
Technical University of Catalonia (UPC)
Department of Signal Theory and Communications (TSC)

Graph-based Techniques for Compression
and Reconstruction of Sparse Sources

Ph.D. dissertation by
Francisco Ramírez-Jávega

Advisor
Meritxell Lamarca Orozco

Barcelona, November 2015

Acta de qualificació de tesi doctoral

Curs acadèmic:

Nom i cognoms

Programa de doctorat

Unitat estructural responsable del programa

Resolució del Tribunal

Reunit el Tribunal designat a l'efecte, el doctorand / la doctoranda exposa el tema de la seva tesi doctoral titulada

__

___.

Acabada la lectura i després de donar resposta a les qüestions formulades pels membres titulars del tribunal,

aquest atorga la qualificació:

 NO APTE APROVAT NOTABLE EXCEL·LENT

(Nom, cognoms i signatura)

President/a

(Nom, cognoms i signatura)

Secretari/ària

(Nom, cognoms i signatura)

Vocal

(Nom, cognoms i signatura)

Vocal

(Nom, cognoms i signatura)

Vocal

______________________, _______ d'/de __________________ de _______________

El resultat de l’escrutini dels vots emesos pels membres titulars del tribunal, efectuat per l’Escola de Doctorat, a

instància de la Comissió de Doctorat de la UPC, atorga la MENCIÓ CUM LAUDE:

 SÍ NO

(Nom, cognoms i signatura)

President de la Comissió Permanent de l’Escola de Doctorat

(Nom, cognoms i signatura)

Secretari de la Comissió Permanent de l’Escola de Doctorat

Barcelona, _______ d'/de ____________________ de _________

By My Self and licensed under

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported

You are free to Share – to copy, distribute and transmit the work Under the following conditions:

• Attribution – You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the work).

• Noncommercial – You may not use this work for commercial purposes.

• No Derivative Works – You may not alter, transform, or build upon this work.

With the understanding that:

Waiver – Any of the above conditions can be waived if you get permission from the copyright
holder.

Public Domain – Where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

Other Rights – In no way are any of the following rights affected by the license:

• Your fair dealing or fair use rights, or other applicable copyright exceptions and
limitations;

• The author’s moral rights;

• Rights other persons may have either in the work itself or in how the work is used,
such as publicity or privacy rights.

Notice – For any reuse or distribution, you must make clear to others the license terms of this
work. The best way to do this is with a link to this web page.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Abstract

The main goal of this thesis is to develop lossless compression schemes for analog and binary
sources. All the considered compression schemes have as common feature that the encoder can
be represented by a graph, so they can be studied employing tools from modern coding theory.

In particular, this thesis is focused on two compression problems: the group testing and the
noiseless compressed sensing problems. Although both problems may seem unrelated, in the
thesis they are shown to be very close. Furthermore, group testing has the same mathematical
formulation as non-linear binary source compression schemes that use the OR operator. In this
thesis, the similarities between these problems are exploited.

The group testing problem is aimed at identifying the defective subjects of a population with
as few tests as possible. Group testing schemes can be divided into two groups: adaptive and
non-adaptive group testing schemes. The former schemes generate tests sequentially and exploit
the partial decoding results to attempt to reduce the overall number of tests required to label all
members of the population, whereas non-adaptive schemes perform all the test in parallel and
attempt to label as many subjects as possible.

Our contributions to the group testing problem are both theoretical and practical. We propose a
novel adaptive scheme aimed to efficiently perform the testing process. Furthermore, we develop
tools to predict the performance of both adaptive and non-adaptive schemes when the number
of subjects to be tested is large. These tools allow to characterize the performance of adaptive
and non-adaptive group testing schemes without simulating them.

The goal of the noiseless compressed sensing problem is to retrieve a signal from its lineal
projection version in a lower-dimensional space. This can be done only whenever the amount of
null components of the original signal is large enough. Compressed sensing deals with the design
of sampling schemes and reconstruction algorithms that manage to reconstruct the original signal
vector with as few samples as possible.

In this thesis we pose the compressed sensing problem within a probabilistic framework, as
opposed to the classical compression sensing formulation. Recent results in the state of the art
show that this approach is more efficient than the classical one.

Our contributions to noiseless compressed sensing are both theoretical and practical. We deduce
a necessary and sufficient matrix design condition to guarantee that the reconstruction is lossless.
Regarding the design of practical schemes, we propose two novel reconstruction algorithms based
on message passing over the sparse representation of the matrix, one of them with very low
computational complexity.

Keywords: "Noiseless compressed sensing", "Group testing", "Adaptive group testing", "Verifi-
cation algorithm", "Analog compression", "sparse pattern recovery","Binary source compression",
"lossless reconstruction"

Resumen

El objetivo principal de la tesis es el desarrollo de esquemas de compresión sin pérdidas para
fuentes analógicas y binarias. Los esquemas analizados tienen en común la representación del
compresor mediante un grafo; esto ha permitido emplear en su estudio las herramientas de
codificación modernas.

Más concretamente la tesis estudia dos problemas de compresión en particular: el diseño
de experimentos de testeo comprimido de poblaciones (de sangre, de presencia de elementos
contaminantes, secuenciado de ADN, etcétera) y el muestreo comprimido de señales reales en
ausencia de ruido. A pesar de que a primera vista parezcan problemas totalmente diferentes, en la
tesis mostramos que están muy relacionados. Adicionalmente, el problema de testeo comprimido
de poblaciones tiene una formulación matemática idéntica a los códigos de compresión binarios
no lineales basados en puertas OR. En la tesis se explotan las similitudes entre todos estos
problemas.

Existen dos aproximaciones al testeo de poblaciones: el testeo adaptativo y el no adaptativo.
El primero realiza los test de forma secuencial y explota los resultados parciales de estos para
intentar reducir el número total de test necesarios, mientras que el segundo hace todos los test
en bloque e intenta extraer el máximo de datos posibles de los test.

Nuestras contribuciones al problema de testeo comprimido han sido tanto teóricas como prácticas.
Hemos propuesto un nuevo esquema adaptativo para realizar eficientemente el proceso de testeo.
Además hemos desarrollado herramientas que permiten predecir el comportamiento tanto de
los esquemas adaptativos como de los esquemas no adaptativos cuando el número de sujetos a
testear es elevado. Estas herramientas permiten anticipar las prestaciones de los esquemas de
testeo sin necesidad de simularlos.

El objetivo del muestreo comprimido es recuperar una señal a partir de su proyección lineal
en un espacio de menor dimensión. Esto sólo es posible si se asume que la señal original tiene
muchas componentes que son cero. El problema versa sobre el diseño de matrices y algoritmos de
reconstrucción que permitan implementar esquemas de muestreo y reconstrucción con un número
mínimo de muestras. A diferencia de la formulación clásica de muestreo comprimido, en esta
tesis se ha empleado un modelado probabilístico de la señal. Referencias recientes en la literatura
demuestran que este enfoque permite conseguir esquemas de compresión y descompresión más
eficientes.

Nuestras contribuciones en el campo de muestreo comprimido de fuentes analógicas dispersas
han sido también teóricas y prácticas. Por un lado, la deducción de la condición necesaria y
suficiente que debe garantizar la matriz de muestreo para garantizar que se puede reconstruir

unívocamente la secuencia de fuente. Por otro lado, hemos propuesto dos algoritmos, uno de
ellos de baja complejidad computacional, que permiten reconstruir la señal original basados en
paso de mensajes entre los nodos de la representación gráfica de la matriz de proyección.

Palabras clave: "Noiseless compressed sensing", "Group testing", "Adaptive group testing",
"Verification algorithm", "Analog compression", "sparse pattern recovery"

Acknowledgements

I am deeply indebted to my advisor Prof. Meritxell Lamarca for her advice and support, without
which this dissertation would be impossible. She taught me how to formulate a problem in the
cleanest possible way. In addition, I appreciate his endless patience and the freedom she gave to
me, allowing me to pursue my research interests that sometimes were different from hers. I am
also grateful to Prof. Francesc Rey for being my first and second-year academic advisor. I would
also like to acknowledge Prof. Gregori Vazquez, Prof. Javier Villares, Prof. Josep Sala and Prof.
Jaume Riba for stimulating discussions.

I have been fortunate to have many friends and colleagues who made these last years an
unforgettable experience. In particular, I thank David Matas for numerous rewarding discussions,
during every one of which I gained new knowledge. And of course to dear friends: Maruan, Jokin,
Pasca, Oscar, Mireia, Juan, Javi and Montse for being always there for me during both joyful
and stressful times, to whom I will always be indebted.

Finally, it is my greatest honor to thank my family: my parents Francisco and Maria for their
support, self-sacrifice, never-ending wisdom, unbounded freedom and unconditional love they
have given to me since I was born. They are the ones responsible of my inherent curiosity and
inherited lateral thinking. My brothers Miguel and Joan for being there when I needed them
and, finally, Matilde, my niece who is just taking her first steps and reminds me what really
matters.

Contents

Contents i

List of Figures v

List of Tables vii

Acronyms ix

List of Symbols xi

Glossary xv

I Problem description and theoretical limits 1

1 Sensing structured sources 3
1.1 Signal model and compression scheme for analog compression 4
1.2 Some compression problems . 4

1.2.1 Noiseless compressed sensing . 5
1.2.2 Binary source compression . 5
1.2.3 Group testing . 6
1.2.4 Sparse pattern recovery . 7

1.3 Graph-based compression schemes . 8
1.3.1 Graph representation . 8
1.3.2 Decoding algorithms . 9

2 Binary source compression and other related problems 11
2.1 Binary graph-based source compression schemes 12

2.1.1 Binary almost lossless source compression 12
2.1.2 Sparse pattern recovery . 14
2.1.3 Group testing . 14

i

ii Contents

2.2 Decoders for graph-based binary source compression schemes 17
2.2.1 Low density parity-check codes . 17
2.2.2 Low density product-check codes . 17
2.2.3 Hybrid LDPC-LDPrC codes . 18

2.3 Graph-based group testing schemes . 19
2.3.1 Problem statement . 20
2.3.2 Erasure decoder for group testing . 21
2.3.3 Impact of check node degree on subjects labeling 22

Appendix 2.A Belief propagation equations . 24
2.A.1 Equations for XOR-based check nodes . 24
2.A.2 Equations for AND/OR-based check nodes 25

3 Real data compression schemes 27
3.1 Information theoretic limits for compressed sensing 28
3.2 Decoders for compressed sensing . 30

3.2.1 𝑙1-based decoders . 30
3.2.2 Greedy algorithms . 31
3.2.3 Bayesian based decoders . 31
3.2.4 Approximate message passing algorithms 33
3.2.5 Verification algorithms for noiseless compression 34

3.3 Encoders for compressed sensing . 35
3.3.1 Restricted isometric property for 𝑙1-based compressed sensing 35
3.3.2 Random graphs . 36
3.3.3 Structured (sparse) matrices . 38
3.3.4 Reed-Muller compressed sensing . 38

II Binary source compression and group testing 39

4 Fixed-rate OR-based schemes for binary source compression 41
4.1 Previous concepts . 41

4.1.1 Population model . 41
4.1.2 Set description of the non-adaptive group testing problem 42

4.2 Analysis of graph-based group testing encoder . 44
4.2.1 Labeling capability of a non-adaptive group testing encoder 44

4.3 Limitations of the erasure decoder . 46
4.3.1 Analysis of the graph-based encoder and erasure decoder 46
4.3.2 Results . 49

Contents iii

4.4 Progressive encoding for binary source compression 52
4.4.1 System setup . 53
4.4.2 Encoding procedure . 53
4.4.3 Analysis . 55
4.4.4 Simulation results . 56

5 Adaptive sampling for lossless group testing 59
5.1 Scheme overview . 60

5.1.1 Sequential multi-stage process . 60
5.1.2 Design and construction step . 62
5.1.3 Decoder . 64

5.2 Performance of the proposed adaptive group testing scheme 64
5.2.1 Group testing performance . 65
5.2.2 Binary source compression performance . 69

Appendix 5.A Check degree profile design . 71

6 Adaptive group testing and decision processes 73
6.1 Decision processes and adaptivity . 74

6.1.1 Introduction . 74
6.1.2 State definition . 75
6.1.3 State estimation . 77

6.2 Predicting the evolution of the state distribution 79
6.2.1 Set definition . 79
6.2.2 State update equations for policy design 81
6.2.3 State update equations for 1-step prediction 86

6.3 Validation plots . 87
Appendix 6.A Proof . 93

III Noiseless compressed sensing 95

7 Noiseless compressed sensing limits 97
7.1 Problem statement . 98

7.1.1 Scenario definition . 98
7.1.2 Noiseless analog compression vs. classical noiseless compressed sensing. The

source model . 99
7.1.3 Approach to the problem . 100

7.2 Matrix condition for lossless compression . 103
7.2.1 Main result . 104

iv Contents

Appendix 7.A Proof . 107
Appendix 7.B Theorem proof . 107

7.B.1 Null-space characterization of the erroneous sets 108
7.B.2 Lebesgue measures of the null-space . 110
7.B.3 Extension to non-disjoint partitions . 112

8 Verification-based algorithms 115
8.1 Introduction . 115

8.1.1 System setup . 115
8.1.2 Verification algorithm for compressed sensing 116

8.2 Enhanced verification algorithm and sequential sampling for compressed sensing . 118
8.2.1 System setup . 118
8.2.2 Structured matrix for sequential sampling 119
8.2.3 Check node degree profile design . 120
8.2.4 Enhanced verification decoder . 121
8.2.5 Performance . 122

8.3 List message passing for compressed sensing . 124
8.3.1 System setup . 125
8.3.2 List message passing based-decoder for noiseless compressed sensing 125
8.3.3 Computational complexity . 127
8.3.4 Performance . 128

Appendix 8.A Algorithms . 130
8.A.1 Verification Algorithm . 130
8.A.2 Enhanced verification algorithm . 133
8.A.3 List message passing for compressed sensing 137

IV Conclusions 143

9 Conclusions 145

10 Bibliography 149

List of Figures

1.1 Analog Compression scheme . 4
1.2 Neighborhoods . 8

2.1 Distribution of the Type I, II and III check as a function of the node degree for
P(𝑋 = 1)=0.013 . 24

4.1 Example of graph with 𝑑𝑐 = 4 and 𝑑𝑣 = 2. Black/white circles represent
defective/non-defective variable nodes. Squares represent check nodes. 52

5.1 (a) Average number of tests M̄ for perfect recovery, for fixed N and varying the
sparsity K of the proposed scheme (P) compared with K log(N/K) (B). (b) Evolution
of the error metric for a given population (K,N) as the number of stages increases
as a function of the gap respect to K log(N/K). 66

5.2 (a) Average number of samples M̄ for perfect recovery for N = 500 comparing
results when K is known (P(K,500)) with the ones when and upper value K* = 10

is known (P(10,500)). The bound (B) K log(N/K) is included for comparison when
K is both known or only an upper bound is known. (b) Probability Mass function
of the number of samples for N = 500 and several K. 67

5.3 Comparison of the performance of the adaptive algorithm obtained by Monte Carlo
simulation (MC) for N = 1000 (1k) and N = 10000 (10K) bits with the rate
distortion bound (RD) for different probabilities P(𝑋 = 1) = 0.012, 0.018, 0.03 . . 70

5.4 Comparison of performance of adaptive scheme with erasure decoder (ED) or belief
propagation-based (BP) decoder for P(𝑋 = 1) = 0.018 and N = 1000, 10000. . . . 71

6.1 Comparison of predicted performance N =∞ (marker ’x’) with the one obtained
by MC simulations of populations with N = 10000 (marker ’�’) and N = 100000

(marker ’o’) of the parameters P(U𝑖) (solid blue line) and P(D𝑐
𝑖 | U𝑖) (black dash-

dotted line) for initial states {0.0966,N}. Figures also show the average aggregated
rate of the measurement matrices (red dashed line). 88

v

vi List of Figures

6.2 Comparison of predicted performance N = ∞ (’x’) with MC simulations of N =

100000 (’o’) of the parameters P(U𝑖) (solid blue line) and P(D𝑐
𝑖 | U𝑖) (black dot

point line) for different initial state {0.00966}. Figure also show the theoretical
average aggregated rate (red striped line). 89

6.3 Comparison of predicted performance N = ∞ (’x’) with MC simulations of N =

100000 (’o’) of the parameters P(U𝑖) (solid blue line) and P(D𝑐
𝑖 | U𝑖) (black dot

point line) for different initial state {0.0566}. Figure also show the theoretical
average aggregated rate (red striped line). 90

6.4 Comparison of predicted performance N = ∞ (’x’) with MC simulations of N =

100000 (’o’) of the parameters P(U𝑖) (solid blue line) and P(D𝑐
𝑖 | U𝑖) (black dot

point line) for different initial state {0.1266}. Figure also show the theoretical
average aggregated rate (red striped line). 90

6.5 Comparison of predicted performance N =∞ (x) with MC simulations of population
{0.0180,N} with N = 1000 (�) and N = 10000 (o) of the parameters P(U𝑖) (solid
blue line) and P(D𝑐

𝑖 | U𝑖) (black dot point line) for different populations. Figures
also show the theoretical average aggregated rate (red striped line). 91

6.6 Comparison of the probability mass function P(U𝑖 | A(𝑖), y(𝑖),𝑠0) obtain by MC
of population {0.0180,N} N = 1000 (dashed line) N = 10000 (solid line) of the
parameters P(U𝑖) with the predicted average of P(U𝑖 | Γ(𝑖),𝑠0) (vertical lines). . . 92

8.1 Phase transition diagram as a function of sampling, sparsity and block length N.
Comparison of verification (VA) and enhanced verification (EVA) algorithm for
N=16000 and several sparsity ratios on a phase diagram. 123

8.2 Performance comparison of CS-LMP (LMP) and NB-VA (VA) and different N

compared to the thresholds of the NB-VA and the BP-threshold of the graph
ensemble. 129

8.3 Performance comparison of CS-LMP (LMP) vs. EM-GB-AMP for different N

compared to the threshold of the BT-threshold of the ensemble of graphs. 130

List of Tables

4.1 Code parameters for source with entropy H = 0.091 and N= 103250. Rate = 0.1157 57
4.2 Code parameters for source with entropy H = 0.05 and N= 1230000. Rate = 0.064 58

5.1 Comparison with OMP [151] in terms of required number of tests for perfect
reconstruction when N = 256, for several K. 68

5.2 Performance comparison of the proposed adaptive group testing scheme ([P]) and
the random walk- based algorithms in [35, 77] . 68

8.1 Comparison of sudocodes with EVA. 123

vii

Acronyms

Notation Description

AC analog compression

AMP approximate message passing

BEC binary erasure channel

BER bit error rate

BP belief propagation

BSC binary symmetric channel

COMP combinatorial optimal matching pursuit

CoSaMP compressed sampling matching pursuit

CS compressed sensing

CS-LMP list message passing for compressed sensing

DD definite defective

EM-GB-AMP estimate-maximize Gaussian-Bernoulli approximate message passing

EVA enhanced verification algorithm

FFT fast fourier transform

GAMP generalized approximate message passing

GT group testing

IST iterative soft thresholding

ix

x Acronyms

Notation Description

ITH iterative hard thresholding

LASSO least absolute shrinkage and selection operator

LDPC low density parity-check

LDPrC low density product-check

LMP list message passing

MAP maximum a posteriori

MMSE minimum mean square error

MP matching pursuit

NB-VA node-based verification algorithm

OMP orthogonal matching pursuit

RIP restricted isometry property

ROMP regular orthogonal matching pursuit

SAMP sparsity adaptive matching pursuit

SER sequence error rate

SuPrEm sum-product expectation maximization

tuned TST tuned two-stage thresholding

VA verification algorithms

WER word error rate

List of Symbols

Notation Description

G Graph

𝛿 Efficiency of a compression scheme

𝛿𝐵𝑃 Maximum compression efficience of an ensemble of graphs in N-
asymptotic regime

Γ Ensemble of graphs

𝛾 Sparsity rate of a source

𝛾𝐵𝑃 Belief propagation threshold of a ensemble of graphs in the N-asymptotic
regime

𝑑𝑖𝑐 Average number of edges per check node of the graph A𝑖.

𝑑𝑐 Number of edges of a check node

𝑑𝑖𝑣 Average number of edges per variable node of the graph A𝑖.

𝑑𝑣 Number of edges of a variable node

A(𝑖) Succession of matrices/actions generated upto instant 𝑖

K Amount of non-null components of vector x0

L𝑖(𝑑) Variable node degree distribution of graph A𝑖

L(𝑑) Variable node degree distribution of graph A

M Number of components of vector y0

N Number of components of vector x0

xi

xii List of Symbols

Notation Description

R𝑖(𝑑) Check node degree distribution of graph A𝑖

R(𝑑) Check node degree distribution of graph A

r𝑖 Rate of a matrix A𝑖

A𝑖 Sub-matrix of A generated at instant 𝑖

A Measurement matrix

e Noise or error sequence

x0 Source sequence

x Sequence

y(𝑖) Succession of observations generated upto instant 𝑖

y𝑖 Vector of observations generated at instant 𝑖

y Sequence at output channel

ΔD𝑖 Set of defective subjects labeled at instant 𝑖 but unlabeled at instant 𝑖− 1.

ΔD𝑖
𝑚 Set of defective subjects labeled by g(A𝑚,y𝑚) at instant 𝑗 that were

unlabeled at instant 𝑗 − 1.

ΔN𝑖 Set of non-defective subjects labeled at instant 𝑖 but unlabeled at instant
𝑖− 1.

ΔN𝑖
𝑚 Set of non-defective subjects labeled by g(A𝑚,y𝑚) at instant 𝑗 that were

unlabeled at instant 𝑗 − 1.

ΓK
N Grassmannian of K-dimensional sub-spaces of the N-dimensional space

R
N

A𝑢 Null-space of matrix A

D Set of defective subjects labeled at the end of the decoding process

D𝑐 Set of defective subjects that remain unlabeled at the end of the decoding
process

List of Symbols xiii

Notation Description

D𝑖 Set of defective subjects of the population labeled up-to 𝑖-th stage

D𝑐
𝑖 Set of defective subjects of the population that remain unlabeled at the

end of the 𝑖-th stage

D𝑚𝑖𝑛 Set of defective subjects of the population that can be retrieved from a
matrix

D𝑐
𝑚𝑖𝑛 Set of defective subjects of the population that cannot be retrieved from

a matrix

D𝑖
𝑚 Set of defective subjects labeled by g(A𝑚,y𝑚) at instant 𝑗.

I𝑐𝑖 Neighborhood of check node 𝑖.

I𝑣𝑖 Neighborhood of variable node 𝑖.

N Set of non-defective subjects labeled at the end of the decoding process

N𝑐 Set of non-defective subjects that remain unlabeled at the end of the
decoding process

N𝑖 Set of non-defective subjects of the population labeled up-to 𝑖-th stage

N𝑐
𝑖 Set of non-defective subjects of the population that remain unlabeled at

the end of the 𝑖-th stage

N𝑚𝑖𝑛 Set of non-defective subjects of the population that can be retrieved from
a matrix

N𝑐
𝑚𝑖𝑛 Set of non-defective subjects of the population that cannot be retrieved

from a matrix

N𝑖
𝑚 Set of non-defective subjects labeled by g(A𝑚,y𝑚) at instant 𝑗

N𝑖
𝑦 Set of non-defective tests generated at instant 𝑖.

P Population set

P𝐷 Set of defective subjects of the Population

P𝑁 Set of non-defective subjects of the Population

xiv List of Symbols

Notation Description

S Support set

U Set of subjects that remain unlabeled at the end of the decoding process

U𝑐 Set of subjects that labeled at the end of the decoding process

U𝑖 Set of subjects of the population that remain unlabeled at the end of the
𝑖-th stage

U𝑐
𝑖 Set of subjects of the population labeled up-to 𝑖-th stage

U𝑚𝑖𝑛 Set of subjects of the population that cannot be retrieved from a matrix

V𝑖 The 𝑖-th K-dimensional sub-space of the Grassmannian ΓK
N

V𝑒
𝑖 Set of erroneous sequences that belong to to partition V𝑖

V𝑒
𝑖←𝑗 Set of all the sequences in V𝑒

𝑖 that have a pair sequence in V𝑗

X Domain of the encoder

X𝑏 Sub-space of the domain of a encoder that encloses the pints where the
encoder is injective

X𝑒 Sub-space of the domain of a encoder that encloses the pints where the
encoder is not injective

Y Codomain of the encoder

Y𝑏 Sub-space of the codomain of a encoder function that encloses all the
points where the encoder is injective

Y𝑒 Sub-space of the codomain of a encoder function that encloses all the
points where the encoder is not injective

Glossary

Notation Description

|·| Counting measure

‖·‖0 Pseudo-norm zero, 𝑙0

∖ Excluding

d(𝑋) Renyi dimension of the random variable 𝑋

d̄(𝑋) Upper Renyi dimension of the random variable 𝑋

d(𝑋) Lower Renyi dimension of the random variable 𝑋

f(𝑋) Probability density function or 𝑋

g(·) Decoding function

Lip(·) Lipschitz pseudo-norm

O(𝑥) Big O notation

o(𝑥) Small O notation

P(𝑋) Probability mass function 𝑋

q(·) Encoding function

q𝑎(·) AND-based encoder

q𝑜(·) OR-based encoder

q𝑥(·) XOR-based encoder

spark(·) Minimum number of linear dependent vectors of a matrix

xv

xvi Glossary

Notation Description

𝜇K (·) K-dimensional Lebesgue measure

PART I

Problem description and theoretical limits

1

CHAPTER 1

Sensing structured sources

This thesis proposes contributions on several topics that can be formulated under the common
analog compression (AC) framework [161]: binary source compression [75, 170, 171], group
testing [51], sparse pattern recovery [59, 108, 110] and compressed sensing (CS) [28, 43].

The AC framework was recently introduced by Wu [161] and deals with the compression of
signals generated by sources that can be under-sampled and reconstructed with an arbitrary
distortion.

This thesis is divided in three blocks. Part I is devoted to review the state of the art. First, in
this chapter we describe the analog compression framework and review briefly the CS, the source
compression, the group testing and the sparse pattern recovery problems, stressing the existing
relationship between them. Afterwards, chapters 2 and 3 are devoted to review the state of the
art in the binary source compression and compressed sensing schemes respectively.

Part II of the thesis focuses on binary source compression. There we present our findings in the
study of the behaviour of a non-linear binary graph-based source compression encoder where
each component of the compressed sequence is generated by the OR-logical operation of several
components of the original sequence. This simple encoder is also employed to study the group
testing and sparse pattern recovery problems.

In chapter 4 we characterize the encoding limits of a non-adaptive group testing encoder, the
performance of a non-adaptive group testing scheme with a low-complexity decoder in the
N-asymptotic regime and present a binary compression scheme based on both a progressive
encoding strategy and the combination of linear and OR-based encoding stages. Then, we present
a novel adaptive compression scheme for group testing (chapter 5) and formulate it as a decision
problem (chapter 6); by doing so we set up a framework to systematize the construction and

3

4 1 Sensing structured sources

design of adaptive schemes for group testing. Furthermore we also propose tools to predict the
performance these adaptive schemes in the N-asymptotic regime.

Finally, in part III we enclose the results of the research efforts we devoted to noiseless analog
compression, which encompasses the noiseless compressed sensing (CS) problem [28, 43]. In
chapter 7 we deduce a necessary and sufficient matrix condition to ensure that a noiseless CS
scheme is lossless within the AC framework. Chapter 8 is devoted to present two novel decoding
algorithms for noiseless compressed sensing that exploit that the AC signal model.

1.1 Signal model and compression scheme for analog compression

Figure 1.1 depicts the typical setup of an analog compression scheme:

Figure 1.1: Analog Compression scheme

The original data vector x0 is composed of N independent realizations of a random variable 𝑋

that is distributed according to a mixture of continuous and discrete distributions

f𝑚(𝑋) = 𝛾 f(𝑋) + (1− 𝛾) P(𝑋) (1.1)

where f(𝑋) is a strictly continuous distribution, P(𝑋) is a collection of mass concentrations and
𝛾 is the sparsity ratio.

The encoding function q(·) : X ⊆ RN → Y ⊆ RM maps a N-dimensional sequence x0 ∈X to its
low M-dimensional compressed representation y0 ∈Y, M < N.

Afterwards, the compressed sequence is transmitted through a channel to the decoder g(·).
In some situations the transmission of the compressed sequence is corrupted by noise (e) so
the decoder receives a degraded version of the compressed sequence y0, y. Then the decoder
g(·) : Y ⊆ RM → X ⊆ RN attempts to generate an estimate of the original source sequence x.

1.2 Some compression problems

The scheme depicted in figure 1.1 setup encloses all the compression problems where we focused
our research efforts. Next we review these problems and show that they are structurally related.

1.2 Some compression problems 5

1.2.1 Noiseless compressed sensing

The scheme in figure 1.1 models the compressed sensing (CS) problem [28, 43, 44] whenever
P(𝑋) is a mass concentration at zero with weight P(𝑋 = 0) = 1− 𝛾 and f(𝑋) is an arbitrary
probability density function that characterizes the non-null components of vector of x0.

The CS problem arises in multiple applications where the selection of an appropriate basis leads
to a sparse representation of the data. The CS problem establishes that this sparsity can also be
exploited to recover a K-sparse signal x0 ∈ RN from a linear projection into a lower-dimensional
space y0 ∈ RM under certain conditions from the 𝑙0 minimization problem

x = argmin
y0=Ax0

‖x‖0 (1.2)

where A is a projection matrix, known as measurement matrix, and ‖·‖0 is the 𝑙0 pseudo-norm.
The set S containing the positions of these non-zero components is known as the support set or
the sparsity pattern, defined as S ,

{︀
𝑖 ∈ 1,...,N : 𝑥𝑖 ̸= 0

}︀
, with |S| = K.

Note that there are some basic differences between the AC problem and the CS problem. In
the classical CS problem the performance is measured in a worst-case scenario for all sparse x0

whereas in the proposed AC setup the x0 is randomly distributed and performance is measured
probabilistically. Furthermore, in the classical CS problem the encoder is constrained to be a
linear mapping characterized by a M×N matrix A known as measurement matrix whereas in the
AC setup encloses also non-linear encoders. Finally, in the classical CS problem the decoder is
assumed to be robust with respect to the noise observation, whereas the robustness conditions for
the optimal decoders in AC setup are Lipschitz continuity for noiseless schemes and the minimum
mean square error (MMSE) estimator in presence of noise (see [162] for further details).

In the state of the art several authors working within the analog compression framework refer to
it as compressed sensing, since they apply the AC theory to solve the CS problem. Throughout
the thesis we also refer to the AC framework as CS.

1.2.2 Binary source compression

The binary source compression problem can also be represented by the set up described in section
1.1, since it reduces to a classical binary source compression setup [139] in case that 𝛾 = 0 and
P(𝑋) has mass concentrations P(𝑋 = 1) and P(𝑋 = 0). In this case the AC problem reduces to
the design of efficient schemes composed by an encoder and a decoder to represent a binary data
source x0 ∈ {0,1}N by means of a shorter sequence y0 ∈ {0,1}M, M < N.

6 1 Sensing structured sources

Source compression schemes can be classified in two groups: schemes where the encoded sequence
length M is fixed (fixed length codes) and those where M and the compression rate may depend
on the source realization (variable length codes).

In this thesis we focus our attention on compression schemes where each component of vector
y0 is generated by operating with some components of vector x0 indicated by the non-null
components of a row vector of a sparse and binary matrix A ∈ {0,1}M×N, so y0 = q(A,x0) where
q(·) models the operation.

In case that the encoding function generates the components of y0 with the logical XOR operation
q𝑥(·) the resulting scheme corresponds to a low density parity-check (LDPC) [129] code for source
compression

y0 = q𝑥
(︀
A,x0

)︀
. (1.3)

We have a low density product-check (LDPrC) code [106] for source compression when the
encoding function q𝑎(·) is the AND logical operator

y0 = q𝑎
(︀
A,x0

)︀
. (1.4)

The OR-based encoder function q𝑜(·)

y0 = q𝑜
(︀
A,x0

)︀
(1.5)

is strongly related to the LDPrC codes since the negation of all the inputs and the outputs of
an OR-gate results in an AND logical gate. The OR-based encoder is especially relevant for us
because it models how the compressed sequence is generated in one of the main topics of the
thesis: group testing (GT).

1.2.3 Group testing

In this problem each component of vector y0 represents to a test result obtained from a mixture
of samples (e.g. blood, water, soil, etc) and aimed at detecting the presence of some undesired
feature (e.g. a viral tests for blood testing) in the mixture of samples. The tests employed in
GT are such that if the result of the test is non-defective all contributors can be labeled as
non-defective and otherwise we know that one or more of the contributors are defective (e.g.
infected blood).

The GT problem can be posed as a binary source compression problem where the population P

is modelled by N independent realizations of a Bernoulli source 𝑃 enclosed in vector x0 ∈ {0,1}N.

1.2 Some compression problems 7

Each component of the realization represents a member of the population, the symbols 1 or 0

of each component indicate whether the subjects are either defective or non-defective and the
operation of mixing the contributions of several subjects is modeled by the OR operator. Hence
the compressed sequences y0 are generated as indicated by equation 1.5.

1.2.4 Sparse pattern recovery

This problem is strongly related to the CS sensing problem [59, 108, 110], since it is aimed to
identify which subjects belong to the support set S of a K-sparse signal vector x0 ∈ RN with
algorithms that require a small amount of computational resources (energy, memory, number of
operations, etc).

The sparse pattern recovery problem naturally reduces to the group testing problem under
the AC signal model in the noiseless setup when the measurement matrix is binary and sparse
A ∈ {0,1}M×N, since the signal vector x0 ∈ RN is composed by N realizations of a mixture data
source with 𝛾 > 0. Under this restriction, the sparsity pattern recovery problem can be regarded
as the reconstruction of a binary sequence x′ ∈ {0,1}N of the same length than the sparse signal
and with ones at the non-zero positions. Let us then define the following nonlinear operator:

q(𝑥) =

{︃
1 𝑥 ̸= 0

0 𝑥 = 0
(1.6)

which can be regarded as a one-bit quantization or threshold detection. Applying it to the
measurements (element-wise), we observe that also the signal information in the linear projection
is reduced to a binary basis, which corresponds to the sparsity pattern sequence x′ = q(x0):

y′ , q(Ax0)

y′ = q(A q(x0)) = q(Ax′) (1.7)

This result holds because all the measurement of vector y0 = Ax0 generated by the contribution
of non-null components of vector x0 are also non-zero with probability 1, because the probability
of drawing a number of independent non-zero samples from the source 𝑋, i.e. distributed
according to a continuous mass distribution, that sums up to zero happens with probability
0. We can extend this results to sparse matrices A where the non-null components are i.i.d
according to a continuous distribution without mass concentrations since in this case the values
of the coefficients are all different. In the literature this problem is referred to as 1-bit compressed
sensing [16] when the matrix is Gaussian or Radamacher.

The measurement operation in this equation (1.7) can be also expressed as the OR binary
operation among sets of sparsity pattern bits. This result establishes a direct link between this

8 1 Sensing structured sources

problem,the group testing problem and the OR-based encoder in equation (1.5).

1.3 Graph-based compression schemes

The compression schemes that employ the typical matrix-vector product or the encoding functions
in equations (1.3), (1.4) and (1.5) have in common that can be described by a matrix. They
differ only in the operations that the encoders employ to reconstruct the sequence x0 from its
compressed version y0.

1.3.1 Graph representation

Matrices can be represented graphically as bipartite graphs (see [129]). Bipartite graphs depict
the relations introduced by the matrix A between the components of vector x0 and vector
y0 = q(A,x0). A bipartite graph G has two types of nodes: N variable nodes (one per entry of
vector x0) and M check nodes (one per entry of vector y0). The connections (edges) between
variable and check nodes are indicated by the non-null entries of the measurement matrix. A
graph representing a real or complex valued matrix is also characterized by the value of the
edges, whereas in binary graphs these values are not required since all edges are equal to 1.

(a) Neighborhood of a check node (b) Neighborhood of a variable node

Figure 1.2: Neighborhoods

Bipartite graphs belong to ensembles Γ (R,L,N) that are characterized by the number of variable
nodes N and the check and variable node degree profile polynomials, R(𝑑) and L(𝑑) respectively,
which define the fraction of check and variable nodes that have 𝑑 edges in the graph. The
performance of a randomly selected graph of an ensemble Γ

(︀
R,L,N

)︀
can be characterized by the

average performance of all the graph in the ensemble in the N-asymptotic regime1.

1 See for further details theorem 3.30 in [129].

1.3 Graph-based compression schemes 9

In the literature the variable nodes connected to an arbitrary check node 𝑖 are usually referred to
as the neighborhood of the check node 𝑖, I𝑐𝑖 . Similarly the check nodes connected to a variable
node 𝑖 are referred to as the neighborhood of the variable node 𝑖, I𝑣𝑖 . Figures 1.2(b) and 1.2(a)
depict the neighborhood of a variable and a check node, respectively. In these figures ellipsoids
denote variable nodes whereas rectangles depicts check nodes.

In binary source compression setups graphs are in general sparse, i.e. the fraction 𝑑𝑣/N vanishes
as N goes to infinite, whereas in compressed sensing setups they can be also dense.

1.3.2 Decoding algorithms

The graph representation of the problem allows to implement the decoder using iterative message
passing algorithms where the values of the components represented by the variable nodes are
retrieved employing message passing strategies. In these algorithms variable (check) nodes
propagate messages to check (variable) nodes in their neighborhoods so each node computes the
output messages only employing the information received from the nodes in its neighborhood.

In message passing strategies, check and variable nodes are activated alternatively. During each
activation stage, each 𝑖-th variable (check) node updates the messages forwarded to each check
(variable) node in its neighborhood employing only extrinsic information, e.g the 𝑖-th variable
node 𝑣𝑖 in figure 1.2(b) generates the message forwarded to the 𝑗-th check node employing only
the messages received from all the other check nodes in its neighborhood I𝑣𝑖 ∖ 𝑗.

If the graph is a tree, in the binary case the decoder exploits the relations between the components
of vector x0 and y0 described as a factor graph and employs the belief propagation (BP) algorithm
[164], i.e. a message passing strategy over the graph representation of the matrix. The resulting
problem is an approximation to the bit-wise maximum a posteriori (MAP) decoder when matrix
A is sparse. An example of decoding belief propagation algorithm for channel decoding is found
in [130].

In CS the MAP estimator can be implemented by the generalized BP decoder [164] that also
poses the reconstruction problem as message passing strategy over the graph representation of
the measurement matrix. Regretfully, under this approach the messages exchanged between
check and variable nodes are probability density functions and, hence, the complexity becomes
intractable. Several algorithms appeared in the literature aimed at approaching BP performance
with a reduced complexity [13, 120].

As usual, there is a trade off between performance and complexity, since more accurate approxi-
mations require much more accurate models and hence more computations to track the evolution
of the probability density functions.

10 1 Sensing structured sources

The computational complexity depends of the amount of edges of the graph so when denser the
graph more messages are propagated, so more computational power is required to update them.
Thus, the computational complexity of the reconstruction algorithms depends critically on the
sparsity (amount of edges) of the graphs. Sparse graphs usually perform O(N) edge upgrades
whereas dense graphs update O(NM) edges.

It must be remarked that in the N-asymptotic regime if the BP-based message passing algorithms
over sparse graph (with cycles) generates a solution with infinite reliability, it usually converges
to the MAP solution of the problem because in the N-asymptotic case the length of cycles goes
to infinite and, so the graphs converges to a tree.

CHAPTER 2

Binary source compression and other related problems

The binary source compression problem consists on the design of efficient schemes to represent a
binary data sources x0 ∈ {0,1}N by means of a shorter sequence y0 ∈ {0,1}M, M < N.

Shannon introduced the concept of information in [139] and established that sequences x0 com-
posed by N independent realizations of a binary source 𝑋 can be compressed in the N-asymptotic
regime into a binary sequence y0 of fixed or variable length with an average compression rate 𝑟 and
reconstructed without losses whenever 𝑟 ≥ H(𝑋), where H(𝑋) = −𝑝 log2(𝑝)− (1− 𝑝) log2(1− 𝑝)

is the entropy rate of the Bernoulli source. The source entropy divides the compression rate into
two regions: one where lossless reconstruction is achievable, 𝑟 ≥ H(𝑋) and another one where
lossless reconstruction cannot be achieved, i.e. 𝑟 < H(𝑋).

We say that compression schemes with 𝑟 < H(𝑋) work in the rate distortion regime [138, 139], i.e.
in this region the original sequences can be reconstructed with a distortion. The rate distortion
zone is defined by the boundary[38]

𝑟(𝐷) ≥ H(𝑋)−H(𝐷) (2.1)

where 𝐷 is the Hamming distance between the original sequence x0 and its reconstructed version
x.

In some situations it is possible to construct compression schemes with compression rates
arbitrarily close to the entropy of the source [159], whereas in some other situations the lossless
compression region of an specific compression scheme is structurally bounded away from the
entropy bound due to physic constraints, e.g. delay constraints or encoder limitations. So in
several compression problems the compression limits are unknown, e.g. in adaptive group testing
schemes [10, 35, 77], and hence the source entropy rate is only a non-achievable upper bound.

11

12 2 Binary source compression and other related problems

We talk of almost lossless compression schemes whenever the encoder/decoder produces a rate of
errors at the output of the decoder that vanishes with N. Furthermore, in some other situations
it is not even possible to design almost lossless compression schemes, e.g. non-adaptive group
testing [5].

This chapter is divided in three blocks. In section 2.1 we do a brief review of the literature
related to different binary graph-based compression schemes we deal with. We devote section 2.2
to do an introduction to graph-based source compression schemes where both the sequence to be
compressed and the codeword have fixed length. Finally section 2.3 is dedicated to introduce
the reader to the main topic of part II: the group testing problem, which can be regarded as a
graph-based source compression scheme with a non-linear encoder.

2.1 Binary graph-based source compression schemes

The objective of this section is to give a general overview of the literature related to binary
source compression, stressing its relationship with our work.

In this section we briefly review the state of the art in source coding (2.1.1), in the sparse pattern
recovery problem (2.1.2), and in the group testing problem (2.1.3).

2.1.1 Binary almost lossless source compression

In the literature there exist several variable rate source coding methods that can compress
Bernoulli data sources up to its binary entropy: the Huffman codes[75], the entropy coding
algorithm [56, 57, 133], the Lempel-Ziv based algorithms [170, 171].

Recently, a different approach appeared in the literature based on low density parity-check
(LDPC) linear codes for fixed length coding. LDPC codes for channel coding were first proposed
by Gallager [142] and later rediscovered by Mackay [100]. It is known that these schemes can
asymptotically achieve the channel capacity in different conditions with an affordable complexity
[142]. The key point of the LDPC-based codes is that its performance can be predicted using
density evolution analysis [129], which attracted several research efforts that produced near-
optimum codes. Afterwards, the duality between channel and source coding was successfully
exploited to employ LDPC codes in source coding problems [20] and is referred to as syndrome
coding [6].

Basically, the mathematical model this source compression scheme coincides with that one of
transmitting the all zero codeword through a binary symmetric channel (BSC) channel with
error probability 𝑝, i.e. the patterns of errors introduced by the BSC with probability 𝑝 are
equivalent to sequences generated by a Bernoulli source of probability 𝑝. Hence, the performance

2.1 Binary graph-based source compression schemes 13

of the source compression schemes depends critically on the capability of the matrix1 to assign
a different syndrome to each error pattern induced by the channel or, conversely, a different
compressed sequence to each sequence generated by a Bernoulli source with entropy rate H(𝑋).

In syndrome coding the number of sequences that are typically generated by the source, i.e. the
typical set of source sequence, is approximately 2NH(𝑋). In case that M ≥ NH(𝑋) there is an
overwhelming probability that matrix A behaves as an isomorphism for almost all the sequences
in the typical set when matrix A is properly designed, since the encoder function performs a
one-to-one mapping between the typical sequences and the code codewords [6, 20, 21]. The
performance of these schemes is nearly optimal when the entropy rate of the source H(𝑋) is high,
but rate losses increase as the entropy of the source sequence decreases [19, 20]. This almost
loss-less scheme can also be employed to deal with the problem of source compression with side
information [95].

Fountain codes [99] are a different instance of linear codes for source coding. The special
characteristic of this family of codes is that they are rateless, i.e. the length of sequence y0

is variable. Examples of these codes that have been applied to source coding are based on
turbo-codes [71] or on the LT-codes [18, 96]. It has been shown in the literature that the fountain
codes have empirically a good performance when dealing with the source coding problem [18, 96].

LT codes [96] is a special instance of fountain codes where the number of components of vector
x0 involved in the computation of each component of sequence y0 𝑑𝑐 is chosen randomly from a
check node degree profile distribution R(𝑑). Afterwards, those𝑑𝑐 components of vector x0 are
chosen independently at random from a uniform distribution2. The decoding process starts when
the number of compressed bits at the decoder side is sufficiently large. The design of distributions
for the check node degree profiles is an open problem [33, 147].

Non-linear codes are potentially more powerful than linear ones [68, 69] since they include
the latter as a particular case. This potential is of special interest in the case of non-uniform
sources. The reason is that linear codes possess identical distance profiles for all codewords,
while non-linear codes have different distance properties for different codewords. This fact can be
exploited to guarantee better distance profiles for the most likely information sequences, which
should lead to better performance.

In spite of this potential advantage, there has been relatively little work on non-linear codes,
probably due to the fact that linear codes are known to be asymptotically optimum in channel

1 Referred to as parity check matrix in channel coding, matrix A here.
2 This process can be repeated at the decoder side to generate the parity matrix whenever the seed of the random

number generator is known by both the encoder and the decoder.

14 2 Binary source compression and other related problems

coding for infinite block lengths. In this thesis, we focus on a special instance of non-linear codes
known as low density product-check (LDPrC) codes [105, 106], since they use check nodes that
perform the AND operation over their binary inputs. These codes are remarkable because their
performance can be predicted by means of density evolution tool that helps to design them. Its
extension to the OR-based check nodes is straightforward and, hence, it can be extended to
Group testing schemes.

2.1.2 Sparse pattern recovery

As we showed in section 1.2.1, this problem is strongly related to the CS sensing problem [59,
108, 110, 123] because it is aimed at identifying the subjects that belong to the support set S of
a K-sparse signal vector x0 ∈ RN with algorithms that require a low amount of computational
resources.

The theoretical limits of the number of samples needed to recover the sparsity pattern perfectly
or to achieve a certain error performance for a given (K,N) were given in [125]. In the noiseless
case, the author states that "methods and theoretical limits do not differ from CS" which is
intrinsically also a sparsity support recovery problem, i.e. that perfect reconstruction can be
achieved with M approximately O

(︀
K log(N/M)

)︀
. Sparse pattern reconstruction algorithms are

based on 𝑙0 and 𝑙1 minimization problems reviewed in chapter 3. The author in [124] explores
the theoretical limits of sparse pattern recovery in the rate-distortion region.

