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Dr. Juan José Ramos González, Associate Professor at the Universitat Autòno-
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count among my closest friends. Thank you for your friendship and love, without you
finishing this thesis would have been almost impossible.

Por último, pero el más importante de todos, quiero agradecer a mi marido Javi su
paciencia y amor, y también a toda mi familia, especialmente a mis padres Cruz y Remi,
y a mi t́ıo José Maŕıa.
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Introduction

Over the last decades, globalization has driven the adaptation of the transport and logis-
tics sector to new social demands. At the same time, transport has been the backbone
of globalization. This social need creates ambitious consumers who need their products
quickly and an affordable price often unaware of their origin, transport mode or envi-
ronmental aspects, among other factors. Nevertheless, to satisfy customer demands, it
is needed to find the cheapest transport mode, which in turn means the improvement
of transport logistics of the products. Therefore, these demands require an increas-
ingly flexible service to meet customer requirements, and in addition companies want an
efficient and productive transport.

In addition, it is important to know what kind of product demand is considered.
Mainly, there are two types of demands: monotonous demand that requires a stable
transport throughout months; and a more volatile demand which will depend on some
perishable factors, such as seasons, trending or brief consumer need. This second demand
has to be followed by a flexible transport network which has to be adaptable to new
circumstances. It must also be considered the dependence on the product characteristics,
such as dimensions and weight, or if any special condition is needed for fragility or
conservation.

Furthermore, according to the previously mentioned factors, it must be selected the
proper transportation mode. Transport could be carried out by sea, air or land. Air
and sea routes are commonly used for large quantities or long distances, their itineraries
are established and are not flexible. In contrast, land transport is really flexible and it
allows to quickly adapts to the customer demand.

Therefore, road transport is a vital link in the increasingly complex sector of transport
and logistics, which takes freight to ports and terminals and distribute urban goods
between warehouses and retail outlets, in order to arrive to the customers.

The sector of transport and logistics in the Spanish economy represents the 3% of
Gross Domestic Product (GDP). The total cost of this sector was estimated about 25,000
M¤ in 2011. Additionally, freight transport represents 60% of the total cost which was
about 15,000 M¤ (OTLE, 2015).

The Spanish freight transport is characterized as predominantly national, with a
share of 71% compared to 29% international. Road traffic transports 94.6% of the total
tones nationwide in 2013 (OTLE, 2015).

Transportation costs cannot be neglected, improving the competitiveness of road
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2 Introduction

transport is essential for companies in this sector, not only at Spanish scale but also
at worldwide. In Europe, transportation often accounts for between one-third and two-
thirds of total logistics costs –i.e., between 9% and 10% of the Gross National Product
(GNP) for the Europe economy and also between 10% and 20% of a products price, so
transportations importance and key role is undeniable (Khooban, 2011).

The need for optimizing the road transportation affects to both public and private
sectors, given that it is an ambivalent issue: on the one hand, it brings great benefits for
individuals and economies; on the other hand, it may bring some negative side effects
on quality of life and health, such as noise or air pollution, increasing greenhouse gases,
waste products, even accidents death injuries.

Traveling Salesman Problems (TSP) and Vehicle Routing Problems (VRP) deal with
the physical distribution of goods from a central depot to customers. The TSP was
first formulated by Karl Menger (1930), the origin of the name “traveling salesman
problem” is a bit of a mystery without any recognized creator. Nevertheless, the VRP
first appeared defined by Dantzig and Ramser (1959). A wide number of related problems
have been developed during the last decades, each of them considering different sets
of characteristics and constraints. Usually, the main goal of this set of problems is
to minimize distance-based costs associated with the distribution of products among
customers while satisfying customers’ demands.

Both problems belong to the field of combinatorial optimization, and they are one of
the most challenging problems because of they belong to the NP-Hard problems class,
(Lenstra & Kan, 1981), meaning that they are not solvable in polynomial time, i.e.,
there is no efficient algorithm to solve these problems that has been proved to solve
correctly all scenarios, and whose worst-case running time is bounded by a polynomial
time function which depends on the scenarios’ size.

According to K. L. Hoffman et al. (2013), the TSP has commanded much attention
of mathematicians and computer scientists specifically because it is easy to describe and
really difficult to solve, in addition it has a lot of applications in the real life. Therefore,
this problem has been a great engine of discovery for general purpose techniques in
applied mathematics (Applegate et al., 2006). Some areas to which TSP research has
made fundamental contributions are: Mixed-Integer Programming, Branch-and-Bound
method, and some metaheuristics such as Local-Search algorithms, Simulated Annealing,
Neural Network, and Genetic Algorithms.

The TSP algorithm developed by Held and Karp (1970) carried the best-known
guarantee on the running time of a general solution method for the problem for over 40
years. Recently, a TSP solver named Concorde developed by Applegate et al. (2015) is
the best-known exact method, it has been used to obtain the optimal solutions to 106 of
the 110 TSPLIB instances; the largest having 85,900 cities. Currently, the heuristic of
Lin and Kernighan (1973) effectively modified by Helsgaun (2000) holds the record for
the best instances of problems with unknown optimal (DIMACS TSP Challenge 2002 )
with sizes ranging from 1,000 to 10,000,000 nodes.

The VRP is also one of the most researched problems, due to this field has been ex-
ploited dramatically partly driven by the industrial applicability. In the early years, spe-
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cialized heuristics were typically developed for solving the VRP. Then, more generic solu-
tion schemes as metaheuristics were designed, among them it can be found research about
Ant Colony Optimization, Genetic Algorithms, Greedy Randomized Adaptive Search
Procedure, Simulated Annealing, Tabu Search, and Variable Neighborhood Search. The
interest about hybrid optimization methods has grown very fast for the last decade.

From the industrial point of view, these problems characterize a family of differ-
ent distribution problems which, one way or another, are presented in real problems.
However, most of the real applications are not represented by the classical variants, for
instance, most VRP related academic articles assume the existence of a homogeneous
fleet of vehicles and/or a symmetric cost matrix. These assumptions are not always
reasonable in real-life scenarios. In real problems, it is needed to consider real-life con-
straints, obtaining problems which are commonly known as Rich VRP.

Theoretical researches typically assume the symmetry of the distance-based costs
associated with traveling from one place to another. In fact, classical benchmark in-
stances are based on Euclidean distances between each pair of locations, which result in
symmetric costs. However, this metric is just a lower bound of the real distance between
two nodes connected by a transport network or highway. The real distance will depend
upon the specific location of the nodes in the territory and also on the structure of the
road network that connects them, which commonly are oriented networks, Rodŕıguez
and Ruiz (2012b) suggest that real distances might not have to be symmetric. Fur-
thermore, Rodŕıguez and Ruiz (2012a) demonstrate and measure, symmetric solutions
(those obtained with symmetric and Euclidean distance matrices) have little in com-
mon with regard to sequence and total distance with real solutions (those obtained with
asymmetric and real distances).

Another frequent assumption is the existence of a homogeneous fleet of vehicles with
limited capacity. However, most road-transportation companies own a heterogeneous
fleet of vehicles. This diversity in the vehicles’ capacity might be due to the fact that
different customers and locations might require different types of vehicles, e.g., narrow
roads in a city, available parking spaces, vehicle weight restrictions on certain roads, etc.
Another reason for owning vehicles with distinct capacities is the natural diversity that
arises when vehicle acquisitions are made over time.

In this scenario, it becomes evident the need of developing new methods, models and
systems to give support to the decision-making process so that optimal strategies can
be chosen in road transportation.

The main goal of this thesis is to introduce hybrid methodologies that integrate
several techniques to efficiently solve rich Vehicle Routing Problems with realistic con-
straints. This thesis is outlined in Figure 1, it starts with theoretical problems and
evolves into more realistic scenarios tackling six combinatorial problems related to road
transport. It is explored the potential of the Lagrangian Relaxation (LR) for solving
rich and realistic problems. Due to the evolution of the scenarios chosen –from Travel-
ing Salesman Problem to Asymmetric and Heterogeneous Vehicle Routing Problem– LR
is combined into a hybrid method adding new techniques when required.

This thesis starts addressing the TSP, which is a well-known theoretical problem.
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TSP ATSP

CVRP ACVRP AHVRPHHC

TLM

Adapted
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Adapted

SR-GCWS

Adapted TLM

Hybrid method 

using TLM

Hybrid method 

using TLM

Asymmetric costs

Heterogeneous fleetAsymmetric costs

Applications

Figure 1: General outline of this thesis.

The problem deals with finding the shortest path of a salesman who is required to visit
once and only once each different customers starting from a depot, and returning to
the same depot. LR is used to exploit the structure of the problem reducing consid-
erably its complexity by moving hard-to-satisfy constraints into the objective function,
associating a penalty in case they are not satisfied. For that purpose, a metaheuristic
–named Tailored Lagrangian Metaheuristic (TLM)– based on the Lagrangian Relaxation
is developed.

The Asymmetric version of the TSP (ATSP) has been chosen in order to illustrate the
effects of the frequent assumption of the symmetry of the distance-based costs associated
with traveling from one place to another. Therefore, the proposed TLM is adapted for
the asymmetric scenarios.

The Capacitated Vehicle Routing Problem (CVRP) consists of determining the op-
timal set of routes for a fleet of vehicles to deliver goods to a given set of customers,
it is a generalization of the TSP. In the model proposed in this thesis, the CVRP has
been divided into two subproblems, concerning customers’ allocation and routing opti-
mization separately. The first one aims to assign customers to vehicles fulfilling capacity
limitations. Then, it is used to solve each independent route giving the best solution for
a particular allocation. Thus, routing optimization process can be viewed as solving a
set of independent symmetric TSP. A hybrid approach proposes a Multi-Start Variable
Neighborhood Descent structure whose local search process is supported by Constraint
Programming (CP) for solving the customers’ allocation and our TLM metaheuristic for
solving independently each TSP.

It is presented a practical application concerning the Home Health Care (HHC)
service in the municipality of Ferrara, Italy. This real problem consists on assigning pa-
tients’ services to nurses which travel to each patient’s home. Therefore, it is defined the
nurse itineraries which considers the following optimization aspects: the nurse workloads
are balanced, patients are preferentially served by a single nurse or just a few ones, and
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the overall travel time is minimized. A hybrid methodology based on CP and our TLM
is considered for addressing this real problem.

Given the fact that urban networks are asymmetric and to contribute to closing the
gap between theory and practice, the Asymmetric version of the CVRP (ACVRP) has
been considered. A hybrid methodology based on the randomized Clarke and Wright
Savings algorithm (SR-GCWS), developed by Juan et al. (2010), is adapted for the
asymmetric scenarios. The Clarke and Wright Savings heuristic (CWS), presented by
Clarke and Wright (1964), is one of the most commonly cited methods in the VRP
literature. Our proposed algorithm combines a randomized savings heuristic with two
local search processes specifically designed for the asymmetric nature of costs in real-life
scenarios.

The ACVRP with heterogeneous fleet of vehicles (AHVRP) has been chosen in order
to illustrate the effects of the frequent assumption of the existence of a homogeneous fleet
of vehicles. Our proposed Asymmetric SR-GCWS is combined with the modified Clarke
and Wright Savings heuristic presented by Prins (2002) for the HVRP. It is analyzed how
routing costs vary when slight deviations from the homogeneous fleet are considered, i.e.,
how marginal costs/savings change when a few ’standard‘ vehicles in the homogeneous
scenario are substituted by other vehicles with different loading capacity.

Objectives

The objectives of this thesis can been summarized as follows:

• The development of a metaheuristic aimed to tackle the Traveling Salesman Prob-
lem based on the Lagrangian Relaxation.

• This metaheuristic should be efficient regarding the solution values and the compu-
tational time. In addition, it should be flexible to be adaptable to the asymmetric
scenarios.

• The integration of the developed metaheuristic into hybrid methodologies to tackle
more complex problems, like the Capacitated Vehicle Routing Problem.

• The application of the developed metaheuristic in a realistic scenario within a
hybrid methodology, like the application in the Home Health Care in Ferrara,
Italy.

• The study of different variants focusing on the impact that causes the asymmetry
of the costs and the heterogeneity of the fleet.

• The development of a hybrid methodology adapted to deal with the asymmetric
nature of costs, more concretely, to solve the Asymmetric Capacitated Vehicle
Routing Problem.

• The adaptation of the developed methodology considering heterogeneous fleets for
solving the Asymmetric and Heterogeneous Vehicle Routing Problem.
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Synopsis

The present thesis is structured in two parts, motivated by the fact that not all ap-
proaches work efficiently in both Symmetric and Asymmetric problems (Rodŕıguez &
Ruiz, 2012b). Part I tackles the followings Symmetric Problems: the Traveling Sales-
man Problem, the Capacitated Vehicle Routing Problem, and the Home Health Care
problem. Part II discusses Asymmetric Problems: the Asymmetric Traveling Salesman
Problem, the Asymmetric Capacitated Vehicle Routing Problem, and the Asymmetric
and Heterogeneous Vehicle Routing Problem.

The Symmetric Problems are structured as follows. Chapter 1 describes the Traveling
Salesman Problem. It includes a description of its variants and applications, in addition
to a review of the state of the art on TSP. It also includes an experiment of the behavior of
the Subgradient convergence in a TSP problem. Then, our proposed Tailored Lagrangian
Metaheuristic to solve the Traveling Salesman Problem is presented. It is described
together with some unpublished results which are compare with optimal or best known
solutions. The next two chapters (2-3) are applications of our proposed metaheuristic
which has been included in hybrid methodologies using Constraint Programming in
order to solve these complex problems. In chapter 2, the Capacitated Vehicle Routing
Problem is solved including our metaheuristic in a Multi-Start Variable Neighborhood
Descent approach. This chapter introduces a literature review on CVRP, and explains
the adopted approach in detail. Finally, it is presented some numerical experiments
and the main benefits of the presented approach are discussed. Chapter 3 describes
an application concerning Home Health Care in the city of Ferrara, Italy, and how it
can be addressed with a hybrid methodology using our metaheuristic and Constraint
Programming. This problem is focused on societal needs and the balance with human
and economic aspects.

The Asymmetric Problems are structured as follow. Chapter 4 adapts the proposed
Tailored Lagrangian Metaheuristic to the Asymmetric Traveling Salesman Problem. It
discusses the difference respect to the symmetric problem and presents unpublished re-
sults. Chapter 5 proposes a hybrid methodology for solving the Asymmetric Capacitated
Vehicle Routing Problem. It combines a randomized version of a well-known Savings
heuristic with local searches specifically adapted to deal with the asymmetric nature of
costs. A computational experiment allows us to discuss the efficiency of this approach.
Chapter 6 applies this hybrid methodology to the Asymmetric and Heterogeneous Vehi-
cle Routing Problem and analyzes how routing costs vary when slight departures from
the homogeneous fleet assumption are considered.

Finally, conclusions and contributions of this thesis together with related publications
and future lines of research are presented in last chapter on page 133.
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Lagrangian Relaxation

Lagrangian Relaxation (LR) is a well-known method to solve large-scale combinatorial
optimization problems, which is commonly used to generate lower bounds. It was named
for the French mathematician Joseph Louis Lagrange, presumably due to the occurrence
of what we now call Lagrange multipliers in his calculus of variations, (Boyer, 1985). LR
works by moving hard-to-satisfy constraints into the objective function, associating a
penalty in case they are not satisfied.

LR is strongly related to the earlier decomposition method of Dantzig and Wolfe
(1960). However, the origin of the Lagrangian approach, as it exists today, was developed
by Held and Karp (1970, 1971). An excellent introduction to LR can be found in
(Fisher, 2004) along with a discussion of some early examples of Lagrangian heuristics.
For a theoretical review of LR and a review of some methods for the dual problem
like the Subgradient algorithm, dual ascent methods, cutting plane method and column
generation, see (Guignard, 2003).

LR is useful for exploiting the structure of the problem to reduce considerably the
problem complexity. Thus, the Lagrangian Problem needs less computational effort to
find solutions. However, one of its main drawbacks consist on finding optimal dual
variables normally called Lagrangian multipliers. Furthermore, for a given problem,
there may exist different Lagrangian relaxations depending on the relaxed constraint.

When the Lagrangian Problem can be formulated as an Integer Linear Problem or
a Mixed Integer Problem, then it can be solved in a optimal way by embedding LR
into the Branch-and-Bound (Geoffrion, 1974) or the Branch-and-cut (Edmonds, 1967)
approaches. These methods provide both upper and lower bounds to the problem, and
ensure that the optimal solution is found. However, if the problem is NP-hard, large
problems are not expected to be solved in a reasonable time.

In other cases, especially when the dual function is non-differentiable, some tech-
niques can be useful to maximize the dual function of the Lagrangian relaxation, such
as the subgradient, bundle and surrogate. This techniques are simple and easy to im-
plement and avoid using linear programming approaches. The Lagrangian multipliers
start with initial values and direct them toward the optimal value, this direction is called
subgradient. However, these techniques are often terminated before an optimal value is
attained, offering only a lower bound of the best objective value.

7



8 Methodologies

Within these techniques, the most widely used is the Subgradient Optimization al-
gorithm (Shor, 1985). If the relaxed problem can be minimized obtaining a subgradient,
then it guarantees convergence where the Lagrangian multipliers are updated along the
subgradient direction. One of the main drawbacks, remarked by Bertsekas (1999), is the
need of solving optimally all the subproblems, which may be slow to be of real practical
interest.

On the other side, the Surrogate Gradient technique needs only an approximate
solution of the subproblem, so it may be desirable to obtain a proper direction with less
effort. Nevertheless, it does not guarantee that the best bound obtained is equal to the
optimal value (Zhao et al., 1999).

Finally, the Bundle technique can provide better directions than the Subgradient
Algorithm. However, according to Hiriart-Urruty and Lemarechal (1993), to obtain
each direction require solving the subproblem many times. Subgradients from past
iterations are accumulated in a bundle, and a trial direction is obtained by quadratic
programming based on the bundle information, for more information see (Kiwiel, 1996).
This technique has not been of our interest given that it can increase the computational
effort.

Literature review and Applications

Lagrangian Relaxation has been widely used in diverse applications, figure 2 reprinted
a table from Fisher (2004, p. 1864). This table shows the first applications of LR in
the 70’s. It can be noticed how for one problem there may exist different Lagrangian
relaxations depending on the relaxed constraint. Within this section a breve explanation
of the most prominent applications will be given, we focus on the use of LR in both exact
methodologies and heuristic approaches.

Regarding to Manufacturing Scheduling Problems, Luh and Hoitomt (1993) achieve
good decomposition of three scheduling problems relaxing one or more sets of constraints:
the first problem considers scheduling single-operation jobs in identical machines; the
second problem deals with scheduling multiple-operation jobs with simple fork / join
precedence constraints on identical machines; lastly, the Job Shop Problem is consid-
ered, where multiple-operation jobs with general precedence constraints are scheduled
on multiple machine types. Nishi et al. (2010) address a LR-based method with cut
generation for solving the hybrid flowshop scheduling problem to minimize the total
weighted tardiness. Mao et al. (2014) study a real-world hybrid flowshop problem aris-
ing from the steel-making continuous casting process, which is the bottleneck of the
iron and steel production process. Their paper is based on a time-index formulation
and machine capacity relaxation, three LR subproblems are presented for addressing
this scheduling problem: job-level problems, batch-level problems, and machine-level
problems.

To enable efficient transportation in manufacturing systems, it is necessary to gen-
erate route planning of multiple Automated Guided Vehicles (AGVs) efficiently without
collision among them. A mixed integer programming model for AGVs planning and con-
trol to minimize the total material handling cost is developed in (M. Chen, 1996) using a
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Table 1           Applications of Lagrangian Relaxation

Problem  Researchers  Lagrangian problem 

Traveling Salesman
Symmetric  Held and Karp (1970, 1971)  Spanning tree

 Helbig Hansen and Krarup (1974)  Spanning tree
Asymmetric  Bazarra and Goode (1977)  Spanning tree
Symmetric  Balas and Christofides (1976)  Perfect 2-matching
Asymmetric  Balas and Christofides (1976)  Assignment

Scheduling
n|m  Weighted tardiness  Fisher (1973)  Pseudo-polynomial

dynamic programming
1 Machine weighted tardiness  Fisher (1976)  Pseudo-polynomial DP
Power generation systems  Muckstadt and Koening (1977)  Pseudo-polynomial DP

General IP 
Unbounded variables  Fisher and Shapiro (1974)  Group problem
Unbounded variables  Burdet and Johnson (1977)  Group problem
0-1 variables  Etcheberry et al.(1978)  0-1 GUB

Location 
Uncapacitated  Cornuejols et al.(1977)  0-1 VUB

Erlenkotter (1978)  0-1 VUB
Capacitated  Geoffrion and McBride (1978)  0-1 VUB
Databases in computer networks  Fisher and Hochbaum (1980)  0-1 VUB

Generalized assignment
Ross and Soland (1975)  Knapsack
Chalmet and Gelders (1976)  Knapsack, 0-1 GUB
Fisher et al.(1980)  Knapsack

Set covering-partitioning
Covering  Etcheberry (1977)  0-1 GUB
Partitioning  Nemhauser and Weber (1978)  Matching

Figure 2: An original Table 1 from Fisher (2004, p. 1864). Copyright c©2004 INFORMS.

decomposition approach following the LR method. Rajagopalan et al. (2004) tackle the
problem of simultaneously locating the pick-up/drop-off points along the periphery of a
cell and determining the flowpath for an AGV based material handling system. Nishi et
al. (2005) propose a distributed route-planning method for multiple mobile robots using
an augmented Lagrangian decomposition and coordination technique. Their approach
was also proposed for a distributed decision making system for integrated optimization
of production scheduling and distribution planning, (Nishi et al., 2007).

The successful commercialization in the electric power industry depends on Power
Generation Systems which is capable of capturing and producing power efficiently. In
(Nowak & Römisch, 2000), a stochastic LR was applied for the weekly cost-optimal
generation of electric power in a hydro-thermal generation system under uncertain load.
Papavasiliou et al. (2011) describe wind power generation in terms of a representative
set of appropriately weighted scenarios; they present a LR dual decomposition algorithm
for solving the resulting stochastic problem. Z. Li and Shahidehpour (2003) describe a
scheduling method for representing the thermal stress of turbine shafts as ramp rate
constraints in the thermal commitment and dispatch of generating units using LR for
optimal generation scheduling.

The Facility Location Problem is one of the strategic logistical drivers within the
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supply chain which consist on locating a set of facilities and how to satisfy customers’
demands from these open facilities so that the total cost which includes the facility
set up cost as well as the transportation cost is minimized. Nezhad et al. (2013) use
a LR heuristic for the uncapacitated single-source multi-product facility location prob-
lem. Gendron et al. (2013) present a Lagrangian-based Branch-and-Bound algorithm for
the two-level uncapacitated facility location problem with single-assignment constraints.
Escobar et al. (2014) propose a granular variable Tabu Neighborhood Search for the ca-
pacitated location-routing problem which uses LR method to group the customers into
clusters in the location phase. Jena et al. (2014) propose a LR heuristic for large-scale
dynamic facility location with generalized modular capacities, that is, a multi-period
facility location problem in which the costs of capacity changes are defined for all pairs
of capacity levels.

The usage of the Internet has grown substantially in recent times, this has resulted in
high volumes of data traffic. Replication of content and placing them on multiple servers
is a method that is used to reduce latency. The Data Location Problem in information
networks deals with placing content so as to achieve better cost performance. Gavish and
Pirkul (1986) propose a branch-and-bound algorithm where the bounds are computed
by LR followed by subgradient optimization for the data allocation problem and server
location problem. Nguyen et al. (2005) propose the Overlay Distribution Network as
a cost-effective means to deliver the entertainment services which are expected to be
increasingly interactive, on demand and personalized. They solved this problem with
an efficient LR heuristic where content clustering is employed to improve the heuristic
run time. Applegate et al. (2010) find a near-optimal solution with orders of magnitude
speedup relative to solving even the LP relaxation via standard software for the optimal
content placement for a large-scale video-on-demand system.

Given certain jobs and certain agents, the Generalized Assignment Problem deals
with assigning each job to exactly one agent satisfying a resource constraint for each
agent in order to determine a minimum assignment cost. Posta et al. (2012) propose an
exact algorithm for solving the generalized assignment problem by a simple depth-first
Lagrangian branch-and-bound method, improved by variable-fixing rules to prune the
search tree. Wu et al. (2014) propose a Lagrangian-based branch-and-cut algorithm for
the generalized assignment problem with min-max regret criterion under interval costs.
Hanada and Hirayama (2011) use a distributed LR protocol for the over-constrained
generalized mutual assignment problem where, with no centralized control, multiple
agents search for an optimal assignment of goods that satisfies their individual knapsack
constraints.

In a cross-dock, goods are unloaded from incoming trucks, consolidated according
to their destinations, and then, loaded into outgoing trucks; all these with little or no
storage in between, the objective is minimizing the total material handling cost. Nassief
et al. (2015) present a new mixed integer programming formulation which is embedded
into a Lagrangian relaxation that exploits the special structure of the problem to obtain
bounds on the optimal solution value.

The Set Covering Problem (SCP) has been used as model in relevant applications, in
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particular crew scheduling, where a given set of trips has to be covered by a minimum-
cost set of pairings, i.e., a pairing is a sequence of trips that can be performed by a
single crew. The most successful heuristic algorithms for large scale SCP’s are based on
LR, see (Caprara et al., 1996, 2000). Prins et al. (2006) deals with the bi-objective set
covering problem, the proposed approach is a two-phase heuristic method which has the
particularity to be a constructive method using the primal-dual Lagrangian relaxation.

With respect to the Traveling Salesman Problems and Vehicle Routing Problems
(VRP), there has been some authors who use LR to find lower bounds, (Zamani & Lau,
2010; Smith et al., 1990). Nevertheless, we are interested in those who have exploited
LR as exact methodologies or in heuristic approaches. It can be found a literature review
on the use of LR for the TSP in chapter 1.

Balas and Christofides (1981) describe an algorithm for the Asymmetric Traveling
Salesman Problem obtaining a Lagrangian relaxation based on the assignment problem.
Their approach can be adapted to the symmetric TSP by using the 2-matching problem
as a Lagrangian dual problem.

The Generalized Traveling Salesman Problem (GTSP) assumes that the nodes have
been grouped into mutually exclusive and exhaustive node sets. It has to be found a
minimum cost cycle which includes exactly one node from each node set. Fischetti et al.
(1997a) apply Subgradient algorithm relaxing the fan inequalities plus the degree con-
straints. Moreover, for each tour among clusters found during the Lagrangian relaxation,
they obtain a new feasible solution through procedure RP2. For the asymmetric GTSP,
Laporte et al. (1987) relax the subtour prevention constraints and a set of constraints
which ensure that each set is visited. The relaxed problem is solved as an assignment
problem in a branch-and-bound algorithm. Using the same relaxation, Noon and Bean
(1991) employs a Lagrangian relaxation to compute a lower bound and a heuristically
determined upper bound are used to identify and remove arcs and nodes which are
guaranteed not to be in an optimal solution.

Desrosiers et al. (1988) consider the problem of finding the minimum number of ve-
hicles required to visit once a set of nodes subject to time window constraints, for a
homogeneous fleet of vehicles located at a common depot. Their present an optimal
solution approach using the augmented Lagrangian method. Two Lagrangian relax-
ations are proposed: in the first one, the time constraints are relaxed producing network
subproblems which are easy to solve, but the bound obtained is weak; in the second re-
laxation, constraints requiring that each node be visited are relaxed producing shortest
path subproblems with time window constraints and integrity conditions.

The Plate-Cutting Traveling Salesman Problem arises when parts are cut from large
plates of metal or glass, it requires the determination of a minimum-length tour such that
exactly one point must be visited on each given polygon. (Hoeft & Palekar, 1997) present
a Lagrangian decomposition of the problem and develop lower bounds and heuristics
based on this decomposition which are embedded in a variable r-opt heuristic for the
overall problem.

The Train Timetabling Problem aims at determining a periodic timetable for a set of
trains that does not violate track capacities and satisfies some operational constraints.
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Caprara et al. (2002) propose a graph theoretic formulation for the problem using a
directed multigraph. A novel feature of their formulation is that the variables in the
Lagrangian relaxed constraints are associated only with nodes allowing a considerable
speed-up in the solution of the relaxed problem. The relaxation is embedded within a
heuristic algorithm which makes extensive use of the dual information associated with
the Lagrangian multipliers.

For solving disruptions in the vehicle routing problem which are caused by vehicles
breakdown or traffic accidents in the logistic distribution system, an urgency vehicle
scheduling scheme is established based on the theory of disruption management. Ac-
cording to the characteristics of the problem, X. Wang et al. (2010) apply a Lagrangian
relaxation approach to simplify and divide the Urgent Multi-Depot Vehicle Routing Prob-
lem into two parts. The column generation and saving approach method are used re-
spectively to obtain the solution, and then the subgradient optimization method is used
to iterate to get the Lagrangian multiplier. Moreover, in order to solve the infeasibility
problem caused by the lack of convergence of the LR, an insertion algorithm is adopted
to obtain a feasible solution of the original problem.

The Vehicle Routing Problem with Time Windows is a generalization of the VRP.
A solution to the this problem must ensure that the service of any customer starts
within a given time interval, a so-called time window. Fisher et al. (1997) present a
Lagrangian decomposition in which variable splitting is used to divide the problem into
two subproblems: a semi-assignment problem and a series of shortest path problems with
time windows and capacity constraints. Kohl and Madsen (1997) propose a method
based on a Lagrangian relaxation of the constraint set requiring that each customer
must be served. They solved the Lagrangian dual problem using a combination of the
Subgradient algorithm and the Bundle algorithm. Kallehauge et al. (2006) consider the
Lagrangian relaxation of the constraint set requiring that each customer must be served
by exactly one vehicle yielding a constrained shortest path subproblem. They present
a stabilized cutting-plane algorithm within the framework of linear programming for
solving the associated Lagrangian dual problem.

Lagrangian Dual Problem

Lagrangian relaxation is a method well suited for problems where the constraints can
be divided into two sets: constraints under which the problem is solvable very easily;
and constraints that make it very hard to solve. The main idea is to relax the problem
by removing these second constraints and putting them into the objective function.
Consider the following Integer Linear Problem (ILP):

minx cx

s.t. Ax ≥ b (1)

Dx ≥ e (2)

x ∈ Zn+
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where x is n × 1, b is m × 1, e is k × 1, and all other matrices have conformable
dimensions. Let zP be the optimal value of the ILP problem.

It is assumed that the constraints of this problem 1 and 2 are independent. Moreover,
supposing that the set of constraints 2 can be optimized very easily whereas the set of
constraints 1 makes the problem intractable.

The Lagrangian Dual problem obtained from this ILP problem by taking into the
objective function the inequality Ax ≥ b (1) is:

L∗ = max
u∈Rm

L(u)

with Lagrangian function:

L(u) = minx cx+ u(Ax− b)
s.t. Dx ≥ e

x ∈ Zn+

This Lagrangian Dual problem relaxes a set of constraints and introduce a Lagrangian
multiplier u for every constraint. Given that the relaxed set of constraints 1 is “greater
than or equal to”, the Lagrangian multiplier vector u is of appropriate dimensions m and
non-negative components. Note also that the original ILP is a minimization problem,
so its Lagrangian dual problem maximizes.

The original ILP problem can be relaxed into different problems depending on the
relaxed constraints. If the chosen relaxation exploits the structure of the problem, the
resulting dual problem can efficiently compute the optimal value for a fixed vector u and
then it is easier to solve than the original problem.

Nemhauser and Wolsey (1988) proved that being L(u) a relaxation of the original
problem for all u ∈ Rm, then:

• The feasible region is at least as large.

• The objective value is at least as small in L(u) as for all feasible solutions in original
problem, i.e., L(u) ≤ zP .

Figure 3 is a copy of Figure 1 from Hooker (2008, p. 1697) and depicts the previous
proposition:

• The feasible region of the relaxed problem, S′ = {x : Dx ≥ e}, is at least as large
as the feasible region of the original problem, S = {x : Ax ≥ b,Dx ≥ e}.

• For a given vector u, the penalized objective function f ′(x) = cx+ u(Ax− b) is at
least as small as the original objective function f(x) = cx in the region S.

Finally, Nemhauser and Wolsey (1988) proved the next theorem: If x ∈ Zn is an
optimal solution of L(u), it is feasible respect the original problem, and x and u are
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Figure 3: Epigraph of an optimization problem min{f(x) : x ∈ S} (darker shaded area)
and of a relaxation min{f ′(x) : x ∈ S′} (darker and lighter shaded areas). Reprinted
from Hooker (2008, p. 1697, Figure 1). Copyright c©2009 SPRINGER.

complementary, then x is optimal solution of the original problem. In other words, if the
Lagrangian multiplier u is the optimal solution of L∗ and x is feasible respect 1, then x
is the optimal solution of the original problem, and L∗ = ZP .

