery rate (FDR) methods

The FDR method is thought to estimate the expected proportion of false pos-

itive genes among the significantly expressed genes[114]. This method proposed

by Benjamini and Hochberg[116] coincides with the FWER when the amount of

significantly expressed genes is equal to the amount of non-significantly expressed

genes[114].

By contrast, the pFDR method proposed by Storey[115] is defined as the condi-

tional expectation of finding false positive genes among the genes called significant

through a Bayesian approach[114]. It undertakes the modelling of an a priori prob-

ability for a gene to be called significantly expressed[114]. The derived adjusted

p-values are called q-values when using FDR and pFDR.

1.4.4.5 Principal component analysis (PCA)

Finally, aside from the feature selection by means of siginificance tests, principal

component analysis (PCA) provides a robust manner to determine those features

accounting for the greatest variability. PCA opperates reducing the high dimen-

sionality of microarray data, thus simplifying the management of the analysis,

through computation of eigenvectors, or eigengenes in the biological context[117].

Such a methodology has been reported to yield good classification results dealing

with microarray experiments[118, 119].
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1.4.5 Classification methods

1.4.5.1 Introductory remarks

In the oncological framework, researchers are motivated to employ genetic profiles

derived from microarray experiments with the aim of improving classification of

cancer types. As previously mentioned, a proper identification of candidate genes

to produce adequate classification results must be performed. In addition, devel-

opment of classifiers with enough confidence to reach a high clinical relevance is

mandatory[120]. In this sense, a strict procedure must be followed not to overesti-

mate the ability of the classifier generated[120].

1.4.5.2 Unsupervised classification

Cancer classification using microarrays is often addressed in a first step by perform-

ing unsupervised classification, for which the most popular method is hierarchical

clustering[76, 120]. Such an unsupervised approach is based on computation of

differences between genes and cases through selected metrics.

The computation method for this will vary with the algorithm used but, broadly

speaking, clusters of genes that have a similar level of expression are achieved by

means of an iterative process. Such a procedure can be simultaneously performed

for several cases. The result is a graphical display optimally expected to allow

visualization of cases clustered into the correct group, if labels are known, with a

series of genes clusters defining each group of cases[121].

Gene signatures derived from a hierarchical clustering can lead to false conclu-

sions when the signatures are directly correlated with the outcome[120]. Although

methods have been proposed to calculate the accuracy of the clustering[122], the

most appropriate method to determine genes related with the classification out-

come is through supervised methods[120].

1.4.5.3 Supervised classification

In the context of supervised classification, a dataset composed of samples belonging

to two classes, or more, is split into a training and a test set. The former is used

to generate a mathematical function that serves to predict the class of the test

samples left apart. The classification accuracy can be defined as the percentage of

correctly assigned cases that are predicted by a mathematical algorithm.

Several mathematical algorithms for carrying out supervised classification of
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cancer classes have been reported[120, 123, 124]. Briefly, all algorithms search for

a function that enables separation of cases into their corresponding class group (see

figure 1.14). Three representative strategies are described as follows:

• Linear discriminant analysis (LDA) builds a linear function minimizing

the distances within group and maximizing the distance between groups[125].

• Support vector machines (SVM) seeks for a hyperplane than can sepa-

rate the groups, assuming that the data is linearly separable[126]. Otherwise,

transformation of data to a higher dimensional space is performed, which re-

sults in a non-linear separation when transforming data to the input space.

• Random Forest (randF) is a method that classifies test samples by con-

struction of classification trees using the input variables (genes in our case)

from the training set. Each classification tree provides a vote for the sample

to be predicted. The algorithm chooses for prediction the class having more

votes[127].

Figure 1.14: Discriminant plot for a three-classes LDA classifier. The display of LDA values for
each sample is a means to visualize the “physical” separation between classes considered. Along
x axis, the values of LDA1 component are displayed, whereas those values for LDA2 component
are displayed along the y axis. Figure extracted from reference [128].
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1.4.5.4 Procedure to estimate the classification accuracy

When wanting to define a set of candidate genes to distinguish among cancer

classes, there are a series of steps that can not be neglected. Otherwise, an over-

estimation of the outcome may ensue. First, the indications explained in section

1.4.4, regarding gene selection must be implemented through a resampling classifi-

cation approach[120]. Namely, considering a classification problem, it is mandatory

to divide the available dataset in one part for training and another one for test pur-

poses.

Such a random partition must be repeated and the feature selection performed

on the training set at each iteration(see figure 1.15). To remark, the feature selec-

tion must exclusively be performed on the training set. That is, samples included

for training purposes can not be used as a test set to calculate a correct classifica-

tion accuracy. In an iterative process, the classification accuracy of test sample(s)

is computed at each iteration, which allows computation of an averaged accuracy

over all iterations and a confidence interval[120].

Partition methods

There is no unique rule for the partition of the data set into training and test

set[123]. Some representative strategies can be:

• Split sample (SS) usually selects 2/3 of the dataset for training and 1/3 for

test purposes.

• v-fold cross validation (VFCV) leaves apart from the training set a proportion

of samples defined by 1/v, where v is positive integer number. In the case

of leave-one-out cross validation (LOO), only one sample is not used for

training.

• Monte Carlo cross validation (MCCV) and .632+ Bootstrap, works similarly

than the previous methods, but requiring a higher computational capacity.

As the case of SS and VFCV, several training sizes can be evaluated.

Sample size estimation

At this stage, it is also relevant to consider how to determine the correct sample

size. Certainly, a homogeneous size of class groups must be considered[120] and

the proportion of samples reserved for the training set must be selected through
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Figure 1.15: Classification procedure. This scheme is intended to visualize the required proce-
dure to correctly estimate the classification accuracy and related parameters (sensitivity, speci-
ficity,...). The data set must be split into training and test set. Such a partition can be performed
in different ways (see section 1.4.5.4). In this figure, only leave-one-out (LOO) is represented.
Feature selection is only performed on the training set, and the classification function extracted
is used to predict the class of the sample left apart. This procedure is repeated for all cases,
and the accuracy mean of classification is computed. Figure extracted from reference [120]. R
is a hypothetical condition and NR the non-R condition. TP is true positive, TN indicates true
negative, FP denotes false positive and FN is false negative.

objective criteria when using VFCV, MCCV or .632+ Bootstrap. For this aim, a

series of classifications using several training set sizes can be tested and the accuracy

calculated for each one. The training set size yielding the greatest accuracy must

be selected to optimize the best classifier[124].

Statistical significance of models

At any rate, the statistical significance of the classification accuracy must be

assessed[120, 124]. To do this, an iterative procedure is performed over the dataset

as described above, but cases of the training set for each class are randomly as-
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signed. Therefore, such a procedure permits computation of a random accuracy

that is contrasted with the true accuracy to generate a p-value accounting for its

statistical significance[124]. The final validation of a classifier must be performed

testing an independent test set when enough samples are available[120].

Classification parameters of clinical interest

A rigorous classification scheme with clinical interest must contemplate the com-

putation of sensitivity and specificity, since the prediction accuracy alone has no

clinical use[120]. Let consider a hypothetical classification example for two classes,

healthy (n=15) and disease (n=15). If we have a“gold-standard”to refer the classi-

fication provided by our model, we could build a table to report the cases correctly

or uncorrectly classified:

Healthy Disease

“gold-standard” “gold-standard”

Healthy 10 5

predicted TP FN

Disease 7 8

predicted FP TN

where TP is the amount of true positives (correctly assigned healthy cases)

and TN is the amount of true negatives (correctly assigned disease cases). If we

consider, the amount of false negatives (FN) (uncorrectly assigned healthy cases),

and the amount of false positives (FN) (uncorrectly assigned disease cases), we can

derive the parameters of clinical interest:

• Sensitivity = TP
TP+FN

= 10
10+5

= 0.67

• Specificity = TN
TN+FP

= 8
8+7

= 0.53

• False negative rate (FNR) = 1− Sensitivity = 1− 0.67 = FN
FN+TP

= 5
5+10

= 0.33

• False positive rate (FPR) = 1− Specificity = 1− 0.53 = FP
FP+TN

= 7
7+8

= 0.47
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This hypothetical classification scheme produces both low sensitivity and speci-

ficity. That is, the classification scheme used would not detect neither the TP

cases, nor the TN ones. Similarly would happen with both the FP and FN values.
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1.5 Implementation of microarray-data results in

clinical practise

1.5.1 RNA stability in human biopsies

1.5.1.1 RNA quality

The biological source for the detection of gene-expression based in the microarray

technology is the messenger RNA (mRNA). The quality of the RNA is a critical

point for a successful hybridisation [129]. The RNA quality can be measured by

the absence of DNA and protein contamination[130], jointly with the evaluation

of its integrity, which can be defined as the degree of fragmentation that an RNA

specimen shows [129, 130]. An RNA sample with a high degree of fragmentation

would not properly hybridize with the probes immobilized onto a microarray.

1.5.1.2 RNA integrity

Usually, the RNA integrity is measured by the ratio of the EtBr-stained 28S and 18S

ribosomal peaks. Those specimens having a 28S/18S ratio approximately equal to 2

and with absence of bands running prior, between and/or after the ribosomal peaks

in an agarose gel electrophoresis have acceptable RNA integrity[130]. However, the

quantity of RNA (3-10 µg) required for agarose gel analysis can not be obtained

from small biological samples.

As a result, new microfluidics stations were designed to reduce the amount of

sample needed for analysis and software was developed to refine the detection of

degraded RNA[130, 131]. One of these devices is the 2100 Bioanalyzer from Agilent

Technologies.
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2100 Bioanalyzer (Agilent Technologies, USA)

Based on a microcapillary electrophoretic system, twelve samples containing

between 25 and 500 ng of RNA can be simultaneously analyzed. This device

generates an electropherogram and a virtual gel derived from the fluorescence signal

detected by a laser. The profile of the electropherogram serves to compute the

28S/18S ratio and to generate the RNA integrity number (RIN). The RIN ranges

from 0 to 10, completely degraded and undegraded, respectively[129] (see figure

1.16).

 

28S/18S = 0.6 
RIN = 2.7  

28S/18S = 1.8 
RIN = 9.3  

- 28S 
       
- 18S 

- 28S 
      
- 18S 

Figure 1.16: 2100 Bioanalyzer profiles. A profile of an undegraded RNA (top) and a degraded
RNA (bottom) are shown. The images at the right side corresponds to the virtual gel generated
from the electropherogram.

The developers of the RIN algorithm argued that the 28S/18S ratio is not sen-

sitive enough to detect fragmentation of RNA, since the computation of the ra-

tio is restricted to the integration of the peaks, and does not consider the entire

electrophoretic profile, as RIN does. Briefly, the RIN algorithm was obtained by

computing the area under the 28S and 18S ribosomal peaks, and also under the

regions placed before, between and after these peaks (see figure 1.17). The most

informative features were selected and were used to train a neural network model

[129].



1.5 Implementation of microarray-data results in clinical practise 49

Figure 1.17: RNA areas used for RIN computation. The values of intensity of fluorescence
obtained from the areas indicated in the figure (between 23 and 58 seconds) are used to computed
the RIN number. The peak of the marker serves as a reference to identify the rest of peaks in
the electropherogram, but it is not used for RIN computation.

The development of the 0 to 10 range of RIN was generated by comparing the

area of the mentioned regions between RNA samples covering the whole range

of degradation. The series of comparisons was the input for a Bayesian learning

procedure resulting in a classifier that can identify the degree of degradation of a

RNA profile [129].

1.5.1.3 Studies on RNA integrity

Effects of collection media

Micke and collaborators studied the effect of various collection media in a time

course experiment to evaluate their capacity to preserve RNA[132]. In this expe-

riment human tonsil and normal colon tissue were extracted from patients repre-

senting the malignant and benign pathological conditions, respectively.

Immediately after surgical removal samples were cut in cubes and four pieces

snap frozen with isopenthane/dry (-120�) ice and transferred to a -80� freezer

as the reference 0h time-point. The rest of pieces were respectively placed in

ice, RNAlater (Ambion, Applied Biosystems, USA), 0.9% NaCl (only for tonsil
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samples) or left at room temperature. After a period of 0.5, 1, 3, 6 and 16 hours,

two samples were removed from each collection medium at each time point and

frozen as above until RNA isolation.

Evaluation of the 28S/18S ribosomal peaks ratio did not show evident signs of

degradation at any storage condition. Additionally, they evaluated the 28S/18S

ratio of 47 biopsies from their local liquid nitrogen biobank accounting for a repre-

sentative spectrum of tissues and conditions, which resulted in only 2 samples not

showing clearly defined ribosomal peaks. Similarly, a previous study comparing

gene expression differences between samples preserved after surgical operation at

either room temperature, snap frozen or left in RNAlater for 24 or 72h, resulted

in no significative statistical changes[133].

Similar results were obtained by Scicchitano an collaborators[134], and Blackwall

and collaborators[135], in their respective studies.

Assessment of different evaluation methods on RNA integrity

Strand and collaborators evaluated three methods of classifying RNA integrity

using the 2100 Bioanalyzer for 24 snap frozen breast cancer biopsies: a) visual

inspection (visible 28S and 18S peaks and flat baseline), b) 28S/18S ratio (≥0.65)

and c) RIN (≥6)[136].

The visual inspection and the RIN method yielded the highest amount of sam-

ples classified with good integrity. To assess the dependency of the gene-expression

on the RNA integrity, the RNA isolated from each breast cancer biopsy was hy-

bridised onto a cDNA microarray. A hierarchical cluster was generated from the

24 breast cancer samples and all features of the microarray (16,641 genes). Poor or

good RNA integrity was assigned to samples based on the three described methods.

Two groups were detected: one including most of degraded samples and the

other one most of undegraded samples. However, the number of samples misclassi-

fied (expected to be degraded, but grouped by gene profile with undegraded, or vice

versa) varied depending on the method. The visual inspection and RIN method

produced better results, since they had only 1 and 2 misclassifications, respectively.

In contrast, the cluster generated by labelling the samples with the ratio method

produced a total of 5 misclassified samples[136].
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1.5.2 Improvement of diagnosis and prognosis of HBT by

microarray-based data

In recent years, the use of gene-expression microarrays has strongly increased the

knowledge about molecular signatures underlying HBTs. Naturally, the tumour

types receiving greatest attention have been the malignant forms of gliomas.

Anaplastic gliomas (Ags) and glioblastomas (Gbs) progression leads to a fatal

outcome for the patient, although with heterogeneous time courses. Therefore, sev-

eral studies have tried to correlate gene signatures with survival. For instance, Nutt

and collaborators generated a classification model from 50 Gbs and 22 Ag[137].

Such model was used to correctly predict 18 out of 21 test samples (14 Gbs and

7 Ags). Surprisingly, significant correlation with survival was only obtained when

using gene signatures from the developed model, rather than from the histological

classification.

Similar results were reported by Freije and collaborators[69]. In this case, a

dataset including 24 grade III and 50 grade IV gliomas was used to delineate two

survival groups. The one with poorer life expectancy was enriched with 4/5 parts

of Gbm cases. Among the 595 genes with fold-change >2 (two-sided t test with

P ≤ 0.01), four gene clusters correlating with survival were found: genes related

to neurogenesis, genes involved in synaptic transmission, genes involved in mitosis

and extracellular matrix components and regulatory genes.

Finally, an attempt to decipher the molecular mechanisms underlying HBT

was performed by Tso and collaborators describing gene signatures characteriz-

ing primary and secondary glioblastomas[68]. In this study, authors selected 46

primary and 14 secondary glioblastomas. As a result, 73 glioblastoma-associated

genes (GAGs) characterizing primary glioblastomas and 36 GAGs for the secondary

glioblastomas were detected. However, 15 out of the total 113 GAGs belonged to a

common functional category between primary and secondary glioblastomas. These

15 genes shared some functional categorization and are involved in mitosis and

extracellular response-associated genes. In contrast, the secondary glioblastomas

showed higher expression in several mitotic cell cycle-associated genes, whereas pri-

mary glioblastomas exhibited higher expression of several extracellular response-

associated genes.
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1.5.3 Developed clinical trials based on microarray-data

1.5.3.1 Relevance of clinical trials

The milestone to corroborate the applicability in the clinical practise of data gene-

rated from any new technology is the clinical trial. The molecular profile that can

be derived from microarray experiments makes this high throughput technology an

interesting option to detect a large set of differentially expressed genes to which

target therapeutical action. The wide genetic variability of cancers represents a

great difficulty to propose effective treatments that minimize side effects.

Determination of gene signatures for each patient is an attractive procedure that

has evolved during the last decade. The possibility of conceiving the treatment to

be individually managed has gained great acceptance in the scientific community.

Such a conception completely transforms the current paradigm of medicine and,

although this decision scheme seems far away to be implemented in present clinical

practice, the preliminary steps translated to clinical trials have begun.

1.5.3.2 Steps in clinical trials

The process that leads gene signatures detected by microarray data to reach the

clinical trials can be divided into three phases[76]:

1. Description of gene signatures related to cancer specimens.

2. Validation of the gene signatures by an independent test set.

3. Expansion of the cancer gene signatures to predict patient outcome and to

guide the use of cancer therapeutics.

As an example of the first phase, several studies have described gene signatures

in HBT that can account for the molecular characteristics of different high-grade

gliomas[30, 68]. The second phase requires a higher amount of samples to discern

the validity of the proposed gene signatures. In this sense, some valuable examples

of high prediction accuracy have been reported in HBT research[138, 139, 140].

As an example of third phase, prediction of patient outcome has been addressed

for HBT[69, 1]. Therefore, there are published examples that demonstrate the

potential use of gene signatures from microarray experiments for clinical trials.
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1.5.3.3 Standardization of microarray data prior to clinical trials

Despite that guidelines for gene signatures to reach the clinical trials stage seem

well defined, there are several points to address regarding the validation of mi-

croarray results prior to those trials. At the beginning of the current decade, a

key question, still in discussion, arose about how to translate the detected gene

signatures into an user-friendly application in the clinical practise[141, 71]. The

main proposals consisted in selecting a set of markers to be screened with a more

accessible technology (i.e., immunochemistry or RT-PCR), or in contrast, to design

a disease-specific microarray to use as a clinical test.

Another issue the microarray technology has to confront is the standardisa-

tion of the results[71, 141]. Due to the large availability of different microarray

technologies, there is often a low reproducibility of gene expression levels or gene

signatures[141]. Such a discrepancy can simply arise from unmatching gene se-

quences between microarray types[71, 141]. However, standardization is a topic

being rigorously addressed. Several studies demonstrates that results obtained

from distinct technologies can be compared[142, 143, 144].

The MicroArray Quality Control (MAQC) project assessed the intra- and inter-

laboratory reproducibility of microarray results by using four different technologies

(Affymetrix, Agilent, Applied Biosystems and GE HealthCare). This project was

developed within a consortium in the United States promoted by the Food and

Drug Administration, and it was composed of fifty-one centers representing the

academia, the industry and the US government[142].

Comparability assessment

With regard to the comparability of microarray results, there is a request of high-

impact factor journals to make raw data publicly available. This allows researchers

to mutually compare gene signatures and/or improve the output by combination of

data from different centres[71, 120]. Currently, the Minimum Information About a

Microarray Experiment (MIAME)-compliant form is the usual document enabling

worldwide distribution of data[145]. The MIAME-forms are asked to be submit-

ted prior to publication to at least one publicly available repository such as the

Gene Expression Omnibus (GEO) at the National Center of Biotechnology and

Informatics (NCBI)(http://www.ncbi.nlm.nih.gov/geo/) or the Array Express at

the European Bioinformatics Institute (EBI)(http://www.ebi.ac.uk/arrayexpress).



54 INTRODUCTION

1.5.3.4 Reported clinical trials based on microarray data

There are some reported clinical trials in HBTs that were designed based on micro-

array data[146, 147], although not reaching the degree of clinical implementation as

those developed for breast cancer[72, 148, 149]. Nonetheless, gene signatures from

microarray data are used in studies with clinical implication to better describe the

pathogenesis of HBTs. For instance, to elucidate response to therapy[150, 151, 152]

or to identify prognostic markers[69, 1, 153].

At any rate, gene signatures must overcome the clinical trials before being im-

plemented in the clinical practice. First, gene signatures must be tested on a

representative population in the context of a phase II clinical trials. Second, gene

signatures would be conducted in definitive phase III trials with relatively modest

sample size, but large screening population[141]. That is, the selected population

for phase III clinical trials must include people that accounts for a wide range of

clinical factors (sex, age, ethnical origin,...). These steps appears not to have been

addressed for microarray-based gene signatures yet.

1.5.4 Contribution of eTUMOUR, HealthAgents and ME-

DIVO2 projects to improve diagnosis and prognosis

of HBT

The intensive study of HBTs during the recent years is expected to achieve an

effective therapy, rather than the current palliative treatment improving patient

healthcare. In Europe, the scientific policy of the European Union (EU) has fos-

tered the development of projects with multiple partners. The multicentric studies

undertaken in the EU have the advantage of collecting a great number of patient

samples, which is not conceivable for single centers. Thus, this increases the relia-

bility of the results obtained.

1.5.4.1 The eTUMOUR project

One of these projects is eTUMOUR (http://www.etumour.net), in which context

this thesis has been developed. Its aim is to create a comprehensive Web-accessible

Decision Support System (DSS) for analysis and interpretation of Magnetic Reso-

nance Spectroscopy and Imaging (MRS & MRI) data of brain tumours, together

with transcriptomic and metabolomic data. The DSS is expected to provide clini-

cians with a user-friendly diagnostic and prognostic tool, which will be implemented
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in the clinical routine. The DSS can facilitate the decision about the treatment,

based on the data generated from previous patients.

As all european projects, eTUMOUR is divided into work packages (WPs) that

serve to distribute partners in groups to perform a determined task. There are

nineteen partners involved in eTUMOUR from eight EU states and one from Ar-

gentina. Concerning this thesis, transcriptomic data was acquired and stored in

the eTUMOUR database (https://dbtest.etumour.net:9091/eTumour/). The UAB

also provided MRS, MRI and High Resolution Magic Angle Spining (HRMAS)

data.

1.5.4.2 The HealthAgents project

Another project to which the UAB is providing resonance and microarrays data

is the EU-funded HealthAgents (http://www.healthagents.net) project, which is

also intended to improve HBT classification through a DSS. However, the manner

to approach the subject is distinct from eTUMOUR. HealthAgents aims to create

a data warehouse furnished with data from involved partners to build classifiers

improving diagnoses and prognoses[154]. The data warehouse does not store all

the information, but the local databases. As a consequence, a certain partner can

not use all available data in the warehouse to refine its classifications. This is the

innovating feature of the project since the exchange of data between partners is

performed through the agents technology, which decides the amount of data that

a partner can receive from another one, depending on its contributed data. Ad-

ditionally, HealthAgents attempts to improve HBT classification by incorporating

text mining tools, aside from the common machine learning tools.

1.5.4.3 The MEDIVO2 project

Finally, the Mejora del diagnóstico y de la valoración prognóstica de tumores cere-

brales humanos in vivo. Modelos animales para la metabolómica de la progresión

tumoral. Fase 2 (MEDIVO2) was designed by the GABRMN group to improve the

sensitivity of the non-invasive diagnosis and prognosis of HBT in vivo. Extraction

of a metabolomic phenotype from single and multivoxel proton magnetic resonance

(1HMRS) is expected to allow the characterisation of diagnostic markers for HBT

that could be incorporated into a DSS, which can assist clinicians to refine diag-

nosis and improve patient healthcare. In this sense, transcriptomic and HRMAS

data is included to further improve diagnoses.
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Another focus of MEDIVO2 using high field MRS/MRI consists in modelling

tumour progression making use of genetically modified mice. Concerning this,

characterisation of mobile lipids in cells and animal models permits detection of

cell proliferation markers. Unlike the eTUMOUR and HealthAgents projects, ME-

DIVO2 is a Spanish government-funded grant, which is developed in collaboration

with clinicians and surgeons from the Hospital Universitari de Bellvitge-IDIBELL,

as well as with researchers from the Universitat Politècnica de València (UPVLC),

the Universitat Politècnica de Catalunya (UPC), the Katholieke Universiteit Leu-

ven (KUL) and the Saint George’s Hospital Medical School (SGHMS).



Chapter 2

OBJECTIVES

1. Collection of transcriptomic data from DNA microarrays

(a) Collect biopsies from intracranial human brain tumours at the hospitals

from the Barcelona metropolitan area and establish a local biobank.

(b) Isolate RNA from collected biopsies and analyze its integrity.

(c) Hibrydize and analyze cDNA microarrays (CNIO).

(d) Populate with gene expression microchips the eTUMOUR database.

2. Characterization of RNA integrity from HBT biopsies

(a) Evaluate parameters that can influence the RNA quality of HBT biop-

sies.

3. Development of a proof of principle by prediction of glioblastoma

multiforme (Gbm) and meningothelial meningioma (Mm) biopsies

using microarrays-based gene profiling

(a) Generate a prediction formula to distinguish Gbm and Mm biopsies

using microarrays-based gene profiling.

(b) Assess the ability of gene signatures to predict Gbm and Mm biopsies

based on the histopathological diagnosis.

4. Development of prediction models for various HBT types using

Affymetrix microchips-based gene profiling

(a) Generate prediction models for those histopathological classes with high-

est prevalence.
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(b) Develop an automatic strategy to determine gene signatures from Affy-

metrix data.
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MATERIALS AND METHODS
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3.1 Collection, storage and histopathology ana-

lysis of samples

3.1.1 Collection and storage of samples

Biopsy samples collected for this work were obtained at different hospitals of the

Barcelona area: Hospital Universitari de Bellvitge, Hospital Universitari Germans

Trias i Pujol, Hospital Cĺınic and Hospital Sant Joan de Déu. Collection of biop-

sies was performed through 3 research projects: eTUMOUR, HealthAgents and

MEDIVO2. The study was approved by the local Ethics Committee and informed

consent was obtained from all patients (see annex A-1).

All collected biopsy samples were stored in liquid nitrogen in the surgery room

after surgical removal from the patient brain. They were monthly taken to our

laboratory and stored in liquid nitrogen at our local biopsy bank. For 33 of collected

biopsies, an aliquot was also collected in RNAlater in the surgery room immediately

after surgical operation and stored at 4� until RNA isolation was performed.

3.1.2 Histopathologycal analysis of samples

Biopsy tumour samples were fixed in 4% buffered formalin and embedded in paraf-

fin in the originating center. For routine histological examination 4-µm thick sec-

tions were stained with hematoxylin and eosin. The WHO 2000 Nervous System

Classification criteria were used for diagnosis[18]. Moreover, at least one additional

tissue section was prepared from the biopsy samples collected through the eTU-

MOUR project. Such a section was analysed by the Clinical Subcommittee of the

Committee for Quality Control of Data as described at the deliverable 3 of the

eTUMOUR project (see annex A-1).

3.1.3 Storage of data at the eTUMOUR and HealthAgents

databases

The eTUMOUR database (eTDB, https://dbtest.etumour.net:9091/eTumour/) is

the data warehouse of the project. All information available from patients must be

entered into the eTDB to make it available to partners of the project. The eTDB

can store clinical information, images of tissue slices and MRI, spectra obtained

from single voxel MRS, multi voxel MRS and HRMAS, and transcriptomic data.
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Each type of data is stored into a different section, in which there are several fields

to describe the experiment performed (see annex A-2 for the case of quality control

fields for transcriptomic data).

In the case of transcriptomic analysis, the fields included describe the quality of

RNAs isolated and the quality of the hybridisation. Of course, information from

hybridisation was only available for those RNA samples that displayed a sufficient

quality, as agreed in the eTUMOUR project (see annex A-3).

The HealthAgents database (HADB, http://158.109.50.115:8091/haGUI/) ap-

proximately contains the same fields than the eTDB. However, the structure of this

database differs from the eTDB one. In the eTDB each type of data is stored in

a section independent from the rest. In contrast, in the HADB experimental data

(MRI, MRS, HRMAS and transcriptomic data) is stored as a subsection of clinical

data.

3.2 RNA isolation

3.2.1 Isothiocyanate-based RNA isolation (Qiagen)

RNA isolation based on isothiocyanate denaturation was performed by using the

RNeasy Midi kit for those biopsies collected to perform cDNA microarray experi-

ments, at the inital stages of the MEDIVO2 project. A specialized high-salt buffer

system allows up to 1 mg of RNA longer than 200 bases to be adsorbed by the

RNeasy silica-gel membrane. RNA molecules shorter than 200 bases (such as micro

RNA, small-interfering RNA, 5.8S rRNA, 5S rRNA and tRNAs, which together

comprise 15-20% of total RNA) are discarded.

Biological samples are first lysed and homogenized in the presence of a highly de-

naturing guanidine isothiocyanate containing buffer, which immediately inactivates

RNases to ensure isolation of intact RNA. Ethanol is added to provide appropriate

binding conditions, and the sample is then applied to the RNeasy column where

the total RNA binds and contaminants are washed away. High-quality RNA is

then eluted in RNase-free water[155].
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3.2.2 Acid-Phenol:Chloroform-based RNA isolation (Am-

bion)

RNA isolation based on Acid-Phenol:Chloroform was performed by using the mirVana

miRNA Isolation kit[156] for those biopsies collected to perform Affymetrix mi-

crochip experiments. This part was performed during the eTUMOUR, HealthA-

gents and MEDIVO2 projects. This technology combines an organic extraction

with a solid-phase extraction that allows isolation of total RNA including small

RNA molecules (micro RNA, small-interfering RNA, 5.8S rRNA, 5S rRNA and

tRNAs). The first step was to disrupt samples in a denaturing lysis buffer. Next,

samples were subjected to Acid-Phenol:Chloroform extraction that removed most

DNA[157]. At this point there were separate protocols for purification of either

total RNA, including very small RNA species, or for purifying RNA highly en-

riched by small RNA species, which contained very little RNA larger than about

200 bases. In this thesis, only isolation of total RNA was performed.

Ethanol was added to samples, and they were passed through a Filter Cartridge

containing a glass-fiber filter, which immobilized the RNA. The filter was then

washed a few times, and finally the RNA was eluted with a low ionic-strength

solution. To isolate RNA that was highly enriched for small RNA species, absolute

ethanol was added to bring the samples to 25% ethanol. When this lysate/ethanol

mixture was passed through a glass-fiber filter, large RNAs were immobilized, and

the small RNA species were collected in the filtrate. The ethanol concentration of

the filtrate was then increased to 55%, and it was passed through a second glass-

fiber filter where the small RNAs become immobilized. This RNA was washed a

few times, and eluted in a low ionic strength solution.

3.2.3 Evaluation of RNA quality

RNA was characterised using a NanoDrop spectrophotometer (NanoDrop Tech-

nologies). For RNA samples isolated using both RNeasy Midi kit and mirVana

miRNA Isolation kit, absence of protein contamination was monitored by the 260

nm/280 nm ratio of absorbance. In the former case, samples with a ratio ranging

between 1.6 and 2.0 were accepted for further processing. In contrast, for RNA

samples isolated using mirVana miRNA Isolation kit, the accepted range was be-

tween 1.6 and 2.3 as agreed in the eTUMOUR project quality control document

(see annex A-3).

Integrity of the RNA was assessed by using the capillary electrophoretic system
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2100 Bioanalyzer (Agilent). For RNA samples isolated using RNeasy Midi kit,

only those producing a 28S/18S ratio higher than 1.1 or an RNA integrity number

(RIN) number higher than 5 were used for further analysis. For the other RNA

samples isolated with the mirVana kit, only those producing a 28S/18S ratio equal

or higher than 1.2 or an RIN number equal or higher than 6 were selected as agreed

in the eTUMOUR project protocol (see annex A-3).

3.3 Labelling and scanning

3.3.1 Single-Cy3 cDNA microarray labelling

Thirty-five RNA samples (17 glioblastoma multiforme, Gbm, and 18 meningothe-

lial meningioma, Mg) isolated from those biopsies collected during the MEDIVO2

project were labelled and hybridised through the protocol described as follows.

cDNA labelling was performed using the Cy3-fluorescent dye and the CyScribe

First Strand labelling kit (GE Healthcare, UK). The starting material was approx-

imately 14 µg of total RNA. Starting RNA was copied into cDNA using a reverse

transcriptase and an oligo(dT) primer incorporating Cy3-dUTP into the growing

cDNA sequence. Alkaline treatment was performed to eliminate the RNA tem-

plate. Then, the cDNA labelled product was purified from the reaction mixture

using the CyScribeTM GFXTM purification kit. Labelled cDNA was resuspended

in 100 µl of the hybridisation solution, composed of 50% deionised formamide, 5x

sodium saline citrate (SSC) and 0.1% SDS. Two µl human COT1-DNA (1 µg/µl),

2 µl polyadenilic acid (6 µg/µl) and 0.4 µl salmon sperm DNA (10 µg/µl) were

added to avoid unspecific hybridisations.

The final solution was denatured for 2 minutes at 95� and immediately placed

on ice. The solution containing the labelled cDNA was hybridised onto a pre-

hybridised human CNIO oncochip for an overnight period in an incubator Ar-

rayBooster (Advalytix, Munich, Germany). The human CNIO oncochip is a 12K

cDNA microarray produced at the Spanish National Cancer Research Centre (CNIO

Genomics Unit, ArrayExpress acc. no. A-MEXP-261) that contains 11,500 cDNA

clones representing 9,300 loci. After incubation, slides were washed and Cy3-dye

fluorescence was measured using a ScanArray 4000 (Perkin Elmer, Waltham, USA)

detection system. Signal was quantified by the Genepix 6.0 software (Molecular

Devices, Sunnyvale, USA).
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3.3.2 Affymetrix labelling

RNA samples isolated from those biopsies collected during the eTUMOUR project

were labelled and hybridised through the protocol described as follows. The whole

procedure described in this section was performed at the Affymetrix core facility

of the Institut de Recerca de la Vall d’Hebron (Barcelona, Catalunya).

Labelling was performed using the One-Cycle Target Labeling and Control

Reagents kit (Affymetrix, USA). The starting material for the labelling protocol

ranged from 0.3 to 5 µg of total RNA. First, the total RNA was reverse transcribed

using a T7-Oligo(dT) promoter primer in the first-strand cDNA synthesis reaction,

and four poli-A spike-in controls (poli-lys, -phe, -thr and -dap) included in each

reaction sample to assess the batch-to-batch reproducibility of hybridisation.

