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CHAPTER 1

Introduction

1.1. Motivation

The groups are one of the most interesting mathematical objects since, although they
have a very simple definition, they generate a very complex theory.
Since Galois introduced the notion of group to study the solutions of polynomial

equations, many mathematicians have worked to understand them. In fact, for almost
two hundred years the mathematicians have been trying to classify all finite groups by
using normal subgroups and extensions. This led to the notion of finite simple group, as
those groups having no proper nontrivial normal subgroups. Therefore, by considering
extensions of groups, we can see the finite simple groups as the building blocks for all
finite groups.
All the work seems to culminate with the classification of finite simple groups in the

mid 2000s but, although the classification statement is pretty simple, the proof of the
classification is one of most complex proofs in the history of mathematics. In fact, the
complete proof consist of over 12.000 pages spread across over 500 papers. This is why
most group theorists are not completely satisfied and still work in a better understanding
of the finite groups, by means of a simpler and self-contained proof.
One interesting method to understand any mathematical concept is to look it from

a different point of view. For the case of finite groups, one possibility is to look at it
from the algebraic topology point of view. In particular, for any finite group G we have a
topological space, BG, whose fundamental group is again G. In this sense, the topological
space BG contains all the algebraic information of the group G, and we can try to better
understand finite groups by doing homotopy theory with BG.

If we want to specialize, a good choice would be to restrict ourselves to finite p-groups,
since they satisfy many good properties. This suggests that we could try to isolate the
information of the groups at some prime number p, and then use the information at all
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1. Introduction

primes to recover information of the group G. From the topological point of view, this
can be achieved by p-completing the topological space BG to obtain another topological
space, denoted BG∧p , where only the homotopy information at the prime p is preserved.
Is in this sense that we talk about p-local properties.

Then, an interesting question to study from the point of view of algebraic topology is:
can we characterize those topological spaces which are the p-completed classifying space
of some finite group G?
Working to answer this question, Broto-Levi-Oliver introduced in 2003 the notion of

p-local finite group, trying to better understand, using algebraic topology tools, how
a Sylow p-subgroup of a group G behaves with respect to the conjugation morphisms
induced by elements of G.
More precisely, a p-local finite group is a triple (S,F ,L) where S is a finite p-group

and F and L are categories known as saturated fusion system and centric linking system,
respectively. A saturated fusion system F over a finite p-group S consists of a category
whose objects are the subgroups of S and the morphisms emulate the behavior of the
conjugation morphisms when S is a Sylow p-subgroup of a bigger group G. A centric
linking system L associated to F is also a category, with objects a certain class of
subgroups of S, and whose morphisms contain just enough information to be able to
construct a topological space with properties similar to those of the classifying space of a
finite group.
Moreover, they were able to characterize those topological spaces which appear as

classifying spaces for p-local finite groups. The problem is that, although any finite group
G with S ∈ Sylp(G) produces a p-local finite group denoted as (S,FS(G),LcS(G)), not all
p-local finite groups come from finite groups. This last kind of examples are known as
exotic p-local finite groups.
Therefore, it turns out to be necessary to understand the exotic examples in order to

completely characterize the topological spaces which appear as p-completed classifying
spaces of finite groups.
In this thesis we make our contribution to this achievement by constructing new

examples of exotic p-local finite groups for p ≥ 5.
More precisely, consider the action of the cycle (1, 2, . . . , p) on (Z/pk)p by permutation.

This actions leaves invariant a subgroup isomorphic to (Z/pk)p−1 consisting of the tuples
such that the sum of its coordinates is zero. Therefore, we have an action of Cp on
(Z/pk)p−1 and we can consider the group Sp,k = (Z/pk)p−1 o Cp. The center of Sp,k is
cyclic of order p, so we can consider a generator ζ ∈ Z(Sp,k). Finally, denote by s a
generator of the subgroup Cp and consider the elementary abelian subgroup V = 〈ζ, s〉.
Then, if we write by Tp,k the subgroup (Z/pk)p−1, we have the following result.

2



1.1. Motivation

Theorem A. For each p ≥ 5 and k ≥ 2, there exists an exotic p-local finite group,
denoted by (Sp,k,Fp,k,Lp,k), such that the outer automorphisms groups in Fp,k satisfy the
following:

• OutFp,k(Sp,k) = C p−1
2
× Cp−1

• OutFp,k(Tp,k) = Ap o Cp−1

• OutFp,k(V ) = SL2(Fp)o C p−1
2

Moreover, the p-local finite groups (Sp,k,Fp,k,Lp,k) are simple, in the sense that they have
no proper nontrivial normal subsystems.

Another usual method to understand a theory is to generalize the objects we are
interested in, trying to strip away their structure to the bare minims, hoping in this way
to become able to understand the more intrinsic properties.

One important way to generalize finite groups is to consider compact Lie groups, and if
we only want to deal with p-information, the p-compact groups defined by Dwyer and
Wilkerson in 1994 are a pure homotopic generalization of the compact Lie group theory.

Following this direction, Broto-Levi-Oliver generalized the notion of p-local finite group
to the notion of p-local compact group, motivated by the p-completion of classifying
spaces of compact Lie groups and p-compact groups. If we want to make a construction
parallel to the p-local finite groups but looking at compact Lie groups and p-compact
groups, we need first to consider the Sylow p-subgroups of these kind of groups. These
Sylow p-subgroups are discrete p-toral groups and have a well known structure: they are
an extension of a finite product of Prüfer groups Z/p∞ by a finite p-group π. Then, a
p-local compact group is again a triple (S,F ,L), where S is in this case a discrete p-toral
group, F is a saturated fusion system over S and L is a centric linking system associated
to F .
We have, similarly to the finite case, that any compact Lie group and any p-compact

group give rise to a p-local compact group. In general we know that, if the group of
components of a compact Lie group G is a p-group, then, by p-completing its classifying
space BG we obtain a p-compact group (G∧p , BG

∧
p , Id). However, we cannot construct a

p-compact group from every compact Lie group. On the other side, nor is it true that
every p-compact group is the p-completion of a compact Lie group.

Therefore, one motivation to study p-local compact groups is that they provide a way
to study properties of the p-completion of compact Lie groups and p-compact groups
both at the same time.
In order to move from the finite case to the compact case, we develop the theory of

limit fusion systems. Aschbacher defined the concept of morphism of fusion systems in
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1. Introduction

2008, and we prove here that, for any direct system of fusion systems, we can consider
a limit fusion system which coincides with the categorical direct limit under saturation
hypothesis.
Then, using this limit construction, we can define new examples of fusion systems as

limits of the new examples of exotic p-local finite groups we described in Theorem A, as
well as the limit of a family discovered Broto-Levi-Oliver, denoted by F̃p,k, and a family
discovered by Díaz-Ruiz-Viruel for p = 3, denoted by F3,k.

Since we want to work with p-local compact groups, and not only with fusion systems
over discrete p-toral groups, we need to prove that the new fusion systems we construct
as the limits of F3,k, Fp,k and F̃p,k are saturated. This will suffice to obtain new p-local
compact groups by a result of Levi-Libman in 2015, stating that there exists a unique
centric linking system associated to any saturated fusion system over a discrete p-toral
group.

To prove the saturation conditions on the new examples of fusion systems we generalize
a saturation criterion for finite fusion systems given by Levi-Oliver in 2002 to the case of
fusion systems over discrete p-toral groups. Then, we have the next result.

Theorem B. Let Sp be the direct limit of Sp,k under the obvious inclusions. Then,
there exists a 3-local compact group and two p-local compact groups for any p ≥ 5,
denoted by G3 = (S3,F3,L3), Gp = (Sp,Fp,Lp) and G̃p = (Sp, F̃p, L̃p) such that the outer
automorphisms groups in F3, Fp and F̃p satisfy the following:

F OutF (Sp) OutF (Tp) OutF (V ) prime

F3 C2 × C2 GL2(F3) GL2(F3) p = 3

Fp C p−1
2
× Cp−1 Ap o Cp−1 SL2(Fp)o C p−1

2 p ≥ 5

F̃p Cp−1 × Cp−1 Σp × Cp−1 GL2(Fp)

where Tp is the direct limit of Tp,k and V = 〈ζ, s〉. Moreover, the p-local compact groups
G3 and Gp are simple, in the sense that they have no proper nontrivial normal subsystems.

One important construction we have for any p-local compact group (S,F ,L) is, given
any subgroup P ≤ S fully centralized in F , the centralizer p-local compact group
(CS(P ), CF (P ), CL(P )). Note that, if the p-local compact group (S,F ,L) is constructed
from a p-compact group (X,BX, e), we can also consider the centralizer of P in X,
denoted by CX(P ), which turns out to be again a p-compact group, so we can use it to
construct a p-local compact group.

4



1.2. Organization of this document

Then, to study if we can realize the new examples of p-local compact groups by any
p-compact group, it is useful to prove a coherence result stating that these two centralizer
p-local compact groups we obtain from any p-compact group are in fact the same. More
precisely, we have the following result.

Theorem C. Let (S,F ,L) be a p-local compact group realized by a p-compact group
(X,BX, e). That is, we have f : S → X a Sylow subgroup of X and (S,F ,L) ∼=
(S,FS,f (X),LcS,f (X)). Then, for any subgroup P ≤ S fully centralized in F , the group
CS(P ) is a Sylow subgroup of CX(P ) and

(CS(P ), CF (P ), CL(P )) ∼= (CS(P ),FCS(P ),g(CX(P )),LcCS(P ),g(CX(P )))

With this important result and other lemmas we are able to prove that there is no
p-compact group realizing any of the p-local compact groups G3, Gp or G̃p. Moreover,
using the simplicity property of the new p-local compact groups we also prove that they
cannot be realized either by any compact Lie group, giving rise to the next result.

Theorem D. There does not exist any compact Lie group nor any p-compact group
realizing the p-local compact groups G3, Gp or G̃p.

This proves that the class of p-local compact groups is strictly larger than the class
formed by compact Lie groups and p-compact groups.

At the end of the thesis, we review some examples of p-local compact groups that can
be constructed from limit fusion systems and we study the relation between the exoticness
of the saturated fusion systems in the direct system, and the possibility to realize the
limit fusion system by compact Lie groups or p-compact groups.

We find examples to almost completely fill this comparison grid. In fact, we only have
one unknown cell, leaving an open problem whose solution could lead to a proof for the
exoticness of some p-local finite groups without using the classification of finite simple
groups. This would, indeed, be an interesting result since we could obtain information
about the classification of the p-local finite groups, doing as if the classification of finite
simple groups did not exist.

1.2. Organization of this document

This thesis consists of two interconnected parts. In Part I, consisting of Chapter 2 and
Chapter 3, we deal with the finite case, while in Part II, consisting of Chapter 4 to
Chapter 7, we deal with the compact case.
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1. Introduction

More precisely, in Chapter 2 we make a review of saturated fusion systems over finite
p-groups and the construction of p-local finite groups, including all the necessary notions
as the geometric realization of a category or the Bousfield-Kan p-completion functor.
In Chapter 3 we recall first the construction of the exotic examples for p = 3 of [17]

in Theorem 3.1.3. Then, we present the new examples of exotic p-local finite groups for
p ≥ 5 and we prove Theorem A (restated as Theorem 3.2.7).

Moving to the compact case, in Chapter 4 we review the definition of saturated fusion
systems over discrete p-toral groups, joint with the generalization of the p-local finite
groups to the p-local compact groups. We also show in Chapter 4 some properties about
compact Lie groups and p-compact groups, and how to construct p-local compact groups
from them.
The connection between the finite case and the compact case is made precise in

Chapter 5, where we define the notion of limit fusion system and we use it to construct
the new fusion systems described in Theorem B.
The first section of Chapter 6 is devoted to prove a saturation criterion for fusion

systems over discrete p-toral groups. Then, we prove the saturation conditions for
the new examples in the second section. Therefore, Theorem B is a consequence of
Proposition 5.4.1, Proposition 5.4.2, and Theorem 6.2.3.

Finally, in Chapter 7 we prove Theorem C in the first section, restated as Theorem 7.1.1,
and we use it to show the exoticness as p-compact groups for the new examples of p-local
compact groups. In the second section we prove that the new examples of p-local compact
groups are also exotic as compact Lie groups. Hence, Theorem D is a combination of
Theorem 7.1.4 and Theorem 7.2.4.
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The finite case





CHAPTER 2

Fusion on finite groups

In this chapter we will make a quick review of fusion on finite groups. In the first section
we show the algebraic part of the subject, with the definition of saturated fusion system
and some of its properties. The second section deals with the topological part, and we
define all the necessary concepts to get to the definition of p-local finite group, such as
the geometric realization of a category, the classifying space of a topological group and
the p-completion functor.
All the definitions and results in this chapter are in the literature and we provide

references for all of them. In some cases there are different names or notations for the
same properties and might be the case that the one used here is not exactly the same as
in the given reference. This has been done to maintain the coherence of the text, and in
all cases the definitions are equivalent. In the case that some well known result is not
stated explicitly in the literature, a short proof pointing to the necessary references is
given.

2.1. Saturated fusion systems

The fusion system of a finite group G over a p-Sylow subgroup S ∈ Sylp(G) is a category,
FS(G), which encodes all the information about the conjugacy morphisms between
subgroups of S induced by elements of G. More precisely, the objects of FS(G) are all
subgroups P ≤ S and, for P,Q ≤ S, the morphisms between P and Q are

HomFS(G)(P,Q) = {ϕ ∈ Hom(P,Q) | ϕ = cg for some g ∈ G such that gPg−1 ≤ Q}

In general, for two groups P and Q, we denote by Inj(P,Q) the set of group monomor-
phisms from P to Q and, if P and Q are subgroups of a group G, we denote by HomG(P,Q)

the set of morphisms induced by conjugation for some g ∈ G such that gPg−1 ≤ Q.
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2. Fusion on finite groups

In order to study the fusion of a finite p-group S, we want to consider a category F
encoding information about morphisms between subgroups of S in a similar way as FS(G)

does when there is a bigger group G such that S ∈ Sylp(G).

Definition 2.1.1 ([11, Definition 1.1]). A fusion system F over a finite p-group S is a
category whose objects are the subgroups of S, and whose morphisms sets HomF (P,Q)

satisfy the following conditions:

(a) HomS(P,Q) ⊆ HomF (P,Q) ⊆ Inj(P,Q) for all P,Q ≤ S.

(b) Every morphism in F factors as an isomorphism in F followed by an inclusion.

If F is a fusion system over a finite p-group S and P,Q ≤ S are two subgroups
which are isomorphic as objects in F , we say that they are F-conjugated. In that case,
we denote HomF(P,Q) = IsoF(P,Q). In the particular case when Q = P we denote
HomF (P, P ) = AutF (P ). For a subgroup P ≤ S, we denote by PF the set of subgroups
of S which are F-conjugated to P .

Remark 2.1.2. Note that, in Definition 2.1.1, the first condition implies that F has at
least the morphisms induced by conjugation for elements of S and the second condition
ensures that two subgroups P,Q ≤ S which are isomorphic as groups are also F -conjugated
if there is a morphism in F from P to Q, or vice versa. This makes the F-conjugacy
relation an equivalence relation.

It turns out that the definition of fusion system is too general for most purposes, so we
need to add extra conditions to a fusion system in order to better emulate the behavior
of fusion systems of finite groups. For this, we need first to define some conditions about
maximality of centralizers and normalizers.

Definition 2.1.3 ([11, Definition 1.2], [5, Definition I.2.2]). Let F be a fusion system
over a finite p-group S.

• A subgroup P ≤ S is fully centralized in F if |CS(P )| ≥ |CS(Q)| for all Q ∈ PF .

• A subgroup P ≤ S is fully normalized in F if |NS(P )| ≥ |NS(Q)| for all Q ∈ PF .

• A subgroup P ≤ S is fully automized in F if AutS(P ) ∈ Sylp(AutF (P )).

• A subgroup P ≤ S is receptive in F if for each Q ≤ S and each ϕ ∈ IsoF (Q,P ), if
we set

Nϕ = {g ∈ NS(Q) | ϕcgϕ−1 ∈ AutS(P )}

then there is ϕ ∈ HomF (Nϕ, S) such that ϕ|Q = ϕ.

12



2.1. Saturated fusion systems

In local group theory it is usual to study the normalizers and centralizers of Sylow
subgroups and its subgroups, so it seems natural to ask conditions about these local
subgroups to the fusion systems, in order to simulate the existence of an environment
group G.

Definition 2.1.4 ([11, Definition 1.2]). Let F be a fusion system over a finite p-group S.
Then F is a saturated fusion system if the following two conditions hold:

(I) Each subgroup P ≤ S which is fully normalized in F is also fully centralized and
fully automized in F .

(II) Each subgroup P ≤ S which is fully centralized in F is also receptive in F .

One way to see that this definition indeed shrinks the definition of fusion system to
better emulate the behavior of fusion systems of finite groups is shown in the next two
propositions.

If we look at the local subgroups of a fusion system constructed from a finite group, we
can observe that the properties described on Definition 2.1.3 are strongly related.

Proposition 2.1.5. Let G be a finite group and S ∈ Sylp(G). Then, FS(G) satisfies the
following:

(a) A subgroup P ≤ S is fully normalized if and only if it is fully centralized and fully
automized.

(b) A subgroup P ≤ S is fully centralized if and only if it is fully centralized.

Proof. It is a direct consequence of [34, Proposition 3.7], [34, Proposition 4.4] and [11,
Proposition 1.3].

In comparison with this result, general fusion systems don’t verify these equivalences,
but only one of the implications in each case.

Proposition 2.1.6 ([34, Proposition 3.7 and Proposition 4.4]). Let F be a fusion system
over a finite p-group S. Then,

(a) Every subgroup of S which is fully automized and receptive is fully normalized.

(b) Every receptive subgroup of S is fully centralized.

We can see then that imposing a fusion system to be saturated completes the equivalences
of Proposition 2.1.5. In this way, the subgroups of an abstract saturated fusion system
verify the same key properties as the subgroups of fusion systems of finite groups.

13



2. Fusion on finite groups

As a consequence of Proposition 2.1.5, we have that any finite group G gives rise to a
saturated fusion system over any of its Sylows subgroups. In general, not all saturated
fusion systems can be constructed in this way.

Definition 2.1.7 ([11, Section 9]). A saturated fusion system F over a finite p-group S
will be called realizable if F = FS(G) for some finite group G with S ∈ Sylp(G), and will
be called exotic otherwise.

Remark 2.1.8. There are several examples of exotic saturated fusion systems over finite
p-groups: for p = 2, there is only one known family of examples ([28]); for p ≥ 3 we can
find different examples in [11, Section 9], [35] or [17], as well as in Chapter 3.

Given a saturated fusion system F , it is obvious that in every F-conjugacy class of
subgroups there is at least one which is fully normalized, fully centralized and receptive.
Besides this, there are some of this fully normalized, fully centralized and receptive
subgroups which are even more important, in the sense that we can reconstruct all the
fusion system F from the information given by these subgroups. These kind of subgroups
will be called F-essential, and we will make precise this notion of control of fusion in
Theorem 2.1.13. Before we get to this important theorem we need some other definitions
and results.

For any finite group G, let Op(G) denote the largest normal p-subgroup of G and Op(G)

the smallest normal subgroup H of G such that G/H is a p-group. Also, let Op′ denote
the smallest normal subgroup H of G such that |G/H| is coprime to p. A proper subgroup
H < G is strongly p-embedded if p divides the order of H and, for each x ∈ G \H, the
subgroup H ∩ xHx−1 has order prime to p.

Definition 2.1.9 ([5, Definition I.3.1]). Let F be a fusion system over a finite p-group S.

• For each subgroup P ≤ S, set OutF(P ) = AutF(P )/ Inn(P ) and OutS(P ) =

AutS(P )/ Inn(P ). Thus OutS(P ) ≤ OutF (P ) ≤ Out(P ).

• A subgroup P of S is F-centric if CS(Q) = Z(Q) for all Q ∈ PF . Equivalently, P
is F-centric if P is fully centralized in F and CS(P ) = Z(P ). Let Fc denote the
full subcategory of F whose objects are the F-centric subgroups of S.

• A subgroup P of S is F-radical if OutF (P ) is p-reduced, i.e., if Op(OutF (P )) = 1.

In [11, Theorem A.10] it is proved that all morphisms in a saturated fusion system F
can be recovered as compositions of restrictions of automorphisms of F -centric, F -radical,
fully normalized subgroups. We can restrict a bit more this set of generator subgroups by
defining the concept of being F-essential.

14



2.1. Saturated fusion systems

Definition 2.1.10 ([5, Definition I.3.2]). Let F be a fusion system over a finite p-group
S. A subgroup P of S is F-essential if P is F-centric and fully normalized in F , and
OutF (P ) contains a strongly p-embedded subgroup.

The next proposition shows that this definition in fact restricts the set of generator
subgroups and describes the key property of essential subgroups.

Proposition 2.1.11 ([5, Proposition I.3.3]). Let F be a saturated fusion system over a
finite p-group S.

(a) Each F-essential subgroup of S is F-centric, F-radical and fully normalized in F .

(b) Fix a proper subgroup P of S which is fully normalized, and let HP ≤ AutF (P ) be the
subgroup generated by those α ∈ AutF (P ) which extend to F-isomorphisms between
strictly larger subgroups of S. Then either P is not F-essential and HP = AutF (P );
or P is F-essential and HP / Inn(P ) is strongly p-embedded in OutF (P ).

Point (b) of previous proposition is saying that, for a non F-essential subgroup, we
can extend all its automorphisms to morphisms between larger subgroups, so we can
consider all these automorphisms as restrictions of other morphisms. This indicates that
we can disregard the non F-essential subgroups while trying to reconstruct the whole
fusion system.

In general, given a finite p-group S, we can select a set of monomorphisms between its
subgroups and consider the minimal fusion system with these morphisms.

Definition 2.1.12 ([5, Definition I.3.4]). For any set X of monomorphisms between
subgroups of S, the fusion system generated by X, denoted 〈X〉S , is the smallest fusion
system over S (not necessarily saturated) which contains X. Thus, the morphisms in
〈X〉S are the composites of restrictions of homomorphisms in the set X∪ Inn(S) and their
inverses. We write 〈X〉 = 〈X〉S when the choice of S is clear.

Now we can make precise the statement about control of fusion by F -essential subgroups
mentioned before, which is known as Alperin’s fusion theorem for fusion systems.

Theorem 2.1.13 ([5, Theorem I.3.5]). Fix a finite p-group S and a saturated fusion
system F over S. Then

F = 〈AutF (P ) | P = S or P is F-essential 〉S

At this moment, we have replaced the situation of having a finite group G and a Sylow
subgroup S ∈ Sylp(G) by having a saturated fusion system F over S. Then, we want to
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2. Fusion on finite groups

translate the notions of local theory of groups to notions about fusion systems. The most
important one is that of being a normal subgroup, which translate to several notions in
fusion systems. If we fix our attention to subgroups, there are several properties related
to conjugation that a subgroup in a fusion system can verify.

Definition 2.1.14 ([5, Definition I.4.1]). Let F be a saturated fusion system over a finite
p-group S.

• A subgroup P ≤ S is normal in F if P E S and, for all Q,R ≤ S and all ϕ ∈
HomF (Q,R), ϕ extends to a morphism ϕ ∈ HomF (QP,RP ) such that ϕ(P ) = P .
The maximal normal p-subgroup of F is denoted by Op(F).

• A subgroup P ≤ S is strongly closed in F if no element of P is F-conjugate to an
element of S \ P .

Remark 2.1.15. Note that if P E S is normal in F it is also strongly closed. Also, since
F contains all conjugation morphisms, if P is strongly closed in F then P must be a
normal subgroup of S.

Now, if we fix our attention to fusion systems and subsystems, we can also consider
the notion of normality. There are several properties related with normality and several
equivalent definitions. The following one is due to Aschbacher.

