UNB

Universitat Autonoma de Barcelona

Combinatorial dynamics of strip
patterns of quasiperiodic skew
products in the cylinder

Leopoldo Morales Lopez

ADVERTIMENT. L’accés als continguts d’aquesta tesi queda condicionat a I'acceptacié de les condicions d’Us
establertes per la seglent lliceéncia Creative Commons: @ M) http://cat.creativecommons.org/?page_id=184

ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptacion de las condiciones de uso
establecidas por la siguiente licencia Creative Commons: @@@@ http://es.creativecommons.org/blog/licencias/

WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set

by the following Creative Commons license: @@@@ https://creativecommons.org/licenses/?lang=en




Combinatorial dynamics of strip
patterns of quasiperiodic skew

products in the cylinder

Thesis submitted by Leopoldo Morales Lopez for the degree of Philosophae
Doctor by the Universitat Autonoma de Barcelona under the supervision of

Prof. Lluis Alseda i Soler and Prof. Francisco Mafiosas Capellades.

Dr. Alseda i Soler Lluis Dr. Mafiosas Capellades Francisco

Leopoldo Morales Lépez

Programa de Doctorat en Matematiques
Departament de Matematiques, Universitat Autonoma de Barcelona
Bellaterra 2016






"Les coses secretes pertanyen al Senyot, el nostre Déu, pero les
revelades son per a nosaltres i per als nostres fills per sempre, a fi que
posem en practica totes les paraules d’aquesta llei.”

Deuteronomi 29:29






Agraiments

A Déu,

Si no fos per ell no hauria vingut a aquest meravellés pais petit Catalunya.

A la Generalitat de Catalunya,

Per la seva generositat.

Especialment a en Lluis i en Topa, els meus directors,
Per acceptar-me com estudiant. Sense el seu temps, consells, discussions i la seva paciencia, res

d’aixo seria possible.

A la Nancy, la meva dona, i companya d’aventures,

M’agafo als teus bragos com el naufrag a las seves taules.

Als meus fills, la Montse i I’ Andreu,

Els meus ulls, sense ells no veia bé.

A la Esglesia Baptista Missionera en Cerdanyola,

Per que fan que aquest ofici sigui el millor.

A les esglésies Baptistes missioneres a Mexic,

Per enviar-me com missioner.

Al meu pareT, La meva mare i els meus germans,

pels seus animes, rialles i plors.

Finalment a tos els meus amics i germans estimats que he fet a Catalunya dels que no faig la llista

sencera, per no en oblidar-me de cap, pero tots sou una benediccié de Déu.






Contents

Introduccion . ... .. 1
1 Entropy for skew-productsin the cylinder.............. ... ... ... ... .. ... 5
1.1 Introduction. ... ... ... 5

1.2 Definitions and statements of results ............... ... ... i 7
121 Intervalpatterns ............ ... i 7

1.22 Strips Theory ... 8

1.2.3 Strippatterns ............ 14

1.3 Proofof Theorem A .. ... ... .. . 17
1.3.1 Signed Markov graphsintheinterval .............. .. ... .. .. ... ... 17

1.3.2 Signed Markov graphsin 2 ....... ... ... .. ... . i 17

1.3.3 Loops of signed Markov graphs ................ ... ... ...l 19

1.34 Proofof Theorem A ... ... ... . i 23

14 Proofof Theorems Band C ......... ... ... i 25

2 A skew-product aplication without invariant curves ..................... ... ..., 27
21 Introduction.......... ... 27

2.2 Definitions and preliminary results.......... ... .. ... .. oL 30

2.3 Construction of a connected pseudo-curve .......... ... ... ... ool 35

24 A collection of auxiliary functions G; defined on the boxes R™(*) .............. 54

2.5 A stratification in the set of boxes R (%) +.vuvvrint ittt 62

2.6 Boxesinthe Wings ......... ... i 67

2.7 A Cauchy sequence of skew products. Proof of Theorem D ..................... 72

2.8 Proof of Proposition2.43inthecasem =0.............. .. .. ... il 75

2.9 Proof of Proposition 243 form >0 ......... ... ... 81
2.10 Proof of Proposition 2.44 . ... ... ... 91

R eIeNCES . . oot 103






Introduccion

En las ultimas dos décadas, se han hecho muchos trabajos dedicados a encontrar y estudiar
Atractores Extrafios no caoticos (SNA, por sus siglas en inglés). El término SNA fue introducido
y estudiado por C. Grebogi, E. Ott, S. Pelikan, y J. A. Yorke, en el articulo Strange attractors
that are not chaotic [7]. Cabe mencionar que, antes de que la nocién de SNA fuera formalizada,
ya existian construcciones de funciones que contenian objetos similares, algunas de ellas, se
pueden encontrar en [11], [12] y [16]. Pero, después de [7], el estudio de estos objetos se hizo
popular rapidamente y apareci6é un notable ntimero de articulos estudiando diferentes modelos
en los cuales también aparecen dichos SNA. Posteriormente, en [10] fue publicado otro modelo
importante, el modelo de Keller, el cual es una versién abstracta del modelo contenido en [7].

Estrechamente ligados al estudio de dichos objetos, los autores Roberta Fabbri, Tobias Jager,
Russell Johnson y Gerhard Keller publicaron el articulo A Sharkovskii-type Theorem for Minimally
Forced Interval Maps [9]. En el mismo, el teorema de Sharkovskil fue extendido a una clase de
sistemas que son, esencialmente, funciones del intervalo forzadas cuasiperiodicamente. Antes
de describir, brevemente, las herramientas y conjuntos que se definen en [9], haremos un breve
resumen del Teorema de Sharkovskii y, mencionaremos algunas de sus consecuencias mds im-
portantes.

Sharkovskil enuncié y demostré su célebre teorema en el ano 1964 en [14]. Este resultado
supuso, entre otros aspectos, el inicio del estudio de lo que hoy conocemos como dindmica com-
binatoria en el intervalo. En dicho teorema se introduce la siguiente ordenacién de los niimeros

naturales:

3=5=7T=9>=...-2:3~2:5=2-7T>2-9=...>
2°.3-22.5-22.7-22.9> ... -2".3-2".5>2".T>2"- 9. . >
2. -2 =28 222 1

Observemos que el minimo es 1 y el méximo es 3. Necesitamos incluir el simbolo 2°° para asegu-

rar la existencia del supremo de ciertos conjuntos, en particular el supremo de {1,2,4,...,2",...}

es 2%,



Dado I un intervalo en la recta real, definiremos el conjunto C°(LLT) = {f : T — I :
f es una funcion continua }. Fijada una funciéon f € C°(I,I) y un punto = € I diremos que
{f™(x) : n € N} es la 6rbita de z. Si existe m € N tal que f™(z) = x diremos que la 6rbita de =
es periddica y si f*(z) # x para toda k < m, diremos que x tiene periodo m. Observemos que,
particularmente, una 6rbita A = {f™(z) : n € N} es invariante pues satisface f(A) C A.

El teorema de Sharkovskii, para I, afirma: Toda funcién f € C°(I,I) que tiene una 6rbita
periédica de periodo ¢, también tiene una 6rbita periédica de periodo p € N para cada p < g.
Reciprocamente, para cada ¢ € N U {2°°} existe una funcion f, € C°(I,I) tal que el conjunto de
puntos periédicos de f, es {p € N: p < ¢}.

Este resultado establece que la existencia de érbitas periddicas, de un determinado periodo,
en una aplicacién del intervalo “fuerza” la existencia de 6rbitas periédicas de otros periodos.
Un refinamiento de este teorema es lo que conocemos como teoria del forcing de 6rbitas periédicas
en el intervalo.

Fijado un periodo, es inmediato observar que hay distintos tipos combinatorios de drbitas
del mismo periodo. Sea P = {p1 < ... < p,} una 6rbita periddica de periodo n de una funcién
f del intervalo. Podemos asociar a la drbita periédica una permutacién o, de orden n (a partir
de ahora, n-ciclo) dada por o (i) = j siy solo si f(p;) = p;. Asociamos asf a una 6rbita periédica
P de periodo n un n-ciclo o al que llamamos pattern de P.

Diremos que un pattern o fuerza otro pattern 7 si toda funcién del intervalo que tiene una
6rbita periddica con el pattern o tiene también una dérbita periddica con el pattern 7. La teoria
del forcing en el intervalo prueba que la anterior relacién es una relacién de orden parcial y
describe con exactitud el conjunto de patterns forzados por un pattern prefijado.

Volviendo al articulo [9], en él, el Teorema de Sharkovskii fue extendido a una clase de fun-
ciones triangulares en el cilindro. A fin de enunciar las principales propiedades de dicha clase y
objetos introducidos en dicho articulo, primero estableceremos un poco de notacion.

Dados S! = R/Z y I = [0,1] C R, denotamos por 2 al Cilindro S' x I. Escribiremos un
punto en §2 como (6,z) donde 6 € S! y z € 1. Denotaremos por S(£2) a la clase de funciones
forzadas cuasiperiodicamente de (2 en (2, que son de la forma: F(6,z) = (R(6), f(6,z)) donde
RO)=0+w (mod 1),w e R\Qy f: 2 =1L

En [9] los autores consideran conjuntos invariantes, que no son Orbitas periddicas de pun-
tos. Ni tan solo objetos minimales. Ellos consideran bandas periédicas, objetos que pasamos a
definir. Denotamos por A? a la fibra de un subconjunto A de {2 en un punto § € S'. Diremos que
una banda es un subconjunto cerrado A del cilindro, tal que A? es un intervalo para toda 6 en un
residual de S'. Recordemos que G C S! es un subconjunto residual si contiene la interseccion de
una familia numerable de subconjuntos abiertos y densos de S'.

Por otro lado, dos bandas Ay B satisfacen A < B (Definicién 3.13 en [9]) si existe un conjunto
residual G C S!, tal que para toda (0, z) € Ay (0,y) € Bimplicaz < y paratoda § € G. Diremos

que las bandas son ordenadas si, o bien A < B obien A > B. Finalmente, decimos que una banda



B C 2 es n-periédica, para una funcién F € S(£2) (Definiciéon 3.15 en [9]), si F"*(B) = By los
conjuntos imagen B, F'(B), F?(B), ..., F"~!(B) son disjuntos y ordenados en pares.

En el caso trivial en el que f no depende de # las bandas peridédicas son conjuntos de
circulos en el cilindro que son obtenidos como productos del circulo S' multiplicado por 6rbitas
periédicas P (o 6rbitas periédicas de intervalos) de f, es decir: S' x P.

El Teorema de Sharkovskii dado en [9] establece que toda funcién F' € S(£2) que tiene una
banda g-periédica tiene también una banda p-periédica, para todo p € N tal que ¢ > p. Al igual
que en el caso del intervalo el reciproco de éste teorema también es cierto. Basta tomar funciones
en las cuales la funcién en la segunda componente es desacoplada.

Nuestro primer objetivo, desarrollado en el Capitulo 1, es extender el teorema principal en [9]
para obtener una teoria del forcing entre patterns de bandas periédicas. Demostraremos que
la relacién de forcing en el intervalo y en nuestra clase coinciden. Provaremos que una per-
mutacién ciclica 7 fuerza v como pattern en el intervalo si y solo si 7 fuerza v como pattern en el
cilindro (en el Teorema A enunciaremos una versién mds precisa). Una consecuencia inmediata
del forcing entre patterns de bandas periédicas, es que tiene como corolario (Corolario 1.28) el
teorema de Sharkovskii para skew-products cuasiperiodicmente forzados en el cilindro provado
en [9]. Lo usaremos también en los resultados que mencionamos a continuacién.

El Teorema A, nos da herramientas para estudiar la entropia de las funciones skew-product
forzadas cuasiperiodicamente en el cilindro. Recordemos que la entropia topoldgica és una me-
dida lo caético que puede ser un sistema. Para ello definimos la nocién de s-herradura para
skew-products forzados cuasiperiodicamente en el cilindro y demostramos, como en el caso
del intervalo, que si una funcién skew-product cuasiperiodicamente forzada en el cilindro tiene
una s-herradura entonces su entropia topologica es mayor o igual que log(s) (Teorema B). Ob-
servemos que éste teorema es importante, pues nos facilita el cdlculo de cotas inferiores para la
entropia.

El concepto de s-herradura, es parte fundamental, para demostrar el resultado que establece
que si un skew-product forzado cuasiperiédicamente en el cilindro, tiene una érbita periddica,
con pattern 7, entonces h(F') > h(f-), donde f, denota la funcién connect-the-dots en el intervalo
sobre una 6rbita periddica con pattern 7. Esto implica que si el periodo de 7 es 2"g conn > 0
y ¢ > 1 impar, entonces h(F) > 10552(72"), donde A\; = 1y, para toda ¢ > 3, A\, es la raiz mas
grande del polinomio ¢ — 22972 — 1. Atin més, para cada m = 2"gconn > 0y ¢ > 1 impar,
existe un skew-product cuasiperiodicamente forzado en el cilindro F},, con una érbita periddica
b%(%,i\q) (Teorema C). Esto extiende el resultado analogo, para

funciones en el intervalo, a skew-products forzados cuasiperiodicamente en el cilindro.

de periodo m tal que h(F,,) =

El teorema de Sharkovskii para bandas periddicas remite de manera natural a las siguientes
preguntas ;Es cierto el teorema de Sharkovskii para curvas periédicas? y mds generalmente:
¢(Es cierto que todo skew product forzado cuasiperiodicamente tiene una curva invariante? El

segundo capitulo de la memoria estd dedicado a dar una respuesta negativa a ambas cuestiones



(Teorema D). Concretamente construiremos un skew-product forzado cuasiperidédicamente que
tiene una curva 2-periédica y no tiene una curva invariante. En esta construccion jugara un papel
muy relevante unos objetos que llamamos pseudo-curvas (llamadas bandas pinchadas nticleo
en [9]). La ventaja de usarlas es que se puede definir correctamente el espacio de pseudo-curvas,
que equipado con la métrica adecuada es completo. Este es un hecho extraordinariamente ttil
en la demostracién del Teorema 2.45.

El capitulo se divide en tres partes. En la primera (Seccién 2.2) desarrollamos una Teoria gene-
ral de las pseudo-curvas. Analizamos a las pseudo-curvas como un espacio métrico y demostramos
que es un espacio métrico completo. En la segunda parte (Seccién 2.3), construimos una pseudo-
curva, que no es una curva, que jugara un papel esencial en nuestra construccién. En la tercera
parte (Secciones 2.4, 2.5, 2.6, 2.7) construimos la funcién que nos dejard invariante la pseudo-
curva y demostramos el Teorema D. Dada la dificultad técnica de algunos resultados necesarios
para la prueba del Teorema D, hemos pospuesto su demostracioén a las secciones 2.8, 2.9 y 2.10.

Finalmente, el Capitulo 1 ha sido publicado como articulo [2], en la revista Journal of Math-
ematical Analysis and Applications. El Capitulo 2 serd enviado como articulo [3] a una revista

especializada.



1

Entropy for skew-products in the cylinder

1.1 Introduction

In this chapter we want to study the coexistence and implications between periodic objects of
maps on the cylinder 2 = S! x [, of the form:

()~ ()
F: — ,
x [0, )

where S! = R/Z,1=[0,1], Ry,(0) = 0 +w (mod 1) withw € R\Q and f(#,x) = fo(x) is continu-
ous on both variables. To study this class of maps, in [9], were developed clever techniques that
lead to a theorem of the Sharkovskii type for this class of maps and periodic orbits of appropriate
objects.

We aim at extending these results and techniques to study the combinatorial dynamics (forc-
ing) and entropy of the skew-products from the class S({2) consisting on all maps of the above
type.

As already remarked in [9], instead of S! we could take any compact metric space O that ad-
mits a minimal homeomorphism R: © — O such that R’ is minimal for every ¢ > 1. However,
for simplicity and clarity we will remain in the class S(2).

Before stating the main results of this chapter, we will recall the extension of Sharkovskii
Theorem to S({2) from [9], together with the necessary notation. We start by clarifying the notion
of a periodic orbit for maps from S(f2). To this end we informally introduce some key notions
that will be defined more precisely in Section 1.2.

Let X be a compact metric space. A subset G C X is residual if it contains the intersection of
a countable family of open dense subsets in X.

In what follows, 7: 2 — S! will denote the standard projection from (2 to the circle.

Instead of periodic points we use objects that project over the whole S, called strips in [9,
Definition 3.9]. A strip in §2 is a closed set B C 2 such that 7(B) = S* (i.e., B projects on the
whole S') and 771(#) N B is a closed interval (perhaps degenerate to a point) for every 6 in a

residual set of S'.



Given two strips A and B, we will write A < B and A < B ([9, Definition 3.13]) if there exists
aresidual set G C S', such that for every (0,2) € AN7~}(G) and (6,y) € BN7~1(G) it follows
that z < y and, respectively, z < y. We say that the strips A and B are ordered" (respectively
weakly ordered) if either A < B or A > B (respectively A < Bor A > B).

Given F' € §(f2) and n € N, a strip B C {2 is called n-periodic for F' ( [9, Definition 3.15]), if
F"(B) = B and the image sets B, F(B), F?(B),..., F""!(B) are pairwise disjoint and pairwise
ordered.

To state the main theorem of [9] we need to recall the Sharkovskii Ordering ( [14, 15]). The

Sharkouvskil Ordering is a linear ordering of N defined as follows:

3a>0g>Ta> 9> - >
2:36>2:56>2:Tg>2-96> - g>

4:34>4-54>4-Tg>4-9g> - g>

234> 2" 5>2" - Tg>2" 94> - >

o 511> 2” Sh> tet Sh> 16 Sh> 8 Sh> 4 Sh> 2 Sh> 1.

In the ordering ¢,> the least element is 1 and the largest one is 3. The supremum of the set
{1,2,4,...,2™, ...} does not exist.

Sharkovskii Theorem for maps from S(2) 1 ([9]) Assume that the map F' € S(£2) has a p-periodic
strip. Then F' has a g-periodic strip for every q <s, p.

Our first main result (Theorem A) concerns the forcing relation. As we will see in detail, the
strips patterns of periodic orbits of strips of maps from S({2) can be formalized in a natural way
as cyclic permutations, as in the case of the periodic patterns for interval maps. Our first main
result states that a cyclic permutation 7 forces a cyclic permutation v as interval patterns if and
only if 7 forces v as strips patterns.

Since the Sharkovskil Theorem in the interval follows from the forcing relation, a corollary
of Theorem A is the Sharkovskii Theorem for maps from S(£2).

Next, an s-horseshoe for maps from S({2) can be defined also in a natural way. Our second
main result (Theorem B) states that if a map F' € S({2) has an s-horseshoe then h(F'), the topo-
logical entropy of F, satisfies h(F') > log(s). This is a generalization of the well known result for
the interval.

The third main result of the chapter (Theorem C) states that if a map F' € S(£2) has a periodic
orbit of strips with strips pattern 7, then h(F) > h(f:), where f. denotes the connect-the-dots

! This notion will be defined with greater detail but equivalently in Definition 1.17. We are giving here

this less technical definition just to simplify this general section.



interval map over a periodic orbit with pattern 7. A corollary of this fact and the lower bounds
of the topological entropy of interval maps from [4] is that, if the period of 7 is 2"¢g withn > 0
and ¢ > 1 odd, then h(F) > 1og2(;\ 2} where \; = 1 and, for each q > 3, A\, is the largest root of
the polynomial ¢ — 2292 — 1. Moreover, for every m = 2"q withn > 0 and ¢ > 1 odd, there

exists a quasiperiodically forced skew-product on the cylinder F,,, with a periodic orbit of strips
of period m such that h(F,,) = 10%(7;\“).

The chapter is organized as follows. In Section 1.2 we introduce the notation and we state
the results in detail and in Section 1.3 we prove Theorem A Finally, in Section 1.4 we prove
Theorems B and C.

1.2 Definitions and statements of results

We start by recalling the notion of interval pattern and related results. Afterwards we will intro-
duce the natural extension to the class S(f2) by defining the cylinder patterns.

In what follows we will denote the class of continuous maps from the interval I to itself by
CO(LI).

1.2.1 Interval patterns

Given f € C°(I, 1), we say that p € [ is an n-periodic point of f if f"(p) = p and f7(p) # p for
j=1,2,...,n— 1. The set of points {p, f(p), f%(p), ..., f" *(p)} will be called a periodic orbit. A
periodic orbit P = {p1,p2,...,pn} is said to have the spatial labelling if p1 < p2 < -+ < p,. In
what follows, every periodic orbit will be assumed to have the spatial labelling unless otherwise
stated.

Definition 1.1 (Interval pattern). Let P = {p1 < p2 < --- < p,} be a periodic orbit of a map
f € CO(ILT) and let T be a cyclic permutation over {1,2, ... ,n}. The periodic orbit P is said to have the
(periodic) interval pattern 7 if and only if f(p;) = p-@) for i = 1,2,...,n. The period of P, n, will
also be called the period of 7. o

Remark 1.2. Every cyclic permutation can occur as interval pattern. o

To study the dynamics of functions from C°(I, I) we introduce the following ordering on the

set of interval patterns.

Definition 1.3 (Forcing). Given two interval patterns T and v, we say that T forces v, as interval
patterns, denoted by T =1 v, if and only if every f € CY(I,1) that has a periodic orbit with interval
pattern T also has a periodic orbit with interval pattern v. By [1, Theorem 2.5], the relation =1 is a

partial ordering. o

Next we define a canonical map for an interval pattern as follows.



Definition 1.4 (r-linear map). Let f € C°(I, 1) and let P = {p,,p,,...,p, } be an n-periodic orbit of
[ with the spatial labelling (p, < p, < --- < p, ). We define the P-linear map fp as the unique map in
COLI) such that fp(p,) = f(p,) fori =1,2,...,n, fp is affine in each interval of the form [p;, pi+1]
fori=1,2,...,n —1,and fp is constant on each of the two connected components of I\[p1, p,]. The
map fp is also called P-connect-the-dots map.

Observe that the map fp is uniquely determined by P and f| P

Let T be the pattern of the periodic orbit P. The map fp will also be called a T-linear map and

denoted by f,. Then the maps f, are not unique but all maps f, are topologically conjugate

| [min P,max P]

and, thus, they have the same topological entropy and periodic orbits. o

The next result is a useful characterization of the forcing relation of interval patterns in terms

of the 7-linear maps.

Theorem 1.5 (Characterization of the forcing relation). Let T and v be two interval patterns. Then,
T =1 v if and only if f has a periodic orbit with pattern v.

1.2.2 Strips Theory

In this subsection we introduce a new (more restrictive) kind of strips with better properties and
we study the basic properties that we will need throughout the chapter. To introduce this new
kind of strips we first need to introduce the notion of a core of a set.
Given a compact metric space (X, d) we denote the set of all closed (compact) subsets of X
by 2%, and we endow this space with the Hausdorff metric
Hy(B,C) = max{rgleaé( min d(e,b), max min d(c,b)}

= max{rbneaé( d(b,C), max d(c, B)}.

It is well known that (2%, H,) is compact. Also, given a set A we will denote the closure of A by
A.

Definition 1.6 ([9]). Let M be a subset of 2 We define the core of M, denoted M€, as

ﬂ Mn7=YG),
GeG(St)
where G(S') denotes the set of all residual subsets of S*. Observe that if M is compact, then M¢ C M
and, (M) = St implies 7(M¢) = S'. o

This definition of core is rather intrincate. Below we settle an equivalent and more useful
definition in the spirit of Lemma 3.2 and Remark 3.3 of [9]. The role of the resial of continuity
in this equivalent definition is stated without proof in [9] and, hence, we include the proof for

completeness.



Let M € 2% be such that 7(M) = S!. We define the map ¢,,: S' — 2'by ¢,,(0) := M?, and
G, = {0 € S': ¢,, is continuous at f}. It can be easily seen that ¢,, is upper semicontinuous
(i.e. for every 0 € S' and every open U C [ such that ¢,,(0) C U, {z € S*: ¢,,(z) C U} is open
in S'). Hence, by [8, Theorem 7.10], the set G, is residual. The set G,, will be called the residual
of continuity of M.

Given G C St and amap ¢: G — 2%, Graph(y) := {(6,¢(0)) : 0 € G} C S* x 2! denotes the
graph of ¢. By abuse of notation we will identify Graph(y) with the set Jy.{0} x ©(0). Hence,
we will consider Graph(¢) as a subset of 2 (or of G x I), and Graph(yp) is a compact subset of {2.

Lemma 1.7. Let M be a compact subset of §2. Then,
M¢ = Graph (¢,,|,) = M N7 1(G)
for every residual set G C G,,. Moreover, M N7~ (G) = M° N7~ (G) and (M) = M¢.

Proof. We start by proving the first statement of the lemma. Notice that if

MnrYG,,)cMnnr—1(H) forevery H €, (1.1)

then

M (G cMnr(G,)c M°= (| Mnr(H)c M7 (G).
Heg

Hence, we only have to prove (1.1).

Let H € G and let (0,2) € M N7~ Y(G,,) (e. 0 € G,, and (0,2) € M? = ¢,,(0)). Since
H is residual, it is dense in S'. Therefore, there exists a sequence {0,}5°, C H converging
to 6. Since 0 € G,,, ¢,, is continuous in 6. So, lim¢,,(6,) = ¢,,(0) and, for every ¢ > 0
exists N € N such that d((6,x),¢,,(6,)) < Ha(d,,(0),,,(0,)) < € for every n > N. Since
the sets ¢,,(6,,) are compact, for every n € N, there exists (0,,,2,) € ¢,,(0,) C M N7 Y(H)
such that d((0,z), (6,,,2z,)) = d((6, %), ¢,,(0,)). Thus, lim(6,,,x,) = (6,x) and, hence, (6, ) €
M N 7=1(H). This implies M N7~ (G,,) € M N7—1(H) which, in turn, implies (1.1).

By the first statement,

Mna Y G cMnrm Y G)Nnr N G) =M N7 (G)c Mn=1(G).

Now, to end the proof of the lemma, take G=G, NG

the lemma already proven we have,

which is a residual set. By the part of

Mc

(M°)° = Men7=1(G) = MN7=1(G) = M".
Now we are ready to define the notion of band.

Definition 1.8 (Band). Every strip A C (2 such that A° = A will be called a band. o



Remark 1.9. In view of Lemma 1.7 a band could be equivalently defined as follows: A band is a
set of the form Graph(y), where ¢ is a continuous map from a residual set of S! to the connected

elements (intervals) of 2'. 1]

Given F € §(£2), a strip A is F—invariant if F(A) C A and F—strongly invariant if F'(A) = A.
As usual, the intersection of two F'—invariant strips is either empty or an F'—invariant strip. An

invariant strip is called minimal if it does not have a strictly contained invariant strip.

Remark 1.10. From Corollary 3.5 and Lemmas 3.10 and 3.11 of [9] it follows that the bands in {2

have the following properties for every map from S(£2):

(1) The image of a band is a band.
(2) Every invariant strip contains an invariant minimal strip.

(3) Every invariant minimal strip is a strongly invariant band.

Moreover, the Sharkovskii Theorem for maps from S(£?) is indeed,

Sharkovskii Theorem for maps from S(£2) 2 ([9]) Assume that F € S(§2) has a p-periodic strip.
Then F has a q-periodic band for every q <g, p.

Next we introduce a particular kind of bands that play a key role in this theory since they
allow us to better study and work with the bands.
Given aset A C 2 and ¢ € 2 we will denote the set A N 7~1(0) by A?.

Definition 1.11. A band A is called solid when A% is an interval for every 6 € S' and §(A) =
inf{diam(A%) : € S'} > 0. Also, A is called pinched if A? is a point for each 0 in a residual subset of
St 1]

Remark 1.12. From [9, Theorem 4.11] it follows that there are only two kind of strongly invariant
bands: solid or pinched. o

Despite of the fact that the above notion of pinched band is completely natural, for several
reasons that will become clear later (see also [3]) we prefer to view the pinched bands as pseudo-

curves in the spirit of Remark 1.9:

Definition 1.13. Let G be a residual set of S' and let o: G — 1 be a continuous map from G to L. The
set Graph(y) will be called a pseudo-curve. o

The next remark summarizes the basic properties of the pseudo-curves.

Remark 1.14. The following properties of the pseudo-curves are easy to prove:

(1) Every pseudo-curve is a band. In particular = (Graph(ap)) =sh

10



(2) The image of a pseudo-curve is a pseudo-curve. Moreover, every invariant pseudo-curve is

strongly invariant and minimal.
Now assume that Graph(y) is a pseudo-curve where ¢ is a map from G to I. Then,

() G, D G (seee.g. [13, Lemma 7.2]).

raph(y)

(4) Graph(p) N7~ 1(G) = Graph(yp).

Next we want to define a partial ordering in the set of strips. We recall that a map g from
S* to L is lower semicontinuous (respectively upper semicontinuous) at 0 € S* if for every A < g(f)
(respectively A > ¢(6)) there exists a neighbourhood V' of 6 such that A < g(V') (respectively
A > g(V)). When this condition holds at every point in S' g is said to be lower semicontinuous on

S! (respectively upper semicontinuous on S*).
Definition 1.15 ( [9, Definition 4.1(a)]). Given A € 2% such that m(A) = S* we define the functions

M,(0) :=max{z €l: (0,z) € A}

m,(0) :=min{x €I: (6,2) € A}.

It can be seen that M , is an upper semicontinuous function from S* to Land m , is a lower semicontinu-
ous function from S* to 1. From [8, Theorem 7.10], each of the functions m , and M , is continuous on a
residual set of S*. We denote by G, (respectively G, ) the residual set of continuity of m,, (respectively
M,). o

Remark 1.16. If A is a pseudo-curve, it follows from [13, Lemma 7.2] that G, = G,, =G, =
{0 eS': M,(0)=m,(0)} (thatis, Ais pinchedin G, = G\, =G, )and, hence,

AGraph(MA|GM )Graph(mA|G )
. ™,
o

Definition 1.17 ( [9, Definition 3.13]). Given two strips A and B we write A < B (respectively
A < B) if there exists a residual set G in S* such that M ,(0) < m(0) (respectively M, (0) < m(0))
for all § € G. We say that two strips are ordered (respectively weakly ordered) if either A < B or
A > B (respectively A < Bor A > B). o

Remark 1.18. It follows from the definition that two (weakly) ordered strips have pairwise dis-

joint interiors. o

The above ordering can be better formulated in terms of the covers of a strip.

11



Definition 1.19. Let A C {2 be a strip. We define the top cover of A as the pseudo-curve defined by
M, ‘ Gy, :

AT := Graph (MA|G ),
My

and the bottom cover of A as the pseudo-curve defined by m,, | o ¢
mA

A := Graph (mA|G >
™,
o

Remark 1.20. The sets AT and A~ are bands but in general do not coincide with Graph (M, ) and
Graph (m, ) respectively. Moreover, if A is a pseudo-curve then, from Remark 1.16, At = A~ =
A. o

Remark 1.21. Let A and B be two strips. By Remark 1.16 we have, A < B if and only if AT < B~
and A < Bifand only if At < B~. 1]

To end this subsection we introduce the useful notion of band between two pseudo-curves. Al-
though this definition is inspired in the definition of a basic strip from [9] (see Definition 1.39) we

follow our approach based in pseudo-curves.

