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Introduction

Graphs may be used to model a large variety of network structures. For
instance, in computer networks, servers, hosts or hubs can be represented
as vertices in a graph and edges can represent connections between them.
Likewise, the Web, social networks or transportation infrastructures can be
modelled as graphs, where the vertices represent webpages, users and pop-
ulation centres, respectively; and the edges represent hyperlinks, personal
relations, and roads, in that order.

In the aforementioned graph-based representation of a computer net-
work, each vertex may be seen as a possible location for an intruder (fault in
the network, spoiled device, unauthorized connection) and, in this sense, a
correct surveillance of each vertex of the graph to control such a possible in-
truder would be worthwhile. According to this fact, it would be desirable to
uniquely recognize each vertex of the graph. In order to solve this problem,
Slater [78], 80] brought in the notion of locating sets and locating number
of graphs. Also, Harary and Melter [36] independently introduced the same
concept, but using the terms resolving sets and metric dimension to refer to
locating sets and locating number, respectively. Moreover, in a more recent
article, by Sebd and Tannier [76], the terminology of metric generators and
metric dimension for the concepts mentioned above, began to be used. These
terms arose from the notion of metric generators of metric spaces, introduced
by Blumenthal in [4]. In this thesis we follow this terminology, as well as the
notation introduced in [76].

Informally, a metric generator is an ordered subset S of vertices in a
graph G, such that every vertex of G is uniquely determined by its vector of
distances to the vertices in S. The cardinality of a minimum metric generator
for GG is called the metric dimension of G.

After the first papers on this topic were published, some authors de-

veloped diverse theoretical works on the subject including, for example,
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[8, @ 1T, M2, 15, 19, 37, B8, 43, 48, (2l 64, 68, 71, 77, I, 86]. Several
applications of the metric generators have also been presented. In Chem-
istry, a usual representation for the structure of a chemical compound is a
labeled graph where the vertex and edge labels specify the atom and bond
types, respectively. As described in [I2) [15], metric generators allow to ob-
tain unique representations for chemical substances. In particular, they were
used in pharmaceutical research for discovering patterns common to a variety
of drugs, as described in [44] 45]. Furthermore, this topic has some appli-
cations to problems of pattern recognition and image processing, some of
which involve the use of hierarchical data structures [64]. Other applications
to navigation of robots in networks and other areas appear in [12] [39] [48].
Some interesting connections between metric generators in graphs and the
Mastermind game or coin weighing have been presented in [9]. Moreover, we
refer the reader to the work [I], where some historical evolution, non-standard
terminologies and more references to this topic can be found.

Apart from the initial concept of metric generator, numerous variations
of the concept have been studied. In general, these variations can be classified
into five types. Notice that we do not mention all of them, but just some of

the most remarkable ones, according to our point of view.
1. Metric generators which also satisfy other properties of the graph:

e resolving dominating set [6], when the metric generator is also a

dominating set;

e independent resolving set [16], when the metric generator is also

an independent set;

e connected resolving set [74], [75], when the subgraph induced by

the metric generator is connected.
2. Metric generators which have a modified condition of resolvability:

e adjacency resolving set [43], a set such that any two different ver-
tices not belonging to the set have different neighborhood in this

set;

e strong metric generator [67, [76], metric generators where a stronger
condition is set for a vertex to distinguish a vertex pair, namely
that this vertex and the two vertices of the pair (in either order)

lie in a minimum-length path;
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e local metric generator [7(], a set such that every two adjacent ver-
tices of the graph have distinct vectors of distances to the vertices

in this set;
3. Metric generators featuring a combination of criteria 1 and 2:

e locating-dominating set [79, [80], locating set (any two different
vertices not belonging to the set have different neighbors in this

set) which is a dominating set;

e identifying code [34] [47], a set such that any two different vertices
of the graph have different closed neighborhoods in this set and is
also a dominating set.

4. Partitions of the vertex set of a graph having some metric properties:

e resolving partitions [I7, [32) [72], a partition such that every two
different vertices of the graph have distinct vectors of distances to
the sets of the partition;

e strong resolving partition [85], a partition where every two diffe-
rent vertices of the graph belonging to the same set of the partition

are strongly resolved by some set of the partition;

e metric coloring [14], a partition such that every two adjacent ver-
tices of the graph have distinct vectors of distances to the set of

the partition.
5. Variants which are extensions of the metric generators:

e k-metric generator [24], 22], a set such that any pair of vertices of

the graph is distinguished by at least k vertices of this set.

Consider the following problem proposed in [48], which deals with the
movement of a point-robot in a “graph space”. The robot can locate itself by
the presence of distinctively labeled “landmarks” in the graph space. On a
graph, there is neither the concept of direction nor that of visibility. Instead,
it was assumed in [48] that the robot can sense the distances to a set of
landmarks. If the robot knows its distances to a sufficiently large number
of landmarks, its position on the graph can be uniquely determined. This
suggests the following question: given a graph G, what is the smallest number

of landmarks needed, and where should they be located, so that the distances
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to the landmarks uniquely determine the robot’s position on G ? This problem
can be solved by determining the metric dimension and a metric basis of G.

In this thesis, we consider the following extension of the robot navigation
problem. Suppose that the topology of the navigation network may change
within a range of possible graphs, say Gi,Gs,...,Gi. This scenario may
reflect, for example, the use of a dynamic network whose links change over
time. In this case, the problem mentioned above becomes that of determining
the minimum cardinality of a set S of vertices which is simultaneously a
metric generator for each graph G;, i € {1,...,k}. So, if S is a solution to
this problem, then the position of a robot can be uniquely determined by
the distance to the elements of S, regardless of the graph G; that models the
network along whose edges the robot moves at each moment.

To handle situations as the one described above, we introduce the notion
of simultaneous metric generator, which naturally leads to that of simulta-
neous metric basis and simultaneous metric dimension. Throughout the the-
sis, we study the behaviour of these parameters on a wide variety of graph
families and introduce analogous simultaneity notions to other variants of re-
solvability, namely adjacency generators and strong metric generators. Our
study involves both the combinatorial properties of these parameters and
complexity issues regarding their computation.

The study of simultaneous parameters in graph families was introduced
by Brigham and Dutton in [7], where they studied simultaneous domination.
This idea should not be confused with studies on families sharing a constant
value on a parameter, for instance the study presented in [40], where several
graph families such that all of its members have the same metric dimension
are studied.

The thesis is organized as follows. In Chapter |1} we recall some basic
definitions on graph theory and present the main concepts regarding resol-
vability, focusing on the three variants of interest for the thesis: metric,
adjacency and strong metric generators. Chapter [2| introduces the main
topic of the thesis, the simultaneous metric dimension of graph families, and
presents a number of important results on this parameter. The study of the
simultaneous metric dimension is continued in Chapter [3, which focuses in
families composed by product graphs. In this chapter, a second notion of
simultaneous resolvability is introduced, namely the simultaneous adjacency

dimension, which is shown to be a valuable tool for studying the simultaneous
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metric dimension of these families. We further explore into the extensibility
of the notion of simultaneity in Chapter [4 where we define and study the
simultaneous strong metric dimension. Finally, Chapter [5| discusses the is-
sues related to the computability of the simultaneous resolvability parameters
presented throughout the thesis. To conclude, we briefly discuss the most
important results presented in the thesis, the associated scientific production

and the most promising directions of future work.
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Chapter 1

Basic concepts and tools

We begin by establishing the basic terminology and notation used throughout
the thesis. For the sake of completeness we refer the reader to the books
[20], 82]. Graphs considered herein are undirected, finite and contain neither
loops nor multiple edges. Let G = (V, E)) be a graph of order n = |V (G)|. A
graph is nontrivial if n > 2. We use the notation u ~ v (negated as u ~ v)
for two adjacent vertices v and v of GG, and the notation G = H for two
isomorphic graphs G and H. For a vertex v of G, Ng(v) denotes the set of
neighbours of v in G, i.e., Ng(v) = {u € V(G) : u ~ v}. The set Ng(v) is
called the open neighbourhood of the vertex v in G and Ng[v] = Ng(v)U{v}
is called the closed neighbourhood of v in G. The degree of a vertex v of
G is denoted by d¢(v), i.e., 0g(v) = |Ng(v)|. The open neighbourhood of
a set S C V(G) of vertices of G is Ng(S) = J,eg Na(v) and the closed
neighbourhood of S is Ng[S| = Ng(S) U S. A dominating set of a graph
G is aset M C V(G) such that Ng[M] = V(G). The minimum cardinality
of a dominating set of GG is its domination number, denoted by 7(G). If
there is no ambiguity, we will simply write N(v), N[v], d(v), N(S) or N[S].
The minimum and mazimum degree of a graph G are denoted by 6(G) and
A(G), respectively. The girth of a graph G is the length of a shortest cycle
contained in G, and is defined as g(G).

We use the notation K,,, C,, P,, and N,, for the complete graph, cycle,
path, and empty graph, respectively, of order n. Moreover, we write K, for
the complete bipartite graph of order s +t and, in particular, we write K,
for the star graph of order n + 1. Let T be a tree, a vertex of degree one in
T is called a leaf and the set of leaves in T is denoted by (7).

The distance between two vertices u and v, denoted by dg(u,v), is the
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length of a shortest path between v and v in GG. The diameter of a graph G,
denoted by D(G), is the longest distance between any two vertices in G. If G
is not connected, then we assume that the distance between any two vertices
belonging to different connected components of G is infinity and, thus, its
diameter is D(G) = oo.

We recall that the complement of a graph G is a graph G¢ = (V(G), E°)
such that wv € E° if and only if wv ¢ E(G). For a set X C V(G), the
subgraph induced by X is denoted by (X)g. If there is no ambiguity, we will
simply write (X), and if X = {v} we will write (v). A vertex of a graph is
a simplicial vertex if the subgraph induced by its neighbours is a complete
graph. Given a graph G, we denote by o(G) the set of simplicial vertices of
G. Note that for a tree T', o(T) = |Q2(T")|. We recall that a clique in a graph
G is a set of pairwise adjacent vertices. The cligue number of G, denoted
by w(G), is the number of vertices in a maximum clique in G. Two distinct
vertices u,v are called true twins if N[u] = NJv]. Likewise, two distinct
vertices u, v are called false twins if N(u) = N(v). In general, two distinct
vertices u, v are called twins if they are true twins or they are false twins.
In this sense, a vertex x is a twin if there exists y # x such that they are
twins. We say that X C V(G) is a twins-free clique in G if the subgraph
induced by X is a clique and every u,v € X satisfy Nglu| # Ng[v], i.e., the
subgraph induced by X is a clique and it contains no true twins. Note that,
by definition, cliques do not contain false twins. We say that the twins-free
clique number of G, denoted by w(G), is the maximum cardinality among
all twins-free cliques in G. Clearly, w(G) > w(G). We refer to a twins-free
clique of a graph G of cardinality @w(G) as a w(G)-set of G. Finally, recall
that an independent set is a set of pairwise non-adjacent vertices and that
the independence number of a graph G, denoted by «(G), is the number of
vertices in a maximum independent set of G. Figure shows examples of
basic concepts such as twins and twins-free cliques.

The Cartesian product GOH of two graphs G = (Vi,E;) and H =
(Va, Ey) is the graph whose vertex set is V(GOH) = V; x V5 and any two
distinct vertices (x1,x2), (y1,y2) € Vi X Vo are adjacent in GOH if and only
if either 1 = y; and x5 ~ yo, or 1 ~ y; and x5 = yo. The hypercube of

order 2", r > 0, denoted by @, is defined recursively as
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g f d c
e h
a e
c
f g
b d a b
G H

Figure 1.1: The set {d,e, f} C V(G) is composed by true twin vertices in G.
Notice that b and g are true twin vertices in G which are not simplicial, while
f and d are true twin and simplicial vertices. The set {e, f,g,h} C V(H) is

a twins-free clique in H.

62 . l(i ifr=20
" K>0Q,_1 otherwise.

A graph G is 2-antipodal if for each vertex = € V(G) there exists exactly
one vertex y € V(G) such that dg(z,y) = D(G). For example, even cycles
are 2-antipodal graphs. Other definitions not defined herein will be given the
first time that the concept appears in the text.

1.1 Resolvability

A metric space is a pair of the form (X, d) where X isaset andd : X x X — R

is a function, referred to as a metric , such that for any z,y, z € X,
(i) d(z,y) =20,

(ii) d(x,y) =0 if and only if z =y,

(iii) d(z,y) = d(y,z), and

(iv) d(z,y) < d(z,z) +d(z,y).

A generator for a metric space is a set S C X with the property that
every element of X is uniquely determined by its distances from the elements

of S. Given a simple and connected graph G, we consider the metric dg :
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V(GQ) x V(G) — N U {0}, where dg(z,y) is the length of a shortest path
between x and y. The pair (V(G),dg) is readily seen to be a metric space.
A vertex v € V(G) is said to distinguish two vertices x and y if dg(v,x) #
dg(v,y). A set S C V(G) is said to be a metric generator for G if any pair
of vertices of G is distinguished by some element of S. Assume that an order
is imposed on the elements of a set S = {wy,ws,...,wi}. Then, the metric
vector, or metric representation, of a vertex v € V(G) relative to S is the
vector (dg(v,wq),dg(v,ws),...,dg(v,wy)). Thus, S is a metric generator
if distinct vertices have distinct metric vectors relative to S. A minimum
cardinality metric generator is called a metric basis and its cardinality, the
metric dimension of G, is denoted by dim(G).

A related parameter was introduced in [43] for studying the metric di-
mension of lexicographic product graphs. A set S C V(G) is said to be an
adjacency generator for G if for any pair of vertices u,v € V(G) there exists
some x € S such that x is adjacent to exactly one of u and v. A minimum
cardinality adjacency generator is called an adjacency basis of GG, and its
cardinality the adjacency dimension of G, denoted by dim4(G) . Since any
adjacency basis is a metric generator, dim(G) < dim(G). Besides, for any
connected graph G of diameter at most two, dims(G) = dim(G) [43]. As
pointed out in [26] 27], any adjacency generator of a graph G = (V, E) is
also a metric generator in a suitably chosen metric space. Given a positive
integer t, we define the distance function dg;: V x V' — NU {0}, where

dgi(z,y) = min{dg(z,y),t}.

Then any metric generator for (V,dg,) is a metric generator for (V,dg+41)
and, as a consequence, the metric dimension of (V, dg 441) is less than or equal
to the metric dimension of (V,dg,). In particular, the metric dimension of
(V,dga) is equal to |V| — 1, the metric dimension of (V,dg2) is equal to
dim4 (G) and, if G has diameter D(G), then dg pey = de and so the metric
dimension of (V,dg ps)) is equal to dim(G). Notice that when using the
metric dg ¢ the concept of metric generator needs not be restricted to the case
of connected graphsﬂ. Moreover, we have that S is an adjacency generator

for G if and only if it is an adjacency generator for its complement G¢. This is

'For any pair of vertices x,y belonging to different connected components of G we can
assume that dg(x,y) = oo and so dg(z,y) = ¢ for any ¢ greater than or equal to the

maximum diameter of a connected component of G.



UNIVERSITAT ROVIRA I VIRGILI
THE SIMULTANEOUS (STRONG) METRIC DIMENSION OF GRAPH FAMILIES

Yunior Ramirez Cruz

Basic concepts and tools 11

justified by the fact that, given an adjacency generator S for G, it holds that
for every x,y € V — S there exists s € S such that s is adjacent to exactly one
of z and y, and this property also holds in G°. Thus, dim4(G) = dim4(G°).

The metric dimension has been studied for a wide variety of graphs,
e.g. trees [12], 30] 78], unicyclic graphs [12] [68], wheel graphs [37, [77], fan
graphs [37], lexicographic product graphs [43], strong product graphs [71],
Cartesian product graphs [37, 48] and corona product graphs [86]. Moreover,
integer programming models and metaheuristic approaches have been pre-
sented for computing or approximating this parameter [12], 19, 52]. As we
mentioned previously, the adjacency dimension was introduced as an aux-
iliary tool for the study of the metric dimension of lexicographic product
graphs [43]. Moreover, the adjacency dimension of corona product graphs,
as well as its relation to the simultaneous metric dimension of such products,
is studied in [20] 27].

A vertex w € V(G) strongly distinguishes two different vertices u,v €
V(Q) it dg(w,u) = dg(w,v)+dg(v,u) or dg(w,v) = da(w, u) +dg(u,v), i.e.,
there exists some shortest w — u path containing v or some shortest w — v
path containing u. A set S of vertices in a connected graph G is a strong
metric generator for G if every pair of vertices of G is strongly distinguished
by some vertex of S. A minimum cardinality strong metric generator for G
is called a strong metric basis of G, and its cardinality is the strong metric
dimension of G, denoted by dim4(G).

One can immediately see that a strong metric generator is also a metric
generator, which leads to dim(G) < dimy(G). It was shown in [12] that
dim(G) = 1 if and only if G is a path. It now readily follows that dim,(G) =1
if and only if G is a path. At the other extreme we see that dim(G) =n—1
if and only if G is the complete graph of order n. For the cycle C), of order
n, the strong metric dimension is dims(C,,) = [n/2], and if T is a tree, then
its strong metric dimension equals |Q(T)| — 1 (see [70]).

A number of results have been presented regarding the strong metric
dimension of Cartesian product graphs [54, [67, 73], Cayley graphs [67],
distance-hereditary graphs [63], convex polytopes [50], strong product graphs
[611,162], corona product graphs [57], rooted product graphs [58], lexicographic
product graphs [59], Cartesian sum graphs [60] and direct product graphs
[73]. Also, some Nordhaus-Gaddum type results for the strong metric dimen-

sion of a graph and its complement are known [88]. Beside the theoretical
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results related to the strong metric dimension, a mathematical programming
model [50] and metaheuristic approaches [51], 65] for computing or estimat-
ing this parameter have been developed. For more information we refer the
reader to [53] as a short survey on the strong metric dimension.

A set S of vertices of G is a vertez cover of G if every edge of G is incident
with at least one vertex of S. The wvertex cover number of G, denoted by
B(G), is the smallest cardinality of a vertex cover of G. We refer to a (G)-set
in a graph G as a vertex cover of cardinality 5(G). Oellermann and Peters-
Fransen [67] showed that the problem of finding the strong metric dimension
of a connected graph G can be transformed into the problem of finding the
vertex cover number of another related graph, which they called the strong
resolving graph. We now describe this approach in detail.

A vertex u of G is mazimally distant from v if for every vertex w € Ng(u),
de(v,w) < dg(u,v). We denote by Mg(v) the set of vertices of G which
are maximally distant from v. The collection of all vertices of G that are
maximally distant from some vertex of the graph is called the boundary of
the graph, see [5,[10], and is denoted by (G)P} If u is maximally distant from
v and v is maximally distant from u, then we say that v and v are mutually
mazimally distant. If u is maximally distant from v, and v is not maximally
distant from w, then v has a neighbour vy, such that dg(vy, u) > dg(v,u), i.e.,
dg(vi,u) = dg(v,u)+1. It is easily seen that u is maximally distant from v.
If vy is not maximally distant from u, then v; has a neighbour vy, such that
dg(ve,u) > dg(vy,u). Continuing in this manner we construct a sequence
of vertices vy, vy, ... such that dg(vii1,u) > dg(v;,u) for every i. Since G
is finite this sequence terminates with some v,. Thus for all neighbours x
of vy we have dg(vg,u) > dg(x,u), and so vy is maximally distant from u
and v is maximally distant from v;. Hence every boundary vertex belongs to
the set S = {u € V(G) : there exists v € V(G) such that u,v are mutually
maximally distant}. Moreover, every vertex of S is a boundary vertex.

For some basic graph classes, such as complete graphs, complete bipartite
graphs, cycle graphs and hypercubes, the boundary is simply the whole vertex
set. It is not difficult to see that this property also holds for all 2-antipodal

graphs. Notice that the boundary of a tree consists of its leaves. Also, it

%In fact, the boundary 9(G) of a graph was defined first in [I3] as the subgraph of
G induced by the set mentioned in our work with the same notation. We follow the
approach of [Bl [I0] where the boundary of the graph is just the subset of the boundary
vertices defined in this article.
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is readily seen that o(G) C 9(G). As a direct consequence of the definition
of mutually maximally distant vertices, we have that every pair of mutually
maximally distant vertices x,y of a connected graph G and every strong
metric basis S of G satisfy z € S or y € S.

Based on the previous definitions, the strong resolving graph of a graph
G = (V, E), was defined in [67] as the graph Gsr = (V, E’) where two vertices
u,v are adjacent if and only if v and v are mutually maximally distant in
G. To illustrate these notions, Figure shows examples of basic concepts
such as maximally distant vertices, mutually maximally distant vertices and
boundary, whereas Figure [1.3] shows the strong resolving graph Ggg of the
graph G depicted in Figure [1.2]

V10 Yo v8

(%1 U7
U3 Us

V2 V4 Vg

Figure 1.2: All vertices of the set {vy,vg,v7,v3} are pairwise mutually max-
imally distant. Also, vy and wvyy (vs and vg) are mutually maximally dis-
tant. Thus, the boundary of G is 9(G) = {vy, v, v4, Vg, V7, Vs, Vg, V1p}. Now,
Mcg(d) = {v1,ve, 07,08, 09} is the set of vertices which are maximally dis-
tant from v4. Nevertheless, the vertex v, is maximally distant only from the

vertex vg.

Ug

V1o V9 Us
U1 U7

(%) V4 U3

Ve

Figure 1.3: Strong resolving graph of the graph G shown in Figure
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The following result provides a powerful tool for finding the strong metric

dimension of a graph.

Theorem 1.1. [67] For any connected graph G,
dimy(G) = B(Ggr).

For some types of graphs, the strong resolving graphs can be obtained
relatively easily, as the next result exemplifies, so applying Theorem

allows to determine their strong metric dimensions.
Remark 1.2.

(a) IfO(G) = o(G), then Gsr = Ky). In particular, (K,)sr = K, and for
any tree T, (T)sr = Kor)|-

(b) For any 2-antipodal graph G of order n, Gsg = U?:l Ky. FEven cycles
are 2-antipodal. Thus, (Co)sr = Ule K.

(c) For odd cycles (Capt1)sr = Cop1.
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Chapter 2

The simultaneous metric

dimension of graph families

In this chapter, we introduce the concept of simultaneous metric dimension
and investigate its core properties, namely its bounds, extreme values and
its relations to the metric dimensions of individual graphs composing the
families. We also analyse the behaviour of this parameter on several families
for which interesting facts may be pointed out.

Given a family G = {G;,Gs, ..., G} of (not necessarily edge-disjoint)
connected graphs G; = (V, E;) with common vertex setfl] V' (the union of
whose edge sets is not necessarily the complete graph), we define a simulta-
neous metric generator for G to be a set S C V such that S is simultaneously
a metric generator for each GG;. We say that a minimum cardinality simul-
taneous metric generator for G is a simultaneous metric basis of G, and its
cardinality the simultaneous metric dimension of G, denoted by Sd(G) or
explicitly by Sd(G1,Gs, ...,Gy). An example is shown in Figure 2.1} where

the set {vs,v4} is a simultaneous metric basis of the family {G;, Gs, G3}.

2.1 General bounds

The following result is a direct consequence of the definition of simultaneous

metric generators and bases.

I Although, in general, we will denote the common vertex set simply as V, when neces-

sary we will use the notation V(G) to avoid ambiguities.

15
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@ Uy @ Uy Vs @
(%) U3 (%) U3 (%) U3
{ @ @
U1 U1 U1
G1 G2 G3

Figure 2.1: The set {vs,v4} is a simultaneous metric basis of {G1, Gy, Gs}.

ThUS, Sd(Gl, GQ, Gg) = 2.

Remark 2.1. For any family G = {G1, Gs, ..., Gr} of connected graphs with

common vertex set V and any subfamily H of G,

Sd(H) < Sd(G) < min {|V\ —1, Zdim(Gi)} .

i=1

In particular,

ieﬁf‘ffk}{dim(@)} < Sd(G).

The inequalities above are sharp. For instance, for the family of graphs
shown in Figure we have Sd(G1, G2, G3) = 2 = dim(G;) = dim(Gq) =

r{nax }{dim(Gi)}, while for the family of graphs shown in Figure 2.2/ we have
i€{1,2,3

that Sd(Gl,GQ,G3> =3= |V’ - 1.
The following result is a direct consequence of Remark [2.1]

Corollary 2.2. Let G be a family of connected graphs on a common vertex
set. If K,, € G, then
Sd(G) =n—1.

As shown in Figure [2.2] the converse of Corollary [2.2] does not hold.

Theorem 2.3. Let G be a family of connected graphs with the same vertex
set V.. Then SA(G) = |V| — 1 if and only if for every pair u,v € V, there

exists a graph G, € G such that u and v are twin vertices in G,.

Proof. We first note that for any connected graph G = (V, E') and any vertex
v € V the set V — {v} is a metric generator for G. So, if Sd(G) = |[V| — 1,
then for every v € V| the set V — {v} is a simultaneous metric basis of G

and, as a consequence, for every u € V — {v} there exists a graph G, € G
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[ ] { ]
U4. .’03 () .U3 U4. V3
(%1 (%) U1 (%) (%1 (%)
] L L
Gl GQ G3

Figure 2.2: The set {vy,v3,v4} is a simultaneous metric basis of the family

{Gl,Gz,Gg}. ThUS, Sd(Gl, GQ, Gg) =3= |V| — 1.

such that the set V' — {u,v} is not a metric generator for G, i.e., for every
v € V —{u,v} we have dg, , (u,r) = dg,,(v,2). So v and v must be twin
vertices in G .

Conversely, if for every u,v € V there exists a graph G, € G such that
u and v are twin vertices in GG,, then for any simultaneous metric basis
B of G either u € B or v € B. Hence, all but one element of V' must
belong to B. Therefore |B| > |V| — 1 and, by Remark 2.1 we conclude that
Sd(G) = |V|—1. ]

Notice that Corollary [2.2]is also a consequence of Theorem [2.3 as is the
next result. We recall that the centre of a star graph K, is the vertex of

degree t.

Corollary 2.4. Let G be a family of connected graphs with the same vertex
set V.. If G contains three star graphs having different centers, then SA(G) =
V| —1.

It was shown in [I2] that for any connected graph G of order n and
diameter D(G),
dim(G) < n— D(G). (2.1)

Our next result is an extension of (2.1]) to the case of the simultaneous metric

dimension.

Theorem 2.5. Let G be a family of graphs with common vertex set V' that

have a shortest path of length d in common. Then

Sd(g) < [V[—d.
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Proof. Let G = {G1, G, ..., G} be a family of graphs with common vertex set
V' having a shortest path vy, vy, ...,v4 in common. Let W =V — {vy, ..., v4}.
Since dg, (vo,v;) = i, for i € {1,...,d}, we conclude that W is a metric
generator for each G;. Hence, Sd(G) < |W| = |V| —d. O

Let 7 > 3 be an integer. Label the vertices of K, and K;,_; with the
same set of labels and suppose c is the label of the centre of the star K ,_;.
Let P;, d > 2, be an a—b path of order d whose vertex set is disjoint from that
of K,. Let G be the graph obtained from the complete graph K, = (V', E’),
r > 3, and the path graph P,;, d > 2, by identifying the leaf a of P;, with
the vertex ¢ of K, and calling it ¢, and let Gy be the graph obtained by
identifying the leaf a of P; with the center c of the star K;,_; and also
calling it c. Figure illustrates this construction. In this case, G; and G,
have the same vertex set V' (where |V| = d+r—1). For any v € V(K,)—{c}
we have dg, (b,v) = dg,(b,v) = d and V(P;) U {v} is a shortest path of
length d in both graphs G; and Gs. Moreover, W = (V' — {v,c}) U {b}
is a simultanecous metric basis of {G1, G2} and so Sd(Gy,Gs) = |V| — d.
Therefore, the bound described above is sharp.

Uy V4
U3 U3
@ (]
@ @
c Uy Uy U3 b c ur uz usg b
@ o
V2 V2
® Gy [ Go
U1 U1

Figure 2.3: The family G = {G1, G} satisfies SA(G) = |V| — d.

2.2 Families of graphs with small metric di-

mension

In this section we focus on families of graphs on the same vertex set each of
which have dimension 1 or 2. As we mentioned previously, it was shown in
[12] that dim(G) = 1 if and only if G is a path. The first result in this section
deals with families of graphs for which the simultaneous metric dimension is

as small as possible.
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Theorem 2.6. Let G be a family of connected graphs on a common vertex
set. Then

(i) Sd(G) =1 if and only if G is a collection of paths that share a common
leaf.

