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THESIS ABSTRACT

O
ver the last several decades, the emerging ‘integrated’ view of the cell has

triumphed over the ‘one gene/one protein/one function’ paradigm. This is

illustrated by the biologically opposite effects of key regulatory proteins in different

cell types, in established versus primary cells, and in vitro versus in vivo situations.

The persistent theme throughout this dissertation is the integration of a wide range

of data sources for the purpose of understanding distinct cellular contexts. We

first use circadian expression data from human epidermal stem cells to discover

waves of transcripts expressed in tune with known clock genes and to show that

time-of-day dependent responses to proliferation/differentiation cues is important

for skin homeostasis. We then combine this expression data with information on

protein structures and complexes to describe how protein-complex assembly is

temporally regulated during differentiation. Lastly, we show that human protein

complexes are composed of a stable ‘core’ and a plastic ‘periphery’ whose tissue-

specific expression allows protein complexes to function in a context-dependent

manner.
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RESUMEN DE TESIS

E
n las últimas décadas, la emergente vista integrativa de la célula ha triunfado

sobre el paradigma histórico : ‘un gene/una proteı́na/una función’. Esto es ilus-

trado por los efectos biológicos opuestos de proteı́nas regulatorias clave en cultivos

celulares inmortalizados frente a primarios e in vitro frente a in vivo. El tema persis-

tente en este disertación es la integración de un amplio set de datos para estudiar

los distintos contextos celulares. En primer lugar, utilizamos los datos de expresión

génica obtenidos de células madre epidérmicas para descubrir las ondas de trans-

cripción expresadas en sintonı́a con los genes conocidos de los ritmos circadianos.

En este estudio demostramos que las respuestas de las células madres a las señales

de proliferación/diferenciación dependen de hora del dı́a y el tiempo circadiano es

importante para la homeostasis de la piel. Posteriormente, combinamos estos datos

de expresión con la información estructural de proteı́nas y complejos proteicos para

describir la regulación temporal de complejos durante el proceso de diferenciación.

Por último, mostramos que los complejos de proteı́nas humanos están compues-

tos de un ‘núcleo’ estable y una ‘periferia’ plástica cuya expresión especı́fica de

tejido celular permite que los complejos de proteı́nas funcionen de una manera

dependiente del contexto.
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PREFACE

This dissertation covers several studies under the general topic of how computa-

tional analysis of spatiotemporal gene expression provides insight into the modular

workings of the cell in various contexts. It is the objective of this dissertation to

unify and present the findings of three separate manuscripts laid out over three

distinct chapters. I have attempted to provide the necessary background to all three

studies in the first chapter. The next three chapters can be read independently as

they have been published or are in the process of being submitted for publication as

separate scientific articles. Finally in the last two short chapters, a general overview

of the results, a summary of all three end-of-chapter discussions, and concluding

remarks have been presented.
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GLOSSARY

Table 1: List of abbreviations

Abbreviation Description

AF affinity purification

AP2 apetala 2

ARNTL aryl hydrocarbon receptor nuclear translocator-like

BMAL1 brain and muscle ARNT-like 1

BMP bone morphogenetic protein

BrdU bromodeoxyuridine

C/EBP CCAAT/enhancer binding protein

CLOCK circadian locomoter output cycles protein kaput

CRY1/2 cryptochrome 1/2

ECM extracellular matrix

EGF epidermal growth factor

FGF fibroblast growth factor

GRHL3 grainyhead-like 3

HF hair follicle

HT high-throughput

HPLC high-pressure liquid chromatogrphy

IEX-HPLC ion exchange high-pressure liquid chromatography

IF interfollicular

IFE interfollicular epidermis

IRF6 interferon regulatory factor 6

KLF4 Kruppel-like factor 4

LC liquid chromatography

MAPK mitogen-activated protein kinase

MS mass spectrometry

NF-κB nuclear factor-κB
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Table 1 – Continued

Abbreviation Description

NR1D1/2 nuclear receptor subfamily 1, group D, member 1/2 (also Rev-Erbα)

PER1/2/3 period 1/2/3

PPI protein-protein interaction

PTM post-translational modification

Rev-Erbα nuclear receptor subfamily 1, group D, member 1 (also NR1D1)

Rorα RAR-related orphan receptor alpha

SC stem cell

SCN suprachiasmatic nucleus

SG sebaceous gland

SHH sonic hedgehog

TA transit amplifying

TGFβ transforming growth factor-beta

TTFL transcriptional-translational feedback loop

UASG GAL upstream activation site
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CHAPTER

ONE

INTRODUCTION

I
nstead of using the usual recipe book analogy, if we take some poetic licence

and think of the genome simply as a great piano with many thousands of keys,

then each key can represent a gene and each note produced when a key is pressed

can represent the expression of that gene. Much like pressing any one key for one

quarter of a beat would produce a shorter note than pressing the same key for a

full beat, the expression of a gene too can take the form of numerous isoforms

both as transcripts and as proteins differing significantly in length and consequently

secondary and tertiary structure. In this analogy a faulty key, one that sticks or

sounds out of tune when struck, may represent a mutation, much like an unskilled

pianist or one who has just suffered a hand injury impacting his ability to perform

represents misregulation of any one gene or a number of genes. Both such sce-

narios can impact any musical passage played, at times perhaps ruining it altogether.

The part of this analogy most relevant to this work is not the characteristics of

the individual parts that make the musical instrument, but rather the music itself.

In the making of music, not every key has to be incorporated into every musical

piece. In living organisms too, not every gene is expressed in every tissue and

cell type nor in every process. Just like various genres, styles, and melodies are

played by striking the keys of a piano in special combinations, mixing notes and

chords in specific sequences with the right beat at the right tempo, various tissues

too are established and maintained by the expression and regulation of specific
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combinations of genes as are cellular processes. The underlying theme through-

out the whole of this dissertation, evident to varying degrees in the three chapters

that follow is how gene expression brings plasticity, variation, and context to the cell.

Across the three main chapters, we have consistently taken advantage of global

maps of the cell in the form of mRNA expression and physical protein interaction

maps to learn about distinct processes, cellular contexts, and tissues. We have

utilized time-course mRNA expression data to observe that skin cells in culture have

autonomous circadian rhythms (Chapter 2); we have learned that this circadian

rhythm helps maintain homeostasis and there is evidence to suggest that differen-

tiation happens in a time-of-day-dependent manner (Chapter 2); we looked at how

protein complexes change their composition over the course of skin differentiation

based on expression pattern of their member subunits (Chapter 3), and we studied

the organization of human protein complexes and how they are composed of two

distinct groups of subunits: a ubiquitously expressed core and a dynamic periphery,

which — expressed in the right context — brings functional plasticity to the whole

protein complex (Chapter 4).

1.1 Introduction to skin

The skin is the outermost organ that separates animals from their environment

and protects them against environmental stresses such as water loss, pathogenic

attacks, ultraviolet radiation, and thermal and mechanical injuries. Mammalian skin

features an elaborate array of appendages like hair follicles, nails, sebaceous and

sweat glands, blood vessels, and nerves, all of which are necessary for its various

functions like thermal regulation, sensation, secretion, and absorption. To keep

within the scope of this work we shall only introduce features of mammalian skin,

specifically those pertaining to mice and men. We also note that, unless other-

wise stated, all in vivo experiments discussed in this dissertation were conducted in

mouse.

Mammalian skin comprises two contiguous layers: dermis and epidermis. The

2



Figure 1.1: Mammalian skin : Cross-section of skin and close-up of epidermis (Jones

and Simon, 2008).

dermis is the lower layer of the skin that is rich in connective tissue and contains

collagen fibres, fibroblasts, blood vessels, and immune cells. The outermost layer

of the skin, the epidermis, is a specialised multi-layered epithelium tissue, which

is the defining component of the skin. Because it suffers direct, frequent, and at

times damaging encounters with the environment, its need for repair and renewal

is central to its organisation. The epidermis is nourished and supported by the sub-

jacent dermis yet is separated from it by a thin sheet of fibres called the basement

membrane (Figure 1.1). The epidermis adheres to this basement membrane, which

not only serves as a boundary but also a growth-promoting platform, being rich in

extracellular matrix proteins and growth factors (Paolo Dotto, 1999; Alberts et al.,
2002). The epidermis is composed of an inner layer of basal cells with proliferative
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potential and overlying stratified layers of differentiating progeny, collectively called

the suprabasal layer (Connelly et al., 2011; Alberts et al., 2002). Each layer of

cells in the suprabasal layers, namely in order from bottom to top, spinous layer,

granular layer, and cornified layer (or stratum corneum) is at a distinct point within

the differentiation program. As cells move from the basal layer through the strat-

ified suprabasal layer up to the squamous epithelium, they enlarge and terminally

differentiate. In fact, the stage of terminal differentiation is correlated both with cell

size and position (Clark & Coker, 1998; Watt & Green, 1982; Massagué & Gomis,

2006). It takes roughly two to three weeks for a basal cell to complete its migratory

differentiation program, eventually terminating when it is shed off the surface of the

skin (Figure 1.1).

In this manner, the epidermis continuously turns over while maintaining a constant

number of cells through a process called homeostasis. Homeostasis in mammalian

skin is driven by a population of well-characterized epidermal stem cells (SCs) which

constantly self-renew in order to maintain the tissue. These epidermal SCs have

two roles. First they have to replenish terminally differentiated cells, which are con-

tinually shed from the surface of the skin. Second they have to regenerate damaged

or necrotic cells after injury.

Specialised appendages in the skin, such as hair follicles (HF) exist within pilose-

baceous units along with the adjoining interfollicular epidermis (IFE) (Figure 1.2).

The HF is an intricate structure with its own specialized subtypes of stem cells.

To simplify, its most important components include a dermal papilla, which is a

small nipple-like extension of the uppermost layer of the dermis into the epidermis,

a cellular matrix above the dermal papilla, a hair shaft containing a hair fibre, a

sebaceous gland, and a bulge region in the close lower proximity of the sebaceous

gland (Figure 1.1). The IFE with its population of basal stem cells is also responsible

for the maintenance of the skin barrier. In the next section we look at the stem cells

within both HF and IFE.

4



Figure 1.2: Epidermal stem cells : Schematic representation of the skin epidermis with

the different resident SC compartments and transit-amplifying progeny identified. Bulge

SCs are multipotent, residing in the permanent portion of the HF. IFE SCs are localised to

the basal layer of the epidermis. Resident progenitors of the isthmus and SG reside in the

outer root sheath that is above the bulge and below the SG. (adapted from Blanpain & Fuchs

(2009)

1.1.1 Epidermal stem cells

Epidermal SCs are localized in specialized niches, which are sheltering microenvi-

ronments able to sequester the SCs from differentiation stimuli, apoptotic stimuli, or

other signals that might challenge the SC reservoir (Koster, 2004; Moore & Lemis-

chka, 2006; Mills et al., 1999; Truong et al., 2006; Senoo et al., 2007). These SC

niches also safeguard against excessive self-renewal, thus preventing cancer (Watt

et al., 2008; Moore & Lemischka, 2006). Epidermal stem cell niches can be divided

into those localized to the basal region of the IFE, and those in HF, where they are

specifically found in the sebaceous gland, the upper isthmus, and the bulge region

(Rangarajan et al., 2001; Watt et al., 2006)(Figure 1.2). Throughout the life of the

organism, epidermal SCs are normally quiescent and undifferentiated, but become

proliferative and egress their niche, most of the time periodically to guarantee epi-

dermal replenishment and hair growth or on rare occasions abruptly in response to
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stress signals like wounding. We shall introduce both hair follicle and interfollicular

SCs, although with greater emphasis on the IF SCs since our primary cell cultures

originated from this population.

HF SCs are responsible for the periodic regeneration of the hair and sebaceous gland

contained within the HF. Hair growth follows an intricate cycle of regeneration and

degeneration during which hair grows until the SCs have exhausted their prolifera-

tive capacity, then stops and enters a destructive phase (catagen) characterized by

high levels of apoptosis and tissue remodelling in the lower two-thirds of the HF.

This is followed by a quiescent stage (telogen), which lasts one to two days, before

a new growth stage (anagen) begins during which SCs in the bulge region of the

HF become activated and migrate to the lower hair germ region where they form

a large pool of highly proliferative transit amplifying (TA) matrix cells (Moriyama

et al., 2008; Blanpain & Fuchs, 2009) (Figure 1.3). Long-term pulse-chase experi-

ments have revealed that SCs in the bulge region cycle very slowly and are relatively

quiescent (Blanpain & Fuchs, 2006; Cotsarelis et al., 1990; Braun, 2003). TA matrix

progenitors in turn go through a few rapid rounds of cell division, then embark on

seven concentric terminal differentiation programs to generate the entire mature

hair follicle (Sen et al., 2008; Blanpain & Fuchs, 2009; Frye et al., 2007). These

seven different cell lineages are distributed such that three are in the hair shaft and

four in the inner root sheath (IRS) (Figure 4).

Initially, it was suggested that HF SCs in the bulge are also responsible for the

replenishment of the IFE. However, it is now clear that under normal homeostatic

conditions all epidermal SCs including those in the bulge (Frye et al., 2007; Ito

et al., 2005) only form the differentiated lineages of their respective compartment.

Only under challenging conditions, such as wounding, do epidermal SCs leave their

compartment and give rise to the progeny in other compartments, thus transiently

contributing to the regeneration of those tissues and demonstrating their own mul-

tipotency.

Interfollicular SCs are located in the basal layer of the epidermis in close contact

with the underlying basement membrane. They express high levels of adhesion
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Figure 1.3: Hair follicle cycle : phases of hair follicle growth cycle (adapted from

Blanpain & Fuchs (2009)

molecules, such as α6- and β1-integrins (Sen et al., 2008; Jones et al., 1995).

Similar to HF SCs, basal IF SCs self-renew as well as routinely execute a program

of terminal differentiation, dividing vertically, detaching from the basement mem-

brane, and moving upward to the surface of the skin in a columnar fashion all the

while increasing steadily in size.

There are two types of cell division taking part in epidermal homeostasis. In the first

type, symmetric cell division, both daughter cells adopt identical fates. An example

of this mode of division has been observed in early stages of embryogenesis, at 12.5

days after gastrulation, where over 75% of cell divisions are symmetric and parallel

to the BM. At this stage, the developing embryo is kept protected by the rapid ex-

pansion of a single layer of epithelium through symmetric and lateral cell divisions
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Figure 1.4: Hair follicle anatomy : seven distinct cell populations in the hair follicle

along with growth cycle

— a mechanism by which daughter cells remain attached to the BM and continue to

receive appropriate signals from basal extracellular matrix (Sen et al., 2008; Lechler

& Fuchs, 2005). This type of division, which is called symmetric self-renewal, can

also be observed in adults, albeit with much lower frequency which presumably is

sufficient to maintain SCs in the basal layer. Cells can also divide symmetrically but

subsequently both enter differentiation. This type of division can be seen between

embryonic day 13.5 and 15.5 whereby the suprabasal SCs are highly proliferative

in order to keep up with the rapid increase in the size of the embryo (Blanpain &

Fuchs, 2006; Lechler & Fuchs, 2005).