2.1.3 Group testing

The group testing (GT) was proposed during the Second World War [51] and deals with the
problem of sorting a subset of defective subjects P𝐷 from the non-defective subjects P𝑁 of a
population P when the number of defective subjects K among the N subjects of the populations
is low, K = |P𝐷| < N. The relation between N and K can be either proportional or exponential
with N, i.e. K = 𝛽N or K = N1−𝛽 for 0 < 𝛽 < 1, respectively. In the exponential case the
fraction of defective subjects in the population vanishes as N increases, i.e. K = o(N), whereas
in the proportional case K = O(N). Research efforts in the literature are mainly focused on the
exponential case whereas this thesis focus on K = O(N).

GT exploits that when we select a subset of subjects of the population and perform a single
test to all them together to detect a special characteristic or defect, if the result of the test is
negative all the subjects contributing to the test belong to the set of non-defective subjects.
Otherwise there is at least one defective subject in the sub-set of the population and more tests
are required to identify the defective subjects. The noiseless GT setting focus on the cases where

2.1 Binary graph-based source compression schemes 15

the probability of false detection and miss detection are both equal to zero, i.e that the results of
the tests are deterministic.

The group testing problem has been applied to a broad range of problems: industrial product
testing [145], sequential screening of experimental variables [94], searching in storage systems [78,
89], multiple access communication [67, 160], data gathering in sensor networks [70], screening of
clone libraries [12, 17], blood screening [152, 165], image compression [74], data streams testing
[37] and diagnosis for digital logic systems [87], DNA screening [140], spectrum sensing [148, 169].
It is closely related to both compressed sensing (CS) [16, 64] and coding theory [103, 104].

Within the compression framework, the group testing encoding stage refers to the generation
of the tests and can be regarded as the OR-encoding operation shown in equation (1.5), where
a matrix A ∈ {0,1}M×N is a sort of generator matrix known as measurement matrix, each
component of vector x0 represents a member of the population P and each component of vector
y ∈ {0,1}M represents to the results of a test q𝑜(·), which can be regarded as an OR-logical
operation applied to the members of the population x0 indicated by the correspondent row vector
of matrix A.

Recently GT problem has attracted many research efforts mainly focused on both bounding the
theoretical limits of the exponential approach of different GT schemes [2–4, 8, 10, 31, 36, 85, 90,
134] and the derivation of algorithms for GT [5, 35, 36, 119]. It must be noted that the author in
[156, 157] focused exclusively on analyzing the performance of non-adaptive group testing scheme
that employ regular bipartite graphs (pooling graphs) when K = 𝛼N. The later group testing
scheme can be regarded as an LDPrC code for source coding [105, 106] that employs a BP-based
message passing algorithm for graphs with AND/OR check node operations to infer the labels
of the subjects of the population. The authors of [105, 106] also developed a density evolution
analysis tool that can characterize the performance of the BP-based message passing algorithm
over a realization of any ensemble of bipartite graphs with AND/OR check node operation in
the N-asymptotic regime. We devote section 2.2.2 to review the LDPrC codes.

GT schemes can be divided between adaptive [35, 77, 87, 119] and non-adaptive [5, 31] group
testing schemes. In the non-adaptive GT all tests are executed in a single round of tests. The
round of tests is decomposed in two phases: an acquisition phase where tests are executed
following some rules and a second phase or decoding phase where an attempt to label each
subject according to the information gathered from all the tests is performed.

A feature of AND/OR gates and so of non-adaptive GT schemes when K = 𝛼N is that after the

16 2 Binary source compression and other related problems

decoding phase a subset of subjects of the population may remain unlabeled [61]1, U⊆ P, with a
certain probability that decreases by increasing the number of tests or decreasing the amount of
non-defective of the population, i.e. reducing the scheme sampling efficiency.

Adaptive group testing arises as an efficient solution to this problem, see [3, 73, 79, 119]. The main
difference with non-adaptive GT is that adaptive schemes alternate several stages of acquisition
and decoding phases. This fact enables that the information gathered after processing 𝑖 stages of
tests can be employed to design the next stage of tests.

The introduction of adaptivity into a group testing scheme also introduces an extra degree of
difficulty, since the entity managing the adaptive group testing scheme must define a policy to
design the structure of the next stage of tests taking into account somehow all the information
gathered up to the moment. The rules to decide the structure of the latter stages of the adaptive
scheme are crucial for the overall performance of an adaptive group testing scheme [3, 79]. In the
literature, to the best knowledge of the author, the design of policies for adaptive group testing
remains still as an open problem.

There are basically two different families of algorithms for adaptive group testing, each one follows
a different strategy to overcome the policy design problems. Two-stage based algorithms [40]
perform the tests in two sequential stages, so the second stage exploits the knowledge gathered
from the first test stage. Random walk algorithms [35, 77, 87] generate tests one by one and
once the subjects are labeled focuses the following tests on the subjects that remain unlabeled.
Here, in this thesis, we devote part II to introduce a third approach: the concatenation of as
many stages as required to retrieve the labels of all the subjects where after each stage only the
unlabeled subjects are further tested [115, 119].

The characterization of the theoretical compression limits of adaptive group testing schemes
when K = O(N) remains as an open problem, i.e. within this situation, it is unknown the
minimum number of tests required to reconstruct almost any population of N subjects and with
K defective members. For K = o(N) this problem has been attracting the attention of several
authors [3, 10, 79, 134], mainly focusing their research efforts on bounding the performance of
the best known algorithm [77]2, which nowadays requires K log(N/K) + 2K tests in the worst
case scenario to label all the subjects of the population. Recent theoretical results show that
the smallest possible number of tests with vanishing error probability for both adaptive and

1 The author states that codes with AND gates are only optimal when the amount of zeros goes to zero or,
alternatively in GT, when the fraction of defective subjects of the population goes to zero.

2 Note that the authors in [35] presented in 2013 is the best performing algorithm up to the date which
outperformed to [77] which was presented in 1972.

2.2 Decoders for graph-based binary source compression schemes 17

non-adaptive group testing schemes behaves as
(︀
K log2(N/K)

)︀
(1+ o(1)) for K = N𝛽 and 𝛽 < 1/3

[134]1.

2.2 Decoders for graph-based binary source compression schemes

In this section we review several decoding algorithms specifically aimed to retrieve the original
sequence from compressed sequences generated as in equation (1.3), (1.4) and (1.5). First in
section 2.2.1 we review the decoder for the XOR-based encoders. Then in section 2.2.2 we review
the decoding algorithm for AND-based decoders. Finally in section 2.2.3 we review a hybrid
compression scheme [105, 106] where the compressed sequence is partially generated XOR-based
and AND-based encoders.

2.2.1 Low density parity-check codes

The LDPC decoders are based on iterative message passing algorithm on the bipartite graph
representation defined by equations (1.3). There exist several message passing algorithms or
decoding algorithms to implement LDPC decoder with different performance and complexity,
e.g. the min-sum algorithm, the sum-product algorithm2, or Maxwell based-decoder [107].

The average performance of the sum-product message passing algorithm over an specific en-
semble of graphs in cycle-free in the N-asymptotic regime can be assessed employing density
evolution analysis ([129]). This tool can be employed to estimate the average performance of
any randomly selected graph of a ensemble Γ

(︀
R,L,N

)︀
, since its performance coincides with the

average performance of the graphs of the ensemble in the N-asymptotic regime [129]. We enclose
the message passing update rules of sum-product algorithm for LDPC codes in appendix 2.A.1

2.2.2 Low density product-check codes

Low density product-check (LDPrC) codes for source compression proposed in [106] can be
seen as a non-linear generalization of LDPC codes since i) the proposed non-linear codes can
be graphically represented by means of a factor graph, ii) they can be decoded using belief
propagation, and iii) their performance can be predicted, and the codes analyzed, using density
evolution. Thus they can be easily designed when long block lengths are considered. This

1 Note that some authors refers to the model as K = N𝛽 [134] and some others as K = N1−𝛽 [10].
2 We use the sum-product algorithm to derive some results in our thesis. Furthermore we also use the

specific implementation of the sum-product algorithm for binary erasure channel (BEC) [129] that inherits its
performance with a reduced complexity.

18 2 Binary source compression and other related problems

distinguishes the proposed scheme from the few non-linear codes that were proposed for lossless
and lossy compression [68, 69], which are not easy to analyze and generalize.

In these codes a binary compressed sequence y0 ∈ {0,1}M of length M is generated from a
sequence of source bits x0 ∈ {0,1}N of length N independently distributed according to a
Bernoulli distribution P(𝑋 = 1). The AND-based encoder function q𝑎(·) generates the coded
bits with the AND-operator y0 = q𝑎

(︀
A,x0

)︀1, shown in equation 1.4. A ∈ {0,1}M×N is sparse
binary code matrix with rate 𝑟 = M/N.

These codes pinpoint on the idea that when 𝑝 > 0.5, i.e. the coded bits are generated by the AND
operation, a coded bit equal to 1 implies that all the source bits that contributed to generate the
coded bit are equal to one with infinite reliability. This fact causes that LDPrC codes usually
converge fast when the code matrix is properly built. The drawback of these codes is that the
source bits equal to zero can only be retrieved from coded bits equal to zero when all the source
bits that contributed to generate the coded bit are equal to 1 but one. Thus, those coded bits
generated by the contribution of two or more source bits equal to zero are not useful to retrieve
any source bit.

We enumerate the message passing update rules for BP decoding of LDPrC codes in appendix
2.A.2.

2.2.3 Hybrid LDPC-LDPrC codes

Hybrid LDPrC-LDPC codes are constructed as a parallel concatenation of two block codes: a
fraction 𝛼 of coded bits is generated by a nonlinear low density product-check code and the
remainder fraction, 1− 𝛼, by a linear low density parity-check code.

The linear block is encoded as in a standard LDPC code. Defining a generator matrix G of size
(1 − 𝛼)M × N and the source sequence x0 ∈ {0,1}N of length N, the encoding process can be
expressed as:

c0 = q𝑥
(︀
G,x0

)︀
(2.2)

with c0 ∈ {0,1}(1−𝛼)M the linear sequence. For the LDPrC code, he encoding process can be
described in a compact form by defining a (𝛼M)× N generator matrix P whose (i,j) entry is 1 if

1 An OR-based encoding function is employed to compress sequences with P(𝑋 = 1) ≤ 0.5 and the AND operator
when P(𝑋 = 1) ≥ 0.5. The OR-based encoding function will be referred to as q𝑜

(︀
· , ·

)︀
.

2.3 Graph-based group testing schemes 19

the information bit 𝑏𝑖 is employed in the computation of the coded bit 𝑝𝑗 , and 0 otherwise. We
thus represent the encoding process as

p0 = q𝑎
(︀
P,x0

)︀
(2.3)

with y0 ∈ {0,1}𝛼M.

The LDPrC-LDPC codeword is built as [c0 p0]. Therefore, matrices G and P fully characterize
the hybrid LDPC-LDPrC code. These matrices are sparse and have random appearance. Hence,
if the codeword is long enough and the matrix has been properly designed, there will be few
cycles in the graph and belief propagation will provide a quite accurate approximation to bit-
wise maximum a posteriori (MAP) decoding. The message passing equations for the variable
XOR-based check nodes are the same as in LDPC codes, whereas the message passing update
rules of the AND-based check nodes are the ones of the LDPrC codes.

Hybrid LDPC-LDPrC codes are characterized by the degree profiles of the bit nodes (both for
the linear and non-linear parts), of the parity check and product check nodes. The analysis tools
presented in [106] focused on the design of regular codes by means of density evolution.

2.3 Graph-based group testing schemes

In this section we introduce the approach to group testing based on modern graph-based codes
[129, 142]. The similarities between the noiseless GT problem and coding theory were noticed by
Malyutov as early as the 70’s [104]. It is straightforward to show that there exist strong analogy
between the low-density-product-check (LDPrC) codes presented in subsection 2.2.2 and GT,
since in LDPrC codes the coded bits are generated by the AND-operation while in Group testing
tests are generated by the OR-operation.

We can try to infer which subjects of a population are defective from a block of tests y0 obtained
as shown in equation (1.5) adapting the LDPrC message passing algorithm to our specific
problem. We simply note that the equivalence between AND and OR-based gates, i.e an OR
gate is an AND gate where the inputs and the output results are negated. Due to this, for GT
the equivalent message passing algorithm for LDPrC codes is obtained by swapping all zeros by
ones and the ones by zeros in vector x0 and y0, which translated to swap all signs of equations
(2.11) in section 2.2.2. Alternatively we can also employ the erasure decoding (ED), an algorithm
that we proposed in [116].

In this section we review a non-adaptive group testing scheme. First in subsection 2.3.1 we
introduce the scheme. After that in 2.3.2 we review a low complexity decoding algorithm for

20 2 Binary source compression and other related problems

noiseless group testing. Finally in section 2.3.3 we give some insight of how the expected outcome
of the group testing scheme depends of the encoder structure.

2.3.1 Problem statement

In the group testing problem an agent performs tests on groups of subjects of a population P

to identify (label) the defective and the non-defective subjects of the population, P𝐷 and P𝑁 .
Initially the label of all subjects is unknown.

Throughout the section we model the N members of the population P as a binary source of
data that generates sequences x0 with N independent realizations of a random variable with a
non-vanishing probability of ’1’ equal to the average fraction of non-defective subjects in the
population P(𝑋 = 1) = P(P𝐷), so if there are K = P(P𝐷)N

1 defective members in the population
and N−K non-defective members in the population and hence x0 has K ’ones’.

The agent does the classification in two steps:

1. In a test generation or encoding step, the agent generates M tests 𝑦𝑗 , 1 ≤ 𝑗 ≤ M, each one
of them including a subset I𝑗 of the population subjects. The outcomes of the tests can be
written as

𝑦𝑗 = q𝑜 (a𝑗 ,x0)

where q𝑜(·,·) is the OR-based encoder in equation (1.5), 𝑦𝑗 is the 𝑗-th component of vector
y0, x0 is a binary vector that represents the subjects of the population, and a𝑗 is the 𝑗-th
row vector of a binary and sparse matrix A whose non-null components are indexed in I𝑗 .

2. The agent, in a decoding step, employs a decoding function g(·) to attempt to label all the
subjects, i.e. tries to infer the values of the components of vector x0 as

x = g(y0,A)

where x is the reconstructed sequence.

1 We assume throughout all the thesis that the amount of defective subjects is O(N), i.e. that K = P(P𝐷)N
instead of K = NP(P𝐷) for 0 ≤ P(P𝐷) < 0.5.

2.3 Graph-based group testing schemes 21

2.3.2 Erasure decoder for group testing

Now let us focus on the message passing strategy of the erasure decoding algorithm that we
proposed in [116]1. In the noiseless case, the inference rules to retrieve the value of the variable
nodes connected to a OR-based check node are:

Remark 2.1 (Non-defective subjects inference). Whenever the result of a test is non-defective
(zero) then all the subjects that contributed to it can be labeled as non-defective.

This statement holds because in absence of noise tests do not fail and hence the probabilities of
miss-detection and false detection are equal to zero. In this situation it is also possible to infer
defective subjects from the vector of tests y0, since it holds that

Remark 2.2 (Defective subjects inference). The decoder can label as defective a subject con-
tributing to a defective test whenever all the other subjects that contributed to it are already
labeled as non-defective.

Based on this dual behavior a very low complexity message passing algorithm for codes with
OR-based check nodes can be envisaged. These message passing rules only consider three possible
values for the messages exchanged between the nodes: 1 (defective subjects is perfectly known),
0 (non-defective subject is perfectly known) and ‘?’ (for a subjects that cannot be labeled).

Data: A, y0

Result: x
1 begin
2 for 𝑖 ∈ {1, . . . ,M} do
3 Find non-defective: If 𝑦𝑖 is non-defective (’0’), all variable nodes in the

neighborhood of 𝑦𝑖 are labeled as non-defective (’0’).
4 end
5 Pruning: Remove all variable nodes labeled as non-defective.
6 for 𝑖 ∈ {1, . . . ,M} do
7 Find defective: If the tests 𝑦𝑖 is defective (’1’) and only one variable node is

connected to it, label the variable node as defective (’1’).
8 end
9 end

Algorithm 2.1: Refinement algorithm

1 We presented this algorithm in 2010. A different algorithm named combinatorial optimal matching pursuit
(COMP) that exploits only remark 2.1 was presented in 2011 [31] and recently the authors in [5] presented
an algorithm named definite defective (DD) that can be regarded as an instance of the Erasure decoder that
employs the a priori information to decide the the label of the subjects that the ED cannot label. Th SS
algorithm can be regarded as a sub-optimal approach to the LDPrC codes.

22 2 Binary source compression and other related problems

The decoder relies in the graph representation of the testing matrix and on remarks 2.1 and
2.2 and performs three steps described in algorithm 2.1. First, all check nodes (e.g. the 𝑗-th
check node) communicate to all variable nodes in their neighborhood either their labeled status
if they can infer them (as defective or non defective) or their "un-labeled" status (if they cannot
determine whether that variable node represents a defective or non-defective subject). Second,
all variable nodes send to the check nodes connected to them their label (if any of the check
nodes has told them) or their "un-labeled" status (if they have not been told their label by any
check node). Third and last, the check nodes use the messages they receive from the variable
nodes in their neighborhood to attempt to label those subjects in their neighborhood that remain
unlabeled. It can be easily seen that no further improvement is obtained by extending the
decoder to more iterations.

In the first step, all variable nodes connected to a OR-based check node whose test is non-defective
are labeled as non-defective due to remark 2.1. Then, these variable nodes are removed of the
graph, doing so the knowledge of the non-defective subjects is employed to infer which subjects
are defective, employing remark 2.2, since the check nodes that remain with a unique edge can
label that variable node as defective.

As it can be deduced from this algorithm, there is a fraction of the measurements that never
helps to recover any variable nodes: those defective tests with more than one edge after the
pruning step.

Notice that this decoder does not require iterations nor arithmetic operations. The performance
of such a simple decoder is clearly suboptimal, since the source statistics are not taken into
account1 and soft values are not exchanged between nodes. However, it has the nice feature that
no errors are made. Based on the similarities of this decoder with that one employed in LDPC
codes for the binary erasure channel, we refer to this low complexity decoder in the sequel as the
“erasure decoder”.

2.3.3 Impact of check node degree on subjects labeling

Let us analyze the behaviour of an OR-based check node of degree 𝑑𝑐. With this in mind, let
us observe the amount of subjects of x0 that can be inferred from the value of tests y0 by the
erasure decoder. Three different situations arise in the erasure decoder:

1 This algorithm is a low complexity implementation of the LDPrC code decoding algorithm described in section
2.2.2.

2.3 Graph-based group testing schemes 23

• Type I check nodes: All subjects connected to the check node are equal to ‘0’ (non-defective).
Then their OR operation is also ‘0’ and with this test we can label the 𝑑𝑐 subjects in the
neighborhood of the check node as non-defective.

• Type II: All subjects but one are equal to ‘0’, so the test is ‘1’. In this case, when the
𝑑𝑐 − 1 subjects that are equal to ‘0’ are labeled, the remaining subject can be also labeled
as a ‘1’. However, the OR-based check node is not useful to label any non-defective subject
even if the defective subject has already been labeled.

• Type III: At least two subjects are equal to ‘1’. In this case the only information that can
be extracted from this test is that some subjects are defective. Perfect knowledge of the
label of any of the contributors does not convey any further information on the labels of
the other ones.

If vector x0 is composed by N independent realizations of a Bernoulli source with P(𝑋 = 1) and
given a degree 𝑑𝑐 of the check node, the fraction of check nodes that correspond to each of these
three Types is determined by equations

P(Type I) = P(P𝑁)𝑑𝑐 (2.4)

P(Type II) = 𝑑𝑐
(︀
1− P(P𝑁)

)︀
P(P𝑁)𝑑𝑐−1 (2.5)

P(Type III) = 1− P(Type I)− P(Type II) (2.6)

Figure 2.1 shows the probability that the check node belongs to each one of the three Types listed
above for the case P(𝑋 = 1)=0.013. Note that the fraction of nodes of Type I is a decreasing
function of the degree 𝑑𝑐, whereas the fraction of nodes of Type II exhibits a maximum that can
be shown to appear when 𝑑𝑐 = − log−1

(︀
P(𝑋 = 1)

)︀
.

Figure 2.1 indicates that in the design of measurement matrices for group testing there is a
trade-off in the selection of the degree of the OR-based check node. The higher the check
node degree the higher the compression rate of the code but also the higher the probability of
generating Type III check nodes and the lower the probability of generating Type I check nodes.

Taking into account this trade-off, it is apparent that the performance of the GT schemes can be
improved if variable nodes that are connected to Type I check nodes have the smallest variable
node degree (so no graph edges are “wasted” trying to label them again). Furthermore variable
nodes representing defective subjects should be connected to Type II check nodes also with a
small degree so as they can be recovered but they have a small contribution to generate tests
that are ‘0’.

24 2 Binary source compression and other related problems

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Product node degree

F
ra

c
ti
o

n
 o

f
p

ro
d

u
c
t

n
o

d
e

s

Type I

Type II

Type III

Figure 2.1: Distribution of the Type I, II and III check as a function of the node degree for
P(𝑋 = 1)=0.013

Appendix 2.A Belief propagation equations

2.A.1 Equations for XOR-based check nodes

There exist several message passing strategies to propagate the information under tree assumption
in an iterative manner over the graph representing of a sparse matrix A. Here we summarize the
message passing update rules for bit-wise MAP decoding over binary-input memoryless channels
defined by parity matrices A known as the sum-product algorithm. We also list the specific
implementation of the sum-product for the binary erasure channel.

The basic structure of algorithms is: variable and check nodes are activated alternatively
forwarding the extrinsic information to the nodes in their neighborhoods, i.e. the check/variable
nodes forward a message to each variable/check node in their respective neighborhoods obtained
from the fusion of all the messages received from the other nodes in their respective neighborhood.
The information propagates throughout the graph as the number of iterations increases and
hence the average bit-error probability is a non-increasing function with the number of iterations.

The messages exchanged by check and variable nodes are the log-likelihood ratios (LLR)

𝐿 = log

(︃
P(𝑋 = 1)

P(𝑋 = 0)

)︃
(2.7)

The update rules of the nodes are as follows: first each variable node ’v’ propagates a different

2.A Belief propagation equations 25

message to each check node ’c𝑗 ’ in their respective neighborhood I𝑣:

𝐿v→c𝑗 =
∑︁

∀𝑖∈I𝑣∖𝑗

𝐿c𝑖→v + 𝐿𝑎𝑝𝑝 (2.8)

where 𝐿v→c𝑗 represents the message being updated, each 𝐿c𝑖→v represent the incoming message
received by the node ’v’ from the check nodes ’c𝑖’ and 𝐿𝑎𝑝𝑝 is the a priori information available
of the variable node ’v’ (in case that the source is i.i.d depends only on the source asymmetry).

Similarly, in their turn each check node ’c’ propagates to all variable nodes ’v𝑗 ’ in in their
respective neighborhoods I𝑐, a message obtained as shown in equation (2.9)

𝐿c→vj = 2tanh−1
(︁ ∏︁

∀𝑖∈I𝑐∖𝑗

tanh(𝐿v𝑗→c/2)
)︁

(2.9)

Finally the estimation of value of the each bit is obtained as the sign of the message resulting
from the addition of all the incoming messages

𝐿v𝑗 =
∑︁

∀𝑖∈I𝑣𝑗

𝐿c𝑖→v + 𝐿𝑎𝑝𝑝. (2.10)

The message passing algorithm for the BEC is a special instance of the sum-product algorithm.
In this case the messages exchanged by the nodes are either ±∞ whenever the bit is known since
the probabilities of equation (2.7) are ever either zero or one and the message L is zero whenever
the bit is unknown or erased. The message update rules are:

𝐿v→cj Propagate ±∞ if at least one of the messages 𝐿c𝑖→v, 𝑖 ∈ I𝑣 ∖ 𝑗, is ±∞. Otherwise send a
erasure message ’?’.

𝐿cj→v Propagate ±∞ if all the messages 𝐿c𝑖→v from I𝑣 ∖ 𝑗 are ±∞. Choose the sign +∞ if the
number of +∞ is even or −∞ whenever the number of +∞ is odd. Otherwise send the
erasure symbol ’?’.

2.A.2 Equations for AND/OR-based check nodes

As indicated in [105, 106], if we consider the case of a two-input AND operator 𝑦 = 𝑥1 · 𝑥2 and
we denote by 𝐿c→v and 𝐿v→c the log-likelihood ratios (LLR) messages that go from the check
node c to variable node v and vice versa then, we can write the decoding equations for this check

26 2 Binary source compression and other related problems

node of degree two as

𝐿𝑐→v2 = log

(︃
1 + 2e𝐿v1→c+𝐿y

1 + 2e𝐿v1→c

)︃
(2.11)

For product nodes of higher degree, the messages can be computed recursively from the expressions
above. The variable node message upgrade rules are the same than for message LDPC-based
codes (see equation 2.8).

CHAPTER 3

Real data compression schemes

The goal of this chapter is to give to the reader a general overview of the noiseless compressed
sensing problem [43]. This problem considers the estimation of an unknown sparse signal vector
x0 ∈ RN from a vector of linear observations y0 ∈ RM, y0 = Ax0 where A is a M×N matrix
known as measurement matrix. This is possible when M < N because a small number K of
elements of x0 are non-zero and matrix A is properly designed. In this case the estimate x with
minimum 𝑙0 norm that accomplishes the system of equations y0 = Ax coincides with the original
signal vector x0.

While the minimization of the 𝑙0-norm is a NP complex problem, the authors in [28, 44] advocated
that this original optimization of the CS problem could be relaxed by using the 𝑙1 norm. The
key point to guarantee that the solution is the sparsest under this relaxation is the proper
construction of the measurement matrix A. The restricted isometry property (RIP) was found to
be a sufficient design condition to guarantee the sparsity of the solution [11, 27]. Furthermore, the
RIP condition also allowed any 𝑙1-based reconstruction techniques to be robust to the presence
of noise y = Ax0 +w,

Recently the author in [161] posed the Compressed Sensing problem under the analog compression
framework. The introduction of the analog compression framework for compressed sensing came
along with new algorithms for compressed sensing that outperformed their predecessors. Since
then several applications exploiting this new approach to the problem appeared in the literature:
spectral sensing [155], parameter estimation [88, 136], sparse fast fourier transform (FFT) [72,
168], compressed image acquisition and compression [98, 146, 149].

The rest of the chapter is divided as follows: first in section 3.1 we enclose the theoretical limits of
the CS problem within the analog compression framework. In section 3.2 we review the existing

27

28 3 Real data compression schemes

decoding algorithms for CS whereas in section 3.3 we focus on different approaches to construct
measurement matrices.

3.1 Information theoretic limits for compressed sensing

Here we summarize the compression limits of a noiseless analog compression setup when the
encoder is linear. Further details and the extension to the noisy case can be found in [161–163].

The following definition gives the condition for a linear encoder to be considered well suited for
noiseless compressed sensing [162]

Definition 3.1. (Lipschitz continuity) A encoder function q(·) is considered robust whenever it
is 𝐿-Lipschitz continuous, i.e. +∞ > 𝐿 ≥ Lip(q)

Lip(q) = sup
x ̸=x′

‖q(x)− q(x′)‖
‖x− x′‖

where Lip(·) stands for the Lipschitz pseudo-norm of function q(·) and ‖·‖ is the 𝑙2 norm in this
case.

Note that in case of linear encoders q(x0) = Ax0 the 𝐿 coincides with the largest singular value
of matrix A.

Next we define the achievable rates of a compression scheme:

Definition 3.2. (achievable rates of encoders) Let x be a random vector consisting of N inde-
pendent realizations of 𝑋. Let q(·) be Lipschitz continuous and g(·) the 𝑙0 decoder in equation
1.2. We refer to the minimum 𝜀-achievable rate as the minimum of 𝑟 > 0 such that there exists a
linear encoder q : RN → R𝑟N and a decoder g : R𝑟N → RN, such that

P
(︀
x ̸= g(q(x))

)︀
≤ 𝜀

for a sufficiently large N. The minimum 𝜀-achievable rate is denoted by 𝑟(𝑋,𝜀).

The achievable rates are related to the information dimension of a random variable 𝑋, d(𝑋),
0 ≤ d(𝑋) ≤ 1 (see [126–128, 144] for further details). This measure of information characterizes
the amount of information of a random variable 𝑋 distributed according to a mixture distribution

d(𝑋) = lim
𝑚→∞

H(⌊𝑚𝑋⌋)
log(𝑚)

3.1 Information theoretic limits for compressed sensing 29

where ⌊·⌋ is the floor operator and H(·) is the binary entropy of a probability mass function with
𝑚 mass concentrations. If the limit does not exist the lim sup and the lim inf are called upper
and lower information dimensions of 𝑋 respectively, denoted by d̄(𝑋) and d(𝑋).

The author in [126] showed that the Renyi dimension of a random variable distributed according
to a mixture of discrete and continuous distribution is d(𝑋) = 𝛾d(𝑋 ′) where 0 < d(𝑋 ′) ≤ 1 is the
information dimension of a random variable distributed according to the continuous distribution.
Examples of distribution with information dimension lower than 1 and equal to 1 are the Student
distribution and the Gaussian distribution, respectively (see [128, 161] for further details).

The authors in [161] showed that the 𝜀-achievable rate of a noiseless compression scheme coincides
with the information dimension of the random variable

r(𝑋,𝜀) = 𝛾

where 0 < 𝜀 ≤ 1 and 𝑋 is a r.v. distributed according to a mixture of distributions with sparsity
𝛾 and the information dimension of the continuous part is d(𝑋) = 1. For 𝜀 = 0, i.e. zero
distortion reconstruction, it holds that

r(𝑋,0) = 𝛾 + o(1).

This result indicates that there exist lossless linear compression schemes in the noiseless setting,
i.e. 𝜀 = 0 whenever for 𝑟 > 𝛾, i.e. at the output of the decoder appears x0 with probability 1.
We say that a compression scheme of fixed rate 𝑟 works in the almost lossless regime whenever
𝜀 vanishes with N. Otherwise, the scheme will be working on the rate distortion regime. We
refer the reader to [161, 162] for further details. Note that this result leads to that the maximum
compression efficiency 𝛿 is 𝛾/𝑟 of a lossless compression scheme in the noiseless setting is
𝛿 = 1− 𝑜(1).

This results apparently contradict the previously known results for lossless reconstruction in the
noiseless setting in [43], where the authors showed that lossless reconstruction for linear encoders
could only be achieved when the solution x of the 𝑙0 minimization problem in equation (1.2) is
unique and hence coincides with the x0. The authors showed that this result holds whenever the
sequence sparsity (K) is less or equal to M/2 and the spark(·) of the measurement matrix, i.e.
the minimum number of linear dependent columns of A, is spark(A) = M+ 11. We enclose this
result in a lemma because we will refer to it later

1 See [43], theorem 3 and corollary 1.

30 3 Real data compression schemes

Lemma 3.1. Consider the noiseless compressed sensing setup presented in section 1.1 . Whenever
the spark(A) = M + 1 and ‖x0‖0 ≤ M/2 the 𝑙0-based decoder in equation 1.2 has an unique
solution.

This result leads to a maximum sampling efficiency of 𝛿 = K/M = 1/2 since the spark of matrix
A is at most M+ 1. So, apparently the condition in lemma 3.1 is only a sufficient condition for
lossless compression. We focus chapter 7 on deriving a similar necessary and sufficient condition
to guarantee that measurement matrix achieve a sampling efficiency close to 1.

3.2 Decoders for compressed sensing

Here we briefly review the most relevant reconstruction algorithms in the CS literature. We briefly
introduce them and then we indicate both their computational complexity and performance.

3.2.1 𝑙1-based decoders

The authors in [28, 44] advocated that the original 𝑙0 optimization of the CS problem in equation
1.2 could be relaxed by using the 𝑙1 norm

x = argmin
x

‖x‖1

subject to: y = Ax. (3.1)

The signal reconstruction with 𝑙1 algorithms has been proven to be robust to the presence of
noise [91] under the RIP condition. The conditions to build RIP measurement matrices are
given in section 3.3.1. The theoretical compression limits of 𝑙1-based CS reconstruction methods,
known as phase transitions, where fundamentally described in [49]. All these facts allowed the
development of algorithms for robust compressed sensing and applied to problems that had been
previously investigated by the statistical and machine learning communities. These approaches
can be seen as a generalization of the problem given in equation (3.1) for noisy scenarios. Some
of these approaches are the Dantzig Selector program that solves the linear optimization [29]

x = argmin
x

‖x‖1

subject to:
⃦⃦
A𝑇 (y0 −Ax)

⃦⃦
∞ ≤ 𝑏. (3.2)

3.2 Decoders for compressed sensing 31

for a given parameter 𝑏 and the Basis Pursuit Denoising problem [34]

x = minimize
x

‖x‖1
subject to: ‖y −Ax‖2 ≤ 𝑏. (3.3)

3.2.2 Greedy algorithms

Greedy algorithms are a low complexity alternative to the 𝑙1-minimization approach. These
algorithms were first proposed to solve the optimization problem

argmin
x

‖y −Ax‖22

subject to: ‖x‖0 ≤ K. (3.4)

This problem is not convex, as the sub-space of RN delimited by ‖x‖0 ≤ K is not convex.

The first proposed greedy algorithm to solve this problem was the iterative hard thresholding
(ITH) algorithm [15, 60], which can be seen as an special instance of a gradient projection
algorithm [52, 58, 66]. It can run with O(N log(N)) computational complexity and requires
a RIP matrix with O(K log(N/K)) samples to find the original signal vector x0. In spite of
being computationally affordable, the ITH algorithm performs worse than the 𝑙1-minimization
algorithms [101].

After the introduction of the ITH, more efficient greedy algorithms were proposed: the matching
pursuit (MP) [102], the orthogonal matching pursuit (OMP) [65, 151], the iterative soft thresh-
olding (IST) [55], the regular orthogonal matching pursuit (ROMP) [112], the Subspace Pursuit
[39] or the compressed sampling matching pursuit (CoSaMP) [111]. The drawback of all these
algorithms is that they require to know the signal sparsity K a priori. In order to solve this
problem, the author in [42] proposed the sparsity adaptive matching pursuit (SAMP) and the
authors in [101] proposed the tuned two-stage thresholding (tuned TST) that was reported to
outperform the preceding algorithms. All them require O(K log(N/K)) samples to reconstruct
the original sequence when RIP matrices are employed.

3.2.3 Bayesian based decoders

The best performing algorithms for CS are based on an approximation to the maximum a
posteriori (MAP) [1, 84, 109] based on belief propagation (BP) [13, 121]. Under this approach
it is assumed that both the signal vector x0 and the noise vector w are sampled from some

32 3 Real data compression schemes

probability distributions and the goal is to estimate x̂ though a maximum a posteriori optimization
as shown next

x̂ = argmax
x

P(x | y) = argmax
x

P(y | x) P(x) (3.5)

where P(y | x) models the sampling process and P(x) is the prior distribution. The performance
of the schemes based on the MAP estimator depends critically on the measurement matrix, on
the approximations made to reduce the computational complexity of the problem and on the
selected prior.

The BP decoder poses the reconstruction problem as message passing strategy over the graph
representation of the measurement matrix. Several algorithms appeared in the literature aimed
at approaching BP performance with a reduced complexity, since in this case the computational
complexity is unaffordable, as stated in section 1.3.2.

Next we review some algorithms aimed at solving the MAP problem with different approximations
and priors. They are grouped by the prior they use.

Laplacian prior. The Lasso problem

The authors in [84, 150] showed that the Bayesian CS approach reduces to a least absolute
shrinkage and selection operator (LASSO) problem when the noise is white Gaussian with zero
mean and the a priori is assumed to be a Laplacian density function. This problem solves the 𝑙1

regularized regression problem

x = argmin
x

‖y −Ax‖22 + 𝜆 ‖x‖1 . (3.6)

for a proper selection of parameter 𝜆. Thus the RIP matrices suffices to guarantee the convergence
of the process in the noisy setting with O(N3/2M2) computational complexity1.

In [13] it was empirically shown that the Compressed Sensing Belief Propagation algorithm
and a properly generated sparse Radamacher matrices with O(N log(N)) measurements suffices
to reconstruct almost any K-sparse signal with O(N log2(N)) computational complexity. The
author in [1] proposed the sum-product expectation maximization (SuPrEm) algorithm that it
was empirically shown to exhibit good performance with O(N) computational complexity even
though it does not have any guarantee to converge.

1 Recently a method to solve the LASSO by quadratic programming was proposed in [158].

3.2 Decoders for compressed sensing 33

3.2.4 Approximate message passing algorithms

The family of approximate message passing (AMP) algorithms can be divided in two sub-families:
some authors [47] aimed their research efforts to solve the MAP problem with a Laplacian prior.
The authors in [120, 122] presented the generalized approximate message passing (GAMP), a
systematic method to implement the MAP estimation problem with arbitrary priors.

Note that all the AMP algorithms assume that the signal is a random realization from a mixture
source and, hence, they are algorithms based on the AC framework.

Approximate message passing for LASSO

The first proposed low complexity algorithm to solve the Bayesian problem with Laplace prior
was the AMP [47, 48]. As its name states, the authors posed this algorithm as a message passing
strategy over a graph representation of a dense matrix where messages are parametrization of
probability density functions.

It has been proven theoretically that this algorithm converges fast to the LASSO solution
with O

(︀
K log(N/K)

)︀
samples for RIP matrices, e.g. Gaussian distributed measurement matrix,

whereas it requires only O
(︀
K
)︀
+ o
(︀
N
)︀

when the measurement matrix is band diagonal, as stated
in section 3.3.3 (see [46]).

It is possible to predict the performance of a compressed sensing scheme composed by a band-
diagonal matrix and an AMP decoder using the state evolution analysis presented in [46, 83].

The computational complexity of the AMP algorithm is O(MN), since the band-diagonal
measurement matrix is also a dense matrix.

Generalized approximate message passing

The GAMP [88, 120] is aimed to solve the MAP approach irrespectively of the a priori distribution
of the original signal. The authors posed the algorithm as a message passing strategy over the
graphical representation of the matrix which can be either dense or sparse. As opposed to AMP
algorithm, GAMP can also be applied to complex sources.

It has been empirically shown that this algorithm converges to the optimal solution in some cases
but, to the best of our knowledge, the convergence of the algorithm has not been theoretically
proven yet. Further details on the implementation of the algorithm can be found in[120, 122].

The computational complexity of the GAMP is also O(MN) when the measurement matrix is
dense. Otherwise, when the matrix is sparse, its computational complexity is O(N).

34 3 Real data compression schemes

Estimate-maximize approximate message passing with Gaussian-Bernoulli prior

The estimate-maximize Gaussian-Bernoulli approximate message passing (EM-GB-AMP) algo-
rithm was develop in parallel and independently to the GAMP and AMP. It employs a message
passing strategy over a graphical representation of the matrix (even in case of being non-sparse).

This algorithm assumes that the probability density functions exchanged by the nodes are
Gaussian and, hence, describes them with two parameters (the mean and the variance) and it also
assumes that the prior distribution is a Gaussian-Bernoulli mixture distribution. Furthermore it
assumes that the sparsity 𝛾 and the variance of the non-null components of the vector x0 are
unknown, so it learns them iteratively.

In chapter 8 we use this algorithm as a performance benchmark. We decided to do so because
when this algorithm converges it manages to generate estimates x of the original sequence x0

so as its distortion ‖x0 − x‖22 → 0 as the number of iterations increases, whereas the AMP
algorithm does not converge to zero distortion. Further details on the EM-GB-AMP algorithm
can be found in [135] and [154].

In this case the computational complexity of the algorithm is also O(MN) when the measurement
matrix is dense and O(N) when the matrix is sparse.

Note that empirical results show that the AMP-based algorithms can outperform the 𝑙1-based
algorithms [92, 135], since they outperform their theoretical limits. The reader should note that
the different performance of either the GAMP and the GB-EM-AMP and the AMP for LASSO
cab be attributed to both the choice of the Laplacian prior and the approximations performed.

3.2.5 Verification algorithms for noiseless compression

The verification algorithms (VA) are a family of local message passing strategies that can be
regarded as a low-complexity approach to Bayesian compressed sensing because they structurally
assume that the signal to be reconstructed has several zero components and, hence, that it is
distributed according to a mixture distribution with a mass concentration at zero.

VAs approximate the density functions that nodes exchange under the generalized BP by
probability mass functions (with one mass concentrated either at zero or at a non-zero value) to
indicate that the mass concentration is verified, i.e. has infinity reliability, or not.

VAs exploit that the graph is sparse and that vector x0 is distributed according to a mixture
source, as in equation (1.1). Due to the latter fact all the non-null coefficients of the signal vector
x0 must be different and the probability that a sum of a given set of non-null coefficient is equal
to another non-null coefficient of the signal vector is also equal to zero.

3.3 Encoders for compressed sensing 35

The main features of the verification algorithms are that (i) variable nodes can infer their values
with infinite reliability in some situations, (ii) they can be implemented with O(N) computational
complexity and (iii) their performance does not depend of the matrix coefficient values whenever
the corresponding graph is free of length-four cycles [53, 166].

The best performing verification-based algorithm for CS is the node-based verification algorithm
(NB-VA) [54], since it gathers all the features of this family of algorithms. In chapter 8 we employ
this algorithm as a performance benchmark for our algorithms for noiseless CS. Furthermore, this
algorithm is the departing point for enhanced verification algorithm (EVA) that we presented
in [117] and we introduce in chapter 8. For completeness the NB-VA is described concisely in
chapter 8.

The authors in [54] developed recently a density evolution analysis that predicts the performance of
a compression scheme composed by a sparse matrix and the NB-VA decoder. The computational
complexity of this algorithms is O(N), since they operate over sparse measurement matrices.

Empirical results show that this family of algorithms outperform the 𝑙1-based algorithms in the
noiseless setup in spite of their reduced complexity [117]. Furthermore, in section 8.3 we evidence
that in some situations verification-based algorithms have performance similar to that one of
AMP-based algorithms.

3.3 Encoders for compressed sensing

Here we review the state of the art in measurement matrices for the compressed sensing problem.
We have grouped them into four different architectures: random (full) matrices with i.i.d.
coefficients (section 3.3.1), random (possibly sparse) matrices that can be described as a graph
(see section 3.3.2), structured (possibly sparse) matrices (section 3.3.3) and matrices whose
structure stems from an algebraic coding scheme (section 3.3.4).

3.3.1 Restricted isometric property for 𝑙1-based compressed sensing

With the proposal of 𝑙1 relaxation of the compressed sensing problem several matrix properties
were introduced that guarantee that the reconstruction algorithms lead to a unique solution [25,
26, 28, 44, 45].

The authors in [26] introduced the Restricted Isometry Property (RIP) condition that is strictly
required to ensure that the 𝑙1 reconstruction process does not fail. It states that any M × N

36 3 Real data compression schemes

matrix A is a (K,𝜀)− RIP matrix, whenever for every integer K and 0 ≤ 𝜀 ≤ 1, any K-sparse
vector x satisfies that

(1− 𝜀) ‖x‖2 ≤ ‖Ax‖2 ≤ (1 + 𝜀) ‖x‖2 .

In words, these property deals with the rank of the adjacent matrices A′ that compose A. The
RIP condition guarantees a robust compressed sensing reconstruction for 𝑙1-based algorithm [24,
44]. RIP matrices need O(K logN/K) samples to guarantee the robust reconstruction of any
K-sparse sequence.

In parallel, the authors in [11] showed that a M×N Gaussian sensing matrix (a matrix with its
i.i.d. entries from the distribution N(0,1/M)) or a Radamacher sensing matrix (a matrix whose
entries are ±1/

√
M with probability 0.5) with O(K logN/K) samples can be employed jointly

with the 𝑙1-algorithms to estimate the original sequence in the presence of noise. It must be
noted that these matrices guarantee that the support of the estimated sequence x coincides with
the support of the original one x0.

Afterwards, several greedy algorithms (see section 3.2.2), and 𝑙1-based algorithms (see section
3.2.1) were proposed to deal with both the noiseless and robust CS with differences in the
required number of measurements required to reconstruct the original sequence and different
computational complexity (see [7, 22] for a comparison of the performance of several different
algorithms for different RIP matrices). Analytical bounds for the performance of 𝑙1-based robust
reconstruction algorithms with RIP matrices are given in [41, 49, 82, 114, 125].

3.3.2 Random graphs

We already introduced the basic graph notation in section 1.3. Here we review two different
instances of graph-based encoders for compressed sensing: the sparse random graph-based
encoders and the expander-graph based encoder.

Sparse graphs

The authors of [53, 54, 93] employed the density evolution analysis of LPDC codes for the binary
erasure channel (BEC) in the N-asymptotic regime [97] to obtain the BP-threshold of ensembles
of graphs for noiseless Compressed sensing 𝛾𝐵𝑃 , i.e. the maximum sparsity so the linear encoder
characterized by the ensemble of graphs behaves as an isomorphism. This result arises from the
duality between a noiseless compressed sensing scheme where the support set is known and a

3.3 Encoders for compressed sensing 37

LDPC code correcting a codeword conveyed through a BEC (see [129] for further details on BP
decoding for the BEC)1.

Furthermore, the authors in [53] also showed that the performance in terms of 𝛾𝐵𝑃 of any graph
picked at random from an ensemble of graphs concentrates around to the ensemble average2.
Hence, the performance of a ensemble of graphs can be characterized by its 𝛾𝐵𝑃 .

The BP-threshold 𝛾𝐵𝑃 of a ensemble of graphs Γ
(︀
L,R

)︀
provides insight into the reconstruction

capabilities of the matrices of the ensemble because it indicates that the maximum achievable
efficiency of a compression scheme that employs a matrix of the ensemble is 𝛿𝐵𝑃= 𝛾𝐵𝑃 /𝑟 [53,
129].

Expander graphs

Expander graphs [143] have also been employed in compressed sensing. The graph G is a
(K,𝜀,𝑑𝑣)-expander whenever it has a regular variable nodes degree distribution3, so each variable
node is connected to 𝑑𝑣 check nodes, and any sub-set S of variable nodes x, |S| ≤ K, with a
neighborhood of the support set S, X′ has size |X′| > (1− 𝜀)𝑑𝑣|S|.

The authors in [14] showed that there exist (K,𝜀,𝑑𝑣)-expander graphs with 𝑑𝑣 = O
(︀
log(N/K)/𝜀

)︀

and M = O
(︀
K log(N/K)/𝜀

)︀
for 1 ≤ K ≤ N/2. The author in [32] stated that binary graphs

do not satisfy the RIP property stated in section 3.3.1. In spite of this, the authors in [14]
derived a similar property in the 𝑙1 norm (known as RIP-1) that guarantees the uniqueness of
the sparse representation when a expander graph is employed. The RIP-1 property says that for
any (K,𝜀,𝑑𝑣)-expander graph G that represents matrix A, it holds that:

(1− 2𝜀)𝑑𝑣 ‖x‖1 ≤ ‖Ax‖1 ≤ 𝑑𝑣 ‖x‖1 (3.7)

for any x ∈ RN. From this result it can be deduced that any K-sparse sequence can be
reconstructed whenever the measurement matrix does not map any two K-sparse sequences to
the same measurement vector and this happens whenever M = O

(︀
K log(N/K)

)︀
. Some matrix

constructions that satisfy this condition are proposed in [14], [81], [30].