(ii) If G is a collection of paths, then 1 < Sd(G) < 2.

Proof. 1t SA(G) = 1, then the family G is a collection of paths. Moreover, if v
is a vertex of degree 2 in a path P, then v does not distinguish its neighbours
and, as a consequence, {v} is a metric basis of P if and only if v is a leaf of
P. Therefore, (i) follows.

Since any path has metric dimension 1, and any pair of distinct vertices

of a path P is a metric generator for P, we conclude that (ii) follows. ]

Theorem 2.7. Let G be a family of graphs on a common vertex set V such
that G does not only consist of paths. Let H be the collection of elements of
G which are not paths. Then

SA(G) = SA(H).

Proof. Since H is a non-empty subfamily of G we conclude that Sd(G) >
Sd(H). From Theorem [2.6] (i), it follows that Sd(#H) > 2. Moreover, as any
pair of vertices of a path P is a metric generator for P, it follows that if

B C V is a simultaneous metric basis of H, then B is a simultaneous metric
generator for G and, as a result, Sd(G) < |B| = Sd(H). O

Theorem 2.8. Let G = {G1, Gs, ..., G} be a family of paths and cycles on a
common vertex set V', which contains at least one cycle. Then the following

assertions hold:
(i) If |V] is odd, then SA(G) = 2.

(ii) If |V] is even, then 2 < Sd(G) < 3. Moreover, SA(G) = 2 if and only
if there exist two vertices u,v € V which are not mutually antipodal in
any cycle G; € G.

(iii) If |V| is even and G contains fewer than n — 1 cycles, then SA(G) = 2.
Moreover, this result is the best possible in the sense that there exists
a family of (n — 1) cycles of order n on the same vertex set whose

stmultaneous metric dimension is 3.
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Proof. By Theorem [2.7, we have that Sd(G) = Sd(C), where C is the sub-
family of G containing all cycles. With this fact in mind, for the remainder
of the proof we will assume that G is composed only by cycles.

The result is clear for |[V| = 3. Let C, be a cycle of order |V| =n > 4. We
first assume that n is odd. In this case, given four different vertices u, v, x,y €
V(Cy) we have d¢, (u,z) # dc, (u,y) or de, (v,z) # de, (v,y). Hence, we
conclude that {u,v} is a metric generator for C,, and, since dim(C,,) > 1, we
conclude that {u, v} is a metric basis for C,,. Thus, {u,v} is a simultaneous
metric basis for G. Therefore, in this case Sd(G) = 2. Thus (i) holds.

From now on we assume that |V| = n is even. Note that in this case
every G; is a 2-antipodal graph. Let u,v € V(C,) be two vertices which
are not mutually antipodal in C),. Since for every pair of distinct vertices
z,y € V(C,), we have d¢, (u,x) # de, (u,y) or de, (v,x) # de,(v,y), we
conclude that {u,v} is a metric generator for C,, and, since dim(C,,) > 1, we
conclude that {u,v} is a metric basis. Clearly, no pair of mutually antipodal
vertices form a metric basis for C,,. Therefore, Sd(G) = 2 if and only if there
are two vertices u,v € V which are not mutually antipodal in G; for every
i € {1,....,k}. Suppose that, for every pair of distinct vertices u,v € V, there
exists G; € G such that v and v are mutually antipodal in G;. In this case
we have Sd(G) > 3. Now, since for three different vertices u,v,w € V', only
two of them may be mutually antipodal in G;, we conclude that {u,v,w} is
a simultaneous metric generator for G. Therefore, in this case, Sd(G) = 3.
This completes the proof of (ii).

Since each of the k cycles in G has n/2 antipodal pairs it follows that
if Kk < n —1 or equivalently %k < (g), then Sd(G) = 2. This inequality is
best possible in the sense that there is a collection of (n — 1) cycles G =
{C1,C,...,C!_,} with vertex set {1,2,...,n} such that each of the (})
possible pairs from {1,2,...,n} is an antipodal pair on exactly one of these
cycles and hence Sd(G) = 3. We construct the labeling of these cycles by
assigning pairs of labels to antipodal pairs in such a way that a given pair is
assigned to exactly one of these (n—1) cycles. Consider the upper triangular
array whose (i,7)" entry is (4,7) for 1 < i < j < n. Select the first non-
empty entry in row 1. This entry is the ordered pair (1, 2). Begin by assigning
the labels 1 and 2 to the vertices in positions 1 and n/2 on C]. Now mark
rows and columns 1 and 2 used and mark the pair (1,2) as unavailable. Find

the first unused row and subject to this the first unused column and let the
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corresponding entry in the array be say (i1, j1,). Assign iy, and 7, to vertices
in positions 2 and 14n/2 on C] and mark both rows and columns 7y, and ji,
as used and the pair (i1,, j1,) as unavailable. Next find the first available pair
in the first unused row and subject to this in an unused column, say (i1, j1,)-
Assign the labels i1, and 71, to the vertices in C] in positions 3 and 2 + n/2,
respectively. We continue this process until all rows and columns of the array
have been marked used. Moreover, whenever the entries of an ordered pair
are used as labels of vertices in C] we mark that pair as unavailable. Now
reset the labels on all rows and columns in the array as unused but do not
reset the labels on the ordered pairs. Next find the first available entry say
(i9,, j2,) in row 1 and assign is, and jp, to the vertices in positions 1 and n/2,
respectively, of C. Mark rows and columns i, and js, as used and mark the
pair (ig,, j2,) as unavailable. Now find the first non-empty available entry in
the first unmarked row and subject to this in the first unmarked column, say
(194, J2,), and assign iy, and js, to vertices in positions 2 and 1+ n/2 in CY.
Continue in this manner until entries of each ordered pair in the triangular
array have been assigned as labels to antipodal vertices in one of the cycles
in G. Then Sd(G) = 3. This completes the proof of (iii). O

2.3 Bounds for the simultaneous metric di-

mension of families of trees

We first introduce some necessary definitions. A vertex of degree at least 2
in a graph G is called an interior vertex. The set of interior vertices of graph
G is denoted by Z(G) . A vertex of degree at least 3 is called a major vertex
of G. Any leaf u of GG is said to be a terminal vertex of a major vertex v
of G if d(u,v) < d(u,w) for every other major vertex w of G. The terminal
degree terg(v) of a major vertex v in G is the number of terminal vertices of
v in G, i.e., the number of paths in G — v, while TE R (v) represents the set
of terminal vertices of v in G. If there is no ambiguity, we will simply write
ter(v) and TER(v). A major vertex v of G is an exterior major vertex of G
if it has positive terminal degree. The set of exterior major vertices of graph
G is denoted by M(G) . It was shown in [12] that a metric generator W of
a tree T" may be constructed as follows: for each exterior major vertex of T’
select a vertex from each of the paths of 7" — v except from exactly one such
path and place it in W. So dim(T') = 3, c v(p)(ter(w) — 1).
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The following result shows an upper bound on the simultaneous metric

dimension of families composed by trees.

Proposition 2.9. Let T = {T1,Ts,..., T} be a family of trees, which are
k

different from paths, defined on a common vertex set V', and let St = (Z(T;)
i=1

be the set of vertices that are simultaneously interior vertices of every tree
T, €T. Then
SA(T) < V| =[5z — L.

Proof. Using the ideas that underly the validity of the algorithm for con-
structing a (minimum) resolving set of a tree described in [12], it is possible
to construct a set .S, which is simultaneously a metric generator for every tree

T; € T by constructing metric generators W; for every tree T; as described

k

and letting S = [JW;. Any such set S will not contain a vertex that is not
i=1

in Sz, so

SA(T) < [S] < [V] - [5]
Moreover, for every vertex u € V' — Sz and every tree T; € T, either:

(i) u is a terminal vertex of an exterior major vertex x of 7}, in which case
every other terminal vertex of z, other than u, may be selected when

constructing W;, and hence W; may be constructed in such a way that

u ¢ Wi; or

(ii) w is not a terminal vertex of any exterior major vertex of 7, in which

case W; may be constructed in such a way that u ¢ W;.

Thus, for every vertex u € V — Sz, the set S may be constructed in such
a way that u ¢ S and, as a result, SA(T) < |S]| < |[V| —|Sz| — 1. O

The bound presented above is sharp. For instance, equality is achieved
for the graph family shown in Figure where S7 = {mq, mo, 1}, any triple
of leaves is a simultaneous metric generator, e.g. {l, ls, 3}, whereas no pair of
vertices is a simultaneous metric generator. Thus SA(7T) = 3 = |V|—|Sz| —1.

However, there are families 7 of trees on the same vertex set for which
% can be made arbitrarily small. To see this let r,s > 3 be
integers and let V ={(4,j)|1 <i<r, 1 <j <stU{x}. So|V|=rs+1. Let
T1 be the tree obtained from the paths Q; = (4,1)(¢,2) ... (i, s)x for 1 <i <r
by identifying the vertex x from each of the paths. So T3 is isomorphic to

the ratio
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Figure 2.4: A family of trees T = {T3,T5,T3} such that SA(T7) = 3 =
VI =15z = 1.

the tree obtained from the star K, by subdividing each edge s — 1 times.
For 2 < j < s let T} be obtained from T} by adding the edge (i,1)(é,7 + 1)
and deleting the edge (i,7)(4,j + 1) for 1 < ¢ <r. Finally let T be obtained
from T} by adding the edge (i, 1)z and deleting the edge (i, s)x for 1 < i <r.
Let T = {T;|]1 < j < s}. Then Sz = {z}. So |[V| =[Sz —1=rs—1. It
is not difficult to see that {(i,1)|1 <i < r — 1} is a minimum resolving set
for each T;. Hence Sd(7) =7 —1. So |V|S_d‘g2|_l = Z=L_ By choosing s large
enough this can be made as small as we wish. Note also that this family of
trees achieves the lower bound given in Remark [2.1]

2.4 Families composed by a graph and a min-
imally differing variation

Here, we focus on the following question: given a graph G whose metric
dimension is known, if a small modification is performed on G, thus obtaining
a new graph G’, what is the behaviour of Sd(G, G’) with respect to dim(G)?
Answering this question in the general case is hard. Here, we will analyse a
number of particular cases. We say that a graph (G5 is obtained from a graph
GG, by an edge exchange if there is an edge e not in GG; and an edge f in G,
such that Go = G 4+ e — f. Throughout this section, we will study families
composed by two graphs such that each one of them is obtained from the
other by an edge exchange.

For any tree T we shall denote by B(T') the set of its metric bases con-
structed as described in Section 2.3
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Remark 2.10. Let T be a tree obtained from a path graph by an edge ez-
change. If T is not a path, then

dim(7") = 2.

Proof. We assume that T is a tree different from a path. In that case, either T
has exactly one exterior major vertex having exactly three terminal vertices,
or it has exactly two exterior major vertices having exactly two terminal
vertices each. In both cases we obtain dim(T) = o(T) — ex(T) = 2. O

Remark 2.11. Let T be a tree obtained from a path graph P by an edge
exchange. If T is a path graph having a leaf in common with P, then

SA(P,T) = 1,

otherwise

SA(P,T) = 2.

Proof. If T is a path graph having a leaf in common with P, then Sd(P,T) =
1 by Theorem (i). Now, if T"is a path graph which has no common leaves
with P, then by Theorem (ii) it holds that Sd(P,T") = 2.

Finally, suppose that T is a tree different from a path. In that case, by
Remark dim(T") = 2 and so Theorem [2.7]leads to Sd(P,T) = 2. O

Let G = (V,E) be a graph and let e;,es be two different edges of its
complement. Let G; = G +e; = (V,E;) and Gy = G + ey = (V, E3) be the
graphs whose edge sets are F; = F'U {e;} and Ey = E U {es}, respectively.

Clearly, G5 is obtained from G by an edge exchange and vice versa.

Remark 2.12. Let P be a path graph of order at least four and let e1, es be

two different edges of its complement. Then,
Sd(P + 61,P + 62) = 2.

Proof. Since P + e; and P + e are not path graphs, SA(P + ey, P + e3) > 2
and so we only need to show that Sd(P + e, P + e2) < 2. To this end, we
denote by V' = {vy,...,v,} the vertex set of P, where v; is adjacent to v;,1,
for every i € {1,...,n—1}. Also, let e; = v,v,, 1 < p < ¢ < n, and e3 = v, 5,
1 <r < s <mn. Inorder to show that {vj,v,} is a metric generator for

P + ey, we differentiate the following four cases:
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(1) e1 = v1v,. In this case, P + e; is a cycle graph where v; and v,, are

adjacent, so {v1,v,} is a metric generator.

(2) 1 < p < q¢=n. In this case, P + e; is a unicyclic graph where v, has
degree three, v; has degree one and the remaining vertices have degree
two. Consider two different vertices u,v € V' — {vy,v,}. If u or v belong
to the path from v; to v,, then v; distinguishes them. If both, v and
v, belong to the cycle of P + ey, then d(u,v1) = d(u,v,) + d(v,,v1) and
d(v,v1) = d(v,v,) + d(vp,v1). Thus, if v, distinguishes v and v so does

vy, otherwise v,, does.
(3) 1 =p < g <n. This case is analogous to case 2.

(4) 1 <p < ¢ <n. In this case, P + e; is a unicyclic graph where v, and v,
have degree three, v; and v, have degree one and the remaining vertices
have degree two. Consider two different vertices u,v € V — {v1,v,}.
If w or v belong to the path from v; to v, (or to the path from v, to
Uy), then vy (or v,) distinguishes them. If both u and v belong to the
cycle, then d(u,v1) = d(u,v,) + d(vp, v1), d(v,v1) = d(v,vp,) + d(vp, V1),
d(u,v,) = d(u,vy) + d(vg,v,) and d(v,v,) = d(v,v,) + d(vg, v,,). Thus,
if v, distinguishes v and v so does v;, otherwise v, distinguishes them,

which means that v,, also does.

According to the four cases above, we conclude that {vy,v,} is a metric
generator for P+ e; and, by analogy, we deduce that {vy,v,} is also a metric
generator for P + e;. Thus, SA(P + e;, P + e5) < 2 and, as a consequence,
the result follows. O

We now present results analogous to those of Remarks and for

the case of cycles.

Remark 2.13. For any graph G obtained from a cycle graph C by an edge
exchange,
Sd(G,C) = 2.

Proof. Since G and C' are not path graphs, SA(G,C) > 2 and so it remains
to show that SA(G,C) < 2. Assume that G = C +e— f and f = v;v;. Asy;
and v; are adjacent in C, they are not antipodal vertices and so {v;,v;} is a

metric generator for C. Now, since G is isomorphic to the graphs of the form
P +eq, as described in Remark [2.12] by analogy to the proof of Remark



UNIVERSITAT ROVIRA I VIRGILI
THE SIMULTANEOUS (STRONG) METRIC DIMENSION OF GRAPH FAMILIES

Yunior Ramirez Cruz

The simultaneous metric dimension of graph families 26

(cases 2, 3 and 4) we deduce that {v;,v;} is also a metric generator for G.
Consequently, Sd(G,C) < 2. O]

Remark 2.14. Let C be a cycle graph of order at least four and let e be an

edge of its complement. Then,
dim(C +e) = 2.

Proof. Since C' + e is not a path graph, dim(C' + e) > 2, so we only need to
show that dim(C +e) < 2.

If C has order four, then there is only one graph of the form C + e, for
which it is straightforward to verify that dim(C + e) = 2.

Now, suppose C has order n > 5 and take e = v;v;. Note that C'+eis a
bicyclic graph where v; and v; are vertices of degree three and the remaining
vertices have degree two. We denote by C,, and C,_,, 12 the two graphs
obtained as induced subgraphs of C' 4 e which are isomorphic to a cycle of
order n; and a cycle of order n — n; + 2, respectively. Since n > 5, we have
that ny > 3 or n — ny + 2 > 3. We assume, without loss of generality, that
ny > 3. Let a,b € V(C,,) be two vertices such that:

e if n; is even, a ~ b and d(v;, a) = d(v;,b),
e if ny is odd, a ~ z ~ b, where x € V(C,,,) is the only vertex such that
d(z,v;) = d(z,v).

We claim that {a,b} is a metric generator for C' 4+ e. Consider two
different vertices u,v € V(C + e) — {a,b}. We differentiate the following

cases, where the distances are taken in C' + e:

(1) u,v € V(Cy,). It may be verified that {a,b} is a metric generator for
Ch,, hence d(u,a) # d(v,a) or d(u,b) # d(v,b).

(2) uweV(Cy,) and v € V(Cppn,42) — {vi, v;}. In this case, d(u,a) < d(v,a)
or d(u,b) < d(v,b).

(3) u,v € V(Cpny42) — {vi,v;}. In this case, if d(u,a) = d(v,a), then
d(u,v;) = d(v,v;), so d(u,vj) # d(v,v;) and, consequently, d(u,b) #
d(v,b).

According to the three cases above, {a, b} is a metric generator for C'+e

and, as a result, the proof is complete. O
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Corollary 2.15. Let C be a cycle graph of order n > 4 and let ey, es be two
different edges of its complement. Then,

2§Sd(0+€1,c+62):Sd(C,O+€17O+62)§4.

To illustrate the different cases of Corollary consider the cycle Cjy
where V(Cho) = {v1,...,v10}, v; is adjacent to v;1y for every i € {1,...,9}
and vy is adjacent to vig. If we make e; = vyv9 and ey = wvsvg, it may be
verified that the sets {v1,v2} and {vg, v7} are the simultaneous metric bases
of G = {Cip+e1,Cip+ez}, so SA(G) = 2. Alternatively, if we make e; = v4v9
and es = v3vg, it may be verified that the sets {v1,vq,v10} and {vs, ve, v7}
are the simultaneous metric bases of G, so Sd(G) = 3. Finally, by making
e1 = v4v9 and ey = vyvg, we have that the sets {vy, v, vy, v5}, {v1, V2, V9, V10 },
{v4,v5,v6,v7} and {wg, v7, v9, v10} are the simultaneous metric bases of G, so
Sd(g) = 4.

We now study the case of families composed by two trees, both different

from a path, one of which is obtained from the other by an edge exchange.

Theorem 2.16. Let T be a tree of order n > 4 and let Ty be a tree obtained
from Ty by an edge exchange. Then,

dim(T}) < SA(Ty, Tz) < dim(T3) + 2.

Proof. The lower bound is a direct consequence of Remark 2.1 Consider that
Ty =T + e — f, where e = v,v, and f = v;v;. To deduce the upper bound,
we will show that for any metric basis B € B(T}), the set S = B U {v;, v;}
is a metric generator for 75, and thus it is a simultaneous metric generator
for {T',T>}. First of all, notice that Q(73) C Q(T}) U {v;, v;}. Depending on

the positions of v; and v; in T}, we differentiate the following cases:

(1) v; and v; lie on the path L that connects v, € M(T}) to v, € TERyp, (v,).
We consider, without loss of generality, that v; is closer to v, than v;. In
this case, we have that TERr, (v,) —TERr, (v,) € {0, {v:}, {v;}, {vi, v;}}.
Due to the connectivity of T5, either v, or v, lies on the path L’ connecting

v; to vy, so we assume, without loss of generality, that v, lies on L.

On one hand, if v, € M(T3), then TERyp,(v,) = {vj,v,} and, for ev-
ery v € (M(Ty) — {v.}) — M(Th), terr,(v) = 1. Furthermore, under
this assumptions, for every v € (M(T17) — {v,}) N M(T3), we have that
TERz,(v) C TERy (v).
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Alternatively, if v, ¢ M(T3) and vs € M(T3), then either v; € TE Ry, (vs)
or v; is a vertex of degree 2 lying on the path that connects v, to v, in
T,. Furthermore, for every v € (M(Ty) — {vs}) — M(T}), we have that
terp,(v) = 1, and for every v € (M(T1) — {v,,vs}) N M(T3), we have
that TERy,(v) € TERy, (v).

Finally, if v, ¢ M(T3) and v, ¢ M(T3), then vy € TERyp (v,) U {v;}
or vy € TERp (w), where w € M(T1) — {v,}. In the first case, v; €
TERr,(v,) or v, € TERp,(v,) and v; is a vertex of degree 2 lying on
the path that connects v, to v, in T, whereas in the second case either
v; € TERyp, (w) or v, € TERp,(w) and v; is a vertex of degree 2 lying on
the path that connects w to v, in Ty. Furthermore, M(Ty) = M(T}) and
for every v € M(13) — {v,,w}, we have that TERp,(v) = TERqp, (v).

In consequence, for any metric basis B € B(T}), the set B U {v;,v,} is

a metric generator for 75, and thus a simultaneous metric generator for

{Tl,TQ}.

v; and v; lie on the path L which connects two major vertices v, and
v, of T7 and contains no other major vertex. Here we assume, without
loss of generality, that v; is closer to v, than v;. In this case, if v, €
M(Ty) — M(Ty), then terry,(v,) = 1. Likewise, if v, € M(Ty) — M(T}),
we have that terp,(vs) = 1. Furthermore, TERy,(v,) — TERp (v,) €
{0,{v;}} and TERr,(vy) — TERp (vy) € {0,{v;}}. Finally, for every
v e (M(Ty) —{v,vs}) — M(T1), we have that tery, (v) = 1, and for every
ve (M(Th) — {vp, v }) N M(T3), we have that TERr,(v) C TERr (v).

In consequence, for any metric basis B € B(T}), the set B U {v;,v;} is

a metric generator for 75, and thus a simultaneous metric generator for

{1, T>}.

Summing up the cases discussed above, we may conclude that for any

metric basis B of Tj, the set S = B U {v;,v;} is a simultaneous metric
generator for {7, T}, so Sd(71,T5) < |S| < |B| 4+ 2 = dim(7y) + 2. O

Corollary 2.17. Let Ti be a tree of order n > 4 and let Ty be a tree obtained
from T} by an edge exchange. Then,
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Proof. Let f be an edge of T} and let e be an edge of its complement. Then
Ty, =T, 4+ e— fif and only if 77 = T3 + f — e. Hence, the result is a direct
consequence of Theorem , according to which dim(7y) < Sd(T},Ts) <
dim(73) + 2 and dim(7y) < Sd(T3,73) < dim(7y) + 2. O

Finally, we address other type of families composed by two graphs fea-
turing larger differences from one another. The notation AV B represents the

symmetric difference of the sets A and B.

Remark 2.18. Let V = {v1,v9,...,0,} and V' =V U {v,11}. Let Gy =
(V, Ey) and Gy = (V, Ey) be two connected graphs on the common vertez set
V oand let G} = (V', E]) and Gy = (V', E}) be two graphs whose edge sets
are BY = Ey U {vv,1} and E) = Ey U {v;v,41}, for some v;,v; € V. If
there exist two simultaneous metric bases By and By of {G1,Gs} such that
BV By = {v;,v,}, then

Sd(GY, Gy) = S5d(Gr, Ga),

otherwise,

Sd(G1,G2) < Sd(GY, GS) < Sd(Gh, Ga) + 1.

Proof. Any pair of different vertices u,v € V distinguished in G or G}, by
Up+1 1s also distinguished in Gy by v; or by v; in (g, so a simultaneous metric
basis of {G/, G5} must contain at least as many vertices as a simultaneous
metric basis of {G1,Gy}. Thus, SA(GY, GS) > Sd(G1, Ga).

First assume that there exist two simultaneous metric bases B; and B,
of {G1, G2} such that B1VBy = {v;,v;}. Let S = (B; N By) U {v,11}. We
claim that S is a simultaneous metric generator for {G}, G5}. We assume,
without loss of generality, that v; € By. If a pair of different vertices is
distinguished in G; by v;, it is also distinguished in G| by v,,11, otherwise it
is distinguished by some x € By — {v;} C S. The same reasoning is valid for
v; on Gy, so S is simultaneously a metric generator for G| and G%. Thus,
SA(GY, G) < |S| = Sd(Gy, Ga), so the equality holds.

For the general case, let B be a simultaneous metric basis of {G1, G2}
Clearly, B U {v,41} is simultaneously a metric generator for G} and G, so

SA(G!, GL) < SA(Gy, Ga) + 1. O

A particular case of Remark deals with another case of a family of
graphs {G1, Gy} where G5 is obtained from G by an edge exchange and vice

VETSQ



UNIVERSITAT ROVIRA I VIRGILI
THE SIMULTANEOUS (STRONG) METRIC DIMENSION OF GRAPH FAMILIES

Yunior Ramirez Cruz

The simultaneous metric dimension of graph families 30

Corollary 2.19. Let G = (V, E) be a connected graph of order n > 2 and
let VI =V U{vp11}. Let Gy = (V' Ey) and Gy = (V', Ey) be two graphs
whose edge sets are By = E U {vjvp,11} and By = E U {vjv,41}, for some
v, v; € V, @ # j. If there exist two metric bases By and By of G such that
BV By = {v;,v,}, then

Sd(Gl, Gg) = dlm(G),

otherwise,

dim(G) < Sd(Gy, Gs) < dim(G) + 1.

2.5 Large families of graphs with a fixed si-
multaneous metric basis and a large com-

mon induced subgraph

Intuitively, it is expectable that the simultaneous metric dimension of large
families is considerably larger than the metric dimension of any of its indi-
vidual member graphs. However, as we will show in this section, there exist
large families of graphs where this difference is as small as desired. We ac-
complish this by describing a general approach for constructing large graph
families for which the simultaneous metric dimension attains the lower bound
given in Remark [2.1] Moreover, we show that the graphs in such families
contain large isomorphic common induced subgraphs.

Let G = (V, E) be a graph and let Perm (V') be the set of all permutations
of V. Given a subset X C V, the stabilizer of X is the set of permutations
S(X) =A{f € Perm(V) : f(z) = z, for every x € X} . As usual, we denote
by f(X) the image of a subset X under f, i.e., f(X)={f(x): € X}.

Let B be metric basis of a graph G = (V, E) of diameter D(G). For any
r €40,1,..., D(G)} we define the set

B,.(B)= | J{yeV: dalx,y) <r}.

zeB

In particular, Bo(B) = B and By(B) = U Ng[z]. Moreover, since B is a
z€EB

metric basis of G, |[Bpg)-1(B)| > |V| — 1.
Let G be a connected graph that is not complete. Given a permutation
f € 8(B) of V we say that a graph G’ = (V, E’) belongs to the family
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Gp,¢(G) if and only if Ne/(f(v)) = f(Na(v)), for every v € Bpa—2(B).
In particular, if D(G) = 2 and f € S(B), then G' = (V, E’) belongs to the
family Gp ;(G) if and only if N¢/(x) = f(Ng(z)), for every & € B. Moreover,
if G is a complete graph, we define Gp ((G) = {G}.

Remark 2.20. Let B be a metric basis of a connected non-complete graph G,
let f € S(B) and G' € G s(G). Then for any b€ B and k € {1, ..., D(G) —
1}, a sequence b = vg,vq,...,Uk_1,U = v is a path in G if and only if the

sequence b= f(vo), f(v1), ..., f(vk—1), f(vr) = f(v) is a path in G'.

Proof. Let b € B. Since G’ € Gp;(G) and b = vy € Bpg)—2(B), we have
that f(v1) € Ne/(f(vg)) if and only if v; € Ng(vg) and, in general, if v; €
Bpg)-2(B), then f(vit1) € Ne/(f(vs)) if and only if v;1y € Ng(v;). There-
fore, for any k € {1,..., D(G) — 1}, a sequence (b =) f(vo), f(v1), ..., f(vk—-1),
f(ug)(= f(v)) is a path in G" if and only if (b =)vg, v1, ..., vg—1, k(= v) is a
path in G. O

Corollary 2.21. Let B be a metric basis of a connected graph G, let f €
S(B) and G' € Gp ¢(G). Then for anyb € B andv € Bpg)-1(B), da(b,v) =
k if and only if de (b, f(v)) =

Corollary 2.22. Let B be a metric basis of a connected graph G, let f €
S(B) and G' € QBJ(G). Then <BD(G)_2(B)> = <BD(G/)_2(B)>.