Nemhauser and Wolsey (1988) also proved that the dual objective function L(u) is
a piecewise function, but non-differentiable. If the original problem minimizes, then the
Lagrangian dual problem is a maximization problem, L∗ = max

u∈Rm
L(u), and the function

L(u) is concave. Whereas, if the original problem maximizes, then the Lagrangian dual
problem is a minimization problem and the function is convex, see figure 4 from Fisher
(2004, p. 1865).

Subgradient Algorithm

The most widely used approach to solve the Lagrangian dual problem is the Subgradient
Algorithm, also known as Subgradient Optimization. This method provides from the
method for finding lower bounds of Held and Karp (1971). That is designed to solve the
problem of maximizing a piecewise linear concave function:

max
u∈Rm

L(u), L(u) = min
x∈S

cx+ u(Ax− b)

where S = {x ∈ Zn+ | Dx ≥ e}.
A vector γ ∈ Rm is called a subgradient at u of a concave function L : Rm → R if

it satisfies L(u) ≤ L(v) + γ(v − u) for all v ∈ Rm. A subgradient is a straightforward
generalization of a gradient. Nemhauser and Wolsey (1988) proved that:
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Figure 4: Form of the Lagrangian dual function L(u): a concave piecewise non-
differentiable function. Reprinted from Fisher (2004, p. 1865, Figure 1). Copyright
c©2004 INFORMS.

• The vector (Ax − b) is a subgradient at any u ∈ Rm for which x is an optimal
solution of L(u). Any other subgradient is a convex combination of theses primitive
subgradient.

• x is optimal in the original problem if and only if γ = 0.

The Algorithm 1 shows the Subgradient Algorithm. Given an initial value u0 a
sequence {uk} is generated by the rule uk+1 = uk+λkγ

k where xk is an optimal solution
of the relaxed problem and λk is a positive scalar step size.

Algorithm 1 The Subgradient Algorithm

Initialize the multiplier u0

while the subgradient γk 6= 0 do
Solve the Lagrangian dual problem L(uk) with optimal solution xk

Check the subgradient γk = Axk − b
Update the step size λk
Update the multiplier uk+1 = uk + λkγ

k

k ← k + 1
end while

As explained before, one of the main drawbacks is the need of solving optimally the
Lagrangian dual problem, which may be slow to be of real practical interest, (Bertsekas,
1999).

Convergence Criteria

The Subgradient algorithm is easy to program, the main difficulty of this algorithm lays
on choosing a correct step size λk in order to ensure algorithm’s convergence, (Reinelt,



16 Methodologies

1994). Convergence is guaranteed in the following rules:

a) If
∑

k λk → ∞, and λk → 0 as k → ∞, then L(uk) → L∗ the optimal value of the
Lagrangian Dual problem.

b) If λk = λ0ρ
k for some parameter ρ < 1, then L(uk)→ L∗ if λ0 and ρ are sufficiently

large.

c) If LB ≤ L∗ and λk = δk
LB − L(uk)

‖ γ ‖2
with 0 < δk < 2, then L(uk) → LB, or the

algorithm finds uk with LB ≤ L(uk) ≤ L∗ for some finite k.

The rule (a) guarantees convergence, but it is too slow to be of real practical interest.
The rule (b) leads to faster convergence, but if the initial values of λ0 and ρ are not
sufficiently large, the geometric series λ0ρ

k will tend to zero too rapidly, and the sequence
{uk} will converge before reaching an optimal point.

In practice, rather than using rule (b) at each iteration, other two approaches can
be considered: a geometric decrease can be achieved by reducing the value of λk every
ν iterations, where ν is some natural problem parameter, for example, the number of
variables; the second approach is reducing every ν iterations without improving the dual
lower bound, aiming not to change the step size if it has a good convergence, and make
a change if it has slow convergence.

Given that a dual lower bound LB is typically unknown, and in practice, it is more
likely to know a primal upper bound UB ≥ L∗. The step size rule (c) is used most
commonly with an upper bound UB instead of LB. However, if UB � L∗, the term
UB −L(uk) in the numerator will not tend to zero, and so the sequences {uk}, {L(uk)}
will not converge. The convergence holds if the parameter UB is a tight upper bound.

Stopping Criteria

The Subgradient algorithm reaches the optimal value when γ = 0. Other stopping
criteria can be chosen: the criteria based on CPU time or number of iterations; and
the criterion given by λk < ε, that is, the step size is so small that does not reach new
values.
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Metaheuristics

The problems addressed in this thesis are NP-hard and time-consuming combinatorial
problems. Two major approaches are traditionally used to tackle these problems: exact
methods and metaheuristics. Exact methods find exact solutions but are often im-
practical as they are extremely time-consuming for real problems. On the other hand,
metaheuristics provide suboptimal (sometimes optimal) solutions in a reasonable time
satisfying the deadline imposed in the industrial field to be met.

The naming metaheuristic was introduced by Glover and Laguna (1997), a meta-
heuristic “refers to a master strategy that guides and modifies other heuristics to produce
solutions beyond those that are normally generated in a quest for local optimality”.

An excellent review of this topic can be found in (Voß, 2001), the author concludes
that a metaheuristic is “an iterative master process that guides and modifies the opera-
tions of subordinate heuristics to efficiently produce high-quality solutions”.

Alba et al. (2009) analyze real-world problems and modern optimization techniques
to solve them. They expose that the metaheuristic fields of application range from
combinatorial optimization, bioinformatics, telecommunications to economics, software
engineering, etc., which need fast solutions with high quality. The authors describe some
fundamental characteristics of metaheuristics as follows:

• The goal is efficient exploration of the search space to find (nearly) optimal solution.

• Metaheuristic algorithms are usually nondeterministic.

• They may incorporate mechanisms to avoid getting trapped in confined areas of
the search space.

• The basic concepts of metaheuristics permit an abstract-level description.

• Metaheuristics are not problem specific.

The family of metaheuristics includes Greedy Randomized Adaptive Search Proce-
dure, Variable Neighborhood Search, Tabu Search, Ant Systems, Evolutionary methods,
Genetic Algorithms, Scatter Search, Neural Networks, Simulated Annealing, among oth-
ers.

Greedy Randomized Adaptive Search Procedure (GRASP) is a multi-start or itera-
tive process in which each iteration consists of two phases: a construction phase –in which
a feasible solution is produced– and a local search phase –in which a local optimum in
the neighborhood of the constructed solution is sought. The best overall solution is kept
as the result. In the construction phase, a feasible solution is iteratively constructed,
one element at a time. At each construction iteration, the choice of the next element
to be added is determined by ordering all candidate elements in a candidate list accord-
ing to a greedy function. This function measures the (myopic) benefit of selecting each
element. The heuristic is adaptive because the benefits associated with every element
are updated at each iteration of the construction phase to reflect the changes brought
on by the selection of the previous element. The probabilistic component of a GRASP
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is characterized by the random choice of one of the best candidates in the list, but not
necessarily the top candidate. This choice technique allows for different solutions to be
obtained at each GRASP iteration. For a review see (Feo & Resende, 1995; Resende,
2008; Festa & Resende, 2009).

Variable Neighborhood Search (VNS), introduced for the first time by Mladenović
and Hansen (1997), explores increasingly distant neighborhoods of the current incumbent
solution, it exploits systematically the idea of neighborhood change, both in the descent
to local minima and in the escape from the valleys which contain them. A review of this
method can be found in (P. Hansen & Mladenović, 2003), together with a description of
its most important variants. VNS is used for the TSP and its extensions, some relevant
works are: a basic VNS for the euclidean TSP in (P. Hansen & Mladenović, 2006), a
guided VNS methods for the asymmetric TSP in (Burke et al., 2001), and a VNS for the
Pickup and Delivery in (Carrabs et al., 2007). Interesting results have been obtained
even applying the simplest VNS algorithms, some examples in VRP researcher are Hasle
and Kloster (2007) and Bräysy (2003).

One of the most important variants of the VNS is the Variable Neighborhood Descent
(VND) method, its local search process performs an exhaustive exploration for each
neighborhood changing to the next neighborhood in a deterministic order. All improving
movements are recorded and sorted, so the best neighbor is constructed applying all
independent changes in descending order. This way, solution values are improved faster
than applying single movements. Two relevant works are a VND to the VRP with
backhauls in (Crispim & Brandao, 2001) and a VND to take advantage of different
neighborhood structures for the VRP in (Rousseau et al., 2002), between others.

Large neighborhood Search (LNS), which was proposed by (Shaw, 1998), is becoming
more and more popular to solve routing problems. The idea is a local search that
adopts a large neighborhood which makes less likely to fall in a local minimum. In LNS
the neighborhood is implicitly defined by methods (often heuristics) which are used to
destroy and repair an incumbent solution. For example, Rousseau et al. (2002) propose
a LNS in which CP explores a neighborhood with three operators. These operators are
combined in VND and a two phase process. Bent and Van Hentenryck (2004) describe
an LNS heuristic for the VRPTW. Furthermore, Pisinger and Røpke (2007) propose a
unified heuristic that works for several variants of routing problems and that uses an
Adaptive LNS.

Tabu Search, originally proposed by Glover (1986), pursue local search whenever it
encounters a local optimum by allowing non-improving moves; cycling back to previously
visited solutions is prevented by the use of memories, called tabu lists, that record
the recent history of the search, a key idea that can be linked to artificial intelligence
concepts. A review on this field can be found in (Glover & Laguna, 1997, 2013). Some
important researches related to VRPs are (Gendreau et al., 1999; Crispim & Brandao,
2001; Cordeau & Laporte, 2004; Brandao, 2011).

Ant Systems approach or Ant Colony Optimization, initially proposed by Dorigo
and Gambardella (1997), is a natural metaphor on which it is based on how real ants
are capable of finding the shortest path from a food source to their nest without using
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visual clues by exploiting pheromone information. Some relevant works are (Bell &
McMullen, 2004; Delisle et al., 2005, 2009; S. M. Chen & Chien, 2011; Uchida et al.,
2012; Mavrovouniotis & Yang, 2013; Dorigo & Gambardella, 2014).

Genetic Algorithms are population based search techniques which mimics the princi-
ples of natural selection and natural genetics laid by Charles Darwin, that was proposed
by Holland (1975). R. Cheng and Gen (1994) described a greedy selection crossover
operator, which is designed for path representation and performed at gene level. It can
utilize local precedence and global precedence relationship between genes to perform in-
tensive search among solution space to reproduce an improved offspring. Diverse authors
have contribute to improve the Genetic algorithms since then as (Nagata & Kobayashi,
2013), (Gen & Cheng, 2000), (Ray et al., 2007), (Deep & Mebrahtu, 2011), between
others authors.

Most current metaheuristics are primal-only methods, except for the work of Boschetti
and Maniezzo (2009), they propose to investigate the possibility of reinterpreting de-
compositions, with special emphasis on the related Benders and Lagrangian relaxation
techniques, from a metaheuristic perspective. Other prominent authors are Marinakis et
al. (2005, 2009), they present a hybrid method for solving the TSP proposing a combi-
nation of genetic algorithms, GRASP and LR. Constraints requiring that each node has
two incident edges are relaxed obtaining a minimum spanning tree as the Lagrangian
dual problem.

Most basic metaheuristics are sequential. Furthermore, some authors propose Paral-
lel Metaheuristics to reduce the search time and to improve the quality of the solutions
provided. For a discussion on how parallelism can be mixed with metaheuristics, the
reader has several sources of information in the literature (Alba et al., 2013; Alba, 2005).
Some works related to the problems addressed in this thesis are: a master-slave model
for parallel Ant Colony Optimization has been implemented in multicore processors by
Delisle et al. (2005) for the TSP; a multicore multi-population method for Ant Colony
Optimization have also been proposed by Delisle et al. (2009) for the TSP; an algo-
rithm defined by Dorronsoro et al. (2007) for the CVRP uses a master-slave model to
distribute the most consuming operations (fitness evaluation and application of the op-
erators) among the different processors of the parallel platform that is a grid system;
and our own work presented in (Guimarans et al., 2013) which proposes a Multi-Start
VND structure whose local search process is supported by Constraint Programming and
our Tailored Lagrangian Metaheuristic.
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Chapter 1

Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is probably the best known and extensively stud-
ied problem in the field of Combinatorial Optimization. Reinelt (1994) expressed that
this problem is undoubtedly the most prominent member of the rich set of combinatorial
optimization problems. It is one of the few mathematical problems that frequently ap-
pears in the popular scientific press (Cipra, 1993) or even in newspapers (Kolata, 1991).
It has a long history, dating back to the 19th century (A. Hoffman & Wolfe, 1985).

According to Bellman (1962), the TSP is the following: “A salesman is required
to visit once and only once each of n different customers starting from a depot, and
returning to the same depot. What path minimizes the total distance traveled by the
salesman?” .

Given a set of cities along with the cost of travel between each pair of them, the
TSP consists on finding the cheapest way of visiting all the cities and returning to the
starting point. The “way of visiting all the cities” is simply the order in which the cities
are visited; the ordering is called a tour or circuit through the cities, (Applegate et al.,
2006).

According to K. L. Hoffman et al. (2013), the TSP has commanded much attention
of mathematicians and computer scientists specifically because it is so easy to describe
and so difficult to solve. Furthermore, the study of this problem has attracted many
researchers from different fields, from both, theoretical approach and practical appli-
cations. Due to its characteristics, there is a vast amount of literature on it, as it is
introduced on section 1.3.

Some of the first applications were: Whizzkids ’96 Vehicle Routing, which problem
consists of finding the best collection of routes for 4 newsboys to deliver papers to their
120 customers; the tour through MLB Ballparks where a baseball fan found the optimal
route to visit all 30 Major League Baseball parks; the touring airports to find shortest
routes through selections of airports in the world; USA trip which involved a chartered
aircraft to visit cities in the 48 continental states, to mention some.

Nowadays, the TSP has several applications in addition to its original formulation,
such as vehicle routing, planning, logistics, manufacturing, flow shop scheduling, genome
sequencing, DNA universal strings, starlight interferometer program, scan chain op-
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timization, coin collection scheduling, designing sonet rings, power cables, computer
wiring, and frequency assignment in communication networks, among the most impor-
tant ones.

Due to the wide range of applications and the complexity of the TSP problem,
innovative and efficient algorithms are needed. Therefore, this chapter describes our
proposed approach called Tailored Lagrangian Metaheuristic (TLM) which was intro-
duced in (Herrero et al., 2010b), the results presented in this chapter are unpublished
and improve the ones of our publication. The proposed metaheuristic is based on the
Lagrangian Relaxation applied to the TSP. The presented approach combines the Sub-
gradient Optimization algorithm with a heuristic to obtain a feasible primal solution
from a dual solution. Moreover, it has been introduced a parameter to improve al-
gorithm convergence. The main advantage is based on the iterative evolution of both
upper and lower bounds to the optimal cost, providing a feasible solution in a reasonable
number of iterations with a tight gap between the primal and the optimal cost. This
metaheuristic provides a near-optimal solution in a reasonable time within a tight gap.

1.1 Problem Definition

The problem was first formulated by Karl Menger (1930) and a large number of heuristics
and exact methods are known for its solution, some instances with thousands of cities
can be solved.

The TSP belongs to the class of NP-Hard optimization problems (Lenstra & Kan,
1981). This means that no polynomial time algorithm is known for its solution. Like
many combinatorial NP problems, there is no efficient algorithm to solve the TSP that
has been proved to solve correctly all case scenarios, and whose worst-case running time
is bounded by a polynomial time function which depends on the scenarios’ size.

The symmetric TSP can be considered as a routing network, represented by a com-
plete undirected graph G = (I, E), connecting the customers set I = {1, 2, ..., n} through
a set of undirected edges E = {(i, j)|i, j ∈ I}. The edge e = (i, j) in E has associated
a travel distance ce, it is assumed that distances satisfy the triangular inequality, that
means ce is supposed to be the lowest cost route connecting node i to node j. Note that
it is not a capacitated problem, i.e., customers have not a demand to satisfy and the
vehicle has not a limited capacity.

Solving the TSP consists on determining a route whose total travel distance is mini-
mized, each customer is visited exactly once and the route starts and ends at the depot
(i = 1).

The classical formulation requires defining the binary variable xe to denote that the
edge e = (i, j) ∈ E is used in the route. That is, xe = 1 if customer j is visited
immediately after i; otherwise xe = 0. Thus, TSP can be mathematically formulated as
follows:

min
∑
e∈E

cexe (1.1)
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subject to ∑
e∈δ(i)

xe = 2 , ∀i ∈ I (1.2)

∑
e∈E(S)

xe ≤| S | −1 , ∀S ⊂ I , | S |≤ 1

2
| I | (1.3)

xe ∈ {0, 1} , ∀e ∈ E (1.4)

where

• δ(i) = {e ∈ E : ∃j ∈ I, e = (i, j) or (j, i)} represents the set of arcs whose starting
or ending node is i.

• E(S) = {e = (i, j) ∈ E : i, j ∈ S} represents the set of arcs whose nodes is in the
subset S of vertices.

• n = |I|

• ce is the associated cost to the undirected edge eij(eji).

Constraint (1.2) states that every node i ∈ I must be visited once, that is, every
customer must have two incident edges. Subtour elimination constraint (1.3) states that
the route must be a Hamiltonian path, so it can not have any subcycle, (C. Miller et al.,
1960).

A Hamiltonian path is a path that traverses every vertex of a connected graph once
and only once, i.e., each customer is visited exactly once. A Hamiltonian cycle is a cycle
that visits each vertex exactly once (except for the vertex that is both the start and end,
which is visited twice). Hamiltonian paths and cycles are named after William Rowan
Hamilton who invented the “Icosian Game”, now also known as Hamilton’s puzzle, which
involves finding a Hamiltonian cycle in the edge graph of the dodecahedron. See figures
1.1 and 1.2.

Karp (1972) proved that Hamiltonian circuit is NP-complete. Given that the TSP
can be formulated as finding a Hamiltonian circuit T whose weight

∑
e∈E(T ) ce is min-

imum, it can be proved that the TSP is strongly NP-hard. The proof can be found in
(Korte & Vygen, 2012).

In other words, it is evident that if the TSP contains a Hamiltonian circuit, then it
is a solution. There are three kind of graph which ensure a solution:

• A symmetric and complete graph G.

• A symmetric, connected graphG{I, E} which obeys | I |= n > 2 and degree(i) ≥ n
2

∀i ∈ I.

• A symmetric graph G{I, E}, which | I |≥ 3 and degree(i) + degree(j) ≥| I |
∀ non-adjacent i, j ∈ I.

The proof can be found in (Basart, 2003). Nevertheless, the literature has been focus
on symmetric and complete graphs.
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Figure 1.1: An original copy of Sir William Rowan Hamilton’s famous “Icosian Game”
in The Puzzle Museum. Copyright @ 2015 The Puzzle Museum James Dalgety.

Figure 1.2: “Hamiltonian path”. Copyright under CC BY-SA 3.0 via Wikimedia Com-
mons by Christoph Sommer.

1.2 Its variants

There are several variants of the Traveling Salesman Problem, the most basic instance
of the TSP is assuming that the distance cost is symmetric, i.e., the distance between
two customers is the same in each opposite direction forming an undirected graph. On
the other side, the Asymmetric TSP is a generalization of the TSP which assumes that
the distance cost is asymmetric obtaining a directed graph. Usually, in real world, TSP
appears with many side constraints. Most important restrictions are:

• Every customer has to be supplied within a certain time window. This problem
is called the TSP with Time Windows and also can include other time data such
as travel times between every pair of nodes, service times and a maximum tour
duration. Normally, this problem considers the minimization of either the total
time or cost of the tour.
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• Customers want to delivery some goods to other customer. This problem is called
the TSP with Pick-Up and Delivery and it is defined on a graph containing pickup
and delivery vertices between which there exists a one-to-one relationship, that
means that customers can be divided into two groups according to the type of
service required (delivery or pick-up). The problem consists of determining a min-
imum cost tour such that each pick-up vertex is visited before its corresponding
delivery customer. It can be a sequential ordering problem or a capacitated prob-
lem.

• Customers may have several predecessors. This problem is called the Precedence-
Constrained TSP and it is a generalization of the TSP with Pick-Up and Delivery
in which each customer may have several predecessors, i.e., another customers
which have to been visited before the customer. Then, there exists a many-to-one
relationship.

• The salesman must first delivery goods and then pickup goods. This problem is
called the TSP with Backhauls where an uncapacitated vehicle must visit all the
delivery customers before visiting a pickup customer. In other words, a set of
locations must be routed before the rest of locations.

• There are more than one salesman. This problem is called the Multiple TSP and it
is a generalization of the TSP in which more than one salesman is allowed. Given
a set of customer, the objective of the problem is to determine a tour for each
salesman such that the total tour cost is minimized and that each city is visited
exactly once by only one salesman.

• The salesman must purchase a set of goods. This problem is called the Traveling
Purchaser Problem and it deals with a purchaser who is charged with purchasing
of all required products. He can purchase these products in several cities, but at
different prices and not all cities offer the same products. The objective is to find
a route between a subset of the cities, which minimizes total cost (travel cost +
purchasing cost).

• Transportation of perishable goods. This problem is called the Bottleneck TSP
and it is a variation with a different objective function. It considers a weighted
graph and its objective is minimizing the weight of the most weighty edge of the
cycle. Another similar problem is the Maximum Scatter TSP which is used in
sequencing the riveting operations when fastening sheets of metal together. The
goal is to maximize the length of a shortest edge in the tour.

• Visiting only a subset of the customers. This problem is called the Prize Collecting
TSP where each customer has an associated prize, and a salesman calls for a
minimum travel cost covering a customer subset whose total prize is not less than
a given value.
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• Some values are random. The Stochastic TSP can consider that some values are
random like travel costs, customers’ serve time or travel time, the purchased prices,
the number of salesmen. Also the Dynamic TSP considers that customers can be
deleted or inserted over time.

These problems are the most significant in real world, for the interested reader seeking
more information on TSP variants or generalizations, we suggest (Gutin & Punnen,
2002).

1.3 Literature Review

As it can be noticed in the following literature review, the TSP problem has been solved
mainly by exact methods and metaheuristic algorithms. The most important exact
algorithms for this problem have been developed with linear programming, Branch-
and-Bound and Cutting-Plane implementation. They work reasonably fast only for
small problem sizes. The approximation methods are classified into metaheuristic and
heuristic techniques. Metaheuristics, instead of exact algorithms, are extensively used
to solve NP problems.

Dantzig et al. (1954) expressed the problem as an integer linear program and devel-
oped the cutting plane method for its solution. They showed the effectiveness of their
method by solving a 49-city instance.

Significant progress has been made using Cutting-Planes and Branch-and-Bound
techniques as in the work of (Grötschel & Holland, 1991), (Padberg & Rinaldi, 1987),
(Padberg & Rinaldi, 1991), (Radharamanan & Choi, 1986) among others. It has been
managed to exactly solve instances with up to 2392 cities.

One of the best-known exact method is named Concorde, a TSP Solver developed
by Applegate et al. (2015), that employs an architecture that ensures the validity of the
lower-bound computations using linear programming and a cutting-plane implementa-
tion. Applegate et al. (2006) explains how they solved optimally a instance of 85,900
locations taking over 136 CPU-years, and how they solved the World TSP of 1,904,711
cities yielding a gap of only 0.0474% respect the best tour length found by Helsgaun
(2009) using a variant of his LKH heuristic algorithm.

The classical heuristic methods are Nearest Neighbor, 2-Opt, and 3-Opt methods,
which are frequently used for constructing and improving initial solutions in metaheuris-
tics. A survey of them can be found in (Nilsson, 2003).

Lin and Kernighan (1973) proposed an effective heuristic for the TSP, which is based
on a k-Opt procedure with k variable in each step. Later, Helsgaun (2000) described an
implementation even more effective of this heuristic, named LKH, for both symmetric
and asymmetric problems. LKH currently holds the record for the best instances of
problems with unknown optimal (DIMACS TSP Challenge 2002 ) with sizes ranging
from 1,000 to 10,000,000 nodes.

Some of the latest heuristic approaches that are being well adapted to solve the
NP-hard TSP are Genetic algorithm, Memetic Algorithm and Ant colony.
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Genetic algorithms are population based search techniques which mimics the princi-
ples of natural selection and natural genetics laid by Charles Darwin, that was proposed
by Holland (1975). R. Cheng and Gen (1994) described a greedy selection crossover
operator, which is designed for path representation and performed at gene level. It can
utilize local precedence and global precedence relationship between genes to perform in-
tensive search among solution space to reproduce an improved offspring. Diverse authors
have contribute to improve the Genetic algorithms since then as (Nagata & Kobayashi,
2013), (Gen & Cheng, 2000), (Ray et al., 2007), (Deep & Mebrahtu, 2011), between
others authors.

The Memetic algorithms combine the recognized strength of population in Genetic
algorithm with the intensification capability of a local search, i.e., all agents evolve
solutions until they become local minima of a certain neighborhood, for an introduction
see (Neri et al., 2012). The method proposed by Freisleben and Merz (1996) introduces a
new recombination operator, called Distance Preserving Crossover, their algorithm uses
the Lin-Kernighan heuristic as a local search engine for the Euclidean instances. Some
of the latest publications in the field are (Bontoux et al., 2010), (Y. Wang et al., 2011),
(Osaba & Dı́az, 2012), and (Gutin & Karapetyan, 2010).

Regarding the Ant Colony approach, the natural metaphor on which it is based on
how real ants are capable of finding the shortest path from a food source to their nest
without using visual clues by exploiting pheromone information, initially proposed by
Dorigo and Gambardella (1997). Some of the most prominent authors are (Dorigo &
Gambardella, 2014), (S. M. Chen & Chien, 2011), (Karaboga & Gorkemli, 2011), and
(Uchida et al., 2012).

In order to know about the closeness of the upper bound to the optimum value, one
must also know a lower bound on the optimum value. Several relaxations have been
considered for the TSP, such as the n-path relaxation, the assignment relaxation, the
2-matching relaxation, the 1-tree relaxation, and the linear programming relaxation.

For the interested reader seeking more information on this important problem, we
suggest the seminal paper on the problem by Dantzig et al. (1954) and the books by
Lawler et al. (1985) and by Reinelt (1994). For a survey of its variations, see (Gutin &
Punnen, 2002). For a deep understanding of how algorithms for TSP work, see the book
by Applegate et al. (2006), which besides providing a wide overview on TSP history
and on its applications. For a global survey that summarize most of the research and
provide extensive references, see (K. L. Hoffman et al., 2013), (Lawler et al., 1985) and
(Laporte, 1992).

Lagrangian Relaxation

Finally, our interest is focused on the Lagrangian Relaxation for solving the TSP. There
are two well known relaxations for the TSP: the 2-matching problem and the minimum
spanning tree.

The first one was introduced by Balas and Christofides (1981) who relax the Subtour
Elimination constraint obtaining a 2-matching problem as Lagrangian relaxed problem.
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The 2-Matching problem can be solved in polynomial time (Edmonds & Johnson, 1973),
an efficient implementation can be found in Pekny and Miller (1994).

The second one was proposed by Held and Karp (1970, 1971), they relax the set of
constraints requiring that all vertices must have two incident edges except for the depot,
and the obtained relaxed problem is a minimum Weight 1-Tree which is a variant of the
minimum spanning tree.

The algorithm proposed by Held and Karp (1970, 1971) was the basis for the Subgra-
dient algorithm. As explained previously on page 14, the main difficulty of this algorithm
lays on choosing a correct step size. Some variations concerning the choice of initial step
sizes and update of step sizes are (K. H. Hansen & Krarup, 1974), (Smith & Thompson,
1977), (Volgenant & Jonker, 1982), and (Balas & Toth, 1985). Make a special attention
to Zamani and Lau (2010), who presents an effective procedure that finds lower bounds
for the TSP based on the 1-Tree using a learning-based Lagrangian relaxation technique.
The procedure can dynamically alter its step size depending upon its previous iterations,
thus achieves better convergence.

An analysis of the Lagrangian relaxation introduced by Held and Karp (1970) can
be found in Shmoys and Williamson (1990). Smith et al. (1990) analyze the Lagrangian
relaxation introduced by Balas and Christofides (1981) and conclude that the lower
bounds are a bit worse.

Extensive research has been devoted to Lagrangian heuristic, which combines a
heuristic with the Lagrangian Relaxation. Fisher (2004) discusses of some early ex-
amples of Lagrangian heuristics for the Generalized Assignment problem. Barahona and
Anbil (2000) present the Volume algorithm, that is an extension to the Subgradient al-
gorithm to produce primal as well as dual solutions. They present successful experience
for the Set Partitioning, the Set Covering, the Max-Cut and the Plant Location.

Respect to the TSP, the most relevant authors extending LR are: Christofides (1976)
whose algorithm first finds a minimum cost spanning tree, then finds the minimum cost
Eulerian augmentation of that tree, and finally shortcuts the corresponding Eulerian
walk into a tour; Timsjo (1999) presents a solution strategy based on the Lagrangian
relaxation of the 1-Tree for the TSP and using a Subgradient algorithm. The author
applies a heuristic to modify the relaxed solution into a feasible primal one; In the work
of Volgenant and Jonker (1982), it is proposed a Branch-and-Bound algorithm for the
TSP based on the ascent method to calculate the 1-Tree bounds, and a heuristic is used
to provide upper bounds throughout the computations; In (Belloni & Lucena, 2000), the
authors present a Lagrangian Relax-and-Cut algorithm for the TSP, where violated con-
straints are attempted to be identified and are dualized for every Lagrangian relaxation
problem eventually solved. For more information on Lagrangian Relax-and-Cut algo-
rithm, see (Lucena, 2006); Other prominent authors are Marinakis et al. (2005, 2009),
they present a hybrid method for solving the TSP proposing a combination of genetic al-
gorithms, GRASP and LR. Constraints requiring that each node has two incident edges
are relaxed obtaining a minimum spanning tree as the Lagrangian dual problem.



1.4 Lagrangian Dual Problem 31

1.4 Lagrangian Dual Problem

The proposed LR uses the relaxation proposed by Held and Karp (1971) which relaxes
the constraint set (1.2) requiring that all customers must be served expect for the depot
(i = 1). Therefore, the obtained relaxed problem is a Minimum Weight 1-Tree.

A minimum weight 1-Tree consists of a Spanning Tree of minimal total length on the
node set I r {1} combined with the shortest two edges incident to node 1 (depot). A
spanning tree of a graph is just a subgraph that contains all the vertices and it forms a
tree that is an undirected graph in which any two vertices are connected by exactly one
path.

The Lagrangian Dual problem obtained relaxing the constraint set (1.2) is as follows:

max
u∈Rn

L(u) (1.5)

where:

L(u) = min
x 1−Tree

∑
e∈E

cexe +
∑
i∈I

ui(2−
∑
e∈δ(i)

xe) (1.6)

it weight the relaxed constraints with a multiplier vector u of appropriate dimension and
unrestricted sign, defining the subgradient γki = 2−

∑
e∈δ(i) xe.

Indeed, all subcycles can be avoided constructing the solution x as a 1-Tree, and a
feasible solution of the TSP is a 1-Tree having two incident edges at each node (Held &
Karp, 1971). The main advantage of this approach is that relaxing the set constraint
1.2, at the same time, it avoids the set of subtour elimination constraints (1.3) which
contains an exponential number of constraints.

Furthermore, finding a minimum 1-Tree is relatively easy (Cormen et al., 2001).
Prim’s Algorithm and Kruskal’s Algorithm are two algorithms commonly used for finding
a minimum spanning tree.

Prim’s Algorithm

An algorithm for solving the minimum weighted 1-Tree is Prim’s algorithm, which was
developed by Jarnik in 1930 and rediscovered by Prim in 1957 and Dijkstra in 1959.

Prim’s Algorithm continuously increase the size of a tree starting with a single ar-
bitrary vertex until it spans all the vertices. In each iteration it chooses the minimal
weighted edge where one of its vertex has already been visited but the other has not
been, given that, each pair of vertices must be connected by exactly one path. Its time
complexity is O(n2), where n is the number of vertices.

Given a complete undirected graph G = (I, E) representing the TSP, where I rep-
resent the set of nodes (customers and depot) and E = {(i, j) : i, j ∈ I} the set of
undirected edges. Let be the set of customers I ′ = {2, ..., n} and their corresponding
edges E′ ⊂ E.