Although sparse graphs require M = O
(︀
K log(N/K)

)︀
, this number also shows a strong dependence

on the degree of the check nodes 𝑑𝑐. The authors in [132] showed that 𝑑𝑐 is O
(︀
log(N/K)

)︀
for

1 Note that, when the support set is known, the decoder knows the value of some components (those that are
equal to zero) but it does not know the value of the non-null components. In a BEC setup, at the output of
the channel, some bits of y have been erased and hence are unknown, whereas the value of the remaining bits
is known.

2 Similar to theorem 3.30 in [129].
3 L(𝑑𝑣) has only one non-null coefficient at 𝑑𝑣.

38 3 Real data compression schemes

LDPC-based graphs (without any restriction in L(𝑑)). Recently,[117], we gave a closed-form
expression that approximates the R(𝑑) that was empirically obtained in [132]. Although the
measurement matrices obtained in [117] are not strictly expander graphs, as the distribution
of the variable nodes is not regular, it was shown empirically that it is possible to construct
binary matrices with 2K < M < 3K that ensure that a large fraction of K-sparse sequences can
be recovered.

3.3.3 Structured (sparse) matrices

Recently the authors in [93] proposed a structured construction of the measurement matrix,
referred to as coupled or band-diagonal matrices, to deal with the noiseless compressed sensing
that empirically showed a good performance. As their name indicates, these matrices have
non-null components concentrated around their diagonal. These coefficients are i.i.d. from
Gaussian distributions with different variances (see [46, 83] for further details on how to construct
them).

Later empirical results in [92] showed that band diagonal matrices in some cases allow to some
decoders to achieve the lossless reconstruction in the noiseless setting with sampling efficiencies
𝛿 close to 1.

The authors in [46] studied rigorously the performance of a compression scheme composed by
this kind of measurement matrices and the appropriate decoding algorithm and showed that
their approach was successful as long as the compression rate 𝑟 exceeded the (upper) Renyi
information dimension of the signal 𝑟 > 𝑑(𝑥). In other words a K-sparse sequence x of length
N whose distribution has Renyi information dimension 0 < 𝑑(𝑥) ≤ 1 can be reconstructed with
high probability from 𝑑(𝑥)N + o(N) samples, which for sparse structured sources with 𝑑(𝑥) = 1

leads to sample efficiencies 𝛿 = 1− o(1) for a sufficiently large N.

3.3.4 Reed-Muller compressed sensing

Reed-Muller compressed sensing considers the construction of measurement matrices where the
matrix columns are obtained from exponentiating codewords in the quaternary Delsarte-Goethas
(DG) code. Due to this the coherence of the columns inherits the properties of these algebraic
codes. The author of [80] proved that CS with DG measurement matrices and the one-step
thresholding (OST) algorithm [9] has almost the same performance as the recovery with LASSO
and RIP matrices. It must be noted that this chirp reconstruction algorithm can also deal with
the reconstruction problem with O(K2) computational complexity [7, 23] as long as the sparsity
of the original signal is not very high.

PART II

Binary source compression and group testing

39

CHAPTER 4

Fixed-rate OR-based schemes for binary source compression

This chapter is devoted to characterize the performance of fixed length schemes for non-adaptive
GT (in other words, a binary source compression with AND/OR-based encoders) and to present
a first attempt to introduce adaptivity within the binary source compression framework. With
this goal in mind, first in section 4.1 we review the signal model and introduce some notation
that will help us to focus section 4.2 on analyzing deriving bounds on the average performance in
the N-asymptotic limit of a generic non-adaptive graph-based group testing encoder q𝑜(·) where
the relation between the components of x0 and y0 are described by a random sparse matrix A

that belongs to the ensemble Γ(R,L). The resultant analysis is similar in spirit to the density
evolution for the binary-erasure channel [142].

Afterwards, in section 4.3 we focus on characterizing the compression limits of non-adaptive group
testing scheme when the erasure decoder introduced in section 2.3.2 is employed. Regretfully,
in this case the analysis is more complex because the operative of check nodes introduces an
asymmetry in the decoding process, reflected in remarks 2.1 and 2.2 in section 2.3.2.

Finally, in section 4.4 we propose an adaptive scheme within the binary source compression
framework that generates a fraction of the compressed sequence with AND-gates and the other
fraction with XOR-gates. We presented this almost lossless compression scheme in [116] as a
first approach to overcome the structural limitations of AND/OR encoder.

4.1 Previous concepts

4.1.1 Population model

In this chapter we consider the signal model introduced in chapter 1, i.e. that the signal
vector generated from N independent realizations of a random variable 𝑃 with 𝛾 = 0 and two

41

42 4 Fixed-rate OR-based schemes for binary source compression

mass concentrations, {0,1}. Throughout all this section we employ the group testing setup, so
P(𝑃 = 1) < P(𝑃 = 0), we refer to the ’1’ and ’0’ as defective and non-defective and assume that
K is approximately N · P(𝑃 = 1), since we assume that N is large. We consider the OR-based
sparse encoder described by function g𝑜(·) in equation (1.5)1 and the matrix A or alternatively
its ensemble. Note that ′?′ refers to unlabeled subjects.

4.1.2 Set description of the non-adaptive group testing problem

Here we describe all the sets required to track the evolution of the non-adaptive group testing
scheme reviewed in section 2.3. All these sets contain finite many subjects of the population and
help us to model the source realization x0 and its estimate x. We employ the counting measure
|·| to refer to the finite amount of subjects indexed in the sets.

First we formally define

Definition 4.1 (Labeled subject of a population). Consider a sparse matrix A, an OR-based
encoder, a sequence x0 and the graph representation of y0 = q𝑜(A,x0). We say that a subject
(variable node) is labeled whenever its label can be inferred with infinite reliability by at least a
check node in its neighborhood I𝑣.

So we only consider as labeled to those subjects of the population whose label can be inferred
with zero error probability.

Vector x0 can be described by three sets: the sets that enclose the defective and non-defective
subjects of the population and the population set as P𝐷,

{︀
∀𝑖 ∈ P𝐷 : 𝑥0,𝑖 = 1}, P𝑁,

{︀
∀𝑖 ∈

P𝑁 : 𝑥0,𝑖 = 0} and P,
{︀
1, . . . ,N

}︀
, respectively,

Vector x (according to the signal model in chapter 1) can be also described by three sets which
enclose all the subjects at the end of the decoding stage. First we define the set of subjects that
remain unlabeled by the erasure decoder as

Definition 4.2 (Unlabeled subjects of the population P). U,
{︀
∀𝑖 ∈ U : 𝑥𝑖 =?}.

This set encloses all the indexes of vector x that remain unlabeled at the end of the decoding
stage. Then we can define the set of defective subjects that were labeled by the erasure decoder
as

Definition 4.3 (Set of defective subjects of P that are labeled). D, P𝐷 ∩ U𝑐,

1 The generalisation of all the results in this chapter for P(𝑃 = 1) > P(𝑃 = 0) and an AND-based encoder g𝑎(·)
in equation (1.4) is straightforward since we just have to swap ’0’ and by ’1’ and ’1’ and by ’0’.

4.1 Previous concepts 43

and the set of non-defective subjects of P that were labeled as

Definition 4.4 (Set of non-defective subjects of P that are labeled). N, P𝑁 ∩ U𝑐.

Finally we define the complimentary set of U as U𝑐, P ∖ U and the complementary sets of D
and N as D𝑐, P𝐷 ∩ U𝑐 (or alternatively D𝑐 , P𝐷 ∖ D) and N𝑐, P𝑁 ∩ U𝑐 (or alternatively
N𝑐 , P𝑁 ∖N).

Let us remark that we use probabilities to measure the relations between the sets, i.e. P(𝑥 ∈
U) = |U|/|P| refers to the probability of unlabeled subjects of the population. For the sake
of clarity we always omit the reference to ’x’, so we write P(D𝑐) to refer to the probability
of defective subjects of the population that remain unlabeled at the end of the decoding step
and P(D𝑐 | U) = |D𝑐|/|U| to denote the fraction of defective subjects among those that remain
unlabeled.

Next we define the sets that we require to model the performance of the non-adaptive group
testing scheme in the N-asymptotic regime. We define four sets partitioning the messages sent
from variable nodes (v) to check nodes (c) in the graph depending on whether (v) is defective or
not and whether it has been already labeled or not. Analogously, we also define four additional
sets for the messages sent from check nodes (c) to variable nodes (v).

Definition 4.5 (D𝑐→𝑣|P𝐷). Set of edges that carry a defective message conveyed by a check
node to a variable node that represents a defective component.

Definition 4.6 (D𝑐
𝑐→𝑣|P𝐷). Set of edges that carry an unlabeled message conveyed by a check

node to a variable node that represents a defective component.

Definition 4.7 (N𝑐→𝑣|P𝑁). Set of edges that carry a non-defective message conveyed by a check
node to a variable node that represents a non-defective component.

Definition 4.8 (N𝑐
𝑐→𝑣|P𝑁). Set of edges that carry an unlabeled message conveyed by a check

node to a variable node that represents a non-defective component.

Definition 4.9 (D𝑣→𝑐|P𝐷). Set of edges that carry a defective message conveyed by a variable
node that represents a defective component to a check node.

Definition 4.10 (D𝑐
𝑣→𝑐|P𝐷). Set of edges that carry an unlabeled message conveyed by a variable

node that represents a defective component to a check node.

Definition 4.11 (N𝑣→𝑐|P𝑁). Set of edges that carry a non-defective message conveyed through
the edge by a variable node that represents a non-defective component to a check node.

Definition 4.12 (N𝑐
𝑣→𝑐|P𝑁). Set of edges that carry an unlabeled message conveyed by a variable

node that represents a non-defective component to a check node.

44 4 Fixed-rate OR-based schemes for binary source compression

4.2 Analysis of graph-based group testing encoder

4.2.1 Labeling capability of a non-adaptive group testing encoder

The author in [61] intuitively stated that the OR based codes can only be asymptotically optimum
when P(P𝐷) goes to zero, because the encoder of equation (1.5) cannot perform a one to one
mapping between the source sequences x0 that represent realizations of the population and its
compressed versions y0 when N > M > K > 0, i.e. that P(U) is non-vanishing even if N goes to
infinity.

Indeed, in section 2.3.3 we showed that a given fraction of the check nodes cannot label any
subjects, i.e. the so called Type III check nodes, and hence there is a chance that a variable node
is only connected to this kind of check nodes so it cannot be labeled. We will say that subjects
represented by variable nodes only connected to the Type III check nodes are irretrievable,

Definition 4.13 (Irretrievable subjects). Consider a sparse matrix A, an OR-based encoder, a
sequence x0 and y0 = q𝑜(A,x0). We say that a subject (variable node) is irretrievable whenever
all the |I𝑣| check nodes in its neighborhood I𝑣 have more than one defective contributor in their
neighborhoods, i.e. for all 𝑗 ∈ I𝑣 : |I𝑐𝑗 ∩ P𝑑| > 1.

Let us define some sets. Consider a sparse matrix A, an OR-based encoder, a sequence x0 and
y0 = q𝑜(A,x0), then

Definition 4.14 (U𝑚𝑖𝑛). The set of irretrievable subjects of the population.

Definition 4.15 (D𝑚𝑖𝑛). The set of retrievable defective subjects of the population.

Definition 4.16 (N𝑚𝑖𝑛). The set of retrievable non-defective subjects of the population.

Their complementary sets are N𝑐
𝑚𝑖𝑛, P𝑁 ∖N𝑚𝑖𝑛, D𝑐

𝑚𝑖𝑛, P𝐷 ∖D𝑚𝑖𝑛 and U𝑐
𝑚𝑖𝑛 , P ∖ U𝑚𝑖𝑛.

The set U𝑚𝑖𝑛 can be employed to obtain a non-achievable lower bound of the minimum amount of
subjects that cannot be labeled by any decoder. As stated before, U𝑚𝑖𝑛 includes the subjects that
are connected exclusively to Type III checks, but there are also subjects that cannot be labeled
among those connected to Type II checks. Indeed, those defective subjects whose connections to
Type II check nodes always include contributions from non-defective subjects in N𝑐

𝑚𝑖𝑛 cannot be
labeled by any decoder1.

1 Decoders for non-adaptive group testing.

4.2 Analysis of graph-based group testing encoder 45

We can easily deduce P(N𝑐
𝑚𝑖𝑛 | P𝑁) and P(D𝑐

𝑚𝑖𝑛 | P𝐷) if we notice that a subject (defective
or non-defective) can be retrieved only if at least contributes to one test where all the other
contributors are non-defective. Indeed, remark 2.2 states it for the defective and remark 2.1
alternatively also states that a non-defective subject can be labeled only if all the other subjects
are non-defective. Thus, all subjects have the same chance of being retrieved by a decoder. Let
us enclose this result in a lemma

Lemma 4.1. The fraction of defective and non-defective subjects in U𝑚𝑖𝑛 are equal to the fraction
of unlabeled subjects of the population

P
(︀
U𝑚𝑖𝑛

)︀
= P

(︀
D𝑐

𝑚𝑖𝑛

⃒⃒
P𝐷

)︀
= P

(︀
N𝑐

𝑚𝑖𝑛

⃒⃒
P𝑁

)︀

We can write P
(︀
U𝑚𝑖𝑛

)︀
as the probability that a variable node is only connected to Type III

check nodes as1

P
(︀
U𝑚𝑖𝑛

)︀
=

+∞∑︁

𝑑𝑣=1

L𝑑𝑣

⎛
⎝1−

+∞∑︁

𝑑𝑐=1

𝑑𝑐R𝑑𝑐

𝑑𝑐
P(|{I𝑐 ∖ 𝑥} ∩ P𝐷| = 0 | |I𝑐| = 𝑑𝑐)

⎞
⎠

𝑑𝑣

(4.1)

where L𝑑𝑣 is the fraction of variable nodes with degree 𝑑𝑣. In equation (4.1) we averaged the
probability among all the possible variable nodes degrees and is the average number of edges per
check node

𝑑𝑐 =
∑︁

∀𝑑
𝑑R(𝑑)

Note that |{I𝑐 ∖ 𝑥} ∩ P𝐷| = 0 indicates that all the other subjects of the population indexed in
the neighborhood of I𝑐 are non-defective. This probability is P(P𝑁)𝑑𝑐−1 when |I𝑐| = 𝑑𝑐. Then
equation (4.1) reduces to

P(U𝑚𝑖𝑛) =
+∞∑︁

𝑑𝑣=1

L𝑑𝑣

⎛
⎝1−

+∞∑︁

𝑑𝑐=1

𝑑𝑐R𝑑𝑐

𝑑𝑐
P(P𝑁)𝑑𝑐−1

⎞
⎠

𝑑𝑣

(4.2)

and we have the average fraction of subjects that cannot be retrieved as a function of the
ensemble Γ(L,R) and the source statistics. Let us enclose this result in the lemma

Lemma 4.2. Consider an OR-based encoder function q𝑜(·) and a sparse matrix A randomly
chosen from ensemble Γ(R,L) in the N-asymptotic regime. Consider a population P with a reduced

1 I.e. one minus the probability that all the other contributors to a test are non-defective.

46 4 Fixed-rate OR-based schemes for binary source compression

and non-vanishing amount of defective subjects characterized by its binary entropy rate H(𝑃) > 0,
then the encoder leaves systematically a non-vanishing fractions of subjects of the population no
less than P(U𝑚𝑖𝑛) irretrievable by any decoder.

We can deduce also that

Corollary 4.1. Consider a graph-based group testing encoder in the N-asymptotic regime Γ(R,L).
The entropy rate of the r.v. 𝑃 that models the population, i.e. H(𝑃), is equal to the entropy rate
of a source modeling the subjects in U𝑚𝑖𝑛 and in U𝑐

𝑚𝑖𝑛.

Corollary 4.1 holds because due to lemma 4.1 it holds that P
(︀
P𝑁

)︀
= P

(︀
P𝑁

⃒⃒
U𝑚𝑖𝑛

)︀
=

P
(︀
P𝑁

⃒⃒
U𝑐
𝑚𝑖𝑛

)︀
.

4.3 Limitations of the erasure decoder

The aim of this section is to analyze the performance of the erasure decoding algorithm for non-
adaptive group testing on a sparse graph. Here we give closed-form expressions to characterize
the performance of an encoder-decoder scheme for group testing formed by the encoder given in
equation (1.5) and the erasure decoder presented in section 2.3.2, from now on referred to as
g𝑒(·).

In this section we give closed-form expressions to characterize the performance of the encoder-
decoder scheme for a graph picked at random from a ensemble Γ(L,R) in the N-asymptotic
regime and deduce some properties of the non-adaptive group testing scheme.

4.3.1 Analysis of the graph-based encoder and erasure decoder

The erasure decoder attempts to infer the values of the components of x0 in a process described
by algorithm 2.1 in section 2.3.2. The inference process described there can be regarded as a
decoding algorithm that performs two iterations: in a first iteration the non-defective subjects
are inferred from the non-defective tests of y0. After that, in a second iteration, the information
gathered by the variable nodes is forwarded to the check nodes in their respective neighborhoods
which, in their turn, perform an attempt to identify the defective subjects and forward this
information to the variable nodes identified as defective.

We aim our analysis to find

P(U) =P(D𝑐) + P(N𝑐) (4.3)

P(U) = P
(︀
D𝑐
⃒⃒
P𝐷

)︀
P(P𝐷) + P

(︀
N𝑐
⃒⃒
P𝑁

)︀
P(P𝑁) (4.4)

4.3 Limitations of the erasure decoder 47

The equations that characterize the inference of the non-defective subjects can we easily deduced
because, as we said in section 4.2.1 , P(N𝑐

𝑚𝑖𝑛 | P𝑁) coincides with P(N𝑐 | P𝑁) since both events
arise from remark 2.1. Let us enclose this result in a corollary

Corollary 4.2. P(U𝑚𝑖𝑛) = P(N𝑐 | P𝑁)

holds due to lemma 4.1. We focus on modelling the second iteration of the erasure decoder,
since the fraction of non-defective subjects that cannot be inferred is the one given in equation
(4.2), as stated by corollary 4.2, and depends only on the ensemble the graph belongs to and the
statistics of the population P. So we focus on deducing a closed-form expression for the term
P
(︀
D𝑐
⃒⃒
P𝐷

)︀
, also as a function of the graph ensemble and the source statistics.

We can write the probability that an arbitrary 𝑖-th variable node representing a defective subject
remains unlabeled at the end of the process as

P
(︀
𝑥𝑖 ∈ D𝑐

⃒⃒
𝑥𝑖 ∈ P𝐷

)︀
=
∏︁

𝑗∈I𝑣𝑖

P
(︀
D𝑐

𝑐𝑗→𝑣𝑖

⃒⃒
P𝐷

)︀
. (4.5)

This equation represents the existing dependence between the value of the variable node and the
messages that the check nodes in its neighborhood send to it. It reflects that the variable node
remains unlabeled in case that all check nodes in I𝑣𝑖 would be unable to infer the label of the
𝑖-th variable node. Averaging over the ensemble the latter expression becomes

P
(︀
D𝑐
⃒⃒
P𝐷

)︀
=

+∞∑︁

𝑑𝑣=1

L𝑑𝑣 P
(︀
D𝑐

𝑐→𝑣

⃒⃒
P𝐷

)︀𝑑𝑣 (4.6)

We can deduce the term P
(︀
D𝑐

𝑐→𝑣

⃒⃒
P𝐷

)︀
as follows

P
(︀
D𝑐

𝑐→𝑣

⃒⃒
P𝐷

)︀
= 1− P

(︀
D𝑐→𝑣

⃒⃒
P𝐷

)︀
(4.7)

then

P
(︀
D𝑐→𝑣

⃒⃒
P𝐷

)︀
=

∑︀+∞
𝑑𝑐=1R𝑑𝑐 P

(︀
|I𝑐 ∩ P𝐷| = 1, |I𝑐 ∩N| = 𝑑𝑐 − 1

⃒⃒
|I𝑐| = 𝑑𝑐

)︀
∑︀+∞

𝑑𝑐=1 𝑑𝑐R𝑑𝑐 P(P𝐷)

=
+∞∑︁

𝑑𝑐=1

R𝑑𝑐

𝑑𝑐

P
(︀
|I𝑐 ∩ P𝐷| = 1, |I𝑐 ∩N| = 𝑑𝑐 − 1

⃒⃒
|I𝑐| = 𝑑𝑐

)︀

P(P𝐷)
(4.8)

where the event |I𝑐 ∩ P𝐷| = 1 indicates that only a defective subject contributed to generate the
test of the check node and the event |I𝑐 ∩N| = 𝑑𝑐 − 1 indicates that all the other subjects that

48 4 Fixed-rate OR-based schemes for binary source compression

contributed to the test were labeled in the previous iteration. Then we can write

P
(︀
|I𝑐 ∩ P𝐷| = 1, |I𝑐 ∩N| = 𝑑𝑐 − 1

⃒⃒
|I𝑐| = 𝑑𝑐

)︀
=

= P
(︀
|I𝑐 ∩N| = 𝑑𝑐 − 1

⃒⃒
|I𝑐 ∩ P𝐷| = 1,|I𝑐| = 𝑑𝑐

)︀
P
(︀
|I𝑐 ∩ P𝐷| = 1

⃒⃒
|I𝑐| = 𝑑𝑐

)︀
(4.9)

where the term P
(︀
|I𝑐 ∩ P𝐷| = 1

⃒⃒
|I𝑐| = 𝑑𝑐

)︀
is given in equation (2.4) and the term P

(︀
|I𝑐 ∩N| =

𝑑𝑐 − 1
⃒⃒
|I𝑐 ∩ P𝐷| = 1,|I𝑐| = 𝑑𝑐

)︀
can be written as

P
(︀
|I𝑐 ∩N| = 𝑑𝑐 − 1

⃒⃒
|I𝑐 ∩ P𝐷| = 1,|I𝑐| = 𝑑𝑐

)︀
=

𝑡𝑒𝑟𝑚1 − 𝑡𝑒𝑟𝑚2

𝑡𝑒𝑟𝑚3 − 𝑡𝑒𝑟𝑚2
(4.10)

where the 𝑡𝑒𝑟𝑚1 is the average number of edges connected to variable nodes in N (equation
4.11), 𝑡𝑒𝑟𝑚2 represents the average number of edges of the graph connected to check nodes so as
|I𝑐 ∩ P𝐷| = 0 (equation 4.12) and 𝑡𝑒𝑟𝑚3 is the average number of edges connected to variable
nodes in P𝑁 (equation 4.13)

𝑡𝑒𝑟𝑚1 =
+∞∑︁

𝑑𝑐=1

𝑑𝑐R𝑑𝑐

(︀
1− P

(︀
N𝑐
⃒⃒
P𝑁

)︀)︀
P(P𝑁) = 𝑑𝑐

(︀
1− P

(︀
N𝑐
⃒⃒
P𝑁

)︀)︀
P(P𝑁) (4.11)

𝑡𝑒𝑟𝑚2 =
+∞∑︁

𝑑𝑐=1

𝑑𝑐R𝑑𝑐 P(|I𝑐 ∩ P𝐷| = 0) =
+∞∑︁

𝑑𝑐=1

𝑑𝑐R𝑑𝑐 P(P𝑁)𝑑𝑐 (4.12)

𝑡𝑒𝑟𝑚3 =
+∞∑︁

𝑑𝑐=1

𝑑𝑐R𝑑𝑐 P(P𝑁) = 𝑑𝑐 P(P𝑁) (4.13)

All the terms in equations (4.11, 4.12, 4.13) have been either already deduced1 or depend on the
the graph ensemble and the statistics of the population source. Combining (4.11, 4.12, 4.13) into
(4.10) and operating we obtain

P
(︀
|I𝑐 ∩N| = 𝑑𝑐 − 1

⃒⃒
|I𝑐 ∩ P𝐷| = 1,|I𝑐| = 𝑑𝑐

)︀
=

=
1− P

(︀
N𝑐
⃒⃒
P𝑁

)︀
−∑︀+∞

𝑑𝑐=1
𝑑𝑐R𝑑𝑐

𝑑𝑐
P(P𝑁)𝑑𝑐−1

1−∑︀+∞
𝑑𝑐=1

𝑑𝑐R𝑑𝑐

𝑑𝑐
P(P𝑁)𝑑𝑐−1

=

= 1− P
(︀
N𝑐
⃒⃒
P𝑁

)︀

1−∑︀+∞
𝑑𝑐=1

𝑑𝑐R𝑑𝑐

𝑑𝑐
P(P𝑁)𝑑𝑐−1

(4.14)

1 the term P
(︀
N𝑐

⃒⃒
P𝑁

)︀
is equal to P(U𝑚𝑖𝑛) in equation (4.2) due to lemma 4.1.

4.3 Limitations of the erasure decoder 49

and, then we can compute the term P
(︀
D𝑐→𝑣

⃒⃒
P𝐷

)︀
in equation 4.8 as

P
(︀
D𝑐→𝑣

⃒⃒
P𝐷

)︀
=

+∞∑︁

𝑑𝑐=1

𝑑𝑐R𝑑𝑐

𝑑𝑐
P(P𝑁)𝑑𝑐−1

⎛
⎝1− P

(︀
N𝑐
⃒⃒
P𝑁

)︀

1−∑︀+∞
𝑑𝑐=1

𝑑𝑐R𝑑𝑐

𝑑𝑐
P(P𝑁)𝑑𝑐−1

⎞
⎠ (4.15)

Finally we can substitute equation (4.15) in equation (4.7) and this result into (4.6) to obtain

P
(︀
D𝑐
⃒⃒
P𝐷

)︀
=

+∞∑︁

𝑑𝑣=1

L𝑑𝑣

⎛
⎝1−

+∞∑︁

𝑑𝑐=1

𝑑𝑐R𝑑𝑐

𝑑𝑐
P(P𝑁)𝑑𝑐−1

⎛
⎝1− P

(︀
N𝑐
⃒⃒
P𝑁

)︀

1−∑︀+∞
𝑑𝑐=1

𝑑𝑐R𝑑𝑐

𝑑𝑐
P(P𝑁)𝑑𝑐−1

⎞
⎠
⎞
⎠

𝑑𝑣

(4.16)

and then plug the resulting term and P
(︀
N𝑐
⃒⃒
P𝑁

)︀
obtained as in equation (4.2) into equation

(4.4) to obtain the average fraction of subjects that remain unlabeled after the decoding step
P
(︀
U
)︀

as a function of the ensemble of graphs Γ(R,L) and the source statistics.

4.3.2 Results

Here we compare the encoder limits obtained in section 4.2.1 with the limits of the encoder-decoder
scheme obtained in subsection 4.3.1.

To compare the performance of the encoder-decoder scheme and the encoder limit we have to
compare both the pair of probabilities P(N𝑐

𝑚𝑖𝑛) and P(N𝑐) with their counterparts P(D𝑐
𝑚𝑖𝑛) and

P(D𝑐). On the one hand, P(N𝑐) and P(N𝑐
𝑚𝑖𝑛) are equal as stated by corollary 4.2. On the other

side, it does not happen the same with the other pair because, simply by comparing equations
(4.16) and equation (4.2)1we can see that there is an extra factor into brackets that

⎛
⎝1− P

(︀
N𝑐
⃒⃒
P𝑁

)︀

1−∑︀+∞
𝑑𝑐=1

𝑑𝑐R𝑑𝑐

𝑑𝑐
P(P𝑁)𝑑𝑐−1

⎞
⎠ < 1

and hence P(D𝑐
𝑚𝑖𝑛) > P(D𝑐). Let us enclose this result in a lemma

Lemma 4.3. Consider a population P with P(P𝑁) > P(P𝐷) > 0 and a graph from a ensemble
Γ
(︀
L,R

)︀
, an OR-based encoder as described by equation (1.5) and the erasure decoder. In the

N-asymptotic regime it holds that

P(U𝑚𝑖𝑛) < P(U), P(D𝑐
𝑚𝑖𝑛) < P(D𝑐), P(N𝑐

𝑚𝑖𝑛) = P(N𝑐)

1 Note that due lemma 4.1 it holds that P
(︀
D𝑐

𝑚𝑖𝑛

⃒⃒
P𝐷

)︀
= P

(︀
U𝑚𝑖𝑛

)︀
.

50 4 Fixed-rate OR-based schemes for binary source compression

Next lemma arises from lemma 4.3:

Lemma 4.4. Consider a population P with P(P𝑁) > P(P𝐷) > 0 and a graph from a ensemble
Γ
(︀
L,R

)︀
, an OR-based encoder as described by equation (1.5) and the erasure decoder. In the

N-asymptotic regime it holds that

H(𝑃) = H(U𝑚𝑖𝑛) ≤ H(U)

where H(𝑃) is the binary entropy per subject of the population, H(U𝑚𝑖𝑛) is the binary entropy
per non-retrievable subject of the population and H(U) is binary entropy per unlabeled subject of
the population.

The latter lemma follows from lemmas 4.1 and 4.3.

Then, if follows that

Lemma 4.5. Consider a graph-based group testing encoder in the N-asymptotic regime Γ(R,L)

and a population P with P(P𝑁) > P(P𝐷) > 0 characterized by its entropy rate H(𝑃). The
encoder performs a mapping between the approximately 2NH(𝑃) sequences in the typical set of the
population P, into strictly less than 2N

(︀
1−P(U𝑚𝑖𝑛)

)︀
H(𝑃) different sequences of tests.

Proof. Lemma 4.5 holds because due to lemmas 4.4 and 4.3

2NH(𝑈) P(U) > 2NH(𝑃) P(U𝑚𝑖𝑛) (4.17)

where

H(𝑃) = −P
(︀
N𝑐

𝑚𝑖𝑛

⃒⃒
U𝑚𝑖𝑛

)︀
log2(P

(︀
N𝑐

𝑚𝑖𝑛

⃒⃒
U𝑚𝑖𝑛

)︀
)− P

(︀
D𝑐

𝑚𝑖𝑛

⃒⃒
U𝑚𝑖𝑛

)︀
log2(P

(︀
D𝑐

𝑚𝑖𝑛

⃒⃒
U𝑚𝑖𝑛

)︀
)

due to corollary 4.1 and

H(𝑈) = −P
(︀
N𝑐
⃒⃒
U
)︀
log2(P

(︀
N𝑐
⃒⃒
U
)︀
)− P

(︀
D𝑐
⃒⃒
U
)︀
log2(P

(︀
D𝑐
⃒⃒
U
)︀
)

and if we swap the terms in equation (4.17) and multiply by 2NH(𝑃) both sides, it follows that

2N(H(𝑃)−P(U)H(𝑈)) < 2N
(︀
1−P(U𝑚𝑖𝑛)

)︀
H(𝑃)

4.3 Limitations of the erasure decoder 51

The reader should note that the author in [157] states that within the noiseless non-adaptive GT
setup and with a non-vanishing fraction of defective subjects there exists a non-zero threshold
𝑝*, so as for P(P𝐷) < 𝑝* "an arbitrarily accurate estimation is possible" whereas P(P𝐷) > 𝑝*

"no estimator that can achieve an arbitrarily small error probability exists in the asymptotic
limit". This result obviously contradicts the results obtained in section 4.2 and section 4.3 where
we show that no estimator that can achieve an arbitrarily small error probability exists in the
N-asymptotic limit for P(P𝐷) > 0 since the encoder is non-injective, as stated by lemma 4.5
and this result follows from lemma 4.2 that states that a GT encoder leaves systematically a
non-vanishing fraction of subjects of the population unable to be labeled by any decoder.

We can illustrate with an example that there is some conceptual problem in the derivation
of the thresholds [157] since it is quite easy to show that it is impossible to infer the label of
several defective and non-defective subjects of the population from a vector of test generated by
a non-adaptive group testing encoder when K = O(N) and N is an arbitrarily large number.

The author states that the reconstruction threshold 𝑝* for a regular bipartite graph with 𝑑𝑣 = 2

and 𝑑𝑐 = 4 is sandwiched by 0.92763 < 𝑝* < 0.097350. Figure 4.1 depicts a sub-graph of an
ensemble with 𝑑𝑐 = 4 and 𝑑𝑣 = 2 where circles and squares represent variable and check nodes,
respectively.

The black circles represent labeled defective subjects and the white circles represent to labeled
non-defective subjects whereas the circle at the top of the graph represents an unlabeled variable
node.

In a general case, the non-defective variable nodes at the bottom of the figure are labeled with
an arbitrary non-zero and non-vanishing probability P(N)1.

So, due to remark 2.2 each check node connected to the variable nodes at the bottom of the
figure can label the remaining variable node as defective and this fact happens with probability

P(D) = P(P𝐷) P(N)3.

In this situation, it is straightforward that the real label of the variable node connected to the
top layer of check nodes cannot infer it, irrespective of its value. So, with a certain probability
(in this case (P(D)3)2) the label of the variable node at the top of the figure cannot be inferred.
Note that this probability does not vanish when N increases since the number of non-defective
subjects is NP(P𝑁).

1 If we assume that they were labeled by a genie decoder this probability would be 1 or a number that depends
of P(P𝑁) if we use the erasure decoder.

52 4 Fixed-rate OR-based schemes for binary source compression

Figure 4.1: Example of graph with 𝑑𝑐 = 4 and 𝑑𝑣 = 2. Black/white circles represent defective/non-
defective variable nodes. Squares represent check nodes.

So, in general, in the N-asymptotic regime this specific event happens with a non-vanishing
probability in a bipartite graph with 𝑑𝑣 = 2 and 𝑑𝑐 = 4 and it is repeated an arbitrarily
large number of times that depends on N. Furthermore the fraction of defective and non-
defective subjects whose labels cannot be inferred due to this event is equal to P(P𝐷) and P(P𝑁),
respectively, since the labels of the subjects are generated independently and, so if we declare all
the unlabeled subjects as defective we would commit a non-vanishing probability of error, e.g. in
our example (P(D)3)2 P(P𝑁), Similarly, if we declare all the subjects as non-defective we will
commit also a non-vanishing error (P(D)3)2 P(P𝐷).

4.4 Progressive encoding for binary source compression

In this section we introduce a fixed rate adaptive source coding scheme that we presented in
[116], referred to as Progressive encoding for hybrid LDPrC-LDPC codes. It is a modification of
the original hybrid LDPrC-LDPC coding scheme reviewed in section 2.2.3 that can be employed
to obtain a family of codes with better performance while keeping the computational complexity
low. It is based on the generation of the encoded bits in a sequential manner by stages rather
than all at the same time.

The proposed scheme allows to compress very low entropy sources with a rate losses around
20 %. While this figure might seem poor taking into account that there exist optimum source
coding schemes in the literature (e.g. entropy coding), this scheme departs from these optimum

4.4 Progressive encoding for binary source compression 53

procedures in that the complexity is moved from the encoder to the decoder. LDPC [95] and
turbo codes [62, 63] have been proposed in the past to achieve this goal, but the performance
of linear codes for compression experiences significant degradation when the source entropy
decreases (the smaller the entropy the higher the relative gap between the code performance and
the theoretical limit).

4.4.1 System setup

We consider the problem of almost loss-less source coding of an asymmetric memory-less binary
Bernoulli source with P(𝑋 = 1)) > P(𝑋 = 0). We consider fixed-length block source codes
with the AND-based encoder as in equation 1.4, where a sequence of N information bits, x0, is
compressed into a codeword of M < N bits, so that a code with compression rate 𝑟 = M/N is
obtained.

4.4.2 Encoding procedure

The encoding procedure for the hybrid codes is modified so that it is performed in successive
stages. At each stage a piece of the codeword is obtained. If we denote by y𝑖 the piece of the
compressed sequence generated at the i-th stage and by 𝑚 the number of stages, then

y0 =
[︀
y1, . . . ,ym

]︀
(4.18)

The basic idea is to use the erasure decoder described in section 2.3.2 at the encoder side
to identify at the earliest possible stage the maximum number of components of vector x0

from a reduced set of components of the compressed sequence y0 and to devote the remaining
components of the sequence y0 to compress those components that remain as ‘?’ after the erasure
decoder at the end of each stage.

The procedure is as follows: in the first stage, all components of vector x0 contribute to generate
y1.

y1 = q𝑎(A1,x0) (4.19)

where A1 is a random matrix of the ensemble of matrices of size M1 ×N that has 𝑑𝑣 = 1 and
check node degree 𝑑

(1)
𝑐 and hence M1 = N/𝑑

(1)
𝑐 . Afterwards, the encoder tries to recover the

components of vector x0 from y1 employing the erasure decoder. Denote as (1−𝑓1)N the amount
of source bits that can be recovered, and as 𝑓1N the bits that remain as ‘?’.

54 4 Fixed-rate OR-based schemes for binary source compression

In the second stage, the 𝑓1N bits that remain as ’?’ are encoded again

y2 = q𝑎(A2,x0) (4.20)

with an AND-based encoder but, as opposed to A1, in this case the matrix A2 has a structure
A2 = [0 B2]Π2 where 02 is a zero matrix of size M2 × (1 − 𝑓1)N, B2 is a random matrix of
the ensemble of matrices of size M2 × (𝑓1N) represented by a regular graph with 𝑑𝑣 = 1 and
check node degree 𝑑

(2)
𝑐 (so M2 = 𝑓1N/𝑑

(2)
𝑐) and Π2 is a permutation matrix of size N×N that

rearranges the rows of B2 so that the non-zero rows are mapped to the components of vector x0

that remain as ‘?’ after the first stage. So, the compressed sequence generated up to the second
encoding stage is

y =
[︀
y1 y2

]︀
= q𝑎([A1 A2],x0) (4.21)

Note that the check and variable node degree profiles of the overall graph [A1 A2] are irregular
now.

Next, the encoder tries to recover the components of vector x0 that remained as ‘?’ employing
the ‘erasure decoder’ x = g𝑒([A1 A2],y). Denote as 𝑓2N the bits that remain as ‘?’ after
decoding the second stage. These bits are further encoded in stage 3 with a matrix B3 and check
nodes of degree 𝑑

(3)
𝑐 so M3 = 𝑓2N/𝑑

(3)
𝑐 . Afterwards the ‘erasure decoder’ is applied again and the

procedure follows with as many stages as desired. Hence, for 𝐼 stages

M =
𝐼∑︁

𝑖=1

M𝑖 =
𝐼∑︁

𝑖=1

𝑓𝑖N/𝑑(𝑖)𝑐 (4.22)

and the total code rate for all stages is

𝑟 = M/N =
𝐼∑︁

𝑖=1

𝑓𝑖/𝑑
(𝑖)
𝑐 (4.23)

and 𝑓𝐼N bits remain as ‘?’ at the end of this procedure.

Note that after each stage the fraction of components that remain as ‘?’ and need to be further
processed decreases (1 > 𝑓1 > 𝑓2 > 𝑓3 > . . . 𝑓𝐼). Furthermore, as most of the components being
identified in early encoding stages are ‘1”s, the entropy of the components that remaining to be
labeled increases. This procedure can be continued until no bits remain as ’?’ or the entropy is
very close to one.

Alternatively, this procedure can also be stopped after any number of stages. In this case the
bits remaining as ‘?’ can be encoded with a classic LDPC code of smaller size. Note that

4.4 Progressive encoding for binary source compression 55

although components of vector y are generated in several stages, the whole encoding process
can be regarded as a single hybrid LDPrC-LDPC code with irregular degree profiles whose
matrix depends on the source sequence to be compressed. This dependency appears through the
permutation matrices Π2, . . . ,Π𝐼 , but the random matrices A1,B2 . . .B𝐼 belong to ensemble of
matrices with fixed dimensions and so the resulting code scheme has fixed rate.

It is important to remark that the same ‘erasure decoding’ process can be employed at the encoder
and the decoder, so at the decoder side one can recover the permutation matrices Π2, . . . ,Π𝐼 that
were employed in the encoder and reconstruct the graph. At the receiver side, once this the graph
has been obtained the fully-fledged decoder described in [106] for hybrid LDPrC-LDPC codes
(i.e. the decoder that exploits the knowledge of source entropy and exchanges soft messages) can
be applied to get the best performance.

4.4.3 Analysis

The improved performance of the proposed procedure follows from the fact that those components
of vector x0 that are more difficult to recover are also the most protected by the compression
code, whereas those that can be easily recovered have smaller degree.

The simulation results in section 4.4.4 indicate that the proposed procedure provides a low
complexity method to compress very low entropy sources. The proposed scheme overcomes the
limitations of the linear codes in this scenario by mapping this problem into the generation of a
set of coded bits by AND operators of high degree and the compression of a remaining sequence
of bits of higher entropy, which can be efficiently encoded with a state-of-the-art LDPC code.
For example, in section 4.4.4 we show that a source with entropy 0.05 can be compressed using
four non-linear stages and an LDPC code of rate 0.5. Thus, the problem of compressing a long
source of low entropy is mapped into that of compressing a short sequence of higher entropy.
From the code design point of view the only drawback of this procedure is that the LDPC code
operates with a smaller codeword length (its input block length is 𝑓𝐼N rather than N), so a
careful design of its parity check matrix must be made to guarantee good performance.

Although the encoding procedure described in section 4.4.2 results in a code with variable
node degrees 𝑖 for those bits retrieved in the 𝑖-th stage, the generalization of the proposed
procedure to obtain an overall hybrid LDPrC-LDPC codes with more irregular degree profiles is
straightforward. In section 4.4.4 we show simulations where the check node degree of each stage
𝑑
(𝑖)
𝑐 were selected as the ones that made the probability of check nodes of Type I equal to 0.5, i.e.

𝑑
(𝑖)
𝑐 = − log−12

(︀
P(𝑋𝑖 = 1)

)︀1 or its closest integer, being P(𝑋𝑖 = 1) the probability of ‘1’ at the

1 We discuss further the topic of check node degree profile selection with closed-form expressions in chapters 5
and 8. See appendix 5.A for further details on this specific check node degree distribution.

56 4 Fixed-rate OR-based schemes for binary source compression

input of the 𝑖-th stage. This criterion leads to an encoded sequence with equally likely 0s and
1s (which is a desirable feature in a compressed sequence). Proceeding in this way, the number
of coded bits generated at each stage keeps approximately constant (M1 ≈ . . . ≈ M𝐼), and on
average at least half the variable nodes are determined at each stage.

The fraction of source bits that remain to be processed after each encoding stage (i.e. the values
of 𝑓1, . . . ,𝑓𝐼) depends on sequence x0, and it has a variance that is larger for latter encoding
stages and decreases as N increases. Hence, the progressive encoding procedure is most effective
when long codewords are considered. A procedure must be proposed to tackle with this variable
length without requiring the generation of a new encoding matrix for every sequence to be
encoded.

In next section we give simulation results where the check node degrees 𝑑
(𝑖)
𝑐 of each matrix

B2, . . . ,B𝐼 were originally designed according to the average length of the sequences at the
input of the corresponding stage. Then these matrices where extended adding additional rows
corresponding to a number Δ𝑖 of permutation matrices of size 𝑛𝑖, so the degree of the check
nodes was increased to 𝑑

(𝑖)
𝑐 +Δ𝑖 and the number of bits entering the 𝑖-th encoding stage was

increased from M𝑖𝑑
(𝑖)
𝑐 = 𝑓𝑖−1N to M𝑖(𝑑

(𝑖)
𝑐 +Δ𝑖). In those source sequences where some of these

bits (usually the M𝑖Δ𝑖 first ones) have been recovered in previous stages, no further encoding
is necessary and the source can be replaced at the input of the product node by ‘1’, thereby
reducing the effective degree of the product node and getting it closer to the original value of
𝑑
(𝑖)
𝑐 . In those source sequences when the sequence length at the input of the 𝑖-th stage exceeds

M𝑖(𝑑
(𝑖)
𝑐 +Δ𝑖) an unrecoverable error will occur.

In the final linear coding stage, a similar procedure must be proposed to cope with the variable
input length. In the simulations in section 4.4.4 this issue was approached by increasing the
LDPC codeword length while keeping the code rate fixed.

Regarding implementation complexity, note that the operation at the encoder is very simple
(only LDPrC-LDPC encoding and erasure decoding are required). It is also important to remark
that the data-dependency is only introduced through the permutation matrices Π𝑖 which act
over the information bits. Hence, the conventional LDPrC-LDPC decoder presented in [105] can
be employed at the receiver by introducing data-dependent interleavers. Note also that the size
of sub-matrix B𝑖 is reduced at every stage, and this fact can be also exploited to reduce decoder
complexity.

4.4.4 Simulation results

In this section we assess the performance of the proposed compression procedure to compress
two sources with entropy 0.091 and 0.05. Here we simulate a compression scheme where the

4.4 Progressive encoding for binary source compression 57

encoder employs the progressive encoding procedure to generate the compressed sequence by
stages. Afterwards, the encoder conveys the compressed sequence to the decoder. Then, the
encoder uses the erasure decoder to obtain partial decoding results to build the same graph that
at the decoder side. Finally, the decoder attempts to reconstruct the original sequence employing
BP-based message passing algorithms in appendix 2.A, once the decoder has inferred the graph
connections.

For the compression of both sources four stages of coded bits are generated by AND-based check
nodes and the bits that remained as ‘?’ after these stages were encoded with a linear code.

In the case of source entropy 0.091 a block of 103250 bits was compressed into 11950 coded
bits, so a code rate of 0.1157 was obtained. After MC simulation of 16600 codewords, 9 wrong
codewords were obtained and the average BER was 1.53x10−6. The parameters for the non-linear
stages are listed in Table 4.1. As indicated there, an average of 6670 bits remained to be identified
after these four stages, and their average entropy was 0.70. These bits where then compressed
with an LDPC code of rate 0.5 obtained from [95, 131]. Note that the code rate is smaller than
the entropy of these bits. Operation in this regime was possible because the LDPC decoder did
not operate alone: it was assisted by the non-linear stages, since the optimum decoder for the
hybrid LDPC-LDPrC code was employed. In order to take into account the variability in the
number of bits that remain undetermined at the end of the fourth stage the number of parity
checks was increased from 𝑓4N = 6670 to 9900, maintaining constant the total code rate. This
performance compares favourably with that obtained when a single LDPC code is employed for
the same task: in [95] an LDPC code was optimized to compress a source with entropy 0.091
and the minimum rate required for it was 0.125.

In the case of source entropy 0.05 a block of 1230000 bits were compressed into 85500 coded bits,
so a code rate of 0.064 was obtained. After Monte Carlo simulation of 2600 codewords 1 wrong
codeword was obtained and the average BER was 2.2x10−6. The parameters for the non-linear
stages are listed in table 4.2. In this case a linear code of rate 0.425 was employed [137].