Definition 1.22. Let A and B be pseudo-curves such that A < B. We define the band between A and
B as:

E,;:= U {9} X (MA<9)amB(9))'

0€G,, NG,

The properties of the set £, , are summarized by:

Lemma 1.23. Let A and B be pseudo-curves such that A < B. Then,

(a) E;, = Aand Et_ = B. Moreover, (E,,)" = {6} x [M,(6),m, (0)] for every 8 € Gy, NG
(b) E,, isaband.

(c) E,, =1t (E,,). Inparticular, E , , has non-empty interior.

mogo °
B

Proof. From the definition of £, , it follows that

Graph(MA|GM G )CEAB.
A

mp

Thus,

A = A° = Graph (MA|GM NG, ) CFE,,
A ‘B

12



by Remarks 1.14(1) and 1.16 and Lemma 1.7. Consequently, m, < m,. Now we will prove
that My = my, and, hence, my = m,. Tosee this note that, for every 6 € S, there exists a

sequence

{(On, zn) }nen C U {6} x (M, (6),m,(6))

0€G,, NG,

which converges to (6, m 2, (0)). Observe that =, > M, (6,) > m,(0,) for every n. Therefore,
by Remark 1.16 m, (0) = lim,, x,, > liminf, m, (0,) > ma().

Sincem, ~=m,, from Definition 1.19 and Remark 1.16 it follows that £, = A.

In a similar way we get that M, = M, and Ef =B.

Then, by the part already proven and Remark 1.16,

(Eap)’ = {0} x [M,(6),m,,(0)] foreverydcG, NG (1.2)

mp

This ends the proof of (a).

Now we prove (b). From the previous statement it follows that £, , is a strip. Hence, we have
to show that (E,,)° = E,, which, by Definition 1.6, it reduces to prove that £,,, C (E,,).
Moreover, it is enough to show that

E® C(E,,)" foreveryfe Gy, NG, (1.3)
because, by (1.2),
E,s C U E,(?;B - (EAB)C = (EAB)C :
0€G,, NG,

To prove (1.3) observe that, since G w, NG, NG, isa residual set (contained in G 2,5 ),

from Lemma 1.7 we get

(E,,)° = E,, N1 (GMA NG, n GEAB) - U B (1.4)

In particular,

U E’ C(E,,).

0eG nG NG
€ J\/IA mp EAB

Fix 6 € (G ary O GmB> \G g, one G, NG, NG, isa residual set, there exists a
sequence {0, }72, C Gy, NG, NG,  whoselimitis f. The continuity of the functions M,
and my inG,, NG, implies that lim M, (0n) = M, (0) and limm ,(6,,) = m,(0). Therefore,
again by (1.2), every point of E? _ is limit of points in { E%» }°2 ;. This implies that EY = C (E, )"
by (1.4). This ends the proof of (b).

To prove (c) observe that Int (£, ;) C E, . So, it is enough to show that

U {6 x (M,(6),m(9)) C Int ().

nG

06G,, NG,
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Take (0,2) € {6} x (M, (0),m,(0)) withd € G,, NG, .Sincex # M, (f) and = # m,(0),
there exists ¢ > 0 such that z > M, (6) + ¢ and x < m (0) — e. On the other hand, the continuity
of M, and m, on GMA N GmB implies that there exist § > 0 such that 6’ € GMA N GMB and
|0 — 0’| < 6 implies |M,(8) — M, (0')] < e and |m,(0) —m,(0")| < e. Now we define

r:=min {0, |z — M, (0) —¢|, |z —m,(0) +¢|} > 0.

Observe that, with this choice of r, M, () + e <z —r <z +r <m,(f) —e.

LetU :={(#',y) € 2: 10 —0'| < rand |z — y| < r} be an open neighbourhood of (8, z). We
will prove that every (¢',y) € U belongsto E, ,. If §' € Gy, NG,
it follows that (0',y) € {0’} x (x —r,x +7r) C {0’} x [M,(0"),m,(0')] C E,,. Now assume that
: G, NG, and consider a sequence {0n}nen C Gy, NG, N (0 —r,0 + r) converging

from the choice of ¢ and r,

to 0. Clearly, (6,,,y) € U for every n € N and, by the part already proven, (¢,,y) € E,,.
Consequently, since E, , is closed, (¢, y) = lim(6,,y) € E, .

1.2.3 Strip patterns

In this subsection we define the notion of strips pattern and forcing for maps from S({2) along
the lines of Subsection 1.2.1.

Definition 1.24 ( [9, Definition 3.15]). Let F' € S(£2). We say that a strip A C 2 is a p-periodic
strip if FP(A) = A and the strips A, F(A),..., FP=Y(A) are pairwise disjoint and ordered. The set
{A,F(A),...,FP~1(A)} is called an n-periodic orbit of strips.

By Remarks 1.10 and 1.12, it follows that we can restrict our attention to two kind of periodic orbit of

bands: the solid ones and the pseudo-curves. o

A periodic orbit of strips {Bi, B, ..., B,} is said to have the spatial labelling if By < Bz <
. < B,. In what follows we will assume that every periodic orbit of strips has the spatial

labelling.

Definition 1.25 (Strip pattern). Let F' € S({2) and let B = {B1, Bs, ..., By} be a periodic orbit of

strips. The strips pattern of B is the permutation T such that F'(B;) = B, ;) for every i = 1,2,...,n.
When a map F' € S(12) has a periodic orbit of strips with strips pattern T we say that F' exhibits the

pattern 7. o

Remark 1.26. Interval and strips patterns are formally the same algebraic objects; that is cyclic

permutations. x]

Definition 1.27 (Forcing). Let T and v be strips patterns. We say that T forces v in (2, denoted by
T =>0 v, ifand only if every map F € S(12) that exhibits the strips pattern T also exhibits the quasiperi-
odic pattern v. o

14



The next theorem is the first main result of this chapter. It characterizes the relation =, by

comparison with = .

Theorem A Let T and v be patterns (both in 1 and (2). Then,
T=1v ifandonlyif =0 .

The first important consequence of Theorem A is the next result which follows from the fact

that the Sharkovskif theorem is a corollary of the forcing relation for interval maps.
Corollary 1.28. The Sharkovskit Theorem for maps from S(2) holds.

Proof. Assume that F' € S(£2) exhibits a p-periodic strips pattern 7 and let ¢ € N be such that
P > ¢. By [1, Corollary 2.7.4], 7 =1 v for some strips pattern v of period g. Then, by Theo-
rem A, T = v and, by definition, F" also has a ¢-periodic orbit of strips (with strips pattern v).
Then the corollary follows from Remark 1.10(2,3).

Next we are going to study the relation between the forcing relation and the topological
entropy of maps from S({2). To this end we introduce the notion of horseshoe in S(£2).

Let F' € S§(£2) and let A and B be bands in (2. We say that A F'-covers B if either F'(A™) < B~
and F(A") > B*,or F(A™) > BT and F(A") < B™.

Definition 1.29 (Horseshoe). An s-horseshoe for a map F' € S(§2) is a pair (J, D) where J is a band
and D is a set of s > 2 pairwise weakly ordered bands, each of them with non-empty interior, such that
L F—covers J for every L € D. Observe that, by Remark 1.18, the elements of D have pairwise disjoint

interiors. o

The next theorem is the second main result of the chapter. It relates the topological entropy
of maps from S(2) with horseshoes.

Theorem B Assume that F' € S({2) has an s-horseshoe. Then
h(F) > log(s).

Next we want to introduce a class of maps that play the role of the connect-the-dots maps
in the interval case and use them to study the topological entropy in relation with the periodic
orbits of strips.

Definition 1.30 (Quasiperiodic 7-linear map). Given a strips pattern T we define a quasiperiodic
T-linear map F; € S(12) as:
Fr-(0,2) := (Ro(0), f(x))

where R,, is the irrational rotation by angle w and f, is a T-linear interval map (Definition 1.4 — recall

that T is also an interval pattern). o

15



Remark 1.31. Since, by definition, f; has a periodic orbit with interval pattern 7, F>- has a periodic

orbit of bands (in fact curves which are horizontal circles) with strips pattern 7. o

The next main result shows that the quasiperiodic 7-linear maps have minimal entropy
among all maps from S(f2) which exhibit the strips pattern 7, again as in the interval case.
Theorem C Assume that F' € S({2) exhibits the strips pattern 7. Then

h(F) 2 h(FT) = h(fT)

Theorem C has an interesting consequence concerning the entropy of strips patterns that we

define as follows.
Definition 1.32 (Entropy of strips patterns). Given a strips pattern T we define the entropy of T as

h(7) ;== inf{h(F) : F € S(2) and F exhibits the strips pattern 7}.

With this definition, in view of the Remark 1.31, Theorem C can be written as follows:
Theorem C Assume that F' € S(§2) exhibits the strips pattern . Then
h(T) = h(FT) = h(f‘r)

By [1, Corollary 4.4.7] and [1, Lemma 4.4.11] we immediately get the following simple but
important corollary of Theorem C which will allow us to obtain lower bounds of the topological

entropy depending on the set of periods.
Corollary 1.33. Assume that T and v are strips patterns such that 1 =g v. Then h(T) > h(v).

Corollary 1.34. Assume that F' € S(§2) has a periodic orbit of strips of period 2" q withn > 0and ¢ > 1
odd. Then,

log(Aq)
(F) 2 %8

where \; = 1 and, for each q > 3 odd, \, is the largest root of the polynomial z¢ — 2x7~2 — 1. Moreover,
for every m = 2"q withn > 0 and q > 1 odd, there exists a map F,,, € S(§2) with a periodic orbit of
bands of period m such that h(F,,) = log2(7:q).

Proof. Let T denote the strips pattern of a periodic orbit of strips of F' of period 2"¢. By Theo-
rem C and [4] (see also Corollaries 4.4.7 and 4.4.18 of [1]) we get that

WE) > h(f) > 280

To prove the second statement we use [1, Theorem 4.4.17]: for every m = 2"g there exists a

primary pattern v, of period m such that h(f,, ) = 229 Then, from Theorem C, we can take

on
F,=Fr,,.
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1.3 Proof of Theorem A

To prove Theorem A we need some more notation and preliminary results.
An important tool in the study of patterns is the Markov graph. Signed Markov graphs are a
specialization of Markov graphs. Next we define them and clarify the relation with our situation.
A a combinatorial (directed) signed graph is defined as a pair G = (V,.A) where V is a finite set,
called the set of vertices,and A C V' x V x {4, —} is called the set of signed arrows. Given a signed
arrow o = (I,J,s) € A, I is the beginning of c, J is the end of « and s is the sign of a.. Such an
arrow « is denoted by I > J.

1.3.1 Signed Markov graphs in the interval

We start by introducing the notion of signed covering. In what follows, Bd(A) will denote the
boundary of A.

Definition 1.35. Let f € CO(L,I) and let I, J C 1 be two intervals. We say that I positively F-covers
J, denoted by I < J (or I % J if we need to specify the map), if f(minl) < minJ < maxJ <

f(max I) and, analogously, we say that I negatively F-covers J, denoted by I — J (or I ? J), if

f(maxT) < minJ < maxJ < f(min I). Observe that if [ = Jy, and I 25 J, then s = so.
We will write I =~ J or I :Sfl—> J to denote that f(I) = J and I sTl> J (in particular,
FBA(I)) = BA(J)). o

We associate a signed graph to a periodic orbit of an interval map as follows.

Definition 1.36. Let f € C°(L, 1) and let P be a periodic orbit f. A P-basic interval is the closure of
a connected component of [min P, max P]\P. The P-signed Markov graph of f is the combinatorial
signed graph that has the set of all basic intervals as set of vertices V' and the signed arrows in A are the

ones given by Definition 1.35. o

Remark 1.37. Observe that the P-signed Markov graph of f depends only on f|, or more pre-
cisely on the pattern of P. It does not depend on the concrete choice of the points of P and on
the graph of f outside P. Consequently, if P is a periodic orbit of f € C°(I,I) and Q is a peri-
odic orbit of g € CO(I, I) with the same pattern then the P-signed Markov graph of f and the
Q)-signed Markov graph of g coincide. In particular, the P-signed Markov graph of f and the
P-signed Markov graph of fp coincide. o

1.3.2 Signed Markov graphs in (2

Now we also associate a signed graph to a periodic orbit of strips. We start by defining the
notion of signed covering for bands. It is an improvement of the notion of F-covering introduced

before.
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Definition 1.38 (Signed covering [9, Definition 4.14]). Let F' € S({2) and let A and B be bands in
2. We say that A positively F-covers B, denoted by A < B(or A % B if we need to specify the
map), iff F(A~) < B~ and F(A") > B* and, analogously, we say that A negatively F-covers B,
denoted by A — B (or A %) B),if F(A™) > Bt and F(A*) < B™.

Observe that, as in the interval case (see Definition 1.35), if A 215 Byand A 225 By, then s = s,.

We will write A ="~ Bor A :SF1—> B to denote that F(A) = Band A 571> B. 1]

Next, by using the notion of band between two pseudo-curves, we will define the analogous
of basic interval (basic band) and signed Markov graph for maps from S(2).

Definition 1.39. Let F' € S(£2) and let B = { By, Bs, . .., By, } be a periodic orbit of strips of F with the
spatial labelling (that is, B; < By < --- < By). Foreveryi =1,2,...,n — 1 the band (see Remark 1.21
and Lemma 1.23)

1 =F =Int | F
BiBina Bf B, BB,

will be called a basic band. Observe that, from Lemma 1.23(a), I, = B and Ij‘;B_+1 =B .
The B-signed Markov graph of F' is the combinatorial signed graph that has the set of all basic

bands as set of vertices V and the signed arrows in A are the ones given by Definition 1.38. o

Clearly, all the basic bands are contained in £ I <I fori=1,2,...,n—2

B1Bn’ "BiBiy1 — " Bit1Biy2
and if IBiBi+1 N IBij+1 # () then |i — j| = 1.

Remark 1.40. As in the interval case (see Remark 1.37) the P-signed Markov graph of F' is a
pattern invariant. Moreover, if P is a periodic orbit of F' € S(f2) and @ is a periodic orbit of the
interval map f € C°(I,I) with the same pattern, then the P-signed Markov graph of F and the
Q@-signed Markov graph of f coincide. In particular, the P-signed Markov graph of F' and the
P-signed Markov graph of fp coincide. o

The following lemma summarizes the properties of basic bands and arrows. We will use it

in the proof of Theorem A.

Lemma 1.41. The following statements hold.

(a) Let F € S(£2) and let A and B be bands such that there is a signed arrow A = B from A to B in
the signed Markov graph of F. Then,
(a.1) F(A) D B.
(a.2) A =5 D for every band D C B.
(a.3) There exists a band C' C A such that C =>— B. Moreover, F(C*) c Bt and F(C~) C B~
ifs=+,and F(C~) C Bt and F(Ct) C B™ ifs = —.
2 Although these definitions are formally different from [9, Definition 4.14], they are equivalent by [9,
Lemma 4.3(c,d)] and the definitions of the weak ordering of strips.
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(a.4) Assume that A = B with B < B and let C and C denote the bands given by (a.3) for B and
B respectively. Then, C < C if s = 4+, and C > C if s = —.
(b) Let F € S§(02) and let A be a band such that A =, A. Then there exists a band Ao C A such that

A —= s A

Proof. Statement (a.1) is [9, Lemma 4.15] and (a.2) follows directly from the definitions. State-
ments (a.3,4) are [9, Lemma 4.19] while statement (b) is [9, Lemma 4.21].

1.3.3 Loops of signed Markov graphs

Given a combinatorial signed Markov graph G, a sequence of arrows

Sm—1

a=I2n 2. . T,
will be called a path of length m. The length of o will be denoted by |«|. When a path be-
gins and ends in the same vertex (i.e. [,,_1 = Ip) it will be called a loop. Observe that, then

Sm—2

I 25 I 2 .0 222 I, 2™ I is also a loop in G. This loop is called a shift of a and

denoted by S(«). For n > 0, we will denote by S™ the n-th iterate of the shift. That is,

Sj Sj

LIy Siz o Sime2 I

0
I; J Jm—19

SMa)=1 j

Jo

where j, = r +n (mod m). Note that S*™(a) = « for every k > 0.

Sm—2

Leta = Jp 2% 1 2 ... 222 1 iand B = Jy =% J; 25 -0 225 g be two

paths such that the last vertex of « coincides with the first vertex of 5 (i.e. I,,—1 = Jy). The path
Ip 2% 1, 2 e N Jo =% g 2 . AN Jy_1 is the concatenation of o and 3 and is
denoted by aS. In this spirit, for every n > 1, o™ will denote the concatenation of o with himself
n-times. the path o™ will be called the n-repetition of a. Also, a*> will denote the infinite path
Qoo -

A loop is called simple if it is not a repetition of a shorter loop. Observe that, in that case, the
length of the shorter loop divides the length of the long one.

The next lemma translates the non-repetitiveness of a loop to conditions on its liftings. Its

proof is folk knowledge.

Lemma 1.42. Let o be a signed loop of length n in a combinatorial signed Markov graph G. If « is simple,
Si(a) # S7 () for every i # j.

Givenapatha = Iy 2% I, 2 ... 1, Smety 1, we define the sign of a, denoted by

Sign(a), as [[~, s;, where in this expression we use the obvious multiplication rules:

++=—-—=+, and
tom=— b=
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Finally we introduce a (lexicographical) ordering in the set of paths of signed combinatorial
graphs. To this end we start by introducing a linear ordering in the set of vertices. This ordering
is arbitrary but fixed.

In the case of Markov graphs, the spatial labelling of orbits induces a natural ordering in
the set of basic intervals or basic bands, which is the ordering that we are going to adopt. More
precisely, if P = {po,p1,...,pn—1} is a periodic orbit with the spatial labelling, then we endow
the set of vertices (basic intervals) of the associated signed Markov graph with the following
ordering;:

[P0, 1] < [p1,p2] <+ <[pn-2,pn-1].

Analogously, if B = {By, Bi,...,B,_1} is a periodic orbit of strips with the spatial labelling,
then we endow the set of vertices (basic intervals) of the associated signed Markov graph with
the following ordering:

I <I

BoB1

B1 By << IBn—ZBn—l.

Then, the above ordering in the set of vertices naturally induces a lexicographical ordering in

the set of paths of the signed combinatorial graph as follows. Let
a=1Iy %1 2. I,y — I, and
B=Jy =% Jp s o T — 1 T,

be paths such that there exists k& < min{n,m} with I;, # Jyand I, = J; fori = 0,1,...,k — 1
(recall that, by Definition 1.35, if I; = J; then the signs s; and r; of the corresponding arrows

coincide). We write o < 8 if and only if

Iy < J, whens=+,or

I, >J, whens=—,

where s = Sign (Io g—U> Il €—1> . ~Ik_1 %;1) Ik> = 85051 Sk—1-
Next we relate the loops in signed Markov graphs with periodic orbits.

Definition 1.43. Let f € C°(I, 1) and let p be a periodic point of f and let
o = JO S—O> Jl s_1> "'Jn—l —>Sn71 JO

be a loop in the P-signed Markov graph of f. We say that « and p are associated if p has period n and
fi(p) € J; foreveryi = 0,1,...,n — 1. Observe that in such case S™ () and f™(p) are associated for
allm > 1. n]

The next lemma relates the ordering of periodic points with the ordering of the associated

loops. Its proof is a simple exercise.

20



Lemma 1.44. Let f € CO(I, 1) and let fp be a P-linear map, where P is a periodic orbit. Let x and y be
two distinct periodic points of fp associated respectively to two distinct loops o and (5 in the P-signed
Markov graph of fp. Then x < y if and only if o < (. Consequently, for every n > 1, f"(z) < f™(y) if
and only if S™ () < S™(B).

The next lemma is folk knowledge but we include the proof because we are not able to

provide an explicit reference for it.

Lemma 1.45. Let 7 be a pattern and let f; = fp be a P-linear map, where P is a periodic orbit of fp of
pattern 7. Assume that {qo, q1, G2, - - - , @m } IS a periodic orbit of f, with pattern v # 7. Then there exists
a unique loop « in the P-signed Markov graph of fp associated to qo. Moreover, v is simple.

Proof. The existence and unicity of the loop « follows from [1, Lemma 1.2.12]. We have to show

that « is simple. Assume that « is the k repetition of a loop
B=Jo =5 1 2 Ji =5 g

of length ¢ with k¥ > 2 and m = k(. By [1, Lemma 1.2.6], there exist intervals Ky C Jy, K1 C
Ji,...,Ky_1 C J_ysuchtat K; ="~ K, fori =0,1,...,/ —2and K,_; =1 J. Clearly,

since fp is P-linear, f5 is an affine map from Ky onto Jy. On the other hand, since ¢y is

’Ko

associated to a = A" it follows that fi(q0), f5(q0), .-, fir 7 (qo) € J; fori = 0,1,...,0 —
1 and, consequently, q0, f5(q0)s -+ - g“_l)e(qo) € K. Consequently, since f5 ( 1(3k—1)e(q0)) =
I3 (q0) = qo, it follows that {qo, f&(q0)s s I(Dkfl)e(qo)} is a periodic orbit ffp|KO with period

k > 2. The affinity of fp|, implies that f5|, is decreasing with slope -1 and k = 2. The fact
that ff;| Ko (Ko) = Jo implies that Ky = .Jy and the endpoints of J, are also a periodic orbit
of ff;f Ko of period 2. In this situation P and {qo, q1, 42, - - -, ¢m } both have the same period and

pattern; a contradiction.

Now we want to extend the notion of associated periodic orbit and loop and Lemma 1.44 to

periodic orbits of strips.
Definition 1.46. Let F' € S(£2) and let and let B be a periodic orbit of strips of F. We say that a loop
a=Jo % T e 2

in the B-signed Markov graph of F and a strip A are associated if A is an n—periodic strip of F' and
F'(A) € J; for every i = 0,1,...,n — 1. Observe that in such case S™(«) and F™(A) are associated
forallm > 1. o

The next lemma extends Lemma 1.2.7 and Corollary 1.2.8 of [1] to quasiperiodically forced

skew products on the cylinder.
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Lemma 1.47. Let F' € S(§2) and let Jy, J1, ..., Jn—1 be basic bands such that
a=Jy =% Jy g, 2

is a simple loop in a signed Markov graph of F. Then there exists a periodic band C' C Jy associated to
a (and hence of period n). Moreover, for every i,j € {0,1,...,n — 1}, F/(C) < FJ(C) if and only if
Si(a) < S%(a).

Proof. Let A be a basic band and let By < By < --- < By, be all basic bands F-covered by
A. By Lemma 1.41(a.3,4) there exist bands K (A, B;) < K(A,Bz) < --- < K(A, By,) contained
in A such that K (A, B;) ==~ B, fori = 1,2,...,m, where s, denotes the sign of all arrows
A 22, B, (see Definition 1.38).

Now we recursively define a family of 2n bands in the following way. We set K3, 1 :=
K(Jn_1,Jo) C Jp_1 so that Ko,y === J,.

Then, assume that K; C J; (mod n) have already been defined for j =i+ 1,i +2,...,2n — 1
and i € {0,1,...,2n — 2}. Since J; = Ji11 (mod n) With7 = i (mod n), by Lemma 1.41(a.2,3),
there exists aband K; C K (J7, Jis1 (mod n)) C J; such that K; =" K, ;.

Now we claim that for every 4,5 € {0,1,...,n — 1} S'(a) < S7(a) is equivalent to K; < Kj.
If S%(a) # S7(«) there exists k € {0,1,...,n — 1} such that

Sk4i—1 Sk+i

i Si Sit1
S‘(a) =J, — Ji+1 —_— JkJri,l

Jhopi Jitit1 - and

Sktj

. i Sit1 Skti—1
Sa)=Ji — Jiy1 —— =+ Jprica Jiot; Trtjr- -

with Ji 15 (mod n) # Jk+j (mod n) (Where every sub-index in the above paths must be read mod-
ulo n). By construction, K 1; C Jiti (mod n) @0d Kiyj C Jiyj (mod n)- Hence, Ky < Kjyj if
and Ol’lly if Jpuy (mod n) < Tkt (mod n)- By definition

Sk+i—1 (mod n)
Kipic1 =" Ky and  Kpyio1 C K (Jotic1 (mod n)» Jkti (mod n)) »
and
Sk+i—1 (mod n)
Kk-i—j—l = Kk"rj and Kk"rj—l CK (JkJrifl (mod n)» Jk:Jrj (mod n)) .

Thus, Kk-i—i—l < Kk+j_1 if and Ol’lly if Kk+i < Kk+j and Sk+i—1 (mod n) = +. SO, Kk+i—1 <
Kyyj—1 if and only if Jyyi (mod n) < Jk+j (mod n) @Nd Sgii—1 (mod n) = -+ By iterating this
argument k — 1 times backwards we get that K; < K if and only if Ji1 (mod n) < Jk+j (mod n)
and

Sk4i—1

. S; Sit1
Sign (Ji — iy —— i1 ———— Jk-i—i) = 8iSi11° " Skti—1 = +

(where every sub-index in the above formula is modulo n). This ends the proof of the claim.
Observe that, since K,, C Jy, from the construction of the sets K, we get that K,,_; C
Kop_1, Ko C Kopo,...,Kg C K, and K Sl:g}:j—a; K,,. Then, by Lemma 1.41(a.2,b) there exists

Sign(a)

aband C C Ky C Jy suchthatC’—FT) Cand F/(C) C K; C Jifori=0,1,...,n— 1.
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Since C is a periodic strip, F*(C) and F7(C) are either disjoint or equal. Hence, by the claim,
F{(C) < FJ(C) if and only if S?(a) < S7(a). Now, Lemma 1.42 tells us that S’(a) # S7(«)
whenever i # j. Consequently, F*(C) # F’(C) whenever i # j and C has period n. This ends
the proof of the lemma.

Remark 1.48. From the construction in the above proof it follows that if F' € S(£2) and
Oé:JO SHO J1 S—1> "'Jn,1 —>Sﬂ_1 JO

is a loop in the a signed Markov graph of F' by basic bands, then there exist bands K, =
Kola) € Jo, Ky C Ji, ..., Ku_1 C Ju_y such that K; ="~ K;, fori = 0,1,...,n — 2 and

=249, Jo. Moreover, if B is another loop such that a™> # 5°°,

n

then Ky(a) and K (8) have pairwise disjoint interiors. o

K, 1 == Jy. In particular, K,

1.3.4 Proof of Theorem A

We start this subsection with a lemma that studies the periodic orbits of the uncoupled quasiperi-

odically forced skew-products on the cylinder (in particular for the maps F;).

Lemma 1.49. Let f € CO(I, 1) and let F be a map from S(2) such that F (0, z) = (R, (0), f(z)). Then,
the following statements hold.

(a) Assume that P = {p1,pa,...,pn} is a periodic orbit of f with pattern 7. Then S' x P is a periodic
orbit of F with pattern .

(b) If B is a periodic orbit of strips of F' with pattern T then there exists a periodic orbit P of f with
pattern T such that St x P is a periodic orbit of F with pattern T and S' x P C B. In particular,
every cyclic permutation is a pattern of a function of F' € S(12).

Proof. The first statement follows directly from the definition of a pattern. Now we prove (b).
Let B = {By, B, ..., B, } be periodic orbit of strips of I with pattern 7 (that is, F'(B;) = B,(;
fori = 1,2,...,n). Since F = (R,, f) it follows that F* = (R, f¥) for every k € N (so the
iterates of F are also uncoupled quasiperiodically forced skew-products). So, since F"*(B;) = B;
for every i, it follows that the strips B; are horizontal. That is, for every ¢ there exists a closed
interval J; C [ such that B; = S' x J;. Moreover, since the strips are pairwise disjoint, so are the
intervals J;. Clearly, f(J;) = J;@;) for every i and, hence, f"(.J1) = Ji. So, there exists a point
p1 € Ji such that f"(py) = p1 and f*(p1) € f*(J1) = Jox(q) for k > 0. Since the intervals J; are
pairwise disjoint, the set P = {p1, f(p1),..., f" *(p1)} is a periodic orbit of f of period n such
that S' x P C B. Moreover, if we set f*(p1) = p,«(1) fork =1,2,...,n—1, then P has the spatial
labelling and it follows that the pattern of P is 7.

Proof (Proof of Theorem A). First we prove that 1 =, v implies 7 =1 v. The assumption
T = v implies that every map F' € S({2) that exhibits the strips pattern 7 also exhibits
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the strips pattern v. In particular, the map F has a periodic orbit of strips with pattern v. By
Lemma 1.49, f; has a periodic orbit with pattern v. Therefore, 7 =1 v by the characterization
of the forcing relation in the interval (Theorem 1.5).

Now we prove that 7 =1 v implies 7 =, v. Clearly, we may assume that v # 7. We have
to show that every F' € S(£2) that has a periodic orbit of strips B = {By, B, ..., B,—1} with
strips pattern 7 also has a periodic orbit of strips with strips pattern v.

We consider the map f, = fp where P is a periodic orbit with pattern 7. By Theorem 1.5,
fr has periodic orbit @ = {qo,q1,...,¢n—1} with pattern v. Since @) has the spatial labelling,
o = min @,

Since v # 7, by Lemma 1.45, there exists a simple loop

s S Sn—2
04210—0)11—1>"-

in the P-signed Markov graph of f, associated to go. Moreover, by Definition 1.43,

Sn—2 Sn—1

0 ~ Ty 22 2

Iy Iy
f(q0) N[15_1>[25_2>...‘°'"_‘1>[OS_0>[1

f?(%) Nfzﬁﬁfsﬁﬁ"'s—"f—lﬁfoﬁ%h e

Sn—2

n—1 ~ Sn—1 So S1 .
T
f (q0) n-1 —— Iop — I — I — I,

where the symbol ~ means “associated with”. By Remark 1.40 (see also Remark 1.37), the above
loop « also exists in the B-signed Markov graph of F' by replacing the basic intervals I; =
[9i, gi+1] by the basic bands [

BiBiy1 *
_ I En) I S1 Sn—2 I Sn—1 I
@ =155, B1 B3 Bp_2Bn_1 BBy *

By Lemma 1.47 and Definition 1.46, F' has a periodic band () associated to « (and hence of
period n), and

S0 S1 Sn—2 Sn—1
QO ~ IBoB1 IB1B2 o Iananq IBOBl
S1 So Sn—2 Sn—1 So
F(QO) ~ ‘[5‘132 IBzBs o Iananq IBOBl IBlB2
2 Sa2 Sn—2 Sn—1 S0 S1
F (QO) ~ 13233 o Ian2Bn71 IBoBl IB1B2 IBzBs
n—1 Sn—1 EN) S1 Sn—2
F (QO) ~ IBn—ZBn—l IBoBl IBle IBn—Qanl :

By Lemmas 1.44 and 1.42, the order of the points f£(qo) induces an order on the shifts of the
loop S*(«v), with the usual lexicographical ordering and, by Lemma 1.47, the order of the shifts
S%(«) induces the same order on the bands F(Qo). Thus, for every i, j € {0,1,...,n — 1}, i # j,
F'(Qo) < FI(Qo) if and only if fi(q0) < fi(qo). So, {Qo, F(Qo), F*(Qo),. .., F"*(Qo)} and
{q0,q1;- -, qn—1} have the same pattern v. This concludes the proof.
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1.4 Proof of Theorems B and C

We start by proving Theorem B.
The next technical lemma is inspired in [1, Lemma 4.3.1].