Asymmetric cell division is one of the two models proposed for the onset of strati-

fication (Tumbar, 2004; Blanpain & Fuchs, 2009; Morris et al., 2004) whereby the
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mitotic spindle is perpendicular to the BM enabling the two daughter cells to have

asymmetric cell fates, with the basal daughter cell remaining attached to the BM and

retaining receptors for growth factors, and the suprabasal daughter cell being com-

mitted to differentiation (Blanpain & Fuchs, 2006; Lechler & Fuchs, 2005). There is

evidence for this model in both embryogenesis and in normal adults where some

85% of mitoses happen asymmetrically and vertically (Candi et al., 2005; Lechler

& Fuchs, 2005). The second mode for asymmetric cell division involves a lateral

division plane parallel to the BM. In this model, one of the daughter cells might

receive an unequal quantity of a signal leading to the down-regulation of integrin

expression and the subsequent detachment form the BM and the onset of differen-

tiation (Candi et al., 2005; Blanpain & Fuchs, 2009).

Once cells begin their migratory journey from the basal to the suprabasal layer at the

onset of differentiation, they undergo a number of biochemical and morphological

changes. They switch off the expression of genes encoding keratin 5 and keratin

14 (KRT5 and KRT14) which are markers of epithelial cells in the basal layer and

function as cytoskeletal filaments to protect cells from mechanical stress (Candi

et al., 2005; Fuchs & Green, 1980). At the same time, migrating cells switch on

the expression of keratin 1 and keratin 10 (KRT1 and KRT10) in order to form an

expansive cytoskeletal filament to bolster cell-cell junctions and make the body

surface resistant to mechanical stress. As the migrating cells pass from the spinous

layer to the granular layer (Figure 2) they continue to increase in size; they also lose

their organelles (Woelfle et al., 2004; Lavker & Matoltsy, 1970; Dodd et al., 2005)

leaving keratins as the main structural proteins in the cytoplasm. These eventually

become cross-linked, forming a scaffold (Dunlap, 1999; Rice & Green, 1977). At

the stage of the stratum corneum the cells are simply cellular skeletons without any

metabolic activity. Human and mouse IFE are similar in many aspects concerning

their morphology and biochemical activity. Yet unlike human IFE where SCs remain

quiescent for long stretches, murine IFE is maintained by stem cells that divide on a

daily basis. The progeny of the SCs then undergo several rounds of division before

they detach from the basement membrane and begin their differentiation route into

the suprabasal layers (Jones & Simons, 2006).
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1.1.2 Epidermal SCs in culture

Over the years, in vivo analyses of epithelial tissues, under normal conditions and

in loss-/gain-of-function mutants, have provided significant insights into the main-

tenance of epithelial homeostasis. However, understanding the detailed molecular

mechanisms regulating epidermal homeostasis and differentiation also requires bio-

chemical in vitro studies. In this regard, studies involving cultured epithelial cells

have served as an important complementary approach. In 1975 two influential

studies described the establishment of an immortal epidermal cell line derived from

a mouse teratoma as well as cultivation of primary human keratinocytes in cul-

ture albeit with restricted lifetime of 20-50 cell generations (Rheinwald & Green,

1975a,b). Despite this early success, it took many attempts for normal human skin

cells to be transformed into immortalized cell lines (Boukamp et al., 1988). This

was an important step. Cell lines originating from cancers, though informative,

were deemed limited in their usefulness because of significant differences that ex-

isted in growth regulation linked to cell line immortality (Paolo Dotto, 1999). Since

those early days, giant leaps have been made and the development of epithelial cell

cultures has reached such heights that they can now be used to produce grafts that

regenerate an epidermis over a full-thickness wound (Coolen et al., 2007). For basic

research, both primary and immortalized cell lines, derived from both mouse and

human and originating from both healthy and tumorous tissue, are readily available

(Balsalobre et al., 1998; Coolen et al., 2007; Balsalobre, 2000). However, we will

limit ourselves to the discussion of human primary keratinocytes, as they were the

mainstay of this work and all experiments were conducted on primary keratinocyte

cultures isolated from human subjects.

As previously mentioned, one feature of the epidermis is the polarized pattern

of epithelial growth and differentiation, where a single layer of proliferating ker-

atinocytes is localized at the base underneath multiple differentiating layers. In

culture, both mouse and human primary keratinocytes exhibit many properties of

basal stem cells in morphology and biochemistry — continuously proliferating and

exhibiting appropriate markers of stemness — when kept at low calcium concentra-

tions (0.05 mM) so long as they remain attached to the culture dish or underlying
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matrix (Paolo Dotto, 1999). It has been observed however, that even at low calcium

concentrations, a minority of cells spontaneously detach from the culture dish and

express many if not all markers associated with the suprabasal layers and become

terminally differentiated (Paolo Dotto, 1999). On the other hand, differentiation of

keratinocytes attached to the underlying fibroblast feeder cells or the culture plate

can be induced by the addition of calcium (0.12 to 2 mM) (Hennings et al., 1980).

In fact, addition of calcium to primary keratinocyte cultures elicits a relatively com-

plete differentiation program, inducing not only biochemical markers but also many

of the structural changes that occur in vivo. It has been reported that, in vivo, there

exists an increased gradient of calcium concentrations from the basal to the upper

epidermal layers. For example, experiments featuring ion-capture cytochemistry

have shown that extracellular calcium concentrations are significantly increased in

the mid- to upper layers (Menon et al., 1992) and a steady increase of calcium

toward the cornified layer has been observed by particle probe methods (Forslind

et al., 1997). In summary, calcium induction of cultured epithelial cells serves as

a robust model for the study of skin differentiation in vitro and calcium-induced

signalling is likely also relevant in vivo, although it need not be the critical trigger

for differentiation.

1.1.3 Relevant pathways to skin homeostasis and differentiation

Morphological details of epidermal stratification are well characterized in both hu-

man and mouse, but the molecular mechanisms, which orchestrate these processes,

have only begun to emerge. A number of pathways have been shown to be required

for skin homeostasis and for determining stem cell fate. Almost all have been char-

acterized utilizing mouse genetics. Although some of the markers used to identify

stem cells are different in mouse versus human skin, common signalling pathways

appear to control epithelial stem cell maintenance, activation, lineage determina-

tion, and differentiation in both animals. In this section, evidence gathered from

the study of both human and murine cell culture as well as in vivo mouse genetics

will be presented. We discuss signalling pathways pertaining to both quiescence

and differentiation together in one section since very often the these signals acts as
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an ‘on’ or ‘off’ switch in deciding cell fate.

To start off, pathways required for maintenance/quiescence, activation, and fate de-

termination of IF and HF stem cells during both embryogenesis and adulthood are

Wnt/β-catenin, bone morphogenetic protein (BMP), transforming growth factor-

beta (TGFβ), fibroblast growth factor (FGF), sonic hedgehog (SHH), epidermal

growth factor (EGF), mitogen-activated protein kinase (MAPK), nuclear factor-κB

(NF-κB), and Notch signalling pathway among others (Fuchs, 2007). In addition, a

number of transcription factors including p63 (homologous to p53), the apetala 2

(AP2) family, CCAAT/enhancer binding protein (C/EBP), Kruppel-like factor 4 (KLF4),

interferon regulatory factor 6 (IRF6), and grainyhead-like 3 (GRHL3) have been iden-

tified (Blanpain & Fuchs, 2009). For the sake of brevity, we will attempt to introduce

only those pathways, which are relevant to this work.

Wnt/β-catenin Signalling Pathway

Wnt/β-catenin signalling is well implicated in promoting hair follicle (HF) formation

during embryogenesis and differentiation in the adult animal (Blanpain & Fuchs,

2009). Over two decades of study on the canonical Wnt pathway have revealed its

central logic, whereby β-catenin is the key mediator to the transcriptional regulation

of hundreds of Wnt target genes (Logan & Nusse, 2004; Clevers, 2006; MacDonald

et al., 2009). In brief, in the absence of a Wnt signal — the default ‘off’ state —

β-catenin is continuously degraded by the action of the Axin complex, composed

of Axin, the tumour suppressor adenomatous polyposis coli gene product (APC),

casein kinase 1 (CK1), and glycogen synthase kinase 3 (GSK3). CK1 and GSK3

sequentially phosphorylate β-catenin, marking it for recognition by an E3 ubiqui-

tin ligase subunit, which leads to its ubiquitination and proteasomal degradation

(MacDonald et al., 2009). The continual degradation of β-catenin prevents it from

reaching the nucleus, which means Wnt target genes remain in ‘off’ state through

the DNA-binding of T cell factor/lymphoid enhancer factor (TCF/LEF) family of pro-

teins (MacDonald et al., 2009). The pathway is switched ‘on’ upon the binding of

the Wnt ligand to Frizzled (FZD), a transmembrane receptor, along with its corecep-
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tor, low-density lipoprotein receptor-related protein 6 (LRP6), or a close homologue

LRP5. The assembly of these three proteins recruits another, Dishevelled (DVL)

and leads to the phosphorylation and activation of LRP6. This in turn recruits the

Axin complex to the receptors and leads to the inhibition of Axin complex-mediated

phosphorylation and degradation of β-catenin. Stabilised β-catenin proteins accu-

mulate in the cytoplasm, shuttle to the nucleus, and form complexes with TCF/LEF

thereby derepressing Wnt target genes (MacDonald et al., 2009; Clevers, 2006).

Figure 1.5: Canonical Wnt signalling pathway : in cells not exposed to a Wnt signal

(left panel), β-catenin is degraded through interactions with Axin, APC, and the protein

kinase GSK-3. Wnt proteins (right panel) bind to the cell surface Frizzled/LRP receptor

complex transducing a signal to Dishevelled (Dsh) and to Axin, which may directly interact

(dashed lines). Consequently, the degradation of β-catenin is inhibited resulting in its

accumulation in the cytoplasm and nucleus. β-catenin then interacts with TCF to control

transcription. Negative regulators outlined in black, positive regulator outlined in colour

(from Logan & Nusse (2004)).
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Wnts are conserved in all metazoans. In mammals, the complexity and the speci-

ficity required to maintain various tissues and/or execute distinct developmental

programs is achieved through a catalogue of 19 Wnt ligands (MacDonald et al.,
2009). Mouse genetics have revealed the expression of several Wnt ligands at dis-

tinct developmental stages in mammalian skin, among them Wnt3, Wnt3a, Wnt4,

Wnt5a, Wnt7a, Wnt10a, and Wnt10b (Huelsken et al., 2001). In mouse embryonic

skin, for instance, Wnt/β-catenin signals the formation of the first HFs as it was

shown that the skin-specific ablation of β-catenin or the overexpression of Wnt

inhibitor Dickkopf1 (Dkk1) blocks the formation of hair placodes (Huelsken et al.,
2001; Andl et al., 2002). Conversely, it was demonstrated that overexpression of

β-catenin, which mimics an activated Wnt pathway, in the skin of transgenic mice

induces de novo hair follicles (Gat et al., 1998), and yields skin- and hair-derived tu-

mours (Chan et al., 1999). One of the studies incorporating a β-catenin conditional

knock-out also showed that β-catenin is required for HF SC niche specification in

adult mice. In its absence, stem cells adopt an epidermal fate (Huelsken et al.,
2001). The same study also demonstrated that a hyperproliferative IFE phenotype

resulted from conditional β-catenin knock-out. This seeming contradiction — the

opposite effect of β-catenin deletion on epidermal SCs compared to HF SCs —

remained controversial until recently, when the role of the Wnt/β-catenin pathway

in the two SC compartments was teased apart by two independent groups (Choi

et al., 2013; Lim et al., 2013). In one of the studies, selectively deleting β-catenin or

Wntless (Wls), a gene required for Wnt ligands secretion, or even overexpressing

Dkk1 to block the Wnt signal, indicated that Wnt signalling is not directly required

for follicular SC maintenance, but is required for activation of the secondary germ

cells (Figure 1.5) to regenerate the follicle. Both groups showed, however, that

Dkk1-mediated suppression of Wnt signalling reduced proliferation in epidermis

rather than promoted it. Furthermore, deletion of β-catenin in hairless skin also

caused decreased proliferation, suggesting that the hyperproliferative phenotypes

might result from inflammation caused by follicular degeneration as a form of re-

sponse to a repair defect. Thus the groups come to the same conclusion that Wnt

signalling promotes proliferation of stem cells in both compartments, similar to

what has been observed in other epithelia (Choi et al., 2013; Lim et al., 2013).

Finally, it has been shown that after severe wounding a Wnt-dependent signal can
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induce de novo HF formation from the IFE similar to early stages of embryogenesis

(Ito et al., 2007). This highlights the multipotency of IFE SCs and how they can

adopt HF fate in response to Wnt signals during physiopathological conditions.

TGFβ Signalling Pathway

The transforming growth factor beta (TGFβ) superfamily of cytokines is ubiquitous,

multifunctional, and essential to survival. They are involved in many cellular func-

tions in both the adult organism and the developing embryo, from cell division and

apoptosis to adhesion and immune responses (Clark & Coker, 1998; Massagué &

Gomis, 2006). The mammalian TGFβ isoforms (TGFβ1, TGFβ2, and TGFβ3) are

secreted as latent precursors and signal through type I and type II TGFβ receptors

(Figure 1.6). The type II receptor, to which a whole host of TGFβ ligands including

activins, inhibins, bone morphogenic proteins (BMPs), and the TGFβ proteins them-

selves bind, associates with type I receptor to form a complex in which the former

receptor phosphorylates the latter. A third membrane-anchored protein, known as

type III receptor, helps this process by capturing and presenting the TGFβ activator

to the signalling receptors I and II (Massagué & Gomis, 2006). The signal then

proceeds via a series of intracellular SMAD proteins, which form a complex after

activation, relocate to the nucleus, and associate with other DNA-binding transcrip-

tion factors, as well as co-activators or co-repressors to regulate gene expression

through the inhibition or activation of hundreds of target genes. Which genes are

targeted is dependent on which type of ligand initiated the signal, the stage of de-

velopment, and/or the cell type where the signal is being transduced (Annes, 2003).

The role of TGFβ signalling is implicated in skin homeostasis by its dual function as

inhibitor of epithelial cell growth and activator of fibroblast proliferation and protein

synthesis (Buschke et al., 2011; Derynck et al., 2001). Similarly, TGFβ is involved in

controlling the composition of the ECM (Watabe & Miyazono, 2009). Several TGFβ

signalling components are highly expressed in HF including TGFβ2, LTBPs and ac-

tivated SMAD2 (Tumbar, 2004). In several mouse skin models, it has been shown

that depending on time of expression TGFβ can act both as a tumour suppressor
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Figure 1.6: TGFβ signalling pathway : TGFβ signalling is transduced through Smad

and non-Smad pathways. TGFβ ligand binds to receptors TGFBR2 and TGFBR1. TGFBR2

phosphorylates (P) TGFBR1, which subsequently phosphorylates and activates SMAD2 and

SMAD3. Activated SMAD2 and SMAD3 form a Smad complex with SMAD4 and translocate

into the nucleus. In the nucleus, the Smad complex interacts with other DNA-binding

transcription factors, and co-activators and co-repressors, binds to the promoter regions

of TGFβ target genes and regulates the transcription of target genes. TGFβ stimulation

also activates other signalling cascades in addition to the Smad pathway. TGFβ receptors

activate p38, JNK, Ras–Erk, PI3K–Akt, and small GTPases such as RHOA and CDC42 (from

Ikushima & Miyazono (2010)).

and tumour promoter (Bierie & Moses, 2006; Oshimori & Fuchs, 2012). In one

mouse skin model, it has been shown that TGFβ1 expression is rapidly induced in

suprabasal keratinocytes in vivo, in response to hyperplasia, implicating signalling

molecule in the regulation of epidermal homeostasis (Derynck et al., 2001). Over-

expression of TGFβ1 or TGFβ receptor type II in the skin of transgenic mice also
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provided evidence for tumour suppressor activity and resistance to TPA-induced

hyperplasia (Cui et al., 1995; Wang et al., 1999; Derynck et al., 2001). Conversely,

expression of a dominant negative TGFβ receptor type II eliminates TGFβ induced

growth arrest, leading to epidermal hyperplasia (Wang et al., 1999; Derynck et al.,
2001). In another study, it was shown that conditional expression of TGFβ1 in

the interfollicular epidermis of mice at later stages promoted a rapid progression

to metastasis (Weeks et al., 2001). Altogether these studies strongly suggest that

the TGFβ signalling pathway, next to BMP signalling, is one of the pathways that

transmit quiescent and growth signals to epidermal SCs and their niche at various

stages of development and adult life.