Definition 2.1.16 ([16, Definition 5.30 and Definition 8.2]). Let S be a finite p-group,
F a saturated fusion system over S, and F ′ ≤ F a subsystem over a subgroup S′ ≤ S.
Then, F ′ is normal in F if the following conditions are satisfied.

(N1) S′ is strongly closed in F .

(N2) For each P ≤ Q ≤ S and each γ ∈ HomF (Q,S), the map that sends each morphism
f ∈ HomF ′(P,Q) to γ ◦ f ◦ γ−1 defines a bijection between the sets HomF ′(P,Q)

and HomF ′(γ(P ), γ(Q)).

(N3) F ′ is a saturated fusion system over S′.

(N4) Each f ∈ AutF ′(S
′) extends to some f̃ ∈ AutF (S′CS(S′)) such that

[f̃ , CS(S′)] = {f̃(g) · g−1 | g ∈ CS(S′)} ≤ Z(S′)

Once we have the notion of normal subsystem, the notion of simplicity translates
perfectly from groups to fusion systems.
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2.1. Saturated fusion systems

Definition 2.1.17 ([5, Definition I.6.1]). A saturated fusion system F is simple if it
contains no proper nontrivial normal fusion subsystems.

The focal and hyperfocal subgroups of a finite group are very important in local group
theory and the understanding of the fusion in a group, so it seems natural to generalize
the definition to fusion systems.

Definition 2.1.18 ([5, Definition I.7.1]). For any saturated fusion system F over a finite
p-group S, the focal subgroup foc(F) and the hyperfocal subgroup hyp(F) are defined by
setting

foc(F) = 〈g−1α(g) | g ∈ P ≤ S, α ∈ AutF (P )〉

hyp(F) = 〈g−1α(g) | g ∈ P ≤ S, α ∈ Op(AutF (P ))〉

Now we turn our attention to extensions of fusion systems. If we have a fusion system
F and a subsystem E , we would like to have the notion of index of E in F . This is not
possible in general, but we can control the index of a subsystem in some sense.

Definition 2.1.19 ([9, Definition 3.1]). Fix a saturated fusion system F over a finite
p-group S, and a fusion subsystem E in F over T ≤ S.

• The subsystem E has p-power index in F if T ≥ hyp(F) and, for each P ≤ T , we
have AutE(P ) ≥ Op(AutF(P )). Equivalently, a saturated fusion subsystem over
T ≥ hyp(F) has p-power index if it contains all F-automorphisms or order prime
to p of subgroups of T .

• The subsystem E has index prime to p in F if T = S and, for each P ≤ S, we have
AutE(P ) ≥ Op

′
(AutF(P )). Equivalently, a saturated fusion subsystem has index

prime to p if it contains all F-automorphisms of p-power order.

The next result shows one restriction about the normal subsystems of a saturated fusion
system that will be useful in Chapter 3.

Lemma 2.1.20 ([16, Lemma 5.72]). Let F be a saturated fusion system over a finite
p-group S and E a normal subsystem of F . Then E has index prime to p in F .

Later in the text we will be interested in simple fusion systems, so it will be useful to
have some criterion to prove this property. One of these criteria has to do with minimal
subsystems of p-power index and index prime to p, so we need to be sure these subsystems
exist and try to have control over them.
The next two statements will allow us to prove when there are no proper normal

subsystems of p-power index.
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2. Fusion on finite groups

Theorem 2.1.21 ([9, Theorem 4.3]). Let F be a saturated fusion system over a finite
p-group S. Then, there is a unique minimal saturated fusion subsystem of p-power index,
denoted by Op(F), over the subgroup hyp(F).

Proposition 2.1.22 ([5, Corollary I.7.5]). For any saturated fusion system F over a
finite p-group S, Op(F) = F if and only if foc(F) = S.

We can have much more control over the subsystems of index prime to p, as the next
theorem shows.

Theorem 2.1.23 ([9, Theorem 5.4]). Fix a saturated fusion system F over a finite
p-group S. Set E0 = 〈Op′(AutF (P )) | P ≤ S〉, as a fusion system over S, and write

Out0
F (S) = 〈α ∈ OutF (S) | α|P ∈ HomE0(P, S), for some F-centric P ≤ S〉

Then, there is a bijective correspondence between subgroups of OutF(S)/Out0
F(S) and

saturated fusion subsystems of F of index prime to p. In particular, there is a unique
minimal saturated fusion subsystem of index prime to p, denoted by Op′(F).

We only need to define one more property about saturated fusion systems.

Definition 2.1.24 ([33, Definition 1.2]). A saturated fusion system F is reduced if
Op(F) = 1 and Op(F) = F = Op

′
(F).

Remark 2.1.25. Let F be a saturated fusion system over a finite p-group S. As pointed
out in [33], by Lemma 2.1.20 we have that a reduced fusion system is simple if it has no
proper nontrivial strongly closed subgroups.

2.2. p-local finite groups

Now we want to introduce some topological spaces associated to saturated fusion systems.
For this, we need to introduce the geometric realization of a category, the classifying space
of a topological group and the p-completion functor. With these tools we will be able
to define a topological space to any fusion system of a finite group with very interesting
properties. We will define then the concept of centric linking system associated to a
saturated fusion system to construct a topological space from it. At the end we will see
that it is always possible to associate a topological space to any saturated fusion system
in this way.
The construction of the geometric realization of a category will be done in two steps.

First, we will define simplicial spaces and its the geometric realization. Then, we will
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2.2. p-local finite groups

define a simplicial set associated to any small category C and use its geometric realization
to associate a topological space to C.
First we need to define the category of ordered sets and ordered morphisms.

Definition 2.2.1 ([36, Section 1]). The simplicial category, ∆, is the category whose
objects are the sets [n] = {0, 1, . . . , n} for n ≥ 0, and whose morphisms are the order
preserving maps between objects. For each n, there are n + 1 face morphisms din ∈
Mor∆([n− 1] , [n]) (0 ≤ i ≤ n), where din is the unique injective morphism whose image
does not contain i. Also, there are n degeneracy morphisms sin ∈ Mor∆([n] , [n− 1])

(0 ≤ i ≤ n−1), where sin is the unique surjective morphism such that sin(i) = sin(i+1) = i.

The concept of simplicial set it is quite abstract, but very simple to define using the
simplicial category.

Definition 2.2.2 ([36, Section 1]). A simplicial set is a functor K : ∆op → Sets. If K is
a simplicial set, it is usual to write Kn = K([n]).

In order to associate a topological space to any simplicial set we need first to define the
basic building blocks of topological spaces, the standard simplices.

Definition 2.2.3 ([29, Section 1]). Let ∆n denote the standard n-simplex, defined as

∆n =

{
(t0, . . . , tn) ∈ Rn+1 | 0 ≤ ti ≤ 1,

n∑
i=0

ti = 1

}

For any ϕ ∈ Mor∆([n] , [m]), write ϕ∗ : ∆n → ∆m for the map which sends a vertex
ei ∈ ∆n to eϕ(i) ∈ ∆m, where {e0, . . . , en} denotes the canonical basis for Rn+1.

Now we can take one standard simplex for each simplex in the simplicial set and glue
them together according to the combinatorics of the simplicial set.

Definition 2.2.4 ([29, Section 1]). The geometric realization |K| of a simplicial set K is
defined by setting

|K| =

( ∞∐
n=0

Kn ×∆n

)/
∼

with the quotient topology, where (σ, ϕ∗(τ)) ∼ (ϕ∗(σ), τ) for all σ ∈ Km, τ ∈ ∆n and
ϕ ∈ Mor∆([n] , [m]).

Once we have associated a topological space to any simplicial set, we can construct a
simplicial set to any small category, obtaining this way a geometric realization for the
category.
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2. Fusion on finite groups

Definition 2.2.5 ([36, Section 2]). Let C be a small category. The nerve of C is the
simplicial set N (C), defined by

N (C)n = {c0
α1−→ c1

α2−→ · · · αn−→ cn | ci ∈ Ob(C), αi ∈ Mor(C)}

and where ϕ ∈ Mor∆([n] , [m]) sends N (C)n to N (C)m by composing morphisms or
inserting identity morphisms as appropriate. The geometric realization |C| of the category
C is defined to be the geometric realization |N (C)| of its nerve.

One application of the geometric realization for small categories is an explicit construc-
tion of the classifying space for topological groups satisfying the condition of being locally
contractible. In particular, any finite group is locally contractible, so it will fit in the
following definition.

Definition 2.2.6 ([36, Section 3], [37, Proposition A.1]). For any locally contractible
topological group G, define the category B(G) with only one object ∗ and morphisms
MorB(G)(∗, ∗) = G. Then, BG = |B(G)| is called the classifying space of G.

The classifying space of a group G is a topological space containing much of the
information of the group, but if we are interested in a particular prime p, we would like
to isolate the p-information of the group G. This is done with the p-completion functor
of Bousfield-Kan.

Definition 2.2.7 ([8, Chapter I, Section 4]). The Bousfield-Kan p-completion functor is
a functor from spaces to spaces, denoted X → X∧p , together with a natural transformation
φ : Id→ (−)∧p .

The interesting point about the Bousfield-Kan p-completion functor is that it isolates
the information at the prime p, in the sense made precise in the next lemma.

Lemma 2.2.8 ([8, Lemma I.5.5]). A continuous map f : X → Y induces an isomor-
phism in cohomology with coefficients in Fp if and only if f∧p : X∧p → Y ∧p is a homotopy
equivalence.

When working with p-completion, it is essential to know if the spaces we are interested
in behave well with respect to the p-completion functor.

Definition 2.2.9 ([8, Definition I.5.1]). A space X is

• p-complete if φX : X → X∧p is a homotopy equivalence.

• p-good if φX induces an isomorphism in cohomology with coefficients in Fp.
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2.2. p-local finite groups

Since we don’t want to lose any information on the prime p, we are interested only in
p-good spaces. Next proposition shows that in these cases we obtain p-complete spaces
when we apply the p-completion functor.

Proposition 2.2.10 ([8, Proposition I.5.2]). Let X be a space. Then, the following are
equivalent:

(a) X is p-good.

(b) X∧p is p-complete.

(c) X∧p is p-good.

Lastly, in order to isolate the p-information of a finite group by applying the p-completion
functor to its classifying space, we need to be sure that the classifying spaces of finite
groups are p-good, which is shown in the next proposition.

Proposition 2.2.11 ([8, Proposition VII.5.1]). A connected space X is p-good if π1(X)

is finite.

In particular, if G is a finite group, its classifying space BG is p-good, since π1(BG) ∼= G,
so BG∧p is a p-complete space.
We also have the next natural result about classifying spaces of p-groups.

Proposition 2.2.12 ([5, Proposition III.1.10]). The classifying space of any p-group is
p-complete.

Now we have all general constructions we need to define a topological space associated
to saturated fusion systems. For this, we will first construct the classifying space for
fusion systems of groups and then we will construct it in general through the definition of
centric linking system.

Let G be a finite group. First, we define the notion of p-centric subgroup, which is the
motivation for the notion of F-centric subgroup in Definition 2.1.9.

Definition 2.2.13 ([10, Section 1]). If G is a finite group and p is a prime, then a
p-subgroup P ≤ G is p-centric if CG(P ) = Z(P )×C ′G(P ), where C ′G(P ) has order prime
to p.

Now we can define the centric linking category associated to a group. It is a category
similar to the fusion system of a group, but with a special set of subgroups as objects and
more information on morphisms than the fusion system. This extra information allows
us to do some homotopy theory and prove interesting results relating the centric linking
category with the p-completed classifying space of the group.
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2. Fusion on finite groups

Definition 2.2.14 ([10, Section 1]). If G is a finite group and S ∈ Sylp(G), the centric
linking category of G over S is the category LcS(G) whose objects are the subgroups of S
which are p-centric in G, and whose morphism sets are given by

MorLcS(G)(P,Q) = NG(P,Q)/C ′G(P )

where NG(P,Q) = {g ∈ G | gPg−1 ≤ Q}.

The key property of the centric linking category of a finite group G is that in contains
all the homotopy information of the classifying space of G at the prime p.

Proposition 2.2.15 ([10, Proposition 1.1]). For any finite group G and any S ∈ Sylp(G),

BG∧p ' |LcS(G)|∧p

Furthermore, the centric linking categories themselves allow us to distinguish between
p-completed classifying spaces of finite groups.

Theorem 2.2.16 ([10, Theorem 2.9]). For any prime p and any pair G1, G2 of finite
groups, BG1

∧
p ' BG2

∧
p if and only if for some Si ∈ Sylp(Gi), LcS1

(G1) and LcS2
(G2) are

equivalent as categories.

In view of the centric linking category for a finite group, we want to define a category
associated to an abstract saturated fusion system with similar properties that allow us to
prove interesting results in homotopy.

Definition 2.2.17 ([11, Definition 1.7]). Let F be a fusion system over a finite p-group S.
A centric linking system associated to F is a category L whose objects are the F -centric
subgroups of S, together with a functor

π : L → Fc

and distinguished monomorphisms P
δp−→ AutL(P ) for each F-centric subgroup P ≤ S,

which satisfy the following conditions.

(A) π is the identity on objects and surjective on morphisms. More precisely, for each
pair of objects P,Q ∈ L, Z(P ) acts freely on MorL(P,Q) by composition (upon
identifying Z(P ) with δP (Z(P )) ≤ AutL(P )), and π induces a bijection

MorL(P,Q)/Z(P )
∼=−→ HomF (P,Q)
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2.2. p-local finite groups

(B) For each F-centric subgroup P ≤ S and each g ∈ P , π sends δP (g) ∈ AutL(P ) to
cg ∈ AutF (P ).

(C) For each f ∈ MorL(P,Q) and each g ∈ P , the following square commutes in L:

P

δP (g)

��

f
// Q

δQ(π(f)(g))

��

P
f
// Q

We are now ready to define a p-local finite group.

Definition 2.2.18 ([11, Definition 1.8]). A p-local finite group is a triple (S,F ,L), where
S is a finite p-group, F is a saturated fusion system over S, and L is a centric linking
system associated to F . The classifying space of the p-local finite group is the space |L|∧p .

Remark 2.2.19. It is easy to check that for every finite group G and S ∈ Sylp(G),
LcS(G) is a centric linking system associated to FS(G). So, for any finite group G and
S ∈ Sylp(G) we have an associated p-local finite group (S,FS(G),LcS(G)).

Similarly to the case of saturated fusion systems, the converse to the previous remark
is not true, that is, not all p-local finite groups can be constructed from finite groups and
Sylow subgroups, so we can give an analogous definition for exotic p-local finite groups.

Definition 2.2.20 ([11, Section 9]). A p-local finite group (S,F ,L) will be called realizable
if F = FS(G) and L = LcS(G) for some finite group G with S ∈ Sylp(G), and will be
called exotic otherwise.

All the examples mentioned in Remark 2.1.8 about exotic saturated fusion systems give
rise to exotic p-local finite groups. This was not completely trivial until Chermak proved
Theorem 2.2.22 in 2013, since one should prove the existence of a centric linking system
associated to an exotic saturated fusion system in order to obtain an exotic p-local finite
group.

Similarly to the case of centric linking categories of groups, for a general p-local finite
group (S,F ,L), the homotopy type of |L|∧p completely determines the p-local finite group.

Theorem 2.2.21 ([11, Theorem 7.4]). If (S,F ,L) and (S′,F ′,L′) are two p-local finite
groups such that |L|∧p ' |L′|∧p , then (S,F ,L) and (S′,F ′,L′) are isomorphic as p-local
finite groups.

In order to work with a p-local finite group we should deal with the saturated fusion
system and the centric linking system associated to it, but the next theorem shows that
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2. Fusion on finite groups

we can focus our attention only into the saturated fusion systems. This is why, through
the rest of this part, we will work mainly with saturated fusion systems over p-groups,
without making explicit the correspondence between saturated fusion systems and p-local
finite groups.

Theorem 2.2.22 ([15]). Each saturated fusion system F over a finite p-group S has an
associated centric linking system L, which is unique up to isomorphism.

The original proof of Theorem 2.2.22 uses the classification of finite simple groups in
a very specific point, but Glauberman-Lynd provided a patch to avoid the use of the
classification in [22].

Remark 2.2.23. Note that from Theorem 2.2.22 we can deduce that a p-local finite
group (S,F ,L) is exotic if and only if F is an exotic saturated fusion system over S.
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CHAPTER 3

New examples of exotic p-local finite
groups

In 2004, Albert Ruiz and Antonio Viruel classified in [35] all the p-local finite groups over
the extraspecial group of order p3 and exponent p. As a result of this classification, they
found three new examples of exotic 7-local finite groups.

Later, in 2007, the same authors joint with Antonio Díaz generalized the classification
to all p-local finite groups of rank two for odd prime p in [17]. In addition to the exotic
examples over the extraspecial group, they found several infinite families of exotic 3-local
finite groups.

In the first section of this chapter we will recall the construction of one of the families
of exotic 3-local finite groups found in [17]. In the second section we will generalize the
construction of the p-local finite groups for p ≥ 5 over p-groups of maximal class similar
to those for p = 3 and we will prove that these new examples are also exotic.

3.1. A family of examples for p = 3

We will work with saturated fusion systems over a particular class of 3-groups which, by
[6], are of maximal class and can be presented as

S3,k = 〈s, s1, s2, . . . , s2k |[s, si−1] = si for i = 2, . . . , 2k,

[s1, si] = 1 for i = 2, . . . , 2k,

s3 = 1,

s3
i s

3
i+1si+2 = 1 for i = 1, . . . , 2k〉

where, in the last relation, we assume sj = 1 if j > 2k.

25



3. New examples of exotic p-local finite groups

In [17, Proposition A.9], it is proven that the groups S3,k fit in a split extension

1→ Z/3k × Z/3k → S3,k → Z/3→ 1

where s is a generator of Z/3, the subgroup Z/3k × Z/3k is generated by s1 and s2, and
the action of Z/3 on Z/3k × Z/3k, which is conjugation by s in S3,k, is given by the
matrix

cs =

(
1 −3

1 −2

)
To simplify the notation, we will write T3,k = Z/3k × Z/3k ≤ S3,k for the maximal

torus. It is also proven in [17] that the center of S3,k is isomorphic to Z/3. We will write
ζ for a generator of the center and we will write V = 〈s, ζ〉 ∼= Z/3× Z/3.
We will need, at the end of this section, to know which elements of S3,k \ T3,k are

conjugated to the element s.

Lemma 3.1.1. Let si1s
j
2s ∈ S3,k be an element not in the maximal torus. Then, si1s

j
2s is

conjugated to s if and only if i ≡ 0 mod 3.

Proof. Note that if we conjugate s by any element sα1 s
β
2s we obtain s3β

1 s−α+3β
2 s, and

3β ≡ 0 mod 3.
Conversely, if i = 3l, conjugating s by si−j1 sl2s we obtain si1s

j
2s.

We will define a fusion system over S3,k by adding automorphisms to itself and the
subgroups T3,k and V . For this, it will be useful to have certain control over the possibilities
for the groups of outer automorphisms.

Lemma 3.1.2 ([17, Lemma 5.5]). Let F be a saturated fusion system over S3,k such that
T3,k and V are F-essential subgroups. Then,

(a) OutF (S3,k) ≤ C2 × C2.

(b) OutF (T3,k) = SL2(F3) or OutF (T3,k) = GL2(F3).

(c) OutF (V ) = SL2(F3) or OutF (V ) = GL2(F3).

In the proof of this lemma it is shown that there exist two automorphisms η, ω ∈
Aut(S3,k) such that their projection onto Out(S3,k) generate a C2 × C2 subgroup. By an
abuse of notation we will write also η and ω for their projection on Out(S3,k).
It is also shown in [17] that there are automorphisms of T3,k and V such that

OutF (T3,k) = GL2(F3) and OutF (V ) = GL2(F3).
With this information about the outer automorphisms groups we can state the main

theorem of this section.
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Theorem 3.1.3. There are saturated fusion systems F3,k over S3,k, for all k ≥ 2,
characterized by the morphisms

• OutF3,k
(S3,k) = 〈η, ω〉 ∼= C2 × C2

• OutF3,k
(T3,k) = GL2(F3)

• OutF3,k
(V ) = GL2(F3)

Moreover, the fusion systems F3,k are simple and exotic.

Proof. The saturation and exoticness properties are proven in [17, Theorem 5.10]. For
the simplicity property, note that F3,k has no proper nontrivial strongly closed subgroups.
Indeed, let P E S3,k a nontrivial strongly closed subgroup. By [2, Theorem 8.1], P must
intersect the center in a nontrivial subgroup. Since the center of S3,k has order 3, we must
have Z(S3,k) ≤ P . Moreover, since ζ is F3,k-conjugated to s, we must have also s ∈ P ,
since P is strongly closed. Then, by [6, Lemma 2.2], P must be of index at most 3 in S3,k.

In fact, by Lemma 3.1.1, P must contain the subgroup generated by s and all elements
s3l

1 s
j
2 ∈ T3,k, which is an index 3 subgroup of S3,k. Then, using that the automorphism

group of T3,k is all GL2(F3), we can conjugate, for example, the element s−3
1 s−2

2 to s1s2,
obtaining that P contains also elements not conjugated to s. Since P had index at most
3, we obtain that P must be equal to S3,k.

So, if there is a proper nontrivial normal subsystem of F3,k, it has to be over the same
group S3,k, by condition N1 of Definition 2.1.16. Then, by Lemma 2.1.20, we have that
the normal subsystem has to be of index prime to p in F3,k, but by the classification in
[17, Theorem 5.10], there is no subsystem of index prime to p in F3,k.

3.2. Two families of examples for p ≥ 5

Now we want to generalize the saturated fusion systems F3,k to p ≥ 5. First we have to
define the p-groups Sp,k to work with, and then we will deal with the fusion over Sp,k.

In [6], Blackburn studies the group S3,k from the point of view of being of maximal class,
rather than of being of p-rank two, as in [17]. In this way, there is a natural generalization
of S3,k to groups of maximal class Sp,k which have rank p− 1. The presentation is

Sp,k = 〈s, s1, s2, . . . , s(p−1)k |[s, si−1] = si for i = 2, . . . , (p− 1)k, (3.1)

[s1, si] = 1 for i = 2, . . . , (p− 1)k, (3.2)

sp = 1, (3.3)

s
(p1)
i s

(p2)
i+1 · · · s

(pp)
i+p−1 = 1 for i = 1, . . . , (p− 1)k〉 (3.4)
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3. New examples of exotic p-local finite groups

where, in the last relation, we assume sj = 1 if j > (p− 1)k. We want to prove now that
the groups Sp,k are a semidirect product.

Proposition 3.2.1. Consider the maximal torus subgroup Tp,k = 〈s1, . . . , s(p−1)k〉 ≤ Sp,k.
Then, the following holds:

(a) The subgroup Tp,k is isomorphic to (Z/pk)p−1 with generators s1, . . . , sp−1.

(b) The group Sp,k fits in a split extension

1→ (Z/pk)p−1 → Sp,k → Z/p→ 1

where s is a generator of Z/p and the subgroup (Z/pk)p−1 is generated by s1, . . . , sp−1.

Proof. To prove (a) we will see first that Tp,k is abelian by proving that Z(Tp,k) = Tp,k.
From Equation (3.2) we obtain s1 ∈ Z(Tp,k). Using Equation (3.4) with i = (p− 1)(k− 1)

we have
s(p−1)k = s

−( p
p−1)

(p−1)k−1 · · · s
−(p1)
(p−1)k−(p−1)

and joining it with Equation (3.1) we see that conjugation by s is an automorphism of
Tp,k, hence cs(Z(Tp,k)) = Z(Tp,k). Using again Equation (3.1) we obtain cs(s1) = s1s2 ∈
Z(Tp,k), therefore, s2 ∈ Z(Tp,k). Since cs(si) = sisi+1 we can iterate this argument to
obtain Z(Tp,k) = Tp,k.