Lemma 1.50. Let F' € S(£2) and let (J, D) be an s-horseshoe of F. Then, there exists D,,, a set of s"
pairwise weakly ordered bands contained in J, each of them with non-empty interior, such that (J, Dy,) is

a s™-horseshoe for F'™.

Proof. We use induction. For n = 1 there is nothing to prove.
Suppose that the induction hypothesis holds for some n and let D € D and C' € D, Since
C' C J has non-empty interior and D =, by Lemma 1.41(a.2,3), there exists aband B(D, C) C

D with non-empty interior such that B(D, C') £ .0 Moreover, given C’ € D,, with C’ # C,
B(D,C) and B(D, C") can be chosen to be weakly ordered because C' and C’ are weakly ordered
by assumption. Since, C' € D,,, B(D, C) ﬁ J. Thus, the family

Dyy1={B(D,C): DeDand C € D, }

consists of s*t!

terior, such that B(D, C') F"!-covers J. Consequently, (J, D,,+1) is an s""!-horseshoe for F" 1,

pairwise weakly ordered bands contained in J, each of them with non-empty in-

Proof (Proof of Theorem B). Fix n > 0. By Lemma 1.50, F™ has a s™-horseshoe (J, D). Remove the
smallest and the biggest band of D and call K the smallest band that contains the remaining
elements of D. Clearly, K is contained in the interior of J. Thus, by Lemma 1.41(a.2,3), each
element D of D contains in its interior a band A(D) such that A(D) :;tﬁ K. Then there exists

an open cover B of the strip J (formed by open sets B such BY is an open interval for every
6 € SY), such that for each D € D - the band A(D) intersects only one element B(D) of B
(then it has to be contained in it) and if D, D’ € D|K with D # D’ then B(D) # B(D'). For
Do, D1,...,Dy_1 €D - the set N4 F~"(A(D;)) is non-empty and intersects only one element
of Bf.., namely NF-! F~"(B(D;)). Therefore the sets N¥_J F~"(A(D;)) are different for different
sequences (Dg, D1, ..., Dy_1), and thus

N(BE,) > (Card D — 2)*,
where N (B%.,) is defined as in [1, Section 4.1]. Hence,

h(F) = %h(F”) > %h(F",B) > %log(Card(’D) —-2)= %log(s” —2).

Since n is arbitrary, we obtain h(F") > log(s).

Now we aim at proving Theorem C. To this end we have to introduce some more notation

and preliminary results concerning the topological entropy.
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Givenamap f € S(12), h(F| 19) is defined for every Iy := {0} x I (despite of the fact that it is
not F-invariant) by using the Bowen definition of the topological entropy (c.f. [5, 6]). Moreover,

the Bowen Formula gives
max{h(R), hap(F)} < h(F) < h(R) + hap(F)

where
han(F) = supgegt h(F|19).

Since h(R) = 0, it follows that h(F) = hap(F).
In the particular case of the uncoupled maps F; = (R, f.) we easily get the following result:

Lemma 1.51. Let 7 be a pattern (both in I and (2). Then h(FT|19) = h(f,) for every 0 € S*. Conse-
quently,

h’(FT) = hﬁb(FT) = h(fT)'

Given a signed Markov graph G with vertices 11, I, . .., I,, we associate to it a n x n transition
matrix T = (t;;) by setting t;; = 1 if and only if there is a signed arrow from the vertex I; to the
vertex [; in G. Otherwise, t,; is set to 0.

The spectral radius of a matrix 7', denoted by p(T'), is equal to the maximum of the absolute

values of the eigenvalues of T'.

Lemma 1.52. Let P be a periodic orbit of strips of F' € S((2) and let T be the transition matrix of the
P-signed Markov graph of F. Then

h(F) = max{0,log(p(T))}-

Proof. If p(T') < 1 then there is nothing to prove. So, we assume that p(T") > 1. Let J be the i-th
P-basic band and let s be the i-th entry of the diagonal of 7. By [1, Lemma 4.4.1] there are s
loops of length n in the P-signed Markov graph of F' beginning and ending at J. Hence, if s > 2,
F™ has an s-horseshoe (J, D) by Remark 1.48. By Theorem B, h(F) = Lh(F™) > Llog(s).

If there are k basic bands, the trace of 7" is not larger than £ times the maximal entry on the
diagonal of ™. Hence, h(F) > L log (4 tr(T™)) . Therefore, by [1, Lemma 4.4.2],

1 1 1
h(F) > limsup — log (k tr(T")) = lim sup - log(tr(T™) = log(p(T)).

n—oo N n—00

Proof (Proof of Theorem C). Let P be a periodic orbit of strips with pattern 7 and let 7" be the transi-
tion matrix of the P-signed Markov graph of F. Let f. = fg be a Q-linear map in C°(L, I), where
@ is a periodic orbit of fg with pattern 7. In view of Remark 1.40 (see also Remark 1.37), T"is also
the transition matrix of the Q-signed Markov graph of f.. Consequently, by [1, Theorem 4.4.5],
h(f;) = max{0,log (p(T))}. By Lemmas 1.52 and 1.51,

W(F) > max{0,log(p(T))} = h(f,) = h(F,).
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2

A skew-product aplication without invariant curves

2.1 Introduction

We consider the coexistence and implications between periodic objects of maps on the cylinder

2 =St x I, of the form:
- (52)
T ¢(0, )

where S! = R/Z, 1 is an interval of the real line, R, (6) = 6 + w (mod 1) with w € R\Q and
¢(0,2) = (o(x) is continuous on both variables. The class of all maps of the above type will be
denoted by S(2).

In this setting a very basic and natural question is the following: is it true that any map in the
class S(§2) has an invariant curve?

In [9], the authors created an appropriate topological framework that allowed them to obtain
the following extension of the Sharkovskii Theorem to the class S(£2)!.

Let X be a compact metric space. We recall that a subset G C X is residual if it contains the
intersection of a countable family of open dense subsets in X.

In what follows, 7: 2 — S! will denote the standard projection from {2 to the circle. Given

aset B C S!, for convenience we will use the following notation:
MB:=x"Y(B)=BxIc

In the particular case when B = {6}, instead of 11{#} we will simply write 4. Also, given
A C 2, we will denote by A5 the set

ANMB={(#,z) e N2:0c Band (0,z) € A}.

ATTG

In the particular case when B = {0}, instead of we will simply write A?.

! As already remarked in [9], instead of S' we could take any compact metric space © that admits a
minimal homeomorphism R: © — O such that R’ is minimal for every £ > 1. However, for simplicity

and clarity we will remain in the class S(£2).



Instead of periodic points we use objects that project over the whole S!, called strips in [9,
Definition 3.9]. A set B C {2 such that 7(B) = S! (i.e., B projects on the whole S') will be called

a circular set.

Definition 2.1. A strip in 2 is a compact circular set B C 2 such that B is a closed interval (perhaps

degenerate to a point) for every 0 in a residual set of S*. o

Given two strips A and B, we will write A < B and A < B ([9, Definition 3.13]) if there
exists a residual set G C S!, such that for every (6,2) € AT and (6,y) € B¢ it follows that
x < y and, respectively, x < y. We say that the strips A and B are ordered (respectively weakly
ordered) if either A < B or A > B (respectively A < Bor A > B).

Definition 2.2 ( [9, Definition 3.15]). A strip B C 2 is called n-periodic for F' € S(£2) if F"(B) =
B and the image sets B, F(B), F?*(B),..., F"~Y(B) are pairwise disjoint and pairwise ordered (see
Figure 2.1 for examples). o

L L L L L L L L L L L L L L L
0 0.1 0.2 0.3 04 05 06 0.7 0.8 0.9 1 0 0.2 04 0.6 08 1

(a) 3.28z(1 — x) + o5 cos(270) (b) 3.85x(1 — )(1 + 155 cos(2m6))

Figure 2.1: In the left picture we show an example two periodic orbit of curves, and in the second

we show a possible example of a three periodic orbit solid strips.

To state the main theorem of [9] we need to recall the Sharkovskii Ordering ( [14, 15]). The
Sharkouvskil Ordering is a linear ordering of N defined as follows:
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3a>0a>Ta>9g> - g>
2:36>2:54>2:7T6>2-96> - g>

4-3>4-54>4-Tg>4-9¢> - g>

2" 3> 2" 54> 2" Tg>2" 94> - o>

.'.Sh> 2n5h>"'5h> 165h>85h>45h>25h> 1

In the ordering ¢,> the least element is 1 and the largest one is 3. The supremum of the set
{1,2,4,...,2", ...} does not exist.

Sharkovskii Theorem for maps from S(£2) 3 ([9]) Assume that the map F' € S(£2) has a p-periodic
strip. Then F has a g-periodic strip for every q <s, p.

In view of this result, the new following natural question (that is stronger that the previous
one) arises: Does Theorem 3 holds when restricted to curves? where a curve is defined as the graph of
a continuous map from S* to I. More precisely, is it true that if F' has a q-periodic curve and p <g, q
then does there exists a p-periodic curve of F'?

The aim of this chapter is to answer both of the above questions in the negative by con-
structing a counterexample. This is done by the following result which is the main result of the
chapter.

Theorem D There exists a map T € S(£2) with f(0,-) non-increasing for every 6 € S', such that T
permutes the upper and lower circles of {2 (thus having a periodic orbit of period two of curves), and T

does not have any invariant curve.

The construction will be done in two steps. First, in Section 2.3, we construct a strip A which
is a pseudo-curve which is not a curve. This strip is obtained as a limit of sets defined inductively
by using of a collection of winged boxes R™ (i*) C f2. Second, we construct a Cauchy sequence
{T}3— that gives as a limit the function T from Theorem D having A as invariant set. To this
end, in Section 2.4 we define a collection of auxiliary functions GG; defined on the winged boxes
R (i*). Next, in Section 2.5 we introduce a notion of depth in the set of winged boxes R™ (i*)
which defines a convenient stratification in the set of winged boxes R~ (i*). In Section 2.6 we
study the wings of box and its interaction with boxes of higher depth. In Section 2.7, by using
the auxiliary functions from Section 2.4, the stratification from Section 2.5 and the technical
results from Section 2.6 we construct the Cauchy sequence {T,,,}5°_, C S({2), we define the
map T = lim,,—, o0 Trn, and we prove Theorem D.

For clarity, we omit the proofs of all results from Section 2.7. These proofs will be provided

in Sections 2.8, 2.9 and 2.10. Section 2.2 is devoted to introduce the necessary definitions and, in
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particular, to introduce the notion of pseudo-curve and some necessary results on the space of

pseudo-curves.

2.2 Definitions and preliminary results

The main aim of this section is to introduce the definition and basic results about pseudo-curves.
Given G C S' and amap ¢: G — I, Graph(yp) denotes the graph of ¢. Also, given a set A we
will denote the closure of A by A.

Definition 2.3 (Pseudo-curve). Let G be a residual set of S* and let ¢: G — 1 be a continuous map
from G to 1. The set Graph(yp), denoted by 2

pseudo-curve is a compact circular set.

(o.cy+ Will be called a pseudo-curve. Notice that every
©,G)

Also, A will denote the class of all pseudo-curves. o

A set A C (2 is F-invariant (respectively strongly F-invariant) if F(A) C A (respectively
F(A) = A). Observe thatif F' € §(£2), every compact F-invariant set is circular. A closed invari-
ant set is called minimal if it does not contain any proper closed invariant set.

An arc of a curve is the graph of a continuous function from an arc of S! to L.

The pseudo-curves have the following properties which are easy to prove:
Lemma 2.4. Given a pseudo-curve 2 ., € A the following statements hold.

(a) Qlf% o, consists of a single point for every 0 € G. Consequently,

D/ILC- Graph(yp).

(p,G)

(b) Every circular compact set contained in a pseudo-curve coincides with the pseudo-curve.
(C) Ql(%G)
(d) If A, ., contains a curve then it is a curve.

= Graph(y|5) for every G C G dense in S'.

Proof. We start by proving (a). By the definition of a pseudo-curve we have Graph(y) C e

(¢,G6)"

To prove the other inclusion fix § € G and = € I such that (6,z) € % _ . Then, there exists a

G
sequence {(6,, ¢(0,))}o2; C Graph(yp) such that lim,,_,o (65, ©(6,)) = (8, z). The continuity of
© in G (and hence in 0) implies x = ¢(#) and, therefore, (0, z) € Graph(yp).

Now we prove (b). Assume that B C 2 _

and statement (a) we get Ql(TLCi) = BMG . Hence,

is a circular compact set. From the assumptions

A = Graph(p) =A"¢ = B"G c B.

(¢,G) (¢, G)

Now (d) follows directly from (b) and the fact that a curve is compact since it is the graph
of a continuous function. Statement (c) also follows from (b) because Graph (go’ é) cA, . and

Graph (¢|5) is a circular set (since G is dense in SY).
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We also will be interested in the pseudo-curves as a possible invariant objects of maps from

S(£2). The next lemma studies their properties in this case.

Lemma 2.5. Let F' € S({2) and assume that A _ ., € A is an F-invariant pseudo-curve. Then,

@) A,.q
(b) If A , contains an arc of a curve then it is a curve.

is strongly F-invariant and minimal.

Proof. We start by proving (a). Let B C be a closed invariant set. We have that B is circular
and, by Lemma 2.4(b), B = Ql(%cy Hence, Ql(%c) is minimal.
On the other hand, F(2l Cc A, ., implies F?(2A C F©&

is a compact F-invariant set. Therefore, by the part already proven, F (2

(¢,G)

and, hence, F'(2
Ao

Now we prove (b). Let S be an (open) arc of S! and let £: S — [ be a continuous map such
that Graph(¢) € 2, ,. Clearly, there exists m € N such that [J/* R, (S) = S'. Now we set
& :=¢and, fori=1,2,...,m, wedefine &: R (S) — Iby

(%G)) (%G)) (%G)) (%G))

w,m) =

&(0):=f (R:)l(e)vfifl (RJI(Q))) .

The continuity of f implies that every &; is an arc of a curve and Graph(¢;) = F(Graph(&;—1)).

Hence,
U Graph(&;) = U F(Graph(¢)) C A, o
i=0 i=0

because 2 is F-invariant.

(&)
In view of Lemma 2.4(d) we only have to show that | J" , Graph(¢;) is a curve. We will prove

prove this by induction.

Assume that ) # M ¢ {0,1,2,...,m} verifies that Sy := [, RL(S) is an (open) arc of
S and J;¢,, Graph(&;) is an arc of a curve (initially we can take M to be any unitary subset
of {0,1,2,...,m}). Then, there exists a continuous map ¢,, : Sy — I such that Graph(¢,,) =
UiEM Graph(§;).

Clearly, there exists j € {0,1,2,...,m}\M such that Sy ; :== Sy N RI,(S) # 0. The set Sy j is
an open arc of S' and, by Lemma 2.4(a), &, ‘SM =& ‘SM G because Graph(¢,, ), Graph(&;) C
2, - Since Sy ; N G is dense in Sy 5, given § € Sy, ;\G, there exists a sequence {0, }72, C
Swm,; NG converging to 6. The continuity of §,, and £; on Sy, ; implies that

£y (0) = lim &, (6,) = lim gj(en) = fj(@).

n—oo n— oo

Consequently, &,, ~and Graph(§,,) U Graph(¢;) is an arc of a curve (defined on the

500, = &1

S, j TS,
open arc Sy U R7,(S)). By redefining M as M U {;j} and iterating this procedure until M U {j} =
{0,1,2,..., m} we see that the whole | J" , Graph(¢;) is a curve.

Next we will introduce and study the space of pseudo-curves.
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Definition 2.6. We define the space of pseudo-curve generators as
¢ :={(p,G) : Gisaresidual set in S' and p: G — L is a continuous map}.

On € we also define the supremum pseudo-metricd__: € x € — R* by:

d.((9:G). (¢, G)) = sup_lo(6) = & (6).

Clearly, d__((¢, G), (¢',G")) = 0 if and only if<p‘Gmg, = @"GOG, and, hence, d_ is a pseudo-metric.
1]

The next lemma will be useful in using the metricd__ .

Lemma 2.7. Let (¢, G), (¢',G') € €. Then,

d.. (9, G), (¢, G")) = sup|p(8) — ¢'(0)]
0eG

for every G € G NG’ dense in S'.

Proof. Setd_ (0, G), (¢, @) = sup,gle(d) — ¢'()]. With this notation, we clearly have
d_ o ((.0).(¢.G)) <d_((0.G),(¢.G")). o

To prove the reverse inequality take 6 € (G N G')\G. Since G is dense in S!, there exists a
sequence {6,152, C G converging to f. On the other hand, by definition, the maps ¢ and ¢/, are
continuous in G N G’ (and, hence, in #). Consequently, |¢(8), ¢’ ()| = lim,, 00| (65) — ¢ (05)] <
d_. ((¢,G), (¢, G")). This ends the proof of the lemma.

As it is customary we will introduce an equivalent relation in the space of pseudo-curve

generators so that the quotient space will be a metric space.

Definition 2.8. Two pseudo-curve generators (¢, G), (¢',G') € € are said to be equivalent, denoted
by (¢,G) ~ (¢',G") if and only if A =9 - Clearly ~ is an equivalence relation in €. The

(v, G) (¢",G!

~-equivalence class of (p, G) € € will be denoted by [, G]. o

Remark 2.9. From Lemma 2.4(a,c) it follows that (¢, G) ~ (¢, G') if and only if ¢| 5 = /| 5 for ev-
ery G C GNG' dense in S. In particular, by taking G = GNG’, we get thatd_ (¢, @), (¢/, &) =
0if and only if (¢, G) ~ (¢',G"). o

Definition 2.10. The space €/ ~ will be called the space of pseudo-curves generator classes and
denoted by PC. Also, on PC we define the supremum metric, also denoted d__ : PC x PC — RT by
abuse of notation, in the following way. Given A = [pa,Gal, B = [¢B, G| € PC we set

d_(A,B):=d_((¢a,Ga),(¢B,GB)).

Note that d__ is well defined. To see this take [pa,Ga]l = [¢a,Ga'l,|eB,Gp] € €. Then, by
Lemma 2.7 and Remark 2.9 applied to G = GanNGa NGp we get d__ (((pA,GA)7 (ch,GB)) =
d_((pa,Gar), (¢5,GB)). o
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The next result establishes the basic properties of the space of pseudo-curves generator
classes (PC,d_,).

Proposition 2.11. The space of pseudo-curves generator classes PC is a complete metric space.

Proof. The fact that d__ is a metric in PC follows from Remark 2.9.

Now we prove that PC is complete. Assume that {[p,, G,]}52; is a Cauchy sequence in PC.
We have to see that lim,, . [pn, Gy] € PC.

Set, G := N$2,G,,. Since this intersection is countable, G is still a residual set. The definition
of d_, implies that the sequence {¢,,(0)}52, C ILis a Cauchy sequence in I for every 6 € G. So, it
is convergent and we can define a map ¢: G — I by () := lim,,_, o ©, ().

If (p, G) € € we have [¢, G] € PC and, from the definition of ¢ it follows that

Jim d_ ([, G, [pn, Gn]) =sup  lim [(6) — ¢, (6)] = 0.
Consequently, [¢, G] = lim,,_,0[¢n, Gr]. Since ¢ is the uniform limit of a sequence of continuous

functions on G, it is continuous on G. That is, (¢, G) € €.

In what follows we want to look at the space .A as a metric space and relate this metric space
with (PC,d_ ).
Let p denote the euclidean metric in §2. Then, the space ({2, p) is a compact metric space. We

recall that the Hausdorff metric is defined in the space of compact subsets of ({2, p), by
Hp(m> B) = max qmax p(<97 37), B)maX p((97 :E)v Ql)
(6,x)eA (6,2)eB

Then, (LA, H,) is a metric space. To study the relation between (PC,d_ ) and (A, H,) we need a
couple of simple technical results.

Lemma 2.12. Let A, B C {2 be compact circular sets. Then,
Hp(2,B) < max H, (A%, BY).

Proof. It follows directly from the definitions:
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(0,z)eA (6,z)eB

H, (2, B) <max {sup p((@, x), Ba) sup p((@, x), Qla) }

= max { supmax ,0((0, x), BQ)7
9681{9:6]1: (0,z)eA}

0€SY zel : (0,2)eB}

supmax p((@, x), 9[9) }

= sup max {max ,0((67 ), BQ) max P((Q, x), Qle) }

oest {z€l: (6,z)eA} {zel: (6,z)eB}

= sup H, (%°,B7).
oesSt

Proposition 2.13. Let (¢, G), (¢, G) € €. Then,
6 9 _ = O
Hy (U002 o) < sup H, (2 .2 ) =d_((%.6), (5G)).
Proof. The first inequality follows from Lemma 2.12.

Now we prove the second equality. By Lemma 2.4(a),

A ((9.G), (7, G)) =sup lp(0) — F(O) =sup H, (A .27 ).
0eGNG 0eGNG

S0, to end the proof of the lemma, we have to see that

H,,(Ql" 21 )gdx((gp,a),(@,é)) forevery e S\(GNG).

(¢.6) 7 (3,8)

Fix § € S'\(GNG). From the definition of the Hausdorff metric it follows that there exist z, y € I
such that H,, (Qle 217 ) =lz—yl,0,x)cA’  and (0,y) € AP _

(¢,.6)’ 7 (3,8) (¢,G)? (.8 "

Since GNG is residual (and thus dense) in S!, from Lemma 2.4(a,c) it follows that there exists
sequences { (0, 0(0,))}2 0, {(0n, 2(0,))}52, € (G N G) such that lim,,_, o (6., ©(0,)) = (0,x)
and limy, 00 (0, ©(0,)) = (0,y). Hence,

Hp (mfv,c)’mf@@) = |$ - yl = n11_>120|<)0(9n> - 95(9")‘ < doo ((90’ G)a (925’ é))

Proposition 2.13 tells us that that if {[¢,,, G,,]}52; is a Cauchy sequence in PC then A s

(en,Gn) 1

a Cauchy sequence in (A, H,), and if [¢, G] = limy, 0 [¢n, Gy] then A = lim, 00 A

(»,G) (en.Gn)’

Unfortunately the space (LA, H,) is not complete as the following simple example shows.

Example 2.14 (The space (LA, H,) is not complete). Consider continuous maps &,: S — I with
n € N, n > 2, defined by

2nf if 0 € [0, 5],
&n(0) =< 2(1—nb) if6e[5, 1],
0 ifo> 1
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1 .
oy N o) S o - Hence, {2 . .., }isaCauchy sequence

} has no limit in \A. Indeed, lim,, o, A, o =L= (St x
{0})U ({0} x [0, 1]), which is not the closure of the graph of a continuous map on a residual set of
S! (in other words, L ¢ A). This is consistent with the fact that, clearly, {[¢,,,S!]} is not a Cauchy
sequence in (PC,d_). o

Clearly, (&,,S') € €and H,(2

in .A. However, the sequence {i’l(£ o1

2.3 Construction of a connected pseudo-curve

The aim of this subsection is to construct a strip A = 2A as a connected pseudo-curve with

(v, G)

certain topological properties that will allow us to define the map 7' € §(£2) having this pseudo-

curve as the only proper invariant object. The pseudo-curve 2 will be obtained as a limit in

(7, G)
PC of a sequence of pseudo-curves that will be constructed recursively.

We will start by introducing the necessary notation.

In what follows, for simplicity, we will take the interval I as the interval [—2,2]. Also, fix
w € [0,1\Q. For any ¢ € Z set {* = {w (mod 1) and O*(w) = {¢* : £ € Z}. That is, O*(w) is the
orbit of 0 by the rotation of angle w.

We will denote by d_, the arc distance on S! = R/Z. That s, for 61,0, € S', we set

92 — 91 when 01 S 92, and
d,, (01,02) :=
(92 + 1) — 61 when6; > 0.

The closed arc of S! joining 6; and 65 in the natural direction will be denoted by [6, 62]. That is,

[9 0 ] {t (HlOd 1) : 01 <t< 92} when 91 < 02, and
1, V2] =
{t (mod 1) 10 <t<6y+ 1} when 61 > 0.
The open arc of S' joining 6; and 6, will be denoted by (61, 62) = [0, 02]\ {601,062}, and is defined
analogously with strict inequalities Given an arc B C S', Bd(B) will denote the set of endpoints
of B.
We will denote the open (respectively closed) ball (in S') of radius ¢ centred at # € S! by
B;(0) (respectively Bs[0]):
Bs(0)={0€S':d,(0,)<dy=(—3 (mod1),0+3 (mod 1)), and
Bs[0]=Bs(0) ={0eS':d,(0,0) <6} =[0—05 (mod1),0+6 (mod 1)].
We consider the space (2 endowed the metric induced by the maximum of d, and the abso-

lute value on I. That is, given (0, z), (v, y) € £2 we set

drz((e’x)a (V7 y)) = max{dgl (evy)v |$L' - y|} .

Then, given A C {2 we will denote the interior of A by Int(A) and diam(A) will denote the

diameter of A whenever A is compact.
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Figure 2.2: The graphs of the functions ¢ (in blue) and +2 in thick black. The red dashed curve
is (1 — |z|)2.

To define the sequence of pseudo-curves that will converge to 2 we first need to con-

(v, G)
struct an auxiliary family {R(€*)}¢ecz of compact regions in 2 and a family of compact sets
{I'¢,. }iez such that, for every £ € Z, I'p,. C R(¢*) and it is the restriction of a pseudo-curve
generator to m(R(¢*)). To do this we define the auxiliary functions 5: [-1,1] — [—1,1] and

¢: [-1,1]\{0} — [—1, 1] by (see Figure 2.2):
Bx):=1—|z| and o) := (1 |z|)?sin (g) .

Note that —3(z) < ¢(x) < B(z), for all z € [-1,1]\{0} and the graphs of —f and  intersect the
closure of the graph of ¢ only at the points (0, —1), (0,1),(—1,0) and (1,0).

To define the families {R(¢*)}secz and {I'p,. }rcz we use the following generic boxes.

For every 0 € S' and § < 3, 9,: [-6,6] — S! denotes the map defined by 9, (z) = = + 0
(mod 1). Clearly ¥4 is a homeomorphism between [—6, 6] and B[] . Finally 9, ' : Bs[0] — [, 4]

denotes the inverse homeomorphism of .

Definition 2.15 (Generic boxes). Fix {,n € Z, n > |{|, a € (0,27"), § € (0,a), a € [-1,1] and
at,a” € B,(27"3(0)) (see Figure 2.3). Now we consider the Jordan closed curve in (2, formed by the

graphs of the functions
a+27"(Bo 1921)‘35[@*] and a—2""(Bo 19;1)\35[5*],

together with the four segments that join the points:
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(0" — o,a™) with
(0" — o, a™) with
(0* + a,a™) with (¢* + §,a — 27 "B
(0* + a,a™) with

We denote the closure of the connected component of the complement of the above Jordan curve in (2 that

contains the point (¢*,a) by R({*,n,a,d,a,a™,a™) (the coloured region in Figure 2.3). Observe that
7 (R({*,n,a,8,a,a™,a™)), the projection of R(¢*,n, v, 6, a,a™,a™) toS', is B, [(*] = [* —a, (*+a.

Figure 2.3: The region R(¢*,n,«,d,a,a™,a™) is the
T Bs[¢*] by the graphs of the functions a + 5+ (3

2’”
inductively defining the pseudo-curve.

We denote by
Poe =P,

n,a,8,a,at,a=) "

the continuous map defined as follows:

=a+(-1)27"(¢povt).

:CL+.

@ o | gy 0o\ feny
(ii) ,.(0* —a) =a" and p,. ({* + a)

(iii) ¢,. (6" — o 07 —5] and @, (645,00 1] A€ affine.

C R n,«

We also denote by 'y

(*,n,a,8,a,aF,a7)

90@* n,e,8,a,at,a7) "
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Remark 2.16. The region R(¢*,n, «,d,a,a™,a”) and the set F(p(e*

ing properties:

, satisfy the follow-

n,a,8,a,at 0

1) R(*,n,,8,a,a",a7) C Ba[l*] x [a—27", a+27"].
(2) diam(R(¢*,n, , 6,a,a*,a™)) = diam(R(¢*, n, a, §,a,a",a7)¢ ) =227
(3) The sets ng([*m‘wyayatf) and OR(¢*,n,a,d,a,a™,a”) only intersect at the points (¢*,a —
27, (0*,a+27"), (0* — a,a” ) and (£* + a, a™).
s X
4) (F%z*.n,a,s,a,ﬁ,a—)) =R(*,n,a,8,a,at,a”)" is an interval.
(5) Let R(¢*,n, a,8,a,a™,a”) and R(k*,n,q,d,a,a",a~) be two regions, then B,[¢*] N Bz[k*] =
() implies
R(C*,n, o, 0,a,a,a”) N R(E*, 7,&,0,a,at,a") = 0.

n ]
For every j € Z*, we set
Zp={ie€Z:|i|<j}={-j—j+1,...,-1,0,1,...,5— 1,5} and
Z3 = {i" i€ Z;}.
With the help of the sets R(¢*,n, a, d,a,a™,a™) and Fap(ﬁ%wyayatf) , which are the “bricks”

of our construction we are ready to define the sequence of pseudo-curve generators {(v,, S"\ Z})}52,
that we are looking for.

To do this, for every j > 0 we define

e astrictly increasing sequence {n;}32, C N,
e astrictly decreasing sequence {«;}32 such that 27"+ < a; < 27"

e and a sequence {4;}72, with 27"+ < §; < q;

verifying some technical properties that we will make explicit below, and we define a sequence
of boxes R(j*) := R(j*,nj, 5,05, a5,a; ,a; ) and R((—j)*) := R((—j)*,n;,;,6;,a_j,a7;,a”;)
(for j = 0 both sets coincide) with projections

™ (R(7)) = Ba,; [j"]  and 7 (R((=4)")) = Ba, [(=)"]-
Finally, with the use of all these sequences and objects we can define our functions v, ]81\ P
Observe that we are using the intervals of the form B, , [¢*], Bs, [¢*] and also By, “J_l[ﬁ*]

when ¢ is negative. To ease the use of these intervals we introduce the following notation:

B,,[t*] if£> 0, or - By, (£%) if ¢ >0, or
and B, ({*):=
Ba, 7] if£ <0, Bappy, () if £ <0.

By [¢7] =

Notice that the ball B, [¢*] has diameter «; for ¢ € {j, —(j +1)}.
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Remark 2.17. With the above notation B, , [(*] & B, (¢*) for every £ < 0. Moreover, for £ € Z and
jezt,

R, (Bq, [ E* = B, [(+1)"], and

J

(51 Bao,[(+1)*]  if£>0,0r
L
[(6+1)*] ife<o.

