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Resumen / Abstract

Gracias a resultados experimentales pero también a argumentos teóricos, sabemos que el Modelo
Estándar de la f́ısica de part́ıculas es solo una descripción a bajas enerǵıas de una estructura más
fundamental. Supersimetŕıa, una simetŕıa del espacio-tiempo que relaciona bosones y fermiones,
proporciona algunos de los candidatos para completar el Modelo Estándar más favorecidos desde
un punto de vista teórico. Sin embargo, la búsqueda sin resultado de part́ıculas supersimétricas
pone a estos modelos bajo cierta tensión, sobre todo porque muchas de las propiedades de super-
simetŕıa en su aplicación a la f́ısica de part́ıculas están directamente relacionadas con su presencia
a escalas de enerǵıa del orden de las que están siendo exploradas en LHC. Sin evidencias directas
de supersimetŕıa, ¿existe alguna medición indirecta que los f́ısicos de part́ıculas podŕıan usar para
estudiar estos modelos? La part́ıcula de Higgs descubierta en 2012 en LHC no es solo la ultima
pieza del Modelo Estándar, también es una nueva ventana que podŕıa ser útil en el estudio de
f́ısica más allá del Modelo Estándar.

En la primera parte de esta tesis estudiamos las consecuencias del descubrimiento del bosón
de Higgs para versiones mı́nimas (construidas con el menor numero posible de elementos) de
supersimetŕıa. Encontramos que la masa del Higgs es más pesada de lo que uno esperaŕıa en
las extensiones supersimétricas del Modelo Estándar más mı́nimas. Por lo tanto concluimos que
puede que la búsqueda de “minimalidad” a la hora de formular teoŕıas más allá del Modelo
Estándar, no sea el camino más adecuado en este caso. Por eso construimos una realización un
poco más “barroca” de supersimetŕıa con la esperanza de que solucione el problema de la masa
del Higgs, la teoŕıa se llama “Modelo de Tripletes con Simetŕıa Custodial”. Este modelo presenta
un sector de Higgs extendido y usa simetŕıas para resolver algunos de los problemas asociados a la
introducción de nuevos grados de libertad en el potencial escalar de una teoŕıa, al mismo tiempo,
es capaz de proporcionar una masa para el Higgs en acuerdo con la medición experimental.
Dedicamos la segunda parte de la tesis al estudio pormenorizado del Modelo de Tripletes con
Simetŕıa Custodial, de donde derivamos resultados muy interesantes con aplicaciones tanto en
f́ısica de part́ıculas como en cosmoloǵıa.
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We know from experimental results but also from theoretical arguments that the very successful
Standard Model of particle physics is just a low energy description of a more fundamental struc-
ture. Supersymmetry, a space-time symmetry that relates bosons and fermions, provides some of
the most theoretically favored candidates to complete the Standard Model. However, null results
in the searches for supersymmetric particles put these models under stress, specially since many
of the nice properties of supersymmetry at the particle physics level are directly tied with its
presence at the energy scales that are now being probed at the LHC. With no direct evidence
for supersymmetry, is there an indirect measurement that particle physicists could use to test
these models? In 2012 the Higgs particle was discovered at LHC. Its discovery gives closure to
the Standard Model but also opens up a new window that could be useful in the study of physics
beyond the Standard Model.

In the first part of this thesis we study the consequences of the Higgs discovery for minimal
versions of supersymmetry. We find that the measured mass of the Higgs particle is heavier
than what is expected by the minimal realizations of a supersymmetric Standard Model. We
thus consider that the search for minimality, i.e. building models with the least number of
elements, in the formulation of beyond the Standard Model theories may not be such a good
guiding principle in this case and construct a more baroque realization of supersymmetry, the
Supersymmetric Custodial Triplet Model. This theory features an extended Higgs sector and
uses symmetry as a tool to get rid of some of the problems associated with the introduction of
new degrees of freedom to the scalar potential of a theory, at the same time, it is able to provide
a Higgs that fits properly the experimental measurement of its mass. We devoted the second
part of the thesis to an in depth study of the Supersymmetric Custodial Triplet Model, deriving
very interesting results that can be useful both for particle physics, and cosmology.
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“ They sat thus for sometime while the light faded, Belle in another temporary vacuum
of discontent, building for herself a world in which she moved romantically,

finely and a little tragical [...] ”

- William Faulkner, excerpt from Sartoris
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The Standard Model (SM) of particle physics found experimental completion on the 4th of July
2012, when the ATLAS and CMS experiments at the Large Hadron Collider (LHC) announced
jointly the discovery of a new particle with a mass of 125 GeV and characteristics similar to that
of the Higgs boson predicted by the SM [1,2]. The beauty of the Standard Model relies not only
on its capacity to explain with great accuracy a wide range of observed phenomena, it is also
remarkable that it does so by means of a few symmetry rules and some particle content. By being
able to explain a large set of complex dynamics within a single and simple structure, the SM
is a great testament to the power of the reductionist approach. For centuries reductionism, i.e.
trying to explain the largest amount of phenomena given the least amount of ‘universal’ rules,
has proven to be very successful. For instance, it allowed Newton to understand that the force
that pushes objects to the ground was also responsible for the movement of stars and planets,
Maxwell to write a set of equations that explained electricity and magnetism as manifestations
of the same force, and Einstein to unify the concepts of space and time.

Figure 1: Cube that schematically represents what are the features of the frameworks in which
the SM (QFT) and ΛCDM (GR) are formulated. The axes are three fundamental constants
that correspond to gravity (Newton’s constant, G), quantum mechanics (Planck’s constant, ~)
and special relativity (the inverse of the speed of light, 1/c). As a thought experiment one can
vary them and modulate the importance of gravitational interactions, quantum mechanics and
special relativity respectively. We can see from the cube that while GR is the relativistic classical
field theory that describes gravitational interactions and fails to incorporate quantum mechanical
nuances, QFT is the relativistic theory of quantum fields that is not able to include gravity. The
theory of everything (TOE) will be the one able to explain phenomena in which velocities are
relativistic and both gravity and quantum mechanics are taken into account.

Quantum Field Theory (QFT), which describes the dynamics of relativistic quantum particles,
and General Relativity (GR), our most sophisticated understanding of the force of gravity, also
follow from considering the above strategy (see Figure 1). By using QFT and GR as frameworks,
one is able to formulate the Standard Model and the Standard Model of Cosmology (ΛCDM)
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which, together, can accurately predict the properties of matter from distances down to about
∼ 10−18 meters to the extreme conditions of the very early universe. In the spirit of reductionism,
the logical next step would be to consider the SM and ΛCDM as part of the same structure, in
other words, consider the SM as the microscopic description behind the physics at enormous
scales of ΛCDM. The biggest issue that one faces when searching for a unified description of both
models is that gravity runs into problems when quantized and GR can only be trusted as the
low energy limit of a QFT with particles of spin-2 (gravitons). This is the infamous problem
of quantum gravity; the absence of a framework that consistently incorporates GR and QFT
(getting to the TOE tip of the cube in Figure 1) forbids us to write a model that would describe
nature in a unified manner. However, only in very extreme conditions is a quantized theory of
gravity necessary and for the most part we can try to describe the microscopic physics behind
the properties of ΛCDM using the SM. The problem is that the SM falls short at describing a
large set of observations which are well below the quantum gravity regime. This is an indication
that, if we want to construct a unified picture, the SM needs to be completed by new physics
Beyond the Standard Model (BSM).

On top of that, quantum field theories and in particular the SM have problems of their own
when stabilizing scales related to elementary scalar masses. The Higgs boson is the excitation of
the scalar field that is responsible for Electroweak Symmetry Breaking (EWSB), the mechanism
that gives masses to SM fermions and massive gauge bosons. Under quantum corrections this
field shows an extreme sensitivity to ultraviolet (UV) physics, i.e. physics at the highest possible
energies. This sensitivity introduces such a degree of arbitrariness in the theory that the value of
the electroweak (EW) scale (QEW , the scale at which EWSB takes place) with respect to other
dimensionful scales (for instance the Planck mass MP , the scale at which gravity needs to be
quantized) appears to be a ‘lucky’ accident (QEW /MP ' 10−16) rather than something predicted
from first principles. This is what is known as the hierarchy problem of the Standard Model.
Actually, the hierarchy problem is not the only problem of this nature in fundamental physics; the
cosmological constant problem (why the measured vacuum energy of the universe is so small?)
is another big hierarchy for which our current understanding of the universe does not provide a
satisfactory explanation. Although a ‘lucky’ accident is not logically excluded, these problems
signal a ‘theoretical discomfort’ that may hint to bigger structures where these coincidences are
explained in a more satisfying manner. The search for new physics beyond the SM based on these
arguments is often dubbed as the naturalness strategy.

Supersymmetry (SUSY) is a space-time symmetry that relates fermions (matter) and bosons
(radiation). In its presence dangerous quantum corrections to scalar masses cancel and there
is a reason to explain QEW � MP , therefore if supersymmetry is realized at a scale which is
not much larger than QEW 1, it elegantly solves the hierarchy problem of the SM. Moreover,
supersymmetric QFT’s not only solve possible hierarchy problems but also unify the concepts of
matter and radiation by grouping them as part of the same structure. As a sign of this SUSY
has deep roots in String Theory, the best candidate that we have so far for a TOE.

However, for now supersymmetry has failed to pass experimental scrutiny and the world we
are able to test looks non supersymmetric. SUSY (along with any other standard BSM proposal)
does not appear as LHC pushes the scale that we probe to higher and higher values, hence, one
is left with the question of what is the mechanism that stabilizes the EW scale after all. Also,
the Higgs boson further increases the tension between SUSY and naturalness; with a mass of
125 GeV and couplings to other particles that are perfectly consistent with that of the SM, the

1If the masses of the supersymmetric copies of SM particles (superpartners) are not very heavy.
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Higgs boson pushes the spectrum of superpartners towards even heavier masses than the current
experimental limits 2. In particular the Minimal Supersymmetric Standard Model (MSSM), the
most economic formulation of a supersymmetric SM, is only able to fit the observed Higgs mass
in extreme corners of its parameter space or with a very heavy spectrum of superpartners.

The absence of low energy signals and such an ‘unnatural’ Higgs mass have led some physi-
cists to believe that maybe the answer to the hierarchy problem is not based on symmetries or
new dynamics (bigger structures), but rather on environmental considerations. This would very
roughly mean that the value of the EW scale is determined by probability and we just happen
to live in a universe with observers (us) that are able to measure it. To embrace the latter as a
solution (or answer) to the hierarchy problem is to take an alternative path to the naturalness
strategy, which is very much related to the reductionist approach, that has brought physics so
much success.

Figure 2: Depiction of the crossroads in which SUSY phenomenology has entered after the first
run of LHC. With limits on supersymmetric particles getting to the ∼ 1 TeV mark and a Higgs
mass that is ‘heavy’ and difficult to encompass with minimal versions of supersymmetry, one
has to give up either on minimality/simplicity or on naturalness, the two driving principles for
supersymmetric model building during the last few decades.

Even if SUSY fails to solve the hierarchy problem of the SM, it still represents a step forward
in the search for the unification of physical laws. In addition, its realistic particle physics imple-
mentations have very good phenomenological properties beyond solving the hierarchy problem.
Thus, if we believe that SUSY is interesting enough and consider that it has to be realized in
nature regardless of its position as a solution to the hierarchy problem, we are left with the
situation depicted in Figure 2. A 125 GeV Higgs plus the absence of supersymmetric signals at
LHC means that:

• Maybe the universe is indeed supersymmetric but at energy scales (distances) so large
(so small) that LHC will not be able to probe it. In this case the EW scale is fixed by
environmental considerations or non standard mechanisms that do not follow the usual
naturalness strategy.

2If we consider natural a theory where the EW scale has no hierarchy problem, the heavier the superpartners
are, the less natural the theory is.
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• Maybe low-energy SUSY is indeed present but the version of supersymmetry that nature has
chosen is not the simplest (more minimal) possibility and we need to consider models beyond
the MSSM. This is not a very unreasonable option since the MSSM actually represents only
a small fraction of the SUSY theory space.

The situation is such that making a decision is unavoidable. Either we give up on naturalness
and focus on solving other problems, or we give up on minimality and try to come up with non
minimal supersymmetric extensions of the SM that could ameliorate the tension between SUSY
and naturalness.

The work presented in this thesis follows from making the choice to stick with naturalness
and give up on minimality. We first analyze in detail the consequences of the Higgs discovery for
minimal versions of SUSY theories and then, after concluding that the Higgs mass is difficult to fit
naturally in the MSSM, we elaborate on the construction and properties of the Supersymmetric
Custodial Triplet Model (SCTM). The SCTM is an extension of the MSSM which features a
Higgs sector with three extra SU(2)L triplets of chiral superfields that will generate new tree
level contributions to the Higgs mass. Thus allowing to accommodate the observed 125 GeV
value without having to give up on naturalness.

Plan of the thesis

We will first set the grounds on Chapters 1 and 2, where we provide a brief overview of some of
the topics needed to understand the rest of the thesis. In the former we introduce the Standard
Model and some of its features, in particular the process by which the electroweak symmetry is
spontaneously broken but also the custodial symmetry of the Higgs sector. After that, we moti-
vate the need for BSM physics by listing some of the SM shortcomings, with special focus on the
hierarchy problem. In Chapter 2 we introduce supersymmetry and the minimal supersymmetric
generalization of the SM (the MSSM); we also comment on how low-energy supersymmetry solves
the hierarchy problem.

The rest of the chapters are devoted to the presentation of the original research done by
the author and collaborators (Luis Cort, Antonio Delgado, Stefania Gori, Bryan Ostdiek, Jose
Santiago, Mariano Quirós, Roberto Vega, Roberto Vega-Morales and Tien-Tien Yu) on model
building and the phenomenology of supersymmetric theories.

In Chapter 3, which is based on [3], we perform a thorough study of the consequences that
the Higgs discovery has had on supersymmetric theories, in particular we focus on the MSSM an
use the analysis to vindicate the naive depiction of Figure 2. As a consequence of this, we choose
to stick with naturalness and try to come up with a model that could fit the experimentally
measured Higgs mass without the need to go to extreme corners of the parameter space, or have
very heavy superpartners. In our search for a model with such characteristics we find the SCTM,
which we introduce in Chapter 4 only at tree level to analyze the interesting SU(2)L⊗SU(2)R →
SU(2)V invariant structure. This chapter is based on [4]. In Chapter 5 we discuss how loop
corrections modify the naive tree-level picture and propose a SUSY breaking mechanism in which
the SCTM can be embedded. Once the UV completion is defined we can calculate realistic
spectrums and the corresponding modifications to Higgs observables. We comment on the non
standard phenomenology associated to these benchmark scenarios and end with a summary of
the properties that the realistic realizations of the SCTM will show at the EW scale. This chapter
is based on References [5] and [6].
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The next Chapters are devoted to the study of features of the SCTM which are relevant for
cosmology. In Chapter 6 we look at the neutralino Dark Matter (DM) properties of the model
and find new ways of generating the correct relic abundance together with possible ‘blind spots’
in the direct detection cross sections. This chapter is based on [7]. Chapter 7 is based on [8]. In
it we study the properties of the EW phase transition in the SCTM and analyze its viability for
an Electroweak Baryogenesis (EWBG) scenario.

Finally, in Chapter 8 we study the collider consequences of the model which, as we will
motivate along the rest of the work, are very important to probe its non standard features. This
chapter is based on [9].

Disclaimer

By the time this thesis is being written some of the results presented are a few years old. The
experimental input may (or may not) have changed with the release of LHC’s early 13 TeV data.
However, even if some bounds need to be updated, it is not going to be (yet) of great relevance
for the overall picture that we present.

It is rare that results in theoretical particle physics can get outdated within the year, let this
act as a testament of how exciting are these times in the field.
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Part I: Particle physics in the LHC era





1
The Standard Model of particle physics

The Standard Model of particle physics, our current understanding of the tiniest scales to be
probed at experiment, is a quantum field theory that describes three of the four fundamental
forces, the Strong and Weak forces and the Electromagnetic force. It is formulated as a gauge
theory, a type of field theory in which the Lagrangian is invariant under a continuous group
of local transformations. We use gauge theories as a way of describing interactions between
elementary particles.

In the first section of this chapter we construct the SM Lagrangian by determining its gauge
group and the particle content, we then describe in detail the process by which the electroweak
symmetry is broken and the gauge bosons become massive (Sec. 1.2). In Section 1.3 we look at
the custodial symmetry of the Higgs sector that, as we will see, is of great relevance for the work
that we present. Finally, we summarize the shortcomings of the MSSM with particular focus on
the hierarchy problem (Sections 1.4 and 1.5 respectively). Note that this chapter is solely based
on a series of books, reviews and articles and is by no means a thorough introduction suitable
for the unexperienced. For more complete and pedagogical references we refer the reader to
Refs. [10, 11].

1.1 Particle content and Lagrangian

The Standard Model gauge group is

GSM ≡ SU(3)C ⊗ SU(2)L ⊗ U(1)Y , (1.1)

where SU(3)C describes the strong force of Quantum Chromodynamics (QCD) and SU(2)L ⊗
U(1)Y is the group of the Electroweak theory, which is responsible for the Weak and Electro-
magnetic forces. After EWSB the latter gets broken to the U(1)QED that describes Quantum
Electrodynamics (QED), leaving at low energies SU(3)C ⊗ U(1)QED (see Sec. 1.2).

A direct consequence of imposing a gauge symmetry is the appearance in the spectrum of new
massless spin-1 degrees of freedom (DOF’s) that transform in the adjoint representation of the
gauge group, these are called gauge bosons and they are the carriers of the force that is described
by the gauge group. The particle content of the theory is completed after the matter fields
and their transformation properties under the gauge symmetry are specified, for the Standard
Model, these are listed in Table 1.1, where we also write the transformations under the space-time
symmetries (Lorentz group).
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Chapter 1. The Standard Model of particle physics

Name Fields SU(3)C SU(2)L U(1)Y SL(2,C) Spin

Gluons GA 8 1 0 (1
2 ,

1
2) 1

W -bosons W a 1 3 0 (1
2 ,

1
2) 1

B-boson B 1 1 0 (1
2 ,

1
2) 1

Quarks qiL 3 2 1
6 (1

2 , 0) 1
2

uiR 3 1 2
3 (0, 1

2) 1
2

diR 3 1 −1
3 (0, 1

2) 1
2

Leptons liL 1 2 −1
2 (1

2 , 0) 1
2

eiR 1 1 −1 (0, 1
2) 1

2

Higgs H 1 2 1
2 (0, 0) 0

Table 1.1: SM particle content. On top are described the Gauge bosons: GA’s (A = 1, . . . , 8),
W a’s (a = 1, 2, 3) and B, these last two will mix after EWSB to give rise to the massive W± and
Z and the photon. Below we have the matter fields: quarks and leptons, the i index runs over the
three families of fermions present in the SM. At the bottom of the table lies the Higgs, the field
responsible for the breaking of the electroweak symmetry.