The Algorithm 2 shows the Prim’s Algorithm for the 1-Tree. Remember that the so
called 1-Tree is a tree and therefore, it has to be added two edges incidents to the depot
(i = 1).
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Algorithm 2 Prim’s Algorithm for the 1-Tree

Initialization:
Find e = (i, j) ∈ E′ the minimal weighted edge.
Initialize T = {e} the tree.
Initialize V = {i, j} the set of visited nodes.

while V 6= I ′ do
Find e = (i, j) ∈ E′ the minimal weighted edge with a visited node, i ∈ V , and an
unvisited node, j ∈ I ′ r V .
Add this edge to the tree: T = T ∪ {e}.
Add the unvisited node: V = V ∪ {j}.

end while

Find e = (1, i) ∈ E the minimal weighted edge connected to the depot.
Add this edge to the tree: T = T ∪ {e}.
Find e = (1, j) ∈ E the second minimal weighted edge, i.e., j 6= i.
Add this edge to the tree: T = T ∪ {e}.
return T .

1.5 An Experiment in Convergence

The purpose of this section is to show the importance of the step size on the Subgradient
algorithm. An easy problem has been chosen to demonstrate its important, the Spanish
Airports problem which requires visiting once each of the 37 airports of Spain, see An-
nex Appendix A. The travel distance has been obtained applying the Euclidean distance
from the GPS coordinates, rounding it by integer values. Solving the problem 1.1 using
the software IBMr ILOGr CPLEXr Optimization Studio (2015), its optimal value is
L∗ = 7223, however, using the Nearest Neighbor Heuristic, it is found an upper bound
of value UB = 8188.

In order to compare the performance of the step size, the Subgradient algorithm is
applied to the model of the Lagrangian relaxation of the TSP, see section 1.4. Figure 1.3
shows the convergence of the different step sizes for the Spanish Airports problem.

Fig. 1.3a shows convergence using the next three steps sizes. It should be noticed
that despite initial perturbations the step size c) leads much faster convergence than the
other steps.

a) λk = 1
k . This holds because

∑
k λk →∞, and λk → 0 as k →∞.

b) λk = δ{k−N} ·ρ for parameters δ0 = 2 and ρ = 0.95. This holds because the parameter
δk is reduced every N iterations.

c) λk = δk
UB−L(uk)
‖γk‖2

and the parameter δk is reducing by ρ = 0.95 every N consecutive

iterations without improving the lower bound with δ0 = 2. This holds if the parameter
UB is tight upper bound.
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Figure 1.3: Convergence of the Subgradient Algorithm with different step sizes for Span-
ish Airports problem.

Fig. 1.3b shows the convergence of the step size c) using different values. Using
UB = 8188, the gap between the best Lagrangian value and the optimal value is of 5%
at the iteration k = 200. However, using the optimal value L∗ = 7223, it leads much
faster convergence and finds an optimal solution at the iteration k = 104.

1.6 Tailored Lagrangian Metaheuristic

Due to the wide range of applications and the complexity of the TSP problem, innovative
and efficient algorithms are needed. Therefore, we propose a metaheuristic methodology
based on the Lagrangian Relaxation to solve the TSP. A metaheuristic “refers to a
master strategy that guides and modifies other heuristics to produce solutions beyond
those that are normally generated in a quest for local optimality” (Glover & Laguna,
1997).

Our Lagrangian metaheuristic uses the Subgradient optimization algorithm com-
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bined with a heuristic which obtains a primal feasible solution from the dual variable.
Compared with classical heuristics, our Lagrangian Metaheuristic provides both an up-
per and a lower bounds (UB and LB), and a posteriori quality check of the solution is
obtained.

The main contribution of our method is that it has been introduced a parameter to
improve the algorithm convergence on the optimal solution. That parameter is improved
within the same process using the upper bound (UB) of the primal solutions obtained
by the heuristic.

Our Tailored Lagrangian Metaheuristic metaheuristic in detail

Our proposed TLM metaheuristic is shown in Algorithm 3. A heuristic obtains a feasible
solution from the dual variable, so it tries to improve the UB and hence, a better
convergence using rule (c) is obtained. Eventually, the best of these feasible primal
solutions may be provided if the method is stopped.

An optimal solution will be found if the method reaches γki = 0, i.e., the 1-Tree is
a Hamiltonian cycle. Since we are interested in developing a methodology applicable to
real problems where the computational time to solve instance is limited, it is added two
stopping criteria based on the maximum number of iterations (k < maxiterations) and
on a floating-point exception (step-size λk < 10−15), see line 5.

The proposed metaheuristic uses the Nearest Neighbor Heuristic to obtain an initial
value of the Upper Bound in line 3. This heuristic is one of the most commonly used
to find UB, since that is easy to implement and it is computationally efficient, (Lin &
Kernighan, 1973).

In line 6, Prim’s algorithm is used to solve the Lagrangian Dual Problem of the TSP,
as explained in section 1.4. Then, the subgradient is calculated in line 7, if its values are
0, the optimal solution is found and the iterative procedure is stopped in line 10.

The Proposed Heuristic

The proposed heuristic to improve the UB is applied when the 1-Tree is nearly a Hamil-
tonian cycle, that is when the subgradient satisfies ‖ γk ‖2< ξ, see lines 11-12.

A parameter ξ is used to determine when to apply the heuristic, in line 11. A good
estimation of the parameter ξ would avoid increasing the computation time excessively.
First, its value may be large, for instance the value of the first iteration, ξ = ‖ γ1 ‖2,
but it should be updated whenever a better feasible solution is found according to
ξ =‖ γk ‖2. Eventually, the heuristic could find the optimal solution without detecting
it, so the method would continue iterating until LB = UB.

As any solution is a 1-Tree, this criterion means that the solution has few vertices
without two incident edges. This heuristic replaces an edge e = (i, j) where j has some
extra edges (i.e., γkj < 0) for an edge e = (i, l) where vertex l has one single edge (i.e.,

γkl = 1) minimizing the cost of the exchange.

In the presented approach, two different moves have been defined (Figure 1.4): (a)
unlimited move respect the vertices, and (b) limited move only replaces edges which
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Algorithm 3 Tailored LR-based method for the TSP

1: Initialization:
2: Initialize parameters δ0 = 2; ρ = 0.95;αL = 1/3;L = 0
3: Obtain an UB applying Nearest Neighbour Heuristic
4: Initialize multiplier u0 = 0
5: while k < maxiterations or λk < 10−15 do
6: Solve the Lagrangian dual problem L(uk) with optimal solution xk

7: Update the subgradient γki = 2−
∑
e∈δ(i)

xke

8: Check the subgradient:
9: if ‖ γk ‖2= 0 then

10: An optimal solution is found → Exit
11: else if ‖ γk ‖2< ξ then
12: Apply a heuristic to improve the UB
13: end if
14: Check the parameter L:
15: if L(uk) > L then
16: It is updated, L = L(uk) + αL(UB − L(uk))
17: end if
18: if L > UB then
19: L = UB
20: end if
21: Update the parameter δk:
22: if L(uk) < LB then
23: δk+1 = δkρ
24: else
25: LB = L(uk)
26: δk+1 = δk

3−ρ
2

27: end if

28: Update the step size λk = δk
L− L(uk)

‖ γk ‖2
29: Update the Lagrangian multiplier uk+1 = uk + λkγ

k

30: k ← k + 1
31: end while
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Figure 1.4: Movements of the proposed heuristic: swapping elj for eil

both vertices i and l are connected to same vertex j. Our proposed heuristic is shown
in Algorithm 4.

First, it iteratively applies the unlimited movement but being aware that it could
divide the 1-Tree into disconnected trees. For each i with γki = 1, it swaps edge elj for
eil minimize the cost of the exchange:

{i, j, l} = argmin
{
cil − clj | γki = 1, γkj < 0, γkl ≥ 0, (l, j) ∈ T k and (i, l) ∈ E r T k

}
(1.7)

Then, it iteratively applies the limited movement until it is found a feasible solution.
For each pair {i, j} where γki = 1 and j is the first connected node with γkj < 0, it selects
the neighbor l minimizing the cost of the exchange (1.7).

Convergence: new parameter L

As mentioned, algorithm’s convergence is critically influenced by the step-size λk. Using
rule (c) explained on page 15, this value relies on either the LB or the UB, which are
normally unknown or bad estimated. Therefore, convergence may not be assured for
all cases. In order to overcome this limitations, we propose the use of a parameter L,
such that LB ≤ L ≤ UB. By definition, this new parameter corresponds to a better
estimation of the optimal value L∗ than those obtained for LB and UB. The calculation
of the step-size turns into (see line 28):

λk = δk
L− L(uk)

‖ γk ‖2

Convergence is guaranteed if the term L−L(uk) tends to zero. In turn, convergence
efficiency can be improved as long as the new L parameter gets closer to the (unknown)
optimal solution. The main idea is very simple: as the algorithm converges to the
solution, new better lower bounds are known and new better upper bounds estimations
can be obtained by using the heuristic designed to get feasible solutions. Therefore, in
lines 14-20, the parameter L is updated according to the following conditions:
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Algorithm 4 Heuristic to obtain feasible solution for a 1-Tree

Data: T k the obtained 1-Tree
Initialize:

V + = {i ∈ I | γki = 1} the subset of vertices which only has one edge
V − = {j ∈ I | γkj < 0} the subset of vertices which has more than two edge

Unlimited Movement:
do ‖ V + ‖ times

{i, j, l} = argmin
{
cil−clj | i ∈ V +, j ∈ V −, γkl ≥ 0, (l, j) ∈ T k and (i, l) ∈ ErT k

}
if nodes l and j are connected in T k r (l, j) ∪ (i, l) then

Swap these edges within the tree: T k = T k r (l, j) ∪ (i, l)
Update node i: γki = 0 and V + = V + r {i}
Calculate γkj
if γkj = 0 then

Update node j: V − = V − r {j}
end if

end if
end do

Limited Movement:
do ‖ V + ‖ times

Find {i, j, l} = argmin
{
cil − clj | γkl ≥ 0, (l, j) ∈ T k and (i, l) ∈ E r T k

}
where

i ∈ V +, the node j is the nearest node of V − connected to i, and l is a neighbor
of j but not in the path i, j

Swap these edges within the tree: T k = T k r (l, j) ∪ (i, l)
Update node i: γki = 0 and V + = V + r {i}
Calculate γkj
if γkj = 0 then

Update node j: V − = V − r {j}
end if

end do
return T k.
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• It is initialized L = L(u0) + αL(UB − L(u0)) with 0 < αL < 1

• If L(uk) > L, it is updated L = L(uk) + αL(UB − L(uk))

• If L > UB, then L = UB

Finally, in lines 21-27, the parameter δk is initialized to the value 2 and is updated as
Zamani and Lau (2010) suggested: If the lower bound is not improved, δk is decreased,
using the formula δk+1 = δkρ with 0 < ρ < 1. On the other hand, if the lower bound is
improved, then its value is increased according to the formula δk+1 = δk

3−ρ
2 providing

that 0 ≤ δk ≤ 2.

1.7 Computational Results

The methodology described in this chapter has been implemented in Java language. All
tests have been performed on a non-dedicated server with an Intel Xeon Quad-Core i5
processor at 2.66GHz and 16GB RAM. In general, different processes were launched
to solve different problems, while external applications were active at the same time.
For this reason, CPU time is provided just for giving a rough idea of the algorithm
computational performance.

A total of 64 symmetric TSP instances have been used to test the efficiency of the
proposed approach. They have been obtained from the library TSPLIB (http://www
.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/ last updated August
6, 2008), a reference site with a large number of instances for the TSP, and related
problems, from various sources and of various types.

The experiments have been conducted using the distance according to the specifica-
tion included in the library. The number of iterations (300) used by (Reinelt, 1994) and
the values δ0 = 2 and ρ = 0.95 suggested by Zamani and Lau (2010) are used without
the setting of parameter αL = 1/3.

Size Problems %∆UB %∆LB %∆L
n ≤ 200 27 3.15 % 1.96 % -0.25 %
200 < n ≤ 500 13 6.67 % 2.48 % 0.57 %
500 < n ≤ 1889 24 12.53 % 1.74 % 3.02 %

64 7.38 % 1.98 % 1.14 %

Table 1.5: Summary of results obtained applying the Tailored Lagrangian Metaheuristic
for the Traveling Salesman Problem.

Table 1.5 presents the number of problems solved ordering by size, as well as the
average gap of the obtained values UB, LB, and L from the best known value (BKS).

The gap %∆L was calculated as follows 100
(
L−BKS
BKS

)
. Therefore, if the gap is negative,

the parameter L is smaller than the best known solution. Thus, the parameter L is

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
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Problem BKS UB %∆UB LB %∆LB CPUtime (s)
eil51 426 440 3.29 % 422.42 0.84 % 0.226
st70 675 687 1.78 % 670.89 0.61 % 0.255
eil76 538 544 1.12 % 536.94 0.20 % 0.297
pr76 108159 108584 0.39 % 105112.85 2.82 % 0.250
rat99 1211 1237 2.15 % 1205.91 0.42 % 0.257
kroA100 21282 21319 0.17 % 20930.10 1.65 % 0.432
kroB100 22141 22931 3.57 % 21830.02 1.40 % 0.267
kroC100 20749 21270 2.51 % 20467.78 1.36 % 0.530
kroD100 21294 21792 2.34 % 21138.27 0.73 % 0.298
kroE100 22068 22905 3.79 % 21798.00 1.22 % 0.734
rd100 7910 8006 1.21 % 7898.65 0.14 % 0.499
eil101 629 629 0.00% 627.35 0.26 % 0.360
lin105 14379 14402 0.16 % 14370.14 0.06 % 0.237
pr107 44303 44420 0.26 % 39313.79 11.26 % 0.379
pr124 59030 60112 1.83 % 58048.18 1.66 % 0.463
bier127 118282 124502 5.26 % 117396.83 0.75 % 1.404
ch130 6110 6203 1.52 % 6074.46 0.58 % 0.351
pr136 96772 102534 5.95 % 95373.05 1.45 % 0.905
ch150 6528 6640 1.72 % 6488.12 0.61 % 1.279
kroA150 26524 27598 4.05 % 26280.90 0.92 % 1.608
kroB150 26130 27273 4.37 % 25725.39 1.55 % 1.577
pr152 73682 78848 7.01 % 66583.97 9.63 % 0.219
u159 42080 42636 1.32 % 41921.90 0.38 % 1.186
rat195 2323 2489 7.15 % 2290.58 1.40 % 2.443
d198 15780 17500 10.90 % 14372.36 8.92 % 3.093
kroA200 29368 30983 5.50 % 29056.19 1.06 % 3.231
kroB200 29437 31126 5.74 % 29158.27 0.95 % 2.960
ts225 126643 144299 13.94 % 115472.09 8.82 % 1.145
tsp225 3919 4261 8.73 % 3875.89 1.10 % 3.230
pr226 80369 84203 4.77 % 78451.35 2.39 % 3.155
gil262 2378 2473 3.99 % 2354.00 1.01 % 5.117
pr264 49135 50868 3.53 % 46236.48 5.90 % 5.180
a280 2579 2704 4.85 % 2565.40 0.53 % 7.202
pr299 48191 51053 5.94 % 47360.81 1.72 % 7.860
lin318 42029 45017 7.11 % 41768.56 0.62 % 5.695
rd400 15281 16061 5.10 % 15147.55 0.87 % 17.276
fl417 11861 13137 10.76 % 11144.00 6.05 % 12.179
pr439 107217 112768 5.18 % 105306.76 1.78 % 11.249
pcb442 50778 53840 6.03 % 50456.63 0.63 % 16.069
d493 35002 37397 6.84 % 34721.01 0.80 % 35.550
u574 36905 38985 5.64 % 36690.41 0.58 % 35.381
rat575 6773 7317 8.03 % 6718.70 0.80 % 44.725
p654 34643 43638 25.96 % 32487.42 6.22 % 3.858
d657 48912 52985 8.33 % 48420.58 1.00 % 115.474
u724 41910 46883 11.87 % 41618.86 0.69 % 160.662
rat783 8806 9674 9.86 % 8766.59 0.45 % 132.460
pr1002 259045 283008 9.25 % 256272.34 1.07 % 252.525
u1060 224094 250775 11.91 % 221469.74 1.17 % 411.675
vm1084 239297 265714 11.04 % 235787.50 1.47 % 294.671
pcb1173 56892 63499 11.61 % 56276.66 1.08 % 617.543
3d1291 50801 56274 10.77 % 49872.37 1.83 % 415.448
rl1304 252948 269195 6.42 % 248809.85 1.64 % 492.303
rl1323 270199 297319 10.04 % 265325.26 1.80 % 245.389
nrw1379 56638 64474 13.84 % 56284.49 0.62 % 1185.057
fl1400 20127 23358 16.05 % 19089.32 5.16 % 2968.874
u1432 152970 176933 15.67 % 152031.82 0.61 % 619.392
fl1577 22249 25631 15.20 % 20661.34 7.14 % 710.379
d1655 62128 69956 12.60 % 61177.18 1.53 % 1941.611
vm1748 336556 381719 13.42 % 331209.14 1.59 % 1456.419
u1817 57201 64062 11.99 % 56583.97 1.08 % 2465.488
rl1889 316536 351197 10.95 % 310987.88 1.75 % 1820.504
u2152 64253 73443 14.30 % 63753.38 0.78 % 1135.083
u2319 234256 283523 21.03 % 233605.99 0.28 % 18698.743
pr2392 378032 434652 14.98 % 372679.05 1.42 % 5759.861

Table 1.6: Results obtained applying the Tailored Lagrangian Metaheuristic for the
Traveling Salesman Problem
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Figure 1.7: Convergence of LB, L, and UB in some problems.
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a good estimation with regard to an unknown lower bound or an initial upper bound
obtained with a Nearest Neighbor Heuristic.

Table 1.6 presents results of a total of 64 instances comparing the results obtained
to best known solution (BKS). The columns shows: UB best feasible value, %∆UB per-
centage distance from BKS of the UB, LB best dual value, %∆LB percentage distance
from BKS of the LB, and tFinal final CPU time in seconds.

Figure 1.7 shows the evolution of upper and lower bounds on three runs. As it can be
seen, the parameter L is updated according to the previous conditions explained, and it
should be noticed that UB is improved every time the proposed heuristic finds a better
value. The figure shows how LB, L, and UB converge on BKS.

For the lin105 problem in Figure 1.7a, it has a quickly convergence in the first 100 iter-
ations, however, it does not reach the optimal. The initial UB obtained with the Nearest
Neighbor heuristic has a gap of 41.57%, our Lagrangian methodology dramatically im-
proves this value up to 8.84% only in the second iteration. It shows the convergence
of UB, LB and our parameter L with theirs final respective gaps of 0.16%, 0.06% and
0.16%.

Figure 1.7b shows rd400 problem, the initial UB obtained with the Nearest Neighbor
heuristic has a gap of 26.06%, it shows the convergence of UB, LB and our parameter
L with theirs final respective gaps of 5.10%, 0.87% and 1.03%.

For the pr439 problem in Figure 1.7c, the initial UB obtained with the Nearest
Neighbor heuristic has a gap of 24.20%, it shows the convergence of UB, LB and our
parameter L with theirs final respective gaps of 5.18%, 1.78% and 0.36%.

1.8 Conclusions

This chapter has presented a metaheuristic methodology based on the Lagrangian Relax-
ation technique. This scheme has been used to tackle the Traveling Salesman Problem,
showing very good results both in terms of the quality of the solution and in terms of
computational efficiency.

Our proposed Tailored Lagrangian Metaheuristic method uses the Subgradient algo-
rithm combined with a heuristic. The motivation of our method is the common sense
belief that dual solutions must obviously be relevant to primal solutions. The proposed
heuristic is introduced in order to obtain a feasible solution from the dual variable pro-
viding both UB and LB, thus an a posterior quality check of the solution is obtained.

A new parameter L which is updated using the values of both UB and LB has
improved significantly algorithm’s convergence on the optimal solution.

In spite of optimality can not be always reached, the proposed method is able to
provide a feasible solution with a tight gap between the primal and the optimal cost in
a reasonable number of iterations.





Chapter 2

Capacitated Vehicle Routing
Problem

This chapter presents an application of the Tailored Lagrangian Metaheuristic (TLM)
proposed in Section 1.6. It presents an original hybrid approach to solve the Capaci-
tated Vehicle Routing Problem (CVRP). The approach proposes a Multi-Start Variable
Neighborhood Descent (VND) (P. Hansen & Mladenović, 2003) structure whose local
search process is supported by Constraint Programming (CP) (Rossi et al., 2006) and
our TLM.

On the one side, our metaheuristic is used to efficiently find the optimal routing
solution for each transportation resource. On the other side, using the CP paradigm
provides the required flexibility to model those operational constraints, beyond vehicle
capacity, that are usually present in most real application cases. Due to this approach,
adding these constraints is just a constraint modeling issue, i.e., no change on the solving
strategy is required to deal with more realistic problems.

A probabilistic (Randomized) Clarke and Wright Savings (RCWS) (Juan et al., 2011)
constructive method is used to generate initial solutions. This algorithm provides differ-
ent good quality solutions that are used as seeds to launch the exploration of different
regions of the search space. Therefore, the RCWS probabilistic behavior introduces a
natural diversification mechanism and turns the scheme into an approach likely to be
parallelized.

The CVRP has been selected mainly because there are huge amounts of models,
techniques, benchmarks, and research on this topic. Hence, the proposed methodology
can be easily compared —in terms of computational efficiency and solution quality—
with previously existing approaches. Nevertheless, from the perspective of its industrial
applicability, the basic CVRP model can be extended to tackle different realistic cases by
means of the proposed optimization scheme. These cases include operational constraints
beyond the basic vehicle capacity. Affordable examples are limitations on the total
driving time of each route, incompatible customer-driver associations or constraints on
the customer visiting periods (e.g., customer forbidden visit day when building daily
routes for a distribution problem). The proposed optimization approach, as presented

43
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in this chapter, is specifically designed to deal with those operational constraints that
involve the allocation part of the VRP.

The approach presented in this chapter was first presented in (Herrero et al., 2010a)
and (Guimarans et al., 2010) where we introduced a first methodology which com-
bined CP and TLM within a VNS framework. The current approach was presented
in (Guimarans et al., 2011b) and (Guimarans et al., 2013), it also integrates the RCWS-
based Multi-Start approach which is significantly more efficient –both in terms of com-
putational times and solutions’ quality.

2.1 Problem Definition

The Vehicle Routing Problem (VRP) provides a theoretical framework for approaching
the class of logistic problems dealing with physical distribution. This is among the most
popular research areas in combinatorial optimization. It was first defined by Dantzig
and Ramser (1959), and several variants of the basic problem have been proposed and
studied later. These variants represent different types of operational constraints such
as, for instance, time windows, pick up and delivery, heterogeneous fleets or multi-depot
problems.

The Capacitated version of the VRP (CVRP) consists of determining the optimal
set of routes for a fleet of vehicles to deliver goods to a given set of customers, therefore
it is a generalization of the TSP. In the model proposed in this chapter, the CVRP
has been divided into two subproblems, concerning customers’ allocation and routing
optimization separately. The first is aimed to assign customers to vehicles fulfilling
capacity limitations. The latter is used to solve each independent route to optimality,
giving the best solution for a particular allocation. Thus, routing optimization process
can be viewed as solving a set of independent symmetric TSP.

The CVRP has been chosen in order to illustrate the benefits of the proposed method-
ology. The CVRP is the most basic VRP variant, which assumes a fleet of vehicles of
homogeneous capacity housed in a single depot. The CVRP is a generalization of the
Traveling Salesman Problem (TSP) and is therefore NP-hard (Savelsbergh, 1985).

The CVRP is defined over a complete graph G = {I, E}, where I = {1, 2, . . . , n} is
the node set representing clients to be served plus the depot (node 1), and E = {eij =
(i, j) | i, j ∈ I} is the edge set representing connecting roads, streets, etc. Edges eij in
E have an associated cost cij > 0, which is the traveling cost from node i to node j.
It is usual to consider symmetric costs (i.e., cij = cji,∀i, j ∈ I). Moreover, each node i
in I has a demand qi ≥ 0. A fixed fleet of m identical vehicles, each one with capacity
Q� max{qi}, is available at the depot to accomplish the required delivery task.

Solving the CVRP consists of determining a set of k ≤ m routes with minimum total
traveling cost and such that:

a) each customer is visited exactly once by a single vehicle,

b) each route starts and ends at the depot, and
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c) the total demand of the customers assigned to a route does not exceed the vehicle
capacity Q.

Therefore, a solution of a given CVRP instance is a set of k routes sharing a common
starting and finishing node (the depot). In some cases, the fleet size is not fixed and
minimizing the total number of used vehicles becomes an additional objective.

Given that our approach combines LR to optimize each individual route, and CP
to quickly verify the feasibility, it is based on the classical decomposition into two sub-
problems: a resource allocation problem (to fit operational constraints), and a routing
problem (to minimize the associated traveling costs).

Capacity problem

The proposed customers’ allocation subproblem uses two lists of variables. A list R of
size n, with integer domains Ri ∈ [1..m] | i = 1, ..., n, indicates which vehicle is serving
the ith customer. Qv is a list of m variables with real domain Qv ∈ [0..Q] used to trace
the cumulative capacity at each one of the m routes. Therefore, capacity constraints
are enforced through domains definition since Qv cannot get higher values than the
maximum capacity Q satisfying constraint (c).

A set of dimension m× n of binary variables B has been introduced to relate R and
Qv values. For each vehicle v ∈ V , a list of n binary variables Bvi | i ∈ I is defined,
taking value 1 whenever customer i is assigned to vehicle v and 0 otherwise. Since each
customer i is visited by a single vehicle, for all values of v the binary variable Bvi can
take value 1 only once. This constraint is expressed in terms of the global constraint
cardinality atmost (Beldiceanu, Carlsson, & Rampon, 2005) aiming to ensure a faster
propagation (Bessière, 2006).

The binary set B and allocation variables R are related through the following state-
ment:

Ri = ri → Brii = 1 ∀i ∈ I (2.1)

Expression (2.1) states that the ith element of the ri list of B will have value 1
whenever the ith component of R takes value ri. The global constraint cardinality atmost
ensures propagation so all values of Bvi v ∈ V \ ri are set to 0 automatically. Therefore,
cumulative capacities can be traced simply by using the following equation:

Qv =
∑
i∈I

Bviqi ∀v ∈ V (2.2)

Routing Problem

The routing problem, tackled for each vehicle separately, can be viewed as a TSP in-
stance. For each vehicle v, the related TSP can be considered as a complete undirected
graph G = (Iv, Ev), connecting assigned customers Iv = {i ∈ I | Ri = v} through a set
of undirected edges Ev = {(i, j) ∈ E | i, j ∈ Iv}. The solution is a path connected by
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edges belonging to Ev that starts and ends at the depot (i = 1) and visits all assigned
customers. Following the mathematical formulation presented in Section 1.1, a feasible
solution of the TSP should, by definition, also satisfy constraints (a) and (b) of the
CVRP, minimizing the total travel cost of the route.

2.2 Literature Review

The Clarke and Wright’s Savings (CWS) constructive algorithm (Clarke & Wright, 1964)
is probably the most cited heuristic to solve the CVRP. The CWS is an iterative method
that starts out by considering an initial dummy solution in which each customer is served
by a dedicated vehicle. Next, the algorithm initiates an iterative process for merging
some of the routes in the initial solution. Merging routes can improve the expensive
initial solution so that a unique vehicle serves the nodes of the merged route. The
merging criterion is based upon the concept of savings. Roughly speaking, given a pair
of nodes to be served, a savings value can be assigned to the edge connecting these two
nodes. This savings value is given by the reduction in the total cost function due to
serving both nodes with the same vehicle instead of using a dedicated vehicle to serve
each node -as proposed in the initial dummy solution. This way, the algorithm constructs
a list of savings, one for each possible edge connecting two demanding nodes. At each
iteration of the merging process, the edge with the largest possible savings is selected
from the list as far as the following conditions are satisfied: the nodes defining the edge
are adjacent to the depot, and the two corresponding routes can be feasibly merged
-i.e., the vehicle capacity is not exceeded after the merging. The CWS algorithm usually
provides relatively good solutions, especially for small and medium-size problems, but it
also presents difficulties in some cases (Gaskell, 1967). Many variants and improvements
of the CWS have been proposed in the literature. For a comprehensive discussion on
the various CWS variants, the reader is referred to Toth and Vigo (2002b) and Laporte
(2007).

Monte Carlo Simulation (MCS) can be defined as a set of techniques that make use
of random numbers and statistical distributions to solve certain stochastic and deter-
ministic problems (Law, 2007). MCS has proved to be extremely useful for obtaining
numerical solutions to complex problems that cannot be efficiently solved by using an-
alytical approaches. Buxey (1979) was probably the first author to combine MCS with
the CWS algorithm to develop a procedure for the CVRP. This method was revisited
by Faulin and Juan (2008), who introduced an entropy function to guide the random
selection of nodes. MCS has also been used by Fernández et al. (2000), Juan et al.
(2008), Faulin et al. (2008) and Juan et al. (2009) to solve the CVRP. In this last paper,
the authors make use of MCS to develop an efficient randomized version of the CWS
heuristic, which we use in our approach to efficiently generate initial solutions.

Another way to address the VRP has been the use of complete methods, which ensure
not only to find the solution but also, to prove its optimality. The main drawback of these
techniques is that they may only deal with small instances, up to 100 customers (Cordeau
et al., 2007). Numerous heuristics (like the ones mentioned above) and metaheuristics
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have also been studied for different VRP variants. In most cases, these methods may
solve larger instances but loosing optimality guarantees.

Using constructive heuristics as a basis, metaheuristics became popular for the VRP
during the nineties. Some early examples are the Tabu Route method by Gendreau et
al. (1994) or the Boneroute method of Tarantilis and Kiranoudis (2002). Tabu search
algorithms, like those proposed by Taillard (1993) or Toth and Vigo (2003) are among
the most cited metaheuristics. Genetic algorithms have also played a major role in
the development of effective approaches for the VRP. Some examples are the studies of
Berger and Barkaoui (2003), Prins (2004), Mester and Bräysy (2007) or Nagata (2007).
Another important approach to the VRP is given by the Greedy Randomized Adaptive
Search Procedure or GRASP (Feo & Resende, 1995; Resende, 2008; Festa & Resende,
2009). A GRASP algorithm is a multi-start or iterative process in which each GRASP
iteration consists of two phases: a construction phase —in which a feasible solution is
produced— and a local search phase —in which a local optimum in the neighborhood
of the constructed solution is sought. The best overall solution is kept as the result.
In the construction phase, a feasible solution is iteratively constructed, one element at
a time. At each construction iteration, the choice of the next element to be added is
determined by ordering all candidate elements in a candidate list according to a greedy
function. This function measures the (myopic) benefit of selecting each element. The
heuristic is adaptive because the benefits associated with every element are updated at
each iteration of the construction phase to reflect the changes brought on by the selection
of the previous element. The probabilistic component of a GRASP is characterized by
the random choice of one of the best candidates in the list, but not necessarily the top
candidate. This choice technique allows for different solutions to be obtained at each
GRASP iteration.

Among metaheuristics, Variable Neighborhood Search (VNS), introduced for the
first time by Mladenović and Hansen (1997), is a quite recent method with far less
application examples in VRP research. However, interesting results have been obtained
even applying the simplest VNS algorithms, e.g., (Hasle & Kloster, 2007). Embedding
CP and LR approaches into a general VNS framework has also demonstrated to be an
effective yet slow method to solve medium and large instances (Guimarans et al., 2011a).
Combining these techniques provided a methodology able to reach good quality results
and even to overcome some best-known solutions. However, the computational efficiency
of this methodology is far from state-of-the-art algorithms and becomes an important
issue to be addressed.

2.3 Technologies used

In this chapter we present a hybrid approach combining a randomized version of the
CWS savings heuristic, the VNS metaheuristic, CP, and LR. Our approach aims at
being an efficient procedure for obtaining quasi-optimal solutions in small- and medium-
size CVRP instances and, at the same time, offers some additional advantages over other
existing metaheuristics, namely: (a) it is a robust and flexible methodology that can be
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easily adapted to consider additional constraints and costs; (b) it is able to generate a
set of alternative good solutions in a reasonable time period; and (c) it can be easily
executed in parallel.

This work has been published in Guimarans et al. (2011b), it is related to the PhD
Thesis of Guimarans (2012) and a previous version can be found in Herrero et al. (2010a).

Our presented approach is much more competitive with state-of-the-art metaheuris-
tics. Its efficiency has been significantly enhanced by including a multi-start procedure
which makes use of a randomized CWS heuristic in order to quickly provide a set of
different “good” initial solutions, over which a flexible local-search process is applied.
Thus, the VNS diversification procedure is substituted by a multi-start approach, where
different regions are explored thanks to the diversity of solutions provided by the ran-
domized CWS algorithm. The local search process has also been enhanced with respect
to the previous work by incorporating new data structures, which permit reducing the
computational complexity. Finally, the methodology described in the present work has
been parallelized to improve its efficiency.

Remember that our Tailored Lagrangian Metaheuristic is explained in Section 1.6,
let us introduced the other used technologies in this approach.