Second, T4 DNA polymerase produced the double-stranded cDNA, which served

as a template for in vitro transcription (IVT). The IVT reaction was carried

out in the presence of T7 RNA polymerase and a biotinylated nucleotide ana-

log/ribonucleotide mix for complementary RNA (cRNA) amplification and biotin

labelling. The biotinylated cRNA targets were then cleaned up, fragmented, and

hybridized onto the HG-U133 plus 2.0 GeneChip. Prior to hybridization, profiles

of both amplified and fragmented material were monitored using the Bionalyzer

(Agilent, USA).

For hybridization, 15 µg of fragmented cRNA were added to the hybridisation

mix composed of 5 µl control oligonucleotide B2, 15 µl 20X Eukaryotic Hybridiza-

tion Controls (bioB, bioC, bioD, cre), 3 µl herring sperm DNA (10 mg/ml), 3 µl

BSA (50 mg/ml), 150 µl 2X hybridization buffer and water up to a final reaction

volume of 300 µl. The hybridization mix was denatured at 99� for 5 minutes and

transferred to 45� for 5 additional minutes. The hybridisation mix was spun down

for 5 minutes to remove any insoluble material from the solution and 200 µl loaded

into the HG-U133 plus 2.0 GeneChip. After an incubation period of 16 hours in

the hybridization oven at 45� and 60 rpm, microchips were washed and stained

by adding a solution that contained Streptavidin-phycoerythrin Biotinalyted anti-

streptavidin antibody. Images were obtained by the software provided with the

GeneChip Scanner 3000. This software automatically adjusts the intensity of the

laser and the photomultiplier.

For a more detailed explanation about labelling and hybridisation Affymetrix

protocols see reference [84].
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3.4 Prediction of Gbm and Mm using single-labe-

lling cDNA microarrays data

3.4.1 Foreword

The study to predict Gbm and Mm using single-labelling cDNA microarrays data

was performed through a collaboration between UAB and its associated clinical

centres and UPVLC. The article derived from this study and accepted for publica-

tion in Diagnostic Molecular Pathology, displays Xavier Castells and Juan-Miguel

Garćıa-Gómez, both as first co-authors. To the effect of their respective PhD thesis,

both co-authors agree in that Xavier Castells performed the RNA isolation of biop-

sies, hybridization of isolated RNA, scanning and analysis of microarrays, the RT-

PCR experiments and the functional analysis of differentially detected genes. They

also agree in that Juan-Miguel Garćıa-Gómez performed the statistical analysis of

data including background correction and normalisation, detection of differentially

expressed genes and development of a prediction formula.

3.4.2 Data pre-processing

Prior to the computations to obtain the predictor on our dataset, a pre-processing

step to make the expression values comparable among microarrays was performed.

Due to the specific protocol used in this study (single-labelling cDNA-based mi-

croarrays), non-standard pre-processing methods derived from adaptations of the

Affymetrix pre-processing methods were set up and applied to our data.

First, a visual inspection of the scan images, discarded experiments having an

artefactual signal in at least one microarray experiment. Artefactual signals were

considered to be those signals on a spot that came spreading from other close by

spots or were generated by dust or other contaminants sticking to the microar-

ray. Foreground values were corrected using the background smoothing procedure

defined by Edwards in reference [90]. Genes with negative intensity signal (fore-

ground minus background) in more than 20% of cases in each of Gbm and Mm

groups were also removed. Data was normalized using the average reference loess

[90]. Afterwards, genes that were not validated by the microchip manufacturer

(CNIO) by PCR evidence (single band) and sequence verification were removed.

Finally, signals corresponding to genes spotted more than once in the microarray

were averaged.
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3.4.3 Feature selection and sample classification

Statistical significance was assessed by the non-parametric Mann-Whitney (MW)

test on data from the training dataset (10 Gbm and 11 Mm). Afterwards, p-values

of the MW test were corrected for the false discovery rate (FDR) control obtaining

the so called q-values[115].

Genes with q-value lower than 0.02 were considered to be differentially expressed.

Starting from the set of differentially expressed genes, selection of 3 or 4 genes

through a stepwise (SW) procedure was performed.

Linear models based on Rank Reduced Linear Discriminant Analysis (LDA) were

fitted to our data. Hence, given a set of samples a projection that maximized the

separation between projected values of both classes was searched for. Prediction

accuracy was evaluated by randomly sampling the training dataset 200 times. That

is, 15 samples, following the distribution frequency of the classes in the dataset,

were selected to train the predictor and 6 samples to validate its result. Such a

resampling procedure provided an estimation of the prediction accuracy. The final

evaluation of the predictors performance was carried out in a totally independent

test dataset (7 Gbm and 7 Mm) with the labels blind to the testers. The ability

to produce a single predictor for direct use in clinical routine was demonstrated

by generating an LDA-based predictor with the four most selected genes across

the 200 iterations. Such an LDA-based predictor was developed over the training

dataset (10 Gbm and 11 Mm) and its performance tested over the independent

dataset (7 Gbm and 7 Mm).

3.4.4 Functional analysis of gene signatures

Aiming to determine a gene signature that may characterize each tumour type

based on the expression levels, a hierarchical cluster was performed with the 629

genes with the q-value lower than 0.02. Furthermore, the selected gene subset was

submitted to the web-based Database for Annotation, Visualization and Integrated

Discovery tool (DAVID)[158] with the purpose of detecting statistically significant

functional gene groups with differential expression between classes. In our study,

we chose the highest stringency level among the five stringency levels provided by

DAVID for a set of genes to be called a functional group.
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3.4.5 RT-PCR validation

Total RNA (100 ng) was used as starting template RNA for reverse transcription

in a total volume of 25 µl, which included 2.5 µl of primers. We used the validated

primers Quantitect Primer Assays (Qiagen) and the one-step Quantitect SYBR

Green RT-PCR kit (Qiagen), on a Smart Cycler (Cepheid) system. Sixty cycles

composed of 3 steps were performed: denaturation for 15 seconds at 95�, annealing

for 30 seconds at 50�and elongation at 72�. The Gbm/Mm ratio was calculated

using the 2−∆Ct method[159].

3.5 Exploratory analysis of meningioma and glial

tumours using Affymetrix data

3.5.1 Data pre-processing

3.5.1.1 Background correction and data normalisation

We uploaded the .cel files into a SGI Altix 350 remote cluster composed of 30

processors Intel Itanium of 64 bits at 1.5 GHz with 64 Gb of shared memory

RAM (Suse SLES9 / SGI ProPack 4). For more details see webpage of the cluster

(http://cibercluster.upf.edu/EN/Pages/que es.aspx ), which is maintained by the

group lead by Dr. Alejandro Frangi. The subsequent steps and the development

of the prediction models were run into the described cluster, to which we had

access as a partner of the scientific network Centro Investigación Biomédica en

Red-Bioingenieŕıa, Biomateriales y Nanomedicina (CIBER-BNN).

We processed the .cel files processed using the affy and affyPLM R packages as

described in the annex A-5. Briefly, an AffyBatch object was created by using the

ReadAffy function. The AffyBatch object contained all probesets prior combination

of replicates (summarisation). As probesets are composed of 11-20 probes (25-mer

oligonucleotides), a comparison of the intensities at 5’-end versus those at the 3’-

end, can provide an estimation of the integrity of transcripts. The affy package

enables such a verification through the degradation plots.

After such a verification, the AffyBatch was used to test three different combi-

nations of background correction and normalisation methods:

1. Robust Microarrays Analysis (RMA) background correction and quan-

tile normalisation.
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2. Microchip Analysis Suite 5 (MAS5) background correction and scaling

normalisation.

3. No background correction and scaling normalisation.

These three approaches were generated by using the fitPLM function, included

in the affyPLM package (see annex A-5). The approach yielding the lowest vari-

ability between cases, was selected to develop prediction models. Data variability

was assessed by plotting a boxplot, an MA, a Relative Log Expression (RLE) val-

ues and a Normalised Unscaled Standard Errors (NUSE) and a density plot for

each approach.

See A-5 for a more detailed explanation on how this analysis was run in the R

software.

3.5.2 Generation of prediction models

3.5.2.1 Grouping of samples

From the cases considered to develop prediction models, 4 main groups were created

comprising the HBT types and subtypes of highest incidence:

• Glioblastoma (Gb).

• Anaplastic glioma (Ag).

• Low grade gliomas (Lgg).

• Meningiomas (Mg).

Pairwise predictors for all possible combinations among these 4 groups were

performed. Furthermore, three-class predictors were generated for two additional

discrimination problems: Mg-Lgg-Gb and Lgg-Ag-Gb.

3.5.2.2 Statistical analysis

Splitting of samples

The optimization of the analysis to reduce prediction overfitting was the main

objective in this part of the work. For such a reason, resampling procedures, based

on leave-one-out (LOOCV) and 5-fold cross validation (5FCV), were implemented

to split data into training and test set. In the case of LOOCV, data splitting was

repeated as many times as samples included in the complete dataset (training and
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test). In the case of 5FCV, the splitting was repeated five times the total number

of samples included in the dataset. Performing all possible combinations by leaving

1/5 of samples apart from training would have been highly time consuming and it

was avoided. Moreover, the frequency of samples per tumour type was maintained

equal to the one in the complete dataset at each iteration of the 5FCV approach.

As a result, for each iteration of cross validation, the accuracy of the prediction

model was computed. Therefore, a vector with length equal to the number of

iterations performed depending on the cross validation method was generated.

Feature selection

Regardless the cross validation approach, feature selection was performed only

on data selected for training, as described by [120]. Two methods were used:

• P-values: computation of p-values was performed following the multiple-test

correction method described by Benjamini and Yekutieli[160].

• PCA: reduction of variables was performed by computing the principal com-

ponents of the considered cases and the 54,675 probesets.

The corrected p-values (or q-values) were computed using the linear models for

microarray data (limma) package. Only those genes with fold-change equal or

higher than 2 and q-value <0.05 were considered as input for the prediction al-

gorithms tested. In case there were no probesets below the cutoff, the 100 genes

of highest fold-change and lowest p-values were selected. For the three class com-

parison problems, the p-values were first computed for each pairwise comparison.

Second, those genes with p-value <0.05 across all three pairwise comparisons were

selected. If there were no common genes with p-value <0.05, the union of genes

with p-value <0.05 at each pairwise comparison were selected and their q-values

computed.

The principal components were computed for the whole dataset (training and

test) by the prcomp function, which is included in the stats package.

Prediction algorithms

To assess the relevance of algorithms in supervised class prediction[120], three

different methods were tested:

• Linear discriminant analysis (LDA) from the MASS package.

• Support vector machines (SVM) from the e1071 package.
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• Random Forests (randF) from the randomForest package.

Statistical significance of prediction models

As a result of the combination of all resampling, feature selection and algorithm

methods, several prediction models were generated. Apart from the prediction

accuracy to asses the performance of each model, the statistical significance of

prediction was computed in each case. For that, the class of cases was randomly

assigned and all prediction models generated again. Using a Wilcoxon-test, the

prediction p-value was computed by comparing the prediction accuracies obtained

from the correct labelling with those from the random labelling.

Integration into an R function

The three R functions from prediction algorithms (LDA, SVM and randF) are

not implemented into an overarching one, which could be used to automatically

run the explained strategy. For such a reason, an R function was developed to

integrate a proper resampling and feature selection procedure, as well as to test

three different prediction algorithms.

Accordingly, the MultiClassPred function was developed. Such a function en-

ables a proper estimation of the prediction accuracy for the combination of LOOCV

or 5FCV with p-values or PCA-based feature selection. For any of those combina-

tions, LDA, svm and randF predictions algorithms were computed. Moreover, six

different sets of input variables (probesets or PCA variable) were used.

From the object generated by the MultiClassPred function, different prediction

parameters of clinical interest were computed:

• The prediction accuracy mean based on the area under the curve (AUC), as

described in reference[161].

• The p-value derived from the comparison of prediction values obtained from

correctly and randomly labelling of cases.

• The maximum and minimum prediction accuracy obtained across the per-

formed iterations.

• The sensitivity and specificity for each tumour type when performing a 3-

class predictor. In the case of a pairwise predictor, only one sensitivity and

specificity are computed.
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• The false negative rate (FNR) and false positive rate (FPR). The class depen-

dency of FNR and FPR computation is identical to that for the sensitivity

and specificity.

See annex A-5 and A-6 for a more detailed explanation on how this analysis was

performed in the R software.

3.5.3 Glioblastoma subtypes

3.5.3.1 Assessment of statistically significance of clusters

A hierarchical cluster based on the euclidean distance was calculated by using the

heatmap 2 function from the Heatplus R package. As a first step to verify the

reliability of clusters visually detected in the hierarchical cluster, a k-means cluster

composed of 2, 3, 4 and 5 clusters was computed.

The silhouette statistics from the cluster R package was computed for each of the

generated k-means clusters. This silhouette statistics is a measure of dissimilarity

of a determined cluster with respect to its neighbour clusters. Its value ranges from

0 to 1, being 1 the highest dissimilarity.

See annex A-5 for a more detailed explanation on how this analysis was per-

formed with the R software.

3.5.3.2 Data pre-processing of NMR data

Single voxel data was acquired at the Centre Diagnòstic Pedralbes-Institut d’Altes

Tecnologies using a General Electric (GE) spectometer. Raw data was pre-processed

as described in reference [162].

HRMAS data was acquired and pre-processed by Dr. Daniel Valverde Saub́ı, as

described in his Phd thesis[163].
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3.6 Generation of a murine glial tumour model

to simulate ex vivo ischaemia at normal body

temperature in brain tumour biopsies

3.6.1 Animals and cells

A total of 29 C57BL/6 female mice, 20-23 g weight, were used in this study. These

were obtained from Charles River Laboratories (France) and housed at the ani-

mal facility of the Universitat Autònoma de Barcelona. All animal studies were

approved by the local ethics committee, according to the regional and state legisla-

tion (protocol DARP-3255/CEEAH-530). GL261 mouse glioma cells were obtained

and cultured exactly as described by Quintero and collaborators[164].

3.6.2 Inoculation of the mice brain with GL261 tumour

glial cells

Tumors were induced in 29 mice by intracranial sterotactic injection of 105 GL261

cells in the caudate nucleus. About 15 min after being given a dosis of analgesia

(Meloxicam subcutaneous, s.c., 1.0 mg/Kg), animals were anesthetized (Ketamine-

Xylazine, 80-10 mg/kg intraperitoneal, i.p.) and then immobilized in a stereotactic

holder (Kopf Instruments, Tujunga, USA). The skull was exposed and a high speed

micro-driller (Fine Science Tools, Heidelberg, Germany) used to make a small hole

in its surface (1mm): 2.3 mm to the right of the midline, as measured from the

Bregma. A 26 G Hamilton syringe (Hamilton, Reno, USA), positioned on a digital

push-pull microinjector (KD Scientific, Hollisto, USA), was advanced through this

hole, 2.3mm from the cortical surface into the striatum, to deliver 105 GL261 cells

(in 4 µl RPMI medium) at a rate of 2 µl/min. The syringe was slowly removed

3-5 min after the injection had finished and the scission site closed with suture

silk (5.0). Animals were left to recover from anaesthesia in a warm environment

(≈25 �) and, as they began to wake up, a stronger analgesic (opioid) was given:

Buprenorphine s.c., 0.1 mg/kg. Meloxicam analgesia was repeatedly administrated

at 24 and 48 hours post-surgery.

Formation of the tumour mass was detected 3-5 days after inoculation by MRI,

and necrosis 2 weeks after inoculation, approximately.

For the purpose of the experiment, 9 mice were sacrificed when necrosis was
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monitored by MRI (more than 2 weeks post-inoculation) using a Bruker Biospec

7T spectrometer (Wissembourg, France), which was fitted with a specific probe

for mouse brain, essentially as described in reference[165]. The remaining 20 mice

were sacrificed when a non-necrotic intracranial tumour mass was detected by MRI

(less than 2 weeks post-inoculation), essentially as described in reference[165].

3.6.3 Experimental procedure to simulate ex vivo ischaemia

at normal body temperature of brain tumour samples

3.6.3.1 Animal sacrifice and encephalon removal

Simulation of ex vivo ischemia at normal body temperature was performed in 4

out of the 9 necrotic tumour mice and in 14 out of the 20 non-necrotic tumour

mice. Animals were sacrificed by an intraperitoneal injection of sodium pentobar-

bital (60 mg/ml) at a dose of 200 mg/kg. When the animal did not respond to

mechanical stimulus in the legs, the head was sectioned from the rest of the body

by cutting with sterile scissors. With the same scissors, the upper part of the skull

was removed by an incision at each occipital condyle and cutting in anterior di-

rection up to the nasal cavity. The encephalon was removed by lifting it up with

sterile dissection tweezers at the resulting cavity from the process of sectioning the

occipital condyles.

3.6.3.2 Dissection of the tumour mass

The tumour cells-inoculated hemisphere and a thin layer of the other hemisphere

were separated by using a sterile scalp and dissection tweezers. The layer of the

non-inoculated hemisphere was included to obtain the maximal tumour mass, in

the case contra-lateral hemisphere invasion occurred. Taking as a reference the

point left on the encephalon by the inoculation puncture, cerebral parenchyma was

progressively removed down. The tumour mass was characterised by its mucous

appearance.

In the case of necrotic tumours, the tumour mass was clearly identifiable due to

its darker colour. In contrast, the identification of the tumour mass in the case of

non-necrotic tumours was more difficult, since their colour was closely similar to

the non-tumour parenchyma.

The whole procedure described in this section was performed at room temper-

ature. The time elapsed from animal death until the tumour mass was extracted,
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ranged between 5 and 7 minutes. All steps requiring manipulation of mice and

GL271 cell cultures were performed by Rui Simoes, Teresa Delgado and Milena

Acosta from GABRMN.

3.6.3.3 Simulation of ex vivo ischaemia at normal body temperature

Immediately after tumour mass resection, an aliquot (<1 mm3) was submerged into

formol for posterior histological verification of necrosis in the investigated tumours.

Such verification was performed by Professor Mart́ı Pumarola (Àrea de Medicina i

Cirurgia Animal, Facultat de Veterinària, UAB) using standard protocols (paraffin-

embedded and hematoxylin/eosin-stained tissue slides).

To simulate body temperature, tumour masses were introduced into separated

1.8 ml criotubes pre-filled with PBS at 37�. Samples were incubated for 30 minutes

and snap-frozen in liquid nitrogen after this period. Furthermore, 7 out of the 14

non-necrotic mice tumours were incubated 15 minutes instead of 30 minutes. Those

specimens not subjected to normal body temperature incubation were snap-frozen

in liquid nitrogen immediately after dissection.



76 MATERIALS AND METHODS

3.7 Simulation of ex vivo ischaemia at normal

body temperature in C6 cells

3.7.1 Culture and harvesting of C6 cells

Cells were cultured essentially as described by Valverde and collaborators[166].

Culture medium was removed from the plate by aspiration with a Pasteur pipette

connected to a vacuum-water pump. To remove any trace of medium, 10 ml of PBS

pre-heated at 37� was added. Cells were detached from the plate by enzymatic

digestion with 2 ml trypsin-EDTA (0.5 g porcine trypsin and 0.2 g EDTA per

100 ml) (Sigma, USA), pre-heated at 37�. When cells were clearly detached from

the plate, 8 ml of culture medium pre-heated at 37� was added to stop trypsin

digestion.

The cell suspension was centrifuged at 4000g for 2 minutes. The supernatant was

removed and 5 ml of PBS pre-heated at 37� added to remove any trace of trypsin.

A second centrifugation was performed, and the supernatant was discarded.

3.7.2 Simulation of ex vivo normal body temperature is-

chaemia

The cell pellet was transfered to a 1.8 ml cryogenic tube containing PBS pre-

heated at 37�. Incubation for 30 minutes at 37� was performed for cell pellets at

logarithmic phase (n=3) and cell pellets at post-confluence (n=3). Furthermore, 3

additional cell pellets at logarithmic phase were incubated for 15 minutes instead

of 30 minutes. After incubation at 37�, the supernatant was discarded and cell

pellets snap frozen in liquid nitrogen after removal of the supernatant. Other cell

pellets were transfered to an empty cryotube and snap frozen in liquid nitrogen

after removal of the supernatant from the previous centrifugation.
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4.1 Discrimination of Gbm and Mm using cDNA-

microarrays data

4.1.1 Results

4.1.1.1 Collection of biopsies

A total of 78 biopsy samples were collected at the Hospital Universitari de Bell-

vitge in the context of the MEDIVO2 research project. Among them, 38 samples

were diagnosed by the anatomopathology service of the hospital as glioblastoma

multiforme, 31 as meningothelial meningioma, 6 as carcinoma metastasis, 4 as

adenocarcinoma metastasis, 1 as anaplastic astrocytoma, 1 as astrocytoma WHO

grade II and 1 as schwanoma. For the object of this section, the RNA isolated from

35 biopsies (17 glioblastoma multiforme (Gbm) and 18 meningothelial meningioma

(Mm)) accomplished the criteria of RNA integrity described in section 3.2.3. The

percentage of samples with RNA degraded was 55.3% in Gbm and 41.9% in Mm.

4.1.1.2 Pre-processing and prediction results

The methodology described in the data pre-processing section 3.4.2 was applied to

both training and test datasets to attenuate the effect of possible variability due to

non-biological causes in CNIO microarrays. In our experiments, the total number

of analysed probes per microarray was 27,648. After pre-filtering, 23,652 features

remained in the expression matrix. The next step consisted in discarding a gene

from further processing when more than 20% of samples produced negative signals

(foreground minus background) in each group, Gbm and Mm. After background

correction and the normalization steps, removal of genes that were not validated by

the microchip manufacturer (CNIO) by PCR evidence (single band) and sequence

verification yielded 15,584 features. Averaging of feature replicates gave rise to a

final expression matrix of 7,218 features for the 35 samples investigated (training

and test datasets).

Starting from this number of genes, those differentially expressed in each tumour

type were investigated. Considering that Gbm and Mm are both histological and

pathologically highly distinct brain tumour types, graphical discrimination of these

two tumour types by simply plotting values of differentially expressed genes was

expected. For this purpose, the Gbm/Mm ratio for each gene was computed and

genes displaying the highest and lowest Gbm/Mm ratios (see table 4.1) were used
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to create a graphical classifier (see figure 4.1A and B). Interestingly, the gene with

the highest Gbm/Mm ratio was the glial fibrilar acidic protein (GFAP) with a value

higher than 400. The protein encoded by this gene is a well known biological marker

of glial cells. Furthermore, desmoplakin (DSP) showed the lowest Gbm/Mm ratio,

being 250-fold more expressed in Mm compared to Gbm (Gbm/Mm=0.004), see

table 4.1.

A predictor based on LDA was developed (see figure 4.1C). Our aim was two-

fold, in the first place, to profit from the panoply of genes available to build a

better and potentially more robust predictor than the expression of a single gene

product (GFAP or DSP). Secondly, we were interested in detection of gene signa-

tures providing biological information about the underlying molecular mechanisms,

which may characterise Gbm and Mm in such a pairwise comparison. The pre-

dictor was built by splitting the full dataset in twenty-one samples (10 Gbm and

11 Mm) for training and cross-validation purposes. Additionally, fourteen totally

independent and blinded samples (7 Gbm and 7 Mm) for the testers were used for

the final evaluation purposes. Statistical significance was computed by using the

Mann-Whitney nonparametric test on the training set and genes with a corrected

q-value less than 0.02 were selected. As a result 629 genes were found differentially

expressed from the initial 7,218 gene set.

This set of 629 genes was used to generate a prediction model with three or four

randomly selected genes from a SW selection procedure. Two hundred repetitions

were performed, from which two hundred LDA different predictors were obtained.

As a result, a 95% prediction accuracy mean was obtained. Concerning our blind

test dataset of fourteen samples, an observed accuracy of 100% with a [70%, 100%]

confidence interval was obtained across the 200 iterations.

To demonstrate the ability to produce a predictor that could be used in an

automated way once developed, all training samples (21) were used to fit the fi-

nal models. Therefore, the final predictor shown in figure 4.1C was calculated

selecting the four more selected genes across the 200 prediction iterations: GFAP,

PTPRZ1, GPM6B and PRELP (see table 4.1). Such a predictor produces an ob-

jective and automated prediction result by simply introducing the pre-processed

and normalised gene expression values into the LDA formula:

DSC = −0.394 ∗GFAP − 0.397 ∗ PTPRZ1

− 0.397 ∗GPM6B + 0.365 ∗ PRELP
(4.1)

where DSC is the discriminant score.
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Table 4.1: Genes with highest discriminant capacity. We show the fifty more selected genes
across the 200 iterations of the SW resampling approach over the training dataset to estimate
the prediction accuracy. The two genes harbouring the highest Gbm/Mm gene-expression ratios
are the most selected genes in the training. The complete list of selected genes is avalailable at
annex A-7.

The cut-off point at 0 enables objective prediction between the two tumour

types. Negative values are Gbms, while positive values denote Mm (see annex

A-8). Using this predictor, a 100% prediction of the independent test set was

obtained.
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Figure 4.1: Graphical representation of normalised data and LDA-based predictor. Red symbols
correspond to Gbm samples, while blue symbols denote Mm samples. A, B) Scatter plot of
normalised expression values of genes showing the highest and lowest Gbm/Mm ratio, GFAP and
DSP respectively for all Gbm and Mm cases (see table 4.1 for abbreviations meaning). Samples
were arbitrarily distributed along the x axis, while along the y axis fluorescence intensity values
(a.u.) were plotted. C) Discriminant scores obtained from the LDA-based predictor generated
using normalised expression values from GFAP, PTPRZ1, GPM6B and PRELP genes, those most
selected across the 200 iterations, which perfectly separated these two tumours class members.
Circles are training samples, while squares are test samples. Along the y axis discriminant scores
at the latent space are shown.



4.1 Discrimination of Gbm and Mm using cDNA-microarrays data 83

4.1.1.3 Molecular characterization of Gbm and Mm biopsy cases

Aiming to detect a broader gene signature that could also characterise and dif-

ferentiate Gbms and Mms, the subset of genes with q-value lower than 0.02, was

used to perform the hierarchical cluster shown in figure 4.2. Genes were initially

grouped in sixteen clusters clearly defining a specific profile for each tumour type.

Furthermore, determination of functionally-related groups of genes was assessed

by subjecting the mentioned gene subset to the DAVID tool. A total of eleven

functional groups with p-value lower than 0.05 accounting for eighty genes were

obtained. Interestingly, three out the eleven clusters were exclusively composed by

genes either overexpressed in Gbm or in Mm (see table 4.2). Functional group 2

contained genes overexpressed in Mm that belong to the family of the small leucine

rich proteoglycans (SLRPs): FMOD (J), PRELP (G), OMD (G), BGN (J) and

OGN (G).

Similarly, functional group 11 was composed of five members belonging to the

cytochrome family: CYP1B1 (J), CYP4Z1 (B), CYB5 (J), CYP4B1 (B) and

CYP3A5 (B). On the other hand, functional group 6 was composed of several

isoforms of genes encoding tubulins overexpressed in Gbm: TUBA1 (I), TUBA2

(I), TUBA3 (F), TUBB (F), TUBB2 (F), TUBB4 (I), TUBA4A (I) and TUBA8

(I). Also detected by the DAVID tool when setting the medium stringency level,

a large number of metallothionein isoforms were highly expressed in Gbm (see

figure 4.2): MT1H (K), MT1F (I), MT1X (K), MT2A (F and I) and MT3 (I).

Concerning the remaining nine functional groups composed of genes overexpressed

in both Gbm and Mm, the cluster with highest and lowest statistical significance

harboured a collection of cadherin and cytochrome isoforms, respectively (see table

4.2). Interestingly, functional groups 7, 8, 9 and 10 were mainly composed of genes

encoding proteins somewhat related to cell signalling: signal receptors (group 7),

G-protein receptors (group 8), Ras proteins (group 9) and tyrosine kinases (group

10). Groups 3, 4 and 5 were apparently enriched with proteins related to the

extra-cellular matrix and the cell-cell adhesion complexes.
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Table 4.2: Functional analysis of gene with q-value lower than 0.02. The eleven functional
clusters arising from the DAVID tool are depicted. The mentioned tool enables a stringency
range for a set of genes to be considered a differentially expressed functional group. The depicted
table was computed using the highest stringency and selecting those groups with p-value lower
than 0.02.
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Figure 4.2: Hierarchical cluster of differentially expressed genes from the training set. Graph-
ical illustration of the hierarchical cluster performed across samples and genes computed using
Euclidean distance. Columns are samples and rows are genes. The 629 genes with a p-value
lower than 0.02 were used to generate this cluster with the 35 samples of the full dataset. At the
top of the figure, Gbm and Mm samples are denoted by red and blue bars respectively. At the
right margin, letters (A-K) indicate clusters of genes belonging to functional families or related to
different signalling pathways. Groups or gene-families are specifically coloured: metallothioneins
(purple), tubulins (green), glycolysis-related genes (yellow), cell membrane and/or the extracel-
lular matrix (blue) and cytochrome-related genes (grey). GFAP, PTPRZ1, GPM6B and PRELP
are also included within the hierarchical cluster. See annex A-7 for description of genes.
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4.1.1.4 RT-PCR expression results

A subset composed of 6 samples, 3 Gbm and 3 Mm, were subjected to RT-PCR for

validation purposes of transcriptomic levels detected from microarray experiments.

Selection of these samples was based on RNA integrity and concentration, as well

as absence of protein contamination. Among differentially expressed genes in our

study, a subset to be subjected to RT-PCR was selected based on four criteria:

maximal or minimal Gbm/Mm ratio and minimal FDR corrected p-value, maximal

selection at the re-sampling of the training set and biological relevance for tumour

progression. Using such criteria selected genes were: GFAP, PTPRZ1, GPM6B,

MT3, CA2, TUBB, APM2, PRELP, OGN and DSP. The six first genes were far

more expressed in Gbm than in Mm, and the four last genes showed opposite

behaviour. As observed in table 4.3, RT-PCR confirmed the expression profile of

the mentioned genes according to the type of tumour evaluated.

Table 4.3: Comparison of gene-expression values between microarrays and RT-PCR. This table
shows the Gbm/Mm ratios derived from gene-expression values from cDNA microarrays and
RT-PCR. Ratios were obtained from expression values originating from the three Gbm and the
three Mm selected samples that were subjected to RT-PCR. For cDNA microarrays, the ratio
was obtained by dividing the average of expression values from the 3 Gbm by that from the 3
Mm. For RT-PCR this ratio was computed as the power of 2 to the negative difference between
the Ct average from the 3 Gbm and 3 Mm samples subjected to RT-PCR (2−(Ct(Gbm)−Ct(Mm))).
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4.1.1.5 Expression level of GFAP, PTPRZ1, GPM6B and PRELP in

Affymetrix-based hybridisation cases

Subsequent to demonstrate the ability of a prediction formula based on the expres-

sion level of 4 genes obtained from cDNA microarray experiments, we explored the

expression level of the 4 mentioned genes in glioblastomas (Gbs) and meningiomas

(Mgs), whose gene-profile was obtained from Affymetrix microchips.

We considered 3 Affymetrix microchip datasets:

1. UAB1: 32 Gbs and 12 Mgs collected at the UAB for the eTUMOUR project

and hybridised onto the HG-U133 plus 2.0 microchip.

2. UAB2: 17 Gbs and 19 Mgs collected at the UAB for the eTUMOUR project

and hybridised onto the HG-U133 plus 2.0 microchip.

3. Pubmed: 67 Gbs (GDS1976) and 31 Mgs (GSE9438) made publicly available

at the Gene Expression Omnibus DataSets from the National Center for

Biotechnology Information (NCBI) database (http://www.ncbi.nlm.nih.gov/

sites/entrez?db=gds). Gbs had been hybridised onto HG-U133 A and B

Affymetrix microchips, whereas Mgs had been hybridised onto HG-U133 plus

2.0 microchips.

As can be seen in table 4.4, multiple Affymetrix probesets are represented for

each gene, except for the PTPRZ1. Therefore, we also explored the probeset

providing the highest or lowest Gb/Mg expression ratio.

Among the three probesets representing the GFAP gene, the 203540 at pro-

vided the highest Gb/Mg ratio across the 3 Affymetrix datasets. Curiously, the

mentioned probeset codes for the isoform 1 of the GFAP gene, whereas the addi-

tional two probesets are hypothetical alternative splicings.

Concerning the GPM6B gene, the four first probesets depicted in table 4.4

showed similar Gb/Mg expression ratios across the three Affymetrix datasets.

Strikingly, only the gene product of the 209170 s at probeset has been charac-

terised.

With respect to the PRELP gene, the 204223 at probeset provided the lowest

Gb/Mg expression ratio and its gene product is known.

In summary, the probesets 203540 at (GFAP), 204469 at (GPM6B), 209170 s at

(GPM6B) and 204223 at (PRELP) were selected to verify the prediction formula

robustness for Affymetrix-based hybridisation cases.
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4.1.1.6 Verification of the formula robustness by prediction of Affymetrix-

based hybridisation cases

To further test the robustness of the developed discriminant formula using cDNA

microarrays gene-profile, we predicted the class of a set of 12 meningiomas (Mg)

and 32 glioblastomas (Gb), whose gene profile was obtained from HG-U133 plus

2.0 Affymetrix microchips (see also section 4.2). As can be seen at figure 4.3, all

samples were correctly classified in their class group.

Figure 4.3: Prediction of Affymetrix-based gene-profile Gb and Mg cases. Robustness of the
developed formula using cDNA microarrays and based on 4 genes (GFAP, PTPRZ1, GPM6B
and PRELP), was assessed by prediction of 3 datasets. First, 32 Gb and 12 Mg cases, for which
the gene-profile was obtained from Affymetrix microchips (plot on the left). Red symbols are
glioblastomas and blue symbols indicate meningiomas. Solid symbols denote Gbm and Mm cases,
from which the gene expression profile was obtained by using cDNA microarrays. Correspond-
ingly, open circles denote those 32 Gb and 12 Mg Affymetrix microchips-hybridised samples. On
the right, the DSCs were computed using the optimized formula. The second independent test
set composed of Affymetrix cases (17 Gbs and 19 Mgs) is denoted with open triangles. Third, the
67 Gbs and 31 Mgs obtained from publicly available data are denoted by empty blue rhombus
for Mg cases, while empty red rhombus indicate Gb cases. Along x axis cases are arbitrarily
distributed and the discriminant score (DSC) plotted along the y axis.
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It can be seen that the glioblastoma cases from Affymetrix data were placed

close to the discriminant threshold, and above those Gbm cases from cDNA mi-

croarrays data. Taking this result into account, we applied a correction factor to

the discriminant coefficients of the formula, so that a better grouping could be

achieved. As a consequence, the discriminant coefficients of the developed formula

(see equation 4.1) were adjusted as described in annex A-8 and summarized herein:

DSC = 0.078 ∗GFAP − 0.6207 ∗ PTPRZ1

− 0.670 ∗GPM6B + 0.660 ∗ PRELP
(4.2)

In doing so, an increased grouping was obtained for glioblastomas and enlarged

the distance with respect to meningiomas (see figure 4.3).

