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Abstract

Nowadays, many real-world problems are encoded into SAT instances and effi-
ciently solved by modern SAT solvers. These solvers, usually known as Conflict-
Driven Clause Learning (CDCL) SAT solvers, include a variety of sophisticated
techniques, such as clause learning, lazy data structures, conflict-based adaptive
branching heuristics, or random restarts, among others. However, the reasons
of their efficiency in solving real-world, or industrial, SAT instances are still un-
known. The common wisdom in the SAT community is that these technique
exploit some hidden structure of real-world problems.

In this thesis, we characterize some important features of the underlying
structure of industrial SAT instances. Namely, they are the community structure
and the self-similar structure. We observe that most industrial SAT formulas,
viewed as graphs, have these two properties. This means that (i) in a graph with
a clear community structure, i.e. having high modularity, we can find a partition
of its nodes into communities such that most edges connect nodes of the same
community; and (ii) in a graph with a self-similar pattern, i.e. being fractal, its
shape is kept after re-scalings, i.e., grouping sets of nodes into a single node. We
also analyze how these structures are affected by the effects of CDCL techniques
during the search.

Using the previous structural studies, we propose three applications. First,
we face the problem of generating pseudo-industrial random SAT instances using
the notion of modularity. Our model generates instances similar to (classical)
random SAT formulas when the modularity is low, but when this value is high,
our model is also adequate to model realistic pseudo-industrial problems. Sec-
ond, we propose a method based on the community structure of the instance
to detect relevant learnt clauses. Our technique augments the original instance
with this set of relevant clauses, and this results into an overall improvement of
the efficiency of several state-of-the-art CDCL SAT solvers. Finally, we analyze
the classification of industrial SAT instances into families using the previously
analyzed structure features, and we compare them to other classifiers commonly
used in portfolio SAT approaches.

In summary, this dissertation extends the understandings of the structure of
SAT instances, with the aim of better explaining the success of CDCL techniques
and possibly improve them, and propose a number of applications based on this
analysis of the underlying structure of SAT formulas.
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ance and dedication have definitely meant an important foundation of this work.
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Chapter 1

Introduction

The Boolean Satisfiability Problem, also referred as the Propositional Satisfiabil-
ity Problem or just Satisfiability, (SAT for short) has a long history in Computer
Science, and it is one of the most popular problems in this domain. SAT is the
problem of deciding if there exists an assignment of the set of Boolean vari-
ables of a propositional formula such that the formula is evaluated as true after
replacing each variable by its assigned value.

The SAT problem is one of the most studied problems in Computer Science,
becoming central from both theoretical and practical sides. It has strong con-
nections to computational complexity theory since it was the first problem to
be proven NP-complete by Cook [1971] and Levin [1973]. There is no known
algorithm to solve NP-complete problems in polynomial time. In fact, such
algorithm does not exist if the relation P6=NP is true. For this reason, SAT
was basically used during decades to prove the NP-completeness of other prob-
lems (reducing them to SAT with a polynomial time algorithm), and hence to
show their intractability. Therefore, SAT was predominantly considered as a
theoretical problem, without practical application in real-world domains, whose
applicability requires efficiency.

However, the situation in this context has dramatically changed in the last
years with the irruption of more advanced SAT solving techniques and their
sophisticated implementations. It is worth noting that the exponential time
complexity of the known algorithms solving SAT only refers to the worst-case
runtime, and thus many SAT instances can be actually solved much more quickly.
In fact, the advances in SAT solving have provoked that many large real-world
problems can be efficiently solved by modern solvers. For this reason, nowa-
days SAT has a high impact in some application domains of Computer Science,
including formal verification of both hardware and software systems; planning,
scheduling and other related topics of Artificial Intelligence; or new prominent
fields such as cryptography or bioinformatics, among others. The instances of
these real-world, or industrial, problems may be encoded into SAT instances and
(efficiently) solved by modern SAT solvers. In contrast, relatively much smaller
random instances are still intractable by state-of-the-art SAT solving algorithms.

1



2 CHAPTER 1. INTRODUCTION

1.1 Motivation

It is well established the distinct nature of random and industrial SAT instances.
While random formulas are (randomly) generated on demand following a known
model or distribution, industrial instances are problems encodings from a real-
world application. Notice that this definition of industrial SAT formulas is
slightly ambiguous, in the sense that it includes problems from very different
domains, and therefore, the resulting set of industrial instances is very hetero-
geneous.

Moreover, SAT solvers performance is very different when solving random or
industrial SAT instances. There is no dominant technique for solving both ran-
dom and industrial formulas. For this reason, SAT solvers are usually specialized
in one kind of problems. We remark that in this thesis, the term “SAT solver”
only refers to a complete and core SAT solver, excluding incomplete or portfolio
algorithms (except when explicitly indicated).

In the SAT community, the intuition is that the distinct SAT solvers per-
formance between solving random and industrial SAT instances comes from the
existence of some kind of hidden structure in industrial formulas, which can be
exploited by certain SAT solving techniques.

An industrial SAT instance is a representation of a higher-level application
problem. In these high-level problem encodings, structure may exists, e.g., a
circuit has a particular topology. However, this structure may be lost in the
translation into SAT instances [Lu et al., 2003; Roy et al., 2004]. This means that
one may not derive the original problem from its corresponding SAT formula.
For this reason, it has been argued the existence, or not, of such structure in
industrial SAT formulas, in the sense that the particularities of the original
problem may be unknown in the corresponding SAT instance after the encoding
process.

On the contrary, other (topological) features may arise in industrial SAT
instances as a consequence of such encoding process. There is a extended agree-
ment in the literature that such features do exist, and they are probably the
reason of the success of modern SAT algorithms solving real-world problems.
For instance, Williams et al. [2003] suggest that:

“ The success of these methods appears to hinge on a combination of
two factors: (1) practical combinatorial problem instances generally
have a substantial amount of (hidden) tractable sub-structure, and (2)
new algorithmic techniques exploit such tractable structure, through,
e.g., randomization and constraint learning. ”

In the same direction, Hogg [1996] suggests that the difference between ran-
dom models and industrial problems lies in the relations created by the encoding,
which may create some structures into the SAT instance, being these structures
very unlikely in random instances nevertheless:

“ While [random instances are] simple to generate and treat theo-
retically, there remains the possibility that classes of problems that
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include more realistic structures or correlations among the constraints
will behave in significantly different ways. Although it is difficult to
characterize the detailed nature of problems that might generally arise
in these cases, there are a number of plausible structural classes as well
as some cases from particular applications such as class scheduling or
graph colorings that arise in some numerical programs. ”

Interestingly, the previous author states that characterizing the underlying
structure of real-world problems is an intriguing problem by itself. One of the
possible reasons of the hardness of such problem may be the heterogeneity of
these instances, since their structure are not probably based on known models.
Gomes and Selman [1997] agree with this argument:

“ Problem instances clearly have more structure than the random
problem instances, but, on the other hand, they are not as regular as
the structured mathematical problems. [...] It seems clear that random
instances lack certain structure that is often present in realistic prob-
lems. On the other hand, the highly structured mathematical problems
contain too much struck true from the perspective of realistic applica-
tions. ”

Therefore, structures do occur in real-world SAT instances, but they are nei-
ther completely regular nor completely random. This means that such structure
may come from a regular known model, but they are probably perturbed by an
element of randomness or uncertainty [Gent et al., 1999].

The success of solving this kind of problems cannot be explained without
mentioning the modern SAT solving techniques. They are the so known Conflict-
Driven Clause Learning (CDCL) SAT solvers.

CDCL SAT solvers are based on the classical algorithm [Davis et al., 1962;
Davis and Putnam, 1960], called DPLL, a sound and complete algorithm to solve
SAT. It has a depth-first search strategy; a value is assigned to each variable
in each branch of the search. A conflict is found if there exists (at least) one
clause with all its literals assigned, under the current partial assignment, but the
clause remains unsatisfied. In that case, the algorithm backtracks. The search
continues till a satisfying assignment is found (hence the formula is SAT), or till
all assignments have been checked (or pruned) and none of them satisfies the
formula (hence the formula is UNSAT). In order to speed-up the search, this
algorithm also includes two basic rules. First, the Unit Propagation (UP) rule is
applied when there exists a clause with all its variables but one assigned and the
clause is still unsatisfied. This rule forces the value of such variable to satisfy
that clause. The second rule is the Pure Literal (PL) elimination, which assigns
all variables that only appear with one polarity (with their satisfying values).
Both rules are repeatedly applied under the current partial assignment during
the search.

On the basis of the DPLL algorithm, CDCL SAT solvers are built includ-
ing four major components [Katebi et al., 2011]: (i) formula augmentation pro-
cesses based on learning clauses from the conflicts, in order to reduce the search
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space [Marques-Silva and Sakallah, 1999; Moskewicz et al., 2001]; (ii) propa-
gation engines implemented with lazy data structures, which speed-up the cost
of UP [Moskewicz et al., 2001]; (iii) conflict-based adaptative branching heuris-
tics [Moskewicz et al., 2001]; and (iv) random search restarts [Gomes et al.,
1998]. Also, there exist nowadays two other components that have become
crucial in the success of these solvers, and they are extensively used today in
most CDCL SAT solvers. They are the database management strategy, which
is commonly implemented with aggressive clause removal policies [Audemard
and Simon, 2009], and the preprocessing [Eén and Biere, 2005] (and inprocess-
ing [Biere, 2012]) variable elimination techniques. See [Marques-Silva et al.,
2009] for a extended survey on CDCL SAT solvers.

It is important to remark that most of these techniques work experimentally
on industrial SAT instances, but there is no formal proof demonstrating that
these techniques always improve the performance of the solver in all cases, i.e.,
independently of the SAT instance. For example, learning a new clause may
change the search because this new clause may provoke the propagation of some
variables (by UP), and this results into different branchings and prunings, hence
a different search. Equivalently, the same argument holds when a learnt clause is
removed. Also, the addition or removal of learnt clauses may affect the heuristic,
which is guided by the conflicts found in the existing clauses. Nevertheless, it
is experimentally clear that these CDCL techniques improve the performance
of the solver on most real-world problems. In fact, CDCL SAT solvers are the
dominant techniques to solve this kind of benchmarks.

However, besides the tremendous advances in SAT solving technologies dur-
ing the last years, including all techniques mentioned above, there are few works
trying to understand the reasons of the power and efficiency of these techniques
on solving real-world problems, as it is stated by Järvisalo and Niemelä [2008]
or Audemard and Simon [2009], among others.

1.2 Challenges

Related to the structure of industrial SAT instances and its applications, there
are many challenges to be achieved. In this section, we introduce the goals to
be tackled in this thesis.

First of all, we focus our study in characterizing the structure of industrial
SAT problems. As it is stated in [Hogg, 1996], this is an interesting problem
by itself. Understanding the features of the resulting industrial SAT instances,
produced by encoding higher-level problems, may help improve the state-of-
the-art encodings techniques. Moreover, identifying the underlying structure
that is shared by the majority of industrial formulas may result into a better
classification of the set of real-world SAT instances. For instance, is it possible
that some particular industrial instances are very similar to random problems,
and consequently CDCL techniques perform worse in those instances? If this is
the case, it would be natural to solve those instances using a SAT solver more
specialized in random SAT instances, instead than a CDCL solver.
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Another possible potential application of characterizing the underlying struc-
ture of industrial SAT instances is to improve portfolio SAT solving ap-
proaches [Kadioglu et al., 2011; Xu et al., 2008]. They are solution to the
Algorithm Selection Problem [Rice, 1976]. This problem consists in predicting
the best algorithm to solve a given instance in terms of some objective function,
such as the expected runtime. In the context of SAT, portfolio solvers analyze
some (pre-defined) features of a given instance in order to select the expected
best solver to solve it, by using Machine Learning techniques1. Therefore, a
better understanding of important features of the instance may improve the
performance of these techniques.

In summary, the first goal of this work is stated in the following question:

Question 1. What is the underlying structure of industrial SAT instances?

The structure of industrial SAT instances is inevitably modified during the
search by the effects of the addition and the removal of learnt clauses. Under-
standing the success of CDCL SAT solving techniques on industrial formulas
requires understanding how the structure of such instances is affected during
the search.

The main potential application of studying how the original structure of the
instances is affected by CDCL technique is, in fact, improving CDCL techniques.
As stated in the previous section, a lot of effort has been made, with success, in
improving state-of-the-art CDCL techniques, after an extensive test-and-error
process. However, there is still a lot of room to better understand why these
techniques are so effective and efficient solving industrial problems. Therefore, a
better comprehension of the consequences of CDCL techniques into the structure
of the instance seems to be a mandatory step in order to better understand the
success of these techniques, with the long-term aim of improving them.

The second challenge of this work is summarized as:

Question 2. How is this structure affected by CDCL SAT solving techniques?

Beyond the study of the underlying structure of industrial instances, stated
in the previous two questions, we use it to face a number of interesting appli-
cations in the context of SAT instances and SAT solving techniques. In this
dissertation, we focus on the following three applications: the generation of re-
alistic pseudo-industrial random problems, improvements of CDCL techniques,
and the classification of SAT instances into families. Let us summarize the
interest of these applications.

The development of new benchmarks generation models is directly related to
the analysis of the underlying structure of SAT problems. In the classical random
SAT instance generation model, the difficulty of the instance is parametrized on
one particular parameter: the clause/variable ratio. There exists a critical region
in the value of this ratio where the hardest random instances are located [Selman
et al., 1996]. On the contrary, there exists a reduced and limited number of
industrial SAT benchmarks, and they do not have a parametrized degree of

1Portfolio solvers are trained in an offline process.
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difficulty since they do not come from any know model or distribution. This was
already stated by Williams et al. [2003]:

“ In average-case analysis, one studies the computational cost of solv-
ing problem instances drawn from a predefined problem distribution.
Such an analysis can provide valuable insights, as demonstrated by
the work on uniform random instance distributions (e.g. random k-
SAT). However, the relatively basic distributions for which one can
obtain average-complexity results appear to be quite far removed from
the instance distributions one encounters in practice. In fact, formally
defining the distribution of real-world problem instances is generally
an open problem in itself. ”

Therefore, the problem of generating realistic pseudo-industrial SAT in-
stances is an interesting challenge. In fact, this problem was considered by
Selman et al. [1997] as one of the ten most important challenges in proposi-
tional reasoning and search to be achieved in the following years. The original
challenge was stated as:

“ CHALLENGE 10: Develop a generator for problem instances that
have computational properties that are more similar to real-world in-
stances. ”

More references to this problem can be found in [Dechter, 2003; Kautz and
Selman, 2003, 2007].

Nowadays, this challenge remains open. Notice that industrial SAT instances
cannot be automatically generated on demand. For this reason, the existing
benchmarks are known in advance2. In the flavor of a more fair evaluation of
new solvers (e.g., in the SAT competitions), this kind of generator would be
useful. Therefore, we set the following question:

Question 3. How can we generate more realistic pseudo-industrial random SAT
problems?

The applicability of SAT to many real-world domains requires a continuous
research and progress in SAT solving techniques. If the success of CDCL tech-
niques solving industrial formulas is based on exploiting the underlying struc-
ture of such problems, it would be natural to develop techniques which explicitly
use this structural information to improve their performance. Obviously, all ad-
vances in SAT solving technology have an important impact on other application
areas. Therefore, we establish this goal:

Question 4. How can we use the underlying structure of instances to implement
more efficient CDCL SAT solving techniques?

Finally, the last application we face in this thesis is the classification of SAT
instances into families. This problem is addressed in portfolio approaches. The

2Except new benchmarks.
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success of these approaches is based of the use of relevant features that allows
an effective classification of instances into families, and this classification is used
to predict the best algorithm to solve each family.

In the last years, many features of SAT instances have been proposed. In
fact, some of them are related to the structure of the instance [Xu et al., 2008].
Therefore, a natural question is to analyze the relevance of the underlying struc-
ture on some classifiers commonly used in portfolio approaches, as well as its
impact on the performance of these solvers. This challenge is summarized in the
following question:

Question 5. What is the impact of the underlying structure on the classification
of SAT instances?

1.3 Complex Networks

The inspiration of our analysis comes from the works of complex networks, where
the general structure of real-world graphs is studied. Graph models offer a natu-
ral framework to represent and study interactions within physical or social struc-
tures. A graph is defined as a set of nodes, and a set of edges connecting them.
Thus, nodes may represent the actors of the system, and edges may represent the
interactions between them. Many constraint problems arise from such interac-
tions [Hogg, 1996]. For instance, the number of interactions in the system often
decreases with some measure of distance between the components, giving rise to
problems with significantly more clustered or hierarchical constraints structures
than would be expected from a random selection of constraints.

In our study, we use two ways to represent the SAT instances as graphs.
One model represents them as bipartite graphs, where variables and clauses are
nodes, and edges represent the presence of a variable in a clause. In the second
model, variables are nodes, and edges between pairs of nodes (pairs of variables)
indicate the existence of a clause in which those two variables appear. Other
representations of SAT instances into graphs are discussed in Section 9.2.1.

The classical Erdös-Rényi random graph model [Erdös and Rényi, 1959] was
one of the best studied during the last century, and set the basis of graph the-
ory. In this model, edges are randomly assigned to pairs of nodes, and hence,
the degree of nodes follows a binomial distribution. Random SAT instances,
represented as graphs, follow this model. For instance, the variability of number
of occurrences of variables is very small in large formulas. In the context of
real-world networks, two main models have been defined.

A first model is the small-world topology, proposed by Watts and Strogatz
[1998], as a new model to describe the structure of some social, biological and
technological networks. They identify that these graphs are neither totally reg-
ular nor totally random. Therefore, this model is characterized by short path
lengths (like random graphs) and high clustering factors (like regular lattices).

The second one is the scale-free model, introduced by Albert et al. [1999]
to describe the structure of the World Wide Web. They show that the WWW,
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viewed as a graph, has a structure that cannot be described by the classical
random graph model, i.e., it is very different from what one would expect if
edges existed independently and at random. The name of this model comes
from the fact that, in this new model, the degree of nodes follows a power-law
distribution p(k) ∼ k−α, and this distribution is scale-free. Power-law (zeta
and Pareto) distributions are characterized by a big variability, consequence of
a polynomially decreasing tail. A small fraction of the individuals is responsible
for most of the average, in what is popularly known as the 80:20 rule (i.e., 80%
of the land is owned by the 20% of the population). Many other heterogeneous
distributions are also called power-law or heavy-tailed when their tail decreases
polynomially, in contrast to other classical distributions, like normal, Poisson,
or binomial that have an exponentially decreasing tail.

In [Barabási and Albert, 1999], preferential attachment is presented as a
method to generate scale-free graphs. In this method, the probability that a
new node is attached to an existing one is proportional to the degree of this
last. This mechanism results into graphs where nodes degree follows a power-
law distribution. This is proposed as an explanation of the emergence of scaling
in growing networks.

Experience tells us that power-law distributions are as frequent in nature, if
not more frequent, as exponentially decreasing distributions. In the recent years,
it has been observed that many other real-world graphs, like some social and
metabolic networks, also have a scale-free structure. In other works, other inter-
actions in real-world networks have been studied. For instances, Papadopoulos
et al. [2012] suggest that the growing of real-world networks is explained by two
dimensions of attractiveness. One of them is the popularity: new connections
are preferentially made to the most popular nodes (i.e., preferential attachment).
The other dimension is the similarity: new nodes are also likely to be connected
with similar nodes, even when they are not popular. In [Aldecoa et al., 2015] it
is described an hyperbolic graph generator, which integrates all these features.

The topology of graphs has also been studied in the context of search prob-
lems. Also, studying general properties of such problems can also help develop
new benchmarks generation models. In Chapter 3, we reference related works
on the underlying structure of real-world instances, and on the generation of
realistic pseudo-industrial problems. It is worth mentioning two of the most im-
portant works which inspire this thesis. First, Ansótegui et al. [2009a] study the
distribution of frequencies of variable occurrences and clause sizes in order to
detect scale-free structures in industrial SAT instances. Second, Ansótegui et al.
[2009b] propose a method to generate realistic pseudo-industrial random SAT
instances, in which the number of occurrences follows a power-law distribution.
Both works are briefly introduced in Section 3.3 and in Section 3.4, respectively.

1.4 Contributions

First, we focus our analysis in (better) characterizing the underlying structure
of real-world SAT instances. To this effect, we study two aspects of graphs
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(hence, of formulas). They are: (i) the community structure of formulas, using
the notion of modularity, and (ii) the self-similarity structure of instances and
their fractal dimension. These analyses extend the previous work of Ansótegui
et al. [2009a] about the scale-free structure of industrial SAT instances. In what
follows, we present each one of these two concepts in more detail.

The notion of modularity was introduced by [Newman, 2004] to analyze the
community structure of graphs. Having high modularity means that nodes can
be grouped into sets or communities, such that, most edges connect nodes of the
same community. The notion of community is more general than the notion of
connected component. In particular, it allows the existence of (a few) connections
between communities.

Classical random Erdös-Rényi graphs do not have community structure, thus
the modularity is very low. On the other hand, scale-free formulas, which follow
a power-law distribution, have community structure with higher modularity than
a random graph. This modularity can be guaranteed [Dinh and Thai, 2011].

The existence of a self-similar structure would mean that after rescaling (re-
placing groups of nodes by a single node, for example), we would observe the
same kind of structure. It would also mean that the diameter dmax of the graph
with n nodes grows as dmax ∼ n1/d, where d is the fractal dimension of the
graph, and not as dmax ∼ log n, as it occurs in random graphs or small-world
graphs. Therefore, actions in some part of the graph may not propagate to other
parts as fast as in random graphs.

In our study, we conclude that most industrial instances have a clear com-
munity structure with very high modularity. We also discuss how existing clause
learning techniques and activity-based heuristics already take advantage, indi-
rectly, of this community structure. Also, our analysis shows that many indus-
trial formulas are self-similar with a small fractal dimension. We think that the
self-similarity, as well as the scale-free structure and the community structure,
is already present in many of the high-level problems encoded as SAT instances.
We also show how this fractal dimension is affected by the addition of learnt
clauses during the execution of SAT solvers.

This analysis is hold by the following publications:

1. Ansótegui, C., Giráldez-Cru, J., and Levy, J. (2012). The community struc-
ture of SAT formulas. In Proceedings of the 15st International Conference
on Theory and Applications of Satisfiability Testing (SAT’12), pages 410–
423.

2. Ansótegui, C., Bonet, M. L., Giráldez-Cru, J., and Levy, J. (2014). The
fractal dimension of SAT formulas. In Proceedings of the 7th International
Joint Conference on Automated Reasoning (IJCAR’14), pages 107–121.

and (partially) covers the challenges stated in Questions 1 and 2 (“What is the
underlying structure of industrial SAT instances?” and “How is this structure
affected by CDCL SAT solving techniques?”, respectively). In Section 9.2.4, we
discuss other interesting structure features that may be analyzed to complement
the previous study.
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Using the previous studies on the underlying structure of industrial SAT
instances, we propose three applications. Namely, they are a new model of ran-
dom generation of SAT instances, a technique to detect relevant learnt clauses,
and a analysis of the impact of using structure features on the classification of
industrial SAT families.

First, we propose a new model of generation of pseudo-industrial random
SAT instances based on the community structure. One important motivation
for the development of such generators is to isolate some known properties of
these real-world problems. This allows us to study the impact of these properties
on the performance and behavior of SAT solvers. This is the approach used
by Ansótegui et al. [2009b] to generate power-law SAT instances. Using that
generator, they observe that CDCL SAT solvers focus their decisions on the
most frequent variables. In the case of community structure, similar questions
also arise. For instance, do SAT solvers concentrate their decisions on variables
of the same (or few) communities? Do the conflicts found by the solver relate
variables of the same community? How does the activity of each community
evolve along the execution of the search? Answering these questions may help
to better understand the different ingredients of modern SAT solvers and their
impact on the solving process, with the long-term aim of improving them.

This generator allows us to generate formulas for any given value of modu-
larity. For a high modularity, the resulting instance is more adequate to model
industrial problems than the classical random model. On the contrary, with a
low modularity we can generate SAT instances very similar to classical random
formulas. We show that this model works appropriately for different input val-
ues of number of variables and clauses. We also show that the phase transition
point SAT-UNSAT, dependent on the ratio clause/variable, does not depend
on the modularity, and it is located at the same place. We also give empirical
evidence that the performance of SAT solvers is consistent with the expected
properties of the generated formulas, i.e., SAT solvers specialized in industrial
problems perform better in high modular instances than SAT solvers specialized
in random formulas, and vice versa. Finally, we use this generator to answer
the questions stated in the previous paragraph. In particular, we analyze the
relations between the community structure and the decisions, the conflicts and
the activity of the variables that the solver manages along its execution.

This work is hold by the following publication:

3. Giráldez-Cru, J. and Levy, J. (2015). A modularity-based random SAT
instances generator. In Proceedings of the 24st International Joint Con-
ference on Artificial Intelligence (IJCAI’15), pages 1952–1958.

4. Giráldez-Cru, J. and Levy, J. (2016). Generating SAT instances with com-
munity structure. Artificial Intelligence. Accepted with revisions.

and (partially) covers the goals stated in Question 3 (“How can we generate
more realistic pseudo-industrial random SAT problems?”).

Second, we present a technique which uses the underlying structure of in-
dustrial SAT instances to improve the performance of CDCL SAT solvers. In
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particular, we use the community structure to detect relevant learnt clauses.
Nowadays, it is accepted that more aggressive clause deletion policies may im-
prove the solvers performance, even when there is no memory limitations. We
show that augmenting SAT instances with learnt clauses does not always make
them easier for the SAT solver. In fact, it makes worse the solver performance
in many cases, specially in satisfiable problems. However, we identify a set of
highly useful learnt clauses, and we show that augmenting SAT instances with
this set of clauses contributes to improve the solver performance in many cases,
especially in satisfiable formulas. These clauses are related to the community
structure of the formula, and they can be computed in a fast preprocessing step.
This would suggest that the community structure may play an important role
in clause deletion policies.

This technique is hold by the following publication:

5. Ansótegui, C., Giráldez-Cru, J., Levy, J., and Simon, L. (2015b). Using
community structure to detect relevant learnt clauses. In Proceedings of the
18th International Conference on Theory and Applications of Satisfiability
Testing (SAT’15), pages 238–254.

and (partially) covers the objectives stated in Question 4 (“How can we use the
underlying structure of instances to implement more efficient CDCL SAT solving
techniques?”). In Section 9.2.7, we discuss other possible improvement of CDCL
techniques based on the underlying structure of the instance.

The two previous applications are mainly based on our study of the commu-
nity structure of SAT instances. The reason of using this structural features is
discussed in Section 9.2.2.

Finally, we study how the underlying structure of industrial SAT instances
can be used to classify families of benchmarks. In particular, we build some clas-
sifiers of industrial SAT families using the scale-free structure, the community
structure and the self-similar structure, and we measure their effectiveness by
comparing them to the same classifiers built using other sets of SAT instances
features commonly used in portfolio approaches. Also, we evaluate the perfor-
mance of this set of structure features when it is used in a real portfolio SAT
solver, and we measure their relevance w.r.t. other known features commonly
used in these approaches.

This study is hold by the following publication:

6. Ansótegui, C., Bonet, M. L., Giráldez-Cru, J., and Levy, J. (2015a). On the
classification of industrial SAT families. In Proceedings of the 18th Inter-
national Conference of the Catalan Association for Artificial Intelligence
(CCIA’15), pages 163–172.