0‘\@+1|

Also, the same formulae holds with « replaced by ¢ and for open balls. o
The next crucial definition fixes in detail all quantities and objects mentioned above.

Definition 2.18. We start by defining R(0*) := R(0*, no, g, 90, 0,0, 0) and ¢,. :

T (‘0(0* \ng,20,80,0,0,0)

by choosing (Definition 2.15) ng = 1, ag < 5 = 27" and 6y < a small enough so that the intervals
By [0*] = By,[0%], Bag[l*] and B~ ,[(—1)*] = Ba,[(—1)*] are pairwise disjoint; and (—2)*,2* ¢
B~ [(—1)*] and, additionally, Bd (B,,[0*]) N O*(w) = 0.
We also set af = ay = ag = 0, and we define the map v, : S'\{0} — T by
o (0) if 0 € Bao[07]\{0},
% (0) = .
0 if 0 ¢ By,[0%].

For consistency with the definition of ~y, in the case j > 1, we define the map ~y_, : S'\{0} — L by
y_,(8) = 0 for every 6 € S'. Then, notice that, ag = v_,(0*), aT = ¢,. (0* £ ap) = v_, (0* + o), and
v, (0) = ~_,(0) for every 6 ¢ B,,[0*].

Next, for every j € N we define R(j*), R((—j)*) and (,,S'\Z}) from the corresponding boxes
R(i*) and B, [i*] C By [i*] fori € Z; 1, and (v,_,,S"\Z}_,) as follows. We take n;, d; and o; such
that (see Figure 2.4 to fix ideas):

(R.1) ng > nj_1, (5]' <aj < 27 < (5j_1 < i1 and

(Bd (Ba, [(=3)"]) UBd (Ba, [5°]) ) N O*(w) = 0.

(R.2) The intervals

are pairwise disjoint,
7171 (Botj [K*D - [%71 (6*) - 27’”.7’73'—1(6*) + 27”1‘]

forevery £ € {j +1,—(j + 1)},
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B, [¢*]n Zigq=A{}forte{j,—(j+1)}and
Bo; [+ 1) INZ7 ={(G+ 1"}

and (—(j +2))", (G +2)" ¢ By [(=(G + 1)) = Ba [(—G + D).

(R.3) Bd (Ba,, [(k+1)*]) N (Ba,[i*] U Ba, [(—4)*]) = 0 for every k € Z; .

(R.4) Assume that there exists k € Z;_y such that B, [(j +1)*] N B [k*] # 0 and |k| is maximal
verifying these conditions. Then, B, [(j + 1)*] is contained in one of the two connected components
of Ba,,, (k") \{k*} when Bo,[(j +1)*] N Ba,,, [k*] # 0, and B,,[(j + 1)*] is contained in one of
the two connected components of By (k*)\Ba,, [k*] if Ba;[(j +1)*] N Ba,,, [k*] = 0 (note that,
in this case, k must be negative).

(R.5) Let £ € {j,—(j + 1)} (recall that the ball B, [¢*] has diameter c; for these two values of ¢ and only
for them).

(R5D)If " ¢ Uiey, , By [i*] then, B[] N B{[i*] = 0 for every i € Z;_1.

(R.5.ii) If ¢* € B,,[m*] for some m € Z;_1 such that |m/| is maximal with these properties, then
(R5.ii.1) B, [¢*] N B; [i*] = 0 for every i € Z;_y such that |i| > |m|, ¢ # m, and
(R.5.1i.2) B, [¢*] is contained in (a connected component of)

B, (m*)\ (Bd (Ba|m| [m*]) U {m*}) =
(m” — Ay = a‘m‘) U (m* — a‘m‘,m*) U

(m*,m* + alml) U (m* +a . m"+ oz‘m‘_l)

m|?
(observe that B [(*] C B,,(m*)\Ba,,, [m*] can only happen when m < 0
since B,,[m*] = By,,, [m*] for m > 0).
(R.6) Let ¢ € {j,—j}.If B, [(*] N B,,[m*] = 0 for every m € Z;, m # { then, to define R(¢*) and the
map ¢,. , we set
ag =, ,({*) = a}t =7, (" £a;)=0.

Otherwise, there exists m € Z;_y such that By [(*] is contained in a connected component of
By (m*)\ (Bd (Ba,,, [m*]) U{m*}) and |m| is maximal with these properties. Then, to define
R(¢*) and the map o,. , we set
(R6.1) ag =1, (£*), af = Vi (£ £ 0j) and Graph(’yw Ba, [f*]> C R(£%).
(R.6.ii) Assume that there exists k € Z),,,| C Zj—1 such that B} [¢*] C B, (k*) \{k*}. Then,
R(€*) is contained in one of the two connected components of Int (R(k*)\ TTk*) .

Finally we define ~,: S'\Z; — T by

@ (0) iff e Ba[7* ]\ {7},
’Yj_l(e) ng ¢ (BOL][J*} U Bllj[(_j)*] U Z;—l) :

(notice that ZF = Z:_, U {j*, (—j)*}). f
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(3%)

R((=1)")

R(0™)

Figure 2.4: The boxes R(¢*) for ¢ € {—4,—-3,—-2,—1,0,1,2, 3,4} and the graph of ,. The wings
are represented as a thick garnet curve surrounding the graph of ~,. For clarity the scale and

separation between boxes is not preserved. The circle S! is parametrized as [—1, 1).

For every ¢ € Z we define the winged region associated to ¢ as

R(€*) if £ >0, or

R (0% =
) R(E*) U Graph( if ¢ < 0.

ey |B‘[[13*]\B(WI (é*))

The next technical lemma shows that the objects from Definition 2.18 exist (that is, they are

well defined), and studies some of the basic properties of the family of pseudo-curve generators
{(%’7 Sl\Zz?k) 1920‘

Remark 2.19 (Explicit consequences of Definition 2.18). The following statements are easy conse-

quences of Definition 2.18. They are stated explicitly for easiness of usage.

(R.1) n; > j. This follows from Definition 2.18(R.1) and the fact that we have set ny = 1 and
n; >n;_; for j € N.
(R.2) Forevery j € N,
BT (=) 10 Zj0 = (=)}

This follows from Definition 2.18(R.2) for j — 1. We get
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BZ (=) 1nZy ={(=5)"} and (=(+1)",(G+1)" ¢ B;[(-4)].
which shows the statement.
(R.6) Let j € Nand ¢ € {j, —j}, and assume that B, [¢*] N B,,,[m*] = () for every m € Z;, m # /.
B :70|B;,f[e*] =0forr=1,2,...,5— 1.

(R.6.i)) Assume that here exists m € Z;_; such that B, [¢*] is contained in a connected

component of B;,(m*)\ (Bd (Ba,,, [m*]) U{m*}) and |m| is maximal with these
properties. Then, fyr|37[m = Vit | B0 forr=|m|+1,|m|+2,...,5—1.
(R.6.ii) Assume that there exists k € Z},,,, C Z;_; such that B/[¢*] C By, (k") \{k*}

and |k| is maximal with these properties. Then, v, | ,~ q = Y ] BT for r =
£
|kl + 1, [k +2,...,|m|.
To prove (R.6) notice that when B/ [¢*] N By, [m*] C B, [¢*] N B [m ] () for every m € Z]7
m # {, from the definition of v, for 0 < r < j we get that fyr‘ Bl ‘ ] = 0 for r =
2

1,2,...,5—1.

(R.6.i) The maximality of |m|, together with Definition 2.18(R.2), imply that B, [£*] N By, [i*] C
B/ [¢*] N B; [i*] = 0 for every i € Z;_1, |i| > |m|, i # m. So, by the definition of the functions ~,,

Y

Baj[e*]:’ylmI’Baj[f*] for r=|m|+1,m|+2,...,5— 1.

(R.6.ii) When |k| = |m| (R.6.ii) holds trivially. So, assume that |k| < |m|. Asin the case (R.6.i), the
maximality of |k and Definition 2.18(R.2) imply that B/ [¢*] N B, [r*] = 0 for every r € Z;_,
|r] > |k|, r # k. So, (R.6.ii) follows from the definition of the functions =, . o

Lemma 2.20. For every j € Z* the regions R(j*) and R((—35)*) (and hence R (j*) and R™((—35)*)),
and the maps (vy;,S'\Z7) are well defined. Moreover, the following statements hold:

(a) (v,,S'\Z}) € €. Furthermore, for every £ € {j +1,—(j + 1)},
% (Ba, 1)) € [3,(6) =27, 3,(€) + 27].

() Uper R7(£7) C S x [~1,1] and Graph (%_ |S1\Z*) c St x [-1,1].

(c) For £ € {j,—j} we have Graph(vjfl‘B -[If*]) C R(*), ag =,_, (¢*), and af =, (I*+a;) =
Vo (O £ ).

B, [e*]\z;) C R(€*) for everyn > jand £ € {j,—j}.
(e) Forevery £ € {j,—j},

v |(B [¢*]\Ba; (¢*))URy (B [€*\Ba,; (¢*)) — 7'—1|(B‘[[e*]\3%(z*))uRw(B‘[[e*]\Baj(e*))'

Moreover, for every 6 € Bd(B, [(*] \ By, (£*)) = Bd(By,[¢*]) UBd(B, [¢*]), we have § ¢ B, [n*]U
BZ,[(=n)*] and v, ( ) =,(0) =,_,(0) for every n. > j, and R,(0) ¢ B, [n"] U Ba, [(—n)"]
and ~, (R.(0)) = (Rw(e))for every n>j.
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(f) Forevery £ € 7, R™ (£*) is a compact connected set such that = (R~ (¢*)) = B, [¢*

is continuous and

] » Vel |B:[£*]\Ba‘[| (£*)

diam (R(£*)) = diam (R((—£)*)) =2-27™ <27¢ ift >0,
2.2 et < 2.2 M ift <0.

diam (R™(¢*)) = {

(g) Given £,m € Z such that |£| > |m|, £ # mand B, [(*] N B, [m*| # 0, it follows that |¢| > |m|, and
either B, [(*] C Ba,,,,
components of Int (R(m*)\ TTm*) ,orm < 0and By [(*] is contained in one of the two connected

[m”].

(m*)\{m*} and the region R~ (¢*) is contained in one of the two connected

components of B, (m*)\B

Xm|

Proof. We start by proving the first statement of the lemma and (a) by induction.

Observe that ny = 1, ap, §p and ~, are defined so that Definition 2.18(R.1-2) for 7 = 0 and
(7, S"\Z5) € € are verified except for the obvious fact that B~;[(—j)*] = B} [;*]. On the other
hand, by construction, B,,,[0*] is disjoint from B, [1*] and B,,[(—1)*]. Then, by the definition
of v,,

Yo (Bao [€7]) = {0} € [=3, 3] = [%(£7) =270, 7, (€7) +27]

for ¢ € {1,—1}. Hence, (a) holds.

Fix j > 0 and assume that we have defined ny, ay, §; and v, such that all Definition 2.18(R.1-
6) above and (a) hold for £ =0,1,...,j5 — 1.

Since the elements of Z7, , are pairwise different, we can choose an integer n; > n;_1 and J;

and a; small enough so that

o 0<§; <ay; <27™ <65,

o (=U+2),0+2) ¢ B0 +1)]= Ba, (=G +1)7],

o the three intervals B}[j*] = Bo,[j*], Ru (Ba,j*]) = Ba,[(j + 1)*] and B” ;) [(=(j +1))7]
are pairwise disjoint,

o BN Zy, = {¢Y forte (j,—(i+ 1)),

Bo,[(j+1)*InZ5; = {(j + 1)*} and, additionally,

(Bd (Ba,[(—7)*]) UBd (B, [j*])) N O*(w) = 0.

Then, Definition 2.18(R.1) is verified. Moreover, from the above conditions it follows that
Bo, 101N Z7, = {€*} for every £ € {j + 1,—(j + 1)}. Thus, by statement (a) for j — 1,

is defined and continuous on ¢* € B,,[¢*] because this interval is disjoint from Z7_;. Hence, we

j—1
can decrease the value of «; (and, accordingly, the value of 0 < §; < «;), if necessary, to get
b 7;'71 (Boéj [E*]) - [7;'71 (é*) - 2_nj7’>/j—1 (6*) + 2—n_7'}

foreveryf € {j +1,—(j+1)}.

To see that Definition 2.18(R.2) is verified it remains to show that the intervals B [j*],
Bo, [+ 1)) and B,

J+1
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holds for j — 1. Thus we see, that (—(j +1))*, (j + 1)* ¢ B”,[(—j)*],and R,, (Ba,_,[(j — 1)*]) =
Ba,;_,[77] is disjoint from B”;[(—j)*]. Hence, we can decrease the value of a; (and, accord-
ingly, the value of 0 < J; < aj), if necessary, until B, [(j 4+ 1)*] and Bj(jﬂ)[(—(j +1))*] =
B, [(—(j +1))*] are disjoint from B”[(—j)*]. On the other hand we have that a; < 27" <
dj—1 < aj_1.50, B} [j*] = Ba,[j*] C Ba,_,[j*] is disjoint from B”;[(—7)*].

Up to now we have seen that we can choose n;, §; and «; so that Definition 2.18(R.1-2)
hold for j. Let us see that we can choose «; such that Definition 2.18(R.3) also holds. Observe
that for every ¢,i € Z and every m > 0 it follows that Bd (B,,,[¢*]) N O*(w) # 0 if and only
if Bd (R}, (Ba,,[(*])) N O*(w) = Bd (B, [(¢+1i)*]) N O*(w) # 0. Therefore, by using Defini-
tion 2.18(R.1) inductively, we obtain

U Bd(Ba, [(k+ 1)) n{(=5)"j Y | Bd(Ba,, [(k+1)*]) NO*(w) = 0.
k€Z;_1 k€Z;_s
Consequently, since |J;,c ., Bd (Bay[(k 4 1)*]) is a finite set, by decreasing again the value of
«;, if necessary, we can achieve that Definition 2.18(R.3) holds for j and Definition 2.18(R.1-2)
are still verified.

Next we will take care of Definition 2.18(R.4). If (j + 1)* ¢ UieZ,-,l B [i*], by decreasing
again the value of o; (and ¢;), if necessary, we can achieve that B, [(j + 1)*]N (Uz‘ez_j_l B:[z*]) =
() while preserving that Definition 2.18(R.1-3) are verified for j. In this case Definition 2.18(R.4)
holds trivially.

Conversely, assume that there exists k € Z;_; such that (j + 1)* € B, [k*] and |k| is maximal
verifying these conditions. By Definition 2.18(R.2), k is unique (that is, the condition cannot be
verified by k and —k simultaneously). On the other hand, by the Definition 2.18(R.1) for |k| and
|k| —1 and the comment above, (j+1)* ¢ Bd (B [k*])UBd (Ba, [k*]) . Since k € Z;_y, [k| < j—1
and, hence, (j+1)* ¢ Z}j (in particular j* # k). Consequently, (j+1)* is contained in one of the
connected components of B, (k*) \ (Bd (Bay [K*]) U Z [23‘) . Then, by decreasing again the value
of oy, if necessary, we can get that B,,[(j + 1)*] is contained in the connected component of
By (k*)\ (Bd (Bay [K*]) U leg‘) where (j +1)* lies, while preserving that Definition 2.18(R.1-3)
are verified for j. Consequently, Definition 2.18(R.1-4) hold for j.

Now we will deal with Definition 2.18(R.5). If £* ¢ U, , Bi[i"], by decreasing again
the value of «;, if necessary, we can get Definition 2.18(R.5.i) while preserving that Defini-
tion 2.18(R.1-4) are verified for j.

Assume that there exists m € Z;_; such that ¢* € B} [m*] and |m| is maximal with these
properties. As in the above construction, by Definition 2.18(R.1-2),

¢* € By, (m*)\ (Bd (Ba,,, [m*]) U{m*})

and m is unique (that is, the condition cannot be verified simultaneously by m and —m). Con-

sequently, ¢* ¢ B; [i*] for every i € Z;_; such that |i| > |m|, i # m. Thus, by decreasing
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again the value of «;, if necessary, we can get that Definition 2.18(R.1-4) still hold, Defini-
tion 2.18(R.5.ii.1) is verified and the interval B; [¢*] is contained in the connected component
of B;,(m*)\ (Bd (Ba‘m‘ [m*]) U {m*}) where ¢* lies. So, Definition 2.18(R.5.ii.2) also holds.

We claim that
for every £,m € Z such that |m| < |€] < j, # m, either B, [¢*] N B,,[m*] = 0 or |m| < |¢| and B, [¢*]
is contained in a connected component of

B, (m*)\ (Bd (BalmI [m*]) U {m*}).

We prove the claim by induction. Observe that the claim holds trivially for |m| < |¢| < 1 because
By [0*], BY[1*] = Ba,[1*] C Ba,[1*] and B~ [(—1)*] are pairwise disjoint by construction.

Assume that the claim holds for every |m| < |¢| < j. So, to prove the claim, we may assume
that £ € {j,—j}, m € Z;_1 U{—¢} and B/ [¢*] N B}, [m*] # . By Definition 2.18(R.2), B} [j*] N
B7,[(=4)*] = 0. Consequently, m # —¢ (thatis, m € Z;_, and |[¢| = j > |m]). On the other
hand, if ¢ = —j, Definition 2.18(R.2) for j — 1 shows that B} ,[(j — 1)*], BZ;_)[(—=(j — 1))7]
and B~ [(—j)*] are pairwise disjoint. Thus, m € Z;_5 in this case.

Hence, by the Definition 2.18(R.5) for j when ¢ = j and for j — 1 when ¢ = —j, there exists
k€ Z;_q (infactwhen? = —j, k € Z,;_5) such that B, [¢*] is contained in a connected component
of BY(k*)\ (BA (Bayy [k]) U{k*}) and |f] = j > [k] > m].

If m = k then the claim holds. Otherwise, m # k and since j = |¢{| > |k| > |m|, by
the induction hypotheses, |k| > |m|, and B} [k*] is contained in a connected component of
By, (m*)\ (Bd (Ba,,, [m*]) U{m*}) . So, the claim holds also in this case. This ends the proof
of the claim.

Finally, we consider Definition 2.18(R.6). The fact that either B, [¢*] N B,,[m*] = () for every
m € Zj, m # { or there exists m € Z;_; such that B, [¢*] is contained in a connected component
of By,(m*)\ (Bd (Ba,,, [m*]) U{m*}) follows from the claim.

To show that Definition 2.18(R.6.i) can be guaranteed, it is enough to decrease again the value
of a;, if necessary, until By, [(*] is disjoint from Z}; | and Definition 2.18(R.1-5) are still verified.
Thus by (a) for |m|, v,,,, is well defined and continuous on B, [(*] . So, we can set a; := v, (£*)
and, by decreasing again «; (if necessary), we get Graph (w‘m‘ | Bl E*]) C R(j").

To show that Definition 2.18(R.6.ii) can be guaranteed we first assume that k = m. As before,
if necessary, we can increase the value of n; and, accordingly, decrease the values of a;; < 27"

and 0 < 0; < «; so that Definition 2.18(R.1-5) and (R.6.i) are still verified for j and in addition,
(0 ap+27"9), (0" ap —27™) € Int(R(k™))

and the region R(¢*) is contained in one of the two connected components of Int (R(k*)\ ﬂk*) .
Assume now that k # m (recall that |k| < |m| < j). In this case we have B, [(*] C B, (m*) N
By, (k). In particular, B, (m*) N By, (k*) # () and, by the above claim, |k| < |m|and B, [¢*] C
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By [m*] is contained in a connected component of B (k*) \ (Bd (Ba,, [k*]) U {k*}) . The fact that
B/[t*] C Ba,, (k*)\{k*} implies that B, [¢*] C By [m*] C Ba,,, (k*) \{k*}. Then, as above we
can increase the value of n; and, accordingly, decrease the values of «; < 27" and 0 < §; < ¢
so that Definition 2.18(R.1-5) and (R.6.i) are still verified,

(0 ag +279), (0%, ag — 27™) € Int(R(K*))

and the region R (£*) is contained in one of the two connected components of Int (R(k*)\ TTk*) .
Now assume that |k| is not maximal verifying the assumptions. Then, there exists r € Z,,] C
Zj—1 such that B/ [¢*] C By, (r*) \{r*} and |r| is maximal with these properties.
We have |k| < |r| < |m| < j and

B, [r"] N By [k"] O Ba,, (") N Bay,, (k%) # 0

because B/ [¢*] C B, (r*) N Ba, (k*). Then, by the claim, [k| < [r[ and B, [r*] is con-
tained in a connected component of B (k*)\ (Bd (Ba,, [k*]) U{k*}) . The fact that By [¢*] C
Ba,, (K*)\{k*} implies that B [r*] C By, (k") \{k*}. By the part already proven and Defini-
tion 2.18(R.6.ii) for |r| < j we get that R(£*) is contained in one of the two connected compo-

nents of Int (R(r*)\ TTr*) and R(r*) is contained in one of the two connected components of
Int (R(k*)\ TTk*) . This shows that Definition 2.18(R.6.ii) can be guaranteed.
Let us prove that (a) holds for j. Since the set S'\ Z is residual, to prove that (y,,S'\Z7) €
¢ we have to show that 7, ] s1\ 2+ is continuous. Note that, from Definition 2.18(R.6.ii), azi =
J
P o (E*iaj) = Vi1 \Z7
continuous on $"\Z¥_; O S'"\Z} and the continuity of ¢,. and ¢ _ . (Definition 2.15).

(€* £ a;). Hence, the continuity of v, |Sl follows from the fact that v, , is

This ends the proof of the first statement of the lemma and the first statement of (a). For
every { € {j +1,—(j + 1)}, from By Definition 2.18(R.1,2) we get:

Vi1 (BC“J' [é*]) C [Vj—l(g*) — 27", j—1 (f*) + 27%]
B, [¢*] is disjoint from By, [j*] and Ba,_, [(—4)*] D Ba, [(—4))*], and
{£} € Ba, (1N 251 © Ba, (10 Z530 = {£'}.

So, from the definition of v, it follows that

v |Baj (] = Vi1 ‘B(,], [e*]

and, thus, (a) holds.
Statement (c) follows immediately from Definition 2.18(R.6) and Remark 2.19(R.6).
Next we prove (b,d e f,g).

(d) When n = j, we get By, [(*]\Z] = Bq,[¢*] \{¢*} from Definition 2.18(R.2). Hence,

Graph( C R(£Y)

7 ’Baj [e*]\z;)
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by the definition of ~, (Definition 2.18) and the definition of ¢,. (Definition 2.15).
Now assume that n > j and fix 6 € B,,[¢*]\Z;;. We have to show that the point (6, ~, (¢)) €

R(€*). If 0 ¢ By, [m*] for every m such that j < |m| < n then, by the iterative use of the
definition of v, fori = 5+ 1,5 + 2, ..., n (Definition 2.18) and Definition 2.15,

(0,7,(0)) = (0,7,_,(0)) = --- = (6,7,,,(0)) = (6,7,(0)) = (0, 0,. () € R(L").

Otherwise, by Definition 2.18(R.2), there exists m € Z such that [¢| < |m| <n, 0 € B, [m*]\Z;,
and ¢ ¢ B, [s*] for every s such that |m| < |s| < n. This implies that B, [¢*] N B,,[m*] D
B[] N Ba,,,,
B;,[m*] is contained in a connected component of By (¢*)\ (Bd (Ba,, [¢*]) U{¢*}). Moreover,
since § € B,,(m*) N By, [t*] # 0, B,[m*] C Ba,, [¢*]\{¢*}. Thus, by Definition 2.18(R.6.ii) and
Remark 2.19(R.6.ii) for j = |m|, ¢ replaced by m and k replaced by ¢, R(m*) C R(¢*) and (d)
follows from the part already proven by replacing ¢ by m and j by |m/|.

[m*] # () and |m| is maximal with these properties. So, by the claim for j = |m|,

(g) By the claim we have that for every ¢,m € Z such that |¢| > |m|, { # m and B, [¢*] N
B, [m*] # 0, it follows that |[¢| > |m|, and B [¢*] is contained in a connected component of
By, (m*)\ (Bd (Ba,,, [m*]) U{m*}). Only it remains to show that if By [¢*] C Ba,,, (m*)\{m*},
then the region R~ (¢*) is contained in one of the two connected components of Int (R(m* N TTm*) .
By Definition 2.18(R.6.ii) we know that this holds for R(¢*) instead of R~ (¢*). Hence, if

¢ > 0, (g) holds because R™(¢*) = R(¢*). Assume now that ¢ < 0. Since R™ (¢*) = R(¢£*) U
Graph('yw ’B'[[Z*]\Bale‘ (Z*)) is connected, R(¢*) C R(m*), and Int (R(m*)\ TTm*) has two con-
nected components, it is enough to show that

Graph( ) C R(m™).

Vel |B‘[[£*]\Baw ()

Since By [¢*]\Ba,, ({*) C B/[l*] C Ba,,, (m*)\{m*}, statement (g) follows from (d) with ¢ re-
placed by m, j by |m| and n replaced by |¢|.

(b) With (g) in mind we set
D:={(eZ:R (£*) ¢ R(i*) for every i € Z\{(}}.

Clearly,

URrR () = ( U R’(i*)) U (U R’(z*))

tez i€Z\D ¢eD
c (U R(i*)) U (U R’(f*)) =R
€D Leb Leb
Case 2.21. Claim: For every £ € D, v, _, |B’[/*]\B (o) =0
¢ A\ Bayy
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First we prove statement (b) from the above claim and then we will prove the claim. To this
end we start by pointing out few elementary facts.
From the definition of R (¢*) we see that R™ (¢*)\R(¢*) = D forevery ¢ > 0and R~ (¢*)\R(¢*) C

Graph( ) for every £ < 0. So, in any case,

Tel |B‘[[4*]\Bam (e*)

R™(¢*)\R(¢*) C Graph (7‘“ |B—;[ forevery (€ Z.

e*]\Bam(m)

On the other hand, the arc B/ [¢*] D> B, [¢*]\ By, (¢*) is disjoint from the arc B”,[(—¢)*] D
Ba,, [(—£0)*] by Definition 2.18(R.2). Thus, by Definition 2.18 and (a),

Nier-1 ’B‘[[e*]\Baw ey = e ‘B‘[[f*]\Baw ()"

Furthermore, by the Claim and Definition 2.18(R.6), a? =a, =a; = 0forevery ¢ € D. So,
by Remark 2.16(1),

R({*) C Bay,, [07] x [-27M4,27141] € By, [¢*] x [-2711, 27V € B, , [07] x [-1,1].

Therefore, summarizing and using again by the Claim,

UrR ) cUre)c U (R(Z*) VGraph (e, <4*>))

LEL £ebD £eb
= (U R(f”‘)) U (U Gl"aph(’)’m,l |B‘;[£*]\BQM(£*)>>
£eb £eb

C (U Ba,,, [ﬂ*]) x [-1,1]US! x {0} c S x [-1,1].

£eb

So, the first part of (b) is proved, provided that the claim holds. Let us prove the second state-

ment of (b). Observe that, since

(U R(Z*)) Us! x {0} c (U R’(ﬂ*)) USt x {0} c St x [-1,1],

LEL LET

it is enough to show that

Graph (7j‘81\2;) C (U R(ﬁ*)) us! x {0}
LEL

for every j € Z*. We will prove this statement by induction on j.

By construction we have

Graph (70|S1\{0*}) Cc R(0")US! x {0} <U ’R(E*)) us* x {0}.

LEZ

So, the statement holds for j = 0. Now assume that it holds for some j > 0, and prove it for
j + 1. By Definition 2.18 and (d),
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Graph (3,2 ) © RU7) UR((=)") U Graph (51, )

CREHUR((=4))V (U 73(”)) Us! x {0}

LEZ

C (U R(f*)) Us! x {0}.

LET

To end the proof of (b) it remains to show the Claim.
Let £ € D and m € Z);, m # (. Then, either

{B‘;w*] A B [m*] = 0 or o

€] > |ml], m < 0and By [¢*] C Bj,(m*)\Ba,,, [m*].

To see this, observe that if B, [¢*]N B, [m*] # () then, by (g), |¢| > |m| and either R™(¢*) C R(m*)
orm < 0and B/ [¢*] C B;,(m*)\Ba,,, [m*], and the first possibility is ruled out because ¢ € D.

By using iteratively the dichotomy (2.1) we get that, for every ¢ € D, there exists a sequence
mo,my, ..., my = £ € Zwithk > 0suchthat B, [(mo)*|NB,[¢*] = 0 forevery g € Zj,,|, ¢ # mo
and, in the case k > 0, |mg| < |mq| < --- < |mg| = |[¢| and, for every p = 0,1,...,k — 1,

e my, <0,

o B, . [mpp)]C By ((mp)*)\Bay,,, [(mp)*] and
o B, . [(mp1)" N Blg

Mp+1

| = 0 forevery q € Zj,, .|, q # My, mpy1 and [my| < gl

The condition By, [(mo)*] N B [q*] = 0 for every q € Z),,,,|, q # mo implies

=0

Vimol-1 |B;O[(mo)*] = 7|mo\—2’B‘,'n‘0[(mo)*] = = Yol B ((mo)*]

by Definition 2.18(R.6) and Remark 2.19(R.6) (with ¢ = my). This ends the proof of the Claim
when k£ = 0.
Assume now that & > 0. As before we have
Wolfl‘B‘;O[(m())*]\Ba‘,,,Lm<<mo>*) = Vimal 1B, [(m0)* N\ Ba, ((m0)7)"

This, together with the inclusion,

B, [(m1)"] € By, ((m0)") \Ba,,,, [(m0)’]

implies that
=0.

’y\mol B;l [(m1)*]

Then, by Definition 2.18(R.6.i) and Remark 2.19(R.6.i) with £ = m;,

0= "Y\m0||B L[(m)*) 7|mo\+1|3 ma)* ] =T Vi =1 BT, [(ma)*)

If £ = 1 we are done. Otherwise, k > 2 and, as above,
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Yimy | . =0.

B, [(m2)
By iterating the above arguments at most k times the Claim holds. This ends the proof of (b).

(e) By Definition 2.18(R.2) and Remark 2.19(R.2) it follows that
0¢ Zi,,UB,, ({*)UBZ,((=0)") forevery 6 ¢ B, [(*]\Ba, ().

So, by (a), v,_,(0) is well defined and ~,_, is continuous at 6. Thus, by the definition of ~,
(Definition 2.18) and the continuity of vy, , at 0, ~,(0) = v,_, (0).

Now assume that 6 € Bd(B, [¢*] \ B, (¢*)) = Bd(B,,[¢*]) UBA(B;, [¢*]). By (g), 0 ¢ B, [n*]U
B~ [(—n)*] for every n > j. So, by the iterative use of the definition of v, fori = j+1,5+2,...,n
(Definition 2.18) we get

n

Y; (9) =Y+ (9) == 77171(9) =Vn (0)

Now we prove the part of (e) concerning R, (B, [(*] \ B, (£*)). We first assume that £ = j > 0.
Then,

~—

Bj [i"] = Ba; "], 0 € Bd(Ba, [7]) and R, (0) € Bd(Ba, [(7 + 1)7]).