Table 4.1: Code parameters for source with entropy H = 0.091 and N= 103250. Rate = 0.1157

NL NL NL NL LDPCStage 1 Stage 2 Stage 3 Stage 4
Check node degree 𝑑

(𝑖)
𝑐 +Δ𝑖 59 29+5 14+5 7+5

Bits to be P(𝑋𝑖 = 1) 0.9888 0.9767 0.9533 0.9074 0.8199
encoded at Entropy 0.091 0.1596 0.2720 0.4449 0.6799
that stage M𝑖𝑑

(𝑖)
𝑐 +M𝑖Δ𝑖 103250 59500 33250 21000 9900

Number of coded bits (M𝑖) 1750 1750 1750 1750 4950
Code rate contribution (M𝑖/N) 0.0169 0.0169 0.0169 0.0169 0.0479
Unlabeled bits after 𝑖 (𝑓𝑖N) 51379 25688 12968 6670

58 4 Fixed-rate OR-based schemes for binary source compression

Table 4.2: Code parameters for source with entropy H = 0.05 and N= 1230000. Rate = 0.064

NL NL NL NL LDPCStage 1 Stage 2 Stage 3 Stage 4
Check node degree 𝑑

(𝑖)
𝑐 +Δ𝑖 123 61+7 30+7 15+7

Bits to be P(𝑋𝑖 = 1) 0.9944 0.9775 0.9775 0.9552 0.9115
encoded at Entropy 0.05 0.0888 0.1550 0.2637 0.4313
that stage M𝑖𝑑

(𝑖)
𝑐 +M𝑖Δ𝑖 123 ·104 68 · 104 37 · 104 22 · 104 91100

Number of coded bits (M𝑖) 10000 10000 10000 10000 38781
Code rate contribution (M𝑖/N) 0.0081 0.0081 0.0081 0.0081 0.0315
Unlabeled bits after 𝑖 (𝑓𝑖N) 613477 306614 153888 77893

CHAPTER 5

Adaptive sampling for lossless group testing

In this chapter we propose an adaptive scheme for noiseless group testing aimed at building a
data-dependent measurement function A in stages by means of an adaptive process alternating
testing and decoding stages where after each decoding stage a new piece of the measurement
matrix A𝑖 is designed exploiting the information available at the output of the decoder at the
end of each stage. As in the other adaptive scheme presented in section 4.4, the addition of a
new stage of tests reduces the amount of subjects that remain to be labeled after each stage
with a given probability. Regretfully the scheme presented in section 4.4 cannot achieve lossless
reconstruction condition in the finite size case due to the fact that it works with fixed-size
matrices that are the same for all source realizations.

We proposed in [119] an alternative adaptive sampling algorithm where tests are also generated
by stages where the matrix of each stage is chosen at random from an ensemble Γ(L,R) and its
structure is designed employing the information available at the decoder output at the end of the
previous stage. In this design, the number of rows of the resulting measurement matrix depends
on the signal realization and furthermore, the amount of stages depends on the rules to choose
the ensemble. The structure of the proposed scheme is based on Luby-transform codes [96, 99],
a rateless linear coding scheme reviewed in chapter 2.

The resulting scheme can achieve lossless reconstruction of any source sequence x0 and, further-
more, can be applied to the group testing problem since it relays exclusively on OR-based check
nodes, whereas the adaptive scheme presented in 4.4.1 could not, because it was based on hybrid
LDPrC-LDPC codes.

This chapter is divided as follows. First in section 5.1 we describe the variable rate adaptive GT
scheme that we presented in [119] and in section 5.2 we enclose simulation results that describe its
performance in several scenarios and compare it with other adaptive and non-adaptive schemes.

59

60 5 Adaptive sampling for lossless group testing

5.1 Scheme overview

This section is devoted to introduce the sequential process that the algorithm follows to both
design and to construct matrix A and identify the defective subjects in the population.

Here in section 5.1.1 we introduce the sequential procedure that the algorithm follows whereas
in section 5.1.2 we describe the novel approach to design and construct matrix A exploiting the
tests results obtained in previous stages.

5.1.1 Sequential multi-stage process

In this sequential adaptive group testing scheme tests are generated by stages, as many as
required to label all the subjects in the population. A generic 𝑖-th encoding stage is composed of
three steps:

(1) A design and construction step: The check node degree profile R𝑖 is decided and matrix A𝑖

is constructed as a random matrix realization of the ensemble Γ(R𝑖,L𝑖,N) with size M𝑖×N.

(2) A sampling step: a vector of M𝑖 tests y𝑖 is generated as y𝑖 = q𝑜(A𝑖,x0) where q𝑜(·,·) is the
OR-encoder introduced in equation 1.5.

(3) A decoding step: an attempt is made to infer the labels of the subjects of the population
employing the erasure decoder described in algorithm 2.1 of chapter 2: x𝑖 = g𝑒(A(𝑖), y(𝑖))

1,
where y(𝑖) and A(𝑖) are the succession of tests and the succession of matrices generated up
to the 𝑖-th stage

y(𝑖) , [y1, . . . ,y𝑖]

A(𝑖) , [A1, . . . ,A𝑖]

At the beginning of the encoding process all subjects of the population are tested. In subsequent
stages the tests focus on those subjects that cannot be labeled by the tests in the previous stages.

1 Note that the erasure decoder is required to reconstruct the graph at the decoder side. Once the graph is
reconstructed, the decoder can employ the decoding algorithm in appendix 2.A.2 for best performance, see
figure (5.4(b)) in section 5.2 to asses the performance gain.

5.1 Scheme overview 61

The process goes on until all subjects are labeled (perfect recovery) or it is decided that the
fraction of subjects that remain unlabeled is small enough (lossy scheme).

1 Initialize: 𝑖 = 1, U0 = {1,...,N},
2 while |U𝑖−1| > 0 do
3 Design and construct A𝑖

4 y𝑖 = q𝑜
(︀
A𝑖,x0

)︀

5
(︀
U𝑖,N𝑖,D𝑖

)︀
← g𝑒

(︀
A(𝑖), y(𝑖)

)︀

6 𝑖 = 𝑖+ 1

7 end
Algorithm 5.1: Sequential multi-stage sampling

After a certain number of stages 𝐼 a total number of tests
∑︀𝐼

𝑖=1M𝑖 has been done and the tests
y(𝐼) have been obtained as y(𝐼) = q𝑜

(︀
A(𝐼),x0

)︀
.

At the end of the 𝑖-th encoding stage the population is partitioned into three disjoint sets:

Definition 5.1 (Set of subjects of the population that remain unlabeled at the end of the 𝑖-th
stage, U𝑖).

U𝑖 ,
{︀
∀𝑗 ∈ U𝑖 : 𝑥𝑗 =

′?′}.

We define the complementary set as U𝑐
𝑖, P ∖ U𝑖.

Definition 5.2 (Set of defective subjects of the population that are labeled by the decoder at
the end of the 𝑖-th stage, D𝑖).

D𝑖 , P𝐷 ∩ U𝑐
𝑖 ,

Definition 5.3 (Set of non-defective of subjects the population that are labeled by the decoder
at the end of the 𝑖-th stage, N𝑖:).

N𝑖 , P𝑁 ∩ U𝑐
𝑖 .

We also define their complementary sets as D𝑐
𝑖, P𝐷 ∖D𝑖 and N𝑐

𝑖, P𝑁 ∖N𝑖.

Next we focus on lines 3 and 5 of algorithm 5.1 because the testing stage is the same than in the
non-adaptive group testing scheme, described in section 4.3.

62 5 Adaptive sampling for lossless group testing

5.1.2 Design and construction step

In the design and construction step of the 𝑖-th stage ensemble Γ(R𝑖,L𝑖,N) is selected, i.e. the
variable and check node degree profiles A𝑖 (denoted by R𝑖(𝑑) and L𝑖(𝑑)) are decided. Afterwards
a new piece of the measurement matrix A is created: the sub-matrix A𝑖 with dimensions M𝑖×N,
being M𝑖 the number of tests done in the 𝑖-th stage.

This sub-matrix is created using the information from the previous stages according to the
following rules:

Remark 5.1. All subjects of the population P keep being tested until they are labeled.

In other words, at the 𝑖-th stage the subjects indexed in U𝑖−1 are the only ones that contribute
to generate the tests y𝑖. In order to do so,

Remark 5.2. Each subject that remains unlabeled at the end of the (𝑖− 1)-th stage contributes
to exactly one test in the following stage.

On the one hand, remark 5.1 and 5.2 motivate the search space reduction, i.e. the reduction of
the amount of components in U𝑖 as 𝑖 increases. Doing so the testing efforts are targeted only
to the subjects that remain unlabeled after the (𝑖 − 1)-th stage. This matrix A𝑖 is chosen at
random among those matrices in the ensemble Γ (R𝑖,L𝑖,N) that have all non-zero coefficients
placed in the columns corresponding to unlabeled subjects U𝑖.

The purpose of choosing A𝑖 randomly from the ensemble Γ(R𝑖,L𝑖,N) is twofold. First, matrix
design is kept simple. Second, matrix performance can be predicted from the analysis presented
in chapter 6.

It can be easily shown [129] that the 𝑖-th stage contributes to the overall rate with r𝑖:

𝑟𝑖 =
M𝑖

N
=

∑︀
∀𝑑≥0 𝑑L𝑖 (𝑑)∑︀
∀𝑑≥0 𝑑R𝑖 (𝑑)

=
𝑑𝑖𝑣
𝑑𝑖𝑐

(5.1)

where 𝑑𝑖𝑣 and 𝑑𝑖𝑐 are the average fraction of edges per variable and check node of the graph A𝑖.

Variable node degree profile

The variable node degree profile distribution at the 𝑖-th stage L𝑖(𝑑) is constrained by the scheme
construction, since only the unlabeled subjects at the end of the previous stage U𝑖−1 are further
processed, i.e. all nodes associated to labeled subjects have degree 𝑖. So, we have only to decide
the variable node degree profile of the nodes in U𝑖−1. For simplicity we assumed that each

5.1 Scheme overview 63

unlabeled subject participates in one test per stage, so the variable node degree distribution can
be written in terms of the amount of elements of the set as

L𝑖(𝑑) =

{︃
1− |U𝑖−1|

N 𝑑 = 0
|U𝑖−1|

N 𝑑 = 1
(5.2)

which in the N-asymptotic regime becomes

L𝑖(𝑑) =

{︃
P(U𝑐

𝑖−1) 𝑑 = 0

P(U𝑖−1) 𝑑 = 1
(5.3)

Check node degree profile: design of policy

To the best authors knowledge, there are no results in the literature on the design of matrix
A𝑖 for adaptive GT scheme, so design of a policy to choose R𝑖(𝑑) is an open problem that still
remains to be addressed.

For simplicity we choose to design a probability distribution R𝑖(𝑑) based on results obtained by
the decoder at the end of the stage 𝑖− 1, i.e U𝑖−1, D𝑖−1 and N𝑖−1.

Even doing this simplification there are infinite different designs for the degree profile of the
different stages that yield the same aggregated rate

∑︀𝐼
𝑖=1M𝑖/N, so there are infinite possible

designs of the adaptive GT scheme.

In [119] we proposed a policy to design the degrees that will be shown in chapter 6 to have
good performance. This policy aims the design of the matrix A𝑖 to balance the number of ones
and zeros of the tests vector y𝑖. The rationale of this policy is that it maximized the entropy
of y𝑖, since the tests in y𝑖 are independent because they operate on disjoint sets of subjects.
Hence, if it were true that the tests y(𝑖) were independent then H(y(𝑖)) would be maximized and
the proposed policy would provide the most informative results (it would maximize I(x0, y(𝑖)).
Unfortunately, the tests y(𝑖) are not independent so this policy cannot be claimed to be optimal
from the entropy point of view.

In order to have tests with probability 0.5 of being defective we must choose the degree profile
to satisfy (5.6) which is the generalization of equation equation (2.4) for irregular degree profiles.
In this equation P

(︀
N𝑐

𝑖−1
⃒⃒
U𝑖−1

)︀
is an estimate of the fraction of defective subjects that still

remain indexed in U𝑖−1. To further simplify the degree profile design, we decided to constrain
the check degree to take only two consecutive values, i.e. R𝑖(𝑑) is non-zero only for two values
𝑑′ and 𝑑′ + 1. Although there is no optimality claim in this design, our experience has shown
that other choices lead to a performance reduction due to an increase in Type III check nodes.
Further details on this policy can be found in appendix 5.A.

64 5 Adaptive sampling for lossless group testing

This approach to design R𝑖(𝑑) regards on the knowledge of P
(︀
D𝑐

𝑖−1
⃒⃒
U𝑖−1

)︀
at the end of each

stage. If we know the amount of defective subjects in the population K we can simply obtain it
as

P
(︀
N𝑐

𝑖−1
⃒⃒
U𝑖−1

)︀
= 1− K− |D𝑖−1|

|U𝑖−1|
. (5.4)

otherwise we need an estimate of it obtained from the a priori information.

Matrix construction

After selecting the ensemble of matrices Γ
(︀
R𝑖,L𝑖,N

)︀
we can move to construct a matrix, first

selecting a check node degree 𝑑 according to distribution R(𝑑) and then selecting 𝑑 unlabeled
subjects of the population U𝑖−1 with uniform probability.

This matrix A𝑖 is chosen among all matrices in the ensemble Γ
(︀
R𝑖,L𝑖,N

)︀
where all the non-zero

coefficients are located in the columns corresponding to unlabeled subjects.

5.1.3 Decoder

As indicated previously, during the encoding process the ED is employed at the end of each stage.
If the process continues until full recovery, no other decoder is necessary. However, the encoding
process can be stopped at any stage 𝑖 if a certain fraction of unlabeled subjects is tolerated. In
that case, the fraction of unlabeled subjects can be reduced by applying a more sophisticated
decoder like the BP-based decoder presented in section 2.2.2 to matrix A(𝑖) and tests y(𝑖). Note
that in that case some subjects might be erroneously labeled.

In section 5.2 of simulation results we compare the performance of this adaptive sampling scheme
when only the erasure decoder is employed to label subject with the performance of the same
adaptive sampling scheme that implements a last attempt to retrieve all the labels of the subjects
with the BP-based decoder (the LDPrC decoder adapted to the OR-operation) reviewed in
section 2.2.2.

5.2 Performance of the proposed adaptive group testing scheme

Here we compare the performance of the proposed adaptive group testing scheme in two different
setups. First, we compare it with the performance of a non-adaptive scheme for sparse pattern
recovery in section 5.2.1. Second, within the source compression framework, we compare it with
the rate distortion bound in section 5.2.2. Note that for the sake of clarity we use the group
testing notation in the section 5.2.1 whereas we employ source coding notation in section 5.2.2.

5.2 Performance of the proposed adaptive group testing scheme 65

The proposed adaptive scheme can be employed under two different premises. First, for perfect
recovery, i.e. to label all subjects of the population. In this situation stages are added and
more samples generated until the algorithm labels all subjects of the population. In the second
case one establishes a fixed maximum number of samples, i.e. the maximum number of tests is
prefixed, so the algorithm is stopped when the number of samples reaches the maximum allowed
leading to in an incomplete recovery. We measure this incompleteness with the following metric

𝑒 = 𝑒(x0,x) =
|D𝑖|

max
(︀
|P𝐷|,|D𝑖 ∪ U𝑖|

)︀ (5.5)

where |D𝑖 ∪U𝑖| accounts for either the amount of subjects that remain unlabeled and the amount
of defective subjects that are labeled. This metric varies when the defective subjects are labeled
since the metric only changes when new defective subjects are labeled at the end of the stage.
Note that e=1 indicates that all subjects were labeled.

We compare the sampling or testing efficiency of the proposed group testing scheme of the
proposed scheme with K log(N/K), since the algorithm for sparse pattern recovery and adaptive
group testing required a number of tests of that order to achieve a perfect reconstruction (see
section 2.1.2 for further details). Thus, for the sake of comparison we define the gap to this
bound as

gap =
M̄

K log(N/K)

where M̄ is the average number of tests required by the proposed adaptive scheme for perfect
reconstruction.

5.2.1 Group testing performance

Figure (5.1) shows simulation results of the proposed adaptive scheme (P) for perfection recovery
for populations of size N = 500 and N = 10000 and different number of defective subjects K

where the degree profiles were designed according to the policy described in appendix 5.A. Each
point of the plots was obtained by Monte Carlo with 2 · 105 simulations and K was assumed to
be known.

In figure (5.1.a) we compare the evolution of the average number of tests M̄ required for perfect
reconstruction of the proposed adaptive scheme (P) with evolution of the bound K log(N/K) (B).
We can observe that there exists an approximately constant multiplicative factor with respect to
the bound which is larger than 11.

1 gap ≈ 1.5 for N = 500 and gap ≈ 1.4 for N = 10000.

66 5 Adaptive sampling for lossless group testing

10
1

10
2

10
3

10
4

10
1

10
2

10
3

10
4

N/K

M

(a)

P (K,500)

P (K,10000)

B (K,500)

B (K,10000)

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
0

0.2

0.4

0.6

0.8

1

Gap

e

(b)

(2,500)

(4,500)

(10,500)

(5,10000)

(8,10000)

(15,10000)

Figure 5.1: (a) Average number of tests M̄ for perfect recovery, for fixed N and varying the sparsity
K of the proposed scheme (P) compared with K log(N/K) (B). (b) Evolution of the error metric
for a given population (K,N) as the number of stages increases as a function of the gap respect to
K log(N/K).

Figure (5.1.b) shows the evolution of the recovery metric versus the gap through the stages of
the adaptive group testing algorithm, i.e. for an increasing number of measurements. The points
of the curves represent the resulting gap and recovery metric at the end of a stage. We have
chosen to represent the gap instead of the number of samples because the normalization with the
bound allows us to observe the dependence of the performance on (K,N): in a closer look, the
gap decreases when the amount of defective subject K increases for a fixed N, and also decreases
with N.

The plotted curves help us to explain the behavior of the sequential process: while the number
of tests is below the bound (i.e. 𝑔 < 1), only non-defective subjects of the population are labeled,
so the recovery metric stays at 0. However, the knowledge of the non-defective produces an
avalanche effect when the number of samples exceeds a threshold. Next stages rapidly determine
the defective subjects in the population until recovery is perfect.

Figure (5.2.a) compares the performance of the proposed algorithm when K is exactly known

5.2 Performance of the proposed adaptive group testing scheme 67

K

K

K

M

K

K

K

Figure 5.2: (a) Average number of samples M̄ for perfect recovery for N = 500 comparing results
when K is known (P(K,500)) with the ones when and upper value K* = 10 is known (P(10,500)).
The bound (B) K log(N/K) is included for comparison when K is both known or only an upper bound
is known. (b) Probability Mass function of the number of samples for N = 500 and several K.

with the case in which only an upper bound K* is known. The figure depicts the comparison
of the average number of tests required by the proposed scheme (P) for perfect recovery with
the bound K log(N/K) (B) when N = 500 and K is either known at the decoder side (K,500)
or only an upper bound of K is known (10,500). The figure shows that the performance of the
proposed scheme falls when the exact number of defective subjects is unknown and assume an
upper bound K* = 10, at the expense of adding a limited number of additional tests (the more
the further is K from K*).

Figure (5.2.b) shows the probability mass function of the number of samples for a given pair
(K,N). Two million samples from each distribution were simulated for K = {4,6,8} and N = 500.
It can be seen that the variance increases with the K and also the probability mass function
becomes more Gaussian-shaped. Notice that the probability mass is concentrated around the
mean; this means that the event of requiring a much larger number of measurements to recover
the unlabeled subjects is very unlikely. In the simulations, none of the realizations required more

68 5 Adaptive sampling for lossless group testing

than 81, 95 and 117 samples for K = 4,6,8, respectively.

We can also compare the results in figure (5.2.a) with the simulated performance of several
non-adaptive group testing schemes in ([5], figure 3 and 4). Their best performing scheme
employs a Bernoulli matrix with 𝑝 = 1/10 and employs the decoding algorithm named smallest
satisfying set (SSS). For (K = 10,N = 500) this algorithm requires at least 100 tests to reconstruct
perfectly a 50 % of the realizations of the population whereas our proposed adaptive algorithm
requires only 88 tests1.

Table 5.1: Comparison with OMP [151] in terms of required number of tests for perfect reconstruction
when N = 256, for several K.

K M𝑂𝑀𝑃 M* M̄

4 56 50 39.3

8 96 76 64.0

12 136 98 85.2

16 184 117 104.4

20 228 135 121.4

We compare with the simulations in [151]2 obtained with the orthogonal matching pursuit (OMP)
reconstruction algorithm with fixed M = 256 and several K with the proposed scheme when K is
known. Table 5.1 gathers the number of tests required for OMP (M𝑂𝑀𝑃) with the average and
the maximum number of samples (M̄ and M*) required by the proposed method. A significant
improvement can be observed.

In table 5.2 we compare the average number of tests required for perfect reconstruction (we
assume that reconstruction is perfect when P(U𝑖) < 10−6) with the number of samples required
for perfect reconstruction in the worst case scenario of the adaptive group testing, based on
random walk [35, 77], for different pairs of (N,K) and assuming the K is known.

Table 5.2: Performance comparison of the proposed adaptive group testing scheme ([P]) and the
random walk- based algorithms in [35, 77]

N 105 105 105 105 105

K 996 5666 12666 18 180

M [P] 9338 36730 63950 154 1540

M [77] 8812 37072 67478 144 1475

M [35] 8398 34798 63089 140 1403

Note that the comparison between the proposed algorithm and the other algorithms is not fair

1 Note that the average number of tests coincides with the 50% probability of perfect reconstruction.
2 Note that [151] presents the results in the framework of the sparse pattern recovery.

5.2 Performance of the proposed adaptive group testing scheme 69

since the algorithms presented in [35, 77] mark as non-defective all the subjects remaining to be
labeled once all the defective subjects have been labeled, since K is known, whereas the proposed
algorithm keeps at generating tests while there are still unlabeled subjects. Furthermore, note
that the performance of the proposed scheme will change if the policy to choose the ensemble
changes. So, the results in table 5.2 are merely indicative and show that the adaptive scheme has
similar performance that the recently proposed adaptive algorithm in [35] outperforms to [77]
in the worst case scenario, and that the performance of the algorithm in [77] and our proposed
algorithm apparently are close.

5.2.2 Binary source compression performance

Now let us analyze the performance of the application of the adaptive scheme proposed in this
chapter within the binary source compression framework, where the compression limit is the rate
distortion bound1 2.1.

Here we slightly modified the proposed scheme: the matrices are still designed at the beginning
of each stage but tests are generated one by one (we do not skip any tests) instead of generating
the 𝑖-th block of test at once. Therefore, after acquiring each test the decoder is activated and
attempts to label as many subjects as possible. Doing so we obtain smoother performance curves.

We show the performance of the proposed scheme in terms of bit error rate (BER) and word
error rate (WER), which can be regarded as the average fraction of unlabeled subjects and
the average fraction of population realizations (simulations of the experiment) that have been
completely labeled for a given rate, respectively.

Figure 5.3 depicts the performance of the algorithm for different sources and N. Each plot
was obtained by averaging the results of at least 100000 simulations. The plots represent the
average BER obtained for a given rate indicated in the horizontal axis and were obtained simply
averaging the amount of error bits for a given number of samples and dividing by N.

Figure 5.3 shows that the rate required to achieve the free error zone is slightly larger for shorter
N; this is the penalty for using small N. Note that in the case of P(𝑋 = 1) = 0.012 and K = 1000,
the average number of ones in x0 is only 12. This figure also shows that the system requires
an overhead respect to the entropy to achieve free error zone, e.g. for P(𝑋 = 1) = 0.018 and
N = 1000 and 10000, the average rates are 0.1120 and 0.1153 whereas the entropy rate is 0.0938.
These results can be compared with the ones in section 4.4.4, where a similar scheme with fixed

1 We know that the comparison is unfair since the rate-distortion bound cannot be achieved by the group testing
scheme but we decided to enclose it for the sake of clarity.

70 5 Adaptive sampling for lossless group testing

0 0.05 0.1 0.15 0.2 0.25
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Average Rate

B
E

R

RD

MC 1K

MC 10k

0.012

0.018

0.03

Figure 5.3: Comparison of the performance of the adaptive algorithm obtained by Monte Carlo
simulation (MC) for N = 1000 (1k) and N = 10000 (10K) bits with the rate distortion bound (RD)
for different probabilities P(𝑋 = 1) = 0.012, 0.018, 0.03

block codes at each stage required and a rate of 0.1191 to achieve a BER of 106 for a N = 100000

with P(𝑋 = 1) = 0.013 (see tables 4.1 and 4.2).

Figure 5.4(a) and 5.4(b) show the performance gain introduced when the erasure decoder is
replaced by the optimum BP decoder for signal reconstruction (LDPrC-based decoder, reviewed
in section 2.2.2). Figure 5.4(b) shows that the BP decoder provides lower distortion when the
compression rate approaches the limit, but both decoders have the same performance when a
low distortion is desired. It must be noted that these schemes do not exhibit error floor.

5.A Check degree profile design 71

0.1 0.11 0.12 0.13 0.14 0.15 0.16
10

−3

10
−2

10
−1

10
0

Average Rate

W
E

R

ED 1000

BP 1000

ED 10000

BP 10000

(a) Comparison of BP and ED. Word error rate (WER)

0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Average Rate

B
E

R

ED 1000

BP 1000

ED 10000

BP 10000

(b) Comparison of BP and ED. Bit error rate (BER)

Figure 5.4: Comparison of performance of adaptive scheme with erasure decoder (ED) or belief
propagation-based (BP) decoder for P(𝑋 = 1) = 0.018 and N = 1000, 10000.

Appendix 5.A Check degree profile design

The policy is aimed to maximize the entropy of the binary sequence y𝑖. So a first constraint
arises from equation (2.4) since the average fraction of Type I check nodes must be equal to 0.5.

72 5 Adaptive sampling for lossless group testing

Then it follows that ensemble must have a check node degree distribution R𝑖 (𝑑) so as

∑︁

∀𝑑
R𝑖 (𝑑) P

(︀
N𝑐

𝑖−1
⃒⃒
U𝑖−1

)︀𝑑
= 0.5 (5.6)

where the term P
(︀
N𝑐

𝑖−1
⃒⃒
U𝑖−1

)︀
is known at instant 𝑖 in case that K. For the sake of simplicity

in this appendix we refer to this term simply as the probability 𝑝.

We decided to add an extra restriction by choosing ensembles with at most check nodes with
two different number of edges, i.e. R𝑖 (𝑑) have at most two non-null coefficients. Then equation
(5.6) becomes

R𝑖

(︀
𝑑′
)︀
𝑝𝑑

′
+
(︀
1− R𝑖

(︀
𝑑′
)︀)︀

𝑝𝑑
′′
= 0.5 (5.7)

where 𝑑′ < 𝑑′′ are employed degrees, 𝑑′, 𝑑′′ ∈ N, and R𝑖 (𝑑
′) is the fraction of check nodes with

degree 𝑑′. Note that the equation has solutions and hence there are infinite many ensembles that
accomplish these two restrictions.

For simplicity we decided to add the extra constrain 𝑑′′ = 𝑑′ + 1. Then if we apply it to equation
(5.7) and operate it results

𝑑′ =
log 0.5

log 𝑝
− log (𝑝+R(𝑑′) (1− 𝑝))

log 𝑝
(5.8)

This equation has a single solution because when 𝑑′ ∈ N and R(𝑑′) ∈ [0,1] it follows that 𝑑′ is
the natural number sandwiched by

𝑙𝑜𝑔 (0.5)

log
(︀
P
(︀
N𝑐

𝑖−1
⃒⃒
U𝑖−1

)︀)︀ ≥ 𝑑′ ≥ 𝑙𝑜𝑔 (0.5)

log
(︀
P
(︀
N𝑐

𝑖−1
⃒⃒
U𝑖−1

)︀)︀ − 1 (5.9)

and then, the term 𝑝+R(𝑑′) (1− 𝑝) ≥ 𝑝 implies that the term 0 < log (𝑝+R(𝑑′)(1−𝑝))
log 𝑝 < 1. So, the

term R𝑖 (𝑑) can be easily foundapplying the result in (5.9) to equation (5.7) and rearranging
terms

R𝑖

(︀
𝑑′
)︀
=

0.5
𝑝𝑑′
− 𝑝

1− 𝑝
(5.10)

and so the term R(𝑑′ + 1) = 1− R𝑖 (𝑑
′).

CHAPTER 6

Adaptive group testing and decision processes

The design of adaptive group testing schemes is challenging because of the intricate relationship
between the sampling matrix employed in each stage and the overall system performance. For
example, it is hard to say whether it is better to include high-degree test nodes in early stages or
it is better to use low-degree tests. In the first case, those nodes will have little impact on the
overall rate but probably positive tests will not be helpful to label any defective subjects in later
stages (in terms of the notation of section 2.3.3, the fraction of Type-III nodes in equation 2.6
will probably be high). In the second case, the impact on efficiency will be greater but the tests
are more likely to allow labeling subjects (the fraction of Type-I and Type-II nodes in equation
2.4 and 2.4 will be higher), so they might be more useful in the long run. Hence, it would be
very convenient to envisage a design tool that allowed evaluating the performance of an adaptive
GT scheme without need of actually implementing it to run Monte Carlo simulations. If this
tool were available, different GT designs could be easily compared.

The multiple stages of adaptive GT system can be designed employing policies with different
degrees of complexity. Our analysis is targeted at assisting the design of adaptive GT schemes
where the testing matrices are randomly generated as belonging to a certain matrix ensemble, as
was described in chapter 5. A more sophisticated policy would be to design each new stage as a
structured matrix selected taking into account the degree profile of the aggregated testing matrix
including all previous stages and taking into account the sets of defective/non-defective subjects
labeled at each stage (e.g. it could take into account which variable nodes are more likely to be
defective based on past history and link them to lower degree checks). Although the latter policy
could potentially lead to better performance, we have not taken it into consideration in our
analysis. As shown in this chapter, by constraining ourselves to work with randomly generated
matrices we are capable of predicting very accurately the performance of the resulting adaptive
GT system using probabilistic tools.

73

74 6 Adaptive group testing and decision processes

In this chapter we propose a systematical framework to characterize the evolution of the adaptive
group testing scheme presented in chapter 5 that poses adaptive GT as a non-Markovian decision
process. By casting adaptive GT into the decision problem framework, we provide an analytic
tool that predicts the performance of an adaptive GT system employing as inputs the ratio of
defective subjects P(P𝐷) and the degree profiles of the matrix ensembles employed in each stage
Γ (L𝑖,R𝑖,N).

The advantage of the proposed analytic tool is twofold. First, it can be employed in a real system
implementation to decide how to design the next testing stage based on the outcome of the
previous ones. Second, it can also be employed to predict the performance of the adaptive GT
scheme if a specific combination of matrix degree profiles

{︀
Γ (L1,R1,N) ,Γ (L2,R2,N) , . . .

}︀
, etc.

is employed in successive stages.

This chapter is divided as follows: in section 6.1 we formulate the adaptive group testing system
described in chapter 5 as a decision problem. In section 6.2 we derive the equations employed
to predict the system performance in terms of the fraction of defective subjects that remain
unlabeled after a certain number of testing stages. The analysis is done for the N-asymptotic
regime. Nevertheless, the simulation results included in section 6.3 evidence that the analysis is
also useful to predict system performance for relatively small population sizes.

6.1 Decision processes and adaptivity

6.1.1 Introduction

Decision processes are widely employed to model decision making situations where the outcomes
are partly random and partly under the control of the agent that makes the decision [86, 113].
In the case of interest, each stage in the adaptive GT scheme can be regarded as a step in the
decision process. Then, the state at a certain stage 𝑖, 𝑠𝑖, is somehow related to the amount of
defective subjects that remain unlabeled after 𝑖 testing stages have been performed. Besides, the
transition between the state at instant 𝑖− 1 and at 𝑖 occurs when the decision-maker (agent)
chooses the testing matrix employed in the 𝑖-th stage (the action), i.e. either it chooses A𝑖 or
the ensemble to which the matrix belongs Γ (L𝑖,R𝑖,N). When the action is taken, test results y𝑖

are obtained (the observation). For simplicity we define the successions of states, actions and

6.1 Decision processes and adaptivity 75

observations as s(𝑖), A(𝑖) or Γ(𝑖), and y(𝑖)1, respectively, as follows

s(𝑖) , {𝑠1,𝑠2, . . . , 𝑠𝑖−1,𝑠𝑖}
A(𝑖) , {A1,A2, . . . ,A𝑖−1,A𝑖}
Γ(𝑖) , {Γ (L1,R1,N) ,Γ (L2,R2,N) . . . ,Γ (L𝑖−1,R𝑖−1,N) ,Γ (L𝑖,R𝑖,N)}
y(𝑖) , {y1,y2, . . . ,y𝑖−1,y𝑖}

Hence, adaptive GT design is formulated as the problem of finding a suitable decision process
model that can assist the agent in the selection of the testing matrices to be employed at each
stage. This decision process requires also the characterization of the state transitions produced
by the actions. The non-Markovian nature of this decision process stems from decoding process
described in 2.3.2: the labeling of defective subjects in the 𝑖-th instant depends on the actions
and test results from previous instants, as stated by remark 2.2.

6.1.2 State definition

Different state definitions can be employed that assume different degrees of knowledge of the
population subsets:

(1) 𝑠𝑖 , {P𝐷,U𝑖}

This state definition requires a genie agent that has access to full knowledge of the sets
P𝐷 (and P𝑁) and of the subjects that remain to be labeled after 𝑖 rounds U𝑖. While this
definition has no real use (if the agent knew P𝐷 before testing started then no measurements
would be required), it is useful for illustration purposes.

This state definition is the only one for which the decision-making agent can have full
certainty about what the ending state at instant 𝑖 will be if a certain action A𝑖 is taken.
In other words, the following probabilities are indicator functions (they are either 0 or 1)
and are identical:

P
(︁
𝑆𝑖 = 𝑠𝑖

⃒⃒
⃒ s(𝑖−1), A(𝑖), y(𝑖), 𝑠0

)︁
= P

(︁
𝑆𝑖 = 𝑠𝑖

⃒⃒
⃒ s(𝑖−1), A(𝑖), 𝑠0

)︁

= P
(︁
𝑆 = 𝑠𝑖

⃒⃒
⃒ A(𝑖), y(𝑖), 𝑠0

)︁

Note that, as it is a non-Markovian process, P
(︁
𝑆𝑖

⃒⃒
⃒ 𝑠𝑖−1, A𝑖, y𝑖

)︁
is not an indicator

function.

1 Note that y(𝑖) and A(𝑖) were already defined in chapter 5 as the succession of tests and matrices. Within this
new context we refer to them as succession of observations and actions.

76 6 Adaptive group testing and decision processes

(2) 𝑠𝑖 ,
{︁
|D𝑐

𝑖 |,U𝑖

}︁

A more realistic state definition is to assume that the agent managed to know somehow
the amount of defective subjects in the population, |P𝐷|. Hence, after finishing the 𝑖-th
stage, the agent would know the amount of defective subjects that remain unlabeled, but it
would not know their location (it would only know they are in U𝑖). Due to this uncertainty,
the probability distribution P

(︁
𝑆𝑖

⃒⃒
⃒ s(𝑖−1), A(𝑖), 𝑠0

)︁
is not an indicator function, since the

same action can lead to transitioning into different states depending on the location of the
unlabeled defective subjects. Nevertheless, the agent can know the state 𝑠𝑖 after the action
has been taken and the corresponding observation is available: the probability distributions

P
(︁
𝑆𝑖

⃒⃒
⃒ s(𝑖−1), A(𝑖), y(𝑖), 𝑠0

)︁
= P

(︁
𝑆𝑖

⃒⃒
⃒ A(𝑖), y(𝑖), 𝑠0

)︁

are indicator functions.

This state definition provides a rather exhaustive description of the GT system that
would be useful to track the system evolution when the observations y(𝑖) are available. It
would also be useful to design sophisticated adaptive GT schemes employing structured
matrices like those that are mentioned in the introduction of the current chapter and
are not considered in our analysis. However, one of the key features of the adaptive GT
scheme proposed in this thesis is that matrices A𝑖 are randomly picked from the ensemble
Γ (L𝑖,R𝑖,N). Due to this design constraint, as the new check nodes added to the graph
are linked randomly to the unlabeled variable nodes, the selection of the degree profile
of the 𝑖-th stage does not depend on

{︀
U1, . . . , U𝑖−1

}︀
but only on

{︀
|U1|, . . . , |U𝑖−1|

}︀
.

Hence, from the point of view of designing the adaptive GT scheme, the state definition
𝑠𝑖 ,

{︁
|D𝑐

𝑖 |,U𝑖

}︁
is overly complex. For design purposes, the next state definition does not

entail any information loss.

(3) 𝑠𝑖 ,
{︁
|D𝑐

𝑖 |,|U𝑖|
}︁

This state definition includes all the information needed to predict the performance of the
adaptive GT scheme described in chapter 5 in the N-asymptotic regime. However, this state
definition is not convenient for a probabilistic analysis because i) |D𝑐

𝑖 | and |U𝑖| can take
infinitely large values in the N-asymptotic regime and their dynamic range changes with
N and ii) |D𝑐

𝑖 | and |U𝑖| cannot be assumed independent since |D𝑐
𝑖 | ≤ |U𝑖|, i.e. P(𝑆𝑖 = 𝑠)

cannot be predicted by analyzing separately P(|U𝑖|) and P(|D𝑐
𝑖 |). Fortunately the next

definition solves these problems.

Before we move on to the new definition, it is worth mentioning that the probability
distribution P

(︀
𝑆𝑖

⃒⃒
A(𝑖), y(𝑖), 𝑠0

)︀
is still an indicator function when the initial state 𝑠0 is

6.1 Decision processes and adaptivity 77

known. Indeed, if A(𝑖) and y(𝑖) are known the encoding/decoding process can be reproduced,
obtaining U𝑖 (so its cardinality is known) and obtaining D𝑖 (so |D𝑐

𝑖 | = |D𝑐
𝑜| − |D𝑖|). In this

case P
(︀
|U𝑖|

⃒⃒
A(𝑖), y(𝑖), 𝑠0

)︀
would also be an indicator function, obviously.

(4) 𝑠𝑖 ,
{︁
|D𝑐

𝑖 |
|U𝑖| ,

|U𝑖|
|U0|

}︁

For practical purposes this definition is equivalent to the previous one, since there is a
one-to-one mapping between any pair

{︀
|D𝑐

𝑖 |,|U𝑖|
}︀

and
{︁
|D𝑐

𝑖 |
|U𝑖| ,

|U𝑖|
|U0|

}︁
as long as |U𝑖| is not

zero (remember that |U0| = |P| = N is known). As the analysis focuses in the asymptotic
case of infinite length, |U𝑖| might be small but will not be zero.

The pair of magnitudes included in the state definition represent now the fraction of
defective subjects among those that remain unlabeled (i.e. the probability of an unlabeled
subject being defective, P(D𝑐

𝑖 | U𝑖)) and the fraction of the population that has not been
labeled yet (i.e. the probability of a subject being unlabeled, P(U𝑖)) at the end of the 𝑖-th
stage.

This definition solves the problems of the previous ones: i) now both components take
values in the interval (0,1) and ii) P(|D𝑐

𝑖 |, |U𝑖|) = P(|D𝑐
𝑖 | | |U𝑖|) P(|U𝑖|), so we can estimate

the distribution of the two state components separately and combine them to get a state
characterization without need of any approximation.

This is the state definition employed through the chapter.

The remaining of the chapter is devoted to the estimation of the adaptive GT process state after
performing a certain amount of stages.

6.1.3 State estimation

Let us consider the implementation of the adaptive GT scheme described in chapter 5. Let us
assume that the fraction of defective subjects in the population is known, so the initial state is
known: 𝑠0 =

{︀
P(P𝐷),1

}︀
. After 𝑖 testing stages the agent designing the next testing stages has

access to the testing matrices and to the test results obtained in the previous stages (i.e. it knows
Γ(𝑖), A(𝑖) and y(𝑖)). In order to select the matrix degree profile for the next 𝑗 stages the agent takes
into account the impact of the selection of ensembles

{︀
Γ (L𝑖+1,R𝑖+1,N) , . . . , Γ (L𝑖+𝑗 ,R𝑖+𝑗 ,N)

}︀

on the probability distribution of the state at which the system will evolve after these actions

78 6 Adaptive group testing and decision processes

are taken: the agent must do a 𝑗-step prediction to estimate1:

P
(︀
𝑆𝑖+𝑗 = 𝑠𝑖+𝑗

⃒⃒
Γ (L𝑖+𝑗 ,R𝑖+𝑗 ,N) , . . . , Γ (L𝑖+1,R𝑖+1N) , y(𝑖), A(𝑖), 𝑠0

)︀
=

P
(︀
D𝑐

𝑖+𝑗

⃒⃒
U𝑖+𝑗 , Γ (L𝑖+𝑗 ,R𝑖+𝑗 ,N) , . . . , Γ (L𝑖+1,R𝑖+1,N) , y(𝑖), A(𝑖), 𝑠0

)︀
×

P
(︀
U𝑖+𝑗

⃒⃒
Γ (L𝑖+𝑗 ,R𝑖+𝑗 ,N) , . . . , Γ (L𝑖+1,R𝑖+1,N) , y(𝑖), A(𝑖), 𝑠0

)︀

For each choice of the ensembles to be employed in the following stages the state has a different
probability distribution. In the N-asymptotic case this distribution converges to its mean, but
for finite values of N it has a non-zero variance.

There are two particular instances of this probability distribution that correspond to interesting
scenarios:

Scenario 1: Adaptive group testing implementation: 𝑗 = 1

After 𝑖 testing stages, in order to design the next adaptive GT stage the agent analyzes
the impact of the selection of Γ (L𝑖+1,R𝑖+1,N) on the system evolution. In this case the
magnitudes that must be estimated are P

(︀
D𝑐

𝑖+1|U𝑖+1, Γ (L𝑖+1,R𝑖+1,N) , y(𝑖), A(𝑖), 𝑠0
)︀

and
P
(︀
U𝑖+1

⃒⃒
Γ (L𝑖+1,R𝑖+1,N) , y(𝑖), A(𝑖), 𝑠0

)︀
.

Scenario 2. Study and design of adaptive group testing policies: 𝑖 = 0

The agent analyzes the system evolution many stages ahead without actually implementing
it. This is the task done to analyze how the ensemble design policy affects the performance
of the adaptive GT scheme in the long run and to compare different policies and assess
their impact on the evolution of the number of defective subjects that are labeled and the
number of stages and number of tests that are required. In order to do this analysis, only
the fraction of defective subjects in the population and the ensembles to be employed at
each stage need to be known, since in this case the magnitudes that must be estimated are
P
(︀
D𝑐

𝑗

⃒⃒
U𝑗 , Γ(𝑗), 𝑠0

)︀
and P

(︀
U𝑗

⃒⃒
Γ(𝑗), 𝑠0

)︀
.

Next, section 6.2 is devoted to the analysis of the probability distributions in these two scenarios
in the N-asymptotic case or N sufficiently large. The extension to the most generic scenario is
straightforward.

1 We omit to condition to the knowledge of Γ(𝑖) because it is redundant with conditioning to A(𝑖).

6.2 Predicting the evolution of the state distribution 79

First in subsection 6.2.2 Scenario 2 is considered obtaining the value of the state at which the
system ends in the N-asymptotic regime1. Afterwards, in sub-section 6.2.3 it is shown how the
equations for Scenario 1 are obtained by replacing some probability terms in the equations for
Scenario 2 by the actual values measured in the adaptive group testing system implementation.

6.2 Predicting the evolution of the state distribution

The aim of this section is to show how to track the evolution of the P
(︀
D𝑐

𝑖

⃒⃒
U𝑖,Γ(𝑖),𝑠0

)︀
and

P
(︀
U𝑖

⃒⃒
Γ(𝑖),𝑠0

)︀
as well as P

(︀
D𝑐

𝑖

⃒⃒
U𝑖,Γ𝑖,A(𝑖− 1) y(𝑖− 1),𝑠0

)︀
and P

(︀
U𝑖

⃒⃒
Γ𝑖,A(𝑖− 1), y(𝑖− 1),𝑠0

)︀
.

For the sake of conciseness we refer to these terms as P
(︀
D𝑐

𝑖

⃒⃒
U𝑖

)︀
and P

(︀
U𝑖

)︀
, respectively.

The amount of defective and non-defective subjects in the population (|P𝐷|,|P𝑁 |) is fixed by the
initial state 𝑠0 and it is assumed to be known. Hence, initially both P(P𝐷) and P(P𝑁) are also
known.

In sub-section 6.2.1 we define several sets and show the existing relations between them. These
sets are used to characterize the evolution of the adaptive process in the N-asymptotic regime
from instant 𝑖-1 to instant 𝑖.

6.2.1 Set definition

Here we define all the sets that we need to model the evolution of the parameters P
(︀
D𝑐

𝑖

⃒⃒
U𝑖

)︀

and P
(︀
U𝑖

)︀
and we also show the relations between them that are relevant for the analysis.

As the agent applies the ED to all previous stages when designing the next one, to avoid confusion
we denote as instant 𝑖 the time when the 𝑖-th stage is designed and stage 𝑚, 1 ≤ 𝑚 ≤ 𝑖, refers
to both the piece of matrix A𝑚 on the vector of tests y𝑚 at which the ED is applied at that
instant. We start by defining

Definition 6.1. D𝑖
𝑚: Set of defective subjects labeled at instant 𝑖 from the sub-matrix A𝑚 and

the observations y𝑚 when the non-defective subjects indexed in N𝑖 ∖N𝑚 are taken into account,
as stated by remark 2.2. Note that D𝑖

𝑚 = ∅ for 𝑖 < 𝑚 and that D𝑖
𝑚 is equal to D𝑚𝑖𝑛 of the 𝑚-th

stage once all the non-defective subjects in the population are labeled.

Definition 6.2. N𝑖
𝑚: Set of non-defective subjects labeled at instant 𝑖 from the sub-matrix A𝑚

and the observations y𝑚. Note that N𝑖
𝑚 = ∅ for 𝑖 < 𝑚.

Definition 6.3. N𝑖
𝑦: Set that indexes the non-defective tests of vector y𝑖.

1 Simulation results show that this value coincides with the mean of the state probability distribution in the
N-finite case.

80 6 Adaptive group testing and decision processes

Note that D𝑖
𝑚 ⊆ U𝑗 and N𝑖

𝑚 ⊆ U𝑗 for 𝑗 < 𝑚 and that they are only partially contained in any
U𝑗 for 𝑗 ≥ 𝑚 due to remark 5.2 and 5.1. Their expected (and desirable) behavior is that the
amount of subjects indexed in the D𝑖

𝑚 and N𝑖
𝑚 increases as more and more actions are executed.

Definition 6.4. ΔN𝑖
𝑚: Set of non-defective subjects indexed in N𝑖

𝑚 that were not indexed at
instant 𝑖− 1 by the sets N𝑖−1

𝑚

ΔN𝑖
𝑚 , N𝑖

𝑚∖N𝑖−1
𝑚

Due to remarks 5.1 and 5.2 ΔN𝑚
𝑚 ≡ N𝑚

𝑚 and ΔN𝑖
𝑚 ≡ ∅ ∀𝑚 < 𝑖, since both the non-defective

subjects are labeled as indicated by remark 2.1 and subjects are no further tested once they are
labeled, as indicated by remark 5.1.

Definition 6.5. ΔD𝑖
𝑚: Set of defective subjects indexed in D𝑖

𝑚 that were not indexed at instant
𝑖− 1 by the set D𝑖−1

𝑚

ΔD𝑖
𝑚 , D𝑖

𝑚∖D𝑖−1
𝑚

The equivalence between ΔD𝑖
𝑚 and D𝑖

𝑚 is not as straightforward as in the former case. For
𝑖 = 𝑚, ΔD𝑚

𝑚 ≡ D𝑚
𝑚. Regretfully, as the instant 𝑖 increases the set D𝑖

𝑚 is partitioned into two
different subsets: the set ΔD𝑖

𝑚 ∩ U𝑖−1, ΔD𝑖
𝑚 ∩ D𝑖−1, because defective subjects can also be

labeled using the tests from other stages. We are interested in tracking the subjects that are
labeled in instant 𝑖 by the defective check nodes of A𝑚 but were not labeled in instants 𝑖-1, i.e.
ΔD𝑖

𝑚 ∩ U𝑖−1.