7. Ansótegui, C., Bonet, M. L., Giráldez-Cru, J., and Levy, J. (2016). Struc-
ture features for SAT instances classification. Journal of Applied Logics.
Submitted.

and (partially) covers the objectives stated in Question 5 (“What is the impact
of the underlying structure on the classification of SAT instances?”).
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See Section 1.6 for a detailed description of the organization of the rest of
this dissertation.

1.5 Additional remarks

In this dissertation, all experiments are performed over the set of SAT instances
publicly available for the yearly SAT races or competitions3. These events con-
tribute to evaluate new solvers and new benchmarks periodically. The evalua-
tion of the solvers is performed dividing the set of SAT instances into three main
categories or tracks: random, industrial (a.k.a. application or real-world) and
crafted (or hard-combinatorial). The nature of random and industrial instances
is already explained. In the case of crafted formulas, this category contains prob-
lems with particular singularities, which are expected to result into a high cost
for the SAT solver. These categories are sometimes sub-divided into SAT and
UNSAT sub-tracks, where the satisfiability of the instances is known a priori.
See [Järvisalo et al., 2012a] for a survey about these competitions.

In this work, we do not make any distinction between SAT and UNSAT
instances, except when explicitly indicated. Also, in the industrial and the
crafted tracks, SAT instances are usually grouped into families. These families
contain problems from the same origin, which is usually the same domain and/or
author. Common families in the industrial track of these competitions are, for
instance, crypto (cryptography) or bmc (bounded model checking). In our study,
we often refer to these families.

Although the benchmarks selected for the competition may vary each year,
the set of yearly selected benchmarks is supposed to have similar features. For
this reason, the set of benchmarks used in each experiment may vary. However,
the conclusions drawn from our experimental analysis are general, in the sense
that such conclusions remain even if the experiments are repeated with another
competition benchmarks set.

All experiments were executed in a cluster of 9 nodes IBM dx360 M2, each
of them with 32GB of RAM and 2 processors Intel(R) Xeon(R) CPU L55202.27
GHz, limiting all experiments to a single core and to a maximum of 4GB of
RAM (except when otherwise indicated).

All software tools used to compute the results presented in this thesis are
publicly available in: http://www.iiia.csic.es/~jgiraldez/software under the
terms of the GNU General Public License (GNU GPL) or GNU Lesser General
Public License (GNU LGPL).

1.6 Structure of the thesis

The rest of this thesis is organized as follows.
Some preliminaries are defined in Chapter 2. In particular, we introduce the

SAT problem, as well as some important notations in the contexts of SAT and

3http://www.satcompetition.org

http://www.iiia.csic.es/~jgiraldez/software
http://www.satcompetition.org
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graphs, which are used in the rest of this work.
In Chapter 3, we reference some related works. In Section 3.1, we review those

of them that analyze the underlying structure of real-world search problems,
with particular interest in SAT instances, and other works on the generation
of pseudo-industrial random SAT instances are reviewed in Section 3.2. Two
important related works are reviewed in Sections 3.3 and 3.4: the scale-free
structure of industrial SAT instances, and a power-law SAT instances generator,
respectively. The approaches used in these two works are the inspiration of this
thesis. For this reason, we consider interesting to dedicate a separated section
to introduce them.

The analysis of the community structure in industrial SAT instances is pre-
sented in Chapter 4. We introduce the definition of modularity for graphs in
Section 4.2. Then, we analyze in Section 4.3 this feature in real-wold SAT in-
stances, representing them as graph. Finally, we investigate the effect of clause
learning in the community structure in Section 4.4.

In Chapter 5, we study the self-similar structure of industrial SAT instances.
We first define the fractal dimension in Section 5.2, and we analyze the relation
between the fractal dimension and the diameter of a graph in Subsection 5.2.1.
An exhaustive analysis of the self-similarity of real-world SAT instances and the
effects of clause learning is presented in Sections 5.3 and 5.4, respectively.

We present a random SAT instances generator, called Community Attach-
ment, based on the community structure in Chapter 6. The model is presented
and validated in Sections 6.2 and 6.3, respectively. The phase transition phe-
nomenon of this model is studied in Section 6.4. Finally, we analyze the perfor-
mance of some SAT solvers on this model in Section 6.5, and some components
of a CDCL SAT solver using this generator in Section 6.6.

In Chapter 7, we introduce a new technique to detect relevant learnt clauses.
First, we analyze how the original community structure is destroyed by the effect
of clause learning, and we present an analysis of the relevance of learnt clauses
in Sections 7.2 and 7.3, respectively. Our technique is presented in Section 7.4,
and evaluated in Section 7.5.

The analysis of the classification of SAT instances using the underlying struc-
ture is presented in Chapter 8. In particular, we study the effectiveness of these
structure feature to correctly classify industrial SAT instances into families in
Section 8.2. Then, we analyze the impact of using them in a real port-folio
SAT solver in Section 8.3. Finally, we measure the relevance of these structure
features in Section 8.4.

Finally, we conclude in Chapter 9 with a summary of the work presented
in this thesis, a discussion of some future works, and some final remarks, in
Sections 9.1, 9.2, and ??, respectively.





Chapter 2

Preliminaries

In this chapter, we introduce some notations and formal definitions used in the
rest of this dissertation.

2.1 The Boolean Satisfiability Problem (SAT)

A Boolean variable is a variable having two possible values: true or false. A
Boolean formula is a formula composed of a combination of Boolean variables
and the logical operators of conjunction, disjunction, and negation ({∧,∨,¬}).
From now on, we use the term formula (or instance) to refer a Boolean formula,
unless otherwise indicated.

A literal is a Boolean variable or its negation, and a clause is a disjunction
of literals. The length, or size, of a clause is the number of literals such clause
contains. A Boolean formula is said to be in Conjunctive Normal Form (CNF )
when it is written as a conjunction of clauses, i.e., a conjunction of disjunction
of literals. Notice that any formula can be translated into CNF in linear time.
A k-CNF is a formula whose clauses have exactly length k.

An interpretation of a formula is an assignment of a value to the variables of
such formula. An interpretation satisfies a formula when its evaluation is true.
The Boolean Satisfiability Problem (SAT ) is the problem of deciding if there
exists an interpretation that satisfies a given formula.

2.2 Graph representations of SAT instances

An undirected weighted graph is a pair (V,w) where V is a set of vertexes and
w : V ×V → R+∪{0} is the edge weight function that satisfies w(x, y) = w(y, x).
This definition generalizes the classical notion of graph (V,E), where E ⊆ V ×V ,
by taking w(x, y) = 1 if (x, y) ∈ E and w(x, y) = 0 otherwise. The degree of
a vertex x is defined as deg(x) =

∑
y∈V w(x, y). A bipartite graph is a tuple

(V1, V2, w) where V1 and V2 are two disjoint sets of vertexes, and w : V1 × V2 →
R+ ∪ {0} is the edge weight function.

15
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Given a SAT instance, we construct two graphs, following two models. In the
Variable Incidence Graph model (VIG, for short), vertexes represent variables,
and edges represent the existence of a clause relating two variables. A clause
x1 ∨ · · · ∨ xn results into

(
n
2

)
edges, one for every pair of variables. Notice also

that there can be more than one clause relating two given variables. To preserve
this information we put a higher weight on edges connecting variables related by
more clauses. Moreover, to give the same relevance to all clauses, we ponder the
contribution of a clause to an edge by 1/

(
n
2

)
. This way, the sum of the weights

of the edges generated by a clause is always 1.

Definition 2.1 (Variable Incidence Graph (VIG)). Given a SAT instance Γ
over the set of variables X, its variable incidence graph is a graph (X,w) with
set of vertexes the set of Boolean variables, and weight function:

w(x, y) =
∑
c∈Γ
x,y∈c

1(|c|
2

)
where |c| is the length of the clause c.

In the Clause-Variable Incidence Graph model (CVIG, for short), vertexes
represent either variables or clauses, and edges represent the occurrence of a
variable in a clause. Like in the VIG model, we try to give the same relevance
to all clauses, thus every edge connecting a variable x with a clause c containing
it has weight 1/|c|. This way, the sum of the weights of the edges generated by
a clause is also 1 in this model.

Definition 2.2 (Clause-Variable Incidence Graph (CVIG)). Given a SAT in-
stance Γ over the set of variables X, its clause-variable incidence graph is a
bipartite graph (X, {c | c ∈ Γ}, w), with vertexes the set of variables and the set
of clauses, and weight function:

w(x, c) =

{
1/|c| if x ∈ c
0 otherwise

Other graph representations of SAT instances, which may be useful in future
works, are discussed in Section 9.2.1.



Chapter 3

Related Work

In this chapter, we summarize some related works on the underlying structure of
real-world problems, with special emphasis on SAT instances, and its relations
to the cost of solving such problems, and also on the generation of random
SAT instances with properties of real-world benchmarks. First, we introduce
general background about structure in search problems in Section 3.1. Then, we
review some related works on the generation of pseudo-industrial random SAT
instances in Section 3.2. Finally, we dedicate two separate sections to review
two interesting works that inspired this thesis. On the one hand, the analysis
of the scale-free structure of industrial SAT formulas [Ansótegui et al., 2009a] is
summarized in Section 3.3. In that work, it is studied whether the number of
variable occurrences and clause size follow power-law distributions. It is worth
noting that all the tools needed to compute these structure features were re-
implemented and integrated in our graph structure features software. Moreover,
empirical results have been evaluated in a set of benchmarks distinct from the one
used in [Ansótegui et al., 2009a], complementing the conclusions drawn in that
work. On the other hand, we review the pseudo-industrial random SAT instances
generator based on the scale-free structure of real-world problems [Ansótegui
et al., 2009b] in Section 3.4. This generator produces random SAT instances with
a power-law distribution in the number of variable occurrences. Also, authors
use this generator to analyze the performance of CDCL SAT solving techniques,
with the aim of better understanding their success on application benchmarks.
We use this approach to propose a new pseudo-industrial random SAT instances
generator based on the notions of community structure and modularity (instead
of scale-free structure). This generator is presented in Chapter 6.

3.1 Structure in search problems

The topology of graphs have a major impact on the cost of solving search prob-
lems on these graphs. Gent et al. [1999] analyze the impact of a small-world
topology on the cost of finding solutions to graph coloring problems. Walsh

17
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[2001] does the same in the case of scale-free graphs. Walsh [1999] analyzes the
small world topology of many graphs associated with search problems in Arti-
ficial Intelligence. He also shows that the cost of solving these search problems
can have a heavy-tailed distribution. Therefore, we can expect that SAT solving,
viewed as a search process on a graph (the formula), will be affected by the
topology of this graph.

As we mentioned before, Ansótegui et al. [2009a] studied the scale-free struc-
ture of real-world SAT instances, analyzing whether the number of variable
occurrences and clause size follow power-law distributions. We review this work
in Section ??.

The power-law distributions also appear in other aspects of SAT solving.
Gomes et al. [2004] show that the CPU time of the different executions (with
different random variable selection) of a solver on a formula follows a power-
law distribution. In [Gomes and Selman, 1997] and [Gomes et al., 1998], it
is proposed the use of randomization and rapid restart techniques to prevent
solvers from falling on the long tail of power-law distributions.

Biere and Sinz [2006] show that many SAT instances can be decomposed
into connected components, and how to handle them within a SAT solver. They
discuss how this structure into connected components can be used to improve the
performance of SAT solvers. Since our notion of community structure is more
general, it might be more practical to analyze and improve the performance of
SAT solvers.

Our work on community structure of SAT instances [Ansótegui et al., 2012]
has already had impact on the SAT community. A pioneering work on using
community structure to speed-up solvers was presented by Martins et al. [2013].
In particular, they propose to solve Maximum Satisfiability formulas by parti-
tioning them according to the community structure and adding incrementally to
the MaxSAT solver the sets of clauses related to communities. This solution is
impoved in [Neves et al., 2015]. Sonobe et al. [2014] use the partition obtained
with the community structure to improve the performance of a parallel SAT
solver. Newsham et al. [2014] show that the community structure is correlated
with the runtime of CDCL SAT solvers. In [Newsham et al., 2015], a tool for
visualizing the community structure of SAT instances is presented, and some
empirical observations about the evolution of such structure regarding CDCL
SAT solvers are enumerated. Ganian and Szeider [2015] use the community
structure as inspiration to define a structural parameter of CNF instances, and
they define tractable algorithms to solve SAT and #SAT fixing such structural
parameter.

Other structural features of SAT instances have also been studied in other
papers. For instance, Katsirelos and Simon [2012] study the centrality of vari-
ables picked by a CDCL solver. Simon [2014] use observations from the SAT
solver performance on industrial problems to better understand some of the un-
satisfiability proof characteristics. Other notions of structure have been also
used to better understand the branching heuristics of modern SAT solvers and
improve them [Liang et al., 2015a,b].
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3.2 Pseudo-industrial random SAT generation

There already exist some works facing the problem of generating pseudo-
industrial random instances. We distinguish between those works focused on
particular problems domains from those others that generalize common proper-
ties of industrial instances.

In the case of particular problems domains, we have the following works.
Gomes and Selman [1997] proposed a new model of SAT benchmarks resulting
from introducing random perturbations into structured problems. These bench-
marks encode instances of the partial latin square completion problem, with
some randomly selected pre-assigned values. Achlioptas et al. [2000] refined
the previous model to guarantee the generation of satisfiable instances. Gent
et al. [1999] introduced a method, called morphing, for introducing randomness
into structured problems, resulting into problems with small-world topology.
Järvisalo et al. [2012c] proposed an instance generator based on finding optimal
circuits of Boolean functions. In general, these methods do not explicitly gener-
ate SAT instances with community structure. However, this feature may appear
for certain input parameters.

On the other hand, other works focus on general properties shared by the
majority of real-world problems. Burg et al. [2012] presented a generator that
combines subparts of real-world instances to create new ones. Ansótegui et al.
[2009b] used the notion of scale-free graph to generate SAT instances where
the number of variable occurrences follows a power-law distribution. We review
this generator in Section 3.4. Newsham et al. [2014] proposed a random 3-
CNF generator which divides the set of variables into groups, and uses a certain
probability to decide for each clause whether a literal is selected from the same
group than the previous one or not (randomly selected in the case of the first
literal of the clause). This way, a high value in this probability generates very
modular instances. Slater [2002] proposed a method to generate SAT instances
with small-world topology. This feature is also very common in many real-world
networks, and it is characterized by a small typical distance and a high clustering
coefficient. The proposed model is characterized by n variables, m clauses, c
clusters and a parameter p. They generate c independent 3-SAT formulas, each
one having n/c variables and (1− p)m/c clauses, and then add pm link clauses
using the entire set of variables, in the spirit of the techniques used traditionally
to generate small-world graphs.

Notice that the previous 4 generators are able to create random SAT instances
with community structure under certain circumstances. In the first method,
this happens when the input formulas have such structure, which is the case
in real application benchmarks. The scale-freeness of the second method is
very characteristic in real-world instances, but it is not a sufficient condition
to guarantee community structure. In the third method, a high probability
produces very dense groups, i.e., a very modular structure. And this is also the
case in the fourth method, since the small-world topology implies, in general, a
clear community structure. However, none of these solutions allow to control the
value of the modularity in the resulting formula (i.e., how clear is its community
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structure). For this reason, we present a new generator in Chapter 6.

3.3 The scale-free structure of SAT instances

In this section, we introduce the study of the scale-free structure of industrial
SAT instances presented in [Ansótegui et al., 2009a]. In particular, they analyze
whether the number of variable occurrences and clause size follow power-law
distributions. It is worth noting that all the software needed to compute this
structure feature was re-implemented and integrated in our graph structure fea-
tures tool. Moreover, empirical results have been evaluated in a set of industrial
SAT benchmarks different from the one used in [Ansótegui et al., 2009a], com-
plementing the conclusions drawn in that work.

In scale-free graphs, the degree K of nodes follows a power-law probabil-
ity distribution fpow(k) = P (K=k) = c k−α, at least asymptotically. The
exponent α has typically values inside [2, 3], although occasionally it may lie
outside these bounds. This distribution diverges at zero. Since the degree of
nodes has to follow this distribution asymptotically, we assume that there is a
lower bound kmin for the values of k, also called heavy tail, from where we get
this behavior. In the discrete case (the one that concerns us), the normalizing
constant is c = 1/ζ(α, kmin) = 1/

∑∞
i=0(i + kmin)−α, where ζ is the Hurwitz

zeta function. For big values of kmin we can approximate this distribution
using the continuous version. In this case the probability density function is

fpow(k) = α−1
kmin

(
k

kmin

)−α
, and the complementary cumulative distribution is

F pow(k) =
∫∞
k′=k

fpow(k′) dk′ =
(

k
kmin

)−α+1

.

In the (unweighted) CVIG model, the degree of a variable-node corresponds
to the number of occurrences of this variable, and the degree of a clause-node
to the size of this clause.

Definition 3.1. Given a formula with n variables and m clauses, let frealv (k) be
the number of variables that have a number of occurrences equal to k, divided
by n. Similarly, frealc (k) is the number of clauses of size k divided by m.
We can also define the (complementary) cumulative versions of these functions
as F realv (k) =

∑
i≥k f

real
v (i) and F realc (k) =

∑
i≥k f

real
c (i).

Notice that in the previous definition, the label real is added to emphasize
that these functions come from empirical data. Notice also that, assuming that
there are no empty clauses and all variables occur somewhere, hence F realv (1) =
F realc (1) = 1.

The purpose is to check if, for some values of αv and αc, we have frealv (k) ≈
c k−αv and frealc (k) ≈ c k−αc . Notice that, applying logarithms to both sides, we
get log f(k) = log c− α log k. Therefore, if frealv (k) and frealc (k) are power-law,
representing them as a function of k with double-logarithmic axes, we should
get closed to a straight line with slope −α.

Some papers estimate the value α by linear regression of log f(k) or
logF (k) [Li et al., 2005]. However, the most reliable estimation techniques for
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the exponent α are based on the method of maximum likelihood [Clauset et al.,
2009]. In this method, to estimate the value of α for a collection of empirical
data k1, . . . , kn, we compute the value of α that maximizes the probability that
the data were drawn from the model. For the continuous case, this probability
is:

P (k1, . . . , kn |α) =
n∏
i=1

α− 1

kmin

(
ki
kmin

)−α
(3.1)

Taking logarithms (since the maximum will be in the same place), and then
taking derivatives and making the function equal to zero, we can compute in the
discrete case a good approximation of α for big values of kmin:

α̂ = 1 +
n∑n

i=1 log ki
kmin−1/2

(3.2)

Notice that the estimated α depends on kmin. Moreover, k̂min corresponds
to the estimation of the point where we assume that the distribution should start
an asymptotic power-law behavior. In order to estimate this value, we define
the maximal distance d(kmin) between the real and the cumulative distribution
functions, only considering values of k greater than kmin. Therefore, we select
the value of kmin that minimizes this maximal distance d(kmin)1. Additionally,
we also set an upper bound on the values of kmin. Otherwise, we could consider
power-law some distributions that only exhibit this behavior for a very few big
values of k.

When it is said that arity of nodes seems to follow a power-law distribution,
it is emphasized the seems because it is obvious that SAT formulas, as well as the
WWW and other scale-free graphs, are not randomly generated. Therefore, we
do not expect the arity of nodes to follow exactly any distribution. However, we
want to check if some distribution fits the data better than others. In particular,
we will check if the tail of the empirical data fits better a power-law distribution
(i.e., a polynomial decreasing tail) than an exponential distribution (i.e., an
exponential decreasing tail), as an indicator of a scale-free graph structure.

The probability density function for an exponential distribution has the form
c e−β x. Calculating the constant, for the discrete case, we get fexp(k;β, kmin) =
(1−e−β) e−β (k−kmin) and its cumulative function F exp(k) = e−β(k−kmin). In this
case the estimation of the β parameter by the method of maximum likelihood
gives:

β̂ = log

(
n∑n

i=1(ki − kmin)
+ 1

)
(3.3)

and the value of ˆkmin is estimated as in the case of power-law distributions.
We address the reader to the original work of Ansótegui et al. [2009a] for

more details about the computation of these estimations and their corresponding
distributions.

1We use the distribution function after normalization. Therefore, the distance d(kmin) does
not necessarily decrease for bigger values of kmin.
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Variables (v)
Power-law Exponential

Family #inst αv kpowmin,v dpowv βv kexpmin,v dexpv

2d-strip-packing 5 1.213 25 0.295 0.0001 29 0.155
bio 5 2.614 5 0.139 0.0036 12 0.310
crypto-aes 11 1.782 9 0.116 0.0172 13 0.154
crypto-des 9 3.962 5 0.116 0.0547 12 0.203
crypto-gos 30 1.482 6 0.254 0.0141 1 0.226
crypto-md5 11 2.119 4 0.235 0.0697 6 0.231
crypto-sha 30 1.264 4 0.492 0.0049 8 0.357
crypto-vmpc 8 10.65 388 0.215 0.0232 388 0.208
diagnosis 26 2.650 7 0.154 0.1271 4 0.130
hardware-bmc 3 2.934 11 0.109 0.0925 8 0.112
hardware-bmc-ibm 4 2.644 9 0.020 0.0915 7 0.213
hardware-cec 30 2.647 9 0.107 0.2796 4 0.313
hardware-velev 21 1.884 10 0.057 0.0134 3 0.436
planning 25 2.054 4 0.211 0.0742 3 0.363
scheduling 30 1.890 11 0.193 0.0335 11 0.056
scheduling-pesp 30 2.224 11 0.085 0.0551 6 0.085
software-bit-verif 14 4.021 7 0.117 0.2961 4 0.236
software-bmc 3 3.756 9 0.158 0.1833 2 0.368
termination 5 2.584 5 0.180 0.1236 4 0.204
SAT Comp. 2013 300 2.303 7 0.094 0.0606 1 0.334
random 50 4.391 11 0.148 0.262 11 0.110

Table 3.1: Most likelihood values of α and β estimated for a power-law and an
exponential distribution, and their respective parameters kmin and d, that best
fit the number of variable occurrences v. In bold we remark the smallest distance
between the real and the fitted distributions.

3.3.1 Experimental analysis of the scale-free structure

In this section, we analyze the scale-free structure of some industrial SAT in-
stances. To this purpose, we compute frealv (k) and frealc (k), as well as their
cumulative functions, of some industrial benchmarks. First, we observe that
functions frealv (k) and frealc (k) are similar for different instances of the same
family. Thus, we decide to group the instances by families, assuming that all
formulas of the same family follow the same probability distribution. We define
freal(k) for a given a family as the sum of the functions freal(k) for each formula
of the family, conveniently normalized. Therefore, we treat a family of formulas
as a unique formula2.

Later, we compute the power-law and exponential distributions that best
fit the functions freal(k), and we calculate the distance dpow between F real(k)

2Notice that, under the assumption that all formulas follow the same probability distribu-
tion, the sum of freal(k) also follows the same distribution.
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Clauses (c)
Power-law Exponential

Family #inst αc kpowmin,c dpowc βc kexpmin,c dexpc

2d-strip-packing 5 4.435 8 0.115 0.2568 6 0.141
bio 5 6.478 4 0.088 2.3446 3 0.010
crypto-aes 11 4.875 6 0.079 1.0281 2 0.095
crypto-gos 30 1.788 2 0.281 0.2346 2 0.345
crypto-sha 30 2.059 3 0.364 0.2452 3 0.362
crypto-vmpc 8 17.599 33 0.152 4.0090 3 0.018
diagnosis 26 4.346 5 0.078 1.3122 2 0.034
hardware-bmc-ibm 4 3.124 4 0.026 0.3238 5 0.042
hardware-cec 30 7.829 4 0.148 7.6735 3 0.000
hardware-velev 21 2.149 10 0.088 0.0494 4 0.114
planning 25 4.221 2 0.198 1.8074 2 0.144
scheduling 30 4.345 11 0.128 2.5820 3 0.069
software-bmc 3 2.241 6 0.108 6.4061 3 0.001
termination 5 6.538 10 0.113 0.5181 10 0.093
SAT Comp. 2013 300 2.548 10 0.067 0.8819 2 0.144

Table 3.2: Most likelihood values of α and β estimated for a power-law and an
exponential distribution, and their respective parameters kmin and d, that best
fit the clause size c. In bold we remark the smallest distance between the real
and the fitted distributions.

and the estimated F pow(k;α, kmin), and the distance dexp between F real(k) and
the estimated F exp(k;β, kmin). When dpow < dexp, we say that the power-law
distribution fits better than the exponential distribution. If the distance dpow

between the observed data and the distribution is smaller than 0.15, then it is
plausible that the data follows such power-law distribution. We use the two
previous criteria to state that a family of formulas has a scale-free structure.
It is also important to compare the value of kmin obtained in each estimation,
noted kpowmin and kexpmin. A big value of kmin means that we need to discard a lot of
values of F real(k) to fit the distribution, and it must be taken as a point against
the fitted distribution. For this reason, we allow to disregard at most 10 distinct
values of the distribution. Also, a value of α far away from the interval [2, 3]
must be read as a point against the scale-free structure.

In Tables 3.1 and 3.2, we present the estimations of the parameters of the
power-law and exponential distributions for number of variables occurrences and
clause size of the industrial SAT instances of the SAT Competition 2013. We
have also extended the study to a family of 50 random 3-CNF instances of 103

variables close to the phase transition point (clause/variable ratio m/n = 4.25),
and to the heterogeneous family composed by the 300 instances used in this
competition. Families whose clause size is regular are not reported in Table 3.2.

In Figure 3.1, we plot the distributions Fv(k) and Fc(k) versus k of some
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Figure 3.1: Plot of F realv (k) and F realc (k), and their respective power-law and
exponential estimations (characterized by α and β, respectively), for some in-
dustrial SAT families of formulas. In families where all clauses are small, we
have avoided the representation of F realc (k).

representative industrial families, as well as the estimated power-law and ex-
ponential distributions that best fit them. In Figure 3.2, we also plot the dis-
tributions for the heterogeneous family of the SAT Competition 2013, and the
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Figure 3.2: Plot of F realv (k) and F realc (k), and their respective power-law and
exponential estimations (characterized by α and β, respectively), for the formulas
of the SAT Competition 2013 and random 3-CNF instances.

random 3-CNF formulas. We use double-logarithmic axes in all plots. Thus, in
this representation, power-law functions become straight lines with slope −α+1,
and exponential functions are concave curves multiplied by −β. Notice that this
representation creates an undesirable visual effect in the tail, since F real(k) and
F pow(k) seem to be further away than they actually are. For instance, for the
family hardware-velev, F realv (k) seems to fit very well a power-law distribution
(F powv ) for small values of K (k ≤ 500), but it seems to diverge from this distri-
bution for bigger values. However, the maximum distance dpowv between F realv

and F powv is found in k = 30 (dpowv = 0.057). Therefore, even when the tail does
not seem to fit this power-law distribution, this is just an undesirable visual
effect produced by this kind of representations.

We can conclude that for the families bio, crypto-aes, crypto-des, hardware-
bmc, hardware-bmc-ibm, hardware-cec, hardware-velev and software-bit-verif the
number of variable occurrences follows a power-law distribution. For the family
scheduling-pesp, we obtain dpow = dexp, thus we cannot assure that a power-law
distribution fits better these data. In the case of clause size, only the families 2d-
strip-packing, crypto-aes, hardware-bmc-ibm and hardware-velev seem to follow
power-law distributions. Therefore, in general, the variable occurrences follow a
power-law distribution in more families than the clause size. The value of αv for
variables is also smaller than the αc for clauses, and in some cases they fall out
of the interval [2, 3]. We think that the explanation for this phenomena is that,
when the formulas are encoded, people try to avoid the use of very long clauses,
since they decrease the propagation power in SAT solvers. We also observe that
some families, like crypto-gos, do not seem to follow any particular distribution.