Once the particle content and the gauge group are set we can write the most general La-
grangian that is compatible with both internal (gauge) and space-time symmetries,

LSM = LGauge + LFermions + LHiggs . (1.2)

The gauge part of the Lagrangian features

LGauge = −1

4
GAµν

(
GAµν − θ3

α3

4π
G̃Aµν

)
− 1

4
W a
µν

(
W aµν − θ2

α2

4π
W̃ aµν

)
− 1

4
Bµν

(
Bµν − θ1

α1

4π
B̃µν

)
, (1.3)

where αi = g2
i /(4π) and the field strength tensor F aµν = ∂µA

a
ν − ∂νAaµ − gjεabcAbµAcν , with its

dual F̃µν = εµνρσFρσ/2. The θi proportional terms are set to zero, in particular θ3 is bounded to
be really small, otherwise it will generate an amount of CP violation in the QCD sector that is
excluded experimentally (Sec. 1.4).

The fermionic kinetic terms are,

LFermions = Ψ̄iγµDµΨ , (1.4)

where the covariant derivative is defined as Dµ = ∂µ− ig′Y Bµ− gW a
µT

a
R− gsGAµ taR. The fermions

are grouped in ΨT = (qiL uiR diR liL eiR) and the i index runs over the three fermion families
of the Standard Model. The matrices tAR and T aR depend on the fermion representation; for the
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1.2. Electroweak symmetry breaking

fundamental representations of SU(3)C and SU(2)L
1 they are given by the Gell-Mann matrices

λA/2 and the Pauli matrices σa/2 respectively, while they are 0 for singlets.

And finally the Higgs part,

LHiggs =
1

2
|DµH|2 +m2|H|2 +

λ

2
|H|4

− q̄iLhdijdjRH − q̄iLhuiju
j
RH̃ − l̄iLheije

j
RH + h.c. (1.5)

The covariant derivative for the Higgs field is defined as Dµ = ∂µ− ig′/2Bµ−gW a
µσ

a, H̃ = iσ2H
∗

and hfij are the Yukawa matrices. For simplicity we omit SU(2)L indices. Dirac masses for
fermions are not possible in the SM without breaking the gauge symmetry, note that through the
Yukawa terms, fermions get masses after EWSB once the Higgs field gets a vacuum expectation
value.

A small note on higher dimensional operators

Above we are considering the SM as a d = 4 renormalizable field theory which does not feature
any input coming from possible new physics at higher scales. A more subtle description of the
SM is given in terms of Effective Field Theories (EFT’s). The SM, as any field theory, can be
though as an effective description of UV dynamics that generate higher dimensional operators.
Therefore, the Lagrangian needs to be completed such that LSM = Ld=4 + Ld>4, where

Ld>4 =
∑
i,d

1

Λd−4
Odi . (1.6)

These higher dimensional operators will always be suppressed by the scale at which they start to
become relevant, which is normally considered the scale of new physics, and their effects can be
used as a somewhat model independent probe of physics beyond the Standard Model, e.g. [12].
The use and study of EFT’s is of great importance in all areas of theoretical physics, for instance,
a description of the hierarchy problem of the SM in terms of an EFT will be given in Section 1.5.
However, we will not go on much further than this on this topic; in this thesis we describe a
specific model of new physics and there is no need to work in a model independent manner.

1.2 Electroweak symmetry breaking

The understanding of the process by which the electroweak symmetry is broken was an interdis-
ciplinary 2 effort and, incontestably, one of the milestones of XXth century physics. It describes
why the gauge structure of the SM follows

SU(3)C ⊗ SU(2)L ⊗ U(1)Y → SU(3)C ⊗ U(1)QED (1.7)

and gives rise to massive gauge bosons, moreover, it is directly related to the Higgs boson and
therefore crucial for the studies carried out in this thesis. We will now try to describe it in detail.

1Which are 3 and 2, since n is the fundamental representation of any SU(N) group.
2The people who contributed to the formulation of EWSB drew concepts and ideas from condensed matter

physics, showing how different natural phenomena that in principle look unrelated can have a very close theoretical
link. As a way of ‘returning the favor’, insights coming from fundamental physics are now being used to develop
new tools that describe the behavior of different materials [13].

11



Chapter 1. The Standard Model of particle physics

As explained above, in the presence of gauge symmetries a set of massless spin-1 DOF’s
appears in the spectrum. Experimentally we do observe massless gauge bosons (the gluon and
the photon) but also massive ones, the ones responsible for Weak interactions (W± and Z). This
is already an indication that something is happening within the theory. Mass terms for gauge
bosons explicitly break the gauge symmetry and one needs a way of giving them masses without
spoiling the gauge structure of the theory. This can be done if instead of doing it explicitly we
break the symmetry spontaneously, i.e. the Lagrangian has the symmetry but the parameters are
such that the ground state of the Hamiltonian is not symmetric. After the process of breaking
one may argue that some terms (for instance, mass terms for gauge bosons) in the Lagrangian
exhibit an explicit breaking of the symmetry, however, this is not the case since the coefficients
of the breaking terms are related by parameters that respect the symmetry. We will now present
this point in more detail after a short comment.

The need to restore unitarity with a Higgs boson

Above we described briefly the somewhat top-down understanding of EWSB, another beautiful
way of looking at this is by taking the bottom-up approach. It is tempting to think that the
left hand side of (1.7) is useless if we end up having another symmetry structure that perfectly
describes low energy physics. Therefore, let us take a Lagrangian that features massive gauge
bosons and only respects the symmetry of the right hand side. If one tries to compute the
scattering of massive gauge bosons (e.g. W+W− →W+W−) what he finds is that the amplitude
loses unitarity at some point and new degrees of freedom need to come in to restore it. This is
precisely the role of the Higgs in this picture, it is though as the DOF that prevents the theory
to break down more than the DOF that triggers EWSB. For a great pedagogical discussion see
Section 2 of Ref. [14].

Spontaneous symmetry breaking

When we say that a theory is invariant or symmetric under a certain transformation we usually
mean that the dynamics of the theory respect the symmetry and that there are observables which
are invariant under those transformations too. However, it is possible that a symmetry is only
respected at the level of the dynamics, with some observables breaking it. In this case one says
that the theory is symmetric but the vacuum breaks the symmetry, this phenomenon is known as
Spontaneous Symmetry Breaking (SSB) and it is precisely what happens in the Standard Model,
where the electroweak symmetry is ‘hidden’ at low energies.

As a first example of SSB let us take a classical field theory which features a complex scalar
field transforming non trivially under a global U(1) symmetry (φ→ e−iqθφ)

L = −∂µφ†∂µφ−m2φ†φ− 1

4
λ(φ†φ)2 . (1.8)

If m2 < 0 the potential takes a mexican-hat shape (Fig. 1.1), therefore having a continuum of
degenerate vacua given by

φ =

√
2

λ
me−iθ . (1.9)

Where θ is the phase that parametrizes the position in the flat direction.
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1.2. Electroweak symmetry breaking

Figure 1.1: Representation of a spontaneous symmetry breaking potential, ‘the mexican hat’. The
flat direction in field space gives rise to the massless mode, χ, while the radial direction has a U
shaped potential and gives rise to the massive ρ.

For simplicity we choose θ = 0 and note that, when evaluated in the vacuum, the field φ will take
a non zero value

〈0|φ|0〉 =
√

2/λm ≡ v 6= 0 . (1.10)

This is what is called the Vacuum Expectation Value (VEV) and it sets the scale at which the
spontaneous breaking of the symmetry happens. To see how the spectrum is affected let us study
perturbations on top of one of these backgrounds. If

φ(x) =
1√
2

(v + ρ(x))e−iχ(x)/v , (1.11)

then the Lagrangian is

L = −1

2
∂µρ∂

µρ− 1

2

(
1 +

ρ

v

)2
∂µχ∂

µχ+m2ρ2 −
√
λ

2
mρ3 − 1

16
λρ4 . (1.12)

Which describes a massless excitation parametrized by the perturbation of the phase χ and
a massive mode described by ρ. χ corresponds to the Nambu-Goldstone (NG) mode present
whenever a symmetry is spontaneously broken, a direct consequence of the Goldstone theorem:

‘The number of massless particles (Nambu-Goldstone bosons) is equal to the number of
spontaneously broken generators of the symmetry’

Therefore with a U(1), one broken generator, one massless mode in the spectrum. In the mexican
hat picture χ and ρ correspond to moving in the angular (with zero energy cost, massless) and
in the radial (where the value of the potential changes at every point, massive) directions. This
extends naturally to the non-abelian case. Moreover, the effects of the quantization do not affect
the main results, as the masslessnes of the NG mode holds at the quantum level.
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Chapter 1. The Standard Model of particle physics

SSB of local symmetries: The Higgs mechanism

The situation described above is not exactly what happens when one describes the spontaneous
breaking of a gauge symmetry, which is local instead of global 3. Let us see what happens to the
U(1) toy model if we promote the symmetry to a local one. The Lagrangian is then

L = −(Dµφ)†Dµφ−m2φ†φ− 1

4
λ(φ†φ)2 − 1

4
FµνFµν , (1.13)

where the derivative in the kinetic term has been promoted to a covariant one, Dµ, that introduces
the interaction between the gauge and scalar fields. This potential is minimized for a non-zero
VEV of the scalar field, that we can parametrize as v + perturbations

φ(x) =
1√
2

(v + ρ(x))ei(θ−χ(x)) . (1.14)

As in the global case we can set θ = 0. The Lagrangian is now

L = −1

4
FµνFµν + ∂µρ(x)∂µρ(x) +

1

4
λv2ρ(x)2 +

(v + ρ(x))2

v2
(∂µχ+ vAµ) (∂µχ+ vAµ) . (1.15)

This Lagrangian is explicitly gauge invariant, however we can now use a gauge transformation
to set χ(x) = 0, this is a concrete gauge called unitary gauge. Of course, if we now look at the
Lagrangian

L = −1

4
FµνFµν + ∂µρ(x)∂µρ(x) +

1

4
λv2ρ(x)2 + (v + ρ(x))2AµAµ (1.16)

we see that it is not gauge invariant anymore, this should not be a surprise since we have chosen
a particular gauge. In addition we see that the gauge field has acquired a mass and that the NG
mode has disappeared from the Lagrangian. This is the interesting difference with respect to the
global case, the (apparent) Nambu-Goldstone boson is now non-physical since it can be removed
by the appropriate choice of gauge. The number of degrees of freedom however remains unaltered
compared to the global SSB case since now the gauge field has a mass and therefore an extra
longitudinal polarization mode. The massive mode ρ remains there and cannot be removed by
gauge transformations, this is the Higgs mode and the process by which the NG mode is ‘eaten’
by the vector boson is dubbed the Higgs mechanism.

This U(1) toy model can easily be generalized to the SU(2)L ⊗ U(1)Y of the SM 4, for
concreteness, we choose just to highlight some of the main features of the SM Higgs potential
and SSB mechanism, without getting into too much detail.

The Higgs mechanism in the SM

We now come back to Eq. (1.5) and take a look at the scalar potential of the SM

V (H) = m2|H|2 +
λ

2
|H|4 , (1.17)

3This topic is extremely subtle due to the fact that local symmetries are actually redundancies and cannot
be broken. As we do not deal with these subtleties in this thesis we approach it by using the usual jargon of
spontaneous breaking of gauge symmetries.

4The SU(3)C part of the symmetry remains unaltered after EWSB.
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1.2. Electroweak symmetry breaking

where the Higgs doublet has a structure determined by its quantum numbers,

H =

(
G+

h0 + iG0

)
. (1.18)

To look for the VEV we take the neutral and real part of the potential V (h0) and search for its
minima using the extremal condition ∂V (h0)/∂h0|v= 0 5. Provided that m2 < 0, the values that
satisfy the condition are

〈0|h0|0〉 =
m√
λ
≡ v . (1.19)

v is the electroweak VEV, the order parameter that will give masses to all particles in the SM.
In the presence of the background 〈h0〉 = v, gauge bosons get masses (we say that they ‘eat up’
the goldstone modes and get longitudinal polarizations) through the kinetic terms in Eq. (1.5)
and fermions through the Yukawa couplings, mf = hf v. The value of v is fixed by experiment
so by measuring the masses of fermions we measure the entries of the Yukawa matrix. The Higgs
particle is just a perturbation over the aforementioned background, we parametrize it in the
following manner h0 = v + h/

√
2 and from experiment we know that v = 174 GeV 6.

The Higgs potential of the SM depends only on two parameters m and λ, by the process
of EWSB we are trading these two for v and mh. Since we can determine the value of the
physical Higgs mass by taking the second derivative of the potential, mh = V ′′(h0)|v/2, we can
infer the values of λ and m if we know the mass of the Higgs and the electroweak VEV, v.
From mh = 125 GeV and v = 174 GeV we get that m = 88 GeV and λ ∼ 0.26. After the
Higgs discovery and the determination of its mass, all SM parameters are known. This allows to
extrapolate the theory to higher energies and, provided that there is no new physics below the
scale that is being explored, make interesting predictions, for instance about the nature of the
SM EW vacuum [15].

What happens with the SM gauge symmetry after EWSB?

After the Higgs field gets a VEV the vacuum state of the SM is not invariant under SU(2)L⊗U(1)Y
because T · 〈HT 〉 = T · (0, v)T 6= 0, where T is any of the SU(2)L or U(1)Y generators. The gauge
bosons corresponding to these broken generators are the ones who become massive, W± and Z.
However, (T3 + Y )|0〉 = QQED|0〉 = 0 is a symmetry of the vacuum and so the photon γ remains
massless. This is why we say that SU(2)L⊗U(1)Y is broken to U(1)QED electromagnetism. Just
for completeness, we write the gauge boson mass eigenstates after EWSB

W± =
1√
2

(W1 ∓ iW2) , Z = cθWW3 − sθWB and γ = sθWW3 + cθWB . (1.20)

where θW is the weak angle that rotates from (W3, B) to (Z, γ), sθW = sin θW = g′/
√
g2 + g′ 2

and cθW = cos θW = g//
√
g2 + g′ 2.

5We want only neutral real scalar fields to acquire a VEV, other fields acquiring VEV’s would generate dangerous
breaking of symmetries for which we do not see any e.g. charge, CP, Lorentz symmetry, etc.

6There is another possible normalization where h0 = (v+h)/
√

2 and v = 246 GeV, this one is used in the U(1)
example described above.
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Chapter 1. The Standard Model of particle physics

1.3 SM accidental symmetries and custodial symmetry

The actual structure of the Standard Model shows more internal symmetry than just the gauge
group GSM and the CPT invariance of the Lagrangian. There are a few global symmetries that
are not imposed and for which the SM Lagrangian shows an accidental (full or approximate)
invariance. The presence of this accidental symmetries has interesting phenomenological conse-
quences and it is taken as a guide when constructing models of new physics. We will focus here
on the custodial symmetry of the Higgs sector, however, let us mention the rest as they are also
of great importance in BSM model building. They are the U(1)5 flavor symmetry, which is fully
recovered when Yukawa couplings are set to zero, and the Lepton and Baryon number conserva-
tion, broken by neutrino oscillations and sphaleron transitions respectively, although these last
two features are not present in the standard perturbative formulation of the SM.

The custodial symmetry of the Higgs sector

Let us now present in detail the custodial symmetry that protects the mass relation between the
W± and Z fields

ρ ≡ M2
W

cos θWM2
Z

= 1 , (1.21)

thanks to the following global symmetry breaking pattern

SU(2)L ⊗ SU(2)R → SU(2)V . (1.22)

To make this pattern manifest, we now rewrite the Higgs part of the Lagrangian, Eq. (1.5), in
an SU(2)L⊗SU(2)R invariant manner. In order to do this, we first build an object for which we
know the transformation rules under the global symmetry,

H̄ = (H̃, H) =

(
H0∗ H+

−H− H0

)
. (1.23)

H̄ transforms as a (2L, 2̄R) of SU(2)L ⊗ SU(2)R and we identify Y = T3R
7.

The complex conjugate representation is chosen for the SU(2)R ordering such that H̄ gets a
diagonal form after EWSB, this is why the SU(2)V is often called the diagonal subgroup, one
could also write (2L,2R) and get the same result although maybe the symmetry breaking pattern
would be less manifest. The SU(2)L is gauged, it corresponds to the usual SU(2)L group and acts
on the components of H and H̃, the SU(2)R part acts on H̄, considering the SU(2)L doublets H
and H̃ as components of an SU(2)R structure 8. This reasoning will also be applied in Chapter 4
to build ‘bitriplets’.

The Higgs Lagrangian in terms of this ‘bidoublet’ H̄ is

LHiggs =
1

2
(DµH̄)†(DµH̄) +m2 tr [H̄†H̄] +

λ

2

(
tr [H̄†H̄]

)2
, (1.24)

7It may seem that we used Y = −T3R but remember that when writing the complex conjugate of a triplet the
generators change and T3R(n̄) = −T3(n).

8See Appendix A.1 for further information.
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1.3. SM accidental symmetries and custodial symmetry

where hij → 0 and g′ → 0. We set these parameters to zero because U(1)Y and the Yukawa
couplings are the two sources of explicit SU(2)L ⊗ SU(2)R breaking in the SM potential, in
particular the top Yukawa will provide the main effect because of its relative size to the others 9.

After EWSB H̄ gets a VEV and

〈H̄〉 =

(
v 0
0 v

)
, (1.25)

thus, provided that the parameters of the SU(2)L,R transformations (UL,R = exp {iθaL,Rσa/2})
are equal (θL = θR), the symmetry is broken by the vacuum to SU(2)L+R ≡ SU(2)V . This is
what we call the custodial symmetry 10.

The relation (1.21) is experimentally measured to a very good degree and large discrepancies
to the ρ = 1 picture are not expected. At tree level, the SM features ρ = 1 automatically, however,
it is not ensured in the presence of extended Higgs sectors that feature SU(2)L representations
beyond the doublet if these acquire sizeable VEV’s after EWSB. Imposing a symmetry breaking
pattern such as that of Eq. (1.22) can be of great help when trying to build models with extended
Higgs sectors as it will keep ρ = 1 at tree-level automatically (see Chap. 4).