Proof. Since G' € Gp (G), the function f is a bijection from V(G) onto
V(G'). It remains to show that the restriction of f to (Bpg)-2(B)) is an
isomorphism, i.e., we need to show that uv is an edge of (Bp(g)—2(B)) if and
only if f(u)f(v) is an edge of (Bp—2(B)). Let u,v € Bpg)—2(B). Let
k be the length of a shortest path from the set {u,v} to the set B. Then
there is a b € B such that k = min{dg(b, u),dg(b,v)} < D(G) — 2. We may
assume that dg(b,u) = k. So there is a path (b =)vg, vy, ..., Vg1, k(= u) in
(Bp()—2(B)). By Remark- =)vg, V1, ..., Vg1, V(= u), v is a path in G
if and only if (b =) f(vo), f(v1), ..o, f(vk-1), f(vx) (= f(w)), f(v) is a path in G,
So uv € E((Bp(a)—2(B))) if and only if f(u)f(v) € E((Bp@)-2(B))). O

Now we define a family of graphs Gg(G), associated to B in G, as follows:

= U ng

feS(B
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Notice that if Bpg)—2(B) € V, then any graph G’ € Gg(G) is isomor-
phic to a graph G* = (V, E*) whose edge set E* can be partitioned into two
sets £, Ej, where E} consists of all edges of G having at least one vertex
in Bpg)—2(B) and Ej is a subset of edges of a complete graph whose ver-
tex set is V' — Bp(g)—2(B). Hence, Gg(G) contains 2@“/ — B! different
labeled graphs, where [ = |V — Bp(g)—2(B)|. Clearly, if |Bpg)-1(B)| = |V,

then all these graphs are connected and if |Bp)-1(B)| = [V| — 1, then

QW@Z* — 1)|V — B! of these graphs are connected.
® Us f
V] — v
v v; — vi
Vg Vs V3 — Vo
Vg — U
v vz — vg
G ® U1 Vg — U3
® Us ® Us ® Us ® Us
Vg Vg (U Vg
(%] Vg Vs Vg Us Vg Us (%)
V4 Vy V4 V4
G ® U1 Gy ® U e ® U1 G, ® U
® Us ® Us ® Us ® Us
Vg (3 Vg Vs
U3 Vg U3 Vg Ug Vg U3 Vo
Uy (] [ Uy
Gs ® U1 G ® U1 G- ® U1 Gy ® U1

Figure 2.5: B = {1,5} is a metric basis of G, f € S(B) and {G}, ..., Gs} C Gy

Now, if Bp(g)-2(B) =V, then Gg(G) consists of graphs isomorphic to
each other, having the basis B in common and, as a consequence, for any
non-empty subfamily H C Gg(G) we have Sd(H) = dim(G). As the next
result shows, this conclusion on Sd(#) need not be restricted to the case
Bp@)-2(B) = V.
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Theorem 2.23. Any metric basis B of a connected graph G is a simultaneous
metric generator for any family of connected graphs H C Gg(G). Moreover,
if G € H, then

Sd(H) = dim(G).

Proof. Assume that B is a metric basis of a connected graph G = (V, E),
f € 8(B) and G’ € Gp (G). We shall show that B is a metric generator
for G'. To this end, we take two different vertices v',v" € V — B of G’ and
the corresponding vertices u,v € V' of G such that f(u) =« and f(v) =0’
Since u # v and u,v ¢ B, there exists b € B such that dg(u,b) # dg(v,b).
Now, consider the following two cases for u, v:

(1) u,v € Bpg)-1(B). In this case, since dg(u,b) # dg(v,b), Corollary
leads to dG’ (u’, b) 7é dcy(’l/, b)

(2) u € Bp()-1(B) and v € Bp(g)-1(B). By Corollary 2.21] des(u',b) <
D(G)—1 and, if de/(v',b) < D(G) — 1, then dg(v,b) < D(G) — 1, which
is not possible since v & Bp(g)-1(B). Hence, de(v',b) > D(G) and so
der(u',b) # der (VD).

Notice that since B is a metric basis of G, the case u,v & Bpg)—1(B) is
not possible.

According to the two cases above, B is a metric generator for G’ and, as
a consequence, B is also a simultaneous metric generator for any family of
connected graphs H C Gp(G). Thus Sd(H) < |B| = dim(G) and, if G € H,
then Sd(#H) > dim(G). Therefore, the result follows. O

Figure shows a graph G for which B = {vy,vs} is a metric basis.
The map f belongs to the stabilizer of B and {Gj, ..., Gg} is a subfamily of
Gp,r(G). In this case, the family Gp(G) contains 1344 different connected
graphs; 48 of them are paths and B is a metric basis of the remaining 1296

connected graphs.
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Chapter 3

Families composed by product

graphs

In this chapter, we study the simultaneous metric dimension of families com-
posed by product graphs. In particular, we focus on families composed by
lexicographic and corona product graphs. Within the first case, we study
the particular subcase of families composed by join graphs. Throughout the
chapter, a second notion of simultaneous resolvability, namely the simulta-
neous adjacency dimension, is used as a tool for characterizing the simulta-
neous metric dimension of the studied families. The chapter is organized as
follows. Section gives an overview of the graph products we treat. Then,
Section introduces the simultaneous adjacency dimension and studies its
properties. Finally, we introduce our results on families composed by join

graphs, standard lexicographic product graphs, and corona product graphs

in Sections and [3.5] respectively.

3.1 Overview

Let G be a graph of order n, and let (Hy, Ha,...,H,) be an ordered n-
tuple of graphs of orders n), n), ..., nl,
product of G and (Hy, Hs, ..., H,) is the graph G o (Hy, Hs, ..., H,), such
that V(Go(Hy, Ha, ..., Hn)) = Uyev({wt x V(H:)) and (us, v,)(uy,v5) €
E(Go(Hy, Hy, ..., Hy,))ifand only if w;u; € E(G) ori = j and v,v, € E(H;).
As we mentioned previously, we will restrict our study to two particular cases.
First, given two vertex-disjoint graphs G = (V4, Ey) and H = (V4, E»), the
join of G and H, denoted as G+ H, is the graph with vertex set V(G+ H) =

respectively. The lexicographic

35
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ViUV, and edge set E(G+ H) = EyUE,U{uwv : u € Vi,v € Vo}. Join
graphs are lexicographic product graphs, as G+ H = Pyo (G, H). The other
particular case we will focus on is the most traditionally studied standard
lexicographic product graph, where H; = H for every i € {1,...,n}, which
is denoted as G o H for simplicity.

In the literature we can also find the names the composition or the sub-
stitution for the lexicographic product. The lexicographic product is clearly
not commutative, while it is associative [35, 4I]. Moreover, a lexicographic
product graph G o H is connected if and only if G is connected. Figure
illustrates two examples of lexicographic products and at the same time

emphasizes the fact that the lexicographic product is not commutative.

Figure 3.1: Lexicographic products K; 30 P and P30 K 3.

The lexicographic product of graphs has been studied from several points
of view. The investigation includes, for instance, the metric and strong met-
ric dimensions [43] 56], independence number [31], domination number [66],
chromatic number [I8 [3T], connectivity [83], and hamiltonicity [2, 55]. For
more details see [35, [4T].

Let G and H be two graphs of order n and n/, respectively. The corona
product of G and H, denoted G ® H, is defined as the graph obtained from
G and H by taking one copy of G and n copies of H and joining by an edge
each vertex from the i-th copy of H with the i-th vertex of G. Notice that
the corona product graph K; ® H is isomorphic to the join graph K; + H.

Observe that G ® H is connected if and only if G is connected. More-
over, it is readily seen from the definition that this product is neither an
associative nor a commutative operation. Figure [3.2] shows some examples
of corona products and also underscores the fact that the corona product is

not commutative.
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Figure 3.2: Corona products Py ® C5 and C3 ® Pj.

The concept of corona product of two graphs was first introduced by
Frucht and Harary [28]. Despite the fact that the corona product is a simple
operation on two graphs and some mathematical properties are merely direct
consequences of its factors, it is interesting to study metric dimension-related
parameters on this product, as those presented in 3], 22} 23| 25] 26], 27, 33, 42}
50, 57,169, 72, [86]. Besides, several studies have been presented on domination
[33], some topological indices [84] [87] and the equitable chromatic number

[29] of corona product graphs.

3.2 The simultaneous adjacency dimension of

graph families

Let G = {G1,Ga, ...,Gi} be a family of (not necessarily edge-disjoint) con-
nected graphs G; = (V, E;) with common vertex set V' (the union of whose
edge sets is not necessarily the complete graph). By analogy to the defi-
nitions of simultaneous metric generator, basis and dimension presented in
Chapter 2, we define a simultaneous adjacency generator for G to be a set
S C V such that S is simultaneously an adjacency generator for each G;. We
say that a minimum cardinality simultaneous adjacency generator for G is a
simultaneous adjacency basis of G, and its cardinality the simultaneous adja-
cency dimension of G, denoted by Sd4(G) or explicitly by Sd4(G1, G, ..., Gi).
For instance, the set {vy,vs, vg, v7,vs} is a simultaneous adjacency basis of
the family G = {G1, G5, G3} shown in Figure while the set {vy,vg, v7, vs}
is a simultaneous metric basis, so Sd4(G) =5 and Sd(G) = 4.

We now analyse the main properties of the simultaneous adjacency di-

mension and, in a manner analogous as we did for the simultaneous metric
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Figure 3.3: The set {vy,vs,vq, 07,08} is a simultaneous adjacency basis of

{G1, G, G5}, whereas {vy,vg, v7,v8} is a simultaneous metric basis.

dimension, we analyse how it is possible to obtain large families of graphs

having a fixed adjacency basis and a large common induced subgraph.

Remark 3.1. For any family G = {G1, Ga, ..., G} of connected graphs on a
common vertex set V, the following results hold:

(i) Sda(G) > max {dims(G;)}.

ie{1,....k}
(ii) Sd4(G) > Sd(G).
(iii) Sda(G) < |V]| - 1.

Proof. (i) is deduced directly from the definition of simultaneous adjacency
dimension, while (iii) is obtained from the fact that for any non-trivial graph
G = (V,E) it holds that for any v € V the set V — {v} is an adjacency
generator. Let B be a simultaneous adjacency basis of G and let u,v € V —B,
be two different vertices. For every graph Gj, there exists x € B such that
de, 2(u,x) # dg, 2(v, ), so dg,(u, ) # dg,(v,x). Thus, B is a simultaneous

metric generator for G and, as a consequence, (ii) follows. n

As pointed out in [43], dim(G) = n—1if and only if G = K,, or G = N,,.
The following result follows directly from Remark [3.1]

Corollary 3.2. Let G be a graph family on a common verter set V. If
Ky €G or Ny € G, then Sds(G) = |V| — 1.
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The converse of Corollary does not hold, as we will exemplify in
Corollary[3.4 We first note the following result, which is a direct consequence
of Theorem [2.3] and Remark [3.1] (ii), (iii) and characterizes a large number

of cases where the upper bound of (iii) is reached.

Remark 3.3. Let G be a graph family on a common vertex set V. If for
every pair u,v € V there exists a graph G, € G such that u and v are twins

in Gy, then Sda(G) = |V| — 1.

For a star graph Ki,, r > 3, it is known that dims(K;,) = r — 1
and every adjacency basis is composed by all but one of its leaves. For a
finite set V' = {v1,va,..., 00}, n > 4, let K}, | be the star graph having
v; as its central vertex and V — {v;} as its leaves. We define the family
K(V) ={K},_,: v € V}. Any pair of vertices v,,v, € V are twins in
every Ki, , € K(V) —{K},_|,K{,_,}, so the following result is a direct
consequence of Remark [3.3]

Corollary 3.4. For every finite set V' of size |V| > 4, Sd4(K(V)) = |V | —1.

Let P\ = (V,Ey), P = (V,E;) and P = (V,E3) be the three
different path graphs defined on the common vertex set V' = {v,vs,v3},
where v; is the vertex of degree two in P?fi) , for i € {1,2,3}. It was shown in
[43] that dim4(G) = 1 if and only if G € { Py, P, P3, Py, P5}. The following

result follows directly from this fact.
Remark 3.5. The following statements hold:

(i) Sda(G) =1 if and only if G C { P>, P5}, G C {P?El)’ PO, (P§1)>C7 (P?fz))c},
GC {P:)El)’P?Sg)7 (P?El)>c, <P3(3)>0} orG C {PéQ),P?E3), (P?Ez))c, <P3(3)>C},

(i) saq (P, PP PO (PO) (PP) L (PP) ) =2
The following result is derived from the fact that any graph and its

complement have the same set of adjacency bases.

Remark 3.6. Let G = {G1,Gs, ..., G} be a family of graphs with the same
vertex set V, and let G¢ = {G{,GS, ..., G} be the family composed by the

complements of every graph in G. The following assertions hold:

(i) Sda(G) = Sda(G¢) = Sda(G U G°). Moreover, the simultaneous adja-

cency bases of G and G° coincide.
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(ii) For any subfamily of graphs G' C G¢, Sd4(G) = Sd4(GUG').

In Section [2.5], we described an approach for, given a graph GG and a met-
ric basis B of G, constructing the family Gg(G), composed by graphs having a
large common induced subgraph, which satisfies Sd(Gg(G)) = dim(G). Now,
we will present an analogous approach for, given a graph G and an adjacency
basis B of GG, constructing the family G 5(G), composed by graphs that have
a large common induced subgraph, which satisfies Sd4(Gp(G)) = dim(G).

To begin with, recall that for a graph G = (V, E) and a set X C V|,
S(X) denotes the stabilizer of X and f(X) denotes the image of X under f.

Let G = (V, E) be a graph and let B C V' be a non-empty set. For any
permutation f € S(B) of V we say that a graph G’ = (V, E’) belongs to
the family §B7f(G) if and only if Ng/(x) = f(Ng(z)), for every z € B. We
define the subgraph (Bg), = (Ng[B], Ew) of G, weakly induced by B, where
N¢|[B] = UgepNg[z] and E,, is the set of all edges having at least one vertex
in B. See Figure [3.4] for an example of this construction.

V2 V2
U3 U1 Us U1
[ 4 [ ] [ [ ]

(W) (%] V4 (]
(Y .b7 .b7
Vg Ve

(; <l3G>w

Figure 3.4: The graph G = Cg, and the subgraph (Bg)., of G, weakly induced
by the adjacency basis B = {vy,vs,v7}. In this case, Ng[B] = {v1,ve, vs,

U4>U67U77U8}'

Remark 3.7. Let G = (V, E) be a graph and let B C 'V be a non-empty set.
For any f € S(B) and any graph G' € ,QVBJ(G),

(Ba)w = (Bar)uw:

Proof. Since G’ € §B7f(G), the function f is a bijection from V(G) onto
V(G"). Now, since Ng/(x) = f(Ng(x)), for every z € B, we conclude that uv
is an edge of (Bg),, if and only if f(u)f(v) is an edge of (Bgr),. Therefore,

the restriction of f to (Bg),, is an isomorphism. O
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Now we define the family G B(G), associated to B, as follows:

G5(@) = |J Gns(O.
)

fes(B
With this notation in mind we can state our next result.

Theorem 3.8. Any adjacency basis B of a graph G is a simultaneous adja-
cency generator for any family of graphs H C éB(G). Moreover, if G € H,
then

Sda(H) = dimyu(G).

Proof. Assume that B is an adjacency basis of a graph G = (V, E). Let
f e S(B)andlet G' = (V, E') such that Ng/(x) = f(Ng(x)), for every z € B.
We will show that B is an adjacency generator for any graph G’. To this
end, we take two different vertices u/,v" € V — B of G' and the corresponding
vertices u,v € V of G such that f(u) = and f(v) = ¢'. Since u # v and
u,v € B, there exists x € B such that dgo(u,z) # dg2(v,2). Now, since
Ne(z) = f(Ng(z)) = {f(w) : w € Ng(x)}, we obtain that deg (v, ) =
dga(u,z) # dgo(u,z) = deo(v',x). Hence, B is an adjacency generator
for G' and, in consequence, is also a simultaneous adjacency generator for
H. Then we conclude that Sds(H) < |B| = dima(G) and, if G € H, then
Sd(H) > dimy(G). Therefore, the result follows. O

Notice that if G ¢ {K,, N,}, then the edge set of any graph G’ €
gB(G) can be partitioned into two sets E;, E5, where E; consists of all
edges of GG having at least one vertex in B and F, is a subset of edges
of a complete graph whose vertex set is V' — B. Hence, GVB(G) contains

IV —B|(IV-B|-1)
2 2

families that may be obtained according to this procedure, consider the cycle

|V — B|! different labelled graphs. As an example of large graph

graph Cg, where dim4(Cg) = 3. For each adjacency basis B of Cg, we have
that |Gp(Cs)| = 122880. To illustrate this, Figure [3.5 shows a graph family
H = {Hy,...,Hs} C Gz(Cs), where B = {vy,vs,v7}, {H;, Hy, Hy, H;} C
Gp.1,(Cs) and {Hs, Ho, Hy, Hs} C Gy, (Cs).

The next result follows directly from Theorem and the fact that
dima(G) = 1if and only if G € { P, P;, P5, P§}.
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’ ’ f fo
| 4 ® V1 — V1 Us — Uy V1 — V1 Us — Vg
v v Vg — Vg Vg — U4 Vg — Vs Vg — U4
4 8 V3 — V3 Uy — Uy V3 — V3 Uy — Uy
° Vg — Vg Vg — Us Vg — Vg Vg — U2
Us U7
Vg
G
Ve Vg Ve Vg
U3 U1 U3 &1 U3 U1 U3 &1
® [ 4 ® [ 4
Ug Vs Vg Vs Vg Vs Vg Us
V2 .'U7 V2 .U7 V2 .'U7 V2 .U7
Uy V4 Uy (2
H, H, Hj Hy
Us Us Us Us
U3 U1 U3 U1 U3 U1 U3 U1
o ] [ 4 ] [ 4
Ug Vg Vg Vg Ug Vg Vg V2
Ve .U7 Ve .U7 Ve .U7 Ve .U7
V4 V4 V4 V4
H Hg Hy Hg
Figure 3.5: A subfamily H of Gg(Cs) for B = {v1,vs,v7}, where

{Hl,Hg,Hg,H4} - ’ng,fl(Cg) and {H5,H6,H7,H8} - §B7f2(Cg). For every
H € H, dimy(H) = dimx(Cs) = 3. Moreover, B is a simultaneous adjacency
basis of H, so Sda(H) = 3.

Corollary 3.9. Let G be a graph of order n > 4. If dims(G) = 2, then for
any adjacency basis B of G and any non-empty subfamily H C §B(G),
Sda(H) = 2.

The following result, obtained in [21], shows that Corollary is only
applicable to families of graphs of order 4,5 or 6.

Remark 3.10. [2I] If G is a graph of order n > 7, then dim,(G) > 3.

Theorem (3.8 and Remark immediately lead to the next result.



UNIVERSITAT ROVIRA I VIRGILI
THE SIMULTANEOUS (STRONG) METRIC DIMENSION OF GRAPH FAMILIES

Yunior Ramirez Cruz

Families composed by product graphs 43

Theorem 3.11. Let B be an adjacency basis of a graph G of order n > 7.
If dima(G) = 3, then for any family H C gB(G),

Sdu(H) = 3.

The family H shown in Figure |3.5|is an example of Theorem [3.11]

3.3 Families of join graphs

For a graph family H = {H;, Ha, ..., Hy}, defined on common vertex set V,
and the graph K; = (v), v ¢ V, we define the family

Ki+H={Ki+H: HeH}
Notice that, since for any H € H the graph K; + H has diameter two,
SA(K7 + H) = Sda(K1 +H).

Theorem 3.12. Let G be a family of non-trivial graphs on a common vertex
set V. If for every simultaneous adjacency basis B of G there exist G € G
and x € V such that B C Ng(z), then

SA(K, + G) = Sdu(G) + 1.

Otherwise,

Sd(K; + G) = Sda(G).

Proof. Let V(K;) = {v}. Suppose that for every simultaneous adjacency
basis B of G there exist G € G and « € V such that B C Ng(z). In this
case, first notice that for every pair of different vertices u,v € V we have
that d,+c2(u, v0) = di,+¢2(v,v9) = 1, so vy does not distinguish any pair
of vertices. In consequence, a simultaneous metric basis of K; + G must
contain at least as many vertices as a simultaneous adjacency basis of G.
Secondly, since B C Nk, 1¢(v) and B C Ng,.¢(), a simultaneous metric
basis of K7 + G must additionally contain some vertex v € (V — Ng(z)) U
{vo}, so SA(K; + G) > Sda(G) + 1. Let B be a simultaneous adjacency
basis of G and let B' = BU {vy} and G’ € G. For every pair of different
vertices u,v € V(K; + G') — B, there exists a vertex z € B C B’ such
that dg,1e2(u,2) = dao(u,z) # deo(v,2) = diy1e2(v,2), so B is a
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simultaneous metric generator for K; + G and, as a result, Sd(K; + G) <
|B'| = |B| +1 =Sda(G) + 1. Consequently, SA(K; + G) = Sd4(G) + 1.

Now suppose that there exists a simultaneous adjacency basis B of G
such that B ¢ Ng(x) for every G € G and every x € V. In this case,
first recall that a simultaneous metric basis of Ky + G must contain as many
vertices as a simultaneous adjacency basis of G, so SA(K;+G) > Sda(G). As
above, for every pair of different vertices u,v € V — B, there exists a vertex
z € B such that dg, ;g 2(u, 2) = dg2(u, 2) # dg2(v, 2) = di,+c.2(v, 2). Now,
for any uw € V' — B there exists v’ € B — Ng(u) such that dg, yg2(u,u') =
2 # 1 = dg,4+¢2(vo,u'). Hence, B is also a simultaneous metric generator
for Ky + G and, consequently SA(K; + G) < |B| = Sda(G). Therefore,
SA(K1 + G) = Sda(9). O

Since K; + G = Ky + (K;_1 + G) for any t > 2, the previous result can

be generalized as follows.

Corollary 3.13. Let G be a family of non-trivial graphs on a common vertex
set V and let K; be a complete graph of ordert > 1. If for every simultaneous
adjacency basis B of G there exist G € G and x € V' such that B C Ng(x),
then

SA(K, + G) = Sda(G) +t.

Otherwise,
SA(K; +G) = Sda(G) +t — 1.

By Remark and Theorems [3.8] and we deduce the following
result.

Theorem 3.14. Let B be an adjacency basis of a graph G and let H C §B(G)
such that G € H. The following assertions hold:

(i) If for any adjacency basis B’ of G, there exists v € V(G) such that
B’ C Ng(v), then

(ii) If B € Ng(v) for allv € V(G), then

SA(Ky +H) = dima(G).
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Proof. First of all, by Theorem [3.8, Sd4(H) = dima(G) and, as a conse-
quence, every simultaneous adjacency basis of H, which is also a simultane-
ous metric basis, is an adjacency basis of G. Now, if for any adjacency basis
B’ of G, there exists v € V(G) such that B" C Ng(v), then by Theorem
312 SA(Ki + H) = Sda(H) + 1 = dima(G) + 1. Therefore, (i) follows. On
the other hand, if B Z Ng(v) for all v € V(G), then by Remark [3.7 we have
that, for every G’ € gB(G) and every v € V(G), B  N¢/(v). Hence, by
Theorem [3.12, SA(K; + M) = Sda(H) = dima(G). Therefore, the proof of
(ii) is complete. O

To show some particular cases of the results above, we will state the

following two results.

Remark 3.15. [43] For any integer n > 4,

2n + 2
dima(P,) = dima(C,) = { ”; J .
Lemma 3.16. Let G be a connected graph. If D(G) > 6, or G = C,, with
n > 7, or G is a graph of girth g(G) > 5 and minimum degree 6(G) > 3, then

for every adjacency generator B for G and every v € V(G), B € Ng(v).

Proof. Let B be an adjacency generator for (G. First, suppose that there
exists v € V(@) such that B C Ng(v). Since B is an adjacency generator
for GG, either B is a dominating set or there exists exactly one vertex u €
V(G) — B which is not dominated by B. In the first case, D(G) < 4 and
in the second one, either D(G) < 5 or w is an isolated vertex. Hence, if
D(G) > 6, then B < Ng(v).

Now, assume that 6(G) > 3. Let v € V(G), u € Ng(v) and z,y €
Ng(u) — {v}. If g(G) > 5, then no vertex z € Ng[v] distinguishes z from
y and, since B is an adjacency generator for GG, there exists z/ € B — Ng[v]
which distinguishes them. Thus, B Z Ng(v).

Finally, if G = C, with n > 7, then by Remark we have |B| >

2 2
dim(G) = L nt
follows. O

J > 3 and, since GG has maximum degree two, the result

According to Lemma [3.16) Theorem [3.12] immediately leads to the fol-

lowing result.
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Proposition 3.17. Let G be a family of graphs on a common vertexr set V
of cardinality |V| > 7. If every G € G satisfies D(G) > 6, or g(G) > 5 and
d(G) > 3, or it is a cycle graph, then

SA(K; + G) = Sda(G).
Theorem and Lemma |3.16| immediately lead to the following result.

Proposition 3.18. Let G be a graph of order n and let B be an adjacency
basis of G. If G is a cycle graph with n > 7, or D(G) > 6, or g(G) > 5 and
§(G) > 3, then for any family H C G5(G) such that G € H,

SA(Ky + H) = dima(G).

We now discuss particular cases where SA(K; + G) = Sda(G) + 1. First,
consider a graph family G = {G1, Gs, ..., G}, defined on a common vertex
set of cardinality n, such that G; = K, for some i € {1,...,k}. Since
K, + K,, = K41, we have that Sd(K; + G) = n = Sda(G) + 1. Now recall
the families (V') of star graphs defined in Section 2.1} The following result
holds.

Proposition 3.19. For every finite set V' of cardinality |V | > 4,
SA(K; + K(V)) =Sda(K(V)) + 1.

Proof. Every simultaneous adjacency basis B of (V') has the form V —{v;},
i€ {l,...,n}. In Kj, ,, we have that B C Ny;  (v;), so the result is
deduced by Theorem [3.12 O

For two graph families G = {G1,Gs, ..., Gk, } and H = {Hy, Hs, ..., Hy, },
defined on common vertex sets V; and V5, respectively, such that vV, NV, = (),

we define the family

G+H={G+H: Ge€G,HecH}

Notice that, since for any G € G and any H € H the graph G + H has

diameter two,

Sd(G +H) = Sdu(G + H).
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Theorem 3.20. Let G and H be two families of non-trivial graphs on com-
mon vertex sets Vi and Vy, respectively. If there exists a simultaneous adja-
cency basis B of G such that for every G € G and every g € Vi, B Z Ng(g),
then

SA(G +H) = Sda(G) + Sda(H).

Proof. Let B be a simultaneous adjacency basis of G such that B € Ng(u)
for every u € Vi, and let B’ be a simultaneous adjacency basis of H. We
claim that the set S = BU B’ is a simultaneous metric generator for G + H.
Consider a pair of different vertices u,v € (V; U Vy) — S. If u,v € Vi, then
there exists x € B that distinguishes them in every G € G. An analogous
situation occurs for u,v € V4. If u € V] and v € V3, since B € Ng(u), there
exists © € B such that dgipa(u, ) =2 # 1 = dgyrpa(v, x) for every G € G
and H € H. Thus, S is a simultaneous metric generator for G + H and, as a
consequence, SA(G + H) < |S| = |B| + |B’| = Sda(G) + Sda(H).

To prove that SA(G + H) > Sda(G) + Sda(H), consider a simultaneous
metric basis W of G+H. Let Wy =WnNViandlet Wo =W NV, Let G € G
and H € H. No pair of different vertices u,v € Vo — W, is distinguished in
G+ H by any vertex from W7, whereas no pair of different vertices u,v € V; —
W1 is distinguished in G+ H by any vertex from Wy, so W is a simultaneous

adjacency generator for G and W is a simultaneous adjacency generator for

H. Thus, SA(G +H) = |W| = |Wi| + |[Ws| > Sda(G) + Sda(H). O
By Lemma |3.16| we deduce the following consequence of Theorem [3.20]

Corollary 3.21. Let G be a family of graphs on a common vertex set V' of
cardinality |V| > 7. If every G € G satisfies D(G) > 6, or g(G) > 5 and
d(G) > 3, or it is a cycle graph, then for any family H of non-trivial graphs

on a common vertexr set,
SA(G + H) = Sda(G) + Sda(H).
Theorems B.8 and [3.20] and Lemma [3.16] lead to the next result.