Again by Definition 2.18(R.2), R,,(0) ¢ Z;, ;U B,,[5*]UB~;[(—4)*] . So, by (a) and the definition
of v, (Definition 2.18), 7,_, (R.(6)) is well defined and v, (R, (#)) = ~,_, (R.(6)). By Defini-
tion 2.18(R.3) (with j = nand k = ¢ = j), R,(0) ¢ Ba,[n*] U By, [(—n)*] for every n > j. So,
7, (Rw(8)) =, (Ru(8)) as above.

Assume now that £ = —j < 0. In this case we have B, [(*] = B, [¢*] and, hence, R, () €

B (£ +1)*]\Bq, ((£+1)*) . By Definition 2.18(R.1) we have

Xle+1)
Bo, [(€+1)"] € Bayyy [(€+1)"] € By [(€+1)7].

Thus, R.(0) € B, [(£+1)*]\{(¢ + 1)*}. Again by Definition 2.18(R.2) and Remark 2.19(R.2)
(with j replaced by —(¢+ 1)),

R,(0) ¢ Z; UB [(=0)TU B, [¢*] > Z} U Ba, [§*] U BZ; [(=4)"].-

o (e41)

So, by (a) and the definition of ~, (Definition 2.18), v,_, (R.(0)) is well defined and v, (R.,(0)) =
7, (Ru(6)).

To end the proof of (e), assume as above that § € Bd(B,,[¢*]) U Bd(B,[¢*]) and, hence,
R, (0) € Bd(Ba,[(¢ +1)*]) UBd (Ba,,,, [(£ +1)*]) . We have to show that, in this case, R.,(0) ¢
By, [n*] U By, [(—n)*] for every n > j (the fact that v, (R.,(0)) = 7, (R.(6)) follows as above).
When R, (0) € Bd(B,,[(¢+ 1)*]) this follows from Definition 2.18(R.3) as before. Assume now
that R,,(0) € Bd (Ba,,,,,[(¢ + 1)*]) . Then, by (g), R.(0) ¢ B [n*] U B™,[(—n)*] for every n > j.

(f) If £ > 0 then the first two statements of (f) follow directly from the definitions. Moreover, by
Remarks 2.16(2) and 2.19(R.1),
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diam (R™(¢")) = diam (R(¢*)) = diam (R((—£)*)) =2-27" < 2. 27D = 27¢,

Assume that £ < 0. From Definition 2.18(R.2) and Remark 2.19(R.2) we get (B [£*] \ Ba,, (£*))N
Zj; = 0 and, hence, v, is continuous in an open neighbourhood of B, [¢*]\ Ba,,, (¢*) by (a). On
the other hand, by (d), (6,7,,(0)) € R(¢*) for every 6 € Bd (Ba,, [¢*]) C By [€*]\Ba,, (¢*) . Thus,

is closed, connected and projects onto the whole B, [¢*].
On the other hand, by (e) and (a) (since £ < 0, | + 1| = |¢| — 1),

Vel (BZ [6*] \BO‘VZ\ (@*)) = Y411 <B°‘\@+1| [g*} \Baw (f*))
C [7‘2‘71(4*) o 2771\@\—1,,}/‘2‘71(6*) + 2771‘@‘_1] '
Thus, by Remark 2.16(1), (c) and Definition 2.18(R.1),
R(0*) =R(*)U Graph(fyw ‘B‘[[f*]\Bam (2*))
€ By (6] % [y 16— 27700, (0 42770 0
(BO”“N [€']\Bay, (€))% hwfl(ﬁ) =27y, () + 27"el-1]
C Ba‘,zﬂ‘ [€¥] x [7‘5‘,1(5*) _ 277”['71’7\13\71(6*) + 2777,'['71} .

Hence, by Definition 2.18(R.1) and Remark 2.19(R.1),
diam (R7(£*)) < 2 max{ajeq), 27 "0} = 2271 < 2. 271,

The next results allow us to define the limit pseudo-curve generated by the sequence
{(v, SN2 120

Lemma 2.22. The sequence {(v,,S'\Z;})}22, C € is convergent in €.

Proof. By Proposition 2.11 it suffices to show that {(v,, S\ Z})}:2, is a Cauchy sequence in €. By
the definition of v, (Definition 2.18) we have

doo (’7«;717’71') =sup |’7i—1(9) - % (9)|
oest\z;

=sup |7’i—1 (9) Y% (0) | .
0€ (B, [i*I\{i" })U(Ba, [(=1)"I\{(=9)"})

By Lemmas 2.20(c,d), and Definition 2.18(R.2) and Remark 2.19(R.2),
(0,7,-,(0)), (0,7,(0)) € R(€")  for 6 € Bo, [("]\{£"} and £ € {i, —i}.
Hence, by Lemma 2.20(f),

dw(’Yifl?’yi) < dlam(R(’L*)) = dlam(R((—z)*)) < 9—1%
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Since n; is a strictly increasing sequence, for every m > 0,

+m )
doo(’Yi+'rrL7’)/i) < Z 9~k ~ 9—(i+1) Z 2% —9. 2—(1-&-1),
k=i+1 k=0

and consequently {(v,,S'"\Z})}2, is a Cauchy sequence in €.

Lemma 2.22 allows us to define the following limit pseudo-curve generator of the sequence
{(% ) SI\Z:) z’oiO'

Definition 2.23. There exists (v, S'\O*(w)) € € such that
(7,80 (w)) = lim (7,,8"\Z})
71— 00

(that is, v(0) = lim; 0 v, (0) for every 6 € S'\O*(w)). Observe that

D)

SN0" () = ) (8"\2})

(2

Il
—

is a residual set in S*. o

Now, we are ready to define the sequence of pseudo-curves associated to the sequence
{(v,,S'\Z})}52,, and to the limit pseudo-curve generator (7, S'\O* (w)). This will finally define

the pseudo-curve 2 that we want to construct.

Definition 2.24. We denote by

A=A = Graph(v,,S"\Z7)

S1\ Z*
(v;,87\2Z7)

the pseudo-curve defined by (vy,,S'\Z}) € €, and

A=2A := Graph(y, S1\O*(w)).

(7,81\O* (w))

By Definition 2.23 and Proposition 2.13, A = lim;_, o A o

(v; 81\zZ5)"

The next lemmas study the properties the pseudo-curves 2(; and .

Lemma 2.25. The following statements hold for every { € Z:

(a) A% € R(£*)° for everyn > |£| — 1and 0 € By, [¢*].

(b AL = %I C R(¢*)” for every n > |¢|. Moreover, Qlfa = R(¢*)" is a non-degenerate interval.
(c) A9 = {(0,~,(0)} for every 0 € SN\ Z;.

(d) Ap € ST x [-1,1].

Proof. (a) By Lemma 2.20(c,d), Graph (% C R(¢*). Then, the statement follows

from the compacity of R(¢*).

B, [e*]\zr)
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(b) From the definition of ~, (Definition 2.18) and Definition 2.18(R.2), for every n > |¢| there
exists an £(n) > 0 such that v, () = v, (0) for every 6 € B.(,)(£*) \{¢*}. Hence 2, = Qlfgl
Moreover, v, coincides with ¢,. in a neighbourhood of ¢*. Thus, ‘Afgl = R(¢*)" and it is an
interval by Definition 2.15 and Remark 2.16(4).

Finally statement (c) follows from Lemma 2.4(a) and Definition 2.24, and (d) from Lemma 2.20(b).

Lemma 2.26. The following statements hold.

(@) A° C R(£*)? for every £ € Zand 0 € Bo,, [(*].

(b) A = A, for every € € Z. In particular A*" is a non-degenerate interval.
(c) I 6 ¢ O*(w), then 2A° = {(6,~(0))}.

()2 S x [1,1].

Proof. Statement (c) follows directly from Lemma 2.4(a).

Now we prove (a). From Lemma 2.25(a), 21% C R(¢*) for every ¢ € Z and n > |{|. On the
other hand, by Definition 2.23 and Proposition 2.13, 2A? = lim,,_,, 2A%. Hence the result follows
from the compacity of R(¢*).

By Lemma 2.25(b) and the part of the lemma already proved we have

A7 = lim AL = Al

Statement (d) follows from Lemma 2.25(d), the compacity of S' x [—1, 1] and the fact that 2 =

limj_mo Qlj .
The next proposition, summarizes the main properties of the set 2.

Proposition 2.27. The set L is a connected, does not contain any arc of curve and £2\2 has two connected

components.

Proof. From statements (b) and (c) of the previous lemma, we know that 2% is connected for
every 0 € S'.

If 2 is not connected there exist closed (in ) sets U and V such that UNV = land UUV = .
Observe that 7(U) U m(V) = m(A) = S! because every pseudo-curve is a circular set. Moreover,
since 2 is compact, U and V are also compact sets of 2. Hence, (U) are 7(V) compact in S*.
Since S is connected, 7(U) N7 (V) # 0. For every 6 € 7(U) N n(V) we have,

W =wuv)y=vuv’.

The sets U and V' are closed, non-empty and disjoint. Consequently, 2% is not connected; a
contradiction. This proves that 2 is connected.

By Lemma 2.26(b), 2*" is a non-degenerate interval for every ¢ € O*(w). Then, since O* (w)
is dense in S!, 2 does not contain any arc of curve by Lemma 2.5(b).

To prove that 2\ has two connected components we define
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{(0,y) € 2:y <min{x €1: (§,x) € A}}, and
{0,y) € 2:y>max{x €l: (0,x) € A}}.

By Lemma 2.26(d) we know that

2_:
Q+Z

—1<min{zx el: (0,z) eA} <max{x €l: (0,z)e A} <1.

Hence, 2\ = 2_ U 02, 2, and 2_ are disjoint open circular subsets of 2 and 2_ D S! x
[-2,—1] and 24 D S* x [1,2] (in particular, for every § € S', 29 and 27 are non-degenerate

intervals). Thus, {2, and (2_ are arc-wise connected and, hence, connected.

2.4 A collection of auxiliary functions G; defined on the boxes R™(¢*)

In this section we define a family of auxiliary functions G;: R(i*) — (2 with ¢ € Z and study
their properties.

In what follows we consider the supremum metricd__ on the class of all functions F': A — (2
with A C 2. Thatis, given F,G: A — {2 we set

4_(F,G) =sup d, (F(0,x), G(6,))
(0,z)€A

In the special case when F' and G are skew products with the same base, that is when F'(6, z) =
(R(0), f(0,2)) and G(0,z) = (R(0), g(f,x)), then

doo(F7G) ‘=sup |f(971')—g(0753)‘
(0,z)eA
Observe that (S(£2),d_, ) is a complete metric space.
Before defining the maps G; we need to introduce the necessary notation, and recall and
collect some basic facts that we will use in this definition and to study their properties.

For every i € Z, we define

M;: B][i*] — 1 by M;(0) := max{z € 1: (6,z) € R (i*)}, and
m;: B} [i*] — 1 by  m;(6) :=min{z €l: (0,z) e R™(:*)}.

The next simple lemma states the basic properties of the maps m; and M.

Lemma 2.28. The following statements hold for every i € Z

(a) =1 < m;(0) < M;(0) < 1 forevery 6 € B] [i*].
(b) m; and M, are continuous.

(c) my o) and M;| i1+ Are piecewise linear.
ol il

(d) mi(0) = M;(6) = ~,, (6) if and only if § € B} [i*] \Ba,, (i*).
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Proof. It follows easily from Definition 2.15, the definition of a winged region and Lemma 2.20(b,f).

Notice that, for every i € Z,

RO =] R =] {6} x [mi(6), M (6)).

0eB; [i*] 0eB; [i*]

In what follows the interval [m;(6), M;(0)] C I, defined for every 6 € B; [i*], will be denoted
by I, 4. Clearly, for every 6 € B [i*], R™(i*)? = {0} x L 5.
By Definition 2.18(R.2) and Remark 2.19(R.2),

B [i*]\{7"} isdisjoint from Z};.
Hence, Lemmas 2.20(a,d) and 2.25(c) can be summarized as:

Ve ‘B‘[[z*]\{e*} is continuous,

Y,y (0) €1y forevery 60e B/[¢*]\{¢*}, and (2.1)
Qlfa =1{(0,7,,(0)} forevery 0¢c B[¢*]\{{*}

for ¢ € {i,i+1}.
Now we define a family of continuous maps G;: R™ (i*) — 2 with i € Z, by

Gi(0,z) = (Ru(6), (8, z))

Also, for every 6 € B; [i*], we will denote the map g;(0,-): I — Iby g, ,.

To define the functions g, ,, for clarity, we will consider separately two different situations:

e i >0, when R7(i*) = R(i*), B/ [i*] = By, [i*] and G;(R(i*)) strictly contains the smaller
box R((i + 1)*), and
e < —1,when G;(R(#*)) is strictly contained in the bigger box R((i + 1)*).

We start by defining g, , for i > 0 in three different ways, depending on the base point 0 €
B,,[i*]. In this definition, for simplicity we will use R(i*) instead of R™(i*) and B, [i*] instead

of B [i*].
Notice that, by Definition 2.18(R.1) and Lemma 2.20(c),

foreveryi >0

Bs,,, [i"] C Bay,, (i*) and B, [i*] C Bs, (i*) C Ba, (i*), and 22)

i+1 i+1

Vi (i) = a;i and v, ((i + 1)) = aip1.

Definition 2.29 (Definition of g; for ¢ > 0).

0 € Bs, ., [i*] 900(@) :=7,((i + 1)) + 27 (v, (%) — @)
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0 € Ba,,[*]\Bs,,,(i*) we define g,, to be the unique piecewise affine map with two affine
pieces, defined on 1; g, whose graph joins (m;(0), M;41(Ru(0))) with
(7,(0),7,,, (Rw(9))) , and this with the point (M;(0), m;11(Rw(0)))
(in particular, g, ,(7,(0)) = 7., (Rw(9))),

0 € B, [i*]\Ba,,,(i*)  g,,(x) :==1,,, (Ru(0)) (thatis, g, , is constant).

The next lemma states the basic properties of the functions G; for ¢ > 0.

Lemma 2.30. The following statements hold for every i > 0 :

(a) The map g, , is well defined and non-increasing for every 0 € By, [i*] . Moreover, =1 < g, ,(x) <1
forevery 6 € B,,[i*] and x € 1; o. Furthermore, the function G; is continuous.

(b) Gi’n(i*)e is affine and G;(R(i*)?) = R((i + 1)*) R« for every 0 € Bs,,,[i*]; Gi |72 o 18 piece-
wise affine with two pieces and G;(R(i*)?) = R((i + 1)*) B~ for every 6 € Baﬁl[ *] \Bgi+1(i*) :
and
Gi(R(%)%) = A for every 0 € By, [i*]\Ba, ., (")

(©) Gy(A0) = A= for every 6 € B, [i*] .

Proof. We will prove all statements of the lemma simultaneously and according to the regions
in the definition of the map g;.

i1 [Z*] .

e We start with the region R(z’*)nB s

Let z € [-6;,6;] C Rand let § = i* 4 z € By,[i*] . From Definition 2.15 and (2.2) we get

mi(0)=a; —27"(1—2)=7,_,(@")—27"(1 — z), and

7 2.3)
M;0)=a; +27" (1 —2z)=,_, (@) +27"(1 — 2).

i

In a similar way, for every 0 € B, [i*] (thatis, z € [=J;41,0,41]), we have R, () = (i+1)*+2 €
Bisri+1[(i + 1)*] ;and

miy1(Ry(0)) = aipr — 27" (1= 2) = ,(( + 1)7) = 27" (1 - 2), and

(24)
Mi1(Ro(0)) = aipr + 2774 (1= 2) = 7, ((0 4+ 1)7) + 27"+ (1 = 2).
Hence, for every 0 € B, ,[i*],
900 (mi(0)) = 7, (i +1)") + g2 ™ (1= 2) = (i + 1)) + 27" (1= 2)
= M;11(Ru(0)),
+.1( (©)) o | | 25)
9:,0(Mi(0)) = 7 ((1 +1)7) = gz 27 (1 = 2) = 7, ([ +1)7) = 27"+ (1 = 2)
= mit1(Ry(0)).
So, g, , ’H‘ , is the affine map whose graph joins the point
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(mi(0), My 1(Roy(6))) with (M;(0), mis1(Ru(0))).

In particular, g, , sends the interval I; ¢ affinely onto I, r_(s) or, equivalently, G; sends the
interval R(i*)? affinely onto R((i + 1)*)%~(?). Then, by Lemma 2.20(b), this implies that —1 <

g.,(x) < 1 for every x € I; 9. Moreover, the continuity of the maps m;, M;, m;;1 o R, and

M;+1 o R, imply that g; is well defined and continuous on ’R(i*)nB siga V7]
Next we will prove that G;(2¢) = Qlffl(e) for every § € By, [i*]. We take § = i* + z €
Bs, . [i*]\{i*}. Then, clearly, z € [—di+1,0i+1]\{0} C R. By Definitions 2.18 and 2.15 and state-

ment (2.2),
Y (9) = P, (9) =a; + 27 "id = 7171(1*) + 27"d e ]17;’9, and
Vit (R.,(0)) = Plrn* (0) =ait1 — 27" d =1, ,(i") —27"d € ]IH‘LRw(a)’
where d = (—1)"¢(z). So, for every 6 € B, ., [i*] \{i*},

mi

o ONit1

Yi6 (rY'i (9)) =% ((Z + 1)*) 27"Md = Vita (Rw(e)) (26)

Thus, from (2.2) and (2.1) we get

= {(Ru(0),7,., (R, (0)))} = 2

for every 6 € Bj;,,[i*] \{i*}. On the other hand, by the part already proven, g, . sends the
interval [; ;- affinely to I; 1, (1)~ or, equivalently, GG; sends the interval R(i*)" = {i*} x L; ;-
affinely onto R((i + 1)*)*+Y" = {(i 4+ 1)*} x I; (;+1)~. This implies that G; (A" ) = Qlffll) by
Lemma 2.25(b). Hence, G; (/) = Qlffl(o) for every 0 € By, [i*].

o Now we study R(i*)ﬂ(B‘“+1 [0\Bs 4 (7))

Observe that R, (B, [i*] \{i*}) = Ba[(i + 1)*]\{(¢ + 1)*} for o € {a;, a;11}. Then, by (2.1)

Vi1 © Ro ’Bai [\ 18 continuous, and 27)

Yipr (Ru(0)) € Lit1 g9y forevery 6 By, [i"]\{i"}.

So, the continuity of the maps m;, M;, m;y1 o R, and M; 1 o R, imply that g; is well defined

and continuous on R(i*)n(Bam [*N\Bs,11 () and

('Yi (9)’ Yita (Rw(e))) € Hi,@ X Hi+1,Rw(t9)

forevery 0 € B,,,,[i*] \Bs,,,(1*) . Consequently, g, , maps I; g piecewise affinely with two pieces
onto I; 11, r, () o1, equivalently, G; sends the interval R(i*)? piecewise affinely with two pieces
onto R((i + 1)*)=(®. Again, by Lemma 2.20(b), this implies that —1 < g, ,(z) < 1 for every
x € I; 9. On the other hand, from (2.2) and (2.1) we have
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for every 0 € By, [i*] \Bs,., (i) .
e Finally, we study the region R(z’*)n(B“i ["I\Bai 2 (7)),

In this case, by definition and Lemma 2.20(b) we have —1 < g, ,(x) < 1 for every x € I; 4. By
(2.7), gi(-,x) = 7,,, oR,, is well defined and continuous in both variables on R(i*)ﬂ(B“i [\ By (7))
because m; and M; are continuous. Moreover, for every 6 € B,,[i*] \Ba,,,(i*) and z such that
(0,2) € R(i*)%, we have

{Gi(8,2)} = {(Ru(8), 9:(8,2))} = {(Ru(8),7,,, (Ru(8))} = AL
by Definition 2.24 and Lemma 2.4(a). Thus, by Lemma 2.25(a),
Gi(%0) = Gi(R(i*)%) = A=),

From all the previous arguments (b) and (c) follow. To end the proof of (a) we have to see
that G; is well defined and globally continuous. This amounts to show that it is well defined on
the fibres

R(i*)(i*i6i+l) = {Z* + 5i+1} X Hi,i*:ﬁ:&,;+1 and

R(i*)(i*:tai+1) — {Z* + ai+1} ™ Hi,i*iaHy
We will only show that the two definitions of g; coincide on {6} x I; o with 6 € {i* + §;11,7* +
ait1}. The case § € {i* — 0;41,%* — a; 41} follows analogously.

We start with 0 = i*+a; 11 € B, (i) . Inthis case, R,,(0) = (i+1)*+a;+1 € Bd(Ba, ., [(1 + 1)*])
and, by Definition 2.15 and Lemma 2.20(c),

Mit1(Ru(9)) = miz1(Ru(9)) = afyy = 7., (R (0)).

Thus, the piecewise affine map whose graph joins the points

(mi(0), Mis1 (R (9))), (7, (0), 7.y, (Ru(0))), and (M;(0), mir1 (R (0)))

is the constant map v, , (R, ()). Hence, g, , is well defined for = i* + ;1.
Now we deal with the case § = i* + 0;+1 € Bs,[i*] . By (2.5) and (2.6) we know that the points
(mi(e)’ Mi-i-l (Rw (9))) ) (’71 (9)’ Yit1 (Rw (9))) and (Mi (9)7 Mit1 (Rw (e))) belong to

Graph (a: =y 4+ 1)) + 23"; (v, (i) — x)) .

Consequently, the map ~,((¢ + 1)*) + % (7,_,(i*) — ) coincides with the piecewise affine

map whose graph joins (m;(0), M;1(R.(9))), (7,(0),7,., (Rw(8))) and (M;(8), mi41(R.(6))).
This ends the proof of (a).
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Now we define g, , for i < 0. In this case, since we are going from a smaller box R™(i*) to
a bigger one, we only need to define g, , in two different ways, depending on the base point
6 € B] [i*].

As in the previous case we need to fix some facts about the elements that we will use in the
definition.

By Definition 2.18(R.1) and Lemma 2.20(c),

for every i < 0
B5m [(l + 1)*} C Bam [(l + 1)*] C B5|i+1\ ((Z + 1)*) C BO‘H+1\ ((l + 1)*)a

* (2.8)
Ry, (B [i*]) = Bay,y, [(i +1)*],  Bj, [i*] € Bay, (i*), and

Vi () =a; and 7y, (((+1)") = ait1.
Consequently, from (2.1) and Definitions 2.15 and 2.18 we get

mi(8) < v, (6) < M;(6) and
M1 (R (0)) <754 (Ru(0) < M1 (R ()

for every 0 € By, (i*) \{i"} (and Ry, (0) € Ba, (i +1)*) \{(i + 1)*}). Then,

~ . mi+1(Rw (9>) = Vit (Rw (0)) Mi+1(Rw <9>) = Vi (Rw (0))
Ki(0) = min ¢ 1, AT » , T >0
o li+1] (,Y\’i\ (9) - Ml(e)) 9" li+1] (,Y\’i\ (0) - ml(e))

defines a continuous function %;: B, (i*) \Bs,, (i*) — (0, 1]. To define the map g; we need an
auxiliary function
kit Ba, [1*]\Bs, (i*) — [0,1]

such that x; is non-decreasing and continuous, k;(i* & d);) = R;(i* £ 0);)), and x;(0) < ;(0) for
every 0 € B, (i*) \Bs,, (i*) . In principle any such function would do, but for definiteness, and

to show that such function exists, we note that we can take, for instance,
inftE[a,i*—(sm]ﬂBa () ’/ﬁvll(t) if 6 S i — 5|Z‘7
ki(0) = Il
inftG[i*+5|“,0]ﬁBam (%) Ri(t) if0 >i*+ 5|i\-
It is easy to check that this map verifies the desired properties.

Definition 2.31 (Definition of g; for ¢ < 0). For every (0, x) € R~ (i*) we set

et (N () = @)+, ((+1)) 00 € By [i7],

giﬂ(x) = 2721;7‘31‘/{1(0) ("YM (6) - I) + 7\1‘«}»1\ (Rw(e)) lfe € Ba\i|[i*] \B(;M(Z*)
’yu+1\ (Rw(g)) Zf0 € B:‘[Z*} \Bam(i*) .
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The next lemma states the basic properties of the functions G; for i < 0.

Lemma 2.32. The following statements hold for every i < 0 :

(a) The map g, , is well defined and non-increasing for every 0 € By, [i*] . Moreover, =1 < g, ,(x) <1
for every 8 € B,,[i*] and x € 1; . Furthermore, the function G; is continuous.

(b) Gi’R*(i*)e is affine, G;(R™(i*)%) C R((i + 1)*)~©® for every 0 € B} [i*] and G;(R™(i*)?) =
R((i 4 1)*) " for every 6 € Bs,, [i*].

(c) Gi(Qlfil) = Qlffjr(l(?)for every 0 € B [i*].

Proof. First we will prove that the map G; is continuous and that G; ‘R’ (i+)0 18 affine, according

to the three regions in the definition.
e As in the previous lemma we start with R*(i*)ﬂB‘SHI b = R(i*)nBali\ b,

As in the same case of Lemma 2.30, by using (2.8) instead of (2.2), it follows that g, , | Lo is the

affine map whose graph joins the points (m;(6), M1 (R (0))) and (M;(0), mi1 (R (0))), g; is

well defined and continuous on R(i*)nBélf‘\ [i*],

Yo (’YM (9)) = Vit (Rw(a)) for every RS Bism [2*] \{Z*}?
G sends the interval R(i*)? affinely onto R((i 4 1)*)?, and
G; (Q(fi‘) = mﬁiﬁ) for every 6 € By, [i"].

o R (%) By 0Bsy () o ey M(Boyy 1i1\Biy (7).

From (2.1) we know that the maps v, and v, , o R,, are continuous on the domain B, , [i*] \ B, (i*) -
Hence, the continuity of g; follows from the continuity of the maps «;, m;, M;, mi41 o R, and
Mi+1 ] Rw.

Notice that, from the definition of g; in this region we clearly have that

Gie (’7\“ (9)) = Vi1 (R, (0)), and
Gi |R"(i*)9 = gi(9, ) is affine.
. R*(i*)n(B"*[i*]\B“m (i)

In this case we have m;(0) = v,, (¢) = M;(0) by definition. Then, the map G; |R*(i*)9 =g;(0,")is

affine because it is constant, and g; is continuous because v, and .., o R, are continuous on
the domain B; [i*] \{i*} by (2.1).

To end the proof of (a) we have to see that G; is well defined and globally continuous. This

i1

amounts to show that it is well defined on the fibres

R(Z*)(z*:l:é‘t‘) and R(Z*>(z*:taM)
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We start by showing that the two definitions of g; coincide on the fibres R(i*)? for 6 € {i* +oy; }.
In this case we have m;(0) = ~,, (¢) = M;(0). Consequently, I; = {7, (¢)} and

2"
m’%i(e) (’ym (9) - .1‘) + 7\7’,4.1\ (Rw(9)> = ’7|1+1| (RW(Q))
forxz €L, 0.
Next we consider R(i*)? = {6} x I; y with § = i* + ;. We will show that the two definitions
of g; coincide on this set. The case § = i* — 6‘“ follows analogously.
For simplicity we will denote

omis

gf,‘eil (CL‘) = 2”\%2\ (,yli+1| (7’*) - .’L‘) + 7|1,+2| ((Z + 1)*)7 and
2mii

£.0(0) = s (3, (0) = ) 3,1, (R (0).

. 8i) o : . .
Notice that g;, is the map g, , as defined in the first region while

Ki (0) (&,9 = Vi (Rw (9))) + Vit (RW (0))

is the map g, , as defined in the second region. In a similar way to the previous lemma we have
that (v, (0),7,,,, (R.(0))) € Graph (gi‘é') . Hence, since ¢! is affine with slope ——2 1 it

2" li+1]
follows that gi 3! =&, ,- So, to end the proof of the lemma, we only have to see that ; (i* 4 6;) =
Ki(1* +0p) = 1.

Since the points (m;(6), M;41(Ru(0))) and (M;(8), m;11(R.,(6))) also belong to Graph (gi‘;') =
Graph (&, ,) , it follows that

2|
~ QM

AR

9™

miy1(Ry(0)) =€, ,(Mi(0)) (7 (0) = Mi(0)) + 7,4 (Reo(9)), and

Mi 1 (R (0) = € ,(mi(0)) (7 () = mi(0)) + 7., (R (9)).-

This shows that &;(i* + d);) = k;(f) = 1 and ends the proof of (a).

Now we prove (b) according to the three regions in the definition. From the part of the lemma
already proven we already know that G; |R~(i*)9 is affine, and G, (R™(i*)?) = R((i + 1)*)f«(®
for every 0 € By, [i*] . So, to end the proof of (b) we have to see that

9,.0{i0) CLiv1,r,(0) (2.9)

for every 0 € B;[i*] \Bs,, [¢*] (by definition, since i < 0, B [i*] = B
Bayy [0+ 1) and Ty g9y = R((i + 1)) @),
For 0 € B/ [i*]\By,, (i*) , by (2.1), we have

[i*] ; therefore, R, (0) €

Xlit1]

gz‘,e (Hi79) = {7|i+1|(Rw(9))} - ]I’L'+1,Rw(9)-

Now we consider § € B, (i*) \Bs,, [i*] . Since
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Mit1(Ry(0)) = .1, (Ru(9))
A (3, (6) = mi(9)

ri(0) < FRi(0) <

)

we have

. 2mil Mit1(Ry(0)) — ..., (Ru(9))
9i.0(mi(0)) < 2"k 27 (7., (0) —mi(9))

2" i+1]

= M;11(Ry(0)).

(71 (0) = mi(0)) + 711 (R (0))

An analogous computation shows that g, ,(M;(6)) > m;;1(R,(0)). Hence, (2.9) holds because
g, is affine. This ends the proof of (b).
Then, by Lemma 2.20(b), Statement (b) of the lemma implies that —1 < g, , () < 1 for every

S L"g.

_ g(B(9)
- Q(|i+1\

Bs,, [i*]. On the other hand, as in the previous lemma, from (2.8) and (2.1) we get

Gi(Af)) = Gi({(0,7,,(0)}) = {(Ru(0). g, , (v, (0))}
= {(Ru(6), 7., (Ru(0))} = 2[5

for every 6 € B [i*] \ Bs,, [i*] . So, (c) holds.

By the part of the lemma already proved we know that G; (Qlf“) for every 6 €

Up to now we have defined the family of auxiliary functions G;: R™ (i*) — 2 with i € Z.
The next step before being able to define the family {T.,,} C S({?) is to fix some stratification in
the set of boxes R~ (i*).

2.5 A stratification in the set of boxes R™(¢*)

In this section we introduce a notion of depth in the set of arcs B; [i*] defined earlier. This notion

introduce a stratification in the set of boxes R™ (i*) that we study below.

Definition 2.33. For every { € Z we define the depth of ¢, which will be denoted by depth(¢), as the
cardinality of the set (see Lemma 2.20(g))
{ieZ: By (") g B [i")} = {i € Z: By (") N B [i*] # 0} =
{ieZ.-RW)GCR (*)}={(€Z: R (*)NR(i*) # 0}.
Also, for every m € Z*, we denote
D :={le€Z: depth({) =m},
D ={i":1e€D }, and

W c=min{|i| : i € D }.
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The next lemma studies the stratification on Z created by the notion of depth.