The benefits of custodial symmetry do not stop at tree level, it also acts as a shield to
dangerous loop contributions that could spoil the ρ = 1 relation, hence the name ‘custodial’. Let
us investigate this in more detail by considering radiative contributions to ρ,

αT ≡ ∆ρ =
ΠZZ(0)

m2
Z

− ΠW±W±(0)

m2
W

, (1.26)

where Πii(0) are contributions to the self energy of gauge bosons. αT is actually one of the Peskin-
Takeuchi parameters [16], a set of observables that constrain the appearance of new physics in the
electroweak sector by using measurements of different Πii(0)’s. Deviations from the relation (1.21)
will be parametrized as ρ = 1 + αT .

We now get rid of hypercharge impurities (g′ → 0) to continue with the argument, then

αT =
ΠW 3W 3(0)−ΠW±W±(0)

m2
W

. (1.27)

Since it is made out of W boson self energies the T -parameter can be though of as being a
spurious field that transforms in the (3L⊗3L), with the following decomposition into irreducible
representations: 1⊕3⊕5, and with αT sitting in the 5 irrep. If θL = θR, the custodial SU(2)L+R

is a symmetry of the vacuum, thus forbidding anything but a singlet from getting a VEV, i.e.
αT will be exactly zero and Eq. (1.21) will also hold at loop level. Since g′ and the Yukawa
couplings break explicitly SU(2)L ⊗ SU(2)R, SU(2)V will not be an exact symmetry of the
vacuum and αT will get non zero values. We can consider the T -parameter as the measure of the
custodial breaking that a theory suffers. Models of new physics can introduce new contributions
to custodial breaking beyond g′ and ht that will show up in αT , spoiling the ρ = 1 relation.

9Note that if hu = hd one could write (uR, dR) as a 2 of SU(2)R and we would have an enhanced custodial
symmetry, however, this is not the case and the Yukawa sector is a source of custodial breaking.

10Often ‘custodial’ refers to both the global SU(2)L⊗SU(2)R symmetry and the SU(2)V subgroup interchange-
ably. We will explicitly distinguish between them since the custodial symmetry is a symmetry of the gauge boson
mass matrix and thus it is only well defined at the EW scale, while the global SU(2)L⊗SU(2)R can in principle be
imposed at any scale. This point will be of great importance in the study of the SCTM as we will see in Chapter 5.
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Chapter 1. The Standard Model of particle physics

1.4 Open puzzles in fundamental physics

Let us now motivate extensions of the Standard Model by listing some of the puzzles in funda-
mental physics for which the SM has no explanation. These problems can be classified as being
data driven or theoretical suggested.

Data driven

As successful as the SM is, it is not able to give an explanation to a number of experimental
results.

• Neutrino masses: The observation of neutrino oscillations is an indication that neutrinos
have a non zero mass. In the the renormalizable version of the SM no mass for neutrinos
can be accommodated, however, if we consider higher dimensional operators, a d = 5 term
that generates Majorana masses for the neutrinos via see-saw mechanism can be added to
the Lagrangian. In order to generate the correct neutrino masses, the appearance of such
a higher dimensional operator is probably tied to new physics at ∼ 1015 GeV.

• Dark Matter: Astrophysical (e.g. galaxy rotation curves) and cosmological (e.g. structure
formation) observations reveal the presence of an extra contribution of matter to the energy
budget of the universe that cannot be accounted for with SM particles. Thus far, the only
evidence of this extra contribution is gravitational however, unless one changes radically the
cosmological evolution determined by the very successful ΛCDM, it seems that the answer
to the dark matter problem lies within particle physics beyond the Standard Model. In the
form of a neutralino LSP, the SCTM can offer a viable DM candidate (see Chapter 6).

• Matter antimatter asymmetry: The baryon asymmetry of the universe (the imbalance be-
tween baryonic and antibaryonic matter) needs a microscopic mechanism that explains it.
Both Leptogenesis and Electroweak Baryogenesis, the only mechanisms constructed up to
now which are successful, cannot rely only on SM dynamics and one needs to go beyond.
The SCTM offers an interesting avenue to construct successful EWBG models, we study it
in Chapter 7

• Inflation: It is now well established (although not 100% experimentally confirmed) that
the early universe went through a period of inflationary expansion after which structure
was generated from initial quantum perturbations. If not, one would need satisfactory
answers to the flatness and horizon problems that inflation solves elegantly. As elegant as
the cosmological point of view is, it still lacks a microscopic picture that explains it. The
SM, even if it looks like it could do the job in a very minimal way, fails to provide a good
inflaton 11 candidate [17].

Theoretically suggested

Besides not being able to explain some experimental results, the SM gives reasons for ‘unease’.
These are not a clear indication that there ‘must’ be something else (and therefore not at the
same level as the items described above), but rather a suggestion that the different features of

11The scalar field that drives inflation.
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the SM that look ad-hoc are pointing towards a bigger structure, where arguments based on
symmetries or new dynamics can give satisfactory answers.

• Fermionic structure: The top quark couples to the Higgs field with O(1) strength while the
other fermions of the SM couple very weakly, on top of that, the Yukawa matrices for quarks
seem to follow a hierarchical structure with no explanation whatsoever (Yukawa couplings
are determined from experiment by measuring the masses of the different fermions in the
SM). Where does this structure comes from? Also, leptons are parametrically lighter than
quarks, why would that be?

• Gauge couplings: By extrapolating to higher energies the gauge couplings corresponding to
the GSM structure of the SM, one finds an approximate unification at ∼ 1015 GeV that could
be interpreted as a hint of a bigger group where GSM ⊂ GGUT. A unified group structure
will also give an explanation as to why anomalies cancel in the SM.

• Strong CP -problem: The absence of CP -violation in QCD has been tested to great accuracy
via measurements of the electric dipole moment of the neutron. Nevertheless, the gauge
part of the SM Lagrangian (Eq. (1.3)) contains a term which can be a source of CP -violation
unless it is tuned θ3 ∼ 0. One is allowed to set this parameter as small as it needs to be,
however, since in principle there is no reason for it to be zero (no symmetry protecting it,
see Sec. 1.5) one is left with the question of what makes it so small. The Peccei-Quinn
mechanism solves the strong CP -problem by means of a spontaneously broken symmetry,
in addition it predicts an extra particle, the Axion, that can be a good DM candidate.

• Cosmological constant: The accelerated expansion of the universe can be accounted for by
adding a vacuum energy term in the Lagrangian which is measured to be Λ4

CC ∼ 10−47

GeV4 . However, in a similar manner to what happens with the Higgs mass (see Sec. 1.5),
its natural value is Λ4

CC ∼ M4
P ∼ 1076 GeV4. This represents an enormous fine-tuning of

about 129 orders of magnitude, even bigger than that of the Higgs mass, which has found
no compelling solution yet. Only Weinberg was able to derive an upper bound (actually
very close to the measured value) by considering anthropic arguments, i.e. the cosmological
constant has to have the right value so we are able to measure it [18].

• Hierarchy problem of the SM: The hierarchy problem of the Higgs mass (or in a more
general way, why is the EW scale much smaller than the Planck mass) is the only puzzle of
the SM that points towards new physics at the TeV scale and it is central to the development
of this thesis. We will further elaborate on it and naturalness arguments in general in the
next Section (Sec. 1.5).

1.5 The hierarchy problem and naturalness

Let us first define the naturalness paradigm that we want our theory of the Weak interactions to
fulfill:

‘The EW scale scale should be insensitive to quantum effects from physics
at much Higher scales’
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The SM fails to confront this, elementary scalar masses such as the Higgs show an extreme sen-
sitivity when coupled to heavy degrees of freedom. When computing radiative corrections to the
Higgs mass generated by new heavy DOF’s, a huge fine-tuning between Lagrangian parameters
and counterterms is required in order to keep the mass of the Higgs light. By fine-tuning we
mean the miraculous cancellation that makes a− b = c hold while a, b� c. As explicitly showing
this cancellation is subtle since it depends a lot on the choice of regulator and renormalization
scheme, we rather present the problem in a Wilsonian approach by using effective field theory.

The SM as an EFT and quantum corrections to scalar and fermion masses

The SM as a renormalizable theory that is valid all the way up the UV does not have a hierarchy
problem per se, it is only when we consider that the Higgs is coupled to new physics above the
EW scale that it appears. However, with no direct signs of BSM physics that couple to the
Higgs sector, is it reasonable to consider the SM as an EFT? There is overwhelming experimental
evidence for BSM already at the particle physics level (see Sec. 1.4). Moreover, even if we think
that every problem of the SM is solved by dynamics that do not couple to the Higgs and therefore
do not generate dangerous loop contributions, we will always end up having to deal with gravity,
i.e. graviton loops, at MP

12. This is why it is very reasonable to consider the SM as an EFT.

Figure 1.2: Depiction of how the SM looks like when regarded as an EFT. The shaded region is
the range of validity of the EFT, the full Lagrangian is the d = 4 renormalizable Lagrangian +
higher dimensional operators generated by new dynamics beyond Λ.

Once we consider the SM as an effective theory we generate a physical cutoff Λ that represents
the scale at which the EFT breaks down and new dynamics need to enter to explain the observed
phenomena, see Fig. 1.2. This allows to compute corrections to the masses of different particles
and get an explicit dependence on the scale of new physics without having to specify a concrete

12This is true provided that our current understanding of the Planck mass as a UV cutoff for the low energy
field theory description holds. It may happen that MP is not as related to field theory as we think, then, in the
absence of new physics below MP and considering that the field theoretical description breaks down above, the
Higgs mass will not suffer a hierarchy problem [19].
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UV completion. We do so by using a regulator that introduces the cutoff in a sharp manner so
that the dependence on it is explicit. We first consider corrections to fermion masses. Take for
instance one of the SM fermions and consider the diagram depicted in the left panel of Figure 1.3,
which is generated by the kinetic term for fermions in the SM Lagrangian, Eq. (1.4). A gauge
boson generates a loop and therefore a correction to the mass of the fermion,

δmf ∼ mf log

(
Λ

mf

)
. (1.28)

Note how the correction to the fermion mass is proportional to itself. This is the key point, if
the mass is zero at tree level no mass is generated radiatively. In this case we say that the mass
is protected by a symmetry, the chiral symmetry that is recovered when fermion masses are set
to zero,

ψ → γ5ψ , ψ̄ → −ψ̄γ5 . (1.29)

Something similar happens for vector bosons whose masses are protected by the gauge symmetry.

Figure 1.3: Left: Generic correction the mass of a SM fermion generated by gauge bosons. Right:
Correction to the SM Higgs generated by one of the SM fermions.

Now we consider the correction to the mass of the Higgs which is shown in the right panel of
Fig. 1.3 and is generated by a Yukawa type term y ψ̄ψh as those of (1.5),

δm2
h ∼ y2Λ2 . (1.30)

Here the correction is not proportional to the mass and even if we set it to zero at tree level a
mass of the order of the cutoff is generated through loops. No symmetry arises if we set the mass
of the Higgs to zero so no symmetry protects it from becoming as heavy as Λ (see Figure 1.2).
This is in agreement with the naturalness criterion proposed by ’t Hooft [20]:

‘At any energy scale, a physical parameter a is allowed to be very small only if the replacement
a = 0 would increase the symmetry of the system’

Which is followed in the SM by fermion and gauge boson masses while it does not by the Higgs
mass, i.e. the Higgs mass is unnatural.

With this in mind, it is important to stress that the hierarchy problem does not break the
consistency of the SM as the absence of a Higgs would (see Sec. 1.2). The correct Higgs mass can
be fitted after the renormalization procedure by adding counterterms to the Lagrangian such that
the large loop contributions cancel. However, how large are the cancellations needed between
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different Lagrangian parameters to keep mh ∼ QEW ? For instance, if we take the cutoff of the
effective theory to be Λ = MP , the cancellations must be of the order of one part in 1032. Just
to put things in perspective, the degree of accuracy needed for these to happen is similar to that
of trying to balance a pencil on its tip where the tip is one millimeter wide and the length is
roughly the diameter of the solar system 13!

Of course, such degree of fine-tuning is unsettling. In fact it is so unsettling that it has been
the main motivation for constructing BSM theories during the last decades and it is the reason
why one expects new physics to appear in the (now in his second run) LHC. Every other SM
problem could be solved by new physics at a scale out of the current experimental reach, however,
common solutions to the hierarchy problem predict new physics at or just above (∼ 1 TeV) the
EW scale.

Standard and new solutions to the hierarchy problem

To stabilize the EW scale one can:

• Lower the cutoff of the effective SM so that the hierarchy between Λ and mh is mild enough
(see Figure 1.2). This is the case of theories which feature extra dimensions or consider the
Higgs as a composite particle, both can be related through the AdS/CFT correspondence
and are usually classified as strongly coupled proposals for solving the hierarchy problem. In
particular the composite Higgs idea is a variation of the strong symmetry breaking paradigm
that interpolates between Technicolor theories and the Higgs model. Inspired by the chiral
symmetry breaking of QCD, one can obtain a scalar boson naturally lighter than the other
resonances belonging to the strong sector if it emerges as the pseudo Nambu-Goldstone
boson of an enlarged global symmetry breaking pattern [14, 22] 14. At low energies the
composite Higgs will almost look as an elementary one so the theory will be able to satisfy
electroweak precision tests. Concerning the hierarchy problem the situation is really similar
as to what it happens in QCD with the pion, corrections to its mass are saturated at the
scale where the pion decays (fπ ∼ 130 MeV). The same thing will happen here, a scale
(f > v) at which corrections to the Higgs mass saturate is set, depending on how much
difference between scales we have (roughly ξ = v/f), the amount of tuning needed can be
considered natural or not.

• Introduce a new symmetry such that large radiative contributions cancel out, the paradigm
of that being supersymmetry. One advantage of SUSY with respect to other proposals is
that it robustly solves the hierarchy problem without UV sensitivity, once present, scalar
masses will be protected against dangerous loop corrections up to MP . While compositeness
solves the hierarchy f/QEW, it does not give an answer to what might happen between f
and MP . We will further discuss supersymmetric theories and the solution they provide to
the hierarchy problem in Chapter 2 (Sec. 2.5).

During recent years and due to the absence of BSM signals at colliders, solutions who do not
follow the common strategies have been explored. One recently proposed possibility is that the

13This analogy is taken from [21], a very interesting reference where these topics are discussed.
14Note that ‘pseudo’ comes from the fact that this enlarged global symmetry will be explicitly broken by couplings

between the strong and the elementary sector. Due to this, radiative corrections will generate a non vanishing
mass for the normally massless Nambu-Goldstone bosons.

22



1.5. The hierarchy problem and naturalness

EW scale (the Higgs mass) is fixed dynamically in the early universe [23], also, motivated by the
success of the anthropic arguments that Weinberg used to derive the bound on the cosmological
constant, some effort has been thrown into explaining the smallness of the EW scale and the
different hierarchies between fundamental constants through the notion of the multiverse and
the landscape of vacua in string theory (for a review see Ref. [24]). Another interesting class of
solutions is that of neutral naturalness, where the top partners associated to the introduction of
new physics are color ‘neutral’ (not charged under SU(3)C) and their collider bounds are greatly
reduced. The best known realization of the latter is the twin Higgs model [25].
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2
Supersymmetry and the MSSM

In this chapter we introduce the paradigm of supersymmetry, whose nature beyond that of a
mathematical entity is yet to be confirmed. In the first section of the chapter (Sec. 2.1) we
present the concept of SUSY and its most interesting theoretical features. Then, in Sections 2.2
and 2.3 we briefly detail N = 1 supersymmetric field theories in d = 4 dimensions in order to
build realistic supersymmetric generalizations of the SM. We introduce the MSSM in Section 2.4,
paying particular attention to the way in which EWSB is achieved and to the features of its Higgs
sector. We also discuss the solution to the hierarchy problem that SUSY provides (Sec. 2.5) and
some extra phenomenological consequences of building supersymmetric extensions of the SM
(Sec. 2.6). As with the previous chapter, we do not pretend to make an in depth dissertation
about supersymmetry as there is plenty of literature discussing these topics in a more pedagogical
manner [26–29].

2.1 What is supersymmetry?

Supersymmetry maps particles and fields of integer spin (bosons) into particles and fields of half
integer spin (fermions) and viceversa

Q |boson〉 = |fermion〉 and Q̄ |fermion〉 = |boson〉 . (2.1)

Since it changes the spin of the particle (hence, its space-time properties) it is a space-time
symmetry. When introducing SUSY, the usual space-time Poincaré invariance of the theory is
extended with fermionic generators that together with the bosonic ones form the Superpoincaré
algebra. The bosonic generators are the usual ones

Mµν → Lorentz group and Pµ → translations , (2.2)

where within the Lorentz group we have: boosts (ki = M i 0) and rotations (Ji = εimnM
mn).

The fermionic generators are

QAα , Q̄
A
α̇ (2.3)

Where α are two component weyl spinor indices and A is an index that runs over the number
of fermionic generators, i.e. the number of supersymmetries. The commutation relations with
other generators are the following

[Q,Pµ] = 0 , [Q,G] = 0 and [Q,Mµν ] 6= 0 . (2.4)
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Q commutes with translations and quantum numbers given by internal symmetries such as gauge
or global symmetries 1, it does not with Lorentz generators. What this means is that in a
theory where SUSY is exactly realized, particles with different spin will be classified into (su-
per)multiplets with common mass and quantum numbers.

Formal motivations for supersymmetry

From a purely theoretical point of view there are a few arguments which should be able to
convince ourselves that the study of SUSY theories is an avenue worth being pursued.

• Up to now, the path of understanding physical laws has always pointed towards unification.
The formulation of the Standard Model, which describes in a unified way all known non-
gravitational interactions, is the greatest accomplishment of this strategy. By relating
bosons and fermions supersymmetry provides a unified description of radiation (particles
which are force carriers) and matter. It is therefore reasonable to think that SUSY looks
like a really natural framework where to formulate a theory that is able to describe all
known interactions in a unified way.

• Through the Haag-Lopuszanski-Sohnius extension [30] of the Coleman-Mandula theorem [31]
(which does not include fermionic generators in the Poincaré algebra) we know that the
most general continuous symmetry group allowed by the S-matrix is

Superpoincaré ⊗ Internal symmetries

Which is precisely what a SUSY quantum field theory features. Maybe nature has realized
all possible kinds of allowed symmetries?

• Finally, space-time supersymmetry is a prediction of String Theory, the best candidate for
a theory of everything we have so far.