The increase of prediction ability by doing such a correction was verified with a

second test set composed of 17 Gbs and 19 Mgs (see figure 4.3).

Furthermore, we predicted 31 Mgs (GSE9438) and 67 Gbs (GDS1976) publicly

available cases from the Gene Expression Omnibus DataSets from the National

Center for Biotechnology Information (NCBI) database. The gene-expression pro-

file of Mgs had been obtained from the HG-U133 plus 2.0 Affymetrix microchip,

whereas the gene expression profile of Gbs were from the HG-U133 A and B Affy-

metrix microchip. Downloaded .cel files were normalised as described in section

3.5.1.1. As depicted in figure 4.3, all publicly available cases were correctly pre-

dicted.

These results demonstrate that the developed formula (see equation 4.2) can

completely predict glioblastoma and meningioma cases, regardles the microarray

technology used to obtain the gene expression profile.

4.1.2 Discussion

4.1.2.1 Development of an automated predictor based on gene signa-

tures of brain tumours

Several studies have demonstrated usefulness of data generated from gene-expression

based microarrays to classify brain tumours when they cannot be properly discrim-

inated by using histological and image-based morphologic examinations alone[167,

168, 1, 169]. These studies have focused on recognizing tumour molecular subtypes

of Gbm and classification of histologically distinct Mm, but no automated predic-
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tor for classical histological WHO types was made available for public use. This

issue was considered highly relevant within the context of the European project

eTUMOUR, as a required proof of principle prior to attempting automated and

objective recognition of tumour types or grades difficult to ascertain by classical his-

tology (i.e. glioblastoma multiforme molecular subtypes)[2, 3, 5]. In our study we

have demonstrated that 100% successful automated prediction between glioblas-

toma multiforme and meningothelial meningioma tumours is achievable without

subjective data judgement. Furthermore, such a prediction was performed using

single-labelling cDNA microarrays. Being a protocol of lower cost and greater

design flexibility than other genomic technologies, it points to an attractive exper-

imental option for routine use.

The particular type of microarray protocol used (single-labelling cDNA microar-

rays) forced us to develop a novel algorithm for data pre-processing to correct

background and normalise experiments. Discrimination of Gbm and Mm was first

performed by plotting only normalised intensity values of genes with highest or

lowest Gbm/Mm ratios (figure 4.1A and B). Separation of Gbm and Mm samples

is better defined when plotting GFAP expression values rather than when plotting

those from DSP. This fact is not surprising since GFAP is specifically expressed in

astrocytes and astrocytomas, and it is considered the molecular marker reference

of this cellular type in the central nervous system[170, 171], whereas such well de-

fined cell type specific marker does not exist for Mm. Regarding GFAP, variable

expression among samples seen in figure 4.1A could be justified by a heterogeneous

population of glioblastoma in our study concerning both tumour progression stage

and cell stemness characteristics, since expression of GFAP seems to be modulated

depending on these factors in Gbm tumours[172, 173].

Nevertheless, a search for a potentially more robust prediction formula by using

linear discriminant analysis (LDA) of the most differentially expressed genes was

performed. Fully successful prediction of the blindly analysed independent test set

was achieved. The result obtained provides evidence of a 100% of sensitivity and

specificity by means of a completely objective method, in which intervention of

operator bias is strongly reduced. To our knowledge, complete discrimination of

two HBT by developing an LDA predictor based on gene signatures arisen from

microarray data that could be used by other laboratories had not been previously

reported.
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4.1.2.2 Molecular signature characteristics of Gbm and Mm

Development of an automated-predictor based on microarray experiments was also

useful to study the gene signatures underlying the biology of both Gbm and Mm.

For this purpose, an unsupervised hierarchical cluster for each pre-processing pro-

cedure using as input those genes within a threshold q-value lower than 0.02 was

generated (figure 4.2). This computation corroborated the previous LDA-based

prediction because all samples were correctly clustered within its tumour group.

In addition, a clear gene signature was achieved for both Gbm and Mm tumour

types, which was functionally characterized by analyzing those genes with the

DAVID tool. From our results, a high expression of tubulins seems to characterise

Gbm, while SLRPs and cytochrome-related genes seems to characterise Mm.

Functional group 2 (see table 4.2) is a paradigm of genes belonging to the SLRPs

family and overexpressed in Mms. FMOD and PRELP genes are located at the q

fragment of the 1 chromosome, OGN and OMD at the q fragment of the 9 chromo-

some and BGN at the q fragment of the X chromosome. However, their promoter

region may be similarly regulated[174]. Noticeably, the described involvement of

the SLRPs family in collagen fibrillogenesis, cellular growth, differentiation and mi-

gration revealed the relevance of this family in extracellular matrix modelling[174].

Specifically, cleavage of OGN precursors by the bone morphogenetic-1 protein

(BMP1) producing the mature OGN forms was proposed as a mechanism by which

formation of collagen fibrils is controlled[175]. Curiously, we found a set of BMP

genes among those of q-value lower than 0.02, although it was not detected by the

DAVID tool as a functional significant group. Interestingly, the genes coding for

receptor BMP1R, BMP4 and BMP5 were found overexpressed in Mm (see annex

A-7). Furthermore, OGN has been recently described as one of the main compo-

nents of the human amniotic membrane that promotes the development of limbal

stem cell niches[176]. Also, interaction of SLRPs members with TGF-β facilitates

signal transduction inside the cell, resulting in an increase of SLRPs gene-expression

[174, 177, 178]. In our study, we found overexpressed in Mms two genes encoding

SLRP proteins involved in the recruitment of TGF-β from the extracellular space

to the membrane, FMOD and BGN[177], a receptor of TGF-β, TGFBR2, and a

protein modulating the secretion and activation of TGF-β, LTBP2 [178]. From

these results, an apparent modulation of the extracellular matrix through SLRPs

may characterize tumourigenesis of Mms. Incidentally, LTBP2 is downregulated

when benign meningiomas progress into atypical or anaplastic stages[169].
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Functional group 11 contains a set of genes encoding cytochrome proteins over-

expressed in meningiomas. Interestingly, there is a consolidated bibliography de-

scribing the involvement of cytochrome P450 in cancer drug metabolism [179],

and their crucial role in sterol and androgen synthesis, as well as in retinoic acid

metabolism [179]. Nevertheless, the cytochrome P450 isoforms found overexpressed

in our Mm samples, had not apparently been associated in the biology of this tu-

mour, although other isoforms implication had been linked to both meningioma

and glioma progression [180, 181, 182].

The functional group 6 contains a group of tubulins overexpressed in Gbms.

Tubulins are structural components of microtubules, which take part in cell motility

and intracellular transport, and whose overexpression seems needed in malignant

progression of gliomas. Nitration of tubulins is more acute in grade IV than in

grade I gliomas[183]. Specifically, gene expression of TUBA3 is induced by PI3K in

human glioblastoma cells under stimulation with KCl, a well known differentiation

inducer[184].

The functional group with highest statistical significance (group 1) harbours a

set of cadherins, among which one half are overexpressed in Mms and the other

half overexpressed in Gbms. Such a result may suggest a cadherin sub-type link

with the tumour grade and/or histological type. As expected, E-cadherin was

found overexpressed in Mms, in agreement with previous findings of E-cadherin

detection by histochemistry in meningiomas[185, 186]. Furthermore, E-cadherin

is normally not expressed in gliomas, which, instead, express the neural isoform

N-cadherin[187, 188], in agreement with our results (see table 4.2). Therefore, we

show here a specific expression of cadherins by histological tumour type, rather

than an agressivity-linked expression. This may be first exemplified by the differ-

ential expression of E- and N-cadherin, and secondly, by those isoforms specifically

overexpressed in each tumour type. Likewise, functional group 5 with a set of genes

related to cell adhesion would also sustain the important and tumour specific role

of the extracellular matrix in cancer.

A group of metallothioneins was significantly detected by the DAVID tool when

setting the medium stringency level (data not shown). Metallothioneins are in-

volved in cell detoxification, growth and redox balance, among other cellular roles[189],

and were previously found overexpressed in Gbm compared to Mm by immu-

nohistochemistry [190]. Likewise, genes related to glycolytic metabolism were

also overexpressed in Gbm (see figure 4.2 and annex A-7), in agreement with

references[191, 192], and also in agreement with the well known correlation be-
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tween glycolytic phenotype and malignity[193, 194].

In summary, we propose herewith a signature for Mms composed of SLRPs and

cytochrome-related genes, which had not been previously described. With regard

to Gbms, we confirm the important role of tubulins in malignant progression of this

tumour type. Finally, we corroborate the specific expression of E- and N-cadherin

in Mm and Gbm, respectively. This is due to the different embryonic origin that

characterize meningeal and glial cells. Therefore, a specifc cadherin signature for

Gbm and Mm may be characterised by those isoforms overexpressed in each tumour

type. In this sense, we may propose a signature for human brain tumour benignity

and malignity based on the expression level of SLRPS, cytochrome-related, tubulins

and cadherin genes.
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4.2 Exploratory analysis of meningioma and glial

tumours using Affymetrix data

4.2.1 Results and Discussion

4.2.1.1 Collection of biopsies

A total of 255 biopsy samples were accrued during the eTUMOUR, HealthAgents

and MEDIVO2 projects, accounting for several types and subtypes of human brain

tumours. They were collected mainly at Hospital Universitari de Bellvitge IDI-

BELL (234), but also at Hospital Universitari Germans Trias i Pujol (n=9), Hos-

pital Cĺınic (n=8) and Hospital Sant Joan de Déu (n=4).

4.2.1.2 Selection of cases

Among the RNA samples isolated from the 255 biopsies collected during the eTU-

MOUR, HealthAgents and MEDIVO2 projects, 185 samples fulfilled the quality

criteria standard agreed in the eTUMOUR project (see annex A-4), for a RNA

sample to be accepted for hybridisation. Among those 185 cases, 86 cases were

considered to develop prediction models, since when the analysis was performed,

they were those cases with either diagnosis available or accomplishing the quality

criteria of hybridisation agreed in eTUMOUR (see annex A-3).

The 86 considered cases comprised 32 glioblastomas (including 1 gliosarcoma),

10 anaplastic astrocytomas, 4 anaplastic oligoastrocytomas, 2 anaplastic oligoden-

drogliomas, 1 anaplastic ependymoma, 7 diffuse astrocytomas, 3 pilocytic astro-

cytomas, 2 gemistocytic astrocytomas, 6 oligoastrocytomas, 3 oligodendrogliomas,

12 meningiomas (including 8 meningothelial and 2 fibrous variants), 1 transitional

meningioma, 2 atypical meningiomas and 1 hypophysis adenoma.

4.2.1.3 Grouping of samples

From the 86 cases considered to develop prediction models, 4 main groups were

created comprising the HBT types and subtypes of highest incidence:

• Glioblastoma (Gb): 30 glioblastomas and 1 gliosarcoma.

• Anaplastic glioma (Ag): 10 anaplastic astrocytomas, 4 anaplastic oligoas-

trocytomas and 2 anaplastic oligodendrogliomas.



4.2 Exploratory analysis of meningioma and glial tumours using
Affymetrix data 97

• Low grade gliomas (Lgg): 7 diffuse astrocytomas, 2 gemistocytic astro-

cytomas, 6 oligoastrocytomas and 3 oligodendrogliomas.

• Meningiomas (Mg): 11 meningiomas, comprising 8 of meningothelial type

and 3 of fibrous type.

The glioblastoma case et3223 and the meningioma cases et3011 and et3196

showed an unexpected expression level of GFAP, PTPRZ1, GPM6B and PRELP

genes. The et3223 case showed values of meningioma, while those two meningioma

cases showed values of glioblastoma. This unexpected value was corroborated by

RT-PCR. For that reason, we decided discard them from supervised analysis, since

some mislabeling of RNAs could occurs at some step. Posteriorly, the RNA from

these samples was hybridised again and the expected level of these genes was

detected. Unfortunately, the microchip data was obtained after the supervised

analysis was performed and we could not include them in the supervised analysis.

4.2.1.4 Evaluation of RNA integrity of collected biopsies

From the 255 biopsies collected during the eTUMOUR project, microchip analysis

was performed only for 185 biopsies. The RNA from the remaining 70 biopsies did

not fulfill the minimum requirement of integrity for a sample to be accepted for

hybridisation (see section 3.2.3 and annex A-4).

Considering that the 27.5% of RNA samples obtained could not be subjected to

hybridysation, a search for experimental and clinical parameters that could explain

such a consistent loss of samples was performed. First, the frequency of tumour

types in each case was evaluated (see figure 4.4).

No visually different distribution of HBT types was found between hybridised

and non-hybridised samples (see figure 4.4). As the tumour type did not appar-

ently affect RNA integrity, the blood content of the biopsy was approximated from

the visual appearance for each sample at the initial homogenization step for RNA

extraction (section 3.2.2). More blood content was assumed to produce a brown

homogenate, whereas low or no blood content should produce an uncoloured ho-

mogenate. Boxplots for hybridised and non-hybridised did not visually reveal any

difference between cases (see figure 4.5).
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Figure 4.4: Characterization of RNA integrity on HBT samples. This figure is an attempt
to evaluate a hypothetical dependency on HBT types of the RNA integrity of extracted sam-
ples. The ribosomal peaks 28S/18S ratio was first plotted for both hybridised and non-hybridised
samples (top figure). The number of samples per tumour type was plotted for each condition (hy-
bridised and non-hybridised samples). The p-value plotted was computed using the rank-based
Wilcoxon test. No statistically significant difference between hybridised and non-hybridised sam-
ples was found by the paired-rank test of Wilcoxon, when comparing the percentage of diagnoses
in each condition. Abbreviations: A (low grade astrocytoma), AA (anaplastic astrocytoma),
AEP (anaplastic ependymoma), AMG (atypical meningioma), ANG (angioma), AOA (anaplas-
tic oligoastrocytoma), AOD (anaplastic oligodendroglioma), GB (glioblastoma), HMB (haeman-
gioblastoma), HYA (hypophysis adenoma), LIMFB (B lymphoma), M (metastasis), MG (menin-
gioma), ND (no diagnosis), NEURC (neurocytoma), OA (low grade oligoastrocytoma), OD (low
grade oligodendroglioma), PA (pilocytic astrocytoma), SCW (schwanoma), T (teratoma) and
TMG (transitional meningioma).
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Figure 4.5: Evaluation of apparent blood content correlation with RNA integrity of biopsies.
To assess the correlation of the blood content on RNA integrity, a boxplot of ribosomal peaks
28S/18S ratio values was represented.

As a further step to investigate the role of blood content of biopsies, we per-

formed the same boxplot than figure 4.6, but for the 3 tumour types that accumu-

lated more than the 50% of total cases: glioblastoma, meningioma and metastasis.
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Figure 4.6: Evaluation of apparent blood content correlation with RNA integrity of biopsies
for the 3 most frequent tumour types. The possible correlation of the apparent blood content of
biopsies on RNA integrity was assessed for the 3 most frequent cases of the studied dataset. Along
the y axis the 28S/18S values are plotted. Single cases are represented by a black horizontal line.

In doing so, we visually verified that the three different diagnosis do not deter-

mine a difference on RNA integrity between hybridised and non-hybridised samples,

since similar 28S/18S ratio values were found across the 3 tumour types, regard-

less the degree of biopsy irrigation approximated from apparent blood content(see

figure 4.6). Only a metastasis with high blood content from the hybridised cases

had an RNA of lower integrity than the rest (see figure 4.6).
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Comparison of RNA quality of biopsies collected in RNAlater and

liquid nitrogen

In front of the above described results, the reliability of liquid nitrogen as collec-

tion media for biopsies was evaluated. For that, we compared the RNA integrity of

33 biopsies simultaneously collected in both RNAlater (Ambion, Applied Biosys-

tems, USA) and liquid nitrogen at the surgery room by the Dr. Juan José Acebes

and his surgery team, at the Hospital Universitari de Bellvitge-IDIBELL (see figure

4.7).

RNAlater (n=33) liquid N2 (n=33)
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Figure 4.7: Effect of biopsy collection media on RNA integrity. Comparison of 28S/18S ratio for
33 biopsies simultaneously collected at the surgery room is depicted in this boxplot. As indicated,
no significant difference was detected. A two-sided t-test was used to compute the p-value.

The results obtained indicated that there is no difference in RNA integrity

(28S/18S ratio) between biopsy collection in either RNAlater or liquid nitrogen

(p-value=0.2896, 95% confidence interval, two-sided t-test). Therefore, we dis-

carded the collection medium protocol as a possible factor compromising the RNA

integrity of accrued samples, as some authors had already reported [133, 132].

Being unable to decipher the reason by which an approximately 30% of RNAs

were not valid for hybridisation, a murine model of brain tumour was used for

further hypothesis testing, as explained in section 3.6 and discussed in section 4.4.
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4.2.1.5 Data pre-processing

Quality of hybridisation

As explained in section 3.5.1.1, a degradation plot was generated to visualize,

across microchips, possible differences in labelling between the 5’- and 3’-ends (see

4.8). Development of prediction models based on Affymetrix data was performed

on the 86 cases available at the time of the analysis, as described in section 4.2.1.2.

Figure 4.8: Degradation plot for the 86 Affymetrix microchips performed. The degradation plot
is a measure of fluorescence bias between the 5’- and 3’-ends. Ideally, similar biases must be found
for all microchips considered in a project. That is, the intensity slope should not differ between
microchips. The x axis indicates the position of the first 10 probes in 5’- to 3’-end direction in
each probeset. Along the y axis, averaged fluorescence intensity for each probe across microchips.
The legend indicates the main tumour types considered in this work.
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Assessment of data pre-processing approaches

The degradation plot provided evidence that similar 3’/5’-ends biases between

microchips were obtained. Therefore, no microchip was considered for possible

removal from the analysis, and all were included for further testing of three different

combinations of background correction and normalisation methods: RMA, MAS5

and No background correction (see figure 4.9).

From the generated plots, a slight variability across samples can be visualized

from the boxplots and NUSE plots, regardless of the approach used for normali-

sation and background correction. In contrast, the RLE plot showed an increased

variability across samples for the MAS5 and No background correction ap-

proaches compared to the RMA approach. As RLE plots are a measurement of

probesets variability, our results would suggest that a better normalisation was

obtained when applying the RMA approach for data pre-processing.

Correspondingly, the density plots revealed a higher variability across samples

when data was pre-processed using the MAS5 and No background correction

approaches compared to the RMA approach. In contrast, no striking differences

were visualised in the MA plots, although the best adjustment was provided by

the RMA approach (red line better shaped and median closer to 0).

In front of these results, the derived data from the RMA pre-preprocessing

approach was selected to undertake further analysis.
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Figure 4.9: Assessment of data pre-processing approaches. As a measurement of data-bias
produced by the RMA (green), MAS5 (red) and No background correction (yellow) pre-
processing approaches, five plots were generated. For each of the three approaches a boxplot
(top figure), NUSE, RLE, density and MA plots (bottom figure) are depicted. Boxplot is a
representation of fluorescence intensity deviation (y axis) for each sample, where the mean of
all samples is scaled to 1. The idea underlying the NUSE plot is approximately the same than
the boxplot. Nonetheless, in this case the normalised unscaled standard errors (NUSE) for each
microchip across genes are plotted, rather than fluorescence intensities. Similarly, the RLE plot
represents along the y axis, the relative log expression (RLE) values scaled to 0. Such values
are computed for each probeset by comparing the expression value on each array against the
median expression value for that probeset across all arrays. The density plot is a histogram of
logarithmic-transformed fluorescence intensities for each microchip. Finally, the MA plot along
the y axis shows for each probeset, the logarithmic difference between the microchip et3513 and
an average of all microchips (M). Along the x axis, the sum is represented (A). At the top right
corner, the median and the interquartile range (IQR) are shown.
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4.2.1.6 Data prediction

As described in section 4.2.1.3, prediction models were developed for all pairwise

comparisons among Mg, Lgg, Ag and Gb tumour groups. Furthermore, two addi-

tional three-class prediction models were generated: Mg-Lgg-Gb and Lgg-Ag-Mg.

Splitting of samples for training was based on LOOCV and 5FCV, feature selec-

tion based on computation of p-values and PCA, and three prediction algorithms

tested: linear discriminant analysis (LDA), support vector machines (SVM) and

random Forests (randF).

In doing so, several prediction models were generated, which are described in

annex A-9. Moreover, tumour class was assigned to each case using two different

available diagnosis:

1. Originating pathologist diagnosis (OPD).

2. eTUMOUR consensus diagnosis (ECD).

Diagnosis discrepancies between OPD and ECD provided evidence of the histo-

pathological examination difficulty to classify samples from complex tumour prob-

lems. Evaluation of prediction models based on two different diagnoses was in-

tended to characterise the diagnosis that can better predict a classifier developed

from DNA microarrays data. Supervised prediction based on molecular profile

could clarify the apparent confusion detected between diagnoses. Prediction mod-

els using both available diagnoses were generated for three out of six discrepant

samples:

1. et2953 diffuse astrocytoma by the OPD and Glioblastoma by the ECD.

2. et2034 oligoastroastrocytoma by the OPD and anaplastic oligodendroglioma

by the ECD.

3. et2870 oligoastroastrocytoma by the OPD and anaplastic oligodendroglioma

by the ECD.

Three additional samples were uniquely labelled with the OPD diagnosis, since

the malignancy grade assigned by the OPD was higher than the ECD:

1. et2354 glioblastoma by the OPD and diffuse astrocytoma by the ECD.

2. et3509 glioblastoma by the OPD and diffuse astrocytoma by the ECD.
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This decision was taken following the recommendation of the committee of

histopathologists that coordinates clinical validation in eTUMOUR. A low-grade

glioma assigned by the ECD, but high-grade glioma assigned by the OPD, could

indicate that some relevant tissue feature was lacking in the slide received by the

eTUMOUR clinical committee, while it was present in the locally reviewed slides.

Only LOOCV models were plotted, since all possible combinations of training

sets and test sample were evaluated. That is, each sample of the whole dataset was

left apart only once as test sample. Thus, only a discriminant score (DSC) was

obtained for each sample. In contrast, the 5FCV models produced more than one

discriminant score per sample, which made more complicated to plot final results.

The prediction models (LOOCV and 5FCV) that provided the highest prediction

accuracy for each comparison are shown in table 4.5. To visualize the separation

between tumour groups, a scatter plot of discriminant values from LOOCV models

was performed for the best predictor of each comparison (see figures 4.10 and 4.11).

From the generated models, Mgs can be perfectly predicted for all pairwise

comparisons, regardless the diagnosis (OPD or ECD) used to label samples (see

table 4.5 and figure 4.10). In contrast, an increased difficulty to predict samples

and a highest dependency on diagnosis origin was detected when analysing glial

tumour grades (see table 4.5 and figure 4.10).

With the exception of Lgg-Gb model that reached 92% of prediction accuracy

when using eTUMOUR consensus diagnosis, models for the rest of pairwise com-

parisons yielded between 70% and less than 90% of prediction accuracy. Such low

prediction accuracy rates may be indicative of varying molecular characteristics

across samples that histopathological diagnosis can not detect.
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Figure 4.10: Discriminant plots for pairwise comparisons. For each performed tumour com-
parison, the discriminant score of test samples is plotted. That is, at each LOO iteration only
one sample is left apart to test the prediction ability of the prediction formula, which is obtained
from training samples. When all iterations are performed, a discriminant score for each sample
is obtained. An exception was performed for the Lgg-Ag comparison, since the discriminant
scores of training and test samples were plotted for one of the 14 models yielding 100% predic-
tion accuracy. Only the best prediction model is plotted, regardless the diagnosis used to label
samples. Blue symbols are meningioma, green low-grade glioma, orange anaplastic glioma and
red glioblastoma samples. Colour zones depict borders between classes defined by the classifier.
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Figure 4.11: Discriminant plots for three class comparisons. For each performed tumour com-
parison, the discriminant score of test samples is plotted in Lgg-Ag-Gb comparison. Similarly to
Lgg-Ag in figure 4.10, an exception was performed for the Mg-Lgg-Gb comparison, since the dis-
criminant scores of training and test samples were plotted for one of the 4 models yielding 100%
prediction accuracy. Blue symbols are meningioma, green low-grade glioma, orange anaplastic
glioma and red glioblastoma samples. Colour zones depict borders between classes defined by
the classifier. No colour background was displayed for Lgg-Ag-Gb comparison, since no clear
boundary limits could be defined among classes.
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4.2.1.7 Molecular signature characteristics of meningeal and glial tu-

mours

Those unique genes that fitted the best prediction models described in section

4.2.1.6, were used to investigate molecular signatures characterising meningeal and

glial tumours. Those probesets with a fold-change equal or higher than 2 in any

of the six possible comparisons (Mg-Lgg, Mg-Ag, Mg-Gb, Lgg-Gb, Lgg-Ag and

Ag-Gb) were selected.

In doing so, 2097 probesets with p-value equal or lower than 0.05 were selected.

To remark, p-value was used for selection, although it does not fulfill multiple test

conditions. The use of the p-value was due to the few probesets with a q-value

equal or lower than 0.05 for comparisons between glial tumours (Lgg-Gb, Lgg-Ag

and Ag-Gb). Evidently, a p-value equal or lower than 0.05 always corresponded to

a q-value equal or lower than 0.05 for a large number of probesets when comparing

Mg to either Lgg, Ag or Gb (see annex A-10).

These probesets were submitted to the DAVID tool, from which resulted 25

statistically significant functional groups, which accounts for 282 genes and 379

probesets (see table 4.6 and annex A-10).

Comparison of Mg and Gb molecular signatures obtained from Affyme-

trix and cDNA microarrays data

Among the 11 functional groups identified in the comparison of Gbm and Mm

using cDNA microarrays data (see section 4.1.2.2), the group containing several

cadherin isoforms and the group with various members of the SLRPs family were

also found among the 25 functional groups derived from Affymetrix data (see func-

tional groups 4 and 6 in table 4.6 and annex A-10).

Interestingly, a higher expression of SLRPS genes in Mgs compared to glial tu-

mours, and expression of specific cadherins for Mgs and glial tumours was detected

again. In contrast, none of these functional groups displayed a expression differ-

ence with statistically significance, when comparing glial tumours each other. This

result would indicate that differences in histopathological types of glial tumours do

reflect in differential expression of genes from these functional groups.

Similarly, those genes encoding membrane proteins or related with the extracel-

lular space, genes encoding proteins involved in transduction of external signals or

cell signalling were also found (see functional groups 1-3, 7-11, 13-15, 17-21 and

23-25 in table 4.6 and annex A-10).



4.2 Exploratory analysis of meningioma and glial tumours using
Affymetrix data 111

Functional group Representative genes of the group

1 Leucine-Rich Repeat Containing 8 Family genes (LRCC8 isoforms), Major Facili-
tator Superfamily Domain 4 gene (MFSD4 ) and Transmembrane Protein 30B gene
(TMEM30B)

2 Glypican 6 (GPC6 ) and neurotrimin genes (HNT )
3 Leucine-Rich Repeat genes (LGR5, LINGO2, LRFN5, LRIG1, LRIG3, LRRC3B,

LRRN1, LRRN3, LRRTM2 )
4 Fibromodulin (FMOD), lumican (LUM ), osteoglycin (OGN ), osteomodulin (OMD)

and Proline/Arginine-Rih End Leucine-Rich Repeat protein (PRELP)
5 Familly with sequence similarity 77 gene (FAM77D) and synaptogyrin 3 (SYNGR3 )
6 Cadherin (CDH1, CDH10, CDH18 and CDH19 ) and protocadherin genes (PCDH7,

PCDH8, PCDH9 and PCDH17, among others)
7 Axon guidance receptor-related genes (ROBO1 and ROBO2 ), cell adhesion-related

genes (NCAM, NCAM1 and VCAM ), contactin 1 (CNTN1 ) and neuronal growth
regulator 1 (NEGR1 )

8 Sparc-related genes (SMOC1, SMOC2, SPOCK1 and SPOCK3 )
9 Genes encoding various types of receptors (CNR1,GABBR2, GPR17, GPR22,

GPR27, LGR5, PTGDR and P2RY12 )
10 Genes encoding various isoforms of collagen (COL1A1, COL1A2, COL3A1 and

COL6A2, among others)
11 Solute carrier gene (SLC44A5 ), Phosphatidic acid phophatse gene (PPAPDC1A),

T-cell lymphoma-related gene (TCBA1)
12 Genes encoding various isoforms of immunoglobulins (IGHA1, IGHG2, IGHG3,

IGLA2, IGLJ3 and IGHKC )
13 Genes encoding various isoforms of γ-aminobutyric acid, glutamate and glycine

(GABRA1, GABRA2, GABRA4, GABRA5, GRIK2, GRIA2, GRIN2A and GLRB)
14 Membrane-related genes (MS4A7, MS4A4, MS4A46A, SLC44A5, TMEM47 and

TM6SF1, among others)
15 Bestrophin 3 (BEST3 ) and membrane related-genes (FXYD7 and PLLP)
16 Genes related to synapsis ( SV2A, SV2A, SV2C, SVOP and SYNPR)
17 Genes encoding ligands of chemokines (CXCL2, CXCL3, CXCL5 and CXCL6, among

others)
18 Genes encoding various transporters of ions (KCNK2, KCNN2, SCN1A and SCN2A,

among others)
19 Genes encoding metallopeptidases (ADAMTS6 and ADAMTS9, among others) and

transporters of ions (KCNE4 and SCN3B, among others)
20 Genes encoding various transporters of ions (KCNE4, SLC4A4, SLC12A5, SLC24A3

and SLC10A4 )
21 Genes encoding various transporters of clhoride (CLCNKB, CLIC3, CLIC5 and

CLIC6 )
22 Genes involved in the metabolism of galactose (B3GALT6, GALNTL2, GAL3ST2

and ST6GAL2, among others)
23 Genes related to the metabolism of ATP (ABCA8, ABCA13, ATP8A2 and

ATP13A4, among others)
24 Genes encoding various regulators of G-protein signalling (RGS1, RGS4, RGS5 and

RGS7, among others)
25 Genes with capacity of binding calcium (CABP1, CALN1, TNNC1 and VSNL1 )

Table 4.6: Description of functional genes detected from Affymetrix data. This table describes
the 25 functional groups detected from Affymetrix data, which accounts for 379 probesets. These
functional groups were obtained by submitting to the DAVID tool those 2097 probesets with
p-value equal or lower than 0.05 across all pairwise comparisons between Mg, Lgg, Ag and Gb
(see text for more details). The complete description of functional groups can be seen in annex
A-10.

Curiously, the 1-3, 7-11, 14, 18, 19 and 24 functional groups were composed of

several probesets detected differentially expressed (q-value<0.05) when comparing

Lgg and Ag cases. Neither the Ag-Gb, nor the Lgg-Gb comparisons displayed

differentially expressed probesets in these functional groups.

In contrast, the group containing genes encoding several isoforms of cytochromes

and the group harboring several isoforms of tubulins were not identified in Affyme-
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trix data. This may indicate a decreased role of these genes in Mg and Gb biology,

or maybe the strategy used to select genes in the prediction models discarded these

genes. Interestingly, group 10 encoding collagen proteins and group 17 encoded var-

ious ligands of chemokines, which were found overexpressed in meningiomas and

glial tumours, respectively.

All this taken into account, SLRPs, collagen, cytochrome-related and specific

cadherin genes overexpressed in meningiomas may provide a specific signature of

benignity for HBTs, which to our knowledge had not been previously described.

Similarly, a signature of malignity for HBTs may be provided by ligands of chemokine,

tubulin and specific cadherin genes overexpressed in glial tumours.

On the other hand, few functional groups with genes differentially expressed

between glial tumours (Lgg, Ag and Gb) were detected (see annex A-10). Dif-

ferential expression with statistical significance was found between Lgg and Ag

tumours. This may suggest that progression from malignacy grade II to grade IV

is not a progressive process. That is, if the development of glioma were a progres-

sive process, differential expression between Lgg and Gb groups should have been

detected. As it is not, there may be some Lgg tumours that would progress di-

rectly to Gb tumours, while other Lgg tumours would progress to grade IV through

grade III of malignancy. This could explain the high misclassification of Lggs as

Ags, but not the opposite (see table 4.7). This hypothesis somewhat agrees with

the accepted existence of primary and secondary glioblastomas[26, 27]. Also, it

agrees with the three proposed molecular types of malignant gliomas (proneural,

proliferative and mesenchymal), each one of them including tumours of grade II,

III and IV of malignancy[1].
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Comparison Misprediction
Cases mispredicted when la-
belled with OPD

Cases mispredicted when la-
belled with ECD

Mg vs Lgg - -
Mg vs Ag - -
Mg vs Gb - -

Lgg vs Gb
Lgg as Gb et2953 and et3217 et3217
Gb as Lgg et2354, et3202 et3207 and et3509 et2354, et3207 and et3509

Lgg vs Ag
Lgg as Ag

et2041, et2915, et3208, et3217,
et3247 and et3251

et2030, et2035, et2435, et2915,
et3208, et3215, et3217, et3247
and et3251

Ag as Lgg et2952 and et3245 -

Ag vs Gb
Ag as Gb

et2262, et2425, et3201, et3225,
et3246 and et3254

et2262, et2425, et3201, et3225,
et3246 and et3254

Gb as Ag et2354 et2354

Mg vs Lgg vs Gb
Mg as other - -
Lgg as Gb et2953 et2435 and et3217

Gb as Lgg
et2354, et2951, et3197, et3203,
et3218 and et3509

et2354 and et2951

Lgg vs Ag vs Gb
Lgg as within

brackets

et2870(Gb), et2915(Ag),
et2953(Gb), et3217(Gb) and
et3247(Ag)

et2035(Ag), et2435(Ag) and
et2915(Ag)

Ag as within
brackets

et2262(Gb), et2425(Gb),
et2952(Lgg), et3008(Lgg),
et3225(Lgg), et3245(Lgg),
et3248(Lgg) and et3256(Lgg)

et2034(Lgg), et2870(Gb),
et2262(Gb), et2425(Gb),
et2952(Lgg), et3201(Lgg),
et3245(Gb), et3248(Lgg) and
et3254(Gb)

Gb as within
brackets

et2353(Ag), et2354(Lgg),
et2357(Lgg), et2951(Ag),
et3202(Ag), et3203(Ag),
et3205(Lgg), et3212(Lgg),
et3218(Ag), et3243(Ag),
et3250(Ag) and et3507(Ag)

et2353(Ag), et2354(Lgg),
et2357(Lgg), et2951(Ag),
et3202(Ag), et3203(Ag),
et3205(Lgg), et3207(Lgg),
et3212(Lgg), et3218(Ag),
et3243(Ag), et3250(Ag) and
et3507(Ag)

Table 4.7: Mispredicted samples across all comparisons. Samples that were mispredicted in
each comparison for both originating pathologist and eTUMOUR consensus diagnosis are shown.
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4.3 Exploratory analysis of molecular subtypes

of glioblastoma

4.3.1 Determination of clusters of glioblastoma

After assigning the most probable tumour class for the discrepant diagnosis cases

(see section 4.2.1.6), a total of 47 Gb cases were finally used to explore the existence

of molecular subtypes. This amount included 17 new cases acquired at the UAB

after the analysis at the section 4.2 had been performed.