In the random 3-CNF formulas, the exponential distribution fits better than
the power-law, although the distance dpow is surprisingly small. Looking at the
plot of the SAT Competition 2013 heterogeneous family, we see that the data
fits better the power-law distribution than other homogeneous families. In this
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Figure 3.3: Plot of F realv (k), and their respective power-law and exponential
estimations (characterized by α), for some industrial families of formulas, using
original CNFs and formulas after 104 and 105 conflicts.

case, we have to take into account that the addition of so many instances, by
a kind of law of the big numbers, tends to make distributions smoother. The
values of α that we get are αv = 2.303 for variable occurrences and αc = 2.548
for clause size. As in some homogeneous families, we observe that the value of αc
in the case of clause size is bigger than the value of αv for variable occurrences,
and they both fall in the limits of the interval [2, 3].

3.3.2 The scale-free structure during SAT solver search

During the search, CDCL solvers augment the original formula by adding new
(learnt) clauses, due to the learning mechanism they incorporate. We want to
answer the question of what kind of formula the solver sees during the search.
The question is important because, assuming industrial SAT instances have a
kind of structure, during the execution of the CDCL, the original structure can
change, and it can turn into a totally different one.

We conduct some experiments to answer the previous question, using the
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Figure 3.4: Plot of F realv (k), and their respective power-law and exponential
estimations (characterized by α and β, respectively), for some 3-CNF formulas,
using original CNFs and formulas after 104 and 105 conflicts.

CDCL solver MiniSAT [Eén and Sörensson, 2003], and analyzing the formula
at certain depths in the search. In particular, we keep the formula the solver is
seeing after some conflicts, and we repeat the analysis of the scale-free structure
presented in the previous section in such formulas. Notice that each conflict
generates a new learnt clause, so these new formulas are, in general3, the original
formula plus learnt clauses from conflicts.

In Fig. 3.3, we plot the distributions of number of variable occurrences Fv(k)
of the resultant formulas after 104 and 105 conflicts for the industrial fami-
lies hardware-bmc-ibm (top left), software-bit-verif (top right), scheduling-pesp
(bottom left), and planning (bottom right). Analyzing the evolution of these
distributions, we observe two phenomena. First, families that originally fit bet-
ter power-law distributions (e.g., hardware-bmc-ibm or software-bit-verif ) still fit
better these distributions during the search, but the estimated exponent αXv is
smaller after a big number of conflicts X. For instance, in the family hardware-
bmc-ibm, the exponent is originally α0

v = 2.64, and it turns into α105

v = 2.52 after
105 conflicts. Moreover, the error dpow almost does not change: dpow,0 = 0.020
and dpow,10

5

= 0.022. Since dpow,10
5

< dexp,10
5

, we conclude that the new for-
mula is still scale-free. Second, families that originally does not clearly fit a
power-law distribution (e.g., scheduling-pesp) start to fit better this distribution
after a certain number of conflicts. For the family scheduling-pesp, the origi-
nal error dpow,0 = 0.085 turns into dpow,10

5

= 0.038 after 105 conflicts, while
dexp,10

5

= 0.388.
We can conclude that CDCL solvers preserves the scale-free structure in for-

mulas that already had this structure, whereas they turn non-scale-free formulas

3In MiniSAT, unary learnt clauses are propagated and this can lead to remove original
clauses.
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into scale-free ones. Moreover, the estimated exponent αv that characterizes
power-law distributions becomes smaller as new learnt clauses are added. To
explain this phenomenon recall that solvers like MiniSAT decide on the most
active variables. Hence, they are more likely to appear in new learnt clauses.
This creates an effect of rich get richer that has been proposed as a mechanism
for creation of scale-free networks [Barabási and Albert, 1999].

Finally, we want to check if the same effect can be observed also in random
formulas. In Fig. 3.4, we repeat the same experiment for the family of random
3-CNF instances. We observe the same phenomenon described before. The
original random formulas do not fit a power-law distribution because: i) the error
is bigger than for an exponential distribution dpow,0 = 0.148 > dexp,0 = 0.110,
and ii) the value of the exponent α0 = 4.39 is too big to consider a power-
law distribution. On the contrary, it fits quite well an exponential distribution,
as the abrupt decay in the function F realv (k) suggests. This behavior is still

observable after 104 conflicts (dpow,10
4

= 0.101 > dexp,10
4

= 0.028), but in this
case, the abrupt decay is less clear for small values of k. After 105 conflicts,
the function F realv (k) fits better a power-law distribution because dpow,10

5

=

0.041 < dexp,10
5

= 0.216, and the value of the exponent α105

= 1.563 is small
enough to consider this kind of distribution. Therefore, we conclude that CDCL
induces the emergence of a scale-free structure, even in the cases where it was
not present at all in the original formula.

3.4 Power-law SAT instances generators

In this section, we introduce the pseudo-industrial random SAT instances gen-
erators presented by Ansótegui et al. [2009b]. These generators produce random
SAT instances that have computational features shared by the majority of real-
wold benchmarks. In particular, they propose several generators that produce
random SAT formulas whose number of variable occurrences follows a power-law
distribution. This is a very common property in application benchmarks, as we
have seen from the analysis of the scale-free structure of industrial SAT formulas
(presented in [Ansótegui et al., 2009a] and described in the previous section).

Let us define first the two classical random models of generating k-CNF
instances. Namely, the are the uniform and the regular models [Boufkhad et al.,
2005]. Both models have as parameters the number of variables n, the number
of clauses m, and the clause size k. In the uniform model Fk(n,m), the m
clauses are uniformly and independently chosen from the set of 2k

(
n
k

)
non-trivial

clauses of size k. The regular model F regk (n,m) consists in selecting uniformly
a formula from the set of formulas with m non-trivial clauses of size k, and
n variables where all literals have nearly the same number of occurrences, i.e.,
either

⌊
km
2n

⌋
or
⌊
km
2n

⌋
+ 1. Therefore, while in the uniform model one cannot

know the exact number of occurrences of a certain variable, this number is fixed
in the regular model.

Given a continuous probability distribution φ with domain
[
0, 1
]
, we can

generate a family of probability distributions P (X = i;n), with discrete do-
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Algorithm 1: Power-law k-CNF generator

Input: int n, m, k; real α;
Output: k-CNF Γ, with n variables and m clauses

1 Γ := Ø;
2 for j = 1 to m do
3 Cj := Ø;
4 repeat
5 Cj := Ø;
6 for i = 1 to k do
7 p := rand(); // rand: real in

[
0, 1)

8 x := 1;
9 while p > P (X = x;α, n) do // See Equation 3.7

10 p = p− P (X = x;α, n);
11 x := x+ 1;

12 Cj := Cj ∨ (−1)rand(2) · x; // rand: int in
[
0, 2)

13 until Cj is neither tautology nor simplifiable;
14 Γ := Γ ∧ Cj ;
15 return Γ;

main i = {1, . . . , n}, as follows. We obtain n points the interval
[
0, 1
]

(i.e.,
1/n, 2/n, . . . , 1), and we define P (X = i;n) = φ(i/n). With the appropriated
normalization, this results into:

P (X = i;n) =
φ(i/n)∑n
j=1 φ(j/n)

(3.4)

Since limn→∞
∑n
j=1 φ(j/n) 1

n =
∫ 1

0
φ(x) dx, for big values of n we have:

P (X = i;n) =
φ(i/n)∑n
j=1 φ(j/n)

≈n→∞
φ(i/n)

n
∫ 1

0
φ(x) dx

=
φ(i/n)

n
(3.5)

Ansótegui et al. [2009b] generalize the uniform and regular models for any
probability distribution. In this section, we focus on the case of power-law
distributions P (k) = c k−α. Notice that this distribution generalizes the classical
random model when α = 0. On the other hand, as the value of α increases, some
variables occur much more frequently than others. In the power-law model, we
use the continuous probability distribution φpow(x;α) = (1 − α)x−α. But this
function is not defined in x = 0. Therefore, we use the interval

[
0 + ε, 1 + ε

]
,

with a small value of ε. Equivalently, this is:

φpow(x;α) =
1− α

(1 + ε)1−α − ε1−α
(x+ ε)−α (3.6)

Using φpow and normalizing, we obtain the following discrete power-law prob-
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Algorithm 2: Regular Power-law k-CNF generator

Input: int n, m, k; real α;
Output: k-CNF Γ, with n variables and m clauses

1 bag := Ø;
2 for x = 1 to n do
3 bag := bag ∪ {bP (X = x;α, n)km2 c copies of x};
4 bag := bag ∪ {bP (X = x;α, n)km2 c copies of ¬x};
5 S := subset of km− |bag| random literals from {1, . . . , n,¬1, . . . ,¬n}
6 maximizing P (X = x;α, n)km2 − bP (X = x;α, n)km2 c;
7 bag := bag ∪ S;
8 repeat
9 Γ := Ø;

10 for j = 1 to m do
11 Cj :=

∨
(random multi-subset of k literals from bag);

12 bag := bag \ Cj ;
13 Γ := Γ ∧ Cj ;
14 until Γ contains neither tautologies nor simplifiable clauses;
15 return Γ;

ability distribution P (X;α, n):

P (X = i;α, n) =
(i+ ε · n)−α∑n
j=1(j + ε · n)−α

(3.7)

The uniform model is generalized as described in Algorithm 1. This gen-
eralization let us to generate random SAT instances whose number of variable
occurrences follows a power-law distribution. The algorithm proceeds as follows.
It iterates for generating the m clauses with k variables each (line 2). For choos-
ing each of these variables, a real random number p between 0 and 1 is generated
(line 7), and the variable x is selected if and only if P (X = x;α, n) ≥ p and
P (X = x+ 1;α, n) < p (line 9), receiving a random polarity (line 12). Finally, a
clause is accepted if and only if it is neither simplifiable (i.e., it has no repeated
literals) nor tautology (no variable occurs in the clause with both polarities).
Otherwise such clause is discarded, and a new clause is generated instead (line
13).

In the regular model, the number of occurrences of each variable is fixed
a priori. In Algorithm 2, this model is generalized for power-law probability
distributions. Therefore, we want all variables to occur with a frequency given
by P (X = x;α, n). To do so, we construct a multi-set4 bag with km literals.
Notice that km is the total number of (repeated) literals in the resulting formula.
This multi-set contains approximately P (X = x;α, n)km2 copies of each literal.

As this number is not probably an integer, we first add bP (X = x;α, n)km2 c
4A multi-set is a set with repeated elements.
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copies of each literal (lines 2-4). Then, we decide which literals are added one
more time, in order to assure that bag has a size equal to km. To do so, it selects
those literals maximizing the difference P (X = x;α, n)km2 −bP (X = x;α, n)km2 c
(line 5-7). Once this multi-set is created, it iterates to create the m clauses of the
resulting formula (line 10). Each clause is generated choosing k random elements
from bag (line 11), and they are removed from this multi-set (line 12). Finally,
it is checked that none of the clauses are either simplifiable or tautologies (line
14). Otherwise all the m clauses are discarded, and m new clauses are generated
instead. Notice that this is the only way to assure that the formula is selected
uniformly among the set of formulas with m clauses of size k and n variables.





Part I

The underlying structure
of SAT instances





Chapter 4

The community structure of
SAT instances

4.1 Introduction

In this chapter, we introduce the notions of community structure and modularity
in the context of SAT instances, in order to better characterize their underlying
structure.

Many real-world networks have a clear community structure (or high modu-
larity). This means that nodes can be grouped into communities such that most
of the edges connect nodes of the same community. In contrast, Erdös-Rényi
graphs do not have community structure, thus the modularity is very low.

We show that this feature is also very common in most of industrial SAT
instances, whereas random SAT formulas do not have community structure at
all. We analyze the impact of learning clauses during the search, and we observe
that they slightly decrease the modularity, but they completely destroys the
original partition of the formula. This analysis extends the study of the scale-free
structure of SAT instances, previously presented, giving a more complete picture
about their structure, with especial emphasis on industrial SAT benchmarks.

Questions addressed in this chapter:

Question 1. What is the underlying structure of industrial SAT instances?

Question 2. How is this structure affected by CDCL SAT solving techniques?

Related publications:

• Ansótegui, C., Giráldez-Cru, J., and Levy, J. (2012). The community structure
of SAT formulas. In Proceedings of the 15st International Conference on Theory
and Applications of Satisfiability Testing (SAT’12), pages 410–423.

It is worth noting that this analysis of the community structure has been
already used to improve the performance of some solvers, including core SAT

35
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solvers, MaxSAT solvers or parallel SAT solvers [Ansótegui et al., 2015b; Martins
et al., 2013; Neves et al., 2015; Sonobe et al., 2014].

The rest of the chapter is organized as follows. We formally introduce the
definitions of community structure and modularity in the context of graphs in
Section 4.2, and we present some algorithms to compute it. Then, we analyze the
community structure of SAT instances in Section 4.3, and the effect of learning
clauses on this structure in Section 4.4. Finally, we summarize some conclusion
in Section 4.5.

In Section 9.2.3, we discuss the notion of overlapping communities, which
may be useful for future works and applications related to the community struc-
ture of SAT instances. We also discuss in Section 9.2.2 the relation between the
community structure and the two other structure features described in this the-
sis, and in Section 9.2.4 we mention other interesting structure features that may
be analyzed to complement this study. Recall some related work in Section ??
about the underlying structure of real-world problems. Finally, remark that the
applications presented in this dissertation (see Chapters 6, 7 and 8) directly uses
the community structure of SAT instances.

4.2 The community structure of graphs

The notion of modularity was introduced by Newman and Girvan [2004]. This
property is defined for a graph and a specific partition of its vertexes into com-
munities, and it measures the adequacy of the partition in the sense that most of
the edges are within a community and few of them connect vertexes of distinct
communities. The modularity of a graph is then the maximal modularity for
all possible partitions of its vertexes. Obviously, measured this way, the max-
imal modularity would be obtained putting all vertexes in a single community
(i.e., all edges connect vertexes of the same community). To avoid this problem,
modularity is defined as the fraction of edges connecting vertexes of the same
community minus the expected fraction of edges for a random graph with the
same number of vertexes and the same node degrees.

Definition 4.1 (Modularity of a graph). Given a graph G = (V,w) and a
partition P = {P1, . . . , Pn} of its vertexes, we define its modularity as

Q(G,P ) =
∑
Pi∈P

∑
x,y∈Pi

w(x, y)∑
x,y∈V

w(x, y)
−


∑
x∈Pi

deg(x)∑
x∈V

deg(x)


2

(4.1)

We call the first term of this formula the inner edges fraction, IEF for short,
and the second term the expected inner edges fraction, IEFe for short. Then,
Q = IEF − IEF e.

The (optimal) modularity of a graph is the maximal modularity, for any
possible partition of its vertexes:

Q(G) = max{Q(G,P ) | P} (4.2)
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Since the IEF and the IEFe of a graph are both in the range [0, 1], and,
for the partition given by a single community, both have value 1, the optimal
modularity of graph will be in the range [0, 1].

There has not been an agreement on the definition of modularity for bipartite
graphs. Here we will use the notion proposed by Barber [2007] that extends
Newman and Girvan’s definition by restricting the random graph used in the
computation of the IEFe to be bipartite. In this definition, communities may
contain vertexes of V1 and of V2.

Definition 4.2 (Modularity of a bipartite graph). Given a bipartite graph
G = (V1, V2, w) and a partition P = {P1, . . . , Pn} of its vertexes, we define
its modularity as

Q(G,P ) =
∑
Pi∈P

∑
x∈Pi∩V1
y∈Pi∩V2

w(x, y)

∑
x∈V1
y∈V2

w(x, y)
−

∑
x∈Pi∩V1

deg(x)∑
x∈V1

deg(x)
·

∑
y∈Pi∩V2

deg(y)∑
y∈V2

deg(y)
(4.3)

There exist a wide variety of algorithms for computing the modularity of
a graph. Moreover, there exist alternative notions and definitions of modular-
ity for analyzing the community structure of a network. See [Fortunato, 2010]
for a survey in the field. The decision version of modularity maximization is
NP-complete [Brandes et al., 2008]. Therefore, most of the modularity-based
algorithms proposed in the literature return an approximated lower bound for
the modularity. They include greedy methods, methods based on simulated an-
nealing, on spectral analysis of graphs, etc. Most of them have a complexity that
make them inadequate to study the structure of very large graphs (as industrial
SAT instances). There are algorithms specially designed to deal with large-scale
networks, like the greedy algorithms for modularity optimization [Clauset et al.,
2004; Newman and Girvan, 2004], the label propagation-based algorithm [Ragha-
van et al., 2007] and the method based on graph folding [Blondel et al., 2008].

The first algorithm for modularity maximization was described by Newman
and Girvan [2004]. This algorithm starts by assigning every vertex to a distinct
community. Then, it proceeds by joining the pair of communities that result
in a bigger increase of the modularity value. The algorithm finishes when no
community joining results in an increase of the modularity. In other words, it
is a greedy gradient-guided optimization algorithm. The algorithm may also
return a dendrogram of the successive partitions found. Obviously, the obtained
partition may be a local maximum. Clauset et al. [2004] optimize the data
structures used in this basic algorithm, using among others, data structures
for sparse matrices. The complexity of this refined algorithm is O(md log n),
where d is the depth of the dendrogram (i.e. the number of joining steps), m
the number of edges and n the number of vertexes. They argue that d may be
approximated by logn, assuming that the dendrogram is a balanced tree, and
the sizes of the communities are similar. However, this is not true for the graphs
we have analyzed, where the sizes of the communities are not homogeneous.
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Algorithm 3: Graph Folding Algorithm (GFA)

Input: Graph G = (X,w)
Output: Partition P1

1 foreach i ∈ X do P1[i] := i;
2 P2 := OneLevel(G);
3 while Q(G,P1) < Q(G,P2) do
4 P1 := P1 ◦ P2;
5 G = Fold(G,P2);
6 P2 := OneLevel(G);

7 function OneLevel(Graph G) : Partition P
8 foreach i ∈ X do P [i] := i;
9 repeat

10 changes := false;
11 foreach i ∈ X do
12 bestinc := 0;
13 foreach c ∈ {c | ∃j.w(i, j) 6= 0 ∧ P [j] = c} do
14 inc :=

∑
P [j]=c w(i, j)−deg(i)·

∑
P [j]=c deg(j)/

∑
j∈X deg(j);

15 if inc > bestinc then
16 P [i] := c; bestinc := inc; changes := true;

17 until ¬changes;
18 return L

19 function Fold(Graph G1,Partition P ) : Graph G2

20 X2 = {c | ∃i ∈ X1.P [i] = c};
21 w2(c1, c2) =

∑
i,j∈X1|P [i]=c1∧P [j]=c2

w1(i, j);

22 return G2 = (X2, w2);

This algorithm has not been able to finish, for none of our SAT instances, with
a runtime limit of one hour.

An alternative algorithm is the Label Propagation Algorithm (LPA) proposed
by Raghavan et al. [2007]. Initially, all vertexes are assigned to a distinct label
(e.g., its identifier). Then, the algorithm proceeds by re-assigning to every vertex
the most frequent label among its neighbors. The procedure ends when every
vertex is assigned a label that is maximal among its neighbors. In case of a
tie between most frequent labels, the assigned label is chosen randomly. The
algorithm returns the partition defined by the vertexes sharing the same label.
The Label Propagation algorithm has a near linear complexity. However, it
has been shown experimentally that the partitions it computes have a worse
modularity than the partitions computed by the Newman’s greedy algorithm.

The Graph Folding Algorithm (GFA) (a.k.a. Louvain Method) proposed
by Blondel et al. [2008] (see Alg. 3) improves the Label Propagation algorithm
in two directions. The idea of moving one node from one community to an-
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other following a greedy strategy is the same, but, instead of selecting the most
frequent community among the neighbors of a node, it selects the community
which would most increase the modularity. The increase of the modularity ∆Q
produced by the node i ∈ V of a graph G = (V,w) changing its community to
Pc ∈ P can be measured as expressed in Equation 4.4:

∆Q(i, Pc) =
∑
j∈Pc

w(i, j)−

deg(i) ·
∑
j∈Pc

deg(j)∑
j∈V

deg(j)
(4.4)

which can be directly derived from Equation 4.1. This greedy strategy corre-
sponds to the function OneLevel (lines 7-18), and such increase of the modularity
is computed in line 14. A second improvement is performed once no movement
of node from community to community can increase the modularity (i.e., we
have reached a local modularity maximum). In this step, nodes of the same
community are merged. For this purpose, we construct a new graph. The nodes
of this new graph are the communities of the previous graph, and its edges have
a weight equal to the sum of the weights of the edges of the previous graph that
connect nodes of both communities. Notice that edges in this new graph connect
two communities of the previous graph. Notice also that this new graph may
contain self-loops1. This folding step corresponds to the function Fold (lines
19-22). Then, we apply again the greedy function to the new graph, and its
communities are merged again. These two steps are repeated till no modularity
increase is possible (lines 3-6).

4.3 Experimental analysis of the community
structure

In this section, we present the analysis of the community structure of some
SAT formulas. We use the industrial instances of the SAT Competition 2013
(excluding the 3 instances of the family software-bmc, due to their large size),
and some families of randomly generated problems.

In order to analyze the community structure of a SAT instance, we represent
it using the VIG and CVIG graph models. Then, we run GFA (see Alg. 3) on
these graphs. Recall that this algorithm returns a partition P into communities
of the nodes of the graph. Therefore, the value of the modularity Q associated
to such partition is computed according to Equation 4.1, by fixing the parameter
P . Notice that GFA is a greedy algorithm, hence the optimal modularity is not
guaranteed. Instead, we obtain a lower bound of this optimal value. Neverthe-
less, a high value of Q returned by GFA is enough to ensure a clear community
structure2. Moreover, as we have two graph models, we can use the highest

1A self-loop is an edge that connects a node to itself.
2The modularity Q ranges in the interval [0, 1].
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modularity as a lower bound of the modularity of the instance. Hereafter, we
refer as modularity to the lower bound returned by GFA.

First, we compute the community structure of each industrial SAT instance.
We observe that all instances of the same family have a similar community
structure (measured with the modularity Q, the number of communities |P |,
etc.). For instance, the maximal dispersion of the modularity Q is found in the
family hardawre-velev in the VIG model, with an standard deviation SD[Q] =
0.0081. This means that the modularity Q of the 21 hardware-velev instances is
very similar. Therefore, we group results by families, and we show all results in
average for each family.

In Table 4.1, we show the analysis of the community structure of industrial
SAT instances, grouped by families. In particular, we report the modularity Qo
of the original instances for each industrial family and each graph model (VIG
and CVIG), and the modularity Qp after preprocessing the instances. We use
the preprocessor Satelite [Eén and Biere, 2005], without expensive simplifications
(see its documentation for further details). We remark in bold the modularity
values greater than 0.3, as a representative value of a clear community structure.
We also report the number of communities |P | and the percentage of nodes
l belonging to the largest community. Finally, we also study the connected
components, as suggested by Biere and Sinz [2006]. In this case, |P | and l stand
for the number of connected components and the percentage of nodes in the
largest component, respectively.

We observe that all families show a very clear community structure, with
values of Qo greater than 0.8 in many cases. We remark again that the GFA
algorithm returns a lower bound on the modularity. In other kind of networks,
values greater than 0.7 are rare, therefore the values obtained for SAT instances
can be considered as exceptionally high. Moreover, GFA gives better bounds
in both models (VIG and CVIG) than other algorithms. See [Ansótegui et al.,
2012] for a comparative between GFA and LPA on industrial SAT benchmarks.

If we compare the modularity for the VIG model QV IGo with the same values
for the CVIG model QCV IGo , we can conclude that, in general, these values are
higher for the VIG model. As GFA is not able to run on bipartite graphs, we
have re-implemented this algorithm to be used in this kind of graphs, modifying
the function Fold in order to preserve the bipartite structure in the folding
step. However, even with this modification, GFA is not able to find a good
partition (and therefore, a good modularity) on bipartite graphs. After the first
folding, GFA is not (almost) able to do any change in the bipartite structure of
the resulting graph, and it finishes. Therefore, as GFA does not group many
communities and it finishes before for the CVIG, the number of communities
|P |CV IG is bigger than |P |V IG, and the biggest community lCV IG is smaller
than the one obtained for the VIG model (lV IG). Hence, the modularity is also
smaller: QCV IGo < QV IGo .

We also compare the values of the modularity before and after prepossessing
the instances (Qo and Qp, respectively). We see that in most cases, Qp is slightly
smaller than Qo, and in some crypto families, it is even bigger. However, both
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VIG CVIG CC
Family #inst. Qo Qp |P | l Qo Qp |P | l |P | l

2d-strip-packing 5 0.94 0.94 40.2 4.8 0.93 0.93 >103 3.4 1 100
bio 5 0.61 0.55 42.4 7.9 0.37 0.36 >103 0.2 1.4 99.9
crypto-aes 11 0.80 0.75 23.3 12.7 0.61 0.56 >103 4.1 1 100
crypto-des 9 0.95 0.93 82.4 2.9 0.50 0.43 >104 0.0 1 100
crypto-gos 30 0.64 0.64 39.6 16.3 0.63 0.62 >102 10.5 1 100
crypto-md5 11 0.78 0.78 33.1 6.1 0.51 0.54 >104 0.0 1 100
crypto-sha 30 0.56 0.64 13.7 11.6 0.56 0.58 >103 0.2 1 100
crypto-vmpc 8 0.24 0.24 9.5 16.0 0.40 0.40 >103 0.3 1 100
diagnosis 26 0.93 0.93 56.8 4.5 0.48 0.44 >105 0.0 1 100
hardware-bmc-ibm 4 0.97 0.96 76.0 2.5 0.50 0.47 >105 0.0 1 100
hardware-bmc 3 0.92 0.89 20.7 7.7 0.50 0.43 >104 0.1 1 100
hardware-cec 30 0.86 0.79 29.2 14.9 0.48 0.46 >104 1.1 1.1 99.9
hardware-velev 21 0.68 0.68 16.4 36.3 0.49 0.49 >105 2.9 1 100
planning 25 0.87 0.85 22.6 9.9 0.50 0.50 >105 0.0 1 100
scheduling-pesp 30 0.78 0.78 14.7 17.0 0.36 0.36 >104 0.0 2.4 95.3
scheduling 30 0.89 0.89 45.7 6.1 0.47 0.46 >105 0.0 1 100
software-bit-verif 12 0.88 0.80 21.0 9.9 0.51 0.57 >104 2.5 1 100
termination 5 0.78 0.70 38.4 14.0 0.53 0.53 >104 1.0 1 100

Table 4.1: Modularity of industrial SAT instances, computed with GFA, before
and after prepossessing (Qo and Qp, respectively). |P | stands for number of
communities (or connected components), and l for fraction of nodes in the largest
community (or component). Results are reported in average for each industrial
family.

values are very close. Therefore, we can conclude that the default prepossessing
techniques applied by Satelite almost do not affect the community structure of
the formula.