Lemma 2.34. The following statements hold:

(@)D, c{{eZ:3ieD, suchthat B;[(*] & B [i*]

}.
(b) For every £,k € ©, it follows that B, [(*] N B, [k*] = 0.

Proof. Observe that if B, [¢*] & B; [i*] then depth(¢) > depth(i) + 1. Hence, (a) holds.
Statement (b) follows from Lemma 2.20(g).

In what follows, for every m € Z* we set

B := |J B [i"] 29,
€9,
Note that, by Lemma 2.34(b), B~ is a disjoint union of closed arcs. Therefore, for every § € B,
there exists a unique ¢ € ©, such that § € B [i*] . We will denote such integer i by b™ (6, m) €
D,
The next two lemmas study the properties of the winged boxes B; [i*] and R™ (i*) according
to the depth stratification. Lemma 2.36 is the real motivation to introduce the winged boxes.

Lemma 2.35. The following statements hold:

(a) The sequence { fum Yoo, is strictly increasing. In particular lim,, s oo by, = 00.
(b) For every m € 2+, B isdensein S', B C B and ©* NB_, =0.
(c) O*(w) C B, and A% = {(6,0)} for every 6 € S'\B".
(d) Leti € Zand § € By [i*]\B,_ . Then, 6 ¢ O*(w) unless 0 = i*, and A;, = AL, for every
n > [il. In particular A° = A7, .
Proof. By Lemmas 2.34(a) and 2.20(g) it follows that for every m € Z+and ¢ € © | there exists
i € D, such that B/[¢*] & B/[i*] and [i| < [{|. Thus, B C B~ and i, < pm+1. This proves
(a) and the second statement of (b).
Next we will show that i* ¢ B~  for every i € D, . Assume by way of contradiction that
there exists i € ©,, such thati* € B .Letk = b (*,m+1) € ®,,,. Clearly, i # k and

i* € By [k*]. Then, by Lemma 2.20(g), |k| < |¢| and B; [i*] & B;, [k*]. Thus,
m = depth(i) > depth(k) + 1 = m + 2;

a contradiction.
Now we prove the first statement of (c). From the definitions and the part of (b) already
proven we have

O*(w) c | JB7 "] C G B =B

1€EZ m=0
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To end the proof of (b) it remains to show the density of B . We will do it by induction on m.
Clearly B D O*(w) is dense in S! because so is O* (w). Suppose that (b) holds for B . We will
show that (b) also holds for B . Choose ¢ € B~ and seti = b™ (6, m) . Since O* (w) is dense in
S, there exists a sequence {s,}5°, C Z such that s, € B; (i*) and lim,,_,, s}, = 0. As above,
we get that depth(s,) > depth(i) + 1 = m + 1. Moreover, s;, € B~~~ C B  for every n.

Consequently, B” C B, and the density of B, follows from the density of B .

m+1"
Next we prove the second statement of (c). From above it follows that

U Bay, li¥1 € | BT [i*] € By

i€l i€Z
Hence, by the definition of the maps ~v,, (Definition 2.18) it follows that -y, (0) = ~v,(8) = 0 for
every § ¢ B~ and m € ZT. So, v(0) = limp—07,, (/) = 0, and A7 = {(6,7(0))} = {(6,0)} by
Lemma 2.26(c). This ends the proof of (c).

(d) If & = i* then the statement follows from Lemmas 2.25(b) and 2.26(b). So, we assume that

0+ i*.
By Definition 2.18(R.2) and Remark 2.19(R.2) we get that 6 ¢ Z; . Hence, if 0 € O*(w), it

i|+1°
follows that 0 = k* € B~ with [k| > |i| + 1 and B [k*] N B{[i*] # 0. Thus, by Lemma 2.20(g),
depth(k) > depth(z) + 1. By (b), this implies that § = k* € B;:pm (e @ contradiction. Therefore,

6 ¢ O*(w). On the other hand, 0 ¢ B~ ,[(—i)*] by Definition 2.18(R.2).

If0 ¢ Ba,, [k*] for every k € Z such that [k] > |3, then , () = v, (0) and A7, = ], for every
n > |i|, by Definition 2.18 and Lemma 2.25(c).

Now assume that 6 € B, , [k*] for some k € Z such that |k| > |i| and |k[ is minimal with
these properties. If 6 € B, (k*), as above we get that depth(k) > depth(i) +1and# € B~  C

depth(k
B, i Thus, 6 € Bd(B[k*]) = Bd(Bq,,[k"]) and k& > 0. So, by Lemma 2.20(c) anci )the
definition of the maps v, (Definition 2.18), v, (0) = 7,,_,(f). Moreover, by Lemma 2.20(e),
7,(8) = v,,(0) for every j > [k|. On the other hand, the minimality of |k| implies that § ¢
By, [¢*] for every ¢ € Z such that [k| > [{| > [i|. Hence, by the definition of the maps 7,
(Definition 2.18), v,(0) = v, (0) for every |k| > j > |i|. In short, we have proved that v, (f) =

0 _
=

7., (0) for every j > [i|. Thus, as above, 2 9% for every n > [i|. This ends the proof of the

lemma.

Lemma 2.36. Assume that B; [i*] C By [k*| forsomei € © , k€D, , and m € N. Then, |k| < |i]
and |k + 1| < |i + 1| unless k > 0 and i = —(k + 2) (whence |k + 1| = |i + 1|). Moreover, the following

statements hold:

(a) For every 0 € B [i*],
ikl 0) = ’Y|k\+1(9) == 7\11\—1(0) €lip

and, when |k + 1] < |i + 1],
Vit (Rw(e)) = Vkt1141 (Rw(9>) == Vg1 -1 (Rw(e))
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(b) For every 0 € B} [i*] \Ba,, (i*) ,

Y1y (0) = ’qu(a) and Lip = {’7”\ (9)} = {7\1@\ (0)} C Iip-

Proof. The fact that |k| < |¢| follows from Lemma 2.20(g). Therefore, either |k + 1| < |i + 1| or
k>0,i=—(k+2)and |k+1|=|i+1lork >0,i = —(k+1)and |[k+1| > |i + 1|. In the last case,
Bi[i*] = BZ 4, pl(=(k + 1))*] and B[/[k*] must be disjoint by Definition 2.18(R.2) (with j = k);
which is a contradiction. Thus |k + 1| < |i + 1| unless k > 0and i = —(k + 2) (|k + 1] = |7 + 1|).

By Definition 2.18(R.2) and Remark 2.19(R.2), B; [i*] N Z \zl—l = (. Hence, from the definition

of the maps v, (Definition 2.18), to prove that

Ykl |B‘j[i*] = Yk |B‘i'[z'*] == 7|u—2|B‘i'[i*] = Yij—a |B‘f[i*]7

it is enough to show that B, , [¢*] N B; [i*] = () for every ¢ such that |k| < [{| < |i|. Assume that
Ba, [€*] N B [i*] # 0 for some ¢ such that |k| < [¢| < |i|. Then,

0 # Bay,, [€"] N B [i*] € By [¢*] N By [i*] € By [¢*] N By, [k]

and, by Lemma 2.20(g),
B [i"] & By ["] & By [k7].
So, in a similar way as before,

m = depth(i) > depth({) + 1 > depth(k) + 2 =m + 1;

a contradiction. This ends the proof of the first statement of (a).
Now we show thatif |k + 1| < |i + 1| — 1, then

Yk (Rw(e)) = Vk1141 (Rw(9>) = = Vg1 -1 (Rw(e)),

and are well defined.
First we prove that v, (R,,(0)) is well defined for every ¢ = 0,1,...,|i + 1| — 1. For every
6 € B [i*] we have

- Bg, (i +1)* when i > 0, and
R, (0) € R, (B; [i*]) = i )yl
Bay, (i +1)*] € B 4[(i +1)*] wheni <0.
In any case, by Definition 2.18(R.2) and Remark 2.19(R.2) with j = ¢ when i > 0 and ¢ =
—(j+1) =i+ 1wheni < 0, and Lemma 2.20(a),

zr when ¢ > 0, and
RO) ¢4 _
Z\i+1|71 when i < 0,

and v, (R, (0)) is well defined for £ = 0,1,...,|i 4 1|—1 (recall that Z;;, C Z};, . for every m > 0).
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Now, assume by way of contradiction that
v, (Rw(0)) # 7, , (R,(8)) forsomel € {|k+1|+1,|k+1|+2,...,]i+1] -1},

and ¢ is minimal with this property (observe that ¢ > 1). By the definition of the map ~, (Defini-
tion 2.18),
Rw(e) EB(M, ((q+1)*) with q € {6_17_(6—’_1)}

and, hence, 0§ € B,,(¢%) .
Since |k +1|+1<{<|i+ 1|, wheng=—-({+1) < -2,

k+1]+2< —g<|i+1]and Ba, (¢%) = BZ(p4) (=((+1))") = By (¢").-
Otherwise, when¢=¢—-1>0, |k + 1| <¢g<|i+ 1] —2and
Ba, (¢") € Ba,_, (€= 1)") = B, (¢ = 1)) = B (¢"),

by Definition 2.18(R.1).

Next we want to use Lemma 2.20(g) to show that B [i*] & B, [¢*] & B [k*]. To this end we
have to compare |¢| with |i| and |k|.

Notice B [¢*] N By [k*] # () because

0 B, (¢")NB; [i"] € B; (¢")N By [k'].

Ifk >0, g > |k+1 > |kl. When k,q < 0, |g| > [k +1|+2 = |k| +1 > |kl.Ifk < 0
andgqg >0, |[¢l =q > |k+ 1 = |k| —1.If ¢ = |k| — 1 (thatis, k = —(¢ + 1)), as above, by
Definition 2.18(R.2) with j = ¢ we get B/ [k*] N B [¢*] = 0); a contradiction. So, |g| > |k| unless
lg| = |k] and k£ < 0 < ¢. Summarizing, we have shown that |¢| > |k| and ¢ # k. Then, from
Lemma 2.20(g) we get that |¢| > |k| and B, [¢*] & By [k*].

Now we will study the relation of B [¢*] with the box B;[i*]. From above we get that
BJ[¢*]NB;[i*] #0.1fi <0, |q| <|i+ 1| = |[if = 1. When ¢,i > 0, wehave |¢| = ¢ < |[i + 1| =2 =
il —1.Ifi >0and ¢ < 0, |g| < |¢+ 1| =[i| + 1.

Assume that ¢ > 0 and ¢ = —(i + 1) < 0. In this case, additionally, ¢ = —(¢ + 1) and, thus,
1 =4{ > 1. Then,

R.(9) € R,, (B [i*]) = Ry (Ba, [i*]) = Ba, [(i +1)*], and
R, (0) € Ba, ((g+1)") = Ba, ((=1)") € B, ((—9)"),

which is a contradiction by Definition 2.18(R.2). Summarizing, |¢| < [i| unless |¢| = |i| and
g < 0 < i (thatis, |¢| < |i| and ¢ # 7). Then, again by Lemma 2.20(g), |¢| < |i| and B; [i*] &
B, [q*] & By [k*]. So, as before,

m = depth(i) > depth(g) + 1 > depth(k) +2 =m + 1;
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a contradiction. This ends the proof of (a).
Now we assume that 0 € B/ [i*] \ B, (i*) . By Lemmas 2.20(e) and 2.28(d),

'Ym(e) = 'Ym—1(9> and I; 9= {’7|i\(9)} = {’Vu|—1(9)} = {’V\k\(g)}‘

On the other hand, by Lemma 2.35(b), ®* N B = () which implies that § # k* because
k* € ®* and 0 € B [i*] \Ba,, (i*) C B . So, by (2.1),

Lio = {7, (0)} = {7, (0)} C Lk

Now we prove that v, (f) € I for every § € B;[i*]. From above, we have I;y =
{7, (0)} for every 0 € B/ [i*] \B,,, (i*) . Moreover, when ¢ € B, (i*) the statement follows
directly from Lemma 2.20(c). Thus, (b) is proved.

2.6 Boxes in the wings

To prove Theorem D we will inductively construct a Cauchy sequence {7, }7°_, C S(2) that
gives the function 7" from Theorem D as a limit.

This section is devoted to study the points in the wings of boxes in the circle and its interac-
tion with boxes of higher depth. The resulting technology is necessary to be able to construct the
sequence {T,,}7°_, so that it is Cauchy sequence. Unfortunately this will complicate even more
the definition of the functions T;,, and the proof of its continuity.

We start by introducing some more notation. For every m € Z* we set
B = U By, [i*] €B_, and
i€D,,

WDB,, := {0 € B]\B,, : 0 ¢ B, for some j > m .

m

On the other hand, the smallest number j from the above definition will be called the least
essential depth of 6 below m, and will be denoted by led (6, m). That is, led (§,m) denotes the

positive integer larger than m such that

QG]B%;\IB%J, forj=m,m+1,...,led(@,m)—1 and 0eB

led(6,m) *

The following simple lemmas are useful to better understand and use the above definitions.

The next lemma establishes the relation between boxes in the wings of increasing depth.

Lemma 2.37. Assume that § € WDB  for some m € Z* and set { = led (6, m). Then, the following

statements hold.

(a) For every j = m,m +1,...,( the numbersi; = b (0,j) € D, are well defined and are all of them
negative except, perhaps, i, = b (6,led (0, m)) .
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(b)
lim] < limt1] < -+ <lig=1] < |ie|,and
6 € Bay, [(0)7] € BL | (1)) \Bay, _, [(ie-1)"]
C B, , ((i=2)")\Bay, , [(i-2)"] -+ € By ((im)*) \Bay,,, [(im)*]-

(c) Forevery j = m,m+1,...,0—1, Ba\iu[(iﬁ)*] C WDB,, led (v, j) = led (0, m) and b™ (v, led (v, j)) =
b™(0.1ed (0,m)) = i¢ for every v € B, [(ir)"] -
(@) Ty = (3, (1)} C Ty for every v € By, ((i0)") and

Ly = {7, )} = {mi, ()} = {M;, ()} = {r,,, (")} = Ti, o
for every v € Bd (BQM [(ig)*]) .
Proof. Since B [i*] = By, [i*] for every i > 0,

BT\B, = |J (B [i*]\Bay, [i"]) (2.1)
ie@vn
<0

forevery m € Z*.
Statement (a) follows from Lemma 2.35(b) and (2.1). Then, (b) follows from Lemma 2.20(g).
Statement (c) is an easy consequence of (b) and the definitions.

Now we prove (d) iteratively. Fix v € Bq ((ir)*) . By (b)
ve B ., ((int1))\Ba ,, (im1)"] € By ((im)") \Bay,,, [(im)’]
provided that £ = led (#,m) > m + 1. Hence, by Lemmas 2.28(d) and 2.36,
Vi V) = Vi W) ==, (), and
iy = {7, 00} = D (0} =T
By iterating this argument we get,
Vi V) = Vi W) ==, () and T, =T, 0.
Again by (b) and Lemmas 2.28(d) and 2.36,
Y W)= W) ==, (v) and L, ., =1,
when v € Bd (BQM [(lg)*]) and, otherwise,
Vit V) =Y W)= =9, (v) and L, ., CI,.

Equipped with above results and definition we are going to define two maps, analogous to

the maps m; and M;, on the wings of the negative boxes.
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Definition 2.38. For every m € Z* we define

WFD = {b (0,led(d,m)) : 6 €« WDB_} C Z,
WIB,, :=Int(WDB, ) ={ | Ba, (i*),

1€WFD,
WB] i= J (B (]\Buy, (i), and
€D,
<0
EB; := |J Bd (B} [i"]) CB].
€D

m

By Lemma 2.37(a,c), 20§D, is well defined and

Consequently,

WIB,, C WDB,, c B_\B, C WB_.

B =B, UWB .

Then, we can define functions 7,,: WB_ — Land \,,,: WB_ — T as follows:

Mo jea(o,my) (0) i 0 € WIB,,
o (0) :{ 5(0,1ed(0,m))(0) if

Viso.mm| (0) otherwise,

Mg 0) ifo € WIB,,,
/\m(ﬂ) = { b(@,led(@,m))( ) f m

V50,1 (0) otherwise.

Clearly, by Lemmas 2.28(a) and 2.20(b),

—1 < An(0) < (0) <1

for every 6 € WB . So, we can define

HWm,s = [)‘m(e)mi(e)] - [0) 1]'

The next lemmas will help us in the definition and study of the maps T5,,.

Lemma 2.39. The following statements hold for every m € Z™.

(a) WIB,, NB,, = WIB, NEB_ = 0.
(b) Let € WB . Then, Is0,m).0 = {*yw.(e’m)‘ (0)} ,

Is0,m),0 = IW,

m,0

HE(G,’m),H C me,s
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(c) Assume that m € N and let U be a connected component of WB ™ such that U ¢ WB__ . Then,
WDB,, NU C WDB WIB, NU =WIB,, _, NUandIW_ , =TW__,  forevery § € U.

m—1) m—1

Proof. (a) By Lemma 2.37(b),

0e B‘b:(Q,m) ((b"(67m))*) \Ban;’(s,m)\ [(b*(97m))*:|
and b™(6,m) < 0 for every § € WIB,, C WDB, . So, by Lemma 2.34(b), we get 0 ¢ B, UEB_ .

(b) The fact that Iig )9 = {v‘m’m)‘ (9)} follows from Lemma 2.28(d). The other two state-

ments follow from Definition 2.38 and Lemma 2.37(d).

(0) The assumption that U is a connected component of WB~ and U C WB__ implies by
Lemmas 2.34(b) and 2.20(g) that there existi € ®,  and k € © i,k < 0, such that U is a

connected component of

m—17

B [i"]\Ba,, (i") C By (k") \Bay,, [F*] C WB~_ .

Again by Lemma 2.34(b) this implies that U ¢ B__ \B,, _,. Moreover, by definition, WDB C
B \B, . Consequently, WDB,  NU C WDB, _,.

Letd e WIB_ NnU Cc WDB,_ NnU C WDB,_,_, NnU. By Definition 2.38 and Lemma 2.37(a,b),
i =b (6,m) and there exists £ = b (0, led (6, m)) € WFD, such that

0 € Bay, () C B [i"]\Bay, (i) C By (K*) \Bay, [k"].
Therefore, again by Lemma 2.37(a—c) and Definition 2.38, led (6,m — 1) = led (8, m) ,
{=b(0,led(8,m)) =b (0,led(8,m — 1)) € WD, _,

and 0 € B, () C WIB,, . Hence, WIB, NU C WIB,,_,.
Now assume that § € WIB__, N U. As above, there exist r = b (,m) € ©,_ and ¢ =
b™(0,led (0, m — 1)) € WFD_ _, such that

m—1"°

S B@m (f*) C B: (T*) \Ba|7-| [T*] C B‘I: (k*) \Ba\k\ [k*} :

Since § € U C B;[i*], Lemma 2.34(b) gives i = 7 and 0§ € B, (£*) C U. Moreover, by
Lemma 2.37(c), £ = b (0,led (§,m — 1)) = b (6,led (§,m)) € WFD_, and, so, 6 € By, ({*) C
WIB, . Thus, WIB, N U = WIB,__, N U.

To end the proof of the lemma we have to show that IW
Assume first that 0 € U\WIB,, C WB_\WIB, . Then,

= W for every 6 € U.

.0 m—1,0

0 € U\WIB, = U\WIB,, , C WB__\WIB, ,

m—1

and, by (b) and Lemmas 2.28(d) and 2.36,
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]IWm,e =L, = {’7“\ (9)} = {’Y\k\ (9)} =Iko = HWm—l,s'

focUNWIB, =UNWIB,, , then we get

W, o = [Me(0,1ed(0,m)) (0); Mi(0,1ed(0,m)) (0)]
= [mtr(e,led(e,m—l))(e)7Mb’(e,led(e,m—l))(a)] =Iw, .,

from Definition 2.38 and Lemma 2.37(c).

Lemma 2.40. Let m € Z* and let U be a connected component of WB_. Then, the functions /\m|U and

Tim |U are continuous.

Proof. We will prove only the continuity of A The proof of the continuity of 7, . is analo-

mly-
gous.

By Lemmas 2.37(c) and 2.28(b) we get

for every £ € WFD  , ¢ = b (v,led(v,m)) for every v € By, [¢], and the function m, 2.2)

is continuous on B, [¢*].

Let £ € 20§D, be such that Ba,, (¢*) Cc WIB,, N U. Thus, by (2.2), the function \,, = my is
continuous on By, (£*) .

So, we have to show that \,, is continuous at every § € U\WIB, . To show this we will use
a simple usual e-6 game. Fix ¢ > 0.

By Lemma 2.34(b) it follows that U is a connected component of B, [i*] \ B,,, (i*) for some
1€®, ,1<0,and

b (v,m) =1 forevery veU. (2.3)

By Lemma 2.20(a) and Definition 2.18(R.2) and Remark 2.19(R.2), the function v,

ous. So,

u1s continu-

there exists d); = d);(6) > 0 such that |y, (6),,, ()| < ¢/2 provided thatd, (6,v) <

2.4)
On the other hand, by (2.2),
for every ¢ € 2§D, there exists §; > 0 such that Ime(6), me(v)| < £/2 for every 25)

0 € Bd (Ba,, [¢*]) and v € Bd By, [¢*] such that d_, (8, ) < .
Now we will define d. Note that there exists N € N such that 2=V < £/2. Then we set:

§ = 6(0) := min {6);(0), min{d, : £ € WFD_ and |{| < N}}.

m

Clearly, ¢ > 0 because the set {¢ € WFD_ : |{| < N} is finite.
To end the proof of the lemma we have to show that

[Am(0) = Am (V)] <&
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whenever v € U and d_, (0,v) < 0.
Assume that v € U and d_, (0, v) < § (recall that we have the assumption that 6 ¢ WIB
v ¢ WIB, , thend, (6,v) <& < §);(0) and, by (2.3) and (2.4),

nz)' If
Am (0) = Am (V)] = |7, (0) =7, (V)] < /2 <e.
Now assume that there exists £ € WFD, such that v € B, (¢*) C WIB, . Clearly, there

exists § € Bd (Bay,[£*]) such that

L (0,0) < d_, (0,v) <& <8;(0) and

L(0,v) <d, (0,v) <9

S

d,
S
dS

Observe that, by Lemma 2.34(b), 6 ¢ WIB, . Hence, by (2.3) and Lemma 2.37(c,d),

A7rL (g) = er (5) = mé(g)
If |¢f < N, then d, (6,v) < 6 < & and, by (2.5), Ime(0) — me(v)| < e/2. Otherwise, by
Lemma 2.20(f),
Img(0) — me(v)| < diam (R(£*)) < 271 <27V < ¢/2.

In any case, \mg(g) —mye(v)| < €/2. Thus, again by (2.3) and (2.4),

A (0) = A ()] < A (6) = A (O)] + A (6) = A ()]

= 17 (0) = 7, (O)] + Ime(8) — me(v)| < e.

2.7 A Cauchy sequence of skew products. Proof of Theorem D

In this section prove Theorem D. To do this we inductively construct a Cauchy sequence
{Tn}35—o C S(2) that gives the function T' from Theorem D as a limit.
The sequence {T},, }5°_, C S({?2) is defined so that

Tm(G, x) = (Rw(a), fm(aa l‘))

and f,,: 2 — [ is continuous in both variables. To build these functions we will use the aux-
iliary functions G;: R(i*) — (2 with i € Z from Section 2.4. The maps f,,, (6, -) will also be de-
noted as f,, ¢, and will be defined non-increasing, and such that f,, 4(2) = —2 and f,,, o(—2) = 2
for every 0 € S*.

To make more evident the strategy of the construction of this sequence of maps we will
separate several cases, and we will state without proofs the results that study these maps. After
establishing all the definitions and results related to the construction of the sequence {7, }7°_,
without having been distracted by the technicalities involving the proofs, we will proceed to

provide the missing proofs. More precisely, we will start by defining the map 7, and stating
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without proof the proposition that summarizes the necessary properties of this map. Next we
will inductively define the maps {7}, }3>_; C S(£2) and state without proof the proposition that
establishes the properties of the whole sequence {7}, }5°_.

Then, as we have said, we prove Theorem D and in the next three sections we will provide
all pending proofs.

In what follows C(I, I) will denote the class of all continuous maps from I to itself. We endow
C(I,I) with the supremum metric denoted by ||-|| so that (C(L,I), ||-||) is a complete metric space.

Next we define the map T5.

Definition 2.41 (The map Tp). Assume first that 6 € B~ and let i = b™(0,0) (that is 6 € B; [i*]). In
this case we set:
gi,()(x) lfx € ]Iiﬁ?
: (mi(0))—2 .
fo.o(z) = gﬂmiw(x +2)+2 ifxe[-2,mi0)],

i (Mi(e))+2 .
g’eMi(e)—z -(x—2) =2 ifx € [Mi(0),2]

If0 € S'\B," then we define fq g to be the unique piecewise affine map with two affine pieces whose graph
joins the point (—2,2) with (0,v(R,(0))), and this with the point (2, —2). o

Next we introduce some more notation to be able to define the maps {7}, }°>_;. For every
k € Z we set
Vi =By [k*] = By, [k*] x I

and, for every m € Z*,
vo=TB" =B xI= [ ] V.

m m
i€?,,

Definition 2.42 (The maps 7}, with m > 0). Now we assume that we have defined the function T,
for some m > 1 and we define

Tm(ea 1’) = (Rw (9)7 fm(oa l‘))

as follows. By Lemma 2.34(b), for every (0,x) € V, we have
e B [*]cB with i=b(0,m)eD,

(and, of course, z € ). Then we define:
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fn-1,6(2) ifo e S\BT; z €1,

gi,{-}(m) lf@ S Bm; HASS Hi,g,
2—g, , (mi(0)) .
ey (fm10(2) =2) + 2 ifO€B,; x € [-2,mi(0)],
2+, , (Mi(9)) .

Fmo(2) = { 55y (fmor0(@) £2) =2 if0 € B, 5 @ € [Mi(6),2],
Vit (Ry(0)) if € WB;; S me,ea

27 (B (9)) . -

249, (R (0)) . ~

Since V. C V™ fin_1, is defined on V. Moreover, the above formula defines f, o for every 6 € B
since, by Definition 2.38, B_ =B, UWB . We also remark that f,, ¢ formally is defined in two different
ways when € WB~ NB, . Later on we will show that fp, ¢ is well defined. o

The next proposition studies the maps {7}, }5°_, and describes their properties.

Proposition 2.43. The following statements hold for every m € Z*.

(a) The map T, is well defined, continuous and belongs to S(12).
(b) For every 0 € S', f,,.9 is non-increasing, and f,, 9(2) = —2, fim.o(—2) = 2. Moreover, —1 <
f079 (ME(H,m) (0)) < f079 (mb’(@ym) (9)) < 1f07’ every 0 e B:

(c) Foreveryi € ®,, Tm|R*(m =Gy, T (Q[LO = Ql‘(fj:lll)*, and

Tk|{i*}><]1 = Tm‘{i*}x]l (that is, fyi= = fm.i) for every k > m.
The next result shows that the sequence {7}, }5°_, has a limit in S(£2).
Proposition 2.44. For every m > 2 and 6 € St,
| fmo = Frn0ll < 2271 @m=1, 2.1)
Moreover, the sequence {T,,,}72 , is a Cauchy sequence.

Finally we are ready to prove the main result of the chapter. It follows from the next result

which gives a more concrete version of Theorem D.

Theorem 2.45. There exists a map T € S(£2) with f(0,-) non-increasing for every 6 € S*, such that T
permutes the upper and lower circles of (2 (thus having a periodic orbit of period two of curves), and there
exists a connected pseudo-curve 2 C (2 which does not contain any arc of a curve such that T'() =

and there does not exist any T-invariant curve.

Proof. By Propositions 2.43 and 2.44, there exists a map

T(0,) = (Ro(8), (6,2)) = (Ru(6), lim_fn(0,2)) € S(2)
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with f(6,-) non-increasing for every 6 € S' such that T permutes the upper and lower circles
of 2 (thatis, f(0,2) = —2 and f(0, —2) = 2). As the connected set 2 we take the one given by
Proposition 2.27 (and Definition 2.24).

To end the proof of the theorem we need to show that T'(2) = 2, since this already implies
that there does not exist any T-invariant curve. To see it, assume by way of contradiction that
there exists an invariant curve and denote its graph by B. Since B is the graph of a (continuous)
curve, it is compact and connected. On the other hand, let {2, and {2_ be the two connected com-
ponents of {2\2( from the proof of Proposition 2.27. The facts that T'() = 2, f(, -) is decreasing
for every 0 € S, and T permutes the upper and lower circles of {2 imply that 7'(£2;) = 2_ and
T(£2_) = 24. Hence, by the invariance of B, B ¢ 2, and B ¢ (2_. The connectivity of 2 and
B imply that there exists (0, z) € 20N B. Consequently,

B={T"0,2):neZt} C;

a contradiction because 2 does not contain any arc of a curve.

So, only it remains to prove that T'(2) = 2. By using Proposition 2.43(c) and Lemma 2.26(b)
we get that T),, (A7) = 2A(+D" ‘and Ti|gir = Tim
Consequently, by the definition of the map 7' we have, T(24°") = 2A0+1" for every i € Z or,
equivalently, T (A0 () = 9TT0" (@),

Now we consider 2% with 6 € S'\O*(w). Since O*(w) is dense in S!, there exists a sequence

i+ forevery k,m € Z*t, k> mandi€®, .

{(On, )}y C AMO" (@) syuch that lim,, 00 0, = 6. By the compacity of 2 we can assume
(by taking a convergent subsequence, if necessary) that {(6,,,z,)}52, is convergent to a point
(6,2) € 2A. By Lemma 2.26(c), 2% = (0,7) (and = v(6)). On the other hand, by the part of
the statement already proven, T'(6,,x,) € 2 for every n. Hence, by the continuity of 7" and the
compacity of 2,

T(0,2) = (R,(0), f(8,x)) = lim T(6,,x,) € A,

n—oo
Since § ¢ O*(w) we have that R,,(f) ¢ O*(w) and, again by Lemma 2.26(c), 2A%«(?) consists of a
unique point. Hence, T'(A%) = A%« for every § € S'\O*(w). Equivalently, T(QLH(SI\O*(“))) =

QLTT(SI\O*(”)) . This ends the proof of the theorem.

2.8 Proof of Proposition 2.43 in the case m = 0

This section is devoted to prove Proposition 2.43 for m = 0; that is, to study the map Tp. It is the
first technical counterpart of Section 2.7.
To prove Proposition 2.43 for T; we will need some more notation and a technical lemma.
Given a skew product F(0,z) = (R, (0),((#,z) from 2 = S x I to itself we define the fibre
map function of F, fib(F): S' — C(I,I) by fib(F)(6) := ((6,-). A simple exercise shows that F is

continuous if and only if (6, -) is continuous for every 6 € S*, and fib(F) is continuous.
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Lemma 2.46. Let § € Bd (B] [i*]) for some i € ©,. Then, m;(0) = M;(0) = 0, ¢;(6,m;(0)) =
Y(Ry(0)), and fo g is the unique piecewise affine map with two affine pieces whose graph joins the point
(—2,2) with (0,v(R,(0))), and this with the point (2, —2).