While all three arguments point towards SUSY as probably being realized in nature, they do not
tell us anything about the scale at which this should happen, we might just happen to live in a
universe that features supersymmetry but at such small distances that we will never be able to
tell it.

2.2 N = 1 supersymmetric field theories

Although one can have several supersymmetries 2 for almost all phenomenological purposes one
only deals with theories which realize only one, N = 1. The MSSM is constructed as the most
economic N = 1 extension of the SM so in order to describe it in detail, let us first briefly
introduce the formulation of N = 1 supersymmetric field theories.

1Actually, some particular internal symmetries (e.g. R-symmetries, which are relevant for the study of SUSY
breaking) do not commute with Q.

2Note that there are limits on the maximum number possible which come from the maximum spin that is
allowed for local interacting theories. The reason is that any supermultiplet contains particles with spin as large
as (1/4)N , therefore to describe gauge theories with maximal spin-1 we can have N = 4 at most, whereas we can
have N = 8 for theories that incorporate gravity and have maximal spin-2 (supergravities).
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The superfield formalism

In SUSY theories one does not deal with single particle states but with supermultiplets of particle
states with common mass and quantum numbers but different spin. It is for this reason that a
Lagrangian written in terms of single particle states will not feature manifest supersymmetry.
In order to make supersymmetry manifest, one needs to construct a framework where supermul-
tiplets are mathematical entities whose transformation properties under all symmetries are well
defined. In the N = 1 case this framework is the superfield formalism that we now introduce.

The first step is to enlarge the usual space-time coordinates xµ to include anti-commuting
Grassman coordinates (θα, θ̄α̇) which are associated with the fermion generators (Qα, Q̄α̇), this
enlargement is a direct consequence of extending the Poincaré symmetry. We call this the super-
space

(xµ, θα, θ̄α̇) , (2.5)

and it is just a trick to make the properties of supersymmetry more transparent. A field in the
superspace is dubbed a superfield and it is a function of the variables in (2.5), Y = Y (x, θ, θ̄).
Since θα and θ̄α̇ anticommute, any product of more than two θ’s or two θ̄’s will vanish. Hence,
the most general superfield has the following form

Y (xµ, θ, θ̄) = f(x) + θ ψ(x) + θ̄ χ̄(x) + θθm(x) + θ̄θ̄ n(x) +

+ θσµθ̄ vµ(x) + θθ θ̄ ρ(x) + θθ θ̄θ̄ d(x) . (2.6)

Note that each of the terms is a Poincaré transforming field, this shows that a superfield is just
a collection (a multiplet) of ordinary fields.

The construction of actions invariant under supersymmetry will provide further constrains on
the form of the superfields. Supersymmetric invariant actions are constructed by integrating in
superspace a suitable defined superfield, this is because∫

d4x d2θ d2θ̄ Y (x, θ, θ̄) (2.7)

is a supersymmetric invariant quantity when Y is a superfield. We can thus construct products
of superfields Y =

∏
i Yi

3 which should give rise upon integration in superspace to a Lagrangian
density that is real, dimension four and that transforms as a scalar density under Poincaré
transformations,

S =

∫
d4x d2θ d2θ̄ Y(x, θ, θ̄) =

∫
d4xL(φ(x), ψ(x), Aµ(x), . . . ) . (2.8)

Actually this last point is automatic, if the action is constructed in this way we can guarantee
that the Lagrangian in the right hand side of the equation is Poincaré and supersymmetric
invariant. We just have to make sure that Y is constructed in such a way that the realness and
dimensionality are correct and that the given internal symmetries are also respected.

The superfield Y is in general a product of superfields that cannot be the basic object to
construct invariant actions, i.e. it is not an irreducible representation of the supersymmetry
algebra. By imposing supersymmetric invariant constrains we can restrict the form of Y while
making sure that the resulting object is still a superfield and hence a representation of the SUSY

3A product of superfields is a superfield.
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algebra. Two of these constrains are very important to construct realistic particle models and
will result in the definition of chiral and vector superfields, these are the objects where the matter
(chiral) and radiation (vector) of the SM are embedeed.

A chiral (anti-chiral) superfield Φ is a superfield such that

D̄α̇Φ = 0 (DαΨ = 0) , (2.9)

where D̄α̇ = ∂̄α̇ + i θβσµβα̇∂µ (Dα = ∂α + i σµ
αβ̇
θ̄β̇∂µ). Note that if Φ is chiral Φ̄ is anti-chiral and

thus chiral superfields are not real. Once the constrain is applied to (2.6) the form of a chiral
superfield is

Φ(x, θ, θ̄) =φ(x) +
√

2θψ(x) + i θσµθ̄∂µφ(x)− θθF (x)− i√
2
θθ∂µψ(x)σµθ̄

− 1

4
θθ θ̄θ̄�φ(x) . (2.10)

φ is the scalar part (squarks, sleptons or Higgs), ψ is the fermion (quark, leptons or higgsino) and
F is an non-dynamical auxiliary field that is needed to match the number of degrees of freedom
of bosons and fermions on-shell 4. Actually, the number of DOF’s coincides precisely with those
of an N = 1 chiral supermultiplet that is built on states rather than on fields, hence a chiral
superfield is an irreducible representation of the SUSY algebra.

In order to get vector fields we impose a reality condition

V = V̄ , (2.11)

after applying the constrain to (2.6) and gauge fixing to the Wess-Zumino gauge 5 we get

VWZ(x, θ, θ̄) = θσµθ̄ Vµ(x) + i θθ θ̄ λ̄(x) + i θ̄θ̄ θ λ(x) +
1

2
θθ θ̄θ̄D(x) . (2.12)

Vµ corresponds to gauge particles (γ, W±, Z, gluon), λ, λ̄ to the gauginos and D plays the same
role as the F field in the chiral superfield. It can also be shown that the DOF’s match those
of a vector supermultiplet thus making the vector superfield an irreducible representation of the
SUSY algebra.

N = 1 Lagrangians

Once we know the objects where we will accommodate the DOF’s we can construct a SUSY
invariant Lagrangian to determine the interactions of the theory. The most general N = 1
renormalizable (thus, with canonical Kahler potential) Lagrangian is

L = LSYM + Lmatter + LFI . (2.13)

The pure gauge sector for any Yang-Mills group with coupling constant g is

LSYM =
1

32π
Im

(
τ

∫
d2θ tr [WαWα]

)
= tr

[
−1

4
FµνF

µν − iλσµDµλ̄+
1

2
D2

]
+ θYM

α

16π
tr
[
FµνF̃

µν
]
, (2.14)

4In a supermultiplet nfDOF = nbDOF.
5From now on and during the rest of this discussion we will assume to be in the Wess-Zumino gauge.
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where Wα is the supersymmetric generalization of the field strength, i.e. the gauge invariant
object that should enter the action, τ is the complexified gauge coupling τ = θYM/2π + 4πi/g2

and α and θYM where previously defined below Eq. (1.3).

The matter Lagrangian describes the interactions between the chiral superfields Φ (also χSF),
and with the vector superfields V (also VSF) corresponding to the gauge group described in LSYM,

Lmatter =

∫
d2θ d2θ̄ Φ̄ e2gV Φ +

∫
d2θW (Φ) +

∫
d2θ̄ W (Φ̄)

= DµφD
µφ− iψσµDµψ̄ + F̄F + i

√
2 g φ̄λψ − i

√
2 g ψ̄λ̄φ+ g φ̄Dφ (2.15)

− ∂W

∂φi
F i − ∂W

∂φ̄i
Fi −

1

2

∂2W

∂φi∂φj
ψiψj − 1

2

∂2W

∂φ̄i∂φ̄j
ψ̄iψ̄j .

W is the superpotential, an holomorphic function of χSF’s (and not their complex conjugates),
thus the superpotential is a χSF itself and it is ensured that the last two integrals in the first
line of the equation are supersymmetric invariant. Also, the superpotential does not contain
derivatives since DαΦ is not a χSF and in order for the theory to be renormalizable it has to be
at most cubic in the fields 6. Once the gauge structure is set, the superpotential is the only thing
left to be defined when constructing an N = 1 renormalizable theory.

Finally, we need to also introduce the Fayet-Iliopulos term,

LFI = 2g
∑
A

ξA

∫
d2θ d2θ̄ V A = g

∑
A

ξAD
A , (2.16)

that is present for any abelian U(1) factors that the gauge group contains and where ξA are real
constants 7. This term is neglected in most phenomenological studies of the MSSM, its presence
either leads to SUSY or gauge symmetry breaking, hence generating phenomenological problems.
To have ξ = 0 is also motivated by UV considerations since it is a term that is not allowed in
supergravity theories.

The total Lagrangian can be written on-shell by integrating out the auxiliary fields D and F
using their equations of motion

L = tr

[
−1

4
FµνF

µν − iλσµDµλ̄

]
+ θYM

α

16π
tr
[
FµνF̃

µν
]

+DµφD
µφ− iψσµDµψ̄

+ i
√

2 g φ̄λψ − i
√

2 g ψ̄λ̄φ− 1

2

∂2W

∂φi∂φj
ψiψj − 1

2

∂2W

∂φ̄i∂φ̄j
ψ̄iψ̄j − V (φ, φ̄) , (2.17)

where the scalar potential is

V (φ, φ̄) = F̄ iFi +
1

2
DaDa =

∂W

∂φi
∂W

∂φi
+
g2

2

∑
a

|φ̄i(T a)ijφj + ξa|2 , (2.18)

and where ξa = 0 for non abelian group factors (when a 6= A). If the total gauge group is a direct
product of groups (as it is with GSM), then the scalar potential

V (φ, φ̄) = F̄ iFi +
1

2

∑
a

DaDa =
∂W

∂φi
∂W

∂φi
+

1

2

∑
a

g2
a |φ̄i(T a)ijφj + ξ|2 , (2.19)

6For the
∫
d2θW type terms in Eq. (2.15) to be of dimension 4, the superpotential is bounded to have at most

dimension 3 since the mass dimension of a χSF is 1. If we want the theory to be renormalizable the superpotential
can have only linear, quadratic and cubic terms in the χSF’s.

7A = 1, 2, . . . , n where n is the number of abelian factors.
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where again, ξ is only present for U(1) factors and is normally set to zero in most phenomeno-
logical studies (this work included).

2.3 Supersymmetry breaking

If present in nature at all, SUSY must be broken since we see no superpartners which are degener-
ate with their corresponding SM particles. Just as the electroweak symmetry is (see Section 1.2),
we expect the breaking of supersymmetry to be spontaneous, i.e. with a Lagrangian that pre-
serves supersymmetry and a vacuum state that does not. In that way SUSY will be hidden at low
energies in accordance with the absence of SUSY signals at experiment, so with spontaneously
broken SUSY one expects the picture to be similar as to what is depicted in Figure 2.1.

Figure 2.1: If superpartners lie around some scale Q0, above that scale (E > Q0) the theory would
behave in a supersymmetric way while below, E < Q0, not.

Spontaneous supersymmetry breaking

We will now present a few basics on spontaneous SUSY breaking (SSSB) and mention the main
shortcoming of SSSB models when applied to realistic situations, thus motivating the soft super-
symmetry breaking paradigm.

If supersymmetry is spontaneously broken it means that the vacuum is not invariant under
supersymmetry transformations, therefore in the N = 1 case

Qα|0〉 6= 0 and Q̄α̇|0〉 6= 0 . (2.20)

Using the supersymmetry algebra ({Qα, Q̄α̇} = −2σµαα̇Pµ) we can relate the SUSY generators
with the Hamiltonian of the theory since H = P0. If the equation above holds (if supersymmetry
is broken in the vacuum state) then

〈0|H|0〉 =
1

4

(
|Q1|0〉|2 + |Q̄1|0〉|2 + |Q2|0〉|2 + |Q̄2|0〉|2

)
> 0 , (2.21)

and so the vacuum has positive energy. We can neglect spacetime dependent effects and possible
fermion condensates and consider that 〈0|H|0〉 = 〈0|V |0〉, where V is the scalar potential of the
theory, Eq. (2.19). V only depends on the scalar components of the superfields and features two
contributions: (i) the F-terms, which are fixed by the Yukawa couplings and fermion masses of
the superpotential 8 and (ii), the D-terms, determined by the gauge structure.

8The derivative considers only the scalar part of the superpotential W , in practice it is just a matter of taking
scalar fields instead of chiral superfields.
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The set of supersymmetric vacua is described by the following equations,

Fi(φ) = 0 and Da(φ, φ̄) = 0 . (2.22)

If there is any field configuration that solves both equations simultaneously then the vacuum is
supersymmetric. If there is no field configuration that solves (2.22) then the F-terms and/or the
D-terms acquire VEV’s and 〈0|V |0〉 > 0, thus breaking SUSY. Whether SSSB is triggered by
F-terms or D-terms acquiring a VEV classifies the models as being of the O’Raifeartaigh type or
the Fayet-Iliopoulos type respectively.

Although appealing, SSSB runs into difficulties when constructing models that aim at pro-
ducing realistic particle physics scenarios. This is due mainly because of the following sum rule

Str[m2] =
∑
j

(−1)2j(2j + 1) tr[m2
j ] , (2.23)

that relates the masses of bosons and fermions in any spontaneously broken supersymmetric
theory. In order for the sum rule to hold, some of the superpartners need to be lighter than their
actual SM partners, in clear contrast with experiment. It is for this reason that SSSB cannot be
triggered by DOF’s that couple to the MSSM fields directly, we instead need to postulate a new
‘hidden’ sector whose dynamics are decoupled from the (MSSM-like) ‘observable’ sector. The
hidden sector will break SUSY spontaneously and then the breaking will be transmitted to the
observable sector by some messenger fields that are sensitive to the dynamics in both sectors.

Soft SUSY breaking and mediation mechanisms

After SSSB in the hidden sector, the imprint left by the messengers of SUSY breaking will be in
the form of explicit breaking terms in the Lagrangian. An explicit breaking of supersymmetry
is dangerous in the sense that it can spoil the nice properties that SUSY introduces, not only
at low energies but all the way up the UV. In order to keep the UV behavior of SUSY safe,
not all explicit breaking operators are allowed, only those whose dimension is d < 4 do not
produce a dangerous breaking of supersymmetry. This is because their coefficients have positive
mass dimension, i.e. they are relevant terms in the Lagrangian that vanish in the UV, where
SUSY will still hold as a symmetry. The key point here is that any SSSB mechanism can be
parametrized by terms of this kind as it is precisely what a spontaneous breaking does, it hides
the symmetry in the IR while in the UV it is fully recovered. Consequently, if we expect SUSY
breaking to happen in some hidden sector and then, through its transmission, leave and imprint
in the form of explicit breaking terms in the Lagrangian, we are sure that these breaking terms
will be of the type described above. Hence, after SSSB the Lagrangian will be

LSUSY + Lsoft , (2.24)

where LSUSY is defined in Eq. (2.17) and Lsoft for an N = 1 theory is

Lsoft = −
(

1

2
Maλ

aλa +
1

6
aijkφiφjφk +

1

2
bijφiφj + tiφi

)
+ h.c.− (m2)ijφ̄

jφi . (2.25)

The equation above includes: Scalar squared mass terms for the scalar components of the χSF ’s
(Higgses, sleptons and squarks), (m2)ij and bij , masses for the fermionic components of VSF’s
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(gaugino masses for each gauge group), Ma, trilinear terms for scalars (aijk) and tadpole couplings
(ti) which will only be present if there is a singlet in the theory 9.

Figure 2.2: Depiction of what is presumed to be the structure of SUSY breaking in most phe-
nomenological scenarios.

The way in which the breaking is transmitted to the observable sector (what the messenger
sector is) is critical to determine the texture of the soft breaking terms. The messenger fields
will couple in such a way that they will feel the breaking once the F or D-terms of the hidden
sector get a VEV, after that, direct couplings or loops involving messengers will generate the soft
terms for the visible fields. Actually, to generate a spectrum of superpartners, it is sufficient to
just propose a set of messenger fields and assume that they couple to a superfield whose F or
D-term gets a VEV that breaks SUSY. There is no need to specify the mechanism by which this
superfield has acquired the VEV. This is the power of the soft breaking paradigm, it is a tool to
study a supersymmetric model without having to specify every single piece of it, specially since
coming up with SSSB mechanisms free of problems of their own is a challenging task.

Before presenting the two main ways in which SSSB can be mediated to the observable sector,
let us remark that there are a few exceptions which do not follow precisely the soft breaking
paradigm and still produce phenomenologically viable situations. For instance, SUSY breaking
is neither transmitted by gravitons nor extra messenger fields when the breaking is triggered by
the presence of large extra dimensions [32, 33], also, terms beyond those appearing in (2.25) are
generated.

Gravity mediation

Gravity couples universally to everything that has a mass, therefore, gravitons are perfectly valid
messengers of supersymmetry breaking if there is some hidden sector that is a singlet under GSM

and breaks SUSY. If we parametrize the breaking by a spurion χSF, X, the most general form
of the Lagrangian that describes the gravitational interactions between X and the visible sector

9There exist a few other soft terms that we choose not to include, these are either not present in minimal
pictures or set to zero by the mediation mechanism and will not be relevant in this work.
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fields is

L =

∫
d2θ d2θ̄

(
a
X̄X

M2
P

Ȳ iYi + b
X̄X

M2
P

YiYj + c
X̄

MP
YiYj + h.c.

)
+

∫
d2θ

(
d
X

MP
Wα
aW

a
α + e

X

MP
YiYjYk + h.c.

)
. (2.26)

Where for the MSSM, Y are the χSF’s of Table 2.1 and every term is written in a GSM invariant
manner. After SSSB, 〈FX〉 6= 0 and we recover the Lagrangian (2.25). Specifically, the scalar
squared mass terms will be generated by the first and second terms in the upper line, (m2)ij and

bij respectively, in the second line, the first term will be responsible for the gaugino masses Ma

and the second term will generate the trilinear terms aijk. The third term in the first line does
not generate a soft breaking term but an effective superpotential mass 10.

As we see from the structure of (2.26) gravity mediation generates universal soft terms up to
order one coefficients, therefore, they share a common mass scale

msoft ∼
〈FX〉
MP

. (2.27)

If we want msoft ∼ 1 TeV, then SUSY will be broken around
√
〈FX〉 ∼ 1011 GeV. This is why

gravity mediation is considered to be a high-scale SUSY breaking mechanism, the scale at which
the soft terms are generated is orders of magnitude above the EW scale. We explore scenarios
with universal soft parameters (typical of gravity mediation) for the MSSM in Section 3.2.