Definition 6.6. ΔN𝑖: Set of non-defective subjects that are labeled at instant 𝑖 but were unlabeled
at instant 𝑖− 1

ΔN𝑖 ,
⋃︁

1≤𝑚≤𝑖
ΔN𝑖

𝑚

Due to remarks 2.1 and 5.2 it holds that ΔN𝑖
𝑚 ∩ΔN𝑖

𝑘 ≡ ∅ ∀𝑚 ̸= 𝑘. Thus ΔN𝑖 is the union of
several disjoint sets.

Definition 6.7. ΔD𝑖: Set of defective subjects that are labeled at instant 𝑖 but were unlabeled at
instant 𝑖− 1

ΔD𝑖 ,
⋃︁

1≤𝑚≤𝑖

{︀
ΔD𝑖

𝑚 ∩ U𝑖−1
}︀

6.2 Predicting the evolution of the state distribution 81

Note that the intersection set ΔD𝑖
𝑚 ∩ΔD𝑖

𝑗 ∩ U𝑖−1, 𝑗,𝑚 ≤ 𝑖,𝑚 ̸= 𝑗, can be any non-empty set.

Due to the random construction of the measurement matrix A(𝑖) all subjects indexed in U𝑖−1

have the same probability of belonging to ΔD𝑖
𝑗 ∩ U𝑖−1, ∀𝑗 ≤ 𝑖 and, hence, they have the same

probability of being labeled or not at instant 𝑖− 1 by any check node of any matrix A𝑗 𝑗 ≤ 𝑖− 1.
This fact also implies that subjects can be indexed in several sets ΔD𝑖

𝑗 ∩U𝑖−1, ∀𝑗 ≤ 𝑖, since their
presence in one set depends only of the construction of A𝑗 , the test vector y𝑗 and the subjects
indexed in N𝑖.

Finally, the sets N𝑖 and D𝑖 can be easily obtained as

N𝑖 ≡ N𝑖−1 ∪ΔN𝑖 D𝑖 ≡ D𝑖−1 ∪ΔD𝑖 (6.1)

because by the definition both N𝑖−1 ∩ΔN𝑖 = ∅ and D𝑖−1 ∩ΔD𝑖 = ∅.

6.2.2 State update equations for policy design

In this section we derive all the equations required to update the parameters P
(︀
D𝑐

𝑖

⃒⃒
U𝑖

)︀
and

P
(︀
U𝑖

)︀
for Scenario 2, i.e. when no observations are available.

We assume throughout all the section that i) all probabilities of the previous instants 𝑗, 1 ≤ 𝑗 ≤
𝑖− 1 have been previously deduced, ii) all subjects are initially unlabeled, P(U0) = 1 and hence
initially P(D0) = 0 and P(N0) = 0 and iii) 𝑠0 is initially known, so the probability of defective
subjects P(D𝑐

0) is known.

We focus on obtaining the probabilities P
(︀
D𝑖

)︀
and P

(︀
N𝑖

)︀
, since the parameters P

(︀
D𝑐

𝑖

⃒⃒
U𝑖

)︀
and

P
(︀
U𝑖

)︀
can be derived from them as follows

P
(︀
U𝑖

)︀
= 1− P

(︀
D𝑖

)︀
− P

(︀
N𝑖

)︀
(6.2)

P
(︀
D𝑐

𝑖

⃒⃒
U𝑖

)︀
=

P
(︀
D𝑐

0

)︀
− P

(︀
D𝑖

)︀

P
(︀
U𝑖

)︀ (6.3)

and P
(︀
N𝑐

𝑖

⃒⃒
U𝑖

)︀
+P

(︀
D𝑐

𝑖

⃒⃒
U𝑖

)︀
= 1. We obtain the terms P

(︀
D𝑖

)︀
and P

(︀
N𝑖

)︀
from the definitions in

(6.1) as

P
(︀
D𝑖

)︀
= P

(︀
D𝑖−1

)︀
+ P

(︀
ΔD𝑖

)︀
(6.4)

P
(︀
N𝑖

)︀
= P

(︀
N𝑖−1

)︀
+ P

(︀
ΔN𝑖

)︀
(6.5)

where the terms P(D𝑖−1), P(N𝑖−1) and P(U𝑖−1) in equations (6.4) and (6.5) can be assumed to
be known at the 𝑖-th round, since they were computed previously.

82 6 Adaptive group testing and decision processes

As a summary of this subsection, we summarize here the equations employed to update the
parameters P

(︀
U𝑖

)︀
and P

(︀
D𝑐

𝑖

⃒⃒
U𝑖

)︀
as indicated by equations (6.2) and (6.3) with the parameters

P
(︀
N𝑖

)︀
and P

(︀
D𝑖

)︀
from equations (6.4) and (6.5). P(N𝑖) results from updating equation (6.12)

and applying its result to equation (6.5).

Afterwards we can update P(D𝑖) in equation equations (6.4) executing, ∀𝑚, 1 ≤ 𝑚 ≤ 𝑖, equations
(6.14), (6.13), (6.15). Then also for ∀𝑚, 1 ≤ 𝑚 ≤ 𝑖 (6.18), (6.19), (6.17), (6.20) and apply the
results obtained into (6.16) and into (6.21) to obtain P(ΔD𝑖

𝑚 | D𝑐
𝑖−1). Finally, we can obtain

P(ΔD𝑖) from equation (6.22) through the intermediate step described by equation (6.23).

Tracking the evolution of the non-defective subjects

In this subsection we show the process to derive the term P
(︀
ΔN𝑖

)︀
in equation (6.5). We exploit

the graph representation of the measurement matrix to characterize this term, i.e. we count the
amount of check nodes generated at instant 𝑖 whose result is non-defective and then we count the
amount of subjects that contributed to these nodes. Note that all the subjects that contributed
to them are non-defective (remark 2.1), so these subjects are enclosed in the set N𝑖

𝑖.

We apply ΔN𝑖 = N𝑖
𝑖 to equation (6.5) so

P
(︀
ΔN𝑖

⃒⃒
U𝑖−1

)︀
= P

(︀
N𝑖

𝑖

⃒⃒
U𝑖−1

)︀
(6.6)

and hence we focus on obtaining P
(︀
N𝑖

𝑖

⃒⃒
U𝑖−1

)︀
.

As in section 4.2.1, we can obtain the fraction of subjects labeled as non-defective by the 𝑖-th
round of tests because it coincides with the fraction of edges departing of tests of the 𝑖-th round
that are non-defective P

(︀
𝑦 ∈ N𝑖

𝑦

)︀1. The fraction of non-defective tests depends on both the

fraction of non-defective subjects at the end ofthe previous stage P
(︁
N𝑐

𝑖−1

⃒⃒
⃒ U𝑖−1

)︁
and the amount

of subjects that contribute to generate each test 𝑑.

We can obtain this probability introducing the dependence with the amount of edges of the
nodes, i.e. the cardinal of |I𝑐|, as

P
(︀
N𝑖

𝑦

)︀
=
∑︁

∀𝑑
R𝑖 (𝑑) P

(︀
N𝑖

𝑦

⃒⃒
|I𝑐| = 𝑑

)︀
=
∑︁

∀𝑑
R𝑖 (𝑑) P

(︀
|I𝑐 ∩N𝑐

𝑖−1| = 𝑑
⃒⃒
|I𝑐| = 𝑑

)︀
(6.7)

where R𝑖 (𝑑) is the fraction of tests of the 𝑖-th stage with 𝑑 contributors and P
(︀
N𝑖

𝑦

⃒⃒
|I𝑐| = 𝑑

)︀

is the probability of obtaining a non-defective test with 𝑑 contributors. Due to remark 2.1

1 Note that this fraction coincides with the fraction of check nodes of type I generated at instant 𝑖 in section
2.3.3.

6.2 Predicting the evolution of the state distribution 83

the probability that a given test is negative is equal to the probability that all the subject
contributing to it are non-defective1

P
(︀
N𝑖

𝑦

⃒⃒
|I𝑐| = 𝑑

)︀
= P

(︀
N𝑐

𝑖−1
⃒⃒
U𝑖−1

)︀𝑑 (6.8)

We can obtain P
(︀
N𝑖

𝑖

⃒⃒
U𝑖−1

)︀
noting that the fraction of edges of A𝑖 connected to variable nodes

representing non-defective subjects at instant 𝑖 equals the average number of contributors to
non-defective tests divided by the average number of edges per check node, as follows

P
(︀
N𝑖

𝑖

⃒⃒
U𝑖−1

)︀
=

∑︀
∀𝑑≥0 𝑑 R𝑖 (𝑑) P

(︀
N𝑐

𝑖−1
⃒⃒
U𝑖−1

)︀𝑑
∑︀
∀𝑑≥0 𝑑 R𝑖 (𝑑)

(6.9)

Therefore, the term P
(︀
ΔN𝑖

⃒⃒
U𝑖−1

)︀
in equation (6.5) is obtained from equation (6.9) as indicated

by equation (6.6).

Note that we can directly obtain P
(︀
ΔN𝑖

)︀
recalling that due to equation (5.2), the average number

of edges of the graph generated at the 𝑖-th round from the point of view of variable nodes is

∑︁

∀𝑑≥0
𝑑𝑣 L𝑖 (𝑑) = P

(︀
U𝑖−1

)︀
(6.10)

where we applied that the variable node degree profile is given in equation (5.3) . Then we apply
the results of equations (6.9) and (6.10) to obtain

P
(︀
ΔN𝑖

)︀
= P

(︀
N𝑖

𝑖

⃒⃒
U𝑖−1

)︀
P
(︀
U𝑖−1

)︀

=

⎛
⎝∑︁

∀𝑑≥0
𝑑 L𝑖 (𝑑)

⎞
⎠
∑︀
∀𝑑≥0 𝑑 R𝑖 (𝑑) P

(︀
N𝑐

𝑖−1
⃒⃒
U𝑖−1

)︀𝑑
∑︀
∀𝑑≥0 𝑑 R𝑖 (𝑑)

(6.11)

which rearranging terms reduces to a more compact expression

P
(︀
ΔN𝑖

)︀
= r𝑖

∑︁

∀𝑑≥0
𝑑 R𝑖 (𝑑) P

(︀
N𝑐

𝑖−1
⃒⃒
U𝑖−1

)︀𝑑 (6.12)

where r𝑖 is the rate of matrix A𝑖 as in equation (5.1).

1 This term coincides with the probability of check type I in equation (2.4) in section 2.3.3.

84 6 Adaptive group testing and decision processes

Tracking the evolution of the defective subjects

We devote this section to derive the equations required to characterize the evolution of the sets of
defective subjects from instant 𝑖− 1 to instant 𝑖. Specifically, here we compute the evolution of
the probabilities P(D𝑖

𝑚 | D𝑐
𝑚−1) and P(ΔD𝑖

𝑚 | D𝑐
𝑚−1), then we focus on obtaining a probability

of P(ΔD𝑖
𝑚 | U𝑖−1) and finally P(ΔD𝑖).

First we focus on characterizing P
(︀
D𝑖

𝑚

⃒⃒
U𝑚−1

)︀
exploiting the graph representation of the

succession of matrices A(𝑖) with the counting edges strategy. We enclose here the two most
relevant equations whereas the whole derivation is in appendix 6.A. So

P
(︀
D𝑖

𝑚

⃒⃒
U𝑚−1

)︀
=

∑︁

𝑑≥0
R𝑚 (𝑑) 𝑑P

(︀
D𝑐

𝑚−1
⃒⃒
U𝑚−1

)︀(︀
P
(︀
N𝑐

𝑚−1
⃒⃒
U𝑚−1

)︀
P
(︀
N𝑖

⃒⃒
N𝑐

𝑚

)︀)︀𝑑−1

∑︁

𝑑≥0
𝑑 R𝑚 (𝑑)

(6.13)

where R𝑚 (𝑑) is the check node degree profile of matrix A𝑚, the terms P
(︀
N𝑐

𝑚−1
⃒⃒
U𝑚−1

)︀
and

P
(︀
D𝑐

𝑚−1
⃒⃒
U𝑚−1

)︀
are already available at instant 𝑖 because they were computed at instant 𝑚 < 𝑖

and the term P
(︀
N𝑖

⃒⃒
N𝑐

𝑚

)︀
can be obtained as follows

P
(︀
N𝑖

⃒⃒
N𝑐

𝑚

)︀
=

∑︀𝑖
𝑗=𝑚+1 P(ΔN𝑗)

P(N𝑐
0)−

∑︀𝑚
𝑗=1 P(ΔN𝑗)

(6.14)

Next we can easily obtain P
(︀
ΔD𝑖

𝑚

⃒⃒
D𝑐

𝑚−1
)︀
, 𝑚 ≤ 𝑖, as

P
(︀
ΔD𝑖

𝑚

⃒⃒
D𝑐

𝑚−1
)︀
=

P
(︀
D𝑖

𝑚

⃒⃒
U𝑚−1

)︀
− P

(︀
D𝑖−1

𝑚

⃒⃒
U𝑚−1

)︀

P
(︀
D𝑐

𝑚−1
⃒⃒
U𝑚−1

)︀ (6.15)

where we applied the Bayes rule and that D𝑖−1
𝑚 ⊆ D𝑖

𝑚
1 holds, as stated before in section 6.2.1.

The next step is to obtain P
(︀
ΔD𝑖

𝑚

⃒⃒
D𝑐

𝑖−1
)︀
. With this goal in mind we first focus on computing

P
(︀
ΔD𝑖

𝑚 ∩D𝑐
𝑖−1
⃒⃒
D𝑐

𝑚−1∖D𝑖−1
𝑚

)︀
. It holds that

P
(︀
ΔD𝑖

𝑚 ∩D𝑐
𝑖−1
⃒⃒
D𝑐

𝑚−1∖D𝑖−1
𝑚

)︀
= P

(︀
ΔD𝑖

𝑚

⃒⃒
D𝑐

𝑚−1∖D𝑖−1
𝑚

)︀
P
(︀
D𝑐

𝑖−1
⃒⃒
D𝑐

𝑚−1∖D𝑖−1
𝑚

)︀
(6.16)

because all the subjects indexed in ΔD𝑖
𝑚 are labeled by matrices independently picked at

random from different ensembles, so at instant 𝑖 all subjects labeled by any stage 𝑚 are selected
independently and at random from the set D𝑐

𝑚−1∖D𝑖−1
𝑚 .

1 Note that D𝑖−1
𝑖 = ∅ because no subjects can be labeled by a stage of tests before being generated, so

P
(︀
D𝑖−1

𝑖

⃒⃒
D𝑐

𝑖−1

)︀
= 0.

6.2 Predicting the evolution of the state distribution 85

First we compute P
(︀
D𝑐

𝑚−1∖D𝑖−1
𝑚

⃒⃒
U𝑚−1

)︀
as follows

P
(︀
D𝑐

𝑚−1∖D𝑖−1
𝑚

⃒⃒
U𝑚−1

)︀
= P

(︀
D𝑐

𝑚−1
⃒⃒
U𝑚−1

)︀
− P

(︀
D𝑖−1

𝑚

⃒⃒
U𝑚−1

)︀
(6.17)

P
(︀
D𝑐

𝑚−1∖D𝑖−1
𝑚

⃒⃒
D𝑐

𝑚−1
)︀
=

P
(︀
D𝑐

𝑚−1
⃒⃒
U𝑚−1

)︀
− P

(︀
D𝑖−1

𝑚

⃒⃒
U𝑚−1

)︀

P
(︀
D𝑐

𝑚−1
⃒⃒
U𝑚−1

)︀ = 1− P
(︀
D𝑖−1

𝑚

⃒⃒
D𝑐

𝑚−1
)︀

(6.18)

and then we can obtain P
(︀
ΔD𝑖

𝑚

⃒⃒
D𝑐

𝑚−1∖D𝑖−1
𝑚

)︀
as follows

P
(︀
ΔD𝑖

𝑚

⃒⃒
D𝑐

𝑚−1∖D𝑖−1
𝑚

)︀
=

P
(︀
ΔD𝑖

𝑚

⃒⃒
D𝑐

𝑚−1
)︀

P
(︀
D𝑐

𝑚−1∖D𝑖−1
𝑚

⃒⃒
D𝑐

𝑚−1
)︀ (6.19)

P
(︀
D𝑐

𝑖−1
⃒⃒
D𝑐

𝑚−1∖D𝑖−1
𝑚

)︀
=

P
(︀
D𝑐

𝑖−1
⃒⃒
U𝑚−1

)︀

P
(︀
D𝑐

𝑚−1∖D𝑖−1
𝑚

⃒⃒
U𝑚−1

)︀ (6.20)

where the probabilities in the numerator and denominator of equation (6.19) are given in equations
(6.15) and (6.17), respectively, and the probability in the numerator of equation (6.20) was
computed in a previous instant and the one in the denominator is in equation (6.18).

Then obtain the probability

P
(︀
ΔD𝑖

𝑚 ∩D𝑐
𝑖−1
⃒⃒
D𝑐

𝑚−1
)︀
= P

(︀
ΔD𝑖

𝑚 ∩D𝑐
𝑖−1
⃒⃒
D𝑐

𝑚−1∖D𝑖−1
𝑚

)︀
P
(︀
D𝑐

𝑚−1∖D𝑖−1
𝑚

⃒⃒
D𝑐

𝑚−1
)︀

P
(︀
ΔD𝑖

𝑚

⃒⃒
D𝑐

𝑖−1
)︀
=

P
(︀
ΔD𝑖

𝑚 ∩D𝑐
𝑖−1
⃒⃒
D𝑐

𝑚−1∖D𝑖−1
𝑚

)︀
P
(︀
D𝑐

𝑚−1∖D𝑖−1
𝑚

⃒⃒
D𝑐

𝑚−1
)︀
P(D𝑐

𝑚−1)

P(D𝑐
𝑖−1)

(6.21)

applying Bayes and both that D𝑐
𝑖−1 ⊆ D𝑐

𝑚−1 ∖D𝑖−1
𝑚 and that D𝑐

𝑚−1∖D𝑖−1
𝑚 ⊆ D𝑐

𝑚−1.

We can assume that the subjects indexed in ΔD𝑖
𝑚 ∩D𝑐

𝑖−1 are chosen independently at random
among the subjects enclosed in D𝑐

𝑖−1 because the matrices A𝑚 were also picked at random from
different ensembles of matrices Γ𝑚, 1 ≤ 𝑚 ≤ 𝑖. Thus, we can find P

(︀
ΔD𝑖

)︀
as indicated by

definition 6.7

P
(︀
ΔD𝑖

)︀
= P

(︀ ⋃︁

1≤𝑗≤𝑖
ΔD𝑖

𝑗

⃒⃒
D𝑐

𝑖−1
)︀
P
(︀
D𝑐

𝑖−1
)︀

(6.22)

where we can obtain the probability of the union of the sets with the well known formula of the
sum of the probabilities of two independent random variables applying next equation recursively

P
(︀ ⋃︁

1≤𝑗≤𝑚
ΔD𝑖

𝑗

⃒⃒
D𝑐

𝑖−1
)︀
= P

(︀
ΔD𝑖

𝑚

⃒⃒
D𝑐

𝑖−1
)︀
+ P

(︀ ⋃︁

1≤𝑗≤𝑚−1
ΔD𝑖

𝑗

⃒⃒
D𝑐

𝑖−1
)︀ (︀

1− P
(︀
ΔD𝑖

𝑚

⃒⃒
D𝑐

𝑖−1
)︀)︀

(6.23)

86 6 Adaptive group testing and decision processes

6.2.3 State update equations for 1-step prediction

Here we extend the equations in the previous section to the case where the agent has access
to A(𝑖− 1) and y(𝑖− 1) and wishes to predict the state evolution if it chooses a matrix of the
ensemble Γ𝑖 (i.e. scenario 1 in section 6.1.3). In this case the agent can exploit this knowledge to
produce more accurate predictions of the outcome of an action Γ𝑖.

At instant 𝑖− 1 (i.e. after decoding g𝑒(A(𝑖− 1), y(𝑖− 1))) the agent gains access to the following
data sets:

• The set of subjects that remain unlabeled at the end of the 𝑖− 1-th decoding step, U𝑖−1.

• The set of non-defective subjects labeled by A𝑖−1 and y𝑖−1, N𝑖−1
𝑖−1 as described in definition

6.2.

• The sets of defective subjects labeled by A𝑚 and y𝑚 when the set of non-defective subjects
N𝑖−1 is taken into account, D𝑖−1

𝑚 , as described in definition 6.1, 0 < 𝑚 ≤ 𝑗 ≤ 𝑖− 1.

So, the agent can use this new data to obtain the values of the following variables

U𝑖−1: The agent can count the amount of unlabeled subjects at the end of the decoding stage
|U𝑖−1|, so it can compute the true value of

P(U𝑖−1) = |U𝑖−1|/N (6.24)

instead of predicting it.

ΔN𝑖−1: (See definition 6.6) This set coincides with N𝑖−1
𝑖−1 , so the agent can replace the predicted

value in equation (6.12) by the true value

P(ΔN𝑖−1) = |N𝑖−1
𝑖−1|/N. (6.25)

D𝑖−1
𝑚 : (See definition 6.1) The agent can infer the subjects that belong to this set counting the

defective subjects labeled by the check nodes of matrix A𝑖 with defective tests y𝑖 at the
end of the 𝑖− 1 decoding step, since the real P

(︀
D𝑖−1

𝑚

⃒⃒
U𝑚−1

)︀
in equation (6.13) is

P
(︀
D𝑖−1

𝑚

⃒⃒
U𝑚−1

)︀
= |D𝑖−1

𝑚 |/|U𝑚−1|. (6.26)

Hence, after evaluating these values from the real system, the agent would estimate the next
state, P

(︀
U𝑖

)︀
and P

(︀
D𝑐

𝑖

⃒⃒
U𝑖

)︀
, applying equations (6.2) and (6.3) with the parameters P

(︀
N𝑖

)︀
and

6.3 Validation plots 87

P
(︀
D𝑖

)︀
from equations (6.4) and (6.5). P(N𝑖) results from updating for 1 ≤ 𝑚 ≤ 𝑖− 1 the term

in equation (6.25) and computing equation (6.12) and applying these results to equation (6.5).

Afterwards we can update P(D𝑖) in equation equations (6.4) executing, ∀𝑚, 1 ≤ 𝑚 ≤ 𝑖, equations
(6.14)1, (6.26), (6.15). Then also for ∀𝑚, 1 ≤ 𝑚 ≤ 𝑖 (6.18), (6.19), (6.17), (6.20) and apply the
results obtained into (6.16) and into (6.21). Finally, we can obtain P(ΔD𝑖) from equation (6.22)
through the intermediate step described by equation (6.23).

6.3 Validation plots

In this section we assess the accuracy of the predictions obtained using the equations presented in
section 6.2 for several population sizes and probabilities of defective. We compare the performance
of the adaptive scheme proposed in chapter 5, obtained by the Monte Carlo (MC) simulation
with the performance predicted by the equations deduced in section 6.2.2.

The results obtained show that we can predict the evolution of the mean of P(𝑆𝑖 | Γ(𝑖); 𝑠0) in
the N-finite regime, i.e. the evolution of P

(︀
U𝑖

⃒⃒
Γ(𝑖); 𝑠0

)︀
and P

(︀
D𝑐

𝑖

⃒⃒
U𝑖; Γ(𝑖); 𝑠0

)︀
as 𝑖 increases,

since it coincides with the predictions in the N-asymptotic regime.

In this section all the simulation results were obtained employing the policy in appendix 5.A.
With this prefixed policy the ensemble Γ𝑖+1 depends on the value of P

(︀
D𝑐

𝑖

⃒⃒
U𝑖

)︀
. For the sake of

clarity and comparison in this section we refer to the initial conditions of the simulations to as
population, i.e. defined by K and N in the N finite case, simply as

{︁
|P𝐷|
N ,N

}︁
. Throughout this

section we assume that K is known.

Throughout all this section each realization of the population was chosen at random among all
the possible realizations of the populations {P(P𝐷),N}, e.g. if {0.0966,N} there are exactly 9666
and 966 defective subjects in each realization when N = 100000 and N = 10000, respectively.

Figure 6.1 compares the accuracy of the prediction equations with the performance of the
proposed scheme obtained by MC simulation when the population {0.0966,N} with N = 10000

and N = 100000. These populations were obtained by averaging 10000 and 1000 realizations,
respectively.

In figure 6.1 we compare the evolution of P
(︀
D𝑐

𝑖

⃒⃒
U𝑖

)︀
(dot-dashed line), P

(︀
U𝑖

)︀
(solid line) and the

average aggregated rate of the matrix (dashed line) generated up to an instant 𝑖. The horizontal
axis indicates the instant 𝑖. We point out that the plots have two vertical scales to measure

1 From the terms obtained updating for 1 ≤ 𝑚 ≤ 𝑖 − 1 the term in equation (6.25) and computing equation
(6.12).

88 6 Adaptive group testing and decision processes

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

stage/instant

P
(Dc i

|U
i) ,

A
g
g
re
g
a
te
d
ra
te

0 1 2 3 4 5 6 7
10

−4

10
−3

10
−2

10
−1

10
0

P
(U i

)

Figure 6.1: Comparison of predicted performance N = ∞ (marker ’x’) with the one obtained
by MC simulations of populations with N = 10000 (marker ’�’) and N = 100000 (marker ’o’) of
the parameters P(U𝑖) (solid blue line) and P(D𝑐

𝑖 | U𝑖) (black dash-dotted line) for initial states
{0.0966,N}. Figures also show the average aggregated rate of the measurement matrices (red dashed
line).

the probabilities; the one on the left hand side refers to P
(︀
D𝑐

𝑖

⃒⃒
U𝑖

)︀
and the one on the right

hand side refers to P
(︀
U𝑖

)︀
, e.g. the top-left plot 6.1 shows that at instant 𝑖 = 5 P

(︀
D𝑐

𝑖

⃒⃒
U𝑖

)︀
is

approximately equal to 0.2936 and P
(︀
U𝑖

)︀
is equal to 0.03079. The average aggregated rate is

referred also to the left-hand side scale and so the rate at instant 𝑖 = 5 depicted by figure 6.1 is
equal to 0.07193.

Figure 6.1 shows that the predicted evolution of P(U𝑖) and P(D𝑐
𝑖 | U𝑖) matches the evolution

of the parameters obtained by the MC simulation whenever the average number of subjects
that remain to be labeled is large enough, since for instant 𝑖 ≤ 4 the plots representing the
evolution of P

(︀
U𝑖

)︀
, P
(︀
D𝑐

𝑖

⃒⃒
U𝑖

)︀
and the average aggregated rate coincide both the ones obtained

analytically and the ones obtained by MC simulations.

A mismatch between the analytical results and the ones obtained by MC simulation arises for
𝑖 ≥ 5. Initially the predicted and the simulated P

(︀
D𝑐

𝑖

⃒⃒
U𝑖

)︀
start to diverge and then, due to this

divergence at later instant 𝑖 the plots P
(︀
U𝑖

)︀
start to diverge. The plots representing the MC

simulation with the N (depicted by squares) diverges earlier from the predicted behavior that
the ones representing the larger population (depicted by circles).

This effect can be attributed to the fact that in average only a few subjects remain unlabeled at
the later stages of the testing process, e.g. for N = 104 the average amount of subjects in U5 and

6.3 Validation plots 89

U6 are equal to 28.6 and 7.9 respectively, so the assumption that the amount of subjects is large
enough, made throughout all the chapter, does not hold.

In spite of this inaccuracy both the predicted and simulated average aggregated rate of the
measurement matrices coincide, since in the later stages of the testing process the amount of
generated test is low in comparison to the amount of generated tests in the early stages of the
process. We would like to add that all simulations stopped once all the subjects were labeled.
We decided to omit the result for instant 𝑖 larger than the ones depicted in the figures because
the amount of realizations of the simulation that achieved those instants was too low to obtain
relevant results.

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

stage/instant

P
(D

c i
|U

i) ,
A
g
g
re
g
a
te
d
ra
te

0 1 2 3 4 5 6 7 8 9
10

−4

10
−3

10
−2

10
−1

10
0

P
(U i

)
Figure 6.2: Comparison of predicted performance N =∞ (’x’) with MC simulations of N = 100000
(’o’) of the parameters P(U𝑖) (solid blue line) and P(D𝑐

𝑖 | U𝑖) (black dot point line) for different initial
state {0.00966}. Figure also show the theoretical average aggregated rate (red striped line).

Figure 6.2, 6.3 and 6.4 compare the predicted and the simulated evolution of the parameters
for several populations and as opposed to figure 6.1 they focus on the larger population sizes,
N = 100000 ({0.00966,N}, {0.05660,N} and {0.12660,N} in figures 6.2, 6.3 and 6.4 respectively).
Each simulation was obtained by averaging the results obtained from 1000 MC simulations whose
realizations were randomly picked among all the possible realizations of the population.

Figures 6.2, 6.3 and 6.4 show that it is possible to predict accurately the evolution of the
parameters P

(︀
D𝑐

𝑖

⃒⃒
U𝑖

)︀
and P

(︀
U𝑖

)︀
obtained by MC simulations. In this case all plots show that

the predictions obtained from the equations to track the parameters were accurate.

Figures 6.2 and 6.4 show that the prediction accurately describes both populations with a large
and a reduced fraction of defective subjects. In figures 6.3 and 6.4 we omitted the results obtained

90 6 Adaptive group testing and decision processes

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

stage/instant

P
(Dc i

|U
i) ,

A
g
g
re
g
a
te
d
ra
te

0 1 2 3 4 5 6 7
10

−4

10
−3

10
−2

10
−1

10
0

P
(U i

)

Figure 6.3: Comparison of predicted performance N =∞ (’x’) with MC simulations of N = 100000
(’o’) of the parameters P(U𝑖) (solid blue line) and P(D𝑐

𝑖 | U𝑖) (black dot point line) for different initial
state {0.0566}. Figure also show the theoretical average aggregated rate (red striped line).

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

stage/instant

P
(D

c i
|U

i) ,
A
g
g
re
g
a
te
d
ra
te

0 1 2 3 4 5 6 7
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

P
(U i

)

Figure 6.4: Comparison of predicted performance N =∞ (’x’) with MC simulations of N = 100000
(’o’) of the parameters P(U𝑖) (solid blue line) and P(D𝑐

𝑖 | U𝑖) (black dot point line) for different initial
state {0.1266}. Figure also show the theoretical average aggregated rate (red striped line).

for instants 𝑖 ≥ 7, since the plots of figures started to diverge as shown in 6.4.

We included results for 𝑖 = 8,9 in figure 6.2 to depict a different behavior of the simulator. Note
that the plot that depicts the evolution of parameter P

(︀
D𝑐

𝑖

⃒⃒
U𝑖

)︀
has no value at instant 𝑖 = 9.

6.3 Validation plots 91

This happened because only unlabeled subjects remained to be labeled at the end of stage 𝑖 = 9

in all realizations that required nine stages.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

stage/instant

P
(Dc i

|U
i) ,

A
g
g
re
g
a
te
d
ra
te

0 1 2 3 4 5 6 7 8 9 10
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

P
(U i

)

Figure 6.5: Comparison of predicted performance N =∞ (x) with MC simulations of population
{0.0180,N} with N = 1000 (�) and N = 10000 (o) of the parameters P(U𝑖) (solid blue line) and
P(D𝑐

𝑖 | U𝑖) (black dot point line) for different populations. Figures also show the theoretical average
aggregated rate (red striped line).

Figures 6.6 and 6.5 focus on comparing the predicted averages of the parameters P(U𝑖 | Γ(𝑖),𝑠0)
and P(D𝑐

𝑖 | Γ(𝑖),𝑠0) with the actual P(U𝑖 | A(𝑖), y(𝑖),𝑠0) obtained by MC of the populations
{0.0180,N} with N = 1000 (�) and N = 10000. For the sake of comparison we added a figure
to present the results as for figures 6.1, 6.2, 6.3, 6.4, 6.6 and 6.5. Figures 6.6 and 6.5 were
obtained by averaging the results of 780000 and 3000000 simulations for N = 10000 and N = 1000,
respectively, and each realization was randomly piked among all the realizations of the population.

Figure 6.6 depicts the shapes of the estimated probability distribution in the MC simulations and
a vertical line for the predicted parameter for 𝑖 = 1, . . . ,5. The solid and the dash-dotted lines
represent evolution for instants 𝑖 = 1, . . . ,5 of the probability distribution P(U𝑖 | A(𝑖), y(𝑖),𝑠0)
N = 104 and N = 103, respectively. For the sake of comparison we depict the normalized
distribution (the horizontal axis is normalized by dividing by N).

Figure 6.6 shows that the distribution for N = 104 initially is close to the bell of a binomial
distribution whereas the one with N = 103 is multi modal. The figure also shows that in both
cases the probability mass concentrates around the predicted values. Furthermore, it also shows
that, irrespective of the amount of subject of the population as 𝑖 increases the distributions
become less and less scattered, concentrating more and more around the predicted value of its
mean.

92 6 Adaptive group testing and decision processes

Figure 6.5 shows that the prediction of P
(︀
U𝑖

)︀
is initially accurate and becomes more and more

rough as time passes. The estimated parameters of the simulation match the predicted behavior
of the parameters better than the ones of the simulation with a reduced population. Note that
behaviour of the scheme for N = 1000 is accurately predicted even though the distributions in in
figure 6.6 are not binomial.

Note also that for 𝑖 = 7 the average number of unlabeled subjects of the simulation with
N = 103 is close to one, so most simulations do not reach this instant. It must be remarked
that even though that the prediction with N = 103 of the fraction of defective subjects that
remain unlabeled at 𝑖 is rough from early stages it also keeps close to the simulated behavior
of the scheme irrespective of the instant. It must be also noted that the fraction of unlabeled
subjects deviates from the predicted behavior falling abruptly. For N = 104 the evolution of the
parameters obtained from the simulation matches its predicted behavior.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

P
ro

b
a
b
ili

ty

P
(
Ui

)

i=5

i=4

i=3 i=2 i=1

Figure 6.6: Comparison of the probability mass function P(U𝑖 | A(𝑖), y(𝑖),𝑠0) obtain by MC of
population {0.0180,N} N = 1000 (dashed line) N = 10000 (solid line) of the parameters P(U𝑖) with
the predicted average of P(U𝑖 | Γ(𝑖),𝑠0) (vertical lines).

6.A Proof 93

Appendix 6.A Proof

Let us focus on P
(︁
D𝑖

𝑚

⃒⃒
⃒ U𝑚−1

)︁
. We can apply counting edges strategy, as in equation (6.9) in

and label one defective subject per defective test where all but one subject are already labeled,
i.e. a test node with all but one subject labeled as non-defective

P
(︁
D𝑖

𝑚

⃒⃒
⃒ U𝑚−1

)︁
=

∑︀
𝑑≥0 R𝑚 (𝑑) P

(︁
|I ∩D𝑐

𝑚−1| = 1,|I ∩N𝑖| = |I|−1
⃒⃒
⃒ U𝑚−1, |I| = 𝑑

)︁

∑︀
𝑑≥0 𝑑 R𝑚 (𝑑)

(6.27)

where |I ∩ D𝑐
𝑚1
| = 1 represents the test nodes of the graph representation of A𝑚 that have

in their neighborhood I the contribution of a single defective subject indexed in D𝑐
𝑚−1 and

|I ∩ N𝑖| = |I|−1 indicates that all but one subjects in the neighborhood of the test nodes are
already labeled as non-defective at the 𝑖-th round. We can model the probability P

(︁
|I∩D𝑐

𝑚−1| =
1,|I ∩N𝑖| = |I|−1

⃒⃒
⃒ U𝑚−1, |I| = 𝑑

)︁
in equation (6.27) as follows

P
(︁
|I ∩D𝑐

𝑚−1| = 1,|I ∩N𝑖| = |I|−1
⃒⃒
⃒ U𝑚−1, |I| = 𝑑

)︁
= P

(︁
|I ∩D𝑐

𝑚−1| = 1
⃒⃒
⃒ U𝑚−1,|I| = 𝑑

)︁
×

× P
(︁
|I ∩N𝑖| = 𝑑−1

⃒⃒
⃒ U𝑚−1,|I ∩D𝑐

𝑚−1| = 1, |I| = 𝑑
)︁

(6.28)

where we can model the first term in equation (6.29) with a binomial distribution in case that
we assume that the amount in subjects in U𝑚−1 is large enough and that the probability of
selecting any subject to contribute to any tests is identically and independently distributed. In
this situation we can write

P
(︁
|I ∩D𝑐

𝑚−1| = 1
⃒⃒
⃒ U𝑚−1,|I| = 𝑑

)︁
=

(︂
𝑑

1

)︂
P
(︁
D𝑐

𝑚−1

⃒⃒
⃒ U𝑚−1

)︁
P
(︁
N𝑐

𝑚−1

⃒⃒
⃒ U𝑚−1

)︁𝑑−1
(6.29)

The second term on the right-hand side in equation (6.28) can be written as follows

P
(︁
|I ∩N𝑖| = 𝑑−1

⃒⃒
⃒ U𝑚−1,|I ∩D𝑐

𝑚−1| = 1, |I| = 𝑑
)︁
= P

(︁
N𝑖

⃒⃒
⃒ U𝑚−1,U𝑚,N𝑐

𝑚−1

)︁𝑑−1
(6.30)

U𝑚−1 implies that all the subjects were unlabeled at 𝑚− 1 and |I ∩D𝑐
𝑚−1| = 1 implies that one

and only one was a defective subject so the other must be non-defective that remained unlabeled
because each subjects contributes at most to one test at each instant. These sets reduces to
U𝑚−1 ∩ U𝑚 ∩N𝑐

𝑚−1 = N𝑐
𝑚 and hence the term in equation (6.30) reduces to

P
(︁
|I ∩N𝑖| = 𝑑−1

⃒⃒
⃒ U𝑚−1,|I ∩D𝑐

𝑚−1| = 1, |I| = 𝑑
)︁
= P

(︁
N𝑖

⃒⃒
⃒ N𝑐

𝑚

)︁𝑑−1
(6.31)

The term R𝑚 (𝑑) in equation (6.27) and P
(︁
D𝑐

𝑚−1

⃒⃒
⃒ U𝑚−1

)︁
in equation (6.29) can be assumed

94 6 Adaptive group testing and decision processes

to be already available at instant 𝑖 so it only remains as unknown the term P
(︁
N𝑖

⃒⃒
⃒ N𝑐

𝑚

)︁
in

equation (6.31). This term can obtained as follows

P
(︁
N𝑖

⃒⃒
⃒ N𝑐

𝑚

)︁
=

∑︀𝑖
𝑗=𝑚+1 P(ΔN𝑗)

P(N𝑐
0)−

∑︀𝑚
𝑗=1 P(ΔN𝑗)

(6.32)

where the terms P(ΔN𝑗) ∀𝑗 < 𝑖 are assumed to be already computed at instant 𝑖.

PART III

Noiseless compressed sensing

95

CHAPTER 7

Noiseless compressed sensing limits

The noiseless compressed sensing problem deals with the reconstruction of an unknown strictly
K-sparse signal in absence of noise. The K-sparse sequences are commonly referred to as the Grass-
mannian of K-dimensional sub-spaces of RN, formally defined as ΓK

N,
{︀
∀x ∈ RN : ‖x‖0 ≤ K

}︀
.

The noiseless analog compression limit presented in section 3.1 guarantees the existence of a
noiseless CS setup composed by a linear encoder and 𝑙0-based decoder, reviewed in section 1.1,
where any sequence from Grassmanian ΓK

N can be compressed and reconstructed without losses
with probability 1 whenever the rate of the scheme 𝑟 > 𝛾 + o(1) for K = N𝛾. Regretfully, to the
best of author’s knowledge there does not exist any condition to guarantee that a matrix can
achieve the theoretical compression limit.

In [135] it was shown empirically that a linear encoder with a Gaussian matrix and a MAP-based
decoder with Gaussian-Bernoulli prior can achieve lossless compression of ΓK

N for M/2 < K < M.
Furthermore, we also show in chapter 8 a couple more of examples of noiseless compression
schemes with sparse matrices that achieve lossless reconstruction with M/2 < K < M. These
results indicate that there exist noiseless compression schemes that outperform the previously
known compression limits for the noiseless compressed sensing problem, enclosed in lemma 3.1.
Regretfully, there does not exist any sufficient condition to guarantee that a matrix enables to
the 𝑙0-based decoder to achieve lossless reconstruction for M/2 < K < M.

This chapter is devoted to address this problem. Here we derive a necessary and sufficient
condition to ensure that a measurement matrix A guarantees the lossless reconstruction of the
sequences ΓK

N with zero distortion in the N-finite regime for a non-vanishing 𝛾 = K/N in noiseless
CS setup.

97

98 7 Noiseless compressed sensing limits

We divide this chapter in two parts: first in section 7.1 we describe our approach to the problem
and afterwards that in section 7.2 we describe the deductive process that leads to the main
result: that a measurement matrix A with spark(A) > K + 1 guarantees that any sequence
x0 ∈ ΓK

N with non-null components independently chosen at random can be reconstructed with
zero distortion with probability 1.

7.1 Problem statement

In this section we present our approach to pose the noiseless compressed sensing problem as an
analog compression one. First, in section 7.1.1 we briefly review the notation and the compression
scheme. Next, in section 7.1.2 we describe the signal characterization that we employ throughout
all the chapter and compare it with the one of the analog compression setup. Finally, in section
7.1.3 we introduce our approach to the problem.

7.1.1 Scenario definition

We assume throughout all the chapter that the sequences x0 are chosen at random from the
Grassmanian ΓK

N as stated before, i.e. first selecting a partition at random among the
(︀
N
K

)︀

partitions and then populating the non-null coefficient with K realizations of a continuous
distribution with Renyi dimension of the information 1.

Then, sequence x0 is processed by a linear encoder q(·) : X ⊆ RN → Y ⊆ RM that maps sequences
x0 ∈ X ⊂ RN into sequences of lower dimension y0 ∈ Y ⊂ RM, M < N. Afterwards a decoding
function g(·) : Y ⊆ RM → X ⊆ RN attempts to generate x = g(q(x0)), a non-distorted version of
the original sequence x0.

We focus our attention on schemes with a linear encoder y0 = Ax0 where A ∈ RM×N and
decoders that implement the 𝑙0 minimization problem

x̂ = min
x∈X: y0=Ax

‖x‖0

which in the ideal case can be solved by exhaustive search, with unaffordable complexity. In
order to do so the decoder performs two steps: first it generates the set of solutions X(y) ⊆ X

and then selects the solution x with minimum norm. Alternatively, if the solution is unique
then the selection step can be suppressed, i.e. in this case the encoder A performs a one-to-one
mapping.

7.1 Problem statement 99

7.1.2 Noiseless analog compression vs. classical noiseless compressed sensing. The source

model

First let us compare the sequences generated by a source modeled by a mixture distribution, e.g. a
Gaussian Bernoulli distribution with sparsity 𝛾, and the sequences enclosed in the Grassmannian
ΓK
N.

We follow an approach to model a Grassmannian similar to the one introduced by the authors in
[141], i.e. a formulation that converts multidimensional signals into points on the Grassmannian
manifold. This approach facilitates the study of embedding the referred manifolds via Gaussian
matrices into a RM space. Through all the work, we refer to these

(︀
N
K

)︀
K-dimensional sub-spaces

embedded into the manifold ΓK
N simply as partitions V𝑖 where all the K-sparse sequences with

support set S𝑖 are enclosed. The basic idea is that the Grassmannian manifold can be represented
as
(︀
N
K

)︀
partitions, each one representing all the sequences of a RK space.

We could assume that sequences x0 of the Grassmanian are generated by a data source that,
first, selects one partition among the

(︀
N
K

)︀
possible choices with uniform probability and, second,

populates the K non-null coefficients with i.i.d. random variables chosen according to some
probability distribution f(𝑋) with Renyi dimension of the information space equal to 1, e.g. a
Gaussian distribution with 𝜎2 = 1.

From the point of view of Grassmanian manifolds, a source distributed according to the mixture
distribution in equation (1.1) first selects both the K to characterize the Grassmanian and the
partition where the original signal lays and afterwards, chooses the exact point in that partition.
Thus, in this case the probability of selecting a sequence x0 of the Grassmanian ΓK

N is distributed
according a binomial distribution with parameters (N,K,𝛾), referred to as bin(N,K,𝛾), whereas
in our signal generation model the K is predefined.

In case that N and K are large enough the binomial distribution is approximately symmetric and
concentrates around its mean, i.e. N𝛾. So, like in the almost lossless binary compression problem,
analog compression schemes can be designed to deal exclusively with the most likely sequences
(or partitions) since the unlikely sequences (partitions) may appear with vanishing probability as
N grows. Hence, in this case compression schemes can focus on the typical sequences (partitions).

Problems arise in the N finite regime, when the error introduced by the queues of the binomial
distribution cannot be obviated, since the queues of the distribution may affect significantly to
the performance of the decoding scheme, producing a significant (non-vanishing) error rate.

100 7 Noiseless compressed sensing limits

In the N finite regime it makes sense to study the largest Grassmanian, i.e. the largest K for
which the compression scheme is lossless, since the error rate in this case can be easily found as

P(x0 ̸= g(q(x0))) =
N∑︁

𝑘=K+1

P(x0 ̸= x | x0 ∈ Γ𝑘
N) P(x0 ∈ Γ𝑘

N)

where x0 = g(q(x0)) for k < K since it is straightforward that Γ𝑘
N ⊂ ΓK

N holds for k < K. Note
that terms P(x0 ∈ Γ𝑘

N) are the bin(N,K,𝛾). Hence, we can upper bound the error rate of the
compression scheme as

P(x0 ̸= g(q(x0))) ≤
N∑︁

𝑘=K+1

P(x0 ∈ Γ𝑘
N) (7.1)

7.1.3 Approach to the problem

As stated before, we follow an approach that divides the Grassmanian manifold ΓK
N into

(︀
N
K

)︀

partitions V𝑖, so
ΓK
N ,

⋃︁

∀𝑖
V𝑖 (7.2)

This decomposition of ΓK
N allows us to analyze how any V𝑖 partition is projected into the RM

space by the columns of matrix A indexed in S𝑖, referred to as A𝑖. Furthermore, it is also helpful
to gather knowledge about how the co-domains of any two partitions 𝑖 and 𝑗, referred to as
q(V𝑖) and q(V𝑗), intersect when the mapping is non-injective. The latter approach is quite useful
because it allows us to draw conclusions in an alternative and quite straightforward manner. For
example, from this point of view lemma 3.1 is obvious.

Proof. Consider that VK
𝑖 and VK

𝑗 denote1 any two different partitions of the Grassmanian ΓK
N.

Consider that VM
𝑣 denotes a partition of the Grassmannian ΓM

N , with N ≥ M > K and furthermore
that both VK

𝑖 and VK
𝑗 are sub-spaces of the partition VM

𝑣 .