BMP Signalling Pathway

As already mentioned, BMPs belong to the same superfamily as TGFβs and function

in tissue morphogenesis, homeostasis, and cancer by regulating diverse biological

processes like proliferation, apoptosis, differentiation, and ECM production. Skin

epithelial cells express receptors for both BMPs and TGFβs. Whereas the TGFβ

pathway mediates its signal by phosphorylating SMAD2/3, BMP signalling operates

through the phosphorylation of SMAD1/5/8. Each of these SMAD proteins joins

SMAD4 to form a bipartite complex and modulate transcription on a large-scale.

Although the general inhibitory effects of BMP are well documented, its role in the

skin is only emerging. There is accumulating evidence supporting the view that

the equilibrium between secreted BMP proteins and their inhibitors like noggin

and gremlin plays an important role in HF morphogenesis during development but

also activates HF SCs in adults. Loss- and gain-of-function studies in adult mice

suggest that BMP signalling stimulates quiescence in bulge SCs. The cyclic pattern

of BMP2 and BMP4 expression in the dermis fits with the observation that bulge

SCs are in one of two states, resistant or responsive to activation (Plikus et al., 2008).
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Notch Signalling Pathway

When it comes to changing from epidermal growth to differentiation, several sig-

nalling pathways — some working in sequence, some in parallel — control the

switch. Theses can merge into a common or at least partially overlapping down-

stream pathway or alternatively their cascade may proceed in parallel. The triggering

signals can be biochemical, like induction by calcium or TPA in cell culture (Hen-

nings et al., 1980; Paolo Dotto, 1999), they can be physical cues initiated by the

ECM through the BM (Connelly et al., 2011) or they could be molecular like the

transcription regulator p63 which works in conjunction with the canonical Notch

pathway (Clark & Coker, 1998; Massagué & Gomis, 2006). Loss- and gain-of-

function studies in vertebrates have revealed that p63 is essential for the proper

stratification of skin and for maintaining the renewal potential of the various SCs in

their distinct niches (Koster, 2004; Mills et al., 1999; Truong et al., 2006; Senoo

et al., 2007). Canonical Notch signalling is also crucial for the early switch from

growth to differentiation when basal stem cells commit to spinous fate (Watt et al.,
2008). Notch functions broadly in specifying cell fates during differentiation and

morphogenesis by modulating the transcription of many target genes. To summa-

rize, Notch is a transmembrane protein with one extracellular and one intracellular

binding domain. The Notch signalling pathway gets activated upon binding of a

ligand to Notch’s extracellular domain and the proteolytic cleavage and release of

its intracellular domain (NICD) into the cytoplasm. Most of the effects of the NICD

have been attributed to its ability to bind the transcriptional repressor RBP-J, result-

ing in the transcription of a number of target genes, most notably Hes and Hey,

which are normally suppressed in the absence of Notch activity. Excessive Notch

signalling induces basal stem cells to commit to a spinous fate (Rangarajan et al.,
2001). It has further been shown in mice, that loss of Hes1, an important Notch

target in skin epidermis, alters differentiation (Moriyama et al., 2008). Furthermore,

in another experiment the conditional ablation of RBPJ, a DNA-binding protein that

forms a heterodimer transcription factor with the Notch intracellular domain to

relay the Notch signal to the nucleus, also blocks specification of spinous cell fate

(Blanpain et al., 2006).

18



Epigenetic Regulation

In recent years, several studies have attempted to understand and characterize the

epigenetic switches that orchestrate the transition between SC proliferation and dif-

ferentiation via changing transcription of many genes (Sen et al., 2008; Frye et al.,
2007). In one study in mouse it has been shown that Myc is required in the epi-

dermis for the stem cells to egress their SC niche and begin their proliferation and

eventually switch to terminal differentiation. MYC regulates the transition of qui-

escent SCs to TA cells by inducing global histone modifications typically associated

with active chromatin state and permissive for transcription factor binding (Frye

et al., 2007). Furthermore, another study has shown that epigenetic derepression

of lineage-defining genes, specifically the removal of the H3K27me3 mark, is re-

quired for the proper commitment of epidermal SCs into the suprabasal and later

granular epidermal layers (Sen et al., 2008). Furthermore, this study showed that

overexpression of specific histone demethylase known to interact with H3K27me3

caused premature activation of terminal differentiation in cultured human epidermal

SCs (Sen et al., 2008). Hence, epigenetic mechanisms are important, but remain to

be comprehensively characterized.

1.1.4 Markers of stemness and differentiation

Access to markers that allow the identification of various populations of stem cells

as well as their progression through differentiation has facilitated research in this

field. As previously mentioned, some markers used to identify stem cells are differ-

ent in mouse versus human skin. In this section, we shall introduce markers that

are common to both animals in addition to human specific stem cell markers.

Slow-cycling SCs were identified in the bulge region of the HF through label reten-

tion assays (Blanpain & Fuchs, 2006). Earlier on it was thought these label-retaining

cells in the bulge are bona fide SCs based since they were the longest-lived cells

within the epidermis based on the result of lineage tracing experiments (Tumbar,

2004; Morris et al., 2004). However, it is not known that quiescence is not the

hallmark of SCs and IFE SCs continuously and repeatedly proliferate in order to
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maintain the skin barrier (Blanpain & Fuchs, 2006). Since label retention assays

would not work on IFE SCs — the label would dilute too rapidly — several different

SC specific proteins have been identified and can be used as markers to differentiate

between the distinct populations of epidermal SCs (Figure 1.7).

As was mentioned, the epidermis is separated from the dermis by the basement

membrane (also known as basal lamina). The basal layer is characterized by its

high expression of α6-integrin and β1-integrin, allowing it to adhere to the BM.

In the basal layer, keratins 5 and 14 (KRT5 and KRT14) play the role of structural

proteins. They assemble into 10-nm keratin intermediate filaments which, along

with microtubules (tubulin) and microfilaments (actin), form the cytoskeleton of

epithelial cells. When basal SCs enter the spinous layer, they stop dividing and

synthesize a new set of proteins characteristic of cornification (Candi et al., 2005).

Figure 1.7: Markers of stem cell populations : Proteins particular to distinct locations

in the epidermis during skin differentiation can be seen which enable apoptosis only in

the basal layer and cornification only in the supra- basal layers. At the molecular level,

the cornified envelope is formed by proteins that are highly crosslinked by transglutami-

nases, with specific lipids on the outside, to guarantee specific physical properties. BPAG

denotes bullosus pemphigoid antigen, SPR denotes small proline-rich proteins, and TG is

transglutaminase (from Candi et al. (2005)).

At the molecular level, the cross-linking of proteins with transglutaminases (TG1,

TG3 and TG5) forms the impermeable cornified envelope. Concurrently, a series

of other structural proteins, including involucrin (IVL), loricrin (LOR), trichohyalin
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(THH) and small proline-rich proteins (SPRs), are synthesized and subsequently

cross-linked by the aforementioned transglutaminases (TGs) just beneath the plasma

membrane. These proteins get expressed in an increased gradient with the expres-

sion peaking in the cornified layer and that is why they are utilized as markers

for differentiation (Candi et al., 2005). Other proteins present in the cornified

envelope include the S100 family of Ca2+-binding proteins, which transmit Ca2+-

dependent cell-regulatory signals. S100A7, S100A10 and S100A11 are expressed

in the basal and spinous layers and are substrates of TG1 and TG2, while S100A7

is present in the cytosol and in the endoplasmic reticulum. When the intracellular

Ca2+ concentration increases, cytoplasmic S100A7 redistributes to α-actinin- and

paxillin-containing peripheral complexes (Candi et al., 2005).

1.2 Introduction to circadian rhythms

Since the advent of life on earth, terrestrial animals have evolved under predictable

day-night cycles and almost all known light-sensitive organisms possess an intrinsic

clock mechanism. There are great benefits for organisms that can anticipate cycli-

cal changes in their environment and fine-tune their physiological functions and

metabolic processes accordingly, affording them selective advantages as demon-

strated experimentally (Woelfle et al., 2004; Dodd et al., 2005). This intrinsic

clock mechanism, most commonly referred to as circadian rhythm (from the Latin

circa diem, ‘about a day’), has a period length of approximately 24 hours (Dunlap,

1999). In mammals, many aspects of physiology follow circadian rhythms, includ-

ing sleep-wake cycles, hormone production, blood pressure, renal function, body

temperature, and food intake and metabolism (Pittendrigh, 1993; Dibner et al.,
2010; Bass, 2012).

Circadian rhythms are entrained by several environmental Zeitgeber (time giver)

signals such as feeding, temperature, and light. Light, the most dominant synchro-

nizer, stimulates specialized photoreceptive neuronal ganglion cells in the retina

of the eye. These cells in turn transmit the stimulus via the optic nerve to the

central circadian pacemaker, the suprachiasmatic nucleus (SCN) (Panda, 2007).
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In human and mouse, the SCN is composed of approximately 10,000 to 20,000

cells in the hypothalamus. The SCN in turn transmits the rhythmic information

through neuronal and hormonal signals to all cells of the body while simultaneously

integrating information from peripheral organs to generate consistent rhythms in

the animal. Almost all peripheral tissues, including liver, heart, lungs, kidney and

skin, possess their own peripheral clock so they can modulate tissue-specific gene

expression, coordinated by transcription factors and chromatin remodellers, in a

circadian manner (Asher et al., 2008, 2010; Duong et al., 2011; DiTacchio et al.,
2011). Numerous studies have profiled the transcriptome of various organisms to

show that as much as 15% of all transcripts are rhythmically expressed throughout

the day depending on the tissue analysed (Akhtar et al., 2002; Ceriani et al., 2002;

Panda et al., 2002; Storch et al., 2002; McCarthy et al., 2007; Doherty, 2010; Koike

et al., 2012; Menet et al., 2012). Circadian rhythms are self-sustained, meaning

that oscillations can persist even in the absence of external cues or Zeitgeber. For

instance, when mice are kept under constant darkness for weeks or even months,

they maintain their circadian rhythms albeit at times with slightly shorter periods

(Dibner et al., 2010). They are also cell-autonomous, since even cells in culture that

have been propagated for years possess robust circadian oscillations which become

detectable at a population level when they are synchronized by serum or dexam-

ethasone shock (Balsalobre et al., 1998; Balsalobre, 2000). On the molecular level

circadian rhythms are controlled by transcriptional-translational feedback loops of

several positive and negative regulators (Brown et al., 2012).

Curiously, although as discussed, day-night cycles have remained stable since the

emergence of life, core clock genes are not universally conserved. Although all

investigated organism possessing an intrinsic clock, reveal a common model of

transcriptional-translational feedback loop (TTFL), not many have homologous TTFL

components. Even between human and fly — where they are numerous highly

conserved biochemical processes — there are few homologous core clock genes

namely the Period genes. In cyanobacterium, for instance the molecular clock is

composed of KaiA, KaiB, and KaiC proteins only, which are not homologues of

mammalian or fly clock components. The quest for a common source of evolution-

ary innovation has been the central question of a number of recent studies which
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have proposed a transcription-independent universal circadian clock based on the

oxidation state of peroxiredoxins (Edgar et al., 2012; O’Neill & Reddy, 2012; O’Neill

et al., 2012).

1.2.1 Mammalian clock from mice to men

The underlying mechanism driving circadian rhythms at the molecular level is an

interconnected series of negative feedback loops common to a wide array of light-

sensitive organisms from cyanobacteria to mammals. Indeed, circadian oscillations

are fine-tuned on multiple levels of transcriptional and translational regulation. The

circadian pathways in human and mouse are extremely highly conserved. The

main positive regulators are transcriptional factors BMAL1 (also known as ARNTL)

and CLOCK, which are encoded by Brain and muscle ARNT-like 1 (BMAL1), and

the Circadian locomoter output cycles protein kaput (CLOCK) gene. It has been

shown that CLOCK is not essential and that CLOCK-deficient mice continue to

exhibit more or less robust behavioural and molecular rhythms because a close

homolog of CLOCK, NPAS2 encoded by Neuronal PAS domain-containing protein

2 (NPAS2) gene, is able to functionally act in its stead in the SCN to regulate cir-

cadian rhythmicity (DeBruyne et al., 2007). These transcription factors, which are

basic-helix-loop-helix, heterodimerize and bind to E-box elements in promoters of

target genes to induce their expression. Among clock-controlled target genes are

Cryptochrome 1 and 2 (CRY1/2), Period 1-3 (PER1, PER2 and PER3), RORα and

REV-ERBα (NR1D1), which are an integral part of the circadian core machinery. As

PER proteins accumulate in the cytoplasm, they are phosphorylated by CKIε and

GSK3, which target them for ubiquitin-mediated protein degradation. At the same

time, as CRY protein levels increase in the cytoplasm, they form stable complexes

with PER proteins and translocate to the nucleus. Once in the nucleus, CRY/PER

complexes repress BMAL1/CLOCK activity, resulting in the repression of their own

transcription. The circadian core is further stabilized by opposing functions of

RORα(activator) and REV-ERBα(repressor). Both transcription factors, which bind

to RRE-elements in the BMAL1 promoter with RORα activating the transcription

of BMAL1 and REV-ERBα inhibiting it (Gallego & Virshup, 2007; Sahar & Sassone-
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Corsi, 2009). Aside from phosphorylation, other post-translational modifications

(PTMs), including sumoylation and acetylation, have been shown to regulate the

activity of clock proteins (Cardone, 2005; Hirayama et al., 2007). Lastly, several

chromatin-remodelling enzymes are associated with BMAL1/CLOCK complexes to

modulate gene transcription, e.g. SIRT1, JARID1a and SIN3A (Asher et al., 2008;

DiTacchio et al., 2011; Duong et al., 2011). It has also been shown that the cir-

cadian master regulator CLOCK itself is a histone acetyltransferase (Doi et al., 2006).

1.2.2 Detecting circadian gene expression profile

As already discussed, in several organisms circadian clock genes were found to

be transcription factors. Because of this, many researchers turned to microarray

and, more recently RNA-sequencing technology to survey the global regulation of

gene expression as a function of time. Over the years, a number of algorithmic ap-

proaches have been used to detect genes with circadian expression. In this section,

I will introduce the most prominent methods. Detecting circadian patterns in large

data sets is a specialized problem, which requires specific and powerful statistical

tests to discriminate between real cycling genes against a backdrop of noisy genes.