Probabilistic Clarke and Wright Savings Algorithm

As discussed in Section 2.2, in the classic CWS algorithm, the edge with the largest
possible savings is selected from the list at each iteration of the merging process, as far
as the following conditions are satisfied: (a) the nodes defining the edge are adjacent
to the depot, and (b) the two corresponding routes can be feasibly merged -i.e., the
vehicle capacity is not exceeded. The approach presented in Juan et al. (2010), instead,
assigns a selection probability to each edge in the savings list. This probability should
be coherent with the savings value associated with each edge, i.e., edges with larger
savings will be more likely to be selected from the list than those with smaller savings.
In addition, this approach adds this biased random behavior without introducing too
many parameters in the algorithm. Basically, different geometric statistical distributions
during the randomized CWS solution-construction process are employed: every time a
new edge is selected from the list of available edges, a value α is randomly selected
from a uniform distribution in (a, b), where 0 < a ≤ b < 1. The α parameter defines
the specific geometric distribution that will be used to assign exponentially diminishing
probabilities to each eligible edge according to its position inside the sorted savings list.
This way, edges with higher savings values are always more likely to be selected from the
list, but the exact probabilities assigned are variable and they depend on the concrete
distribution selected at each step.

Constraint Programming

CP is a powerful paradigm for representing and solving a wide range of combinatorial
problems. Problems are expressed in terms of three entities: variables, their correspond-
ing domains and constraints relating them. The problems can then be solved using
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complete techniques such as depth-first search for satisfaction and branch and bound
for optimization, or even tailored search methods for specific problems. Rossi et al.
(2006) present a complete overview of CP modeling techniques, algorithms, tools, and
applications.

Variable Neighborhood Search

A general VNS, as explained in (P. Hansen & Mladenović, 2003), is a recent metaheuristic
which exploits systematically the idea of neighborhood change. The Variable Neighbor-
hood Descent (VND) method starts from an initial solution x′ and it is improved by a
local search process.

The local search process for each neighborhood N(x′) of x′ performs an exhaustive
exploration. All improving movements are recorded and sorted, so the best neighbor
x′′ ∈ N(x′) is constructed applying all independent changes in descending order. This
way, solution values are improved faster than applying single movements.

If this neighbor is better than the incumbent, the current solution is updated and
neighborhoods’ exploration is restarted. Otherwise, the algorithm keeps x′ as the best
solution found so far and continues exploring the next neighborhood. When the VND
process reaches a local optimum, no solution improvement may be found according to
defined neighborhoods.

Multi-Start Strategy

The VND-based local search process requires some type of diversification in order to over-
come local optimality. Many techniques have been suggested to avoid getting trapped
into a local optimum and aspire to find a global one. Among others, one possible
way to achieve diversification is using a shaking mechanism within the VNS procedure.
However, as more constraints are introduced in the problem, it usually becomes more
efficient -in terms of computational time employed- to generate new feasible solutions
from scratch than to apply complex shaking processes that might end in non-feasible
solutions. This is especially certain if we consider that the Randomized version of the
CWS used in this paper is a really fast method for generating different feasible and good
solutions that can serve as initial solutions in our multi-start approach.

Thus, the Multi-Start strategy provides an appropriate framework which achieves
diversification by re-starting the search from a new solution once a region has been
extensively explored. Notice that each iteration includes two phases: a first one in which
a new feasible solution is constructed, and a second one in which the initial solution is
improved through a local search process.

2.4 The methodology in detail

The CVRP problem has been tackled using a RCWS-based Multi-Start approach. As it
has been previously discussed, this strategy allows to ensure an efficient diversification
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of the search space in order to: (a) avoid local minima, and (b) reach near-optimal
solutions in reasonable times.

CP and TLM are used in the local search process within a VND structure. CP is
used to check solutions feasibility. This formalism provides a fast and flexible method,
able to model and include complex constraints while keeping a reasonable computa-
tional efficiency. In turn, out TLM method is applied to calculate routes every time a
partial solution is generated. Using TLM allows reducing the computation time and al-
gorithm’s definition and complexity when compared to other routing post-optimization
methods (Rousseau et al., 2002).

Pseudo-code for the Multi-Start strategy

A simplified scheme of the Multi-Start strategy is presented in Algorithm 5. The RCWS
algorithm is used to find a good initial solution. Then, the VND method helps to reach
a local minimum in the neighborhood of the solution.

The Multi-Start strategy generates TotalThreads tasks within a thread pool. If a
thread is not available for the task, the task waits in a queue for an active task to end.
The algorithm stops when all tasks have been completed, or the maximum execution
time is reached, whichever happens first. Each task executes two phases: find an initial
solution and improve it in the search process. Starting from a different initial solution
ensures certain diversification, overcoming local optimality.

Algorithm 5 Multi Start Approach

Let x be the best solution
Create a thread pool with TotalThreads threads.
repeat until TotalThreads threads end or until MaxSeconds time is consumed

execute MaxThreads simultaneous threads:
Generate an initial feasible solution x′ using RCWS
Improve x′ to obtain x′′ by using VND+CP+TLM
if x′′ is better than x then

let x← x′′

end if
end repeat

Pseudo-code for the Variable Neighborhood Descent procedure

A general VND has been implemented embedding CP and TLM methods. In the im-
plemented algorithm, outlined in Algorithm 6, all four described moves (see section 2.4)
have been selected to be used in local search neighborhoods.

In the exploration neighborhood (Nk), starting from the solution x′, the kth move
is applied and the new solution’s feasibility is checked using CP. Whenever it is proved
feasible, TLM is used to recalculate only modified routes. This technique permits to
consider only two routes per solution, reducing the computation time. Improvements
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Algorithm 6 Variable Neighborhood Descent Algorithm

Initialize the set LastModified← V ; let x′ be the initial solution
repeat until the stopping condition

Set k ← 1;
repeat until k = kmax

Exploration of Neighborhood
Find all neighbors x′′ ∈ Nk(x

′, LastModified).
Check feasibility of capacity constraints using CP.
Calculate the cost of modified routes using TLM
if the solution x′′ is better than x′ then

Include it in a list of improving changes
end if

Choose the best compatible neighbors
Set LastModified← ∅
Sort the list of improving changes
Apply the first improving changes
Add in descending order the next compatible improvements
Add the modified routes to LastModified

if the list is empty then
set k ← k + 1

else
set k ← 1

end if
end repeat

end repeat

are stored in a sorted list until no more feasible solutions are left in the kth neighborhood.
Then, all those which are independent, i.e., affect different route pairs, are applied in
descending order on x′ to get a better solution x′′. This way, solution improvement is
faster than applying a single change at each iteration.

After the first exhaustive exploration of each neighborhood, only those changes af-
fecting routes modified by previous movements are explored in order to reduce the com-
putation time. The modified routes are stored in the set LastModified. A similar
approach may be found in Zachariadis and Kiranoudis (2010).

Inter-route Moves

The VNS metaheuristic is based on the exploration of different neighborhoods around
a given feasible solution. In order to establish these neighborhoods, several moves are
defined. In our approach, four different inter-route classical moves (Savelsbergh, 1988)
have been identified to be used within the local search process:

(a) Relocate moves a customer from one route to another,
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(b) Swapping exchanges two customers belonging to different routes,

(c) Chain is a specialization of 3-opt that swaps sections of two contiguous customers
from different routes, and

(d) Ejection chain swaps the end portions of two different routes.

The use of our TLM ensures the partial optimality of most solutions from the routing
perspective. The reason is that, since we are considering a relatively small number of
customers per route, the proposed approach can quickly find the optimal solution to
most TSP instances. In effect, the respective lower bounds (LB) and upper bounds
(UB) converge rapidly, keeping their gap between 0 and 10−10, which guarantees the
solution optimality. In addition, it solves all routes in negligible times. Thus, it is an
efficient alternative for intra-route optimization processes and avoids defining intra-route
moves.

2.5 Computational Results

The methodology described in this paper has been implemented in Java and linked to the
open-source CP software system ECLiPSe 6.0 (Apt & Wallace, 2007). All tests have been
performed on a dedicated server with an Intel i5 processor at 2.66GHz and 16GB RAM.
A total of 91 classical CVRP benchmark instances available at www.branchandcut.org
have been used to test the efficiency of the proposed approach when dealing with this
simple (in terms of constraints) but extensively tested scenario. In order to ensure fulfill-
ment of the triangular inequality property, only those instances using Euclidean metrics
have been selected. The selected problems also include 7 instances from (Christofides et
al., 1979) (denoted in tables as C1-C5, C11, and C12) for further comparison with some
recent metaheuristics.

As the algorithm has been designed to be run in a parallel computing environment, a
test has been done over the set A of benchmark problems to determine the most suitable
number of simultaneous threads. This parameter is to be fixed mainly according to
computer’s characteristics. In the particular server used in this work, up to 4 threads
may be executed in parallel in order to keep a reasonable computational efficiency. In the
performed test, adopting a parallelized approach permits reducing the total computation
time significantly. In particular, for problems from the set A, the total computation
time is 41% lower, on average, than the total time spent using a sequential approach.
For this reason, all results presented in this paper correspond to a Multi-Start VND
implementation with 4 parallel processes, since this approach has demonstrated to keep
a reasonable balance between the time spent on calculating one single solution and the
total execution time.

Table 2.1 shows results obtained for some representative problems from the selected
benchmark sets. Due to algorithm’s probabilistic behavior, the final solutions’ quality
depends on the total number of threads. For this reason, 100 total tasks have been
considered for each problem, i.e., 100 pseudo-optimal solutions have been generated for

www.branchandcut.org
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each benchmark instance. Table 2.1 summarizes information regarding the best solution
found (OBS) for each problem, as well as the time required to reach this solution. These
results are compared to the best known solutions (BKS) so far. Most sources give
these values as integer numbers, obtained by rounding costs, except for the problems
from (Christofides et al., 1979) where real values are usually given. From the detailed
integer solutions, real costs have been calculated and reported. It should be remarked
that the real cost of an integer optimal solution might not correspond to the optimal
solution considering real costs. For this reason, negative gaps appear on this table.
Thus, it can be deduced that the Multi-Start VND is able to match, and in many cases
improve, the real value associated to the best known integer solutions. Concretely, the
presented approach has been able to improve 23 best known solutions, considering real
costs, out of the 91 tested instances. In addition, the gap is kept reasonably low for all
considered instances, being the average gap 0.65 %. It remains lower, 0.17 %, for the
problems selected in Table 2.1, which include most of the largest instances.

Furthermore, it should be remarked that these results have been obtained in com-
petitive times even for some large instances. As shown in Table 2.1, most solutions for
small problems are obtained in less than a second, while larger instances require higher
yet reasonable computational times. In most cases, higher times are closely related to
higher quality solutions, i.e., solutions with a negative gap.

Table 2.2 shows how these results are similar to other state-of-the-art metaheuristics.
It provides a comparison between the proposed approach and some recent publications.
The first three metaheuristics are: a hybrid algorithm of Simulated Annealing and Tabu
Search (SA-TS) introduced in (Lin et al., 2009); a hybrid Electromagnetism-like heuristic
(HEMA) proposed by Yurtkuran and Emel (2010); and a Particle Swarm algorithm
(SR-2) described in (Jin Ai & Kachitvichyanukul, 2009). The next three metaheuristics
correspond to our related work: a hybrid VNS (HVNS) presented in (Guimarans et al.,
2011a); the randomized Clarke and Wright Savings (SR-GCWS) algorithm by Juan et
al. (2010); and the Multi-Start VND presented in this chapter and in (Guimarans et al.,
2011b).

Most publications only report results corresponding to the 14 instances from the
workbench presented by Christofides et al. (1979). For this reason, few results corre-
sponding to other problem sets are reported for the first three metaheuristics in Table 2.2.
Moreover, some of the instances from (Christofides et al., 1979) include an additional
constraint on the maximum route length that is not handled in the proposed version of
the algorithm. Therefore, results for these instances have been omitted in this table.

It may be observed that the proposed approach is comparable in terms of quality and
computational efficiency to these recent metaheuristics. Times needed by our approach
to reach a pseudo-optimal solution are in most cases lower than those required by means
of the other algorithms. It should be remarked that the proposed approach clearly
improves the efficiency of the previous algorithms HVNS and SR-GCWS. Furthermore,
the Multi-Start VND provides the lowest gap among all selected metaheuristics, only
beated by the SR-GCWS approach. However, most of the higher gaps obtained with
the proposed approach correspond to some of the largest instances, whose results are
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Gap (%)
Problem # nodes BKS OBS BKS-OBS # routes Time (s)
A-n32-k5 31 787.81 787.08 -0.09 5 0.633
A-n33-k5 32 662.76 662.11 -0.10 5 0.842
A-n33-k6 32 742.83 742.69 -0.02 6 0.480
A-n37-k5 36 672.59 673.59 0.15 5 1.948
A-n37-k6 36 952.22 950.85 -0.14 6 1.631
A-n38-k5 37 734.18 733.95 -0.03 5 2.546
A-n45-k6 44 944.88 944.88 0.00 6 1.622
A-n46-k7 45 918.46 918.13 -0.04 7 2.062
A-n54-k7 53 1171.78 1171.78 0.00 7 4.007
A-n55-k9 54 1074.46 1076.85 0.22 9 5.544
A-n63-k9 62 1622.14 1622.14 0.00 9 8.073
B-n31-k5 30 676.76 676.09 -0.10 5 0.657
B-n34-k5 33 791.24 789.84 -0.18 5 0.497
B-n35-k5 34 956.29 958.94 0.28 5 1.174
B-n38-k6 37 809.45 809.45 0.00 6 1.211
B-n39-k5 38 553.27 553.16 -0.02 5 1.577
B-n43-k6 42 747.54 746.98 -0.07 6 1.520
B-n45-k5 44 755.43 753.96 -0.19 5 1.011
B-n50-k7 49 744.78 744.23 -0.07 7 1.721
B-n50-k8 49 1316.20 1319.53 0.25 8 7.069
B-n51-k7 50 1035.71 1037.54 0.18 7 597.915
B-n57-k9 56 1603.63 1604.88 0.08 9 7.653
B-n64-k9 63 869.32 868.31 -0.12 9 287.953
E-n22-k4 21 375.28 375.28 0.00 4 0.337
E-n23-k3 22 568.56 568.56 0.00 3 0.422
E-n33-k4 32 838.72 837.67 -0.13 4 0.819
E-n51-k5 (C1) 50 524.61 527.98 0.64 5 17.164
E-n76-k10 (C2) 75 835.26 843.49 0.99 10 28.941
E-n101-k8 (C3) 100 826.14 841.16 1.82 8 195.271
F-n45-k4 44 724.57 727.75 0.44 4 4.459
F-n135-k7 134 1170.65 1179.09 0.72 7 630.427
G-n262-k25 261 5685.00 5722.00 0.65 25 1651.360
M-n101-k10 (C12) 100 819.81 821.40 0.19 10 51.395
M-n121-k7 (C11) 120 1042.11 1045.14 0.29 7 137.553
M-n151-k12 (C4) 150 1028.42 1052.52 2.34 12 834.642
M-n200-k17 (C5) 199 1291.45 1324.91 2.59 17 243.789
P-n16-k8 15 451.95 451.95 0.00 8 0.019
P-n19-k2 18 212.66 212.66 0.00 2 0.243
P-n20-k2 19 217.42 217.42 0.00 2 0.148
P-n21-k2 20 212.71 212.71 0.00 2 0.275
P-n22-k2 21 217.85 217.85 0.00 2 0.277
P-n23-k8 22 531.17 531.17 0.00 8 1.447
P-n40-k5 39 461.73 461.73 0.00 5 6.189
P-n45-k5 44 512.79 512.79 0.00 5 10.016
P-n50-k7 49 559.86 560.15 0.05 7 5.155
P-n51-k10 50 742.48 742.36 -0.02 10 5.156
P-n55-k10 54 697.81 698.00 0.03 10 5.331
P-n55-k8 54 592.17 581.17 -1.86 7 14.703
P-n76-k5 75 635.04 633.32 -0.27 5 92.627
P-n101-k4 100 692.28 693.54 0.18 4 839.622
Average 0.17

Table 2.1: Results for 50 classical benchmark instances.

not reported for the SR-GCWS algorithm.
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As a final remark, it can be observed that the lowest gap (-1.86 %) corresponds to
the problem P-n55-k8, where a solution considering only 7 vehicles (# routes) has been
obtained. Although the best known solution for this problem uses 8 vehicles, feasible
solutions with 7 vehicles and lower costs may be reached, as the one obtained with this
approach. However, if only 7 vehicles are considered, the Multi-Start VND has finished
slightly over the value 580.96 (576 considering integer costs), published for this problem
in (Guimarans et al., 2011a), (Alba & Dorronsoro, 2008), and (Altinel & Oncan, 2005).

2.6 Conclusions

The described hybrid algorithm embeds CP and TLM within the VND metaheuris-
tics framework by decomposing the CVRP into two subproblems concerning customers’
allocation and routing optimization separately. This approach allows reducing the com-
putation time during local search processes, since problems to be solved are far less
complex than the original CVRP.

A fast and efficient algorithm such as the randomized CWS algorithm is used to
feed the multi-start scheme by generating good initial solutions. Thus, the proposed op-
timization approach implements a flexible, efficient and robust optimization algorithm
able to deal with some realistic problems, which means both the ability to tackle large
instances and to represent real operational constraints. The characteristics of the re-
sulting algorithm can be explained in the following way: flexibility involves the quality
of the algorithm to be adapted to real problems; efficiency is related to the easiness of
the algorithm to obtain optimal or quasi-optimal solutions in reasonable computation
times; and robustness is related to the fact that the algorithm performs well even when
no extensive fine-tuning processes are carried out on its parameters.

Regarding flexibility, this approach benefits from the CP capabilities to model differ-
ent operational constraints. This constraints are present in most of the real application
cases and, in general, affect to the allocation decisions. CP, which is not restricted by
modeling limitations such as constraint linearity, facilitates the representation of allo-
cation constraints without requiring any specific action on the solving method. Hence,
the hybrid scheme can be easily adapted to different CVRP variants by simply adding
the allocation constraints which properly model the feasible solutions of the problem.
Since the VND optimization scheme is able to reach feasible solutions starting from non-
feasible initial solutions, e.g., not fulfilling the maximum number of vehicles (Guimarans
et al., 2010), the RCWS algorithm does not need to be modified in order to include
operational constraints other than capacities. However, other capacity-like constraints,
such as total driving time of each route, can be translated to a capacity constraint in
order to obtain feasible solutions by means of the RCWS algorithm. Additional opera-
tional constraints may be added to the CP model, which will ensure solutions’ feasibility
along the local search process. Thus, this hybrid approach will be able to tackle complex
instances related to real application cases by adding little modifications into the problem
modeling, but neither into the optimization scheme nor algorithms.

The efficiency of the proposed algorithm is supported by the results presented in the
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previous section. As discussed, the presented approach is able to match the best known
solutions for benchmark problems of different sizes in reasonable computation times.
The provided comparison proves that its efficiency is similar to other state-of-the-art
metaheuristics, both in terms of time and solutions’ quality.

The robustness of the algorithm is a consequence of the light requirements for fine
tuning. Our TLM metaheuristic does not require any specific adjustment since all the
convergence parameters are self-tuned. The CP-based subproblem depends just on the
quality of the defined constraint model to properly describe the feasible solutions. The
RCWS does not require any adaptation either. Only the VND movements could require
different priorities depending on the problem being solved in order to get a better solution
quality.

Our proposed Tailored Lagrangian Metaheuristic has been used to calculate routing
cost for each vehicle separately. It solves all routes in negligible times and is an efficient
alternative for intra-route optimization processes and avoids defining intra-route moves.
Moreover, it ensures the partial optimality of most solutions from the routing perspective.
The reason is that, since we are considering a relatively small number of customers
per route, the proposed approach can quickly find the optimal solution to most TSP
instances.





Chapter 3

Workload-Balanced and
Loyalty-Enhanced
Home Health Care

This chapter describes a practical application concerning the Home Health Care (HHC)
service in the municipality of Ferrara, a mid-sized city in the North of Italy. The problem
has been solved using a hybrid methodology based on Large Neighborhood Search (LNS)
combining Constraint Programming (CP) and our Tailored Lagrangian Metaheuristic
(TLM) proposed in Section 1.6.

Although sometimes it is necessary, no one likes to stay in a hospital, and patients
who need to stay in bed but do not require constant medical surveillance prefer their
own bed at home. At the same time, a patient in a hospital has a high cost for the
community, that is not acceptable if the patient needs service only a few minutes a day.
For these reasons, the Health Services providers in Europe and North America have
tried to avoid the hospitalization of patients whenever possible. A patient that has to
stay in a hospital has a high cost for the community, and saving money (and resources)
means that those resources can be spent for providing a better service to other patients.
Hence the current trend is to send nurses to visit patients at their home where patients
perceive a higher quality of life, with their dear ones, and feel their illness more similar
to a “normal” life situation. This reduces depression risk for the patient, and improves
rehabilitation rate. Indeed, high quality Home Health Care following hospital dismissal
has proved essential in reducing hospital readmissions, if able to cope with preventable
complications.

The challenge is to deliver the service in a cost effective manner without a detri-
ment of the service quality. These social and health management issues have interesting
implications from the mathematical viewpoint, introducing a challenging combinatorial
optimization problem. The problem consists on assigning patients’ services to traveling
nurses and defining the nurse itineraries so that the following optimization aspects are
considered: the nurse workloads (including service as well as travel time) are balanced,
patients are preferentially served by a single nurse or just a few ones, and the overall
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travel time is minimized. These objectives are somehow conflicting and a reasonable
trade off must be found. The complexity of the problem calls for suitable optimization-
based algorithmic supports to decisions, in particular in the perspective of an increasing
diffusion of the service. This HHC problem is currently solved by hand, starting from
a partitioning of patients based on predefined zones. We describe a CP model that
solves the HHC problem, and show significant improvements with respect to the current
manual solution.

Arguments in favor of Home Health Care and how to reduce health related risks when
clinical service is provided at home can be found also in (Giuliani et al., 2005) and (Mileo
et al., 2011). When a patient requires service only for a limited time per day, or even per
week, then it is a viable and convenient solution to send nurses to provide the service
at the patient’s home. Managing such a service gives rise to a family of challenging
optimization problems referred to as Home Health Care routing and scheduling (see
(Bertels & Fahle, 2006) and (Steeg & Schröder, 2008)).

The work presented in this chapter has a previous version presented in (Cattafi et
al., 2012), it was in ECLiPSe (Schimpf & Shen, 2012), which is a logic programming
system, so we defined a declarative semantics for the traveltime constraint. The current
version is presented in (Cattafi et al., 2015), and it extends in several directions:

• a new implementation in the language Comet, which has more global constraints,
that have powerful constraint propagation, and allowed us to improve the efficiency
of the application;

• new search algorithms, based on Large Neighborhood Search, that let us get to
better solutions in shorter time;

• a wider experimentation;

• the use of a new objective function.

3.1 Problem Definition: the Home Health Care service in
Ferrara

At present, the HHC service in the city of Ferrara, Italy, is directly administrated by
the local agency of the National Health Service (NHS), namely AUSL 109. All patients
who are not self sufficient and in need of medical treatment are eligible for HHC, i.e.,
any person who is infirm, chronically ill, or disabled. A demand for assistance must
be issued by the family doctor to AUSL 109, specifying the list of required medical
treatments. If the demand is accepted, the patient is enrolled in the service, and the
required treatments are entered into the request data base. Each request is characterized
by a patient identifier (name and address), a medical treatment, and the specific day of
the week when the treatment must be delivered (each patient can have more than one
request per week).

Service is provided by a set of qualified nurses, all registered nurses with additional
training, employed by the local NHS agency. Every day, each nurse who is on duty
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starts the shift at the city hospital, visits the patients in the list delivering the required
treatments and traveling by car from one patient’s home to the next; finally the nurse
returns to the hospital.

A total of 15 nurses is involved and they are organized as follows. On working days,
i.e., from Monday to Friday, 12 nurses are on duty. 9 of them operate in the morning
while 3 in the afternoon. During weekends, 4 nurses work on Saturday and 1 on Sunday
or during holidays.

Working rules. A duty should last up to 7 hours and 12 minutes on a working day, and
about 6 hours on Saturdays and holidays. This limit is not strictly enforced, provided
that the threshold of 36 hours per week is not exceeded over a planning horizon of 4
weeks.

Each nurse works 5 days a week (on working days only) each alternate week and
works 6 days the other week; the sixth day is usually a Saturday, but it can be a Sunday
once every 14 weeks.

Lunch breaks are not present because shifts are either morning or afternoon. All
nurses have same starting and ending times, and must start and end shifts at the hospital.
Nurse unavailabilities are considered unexpected events, and one additional nurse is
always available for such emergency.

Service Time

First visit 1 hour
Enema 30 min
General check 15 min
Tracheotomy check and tube change 15 min
Central venous catheter 30 min
Electrocardiogram 30 min
Emogasanalysis 15 min
Mouth cleaning 5 min

Table 3.1: Excerpt of the services with average service time

Services consist of treatments and medications, and since their delivery time has
almost no impact on the patient daily routine (patients stay in bed almost all day),
there are no time windows. A treatment lasts from 5 to 60 minutes, depending on its
specific characteristics (see Table 3.1 for an excerpt), but a patient in a day may need
several treatments, that are carried out as a whole by a single nurse and handled as a
single request. Therefore, requests duration is quite heterogeneous over the whole set of
requests, as can be seen on Figure 3.2.

Ferrara has about 150,000 inhabitants, and the area administered by AUSL 109 is
rather large and its population ageing. Most of the elderly patients live in the coun-
tryside, so there is a significant geographical dispersion of the requests. Therefore, the
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Figure 3.2: Histogram of the frequency of service durations in a typical day

service is characterized by a high variance of duration and a significant geographical
dispersion of the requests.

As a sample of the set of requests, we consider the month of February 2010, with
3323 requests subdivided among 458 patients. Several patients are located either in town
or in its suburbs, though quite a few live in the neighboring towns of Masi Torello and
Voghiera, that are approximately 20km away.

At present, the digitization of data is limited to the patient data base, containing
the address and the prescribed services for each patient. The duty definition and the
management of nurse agendas is handled manually and supervised by the chief nurse,
with frequent adjustments done by cell phone. As a record of their duty, nurses fill forms
on paper which they return to the chief nurse at the end of their daily shift.

The problem data

Optimizing the HHC scheduling is essential to make the service cost-effective and to avoid
the so called burn out phenomenon, i.e., nurses who get tired and act in an unfriendly
manner to patients or even leave the job. At the same time, also the patient point of
view should be accounted for. Specifically, a patient would like to receive cares always
by the same nurse or by a few ones, if possible, since receiving clinical care involves
physical and emotional contacts that one is not like to easily share with anyone. This
introduces the concept of loyalty (i.e., the number of different nurses per patient) as a
measure of the service quality as it is perceived from the patient viewpoint.

We start by examining the current solution approach, as it is manually carried out
by the people in AUSL 109, and analysing its critical aspects. Nurses organize their
duties themselves, solving the problem by hand according to the following procedure.

To simplify the assignment of patients to nurses, the territory pertaining AUSL
109 is statically partitioned into 9 zones (see Figure 3.3), considering factors like the
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Figure 3.3: The 9 zones in which the city is divided, with shown the location of the
patients

distribution of the population, its age and historical data. As we can see from Figure 3.3,
some zones are in the city center, they are very small, but they have a large number
of patients that require service. Other zones are in peripheral areas, and they are less
densely populated. A nurse assigned to a central zone will probably have many patients
to serve, while a nurse assigned to a peripheral zone will likely spend a significant amount
of time traveling.

Each nurse receives in charge the services of all the patients belonging to one area.
Then the nurse tries to fit the requests for the whole week into the working shifts, while
complying with the maximum weekly workload allowed, since no overduty is permitted.
The assignment of requests to daily shifts follows a sort of greedy criterion: nurses, by
hand, insert as many requests as possible into the shifts. There are no given rules on
which patients to select first: each nurse could use a different order, in principle. Such
decisions are not driven by any optimization criteria, and the routing is not necessarily
optimal.

If a nurse can not fulfill all the requests, some requests are forwarded to the chief
nurse, who is in charge of the service coordination, and reassigns them to other colleagues.
In such a case, a patient may be treated by different nurses at different days of the week,
which goes to the detriment of the service quality. The three nurses working in the
afternoon are in charge of the remaining requests, that are still assigned to the nurses
on the basis of a similar geographical partition of the territory, each nurse dealing with
the patients of three zones. Therefore, patients are supposed to be visited along the
morning, but maybe they are visited in the afternoon. Currently, patients do not know
the schedule.

Due to this greedy procedure, the nurse weekly schedules have very different work-
loads, and balancing this over the months leads to a detriment in loyalty. Nurses com-
plain about such disparities, and have difficulties adapting their schedule to new patients,
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new treatments, or to any other change. Moreover, if the workload balance could be
improved by optimizing the routing component, nurses could be available at the hospi-
tal for other tasks. In addition, an improved routing plan would impact on the direct
expenses related to fuel and car usage, which contribute to the overall cost.

The decisions to be taken are:

• partitioning the requests to a set of duties,

• for each duty determining the sequence of services to be carried out optimizing the
traveling times by solving a Traveling Salesman Problem (TSP), and

• assigning each duty to a nurse to build the nurse weekly schedule.

Scheduling such a service poses several challenges, related to the criteria which char-
acterize high quality solutions. A good solution should achieve at the same time:

• from the point of view of the NHS, the minimization of the travel time over the
service time, since during travel a nurse is on duty but is not delivering any service;

• from the point of view of the nurses, a fair distribution of the workload, which can
not be guaranteed by simply equally subdividing patients, due to heterogeneous
requests;

• from the point of view of the patients, a high degree of loyalty, i.e., the number of
different nurses who are in charge of a single patient should be minimal.

The problem we are facing contains several subproblems, namely assigning each
request to one available nurse, scheduling optimally the services in each nurse’s duty,
and finding the optimal route for each nurse in order to avoid long useless trips. We will
describe in the following the main components of the CP-based hybrid solution approach
that has been developed to tackle such a difficult problem.

3.2 Literature Review

The efficient delivery of Home Health Care service is increasingly attracting the attention
of the Artificial Intelligence and the Operations Research communities. Most of the con-
tributions focus on the application aspects and often, beside the optimization approach,
they describe the complete information system managing the service. Therefore the
specific application aspects strongly characterize the optimization problems presented in
each paper and the proposed solution methods. This is the reason why, in practice, each
paper addresses a different problem and a thorough comparison can be hardly done.

The great majority of the contributions consider a service where patients/users spec-
ify a (more or less narrow) time window when they are available to receive the service.
This feature is typical of the systems where the service is managed in conjunction with
a Home Care. In Home Care services the presence of time windows is crucial since users
are supposed to be independent and to move from their home. This is not the case of
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Home Health Care where we are in the presence of patients that, instead of being at the
hospital, are in their bed at home and are not supposed to move.

One of the first papers dealing with this class of problems is (E. Cheng & Rich, 1998).
The problem accounts for time windows and a mix of full time and part time workers. In
the scheduling of full time workers a lunch break must be included and the objective is
to minimize the cost of over time of full time workers and the time of part time workers.
The authors propose a mathematical programming model and a simple heuristic.

Eveborn et al. (2009) is a system adopted in Sweden for Home Care, although it is
also able to consider some of the issues in HHC. Laps Care is based on a set partitioning
formulation of the problem and uses an iterative method. The starting solution proposes
a single route for each service; then routes are joined until no further improvement is
possible. To escape from the local optimum, one of the routes is split into one route
for each patient, and the joining phase restarts. Another integrated system is presented
in (Begur et al., 1997) where the focus is mainly on the GIS component of the Decision
Support System. The problem is reduced to a vehicle routing and solved with classical
heuristic methods.

A Home Health Care system similar to ours is analyzed in (Borsani et al., 2006).
One of the objectives is to balance the workload while some soft preference constraints
for the nurse-patient assignment are accounted for as well as for the days of the week of
the visits. Another objective is to minimize the number of uncovered visits that must
be outsourced. The authors propose a simple assignment model ignoring the routing
component, indeed the time of the visits is deterministically fixed to a constant time
and this time includes the travel time. This assumption may be oversimplifying if we
are in the presence of a wide territory to cover, in which the service and the travel times
may vary from few minutes to one hour.

Rasmussen et al. (2012) considers a specific core subproblem that is the daily schedul-
ing of nurses. In this problem the objective function accounts for many factors related
mainly with the quality of service, such as the uncovered visits or a priority function,
rather than the operational cost which is not easily applicable on a single day. The
problem is an extension of the classical Vehicle Routing Problem with Time Windows,
widely studied in the literature. The authors propose a set partitioning formulation and
an exact solution method based on Branch and Price that exploits a special branching
rule taking advantage of the specific problem structure.