If all communities have a similar size, then l ≈ 1/|P |. In many cases in
Table 4.1, we have |P | � 1/l. This means that the community structure has a
big variability in the sizes of the communities obtained.

Finally, we have also studied the connected components of these instances
(after prepossessing). Almost all instances have a single connected component
with almost all variables included in it. Hence, the rest of connected components
contain just an insignificant subset of variables. Therefore, the modularity gives
us much more information about the structure of the formula than connected
components. Notice that a connected component can be structured into several
communities. We also found a large number of very small connected compo-
nents in some industrial formulas before preprocessing (not shown in Table 4.1).
However, these components have very few variables, and they are easily removed
by unit propagation in the preprocessing step.

We have also conducted a study of the modularity of some families of random
3-CNF SAT instances, varying the clause/variable ratio m/n. Each family is
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n m/n Qo |P | l

104 1 0.486 545 3.8
104 1.5 0.353 146 5.1
104 2 0.280 53 6.8
104 3 0.217 14 15.5
104 4 0.178 11 14.8
104 4.25 0.170 11 14.6
104 4.5 0.163 11 14.7
104 5 0.152 11 14.3
104 6 0.133 12 13.9
104 7 0.120 10 15.0
104 8 0.138 6 25.0
104 9 0.130 6 24.3
104 10 0.123 6 24.4

 0

 0.1
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Table 4.2: Modularity of random 3-CNF formulas varying the clause/variable
ratio m/n, for families of 100 instances and n = 104 variables.

m/n n Qo |P | l

4.25 102 0.177 6.0 14.5
4.25 103 0.187 10.5 11.4
4.25 104 0.170 11.0 12.2
4.25 105 0.151 14.0 6.8
4.25 106 0.151 14.0 5.7

Table 4.3: Modularity of random 3-CNF formulas at the peak transition region
(clause/variable ratio m/n=4.25), varying the number of variables n.

composed by 100 SAT instances, and a fixed number of variables n = 104. In this
experiment we run the GFA algorithm on the VIG model only. Table 4.2 shows
the results. As we can see, the modularity of random instances is only significant
for very low clause/variable ratios, i.e., on the leftist SAT easy side. This is due
to the presence of a large quantity of very small communities. Notice, that as
m/n increases, variables get more connected but without following any particular
structure, and the number of communities highly decreases. Moreover, even for
low values of m/n, the modularity is not as high as for industrial instances,
confirming their distinct nature. We do not observe any abrupt change in the
phase transition point.

In a second experiment with random formulas, we want to investigate the
modularity at the peak transition region for an increasing number of variables.
Table 4.3 shows these results. As we can see, the modularity is very low and
it tends to slightly decrease as the number of variables increases, and seems to
tend to a particular value (0.15 for the phase transition point).
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VIG
Family Qo Qp Q103 Q104 Q105

2d-strip-packing 0.942 0.942 0.942 0.932 0.884
bio 0.607 0.549 0.621 0.619 0.590
crypto-aes 0.804 0.752 0.777 0.737 0.627
crypto-des 0.952 0.929 0.945 0.929 0.717
crypto-gos 0.639 0.641 0.621 0.522 0.424
crypto-md5 0.784 0.780 0.850 0.847 0.825
crypto-sha 0.558 0.641 0.644 0.641 0.577
diagnosis 0.932 0.927 0.932 0.926 0.871
hardware-bmc 0.922 0.956 0.923 0.920 0.835
hardware-bmc-ibm 0.971 0.886 0.970 0.969 0.962
hardware-cec 0.857 0.785 0.853 0.825 0.765
hardware-velev 0.679 0.678 0.678 0.677 0.676
planning 0.865 0.850 0.856 0.853 0.834
scheduling 0.894 0.781 0.896 0.885 0.817
scheduling-pesp 0.780 0.892 0.780 0.772 0.662
software-bit-verif 0.878 0.801 0.872 0.845 0.728
termination 0.775 0.695 0.764 0.674 0.619

CVIG
Family Qo Qp Q103 Q104 Q105

crypto-vmpc 0.398 0.398 0.397 0.397 0.241

Table 4.4: Modularity QX of industrial SAT families after X conflicts, for VIG
and CVIG models.

4.4 The community structure during SAT solver
search

In this section, we want to investigate how CDCL techniques affect the commu-
nity structure of the formula. The natural question is: even if the original for-
mula shows a clear community structure, could it be the case that this structure
is quickly destroyed during the search process? Moreover, learning techniques
introduce new learnt clauses to the original formula. Therefore, a second natu-
ral question is: how these new clauses affect to the community structure of the
formula? Finally, even if the value of the modularity is not altered, can it be the
case that the partition of the formula into communities is changed?

To answer these questions, we analyze the community structure of the formu-
las the solver is seeing after learning clauses. In particular, we use the instances
that the solver MiniSAT is seeing after after 103, 104 and 105 conflicts, and we
compare these results to the community structure of original formulas.

In Table 4.4, we show the values of the modularities Qo and Qp of the original
and preprocessed formulas, and the modularities QX of the formulas after X =
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VIG

Family Qp Qpart103 Qpart104 Qpart105

2d-strip-packing 0.942 0.272 0.209 0.132
bio 0.549 0.026 0.028 0.029
crypto-aes 0.752 0.346 0.324 0.250
crypto-des 0.929 0.361 0.351 0.245
crypto-gos 0.641 0.122 0.097 0.059
crypto-md5 0.780 0.277 0.272 0.250
crypto-sha 0.641 0.121 0.122 0.107
crypto-vmpc 0.239 0.076 0.057 0.046
diagnosis 0.927 0.308 0.327 0.306
hardware-bmc 0.886 0.715 0.702 0.632
hardware-bmc-ibm 0.956 0.661 0.635 0.630
hardware-cec 0.785 0.469 0.440 0.407
hardware-velev 0.678 0.328 0.326 0.319
planning 0.850 0.535 0.534 0.423
scheduling 0.892 0.758 0.746 0.665
scheduling-pesp 0.781 0.755 0.748 0.626
software-bit-verif 0.801 0.569 0.547 0.449
termination 0.695 0.428 0.372 0.313

Table 4.5: Modularity QpartX of the formulas after X conflicts (for VIG), and
using the partition of the original formula.

103, 104, 105 conflicts. We only report results for the VIG model, except for the
family crypto-vmpc, for which the obtained modularity is greater when using
the CVIG. We can observe that the modularity weakly decreases as we add
learnt clauses, but it is still meaningful. Therefore, learning does not completely
destroy the organization of the formula into weakly connected communities.

The question now is, even if the modularity does not decreases very much,
could it be the case that the communities have changed? In other words, can
it be the case that there is still a clear community structure but the partition
of the formula into communities has totally changed? Remark that in the pre-
vious experiment, the GFA algorithm is re-run for each instance after learning.
Therefore, it can be the case that the partition returned by this algorithm is
completely different.

If a considerable part of learning is performed locally inside each community,
then the communities will not change. In the VIG model, the set of nodes is
always the same (even with the addition of learnt clauses). Notice that in this
model, nodes represent only variables, so no learnt clause creates new nodes.
However, these learnt clauses do create new edges between the existent nodes,
or modify the weight of existing edges. Therefore, we can use modularity as a
quality measure to see how internal a learnt clause is. Notice that modularity
is a function of two parameters: a graph, and a partition of it. For a given
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n m/n Qo Qp Ql

300 1 0.459 0 0.453
300 2 0.291 0.235 0.291
300 4 0.190 0.188 0.073
300 4.25 0.183 0.182 0.041
300 4.5 0.177 0.177 0.045
300 6 0.150 0.150 0.120
300 10 0.112 0.112 0.171
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Table 4.6: Modularity of random 3-CNF formulas varying the clause/variable
ratio m/n, for original formulas (Qo), preprocessed formulas (Qp), and formulas
after adding all learnt clauses needed to solve them (Ql).

partition of a graph, a new edge will increase the modularity iff it connects two
nodes of the same community, otherwise modularity will decrease. Thus, using
the partition of the original formulas, we can see if learning acts internally (i.e.,
connecting variables of the same community), or if it tends to connect variables
of different communities.

We conduct another experiment to see how learning changes such partition.
We use the same formulas than before (after 103, 104 and 105 conflicts), and
the partition of the VIG obtained from the original formulas, to compute the
modularity Qpart. Notice that in the case we do not run the GFA to compute
a (possibly) new partition, but we give explicitly that partition. Moreover, we
can only use the VIG since the set of nodes is the same in both original formulas
and formulas after learning (recall that using the CVIG, each new learnt clause
adds a new clause-node to the graph).

In Table 4.5, we show the result of the modularity Qpart. The analysis of
the tables shows us that there is a drop-off in the modularity as we incorporate
more learnt clauses. In other words, the partition of the formula is changing.
This means that, if we use explicitly the community structure to improve the
efficiency of a SAT solver, to overcome this problem, we would have to recompute
the partition (after some number of conflicts) to adjust it to the modified formula.

Finally, we wanted to evaluate the impact on modularity of the prepossessing,
and the effect of adding all the learnt clauses in random formulas. Table 4.6
shows the results. We compare the modularity Qo of the original formulas to
the modularity Qp of the preprocessed formulas, and the modularity Ql of the
formulas after adding all learnt clauses needed to solve the formula. In general,
prepossessing has almost no impact on the modularity of the formula (Qo ≈
Qp), except for small values of the clause/variable ratio m/n. For instance, for
m/n = 1 there is an abrupt change on Q because prepossessing already solves the
formula. With respect to the addition of learnt clauses, it is interesting to observe
that closer to the peak transition region m/n = 4.25, lower the modularity is.
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A possible explanation is that at the peak region we find the hardest instances,
and harder an instance is, more clauses connecting distinct communities have to
be learnt, thus lower the modularity is.

4.5 Conclusions

We show that most industrial SAT instances exhibit a clear community structure.
This means that we can find a partition of the formula into communities in
which variables are highly interconnected. In general, industrial formulas have a
modularity of around 0.8. Notice that in other kind of networks, values greater
than 0.7 are rare. On the contrary, random formulas do not have this kind of
structure (as expected). Moreover, we check that modularity slightly decreases
with the addition of learnt clauses, but it is still high. Thus, a partition that
shows a good community structure can be found. However, we also observe that
such partition change during the search.



Chapter 5

The self-similar structure of
SAT instances

5.1 Introduction

In this chapter, we introduce the notion of fractal dimension or self-similar struc-
ture, and we analyze this structure in the context of SAT instances.

The fractal dimension is another very common feature in many real-world
networks. This means that the shape of the network is the same at different
scales (i.e., grouping sets of nodes into a single one).

In the case of industrial SAT problems, we show that this property is also
shared by the majority of the instances, while random formulas are not self-
similar at all. Also, we analyze the effects of learning clauses on the self-similar
structure, and we observe that these clauses very slowly increase the fractal
dimension. This means that, in general, learning does not contribute to con-
nect distant parts of the formula. This study complements the other structure
features described before (i.e., the scale-free structure and the community struc-
ture).

Questions addressed in this chapter:

Question 1. What is the underlying structure of industrial SAT instances?

Question 2. How is this structure affected by CDCL SAT solving techniques?

Related publications:

• Ansótegui, C., Bonet, M. L., Giráldez-Cru, J., and Levy, J. (2014). The frac-
tal dimension of SAT formulas. In Proceedings of the 7th International Joint
Conference on Automated Reasoning (IJCAR’14), pages 107–121.

The rest of the chapter is organized as follows. We formally introduce the
definitions of fractal dimension and self-similarity in the context of graphs in

47
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Section 5.2, including an analysis about the relations between it and the diam-
eter (see Subsection 5.2.1). Then, we analyze the self-similar structure of SAT
instances in Section 5.3, and the effect of learning clauses on this structure in
Section 5.4. Finally, we summarize some conclusion in Section 5.5.

In Section 9.2.2, we discuss the relation between the self-similar structure
and the other structure features described before. Also, in Section 9.2.4, we
discuss other interesting structure features that may be analyzed to complement
this analysis. Recall some related work in Section ?? about the underlying
structure of real-world problems. Finally, remark that the application presented
in Chapter 8 directly uses the self-similar structure (as well as the scale-free
structure and the community structure).

5.2 The self-similar structure of graphs

We can define a notion of fractal dimension of a graph following the principle
of self-similarity. We will use the definition of box covering by Hausdorff [Man-
delbrot, 1983]. This definition is for unweighted graphs (i.e., edges have no
weight). A weighted graph is a generalization of an unweighted one (see Chap-
ter 2). Therefore, we can just simply use (weighted) graphs without considering
the weights of their edges.

Definition 5.1 (Diameter of a graph). The distance between two nodes is the
minimum number of edges we need to follow to go from one node to the other.

The diameter dmax of a graph is the maximal distance between any two
nodes of the graph.

Definition 5.2 (Fractal dimension of a graph). Given a graph G, a box B of
size l is a subset of nodes such that the distance between any pair of them is
strictly smaller than l.

We say that a set of boxes covers a graph if every node of the graph is in
some box. Let N(l) be the minimum number of boxes of size l required to cover
the graph.

We say that a graph has the self-similarity property if the function N(l)
decreases polynomially, i.e. N(l) ∼ l−d, for some value d. In this case, we call d
the fractal dimension of the graph.

Notice that N(1) is equal to the number of nodes of G, and N(dmax + 1) is
the number of connected components of the graph.

Lemma 5.1. Computing the function N(l) is NP-hard1.

Proof. We prove that computing N(2) is already NP-hard by reducing the graph
coloring problem to the computation of N(2). Given a graph G, let G, the
complement of G, be a graph with the same nodes, and where any pair of
distinct nodes are connected in G iff they are not connected in G. Boxes of size

1Song et al. [2007] state the same result, but they prove the wrong reduction. They reduce
the computation of N(2) to the graph coloring problem.
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2 in G are cliques, thus they are sets of nodes of G without an edge between
them. Therefore, the minimal number of colors needed to color G is equal to
the minimal number of cliques needed to cover G, i.e. N(2).

There are several efficient algorithms that approximate N(l). They compute
upper bounds of N(l). They are called burning algorithms (see [Song et al.,
2007]). Following a greedy strategy, at every step they try to select the box that
covers (burns) the maximal number of uncovered (unburned) nodes. Although
they are polynomial algorithms, we still need to do some further approximations
to make the algorithms of practical use in very large graphs.

First, instead of boxes, we will use circles.

Definition 5.3 (Circle). A circle of radius r and center c is a subset of nodes
of a graph G such that the distance between any of them and the node c is
strictly smaller that r.

Let N(r) be the minimum number of circles of radius r required to cover a
graph.

Notice that any circle of radius r is inside of a box of size 2 r−1 (the opposite
is in general false) and any box of size l is inside a circle of radius l (it does not
matter what node of the box we use as center). Notice also that every radius r
and center c characterizes a unique circle.

According to Hausdorff’s dimension definition, N(r) ∼ r−d also characterizes
self-similar graphs with fractal dimension d. We can approximate this fractal di-
mension using the Maximum-Excluded-Mass-Burning (MEMB) algorithm [Song
et al., 2007], which works as follows: Consider a graph G and a radius r. We
compute an upper bound of the number of circles with radius r necessary to
cover the graph N(r). We start with all nodes set to unburned. At every step,
for every possible node c, we compute the number of unburned nodes covered
by the circle of center c and radius r, then select the node c that maximizes this
number, and burn the nodes covered by this circle. This is repeated till all nodes
are burnt. The function N(r) is computed for all values of 1 < r < dmax, till for
some r′ we obtain N(r′) = k, where k is the number of connected components
of G.

The MEMB algorithm is still too costly for our purposes in very large net-
works (as SAT instances). We apply the following strategy to make the algorithm
more efficient. We order the nodes according to their degree: 〈v1, . . . , vn〉 such
that degree(vi) ≥ degree(vj), when i < j. Now, for i = 1 to n, if ci is not
burned, then select the circle of center ci and radius r (even if it does not max-
imizes the number of unburned covered nodes), and burn all unburned nodes
belonging to this circle. We call this algorithm Burning by Node Degree (BND),
and describe it in Alg. 4. We will compare the accuracy and efficiency of algo-
rithms MEMB and BND in Section 5.3 to justify the use of algorithm BND in
our experimentation.

In our study, we analyze the function N(r) for the graphs obtained from a
SAT instance following unweighted version of the VIG and CVIG models. We
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Algorithm 4: Burning by Node Degree (BND)

Input: Graph G = (V,E)
Output: vector[int] N

1 N [1] := |V |;
2 int i := 2;
3 while N [i− 1] > connectedComponents(G) do
4 vector[bool] burned(|V |);
5 N [i] := 0;
6 burned := {false, . . . , false};
7 while existsUnburnedNode(burned) do
8 c := highestDegreeUnburnedNode(G, burned);
9 S := circle(c, i); // circle with center c and radius i;

10 foreach x ∈ S do
11 burned[x] := true;

12 N [i] + +;

13 i := i+1;

denote these two functions as N(r) and N b(r), respectively, and they relate to
each other as follows.

Lemma 5.2. If N(r) ∼ r−d then N b(r) ∼ r−d.
If N(r) ∼ e−β r then N b(r) ∼ e−

β
2 r.

Proof. Notice that, for any formula, given a circle of radius r in the VIG model,
using the same center and radius 2 r − 1 we can cover the same variable nodes
in the CVIG model. With radius 2 r we can also cover all clauses adjacent to
some covered variable. Hence N b(2 r) ≤ N(r).

Conversely, given a circle of radius 2 r in the CVIG model, we consider two
possibilities. If the center is a variable node, we cover the same variables in the
VIG model using a circle of radius r and the same center. If the center is a clause
c, to cover the same variables in the VIG model, we need a circle of radius r+ 1
centered in a variable node adjacent to c. Hence N(r + 1) ≤ N b(2 r).

Therefore N(r + 1) ≤ N b(2 r) ≤ N(r), and N(r) ∼ N b(2 r). From this
asymptotic relation, we can derive the two implications stated in the lemma.

Previous lemma states that if a SAT formula is (fully) self-similar, then in
both models, VIG and CVIG, the fractal dimension is the same. In such case,
if we plot N(r) as a function of r in double-logarithmic axes, we obtain a line
with slope −d. If N(r) decays exponentially, then the decay factor in the CVIG
model is half of the decay factor in the VIG model. In such case, if we plot N(r)
in semi-logarithmic axes, we obtain a line with slope −β. We will always plot
N(r) in double-logarithmic axes. Thus, when N(r) decays exponentially, we will
observe a concave curve.



5.3. EXPERIMENTAL ANALYSIS 51

5.2.1 Fractal dimension versus diameter

The function N(r) determines the maximal radius rmax of a connected graph,
defined as the minimum radius of a circle covering the whole graph minus one:
N(rmax+1) = 1. The maximal radius and the diameter dmax of a graph are also
related, because rmax ≤ dmax ≤ 2 rmax. From these relations we can conclude
the following.

Lemma 5.3. For self-similar graphs, or SAT formulas, (i.e., N(r) ∼ r−d), the
diameter is dmax ≈ n1/d, where d is the fractal dimension.
In graphs, or SAT formulas, where N(r) ∼ e−β r, the diameter is dmax ≈ logn

β .

Proof. The diameter of a graph and the maximal radius are related as rmax ≤
dmax ≤ 2 rmax. Notice that, by definition of the function N(r), we have N(1) =
n, where n is the number of nodes, and N(rmax + 1) = 1.

Assuming N(r) = C r−d and replacing r by 1 we get C = n. Then, replacing
r by rmax+1, we get 1 = N(rmax+1) = n (rmax+1)−d. Hence, rmax = n1/d−1.

Assuming N(r) = C e−β r and replacing r by 1 we get C = n eβ . Then,
replacing r by rmax + 1, we get 1 = N(rmax + 1) = n e−β (rmax). Hence, rmax =
logn
β .

The diameter, as well as the typical distance2 L of a graph, have been widely
used in the characterization of graphs. For instance, small world graphs [Walsh,
1999] are characterized as those graphs with a small typical distance L ∼ log n
and a large clustering coefficient. This definition works well for families of graphs
because then we can quantify the typical distance as a function on the number
of nodes. But it is quite imprecise in the case of individual graphs, because it is
difficult to decide what is a “small” distance and a “large” clustering coefficient,
for a concrete graph. Moreover, the diameter and the typical distance of a graph
are measures quite expensive to compute in practice (for huge graphs, as the ones
representing many industrial SAT formulas), even though there is a quadratic
algorithm. In fact, our approximation to the fractal dimension can be computed
more efficiently than the diameter.

Since we are interested in characterizing the structure of formulas, the fractal
dimension is a better measure because it is independent of the size. Thus,
formulas of the same family (and similar structure), but very distinct size, will
have similar dimension and N(r) function shape.

5.3 Experimental analysis of the self-similar
structure

In this section, we present an exhaustive analysis of the 300 industrial SAT
instances of the SAT Competition 2013, and 90 random 3-CNF formulas of n =
105 variables at different clause/variable ratios. We will see that most industrial

2The typical distance of a graph is the average of the distances between any two nodes.
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Figure 5.1: Upper bounds for N b(r) obtained with MEMB and BND algorithms,
for the 17 industrial instances that MEMB is able to compute in 30 minutes,
grouped by families.

instances are self-similar and have a small fractal dimension, i.e. N(r) ∼ r−d,
for small d. In random instances N(r) decays exponentially, i.e. N(r) ∼ e−β r.

Before presenting the results of this evaluation, let us justify the use of the
BND algorithm to calculate the fractal dimension, instead of the MEMB algo-
rithm [Song et al., 2007]. We compare both algorithms in order to evaluate how
accurate BND is.

We run both algorithms for the set of 300 industrial instances of the SAT
Competition 2013 with a timeout of 30 minutes. While the BND algorithm
finishes for all the 300 instances, MEMB is only able to approximate N b(r) in
17 instances. Moreover, while the average runtime of BND for these instances is
0.11 seconds, MEMB takes an average of 10 minutes and 7.2 seconds to compute
them. On the other hand, the approximations of N b(r) computed by MEMB
and BND are very similar. In Figure 5.1, we represent these upper bounds for
these 17 industrial SAT instances.

Since the MEMB algorithm is more accurate than the BND algorithm, the
upper bounds of N b(r) that MEMB calculates are below the ones calculated by
BND. The real values of N b(r) are probably even lower in the final points (where
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Figure 5.2: Functions N(r) for VIG (left), and N b(r) for CVIG (right), for
3-CNF random formulas with distinct values of m/n. Formulas are generated
using n = 105 variables and taking the major connected component, except for
m/n = 0.18, where n = 106.

the approximation is less accurate).
Random 2-SAT formulas in the VIG model correspond exactly to Erdös-

Rényi graphs. It is known that these formulas have a phase transition point at
m/n = 1 where formulas pass from satisfiable to unsatisfiable with probability
one. It is also known that at m/n = 0.5 there is a percolation threshold. For-
mulas below this point have many connected components in the VIG graph, and
above this threshold there is a major connected component. In the percolation
point the formula is self-similar with a fractal dimension d = 2. Above this point
N(r) decays exponentially. To the best of our knowledge, a result of this kind
is not known for random 3-CNF formulas.

In Figure 5.2 we plot the functions N(r) and N b(r) for random 3-CNF for-
mulas at distinct clause/variable ratios. Experimentally, we observe that the
functions only depends on the clause/variable ratio m/n, and not on the num-
ber of variables (this is not shown in figures). In the phase transition point
m/n = 4.25, the function N(r) has the form N(r) ∼ e−2.3 r, i.e. it decays ex-
ponentially with β = 2.3. Hence, rmax = logn

2.3 + 1. For instance, for n = 105

variables, random formulas have a radius rmax ≈ 6. For bigger values of m/n,
the decay factor β is bigger. In the CVIG model, we observe the same behavior.
However, in this case, in the phase transition point, the function N b(r) decays
exponentially with exponent β = 1.16 ≈ 2.3/2. Hence, the decay is just half
of the decay of the VIG model, as we expected by Lemma 5.2. Also, we have
experimentally found a percolation threshold at m/n ≈ 0.17. At this point the
principal connected component also exhibits a fractal dimension d = 2.

In Figure 5.3, we plot the functionN b(r) for some industrial formulas grouped
by families. We observe that most of them are self-similar, and most dimensions
range between 2 and 4. In many of the industrial families, all instances have the
same fractal dimension, being this dimension a characteristic of the family. See,
for instance, families crypto-sha or diagnosis. Notice that the size of the formulas
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Figure 5.3: Function N b(r) for some industrial SAT formulas, grouped by fami-
lies.

does not affect the value of the dimension (in the logarithmic representation the
function can be higher or lower, but with the same slope).

In general, the polynomial decay is clearer for small values of r. Moreover, in
this area, the slope is very similar for all instances of the same family of formulas.

For big values of r, we must make some considerations. First, the upper
bound on N b(r) that we calculate can be a bad approximation. Second, there
are two phenomena that we can identify. In some cases there is an abrupt decay,
but the whole function can not be approximated by an exponential function
(see some hardware-cec or termination instances, for example). This decay in
the number of required tiles can be due to a small number of edges connecting
distant areas of the graph. These edges have no effect for small values of r, but
may drop down the number of tiles for big values of r. In some other cases (see
hardware-bmc-ibm, for instance), there is a long tail. In this case, it is due to
the existence of (small) unconnected components in the graph. If we compute
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N(r) only for the major component, this tail disappears.3

Finally, all instances of the hardware-velev family have a N(r) function with
exponential decay, i.e. are not self-similar.

5.3.1 Fractal dimension at fine-grained scale

If a graph is self-similar, then it has the same structure at all scales. We could
replace groups of nodes tiled by a box by a single node, obtaining another graph
with the same structure. In our experiments, we observe that this is the case
for small values of r (for small values of r, the function behavior is N(r) ≈
C r−d). However, this is more arguable for big values of r. Perhaps this is
because the graph is not self-similar at large scale (coarse-grained), or because
our approximation of N(r) is not precise enough.

We think that, more than whether there exists a self-similar structure, what
is important, is the value of the fractal dimension at fine-grained, i.e. the slope
of the function N(r) for small values of r. Therefore, in our experimentation, we
note these fine-grained dimensions as d and db for the VIG and CVIG, respec-
tively. We compute them as the interpolation, by linear regression, of logN(r)
vs. log r. We use the values of N(r) and N b(r), for r = 1, . . . , 6.

5.4 The self-similar structure during SAT solver
search

In this section, we analyze the effects of CDCL techniques on the self-similar
structure of SAT instances. In particular, we focus our analysis on the learnt
clauses. Notice that the effects produced by a learnt clauses depends on its
length. While unitary clauses, in general, simplify the formula (removing all
clauses containing such literal, and removing all the occurrences of the oppo-
site literal), clauses of bigger length may create new relations between existing
literals. Therefore, their effects on the graph representation are also different.

In general graphs, the addition of edges (preserving the nodes) can only
increase its dimension, because tiles may cover more nodes, thus the number
N(r) of tiles required to cover the graph may decrease, whereas N(1) does not
change. This can only contribute to decrease the slope of function N(r), hence
to increase the fractal dimension4.

In the case of learnt clauses, their addition as well as the simplification of
formulas due to unitary clauses modify the VIG and CVIG representations of
the formula, and hence may affect its fractal dimension.

In the VIG model, the addition of learnt clauses only introduces new edges,
thus as we argued the dimension can only increase. In the CVIG model, the
argument is a bit more complicated. Let N(r) be the original number of tiles

3We can subtract from N(r) the number of unconnected components, as an approximation,
since most are covered with a few tiles.