A key step for discovering molecular subtypes of Gbs relies on proper gene

selection. For that reason, 4 different approaches were performed to select genes:

1. The 555 probesets included within the 629 genes differentially expressed be-

tween Gbm and Mm using cDNA microarrays.

2. The 20 probesets with highest and lowest ratio between Gb and the rest of

tumour groups (Mg, Lgg and Ag). This resulted in a total of 120 probesets.

3. The 27 matching genes proposed by Phillips and collaborators[1].

4. The 10% of probesets with highest coefficient of variation among the 47

considered Gb cases.

A hierarchical cluster based on the euclidean distance was performed for each

approach (see figures 4.12, 4.14, 4.16 and 4.18).
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Figure 4.12: Hierarchical cluster of 47 Gbs based on the 555 probesets differentially expressed
between Gbm and Mm using cDNA microarrays. This figure displays the molecular profile of the
555 probesets matching the 629 genes differentially expressed between Gbm and Mm using cDNA
microarrays. Columns are Gb cases and rows probesets. The bottom bar indicates the intensity
(arbitrary scale) of probesets per each sample.

Concerning the first approach, two main clusters grouping Gb cases can be seen
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from the column dendogram (see figure 4.12). However, such a defined column den-

dogram does not seems to clearly define molecular-profiles. To assess the relevance

of clusters, the silhouette statistics (see figure 4.13) was computed as described in

section 3.5.3.

The closer to 1 the statistics is, the higher the cluster reliability. Considering

that the maximum statistics mean is 0.15, the generated cluster seems to be unre-

liable. This is not surprising, since the genes used are optimal only to distinguish

between Gbm and Mm.
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Figure 4.13: Silhouette plot to determine the number of clusters from figure 4.12. Four number
of clusters (2, 3, 4 and 5) were assessed by the silhouette statistics.
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Figure 4.14: Hierarchical cluster of 47 Gbs based on the 120 probesets differentially expressed
between Gb and the rest of tumour groups. This figure display the molecular profile of the 120
probesets differentially expressed between Gb and the rest of tumour groups(Mg, Lgg and Ag).
Columns are Gb cases and rows probesets. The bottom bar indicates the intensity (arbitrary
scale) of probesets per each sample.
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Concerning the second approach to select genes, also two main clusters can be

seen from the column dendogram (see figure 4.14). In this case, a more defined

molecular-profile compared to figure 4.12 can be seen for each cluster. Furthermore,

the maximal silhouette statistics is 0.2 (see figure 4.15), which even not being very

reliable, it is higher than the one obtained in the previous approach.
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Figure 4.15: Silhouette plot to determine the number of clusters from figure 4.14. Four cluster
combinations (2, 3, 4 and 5) were predicted by the silhouette statistics.
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Figure 4.16: Hierarchical cluster of 47 Gbs based on the 27 genes from Phillips et al [1]. This
figure displays the molecular profile of 47 Gbs based on the 27 genes from reference Phillips
et al[1]. Columns are Gb cases and rows probesets. The bottom bar indicates the intensity
(arbitrary scale) of probesets per each sample.
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With regard to the third approach, two clusters seems to be delimited by the

columns dendogram (see figure 4.16). A less balanced size of clusters was found.

In addition, no molecular-profile can be clearly detected as in figure 4.12. The

silhouette statistics also demonstrate that no reliable clusters can be detected (see

figure 4.17).
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Figure 4.17: Silhouette plot to determine the number of clusters from figure 4.16. Four cluster
combinations (2, 3, 4 and 5) were predicted by the silhouette statistics.

Phillips and collaborators proposed the used genes in this approach as a molecular-

signature to identify the resemblance of glial tumours to their precursor cells. The-

refore, the obtained result may be interpreted such as that the considered Gb cases

would have dedifferentiated into a similar development stage.
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Figure 4.18: Hierarchical cluster of 47 Gbs based on the 10% of highest CV probesets. This
figure display the molecular profile of the 10% of highest CV probesets. Columns are Gb cases
and rows probesets. The bottom bar indicates the intensity (arbitrary scale) of probesets per
each sample.

Finally, an interesting result was obtained by performing a hierarchical cluster
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with the 10% of highest CV probesets (see figure 4.18). Apart from displaying

two clear clusters from the columns dendogram, the associated molecular-profile

is well defined for each cluster. In fact, the largest cluster seems to harbor two

molecular-profiles, but the silhouette statistics rejected such hypothesis (see figure

4.19).
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Figure 4.19: Silhouette plot to determine the number of clusters from figure 4.18. Four cluster
combinations (2, 3, 4 and 5) were predicted by the silhouette statistics.

At any rate, this last approach provided the highest average mean for the silhou-

ette statistics. However, the probesets selected displayed low signals of fluorescence.

For that reason, we repeated the hierarchical cluster, but we selected among the

genes with highest CV, those probesets with fluorescence signals higher than 1000

a.u. in at least 15% of cases. This selection approach produced a hierarchical

cluster with more defined groups (see figure 4.20).
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Figure 4.20: Hierarchical cluster of 47 Gbs based on the 100 probesets of highest CV and with
high fluorescence signals. This figure display the molecular profile of the 100 probesets of highest
CV and with fluorescence signals higher than 1000 a.u. in at least 15% of cases. Columns are Gb
cases and rows probesets. The bottom bar indicates the intensity (arbitrary scale) of probesets
per each sample.

Two clusters of Gbs were predicted by the silhouette statistics (see figure 4.21).
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One composed of 18 Gbs (cluster 1) and the other one composed of 29 Gbs (cluster

2). The averaged signal of fluorescence of the 100 probesets used for this hierarchi-

cal cluster was lower in the cluster 1 than in the cluster 2 (720.6 and 1200.5, respec-

tively, p-value=1.67x10−06, ranks-based Wilcoxon test). Among the 100 probesets,

genes that encodes proteins involved in various biological functions relevant in tu-

mour progression were detected: proliferative factors (EGFR, IGFBP2,IGFBP3,

TGFBI, PDGFRA and VEGFA), collagen isoforms (COL1A1, COL1A2,COL3A1

and COL6A3 ) and transmembrane proteins (CD24 and CD163 ).

These genes or their isoforms have been described in previous work as belonging

to a molecular signature for glial tumours[69, 1, 195]. Similarly, gene signatures

for glioblastoma subtypes also included isoforms of these genes[68, 167, 196, 197].

Therefore, the proposed gene signature to identify clusters of glioblastoma agrees

with previous work.

Interestingly, Tso and collaborators defined in primary glioblastomas a set of

significantly overexpressed genes, which included probesets that represent CD163,

CHI3L2, CHI3L1, COL6A2, COL5A1, EGFR, FABP5, IGFBP2, SERPINA3 and

VEGF [68]. These genes or similar isoforms were found overexpressed in cluster 2,

but not those probesets that represent the EGFR gene (see table 4.8 and annex

A-11).

This result suggests that cluster 2 could be a group enriched in primary glioblas-

tomas. Interestingly, a small difference in the averaged age of patients in each

cluster was found (cluster 1= 54.6 ± 20 years and cluster 2= 61.5 ± 9.9 years,

p-value=0.1995, ranks-based Wilcoxon test). Although the difference was not sta-

tistically significant, those patients younger than 30 years were only included in

cluster 1, while all patients except one in cluster 2 were older than 40 years. This

also agrees with the averaged age of patients that display a molecular profile of

primary glioblastoma, as described by Tso and collaborators[68].
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Figure 4.21: Silhouette plot to determine the number of clusters from figure 4.18. Four cluster
combinations (2, 3, 4 and 5) were predicted by the silhouette statistics.
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Gene symbol Probeset Cluster 1/Cluster 2 q-value

XIST 224588 at 0.69 7.7x10−02

XIST 227671 at 0.56 7.0x10−02

XIST 221728 x at 0.75 2.9x10−01

CHI3L2 213060 s at 0.12 2.4x10−03

SERPINE1 202628 s at 0.07 8.1x10−05

SERPINE1 202627 s at 0.14 1.0x10−04

EGFR 201984 s at 0.98 2.8x10−01

EGFR 232541 at 1.12 1.4x10−01

EGFR 224999 at 0.93 2.0x10−01

EGFR 201983 s at 0.93 2.4x10−01

FABP7 205029 s at 0.51 2.2x10−02

PDGFRA 203131 at 1.40 1.9x10−01

CD24 216379 x at 2.22 1.1x10−01

CD24 209771 x at 2.07 1.1x10−01

SERPINA3 202376 at 0.44 2.3x10−03

CHI3L1 209396 s at 0.21 6.2x10−05

CHI3L1 209395 at 0.20 5.0x10−05

COL1A2 202403 s at 0.17 6.1x10−04

COL1A1 1556499 s at 0.19 2.4x10−04

COL1A2 202404 s at 0.16 3.6x10−04

COL3A1 215076 s at 0.13 1.6x10−04

IGFBP3 212143 s at 0.22 1.0x10−03

IGFBP3 210095 s at 0.24 1.2x10−03

IGFBP2 202718 at 0.49 1.2x10−02

VEGFA 212171 x at 0.35 2.3x10−03

COL6A3 201438 at 0.06 7.0x10−05

COL1A1 202310 s at 0.10 1.8x10−04

COL3A1 211161 s at 0.11 1.7x10−04

COL3A1 201852 x at 0.09 1.5x10−04

COL5A2 221729 at 0.25 1.3x10−04

CD163 203645 s at 0.15 4.9x10−05

CD163 215049 x at 0.18 6.6x10−05

Table 4.8: Summary table of genes in common with Tso and collaborators. This table shows
some genes more expressed in primary glioblastoma as described by Tso and collaborators[68].
Most of these genes were also found more expressed in cluster 2 from figure 4.20. The three
first genes in the table were not described by Tso and collaborators, but may justify the low
proportion of females in cluster 1.

Another interesting factor that was not identified by Tso and collaborators was

the gender of patients. The 28.6% of patients in cluster 1 were females, while

a similar percentage of females (48.3%) and males (51.7%) was detected in clus-

ter 2. The difference in proportion of females between clusters was confirmed to
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be significant by the Pearson’s chi-square test (p-value=0.03704). Interestingly,

three probesets that represent the X chromosome inactivation factor (XIST ) gene

showed lower signals of fluorescence in cluster 1 than in cluster 2. The difference

between clusters showed tendency for signification (p=0.07 and 0.08) in two out

of the three probesets (see table 4.8), but it was due to the unbalanced number

of females and males in each cluster (see annex A-11). As XIST, there are 31

probesets that were selected by the variance associated to the gender in our unbal-

anced population composed of 18 females and 29 males (see A-11). This indicates

that those genes represented by 59 probesets without bias of gender may provide a

signature to identify two groups of glioblastoma. These results would suggest that

the two clusters of glioblastoma detected may be correlated to clinical parameters.

Therefore, we would like to propose two profiles that could differentiate each clus-

ter of glioblastoma and potentially primary glioblastoma tumours:

Cluster 1

1. Adult and young population.

2. It would affect more males than females.

3. Low expression values of the 59 probesets without bias of gender.

Cluster 2

1. Adult and elderly population.

2. It would similarly affect males and females.

3. High expression values of the 59 probesets without bias of gender.
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4.3.2 Correlation with in vivo and ex vivo 1H-magnetic

resonance data

To attempt to approach the identification of these possible subtypes of Gb in the

clinical practice, we searched for possible differential patterns in nuclear magnetic

resonance (NMR) data: single voxel at both short and long echo time (SV long and

short TE), and HRMAS. The averaged spectra available for cases with HRMAS

data in each cluster (see figures 4.22 and 4.23) and for paired cases in each cluster

were computed for in vivo NMR data (see figures 4.24, 4.25, 4.26 and 4.27).

4.3.3 HRMAS data

Figure 4.22: Averaged spectrum for the cluster 1 of Gbs (fig. 4.20) using HRMAS data. Each
point in this spectrum is the mean value of the 5 Gbs for which HRMAS data was available. The
averaged spectrum is represented by the black line. The gray area corresponds to the standard
deviation of each point of the spectrum. Along the x axis parts per million (ppm) are depicted,
while along the y axis the normalised intensity is shown.
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A visual inspection of the averaged spectra revealed that in cluster 1 the region

of myo-Inositol (mIno) at 3.55-3.56 ppm was higher than in cluster 2, whereas the

region of glycine (Gly) at 3.53-3.55 ppm was higher in cluster 2 than in cluster 1 (see

figures 4.22 and 4.23). The area under these peaks was computed using the bining

function developed by Dr. Daniel Valverde[163]. Also, we computed the area under

the peak of creatine (Cr) at 3.03 ppm as a reference to which compare both the

mIno and the Gly regions. Statistical significance was found between the mIno/Cr

and Gly/Cr ratio for the cluster 2 (mean(mIno/Cr)= 4.6 ± 5.1, mean(Gly/Cr)=

8.0± 9.4, p-value=0.03667, rank-based Wilxoxon test for paired samples), but not

for cluster 1 (mean(mIno/Cr)= 3.6±2.2, mean(Gly/Cr)= 4.3±4.0,p-value=0.5896,

rank-based Wilxoxon test for paired samples).

Figure 4.23: Averaged spectrum for the cluster 2 of Gbs (fig. 4.20) using HRMAS data. Each
point in this spectrum is the mean value of the 11 Gbs for which HRMAS data was available. The
averaged spectrum is represented by the black line. The gray area corresponds to the standard
deviation of each point of the spectrum. Along the x axis parts per million (ppm) are depicted,
while along the y axis the normalised intensity is shown.
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4.3.4 In vivo NMR data

A visual inspection on the averaged in vivo NMR spectra did not apparently re-

veal differences between clusters of glioblastoma. However, as a higher Gly/Cr

ratio than mIno/Cr was detected in cluster 2 using the HRMAS data, we com-

puted the contribution of these signals for in vivo NMR data. Unlike HRMAS, the

regions of Gly and mIno appear as a unique signal in the in vivo NMR spectra at

3.55 ppm. Differential contribution of Gly or mIno can be assessed by computation

of the ratio of mIno-Gly/Cr index as described by Candiota and collaborators[198].

This index results from the division of the ratio mIno-Gly/Cr at short and long

echo time. A high mIno-Gly/Cr index means a higher contribution of mIno than

Gly. As the averaged mIno-Gly/Cr index was relatively high in both clusters

(mean(Cluster1)= 3.03 ± 1.61 and mean(Cluster2)= 3.91 ± 3.55), the high con-

tribution of Gly in cluster 2 detected from HRMAS data does not seem to be

reproduced here. However, direct comparison of the two types of NMR data can

be misleading. It has been described that HRMAS acquisition may increase the

visibility of certain metabolites (i.e., creatine)[199]. In the case of Gly, it has been

described that it may bind to macromolecular structures[200], which could reduce

the glycine visibility in in vivo spectra.

Future analysis by pattern recognition methodologies of the in vivo patterns[162]

using a larger number of cases may provide better in vivo biomarkers for the

transcriptomically proposed glioblastoma subtypes.
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Figure 4.24: Averaged spectrum for the cluster 1 of Gbs (fig. 4.20) using SV at short TE data.
Each point in this spectrum is the mean value of the 9 Gbs for which SV at short TE data was
available. The averaged spectrum is represented by the black line. The gray area corresponds to
the standard deviation of each point of the spectrum. Along the x axis parts per million (ppm)
are depicted, while along the y axis the normalised intensity is shown.
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Figure 4.25: Averaged spectrum for the cluster 2 of Gbs (fig. 4.20) using SV at short TE data.
Each point in this spectrum is the mean value of the 8 Gbs for which SV at short TE data was
available. The averaged spectrum is represented by the black line. The gray area corresponds to
the standard deviation of each point of the spectrum. Along the x axis parts per million (ppm)
are depicted, while along the y axis the normalised intensity is shown.
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Figure 4.26: Averaged spectrum for the cluster 1 of Gbs (fig. 4.20) using SV at long TE data.
Each point in this spectrum is the mean value of the 7 Gbs for which SV at short TE data was
available. The averaged spectrum is represented by the black line. The gray area corresponds to
the standard deviation of each point of the spectrum. Along the x axis parts per million (ppm)
are depicted, while along the y axis the normalised intensity is shown.
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Figure 4.27: Averaged spectrum for the cluster 2 of Gbs (fig. 4.20) using SV at long TE data.
Each point in this spectrum is the mean value of the 7 Gbs for which SV at short TE data was
available. The averaged spectrum is represented by the black line. The gray area corresponds to
the standard deviation of each point of the spectrum. Along the x axis parts per million (ppm)
are depicted, while along the y axis the normalised intensity is shown.
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4.4 Simulation of ex vivo ischaemia at normal

body temperature in brain tumour samples

of mice and C6 cells

Incubation for 30 minutes in PBS at 37�, did not produce differences in RNA

degradation for necrotic tumours (see figure 4.28 for the evolution of tumours),

compared to snap frozen in liquid nitrogen (see figure 4.29). In contrast, non-

necrotic tumours showed a statistically significant decrease of the 28S/18S ratio

for cases incubated for both 15 and 30 minutes in PBS at 37�(see figure 4.29).

Thus, RNA degradation as measured from the 28S/18S ratio occurs for the non-

necrotic tumour specimens, while it does not in the necrotic ones, when simulating

an ex vivo ischaemia period at normal body temperature.

Day 3 Day 9Day 6 Day 15Day 12 Day 18 Day 21

Figure 4.28: Evolution of tumour mass induced in mice with GL261cells. The growth of the
brain tumours induced in mice by inoculation of GL261 rat glioma cells is shown. The tumour
mass can be seen at day 3 after inoculation and necrosis detected after day 18 after inoculation.
Images acquired by Teresa Delgado and Milena Acosta at the NMR facility of the Universitat
Autònoma de Barcelona (Cerdanyola del Vallès, Catalunya), using a 7 T horizontal magnet
(BioSpec 70/30, Bruker BioSpin, Ettlingen, Germany) equipped with actively shielded gradients
(B-GA12 gradient coil inserted into a B-GA20S gradient system) and a quadrature receive surface
coil, actively decoupled from a volume resonator with 72 mm inner diameter.

Translating these findings into the usual clinical practice, an ischaemia time

at normal body temperature may cause RNA degradation and may explain the

25-30% of human biopsies showing RNA degradation, and unusable for microar-

ray hybridization. Proper surgical practice during HBT removal requires surgeons

stopping blood flow to the tumour by cauterization of visible blood vessels. This

practice avoids excessive excessive bleeding, but it also results in a variable is-

chaemia time in patients at body temperature prior to biopsy removal (between 5

and 30 minutes). Therefore, our working hypothesis is that the time elapsed be-

tween the blood flow halt and biopsy removal, may cause RNA degradation (about

30% of tumours and perhaps the less necrotic ones).
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Figure 4.29: Simulation of ischaemia at normal body temperature in mice. Effect of ischaemia at
normal body temperature on RNA degradation for both necrotic and non-necrotic mice tumours
is shown. At the upper part, the box plots of both 28S/18S ratio and RIN number for necrotic-
tumours are shown. At the bottom figure, 28/18S ratio for non-necrotic tumours at three time
ponts of ischaemia at normal body temperature (snap frozen, 15 min. and 30 min.) is shown.
In this case, only 28S/18S ratio values was evaluated, since RIN number was not computed by
the 2100 Bioanalyzer for all cases. Statistical difference between conditions was assessed using
the non-parametric test of Wilcoxon. Displayed p-values were computed between snap frozen
samples and samples from each time point (15 and 30 min.).

Molecular and cellular explanation for our results are yet difficult to provide.

Even though plenty of studies have adressed the mechanisms of mRNA turnover[201,

202, 203, 204], there is an apparent lack of published work that evaluates the in-

volvement of ischaemia in RNA degradation.

To try to evaluate whether ischaemia is a general mechanism that induces RNA

degradation in cells, a similar experiment than the one performed with mice was

performed with C6 rat glioma cells. In this case, necrotic and non-necrotic stages of

intracranial tumours were partially mimicked in C6 cells as post-confluence (partial

proliferation arrest, 7 days culture) and logarithmic phase (5 days culture) cells,

respectively. If RNA degradation could be detected in post-confluence cells after

30 minutes at 37�, but not in logarithmic phase cells, the RNA instability could
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be tentatively correlated to an ischaemia effect onto fast proliferating cells.
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Figure 4.30: Simulation of ischaemia at normal body temperature in C6 cells. Effect of is-
chaemia at normal body temperature on RNA degradation for both post-confluence and loga-
rithmic phase C6 cells is shown. At the upper part, the box plots of both 28S/18S ratio and RIN
number for post-confluence cells are shown. At the bottom figure, 28/18S ratio for logarithmic
phase cells at three time ponts of ischaemia at normal body temperature (snap frozen, 15 min.
and 30 min.) is shown. In this case, only 28S/18S ratio values was evaluated, since RIN number
was not computed by the 2100 Bioanalyzer for all cases. Statistical difference between conditions
was assessed using using the non-parametric test of Wilcoxon. Displayed p-values were computed
between snap frozen samples and samples from each time point (15 and 30 min.).

There was no significant difference for post-confluence and logarithmic phase

cells at any of the evaluated conditions (see figure 4.30). This result clearly demon-

strates that the ischaemia time may explain RNA degradation detected in intact

GL261 tumours, but it can not be considered a general mechanism in cultured

cells. In that case, we conclude that RNA degradation may possibly be induced by

some other factor, induced by ischaemia, present in the tumour mass, but absent

in cultured cells.





Chapter 5

CONCLUSIONS

1. 255 biopsy cases of primary and metastasic human brain tumours have been

accrued from the hospitals of the Barcelona metropolitan area for the eTU-

MOUR, HealthAgents and MEDIVO2 projects and processed to allow tran-

scriptomic analysis.

2. The original diagnosis, the amount of blood in the biopsy and the collection

medium (liquid nitrogen or RNAlater) could not explain the percentage of

biopsies (27.5%) with unusable RNA for transcriptomic analysis. Simulation

of an ex vivo period of ischaemia in intracranial tumours induced in C57

mice demonstrated that a 15-30 minutes period can cause significant RNA

degradation in non-necrotic tumours, but does not affect RNA integrity of

specimens containing necrotic regions. This would suggest that the blood

flow arrest in tumours induced by surgeons before biopsy removal, may induce

RNA degradation in non-necrotic regions of tumours, and could explain why

RNA of both benign and malignant tumours was found degraded in similar

percentages.

3. A formula based on the expression profile of only 4 genes (GFAP, PTPRZ1,

GPM6B and PRELP) obtained from cDNA microarrays can perfectly and

objectively predict Gbm and Mm biopsy cases. This has provided a proof-

of-principle to use microarray-based gene profiling as an objective predictor

technology in the clinical practice. Perfect prediction of both Affymetrix data

accrued at the UAB and publicly available datasets suggests that microar-

ray data could be made compatible across different platforms for predictor

development.

4. We propose a gene signature of benignity and malignity for HBTs based on
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the 629 genes with q-value lower than 0.02 from cDNA microarray data. The

signature of benignity would be composed by SLRP, cytochrome-related and

specific cadherin genes overexpresed in Mms, whereas the signature of ma-

lignity would be composed by tubulins and specific cadherins overexpressed

in Gbms.

5. RMA was the best method for background correction and data normalisation

of Affymetrix experiments. Selection of probesets based on their differential

expression produced correct classification results for pairwise comparisons,

but PCA selection was better for three-class classifiers. The LDA algorithm

produced the best results in most cases and all predictors were statistically

different from random assignation of classes.

6. Among the models developed using data from Affymetrix microchips, the

highest percentage of correct classification was 92% for Lgg-Gb, 81.8% for

Ag-Gb and 77.1% for Lgg-Ag comparison. As samples misclassified in Lgg-

Ag comparison were only Lggs, it may indicate that the molecular profile of

Lggs is similar to Ags, although they show different histological features.

7. Development of prediction models based on OPD and ECD has indicated

that a diagnosis based on the examination of various specialists may be more

accurate, when discrepancies exists between both diagnoses. However, a bias

in diagnosis could be produced in the case that each pathologist examined a

tissue slice obtained from different parts of the tumour.

8. Comparison of the gene expression profile of Mgs and Gbs obtained from

Affymetrix microchips data with the gene profile obtained from cDNA mi-

croarrays data confirmed the signatures of benignity and malignity for HBTs.

Moreover, these signatures were increased with a group of genes encoding

chemokines and another group encoding collagen proteins, which were found

overexpressed in glial tumours and meningiomas, respectively.

9. The highest number of genes differentially expressed across comparisons of

glial tumours (Lgg-Ag, Lgg-Gb and Ag-Gb) were detected in the Lgg-Ag

comparison. This may indicate that progression from Lgg to Gb tumours do

not necessarily requires an Ag intermediate stage. If so, a large number of

genes would be differentially expressed between Lgg and Gb tumours. These

result agrees with previous work[68, 1, 197].
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10. The hierarchical cluster of glioblastomas based on the expression level of

100 probesets with both highest CV and signals of intensity higher than

1000 a.u. in at least 15% of cases defined 2 groups of glioblastomas. Most

probesets selected were overexpressed in cluster 2 and they coded for some

genes previously found highly expressed in primary glioblastomas[68]. On the

basis of our data and the existing literature, it can be proposed that cluster 2

could represent primary glioblastomas and affected patients may have lower

survival.
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ABSTRACT 

 

The specification of what clinical and histopathological data must be obtained during 

the eTUMOUR project serves three purposes: First, to ensure that data from all 

patients recruited for the project are collected in a standard and compatible way; 

Second, to ensure that the minimum amount of information needed to validate and 

use data collected for each patient case will be available; And third, to aid in the 

logistics of the clinical data quality checking effort for each patient. 

For this, documents on advised informed consent documentation, clinical data to be 

recorded, histopathological and clinical data validation protocols have been 

discussed and agreed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



164 ANNEXES

 3

INDEX 

ABSTRACT................................................................................................................ 2 

INDEX ........................................................................................................................ 3 

ACRONYM LIST ........................................................................................................ 4 

EXECUTIVE SUMMARY............................................................................................ 5 

FULL DESCRIPTION OF DELIVERABLE CONTENT .............................................. 7 

INTRODUCTION .................................................................................................... 7 

METHODS.............................................................................................................. 9 

RESULTS ............................................................................................................. 11 

DISCUSSION........................................................................................................ 16 

BIBLIOGRAPHY AND REFERENCES.................................................................... 22 

 

 

 

 

 

 

 

 

 

 

 

 

 



A-1 Collection of clinical and histopathological data in eTUMOUR 165

 4

ACRONYM LIST 

CDVP Clinical Data Validation Protocol 

CQCD Committee for Quality Control of Data 

CRF Clinical Record Form 

CSC Clinical Subcommittee of CQCD 

DQCE Data Quality Checking Effort 

DSS Decision Support System 

eTDB e-Tumour Database 

GUI Graphical User Interface 

HPD Histopathology Diagnosis 

HR MAS High Resolution Magic Angle Spinning 

HVP Histopathological Validation Protocol 

IF Informed Consent  Form 

KPS Karnofsky Performance Score 

MRI Magnetic Resonance Imaging 

MRS Magnetic Resonance Spectroscopy 

P11, KUL Partner 11, Katholieke Universiteit Leuven Research & Development

P15, UPVLC Partner 15, Universidad Politécnica de Valencia 

P18, BU Partner 18, Institute of Child Health, University of Birmingham 

P2, UAB Partner 2, Universitat Autònoma de Barcelona 

P3, SGHMS Partner 3, St George’s Hospital Medical School 

P4, UMCN Partner 4, University Medical Center Nijmegen 

 

 

 



166 ANNEXES

 5

EXECUTIVE SUMMARY 

 
The specification of what clinical and histopathological data must be obtained 

will be used to ensure uniform pathology type and grade assignment for cases to be 

used in classifier development to be incorporated in the Graphical User Interface 

(GUI) of a Decision Support System (DSS). In order to achieve this, two other 

requirements have to be met first: 

• To have available a standard way of collecting and storing clinical and 

histopathological data. 

• Once data is stored, a Data Quality Checking Effort (DQCE) has to be 

performed in order to ensure that each case will be usable in the eTUMOUR 

project from the point of view of medical inclusion criteria. 

Essentially, when each patient undergoes a brain scan at one of the 

participating clinical institutions because the presence of a brain tumour is suspected, 

a full Ethics Committee Approval and Informed Consent (IF) form will be available. 

Annex 1a shows a guidance and IF consent forms and Annex 1b shows a list of 

minimal concepts to be included. The patient or a responsible person will be asked 

whether he/she is willing to participate in the eTUMOUR project. If an IF form is 

signed, when the patient undergoes the surgical procedure to diagnose and/or to 

remove the brain tumour, a sample of the abnormal tissue will be obtained for 

histopathological analysis in order to analyse which tumour type the patient has. 

When possible, part of the excised tumour will also be frozen immediately upon 

excision, labelled and stored in liquid N2 for subsequent ex vivo analysis by the HR 

MAS 1 and microarray 2 techniques. The eTUMOUR clinicians who are treating the 
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patient will collect the clinical information from each patient in order to perform DQCE 

and ensure that the case is usable for inclusion into the final eTUMOUR DSS. 
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FULL DESCRIPTION OF DELIVERABLE CONTENT 
 

INTRODUCTION 

The lifespan of the European population is increasing and accordingly, 

diseases that become prevalent in old age, such as brain tumours, will afflict a larger 

percentage of this population. Brain tumours do not have a lifestyle-associated 

aetiology hence prevention is not yet possible. Gold standard diagnosis is based on 

histological analysis of tumour biopsies, which is an invasive procedure that carries 

risks. Additionally, in slowly evolving tumours (e.g. pilocytic astrocytoma in children) 

repeated biopsy may not be advisable at all. Diagnosis by magnetic resonance 

imaging (MRI) is non-invasive, but only achieves 60-90% accuracy depending on the 

tumour type and grade 3 , therefore can only replace biopsy for particular cases. 

Magnetic resonance spectroscopy (MRS) provides a non-invasive method to obtain a 

profile of the biochemical constituents of the tumour and has been shown to improve 

the accuracy of diagnosis in specific instances 4 . However, MR spectra are complex 

and require skilled interpretation, for these reasons routine clinical use of MRS is still 

low. Thus a decision support system that should facilitate the uptake of MRS by 

clinicians, by providing an automated classification of tumour MR spectra, has 

already been developed (INTERPRET 5 ).  

Tumour tissue is generally heterogeneous and there are a large number of 

different tumour types and grades. Thus, in order to develop automated classification 

methods that are comprehensive, data from several hospitals must be combined to 

fully characterise the variability of tumour spectra. Furthermore, the robustness of the 

classification method must then be validated in a real clinical setting. Furthermore, 
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the possibility of phenotyping tumours with DNA microarrays may create new 

subtypes of tumours on molecular grounds. Moreover, the extensive and more 

precise metabolic analysis of tumours by MRS at high fields (≥ 9.4 T) from tissues (ex 

vivo) can allow a better understanding of the tumour biochemistry and may also 

refine the classification of brain tumours. It will then become necessary to correlate 

MRS data with the tumour gene and metabolic expression profile thus requiring a 

large database of MR spectra -either in vivo and ex vivo- and microarray analyses. 

Finally, it is important to look for correlations of patient survival or more precisely, 

patient performance status, with MRS characteristics, to assess whether there are 

better prognostic indicators than the current grading system.  
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METHODS 

Clinical personnel are responsible for all matters relating to clinical data 

collection, informed consent form preparation and collection (Annexes 1A and 1B), 

eTUMOUR database (eTDB) data upload and validation of clinical and 

histopathological data. This information is collected locally at each participating 

centre and stored in the eTDB from the same location. The eTDB is the source from 

which the members of the Committee for Quality Control of Data (CQCD), through its 

Clinical Subcommittee (CSC), will perform the DQCE. Figure 1 summarises the 

general path envisioned for clinical data storage and CQCD.  

For this reason the following documents and protocols have to be developed: 

1. Histopathological data validation protocol (HVP). The purpose of the 

histopathological validation protocol is to ensure a standard processing protocol and 

diagnosis for all biopsy samples of tumours. 

2. Clinical data validation protocol (CDVP). The purpose of the clinical 

data validation protocol is to ensure that inclusion criteria for patient clinical and 

histopathological data to be used in DSS development are met. This protocol is to be 

applied by CSC members to all incoming cases. 

3. Clinical record form (CRF). The purpose of the CRF is to ensure that 

raw clinical data and results of HVP and CDVP are recorded in a standard, secure 

and accessible way to CQDC and CSC members and DSS developers. An 

associated purpose of the CRF is to be an instrument allowing CDVP, HVP and in 

general, the full DQCE process. 

Once all incoming data has been entered into the eTDB, quality control  

checks on data consistency will be performed, essentially as in the INTERPRET 

project (See Annex 2 and 6 ). However, WP6 will deal with this matter in detail.  
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Figure 1:  Envisioned path for clinical data storage into the eTDB. Yellow: originating hospital. Green: 

eTUMOUR 
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RESULTS 

1. HVP 

Of each case, at least one but preferably 5 unstained slides of each paraffin 

block of the brain tumour have to be sent to Dr. Pieter Wesseling. Based on 

Haematoxylin-Eosin staining, and when necessary, additional stainings.  Histological 

diagnosis will be made according to the WHO-2000 7 classification by Dr. Pieter 

Wesseling (head of CSC) and a second neuropathologist, in case of discrepancy 

also by a third neuropathologist. Second and third neuropathologists will be Dr. 