In (Bertels & Fahle, 2006), (Elbenani et al., 2008) and (Steeg & Schröder, 2008)
authors address HHC problems with rather tight time windows. Bertels and Fahle
(2006) adopt an interesting hybrid approach, combining CP, local search and Linear
Programming. The approach takes advantage of the presence of narrow time windows:
due to time window constraints, in the HHC only few permutations correspond to feasible
orderings. The instance in Ferrara does not have such constraints, while retaining the
loyalty and the workload balancing aspects, so the only criterion for assigning the order
of patients in a nurse’s schedule is minimizing the route. However, this does not mean
that the problem is under constrained or easier to solve. On the contrary, the search
space is wider, as it is not pruned by simple constraints like time windows or nurse skills.
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The number of feasible solutions, on the other hand, does not necessarily increase: in a
real-world instance new nurses are hired only when necessary, so the actual workload of
the nurses is very close to their maximum working hours. This means that if the routes
are not close to the optimum, the daily-workload constraint becomes infeasible: one has
to find the optimum of the TSP just to find a feasible solution to the HHC problem or
to assess infeasibility.

Another work that uses a hybrid CP-Mathematical programming approach is that
in (Nickel et al., 2012). Here the authors consider the whole problem of assigning patients
to nurses on a weekly base and make the daily schedule. The objective is twofold: on
the one hand they minimize the overtime and the route length, on the other hand they
account for a loyalty factor privileging the assignment of the same nurse to the same
patient if possible. Also in this case time windows are present. The decomposition of the
problem in a master weekly scheduling and a daily scheduling is also done in order to be
able to adjust the service to last minute changes, which is very common in Home Health
Care. A completely different approach to the last minute variability arising in request
issues is that in Koeleman et al. (2012) where a Markov process captures the stochastic
aspects of the problem. Another stochastic model used in medium term planning is
proposed in Lanzarone et al. (2010).

The above stated approaches consider the use of one transport mode during the
tour of a nurse. Different modes of transport are discussed in (Rendl et al., 2012; Rest
& Hirsch, 2012). Rendl et al. (2012) present a hybrid solution approach combining
constraint programming and a metaheuristic to solve instances with up to 509 nurses
and 717 visits. Additionally, Rest and Hirsch (2012) consider time-dependent traveling
times for public transport. They propose Tabu Search-based solution approaches and
solve instances with up to 89 nurses, 236 clients, and 388 visits.

Looking at the problem from a more abstract viewpoint, one may see some similarities
with the classical Capacitated Vehicle Routing Problem (CVRP). In the CVRP a set of
disjoint routes for a fleet of vehicles has to be found so that all customers (nodes) are
visited, the required quantity of goods is delivered to each customer, the capacity of the
vehicles is not exceeded and the objective function is minimized. The usual objective
function is the overall traveled distance or the number of vehicles. The CVRP has
been tackled by many solution methods (Baldacci et al., 2010; Pisinger & Røpke, 2007;
Garrido et al., 2009). including branch and cut (Baldacci et al., 2010), metaheuristics
(Pisinger & Røpke, 2007), and hyperheuristics (Garrido et al., 2009).

In our case we can see nurses as vehicles and patients as customers. There are some
important differences with CVRP that make all the efficient method developed for the
classical problem not applicable in our case. One difference concerns the capacity. As in
CVRP we may consider nurse daily duty time as a capacity constraint, however, unlike
the CVRP, in our case the sequence in which patients are visited matters on how the
capacity is consumed. This actually turns our problem into a time constrained VRP
which is not as easy as the CVRP and for which the classical CVRP methods are not
so efficiently adapted. The other difference concerns the objective function. On the
one hand, as in VRP, we would have to minimize the total traveled distance, in order
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to make the service as efficient as possible, on the other hand we have to balance the
workload among nurses. Thus this component of the objective function is a kind of
bottleneck (min-max), that is difficult to address with OR methods. Finally, the loyalty
is the component of the objective function that makes our problem very peculiar. The
two criteria are often in contrast: any solution assigning to a single nurse all the services
of the same patient would minimize the loyalty, but this would go to the detriment of
workload balancing.

3.3 The Methodology in detail

A hybrid methodology based on Large Neighborhood Search is presented in this section,
it combines Constraint Programming (CP) and the Tailored Lagrangian Metaheuristic
(TLM) proposed in Section 1.6. This section is structured as follows: the input data
is described, the CP model is presented, then the objective function is discussed, it is
explained how the routing is addressed and finally the search strategy is presented.

LNS is becoming more and more popular to solve routing problems, an introduction
can be found on page 17 and in (Shaw, 1998; Pesant et al., 1997). The idea is a
local search that adopts a large neighborhood which makes less likely to fall in a local
minimum. Exploring the neighborhood becomes a search problem itself, and it is done
with CP. In this way, it is possible to take into account easily many side constraints.

The popularity of hybridization of CP and Local Search (Monfroy et al., 2004; Wal-
lace, 2006) is witnessed by the existence of solvers tailored for this approach (Van Hen-
tenryck & Michel, 2009), and the application to routing problems (Rousseau et al., 2002;
Kilby et al., 2000). Various works deal with solving the TSP or its variant with CP or
hybrid algorithms (Caseau & Laburthe, 1997; Pesant et al., 1998; Focacci et al., 2002).
Rousseau et al. (2002) propose a large neighborhood search in which CP explores a
neighborhood with three operators. These operators are combined in variable neigh-
borhood descent and a two phase process. Kilby et al. (2000) consider vehicle routing
problems with side constraints, and compare classical OR approaches with CP models.
OR approaches tend to use cost-oriented heuristics, that make them suitable for prob-
lems with few side constraints, but fail to find an initial solution when the number of
side constraints grows. On the other hand, CP approaches are better when the side
constraints are more tight but usually provide worse solutions when the side constraints
are not prevalent.

We believe that using CP to tackle this problem is a wise choice, because of the
importance of the feasibility issues represented by the time constraints, of the many
aspects which can benefit of CP’s flexibility (such as the need to easily add and relax
constraints to follow change in the requirements) and because CP provides an effective
framework for the integration of components based on different approaches. In this
section we will explain the CP model and we will deal with some of these issues.
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Input Description

The input data consists of:

• a set Sserv of services, of size Ns; for each service s we know the patient pats, the
day days and the duration durs;

• a matrix of distances D where the element di,j is the travel time from patient i to
patient j;

• the number of nurses Nn;

• the set of nurses Snurse (i.e., Nn = |Snurse| or Snurse = {1, . . . , Nn});

• the number of days Nd considered in the scheduling;

• the maximum time that a nurse can spend working each day; MaxDayWL is the
amount of minutes available per day for each nurse (including service time and
travel time); it currently corresponds to 7 hours and 12 minutes (432 minutes);

• the maximum time that a nurse can spend working in a week; MaxWeekWL is the
number of minutes available per week for each nurse. It currently corresponds to
36 hours.

The CP Model

A constraint model is defined by a set of decision variables (unknowns), each ranging
on a given domain, and a set of constraints, that each assignment must satisfy. Often,
there is also an objective function, that should be minimized or maximized. A solution
is an assignment of values taken from the domains to the corresponding variables such
that all constraints are satisfied, and that minimizes (resp. maximizes) the objective
function.

Usually an efficient model makes use of global constraints, i.e., constraints that involve
many (possibly, all) variables in the model. Often, global constraints propagate more
efficiently than small constraints that involve only two or three variables. We show a
model that includes a number of global constraints.

Variables:

The main decision is assigning nurses to services. To each service s we associate a
decision variable Nurses with domain Snurse.

Other variables have functional dependency to the Nurses variables. For each nurse
n and day d, we have a decision variable DayWLn,d with domain {0..MaxDayWL}. This
is the number of minutes worked by nurse n on day d.

Other variables represent service time and traveling time: T svcn,d and T trvn,d are, respec-
tively, the service time and the travel time of nurse n in day d; they also range from 0
to the maximum day workload MaxDayWL.
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We also have variables containing the weekly totals: each nurse n has a weekly travel
time WT trvn , a weekly service time WT svcn , and a weekly workload WLn, that is the sum
of the travel and service time; their domain is {0..MaxWeekWL}.

Another decision to be taken is the order in which a nurse visits the assigned patients.
This problem will be dealt with in “Addressing the Routing” on page 75.

Constraints:

The workload of a nurse n in a day d is the sum of the total service time and the travel
time

DayWLn,d = T svcn,d + T trvn,d , (3.1)

while the (whole week) workload WLn is simply the sum of the day workloads:

WLn =

Nd∑
d=1

DayWLn,d (∀n ∈ Snurse).

The service time is the sum of the duration of the services provided by nurse n in
day d. In order to compute the service time of each nurse in each day (and to enforce at
the same time that the total service time does not exceed the maximum day workload
MaxDayWL), there can be different constraint models. An intuitive model could be to
define a set of Boolean decision variablesXn,s (variables taking values true or false) saying
if nurse n takes service s, and add corresponding sum constraints. A more promising
model can be obtained noticing similarities with classic problems such as bin packing
and (multi)-knapsack problems (Korf, 2003; Fukunaga & Korf, 2007).

In a multi-knapsack problem, a set of Nitems items with size sizei have to be placed
in a set Nk of containers without exceeding their capacities.

The global constraint multiknapsack (also called binpacking) (Shaw, 2004) is suited
to solve such problems. In CP a multiknapsack problem can be simply defined with the
constraint

multiknapsack(a, size, load)

where

• a ≡ {ai} is a set of decision variables ai with domain

ai :: 1..Nk (∀i ∈ 1..Nitems),

with the intended meaning that ai = j if only if item i is assigned to knapsack j;

• size ≡ {sizei} is the array containing the size of each item

• load ≡ {loadj} is a set of constrained variables that represent the actual load of
each knapsack, i.e., the sum of the sizes of the items assigned to that knapsack.
In order to solve a multi-knapsack problem, the loadj domains are constrained to
take values up to the capacity of the knapsacks:

loadj ≤ capacityj (∀j ∈ 1..Nknapsacks).
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By using the techniques currently embedded in the multiknapsack constraint, Shaw
(2004) obtains a speedup of several orders of magnitude with respect to the intuitive
model, so we decided to take this second approach.

In the HHC problem, we can consider

• each service s as an item of size durs which has to be placed in one of the
bins/knapsacks;

• to each pair (nurse, day) we associate a knapsack of capacity MaxDayWL;

• the actual load of knapsack (nurse, day) is the service time T svcnurse,day of nurse
nurse in day day.

We can thus bind the Nurse decision variables with the whole T svc vector. We impose
the constraint

multiknapsack (Nurse, dur, T svc) ,

which enforces that (∀n ∈ Snurse, ∀d ∈ {1..Nd}):

T svcn,d =
∑

s∈Sserv
d=days

[Nurses = n]× durs

where the square brackets are the Iverson brackets (Knuth, 1992)1.

The travel time T trvn,d of nurse n in day d is computed by a specific constraint
traveltime, explained in detail in “Addressing the Routing” on page 75.

The Objective Function

Ideally, in the HHC problem in Ferrara, one should find a solution that achieves the
objectives described in the introduction. As it is often the case in real world applications,
the objectives are stated by the users in a blurred, informal way, not clear enough to
convert them into a unique objective function, and all functions one can think of are
debatable. The main objectives, as stated by the user, are to (i) avoid that a patient is
visited by too many different nurses (loyalty) and (ii) balance the weekly workloads of
the nurses (but they also have to keep reasonable conditions for all nurses and for the
NHS).

We first address the two issues separately, then we combine them.

Loyalty One way to obtain maximum loyalty is to minimize the number of nurses that
visit each patient. For each patient p ∈ Spatient we link the array of decision variables
Nursep with the number of different values in it.2 The alldifferent (Régin, 1994; van Ho-
eve, 2001) global constraint enforces that all the variables in an array are given different

1let P be a statement, [P ] evaluates to 1 if P is true and to 0 otherwise.
2To simplify the notation, we indicate with Nursep the subset of the Nurse array corresponding to

patient p.
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values. The global constraint NV alue (Bessière et al., 2006; Hebrard et al., 2011; van
Hoeve, 2004) can be thought of as a soft version of alldifferent, and it counts the number
of different values in a vector of variables. Various efficient propagation algorithms have
been proposed for the NValue constraint; using the global constraint NValue is usually
considered more efficient than using a set of smaller constraints (Bessière et al., 2010).
By counting the different values in the set of decision variables associated to a certain
patient p, we obtain the number PNp of different nurses who take care of that patient:

NValue(Nursep, PNp) (∀p ∈ Spatient)

and we can compute the overall loyalty penalty LP summing up the single contributions:

LP =
∑

p∈Spatient

PNp. (3.2)

Balancing workloads There are various ways to achieve balanced workloads, see
(Simonis, 2007). A widely used method is the minimization of the maximum workload,
so a first proposal is to minimize:

BalanceWL′ = MaxWL = max
n∈Snurse

(WLn). (3.3)

There are known pitfalls in adopting the minimization of the maximum (see, e.g.,
(Monette et al., 2007)). One simple observation is that two solutions are considered
equivalent if they have the same value for the highest workload, regardless of the working
conditions of all other nurses.

Consider for instance the following example, also depicted in Figure 3.4:

Example 1 Suppose that there is a patient X that lives rather far from the hospital, and
also requires a long service time (Figure 3.4); suppose that, in order to visit and service
him, a nurse takes a time exactly equal to the maximum day workload MaxDayWL. The
other patients, instead, live close to the hospital and have shorter service times. In such
a case, one nurse will serve only patient X, while the other patients will be subdivided
among the other nurses.

In this example, the minimization of the maximum workload provides the same value
for all the possible assignments: the maximum workload is fixed to the maximum day
workload, and corresponds to the nurse visiting patient X.

More recent proposals to obtain balanced solutions are the spread (Pesant & Régin,
2005) and deviation (Schaus et al., 2007) constraints. These constraints link a set of
decision variables with their variance or with the mean absolute deviation. In this way,
it is both simple to define objective functions that minimize the variance (resp. mean
absolute deviation), and efficient, thanks to the powerful global constraint propagators.
In our application, we decided to experiment with the deviation constraint, thus min-
imizing the L1 norm although, as noticed in (Schaus et al., 2009), “These criteria are
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Figure 3.4: Example situation: the hospital is depicted with a black square, while patients
are depicted as circles. The area of each circle represents the service time required by
the patient.

not equivalent: Minimizing L1 or L2 does not lead to the same solutions and it is not
always obvious which one to choose. In fact, this is an old and recurrent debate”.

These constraints are very useful when the total workload is fixed, and the objective
is only to distribute it fairly to a set of resources. Indeed, in some CP languages the
sum of the variables occurring in the spread or deviation constraint is required to be a
constant. In our case, however, the workload of the nurses depends also on the travel
time, that depends on the partitioning of the patients to the nurses. This can lead
to situations in which minimizing the absolute deviation of the workload provides low
quality solutions, as shown in the following example.
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C (0,5)D (-5,5)

E (-5,0)

H (0,0)

Figure 3.5: Example situation: the hospital is depicted with a black square, while patients
are depicted as circles. The area of each circle represents the service time required by
the patient.

Example 2 We have 5 patients, named A..E, on the Cartesian plane, as depicted in
Figure 3.5. The time (in minutes) required to move from a patient to another is simply
given by the Euclidean distance. Patients A, B, and C have a service time of 10 minutes,
while the other two have a service time of 1 minute. The hospital H is in (0, 0), and
there are two available nurses.

If we minimize the maximum workload, we obtain the assignment

Nurse Patients Travel +Service=Workload

1 A, B
√

26 + 4 + 5
√

2+ 20 ' 36.17
2 C, D, E 20 + 12 = 32

In this case, the absolute deviation is 4.17.
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However, consider this assignment:

Nurse Patients Travel +Service=Workload

1 B, C 5
√

2 + 10 + 20 ' 37.07

2 A, D, E
√

26 +
√

116 + 10+ 12 ' 37.87

The absolute deviation is only 0.8, so if we minimize the workload deviation, we
would definitely prefer this second assignment. However, the second assignment has
worse working conditions for both nurses: both have a higher workload. This solution
is also worse from the National Health Service viewpoint, as it is more expensive, since
nurses are paid for the whole workload, and they cannot be used for more useful tasks at
the hospital.

Finally, the nurses also employ more time driving, producing pollution and traffic.

But there can be even worse situations:

Example 3 (Example 1 continued) In the example in Figure 3.4, the nurse servicing
patient X has the highest possible workload, and this cannot be reduced. So minimizing
the absolute deviation amounts to maximize the workload for the other nurses! Since
the total service time is fixed, the only way to increase the workload for the nurses
is to increase their travel time, by providing them the worst possible assignment (the
assignment that maximizes the total travel time).

This is even worse than minimizing the maximum: in this example, the minimization
of the maximum considers all solutions as the same; but the deviation of the workload
considers as best solutions those in which each nurse is forced to travel uselessly in the
whole city area, spending as much time as possible driving from a patient to another. In
order to avoid this unreasonable behaviour, one possibility is to remove the travel time
from balancing.

Our implementation is based on the Comet constraint programming system (Van Hen-
tenryck & Michel, 2009). In Comet, the sum of the variables occurring in deviation is
required to be a constant. For this reason, our objective function could not contain a
term deviation(WL), because the sum of the week workloads of the nurses is not fixed (it
depends on the nurses’ travel time, which, on its turn, depends on the actual partitioning
of the patients to the nurses). We decided to remove the travel time from balancing; the
absolute deviation is computed only on the service time, and we add a term containing
the total travel time:

BalanceWL′′ =deviation
n

(WT svcn ) +
∑
n,d

T trvn,d (3.4)

where WT svcn is the week service time of nurse n, computed simply as

WT svcn =

Nd∑
d=1

T svcn,d ,



74 Workload-Balanced and Loyalty-Enhanced Home Health Care

and

deviation
n

(WT svcn ) =

Nn∑
n=1

∣∣∣∣∣WT svcn −
Nn∑
k=1

WT svck

Nn

∣∣∣∣∣ .
This solves the problem highlighted in Examples 2 and 3: since the total travel time

appears outside the deviation, the solver will try to minimize it. On the other hand,
minimizing Eq. (3.4) does not ensure that a minimum of the deviation of the workload
is found, because, in general

deviation
n

(WT svcn ) +
∑
n,d

T trvn,d 6=

deviation
n

WT svcn +
∑
n,d

T trvn,d

 .

Combination of the objective functions. As we explained, we have two criteria to
be minimized: one tries to provide solutions with a good loyalty, while the other tries to
balance the workload of the nurses, without increasing uselessly the travel time of the
nurses.

There are many ways in the literature to combine two criteria; we adopted a widely
used method, namely a weighted sum of the two components:

minimize (α1 · BalanceWL + α2 · LP ) . (3.5)

α1 and α2 are positive real numbers that can be chosen by the user in order to reflect
the current priorities adopted in the AUSL. Of course, such values can be tuned later
on in order to better suit the decision maker preferences. LP is the Loyalty Penalty
(see Eq. 3.2), while the term BalanceWL balances the workload of the nurses and will
be instantiated either to BalanceWL′ or to BalanceWL′′, as will be clear soon.

We proposed two ways to balance the workload; so we will have two objective func-
tions to experiment with.

The first is the minimization of the maximum workload (Equation 3.3), so the ob-
jective function in Eq. 3.5 becomes:

OF1 =α1 · max
n∈Snurse

(WLn) + α2 · LP

=α1 · max
n∈Snurse

(
Nd∑
d=1

T svcn,d + T trvn,d

)
+ α2 · LP.

(3.6)
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The second method is in Eq. (3.4), so the objective function OF2 becomes:

OF2 =α1

deviation
n∈Snurse

(WT svcn ) +
∑
n,d

T trvn,d


+ α2LP

=α1

deviation
n∈Snurse

(

Nd∑
d=1

T svcn,d ) +
∑
n,d

T trvn,d


+ α2LP.

(3.7)

In Section 3.4, we will compare experimentally which of the two objective functions
(OF1 and OF2) performs best in our problem.

Addressing the Routing

In order to satisfy the constraint on the maximum day workload, one should compute
both the service time and the travel time of a nurse’s daily shift (Eq. 3.1). On the other
hand, computing the travel time of a nurse implies computing the optimal route that
connects the hospital and all the patients assigned to that nurse on that day, which is a
NP-hard problem in its own, known as the TSP, see Chapter 1.

We embedded a TSP solver inside a (user-defined) constraint traveltime, so that it
can perform constraint propagation during search of the main problem (i.e., the HHC).
Notice that in a given node of the search tree, some of the patients will be assigned
to a nurse n, while others will still be unassigned; the constraint traveltime should
compute the bounds of the travel time, namely the minimal travel time of the nurse
(assuming that nurse n will be assigned a minimal number of patients, amongst those
in the domain), and the maximum one (assuming that nurse n will be assigned all the
possible patients in the domain). In order to compute the travel time T trvn,d of a nurse n
in day d, we need to provide to such constraint:

1. the patients associated to the services pats,

2. the matrix of distances D, providing the travel time between patient locations as
well as to and from the hospital,

3. and the subset Nurse|day=d of the decision variables (assigning nurses to services)
that correspond to the services to be provided in day d, i.e.,

Nurse|day=d , {Nurses|s ∈ Sserv, days = d}.

Note that, since to each patient is assigned a unique location, once the patient of
a service is given also the location where the service must be delivered is known. As a
recap, the actual parameters are:

T trvn,d = traveltime(pats, D,Nurse|day=d).
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Operationally, the traveltime constraint awakes every time one of the variables in
Nurse|day=d is instantiated, i.e., when a nurse is assigned to a service. The constraint
computes the TSP corresponding to the patients that must be visited by nurse n in
day d. This provides a valid lower bound to the actual travel time, and can be used
in a branch-and-bound search. When all the Nurse|day=d variables are ground, the
cost of the TSP becomes the real travel time, and we are able to fix the value of T trvn,d

to the TSP cost. In our implementation, the constraint implements directed bound
consistency from the variables in Nurse|day=d to the T trvn,d variable, considering only the
lower bound (as the upper bound would not perform significant pruning in our case).
Even if recomputing a TSP on each instantiation may sound computationally expensive,
preliminary computational results showed that this choice provides better results than
heuristically inserting the new node, by way of a cheapest insertion procedure, in the tour
previously computed for the other nodes. This is probably due to the fact that the TSP
instances to be solved at each step are rather small, so that the TSP solver we embedded
in the traveltime constraint is quite fast. Moreover, we use a caching mechanism to avoid
recomputing TSPs that have been solved previously during the exploration of the search
tree.

Regarding TSP solvers, one may either implement one, e.g., in CP (Beldiceanu &
Contejean, 1994; Kaya & Hooker, 2006), or use an off-the-shelf solution. We found that
implementing a solver in pure CP slowed down significantly the search (as also witnessed
in the literature (Caseau & Laburthe, 1997)). The state of the art in the area is by no
doubt Concorde (Applegate et al., 2015), which relies on integer linear programming
with the addition of specific TSP-targeted features. However Concorde requires an ILP
solver, and is oriented to large instances, while the number of patients visited by a nurse
in a single day in our case is rather limited, usually far below 15. Furthermore, Concorde
is not easily customizable but it can only be used as a black box, so that it would be
impossible to extend our solution method in a further development in order to handle
additional constraints on the services, such as time windows or precedence constraints.

Therefore, we adopted the proposed Tailored Lagrangian Metaheuristic, see Sec-
tion 1.6 for a full description. This metaheuristic performs very well on small TSP
instances, would allow us to add further customizations in the future if needed, and
proved to be suitable for integration in our system. In the following we provide a brief
description of the method.

Search Strategies

In CP, domain filtering, achieved by the imposed constraints, has to be coupled with
search tree exploration in order to reach solutions. The search strategy design is respon-
sible for the shape of the tree and the way to explore it, the aim being incorporating
knowledge of the problem and its structure to rapidly drive the search towards (good)
solutions.

Since the decision variables are the nurses associated to the services, we have to select
a variable (a service) and assign a nurse to it. Since all nurses can provide equivalent
services, the constraint model has a large number of symmetries: given a solution, a
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permutation of the nurses provides another equivalent solution. We decided to break
symmetries during search, with a variation of the technique proposed in (Meseguer &
Torras, 2001). In particular, the first service is always assigned the first nurse; the n-th
service can be either associated to one of the already employed nurses, or to the first
not-yet-employed nurse. In fact, trying all the possible combinations of the not-yet-
employed nurses is useless, as they can provide only symmetric solutions. Formally, if
En−1 = {Nursek|k ∈ 1..n− 1} is the set of nurses employed for the first n− 1 patients,
then

Nursen ∈ En−1 ∪ {1 + maxEn−1}.

Given this definition of the search space, we applied several search strategies to our
problem; we first defined a general purpose one (i.e., a predefined search strategy, that
can be applied to any problem), then we developed one more tailored for the problem
at hand.

A first, general purpose search strategy, called in the following GSRFF (Generic
Search with Restarts and First Fail), performs a depth first search selecting the variable
to assign, at each node, with the First Fail heuristic (Haralick & Elliott, 1980), i.e.,
it selects first the variable with the smallest domain. The value to assign is selected
randomly among the ones in the domain. A widely used technique to improve the
efficiency of a search strategy is using restarts (Kautz et al., 2002), in order to avoid
that wrong decisions taken near the root can drive the search into a bad area. This
technique was shown to be very effective in presence of a so-called heavy-tail behavior
(Gomes et al., 1997; Hulubei & O’Sullivan, 2006). Using restarts means that after some
pre-defined timeout, the search is stopped, and started again, possibly with a different
timeout. In the GSRFF search strategy, we apply restarts with the optimal timeout
sequence proposed by (Luby et al., 1993), as also suggested in (Sinz & Iser, 2009).

Algorithm 7 Large Neighborhood Search for the Home Health Care

An initial feasible solution x is found using the HEUR heristic based on CP.
while the timeout (10 minutes) is not reached do

A part of the current solution x is relaxed:
• undoing the assignment on a set of variables, by restoring the domain of 10%
of the main decision variables, namely the Nurses variables that represents the
assignment of nurses to services.
• fixing the remaining variables to their current value.

The restricted problem is re-optimized using CP with a limit on the number of
failures. Again, we used the HEUR heuristics obtaining a neighbor solution x′,
with 50 failures as a limit.
if the solution x′ is better than x then

set x← x′

end if
end while

We also devised a search heuristic more tailored to the problem structure (HEUR).
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The variable selection criterion selects first variables related to services with bigger
durations, which is a sensible choice when dealing with multiknapsack problems. Let
the selected variable be associated to service s of patient pats, the value selection heuristic
tries to assign a nurse who is already visiting pats in the attempt to keep low the loyalty
penalty LP (see Eq. 3.2). If more than one nurse was already assigned to that patient
previously, the one with the lowest week workload WL is selected, in the attempt to
keep workloads balanced.

This heuristic can also be adopted in the context of a LNS (H+LNS), a tech-
nique that hybridizes CP and Local Search (Shaw, 1998). The idea is to perform local
search with a large neighborhood, and to explore the neighborhood with CP. Our LNS
procedure is presented in Algorithm 7. The Comet programming language allows the
programmer to adapt a CP model into a hybridized procedure that scales very well with
the problem size, and which explores a neighborhood large enough to avoid the need for
a metaheuristic.

3.4 Experiments and Results

The implementation is based on the Comet (Van Hentenryck & Michel, 2009) Constraint
Programming system. All tests were performed in a computer equipped with a 3.4GHz
Intel Core i7 processor and 7GB of RAM.

Search strategy comparison

The instances were provided by the AUSL 109 and represent four weeks of February
2010. In the first set of experiments, the aim is to compare the constraint model to the
Hand Made Solution (HMS) adopted by the nurses in 2010. In these experiments, we
used OF1 as objective function (Eq. 3.6), considering α1 = α2 = 1. We show the results
of the various search strategies defined in Section 3.3; all algorithms were run with a 10
minutes timeout. Each of the algorithms was executed 40 times; the results are shown
in a set of box-plots.

In Figure 3.6, we show the Maximum Week Workload of the nurses obtained by the
best solution found by the various algorithms within 10 minutes. The first observation
is that all algorithms were able to improve significantly on the Hand-Made Solution in
each instance and in each run. The generic search algorithm (GSRFF) is very competi-
tive, but the best algorithm is always the Large Neighbourhood Search combined with
our heuristic (H+LNS+OF1). Algorithm HEUR is deterministic, so each run provides
exactly the same result.

Figure 3.7 shows the Loyalty Penalty (Eq. 3.2) obtained by the same algorithms in
the four real instances. Considering the loyalty, the GSRFF search algorithm was not
able to improve on the Hand-Made Solution. This is probably due to the fact that the
Hand-Made Solution is based on the a-priori partitioning of the patients according to
zones, as explained in Section 3.1, so a patient gets always the same nurse, unless the
workload of that nurse exceeds the working hours (in such a case, some patient gets
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Figure 3.6: Maximum Week Workload (the lower the better) of the nurses in the four
real instances, computed by the various algorithms, and compared to the Hand-Made
Solution (HMS).
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Figure 3.7: Loyalty penalization (the lower the better) obtained by the algorithms in
the four real instances, compared with the Hand-Made Solution (HMS).
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reassigned to other nurses). On the other hand, since the instances have very tight
schedules, and the actual workload gets very close to the maximum working hours, some
re-assignment takes place, and the greedy procedure followed by the nurses is not able to
obtain the best possible solution. The heuristic we developed for this problem (HEUR),
in fact, gets always better loyalty scores than the Hand-Made Solution, and using Large
Neighbourhood Search provides a further improvement.

Sensitivity analysis

After studying the efficiency of the various search algorithms, we did a trial concerning
the relative importance of the two components of the objective function OF1. As shown
in Eq. (3.6), the objective function OF1 is the weighted sum of two components. We
asked the users about reasonable values for the coefficients α1 and α2, but they were
not able to provide values nor motivations for them, although they desired that both
components were taken into consideration. When the preferences of the decision maker
are totally unknown, a rigorous approach would be to compute the whole Pareto frontier
(Gavanelli, 2002), that is the set of all the non dominated solutions in the space of the
two criteria. However, computing the Pareto frontier is much more demanding from a
computational viewpoint, and a common approach is that of a weighted sum. We chose,
as tentative values for the weights, α1 = α2 = 1; however in the developed application
these parameters can be varied by the user. We are now interested in performing some
kind of sensitivity analysis to examine where our solution would be placed with respect
to the Pareto front, in order to get some hints on the impact of each of the criteria and
how the solution would change if slightly altering the weights coefficients. Of course, a
rigorous analysis is out of reach, since the Pareto front can only be approximated when
working with incomplete search methods or when using timeouts (as we do, and it is
standard practice in HHC related problems, see Section 3.2).

We approximate the Pareto frontier with a classical method (Wassenhove & Gelders,
1980). The procedure exploits the fact that the domain of (at least) one of the two criteria
is integer. In a minimization problem, the idea is to solve a sequence of single objective
optimization problems where one criterion is optimized and the other is constrained to
be less than the value of that criterion obtained at the previous solution. In our case, we
kept the maximum weekly workload as the objective to be minimized and constrained
the value of the loyalty component LP . As both have integer domains, the reverse would
be a feasible choice too. In practice, at the first iteration the problem is solved by setting
α1 = 1 and α2 = 0 in Equation (3.5). This yields the solution at the extreme right hand
side in Figure 3.8. Let LP ∗(1) denote the value of the loyalty component associated to
the solution found at iteration 1. At iteration k = 2, the same problem is solved with the
addition of the constraint LP < LP ∗(k−1), so that the solution with lowest maximum
weekly workload among those with lower loyalty is found. This yields the next point
going leftwards along the Pareto front in Figure 3.8. Of course, in case we find a point
that dominates a previously found one, the dominated is removed from the Pareto set.
The procedure iterates until no feasible solution is found.

On the left side of Figure 3.8 we present the approximation of the Pareto front
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Figure 3.8: (Near)Pareto front of solutions of one weekly instance, reporting also the
hand-made solution (HMS). The highlighted point is the one selected if α1 = α2

obtained by the above mentioned procedure using search H+LNS (Section 3.3) on one
weekly instance with a 10 minutes timeout (Intel Atom Processor N450 1.66GHz and
1GB of RAM). The solution computed by setting α1 = α2 = 1 is highlighted. One can
see that, at least for this instance, such solution is a good compromise, about in the
middle of the Pareto graph; in this solution a small reduction in the maximum workload
should be traded by a consistent deterioration of loyalty. The width of the Pareto graph
is 30 units (it ranges from 210 to 240 in the loyalty penalization) and its height is 34
units (from 1711 to 1745 in the maximum week workload), so the choice of coefficients
α1 = α2 = 1 does not seem unreasonable (although, of course, the graph could be
different in other instances).