Now, by Equation (3.4), we obtain sp(p−1)k = 1. Taking then i = (p − 1)k − j for
1 ≤ j < p − 1, and using again Equation (3.4), we get sp(p−1)k−j = 1 for 1 ≤ j < p − 1.
Thus,

A1 = 〈sm〉(p−1)(k−1)+1≤m≤(p−1)k
∼= (Z/p)p−1

By taking i = (p − 1)(k − 1) we obtain sp(p−1)(k−1) = s−1
(p−1)k, so s

p2

(p−1)(k−1) = 1 and,
repeating the argument, we get sp(p−1)k−j = s−1

(p−1)k−(j−(p−1)) for p− 1 ≤ j < 2(p− 1)− 1.

By an inductive procedure we get

Al = 〈sm〉(p−1)(k−l)+1≤m≤(p−1)(k−l+1)
∼= (Z/pl)p−1

with Al ≤ Al+1 for all l = 1, . . . , k − 1. Hence, Tp,k = Ak ∼= (Z/pk)p−1 with generators
s1, . . . , sp−1.

To prove (b) note that the fact that cs is an automorphism of Tp,k implies Tp,k E Sp,k.
Since 〈s〉 ∩ Tp,k = {e}, we have that Sp,k is the semidirect product of Tp,k by 〈s〉, by
definition of semidirect product.
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From the presentation of the group Sp,k we obtain that the action of s over Tp,k with
generators {s1, . . . , sp−1} it is given by the matrix

A =



1 0 0 · · · 0 −
(
p
1

)
1 1 0 · · · 0 −

(
p
2

)
0 1 1 · · · 0 −

(
p
3

)
...

...
. . . . . .

...
...

0 0 0
. . . 1 −

(
p
p−2

)
0 0 0 · · · 1 1−

(
p
p−1

)


Now we want to define the fusion over Sp,k. To do this, we first want to see Sp,k as a

Sylow subgroup of a bigger group, and then add morphism to some subgroups of Sp,k.
Consider the group (Z/pk)p generated by e1, . . . , ep with the action of Σp given by

permutation of the generators. This action leaves invariant a subgroup T , isomorphic to
(Z/pk)p−1, generated by the elements v1, . . . , vp−1, where vk = ek − ek+1.

Fix now the permutation σ = (1, 2, . . . , p) ∈ Σp and consider the extension

1→ (Z/pk)p−1 → Sp,k → Z/p→ 1

where σ is a generator of Z/p and the subgroup (Z/pk)p−1 is generated by v1, . . . , vp−1.
With this basis, the action is given by the matrix

B =



0 0 0 · · · 0 −1

1 0 0 · · · 0 −1

0 1 0 · · · 0 −1
...

...
. . . . . .

...
...

0 0 0
. . . 0 −1

0 0 0 · · · 1 −1


Lemma 3.2.2. The split extensions of the type

1→ (Z/pk)p−1 → Sp,k → Z/p→ 1

where the action is given by the matrices A and B are equivalent.

Proof. LetM be the matrix of change of base given by the formula vj =
∑j−1

m=0

(
j−1
m

)
sm+1,

for j = 1, . . . , p − 1. Then, A = MBM−1, so the induced semidirect products are
isomorphic.
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3. New examples of exotic p-local finite groups

Remark 3.2.3. Note that the change of basis it is also valid for p = 3 and we also obtain
an isomorphism which fixes s and leaves invariant the maximal torus.

Remark 3.2.4. The difference between the case p = 3 and p ≥ 5 comes from the fact
that Z/3 is a normal subgroup of Σ3, hence the action of Σ3 on Z/3k × Z/3k will not
produce a saturated fusion system with T3,k an F-essential subgroup.

The next lemma proves some properties about the group Sp,k that will become useful
later when dealing with the fusion systems.

Lemma 3.2.5. Let vi11 · · · v
ip−1

p−1 ∈ Tp,k ≤ Sp,k. Then, the following holds:

(a) s · vi11 · · · v
ip−1

p−1 · s−1 = v
−ip−1

1 v
i1−ip−1

2 v
i2−ip−1

3 · · · vip−2−ip−1

p−1 .

(b) vi11 · · · v
ip−1

p−1 · s · (v
i1
1 · · · v

ip−1

p−1 )−1 = v
ip−1+i1
1 v

ip−1+i2−i1
2 · · · vip−1+ip−1−ip−2

p−1 s.

(c) The elements vi11 · · · v
ip−1

p−1 s and vj11 · · · v
jp−1

p−1 s are Sp,k-conjugate if and only if the
sums of exponents verify

p−1∑
l=1

il ≡
p−1∑
l=1

jl (mod p)

(d) The center of Sp,k is generated by ζ = (v1
1v

2
2 · · · v

p−1
p−1)p

k−1, so Z(Sp,k) ∼= Z/p.

Proof. Points (a) and (b) are direct computations using the action of s on Tp,k. To see
(c), note first that

s · vi11 · · · v
ip−1

p−1 s · s
−1 = v

−ip−1

1 v
i1−ip−1

2 v
i2−ip−1

3 · · · vip−2−ip−1

p−1 s

and

(vk11 · · · v
kp−1

p−1 ) · vi11 · · · v
ip−1

p−1 s · (v
k1
1 · · · v

kp−1

p−1 )−1 =

v
i1+kp−1+k1
1 v

i2+kp−1+k2−k1
2 · · · vip−1+kp−1+kp−1−kp−2

p−1 s

So we see that in both cases the sum of the exponents are congruent modulo p. Assume
now that the sums of the exponents are congruent modulo p. If we write vk11 · · · v

kp−1

p−1 for
an unknown element and we set the system of equations to conjugate the two elements,
we get 

1 0 · · · 0 1

−1 1
. . .

... 1

0 −1
. . . 0

...
...

. . . . . . 1 1

0 · · · 0 −1 2





k1

...

...

...
kp−1


=



i1 − j1
...
...
...

ip−1 − jp−1


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3.2. Two families of examples for p ≥ 5

Then, we can reduce the system by adding each row to the next, obtaining

1 0 · · · 0 1

0
. . . . . .

... 2
...

. . . . . . 0
...

...
. . . . . . 1 p− 2

0 · · · · · · 0 p





k1

...

...

...
kp−1


=



i1 − j1
...
...
...∑p−1

l=1 il −
∑p−1

l=1 jl


And the system is compatible because we are assuming that

∑p−1
l=1 il−

∑p−1
l=1 jl is divisible

by p. Note that we have proved that, if the two elements are Sp,k-conjugate, then they
are conjugate by an element of the maximal torus.

Finally, to compute a generator of the center consider the action of Σp on the generators
{e1, . . . , ep}. Then, the elements of the type λ(e1 + · · ·+ep) are invariant under the action
of Σp (in particular, by the action of Z/p). Now, if λ is a multiple of pk−1, this element
belongs to Tp,k, and in the basis {v1, . . . , vp−1} and with multiplicative notation can be
written as in the statement.

Now we want to define fusion systems over the p-groups Sp,k for each k ≥ 2. As in the
case for p = 3, it is helpful to have some restriction for the outer automorphism group of
Sp,k.

Proposition 3.2.6. Let F be a saturated fusion system over Sp,k. Then, the outer
automorphism group satisfies OutF (Sp,k) ≤ Cp−1 × Cp−1.

Proof. Since F is saturated, the group OutF(Sp,k) must be a subgroup of Out(Sp,k) of
order prime to p.

Consider now the Frattini subgroup Φ(Sp,k). The kernel of the map

ρ : Out(Sp,k)→ Out(Sp,k/Φ(Sp,k))

is a p-group by [24, Section 1.3]. Therefore, ρ(OutF(Sp,k)) must be isomorphic to a
subgroup of Out(Sp,k/Φ(Sp,k)). Then, since the minimum set for generators of Sp,k is
{s, v1}, we have that Sp,k/Φ(Sp,k) is a rank two elementary abelian group, and we can
consider it as an Fp vector space with basis {s, v1}.

In [6] it is shown that Tp,k is a characteristic subgroup of Sp,k, so ρ(OutF (Sp,k)) must
be included in the lower triangular matrices of GL2(Fp). Now, since p cannot divide the
order of OutF (Sp,k), we obtain the result.
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3. New examples of exotic p-local finite groups

As we want to work with concrete examples, we will consider φ, ψ ∈ Aut(Sp,k) of order
p− 1 defined as follows:

• The normalizer of 〈s〉 in Σp is isomorphic to CpoCp−1. Consider φ ∈ Σp an element
of order p− 1 normalizing 〈s〉 and consider the action over Sp,k = Tp,k o 〈s〉 as the
induced by conjugation as a subgroup of Tp,k o Σp. This action sends s 7→ sλ, with
λ a generator of F×p , while it fixes the center, that is φ(ζ) = ζ.

• Consider µ ∈ Aut(Z/pk) ∼= (Z/pk)× an element of order p− 1, and define ψ as the
element in Aut(Sp,k) which restricts to µ× · · · × µ in the maximal torus and to the
identity on 〈s〉. To get easier computations, we can fix µ such that it reduces to λ
modulo p. With this definition, ψ(ζ) = ζλ.

By definition, it is clear that 〈φ, ψ〉 ∼= Cp−1 × Cp−1. Moreover, if we write also φ and
ψ for their projections to the outer automorphisms group, we have that the subgroup
〈φ, ψ〉 ≤ Out(Sp,k) is isomorphic also to Cp−1 × Cp−1.

Now we can state the main result of this section, which provides two exotic saturated
fusion systems over Sp,k for each k ≥ 2 and p ≥ 5. Moreover, we show the relation of
inclusion between the two fusion systems and prove that one of them is simple.

Theorem 3.2.7. Consider the finite p-group Sp,k. Then,

(a) For each k ≥ 2 and p ≥ 5 there is an exotic saturated fusion system F̃p,k over Sp,k
characterized by the morphisms

• OutF̃p,k(Sp,k) = 〈φ, ψ〉 ∼= Cp−1 × Cp−1

• OutF̃p,k(Tp,k) = Σp × 〈ψ〉 ∼= Σp × Cp−1

• OutF̃p,k(V ) = GL2(Fp) ∼= SL2(Fp)o Cp−1

All other morphisms are given by composition and restriction of these morphisms
and inner automorphisms of Sp,k.

(b) Each fusion system F̃p,k contains an exotic simple saturated fusion subsystem Fp,k
of index 2, generated by the morphisms

• OutFp,k(Sp,k) = 〈φ2, ψφ−1〉 ∼= C p−1
2
× Cp−1

• OutFp,k(Tp,k) = Ap o 〈ψφ−1〉 ∼= Ap o Cp−1

• OutFp,k(V ) = SL2(Fp)o C p−1
2
< GL2(Fp)

and the conjugation by the elements in S.
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Proof. To prove (a), the existence of the saturated fusion systems F̃p,k over Sp,k can be
found in [11, Example 9.3]. In the same result the authors also prove that these examples
are exotic.
To get (b), we can proceed classifying all the saturated fusions subsystems of F̃p,k of

index prime to p as in Theorem 2.1.23. To do this, we need to compute E0, the fusion
system generated by Op′(AutF̃p,k(P )) for all F̃p,k-centric subgroups P :

• For P = Sp,k, Op
′
(AutF̃p,k(Sp,k)) = Inn(Sp,k), since all inner automorphisms of Sp,k

have order a power of p.

• For P = Tp,k, Op
′
(AutF̃p,k(Tp,k)) ∼= Ap, since the elements of order p in Σp for odd

prime p generate the alternating group Ap.

• For P = V , Op′(AutF̃p,k(V )) ∼= SL2(Fp), since for odd prime p the elements of order
p in GL2(Fp) generate SL2(Fp).

Now we have to detect the elements in OutF̃p,k(Sp,k) which restrict to morphisms in E0

of some F̃p,k-centric subgroups P :

• φ is an odd permutation, so the restriction to Tp,k does not give an element of
Op
′
(AutF̃p,k(Tp,k)), and it does not restrict to an automorphism of determinant one

in V , so φ 6∈ Out0
F̃p,k

(Sp,k).

• φ2 is an even permutation, so it restricts to an element in Op′(AutF̃p,k(Tp,k)).

• ψ does not restrict to a permutation over Tp,k since it does not fix the center,
and neither it restricts to an automorphism of determinant one in V , so ψ 6∈
Out0

F̃p,k
(Sp,k).

• ψiφ−i restricts to an automorphism of determinant one in V .

• Any other morphism ψiφj with j 6= i−1 does not restrict to a permutation over Tp,k
neither to an automorphism of determinant one in V , so ψiφj 6∈ Out0

F̃p,k
(Sp,k) for

j 6= i−1.

These computations show that

OutF̃p,k(Sp,k)/Out0
F̃p,k

(Sp,k) ∼= Z/2

so there is just one proper nontrivial saturated fusion subsystem of index prime to p, and
it is of index 2. Now, to get this saturated fusion system we need to add the necessary
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3. New examples of exotic p-local finite groups

morphisms to E0 in order to verify saturation axioms. This consist in restricting the
morphism ψiφ−i to Tp,k and restricting the morphism φ2 to V , obtaining the stated
description of the fusion system Fp,k.
Let us see now that Fp,k is simple. By Remark 2.1.25, it is enough to check that

Op(Fp,k) = 1 and Op(Fp,k) = Fp,k = Op
′
(Fp,k):

• Op(Fp,k) = 1: there is not any proper nontrivial strongly closed subgroup in Fp,k.
Indeed, let P E Sp,k a nontrivial strongly closed subgroup. By [2, Theorem 8.1],
P must intersect the center in a nontrivial subgroup. Since the center of Sp,k has
order p, we must have Z(Sp,k) ≤ P . Moreover, since ζ is Fp,k-conjugated to s by
a morphism in AutFp,k(V ), we must have also s ∈ P , since P is strongly closed.
Then, by [6, Lemma 2.2], P must be of index at most p in Sp,k.

In fact, by Lemma 3.2.5 (c), the subgroup P must contain the subgroup generated
by s and all elements vii1 · · · v

ip−1

p−1 ∈ Tp,k whose sum of exponents is congruent to 0
modulo p, which is an index p subgroup of Sp,k.

Then, let ϕ be the automorphism of Tp,k induced by the cycle (123) ∈ Ap ∼=
AutFp,k(Tp,k). We have that

ϕ(v1) = v2

ϕ(v2) = v−1
1 v−1

2

ϕ(v3) = v1v2v3

ϕ(vi) = vi, for 4 ≤ i ≤ p− 1

So, taking for example the element v−1
2 v4, which is in P since the sum of exponents

is 0, we have that ϕ(v−1
2 v4) = v1v2v4. Thus, v1v2v4 must lie also in P , but since

the sum of the exponents is not 0 modulo p for p ≥ 5, and using that the index of
P is at most p, we get that P = Sp,k.

So, by Remark 2.1.15, there is not any proper nontrivial normal subgroup in Fp,k.

• Op(Fp,k) = Fp,k: by Proposition 2.1.22, we need to show that foc(Fp,k) = S. First,
note that there are elements ϕ,ϕ′ ∈ AutFp,k(V ) such that ϕ(s) = sζ and also
ϕ′(ζ) = sζ, hence V ⊆ foc(Fp,k).

The action of Cp−1 on the maximal torus Tp,k includes a morphism ϕ such that
ϕ(v) = v−1 for all v ∈ Tp,k, so we have also all elements 〈v2

1, . . . , v
2
p−1〉 ⊆ foc(Fp,k).

Taking now the expression ζ = (v1
1v

2
2 · · · v

p−1
p−1)p

k−1 , we get v1v3 · · · vp−2 ∈ foc(Fp,k).
Then, conjugating this element by s we get v2v4 · · · vp−1 ∈ foc(Fp,k).
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Now, let ϕ be the conjugation by s and apply it to the element v−1
p−1. This tells us that

vp−1ϕ(v−1
p−1) = v1v2 . . . vp−2v

2
p−1 is also in foc(Fp,k). Hence, v1v2 . . . vp−2 ∈ foc(Fp,k)

and we get that vp−1 ∈ foc(Fp,k), since v1v2 . . . vp−1 is also in foc(Fp,k).

Finally, conjugating v1v2 . . . vp−2 by s and using that vp−1 ∈ foc(Fp,k) we get
v1 ∈ foc(Fp,k), concluding that S = 〈s, v1〉 ⊆ foc(Fp,k).

• Op′(Fp,k) = Fp,k: since the centric subgroups of F̃p,k coincide with the centric
subgroups of Fp,k, the computations made to classify the subsystems of index prime
to p of F̃p,k prove that Op′(Fp,k) = Op

′
(F̃p,k) = Fp,k.

Finally, by [33, Lemma 1.5], since the saturated fusion systems Fp,k are reduced, if they
were realizable, they would be realized by a finite simple group, but these examples do
not appear in the tables of [11, Proposition 9.5], where there are all finite simple groups
which have Sp,k as a Sylow p-subgroup.
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Part II

The compact case





CHAPTER 4

Fusion on infinite groups

In this chapter we will make a quick review of fusion on a certain class of infinite groups,
the class of discrete p-toral groups. All finite p-groups are discrete p-toral groups, so
this chapter is in fact a generalization of Chapter 2. This means that all definitions and
results of this chapter also apply to fusion over finite groups, although some of these
statements are presented only in this chapter since we use them only in the compact case.
Also, those concepts and theorems needed in this part that were stated in Chapter 2 are
restated in this chapter for the sake of completion.
In the first section we will define the concept of discrete p-toral group and generalize

the notion of saturated fusion systems to this class of p-groups. In the second section we
will recall the definition of centric linking system and generalize the definition of p-local
finite groups to p-local compact groups. The third and fourth sections are devoted to
present the two most important class of groups which give rise to p-local compact groups,
the compact Lie groups and the p-compact groups.

As for Chapter 2, all results in this chapter are well known, but we provide a proof to
those which are difficult to find in the literature.

4.1. Saturated fusion systems

To work with fusion on infinite groups we need to restrict to some class of p-groups
to be able to manage all information in the fusion systems. One motivation to the
generalization of saturated fusion systems to infinite groups is the study of compact Lie
groups and p-compact groups, so it seems natural to consider the p-groups which act as
Sylow subgroups of this kind of groups.
Let Z/p∞ denote the union of the cyclic p-groups Z/pn under the obvious inclusions,

known as the Prüfer p-group.
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4. Fusion on infinite groups

Definition 4.1.1 ([12, Definition 1.1]). A discrete p-toral group is a group S, with normal
subgroup S0 E S, such that S0 is isomorphic to a finite product of copies of Z/p∞, and
S/S0 is a finite p-group. The subgroup S0 will be called the identity component of S, and
S will be called connected if S = S0. Set π0(S) = S/S0, the group of components of S.
Define rk(S) = k if S0

∼= (Z/p∞)k, and set

|S| = (rk(S), |π0(S)|) = (rk(S), |S/S0|)

with the lexicographical order. Thus, |S| ≤ |S′| if and only if rk(S) < rk(S′), or
rk(S) = rk(S′) and |π0(S)| ≤ |π0(S′)|.

Remark 4.1.2. Note that with this definition it is clear that a finite p-group is a discrete
p-toral group of rank 0.

The main two properties of discrete p-toral groups, which in fact characterize it, are
that they are artinian and locally finite p-groups.

Definition 4.1.3 ([26, Chapter 1, Section E]). A group G is artinian if every nonempty
set of subgroups of G, partially ordered by inclusion, has a minimal element.

Definition 4.1.4 ([26, Chapter 1, Section A]). A group G is locally finite if every finitely
generated subgroup of G is finite, and is a locally finite p-group if every finitely generated
subgroup of G is a finite p-group.

Proposition 4.1.5 ([12, Proposition 1.2]). A group is a discrete p-toral group if and
only if it is artinian and a locally finite p-group.

The class of discrete p-toral groups inherits the property of being closed under taking
subgroups or quotients from the locally finite and artinian properties.

Lemma 4.1.6 ([12, Lemma 1.3]). Any subgroup or quotient group of a discrete p-toral
group is a discrete p-toral group.

Now we can define the notion of fusion system over a discrete p-toral group, which is
exactly the same as the Definition 2.1.1 in the finite case.

Definition 4.1.7 ([12, Definition 2.1]). A fusion system F over a discrete p-toral group S
is a category whose objects are the subgroups of S, and whose morphisms sets HomF (P,Q)

satisfy the following conditions:

(a) HomS(P,Q) ⊆ HomF (P,Q) ⊆ Inj(P,Q) for all P,Q ≤ S.

(b) Every morphism in F factors as an isomorphism in F followed by an inclusion.
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As in the finite case, two subgroups P, P ′ ≤ S are called F -conjugated if IsoF (P, P ′) 6= ∅,
and we denote by PF the set of subgroups of S which are F-conjugated to P .
The definition of saturated fusion system over discrete p-toral groups will be very

similar to the one over finite groups, so we need first to define some similar properties
about normalizers and centralizers.

Definition 4.1.8 ([12, Definition 2.2], [13, Definition 1.6]). Let F be a fusion system
over a discrete p-toral group S.

• A subgroup P ≤ S is fully centralized in F if |CS(P )| ≥ |CS(Q)| for all Q ∈ PF .

• A subgroup P ≤ S is fully normalized in F if |NS(P )| ≥ |NS(Q)| for all Q ∈ PF .

• A subgroup P ≤ S is fully automized in F if the index of AutS(P ) in AutF (P ) is
finite and prime to p.

• A subgroup P ≤ S is receptive in F if for each Q ≤ S and each ϕ ∈ IsoF (Q,P ), if
we set

Nϕ = {g ∈ NS(Q) | ϕcgϕ−1 ∈ AutS(P )}

then there is ϕ ∈ HomF (Nϕ, S) such that ϕ|Q = ϕ.

Since we are dealing with infinite groups, it is natural to ask some coherence condition
to morphisms which have an increasing chain of subgroups as a source. As we can see,
this is the only extra condition added to the definition of saturation.

Definition 4.1.9 ([12, Definition 2.2]). Let F be a fusion system over a discrete p-toral
group S. Then F is a saturated fusion system if the following three conditions hold:

(I) Each subgroup P ≤ S which is fully normalized in F is also fully centralized and
fully automized in F .

(II) Each subgroup P ≤ S which is fully centralized in F is also receptive in F .

(III) If P1 ≤ P2 ≤ P3 ≤ · · · is an increasing sequence of subgroups of S, with
P∞ =

⋃∞
n=1 Pn, and if ϕ ∈ Hom(P∞, S) is any homomorphism such that ϕ|Pn ∈

HomF (Pn, S) for all n, then ϕ ∈ HomF (P∞, S).

One way to see the need for the saturation axioms also in the infinite case, apart
from being a pure generalization of the finite case, is the fact that, even with the slight
modifications in the definitions, Proposition 2.1.6 is still valid also for fusion systems over
discrete p-toral groups.
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4. Fusion on infinite groups

Lemma 4.1.10 ([13, Lemma 1.7]). The following hold for any fusion system F over a
discrete p-toral group S.

(a) If P ≤ S is fully automized and receptive in F , then it is fully normalized.

(b) Every receptive subgroup of S is fully centralized.

As in the finite case, we use the notation OutF (P ) = AutF (P )/ Inn(P ) and OutS(P ) =

AutS(P )/ Inn(P ) for each P ≤ S, thus OutS(P ) ≤ OutF (P ) ≤ Out(P ).

Remark 4.1.11. If F is a saturated fusion system over a discrete p-toral group S, then
OutF (P ) is finite for all P ≤ S.

The definitions of F -centric and F -radical apply to subgroups of discrete p-toral groups
without changes if F is a saturated fusion system.

Definition 4.1.12 ([12, Definition 2.6]). Let F be a saturated fusion system over a
discrete p-toral group S.