Furthermore, precise and statistically reliable measures of various attributes of gene

rhythms such as period length, phase, and amplitude are necessary. Approaches

widely applied to this problem include Fourier analysis (Wichert et al., 2003), a

technique borrowed from signal processing, curve-fitting (Straume, 2004), autocor-

relation (Levine et al., 2002), and a recent nonparametric statistical method (Michael

E Hughes, 2007). In a recent benchmarking study, it was demonstrated that the

more high-resolution a time course data set is, the more powerful the detection

mechanism with performance peaking for all of the above mentioned studies when

samples were taken every hour over the course of at least two daily cycles (Michael

E Hughes, 2007). Polynomial curve fitting algorithms can also be applied especially

in cases where temporal samples are sparse and only peak detection methods can

be employed (Lack & Lushington, 1996).
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1.2.3 Circadian rhythms in the skin

The earliest experiments to link diurnal patterns to cellular processes in the epi-

dermis did so by demonstrating that DNA synthesis and mitosis show circadian

fluctuations suggesting a cyclic mode of epidermal cell proliferation in human and

mouse (Schell et al., 1981b,a, 1983). Epidermal SCs of the bulge and the IFE are

heterogeneous in their circadian clock activity and this heterogeneity creates two

distinct stem cell states resulting in different responses to activation and dormancy

cues (Janich et al., 2011). These SC populations go through active and quiescent

stages in a circadian manner because several epidermal stem cell and homeostasis

genes including some member of the Wnt and TGFβ pathways are directly under

the control of the clock (Janich et al., 2011). Furthermore, in the same study it

has been shown that clock deficiency leads to decreased responsiveness, accumu-

lation of dormant stem cells and increased tissue aging (Janich et al., 2011). It

has been shown that mouse IFE basal SCs peak in proliferative activity at night,

while accumulation of ROS as a result of metabolic activity happens during the day

in an antiphase manner to proliferation (Geyfman et al., 2012). Furthermore, the

progression rate of skin squamous tumours differs depending on exposure time to

UVB radiation since skin is more susceptible to radiation at night when the cells

are more proliferative (Gaddameedhi et al., 2011; Geyfman et al., 2012). Another

recent work, has used microarrays to survey changes in human suction-blister

epidermis obtained at three time point during the day along to identify a circa-

dian transcription factor, Krüppel-like factor 9 (KLF9) as a candidate regulator of

keratinocyte proliferation/differentiation. Gain- and loss-of- function experiments

showed strong antiproliferative effects of Klf9. Putative Klf9 target genes include

proliferation/differentiation markers that also show circadian expression in vivo,

suggesting that Klf9 affects keratinocyte proliferation/differentiation by controlling

the expression of target genes in a daytime-dependent manner.
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1.3 Introduction to protein physical interactions

Much of cellular biology in the twentieth century has revolved around a reduction-

ist approach. An approach that has ventured to decipher the behaviour of cells

by deciphering the behaviour of the individual molecules that form them. In the

form of genetics this approach has been immensely successful. Some of the most

ground-breaking discoveries of the 19th and 20th centuries were made using classi-

cal genetics: the mechanism of inheritance (Mendel, 1865), the linear arrangement

of genes along chromosomes (Sturtevant, 1913), that one gene somehow regulates

the synthesis of one protein (Tatum & Beadle, 1942), that mutations can be ar-

tificially induced using radiation (Muller, 1927, 1928), that DNA contains genetic

information (Avery et al., 1944), and that the genetic code links the sequence of

DNA to the sequence and ultimately three-dimensional structure of proteins (Niren-

berg & Leder, 1964; Bernfield & Nirenberg, 1965).

In the past two decades, the vast amounts of data that have been generated have en-

abled us to study systems as well as individual components. The ‘omics’ revolution

has re-highlighted the complexity that the chemistry of life entails. To understand

the mechanism behind a process for example, one needs to understand the signal

that triggers the process, the post-translation modifications that activate or deac-

tivate various components involved in the process, and the interactions between

the components. Furthermore, gaining a deep understanding of a cellular process,

even a ubiquitous one, in a particular context, in one cell-type or during one specific

stage of development, does not necessarily translate to all other contexts. Although

comprehensive and informative, ‘omics’ data, still need to rely on the ‘awesome

power of genetics’ (the favourite phrase of a former professor of mine) as a com-

plementary approach.

One of the ways researchers in systems biology have dealt with the daunting task of

organising, analysing, and understanding ‘omics’ data, has been to represent them

as a simplified network of components (nodes) and relationships (edges). Compo-

nents can be macromolecules like genes, mRNAs, proteins, or protein complexes

and relationships can be physical, biochemical, or genetic interactions; they be
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conceptual like functional annotations, or they can represent statistical metrics like

similarity in phenotypic or transcription patterns (Vidal et al., 2011). One type of

network often used to simplify and study the cell are protein-protein interaction

(PPI) networks. In the next few sections, I introduce how PPI networks are detected

experimentally or obtained through literature curation and what approaches have

been used for their analysis in various model organisms.

1.3.1 Detecting protein-protein interactions

Systematic and unbiased detection of protein-protein interactions applied at the

scale of whole genomes or proteomes has been underway in a number of model

organisms. Two methodologies in particular are currently in wide usage for large-

scale mapping. Mapping of binary interactions (detecting direct interaction be-

tween two proteins) is carried out by various flavours of the yeast two-hybrid

(Y2H) system, while mapping of membership in protein complexes (detecting di-

rect and indirect associations between several proteins) is carried out by affinity-

or immuno-purification or liquid-chromatography followed by mass spectrometry

(IP-MS, AP-MS and/or LC-MS).

Yeast Two-Hybrid

Devised 25 years ago (Fields & Song, 1989), the yeast two-hybrid (Y2H) method-

ology takes advantage of properties of the yeast protein GAL4, a transcriptional

activator of enzymes required for galactose metabolism. GAL4 has two essential

but distinct domains: an N-terminal DNA-binding domain (BD) that binds the pro-

moter of genes to be transcribed in a specific region called GAL upstream activation

site (UASG), and a C-terminal activation domain (AD) which binds other factors

involved in transcription initiation. Since the DNA-binding and the transcriptional

activation functions of GAL4 are separable, the two domains can be put into two

separate hybrid proteins. For example, the GAL4 DNA-binding domain can be fused

to protein X while its activating domain can be put in protein Y. If proteins X and

Y form a protein-protein interaction, then the two domains will reconstitute when
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they come into close proximity of each other and the transcription of any gene

under the control of a UASG can occur (Figure 8). To scale up this methodology

to high-throughput (HT), proteins from any source can be cloned into expression

plasmids, transfected into yeast cells, and tested against each other as bait-prey

pairs. If chimeric proteins X and Y — bait and prey — do indeed physically interact,

the transcription of a reporter gene will get activated (Figure 1.8).

This method, albeit powerful is prone to both type I and type II errors. If the fusion

of BD or AD to their respective chimeric proteins blocks the interaction surface and

impedes physical association of bait and prey, the result is a false negative. Other

false negative errors stem from the fact that certain interactions may not take place

in yeast, the typical host organism for Y2H. For example, a bacterial or mammalian

protein may need a particular chaperone to fold properly or a PTM before interacting

with its target and if these are unavailable in yeast, no interaction occurs. More

importantly, a source of false positive error for Y2H is that although an interaction

is detected in vitro, it may never occur in vivo due to differences in sub-cellular

localization and tissue- or time-specific expression. These false positives, referred

to as biological false positives, are nearly impossible to identify using interaction

assays alone. Technical false positives however, can occur in any experimental

system. Since the early days of Y2H, the rate of technical false positives has de-

creased substantially by improvements such as using low copy-number plasmid

vectors and retesting interaction pairs (Cusick, 2005). Another source of false pos-

itives are strong auto-activators, baits (BD-X) that turn on transcription even before

they interact with their prey (AD-Y). These can be discarded easily by checking for

reporter gene expression before the prey is added. More challenging are latent or

weak auto-activators that arise due to accumulation of mutations in the bait during

propagation of bait containing yeast cells. Auto-activators appear as promiscuous

baits with many interaction partners, often lacking any common functional annota-

tion. Computational methods can be employed to remove this class of erroneous

hits from the final data set by imposing a cut-off on the total number of interactions

allowed. Finally, the Y2H system can only be used to study soluble proteins and

hence cannot be used to detect interactions between insoluble integral membrane

proteins.
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Figure 1.8: Model of transcriptional activation by reconstitution of GAL4 activity

: The native GAL4 protein contains both DNA-binding and active regions and induces GAL1-

lacZ transcription (top panel). Hybrids containing either only the DNA-binding domain

(upper part of middle panel) or only activating region (lower part of middle panel) are

incapable of inducing transcription. A protein-protein interaction between X and Y brings

the GAL4 domains into each others vicinity and results in transcriptional activity (of often a

reporter gene) (from Fields & Song (1989)).

Early genome-wide Y2H studies contained a significant number of technical false

positives, yet the high proportion of false positives did not necessarily diminish their

impact and despite these limitations, since the year 2000, Y2H has been used widely
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and applied to whole proteomes to systematically test all pairwise combinations of

proteins in several model organisms (Rain et al., 2001; Li, 2004; Uetz et al., 2000; Ito

et al., 2001; Stelzl et al., 2005; Rual et al., 2005; Giot, 2003). These HT studies are

estimated to have uncovered only a relatively moderate portion of the interactome

— the complete collection of all physical protein-protein interactions that can occur

within a cell — in each organism. For instance, the first two published HT Y2H

yeast studies (Uetz et al., 2000; Ito et al., 2001) together discovered just under 5,000

PPIs, a number that is thought to be a mere 10-15% of the estimated total possible

interactions (von Mering et al., 2002) and even though both studies used the same

6,000 ORFs as baits, there was only 15% overlap in detected PPIs. Naturally this

poor overlap has raised concerns that Y2H data are noisy (von Mering et al., 2002).

Even more alarming, the two individual studies had less than 13% overlap with a

set of high-confidence PPIs curated from single-gene biochemical studies (Costanzo

et al., 2000). As stated, there are several sources of type I and type II errors in Y2H

experiments, which can partly explain the low overlap between data sets. Another

explanation, placing a positive spin on the low overlap between, for instance the

two yeast mentioned studies, is that neither study had reached saturation and so

different protein interactions may have been sampled (von Mering et al., 2002).

Tandem Affinity-/Immuno-Purification and Mass Spectrometry

While Y2H detects direct binary protein-protein interactions, affinity purification

methods identify components of stable complexes. The basic strategy involves pu-

rification of a protein complex using an affinity tag placed on one of the components

of the complex to pull down the entire complex and then characterizing all com-

ponents by mass spectrometry. This method was proposed as a generic procedure

to purify proteins expressed at their natural levels and was given the name tandem

affinity purification (TAP) tag (Rigaut et al., 1999). The procedure entails fusing two

affinity tags — usually a peptide or small protein — to a target protein and then

introducing the construct to a host cell. There are various flavours of TAP tag but

the original method consisted of an Immunoglobin G (IgG) binding domain of the

bacterium Staphylococcus aureus protein A and a calmodulin binding peptide (CBP)
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separated by a TEV protease cleavage site (Rigaut et al., 1999). The target protein

with the TAP tag first binds to beads or columns coated with the antibody IgG.

The TAP tag is then broken apart by an enzyme, TEV protease, which recognizes

the TEV protease cleavage site and the target protein and its interaction partners

are removed by washing with a solvent. In the second step, the material eluted

from the IgG beads are incubated with calmodulin-coated beads and calcium. After

several wash steps, to remove contaminants like the TEV protease that may have

lingered behind from the first affinity selection, the bound material can be released

using EGTA (Figure 1.9). After the target protein has been washed through two

affinity columns, it can be examined for binding partners using mass spectrometry.

The advantage of using two tags significantly reduces non-specific background, as

compared to a single tag approach (Puig et al., 2001).

One obvious drawback of TAP tag is that tagging may disrupt complex formation

(von Mering et al., 2002). Another experimental consideration to be made is that

retrieved peptides from MS cannot always be mapped back uniquely to their correct

proteins because many proteins are highly similar with only slight differences arising

from polymorphisms, alternative splicing and PTMs (Schlüter et al., 2009). Further-

more, with this strategy, a protein that is known to be a member of one complex may

be purified with another complex. This may be a valid case of a protein involved in

multiple functions or intracellular communication between complexes, or it might

represent a contaminant (Cusick, 2005). As more territory is covered in the inter-

actome, more components shared by multiple complexes with differing functions

will be discovered (Krause et al., 2004) further augmenting the challenge of assign-

ing function based on co-purification strategies. Another pitfall is that assignment

of a component to a particular complex often relies on experimental stringency

and arbitrary thresholds. For example, in three large-scale studies employing a

purification strategy (Ho et al., 2002b; Gavin et al., 2006; Krogan et al., 2006), to

be discussed in the next section, three distinct interaction confidence measures

were devised, thresholds on those confidence measures were selected empirically,

and the resulting PPI networks were clustered into protein complexes using dif-

ferent methods, each custom-optimized. In short, the bespoke analysis pipelines

in many HT co-purification studies introduce variability to the resulting PPI network.
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Figure 1.9: TAP tag methodology : Overview of the TAP procedure with two wash

steps and the Immunoglobin G (IgG) binding domain and antibody IgG (from Rigaut et al.
(1999)).

A very closely related strategy to AP-MS is immuno-precipitation/purification fol-

lowed by MS (IP-MS or CoIP-MS), which works through an antibody that targets

a known endogenous protein, believed to be a member of a larger complex. By

targeting this known member with a high-affinity antibody one could pull down
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the entire protein complex out of solution provided the protein subunits are tightly

associated with one another. The major difficulty with immunoprecipitation and its

main difference with AP is that for each single protein to be isolated endogenously

a highly specific antibody has to be generated. To circumvent this obstacle, many

groups have engineered tags to introduce into their protein of interest as explained

above. However, while the use of TAP tagging makes pull-down experiments quite

convenient it has raised some concerns regarding the biological relevance of this

approach as the exogenous tag may hinder native interactions or introduce new

ones.

In spite of these limitations, both methods, and AP-MS in particular, have been

widely applied to map protein complexes in yeast (Ho et al., 2002a; Gavin et al.,
2006; Krogan et al., 2006), fly (Guruharsha et al., 2011), and Arabidopsis (Arabidop-

sis Interactome Mapping Consortium et al., 2011). In human too, AP-MS has been

employed to characterize the composition of protein complexes in experiments uti-

lizing anywhere between dozens to hundreds of unique baits (Ewing et al., 2007;

Sowa et al., 2009; Behrends et al., 2010; Hutchins et al., 2010). Likewise, immuno-

precipitation has been applied to identify endogenous complexes from human cell

lines (Malovannaya et al., 2011). Nonetheless, the considerable successes achieved

in the comprehensive identification of protein complexes in model organisms listed

above remain unparalleled in mammalian cells mainly due to limited availability of

high quality antibodies. This has hindered efforts in scaling up AP-MS or IP-MS

experiments and validating in an unbiased and systematic manner all PPIs in human

cells.

Liquid chromatography and Mass Spectrometry

Another approach complementary to AP/IP-MS, which does not rely on antibodies,

is liquid chromatography followed by MS. In brief, liquid chromatography refers

to a broad range of techniques that rely on chemical properties of molecules such

as their mass and polarity in order to separate or fractionate them out of a mixed

solution as a function of how fast/slow they move through two phases: a stationary
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phase and a mobile phase (Lescuyer et al., 2004). In the present day, next gen-

eration liquid chromatography known as high performance liquid chromatography

(HPLC) is widely used whereby very high pressure and very small packing particles

(in a column) are used for fractionation of samples. In this technique, the sample

is forced by a liquid at high pressure (mobile phase) through a column packed with

irregularly shaped and spherical particles (stationary phase) designed specifically to

accomplish particular types of separations. The components of the sample move

through the column at different velocities based on the specifics of their physical

interaction with the stationary phase. The velocity of each component depends on

its chemical properties, the properties of the stationary phase and the composition

of the mobile phase. The time at which a specific component emerges from the

column is known as retention time. Differences in retention time allow for the

various components of a sample to be collected separately as they elute the column

and are key to the success of the technique.