Martin Lammens and Dr. Max Kros, from The Netherlands. If additional 

immunohistochemistry has to be performed in order to reach a diagnosis, it will be 

done on the unstained slides that have been received and had not been used for 

previous Haematoxilin-Eosin staining. The final consensus diagnosis (or, in  case of 

lack of consensus, alternative diagnosis/diagnoses) will be included in the eTDB. 

 
2. CDVP 

Electronic data contained in the eTDB relevant for clinical data review (clinical, 

radiological, histopathological (and when available, molecular) data will be sent to 

members of CQCD (CSC subsection), including a neurologist, a neurosurgeon, a 

neuroradiologist, a paediatric oncologist and a neuropathologist. All data will be 

evaluated by each of the participating members of this group for errors, missing 

significant information, etc. When all members agree on the absence of errors and 

missing significant information the case will be flagged in the eTDB as “validated”. If 

data on the case do not meet the minimum quality standards, the case will be flagged 

as “not validated”, indicating that it is not usable for further study. Minimum quality 

standards are to be defined and stored in written format in CQCD meeting minutes. 

Teleconference by members of the CQCD (CSC subsection) about problematic 
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cases will also be performed in order to reach a decision on if and how difficult cases 

can still be used and flagged as “validated”. 

 
3. CRF 

Table 1 depicts the list of fields and the possible values defined for each of 

them. 

FIELD 
NUMBER FIELD NAME 

WAS ALREADY 
AN INTERPRET 

5 FIELD 

IS A NEW 
eTUMOUR 

FIELD 
POSSIBLE VALUES COMMENTS 

1 AGE X  INTEGER  

2 DATE OF BIRTH  X DD / MM / YYYY  

3 SEX X  M / F / NA  

4 DATE OF 
SPECTROSCOPY X  DD / MM / YYYY  

5 WEEKS SINCE FIRST 
SYMPTOM X  INTEGER  

6 PRESENTING SYMPTOM: 
EPILEPTIC FIT X  YES / NO / NA  

7 PRESENTING SYMPTOM: 
NEUROLOGICAL DEFICIT X  YES / NO / NA  

8 PRESENTING SYMPTOM: 
COMA X  YES / NO / NA  

9 
MEDICATION AT TIME OF 
SPECTROSCOPY: 
STEROIDS 

X  YES / NO / NA  

10 
MEDICATION AT TIME OF 
SPECTROSCOPY: 
ANTICONVULSANTS 

X  YES / NO / NA  

11 
MEDICATION AT TIME OF 
SPECTROSCOPY: 
GADOLINIUM 

X  YES / NO / NA  

12 
MEDICATION AT TIME OF 
SPECTROSCOPY: 
ANAESTETHIC AGENTS 

X  YES / NO / NA  

13 
MEDICATION AT TIME OF 
SPECTROSCOPY: 
MANNITOL 

X  YES / NO / NA  

14 BLEED INTO TUMOUR X  YES / NO / NA  

15 TUMOUR LOCATION X 

 

TECTAL PLATE / TEMPORAL 
/MIDBRAIN / MEDULLA / PONS / 
PINEAL REGION / OPTIC CHIASM / 
HYPOTHALAMUS / SUPRASELLAR 
REGION / VENTRICULAR / FRONTAL / 
PARIETAL / OCCIPITAL / BASAL 
GANGLIA / CEREBELLUM   
##  
LEFT / RIGHT 

POSSIBLE 
VALUES 
MODIFIED FROM 
FREE TEXT TO 
MENU 

16 CALCIFICATIONS  X YES / NO / NA  

17 NUMBER OF DETECTED 
LESIONS  X INTEGER  

18 TUMOUR SIZE X  nn x nn x nn (mm) ## nn OF BIGGER 
AXIS FOR GLIAL TUMOURS (mm)  

19 RADIOLOGICAL 
DIAGNOSIS 1 X  FREE TEXT  
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20 
CONFIDENCE RATING 
FOR RADIOLOGICAL 
DIAGNOSIS 1 

 X 0 / 1 / 2 / 3 / 4 

0: NOT 
CONFIDENT AT 
ALL, 4: TOTALLY 
CONFIDENT 

21 RADIOLOGICAL 
DIAGNOSIS 2  X FREE TEXT 

P2 UAB 
SUGGESTION: TO 
ACCEPT UP TO 3 
RADIOLOGICAL 
DIAGNOSTICS 

22 
CONFIDENCE RATING 
FOR RADIOLOGICAL 
DIAGNOSIS 2 

 X 0 / 1 / 2 / 3 / 4 

0: NOT 
CONFIDENT AT 
ALL, 4: TOTALLY 
CONFIDENT 

23 RADIOLOGICAL 
DIAGNOSIS 3  X FREE TEXT SAME AS 

BEFORE 

24 
CONFIDENCE RATING 
FOR RADIOLOGICAL 
DIAGNOSIS 3 

 X 0 / 1 / 2 / 3 / 4 

0: NOT 
CONFIDENT AT 
ALL, 4: TOTALLY 
CONFIDENT 

25 SITE OF OPERATION X  FREE TEXT  

26 TUMOUR REMOVAL X OPTIONS 
MODIFIED

COMPLETE MACROSCOPIC 
RESECTION / PARTIAL 
MACROSCOPIC RESECTION / OPEN 
BIOPSY / STEREOTACTIC BIOPSY 

IN ORDER TO 
SPECIFY THAT 
DEGREE OF  
RESECTION IS 
FROM THE 
MACROSCOPIC 
POINT OF VIEW. 
AND TO SPECIFY  
TYPE OF BIOPSY 
IN CASES 
WHERE THERE IS 
NO RESECTION 

 SUBTOTAL TUMOUR 
REMOVAL REMOVE  YES / NO / NA  

 STEREOTACTIC BIOPSY REMOVE 
MERGED 

WITH 
FIELD 26

YES/NO/NA 

FOLLOWING P3 
SGHMS 
COMMENTS: IF 
THE BIOPSY WAS 
OBTAINED FROM 
A 
STEREOTACTIC 
BIOPSY OR 
FROM TUMOUR 
EXCISION 

27 DATE OF BIOPSY X  DD/MM/YYYY  

28 

PARAFFIN SECTION 
WHO CLASSIFICATION 
(ORIGINATING 
PATHOLOGIST) 

 X WHO DIAGNOSES MENU + FREE 
TEXT 

RELATED TO 
PROTOCOL FOR 
HISTOLOGY 
VALIDATION. 
FREE TEXT 
SUGGESTED BY 
P2 UAB,, AS 
MIGHT NOT 
NECESSARILY BE 
eTUMOUR 
PATHOLOGISTS 

29 
PARAFFIN SECTION 
WHO CLASSIFICATION 
(PATHOLOGIST A) 

 X WHO DIAGNOSES MENU  

RELATED TO 
PROTOCOL FOR 
HISTOLOGY 
VALIDATION. 
 

30 
PARAFFIN SECTION 
WHO CLASSIFICATION 
(PATHOLOGIST B) 

 X WHO DIAGNOSES MENU  

RELATED TO 
PROTOCOL FOR 
HISTOLOGY 
VALIDATION. 

31 
PARAFFIN SECTION 
WHO CLASSIFICATION 
(PATHOLOGIST C) 

 X WHO DIAGNOSES MENU 

RELATED TO 
PROTOCOL FOR 
HISTOLOGY 
VALIDATION. 

32 
PARAFFIN SECTION 
WHO CLASSIFICATION 
(CONSENSUS) 

 X WHO DIAGNOSES MENU  

RELATED TO 
PROTOCOL FOR 
HISTOLOGY 
VALIDATION. 
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 DAUMAS-DUPORT 
ASTROCYTOMA GRADE REMOVE  1/2/3/4 CONSIDERED 

REDUNDANT 

33 HISTOPATHOLOGY 
VALIDATED X  YES/NO/NA  

34 CONSENSUS CLINICAL 
DIAGNOSIS  X WHO DIAGNOSES MENU + OTHER 

DISEASES 

TO ACCOUNT 
FOR DISEASES 
THAT ARE NOT 
DIAGNOSED 
HISTOLOGICALLY 
(DIFFUSE 
PONTINE 
GLIOMAS, 
TECTAL PLATE 
GLIOMAS, 
SECRETING 
GERM CELL 
TUMOURS), OR 
TO ACCOUNT 
FOR CASES IN 
WHICH 
HISTOLOGY IS 
NOT DIAGNOSTIC 
OR WHEN THERE 
IS NO 
HISTOLOGY 
(METASTASES) 

35 CHEMOTHERAPY DRUGS 
USED X  YES/NO/NA  

36 RADIOTHERAPHY DOSE 
GIVEN X  FREE TEXT  

 OUTCOME SCORE AT 
THREE MONTHS REMOVE  1/2/3/4/5/6/7 

SUBSTITUTED BY 
KARNOFSKY  / 
LANSKY INDEX 

 OUTCOME SCORE AT 
TWO YEARS REMOVE  1/2/3/4/5/6/7 

SUBSTITUTED BY 
KARNOFSKY / 
LANSKY INDEX 

37 

KARNOFSKY 
PERFORMANCE SCORE 
AT DIAGNOSTIC (for ages 
above 16) 

 X 0/10/20/30/40/50/60/70/80/90/100 SUGGESTED BY 
P2 UAB 

38 

KARNOFSKY 
PERFORMANCE SCORE 
AT THREE MONTHS (for 
ages  above 16) 

 X 0/10/20/30/40/50/60/70/80/90/100 SUGGESTED BY 
P2 UAB 

39 

KARNOFSKY 
PERFORMANCE SCORE 
AT TWO YEARS (for ages 
above 16) 

 X 0/10/20/30/40/50/60/70/80/90/100 SUGGESTED BY 
P2 UAB 

40 

KARNOFSKY 
PERFORMANCE SCORE 
AT FIVE YEARS (for ages   
above 16) 

 X 0/10/20/30/40/50/60/70/80/90/100 SUGGESTED BY 
P2 UAB 

41 

LANSKY PERFORMANCE 
SCORE AT DIAGNOSTIC 
(for ages below or equal to 
16) 

 X 0/10/20/30/40/50/60/70/80/90/100 SUGGESTED BY  
P18 BU 

42 

LANSKY PERFORMANCE 
SCORE AT THREE 
MONTHS (for ages below 
or equal to 16) 

 X 0/10/20/30/40/50/60/70/80/90/100 SUGGESTED BY  
P18 BU 

43 

LANSKY PERFORMANCE 
SCORE AT TWO YEARS 
(for ages below or equal to 
16) 

 X 0/10/20/30/40/50/60/70/80/90/100 SUGGESTED BY  
P18 BU 

44 

LANSKY PERFORMANCE 
SCORE AT FIVE YEARS 
(for ages below or equal to 
16) 

 X 0/10/20/30/40/50/60/70/80/90/100 SUGGESTED BY  
P18 BU 

45 DATE OF RADIOLOGICAL 
PROGRESSION/RELAPSE  X DD/MM/YYYY SUGGESTED BY  

P18 BU 

46 DATE OF DEATH   X DD/MM/YYYY SUGGESTED BY  
P18 BU 
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47 CAUSE OF DEATH   X FREE TEXT 
SUGGESTED BY  
P18 BU AND P3 
SGHMS 

48 CONCOMITANT DISEASE X  FREE TEXT  

49 DATE POSTMORTEM 
EXAM X  DD/MM/YYYY  

50 
HISTOPATHOLOGY WHO 
CLASSIFICATION OF 
TUMOUR ON AUTOPSY 

X  WHO DIAGNOSES MENU + FREE 
TEXT 

FREE TEXT 
SUGGESTED BY 
P2 UAB,, AS 
MIGHT NOT 
NECESSARILY BE 
eTUMOUR 
PATHOLOGISTS 

 

DAUMAS-DUPORT 
ASTROCYTOMA GRADE 
OF TUMOUR ON 
AUTOPSY 

REMOVE  1/2/3/4  

51 PRIMARY TUMOUR 
DETECTED X  YES/NO/NA  

52 LOCATION OF PRIMARY 
TUMOUR X  FREE TEXT  

53 
SPECTRAL 
LOCALISATION 
VALIDATED? 

X  YES/NO/NA  

 

ASSIGNED CDVC 
(CLINICAL DATA 
VALIDATION COMMITEE) 
CLASS 

TRANSFORMED 
INTO FIELD 65  A/B/C/D/E/F  

 

VALIDATED (MEANS 
THAT HISTOLOGY IS 
VALIDATED AND 
ASSIGNED CDVC CLASS 
IS NOT "F") 

REMOVE  A/B/C/D/E/F  

54 OTHER X  FREE TEXT  

55 

THE CASE HAS BEEN 
REVIEWED AND 
ACCEPTED/DISCARDED 
BY A 
NEUROPATHOLOGIST 

 X ACCEPT/DISCARD/NA 

NOT DIRECTLY 
RELATED TO 
CLINICAL 
INFORMATION, 
BUT TO CLINICAL 
VALIDATION 

56 NEUROPATHOLOGIST'S 
COMMENTS ON CASE  X FREE TEXT SAME AS FIELD 

55 

57 

THE CASE HAS BEEN 
REVIEWED AND 
ACCEPTED/DISCARDED 
BY A NEUROSURGEON 

 X ACCEPT/DISCARD/NA SAME AS FIELD 
55 

58 NEUROSURGEON 
COMMENTS ON CASE  X FREE TEXT SAME AS FIELD 

55 

59 

THE CASE HAS BEEN 
REVIEWED AND 
ACCEPTED/DISCARDED 
BY A PEDIATRIC 
NEURORADIOLOGIST 

 X ACCEPT/DISCARD/NA SAME AS FIELD 
55 

60 
PEDIATRIC 
NEURORADIOLOGIST'S 
COMMENTS ON CASE 

 X FREE TEXT SAME AS FIELD 
55 

61 

THE CASE HAS BEEN 
REVIEWED AND 
ACCEPTED/DISCARDED 
BY A 
NEURORADIOLOGIST 

 X ACCEPT/DISCARD/NA SAME AS FIELD 
55 

62 NEURORADIOLOGIST'S 
COMMENTS ON CASE  X FREE TEXT SAME AS FIELD 

55 

63 

THE CASE HAS BEEN 
REVIEWED AND 
ACCEPTED/DISCARDED 
BY A NEUROLOGIST 

 X ACCEPT/DISCARD/NA SAME AS FIELD 
55 
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64 NEUROLOGIST'S 
COMMENTS ON CASE  X FREE TEXT SAME AS FIELD 

55 

65 GENERAL CLINICAL  
CQCD VALIDATION FIELD  X VALIDATED/NOT VALIDATED/NA SAME AS FIELD 

55 

 
Table 1: From left to right: field number, field identification, presence/absence of this field in the 
INTERPRET previous clinical record, whether it is new e-TUMOUR field, defined values for each field 
and commetns field for justification or explanation of meaning. WHO diagnoses menu 7 depicted in 
Annex 4. [NA: not available] 
 

 

DISCUSSION 

The expertise gained all through the INTERPRET 5 project (January 2000- 

December 2002) provided eTUMOUR with a web-accessible, secured and quality-

control checked database 8 which has been made available to eTUMOUR partners 

through the following link: 

http://azizu.uab.es:8120/etumourDB/ 

During the INTERPRET project, a CRF was also developed in order to ensure 

uniform classification of cases to be used in automated classifier and DSS 

development (Figure 2 and 9). A public deliverable describing the clinical protocol 

used was submitted to and approved by the EU-IST 10 and served as starting point to 

develop the eTUMOUR CRF (Table 1), through the INTERPRET CRF (Figure 2 and 

9 ). 
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 1a 

1b 

1c 

Figure 2: 1a, 1b and 1c correspond to the clinical record form as viewed when scrolling down in the 
CRF part of the preliminary eTumour database adapted from the INTERPRET project. 
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In a first stage, a general e-mail survey to all eTUMOUR partners was 

performed during April 2004 (month 3 of the project). A summary of responses 

obtained was sent in June 2004 (month 5) to all eTUMOUR partners. From the 

responses received, there was unanimity among eTUMOUR partners in the 

INTERPRET model or some other comprehensive way to store the natural history of 

the brain tumoural disease in each case. An alternative CRF model based on an P2 

(UAB) National project (MEDIVO 11 ) was also submitted. Essentially, it consisted in 

storing basic clinical data such as age, sex, diagnosis and Karnofsky performance 

score (Annex 3). This model was not estimated sufficient by eTUMOUR partners as 

it contained a low number of clinical information data fields. 

Following this, the prevailing opinion among eTUMOUR partners was that any 

field in the CRF should have to be susceptible of statistical correlation with spectral 

data. P15 UPVLC suggested that missing values could constitute a problem for 

automated classification systems of brain tumour development and proposed that 

fields be ordered with respect to their relevance for the analysis, so that the 

maximum number of cases with complete data will be finally available to WP3 

partners. 

For this reason, a second survey was sent to (month 5 of project) to be 

answered by partners involved in data acquisition, quality control and pattern 

recognition. The general purpose of that was: 

• To confirm which fields used in the INTERPRET project CRF were going to 

be used. 

• To confirm which new fields had to be added. 
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• To agree the format for each field (i.e. free text, menu, and in case of 

menu, which should be available options). 

• To rate their importance for WP3 partners. 

• To rate how easily the information was susceptible of quality assurance 

monitoring in each clinical setting . 

 The results of the survey, by originating centre, are shown in Annex 4. 

The main conclusions arising from the survey answers were that most fields 

included in the CRF were again considered necessary to some extent by the majority 

of participating groups. 

Together with the survey, the following comments were received: 

P2 (UAB) proposed to store the following additional information: 

• Rate RADIOLOGICAL DIAGNOSIS within a confidence level scale. 

This would  allow that Receiver Operating Characteristic (ROC) curves 12 for 

evaluating diagnostic performance of the newly developed classifier systems 

using MRS can be compared to classification performance of MRI alone. 

• The originating hospital histopathological diagnosis for each case. 

P18 (BU) proposed to store the following information: 

• To use the Karnofsky performance score (KPS) 13 instead of the 

INTERPRET performance score, with a note that the most accepted outcomes 

are overall survival and event-free survival, implying that date of death and date 

of progression/relapse should be collected. 

P4 (UMCN) by way of Dr. Pieter Wesseling (CSC chairman) proposed to 

store: 

• The diagnostic of the three pathologists as well as the final consensus 

histopathological diagnostic. 
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• To perform the clinical validation of cases on-line with the aid of the 

CRF stored in the eTDB. 

Taking all suggestions into account, UAB proposal for the eTUMOUR CRF 

was that most fields that were available from the INTERPRET project are going to be 

kept, and that the various possible histopathological diagnoses given to a case will 

be added to the eTDB. Diagnoses will be stored using the WHO classification of 

brain tumours (Annex 5) and there will also be the possiility for storing diagnoses in 

free text format in case of diseases that are not diagnosed histologically. Karnofsky 

performance score (KPS) or Lansky score (for patients below or equal to 16 years of 

age) (Annex 6) will be stored instead of the INTERPRET performance score and 

also date of death and date of progression/relapse from the radiological point of view, 

will be recorded. A confidence scale number for the radiological diagnosis field will 

also be included, several fields allowing the storage of the DQCE results of the CSC 

of the CDVP will be included. Those will include fields for the different specialists to 

tick and accept or discard after review. A field for general validation of a case will be 

included as well. This model was circulated during month 7 of the project and after 

that period, one final modification was included after integrating further feedback from 

clinical partners. The final modification was in field “Tumour location”, allowing a 

menu instead of free text. With this final modification incorporated, Partner UAB as 

responsible for coordinating the definitive CRF form, considered that the document 

was agreed by all partners having received no further requests. Minor suggestions 

received on degree of tumour resection have caused that the INTERPRET fields 

“total tumour removal”, “subtotal tumour removal” and “stereotactic biopsy” have 

been  merged into one single field “tumour removal” with the following options: 

complete macroscopic resection, partial macroscopic resection, open biopsy, 
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stereotactic biopsy. It was considered whether data is to be used only for prognosis 

where it would not be necessary to ditinguish between open and stereotactic biopsy. 

However, if data from post operative MR scans is to be added at any point then this 

information may be important. In an open biopsy a sizable bit of tumour is removed, 

the blood supply is disrupted and metabolic changes may well occur. In contrast, 

when a stereotactic biopsy is undertaken only small fragments of tumour are 

removed with very little disruption to the overall tumour and surrounding tumour. The 

metabolic status of the tumour may thus be very much more preserved. 

The final template CRF is shown as Annex 7 at the end of this deliverable. 
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ANNEX 1a 
 
GUIDANCE IF FORM 

Information sheet 
 

Name of Hospital 

 

Title of project:  eTUMOUR (WEB ACCESSIBLE MR DECISION SUPPORT 

SYSTEM FOR BRAIN TUMOUR DIAGNOSIS AND PROGNOSIS, 

INCORPORATING IN VIVO AND EX VIVO GENOMIC AND METABOLOMIC 

DATA). 

 

We are trying to find better ways of diagnosing patients using brain scanning. New Magnetic 

Resonance (MR) techniques provide information on brain structure and chemistry that may help us and 

we would like to invite you to take part in our research. The results we obtain will not affect your own 

treatment but could be of benefit to future patients 

If you agree to have an MR exam you would be asked to lie in a scanner used for producing 

routine MR images. We will obtain information on the chemicals in your brain as well as detailed 

anatomical pictures. The examination will take about an hour and you will be asked to lie as still as 

possible. At any time while in the magnet you will be able to signal to the MR staff that you wish to 

come out by pressing a call button. 

We may ask to give you an injection of a “contrast agent” (which you may already have had as it 

is a routine part of normal scanning). This would enable us to more accurately diagnose any abnormality. 

There is a 1 in 10,000 risk of a slight reaction that may include skin rashes, nausea and vomiting to this 

agent. 

 

If your treatment were to involve surgery then we would like to. keep a sample for use in a 

variety of research projects, which will help to improve our understanding of brain cancer. For 

example analyse tissue taken at this surgery can be used to aid our understanding of its biological and 

genetic characteristics If we are to improve the treatment for Brain tumours we need to better understand 

these diseases. This tissue will only be taken for further study once a diagnosis has been made and will in 

no way compromise your treatment. The Genetic information obtained from our study will not be used for 

any other purpose than to improve our understanding of brain tumours; will not be disclosed to any other 

person or organisation except those involved in this study; will be coded so that cannot be related to you 
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except by ourselves. We will inform your doctor in the event of discoveries that may affect your health. A 

portion of this abnormal tissue may be sent to other Pathologists and Biologists in Europe who are 

collaborating on this study, the samples will be coded to maintain your anonymity. There are no extra 

risks involved in taking abnormal tissue for this study over and above those of the surgery. No 

material/tissue will be taken or stored for research without your agreement. 

 

 

The data from our study will be entered into a computer database to create a diagnostic tool 

that will help future doctors with their diagnoses. Data will be coded and no details will be entered 

into the database that would enable you to be identified by others except ourselves. We will also 

review your case notes now and at some time in the future, and will contact doctors that may treat you 

in the future for the purposes of completing the information our database. 

 

If you have any further enquiries regarding this please contact the Consultant in charge of your 

treatment, one of their team, or Dr. “X” on Telf “nnnn”. 

 

Entry into this project is entirely voluntary and of your own free will, you are free to withdraw 

any time without giving any reasons. Entry into the study will not affect your ongoing treatment. 

Similarly, refusal to entry into the study will not imply any loss of right to the best medical assistance 

we can provide. The same degree of confidentiality applies to the results of these scans as to your 

usual medical records. 

 

The Local Research Ethics Committee has approved the above statement. 

 

 

Signed by the person in charge of the project: 

 

 

______________________________________                Date: _________________________ 

Dr. “X” 

 

Signed by the Chair of that Committee: [where required] 

 

 

_______________________________________              Date: ________________________ 
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Consent form 
Name of Hospital 

Title of project:  eTUMOUR (WEB ACCESSIBLE MR DECISION SUPPORT SYSTEM FOR BRAIN 

TUMOUR DIAGNOSIS AND PROGNOSIS, INCORPORATING IN VIVO AND EX VIVO GENOMIC 

AND METABOLOMIC DATA). 

This form should be signed by patients/volunteers, undergoing any test, treatment or other procedure connected 

with clinical research. 

 YES NO N/A

1. I confirm that I have read and understood the "Patient Information Sheet" which describes 

this research project and have been given a copy to keep. I have had enough time to decide 

whether I wish to take part in the above study. 

   

2. The nature, purpose and possible consequence of taking part in this project have been 

explained to me by ____________________________ and are acceptable to me. 

   

3. I am entering this project of my own free will, and understand I am free to withdraw from 

this study at any time without giving reasons, and that participation or non-participation 

will not prejudice my treatment in any way. 

   

4. I agree to have an MR examination and any data obtained may be anonymised, stored, 

processed and used in a diagnostic tool. 

   

5. I agree to have an injection of a “contrast agent” to improve diagnosis of the abnormal area 

and understand that the risks of reaction to this contrast is approximately 1 in 10,000 and 

includes skin rashes, nausea and vomiting. 

   

6. I agree for samples of any abnormal tissue obtained during routine treatment to be stored 

and used in research studies and any data obtained may be anonymised, stored and 

processed and used in a diagnostic tool. 

   

7. I do specifically agree to donate tissue samples removed at operation, blood and/or bone 

marrow samples extra to what is required for medical purposes, for future use in approved 

research projects. I understand that this includes the storage of small pieces of frozen tissue, 

wax embedded pathology blocks of tissue and tissue sections on microscope slides. 

   

8. I understand that I will not be told the results of any tests which may be carried out on the 

samples I donated and that, if in the future the research shows that there is a test which 

might be useful to me, the information will be given to my doctor, who will discuss it with 

me. 

   

Name of Patient        Signature         Date 

Address 

_________________________________________________________________________________________ 

Name of Witness       Signature         Date 

 
Address 

_________________________________________________________________________________________ 
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ANNEX 1b 
 

LIST OF MINIMAL CONCEPTS TO BE USED, COMMON TO ALL IF 
FORMS IN THE ETUMOUR PROJECT 
 

The basic requirements that each local form will have to contain, as 

agreed during the first eTUMOUR plenary meeting will be the following: 

 

1-Patient data will be stored in the PROJECT database in an anonymised form. 

2-Patient data will be used to develop a decission support system to improve 

diagnostic of human brain tumours. 

3-The patient gives a sample biopsy as a "gift" to the PROJECT. 
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ANNEX 2 

Quality control for incoming clinical data 
 
 
Data included in the database will be submitted to quality control procedures. For this 

purpose, data will be classified into three groups: critical, main and other data. These 

groups are defined as follows: 

• Critical data: data that allow development of classifiers and the traceability of 

the data. 

• Main data: data that have an influence on critical data. 

• Other data: remaining data. 

A sampling approach is defined for quality control for each group: 

• Critical data: 100% 

• Main data: 20% 

• Other data: 5% 

Testing procedure and acceptance criteria are depicted in the next figure: 
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ANNEX 3 

MEDIVO PROJECT CLINICAL RECORD FORM 
CODE: M-02 CLINICAL RECORD FOR DATABASE MEDIVO  

 DATA ACCRUAL WORKSHEET FOR THE MEDIVO 
PROJECT  

 OPTIONS 

1 CONTRIBUTING CENTRE IDI 

2 TRIAL NUMBER EXACT NUMBER 

3 ARE THERE PREVIOUS ERM STUDIES? YES/NO/DO NOT KNOW 

4 CODE OF PREVIOUS STUDY FREE TEXT FORMAT 

5 AGE (AT DATE OF SPECTROSCOPY) exact number 

6 SEX M/F/DO NOT KNOW 

7 DATE OF SPECTROSCOPY DATE (in compatible format) 

8 SURGERY YES/NO/DO NOT KNOW 

9 SURGICAL PROCEDURE TOTAL RESECTION / PARTIAL RESECTION / 
BIOPSY/DO NOT KNOW 

 DIAGNOSTIC  

10 DATE OF ONSET OF CLINICAL SYMPTOMS DATE (in compatible format) 

11 CLINICAL DIAGNOSIS FREE TEXT FORMAT 

12 RADIOLOGICAL DIAGNOSIS FREE TEXT FORMAT 

13 HISTOPATHOLOGICAL DIAGNOSIS MENU 1 

14 COMBINED DIAGNOSIS FREE TEXT FORMAT 

15 DATE WHEN THE HISTOPATHOLOGICAL DIAGNOSIS 
WAS REACHED DATE (in compatible format) 

16 DATE WHEN THE COMBINED DIAGNOSIS WAS 
REACHED DATE (in compatible format) 

17 PRIMARY TUMOUR (only if the definitive diagnosis is 
metastasis) FREE TEXT FORMAT 

 FURTHER ONCOLOGY TREATMENT  

18 CHEMOTHERAPY TREATMENT? YES/NO/DO NOT KNOW 

19 RADIOTHERAPY TREATMENT? YES/NO/DO NOT KNOW 

20 COMMENTS FREE TEXT FORMAT 

 FOLLOW-UP  

21 KPS AT DIAGNOSTIC 10 / 20 / 30 / 40 / 50 / 60 / 70 / 80 / 90 / 100 

22 KPS AT THREE MONTHS 10 / 20 / 30 / 40 / 50 / 60 / 70 / 80 / 90 / 100 

23 KPS AT TWO YEARS 10 / 20 / 30 / 40 / 50 / 60 / 70 / 80 / 90 / 100 

24 KPS AT FIVE YEARS 10 / 20 / 30 / 40 / 50 / 60 / 70 / 80 / 90 / 100 

 DEATH  

25 DATE DATE (in compatible format) 

26 CAUSE FREE TEXT FORMAT 

27 OTHER FREE TEXT FORMAT 
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ANNEX 4 

RESULTS OF SURVEY CIRCULATED TO ETUMOUR PARTNERS 
 

 

DO YOU CONSIDER 
THIS FIELD 
NECESSARY FOR 
PATTERN 
RECOGNITION 
ANALYSIS? 

RATE HOW ESSENTIAL YOU 
CONSIDER THIS FIELD FOR 
CLINICAL DATA VALIDATION? 

RATE HOW 
EASILY DO YOU 
THINK THIS 
DATA CAN BE 
OBTAINED 

 P15 
UPVLC 

P11 
KUL 

P3 
SGHMS 

P18 
BU 

P4 
UMCN 

P2 
UAB 

P3 
SGHMS 

P18 
BU 

P3 
SGHMS 

AGE 3 3 2 4 4 0 4 0 0 

SEX 3 3 2 3 4 0 4 0 0 

DATE OF SPECTROSCOPY 3 3 3 4 3 4 4 0 0 

WEEKS SINCE FIRST SYMPTOM 2 2 2 3 2 0 2 2 3 

PRESENTING SYMPTOM: 
EPILEPTIC FIT 2 2 3 2 1 0 2 2 2 

PRESENTING SYMPTOM: 
NEUROLOGICAL DEFICIT 2 2 3 2 1 0 2 2 2 

PRESENTING SYMPTOM: COMA 2 2 3 3 1 0 3 2 0 

MEDICATION AT TIME OF 
SPECTROSCOPY: STEROIDS 2 2 3 3 3 0 3 2 1 

MEDICATION AT TIME OF 
SPECTROSCOPY: 
ANTICONVULSANTS 

2 2 3 3 3 0 2 2 1 

MEDICATION AT TIME OF 
SPECTROSCOPY: GADOLINIUM 2 2 3 3 4 0 3 0 0 

MEDICATION AT TIME OF 
SPECTROSCOPY: ANAESTHETIC 
AGENTS 

2 2 3 3 3 0 2 0 1 

MEDICATION AT TIME OF 
SPECTROSCOPY: MANNITOL 2  3 3 3 0 2 2 2 

BLEED INTO TUMOUR 3 3 3 3 3 0 3 2 1 

TUMOUR LOCATION 3 3 3 3 4 0 3 1 1 

TUMOUR SIZE 3 3 3 3 3 0 2 1 2 

RADIOLOGICAL DIAGNOSIS 3 2 3 3 3 3 3 2 2 

SITE OF OPERATION 2 2 2 3 3 0 2 1 1 

TOTAL TUMOUR REMOVAL 2 2 3 3 3 0 2 2 2 

SUBTOTAL TUMOUR REMOVAL 2 2 3 3 3 0 2 1 2 

STEREOTACTIC BIOPSY 2 2  3 3 1 2 0 2 

DATE OF BIOPSY 1 1 3 4 3 4 4 0 0 

PARAFFIN SECTION WHO 
CLASSIFICATION 4 4 4 4 4 4 4 1 0 

DAUMAS-DUPORT 
ASTROCYTOMA GRADE 2 3 4  0 4 4  0 

HISTOPATHOLOGY VALIDATED 4 4 4 3 4 4 3 1 ? 

CHEMOTHERAPY DRUGS USED 2 2 3 3 3 1 2 1 2 

RADIOTHERAPY DOSE GIVEN 2 2 3 3 3 1 2 0 2 

OUTCOME SCORE AT THREE 
MONTHS 3 3 3 4 3 3 3 1 2 
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OUTCOME SCORE AT TWO 
YEARS 3 3 3 4 3 3 3 1 2 

CONCOMITANT DISEASE 3 2 1 2 3 0 2 2 2 

DATE POST-MORTEM EXAM 1 2 0 3 2 0 2 0 2 

HISTOPATHOLOGY WHO 
CLASSIFICATION OF TUMOUR 
ON AUTOPSY 

3 3 1 3 3 0 3 1 2 

DAUMAS-DUPORT 
ASTROCYTOMA GRADE OF 
TUMOUR ON AUTOPSY 

3 3 1  0 0 3  2 

PRIMARY TUMOUR DETECTED 3 3 2 3 3 2 2 1 2 

LOCATION OF PRIMARY 
TUMOUR 3 3 2 2 3 3 2 1 2 

SPECTRAL LOCALISATION 
VALIDATED? 4 4 4 3 4 4 3 1 ? 

ASSIGNED CDVC (CLINICAL 
DATA VALIDATION COMMITTEE) 
CLASS 

4 4 4 3 4 4 3 0 ? 

VALIDATED (MEANS THAT 
HISTOLOGY IS VALIDATED AND 
ASSIGNED CDVC CLASS IS NOT 
"F") 

4 4 4 3 4 4 3 0 ? 