• A subgroup P of S is F-centric if CS(Q) = Z(Q) for all Q ∈ PF . Equivalently, P
is F-centric if P is fully centralized in F and CS(P ) = Z(P ).

• A subgroup P of S is F-radical if OutF (P ) is p-reduced, i.e., if Op(OutF (P )) = 1.

The next theorem, similar to Theorem 2.1.13 and also known as Alperin fusion theorem,
proves that the fully normalized, centric, radical subgroups are enough to generate a
saturated fusion system.

Theorem 4.1.13 ([12, Theorem 3.6]). Let F be a saturated fusion system over a discrete
p-toral group S. Then for each φ ∈ IsoF (P, P ′), there exist sequences of subgroups of S

P = P0, P1, . . . , Pk = P ′ Q1, Q2, . . . , Qk,

and elements ϕi ∈ AutF (Qi), such that

(a) Qi is fully normalized in F , F-radical, and F-centric for each i.

(b) Pi−1, Pi ≤ Qi and ϕi(Pi−1) = Pi for each i.

(c) ϕ = ϕk ◦ ϕk−1 ◦ · · · ◦ ϕ1.

A key point in Chapter 7 will be to study normal subsystems of saturated fusion
systems over discrete p-toral groups, so we recall here the definitions about normality.
The concept of strongly closed subgroup can be applied to infinite fusion systems

without changes.
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4.1. Saturated fusion systems

Definition 4.1.14 ([5, Definition I.4.1]). Let F be a saturated fusion system over a
discrete p-toral group S. A subgroup P ≤ S is strongly closed in F if no element of P is
F-conjugate to an element of S \ P .

Remark 4.1.15. Note that, since F contains all conjugation morphisms, if P is strongly
closed in F then P must be a normal subgroup of S.

Definition 2.1.16, dealing with normal fusion subsystems over finite p-groups, is due
to Aschbacher, but it can be generalized without change to fusion systems over discrete
p-toral groups.

Definition 4.1.16. Let S be a discrete p-toral group, F a saturated fusion system over
S, and F ′ ≤ F a subsystem over a subgroup S′ ≤ S. Then, F ′ is normal in F if the
following conditions are satisfied.

(N1) S′ is strongly closed in F .

(N2) For each P ≤ Q ≤ S and each γ ∈ HomF (Q,S), the map that sends each morphism
f ∈ HomF ′(P,Q) to γ ◦ f ◦ γ−1 defines a bijection between the sets HomF ′(P,Q)

and HomF ′(γ(P ), γ(Q)).

(N3) F ′ is a saturated fusion system over S′.

(N4) Each f ∈ AutF ′(S
′) extends to some f̃ ∈ AutF (S′CS(S′)) such that

[f̃ , CS(S′)] = {f̃(g) · g−1 | g ∈ CS(S′)} ≤ Z(S′)

The notion of simple saturated fusion system over discrete p-toral groups is slightly
different to the definition of simple saturated fusion systems over finite groups. The
situation is analogous to the different definitions for simple finite group and simple
compact Lie group, where a similar phenomenon occurs.

Definition 4.1.17. Let F be a saturated fusion system over a discrete p-toral group S.
Then, F is simple if it satisfies one of the following conditions:

(a) rk(F) = 0 and F contains no proper nontrivial normal fusion subsystems.

(b) rk(F) ≥ 1 and every proper normal fusion subsystem of F is finite.

Now we will show how to construct a fusion subsystem for a given saturated fusion
system, playing the role of centralizers in group theory. This will be a very important
construction to prove our results in Chapter 7.
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4. Fusion on infinite groups

Definition 4.1.18 ([13, Definition 2.1]). Let F be a saturated fusion system over a
discrete p-toral group S and fix a subgroup P ≤ S. Then, the centralizer fusion system
CF (P ) is defined as the fusion system over CS(P ) where, for Q,R ≤ CS(P )

HomCF (P )(Q,R) = {ϕ ∈ HomF (Q,R) | there exists ϕ ∈ HomF (QP,RP )

with ϕ|Q = ϕ and ϕ|P = Id}

Finally, the next theorem suggests that the definition of centralizer fusion system is the
right one. We will see another evidence of the coherence of the definition of centralizer
fusion system in Theorem 7.1.1.

Theorem 4.1.19 ([13, Theorem 2.3]). Fix a saturated fusion system F over a discrete
p-toral group S. Assume P ≤ S is fully centralized in F . Then, CF(P ) is a saturated
fusion system over CS(P ).

4.2. p-local compact groups

Now we want to generalize the notion of p-local finite group to the case of saturated
fusion systems over discrete p-toral groups. Since the choice of discrete p-toral groups
was made because of their role as Sylow subgroups of compact Lie groups and p-compact
groups, we will refer to the new construction as p-local compact groups.
In order to associate a topological space to a saturated fusion system over a discrete

p-toral group, we can use exactly the same definition for centric linking system as in the
finite case.

Definition 4.2.1 ([12, Definition 4.1]). Let F be a fusion system over a discrete p-toral
group S. A centric linking system associated to F is a category L whose objects are the
F-centric subgroups of S, together with a functor

π : L → Fc

and distinguished monomorphisms P
δp−→ AutL(P ) for each F-centric subgroup P ≤ S,

which satisfy the following conditions.

(A) π is the identity on objects and surjective on morphisms. More precisely, for each
pair of objects P,Q ∈ L, Z(P ) acts freely on MorL(P,Q) by composition (upon
identifying Z(P ) with δP (Z(P )) ≤ AutL(P )), and π induces a bijection

MorL(P,Q)/Z(P )
∼=−→ HomF (P,Q)
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4.2. p-local compact groups

(B) For each F-centric subgroup P ≤ S and each g ∈ P , π sends δP (g) ∈ AutL(P ) to
cg ∈ AutF (P ).

(C) For each f ∈ MorL(P,Q) and each g ∈ P , the following square commutes in L:

P

δP (g)

��

f
// Q

δQ(π(f)(g))

��

P
f
// Q

Now the definition of p-local finite group generalizes to the one of p-local compact
group in a natural way.

Definition 4.2.2 ([12, Definition 4.2]). A p-local compact group is a triple (S,F ,L),
where S is a discrete p-toral group, F is a saturated fusion system over S, and L is a
centric linking system associated to F . The classifying space of the p-local compact group
is the space |L|∧p .

The next theorem shows that the homotopy type of the classifying space of a p-local
compact group also completely determines it.

Theorem 4.2.3 ([12, Theorem 7.4]). If (S,F ,L) and (S′,F ′,L′) are two p-local compact
groups such that |L|∧p ' |L′|∧p , then (S,F ,L) and (S′,F ′,L′) are isomorphic as p-local
compact groups.

Similarly to the case of fusion systems over finite p-groups, we don’t have to concern
about the existence and uniqueness of the centric linking systems associated to the
saturated fusion systems. This allows us to work mostly with saturated fusion systems
over discrete p-toral groups when we want to study p-local compact groups. In this part,
though, we will make explicit when we have the centric linking system for two reasons:
because in Chapter 5 and Chapter 6 we don’t assume the saturation axioms, so in theses
cases the existence of the centric linking system, and so the p-local compact group, is
not guaranteed; and because we will explicitly use some properties of the centric linking
system in Chapter 7.

Theorem 4.2.4 ([27]). Let F be a saturated fusion system over a discrete p-toral group.
Then there exists a centric linking system associated to F which is unique up to isomor-
phism.

Remark 4.2.5. Let F be a saturated fusion system over a discrete p-toral group S

and P ≤ S a fully centralized subgroup in F . Then, by Theorem 4.1.19, the fusion
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4. Fusion on infinite groups

system CF(P ) is a saturated fusion system over CS(P ), so we have that there exists a
unique centric linking system associated to it. We will denote this centric linking system
by CL(P ) and, consequently, we have a centralizer p-local compact group denoted by
(CS(P ), CF (P ), CL(P )).

While the concept of exotic p-local finite group is clearly defined, we will see in the
following sections that in the compact case there are several families of groups giving rise
to p-local compact groups, blurring this way the condition of being exotic. Moreover,
there cannot be a general notion of exoticness since, as the next proposition shows, the
p-local compact groups are always realizable by some group.

Proposition 4.2.6 ([23, Proposition 2.6]). Let (S,F ,L) be a p-local compact group.
Then, there exists a group G such that S ∈ Sylp(G), F = FS(G) and L = LS(G).

However, this group G is constructed as an amalgam of groups and presented as a
colimit of a tree of groups, resulting in a huge group which has nothing to do with the
original motivation to construct p-local compact groups as a generalization for compact
Lie groups and p-compact groups. This is why we will focus our attention on proving that
some p-local compact groups cannot be realized by compact Lie groups nor by p-compact
groups, but we will not deal with other classes of groups.

4.3. Compact Lie groups

In this section we will consider a compact Lie group G and study its discrete p-toral
groups that play the role of Sylow subgroups. Then, we will study how normal subgroups
of G inherit the Sylow subgroups, a property which will be very useful in Chapter 7.
Finally, we state the theorem which ensures that we can construct a p-local compact
group from every compact Lie group.
For any compact Lie group G, we will denote by G0 the connected component of G

which contains the neutral element. Recall that a compact Lie group P is called p-toral if
P0 is a torus and if its group of components is a p-group.

Remark 4.3.1. Note that if G is a compact Lie group and P ≤ G is a discrete p-toral
subgroup, then the topological closure P is a p-toral group.

To better differentiate between discrete and continuous subgroups, we will denote
p-toral groups as P, in contrast with discrete p-toral subgroups, denoted as P .
We will consider discrete Sylow subgroups of G, but we will define them by using

p-toral subgroups whose identity component is a maximal torus.
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4.3. Compact Lie groups

Definition 4.3.2 ([12, Definition 9.1]). Let G be a compact Lie group.

(a) For any p-toral group P, Sylp(P) denotes the set of discrete p-toral subgroups
P ≤ P such that P ·P0 = P and P contains all p-power torsion in P0.

(b) A discrete p-toral subgroup P ≤ G is snugly embedded if P ∈ Sylp(P ).

(c) Sylp(G) denotes the set of all p-toral subgroups S ≤ G such that the identity
component S0 is a maximal torus of G and S/S0 ∈ Sylp(N(S0)/S0).

(d) Sylp(G) denotes the set of all discrete p-toral subgroups P ≤ G such that P ∈
Sylp(G) and P ∈ Sylp(P ).

The previous definition refers to conditions about maximality subgroups. In finite
group theory, being a maximal p-subgroup is equivalent to contain all p-subgroups up
to conjugacy, but with infinite groups this is not true in general. The next proposition
shows that using the notions of Definition 4.3.2, Sylow p-subgroups of compact Lie groups
contain all discrete p-toral subgroups up to conjugacy. In particular, it states that there
is only one conjugacy class of Sylow subgroups for any compact Lie group G.

Proposition 4.3.3 ([12, Proposition 9.3]). Let G be a compact Lie group, then any
two subgroups in Sylp(G) are G-conjugate, and each discrete p-toral subgroup P ≤ G is
contained in some subgroup S ∈ Sylp(G).

Now we want to study how are the Sylows subgroups of normal subgroups of compact
Lie groups. For this, we need to prove the converse of Proposition 4.3.3, that is, that
besides all Sylow subgroups being conjugated, any conjugate of a Sylow subgroup is again
a Sylow subgroup. This result will be a direct check of Definition 4.3.2 (d), but we need
first to prove two topological lemmas relating conjugation morphisms with closures and
components in compact Lie groups.

Lemma 4.3.4. Let G be a compact Lie group and P ≤ G a subgroup. Then, for any
g ∈ G, gPg−1 = gPg−1.

Proof. Since conjugation by g is an homeomorphism and P is a closed subgroup of G,
we have that gPg−1 is a closed subgroup. Since gPg−1 ≤ gPg−1, we conclude that
gPg−1 ≤ gPg−1.
Now let gxg−1 ∈ gPg−1 and V an open neighborhood. Again, since conjugation by g

is homeomorphism, we have that g−1V g is an open neighborhood of x. Then, there exists
y ∈ (g−1V g)∩ P , because x ∈ P . That is, gyg−1 ∈ V ∩ (gPg−1), so gxg−1 ∈ gPg−1.
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4. Fusion on infinite groups

Lemma 4.3.5. Let G be a compact Lie group and P ≤ G a closed subgroup. Then, for
any g ∈ G, (gPg−1)0 = gP0g

−1.

Proof. Since P0 is a connected subspace of G and conjugation by g is an homeomorphism,
we have that gP0g

−1 is connected. Since gP0g
−1 contains the neutral element, and

gP0g
−1 ⊆ gPg−1, we have that gP0g

−1 ⊆ (gPg−1)0.
Now let gxg−1 ∈ (gPg−1)0, then, there exists a continuous map µ : I → gPg−1 such

that µ(0) = e and µ(1) = gxg−1. Composing with conjugation by g−1 we get a continuous
map

I → gPg−1 → P

0 7→ e 7→ e

1 7→ gxg−1 7→ x

So we have that x ∈ P0, hence gxg−1 ∈ gP0g
−1.

Now conditions of Definition 4.3.2 (d) follow easily for any conjugate of a Sylow
subgroup.

Lemma 4.3.6. Let G be a compact Lie group and P ∈ Sylp(G) a p-Sylow subgroup of G.
Then, gPg−1 ∈ Sylp(G) for any g ∈ G.

Proof. We must show that gPg−1 ∈ Sylp(G) and gPg−1 ∈ Sylp(gPg
−1).

First, by Lemmas 4.3.4 and 4.3.5, we have that (gPg−1)0 = (gPg−1)0 = gP 0g
−1. Since

P 0 its a maximal torus of G by hypothesis, so it’s gP 0g
−1.

Now, we have the isomorphisms

P/P 0
∼= gPg−1/gP 0g

−1 and NG(P )/P 0
∼= NG(gPg−1)/gP 0g

−1

So, if P/P 0 is a Sylow subgroup of NG(P )/P 0, we have that gPg−1/gP 0g
−1 is a Sylow

subgroup of NG(gPg−1)/gP 0g
−1.

For the second condition, we have the chain of equalities

gPg−1(gPg−1)0 = gPg−1gP 0g
−1 = gPP 0g

−1 = gPg−1

where in the last one we use that P ∈ Sylp(P ). Finally, let gxg−1 ∈ gP 0g
−1 an element

of p-power order. Then, x ∈ P 0 has p-power order, so we have, by hypothesis, that x ∈ P .
Therefore, gxg−1 ∈ gPg−1.

By using that any conjugate of a Sylow subgroup is still a Sylow subgroup we can
extend a result about Sylow subgroups of normal subgroups in finite groups to compact
Lie groups.
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We will use the next proposition in the second section of Chapter 7, when we prove
that the identity component of a compact Lie group produces normal fusion subsystems
according to Definition 4.1.16.

Proposition 4.3.7. Let G be a compact Lie group and S ∈ Sylp(G) be a Sylow p-subgroup.
Let H E G a closed normal subgroup, then R = S ∩H ∈ Sylp(H).

Proof. Since H is closed it is also a Lie group, so it has Sylow p-subgroups and we can
take P ∈ Sylp(H). The group P is a discrete p-toral subgroup of G, so we know, by
Proposition 4.3.3, that there exists g ∈ G such that gPg−1 ≤ S, since S ∈ Sylp(G). Then,
we have gPg−1 ≤ R, because H is a normal subgroup of G.

Now, since R is a discrete p-toral subgroup and P ∈ Sylp(H), there exists h ∈ H such
that hRh−1 ≤ P . Hence, we have the chain of inclusions

hRh−1 ≤ P ≤ g−1Rg

This implies gh ∈ NG(R), and then,

h−1Ph ≤ h−1g−1Rgh ≤ R

We conclude that P ≤ hRh−1, so in fact R = h−1Ph. Then, by Lemma 4.3.6,
R ∈ Sylp(H).

By Proposition 2.2.15 and Remark 2.2.19, we know that any finite group G with Sylow
subgroup S ∈ Sylp(G) gives rise to a p-local finite group (S,FS(G),LcS(G)) such that
|LcS(G)|∧p ' BG∧p . The next theorem shows that we can extend this result to compact
Lie groups and p-local compact groups.

Theorem 4.3.8 ([12, Lemma 9.5 and Theorem 9.10]). Fix a compact Lie group G and a
maximal discrete p-toral subgroup S ∈ Sylp(G). Then, FS(G) is a saturated fusion system
over S and there exists a centric linking system LcS(G) associated to FS(G) such that
(S,FS(G),LcS(G)) is a p-local compact group with classifying space |LcS(G)|∧p ' BG∧p .

As we have seen in the previous section, there is no notion of exoticness for p-local
compact groups as clear as it is for p-local finite groups. Then, since we cannot talk about
exotic p-local compact groups in general, we have to keep trace of which class of groups
we are considering when studying the exoticness of the p-local compact groups.

Definition 4.3.9. We will say that a p-local compact group (S,F ,L) is realizable by a
compact Lie group if F = FS(G) and L = LcS(G) for some compact Lie group G with
S ∈ Sylp(G).

49



4. Fusion on infinite groups

4.4. p-compact groups

A p-compact group is a homotopy theoretic version of a compact Lie group, but with all
the information at the prime p, in the sense of p-completion defined in Chapter 2. They
were defined by Dwyer-Wilkerson in [20], and later they were classified in [3] for p odd
and independently in [4] and [31, 32] for p = 2.
The aim of this section is to present some properties about p-compact groups and

the fact that any p-compact group give rise to a p-local compact group with equivalent
classifying space.

Definition 4.4.1 ([20, Definition 2.3]). A p-compact group is a triple (X,BX, e) where
X is a space such that H∗(X;Fp) is finite, BX is a pointed p-complete space, and
e : X → Ω(BX) is a homotopy equivalence.

Remark 4.4.2. If G is a compact Lie group such that the group of components π0(G) is
a finite p-group, then the space BG is p-good by Proposition 2.2.11, therefore the space
BG∧p is p-complete and, upon setting BĜ = BG∧p and Ĝ = Ω(BĜ), the triple (Ĝ, BĜ, Id)

is a p-compact group.

Remark 4.4.3. Not all p-compact groups come from p-completions of compact Lie
groups with the group of components a p-group. For p = 2, the first (and essentially the
only) example of 2-compact group not coming from the 2-completion of a compact Lie
group was shown by Dwyer-Wilkerson in [19]. For p odd, there are several examples of
these type of p-compact groups, as shown for example in [1] and [38].

Usually we will denote the p-compact group (X,BX, e) only by X, and refer to BX as
the classifying space of the p-compact group.

The homomorphisms are one of the most important concepts in group theory, and they
can be extended to p-compact groups by using maps between the classifying spaces.

Definition 4.4.4 ([20, Definition 3.1]). A homomorphism f : X → Y of p-compact groups
is a pointed map Bf : BX → BY . Two homomorphisms f, g : X → Y are conjugate if
Bf and Bg are freely homotopic.

The properties of injectivity and surjectivity of homomorphisms can also be extended
to p-compact groups, this time by using well known constructions of homotopy theory.

Definition 4.4.5 ([20, Definition 3.2]). Suppose that f : X → Y is a homomorphism of
p-compact groups. The homogeneous space Y/f(X) (denoted Y/X if f is understood)
is defined to be the homotopy fiber of Bf over the basepoint of BY . The space Y/X is
pointed by the basepoint of BX. The homomorphism f is said to be a monomorphism if
H∗(Y/X;Fp) is finite, and an epimorphism if Ω(Y/X) is a p-compact group.
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Similarly to the notion of torus in compact Lie groups and its generalization to toral
subgroups, we have the notion of p-compact torus and p-compact toral groups.

Definition 4.4.6 ([20, Definition 6.3]). If T ∼= (S1)r is a torus of rank r, then the
p-completion T̂ = Ω(BT∧p ) of T is called a p-compact torus of rank r.

A p-compact toral group is a p-compact group (P̂ , BP̂ , e) such that π1(BP̂ ) is a p-group,
and the identity component of P̂ is a p-compact torus with classifying space the universal
cover of BP̂ .

In order to consider fusion systems defined by p-compact groups we need to define
Sylows of p-compact groups. Following the idea of Definition 4.3.2, we will first relate the
discrete p-toral subgroups with the p-compact toral groups.

Definition 4.4.7 ([20, Definition 6.7]). If P̂ is an arbitrary p-compact toral group, a
discrete approximation to P̂ is a pair (P, f), where P is a discrete p-toral group and
Bf : BP → BP̂ induces an isomorphism in mod p cohomology.

Remark 4.4.8. By [20, Proposition 6.9], every p-compact toral group has a discrete
approximation. Moreover, each discrete p-toral group is a discrete approximation of
(P̂ , BP̂ , Id), where BP̂ = BP∧p and P̂ = Ω(BP̂ ).

The fundamental concept in the first section of Chapter 7 will be the centralizer of a
discrete p-toral subgroup of a p-compact group.

Definition 4.4.9 ([20, Definition 3.5]). If f : X → Y is a homomorphism of p-compact
groups, the centralizer of f in Y is defined to be the triple (CY (X, f), BCY (X, f), Id),
where

BCY (X, f) = Map(BX,BY )Bf and CY (X, f) = Ω(BCY (X, f))

Whenever f is understood, we simply write CY (X) for CY (X, f). The homomorphism f

is said to be central if the homomorphism CY (X, f)→ Y induced by evaluation at the
basepoint of BX is an equivalence.

Definition 4.4.10 ([12, Section 10]). A discrete p-toral subgroup of a p-compact group
X is a pair (P, f), where P is a discrete p-toral group and f : P̂ → X is a monomorphism.
We write BCX(P, f) = BCX(P̂ , f) = Map(BP,BX)Bf and CX(P, f) = CX(P̂ , f) for
short. A subgroup (P, f) is called central if f is a central homomorphism.

It is important to know that the centralizer of any discrete p-toral subgroup is a
p-compact group.
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Proposition 4.4.11 ([20, Proposition 5.1]). The centralizer CX(P, f) of any discrete
p-toral subgroup f : P → X is again a p-compact group.

In order to be able to consider Sylow subgroups in p-compact groups as the maximal
discrete p-toral subgroups, we need first to show that in fact there are always maximal
discrete p-toral subgroups for any p-compact group and that they are all conjugated.

Proposition 4.4.12 ([12, Proposition 10.1]). Let X be any p-compact group. Then, X
has a maximal discrete p-toral subgroup f : S → X. If u : P → X is any other discrete
p-toral subgroup of X, then Bu ' Bf ◦Bψ for some ψ ∈ Hom(P, S).

We are now ready to define the fusion system of a p-compact group X. Since in a
p-compact group there are no actual elements to operate with, we need to define the
fusion system of X in terms of maps between classifying spaces of subgroups.

Definition 4.4.13 ([12, Definition 10.2]). For any p-compact group X with Sylow p-
subgroup f : S → X, let FS,f (X) be the category whose objects are the subgroups of S,
and where for P,Q ≤ S,

MorFS,f (X)(P,Q) = {ϕ ∈ Hom(P,Q) | Bf |BQ ◦Bϕ ' Bf |BP }

Next proposition will be a key point to prove Theorem 7.1.1, the most important tool
in the first section of Chapter 7.

Proposition 4.4.14 ([12, Proposition 10.4]). Let X be a p-compact group, S f→ X be
a Sylow p-subgroup and fix P ≤ S. Write f |P : P → X for the morphism corresponding
to the map Bf |BP given by the composition of the inclusion BP ↪→ BS with Bf . Then,
CS(P ) is a discrete p-toral subgroup of CX(P, f |P ) and P is fully centralized in FS,f (X)

if and only if CS(P ) is a Sylow p-subgroup of CX(P, f |P ).

Finally, similarly to the case of finite groups and compact Lie groups, every p-compact
group also gives rise to a p-local compact group with the same classifying space.