Theorem 3.22. Let G be a graph of order n and let B be an adjacency basis
of G. If G is a cycle graph with n > 7, or D(G) > 6, or g(G) > 5 and
d(G) > 3, then for any family G' C gB(G) such that G € G and any family

H of non-trivial graphs on a common vertex set,

SA(G + H) = dima(G) + Sda(H).
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The ideas introduced in Theorem allow us to define large families
composed by subgraphs of a join graph G + H, which may be seen as the
result of a relaxation of the join operation, in the sense that not every pair
of nodes u € V(G), v € V(H), must be linked by an edge, yet any adjacency
basis of G+ H is a simultaneous adjacency generator for the family, and thus
a simultaneous metric generator. Since for any adjacency basis B of G + H,
the family Rz defined in the next result is a subfamily of Gz(G + H), the
result follows directly from Theorem [3.§|

Corollary 3.23. Let G and H be two non-trivial graphs and let B be an
adjacency basis of G + H. Let E' = {ww € E(G+ H) : u € V(G) —
B, veV(H)— B} and let Rg = {R1, R, ..., Ry} be a graph family, defined
on the common vertexr set V(G + H), such that, for every i € {1,...,k},
E(R;) = E(G+ H) — E;, for some edge subset E; C E'. Then

SA(Rp) < dim(G + H).

As the next result shows, it is possible to obtain families composed by
join graphs of the form G’ + H’, where G’ and H' are the result of applying
modifications to G and H, respectively, in such a way that any adjacency
basis of G+ H is a simultaneous adjacency generator for the family, and thus

a simultaneous metric generator.

Corollary 3.24. Let G and H be two non-trivial graphs and let B be an
adjacency basis of G+ H. Let By = BNV(G) and By, = BNV(H). Then
for any family H C Gp,(G) + Gp,(H),

Sd(H) < dim(G + H).
Moreover, if G+ H € H, then
Sd(H) = dim(G + H).

Proof. The result is a direct consequence of Theorem , as G, B (G)—I—g B,(H) C
Gp(G + H). O

Given two families G and H of non-trivial graphs on common vertex sets
V1 and Vs, respectively, we define B(G) and B(H) as the sets composed by all
simultaneous adjacency bases of G and H, respectively. For a simultaneous
adjacency basis B € B(G), consider the set

P(B)={ueVi: B C Ng(u) for some G € G}.
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Similarly, for a simultaneous adjacency basis B’ € B(#H), consider the
set
Q(B')={veVy: B'C Ng(v) for some H € H}.

Based on the definitions of P(B) and Q(B’), we define the parameter
(G, H) as

UG H) = min {IP(B,Q(B)}
B/eB(H;

The following result holds.

Theorem 3.25. Let G and H be two families of non-trivial graphs on com-
mon vertex sets Vi and Vs, respectively. If for every simultaneous adjacency
basis By of G there exists G € G and g € Vi such that B; C Ng(g) and for
every simultaneous adjacency basis By of H there exists H € H and h € V,
such that By C Ny(h), then

Sda(G) +Sda(H) + 1 < SA(G +H) < Sda(G) + Sda(H) + (G, H).

Proof. We first address the proof of the lower bound. Let W be a simultane-
ous metric basisof G+H and let W, = WnNV, and Wo =WNV,. Let G € G
and H € H. Since no pair of different vertices u,v € Vo — W is distinguished
by any vertex in W;, whereas no pair of different vertices u,v € Vi — W is
distinguished by any vertex in W5, we conclude that 17 is an adjacency gene-
rator for G and W5 is an adjacency generator for H. Hence, W is a simultane-
ous adjacency generator for G and Wj is a simultaneous adjacency generator
for H. If W7 is a simultaneous adjacency basis of G and W5 is a simultaneous
adjacency basis of H, then under the assumptions of this theorem, for at least
one graph G+ H € G + H there exist x € V; —W; and y € Vo — W5, such that
W C Ngyg(z) and W C Ngypg(y), which is a contradiction. Thus, W is not
a simultaneous adjacency basis of G or W5 is not a simultaneous adjacency
basis of H. Hence, |W;| > Sda(G)+1 or [Ws| > Sda(H)+1. In consequence,
we have that Sd(G + H) = |W| = |Wi| + |[Wa| > Sda(G) + Sda(H) + 1.

We now address the proof of the upper bound. Let B; and B, be si-
multaneous adjacency bases of G and H, respectively, for which (G, H) is
obtained. Assume, without loss of generality, that |P(B;)| < |Q(B2)|. Let
S = B1UByUP(By). We claim that S is a simultaneous metric generator for
G + H. To show this, we differentiate two cases for any G € G and H € H:



UNIVERSITAT ROVIRA I VIRGILI
THE SIMULTANEOUS (STRONG) METRIC DIMENSION OF GRAPH FAMILIES

Yunior Ramirez Cruz

Families composed by product graphs 50

(1) There exists g € Vi such that By C Ng(g). We claim that the set
S’ = By UByU{g} C S is a metric generator for G + H. To see this,
we only need to check that for any u € V; — (By U{g}) and v € V5, — By
there exists s € S” which distinguishes them, as By and B, are adjacency
generators for G and H, respectively. That is, since g is the sole vertex
in V] satisfying Ng(g) 2 By, for any u € V; — (B1U{g}) and v € V, — By
there exists s € By C S’ such that dgipo(u,s) =2 # 1 = dgiu2(v, s).
Hence, the set S C S is a metric generator for G + H.

(2) No vertex g € V; satisfies By C Ng(g). In this case, the set S’ =
ByUB; C S is a metric generator for G+ H, as By and By are adjacency
generators for G and H, respectively, and for any v € V; — B; and
v € Vo — By there exists s € By C S such that dgypo(u,s) =2 # 1=

datma2(v, s).

Therefore, S is a simultaneous metric generator for G+#H, so SA(G+H) <
S| = [Bi| + |Ba| + |P(B1)| = Sda(G) + Sda(H) + ¥(G, H). O

As the following corollary shows, the inequalities above are tight.

Corollary 3.26. Let G = {G1,Gs,...,G} and G' = {G',GY, ..., G} be
families composed by paths and/or cycle graphs on common vertex sets V
and V' of sizes n > 7 and n' > 7, respectively. Let u,v ¢ VUV’ u # v,
and let H = {{u) + G1,{(u) + G, ..., {u) + G} and H' = {{(v) + G}, (v) +
Ghy...,(v) + G} Then,

SA(H + H') = Sda(H) + Sda(H) + 1.

Proof. By Lemma |3.16| we have that for every simultaneous adjacency gene-
rator B for G € G and every v € V(G), B € Ng(v). Hence, as we have shown
in the proof of Theorem [3.12] any simultaneous adjacency basis of G is a si-
multaneous adjacency basis of K1+ G = (u) +G = H and vice versa. So, for
any simultaneous adjacency basis B of H we have that P(B) = {u}. Analo-
gously, for any simultaneous adjacency basis B’ of H’, we have Q(B’) = {v}

and so Y(H,H') = 1. ]

Notice that the result above can be extended to any pair of graph families

G and G’ satisfying the premises of Lemma [3.16
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3.4 Families of standard lexicographic pro-

duct graphs

We begin by stating the following known result.

Claim 3.27. [35] Let G and H be two non-trivial graphs such that G is
connected. Then the following assertions hold for any a,c € V(G) and b,d €
V(H) such that a # c.

(i) Neonr(a,b) = ({a} x Nu(b)) U (Na(a) x V(H)).
(ii) dGOH(<a7 b)? (Cv d)) = dG(a7 C)

(iii) deorr((a,b), (a,d)) = dgro(b, d).

Several results on the metric dimension of the lexicographic product GoH
of two graphs G and H, and its relation to the adjacency dimension of H, are
presented in [43]. In this section, we study the simultaneous metric dimension
of several families composed by lexicographic product graphs, exploiting the
simultaneous adjacency dimension as an important tool.

First, we introduce some necessary notation. Let S be a subset of V(G o
H). The projection of S onto V(G) is the set {u: (u,v) € S}, whereas the
projection of S onto V(H) is the set {v : (u,v) € S}. We define the twins

equivalence relation T on V(G) as follows:
2Ty <= Nglz] = Nely] or Ng(x) = Na(y).

In what follows, we will denote the equivalence class of vertex x by
= {y € V(G) : yTx} . Notice that every equivalence class may be
a singleton set, a clique of size at least two of G or an independent set of
size at least two of G. We will refer to equivalence classes which are non-
singleton cliques as true-twins equivalence classes and to equivalence classes
which are non-singleton independent sets as false-twins equivalence classes.
From now on, T(G) denotes the set of all true-twins equivalence classes in
V(G), whereas F'(G) denotes the set of all false-twins equivalence classes in
V(G). Finally, V7(G) and Vp(G) denote the sets of vertices belonging to
true- and false-twins equivalence classes, respectively.

For two graph families G = {G1,Ga, ..., Gy, } and H = {Hy, Hy, ..., Hy, },

defined on common vertex sets Vi and V3, respectively, we define the family

GoH={GoH: GeG HeH}.
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In particular, if G = {G} we will use the notation G o H.
Our first result allows to extend any result on the simultaneous adjacency

dimension of G o H to the simultaneous metric dimension, and vice versa.

Theorem 3.28. Let G be a connected graph and let H be a non-trivial graph.
Then, every metric generator for G o H is also an adjacency generator, and

vice versa.

Proof. By definition, every adjacency generator for G o H is also a metric
generator, so we only need to prove that any metric generator for G o H is
also an adjacency generator. Let S be a metric generator for G o H. For a
vertex u; € V(G), let R; = {u;} x V(H). Notice that B; NS # 0, for every
u; € V(G), as no vertex outside of {u;} x V(H) distinguishes pairs of vertices
in {u;} x V(H). We differentiate the following cases for two different vertices
(uisvr), (uj,v5) € V(GoH) — S:

(1) i@ = j. In this case, no vertex from R, NS, = # i, distinguishes (u;, v;)
and (uj,vs), so there exists (u;,v) € R; NS such that dgomo((wi,vr),
(ui;v)) = daon ((ui, vr), (s, v)) # daon ((ug, vs), (Ui, v)) = daoma((uj, vs),
“M,U))-

(2) u; and u; are true twins (i # j). Here, no vertex from R, NS, = ¢
{i,7}, distinguishes (u;,v,) and (u;,vs), so there exists (u;,v) € R; N
S such that dgoma((ui,vr), (ui,v)) = daon((us, vy), (i, v)) =2 # 1 =
deorr (g, vs), (Ui, v)) = dgom2((uj,vs), (u;,v)), or there exists (u;,v) €
R; N S such that dgoma((ui, vy), (uj,v)) = daom ((us, vy), (uj,v)) = 1 #
2 = daon ((uj,vs), (uj,v)) = daor2((uj, vs), (uj,v)).

(3) u; and w; are false twins (¢ # j). As in the previous case, no vertex
from R, NS, x ¢ {i,j}, distinguishes (u;,v,) and (u;,vs), so there exists
(u;,v) € R; NS such that dgom2((wi, vy), (Ui, v)) = deom ((ws, vy), (u;,v))
=1 # 2 = dgon((uj,vs), (u;,v)) = dgoma((u;,vs), (u;,v)), or there ex-
ists (u;,v) € R; NS such that dgom2((wi,v,), (u;,v)) = daon((wi,vy),
(uj;v)) =2 # 1 =dgon ((u),s), (uj,v)) = dgon2((u), vs), (uj,v)).

(4) w; and u; are not twins. In this case, there exists u, € V(G) — {u;, u;}
such that dgo(u;,uy) # dgo(uj,u,). Hence, for any (u,,v) € R, N
S we have that dgomo((ui, vy), (Ug, V) = dgo(ui, uy) # dao(uj, uy) =

daor2((U),vs), (Ug, v)).
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In conclusion, S is an adjacency generator for G o H. The proof is complete.

[]

Corollary 3.29. For any connected graph and any non-trivial graph H,
dim(G o H) = dims(G o H).

In general, for every family G composed by connected graphs on a common
vertex set, and every family H composed by non-trivial graphs on a common

vertex set,

Sd(GoH) =Sda(GoH).

We would point out that the equalities above hold, even for lexicographic
product graphs of diameter greater than two.

The following result, presented in [43], gives a lower bound on dim(GoH),
which depends on the order of G and dim(H).

Theorem 3.30. [43] Let G be a connected graph of order n and let H be a
non-trivial graph. Then dim(G o H) > n -dima(H).

We now generalise the previous result for families composed by lexico-

graphic product graphs.

Theorem 3.31. Let G be a family of connected graphs on a common vertex
set Vi and let H be a family of non-trivial graphs on a common vertex set
Vo. Then

Sd(G o H) > V] - Sda(H).

Proof. It was shown in [43] that if S’ is a metric generator for G o H, and
R; = {u;} x V(H) for some u; € V(G), then S’ N R; resolves all vertex pairs
in R;, and the projection of S’ N R; onto V(H) is an adjacency generator
for H. Following an analogous reasoning, consider a simultaneous metric
generator S for G o H, and let R; = {u;} x V5 for some u; € V;. We have
that the projection of S N R; onto V5 is an adjacency generator for every
H € H and, in consequence, a simultaneous adjacency generator for H, so
[RiNS| > Sda(H). Thus, Sd(GoH) = |S| = > [R;N S| > [Vi|-Sda(H). O
ui€Vi

In order to present our next results, we introduce some additional def-
initions. For a graph family G, defined on a common vertex set V, let
Vu(G) = {u: u € Vp(G),u € Vr(G') for some G,G’" € G}. Moreover,
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for a family H composed by ks non-trivial graphs on a common vertex set
V', let B1(H) be the set of simultaneous adjacency bases B of H satisfying
B & Ny(v) for every H € H and every v € V', and let By(H) be the set
of simultaneous adjacency bases of H that are also dominating sets of every

H € H. Finally, we define the parameter

((H) =min g ky, min {|By — By|}
B1€B1(H)
By By (H)

With these definitions in mind, we give the next result.

Theorem 3.32. Let G = {G1,Gs, ..., G, } be a family of connected graphs
on a common vertex set Vi, let H = {Hy, Ho, ..., Hy,} be a family of non-
trivial graphs, defined on a common vertex set Vs, such that By (H) and By (H)
are not empty, and let H® = {Hf, Hs,..., H; }. If Vyy(G) = 0 or Bi(H) N
By(H) # 0, then

Sd(G oH) =Sd(G o H®) = |V4] - Sda(H). (3.1)
Otherwise,

Vil - Sda(H) + [V (9) Sd(G o H) = Sd(G o H*) <

Vil - Sda(H) + ¢(H) - [Var(G)]-

Proof. We first assume that Vj,(G) = 0. By Theorem [3.31] we have that
Sd(G oH) > V1| - Sda(H). Thus, it only remains to prove that Sd(G o H) <
V1| - Sda(#H). To this end, consider the partition {V{,V/"} of Vi, where
Vi ={u: u e Vp(Q) for some G € G}, and a pair of simultaneous adjacency
bases By € Bi(H) and By € By(#H). Consider the set

<
. (3.2)

S = (V] x By)U (V" x By).

It was shown in [43] that a set constructed in this manner, considering G =
{G} and H = {H}, is a metric generator for G o H. Following an analogous
reasoning, we shall deduce that S is also a metric generator for every Go H €
G o H, and thus a simultaneous metric generator for G o H. For the sake of
thoroughness of our discussion, we elaborate the four cases for two different
vertices (u;,v,), (uj,vs) € V(Go H) — S:

(1) ¢ = 7. In this case, r # s. Let R; = {u;} x V5. Since SN R; =
{u;} x By or SN R; = {u;} x By and both B; and B, are adjacency
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generators for H, there exists v € By such that dy (v, v,) # dy2(v, vs),
or there exists v € By such that dy (v, v,) # dua(v,vs). Since for every
(ui, vr), (i, vs) € R; we have that daoma((ui, vr), (i, vs)) = dm2(vr, vs),
we conclude that at least one element from S distinguishes (u;, v,) and

(ug, vg).

(2) @ # j and u;, u; are true twins. Here, since By € Ny (v,), there exists v €
By such that dy s (v, v) = 2. Thus, dgom2((wi, vy), (45, v)) = dp2(ve,v) =
2# 1 =dga(uj,u;) = daor2((us,vs), (Ui, v)).

(3) i # j and u;,u; are false twins. Here, since B is a dominating set of
H, there exists v € By such that dga(v,,v) = 1. Thus, dgoma((ui, vr),
(Uz', U)) = dH,2(Ur7U) =1#2= dG,2(Uj, Uz) = dGoH,2((Uj7Us), (Uz‘, U))

(4) i # j and w;,u; are not twins. Here, there exists u, € V; such that
dao(ui,u,) # dga(uj,uy). Since SNR, # (), we have that dgom o ((us, v,),
(uz,v)) = daa(ui,u.) # dao(uj,u.) = daoma((uj,vs), (uz,v)) for every
(us,v) €8S.

Therefore, S'is a metric generator for every GoH € GoH and, in consequence,
a simultaneous metric generator for G o H. Hence, Sd(G o H) < [S| =
|Vi| - Sda(H) and the equality holds.

We now address the proof of Sd(GoH¢) = |Vi|-Sda(H). As pointed out in
[43], By is a dominating set of every H® € H® and By satisfies By € Npye(v) for
every H¢ € H¢ and every v € V5. Since Sda(H) = Sda(H), by exchanging
the roles of By and B, and proceeding in a manner analogous to the one used
for proving that SA(G o H) < |Vi] - Sda(H), we obtain that SA(G o H¢) <
[V1|-Sda(H®) = |Vi|-Sda(H). Since SA(GoHE) > |Vi|-Sda(H) = |V1|-Sda(H)
by Theorem [3.31], the equality holds.

From now on, we assume that V3, (G) # 0 and Bi(H) N B(H) # 0.
Consider a simultaneous adjacency basis B € By (H)NBy(H). By a reasoning
analogous to the one previously shown, we have that the set S =V} x B is
a metric generator for every Go H € G o H and every G o H® € G o H".
Consequently, S is a simultaneous metric generator for G o H and G o H¢, so
Sd(GoH) < |S| = |Vi| - Sda(H) and SdA(G o H¢) < |S| = |V4] - Sda(H). By
Theorem [3.31 SA(G o H) > |Vi| - Sda(H) and SA(G o H¢) > [Vi] - Sda(H), so
the equalities hold.

From now on, we assume that Vj;(G) # 0 and By(H) N Ba(H) = 0. Let
B be a simultaneous metric basis of G o H and let B, = BN ({u,} x V2)
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for some u, € V;. Recall that, as shown in the proof of Theorem , the
projection of B, onto V5 is a simultaneous adjacency generator for H. Let
B}, be the projection onto V5 of some B, such that u, € Vj/(G). Suppose,
for the purpose of contradiction, that |B)| = Sda(#). Let G € G be a graph
where u, € Vp(G) and let G’ € G be a graph where u, € Vp(G’). We have
that there exists v € V, — BI') such that either le) C Ng/(v) for some H' € H
or By N Nyn(v) = () for some H” € H. In the first case, no vertex (z,y) € B
distinguishes in G o H' the vertex (u,,v) from any vertex (u, w) such that u,
and u; are true twins in GG, whereas in the second case, no vertex (z,y) € B
distinguishes in G’ o H” the vertex (u,,v) from any vertex (uy,w) such that
u, and uy are false twins in G'. In either case, we have a contradiction with
the fact that B is a simultaneous metric basis of G o H. Thus, for every
u, € Vr(G), we have that |B,| = |B;| > Sda(#) + 1. In conclusion,

Sd(GoH) = |Bl= Y B+ D B>

up€V1—Va(G) up€Var(9)
> ) Sda(H)+ Y (Sda(H)+1) =
upe\/l—VM(g) ’LLPEV]M(Q)

= Vi=Vu(9)]-Sda(H) + [Vi(9G)] - (Sda(H) +1) =
= Vil -Sda(H) + [Vu(G)I-

In order to prove the upper bound, consider the partition {Vy,(G), V{, V/"}
of V1, where V] = {u: u € Vp(G) for some G € G}. Since Bi(H) and By(H)
are disjoint, for any By € Bi(H) and By € By(H), there exist up to ko ver-
tices Upy, Upy, - - -, Up. € Vo — By such that By N Ny(vp,) = 0 for some H € H
and up to kg vertices vy, Vg, ..., € Vo — By such that By C Ng(v,,)
for some H € H. We define the sets B} = By U {v,,,Vp,,..., 0, } and
By = By U {vg,, Vg, ...,V }, which are simultaneous adjacency generators
for H that are also dominating sets of every H € H and satisfy B} € Ny (w)
and By ¢ Ny(w) for every w € V3 and every H € H.

Consider one By € Bi(#H) such that |Bj| is minimum and any By €
By(H). We define the set S; = (V] x By) U (V} x Bs) U (Vi (G) x BY).
Likewise, consider one By € By(#H) such that |Bj| is minimum and any
By € By(H). We define the set Sy = (V{/ x By) U (V] x Bs) U (Vi (G) x BY).
Finally, consider a pair of simultaneous adjacency bases By € Bi(H) and
By € By(H) such that |By U Bs| is minimum. As |B;| = |Bs|, we have
that |By — By| = |B1 — Bs| and is also minimum. We define the set S5 =
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(VI x B1)U(V/"x Ba)U (Vi (G) X (B1UBy)). Now, recall that for every G € G
the sets S = (Vp(G) x By) U (Vi — Vr(G)) x By) and S" = (Vi — Vp(G)) %
B1) U (Vr(G) x Bs) are metric generators for every G o H € G o H. Clearly,
S CSporS"C Sy, whereas S C Sy or S" C Sy, and S C Sz or S" C S, so we

have that S, So and S5 are simultaneous metric generators for G o H. Thus,

Sd(GoH) < min{[S|,[Sa,[S]} =
Vi = Vi (G)| - Sda(H)+

—|—]VM(Q)|-min{ min {|Bj|}, min {|Bj|},

Bi1eB1(H) BaeBa(H)

min {|l31LJ Zggl} f;
BeBy(H)
BoeBa(H)

< Vi = Va(9)] - Sda(H) + [Var(9)] - (Sda(H) + ((H)) =
= Vi - Sda(H) + ¢(H) - [V (G)]-

As in the previous cases, by exchanging the roles of B; and B, for H¢

and proceeding in an analogous manner as above, we obtain that
Vil - Sda(H) + [V (9)| < Sd(G o H®) < [Vi] - Sda(H) + ¢(H) - [Var(9)]-
The proof is thus complete. ]

We now analyse the different cases described in Theorem[3.32] First, note
that if ((H) = 1, then Equation becomes an equality. In particular,
((H) =1 for every H = {H}. Additionally, if there exists a simultaneous
adjacency basis By € Bj(H) such that one vertex v € V, — B; satisfies
BiNNg(v) =0 for every H € H, then ((H) = 1. In an analogous manner, if
there exists a simultaneous adjacency basis By € By(#H) such that one vertex
v € Vo — By satisfies By C Ny(v) for every H € H, then ((H) = 1. Finally,
if there exist two simultaneous adjacency bases By € Bi(H) and By € By(H)
such that |By U Bs| = Sda(H) + 1, then ((H) = 1.

Next, we discuss Equation (3.1)). First, note that Vy;({G}) = 0 for
every graph G. Now, we analyse several non-trivial conditions under which
a graph family G composed by connected graphs on a common vertex set
satisfies Vs (G) = (). Consider two vertices u and v that are true twins in
some graph G, and a vertex z € V(G) — {u, v} such that x ~ v and = ~ v.
We have that ({u,v,z})e = Cs. This fact allows us to characterize a large

number of families composed by true-twins-free graphs, for which Vj;(G) = 0.
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Remark 3.33. Let G be a graph family on a common vertex set, such that
every G € G is a tree or satisfies g(G) > 4. Then, Vi, (G) = 0.

In particular, for families composed by path or cycle graphs of order
greater than or equal to four, not only all members are true-twins-free, but
they are also false-twins-free. Moreover, families composed by hypercubes of
order 2", r > 2, satisfy that all their members have girth four.

We now study the behaviour of Vi, (#) for H C Gp(G), where B is an

adjacency basis of G.

Remark 3.34. For every adjacency basis B of a graph G, and every family
7{ g; g;E?((;);
‘(ﬂ{(?{) = @.

Proof. Let B be an adjacency basis of G. Consider a pair of vertices z,y € B.
By the construction of gB(G), we have that in every H € H either x and
y are true twins, or they are false twins, or they are not twins. Moreover,
since B is a simultaneous adjacency generator for H, no pair of vertices
xz,y € V(G) — B are twins in any H € #H. Finally, consider two vertices
x € B and y € V(G) — B. If there exist graphs Hy, Ho, ..., H, € H where
Ny, (z) = Ny, (y), i € {1,...,k}, we have that, by the construction of G5(G),
either x ~ y in every H;, i € {1,...,k}, or x = y in every H;, i € {1,... ,k}.
Hence, x and y are true twins in every H;, i € {1,...,k}, or they are false

twins in every H;, i € {1,...,k}. In consequence, Vy;(H) = 0. O

We now discuss several cases where a graph family H satisfies B;(#H) N

By(H) # 0. First, we introduce an auxiliary result.

Lemma 3.35. Let P, and C,, be a path and a cycle graph of order n > 7. If
n = 1(5) orn = 3(5), then no adjacency basis of P, or C, is a dominating
set. Otherwise, there exist adjacency bases of P, and C,, that are dominating

sets.

Proof. In C,,, consider the path v;v;11v;12v;13v;14, where the subscripts are
taken modulo n, and an adjacency basis B. If v;,v,40 € B and v;11 ¢
B, then {v;;1} is said to be a 1-gap of B. Likewise, if v;,v;13 € B and
Vit1, Vire & B, then {v;11,v;12} is said to be a 2-gap of B and if v;,v;14 € B
and v;y1, V2,003 € B, then {v1,v;192,v;43} is said to be a 3-gap of B.

Since B is an adjacency basis of C,, it has no gaps of size 4 or larger and it
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has at most one 3-gap. Moreover, every 2- or 3-gap must be neighboured by

two 1-gaps and the number of gaps of either size is at most dimy4(C,,). We

now differentiate the following cases for C);:

(1)

n = 5k, k > 2. In this case, dim(C,) = 2k and n — dimy(C,,) = 3k.
Since any 2-gap must be neighboured by two 1-gaps, any adjacency basis
B has at most k 2-gaps. For any adjacency basis B having exactly k 2-
gaps and exactly k 1-gaps, the number of vertices of V(C,,) — B belonging
to a 1- or 2-gap is 3k = n—|B|, so B has no 3-gaps, i.e. it is a dominating

set.

n = 5k + 1, k > 2. In this case, dim4(C,) = 2k and n — dima(C,,) =
3k + 1. As in the previous case, any adjacency basis B has at most k
2-gaps. Now, assume that B has no 3-gaps. Then |V(C,,) — B| = 3k <
3k+1 = n—|B|, which is a contradiction. Thus, any B has a 3-gap, i.e.

it is not dominating.

n =5k+2, k> 1. In this case, dim4(C,) = 2k + 1 and n — dim4(C,,) =
3k + 1. As in the previous cases, any adjacency basis B has at most k
2-gaps. For any adjacency basis B having exactly k 2-gaps and exactly
k + 1 1-gaps, the number of vertices of V(C,) — B belonging to a 1- or
2-gap is 3k +1 = n—|B|, so B has no 3-gaps, i.e. it is a dominating set.

n = 5k+3, k> 1. In this case, dim4(C,) = 2k + 1 and n — dim4(C,,) =
3k + 2. As in the previous cases, any adjacency basis B has at most k
2-gaps. Now assume that B has no 3-gaps. Then |V (C,)—B| =3k+1 <
3k +2 = n — |BJ, which is a contradiction. Thus, any B has a 3-gap, i.e.

it is not dominating.

n = >5k+4, k> 1. In this case, dim4(C,) = 2k + 2 and n — dim4(C,,) =
3k + 2. Assume that some adjacency basis B has k + 1 2-gaps. Then, B
would have at least k + 1 1-gaps, making |V (C,,) — B| > 3k + 3, which
is a contradiction. So, any adjacency basis B has at most k 2-gaps.
For any adjacency basis B having exactly k£ 2-gaps and exactly £k + 2
1-gaps, the number of vertices of V(C,,) — B belonging to a 1- or 2-gap
is 3k +2 =n — |B|, so B has no 3-gaps, i.e. it is a dominating set.