OTHER          
NEW FIELDS SUGGESTED 
AFTER DISCUSSION          

DATE OF DEATH  3 1 4 3  3  1 

CAUSE OF DEATH  2 1 3    3  1 

DATE OF BIRTH  2 3 3   

month and 
year only if 

data 
protection 
important 

  

DATE OF RADIOTHERAPY  2  3   2  1 

DATE OF CHEMOTHERAPY  2  3   2  1 

DATE OF FURTHER SURGERY    4     1 

STEREOTACTIC BIOPSY OR 
BIOPSY DURING SURGERY   4       

MR SYSTEM   1       

MRS PARAMETERS   1       

MRS VOXEL FROM: ENHANCING 
REGION, NON-ENHANCING, 
DON'T KNOW 

  3       

MR IMAGES AVAILABLE?  3        

HR MAS INFO AVAILABLE?  2        

MICROARRAY DATA AVAILABLE?  2        

NECROSIS  2        
FAMILY HISTORY (OTHER 
FAMILY MEMBERS WITH BRAIN 
TUMOUR?) 

 2        

OTHER PRESENTING 
SYMPTOMS (E.G. HEADACHE, 
NAUSEA) 

    1     

MRS IDENTIFIER    4      
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ANNEX 5 

WHO DIAGNOSES MENU 
 
DIFFUSE ASTROCYTOMA 9400/3 
FIBRILLARY ASTROCYTOMA 9420/3 
PROTOPLASMIC ASTROCYTOMA 9410/3 
GEMISTOCYTIC ASTROCYTOMA 9411/3 
ANAPLASTIC ASTROCYTOMA 9401/3 
GLIOBLASTOMA 9440/3 
GIANT CELL GLIOBLASTOMA 9441/3 
GLIOSARCOMA 9442/3 
PILOCYTIC ASTROCYTOMA 9421/1 
PLEOMORPHIC XANTHOASTROCYTOMA 9424/3 
SUBEPENDYMAL GIANT CELL ASTROCYTOMA 9384/1 
OLIGODENDROGLIOMA 9450/3 
ANAPLASTIC OLIGODENDROGLIOMA 9451/3 
OLIGOASTROCYTOMA 9382/3 
ANAPLASTIC OLIGOASTROCYTOMA 9382/3 
EPENDYMOMA 9391/3 
CELLULAR EPENDYMOMA 9391/3 
PAPILLARY EPENDYMOMA 9393/3 
CLEAR CELL EPENDYMOMA 9391/3 
TANYCYTIC EPENDYMOMA 9391/3 
ANAPLASTIC EPENDYMOMA 9392/3 
MYXOPAPILLARY EPENDYMOMA 9394/1 
SUBEPENDYMOMA 9383/1 
CHOROID PLEXUS PAPILLOMA 9390/0 
CHOROID PLEXUS CARCINOMA 9390/3 
ASTROBLASTOMA 9430/3 
GLIOMATOSIS CEREBRI 9381/3 
CHORDOID GLIOMA OF THE 3RD VENTRICLE 9444/1 
GANGLIOCYTOMA 9492/0 
DYSPLASTIC GANGLIOCYTOMA OF CEREBELLUM 9493/0 
DESMOPLASTIC INFANTILE ASTROCYTOMA/GANGLIOGLIOMA 9412/1 
DYSEMBRYOPLASTIC NEUROEPITHELIAL TUMOUR 9413/0 
GANGLIOGLIOMA 9505/1 
ANAPLASTIC GANGLIOGLIOMA 9505/3 
CEREBELLAR LIPONEUROCYTOMA 9506/1 
PARAGANGLIOMA OF THE FILUM TERMINALE 8680/1 
CENTRAL NEUROCYTOMA 9506/1 
OLFACTORY NEUROBLASTOMA 9522/3 
OLFACTORY NEUROEPITHELIOMA 9523/3 
NEUROBLASTOMAS OF THE ADRENAL GLAND AND SYMPATHETIC NERVOUS 
SYSTEM 9500/3 
PINEOCYTOMA 9361/1 
PINEOBLASTOMA 9362/3 
PINEAL PARENCHYMAL TUMOUR OF INTERMEDIATE DIFFERENTIATION 9362/3 
MEDULLOEPITHELIOMA 9501/3 
EPENDYMOBLASTOMA 9392/3 
MEDULLOBLASTOMA 9470/3 
DESMOPLASTIC MEDULLOBLASTOMA 9471/3 
LARGECELL MEDULLOBLASTOMA 9474/3 
MEDULLOMYOBLASTOMA 9472/3 
MELANOTIC MEDULLOBLASTOMA 9470/3 
SUPRATENTORIAL PRIMITIVE NEUROECTODERMAL TUMOUR 9473/3 
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PNET NEUROBLASTOMA 9500/3 
PNET GANGLIONEUROBLASTOMA 9490/3 
ATYPICAL TERATOID/RHABDOID TUMOUR 9508/3 
SCHWANNOMA 9560/0 
CELLULAR SCHWANNOMA 9560/0 
PLEXIFORM SCHWANNOMA 9560/0 
MELANOTIC SCHWANNOMA 9560/0 
NEUROFIBROMA 9540/0 
PLEXIFORM NEUROFIBROMA 9550/0 
PERINEURINOMA 9571/0 
INTRANEURAL PERINEURINOMA 9571/0 
SOFT TISSUE PERINEURINOMA 9571/0 
MALIGNANT PERIPHERAL NERVE SHEATH TUMOUR 9540/3 
EPITHELIOID MPNST 9540/3 
MPNST WITH DIVERGENT MESENCHYMAL AND/OR EPITHELIAL 
DIFFERENTIATION 9540/3 
MELANOTIC MPNST 9540/3 
MELANOTIC PSAMMOMATOUS MPNST 9540/3 
MENINGIOMA 9530/0 
MENINGOTHELIAL MENINGIOMA 9531/0 
FIBROUS MENINGIOMA 9532/0 
TRANSITIONAL MENINGIOMA 9537/0 
PSAMMOMATOUS MENINGIOMA 9533/0 
ANGIOMATOUS MENINGIOMA 9534/0 
MICROCYSTIC MENINGIOMA 9530/0 
SECRETORY MENINGIOMA 9530/0 
LYMPHOPLASMACYTE-RICH MENINGIOMA 9530/0 
METAPLASTIC MENINGIOMA 9530/0 
CLEAR CELL MENINGIOMA 9538/1 
CHORDOID MENINGIOMA 9538/1 
ATYPICAL MENINGIOMA 9539/1 
PAPILLARY MENINGIOMA 9538/3 
RHABDOID MENINGIOMA 9538/3 
ANAPLASTIC MENINGIOMA 9530/3 
MESENCHYMAL NON-MENINGOTHELIAL TUMOURS 
LIPOMA 8850/0 
ANGIOLIPOMA 8861/0 
HIBERNOMA 8880/0 
LIPOSARCOMA 8850/3 
SOLITARY FIBROUS TUMOUR 8815/0 
FIBROSARCOMA 8810/3 
MALIGNANT FIBROUS HISTIOCYTOMA 8830/3 
LEIOMYOMA 8890/0 
LEIOMYOSARCOMA 8890/3 
RHABDOMYOMA 8900/0 
RHABDOMYOSARCOMA 8900/3 
CHONDROMA 9220/0 
CHONDROSARCOMA 9220/3 
OSTEOMA 9180/0 
OSTEOSARCOMA 9180/3 
OSTEOCHONDROMA 9210/0 
HAEMANGIOMA 9120/0 
EPITHELIOID HAEMANGIOENDOTHELIOMA 9133/1 
ANGIOSARCOMA 9120/3 
KAPOSI SARCOMA 9140/3 
HAEMANGIOPERICYTOMA 9150/1 
DIFFUSE MELANOCYTOSIS 8728/0 
MELANOCYTOMA 8728/1 
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MALIGNANT MELANOMA 8720/3 
MENINGEAL MELANOMATOSIS 8728/3 
HAEMANGIOBLASTOMA 9161/1 
MALIGNANT LYMPHOMAS 9590/3 
PLASMACYTOMA 9731/3 
GRANULOCYTIC SARCOMA 9930/3 
GERMINOMA 9064/3 
EMBRYONAL CARCINOMA 9070/3 
YOLK SAC TUMOUR 9071/3 
CHORIOCARCINOMA 9100/3 
TERATOMA 9080/1 
MATURE TERATOMA 9080/0 
IMMATURE TERATOMA 9080/3 
TERATOMA WITH MALIGNANT TRANSFORMATION 9084/3 
MIXED GERM CELL TUMOURS 9085/3 
CRANIOPHARYNGIOMA 9350/1 
ADAMANTINOMATOUS CRANIOPHARYNGIOMA 9351/1 
PAPILLARY CRANIOPHARYNGIOMA 9352/1 
GRANULAR CEIL TUMOUR 9582/0 
PITUITARY ADENOMA 8140/0 
PITUITARY CARCINOMA 8140/3 
PARAGANGLIOMA 8680/1 
CHORDOMA 9370/3 
CHONDROMA 9220/0 
CHONDROSARCOMA 9220/3 
CARCINOMA 8200/3 
METASTASIS 8000/6 
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ANNEX 6 

Lansky / Karnofsky scales  
 

LANSKY (1-16 Years)   

Fully active, normal  100 

Minor restrictions in physically strenuous activity   90  
Active, but tires more quickly   80 
Both greater restriction of, and less time spent   70 
in, active play 
Up and around, but minimal active play, keeps busy  
with quieter activities 60 
Gets dressed but lies around much of the day; no active play, 
able to participate in all quiet play and activities   50 
Mostly in bed, participates in quiet activities 40 
In bed, needs assistance even for quiet play 30 
Often sleeping, play entirely limited to very passive activities 20 
No play, does not get out of bed 10 
Unresponsive 0 
 
KARNOFSKY (> 16Years) 
Normal, no complaints 100 
Able to carry on normal activities; minor signs or  
symptoms of disease   90 
Normal activity with effort   80 
Cares for self.  Unable to carry on normal activity,  
or to do active work 70 
Ambulatory. Requires some assistance, but able to care 
 for most of own needs 60 
Requires considerable assistance and frequent medical care 50 
Disabled; requires special care and assistance 40 
Severely disabled, hospitalisation indicated though 
death not imminent 30 
Very sick. Hospitalisation necessary.  Active supportive  
treatment necessary 20 
Moribund, fatal processes in progression  10 
Dead 0 
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ANNEX 7 

DEFINITIVE CRF 
 

FIELD 
NUMBER FIELD NAME POSSIBLE VALUES 

1 AGE INTEGER 
2 DATE OF BIRTH DD / MM / YYYY 
3 SEX M / F / NA 
4 DATE OF SPECTROSCOPY DD / MM / YYYY 

5 WEEKS SINCE FIRST 
SYMPTOM INTEGER 

6 PRESENTING SYMPTOM: 
EPILEPTIC FIT YES / NO / NA 

7 PRESENTING SYMPTOM: 
NEUROLOGICAL DEFICIT YES / NO / NA 

8 PRESENTING SYMPTOM: 
COMA YES / NO / NA 

9 MEDICATION AT TIME OF 
SPECTROSCOPY: STEROIDS YES / NO / NA 

10 
MEDICATION AT TIME OF 
SPECTROSCOPY: 
ANTICONVULSANTS 

YES / NO / NA 

11 
MEDICATION AT TIME OF 
SPECTROSCOPY: 
GADOLINIUM 

YES / NO / NA 

12 
MEDICATION AT TIME OF 
SPECTROSCOPY: 
ANAESTETHIC AGENTS 

YES / NO / NA 

13 MEDICATION AT TIME OF 
SPECTROSCOPY: MANNITOL YES / NO / NA 

14 BLEED INTO TUMOUR YES / NO / NA 

15 TUMOUR LOCATION 

TECTAL PLATE / TEMPORAL 
/MIDBRAIN / MEDULLA / PONS / 
PINEAL REGION / OPTIC CHIASM / 
HYPOTHALAMUS / SUPRASELLAR 
REGION / VENTRICULAR / FRONTAL / 
PARIETAL / OCCIPITAL / BASAL 
GANGLIA / CEREBELLUM   
##  
LEFT / RIGHT 

16 CALCIFICATIONS YES / NO / NA 

17 NUMBER OF DETECTED 
LESIONS INTEGER 

18 TUMOUR SIZE nn x nn x nn (mm) ## nn OF BIGGER 
AXIS FOR GLIAL TUMOURS (mm) 

19 RADIOLOGICAL DIAGNOSIS 1 FREE TEXT 

20 CONFIDENCE RATING FOR 
RADIOLOGICAL DIAGNOSIS 1 0 / 1 / 2 / 3 / 4 
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21 RADIOLOGICAL DIAGNOSIS 2 FREE TEXT 

22 CONFIDENCE RATING FOR 
RADIOLOGICAL DIAGNOSIS 2 0 / 1 / 2 / 3 / 4 

23 RADIOLOGICAL DIAGNOSIS 3 FREE TEXT 

24 CONFIDENCE RATING FOR 
RADIOLOGICAL DIAGNOSIS 3 0 / 1 / 2 / 3 / 4 

25 SITE OF OPERATION FREE TEXT 

26 TUMOUR REMOVAL 

COMPLETE MACROSCOPIC 
RESECTION / PARTIAL 
MACROSCOPIC RESECTION / OPEN 
BIOPSY / STEREOTACTIC BIOPSY 

27 DATE OF BIOPSY DD/MM/YYYY 

28 
PARAFFIN SECTION WHO 
CLASSIFICATION 
(ORIGINATING PATHOLOGIST)

WHO DIAGNOSES MENU + FREE 
TEXT 

29 
PARAFFIN SECTION WHO 
CLASSIFICATION 
(PATHOLOGIST A) 

WHO DIAGNOSES MENU  

30 
PARAFFIN SECTION WHO 
CLASSIFICATION 
(PATHOLOGIST B) 

WHO DIAGNOSES MENU  

31 
PARAFFIN SECTION WHO 
CLASSIFICATION 
(PATHOLOGIST C) 

WHO DIAGNOSES MENU 

32 
PARAFFIN SECTION WHO 
CLASSIFICATION 
(CONSENSUS) 

WHO DIAGNOSES MENU  

33 HISTOPATHOLOGY 
VALIDATED YES/NO/NA 

34 CONSENSUS CLINICAL 
DIAGNOSIS 

WHO DIAGNOSES MENU + OTHER 
DISEASES 

35 CHEMOTHERAPY DRUGS 
USED YES/NO/NA 

36 RADIOTHERAPHY DOSE 
GIVEN FREE TEXT 

37 
KARNOFSKY PERFORMANCE 
SCORE AT DIAGNOSTIC (for 
ages above 16) 

0/10/20/30/40/50/60/70/80/90/100 

38 
KARNOFSKY PERFORMANCE 
SCORE AT THREE MONTHS 
(for ages  above 16) 

0/10/20/30/40/50/60/70/80/90/100 

39 
KARNOFSKY PERFORMANCE 
SCORE AT TWO YEARS (for 
ages above 16) 

0/10/20/30/40/50/60/70/80/90/100 
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40 
KARNOFSKY PERFORMANCE 
SCORE AT FIVE YEARS (for 
ages   above 16) 

0/10/20/30/40/50/60/70/80/90/100 

41 
LANSKY PERFORMANCE 
SCORE AT DIAGNOSTIC (for 
ages below or equal to 16) 

0/10/20/30/40/50/60/70/80/90/100 

42 
LANSKY PERFORMANCE 
SCORE AT THREE MONTHS 
(for ages below or equal to 16) 

0/10/20/30/40/50/60/70/80/90/100 

43 
LANSKY PERFORMANCE 
SCORE AT TWO YEARS (for 
ages below or equal to 16) 

0/10/20/30/40/50/60/70/80/90/100 

44 
LANSKY PERFORMANCE 
SCORE AT FIVE YEARS (for 
ages below or equal to 16) 

0/10/20/30/40/50/60/70/80/90/100 

45 DATE OF RADIOLOGICAL  
PROGRESSION/RELAPSE DD/MM/YYYY 

46 DATE OF DEATH DD/MM/YYYY 

47 CAUSE OF DEATH FREE TEXT 

48 CONCOMITANT DISEASE FREE TEXT 
49 DATE POSTMORTEM EXAM DD/MM/YYYY 

50 
HISTOPATHOLOGY WHO 
CLASSIFICATION OF TUMOUR 
ON AUTOPSY 

WHO DIAGNOSES MENU + FREE 
TEXT 

51 PRIMARY TUMOUR DETECTED YES/NO/NA 

52 LOCATION OF PRIMARY 
TUMOUR FREE TEXT 

53 SPECTRAL LOCALISATION 
VALIDATED? YES/NO/NA 

54 OTHER FREE TEXT 

55 

THE CASE HAS BEEN 
REVIEWED AND 
ACCEPTED/DISCARDED BY A 
NEUROPATHOLOGIST 

ACCEPT/DISCARD/NA 

56 NEUROPATHOLOGIST'S 
COMMENTS ON CASE FREE TEXT 

57 

THE CASE HAS BEEN 
REVIEWED AND 
ACCEPTED/DISCARDED BY A 
NEUROSURGEON 

ACCEPT/DISCARD/NA 

58 NEUROSURGEON COMMENTS 
ON CASE FREE TEXT 

59 

THE CASE HAS BEEN 
REVIEWED AND 
ACCEPTED/DISCARDED BY A 
PEDIATRIC 
NEURORADIOLOGIST 

ACCEPT/DISCARD/NA 

60 
PEDIATRIC 
NEURORADIOLOGIST'S 
COMMENTS ON CASE 

FREE TEXT 
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61 

THE CASE HAS BEEN 
REVIEWED AND 
ACCEPTED/DISCARDED BY A 
NEURORADIOLOGIST 

ACCEPT/DISCARD/NA 

62 NEURORADIOLOGIST'S 
COMMENTS ON CASE FREE TEXT 

63 

THE CASE HAS BEEN 
REVIEWED AND 
ACCEPTED/DISCARDED BY A 
NEUROLOGIST 

ACCEPT/DISCARD/NA 

64 NEUROLOGIST'S COMMENTS 
ON CASE FREE TEXT 

65 GENERAL CLINICAL  CQCD 
VALIDATION FIELD VALIDATED/NOT VALIDATED/NA 
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A-2 Description of the eTUMOUR database

The eTUMOUR database (eTDB) is a data warehouse that is accessible through

internet. The access is restricted to eTUMOUR partners that contribute or must

analyze data. Each data type is stored into an independent section (see figure 6.1).

Figure 6.1: Screenshot for the initial page of the eTDB after successful login. All sections that
compose the eTDB can be seen at this initial page. Each section can be independently accessed.
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The section of transcriptomic data has a first part with the information obtained

from the RNA isolation (see figure 6.2). The second part of this section displays

the information related to the hybridisation of the microchip (see figure 6.3).

Figure 6.2: First part of the transcriptomic section of the eTDB. The information that accounts
for the RNA isolation is manually entered into the eTDB.
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Figure 6.3: Second part of the transcriptomic section of the eTDB. The information that ac-
counts for the hybridisation of the microchip is both manually and automatically uploaded into
the eTDB. The data that can be extracted from the .rpt file is automatically imported (intensity
average, SF, percentage of present calls,...).
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A-3 Quality control of transcriptomic data in eTU-

MOUR

 

A set of parameters to perform automatic validation of microarray data is proposed in this 

document. Evaluation of the quality of a microarray is carried out at 3 steps of the 

process: 

 

1) Quality of RNA isolation (RNA purity and integrity): no contamination with 

other macromolecules or organic compounds is checked out through A260/A280 

and A230/280 nm ratio of absorbance, measured using a spectrophotomer (see 

DNA microarrays consensus protocol (“D13-1.doc”) included in deliverable 13). 

Integrity is evaluated through RIN number and 28S/18S ribosomal peak ratio, 

measured using the Bioanalyzer 2100 (Agilent) (see DNA microarrays consensus 

protocol (“D13-1.doc”) included in deliverable 13). 

 

2) Quality of amplification: 

  Amplification yield is the quantity of cRNA obtained  after amplification of total 

 RNA. 

 

 
3) Quality of hybridisation: 

 

3.1. Hybridisation descriptive parameters-based validation: parameters 

considered at this section are average and background signal, scale factor, and 

number of present calls, which provides general information about the 

hybridisation. 

 

3.2. Internal controls-based validation: parameters that provide such 

information are housekeeping control 1 and 2 (AFFX-HUMRGE/M10098 and 

AFFX-HUMGDAPGH/M33197 respectively), and spike-in controls 1 and 2 

(AFFX-BioB and AFFX-BioC). This set of controls evaluate whether the RNA 

hybridised is degraded.  

 

 1
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The current document is the extended version of the preliminary QC proposal 

(“D36__27__version_18_12_2005.doc”) included into deliverable 36. This 

preliminary proposal only described the relevant fields for QC purposes, but it did 

specify neither the ranges, nor the essential fields to validate a case. Next, it is 

proposed a set of fields for each of the above sections. Each of these fields has a 

range of values or a threshold associated, which a case must accomplish to be 

validated.    

 

1) Quality of RNA isolation (RNA purity and integrity): 

 

RNA QUALITY CONTROL 1 

A260/A280: 1.6 ≥ ratio ≤ 2   Optimal 1.8 

   range 

RNA QUALITY CONTROL 3 

Ribosomal 28S/18S peaks ratio: ratio ≥ 1.2 

   threshold 

RNA QUALITY CONTROL 5 

RIN number:  value ≥ 6 

        threshold 

 

These fields are the critical ones to validate a RNA sample before to start labelling. 

Values of a case for control 1 must be in the indicated range above. At least one of 

the values for RNA quality controls 3 and 5 must be above the indicated threshold for 

them. 

 

 

2) Quality of amplification 

 Amplification yield: 

          Optimal ≥ 15 micrograms 

       threshold 
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3) Quality of hybridisation (RNA purity and integrity): 

 

3.1. Hybridisation descriptive parameters-based validation: 

Average signal:  700 < value < 1000 fluorescence units 

    range 

            

Background signal: value < 100 fluorescence units  

     threshold 

 

Scale factor:  Optimal scale factor variation between chips should be as a 

maximum 3-fold. 

     threshold 

 

Number of Present calls:  35 < value < 55   

    range 

 

 

Unlike background and scale factor parameters, Affymetrix does not recommend 

a range of values within which the average signal and number of present calls of 

different microchips can move. Therefore, a range must be established 

considering data entered into the eTumour DB, which allows removal of only 

outlier values. The actual range could be changed in the future when more data 

will be entered into eTDB.  

 

Cases with a scale factor not included in the rank median of scale factors of cases 

into the eTDB +/- 3 times median of these scale factors are filtered out. Each time 

a new case is entered into the DB this rank is updated. 
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3.2. Internal controls-based validation: 

 

Housekeeping control 1 

3'/5' signal ratio for AFFX-HUMRGE/M1009: 0.5 ≥ ratio ≤ 4 

       range 

 

Housekeeping control 2 

3'/5' signal ratio for AFFX-HUMGDAPGH/M33197: 0.5 ≥ ratio ≤ 4 

       range 

Spike control 1 

3'/5' signal ratio for AFFX-BioB: 0.5 ≥ ratio ≤ 2 

     range 

 

Spike control 2 

3'/5' signal ratio for AFFX-BioC: 0.5 ≥ ratio ≤ 2 

     range 

 

 

Note that for housekeeping controls 1 and 2, although only the ratio in the 0.5 to 4 

range is allowed, it is proposed that if one of these controls has a ratio above 4, 

the other must not be above 3 for the sample to be acceptable for classifier 

development use. 
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A-4 RNA isolation consensus protocol of the eTU-

MOUR project

                                                                                       

Project no. LSHC-CT-2004-503094
Project acronym E-TUMOUR
Project title:  WEB ACCESSIBLE MR DECISION SUPPORT 
SYSTEM FOR BRAIN TUMOUR DIAGNOSIS AND PROGNOSIS, 
INCORPORATING IN VIVO AND EX VIVO GENOMIC AND 
METABOLOMIC DATA

Instrument: IP

Thematic Priority 
LSH-2002-2.2.0-5 Molecular imaging for early detection of tumours and monitoring of 
treatment

Task 2.2 Specification of biopsy acquisition, storage and processing protocols for DNA microarray 
analysis.
D2.3.  Month 12.  Specification  of  DNA microarray  consensus  protocols.  Incoming  data  quality 
control protocols from CQCD for microarray data.

Due date of deliverable: Month 12
Actual submission date: Month 11

Start date of project: 1 February 2004 Duration: 60 months (until 31 January 2009)

François Berger – U 318 partner 

Modified by Xavier Castells, Anna Barceló and Joaquín Ariño – UAB partner 

Date of modification: January 2007
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CONTENT
1- Overview of the protocol

2- Extraction

3-Quality control

4- miRNA analysis by microarray 

5-Expression analysis using Affymetrix system

6-Data analysis
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PROTOCOL FOR MICROARRAY PROCESSING

1- Overview of the protocol

This protocol arises from the discussion at the DNA etumour group. Initially different kinds of 
technologies were evaluated.  The choice of Affymetrix for the eTUMOUR protocol [3] was 
motivated  by  its  high  standardization,  which  provides  more  accuracy  than  other 
transcriptomic technologies for diagnosis purposes.  The last human pangenomic DNA chip 
(Human Genome U133 Plus 2.0 Array) will be used in this project because it provides the 
largest gene expression set. Using this chip the high resolution scan array 3000 is required. 

A single amplification reaction has been agreed because we do not have limitation about the 
quantity  of  starting  RNA and a  linear  amplification is  ensured.  Moreover,  we decided to 
investigate  the  recently  proposed  microRNA  transcriptional  profile.  This  type  of  RNA  is 
isolated from total RNA and hybridized onto a specific chip. Characterization of microRNA 
profile added international competitiveness to the program.

2- RNA Extraction

RNAse free tubes have to be used for all these reactions.

Total  RNA will  be  extracted  using  mirVana  RNA isolation  kit  (Ambion),  which  also  enables 
microRNA  (miRNA)  isolation.  mirVana  kit  is  based  on  an  organic  extraction  followed  by 
immobilization of RNA on glass-fibber filters, allowing purification of both total RNA and RNA 
enriched in small species.

2-a Lysis and disruption (5 minutes to 15 minutes)

Two different strategies can be used:
(i) Small pieces of frozen tissue are (i.e. <0.5 cm3) homogenized in a potter, being dropped 

directly into the lysis/binding solution. If this tissue has not been extracted from the same 
sample used for histological examination, it must be as closer as possible to it. Tissues 
will be disrupted in 10 volume of lysis buffer into a homogenization vessel on ice (1ml 
per  0.1  mg  of  tissue).  Dissociation  will  be  done  with  a  motorized  rotor-stator 
homogenizer, or a ground-glass homogenizer for soft tissues.

(ii) Frozen samples are cut on the cryostat. One or two cryostat sections are first kept for 
further neuropathological analysis (control absence of necrosis, and actual localisation in 
the tumour area). 0.5 to 250 mg tissue is the optimal range for the kit.  Depending of the 
size  of  the  tumour,  20  to  40-30  µm  sections  will  provide  the  amount  of  RNA 
indispensable for the microarray analysis. Sections are homogenized in the lysis buffer 
provided by the kit. 
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For both procedures it is very important to manage tissues quickly and to limit the thawing time. 
Sample  stored  in  RNA later  can  be  processed.  However  their  fibrous/tough  characteristic  may 
impose tissue pulverisation to achieve good cell disruption. 

2-b organic extraction (15 minutes)

1/10 volume of miRNA homogenate additive (0.1 ml per ml tissue lysate) is added to the tissue 
lysate. It is mixed by vortexing several times and is left on ice for 10 minutes. Phenol:chloroform 
extraction  will  be  done  by  adding  an  equivalent  volume  of  phenol:chloroform  (300  μl 
phenol:chloroform per  300 μl  homogenate  without  miRNA homogenate  additive),  vortex  30-60 
seconds, centrifuge 5 minutes at 10000 g at room temperature to separate the aqueous and organic 
phases. A compact interphase must be observed. At the end the aqueous upper phase is removed 
without disrupting the lower phase and transfer to a fresh tube.

2-c final RNA isolation (15-20 minutes)

(i) Total RNA isolation procedure
1.25 volumes 100 % ethanol will be added to the aqueous phase (0.125 ml 100 % ethanol per 0.1 ml 
aqueous phase) and passed through the filter cartridge. Centrifugation at 10000 g allows the mixture 
to pass through the filter. After 3 washes and elution total RNA is isolated.  The volume range for 
elution must be between 50 and 100 µl of either elution solution or DEPC-treated water. 

When  RNA  concentration  is  too  diluted  to  carry  out  labelling,  it  is  allowed  performing  a 
precipitation step by adding 2 volumes of absolute ethanol plus 1/10th volume of sodium acetate 
(from a  3  M  stock,  pH  5.3)  and  keeping  at  -80ºC  overnight.  Recovery  of  the  RNA  must  be 
performed in these steps:

1. Centrifuge the frozen Eppendorf 15 min. at 16100 xg. Discard supernatant and centrifuge 1-2 

more minutes.  Discard again the supernatant. Keep samples on ice during the rest of the 

experiment.

2.  Add 200 µl of 70% ethanol, vortex and centrifuge 5 min. at 16100 xg. Remove supernatant 

thoroughly.

3.  Keep samples at 37ºC or under vacuum until ethanol is evaporated. 

4. Add either DEPC-treated water or elution solution up to obtain the desired concentration and 

keep it on ice until total resuspension (aprox. 30 minutes).

 

(ii) Enrichment procedure for small RNAs
1/3 volume of 100 % ethanol is added to aqueous phase (0.33 ml 100 % ethanol per ml aqueous 
phase). The lower concentration of ethanol, compared to the above protocol enables binding of large 
RNAs into the filter and absence of retention of small RNA, which are obtained in the flow-through. 
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treating the filter as described above. microRNA can be purified from the flow-through passing it 
through an additional filter. Washing and elution is performed as above indicated for total RNA. 
Thus, two batches of RNA are obtained consisting in total RNA and small RNAs (< 200 nucleotides 
(nt)).
 
3- Quality control

Quality control will be performed using the Agilent 2100 analyser system. Absence of degradation is 
evaluated by the ribosomal RNA 28S/18S ratio, which must be superior to 1.2. Validation of the 
RNA integrity is mandatory, to subject the RNA to further analysis. To visualize small RNAs, use a 
15% denaturing acrylamide gel. 
Spectrometric analysis will provide quantification by reading absorbance at 260 and 280 mm. 
Small RNA: Concentration=33*A260 µg/ml
Total RNA: Concentration=40*A260 µg/ml
(A260/A280 from 1.8 to 2.1).

4- miRNA analysis by microarray 

Microarray  probes  are  20  nt  oligonucleotides  with  sequences  complementary  to  miRNA.  300 
miRNA are present  onto the  microarray coming from the  Sanger  miRNA repository and from 
miRNA recently cloned and published as well as from bioinformatics prediction of new miRNA. 
Each probe is spotted on a nylon filter using a MWG arrayer. Isolated miRNA are labelled by a 
kinase  incorporating  phosphorus  33,  hybridized  at  55  °C,  washed  and  analyzed  using  a  high 
resolution phosphor-imager (bass 5000). 

5-Expression analysis using Affymetrix system (annexe II and III).

5-1 One cycle amplification

The Genechip used is the Human Genome U133 Plus 2.0 Array. We use the  one-cycle target 
labelling kit, which starts from 1 to 15 μg of total RNA (commonly 5 μg works properly). First 
RNA is reverse transcribed using T7-oligodT promoter primer in the first-strand cDNA synthesis 
reaction. An RNAse H mediated reaction is performed to degrade RNA, and to enable the second-
strand cDNA synthesis. The double strand cDNA is purified and serve as a template for in vitro 
transcription  using  T7RNA  polymerase.  This  provides  a  linear  amplification  of  RNA. 
Complementary RNA (cRNA) is obtained at the end.
All the reaction are performed in a thermal cycler

We include in the one-cycle cDNA synthesis kit, the preparation of Poly-A RNA controls (spike-
in-controls) to provide exogenous positive controls to monitor the entire labelling process. 

One-cycle amplification includes the following steps:

5
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5.1.1 Starting from 1 to 15 μg (commonly 5 μg properly works) of total RNA first-strand cDNA 
synthesis  is  carried  out,  using  a  combination  of  T7-oligodT  primer  and  superscript  II 
enzyme. 

5.1.2 Second-strand cDNA synthesis using T4 DNA polymerase

5-2 Target preparation

5-2-1  Sample  cleanup of  double-strand  cDNA on a  spin  column provided  by  the  kit.  RNAse 
treatment is not recommended at this step. 

5-2-2 Synthesis of biotin-labelled cRNA. Genechip in vitro transcription (IVT) labelling kit is used 
for this step. Overnight IVT reaction is carried out, which has been shown to maximize the labelled 
cRNA yield with high-quality array results.

5-2-3 Cleanup and quantification of Biotin-labelled cRNA (spectrophotometric analysis at 260 nm, 
A260/A280 ratio must range from 1.6 to 2.1 to assess adequate purity).

5-2-4 Agilent 2100 bioanalyzer analysis will provide an estimate of the yield, size and distribution 
of labelled transcripts, providing the last validation step.

5-2-5 Fragmentation of cRNA. The cRNA used in the fragmentation procedure must be sufficiently 
concentrated to maintain a small volume during the procedure.

5-3 Target hybridization

The adequate amount of fragmented cRNA is added to the hybridization buffer. The hybridization 
cocktail  is  heated  at  99°C,  followed  by  a  45°C  step.  Centrifugation  eliminates  the  insoluble 
materials. The probe array is placed into the hybridization oven, set at 45°C after being filled with 
appropriate volume of the clarified hybridization mixture. Hybridization is performed 16 hours at 
45 °C. 

5-4 Fluidic station setup, probe array wash and staining

Fluidic station provides an automatic washing.
Setting up, priming the fluidic station, probe array wash, and staining are performed. This step is 
performed using the appropriate program. 
The hybridization cocktail is removed from the probe array. Streptavidin-Phycoerythrin solution, 
stored in the dark at 4°C, is added at the end. After washing again, the chip is ready for scanning.

5-4 Probe array scan

High resolution scanner is indispensable for the chip. The cartridge is inserted into the scanner and 

the autofocus is tested. One scan is required with the scanner 3000. The target value must be set to 

500.
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6-Data analysis (annexe IV)

6-1 quality validation

RNA  quality  has  to  be  validated  as  well  as  cDNA  using  agilent  bioanalyser.  Degradation  or 
problem during  amplification  will  induce  variability  and  difficulties  in  analysis.  Hybridization 
quality, and image quality controlling the entire experiment has to be performed before comparison 
analysis. Control spike are indispensable for that.

One array per sample will be done, considering that variability is low if quality control is adequate.

6-2 Data analysis

After  first  order  validation,  supervised  and non supervised  analysis  will  be  done,  using  Eisen 
clustering analysis. All the data are available as an excel file accessible for our own analysis.