Theorem 4.4.15 ([12, Proposition 10.5 and Theorem 10.7]). Let X be a p-compact
group, and let S f→ X be a Sylow p-subgroup. Then, FS,f (X) is a saturated fusion system
over S and there exists a centric linking system LcS,f (X) associated to FS,f (X) such that
(S,FS,f (X),LcS,f (X)) is a p-local compact group with classifying space |LcS,f (X)|∧p ' BX.

Similarly to the case of compact Lie groups, we can talk about p-local compact groups
realized by p-compact groups.
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Definition 4.4.16. We will say that a p-local compact group (S,F ,L) is realizable by
a p-compact group if F = FS,f (X) and L = LcS,f (X) for some p-compact group X with

S
f→ X a Sylow p-subgroup.
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CHAPTER 5

Limits of fusion systems

In this chapter we will make precise the notion of infinite union of fusion systems. Actually,
we will define a more general notion of limit of fusion systems and we will consider the
special case when all the morphisms are injective as the infinite union.

First, to fix the notation, we will recall some definitions and results about direct limits
of groups. Then we will define the notion of morphisms of fusion systems following [5]
and use it to define the limit of fusion systems. In the third section, we will prove that
the limit of fusion systems it is again a fusion system if the direct limit of the underlying
p-groups is a discrete p-toral group. Before ending the section we will discuss the relation
between the definition of limit we make here and the concept of direct limit in category
theory.

Finally, in the last section we will define new examples of fusion systems over discrete
p-toral groups by considering the infinite union of the exotic fusion systems discussed in
Chapter 3.

5.1. Direct limits of groups

We begin with the definition of directed set, which is the base to define direct systems
and direct limits. All definitions in this section can be found for sets in [7], and it is no
difficult to see that all definitions there extend to groups.

Definition 5.1.1. A preordered set I is said to be a directed set if for every two elements
i, j ∈ I, there exists an element k ∈ I such that i ≤ k and j ≤ k.

Now we can define direct systems of groups as families of groups and morphisms indexed
by directed sets such that the morphisms satisfy certain compatibility conditions.
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5. Limits of fusion systems

Definition 5.1.2. Let I be a directed set and let (Ei)i∈I be a family of groups indexed
by I. For each pair (i, j) of elements of I such that i ≤ j, let fij : Ei → Ej be a morphism
of groups. The pair (Ei, fij) is called a direct system over I if:

(a) fii : Ei → Ei is the identity morphism.

(b) fik = fjk ◦ fij for every i ≤ j ≤ k.

Finally, for any direct system of groups we can construct a new group which satisfies
the universal property of being, in some sense, the smallest group containing all groups
in the direct system in a way compatible with the morphisms of the system.

Definition 5.1.3. Let (Ei, fij) be a direct system of groups. The direct limit of the
system (Ei, fij) is the group lim−→Ei, defined as

lim−→Ei =
⋃
i∈I

(Ei × {i})� ∼

where (x, i) ∼ (y, j) if there exists k ∈ I such that k ≥ i, k ≥ j and fik(x) = fjk(y).
The product operation on lim−→Ei is defined as

[x, i][y, j] = [fik(x)fjk(y), k]

for any k ≥ i, j. For each i ∈ I, write fi for the morphism

fi : Ei → lim−→Ei

x 7→ [x, i]

Remark 5.1.4. If all the morphisms fij are injective, then fi is injective for all i by
definition, so we can identify Ei with f(Ei) and therefore we can consider the limit lim−→Ei

as the union
⋃
i∈I Ei.

Remark 5.1.5. By the definition of the direct limit and the maps fi, we have fj(fij) = fi

for all i ≤ j.

Remark 5.1.6. Let (Ei, fij) be a direct system of groups over I and E = lim−→Ei its direct
limit. If we have Fi ≤ Ei for all i ∈ I such that fij(Fi) ≤ Fj for all i ≤ j, then the family
(Fi, gij) is a direct system of subgroups of Ei, where gij is the restriction of fij to Fi.
Then there exists a unique morphism j : lim−→Fi → E, which is indeed a monomorphism,
so we can identify lim−→Fi with a subgroup of E.

The following lemma will be useful in order to construct a direct system of groups
whose limit is a given fixed group.
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5.2. Morphisms of fusion systems

Lemma 5.1.7. Let (Ei, fij) be a direct system of groups over I and E = lim−→Ei its direct
limit. Let F ≤ E be any subgroup. Then, there exist Fi ≤ Ei for all i ∈ I such that
lim−→Fi = F .

Proof. For any i ∈ I let Fi = f−1
i (F ∩ fi(Ei)). Then, Fi ≤ Ei for all i ∈ I and for any

x ∈ Fi we have

fj(fij(x)) = fi(x) ∈ F ∩ fi(Ei) = F ∩ fj(fij(Ei)) ≤ F ∩ fj(Ej)

so fij(Fi) ≤ Fj for all i ≤ j. Finally, we have lim−→Fi = F by construction.

5.2. Morphisms of fusion systems

In the next section we will define direct systems of fusion systems and a notion of limit
fusion system. For this, we need first the concept of morphism of fusion systems. The
following definition can be seen in [5, Definition II.2.2] for fusion systems over finite
p-groups, but can be used without change for fusion systems over discrete p-toral groups.

If F is a fusion system over a discrete p-toral group S, we will write the fusion system
in a compact form as (S,F).

Definition 5.2.1. A morphism α : (S,F)→ (S̃, F̃) of fusion systems from (S,F) to a
system (S̃, F̃) is a family (α, αP,Q)P,Q∈F , such that α : S → S̃ is a group homomorphism,
and αP,Q : HomF (P,Q)→ HomF̃ (α(P ), α(Q)) are maps making the diagram

P

ϕ

��

α // α(P )

αP,Q(ϕ)

��

Q
α // α(Q)

commutative for all P,Q ≤ S.

Remark 5.2.2. Note that if α : (S,F)→ (S̃, F̃) is a morphism of fusion systems defined
by a family (α, αP,Q)P,Q∈F , then the maps αP,Q are uniquely determined by the group
homomorphism α and the commutativity property.

Remark 5.2.3. If α : S → S̃ is an injective group homomorphism we have P ∼= α(P )

for all P ≤ S. Then, for each ϕ ∈ HomF(P,Q), the map αP,Q must be defined as
αP,Q(ϕ) = αϕα−1, so the condition for (α, αP,Q) being a morphism of fusion systems is
αϕα−1 ∈ HomF̃ (α(P ), α(Q)). Note also that in this case, the maps αP,Q are all injective
maps.
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5. Limits of fusion systems

The next proposition, joint with Theorem 4.1.13 will allow us to prove that a certain
group homomorphism α : S → S̃ is a morphism of fusion systems from (S,F) to (S̃, F̃)

by restricting our attention only to morphisms between certain subgroups of S.

Proposition 5.2.4. Let α : (S,F)→ (S̃, F̃) be a morphism of fusion systems. Then, the
following holds

(a) If ϕ ∈ HomF (P,Q) and ψ ∈ HomF (Q,R), then αP,R(ψ ◦ ϕ) = αQ,R(ψ) ◦ αP,Q(ϕ).

(b) If ϕ ∈ HomF (P,Q) and P ′ ≤ P , then αP,Q(ϕ|P ′) = αP,Q(ϕ)|α(P ′).

Proof. To prove (a), let ϕ ∈ HomF(P,Q) and ψ ∈ HomF(Q,R). Then, αP,Q(ϕ) ∈
HomF̃ (α(P ), α(Q)) and αQ,R(ψ) ∈ HomF̃ (α(Q), α(R)). Moreover, we have the commu-
tative diagram

P //

ϕ

��

ψ◦ϕ

��

α(P )

αP,Q(ϕ)

��

αQ,R(ψ)◦αP,Q(ϕ)

��

Q //

ψ

��

α(Q)

αQ,R(ψ)

��

R // α(R)

Since α is a morphism of fusion systems, the two little squares are commutative. Therefore,
the big rectangle is also commutative. Then, since αP,R(ψ ◦ ϕ) is uniquely determined by
the morphism α, we must have αP,R(ψ ◦ ϕ) = αQ,R(ψ) ◦ αP,Q(ϕ).
The argument to prove (b) is similar. Let ϕ ∈ HomF (P,Q) and P ′ ≤ P . In this case,

we have the commutative diagram

P ′ //� _

i

��

ϕ|P ′

��

α(P ′)

αP ′,P (i)

��

αP,Q(ϕ)◦αP ′,P (i)

��

P //

ϕ

��

α(P )

αP,Q(ϕ)

��

Q // α(Q)

By part (a) we have αP ′,Q(ϕ|P ′) = αP,Q(ϕ)◦αP ′,P (i) and again, since αP ′,P (i) is uniquely
determined by α, we have αP ′,P (i) = i. Hence, αP,Q(ϕ|P ′) = αP,Q(ϕ)|α(P ′).

At the end of next section we will compare the notion of limit of fusion systems to that
of direct limit in category theory. To do this, we need to consider the category of fusion
systems and morphisms of fusion systems. We will see that better results follow if we
focus only on saturated fusion systems.
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5.3. Limits of fusion systems

Definition 5.2.5. Since the identity is a morphism of fusion systems and the associativity
property of morphism of groups is inherited by morphisms of fusion systems we can define
the category of fusion systems FS where the objects are pairs (S,F) with F a fusion
system over S and the morphisms are morphisms of fusion systems. If we restrict our
attention to saturated fusion systems, we can consider the full subcategory SFS where
the objects are the pairs (S,F) such that F is a saturated fusion system over S.

5.3. Limits of fusion systems

We can now define a direct system of fusion systems in exactly the same way as we did
for groups in Definition 5.1.2.

Definition 5.3.1. Let I be a directed set and let (Si,Fi)i∈I be a family of fusion systems
indexed by I. For each pair (i, j) of elements of I such that i ≤ j, let αij : (Si,Fi) →
(Sj ,Fj) be a morphism of fusion systems. The pair ((Si,Fi), αij) is called a direct system
over I if:

(a) αii : (Si,Fi)→ (Si,Fi) is the identity morphism.

(b) αik = αjk ◦ αij for every i ≤ j ≤ k.

Remark 5.3.2. Note that if ((Si,Fi), αij) is a direct system of fusion systems, then, in
particular, (Si, αij) is a direct system of groups and we can consider its direct limit.

One important notion to define morphism in the limit fusion system will be the notion
of compatible system of morphisms in a direct system.

Definition 5.3.3. Let ((Si,Fi), αij) be a direct system of fusion systems over a directed
set I and Pi, Qi ≤ Si two families of subgroups such that αij(Pi) ≤ Pj and αij(Qi) ≤ Qj
for all i ≤ j. We say that a family of morphisms ϕi ∈ HomFi(Pi, Qi) is a compatible
system of morphisms if the diagram

αij(Pi)
� � //

αijPi,Qi
(ϕi)

��

Pj

ϕj

��

αij(Qi)
� � // Qj

is commutative for all i ≤ j.

We can proceed then with the definition of the limit of a direct system of fusion systems.
Since we have defined fusion systems only over discrete p-toral groups, we should ask that
the direct limit of the underlying groups in the system is a discrete p-toral group.
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5. Limits of fusion systems

Recall that if ((Si,Fi), αij) is a direct system of fusion systems, we write by αi the
morphism from each Si to the direct limit lim−→Si.

Definition 5.3.4. Let ((Si,Fi), αij) be a direct system of fusion systems over a directed
set I such that S = lim−→Si is a discrete p-toral group. Then, the limit of the direct system
is defined to be (S,F), where F is defined as

• Obj: All subgroups P ≤ S.

• Mor: HomF (P,Q) = {ϕ ∈ Hom(P,Q) | ∃Pi ≤ Si for all i ∈ I, with P = lim−→Pi and
ϕi ∈ HomFi(Pi, Si) a compatible system of morphisms such that the diagram

Pi
αi //

ϕi

��

P

ϕ

��

Q� _

i
��

Si
αi // S

is commutative for all i ∈ I}.

Now we must prove that this definition indeed verifies the properties to be a fusion
system according to Definition 4.1.7.

Proposition 5.3.5. Let ((Si,Fi), αij) be a direct system of fusion systems over a directed
set I such that S = lim−→Si is a discrete p-toral group. Then, the limit (S,F) of the direct
system ((Si,Fi), αij) is a fusion system.

Proof. The first thing we must prove is that F is indeed a category, then we will prove
that it satisfies the axioms to be a fusion system.

To prove that F is a category we must show that the identity morphism is in HomF (P, P )

for all P ≤ S, that we have a composition of morphisms, and that this composition is
associative.
Let P ≤ S be a subgroup, and ϕ = Id ∈ Hom(P, P ) the identity morphism. By

Lemma 5.1.7, we have that there exist subgroups Pi ≤ Si for every i ∈ I such that
P = lim−→Pi. By taking ϕi to be the inclusion of the subgroup Pi into Si, we have
Id ∈ HomF (P, P ).

Now let P,Q,R ≤ S be three subgroups of S and ϕ ∈ HomF (P,Q) and φ ∈ HomF (Q,R)

two morphisms in F . We must prove that φ ◦ ϕ ∈ HomF(P,R). We know, by the
definition of limit fusion system, that there exist subgroups Pi, Qi ∈ Si and morphisms
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5.3. Limits of fusion systems

ϕi ∈ HomFi(Pi, Si) and φi ∈ HomFi(Qi, Si) such that the diagrams

Pi
αi //

ϕi

��

P

ϕ

��

Qi
αi //

φi

��

Q

φ

��

Q� _

i
��

R� _

i
��

Si
αi // S Si

αi // S

are commutative for all i ∈ I. Since ϕi is injective for all i ∈ I, we can define the
subgroups Ai = ϕ−1

i (ϕi(Pi) ∩ Qi) ≤ Pi. Note that we have αij(Ai) ≤ Aj . Indeed, let
x ∈ Ai, we must prove that ϕj(αij(x)) ∈ ϕj(Pj)∩Qj . Since x ∈ Ai ≤ Pi and αij(Pi) ≤ Pj
it is obvious that ϕj(αij(x)) ∈ ϕj(Pj).

Using now that ϕi(x) ∈ Qi, we have that αij(ϕi(x)) ∈ Qj and, by the compatibility of
the family {ϕi}, we know that αij(ϕi(x)) = ϕj(αij(x)). This proves that the subgroups
Ai form a direct subsystem of the Pi, so we can consider the limit group A = lim−→Ai. Also,
we have by construction that the diagram

Ai
αi //

φi◦ϕi

��

A

φ◦ϕ
��

R� _

i
��

Si
αi // S

is commutative for all i ∈ I. To finish the proof of φ◦ϕ ∈ HomF (P,R) we must show that,
in fact, A = P . Since Ai ≤ Pi for all i ∈ I, we have that there exists a monomorphism
u : A→ P .

We must show now that u is also an epimorphism. To do this, it is enough to prove
that P =

⋃
i∈I αi(Ai). Let [x, j] ∈ P , then ϕ([x, j]) ∈ Q, so there exists k ∈ I and y ∈ Qk

such that ϕ([x, j]) = [y, k]. By the commutativity property of the family {ϕi} with ϕ, we
have that ϕ([x, j]) = [ϕj(x), j]. Now, since [ϕj(x), j] = [y, k], there exists l ∈ I such that
l ≥ j, k and αkl(y) = αjl(ϕj(x)).

Since y ∈ Qk, we have that αkl(y) ∈ Ql, so we will be finished if we see that αkl(y) is
also in ϕl(Pl). Indeed, this follows immediately from the compatibility condition on {ϕi},
since αkl(y) = αjl(ϕj(x)) = ϕl(αjl(x)) and αjl(x) ∈ Pl.

Note that is trivial to see then that αjl(x) ∈ Al and αl(αjl(x)) = αj(x) = [x, j], so u is
an epimorphism.
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5. Limits of fusion systems

This proves that the composition of two morphisms in F it is again in F . To finish the
proof of F being a category, note that the associativity condition on the morphisms is
satisfied since each αij is a group homomorphisms.
Now we have to check that F satisfies the axioms to be a fusion system. That is, we

have to show that, for every P,Q ≤ S, HomF (P,Q) satisfies

(a) HomS(P,Q) ⊆ HomF (P,Q) ⊆ Inj(P,Q).

(b) Every morphism in F factors as an isomorphism in F followed by an inclusion.

If ϕ is a morphism in HomF(P,Q), it is clear that ϕ ∈ Inj(P,Q) because of the
commutativity conditions with the family ϕi, provided that all Fi are fusion systems so
all ϕi are injective morphisms.

We must then show that HomF (P,Q) contains all the conjugations from P to Q. Recall
that NS(P,Q) denotes the set of elements [x, j] ∈ S such that [x, j]P [x, j]−1 ≤ Q. Let
then [x, j] ∈ NS(P,Q). We have that x ∈ Sj and, by Lemma 5.1.7, there exists Pi ≤ Si for
every i ∈ I such that P = lim−→Pi. Consider the subset of I defined as K = {k ∈ I | j ≤ k},
and define

P ′i =

{
{e} , if i 6∈ K
Pi , if i ∈ K

Since K is a cofinal subset of I, we have P = lim−→Pi = lim−→P ′i . Now, we can consider
the morphisms

ϕi =

{
i , if i 6∈ K

cαji(x) , if i ∈ K

which proves that c[x,j] ∈ HomF (P,Q).
To prove that every morphism in F factors as an isomorphism in F followed by an

inclusion observe first that all inclusions are morphisms in F , since they are the same as
conjugation by the neutral element. So we must prove that if ϕ ∈ HomF (P,Q), then also
ϕ ∈ HomF (P,ϕ(P )) and ϕ−1 ∈ HomF (ϕ(P ), P ).
By hypothesis, we have that there exist Pi ≤ Si such that P = lim−→Pi and ϕi ∈

HomFi(Pi, Si) such that the diagram

Pi
αi //

ϕi

��

P

ϕ

��

Q� _

i
��

Si
αi // S
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5.3. Limits of fusion systems

is commutative for all i ∈ I. It is clear that the same Pi and ϕi will serve to prove that
ϕ ∈ HomF (P,ϕ(P )). To see that ϕ−1 ∈ HomF (ϕ(P ), P ), consider ϕi(Pi), together with
the morphisms i◦ϕ−1

i ∈ HomFi(ϕi(Pi), Si). Then we have, by the compatibility condition
of the family {ϕi}, that ϕi(Pi) is a direct system and, by the commutativity of the ϕi
with ϕ, that lim−→ϕi(Pi) = ϕ(P ) and that the diagram

ϕ(Pi)
αi //

i◦ϕ−1
i

��

ϕ(P )

ϕ−1

��

P� _

i
��

Si
αi // S

is commutative for all i ∈ I.

We want to compare now the definition of limit of fusion systems given here and the
notion of direct limit in category theory. For this we want to study if there are morphisms
αi : (Si,Fi)→ (S,F) commuting with αij and if (S,F) is universal in the sense that for
any other fusion system (T, E) with morphisms ψi : (Si,Fi)→ (T, E) commuting with αij
there is a unique morphism u : (S,F)→ (T, E).

The next lemma proves a technical result that will be useful in the next proposition,
which will answer the first question above in the affirmative.

Lemma 5.3.6. Let ((Si,Fi), αij) be a direct system of fusion systems over a directed set
I such that S = lim−→Si is a discrete p-toral group. Write (S,F) for the limit fusion system
and let ϕ ∈ Hom(P,Q) be a morphism for some P,Q ≤ S. Finally, let J ⊂ I be a totally-
ordered subset and assume we have a compatible system of morphisms ϕj ∈ HomFj (Pj , Sj)

with P = lim−→Pj such that the diagram

Pj
αj

//

ϕj

��

P

ϕ

��

Q� _

i
��

Sj
αj

// S

is commutative for all j ∈ J . Then, we can extend the family to a compatible system of
morphisms for all i ∈ I such that P = lim−→Pi and ϕ ∈ HomF (P,Q).
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5. Limits of fusion systems

Proof. For each i ∈ I, set Ai = {j ∈ J | j ≤ i}. Then, consider the system

Pi =


{e} , if i 6∈ J and Ai = ∅
Pi , if i ∈ J

αji(Pj) , max j ∈ Ai if i 6∈ J

along with the morphisms

ϕi =


i , if i 6∈ J and Ai = ∅
ϕi , if i ∈ J

i ◦ αjiPj,Sj (ϕj) , max j ∈ Ai if i 6∈ J

Since J is totally ordered, the value max j ∈ Ai is well defined if Ai 6= ∅. Note also that
Ai ⊆ Aj if i ≤ j. By construction, we have P = lim−→Pj = lim−→Pi.

It is clear that the new system extends the old one, now we have to prove that the new
family is also a compatible system of morphisms. That is, we must prove that, for all
i ≤ j, the diagram

αij(Pi)
� � //

αijPi,Si
(ϕi)

��

Pj

ϕj

��

αij(Si)
� � // Sj

is commutative.
Let i ≤ j, and assume i 6∈ J and j 6∈ J . If Aj = ∅, then clearly Ai is also empty and

the associated diagram is commutative in a trivial way. If Aj 6= ∅ but Ai = ∅, then the
associated diagram also commutes trivially.
If both Aj 6= ∅ and Ai 6= ∅ we must consider different options. Set ki and kj for the

maximum index in Ai and Aj , respectively. Then, we must prove the commutativity of
the diagram

αij(αkii(Pki))
� � //

αijαkii
(Pki

),Si
(i◦αkii(ϕki ))

��

αkjj(Pkj )

i◦αkjjPkj ,Skj
(ϕkj )

��

αij(Si)
� � // Sj

Since the set J is totally ordered and Ai ⊆ Aj , we must have ki ≤ kj . If ki = kj , we
have that αij(αkii(Pki)) = αkij(Pki) = αkjj(Pkj ), so the diagram trivially commutes.
If ki < kj , we have that αkikj (Pki) ≤ Pkj and αkjj ◦ αkikj = αkij = αij ◦ αkii, so

αij(αkii(Pki)) = αkjj(αkikj )(Pki)) ≤ αkjj(Pkj ), and the diagram is commutative by the
hypothesis of ϕj being a compatible system of morphisms for J .
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5.3. Limits of fusion systems

The case where i ∈ J or j ∈ J is included in the previous diagram, just considering the
corresponding morphisms as the identity.
The last thing we must prove is that the new morphisms still commute with ϕ. Let

i ∈ I and consider the diagram

Pi
αi //

ϕi

��

P

ϕ

��

Q� _

i
��

Si
αi // S

If i ∈ J , then the diagram commutes by hypothesis. Otherwise, Pi = αkii(Pki) with
ki ∈ J , and we can extend the diagram to

Pki
αkii //

ϕki

��

αkii(Pki)
αi //

i◦αkii(ϕki )

��

P

ϕ

��

Q� _

i
��

Ski
αkii // Si

αi // S

By hypothesis, the big rectangle is commutative, since αki = αi ◦αkii and ki ∈ J . Also,
we have just proved before that the left square is commutative, because the extended
family is still a compatible system of morphisms. Since the map Pki 7→ αkii(Pki) is clearly
surjective, we have that the right square is also commutative.

Proposition 5.3.7. Let ((Si,Fi), αij) be a direct system of fusion systems over a directed
set I. Assume that S = lim−→Si is a discrete p-toral group and let (S,F) be the limit of the
system. Then, there exist morphisms αi : (Si,Fi)→ (S,F) such that the diagrams

(Si,Fi)
αij

//

αi
$$

(Sj ,Fj)

αj
yy

(S,F)

are commutative for all i ≤ j.