The gravitino mass

Because it is a space-time symmetry, to include gravity supersymmetry needs to be promoted
from global to local and thus become what is dubbed supergravity. Once this is done, a new spin-
3/2 massless ‘gauge’ field appears in the spectrum, the gravitino 11. After SSSB, the goldstino
(the goldstone mode of a fermionic symmetry) also appears and through what is called the super-
Higgs mechanism (in analogy to the bosonic Higgs mechanism of gauge theories) the gravitino will
absorb the latter as its longitudinal helicity ±1/2 components and become massive. The mass of
the gravitino is then given by m3/2 = 〈FX〉/

√
3MP . In particular for gravity mediated scenarios,

the mass of the gravitino is m3/2 ∼ 100 GeV and a neutralino LSP is normally expected.

Gauge mediation

In this scenario it is through gauge interactions that SUSY breaking is transmitted. A set of
messenger fields that do not couple directly to the observable sector but transform non trivially
under GSM is responsible for the mediation once SUSY is broken. In the minimal version of
gauge mediation (MGM) the interaction between the spurion X and the messengers is given by
the superpotential W = λXΦ̄Φ. After FX gets a VEV, gauginos will get masses at one loop by
direct couplings with the messenger fields, then, scalar sparticles will get a contribution to their
squared masses at two loops via the now softly broken VSF’s (i.e. gaugino masses). aijk’s and

10Actually, through this term supergravity may be able to solve the µ-problem of the MSSM that is explained
below Eq. (2.33), [34].

11As SUSY is a fermionc symmetry, the generators of the SUSY algebra Q and Q̄ are of spinorial nature.
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bij ’s are heavily suppressed in this scenario as they will only get contributions at higher loop
orders, they can be considered zero. As we will discuss below, the latter is a source of tension
for gauge mediation since ensuring correct EW breaking with the right value of the Higgs mass
gets complicated when bij ∼ aijk ∼ 0. The typical values for the soft masses in MGM are given
in Section 3.2 (Eqs. (3.20) and (3.21)), they are all of the same order of magnitude, which can
be considered to be

msoft ∼
g2

16π2

〈FX〉
M

, (2.28)

where M is the messenger mass.

The great advantage of gauge mediation with respect to gravity mediated scenarios is that it
automatically solves the flavor problem of softly broken supersymmetric theories: In principle,
a general set of soft terms can spoil the flavor structure of the theory and be responsible for
dangerous flavor changing neutral currents (FCNC’s) unless a special texture is introduced ad-
hoc. Gravitational interactions are flavor blind and give no explanation whatsoever for a flavor
texture at the field theory level, only considering particular string compactifications can this
problem be addressed in gravity mediated situations. Meanwhile, gauge interactions are flavor
diagonal and gauge mediation is free from any flavor problem. The latter holds provided that
gauge mediation is the only source of SUSY breaking, the flavor structure can always be spoiled
by gravitational interactions and we need to ensure that the terms in (2.26) are sufficiently
suppressed 12. With this in mind we can derive bounds for the SUSY breaking scale and the
messenger mass. If we require that gravity mediated contributions do not account for more
than 1/1000 of the soft squared masses then M . 10−3/2(α/4π)MP ∼ 1015 GeV, so asking for
msoft ∼ 1 TeV gives the following upper bound on the SUSY breaking scale

√
〈FX〉 . 1010

GeV. We also want that the RGE running does not spoil the flavor structure so even lighter
messenger masses (the scale at which the soft terms are generated) are favored and one really
expects

√
〈FX〉 < 1010 GeV (hence, low-scale SUSY breaking). Since m3/2 = 〈FX〉/

√
3MP the

gravitino will always be the LSP in gauge mediation 13.

In summary, gauge mediated supersymmetry breaking (GMSB) is a very predictive mechanism
that automatically solves the flavor problem, however, minimal GMSB models fail at ensuring
correct EW breaking. In particular minimal GMSB does not generate a b-term (m2

3 in the MSSM)
that is able to solve the Eqs. (2.33). One needs to go beyond MGM or expect m2

3 to be generated
by new and unknown dynamics. Actually, even considering extensions of MGM, it is really
difficult to accommodate EW breaking since any new contributions to m2

3 will most likely affect
also the value of µ and there will be a mismatch of a few orders of magnitude (m2

3/µ
2 ∼ 102)

between parameters that should be similar. This is what is called the µ/Bµ problem of gauge
mediation [36]. On top of that, since aijk ∼ 0 in MGM models, the Higgs mass measurement is
a source of serious tension if one wants to get a light spectrum of superpartners (see Chapter 3).
We explore gauge mediated scenarios in depth in Sections 3.2 (MGM for the MSSM) and 5.3
(where we construct a non standard realization for the SCTM).

12One cannot get rid of gravitational contributions to the soft terms, gravity mediation will always be there as
a source of SUSY breaking, however, since the terms in (2.26) are suppressed by MP , if the scale at which SUSY
is broken 〈FX〉 is low enough, the contribution of gravity to Lsoft will be negligible.

13Only recently a mechanism that features gauge mediation without a gravitino LSP has been proposed [35], it
uses extra dimensions to make the gravitino superheavy and opens up the possibility of having neutralino LSP in
a gauge mediated context.
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2.4 The MSSM.

With the particle content listed in Table 2.1 we can write the following renormalizable superpo-
tential for the MSSM

W = µH1 ·H2 + yiju Qi ·H2ūj + yijd Qi ·H1d̄j + yije Li ·H1ēj . (2.29)

A note on ‘R-parity’ and dark matter

Eq. (2.29) is not the most general superpotential that is holomorphic in the χSF’s and in agreement
with the symmetries of the theory, it should also include terms that violate either baryon number
B or total lepton number L. The existence of such terms is forbidden by the experimental
searches for B and L-violating processes (remember that B and L number conservation are
accidental symmetries of the SM Lagrangian). In the search of a way to forbid such B and L
violating terms one could consider them to be exact symmetries of the MSSM Lagrangian, still,
B and L are known to be violated by non perturbative effects so it is difficult to think that they
are fundamental symmetries of nature. By means of imposing and extra discrete symmetry to
the MSSM Lagrangian one is able to forbid the unwanted terms while allowing Eq. (2.29) to
be constructed. This extra symmetry is called ‘R-parity’; SM particles have charges PR = +1
while superpartners PR = −1, hence, only an even number of superpartners is allowed at every
vertex and the lightest supersymmetric particle (LSP) must be stable. Therefore, if R-parity is
assumed, supersymmetry can provide a good dark matter candidate.

Scalar potential and EW breaking in the MSSM

A full study of the MSSM Lagrangian will be too lengthy and out of the scope of this thesis, we
therefore restrict ourselves to the presentation of the part that is most interesting for our studies,
the scalar potential. The latter is the piece that will trigger EWSB and will determine the Higgs
physics of the theory. The scalar potential of an N = 1 SUSY theory is

V = VF + VD + Vsoft , (2.30)

where for the MSSM VF+VD is simply (2.19) for the superpotential (2.29) and GSM, and the scalar
part of the soft terms (2.25) is determined by the SUSY breaking mechanism. More specifically

VF = µ2
(
|H0

2 |2 + |H+
2 |2
)

+ µ2
(
|H0

1 |2 + |H−1 |2
)
, (2.31)

VD =
1

4
(g2 + g′ 2)

(
|H0

2 |2 − |H0
1 |2 + |H+

2 |2 − |H−1 |2
)2

+
1

2
g2|H+

2 H
0 ∗
1 +H0

uH
−∗
1 |2 ,

Vsoft = m2
H2

(
|H0

2 |2 + |H+
2 |2
)

+m2
H1

(
|H0

1 |2 + |H−1 |2
)

+
{
m2

3

(
H+

2 H
−
1 −H0

2H
0
1

)
+ h.c.

}
,

where we are considering all parameters real. We now demand that the minimum of the potential
breaks the electroweak symmetry down to Electromagnetism. We thus rotate away all possible
VEV’s for charged and imaginary components of the scalar fields and keep only the neutral and
real part,

V = m2
2 |H0

2 |2 +m2
2 |H0

1 |2 −m2
3

(
H0

1H
0
2 + h.c.

)
+

1

4
(g2 + g′ 2)

(
|H0

2 |2 − |H0
1 |2
)2
, (2.32)

where we consider that φR = φ and m2
1,2 = m2

H1,2
+ µ2.
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Name VSF Spin 1/2 Spin 1 SU(3)C SU(2)L U(1)Y

gluino, gluons GA G̃A GA 8 1 0

wino, W-boson W a W̃±, W̃ 0 W±, W 0 1 3 0

bino, B-boson B B̃0 B0 1 1 0

χSF Spin 0 Spin 1/2

squarks, quarks Qi (ũL d̃L) (uL dL) 3 2 1
6

ūi ũ∗R u†R 3̄ 1 −2
3

d̄i d̃∗R d†R 3̄ 1 1
3

sleptons, leptons Li (ν̃ ẽL) (ν eL) 1 2 −1
2

ēi ẽ∗R e†R 1 1 1

Higgs, higgsinos H2 (H+
2 H0

2 ) (H̃+
2 H̃0

2 ) 1 2 1
2

H1 (H0
1 H−1 ) (H̃0

1 H̃−1 ) 1 2 −1
2

Table 2.1: MSSM particle content. VSF and χSF stand for vector and chiral superfields respec-
tively. We explicitly show the SU(2)L structure for doublets and the i index runs over the three
families of fermions (although it is omitted in the component fields). Superpartners of the SM
particles are specified with a tilde.

Now, applying the minimization conditions |∂V/∂H0
1 |v1 = 0 and |∂V/∂H0

2 |v2 = 0 and after
some algebra we get a set of equations that, by taking µ, m3 and mH1,2 as input parameters,
should return the Z boson mass and tanβ,

sin 2β =
2m2

3

m2
1 +m2

2

,

m2
Z =

|m2
H1
−m2

H2
|√

1− sin2 2β
−m2

H2
−m2

H1
− 2µ2 . (2.33)

The Z boson mass is defined as mZ = (g′ 2 + g2)(v2
1 + v2

2)/2. From the equations above we can
see what is called the ‘µ-problem’ of the MSSM. Without tuned cancellations, one expects the
parameters appearing in the equations to be O(mZ), this is feasible for m3 and mH1,2 which are
SUSY breaking parameters, it will be a task of the SUSY breaking mechanism to keep them close
enough to mZ . However, µ is a supersymmetric invariant parameter of the superpotential with
no reason to be O(mZ), it can in principle take much bigger values as one expects the cutoff of
the MSSM to be well above the EW scale.

The Higgs sector and its decoupling limit

After ensuring that the scalar potential of the MSSM produces correct EW breaking we can
calculate the scalar spectrum. Since we have introduced an extra complex doublet the number
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of scalar DOF’s of the Higgs sector is doubled in the MSSM, it features, besides the massless
Goldstone modes which will be eaten by the gauge bosons, 4 massive states, the light and heavy
neutral CP-even Higgses (h and H), a pseudoscalar (A) and a charged scalar H±.

m2
A =

2m2
3

sin (2β)
= 2µ2 +m2

H1
+m2

H2

m2
h,H =

1

2

(
m2
A +m2

Z ∓
√

(m2
A −m2

Z)2 + 4m2
Zm

2
A sin2 (2β)

)
(2.34)

m2
H± = m2

A +m2
W

By taking the limit mA →∞ one recovers the SM Higgs sector, only one massive CP-even mode.
Every state but h becomes super heavy in that limit and therefore we can identify h as the
SM-like state.

Although the decoupling limit is here taken in the mass basis, it can also be thought of at
the SU(2)L doublet level: From the H1 and H2 MSSM basis one can rotate to a basis where we
have a light SM-like doublet H and a superheavy one H. This procedure is used in Chapter 3
where we further elaborate on the Higgs mass, loop corrections and the consequences of the 2012
discovery for supersymmetric theories.

2.5 The importance of the scale

Supersymmetry provides a solution to the hierarchy problem. It is actually the symmetry that
will be recovered in full glory if the scalar mass is zero, thus making the Higgs mass in agreement
with ’t Hooft’s criterion for the naturalness of Lagrangian parameters. SUSY prevents the scalar
masses to become ultra heavy by introducing new degrees of freedom (the superpartners) which
will generate diagrams (Fig. 2.3) that will cancel the very large corrections that enter the Higgs
mass at loop order (remember that loops of bosons and fermions have a relative minus sign).

Figure 2.3: Contributions to the Higgs mass given by the top/stop sector.

The solution to the hierarchy problem is however very dependent on the scale at which
supersymmetry is realized, i.e. the mass of the superpartners Q0, so in order to cancel dangerous
loop contributions to the Higgs mass without much fine-tuning, all superpartners need to remain
as light as possible. Some contributions will present a more severe tuning than others, for instance,
the contribution coming from a loop of top quarks will be larger than any other since it will be
proportional to h2

t (see Eq. (1.30)) which is larger than the other Yukawas. This requires the
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stops (the scalar superpartners of top quarks) to be as light as possible, while other superpartners
can be somewhat heavier as they have to cancel smaller contributions. We can thus identify the
stop mass as the fine-tuning measure in the model, i.e. the lighter the stops are, the more natural
the model is 14. Let us make this point as clear as possible by taking the one loop correction to
the MSSM Higgs mass given by the top/stop system (Fig. 2.3),

δmh ∼
3h4

t v
2

4π2
log

(
m2
t̃

m2
t

)
. (2.35)

From the above we can see that if the stops are very heavy the logarithm gets very large and the
contribution given by radiative corrections can exceed that of the tree level piece.

A Higgs mass which is mainly achieved through radiative corrections is a reason for unease if
one follows Veltman’s naturalness criterion [37]:

‘Radiative effects should not exceed tree-level effects in size’

It is thus needed that stops are as light as possible in order to make the logarithm small. Other
particles will generate a situation similar to Eq. (2.35) but their couplings to the Higgs will be
smaller than ht and therefore the logarithm can be larger while generating a contribution of the
same order. Another way of looking at this is by considering Q0 (stop masses) as the cutoff of
the SM. As we discussed in Section 1.5, effective field theory ties the cutoff to the scale of new
physics so in order to keep the Higgs mass stabilized one should keep it as low as possible.

As we just showed, the naturalness of the theory is directly tied to the masses of the superpart-
ners, which are given by the supersymmetry breaking mechanism rather than the EW breaking
procedure by which the SM DOF’s get masses. It will be a challenge of the SUSY breaking
mechanism to generate a spectrum of superpartners that is light enough, this is why studying
SUSY breaking mechanisms and its mediation to the observable sector is such an important task.

A note on the little hierarchy problem

The Standard Model is consistent with all present experimental data including the recent mea-
surements of the Higgs mass and its couplings to gauge bosons and fermions. By the same token
experiments are also putting bounds on possible BSM physics whose aim is to solve the SM
hierarchy problem, i.e. to understand the big hierarchy QEW /MP ' 10−16, or equivalently the
stability of the electroweak vacuum. The fact that there is already a small hierarchy between ex-
perimental bounds and the EW scale (QEW /QExp ' 10−2) is becoming a problem, specially since
the the non observation of additional particles pushes the cutoff to higher and higher scales 15.
This is what is dubbed the little hierarchy problem (Fig. 2.4) and it is shared by any natural
explanation of the EW scale, e.g. supersymmetry, compositeness or extra dimensions.

14Fortunately, the RGE running will make the 3rd generation fermion superpartners lighter than the 1st and 2nd,
this is because the former couple directly to Yukawa couplings that are parametrically larger than the ones of the
1st and 2nd generation, so the RGE running will tend to lower their masses in a more severe way. Depending on
how much running the correlations will be strong or negligible.

15LHC will only give a final word on the scale of new physics at the end of its current (second) run. Actually, as
this thesis is being written, an intriguing excess at 750 GeV in the γγ invariant mass spectrum has been reported
both by the ATLAS and CMS collaborations. A plethora of BSM realizations for the excess have been proposed,
some of them within supersymmetry [38] or even in the non supersymmetric GM model [39].
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Figure 2.4: If we treat QExp as the SM cutoff, experimental searches at the LHC are already an
indication that, at least in the simpler realizations of BSM theories, the EW scale is already a
bit tuned. This problem is worsened in the minimal MSSM, where LHC bounds are not the only
indication for heavy stops (Chapter 3).

2.6 Further phenomenological advantages of SUSY

The phenomenological advantages of supersymmetry are beyond only solving the hierarchy prob-
lem. One can construct theories where supersymmetry is present at an intermediate or high
scale, thus not fully solving the hierarchy problem, that still provide a great deal of interesting
solutions to tackle some of the SM problems 16. The discussion about phenomenology is however
very model dependent and here we shall just list a few features which are common to a wide class
of supersymmetric theories.

• It predicts that EWSB happens through an elementary scalar, in good agreement with
observation. On top of that, SUSY can also give a dynamical explanation as to why
the SM potential features a tachyonic mass, i.e. why the SM potential breaks the EW
symmetry [41] (see Chapter 3).

• The MSSM and some of its extensions improve considerably the unification of gauge cou-
pling constants and provide a better behaved IR limit for Grand Unified Theories (GUT’s).

• If R parity is assumed, the LSP is stable and if it is neutral it can be a dark matter candidate
that freezes out to the correct relic density. We explore the cosmological consequences of
R-parity in the SCTM in Chapter 6.

• It is the natural low energy limit of string theories which aim at describing the phenomenol-
ogy of particle physics and cosmology [42].

16For instance, Split SUSY theories [40].
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3
The MSSM after the Higgs discovery

After the 7 and 8 TeV runs the Large Hadron Collider (LHC) has firmly established the existence
of a scalar boson with a mass mh ' 125 GeV. In particular the strengths measured in the WW ,
ZZ, γγ, bb̄ and ττ decay channels by the ATLAS and CMS collaborations are consistent with
the Standard Model (SM) Higgs with a mass mh = 126 ± 0.4 (stat) ± 0.4 (syst) GeV [1] and
mh = 125.3± 0.4 (stat)± 0.5 (syst) GeV [2], respectively. The Higgs discovery is of the utmost
importance as it is the first direct experimental confirmation of the mechanism of EWSB. It is
therefore interesting to explore the consequences of the present Higgs mass data on a possible
underlying supersymmetric theory, in particular on the way supersymmetry triggers EWSB at
low energy, on the scale at which supersymmetric partners first appear (Q0) and also on the scale
M at which supersymmetry breaking is transmitted from the hidden to the observable sector.
We do this by adopting the following attitude: We assume that supersymmetry is solving the big
hierarchy problem from Q0/MP but perhaps not necessarily the little hierarchy problem from
QEW /Q0 and see what LHC8 data is telling about the parameters of the supersymmetric theory.
Thus, by determining Q0 we will learn about where supersymmetry (the MSSM) stands after the
Higgs discovery as a solution to the hierarchy problem.