4Notice that the fractal dimension has the same value than the slope of N(r) but opposite
sign.
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Figure 5.4: Relation between the original fractal dimension dborig, and the dimen-

sion dblearnt after adding learnt clauses, or after adding random clauses dbrand, in
random 3-CNF formulas. Learnt clauses are computed after 103 conflicts.

and N ′(r) the minimum number of tiles needed after adding L learnt clauses.
We have N ′(1) = N(1)+L, since we add L new nodes (clause-nodes). For r > 1,
we can ensure that the whole graph will be covered using the old tiles and L new
tiles to cover new nodes, thus N ′(r) ≤ N(r) + L in the worst case. Therefore,
the dimension can only increase. On the other hand, CDCL SAT solvers do not
generally add unitary learnt clauses to the formula, but they propagate them.
In both models, this contributes to decrease N(1) by the number of assigned
variables, and may contribute to increase N(r), for r > 1, due to the elimination
and simplification of clauses. Therefore, the dimension can only decrease.

In the previous argument, we assume that logN(r) is perfectly lineal on
log r, and N(r) is computed exactly. In practice, we compute an approximation
of N(r). Moreover, we compute the dimension by linear regression, since points
are not aligned. Hence, the variation in the dimension due to learning is rather
unpredictable.

We have conducted some experiments to analyze how the fractal dimension
evolves during the execution of the SAT solver. First we show the effect of
introducing learnt clauses in random 3-CNF instances with 105 variables and
distinct clause/variable ratios. In these instances almost all learnt clauses are
not unitary, hence we do remove neither nodes nor edges. In Figure 5.4, we plot
the dimension dblearnt after adding learnt clauses w.r.t. the original dimension
dborig. We observe that the addition of learnt clauses increases the dimension
of the formula, as expected theoretically. This increase is bigger for formulas
with higher clause/variable ratio. In order to quantify the increase in the fractal
dimension, we repeat the same experiment replacing learnt clauses by random
clauses of the same size, and computing the new dimension dbrandom (results are
also shown in Fig. 5.4). We observe that in this second experiment the increase
in the dimension is bigger than adding learnt clauses: dbrandom ≥ dblearnt ≥ dborig.
This means that learnt clauses, even in these random formulas, tend to connect
variables that were already close in the graph. Therefore, their effect in the
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(left), and relation between the fractal dimension dbsimp and the fractal dimension

dblearnt after simplification and adding learnt clauses (right), for all industrial
formulas. Learnt clauses are the result of 103 conflicts.

fractal dimension is not as important as adding random clauses.

In industrial instances some learnt clauses are unitary. In Figure 5.5 , we an-
alyze separately the effect of simplifying the formula using these unitary clauses
(left), and the effect of adding non-unitary learnt clauses (right), after 103 con-
flicts. We observe that, in most of the industrial instances, the fractal dimension
after simplifying the formula with unitary learnt clauses dbsimp is, in general,

slightly smaller than the original fractal dimension dborig, as expected. In some

instances, the decrease of dbsimp is quite big. This is the case of families crypto-
md5 and crypto-sha. In these families, the effect of propagating these clauses is
more impontant. However, we also find few instances for which the dimension
dbsimp slightly increases. In the case of learning non-unitary clauses, we observe

that the dimension dblearnt after learning these clauses is slightly greater than
the dimension dbsimp, in most of the instances, as expected. This increase is
particularly big in families crypto-aes, crypto-gos and crypto-vmpc. This means
that learning is connecting distant part of the formula, hence N b(r) drops off.
Again, we also observe some cases where the dimension dblearnt decreases due to
learning.

In Figure 5.6, we show the evoution of the values of the fractal dimension after
103, 104 and 105 conflicts. We observe that, after 103 conflicts, dimensions may
increase or decrease slightly, depending on the impact of learning unitary clauses
(making the fractal dimension decrease) or learning longer clauses (making the
fractal dimension increase). However, after 105 conflicts, the dimension clearly
increases in most of the cases. That means that after a certain number of
conflicts, the solver is not learning unitary clauses any more, hence the dimension
always increases.

Finally, we want to detect if learnt clauses tend to connect distant parts of the
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formula in industrial instances. In order to measure it, we quantify the variation
of the dimension dblearnt due to the addition of learnt clauses, compared to the
dimension dbrandom due the addition of the same number of random clauses with
the same sizes. In Figure 5.7, we plot the relation between these two dimensions.
We observe that the dimension dbrandom is considerably bigger than the dimension
dblearnt. This means that the effect of random clauses is much more significant in
the fractal dimension, i.e., most of learnt clauses do not contribute to make tiles
bigger. In other words, learnt clauses do not reduces the number of tiles needed
to cover the graph as randomly generated clauses do. Therefore, they mainly
connect nodes inside the tiles, i.e. nodes that where already close or connected.
Therefore, learning acts quite locally in the formula.
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5.5 Conclusions

This analysis of the fractal dimension of SAT instances shows that most in-
dustrial benchmarks exhibit a self-similar structure, with a fractal dimension
ranging, in general, between 2 and 4. Fractal dimensions, typical distances and
graph diameter are related (small dimension implies big distance and diameter).
Hence, industrial SAT instances have a big diameter. Intuitively, this means
that we need long chains of implications to propagate a variable instantiation to
others. On the other hand, random instances are not self-similar.

We also observe that fractal dimension increases due to learnt clauses. More-
over, the increase is specially abrupt in instances that show exponential decays
(for instance, in the family hardware-velev or random formulas). Also, this in-
crease is bigger if we substitute learnt clauses by random clauses of the same
size. Therefore, learning does not contribute very much to connect distant parts
of the formula, as one could think.
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Chapter 6

Pseudo-industrial SAT
instances generation

6.1 Introduction

Random SAT formulas can be easily generated on demand. On the contrary,
the set of industrial benchmarks, which encode real-world problems, is limited.
The problem of generating realistic pseudo-industrial random instances is stated
in [Selman et al., 1997] as one of the most important challenges for the next
few years: “Challenge 10: Develop a generator for problem instances that have
computational properties that are more similar to real world instances”. This
challenge is also stated in [Dechter, 2003; Kautz and Selman, 2003, 2007]. The
main motivation of this challenge is improving the process of development and
testing of SAT solvers, and their possible specialization.

One important motivation for the development of pseudo-industrial SAT in-
stances generators is to isolate some known properties of these real-world prob-
lems. This allows us to study the impact of these properties on the performance
and behavior of SAT solvers. This approach has been already used [Ansótegui
et al., 2009b] (see Section 3.4). Using this generator, it was observed that CDCL
SAT solvers focus their decisions on the most frequent variables.

In the case of community structure, similar questions also arise. For instance,
do SAT solvers concentrate their decisions on variables of the same (or few)
communities? Do the conflicts found by the solver relate variables of the same
community? How does the activity of each community evolve along the execution
of the search? Answering these questions may help to better understand the
different ingredients of modern SAT solvers and their impact on the solving
process, with the long-term aim of improving them. Recall that, as we have
shown in Chapter 4, clear community structure (or high modularity) is a very
determining feature of real-world SAT instances.

In this chapter, we present a new model of generation of random SAT in-
stances based on the notion of modularity, called Community Attachment. For
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high values of modularity (i.e., clear community structure), we realistically model
pseudo-industrial random SAT formulas. This model also generates SAT in-
stances very similar to classical random formulas using a low value of modular-
ity.

Questions addressed in this chapter:

Question 3. How can we generate more realistic pseudo-industrial random SAT prob-

lems?

Related publications:

• Giráldez-Cru, J. and Levy, J. (2015). A modularity-based random SAT instances
generator. In Proceedings of the 24st International Joint Conference on Artificial
Intelligence (IJCAI’15), pages 1952–1958.

• Giráldez-Cru, J. and Levy, J. (2016). Generating SAT instances with community
structure. Artificial Intelligence. Accepted with revisions.

The rest of the chapter is organized as follows. We introduce the Community
Attachment model in Section 6.2, and we validate it in Section 6.3. This means
that this model appropriately generates the expected community structure in the
output formulas for different input values of number of variables n and clauses
m. In Section 6.4, we prove that the phase transition point is independent on
the modularity. In Section 6.5, we give empirical evidence that the performance
of SAT solvers is consistent with the expected properties of the generated for-
mulas, i.e. SAT solvers specialized in industrial problems perform better in high
modular instances than SAT solvers specialized in random formulas, and vice
versa. We also use this generator to study some components of a CDCL SAT
solver in Section 6.6, and we conclude in Section 6.7.

In Section 9.2.5, we discuss some future work about extending the Commu-
nity Attachment model in several ways. Recall the related work on generation of
pseudo-industrial random SAT instances in Section ??, and the scale-free ran-
dom formulas generator proposed by Ansótegui et al. [2009b] and described in
Section 3.4.

6.2 Community Attachment model

In the classical random k-SAT model, a random formula Fk(n,m) is a set of m
clauses over n variables, where clauses are chosen uniformly and independently
among all 2k

(
n
k

)
non-trivial clauses of length k. A non-trivial clause of length

k contains k distinct, non-complementary literals. We present a new model of
random formulas: the Community Attachment (CA) model, which is parametric
in a probability p and a number of communities c of the set of variables. It allows
the generation of formulas of any desired modularity.
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Algorithm 5: Community Attachment

Input: int n, m, c, k; real Q;
Output: k-CNF SAT Instance Γ

1 Γ := Ø;
2 p := Q+ 1/c;
3 for j ∈ {1, . . . ,m} do

// Select the community ci of each literal

4 if rand([0, 1]) ≤ p then // all literals in the same community

5 r := rand({1, . . . , c});
6 for i ∈ {1, . . . , k} do
7 ci := r;

8 else // all literals in distinct communities

9 for i ∈ {1, . . . , k} do
10 repeat
11 ci := rand({1, . . . , c});
12 until ∀i′ < i(ci′ 6= ci);

// Create the clause C

13 C := Ø;
14 for i ∈ {1, . . . , k} do
15 repeat
16 xi := rand({b(ci−1) nc c+ 1, . . . , bci nc c}); // xi random var of

community ci

17 until ∀i′ < i(xi′ 6= xi); // Avoid trivial clauses;
18 C := C

∨
rand({−1, 1}) · xi; // random polarity

19 Γ := Γ
∧
C;

20 return Γ;

Definition 6.1. Community Attachment. Let N be a set of n variables,
a partition P of N into c pairwise disjoint communities of the same size n/c,
with k ≤ c ≤ n/k, and a real value 0 ≤ p ≤ 1. A random formula Fk(n,m, c, p)
is a set of m non-trivial clauses with k literals over the n variables, selected
independently as follows. With probability p, choose a clause uniformly among
all c 2k

(
n/c
k

)
clauses with all literals in the same community; and with probability

1− p, a clause uniformly among all
(
2n
c

)k (c
k

)
clauses with all literals in distinct

communities.

Notice that in the previous definition we need to impose the restriction:

k ≤ c ≤ n/k

to ensure that there always exists at least one possible clause to select. Notice

also that for k = 2 and p = n/c−1
n−1 we have the classical 2-SAT model: F2(n,m) =
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Figure 6.1: Variable Incidence Graph (VIG) of a random instance from
Fk(n,m, c, p) generated with n = 200 variables, m = 425 clauses of length k = 3,
c = 40 communities, and modularity Q = 0.8 (p = Q+1/c). Variables (nodes) of
the same community are plotted with the same color. Edges are scaled according
to their weight.

F2(n,m, c, n/c−1n−1 ), but for bigger k the Community Attachment model does not
subsume the classical model.

Given a SAT formula Γ with n variables and m clauses, consider the VIG G
of Γ. Our model ensures a lower-bound for the modularity of this graph.

Theorem 6.1. Given a formula Γ ∈ Fk(n,m, c, p), let G be its VIG. The average
modularity of G is bounded as:

E[Q(G)] ≥ p− 1

c

Proof. Recall that modularity is defined as the maximal modularity for all pos-
sible partitions of the nodes into communities. Here we consider the partition
used to generate the formula. For this particular partition P , when we select
a clause with all variables in the same community (with probability p), we get(
k
2

)
internal edges. The sum of the weights of the edges generated by a single

clause is always 1. Therefore, the fraction of internal edges is, on average, pm
m .

The sum of nodes degrees is 2m, thus 2m/n is the expected node degree. Since
n/c is the number of nodes per community, the sum of nodes degrees in one
community is on average n

c
2m
n .

Summarizing, for this partition P , we get
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E[Q(G,P )] =
pm

m
− c

 n

c

2m

n

n
2m

n


2

= p− 1

c

that is a lower-bound for the expected modularity E[Q(G)].

When p close to 1, the expected modularity E[Q(G)] is very close to this
lower-bound p − 1/c, because the partition used in the formula generation is
very similar to the optimal. Therefore, we can use the previous theorem to
generate formulas with a desired modularity Q. We simply take:

p = Q+
1

c
(6.1)

which ensures at least a modularity Q. In practice, as we will see in Section 6.3,
the formulas we obtain have a modularity Q ≈ p− 1/c, except when p and m/n
are small.

Notice that the previous lower-bound of the modularity depends of the graph
model used to represent the formula. For instance, consider the CVIG model
of that instance and the following partition: all variable-nodes and all internal
clause-nodes in their corresponding community, and an extra community with
all external clause-nodes. If, instead of the VIG model, we use the CVIG G′, we
can get a lower-bound E[Q(G′)] ≥ p− p/c. Notice, however, that in the case we
use the definition of modularity for bi-partite graphs, which is slightly different.
Nevertheless, both approximations are very similar. Since most of the methods
in the literature to compute the community structure are efficient for non bi-
partite graphs (as the VIG model), we use the approximation of Theorem 6.1.

In Algorithm 5, there is an implementation of the Community Attachment
random formulas generator from Fk(n,m, c, p). Using p = Q+1/c these formulas
will have an expected modularity close to Q.

In Figure 7.1, we represent the VIG of an instance generated with n = 200
variables, m = 425 clauses, modularity Q = 0.8 and c = 40 communities. In this
plot, variables (nodes) of the same community are plotted with the same color,
and edges are scaled according to their weight. As the value of the modularity
is high, it is more likely that a clause relates variables of the same community.
Therefore, the weight of the edges connecting nodes (variables) of the same
community is higher, as expected.

6.3 Validation of the model

In order to analyze the community structure of the SAT instances obtained
with our model, we have generated some sets of random formulas for different
values of Q ∈ {0.9, 0.8, 0.7, 0.5, 0.3} (hence p = Q+ 1/c), and for different values
of number of communities c ∈ {10, 20, 40, 80}. Each set contains 50 random
instances. Remark that the modularity Q of (real) industrial SAT instances is
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Figure 6.2: Approximations of modularity Q′ (top) and number of communities
c′ (bottom) of some sets of random SAT formulas from Fk(n,m, c, p), varying
the number of variables n with m/n = 4 (left), and varying the clause/variable
ratio m/n with n = 1000 (right), with k = 3, c = 40, and p = Q + 1/c. Each
plotted data is the average of 50 instances.

usually greater than 0.7 [Ansótegui et al., 2012], while no modularity greater
than 0.3 is found for classical random k-CNF formulas. Moreover, the number
of communities c is usually in the interval [10, 100] [Ansótegui et al., 2012].

In Figure 6.2, we analyze their modularity Q′ (top) and their number
of communities c′ (bottom), varying the number of variables n, for a fixed
clause/variable ratio m/n = 4 (left), and varying the clause/variable ratio m/n,
for a fixed number of variables n = 1000 (right). In this experiment, the number
of communities c is fixed to c = 40. Notice that the main goal of this experiment
is to show that our model generates instances with modularity Q′ and number
of communities c′ similar to the input parameters Q and c, for any number of
variables n and clauses m. We use the GFA algorithm described in Alg. 3 to
compute an approximation of Q′ and c′. In fact, this algorithm computes a
lower-bound of the modularity. The dispersions of the approximated Q′ and c′

are very small, so they are not shown in the plots.

We observe that the modularity Q′ and the number of communities c′ are
almost unaffected by these variations of n and m/n. In general, the approxima-
tion computed for Q′ is slightly smaller than expected, and the partition into
communities is also very similar to the partition used in the generation. For
small values of the clause/variable ratio m/n and the probability p, the num-
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Figure 6.3: Approximations of modularity Q′ (top) and number of communities
c′ (bottom) of some sets of random SAT formulas from Fk(n,m, c, p), varying
the number of variables n with m/n = 4 (left), and varying the clause/variable
ratio m/n with n = 1000 (right), with k = 3, Q = 0.8, and p = Q + 1/c. Each
plotted data is the average of 50 instances.

ber of clauses relating variables of the same expected community is very small.
This produces the existence of some unconnected sub-communities within each
expected community. Hence, Q′ and c′ are much greater than expected, and Q′

cannot be estimated as p−1/c. When we generate formulas with small values of
p, e.g. Q = 0.3 and c = 40, we observe that, although the formulas have a guar-
anteed lower-bound of Q ≥ 0.3, the computed approximation of Q′ is smaller
(close to 0.2 when n ≈ 20000). The number of communities c′ is also smaller
than the expected c. In this case, this error is not produced by our model. It
is due to the greediness of the algorithm used to approximate Q′, which is not
able to find a similar partition to the one used in the generation.

In a second experiment, we generate families of instances with the same
number of variables n and the same clause/variable ratios m/n than in the
previous experiment, and varying the number of communities c with a fixed
modularity Q = 0.8. In Figure 6.3, we represent the results. We observe that
the expected modularity Q′ as well as the expected number of communities c′ is
almost unaffected in these families, except, as expected, for small values of n and
m/n. In fact, when the value of the number of communities c is high enough (as
actual industrial SAT instances have), its relevance in our model is very small, as
expressed by Equation 6.1. Hereinafter we use in our experiments a fixed value
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Figure 6.4: Fraction of UNSAT formulas for some sets of 200 random SAT
formulas from Fk(n,m, c, p), with k = 3, c = 40 and p = Q + 1/c, and varying
the clause/variable ratio m/n (see the number of variables n of each family in
Table 6.1).

of number of communities c = 40, assuming that this value is representative
for real application problems, and therefore without altering general conclusions
observed in the empirical results.

6.4 Phase transition

In classical random k-CNF instances, some interesting properties, as the satisfi-
ability or the hardness, are correlated to the clause/variable ratio m/n [Mitchell
et al., 1992]. The Satisfiability Threshold Conjecture suggested that it may exist
a critical ratio r, such that below this point all formulas from Fk(n,m) are SAT
(under-constrained) and above it they all are UNSAT (over-constrained) with
uniformly positive probability, when n tends to infinity. Moreover, the hardness
of these instances is also characterized by this parameter: closer to this ratio,
harder the instance.

Experimentally, this phase transition point has been shown to be around
r ≈ 4.26 for k = 3. Mertens et al. [2006] used the cavity method to derive the
exact value of this threshold, predicting the value r = 4.267. This hypothesis
has been recently proven by Coja-Oghlan [2014].
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Q r′ n solver R̄ S [R]
0.9 4.06 5000 Glucose 80.86 125.28
0.8 4.11 2000 Glucose 291.87 1217.23
0.7 4.13 1200 Glucose 211.64 791.76
0.5 4.18 600 March 544.19 1051.81
0.3 4.24 600 March 3492.36 3117.23

Table 6.1: Approximations of the phase transition point r′ of some families of
200 random SAT instances from Fk(n,m, c, p), with k = 3, c = 40 and varying
Q. We also report the number of variables n, the solver and runtime R (average
R̄ and standard deviation S [R]) needed to solve them.

In this section we check if this phenomenon also exists in the random SAT
instances generated with our model, and if the new transition point, noted r′,
differs from the classical r′ 6= r. In Figure 6.4, we represent the fraction of
UNSAT instances for some sets of random formulas with distinct Q, varying
the clause/variable ratio m/n. We observe that the fraction of UNSAT formulas
increases with m/n. Therefore, for small (big) values of m/n, nearly all formulas
are SAT (UNSAT). When Q is small, the value r′ is close to the classical r ≈ 4.26.
Recall that when p ≈ 1/c, our model is quite similar to the classical random k-
SAT model. However, we also observe that, when Q increases, r′ decreases.

In our experimentation, for each family of instances we use the biggest value
of number of variables n allowing us to solve each instance in less than 3 hours.
Therefore, this value may change for each family of instances. In Table 6.1
we report the phase transition point r′ we found for some families of formulas
with k = 3, varying the modularity Q. We also report the solver we used
to solve the formulas, as well as the average and standard deviation of the
runtime used by this solver. Remark that as the number of variables n of each
family is different, their runtimes cannot be used to compare their hardness.
We observe that the phase transition point r′ decreases as the modularity Q
increases. In Table 6.2, we report the phase transition point r′ of some families
of instances with k = 4. Again, the phase transition point r′ of these families
tends to decrease as the modularity Q increases. Notice that the generated
formulas with a high modularity are hard, compared to industrial formulas.
This is because industrial instances have other properties, like the scale-free
structure, that contribute to make them easier.

The natural question is if this decrease in r′ is also valid for n tending to
infinity. In order to explain this decrease in the phase transition point r′, and
predict the behavior when n tends to infinity, we will consider the extreme case
with p = 1. In these formulas, clauses only contain variables of the same commu-
nity. Therefore, the formula is composed by c unconnected sub-formulas, and the
whole formula is UNSAT if, and only if, at least one of the sub-formulas is UN-
SAT. Moreover, in this extreme case, all sub-formulas follow the classical model
Fk(n/c,m′), for some m′. On average, all sub-formulas contain E[m′] = m/c
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Q r′ n solver R̄ S [R]
0.9 9.37 2000 Glucose 10.14 10.45
0.8 9.50 1000 Glucose 2244.24 4122.35
0.7 9.55 600 Glucose 2239.89 3649.96
0.5 9.60 250 March 1524.22 1550.52
0.3 9.79 200 March 566.83 581.20

Table 6.2: Approximations of the phase transition point r′ of some families of
20 random SAT instances from Fk(n,m, c, p), with k = 4, c = 40 and varying Q.
We also report the number of variables n, the solver and runtime R (average R̄
and standard deviation S [R]) needed to solve them.

clauses; and all of them contain n/c variables. Hence, the average clause/variable

fraction in sub-formulas is also E[ m
′

n/c ] = m/c
n/c = m/n. However, even when the

fraction m/n is smaller than the classical r (and so the expected clause/variable
ratio of the formula), with some probability, some of the sub-formulas may get a

large portion of clauses m′ such that m′

n/c > r. This makes that sub-formula UN-

SAT with high probability. This has the effect of decreasing the phase transition
point for finite n and c.

When n/c tends to infinity, the situation is completely different as the fol-
lowing theorem states.

Theorem 6.2. The set of formulas Fk(n,m, c, p), with p = 1 and any value of c
satisfying n/c→∞, has a phase transition point r′ at the same clause/variable
ratio r of the classical formulas Fk(n,m).

Proof. Let r′ = m/n and r be the classical phase transition point. The minimal
r′ such that the probability that some of the sub-formulas has more than r n/c
clauses (hence it is UNSAT with high probability when n/c tends to infinity),
will be the phase transition point for this special case p = 1 of our model.

The probability that a given community Pi contains r n/c clauses, when the
formulas has m clauses, is

P (Pi is UNSAT) =

(
m

r n/c

)
(c− 1)m−r n/c

cm

Let m = r′ n be the number of clauses of the whole formula.

There are two cases:

First, we assume that the number of communities c tends to ∞ (but slower
than n, hence n/c also tends to ∞).

When m,n→∞, and m/n→∞, the binomials
(
m
n

)
, may be approximated
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as: (
m

n

)
=

m · (m− 1) · · · (m− n+ 1)

n!
≈ (m− n/2)n√

2πn(n/e)n
=

=
mn

(
1− 1

2m/n

) 2m
n ·

n2

2m

√
2πn(n/e)n

≈ mn(1/e)n
2/2m

√
2πn(n/e)n

=

=
1√
2πn

( me

n en/2m

)n
using the middle value in the numerator, and the Stirling approximation in the

denominator.
When c→∞, we can also approximate

(c− 1)m−r n/c = cm−r n/c (1− 1/c)
c
m−r n/c

c ≈ cm−r n/c

e
m−rn/c

c

Replacing these two approximations, and m = r′ n we get

P (Pi is UNSAT) ≈ 1√
2πrn/c

(
r′

r
exp

(
1− r

′

r
+

1

c
(1− r

2r′
)

))r n/c
For n/c, c→∞, this function is dominated by the exponential factor

P (Pi is UNSAT) = O

((
r′

r
exp

(
1− r

′

r

))r n/c)

The base of the exponentiation is strictly smaller than one except for r = r′.
Therefore, when the number of communities and their size both tend to infinity,
even in the extreme case p = 1, the probability that the formula is UNSAT is
zero, for r′ < r, i.e. the phase transition point is the same as for the classical
random formulas.

In the second case, we assume that c is finite. Then, the approximation we
have used for the binomial is not correct. When k is constant and n → ∞, we
may use (

kn

n

)
≈ 1√

2πnk−1k

(
kk

(k − 1)k−1

)n
In this case we get

P (Pi is UNSAT) = O

( ( r
′

r c)
r′
r c

( r
′

r c− 1)
r′
r c−1

(c− 1)
r′
r c−1

c
r′
r c

)r n/c
As in the previous case, the base of the exponentiation is one only when

r′ = r. Therefore, the phase transition point is also just the same as for classical
random formulas.



74 CHAPTER 6. PSEUDO-INDUSTRIAL SAT INSTANCES GENERATION

In the classical model, we recall that the phase transition point is only ap-
plicable when the size of the formula goes to infinity. In the context of SAT
instances, the phase transition point r is, by definition, the clause/variable ra-
tio such that all formulas below (equivalently, above) such ratio are satisfiable
(equiv., unsatisfiable). In other words, the probability that an instance is UN-
SAT (equiv., SAT) has a value tending to 0 (equiv., 1) for any clause/variable
ratio r − ε (equiv. r + ε), for any ε > 0. This abrupt change in the probability
is represented as a vertical line in the point r, and this would only occur in ex-
tremely large instances, as suggested in the Satisfiability Threshold Conjecture.
In the case of formulas of finite size, we observe that this abrupt change does
not exist. On the contrary, we find an interval (r−ε, r+ε) where the probability
that an instance is UNSAT smoothly goes from 0 to 1, and this change becomes
more abrupt as the size of the formula grows.

In the case of the Community Attachment model, we observe the same be-
havior. Therefore, both empirical observations of Figure 6.4 and the formal proof
expressed in Theorem 6.2 match with the behavior expected from the classical
model.

6.5 SAT solvers performance

In this section we show that industrial-specialized SAT solvers exploit the com-
munity structure of the formula, whereas random-specialized solvers do not.

In Figure 6.5 we compare the performance of the SAT solvers Glucose [Au-
demard and Simon, 2009] (version 3.0) and March [Heule et al., 2004] (version
br) over some sets of SAT formulas generated with our model, with distinct
modularity values. While Glucose is a CDCL SAT solver which has been shown
very good for solving industrial problems, March is a Look-ahead SAT solver
commonly used to solve random k-CNF instances. We use sets of instances from
Fk(n,m, c, p) with a clause/variable ratio m/n in the phase transition point, a
number of communities c = 40 and a clause length k = 3. We adjust the number
of variables as in Table 6.1, in order to ensure that any of these solvers solve all
formulas in a timeout of 3 hours.