Proof. Since S is defined as the direct limit of the Si, there exist morphisms αi : Si → S

for all i ∈ I by Definition 5.1.3. By Remark 5.1.5, the morphisms αi are commutative
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5. Limits of fusion systems

with αij . Then, we need to prove that each αi induces maps αiP,Q : HomFi(P,Q) →
HomF(αi(P ), αi(Q)) for all P,Q ≤ S satisfying the commutativity condition of Defini-
tion 5.2.1.
For any ϕ ∈ HomFi(P,Q), we can define αiP,Q(ϕ) as follows. For x ∈ αi(P ), choose

y ∈ P such that αi(y) = x and define αiP,Q(ϕ)(x) = αi(ϕ(y)). Since αi could be non
injective, we must prove that αiP,Q(ϕ)(x) does not depend on the choice of y in order to
have αiP,Q(ϕ) well defined.
Let y1, y2 ∈ P such that αi(y1) = αi(y2), then, there exists j ≥ i such that αij(y1) =

αij(y2). Since αij is a morphism of fusion systems, we have the following commutative
diagram

P

ϕ

��

αij
// αij(P )

αijP,Q (ϕ)

��

Q
αij
// αij(Q)

So for any y ∈ P we have αij(ϕ(y)) = αijP,Q(ϕ)(αij(y)). Hence,

αi(ϕ(y1)) = αj(αij(ϕ(y1)))

= αj(αijP,Q(ϕ)(αij(y1)))

= αj(αijP,Q(ϕ)(αij(y2)))

= αj(αij(ϕ(y2)))

= αi(ϕ(y2))

Therefore, αiP,Q(ϕ) is well defined. Then, by taking J = {i} in Lemma 5.3.6, we have
that αiP,Q(ϕ) ∈ HomF (αi(P ), αi(Q)), so we can conclude that αi : (Si,Fi)→ (S,F) is a
morphism of fusion systems. Moreover, the αi satisfy the commutative diagram in the
statement since they do at the level of groups and αiP,Q is determined by αi as noted in
Remark 5.2.2.

For the second question of the comparison between the limit of fusion systems and the
direct limit of a category, we must study when there is a unique morphism u : (S,F)→
(T, E) between the two fusion systems playing the role of the limit.

The morphism u will always exist at the level of groups and it will be unique because S
is a direct limit of groups. But maybe u is not a morphism of fusion systems because there
are no maps uP,Q : HomF (P,Q)→ HomE(u(P ), u(Q)) satisfying the required properties.
We prove in the next proposition that if we work with the category SFS, then u it is
indeed a morphism of fusion systems.
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5.3. Limits of fusion systems

Proposition 5.3.8. Let ((Si,Fi), αij) be a direct system of fusion systems over a directed
set I such that S = lim−→Si is a discrete p-toral group. Assume that the limit fusion system
(S,F) is saturated. Then, (S,F) is the categorical direct limit in the category SFS.

Proof. Assume that we have a diagram of the form

(Si,Fi)
αij

//

αi
$$

ψi

$$

(Sj ,Fj)

αj
yy

ψj

zz

(S,F)

u

��

(T, E)

for every i ≤ j, satisfying ψi = ψj ◦ αij . Then, u is given by the property of S being the
direct limit of the Si and it is unique. We must prove then that u it is also a morphism of
fusion systems. Note that we will also have ψi = u ◦αi, since S is a direct limit of groups.

Let P,Q ≤ S and ϕ ∈ HomF (P,Q). Then, we can define a morphism uP,Q(ϕ) : u(P )→
u(Q) such that the diagram

P

ϕ

��

// u(P )

uP,Q(ϕ)

��

Q // u(Q)

is commutative as follows. Let x ∈ u(P ) and choose y = [y, i] ∈ P such that u(y) = x.
Then, define uP,Q(ϕ)(x) = u(ϕ(y)). Next we show that this morphism is well defined. Let
y1 = [y1, i1] ∈ P and y2 = [y2, i2] ∈ P such that u(y1) = x = u(y2), we must prove that
u(ϕ(y1)) = u(ϕ(y2)). Since ϕ ∈ HomF (P,Q), there exist Pi ≤ Si and ϕi ∈ HomFi(Pi, Si)

such that P = lim−→Pi and the diagrams of Definition 5.3.4 are commutative. Then, there
exists k ∈ I big enough such that there exist ỹ1, ỹ2 ∈ Pk with y1 = αk(ỹ1) and y2 = αk(ỹ2).
Then, since u(αk(ỹ1)) = u(αk(ỹ2)), we have ψk(ỹ1) = ψk(ỹ2).

Now, since ϕ ∈ HomF(P,Q) and ψk is a morphism of fusion systems, we have these
two commutative diagrams

Pk
αk //

ϕk

��

P

ϕ

��

Q� _

i
��

Sk
αk // S

Pk
ψk //

ϕk

��

ψk(Pk)

ψkPk,Sk
(ϕk)

��

Sk
ψk // ψk(Sk)
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5. Limits of fusion systems

Therefore, we can consider the following chain of equalities

u(ϕ(y1)) = u(ϕ(αk(ỹ1)))

= u(αk(ϕk(ỹ1)))

= ψk(ϕk(ỹ1))

= ψkPk,Sk (ϕk)(ψk(ỹ1))

= ψkPk,Sk (ϕk)(ψk(ỹ2))

= ψk(ϕk(ỹ2))

= u(αk(ϕk(ỹ2)))

= u(ϕ(αk(ỹ2)))

= u(ϕ(y2))

Finally, we must prove that uP,Q(ϕ) ∈ HomE(u(P ), u(Q)). For this, we will use axiom
(III) of saturated fusion systems from Definition 4.1.9.

Note that, by the properties of ϕ and u, we have the diagram

Pi

ϕi

��

αi //

ψi

%%

P

ϕ

��

u // u(P )

uP,Q(ϕ)

��

Q� _

i

��

u // u(Q)� _

i
��

Si
αi //

ψi

99
S

u // u(S)

where all the squares, rectangles and curved triangles are commutative. By the uniqueness
of the definition of ψiPi,Si (ϕi), we must have

uP,Q(ϕ)|ψi(Pi) = ψiPi,Si (ϕi) ∈ HomE(ψi(Pi), ψi(Si))

for all i ∈ I.
Now, since u(P ) is a countable group, we can numerate its elements u(P ) = {u1, u2, . . . }.

Note also that u(P ) =
⋃
i∈I ψi(Pi) and the ψi(Pi) form a direct system with the inclusion,

so we can take, by the axiom of choice, a set of subgroups {ψi1(Pi1), ψi2(Pi2), . . . } such
that {u1, . . . , uk} ∈ ψik(Pik) for all k ∈ N.
Finally, by discarding some subgroups if necessary, we obtain an increasing sequence
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5.4. Definition of (S3,F3), (Sp,Fp) and (Sp, F̃p)

of subgroups ψij (Pij ) ≤ T whose union is u(P ) and such that the restriction of uP,Q(ϕ)

to these subgroups is in E . Therefore, by axiom (III) of saturation, we must have
uP,Q(ϕ) ∈ HomE(u(P ), T ). Since the image of uP,Q(ϕ) is in clearly in u(Q), we obtain
that uP,Q(ϕ) ∈ HomE(u(P ), u(Q)).

5.4. Definition of (S3,F3), (Sp,Fp) and (Sp, F̃p)

In this section we will use the theory we have developed in the previous section to construct
new examples of fusion systems over discrete p-toral groups by taking the limit of the
fusion systems defined in Chapter 3.
To construct these new examples we will first prove that the fusion systems over the

finite groups of Chapter 3 form direct systems of fusion systems. Then we will prove a
general result about limits of fusion systems which fits exactly for the structure of our
new examples.
Recall from the definition of the fusion systems F3,k over S3,k and Fp,k, F̃p,k over

Sp,k that we have, for p = 3, two automorphisms η, ω ∈ AutF3,k
(S3,k) and, for p ≥ 5,

two automorphisms φ, ψ ∈ AutFp,k(Sp,k). Then, by considering these automorphisms as
generators for the corresponding outer automorphisms groups, we can see in Table 5.1
the isomorphism type of these groups for the fusion systems F3,k, Fp,k and F̃p,k.

F OutF (Sp,k) OutF (Tp,k) OutF (V ) prime

F3,k C2 × C2 GL2(F3) GL2(F3) p = 3

Fp,k C p−1
2
× Cp−1 Ap o Cp−1 SL2(Fp)o C p−1

2 p ≥ 5
F̃p,k Cp−1 × Cp−1 Σp × Cp−1 GL2(Fp)

Table 5.1.: Isomorphism type for the outer automorphisms groups of the centric and
radical subgroups of F3,k, Fp,k and F̃p,k.

The next proposition proves that the Frobenius map from Tp,k to Tp,k+1 induces
morphisms of fusion systems.

Proposition 5.4.1. The morphism ρ : Sp,k → Sp,k+1 defined by ρ(v) = vp for v ∈
Tp,k and ρ(s) = s induces morphisms of fusion systems (S3,k,F3,k) → (S3,k+1,F3.k+1),
(Sp,k,Fp,k)→ (Sp,k+1,Fp.k+1) and (Sp,k, F̃p.k)→ (Sp,k+1, F̃p,k+1), for any k ≥ 2.

Proof. The proof is exactly the same for the cases of Fp,k and F̃p,k, and completely
analogous for F3,k. Therefore we will write the argument only for F̃p,k.
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5. Limits of fusion systems

Since ρ = p Id, we have ρ ∈ Z(GLp−1(Z/pk)), so ρ is compatible with the action of s
over Tp,k and therefore, we can extend it to a morphism denoted also by ρ : Sp,k → Sp,k+1.
Note that ρ is a monomorphism so, by Remark 5.2.3, we only need to check that
ρ ◦ ϕ ◦ ρ−1 ∈ HomF̃p,k+1

(ρ(P ), ρ(Q)) for any ϕ ∈ HomF̃p,k(P,Q).
By Proposition 5.2.4, we only need to consider ϕ ∈ AutF̃p.k(P ) for P = Sp,k, Tp,k

and V . Moreover, if ϕ = cx ∈ HomF̃p,k(P,Q) with x ∈ Sk, then, ρ ◦ ϕ ◦ ρ−1 = cρ(x) ∈
HomF̃p,k+1

(ρ(P ), ρ(Q)) so, in the case of the full group Sp,k, we only need to deal with
the outer automorphisms group.
By abuse of notation, we will write with the same symbol the morphisms for all k.

(Tp,k) Let ϕ ∈ AutF̃p,k(Tp,k), then ϕ can be seen as a matrix in GLp−1(Z/pk). Since
ρ = p Id, it commutes with ϕ, so ρ ◦ ϕ ◦ ρ−1 = ϕ|ρ(Tp,k) ∈ AutF̃p,k+1

(ρ(Tp,k)),
because ϕ is also in AutF̃p,k+1

(Tp,k+1).

(V ) Let ϕ ∈ AutF̃p,k(V ). Note that, in the base 〈ζ, s〉, the morphism ρ is the identity.
Then, ρ ◦ ϕ ◦ ρ−1 = ϕ ∈ AutF̃p,k+1

(V ).

(Sp,k) In this case we only need to check the morphisms φ and ψ.

φ) Since φ(Tp,k) = Tp,k, we have that φ(vsi) = φ(v)φ(si) = φ(v)siλ. Then,
ρ(φ(vsi)) = φ(v)psiλ. On the other hand, φ(ρ(vsi)) = φ(vpsi) = φ(v)psiλ. So
φ and ρ commute, hence ρ ◦ φ ◦ ρ−1 = φ|ρ(Sp,k) ∈ AutF̃p,k+1

(ρ(Sp,k)).

ψ) The same argument of φ works for ψ, since ψ(Tp,k) = Tp,k and then, ρ(ψ(vsi)) =

ρ(ψ(v)ψ(s)i) = ρ(vλsi) = vpλsi = ψ(vpsi) = ψ(ρ(vsi)). Then, ρ ◦ ψ ◦ ρ−1 =

ψ|ρ(Sp,k) ∈ AutF̃p,k+1
(ρ(Sp,k)).

With this proposition we can consider the morphisms of fusion systems given by ρ
and its compositions and define some direct systems of fusion systems. Note that, since
ρ is a monomorphism, in all the cases the corresponding limit fusion system can be
considered as the infinite union of the fusion systems in the direct system. More precisely,
let I = N \ {1} and consider the direct systems of fusion systems given by:

• ((S3,k,F3,k), αij) where αij = ρj−i for i ≤ j.

• ((Sp,k,Fp,k), αij) where αij = ρj−i for i ≤ j.

• ((Sp,k, F̃p,k), αij) where αij = ρj−i for i ≤ j.

Then, the direct limit Sp of Sp,k fits in a split extension

1→ (Z/p∞)p−1 → Sp → Z/p→ 1
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5.4. Definition of (S3,F3), (Sp,Fp) and (Sp, F̃p)

hence it is a discrete p-toral group. As usual, we will write Tp = (Z/p∞)p−1 ≤ Sp, the
maximal torus. Then, by Proposition 5.3.5, we can take the limit of the direct systems to
obtain fusion systems F3 over S3 and Fp and F̃p over Sp for p ≥ 5.
The next proposition allows us to characterize the limit fusion system in the cases

where the morphisms of the fusion systems in the direct systems are very well understood.
The hypothesis in the proposition are motivated by properties satisfied by the three direct
systems of fusion systems giving rise to F3, Fp and F̃p.

Proposition 5.4.2. Let ((Si,Fi), αij) be a direct system of fusion systems over a directed
set I such that S = lim−→Si is a discrete p-toral group. Assume that, for each i ∈ I there
are subgroups of Si, denoted as P i1, . . . , P

i
n, and finite groups G1, . . . , Gn such that the

following conditions are verified:

(i) Fi = 〈AutFi(P
i
1), . . . ,AutFi(P

i
n)〉 for all i ∈ I and every isomorphism in Fi is the

restriction of some of these automorphisms.

(ii) OutFi(P
i
l )
∼= Gl for all i ∈ I. Moreover, there exist families of set-theoretic sections

sil : OutFi(P
i
l )→ AutFi(P

i
l ) such that {sil(ρ)} is a compatible system of morphisms

for all ρ ∈ Gl.

(iii) If P il ≤ P ik, then OutFi(P
i
k) ≤ OutFi(P

i
l ). More precisely, for any ρ ∈ OutFi(P

i
k)

we have that sik(ρ)|P il ∈ AutFi(P
i
l ) and sil(

[
sik(ρ)|P il

]
) = sik(ρ)|P il .

(iv) αij(P il ) ≤ P
j
l for any i ≤ j and P 6≤ P il implies αij(P ) 6≤ P jl .

Then, the limit fusion system (S,F) is generated by F = 〈AutF(P1), . . . ,AutF(Pn)〉
and OutF (Pl) ∼= Gl, where Pl = lim−→P il .

Proof. First note that there are morphisms ωρ ∈ AutF(Pl) for all ρ ∈ Gl. Indeed, by
condition (ii), there is a compatible system of morphisms {sil(ρ)} which fit in the diagram

P il
αij

//

sil(ρ)

��

αi

��

P jl
αj

��

sjl (ρ)
��

P il

αi
��

Pl

ωρ

��

P jl

αj
��

Pl

The morphism ωρ is given by the property of direct limits, and it is an automorphism
because all of the sil(ρ) are automorphisms and we can make the symmetric argument.
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5. Limits of fusion systems

Moreover, ωρ belongs to F by definition of limit fusion system. Note that, if ρ, ρ′ ∈ Gl
are different, then ωρ and ωρ′ don’t differ in a conjugation by an element of S, since this
would imply ρ = ρ′.

Now we prove that, if K ⊆ I is a cofinal subset, the limit of conjugation morphism
for k ∈ K is a conjugation morphism in the limit. Let Pi ≤ Si be subgroups such that
αij(Pi) ≤ Pj and write P = lim−→Pi. Consider xk ∈ Pk for all k ∈ K such that {cxk} is a
compatible system of morphisms. For any i ∈ I, let k ∈ K such that k ≥ i (which exists
since K is cofinal) and define ωi = αk ◦ cxk ◦ αik : Pi → P . These morphisms are well
defined because different choices of k will lead to the same morphism ωi.

Then, there exists a morphism ω : P → P commuting with the ωi. Note that ω is an
automorphism since we can make the symmetric argument with the conjugation by the
inverse elements to obtain ω−1. Then, consider all the subgroups αk(Pk) ≤ P , which
satisfy that αk(Pk) ≤ αl(Pl) if k ≤ l, and therefore CP (αk(Pk)) ≥ CP (αl(Pl)).

By the compatibility of the morphisms cxk , we have that cαl(xl)|αk(Pk) = cαk(xk) if
k ≤ l. Hence, αl(xl)−1αk(xk) ∈ CP (αk(Pk)). Since P is artinian, there exists m such
that CP (αk(Pk)) = CP (αm(Pm)) if k ≥ m. Then, for [g, k] ∈ P , we have ω([g, k]) =

cαk(xk)([g, k]) = cαm(xm)([g, k]), so ω is a conjugation by an element of P . Since all
conjugations belong to any fusion system, we have ω ∈ HomF (P, P ).

Now we want to prove F = 〈AutF (P1), . . . ,AutF (Pn)〉. For this, let ϕ ∈ HomF (R,Q)

and recall that, by definition of limit fusion system, there exist Ri ≤ Si and ϕi ∈
HomFi(Ri, Si) a compatible system of morphisms such that R = lim−→Ri and the diagrams

Ri //

ϕi

��

R

ϕ

��

Q� _

i
��

Si // S

are commutative for all i ∈ I.

By condition (i), there exists an automorphism ψi ∈ AutFi(P
i
l ) such that Ri, ϕi(Ri) ≤

P il and ϕi = i ◦ ψi|Ri . Let ρi = [ψi] ∈ OutFi(P
i
l ) and write ωρi = sil(ρi) for short. Then,

we have ψi = ωρi ◦ cxi for some xi ∈ P il .

Since n is finite, there exists some λ ∈ {1, . . . , n} such that for all i ∈ I, there exists
j ≥ i with ψj ∈ AutFj (P

j
λ). Therefore, the set

J = {j ∈ I | ψj ∈ AutFj (P
j
λ)}
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5.4. Definition of (S3,F3), (Sp,Fp) and (Sp, F̃p)

is a cofinal subset of I. Then, fixed λ, since Gλ is a finite group, there exists ρ ∈ Gλ such
that for all j ∈ J there exists k ≥ j with ρ = [ψk]. Therefore, the set

K = {k ∈ J | [ψk] = ρ ∈ Gλ}

is a cofinal subset of J , hence a cofinal subset of I.

Now consider the morphisms ω−1
ρk
◦ ϕk = cxk with the appropriate restrictions. Since

this forms a compatible system of morphisms, we have that there exists some element
[z, j] ∈ Pλ such that the diagrams

Rk //

ω−1
ρk
◦ϕk

��

R

c[z,j]

��

Q� _

i
��

Sk // S

are commutative for all k ∈ K. Then, we have ϕ = (ωρ ◦ c[z,j])|R and therefore ϕ is a
restriction of an automorphism of Pλ.

Finally, we will prove that OutF (Pl) ∼= Gl for l = 1, . . . , n. For this, we need to prove
that, for every morphism ϕ ∈ AutF(Pl), there exist ρ ∈ Gl and [z, j] ∈ Pl such that
ϕ = ωρ ◦ c[z,j].

By the previous argument, if ϕ ∈ AutF(Pl), there exists ψ ∈ AutF(Pk) such that
Pl ≤ Pk, ϕ = ψ|Pk and ψ = ωρ ◦ c[z,j], for ρ ∈ OutF(Pk) and [z, j] ∈ Pk. If there is no
Pk such that Pl ≤ Pk, then ψ ∈ AutF(Pl) and [z, j] ∈ Pl, so in this case we have, by
construction, OutF (Pl) ∼= Gl.

If Pl ≤ Pk for some l, we can assume, by an induction process, that OutF (Pk) ∼= Gk. Let
then ρ ∈ Gk, we have, by conditions (ii) and (iii), that OutFi(P

i
k) ∼= Gk and OutFi(P

i
k) ≤

OutFi(P
i
l ), so ρ ∈ OutFi(P

i
l ). Taking the limit of sil(ρ) we have a morphism in AutF (Pl)

such that projects to ρ in the outer automorphism group, hence OutF (Pk) ≤ OutF (Pl).

Then, since ρ ∈ OutF (Pk), we have also ρ ∈ OutF (Pl) and this implies c[z,j] ∈ AutF (Pl).
Therefore, to prove OutF (Pl) ∼= Gl, we are left to prove that the class

[
c[z,j]

]
∈ OutF (Pl)

is a limit of elements in Gl, because then c[z,j] = ωρ′ ◦ c[z′,j′] for ρ′ ∈ Gl and [z′, j′] ∈ Pl,
so we will obtain the desired decomposition

ϕ = (ωρ ◦ ωρ′) ◦ c[z′,j′] = (ωρρ′ ◦ c[z′′,j′′]) ◦ c[z′,j′] = ωρρ′ ◦ c[z′′,j′′][z′,j′]

If [z, j] ∈ Pl it is trivial, so assume [z, j] 6∈ Pl. Then, we have z 6∈ P il for all i ∈ I, by

73



5. Limits of fusion systems

condition (iv). Now, by the same hypothesis, and using that c[z,j](Pl) = Pl, we have
cαji(z) ∈ AutFi(P

i
l ) for i ≥ j. Then, the morphism c[z,j] is the limit of cαji(z) and the

class
[
c[z,j]

]
∈ OutF(Pl) is the limit of the outer automorphisms

[
cαji(z)

]
∈ Gl. Note

that, if not all of them are compatible, we can take a cofinal subset in which they are
compatible, since the outer automorphism groups are finite.

The previous proposition proves, in particular, that there are automorphisms η, ω ∈
AutF3(S3) and φ, ψ ∈ AutFp(Sp) for p ≥ 5. Moreover, by considering this automorphisms
as generators for the corresponding outer automorphism groups, we can see in Table 5.2
that the isomorphism type of these groups are completely similar to those in Table 5.1.

F OutF (Sp) OutF (Tp) OutF (V ) prime

F3 C2 × C2 GL2(F3) GL2(F3) p = 3

Fp C p−1
2
× Cp−1 Ap o Cp−1 SL2(Fp)o C p−1

2 p ≥ 5
F̃p Cp−1 × Cp−1 Σp × Cp−1 GL2(Fp)

Table 5.2.: Isomorphism type for the outer automorphisms groups of the centric and
radical subgroups of F3, Fp and F̃p.

In the next chapter we will prove that these three fusion systems are saturated, so
they are indeed the direct limit of the direct systems from a categorical point of view, by
Proposition 5.3.8.
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CHAPTER 6

Saturation of fusion systems over discrete
p-toral groups

In the previous chapter we have defined three new fusion systems over discrete p-toral
groups denoted by (S3,F3), (Sp,Fp) and (Sp, F̃p). The aim of this chapter is to prove
that all of this new fusion systems are saturated, giving rise then to p-local compact
groups by Theorem 4.2.4.

To prove the saturation of the given fusion systems, in the first section we will prove a
saturation criterion by generalizing a known result for fusion systems over finite p-groups
proved by Levi-Oliver. Then, in the second section we will study some properties about
the p-groups S3 and Sp and about the fusion systems, and we will prove the saturation
using the main theorem of Section 6.1.

6.1. A saturation criterion

In this section we will show a criterion to prove that a given fusion system is saturated.
It is a generalization of [28, Proposition 1.1] to the case of fusion systems over discrete
p-toral groups. This result shows that it is enough to prove the saturation for some
centralizer fusion subsystems if the elements in the fusion system are conjugated in a way
that behaves well with the centralizers of the elements.
To prove the criterion we need first two lemmas dealing with the existence of fixed

points of some action over a discrete p-toral group. These results are clear in the case of
finite groups, but we need also to apply them to discrete p-toral group with an infinite
number of elements.