By the set of cases above, the result holds for C),.
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Now consider the path P,, n mod 5 € {0,2,4}, and let C/ be the cycle
obtained from P, by joining its leaves v; and v, by an edge. Let B be an
adjacency basis of C!, which is also a dominating set and satisfies vy, v, ¢ B
(at least one such B exists). Since the only value of dc o that differs from
dp,2 18 der 2(v1,v,) = 1 # 2 = dp, 2(v1,v,), it is simple to see that every
v € V(P,) — B has the same adjacency representation in P, with respect to
B asin C), so B is also an adjacency basis and a dominating set of P,.

To conclude, consider the path P,, n mod 5 € {1, 3}, and let C/, be the
cycle obtained from P, by joining its leaves v; and v,, by an edge. Consider
V = V(P,) = V(C,), and let B be an adjacency basis of P,. Since for
two different vertices x,y € V, der o(x,y) # dp, 2(x,y) if and only if z,y €
{v1,v,}, we have that if v;,v, € B or vj,v, ¢ B, then B is an adjacency
basis of C,,. Moreover, some vertex w € V — B satisfies B N Np,(w) =
BN Ner (w) =0, so B is not a dominating set of P,. We now treat the case
where v; € B and v, ¢ B. If v,_; ¢ B then B is not a dominating set of
P,. If v,_1 € B and vy ¢ B, we have that dcs 2(ve, Vn—1) = dp, 2(V2, Up—1) =
2 # 1 = dp,2(Vn,Vn—1) = dcs, 2(Un,Vp—1), Whereas for any other pair of
different vertices x,y € V — B there exists z € B such that des o(7,2) =
dp,2(x,2) # dp, 2(y, z) = decs 2(y, 2), so B is an adjacency basis of C}, where
{vn} is a 1-gap. In consequence, some vertex w € V — (B U {v,}) satisfies
BN Np,(w) = BNN¢r (w) = 0, so B is not a dominating set of P,. Finally, if
Vo, Up_1 € B, then for any pair of different vertices x,y € V' — B there exists
z € B —{v1} such that dey o(z, 2) = dp, 2(x, 2) # dp, 2(y, 2) = der 2(y, 2), sO
B is an adjacency basis of C!, where {v,} is a 1-gap. As in the previous case,
some vertex w € V — (B U {v,}) satisfies BN Np,(w) = BN Ner (w) =0, so

B is not a dominating set of P,. The proof is complete. n

The following results hold.

Remark 3.36. Let P, be a path graph of order n > 7, where n mod 5 €
{0,2,4}, and let C,, be the cycle graph obtained from P, by joining its leaves
by an edge. Let B be an adjacency basis of P, and C, which is also a
dominating set of both. Then, every H C gB(Pn) UgB(Cn) such that P, € H
or Cy, € H satisfies B1(H) N Ba(H) # 0.

Proof. The existence of B is a consequence of Lemma [3.35, Since P, € H
or C, € H, we have that B is a simultaneous adjacency basis of H. Let
V =V(P,) = V(Cy). By the definition of G5(G), we have that | J Ny(v) =

veEB
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Uan(v) =V or UNH(U) = UNCn<U) =V for every H € H, so B is
veEDB veEB vEB
a dominating set of every H € H. Moreover, by Lemma [3.16] we have that

B SZ Np,(v) and B € Ng¢, (v) for every v € V. Furthermore, by the definition
of G5(@), we have that BﬂNH( )= BNNp, ( ) or BONg(v) = BN Ng, (v)
for every H € H and every v € V, so B € Ng(v) for every H € H and every
v € V. In consequence, B € By(H) N Bay(H), so the result holds. O

The following result is a direct consequence of Theorem [3.32] and Re-
mark [3.36]

Proposition 3.37. Let G be a family of connected graphs on a common
vertex set V', let P, be a path graph of order n > 7, where n mod 5 €
{0,2,4}, and let C,, be the cycle graph obtained from P, by joining its leaves
by an edge. Let B be an adjacency basis of P, and C, which is also a
dominating set of both. Then, for every H C Gy(P,) U Gp(C,) such that
P,eH orC, eH,

SA(G o H) = V] - f";QJ |

Remark 3.38. Let H be a graph family on a common vertex set V' of car-
dinality |V| > 7 such that every H € H satisfies D(H) > 6, or g(H) > 5
and §(H) > 3, or it is a cycle graph. Let H' be a graph family on a common
vertex set V' of cardinality |V'| > 7 satisfying the same conditions as H.
Then, By(H +H') N Bo(H +H') # 0.

Proof. As we discussed in the proof of Theorem there exists a simul-
taneous metric basis B of ‘H + H’, which is also a simultaneous adjacency
basis, such that the sets W = BNV and W’ = BNV’ satisfy W & Ny(v)
for every H € H and every v € V, and W' € Ny (w) for every H' € H’
and every w € V’. In consequence, we have that B ¢ Ny, (v) for every
H+ H € H+H and every v € V UV’. Moreover, every vertex in V is
dominated by every vertex in W', whereas every vertex in V' is dominated
by every vertex in W, so B is a dominating set for every H + H' € H + H'.
In consequence, B € By(H + H') N Bo(H + H'), so the result holds. O

By an analogous reasoning, Theorems [3.8 and [3.20] lead to the next
result.
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Remark 3.39. Let H be a graph of order n which satisfies D(H) > 6, or
g(H) > 5 and §(H) > 3, or it is a cycle graph with n > 7. Let H' be a
graph satisfying the same conditions as H. Let B and B’ be adjacency bases
of H and H', respectively. Then, any pair of families H C CVB(H) and H' C
G (H') such that H € H and H' € H' satisfies By(H+H)NBa(H+H') # 0.

The two following results are direct consequences of Theorem |3.32] and

Remarks B.38 and .39

Proposition 3.40. Let G be a family of connected graphs on a common ver-
tex set Vy. Let H be a graph family on a common vertex set Vo of cardinality
\Va| > 7 such that every H € H satisfies D(H) > 6, or g(H) > 5 and
0(H) > 3, or it is a cycle graph. Let H' be a graph family on a common
vertex set Vi of cardinality |Vy| > 7 satisfying the same conditions as H.
Then,

Sd(G o (H +H)) = [Vi] - Sda(H) + [Vi] - Sda(H).

Proposition 3.41. Let G be a family of connected graphs on a common
vertex set V.. Let H be a graph of order n which satisfies D(H) > 6, or
g(H) > 5 and 6(H) > 3, or it is a cycle graph with n > 7. Let H' be a
graph satisfying the same conditions as H. Let B and B’ be adjacency bases
of H and H', respectively. Then, for any pair of families H C §B(H) and
H' C JB/(H’) such that H € H and H' € H',

Sd(g o (H +H/)) = ’V| : dlmA(H) + ’V| : dlmA(H/)

We now analyse several conditions under which a graph family G com-
posed by connected graphs on a common vertex set satisfies V3;(G) # 0 and,
in some cases, we exactly determine the value of Vj,(G). It is simple to see
that any graph of the form K; + G, t > 2, satisfies V(K;) C v* for some
v* € T(K; + G). Likewise, any graph of the form N, + G, t > 2, satisfies
V(N;) C v* for some v* € F(N; + G). Moreover, any complete graph K,
n > 2, satisfies T'(G) = {V(K,)}. The next results are direct consequences
of these facts.

Remark 3.42. Let G = {G1,Ga,...,Gy} be a family of connected graphs on
a common vertex set V' such that, for some i € {1,...,k}, G; = Ny + &,
where Ny is an empty graph on the vertex set V! C V, |[V'| > 2, and G' =
(V =V, E"). If, for some j € {1,....k} —{i}, G; = K+ G", where K; is a
complete graph on the vertex set V' and G" = (V. —=V', E"), then Vy;(G) # 0.
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Corollary 3.43. Let G = {G1,Gs, ..., Gy} be a family composed by path or
cycle graphs on a common vertex set Vi of size n > 4, and let {K;, N} be a
family composed by a complete and an empty graph on a common vertex set Vs
of sizet > 2. Then every non-empty family H C {N;+G1, N;+Ga, ..., Ny +
Gy} and every non-empty family H' C { K, Ki+G1, Ki+Go, ..., Ki+ G}
satisfy Vy(HUH') = Vs.

We now analyse cases of families containing a graph and its complement.

Remark 3.44. Let G be a connected graph such that |T(G)| > 1 or |F(G)| >
1, and G is connected. Then any family G composed by connected graphs on
a common vertex set such that G € G and G° € G satisfies Vi (G) # 0.

Proof. First assume that |T'(G)| > 1. Consider a true-twins equivalence class
vi = {v1,v2,...,u} € T(G). For every pair of vertices v;,v; € vj, we have
that Nge(v;) = Nge(vj) and v; »ge vj. In consequence, v; is a false-twins
equivalence class of G°. Now assume that |F(G)| > 1 and consider a false-
twins equivalence class wi = {wy,ws,...,ws} € F(G). For every pair of
vertices w;, w; € wy, we have that Nge|w;| = Nge|w;], so w} is a true-twins
equivalence class of G°. In consequence, Vr(G) U Vp(G) C Vi (G), so the

result follows. N

Corollary 3.45. For every connected graph G such that G¢ is connected,
Vi({G, GY}) = Vr(G) U Ve(G).

D)

Finally, we analyse some examples of families H satisfying B;(H)
By(H) = 0. Consider the family Hs = {Ps,Cs}, where V(P5) = V(C5)
{v1,v9,v3,04,05}, E(Ps) = {v1v9, 0003, v304, v4vs5} and E(C5) = E(Ps)
{v1vs}. We have that By (Hs) = {{v1,vs}, {ve,v3}, {vs,v4}} and Ba(Hs)
{{va,v4}}, that is By (Hs) N Ba(Hs) = 0. Likewise, Bi({Ps}) = {{v1,v5}, {vo,
vsh{vs,vat} and Bo({Fs}) = {{vz,va}}, ice. Bi({F5}) N Bo({F5}) = 0;
whereas By ({C5}) = {{v1,va}, {v1,vs}, {va, v3}, {vs,va}, {vs,v5}} and
Bo({Cs}) = {{vr,vs}, {vi,vat, {va, va}, {vo, 05}, {vs, v5}}, e Bi({Cs}) N
By({Cs}) = 0. Moreover, the vertex vz satisfies {vqg,v4} C Np,(v3) and
{va,v4} € Ney(v3), so ((H) =1 for every non-empty subfamily H C Hs.

Additionally, consider the family H% = {H,, Ho, Hs, Hy} depicted in
Figure . 7—[532) is defined on the common vertex set V' = {vy,..., Uy, Upyi1,
ey Unaet, > T7,n mod 5 € {0,2,4}, and the dashed lines in the figure in-

dicate that H; differs from H; in the fact of containing, or not, each one of the

C
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edges v1v, and v, 90,44, Let Vi = {vq,... 0.} and Vo = {v,i1, ..., U006}
We have that, for every H € Hé’;), (Vi)u = P, or (Vi)g = C,. In conse-
quence, for every non-empty subfamily H C HEZ), we have that Sda(H) =
dimy(P,) +2 = dima(C),) + 2, and every simultaneous adjacency basis B has
the form B = B'UX, where X C V5 and B’ is a simultaneous adjacency basis
of ' ={(Vi)g : H € H}. Moreover, we have that By (H) = { B'UX }, where
B’ is a simultaneous adjacency basis of H' that is also a dominating set of ev-
ery H' € H' (Lemmal3.35] and the fact that two graphs in H' differ at most in
the fact of containing, or not, the edge v,v,,, guarantee the existence of such
B') and X € {{vny2, Vn13}, {Vn+3, Untats {Un43; Unis } {Uns3, Unte s {Onss,
Unte}}. Likewise, Bo(H) = {B' U{vp12, Unia}}, where B’ is a simultaneous
adjacency basis of H’ that is also a dominating set of every H' € H'. Clearly,
Bi(H)NBy(H) = 0. Moreover, for every B € By(H), the vertex v, satisfies
B C Ny (vpy1) for every H € H, so ((H) = 1.

V2 U3 V4 Us Vg

O O Q O O O O
(%1 (%0
O
Un41
Un+2 Un+4
O O O
Un+3
Un45 Un+6
n 5 S n

Figure 3.6: For n > 7, n mod 5 € {0,2,4}, every non-empty subfamily
7 of the family HW = {Hy, Hy, Hy, Hy} satisfies By(H) N Bo(H) = 0 and
¢(H) =1

The aforementioned facts, along with Corollaries and allows
us to obtain examples where Equation (3.2)) becomes an equality.

Proposition 3.46. Let G = {G1,Gs, ..., G} be a family composed by path
or cycle graphs on a common vertex set Vi of size p > 4, and let { Ky, N;} be

a family composed by a complete and an empty graph on a common vertex
set Vo of sizet > 2. Let G C{N; + G1, Ny + Ga, ..., Ny + Gy}, G # 0, and
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let G" C{K,it, Ki+ G, Ki+Go, ..., Ki+ G}, G" # (. Then, the following
assertions hold:

(i) For every non-empty subfamily H C Hs,

SA((G'UG") oH) = Vi UVa| - Sda(H) + |Var(G' U G")| = 2p + 3t.

(ii) For every n > 7, where n mod 5 € {0,2,4}, and every non-empty
subfamily H C Hé’;),

SA((G'UG") o H) = [ViUVe|-Sda(H) + [Vu(G"UG")| =
= (p+t)- ([ +2)+¢

Proposition 3.47. Let G be a connected graph of order q such that G¢ is
connected. Then, the following assertions hold:

(i) For every non-empty subfamily H C Hs,

SA({G, G} o) = ¢-Sda(H) +[Vi({G, G} = 2¢+ [Vr(G)[+[VE(G)].

(ii) For every n > 7, where n mod 5 € {0,2,4}, and every non-empty
subfamily H C HW,

SA{G,G}oH) = q-Sda(H)+ [Vu({G,GY})| =
= ¢ ([Z2] +2) + V2 (G)| + [Vr(G)].

The previous examples additionally show that the bounds of Equation
are tight. In general, the upper bound is reached when min{|S4|, |Sa], |S5|} =
|S3| or when for every By € B;(H) there exist exactly ko vertices v,,, v, - - -,
v, € Vo — By such that By N Ny(v,,) = (0 for some H € H and for every
By € By(H) there exist exactly ko vertices vy, vg,, ..., € Vo — By such
that By C Ny(v,,) for some H € H.

In order to present our next results, we introduce some additional defi-
nitions. For a family H of non-trivial graphs on a common vertex set V', and

a simultaneous adjacency basis B € B(H), consider the sets
P(B)={veV: BC Ng(v) for some H € H}

and
Q(B)={veV: BN Ng(v) =0 for some H € H}.
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Based on the definitions of P(B) and Q(B), we define the parameter

&G H) = min {IPB) (Ve (@) = IT(G)) + QB (VRG] = [F(G))}-

BeB(H

Finally, for a graph G, let Vi (G) = U,«crq)(v* — {v}) be the set com-
posed by all vertices, except one, from every true-twins equivalence class of G.
Likewise, let Vi(G) = U,«cp(q) (v" — {v}) be the set composed by all vertices,
except one, from every false-twins equivalence class of G. For convenience,
we will assume without loss of generality that for every graph G a fixed ver-
tex will always be the one excluded from every true or false-twins equivalence
class when constructing V}.(G) or V/(G), respectively. With these definitions

in mind, we give our next result.

Theorem 3.48. Let G be a connected graph of order n and let H = {Hy, Ho,

., Hy} be a family of non-trivial graphs on a common vertex set V. If for
every simultaneous adjacency basis B of H there exists H € H where one
vertex v satisfies B C Ny (v), or there exists H' € H for which B is not a
dominating set, then

n-Sda(H) < SA(GoH) < n-Sda(H) +E(G,H).

Proof. Sd(G oH) > n-Sda(H) by Theorem [3.31] so we only need to prove
that SA(GoH) <n-Sda(H) +&(G,H). Let B be a simultaneous adjacency
basis of H for which (G, #H) is obtained. We differentiate the following cases
for every graph H; € H:

(1) There exist wy, wq € Va such that B C Ny, (w;) and BN Ny, (wp) = 0. In
this case, we define the set S; = (V(G) x B)U(V(G) x {w1 })U(VE(G) x

{wa}).

(2) There exists wy € V5 such that B C Ny, (w;) and there exists no vertex
x € V, such that B N Ny, (z) = 0. In this case, we define the set

Si = (V(G) x B) U (Vp(G) x {wr}).

(3) There exists wy € V5 such that B N Ny, (wy) = () and there exists no
vertex © € V5 such that B C Ng,(z). In this case, we define the set

Si = (V(G) x B)U (Vi(G) x {ws}).

(4) There exists no vertex x € V4 such that B C Ny, (z) or BN Ny, (z) = 0.
In this case, we define the set S; = V(G) x B.
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For cases 1, 2 and 3, it is shown in [43] that the corresponding set S;
is a metric generator for G o H;. Moreover, as we discussed in the proof

of Theorem [3.32], in case 4 the corresponding set S; is a metric generator

for G o H;. In consequence, the set S = |J S; is a simultaneous metric
1<i<k

generator for G o H. Therefore, SA(GoH) < |S| =n-Sda(H) + &(G,H), so

the result holds. O]

The bounds of the inequalities in Theorem [3.48| are tight. As pointed out
in [43], a twins-free graph G satisfies T(G) = Vi (G) = F(G) = Vr(G) = 0.
In consequence, {(G, H) = 0 for any twins-free graph G and any graph family
H, so Theorem leads to the next result.

Proposition 3.49. Let G be a twins-free connected graph of order n, and

let H be a famuly of non-trivial graphs on a common vertex set. Then,
SAd(GoH) =n-Sda(H).

Recall the families K(V) of star graphs defined in Section 2.1} The
following result is an example of a family for which the upper bound of the

inequalities of Theorem [3.48] is reached.

Proposition 3.50. For every finite set V' of size |V| > 4,
Sd(P,o K(V))=2-|V|-1.

Proof. By Corollary , every simultaneous adjacency basis B of I(V') has
the form V. —{v;}, i € {1,...,[V|}. In K7 ,_;, we have that B C Ny (vi),
50 £(Py, K(V)) = 1. Thus, Sd(Pao £(V)) <2-Sda(K(V))+1=2-|V] - 1.
Additionally, since P, o H = H + H for any graph H, we have that Sd(P; o
K(V)) =Sd(K(V)+K(V)) >2-Sda(K(V))+1 = 2-|V|—1 by Theorem 3.25]
so the equality holds. O

As we did for join graphs, now we define large families composed by
subgraphs of a lexicographic product graph G o H, which may be seen as the
result of a relaxation of the lexicographic product operation, in the sense that
not every pair of nodes from two copies of the second factor corresponding
to adjacent vertices of the first factor must be linked by an edge. Since for
any adjacency basis B of G o H, the family Rp defined in the next result is
a subfamily of Gp(G o H), the result follows directly from Theorem .
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Corollary 3.51. Let G be a connected graph of order n, let H be a non-trivial
graph and let B be an adjacency basis of G o H. Let E' = {(u;,u;)(u,, us) €
E(GoH): i#r, (u,u;) ¢ B, (ur,us) ¢ B} and let Rp = {R1, Ro, ..., Ry}
be a graph family, defined on the common vertex set V(G o H), such that, for
every l € {1,...,k}, E(R)) = E(Go H) — E,, for some edge subset E; C E'.
Then

Sd(Rp) < dim(G o H).

3.5 Families of corona product graphs

For two graph families G = {G1,Ga,...,Gy, } and H = {Hy, Hs, ..., Hy,},

defined on common vertex sets V' and V', respectively, we define the family

GoH={GoH: GeG, HecH).

In particular, if G = {G}, we will use the notation G ® H.

Given G € G and H € H, we denote by H; = (V/, E;) the subgraph
of G ® H corresponding to the i-th copy of H. Notice that for any ¢ € V
the graph H;, which is isomorphic to H, does not depend on G. Hence, the

graphs in G ©® H are defined on the vertex set V' U (U |74 ) Analogously,
=%
for every ¢ € V we define the graph family

7{i:: {fﬁ‘zz(‘gc.ﬁ%) : He 7{}.

Also, given a set W C V' and i € V, we denote by W; the subset of V/
corresponding to W. To clarify this notation, Figure [3.7] shows the graph
Cy ® (K7 U K>). In the figure, V = {1,2,3,4} and V' = {a,b, c}, whereas
V! ={ai, b;,c;} for i € {1,2,3,4}.

3.5.1 Results on the simultaneous metric dimension

We first introduce a useful relation between the metric generators of two
corona product graphs with a common second factor, which allows to deter-
mine the simultaneous metric dimension of several families of corona product
graphs through the study of the metric dimension of a specific corona product
graph.
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Figure 3.7: The graph G ® H, where G = Cy and H = K, U K.

Theorem 3.52. Let G and Gy be two connected non-trivial graphs on a
common vertex set and let H be a non-trivial graph. Then any metric gene-
rator for Gy ® H is a metric generator for Go ® H.

Proof. Let V' be the vertex set of G; and G5 and let V'’ be the vertex set of
H. We claim that any metric generator B for Gy ® H is a metric generator
for Gy ® H. To see this, we differentiate the following three cases for two
different vertices z,y € V(G2 ® H) — B.

(1) x,y € V/. Since no vertex belonging to B — V; distinguishes the pair z,y
in G; ® H, there must exist v € VN B which distinguishes them. This

vertex u also distinguishes x and y in Gy, ® H.

(2) Either # € V/ and y € V] or # = i and y € V], where i # j. For these
two possibilities we take v € BNV, and we conclude that dg,opn(x,u) <
2# 3 <dg,on(y,w).

(3) x =i and y = j. In this case, for u € BNV}, we have dg,on(z,u) =1 #
2< dGz@H(yvu)‘

In conclusion, B is a metric generator for Gy, ® H. [

The following result is a direct consequence of Theorem [3.52]
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Corollary 3.53. Let G be a family of connected non-trivial graphs on a
common vertex set and let H be a family of non-trivial graphs on a common
vertex set. Then, for any G € G,

SA(G ®H) = Sd(G © H).

The following result, obtained in [26], provides a strong link between
the metric dimension of the corona product of two graphs and the adjacency

dimension of the second graph involved in the product operation.

Theorem 3.54. [26] For any connected graph G of order n > 2 and any

non-trivial graph H,
dim(G ® H) =n -dima(H).

We now present a generalisation of Theorem to deal with graph

families.

Theorem 3.55. For any family G composed by connected non-trivial graphs
on a common vertex set V and any family H composed by non-trivial graphs

on a common vertexr set,
SA(GOH) = |V]-Sda(H).

Proof. Throughout the proof we consider two arbitrary graphs G € G and
H € H. Let B be a simultaneous metric basis of G © H and let B; = BNV/.
Clearly, B; N B; = () for every i # j. Since no pair of vertices x,y € H; is
distinguished by any vertex v € Bj, i # j, we have that B, is an adjacency
generator for H;. Hence, the set B’ C V' corresponding to B; C V/ is an
adjacency generator for H and, since B’ does not depend on the election of

H, it is a simultaneous adjacency generator for H and, as a result,

SAGOH) =B =Y |Bi| = [VI|B| = [V] - Sda(H).
eV
Now, let W be a simultaneous adjacency basis of H and let W; = WnNV/.

By analogy to the proof of Theorem [3.54 we see that S = U W; is a metric
ieV
generator for G ® H. Since S does not depend on the election of G and H,

it is a simultaneous metric generator for G ® H and so
SA(GOH) < [S] =D [Wi| = V|- Sda(H).
i€V

Therefore, the equality holds. O
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The following result is a direct consequence of Theorems and [3.55|

Proposition 3.56. Let G be a family of connected non-trivial graphs on a
common vertex set V. Let H be a non-trivial graph and let B be an adjacency
basis of H. Then, for every H C gB(H) such that H € 'H,

Sd(G OH) = |V| - dima(H).

3.5.2 Results on the simultaneous adjacency dimen-
sion

Given a family G of connected non-trivial graphs on a common vertex set V'
and a family H of non-trivial graphs on a common vertex set, Remark
and Theorem [3.55] lead to

Sda(GOH) >Sd(GOH) = |V|-Sda(H). (3.3)
Therefore, there exists an integer f(G,H) > 0 such that
Sda(G ©H) = [V]-Sda(H) + f(G, H). (3.4)

It is easy to check that for any simultaneous adjacency basis W of H

and any ¢ € V, the set (V — {i}) U (U W, | is a simultaneous adjacency
jev

generator for G © H, where W is the subset of V] corresponding to W C V.

Hence,

0<f(G,H) <|V[-1L (3-5)

From now on, our goal is to determine the value of f(G,H) under diffe-
rent sets of conditions. We begin by pointing out a useful fact which we
will use throughout the remainder of this section. Let B be a simultaneous
adjacency basis of G ® H, and let B; = BN V.. The following observation is
a consequence of the fact that for any graph GO H e GO H and 7 € V|, no

vertex in B — B; is able to distinguish two vertices in V.

Remark 3.57. Let G be a family of connected non-trivial graphs on a com-
mon vertex set V and let H be a family of non-trivial graphs on a common
vertex set V'. Let B be a simultaneous adjacency basis of G © H and let
B; = BNV, for everyi € V. Then, B; is a simultaneous adjacency genera-

tor for H;.
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Now, consider the following known result where f(G, H) = 0.

Theorem 3.58. [20] Let G be a connected graph of order n > 2 and let H
be a non-trivial graph. If there exists an adjacency basis S of H, which is
also a dominating set, and if for every v € V(H) — S, it is satisfied that
S & Ng(v), then

dima(G © H) =n - dimy(H).

As the next result shows, Theorem [3.58| can be generalised to the case
of families of the form G ® H. To this end, recall the notion of simultaneous
domination which, as we mentioned previously, was introduced in [7]. On
a graph family G, defined on a common vertex set V, aset M C V is a

simultaneous dominating set if it is a dominating set of every graph G € G.

Theorem 3.59. Let G be a family of connected non-trivial graphs on a com-
mon vertex set V' and let H be a family of non-trivial graphs on a common
vertex set V'. If there exists a simultaneous adjacency basis B of H which is
also a simultaneous dominating set and satisfies B ¢ Ny (v) for every H € H
and every v € V', then

SdA(G O H) = V|- Sda(H).

Proof. By we only need to show that Sd4(G ® H) < |V|-Sda(H). To
this end, assume that B is a simultaneous adjacency basis of H which is a
simultaneous dominating set of H and satisfies B ¢ Ny (v) for every H € H
and every v € V'. Consider an arbitrary graph G © H € G ® H and let

; = BNV for every i € V. By analogy to the proof of Theorem

we see that S = UBi is an adjacency generator for G ® H and, since S
eV
does not depend on the election of G and H, it is a simultaneous adjacency

generator for G ® H. Thus, Sda(G © H) < |S| = |V]| - Sda(H), and the
equality holds. O]

The following result is an example of a case where Theorem |3.59| allows
to exactly determine the value of Sd4(G ® H) for a large number of graph

families.

Proposition 3.60. Let G be a family of connected non-trivial graphs on a
common vertex set V. Let P, be a path graph of order n > 7 such that
n #Z 1 mod 5 and n # 3 mod 5, and let C,, be the cycle graph obtained from
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P, by joining its leaves by an edge. Let B be an adjacency basis of P, and C),
which is also a dominating set of both. Then, for every H C gB(Pn)UéB(C'n)
such that P, € H or C,, € H,

2n +2
Sda(GOH) = V] { . J :
Proof. The existence of B is a consequence of Lemma [3.35, Since P, € H
or C), € H, by Theorem we deduce that B is a simultaneous adjacency
basis of H. Let V' = V(P,) = V(C,). By the definition of G5(G), we have
that UNH(U) = Uan(v) =V'or UNH(U> = UNCn(U> = V' for every

veEB veEB veEB vEB
H € H, so B is a dominating set of every H € H. Moreover, by Lemma |3.16],

we have that B ¢ Np, (v) and B € N, (v) for every v € V'. Furthermore, by
the definition of G5(G), we have that BNNy (v) = BNNp, (v) or BONy(v) =
BNNg, (v) for every H € H and every v € V', so B € Ny(v) for every H € H
and every v € V', In consequence, the result follows from Remark and
Theorems [3.8 and [3.59] ]

In order to show some cases where f(G,H) = |V| — 1, we present the

following result.

Theorem 3.61. Let G be a family of connected non-trivial graphs on a com-
mon verter set V and let H be a family of non-trivial graphs on a common
vertex set. If for every simultaneous adjacency basis B of H there exists

H € H where B is not a dominating set, then
Sda(GOH)=|V]-Sda(H) +|V]| — 1.