We observe that, for high modularities (see Q = 0.9), Glucose solves all the
instances, but March is only able to solve few UNSAT instances. More precisely,
they are the instances in which there exists a very small unsatisfiability core,
composed of variables of only one or few communities. Notice that higher the
modularity, more likely to find such instances with small refutations. It is also
interesting to remark that Glucose also solves UNSAT formulas faster than SAT
formulas when their modularity is high. As Q decreases, March is able to solve
more instances (see Q = 0.7), and it starts to be as fast as Glucose, if it is not
faster, when the modularity is small enough (see Q = 0.5). Finally, when Q is
very small (see Q = 0.3), March is able to solve all the instances but Glucose
only solves few of them. Remark that the number of variables is not the same
for every family. We can conclude that a high modularity makes formulas easier
to be solved by CDCL SAT solvers.
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Figure 6.5: Relation between the runtimes (seconds) of Glucose and March, for
some sets of 200 random SAT instances with Q ∈ {0.9, 0.8, 0.7, 0.5, 0.3}, k = 3
and c = 40 at the phase transition point (i.e., using families of Table 6.1). The
timeout is set to 3 hours.

In Figure 6.6 we compare the performance of these two solvers with the
instances of Table 6.2, i.e. k = 4. Again, we observe that high modular formulas
(see Q = 0.9) are easy for Glucose, but March is only able to solve those of
them having a small unsatisfiability core. As the modularity decreases, both
solvers solve all instances, but March is still some orders of magnitude slower
(see Q = 0.5). Finally, when the modularity is small, March shows a better
performance than Glucose (see Q = 0.3).

These experiments suggest that the performance of the solver is affected by
the structure of the formula (e.g., its community structure) independently of the
lengths of the clauses.

6.6 Analyzing the components of a CDCL SAT
solver

One of the most important motivations for the development of this generator is
to better understand the connections between the community structure of a SAT
instance and the SAT solver components, with the long-term aim of improving
them. In this section, we use our generator to study two main components of a
CDCL SAT solver: the branching selection heuristics, and the conflict analysis



76 CHAPTER 6. PSEUDO-INDUSTRIAL SAT INSTANCES GENERATION

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.01  0.1  1  10  100  1000  10000 100000

R
u
n
ti
m

e
 M

a
rc

h
 (

s
)

Runtime Glucose (s)

Q = 0.9

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.01  0.1  1  10  100  1000  10000 100000

Runtime Glucose (s)

Q = 0.8

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.01  0.1  1  10  100  1000  10000 100000

Runtime Glucose (s)

Q = 0.7

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.01  0.1  1  10  100  1000  10000 100000

R
u
n
ti
m

e
 M

a
rc

h
 (

s
)

Runtime Glucose (s)

Q = 0.5

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.01  0.1  1  10  100  1000  10000 100000

Runtime Glucose (s)

Q = 0.3

UNSAT

SAT

f(x)=x

Figure 6.6: Relation between the runtimes (seconds) of Glucose and March, for
some sets of 200 random SAT instances with Q ∈ {0.9, 0.8, 0.7, 0.5, 0.3}, k = 4
and c = 40 at the phase transition point (i.e., using families of Table 6.2). The
timeout is set to 3 hours.

and clause learning mechanism. Notice that these components are related in
general. For instance, the activity of the variables participating in a conflict is
increased, and the most active (and unassigned) variable is selected as the next
decision variable. Even though, it seems convenient to study these components
separately.

In this section, we use MiniSAT [Eén and Sörensson, 2003] (version 2.2) as
a representative CDCL SAT solver. This is a very well known SAT solver on
which many other SAT solvers, as Glucose, are based. Being a less sophisticated
SAT solver allows us to analyze with more precision the impact of certain CDCL
techniques on the community structure, without possible noises of other compo-
nents. For instance, MiniSAT uses the Luby series to determine the number of
conflicts between two restarts whereas Glucose uses a dynamic LBD-based strat-
egy for this purpose. Therefore, while one can know when restarts are performed
by MiniSAT, this is unknown a priori in Glucose.

We represent the results for the experiments of a random SAT instance gen-
erated with our model, of the family with n = 1000 variables, m = 4200 clauses,
clause length k = 3, modularity Q = 0.8 and c = 10 communities. In this
case, we use this reduced number of communities to improve the visualizations
of results. However, similar results can be obtained with other typical values
(e.g., c = 40). We remark that, even when we only plot results for a single
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Figure 6.7: Decision variables (top), assigned variables (center) and variables
on the learnt clause (bottom) along the first 2000 conflicts of the execution of
MiniSAT (i.e., with 1-UIP learning scheme) on a random instances with n =
1000, m = 4200, k = 3, c = 10 and Q = 0.8. Horizontal lines split the set of
variables belonging to each community, and vertical lines represent the restarts.

instance, similar behaviors are observed in all instance of the family. Therefore,
the conclusions drawn in this section are general. Recall that our generator, for
simplicity, assigns n/c consecutive variables to each community. For instance,
community c1 contains variables with indexes from 1 to 100 (both communi-
ties and variables are 1-based numbered). MiniSAT solved this instances in 1.9
seconds, taking 18226 decisions and finding 11722 conflicts.

As we want to analyze the trace of the solver, in the following figures (Fig. 6.7
and 6.8), we plot the results using the X-axis to represent the number of conflict,
and the Y-axis the index of variables. For clarity, we only plot the first 2000
conflicts. There are horizontal lines to split the set of variables belonging to each
community, and vertical lines to represent the restarts along the execution.

First, we want to know if SAT solvers concentrate their decisions on variables
of the same (of few) communities along their execution. In Figure 6.7 (top) we
represent which variables are used to branch, i.e., the decision variables. As the
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X-axis represents the number of conflicts, the Y-axis shows the set of variables
decided between two consecutive conflicts. We observe that the solver tends to
focus its decisions on variables of the same community, during a period of time.
After a while (when all variables of this community are assigned), it changes to
another community. This behavior is repeated during the whole execution. The
time the solver stays deciding in the same community is indeterminate, and does
not depend on the restarts.

Second, in Figure 6.7 (center) we analyze the set of assigned variables. Notice
that this set contains, not only decision variables, but also implied variables (i.e.,
variables whose value is forced by constraint propagation). We observe that all
variables of the community where the solver has been focusing get assigned, and
remain assigned when the solver decides to change to another community. In the
next restart, all assigned variables in modules where the solver is not focused,
get unassigned. For example, after 400 conflicts, a restart occurs. Before this
restart, the solver was focused on community c9, but all variables of communities
c3 and c5 were also assigned (because the solver had also been focusing on these
communities before c9). After the restart, only variables of c9 are assigned again.
Therefore, restarting policy has the effect of reinforcing the focus of assigned
variables on the same community.

Finally, we want to study if the conflicts found by the solver relate variables
of the same community. In Figure 6.7 (bottom) we plot which variables appear in
the 1-UIP clause learnt after analyzing the conflict. We observe that, in general,
conflicts relate variables of few communities. In fact, this clause mainly contains
variables of the community where the solver is focusing its last decisions, and
(very) few variables of the rest. Notice that all of these variables had to be
previously assigned. We also observe that in the last steps of the search (not
shown in the plot), there exist many conflicts relating almost all communities.

In a second experiment, we want to investigate the relation between the
clause learning techniques used by the SAT solver and the community structure
of the formula. To this purpose, we modify the solver MiniSAT with another
learning strategy: the decision-induced clause learning scheme. This strategy
learns the decision variables that implies the conflict (i.e., it explores the whole
implication graph of the conflict till the decision nodes). This is one of the most
classical learning strategies, and it was proposed in GRASP [Marques-Silva and
Sakallah, 1999].

In Figure 6.8, we solve the same instance of the previous experiment using
a modified version of MiniSAT with a decision-induced clause learning scheme.
As for the 1-UIP schema, we represent the decision variables (top), the assigned
variables (center), and the variables belonging to the learnt clause (bottom), for
the first 2000 conflicts. Using this learning strategy, the solver require 157726
decisions and 113012 conflicts to solve the instance, spending a total of 23.1
seconds. Notice that this is approximately one order of magnitude slower. The
reason of this experiment is to show how CDCL techniques, when used all to-
gether, help the solver to focus on particular communities along the search. On
the contrary, small changes in these techniques may provoke that community
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VARIABLES ON THE DECISION-INDUCED CLAUSE

Figure 6.8: Decision variables (top), assigned variables (center) and variables
on the learnt clause (bottom) along the first 2000 conflicts of the execution of
a modified version of MiniSAT with a decision-induced clause learning scheme,
on a random instances with n = 1000, m = 4200, k = 3, c = 10 and Q = 0.8.
Horizontal lines split the set of variables belonging to each community, and
vertical lines represent the restarts.

structure is not explicitly considered any more, affecting thereby the overall
performance of the solver. This may explain the success of these technique on
benchmarks with a clear community structure, as industrial SAT instances are.

First, we observe that the solver also tends to focus its decisions on commu-
nities with this learning strategy. However, this phenomenon is less clear than
in the previous experiment. For instance, between conflicts 200 and 400, the
solver is focusing on communities c3 and c9 at the same time. This effect can
be explained with the next observation. Second, we show that many restarts
have no effect on most of the assigned variables. That means that even when
restarts remove the value of all assigned variables, they are re-assigned again
afterwards. See, for instance, community c10: it is assigned at the beginning of
the search, and it remains assigned during most of the execution. Finally, we
observe that the variables belonging to the learnt clause correspond in fact to
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Figure 6.9: Evolution of the locality of the set of decided variables, set of assigned
variables and learnt clause along the execution of 1-UIP based solver (top) and
a decision-induced learning based solver (bottom).

the variables of the communities where the solver was focused at the beginning
of the search. Therefore, the activity of these variables are constantly increased,
and hence, they are assigned once they become unassigned (i.e., after a restart).
In fact, the presence of these variable in the learnt clause explains why they are
re-assigned after each restart. These observations allow us to understand how
the 1-UIP, in joint with the activity-based heuristics, help the solver to focus on
communities, and this may explain the different performance (e.g., number of
decisions and conflicts, runtime) spent to solve an industrial instance. All these
effects cannot be observed if we use a formula with a low modularity because
the communities are not so well delimited.

In a last experiment, we want to analyze the locality of the solver during
the search. In other words, we want to measure how much the solver focuses
its decisions and learnt clauses on variables of the same community. In order
to quantify this locality, we introduce the following definition, inspired by the
notion of modularity.

Definition 6.2. Given a subset of variables S ⊆ N , and a partition P of the
variables N = ∪ci=1Pi, we define

locality(S, P ) =

∑c
i=1 |Pi ∩ S|2

|S|2

Intuitively, this definition expresses the fraction of edges between nodes of
the same community with respect to the total number of edges, if we consider
all possible edges between vertexes of S (including self-loops). Notice that, if all
variables of S are split into r communities of same size (i.e. |Pi ∩ S| = |S|/r,
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for i = 1, . . . , r, and |Pi ∩ S| = 0, for i = r+ 1, . . . , c), then locality(S, P ) = 1/r.
Therefore, the inverse of locality measures the number of distinct communities
involved in a set of variables (when all of these communities contain the same
number of variables of S).

In Figure 6.9, we represent the evolution of the locality of the set of decided
variables (between two conflicts), the set of assigned variables (between two
conflicts), and the set of variables on the learnt clause, along the execution
of the solver for the same SAT instance as in previous experiments, using as
learnt clause the 1-UIP and the decisions-induced clauses. We only represent
the moving average every 100 conflicts for 1-UIP clauses and 1000 conflicts for
decisions-induced clauses. We observe that in both cases, the set of decided
variables is very local, close to 1. This means that all variables decided between
two conflicts almost always belong to the same community. This is not the case
when we analyze the set of assigned variables. In this case, the average locality
over the whole execution is 0.373 for the 1-UIP strategy and 0.281 for the other
learning scheme. The locality of variables on the learnt clauses has a value in
between the decision and the assigned variables. However, we clearly notice
that, for the 1-UIP scheme this locality (0.782 on average) is much bigger than
for decision-induced clauses (0.367 on average). We also notice that when the
locality of the set of assigned variables increases (after a restart, for instance),
the locality of variables on the learnt clauses also increases. Therefore, it is good
for the solvers performance to increase the locality of assigned variables.

Finally, Norbert Manthey [Manthey, 2015] reports good results on the use
of our generator to train a configurable SAT solver to improve its performance.
He used the pseudo-industrial random SAT instances created by our model and
used in the last SAT Race 2015 [Giráldez-Cru and Levy, 2015]. This family of
instances contains 44 SAT formulas generated with n = 2200 variables, m = 9086
clauses, c = 40 communities and modularity Q = 0.8. He used this set of
instances to train the SAT solver Riss 5.1.0 [Kahlert et al., 2015] (using the
configuration tool SMAC [Hutter et al., 2011]). Riss is a very configurable SAT
solver. Then, this configuration was used in Riss to solve the aggregated set of
industrial instances used in all SAT Competitions from 2002 to 2015, and its
performance was compared to the performance of the default configuration of
this solver on the same set. Interestingly, the resulting configuration (i.e., from
training this solver with our pseudo-industrial SAT instances) performed better
than its default configuration. This suggests that our model captures a very
important feature of industrial SAT problems which is, in fact, crucial in the
solving process.

6.7 Conclusions

We present the Community Attachment model, a modularity-based generator
which generates random k-CNF SAT instances of any desired modularity. In-
dustrial problems are characterized by a high modularity. Therefore, our model
can generate more realistic pseudo-industrial random formulas on demand. We
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validate the adequacy of this model checking that (i) the community structure of
the resulting formulas is the expected, (ii) the phase transition point, dependent
on the clause/variable ratio, is independent on the modularity, and (iii) the SAT
solvers performances are consistent to the structure of the formulas generated by
our model, i.e. SAT solvers specialized in industrial (random) problems perform
better in high modular (low modular) instances.

Finally, we use our generator to study how the community structure is af-
fected by some components of the solver. Namely, we study the variables branch-
ing heuristics and the clause learning mechanism. We observe that, for a given
period of time, the solver tends to focus its decisions on variables of the same
community, and learns clauses mostly relating variables of this community. We
also show that restarts help to unassign variables belonging to communities
where the solver is no longer focused on. Therefore, the community structure of
the instance plays an important role in order to explain the success of these tech-
niques, when they are used all together. On the contrary, we see that the solver
has a worse performance when it uses instead a learning strategy that does not
take into account such structure, as the learning of the decision-induced clause.



Chapter 7

Detecting relevant learnt
clauses

7.1 Introduction

It has been empirically shown that the four main components of CDCL SAT
solvers (i.e., conflict-driven clause learning, activity-based heuristics, lazy data
structures used by the propagation engine, and random restarts) contribute to
their success, but clause learning is the most important [Katebi et al., 2011].
However, there are some considerations about the utility or relevance of learnt
clauses to be made: the relevance of learnt clauses is not the same, and it may
vary along the search. This means that some clauses are useful and some others
are useless, and also that a useful clause may become useless later.

Clause removal policies were initially proposed with the objective of saving
memory and speed up propagations by the solver [Eén and Sörensson, 2003;
Moskewicz et al., 2001]. However, the irruption of the SAT solver Glucose [Au-
demard and Simon, 2009], which implements a very aggressive clause removal
strategy (more than 95% of the learnt clauses can be removed), demonstrates
that this component is also an essential component of CDCL solvers. Notice
that the preservation or removal of clauses may completely change the search,
hence the performance of the solver may be dramatically altered. Therefore,
the initial arguments for clause database managements (unit propagation speed
and memory issues) do not completely hold anymore. The intriguing question
on how to predict efficiently and effectively the relevance of new learnt clauses
is still open.

The measure of the learnt clauses relevance proposed in Glucose (i.e., the
Literal Block Distance or LBD) has been shown to be strongly related to the
community structure of the initial formula [Newsham et al., 2014]. However, this
last result was just a one-way observation of the solvers behavior: while LBD
is related to the number of communities in a learnt clause, it was not possible
until now to exploit this correlation the other way, i.e., by using the community
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structure to guide the search in a CDCL SAT solver.
In this chapter, we show that community structure can be used to detect

relevant learnt clauses. In particular, we present a technique that transforms
the original formula adding certain learnt clauses, and hence guiding the search.
These clauses are directly obtained from the community structure of the for-
mula. Notice that this causality is much stronger than the previous observed
correlation. Although we present our technique as a preprocessor for readability,
our contribution is to give empirical evidence that the community structure can
be used to generate relevant clauses, which is much stronger than identifying
them (e.g., LBD is used to rank existing clauses). This would suggest that the
community structure may play an important role in clause deletion policies.

Our preprocessor uses the community structure to split the instance into
disjoint subformulas, and augments it with the learnt clauses of solving pairs
of such subformulas. Intuitively, these clauses could be related to the notion of
glue clauses used in Glucose. Our inspiration comes from the observation that
clause learning destroys the (original) community structure of the instance. We
give empirical evidence about the commonly accepted claim that having more
learnt clauses does not always speed up the solving process. However, we show
that augmenting the instance with our technique works experimentally. This is
the case in several sets of industrial benchmarks and several CDCL SAT solvers.
Notice that augmenting a formula with learnt clauses is against the common
idea of preprocessing, which generally tries to reduce the instance.

Questions addressed in this chapter:

Question 4. How can we use the underlying structure of instances to implement more

efficient CDCL SAT solving techniques?

Related publications:

• Ansótegui, C., Giráldez-Cru, J., Levy, J., and Simon, L. (2015b). Using com-
munity structure to detect relevant learnt clauses. In Proceedings of the 18th
International Conference on Theory and Applications of Satisfiability Testing
(SAT’15), pages 238–254.

The rest of this chapter is structured as follows. We first review in Section 7.2
some observations about the effect of clause learning on the community structure
of SAT instances, and we provide some insights on the relevance of clauses learnt
by a CDCL solver in Section 7.3. In Section 7.4, we propose an algorithm that
exploits the community structure to detect relevant clauses, and evaluate its
performance in Section 7.5. We conclude in Section 7.6.

In Section 9.2.6, we discuss some extensions on the use of modularity-based
relevant learnt clauses. Moreover, in Section 9.2.7, we also discuss some pos-
sible improvements on CDCL SAT solving techniques directly related to the
underlying structure of industrial SAT benchmarks. Recall some related work
in Section ?? about the underlying structure of real-world problems.
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Figure 7.1: Graph of communities of the instance ibm-2002-22r-k60: origi-
nal formula (left), solved formula considering small learnt clauses (center), and
solved formula considering small and medium-sized learnt clauses (right). Nodes
and edges are accordingly scaled by community size and weight, respectively.

7.2 Clause learning destroys the community
structure

We have shown in Chapter 4 that industrial SAT instances have a very clear
community structure, with modularity Q in the VIG higher to 0.7 in most of the
cases. Recall that the maximum value of Q is 1. This means that we can find a
partition of their variables into communities, such that clauses mainly constraint
variables of the same community. However, this partition is destroyed by the
addition of learnt clauses [Ansótegui et al., 2012] (as shown in Section 4.4). Let
us review some important aspects of these results.

In order to represent how this (initial) community structure is destroyed
by the effects of clause learning, we can use the graph of communities1. This
graph is built as follows: all nodes of the VIG (variables) that belong to the
same community are merged into a single node in the graph of communities,
and weighted edges are updated accordingly.2 In Figure 7.1 (left), we represent
the graph of communities of the industrial formula ibm-2002-22r-k60. This
instance has a modularity Q = 0.91 and 35 communities. The SAT solver
Glucose [Audemard and Simon, 2009] (version 3.0) solved this formula keeping
a total of 504964 learnt clauses. We can recompute the graph of communities
after adding some of these learnt clauses to the original instance. In Figure 7.1
(center and right), we represent the graph of communities after adding small
learnt clauses (up to 10 literals), and medium-sized learnt clauses (up to 50
literals), respectively.3 In these graphs of communities, the node size is scaled
according to the number of variables that belong to each community. Also, edges

1We cannot directly represent the VIG due to its large number of nodes (variables).
2The weight of the edge connecting communities A and B is the addition of the weights of

the edges connecting one node from A and one node from B.
3As each clause of length l generates

(l
2

)
edges, it is hard to compute these graphs using

long clauses.
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Figure 7.2: Impact of adding learnt clauses on modularity, in instances E05X15

(left) and isqrt1 32 (right). Each point (x, y), with y measured in the left Y
axis, represents a clause learnt at instant x and increasing Q on y. We also
represent the evolution of the modularity Q (using the right Y axis).

are scaled by their weights. Notice that edges weights are computed using the
weights of the VIG (i.e., taking into account the length of the clauses). As it is
stated by Ansótegui et al. [2012], the community structure is clear in all of these
three graphs. However, as we consider more learnt clauses, we can observe two
phenomena. First, the number of communities (number of nodes in the graph
of communities) decreases. This means that variables that originally belonged
to distinct communities are now grouped into the same community. Second,
the weight of the inter-communities edges increases. Therefore, from the two
previous effects, we observe that the solver prefers to learn clauses containing
variables of distinct (original) communities (also stated in [Ansótegui et al.,
2012]). This means that, in general, clause learning contributes to decrease the
modularity.

A question now is: are there some learnt clauses that contribute to increase
the modularity even when most of them do not? In order to answer this ques-
tion, we can measure the increase of the modularity ∆Q that each learnt clause
produces. Notice that ∆Q is positive when most of the new edges generated
by such clause connect nodes (variables) of the same community. Otherwise,
∆Q is negative. After an extensive experimentation, we see that, in general,
learnt clauses produce a very small decrease of the modularity (i.e., ∆Q < 0, in
most cases). In Figure 7.2, we represent this analysis for the industrial instances
E05X15 and isqrt1 32. Each point (x, y), with y measured in the left Y axis,
represents a clause learnt at instant x and increasing Q on y. We also repre-
sent (using the right Y axis) the value of the modularity Q using the original
partition of variables, along the execution. We can see that, even when some
learnt clauses contribute to increase the value of Q, most of them do not (i.e.,
∆Q < 0), and thus Q tends to decrease. Due to space limitations, we only
represent this analysis for these two benchmarks. However, we observed similar
results in most industrial SAT instances studied. Therefore, we can conclude
that, in general, learnt clauses contribute to destroy the (original) community
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Figure 7.3: Scatter plots of solving original instances (first step) versus gen-
erating and solving formulas augmented with learnt clauses (second plus third
steps), at p = 25%, 50%, 75% and 99%.

structure of the formula. It is not due to some particular clauses but rather a
general phenomenon of the learning mechanism.

7.3 On the relevance of learnt clauses

In this section, we try to answer the following question: if we augment the
original formula with a set of learnt clauses obtained from some CDCL solver,
will this contribute to solve the formula faster? In order to answer this question,
we first introduce the notion of relevant clauses.

Definition 7.1. Given a SAT solver S, a formula Γ, and a set of clauses ϕ, we
say that ϕ is relevant for Γ and S, if ϕ is a logical consequence of Γ and Γ ∪ ϕ
is easier to solve for S than Γ.

Notice that in this definition we neglect the time needed to compute ϕ.
Obviously, previous definition is informal. In order to experimentally validate
if a set of clauses is relevant, we have considered a significant set of industrial
instances.

In a first experiment, we select the set of instances of the application track
of the SAT Competition 2013 solved in less than one hour. Notice that this set
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Figure 7.4: Scatter plots of solving original instances (first step) versus solving
formulas augmented with learnt clauses (third step), at p = 25%, 50%, 75% and
99%.

contains both satisfiable and unsatisfiable instances. This experiment is divided
in three steps. In all of them, we use the CDCL SAT solver MiniSAT [Eén and
Sörensson, 2003] (version 2.2).

First step: we compute the number of conflicts c needed to solve the formula
in an arbitrary run.

Second step: we repeat the same execution stopping the search after a
certain number of conflicts p · c (where 0 < p < 1), and we generate a new
instance augmenting the original formula with the learnt clauses stored in the
solver at that instant.

Third step: we solve the augmented formula generated in the previous step.
We could think that the third step is just the continuation of the second step

due to a restart after p · c conflicts. But this is far from being true. First, CDCL
SAT solvers do have more contextual information than learnt clauses, such as
activity counters, status of restarts, etc. It is also interesting to notice that the
phase caching scheme [Pipatsrisawat and Darwiche, 2007] is not saved in the
third step: a learnt clause could have been responsible for a propagation, and
thus responsible for setting the phase caching scheme when backtracking, but
this learnt clause could have been removed. Second, the learnt clauses used to
generate the augmented formula will be treated as original clauses in the third
step, i.e., they cannot be removed by the solver.
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Since we limited the number of conflicts to p · c in the second step, you could
expect to need around (1−p) ·c conflicts to complete the search in the third step.
Surprisingly, in our experiments, this is true when the instance is unsatisfiable,
but not when it is satisfiable. If the formula is satisfiable, the aggregated runtime
of generating the augmented formula (second step) and solving it (third step)
is usually higher than the runtime required to solve the original instance (first
step).

Let us present these observations in detail. In Figure 7.3, we present the
scatter plot of the runtime of solving the original formula (first step) versus
generating and solving the augmented formula (second plus third steps), with
p = 25%, 50%, 75% and 99%, and distinguishing SAT and UNSAT instances. In
unsatisfiable instances, there is almost no difference (i.e., almost all points are on
the diagonal). On the contrary, in satisfiable formulas the differences are much
bigger (almost all points are far from the diagonal). Moreover, as we increase p,
solving original instances is faster than generating and solving their correspond-
ing augmented formulas (almost all points are above the diagonal). In Figure 7.4,
we present the scatter plots of solving the original formula (first step) versus just
solving the augmented formula (third step). Notice that in this case, we do not
take into account the runtime needed to generate these augmented instances.
However, even in this case, solving some satisfiable augmented instances takes
more time than solving their corresponding original formulas.

We have observed that augmenting an instance with learnt clauses does not
always contribute to make it easier, when the formula is satisfiable. Let us
conjecture why. First, although adding learnt clauses helps to reduce the search
space, there are other key components, such as the activity counters and the
phase component caching. These heuristics are set to their optimal4 values
after a certain number of conflicts. The phase component caching may play a
crucial role here, since the solver may use this information to keep the solution
to a subproblem. Therefore, even if we have an oracle providing a set of learnt
clauses, this does not mean that you will find a satisfying assignment faster.
Also notice that the status of the activity counters cannot be reproduced from
this set of learnt clauses. These counters depend on all clauses learnt during the
execution of a solver, but some of them may have been removed, and therefore
they do not belong to the provided set anymore. Second, in [Simon, 2014] it was
shown that the runtime of solving unsatisfiable formulas is much more robust
than for satisfiable ones. Shuffling the instance may have an important impact on
satisfiable problems, but not on unsatisfiable ones: the effort to find the UNSAT
answer (and the size its proof) are always of the same order. If we try to link
our result to this work, we think a reasonable explanation is the following one.
For satisfiable instances, the solver is mostly starting again the whole search,
trying to learn the correct phase component caching values. In this case, adding
learnt clauses can slightly help, but the overall process is dominated by the
high discrepancy of CPU time needed for satisfiable problems when shuffling the
instance. For unsatisfiable instances, this shows that the solver is continuing the

4In order to guide the search to a satisfying assignment.
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Algorithm 6: Modularity-based SAT Instance Preprocessor (modprep)

Input: SAT Instance Γ
Output: SAT Instance Γ′

1 Γ′ := Γ;
2 C := communityStructure(Γ);
3 foreach pair (ci, cj) of connected communities of C do
4 Solver s;
5 s.solve(ci ∪ cj);
6 if s == UNSAT then
7 return ∅;

8 Γ′ := Γ′ ∪ s.learntClauses
9 return Γ′;

same proof.
Therefore, even when adding learnt clauses does not always help in satisfiable

instances, is it possible to find a set of highly useful clauses that makes these
formulas easier? In the next section, we will show that we can use the community
structure to identify some clauses that are indeed relevant for those instances,
i.e., they help to solve satisfiable instances faster.