Lemma 6.1.1. Let π be a finite p-group, G a locally finite p-group and ρ : π → Aut(G)

an action of π on G. Then, G has a fixed point of order p.
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6. Saturation of fusion systems over discrete p-toral groups

Proof. Since π is finite, we can write π = {g1, . . . , gn}. Then, choose an element x ∈ G
and consider the subgroup H = 〈ρ(g1)(x), . . . , ρ(gn)(x)〉. Since H is finitely generated
and G is locally finite, we have that H is finite. Observe that, by construction, the action
of π restricts to the subgroup H:

ρ(gj)[ρ(gk1)(x) · · · ρ(gkl)(x)] = ρ(gj)[ρ(gk1)(x)] · · · ρ(gj)[ρ(gkl)(x)]

= ρ(gjgk1)(x) · · · ρ(gjgkl)(x)

= ρ(gm1)(x) · · · ρ(gml)(x) ∈ H

Then, the action of π on H has fixed points, since we know that a finite p-group acting on
any other finite p-group always have fixed points. Finally, we have that the fixed points
form a subgroup of H, so, by Cauchy’s theorem, there exists an element of order p in the
subgroup of fixed points.

Lemma 6.1.2. Let S be a discrete p-toral group and P ≤ S any subgroup. Then, there
exists an element x ∈ Z(P ) of order p which is fixed by all ϕ ∈ AutS(P ).

Proof. Set π = OutS(P ) and ρ : π → Aut(Z(P )) the action given by choosing a represen-
tative and restricting to Z(P ), which is well defined because Z(P ) is characteristic in P
and the inner automorphisms of P restrict to the identity in Z(P ).

Since Z(P ) ≤ P ≤ S is a discrete p-toral group, Z(P ) is locally finite. By Lemma 6.1.1,
there exists an element x ∈ Z(P ) of order p fixed by all morphisms in OutS(P ), because
OutS(P ) is finite. Finally, since every ψ ∈ Inn(P ) restricts to the identity in Z(P ), we
have that the element x is fixed by all ϕ ∈ AutS(P ).

We are now ready to prove the criterion for saturation of fusion systems over discrete
p-toral groups.

Theorem 6.1.3. Let (S,F) be a fusion system over a discrete p-toral group. Then, F is
saturated if and only if it satisfies axiom (III) of saturated fusion systems and there exists
a set X of elements of order p in S such that the following conditions hold:

(i) Each x ∈ S of order p is F-conjugate to some y ∈ X.

(ii) If x, y are F-conjugate and y ∈ X, then there is some morphism

ρ ∈ HomF (CS(x), CS(y))

such that ρ(x) = y.

(iii) For each x ∈ X, CF (x) is a saturated fusion system over CS(x).
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6.1. A saturation criterion

Proof. First, if F is saturated, the set X of all elements x ∈ S of order p such that 〈x〉
is fully centralized in F satisfies the conditions in the statement. Suppose then that F
satisfies axiom (III) and that such a set X exists. In order to prove saturation we need to
prove that F also satisfies axioms (I) and (II) of Definition 4.1.9.
We will prove first axiom (II) of saturation, since we will need to use it when proving

axiom (I).
Axiom (II): Every subgroup of S which is fully centralized in F it is also receptive.

That is, let ϕ ∈ HomF(P, S) be such that P ′ = ϕ(P ) is fully centralized in F . Then,
there exists ϕ̃ ∈ HomF (Nϕ, S) such that ϕ = ϕ̃|P , and where

Nϕ = {g ∈ NS(P ) | ϕ ◦ cg ◦ ϕ−1 ∈ AutS(P ′)}

Choose x′ ∈ Z(P ′) of order p and which is fixed under the action of AutS(P ′), which
exists by Lemma 6.1.2. Write x = ϕ−1(x′) ∈ Z(P ) and note that, for all g ∈ Nϕ, the
morphism ϕ ◦ cg ◦ ϕ−1 ∈ AutS(P ′) fixes x′, thus cg(x) = x. Hence,

(A) x ∈ Z(Nf ), which implies Nf ≤ CS(x).

Let y ∈ X be F-conjugate to x and x′, whose existence is guaranteed by property
(i) of the set X. Also, by property (ii) of X, there exist ρ ∈ HomF(CS(x), CS(y))

and ρ′ ∈ HomF(CS(x′), CS(y)) such that ρ(x) = y = ρ′(x′). Set also Q = ρ(P ) and
Q′ = ρ′(P ′). Since P is fully F-centralized and CS(P ) ≤ CS(x), it follows that

(B) ρ′(CCS(x′)(P
′)) = ρ′(CS(P ′)) = CS(Q′) = CCS(y)(Q

′).

Set ω = ρ′◦f◦ρ−1 ∈ IsoF (Q,Q′). By construction, ω(y) = y, and thus ω ∈ IsoCF (y)(Q,Q
′).

Since P ′ is fully centralized in F , (B) implies that Q′ is fully centralized in CF (y). Then,
we can apply axiom (II) of saturated fusion systems on ω as a morphism in CF (y), which
is a saturated fusion system by property (iii) of X. We obtain that ω extends to some
ω̃ ∈ HomCF (y)(Nω, CS(y)), where

Nω = {g ∈ NCS(y)(Q) | ω ◦ cg ◦ ω−1 ∈ AutCS(y)(Q
′)}

Note that, by (A), for all g ∈ Nf ≤ CS(x) we have ρ(g) ∈ Nω, so we can consider the
morphism cω̃(ρ(g)), which satisfies

cω̃(ρ(g)) = ω ◦ cρ(g) ◦ ω−1

= (ω ◦ ρ) ◦ cg ◦ (ω ◦ ρ)−1

= (ρ′ ◦ ϕ) ◦ cg ◦ (ρ′ ◦ ϕ)−1

= cρ′(h) ∈ AutCS(y)(Q
′)
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6. Saturation of fusion systems over discrete p-toral groups

for some h ∈ NS(P ′) such that ϕ ◦ cg ◦ϕ−1 = ch. In particular, ρ(Nϕ) ≤ Nω, and, by (B),
we obtain ω̃(ρ(Nϕ)) ≤ ρ′(NCS(x)(P

′)).
We can then define

ϕ̃ = (ρ′)−1 ◦ (ω̃ ◦ ρ)|Nϕ ∈ HomF (Nϕ, S)

which clearly satisfies axiom (II) above.
Axiom (I): For all P ≤ S which is fully normalized in F , P is fully centralized in F

and AutS(P ) ∈ Sylp(AutF (P )).
First, we need to define two sets and to prove two auxiliary results. Consider the sets

U and U0 defined as

U = {(P, x) | P ≤ S is finite, x ∈ Z(P )Γ has order p, and Γ ∈ Sylp(AutF (P ))

is such that AutS(P ) ≤ Γ}

U0 = {(P, x) ∈ U | x ∈ X}

Note that for each nontrivial finite subgroup P ≤ S, there is some x ∈ P such that
(P, x) ∈ U , since every action of a finite p-group on Z(P ) has nontrivial fixed set. Then,
we have the following:

(C) If (P, x) ∈ U0 and P is fully centralized in CF (x), then P is fully centralized in F .

Assume otherwise and let P ′ ∈ PF be fully centralized in F and ϕ ∈ IsoF (P, P ′). Write
also x′ = ϕ(x) ∈ Z(P ′). By property (ii) of the set X, there is ρ ∈ HomF (CS(x′), CS(x))

such that ρ(x′) = x, since we are assuming x ∈ X. Note that P ′ ≤ CS(x′) and set then
P ′′ = ρ(P ′). In particular, ρ ◦ ϕ ∈ IsoCF (x)(P, P

′′) and therefore P ′′ is CF (x)-conjugate
to P . Also, since 〈x′〉 ≤ P ′, we have CS(P ′) ≤ CS(x′) and then ρ sends CS(P ′) injectively
into CS(P ′′), obtaining that

|CS(P )| < |CS(P ′)| ≤ |CS(P ′′)|

But we have the equalities CS(P ) = CCS(x)(P ) and CS(P ′′) = CCS(x)(P
′′), which contra-

dict the assumption that P is fully centralized in CF (x). This proves (C).
Note that, by definition, NS(P ) ≤ CS(x) for all (P, x) ∈ U , and hence

AutCS(x)(P ) = AutS(P )

Also, if (P, x) ∈ U and Γ ∈ Sylp(AutF(P )) is as in the definition of U , then Γ ≤
AutCF (x)(P ). In particular, we have
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(D) For all (P, x) ∈ U ,

AutS(P ) ∈ Sylp(AutF (P ))⇐⇒ AutCS(x)(P ) ∈ Sylp(AutCF (x)(P ))

We are ready to check that F satisfies axiom (I) of saturated fusion systems.
Fix P ≤ S a finite subgroup fully normalized in F . By definition, |NS(P )| ≥ |NS(P ′)|

for all P ′ ∈ PF . Choose x ∈ Z(P ) such that (P, x) ∈ U and let Γ ∈ Sylp(AutF(P )) be
such that AutS(P ) ≤ Γ and such that x ∈ Z(P )Γ. Then, by properties (i) and (ii) of
the set X, there is some y ∈ X and ρ ∈ HomF(CS(x), CS(y)) such that ρ(x) = y. Set
P ′ = ρ(P ) and Γ′ = ρ ◦ Γ ◦ ρ−1 ∈ Sylp(AutF (P ′)).

Note that, since P is assumed to be fully normalized in F , it follows that ρ(NS(P )) =

NS(P ′). Therefore, AutS(P ′) ≤ Γ′ and y ∈ Z(P ′)Γ′ , hence (P ′, y) ∈ U0. Since NS(P ′) ≤
CS(y), the maximality of |NS(P ′)| = |NCS(y)(P

′)| implies that P ′ is fully normalized in
CF (y).
Now, by property (iii) of X, the fusion system CF(y) is saturated. Then, since

P ′ is fully normalized in CF(y), we have that P ′ is fully centralized in CF(y) and
AutCS(y)(P

′) ∈ Sylp(AutCF (y)(P
′)). Therefore, by (C) and (D), P ′ is fully centralized in

F and AutS(P ′) ∈ Sylp(AutF (P ′)).
Since P ′ is fully centralized in F , it is also receptive by axiom (II). Then, by [13,

Lemma 2.2], since P is F -conjugated to P ′ and P is fully normalized in F , we have that
also P is fully centralized in F and AutS(P ) ∈ Sylp(AutF(P )). Finally, it is shown in
[12] that if axiom (I) holds for all finite fully normalized subgroups, then axiom (I) holds
for all fully normalized subgroups.

6.2. Proof of saturation for (S3,F3), (Sp,Fp) and (Sp, F̃p)

As an application of Theorem 6.1.3, we can prove that the fusion systems (S3,F3) and
(Sp,Fp), (Sp, F̃p) for p ≥ 5 are saturated. First, we need to prove some properties satisfied
by the elements of S3 and Sp.
By Remark 3.2.3, and since S3 and Sp are direct limits of S3,k and Sp,k respectively,

the next lemma can be applied both to S3 and to Sp at once.

Lemma 6.2.1. Let vsi ∈ Sp an element not in the maximal torus, that is, such that
v ∈ Tp and si 6= 1. Then, the following holds:

(a) The element vsi has order p.

(b) There exists an element w ∈ Tp such that 〈vsi〉 = 〈ws〉.
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6. Saturation of fusion systems over discrete p-toral groups

Proof. For any v ∈ Tp we know that there is k large enough such that we can write
v = vi11 · · · v

ip−1

p−1 . Then,

(vsi)p = vcsi(v)cs2i(v) · · · cs(p−1)i(v)sp

Note that sp = 1 and, since Tp is commutative, we can write

p−1∏
j=0

csj (v) =

p−1∏
j=0

p−1∏
l=1

csj (v
il
l ) =

p−1∏
l=1

p−1∏
j=0

(csj (vl))
il

Finally, note that csj (vl) verifies

csj (vl) =

{
v(l+j) mod p , if l 6= p− j
v−1

1 · · · v
−1
p−1 , if l = p− j

Then, as the index j ranges from 0 to p− 1, we obtain

p−1∏
j=0

csj (vl) = v1v2 · · · vp−1v
−1
1 v−1

2 · · · v
−1
p−1 = 1

Hence, (vsi)p = 1 and, since vsi 6= 1 and p is prime, we obtain that vsi has order p.
Now point (b) follows directly from point (a). Indeed, if j ≡ i−1 mod p, we can take

ws = (vsi)j and, since both ws and vsi have order p, we obtain 〈vsi〉 = 〈ws〉.

Now we prove a result about the conjugacy classes of elements not in the maximal
torus that we will need in the proof of saturation for (S3,F3), (Sp,Fp) and (Sp, F̃p).

Lemma 6.2.2. The elements not contained in Tp belong to a single F-conjugacy class for
F the fusion system F3, Fp or F̃p. Moreover, the elements of this class are F-conjugated
to the maximal torus.

Proof. Let v ∈ Tp and vsi, with i 6= 0, an element not contained in Tp. By Lemma 6.2.1 (b)

we have that 〈vsi〉 = 〈ws〉 for some w ∈ Tp. Since Tp = (Z/p∞)p−1, we can write
w = wpi11 · · ·w

pip−1

p−1 , for some w1, . . . , wp−1 in Z/pk ⊂ Z/p∞, for k big enough. Then, by
Lemma 3.2.5 (c), the elements wpi11 · · ·w

pip−1

p−1 s and s are conjugated in Sp,k, so they are
also conjugated in Sp. Therefore, we have vsi conjugated to sj for some j 6= 0. Finally, as
OutF3(V ) = GL2(F3), OutFp(V ) = SL2(Fp)o C p−1

2
for p ≥ 5 and OutF̃p(V ) = GL2(Fp)

for p ≥ 5, we have that s is conjugated to sj for all j 6= 0.
Then, every element not in the maximal torus is conjugated to s, and using again the

description of the outer automorphisms groups, we obtain that s is conjugated ζ ∈ Tp.
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Finally, we are ready to prove the saturation of the new fusion systems using the main
theorem of the previous section.

Theorem 6.2.3. The fusion systems (S3,F3) and (Sp,Fp), (Sp, F̃p) for p ≥ 5 are
saturated.

Proof. Fix and odd prime p and let F be F3, Fp or F̃p for p ≥ 5 as in the statement. We
want to apply Theorem 6.1.3 to F .

Note that, by construction, F satisfies axiom (III) of saturated fusion systems, so we
have to prove the existence of a set X verifying the hypothesis of Theorem 6.1.3. Let

X = {v ∈ Tp ≤ Sp | v has order p}

Then, X verifies condition (i) since ζ ∈ X and, by Lemma 6.2.2, every element of order
p not in the maximal torus is F-conjugated to ζ ∈ Tp.

We proceed now checking condition (ii). We will consider three different cases: elements
in the center, elements in the maximal torus but not in the center, and elements not
in the maximal torus. Observe that, for v ∈ Tp, the centralizer verifies CSp(v) = Tp if
v 6∈ 〈ζ〉 and CSp(v) = Sp if v ∈ 〈ζ〉.
Let first v ∈ Tp be and element of order p not in 〈ζ〉. If v is F-conjugated to other

element v′ ∈ Tp, then, by construction, there is an automorphism ρ ∈ AutF (Tp) such that
ρ(v) = v′.

If v ∈ 〈ζ〉, then v = ζλ, and ζλ is conjugated to ζµ for all λ, µ 6= 0 by an F -automorphism
of the whole group Sp.

Finally, let vsi be an element of order p not in the maximal torus. Then, by Lemma 6.2.2
and Lemma 3.2.5 (c), we know that vsi is Sp-conjugated to sj for some j 6= 0. Therefore,
it is enough to prove that there is some ρ ∈ HomF (CSp(s

j), CSp(ζ
λ)) such that ρ(sj) = ζλ

for some λ 6= 0. Recall that CSp(sj) = V and CSp(ζλ) = Sp. By construction, there is an
automorphism ρ ∈ AutF (V ) sending sj to ζλ. Then, composing ρ with the inclusion in
Sp, we obtain

i ◦ ρ ∈ HomF (CSp(s
j), CSp(ζ

λ))

and thus X satisfies condition (ii).
We are left to check condition (iii), that is, for each v ∈ X, the fusion system CF(v)

is saturated. By definition, CF(v) ⊆ F is the fusion subsystem over CSp(v) whose
morphisms are those morphisms in F which fix the element v. A careful inspection of the
generating morphisms of F for F being F3, Fp or F̃p shows that CF (v) = FCSp (v)(TpoL),
where L ≤W is the subgroup fixing the element v in W , with W being GL2(F3), Ap or
Σp, respectively. In either case, CF (v) is saturated by [12, Theorem 8.7].
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6. Saturation of fusion systems over discrete p-toral groups

Once we have proved the saturation for the fusion systems (S3,F3), (Sp,Fp), (Sp, F̃p) for
p ≥ 5, we have, by Theorem 4.2.4, three centric linking systems L3, Lp and L̃p associated
to each fusion system respectively. Moreover, these three centric linking systems are
unique up to isomorphism, so we have obtained three new examples of p-local compact
groups (S3,F3,L3), (Sp,Fp,Lp) and (Sp, F̃p, L̃p).
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CHAPTER 7

On the exoticness of (S3,F3,L3), (Sp,Fp,Lp)

and (Sp, F̃p, L̃p)

In the finite case, the concept of exotic p-local finite group is clearly defined as those
not realized by any finite group. In the compact case, however, we have seen in Propo-
sition 4.2.6 that there always exists a group realizing any p-local compact group. For
this reason, we have to restrict ourselves to certain classes of groups in order to study
whether certain p-local compact groups can be realized by groups in theses classes or
not. From the point of view of homotopy theory, the most developed frameworks are
the compact Lie groups and the p-compact groups, so in this chapter we will prove that
the p-local compact groups (S3,F3,L3), (Sp,Fp,Lp) or (Sp, F̃p, L̃p) cannot be realized by
any compact Lie group nor by any p-compact group.
This result shows that the class of p-local compact groups is strictly larger than the

class formed by compact Lie groups and p-compact groups.
We will denote the new p-local compact groups obtained at the end of the previous

chapter by G3 = (S3,F3,L3), Gp = (Sp,Fp,Lp) and G̃p = (Sp, F̃p, L̃p), understanding that
p ≥ 5 without explicit mention.
In the first section of this chapter we will prove that there is no p-compact group

realizing any of the p-local compact groups G3, Gp or G̃p. Note that this also eliminates
the chance for these p-local compact groups to be realized by compact Lie groups whose
group of components is a p-group, since this kind of compact Lie groups give rise to
p-compact groups, by Remark 4.4.2.

In the second section we will eliminate also the possibility to realize the p-local compact
groups G3, Gp or G̃p by any compact Lie group. The proof will be based in proving that,
if some of them is realized by a compact Lie group, then it is also realized by a compact
connected Lie group, which in turn gives rise to a p-compact group, and therefore we can
reduce to the results of the first section.
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7. On the exoticness of (S3,F3,L3), (Sp,Fp,Lp) and (Sp, F̃p, L̃p)

7.1. Exoticness as p-compact groups

To prove that there is no p-compact group realizing the p-local compact groups G3, Gp
or G̃p we need to prove first a general result comparing the centralizers of p-compact
groups and the ones of the p-local compact groups they generate. The next theorem
states that if a p-local compact group (S,F ,L) is realized by a p-compact group X, then
the centralizer of a fully centralized subgroup P ≤ S as a p-local compact group coincides
with the centralizer of the same subgroup P as a p-compact group.

Theorem 7.1.1. Let (S,F ,L) be a p-local compact group realized by a p-compact group
(X,BX, e). That is, we have f : S → X a Sylow subgroup of X and (S,F ,L) ∼=
(S,FS,f (X),LcS,f (X)). Then, for any subgroup P ≤ S fully centralized in F , the group
CS(P ) is a Sylow subgroup of CX(P ) and

(CS(P ), CF (P ), CL(P )) ∼= (CS(P ),FCS(P ),g(CX(P )),LcCS(P ),g(CX(P )))

Proof. Let (CS(P ), CF (P ), CL(P )) be the p-local compact group defined as the centralizer
of P in (S,F ,L). This p-local compact group exists by Remark 4.2.5, since P is fully
centralized in F .

By Proposition 4.4.11, the centralizer CX(P ) is again a p-compact group and, by Propo-
sition 4.4.14, since P is fully centralized in F ∼= FS,f (X), we have that g : CS(P )→ CX(P )

is a Sylow p-subgroup, where Bg is, by construction, the adjoint map of Bf |B(PCS(P ))◦Bµ,
with µ : P × CS(P )→ PCS(P ) being the multiplication morphism.

Hence, by Theorem 4.4.15, the p-compact group CX(P ) gives rise to the p-local compact
group (CS(P ),FCS(P ),g(CX(P )),LcCS(P ),g(CX(P ))).

Write F ′ = FCS(P ),g(CX(P )) for short. We will prove that F ′ ∼= CF (P ) and therefore,
by Theorem 4.2.4, we will obtain the isomorphism of the statement.

LetQ, Q′ ≤ CS(P ) be two subgroups and ϕ : Q→ Q′ a group homomorphism. Then, we
must prove that ϕ belongs to HomCF (P )(Q,Q

′) if and only if it belongs to HomF ′(Q,Q
′).

From Definition 4.1.18, we know that a group morphism ϕ : Q → Q′ belongs to
HomCF (P )(Q,Q

′) if and only if there exists ϕ̃ ∈ HomF (PQ,PQ′) such that ϕ̃|Q = ϕ and
ϕ̃|P = IdP . Since F is the saturated fusion system generated by a p-compact group X
over a Sylow f : S → X, we have, by Definition 4.4.13, that such a morphism ϕ̃ is in
HomF (PQ,PQ′) if and only if the following diagram is homotopy commutative

BPQ

Bf |BPQ ##

Bϕ̃
// BPQ′

Bf |BPQ′{{

BX

(7.1)
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On the other side, a morphism ϕ : Q → Q′ belongs to HomF ′(Q,Q
′) if and only if

Bg|BQ ' Bg|BQ′ ◦ Bϕ. And, by construction of Bg, if we consider adjoint maps this
is equivalent to verify that the compositions Bf |BPQ ◦Bµ and BfBPQ′ ◦Bµ′ ◦ Id×Bϕ
are homotopy equivalent, where µ : P × Q → PQ and µ′ : P × Q′ → PQ′ are the
corresponding multiplications. That is, ϕ ∈ HomF ′(Q,Q

′) if and only if the following
diagram is homotopy commutative

BP ×BQ Id×Bϕ
//

Bµ

��

BP ×BQ′

Bµ′

��

BPQ

Bf |BPQ %%

BPQ′

Bf |BPQ′yy

BX

(7.2)

Note that, if a group homomorphism ϕ : Q→ Q′ satisfies ϕ ∈ HomCF (P )(Q,Q
′), there

exists, by construction of CF(P ), a morphism ϕ̃ such that the following diagram is
homotopy commutative

BP ×BQ Id×Bϕ
//

Bµ

��

BP ×BQ′

Bµ′

��

BPQ
Bϕ̃

// BPQ′

(7.3)

Then, for any ϕ ∈ HomCF (P )(Q,Q
′) we have that Diagrams 7.1 and 7.3 are ho-

motopy commutative, so Diagram 7.2 is also homotopy commutative, and therefore
ϕ ∈ HomF ′(Q,Q

′).

Conversely, note that if ϕ ∈ HomF ′(Q,Q
′) there exists also a morphism ϕ̃ making

Diagram 7.3 homotopy commutative. Indeed, we have that P ∩ Q ≤ Z(P ) and the
homomorphism Bg|B(P∩Q) is central so, by [21, Lemma 6.5] and [12, Lemma 1.10], we
obtain ϕ|P∩Q = Id |P∩Q, since P ∩Q is abelian. Therefore, we can define the extension
ϕ̃ : P ×Q→ PQ as ϕ̃(pq) = pϕ(q).

Now, to finish the proof, we must prove that if Diagrams 7.2 and 7.3 are homotopy
commutative, then Diagram 7.1 is also homotopy commutative.