Perhaps the most flexible and widely used method for protein fractionation in bio-

chemical studies is ion exchange HPLC (IEX-HPLC). This method is suitable for the

separation of complex biological samples such as whole cell lysates prior to mass

spectrometry as it maintains good resolution. In IEX-HPLC, the resolution of a mix-

ture of proteins is achieved based on the differential retention of distinct proteins

to the charged surfaces of the stationary phase, due to differences in the surface

charge properties of the proteins themselves (Havugimana et al., 2007). Effective

separation depends on the sequential elution of the proteins bound to the station-

ary phase by way of application of a salt gradient to the mobile phase (Havugimana

et al., 2007). Individual fractions can then be collected in a timed manner as they

elute from the column and subsequently subjected to basic LC-MS procedures for

protein identification. In a recent study, a combination of several biochemical frac-

tionation technologies, primarily IEX-HPCL, was used to comprehensively identify

∼ 14,000 endogenous human PPIs grouped into 622 putative protein complexes in

cytoplasmic and nuclear extracts (Havugimana 2012).
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Literature curation

In addition to the experimental platforms discussed, compilation or curation of ex-

isting data published in scientific studies is another way of mapping protein-protein

interactions. Curating the literature to gather PPIs from low-throughput studies is a

complementary approach to Y2H and AP/MS (Vidal et al., 2011). Literature-curated

interaction maps are advantageous as they use already available information. How-

ever, they are limited by the variable quality of individual studies and the lack of

reporting of negative results (Cusick et al., 2009). Of databases providing protein

complex annotations discovered by low-throughput affinity-based methods, CO-

RUM for human (Ruepp et al., 2008, 2010) and CYGD for yeast (Guldener, 2004)

are noteworthy. There are numerous databases dedicated to the compilation of

PPIs detected by HT methods in various organisms, which we will discuss in the

next section.

1.3.2 Mapping protein complexes through data integration

Despite massive efforts in experimentally detecting PPIs and complex memberships,

none of the experimentally derived data sets of protein physical interactions are truly

comprehensive. For this reason, many attempts have been made to integrate data

from numerous sources, combining Y2H, AP-MS, other affinity-based methods as

well as low-throughput data in order to get a more complete picture. Various data

repositories including BIND (Bader, 2003), MIPS (Pagel et al., 2005), DIP (Salwinski,

2004), BioGRID (Stark et al., 2006), HPRD (Mishra, 2006), MINT (Chatr-aryamontri

et al., 2007), IntAct (Kerrien et al., 2007), APID2NET (Hernandez-Toro et al., 2007),

MPIDB (Goll et al., 2008), PINA (Wu et al., 2008), STRING (Franceschini et al.,
2012), and HIPPIE (Schaefer et al., 2012) are all devoted to routinely integrating

and organizing data and providing confidence scores for each interaction. These

scores usually take into account the number and type of experimental evidence and

typically give less weight to high-throughput experiments like Y2H than reproduced

affinity-based assays.

In parallel, computational prediction efforts have utilized many sources of infor-
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mation including conserved protein and DNA sequences, domain co-occurrence,

phylogenetic profiles, co-expression, functional annotations, co-localization or ho-

mologous interactions in other species to complete the PPI network of individual

organisms (Cusick, 2005). These computational prediction methods are efficient to

implement and usually generate networks with large numbers of nodes and edges.

However, as they rely on indirect information, they only serve as a complementary

source to experimentally verified data (Vidal et al., 2011). And so systematic HT de-

tection of PPIs shall continue until the interactomes of important model organisms

have been completely mapped.

1.3.3 Making biological discoveries through integration of pro-

tein interaction data with other data sources

Aside from data integration to obtain a more complete interactome, making sense of

the interactome network, incomplete as it may be, is a major challenge in systems

biology. This task requires applying scalable data mining techniques and incorpo-

rating even more data sources in order to gain new insights. Discovering functional

modules often relies on mathematical techniques. Strategies such as hierarchical

and k-means clustering, factorization, and principle components analysis are just

a few of the standard methods employed. In addition, investigating the proper-

ties of the network itself — connectivity, degree distribution, cliques, and hubs —

has enabled important biological insights like the observation that many biologi-

cal networks have power-law node degree distribution (Barabási & Oltvai, 2004;

Vidal, 2001). In this section, I will give an overview of integrative computational

approaches to the study of protein complexes which were either directly detected in

AP/MS experiments, curated from literature, or indirectly extracted from HT binary

PPI data.

One of the first studies that demonstrated the utility of integrating PPI and transcrip-

tome data for the purpose of studying transcriptional regulation, accomplished the

task in yeast by extracting subnetworks based on the coherent expression patterns

of their genes (Ideker et al., 2002). The study first provided a proof of princi-
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ple experiment involving the integration of PPI data and gene expression changes

measured in response to a single perturbation — deletion of GAL80 — compared

to wild type to show that the extracted differentially expressed subnetworks have

high overlap with well-studied galactose-induction regulatory pathways described

in the literature. Further, the authors applied this methodology to large networks

with expression data across multiple perturbations to identify subnetworks with

significant changes over particular subsets of conditions (Ideker et al., 2002). In a

related study, high-confidence yeast PPIs and microarray datasets were combined

and again represented as a graph, with the distinction that edges bore the weight

of expression dissimilarity or distance between genes (Chen & Yuan, 2006). With a

new clustering algorithm called betweenness partitioning, the work identified and

cross-validated dozens of functional modules that conferred similar deletion phe-

notypes (Chen & Yuan, 2006).

Around the same time another integrative yeast study was published that went be-

yond just extracting functional modules, by exploring a biologically relevant hypoth-

esis (de Lichtenberg et al., 2005). This work combined time-course gene expression

data measured during the yeast cell cycle with protein complexes inferred from PPI

data to demonstrate that many protein complexes become active at specific points

during the cell cycle as a consequence of the dynamic expression of one or a few

of their subunits. In addition to gene expression data, this study has also incor-

porated information on subcellular localization in order to filter out interactions

between proteins annotated to incompatible compartments. The resulting network

was suggestive of just-in-time complex assembly where tight regulation of one or

a few complex components regulates the activity of the whole complex rather than

just-in-time synthesis as thought previously.

Data integration into PPI networks proved to be so useful that several large-scale

studies also employed it to validate the quality of their data and provide preliminary

analyses. For example, additional data sources were integrated with the output of

HT AP/MS experiments (Ho et al., 2002b; Gavin et al., 2006; Krogan et al., 2006).

In one paper (Gavin et al., 2006), genome-wide AP/MS assays were conducted

using individual protein baits in exponentially growing yeast. Using clustering, pro-
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tein complexes were identified as those proteins that tend to co-purify together.

Furthermore, protein complexes were sub-classified into cores, proteins that al-

ways co-purify together in all purifications of a protein complex, and attachments,

proteins that only sometimes co-purify with a protein complex. This study demon-

strated that even in a single snap-shot during the yeast cell cycle, protein complexes

could assemble differently due to the presence or absence of varying attachments.

This partitioning in the data was studied by integration of many more data sources

including information on subcellular localization, protein three-dimensional struc-

tures, Y2H-inferred binary interactions, and gene expression data to show that the

perpetually present cores are more likely to be co-localized, physically interacting,

and co-expressed at the same time during the cell cycle (Gavin et al., 2006). It has

to be noted, however, that similar ideas on the distinction between core and attach-

ment subunits by way of organizing protein complex subunits into sub-modules

were published much earlier in a small-scale theoretical study (Dezso et al., 2003).

In a second study published the same year, affinity purification tagging was used to

purify 4000 distinctly tagged proteins, followed by two mass spectrometry methods

in parallel to increase coverage and confidence (Krogan et al., 2006). Comparable

to the first study, interaction scores were assigned and a Markov clustering (MCL)

algorithm (Enright et al., 2002) was used to identify protein complexes from the

generated PPI network while additional data like hand-curated MIPS complexes and

Gene Ontology annotations were used for cross-validation. Unlike in the first study,

no subclasses were defined within protein complexes. However a similar partition-

ing was seen in the data whereby 40% of protein complexes contained subunits

shared between several complexes.

In another similar study in human, a comprehensive PPI network was obtained

by integrating data from a number of different databases. This network was then

combined with expression data measured over a set of 79 human tissues. One

interesting finding of this study was that the most tissue-specific proteins, only

expressed in a narrow subset of tissues, interact with constitutively expressed pro-

teins and, conversely, nearly all constitutively expressed ‘housekeeping’ proteins

have some interactions with very tissue-specific proteins (Bossi & Lehner, 2009).
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This study suggests that the action of proteins involved in core cellular processes

can be modified to function in specific niches as a result of their interactions with

specialized proteins.

A recent study has managed to comprehensively catalogue human protein com-

plexes, where data integration is carried out at the same time as experimentation

(Havugimana et al., 2012). The method has used massive co-fractionation followed

by mass spectrometry to isolate and identify soluble protein complexes. In this

work, experimental data were integrated with several lines of supporting evidence

using machine-learning methods in order to build a high-confidence human PPI

network and protein complexes were then derived from the network using the clus-

ter growth algorithm ClusterONE (Nepusz et al., 2012). In addition, various data

sources were incorporated to analyse protein complexes and to show their subunits

are enriched for biological processes, transcriptional regulatory motifs, pathological

processes, and post-translational modifications compared to all proteins captured.

Furthermore, many of the complexes were found to have subunits which either had

RNAi-induced phenotypes in human cell culture or were orthologous to genes as-

sociated with mutant phenotypes in mouse, yeast, or worm. Furthermore, subunits

of the predicted human protein complexes were also much more likely to have links

to diseases as gathered from UniProt, the Genetic Association Database (GAD), and

Online Mendelian Inheritance in Man (OMIM) (Havugimana et al., 2012).

In recent years, protein interaction networks have been combined with other data

to understand human pathology. In one study, a network of over 8,000 orthologous

proteins in humans, rats, and mice was manually curated from the literature and

combined with gene expression changes in the blood in response to an inflamma-

tory stimulus (Calvano et al., 2005). The findings of the work provided details into

the regulation of global white blood cells in the framework of the immune system.

Two other groups have also shown that changes in protein interaction networks can

be a predictor of breast cancer prognosis (Chuang et al., 2007; Taylor et al., 2009a).

In one study, gene expression data from two cohorts of breast cancer patients —

those whose cancers metastasized and those whose did not — were combined with

PPI data in order to discover differentially expressed or co-expressed subnetworks
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and use classifiers to predict disease progression (Chuang et al., 2007). A second

study too, incorporated the same two patient data sets used by Chuang with hu-

man protein interaction data in order to predict a binary favourable/unfavourable

outcome for each patient sample. However, unlike the previous study, instead

of extracting clusters, the researchers used the global properties of the interaction

network, specifically hubs and patterns of co-expression between them and their

interacting partners (Taylor et al., 2009b).

1.3.4 The interactome in 3-D

The existence of hubs with numerous interaction partners within PPI networks sug-

gests that all interactions cannot occur simultaneously. Looking at PPIs in terms of

their three-dimensional structures can be informative in teasing out which interac-

tions can occur simultaneously and which ones are mutually exclusive. The first

study to incorporate 3D structure information into PPI analysis did so by exploring

the intersection between all yeast protein complexes with resolved 3D structures

and yeast interactions identified by Y2H (Aloy & Russell, 2002). Given a known

3D complex structure and homologous sequences for each one of the interacting

proteins, the proposed method in the study ranked all possible interactions be-

tween homologues in the same species based on empirical potentials of the known

structures. This method was applied to over 2,500 protein interactions in yeast and

although a small number could be mapped onto the set of interacting complexes

with known 3D structures and even fewer possible interactions could be inferred,

this study opened the door for similar strategies to be used. Not long after, another

study in yeast attempted to characterize proteins competing for access to the same

structural interfaces (Kim et al., 2006). This study integrated domain information

from Pfam and structural information from PDB with a high-confidence yeast inter-

action network (Kim et al., 2006). The work specifically focused on hubs, defined

as proteins with five or more interactions, and — by looking at which domains sup-

ported each interaction — classified hubs into multi-interface or single-interface.

The major finding of this study was that multi-interface hubs, capable of support-

ing multiple interactions simultaneously are overwhelmingly essential compared to
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single-interface hubs (65% compared to 32%) and they evolve at a slower rate (mea-

sured by Ka/Ks). Furthermore, it was observed that multi-interface hubs and their

interacting neighbours tend to be co-expressed at a higher frequency (25%) com-

pared to single-interface hubs and their interaction partners (17%) — a difference

that is statistically significant. This is an intuitive observation since it is reasonable

that the interaction partners of single-interface hubs are not co-expressed, because

if they were they would have to compete for binding to the same single interface

(Kim et al., 2006). These findings for the first time provided a structural explanation

of expression dynamics for hubs and their interacting partners.

Today the idea that inter-protein competition is an important consideration in PPIs

is accepted (Stein et al., 2011). In recent years several studies have incorporated

structural information specifically focusing on interacting interfaces to determine

how binary interactions take place within experimentally characterized protein com-

plexes or signalling pathways (Kiel et al., 2011; Yang et al., 2012; Kiel et al., 2013).

These studies have elucidated whether proteins compete with each other and form

mutually exclusive interactions or bind to different interfaces of the same protein in

compatible fashion and have simplified these categories by applying logic gates to

each, namely OR to the former and AND to the latter. In one study in human, inte-

gration of proteomics data and protein structural information together with literature

mining was added to the signal transduction network important to the function of

rhodopsin (Kiel et al., 2011). To study this pathway crucial to human vision, proteins

were superimposed with their interacting domains and then classified into mutually

exclusive or mutually compatible interactions using structural data via a platform

called SAPIN (Yang et al., 2012). This structurally annotated pathway enabled the

researchers to outline the order of events during signalling by specifically working

out which interactions are mutually exclusive due to a common binding interface

(Kiel et al., 2011).
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08010 Barcelona, Spain.

4 EMBL-CRG Systems Biology Unit, CRG.

5 Center for Integrative Genomics, Faculty of Biology and Medicine, University of

Lausanne, Lausanne, Switzerland.

6 Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA

94945, USA.
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4.1 Abstract

The composition of human protein complexes is not rigid but is likely to differ

depending on, for example, the cell type, cell cycle, and physiological conditions.

We reasoned that this variation has partly been captured in current protein complex

annotations because many protein complexes have been studied by independent re-

search groups under different conditions. Hence, as the compendium of annotated

human protein complexes steadily increases in size, we can exploit this experimen-

tal variation as a feature to learn about the context-specific behaviour of proteins

and protein complexes. Here, we classify human protein complex subunits into

those in the ‘core’ (subunits shared by multiple annotated complexes) and those in

the ‘periphery’ (subunits exclusive to one or only few complexes) and demonstrate

quantitatively that the two classes show differing evolutionary and disease-related

attributes and tissue-specific expression patterns. Our results indicate that at the

core of human protein complexes there exists a class of ubiquitously expressed sub-

units which are more likely to be co-expressed, are more evolutionarily conserved,

and are more likely to be essential than their peripheral counterparts. Members of

the peripheral class, in turn, have higher disorder content and are more likely to

belong to the same gene family. From this, a picture emerges in which the function

of a stable protein complex core is modified by the attachment or detachment of

periphery proteins that allow protein complexes to function in a plastic, context-

dependent manner.