Proof. By and we have that Sd4(GOH) < |V|-Sda(H)+|V]|—1.
It remains to prove that Sd (G © H) > |V|-Sda(H) + |V] — 1.

Let U be a simultaneous adjacency basis of G © H, let U; = U NV and
let Uy = U NV. By Remark U; is a simultaneous adjacency generator
for H; for every i € V. Consider the partition {V;, V2} of V' defined as

Vi={ieV: |U]|=Sds(H)} and Vo = {i € V : |U;| > Sdu(H) + 1}.

For any 4,5 € Vi, i # j, we have that there exist a graph H € H and
two vertices » € V; — U; and y € V] — U; such that U; N Ny(r) = () and
U;NNg(y) =0. Thus, i € U or j € U and so |Uy| > |V4| — 1. In conclusion,
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Sda(GOH) = U] + > U+ > |Ui|

%1 i€Va
> ([Vil = 1) + [Va| - Sda(H) + V2| - (Sda(H) + 1)
=|V]-Sda(H)+|V] - 1.

Therefore, the result follows. n

Now we treat some specific families that satisfy the conditions of Theo-

rem Lemma allows us to give the following result.

Proposition 3.62. Let G be a family of connected non-trivial graphs on a
common vertex set V. Let P, be a path graph of ordern > 7, n =1 mod 5
orn =3 mod 5, and let C, be the cycle graph obtained from P, by joining
its leaves by an edge. Let B be a simultaneous adjacency basis of {P,,Cy}.
Then, for every family H = Hqi U Hy such that Hy is composed by paths,
H, C §B(Pn), P, € Hi, Ho is composed by cycles, Hy C gB(Cn), and

(7n € 7{2;
SdA(G O H) = |V]- (f”; 2J + 1> 1

Proof. Note that B is an adjacency basis of both P, and C,,. Since P, € H;
and C, € H,, we have that B is a simultaneous adjacency basis of H =
H1 UHs by Theorem [3.8] Moreover, since every H € H; is a path graph and
every H € Hs is a cycle, we have that dimy(H) = Sd4(H) for every H € H,
so every simultaneous adjacency basis of H is an adjacency basis of every
H € H and, by Lemma [3.35] is not a dominating set of H. Thus, the result
follows from Theorem [B.61] O

It is worth noting that for a path graph P, and a cycle graph C,,, n > 7,
n=1 mod 5 or n =3 mod 5, and an adjacency basis B of both, the fam-
ily C?B(Pn) contains (n — \_2"—;2”' path graphs, whereas the family éB(Cn)

contains (n — LQ"—;ZJ)' cycle graphs.

Proposition 3.63. Let G be a family of connected non-trivial graphs on a
common vertez set V and let H = {N;UH;, NyUH,, ..., NyUHy}, where N,
is an empty graph of ordert > 1 and Hy, Hs, ..., Hy are connected non-trivial

graphs on a common vertex set. Then,

Sda(G O H) = |V]-Sda(H) + |V] - 1.
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Proof. Consider that the common vertex set of H has the form V' = V (V) U
V" where V(N;) and V" are disjoint. Let B be a simultaneous adjacency
basis of H, and let B” = BN V”. Consider an arbitrary graph N, U H € H.
The vertices of N, are false twins, so V(N;) C B if and only if there exists
v € V" such that BN Ny (v) = (). If such v exists, it is not dominated by B,
so the result follows from Theorem [3.61] Otherwise, V/(N;) — B = {v'} and
BN Ny(v') =0, so the result follows from Theorem [3.61] O

Recall that «(G) denotes the domination number of a graph G.

Theorem 3.64. [20] Let G be a connected graph of order n > 2 and let
H be a non-trivial graph. If there exists an adjacency basis of H, which is

also a dominating set and if, for any adjacency basis S of H, there exists
veV(H)—S such that S C Ny (v), then

dima(G© H) =n-dimus(H) + v(G).

The simultaneous domination number of a family G, which we will denote
as S7v(G), is the minimum cardinality of a simultaneous dominating set. The
next result is a generalisation of Theorem to the case of G © H.

Theorem 3.65. Let G be a family of connected non-trivial graphs on a com-
mon verter set V and let H be a family of non-trivial graphs on a common
vertex set V'. If there exists a simultaneous adjacency basis of H which is
also a simultaneous dominating set, and for every simultaneous adjacency
basis B of H there exist H € H and v € V' — B such that B C Ny (v), then

Sd4(G @ H) = V|- Sda(H) + S ().

Proof. We first address the proof of Sd4(G ©® H) > |V|-Sda(H) + Sv(G).
Let U be a simultaneous adjacency basis of G © H, let U; = UNV/, and let
Uo = U NV. By Remark [3.57, U; is a simultaneous adjacency generator for
H; for every i € V. Consider the partition {Vi, Vo} of V' defined as

Vi={ieV: |U|=Sda(H)} and Vo = {i € V : |U;| > Sda(H) + 1}.

For every i € Vi, the set U; is a simultaneous adjacency basis of H;,
so there exist H € H and = € V} such that U; C Ny(z), causing ¢ and z
not to be distinguished by any y € U; in any graph belonging to G ® H.
Thus, either ¢ € Uy or for every G € G there exists z € Uy such that
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deonz2(i,z2) = 1 # 2 = deonse(r,2). In consequence, Vo U Uy must be a
simultaneous dominating set of G, so |[Vo U Uy| > S~(G). Finally,

Sda(GOH) =Y |Uil+ > _|Uil + U]

% i€Va
> Sda(H)+ > (Sda(H) + 1) + |U|
1€V 1€V

= [V]-Sda(#) + [Va| + |Uo]
> V] - Sda(H) + Vo U Uy
> [V] - Sda(H) + S+(G).

Now, let W be a simultaneous adjacency basis of H which is also a
simultaneous dominating set of H. Consider an arbitrary graph G ® H €
G ©H, and let W; = W N V/. By analogy to the proof of Theorem [3.64}

we have that S = M (UVVZ , where M is a minimum simultaneous
eV
dominating set of G, is an adjacency generator for G ® H. Since S does not

depend on the election of G and H, it is a simultaneous adjacency generator
for G®H. Thus, Sda(GOH) < |S|=|V]|-Sda(H) +S~v(G), so the equality
holds. O

Several specific families for which the previous result holds will be de-
scribed in Theorem and Propositions and [3.74 Now, in order to
present our next result, we need some additional definitions. Let v € V(G)
be a vertex of a graph G and let G — v be the graph obtained by remov-
ing from G the vertex v and all its incident edges. Consider the following
auxiliary domination parameter, which is defined in [26]:

Y(G) = vglvi(%){v(G —v)}

Theorem 3.66. [26] Let H be a non-trivial graph such that some of its
adjacency bases are also dominating sets, and some are not. If there exists
an adjacency basis S’ of H such that for everyv € V(H)—S" it is satisfied that
S" ¢ Ny(v), and for any adjacency basis S of H which is also a dominating
set, there exists some v € V(H) — S such that S C Ng(v), then for any
connected non-trivial graph G,

dimus(G® H) =n-dima(H) + +'(G).
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The following result is a generalisation of Theorem to the case of
GOH.

Theorem 3.67. Let G be a connected graph of order n > 2 and let ‘H be
a family of non-trivial graphs on a common vertex set V' such that some
of its simultaneous adjacency bases are also simultaneous dominating sets,
and some are not. If there exists a simultaneous adjacency basis B’ of H
such that B" ¢ Ny (v) for every H € H and every v € V' — B', and for every
simultaneous adjacency basis B of H which is also a simultaneous dominating
set there exist H' € H and w € V' — B such that B C Ng/(w), then

Sda(G ©@H) =n-Sda(H) +7'(G).

Proof. In the family G ® H, we have that V = V(G). We first address the
proof of Sda(GOH) > n-Sda(H)+7'(G). Let U be a simultaneous adjacency
basis of G ® H, let U; = UNV/, and let Uy = BNV. By Remark B.57, U;
is a simultaneous adjacency generator for H; for every i € V. Consider the
partition {V;, V4, V3} of V', where V| contains the vertices i € V such that U;
is a simultaneous adjacency basis of H; but is not a simultaneous dominating
set, V5 contains the vertices ¢ € V' such that U; is a simultaneous adjacency
basis and a simultaneous dominating set of H;, and V3 is composed by the
vertices ¢ € V such that U; is not a simultaneous adjacency basis of H,.

If i, 7 € V4, then there exist a graph H € H and two vertices v; € V/ —U;
and v; € V] — Uj such that U; N Ny(v;) = 0 and U; N Ny (v;) = 0. Thus,
i€ UyorjeUy,so |UyNnVi| > |Vi| — 1. If i € V5, then there exist H € H
and z € V! such that U; C Ny(x). In consequence, the pair i,z is not
distinguished by any y € U;, so either ¢ € Uy or there exists z € Uy such that
deon2(i,z) =1 # 2 = dgeua(x, z). Therefore, at most one vertex of G is
not dominated by Uy U V3, so |Uy U V3| > +/(G). Finally,

SdA(GOH)= Y U+ _|U| + Uy

1€eV1UVs 1€V3
> > Sda(H) + > (Sda(H) +1) + |Un|
1€ViUVs 1€V3

=n-Sda(H) + |V3| + |Uo|
>n- SdA(H) + ’}//(G).
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Now, let W’ be a simultaneous adjacency basis of H such that W’ ¢
Ny (v) for every H € H and every v € V — W' and assume that for any si-
multaneous adjacency basis W of ‘H which is also a simultaneous dominating
set there exist H' € H and w € V — W such that W C Ny (w). Let W” be
one of such simultaneous adjacency bases of H. Consider an arbitrary graph
GOH € GoOH,let W/ =W'NV/and W/ = W"NV/. Additionally, let M be

a minimum dominating set of G —n, assuming without loss of generality that

7(G) =~v(G—n),and let S =M JW! U W!" |. By analogy to the
ieV—{n}
proof of Theorem [3.66, we have that S is an adjacency generator for G ® H.

Since S does not depend on the election of G and H, it is a simultaneous ad-
jacency generator for G ®H. Thus, Sda(GOH) < |S| =n-Sda(H)++'(G),
so the equality holds. O]

Consider the family {Ps, C5}, where Cj is obtained from Ps by joining its
leaves by an edge. Assume that V(Ps) = V(C5) = {vy, v, v3, 04,05}, E(P5) =
{v1ve, vous, V3V, 405} and E(C5) = E(Ps) U {vjvs}. We have that the set
{va,v4} is the sole simultaneous adjacency basis which is also a simultaneous
dominating set and vs satisfies {ve,v4} C Np (vs3) and {ve,v4} C Ney(vs).
Moreover, the set {vy,vs} (as well as {vy, v3} and {vs,v4}) is a simultaneous
adjacency basis such that every vertex v, satisfies Np, (v,) € {v1,v5} and
Ney(vg) € {v1,v5}. These facts allow us to obtain examples where Theo-

rem [3.67] applies. For instance, for any connected graph G of order n > 2,
we have that Sda(G ® {Ps,Cs}) = 2n ++'(G).

The case where the second factor is a family of join
graphs

To begin our presentation, we introduce the following auxiliary result.

Lemma 3.68. Let G and H be two families of non-trivial graphs on common
vertex sets Vi and Vs, respectively. Then, every simultaneous adjacency basis
of G+ H is a simultaneous dominating set of G + H.

Proof. Let B be a simultaneous adjacency basis of G + H, let W7 = BNV,
and Wy = BNV, Since no pair of different vertices u,v € Vo — Wy is
distinguished in any G + H € G + H by any vertex from W;, we have that

W, is a simultaneous adjacency generator for H and, in consequence, Wy # ().
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By an analogous reasoning we can see that 1 is a simultaneous adjacency
generator for G and, in consequence, Wy # (). Moreover, every vertex in V;
is dominated by every vertex in Ws, whereas every vertex in V5 is dominated

by every vertex in Wi, so B is a dominating set for every G+ H € G+H. [

Recall that Theorem [3.20] characterizes a large number of families of the
form G + H whose simultaneous adjacency bases are formed by the union of
an arbitrary simultaneous adjacency basis of H and a simultaneous adjacency
basis B of G such that B € Ng(v) for every G € G and every v € V;. With

this fact in mind, we present our next result.

Theorem 3.69. Let G be a family of connected non-trivial graphs on a com-
mon vertexr set V', and let H and H' be families of non-trivial graphs on
common vertex sets V| and V3, respectively. If there ezist a simultaneous
adjacency basis B of H that satisfies B ¢ Ny(v) for every H € H and
every v € V/, and a simultaneous adjacency basis B’ of H' that satisfies
B'" & Np/(V') for every H' € H' and every v' € V3, then

Sds(G @ (H+H)) = [V|-Sda(H) + |V]| - Sda(H).

Proof. Let B and B’ be simultaneous adjacency bases of H and H', respec-
tively, that satisfy the premises of the theorem, and let S = BU B’. As
shown in the proof of Theorem [3.20, S is a simultaneous adjacency basis of
H + H'. Moreover, since B ¢ Ng(v) for every H € H and every v € V/,
and B" € Ny/(v') for every H € H' and every v' € Vj, we have that
S & Nyym(x) for every H+ H' € H + H' and every z € V/ U VJ. Finally,
by Lemma we have that S is a simultaneous dominating set of H + H/,
s0Sda(GO (H+H)) =|V]-Sda(H+H') = |V]-Sda(H) + |V|-Sda(H') by
Theorems B.59 and [3.201 O

The following result is a direct consequence of Lemma [3.16] and Theo-
rem [.69

Proposition 3.70. Let G be a family of connected non-trivial graphs on a
common vertex set V. Let H be a graph family on a common vertex set V|
of cardinality |V{| > 7 such that every H € H is a path graph, a cycle graph,
D(H) > 6, or g(H) > 5 and 6(H) > 3. Let H' be a graph family on a
common vertex set Vi of cardinality |Vy| > 7 satisfying the same conditions

as H. Then,
Sda(G O (H+H))=|V|-Sda(H) + |V|-Sda(H).
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In addition, following a reasoning analogous to that of the proofs of
Propositions and [3.62, we obtain the following result as a consequence
of Lemma [3.16] and Theorems [3.8 and [3.69.

Proposition 3.71. Let G be a family of connected non-trivial graphs on a
common vertex set V. Let H be a graph of order n > 7 which is a path graph,
or a cycle graph, or satisfies D(H) > 6, or g(H) > 5 and §(H) > 3. Let H’
be a graph of order n' > T that satisfies the same conditions as H. Let B
and B’ be adjacency bases of H and H', respectively. Then, for any pair of
families H C Gg(H) and H' C Gy (H') such that H € H and H' € H/,

Sds(G @ (H+H)) = V|- dima(H) + |V] - dima(H').

By analogy to the manner in which Theorem [3.69| can be deduced from
Theorems|3.59|and [3.20, we present the following result which can be deduced
from Theorems B.65 and [3.201

Theorem 3.72. Let G be a family of connected non-trivial graphs on a com-
mon vertexr set V', and let H and H' be families of non-trivial graphs on
common vertex sets V| and Vy, respectively. If there exists a simultaneous
adjacency basis B of H that satisfies B € Ny(v) for every H € H and ev-
ery v € V/, and for every simultaneous adjacency basis B' of H' there exist
H' € H and v' € V3 such that B C Ng:(v'), then

SAA(G O (H+H)) = V|- Sda(H) + [V] - Sdu(H) + S~(G).

Proof. Let S be a simultaneous adjacency basis of H + H', let W = SnV/
and let W’ = SN V;. As discussed in the proof of Theorem [3.20, W and W’
are simultaneous adjacency bases of H and H', respectively. Since there exist
H' € H and v' € V3 such that W’ C Ny (v'), we have that S C Ny g (v') for
any H € H by the definition of the join operation. Moreover, by Lemma|3.68]|
S is a simultaneous dominating set of H + H', so Sd4(G © (H + H')) =
V|- Sda(H + H') +S~(G) = |V] - Sda(H) + |V| - Sda(H') + S~(G) by
Theorems [8.65 and [3.20 O

The following results are particular cases of Theorem [3.72

Proposition 3.73. Let G be a family of connected non-trivial graphs on a
common vertex set V.. Let H be a graph family on a common vertex set V'
of cardinality |V'| > 7 such that every H € H is a path graph, a cycle graph,
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D(H) > 6, org(H) >5 and §(H) > 3. Let K; be a complete graph of order
t > 2. Then,

Sda(G @ (Ki +H)) = |V] - Sda(H) + [V]- (t — 1) + S~(G).

Proof. By Theorem [3.20, Sda(K; +H) = Sda(H) +t — 1. Moreover, by
Lemma 7 every simultaneous adjacency basis B of H satisfies B € Ny(v)
for every H € H and every v € V’'. Furthermore, every adjacency basis of
K has the form B’ = V(K;) — {v}, where v is an arbitrary vertex of K.
Clearly, B’ C N, (v), so the result follows from Theorem [3.72] O

Following a reasoning analogous to that of the proofs of Propositions [3.60]
and we obtain the following result as a consequence of Lemma [3.16] and

Theorems [3.8] and [3.72

Proposition 3.74. Let G be a family of connected non-trivial graphs on a
common vertex set V. Let H be a graph of order n > 7 which is a path graph,
or a cycle graph, or satisfies D(H) > 6, or g(H) > 5 and 6(H) > 3. Let K
be a complete graph of ordert > 1. Let B be an adjacency basis of H. Then,
for any family H C QNB(H) such that H € H,

Sda(G © (Ki+H)) = [V - dima(H) + [V]- (£ = 1) + S7(9).

As an example of the previous result, consider an arbitrary family G
composed by connected non-trivial graphs on a common vertex set V, a
complete graph K; of order ¢t > 2, a path graph P, of order n > 7, and the
cycle graph C,, obtained from P, by joining its leaves by an edge. For any
simultaneous adjacency basis B of {P,,C,} and any family H € Gg(P,) U
gB(Cn) such that P, € H or C,, € H, we have that

2n + 2

SdA(QQ(Kt+H))=|V|-Q J+t—1>+87(g).
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Chapter 4

The simultaneous strong metric

dimension of graph families

After extensively studying the simultaneous metric dimension, and the re-
lated simultaneous adjacency dimension, this chapter explores into the ex-
tensibility of the notion of simultaneity to other forms of resolvability. Here,
we introduce the simultaneous strong metric dimension. As in Chapter [2]
we investigate the core properties of this parameter, including its bounds,
extreme values and relations to the individual strong metric dimensions of
the graphs composing the families, as well as several families on which inter-
esting facts may be pointed out, namely those composed by a graph and its
complement.

Let G = {G1,Gs,...,Gi} be a family of (not necessarily edge-disjoint)
connected graphs G; = (V, E;) with common vertex set V' (the union of
whose edge sets is not necessarily the complete graph). By analogy to the
definitions of simultaneous metric/adjacency generator, basis and dimension,
we define a simultaneous strong metric generator for G to be a set S C V
such that S is simultaneously a strong metric generator for each G;. We
say that a minimum cardinality simultaneous strong metric generator for
G is a simultaneous strong metric basis of G, and its cardinality the simul-
taneous strong metric dimension of G, denoted by Sds(G) or explicitly by
Sds (G, Ga, ..., G). To illustrate these definitions, Figure , shows the fam-
ily G = {G1, G, G3}, for which the set {vy, va, v, v7} is a simultaneous strong
metric basis, whereas the set {vy,vs,v7} is a simultaneous metric basis, so

Sd,(G) = 4 and Sd(G) = 3.

33
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Figure 4.1: The set {vy,vq,v5,v7} is a simultaneous strong metric basis of
the family G = {G;, Go, G3}, whereas the set {vy, vs,v7} is a simultaneous
metric basis of G. Thus, Sd4(G) =4 and Sd(G) = 3.

4.1 General bounds

The following remark is a direct consequence of the fact that every strong

metric generator for a graph G is also a metric generator for G.

Remark 4.1. For any family G of connected graphs defined on a common

vertex set V,

1 < Sd(G) < Sdy(Q) < |V] - 1.

It was shown in [I2] that dim(G) = 1 if and only if G is a path. It
now readily follows that dims(G) = 1 if and only if G is a path. Since any
strong metric basis of a path is composed by a leaf, we can state the following

remark.

Remark 4.2. Let G be a family of connected graphs defined on a common
vertex set. Then Sds(G) = 1 if and only if G is a collection of paths that

share a common leaf.

At the other extreme we see that dims(G) = n — 1 if and only if G is
the complete graph of order n. Thus, for a family of graphs we have the

following straightforward remark.
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Remark 4.3. Let G be a family of connected graphs defined on a common
vertex set. If K,, € G, then

Sdy(G) =n — 1.

A characterization of the graph families for which Sd(G) = [V| — 1 is

given in the following result.

Theorem 4.4. Let G be a family of connected graphs defined on a common
vertex set V. Then Sds(G) = |V|—1 if and only if for every pair u,v € V, there
exists a graph G, € G such that u and v are mutually mazimally distant in

Gy

Proof. If Sds(G) = |V| — 1, then for every v € V| the set V — {v} is a
simultaneous strong metric basis of G and, as a consequence, for every u €
V — {v} there exists a graph G, € G such that the set V' — {u,v} is not a
strong metric generator for G,,. This means that the set V — {u,v} is not
a vertex cover of (Gyy)gp and then u and v must be adjacent in (Gy,)sr or,
equivalently, they are mutually maximally distant in G .

Conversely, if for every u,v € V there exists a graph G,, € G such
that v and v are mutually maximally distant in G,,, then for any strong
simultaneous metric basis B of G either u € B or v € B. Hence, all but one

element of V' must belong to B. Therefore |B| > |V|—1 and we can conclude
that Sd,(G) = |V| — 1. O

As a non-trivial example of the previous result, recall the family /C(V),
defined in Section |3.2, which is composed by r + 1 star graphs of the form
K, defined on a common vertex set V', all of them having different centres.
In this case, every pair of vertices is maximally mutually distant in r — 1
graphs of the family, so Sds(G) = |V| — 1.

Given a family G ={G1, G, ...,Gy} of connected graphs defined on a

common vertex set V', we define 9(G) = U@(G). The following general

Geg
considerations are true.

Remark 4.5. For any familly G ={G1,Ga, ..., G} of connected graphs de-

fined on a common vertex set V and any subfamily H C G.

Sds(H) < Sds(¢) < min {|5(9)| -1 Zdims(Gi)} :



UNIVERSITAT ROVIRA I VIRGILI
THE SIMULTANEOUS (STRONG) METRIC DIMENSION OF GRAPH FAMILIES

Yunior Ramirez Cruz

The simultaneous strong metric dimension of graph families 86

In particular,

max } {dim,(G;)} < Sds(G).

i€{l,rk

The inequalities above are sharp. For instance, consider a family H;
of graphs defined on a vertex set V', where some particular vertex u € V
belongs to a simultaneous strong metric basis B. Consider also a family of
paths H,, defined on V, sharing all of them this particular vertex u as one
of their leaves. Then B is a simultaneous strong metric basis of the family
Hi U Ho, so that Sdg(Hi U Hs) = Sds(Hy).

On the other hand, Remark allows to easily construct several families
of graphs G satisfying Sds(G) = dim,(G) for some G € G. We introduce the
following remarks as straightforward examples.

Remark 4.6. Let G be a family of trees defined on a common vertex set and

let GegG. Ifo(G) 20(G), for all G’ € G, then Sds(G) = dim,(G).

Notice that a family of trees as the one described above, where the set of

leaves of one tree contains the sets of leaves of every other tree in the family,

satisfies Sd4(G) = |0(G)] — 1.

Remark 4.7. Let G be a family of 2-antipodal graphs defined on a common
vertex set V. If there exits a partition {V1,Va} of V' such that for every
u € V) and every G € G, the only vertex diametral to v in G belongs to V3,
then Sds(G) = dim(G) = %', forallG €G.

The next result is a direct consequence of the fact that, in a corona
product graph G ® H, no vertex of GG is mutually maximally distant with
any vertex of G ® H.

Remark 4.8. Let G = {G1,Gs, ..., G} be a family composed by connected
non-trivial graphs, defined on a common vertex set, and let H be a non-trivial
graph. Then, for any i € {1,... k},

Sds(G1 © H,Go, ® H,...,Gy, ® H) = dimy(G; ® H).

Finally, consider the family G = {G}, G2} shown in Figure . It is easy
to see that Sds(G) = dimy(Gy) + dimg(Gs) = [0(G)| — 2 < |0(G)] — 1.

Next, we recall an upper bound for dimy(G) obtained in [57]. Recall
that X C V(G) is a twins-free clique in G if X is a clique containing no true
twins. The twins-free clique number of G, denoted by w(G), is the maximum

cardinality among all twins-free cliques in G.
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Figure 4.2: The family G = {G1,G,y} satisfies Sds(G) = dimy(Gy) +
dlms(Gg) = 0.

Theorem 4.9. [57] For any connected graph G of order n > 2,
dim(G) < n —w(G).
Moreover, if D(G) = 2, then the equality holds.

Our next result is an extension of Theorem [4.9 to the case of the simul-
taneous strong metric dimension. We define a simultaneous twins-free clique
of a family G of graphs as a set which is a twins-free clique in every G € G.
The simultaneous twins-free clique number of G, denoted by Sw(G), is the

maximum cardinality among all simultaneous twins-free cliques of G.

Theorem 4.10. Let G be a family of connected graphs of order n > 2 defined

on a common vertex set. Then
Sds(G) < n —Sm(G).

Moreover, if every graph belonging to G has diameter two, then
Sds(G) =n — Sw(G).

Proof. Let W be a simultaneous twins-free clique in G of maximum cardinal-
ity and let G = (V, E) be a graph belonging to G. We will show that V' — W
is a strong metric generator for GG. Since W is a twins-free clique, for any two
distinct vertices u,v € W there exists s € V — W such that either s € Ng(u)
and s ¢ Ng(v) or s € Ng(v) and s ¢ Ng(u). Without loss of generality, we
consider s € Ng(u) and s ¢ Ng(v). Thus, u € Ig[v, s] and, as a consequence,
s strongly resolves u and v. Therefore, Sds(G) < |V — W| =n — Sw(G).
Now, suppose that every graph G = (V| F) belonging to G has diameter

two. Let X C V be a simultaneous strong metric basis of G and let u,v € V,
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u #v. If dg(u,v) = 2 or Nglu] = Nglv], for some G € G, then u and v are
mutually maximally distant vertices of G, sou € X or v € X. Hence, for any
two distinct vertices z,y € V — X and any G € G we have dg(x,y) = 1 and
Nglz] # Ngly]. As a consequence, V' — X is a simultaneous twins-free clique
of G and so n — Sds(G) = |V — X| < Sw(G). Therefore, Sd4(G) > n— Sw(G)
and the result follows. O

Corollary 4.11. Let G be a family of graphs of diameter two and ordern > 2

defined on a common vertex set. If G contains a triangle-free graph, then
n—2<Sds(G) <n-—1.

Finally, we recall the following upper bound on dim4(G), obtained in
8Y].

Theorem 4.12. [88] For any connected graph G of order n,
dimy(G) < n — D(G).

Given a graph family G defined on a common vertex set V', we define
the parameter p(G) = |W/| — 1, where W C V is a maximum cardinality set
such that for every G € G the subgraph (W)s induced by W in G is a path

and there exists w € W which is a common leaf of all these paths.

Theorem 4.13. Let G be a family of graphs defined on a common vertex set
V. Then,
SA,(G) < V| - p(G).

Proof. Let W = {vo,v1,...,v,¢} €V be a set for which p(G) is obtained.
Assume, without loss of generality, that vy is a common leaf of (W)q, for
every G € G, and let W' = W — {vp}. Since no pair of vertices u,v € W’
are mutually maximally distant in any G € G, the set S =V — W' is a
simultaneous strong metric generator for G. Thus, Sds(G) < |S] = |V]| —
p(G). O

The inequality above is sharp. A family of graphs G composed by paths
having a common leaf is a trivial example where the inequality is reached.
In this case, p(G) = |V| —1, so that Sds(G) = 1 = |V|—p(G). This is not the
only circumstance where this occurs. For instance, consider a graph family G

constructed as follows. Consider a star graph K , of center v and a complete



UNIVERSITAT ROVIRA I VIRGILI
THE SIMULTANEOUS (STRONG) METRIC DIMENSION OF GRAPH FAMILIES

Yunior Ramirez Cruz

The simultaneous strong metric dimension of graph families 89

graph K,,; defined on a common vertex set VV'. Let V" be a set such that
V'NV" = and let {G', G, ..., G} be a family composed by paths defined
on V" having a common leaf, say v, and let G = {Gy, Hy, G, Hs, . .., G, Hy}
be a graph family such that every G, is constructed from G and K, by iden-
tifying v and v, and every H; is constructed from G and K, by identifying
u and v. For every w € V' — {u}, the set W = V" U {w} is a maximum
cardinality set such that, for every graph in G, the subgraph induced by W
is a path and there exists w € W which is a common leaf of all these paths,
so that p(G) = |[V”|. Furthermore, the set V' — {u} is a simultaneous strong
metric basis of G and, as a result, Sds(G) =r = |V| — p(G).