For this, consider K to be the kernel of µ. Then, the map from BK to BX, which is
the composition Bf |BPQ ◦Bµ|BK , is constant, so it is a central homomorphism in BX
by [30, Theorem 5.4], hence

Map(BK,BX)Bf |BPQ◦Bµ|BK ' BX
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Now, by [18, Proposition 3.5], known as Zabrodsky’s Lemma, we get that Bµ induces
an bijection

π0(Map(BPQ,BX)) ∼= π0(Map(BP ×BQ,BX)[BK])

where Map(BP × BQ,BX)[BK] is the space of maps BP × BQ → BX which are
homotopic to constant maps when restricted to BK.

The class [Bf |BPQ] ∈ π0(Map(BPQ,BX)) corresponds to the class [Bf |BPQ ◦Bµ] ∈
π0(Map(BP×BQ,BX)), and the class [Bf |BPQ′◦Bϕ̃] corresponds to [Bf |BPQ′◦Bϕ̃◦Bµ].
Then, using Diagrams 7.2 and 7.3, we have

[Bf |BPQ] = [Bf |BPQ ◦Bµ] (by Zabrodsky’s Lemma)

=
[
Bf |BPQ′ ◦Bµ′ ◦ (Id×Bϕ)

]
(by Diagram 7.2)

=
[
Bf |BPQ′ ◦Bϕ̃ ◦Bµ

]
(by Diagram 7.3)

=
[
Bf |BPQ′ ◦Bϕ̃

]
(by Zabrodsky’s Lemma)

This implies that Diagram 7.1 is also homotopy commutative. Therefore, we have
ϕ ∈ HomCF (P )(Q,Q

′) if and only if ϕ ∈ HomF ′(Q,Q
′).

The next proposition was proved by Ishiguro in 2001 and we need it to obtain a corollary
used to prove later the exoticness as p-compact groups for the p-local compact groups G3,
Gp and G̃p.

Proposition 7.1.2 ([25, Proposition 3.1]). Suppose G is a compact Lie group. If the loop
space of (BG)∧p is homotopy equivalent to a p-compact group, then π0(G) is p-nilpotent.

Corollary 7.1.3. Let p be a prime number and H a finite non p-nilpotent group acting
on a torus T . Then, there does not exist any p-compact group realizing the fusion system
of T oH over the prime p.

Proof. Consider the compact Lie group G = T oH. By Theorem 4.3.8 there is a p-local
compact group (S,F ,L) with F the fusion system of G over a Sylow p-subgroup S and
|L|∧p ' BG∧p . Assume there is a p-compact group X realizing also the p-local compact
group (S,F ,L). Then, by Theorem 4.4.15, |L|∧p ' BX, and therefore BG∧p ' BX. In
this case, by Proposition 7.1.2, the group of components of G must be a p-nilpotent group,
in contradiction with the hypothesis in H.

Now we are ready to prove the exoticness result.

Theorem 7.1.4. There does not exist any p-compact group realizing the p-local compact
groups G3, Gp or G̃p.
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Proof. Let G = (Sp,F ,L) be any of the p-local compact groups G3, Gp or G̃p and assume
that there exists some p-compact group X realizing G.

Let Z be the center of Sp, which is isomorphic to Z/p. By definition, Z it is a subgroup
fully centralized in F , so we can construct the centralizer p-local compact group of
Z in G, which we denote by (Sp, CF(Z), CL(Z)). By Theorem 7.1.1, this centralizer
p-local compact group is realized by CX(Z). But, if we compute CF (Z), we get that it
corresponds to the saturated fusion system of the groups T3 o Σ3 for F = F3, Tp oAp
for F = Fp, and Tp o Σp for F = F̃p. As neither Σp for p ≥ 3, nor Ap for p ≥ 5 are
p-nilpotent, it follows by Corollary 7.1.3 that none of these fusion systems can be realized
by a p-compact group, getting a contradiction.

7.2. Exoticness as compact Lie groups

We have seen in Corollary 7.1.3 that it is easy to construct examples of p-local compact
groups impossible to realize by p-compact groups, but this type of construction always
give rise to p-local compact groups realizable by compact Lie groups.
In particular, we saw in the previous section that the p-local compact groups G3, Gp

or G̃p cannot be realized by p-compact groups. In this section we will prove that these
p-local compact groups cannot be realized neither by compact Lie groups.

In order to do this, we will study first the possible normal subsystems of the correspond-
ing saturated fusion systems F3, Fp and F̃p. Then, we will be able to reduce the proof
of the exoticness as compact Lie groups to the case of compact connected Lie groups.
Since every compact connected Lie group gives rise to a p-compact group, we will use
then Theorem 7.1.4 to complete the proof.

First, we prove a general result about saturated fusion systems realized by compact Lie
groups. This result will be a key point in the proof of Theorem 7.2.4.

Proposition 7.2.1. Let G be a compact Lie group and S ∈ Sylp(G) be a Sylow p-subgroup.
Let H E G a closed normal subgroup and write R = S∩H ∈ Sylp(H). Then, the saturated
fusion system FR(H) is normal in FS(G).

Proof. We know, by Proposition 4.3.7 that R ∈ Sylp(H), so we are left to prove that
(R,FR(H)) ⊆ (S,FS(G)) satisfies the properties of Definition 4.1.16.

(N1) R is strongly closed in FS(G).

Let a ∈ R = H ∩ S and ϕ ∈ HomFS(G)(〈a〉, S). Then, we have that ϕ = cg for
some g ∈ G and, since H is normal in G, we have that cg(a) ∈ H. Moreover,
cg ∈ HomFS(G)(〈a〉, S), so we also have cg(a) ∈ S. Hence cg(a) ∈ H ∩ S = R.
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(N2) For each P ≤ Q ≤ S and each γ ∈ HomFS(G)(Q,S), the map that sends each
morphism f ∈ HomFR(H)(P,Q) to γ ◦ f ◦ γ−1 defines a bijection between the sets
HomFR(H)(P,Q) and HomFR(H)(γ(P ), γ(Q)).

Fix γ ∈ HomFS(G)(Q,S), so we have γ = cg for some g ∈ G. For every morphism
f ∈ HomFR(H)(P,Q) we have that f = ch for some h ∈ H, so γ ◦ f ◦ γ−1 = cghg−1

for ghg−1 ∈ H, since H is normal in G. Moreover, (ghg−1)γ(P )(ghg−1)−1 ≤ γ(Q),
so we can define a map

γ∗ : HomFR(H)(P,Q) −→ HomFR(H)(γ(P ), γ(Q))

f 7→ γ ◦ f ◦ γ−1

To prove the injectivity of γ∗ let f, f ′ ∈ HomFR(H)(P,Q) such that γ∗(f) = γ∗(f ′).
Note that f = ch and f ′ = ch′ for some h, h′ ∈ H and γ∗(f) = cghg−1 while
γ∗(f ′) = cgh′g−1 . Then, it is clear that ch = ch′ , and hence f = f ′.

For the surjectivity of γ∗, let f ∈ HomFR(H)(γ(P ), γ(Q)). We know that f = ch for
some h ∈ H, and since H E G, we can take cg−1hg ∈ HomFS(G)(Q,S) so we have
that γ∗(cg−1hg) = f .

(N3) FR(H) is a saturated fusion system over R.

Since H is a closed subgroup of G, it is itself a compact Lie group. Moreover,
R ∈ Sylp(H), so FR(H) is a saturated fusion system over R by Theorem 4.3.8.

(N4) Each f ∈ AutFR(H)(R) extends to some f̃ ∈ AutFS(G)(RCS(R)) such that

[f̃ , CS(R)] = {f̃(g) · g−1 | g ∈ CS(R)} ≤ Z(R)

Let S be the topological closure of S. We will prove first that [NH(R), CS(R)] ≤
CH(R). Indeed, let g ∈ NH(R) and x ∈ CS(R), then gxg−1x−1 ∈ H since
H normal in G implies xg−1x−1 ∈ H. Moreover, gxg−1x−1 ∈ CG(R), hence
gxg−1x−1 ∈ H ∩ CG(R) = CH(R).

Therefore, we have that CH(R)CS(R) is a normal subgroup of NH(R)CS(R).
Since R is strongly closed in FS(G), it is also fully centralized in FS(G), so we
have CS(R) ∈ Sylp(CG(R)) by [12, Lemma 9.5]. Then, we have that CS(R) ∈
Sylp(CH(R)CS(R)) and we can apply the Frattini argument to obtain

NH(R)CS(R) = CH(R)CS(R)NNH(R)CS(R)(CS(R))
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Finally, let f ∈ AutFR(H)(R), then f = cg with g ∈ NH(R). By the previ-
ous decomposition, we can write g = xh for some x ∈ CH(R)CS(R) and h ∈
NNH(R)CS(R)(CS(R)). Then, take f̃ = ch. It is clear that f̃ ∈ AutFS(G)(RCS(R))

and it is an extension of f . Moreover, if g ∈ CS(R), f̃(g) · g−1 = hgh−1g−1 is in H
because H E G and it is in CS(R) because h normalizes CS(R). Then, we obtain

f̃(g) · g−1 ∈ H ∩ CS(R) = CR(R) = Z(R)

The next step is to prove that, in our examples, condition N4 of Definition 4.1.16 is
vacuous. This will be very useful to study the normal subsystems.

Lemma 7.2.2. The saturated fusion systems F3, Fp and F̃p have no proper nontrivial
strongly closed subgroups.

Proof. Let P ≤ Sp be a strongly closed nontrivial subgroup. In particular, P is normal
in Sp and, if we write Pk = Sp,k ∩ P , we have that Pk is normal in Sp,k. Since P is
nontrivial, there exists k such that Pk is also nontrivial and, by [2, Theorem 8.1], the
center Z(Sp,k) intersects Pk in a non trivially way. Since the center has order p, we must
have Z(Sp,k) ≤ Pk. This implies that Z(Sp) ≤ P .
In all three cases, ζ, the generator of the center, is F-conjugated to s, so s ∈ P , since

P is strongly closed by assumption. Moreover, we saw in the proof of Lemma 6.2.2 that
all elements not in the maximal torus are conjugated to s, so all elements not in the
maximal torus must belong also to P .
Finally, if P contains s and all the elements not in the maximal torus it also contains

all elements of the maximal torus, so the only possibility is P = Sp, and then P is not
proper.

Now we prove that the structure of the normal subsystems of F3, Fp and F̃p is very
simple. This result is the other key point in the proof of Theorem 7.2.4.

Proposition 7.2.3. Consider the saturated fusion systems F3, Fp and F̃p. Then, the
following holds:

(a) F3 and Fp are simple.

(b) Fp is the only proper nontrivial normal subsystem of F̃p.

Proof. We first prove that Fp is simple. For this, we will assume that there is a normal
subsystem of Fp over a subgroup of Sp different to the trivial subgroup and we will prove
that the subsystem must be equal to all Fp.
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Let then (R, E) E (Sp,Fp). Since (Sp,Fp) has no proper nontrivial strongly closed
subgroups by Lemma 7.2.2, R must be equal to Sp by condition N1 of Definition 4.1.16.

For any γ ∈ HomFp(Tp, Tp), we have, by condition N2 of Definition 4.1.16, that the
map

γ∗ : HomE(Tp, Tp) → HomE(Tp, Tp)

ϕ 7→ γ ◦ ϕ ◦ γ−1

must be a bijection. Let s ∈ Sp, we know that cs ∈ HomE(Tp, Tp), by definition of fusion
system. Then, consider the subgroup H ≤ Ap defined as

H = 〈σ ◦ cs ◦ σ−1 | σ ∈ Ap〉

Note that, by taking γ to be any of the permutations in Ap, we have H ≤ HomE(Tp, Tp).
Now, it is clear that H E Ap by construction, and, since Ap is simple for p ≥ 5, we must
have H = Ap. Therefore, we have Ap ≤ AutE(T ).

Take now γ ∈ HomFp(V, V ), we have then that the map

γ∗ : HomE(V, V ) → HomE(V, V )

ϕ 7→ γ ◦ ϕ ◦ γ−1

must be a bijection, again by condition N2 of Definition 4.1.16. Fix λ ∈ {1, . . . , p−1} and
set ij = ( j2(j − p+ 2))λpk−1. Then, it is easy to see that the element wλ = vi11 · · · v

ip−1

p−1

belongs to the normalizer of V and, in the basis 〈ζ, s〉, we have

cwλ =

(
1 λ

0 1

)

Therefore, we must have cwλ ∈ HomE(V, V ). Consider now the morphism γ ∈
HomFp(V, V ) defined by the matrix

γ =

(
0 −1

1 0

)
∈ SL2(Fp)

If we set λ = 1 and conjugate the automorphism cw1 by γ we obtain a new automorphism
of V , given by the matrix

γ ◦ cw1 ◦ γ−1 =

(
1 0

−1 1

)

Note that γ ◦ cw1 ◦ γ−1 6∈ AutSp(V ), since conjugation by elements of Sp must fix the
center, but we must have γ ◦ cw1 ◦ γ−1 ∈ AutE(V ), by condition N2 of Definition 4.1.16.
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Also, note that(
1 0

−1 1

)p−1

=

(
1 0

1 1

)
and SL2(Fp) =

〈(
1 1

0 1

)
,

(
1 0

1 1

)〉

Therefore, we obtain that AutE(V ) must contain, among others, the two automorphisms
cw1 and γ∗(cw1), which generate themselves all the special linear group. Hence, we have
SL2(Fp) ≤ AutE(V ).
Now we use condition N3 of Definition 4.1.16, requiring E to be saturated. Let

ϕ =

(
λ 0

0 λ−1

)
∈ SL2(Fp) ≤ AutE(V )

If wλ ∈ NSp(V ), we have ϕ ◦ cwλ ◦ϕ−1 = c
wλ

2
λ
∈ AutSp(V ), so ϕ must extend to an strict

overgroup of V , by axiom (II) of saturation. Since there is no fully normalized, Fp-centric
and Fp-radical subgroup of Sp containing V , we have that ϕ must extend to all Sp, by
Theorem 4.1.13.

Let ϕ̃ ∈ AutE(Sp) be the morphism extending ϕ. Since E ≤ Fp, we have that the map
ϕ̃ must be ψφ−1, and by restricting ϕ̃ to Tp, we obtain AutE(Tp) = Ap o Cp−1.

Finally, let τ ∈ NΣp((12 . . . p)) be a morphism of order p− 1 which normalizes s. Then,
τ2 ∈ Ap and, if we compute the group Nτ2 from the axiom (II) of saturation, we obtain
Nτ2 = Sp, by construction. In this case, using that E ≤ Fp, we get that the extension of
τ2 is φ2. Then, by restricting τ2 to V we obtain AutE(V ) = SL2(Fp)o C p−1

2
.

This implies E = Fp and so Fp is simple.
The proof of the simplicity for F3 is completely analogous. By condition N2 of

Definition 4.1.16 we obtain that SL2(F3) ≤ AutE(T ) and SL2(F3) ≤ AutE(V ). Then,
by extending − Id from both groups we obtain a morphism of determinant −1 in both
groups, showing that, in fact, AutE(T ) = GL2(F3) and AutE(V ) = GL2(F3).
To prove (b) note that the computations just done prove that a normal subsystem of
F̃p must contain Fp. In fact, it is possible to have Fp as a normal subsystem, since in the
definition of H we still have H ≤ Ap, even taking σ ∈ Σp, and also γ ◦ cwλ ◦γ−1 ∈ SL2(Fp)
for all γ ∈ GL2(Fp).

Let then E be a normal subsystem of F̃p different from Fp. Since the group Ap o Cp−1

has index 2 in Σp × Cp−1, adding any extra automorphism to Tp we obtain AutE(Tp) =

Σp × Cp−1. Then, consider as before the morphism τ , which normalizes s and has order
p− 1. We have, again by axiom (II) of saturation, that τ extends to all Sp. Therefore,
we must have φ ∈ AutE(Sp) and, by restricting φ to V , we obtain automorphisms of V
represented by matrices not in SL2(Fp)o C p−1

2
. This implies AutE(V ) = GL2(Fp).
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On the other hand, if we add an extra morphism to AutE(V ), we obtain AutE(V ) =

GL2(Fp), because SL2(Fp)oC p−1
2

has also index 2 in GL2(Fp). We can then consider the
matrix in AutE(V ) = GL2(Fp) corresponding to the restriction of φ, which must extend
also to all Sp. This means that we obtain again φ ∈ AutE(Sp) and, by restricting φ to Tp
we obtain a permutation of odd order, hence AutE(Tp) = Σp × Cp−1.

This implies E = F̃p and so the only proper nontrivial subsystem of F̃p is Fp.

Finally, we are ready to prove the result about the exoticness.

Theorem 7.2.4. There does not exist any compact Lie group realizing the p-local compact
groups G3, Gp or G̃p.

Proof. Assume that there is a compact Lie group G realizing Gp, that is, such that
(Sp,Fp,Lp) ∼= (Sp,FSp(G),LcSp(G)) for Sp ∈ Sylp(G). Let G0 E G be the connected
component of the identity in G. By Proposition 7.2.1, we have that Sp ∩G0 is strongly
closed in FSp(G), but, by Lemma 7.2.2, Fp has no proper nontrivial strongly closed
subgroups, hence Sp ≤ G0. Then, again by Proposition 7.2.1, FSp(G0) E FSp(G), but,
since Fp is a simple saturated fusion system by Proposition 7.2.3 (a), we must have
FSp(G0) ∼= FSp(G). This is impossible since a connected compact Lie group gives rise to
a p-compact group, and the saturated fusion system Fp is not realized by any p-compact
group by Theorem 7.1.4.
The exact same argument is valid for G3, since F3 is also a simple saturated fusion

system.
Assume then that there is a compact Lie group G̃ with Sp ∈ Sylp(G̃) and such that

(Sp, F̃p, L̃p) ∼= (Sp,FSp(G̃),LcSp(G̃)). Let again G̃0 E G̃ be the connected component of the
identity in G̃. As before, by Proposition 7.2.1, we have Sp ≤ G̃0 and FSp(G̃0) E FSp(G̃).
Then, we know, by Proposition 7.2.3 (b), that Fp is the only proper nontrivial normal
subsystem of (Sp, F̃p, L̃p). Therefore, in this case we must have FSp(G̃0) ∼= Fp or
FSp(G̃0) ∼= F̃p, but we have proved in Theorem 7.1.4 that there is no p-compact group
realizing any of these two fusion systems, hence G̃ cannot exist.

7.3. Exoticness of limit fusion systems

In this section we make a summary of examples of limit fusion systems and their possibility
to be realized by compact Lie groups or by p-compact groups.

In this thesis we have constructed two direct systems of exotic saturated fusion systems
which, after taking the limit fusion system, have produced two examples of saturated
fusion systems over the discrete p-toral group Sp that cannot be realized by any compact
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Lie group nor by any p-compact group. There are other examples of limit fusion systems
that we can construct having other exoticness properties, such as the following:

• If we consider the trivial fusion systems FSp,k(Sp,k) for k ≥ 2, it is obvious that
they fit in a direct system with the same morphism ρ of Proposition 5.4.1. Then, if
we consider the limit fusion system, we obtain the trivial saturated fusion system
FSp(Sp). It is clear that this fusion system is realized by the compact Lie group
given as the topological closure of Sp. Moreover, the group of components of this
compact Lie group is a p-group, so the saturated fusion system FSp(Sp) is also
realized by a p-compact group.

• As we said in Chapter 3, Díaz-Ruiz-Viruel classified in [17, Theorem 5.10] all
saturated fusion systems over the family of 3-groups S3,k. We have presented one
of them in Section 3.1, obtaining in Section 5.4 the saturated fusion system F3.
However, we can see that there are other exotic saturated fusion systems of the
classification which fit in a direct system using the same morphism ρ. For example,
the ones denoted in [17, Table 6] by F(32k+1, 2) and 3.F(32k, 2).2. Although these
examples don’t verify the hypothesis of Proposition 5.4.2, it is easy to see the
following:

– The limit fusion system of the family F(32k+1, 2), which we will denote by F ′3,
is realized by the p-compact group DI2, by [14, Proposition 10.2]. Therefore,
since DI2 cannot be constructed as a 3-completion of any compact Lie group,
we have that F ′3 cannot be realized by any compact Lie group.

– We can see also in the classification theorem of [17] that F ′3, the limit fusion
system of the family F(32k+1, 2), coincides with the direct limit of the family
of fusion systems realized by the finite simple group 2F4(q), for a certain prime
power q. This is because the extra outer automorphisms of the extraspecial
subgroups in S3,k become conjugation by elements of S3,k+1 when we apply the
morphism ρ. Therefore, the saturated fusion system realized by the p-compact
group DI2 can also be obtained as the limit of realizable fusion systems.

– The limit fusion system of the family 3.F(32k, 2).2, which we will denote by
F ′′3 , is the fusion system of S3 o (C2 × C2), again because the extra outer
automorphisms of the extraspecial subgroups are lost when we take the limit.

• Finally, we can also construct the realizable fusion systems Tp,k o Σp for k ≥ 2,
which fit in a direct system with limit denoted F ′p and realized by Tp o Σp. Note
that the saturated fusion system F ′p is realized by a compact Lie group, but, by
Corollary 7.1.3, it cannot be realized by a p-compact group.
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We can see in Table 7.1 a grid with a review of these examples depending on the
exoticness of the fusion systems in the direct system and the exoticness of the limit fusion
system.

System

Limit Realizable by Exotic as

compact Lie p-compact compact Lie p-compact both

Realizable FSp(Sp),F ′p FSp(Sp),F ′3 F ′3 F ′p ?

Exotic F ′′3 F ′3,F ′′3 F ′3,F3,Fp, F̃p F3,Fp, F̃p F3,Fp, F̃p

Table 7.1.: Summary of examples of p-local compact groups associated to limit fusion
systems and their exoticness.

Remark 7.3.1. If we could prove that it is impossible to find examples for the unknown
cell in Table 7.1, that is, to prove that a limit of realizable fusion systems is always
realizable by a compact Lie group or by a p-compact group, we would have, using
Theorem 7.1.4 and Theorem 7.2.4, a proof for the exoticness of the p-local finite groups
F3,k, Fp,k and F̃p,k without using the classification of finite simple groups.
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Abstract

In 2003, Broto-Levi-Oliver introduced the concept of p-local finite group, which is a
generalization for p-completed classifying spaces of finite groups. Later, the same authors
introduced also the notion of p-local compact group, which is a generalization for p-
completed classifying spaces of compact Lie groups and p-compact groups. While the
concept of exotic p-local finite group is clearly defined, in the compact case there are
several families of groups which give rise to p-local compact groups, blurring this way the
notion of exoticness.

In this thesis we construct new examples of exotic p-local finite groups for every p ≥ 5.
Moreover, we prove that these new examples are simple in the sense that they contain no
proper nontrivial normal subsystems.
Then, we develop the theory of limits of fusion systems. We prove that, for any

family of fusion systems satisfying certain compatibility properties, we can construct
a related fusion system over a discrete p-toral group. Moreover, we prove that this
limit construction coincides with the direct limit from a categorical point of view under
saturation hypothesis.
Using the new examples of p-local finite groups for p ≥ 5, as well as other families

of examples discovered by Broto-Levi-Oliver and Díaz-Ruiz-Viruel, we apply the limit
construction to produce two new examples of fusion systems over discrete p-toral groups
for each p ≥ 5 and one new example for p = 3.
Once we have the new fusion systems, we generalize a saturation criterion known

for p-local finite groups to the compact case. Then, we use this criterion to prove the
saturation of the new examples we have created, giving rise in this way to new examples
of p-local compact groups.
Finally, we prove that neither the new example of 3-local compact group nor the new

two examples of p-local compact groups for p ≥ 5 can be realized by compact Lie groups
or by p-compact groups.
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