4.2 Introduction

Many cellular processes are performed by macromolecular machines that consist of

protein complexes built from one to several dozen individual polypeptides, whose

functions range from transfer and processing of information to building molecular

structures to mediating metabolic reactions (Bray, 1995). The interactions between

and within these molecular machines are at the heart of the modular nature of the

cell and are crucial to its form and function (Rain et al., 2001; Alberts, 1998).
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In the last decade and a half, considerable efforts have been made to compre-

hensively map the network of protein-protein interactions using mainly two gen-

eral methodologies: a) yeast-two-hybrid (Y2H) assays and b) affinity-/immuno-

purification or liquid-chromatography followed by mass spectrometry. While the

latter class of methods is capable of isolating stable protein complexes in their en-

tirety, the former system surveys binary protein interactions and thus additional

computational steps are required to predict protein complexes from binary interac-

tome data. Irrespective of technical differences, both approaches have been used

in an array of model organisms, including bacteria (Rain et al., 2001; Butland et al.,
2005; Shimoda et al., 2008; Kuhner et al., 2009), yeast (Giot, 2003; Uetz et al.,
2000; Ito et al., 2001; Ho et al., 2002a; Gavin et al., 2006; Krogan et al., 2006),

fly (Giot, 2003; Guruharsha et al., 2011), worm (Walhout et al., 2000; Li, 2004),

higher plants (Arabidopsis Interactome Mapping Consortium et al., 2011) and more

recently human (Stelzl et al., 2005; Rual et al., 2005; Havugimana et al., 2012). To-

gether these data have provided insights into the organization of protein complexes,

their evolutionary conserved topologies (Fraser, 2005; Kim et al., 2006), their role

in disease (Vidal et al., 2011), and how cellular functions are modularized within the

global interactome. In addition, they have enabled more rapid functional annotation

of unknown proteins through guilt-by-association approaches (Oliver, 2000).

Notably, a number of studies have implemented the idea of organizing protein com-

plex subunits into sub-modules. This was performed first in a small-scale theoretical

study (Dezso et al., 2003) and later on applied to large-scale data by Gavin et al.
(Ho et al., 2002b) who performed genome-wide affinity purifications using individ-

ual protein baits in exponentially growing yeast. An index was defined to quantify

the likelihood of interaction between proteins and then clustering was employed to

identify protein complexes. Even in the specific context that was considered — a

single snapshot of the yeast proteome averaged over cell cycle phases — consid-

erable heterogeneity in protein-complex composition was observed. To study this

heterogeneity, proteins in complexes were classified into two types: ‘core’ com-

ponents always co-purifying together in all purifications, and ‘attachments’, only

sometimes co-purifying with the cores. In addition, another subclass of attachment

proteins, which were always present together in multiple complexes, was defined as
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‘modules’. This natural partitioning in the data was studied by integration of many

more data sources, revealing that proteins within cores tend to be co-expressed

during the cell cycle and sporulation; that within cores and modules, proteins are

more likely to be co-expressed, to be co-localized to the same cellular compart-

ments, and to be annotated to the same function; that proteins within distinct cores

and modules are more likely to be present or absent together as orthologs in dis-

tant species; and that proteins within cores and modules are most likely to be in

direct physical contact as inferred by 3D structures and Y2H data (Gavin et al., 2006).

In a second study published at the same time, Krogan also used affinity purification

tagging to purify proteins and then used two mass spectrometry methods in paral-

lel to increase coverage and confidence (Krogan et al., 2006). They also assigned

interaction scores and used clustering to identify protein complexes. Although un-

like in the Gavin study, no subclasses were defined within protein complexes, a

similar partitioning was observed in the data whereby out of 547 identified protein

complexes, about 40% contained shared subunits, which participated in multiple

complexes. Precisely identifying biologically relevant modules from protein interac-

tion networks is not a trivial task, yet in recent years, several approaches, inspired

by these yeast data sets, have attempted to formulate and discover these modules,

specifically core and periphery structures within them (Palla et al., 2005; Derényi

et al., 2005; Luo et al., 2009).

Of the > 20,000 proteins encoded in the human genome, about a fifth are currently

annotated as members of protein complexes in the curated public database CORUM

(Ruepp et al., 2010). Data from large-scale high-throughput studies have deliber-

ately been excluded from CORUM, thus making it a source of high-confidence infor-

mation on whole complexes reported in individual biochemical studies. Although

far from complete, this moderately sized subset exhibits interesting structured re-

lationships. An example is the one-to-many membership of proteins to protein

complexes (Ruepp et al., 2010), which arises in part because many related protein

complexes have been investigated by several laboratories independently. In part,

differences in reported complex composition may stem from variation in technical

procedures such as the use of more or less stringent wash steps or from the use of
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different antibodies. However — and more interestingly — they may also disclose

real biological variation that exists in the composition of complexes as they regulate

specific processes at different times or in different places. Much like the interactome

has been shown to be dynamic, exhibiting temporal (de Lichtenberg et al., 2005),

condition- or tissue-specific changes (Bossi & Lehner, 2009), the complexome or

the compendium of protein complexes is also likely to be changing in composition

in response to varying cellular states.

We hypothesized that we could exploit the variation in subunit compositions identi-

fied in different studies to learn about the compositional plasticity of human protein

complexes. Complexes reported in the CORUM database derive from a wide range

of experimental set-ups, cell and tissue types and physiological conditions, and

therefore constitute a rich source of information to investigate how the interplay

between invariant protein-complex cores and dynamic protein-complex periphery,

an interplay which makes molecular machines compositionally plastic by multiply-

ing functionality.

4.3 Results

4.3.1 Human protein complexes have highly overlapping sub-

units

As noted by others (Ruepp et al., 2008; Havugimana et al., 2012), one of the char-

acteristics of human protein complexes is that many have a high degree of protein

subunit overlap (Figure 4.1A). This can be seen in a global map of protein complexes,

where visually distinguishing one protein complex from the other is often difficult

because of the high degree of connectivity (Figure 4.1A). We reasoned that there

is likely to be valuable information in this overlap between the subunits reported

for different protein complexes that can be used to provide insights into cellular

organization.

For each protein complex pair i, j, we calculated the corresponding Simpson coeffi-
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cient si, j, which quantifies the overlap in protein members between the complexes

on a scale of 0 to 1. Protein complexes and their pairwise Simpson coefficients

were represented as a network with protein complexes connected if their Simpson

coefficient is greater than 0.5 (see Figure 4.1B-C, Figure S1A, and Methods). To cap-

ture cliques — complete or fully connected sub-networks — of overlapping human

protein complexes, we used a clique-finding method (Derényi et al., 2005). Only

considering dimers or larger complexes defines a set of 394 cliques encompassing

722 protein complexes and 1,364 unique proteins. Of these, 420 proteins appear

in at least two different complexes within the same clique at least once (‘core’

subunits) and the remaining 944 never appear in more than one protein complex

of any one clique (‘periphery’ subunits). Henceforth we refer to this classification

as ‘set 1’. In order to show our results are robust to how cliques are defined we

also analysed a second set, filtering out complexes with less than three subunits to

yield 335 cliques encompassing 616 protein complexes and 1,329 unique proteins,

387 of which are classified as core subunits and the remaining 942 as periphery

subunits (referred to as ‘set 2’).

4.3.2 Core proteins are more essential and more evolutionarily

conserved than periphery proteins

We then compared various properties of core and periphery subunits to see how

they differ. First, we assessed the essentiality of core and periphery proteins. We

took advantage of a recent study (Marcotte et al., 2012) in which systematic loss-

of-function screens were conducted in 72 breast, ovarian, and pancreatic cancer

cell lines using an shRNA library targeting 15,000 human genes, resulting in the

identification of almost 300 highly essential human genes (in at least 50% of the 72

cell lines their loss-of-function phenotype scored as lethal). In the absence of a gold

standard set of human essential genes, we asked whether there is a difference in the

proportion of core proteins that were represented in this data set compared to that

of periphery proteins. Whereas 17% of core subunits (n = 420) from set 1 scored as

essential in this assay, only 10% of peripheral subunits (n = 944) did (Figure 4.2A,

P = 5e-04, Fisher’s exact test.). Further, the proportion of core genes that have
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Figure 4.1: Illustration of high connectivity among CORUM protein complexes :

(A) Network representation of all human protein complexes in CORUM where each protein

complex must at least be dimer. There are 2,316 proteins represented as nodes in this

network. With the exception of several dozen isolated protein complexes at the bottom,

the rest of the network is highly connected indicating the extent to which protein subunits

belong to and are shared by multiple protein complexes. (B, C) “LINC complex, S-phase”

(blue, ID5593) and “LINC complex, quiescent cells” (green, ID5596), purified independently

in two separate studies, share a common set of proteins (red) defined as the “core” in this

study. Incidentally, this core itself is annotated as an independent “LINC core complex”

(red, ID5589) in CORUM. Simpson coefficients (Sc) are defined based on the magnitude

of overlap between any two complexes (see Methods), resulting in a simple network with

protein complexes as nodes connected by Sc-weighted edges. Depending on the Sc cut-off,

some edges may be pruned, a more lenient cut-off (B) leads to the identification of one

clique whereas a stricter cut-off (C) yields two distinct cliques.

been implicated in heritable disorders with high-penetrance phenotypes is higher

in the core set, 23% (n = 420) compared to 17% (n = 944) in the peripheral protein

subunits (Figure 4.2B, P = 0.008, Fisher’s exact test). These enrichments are very

similar when considering protein complexes in set 2 (Figure 4.2A-B, P = 5e-04,

P = 0.009, Fisher’s exact test). We also compared evolutionarily sequence conser-

vation of core versus periphery subunits by computing a per protein conservation
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score for one-to-one orthologs between human and other species. We observed

that core genes tend to be somewhat more conserved. Compared to mouse, core

subunits (n = 372) have a mean conservation score of 0.91 versus 0.89 for periph-

ery subunits (n = 825), (P = 0.0043). In chicken, the mean conservation score of

core subunits (n = 324) was 0.78 compared to a mean of 0.73 of periphery sub-

units (n = 710), (P = 1e-04). In fly, the mean conservation score of core subunits

(n = 194) was 0.49 compared to a mean of 0.46 of periphery subunits (n = 339),

(P = 0.038) (Figure S3A).

Finally, we computed the percentage of different groups (namely cores, peripheries,

clique complexes, non-clique complexes, and all complexes), which were present in

their entirety in at least 200 other species as defined by prokaryotic and eukaryotic

clusters of orthologous groups, COGs and KOGs. We found that out of our set of

cliques, even when we controlled for set size, 14% of cores were present all together

compared to only 7% (P = 0.01, Fisher’s exact test) of peripheries (Figure 4.2C).

Notably, the level of cross-species conservation, among cores is significantly higher

than among protein complexes of the same size that do not participate in cliques —

14% compared to 3% (P = 3.17e-07, Fisher’s exact test). This suggests that highly

utilised core components that are present in several protein complexes are more

highly conserved than protein complexes of the same size, which do not partake in

protein community structures and are presumably involved in specialized functions

(Figure 4.2C). Further, the observation that individual cores are also more likely to

be totally present in a given species than entire protein complexes (P = 1.09e-05)

implies a close functional interdependence of these components over higher levels

of organization like the complex itself (Figure 4.2C).

4.3.3 Periphery proteins are more likely to be paralogs of each

other

The proportion of protein subunits in the periphery that are duplicates of one another

— as defined by EnsemblCompara GeneTrees (Vilella et al., 2009) — is 27% com-

pared with 20% of core subunits, a difference of 26% for set 1 (P = 0.0034, Fisher’s
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Figure 4.2: Core subunits are more likely to be essential and more conserved

than periphery subunits : (A) A higher proportion of core compared to periphery subunits

are essential: 17% (n = 420) compared with 10% (n = 944) when considering set 1 (P = 5e-04),

and 17% (n = 387) versus 10% (n = 942) when considering set 2 (P = 6e-04). (B) The proportion

of core subunits implicated in heritable diseases is higher than that of periphery subunits: 23%

(n = 420) compared with 17% (n = 944), (P = 0.008) in set 1. Likewise, core and periphery subunits

derived from set 2 show a difference in enrichment for genes involved in disorders caused by germ

line mutations: 24% (n = 387) compared with 17% (n = 942), (P = 0.009). (C) Among clique

components, core components are most likely to be present all together in other species as defined

by COGs and KOGs than others. For example 14% of cores are present together as COGs and KOGs

compared to 7% of peripheries (P = 0.01) and 5% of whole complexes (P = 1.09e-05). The numbers

next to the bars are effect sizes. Statistical significance for all of the above tested using Fisher’s exact

test.
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exact test) and 28% compared with 18%, a difference of 36% for set 2 (P = 1e-04,

Fisher’s exact test) (Figure 4.3A). However there is no difference between core and

periphery proteins subunits in the size of the paralagous gene families to which the

proteins belong (Figure S3B). In addition, there is no significant difference in the age

of the duplications when comparing the two classes (Figure 4.3B). We also found

no significant difference in protein-family size — as defined by Interpro (Hunter

et al., 2011) — between the two groups (see methods, Figure S3C). This implies

that the enrichment of paralogs we observe in the periphery class is not because

the paralogs come from larger or older families. Rather, there is higher diversity

of small groups of paralogs — mostly pairs, triples and quadruplets. Furthermore,

peripheral paralogs for the most part (∼75%) map to the same protein complexes

defined by the same co-purification experiment. It has been proposed that gene

duplications are one mechanism by which protein complexes frequently evolve

(Pereira-Leal et al., 2007; Finnigan et al., 2012), with frequent conservation of pro-

tein interactions following duplication (Pereira-Leal, 2005). Our results suggest that

gene duplication has made a quantitatively larger contribution to the evolution of

the peripheries of human protein complexes.

4.3.4 Clique components, in particular cores, are highly co-expressed

across tissues

We obtained genome-wide expression data measured in 16 distinct human tissues

using RNA sequencing technology (Bradley et al., 2012) and quantified the extent to

which core and peripheral subunits differ in their mRNA expression . First we ob-

served that the 357 expressed core genes have a higher average mRNA abundance

compared to the 755 expressed periphery genes (means of 64 and 43 and medians

of 16 and 13 RPKM for the core and periphery genes, respectively, P = 2.7e-10,

Wilcoxon rank sum test. RPKM: reads per kilobase per million). We then com-

pared the breadth of expression of the two classes and found that both are widely

expressed — both core and periphery genes are present in an average of 15 tissues

out the total of 16 where a gene’s presence is defined as an mRNA abundance of >

1 RPKM (Figure S4A, no significant difference in distributions, P = 0.06, Wilcoxon
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Figure 4.3: Periphery genes are more likely to be composed of paralogous pairs

or groups : (A) In set 1, only 20% of core genes (n = 420) were duplicates of each other

compared with 27% (n = 944) of periphery genes, a 26% change, P = 0.003. For set 2 again

18% (n = 387) of core proteins subunits were paralogous to one another compared with

28% (n = 942) of periphery proteins, a 36% change, P = 1e-04. Statistical significance tested

using Fisher’s exact test. (B) Time of duplication of paralagous core genes and paralagous

periphery genes are not significantly different from one another; 20% of core genes (n = 420)

have old time of duplication compared with 26% of periphery genes (n = 944), (P = 0.2),

0% of core paralaogs (n = 420) have intermediate age of duplication compared with 1%

periphery paralogs (n = 944), (P = 0.34), and 0% of core paralogs (n = 420) were duplicated

recently compared with 0.27% of periphery paralogs (n = 944) (P = 1). None of these

differences are significant. Statistical significance for both A and B tested using Fisher’s

exact test.

rank sum test).