On the right of Figure 3.8, the (near) Pareto front is scaled to depict the hand-made
solution (HMS) for the same instance; it can be noted that it is quite far from the (near)
Pareto front, and that it is dominated by many points in that set.

While we are well aware of the limitations of using a scalar function to address a
multi objective problem, we believe that, for our instances, the proposed method is able
to reach good compromises between the two criteria.
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Objective function comparison

We now evaluate the effect of using the objective function OF2, defined in Equation (3.7),
instead of OF1, given in Equation (3.6). The objective stated by the user was a fair
balancing of the workload between the nurses; this was implemented in OF1 by adopting
the minimization of the maximum workload as a balance criterion, while in OF2 we use
the absolute deviation from the mean of the service time, plus the total travel time.
In Figure 3.9 we show the absolute deviation from the mean of the week workload of
the various nurses. As expected, the hand-made solution is far from the optimum, and
results the most unfair of the considered strategies. The algorithm adopting OF1 gives
lower deviation of Week Workload than OF2. This is probably due to the fact that in
OF2 we minimize the deviation of the Service Time, so the Travel Time is not included
in the balancing.

In order to investigate further how the objective function impacts on the distribu-
tion of the workload, in Figure 3.10 we show a comparison of the best found solutions
in a typical week. The box-plot shows the distribution of the week workloads to the
various nurses: each data item used in the box-plot represents the week workload of one
of the nurses, obtained in the best solution found by each of the two algorithms. As we
can see, using as balancing criterion the maximum week workload (as in Equation 3.3)
provides a very narrow distribution of the week workload (column H+LNS+OF1 in Fig-
ure 3.10), while minimizing the absolute deviation from the mean of the service time (as
in Equation 3.4) provides an unfair distribution of the workload (column H+LNS+OF2
in Figure 3.10). Again, this is due to the fact that one of the components of the workload,
namely the travel time, could not be included in the deviation.

Another comparison between the objective functions can be seen by comparing Fig-
ures 3.11a and 3.11b. Figure 3.11a provides the absolute deviation of the Service Time
(ST) in a typical instance, as provided by the proposed algorithms. We can see that
through the deviation constraint we were able to provide the best values of absolute
deviation of the service time (see column H+LNS+OF2 in Figure 3.11a). Unluckily, the
same algorithm also provides the worst balancing of the week workload (Figure 3.11b),
that was the real objective of the users.

Considering the loyalty criterion, from Figure 3.7 we can see that H+LNS+OF1
provides better values than H+LNS+OF2.

Finally, we consider the total travel time in Figure 3.12. The Hand-Made Solution
provides very low values of travel time, as the nurses used as criterion a partitioning of
the patients into contiguous zones. Also, OF2 provides better values than OF1, probably
because only the travel time of the nurse with the highest workload is important in OF1,
while OF2 tries to improve the travel time of all nurses.
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Figure 3.9: Absolute deviation from the mean of the nurses’ week workload (the smaller
the better) obtained with the two objective functions in the four real instances, compared
with the Hand-Made Solution (HMS).
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Figure 3.10: Distribution of the week workload to the various nurses in the best solutions
found using the two objective functions.
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(a) Absolute deviation of the service time.
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(b) Absolute deviation of the week workload.

Figure 3.11: Absolute deviation from the mean of the service time and the week workload
obtained by the various algorithms in real week 1.
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Figure 3.12: Total Travel time of the nurses (the smaller the better) obtained with
the two objective functions in the four real instances, compared with the Hand-Made
Solution (HMS).
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TSP solver

Finally, we did some experiments to assess the efficiency of the adopted TSP solver
with respect to other techniques. We considered the hand-made solution in all the four
instances. Each solution of the HHC contains one TSP for each nurse for each day, for
a total of 240 TSP instances (4 weeks × 12 nurses × 5 days). We solved all these TSPs
with our Tailored Lagrangian Metaheuristic described in Section 1.6, with a program
written for the Answer Set Programming (ASP) solver clingo (Gebser et al., 2011), and
with a CP approach written in Comet. The total time needed to solve all the instances
is the following:

• Lagrangian Relaxation: 0.485s

• ASP : 24405.22s

• Comet : 1.12s

Lagrangian Relaxation was the fastest amongst the considered technologies.
We also computed the percentage of time required by TSP solver with respect to

the rest of the solution process. We obtained that, in a typical run of the HHC solution
process, the LR algorithm took about 66s, out of a total running time of 698s (including
CP and LR), so LR took about 9.46% of the running time. This shows that even if we
changed the TSP solver, moving to a faster one (e.g., a commercial one), we could not
reduce the running time by more than 10%.

Crafted instances

Although the best evaluation of an algorithm is based on real instances, in order to
perform a wide and systematic evaluation of our algorithms, we generated a set of
crafted instances by randomly selecting patients from the real instances. In particular,
we wanted to evaluate the efficacy and efficiency of the algorithms varying two possible
indicators of hardness of an instance: the total number of patients per day, and the daily
total service time requested by the patients.

Since the real instances have an average of 65 patients per day with a maximum
and a minimum of 82 and 51 respectively, we generated instances varying the number of
patients from 50 to 80. To generate an instance, we selected at random the given number
of patients; then the instances were classified into groups according to the obtained total
service time. In this way, given the services on the real instances we were able to obtain
12 classes of instances, shown in Table 3.13; for each class we considered 20 instances.

In the following, we report the behavior of the various algorithms we developed,
and, for the sake of comparison, we implemented an algorithm that mimics the greedy
algorithm used by the nurses in the Hand Made Solution (HMS).

Note that this generation strategy does not ensure that each instance has a solution.
However, it is interesting to note which algorithms were able to solve most instances,
when the instance become tighter. Table 3.14 shows the number of instances that were
solved for each algorithm:
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Pat. Total Service Time
50 2700-2900 2900-3100
60 2900-3100 3100-3300 3300-3500 3500-3700
70 3300-3500 3500-3700 3700-3900 3900-4100 4100-4300
80 3900-4100

Table 3.13: Classes of instances in the crafted set.

patient No. Svc. Time GSRFF HEUR HMS

50 2700-2900 20 20 20
50 2900-3100 20 20 19
60 2900-3100 20 20 20
60 3100-3300 20 20 20
60 3300-3500 20 20 20
60 3500-3700 20 20 20
70 3300-3500 20 20 20
70 3500-3700 20 20 20
70 3700-3900 20 20 20
70 3900-4100 20 20 20
70 4100-4300 17 8 19
80 3900-4100 20 11 20

Table 3.14: Number of solved instances in the crafted set.

Given algorithms H+LNS+OF1, H+LNS+OF2 and HEUR solved the same number
of instances, we report only one column: HEUR. The algorithms based on LNS are good
to improve a solution, based on local search from an initial solution. When the instance
become tighter, the heuristic does not find any initial solution, so the three algorithms
were not able to find any solution. The algorithms able to find most solutions are the
greedy one, that mimics the hand made solution, and the GSRFF, probably because it
includes restarts, which help finding feasible solutions. However, the real instances are
not that tight, so for the practical application the algorithms based on LNS are preferred.
On the other hand, the HMS algorithm fails to find a solution in one small-sized instance.

Figure 3.15 represents colour maps of the 12 types of instances, where the x-axis is
the number of patients per day and the y-axis is the total service time per day. The map
is colored according to the average value of 10 runs for 3 randomly selected instances of
each class.

As can be seen in Figure 3.15a, all algorithms are able to improve the hand-made
solution regarding the minimization of the Maximum Workload. The generic search
strategy (GSRFF) is already able to improve on the hand made solution, using a tai-
lored heuristics (HEUR) gives a further improvement, and Large Neighbourhood Search
(H+LNS) improves further. Not surprisingly, using as balancing criterion the deviation
of the service time (Eq. 3.4, map H+LNS+OF2 in Figure 3.15a) does not give low values
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(a) Average of Max Week Workload.

(b) Average of Loyalty Penalty.

(c) Average of Total Travel Time.

Figure 3.15: Average of the different components of the objective function in the 12
classes of instances.

for the maximum workload. Of course, the workload increases as the requested service
time increases, but also the number of patients has a strong effect, probably due to the
increased travel time.

Considering the loyalty (Figure 3.15b), we have that the GSRFF search algorithm
achieves values worse than the Hand-Made Solution (although it is able to improve the
sum of the two terms of Eq. (3.6) with respect to the HMS). In the Hand-Made Solution,
patients are partitioned according to zones, so the HMS strategy is directed towards
achieving good loyalty, since a patient is likely to have always the same nurse. However,
if the workload of some nurse exceeds the maximum working hours, some patients are
redistributed amongst the other nurses, so the loyalty term is not necessarily optimal
and there could be still room for improvement. The other algorithms, in fact, are able to
improve also the loyalty term of Eq. (3.6). Again, the tailored search strategies improve



88 Workload-Balanced and Loyalty-Enhanced Home Health Care

significantly the loyalty. In Figure 3.15b we can also see that the loyalty depends mainly
on the number of patients, and does not depend significantly on the total service time.

For the Total Travel Time (Figure 3.15c), we can see that the hand-made solution is
able to obtain very good solutions. This is due to the fact that patients are partitioned
into contiguous zones, and, in the algorithm that mimics the nurses’ partitioning, we
assumed that each nurse computes the optimal TSP (which is not always the case in real
situations). The best algorithm is H+LNS+OF2, due to the fact that the sum of the
nurses travel times appears explicitly as a term of the summation in the objective func-
tion (see Eq. 3.4), while the other algorithms strive to optimize the maximum workload,
possibly overlooking the workload of the less-occupied nurses. As the intuition suggests,
also the travel time depends strongly on the number of patients and weakly on the total
service time (Figure 3.15c).
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Figure 3.16: Absolute Deviation from the mean of the Week Workload and the Service
Time of the nurses. Value computed considering all the instances.

Finally, we compare the absolute deviation from the mean of the weekly workloads of
the nurses. In Figure 3.16a, we report the box-plots of the results from all the instances,
including both the four real instances and the 12 × 20 crafted ones, for a total of 244
instances. The hand-made solution is not reported because it gave values about 80
times higher, that would make the graph unreadable. There is a clear pattern showing
that algorithm H+LNS+OF1 performed best. We also plot in Figure 3.16b the best
values of absolute deviation of the service time; as expected we can see that algorithm
H+LNS+OF2 obtains the best results. Varying the class of the instance (in the 12
classes), did not show any significant pattern, so the color maps are not reported.
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3.5 Conclusions

This chapter presents a real-life application of constraint solving technologies to the
Home Health Care problem for the city of Ferrara, Italy. Our proposed Tailored La-
grangian Metaheuristic has been included into a Constraint Programming framework
using a search algorithm based on Large Neighborhood Search.

The objectives, as requested by the chief nurses in charge of the service, were to
provide schedules with balanced workloads without increasing working hours and travel
times, and to improve the service for the patients avoiding the unpleasant situation in
which a patient is taken care by many different nurses. These objectives were obtained
through discussions with the chief nurses responsible for the service in Ferrara.

The results showed that the obtained solutions are significantly better under these
respects than the ones previously obtained by hand by the nurses. The use of CP was
considered a success; we decided to use it because of the ease of its use, and flexibility
with respect to other techniques, such as Integer Programming. SAT and Answer Set
Programming (Brewka et al., 2011) are other interesting technologies to solve constrained
optimization problems; modern solvers have sophisticated general-purpose search strate-
gies, featuring restarts and nogood learning. CP, on the other hand, has powerful global
constraints and allows the user to implement search strategies tailored for the given
problem; in our experiments, custom search strategies had significantly better results
than general-purpose ones; however it would be interesting to compare with a SAT or
ASP solution.

The CP model has been implemented in Comet, which is more focused on the effi-
ciency, and contains more global constraints, so we were able to propose a refined con-
straint model adopting the multiknapsack and NV alue constraints, which can provide
enhanced constraint propagation. Furthermore, we used a new search algorithm, based
on Large Neighborhood Search, that proved to be the most effective for this problem.

A deeper experimentation has been proposed with a set of crafted instances created
from data of the real instances, and show the Pareto front of the two main objectives.

Different objective functions have been studied. The first one is minimizing the
maximum workload and the second one is minimizing the deviation of the workload.
Both objective functions consider the traveling time and the loyalty. The first objective
function has reached better results.

Our proposed Tailored Lagrangian Metaheuristic has been used to calculate traveling
time for each nurse separately.

• Our Tailored Lagrangian Metaheuristic ensures the partial optimality of most so-
lutions from the routing perspective. The reason is that, since we are considering
a relatively small number of patients per nurse, the proposed approach can quickly
find the optimal solution to most TSP instances.

• We have compared our Tailored Lagrangian Metaheuristic respect ASP and Comet
technologies, obtaining that our proposed approach was the fastest.

• We also computed the percentage of time required by the Tailored Lagrangian
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Metaheuristic with respect to the rest of the solution process. We obtained that,
in a typical run of the HHC solution process, it took less than 10% of the running
time.



Part II:
Asymmetric Problems





Chapter 4

Asymmetric Traveling Salesman
Problem

The Asymmetric Traveling Salesman Problem (ATSP) is a well-known NP-hard com-
binatorial optimization problem. The ATSP is a variation of the TSP where the cost
matrix is asymmetric, i.e., the time or distance to travel between two customers is de-
pendent to the direction. The cost matrix can be represented by travel distance, time,
fuel consumption or any other cost function between two locations. The cost matrix
can refer any of these terms interchangeably, but it is usually a function of the distance
between pairs of locations.

As the TSP, it has numerous applications to different problems in logistics and man-
agement, see Chapter 1. In real world applications, the usage of Euclidean or ortho-
dromic distances are no valid. Mainly given that they do not represent the urban net-
works, see Figure 4.1. For example, there might be a river, railroad or highway that
could separate a city into zones, and vehicles are required to traverse bridges or spe-
cific pathways. In real problems, the usage of Geographic Information Systems (GIS)
and geo-spatial databases are crucial. Moreover, it’s worthy to distinguish that urban
networks are asymmetric given that there are some one-way streets. Figures 4.1a-4.1b
shows a representation of the effect of reversing the orientation of an urban route.

From the research point of view, the asymmetric TSP has been less studied than
the symmetric TSP. For example, the number and size of benchmarks for the ATSP is
limited, TSPLIB: ATSP benchmark (2008) has 19 instances, where the largest one is of
443 nodes, and they commonly have random distance matrices with no plausible con-
nection to real applications. There are some other less-known benchmarks, but offering
fewer or smaller instances. In addition, no single type of instance dominates the appli-
cations of the ATSP, thus the experimental study of asymptotic behavior is much less
advanced than in the case of the TSP. In the real-world context different researches have
been created their own benchmarks. For example, 12 types of random instances were
generated by Cirasella et al. (2001), and in the work of Rodŕıguez and Ruiz (2012a),
instances with 3 types of locations were generated calculating the distances with the aid
of a GIS. Furthermore, some ATSP instances remain unsolved given that the number of

93
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(a) Counterclockwise tour using asymmetric
costs obtained from GIS (17.7 km).

(b) Clockwise tour using asymmetric costs ob-
tained from GIS (15.6 km).

(c) Tour obtained using symmetric costs calcu-
lated with Euclidean distance (10.7 km).

Figure 4.1: Comparative of a tour in Barcelona according the symmetry or asymmetry
of the distance cost.

researches on ATSP is much lower, and experimental studies of heuristics for the ATSP
is less advanced.

Few of the algorithms designed to solve the symmetric TSP can be adapted to solve
the asymmetric problem. Some authors have been transformed the asymmetric matrix
into symmetric matrix, aiming to use their algorithms designed for solving the symmet-
ric TSP. However, these transformations affect the efficiency of the methodology. For
instance, the Concorde solver which was designed for solving the symmetric TSP, only
works with symmetric matrices and the transformation of matrices is the only possible
way of dealing with asymmetric problems. Rodŕıguez and Ruiz (2012a) compare the
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effect of the asymmetry respect three different transformations, and conclude that the
transformation to solve ATSP problems is viable, but affects drastically the efficiency of
Concorde. In the work of Fischetti et al. (2003), it is compared Concorde with Branch-
and-Cut methodology designed for the ATSP, and suggest that enriching the Concorde
arsenal of symmetric TSP separation tools by means of ATSP-specific separation proce-
dures would be the road to go for the effective solution of hard ATSP instances.

Given all these motivations, we pretend to adapt our Tailored Lagrangian Meta-
heuristic to the ATSP. In the next section, it is presented a literature review of the
ATSP without considering the works which perform matrix transformations.

4.1 Problem Definition

The Asymmetric Traveling Salesman Problem is a generalization of the TSP presented in
Chapter 1. Consider a complete graph, G(I, E), where I and E are the set of nodes and
arcs, respectively. It assumes that the cost C is an asymmetric matrix that is cij 6= cji
in general, and then the complete graph G is directed. The asymmetric matrix cost C
can represent the travel time, travel distance, travel cost, or a combination of them.

The ATSP goal, which is the same of the TSP, consists of determining the route
with minimum total traveling cost such that each customer is visited exactly once by
the salesman.

A well-known Integer Linear Programming formulation of ATSP is the following:∑
i∈I

∑
j∈I

cijxij (4.1)

subject to

∑
i∈I

xij = 1 , ∀j ∈ I (4.2)∑
j∈I

xij = 1 , ∀i ∈ I (4.3)

∑
i∈S

∑
j∈IrS

xij ≥ 1 , ∀ S ⊂ I : S 6= ∅ (4.4)

xij ∈ {0, 1} , i, j ∈ I (4.5)

In this formulation for the ATSP, O(n2) binary variables x are used. The binary
variable xij indicates whether or not customer j is visited immediately after i. The
objective function (4.1) aims to minimize the total cost of the route.

Every city node must be visited once and only once. From the point of view of the
asymmetry, it means that every city must have one starting edge and one ending edge.
Constraints (4.2) and (4.3) impose in-degree and out-degree of each vertex equal to one.
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As well as the set of Subtour Elimination constraint (1.3) of the TSP, constraints
(4.4) impose strong connectivity. Constraints (4.5) correspond exactly to equation (1.4)
of the TSP, which impose integer variables.

Notice that the two constraints (4.2) and (4.3) could be replaced by
∑

i∈I
∑

j∈I xij =
n, where n =| I | is the number of nodes. An interesting comparative of different
formulations for the ATSP problem can be found in the work of Öncan et al. (2009).

As the TSP, the ATSP is a NP-Hard problem and it can be formulated as finding
a Hamiltonian circuit. The condition to ensure feasible solutions is that the directed
graph G must be strongly connected, and its underlying graph must be complete.

4.2 Literature Review

The best known exact algorithms for the ATSP are based on the Branch-and-Bound
method which uses the well known Assignment Problem relaxation of the ATSP, for
a complete description see (D. L. Miller & Pekny, 1991) and (Fischetti et al., 2007).
Carpaneto et al. (1995) presented a lowest-first Branch-and-Bound algorithm to obtain
exact solution of large-scale. They generated random instances with up to 2000 nodes,
they also solved real-world stacker crane problems derived from a Siemens factory in
Augsburg. Pekny and Miller (1992) presented a parallel Branch-and-Bound algorithm
which is a parallelization of (Carpaneto & Toth, 1980), but improved with the appli-
cation of the patching heuristic developed by Karp at the root node. Turkensteen et
al. (2008) considered depth-first Branch-and-Bound algorithm. Their main algorithmic
contribution are the upper tolerance values of arcs in the corresponding Assignment
Problem instance to determine which arcs should be excluded, which is aiming to guide
the search for optimal solutions. Germs et al. (2012) developed a new tolerance-based
Branch-and-Bound algorithm proposing a lower bounding strategy with the expected
costs of including arcs in the solution.

As state above, the Branch-and-Bound is the best known exact method, however, it
is not the most effective exact method. Fischetti et al. (2007) surveyed exact methods
for the ATSP and compared computationally Branch-and-Bound and Branch-and-Cut
codes. The results of this comparison proved that Branch-and-Cut is the most effective
method to solve hard ATSP instances. In the work of Fischetti and Toth (1997b), the
authors exploited additional classes of facet-inducing inequalities for the ATSP polytope
that proved to be of crucial importance for the solution of some real-world instances.
Fischetti et al. (2003) compare the Branch-and-Cut algorithm by Fischetti and Toth
with Concorde, and conclude that it is generally better than Concorde. It was indicated
the effectiveness of exploiting the ATSP-specific separation procedures. Moreover, this
Branch-and-Cut algorithm has been adapted to ATSP with time windows (Ascheuer et
al., 2001) and ATSP with precedence constraints (Ascheuer et al., 2000).

Some classical heuristics for the ATSP are Nearest Neighbor, Nearest Insertion and
Multiple Fragment (often referred to as Greedy) algorithms. In addition to this classic
class of tour construction heuristics, some of the latest heuristic approaches that are
being studied to solve the ATSP are Lin-Kernighan heuristic, Patching heuristic, Ge-
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netic algorithms, Memetic algorithms and Evolutionary algorithms. For a review and
experimental analysis of heuristics see (Johnson et al., 2007).

Lin-Kernighan heuristic (LK) is a local search algorithm based on re-arranging seg-
ments of the tour. Lin and Kernighan (1973) proposed an effective heuristic for the TSP,
which is based on a k-Opt procedure with k variable in each step. Some of the most
important adaptations for LK heuristic to the ATSP are Kanellakis and Papadimitriou
(1980) and Helsgaun (2000). On the work of Helsgaun (2000), it is described a very
effective implementation of the LK, named LKH, for both symmetric and asymmetric
problems.

The second class to be considered are Cycle-Patching algorithms which are based on
patching together the cycles in a minimum cycle cover, it can be computed as the solution
to an Assignment Problem. The Patching heuristic was proposed by Karp (1979), his
heuristic has been extensively used to find an initial solution or upper bounds in Branch-
and-Bound algorithms and hybrid methodologies. In the work of Glover et al. (2001),
the Patching heuristic is modified joining two shortest cycles together, it tries all possible
pairs using the best one. They also described an algorithm combining their modified
Patching heuristics with a recursive Path Contraction heuristic.

Genetic algorithms are a population-based approach for heuristic search in opti-
mization problems, in our case for the ATSP, Nagata and Kobayashi (1997) proposed
the use of an edge assembly crossover operator for both cases, the symmetric and the
asymmetric. Later, Nagata and Soler (2012) designed an effective crossover operator
for the ATSP, experimental results demonstrate that their proposed Genetic algorithm
outperforms state-of-the-art heuristic algorithms and, in addition, they created a new
set of benchmarks for the ATSP. In the work of Xing et al. (2008), it is proposed a
hybrid approach which incorporates an improved Genetic algorithm and some optimiza-
tion strategies that contribute to its effectiveness, both the crossover operation and the
mutation operation are improved by selecting the optimum from a set of solutions.

Some authors have improved the Genetic algorithm combining it with a local search,
this approach is named Memetic algorithm, for an introduction see (Neri et al., 2012).
The approach proposed by I. C. Choi et al. (2003) extends the Genetic algorithm search
space by purposefully generating and including infeasible solutions in the population.
Freisleben and Merz (1996) introduced a new recombination operator called the Distance
Preserving Crossover and employed the 3-opt variant as a local search engine for the
ATSP. Later, Merz and Freisleben (1997) improved their results by adding a variant
of the 4-opt move to the search in the ATSP cases. According to Buriol et al. (2004),
based on the computational results reported for this method, one can say that a good
implementation must combine several essential features: (i) suitable recombination and
mutation operators; (ii) a fast and effective local search algorithm; (iii) a hierarchically
structured population; (iv) suitable data structures and smart codification mechanisms.
In their work, all of the four key features are incorporated responsibly for an effective
solution.

Evolutionary algorithms seek to solve search problems by modeling the behaviors
of social insects such as bees and ants. Ant Colony Optimization is not only capable
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of generating good solutions for the symmetric TSP, but also for asymmetric instances
of the TSP, it was first initially proposed by Dorigo and Gambardella (1997). In the
work of Andziulis et al. (2011), it is compared an Ant Colony Optimization with the
Nearest Neighbor heuristic using specific real-life instances. Their conclusions suggest
that the Ant Colony Optimization algorithm obtains better results, but it is slightly
slower. Bai et al. (2011) proposed parallel optimization architecture in which a Branch-
and-Bound and a Ant Colony Optimization are launched concurrently, and a reduction
procedure takes useful information from both solver to reduce the global search space
and hence speed up the rate of convergence to optimality. In Wong et al. (2013), the
authors presented a generic Bee Colony Optimization framework, which computationally
realizes the bee foraging behavior in a typical bee colony where bees travel across different
locations to discover new food sources and perform waggle dances to recruit more bees
towards newly discovered food sources. Celik and Ulker (2012) proposed a Marriage in
Honey Bee Optimization which is a meta-heuristic procedure inspired by the mating and
insemination process of honey bees.

A quite recent method to solve VRPs is the Variable Neighborhood Search, it was
introduced for the first time by Mladenović and Hansen (1997). Burke et al. (2001)
presented effective new local and Variable Neighborhood Search heuristics for the ATSP,
they introduced a local search routine based on splitting the original problem into small
subproblems which are then solved to optimality using an exact algorithm.

The Lagrangian Relaxation (LR) is a well studied method, for a good survey on LR
for solving the ATSP see Rocha et al. (2004). Balas and Christofides (1981) proposed
a Restricted Lagrangian Relaxation for the ATSP based on the Assignment Problem.
They developed an LR approach by relaxing the subtour elimination constraints. In
addition, it is generated upper bounds using a fast tour-building heuristic. Once the
bound-strengthening techniques have been exhausted without matching the upper with
the lower bound, they branch by using two different rules, according to the situation:
the usual subtour breaking disjunction, and a new disjunction based on conditional
bounds. In the work of Smith (1980), it is used an 1-Arborescence relaxation, in which
the out-degree constraints are relaxed, and developed a Lagrangian method based on this
relaxation to provide lower bounds for a Branch-and-Bound method. (Fischetti & Toth,
1992) devoted much more computational effort to improve the bound of the Assignment
problem relaxation. It was used a fairly complex additive bounding procedure solving a
different relaxation of the ATSP at each iteration with costs given by the residual cost
from the previous iteration. They used the Restricted Lagrangian Relaxation proposed
by Balas and Christofides. In Asadpour et al. (2010), it is considered the Lagrangian
Relaxation of the ATSP based on the Spanning Arborescence of minimum weight. They
first constructed a spanning tree with special properties. Then they find a minimum cost
Eulerian augmentation of this tree, and finally, shortcut the resulting Eulerian walk.
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4.3 Our proposed TLM for the asymmetric case

In this section, our Tailored Lagrangian Metaheuristic for solving the TSP is adapted
to the ATSP. For this problem, the out-degree constraints are relaxed, then the dual
problem obtained is an 1-Arborescence, that is, the directed analog of the 1-Tree problem.
In order to adapt our TLM, Edmond’s Algorithm is used to solve the dual problem, and
a new heuristic to obtain a feasible solution from a dual one is proposed.

The remainder aspects about our TLM is as proposed in Algorithm 3 on page 35,
specially our main contribution consists on the new parameter which is updated using
the values of both UB and LB and has improved significantly algorithm’s convergence
on the optimal solution.

Modeling the Lagrangian Dual Problem

The Subtour Elimination constraint (4.4) and the in-degree constraint (4.2) can be dis-
regarded solving x as an 1-Arborescence. Then, the complicated set of constraints is the
out-degree constraints (4.3).

A Spanning Arborescence is the directed graph form of a rooted tree, that is, for a
node r called the root, there is exactly one directed path from r to any other node. A
minimum Spanning Arborescence can be calculated easily, for example, the order of Ed-
monds’ Algorithm is O(EI). Therefore, the 1-Arborescence is a Spanning Arborescence
plus an additional incoming edge to the root, and thus, it has only one cycle in it.

In this proposed approach to the ATSP, LR relaxes the constraint set requiring that
all customers must have one out going edge, as proposed by Smith (1980). Therefore,
the Lagrangian Dual problem obtained from ATSP by taking into the objective function
the inequalities 4.3 is as follows:

max
u∈RN

L(u) (4.6)

where

L(u) = min
x 1−Arborescence

(∑
i∈I

∑
j∈I

xijcij +
∑
i∈I

ui(1−
∑
j∈I

xij)
)

=

=
∑
i∈I

ui + min
x 1−Arborescence

(∑
i∈I

∑
j∈I

(cij − ui)xij
)

=

=
∑
i∈I

ui + min
x 1−Arborescence

∑
i∈I

∑
j∈I

ĉijxij (4.7)

where ĉij = cij − ui define the dual cost.
Its subgradient γ represents the penalization of the outgoing edges being a vector of

dimension n, calculated as follows:

γ = 1−
∑
j∈I

xij (4.8)
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The dual solution is an optimal solution of the ATSP if and only if

‖ γ ‖2= 0 (4.9)

Edmonds’ Algorithm

Considering a directed graph G(I, E), where I and E are the set of nodes and arcs,
respectively. Let |I| = n. The Spanning Arborescence problem consists on finding a
rooted directed spanning tree, G(I, S) where S is a subset of E of minimal cost. The
rooted directed spanning tree is defined as a connected graph with n− 1 arcs, i.e., each
node, except the root, has one incoming arc without any cycle.

Algorithm 8 Edmonds’ Algorithm for the 1-Arborescence

Initialization:
Let be the subset S = ∅ ⊂ E.
Discard the incoming edges to the depot.

for each node other than the depot do
Select the incoming edge e with the smallest cost.
Add this edge to the subset: S = S ∪ {e}.

end for
while G(I, S) contains a cycle do

for each cycle Ck formed do
Contract the nodes in the cycle Ck into a pseudo-node k.
Modify the cost of each edge which enters a node j in the cycle from some node
i outside the cycle according to the equation 4.10.

end for
for each pseudo-node k do

Select the entering edge which has the smallest modified cost.
Replace the edge which enters the same real node in S by the new selected edge.

end for
end while

Find e = (i, 1) ∈ E the minimal weighted edge entering to the depot with (1, i) /∈ S.
Add this edge to the subset: S = S ∪ {e}.
return S.

The main idea of Edmonds’ algorithm is to find a replacing edge which has the
minimum extra cost to eliminate a cycle if any. For that, a pseudo-node is created with
associated cost according to the following equation representing the associated extra cost
to eliminate the cycle.

ci,k = min
j∈Ck

{ci,j − cx(j),j + ck} (4.10)

where i is a node outside the cycle, j is a node in the cycle, cx(j),j is the cost of the edge
in the cycle which enters j and ck is the minimum cost of all the edges entering to the
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cycle, i.e., ck = minj∈Ck
{cx(j),j}.

For solving the 1-Arborescence, an additional incoming edge to the root is added
forming a cycle. The modified Edmonds’ algorithm is shown in Algorithm 8, where the
depot (i = 1) is the root.

The Proposed Heuristic

A heuristic to obtain a feasible solution from a dual one and to improve the UB has been
proposed. The subgradient γ is related with the outgoing edges, the next two penalized
situations can happen for each node:

• γ− = 1 means that the node has not any successor, and it belongs to the source
list IS .

• γ− < 0 means that the node has several successors, and it belongs to the pivot list
IP .

The proposed heuristic is presented in Algorithm 9, it iteratively applies a swapping
movement removing an edge connected to a node from the pivot list and adding an edge
from a node to the source list.

Algorithm 9 Heuristic to feasible dual solution for asymmetric cases

Data: S the obtained 1-Arborescence.
Initialize:
IS = {i ∈ I | γi = 1} the list of nodes without successors.
IP = {i ∈ I | γi < 0} the list of nodes with several successors.

Swapping Movement:
while IR 6= ∅ do

Find {nP , nC , nS} = argmin
{
cnS ,nC − cnP ,nC

}
where nP ∈ IP , nC is an immediate

successor of nP , and nS ∈ IS is a successor of nP but it is not a successor of nP .
Remove node nS from the list IS .
Swap these edges within the subset: S = S r (nP , nC) ∪ (nS , nC)
Calculate the subgradient γnP of the node nP .
if γnP = 0 then

Remove node nP from the list IP .
end if

end while
return S.
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4.4 Computational Results

Our TLM methodology adapted for the ATSP in this chapter has been implemented in
Java language. All tests have been performed on a personal laptop with an Intel Core
i5 processor at 2.40GHz and 4GB RAM.

A total of 27 ATSP instances have been used to test the efficiency of the proposed
approach. They have been obtained from the library TSPLIB (http://www.iwr.uni
-heidelberg.de/groups/comopt/software/TSPLIB95/atsp/ last updated August 6,
2008), a reference site with a large number of instances for the TSP, and related problems,
from various sources and of various types.

The experiments have been conducted using the distance according to the specifi-
cation included in the library, and using the next values for the parameters: 300 the
number of iterations; δ0 = 1.99; ρ = 0.95 and αL = 2/3.