Under these conditions it is straightforward that if the relation between VM
𝑣 and its projection is

injective, then the relation between either VK
𝑖 and VK

𝑗 and their respective projections will also
be whenever the rank of A𝑣 is M. The latter fact happens for any partition VM

𝑣 of ΓM
N whenever

the spark of the measurement matrix is maximum.

1 The superscript K indicates that the partition belongs to the Grassmanian ΓK
N whereas the superscript M

indicates that the partition belongs to the Grassmanian ΓM
N .

7.1 Problem statement 101

Then it can be easily deduced that

Corollary 7.1. The sampling of any sequence x0 ⊆ Γ
M/2
N by a linear encoder is injective

whenever the spark of the measurement matrix is maximum, i.e. M+ 1.

Furthermore, whenever the spark of matrix A is larger than 2K there exists a one to one mapping
between ΓK

N and q(ΓK
N).

We denote that a function performs a one-to-one mapping between a set and its image set as1

|X| = |q(X)|

and that the mapping is non-injective as

|X| > |q(X)|.

Using the latter notation, the mapping between any pair of partitions 𝑗 and 𝑖 and their projections
generated by a linear encoder q(·) as stated in corollary 7.1 can be written as

|V𝑖 ∪ V𝑗 | = |q
(︀
V𝑖 ∪ V𝑗

)︀
| = |q

(︀
V𝑖

)︀
∪ q
(︀
V𝑗

)︀
| (7.3)

and it is straightforward that it holds that

|q(ΓK
N)| = |q(

⋃︁

∀𝑖
V𝑖)| = |

⋃︁

∀𝑖
q(V𝑖)| = |ΓK

N| (7.4)

Let us illustrate with an example how a one-to-one encoding function q(·) can accomplish
equation (7.4) for r = 𝛾 + o(1) or conversely M = K+ 1 :

Example 7.1 (one-to-one encoder for ΓK
N). We can divide the encoding process into two parts:

a first part maps y0 = Ax0 with a real valued K×N measurement matrix with spark K+1. Then
we can add and an extra sample with an index ’𝑖’ to identify the partition V𝑖 where the original
sequence x0 lays.

In the example the decoder needs only an extra sample to identify the partition where the signal
lays. Similarly, a linear encoder devotes all the samples that exceed K to help to the 𝑙0-based
decoder to identify the partition where the original signal x0 lays.

1 We perform an extension of the notation for finite countable sets to the case when the sets are uncountable.

102 7 Noiseless compressed sensing limits

As stated before, it cannot be guaranteed that the CS encoder performs one-to-one mapping
when M/2 < K < M since lemma 3.1 does not hold. Under this situation an arbitrary number of
sequences x𝑖 ∈ V𝑖 and x𝑗 ∈ V𝑗 , possibly infinite, with 𝑙0 (x𝑗 − x𝑖) ̸= 0 may be mapped to the
same sequence

y = Ax𝑖 = Ax𝑗

Throughout all the chapter we commit an abuse of notation because we refer to the latter
expression also as1

y = A𝑖x𝑖 = A𝑗x𝑗 (7.5)

As stated before, when M/2 < K < M lemma 3.1 does not hold. Thus, we assume the general
case: that the encoder is a non-injective function, so equation (7.3) becomes

|V𝑖 ∪ V𝑗 | > |q(V𝑖 ∪ V𝑗)| (7.6)

We can look at it in an alternative way: when a specific compressed sequence y0 belongs to the
intersection set q(V𝑖) ∩ q(V𝑗) but its original sequence x0 do not belong to the intersection of
the partitions V𝑖 and V𝑗 even assuming that |V𝑖| = |q(V𝑖)| and |V𝑗 | = |q(V𝑗)| holds, i.e. when
the ranks of the projection matrices are maximum, rank(A𝑖) = rank(A𝑗) = K.

We group all these compressed sequences that force the encoder to be non-injective in the set
Y𝑒. In parallel we can also define its complementary as Y𝑏 , q(ΓK

N)∖Y𝑒. The latter set Y𝑏 is the
codomain of a subset X𝑏 ⊆ ΓK

N so as |X𝑏| = |Y𝑏|. Again, we can define X𝑒 as the complementary
set of X𝑏 on ΓK

N, X𝑒 , ΓK
N∖X𝑏. We refer to X𝑏 as the set of injective sequences of the Grassmannian

ΓK
N produced by A, i.e. the ones that can be perfectly reconstructed by and optimum decoder,

and alternatively X𝑒 as to the set of non-injective sequences of the Grassmannian ΓK
N due to A.

The main question that we address in chapter arises from equation (7.5). In general when M = K

there is a one-to-one mapping between the sequences x𝑖 ∈ V𝑖 and x𝑗 ∈ V𝑗 because x𝑖 = A−1𝑖 A𝑗x𝑗

since the spark is M+ 1 and so rank(A𝑖) = M. Hence, X𝑒 ≡ ΓK
N in this case. However, when

M > K, it becomes less likely that two sequences x𝑖 ∈ V𝑖 and x𝑗 ∈ V𝑗 share the same compressed
sequence, i.e. the sequences x0 ∈ X𝑒 ⊂ ΓK

N become scarcer. Regretfully it cannot be ensured that
no sequences share the same compressed sequence but a question arise: how unlikely are these
sequences in ΓK

N when M > K?

1 x𝑖 represents both a vector of length K or N depending of the context. The reader should deduce its length
according to the matrices it operates with, since A𝑖 is a tall M×K matrix whereas A is a fat M×N matrix.

7.2 Matrix condition for lossless compression 103

7.2 Matrix condition for lossless compression

Let us focus on the case M > K > M/2, where lossless compression apparently cannot be achieved
but intuitively it is likely that under some conditions several sequences x0 ∈ ΓK

N are mapped
one-to-one by matrix-vector product encoder within q(ΓK

N).

In order to obtain an injective mapping the encoder must project each partition V𝑖 of the
Grassmanian into RM, 1 ≤ 𝑖 ≤

(︀
N
K

)︀
, in such a manner that q

(︀
V𝑖∖V𝑗

)︀
∩ q
(︀
V𝑗∖V𝑖

)︀
= ∅ for all 𝑖 ≠ 𝑗,

as in the example of the previous section.

Regretfully, when the encoder is linear and M > K > M/2 the intersection sets are non-empty,
since the support sets S𝑖 and S𝑗 of all the points enclosed in partitions V𝑖 and V𝑗 have jointly
more than M components, |S𝑗 ∪ S𝑖| > M. Therefore, in this case there exist some sequences
x𝑖 ∈ V𝑖 and x𝑗 ∈ V𝑗 such that A (x𝑖 − x𝑗) = 0 since the number of columns vectors of matrix A

indexed by S𝑗 ∪ S𝑖 is larger than M.

Note that sequence x𝑖 − x𝑗 belongs to a sub-space defined by V𝑖 × V𝑗 and also to the null-space
of matrix A, denoted as A𝑢 and so the intersection of both sub-spaces is non-empty. This fact
indicates that the null-space of the matrix A𝑢 is closely related with the sequences x0 of ΓK

N that
belong to X𝑒.

Throughout all this section we investigate the relations between the sub-space of erroneous
sequences X𝑒 and the null-space of the matrix A with the target to obtain the value of P

(︀
x ∈

X𝑒
⃒⃒
x ∈ ΓK

N

)︀
.

In case that both q(ΓK
N) and ΓK

N were countable, we would be able to count the number of
elements in X𝑒 and then obtain the fraction of compressed sequences of ΓK

N that do not belong
to X𝑏 as

P
(︀
x0 ∈ X𝑒

⃒⃒
x0 ∈ ΓK

N

)︀
=
|X𝑒|
|ΓK

N|
=

|X𝑒|
|X𝑏|+ |X𝑒| . (7.7)

As we deal with uncountable sets, we must replace the set cardinality by an appropriate measure
of the set hyper-volume of both, the sub-spaces X𝑒 and ΓK

N.

P
(︀
x ∈ X𝑒

⃒⃒
x ∈ ΓK

N

)︀
=

𝜇 (X𝑒)

𝜇
(︀
ΓK
N

)︀ (7.8)

where 𝜇(·) is chosen to be a Lebesgue measure [76] as discussed next in section 7.2.1.

104 7 Noiseless compressed sensing limits

Next subsection is devoted to prove that

P
(︀
x ∈ X𝑒

⃒⃒
x ∈ ΓK

N

)︀
=

𝜇 (X𝑒)

𝜇
(︀
ΓK
N

)︀ = 0 (7.9)

whenever spark(A) > K + 1 is a necessary and sufficient condition that guarantees that the
error rate of the considered compression scheme in the noiseless setting is 0. Note that the fact
that 𝜇 (X𝑒) = 0 when X𝑒 is not empty translates into the fact that apparently it is unlikely that
two different sequences that belong to different partitions of the Grassmannian generate two
compressed sequences that coincide.

7.2.1 Main result

This subsection can be decomposed into two parts: first, we give an expression of P
(︀
x ∈

X𝑒
⃒⃒
x ∈ ΓK

N

)︀
as a function of the sets of erroneous sequences that belong to each partition V𝑖

V𝑒
𝑖 , V

𝑒
𝑖 , V𝑖 ∩ X𝑒. Second, we deduce the pairwise relation of any two different sets V𝑒

𝑖 and V𝑒
𝑗 .

Afterwards we show that X𝑒 has K-dimensional Lebesgue measure zero whereas ΓK
N has measure

larger than zero and hence it follows that the rate of errors of the compression scheme is zero.

Let us focus now on investigating the "amount" of sequences x ∈ ΓK
N that are in the set of

erroneous sequences X𝑒 ⊆ ΓK
N when M > K > M/2 as a function of the spark(A).

We recall that
⋃︀
∀𝑖 V𝑖 = ΓK

N and apply it to the left hand side of equation (7.8) and results that

P
(︀
x ∈ X𝑒

⃒⃒
x ∈ ΓK

N

)︀
= P

(︁
x ∈

⋃︁

∀𝑖
V𝑒
𝑖

⃒⃒
⃒ x ∈ ΓK

N

)︁
(7.10)

where we applied that the sequences in X𝑒 belong to one or more partitions of type V𝑖 and so
V𝑒
𝑖 , V𝑖 ∩ X𝑒, as stated before. Operating as indicated in appendix 7.A we obtain

P
(︀
x ∈ X𝑒

⃒⃒
x ∈ ΓK

N

)︀
=
∑︁

∀𝑖
P
(︀
x ∈ V𝑒

𝑖

⃒⃒
x ∈ V𝑖

)︀
P
(︀
x ∈ V𝑖

⃒⃒
x ∈ ΓK

N

)︀
(7.11)

Now we focus on the first term in the summation in eq. (7.11)

P
(︁
x ∈ V𝑒

𝑖

⃒⃒
⃒ x ∈ V𝑖

)︁
=

𝜇 (V𝑒
𝑖)

𝜇 (V𝑖)
(7.12)

and further focus our efforts to find the dependence of the value of 𝜇 (V𝑒
𝑖) with spark(A). The set

V𝑒
𝑖 , V𝑖 ∩X𝑒 is composed by all the sequences in V𝑖 ∈ ΓK

N that are not injective, as stated before.
In other words, V𝑒

𝑖 contains any sequence x𝑖 ∈ V𝑖 that has a pair sequence x𝑗 ∈ V𝑗 that has the

7.2 Matrix condition for lossless compression 105

same image y even though that x𝑖 /∈ V𝑗 , ∀𝑗 ̸= 𝑖. Let us define this set of all the sequences in V𝑒
𝑖

that have a pair sequence in V𝑗 V𝑒
𝑖←𝑗 as

V𝑒
𝑖←𝑗 , {x ∈ V𝑖 : q(x) ∈ q(V𝑖∖V𝑗) ∩ q(V𝑗∖V𝑖)}

Then the set V𝑒
𝑖 can be partitioned in subsets defined by V𝑒

𝑖 =
⋃︀
∀𝑗 V

𝑒
𝑖←𝑗 . Note that the term

V𝑒
𝑖←𝑖 is equal to the empty set whenever spark(A) > K. So, we do not have to omit 𝑖-th term in

the union or summation, as it is either empty or zero. If we introduce this decomposition in
equation (7.11) results

P
(︀
x ∈ X𝑒

⃒⃒
x ∈ ΓK

N

)︀
=
∑︁

∀𝑖
P
(︀
x ∈

⋃︁

∀𝑗
V𝑒
𝑖←𝑗

⃒⃒
x ∈ V𝑖

)︀
P
(︀
x ∈ V𝑖

⃒⃒
x ∈ ΓK

N

)︀
(7.13)

which reduces to

P
(︀
x ∈ X𝑒

⃒⃒
x ∈ ΓK

N

)︀
≤
∑︁

∀𝑖

∑︁

∀𝑗
P
(︀
x ∈ V𝑒

𝑖←𝑗

⃒⃒
x ∈ V𝑖

)︀
P
(︀
x ∈ V𝑖

⃒⃒
x ∈ ΓK

N

)︀
(7.14)

if we apply the union bound. Next we can focus our attention on the term of the right side of
the inequality. Note that it holds for all 1 ≤ 𝑖 ≤

(︀
N
K

)︀
that

P
(︀
x ∈ V𝑖

⃒⃒
x ∈ ΓK

N

)︀
=

(︂
N

K

)︂−1
(7.15)

due to the signal generation assumption given in section 7.1.1.

We can write P
(︀
x ∈ V𝑒

𝑖←𝑗

⃒⃒
x ∈ V𝑖

)︀
as

P
(︀
x ∈ V𝑒

𝑖←𝑗

⃒⃒
x ∈ V𝑖

)︀
=

𝜇
(︁
V𝑒
𝑖←𝑗

)︁

𝜇 (V𝑖)
(7.16)

where 𝜇 (·) must be a measure to quantify both the amount of sequences in either V𝑖 and V𝑒
𝑖←𝑗 .

In order to do so first we define a 𝜎-algebra of the Grassmannian ΓK
N, referred to as

(︀
ΓK
N,V

)︀

where V is the collection of all sub-sets (power set) of the Grassmanian manifold ΓK
N. Now we

must choose a Lebesgue measure where both V𝑖 and V𝑒
𝑖←𝑗 are measurable and, furthermore,

where V𝑖 is a set with measure larger than zero. We decide to choose K-dimensional Lebesgue
measure, referred to as 𝜇K (·), because in general the K-dimensional Lebesgue measure of any
lower dimensional real space is zero whereas the K-dimensional Lebesgue measure of a sub-space
V𝑖 of K-dimensional real space V𝑖 ⊆ RK can be larger than zero [76], so 𝜇K(V𝑖) > 0 e.g. when
V𝑖 is a K-dimensional rectangle with side larger than 0.

106 7 Noiseless compressed sensing limits

It is straightforward to show that the Grassmannian ΓK
N has also a non-zero K-dimensional

Lebesgue measure as
⋃︀
∀𝑖 V𝑖 = ΓK

N and V𝑖 can be assumed to be a K-dimensional rectangle with
an arbitrarily large side1. Under this approach the union of measurable spaces is measurable
with measure

𝜇K (V𝑖) = 𝜇K

(︃⋃︁

∀𝑖
V𝑖

)︃
≤ 𝜇K

(︀
ΓK
N

)︀

as noted in [76]. Furthermore, the set V𝑒
𝑖←𝑗 is also measurable as it is a subset of the measurable

set V𝑖. Then, it follows that any set V𝑒
𝑖 is also measurable as it is the union of several measurable

sets V𝑒
𝑖←𝑗 .

Now we are ready to present the following result

Theorem 7.1. Consider two arbitrary partitions V𝑖 and V𝑗, 1 ≤ 𝑖 < 𝑗 ≤
(︀
N
K

)︀
, that represent the

𝑖-th and the 𝑗-th K-dimensional real spaces of the Grassmannian ΓK
N and a measurement matrix

A ∈ RM×N with spark(A) > K + 1. Consider the measurable space defined by the 𝜎-algebra(︀
ΓK
N,V

)︀
and the K-dimensional Lebesgue measure 𝜇𝐾 (·). It holds that V𝑒

𝑖←𝑗 has K-Lebesgue
measure zero

𝜇K

(︀
V𝑒
𝑖←𝑗

)︀
= 0 (7.17)

∀𝑖,𝑗, 1 ≤ 𝑖 < 𝑗 ≤
(︀
N
K

)︀
and 0 ≤ K < M < N.

See proof in appendix 7.B.

Then it follows that

Lemma 7.1. Given a linear encoder described by matrix A with spark(A) > M. The subset
X𝑒 ⊂ ΓK

N with M > K happens with probability

P
(︀
x ∈ X𝑒

⃒⃒
x ∈ ΓK

N

)︀
= 0 (7.18)

Proof. By direct application of theorem 7.1, to equation (7.16) and this result to equation (7.14)
we obtain the result in equation (7.18)

Hence, when the spark of the measurement matrix is maximum, it holds that

1 We can alternatively define V𝑖 as the space that contains all sequence x ∈ ΓK
N with support set S𝑖 so as

x : ‖x‖2 < +∞.

7.A Proof 107

Corollary 7.2. Consider a linear encoder described by matrix A with spark(A) = M+ 1 and
the signal setup described in 7.1.1. The mapping between sequences of the Grassmanian manifold
ΓM−1
N and its codomain q(ΓM−1

N) is injective almost everywhere, i.e. with probability 1.

The result in corollary 7.2 indicates that a random source selecting points of the Grassmanian
ΓM−1
N as indicated in 7.1 generates sequences x0 that produce erroneous reconstruction but that

this event happens with probability zero. So, under these restrictions a source selecting sequences
of the Grassmanian ΓK

N as stated in section 7.1 generates injective sequences with probability 1
whenever the spark(A) > K+ 1.

Appendix 7.A Proof

Here we enclose some steps that for the sake of clarity we skipped in section 7.2.1.

We can now decompose ΓK
N in equation (7.10) resulting

P
(︀
x ∈ X𝑒

⃒⃒
x ∈ ΓK

N

)︀
=
∑︁

∀𝑗
P
(︀
x ∈ V𝑗

⃒⃒
x ∈ ΓK

N

)︀
P
(︁
x ∈

⋃︁

∀𝑖
V𝑒
𝑖

⃒⃒
⃒ x ∈ V𝑗 ,x ∈ ΓK

N

)︁
(7.19)

where we applied total probabilities. Take into account that V𝑗 ⊂ ΓK
N for all 𝑗,

P
(︀
x ∈ X𝑒

⃒⃒
x ∈ ΓK

N

)︀
=
∑︁

∀𝑗
P
(︀
x ∈ V𝑗

⃒⃒
x ∈ ΓK

N

)︀
P
(︁
x ∈

⋃︁

∀𝑖
V𝑒
𝑖

⃒⃒
⃒ x ∈ V𝑗

)︁
(7.20)

Now, let us focus to analyze the term P(x ∈ ⋃︀∀𝑖 V𝑒
𝑖 | x ∈ V𝑗) for a given 𝑗

P
(︁
x ∈

⋃︁

∀𝑖
V𝑒
𝑖

⃒⃒
⃒ x ∈ V𝑗

)︁
= P

(︀
x ∈ V𝑒

𝑗

⃒⃒
x ∈ V𝑗

)︀
+ P

(︀
x ∈ {X𝑒 ∖ V𝑒

𝑗}
⃒⃒
x ∈ V𝑗

)︀
(7.21)

since the second term is zero because intersection set {X𝑒 ∖ V𝑒
𝑗}| ∩ V𝑗 is the empty set. Hence,

applying this result to equation (7.20) we obtain

P
(︀
x ∈ X𝑒

⃒⃒
x ∈ ΓK

N

)︀
=
∑︁

∀𝑖
P
(︀
x ∈ V𝑒

𝑖

⃒⃒
x ∈ V𝑖

)︀
P
(︀
x ∈ V𝑖

⃒⃒
x ∈ ΓK

N

)︀
(7.22)

which is the equation in (7.11).

Appendix 7.B Theorem proof

Here we give the proof of theorem 7.1 in section 7.2. First we propose in section 7.B.1 a method
to model a source W that generates all sequences in V𝑒

𝑖←𝑗 when V𝑖 ∩ V𝑗 = ∅. This allows us in

108 7 Noiseless compressed sensing limits

appendix 7.B.2 to employ the Lebesgue measure on W ⊆ RK to measure W and, comparing the
last measure with the measure of V𝑖, draw conclusions about equation (7.14). Afterwards, in
appendix 7.B.3 we extend the model to cases when the support sets of both sub-spaces overlap
|S𝑖 ∩ S𝑗 | > 0.

7.B.1 Null-space characterization of the erroneous sets

Each sequence x𝑖 ∈ V𝑒
𝑖←𝑗 ⊆ V𝑖 has a related x𝑗 ∈ V𝑒

𝑗←𝑖 ⊆ V𝑗 with a common compressed sequence
y ∈ Y

Ax𝑖 = Ax𝑗 = y

when the encoder is the typical matrix-vector product. We refer to this pair of sequences as
(x𝑖,x𝑗). The last expression can be rewritten as

A𝑖x𝑖 = A𝑗x𝑗 = y (7.23)

where the matrices A𝑖 and A𝑗 are M × K matrices generated by selecting the row vectors
indicated by the support sets of V𝑖 and V𝑗 . The vectors x𝑖 and x𝑗 are composed each one by the
non-null entries of the original x𝑖 and x𝑗 .

We can rewrite equation (7.23) as

A𝑖x𝑖 −A𝑗x𝑗 = A𝑢x
*
𝑢 = 0 (7.24)

where A𝑢 = [A𝑗 , A𝑖] is composed by all the column vectors of A𝑗 and A𝑖 and x*𝑢 = [x𝑗 , −x𝑖] is
the concatenation of the vectors and belongs to the null-space of the matrix A𝑢, x*𝑢 ∈ A*𝑢 ⊆ R2K.
Note that the matrix has at most 2K column vectors when the set S𝑖 ∩ S𝑗 = ∅. Now we focus on
this case and later, in the sub-appendix 7.B.3 we extend the proof to the case when the supports
are not disjoints.

Lemma 7.2. If spark of measurement matrix is K+1 then each x𝑖 ∈ V𝑖 has at most one x𝑗 ∈ V𝑗

so as equation (7.23) holds.

Basically, A𝑖x𝑖 and A𝑗x𝑗 are unique because the rank of A𝑖 and A𝑗 is K, so there is a one-to-one
mapping between the sets V𝑒

𝑖←𝑗 and V𝑒
𝑗←𝑖. Then it follows that

Lemma 7.3. Each pair of sequences (x𝑖,x𝑗) has a unique representation in A*𝑢.

Thus, each sequence x𝑢 can be decomposed in two unique vector vectors x𝑖 and x𝑗 , hence the
mapping between the set of points (x𝑖,x𝑗) is injective. Then

7.B Theorem proof 109

Lemma 7.4. The mapping between the null space of A𝑢, A*𝑢, and the set V𝑒
𝑖←𝑗 is injective.

In case that spark(A) = M′ + 11, M ≥ M′ ≥ K it follows that we can construct a generation
matrix A*𝑢 of the null-space of A𝑢 with 𝑘′ = 2K−M′ linear independent vectors of length 2K w

so we can write x*𝑢 in terms of a vector of length 𝑘′, x*𝑢 = A*𝑢w. We decompose matrix A*𝑢 into
two sub-matrices A*𝑖←𝑗 , A

*
𝑗←𝑖 each one with the K row vectors that generates the part of x*𝑢

that corresponds to the entries of x𝑖 and x𝑗 and obtain

[︃
x𝑖

−x𝑗

]︃
= x*𝑢 = A*𝑢w =

[︃
A*𝑖←𝑗

A*𝑗←𝑖

]︃
w

and then
x𝑖 = A*𝑖←𝑗w

′, x𝑗 = −A*𝑗←𝑖w
′ (7.25)

Now we need to guarantee that both A*𝑗←𝑖 and A*𝑖←𝑗 have maximum rank 𝑘′. It follows that

Lemma 7.5. The spark of matrix A*𝑢 is equal to 𝑘′ + 1 whenever the spark of matrix A𝑢 is
larger than K+ 1.

Proof. By construction matrix A*𝑢 has rank 𝑘′ but we need to guarantee that both A*𝑗←𝑖 and
A*𝑖←𝑗 have rank 𝑘′. This happens whenever the spark of A*𝑢 is equal than 𝑘′ + 1.

Let us assume the contrary, that the matrix has spark less than 𝑘′ + 1. In this case there exist
a sub-matrix 𝑘′ × 𝑘′ sub-matrix of A*𝑢 with rank less than 𝑘′. In this situation the image of a
non-zero vector v ∈ R𝑘′ that belongs to the null space of 𝑘′ × 𝑘′ sub-matrix is vector zero, and
hence the projection v onto A*𝑢 will have at least 𝑘′ zeros, i.e. at most

‖A*𝑢v‖0 ≤ 2K− 𝑘′

non-null coefficients. Thus, as 𝑘′ is the dimension of the null-space of A𝑢,

𝑘′ = 2K−M′

the projection of vector v can have at most

‖A*𝑢v‖0 ≤ 2K− 2K +M′ = M′

1 That the spark is M′ + 1 forces that all sub-matrices of M′ vectors are linear independent, and hence the rank
is of A is M′.

110 7 Noiseless compressed sensing limits

which means that the projection of v does not belong to the null space of A𝑢 because the rank
of all sub-matrices of A𝑢 is M′

‖A𝑢A
*
𝑢v‖0 > 0 (7.26)

and then A*𝑢 is not a basis of the null space because it can generate vectors that do not belong
to the null-space.

From this deduction it follows that the spark(A*𝑢) = 𝑘′ + 1 because otherwise the generator
matrix of the null-space generates sequences that do not belong to the null-space A𝑢.

From lemma 7.5 it follows that matrix A*𝑖←𝑗 ∈ RK×𝑘′ in equation (7.25) has also spark 𝑘′ + 1,
as it inherits the spark of A*𝑢. Now we are in conditions to say that A*𝑖←𝑗W ⊆ V𝑒

𝑖←𝑗 , so we can
define V𝑒

𝑖←𝑗 also as follows

V𝑒
𝑖←𝑗 ,

{︁
x𝑖 ∈ V𝑒

𝑖←𝑗 : x𝑖 = A*𝑖←𝑗v, ∀v ∈ R𝑘′
}︁

(7.27)

7.B.2 Lebesgue measures of the null-space

Now we are ready to compute the term P
(︀
x ∈ V𝑒

𝑖←𝑗

⃒⃒
x ∈ V𝑖

)︀
in equation (7.14)

P
(︀
x ∈ V𝑒

𝑖←𝑗

⃒⃒
x ∈ V𝑖

)︀
=

𝜇K

(︁
V𝑒
𝑖←𝑗

)︁

𝜇K (V𝑖)

where 𝜇K (·) is the Lebesgue measure of dimension K. If we assume that V𝑖 ⊂ RK is a rectangle
with a side 𝑠 < +∞ then V𝑖 is measurable with measure 0 < 𝜇K (V𝑖) < +∞, as any rectangle
embedded in RK is measurable.

Now let us analyze the term 𝜇K

(︁
V𝑒
𝑖←𝑗

)︁
as a function of the number of samples M and the

dimension of the RK sub-spaces V𝑖 embedded into the Grassmannian manifold ΓK
N. As stated

before A*𝑖←𝑗W ⊆ V𝑒
𝑖←𝑗 , so it follows that

𝜇K

(︀
V𝑒
𝑖←𝑗

)︀
≥ 𝜇K

(︀
A*𝑖←𝑗W

)︀

and the equality follows when W ⊆ R𝑘′ .

Now we need to deduce the value of 𝜇K

(︁
V𝑒
𝑖←𝑗

)︁
in different cases: 2K ≤ M′, K = M′ and

K < M′ < 2K.

7.B Theorem proof 111

Let us recall that 𝑘′ = 2K − M′, M′ ≥ K and that A𝑢 has dimension M × 2K and that
spark(A) = M′ + 1 from appendix 7.B.1.

Case: 2K ≤ M′

In this case A𝑢 is a M× 2K, with rank 2K so the null-space contains only the zero vector
(V𝑒

𝑖 only contains the zero vector) and so the mapping is injective. Note that this result
coincides with the one in lemma (3.1) when M′ = M.

Case: K = M′

In this case 𝑘′ = K because 𝑘′ = 2K−M′. Let us analyze 𝜇
(︁
V𝑒
𝑖←𝑗

)︁
when that dimension

of the null-space of A𝑢 is larger than the one of V𝑖, i.e. the trivial case of K ≥ M′. In this
case A*𝑖←𝑗 is a matrix with K rows and 𝑘′ columns with spark M′ + 1, i.e. the rank of all
K×K sub-matrices is K = M′.

Assume that A𝑖←𝑗 = UΣV𝑡 is the SVD decomposition of A𝑖←𝑗 . Hence, U and V are a K

and a 𝑘′ orthogonal square matrices. Then

𝜇K

(︀
A*𝑖←𝑗W

)︀
= 𝜇K

(︀
UΣV𝑡W

)︀
= 𝜇K (ΣW) (7.28)

where we applied that the Lebesgue measure of a set is preserved by the projection onto
an orthogonal matrix. Therefore, whenever the set W is measurable with the Lebesgue
measure of dimension 𝑘′ and has measure 𝜇𝑘′ (W) > 0 the set ΣW in equation (7.28) spans
all RK, so all sequences x ∈ V𝑖 will also be in V𝑒

𝑖←𝑗 . It follows that

P
(︀
x ∈ V𝑒

𝑖←𝑗

⃒⃒
x ∈ V𝑖

)︀
=

𝜇K

(︁
V𝑒
𝑖←𝑗

)︁

𝜇K (V𝑖)
=

𝜇K (V𝑖)

𝜇K (V𝑖)
= 1 (7.29)

therefore, the mapping cannot be injective.

Case: K < M′ < 2K

Let us analyze now the measure 𝜇K

(︁
A*𝑖←𝑗W

)︁
for the remaining case, when K > k′ > 0. It

can be shown that 𝜇K

(︁
A*𝑖←𝑗W

)︁
= 0 because A*𝑖←𝑗 is a tall matrix. In this case we can

add K− 𝑘′ columns with zeros, obtaining a matrix P, and assume that is mapped somehow
into RK preserving the original volume so as for all v in W and its extended version v′,
A*𝑖←𝑗v = Pv′. Then

𝜇K

(︀
A*𝑖←𝑗W

)︀
= 𝜇K (PW)

= det (P)𝜇K (W) = 0 (7.30)

112 7 Noiseless compressed sensing limits

because det (P) = 0. Hence

P
(︀
x ∈ V𝑒

𝑖←𝑗

⃒⃒
x ∈ V𝑖

)︀
=

𝜇K

(︁
V𝑒
𝑖←𝑗

)︁

𝜇K (V𝑖)
= 0

so P
(︀
x ∈ X𝑒

⃒⃒
x ∈ ΓK

N

)︀
= 0 in equation (7.14), i.e. we say that the event of drawing a

sequence x of the Grassmanian manifold ΓK
N which is in the set of non-injective sequences

x ∈ X𝑒 happens with probability zero, so in this case the perfect reconstruction of all the
sequences cannot be achieved, as only can be compressed without losses almost all the
sequences in ΓK

N.

Note that equation 7.30 holds whenever 2K ≥ spark(A) > K+ 1 because the spark(A) =

M′ + 1.

7.B.3 Extension to non-disjoint partitions

Now, let us check what happens when V𝑖 ∩ V𝑗 ̸= ∅. On the one hand, the dimension of the
null-space of A𝑢 is lower than before because 𝑘′′ = 2K−M′−|S𝑖∩S𝑗 | i.e. 𝑘′′ = 𝑘′−|S𝑖∩S𝑗 |. On the
other hand, as the S𝑖∩S𝑗 is not empty, the decomposition of the sequences x* ∈ A*𝑢 in two vectors
with disjoint supports cannot be done anymore, i.e. x* ̸= [x𝑖, x𝑗]. x* = x𝑖 + x𝑗 is still a vector
of the null-space but now we have to decompose the vector in three parts x* =

[︁
x′𝑖, x𝑖,𝑗 , x

′
𝑗

]︁

and take into account that x𝑖 = [x′𝑖, x
′′
𝑖] and x𝑗 =

[︁
x′′𝑗 , x

′
𝑗

]︁
so the |S𝑖 ∩ S𝑗 | coefficients of x* in

the intersection set must accomplish that x𝑖,𝑗 = x′′𝑖 + x′′𝑗 . Hence, the coefficient x′′𝑖 can take any
value among all the sequences of R|S𝑖∩S𝑗 |, so now for each sequence x* ∈ A*𝑢, i.e R|S𝑖∩S𝑗 | ⊂ V𝑒

𝑖←𝑗 .

The latter can be also modeled with a matrix. Equation (7.31) shows how matrix A*𝑖←𝑗 can be
constructed according to the model

[︃
P;

0

−I

]︃
= A*𝑖←𝑗 (7.31)

where P is a K× 𝑘′′ matrix with the rows vectors that generate V𝑖 and matrix I is an identity
matrix with |S𝑖 ∩ S𝑗 | rows and columns. Thus, matrix A*𝑖←𝑗 is again a K× k′ matrix with rank
𝑘′.

Conversely, matrix A*𝑗←𝑖 is constructed as shown below

[︃
0

P′
;

I

0

]︃
= A*𝑗←𝑖 (7.32)

7.B Theorem proof 113

where P′ is a matrix with K − |S𝑖 ∩ S𝑗 | that belong to V𝑗 , but the one that are already in P

of equation (7.32), and 𝑘′′ columns and matrix I is an identity matrix with |S𝑖 ∩ S𝑗 | rows and
columns, as before. Note that matrix A*𝑗←𝑖 has also rank 𝑘′.

We can generate the pair (x𝑗 ,x𝑗) for each x𝑗 ∈ V𝑒
𝑗←𝑖 and x𝑖 ∈ V𝑒

𝑖←𝑗 as

x𝑗 = A*𝑗←𝑖v
′ x𝑖 = A*𝑖←𝑗v

′ (7.33)

where v′ =
[︁
v,x′′𝑗

]︁
∈ R𝑘′ .

Let us recall gain the assumptions we made in appendix 7.B.1: 𝑘′ = 2K−M′, M′ ≥ K and that
A𝑢 has dimension M× 2K and that spark(A) = M′ + 1. Then, as shown in equation (7.30), any
set V𝑒

𝑖←𝑗 has K dimensional Lebesgue measure zero because K > k′ since the spark(A) = M′ + 1,
as we showed at the end of appendix 7.B. Hence,

P
(︀
x ∈ V𝑒

𝑖←𝑗

⃒⃒
x ∈ V𝑖

)︀
=

𝜇K

(︁
V𝑒
𝑖←𝑗

)︁

𝜇K (V𝑖)
= 0

and so, almost lossless compression can be also achieved in this case as P
(︀
x ∈ X𝑒

⃒⃒
x ∈ ΓK

N

)︀
= 0

in equation (7.14).

CHAPTER 8

Verification-based algorithms

In this chapter several contributions are done to the field of compression schemes for noiseless
compressed sensing: we present here two verification-based algorithms and a sparse structured
matrix specially design for sequential sampling schemes for noiseless compressed sensing.

This chapter is organized as follows: in section 8.1 we review the verification algorithm (VA),
proposed in [166]. Then, we present two novel verification-based algorithms for noiseless
compressed sensing. First, in section 8.2 we present a variable-length compression scheme for
noiseless compressed sensing. We introduce a novel approach to the problem: a measurement
matrix is specially designed to sense equally early all the components of the original vector x0 and
the enhanced verification algorithm (EVA), a local message passing strategy aimed at mitigating
the measurement matrix sparsity loss required to deal with very sparse signals. Second, we
present the list message passing for compressed sensing (CS-LMP) algorithm in section 8.3.
Up to the knowledge of the author, this is the best performing verification-based algorithm in
the literature. We also enclose in appendices 8.A.2 and 8.A.3 and extended explanation of the
implementation of the algorithm of the EVA and the CS-LMP algorithms, respectively.

8.1 Introduction

8.1.1 System setup

In this chapter we assume that the signal vector x0 is drawn at random from the Grassmanian
manifold ΓK

N, 0 ≤ K < N. The coefficients indexed in S are randomly drawn according to a
probability density function. Throughout all this chapter we assume that the encoder is linear
and measures are not corrupted by noise y0 = Ax0.

115

116 8 Verification-based algorithms

The algorithms reviewed and presented here are message passing strategies over the graph
representation of the measurement matrix A. Unless explicitly stated, A is chosen randomly
from an ensemble Γ(L,R,N). The graph representation of A is free of length-four cycles whenever
it is possible. The performance of the verification-based algorithms do not depend of the values
of the non-null coefficients of matrix A whenever it is free of length-four cycles.

8.1.2 Verification algorithm for compressed sensing

Here we review the verification algorithm (VA) in [166]. This algorithm is aimed at reconstructing
a sparse signal vector x0 in the set-up of section 8.1.1 and has computational complexity O(N).
This algorithm was identified by [166] to be a different implementation of the sudocode decoding
algorithm [132]. On one side, it has a lower computational complexity in certain cases, O(K2).
On the other side, VA implementation only requires local operations, as opposed to the sudocodes
[132].

When applied in the CS framework, VA exploits that

(a) There is no noise.

(b) The probability density function of the components of vector x0 is a mixture of a discrete
and continuous probability density function with a unique mass concentration at zero
P(𝑋 = 0) = 1−K/N = 1− 𝛾.

(c) The graph has no length-four cycles.

Due to these facts the following statements hold:

S1 If a measurement 𝑦 is zero, all the variable nodes indexed by I𝑐 are zero.

S2 When the graph does not exhibit cycles of length four and two measurements 𝑦𝑗 and 𝑦𝑛 are
identical (𝑦𝑗 = 𝑦𝑛), that pair of measurements share a single variable node, |I𝑐𝑗 ∩ I𝑐𝑛| = 1.
Therefore, it follows that the common component in the intersection set must be equal to
𝑦𝑗 and the remaining variable nodes in I𝑐𝑗 and I𝑐𝑛 must be equal to zero.

Keeping these statements in mind, the algorithm works as follows. Check (variable) nodes
exchange with variable (check) nodes messages having the following form: {state,value} where
state=’v’ indicates that we know for sure that the value of the associated variable node is value
(i.e. the variable node is verified) whereas state=’nv’ informs that value is solely an estimate of
the variable node value (i.e. the variable node is still not verified).

A check node is said to verify a neighboring variable node whenever the first can infer with
infinite reliability the value of the latter using statements S1 and S2. Then, the verified variable

8.1 Introduction 117

node propagates its state to the other check nodes in its neighborhood. Hence, these check nodes
can remove the contribution of the verified variable node from their respective measurement and
try to infer, in the next round, the values of the remaining variable nodes connected to them.

The iterative process starts with variable nodes sending a non-verified message with dummy
value −,{’nv’,−}, to all the check nodes connected to them. Then, check nodes are activated and
send a message to variable nodes in their neighborhood. Here we briefly describe the verification
algorithm, whereas in appendix 8.A.1 we enclose an extended description of how messages are
updated by check and variable nodes in algorithms 8.1 and 8.2, respectively.

First of all, each check node removes the contributions of the incoming verified messages from
its measurement 𝑦 to obtain 𝑦′ and then, updates all the edges connected to variable nodes that
remain not verified (indexed in the set I𝑐𝑛𝑣

1), according to rules C1, C2 and C3:

C1: If 𝑦′ = 0, propagate to all the variable nodes indexed by I𝑐𝑛𝑣: {’v’, 0}.

C2: If |I𝑐𝑛𝑣| = 1, propagate to the variable nodes in I𝑐𝑛𝑣: {’v’, 𝑦′}.

C3: Otherwise, propagate to all variable nodes indexed by I𝑐𝑛𝑣: {’nv’, 𝑦′}.

Rule C1 exploits statement S1. Rule C2 deals with the trivial case in which there is a single
non-verified variable node connected to the check node. Rule C3 deals with the remaining cases:
whenever the check node cannot infer the value of a variable node it propagates the non-verified
message with the updated measurement, (’nv’,𝑦′).

After check nodes update, variable nodes are activated and proceed as follows:

V1: If the variable node receives a verified message, then propagate this message through the
remaining edges {’v’, ’value’}.

V2: If the variable node receives at least two non-verified messages with the same estimate
’value’, then propagate {’v’, ’value’} to all the nodes connected to them.

V3: Else, propagate {’nv’, -} through its edges.

where rule V1 deals with verified variable nodes. Basically, due to the absence of noise, a verified
variable node informs to check nodes in its neighborhood that it is verified by propagating a
verified message along with its value. Rule V2 exploits statement S2. In this case, the variable
node receives more than one non-verified message with equal estimate 𝑦′ so it can infer its value.
Hence, the variable node switches its state to verified and informs of this update to all check
nodes in its neighborhood by sending them the message {’v’,value}. Finally, in case of rule V3,

1 We refer to the variable nodes in the neighborhood of a check node that remain non-verified as I𝑐𝑛𝑣.

118 8 Verification-based algorithms

the variable node just sends a non-verified message {’nv’,−} to all the neighboring check nodes
when it cannot infer its value.

8.2 Enhanced verification algorithm and sequential sampling for compressed

sensing

In this section we present the variable rate graph-based CS scheme that we proposed in [117].
In this work we presented the enhanced verification algorithm (EVA), a decoding algorithm for
noiseless compressed sensing along with a structured matrix specially designed for variable rate
schemes where the check node degree distribution was obtained from a closed-form expression1.
We showed that this novel approach outperforms the 𝑙1-based theoretical limits. The proposed
scheme stemmed from the original design of sudocodes [132], which has the distinctive feature of
taking infinite reliability decisions (i.e. no errors are made). The main features of our compression
scheme are

(a) The introduction of a block-wise constructed measurement matrix structure for the encoder.

(b) The proposal of a check node degree profile design criterion.

(c) An extension of the verification algorithm.

This section is structured as follows. First in subsection 8.2.1 we briefly introduce the proposed
scheme. After that in subsection 8.2.2 we propose a systematic method to construct binary
matrices for sequential sampling schemes. In the next subsection we introduce some enhancements
to the VA aimed at mitigating the effect of cycles of length 4 in dense binary graphs for the
noiseless setting. Finally, in subsection 8.2.5 we enclose simulation results to illustrate the
performance enhancement obtained by the proposed scheme.

8.2.1 System setup

The measurement matrix is generated according to the procedure described next in section 8.2.2
and it is characterized by its check and variable degree profiles R(d) and L(d), respectively. This
structured matrix tackles a problem that random matrices have in sequential schemes, since it is
aimed to sense the components of vector x0 equally early. The compression scheme introduced
here uses the same matrix A for all signal realizations. We restrict A to be a binary matrix

1 The check node degree distributions are chosen in a similar manner to the policy of the group testing scheme
presented in chapter 5.

8.2 Enhanced verification algorithm and sequential sampling for compressed sensing 119

where the number of ones increases as the sparsity ratio 𝛾 decreases and so it becomes denser for
signals with very low sparsity ratio.

The binary and sparsity features of A allow retrieving the signal vector x0 with a low-complexity
decoding algorithm based on the description of the system by a graph. The decoding attempts
are done using the verification-based message passing algorithm introduced in subsection 8.2.4.
We also enclose an extended description of this algorithm in appendix 8.A.2.

The proposed system employs a sequential non-adaptive sampling procedure, i.e., measurements
are drawn one by one following the order of the rows of matrix A and after each new measurement
is drawn a new attempt is made to recover the sequence x0. This procedure is followed until
all the components in x0 are identified. Note that the number of measurements required to
reconstruct vector x0 may be different for each signal realization.

This enhancement of the decoding algorithm in [166] is particularly relevant for very sparse
signals, since in this case length-four cycles cannot be avoided in the graph. The proposed
algorithm outperforms the results in [132] and [166] in terms of number of measurements while
having similar complexity, and has lower complexity than [135].

8.2.2 Structured matrix for sequential sampling

We design the distribution L(𝑑) to be regular, i.e. all the variable nodes are connected to the
same number 𝑑𝑐 of check nodes, whereas the distribution R(𝑑) is optimized in section 8.2.3. The
resulting check node degree profile R(𝑑) has at most two consecutive degrees.

Rather than generating matrix A as a random realization of the ensemble of matrices having
degrees profiles R(𝑑) and L(𝑑), we chose to introduce some structure in the construction of
matrix A to guarantee that all components of vector x0 contribute to a measurement before
any of them is sensed again. This structure is beneficial in the sequential sampling procedure: it
ensures that all the components of vector x0 are sensed equally early, avoiding the possibility
that a non-zero sample may not be sensed until late and, therefore, the sequential sampling may
require a large number of samples to stop.

Hence, we propose to construct a matrix A by sub-blocks. Let us assume, for the sake of simplicity
that all rows have the same degree 𝑑𝑐. Then, 𝑑𝑣 = M𝑑𝑐/N sub-matrices A1 . . .A𝑑𝑣 of dimension
N/𝑑𝑣 ×N are randomly drawn from the ensemble of all matrices of row degree 𝑑𝑐 and column
degree 1. Afterwards, these sub-matrices are stacked to build matrix A as A = [AT

1 . . .AT
𝑑𝑣
]T.

The design of sub-matrices A1...A𝑑𝑣 is done avoiding length-four cycles whenever possible.
Unfortunately, when the signal is very sparse these cycles are unavoidable if one wants to keep
the number of measurements low, since the vector length N is finite. Indeed, if the number

120 8 Verification-based algorithms

of measurements is in the order of K the check node degree 𝑑𝑐 must be O(N/K) in order to
guarantee that all signal coefficients are sensed once, so the check node degree 𝑑𝑐 grows as
the signal becomes sparse and hence matrix A becomes denser and length-four cycles become
unavoidable for finite length N. This behavior explains the relevance of the enhancement of the
decoding algorithm proposed next in section 8.2.4.

8.2.3 Check node degree profile design

As stated in section 2.1.2, the noiseless compression schemes and the group testing schemes
are strongly related because the group testing problem can be seen as a 1 bit quantization of
the compressed sensing problem when the matrix is sparse. Therefore, when the matrices are
sparse the performance of both compression schemes depends critically on the amount of non-null
components/defective subjects that contribute to each measure/test.

Let us recall equations (2.4,2.5, 2.6) in section 2.3.3 that they describe the probabilities P
(︀
|I𝑐∩S| =

0
)︀
, P
(︀
|I𝑐∩S| = 1

)︀
and P

(︀
|I𝑐∩S| > 1

)︀
. We have simply to note that the probability of non-defective

subjects in section 2.3.3 translates here to P(P𝑁) = 1− 𝛾.

For group testing we employed a policy aimed to maximize the entropy vector y0 whereas here
we decided to select a check node degree profile R(𝑑) aimed at balancing the amount of vectors
generated according to equations (2.4) and (2.5).