Next, we used the Pearson correlation coefficient (PCC) of co-expression of genes

within defined components of cliques to identify whether their associations are

context-specific (that is, genes within each component are not always co-expressed)

or universal (that is, genes within each component are always co-expressed). Core

genes in our set of 394 cliques revealed a PCC distribution skewed toward the

positive (mean=0.56) and significantly shifted in comparison to that of periphery
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genes (mean=0.46, P = 5.03e-34, Wilcoxon rank sum test). A similar discord is

observed between cores and peripheries from the same protein complexes — cores

are the same as clique cores but peripheries are sets of subunits that together with

their cores make up one unique protein complex. Within protein complexes too

core genes show higher average co-expression as measured by PCC (mean = 0.56)

compared to periphery subunits (mean=0.49, P = 3.3e-23, Wilcoxon rank sum

test). Indeed, the PCC distribution of core genes is binomial with the majority of

core genes centring on 0.82, which indicates a tight co-regulation for many core

genes (Figure 4.4A). Further, when we analysed protein complexes separately, we

found a similar heterogeneity in expression to peripheral genes, while also signif-

icantly different from core genes (mean=0.46, P = 1.3e-25, Wilcoxon rank sum

test) (Figure 4.4A). This differential expression across tissues, in protein complexes

as a whole and specifically in their peripheral components contrasted to the tight

co-expression of their core components, supports the notion that context-specific

regulation of periphery genes can modify the function of protein complexes through

association with the stably expressed core (Figure S4D).

Finally we compared core and peripheral subunits within each clique, separating

them into paralogs and non-paralogs. Core proteins are more positively correlated in

expression across the tissues than periphery proteins independent of whether they

have duplicates or not (Figure S4B, P = 0.09 for paralogous subunits, P = 2.5e-43
for non-paralogous subunits).

4.3.5 Periphery proteins tend to be larger and more disordered

We also contrasted the physical and chemical properties of the two classes of sub-

units. We found that on average periphery proteins tend to be larger than core

proteins with the 917 core proteins having a mean amino acid length of 755 com-

pared to an average sequence length of 676 for the 412 core proteins (P = 0.004)

(Figure 4.5A). Periphery proteins have on average a very slight enrichment in the

number of Pfam domains (Alberts 2002); 917 periphery proteins have on average

2.3 Pfam domains compared to 1.9 of the 412 core proteins (P = 0.046) (Figure
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Figure 4.4: Core and periphery protein subunits display similar yet distinct pat-

terns of expression across human tissues : (A) Comparison of expression correlation

between various components within 394 cliques derived from complexes composed of one

or more subunits; mRNA abundance cutoff > 1 RPMK across 16 human tissues. Expressed

core genes (n = 399) show significantly higher expression correlation amongst themselves

(mean=0.56) than expressed periphery genes (mean=0.46, P = 5.03e-34) or expressed

periphery genes separated into groups corresponding to protein complexes from which

they originated (mean=0.49, P = 3.3e-23) or the entire set of clique genes (mean=0.46,

P = 1.9e-33) or the entire set of protein complexes (mean=0.46, P = 1.3e-25). Statistical

significance tested using Wilcoxon rank sum test.

4.5B). We then looked at disorder content to not only classify the two groups further

but to also understand whether there could be a difference in the number and type

of physical interactions each class is capable of. Given that there is a strong positive

correlation between disorder content and protein size (Figure 4.5C) we compared

normalized intrinsic protein disorder between the two classes. We found periphery

subunits tend to be more disordered (22% compared to 19% mean disorder con-

tent, P = 0.002). The higher disorder content in periphery genes is suggestive of

a scenario in which periphery proteins are more often involved in lower affinity or

transient interactions. Furthermore, recent evidence suggests that intrinsic disor-

der is necessary for proper complex assembly and correlates with protein-complex

size (Alberts 2002). Thus peripheral proteins, as a consequence of having higher
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intrinsic disorder, might be more flexible to form heterologous interfaces with each

other and other core proteins during complex assembly.

Given that disordered regions are more likely to undergo post-translational modifica-

tions (Russell & Gibson, 2008), we also examined phosphorylation, ubiquitination,

sumoylation, acetylation, methylation, and O-linked glycosylation using two public

databases (Beltrao et al., 2012; Hornbeck et al., 2011), but found no detectable

difference in the distributions of the number of modifications the proteins in each

group undergo (Figure S5, S6). Furthermore, we looked at protein half-life data

(Schwanhäusser et al., 2011) and confirmed that there is no difference in protein

turnover rate given the result of the PTM analysis (Figure S6D).

4.4 Discussion

Many biological functions are carried out by the activity of highly interacting cellular

components, often referred to as functional modules. In the present study, we

investigated the properties of one type of module: protein complexes identified in

small-scale experiments. Our results are consistent with a model where many pro-

tein complexes have an invariant core interacting with variable periphery subunits.

The present study confirms much of the existing knowledge pertaining to modular

sub-organisation of protein complexes in yeast while it also highlights the utility

of such model in a multicellular organism through the integration of tissue-specific

expression data.

Our results broadly mirror prior bioinformatics analyses of protein complexes in

yeast, which found that protein subunits of stable protein complexes tend to be

more highly conserved and twice as likely to be essential than proteins involved

in more transient temporary interactions (Dezso et al., 2003; Kim et al., 2006). In

addition, protein complex cores as an entity have remained conserved together to a

greater extent than peripheries or even specialised protein complexes of comparable

size, which are not part of protein complex cliques. It has also been shown in yeast

that protein complex cores — defined as complex subcomponents consistently
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co-purified across multiple experiments employing different protein baits — were

co-expressed, co-localized, and more likely to physically interact (Ho et al., 2002b).

Our study demonstrates many of the same principles in human, specifically that

sub-modules within protein complexes exhibit different levels of heterogeneity in ex-

pression across various tissues, with core components displaying tight co-regulation

in expression and periphery components providing tissue-specific variability to the

protein complex as a whole, thus providing context-dependent flexibility. We also

show that proteins in the periphery tend to have more intrinsic disorder than pro-

teins in the core. This may be because peripheral proteins engage in a higher number

of transient interactions. Intrinsic disorder has been linked to complex size as it is

thought that structural disorder is necessary for proper protein complex assembly

(Hegyi et al., 2007) since protein flexibility — predicted using a simple ratio of a pro-

tein’s solvent-reachable surface area to what is expected given its molecular weight

and related to protein intrinsic disorder — is required for complex assembly and

especially crucial to large and cyclic protein complexes (Marsh & Teichmann, 2014).

Given that the number (∼400) of core subunits is small, a plastic exchange of at-

tachment proteins in the periphery provides a modular and efficient scheme for

diversifying function in a temporally or spatially specific manner according to the

physiological needs of the cell. Consistent with this view, we found the periph-

ery to be more diverse in its catalogue of paralogous proteins. In other words,

since the periphery shows a higher proportion of paralogous families and since in

general there is no large difference between paralogous family sizes in core and

periphery, the implication here is that the periphery combines a greater diversity

of paralogous families. This supports the notion that periphery subunits may have

emerged through gene duplications consistent with previous studies on evolution

of protein complexes (Pereira-Leal, 2005; Pereira-Leal et al., 2007; Finnigan et al.,
2012). Another interesting finding surrounding paralagous proteins in the periphery

is that they are no more likely to be co-expressed than any pair of non-paralogous

periphery proteins from the same clique. In fact ∼75% of paralagous proteins in

the periphery co-exist together in the same protein complexes. Therefore, since

paralogous proteins often join together to assemble a single protein complex, their

expression variability across tissues is no greater than non-paralogs. Taken together,

123



our results suggest that human protein complexes are highly plastic and that this

plasticity is provided through the flexible attachment of periphery proteins to a sta-

ble core, diversifying function in a temporally or spatially specific manner according

to the physiological needs of the cell.

4.5 Methods

4.5.1 Protein complex network generation and clique finding

A reference set of complexes was obtained from the CORUM database (Ruepp

et al., 2008) of curated mammalian protein complexes. As of the latest release on

(February 2012) there are 1,331 human complexes in total, 1287 with at least two

subunits, 931 with at least three. All analyses were performed in parallel on the

latter two sets. Human complexes consisting of at least two or at least three distinct

protein subunits (i.e. set of 1,287 and 931 complexes) were then examined in a

pairwise all-by-all manner for their magnitude of overlap with each other. Overlap

was computed using Simpson coefficient for any two complexes ci and c j:

SC =
ci
⋂

c j

min(|ci|, |c j|)

where the normalization factor is the size of the smaller complex. We then created

a network of protein complexes between which edges are drawn only when a pre-

defined level of overlap (shared subunits) is met. In our study, we imposed a cutoff

of 0.5 on the Simpson coefficient and only connected protein complex nodes that

meeting it. This cutoff — employed in another study as well (Havugimana et al.,
2012) — is optimal when analysed as a function clique compactness. With strict

cutoff of SC > 0.8, protein complex overlap is so high that very little alternative

subunits exist resulting in small or non-existent peripheries, while lax SC cutoffs

result in virtually no common core to analyse (Figure S1).

We then used a described method, CFinder (Derényi et al., 2005) to recover fully

connected subgraphs or cliques — that is communities where all protein complex

nodes have at least 50% overlap with one another. We achieve this by extracting
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parts of the aforementioned protein complexes network that are highly connected

with edges meeting the overlap threshold. These connected subgraphs called clus-

ters, modules, communities or cliques do not have a universally-accepted defini-

tion, yet their very presence is a hallmark of the hierarchical nature of real networks

(Barabasi & Albert, 1999; Albert & Barabási, 2002; Dorogovtsev & Mendes, 2002) .

Although clique finding is a NP-complete problem meaning that it has an efficiently

verifiable solution but not necessarily an efficient solution (Cook, 1971), in real

networks, which often tend to be sparse or less dense than their theoretical coun-

terparts, numerous efficient solutions have been proposed (Derényi et al., 2005;

Blatt et al., 1996; Girvan & Newman, 2002; Radicchi et al., 2004; Newman, 2004).

Utilizing a recent powerful method (Lechler & Fuchs, 2005), we extract the most

highly overlapping cliques of protein complexes — that is communities where all

protein complex nodes have at least 50% overlap with each other. Once we have

identified all such protein complex nodes, we can partition them into core subunits

(i.e. subunits common to all nodes in a particular clique) and periphery subunits

(i.e. subunits exclusive to one node in a particular clique).

4.5.2 Conservation analysis

To study conservation using identity scores, selected set of orthologous sequences,

as provided by Ensembl (Flicek et al., 2012), were aligned using three different

programs: MUSCLE v3.8 (Edgar, 2004), MAFFT v6.712b (Katoh & Toh, 2008), and

DiAlign-TX (Lassmann et al., 2009). Alignments were performed in forward and

reverse direction (i.e using the Head or Tail approach (Landan & Graur, 2007)),

and the six resulting alignments were combined using M-Coffee (Wallace, 2006).

Resulting alignments were used to compute identity scores of orthologs to human

reference proteins by using trimAl v1.4 (Capella-Gutierrez et al., 2009). We also

calculated the percentage of different classes of core, periphery, etc. that were

present together in at least 200 out of the 417 species represented in the clusters

of orthologous groups, COG/KOG data sets (Tatusov, 1997), downloaded from the

STRING database (Franceschini et al., 2012). Since cores seldom contain more

than 2-3 genes (Figure S2A), while peripheries are much larger (Figure S2B), the
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probability of all peripheral genes within a clique to have been conserved together

as a group will be lower. To control for this, we look at individual core/periphery

within protein complexes and analyse one set of attachment proteins within the

set of peripheral subunits. We additionally control for size by comparing core and

peripheries with similar size distributions.

4.5.3 Protein family size

We used two data sets of protein family definitions from Uniprot (Magrane & Con-

sortium, 2011) and Ensembl (Flicek et al., 2012). The first database assigns protein

family membership using Interpro (Hunter et al., 2011) while the latter relies on

EnsemblCompara GeneTrees (Vilella et al., 2009), derived gene families across all

metazoan sequences. We use these two sets to check for differences between core

and periphery genes in terms of size of protein families and found no significant

difference between their size distributions. Using this alternate set of protein family

annotations, which complements one-to-one paralogs, we found that on average

core paralogs come from families of 3.5 genes and periphery paralogs come from

families of 3.7 genes (median=3) for both groups). In fact when we check the

distribution of family sizes between core and periphery subunits we observe that

paralogs for the most part come from families of the same size with triplicates, qua-

druplicates and quintuplicates more or less evenly representing 60% of duplicate

families (Figure S3B). In fact when we check the distribution of family sizes between

core and periphery subunits we observe that paralogs for the most part come from

families of the same size with triplicates, quadruplicates and quintuplicates more or

less evenly representing 60% of duplicate families.

4.5.4 Additional data sets

A set of essential human genes was obtained from this study (Marcotte et al., 2012).

Information on protein disorder content was used in a previous study (Vavouri et al.,
2009) originally identified using Globprot (Linding, 2003) and DisEMBL (Beltrao &

Serrano, 2005). Information on mRNA and protein half-lives was obtained from a
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large-scale pulse-chase study in mouse (Schwanhäusser et al., 2011). Complete

data sets on post-translation modifications including acetylation, methylation, o-

linked glycosylation, phosphorylation, sumoylation, and ubiquitination came from

PhosphoSitePlus database (Hornbeck et al., 2011) in addition to a data set of primar-

ily acetylation, phosphorylation, and ubiquitination provided by Pedro Beltrao from

PTMfunc database (Beltrao et al., 2012). Protein domain information was down-

loaded from Pfam (Punta et al., 2012). RNA-seq data obtained from 16 various

human tissues by the Illumina Human BodyMap 2.0 project (Bradley et al., 2012)

(HBM) (www.illumina.com; ArrayExpress ID: E-MTAB-513) served as the basis for

the analysis of expression correlation across tissues. Disease-causing mutations

came from OMIM (Hamosh, 2004) and appropriate keyword filters were applied

to obtain a gene list whose germline mutations lead to phenotypes with high pene-

trance (Mendelian disorders).