Table 4.2 shows results obtained for all 27 instances from the selected benchmark
sets; and each of these results are compared to the best known solutions (BKS) so far.
The table summarizes information regarding the best lower bound (LB, i.e, the best
dual value), the percentage distance from BKS of the LB (%∆LB), the best feasible
solution found (UB), the percentage distance from BKS of the UB (%∆UB), and the
final CPU time in seconds (tFinal).

The methodology has found the optimal value in four instances, in these cases, the
number of iteration when it stopped is shown inside brackets in the last column. Note
that in two cases, the metaheuristic does not recognize the optimal value without stop-
ping until the last iteration is reached. The table shows that the gap is kept reasonably
low for most of the considered instances, however, it does not succeed for all instances
being the average gap 2.43 %.

Furthermore, symmetric TSP instances are used to compare if this adaptation for
the asymmetric case is as good as the original TLM for the symmetric case. Tables
4.3–4.4 provide a comparison between both proposed algorithms for 33 symmetric TSP
instances. The first results correspond to the original TLM for the TSP, presented in
Chapter 1. And the second results correspond to this adaptation for the ATSP.

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/atsp/
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/atsp/
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# Nodes BKS LB %∆LB UB %∆UB CPUtime (s)

br17 17 39 38.99 0.03 % 40 2.56 % 0.59
p43 43 5620 1025.32 81.76 % 5627 0.12 % 1.60
ry48p 48 14422 14288.87 0.92 % 14422 0.00% 1.83 (Max it)
ft53 53 6905 6905.00 0.00 % 6905 0.00% 1.51 (it 258)
ft70 70 38673 38651.04 0.06 % 38802 0.33 % 3.06
ftv33 34 1286 1286.00 0.00 % 1286 0.00% 0.28 (it 140)
ftv35 36 1473 1457.28 1.07 % 1475 0.14 % 0.61
ftv38 39 1530 1514.26 1.03 % 1532 0.13 % 0.73
ftv44 45 1613 1584.46 1.77 % 1648 2.17 % 1.04
ftv47 48 1776 1747.93 1.58 % 1810 1.91 % 1.50
ftv55 56 1608 1583.63 1.52 % 1632 1.49 % 2.10
ftv64 65 1839 1807.15 1.73 % 1858 1.03 % 2.60
ftv70 71 1950 1907.96 2.16 % 1965 0.77 % 3.58
ftv90 91 1579 1569.46 0.60 % 1579 0.00% 7.72 (Max it)
ftv100 101 1788 1766.78 1.19 % 1851 3.52 % 9.58
ftv110 111 1958 1922.67 1.80 % 2038 4.09 % 14.19
ftv120 121 2166 2128.67 1.72 % 2266 4.62 % 16.73
ftv130 131 2307 2284.52 0.97 % 2440 5.77 % 21.73
ftv140 141 2420 2398.15 0.90 % 2527 4.42 % 25.92
ftv150 151 2611 2589.82 0.81 % 2694 3.18 % 31.78
ftv160 161 2683 2645.72 1.39 % 2759 2.83 % 41.13
ftv170 171 2755 2713.96 1.49 % 2800 1.63 % 47.58
kro124p 100 36230 35993.03 0.65 % 36682 1.25 % 11.90
rbg323 323 1326 1206.22 9.03 % 1495 12.75 % 1464.93
rbg358 358 1163 835.82 28.13 % 1275 9.63 % 2078.44
rbg403 403 2465 1595.82 35.26 % 2484 0.77 % 888.30
rbg443 443 2720 1750.80 35.63 % 2736 0.59 % 1211.06

7.90 % 2.43 %

Table 4.2: Results for 27 ATSP instances.
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Table 4.5 summarizes the results obtained in tables 4.3–4.4, the solved problems are
presented ordered by size. It may be observed that the adaptation for the asymmetric
case obtains almost as good as the original one. Particularly, the adaptation is not
comparable in terms of computational efficiency, see Figure 4.6.

Adapted TLM for asymmetric cases Original TLM for symmetric cases

Size Problems %∆UB CPUtime (s) %∆UB CPUtime (s)

n < 150 18 3.75 % 17.52 2.07 % 0.45
150 ≤ n < 300 15 6.82 % 194.38 5.51 % 3.16

Table 4.5: Summary of results obtained comparing both algorithms for 33 TSP instances.
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Figure 4.6: Comparison of CPUtime between both proposed algorithms, the original
TLM for the TSP and the adaptation for the ATSP, for 33 TSP instances.

4.5 Conclusions

This chapter has presented an adaptation of our proposed Tailored Lagrangian Meta-
heuristic for solving the Asymmetric Traveling Salesman Problem.

Our method uses the Subgradient algorithm combined with a heuristic which is
introduced to obtain a feasible solution from the dual variable providing both UB and
LB, thus a posterior quality check of the solution is obtained. The motivation of our
method is the common sense belief that dual solutions could be relevant to primal
solutions.
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The results have shown that the new parameter has improved significantly Subgra-
dient’s convergence on the optimal solution and it is showing good results in terms of
the quality of the solution. However, it is not showing a good behavior in terms of
computational efficiency.





Chapter 5

Asymmetric Capacitated Vehicle
Routing Problem

The Vehicle Routing Problem (VRP) is a flourishing research area with clear applica-
tions to real-life distribution companies. VRPs deal with the physical distribution of
goods from a central depot to customers, see for instance Toth and Vigo (2002a) and
Golden et al. (2008). The best-known VRP variant is the so-called Capacitated Vehi-
cle Routing Problem (CV RP ). However, frequent assumption is that distance-based
costs associated with traveling from one node i (customer or depot) to another node j,
cij , are symmetric, i.e., cij = cji for all pair of nodes. This assumption is not always
reasonable in real-life scenarios. It should also be taken into account that the main
goal of VRPs is to minimize distance-based costs associated with the distribution of
products among customers while satisfying customers‘ demands. To contribute closing
this gap between theory and practice, we propose a hybrid methodology for solving the
Asymmetric Capacitated Vehicle Routing Problem (ACVRP).

In the VRP is common to consider a matrix which elements are the individual costs of
traveling from one node to another. These costs can be based on several distance-related
factors, such as: actual distance, time employed, fuel consumption, etc. In fact, classical
benchmark instances are based on Euclidean distances between each pair of locations,
which results in symmetric costs. However, this metric is just a lower bound of the real
distance between two nodes connected by a transport network or highway. The real
distance will depend upon the specific location of the nodes in the territory and also on
the structure of the road network that communicates them. Moreover, when considering
oriented networks, real distances might not have to be symmetric (Rodŕıguez & Ruiz,
2012b).

This chapter aims to present an efficient and relatively easy-to-implement method-
ology for solving the Asymmetric Capacitated Vehicle Routing Problem (ACVRP). Our
approach is based on the combination of a randomized version of a classical heuristic
with several local search processes specifically adapted to deal with the asymmetric na-
ture of costs. The approach presented in this chapter was first presented in (Herrero et
al., 2014).

109
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5.1 Problem Definition

In general, VRP problems are NP − complete within the combinatorial optimization
field. Its constraints make it difficult to find feasible and good solutions in a reasonable
computing time.

The ACVRP goal is the same of the CVRP, see Chapter 2. Solving the ACVRP
consists of determining the set of minimum k ≤ K routes with minimum total traveling
cost and such that each customer is visited exactly once by a single vehicle, each route
starts and ends at the single-depot, and the total demand of the customers assigned to
a route does not exceed the vehicle capacity Q. The only difference from the CVRP is
the asymmetry of the distance matrix.

Let G = (I, E) be a complete and directed graph, where I = {0, 1, . . . , n} is the set
of nodes and E is the set of arcs. The nodes i = 1, 2, . . . , n correspond to customers,
each with a deterministic demand di ≥ 0. The node i = 0 is the depot with zero-demand
d0 = 0. Let K > 0 be the number of available vehicles, all of them with the same load
capacity Q > 0. Let cij be the non-negative distance-based cost associated with the arc
(i, j) ∈ E, and cii = +∞, ∀i ∈ I. The distance matrix is considered asymmetric, that
may be calculated using the real distances between pairs of locations (i, j), i.e., it can
happen that cij 6= cji.

The first formulation of this problem was proposed by Laporte et al. (1986). A
well-known programming formulation of the problem is presented as follows:

min
∑
i∈I

∑
j∈I

cijxij (5.1)

subject to: ∑
i∈Ir{j}

xij = 1 ∀j ∈ I r {0} (5.2)

∑
j∈Ir{i}

xij = 1 ∀i ∈ I r {0} (5.3)

∑
i∈Ir{0}

xi0 ≤ K (5.4)

∑
i∈Ir{0}

xi0 =
∑

j∈Ir{0}

x0j (5.5)

∑
i∈Ir{j}

yij + dj =
∑
i∈I

yji ∀j ∈ I r {0} (5.6)

0 ≤ dixij ≤ yij ≤ (Q− dj)xij ∀(i, j) ∈ E (5.7)

xij ∈ {0, 1} ∀(i, j) ∈ E (5.8)

yij ∈ [0, Q] ∀(i, j) ∈ E (5.9)

In this formulation for the ACVRP, O(n2) binary variables x are used. The binary
variable xij in (5.8) indicates whether or not customer j is visited immediately after i.
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In addition, there are O(n2) variables y, defined in Equation (5.9), where yij represents
the load in the truck arriving at customer j after visiting customer i in terms of units
of commodity.

The objective function (5.1) minimizes the total distance-based cost of the arcs used
by all routes generated. Constraints (5.2) and (5.3) require that each customer is visited
exactly once, having one starting edge and one ending edge. Constraint (5.4) imposes
that the number of used vehicles does not exceed the number of available vehicles.
Constraint (5.5) implies that the number of vehicles leaving the depot is the same as the
number of vehicles returning to it.

Constraints (5.6) state that the quantity of products yij in the truck leaving customer
j plus the demand of that customer, equals the quantity of products in the truck leaving
it after the service has been completed. Constraints (5.7) guarantee lower and upper
bounds ensuring that: the quantity of products yij in the truck leaving customer i is
equals to or greater that its demand, di; and the total demand served by each vehicle
does not exceed the load capacity Q.

5.2 Literature Review

As described in (Laporte & Nobert, 1987) and also in (Toth & Vigo, 2001), there is
a wide range of algorithms for solving the classic CVRP problem –exact algorithms,
classical heuristics, and meta-heuristics. However, most techniques have been focused
on solving the symmetric CVRP.

It is much less common to find articles that focus exclusively on the asymmetric
CVRP. In (Laporte et al., 1986) an exact algorithm is presented using the Branch-and-
Bound method where the subproblems are a modified Assignment Problem. (Fischetti et
al., 1994) propose a Branch-and-Bound algorithm using a new heuristic, named AV, ex-
plicitly tailored for ACVRP, and its practical application to a real case of pharmaceutical
distribution in a city of Italy.

In (Vigo, 1996), the author discusses the extension to the ACVRP of two of the most
important and successful techniques for the symmetric case: the Savings algorithm of
Clarke and Wright (1964), and the optimization method of Fisher and Jaikumar (1981).
The author states that the solutions found using the proposed asymmetric version of
the Clarke-and-Wright Saving algorithm quickly evolves to worse values as the number
of customers increases, in addition to the inconvenience of the parameter combination
for the parametric saving function. Furthermore, the author concluded that the new
heuristic AV proposed in (Fischetti et al., 1994) is able to bluid a feasible solution better
than those that can be obtained with the other algorithms from the literature.

More recently, there are two promising techniques that have been shown to work well
in both cases of symmetrical and asymmetrical CVRP. The first is a general heuristic
proposed by (Pisinger & Røpke, 2007) which is the result of a unified heuristic for several
variants of VRP using the Adaptive Large Neighborhood Search (ALNS). The second is
a Memetic Algorithm (MA) described in (Nagata, 2007). These algorithms have been
selected by their performance and recognition. We have striven for a balance between
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simple classical techniques and also current and state-of-the-art methods.

Moreover, (De Franceschi et al., 2006) presented a ILP-based refinement heuristic for
CVRP variants, for both symmetric and asymmetric costs, and for both with/without
distance constraints. They extended the refinement procedure proposed by Sarvanov and
Doroshko (1981) for the TSP, and a procedure is involved to generate a large number of
new sequences through the extracted nodes, as well as a more sophisticated ILP model
for the reallocation of some of these sequences. In Pessoa et al. (2008), the authors
proposed a robust Branch-Cut-and-Price algorithm for the ACVRP that was also shown
to be effective on a number of related problems. In particular, the use of cuts defined
over the extended formulation seems very promising and deserves further development.

5.3 The SR-GCWS-CS algorithm adapted for the ACVRP

Constructive Component

The proposed algorithm is based on the randomized Clarke and Wright Savings algorithm
(SR-GCWS-CS), developed by Juan et al. (2010); ? (?). The Clarke and Wright Savings
heuristic (CWS), presented by Clarke and Wright (1964), is one of the most commonly
cited methods in the VRP literature. It uses the concept of savings associated with each
arc for merging routes. At each step, the arc with the greatest savings is selected if and
only if the two corresponding routes can be combined into a new feasible route and if
the selected arc is composed of nodes that are directly connected with the depot. We
address the AVRP without considering an extensive asymmetric saving list –i.e., a list
including two directed arcs for each pair of customers. Instead we consider a weighted
savings list considering just one arc for each pair of customers. Also, we consider the
direction of the resulting route after each merging.

Algorithm 10 offers a high-level view of our algorithm, where lines 3, 10 and 11 are
essential for asymmetric problems. Our approach starts solving the problem as proposed
in the CWS heuristic –i.e.: computing a dummy solution assigning one round-trip route
from the depot to each customer. Then the algorithm computes the weighted savings
list using an auxiliary parameter β (see below the formulas for weighted saving, i.e.,
Ŝij , and CWS saving, i.e., Sij). At this point the CWS heuristics is combined with
a randomization process. We use a pseudo-geometric distribution to assign a selection
probability to each edge in the savings list (alpha). Moreover, this selection probability
is coherent with the weighted saving value associated with each edge, i.e., edges with
higher savings will be more likely to be selected from the list than those with lower
savings. Therefore, each combination of edges has a chance of being selected and merged
with previously built routes. Then, a multi-start process is initiated and controlled by
a time parameter (maxTime). At each iteration of this process, different edges are
selected using the aforementioned biased probability distribution. This allows obtaining
different outputs at each iteration. After merging, we improve the merged route applying
two promising local search processes. At the end, we apply a general local search to the
whole solution which is explained below.
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Algorithm 10 SR-GCWS-CS algorithm for the Asymmetric case

1: Initialization:
2: Compute initial dummy solution (Clarke & Wright, 1964).
3: Compute weighted savingsList using new parameter β.
4: repeat until MaxTime is consumed.
5: Perform a biased randomization of savingsList using α (Juan et al., 2010).
6: repeat until savingsList is empty.
7: Extract the next edge from savingList.
8: if both nodes are exterior, they belong to a two different routes and both
9: routes’ load can be assigned to a vehicle (load ≤ Q).

10: Merge routes without considering orientation.
11: Apply Asymmetric Local Search and Cache technique.
12: end if
13: end repeat
14: Apply splitting-based local search using maxSplitter (Juan et al., 2011).
15: Update the best found solution.
16: end repeat

One important contribution of our approach is the fact that we consider a weighted
savings list merging two routes without taking into account directions at this initial
stage. See an example in Figure 5.1. The application of a local search will help to define
the best direction. The weighted saving associated with an arc connecting customers i
and j is defined as:

Ŝij = β ∗max{Sij, Sji}+ (1− β) ∗min{Sij, Sji}

where β ∈ [0.5, 1] and Sij = c0i + c0j − cij .

Figure 5.1: Merging routes R1 = {0, h, i, 0} and R2 = {0, k, j, 0} with different orien-
tation into a route R = {0, h, i, j, k, 0}. The route R2 is reversed and some edges are
changed given that it is an urban area with some one-way streets.

The disregard of orientation is important given that an asymmetric savings list does
not choose arcs which do not match their orientation established. For example, it rejects
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the routes in Figure 5.1 since they have different orientation. This reduces the solution
space and worsens the general solution; even some obtained solutions are using a greater
number of vehicles.

Given that the orientations are not considered, an original local search for the asym-
metric context was created exploring the near solution space with few steps. It represents
another important contribution of our approach.

Asymmetric Local Searches

Once a merged route is obtained, two local searches are applied in order to explore the
solution space with few steps. The first local search procedure is the so called Reversing
Routes local search. This procedure intends to find an improvement in the order and
orientation of the nodes. Given a merged route, we first try to sort the nodes in a more
efficient way. If a route is composed by more than four nodes, then we take each four
nodes –i.e., (i, j, k, l)– and try to determine if a swapping of two middle-nodes could
improve the cost –i.e., (i, k, j, l). After that, we try to reverse the order in which nodes
are traversed.

A second local search, originally described in (Juan et al., 2011), is focused on check-
ing if a given set of nodes already exists in a memory but with a better order of the
nodes. The basic idea of this learning mechanism is to store in a cache memory the
best-known order to travel among the nodes that constitute one route. This cache is
constantly updated whenever a better order with a lower cost is found for a given set
of nodes. At the same time, the routes contained in this cache are re-used whenever
possible to improve newly merged routes.

Finally, once all edges in the saving list have been considered, the resulting solution is
improved through a Splitting local search method proposed in (Juan et al., 2011). The
current solution is divided into disjoint subsets of routes; then, each of these subsets
are solved applying the same methodology described before during a given number of
iterations (maxSplitter). This tries to apply a “divide and conquer” approach since
smaller instances could be easier to solve.

5.4 Computational Results

In order to validate our algorithm, we present the results of 20 AVRP instances compar-
ing our results with those obtained using the Memetic algorithm (MA) of (Nagata, 2007)
and the Adaptive Large Neighbourhood Search (ALNS) of (Pisinger & Røpke, 2007).

We have selected 20 public AVRP instances from the workbench presented in the
work of Rodŕıguez and Ruiz (2012b), details on these instances can be found in http://

soa.iti.es/files/Instances CVRP.7z. They have been generated with a realistic
perspective and mathematical justification. The selection was made at random among
the set of medium- and large-size instances (in terms of number of nodes). They have
50 or 100 customers and are designed to employ a homogeneous fleet with the number
of vehicles ranging from 2 to 7. These instances consider large demands and vehicle

http://soa.iti.es/files/Instances_CVRP.7z
http://soa.iti.es/files/Instances_CVRP.7z
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capacities, as well as random location of the nodes within intra-city areas. The depot
may be in the center of the area, those with ‘C’ in the second letter of the name, or a
random position, those with ‘A’. The intra-city instances were chosen given that they
represent a higher asymmetry degree. Rodŕıguez and Ruiz (2012b) conclude that these
instances affect in a statistically significant way the CPU time needed by some algorithms
and deteriorate the quality of the solutions obtained.

The algorithm described in this Chapter has been implemented as a Java application.
An Intel QuadCore i5 at 3.2 GHz and 4 GB RAM was used to perform all tests, which
were run over Windows XP.

For the 20 AVRP instances, we have used 10 random seeds (10 replicas), an elapsed
time of 1 minute (maxTime) for each seed, and 60 iterations for the splitting technique
(maxSplitter). In order to perform a biased randomization of the weighted savings
list, a quasi-geometric distribution with a parameter α randomly selected in the interval
[0.5, 0.10] was used; and the value chosen for the weighted saving was β = 0.6.

We have selected the following state-of-the-art AVRP methods in order to compare
with:

• General heuristic of (Pisinger & Røpke, 2007). It is a unified heuristic that works
for several variants of routing problems and that uses an Adaptive Large Neigh-
borhood Search (ALNS).

• Memetic algorithm of (Nagata, 2007) (MA). Similar to ALNS, MA is a very pow-
erful and recent AVRP metaheuristic.

The previous algorithms have been selected by their performance and recognition.
We have striven for a balance between simple classical techniques and current and state-
of-the-art methods. Algorithms MA and ALNS were run from the original C++ code
which was kindly provided by their respective authors. No code modification was carried
out and the methods were run according to their recommendations.

The MA algorithm of Nagata was executed with a parameter setting: Npop = 100,
Nch = 30, 10 trials and 2 parents. Also ten runs with elapsed time of 1 minute were
executed for each instance. For the ALNS, only one run was executed for each instance
without time limit.

The results of these tests are summarized in table 5.2, which contains the following
information for each instance: name of instance; number of nodes; number of vehicles;
the best solution of 10 replicas of the MA, {1}; the ALNS solution, {2}; gap, expressed
as a percentage value, between {1} and {2}; the time used for ALNS in seconds; our
best solution found, OBS {3}; and gap between {1} and {3}.
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Notice that the results obtained with our approach are quite competitive, showing
an average gap of 0.41% with respect to (Nagata, 2007), which always obtains the best
results. Our approach also found exactly the same solution (gap = 0.00%) for 10 out of
20 instances. Notice that all three algorithms were run using the same computing time
and machine. The only difference is that our algorithm was codified in Java, which runs
over a virtual machine and thus has a lower performance than a code implemented in
native C/C++.

5.5 Conclusions

In this chapter, we have discussed the importance of taking into account asymmetric
costs in realistic Vehicle Routing Problems. Despite the fact that real-life distances
are frequently asymmetric –especially in urban transportation–, there is a lack of works
considering asymmetric distances. Accordingly, we have presented a hybrid algorithm
for solving the Asymmetric Capacitated Vehicle Routing Problem (ACVRP). This algo-
rithm combines a multi-start randomized savings algorithm (SR-GCWS-CS) with two
local search processes specifically adapted to the asymmetric nature of costs in real-life
scenarios.

A complete set of ACVRP tests have been performed to illustrate the methodology
and analyze its efficiency when compared with two state-of-the-art algorithms. The
results show that our approach is able to produce competitive results for the ACVRP
while, at the same time, it is much simpler to implement and requires less parameters
–and fine-tuning efforts– than current state-of-the-art algorithms.





Chapter 6

Asymmetric and Heterogeneous
Vehicle Routing Problem

As explained in Chapter 5, the Vehicle Routing Problem (VRP) has clear applications
to real-life distribution companies. This chapter focuses on the fact that most road-
transportation companies own a heterogeneous fleet of vehicles. However, most VRP-
related academic articles assume the existence of a homogeneous fleet of vehicles.

The diversity in the vehicles capacity of companies might be due to the fact that
different customers and locations might require different types of vehicles, e.g.: narrow
roads in a city, available parking spaces, vehicle weight restrictions on certain roads,
etc. Another reason for owning vehicles with distinct capacities is the natural diversity
that arises when vehicle acquisitions are made over time. Accordingly, Ruiz et al. (2004)
and Prive et al. (2006) state the importance of developing new vehicle routing methods
considering heterogeneous fleets. Some real-life applications of heterogeneous fleets are
illustrated in (Golden et al., 2002). Examples of these are: urban waste collection,
residential pickups and delivery of beverages, food and newspapers delivery, etc.

Several VRP variants have been extensively studied during the last decades (Laporte,
2009). Different VRP variants incorporate different sets of realistic constraints –i. e.
vehicle capacity, asymmetric cost, heterogeneous fleets, delivery time windows, service
priorities, pickup and delivery options, etc. Despite the fact they are common situations
in real-life scenarios, the combination of heterogeneous fleets with asymmetric costs has
been rarely discussed in the existing literature.

The first goal of this chapter is to solve the Asymmetric and Heterogeneous Vehicle
Routing Problem (AHVRP), for that the proposed methodology presented in Chapter 5
is adapted. Additionally, this chapter also analyzes how asymmetric routing costs vary
when slight deviations from the homogeneous fleet are considered, i.e., how marginal
costs/savings change when a few ’standard‘ vehicles in the homogeneous scenario are
substituted by other vehicles with different loading capacity.

119
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6.1 Problem Definition

This chapter is focused on a particular variant of the V RP family, called Asymmetric
Heterogeneous Fleet Vehicle Routing Problem. The model used next is an adaptation
of the models proposed by Baldacci et al. (2008) and Wen et al. (2010). Both assume
symmetric and different transportation costs for each type of vehicle, limited number of
vehicles, as well as additional fixed costs for using each type of vehicle.

The model of three sub-indexes is formulated as follows. LetG = (I, E) be a complete
and directed graph, where I = {0, 1, . . . , n} is the set of nodes and E is the set of arcs.
The nodes i = 1, 2, . . . , n correspond to customers, each with a deterministic demand
di ≥ 0. The node i = 0 is the zero-demand depot, i.e., d0 = 0. Let m > 0 be the
number of different types of vehicles. For the kth type of vehicles (k = 1, 2, . . . ,m),
let Ik = {1, 2, . . . , vk} be the set of vehicles of type k, with load capacity Qk > 0.
Let cij be the non-negative distance-based cost associated with the arc (i, j) ∈ E, and
cii = +∞, ∀i ∈ I. In the case of calculating the real distances between pairs of locations
(i, j), the distance matrix may be asymmetric, i.e., it can happen that cij 6= cji.

The AHVRP goal is to find the set of minimum-cost round-trip routes, starting from
and ending at the depot, which satisfy all customers’ demands, visit each customer only
once, and do not exceed the load capacity of each type of vehicle.

min
∑
i∈I

∑
j∈I

cij

m∑
k=1

xijk (6.1)

subject to:∑
i∈Ir{0}

xi0k =
∑

j∈Ir{0}

x0jk ∀k ∈ {1, . . . ,m} (6.2)

m∑
k=1

∑
i∈Ir{j}

xijk = 1 ∀j ∈ I r {0} (6.3)

∑
i∈Ir{h}

xihk =
∑

j∈Ir{h}

xhjk ∀h ∈ I r {0},∀k ∈ {1, . . . ,m} (6.4)

∑
j∈Ir{0}

x0jk ≤ vk ∀k ∈ {1, . . . ,m} (6.5)

∑
i∈Ir{j}

yij + dj =
∑

i∈Ir{j}

yji ∀j ∈ I r {0} (6.6)

0 ≤ di · xijk ≤ yij ≤ (Qk − dj) · xijk ∀(i, j) ∈ E,∀k ∈ {1, . . . ,m} (6.7)

xijk ∈ {0, 1} ∀(i, j) ∈ E,∀k ∈ {1, . . . ,m} (6.8)

In this formulation, for both symmetrical and asymmetrical issues, and for both
homogeneous and heterogeneous fleet, O(n2K) binary variables x are used. The binary
variable xijk in (6.8) indicates whether or not the arc (i, j) ∈ E is traveled by a vehicle
of type k (k = 1, 2, . . . ,m). In addition, there are O(n2) variables y where yij represents
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the load in the truck arriving at customer j after visiting customer i in terms of units
of commodity.

The objective function (6.1) minimizes the total distance-based cost of the arcs used
by all m routes generated. Constraints (6.2) imply that the number of vehicles of each
type leaving the depot is the same as the number of vehicles of that type returning to
it. Constraints (6.3) and (6.4) require that each customer is visited exactly once, and
that the same type of vehicle k arrives and leaves each h customer location respectively.
Constraints (6.5) impose that the number of used vehicles of each type does not exceed
the number of available vehicles of that type. Constraints (6.6) state that the quantity
of products yij in the truck leaving customer j plus the demand of that customer, equals
the quantity of products in the truck leaving it after the service has been completed.
Constraints (6.7) guarantee lower and upper bounds ensuring that: the quantity of
products yij in the truck leaving customer i is equals to or greater that its demand, di;
and the total demand served by each vehicle k does not exceed the load capacity Qk.

6.2 Literature Review

Many combinatorial problems consider more than one fleet of vehicles with different
capacities. Since the first axis of our addressed rich problem is the asymmetric costs
matrix, the second axis is the Heterogeneous Fleet VRP (HVRP). The HVRP has been
quite studied in the literature. For instance, Baldacci et al. (2008) present a compre-
hensive description of some of its most important variants. On this last study, we can
appreciate how the research community has addressed the HVRP in different ways. First,
considering either a limited or an unlimited number of available vehicles of each type.
Second, considering fixed and/or variable costs associated with the use of each type of
vehicle. Each vehicle could have a fixed cost for using it in a trip as well as a variable
cost that is the result of multiplying a coefficient by the distance of the assigned route,
i.e., cijk1 6= cijk2 ∀i, j and ∀k1 6= k2. These costs used to be associated to each type
of vehicle. The combinations of the aforementioned parameters have created the main
HVRP families, known as:

• H1: Fleet Size and Mix VRP with fixed and variable costs where an unlimited
number of vehicles is considered for minimizing the addition of using a specific
vehicle and the variable distance.

• H2: Fleet Size and Mix VRP with only fixed costs where an unlimited number of
vehicles is considered for minimizing fixed cost of all used vehicles.

• H3: Fleet Size and Mix VRP with only variable costs where an unlimited number
of vehicles is considered for minimizing the variable distance of all routes.

• H4: Heterogeneous Fixed Fleet VRP with only variable costs where a limited
number of vehicles is used to minimizing the variable cost.

• H5: Heterogeneous Fixed Fleet VRP with fixed and variable costs where a limited
number of vehicles is used to minimizing both variable and fixed costs.
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Study HVRP family Method

Golden et al. (1984) H0, H2 Heuristics
Taillard (1999) H0, F2, H4 Column Generation-based heuristic
Gendreau et al. (1999) H0, H2, H3 Tabu Search
Wassan and Osman (2002) H0, H2, H3 Tabu Search
Renaud and Boctor (2002) H0, H2 Heuristic-based
Lima et al. (2004) H0, H2 Memetic algorithm
Tarantilis et al. (2004) H0, H4 Threshold Accepting algorithms
E. Choi and Tcha (2007) H0, H1, H2,

H3
Branch-and-bound

F. Li et al. (2007) H0, H4 Record-To-Record
Prins (2009) H0, H1, H2,

H3, H4
Memetic algorithm

Imran et al. (2009) H0, H1, H3 Variable Neighborhood-based
heuristic

Liu et al. (2009) H0, H2 Genetic algorithm
Brandao (2009) H0, H2, H3 Tabu Search
Euchi and Chabchoub (2010) H0, H4 Hybrid Tabu Search
X. Li et al. (2010) H0, H5 Adaptive Memory Programming

Metaheuristic
Brandao (2011) H0, H3, H4 Tabu Search
Penna et al. (2011) H0, H1, H2,

H3, H4, H5
Iterative Local Search with Variable
Neighborhood Descent

Subramanian et al. (2012) H0, H1, H2,
H3, H4, H5

Iterative Local Search with Set
Partitioning

Table 6.1: Summary of published HVRP studies.

Notice that there are others HVRP branches considering constraints like Site-Dependent,
Site-Road, etc. For instance, Prins (2002) considers that each vehicle can optionally per-
form several trips using a savings-based heuristic but without any extra cost. The basic
family (H0) consists in the natural condition of considering a heterogeneous fleet inside
of the combinatorial problem.

The Rich VRP (RVRP) is a generalized variant of the VRP where several constraints,
aspects or objectives functions are considered at the same time. Examples of constraints
and assumptions considered in RVRPs could be: multi-depot, periodic visits to clients,
open routes, multi-products, time windows, etc. Drexl (2012) compiles some current
needs on the RVRP field as well as a state-of-the-art of scientific research and commercial
software. In some studies like Prins (2002); Bolduc et al. (2006); Irnich (2008); Rieck
and Zimmermann (2010); Oppen et al. (2010); Prescott-Gagnon et al. (2010); Vallejo
et al. (2012) the variable and fixed costs are ignored when combined with other routing
features. In fact, Bolduc et al. (2006) is included with other papers in a Special Issue of
Rich VRP Hartl et al. (2006). Tables 6.1 and 6.2 summarize the work done in several
types of HVRP. On its columns, we can appreciate the addressed HVRP families, the
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applied methodology, as well as others routing constraints considered on each study.
Also, the first table (6.1) presents papers exclusively dedicated to the HVRP, while the
second table (6.2) shows papers related to RVRP where the HVRP is also considered
together with other constraints. Most of these works just include the heterogeneous
capacity of vehicles (H0) and not the related costs associated with each type of vehicle.
Therefore, there is not a single way to include the HVRP feature in a RVRP.

To the best of our knowledge, there is not any published work on the AHVRP. The
most approximated ones are presented in Marmion et al. (2010); Pessoa et al. (2008).
In the first study, the authors analyses the sensitivity of two classical neighborhoods
methods for the AHVRP. Thus, they simulate a heterogeneous fleet assigning different
variable costs to each vehicle, but the capacity remains unchanged. On Pessoa et al.
(2008), the authors developed a set of robust Branch-Cut-and-Price algorithms for sev-
eral VRPs. Some promising experiments are presented, but changes in the capacity of
fleets are not justified for the HVRP. More details about these two studies are discussed
later.