With this purpose, we propose to employ the check node degree distribution R(𝑑) that maximizes
the average number of variable nodes connected to check nodes for which |I𝑐 ∩ S| ≤ 1, as follows

maximize
R(𝑑)

∑︁

∀𝑑
R(𝑑) 𝑑 P

(︀
|I𝑐 ∩ S| ≤ 1

)︀

subject to R(𝑑) ≥ 0,
∑︁

∀𝑑
R(𝑑) = 1

(8.1)

where P
(︀
|I𝑐∩S| ≤ 1

)︀
= P

(︀
|I𝑐∩S| = 0

)︀
+P

(︀
|I𝑐∩S| = 1

)︀
. Note that P

(︀
|I𝑐∩S| ≤ 1

)︀
is the fraction

of check nodes with |I𝑐 ∩ S| ≤ 1 for asymptotic N. Then if follows that 𝑑 P
(︀
|I𝑐 ∩ S| ≤ 1

)︀
is the

average number of edges per check node so as |I𝑐 ∩ S| ≤ 1 for a given 1− 𝛾 and 𝑑.

It is straightforward to show that for a fixed 1−𝛾 and 𝑑 ∈ R+ the relaxed function 𝑑 P
(︀
|I𝑐∩S| ≤ 1

)︀

has a single maximum at 𝑑. It can be shown that whenever we fix the number of non-null
coefficients of R(𝑑) to 𝑑 and 𝑑+ 𝑖 and assume that N/K >> 1, the optimum choice of the two
non-null degrees are the closest ones around 𝑑. In this case

∑︀
R(𝑑)𝑑 P

(︀
|I𝑐 ∩ S| ≤ 1

)︀
has a unique

solution R(𝑑) that can be inferred from 𝑑 as follows

8.2 Enhanced verification algorithm and sequential sampling for compressed sensing 121

R(⌊𝑑⌋) = ⌈𝑑⌉ − 𝑑, R(⌈𝑑⌉) = 𝑑− ⌊𝑑⌋ (8.2)

𝑑 can be calculated as

𝑑 = −𝑡1(1 + 𝑡2)/2

𝑡1 =
1− 𝛾

𝛾
+

2

log(1− 𝛾)
, 𝑡2 =

√︃
1− 4(1− 𝛾)

𝛾 log(1− 𝛾)𝑡21
(8.3)

Note that (8.3) only requires the knowledge of the sparsity ratio of x0. It is worth mentioning
that 𝑑 also increases as N/K increases.

The idea behind equation (8.1) is that by verifying as many variable nodes per measurement as
possible, the phase transition zone1 will be reached as soon as possible (in terms of samples).
The EVA algorithm shows a kind of avalanche effect when it reaches its phase transition zone:
once it reaches this zone the addition of a single sample may enable the verification of a large
amount of variable nodes. This happens because rule C2 in algorithm 8.A.2 is activated when
the average number of non-verified variable nodes connected to check nodes is close to 1. When
this average is close to one, the avalanche effect is triggered. Before that, variable nodes can only
be verified in the graph when statements S1 and S2 in section 8.1.2 our modified S2 in section
8.2.4 happen. Hence, by maximizing the fraction of variable nodes connected to check nodes
with |I𝑐 ∩ S| ≤ 1 we try to reduce as fast as possible the number of non-verified variable nodes
while keeping low the number of generated measurements.

8.2.4 Enhanced verification decoder

Now let us focus on the modification of the verification algorithm that we proposed in [117].
There we showed that this modification improves performance of the VA when dealing with
very sparse sources while preserving its O(N) computational complexity and requiring only local
operations.

More specifically, the improvement consists in extending rule V2 in subsection 8.1.2 to deal with
graphs having cycles of length four, i.e., |I𝑐𝑗 ∩ I𝑐𝑖 | ≥ 1. In the presence of such cycles, if two
measurements 𝑦𝑗 and 𝑦𝑖 take the same value (𝑦𝑗 = 𝑦𝑖), we know that the variable nodes that are
not in the intersection set I𝑐𝑗 ∩ I𝑐𝑖 are equal to zero but we cannot determine the individual value
of those variable nodes in the intersection set; in fact, we can only affirm that the variable nodes
that are in the intersection set must sum up to 𝑦𝑗 . In this case, it is important that the variable

1 See section 3.2.1 for further details.

122 8 Verification-based algorithms

nodes in the intersection inform the check nodes of this coincidence, so that the variable nodes
that do not belong to the intersection set can be verified as zero.

To implement the above mechanism described in 8.A.2, we have modified the original message
passing algorithm including a new message named coincidence ’c’. This message is generated by
the variable nodes that detect coincident measurements and is sent to the check nodes detected
to be in the coincidence state. Thanks to this, check nodes know that

(i) there is at least another check node with a measurement equal to its measurement and the
cardinality of the intersection (the number of received coincident messages)

(ii) one or more of the nodes in coincident state sum up to the measurement.

In other words, if a check node receives only a coincidence message it means that there is no
cycle of length four so it can verify the variable node that sent the coincidence message with the
value of the measurement and the remaining nodes with zero (applying the original rule V2).
Otherwise, if the check node receives more than one coincidence message, it sends a non-verified
message to the variable nodes that sent coincidence messages and propagates verification messages
{’v’,𝑣𝑎𝑙𝑢𝑒 = 0} to the remaining ones. Briefly, these changes are summarized as follows:

• New variable node rule V2: If a variable node receives at least two non-verified messages
with the same estimate, it sends a coincidence message to these check nodes, and transmits
{’nv’,−} to the remaining nodes in its neighborhood.

• Check node rule C4: If a check node receives at least a coincidence message, it verifies as
zero the variable nodes that have not sent coincidence messages. Additionally, if the check
node receives only a coincidence message, it verifies the corresponding variable node using
its own measurement. Otherwise, it propagates {’nv’,𝑦′} to the variable nodes that sent
coincidence messages.

8.2.5 Performance

Table 8.1 compares the joint performance of the proposed matrix construction method, the
proposed check node degree design and the proposed message passing algorithm with the
performance of the sudocodes [132]. In this table, M represents the maximum number of samples
required for perfect reconstruction obtained after 105 Monte Carlo simulations. The signal vector
x0 was drawn at random from the Grassmanian manifold ΓK

N, 0 ≤ K < N. The coefficients
indexed in S are randomly drawn according to a Gaussian probability density function with zero
mean and 𝜎2

𝑥 = 1.

8.2 Enhanced verification algorithm and sequential sampling for compressed sensing 123

Table 8.1: Comparison of sudocodes with EVA.

N,K Sudocodes [132] Proposed method
10000,100 M=803 M=375
10000,10 M=461 M=85
100000,10 M=931 M=92

Note that the number of samples required by the proposed scheme is 2 to 10 times smaller that the
one required by sudocodes. It must be noted that the proposed method also outperforms that one
in [166] (see figure 6 in [166] where the adopted LM2-MB algorithm is the VA algorithm presented
in section 8.1.2). In this case for N = 10000 the method in [166] requires M > 500 measurements
to reconstruct a sequence with K = 100; in our case, M = 375 suffices to reconstruct almost any
sequence with K = 100 (see table 8.1).

Figure 8.1 shows a phase transition diagram as a function of the number of samples M, sparsity
K and block length N. The horizontal axis corresponds to the sampling ratio, 𝑟 = M/N. The
vertical axis represents the ratio 𝛿 = K/M. The curve labeled as LP-PT is phase transition for
𝑙1 reconstruction [49, 50]. The curves labeled as (VA) and (EVA) represent the performance
of the verification and enhanced verification algorithms for different 𝑝𝑒 = P

(︀
x0 ≠ x

)︀
when the

proposed matrix construction is employed. The same measurement matrix was employed to run
all the simulations (VA and EVA) for a fixed N/K ratio. These matrices were obtained with
the structure presented in section 8.2.2 and with R(𝑑) selected for 𝑝 = 1−K/N as indicated by

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

r

δ

VA. p
e
=0.5

VA. p
e
=10

−3

EVA. p
e
=0.5

EVA. p
e
=10

−3

LP−PT

Figure 8.1: Phase transition diagram as a function of sampling, sparsity and block length N.
Comparison of verification (VA) and enhanced verification (EVA) algorithm for N=16000 and several
sparsity ratios on a phase diagram.

124 8 Verification-based algorithms

equations (8.3) and (8.2) in appendix 8.2.3. At least 105 Monte Carlo simulations were run per
point.

The plots obtained with VA and EVA show a dual behavior: both have the same performance as
long as it is possible to generate graphs without length-four cycles (for 𝑟 < 0.05 in this case, i.e.
N/K > 100). Once the measurement matrix becomes dense, i.e. for large N/K ratios, the behavior
of the algorithms changes: VA performance decreases dramatically whereas EVA performance
falls slowly. These results can be compared with the 𝑙1 theoretical limit for asymptotic N. Figure
8.1 shows that VA can outperform the 𝑙1 in an approximate range between 𝑟 ∈ (0.05, 0.25) and
EVA between 𝑟 ∈ (0,0.25), both employing measurement matrices constructed with the method
proposed in this chapter.

8.3 List message passing for compressed sensing

Recently, the authors of [167] proposed a new verification based-algorithm in the context of 𝑞-ary
channel coding, named list message passing (LMP) . The main differences of LMP with respect
to verification-based algorithms are that:

(a) Whenever the field ’state’ of a message is ’non-verified’ the field value is a list of estimates
of the value of the variable node

(b) All the nodes exchange extrinsic information.

The drawback of this channel coding algorithm is that the size of the list of estimates grows
unbounded with the iteration number and the check node degree.

Clearly, the complexity of direct application of LMP to CS is non-affordable because all nodes
are originally unknown and because the average check node degree is inversely proportional to
the source sparsity 𝛾−1. With this in mind, in this section, we present an adaptation of the list
message passing algorithm for compressed sensing (CS-LMP) that overcomes this problem and
aims at approaching the BP-threshold 𝛾𝐵𝑃 (see section 3.3.2 for further details) with affordable
computational complexity.

This section is divided as follows: in section 8.3.1 we briefly describe the compression scheme.
Then in section 8.3.2 we introduce the CS-LMP algorithm. After that in section 8.3.3 we study
its computational complexity. Finally, in section 8.3.4 we compare its performance with the
NB-VA and the GAMP reconstruction algorithms.

8.3 List message passing for compressed sensing 125

8.3.1 System setup

Here we assume that the signal vector x0 is drawn at random from the Grassmanian manifold
ΓK
N, 0 < K ≤ N, i.e. all the realizations have exactly K non-null components so the components

that are not indexed in S are strictly zero. The support set S is selected randomly from the
(︀
N
K

)︀

possible choices according to a uniform distribution. After that, the components indexed in S

are populated by drawing |S| i.i.d sampled from a continuous distribution.

Throughout all this section we assume the typical noiseless compressed sensing setup: y0 = Ax0.
In this compression scheme A is a sparse random matrix from an ensemble Γ(L,R,N). Note that
the compression scheme presented here is a fixed-to-fixed rate code where all components of
vector y0 are generated in parallel, as opposite to the EVA presented 8.2.

The decoder implements the List-Message-Passing algorithm for CS, that we recently presented
in [118], is a local message passing strategy between the nodes of the graphical representation
of a sparse matrix and has the best known verification-based algorithm and the one with the
highest computational complexity.

8.3.2 List message passing based-decoder for noiseless compressed sensing

In this message passing strategy nodes exchange messages having the following form: {state,value}
where state is either non-verified ’nv’ or verified ’v’, and value is either a number (when ’v’)
or a list of its estimates of length 𝑑𝑣 − 1 (when ’nv’). Check and variable nodes are activated
alternatively performing iterations. The iterative process ends once all variable nodes are verified
or when a stop condition is reached.

Variable nodes, when activated, execute the following tasks

V1 If a verified message is received then propagate this information to the remaining check
nodes in their neighborhood, swap its state to "verified" and store the verified "value".

V2 Compare the values of the received messages. In case of receiving two or more messages
with the same value swap its state to "verified" and store the common value. Finally,
convey this information to all the check nodes in its neighborhood.

V3 Otherwise, forward to all check nodes in its neighborhood the ’nv’ flag and the list of
estimates received from the other check nodes.

126 8 Verification-based algorithms

During their activation turn, check nodes divide their edges into the sets of verified and non-
verified edges, I𝑐𝑣 and I𝑐𝑛𝑣, and subtract the contribution of the verified variable nodes from their
measurement to obtain 𝑦′ as follows

𝑦′𝑗 = 𝑦𝑗 −
∑︁

∀𝑖∈I𝑐𝑣,𝑗

𝑎𝑗,𝑖 𝑥𝑖 (8.4)

where 𝑦𝑗 is the measurement of the 𝑗-th check node, I𝑐𝑣,𝑗 represents the verified variable nodes in
the neighborhood of the 𝑗-th check node, 𝑎𝑗,𝑖 is the weight of the edge connecting the variable
node 𝑖 and the check node 𝑗 and 𝑥𝑖 is the verified value of the variable node 𝑖.

After that, each check node performs a search in order to check whether any combination of
estimates received from the variable nodes I𝑐𝑛𝑣,𝑗 sum up to 𝑦′. Thus, in a worst case scenario check
nodes must perform 𝑑𝑑𝑐𝑣 searches to ensure that no combination sums up to 𝑦′. Fortunately, we
can exploit that most measurement are generated by a reduced number of non-null components
of vector x0 since both the edges and variable nodes represent the non-null entries of the signal
x0 with probability 𝛾. We refer to these edges and variable nodes as active. The number of
active edges per check node follows a binomial distribution in the N asymptotic regime.

A fraction of the check nodes is generated by the contribution of a single non-null entry of the
signal vector (with probability P

(︀
|I𝑐 ∩ S| = 1

)︀
). Therefore, some variable nodes receive the same

estimates from different check nodes so variable nodes can decide that the repeated estimate is
their real value (if the graph is free of length four cycles or whenever the weights of the edges are
i.i.d. according to some continuous distribution the values 𝑦′ in equation 8.4 will be all different).

Thus, verification-based algorithms require a sufficiently large fraction of measurements equal to
a single variable node P

(︀
|I𝑐 ∩ S| = 1

)︀
in order to enable the verification process at the variable

nodes or to allow them to forward to the check nodes a list of estimates that includes the real
value of the variable node.

Let us have a look of the decoding process. For the sake of clarity let us focus on a right regular
code with check node of degree 𝑑𝑐. The decoding process starts whenever P

(︀
|I𝑐 ∩ S| = 1

)︀
is high

enough to enable variable nodes to exploit the V3 decoding rule, i.e. to initiate the verification
process.

In this case, the neighborhoods of check nodes contain in average a low number of non-null
variable nodes since the amount of non-null components contributing to measurements follows a
binomial distribution. So there are usually several variable nodes that represent zeros contributing
to the generation of a given measurement. Due to this check nodes can initially perform the
searches assuming that almost all the variable nodes in their neighborhood are zero, hoping to
find a combination of estimates that sums up to the 𝑦′ in equation (8.4).

8.3 List message passing for compressed sensing 127

In general, for irregular check node degree distributions, there are several mass concentrations
but it also holds that the one belonging to the check nodes with the lowest degree is concentrated
closer to 𝑖 = 1, and the remaining mass of probability are concentrated at larger values. Hence,
it is also very unlike to find the proper combination of estimates at the check nodes with larger
number of edges.

Algorithm 8.5 in appendix 8.A.3 summarizes the check node operations. Basically, the 𝑗-check
node removes from its measurement 𝑦𝑗 the contribution of the verified variable nodes in its
neighborhood as in equation (8.4). After that, similarly to the VA algorithm, if 𝑦′ = 0 sends a
verified message with the value 𝑦′ to all the variable nodes indexed in I𝑐𝑛𝑣. Otherwise, executes
an exhaustive search, testing whether any combination sums up to 𝑦′. Note that X𝑗 represents
the list of estimates received from the non-verified variable nodes that are indexed in I𝑐𝑛𝑣

1. After
performing the search, if any check nodes find a combination of estimates that sum up to 𝑦′, they
send to all the variable nodes indexed in I𝑐𝑛𝑣 a verified message with the proper value. Otherwise,
as in the general VA, they send a non-verified message with an estimate 𝑦′ to all the variable
nodes indexed in I𝑐𝑛𝑣.

Algorithm 8.6 in appendix 8.A.3 summarizes variable node operation. In short, whenever variable
nodes receive a verified message or at least two non-verified messages with the same estimate,
their state swaps to verified with the value indicated. Otherwise, they keep in a non-verified state
and append to the non-verified flag a list with all the estimates received though the remaining
edges.

8.3.3 Computational complexity

In this section we evaluate the computational complexity of the proposed algorithm for a fixed
sparsity ratio 𝛾 and rate 𝑟 under the assumptions that the length N is large enough so that the
signal vector has approximately 𝛾N nonzero entries. Furthermore, recall from section 3.1 that
theoretically the number of samples M to almost perfectly reconstruct a 𝛾-sparse signal of length
N vector is M = 𝛾N+ o(N), hence M is O(𝛾N). We consider that comparisons, products and
sums have the same complexity.

The computational complexity of the activation of a variable node is dominated by the search of
at least two estimates with equal value and it requires

(︀
𝑑𝑣
2

)︀
operations. So the activation of all

the variable nodes is O(𝑑2𝑣N).

1 This list has in average |I𝑐𝑛𝑣|
∑︀

∀𝑑𝑣 L(𝑑𝑣)𝑑𝑣 values. The wise way to perform the search is first assume that all
but one input messages are zero, i.e. performs (𝑑𝑣 − 1)

(︀|I𝑐𝑛𝑣|
1

)︀
comparisons, then assume that two components

are non null, i.e. perform (𝑑𝑣 − 1)2
(︀|I𝑐𝑛𝑣|

2

)︀
comparisons, and so on.

128 8 Verification-based algorithms

The list of the messages that the variable and check nodes send to the check and variable nodes
has at most length 𝑑𝑣 − 1 and 1, respectively. These messages have to be multiplied/divided by
the weight of the edges, so the complexity of this operation is O(𝑑2𝑣N), as there are 𝑑𝑣N edges in
the graph.

Each check node performs at most 𝑑𝑑𝑐𝑣 comparisons. Hence, the activation of all the check nodes
in one iteration has a computational complexity O(𝛾N𝑑𝑑𝑐𝑣).

Thus, the overall computational complexity of the first iteration is O(N(𝛾𝑑𝑑𝑐𝑣 + 2𝑑2𝑣)). Further
iterations require fewer computations because when the verification process starts the amount of
verified variable nodes increases and so the amount of verified messages that check nodes receive
also increases. This fact reduces the amount of computations that check nodes perform to search
if any combination of estimates is equal to its measure.

8.3.4 Performance

Figure 8.2 depicts the performance of the NB-VA and CS-LMP algorithm for different sequence
lengths compared with the VA performance threshold (VA-threshold) and BP-threshold of the
graph ensemble1. The horizontal axis represents the sampling efficiency (K/M) and the vertical
axis the sequence error rate (SER), P(x0 ̸= g(q(x0))). The plots of the performance of the
NB-VA and CS-LMP were obtained by Monte Carlo simulations. Each simulation was stopped
when 200, 200 or 20 erroneous reconstructions were obtained, for N = 2000, 10000 and 100000,
respectively. A graph degree profile optimized in [53] for the NB-VA of rate 0.8 was employed in
all simulations, it included two degrees for check and variable nodes and the matrix coefficients
were either 0 or 1. The non-null entries of the x0 are i.i.d. according to a standard distribution.
Note that verification algorithms declare that a sequence is perfectly reconstructed whenever all
variable nodes are verified and thus, the values of the entries of estimate vector are equal to the
ones of the original sequence.

Figure 8.2 shows that both the performance of the NB-VA and CS-LMP increases as N increases,
as expected. It also shows that the performance of the NB-VA approaches VA-threshold obtained
by density evolution in [53] as N increases. The figure also shows that the CS-LMP clearly
outperforms the NB-VA for all N, being the gain of efficiency approximately of 0.07 irrespective
of N. In spite of this gain, the gap to BP-threshold of the graph ensemble is still large.

Figure 8.3 compares the performance of the CS-LMP with the one of the estimate-maximize
Gaussian-Bernoulli Approximate Message Passing (EM-GB-AMP) algorithm [153] and the BP-
threshold, for different block lengths. The entries of the measurement matrix of the EM-GB-AMP

1 See section 3.3.2 for further detail on BP-threshold and section 3.2.5 for more information on VA-thresholds.

8.3 List message passing for compressed sensing 129

are i.i.d according to a standard distribution. The measurement matrix of the CS-LMP is the
same sparse matrix of the simulations of figure 8.2 (from [53]). Each plot of the figure is obtained
for a fixed matrix and changing the sparsity 𝛾. Note that both the Gaussian and the sparse
matrix have the same rate.

The horizontal axis represents the sampling efficiency and the vertical axis the SER. The
performance plots of the EM-GB-AMP and CS-LMP were obtained by Monte Carlo simulations
and each simulation was stopped once 200 erroneous reconstructions were obtained. As before,
for the LMP a sequence is declared perfectly reconstructed whenever all variable nodes are
verified. For the EM-GB-AMP, a sequence is declared free of errors whenever the normalized
minimum square error is ‖x0−x‖22

‖x0‖22
< 10−4.

Figure 8.3 shows that for the shortest block length, N = 2000, 10000, initially the EM-GB-AMP
algorithm outperforms the CS-LMP algorithm but as the signal becomes more sparse, the SER
of the EM-GB-AMP algorithm shows an error floor whereas the CS-LMP SER keeps decreasing
and eventually the CS-LMP outperforms the EM-GB-AMP.

For the largest block length, both algorithms (with their own different measurement matrices)
have the same performance. Notice that for this block length, the plot of the EM-GB-AMP
algorithm also seems to depict an error floor.

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
10

−4

10
−3

10
−2

10
−1

10
0

Efficiency (K/M)

S
E

R

VA 2000

VA 10000

VA 100000

LMP 2000

LMP 10000

LMP 100000

BP threshold

VA threshold

Figure 8.2: Performance comparison of CS-LMP (LMP) and NB-VA (VA) and different N compared
to the thresholds of the NB-VA and the BP-threshold of the graph ensemble.

130 8 Verification-based algorithms

0.7 0.75 0.8 0.85 0.9 0.95
10

−2

10
−1

10
0

Efficiency (K/M)

S
E

R

LMP 2000

LMP 10000

LMP 100000

EM−BG−AMP 10000

EM−BG−AMP 2000

BP threshold

Figure 8.3: Performance comparison of CS-LMP (LMP) vs. EM-GB-AMP for different N compared
to the threshold of the BT-threshold of the ensemble of graphs.

Appendix 8.A Algorithms

8.A.1 Verification Algorithm

Algorithm set up

The NB-verification algorithm, referred to as simply as verification algorithm, is an iterative
message passing strategy on a sparse graph representation of a matrix with {0,1} coefficients.
The message passing strategy is divided in iterations where check and variable nodes are activated
alternatively.

Messages exchanged between check and variable nodes have to fields {’flag’,’value’}. The field
’value’ is either an estimate of the value of the component that the variable node represents to.
The flag field can be either ’v’ to indicate that the value is verified, ’nv’ to indicate that the
value (if any) is non-verified.

Check node update rules for VA

Algorithm 8.1 describes the check node update rules for of VA. Its goal is to generate the messages
that check nodes send to variable nodes.

The input arguments of the algorithms are all the messages generated by the variable nodes,
enclosed in X𝑣→𝑐, the connexions of the graph and their weights (coefficients of the matrix),
enclosed in

{︁
I𝑐1, . . . , I

𝑐
𝑗 , . . . , I

𝑐
M

}︁
, and the vector of measures y. Note that each set I𝑐 encloses the

8.A Algorithms 131

connections and the weights of the edges departing from the check node. The output arguments
of the algorithm are the messages generated by the checks and sent to the variable nodes X𝑣→𝑐.

input : y, X𝑣→𝑐,
{︁
I𝑐1, . . . , I

𝑐
𝑗 , . . . , I

𝑐
M

}︁

output :X𝑣→𝑐

1 for 𝑖← 1 to M do
2 𝑦 ← 𝑦𝑖 ;
3 cont← |I𝑐𝑖 | ;
4 I← I𝑐𝑖 ;
5 for 𝑗 ∈ I𝑐𝑖 do
6 if flag𝑗 = 𝑣 then
7 𝑦′ ← 𝑦′ − 𝑣𝑎𝑙𝑢𝑒𝑗 ;
8 cont← cont− 1 ;
9 Remove(I, j);

10 end

11 end
12 if y=0 then PropagateMsg(I,v, 0);
13 else if cont = 1 then PropagateMsg(I,v, y);
14 else PropagateMsg(I,nv, y);

15 end
Algorithm 8.1: Check node update rules for Verification Algorithm for Compressed
sensing.

In the first ’for’ loop (line 1) the algorithm visits the M check nodes and generates a temporal
copy of the data. The second ’for’ loop (line 5) is aimed to remove the contribution of the verified
messages. Finally, in lines 12 to 14 the algorithm updates the output messages.

The reader should note that the function ’Remove’ in line 9 removes from the data structure I

the references to the variable node 𝑗. Finally, the function ’Propagate’ updates all the output
positions of the structure X𝑣→𝑐 indicated by the first argument, i.e. I. The second argument
indicates the flag of all the output messages indicated by I and the third argument indicates
the value of all output messages. Note that the output value of the message will be equal to
𝑥′𝑐𝑖→𝑣𝑗 = 𝑦/𝑎𝑖,𝑗 where 𝑎𝑖,𝑗 is the corresponding coefficient of the measurement matrix.

Variable node update rules for VA

Algorithm 8.2 describes a basic update rules for variable nodes of VA. Its goal is to generate the
messages that variable nodes send to check nodes.

132 8 Verification-based algorithms

The input arguments of the algorithms are all the messages generated by the variable nodes,
enclosed in X𝑐→𝑣, the connexions of the graph and their weights (coefficients of the matrix),
enclosed in

{︁
I𝑣1, . . . , I

𝑣
𝑗 , . . . , I

𝑣
N

}︁
, and the states of each variable node {𝑉1, . . . , 𝑉𝑗 , . . . , 𝑉N}. Note

that each I encloses the connections and the weights of the edges departing from the variable
node. The output arguments of the algorithm are the messages generated by the checks and sent
to the variable nodes X𝑣→𝑐.

input : X𝑐→𝑣,
{︁
I𝑣1, . . . , I

𝑣
𝑗 , . . . , I

𝑣
N

}︁
, {𝑉1, . . . , 𝑉𝑗 , . . . , 𝑉N}

output :X𝑣→𝑐

1 for 𝑖← 1 to N do
2 for ∀𝑗 ∈ I𝑣𝑖 do
3 x← 𝜇𝑗→𝑖(𝑣𝑎𝑙𝑢𝑒) ;
4 if flag = ’v’ then PropagateMsg(I𝑣𝑖 , v,𝑥);
5 else if CompareMsg(I𝑣𝑖 ∖ 𝑗,X𝑖

𝑐→𝑣,𝑥)= 𝑡𝑟𝑢𝑒 then
6 PropagateMsg(I𝑣𝑖 , v,𝑥)

7 end

8 end
9 if 𝑉𝑖 =

′ nv′ then
10 PropagateMsg(I𝑣𝑖 ,nv,−)

11 end

12 end
Algorithm 8.2: Variable node update rules for Verification Algorithm for noiseless
Compressed sensing.

The first ’for’ loop (line 1) processes sequentially all the N variable nodes. Then the second ’for’
loop (line 2 updates each variable to check message. Line 4 handles the case that an incoming
message is verified, i.e. it forwards this message to all the other check nodes in the neighborhood
of the variable node and updates the state of the variable node (function ’Propagate’). Line
5 handles the other verification case. Function ’Compares’ perform compares the value of the
message received through the 𝑗-th edge with the messages received by the other edges and
outputs a ’true’ flag when finds a coincidence. Then the function ’Propagate’ propagates this
message to the remaining check nodes of the neighborhood and updates the state of the variable
node.

Finally, line 9 handles the case when the state of the variable node is still ’nv’. In this case the
variable node propagate to all the check nodes in its neighborhood a message ’nv’ with a dummy
value.

8.A Algorithms 133

8.A.2 Enhanced verification algorithm

The enhanced verification algorithm is an iterative message passing strategy on a sparse graph
representation of a matrix with {0,1} coefficients. The message passing strategy is divided in
iterations where check and variable nodes are activated alternatively.

Messages exchanged between check and variable nodes have to fields {’flag’,’value’}. The field
’value’ is either an estimate of the value of the component that the variable node represents to.
The flag field can be either ’v’ to indicate that the value is verified, ’nv’ to indicate that the
value (if any) is non-verified and ’c’ to indicate that variable nodes detected that two or more
check nodes sent messages with the same value.

134 8 Verification-based algorithms

Check node update rules for EVA

Algorithm 8.3 describes a basic update rules for check nodes of VA. Its goal is to generate the
messages that check nodes send to variable nodes

input : y, X𝑣→𝑐,
{︁
I𝑐1, . . . , I

𝑐
𝑗 , . . . , I

𝑐
M

}︁

output :X𝑣→𝑐

1 for 𝑖← 1 to M do
2 𝑦 ← 𝑦𝑖 ;
3 I𝑛𝑣 ← I𝑐𝑖 ;
4 I𝑐 ← I𝑐𝑖 ;
5 for 𝑗 ∈ I𝑐𝑖 do
6 if flag𝑗 = 𝑣 then ;
7 𝑦′ ← 𝑦′ − 𝑣𝑎𝑙𝑢𝑒𝑗 ;
8 Remove(I𝑛𝑣, j);
9 Remove(I𝑐, j);

10 else if flag𝑗 = 𝑐 then ;
11 Remove(I𝑛𝑣, j);
12 else Remove(I𝑐, j);

13 end
14 if y=0 then PropagateMsg(I𝑛𝑣,v, 0);
15 else if |I𝑛𝑣|=1 & |I𝑐|=0 then PropagateMsg(I𝑛𝑣,v, y);
16 else if |I𝑛𝑣|>1 & |I𝑐|=0 then PropagateMsg(I𝑛𝑣,nv, y);
17 else if |I𝑐|>0 then ;
18 PropagateMsg(I𝑛𝑣,v, 0);
19 PropagateMsg(I𝑐,nv, y) ;

20 end
Algorithm 8.3: Check node update rules for enhanced verification Algorithm for Com-
pressed sensing.

The input arguments of the algorithm are all the messages generated by the variable nodes,
enclosed in X𝑣→𝑐, the connexions of the graph and their weights (coefficients of the matrix),
enclosed in

{︁
I𝑐1, . . . , I

𝑐
𝑗 , . . . , I

𝑐
M

}︁
, and the vector of measures y. Note that each I encloses the

connections and the weights of of the edges departing from the check node. The output arguments
of the algorithm are the messages generated by the checks and sent to the variable nodes X𝑣→𝑐.

In the first ’for’ loop (line 1) the algorithm basically visits the M check nodes, generates a
temporal copy of the data.

8.A Algorithms 135

The second ’for’ loop (line 5) is aimed to remove the contribution of the messages whose state is
verified, partitioning the edges in three sub-sets depending of the received message: coincident
edges I𝑐, non-verified edges I𝑛𝑣 and the verified ones (not taken into account).

Finally in lines 14 to 17 the algorithm performs update the output messages.

The reader should note that the function ’Remove’ in line 6 removes from the data structure I

the references to the variable node 𝑗. Finally the function ’Propagate’ updates all the output
positions of the structure X𝑣→𝑐 indicated by the first argument, i.e. I. The second argument
indicates the flag of all the output messages indicated by I and the third argument indicates
the value of all output messages. Note that the output value of the message will be equal to
𝑥′𝑐𝑖→𝑣𝑗 = 𝑦, since now the matrix is binary.

136 8 Verification-based algorithms

Variable node update rules for EVA

Algorithm 8.4 describes a basic update rules for variable nodes of VA. Its goal is to generate the
messages that variable nodes send to check nodes.

input : X𝑐→𝑣,
{︁
I𝑣1, . . . , I

𝑣
𝑗 , . . . , I

𝑣
N

}︁
, {𝑉1, . . . , 𝑉𝑗 , . . . , 𝑉N}

output :X𝑣→𝑐

1 for 𝑖← 1 to N do
2 I𝑣 = ∅ ;
3 x𝑣 = 0;
4 [I𝑐,𝑥𝑐]=CompareMsg(I𝑣𝑖 ,X

𝑖
𝑐→𝑣) ;

5 for ∀𝑗 ∈ I𝑣𝑖 do
6 x← 𝜇𝑗→𝑖(𝑣𝑎𝑙𝑢𝑒) ;
7 flag← 𝜇𝑗→𝑖(𝑓𝑙𝑎𝑔) ;
8 if flag = v then
9 add(I𝑣𝑖 ∖ 𝑗,I𝑣);

10 x𝑣 ← x

11 end

12 end
13 if |I𝑣| > 0 then
14 PropagateMsg(I𝑣,v,𝑥𝑣);
15 PropagateMsg(I𝑣𝑖 ∖ I𝑣,nv,−);
16 set(𝑉𝑖,v,𝑥𝑣)

17 end
18 else if |I𝑐| > 0 then
19 PropagateMsg(I𝑐, c,𝑥𝑐);
20 PropagateMsg(I𝑣𝑖 ∖ I𝑐, nv,−);
21 set(𝑉𝑖,nv,−)

22 end
23 else
24 PropagateMsg(I𝑣𝑖 , nv,−);
25 set(𝑉𝑖,nv,−)

26 end

27 end
Algorithm 8.4: Variable node update rules for Enhanced Verification Algorithm for
noiseless Compressed sensing.

The input arguments of the algorithms are all the messages generated by the check nodes,

8.A Algorithms 137

enclosed in X𝑐→𝑣, the connexions of the graph and their weights (coefficients of the matrix),
enclosed in

{︁
I𝑣1, . . . , I

𝑣
𝑗 , . . . , I

𝑣
N

}︁
, and the states of each variable node {𝑉1, . . . , 𝑉𝑗 , . . . , 𝑉N}. Note

that each I encloses the connections and the weights of the edges departing from the variable
node. The output arguments of the algorithm are the messages generated by the checks and sent
to the variable nodes X𝑣→𝑐.

The first ’for’ loop (line 1) processes sequentially all the N variable nodes. The function
’CompareMsg’ (in line 4) compares all the values of the messages received from the check nodes
indexed in I𝑣𝑖 and generates a set I𝑐 with the coincident indexed messages and the coincident
value 𝑥𝑐. After that in the second loop, line 5, the set of verified edges I𝑣 is populated with
according to the verification rules.

Finally, the function is ready to update the output messages X𝑣→𝑐. At the first block (line 13) is
triggered in case that the variable node received any verified message. In this case the messages
to be propagated through the edges indexed in I𝑣 are updated with the flag ’v’ and the proper
value 𝑥𝑣 whereas the remaining edges are updated with the ’nv’ flag. In this case the state of
the variable node 𝑣𝑖 is updated to verified with the value 𝑥𝑣. The next block (line 18) updates
the coincident and non-verified messages and sets the state of the variable node to non-verified.
Finally, in case that the variable node didn’t detect any coincidence nor received any verified
message it informs to all check nodes in its neighborhood that its state is still non-verified.

8.A.3 List message passing for compressed sensing

Algorithm set up

The list message passing algorithm for compressed sensing is an iterative message passing strategy
on a sparse graph representation of a matrix with real valued coefficients. The message passing
strategy is divided in iterations where check and variable nodes are activated alternatively.

Messages exchanged between check and variable nodes have to fields {’flag’,’value’}. When the
’flag’ is ’v’ the field ’value’ is an estimate of the value of the component that the variable node
represents to whereas when the flag is ’nv’ the field ’value’ is a list of estimates of the component.

Check node update rules for CS-LMP

The input arguments of the algorithm are the vector of measurements y, a two-dimension array
X𝑣→𝑐 that contains the messages that variable nodes sent to each check nodes1 and information

1 Each one of these messages recall that each one of this messages may be composed by an arbitrarily large
amount of estimates.

138 8 Verification-based algorithms

about the connections of the graphs and the weights of the edges.

In this algorithm check nodes are processed sequentially. At the beginning of each iteration the
algorithm stores a temporal copy of the indexes of the variable nodes in the neighborhood of the
check node I𝑐𝑖 and of its respective measurement. After that, in the second ’for’ (see line 4) the
contribution of the verified variable nodes is removed from the measurement 𝑦. In this loop the
variable nodes connected to check node that sent a non-verified message are also identified. Note
that function ’setCoeff’ (see line 7) retrieves the coefficient of the measurement matrix.

After that, see line 13, the algorithm performs an exhaustive search. As stated in section 8.3.2,
the search can be focused on the combinations that are more likely, i.e. we assume first that
all but one of the components are zero, then all but two are zero and so on. Each time we
evaluate all the possibilities. In case that the check node have a too large degree we can stop the
exhaustive search after checking that no combination of 4 o 5 components of the list of estimates
sums up to 𝑦′ since it is quite unlikely the presence of correct value in several lists at the same
time1.

Once the search has ended, the check nodes forward to the variable nodes the results. In case that
the search was successful they forward to each variable node the proper value of the combination
x̂ along with a flag ’v’, see line 14. Otherwise, they send to all the variable nodes indexed in I𝑛𝑣

1 Remind that the values 𝑥 must be multiplied by the weight of the edge

8.A Algorithms 139

a message with the value 𝑦 along with a ’nv’ flag1.

input : y, X𝑣→𝑐,
{︁
I𝑐1, . . . , I

𝑐
𝑗 , . . . , I

𝑐
M

}︁

output :X𝑣→𝑐

1 for 𝑖← 1 to M do
2 y← 𝑦𝑖 ;
3 I𝑛𝑣 ← I𝑐𝑖 ;
4 for ∀𝑗 ∈ I𝑣𝑖 do
5 𝑥← 𝜇𝑗→𝑖(𝑣𝑎𝑙𝑢𝑒) ;
6 flag← 𝜇𝑗→𝑖(𝑓𝑙𝑎𝑔);
7 𝑎𝑖,𝑗 ← setCoeff(i,j) ;
8 if flag = ’v’ then
9 𝑦 ← 𝑦 − 𝑎𝑖,𝑗𝑥 ;

10 I𝑛𝑣 ← I𝑛𝑣 ∖ 𝑗
11 end

12 end
13 [successful, x̂] ← ExhaustiveSearch(𝑦,I𝑛𝑣,X𝑖

𝑣→𝑐) ;
14 if successful then
15 PropagateMsg(I𝑛𝑣,x̂)

16 end
17 else
18 PropagateMsg(I𝑛𝑣,𝑦)

19 end

20 end
Algorithm 8.5: Check node update rules for List Message Passing for Compressed
sensing.

1 Remind that 𝑥𝑗 = 𝑦𝑖/𝑎𝑖,𝑗

140 8 Verification-based algorithms

Variable node update rules for CS-LMP

Algorithm 8.6 describes a basic update rules for variable nodes of VA. Its goal is to generate the
messages that variable nodes send to check nodes.

input : X𝑐→𝑣,
{︁
I𝑣1, . . . , I

𝑣
𝑗 , . . . , I

𝑣
N

}︁
, {𝑉1, . . . , 𝑉𝑗 , . . . , 𝑉N}

output :X𝑣→𝑐

1 for 𝑖← 1 to N do
2 for ∀𝑗 ∈ I𝑣𝑖 do
3 x← 𝜇𝑗→𝑖(𝑣𝑎𝑙𝑢𝑒) ;
4 if flag = v then PropagateMsg(I𝑣𝑖 , v,𝑥);
5 else if CompareMsg(I𝑣𝑖 ∖ 𝑗,X𝑖

𝑐→𝑣,𝑥)= 𝑡𝑟𝑢𝑒 then
6 PropagateMsg(I𝑣𝑖 , v,𝑥)

7 end

8 end
9 if 𝑉𝑖 = nv then

10 PropExtrinMsg(I𝑣𝑖 , nv,X
𝑖
𝑐→𝑣)

11 end

12 end
Algorithm 8.6: Variable node update rules for Verification Algorithm for noiseless
Compressed sensing.

The input arguments of the algorithms are all the messages generated by the check nodes,
enclosed in X𝑐→𝑣, the connexions of the graph and their weights (coefficients of the matrix),
enclosed in

{︁
I𝑣1, . . . , I

𝑣
𝑗 , . . . , I

𝑣
N

}︁
, and the states of each variable node {𝑉1, . . . , 𝑉𝑗 , . . . , 𝑉N}. Note

that each I encloses the connections and the weights of of the edges departing from the varable
node. The output arguments of the algorithm are the messages generated by the checks and sent
to the variable nodes X𝑣→𝑐.

In this algorithm variable nodes are processed sequentially. At the beginning of each iteration
the algorithm stores a temporal copy of the indexes of the variable nodes in the neighborhood of
the check node I𝑐𝑖 and of its respective measurement.

The first ’for’ loop (line 1) processes sequentially all the N variable nodes. Then the second ’for’
loop (line 2 updates each variable to check message. Line 4 handles the case that an incoming
message is verified, i.e. it forwards this message to all the other check nodes in the neighborhood
of the variable node and updates the state of the variable node (function ’Propagate’). Line
5 handles the other verification case. Function ’Compares’ perform compares the value of the
message received through the 𝑗-th edge with the messages received by the other edges and

8.A Algorithms 141

outputs a ’true’ flag when finds a coincidence. Then the function ’Propagate’ propagates this
message to the remaining check nodes of the neighborhood and updates the state of the variable
node.

Finally, line 9 handles the case when the state of the variable node is still ’nv’. In this case the
variable node propagates to each check node in its neighborhood a message ’nv’ and appends
the estimates received from all the other check nodes in its neighborhood, i.e. appends a list of
messages of length 𝑑𝑣 − 1. The function ’PropExtrinMsg’ performs this operation.

PART IV

Conclusions

143

CHAPTER 9

Conclusions

This thesis has focused on investigating and developing novel compression schemes for binary
source coding, noiseless compressed sensing and group testing within the framework of analog
compression.

Our contributions for GT and CS are devoted to both the characterization of the encoder and
development of message passing strategies for the decoder side. Our purpose throughout the
thesis was to gain insight on the encoder functions for GT and CS and to exploit it at the decoder
side.

Encoding architecture :

In this thesis the different proposed compression schemes are based on the same encoder
scheme: a multistage structure which has proved to be well suited for dealing with sequential
and/or adaptive compression schemes.

In section 4.4 we have proposed an adaptive hybrid LDPC-LDPrC based code for binary
source compression. This was our first approach to construct adaptively matrices exploiting
the partial information that the erasure decoder retrieves from the OR/AND-based check
nodes. We have showed that matrix structure is beneficial for fixed-length binary source
compression schemes because it enables both the introduction of some degree of adaptivity
within the compression scheme and the design of a specially tailored graph for each source
sequence x0, which results in a performance gain when dealing with low entropy sources.

In section 8.2 we have proposed to use this multistage structured matrix in a sequential
compressed sensing scheme where samples are generated until the source sequence is
perfectly reconstructed. With its introduction one can control when the components are
sensed and, hence, it is possible to assign the sensing resources in a fairer way, e.g. we can

145

146 9 Conclusions

design the matrix to sense equally early all the components, which results in an increased
sampling efficiency.

Finally, in chapter 5 we presented a novel adaptive group testing scheme that also employs
the multistage matrix structure. In this case, tests are generated in a sequential block-wise
process, exploiting the information gathered in the previous blocks to design the next piece
of the matrix. This design helps to reduce the amount of edges connected to check nodes
of type III increasing the sampling/testing efficiency of the overall adaptive scheme. This
approach seems very promising within the group testing framework.

In this thesis two criteria have been proposed to design the check node degree profile of the
different matrix stages. Both lead to closed-form expressions. One has been introduced in
the context of the GT and the other one in CS, but both can be applied to both scenarios.

Group testing problem :

We have approached the GT problem from both a theoretical and a practical point view.

In chapter 4 our research efforts were focused on modeling the mapping capabilities of
the group testing encoder in the N-asymptotic regime when the matrix belongs to an
ensemble of sparse graphs. Within the N-asymptotic regime we showed that the mapping
of the encoder is non-injective and we deduced an upper bound for the average amount of
sequences generated by a binary source of data that are mapped to a single sequence. We
also have computed the fraction of unlabeled subjects at the output the erasure decoder
as a function of the matrix ensemble and the source statistics. This result motivated the
proposal of the adaptive GT scheme to cope with the limitations of the non-adaptive GT
scheme.

After analyzing the non-adaptive encoder, in chapter 5 we decided to follow a different
approach to obtain a lossless reconstruction scheme for GT: perform the testing process
in multiple stages in a block-wise sequential manner so as at the end of each stage the
information available at the output of the decoder is employed to design the next testing
stage in which only the subjects that remain to be labeled are involved.

In chapter 6 the design of this multistage scheme has been systematized as a decision
process. Within this problem we have developed a tool that accurately predicts how the
matrix design affects the decision process evolution in the N-asymptotic regime.

The purpose of this tool is two-folded: it is aimed at both assisting to the designer of the
policy to asses its performance and, furthermore, it can assist to the agent executing the

147

actions to choose between a set of actions, since it can characterize the expected outcome
of each action given the information available at the decoder side.

Noiseless compressed sensing :

We have approached the CS problem from the theoretical and the practical side of the
problem.

Within the theoretical approach to the noiseless CS, in chapter 7 we derived a necessary
and sufficient condition that guarantees that in a noiseless compressed sensing scheme
composed by a measurement matrix and a 𝑙0-based decoder achieves lossless reconstruction.
As shown in 7, we have concluded that in the N-finite regime lossless reconstruction
is possible whenever the number of rows of the measurement matrix is larger than the
sparsity of the original signal vector K whenever the spark of the matrix is large enough
(spark(A) > K+ 1).

Within the practical approach to the CS problem, in chapter 8 we have introduced two
verification-based message passing algorithms over the graph representation of the matrix:
the enhanced verification algorithm (EVA) a very low complexity algorithm aimed at
dealing with very sparse signals that outperforms the other verification-based algorithms
when dealing with very sparse signals in the N-finite regime.

The list message passing for compressed sensing algorithm is the best performing verification-
based algorithm at the cost of an increased computational complexity. We showed that the
noiseless compressed sensing scheme composed by a CS-LMP based decoder and a specially
designed random graph has a similar performance than a GAMP-based decoder with a
linear encoder implemented with a Gaussian matrix.

CHAPTER 10

Bibliography

[1] M. Akcakaya, J. Park, and Vahid Tarokh: ‘A coding theory approach to noisy
compressive sensing using low density frames’. InIEEE Trans. on Signal Processing (Nov.
2011), vol. 59(11): pp. 5369–5379 (cit. on pp. 31, 32).

[2] C. Aksoylar, G. Atia, and V. Saligrama: ‘Sparse signal processing with linear and
non-linear observations: A unified shannon theoretic approach’. InIEEE Information
Theory Workshop. (ITW 2013). Sept. 2013: pp. 1–5 (cit. on p. 15).

[3] C. Aksoylar and V. Saligrama: ‘Information-theoretic bounds for adaptive sparse
recovery’. InIEEE International Symposium on Information Theory. (ISIT 2014). June
2014: pp. 1311–1315 (cit. on pp. 15, 16).

[4] M. Aldridge, L. Baldassini, and K. Gunderson: ‘Almost separable matrices’. Inar-
Xiv preprint arXiv:1410.1826 (2014), vol. (cit. on p. 15).

[5] M. Aldridge, L. Baldassini, and O. Johnson: ‘Group testing algorithms: Bounds and
simulations’. InIEEE Trans. on Inform. Theory (June 2014), vol. 60(6): pp. 3671–3687
(cit. on pp. 12, 15, 21, 68).