Proof. By Lemma 2.28(d) and Definition 2.41, we have m;(8) = M;(9). Hence, fy ¢ is the piece-
wise affine map with two affine pieces whose graph joins the point (-2, 2) with (m;(6), g, , (m(9))) ,
and this with the point (2, —2). So, we need to show that m;(6) = 0,and g, , (m;(0)) = v(R.(0)).
Lemma 2.20(g) and the fact that depthi = 0, B} [i*] N B, [¢*] = 0 for every £ € Z;, i # /.
Consequently, by Definition 2.18(R.6), m;(#) = M;(8) = a; = 0.
Now we show that g, ,(m;(8)) = v(R.(0)). From the definition of the map g; (Definitions 2.29
and 2.31), Lemma 2.20(e) and Definitions 2.23 and 2.18(R.1), we get

9i.0(Mi(0)) = 7,4, (R () = (R (0))-
This ends the proof of the lemma.
Proof (Proof of Proposition 2.43 for m = 0). By Lemma 2.20(b),
=1 < mysp,0)(0) < Migp,0y(0) < 1

for every § € B". So, T is well defined.

(b) If 6 € S'\B_, then the statement follows directly from Definition 2.41. Now assume that
6 € B and leti = b (0,0). From the definition of the maps g; y (Definitions 2.29 and 2.31)
and Definition 2.41, it follows that fy ¢ |11- , is piecewise affine and non-increasing. On the other
hand, again by Definition 2.41, fo | 2.mi(0)]
fo,0(2) = —2and fy 9(—2) = 2. The fact that

and foy 0 |[ are affine with negative slope and

M;(6),2]

—1 < fo.0 (Mg(9,0)(0)) < fo,0 (mis,0)(0)) <1

for every 6 € B~ follows from Definition 2.41 and Lemmas 2.30(a) and 2.32(a). This ends the
proof of (b).

(c) Recall that
R =] {0} xTie.
0eB; [i*]

Hence, from Definition 2.41 and the definition of G; (Definitions 2.29 and 2.31) it follows that

Tm(e’x) = (Rw(9)7fm(9’$)> = (Rw(‘g)vgi,e (1‘)) = GZ‘(Q,JJ),

for every (6,x) € R™(i*). Thus, Ty <2l|’1|> = Ql‘(ﬁ:ll ‘) " from Lemmas 2.25(b), 2.30(c) and 2.32(c). On
the other hand, Lemma 2.35(b) implies that i* € B~ but i* ¢ B~ for every k£ € N. Then, we get

fr.i» = fo,i+ from Definition 2.42.
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(a) Since Ty is a skew product with base R,, we only have to prove that f; is continuous.

By Definition 2.41, for every 0 € S!, the map fj ¢ is continuous. So we have to prove that the
map fib(Tp) (that is, the map s — fo ;) is continuous.

In the rest of the proof we will denote

B, := | J B} (i*) CB.
€9,

Clearly, since for every i € Z, the maps m; and M; are continuous on Bj [i*], it follows that
the map s — fo, is continuous on IB . Thus, we have to see that the fibre map function is
continuous at every 6 € S'\IB_; that is, lim; . fo,9, = fo,0 for every {0;}52, C S' converging

to 6. Given « > 0, we can consider four sets associated to such a sequence:

{jeN:0; eS"\IB, }, {jeN:0; €IB, \B,(0)},
{jeN:6;€(0,0+a)nNIB } and {jeN:0;€(6—0a,6)NIB, }.

Observe that the second set {j € N: 6; € IB \B,(f)} is always finite and that any of the
other three sets gives rise to a subsequence of {0;}%2, converging to ¢, when it is infinite. Con-
sequently, the continuity of the fibre map function s — fy s at 6 is equivalent to the fact that
lim; 00 fo,0, = fo,0 for every {0;}32, converging to 6 and such that, for some a > 0, {0;}32, is
contained either in S'\IB_", or (6,6 + a) NIB_ ", or ( — «,0) N IB, . We will only deal with the

first two cases since the proof in the last case (for (§ — «, §)) can be done symmetrically.
Case 2.47. Case 1: lim; o 0; = 6 and {6;}52, C S"\IB .

By Definition 2.41 and Lemma 2.46, fy 4, (respectively fy ) is the unique piecewise affine
map with two affine pieces whose graph joins the point (—2,2) with (0,v(R.(8;))) (respec-
tively (0,v(R.(8)))), and this with the point (2, —2). By Lemma 2.35(c) and Definition 2.23 the
function v is continuous at R, (¢) ¢ O*(w). Hence, lim;_,o v(R.(0;)) = (R (¢)) and, thus,

lim; o fo,0, = fo.6-
Case 2.48. Case 2: lim; o, 0; = 6 and {0,}32, C (0,0 + a) N 1B .

If there exists i € ©, such that 6 is the left endpoint of B [i*] C B_~ then the result follows
from Definition 2.41, the continuity of the maps m; and M; and the continuity of the maps g;
(Lemmas 2.30(a) and 2.32(a)).

Assume now that 6 is not the left endpoint of B; (i*) for every i € ®©,. For every j € N we
setij :=b"(0;,0) € D, (thatis, §; € B ((i;)")).

We claim that lim;_, . |i;| = co and consequently, by Definition 2.18(R.1),

lim 27"+ = lim 27" = 0. 2.1)
j—roo j—o0

To prove this claim, assume by way of contradiction that there exists L such that for every k € N
there exists j, > k such that |i;, | < L. Then,
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k=1
and, since {i;, : ¥ € N} is finite, it follows that there exists ¢ € {i;, : k¥ € N} C D, and a
subsequence of {6}, }7° ,, that by abuse of notation will also be called {6;, }, such that {6,, }32, C
B; (i*) . So,
0= lim 0,, < BT "]

a contradiction. So, the claim (and hence (2.1)) holds.

Next we claim that the conditions

lim M; (0;) = lim m;,(0;) =0, and (2.2)

j—o0 j—o0

there exists a sequence {z;}72; with z; € I, o, = [mi,(0;), M, (0;)] for every j, such

that lim foo, (z;) = 1(Ru(0)) 23)

imply
lim fog, = fo,6-
j—o0
To prove the claim notice that, by Definition 2.41 and Lemma 2.46, f ¢ is the unique piece-

wise affine map with two affine pieces whose graph joins the point (—2,2) with (0,v(R,(6))),
and this with the point (2, —2). On the other hand, for every j,

° fou,l —2m (0,)] is the affine map joining the point (-2, 2) with the point (m;, (0;), gi, (65, mi, (0;))),

and

o foo,l (M (6,).2] is the affine map joining the point (14, (0;), gi, (65, M;, (6;))) with the point(2, —2)

(see Figure 2.5). Moreover, from the part of the proposition already proven we know that fo g,

is non-increasing and continuous. Therefore, the claim holds provided that

lim diam (fo,e, (I, .0,)) =0

J—00

(see again Figure 2.5).

When 0; € B, [(i;,)*]\B ((i;)*) and i; > 0, by Definitions 2.41 and 2.29,

Oéij +1
diam (fo 0, (I, 0,)) = diam (gij‘ej (Hij,gj)) — diam ({yw (Rw(aj)}) —0.
Otherwise, by Definition 2.41, and Lemmas 2.30(b) and 2.32(b),

{Ru(0;)} % foe, (T,0,) = {Ru(0))} x g, , (Tiy0,) = G, (R((1))")%)
C R((i; + 1)*)F00),

So, by Remark 2.16(2),

diam (fo,9, (Ii,.6,)) < diam (R((i; +1)*)) < 2-27 "+,
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VRO F == === === =N\

——————————————————————————— VI +1.R0 (05)

-2
-2

L0, = [mi; (07), Mi, (0;)]

Figure 2.5: A symbolic representation of the maps fy ¢ and fy ¢, in Case 2 of the proof of Proof of
Proposition 2.43 for m = 0. The map fy ¢ and the points 0 and v(R,,()) are drawn in blue. The

map fo, and the corresponding intervals I, y, and [, ;| r,(¢,) are drawn in red.

In any case,
0 < diam (fo,0, (I, 0,)) <2-27"5* forevery jeN

and, by (2.1), lim;_, diam (fo,6, (i, 6,)) = 0. This ends the proof of the claim.
By the last claim, to end the proof of the proposition in the case m = 0 it is enough to show
that (2.2-2.3) hold. We start by proving (2.2). By Lemma 2.46,

mi,(BA(By [(i;)7])) = My, (BA(B; [(i;)"])) =0,

and from the definition of the maps m;;, and M;,, Definition 2.15 (or Lemma 2.28) and Re-
mark 2.16(2), for every s € B ((i;)*) we get

—1<m;,(s) <0< M,(s) <1, and

2.4
(s) — mi, () = diam(T;, ) < 227", 24)

M,

1

So, (2.2) holds by (2.1). Now we prove (2.3).
By (2.1), (2.2) and (2.8), it follows that

mi, (9j) < ’y“j‘(aj) < Mj (Oj) if 9j 7é (ij)*, and
mi, (0) <,,,2.(05) = 0 < M, (6;) if0; = (i;)".

Also, from Definition 2.41, the definitions of G; and g, , (Definitions 2.29 and 2.31), and Lem-
mas 2.30(c) and 2.32(c) we get
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f079j (’Y\ij\ (ej)) =G0, (’y“ﬂ (ej)) = ’y\ij+1\ (Rw(ej)) if Hj # (ij)*’
Foy Oy 03)) = 9, . (1 65)) = 3, (Rul0))) if0, = (i;)" and ; > 0, and
fO,Qj (fy‘ij‘*l(ej)) = ng,ej (V\ij+1| (01)) = ’Y|ij+2\ (Rw(ej)) if 9]' = (ij)* and ij < 0.

Thus, to prove (2.3), we have to show that

im0 7,4y (Ru(05)) = 7(Rw(0)) if6; # (i5)",
lim; 00 %, (Ru(65)) = 7(Rw(9)) if 0; = (i;)* and i; > 0, and (2.5)
lim, oy, 1 (Rul6))) = 7(Ru(6)) i£6; = (i;)" and i < 0
(that is, we take z; := %jl(ej) if 0; # (ij)*, z; == fyijfl(Hj) if0; = (i;)*and i; > 0, and z; :=
7“j|71(6j) if; = (i;)* and i; < 0).
Let ¢ > 0. By Lemma 2.35(c) and Definition 2.18(R.1) we have that § ¢ O*(w) and, hence,

R, (0) ¢ O*(w). By the continuity of v on S*\O*(w) and the fact that lim; . 7, = -, there exist
0 > 0and L € Nsuch that

[v(R.(6)) — 7(5)\ <e/2 forevery 0 € Bs (R, (6))\O*(w), and
doo (7,7,) < €/2 foreveryi> L.

Then, since lim;_,, 0; = 6 and lim;_, . |i;| = oo, there exists N € N such that |# — §,| < §/2, and
lij| > L+ 2 forevery j > N.

First we will show that

V(R (0)) = ;40 (R (0))) < €

for every j > N such that §; # (i;)*. To see it observe that, by Definition 2.18(R.2) and Re-
mark 2.19(R.2), 6;, R.,(0;) ¢ Z ., whenever 0; # (i;)". Thus, v, ., is continuous at R,,(6;) by
Lemma 2.20(a).

Also, there exists a sequence {é\j[}?il C (Bs/2(6;) N B;((lj)*))\O*(w) converging to 6;, be-
cause S'\O* (w) is dense in S. Clearly, for every j > N, we have {R,,(0,,)}32, C Bs(R.(0))\O*(w)
and limy_, o R,,(0;,) = R, (6;). Moreover, since {R,,(6;,)}2, € S1\O*(w) C SV Vi, 4, 1

~

defined for every R,,(6,,). Then, for every j > N and ¢ € N, we have
Y (Ro(8)) = 7y, 11, (R@3 )] < H(R6)) — 3(Ro @)+
Y (Reo(05)) = 7, oy (R (05,)]
<5 +ds ('7’7“,-“\) <e.
Consequently,
YR (0) = %, (RO)] = Jim |y (Ra(0)) =7, (Ru(@3,))] < ¢
This ends the proof of the first equality of (2.5). The second and third equalities of (2.5) follow

as above by replacing Viig 411 by -, (respectively Viiy 421 ), and noting that
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((; +1)" ¢ 27 ifi; >0, and

((=(igl =1 & Zji |, ifi; <0

This ends the proof of the continuity of Tj, and the proposition for the case m = 0.

Ru(6;) = Rul(if)) = {

2.9 Proof of Proposition 2.43 for m > 0

This section is the second technical counterpart of Section 2.7 and is devoted to prove Proposi-
tion 2.43 for every map 7}, with m > 0. To do this we will need some more technical results.
Also we will use the notion of fibre map function introduced in the previous section.

The next two lemmas establish some basic properties of the maps ka,v and clarify some
aspects of Definition 2.42.

Lemma 2.49. For every m € N and for every 0 € B,

fm,@ |Hi,9 =00 ’]va

where i = b™ (0, m) . Moreover, assume that 6 € WB_\WIB, . Then,

gi,B (.T/') #x E Hi,97

2—g; o (mi(0)) .
fmo(@) = m(ﬂn—l,e(‘r) —2)+2 ifxe[=2,mi(0)],

244, , (Mi(6)) ‘
m(fm—l,e(@ +2) -2 ifxe[M(0),2].

Proof. We start by proving the first statement. When § € B, there is nothing to prove. So, assume
that € B”\B,,. By Definition 2.38,6 € WB_,i < 0 and 6 € B[ [i*] \Ba,, (i*) . By Lemma 2.39(b),

m

m,0 "

Lo ={v,(0)} cIW

Consequently, by Definition 2.42 and the definition of the maps g, , for i < 0 (Definition 2.31 —
notice that I,  C R (i*) by definition),

Jm.o ('Ym(e)) = Vi) (Ru(0)) = Gi.0 ('7“\(9)) .

So, the first statement holds. Now we prove the second one. By Lemma 2.39(b),

Tig = {mi(0)} = {Mi(0)} = {7, (0)} = {Am(0)} = {Tm(0)} =TW,,.

Thus, by the part already proven, the formulas

g.,(x) ifx ey,

2—g, o (mi(0)) .
m(fm_l’g(x) — 2) + 2 lf T € [72,m|(0)},

2+g, , (M;(0)) .
m(.fm_lﬁ(x) —+ 2) -2 lf xr € [M(Q), 2],
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and

7\i+1| (Rw (6)) if € I[Wm

29, (Ru(®)) .
ooy (fm-1e(@) —2) +2 ifz € [-2,2,(0)],

24, (R (0)) ,
Tt Sm—10(2) £2) =2 ifz € [1(6), 2],

07

coincide.

Lemma 2.50. The following statements hold for every m €¢ Nandi € ©,, :

(a) The map T, |v: is well defined and continuous.
(b) For every 0 € B; [i*],
(b.4) fimo(2) = —2and f0(—2) = 2,
(b.ii) fpm,o is piecewise affine and non-increasing, and
(b.iii) =1 < fin,0 (M;(0)) < fm,o (mi(6)) < 1.

(c) Tm|Rv(i*) =G, and T,, (Q[‘Z;) = 2[|(;Ill|)

Proof. Clearly, T;, |V_~ is well defined and continuous if and only if so is f,

We will prove by induction on m € Z* that, (a), (b) and

v
v

(b.iv) fm}9|[_2 ) and fm}9|[1 z are affine, f0(—1) < 2and f, (1) > —2

hold for every 6 € B; [i*].

First we will show that (a), (b) and (b.iv) hold for m = 0 and i € ®, (we are including the map
fo studied earlier to correctly start the induction process). By Proposition 2.43(a,b) for m = 0 we
have that Tj ‘v,' is well defined and continuous and (b) holds. By Definition 2.41, we also know
that fm79’[72’m1:(0)] and fma‘)‘[Mi(e),z] are affine. Then, (b.iv) follows from —1 < m;(0) < M;(0) < 1
(see Lemma 2.28(a)) and (b.iii).

Assume now that (a), (b) and (b.iv) hold for some m —1 € Z+ and proveitformandi € D .
By Lemma 2.34(a), § € B;[i*] & Bj[k*] for some k € ©
fm—1 ’v: is well defined and continuous.

By Lemma 2.28(a) and Definition 2.38,

Consequently, V;» C V. and

m—1"°

—1 < m;(0) < M;(0) for 6 € B; [i*], and

<1
- B 2.1)
1< An(0) STn(0) <1 for 0 € By [i*]\Ba,,, (i*) C WB_ (i < 0).

Consequently, by (b.ii) and (b.iv) for m — 1,

-2 < fmflﬁ(l) S fmfl.ﬂ (Mz<9)) S fmfl,e (mz(e)) S fm,@(_l) <2

for every 6 € B; [i*], and
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-2 < fmfl,G(l) S fmfl,e (Tm(e)) S fmfl,e (Am(e)) S fm,G(_l) <2

for 0 € By [i*] \Ba,, (i*) C WB_~ when i < 0.
On the other hand, as it was observed in Definition 2.42, f,, ¢ is defined in two different
ways when § € WB_ N B, . In such a case, by Lemmas 2.39(a,b) and 2.49, § ¢ WIB, , and both

definitions for f,, ¢ coincide. Hence, f, is well defined.

v

Now we prove that f,, |v; is continu(:/ﬁ; by using the continuity of f,,_; |v;' Since By, [i*] C
B,,, by Definition 2.42, the continuity of the maps m; and M, (see Lemma 2.28(b)), and the
continuity of the maps g; (Lemmas 2.30(a) and 2.32 (a)), fm‘ﬂ Bay 7] is continuous. Now we
assume that ¢ < 0 and we study the continuity of fm|TTU on a connected component U of
B7[i*] \Ba,, (i*) . Observe that, by Definition 2.38 and Lemma 2.34(b), U is a connected com-
ponent of WB . Then, again by Definition 2.42, the continuity of the maps )\m|U and Tm|U
¢ (Lemma 2.20(a) and Definition 2.18(R.2) and
Remark 2.19(R.2)), fm |y, is continuous. Therefore, f,,
fined on 1T ((B7[i*] \Ba,, (i*)) N Ba,, [i*]).

Lett € B, [¢*] C B,,. By Definition 2.42, and the definition of the maps g; ¢ (Definitions 2.29
and 2.31), fmﬁ!hﬁ is piecewise affine and non-increasing. So, by Lemma 2.49 for m — 1 and

(Lemma 2.40), and the continuity of the map v,

|v’ is continuous because it is well de-

Definition 2.42, f, 0(2) = =2, fme(—2) = 2, and fm79|[—2,m,;(9)] and fm’(”[Mi(G),Z] are affine
transformations of the map f,,,—1,¢ with positive slope. Hence, (b.i,ii) hold for f, ¢ in this case.
Moreover, (b.iv) is verified by (2.1) and (b.iv) for m — 1.

Consider § € B/ [i*]\By,, (i*) C WB . Again by Definition 2.42, fm,9|ﬂwm , is constant.
Then, (b.i,ii) and (b.iv) hold for f,, ¢ as above by replacing m;(6) and M;(6) by A, () and 7,,,(6),
respectively.

By (b.ii) and (2.1) we have f,, o (M;(8)) < fim,0 (m;(8)) . Hence, (b.iii) follows from Lemma 2.49,
Definition 2.42, Lemmas 2.30(b) and 2.25(c), Definition 2.18(R.2) and Remark 2.19(R.2), Lemma 2.32(b)
and Lemma 2.20(b).

() In a similar way to the proof of Proposition 2.43 for the case m = 0,
R =] {0} xLecVicV,
6eB; [i*]

and, by Definition 2.42, Lemma 2.49 and the definition of G; (Definitions 2.29 and 2.31) it follows
that

Tm(97.')3) = (Rw(e)vfm(gﬂx)) = (RW(9)7gi,9(x)) = Gi(9,$)7

for every (0,z) € R™(i*). Thus, T,, (QJ.‘Z:I) = mf;:ll\) from Lemmas 2.25(b), 2.30(c) and 2.32(c).

The next technical lemma compares the images of f,, 9 and f,,,—1,¢ on a point. It is an exten-

sion of Lemma 2.36.
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Lemma 2.51. Assume that B; [i*] C By [k*] forsomei € ©, , k € ®, , and m € N. Then, for every
0 € BT \Bay, (i*), mi(6) = Mi(6) = () and

i

fm,@ (ml(e)) =Y (ml(e)) = Vit (Rw(e)) , and
fmfl,e (ml(e)) = Gr0 (ml(e)) = Ykt (Rw(a)) :
Proof. The fact that m;(0) = M;(0) = ~,(0) follows directly from the definitions. The first equa-
tion follows from Lemma 2.49, and the definition of the map g, , (Definitions 2.29 and 2.31).
By Lemma 2.36, I; g = {m;(0)} = {v,,,(0)} C I 4. Moreover, as in the proof of Lemma 2.36,
0 # k*. Consequently, by Definition 2.41, Lemma 2.49, Lemmas 2.30(c) and 2.32(c) and (2.1)
(alternatively, for the last equality check directly the proofs of the Lemmas 2.30(c) and 2.32(c)),

1.0 (Mi(0)) = gep (mi(0)) = g, (74 (0)) = Vi) (R (0)) -
The following lemma is the analogue of Lemma 2.46 for m > 1. To state it we will use the set
MEB. =EB_ xICV_.
Lemma 2.52. Tm|mm* =T,_1 |TTEB~ for everym € N. Equivalently, f, 9 = fm—1.0 for everym € N
and 0 € EB_ .

Proof. Fix m € Nand 6 € EIEB: C B . By Lemma 2.34(a,b), there existi € ©,  and k € ©  _,
such that § € Bd (B; [¢*]) C B; [i*] & By [k*]. So, we are in the assumptions of Lemmas 2.36 and
2.51 and, hence,

Hiﬁ = {ml(e)} = {’YM (9)} = {7\1‘:\(9)} C Hkﬂv
fm.o (mi(0)) = g, , (Mi(0)) = ,,,., (Ru(0)), and
fm—l,b‘ (ml(g)) = G0 (ml(e)) = Vk+1 (Rw(g)) :

Thus, ifi > 0,60 € B, and, by Definition 2.42 and Lemma 2.50(a), to prove that f,, 9 = fim—1

we only have to show that

9i0 (ml(g)) = Vjig (RW(H)) = Vs (Rw(a)) = fmflﬁ (mi(g)) .

Wheni < 0,0 € WB_ NEB_ and, by Lemma 2.39(a), § ¢ WIB, . Then, by Lemma 2.49, we
get again that

9io (Mi0)) = 7,1 (Ro(0) = 7,1 (Ru(0) = frn1.0 (mi(0)) .

implies fn.0 = fm—1.0-
If |k + 1| = |i + 1| there is nothing to prove. So, by Lemma 2.36, we can assume that |k + 1| <

|i + 1| and we have
Vit (Rw(e)) = Vikt1l41 (Rw(e)) == Vg1 -1 (Rw(e))
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Hence, we have to show that,,, (R,(0)) =7, ,,,_, (Ru(0)).Ifi > 0 we get

Vs (B (0)) =7y (Bu(0)) =7, (Rw(0) = 7,142, (Ru(0))

by Lemma 2.20(e). Otherwise we have i < 0, § € Bd(B;[i*]) = Bd (Ba,,,, [i*]) and, conse-
quently, R, (f) € Bd (Ba,,,, [(i + 1)*]) . Again by Lemma 2.20(e) for j = i + 1],

’y|i+1| (RUJ<9>) = ’Y\H—l\—l (RW(9)> .
This ends the proof of the lemma.

Now we aim at computing two different kind of upper bounds for || .0 — fm—1,0/| (Lemma 2.54
and Proposition 2.44). This will be a key tool in the proof of Propositions 2.43 for m > 0 and 2.44.
The next two lemmas and remark will be useful to automate and simplify the proofs of these

two results.
Lemma 2.53.

when 0 € B \WIB,_, and

m/
5(6,m).0 5(6,m),0

Hfm,@’]l‘ _fm—lﬁl]l’

| frmo — fm—1,0ll =
when 0 € WIB

m/

Hfm,@ ’HWm,Q - fm_179|HWm,,6

for everym > 2and 0 € B .

Proof. Seti=b (6,m) € D, _,sothatd € B; [i*].
When § € B”\WIB,, =B, UWB_\WIB, , by Definition 2.42 and Lemma 2.49, it is enough
to show that

|fm,0(@) = fin—1,0(@)] < |fim,0(mi(6)) — fr—1,60(mi(0))]

for every x € [-2,m;(0)], and

[fm.0(x) = fmn—1.0(2)| < |fin.0(Mi(0)) = fin—1.0(Mi(0))]

for every « € [M;(9), 2]. We will prove the first statement. The second one follows similarly.
Definition 2.42 and Lemma 2.49 give
2—g,, (mi(0))
m.o(x) — fm_10(x) = : m—10x)—2)4+2— f_16(x
f ,9( ) f 1,0( ) 2_fm71,6 (ml(G)) (f 1,0( ) ) f 1,9( )

~ 2= fme (mi(0))
S 2- fm—l,e (mz(G)) (fmfl,e(l') o 2) - (fmfl,e(iﬂ) — 2)

B 2 — fm,0 (mi(0))

= (fmfl,e(x) - 2) (2 — fmi,e (mz(a)) - 1)

Jmo (Mi(0)) — frm—1,0 (Mi(0))
2 — fm—1,0 (m;(0)) '

By Lemma 2.50(b), 2 > fr—1.0(x) > fin—1,0 (mi(#)) and 1 > f,,,_1 ¢ (m;(6)) . Hence,

= (2= fm-1,0(2))
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‘fm,@ (mz(e)) — fm—l,@ (mz(e)ﬂ
2—fm-10 (m;(0))

< [fmo (mi(0)) = fm—1,6 (mi(0))].

|fm,9(x) - fm—l,@(x” = (2 - fm—l,@(x))

Now assume that § € WIB,, C WB_ . By Definition 2.42 it is enough to show that
[fm,0(@) = fn—1,0(2)] < [ fin,0Am(0)) = Frn—1,0(Am(9))]
for every z € [-2, A\, (6)], and
[fm0(2) = fmn—1.0(@)] < |fm,0(Tm(0)) = Fin—1.0(7m(0))]

for every = € [1,,,(0),2]. As before, we will prove the first statement. The second one follows

similarly. We have

fm,G ()\m(o)) - fm—l,Q (/\m(g))
2_fm71,9 (Am(e)) .

By Lemma 2.50(b), 2 > fi,—1,0(x) > fm—1,0 (A (0)) and hence,

fm,@(x) - fm—lﬂ(x) = (2 - fm—lﬂ(x))

| fm,0(x) = fin—1,0(@)] < |fim,0 (Mi(0)) — fin—1,0 (mi(6))]

provided that 2— f,;,_1 ¢ (A, (0)) # 0. Assume by way of contradiction that we have f,,,_1.9 (A, (6)) =
2. Then, by Definition 2.38 and Lemma 2.50(b), —1 < A,,,(#) and

2 > fm71,0(—1) > fmfl,e (Am(e)) = 2;
which contradicts statement (b.iv) from the proof of Lemma 2.50.

Next we compute an upper bound for || f,, 0 — fm—1,0| for every 6 € B [i*] and i € ©_, such

that diam(B; [¢*]) is small enough.

Lemma 2.54. Assume that T,,,_ is continuous for some m > 2 and let € be positive. Then, there exist
om(€) € N such that
Hfm,G - fm—179|| <e

for every 0 € By [i*] and i € D, (that is, By [i*] C B ) such that |i| > 0, (g).

Proof. Since T,,_1 is uniformly continuous, there exists §,,—1 = d,,—1(¢) > 0 such that
do(Tm-1(0,2), Tn1(v,y)) <e

provided thatd, ((6, z), (v,y)) < d;m—1. We choose 0., = o (€) € N such that
3279 < min{d,,—1(e/2),e/2}.

Assume that i € D  verifies |i] > o,,(¢) and let (0,z2) € V. = B;[i*] x I. When 6 €
B [i*] \WIB, we can use Lemma 2.53 with I; 9 to compute || fi.0 — fm—1,0] - We have to show

that | fr0(x) — fin—1,60(z)| < € for every z € I, ¢.

86



Let v € Bd (B[ [i*]) C EB_. We have (0, z), (v, m;(v)) € R™(i*) and, by Lemmas 2.50(c) and
2.20(f),

dn(Tm(oa .CE), Tm(l/, ml(”))) = drz (Gl(av 1‘)7 Gi(y7 mz(y)))
< diam (G; (R7(i"))) , and
d,, ((0,2), (v,m;(v)) < diam (R™(i*)) < 2- 27l < 3.27em < 5,,_1(e/2).
Thus,
drz (Tm—l(oax); Tm—l(’/a mz(y)) < 5/2'

Consequently, by Lemma 2.52,

[fmo(x) = fm-1,0(2)] = dg (T (0, ), T 1.6, ))
(T (0,2), Tyoeq (v, m; (V) +

dg (Ton—1(v, mi(v)), Trn—1(6, z))
<d, (T (0,2), T (v,m;(v))) +€/2

~

< diam (G; (R™(i"))) +¢/2.

(
(

Now we look at the size of G; (R™(i*)) . When i < 0, from Lemmas 2.32(b) and 2.20(f), we

obtain

~

diam (G; (R7(5*))) < diam (R((i +1)*)) < 270" < 2. 270, (2.2)
When ¢ > 0, from Lemma 2.30(b) we get

~ M(Ba, [(i41)"\Ba ., ((i4+1)"
Gy (RT(07) = Gy (RG) € R((G + 1)) uay (T I (009),

Moreover, as in the proof of Lemma 2.20(f) for ¢ < 0, the set

M(Ba, [(i+1)*]\ Ba, i+1)*
R((i+1)*)u2li£f G+ N\ Ba, 4 ((+1)7))

is connected. So, by Lemma 2.20(f),

~

M Ba, [(i+1)*]\Ba, , , ((i+1)*
diam (G; (R M(Ba [(+1) N\ Ba, ., ((+1) >))

(i*))) < diam (R((Z +1)*) U,y

M(Ba. [(i+1)*]\ Ba., i+1)*
< diam (R(( + 1)*)) + diam (Qlﬁ(f AT B () ))>

< 270+ | diam (Qtnf ‘”’[(Hl)*}\B“"*l((”l)*))) .