4.2 Families of the form {G,G‘}

We first consider the following direct consequence of Theorem [4.4]

Corollary 4.14. Let G be a graph of order n. Then the following assertions

are equivalent:
(i) Sds(G,G°) =n — 1.
(i) D(G) = D(G*) = 2.

Proof. Let z,y € V(G). If D(G) = D(G°) = 2, then either = and y are
diametral in G or they are diametral in G¢. Hence, by Theorem [£.4] we
obtain Sds(G,G¢) =n — 1.

Now, assume that D(G) > 3. If x,u, v,y is a shortest path from z to y
in G, then x and v are not mutually maximally distant in G and, since they

are adjacent in G and they are not twins, they are not mutually maximally

distant in G°. Thus, by Theorem [4.4 we deduce that Sd (G, G%) <n—2. O

The Petersen graph is an example of graphs where Sds (G, G) = n—1 and
the graphs shown in Figure are examples of graphs where Sd,(G, G¢) =
n— 2.

From Theorem and Corollary we derive the next result.

Theorem 4.15. For any graph G of order n and D(G) = 2 such that G¢ is
connected,

Sds (G, G°) > n — w(G).
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Moreover, if D(G®) > 3 and w(G) = 2, then
Sds(G,G°) =n — 2.

Given a graph G = (V| E), we say that a set S C V is a strong resolving

cover for G if S is a vertex cover and a strong metric generator for G.

Theorem 4.16. If G is a connected graph such that G¢ is connected, then
any strong resolving cover of G is a simultaneous strong metric generator for

(G, G}

Proof. Let W be a strong resolving cover of G. We shall show that W is a
strong metric generator for G°. We differentiate two cases for any pair x,y

of mutually maximally distant vertices in G*:

(1) z and y are adjacent in G°. In this case, x and y are false twins in G (true
twins in G¢) and so they are mutually maximally distant in G. Since W

is a strong metric generator for G, we conclude that x € W or y € W.

(2) = and y are not adjacent in G°. In this case x and y are adjacent in G

and, since W is a vertex cover of GG, we have that x € W or y € W.

According to the two cases above, W is a vertex cover of (G°)gr and,

as a consequence, W is a strong metric generator for G¢. Therefore, W is a

simultaneous strong metric generator for {G, G}. [
a ec e d ec o)
bl b ¢
boag 4 G

Figure 4.3: X; = {a, ¢, d} is a strong resolving cover for G and Xy = {a, ¢, b}
is a strong resolving cover for G°. Both X; and X, are simultaneous strong
metric bases of {G,G}.

The strong resolving cover number of a graph G, denoted by (s(G), is the
minimum cardinality among all the strong resolving covers for G. Obviously,

for any connected graph of order n,

n—12> f(G) > max{dims(G), 5(G)}. (4.1)



UNIVERSITAT ROVIRA I VIRGILI
THE SIMULTANEOUS (STRONG) METRIC DIMENSION OF GRAPH FAMILIES

Yunior Ramirez Cruz

The simultaneous strong metric dimension of graph families 91

Corollary 4.17. For any connected graph G such that G¢ is connected,
Sdy (G, G°) < min{5,(G), Bs(G°)}.

Figure shows a graph G and its complement G¢. In this case,
SA,(G, G7) = By(G) = A(GF) = 3 > 2 = dim,(G) = dim,(G*) = B(G) =
B(G). The graph G shown in Figure satisfies that dimy(G¢) =2 < 3 =
Bs(G¢) = 8dy(G,G°) = dimy(G) < 4 = ,(G). In this case, {2,4} is a strong
metric basis of G¢, {2,3,4} is a B(G¢)-set which is a simultaneous strong
metric basis of {G, G} and, at the same time, it is a strong metric basis of
G, while {2,4,5,6} is a B5(G)-set.

2@ 1 2@ 1 2@ 1 20 1
3 e 3@ 6 3@ 6 3 6
i0—@5 i@ 5 i@ 5 i@ 5
G Gsr Ge (G°)sr

Figure 4.4: The S5(G°)-set {2,3,4} is a simultaneous strong metric basis of
{G,G}.

Theorem 4.18. Let G be a connected graph such that D(G) = 2 and let
S C V(G). Then the following assertions are equivalent.

(i) S is a simultaneous strong metric generator for {G,G}.
(ii) S is a strong resolving cover for G.

Proof. Let G = (V, E). Since D(G®) = 2, two vertices z,y € V are mutually
maximally distant in G° if and only if dge(z,y) = 2 or Nge[z] = Ngely].
Hence, (G%)sr = (V. EUE'), where E' = {{z,y}: Ng(z) = Ng(y)}.

Let S be a simultaneous strong metric generator for {G,G¢}. Since S
is a strong metric generator for G, we deduce that S is a vertex cover of
(G)sr = (V, EUE'), and as a consequence, for any edge {z,y} € E, we
have that x € S or y € S. Hence, S is a strong metric generator for G' and

a vertex cover of G. By Theorem [4.16| we conclude the proof. O

From Theorem [4.18 we deduce the following result.
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Corollary 4.19. For any connected graph G such that D(G) = 2,
5d,(G,G°) = Bs(G).

In order to present the next result, we need to introduce some new no-
tation and terminology. Given a graph G such that V(G) # 0(G), we define
the interior subgraph of G as the subgraph G induced by V(G) —0(G). The
parameter 3(G) is defined as follows.

0 if V(G) = 9(G)
B(G) =
B(G) otherwise.

Corollary 4.20. For any connected graph G such that D(G¢) = 2,
Sd, (G, G°) > max{dim,(G) + B(G), B(G)}.

Proof. By Theorem[t.1§and Equation we have that Sds(G, G°) > B(G).
It only remains to prove that Sd,(G,G¢) > dim,(G) + B(G). If V(G) =
d(G), then B(G) = 0, and by Theorem and Equation we have
Sd, (G, G%) > dimy(G) = dim,(G) + 3(G). Assume that V(G) # 0(G). Let
B be a simultaneous strong metric basis of {G,G°}, and let By = BN 0(G)
and By = B — By. Clearly, | B;| > dim4(G). Moreover, since no vertex of B;
covers edges of é’, by Theorem we conclude that B, is a vertex cover
of G, so that |By| > B(G). Therefore, Sd,(G,G) = |B| = |By| + |Bs| >
dim,(G) + B(G). O

To illustrate this result we take the graph G shown in Figure In
this case Sd,(G,G°) = B(G) = 5 > 4 = dim,(G) + 3(G). In contrast, the
equality Sds(G, G°) = dim,(G) + ﬁ (G) is satisfied for any graph constructed
as follows. Let r;s > 2 and t > 3 be three integers and let G be the
graph constructed from K,, Ky and P, by identifying one vertex of K, with
one leaf of P, and one vertex of K, with the other leaf of P,. In this case
Sdy(G,G) =r+s+ |5 —1,dim,(G) =r+s—1, B(G) =r+s+ [£] — 2
and 3(G) = B(G) = | §]. Hence, Sd,(G, G¢) = dim,(G) + S(G) > B(G).

Corollary 4.21. Let G be a connected graph such that D(G°) = 2. Then the

following assertions hold.

(i) Sds(G,G°) = dim,(G) if and only if there exists a strong metric basis

of G which is a vertex cover of G.
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Figure 4.5: The sets {1,5,6,7} and {5,6,7,11} are the only strong metric
bases of G, while {1,5,6,7,11} is the only 5(G)-set which is a strong metric

generator of G.

(ii) Sds(G,G°) = B(G) if and only if there exists a B(G)-set which is a

strong metric generator of GG.

7 6 5
[ o
]
4
| 4
1 2 3

Figure 4.6: The graph G satisfies Sds(G, G¢) = dims(G) =4 > 3 = B(G).

To illustrate the result above we take the graphs shown in Figures [4.5
and [4.6l In both cases D(G°) = 2. Now, in the case of Figure [{.5 the
sets {1,5,6,7} and {5,6,7,11} are the only strong metric bases of G. At the
same time, the set {1,5,6,7, 11} is the only 5(G)-set which is a strong metric
generator of G, and so it is the only (Bs(G)-set. Therefore, Sds(G,G°) =
By(G) = B(G) =5 > 4 = dim,(G). In the case of Figure [1.6, Sd,(G,G¢) =
Bs(G) = dims(G) = 4 > 3 = B(G), as {2,4,6,7} is a strong metric basis of
G which is a vertex cover of G and {2,4,6} is a B(G)-set.

The hypercube Q,, r > 3, is a 2-antipodal graph, so dim,(Q,) = 2"
Also, @, is a bipartite graph and, for r odd, any colour class forms a
strong metric basis which is a vertex cover of minimum cardinality. Since
D((Q,)°) = 2, we conclude that for any odd integer r > 3,

Sds(Qr, (Q)°) = dim,(Q,) = B(Q,) =27 (4.2)

This is an example where Sds (G, G¢) = dim4(G) = B(G) and it is a particular

case of the next result.
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Proposition 4.22. For any bipartite 2-antipodal graph G of odd diameter
and order n > 2,
Sdy(G, G°) = —.
2
Proof. Let G = (V1 U V,, ). Since the subgraph of G¢ induced by V;, i €
{1,2}, is complete and G is not a complete bipartite graph, we conclude
that G°¢ is connected. Furthermore, since GG is 2-antipodal of odd diameter,
each vertex x € V) is adjacent to a vertex z/ € V5 in G° and, as a result,
D(G®) =2
On the other hand, Vj is a vertex cover of GG and since G is a 2-antipodal
graph and D(G) is odd, for any x € V; there exists exactly one vertex 2’ € V5
which is antipodal to x, which implies that V] is a strong metric basis of G.
Therefore, by Corollary we conclude the proof. O

An even-order cycle Cy; has odd diameter if k& is odd. In this case,
Sds(Cog, (Cox)¢) = k. Note that for k even, Sds(Cox, (Cox)) = k+ 1. If G
is a bipartite 2-antipodal graph, then the Cartesian product graph GUK,
is bipartite and 2-antipodal. Moreover, D(GOK,) = D(G) + 1. Therefore,

Proposition [4.22| immediately leads to the following result.

Corollary 4.23. For any bipartite 2-antipodal graph G of even diameter and
order n,
Sds<G|:|K2, (GDKQ)C) = n.

Theorem 4.24. Let G be a connected graph. Then Gsr = G if and only if
D(G) =2 and G is a true-twins-free graph.

Proof. (Necessity) Assume that Gggr = G° = (V, E), and let u,v € V be two
mutually maximally distant vertices in G.

First consider that u and v are diametral vertices in . Since u and
v are mutually maximally distant in G and Gggr = G¢, we obtain that u
and v are adjacent in G° and, as a result, D(G) = dg(u,v) > 2. Now,
suppose that dg(u,v) > 2. Then there exists w € Ng(v) — Ng(u) such that
de(u,w) = D(G) —1 > 2. Hence, w and u are not mutually maximally
distant in G and w € Ng(u), which contradicts the fact that Ggrp = G°.
Therefore, D(G) = 2.

Now assume that u and v are true twins in G. We have that u and v are

false twins in G¢ and, as a result, they are not adjacent in G and they are
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mutually maximally distant in G, which contradicts the fact that Gsg = G°.
Therefore, GG is a true-twins-free graph.

(Sufficiency) If G = (V, E) is a true-twins-free graph and D(G) = 2,
then two vertices u,v are mutually maximally distant in G if and only if
dg(u,v) = 2. Therefore, Gsg = G°. H

Odd-order cycles are an example of the previous result, as [(Cort1)¢sr =
Csi11. Moreover, it is not difficult to show that a simultaneous strong metric
basis of {Cayy1, (Coky1)¢} is the minimum union of a strong metric basis and

a minimum vertex cover of Cyxy1q, SO

k
Sds<cék+17(6&k+1y3 =k+ LEJ +1.

Corollary 4.25. Let G be a true-twins-free graph such that D(G) = 2. Then

the following assertions hold.

(i) Sds(G, G°) = dim,(G) if and only if there exists a B(G)-set which is a

strong metric generator for G°.

(i) Sds(G, G¢) = dims(G) = dim,(G®) if and only if there exists a f(G°)-set

which is a strong metric basis of G°.

The complement of the graph shown in Figure has diameter two and
{1,5,6,7,11} is a B(G)-set which is a strong metric generator for G, so that
Sds(G, G°) = dim,(G).

Given a graph G, it is well-known that D(G) > 4 leads to D(G°) =
2. Hence, D(G) # 2 and D(G°) # 2 if and only if D(G) = D(G°) = 3.
In particular, for the case of trees we have that D(T) = 3 if and only if
D(T*) = 3.

Proposition 4.26. Let T be a tree of order n. If D(T) = 3, then
Sdy(T,T°) = n — 2.

Proof. Notice that T has |[2(T")| = n — 2 leaves. Let u and v be the two
interior vertices of T. We have that D(T¢) = 3 and dpe(u,v) = 3. Any
simultaneous strong metric basis of {T,7¢} must contain all leaves of T,
except one, and one of u and v, so Sds(7,7¢) > |UT)| —1+1=n—2.
Moreover, by Corollary we have that Sds(7,7°¢) < n — 2 and so the
equality holds. O]
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Proposition 4.27. Let T be a tree of order n such that D(T) > 4, let u be
a leaf of T, and let T, be the tree obtained from T by removing all leaves,

except u. Then,
B(T) + Q(T)] 1 < SA|(T,T%) < B(T,) + 12(T)| - 1.

Proof. Note that dim,(T) = |Q(T)|—1 and 3(T) = B(T). Thus, by Corollary
, Sdy(T,7¢) > max{|QT)| — 1 + B(T), B(T)}, and as a consequence,
Sd.(T,T¢) > B(T) + |T)| — 1.

To prove the upper bound, let X be a S(T))-set and let Y C V(T) be
the set composed by all leaves of T', except u. Notice that X UY is a strong
resolving cover of 7" and X NY = ). Now, since D(7*) = 2, by Theorem [1.1§]
we conclude that Sds(7,7°) = B,(T) < | X|+ Y| =8(T.) + |QT)| —1. O

A particular case of the previous result is that of caterpillar trees T

such that T}, = P,_q()4+1 for every leaf w of T'. In this case, we have that
Sds(7,7°) = |UT)| + {ww — 1. Moreover, if D(T) = 4, then T is
a star graph. On the other hand, if D(T) = 5, then T is composed by
exactly two interior vertices and [Q(T)] = n — |Q(T))| — 2 leaves. With these

facts in mind, the following two results are straightforward consequences of
Proposition [4.27]

Corollary 4.28. Let T be a tree of order n such that D(T) = 4. If the

central vertex off is a support vertex of T, then
Sd,(T, T¢) = |UT)|.

Otherwise,
Sdy(T,T°) = |UT)| + 1.

Corollary 4.29. Let T' be a tree of order n such that D(T) = 5. If an

interior vertex off 15 a support vertex of T, then
Sdy(T,T°) = |UT)| + 1.

Otherwise,

Sdy(T, T¢) = |QT)| + 2.
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Chapter 5

Computability of simultaneous

resolvability parameters

In previous chapters, we have discussed a number of cases where the si-
multaneous metric, adjacency and strong metric dimensions may be exactly
determined or sharply bounded in terms of several parameters of the families
and/or their composing graphs. Moreover, some authors have shown meth-
ods to efficiently compute some standard resolvability parameters in partic-
ular types of graphs, even though it is known that computing these standard
resolvability parameters is difficult in the general case. In this chapter, we
address the computability of the simultaneous resolvability parameters stud-
ied in previous chapters. First, we show that the requirement of simultaneity
adds on the complexity of the original problems, making the computation
hard even for families composed by graphs whose individual resolvability pa-
rameters are easy to compute. Next, in light of this circumstance, we propose
several methods for estimating these parameters and study their accuracy on

several collections of graph families.

5.1 Overview

It is proven in [48] that the problem of finding the metric dimension of a
graph, when stated as a decision problem, is NP-complete. Moreover, the
NP-completeness of finding the adjacency dimension and the strong metric
dimension of a graph is proven in [26] and [67], respectively. These problems

are formally stated as decision problems as follows:

97
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Metric Dimension (DIM)
INSTANCE: A graph G = (V| E) and an integer p, 1 < p < |V(G)| — 1.
QUESTION: Is dim(G) < p?

Adjacency Dimension (ADIM)
INSTANCE: A graph G = (V, E) and an integer p, 1 <p < |[V(G)| — 1.
QUESTION: Is dimy (G) < p?

Strong Metric Dimension (SDIM)
INSTANCE: A graph G = (V, E) and an integer p, 1 < p < |V(G)| — 1.
QUESTION: Is dim,(G) < p?

In an analogous manner, we define the decision problems associated to
finding the simultaneous metric dimension, the simultaneous adjacency di-

mension, and the simultaneous strong metric dimension of a graph family.

Simultaneous Metric Dimension (SD)

INSTANCE: A graph family G = {G1, G5, ..., G} on a common vertex set
V and an integer p, 1 < p < |V| — 1.

QUESTION: Is Sd(G) < p?

Simultaneous Adjacency Dimension (SAD)

INSTANCE: A graph family G = {G1, G5, ..., G} on a common vertex set
V and an integer p, 1 <p < |V] — 1.

QUESTION: Is Sd4(G) < p?

Simultaneous Strong Metric Dimension (SSD)

INSTANCE: A graph family G = {G1, G, ..., Gk} on a common vertex set
V and an integer p, 1 <p < |V| — L.

QUESTION: Is Sd4(G) < p?

With these definitions in mind, it is straightforward to see that SD, SAD
and SSD are NP-complete.

Remark 5.1. The Simultaneous Metric Dimension Problem (SD), the Si-
multaneous Adjacency Dimension Problem (SAD) and the Simultaneous Strong
Metric Dimension Problem (SSD) are NP-complete.

Proof. 1t is simple to see that determining whether a vertex set S C V,
|S| < p, is a simultaneous metric, adjacency or strong metric generator can
be done in polynomial time, so SD, SAD and SSD are in NP. Moreover, for
any graph G = (V, E') and any integer 1 < p < |V(G)|— 1, the corresponding



UNIVERSITAT ROVIRA I VIRGILI
THE SIMULTANEOUS (STRONG) METRIC DIMENSION OF GRAPH FAMILIES

Yunior Ramirez Cruz

Computability of simultaneous resolvability parameters 99

instance of DIM, ADIM or SDIM can be transformed into an instance of SD,
SAD or SSD, respectively, in polynomial time by making G = {G}, so SD,
SAD and SSD are NP-complete. n

5.2 Computational difficulty added by the si-

multaneity requirement

In the previous section, we saw that the computation of simultaneous resol-
vability parameters is difficult in the general case, as a direct consequence of
the fact that computing the individual parameters of the graphs composing
the families is also difficult. However, as we will show, the requirement of
simultaneity adds on the difficulty of calculating the individual parameters,
making it hard to compute simultaneous resolvability parameters even for
families composed by graphs whose individual resolvability parameters are
easy to compute.

To begin with, recall that for a tree T, every set composed by all terminal
vertices, except one, of every exterior major vertex, is a metric basis of T
Likewise, recall that every set composed by all but one of its leaves is a
strong metric basis of 7. In consequence, a simple traversal (e.g. a post-
order traversal) allows us to compute dim(7") and dim(7") in polynomial
time. Here, we will show that the requirement of simultaneity makes it
difficult to compute SA(7) and Sds(7) for a family 7 = {11, Ts,...,T%}
composed by trees on a common vertex set. To this end, we will prove that
the decision problems associated to the computation of SA(7) and Sd4(7)
are NP-complete for these families. We do so by showing a transformation

from a subcase of the Hitting set Problem, which is defined as follows:

Hitting Set Problem (HSP)

INSTANCE: A collection C = {C},Cy,...,Cy} of non-empty subsets of a
finite set S and a positive integer p < |S|.

QUESTION: Is there a subset S” C S with |S’| < p such that S’ contains at

least one element from each subset in C?
The Hitting Set Problem was shown to be NP-complete by Karp [46], as

shows the next result.

Lemma 5.2. [30, 46] The Hitting Set Problem (HSP) is NP-complete, even
if |Cs| <2 for every C; € C.
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In what follows, we will refer to the subcase of HSP where |C;| < 2 for
every C; € C as HSP2, and will use polynomial time transformations of HSP2

into SD and SSD for families of trees to show their NP-completeness.

Theorem 5.3. The Simultaneous Metric Dimension Problem (SD) and the
Simultaneous Strong Metric Dimension Problem (SSD) are NP-complete for

families of trees.

Proof. As we discussed previously, determining whether a vertex set S C V,
|S| < p, is a simultaneous (strong) metric generator for a graph family G can
be done in polynomial time, so SD and SSD are in NP.

Now, we will show a polynomial time transformation of HSP2 into SD
and SSD. Let S = {vy, vs,...,v,} be afinite set and let C = {C4, Cs, ..., Cy },
where every C; € C satisfies 1 < |C;| < 2 and C; C S. Let p be a positive
integer such that p < |S|, and let S" = {wy, ws, ..., w,} such that SNS" = ().
We construct the family 7 = {711,Ts,...,T;} composed by trees on the
common vertex set V = SU S U {u}, u ¢ SU Y, as follows. For every
re{l,...,k},if C. = {v;}, let P, be a path on the vertices of (S —{v;.})U
(S" = {w;, }), and let T, be the tree obtained from P, by joining by an edge
the vertex u to one end of P,, and joining the other end of P, to the vertices
v;, and w;, . On the other hand, if C, = {v; ,v; }, P, is a path on the vertices
of (S —A{v;,,v;,})US’, and T, is the tree obtained from P, by joining by an
edge the vertex u to one end of P,, and the other end of P, to the vertices
v;, and v;, . Figure shows an example of this construction.

In order to prove the validity of this transformation, we claim that there
exists a subset S” C S of cardinality |S”| < p that contains at least one
element from each C; € C if and only if SA(7) = Sds(T) < p+ 1.

To prove this claim, first note that every T, € T satisfies M(T,) =
{z} and TERr, (x) = Q(T},), so every simultaneous metric basis of 7 is a
simultaneous strong metric basis, and vice versa.

Now, assume that there exists a set S” C S which contains at least
one element from each C; € C and satisfies [S”| < p. Since the set S” U {u}
satisfies |(S"U{u})NQUT,)| > |2T,)|—1 for every T, € T, it is a simultaneous
(strong) metric generator for 7. Thus, SA(7) = Sds(T) < p+ 1.

Now, assume that Sd(7) = Sd,(7) < p+1 and let W be a simultaneous
(strong) metric generator for 7 such that |W| = p+ 1. Since u is a common
leaf of all trees in T, we can assume that v € W, i.e., if u ¢ W, then for
any T; € T and any leaf x € W N Q(T;), the set (W — {z}) U {u} is also a
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simultaneous (strong) metric generator for 7, and so we can replace W by
(W — {x}) U {u}. Moreover, for every set C, € C such that W N C, = ), we
have that C, = {v;,} and w;, € W. Hence, the set

W= J (W fw,})U{w))

WnNC=0

is also a simultaneous (strong) metric generator for 7 of cardinality |W’| =
p+ 1 such that u € W’ and (W' — {u}) N C; # 0 for every C; € C. Thus the
set S” = W’ — {u} satisfies |S”| < p and contains at least one element from
each C; € C.

To conclude our proof, it is simple to verify that the transformation of
HSP2 into SD and SSD described above can be done in polynomial time. [J

U1 U3 V2
u V4 Wo Wy u (%) w1 Wy u (%R} Wo Wy

V3 w1 W3 (%1 V4 Wa (%1 w1 W3
Vo W3 Vg
T 15 13
Figure 5.1: The family 7 = {7}, 75, T3} is constructed for transforming an
instance of HSP2, where S = {vy, va,v3,v4} and C = {{vy,va}, {vs}, {v2, v4}},

into instances of SD and SSD for families of trees.

Results analogous to that of Theorem [5.3|can be verified for other classes
of graph families. In particular, as an extreme case, we would point out that
there exist families composed by graphs whose individual metric dimensions
are constant, and small, yet their simultaneous metric dimensions may span
a wide range of values and are difficult to compute. For example, consider
the so-called tadpole graphs[49], unicyclic graphs obtained by taking a path
graph P, and a cycle graph C), and identifying a leaf of P, and an arbitrary
vertex of C,y. These are particular cases of the graphs of the forms P+e and
C + e — f described in Section 2.4 As discussed in the proof of Remark
(cases 2 and 3), any graph G constructed in this manner satisfies dim(G) = 2.
However, by Remark 2.1 and Theorem [2.3] we have that a family G composed
by tadpole graphs satisfies 2 < Sd(G) < |V| — 1, being both bounds tigh]

Moreover, as illustrated in Figure [5.2] a polynomial-time procedure, similar

IThe lower bound is trivially satisfied, whereas the upper bound is reached, for instance,
by the family composed by all different labelled graphs isomorphic to K7 + (K7 U K»).
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to that described in the proof of Theorem [5.3] allows to transform an instance
of HSP2 into an instance of SD for families of tadpole graphs, in such a way
that a solution S”, [S”| < p, for HSP2 exists if and only if the family G
constructed by this transformation satisfies Sd(G) < p + 1, so SD is NP-
complete for these families.
U1 U3 U2
u o v W2 g, u o V2w g, u o vz W2 g,
vz w1 ws U1 Vg W2 v wr  ws

G U2 Gy w3 Gy V4
Figure 5.2: The family G = {G;, Gy, G3} is constructed for transforming an
instance of HSP2, where S = {vy, va,v3,v4} and C = {{vy,va}, {vs}, {va, v4}},
into an instance of SD for families of tadpole graphs.

5.3 Algorithms for estimating simultaneous

resolvability parameters

Here, we present several approaches for obtaining approximate values for si-
multaneous resolvability parameters. A common idea lies on the conception
of all methods, namely that of computing a permutation S = (v;,, viy, ..., v;,)
of the vertex set V', which imposes an ordering on V', and finding the min-
imum value fg such that the set W = {v;,, vs,,. .. ,vies}, composed by the
first fg vertices according to this ordering, is a simultaneous generator of
the desired type. We will refer to this value as the resolvability threshold of
the given permutation. We will describe two greedy algorithms and a ran-
domized local search procedure for finding a permutation whose resolvability
threshold is as close as possible to the exact value of the desired simultaneous

resolvability parameter.

5.3.1 Preliminaries

The data structure used for representing one graph is the upper triangular
half of the distance matrix, excluding the diagonal. Explicit labels are not
used for vertices. Instead, the structure refers to each vertex by its ordinal

position in the vector. Thus, the i-th row refers to vertex v; and contains the
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distances to the vertices vii1,vit2,..., 0. A graph family is represented
as a vector of graph representations. Note that, for a graph family G =
{G1,Ga,...,Gy} defined on a common vertex set V', the space complexity of
this data structure is O(k - [V']?).

Algorithm 1 Function DIST

1: function DIST(dt,i,x,u,v)
2 if dt = Sd then
3 return dg, (u, z) # dg, (v, )
4: else if dt = Sd4 then
5 return dg, 2 (u, ) # dg, 2(v, )
6 else
7 return dg, (u,x) = dg,(u,v) + dg, (v, x) or dg, (v, z) = dg,(u,v) +
de,(u, x)
end if

9: end function

*

A number of subroutines are common to all methods. We will briefly
describe those that are not trivial or simply auxiliaryPl Boolean function
DIST(dt, i, z, u,v) verifies whether the vertex = distinguishes the pair u,v in
the graph G; according to the criterion of the dimension type dt, as de-
scribed in Algorithm [I] As all the distances are kept in the data structure
representing the graph family, the time complexity of function DIST is O(1).