[6] T. Ancheta: ‘Syndrome-source-coding and its universal generalization’. InIEEE Trans.
on Inform. Theory (July 1976), vol. 22(4): pp. 432–436 (cit. on pp. 12, 13).

[7] L. Applebaum, S.D. Howard, S. Searle, and R. Calderbank: ‘Chirp sensing
codes: Deterministic compressed sensing measurements for fast recovery’. InApplied and
Computational Harmonic Analysis (2009), vol. 26(2): pp. 283–290 (cit. on pp. 36, 38).

[8] G.K. Atia and V. Saligrama: ‘Boolean compressed sensing and noisy group testing’.
InIEEE Trans. on Inform. Theory (Mar. 2012), vol. 58(3): pp. 1880–1901 (cit. on p. 15).

149

150 10 Bibliography

[9] W.U. Bajwa, R. Calderbank, and S. Jafarpour: ‘Model selection: Two fundamental
measures of coherence and their algorithmic significance’. InProceedings of the IEEE
International Symposium on Information Theory. (ISIT 2010). June 2010: pp. 1568–1572
(cit. on p. 38).

[10] L. Baldassini, O. Johnson, and M. Aldridge: ‘The capacity of adaptive group testing’.
InProceedings of the IEEE International Symposium on Information Theory Proceedings.
(ISIT2013). July 2013: pp. 2676–2680 (cit. on pp. 11, 15–17).

[11] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin: ‘A simple proof of the
restricted isometry property for random matrices’. InConstructive Approximation (3 2008),
vol. 28. 10.1007/s00365-007-9003-x: pp. 253–263 (cit. on pp. 27, 36).

[12] E. Barillot, B. Lacroix, and D. Cohen: ‘Theoretical analysis of library screening
using a N-dimensional pooling strategy’. InNucleic acids research (1991), vol. 19(22):
pp. 6241–6247 (cit. on p. 15).

[13] D. Baron, S. Sarvotham, and R.G. Baraniuk: ‘Bayesian compressive sensing via belief
propagation’. InIEEE Trans. on Signal Processing (Jan. 2010), vol. 58(1): pp. 269–280
(cit. on pp. 9, 31, 32).

[14] R. Berinde, A.C. Gilbert, P. Indyk, H. Karloff, and M.J. Strauss: ‘Combining
geometry and combinatorics: A unified approach to sparse signal recovery’. InProceedings
of the 46th Annual Allerton Conference on Communication Control and Computing,
(Allerton 2008). Sept. 2008: pp. 798–805 (cit. on p. 37).

[15] T. Blumensath and M. Davies: ‘Iterative thresholding for sparse approximations’.
InJournal of Fourier Analysis and Applications (5 2008), vol. 14. 10.1007/s00041-008-
9035-z: pp. 629–654 (cit. on p. 31).

[16] P.T. Boufounos and R.G. Baraniuk: ‘1-Bit compressive sensing’. InProceedings of the
42nd Annual Conference on Information Sciences and Systems. (CISS 2008). Mar. 2008:
pp. 16–21 (cit. on pp. 7, 15).

[17] W.J. Bruno, D.J. Balding, E.H. Knill, D. Bruce, C. Whittaker, N. Dogget,
R. Stalling, and D.C. Torney: ‘Design of efficient pooling experiments’. InGenomics
(1995), vol. 26: pp. 21–30 (cit. on p. 15).

[18] G. Caire, S. Shamai, A. Shokrollahi, and S. Verdu: ‘Universal variable-length
data compression of binary sources using fountain codes’. InProceedings of the IEEE
Information Theory Workshop, (ITW 2004). Oct. 2004: pp. 123–128 (cit. on p. 13).

[19] G. Caire, S. Shamai, and S. Verdu: ‘An efficient scheme for reliable error correction with
limited feedback’. InProceedings of the IEEE International Symposium on Information
Theory. (ISIT 2005). Sept. 2005: pp. 1521–1525 (cit. on p. 13).

10 Bibliography 151

[20] G. Caire, S. Shamai, and S. Verdu: ‘Lossless data compression with error correcting
codes’. InProceedings of the IEEE International Symposium on Information Theory. (ISIT
2003). June 2003: p. 22 (cit. on pp. 12, 13).

[21] G. Caire, S. Shamai, and S. Verdu: ‘Noiseless data compression with low-density
parity-check codes’. InDIMACS Series in Discrete Mathematics and Theoretical Computer
Science (2004), vol. 66: pp. 263–284 (cit. on p. 13).

[22] R. Calderbank, S. Howard, and S. Jafarpour: ‘Construction of a large class of
deterministic sensing matrices that satisfy a statistical isometry property’. InIEEE Journal
of Sel. Topics in Signal Process. (Apr. 2010), vol. 4(2): pp. 358–374 (cit. on p. 36).

[23] R. Calderbank, S. Howard, and S. Jafarpour: ‘Sparse reconstruction via the Reed-
Muller Sieve’. InProceedings of the IEEE International Symposium on Information Theory.
(ISIT 2010). June 2010: pp. 1973–1977 (cit. on p. 38).

[24] E. Candes, J. Romberg, and T. Tao: ‘Stable signal recovery from incomplete and
inaccurate measurements’. InCommunications on Pure and Applied Mathematics (Mar.
2006), vol. 59(8): pp. 1207–1223 (cit. on p. 36).

[25] E.J. Candes: ‘Compressive sampling’. InProceedings of the International Congress of
Mathematicians. Vol. 3. 2006: pp. 1433–145 (cit. on p. 35).

[26] E.J. Candes, J. Romberg, and T. Tao: ‘Robust uncertainty principles: exact signal
reconstruction from highly incomplete frequency information’. InIEEE Trans. on Inform.
Theory (Feb. 2006), vol. 52(2): pp. 489–509 (cit. on p. 35).

[27] E.J. Candes and T. Tao: ‘Decoding by linear programming’. InIEEE Trans. on Inform.
Theory (Dec. 2005), vol. 51(12): pp. 4203–4215 (cit. on p. 27).

[28] E.J. Candes and T. Tao: ‘Near-optimal signal recovery from random projections:
universal encoding strategies?’ InIEEE Trans. on Inform. Theory (Dec. 2006), vol. 52(12):
pp. 5406–5425 (cit. on pp. 3–5, 27, 30, 35).

[29] E.J. Candes and T. Tao: ‘Rejoinder: Dantzig selector, statistical estimation when p is
much larger than n’. InAnnals of Statistics (2007), vol. 35: pp. 2392–2404 (cit. on p. 30).

[30] M. Capalbo, O. Reingold, S. Vadhan, and A. Wigderson: ‘Randomness conductors
and constant-degree lossless expanders’. InProceedings of the thiry-fourth annual ACM
symposium on Theory of computing. STOC ’02. Montreal, Quebec, Canada: ACM, 2002:
pp. 659–668 (cit. on p. 37).

[31] C.L. Chan, P.H. Che, S. Jaggi, and V. Saligrama: ‘Non-adaptive probabilistic
group testing with noisy measurements: Near-optimal bounds with efficient algorithms’.
InProceedings of the 49th Annual Allerton Conference on Communication, Control, and
Computing. (Allerton 2011). Sept. 2011: pp. 1832–1839 (cit. on pp. 15, 21).

152 10 Bibliography

[32] V. Chandar: A negative result concerning explicit matrices with the restricted isometry
property. Tech. rep. 2008 (cit. on p. 37).

[33] C.M. Chen, Y.P. Chen, T.C. Shen, and J.K. Zao: ‘On the optimization of degree dis-
tributions in LT code with covariance matrix adaptation evolution strategy’. InProceedings
of the IEEE Congress on Evolutionary Computation. (CEC2010). IEEE. 2010: pp. 1–8
(cit. on p. 13).

[34] S.S. Chen, D.L. Donoho, and M.A. Saunders: ‘Atomic decomposition by basis pursuit’.
InSIAM Journal on Computing (1 Dec. 1998), vol. 20: pp. 33–61 (cit. on p. 31).

[35] Y. Cheng, J. Guo, and F. Zheng: ‘A new randomized algorithm for group testing with
unknown number of defective items’. InJournal of Combinatorial Optimization (2013),
vol.: pp. 1–10 (cit. on pp. 11, 15, 16, 68, 69).

[36] M. Cheraghchi, A. Karbasi, S. Mohajer, and V. Saligrama: ‘Graph-constrained
group testing’. InIEEE Trans. on Inform. Theory (Jan. 2012), vol. 58(1): pp. 248–262
(cit. on p. 15).

[37] G. Cormode and S. Muthukrishnan: ‘What’s hot and what’s not: tracking most
frequent items dynamically’. InACM Trans. on Database Systems (TODS) (2005), vol.
30(1): pp. 249–278 (cit. on p. 15).

[38] Thomas M Cover and Joy A Thomas: Elements of information theory. John Wiley &
Sons, 2012 (cit. on p. 11).

[39] W. Dai and O. Milenkovic: ‘Subspace pursuit for compressive sensing signal reconstruc-
tion’. InIEEE Trans. on Inform. Theory (May 2009), vol. 55(5): pp. 2230–2249 (cit. on
p. 31).

[40] A. De Bonis, L. Gasieniec, and U. Vaccaro: ‘Optimal two-stage algorithms for
group testing problems’. InSIAM Journal on Computing (2005), vol. 34(5): pp. 1253–1270
(cit. on p. 16).

[41] K. Do Ba, P. Indyk, E. Price, and D.P. Woodruff: ‘Lower bounds for sparse
recovery’. InProceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms. (SODA 2010). Austin, Texas: Society for Industrial and Applied Mathematics,
2010: pp. 1190–1197 (cit. on p. 36).

[42] T.T. Do, Lu Gan, N. Nguyen, and T.D. Tran: ‘Sparsity adaptive matching pursuit
algorithm for practical compressed sensing’. InProceedings of the 42nd Asilomar Conference
on Signals, Systems and Computers, (Asilomar 2008). Oct. 2008: pp. 581–587 (cit. on
p. 31).

10 Bibliography 153

[43] David L. Donoho and Michael Elad: ‘Optimally sparse representation in general
(nonorthogonal) dictionaries via l1 minimization’. InProceedings of the National Academy
of Sciences (2003), vol. 100(5): pp. 2197–2202 (cit. on pp. 3–5, 27, 29).

[44] D.L. Donoho: ‘Compressed sensing’. InIEEE Trans. on Inform. Theory (Apr. 2006),
vol. 52(4): pp. 1289–1306 (cit. on pp. 5, 27, 30, 35, 36).

[45] D.L. Donoho, M. Elad, and V.N. Temlyakov: ‘Stable recovery of sparse overcomplete
representations in the presence of noise’. InIEEE Trans. on Inform. Theory (Jan. 2006),
vol. 52(1): pp. 6–18 (cit. on p. 35).

[46] D.L. Donoho, A. Javanmard, and A. Montanari: ‘Information-theoretically optimal
compressed sensing via spatial coupling and approximate message passing’. InIEEE Trans.
on Inform. Theory (Nov. 2013), vol. 59(11): pp. 7434–7464 (cit. on pp. 33, 38).

[47] D.L. Donoho, A. Maleki, and A. Montanari: ‘Message passing algorithms for com-
pressed sensing: I. motivation and construction’. InProceedings of the IEEE Information
Theory Workshop. (ITW 2010). Jan. 2010: pp. 1–5 (cit. on p. 33).

[48] D.L. Donoho, A. Maleki, and A. Montanari: ‘Message passing algorithms for com-
pressed sensing: II. analysis and validation’. InProceedings of the IEEE Information Theory
Workshop. (ITW 2010). Jan. 2010: pp. 1–5 (cit. on p. 33).

[49] D.L. Donoho and J. Tanner: ‘Counting faces of randomly-projected polytopes when
the projection radically lowers dimension’. InJ. of the American Mathematical Soc. (2009),
vol.: pp. 1–53 (cit. on pp. 30, 36, 123).

[50] D.L. Donoho and J. Tanner: ‘Precise undersampling theorems’. InProceedings of the
IEEE (June 2010), vol. 98(6): pp. 913–924 (cit. on p. 123).

[51] R. Dorfman: ‘The detection of defective members of large populations’. InAnn. Math.
Statist. (Dec. 1943), vol. 14(4): pp. 436–440 (cit. on pp. 3, 14).

[52] J.C. Dumm: ‘Global and asymptotic converge rate estimates for a class of projected
gradient processes’. InSIAM Journal on Control and Optimization (19 1981), vol. 3:
pp. 368–400 (cit. on p. 31).

[53] Y. Eftekhari, A.H. Banihashemi, and I. Lambadaris: ‘Analysis and design of
irregular graphs for node-based verification-based recovery algorithms in compressed
sensing’. InProceedings of the IEEE International Symposium on Information Theory
(ISIT 2012). July 2012: pp. 1872–1876 (cit. on pp. 35–37, 128, 129).

[54] Y. Eftekhari, A. Heidarzadeh, A.H. Banihashemi, and I. Lambadaris: ‘Density
evolution analysis of node-based verification-based algorithms in compressed sensing’.
InIEEE Trans. on Inform. Theory (Oct. 2012), vol. 58(10): pp. 6616–6645 (cit. on pp. 35,
36).

154 10 Bibliography

[55] M. Elad, B. Matalon, J. Shtok, and M. Zibulevsky: ‘A wide-angle view at iterated
shrinkage algorithms’. Inin SPIE (Wavelet XII. 2007: pp. 26–29 (cit. on p. 31).

[56] P. Elias: ‘Predictive coding–I’. InInformation Theory, IRE Transactions on (Mar. 1955),
vol. 1(1): pp. 16–24 (cit. on p. 12).

[57] P. Elias: ‘Universal codeword sets and representations of the integers’. InIEEE Trans.
on Inform. Theory (Mar. 1975), vol. 21(2): pp. 194–203 (cit. on p. 12).

[58] M.A.T. Figueiredo, R.D. Nowak, and S.J. Wright: ‘Gradient projection for sparse
reconstruction: application to compressed sensing and other inverse problems’. InIEEE
Journal of Selected Topics in Signal Processing (Dec. 2007), vol. 1(4): pp. 586–597 (cit. on
p. 31).

[59] A.K. Fletcher, S. Rangan, and V.K. Goyal: ‘Necessary and sufficient conditions for
sparsity pattern recovery’. InIEEE Trans. on Inform. Theory (Dec. 2009), vol. 55(12):
pp. 5758–5772 (cit. on pp. 3, 7, 14).

[60] M Fornasier and R. Rauhut: ‘Iterative thresholding algorithms’. InApplied and Com-
putational Harmonic Analysis (2008), vol. 25(2): pp. 187–208 (cit. on p. 31).

[61] B.R. Gaines: ‘Stochastic computing systems’. InAdvances in information systems science.
Springer, 1969: pp. 37–172 (cit. on pp. 16, 44).

[62] J. Garcia-Frias: ‘Compression of correlated binary sources using turbo codes’. InIEEE
Communications Letters (Oct. 2001), vol. 5(10): pp. 417–419 (cit. on p. 53).

[63] J. Garcia-Frias and Y Zhao: ‘Compression of binary memoryless sources using punc-
tured turbo codes’. InIEEE Communications Letters (Sept. 2002), vol. 6(9): pp. 394–396
(cit. on p. 53).

[64] A.C. Gilbert, M.A. Iwen, and M.J. Strauss: ‘Group testing and sparse signal recovery’.
InProceedings of the 42nd Asilomar Conference on Signals Systems and Computers.
(ASILOMAR 2008). Oct. 2008: pp. 1059–1063 (cit. on p. 15).

[65] A.C. Gilbert, Y. Li, E. Porat, and M.J. Strauss: ‘Approximate sparse recovery:
optimizing time and measurements’. InProceedings of the 42nd ACM symposium on Theory
of computing. Cambridge, Massachusetts, USA: ACM, 2010: pp. 475–484 (cit. on p. 31).

[66] A.A. Goldstein: ‘Convex programming in Hilbert spaces’. InBulletin of the American
Mathematical Society (1964), vol. 70: pp. 709–710 (cit. on p. 31).

[67] M.T. Goodrich and D.S. Hirschberg: ‘Improved adaptive group testing algorithms
with applications to multiple access channels and dead sensor diagnosis’. InJournal of
Combinatorial Optimization (2008), vol. 15(1): pp. 95–121 (cit. on p. 15).

[68] A. Gupta and S. Verdu: ‘Nonlinear sparse-graph codes for lossy compression’. InIEEE
Trans. on Inform. Theory (May 2009), vol. 55(5): pp. 1961–1975 (cit. on pp. 13, 18).

10 Bibliography 155

[69] A. Gupta and S. Verdú: ‘Nonlinear sparse-graph codes for lossy compression of discrete
non-redundant sources’. InProceedings of the IEEE Information Theory Workshop. (ITW
2007). Sept. 2007: pp. 541–546 (cit. on pp. 13, 18).

[70] Yao-Win H. and A. Scaglione: ‘On multiple access for distributed dependent sources:
a content-based group testing approach’. InProceedings of the IEEE Information Theory
Workshop, 2004. (ITW 2004). Oct. 2004: pp. 298–303 (cit. on p. 15).

[71] J. Hagenauer, J. Barros, and A. Schaefer: ‘Lossless turbo source coding with
decremental redundancy’. InProceedings of the International ITG Conference on Source
and Channel Coding. 2004: pp. 333–339 (cit. on p. 13).

[72] H. Hassanieh, P. Indyk, D. Katabi, and E. Price: ‘Simple and practical algorithm for
sparse Fourier transform’. InProceedings of the twenty-third annual ACM-SIAM symposium
on Discrete Algorithms. SIAM. 2012: pp. 1183–1194 (cit. on p. 27).

[73] J.D. Haupt, R.G. Baraniuk, R.M. Castro, and R.D. Nowak: ‘Compressive distilled
sensing: Sparse recovery using adaptivity in compressive measurements’. InProceedings of
the Forty-Third Asilomar Conference on Signals, Systems and Computers. (ASILOMAR
2009). Nov. 2009: pp. 1551–1555 (cit. on p. 16).

[74] E.S. Hong and R.E. Ladner: ‘Group testing for image compression’. InIEEE Trans. on
Image Processing (Aug. 2002), vol. 11(8): pp. 901–911 (cit. on p. 15).

[75] D.A. Huffman: ‘A method for the construction of minimum-redundancy codes’. InProcee-
dings of the IRE (Sept. 1952), vol. 40(9): pp. 1098–1101 (cit. on pp. 3, 12).

[76] J.K. Hunter and B. Nachtergaele: Applied analysis. World Scientific Pub Co Inc,
2001 (cit. on pp. 103, 105, 106).

[77] F.K. Hwang: ‘A method for detecting all defective members in a population by group
testing’. InJournal of the American Statistical Association (1972), vol. 67(339): pp. 605–
608 (cit. on pp. 11, 15, 16, 68, 69).

[78] P. Indyk: ‘Deterministic superimposed coding with applications to pattern matching’.
InProceedings of the 38th Annual Symposium on Foundations of Computer Science. (1997).
Oct. 1997: pp. 127–136 (cit. on p. 15).

[79] P. Indyk, E. Price, and D.P. Woodruff: ‘On the power of adaptivity in sparse recovery’.
InProceedings of the IEEE 52nd Annual Symposium on Foundations of Computer Science
(FOCS 2011). IEEE. 2011: pp. 285–294 (cit. on p. 16).

[80] S. Jafarpour: ‘Deterministic compressed sensing’. InPrinceton University Thesis (2011),
vol. Ed. by Princeton University Thesis (cit. on p. 38).

156 10 Bibliography

[81] S. Jafarpour, X. Weiyu, B. Hassibi, and R. Calderbank: ‘Efficient and robust
compressed sensing using optimized expander graphs’. InIEEE Trans. on Inform. Theory
(Sept. 2009), vol. 55(9): pp. 4299–4308 (cit. on p. 37).

[82] S. Jafarpour, R. Willett, M. Raginsky, and R. Calderbank: ‘Performance bounds
for expander-based compressed sensing in the presence of Poisson noise’. InProceedings
of the Forty-Third Asilomar Conference on Signals, Systems and Computers. (Asilomar
2009). Nov. 2009: pp. 513–517 (cit. on p. 36).

[83] A. Javanmard and A. Montanari: ‘State evolution for general approximate message
passing algorithms, with applications to spatial coupling’. InInformation and Inference
(2013), vol. 2(2): pp. 115–144 (cit. on pp. 33, 38).

[84] S. Ji, Y. Xue, and L. Carin: ‘Bayesian compressive sensing’. InIEEE Trans. on Signal
Processing (June 2008), vol. 56(6): pp. 2346–2356 (cit. on pp. 31, 32).

[85] O. Johnson: ‘Strong converses for group testing in the finite blocklength regime’. InarXiv
preprint arXiv:1509.06188 (2015), vol. (cit. on p. 15).

[86] L. P. Kaelbling, M.L. Littman, and A.R. Cassandra: ‘Planning and acting in
partially observable stochastic domains’. InArtificial intelligence (1998), vol. 101(1):
pp. 99–134 (cit. on p. 74).

[87] A.B. Kahng and S. Reda: ‘New and improved BIST diagnosis methods from combi-
natorial group testing theory’. InIEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems (2006), vol. 25(3): pp. 533–543 (cit. on pp. 15, 16).

[88] U. Kamilov, S. Rangan, M. Unser, and A. Fletcher: ‘Approximate message passing
with consistent parameter estimation and applications to sparse learning’. InAdvances
in Neural Information Processing Systems 25. Ed. by F. Pereira, C.J.C. Burges, L.

Bottou, and K.Q. Weinberger. Curran Associates, Inc., 2012: pp. 2438–2446 (cit. on
pp. 27, 33).

[89] W. Kautz and R. Singleton: ‘Nonrandom binary superimposed codes’. InIEEE Trans.
on Inform. Theory (Oct. 1964), vol. 10(4): pp. 363–377 (cit. on p. 15).

[90] T. Kealy, O. Johnson, and R. Piechocki: ‘The capacity of non-identical adaptive
group testing’. InProceedings of the 52nd Annual Allerton Conference on Communication,
Control, and Computing (Allerton 2014). Sept. 2014: pp. 101–108 (cit. on p. 15).

[91] M.A. Khajehnejad, A.G. Dimakis, Weiyu Xu, and B. Hassibi: ‘Sparse recovery of
nonnegative signals with minimal expansion’. InIEEE Trans. on Signal Processing (Jan.
2011), vol. 59(1): pp. 196–208 (cit. on p. 30).

10 Bibliography 157

[92] F. Krzakala, M. Mézard, F. Sausset, Y. F. Sun, and L. Zdeborová: ‘Statistical-
physics-based reconstruction in compressed sensing’. InPhysical Review X (Apr. 2012),
vol. 2(2): p. 021005 (cit. on pp. 34, 38).

[93] S. Kudekar and H.D. Pfister: ‘The effect of spatial coupling on compressive sensing’.
InProceedings of the 48th Annual Allerton Conference on Communication, Control, and
Computing. (Allerton 2010). 2010: pp. 347–353 (cit. on pp. 36, 38).

[94] C.H. Li: ‘A sequential method for screening experimental variables’. InJournal of the
American Statistical Association (1962), vol. 57(298): pp. 455–477 (cit. on p. 15).

[95] A.D. Liveris, Zixiang Xiong, and C.N. Georghiades: ‘Compression of binary sources
with side information at the decoder using LDPC codes’. InIEEE Communications Letters
(Oct. 2002), vol. 6(10): pp. 440–442 (cit. on pp. 13, 53, 57).

[96] M. Luby: ‘LT codes’. InProceedings of the 43rd Annual IEEE Symposium on Foundations
of Computer Science. (2002). 2002: pp. 271–280 (cit. on pp. 13, 59).

[97] M.G. Luby, M. Mitzenmacher, M.A. Shokrollahi, and D.A. Spielman: ‘Efficient
erasure correcting codes’. InIEEE Trans. on Inform. Theory (Feb. 2001), vol. 47(2):
pp. 569–584 (cit. on p. 36).

[98] G. Ma J.and Plonka and M.Y. Hussaini: ‘Compressive video sampling with approximate
message passing decoding’. InIEEE Trans. on Circuits and Systems for Video Technology
(Sept. 2012), vol. 22(9): pp. 1354–1364 (cit. on p. 27).

[99] D.J.C. MacKay: ‘Fountain codes’. InIEEE Proceedings on Communications (Dec. 2005),
vol. 152(6): pp. 1062–1068 (cit. on pp. 13, 59).

[100] D.J.C. MacKay and R.M. Neal: ‘Near Shannon limit performance of low density parity
check codes’. InElectronics Letters (Aug. 1996), vol. 32(18): p. 1645 (cit. on p. 12).

[101] A. Maleki and D.L. Donoho: ‘Optimally tuned iterative reconstruction algorithms for
compressed sensing’. InIEEE Journal of Selected Topics in Signal Processing (Apr. 2010),
vol. 4(2): pp. 330–341 (cit. on p. 31).

[102] S. Mallat and Z. Zhang: ‘Matching pursuit with time-frequency dictionaries’. InIEEE
Trans. on Signal Processing (1993), vol. 41: pp. 3397–3415 (cit. on p. 31).

[103] M. Malyutov: ‘Information Theory, combinatorics and search theory,’ inLecture Notes
in Computer Science. Springer, 2013 (cit. on p. 15).

[104] M. Malyutov: ‘Mathematical models and results in the theory of screening experiments’.
InTheoretical Problems of Experimental Design, Soviet Radio, Moscow (1977), vol.: pp. 5–
69 (cit. on pp. 15, 19).

158 10 Bibliography

[105] D. Matas, M. Lamarca, and J. Garcia-Frias: ‘Non-linear graph-based codes for joint
source-channel coding’. InProceedings of the 6th International Symposium on Turbo Codes
and Iterative Information Processing. (ISTC 2010). Sept. 2010: pp. 384–388 (cit. on pp. 14,
15, 17, 25, 56).

[106] D. Matas, M. Lamarca, and J. Garcia-Frias: ‘Non-linear graph-based codes for
source coding’. InProceerdings of the IEEE Information Theory Workshop. (ITW 2009)
IEEE. Oct. 2009: pp. 318–322 (cit. on pp. 6, 14, 15, 17, 19, 25, 55).

[107] C. Measson, A. Montanari, and R. Urbanke: ‘Maxwell construction: The hidden
bridge between iterative and maximum a posteriori decoding’. InIEEE Trans. on Inform.
Theory (2008), vol. 54(12): pp. 5277–5307 (cit. on p. 17).

[108] N. Meinshausen and B. Yu: ‘Lasso-type recovery of sparse representations for high-
dimensional data’. InThe Annals of Statistics (2009), vol.: pp. 246–270 (cit. on pp. 3, 7,
14).

[109] A. Montanari: ‘Graphical models concepts in compressed sensing’. InCompressed Sens-
ing: Theory and Applications (2012), vol.: pp. 394–438 (cit. on p. 31).

[110] B. K. Natarajan: ‘Sparse approximate solutions to linear systems’. InSIAM journal on
computing (2 Apr. 1995), vol. 24: pp. 227–234 (cit. on pp. 3, 7, 14).

[111] D. Needell and J.A. Tropp: ‘CoSaMP: Iterative signal recovery from incomplete and
inaccurate samples’. InApplied and Computational Harmonic Analysis (2009), vol. 26(3):
pp. 301–321 (cit. on p. 31).

[112] D. Needell and R. Vershynin: ‘Uniform uncertainty principle and signal recovery via
regularized orthogonal matching pursuit’. InFoundations of Computational Mathematics
(3 2009), vol. 9. 10.1007/s10208-008-9031-3: pp. 317–334 (cit. on p. 31).

[113] M.L. Puterman: Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons, 2014 (cit. on p. 74).

[114] M. Raginsky, R.M. Willett, Z.T. Harmany, and R.F. Marcia: ‘Compressed sensing
performance bounds under poisson noise’. InIEEE Trans. on Signal Processing, (Aug.
2010), vol. 58(8): pp. 3990–4002 (cit. on p. 36).

[115] F. Ramirez-Javega and M. Lamarca: ‘Variable-length source compression using succes-
sive refinement and non-linear graph-based codes’. InProceedings of the Data Compression
Conference (DCC 2011) (2011), vol.: p. 473 (cit. on p. 16).

[116] F. Ramirez-Javega, M. Lamarca, and J. Garcia-Frias: ‘Progressive encoding with
non-linear source codes for compression of low-entropy sources’. InProceedings of the 6th
International Symposium on Turbo Codes and Iterative Information Processing. (2010).
Sept. 2010: pp. 389–393 (cit. on pp. 19, 21, 41, 52).

10 Bibliography 159

[117] F. Ramirez-Javega, M. Lamarca, and J. Villares: ‘Binary graphs and message
passing strategies for Compressed Sensing in the noiseless setting’. InProceedings of the
IEEE International Symposium on Information Theory Proceedings. (ISIT 2012). July
2012: pp. 1867–1871 (cit. on pp. 35, 38, 118, 121).

[118] F. Ramirez-Javega and M. Lamarca-Orozco: ‘List message passing for compressed
sensing’. InProceedings of the Signal Information Processing Association Annual Summit
and Conference (APSIPA ASC), Dec. 2015: pp. 1–4 (cit. on p. 125).

[119] F. Ramirez-Javega, D. Matas-Navarro, and M. Lamarca: ‘Adaptive sampling for
fast sparsity pattern recovery’. InProceedings of the 19th European Signal Processing
Conference. (EUSIPCO 2011). Sept. 2011: pp. 348–352 (cit. on pp. 15, 16, 59, 63).

[120] S. Rangan: ‘Generalized approximate message passing for estimation with random linear
mixing’. InProceedings of the IEEE International Symposium on Information Theory
Proceedings. (ISIT 2011). July 2011: pp. 2168–2172 (cit. on pp. 9, 33).

[121] S. Rangan, P. Schniter, and A. Fletcher: ‘On the convergence of approximate mes-
sage passing with arbitrary matrices’. InProceedings of the IEEE International Symposium
on Information Theory. (ISIT 2014). June 2014: pp. 236–240 (cit. on p. 31).

[122] S. Rangan, P. Schniter, E. Riegler, A. Fletcher, and V. Cevher: ‘Fixed points
of generalized approximate message passing with arbitrary matrices’. InProceedings of the
IEEE International Symposium on Information Theory Proceedings. (ISIT 2013). July
2013: pp. 664–668 (cit. on p. 33).

[123] G. Reeves and M. Gastpar: ‘A note on optimal support recovery in compressed sensing’.
InProceedings of the Forty-Third Asilomar Conference on Signals, Systems and Computers,
(Asilomar 2009). Nov. 2009: pp. 1576–1580 (cit. on p. 14).

[124] G. Reeves and M. Gastpar: ‘The sampling rate-distortion tradeoff for sparsity pattern
recovery in compressed sensing’. InIEEE Trans. on Inform. Theory (2012), vol. 58(5):
pp. 3065–3092 (cit. on p. 14).

[125] G. Reeves and M.C. Gastpar: ‘Approximate sparsity pattern recovery: Information-
theoretic lower bounds’. InIEEE Trans. on Inform. Theory (June 2013), vol. 59(6):
pp. 3451–3465 (cit. on pp. 14, 36).

[126] A. Rényi: ‘On the dimension and entropy of probability distributions’. InActa Mathemat-
ica Academiae Scientiarum Hungarica (1959), vol. 10(1-2): pp. 193–215 (cit. on pp. 28,
29).

[127] A. Rényi: Probability Theory. Dover Books on Mathematics Series. Dover Publications,
2007 (cit. on p. 28).

160 10 Bibliography

[128] A. Rényi: ‘Probability theory’. InNorth-Holland Ser Appl Math Mech (1970), vol. (cit. on
pp. 28, 29).

[129] T.J. Richardson and R.L. Urbanke: Modern Coding Theory. New York, NY, USA:
Cambridge University Press, 2008 (cit. on pp. 6, 8, 12, 17, 19, 37, 62).

[130] T.J. Richardson and R.L. Urbanke: ‘The capacity of low-density parity-check codes
under message-passing decoding’. InIEEE Trans. on Inform. Theory (Feb. 2001), vol.
47(2): pp. 599–618 (cit. on p. 9).

[131] C. Sae-Young: ‘On the construction of some capacity-approaching coding schemes’.
PhD thesis. Massachusetts Institute of Technology. Dept. of Electrical Engineering and
Computer Science, 2000 (cit. on p. 57).

[132] S. Sarvotham, D. Baron, and R.G. Baraniuk: ‘Sudocodes - Fast measurement and
reconstruction of sparse signals’. InProceedings of the IEEE International Symposium on
Information Theory. (ISIT 2006). July 2006: pp. 2804–2808 (cit. on pp. 37, 38, 116, 118,
119, 122, 123).

[133] S.A. Savari and R.G. Gallager: ‘Arithmetic coding for memoryless cost channels’.
InProceedings of the Data Compression Conference. (DCC 1992). Mar. 1992: pp. 92–101
(cit. on p. 12).

[134] J. Scarlett and V. Cevher: Phase transitions in group testing. Tech. rep. 2015 (cit. on
pp. 15–17).

[135] P. Schniter: ‘Turbo reconstruction of structured sparse signals’. InProceedings of the
44th Annual Conference on Information Sciences and Systems. (CISS 2010). Mar. 2010:
pp. 1–6 (cit. on pp. 34, 97, 119).

[136] P. Schniter and S. Rangan: ‘Compressive phase retrieval via generalized approximate
message passing’. InIEEE Trans. on Signal Processing (Feb. 2015), vol. 63(4): pp. 1043–
1055 (cit. on p. 27).

[137] D.H. Schonberg: ‘Practical distributed source coding and its application to the com-
pression of encrypted data’. PhD thesis. EECS Department, University of California,
Berkeley, July 2007 (cit. on p. 57).

[138] C. E. Shannon: ‘Coding theorems for a discrete source with fidelity criterion’. In. Ed. by
R. E. Machol. McGraw-Hill, 1960: pp. 93–126 (cit. on p. 11).

[139] C.E. Shannon: ‘A mathematical theory of communication’. InSIGMOBILE Mob. Comput.
Commun. Rev. (1 Jan. 2001), vol. 5: pp. 3–55 (cit. on pp. 5, 11).

[140] N. Shental, A. Amir, and O. Zuk: ‘Identification of rare alleles and their carriers
using compressed sensing’. InNucleic acids research (2010), vol. 38(19): e179–e179 (cit. on
p. 15).

10 Bibliography 161

[141] H. Shi, H. Zhang, G. Li, and X Wang: ‘Stable embedding of Grassmann manifold via
Gaussian random matrices’. InIEEE Trans. on Inform. Theory (May 2015), vol. 61(5):
pp. 2924–2941 (cit. on p. 99).

[142] A. Shokrollahi: ‘LDPC Codes: An introduction’. InCoding, Cryptography and Combi-
natorics. Vol. 23. Progress in Computer Science and Applied Logic Ser. Springer-Verlag
New York, LLC, June 2004: pp. 85–110 (cit. on pp. 12, 19, 41).

[143] M. Sipser and D.A. Spielman: ‘Expander codes’. InIEEE Trans. on Inform. Theory
(Nov. 1996), vol. 42(6): pp. 1710–1722 (cit. on p. 37).

[144] M. Smieja and J. Tabor: ‘Entropy of the mixture of dources and entropy dimension’.
InIEEE Trans. on Inform. Theory (May 2012), vol. 58(5): pp. 2719–2728 (cit. on p. 28).

[145] M. Sobel and P.A. Groll: ‘Group testing to eliminate efficiently all defectives in a
binomial sample’. InBell System Technical Journal (1959), vol. 38(5): pp. 1179–1252
(cit. on p. 15).

[146] S. Som and P. Schniter: ‘Compressive imaging using approximate message passing
and a Markov-tree prior’. InIEEE Trans. on Signal Processing (July 2012), vol. 60(7):
pp. 3439–3448 (cit. on p. 27).

[147] J.H. Sorensen, P. Popovski, and J. Ostergaard: ‘Design and analysis of LT codes
with decreasing ripple size’. InIEEE Trans. on Communications (2012), vol. 60(11):
pp. 3191–3197 (cit. on p. 13).

[148] A. Tajer, R. Castro, and X. Wang: ‘Adaptive spectrum sensing for agile cognitive
radios’. InProceedings of the IEEE International Conference on Acoustics Speech and
Signal Processing (ICASSP 2010). Mar. 2010: pp. 2966–2969 (cit. on p. 15).

[149] J. Tan, Y. Ma, and D. Baron: ‘Compressive imaging via approximate message passing
with image denoising’. InIEEE Trans. on Signal Processing (Apr. 2015), vol. 63(8):
pp. 2085–2092 (cit. on p. 27).

[150] M.E. Tipping: ‘Regression shrinkage and selection via the LASSO’. InJournal Royal.
Statist. Soc (1996), vol. 5(1): pp. 267–288 (cit. on p. 32).

[151] J.A. Tropp and A.C. Gilbert: ‘Signal Recovery From Random Measurements Via
Orthogonal Matching Pursuit’. InIEEE Trans. on Inform. Theory (Dec. 2007), vol. 53(12):
pp. 4655–4666 (cit. on pp. 31, 68).

[152] X.M. Tu, E. Litvak, and M. Pagano: ‘On the informativeness and accuracy of
pooled testing in estimating prevalence of a rare disease: application to HIV screen-
ing’. InBiometrika (1995), vol. 82(2): pp. 287–297 (cit. on p. 15).

162 10 Bibliography

[153] J.P. Vila and P. Schniter: ‘Expectation-maximization Bernoulli-Gaussian approximate
message passing’. InProceedings of the Forty Fifth Asilomar Conference on Signals,
Systems and Computers. (ASILOMAR 2011). Nov. 2011: pp. 799–803 (cit. on p. 128).

[154] J.P. Vila and P. Schniter: ‘Expectation-maximization Gaussian-mixture approximate
message passing’. InIEEE Trans. on Signal Processing (Oct. 2013), vol. 61(19): pp. 4658–
4672 (cit. on p. 34).

[155] J.P. Vila, P. Schniter, and J. Meola: ‘Hyperspectral unmixing via turbo bilinear
approximate message passing’. InCoRR (2015), vol. abs/1502.06435 (cit. on p. 27).

[156] T. Wadayama: ‘An analysis on non-Adaptive group testing based on sparse pooling
graphs’. InarXiv preprint arXiv:1301.7519 (2013), vol. (cit. on p. 15).

[157] T. Wadayama: ‘An analysis on non-adaptive group testing based on sparse pooling
graphs’. InProceedings of the IEEE International Symposium onInformation Theory
Proceedings (ISIT 2013). July 2013: pp. 2681–2685 (cit. on pp. 15, 51).

[158] M.J. Wainwright: ‘Sharp thresholds for high-dimensional and noisy sparsity recovery
using 𝑙1 -Constrained Quadratic Programming (Lasso)’. InIEEE Trans. on Inform. Theory
(May 2009), vol. 55(5): pp. 2183–2202 (cit. on p. 32).

[159] M.J. Wainwright and E. Maneva: ‘Lossy source encoding via message-passing and
decimation over generalized codewords of LDGM codes’. InProceedings of the International
Symposium on Information Theory. (ISIT 2005). Sept. 2005: pp. 1493–1497 (cit. on p. 11).

[160] J. Wolf: ‘Born again group testing: Multiaccess communications’. InIEEE Trans. on
Inform. Theory (Mar. 1985), vol. 31(2): pp. 185–191 (cit. on p. 15).

[161] Y. Wu: ‘Shannon theory for compressed sensing’. PhD thesis. Princeton University, 2011
(cit. on pp. 3, 27–29).

[162] Y Wu and S. Verdu: ‘Optimal phase transitions in compressed sensing’. InIEEE Trans.
on Inform. Theory (Oct. 2012), vol. 58(10): pp. 6241–6263 (cit. on pp. 5, 28, 29).

[163] Y Wu and S. Verdu: ‘Renyi information dimension: Fundamental limits of almost
lossless analog compression’. InIEEE Trans. on Inform. Theory (Aug. 2010), vol. 56(8):
pp. 3721–3748 (cit. on p. 28).

[164] J.S. Yedidia, W.T. Freeman, and Y. Weiss: ‘Constructing free-energy approximations
and generalized belief propagation algorithms’. InIEEE Trans. on Inform. Theory (July
2005), vol. 51(7): pp. 2282–2312 (cit. on p. 9).

[165] S.A. Zenios and L.M. Wein: ‘Pooled testing for HIV prevalence estimation: exploiting
the dilution effect’. InStatistics in medicine (1998), vol. 17(13): pp. 1447–1467 (cit. on
p. 15).

10 Bibliography 163

[166] F. Zhang and H.D. Pfister: ‘Verification decoding of high-rate LDPC codes with
applications in compressed sensing’. InIEEE Trans. on Inform. Theory (Aug. 2012), vol.
58(8): pp. 5042–5058 (cit. on pp. 35, 115, 116, 119, 123).

[167] F. Zhang and H.D. Pflster: ‘List-message passing achieves capacity on the q-ary
symmetric channel for large q’. InIEEE Global Telecommunications Conference. (GLOBE-
COM2007). Nov. 2007: pp. 283–287 (cit. on p. 124).

[168] Q. Zhang, A.B.J. Kokkeler, and G.J.M. Smit: ‘An efficient multi-resolution spectrum
sensing method for cognitive radio’. InThird International Conference on Communications
and Networking in China. (ChinaCom 2008). Aug. 2008: pp. 1226–1229 (cit. on p. 27).

[169] W. Zhang, A.K. Sadek, Shen C., and S.J. Shellhammer: ‘Adaptive spectrum sensing’.
InInformation Theory and Applications Workshop. Feb. 2010: pp. 1–7 (cit. on p. 15).

[170] J. Ziv and A. Lempel: ‘A universal algorithm for sequential data compression’. InIEEE
Trans. on Inform. Theory (May 1977), vol. 23(3): pp. 337–343 (cit. on pp. 3, 12).

[171] J. Ziv and A. Lempel: ‘Compression of individual sequences via variable-rate coding’.
InIEEE Trans. on Inform. Theory (Sept. 1978), vol. 24(5): pp. 530–536 (cit. on pp. 3, 12).

	Contents
	Contents
	List of Figures
	List of Tables
	Acronyms
	List of Symbols
	Glossary
	I Problem description and theoretical limits
	1 Sensing structured sources
	1.1 Signal model and compression scheme for analog compression
	1.2 Some compression problems
	1.2.1 Noiseless compressed sensing
	1.2.2 Binary source compression
	1.2.3 Group testing
	1.2.4 Sparse pattern recovery

	1.3 Graph-based compression schemes
	1.3.1 Graph representation
	1.3.2 Decoding algorithms

	2 Binary source compression and other related problems
	2.1 Binary graph-based source compression schemes
	2.1.1 Binary almost lossless source compression
	2.1.2 Sparse pattern recovery
	2.1.3 Group testing

	2.2 Decoders for graph-based binary source compression schemes
	2.2.1 Low density parity-check codes
	2.2.2 Low density product-check codes
	2.2.3 Hybrid LDPC-LDPrC codes

	2.3 Graph-based group testing schemes
	2.3.1 Problem statement
	2.3.2 Erasure decoder for group testing
	2.3.3 Impact of check node degree on subjects labeling

	Appendix 2.A Belief propagation equations
	2.A.1 Equations for XOR-based check nodes
	2.A.2 Equations for AND/OR-based check nodes

	3 Real data compression schemes
	3.1 Information theoretic limits for compressed sensing
	3.2 Decoders for compressed sensing
	3.2.1 l1-based decoders
	3.2.2 Greedy algorithms
	3.2.3 Bayesian based decoders
	Laplacian prior. The Lasso problem

	3.2.4 Approximate message passing algorithms
	Approximate message passing for LASSO
	Generalized approximate message passing
	Estimate-maximize approximate message passing with Gaussian-Bernoulli prior

	3.2.5 Verification algorithms for noiseless compression

	3.3 Encoders for compressed sensing
	3.3.1 Restricted isometric property for l1-based compressed sensing
	3.3.2 Random graphs
	Sparse graphs
	Expander graphs

	3.3.3 Structured (sparse) matrices
	3.3.4 Reed-Muller compressed sensing

	II Binary source compression and group testing
	4 Fixed-rate OR-based schemes for binary source compression
	4.1 Previous concepts
	4.1.1 Population model
	4.1.2 Set description of the non-adaptive group testing problem

	4.2 Analysis of graph-based group testing encoder
	4.2.1 Labeling capability of a non-adaptive group testing encoder

	4.3 Limitations of the erasure decoder
	4.3.1 Analysis of the graph-based encoder and erasure decoder
	4.3.2 Results

	4.4 Progressive encoding for binary source compression
	4.4.1 System setup
	4.4.2 Encoding procedure
	4.4.3 Analysis
	4.4.4 Simulation results

	5 Adaptive sampling for lossless group testing
	5.1 Scheme overview
	5.1.1 Sequential multi-stage process
	5.1.2 Design and construction step
	Variable node degree profile
	Check node degree profile: design of policy
	Matrix construction

	5.1.3 Decoder

	5.2 Performance of the proposed adaptive group testing scheme
	5.2.1 Group testing performance
	5.2.2 Binary source compression performance

	Appendix 5.A Check degree profile design

	6 Adaptive group testing and decision processes
	6.1 Decision processes and adaptivity
	6.1.1 Introduction
	6.1.2 State definition
	6.1.3 State estimation

	6.2 Predicting the evolution of the state distribution
	6.2.1 Set definition
	6.2.2 State update equations for policy design
	Tracking the evolution of the non-defective subjects
	Tracking the evolution of the defective subjects

	6.2.3 State update equations for 1-step prediction

	6.3 Validation plots
	Appendix 6.A Proof

	III Noiseless compressed sensing
	7 Noiseless compressed sensing limits
	7.1 Problem statement
	7.1.1 Scenario definition
	7.1.2 Noiseless analog compression vs. classical noiseless compressed sensing. The source model
	7.1.3 Approach to the problem

	7.2 Matrix condition for lossless compression
	7.2.1 Main result

	Appendix 7.A Proof
	Appendix 7.B Theorem proof
	7.B.1 Null-space characterization of the erroneous sets
	7.B.2 Lebesgue measures of the null-space
	7.B.3 Extension to non-disjoint partitions

	8 Verification-based algorithms
	8.1 Introduction
	8.1.1 System setup
	8.1.2 Verification algorithm for compressed sensing

	8.2 Enhanced verification algorithm and sequential sampling for compressed sensing
	8.2.1 System setup
	8.2.2 Structured matrix for sequential sampling
	8.2.3 Check node degree profile design
	8.2.4 Enhanced verification decoder
	8.2.5 Performance

	8.3 List message passing for compressed sensing
	8.3.1 System setup
	8.3.2 List message passing based-decoder for noiseless compressed sensing
	8.3.3 Computational complexity
	8.3.4 Performance

	Appendix 8.A Algorithms
	8.A.1 Verification Algorithm
	Algorithm set up
	Check node update rules for VA
	Variable node update rules for VA

	8.A.2 Enhanced verification algorithm
	Check node update rules for EVA
	Variable node update rules for EVA

	8.A.3 List message passing for compressed sensing
	Algorithm set up
	Check node update rules for CS-LMP
	Variable node update rules for CS-LMP

	IV Conclusions
	9 Conclusions
	10 Bibliography