4.5.5 Statistical analyses

All statistical tests and plots were performed in R version 3.0.2.
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Figure 4.5: Periphery subunits are larger, possess more interaction domains

and have more disordered content : (A) Sequence length distribution of 412 core proteins

with mean of 676 is lower than sequence length of 917 periphery proteins with mean of 755 amino

acids (P = 0.004). (B) The average number of Pfam domains for 412 core proteins, 1.9 is lower than

the average of 2.3 domains for 917 periphery proteins (P = 0.046). (C) In both core and periphery

classes, the longer protein sequences exhibit higher number of disordered regions (D) Density plots

of disordered amino acid counts normalized by total sequence length in core (n = 405, black line)

and periphery (n = 888, red line) populations. The mean proportion of disordered content to protein

sequence length for core proteins is 0.19 and for periphery is 0.22. These two populations have a

real shift in distribution (P = 0.002). Statistical significance tested using Wilcoxon rank sum test in

A, B and D.
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4.7 Supplementary Information

4.7.1 Supplementary Figures
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Figure S1: Criteria used for selection of Simpson’s coefficient cutoff : (A) Unbiased
cutoffof Simpson coefficient (SC) was selected by examining the effect of a representative set of
cutoffs in range of 0 and 1 (lower and upper bounds of SC) on clique finding. ‘No cutoff’ served
as a negative control — in a fully connected network no clique should be found. The orange y-axis
display the total number of nodes (protein complexes) as a function ofi ncreasing SC cutoff— the
more edges get pruned since their weight does not meet the SC cutoffthe less nodes remain in the
large network. Isolated nodes are not taken into consideration as cliques are found only as fully
connected subgraphs of the larger network. (B) This plot is a proxy for compactness. The stricter
the Simpson coefficient (SC), the more genes end up in the core. For example, when SC > 0.9,
although fewer cliques are captured, their overlap is so high that nearly 50% of the gene in the entire
data set are in the shared cores. At our selected cutoffof SC > 0.5 we have 387 core genes and 942
periphery genes (41% of 1330 genes).
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Supplementary Figure 2
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Figure S2: Clique peripheries are larger than clique cores : Probability density
plots depict the component size distribution (total number of subunits) of (A) clique cores
derived from set 1 and (B) clique peripheries derived from set 1.
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Supplementary Figure 3
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Figure S3: Gene duplicates in both groups of core and periphery subunits come
from families with same size distributions : (A) Probability density plots depict the
conservation of core and periphery genes as measured by comparative analysis with their
respective one-to-one orthologs in mouse, chicken, and fly. Compared to mouse, core
subunits (n = 372) mean conservation score is 0.91 versus 0.89 for periphery subunits
(n = 825), P = 0.0043. In chicken, mean conservation score of core subunits (n = 324)
was 0.78 compared to a mean of 0.73 of periphery subunits (n = 710), P = 1e-04. In fly,
mean conservation score of core subunits (n = 194) was 0.49 compared to a mean of 0.46
of periphery subunits (n = 339), P = 0.038. Statistical significance tested using Wilcoxon
rank sum test. (B) Density plots of gene duplicate family sizes for core subunits (black) and
periphery subunits (red) reveal that the average family size for 36 paralagous gene families
in the core, 3.6 (median = 3.5) is not significantly different from the average family size of
4.1 (median = 4) for 110 paralagous gene families in the periphery (P = 0.175). Statistical
significance tested using Wilcoxon rank sum test. (C) Side-by-side comparison of core and
periphery duplicate gene family sizes displayed as a percentage of total family counts.
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Figure S4: Core and periphery subunits are co-expressed across human tissues
but to differing extents : (A) Breadth of gene expression across 16 human tissues show that
406 core genes are expressed on average in 15.4 tissues compared to 899 periphery genes which
are expressed on average in 15.1 tissues (P = 0.06). (B) Four groups of protein subunits: CP or core
paralogs (n = 15), CNP or core non-paralogs (n = 736), PP or periphery paralogs (n = 2, 522), and
PNP or periphery non-paralogs (n = 22, 494) are compared in terms of the distribution of the Pearson
correlation coefficients of their mRNA expression. CNP ranks first with median 0.67 (mean=0.59),
CP has second highest median of 0.55 (mean=0.54), then PP and PNP tied for lowest values both
with median 0.48 (mean=0.44). Six way comparison of groups reveals pairs of distributions are
not significantly shifted (PCP,CNP = 0.3, PCP,PP = 0.09, PCP,PNP = 0.17, PCNP ,PP = 2.1e-44, PCNP ,PNP =
2.5e-43, PPP,PNP = 0.2). (C) Density plots of mean expression correlation of cores (n = 354) and
peripheries (n = 359) as above against a backdrop of complexes (n = 1, 229) with a mean = 0.34.
There is a real shift in distribution of mean PCC between core components and whole complexes
(P = 1.3e-13) but not between periphery components and whole complexes (P = 0.42). (D) Density
plots of mean expression correlation of subunits within each component of 394 cliques derived
from complexes composed of one or more subunits; mRNA abundance cutoff > 1 RPMK. Clique
components are cores (n = 354), peripheries (n = 359), and peripheries split into source protein
complexes (n = 366). On average cores are more highly correlated in expression (mean=0.46)
than peripheries (mean=0.36), (P = 2.1e-10) and peripheries split into individual protein complexes
(mean=0.4), (P = 8.5e-05). Statistical significance tested using Wilcoxon rank sum test for all.

133



Supplementary Figure 5 
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Figure S5: Posttranslastionalmodifications (data from PhosphoSitePlus) affect
core and periphery genes to equal degrees : Density plots of total modifications per
protein (A) Average number of acetylated residues of core proteins (n = 256), 4.1 (median=3)
compared to 4.3 (median=3) of periphery proteins (n = 575), is not significantly different (P = 0.75)
(B) Average number of methylated residues of core proteins (n = 88), 4 (median=2) compared to
4.5 (median=2) of periphery proteins (n = 250), is not significantly different (P = 0.44) (C) Average
number of O-glycosylated residues of core proteins (n = 13), 1.8 (median=1) compared to 3.6
(median=1) of periphery proteins (n = 21), is not significantly different (P = 0.36) (D) Average
number of phosphorylated residues of core proteins (n = 406), 16.8 (median=9), compared to
17.3 (median=11) of periphery proteins (n = 885), is not significantly different (P = 0.06) (E)
Average number of ubiquitinated residues of core proteins (n = 350), 7 (median=5) compared
to 7.4 (median=4) of periphery proteins (n = 706), is not significantly different (P = 0.27) (F)
Average number of sumoylated residues of core proteins (n = 33), 1.5 (median=1) compared to 2.1
(median=1) of periphery proteins (n = 78), is not significantly different (P = 0.09).
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Supplementary Figure 6
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Figure S6: Posttranslational modifications (data from PTMfunc) affect core
and periphery genes to equal degrees : (A) Average number of phosphorylated residues
of core proteins (n = 298), 11.8 (median=6) compared to 10.6 (median=6) of periphery proteins
(n = 624), is not significantly different (P = 0.52) (B) Average number of ubiquitinated residues
of core proteins (n = 260), 6.5 (median=4) compared to 6.4 (median=4) of periphery proteins
(n = 502), is not significantly different (P = 0.13) (C) Average number of acetylated residues of core
proteins (n = 166), 3.6 (median=2), compared to 3.9 (median=2) of periphery proteins (n = 338),
P = 0.32. (D) Average half-life in hours of core proteins (n = 309) is 62 hours (median=41)
compared to 56 hours (median= 42) for periphery proteins (n = 612), is not significantly different
(P = 0.83). Statistical significance tested using Wilcoxon rank sum test for all.

135





CHAPTER

FIVE

DISCUSSION

I
n section 2.1 of the Results, we analyze time course transcription data sampled

from PHK cultures both in their stem cell state and upon calcium-induced differ-

entiation. Using these data we show that epidermal cells in culture have free-running

circadian rhythms. We further identify cohorts of genes that are in tune with the

circadian expression of core clock genes and, by focusing on individual candidate

pathways as identified from these genes sets, namely calcium and TGFβ, we show

experimentally that differentiation happens more efficient at specific times during

the day.

The induction of differentiation by calcium in PHK cultures is not a perfect model

for studying epidermal differentiation. One major reason is that the synchronization

method used — the short serum shock given prior to the time-course RNA collec-

tion — can also synchronize the cell cycle, which is often approximately 24 hours

in cultured cells. This can confound globally measured gene expression changes,

in particular those associated with the cell cycle with those linked to the circadian

clock. A better model for circadian control of human epidermal homeostasis would

be the study of primary intact epidermis collected at different times of the day by

employing a punch biopsy method. This would eliminate the need for serum shock,

as the cells would be in sync with the central pacemaker upon collection. In the

future, this type of study can be used to complement experiments on PHK cultures.
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Furthermore, the design of the microarray experiment, which involved time course

of RNA collection at 5-hour intervals for 45 hours, was not ideal for the study

of circadian rhythms. The experiment was originally designed to survey global

transcriptional changes during skin differentiation, with the circadian question not

being a primary focus. The experiment therefore did not cover at least two com-

plete circadian cycles and the time points were not chosen to be factors of 24. This

made the task of identifying circadian transcripts quite challenging. A recent study

has compared a number of mainstream methods used to detect periodicity in data

and shown quantitatively that higher sampling resolution provides more statistical

power for any one of these methods (Hughes et al., 2010). In the future, employ-

ing a strategy whereby the gene expression time course is more densely sampled

would be desirable, especially when the accurate detection of circadian rhythms is

the main objective of the study.

Another limitation of our data, which made the task of identifying circadian or even

dynamically regulated transcripts quite challenging was the fact that the magnitude

of change for many genes tended to be very restricted. In fact, numerous markers

of differentiation and/or signalling genes, well characterized for their role in skin

homeostasis and differentiation had mRNA fold changes hovering around or below

2, an oft-used cut-off to identify genes with significant changes in expression. In

the future, to obtain a more accurate count of transcripts globally, performing RNA

sequencing in place of microarrays would be desirable.

We also performed extensive benchmarking of a number of highly cited methods

for the identification of circadian patterns against our own data, simulated/synthetic

data, as well as legacy data sets (Storch et al., 2002). Specifically we tested COSOP

(Straume, 2004), Fourier transform followed by Fisher’s G test (Wichert et al., 2003),

and JTK_Cycle (Hughes et al., 2010). Furthermore, we devised two additional ad

hoc methods based on autocorrelation and cosine curve fitting. All five methods

performed equally well in detecting the core clock genes BMAL1, PER1-3, NR1D1-2,

and CRY1/2 as circadian in our data as well as previously published expression data

(Storch et al., 2002). We simulated synthetic data composed of 512 positive con-

trols with circadian profiles and 512 negative controls with non-circadian profiles
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complete with varying period lengths for the positive hits, varying amounts of noise,

and a few outliers to test all five methods. We found that at cutoff of p-value <

0.05, the true positive rate ranged from 29% to 56% while specificity ranged from

71% to 96%. In particular, for example JTK_Cycle performed the worst with TPR of

29% and specificity of 71% while auto-correlation had the highest sensitivity of 56%

and Fisher’s G test had the highest specificity of 96%. When we tested the same set

of methods on published data in which circadian genes had been identified (Storch

et al., 2002), all methods fared slightly worse, although by an almost equal margin.

At the same p-value cutoff of 0.05 the range of true positive rate was between 27%

to 45% with Fisher’s G test out-performing the others.

The challenge arose when these methods were tested on our data. As mentioned,

we were limited by unconventional time sampling and the fact that our data did not

extend over two circadian cycles. While benchmarking highly cited methods, we

found that even genes known to be under the control of clock genes in mammalian

epidermis as reported previously (Janich et al., 2011) could not be detected in a

statistically sound manner when compared to a background of random genes and

as a result we decided to devise our own method instead of applying one that has

been described in the literature. To this end we devised a custom method in order

to compare the expression pattern of individual genes to those of known clock

components by subdividing the expression time course into six overlapping 15h

time windows (i.e. 5-20h, 10-25h, 15-30h, 20-35h, 25-40h, 30-45h) and for each

gene fitting a polynomial corresponding to a time window with four time points.

This simple method enabled us to describe genes in terms of peaks and troughs

and match them against clock genes with the same sequence of peaks and troughs

and to overcome the limitations imposed by limited time resolution.

In section 2.2 we looked at how protein complexes change their composition over

the course of skin differentiation based on expression pattern of their member sub-

units by combining protein complex information with our time course expression

data. One of the first steps in our study involved the characterization of global

changes in transcriptional regulation. For this, it was necessary to distinguish dy-

namic from non-dynamic genes, followed by unsupervised clustering to segregate
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genes in an unbiased manner based on their temporal regulation. Many genes in

our data showed a limited dynamic range of expression. For example, less than

8% of genes had differential expression across the time course with a magnitude of

change above 4 folds. To give this a frame of reference, the number of genes that are

differentially expressed with a fold change > 4 throughout our skin differentiation

data set compared to a randomly sampled data set with equal dimensions from an

expression atlas of 79 different human tissues (Su et al., 2004) is far lower (8% com-

pared to 21%). A comprehensive comparison of six microarray platforms has shown

cross-platform correlation to be very high between Agilent microarray (the platform

used in our study) and other oligonucleotide microarray technologies (Yauk, 2004)

in variability and sensitivity and the detection of differential gene expression. In fact

validation of a handful of genes which, were of interest to our study (e.g. circadian

genes, markers of differentiation) by RT-qPCR corroborated the range of change we

detect with our microarray platform. Therefore, this limitation in dynamic range

may be due to the experimental conditions or a reflection of physiological state of

the cells. Yet this characteristic of the data made the task of clustering to identify

various trends a bit more challenging.

Further, another limitation of k-means clustering is selecting an optimal number of

clusters or k. We employed a wide range of metrics such as silhouette index, Dunn

index, and F- test, which measures the ratio of the between-group variance to the

total variance to choose the optimal number of clusters. Most of these measures

resulted in k < 10. One limitation of employing a small k value, is that subtle trends

such as circadian expression of known genes are not picked up or rather they are

grouped together with more general trends within our 8 clusters. Hence our k-mean

clustering strategy where k=8 was more successful in identifying various general

trends in expression over the course of differentiation.

In this section, another question of interest to our research was whether paralogous

genes compete with one another to bind to the same interfaces. However one

major limitation for this type of study is that we only have mRNA expression data

and hence we can only establish correlations between structural information and

gene homology. In the future, it would be desirable to quantify protein abundances
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in order to distinguish competing from non-competing interactions. Despite these

limitations, we were able to establish a number of statistically sound correlations.

Through using three-dimensional protein structures between interacting partners

for a common hub, we identified that mutually exclusive interactions (MEI) are en-

riched in dynamic genes and by contrast compatible interactions (COI) are enriched

for non-dynamic genes.

Section 2.3 was a purely integrative study. The main limitation that comes to mind

is the quality and the availability of data sources that we had to rely on. For exam-

ple, subcellular localization data was hard to come by for mammals and the two

data sets that we used covered a very narrow range of organelles (i.e. nucleus,

cytoplasm, nucleolus). Nonetheless, the collective data and our analyses in this

study were indicative of a picture in which the function of a stable protein complex

core is modified by the attachment or detachment of periphery proteins that allow

protein complexes to function in a plastic, context-dependent manner.
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CHAPTER

SIX

SUMMARY OF SCIENTIFIC FINDINGS

1. Core clock transcripts oscillate in an autonomous circadian manner in epider-

mal stem cells of cultured primary human keratinocytes.

2. The oscillation of core clock genes was maintained when PHK were induced

by calcium to differentiate, although the amplitude of some clock transcripts

in the negative limb of the clock showed an increase.

3. The successive oscillations (peaks and troughs) of the core clock genes subdi-

vide the day into at least five temporal intervals, in effect segregating epidermal

stem cell functions since each temporal interval defines a different functional

category in both stem cells and differentiating cells.

4. Genes in tune with peaks pertaining to NR1D1/2 and PER1-3, genes known

to peak during late-night to early morning hours, are enriched for pathways

related to differentiation, whereas genes synchronized to peaks of clock genes

CRY1 and BMAL1, known to culminate in the afternoon and evening hours,

correspond to pathways inducing DNA replication, UV protection, and cell

division.

5. Epidermal stem cells respond more efficiently to differentiation cues, specifi-

cally TGFβand calcium, in a time-of-day-dependent manner.

6. Disruption of circadian clock function through the overexpression of PER1

and PER2, or upon knockdown of CRY1 and CRY2 leads to spontaneous

differentiation of PHKs.
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7. Analysis of gene expression during skin differentiation reveals dynamically

changing proteins in complex with non-dynamically expressed proteins in

almost two thirds of complexes.

8. Structural analyses identifies that mutually exclusive surface interactions are

enriched in dynamic genes.
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