7.4 Detecting relevant learnt clauses

Learnt clauses are redundant by definition, hence not strictly necessary. How-
ever, they can help to prevent exploring the same unsatisfiable subspaces during
the search. Moreover, their role could be to guide the solver in building the
UNSAT proof by resolution. It is essential here to see CDCL SAT solvers as
a combination of backtrack search algorithms (where learnt clauses are used to
prevent exploring the same search space) and resolution proof engines (where
learnt clauses are used to derive new learnt clauses).

In the early versions of CDCL solvers, memory was an important issue [Eén
and Sörensson, 2003; Moskewicz et al., 2001]. Therefore, some heuristics were
proposed to remove useless clauses. Moreover, it is important to correctly man-
age the learnt clauses database in order to maintain a good unit propagation
speed. More recently [Audemard and Simon, 2009], some clause removal poli-
cies have been proposed. They aggressively remove most of the learnt clauses
(95% of the learnt clauses can be removed). The proposed strategy is now one
of the standards in CDCL engines. Thus, this policy is not only about main-
taining good unit propagation rates, but also to guide the solver to some easier
proofs. In Glucose, it was proposed to consider the number of decision levels
occurring in a learnt clause as a measure of its quality (this was called Literal
Block Distance, LBD, lower is better). The idea was that literals propagated
at the same decision level were tightly connected and may often be propagated
again and again together. Clauses of LBD 2 (called glue clauses) are kept forever
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in Glucose. Recently [Newsham et al., 2014], it was shown that the LBD value
was correlated to the number of communities of the clause. In this section, we
show that community structure can be used to detect relevant learnt clauses.

In Algorithm 6, we propose a technique presented as a preprocessing step,
called Modularity-based SAT Instance Preprocessor (modprep). It augments the
original formula with some learnt clauses based on its community structure. This
algorithm proceeds as follows. First, it computes the community structure of
the original formula (line 2). Recall that each community represents a set of
clauses of the original instance. Then, for each pair of connected communities5,
it creates a subformula containing both communities, and solves it (line 5). If
this subformula is UNSAT, it returns the empty clause. Otherwise, the orig-
inal instance is augmented with the clauses the solver learnt for solving such
subformula (line 8). Finally, it returns the augmented instance.

Notice that the previous algorithm imposes a very strong condition, which
is solving all subformulas between two connected communities and keeping all
learnt clauses found in this process. This could be further refined. Moreover,
this preprocessing step could be heuristically applied during the search in the
flavor of inprocessing approaches [Järvisalo et al., 2012b].

Although we will show in next section that this approach works experimen-
tally, we may wonder why these learnt clauses indeed improve the performance
of the solver. It is worth noticing that, by construction, these learnt clauses are
usually composed of at most 2 communities, and thus are clearly related to the
notion of glue clauses aforementioned. In addition, as we showed in Section 7.2,
learnt clauses contribute to destroy the original community structure. In order
to do this, we first need to connect pairs of communities, then triples of commu-
nities, and so forth; since we learn clauses that connect all communities (i.e., the
whole formula) and we derive the empty clause. Therefore, we do not want to
erase the base of this process (clauses connecting pairs of communities). Notice
that a solver not aware of the community structure may remove them, unless,
as we do, these clauses are added in a preprocessing step as original clauses. i.e.,
the solver will not remove them.

In this work, we only consider learnt clauses connecting pairs of communities
at the preprocessing step, and not triples or higher degrees. This is because the
combinatorial space for pairs can be managed efficiently by the SAT solver. For
bigger degrees, we would need some additional filtering criterion, or working on
a parallel solver (discussed in Section 9.2.6).

7.5 Experimental evaluation

In this section, we present an experimental evaluation of the modularity-based
preprocessor presented in the previous section. We use four representative CDCL
SAT solvers: MiniSAT [Eén and Sörensson, 2003], Lingeling [Biere, 2014], Glu-
cose [Audemard and Simon, 2009], and MiniSAT-blbd [Chen, 2014]. MiniSAT

5Two communities are connected if there exists at least one variable appearing in both of
them.
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CS SubF Learnt
Average 12.6 78.0 11243.9
Median 4.3 21.8 512.0
Max 294.5 975.8 794950.0
Min - - 1.0

Table 7.1: Statistics about the execution of modprep on the set of 300 application
instances of the SAT Competition 2011. CS stands for the runtime of computing
the community structure (in seconds), SubF for the runtime of solving all sub-
formulas of each instances, and Learnt for the number of learnt clauses obtained
from solving all subformulas.

is one of the most popular CDCL SAT solvers, while the three others were the
best ranked solvers in the application track of the last SAT Competition 2014:
Lingeling won both the UNSAT and the SAT+UNSAT tracks, MiniSAT-blbd
won the SAT track, and Glucose was the second classified in the UNSAT track.

First, we evaluate how expensive is running the preprocessor modprep de-
scribed in Algorithm 6 on a set of industrial SAT instances. We use the 300
application instances of the SAT Competition 2011. Notice that this algorithm
can be split into two steps: i) partitioning the input formula into subformulas;
and ii) solving them.

We compute the community structure using GFA (see Alg. 3 on Chapter 4).
For this set of 300 application instances, this tool is able to correctly compute
the community structure of 298 instances. This process is, in general, very
fast. The average, median and maximum runtimes are respectively 12.6, 4.3 and
294.5 seconds.

Then, we solve all subformulas using MiniSAT. This step is performed on
the 298 industrial formulas, with an average, median and maximum runtime of
78.0, 21.8 and 975.8 seconds, respectively. The average, median, maximum and
minimum number of clauses that our preprocessor learnt is 11243.9, 512, 794950
and 1 clauses, respectively. We summarize these results on Table 7.1.

A natural question now is if the number of clauses learnt with this preproces-
sor depends on the solver used to solve such subformulas. We run again this step
using Glucose instead that MiniSAT. Notice that Glucose uses a more aggressive
clause removal policy. However, we observe that this solver learns, in general,
a similar number of clauses as MiniSAT, and needs a similar runtime to solve
these subformulas. This is because the input subformulas are, in general, very
easy.

In the next experiment, we evaluate the performance of the mentioned
solvers, with and without using the presented preprocessor (referred in the plots
as <solver> and modprep+<solver>, respectively). In Figure 7.5, we represent
the plots of this evaluation (solvers with and without using the modprep prepro-
cessor) for the industrial instances of the SAT Competition 2011, distinguishing
between satisfiable and unsatisfiable instances. We represent a cactus plot (i.e.,
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Figure 7.5: Evaluation of application instances of the SAT Competition 2011,
distinguishing satisfiable instances (top) and unsatisfiable instances (bottom),
for Glucose, Lingering, MiniSAT-blbd, and MiniSAT; with and without using
our preprocessor.

the maximum runtime of solving a set of instances) with logarithmic Y axis.
The timeout is set to 25000 seconds (the timeout usually used in competitions
is 5000 seconds). We remark that the reported runtime when the preprocessor
is used include the runtime of computing the community structure and the run-
time of solving all subformulas. In Table 7.2 (see 2011), we report the number
of solved instances with and without using the modprep algorithm for these two
timeouts, and distinguishing between SAT and UNSAT instances.

We observe that using our preprocessor with MiniSAT, Glucose or MiniSAT-
blbd improves their performance in satisfiable instances. Moreover, in unsatis-
fiable instances, Glucose also improves its performance. Interestingly, for this
timeout of 25000 seconds, enhancing a solver with our preprocessor results into
the best choice for solving satisfiable instances (using MiniSAT-blbd) and unsat-
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Figure 7.6: Evaluation of application instances of the SAT Competition 2014,
distinguishing satisfiable instances (top) and unsatisfiable instances (bottom),
for Glucose, Lingering, and MiniSAT-blbd; with and without using our prepro-
cessor.

isfiable instances (using Glucose). More interestingly, the solver MiniSAT-blbd
enhanced with our preprocessor also results into the best technique to solve sat-
isfiable instances when a timeout of 5000 seconds is considered (similar to the
timeout used in the competition). It is worth noting that, for very easy instances,
the overhead of the preprocessor (i.e., computing the community structure and
solving all subformulas) does not compensate.

We want to validate if the previous results also hold in a different set of in-
dustrial instances. We repeat the same experiment6 for the set of 300 application
instances of the SAT Competition 2014. In Figure 7.6, we represent the cactus
plot of this experiment, distinguishing between satisfiable and unsatisfiable in-
stances. We also report the number of solved instances by each SAT solver with

6Excluding MiniSAT.
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category SAT UNSAT
timeout 5000s 25000s 5000s 25000s

solver org mdp org mdp org mdp org mdp
SAT Competition 2011

MiniSAT 86 88 90 94 87 89 106 105
Glucose 85 86 97 101 107 107 126 128
MiniSAT-blbd 95 96 104 106 103 105 126 123
Lingeling 89 89 105 104 107 105 125 119

SAT Competition 2014
Glucose 94 103 103 114 100 103 121 121
MiniSAT-blbd 97 111 110 121 81 84 116 119
Lingeling 87 77 103 99 117 104 143 125

Table 7.2: Number of solved instances by some SAT solvers without and with
using the modprep algorithm (see columns org and mdp, respectively), evaluated
on the set of 300 application instances of the SAT Competitions of 2011 and 2014,
distinguishing between SAT and UNSAT formulas, and for a timeout of 5000
seconds (typically used in competitions) and a long timeout of 25000 seconds.
For each pair of solver with/out modprep, we emphasize the best solution (in
case of tie, we select the fastest one). Moreover, for each category (SAT/UNSAT)
and timeout, we remark in bold the best solver strategy.

and without using the modprep algorithm in Table 7.2 (see 2014).

Again, we observe that Glucose and MiniSAT-blbd improve their perfor-
mance in both satisfiable and unsatisfiable instances when the preprocessor is
used. In fact, MiniSAT-blbd enhanced with our technique is the best solver in
satisfiable instances. Interestingly, these solvers also improve their performance
using a shorter timeout of 5000 seconds. For instance, in our cluster MiniSAT-
blbd solves 97 SAT instances, while this solver enhanced with our preprocessor
solves 111. This difference is significant in the context of competitions. Also,
Glucose solves 194 SAT+UNSAT instances, while using our technique with this
solver results into a total of 206 SAT+UNSAT solved instances. Again, this
difference is significant. However, our preprocessor does not improve the perfor-
mance of Lingeling.

It is important to remark that the SAT solver MiniSAT-blbd was the win-
ner of the SAT Competition 2014 in the track of satisfiable instances. In the
last experiment, we precisely used those instances. As we have seen, using our
technique on this solver represents an improvement in its performance from 97
satisfiable instances solved to 111, i.e., a 14.43%, which is an overall improvement
remarkable in the context of SAT competitions.

Finally, we want to check if a random partition of the formula would have
the same effect as the partition provided by the community structure. For every
instance, we compute a random partition of the formula with the same number
of components as in the community structure. Also, we compute a sequential
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Figure 7.7: Evaluation of random and sequential partitions, distinguishing be-
tween satisfiable (left) and unsatisfiable formulas (right), using the set of indus-
trial instances of the SAT Competition 2011, and solved by Glucose.

partition, where all variables of a component have sequential indexes. Then, we
repeat all the experimentation with these random and sequential partitions. In
Figure 7.7, we show the cactus plot of the results on the set of industrial instances
of the SAT Competition 2011. As expected, none of these methods performs
better than either solving the original instances or our proposed technique, which
is the best strategy of these four.

Notice that in the previous experiment, the average, median, maximum and
minimum number of clauses learnt by our preprocessor was respectively 4015.12,
28, 209085 and 0 clauses using the random partition, and 35360, 987, 951839
and 0 clauses using the sequential partition. Recall that using the community
structure, our preprocessor learnt in average, median, maximum and minimum a
total of 11243.9, 512, 794950 and 1 clauses, respectively. Therefore, with random
components the number of learnt clauses is smaller than using the community
structure, whereas with sequential components this number is bigger. This sug-
gests that the partition used to create the subformulas is more important than
the number of clauses learnt by the preprocessor.

7.6 Conclusions

We use the community structure of industrial SAT instances to identify a set
of highly useful learnt clauses. We show that augmenting a SAT instance with
clauses learnt by the solver during its execution does not always mean to make
the instance easier, especially in the case of satisfiable instances. However, we
also show that augmenting the formula with a set of clauses based on the com-
munity structure of the formula improves the performance of the solver in many
cases. Interestingly, this improvement is especially relevant in satisfiable in-
stances. In particular, we use the set of clauses learnt from solving all subfor-
mulas consisting in pairs of connected communities.

We implement this approach as a preprocessor, and we show that it works
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experimentally on some representative sets of industrial instances, especially in
satisfiable formulas. Interestingly, the SAT solver MiniSAT-blbd, which was
the winner of the satisfiable track of the last SAT Competition 2014, enhanced
with our technique improves its performance. It is also the case of Glucose,
which improves its performance when it is enhanced with our technique in both
satisfiable and unsatisfiable instances. To the best of our knowledge, this is the
first time that community structure has been used to improve the performance
of a CDCL SAT solver.





Chapter 8

Classification of industrial
SAT families

8.1 Introduction

In the last decades, there have been many works dedicated to improve the effi-
ciency of SAT solving algorithms. One of the most promising approaches is the
portfolio paradigm. This approach faces the Algorithm Selection Problem [Rice,
1976], which is the problem of choosing, using a prediction model, the best algo-
rithm, from a predefined set, to solve a particular instance of a problem. Such
prediction is usually performed using Machine Learning techniques.

In the context of SAT, portfolio solvers classify instances using prediction
models that have been previously built in an offline process. To this purpose,
a set of (predefined) features is computed for a representative set of instances,
and the runtimes of a (predefined) set of algorithms are also computed. Then,
these instances are grouped into classes, according to their features, and the
best algorithm for each class is calculated. Finally, in the online step, once the
given instance is classified, it is solved by the corresponding best solver of the
class. Some examples of portfolio approaches to SAT solving are [Gomes and
Selman, 2001; Kadioglu et al., 2010; Malitsky et al., 2011; Nikolic et al., 2009,
2013; Silverthorn and Miikkulainen, 2010; Xu et al., 2007, 2008].

The success of portfolio algorithms is due to the observation that different
SAT solving techniques perform better on different SAT instances. This has
resulted into a specialization of SAT solvers. Some examples of this specialization
are: Conflict-Driven Clause Learning (CDCL) SAT solvers are the dominant
technique for solving industrial SAT instances; Look-Ahead SAT solvers are
specially efficient solving random SAT problems; Stochastic Local Search (SLS)
SAT solvers exhibit a very good performance on satisfiable random k-SAT.

In this chapter, we show that the three notions of structure previously ana-
lyzed (i.e., the scale-free structure, the community structure, and the self-similar
structure) can be used to effectively classify industrial SAT families. This classi-

99
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fication can be useful for further SAT solvers specializations. In particular, there
may exist different techniques exploiting the singularities of different industrial
families. We show that using these structure features can result into a classifica-
tion with similar effectiveness than using other sets of SAT features commonly
used in portfolio approaches, independently of the classifier used. Interestingly,
for some classifiers, using structure features even improves the performance of
the classifier. We evaluate the performance of a portfolio SAT solver using these
structure features, observing that its performance is almost unaffected. Finally,
we measure the relevance of these structure features w.r.t. the other SAT fea-
tures commonly used in portfolio approaches.

Questions addressed in this chapter:

Question 5. What is the impact of the underlying structure on the classification of SAT

instances?

Related publications:

• Ansótegui, C., Bonet, M. L., Giráldez-Cru, J., and Levy, J. (2015a). On the classi-
fication of industrial SAT families. In Proceedings of the 18th International Con-
ference of the Catalan Association for Artificial Intelligence (CCIA’15), pages
163–172.

• Ansótegui, C., Bonet, M. L., Giráldez-Cru, J., and Levy, J. (2016). Structure
features for SAT instances classification. Journal of Applied Logics. Submitted.

The rest of the chapter proceeds as follows. In Section 8.2, we study how the
structure features can be used to classify industrial SAT families. In Section 8.3,
we analyze the performance of a portfolio SAT solver trained with this set of
structure features w.r.t. other set of SAT features commonly used in portfolio
approaches. In Section 8.4, we analyze the relevance of these structure features
presented in this paper. Finally, we conclude in Section 8.5.

8.2 Classifying industrial SAT families

As we have shown in the previous chapters, most industrial SAT instances exhibit
a power-law distribution in the number of variable occurrences [Ansótegui et al.,
2009a], a clear community structure with high modularity [Ansótegui et al.,
2012], and a fractal dimension that characterizes their self-similarity [Ansótegui
et al., 2014]. Therefore, for each industrial SAT instance we compute the ex-
ponent αv of a power-law distribution that best fits the number of variable
occurrences, the modularity Q of its VIG, and the fractal dimensions d and db of
its VIG and CVIG, respectively. Notice that the number of variable occurrences
is exactly the degree of variable-nodes in the CVIG. In the case of the clause
length, which corresponds to the degree of clause-nodes in the CVIG, it is not
clear if the distribution that best fits these data is, in most of cases, a power-law.
Also, the modularity Qb of the CVIG could be computed, but most methods in
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Figure 8.1: Distribution of families according to the exponent of the power-law
distribution of variable occurrences (αv), the fractal dimensions of the VIG and
CVIG (d and db, respectively), and the modularity (Q). The heterogeneous
families software-bit-verif (14 instances) and software-bmc (3 instances) are not
plotted.

the literature are not adapted to be used in bi-partite graphs (they are either
not accurate or not fast enough for these graphs).

In this analysis, we use the set of 300 industrial SAT instances of the SAT
Competition 2013. These instances are grouped into 19 industrial families, ac-
cording to their application domain: 2d-strip-packing, bio, crypto-aes, crypto-
des, crypto-gos, crypto-md5, crypto-sha, crytpo-vmpc, diagnosis, hardware-
bmc, hardware-bmc-ibm, hardware-cec, hardware-velev, planning, scheduling,
scheduling-pesp, software-bit-verif, software-bmc and termination. All instances
are industrial, in the sense that they come from a real-world problem.

In a first experiment, we analyze if the classification of industrial SAT in-
stances into families according to their domain corresponds to a classification of
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families by structure features. In Figure 8.1, we represent the relation between
the scale-free structure (αv), the community structure (Q) and the self-similar
structure (d and db) for each industrial family. Each industrial SAT instance is
represented by a different point, and each industrial family is characterized by
a different symbol. In order to facilitate the visualization of this plot, we have
omitted the industrial families software-bit-verif (14 instances) and software-bmc
(3 instances), due to their heterogeneity. We have observed that most industrial
SAT families are homogeneous, and many of them are clearly characterized by
these structure features. For instance, the industrial family hardware-velev is
characterized by an exponent αv in the interval [1.4, 3], high fractal dimensions,
with d > 4 and db > 7, and a modularity Q in the interval [0.5, 0.8].

Next, we want to determine if this reduced set of 4 structure features plus the
clause/variable ratio m/n has similar results classifying industrial SAT families
than other sets of SAT features commonly used in portfolio approaches. In par-
ticular, we use the set of SAT features used in the portfolio SAT solver SATzilla.
The version of SATzilla submitted to the SAT Competition 2012 uses 127 fea-
tures grouped in several categories: problem size, graphs (including statistics
about the degree or clustering coefficient of nodes in the VIG and CVIG, among
others), hardness (including DPLL, LP-based, SLS, clause learning and survey
propagation statistics), balance, and timing1 features. See [Xu et al., 2008] for a
detailed description of these features. In this analysis, we consider the set of 115
resulting from removing the 12 timing features. We name the set of 5 structure
features as Structure, and the set of 115 SATzilla features as SATzilla in our
analysis.

In a second experiment, we build several classifiers using both the Structure
and the SATzilla sets of features, in order to classify the industrial SAT family of
a given instance. For each classifier, we measure the number of correctly classified
instances (i.e., the number of SAT instances whose industrial family was correctly
predicted). Notice that we know a priori the family each industrial SAT instance
belongs to. Therefore, we use supervised machine learning techniques. In order
to evaluate each classifier, we perform a k-folds cross-validation (i.e., dividing the
set of instances into k folds such that each fold is evaluated using the classifier
built with the other k − 1 folds), with k = 10. Let us introduce the classifiers
used in this experiment:

• C4.5. This algorithm [Quinlan, 1993] generates a decision tree to determine
the category of each element. It is an improved extension of the earlier
ID3 algorithm.

• Random Forest (RF). This model [Breiman, 2001] builds a combination, or
forest, of random decision trees, such that each tree depends on the values
of a random vector sampled independently and with the same distribution
for all trees in the forest.

1In SATzilla, some features represent the runtime needed to compute some categories of
features (e.g., the runtime of computing graph features).
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Structure SATzilla
C4.5 259 (86.33%) 263 (87.67%)
RF 274 (91.33%) 288 (96.00%)
NB 254 (84.67%) 256 (85.33%)
MLR 247 (82.33%) 262 (87.33%)
LR 251 (83.67%) 280 (93.33%)
SMO 153 (51.00%) 241 (80.33%)
IBk 275 (91.67%) 264 (88.00%)
K* 273 (91.00%) 199 (66.33%)
JRip 246 (82.00%) 251 (83.67%)

Table 8.1: Number of correctly classified instances (and its percentage over the
total set of instances in brackets), using the Structure features (αv, Q, d and
db plus the clause/variable ratio m/n) or the 115 SATzilla features, for some
classifiers. In bold, we remark those classifiers whose effectiveness is higher than
90%.

• Näıve Bayes (NB). This algorithms [John and Langley, 1995] models a
probability distribution with a Bayesian network, and handles continuous
variables using statistical methods for non-parametric density estimations.

• Multi-response Linear Regression (MLR). This classifier [Frank et al., 1998]
transforms the classification problem into a problem of function approxi-
mation, and this approximation is performed using regression methods.

• Logistic Regression (LR). This algorithm [le Cessie and van Houwelingen,
1992] builds and uses a multinomial logistic regression model with a ridge
estimator.

• Sequential Minimal Optimization (SMO). This classifier [Platt, 1998] trains
a Support Vector Machine (SVM), reducing this training problem into a
series of smallest possible quadratic programming problems.

• IBk. This method [Aha and Kibler, 1991] implements the instance-based
learning k-nearest neighbors algorithm, with a fixed value of k.

• K*. This model [Cleary and Trigg, 1995] uses the notion of entropy as a
distance measure to determine the similarity between two instances.

• JRip. This algorithm [Cohen, 1995] implements a propositional rule
learner, Repeated Incremental Pruning to Produce Error Reduction (RIP-
PER).

In Table 8.1, we represent the number of correctly classified instances by
these classifiers, using the features sets Structure and SATzilla. We run each
classifier with their default parameters values used in Weka [Hall et al., 2009].
In bold, we remark those classifiers whose effectiveness is higher than 90%, i.e.,
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they correctly classify the industrial family of more than 90% of the 300 indus-
trial SAT instances. As we observe, most of these classifiers have a very high
effectiveness. In general, using the set of features SATzilla slightly outperforms
the results of the set Structure. However, the differences between these two sets
are very small. It is worth noting that while the set SATzilla contains a total
of 115 features, the proposed set Structure only contains 5 features, and even
so, the obtained classification and its effectiveness is similar. Interestingly, the
classifiers K* and IBk improve their performance when using the set Structure.

Let us conjecture why this is the case. SATzilla characterizes the structure
of SAT instances using a total of 14 graph features. However, these features
represent local properties of its structure. For instance, the distribution of node
degree is analyzed in SATzilla using some statistical features: maximum, aver-
age, median, standard deviation and minimum. Even so, these 5 features only
characterize some local properties of the graph. We say they are local in the
sense that none of them (used separately) speaks about a common behavior in
the whole graph. On the other hand, in our metrics we use the exponent αv,
which characterizes the distribution of degrees, and thus it is a global property
of the graph. Therefore, the previously mentioned 5 graph features used by
SATzilla may be implied using the exponent αv. Similarly, the clustering of
variables is analyzed in SATzilla using the clustering coefficient, computing the
values maximum, average, median, standard deviation and minimum for each
node in the VIG. Again, these metrics only characterize a very local commu-
nity structure. However, the modularity Q is a global metric of the graph, and
therefore it gives a stronger information about this clustering.

In summary, SATzilla uses many (local) features to determine the structure
of the formula, but even so, some global characteristics of such structure are
not represented. On the other hand, we simply characterize it with 4 (global)
graph features. Remark that we include the clause/variable ratio m/n in our
set of features as a very simple metric about the hardness of the formula2, while
SATzilla analyzes it in a more exhaustive way using a total of 71 hardness
features. Therefore, our characterization of their hardness is still weak.

In conclusion, we observe that the proposed set of structure features can be
useful for classifying industrial SAT families of instances. This can beneficial for
the specialization of SAT solvers, which may exploit the particularities of each
industrial SAT family, when used in portfolio SAT solving approaches.

8.3 Evaluation of structure SAT features

In this section, we analyze the performance of a portfolio SAT solver when it
is trained with the set of structure features presented in the previous section.
In particular, we evaluate the performance of the solver ISAC [Kadioglu et al.,
2010], and we compare it when it is trained with the set of SATzilla features.

2While the hardness of random k-CNF can be characterized using the clause/variable ratio
m/n, this is not the case in industrial SAT instances. However, bigger industrial SAT formulas
may be intuitively harder.
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Structure SATzilla
runtime VIG+CVIG VIG
minimum 0.07 0.04 11.71
median 4.9 3.31 49.24
average 21.65 17.70 170.43
stdev 36.87 34.11 362.27
maximum 287.12 275.11 3675.28

Table 8.2: Statistics results of the runtime (in seconds) of computing the set of
SAT features over the set of 300 industrial SAT instances of the SAT Competition
2013, for the set Structure, using only graph features of the VIG, and using graph
features of both VIG and CVIG; and for the set SATzilla. We remark in bold
the fastest method.

For each set of features, the performance is evaluated with a 10-fold cross vali-
dation. This means that the set of 300 SAT instances is randomly divided into
10 disjoints subsets, or folds. For each fold, ISAC is trained using the remaining
9 folds (training set) to build a prediction model, and this is used it to predict
the best (core) solver to solve each instance of this fold (testing set). We use all
solvers submitted to the application track of the SAT Competition 2013 as core
solvers. Finally, the reported runtime of solving a SAT instance is the runtime
of computing its features plus the runtime of the (core) solver selected by ISAC.

Let us analyze first the cost of computing the set of structure features pre-
sented in this paper. Notice that this set contains features of both the VIG and
the CVIG. Therefore, it is plausible to consider only computing the features of
one of these graphs. In Table 8.2, we present some statistics of the runtime
needed to compute these sets of features. For the case of the set Structure, we
consider two cases: the features of the VIG, and the features of both VIG and
CVIG. We observe that computing the structure features is, in general, more
than one order of magnitude faster than computing the SATzilla features3, even
when we use our two graphs (VIG and CVIG). As expected, computing the
structure features in only one graph (VIG) is faster than using both of them
(VIG and CVIG).