7
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A-5 Statistical analysis of microarray-data in R

R objects

The generic objects in R can be summarised as follows:

• Vectors: Data of one dimension, either numeric or character, can be intro-

duced in R as a vector.

• Matrix: Numeric data of nxn dimensions can be introduced in R as a matrix.

• Data frame: When a matrix contains both numeric and character data, R

only can deal with it as a data frame.

• List: The structure of a list could be pictured as a wardrobe with as many

drawers as desired. Moreover each drawer can be filled with any object, of

any size.

• ExpressionSet: This is a complex object designed to deal with high through-

put data. Notably developed to deal with gene-expression microarray datasets,

this object enables storage of gene-expression values, gene annotation infor-

mation and experimental details, among others. Access to each type of data

is performed through specific functions.

Moreover, packages have associated objects to perform the analysis. As can be

seen below, the ReadAffy function from the affy package, generates an object of

AffyBatch class that can be transformed to an ExpressionSet object.

Data-preprocessing

The analysis begun by loading the 87 .cel files into an R session opened in the

remote cluster, previously mentioned in the “Materials and Methods” chapter.

Once uploaded, an AffyBatch object was created:

> library(affy)

> UABcel <- ReadAffy()

> UABcel
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AffyBatch object

size of arrays=1164x1164 features (7 kb)

cdf=HG-U133_Plus_2 (54675 affyids)

number of samples=87

number of genes=54675

annotation=hgu133plus2

notes=

The UABcel object contained the entire probesets without being summarised.

As probesets are composed of 11-16 probes (25-mer oligonucleotides), a comparison

of the intensities at 5’-end versus those at the 3’-end, can provide an estimation of

the integrity of transcripts. The affy package enables such a verification through

the degradation plots.

For each microarray, the 10 first probes in 5’-3’ direction of each probeset are

selected. Then the average for each probe across all probesets is computed. Such a

computation is performed by the deg function and produces a vector of 10 averaged

intensities for each microchip. This result can be visualized using the plotAffyR-

NAdeg function.

> deg<-AffyRNAdeg(UABcel)

> plotAffyRNAdeg(deg)

The UABcel object was then subjected to three approaches of data pre-processing:

1. Robust Microarrays Analysis (RMA) background correction and quan-

tile normalisation.

2. Microchip Analysis Suite 5 (MAS5) background correction and scaling

normalisation.

3. No background correction and scaling normalisation.

which are implemented in the affyLM package:

> library(affyPLM)

> eTcelRMAplm <- fitPLM(UABcel, normalize = TRUE,

+ background = TRUE, background.method = "RMA.2",

+ normalize.method = "quantile")

> eTcelMAS5plm <- fitPLM(UABcel, normalize = TRUE,

+ background = TRUE, background.method = "MAS",

+ normalize.method = "scaling")

> eTcelNoBkgplm <- fitPLM(UABcel, normalize = TRUE,

+ background = FALSE, normalize.method = "scaling")
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The resulting object was of fitPLM class, where probes were averaged in each

probeset and also averaged those replicated probesets in the microchip. To deter-

mine the data-preprocessing method that provided the most unbiased dataset, 5

plots were performed:

> RLE(eTcelRMAplm,col="green",xaxt="n",xlab="")

> RLE(eTcelMAS5plm,col="red",xaxt="n",xlab="")

> RLE(eTcelNoBkgplm,col="yellow",xaxt="n",xlab="")

>

> NUSE(eTcelRMAplm,col="green",xaxt="n",xlab="")

> NUSE(eTcelMAS5plm,col="red",xaxt="n",xlab="")

> NUSE(eTcelNoBkgplm,col="yellow",xaxt="n",xlab="")

>

> MAplot(eTcelRMAplm,which=87)

> MAplot(eTcelMAS5plm,which=87)

> MAplot(eTcelNoBkgplm,which=87)

>

> boxplot(eTcelRMAplm,col="green",xaxt="n",xlab="")

> boxplot(eTcelMAS5plm,col="red",xaxt="n",xlab="")

> boxplot(eTcelNoBkgplm,col="yellow",xaxt="n",xlab="")

>

> plotDensity(exprs(PLMset2exprSet(eTcelRMAplm)),

+ col="green",xlab="Log Int (a.u.)")

> plotDensity(exprs(PLMset2exprSet(eTcelMAS5plm)),

+ col="red",xlab="Log Int (a.u.)")

> plotDensity(exprs(PLMset2exprSet(eTcelNoBkgplm)),

+ col="yellow",xlab="Log Int (a.u.)")

The RMA pre-processing method appeared to be less unbiased, as discussed at

the “Results and Discussion” chapter. Required by the further processing, the

RMA data contained in an object of PLMset class, was transformed to an object

of ExpressionSet class.

> eTcelRMA<-PLMset2exprSet(eTcelRMAplm)

Prior to development of prediction models, a data.frame with 5 different an-

notations for the 54675 probests of the HG-U133 plus2 Affymetrix microchip was

created. The incorporated annotations were the accession number, the Affymetrix

probeset, the gene symbol, the locus link and the unigene identifiers.

Using as a reference the Affymetrix probeset identifiers, the rest of identifiers

were retrieved by applying specific functions from the annaffy and annotate pack-

ages.
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> library(annotate)

> library(annoaffy)

> eTaffyNames<-featureNames(eTcelRMA)

> eTsymbolNames<-getSYMBOL(eTaffyNames,"hgu133plus2")

> eTLLNames<-getLL(eTaffyNames,"hgu133plus2")

> eTAccNames<-aafGenBank(eTaffyNames,"hgu133plus2")

> eTUnigeneNames<-aafUniGene(eTaffyNames,"hgu133plus2")

>

> HGU133geneID<-cbind(eTAccNames,eTaffyNames,eTsymbolNames

+ ,eTLLNames,eTUnigeneNames)

Development of prediction models

Grouping of cases in the 4 main tumour types described in the “Materials and

Methods” chapter, was performed through a class label vector:

> PosUAB<-c(’4’, ’1’, ’1’, ’1’, ’1’, ’1’, ’4’, ’1b’, ’4’,

+ ’3’, ’4’, ’4gfap’, ’4’, ’4’, ’1’, ’1’, ’3’, ’1’, ’1’,

+ ’4’, ’1b’, ’1’, ’1’, ’4’, ’3’, ’1’, ’3’, ’0gfap’, ’4’,

+ ’4’, ’0gfap’, ’4’, ’3’, ’0’, ’3’, ’3’, ’4’, ’4’, ’1b’,

+ ’4’, ’0’, ’4’, ’1’, ’4’, ’4’, ’4’, ’4’, ’4’, ’1’, ’4’,

+ ’1’, ’4b’, ’3b’, ’0’, ’4’, ’4out’, ’4’, ’3’, ’0’, ’3’, ’0’,

+ ’0b’, ’0’, ’4’, ’3’, ’3’, ’3’, ’1’, ’3’, ’0b’, ’4gfap’,

+ ’1’, ’0’, ’0’, ’3’, ’3’, ’3’, ’0’, ’4’, ’0’, ’0’, ’5’,

+ ’4’, ’4’, ’4’, ’1’, ’0’)

where 4 represents glioblastomas (Gb), 3 anaplastic gliomas (Ag), 1 low grade

gliomas (Lgg) and 0 meningiomas (Mg). The particular cases of the 4 main groups

are denoted by “gfap”, “out” and “b”, which corresponds to unexpected expres-

sion values of GFAP, sample removed from training and pilocytic astrocytoma,

respectively.

The PosUAB vector was used to determine the position of each class group

within the dataset:

> Mg<-which(PosUAB=="0")

> Lgg<-which(PosUAB=="1")

> Aa<-which(PosUAB=="3")

> Gb<-which(PosUAB=="4")

> GbB<-which(PosUAB=="4b")

> GbGfap<-which(PosUAB=="4gfap")

> GbFinal<-c(Gb,GbB,GbGfap)
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By using the MultiClassPred function (described in annex A-6), LDA, svm and

randF prediction formulas were generated based in all possibles combinations of

cross-validation methods, either LOOCV or 5FCV, and feature selection methods,

either q-values or PCA. The procedure run in R can be exemplified with the multi-

class prediction of Mg, Lgg and Gb cases:

> MgLggGb<-c(Mg,Lgg,GbFinal)

> LabelMgLggGb<-c(rep(0,12),rep(1,18),rep(2,31))

>

> MgLggGbLOOCVpval<-MultiClassPred(eTcelRMA[,MgLggGb],

+ LabelMgLggGb, CV="LOOCV",FeatSel="Genes",

+ c(5,10,20,30,40,50),length(LabelMgLggGb))

>

> MgLggGbLOOCVPCA<-MultiClassPred(eTcelRMA[,MgLggGb],

+ LabelMgLggGb, CV="LOOCV",FeatSel="PCA",

+ c(0.4,0.5,0.6,0.7,0.8,0.9),length(LabelMgLggGb))

>

> MgLggGb5FCVpval<-MultiClassPred(eTcelRMA[,MgLggGb],

+ LabelMgLggGb, CV="5FCV",FeatSel="Genes"

+ ,c(5,10,20,30,40,50),305)

>

> MgLggGb5FCVPCA<-MultiClassPred(eTcelRMA[,MgLggGb],

+ LabelMgLggGb, CV="5FCV",FeatSel="PCA"

+ ,c(0.4,0.5,0.6,0.7,0.8,0.9),305)

To compute a prediction p-value, the same models were generated but labelling

cases randomly. For that, a random vector of classes was generated and prediction

models again computed:

> LabelMgLggGbRand<-sample(LabelMgLggGb,length(LabelMgLggGb))

>

> MgLggGbLOOCVpvalRand<-MultiClassPred(eTcelRMA[,MgLggGb],

+ LabelMgLggGbRand, CV="LOOCV",FeatSel="Genes",

+ c(5,10,20,30,40,50),length(LabelMgLggGbRand))

>

> MgLggGbLOOCVPCARand<-MultiClassPred(eTcelRMA[,MgLggGb],

+ LabelMgLggGbRand, CV="LOOCV",FeatSel="PCA"

+ ,c(0.4,0.5,0.6,0.7,0.8,0.9),length(LabelMgLggGbRand))

>

> MgLggGb5FCVpvalRand<-MultiClassPred(eTcelRMA[,MgLggGb],

+ LabelMgLggGbRand, CV="5FCV",FeatSel="Genes"

+ ,c(5,10,20,30,40,50),305)

>
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> MgLggGb5FCVPCARand<-MultiClassPred(eTcelRMA[,MgLggGb],

+ LabelMgLggGbRand, CV="5FCV",FeatSel="PCA",

+ c(0.4,0.5,0.6,0.7,0.8,0.9),305)

Once all prediction models were computed, the prediction parameters of clinical

interest were extracted using the TableRes function (see annex A-6):

> SummaryMgLggGbLOOCVpval<-TableRes(MgLggGbLOOCVpval,

+ MgLggGbLOOCVpvalRand, c("Mg","Lgg","Gb"),

+ CV="LOOCV",c(12,18,31))

>

> SummaryMgLggGbLOOCVPCA<-TableRes(MgLggGbLOOCVPCA,

+ MgLggGbLOOCVPCARand, c("Mg","Lgg","Gb"),

+ CV="LOOCV",c(12,18,31))

>

> SummaryMgLggGb5FCVpval<-TableRes(MgLggGb5FCVpval,

+ MgLggGb5FCVpvalRand, c("Mg","Lgg","Gb"),

+ CV="5FCV",c(12,18,31))

>

> SummaryMgLggGb5FCVPCA<-TableRes(MgLggGb5FCVPCA,

+ MgLggGb5FCVPCARand, c("Mg","Lgg","Gb"),

+ CV="5FCV",c(12,18,31))

The output of TableRes function is a list that contains three matrices, which

correspond to the three prediction method used (LDA, svm or randF). Each matrix

provides six parameters of clinical interest, to evaluate the six variables tested as

input for the prediction formula:

• The prediction accuracy mean based on the balance error rate (BER).

• The p-value derived from the comparison of prediction values obtained from

correctly and random labelling of cases.

• The maximum and minimum prediction accuracy obtained across the per-

formed iterations.

• The sensitivity and specificity for each tumour type when performing a 3-

class predictor. In the case of a pairwise predictor, only one sensitivity and

specificity are computed.

• The false negative rate (FNR) and false positive rate (FPR). The tumour

comparison dependency of FNR and FPR computation is identical to that

for the sensitivity and specificity.
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From the obtained summary tables, the prediction model of both highest perfor-

mance and statistical significance was obtained. In the exemplified case of Mg, Lgg

and Gb prediction problem, the prediction model based on LOOCV, the number

of variables that accounted for 80% of variability, and a dLDA formula yielded the

best results. To determine genes that accounted for 80% or more of variability

across all the iterations, the GeneSelFreq function was applied:

> MgLggGbLOOCVPCAgeneList<-GeneSelFreq(MgLggGbLOOCVPCA$FeatSelList,

+ HGU133geneID)

As a result, a table with the selection frequency of those genes selected across the

LOOCV iterations was obtained. Genes were ordered by decreasing frequency of

selection, accompanied with the gene annotations from the HGU133geneID object,

the ratio of gene-expression for each pairwise comparison and their corresponding

p- and q-values. The GeneSelFreq worked identically for those models for which

feature selection was based on statistical significance of gene expression values.

To note, GeneSelFreq was applied to those LOOCV models yielding the highest

prediction accuracy mean. The unique selected genes across all tumour compar-

isons were further analysed (see section 4.2.1.7 and annex A-10).

Computation of glioblastoma subtypes

A hierarchical cluster based on the euclidean distance was performed by using the

heatmap 2 function from the Heatplus R package:

>ramp <- colorRamp(c("green", "red"))

>rrr<-rgb(ramp(seq(0, 1, length = 256)), max = 255)

>ClusterGb555ps<-heatmap_2(GbeTdataHierClus,legend=1,col=rrr,font.main=8

+,keep.dendro=TRUE)

As a first step to verify the reliability of clusters visually detected in the hierar-

chical cluster, a k-means cluster based on the euclidean distance accounting for 2,

3, 4 and 5 clusters was computed:

>Distclustps555<-dist(t(GbeTdata[MatchCNIOaffyGeneSymbPos,]),method=

+"euclidean")

>Kmeans2ps555<-kmeans(t(GbeTdata[MatchCNIOaffyGeneSymbPos,]),center=2)
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>Kmeans3ps555<-kmeans(t(GbeTdata[MatchCNIOaffyGeneSymbPos,]),center=3)

>Kmeans4ps555<-kmeans(t(GbeTdata[MatchCNIOaffyGeneSymbPos,]),center=4)

>Kmeans5ps555<-kmeans(t(GbeTdata[MatchCNIOaffyGeneSymbPos,]),center=5)

The silhouette statistics from the cluster R package was computed for each of

the generated k-means clusters:

>SilGb2ps555<-silhouette(Kmeans2ps555$cluster,Distclustps555)

>SilGb3ps555<-silhouette(Kmeans3ps555$cluster,Distclustps555)

>SilGb4ps555<-silhouette(Kmeans4ps555$cluster,Distclustps555)

>SilGb5ps555<-silhouette(Kmeans5ps555$cluster,Distclustps555)

The silhouette statistics was plotted with the generic plot function:

>par(mfrow=c(2,2))

>plot(SilGb2ps555,main="Silhouete k-means = 2",cex=0.5)

>plot(SilGb3ps555,main="Silhouete k-means = 3",cex=0.5)

>plot(SilGb4ps555,main="Silhouete k-means = 4",cex=0.5)

>plot(SilGb5ps555,main="Silhouete k-means = 5",cex=0.5)



A-6 Description of developed functions 225

A-6 Description of developed functions

MultiClassPred Development of prediction models for 2 and 3 class com-

parisons

Description

This function enables development of prediction models with reduced overtrain-

ing. To this end, models for both 2 and 3 class comparisons are generated by

splitting data into training and test using LOOCV or 5FCV, feature selection us-

ing PCA components or genes of lowest q-value, and 3 prediction algorithm tested:

lda, svm and randF.

To note, feature selection is only performed on training data. For LOOCV,

as many iterations as cases contains the whole dataset were performed in this

thesis. In contrast, as many iterations as 5 times the number of cases of the whole

dataset were performed when using 5FCV. However, the number of iterations can

be selected.

Usage

MultiClasPred(data,labTr,CV=c(LOOCV,5FCV),FeatSel=c(Genes,PCA),Gnumb,I,N)

Description

data Object of class ExpressionSet containing data to generate prediction

models.

labTr Numeric vector of class labels for columns of the data.

CV Cross-validation method. Either LOOCV or 5FCV.

FeatSel Feature selection method. Either Genes or PCA.

Gnumb Numeric vector indicating the 6 quantities of variables that will fit the

prediction algorithms. If Genes is selected as feature selection method, this

vector must range from 2 to any desired quantity of genes. In the case of

PCA, it must range from a value higher than 0 up to 1.

I Number of iterations to perform.
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N If Genes is selected as feature selection method, N must correspond to the

number of genes with fold-change higher or equal to 2 that will be selected.

This parameter can be set as NULL.

Value

A list with the below described slots is returned:

MatPos Matrix containing as many rows as iterations performed and as many

columns as cases in data. Each row contains a numeric vector with the

column position of samples used for training, followed by the column position

of sample(s) left for test.

GenePos List with I vectors containing the index of selected genes or PCA

components in data.

FeatSelList List with I matrices containing the topTable (limma package)

information of selected genes saved in GenePos.

Accuray1-6 Matrix containing as many columns as I. Rows are the prediction

accuracy mean for each class group of the training set and the test set. A

matrix for each quantity of variables and for each prediction algorithm is

generated.

DSC List of vectors or matrices containing discriminant score(s) of test sample(s)

for each prediction algorithm.
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TableRes Generation of a table with statistics of clinical interest

from MultiClassPred objects

Description

This function enables the generation of a summary table from the prediction

results obtained by applying MultiClassPred function to a dataset.

Usage

TableRes(x,y,z,CV=c(LOOCV,5FCV),label)

Description

x MultiClassPred object generated with correct class labels.

y MultiClassPred object generated with random class labels.

z Character vector with the names of considered tumour groups.

CV Cross-validation method used to develop prediction models. Either LOOCV

or 5FCV.

label Numeric vector of class labels for columns of the data used as input to

MultiClassPred function.

Value

A list of 3 matrices for each prediction algorithm (lda, svm and randF) is re-

turned. Each matrix contains 6 columns that corresponds to the 6 values of tested

variables. Rows are statistics of clinical interest:

MeanAc Estimated accuracy mean.

pvalAc P-value based on a Wilcoxon test with the hypothesis that the accu-

racy mean of randomly labelled models is higher than the correctly labelled

models.

Sensitivity Sensitivity estimated from the test samples.

Specificity Specificity estimated from the test samples.
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GeneSelFreq Annotated table of genes selected at least once across the

training for a determined tumour comparison using the

MultiClass function

Description

This function generates a table with annotation of genes selected at least once

across the training for a determined tumour comparison using the MultiClass

function. The selection frequency and the expression ratio between considered

tumours is provided with their corresponding p- and q-values.

Usage

GeneSelFreq(genes,Annotation,Data,FeatSel=c(Genes,PCA),N,label,Names)

Description

genes List containing the GenePos slot of the prediction model that yields the

highest accuracy mean.

Annotation Object of class data.frame containing annotation data for the

type microarray used to obtain data. The Affymetrix probeset, the accession

number, the locus link and the Unigene identifiers are provided.

data The same as in MultiClassPred function.

FeatSel Feature selection method. Either Genes or PCA.

N Feature selection based on PCA summarises the gene expression levels to a

number of components equal to the number of cases (PCA loadings). Thus,

N indicates the number of genes of highest PCA loadings to be selected.

label Numeric vector of class labels for columns of the data used as input to

MultiClassPred function.

Names Character vector of names for each class in label.

Value

Matrix for which rows are genes selected at least once across the training.

Columns are:
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AccN Accession number of probesets.

AffyID Affymetrix probeset identifier.

GeneSymbol Gene symbol of probesets.

LocusLink Locus link identifier of probesets.

Unigene Unigene identifier of probesets.

FreqSel Selection frequency of the probeset across the training.

Ratio Expression ratio between tumour group(s).

P-val P-value of each probe set and tumour comparison(s) based on a Wilcoxon

test.

Q-val Q-value of each probe set and tumour comparison(s).
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A-7 List of the 424 genes selected for the Gbm

and Mm tumours predictor using cDNA microarray-

data

Gene symbol

Accession 

number Gene description

Gbm/Mm 

ratio

Selection 

frequency

GFAP AA069414 Glial fibrillary acidic protein 413 16

PTPRZ1 AA476460 Protein tyrosine phosphatase, receptor-type, Z polypeptide 1 356 9

GPM6B AA284329 Glycoprotein M6B 133 9

PRELP AA131664 Proline/arginine-rich end leucine-rich repeat protein 0.042 9

FABP7 W72051 Fatty acid binding protein 7, brain 220 7

EGFL3 AA975413 EGF-like-domain, multiple 3 0.299 7

PDE4B AA453293 Phosphodiesterase 4B, cAMP-specific (phosphodiesterase 

E4 dunce homolog, Drosophila)

26 5

OMD N32201 Osteomodulin 0.011 5

LAPTM4A AA398233 Lysosomal-associated protein transmembrane 4 alpha 0.346 5

USP25 AA479313 Ubiquitin specific peptidase 25 0.11 5

NFATC3 AA293819 Nuclear factor of activated T-cells, cytoplasmic, calcineurin-

dependent 3

0.399 4

CTGF AA598794 Connective tissue growth factor 0.106 4

PIGT H83225 Phosphatidylinositol glycan, class T 0.508 4

FLJ39155 R08141 Hypothetical protein FLJ39155 0.019 4

DSP H90899 Desmoplakin 0.004 4

GAS1 AA025819 Growth arrest-specific 1 0.084 4

PLK1 AA629262 Polo-like kinase 1 (Drosophila) 4.3 4

NEK6 AA463188 NIMA (never in mitosis gene a)-related kinase 6 3.9 4

TNXB T58430 Similar to tenascin XB isoform 1; tenascin XB1; tenascin 

XB2; hexabrachion-like [Pan troglodytes]

0.118 4

LHX2 AA018276 LIM homeobox 2 36 4

MGC21621 W52061 MAS-related GPR, member F 0.041 4

PDGFD AI005125 Platelet derived growth factor D 0.034 4

IL27RA AI088984 Interleukin 27 receptor alpha 2.1 4

- AI249137 Transcribed locus 0.205 4

CCND1 R81200 Cyclin D1 0.109 4

NCAM2 AI306467 Neural cell adhesion molecule 2 6.2 4

SH3GL3 AI359676 SH3-domain GRB2-like 3 0.079 4

MT2A BF131311 Metallothionein 2A 11 4

NUDT1 AA443998 Nudix (nucleoside diphosphate linked moiety X)-type motif 1 2.7 4

RARRES2 AA481944 Retinoic acid receptor responder (tazarotene induced) 2 0.196 3

SMARCD3 AA035796 SWI/SNF related, matrix associated, actin dependent 

regulator of chromatin, subfamily d, member 3

2.1 3

HYAL1 AA464791 Hyaluronoglucosaminidase 1 0.159 3

CDK2AP1 R78607 CDK2-associated protein 1 2.0 3

CTNND2 H04985 Catenin (cadherin-associated protein), delta 2 (neural 

plakophilin-related arm-repeat protein)

44 3

CYB5 R92281 Cytochrome b5 type A (microsomal) 0.333 3

CA2 H23187 Carbonic anhydrase II 16 3

OAT AA446819 Ornithine aminotransferase (gyrate atrophy) 0.383 3

GPM6A AA448033 Glycoprotein M6A 90 3

HSPC195 R63735 CXXC finger 5 4.2 3

ZMYM6 W81504 Zinc finger, MYM-type 6 0.567 3

PPARGC1A N89673 Peroxisome proliferative activated receptor, gamma, 

coactivator 1, alpha

0.257 3

TEK H02848 TEK tyrosine kinase, endothelial (venous malformations, 

multiple cutaneous and mucosal)

0.14 3

APM2 AA478298 Chromosome 10 open reading frame 116 0.034 3

FGL2 H56349 Fibrinogen-like 2 0.022 3
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CDH2 W49619 Cadherin 2, type 1, N-cadherin (neuronal) 20 3

CANPL1 H15456 Calpain 1, (mu/I) large subunit 0.532 3

GPR17 R44664 G protein-coupled receptor 17 45 3

LOC119504 AA004832 Chromosome 10 open reading frame 104 0.504 3

- W52340 - 0.355 3

DHRS3 AA171606 Dehydrogenase/reductase (SDR family) member 3 0.217 3

SIPA1L1 AA417567 Signal-induced proliferation-associated 1 like 1 0.351 3

JAM2 AA410345 Junctional adhesion molecule 2 0.094 3

IFITM2 AA862371 Interferon induced transmembrane protein 2 (1-8D) 0.313 3

POLR1C AA733038 Polymerase (RNA) I polypeptide C, 30kDa 1.9 3

GPC3 AA775872 Glypican 3 0.171 3

TNFSF11 AA504211 Tumor necrosis factor (ligand) superfamily, member 11 0.201 3

NUDC AA702639 Nuclear distribution gene C homolog (A. nidulans) 2.0 3

TSPAN13 W86202 Tetraspanin 13 13.86 3

EBF AA488889 Early B-cell factor 0.33 3

TSPYL5 AA626024 TSPY-like 5 0.409 3

- AA699870 - 0.144 3

LR8 AA987621 LR8 protein 6.1 3

IFITM2 AA985421 Interferon induced transmembrane protein 2 (1-8D) 0.311 3

MT3 AI362950 Metallothionein 3 (growth inhibitory factor (neurotrophic)) 30 3

PIK3C2B AA923518 Phosphoinositide-3-kinase, class 2, beta polypeptide 0.189 3

MAPK8IP1 AI206407 Mitogen-activated protein kinase 8 interacting protein 1 7.6 3

RALGDS AI131235 Ral guanine nucleotide dissociation stimulator 2.8 3

ELAVL4 AI458073 ELAV (embryonic lethal, abnormal vision, Drosophila)-like 4 

(Hu antigen D)

38 3

SOX2OT AI056507 SOX2 overlapping transcript (non-coding RNA) 30 3

MT2A AI866473 Metallothionein 2A 15 3

MARCKSL1 AA961735 MARCKS-like 1 6.4 3

PCOLCE BE259979 Procollagen C-endopeptidase enhancer 0.098 3

C20orf22 R83863 Chromosome 20 open reading frame 22 2.509 3

FOLR1 N91535 Folate receptor 1 (adult) 0.084 3

RTN4RL1 AA453794 Reticulon 4 receptor-like 1 0.104 3

BCAS1 BM666673 Breast carcinoma amplified sequence 1 22 3

TP53I11 BU741540 Tumor protein p53 inducible protein 11 0.07 3

TNFAIP6 W93163 Tumor necrosis factor, alpha-induced protein 6 4.3 2

ZNF286 AA464729 Peroxisome proliferative activated receptor, alpha-like 5.5 2

NID2 AA479199 Nidogen 2 (osteonidogen) 0.098 2

NRCAM R25521 Neuronal cell adhesion molecule 10 2

UBE2C AA430504 Ubiquitin-conjugating enzyme E2C 16 2

KCNQ2 H51461 Potassium voltage-gated channel, KQT-like subfamily, 

member 2

25 2

H2AFX H95424 H2A histone family, member X 3.2 2

PKP2 H66158 Plakophilin 2 0.022 2

TRIM22 AA083407 Tripartite motif-containing 22 0.383 2

ALDH7A1 AA101299 Aldehyde dehydrogenase 7 family, member A1 0.314 2

ALCAM R13558 Activated leukocyte cell adhesion molecule 0.092 2

THBS4 AA437064 Thrombospondin 4 11 2

LTBP2 AA424629 Latent transforming growth factor beta binding protein 2 0.035 2

IGFBP6 AA478724 Insulin-like growth factor binding protein 6 0.046 2

CITED1 AA432143 Cbp/p300-interacting transactivator, with Glu/Asp-rich 

carboxy-terminal domain, 1

19 2

MBTPS1 AA447393 Membrane-bound transcription factor peptidase, site 1 0.527 2

PROCR T47442 Protein C receptor, endothelial (EPCR) 0.252 2

GCH1 AA443688 GTP cyclohydrolase 1 (dopa-responsive dystonia) 0.321 2

ENO2 AA450189 Enolase 2 (gamma, neuronal) 14 2



A-7 List of the 424 genes selected for the Gbm and Mm tumours
predictor using cDNA microarray-data 233

RALB W15297 V-ral simian leukemia viral oncogene homolog B (ras 

related; GTP binding protein)

2.3 2

FNDC3A R36431 Fibronectin type III domain containing 3A 0.321 2

SERPINA3 T80924 Serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, 

antitrypsin), member 3

14 2

ITGA10 H44722 Integrin, alpha 10 0.091 2

FYN N66144 FYN oncogene related to SRC, FGR, YES 3.7 2

ITM2B AA453275 Integral membrane protein 2B 0.395 2

SOCS2 AA137031 Suppressor of cytokine signaling 2 3.9 2

PCF11 W73811 PCF11, cleavage and polyadenylation factor subunit, 

homolog (S. cerevisiae)

0.317 2

PCGF4 T87515 Polycomb group ring finger 4 0.337 2

GOLPH2 AA454597 Golgi phosphoprotein 2 2.6 2

TSPAN4 AA100696 Tetraspanin 4 0.127 2

LOC115098 W69741 Hypothetical protein BC013949 2.2 2

ITM2A N53447 Integral membrane protein 2A 0.476 2

PRKCD AA496360 Protein kinase C, delta 0.386 2

ELMO1 H17121 Engulfment and cell motility 1 4.8 2

CNTNAP1 AA028905 Contactin associated protein 1 3.7 2

FCGRT AA430668 Fc fragment of IgG, receptor, transporter, alpha 0.446 2

CX3CL1 R66139 Chemokine (C-X3-C motif) ligand 1 2.4 2

CRABP1 AA421218 Cellular retinoic acid binding protein 1 0.036 2

BMP4 AA463225 Bone morphogenetic protein 4 0.031 2

ADORA2B AA055350 Adenosine A2b receptor 0.092 2

TRIM26 AA490855 Tripartite motif-containing 26 0.403 2

MAFG N21609 V-maf musculoaponeurotic fibrosarcoma oncogene homolog 

G (avian)

1.5 2

C8orf4 H16793 Chromosome 8 open reading frame 4 26 2

- N64139 - 0.139 2

C9orf140 AA088458 Chromosome 9 open reading frame 140 15 2

CLIC2 T52201 Chloride intracellular channel 2 0.241 2

EIF4EBP2 H15159 Eukaryotic translation initiation factor 4E binding protein 2 0.283 2

C16orf61 AA181314 Chromosome 16 open reading frame 61 2.2 2

CNTNAP1 H18963 Contactin associated protein 1 3.331 2

TNFRSF11B AA194983 Tumor necrosis factor receptor superfamily, member 11b 

(osteoprotegerin)

0.03 2

SPRY2 AA453759 Sprouty homolog 2 (Drosophila) 4.6 2

SFRP2 AA449300 Secreted frizzled-related protein 2 0.212 2

- R60328 - 1.5 2

RIPK1 AA426324 Receptor (TNFRSF)-interacting serine-threonine kinase 1 0.631 2

- AA455087 CDNA clone IMAGE:5302158 0.057 2

PRKACB AA459980 Protein kinase, cAMP-dependent, catalytic, beta 5.0 2

UPP1 AA099568 Uridine phosphorylase 1 11 2

GAS7 R54060 Growth arrest-specific 7 8.7 2

TUBA3 AA865469 Tubulin, alpha 3 6.4 2

MMP2 AA936799 Matrix metallopeptidase 2 (gelatinase A, 72kDa gelatinase, 

72kDa type IV collagenase)

0.165 2

ATF1 H54451 Activating transcription factor 1 0.371 2

EIF5 H40023 Eukaryotic translation initiation factor 5 2.3 2

LDB1 AA421335 LIM domain binding 1 0.232 2

PSRC1 N48162 Proline/serine-rich coiled-coil 1 16 2

EFEMP2 AA682527 EGF-containing fibulin-like extracellular matrix protein 2 0.252 2

GPR153 AA777493 G protein-coupled receptor 153 3.1 2

SLC26A2 AA704222 Solute carrier family 26 (sulfate transporter), member 2 0.013 2

FZD4 AA677200 Frizzled homolog 4 (Drosophila) 0.131 2
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FBXL7 AA676738 F-box and leucine-rich repeat protein 7 0.216 2

MGMT AA978354 O-6-methylguanine-DNA methyltransferase 0.307 2

- H15440 - 44 2

ERBB3 AA664212 V-erb-b2 erythroblastic leukemia viral oncogene homolog 3 

(avian)

14 2

- AA629908 Full-length cDNA clone CS0DN002YM12 of Adult brain of 

Homo sapiens (human)

4.0 2

DKFZP761M1511 AA776327 Hypothetical protein DKFZP761M1511 3.5 2

DNAJC13 AA778850 DnaJ (Hsp40) homolog, subfamily C, member 13 0.262 2

DUSP22 H42417 Dual specificity phosphatase 22 0.38 2

C10orf116 AA857127 Chromosome 10 open reading frame 116 0.394 2

AP3M1 AA872107 Adaptor-related protein complex 3, mu 1 subunit 0.466 2

FRAP1 AA608530 FK506 binding protein 12-rapamycin associated protein 1 2.5 2

KIAA0391 AA135673 KIAA0391 0.419 2

EDG1 N93476 Endothelial differentiation, sphingolipid G-protein-coupled 

receptor, 1

8.1 2

RGS16 AA128457 Regulator of G-protein signalling 16 9.1 2

HSPA8 AA620511 Heat shock 70kDa protein 8 1.5 2

TUBB2C AI000256 Tubulin, beta 2C 2.3 2

ETV1 AA486753 Ets variant gene 1 27 2

TWIST1 AI220198 Twist homolog 1 (acrocephalosyndactyly 3; Saethre-Chotzen 

syndrome) (Drosophila)