As noticed earlier, By, [(i + 1)*] \Ba,,, ((7 + 1)*) is disjoint from

Ba oy (14 1)) UB 144y (= + 1)U Z7,

by Definition 2.18(R.2) and Remark 2.19(R.2). So, by Lemma 2.25(c), Definition 2.18 and Lemma 2.20(a),
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Ay = {7 )} = {7 ()}
e {v} x [n(GE+1)%) =27 (I + 1)) +27™].

for every v € By, [(i +1)*]\Ba,,,((i +1)*). On the other hand, v,((i + 1)*) € I, 1 (i+1)- by
Lemma 2.20(c). Hence, by Remark 2.16(2), Definition 2.18(R.1) and Remark 2.19(R.1),

M(Ba, [(i+1)*]\Ba, i+1)*
b (31 408 04

< max {diam (Bg, [(i + 1)*] \Ba,,, (i + 1)) ,2- (27" +27"41)}
< 2 - max {ai, 27" 27”"“} =2. (27 4 27+
<4.27M <2270

Summarizing, when ¢ > 0,
diam (G (R™(:*))) <27 +2.27 < 3. 27"

and, from (2.2),
diam (G; (R™(:*))) <3-2711 <3.279m < ¢/2
for every i € Z". Thus, for every z € I, g,

(@) = frnmr.0(2)] < diam (G; (R™(i%))) +2/2 < e.

Now assume that § € B;[i*] N WIB, . We can use Lemma 2.53 with IW  , to compute
| fim,0 — frm—1,0ll - We have to show that |f,, 9(z) — fm—1,6(x)| < € for every z € IW . Since
¢ € WIB,, by Definition 2.38 and Lemma 2.39(b), i < 0,6 € WB_ and

]Ii’g = {’ym (9)} C HWm,e = Hg,g > T

with £ = b (0, led (6, m)) € WFD . In this case we will consider the points (0, z) € R(¢*) and
(v,mi(v)), (0,7, () € R™(i*) with v € Bd (B; [i*]) C EB . By Lemma 2.37(b), Remark 2.16(2)
and Lemma 2.20(f), |i| < |¢| and

de ((0,2), (v, mi(v)) < d, ((0,2),(0,7,,(0) +d,((0,7,,(0)), (v, mi(v))
<z =, (0)] + diam (R™(i*))
< diam (R(£*)) 4 diam (R™(i*))
<27 4997l < 3. 97l < 3. 97em < 5. _1(/2).
Thus,
d,(Trm-100,2), T—1(v,m;(v)) < e/2.

On the other hand, by Lemma 2.50(c), Definition 2.42 and (2.2),
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dyy (T (0, ), T (v, ms (1))
< dy (T (0,2), T (0,7, (0))) + dyy (T (0,7, (0)), Ton (v, (1))
< fmo(@) = Fno (3, (0)] + dyy (Gi(0,7,,,(0)), Gi (v, mi(v)))
=d,, (Gi(0,2), Gi(v,mi(v))) < diam (G; (R7(i*))) < 2271
<3-279m < g/

So, in a similar way as before, Lemma 2.52 gives

|fm,e($)*fm_1,e(x)\ d, (T (0, ), Ty—1(6, )
d, (Tin(0, ), Tpm1 (v, mi(v))) +
dn(Tm—l(Vvmi(y))’Tm—l(eax))

(0
(0
<E.

Proof (Proof of Proposition 2.43 for m > 0).

(@) We start by proving by induction on m that T, is continuous for every m € Z™.

By Proposition 2.43(a) for m = 0, Tj is continuous. So, we may assume that 75, is continu-
ous for some m € N and prove that T}, is continuous.

Let ¢ > 0 be fixed but arbitrary, and let (6, z), (v,y) € 2. We have to show that there exists
d(g) > 0 such that

d, (T (0,2), Thn(v,y)) <e when d,((0,2),(v,y)) <.

We start by defining d(¢). To this end we need to introduce some more notation and establish
some facts about the maps T,, and T}, ;.

Since T},—1 is uniformly continuous, we know that

there exists d,,—1 = 0m—1(¢) > 0 such that d,(T,,—1(6, ), Tin-1(v,y)) < € provided

thatd, ((6,2), (v,v)) < Om—1. @3)

On the other hand, Lemma 2.50(a) tells us that Tm|v.’ is uniformly continuous for every

1€, .50, foreveryi € ® _,

there exists 0,,; = dmi(e) > 0 such that d,(7,,(0,2),T,,(v,y)) < e for every

-~ -~ 24
(0,2),(v,y) € Vi C V" verifying d,, ((0,2), (,9)) < m,i(e). 24

Then, by using the numbers 6,,_1(¢/7) given by (2.3), §,,,:(¢/7) given by (2.4) and ¢,,(¢/7)
given by Lemma 2.54, we set

§ = 6(e) := min {Gn—1(¢/7), min{dn,i(e/7) 1 1 €D, N Z,, (/1) }} -

Clearly, 6 > 0 because theset® N Z, (/7 is finite.
Now we will show thatifd,, ((0, z), (v,y)) < 0, thend, (T, (0, z), T (v, y)) <
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Assume first that (0, z), (v,y) € V. forsome{ € D N Z, (/7). We have
d,((0,2),(v,y) <6 <min{0pmi(e/7): i €D, NZ, (c/1)} < Omele/7).

Hence, by (2.4),
d, (T (0,2), T (v,y)) <e/T7 <e.

Next we assume that (6, z), (,y) € V,. for some £ € D such that |¢| > p,,(¢/7) (in particu-
lar, 0, v € By [¢*]). In this situation we have

d, ((0,2), (1,y)) <0 < Om-1(c/7)
and, by (2.3) and Lemma 2.54,
do (Tn (0, %), T (v,y)) < dgp (T (0, ), T —1(0, %)) + d gy (Trn-1(0, %), Trn1. (v, y)) +

do (To—1(v,y), Tin (v, y))

= |fm.o(x) = fm-1,0(x)| + dg (Tn-1(0, ), T2 (v, y)) +
| frnw (¥) = fm—1,0 ()]

< | fmo = f-10ll +do(Trn-1(0, %), Trn—1 (v, y)) +
I fmp = fm—10]l

<3ec<e.
In summary, we have proved that
d, (T (0, %), T (v, y)) < 3

whend, ((6,x), (v,y)) < dand (6,z), (v,y) € V,. forsomel €D .

Next we assume that (6,z),(v,y) € V but (6,2),(v,y) ¢ V. for every £ € D . By
Lemma 2.34(a,b), there exist i = b (§,m),k = b (v,m) € ©, ,i # k, such that § € B [i*],
(0,xz) e V.., v € Bi[k*] and (v,y) € V.. Then, there exist

§c ANBd (B] [i*]) CEB” and »e ANBd(By [k*]) CEB,
where A denotes the closed arc of S' such that
diam(A) =d, (0,v) and Bd(A)={0,v}.

Clearly we have, (6, z), (5, z) €V, (v,y), (7,y) € Vi. and, by the previous case,

o ((0.2),(0.2)) =d,, (6, e) d., (0,7) <d, ((0,2), () <6,
d, (Tm (0. x)) e

d, (v,y), (7,y)) = d, ( ) d, (0,v) <d,((¢,2),(v,y)) <9, and
d, (T Tn(7y)) < 3.
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On the other hand, (6, z), (7,y) € MEB ¢ V7 ¢ V__ and, by Lemma 2.52 and (2.3),

d, ((0.2), (7,9) ) = max {d,, (0.7), ]z — 9|} < max{d,, (6,v), ]z~ yl}
=d,((0,2),(r,y) < < bmi(e/7), and
o (Tn(0,2), T (0,2)) + d,, (T (0,2), T (7)) +
dy, (T (7,9), T (v, )
< 3e+d, (Tm_l(ﬁ, ), Ty (7, y)) +2e=ce
If (0, ), (v,y) ¢ V_ then, by Definition 2.42 and (2.3),

dQ(Tm(G»x)va(Vv y)) =d, (Tm,1(97$),Tm,1(l/7 y)) < €/7 <e

because d, ((0, ), (v,y)) < 6 < dn_1(e/7).

Lastly, assume that (v,y) ¢ V"~ but (6,2) € V. C V_, for some i € D  (thatis, § € B; [1*]).
In this situation, as before, there exists § € Bd (B[ [i*]) C EB "~ such that, by Lemma 2.52 and
Definition 2.42 ((6,z) € TEB” c V™ c V7 _ ), and (2.3),

m—1

d, (T (0, 2), T (v,y)) < d,, (Tm(e,x),Tm(é, x)) +d, (Tm(é, z), T (v, y))

< %€+ dQ (Crm,—l(ga x)va—l(V’ y)) <e.

This ends the proof of the continuity of T}, and, hence, of (a).

(b) When 6 € B~ the statement follows from Lemma 2.50(b). When ¢ € S'\B_, it follows from

the part already proven and the continuity of T5,.

(c) The first two statements follow from Lemma 2.50(c) and statement (a). On the other hand,
as in the proof of Proposition 2.43(c) for m = 0, Lemma 2.35(b) implies thati* € B, buti* ¢ B~

for every k > m. Then, we get fi ;» = fm i~ from Definition 2.42.

2.10 Proof of Proposition 2.44

This section is devoted to prove Proposition 2.44. It is the third technical counterpart of Sec-
tion 2.7. In contrast to Lemma 2.54 the bound given by Proposition 2.44. is valid forevery § € B .
Before starting the proof of this proposition we will state and prove a number of very simple

lemmas that will help in automating the proof of Proposition 2.44.
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Lemma 2.55. Assume that B; [i*] C B [k*] forsomei € ®, , k€D,  _, and m > 2, and assume that
either
i<0and @ € By [i*]\{i*}ori>0and 0 € B, [i*] \Ba,,, (i*).
Then,
sy (R (8)) = V) (Ru(6))] < 27K,
Proof. The lemma holds trivially when |k 4 1| = |i + 1|. Thus, we may assume that |k + 1| #
|i + 1|. Then by Lemma 2.36, |k| < |i|, |k + 1| < |¢ + 1] and

Vik+1) (Rw(a)) = Vkt1)+1 (Rw<9)) == Vg -1 (Rw(e))

By assumption we have

0 {Bai [i*] \Ba,,, (i) when i > 0, and
By [i*]\{i*} = Bay,,, [i*] \{i*} wheni <0,
and, hence,
R0 < {Ba,.,[u £ 1)) \Bay, (i + 1)) wheni >0, and
Ba‘i+1‘[(i+1)*]\{(z’+1)*} when ¢ < 0.

Thus, in the case 1 > 0 we have
Ryy(0) ¢ Bayyy (14 1)) UBZ ;) [(=(+ 1)U 2],
by Definition 2.18(R.2) and Remark 2.19(R.2). So, by Definition 2.18,

’71‘4—1 (Rw(a)) =7 (Rw(g)) = ’y\k+1\ (Rw(a)) .

This ends the proof of the lemma in this case.
Assume now that ¢ < 0. By Lemma 2.20(c,d,f) and Definition 2.18(R.2) and Remark 2.19(R.2),

|7\i+1\ (Rw(g)) - 7\k+1| (Rw(e)” = |’Y|i+l\ (RW(Q)) - W\i#»l\—l (Rw(a)”
< diam (R((i +1)*)) < 27111 < 97 1H

(observe that |i + 1| > |k + 1| > |k| — 1).

Lemma 2.56. Let s,t € Z, s # t be such that 0 € B (s*)\By,, (s*),and eithert < 0and 0 € By, (t*)
ort>0and 0 € B (t*) . Then, the following statements hold:

Q41

(a) Rw(a) € Ba\s+1\((s + 1)*) n Ba\t+1|((t + 1)*) .
(b) Let u,v € Z be such that {u,v} = {s,t} and |u + 1| < |v + 1.

Then, Ly 41,r,,0) C Luy1,R,(0)-
(c)
lr —y| <2- 9—lul

forevery x € Iy 1 r,(9) and y € Iy11 R, (6)-
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Proof. By assumption we have

B, (%) when ¢t > 0, and
0e
By, (t*) C By (t*) = Ba,,,, (t*) whent <0.
Hence, R, (0) € Ba,,,, ((t+1)*). Moreover, as in the proof of Lemma 2.55, s < 0 and R, () €

Ba,.,,,((s +1)*) . This proves (a).

Now we prove (b). From (a) we have

Ro(0) € Bayyy (w4 1)) N Ba sy, (0 1))
C Bayuy (w4 1)) N BT [0+ 1)7).

Moreover, s # ¢t implies u+1 # v+1 and we have |u+1| < |v+1| by assumption. Consequently,
by Lemma 2.20(g,d) and Definition 2.18(R.2) and Remark 2.19(R.2), |u + 1| < |v + 1| and

R((v+1)) € Tnt (R((u+ )N\ M +1)7})

which implies (b).
Thus, z,y € 1,41, (9) and, by Lemma 2.20(f),

|z — y| < diam (R((u+1)*)) < 271wt < o=(ul=1) — 9 g—lul,
Now we are ready to start the proof of Proposition 2.44.

Proof (Proof of Proposition 2.44). We start by showing that {7},,} 72 is a Cauchy sequence, assum-
ing that the bound (2.1) holds for every m > 2 and 6 € S*.
We start by estimating d__ (T}, Trn,+1) for every m € N. From (2.1) and the definition of y,,

d (T, Trnt1) = sup || fm.o — fms1.0l <2 sup 96 (8,m)| < 2.2 Hm,
feSt 0est

By Lemma 2.35(a) {ftm } oo is strictly increasing (and lim,,,—, oo ftm = 00). Therefore, for every
€ > 0, there exists N > 2, such that 4 - 27#m < ¢ for every m > N. Hence,

m+i—1 m+i—1
d (T, Tinyi) < Z d(Te, Tyy1) <2 Z 27 ke
{=m l=m

<2.27m Y9l = g2 < 427N <
£=0

for every m > N and i € N. So, {T},,}72, is a Cauchy sequence.
Now we prove (2.1). That is,

| frm,0 — frn—1,0l] <2- 9—b(6,m~1)]

forevery m > 2and 0 € S!.
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From Definition 2.42 and Lemma 2.52 we know that fp, 9 = fin—1,0 for every 6 € (SI\B:) U
EB . Then, (2.1) holds in this case.

In the rest of the involved proof we assume that ¢ € IB%:L\EIB%;. Thus, by Lemmas 2.34(a,b),
2.20(g) and 2.36,
0 € B7 (i*) C By (k*)\ (Bd (Ba,, [k*]) U{k*}) where
i=b (H,meD, ,k=b(@m—-1)eD
|| < ||, and |k 4+ 1] < |i +1].

m—17

Moreover, V. C V,. C V. Consequently, by Lemma 2.50(a,b), the maps f,, ¢ and f,,_1, are

well defined, continuous, piecewise affine and non-increasing, and f,, 9(2) = fim—1,0(2) = —2

and fr,.9(—2) = fim—1,0(—2) = 2 (see Figures 2.6, 2.7 and 2.8 for some examples in generic cases).
We split the proof into three cases according to whether 6 belongs to

By (i")\Bay, (i), Bay, (i) C By (k") \Ba,,, [k"] or Ba, (i) C Bay, (k7).
Case 2.57. Case 1. 6 € B; (i*) \Bq, (i*) .

We have i < 0 because B; (i*) = B, (i*) for i > 0. Moreover, by Definition 2.38, 0 € WB_.
To deal with this case we consider three subcases.

Case 2.58. Subcase 1.1. 6 € (B; (i*) \Ba,, (i*)) \WIB, ,.
By Lemmas 2.36, 2.51, 2.53 and 2.55,
Lo = {mi(0)} = {7, (0)} = {7, (0)} C Lk,
fm,o (mi(0)) =, (Ru(0)),
fm—1,6 (mi(0)) =71, (Ru(0)), and
| fm0 = frn—1,0

= |[fmals,, = Frrols,, || = 1Fmo (i(0)) = frnoro (ma(6)
= |7|i+1| (Rw(e)) = Ykt (Rw(a)” < 2~ 10 @:m=1)l,

Case 2.59. Subcase 1.2. 6 € (B; (i) \Ba,, (i*)) NWIB,, and B (i*) C By, (k*) \Ba,, [k*].

In this subcase, by Definition 2.38 we have

0 € By, (k*)\Ba,, [k*] C WB |

(recall that ¢ < 0). Then, by Lemmas 2.36 and 2.39(b,c), Definition 2.42 and Lemmas 2.53 and
2.55,

Lo = {’Ym (9)} = {FYW (9)} - I[Wrn,e = I[Wm—l.e’
f’mﬂ(x) = 7‘1‘+1‘ (RUJ(G)) for every z e HW'"L,G’
fm—1,0(x) = Viws) (R.(0)) forevery x € IW _ , and

IIfm,e—fml,eH:Hfm,e\HW ol H
m,0 m,0

= |7\i+1\ (Rw(a)) = Vet (RW(Q)N < 27“"(977”*1”.
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Observe that since B; (i*) is connected and
By (i) € By (k%) \ (Bd (Bay, [k7]) U{k"}) .
By (i") & By (k") \Bua,, [k*] implies B/ (i) C Bay, (k") \{+"}.

Case 2.60. Subcase 1.3. § € (B (i*) \Ba,, (i*)) N WIB,, and B (i*) C Ba,, (k*) \{k*} (see Fig-
ure 2.6 for a symbolic representation of this case).

2 T | ]
[ | I
[ | I
- | |
[ | |
| | | |
o l |
| |
Miy1(Ru(0) b =---=---~ ‘*7‘*9,;5**‘F ********* i
| |
. | | |
let1,Rr0(0) fm.o N\ | ‘ :
e - - m— - - Y (R (0))
i (Ro(@) 222 ZIIIIT T N (e 41l
| | | I
| 1 1 |
| | !

[ | i
[ | |
[ | I
[ | I
o l |

: : : : f'mfl 0
| | | |
| | | |
[ | |
[ | |
[ | I
[ | I
o : !
[ | |
-2 [ 1 !

) A(0) ™m (0) } 2
1 m |
my (0) Ik.0 M (0)

Figure 2.6: A symbolic representation of the maps fn, o and f,,—1 ¢ in Subcase 1.3 of Proposi-
tion 2.44 (0 € (B; (i*) \Ba,, (i*)) N WIB,, and B; (i*) C Ba,,, (k*) \{k*}). The map f,, 1 and
the corresponding intervals I y and ;4 g, () are drawn in blue. The map f,, s, the interval

IW,  , and the point -~y (1, (¢)) are drawn in red.

By Lemmas 2.36 and 2.39(b) and Definition 2.42,

Lo = {’Ym 0)} = {’Y\k\ 0)} C ]IWm,ga and
fmo(®) =7, (Ru(0)) foreveryz € IW_ .

On the other hand, by Definition 2.38 and Lemma 2.37(a,b), § € WIB, C WDB_ , and

m?

0 € Bay,, [€"] C B; (i") \Bua, [i*] C Bay, (%) \{k"}
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with £ = b (0,led (0, m)) € WFD_ and |[¢| > |i| > |k|. Then, by Lemma 2.20(g) and Defini-
tion 2.38, R(£*) C Int (R(k*)\ i k:) and

]IWM’H = Hz,g C ]Ik’g.

Moreover, since 6 € B, (k*) C B, , Definition 2.42, Lemmas 2.30(b) and 2.32(b), and the defi-
nition of the maps g, , for i > 0 (Definition 2.29) give
fm—1,0 MW, ) C fin—1,0 (Ik,0)
Ipi1,R.(0) ifk<Oork>0andf € B,,,,(k*),
C
{ Ve (Rw(0))} ifk > 0and 0 € Bo, [K*] \Ba,,, (k")

Now, as before, we will use Lemma 2.53 to bound || fi,0 — fim—1,0]| . We start with the sim-
plest case: £ > 0 and 0 € By, [k*] \Ba,,, (k*) . By Lemma 2.55,

”fm.ﬂ - fm—1,0|| == Hfm,G|HW ) - fm—1,9|ﬂw .

Vigr) (B (0)) = Y0 (R (0))] < 9~ Ib(6:m-1)|

Now we assume that k < 0or k > 0and 6 € B, ,(k*) . In this case Lemma 2.56 applies. By
Lemmas 2.56, 2.20(d) and Definition 2.18(R.2) and Remark 2.19(R.2), and Lemma 2.53 we have

Yisr) (Ru(0)) € it r,0) € Tet1,r.(0)5

Jm-1,0(x) €11 p 9y foreveryxr € IW _ .

and

”fm,@ - fm—l,@” =Sup |fm,9('r) - fm—l,@(x)‘

IEHWm,e

=sup |’7|i+1| (RUJ (0)) - -f?"’b—l»‘g(x)|
xelW

m,0

< 9.97lkl — 9. 9= Ib(6:m=1)
This ends the proof of the proposition in this case.

Case 2.61. Case 2. 0 € By, (i*) C By (k*) \By,,, [k*] (see Figure 2.7 for a symbolic representation

of this case).

In this case we will use Lemma 2.53 with I; 9. Thus, we need to compare the maps fp, ¢ |11,- , and
fmfl,G ‘]Ii,e .

Directly from the definitions we get k¥ < 0, By, [i*] C B,, and B, [k*] C B
quently, by Lemma 2.34(b) and Definition 2.38,

Conse-

m—1"
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M1 (Ro(0))
Lit1, R (0)

mi+1 (R (9))

I

m;(0) =Xpm—1(0)

]\[7(9) = T,n_l(e)

Lio = HWW,*I.G

k+1,R., (0)

) (Ra(9))

Figure 2.7: A symbolic representation of the maps fy,,» and fy,—1,0 in Case 2 (0 € B, , (i*) C

By (k*)\Ba,,, [k*]) of Proposition 2.44. The map f,,,—1,¢ and the corresponding intervals IW

m—1,0

and I g, (s) are drawn in blue. The map f,, ¢ and the corresponding intervals I; o = IW  _ ,

and ;| r_(p) are drawn in red.

eB,

Moreover, led (§,m —1) = m, i = b (6, m)

tion 2.38, 6 € WIB

m—17

Furthermore, since k& < 0, as in the proof of Lemma 2.55, R, () € B

and

and 0 e B;‘il\Bm—1 C W]])Bm—l - WBsz

b™(0,led (0, m — 1)) € WED

e}

and, by Defini-

m—1

((k+1)*). Thus,

+1]

Definition 2.42, Lemma 2.20(d) and Definition 2.18(R.2) and Remark 2.19(R.2), give

foreveryx € I; g = IW

m—1,0"

fmflﬁ(m) = Vikt1 (Rw(e)) € ]Ik+1,Rw(9)

Now we will use Lemma 2.53 to bound the norm || fi,,0 — fim—1,0| - By Definition 2.38 and

Lemma 253,60 € B, C B \WIB

and

m?
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||fm79 - fmfl,O =sup |fm,9(x) - fm71,0($)|
z€l; 0
=Sup |fm,9($) - 7\1«4-1\ (Rw(e))l
z€ll; 0

Next we will compute f,, ¢(I; 6). We start with the simplest case: i > 0and 6 € By, (i*) \ Ba,,, (i*) .
By Definition 2.42, the definition of the maps g, , for i > 0 (Definition 2.29) and Lemma 2.55,

”fm,@ - fmfl,GH =Sup |fm,9(‘r) ™ Vikt1 (Rw(e))l
z€ll; 0

= i1 (Ru(8)) =71 (Ru(8))] < 27 16@m=1,

Assume that7 < Oori > 0Oand 6 € B,
mas 2.30(b), 2.32(b) and 2.56,

(¢*) . Then, again by Definition 2.42 and Lem-

i+l

fmyg(l’) (S HH—LRW(@) C ]Ik+17Rw(9) for every x € Hi’g,

and

Hfmﬂ - fmfl,QH =sup |fm,9(x) = Ykt (Rw<9))‘

z€l; 0

<2.271kl = 9. o= b (0,m=1)|
This ends the proof of the proposition in Case 2.
Case 2.62. Case 3. 0 € By, (i*) C By, (k¥).

In this case we have B, , (i*) C B, and B, (k") C B, _,
Lemma 2.20(g), R(i*) C Int (R(k*)\ TTk*) and, hence,

sothat,d € B, NB  _,. Moreover, by

Hi,«? C ]Ik.ﬂ.
Since 0 € B, , by Definition 2.38 and Lemma 2.53, 0 € B_ \WIB, , and
||fm,9 - fmflﬂ | = Hfm,@’]liye - fm71’6|ﬂi,e =sup |fm9($) - fmfl,e(f)‘~

z€ll; 0

Thus, we need to compare the maps f, ¢ |]I,‘ , and fm*179|]1,. ) To do this we consider two sub-

cases.

Case 2.63. Subcase 3.1. Either k < 0or k > 0and 6 € B,, (k")

(see Figure 2.8 for a symbolic representation of this case).
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Figure 2.8: A symbolic representation of the maps f, 9 and f,,—1,¢ in Subcase 3.1 from the proof
of Proposition 2.44 (8 € B%l(i*) and I; 9 C I and either K < Oor k > 0 and i* € By, [k*]).
The map f,,—1,¢ and the corresponding intervals I; y and [, g, (9) are drawn in blue. The map

fm,o and the corresponding intervals I; y and Il , ; R.(p) are drawn in red.

In this situation we aim at proving that

Jm—1.0 (Li0) s fno (Lig) C Tigr, R, (0)-

We start with f,,,_1 ¢ (I; g) . By Definition 2.42 and Lemmas 2.30(b) and 2.32(b) we obtain

Jm—1,0 Li0) C frn—1,0 Ix0) = 9,6 (Tx,0) C L1, R (0)-

Next we show that f,, 0 (Ii,0) C Ijt1,r.(6)-
Since k <0ork>0and 6 € B,,,,(k*), by Definition 2.18(R.1) we obtain

Ry, (Bay, (k) = Bay, (k4 1)*) C Bay,., ((k+1)%) if k <0, o

R, (0) €
Re (Bay1 (k) = Bay ., (k+1)%) if k > 0and 6 € By, ,, (k*).

Assume thati < 0ori > 0and 6 € B,,,,(i*). By (2.1) with k replaced by ¢,

Q41

Ry(0) € Bay,y, (i +1)") N Bay, (B +1)7) € By [(i+ 1) 0 By [(k+1)7].

Therefore, since |[k+1| < |i + 1| and k+1 # i+ 1, from Lemma 2.20(g) we obtain |k +1| < |i + 1],
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Ba|i+1| [(Z + 1>*] C Ba\k+1\ ((k + 1)*) \{(k + 1)*}7 and
R((i +1)*) C Int (R((k: FN Tk + 1)*) .

Thus, by Definition 2.42 and Lemmas 2.30(b) and 2.32(b),
Jmo (o) = g, (Lio) C Liva,r(0) C Tkg1, R (0)-

Now we will consider the case i > 0 and 6 € By, (i*) \Ba,, (i*) . The fact that |k| < |i| =i
implies |k + 1] < |k| + 1 < i. We claim that

Ba; (i 4+1)7) € Bajppy (K +1)7)\{(k+1)"}-
To prove the claim note that, by (2.1),
Ro(0) € Ro (Ba (1) N Bayyyy (R +1)7) C Ba (i + 1)) N By [(k+1)7].

Moreover, the interval By, ((i + 1)*) is disjoint from B; [¢*] and B~ ,[(—%)*]| by Definition 2.18(R.2).
Thus, i # k+1,—(k + 1) and, hence, |k + 1| < i (thatis, k + 1 € Z;_1). So, there exists g € Z;_;
such that By, [(i + 1)*] N B [¢*] # 0 and |q| > |k + 1| is maximal verifying these conditions. By
Definition 2.18(R.4),

Ba, ((i+1)") € By (¢")\ (Bd (Bay, [¢"]) U{a"}) -
So, the claim holds when ¢ = k + 1. Assume that ¢ # k + 1. Then,
R,(0) € Ba, (i + 1)) N Bay,y,, (K +1)%) € By (¢") N Bay,y,y, (K+1)7).
Hence, by Lemma 2.20(g), |¢| > |k + 1| and
Bo, ((i4+1)") € By [a"] € Bagyy (K + 1)) \{(k +1)"}.

This ends the proof of the claim.
On the other hand, by Definition 2.18(R.2) and Remark 2.19(R.2),

(Bai [(’L + 1>*] \Bai+1 ((l + 1)*)) N Zi+1 =0.
Thus, by the claim,

Ru(8) € Ruy (Bay (i) \Bavs, (i) = Bay (i 4+ 1)) \Bay., ((i+1)")
C Bapy, ((k+1)")\Zis.

By Definition 2.42, the definition of the maps g, , for i > 0 (Definition 2.29) and Lemma 2.20(d)
(with{=k+1landn=1i+1),

Smo {ig) = 9,0 [ig) = {7ie) (Ru(0)} C Lis1,r.(0)-
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Summarizing, we have proved that

Jm—1,0 (Li,0) s fm,0 (Li,0) C Tig1,m(0)-

So, by Lemma 2.20(f) (and the fact that |k + 1| > |k| — 1),

I frm.6 — fm—1.0ll =sup [fin6(x) — fm-1,0(z)| < diam (Hk+1,Rw(9))

z€l; 0
< diam (R((k + 1)*)) < 27+l < 2. 97kl — 9. 9= b (6:m—1)]
This ends the proof of the proposition in this subcase.
Case 2.64. Subcase 3.2. k > 0 and 0 € B, (k*) \Ba,,, (k")

We start by computing f,, 1,9 (I;9) . By Definition 2.42 and the definition of the maps g, , for
k > 0 (Definition 2.29),

fm—1.0{i0) C fn—1,0 (Ie0) = 95 5 (Ik0) = {7y (Bu(6))}-
Analogously, if i > 0 and 0 € By, (i*) \Ba,,, (1*) ,

fmﬂ (Hiﬂ) =G (]Iiﬂ) = {77:+1 (Rw(o))}

Then, by Lemma 2.55,

||fm,9 - fm—lﬂ” = Hfm,0|]1i76 - fm—l,9|]liﬁ
= |’7i+1 (Rw(a)) - ’Yk+1 (RW(Q)N S 27|b(0,m71)\.

Assume now thati < Oor7 > 0Oand 0 € B
mas 2.30(b) and 2.32(b)

(¢*). By (2.1), Definition 2.42 and Lem-

Qi1

Ro(8) € Ba,... ((i +1)*), and

fm.o (Lig) =9, , (Lio) C L1 R, (0)-

Alit1]

Moreover, if k£ + 1 < |i + 1|, by Lemmas 2.36(a) and 2.20(c), we have

fm—l,@ (Hi,9) = {7k+1 (Rw(e))} = {’y\i+1|—1 (Rw(e))} - Hi+1,Rw(9)'

Therefore, by Lemma 2.20(f),

Hfmﬂ - fm71,0| =sup |fm,9(x) - fmfl,O(‘r)‘
z€l; 0
=sup |f77L,9(x) = Vig1)—1 (Rw(e)”
z€l; 0

< diam (Ii11 g, (g)) < diam (R((i +1)*)) < 27+
< 2= (k+1) ~ 9= Ib(O,m—1)|
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So, to end the proof of the proposition we have to show that, in this subcase, k + 1 < |i + 1.
To prove this, notice that wheni > 0, k+ 1 = |k| + 1 < |i| + 1 = |i 4+ 1|. So, assume by way of
contradiction thati < Oand k 4+ 1 = |i + 1| (recall that k + 1 < |i + 1|). Then, k+1 = —(i + 1)
and, hence,
R, (0) € R, (Bqy, (k*)) = By, ((k+1)%), and
Ru(0) € Bay,yy (1)) = Bayyy (—(k 1)) € By (= + 1)),

which is a contradiction by Definition 2.18(R.2).
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