In Figure 8.2, we represent the cactus plot of solving the 300 industrial SAT
instances of the SAT Competition 2013 by ISAC when it is trained with the set
of features SATzilla and some combinations of features from the set Structure.
This plot represents the runtime (in seconds) needed to solve a certain number
of instances, i.e., each point (x, y) represents that x instances were solved in at
most y seconds (each of them). The combinations of structure features, named
as StructureX , uses VIG features (i.e., αv, Q and d) when ’V ’ ∈ X, CVIG
features (i.e., db) when ’C’ ∈ X, and the clause/variable ratio when ’r’ ∈ X. In
Table 8.3, we also report some statistics about the results.

We observe that using the set of 115 SATzilla features is the best strategy,

3We use the tool provided in the solver SATzilla.
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Figure 8.2: Cactus plot for the solver ISAC trained with the set of features
SATzilla and some subsets of features from the set Structure. Specifically,
StructureV Cr uses αv, Q, d, db and m/n; StructureV C uses αv, Q, d and db;
StructureV r uses αv, Q, d and m/n; and StructureV uses αv, Q and d. Each
point (x, y) in the plot represents that x instances were solved in at most y
seconds (each of them).

solving a total of 288 instances. Surprisingly, using the Structure sets of features
have very similar performances. In particular, using the features of both the
VIG and CVIG (i.e., StructureV C and StructureV Cr) solves 285 instances in
both cases, while using only VIG features (i.e., StructureV and StructureV r)
solves 281 instances in both cases. Moreover, using the clause/variable ratio
m/n does not affect the performance. Even though, the number of instances
solved by these methods is very similar in all cases. Also, the runtime required
for solving them is also very similar in all cases (see Table 8.3).

In conclusion, we show that computing structure SAT features is, in gen-
eral, much faster than computing other sets of SAT features commonly used in
portfolio approaches, as the set used by SATzilla. Also, we observe that the
performance of a portfolio SAT solver is almost unaffected when, instead that
training it with the 115 SATzilla features, we train it using just only 5 (or less)
structure features, and the small differences between SATzilla and Structure are
probably due to the richer study of the hardness performed by SATzilla.
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runtime StructV Cr StructV r StructV C StructV SATzilla
minimum 0.26 0.26 0.26 0.26 0.26
median 272.62 268.10 262.02 310.27 261.84
average 874.59 863.32 876.84 881.15 831.61
stdev 1199.59 1197.70 1200.11 1207.83 1143.55
maximum 4913.23 4913.23 4913.23 4913.23 4745.21
#solved 285 281 285 281 288

Table 8.3: Statistics about the runtime required to solve the set of 300 instances
of the SAT Competition 2013 by ISAC trained with different set of features.

8.4 Relevance of structure SAT features

In this section, we analyze the relevance of all features used in the previous
experiments. They are the 115 features of SATzilla plus the 4 structure features
previously introduced We want to evaluate their relevance independently of the
classification method used (e.g, in a portfolio SAT solver). For this purpose
we use a filtering method for feature selection, a classical method of Machine
Learning.

In the minimal-Redundancy-Maximum-Relevance method (mRMR) [Peng
et al., 2005], we try to select a subset of features mutually as dissimilar to
each other as possible (minimal redundancy), but marginally as similar to the
classification variable as possible (maximal relevance). This is achieved finding
the subset S of features that maximizes:

max
S

∑
j∈S

I(xj , c)−
1

M − 1

∑
i,j∈S
i<j

I(xi, xj)

 (8.1)

where c is the classification variable, M is the number of features, and I(xi, xj)
measures the mutual information between features xi and xj . Formally, the
mutual information between two random variables xi and xj is defined as:

I(xi, xj) =

∫ ∫
p(xi, xj) log

p(xi, xj)

p(xi)p(xj)
dxidxj

Computing mutual information is based on estimating the probability distribu-
tions p(xi), p(xj) and p(xi, xj). These distributions can be either discretized or
estimated by density functions methods [Rodriguez-Lujan et al., 2010]. The first
term of Eq. 8.1 computes the relevance and the second term the redundancy. For
real applications, this objective function is difficult to compute exactly. Peng
et al. [2005] propose to use a greedy or gradient algorithm that, starting with
S = ∅, proceeds adding the feature that most increases the objective function
at each step.

Rodriguez-Lujan et al. [2010] write the previous objective function as a
pseudo-Boolean quadratic function, and use a parameter α ∈ [0, 1] to regulate
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rank feature (and description) category relevance
1 SP-bias-mean:

mean of confidence of survey propagation (the

higher of P (true)/P (false) or P (false)/P (true))

for each variable

Survey Prop 0.6359

2 d: fractal dimension for VIG Structure 0.5541
3 POSNEG-RATIO-VAR-max :

max of ratio of positive to negative occurrences of

each variable

Balance 0.5231

4 POSNEG-RATIO-CLAUSE-coeff-variation:
variation coefficient of ratio of positive to negative

literals in each clause

Balance 0.5171

5 db: fractal dimension for CVIG Structure 0.4769
6 SP-unconstraint-coeff-variation:

variation coefficient of probability that a variable

is unconstrained in survey propagation

Survey Prop 0.4250

7 POSNEG-RATIO-VAR-mean:
mean of ratio of positive to negative occurrences

of each variable

Balance 0.4168

· · · · · ·
22 logαv: powerlaw exponent Structure 0.2558

· · · · · ·
41 Q: modularity (for VIG) Structure 0.1844

· · · · · ·

Table 8.4: Relevance of SAT features to classify industrial SAT families.

the relative weight between relevance and redundancy:

min
X∈{0,1}M

{
1

2
(1− α)XTQX − αFTX

}
(8.2)

where qij = I(xi, xj) and fj = I(xj , c). In general, values of α closer to 1 result
into smaller sets of selected features optimizing the objective function. They use
the Nyström method to approximate the optimum of this function.

In our experiments, we compute the relevance I(xj , c) of all the 119 features
xj (i.e., the 115 SATzilla features plus the 4 structure features) as proposed
in [Rodriguez-Lujan et al., 2010]. Recall that the classification variable c corre-
sponds in our case to the industrial SAT family each instance belongs to. The
relevance of a set of features is the matrix F according to Eq. 8.2. In Table 8.4,
we report the most relevant features, as well as the ranking of the structure
features, with their correspondent relevance value (higher is better). We observe
that 2 of our 4 structure features are between the 5 most relevant features. In
particular, they are the fractal dimension for the VIG d (ranked in the second
position), and the fractal dimension for the CVIG (ranked in the fifth position).
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Figure 8.3: Redundancy between pairs of features. Each point (x, y) represents
the redundancy between features x and y, according to the grey scale. Features
are grouped by SATzilla categories, and Structure category contains αv, d, db

and Q (in this order).

The exponent αv appears in the position 22, and the modularity Q in the posi-
tion 41. Remark that we use logαv (instead of using directly αv) because some
industrial families are characterized by an exponent αv some orders of magni-
tude higher than the rest. Recall that we are considering a total of 119 SAT
features. Therefore, structure features are very relevant features.

It is also interesting to remark that the 5 most relevant SATzilla features
belong to the categories survey propagation and balance. Survey propagation
is a technique, based on works of spin glasses and statistical physics, to esti-
mate the probability that a Boolean variable has a certain value in all satisfying
assignments. The category Balance refers to the ratio of positive and negative
polarities of literals appearing in the formula. For instance, a totally unbalanced
formula only contains variables appearing with the same polarity. Notice that
this kind of formulas is trivially satisfiable by the pure literal rule. Intuitively,
balanced formulas are harder to solve. Therefore, the most relevant SATzilla
features are related to the hardness of the instance.

Finally, we analyze the redundancy between pairs of features. This is the
matrix Q according to Eq. 8.2. We represent the results in Fig. 8.3 as a heat
map, i.e., the redundancy between features xi and xj is represented in the point
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(i, j) (and (j, i)) according to the grey scale indicated in the figure. The values of
this matrix are normalized between 0 and 1. Features are grouped into SATzilla
categories: problem size, CVIG node degree statistics, balance, proximity to
horn formula, VIG node degree and diameter statistics and CVIG node degree
and clustering coefficient statistics, clause learning statistics (based on 2 seconds
of running Zchaff rand), survey propagation, and local search statistics (based
on 2 seconds of running each of SAPS and GSAT). Finally, our set of structure
features includes αv, d, db and Q.

We observe that the most redundant pairs of features are found within each
category. For instances, many VIG/CIG features are very redundant with each
other. In the case of our proposed 4 structure features, we observe the same
behavior. In particular, the pairs (αv, Q) and (d, db) are the most redundant in
this category. However, these redundancies have a normalized value around 0.3,
i.e., they are not very redundant. Interestingly, the most redundant categories
w.r.t. structure features are the categories balance and survey propagation, which
are also the most relevant features.

8.5 Conclusions

We use the set of four structure features (i.e., the exponent αv of the power-law
distribution that best fits the number of variable occurrences, the modularity
Q of the VIG, and the fractal dimension d and db of the VIG and CVIG), plus
the clause/variable ratio m/n, to classify industrial SAT instances into families.
We show that this classification has an effectiveness similar to the one obtained
with other sets of SAT features commonly used in portfolio approaches, as the
set used by SATzilla.

Also, we observe that computing this set of structure features is, in general,
more than one order of magnitude faster than computing SATzilla features. We
evaluate the performance of the portfolio SAT solver ISAC trained with these
two sets of features (i.e., Structure and SATzilla), and we observe that the
performance of this solver is very similar in both cases.

Finally, we analyze the relevance of the features from both sets, and we show
that structure features are very relevant, as other hardness features (as Survey
Propagation or balance statistics) computed by SATzilla.
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Chapter 9

Conclusions and
Future Work

9.1 Conclusions

Originally, the Boolean Satisfiability problem (SAT) was predominantly consid-
ered a theoretical problem, used to prove the NP-completeness of other prob-
lems and show their intractability. However, the irruption of modern SAT solv-
ing techniques, which efficiently solve many SAT instances, has dramatically
changed the situation, and therefore SAT has become an essential component of
many real-world applications. These techniques include clause learning, conflict-
based activity heuristics, non-chronological backtracking or random restarts. In
general, this set of techniques is usually named as Conflict-Driven Clause Learn-
ing (or CDCL) SAT solvers. The intuition to explain the success of CDCL solvers
solving application SAT benchmarks is that some hidden structure of these prob-
lems is exploited by these techniques. However, besides the enormous progress
in SAT solving technology, there are still few works trying to understand the rea-
sons of the power and efficiency of these techniques on solving these real-world
problems.

In this thesis, we address the problem of (better) characterizing the under-
lying structure of SAT instances, with especial emphasis on application bench-
marks. Our main goal is to give better insights on the success of CDCL tech-
niques solving industrial instances, with the aim of improving them.

Our inspiration comes from some works in complex networks, where the
structure of real-world graphs has been analyzed. It has been shown that the
classical random graph model (i.e., Erdös-Rényi model) cannot be used to repre-
sent this kind of networks. On the contrary, some important structure features
shared by the majority of real-world networks have been studied, and some mod-
els to produce random graphs with these features have been proposed. Some of
these features are the scale-free structure, the community structure, or the self-
similar structure, among others.

113
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In our approach, we represent SAT instances as graphs (using the VIG and
CVIG models; see Chapter 2 for more details), and some (graph) features are
studied. This is the approach used by Ansótegui et al. [2009a] to analyze the
scale-free structure of industrial SAT instance (see Section 3.3 for a brief intro-
duction of this work).

The first two challenges of our work are summarized as:

Question 1. What is the underlying structure of industrial SAT instances?
Question 2. How is this structure affected by CDCL SAT solving techniques?

In our analysis of the underlying structure of SAT instances, we focus on the
community structure and the self-similar structure. These studies (partially)
cover the two goals stated in the previous questions. In a graph with clear
community structure (i.e., with high modularity), nodes can be grouped into
communities such that most of the edges connect variables of the same commu-
nity. In a graph with the self-similar pattern (i.e., with fractal dimension), the
shape of the graph is the same at different scales (i.e., grouping set of nodes into
a single one).

We analyze the community structure of SAT instances, and we observe
that most industrial SAT formulas are characterized by a very clear community
structure, with a modularity greater than 0.7 in most of the cases1. On the
contrary, the modularity of random SAT instances is very low, i.e., they do
not have community structure (as expected). Moreover, we analyze the effect of
adding to the original instance the clauses learnt by the solver during the search.
In this case, the modularity slightly decreases, but the community structure
is still clear. This means that we can find a partition of the variables into
communities such that the new augmented set of clauses mostly contain variables
of the same community. However, we also observe that this partition differs from
the original partition that was computed for the original instances. Therefore,
we conclude that clauses learning predominantly destroys the original partition
of the formula.

We also study the self-similar structure of SAT instances, and we show
that most industrial SAT formulas are characterized by self-similar pattern, with
a fractal dimension ranging between 2 and 4 in most of the cases2. On the other
hand, random SAT instances are not self-similar (as expected). Again, we also
analyze the effect of adding learnt clauses to the original formula. The purpose of
this analysis is to measure how distant the parts connected by new learnt clauses
are. Notice that the previous analysis of the community structure states that
the original partition of the formula is destroyed by the effect of clause learning.
However, this can happen connecting either close or distant communities. Our
analysis shows that learnt clauses usually connect close parts of the formula
(many of them were already connected before). This means that clause learning
acts locally.

Beyond the previous analysis on the underlying structure of SAT instances,
we address three applications directly related to the structure of the formulas.

1The optimal value of the modularity ranges between 0 and 1.
2These values are also very common in real-world networks.
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First, we face the problem of generating realistic pseudo-industrial random in-
stances. This problem was stated as one of the most important 10 challenges to
be achieved in the following years [Selman et al., 1996]. The need of such gener-
ators comes from the fact that the number of real-world instances is limited, and
moreover, the testing and debugging of new techniques using these benchmarks
is often too expensive. For this reason, having a random model that reproduces
the computational properties of these real-world problems may be beneficial for
the SAT community. Second, the applicability of SAT to many real-world do-
mains requires a continuous research and progress in SAT solving techniques.
For this reason, we address the problem of improving the state-of-the-art CDCL
techniques using the previously analyzed structure features. Finally, we face the
problem of the classification of industrial SAT instances. This problem is inter-
esting for portfolio approaches, where the best solver to solve a class of problems
is predicted. Therefore, the effectiveness in the classification of instances may
affect the performance of these techniques.

These three application can be summarized in the following questions:

Question 3. How can we generate more realistic pseudo-industrial random SAT
problems?
Question 4. How can we use the underlying structure of instances to implement more
efficient CDCL SAT solving techniques?

Question 5. What is the impact of the underlying structure on the classification of SAT

instances?

First, we propose a new model of generation of random SAT instances, called
Community Attachment, based on the notion of modularity. For a high value
of modularity, we realistically model pseudo-industrial random SAT instances.
On the contrary, a low value of modularity produces instances very similar to the
classical random model. We show that the performance of SAT solvers is con-
sistent with the expected properties of the generated formulas, i.e., SAT solvers
specialized in industrial benchmarks perform better on high modular instances
than solvers specialized in random formulas, and vice versa. We also prove that
the phase transition point of this model is independent of the modularity, i.e.,
it is at the same point than the phase transition point of the classical random
model.

Second, we identify a set of highly useful learnt clauses, and we show that
augmenting the formulas with these clauses results into an overall improvement
of several CDCL solvers, especially in satisfiable instances. These clauses are
related to the community structure of the formula, and they can be computed in
a fast preprocessing step. In particular, we propose a method, called modprep,
that split the original formula into disjoint subformulas, and solve every pair of
connected subformulas,3 keeping all the learnt clauses produced in this process.

Finally, we use the underlying structure (i.e., the scale-free structure, the
community structure, and the self-similar structure) to address the problem of
classifying SAT instances. In particular, we analyze the effectiveness of these
features when used in some classifiers, and we compare it to the effectiveness

3Subformulas that share, at least, a variable.
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of other sets of features commonly used in portfolio SAT approaches, as the set
used by SATzilla (which contains a total of 115 features). We observe that the ef-
fectiveness of both set of features is very similar (independently of the classifier),
and the performance of the portfolio SAT solver ISAC is almost unaffected when
trained with these two sets. Finally, we measure the relevance of the structure
features, and we show that they are among the most relevant SAT features.

This thesis is hold by the following publications:

1. Ansótegui, C., Giráldez-Cru, J., and Levy, J. (2012). The community structure
of SAT formulas. In Proceedings of the 15st International Conference on Theory
and Applications of Satisfiability Testing (SAT’12), pages 410–423.

2. Ansótegui, C., Bonet, M. L., Giráldez-Cru, J., and Levy, J. (2014). The frac-
tal dimension of SAT formulas. In Proceedings of the 7th International Joint
Conference on Automated Reasoning (IJCAR’14), pages 107–121.

3. Giráldez-Cru, J. and Levy, J. (2015). A modularity-based random SAT instances
generator. In Proceedings of the 24st International Joint Conference on Artificial
Intelligence (IJCAI’15), pages 1952–1958.

4. Giráldez-Cru, J. and Levy, J. (2016). Generating SAT instances with community
structure. Artificial Intelligence. Accepted with revisions.

5. Ansótegui, C., Giráldez-Cru, J., Levy, J., and Simon, L. (2015b). Using com-
munity structure to detect relevant learnt clauses. In Proceedings of the 18th
International Conference on Theory and Applications of Satisfiability Testing
(SAT’15), pages 238–254.

6. Ansótegui, C., Bonet, M. L., Giráldez-Cru, J., and Levy, J. (2015a). On the classi-
fication of industrial SAT families. In Proceedings of the 18th International Con-
ference of the Catalan Association for Artificial Intelligence (CCIA’15), pages
163–172.

7. Ansótegui, C., Bonet, M. L., Giráldez-Cru, J., and Levy, J. (2016). Structure
features for SAT instances classification. Journal of Applied Logics. Submitted.

9.2 Future work

9.2.1 Graph representation of SAT instances

The graph models used in this thesis to represent SAT instance are the Variable
Incidence Graph (VIG) and the Clause-Variable Incidence Graph (CVIG). See
Chapter 2 for more details. These models represent Boolean variables, but they
do not represent their corresponding literals, i.e., the sign of these variables in
the clauses they occur. Therefore, multiple formulas may be modeled by the
same graph. For instance, if we modify an instance negating some of its literals,
the resulting VIG and CVIG of this new formula are exactly the same than the
VIG and CVIG of the original one.

The main consequence is that we cannot distinguish between hard and easy
formulas (e.g., a trivially satisfiable instance by pure literal elimination). Obvi-
ously, this may have some impact on the applications in which the graph model
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is used, somehow, in a solving technique. An example is presented in Chapter 7,
where the VIG model is used to partition a SAT instance into disjoint subformu-
las, and then a community-based solving technique is performed. Therefore, it
seems natural to analyze other graph representations of SAT formulas. In what
follows, we mention some potential models that may improve the ones used in
this dissertation.

The Literal Incidence Graph. The simplest model to represent the sign
of variables is a graph with vertexes the set of literals, and edges between pairs
of literals that appear in the same clause. As in the VIG, edges can be weighted
to consider the length of the clauses. Moreover, there exists an edge between
each pair of literals x and ¬x, with weight equal to 1. Notice that any SAT
instance is equisatisfiable if adding the clauses (xi ∨ ¬xi), for 1 ≤ i ≤ n, where
n is the number of variables. This is graph is as easy to compute as the VIG.
However, it offers a more powerful information about the instance. To the best
of our knowledge, there is no work analyzing or using this model yet.

The (extended) Factor Graph. This is a model very similar to the CVIG,
but with two important differences: (i) edges do not have weight, and (ii) there
exist two types of edges to represent the two possible signs of each variable
occurring in each clause. This model has been used, for instance, in Survey
Propagation [Braunstein et al., 2005]. This method, based on some works on
spin glasses, computes the probability that a variable has a certain value in all
satisfying assignments using a message passing method through the edges of this
graph. The natural extension of this model can consider weighted edges in order
to keep some information of the length of the clauses (without traversing the
graph). Again, this model is as simple to compute as the CVIG. However, its
particularities (e.g., two types of edges) make that some methods may require an
ad-hoc adaptation to be used on this model. For instance, in order to compute
the community structure of this graph, an algorithm, adapted for bi-partite
graphs, should also consider the two types of edges. In some works, this model
is also named as Clause Variable Graph [Kullmann, 2009].

The Resolution-based Graph. In this graph, clauses are nodes, and there
is an edge between two clauses if the resolution rule can be applied between
these two clauses (i.e., there exists a literal that appears in both clauses with
opposite sign) and the resolvent clause is not a tautology (i.e., it does not con-
tain a variable and its negation). The weight of the edges is proportional to the
length of the resolvent clause (repeated literals are not considered). This model
was introduced in [Yates et al., 1970], and adapted in [Neves et al., 2015], where
it was used to improve the performance of a MaxSAT solver using community
detection algorithms. However, in the context of SAT instances the situation
is more complex. Notice that it cannot be known a priori either the length of
the resolvent or whether it is a tautology. Therefore, the exact computation of
this model depends on the number of clauses and their length. This makes this
model inefficient for very large instances (as real-world SAT formulas are) in
applications where the solving time is an important issue. A preliminary com-
putation of this model on some industrial instances used in our experimentation
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resulted into a runtime even higher than the runtime needed to solve the for-
mula. On the contrary, some approximation can be made. One possibility would
be to assign an edge between any two clauses that can apply resolution, with a
weight proportional to the sum of the length of these two clauses minus 2 (the
two resolving literals). This way, neither repeated literals nor tautologies are
filtered. However, this approximation can be computed more efficiently, since
it only depends on the number of occurrences of each literal. Whether this ap-
proximation is accurate and useful for further applications has not been studied
yet, to the best of our knowledge.

9.2.2 Relation between structure features

In Chapters 4 and 5, we have shown that (most) industrial SAT instances
are characterized by a clear community structure and a self-similar pat-
tern [Ansótegui et al., 2014; Ansótegui et al., 2012]. Moreover, the previous
work of Ansótegui et al. [2009a] shows that these instances also have scale-free
structure (see Section 3.3 for more details). We consider that these features are
three very important components of the underlying structure of real-world SAT
formulas. However, in some application presented in this thesis, we focus our
contribution in the use of the community structure.

A natural question is: what is the relation between these three features?
In particular, a graph with scale-free topology and self-similar pattern implies
a clear community structure? To the best of our knowledge, there is no work
analyzing the relations between these structure features. Obviously, such a work
would be an interesting contribution for the community of complex networks,
and it would have impact in other research areas, as the SAT community.

9.2.3 Overlapping communities

In our analysis of the community structure (see Chapter 4 for more details), we
only consider partitions of the graphs into disjoint communities. This is the
traditional approach in the field of complex networks. However, a number of
problems requires overlapped communities. In this case, a node of the graph
can belong to several communities at the same time. This can be the case,
for instance, of a social network whose communities represent family, friend or
colleagues. See [Xie et al., 2013] for a survey on overlapping community detection
methods.

In the case of SAT instances, similar questions also arise. Our experience tells
us that many variables of an industrial SAT formula, even when they belong to a
certain community (i.e., they mostly occur in clauses with other variables of the
same community), they also occur with many variables of other communities. In
other words, there is a number of variables in the fringe of communities. Some
preliminary observations show that this fringe may contain more than 50% of
the variables of some industrial SAT instances.

An interesting direction to investigate would be the ways of computing over-
lapping communities in the context of SAT instances. For instance: which vari-
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ables can belong to an overlapped community? Or what do these communities
represent? Also, some method handling these overlapping communities may im-
prove the performance of the state-of-the-art solutions that use the community
structure to solve SAT or MaxSAT problems.

9.2.4 Other structure features

In the context of complex networks, other structure features have been stud-
ied. One example is the notion of similarity [Papadopoulos et al., 2012], which
complements the notion of popularity (i.e., preferential attachment) to explain
the growing of real-world networks. Another example is the notion of conduc-
tance [Kannan et al., 2004], that measures how well-knit a graph is, or the
notion of coverage, that measures the fraction of internal edges w.r.t. a parti-
tion. See [da F. Costa et al., 2005] for an extended survey on the characterization
of complex networks, and [Almeida et al., 2011] for a review on graph clustering
metrics.

Interestingly, these advances in complex networks may result into a better
understanding about the hidden structure of industrial SAT instances, and possi-
bly better explain the success of CDCL techniques solving these problems. This
can serve to further improvements of the state-of-the-art CDCL SAT solving
techniques.

9.2.5 Pseudo-industrial SAT instances generator

The future work on the generation of realistic pseudo-industrial SAT instances
can be tackled from two perspectives.

First, some improvements of the Community Attachment can be considered.
This model (see Chapter 6 for more details) forces some features of the resulting
SAT instance to be as much regular as possible. In particular, all clauses have
exactly the same number of literals (i.e., k literals), all communities approxi-
mately have the same number of variables (i.e., bn/cc or bn/cc + 1), and all
variables approximately have the same number of occurrences. This allows us
to study the real impact of certain SAT solving techniques on the community
structure without any undesired secondary effect.

Real application benchmarks are characterized by a certain variability in the
clause size, community size, and number of variable occurrences. Therefore,
some natural extensions of the Community Attachment model may consider
these cases. A possibility would be to assign a distinct probability to each
variable, as it is described in [Ansótegui et al., 2009b]. This would result into
random instances with scale-free structure and high modularity, as observed in
real-world instances.

Another possibility is other models of generation that can be proposed. For
instance, many complex networks have heterogenous degree distributions and
strong clustering, and random geometric graphs in hyperbolic spaces can be
used to adequately model them. Aldecoa et al. [2015] propose an hyperbolic
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graph generator to produces these features. This idea could be easily adapted
to the context of SAT instances.

9.2.6 Relevant learnt clauses

Our work on the detection of relevant learnt clauses (see Chapter 7) can be
extended in a number of ways.

An important development of our work could be the design of a parallel
solver. Each core could work only on a subset of the initial clauses, without
communications. This could also allow us to extend our approach to tuples of
communities instead of pairs of communities.

Another extension can be the improvement of our approach by trying to guess
which pairs of communities are important to work on. It is important to link
the community structure of formulas with their initial problem and generation.
For instance, in bounded model checking, a community could be a sub-circuit.
Linking the original problem with the detected communities could be also an
interesting direction to investigate.

9.2.7 CDCL improvements

Finally, we recall the possibly most important future work: the improvement
of the state-of-the-art CDCL techniques. This thesis gives some important in-
sights about the underlying structure of applications problems, with the aim of
improving these techniques. In fact, one of the applications we propose (i.e., the
detection of relevante learnt clauses; see Chapter 7 for more details) is directly
related to a CDCL component: the clause removal policy.

Besides this contribution, there is a number of hypotheses, which relate the
underlying structure of SAT instances to some particular CDCL component.
Some examples could be: can we use the fractal dimension to implement a more
efficient restart policy? Can we implement a heuristic that takes into account
the the scale-free structure of the formula? Can we design a clause learning
mechanism based on the community structure and the partition of the formula
in order to learn more useful clauses? And so forth. . .

It is worth noting that we have tested some of these hypotheses. In particular,
our initial focus was to find a heuristic that uses some notion of structure. To
this purpose, we tested some static heuristic, as the most frequent variable, the
less frequent variable, the variables of communities ordered by community size in
both ascending and descending order. Unfortunately, none of these hypotheses
resulted into an overall performance of the solver.
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