Study HVRP family Method Extra constraints

Bolduc et al.
(2006)

H0 Heuristics Multi-period

Irnich (2008) H0 Local Search-Based
metaheuristic

Multi-depots, and time
windows

Baldacci and
Mingozzi
(2009)

H0, H5 MIP model with Set
Partitioning

Site-dependent, and
multi-depots

Rieck and
Zimmermann
(2010)

H0 MILP model Time windows, and
simultaneous delivery
& pickup

Oppen et al.
(2010)

H0 Column
Generation-based

Multi-products,
multiple trips,
precedence and
inventory constraints

Prescott-
Gagnon et al.
(2010)

H0 Heuristics Multi-depots,
intra-route
replenishments, time
windows, driver shifts
and optional customers

Vallejo et al.
(2012)

H0 Memory-based
Approach with

Clustering

Time windows,
multi-depots, and
multi-trip

Table 6.2: Summary of published Rich HVRP studies.
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6.3 The SR-GCWS-CS algorithm adapted for the AHVRP

The algorithm we propose is an adaptation of our proposed Asymmetric SR-GCWS-CS
algorithm presented in Chapter 5. The Clarke and Wright Savings heuristic (CWS) is a
well known method (Clarke & Wright, 1964). Our approach combines the randomized
Clarke and Wright Savings algorithm (SR-GCWS-CS), developed by Juan et al. (2010,
2011) for the CVRP, with the modified Clarke and Wright Savings heuristic, presented
by Prins (2002) for the HVRP.

Constructive Component

Algorithm 11 offers a high-level view of our algorithm. Being demonstrated the compe-
tence of our algorithm 10 for the asymmetric case, for the AHVRP only lines 8–11 and
13 are modified.

Our approach starts solving the problem as proposed in the CWS heuristic, i.e.,
computing a dummy solution assigning one round-trip route from the depot to each cus-
tomer. Then the algorithm computes the weighted savings list as proposed in Chapter 5.
At this point, the CWS heuristics is combined with the randomization process proposed
in (Juan et al., 2010). Then, a multi-start process is initiated and controlled by a time
parameter (maxTime). At each iteration of this process, different edges are selected
using a biased probability distribution, this allows obtaining different outputs at each
iteration.

Addressing the heterogeneous fleet

Before merging, the validation of the capacity constraint in a heterogeneous fleet is
addressed as a vehicle-trip assignment. For this, an effective method based on CWS
is employed, (Prins, 2002). In the work of Prins, the list of vehicles and the list of
routes are sorted decreasingly by load capacity and accumulated demands respectively;
after that, a temporary assignment between the two lists is searched. If a successful
match –including all previously routes plus the new desirable merged one– is found,
then the capacity constraint is satisfied and the temporary assignment becomes final.
Otherwise, the merge becomes unfeasible. If a situation arises in which the number of
routes is greater than the number of vehicles, then new fictitious vehicles are assigned
to the remaining routes. Notice that this vehicle assignment validation is made for each
possible saving, increasing the computational operations. However, in our approach it
is not considered the assumption regarding that the largest demand cannot exceed the
capacity of the smallest vehicle.

After merging the routes and assigning vehicles, the Asymmetric Local Searches ex-
plained in Section 5.3 is applied. Notice that it does not search a new vehicle assignment,
the previously assigned vehicle to each route remains unchanged during this process.

Finally, once all edges in the saving list have been considered, the resulting solution
is improved through a Splitting local search method proposed in (Juan et al., 2011). The
current solution is divided into disjoint subsets of routes together with their previously
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Algorithm 11 The Asymmetric SR-GCWS-CS for Heterogeneous Fleets

1: Initialization:
2: Compute initial dummy solution (Clarke & Wright, 1964).
3: Compute weighted savingsList using β.
4: repeat until MaxTime is consumed.
5: Perform a biased randomization of savingsList using α (Juan et al., 2010).
6: repeat until savingsList is empty.
7: Extract the next edge from savingList.
8: if both nodes are exterior and they belong to a two different routes.
9: Compute decreasing sorted list of vehicles and decreasing sorted list of

10: routes loads (Prins, 2002).
11: if all routes’ load can be assigned to a candidate vehicle (load ≤ Qk).
12: Merge routes without considering orientation.
13: Assign final vehicles.
14: Apply Asymmetric Local Search and Cache technique.
15: end if
16: end if
17: end repeat
18: Apply splitting-based local search using maxSplitter (Juan et al., 2011).
19: Update the best found solution.
20: end repeat

assigned vehicles; then, each of these subsets are solved applying the same methodology
described before during a given number of iterations (maxSplitter). This tries to apply a
“divide and conquer” approach since smaller instances could be easier to solve. So a new
set of routes could be created on each partition with the previously assigned vehicles.

6.4 Experimental Design

The most commonly-used methodology to compare the performance of different algo-
rithms for solving VRPs consists in running these algorithms over a set of well-defined
benchmark instances. In the case of the CVRP or the AVRP, several benchmark sets
are available through open-access websites, so that researchers worldwide can use them.
Usually, these data sets contain complete information, including not just the instance
inputs and the best-known value for the objective function, but also a complete descrip-
tion of the corresponding solution –i.e., the specific composition of each route in the
best-known solution. In the case of the AHVRP, however, there is not a commonly-
accepted set of instances to test algorithms, since the AHVRP has rarely been discussed
so far in the literature.

For the AHVRP, (Fischetti et al., 1994) developed some preliminary experiments
based on a set of real AVRP instances. Likewise, (Marmion et al., 2010) analyzed the
use of a heterogeneous fleet. However, these studies have only considered the effect of
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variable cost on vehicles selection, but no differences in actual vehicle capacities are
considered. Also (Pessoa et al., 2008) have used these benchmarks first modifying the
capacity of the original fleets and then running the experiments with homogeneous fleets.

Therefore, we propose to extend, for the AHVRP, the 20 selected ACVRP instances
from http://soa.iti.es/files/Instances CVRP.7z, used in Chapter 5. We propose
to use exactly the same nodes of this ACVRP instances, including their asymmetric costs
and demands, and the same number of vehicles. We then consider a heterogeneous fleet
composed of ‘standard’ vehicles –i.e., vehicles with the capacity defined in the ACVRP
instances– and ‘non-standard’ vehicles with modified capacities. In our opinion, this is
a natural way to adapt the homogeneous-capacity instances, since it allows the decision-
maker to answer sensitivity-analysis questions such as: “How would my routing costs be
changed if we could employ one or two trucks with a different capacity?”.

Thus, in order to test our approach, a total of twenty classical ACVRP instances
were selected and adapted as ‘base’ AHVRP instances. For each base instance, six
different fleet typologies were defined –thus, 120 different instances were considered in
total. These fleet typologies are partially composed of ‘standard’ vehicles, each of them
with capacity Q0, but they differ in their exact composition as explained in the following
general rule:

• Fleet 150-125: two ‘standard’ trucks are substituted by a ‘large’ truck (with capac-
ity Ql = 150%·Q0) and by a ‘large-medium’ truck (with capacity Qlm = 125%·Q0),
respectively.

• Fleet 125-125: two ‘standard’ trucks are substituted by two ‘large-medium’ trucks.

• Fleet 125-80: two ‘standard’ trucks are substituted by a ‘large-medium’ truck and
by a ‘small’ truck (with capacity Qs = 80% ·Q0), respectively.

• Fleet 100-100: the homogeneous case where all trucks are ‘standard’.

• Fleet 90-90: two ‘standard’ trucks are substituted by two ‘small-medium’ trucks
(with capacity Qsm = 90% ·Q0).

• Fleet 90-80: two ‘standard’ trucks are substituted by a ‘small-medium’ truck and
by a ‘small’ truck, respectively.

Notice, however, that in some cases a reduction in the fleet capacity might cause the
infeasibility of the problem, i.e., the total demand to be satisfied might be greater than
the total fleet capacity. In those particular cases, an additional ‘standard’ vehicle is
added to the fleet to promote feasibility of the problem.

6.5 Computational Results

Previously the proposed approach has shown to be competitive for the AVRP, see sec-
tion 5.4, now it is used for solving the AHVRP, and analyze different fleet compositions.
Thus, twenty ACVRP instances were adapted as ‘base’ AHVRP instances. For each
base instance, six different fleet typologies were defined, see section 6.4 for more details.

http://soa.iti.es/files/Instances_CVRP.7z
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Thus, 120 different instances were considered in total. For each of them, 10 random
seeds (10 replicas) and an elapsed time of 1 minute were used.

The algorithm described in this chapter has been implemented as a Java application.
An Intel QuadCore i5 at 3.2 GHz and 4 GB RAM was used to perform all tests, which
were run over Windows XP.

Tables 6.3, 6.4, 6.5 and 6.6 contain, for each base instance, the following information:
name of instance; number of nodes; number of vehicles; our best solution found for the
homogeneous case, OBS {1}; different fleet rules for the heterogeneous case, each of
them defining a new routing instance; our best solution found for the heterogeneous case,
OBS {3}; the obtained number of vehicles for the fleet configuration; and percentage gap
between the BKS for the homogeneous case and the OBS for the heterogeneous case.
Instances are distributed in the tables according to their sizes (50 or 100 nodes) and the
location of the nodes on territory (random or grid).

Observe that * highlights different number of vehicles. For example, on table 6.3,
(1,1,1)* of the fifth row remarks that this heterogeneous solution is using one more vehicle
than the homogeneous solution. It uses one vehicle of 90% of capacity, one vehicle of
80% and one ‘standard’ vehicle. Instead, *(1,1,0) of the sixth row remarks that this
solution is using one less ‘standard’ vehicle.

Figure 6.7: Surface Plot of Average Gap vs. Fleet Configuration

Figure 6.7 shows a 3D scatter plot representing the average gap associated with each
of the 6 fleet configurations considered in this article. In other words, for each fleet rule,
the twenty gaps with respect to the homogeneous OBS –one per base instance– have
been averaged. From these results, it can be noticed the following:

• Just by employing two large vehicles (fleet 150-125) instead of two ‘standard’ ve-
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hicles (fleet 100-100), it is possible to obtain noticeable costs reductions that can
go up to 10% in some instances (e.g., G-A-CAA0502).

• Likewise, when using two small vehicles (fleet 90-80) instead of two ‘standard’
vehicles, costs can suffer an increase of about 5% for some instances (e.g., G-C-
CAA0504).

Therefore, it can be concluded that routing costs can be in fact quite sensitive to
small variations in the fleet configuration. This justifies the necessity for employing new
approaches in real-life routing applications, i.e., algorithms which are able to deal with
both asymmetric costs as well as heterogeneous fleets.

6.6 Conclusions

In this chapter, we have discussed the importance of taking into account heterogeneous
fleets in realistic Vehicle Routing Problems. Despite the fact that most real-life fleets
of vehicles are heterogeneous and that real-life distances are frequently asymmetric –
especially in urban transportation–, there is a lack of works considering both situations
simultaneously. Accordingly, we have presented a multi-start process for solving the
Asymmetric Heterogeneous Vehicle Routing Problem. This algorithm combines a ran-
domized savings algorithm (SR-GCWS-CS) with three local search processes specifically
adapted to the heterogeneity of fleets in real-life scenarios.

A set of benchmarks for the AHVRP have been developed and a sensitivity analysis
on the fleet composition has been performed. This experiment shows how decision-
makers can benefit from our approach when deciding the actual composition of their
heterogeneous fleets.



Contributions

Main contributions

The thesis has been introduced hybrid methodologies that integrates several techniques
to efficiently tackle six combinatorial problems related to road transport. It starts with
theoretical problems and evolves into more realistic scenarios, a study of different variants
focusing on the impact that causes the asymmetry of the costs and the heterogeneity of
the fleet has been presented, and a real problem of Home Health Care service in the city
of Ferrara, Italy, has been solved. Below detailed contributions are presented for each
chapter.

Our proposed Tailored Lagrangian Metaheuristic (TLM) method has been presented
in Chapter 1, this metaheuristic method is based on the Lagrangian Relaxation tech-
nique. This scheme has been used to tackle the Traveling Salesman Problem (TSP),
showing very good results both in terms of the quality of the solution and in terms of
computational efficiency.

Our proposed TLM method uses the Subgradient algorithm combined with a heuris-
tic. The motivation of our method is the common sense belief that dual solutions must
obviously be relevant to primal solutions. The new introduced parameter has improved
significantly algorithm’s convergence on the optimal solution.

Our proposed TLM has been included into a Variable Neighborhood Search frame-
work to tackle the Capacitated Vehicle Routing Problem (CVRP), in Chapter 2.

The presented hybrid methodology combines a randomized version of the Clarke and
Wright Savings heuristic with Constraint Programming and our Tailored Lagrangian
Metaheuristic to efficiently solve CVRP instances. These techniques have been embedded
into a Multi-Start Variable Neighborhood Descent framework. According to the tests
performed, the proposed algorithm is competitive with state-of-the-art metaheuristics.

Our proposed TLM has been used to calculate routing cost for each vehicle sepa-
rately. It solves all routes in negligible times and is an efficient alternative for intra-route
optimization processes and avoids defining intra-route moves. Moreover, it ensures the
partial optimality of most solutions from the routing perspective. The reason is that,
since we are considering a relatively small number of customers per route, the proposed
approach can quickly find the optimal solution to most TSP instances.

Chapter 3 presents a real-life application of constraint solving technologies to the
Home Health Care problem for the city of Ferrara, Italy. Our proposed Tailored La-
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grangian Metaheuristic has been included into a Constraint Programming framework
using a search algorithm based on Large Neighborhood Search.

Our proposed TLM has been used to calculate traveling time for each nurse sepa-
rately. It has been compared respect ASP and Comet technologies, obtaining that our
proposed TLM was the fastest, it ensures the partial optimality of most solutions from
the routing perspective. The reason is that, since there are a relatively small number of
patients per nurse, the proposed approach can quickly find the optimal solution to most
TSP instances.

An adaptation of our TLM for the Asymmetric Traveling Salesman Problem (ATSP)
is presented in Chapter 4. For this problem, the out-degree constraints are relaxed and
Edmond’s Algorithm is used to solve the dual problem. In this metaheuristic approach,
a new heuristic to obtain a feasible solution from a dual one is proposed.

The results have shown that the new parameter has improved significantly Subgra-
dient’s convergence on the optimal solution and it is showing good results in terms
of the quality of the results. However, it is not showing a good behavior in terms of
computational efficiency.

A hybrid algorithm for solving the Asymmetric Capacitated Vehicle Routing Prob-
lem (ACVRP) has been presented in Chapter 5. The proposed algorithm is based on
the randomized Clarke and Wright Savings algorithm (SR-GCWS), combined with two
local search processes specifically adapted to the asymmetric nature of costs in real-life
scenarios.

The results show that our approach is able to produce competitive results for the
ACVRP while, at the same time, it is much simpler to implement and requires less
parameters –and fine-tuning efforts– than current state-of-the-art algorithms.

In Chapter 6, the proposed asymmetric adaptation of the SR-GCWS algorithm,
presented in Chapter 5, has been modified to tackle the Asymmetric Heterogeneous
Vehicle Routing Problem (AHVRP). Our approach combines the SR-GCWS, developed
by Juan et al. (2010) for the CVRP, with the modified Clarke and Wright Savings
heuristic, presented by Prins (2002) for the HVRP.

A set of benchmarks for the AHVRP have been developed and a sensitivity analysis
on the fleet composition has been performed. This experiment shows how decision
makers can benefit from our approach when deciding the actual composition of their
heterogeneous fleets.

Finally, the hybrid VNS methodology described in Chapter 2 has been registered
with the following software license:

• D. Guimarans, R. Herrero, J.J. Ramos, and M.A. Piera. ITSLogisim Simulation
Suite 1.0 and ITSLogiSim Optimization Suite 1.0. Registered at Universitat Aut-
noma de Barcelona, 30th June 2010.

Currently, the company Digital Aeronautics Engineering Services is using this soft-
ware license under a commercial agreement. Combined with a clustering algorithm, it
is being applied to solve problems up to 22,000 customers and more than 5,000 planned
routes.
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Conclusions

The conclusions of this thesis can be summarized as follows:

• The Tailored Lagrangian Metaheuristic has been developed to tackle the Traveling
Salesman Problem, it is based on the Lagrangian Relaxation.

• This metaheuristic is competitive in terms of both results and computational ef-
ficiency for the symmetric scenarios. However, the impact of the asymmetry of
the cost in our metaheuristic has been studied, its adaptation for the asymmetric
scenarios is only showing good results in terms of quality, but it is not showing a
good behavior in terms of computational efficiency.

• Our proposed metaheuristic has been integrated into a hybrid methodology com-
bine with Constraint Programming to tackle the Capacitated Vehicle Routing
Problem. Our metaheuristic solves optimally all routes in negligible times.

• An application using our metaheuristic has been developed for a real scenario, the
Home Health Care service in Ferrara, Italy. Our proposed metaheuristic, which
solves optimally all routes consuming 10% of the computation time, has been
included into a Constraint Programming framework using a search algorithm based
on Large Neighborhood Search.

• The impact of the asymmetry of the cost has been studied tackling the Asymmetric
version of the Capacitated Vehicle Routing Problem. The randomized Clarke and
Wright Savings algorithm has been adapted combined with two local search pro-
cesses specifically designed for the asymmetric nature of costs in real-life scenarios.
Unlike other approaches, this adaptation has been flexible and it is competitive
with state-of-the-art metaheuristics.

• This Clarke and Wright approach has been adapted to consider Heterogeneous
fleets. A study of the impact that causes the heterogeneity of the fleet has been
presented showing that different fleet configurations can need one more or less
vehicle than the homogeneous solution, and the total cost can be reduced up to
10% or increase up to 5% for different fleet configurations.

Future Research

As it can be appreciated in Chapter 4, the proposed dual problem for the ATSP has
not been able to produce results quickly, in part derived from the running time of
Edmonds’ algorithm. In fact, the research of the scientific community is more focused
on the Lagrangian Relaxation for the ATSP based on the Assignment Problem. Adapt
our Tailored Lagrangian Metaheuristic to this relaxation could be quite interesting to
develop as future work.
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Furthermore, it can be developed a parallel implementation of the algorithm pre-
sented in Chapter 5–6, aiming to significantly accelerate its execution speed when deal-
ing with large-scale instances. In this context, the splitting process can be designed to
run different splitting policies in a parallel computing environment sharing a centralized
hash table among all threads. In addition, the entire multi-start process can be designed
to run in a parallel computing environment using several distributed hash tables which
communicate among themselves to share information at certain time periods.

As for future work, the following lines of research are suggested to adapt the SR-
GCWS-CS to solve some variants of VRP:

• VRP with Time Windows Each customer is associated with a time interval
and can only be served within this interval. When the next edge is selected from
savingList, it must be verified whether the customer is served within its time
interval before merging routes. It would be appropriate to use the well-known
Insertion heuristic during the local search process.

• Multi-Depot VRP It integrates a combinatorial assignment problem -which cus-
tomers are to be assigned to each depot- with the several CVRPs that must be
solved for each customers-depot assignment, this problem is less studied variant in
the literature. Before starting the current SR-GCWS-CS algorithm, each customer
could be randomly assigned to a depot according to a distance-based criterion.
Thus, each VRP could be solved independently using the SR-GWS algorithm, it
could be implemented in parallel using independent hash tables and without con-
sidering the splitting process. Then, a new splitting-based local search could be
applied to all VRPs.

• Pickup-and-delivery VRP Each customer is associated by two quantities, rep-
resenting one demand to be delivered at the customer and another demand to be
picked up and returned to the depot. When the next edge is selected from the
saving list, it must be verified whether both quantities can be satisfied while the
total pickup and total delivery on the merged route are not exceeding the vehicle
capacity.

• Green VRP This variant deals with the optimization of energy consumption of
transportation which may clash with the designated economic objectives. It takes
into account the vehicles fuel tank capacity limitation and chooses the optimal
placement of Alternative Fueling Stations visits within the tour. When the next
edge is selected from the saving list, it must be verified the fuel tank capacity, if it
is necessary to visit a fuel station, the routes will not merged. However, the cost
of the edge could be modified in the saving list adding the cost of inserting the
nearest fuel station to the resultant route.

• Fuel Consumption Rate VRP New objective function is considered in which
the cost function is a product of the total load (including the weight of the empty
vehicle) and the distance traveled minimizing fuel consumption. For this problem,
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the saving list should be reordered, it would be rather select the edge of maximum
saving related to the least loaded vehicles.

Publications

The work presented in this thesis has been partially published in the following journal
articles:
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memory parallel implementation of ant colony optimization. In Proceedings of the
6th metaheuristics international conference (pp. 257–264).

Delisle, P., Krajecki, M., & Gravel, M. (2009). Multi-colony parallel ant colony op-
timization on SMP and multi-core computers. In 2009 world congress on na-
ture&biologically inspired computing (nabic).
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de Sistemes. Retrieved from http://hdl.handle.net/10803/96386

Guimarans, D., Herrero, R., Ramos, J., & Padrón, S. (2011a). Solving vehicle routing
problems using constraint programming and lagrangean relaxation in a metaheuris-
tics framework. International Journal of Information Systems and Supply Chain
Management .

Guimarans, D., Herrero, R., Ramos, J. J., & Padrón, S. (2013). Management innovations
for intelligent supply chains. In J. Wang (Ed.), (pp. 123–143). IGI Global.

Guimarans, D., Herrero, R., Riera, D., Juan, A., & Ramos, J. (2010). Combining
Constraint Programming, Lagrangian Relaxation and Probabilistic Algorithms to
Solve the Vehicle Routing Problem. In Proceedings of the 17th rcra international
workshop. Bologna, Italy.

Guimarans, D., Herrero, R., Riera, D., Juan, A. A., & Ramos, J. J. (2011b). Combining

http://hdl.handle.net/10803/96386


References 147

probabilistic algorithms, Constraint Programming and Lagrangian Relaxation to
solve the Vehicle Routing Problem. Annals of Mathematics and Artificial Intelli-
gence, 62 (3-4), 299–315.

Gutin, G., & Karapetyan, D. (2010). A memetic algorithm for the generalized traveling
salesman problem. Natural Computing , 9 (1), 47–60.

Gutin, G., & Punnen, A. P. (2002). The Traveling Salesman Problem and Its Variations
(Vol. 12). Springer Science & Business Media.

Hanada, K., & Hirayama, K. (2011). Distributed Lagrangian Relaxation Protocol for
the Over-constrained Generalized Mutual Assignment Problem. In D. Kinny, J.-
j. Hsu, G. Governatori, & A. Ghose (Eds.), Agents in principle, agents in practice
(Vol. 7047, pp. 174–186). Springer Berlin Heidelberg.

Hansen, K. H., & Krarup, J. (1974). Improvements of the Held–Karp algorithm for the
symmetric traveling-salesman problem. Mathematical Programming , 7 (1), 87–96.
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Öncan, T., Altınel, İ. K., & Laporte, G. (2009). A comparative analysis of several
asymmetric traveling salesman problem formulations. Computers & Operations
Research, 36 (3), 637–654.

Oppen, J., Løkketangen, A., & Desrosiers, J. (2010). Solving a rich vehicle routing and
inventory problem using column generation. Computers & Operations Research,
37 (7), 1308–1317.

Osaba, E., & Dı́az, F. (2012). Comparison of a memetic algorithm and a tabu search al-
gorithm for the traveling salesman problem. In Computer Science and Information
Systems (FedCSIS), 2012 Federated Conference on (pp. 131–136).

OTLE. (2015, March). Integración de la loǵıstica en el Observatorio del Transporte y
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Appendix A

Spanish Airports Problem

GPS coordinates of the Spanish Airports problem which requires visiting once each of
the 37 airports of Spain.

MAD -3.562636 40.472023
BCN 2.080855 41.299711
PMI 2.735833 39.552776
AGP -4.496944 36.674168
LPA -15.384722 27.930277
ALC -0.559583 38.283722
TFS -16.571945 28.044167
ACE -13.604167 28.947222
VLC -0.481944 39.488609
IBZ 1.373056 38.86861
FUE -13.8625 28.452778
BIO -2.908333 43.299999
TFN -16.341944 28.480278
GRO 2.762778 41.904999
SVQ -5.893055 37.417221
MAH 4.219444 39.859444
SCQ -8.416111 42.897499
MJV -0.8125 37.773335
REU 1.166667 41.146946
XRY -6.058889 36.745304
OVD -6.033333 43.562778
SPC -17.754723 28.626112
VGO -8.63 42.234165
LEI -2.377625 36.84446
GRX -3.7775 37.18639
LCG -8.379167 43.301388
SDR -3.818889 43.42889
VLL -4.851666 41.706112
ZAZ -1.041667 41.666111
PNA -1.647222 42.770557
EAS -1.789167 43.35611
MLN -2.954444 35.281944
VDE -17.889444 27.810278
VIT -2.726389 42.896946
BJZ -6.821389 38.890278
SLM -5.501389 40.952778
ODB -4.848611 37.845554
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Matrix distance of the Spanish Airports problem which requires visiting once each
of the 37 airports of Spain.

0 483 546 430 1769 350 1821 1572 284 456 1629 319 1768 556 393 644 490 347 401 466 377 1840 464 415 370 512 330 163 251 301 352 578 1922 275 329 184 311
483 0 202 767 2183 392 2244 1973 295 277 2029 467 2193 94 809 216 893 459 82 866 701 2277 892 632 674 889 539 567 261 348 392 800 2354 428 802 648 706
546 202 0 709 2119 308 2186 1903 275 141 1957 628 2136 268 786 119 1011 376 224 829 840 2231 998 544 615 1017 695 670 394 511 566 690 2302 581 825 728 684
430 767 709 0 1418 401 1481 1216 471 569 1262 749 1431 859 150 828 767 333 695 139 752 1522 710 183 94 814 754 554 631 720 777 207 1594 705 319 488 135

1769 2183 2119 1418 0 1814 95 222 1889 1977 176 2045 90 2274 1385 2237 1767 1744 2109 1320 1909 223 1702 1574 1511 1826 2014 1810 2014 2066 2107 1443 225 2019 1457 1703 1483
350 392 308 401 1814 0 1880 1600 123 169 1654 583 1830 486 485 427 839 69 337 523 718 1923 809 243 307 863 626 510 367 496 562 407 1994 529 551 525 385

1821 2244 2186 1481 95 1880 0 306 1951 2045 266 2090 54 2335 1441 2305 1794 1810 2169 1379 1945 135 1731 1642 1575 1854 2056 1855 2068 2116 2154 1516 131 2066 1504 1747 1541
1572 1973 1903 1216 222 1600 306 0 1678 1762 56 1858 271 2065 1183 2021 1608 1530 1901 1116 1736 405 1541 1359 1299 1669 1831 1623 1813 1872 1915 1224 437 1829 1268 1518 1278
284 295 275 471 1889 123 1951 1678 0 171 1733 469 1900 389 524 387 770 176 228 575 627 1987 748 342 378 786 519 430 246 377 443 516 2062 416 550 468 420
456 277 141 569 1977 169 2045 1762 171 0 1816 608 1995 365 653 260 941 236 254 692 790 2090 920 402 475 955 666 600 370 501 563 551 2160 556 706 640 552

1629 2029 1957 1262 176 1654 266 56 1733 1816 0 1914 237 2121 1239 2075 1662 1582 1956 1172 1792 376 1596 1413 1355 1723 1887 1680 1869 1928 1971 1277 398 1885 1324 1574 1335
319 467 628 749 2045 583 2090 1858 469 608 1914 0 2036 489 699 681 460 610 409 775 249 2096 480 720 688 442 74 235 239 119 90 891 2182 54 589 343 627

1768 2193 2136 1431 90 1830 54 271 1900 1995 237 2036 0 2283 1389 2255 1740 1761 2117 1327 1890 139 1676 1593 1525 1799 2001 1800 2015 2062 2100 1469 169 2012 1450 1692 1488
556 94 268 859 2274 486 2335 2065 389 365 2121 489 2283 0 897 241 934 553 165 955 733 2366 940 726 767 925 563 622 316 374 405 894 2443 458 881 711 795
393 809 786 150 1385 485 1441 1183 524 653 1239 699 1389 897 0 904 641 425 731 77 656 1469 580 313 204 692 690 479 629 694 743 356 1547 661 180 393 103
644 216 119 828 2237 427 2305 2021 387 260 2075 681 2255 241 904 0 1091 495 275 948 908 2350 1084 662 734 1093 752 755 461 562 608 805 2421 639 936 822 801
490 893 1011 767 1767 839 1794 1608 770 941 1662 460 1740 934 641 1091 0 828 820 708 214 1776 68 845 760 60 389 341 633 563 550 968 1869 479 462 317 636
347 459 376 333 1744 69 1810 1530 176 236 1582 610 1761 553 425 495 828 0 400 458 723 1854 792 173 239 856 647 510 409 533 599 341 1925 556 506 511 327
401 82 224 695 2109 337 2169 1901 228 254 1956 409 2117 165 731 275 820 400 0 790 633 2200 816 570 604 819 478 489 187 290 342 742 2277 365 720 567 629
466 866 829 139 1320 523 1379 1116 575 692 1172 775 1327 955 77 948 708 458 790 0 732 1411 645 322 221 761 767 557 698 768 818 324 1487 737 246 470 162
377 701 840 752 1909 718 1945 1736 627 790 1792 249 1890 733 656 908 214 723 633 732 0 1937 247 783 718 192 176 214 448 359 339 932 2027 275 499 264 617

1840 2277 2231 1522 223 1923 135 405 1987 2090 376 2096 139 2366 1469 2350 1776 1854 2200 1411 1937 0 1714 1690 1616 1834 2057 1861 2089 2129 2164 1574 97 2074 1516 1752 1571
464 892 998 710 1702 809 1731 1541 748 920 1596 480 1676 940 580 1084 68 792 816 645 247 1714 0 798 708 129 414 328 631 574 570 913 1807 492 400 283 581
415 632 544 183 1574 243 1642 1359 342 402 1413 720 1593 726 313 662 845 173 570 322 783 1690 798 0 108 884 742 569 551 663 726 178 1759 669 445 536 240
370 674 615 94 1511 307 1575 1299 378 475 1355 688 1525 767 204 734 760 239 604 221 718 1616 708 108 0 802 700 511 551 648 708 214 1689 640 341 460 134
512 889 1017 814 1826 863 1854 1669 786 955 1723 442 1799 925 692 1093 60 856 819 761 192 1834 129 884 802 0 368 355 632 551 532 1012 1927 467 515 349 681
330 539 695 754 2014 626 2056 1831 519 666 1887 74 2001 563 690 752 389 647 478 767 176 2057 414 742 700 368 0 211 301 191 163 909 2145 113 564 313 626
163 567 670 554 1810 510 1855 1623 430 600 1680 235 1800 622 479 755 341 510 489 557 214 1861 328 569 511 355 211 0 307 282 304 724 1947 215 355 108 422
251 261 394 631 2014 367 2068 1813 246 370 1869 239 2015 316 629 461 633 409 187 698 448 2089 631 551 551 632 301 307 0 132 197 729 2170 188 580 394 535
301 348 511 720 2066 496 2116 1872 377 501 1928 119 2062 374 694 562 563 533 290 768 359 2129 574 663 648 551 191 282 132 0 66 839 2213 84 613 387 610
352 392 566 777 2107 562 2154 1915 443 563 1971 90 2100 405 743 608 550 599 342 818 339 2164 570 726 708 532 163 304 197 66 0 902 2249 89 650 413 663
578 800 690 207 1443 407 1516 1224 516 551 1277 891 1469 894 356 805 968 341 742 324 932 1574 913 178 214 1012 909 724 729 839 902 0 1637 841 527 674 332

1922 2354 2302 1594 225 1994 131 437 2062 2160 398 2182 169 2443 1547 2421 1869 1925 2277 1487 2027 97 1807 1759 1689 1927 2145 1947 2170 2213 2249 1637 0 2160 1600 1839 1648
275 428 581 705 2019 529 2066 1829 416 556 1885 54 2012 458 661 639 479 556 365 737 275 2074 492 669 640 467 113 215 188 84 89 841 2160 0 562 323 585
329 802 825 319 1457 551 1504 1268 550 706 1324 589 1450 881 180 936 462 506 720 246 499 1516 400 445 341 515 564 355 580 613 650 527 1600 562 0 252 206
184 648 728 488 1703 525 1747 1518 468 640 1574 343 1692 711 393 822 317 511 567 470 264 1752 283 536 460 349 313 108 394 387 413 674 1839 323 252 0 353
311 706 684 135 1483 385 1541 1278 420 552 1335 627 1488 795 103 801 636 327 629 162 617 1571 581 240 134 681 626 422 535 610 663 332 1648 585 206 353 0

Its optimal solution with value 7223 is {1, 28, 36, 23, 17, 26, 21, 27, 12, 34, 31, 30,
29, 19, 2, 14, 16, 3, 10, 9, 6, 18, 24, 32, 4, 25, 37, 15, 20, 8, 11, 5, 13, 7, 33, 35, 1}.
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Figure: Optimal route of the Spanish Airport problem.
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