The following analysis just reflects the present experimental situation concerning the Higgs
discovery and the non observation (yet) of any supersymmetric particle. In the future, it might
happen that supersymmetric signals are found or that they are not. In both cases the analysis
presented in this chapter should be correspondingly constrained. In case where supersymmetric
signals are found, they would give information about our energy scale Q0 which in turn will give
indirect information about the scale at which supersymmetry breaking is transmittedM. In the
other case, in which supersymmetric signals not be found at the end of the LHC13-14 run, the
data will put a lower bound on the scale Q0 by which also the scale M will be correspondingly
constrained, suggesting that perhaps we will need a higher energy collider to uncover BSM physics
as the HE-LHC (at 33 TeV) & VHE-LHC (at 100 TeV) [43].

We start Section 3.1 giving naive estimates of Q0 by looking at the one-loop Higgs mass
formula, which we then vindicate using a proper run-and-match procedure that will take care of
very large logarithms. Comments on the nature of EWSB at low energy (does EWSB proceed
via radiative breaking or not?) are also made. In Section 3.2 we discuss the scale M, getting
first results from a bottom up perspective that will be then confirmed by top down examples.
Finally, in Section 3.3 we make a small summary of the results concerning Q0 to motivate our
interest in building extensions of the MSSM.
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3.1 EWSB in SUSY with a 125 GeV Higgs

Before doing a proper analysis we can learn a lot by simply looking at the MSSM analytical
one-loop expression for the Higgs mass [44]

m2
h = m2

Z cos2 2β +
3m4

t

4π2v2

[
log

(Q2
0

m2
t

)
+
x2
t

Q2
0

(
1− x2

t

12Q2
0

)]
, (3.1)

where xt = (At − µ/ tanβ) and we consider that Q0 =
√
mt̃1

mt̃2
. This formula has three

contributions: (i), the tree-level contribution, that is maximized when tanβ is large, (ii), a
logarithm that gets larger has the stops get heavier and finally, (iii), a threshold correction that
depends on the mixing in the stop sector and that gets larger whenever this mixing is maximized.
It is clear by looking at this formula that making mh = 125 GeV is not automatic. If we want to
keep stop masses light (in order to solve the hierarchy problem) we are forced to go to a corner
in the parameter space where tanβ and xt are as large as possible and we can generally say that:

‘The MSSM runs into difficulties when combining a light spectrum of
superpartners (light stops) with a 126 GeV Higgs’

Roughly, what this means is that either we give up on SUSY as a solution to the hierachy
problem 1 [45, 46], or we give up on minimality (or simplicity) and build models beyond the
MSSM that could more naturally accommodate the measured Higgs mass. This is depicted in
the Figure 2 of the introduction.

Using the analytical Higgs mass is useful to get a qualitative understanding of the situation,
however, it is not enough if we want to make quantitative statements. The logarithm present
in (3.1) gets dangerously large for heavy stop masses and one needs to take care of it by performing
a resummation to get trustable results. Thus, it is more convenient to use a run-and-match
procedure. Since we know from experiment that Q0 is reasonably above the EW scale, we can
assume that the SM is an EFT that emerges at Q0 from an underlying MSSM to extract the
relevant information on the mechanism by which the MSSM triggers EWSB.

The matching and the scale Q0

Consistently with present experimental data we assume that below the scale Q0 we just have
the SM spectrum and the matching conditions are the ones to enforce EWSB at the EW scale
QEW = mh. The quadratic terms in the MSSM potential can be written as

V2 = m2
1|H1|2 +m2

2|H2|2 +m2
3(H1 ·H2 + h.c.) (3.2)

with H1 ·H2 ≡ Ha
1 εabH

b
2 (ε12 = −1) and we are defining m2

1 = m2
H1

+ µ2 and m2
2 = m2

H2
+ µ2,

where mHi is the soft breaking mass for Hi and µ is the supersymmetric Higgsino mass. They
can also be written in matrix form

V2 = (H†1 , H̃
†
2)

(
m2

1 m2
3

m2
3 m2

2

)(
H1

H̃2

)
(3.3)

1Or at least to the little hierarchy problem, SUSY can fail to explain the hierarchy between the EW scale and
Q0 but still stabilize the hierarchy Q0 �MP .
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where H̃2 ≡ εH∗2 . The diagonalization of the mass matrix

M2
0 =

(
m2

1 m2
3

m2
3 m2

2

)
(3.4)

then yields the mass eigenvalues

m2
∓ =

m2
1 +m2

2

2
∓
√(

m2
1 −m2

2

2

)2

+m4
3 . (3.5)

We wish to match the MSSM with the SM at the (common) scale Q0 ≡ m0 of supersymmetric
masses. In particular we will rotate the MSSM Higgs sector (H1, H̃2) into the basis (H,H) where
H is the SM Higgs doublet and H its heavy orthogonal combination. We then identify the mass
squared of the (light) SM Higgs H with the tachyonic mass m2

− = −m2(Q0) and consequently
the mass squared of its (heavy) orthogonal combination H with m2

+ ≡ m2
H = m2

1 + m2
2 + m2.

This can be done by the fixing

m4
3 = (m2

1 +m2)(m2
2 +m2) (3.6)

leading to the mixing angle β given by 2

tan2 β =
m2

1 +m2

m2
2 +m2

, i.e. m2 =
m2

1 −m2
2 tan2 β

tan2 β − 1
, (3.7)

where all quantities are evaluated at the matching scale Q = Q0, which rotates the Higgs basis
(H1, H̃2) into the mass eigenstates (H,H) as

H = cosβH1 − sinβH̃2

H = sinβH1 + cosβH̃2 . (3.8)

The potential for the SM Higgs then reads as

VSM = −m2(Q0)|H|2 +
λ(Q0)

2
|H|4 + · · · (3.9)

In order to make a precise calculation of the Higgs mass we have to first match the SM
quartic coupling λ and the supersymmetric parameters at the scale Q0. We will improve over
the tree-level (` = 0) matching by considering the one-loop (` = 1) and leading two-loop (` = 2)
threshold effects as given by [47]

λ(Q0) =
∑
`≥0

∆(`)λ , (3.10)

where

∆(0)λ =
1

4
(g2 + g′ 2)c2

2β ,

16π2∆(1)λ = 6y4
t s

4
βX

2
t

(
1− X2

t

12

)
− 1

2
y4
bs

4
β(µ/Q0)2 +

3

4
y2
t s

2
β(g2 + g′2)X2

t c2β

+

(
1

6
c2

2β −
3

4

)
g4 − 1

2
g2g′2 − 1

4
g′4 − 1

16
(g2 + g′2)2s2

4β ,

(16π2)2∆(2)λ = 16y4
t s

4
βg

2
3

(
−2Xt +

1

3
X3
t −

1

12
X4
t

)
+O(h6

t s
4
β, g

4, g2g′2, g′4) , (3.11)

2Note that here the β angle is defined at Q0 and not at the EW scale after EWSB as it is usually presented,
thus it is defined in terms of masses instead of VEV’s.
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and we are using the notation Xt = (At(Q0) − µ(Q0)/ tanβ)/Q0, sβ ≡ sinβ and so on. For
the numerical calculation we are also taking into account the O(y6

t s
4
β, . . . ) two-loop threshold

corrections whose explicit expression can be found in Ref. [47]. We are neglecting the corrections
proportional to y4

τ as we are not envisaging values of the parameter tanβ such that yτ is relevant 3.

The couplings yt and yb are the top and bottom Yukawa couplings in the MSSM. They are
related to the corresponding SM couplings ht and hb by [47]

ht = ytsβ

(
1− 1

6π2
g2

3Q2
0XtI(mt̃1

,mt̃2
,Q0) +O(y2

b , g
2, g′2))

)
,

hb = ybcβ

(
1− 1

6π2
g2

3Q2
0XbI(mb̃1

,mb̃2
,Q0) +

1

16π2
y2
t tβQ2

0XtI(mt̃1
,mt̃2

,Q0) + . . .

)
, (3.12)

where Xb = (At(Q0) − µ(Q0) tanβ)/Q0, we are assuming a nearly degenerate spectrum at Q0,
and only the leading one-loop QCD and top Yukawa coupling corrections are kept. The function
I(x, y, z) can be found in Ref. [47].

The parameters of the potential (3.9) have to be run with the SM renormalization group
equations (RGE) down to the scale QEW = mh, where minimizing the SM potential should lead
to m2(mh) = 1

2m
2
h, m2

h = 2λ(mh)v2. For a similar analysis see Refs. [48] and especially [49, 50]
where the relation between the mass of the Higgs and the scale of supersymmetry breaking was
first analyzed. Here in agreement with the used threshold corrections we are using the two-loop
RGE as given in [51].

Finally going from the running Higgs mass mh to the pole Higgs mass Mh requires the
calculation of the Higgs boson self energy Π(p2) as M2

h = m2
h + ∆Π where ∆Π = Π(p2 =

M2
h) − Π(p2 = 0). Here we keep only the leading correction to ∆Π coming from the top quark

loop exchange given by [52]

∆Πtt =
3h2

tM
2
t

4π2

[
2− Z(M2

t /M
2
H)
]
, Z(x) = 2

√
4x− 1 arctan

(
1/
√

4x− 1
)
, x > 1/4 (3.13)

For the actual values of Mt ' m(mt) + 10 GeV [53] (the pole top quark mass) and Mh, the
correction in (3.13) is of the order of the experimental error in the Higgs mass. Any uncertainty
coming from neglected higher order corrections will therefore be much smaller than those from
the experimental errors in α3, Mt and Mh, which can be estimated to ±2 GeV at 2σ [47].

Notice that, for fixed values of the supersymmetric parameters tanβ and Xt, Q0 is a function
of the Higgs mass mh. This prediction comes from the intersection of the function λ(Q), which
is determined mainly by the value of the Higgs mass (with some dependence on the actual values
of ht(mh) and α3(mh)), with the value λ(Q0) given by Eq. (4.2). So given that the Higgs mass
is fixed to mh = 126 GeV, we can predict Q0 = Q0(tanβ,Xt) as it is shown in the left panel plot
of Fig. 3.1. We have used as an input the running top mass in the MS scheme evaluated at the
top mass mt(mt) = 163.5 GeV. We can see that for small values of tanβ the values of Q0 are
large and insensitive to the values of the mixing Xt. This is due to the fact that the threshold
effect is proportional to h2

t (Q0) and the Standard Model RGE leads to small values of ht(Q0)
for large values of the scale Q0. On the other hand for large values of tanβ the values of Q0 are
smaller and consequently the RGE running is small and Q0 becomes sensitive to the mixing Xt.
In particular values of Q0 in the TeV region require large values of tanβ (tanβ & 5) and large
values of Xt (Xt & 1.8).

3The yukawas in the MSSM are mu/v2 and md/v1 for up-type and down-type particles respectively.
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Figure 3.1: Left panel: Contour lines of log10[Q0/GeV] (for the values specified in the plot) in
the plane (tanβ,Xt). Right panel: Contour line of m2

2(Q0) = 0, as given by Eq. (3.14), in the
plane (tanβ,Xt). The inner region corresponds to radiative electroweak breaking.

As for the error in mt(mt) it is safe to consider the experimental range of the running top
mass to be given by ∆mt = ±2 GeV at 2σ [53, 54]. In order to see the relevance of the error in
mt(mt) we plot, in the left panel of Fig. 3.2, Q0 as a function of tanβ for various values of Xt,
and in the right panel of Fig. 3.2, Q0 as a function of Xt for different values of tanβ. In fact the
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Figure 3.2: Left panel: Plot of Q0 as a function of tanβ for Xt =0 (upper band) and Xt =
√

6
(lower band). The width of bands corresponds to the experimental error ∆mt = ±2 GeV. Right
panel: Plot of Q0 as a function of Xt for tanβ = 2 (upper band) and 15 (lower band).

upper border of each band corresponds to ∆mt = −2 GeV and the lower border to ∆mt = +2
GeV. We can see from both panels of Fig. 3.2 that the error in the determination of Q0, ∆Q0

arising from the error in mt(mt) is large (small) for small (large) values of tanβ. The reason for
this behavior is that the error mt(mt) is amplified by the RGE running and it is consequently
large (small) for large (small) running, which means small (large) values of tanβ. In the same
way, as we can see from the right panel of Fig. 3.2, the error ∆Q0 is uncorrelated with Xt as it
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Chapter 3. The MSSM after the Higgs discovery

has little influence on the RGE running. This translates into a big overlapping in the left panel
of Fig. 3.2 for small values of tanβ and different values of Xt. In fact notice that for the limiting
case tanβ = 1 and Xt = 0 we have that λ(Q0) . 0 and the Standard Model potential is unstable.
This corresponds, for the central value of the quark top mass, to Q0 ∼ 1011 GeV. However for
the lowest allowed value of the top quark mass the instability scale can go to Planckian values in
agreement with various calculations in the literature [15,55]. In this case it has been shown that
the Veltman condition [37] (or absence of quadratic divergences) can also be satisfied [56]. Note
that this conclusions are not qualitatively different from what was guessed using Eq. (3.1).

The nature of electroweak breaking

Eq. (3.7) actually implies the existence of the electroweak minimum in the SM effective theory
and indeed it is reminiscent of the minimum equation in the MSSM 4. In fact Eq. (3.7) can be
traded by the SM minimum equation. It can be written as

m2
2(Q0) =

m2
H(Q0)−m2(Q0) tan2 β

tan2 β + 1
(3.14)

where we identify m2
H(Q0) ≡ Q2

0 and the value obtained for m2
2(Q0) characterizes the type of

electroweak breaking, e.g. radiative versus non-radiative symmetry breaking 5, provided that
after the SM RGE running we get m2(QEW ) = m2

h/2. For instance in the limit tanβ → ∞
(or more precisely for tan2 β � m2

H(Q0)/m2(Q0)) we get the conditions for radiative breaking,
m2

2(Q0) ' −m2(Q0) < 0, while for small values of tanβ we get the conditions for non-radiative
breaking m2

2(Q0) ' m2
H(Q0)/(tan2 β+1) > 0. In particular we show in the right panel of Fig. 3.1

the contour plot corresponding to m2
2(Q0) = 0 for the central value of mt(mt) (thick solid line)

and for the 2σ values corresponding to ±∆mt(mt) (thin solid lines). The inner area corresponds
to the region where there is radiative electroweak symmetry breaking m2

2(Q0) < 0 while in the
outer region the breaking is not radiative and m2

2(Q0) > 0. Of course the values of m2
2(Q0) should

depend to a large extent on the values of tanβ and Xt.

In Fig. 3.3 we plot the absolute value of m2, |m2(Q0)|, as a function of tanβ for different
values of Xt (left panel) and as a function of Xt for different values of tanβ (right panel). Notice
that points where electroweak breaking becomes radiative are characterized by the fact that
|m2| = 0 and for larger values of tanβ (left panel of Fig. 3.3) or larger values of Xt (right panel
of Fig. 3.3), m2

2 becomes negative and thus |m2| takes on positive values. Again we can see that,
as for the results in Fig. 3.2, the effects of the error ∆mt(mt) are amplified for small values of
tanβ while they stay small for large values of tanβ. We can also see that radiative breaking only
occurs for large values of tanβ, tanβ & 8, and/or large values of the mixing Xt & 1.8 in the
range tanβ . 20.

4Were neglecting the Standard Model RGE running both equations would be equivalent upon identification of
m2
H ↔ m2

Z .
5Although EW breaking is in all cases driven by the MSSM RGE running from M to Q0, we will be conven-

tionally dubbing radiative breaking the case where m2
2(Q0) ≤ 0 so that the EW breaking proceeds by a tachyonic

mass as in the SM.
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Figure 3.3: Left panel: Plot of |m2(Q0)| as a function of tanβ for Xt =0 (upper band) and
Xt =

√
6 (lower band). The width of bands corresponds to the experimental error ∆mt = ±2

GeV. Right panel: Plot of |m2(Q0)| as a function of Xt for tanβ = 2 (upper band) and 15 (lower
band).

3.2 The messenger scale M

Above we have computed, using the measured value of the Higgs mass, the value of the scale Q0

at which the MSSM matches with the Standard Model and the value of the parameter m2
2(Q0)

which guarantees a correct electroweak Standard Model breaking at the scale QEW = mh. We
are here making the conservative assumption (alas, consistent with present experimental data)
that only the SM states survive below the matching scale Q0. For large values of Q0 this amounts
to assume a high-scale MSSM beyond Q0, in contradistinction with other possibilities, as those
dubbed as split (or mini-split) supersymmetry. Using these tools we will now get information on
the scale at which supersymmetry breaking is transmitted to the observable sector, the messenger
scale M.

As we have seen both Q0 and m2
2(Q0) are (for fixed values of the Standard Model parameters)

functions of the MSSM parameters tanβ and Xt defined at the scale Q0: Q0 ≡ f0(tanβ,Xt) and
m2

2(Q0) ≡ f2(tanβ,Xt). Now from the EWSB condition (3.7) one can also compute m2
1(Q0) ≡

f1(tanβ,Xt) as
m2

1(Q0) = m2
2(Q0) tan2 β +m2(Q0)(tan2 β − 1) (3.15)

so that both squared mass parameters m2
1 and m2

2 are fixed at the scale Q0 for fixed values of
tanβ and Xt. We will now define the scale at which supersymmetry breaking is transmitted M
as the scale at which

m2
1(M) = m2

2(M) . (3.16)

where we are running the MSSM parameters from the scale Q = Q0 to the scale Q = M by
using the two-loop RGE [57]. Notice that this condition is rather generic in most models of
supersymmetry breaking, as models based on gravity mediation or minimal gauge mediation, as
well as in string constructions [45, 58, 59]. In models where the former assumption on the Higgs
bosons mass at M is not fulfilled the condition of Eq. (3.16) should be accordingly modified.

As we are assuming that the effective theory below Q0 is just the Standard Model we are
implicitly assuming that, at the matching scale the heavy Higgs H decouples, so that mH(Q0) =
Q0. On the other hand the scale at which supersymmetry breaking is transmitted, given by (3.16),
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Chapter 3. The MSSM after the Higgs discovery

does have little dependence on the spreading on boundary conditions imposed for the rest of the
supersymmetric spectrum. Actually any moderate splitting among the different superparners
will have little impact in the value ofM, as its dependence is logarithmic, and the corresponding
results fall inside the bands defined by the experimental errors in Mt and α3(MZ). Thus we will
next consider two generic situations.