0.173 2

CDH1 AI671174 Cadherin 1, type 1, E-cadherin (epithelial) 0.052 2

BMPR1A AA991180 Bone morphogenetic protein receptor, type IA 0.415 2

RRAGD AI095082 Ras-related GTP binding D 7.6 2

CDH11 AI040305 Cadherin 11, type 2, OB-cadherin (osteoblast) 0.23 2

- AA244506 - 0.238 2

ETV1 AI500327 Ets variant gene 1 20 2

ACTN2 N66231 Actinin, alpha 2 15 2

PRDM2 R73190 PR domain containing 2, with ZNF domain 0.409 2

- AA744550 - 0.382 2

NCAM1 AA984078 Neural cell adhesion molecule 1 14 2

JUP AW248439 Junction plakoglobin 0.113 2

- AW246219 - 3.3 2

CGI-38 BE257080 Brain specific protein 8.2 2

THY1 BE313771 Thy-1 cell surface antigen 4.6 2

MRCL3 BE302683 Myosin regulatory light chain MRCL3 0.414 2

MYL9 BE515089 Myosin, light polypeptide 9, regulatory 0.178 2

CASP9 BE269006 Caspase 9, apoptosis-related cysteine peptidase 1.9 2

TNFAIP8 BE957997 Tumor necrosis factor, alpha-induced protein 8 0.273 2

RRAS2 R64125 Related RAS viral (r-ras) oncogene homolog 2 0.223 2

LAMB2 R73433 Laminin, beta 2 (laminin S) 0.273 2

TMEM64 H22525 Transmembrane protein 64 0.133 2

TUBB2A R25805 Tubulin, beta 2A 7.2 2

HBEGF R14663 Heparin-binding EGF-like growth factor 4.9 2

ASTN R59057 Astrotactin 6.1 2

TGFBR3 H07895 Transforming growth factor, beta receptor III (betaglycan, 

300kDa)

0.047 2

TYRO3 BM665421 TYRO3 protein tyrosine kinase 4.2 2

MAD2L2 BM668552 MAD2 mitotic arrest deficient-like 2 (yeast) 3.8 2

ANXA11 BM709344 Annexin A11 0.228 2

CEECAM1 BM712206 Cerebral endothelial cell adhesion molecule 1 3.6 2

IL6ST BM674517 Interleukin 6 signal transducer (gp130, oncostatin M 

receptor)

0.517 2

SULT1A1 BE539102 Sulfotransferase family, cytosolic, 1A, phenol-preferring, 

member 1

0.206 2

MAGEA12 BE542433 Melanoma antigen family A, 12 6.6 2
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PTPRG AW674549 Protein tyrosine phosphatase, receptor type, G 0.467 2

HK1 AA485272 Hexokinase 1 3.2 1

TUBA2 AA426374 Tubulin, alpha 2 5.2 1

COL8A2 AA780815 Collagen, type VIII, alpha 2 0.089 1

RPL10 T67270 Ribosomal protein L10 0.511 1

NFE2L1 AA496576 Nuclear factor (erythroid-derived 2)-like 1 0.31 1

SRI H60859 Sorcin 4.7 1

CCL2 AA425102 Chemokine (C-C motif) ligand 2 11 1

MAL AA227594 Mal, T-cell differentiation protein 30 1

LAMP2 N77754 Lysosomal-associated membrane protein 2 3.5 1

KLF4 H45711 Kruppel-like factor 4 (gut) 0.065 1

SPRR2C AA399674 Small proline-rich protein 2C 0.396 1

RPS6 N91584 Ribosomal protein S6 0.468 1

RAGE N77779 Renal tumor antigen 0.475 1

SMOX H93328 Spermine oxidase 2.5 1

ATP6V0B AA480826 ATPase, H+ transporting, lysosomal 21kDa, V0 subunit b 2.3 1

TOB1 AA490213 Transducer of ERBB2, 1 0.156 1

PIGB N51166 Phosphatidylinositol glycan, class B 0.234 1

PDGFRL AA455210 Platelet-derived growth factor receptor-like 0.06 1

SPOCK2 AA398230 Sparc/osteonectin, cwcv and kazal-like domains 

proteoglycan (testican) 2

6.6 1

ABLIM1 AA406601 Actin binding LIM protein 1 0.155 1

ATP6V0A1 AA427472 ATPase, H+ transporting, lysosomal V0 subunit a1 2.4 1

ALDOC T77281 Aldolase C, fructose-bisphosphate 17 1

PTPRN R45941 Protein tyrosine phosphatase, receptor type, N 33 1

CHL1 R40400 Cell adhesion molecule with homology to L1CAM (close 

homolog of L1)

8.4 1

BNIP3 AA063521 BCL2/adenovirus E1B 19kDa interacting protein 3 5.2 1

TNC T77595 Tenascin C (hexabrachion) 8.5 1

HLF W00959 Hepatic leukemia factor 0.097 1

CCL14 R96668 Chemokine (C-C motif) ligand 15 0.192 1

LEPR H51066 Leptin receptor 0.345 1

MAP7 R77251 Microtubule-associated protein 7 0.079 1

GJB2 AA490688 Gap junction protein, beta 2, 26kDa (connexin 26) 0.026 1

MGST1 AA495936 Microsomal glutathione S-transferase 1 20 1

CHI3L1 AA434115 Chitinase 3-like 1 (cartilage glycoprotein-39) 59 1

BRCA1 H90415 Breast cancer 1, early onset 2.8 1

ANXA4 AA419108 Annexin A4 0.068 1

TUBA1 AA180912 Tubulin, alpha 1 (testis specific) 4.3 1

SDC2 H64346 Syndecan 2 (heparan sulfate proteoglycan 1, cell surface-

associated, fibroglycan)

0.042 1

MRLC2 AA487370 Myosin regulatory light chain MRLC2 0.373 1

KIAA0101 W68220 KIAA0101 5.0 1

CUL7 AA479771 Cullin 7 0.339 1

NET1 R24543 Neuroepithelial cell transforming gene 1 0.086 1

PLAGL1 AA463297 Pleiomorphic adenoma gene-like 1 0.332 1

FOXM1 AA129552 Forkhead box M1 10 1

- AA136125 - 4.9 1

FGFR4 AA446994 Fibroblast growth factor receptor 4 0.178 1

CDH3 AA425556 Cadherin 3, type 1, P-cadherin (placental) 0.114 1

THBS2 H38240 Thrombospondin 2 3.7 1

SLC2A1 H58873 Solute carrier family 2 (facilitated glucose transporter), 

member 1

3.3 1

- R70601 Transcribed locus, moderately similar to NP_689672.2 

hypothetical protein MGC45438 [Homo sapiens]

0.187 1

EML2 R27680 Echinoderm microtubule associated protein like 2 0.474 1



236 ANNEXES

MLF1 W56360 Myeloid leukemia factor 1 3.0 1

RRAS2 R21415 Related RAS viral (r-ras) oncogene homolog 2 0.206 1

FLJ36748 T66828 Hypothetical protein FLJ36748 0.066 1

- R63342 - 0.094 1

OLFML1 N55492 Olfactomedin-like 1 0.145 1

GHR W05000 Growth hormone receptor 0.443 1

- R25234 - 3.9 1

JAM3 H73479 Junctional adhesion molecule 3 0.065 1

ATAD1 W04668 ATPase family, AAA domain containing 1 0.395 1

OGN AA045327 Osteoglycin (osteoinductive factor, mimecan) 0.005 1

- AA026682 - 8.1 1

MED4 AA454015 Mediator of RNA polymerase II transcription, subunit 4 

homolog (yeast)

0.513 1

FOXO1A AA448277 Forkhead box O1A (rhabdomyosarcoma) 0.099 1

CDC42EP2 W81196 CDC42 effector protein (Rho GTPase binding) 2 0.23 1

RIS1 AA127069 Ras-induced senescence 1 6.8 1

- H72368 - 9.6 1

- H98688 - 0.553 1

DSCAM N64532 Down syndrome cell adhesion molecule 9.7 1

LOC132430 N70553 Similar to Polyadenylate-binding protein 4 (Poly(A)-binding 

protein 4) (PABP 4) (Inducible poly(A)-binding protein) 

(iPABP) (Activated-platelet protein-1) (APP-1)

0.217 1

ARHGEF5 AA045822 Rho guanine nucleotide exchange factor (GEF) 5 0.175 1

- AA447514 Transcribed locus, strongly similar to XP_519853.1 

PREDICTED: similar to ENSANGP00000014530 [Pan 

troglodytes]

0.142 1

FZD1 N70776 Frizzled homolog 1 (Drosophila) 0.104 1

CXCL14 W72294 Chemokine (C-X-C motif) ligand 14 27 1

CAMK2N1 AA131299 Calcium/calmodulin-dependent protein kinase II inhibitor 1 3.8 1

NP AA430382 Nucleoside phosphorylase 1.9 1

MAOB AA682423 Monoamine oxidase B 45 1

MT1F T56281 Metallothionein 1F (functional) 27 1

GIYD2 AA398458 Coronin, actin binding protein, 1A pseudogene 0.337 1

CTNNA2 H45976 Catenin (cadherin-associated protein), alpha 2 44 1

DNASE1L3 T73558 Deoxyribonuclease I-like 3 0.005 1

C1orf21 AA676234 Chromosome 1 open reading frame 21 8.4 1

GAD1 AA018457 Glutamate decarboxylase 1 (brain, 67kDa) 10 1

DNM1 AA496334 Dynamin 1 14 1

EXOSC10 AA487064 Exosome component 10 1.8 1

CDK5 AA401479 Cyclin-dependent kinase 5 5.1 1

CLIPR-59 AA488178 CLIP-170-related protein 4.8 1

SPIN AA428181 Spindlin 0.311 1

P2RY5 R91539 Purinergic receptor P2Y, G-protein coupled, 5 0.355 1

SLC1A2 R15441 Solute carrier family 1 (glial high affinity glutamate 

transporter), member 2

225 1

- H20859 - 0.196 1

BAALC H29251 Brain and acute leukemia, cytoplasmic 62 1

PPP2R2B H15677 Protein phosphatase 2 (formerly 2A), regulatory subunit B 

(PR 52), beta isoform

17 1

POLE4 AA400317 Polymerase (DNA-directed), epsilon 4 (p12 subunit) 2.1 1

PLA2R1 W44657 Phospholipase A2 receptor 1, 180kDa 0.099 1

IGSF11 AA490144 Immunoglobulin superfamily, member 11 8.1 1

C20orf23 H23454 Chromosome 20 open reading frame 23 0.231 1

FAM89B W93891 Family with sequence similarity 89, member B 1.6 1

PSD3 AA460826 Pleckstrin and Sec7 domain containing 3 7.6 1

PSRC2 AA432112 Proline/serine-rich coiled-coil 2 0.459 1

FLJ36090 AA453446 Hypothetical protein FLJ36090 0.081 1
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SH3BP5 AA188661 SH3-domain binding protein 5 (BTK-associated) 0.083 1

AGT H64380 Angiotensinogen (serpin peptidase inhibitor, clade A, 

member 8)

22 1

DCTD H68309 DCMP deaminase 0.655 1

PLEKHB1 AA412417 Pleckstrin homology domain containing, family B (evectins) 

member 1

37 1

PHLDB2 AA479351 Pleckstrin homology-like domain, family B, member 2 0.015 1

C9orf47 AA233892 Endothelial differentiation, sphingolipid G-protein-coupled 

receptor, 3

6.7 1

TENC1 AA447688 Tensin like C1 domain containing phosphatase (tensin 2) 0.32 1

LOC493869 AA452145 Similar to RIKEN cDNA 2310016C16 0.18 1

FAM11A R43114 Family with sequence similarity 11, member A 0.547 1

LOC286334 AA425105 Hypothetical protein LOC286334 0.211 1

NBN AA463450 Nibrin 0.277 1

DNAJC6 AA455940 DnaJ (Hsp40) homolog, subfamily C, member 6 17 1

C2orf17 AA399248 Chromosome 2 open reading frame 17 1.9 1

SLITRK2 R61556 SLIT and NTRK-like family, member 2 14 1

DLK1 AA701996 Delta-like 1 homolog (Drosophila) 1.5 1

GPC6 AA456147 Glypican 6 0.019 1

STMN1 AA873060 Stathmin 1/oncoprotein 18 4.5 1

TLE2 AA873564 Transducin-like enhancer of split 2 (E(sp1) homolog, 

Drosophila)

0.279 1

ASNS AA894927 Asparagine synthetase 4.8 1

SORBS3 AA700222 Sorbin and SH3 domain containing 3 0.369 1

PRDX1 AA775803 Peroxiredoxin 1 1.7 1

NET1 H00292 Neuroepithelial cell transforming gene 1 0.311 1

MFSD2 AA774524 Major facilitator superfamily domain containing 2 17 1

RP11-35N6.1 AA700680 Plasticity related gene 3 17 1

ECD AA701351 Ecdysoneless homolog (Drosophila) 0.418 1

PGM5 AA706788 Phosphoglucomutase 5 0.237 1

TMCC2 AA677167 Transmembrane and coiled-coil domain family 2 10 1

TMEM109 AA504202 Transmembrane protein 109 0.38 1

EHD2 AA708621 EH-domain containing 2 0.314 1

TIMM10 AA670296 Translocase of inner mitochondrial membrane 10 homolog 

(yeast)

1.7 1

AGTRL1 R58969 Angiotensin II receptor-like 1 21 1

LYPLAL1 AA481256 Lysophospholipase-like 1 0.209 1

ANGPTL2 AA704833 Angiopoietin-like 2 7.0 1

NOV AA910443 Nephroblastoma overexpressed gene 0.005 1

APLN AA101878 Apelin, AGTRL1 ligand 17 1

PRKCH AA128274 Protein kinase C, eta 0.187 1

SCHIP1 AA708955 Schwannomin interacting protein 1 8.4 1

ABHD14B AA777893 Abhydrolase domain containing 14B 0.25 1

CALCOCO1 AA705325 Calcium binding and coiled-coil domain 1 0.279 1

PCDH1 R77512 Protocadherin 1 (cadherin-like 1) 5.3 1

CTNNA2 R37305 Catenin (cadherin-associated protein), alpha 2 28 1

PSMD14 N67573 Proteasome (prosome, macropain) 26S subunit, non-

ATPase, 14

2.3 1

STX12 H91046 Syntaxin 12 2.3 1

FREM1 T96030 FRAS1 related extracellular matrix 1 0.129 1

SUPT5H AA706107 Suppressor of Ty 5 homolog (S. cerevisiae) 1.7 1

C10orf42 AA884837 Chromosome 10 open reading frame 42 0.338 1

VENTX AA872096 VENT homeobox homolog (Xenopus laevis) 0.269 1

MARCH5 AA904806 Membrane-associated ring finger (C3HC4) 5 0.162 1

APC2 AA976241 Adenomatosis polyposis coli 2 135 1

PSAT1 AI015679 Phosphoserine aminotransferase 1 8.6 1

KPNA4 AA995784 Karyopherin alpha 4 (importin alpha 3) 1.5 1
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MFHAS1 AI017797 Malignant fibrous histiocytoma amplified sequence 1 5.6 1

FRZB AA454111 Frizzled-related protein 0.063 1

RANGAP1 H98072 Ran GTPase activating protein 1 2.3 1

FZD7 H71474 Frizzled homolog 7 (Drosophila) 0.119 1

CTNNA2 H16079 Catenin (cadherin-associated protein), alpha 2 36 1

DAXX AA988524 Death-associated protein 6 1.9 1

NCOA6 AI000142 Nuclear receptor coactivator 6 1.5 1

CDA AA922903 Cytidine deaminase 0.44 1

CCRL2 AI288845 Chemokine (C-C motif) receptor-like 2 7.7 1

AOX1 AI343711 Aldehyde oxidase 1 0.023 1

- AI361166 Transcribed locus, strongly similar to XP_852136.1 

PREDICTED: similar to Spindlin-like protein 2 (SPIN-2) 

isoform 1 [Canis familiaris]

0.582 1

NOVA1 AI362062 Neuro-oncological ventral antigen 1 7.5 1

PTTG1 AI362866 Pituitary tumor-transforming 1 17 1

RAB33A AI360342 RAB33A, member RAS oncogene family 5.8 1

CHL1 H15267 Cell adhesion molecule with homology to L1CAM (close 

homolog of L1)

29 1

SATB1 W72669 Special AT-rich sequence binding protein 1 (binds to nuclear 

matrix/scaffold-associating DNA's)

3.7 1

IGF1 N67876 Insulin-like growth factor 1 (somatomedin C) 0.146 1

MAML2 AA682512 Mastermind-like 2 (Drosophila) 3.9 1

RAB31 AA432084 RAB31, member RAS oncogene family 1.8 1

ZDHHC5 AI344565 Zinc finger, DHHC-type containing 5 0.467 1

FAM8A1 AI669875 Family with sequence similarity 8, member A1 0.414 1

MCM7 AI688220 MCM7 minichromosome maintenance deficient 7 (S. 

cerevisiae)

2.9 1

BBC3 AI688112 BCL2 binding component 3 0.328 1

KIAA0408 AI674081 Chromosome 6 open reading frame 174 7.1 1

JAK2 AI376272 Janus kinase 2 (a protein tyrosine kinase) 0.615 1

C10orf11 AA935570 Chromosome 10 open reading frame 11 0.179 1

SCN3A AA973965 Sodium channel, voltage-gated, type III, alpha 3.8 1

LOC439993 AI000633 LOC439993 0.405 1

RAVER2 AI039422 Hypothetical protein FLJ10770 0.518 1

C9orf32 AI217779 Chromosome 9 open reading frame 32 2.8 1

CTSD AI285076 Similar to RIKEN cDNA 6330512M04 gene (mouse) 4.1 1

- AI343669 - 3.8 1

TUBB3 BX100915 Tubulin, beta 3 7.8 1

- AA989356 CDNA clone IMAGE:4796912 0.385 1

ITGA11 BX119665 Integrin, alpha 11 0.131 1

CYP11A1 T98976 Cytochrome P450, family 11, subfamily A, polypeptide 1 0.112 1

- W52354 - 0.512 1

RND2 AI027909 Rho family GTPase 2 12 1

TPI1 AA663983 Triosephosphate isomerase 1 1.7 1

- AA187470 - 0.139 1

ALDH2 AI890849 Aldehyde dehydrogenase 2 family (mitochondrial) 0.178 1

SMAD4 AW410035 SMAD, mothers against DPP homolog 4 (Drosophila) 0.529 1

LAPTM4A AW411242 Lysosomal-associated protein transmembrane 4 alpha 0.376 1

RAMP1 BE262882 Receptor (calcitonin) activity modifying protein 1 19 1

MGLL BE261483 Monoglyceride lipase 4.6 1

CCNG1 BE257497 Cyclin G1 0.131 1

MRPL34 BE279280 Mitochondrial ribosomal protein L34 0.696 1

HERPUD1 BE281126 Homocysteine-inducible, endoplasmic reticulum stress-

inducible, ubiquitin-like domain member 1

0.26 1

DDB2 BE261143 DNA damage-binding protein 2 0.43 1

ARL4D BE262902 ADP-ribosylation factor-like 4D 0.082 1
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UBE2MP1 BE257314 Hypothetical gene supported by AB012191; BT006754; 

NM_003969

2.3 1

FCGRT BE261200 Fc fragment of IgG, receptor, transporter, alpha 0.352 1

- BE566343 - 3.2 1

CRYAB BE968687 Crystallin, alpha B 11 1

MT1H BF674156 Metallothionein 1H 17 1

EFEMP1 T84689 EGF-containing fibulin-like extracellular matrix protein 1 0.355 1

ST6GAL1 H26119 ST6 beta-galactosamide alpha-2,6-sialyltranferase 1 0.287 1

RANGAP1 H52021 Ran GTPase activating protein 1 2.9 1

ENTPD7 H62905 Ectonucleoside triphosphate diphosphohydrolase 7 0.347 1

GLI1 AI473373 Glioma-associated oncogene homolog 1 (zinc finger protein) 0.066 1

GSN R51491 Gelsolin (amyloidosis, Finnish type) 0.136 1

SCG3 R61070 Secretogranin III 33 1

NBN H21037 Nibrin 0.187 1

RREB1 AI473516 Ras responsive element binding protein 1 0.215 1

FGD6 AI923117 FYVE, RhoGEF and PH domain containing 6 0.082 1

RGS13 AA767465 Regulator of G-protein signalling 13 0.338 1

HOXD13 AI858239 Homeobox D13 3.2 1

VCL BM671421 Vinculin 0.215 1

PRKCH BM668363 Protein kinase C, eta 0.181 1

CDC91L1 BU731832 CDC91 cell division cycle 91-like 1 (S. cerevisiae) 1.5 1

PTPRU BM667857 Protein tyrosine phosphatase, receptor type, U 0.042 1

IGFBP7 BM676247 Insulin-like growth factor binding protein 7 2.7 1

RASA3 BM715990 RAS p21 protein activator 3 2.0 1

ZNF238 BM677356 Zinc finger protein 238 3.6 1

SP100 BM723015 SP100 nuclear antigen 0.346 1

NUSAP1 BE542067 Nucleolar and spindle associated protein 1 5.2 1

IFITM3 AW675347 Interferon induced transmembrane protein 3 (1-8U) 0.355 1
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A-8 Computation of discriminant scores based

for discrimination between Gbm and Mm

cases

The aim of this appendix is to shortly describe the required computation to obtain

the discriminant score (DSC) for a new Gbm or Mm case hybridised onto the CNIO

microarray type used in this work. Then, fluorescence signals must be pre-processed

and normalised as described in the 3.4.2 section.

A further normalisation is then necessary to transform the fluorescence signals

into the variables used for linear discrimination analysis. We can consider a new

sample n(GFAP, PTPRZ1, GPM6B,PRELP ), where n is the vector containing

the normalised fluorescence signals (as described in the article) for GFAP, PTPRZ1,

GPM6B and PRELP genes, respectively. Also, we have a centering (C) and scaling

(S) vectors derived from the developed predictor:

C(GFAP, PTPRZ1, GPM6B,PRELP ) = (22.59169, 7.58656, 14.77506, 12.11779)

S(GFAP, PTPRZ1, GPM6B,PRELP ) = (5.95949, 4.76408, 4.82909, 2.51886)

The final normalised values for each gene are computed as shown:

N(GFAP ) = (n(GFAP )−C(GFAP ))
S(GFAP )

N(PTPRZ1) = (n(PTPRZ1)−C(PTPRZ1))
S(PTPRZ1)

N(GPM6B) = (n(GPM6B)−C(GPM6B))
S(GPM6B)

N(PRELP ) = (n(PRELP )−C(PRELP ))
S(PRELP )

The DSC that would predict a Gbm for negative value of DSC and a Mm for a

positive DSC, are computed as follows:

DSC = −0.394 ∗N(GFAP )− 0.397 ∗N(PTPRZ1)

−0.397 ∗N(GPM6B) + 0.365 ∗N(PRELP )

To improve prediction of Affymetrix hybridisation-based cases, we introduced an

adjustment to the formula. The centering and scaling vectors are:

C(GFAP, PTPRZ1, GPM6B,PRELP ) = (8.904749, 7.786328, 9.182813, 7.596874)

S(GFAP, PTPRZ1, GPM6B,PRELP ) = (3.702787, 3.728053, 3.094604, 1.735198)
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Fluorescence values of each gene are normalised as above and introduced to the

discriminant formula:

DSC = 0.078 ∗GFAP − 0.6207 ∗ PTPRZ1

−0.670 ∗GPM6B + 0.660 ∗ PRELP
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A-11 Expression values of the 100 probesets that

determines two Gb clusters

Gene symbol Probeset

Cluster 1 
Cluster 2

Females 
Cluster 1

Males 
Cluster 1

Females 
Cluster 2

Males 
Cluster 2 q-value

XIST 224588_at 0.69 3459.2 12.6 2388.7 13.1 7.7E-02

XIST 227671_at 0.56 1429.1 9.7 1250.8 9.8 7.0E-02

XIST 221728_x_at 0.75 1576.9 14.0 1020.5 11.9 2.9E-01

H19 224646_x_at 1.13 452.6 625.6 775.7 332.6 1.3E-01

POSTN 1555778_a_at 0.16 18.6 160.9 956.9 689.8 1.6E-03

POSTN 210809_s_at 0.25 71.6 617.9 2298.0 1794.9 1.4E-03

IGHG3 211430_s_at 0.09 13.8 75.9 324.6 689.3 8.6E-05

IGLJ3 214677_x_at 0.08 26.6 53.6 453.7 472.3 5.4E-04

LTF 202018_s_at 0.03 19.2 76.1 685.0 3122.8 3.6E-04

CHI3L2 213060_s_at 0.12 41.5 166.1 887.6 1420.4 2.4E-03

CCL2 216598_s_at 0.11 42.8 147.8 1296.2 1065.8 5.1E-05

PLA2G2A 203649_s_at 0.04 32.8 33.6 457.2 1081.9 3.4E-04

IL8 202859_x_at 0.06 26.5 54.5 1159.8 528.7 6.0E-05

SERPINE1 202628_s_at 0.07 18.2 61.9 899.1 599.8 8.1E-05

SERPINE1 202627_s_at 0.14 28.3 115.7 805.6 634.9 1.0E-04

EGFR 201984_s_at 0.98 112.4 1022.0 786.7 928.2 2.8E-01

EGFR 232541_at 1.12 642.5 1403.9 1002.2 1259.7 1.4E-01

EGFR 224999_at 0.93 614.6 2141.7 1841.5 2140.3 2.0E-01

EGFR 201983_s_at 0.93 1213.5 3861.8 3312.3 3912.9 2.4E-01

FOXG1 206018_at 0.80 951.3 860.3 1149.0 1132.6 7.2E-02

HOP 211597_s_at 0.75 503.6 1313.1 1782.7 1379.6 1.4E-01

FABP7 205029_s_at 0.51 748.6 974.2 1887.2 1867.4 2.2E-02

PLP1 210198_s_at 1.67 1709.9 2810.0 1853.4 1366.9 1.4E-02

GRIA2 205358_at 2.06 2828.0 1192.0 824.2 744.8 1.2E-02

OLIG1 228170_at 1.93 2915.8 1707.0 1193.9 945.3 2.7E-03

AQP1 207542_s_at 0.94 449.3 586.8 614.9 601.6 2.8E-01

AQP1 209047_at 1.04 1278.7 1837.5 1531.4 1801.8 2.6E-01

ATP1A2 203295_s_at 1.52 444.3 1054.5 638.6 611.6 3.2E-02

ATP1A2 203296_s_at 1.76 1152.9 2153.8 1193.2 1080.8 1.1E-02

RPS4Y1 201909_at 1.57 19.0 1635.1 31.9 1543.5 1.7E-01

NA 213841_at 4.72 2209.6 927.8 181.5 339.3 1.9E-04

SNAP25 202508_s_at 4.30 1001.0 1658.7 423.2 309.5 9.2E-04

PEG10 212094_at 1.01 723.1 466.4 622.8 421.8 1.9E-01

APOD 201525_at 0.47 203.4 504.4 833.4 1081.6 2.3E-01

PDGFRA 203131_at 1.40 1099.9 710.4 593.4 581.4 1.9E-01

CD24 216379_x_at 2.22 1578.6 662.9 342.7 433.5 1.1E-01

CD24 209771_x_at 2.07 1656.9 688.1 385.2 487.4 1.1E-01

SOX11 204914_s_at 1.70 1150.0 743.5 470.1 530.6 1.5E-01

NCAN 205143_at 1.38 957.9 789.0 580.1 653.5 7.2E-02

BCAN 219107_at 1.87 982.2 792.0 385.5 526.5 1.1E-02

LOC650392 1569872_a_at 2.81 2431.1 857.4 426.4 458.2 3.3E-03

SOX8 226913_s_at 3.52 2859.2 1097.1 358.9 505.0 4.4E-04

MBP 207323_s_at 1.83 407.8 1279.7 821.3 435.3 2.6E-02

MBP 209072_at 2.38 1459.8 3750.0 1694.7 1159.9 1.2E-02

GPR37 209631_s_at 0.78 431.0 398.2 606.9 466.4 1.3E-01

EDIL3 225275_at 1.01 262.8 866.5 972.7 549.3 3.1E-01

RTN1 203485_at 3.03 1413.8 1445.4 508.0 461.1 3.0E-03

KIF5A 229921_at 3.19 1926.2 1137.5 595.3 270.5 1.1E-02

FAM123A 235465_at 2.50 742.7 807.1 371.9 283.3 1.2E-03

FAM123A 230496_at 2.79 1006.0 1126.6 456.4 360.3 6.9E-04

CLDN11 228335_at 1.01 644.1 656.2 872.4 495.8 2.4E-01

TF 214063_s_at 1.37 533.4 1012.7 937.1 468.1 2.5E-02

TF 203400_s_at 1.35 682.9 1281.6 1216.5 588.7 3.3E-02

MGST1 231736_x_at 0.51 243.9 565.4 796.1 1049.1 6.0E-02

Intensity signals of fluorescence
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Gene symbol Probeset

Cluster 1 
Cluster 2

Females 
Cluster 1

Males 
Cluster 1

Females 
Cluster 2

Males 
Cluster 2 q-value

PTGDS 212187_x_at 1.74 386.6 1682.0 927.5 719.4 1.2E-01

PTGDS 211748_x_at 1.80 556.2 2138.9 1112.7 921.6 8.4E-02

NA AFFX-M27830_5_at 1.81 1703.3 3692.3 1912.8 1643.6 1.4E-01

SERPINA3 202376_at 0.44 340.0 1669.9 2893.5 3522.2 2.3E-03

CHI3L1 209396_s_at 0.21 1298.2 1388.0 6584.6 7120.0 6.2E-05

CHI3L1 209395_at 0.20 1102.3 1503.7 7697.3 6678.4 5.0E-05

COL1A2 202403_s_at 0.17 454.8 538.2 3368.7 2821.1 6.1E-04

COL1A1 1556499_s_at 0.19 530.0 700.8 3320.1 3501.3 2.4E-04

COL1A2 202404_s_at 0.16 372.6 430.8 2895.7 2447.0 3.6E-04

COL3A1 215076_s_at 0.13 310.3 402.1 3102.0 3039.7 1.6E-04

IGFBP3 212143_s_at 0.22 70.9 250.5 1082.6 878.2 1.0E-03

IGFBP3 210095_s_at 0.24 172.8 627.9 2214.2 2238.6 1.2E-03

LPL 203548_s_at 0.39 272.3 409.3 1256.2 763.6 5.1E-03

IGFBP2 202718_at 0.49 399.0 629.0 1470.4 928.7 1.2E-02

VEGFA 212171_x_at 0.35 214.1 393.8 1272.5 784.4 2.3E-03

ADM 202912_at 0.23 152.0 374.0 1883.9 1078.2 2.3E-04

CTHRC1 225681_at 0.27 290.9 144.5 714.8 624.9 1.6E-03

COL6A3 201438_at 0.06 40.7 60.5 1108.8 920.7 7.0E-05

COL1A1 202310_s_at 0.10 106.4 144.9 1610.3 1293.2 1.8E-04

COL3A1 211161_s_at 0.11 105.7 186.2 1615.1 1549.8 1.7E-04

COL3A1 201852_x_at 0.09 143.5 191.2 2203.5 1923.2 1.5E-04

NA AFFX-HUMRGE/M10098_5_at 0.63 74.7 559.3 598.6 747.9 4.1E-02

METTL7B 227055_at 0.34 58.6 261.8 867.9 454.7 4.8E-04

SOCS2 203373_at 0.61 159.6 490.2 828.5 563.2 1.6E-02

MGP 202291_s_at 0.14 178.5 260.3 2256.7 1296.2 9.1E-05

DCN 211896_s_at 0.19 96.8 195.0 956.4 920.7 5.8E-04

DCN 211813_x_at 0.23 153.0 297.8 1221.5 1135.5 1.4E-03

CAV1 212097_at 0.21 131.0 201.6 881.6 951.0 8.1E-05

TAGLN 205547_s_at 0.23 309.8 225.1 965.2 1132.6 1.1E-04

TGFBI 201506_at 0.18 248.5 226.2 1360.6 1196.9 4.9E-05

COL5A2 221729_at 0.25 196.2 225.4 978.9 832.6 1.3E-04

TMEM49 224917_at 0.16 152.1 186.9 1224.7 1154.3 4.9E-05

HIG2 1554452_a_at 0.22 119.6 160.8 768.4 596.3 1.5E-03

IGKC 221671_x_at 0.20 113.8 201.9 606.2 940.1 1.3E-03

IGKC 221651_x_at 0.19 112.7 207.8 650.2 1025.9 8.7E-04

IGKC 224795_x_at 0.18 114.9 216.0 704.1 1094.5 4.6E-04

S100A8 202917_s_at 0.12 84.0 163.1 893.3 1475.0 7.4E-05

TncRNA 227062_at 0.27 111.1 252.5 960.5 689.9 3.4E-04

NA 225328_at 0.37 161.0 230.4 459.9 725.7 2.1E-03

MGC5618 221477_s_at 0.27 172.9 318.9 1199.4 955.1 1.2E-03

NNMT 202237_at 0.11 162.0 133.8 978.6 1530.8 4.9E-05

C1S 208747_s_at 0.24 158.3 256.5 806.3 1168.5 1.7E-04

GBP1 231577_s_at 0.31 145.2 414.5 1044.8 1223.2 2.6E-04

PBEF1 243296_at 0.13 139.2 223.6 1329.9 1813.1 4.9E-05

CD163 203645_s_at 0.15 90.0 184.3 1060.0 1109.3 4.9E-05

CD163 215049_x_at 0.18 124.6 265.4 1277.1 1378.8 6.6E-05

Intensity signals of fluorescence
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1st 2008).

• Poster communication: “Inter-laboratory control study of micro-array data

within the EC supported eTUMOUR project”. Postma GJ, Boots-Sprenger

S, Barcelo A, Castells X, Ferrer R, Rogers H, Grundy R, Celda B, Wesseling

P, Ariño J and Buydens LMC. Towards Brain Tumour Classification by Mo-

lecular Profiling: Imaging, Metabolomic and Genomic tools (València, Spain,
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Profiling”. Castells X, Garćıa-Gómez JM, Gevaert O, Navarro A, Acebes JJ,
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recerca. De cadascú d’ells he pogut aprendre diferents maneres de veure i abordar

els problemes cient́ıfics.
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Agraeixo al Dr. Joaqúın Ariño haver-me ensenyat a ser molt rigorós en el món

de la recerca cient́ıfica. Ara que he acabat la tesi i puc mirar els 5 anys de doctorat

amb perspectiva, voldria destacar que aquest rigor après segurament és fruit de la

perseverança i intensitat amb les que analitza tot allò que té entre mans.
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cèl.lules només ensenyant-te’ls-hi i a en Salva per la seva sabiesa i paciència en les
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le doctorat à Strasbourg. Il est un mec génial qui s’intéresse toujours à moi. Je
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fora. També a mon germà que durant la recta final de la tesi va fer de bon germà
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