At some point, all the algorithms proposed need to verify whether a
vertex set S is a simultaneous generator of a given type for a graph family.
This verification is performed by the Boolean function CHECKSIMGEN(dt,S),
which is described in Algorithm Note that function CHECKSIMGEN is
likely to run faster when the output is false. The worst case time complexity
of the function is O(k - |S] - |[V]?)

5.3.2 Description of the algorithms

Two of the proposed methods are greedy algorithms that rely on the as-

sumption that the likelihood of a vertex belonging to a simultaneous basis

2The C++ implementations of the data structures and algorithms described in this

chapter are available at https://github.com/yramirezc/sim-dim-graph-families|
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Algorithm 2 Function CHECKSIMGEN

1: function CHECKSIMGEN(dt,S)

2 for i<+ 1...|G| do

3 forp«1...][V]—-1do

4: forg«1...]V|—1do

5: if v, ¢ S and v, ¢ S then

6 foundDistinguisher < false
7 for z € S do

8 if pIST(dt, %, z, vy, v,) then
9

foundDistinguisher < true

10: break for
11: end if

12: end for

13: if not foundDistinguisher then
14: return false
15: end if

16: end if

17: end for

18: end for

19: end for

20: return true

21: end function

of any type is directly proportional to the number of vertex pairs that it

distinguishes.

The first method, greedy aggregation, consists on iteratively adding ver-

tices to a set W until a generator is obtained. The method consists on an

initialization phase, where the set of vertex pairs distinguished by each ver-

tex is computed, and vertices are decrementally sorted by the sizes of these

sets, and a greedy computation phase. In this second phase, a simultaneous

generator of the desired type is constructed by iteratively performing two

steps. First, a new vertex is added to the generator, and then the remain-

ing vertices are re-sorted according to the number of vertex pairs that are
distinguished by them but not by the already added vertices. Algorithm

describes greedy aggregation in detail.
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Algorithm 3 Greedy aggregation

Require: A graph family G = {G1,Ga, ..., Gy} on a common vertex set V'
1: > Initialization
2: for v; € V do
3: D; <0
4 for v; e V —{v;} do
5 for v, € V — {v;,v;} do
6: for G; € G do
7 if pIST(dt, [, vk, v;, v;) then
8 D; « D; U {{vj,v}}
9 end if
10: end for
11: end for
12: end for
13: end for
14: SORT((v1, D1), (v, D2), ..., (vn, Dy)) > decrementally by |D;|
15: > Greedy computation
16: 5 <1
172 W« A{v;, }
18: while CHECKSIMGEN(dt, W) = FALSE do
19: forle{j+1,7+2,...,n} do

20 Dy + D; — D,
21: end for

22: j—g3+1

23: SORT((vi,, Ds,), (Vijoy, Dijiy)s - - -5 (i, Dy, )) > decrementally by |Dj,|

24: W WU {v,}
25: end while
26: return ||

Remark 5.4. The time complexity of the greedy aggregation algorithm for a
family G = {G1,Gs, ..., Gy} defined on a common vertex set V is O(k-|V]*).

Proof. 1t is simple to see that the time complexity of the initialization phase
is O(k - |[V|?). Moreover, function CHECKSIMGEN, as well as the inverted
index update and re-sorting, are called as much as |V'| —2 times. Taking into
account that the worst case time complexity of updating one entry of the

inverted index of distinguished pairs per vertex is O(k - |V|?) and that the
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time complexity of efficient sorting algorithms is O(n log n) on lists composed
by n objects, we have that the time complexity of the greedy aggregation

algorithm is

Ok -V +k- V> 1+(V|=1) k- |VP+ (V| —-1) - -log(|]V]| — 1)+
+k- V224 (V| =2) k- |[V2+ (V] =2) - log(|V]| — 2)+

+k- VP2 (V] =2) +2k- |V]?+2-1og2) =

V-2 V-1 V-1

=O0k-|V]? +k-|V|*- 2:21 ]+ k- |V]?- Z; [i] + 1:22 [i - logi]) =
IV|—2 [V|-1 [V|—1
= Ok VP k- VI X ]+ k- IVE- 3 [ +1oa(VD) - X [ =
= Ok [V k- VI - VI 4 [V og(IV]) =
= (k- [V]").

]

Moreover, the space complexity of the inverted index of distinguished
vertex pairs per vertex is O(k - |[V]3), which dominates that of the graph
family data structure, so the overall space complexity of greedy aggregation
is Ok- |V +k-|VI?)=0(k-|V]).

The second method, greedy pruning, consists on iteratively removing
vertices from a set W, which is initialized as the entire vertex set, until it
stops being a generator. Algorithm [4] describes greedy pruning in detail.

Greedy pruning sorts the vertices only once, so its effective running times
are lower than those of greedy aggregation. Note, however, that the asymp-
totic time complexity of greedy pruning is the same as that of greedy aggre-
gation, i.e. O(k-|V|*), as it is also dominated by the calls of CHECKSTMGEN,
which can also be as many as |V| — 2. Regarding space complexity, greedy
pruning only needs to store counts of the number of distinguished vertices,
which makes its space complexity dominated by that of the graph family
data structure, i.e. O(k - |V]?). As a final remark, note that the simulta-
neous generator computed by greedy pruning coincides with the one that
would be computed by greedy aggregation if the re-sorting step were not
performed. Whether following one constructive strategy or the other is more
efficient depends on how probable it is for graph families to have a value of

the simultaneous resolvability parameter to compute which is closer to 1 or
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Algorithm 4 Greedy pruning

Require: A graph family G = {G1,Ga, ..., Gy} on a common vertex set V'
1: > Initialization
2: for v; € V do
3: C; 0
4 for v; € V —{v;} do
5 for v, € V — {v;,v;} do
6: for G; € G do
7 if pIST(dt, [, vk, v;, v;) then
8 Ci+—Ci+1
9 end if
10: end for
11: end for
12: end for
13: end for
14: SORT((v1,Ch), (v2,Ca), ..., (s, Cy)) > incrementally by C;
15: > Greedy computation
16: 5 <1
17: W+ V
18: while CHECKSIMGEN(dt, W) = TRUE do
19: W W —{v,}
20: JJ+1
21: end while
22: return |[W|+1

to |V| — 1. Intuitively, we consider that the latter is more likely be the case,
hence the choice of pruning rather than aggregation without re-sorting.
The third proposed method is a randomized local search procedure,
which consists on running a number of local searches starting in random
initial solutions, and selecting the one that obtains the best final solution.
Each local search consists on an iterative process where, at every step, given
the current solution S, a number of similar solutions are generated by switch-
ing the positions of two vertices, one of which is among the first g vertices
in S, and the candidate solution that better improves on S (if any) is se-
lected as the new solution. The choice of the pair of vertices to switch is due

to the fact that, clearly, switching the positions of two vertices beyond the
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Algorithm 5 Randomized local search for simultaneous resolvability param-

eters

Require: A graph family G = {G1,Gs,..., G} on a common vertex set
V', runCount: the number of local searches to run, maxIters the maxi-
mum number of iterations to perform in a local search if no convergence
is reached, and candCount: the number of new candidate solutions to
generate in each iteration

1: bestResult < |V | —1
2: for r < 1...runCount do
3 S <= RANDOMPERM(V')

4: resThr <— RESTHRESHOLD(dt, S)

5: if resThr < bestResult then

6: best Result <— resThr

7 end if

8: 141

9: notConverged < true

10: while ¢ < maxlters and notConverged do
11: notConverged < false

12: S <+~ NEWCANDSOLUTIONS(S, best Result, candCount)
13: for S’ € S do

14: resThr < RESTHRESHOLD(dt, S")
15: if resThr < best Result then

16: best Result <— resThr

17: S5

18: notConverged < true

19: end if
20: end for
21: 141+ 1
22: end while
23: end for

24: return bestResult

resolvability threshold does not generate a better solution. This method is
described in detail in Algorithm [5]
The worst case running time of this randomized local search method

occurs when all runCount local searches run up to maxlters times due
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to non-convergence. Thus, the asymptotic time complexity of the method
is determined by the runCount - maxlters - candCount calls of function
RESTHRESHOLD, each call of which may in turn call CHECKSIMGEN up to

|V| — 1 times, and is

Algorithm 6 Function RESTHRESHOLD

1: function RESTHRESHOLD(dt,S = (viy, Vi, - - -, iy, )
2 j+1

3 W+ {v;, }

4 while CHECKSIMGEN(dt, W) = FALSE do

5: je 41

6 W WU {v,}

7 end while

8 return ||

9:

end function

V-1
O(runCount - maxIters - candCount - > (k-i-|V|?)) =
i=1
V-1
= O(runCount - mazIters - candCount - k- |[V]*- > (1)) =
i=1
= O(runCount - maxIters - candCount - k - |V'|*).

Clearly, the relation between effective running times of the randomized
local search method versus that of greedy aggregation and greedy pruning
depends on the relations between the values of the parameters runCount,
maxlters and candCount and those of the implicit constants affecting the
running times of both greedy methods. The randomized local search method
needs to store at every iteration one list of candidate solutions, which is
discarded from one iteration to the next. Thus, its space complexity is dom-
inated by that of storing the graph family data structure and is O(k - |V |* +
¢ |V[) =0k |V).

5.3.3 Experiments

In order to assess the accuracy of the proposed methods, we constructed an
evaluation benchmark composed by three collections of graph families, each

one containing 50 families. The first collection is composed by arbitrary
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Algorithm 7 Function NEWCANDSOLUTIONS

1: function NEWCANDSOLUTIONS(S = (v, Vi, ..., Vi, ), resThr,
candCount)

2 S« 0

3: for i < 1...candCount do

4: x <— RANDOMINT([1, resThr])

5: y < RANDOMINT([1, |V]])

6: if x <y then

7 S" 4= (Wiry + 5 Vig 15 Vi Vig g1y« + -5 Vi 15 Vigy Vi1 - -+ Vi)
8: else

9: S" 4= Wiy« + 5 Vi 15 Vigy Vigyrs -+ -y Vi 5 Vigs Vigyys - -+ Vi)
10: end if
11: S+ SuU{s}

12: end for
13: return S

14: end function

graphs, whereas the second and third collections are composed by families
of corona product graphs and trees, respectively. Table summarizes the
most relevant statistical information of these collections.

For building each family of the first collection, the number of graphs in
the family and the size of the common vertex set were randomly set. Then,
each graph was constructed by randomly deciding whether each pair of ver-
tices was to be joined by an edge or not. Connectedness was enforced by
adding as many extra edges as necessary. Once the families had been con-
structed, the exact values of their simultaneous metric, adjacency and strong
metric dimensions were computed using exhaustive breadth-first search. The
need for this exhaustive search imposed a practical constraint on the fami-
lies of the first collection, namely that of having small simultaneous metric,
adjacency and strong metric dimensions.

Families in the second collection were obtained by generating two fami-
lies G and H by the previously described process and computing the family
G ® H. In this case, exhaustive breadth-first search was used for comput-
ing Sd4(#H), which allowed us to analytically determine Sd(G ® H) applying
Theorem and Sd4(G ® H) applying Theorems |3.59, [3.61} [3.65| and [3.67|

Thus, although the second factors were constrained to have small simulta-
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neous adjacency dimensions, the graphs of the family themselves were not
subject to such constraint. Beyond the fact that the aforementioned results
allowed us to analytically determine the exact values of the simultaneous
metric and adjacency dimensions of the families composing the collection,
we chose to make Collection 2 be composed by families of corona product
graphs because such families are particularly difficult for greedy aggrega-
tion and greedy pruning. In a corona product graph G ® H, every vertex
u; € V(@) distinguishes a large number of vertex pairs, including all pairs
v,w where v € V(H;) and w € V(H;), i # j. Thus, for corona product
graphs having large |V (G)|, the heuristic that drives both greedy methods
is likely to prioritize vertices of GG, even though (simultaneous) metric bases
must necessarily be composed by vertices from the copies of H and (simul-
taneous) adjacency bases in most cases only need to contain several vertices
of G. This feature of Collection 2 makes it a good example of extreme cases

to be handled by the algorithms that we intend to evaluate.

Coll. 1 Coll. 2 Coll. 3
min mean max | min mean max | min mean max
|g| 5 1726 25 2 11.36 25 2 13.62 24

V| | 12 19.18 25 | 84 185.38 260 | 43 139.94 236
SA(G) | 6 7.84 14 | 39 943 147 | 13 88.08 161
Sdu(G)| 6 868 14 | 51 1109 167 | — - -
Sd,(G) | 10 17.66 24 | - - ~ |17 1042 189

Table 5.1: Statistics of the benchmark collections used for the experiments.

As we mentioned previously, families in the third collection are composed
by trees. Moreover, such families were constructed in such a way that all trees
have a common set of exterior major vertices, all of which, at the same time,
have common sets of terminal vertices. In consequence, every set composed
by all terminal vertices, except one, of every exterior major vertex, is a metric
basis of every tree in the family, so it is also a simultaneous metric basis.
Moreover, every set composed by all leaves, except one, is a simultaneous
strong metric basis of the family. Consequently, the simultaneous (strong)
metric dimensions of all families of this collection were easily determined
analytically, so no constraint needed to be posed on their values.

For building each family of the collection, we first set, randomly, the
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number of trees in the family, the number of exterior major vertices, as
well as the terminal degree of every exterior major vertex, and the number
of additional vertices. The process for randomly constructing each tree is
depicted in Figure 5.3, Initially, a “seed” tree is constructed. This tree is
composed by a non-exterior major vertex, joined by edges to every vertex in
the defined set of exterior major vertices, which in turn are joined by edges to
their associated terminal vertices. The seed tree is then randomly modified
as many times as the number of additional vertices, minus one, to obtain
each final tree, which is added to the family. Each modification consists on
either adding a vertex in a randomly chosen path that joins an exterior major
vertex and some of its terminal vertices, or adding a vertex in a randomly
chosen path that joins two exterior major vertices.

Summing up, for Collection 1 we determined the exact values of the si-
multaneous metric, adjacency, and strong metric dimensions; for Collection 2
we determined the exact values of the simultaneous metric and adjacency
dimensions; and for Collection 3 we determined the exact values of the si-
multaneous metric and strong metric dimensions. Afterwards, we obtained
the estimated values of these parameters by each algorithm. In the case of
randomized local search, we set the values of maxIters and candCount to
1000 and 100, respectively, and computed partial estimates after 50, 100,
500 and 1000 runs. For a family G, defined on the common vertex set V,
let SA*(G) denote an estimate of SA(G). The quality of SA*(G) is assessed

through the relative error measure

«(Sd°(9)) = Sd*(g)n;| 5d(9)

Note that, since all evaluated algorithms compute as their final output
the size of a simultaneous metric generator, we have that Sd(G) < Sd*(G) <

V| =1 and so 0 < €(Sd*(G)) < |‘\/|T_|2 Also note that we do not use the stan-

dard definition of relative error, which would be €(Sd*(G)) = ‘w , as

Sd(G)
we consider that it fails to differentiate cases where |V| is relevant to assess

the seriousness of errors. For instance, consider two graph families G and G’
defined on common vertex sets V' and V', respectively, such that |V] < |V|
and Sd(G) = Sd(G’), e.g. most pairs of families composed by paths and/or
cycles characterized in Theorem [2.8 In these cases, we consider that equal

absolute errors should not be considered as equally serious, yet the stan-
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Figure 5.3: Initial steps of the process for randomly constructing a tree with

three exterior major vertices having terminal degrees two, three and four.

dard relative errors would be the same. The measure €(Sd(G)) handles this
situation more adequately.

For the simultaneous adjacency dimension and the simultaneous strong
metric dimension, the measures €¢(Sd%(G)) and €(Sd(G)), respectively, are
computed in a manner analogous to €(Sd*(G)).

Figures [5.4] [5.5] and [5.6] show the results obtained for the simultaneous
metric dimension on the first, second and third collections, respectively. In
the figures, each plot represents the values of €(Sd*(G)) for every algorithm on

every family. Moreover, dashed horizontal lines represent the mean values for
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each algorithm on the entire collection. In the x axes, families are arranged
in incremental order of |V|. In a similar manner, Figures and show
the results obtained for the simultaneous adjacency dimension on the first
and second collections, respectively, whereas Figures and show the
results obtained for the simultaneous strong metric dimension on the first
and third collections, respectively.

The analysis of these results allowed us to extract a number of conclu-
sions. First, note that the only cases where randomized local search substan-
tially outperforms greedy aggregation are those where the cardinality of the
vertex set is considerably small, as can be verified on Collection 1 (clearly
for the simultaneous metric and adjacency dimensions and to a lesser ex-
tent for the simultaneous strong metric dimension) and a few of the families
of Collection 3 having smallest |V| . This result comes as no surprise, as
performing enough local searches on a small search space is likely to be (al-
most) equivalent to an exhaustive search. Moreover, from the results on
Collections 2 and 3, it is clear that as |V| increases, the results for random-
ized local search degrade. Besides, the effect of the number of runs on the
accuracy of randomized local search is more discrete than we expected.

Secondly, even though Collection 2 was conceived to show the greedy
methods at their worst, greedy aggregation actually suffered the lowest error
(almost at tie with randomized local search for the simultaneous adjacency
dimension). An interesting aspect of the results on Collection 2 are a few
families for which greedy aggregation obtained the exact values of the si-
multaneous metric and adjacency dimensions, in contrast with the generally
poorer results. Those cases correspond to families G ® H where |V (G)] is
considerably small and |V ()| is considerably large, so vertices from |V (G)|
are not unfairly prioritized. In general, on Collection 2 the results of all
methods tend to degrade as |V (G ® H)| increases.

The results on Collection 3, whose families are defined on larger vertex
sets than Collection 1 and, unlike Collection 2, have no features obviously
contradicting the assumptions behind any of the proposed algorithms, allow
us to see that greedy aggregation is much more stable as |V| grows, while
randomized local search tends to degrade and greedy aggregation tends to
slightly improve (more noticeable for the simultaneous strong metric dimen-
sion than for the simultaneous metric dimension).

In our opinion, the most important fact highlighted by these results is
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that, despite its computational cost, the re-sorting stage of greedy aggrega-
tion is critical, as it allows it to obtain the overall best results, in contrast to
the overall worst results obtained by greedy pruning.

To conclude our discussion, we point out some rules-of-thumb, based
on the computational cost of the methods and the observed experimental
results, to aid in the selection of one of the proposed algorithms for real-
life computations. First, if enough memory is available, greedy aggregation
should be the method of choice, as it showed overall best results and higher
stability as the cardinality of the vertex set grows. Now, if memory is lim-
ited, an extra circumstance should be considered. Up to some value of |V,
randomized local search would be the second option, provided that enough
computation time is available. However, extrapolating the observed fact that
randomized local search tends to degrade as |V| increases while greedy prun-
ing tends to improve (although at a slower pace) we conjecture that for very
large instances greedy pruning may be the most appropriate second choice.
For instance, we can see that for the simultaneous strong metric dimension,
the results of greedy pruning on families of Collection 3 having the largest
values of |V| were better than those of randomized local search. Even though
this situation did not occur for the simultaneous metric dimension, a trend

towards convergence can also be observed.
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Figure 5.4: Experimental results for the simultaneous metric dimension on
Collection 1.
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Figure 5.5: Experimental results for the simultaneous metric dimension on
Collection 2.
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Figure 5.6: Experimental results for the simultaneous metric dimension on
Collection 3.
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Figure 5.7: Experimental results for the simultaneous adjacency dimension

on Collection 1.
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Figure 5.8: Experimental results for the simultaneous adjacency dimension

on Collection 2.
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Figure 5.9: Experimental results for the simultaneous strong metric dimen-
sion on Collection 1.
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Figure 5.10: Experimental results for the simultaneous strong metric dimen-

sion on Collection 3.
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Conclusions

In this thesis we have introduced the notion of simultaneous resolvability
for graph families defined on a common vertex set. The main results of the
thesis have dealt with simultaneous metric generators and bases, as well as
the simultaneous metric dimension of such families. Additionally, we have
covered two related forms of simultaneous resolvability. Firstly, we treated
the simultaneous adjacency dimension, which proved useful for characteriz-
ing the simultaneous metric dimension of families composed by lexicographic
and corona product graphs. Secondly, we studied the main properties of
the simultaneous strong metric dimension. In all cases, our focus was on
determining the general bounds for these parameters, their relations to the
standard resolvability parameters of the individual graphs and, when possi-
ble, giving exact values or sharp bounds for a number of specific families.
Computationally, these problems are far from solved for the general case,
as we were able to verify that the requirement of simultaneity adds on the
complexity of the calculations involving these resolvability parameters, which
had already been proven to be NP-hard for their standard counterparts. In
particular, we characterized families composed by graphs for which some
standard resolvability parameters can be efficiently computed, while com-
puting the associated simultaneous parameters is NP-hard. To alleviate this
problem, we proposed several methods for approximately estimating these pa-
rameters and conducted an experimental evaluation to study their behaviour

on randomly generated collections of graph families.

Contributions of the thesis

The results presented in this work have been published, or are in the

process of been published, in several venues. Several papers have been pub-
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Future work

e A vast number of variations of the metric dimension have been pre-
sented, as we discussed in Section In principle, simultaneous coun-
terparts of all of these parameters can be defined on graph families,

which would lead to a wide range of studies.

e Remark[4.8/shows a result on the simultaneous strong metric dimension

of some specific families composed by corona product graphs. While
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this result turned out to be straightforward, it illustrates the interest-
ingness of conducting a deeper study on the simultaneous strong metric
dimension of families composed by product graphs. Such study may
be based on the results presented in [506, [57, [71].

e A natural extension of the results presented in Section [5.3] is to ap-
ply popular metaheuristics to the approximation of simultaneous resol-
vability parameters, e.g. genetic algorithms, ant-colony optimization,

particle swarm optimization, etc.

e Following the line of computing approximate solutions, an alternative
approach may be that of defining relaxed notions of resolvability. While
the combinatorial study of such variations may be challenging, they
may pave the way for the use of a wide range of computational tech-
niques borrowed from other areas, such as data mining and pattern
recognitionﬂ, thus enlarging their field of practical applications. To il-

lustrate our point, here we define two intuitively interesting relaxations:

— Quasi-simultaneous generators: For a graph family G = {G1, Gs,
..., G}, defined on a common vertex set V', and a real number
¢ €1[0,1], aset S C V is a ¢-quasi-simultaneous metric | adjacency
/ strong metric generator for G if the number Rg(G) of graphs G; €
G for which S is a metric / adjacency / strong metric generator

Rs(9)

satisfies = =S

— Simultaneous quasi-generators: For a graph G = (V,F) and a
real number ¢ € [0,1], a set S C V is a metric / adjacency
/ strong metric s-quasi-generator for G if the number Rg(G)
of different vertex pairs that are distinguished by some element
of S satisfies % > g By analogy, for a graph family
G = {G1,Gy, ..., G}, defined on a common vertex set V', and
a real number ¢ € [0,1], a set S C V is a simultaneous met-
ric/adjacency/strong metric ¢-quasi-generator for G if it is a met-

ric / adjacency / strong metric ¢-quasi-generator for every G; € G.

Note that simultaneous generators are a particular case of both relaxed

variants for ¢ = 1.

3For instance, feature selection, frequent itemset mining, clustering, etc.

4Note that the total number of different vertex pairs u,v € V is W
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Symbol List

The symbols are arranged in the order of the first appearance in the work.

Page numbers refer to definitions.

G simple graph,

V(G) set of vertices of G, El

E(G) set of edges of G,Izl

n order of a graph,

U~V vertex u is adjacent to U,EI

U= v vertex u is not adjacent to v,

GEH graphs G and H are isomorphic,EI

N¢g(v) open neighbourhood of a vertex v in G,
Ng[v] closed neighbourhood of a vertex v in G, El
Na(S) open neighbourhood of a subset of V(G),
Ng[9] closed neighbourhood of a subset of V(G),
7(G) domination number of G,

da(v) degree of a vertex v of G,

Ng(v) open neighborhood of a vertex v in the set S,
Nglv] closed neighborhood of a vertex v in the set .S,
I(G) minimum degree of the graph G,

A(G) maximum degree of the graph G,

g(q) girth of the graph G,

K, complete graph of order n, El

Cn cycle of order n,

P, path of order n,

N, empty graph of order n, El

Ky complete bipartite graph of order s + t, El
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Symbol List

Kip,

T

Q(T)
da(u,v)
D(G)
Ge

star of order n + 1,

tree,

set of leaves in the tree T,

distance between two vertices v and v in G,
diameter of the graph G,

complement of the graph G,

subgraph of GG induced by the set X,

set of simplicial vertices of G,

clique number of G,

twins-free clique number of G,
independence number of G,

Cartesian product of two graphs G and H ,
hypercube of order 2",

metric,

metric space, |§|

metric dimension of G,

adjacency dimension of G,

distance between two vertices v and v in GG, bounded by t,

strong metric dimension of G,
vertex cover number of G,

set of vertices of G which are maximally distant from v,

boundary of the graph G,

strong resolving graph of G,

graph family on a common vertex set,
simultaneous metric dimension of G,
set of interior vertices of G,

terminal degree of v in G,

set of terminal vertices of v in G,

set of exterior major vertices of GG,

stabilizer of B,

family associated to G having B as a simultaneous metric

generator,

join graph of two graphs G and H,
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GoH lexicographic product of two graphs G and H,

GoOH corona product of two graphs G and H,

Sda(9) simultaneous adjacency dimension of G,

K(V) family of star graphs on the common vertex set V', composed
by |V'| graphs having each a different center,

ge family composed by the complements of the graphs in G,

(B&)w subgraph of G weakly induced by B,

QVB(G) family associated to G having B as a simultaneous adjacency
generator,

G+H family composed by join graphs,

¥ equivalence class of x by the twins equivalence relation,

GoH family composed by lexicographic product graphs,

GOH family composed by corona product graphs,

Sv(9) simultaneous domination number of G,

Sds(9) simultaneous strong metric dimension of G,

Sw(G) simultaneous twins-free clique number of G,

Bs(Q) strong resolving number of G,

Os resolvability threshold of a permutation of V(G), 102

Sd*(G) estimate of Sd(G), 112

€(Sd*(G))  relative error of Sd*(G) with respect to Sd(G), |112
Sd% (G) estimate of Sd4(G), [L12
€(Sd%(G)) relative error of Sd*(G) with respect to Sd4(G), 112
Sdx(G) estimate of Sd4(G), [112
€(Sd;(G))  relative error of Sd}(G) with respect to Sds(G), |112
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Index

2 F
2-antipodal graph, [9] [20] false twin vertices,
- twins,
A - - equivalence class,

adjacency basis,
- dimension,
- generator, [I0] graph, [T
- fomily [ BT 7 11 53 [
B 52, 65} B3
boundary, greedy aggregation, [109

- pruning, [107]

G

C
H
Cartesian product, [8] [04]
closed neighbourhood, [7] hypercube, 8} [58,

corona product, [36}, [68], [36],
cycle graph, 47 B8 72

interior vertex, [21]

D

distance, [§] [10] J

distinguish, [10] join, [35] [43] [62} [7§]
dominating set, [},

domination number, [7] L

leaf, 7, 09, [T

I lexicographic product, [35]
edge exchange, local search,
exterior major vertex, [21] locating set, see metric generator

143



UNIVERSITAT ROVIRA I VIRGILI

THE SIMULTANEOUS
Yunior Ramirez Cruz

(STRONG)

METRIC DIMENSION OF GRAPH FAMILIES

Index

M

major vertex, [21]
maximally distant,

metric, [J)

- basis,
- dimension,
- generator, [I0]
- space, [9]

mutually maximally distant,

N

neighbourhood,

@)

open neighbourhood, [7]

P

path graph, [T9] 47,

RE!

R

randomized local search,
resolving set, see metric generator

resolvability threshold,

S

simultaneous adjacency basis,

- - dimension,

- - generator, [37]
- dominating set,
- domination number,
- metric basis,

- - dimension,

- - generator, [I5]

- strong metric basis,
- - - dimension,
- - - generator, [83
- twins-free clique,
- - - number,
stabilizer, [30] [40]

strong metric basis,
- - dimension,
- - generator, [17]
- resolving cover,
- - - number,
- - graph,
strongly distinguish,

T

tadpole graph,
terminal degree,
- vertex, [21]

tree, 21} [27, 95}, 09, [T11]

true twin vertices,
- twins,

- - equivalence class,

twin vertices,
twins,
- equivalence relation,
twins-free clique,
- - number,

U
unicyclic graph, [25]

A\

vertex cover, [I2]

- - number,
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