Bottom-up approach

The most precise (and ideal) way by which the Standard Model will emerge as the low energy
effective theory below the matching scale Q0 is when all supersymmetric particles are (approx-
imately) degenerate at the decoupling scale 6. So we will here assume for all sfermions (f̃),
Higgsinos (with mass µ) and gauginos a degenerate mass at the matching scale Q0

m
f̃
(Q0) = Mi(Q0) = µ(Q0) = Q0 (i = 1, 2, 3) (3.17)

We will leave Xt(Q0) (and consequently the mixing At(Q0)) and tanβ(Q0) as free parameters in
the plots.

Note that by imposing the matching scheme in Eq. (3.17) the merging between the SM and
the MSSM happens at the scale Q0 and the running from the low scale Q0 to the high scale
M can be done straightforwardly using the two-loop MSSM RGE and the boundary conditions
(3.17). This is shown in the left panel (right panel) of Fig. 3.4 where we plot contour lines of
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Figure 3.4: Contour lines of constant log10[M/GeV] in the (tanβ,Xt) plane for Xt ≥ 0 (left
panel) and Xt < 0 (right panel).

constant log10(M/GeV) in the (tanβ,Xt) plane for the central value of the top quark mass and
positive (negative) values of the parameter Xt.

6Of course in practice there should be some spreading of supersymmetric masses over the scale Q0, a (more
realistic) situation which will be studied in the next section.
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3.2. The messenger scale M

We can see from the left panel of Fig. 3.4 that having supersymmetry breaking transmission
at high scale requires both large values of tanβ and small and positive values of the mixing Xt.
For example for values of M of the order of the unification scale M ' 1016 GeV one requires
tanβ & 3 and Xt . 0.3. Moreover for large values of tanβ the value of M depends almost
uniquely on the mixing Xt. For example even for tanβ ' 20 the scale at which supersymmetry
is broken can go down to values as low as M∼ 105 − 106 GeV for values of the mixing Xt ' 2.
On the other hand for low values of tanβ and large values of Xt there is small dependence on
the mixing. As we can see from the left panel of Fig. 3.4 for values Xt ' 0 we can get values of
M as large as MP . For negative values of Xt the value of M grows quickly to trans Planckian
values and rapidly disappears as there is no solution to the Eq. (3.16). A solution appears again
for values Xt ' −1.5 for which we have again values of M ' MP , and again the values of M
decrease when we increase the absolute value of Xt as we have shown in the right panel of Fig. 3.4.

Of course, as it was the case of the matching scale Q0, the scale at which supersymmetry
is transmitted M is affected by the experimental error in the determination of the top quark
mass ∆mt. This effect is shown numerically in Fig. 3.5. We plot in the left panel of Fig. 3.5
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Figure 3.5: Left panel: Plot of log10[M/GeV ] as a function of tanβ for Xt =0 (upper band),
Xt =0.5 (central band) and Xt =

√
6 (lower band). The width of bands corresponds to the

experimental error ∆mt = ±2 GeV. Right panel: Plot of M as a function of Xt for tanβ = 2
(wider band) and 15 (narrower band).

log10(M/GeV) as a function of tanβ for different values of the mixing Xt =0, 0.5, and
√

6 for the
values of the MS top quark mass mt(mt) = 163.5 ± 2 GeV. This effect is mainly inherited from
the uncertainty in the determination of the matching scale Q0, which explains why the effect is
larger for tanβ = 1. Similarly the plot of log10(M/GeV) as a function of Xt for fixed values of
tanβ =2 and 15, is shown in the right panel of Fig. 3.5 where we can also see that the uncertainty
in the determination of M decreases with increasing values of tanβ.

Top-down approach

In the previous section we have assumed that all supersymmetric particles exactly decouple at
the matching scale Q0, by which we were assuming a degenerate spectrum at this scale. Of course
this is not the generic case in (realistic) models of supersymmetry breaking which provide some
pattern of masses at the scale M. These masses run, with the MSSM RGE, from the scale M
to Q0 and thus they decouple at the scale ∼ Q0 with different thresholds.
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Chapter 3. The MSSM after the Higgs discovery

In this section we will consider different supersymmetric spectra, for which the scale at which
supersymmetry breaking is transmitted and the matching scale with the Standard Model sat-
isfy the general values which have been obtained in the previous section: in particular they are
consistent with electroweak symmetry breaking with a Higgs mass of 126 GeV. We will not com-
mit ourselves to any particular mechanism of supersymmetry breaking but instead will consider
generic pattern of supersymmetric spectra at the scale where supersymmetry breaking is trans-
mitted, which can arise from different mechanisms. In particular we will consider two classes of
models, which are simply particular examples while many others can be easily found and studied:

• Models with universal soft parameters, typical of gravity mediated-like models, although
not necessarily arising from gravity mediation.

• Gauge mediated models, where the values of supersymmetric parameters satisfy, at the
scale M, typical ratios provided by gauge mediation.

Universal soft parameters

We now consider some universal soft breaking parameters at the scale M. In particular we will
assume the rather general pattern

m
Q̃3

(M) = m
Ũc3

(M) = m
D̃c3

(M) ≡ m0, Mi(M) ≡ m1/2, m1(M) = m2(M) (3.18)

by which all third generation squarks 7 are degenerate at the scale M, as well as the three
gauginos and the two MSSM Higgs doublets. We have then considered the common masses
m0 and m1/2 as free parameters only subject to the constraint of getting a correct electroweak
symmetry breaking.

We have considered in Fig. 3.6 two generic models which correspond to tanβ = 10, and
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Figure 3.6: RGE running betweenM and Q0 of the supersymmetric spectrum for the case tanβ =
10, Xt = 0 (left panel) and Xt = 2 (right panel) with universal boundary conditions.

Xt = 0 (left panel) and Xt = 2 (right panel). As for the case of Xt = 0 a quick glance at the left
panel of Fig. 3.1 shows that the matching scale is Q0 ∼ 100 TeV while from Fig. 3.4 the scale
where supersymmetry breaks isM∼ 2×1018 GeV. Also from the right panel of Fig. 3.1 (Xt = 0

7Third generation sleptons as well as first and second generation sfermions do not play any role in the RGE
and thus their values decouple from the present problem.
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3.2. The messenger scale M

does not appear in the plot as it is well below the area where radiative breaking exists) we see
that the breaking is not radiative in the sense that m2

2(Q0) > 0 and indeed from Fig. 3.3 we can
see that, according with the correct electroweak symmetry breaking, m2(Q0) ' 3 TeV. As we can
see from the left panel of Fig. 3.6 the values for the common squark and gaugino masses which
fit these conditions are: m0 ' m1/2 ' 30 TeV. Also the value of Xt = 0 at the matching scale
Q0 translates into the mixing At(M) ' 1.7m0. Notice that, as the value of M is around the
Planck scale, this scenario could arise in models where supersymmetry breaking is transmitted
by gravitational interactions.

If we now increase the value of Xt, as in the right panel of Fig. 3.6, in which Xt = 2, then
looking again at Fig. 3.1 we see that the matching scale is Q0 ∼ 1 TeV and the electroweak
breaking is (almost) radiative as m2(Q0) ∼ 100 GeV. Likewise, from Fig. 3.4, the scale at which
supersymmetry is broken isM∼ 5× 105 GeV. Here we can see a general phenomenon by which
the scale where supersymmetry breaking is transmitted (i.e. the scale of unification of m1 and
m2) strongly goes down when the mixing increases if we fix the correct conditions for electroweak
breaking. The reason is the contribution of the mixing to the RGE as

βm2
2

=
3h2

t

4π2
A2
t + · · · . (3.19)

To prevent electroweak breaking at high scale (Q � Q0) we then let the scaleM go down. For the
same reason we need gauginos heavier than squarks as the former ones contribute with negative
sign to βm2

2
. As we can see in the right panel of Fig. 3.6 this condition translates into m0 ' 3.3

TeV and m1/2 ' 5.3 TeV while at the matching scale Q0 all the supersymmetric spectrum is in
the interval 3− 6 TeV.

Gauge mediated models

In this section we will apply the previous results to the particular case in which supersymmetry
breaking is transmitted to the observable sector by gauge interactions (GMSB). We will assume
in particular the minimal GMSB model whose main features we now summarize.

Supersymmetry is broken, in a hidden sector, by a spurion chiral superfield X = Fθ2 which
is coupled to a set of pairs, Φi + Φi, of messenger fields, in vector like r + r representations of the
gauge group with the superpotential W =

∑
i Φi{λiX +Mi}Φi.

Gauginos acquire a Majorana mass, by one loop diagrams, given by [29]

Ma(M) =
αa(M)

4π
ΛG, ΛG '

∑
i

ni
λiF

Mi
= N

F

M
(3.20)

where ni is the Dynkin index for the pair Φi + Φi
8, and N =

∑
i ni. For the last equality

of Eq. (3.20) we are assuming universal messenger masses as Mi ≡ λiM (for ∀i). Likewise
supersymmetric scalars (squarks and sleptons) acquire soft breaking squared masses through two
loop diagrams as

m2
f̃

(M) = 2
∑
a

C f̃a
α2
a(M)

16π2
Λ2
S , Λ2

S =
∑
i

ni
(λiF )2

M2
i

= N
F 2

M2
(3.21)

8We are using a normalization where nSU(N) = 1 for the N + N representation of SU(N), nU(1) = 6Y 2/5, and
α1 is the U(1) gauge coupling which satisfies the unification condition αa(MGUT ) = αGUT .
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where C f̃a is the quadratic Casimir of the representation to which f̃ belongs in the group Ga
9,

and again for the last equality of Eq. (3.21) we are assuming universal messenger masses. In
fact for the case of universal messenger masses the ratio Λ2

G/Λ
2
S = N is given by the number of

messengers, however in more general cases (which can arise e.g. for several X fields overlapping
with the Goldstino field) one can treat ΛG and ΛS as free parameters. The soft breaking parameter
At is not generated at one loop so we will fix it as At(M) = 0 and will let it to develop at the
scale Q0 by the MSSM RGE running, which is equivalent to a two loop effect.

4 5 6 7 8
1.0

5.0

2.0

3.0

1.5

7.0

log10@Q�GeVD

M
as

se
s
@T

eV
D

m
Q
�

3

m
U
�

3

C

m
D
�

3

C

M1

M2

M3

m2

m1 4 5 6 7 8 9 10 11

10.0

5.0

3.0

7.0

log10@Q�GeVD

Figure 3.7: RGE running between M and Q0 of the supersymmetric spectrum for the case
At(M) = 0 and tanβ = 15 (left panel) and tanβ = 8 (right panel) with gauge mediated boundary
conditions.

In Fig. 3.7 we are presenting two typical cases where GMSB is consistent with the conditions
imposed by electroweak breaking for a 126 GeV Higgs mass. The case tanβ = 15 is presented
in the left panel and tanβ = 8 in the right panel. In both cases we have fixed ΛG = 2ΛS which
corresponds to four messengers, N = 4, in minimal GMSB models. Both cases are, as we will
see, consistent with perturbative unification.

For the case tanβ = 15 in the left panel of Fig. 3.7 we get ΛG ' 1.4× 106 GeV,M' 3× 108

GeV, and the scale of supersymmetry breaking
√
F ' 107 GeV while the expansion parameter

F/M2 ' 10−3 is small, and the gravitino mass is m3/2 ' 20 keV. Notice that m2
Hi

(M) <
m2
Q̃

(M) although m2
i (M) > m2

Q̃
(M) because of the contribution of µ2 in m2

i . This case is

perfectly consistent with perturbative unification and the messengers change the value of the
gauge couplings at the unification scale by δα−1

GUT ' −11. Even if At(M) = 0 a nonzero (and
negative) value is generated at the scale Q0 such that Xt ' −1.8.

For the case shown in the right panel of Fig. 3.7 that corresponds to tanβ = 8 we get the
following values of the parameters: ΛG ' 2× 106 GeV,M' 1011 GeV,

√
F ' 3× 108 GeV with

the expansion parameter F/M2 ' 4 × 10−6 and m3/2 ' 20 MeV. This case is also consistent
with perturbative unification with a value of the gauge couplings at the unification scale and
the messengers change the value of the gauge couplings at the unification scale by δα−1

GUT ' −8.
Similarly a nonzero negative value of Xt is generated as Xt ' −1.6.

9We are using a normalization where for SU(3) triplets, C3 = 4/3, for SU(2)L doublets, C2 = 3/4, and
C1 = 3Y 2/5. In all cases Ca = 0 for gauge singlets.
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3.3 Discussion: Q0 and the reasons to go beyond the MSSM

It is now widely accepted that the simplest versions of supersymmetry with the simplest assump-
tions about the supersymmetric spectrum are under stress. As it is summarized in the left panel
of Figure 3.1, to accommodate the Higgs mass and if we want to retain the minimal framework,
we are forced in a position of either tolerating large stop loops (heavy stops) or attempting to
induce large threshold corrections which have tuning problems of their own, since the large tri-
linear couplings At which feed the mixing parameter Xt are not a prediction in most models
of supersymmetry breaking. Therefore, the tension between the MSSM and naturalness goes
beyond stops not showing up in experiment. Even if we come up with a model that is able to
evade experimental searches for superpartners 10, we are left with the problem of how to adjust
the Higgs mass in a natural way.

In summary, if we decide to stick with naturalness as a driving principle in the search for BSM
physics, we have to do some model building in order to properly fit the Higgs mass. To raise the
Higgs mass without superheavy stops or maximal mixing we have a couple of possibilities:

• Enhance the tree-level contribution to the Higgs mass. Since the size of the tree level
contribution is set by the Higgs quartics, this suggests new contributions to the quartic
couplings which can be given by either F or D-terms. New F -term contributions imply
additional DOFs coupled to the Higgs (singlet extended MSSM, NMSSM; triplet extended
MSSM, TMSSM [62, 63]; etc.), while new D-term contributions imply new gauge groups
broken at a low scale [64].

• Enhance the loop-level contribution to the Higgs mass with additional matter. We know
that chiral multiplets with large couplings to the Higgs enhance the radiative contribution
to the physical Higgs mass; it is easy to imagine a situation where new loops add to the
dominant top sector contribution.

The former are in some sense the most ‘natural’, since they do not require radiative corrections
to exceed tree-level contributions and can be made in agreement with Veltman’s naturalness
criterion (Sec. 2.5). In particular, the SCTM adds three extra SU(2)L triplets of χSF’s to the
MSSM and thus raises the Higgs mass through F -term contributions in a natural way.

10There are a few possibilities which can alleviate the bounds on stops. Some of them just require a smart choice
for the spectrum (compressed scenarios [60]) while others do require some model building (Dirac gauginos [61]).
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4
The Supersymmetric Custodial Triplet Model

The MSSM extensions which can increase the Higgs mass by a tree-level F -term are limited to
fields in the superpotential which can couple at the renormalizable level to the MSSM Higgs
sector H1,2. They are an SU(2)L singlet S and/or triplets with hypercharge Y = (0,±1), Σ0,±1.
Any of the above extra Higgses would add (depending on the value of tanβ) an extra tree-level
contribution to the Higgs mass.

The singlet extension of the MSSM dubbed the NMSSM (the next to minimal supersymmetric
Standard Model) is the extended Higgs sector that has been studied the most. It has been
shown that it can raise the Higgs mass and solve some drawbacks of the MSSM such as the
µ-problem, however as it is noted in Refs. [65, 66], it also suffers from problems of its own.
Extra doublets would not feed the tree level Higgs mass and so the next possible choice is the
SU(2)L triplet. Adding triplets to the Higgs sector raises the Higgs mass and gives rise to
interesting phenomenology that is worth studying. The problem with triplet representations is
that introducing only Σ0 or Σ±1 has a general problem, the neutral component of the triplets
will acquire a vacuum expectation value v∆ which will spoil the ρ = 1 relationship unless v∆ is
small enough. This requires a large soft mass for the triplet that introduces a tuning problem, for
instance, in calculable models such as gauge mediated supersymmetry breaking it is difficult to
get heavy triplets while keeping the rest of the spectrum light. The way out is using the whole set
Σ0,±1 and providing the theory with a global SU(2)L⊗SU(2)R symmetry, spontaneously broken
to the custodial SU(2)V symmetry after electroweak breaking. This kind of models were first
introduced in the context of non supersymmetric theories by Georgi and Machacek in Ref. [67]
and further studied in Refs. [68–70]. As the hierarchy problem is worsened with respect to
the Standard Model (extended Higgs sector means more scalar masses to stabilize) it is worth
considering the supersymmetric generalization.

In this chapter, we introduce the Supersymmetric Custodial Triplet Model and study some of
its main features. As a prologue, in Section 4.1 we begin by briefly discussing the GM model and
its relation to custodial symmetry. We then present the particle content and the scalar potential
of the SCTM in Section 4.2 and also discuss the interesting tree level structure of the scalar
spectrum (Sections 4.3 and 4.4), the fermion sector (Sec. 4.5), the restoration of unitarity in the
model (Sec. 4.6) and the impact on Higgs observables that the addition of the triplets might have
(Sec. 4.7). We end by arguing in Section 4.8 that the tree level picture cannot be the end of
the story as loop corrections will break custodial symmetry, hence modifying the naive picture
presented in this chapter.
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4.1 Triplets and custodial symmetry: The GM model

Let us first describe the non supersymmetric cousin of the SCTM, the GM model. As the SCTM
does, it uses custodial symmetry to protect the ρ parameter from dangerous contributions, thus
allowing for sizeable triplet VEV’s. In the GM model, two SU(2)L scalar triplets are added to
the SM in such a way that the Higgs potential preserves a global SU(2)L ⊗ SU(2)R symmetry
which is then broken to the vector custodial subgroup SU(2)V after EWSB, thus predicting ρ = 1
at tree-level.

More specifically, on top of the SM Higgs doublet, it introduces one real scalar triplet
with hypercharge Y = 0, φ = (φ+, φ0, φ−)T , and one complex scalar triplet with Y = 1,
χ = (χ++, χ+, χ0)T . The doublet and triplets are then organized in terms of representations
of SU(2)R in order to have objects for which the transformation rules under SU(2)L ⊗ SU(2)R
are defined, just as in Section 1.3. The bidoublet is the same as what is defined in Eq. (1.23)
while the (3L, 3̄R) transforming bitriplet

∆̄GM = (χ̃, φ, χ) =

 χ0∗ φ+ χ++

χ− φ0 χ+

χ−− φ− χ0

 . (4.1)

If EWSB proceeds such that vH ≡ 〈H0〉, vφ ≡ 〈φ0〉 = vχ ≡ 〈χ0〉, i.e. the triplet VEV’s are
aligned and θL = θR, then SU(2)L ⊗ SU(2)R will be broken to the custodial subgroup SU(2)V ,
which ensures that the ρ parameter is equal to one at tree-level as in the SM. This can be explicitly
seen by taking the gauge boson masses and computing the deviation from ρ = 1 when the triplet
VEV’s have a generic configuration,

ρ− 1 ≡ ∆ρ =
2(v2

φ − v2
χ)

v2
H + 4v2

χ

. (4.2)

Thus, having custodial symmetry, which requires vφ = vχ, ensures that ρ = 1 at tree-level and
protects it from radiative corrections.

Main drawbacks of the GM model

In the GM model the ρ problem of theories with triplets is solved in and elegant way by using
a global symmetry that is already accidentally present in the SM. However, the nice tree level
structure that it provides does not hold under quantum scrutiny. Besides worsening the hierarchy
problem of the SM by adding more scalars, the GM model suffers from some consistency problems
when radiative corrections are taken into account.

As in the SM, the Yukawa and hypercharge interactions lead to an explicit breaking of the
SU(2)L⊗SU(2)R symmetry by radiative corrections. Thus, even if the Higgs sector of the theory
is SU(2)L ⊗ SU(2)R invariant at one particular scale, in general it will be driven by the RGE
evolution of the couplings and mass parameters to a point which violates this global symmetry. In
the GM model this implies that, if the scale at which SU(2)L⊗SU(2)R holds (which we call Qcus)
is far above the electroweak scale, RGE evolution will typically lead to large deviations from ρ = 1
at the EW scale, in conflict with experiments. Thus in the GM model one is forced to impose the
scale Qcus, which is a priori unrelated to v, to be close to the electroweak scale. The particular
choice of the scale Qcus will also greatly affect the phenomenology of the model [69, 70]. Let us
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also emphasize that there should be new dynamics at the scale Qcus where the SU(2)L⊗SU(2)R
symmetry is imposed. Otherwise, this SU(2)L ⊗ SU(2)R symmetric point is simply an arbitrary
point in the RGE evolution which ‘accidentally emerges’ via running from some SU(2)L⊗SU(2)R
violating point at higher energies, a scenario that is certainly unappealing. In other words, to
avoid relying on this accidental emergence of the global SU(2)L⊗SU(2)R, the scale Qcus should
also be taken as the cutoff of the theory. In the GM model this implies a cutoff at or around the
electroweak scale, i.e. the introduction of new dynamics or degrees of freedom beyond those found
in the GM model (e.g. a strongly coupled sector as originally proposed [67]). These problems
can be seen as an indication that the GM model should be embedded in a larger theory which
would presumably resolve these issues.

We will show during this work how the supersymmetric generalization of the GM model (the
SCTM) can not only stabilize the scalar masses but also provide a way of circumventing the issues
listed above. It will give a natural scale at which the SU(2)L⊗SU(2)R symmetry holds, the scale
at which supersymmetry breaking is transmitted to the observable sector Qcus ≡M (Chapter 5),
and also a reason to why having v �M does not generate ρ 6= 1 in all cases (Appendix A.1).

4.2 Introduction to the SCTM: Tree level definitions

Field content and SU(2)L ⊗ SU(2)R representations

The model features a Higgs sector manifestly invariant under SU(2)L ⊗ SU(2)R. The MSSM
Higgs sector H1 and H2 with respective hypercharges Y = (−1/2, 1/2)

H1 =

(
H0

1

H−1

)
, H2 =

(
H+

2

H0
2

)
(4.3)

is complemented with SU(2)L triplets, Σ−1, Σ0 and Σ1 with hypercharges Y = (−1, 0, 1)

Σ−1 =

(
χ−√

2
χ0

χ−− −χ−√
2

)
, Σ0 =

(
φ0
√

2
φ+

φ− − φ0
√

2

)
, Σ1 =

(
ψ+
√

2
ψ++

ψ0 −ψ+
√

2

)
, (4.4)

where Q = T3L+Y . The two doublets and the three triplets are organized under SU(2)L⊗SU(2)R
as H̄ = (2L, 2̄R), and ∆̄ = (3L, 3̄R) where

H̄ =

(
H1

H2

)
, ∆̄ =

(
−Σ0√

2
−Σ−1

−Σ1
Σ0√

2

)
(4.5)

and T3R = Y . The invariant products for doublets A · B ≡ AaεabB
b and anti-doublets Ā · B̄ ≡

Āaε
abB̄c are defined by ε21 = ε12 = 1.

Scalar potential

The SU(2)L ⊗ SU(2)R invariant superpotential is then defined as

W0 = λH̄ · ∆̄H̄ +
λ3

3
tr ∆̄3 +

µ

2
H̄ · H̄ +

µ∆

2
tr ∆̄2 , (4.6)
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and the soft terms are also written in a SU(2)L ⊗ SU(2)R invariant manner

Vsoft = m2
H |H̄|2 +m2

∆ tr |∆̄|2 +
1

2
m2

3H̄ · H̄

+

{
1

2
B∆ tr ∆̄2 +AλH̄ · ∆̄H̄ +

1

3
Aλ3 tr ∆̄3 + h.c.

}
. (4.7)

Then the total potential is

V = VF + VD + Vsoft (4.8)

and can be easily computed. We have chosen not to write the superpotential yukawa terms and
their soft trilinear counterparts to make the SU(2)L ⊗ SU(2)R invariance manifest. The total
expression in component fields can be found in Appendix A.2.

The neutral components of all fields can be parametrized as

X = vX +
XR + iXI√

2
, X = H0

1 , H
0
2 , φ

0, χ0, ψ0 , (4.9)

where we define by v1, v2, vφ, vχ and vψ the VEV’s for the fields H0
1R, H0

2R, φ0
R, χ0

R and
ψ0
R respectively. When the field VEV’s are related by v1 = v2 ≡ vH , vφ = vχ = vψ ≡ v∆,

the SU(2)L ⊗ SU(2)R symmetry is broken to the custodial (diagonal) subgroup SU(2)V (see
Appendix A.1) and the (tree-level) parameter ρ = 1 1. The value of vH (v∆) can be determined
by the experimental measurements of the W mass if v∆ (vH) is given,

v2 = 2v2
H + 8v2

∆ , (4.10)

where v = 174 GeV. It is more convenient to use v∆ as a free parameter and then fix vH , as v∆ is
the parameter that controls the decoupling of the scalar triplet sector (Section 4.4). The tadpole
conditions 2

∂V

∂H0
1R

∣∣∣∣
0

=
∂V

∂H0
2R

∣∣∣∣
0

=
∂V

∂φ0
R

∣∣∣∣
0

=
∂V

∂χ0
R

∣∣∣∣
0

=
∂V

∂ψ0
R

∣∣∣∣
0

= 0 (4.11)

at the custodial VEV allow to eliminate the parameters m2
H and m2

∆ in the potential as a function
of the other parameters

m2
H = m2

3 + 3v∆[λ(λ3v∆ − µ∆)−Aλ] + 6λµv∆ − 3λ2(v2
H + 3v2

∆) ,

m2
∆ =

v2
H(2λµ− 6λ2v∆ −Aλ)− v∆B∆ + (2λ3v∆ − µ∆)[λv2

H − (λ3v∆ − µ∆)v∆]

v∆
. (4.12)

1The nature of the ρ parameter discussed in this chapter and Appendix A.1 is that of a vacuum determined
from an SU(2)L ⊗ SU(2)R invariant potential. In Chapter 5 we discuss quantum corrections to ρ, these do not
come from the explicit computation of diagrams but rather from an RGE improved situation where the potential
is not SU(2)⊗SU(2)R invariant anymore. To avoid clutter we choose not so signal this in our notation and expect
that context will help the reader to distinguish between both situations, the full tree-level and the RGE improved.

2For the sake of clarity, in the next chapters and when working with the scalar potential and minimization
conditions we will consider the real part of the neutral fields without specifying so.
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Figure 4.1: A schematic figure of the scalar spectrum and its tranformation properties under
SU(2)V , the mixing angle between the SU(2)L doublet and triplet sectors will determine how
much of doublet or triplet component will have each mass eigenstate. From now on, we will refer
to the former and their orthogonal as being doublet-like and triplet-like states respectively.

SU(2)V representations

Before discussing the mass spectrum we will change the states H̄ and ∆̄, which are representations
of the Lagrangian group SU(2)L⊗SU(2)R symmetry, into representations of the custodial vacuum
SU(2)V symmetry. To this end we will decompose the representations as H̄ = h1 ⊕ h3 and
∆̄ = δ1⊕ δ3⊕ δ5 where the subscripts indicate the dimensionality of the SU(2)V representations.
For the doublet part

h0
1 =

1√
2

(H0
1 +H0

2 ) ,

h+
3 = H+

2 , h0
3 =

1√
2

(H0
1 −H0

2 ) , h−3 = H−1 , (4.13)

while the triplet decomposes as

δ0
1 =

φ0 + χ0 + ψ0

√
3

,

δ+
3 =

ψ+ − φ+

√
2

, δ0
3 =

χ0 − ψ0

√
2

, δ−3 =
φ− − χ−√

2
, (4.14)

δ++
5 = ψ++, δ+

5 =
φ+ + ψ+

√
2

, δ0
5 =
−2φ0 + ψ0 + χ0

√
6

, δ−5 =
φ− + χ−√

2
, δ−−5 = χ−− .

Notice that the field components of h1,3 and δ1,3,5 are complex. After electroweak breaking they
decompose into real representations of SU(2)V with a common mass for all components, includ-
ing the massless Goldstone triplet.

61



Chapter 4. The Supersymmetric Custodial Triplet Model

We then decompose the neutral components of fields in (4.13) and (4.14) as

h0
1 =
√

2vH +
h0

1R + ih0
1I√

2
, δ0

1 =
√

3v∆ +
δ0

1R + iδ0
1I√

2
,

h0
3 =

h0
3R + ih0

3I√
2

, δ0
3 =

δ0
3R + iδ0

3I√
2

,

δ0
5 =

δ0
5R + iδ0

5I√
2

. (4.15)

Note that as expected, only SU(2)V singlets acquire vacuum expectation values if custodial
symmetry is present.

4.3 The Higgs sector

We will describe in this section the spectrum of the scalar and pseudoscalar sectors. After
EW breaking in the custodial minimum and because of the residual custodial invariance of the
Higgs sector the mass eigenstates transform as representations of the custodial group SU(2)V
(i.e. singlets, triplets and fiveplets). Therefore a change to the SU(2)V basis will greatly simplify
the mass matrix, making it possible to compute analytical expressions for the mass eigenvalues
and mixing angles. By an abuse of language we will sometimes refer to a scalar (pseudoscalar)
multiplet as one whose neutral component is a scalar (pseudoscalar).

SU(2)V scalar singlets

‘Features the Higgs boson and its orthogonal triplet-like state’

There are in the spectrum two real neutral scalar (h0
1R, δ

0
1R) singlets mixed by the mass matrix

M2
S

(h0
1R, δ

0
1R)M2

S

(
h0

1R

δ0
1R

)
(4.16)

where

(M2
S)11 = 6λ2v2

H ,

(M2
S)22 =

v2
H [λ(2µ− µ∆)−Aλ] + v2

∆ [−A3 + λ3(4λ3v∆ − 3µ∆)]

v∆
,

(M2
S)12 = (M2

S)21 =
√

6vH [Aλ + λ(6λv∆ − 2λ3v∆ − 2µ+ µ∆)] . (4.17)

The eigenvectors can be written in term of the rotation with angle αS as(
S1

S2

)
=

(
cosαS − sinαS
sinαS cosαS

)(
h0

1R

δ0
1R

)
(4.18)

where the mixing angle αS is given by

sin 2αS =
2(M2

S)12√
tr 2(M2

S)− 4 det(M2
S)
, cos 2αS =

(M2
S)22 − (M2

S)11√
tr 2(M2

S)− 4 det(M2
S)

(4.19)
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and we are assuming that m2
S1
< m2

S2
.

As we can see from Fig. 4.3 one expects v∆ < vH and therefore it will be useful to provide
the series expansion of the different masses and mixing angles in powers of v∆. We will just
present series expansions in powers of v∆ to have an analytical feeling of the results although the
numerical analysis will be done with the complete expressions. In particular for the above masses

m2
hMSSM

≡ m2
S1

= 6λ2v2
H +O(v∆) ,

m2
S2

=
λ(2µ− µ∆)−Aλ

v∆
+O(v∆) ,

sinαS = −
√

6
v∆

vH
+O(v2

∆) . (4.20)

We can see from above that the scalar singlet S1 plays the role of the light CP -even MSSM Higgs
h when the triplet scalar sector is decoupled (in the limit where v∆ → 0) 3.

SU(2)V pseudoscalar singlets

‘Features the MSSM pseudoscalar and its orthogonal triplet-like state’

There are two pseudoscalar singlets (h0
1I , δ

0
1I) mixed by the mass matrix M2

P

(h0
1I , δ

0
1I)M2

P

(
h0

1I

δ0
1I

)
(4.21)

where

(M2
P )11 = 2

(
m2

3 − 3v∆ [Aλ + λ(−λ3v∆ + µ∆)]
)
,

(M2
P )22 = −v

2
H(Aλ − 2λµ) + v∆(−3A3v∆ + 2B∆ − 4λλ3v

2
H) + (λv2

H − λ3v
2
∆)µ∆

v∆
,

(M2
P )12 = (M2

P )21 =
√

6vH [λ(−2λ3v∆ + µ∆)−Aλ] . (4.22)

The eigenvectors can be written in term of the rotation with angle αP as(
P1

P2

)
=

(
cosαP − sinαP
sinαP cosαP

)(
h0

1I

δ0
1I

)
(4.23)

where the mixing angle αP is defined as in Eq. (4.19) and we are assuming that m2
P1
< m2

P2
. The

expansion of the mass eigenvalues and the mixing angle in powers of v∆ yields

m2
AMSSM

≡ m2
P1

= 2m2
3 +O(v∆) ,

m2
P2

=
v2
H [λ(2µ− µ∆)−Aλ]

v∆
− 2B∆ + 4λλ3v

2
H +O(v∆) ,

sinαP =
2(λµ∆ −Aλ)

λ(2µ− µ∆)−Aλ
v∆

vH
+O(v2

∆) . (4.24)

Notice also from Eq. (4.24) that the pseudoscalar P1 plays the role (in the limit v∆ → 0) of the
massive MSSM pseudoscalar.

3As the custodial ordering holds at tree level, during this chapter we will use S1 to refer to the light doublet-like
CP-even Higgs, i.e. the Higgs boson.

63



Chapter 4. The Supersymmetric Custodial Triplet Model

SU(2)V scalar triplets

‘Features the MSSM heavy and charged higgses and their orthogonal triplet-like states’

There are two scalar triplets (TH , T∆) defined as

TH =


1√
2
(h+

3 + h−∗3 )

h0
3R

1√
2
(h−3 + h+∗

3 )

 , T∆ =


1√
2
(δ+

3 + δ−∗3 )

δ0
3R

1√
2
(δ−3 + δ+∗

3 )

 (4.25)

which are mixed by the squared mass matrix M2 as

(TH , T∆)M2

(
TH
T∆

)
(4.26)

where

M2
11 = G2v2

H + 2λ(−4λv2
∆ + λv2

H + 4µv∆) + 2m2
3 − 2v∆[Aλ + λ(µ∆ − λ3v∆)] ,

M2
22 =

4G2v3
∆ − 2λv2

H(λv∆ − µ)− v∆[2B∆ − 3λλ3v
2
H + 2v∆(A3 + λ2

3v∆)]− (λv2
H − 2λ3v

2
∆)µ∆

v∆
,

M2
12 =M2

21 = 2vH
[
−Aλ + v∆(G2 − 4λ2 − λλ3) + λµ∆

]
. (4.27)

In (4.27) G2 = g2 for the charged components and G2 = g2 +g′2 for the neutral components. This
just reflects the fact that the hypercharge coupling g′ breaks the custodial SU(2)V symmetry and
thus spoils the triplet structure of TH and T∆ and therefore of the two triplet mass eigenstates.
The triplets eigenvectors are given by 4

(
T1

T2

)
=

(
cosαT − sinαT
sinαT cosαT

)(
TH
T∆

)
(4.28)

where again the mixing angle αT is defined as in Eq. (4.19) and we are assuming that m2
T1
< m2

T2
.

The expansion of the mass eigenvalues and the mixing angle in powers of v∆ yields

m2
H±MSSM

≡ m2
T1

= G2v2
H + 2m2

3 + 2λ2v2
H +O(v∆) ,

m2
T2

=
v2
H

v∆
[λ(2µ− µ∆)−Aλ]− 2B∆ − 2λ2v2

H + 3λλ3v
2
H +O(v∆) ,

sinαT =
2(λµ∆ −Aλ)

λ(2µ− µ∆)−Aλ
v∆

vH
+O(v2

∆) . (4.29)

As it happens with other MSSM-like states, T1 does not get super heavy when v∆ → 0. This
triplet, which features neutral and charged components, will correspond to the MSSM charged
and heavy Higgs, which in the MSSM custodial limit will be degenerate in mass.

4The presence of the O(g′2) terms can be easily accounted for by just keeping in mind the different definition
of G2 for the mass eigenstates and mixing angles of the neutral and charged components of the triplets. This
breaking will be tiny.
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SU(2)V pseudoscalar triplets

‘Features the Goldstone triplet and its massive orthogonal triplet-like triplet’

There are two pseudoscalar triplets, the massless triplet G =
(
G+, G0, G−

)T
describing the

massless Goldstone bosons with components

G0 = cos θ h0
3I + sin θ δ0

3I ,

G∓ = cos θ
h±∗3 − h∓3√

2
+ sin θ

δ±∗3 − δ∓3√
2

(4.30)

and the massive triplet A =
(
A+, A0, A−

)T
A0 = − sin θ h0

3I + cos θ δ0
3I ,

A∓ = − sin θ
h±∗3 − h∓3√

2
+ cos θ

δ±∗3 − δ∓3√
2

, (4.31)

where the mixing angle is defined as

sin θ =
2
√

2v∆

v
, cos θ =

√
2vH
v

. (4.32)

The mass of the triplet A is given by

m2
A =

v2
H + 4v2

∆

v∆
(λ [2µ− µ∆ − (2λ+ λ3)v∆]−Aλ) . (4.33)

The expansion of the mass eigenvalues and the mixing angle in powers of v∆ yields

m2
A =

v2
H

v∆
[λ(2µ− µ∆)−Aλ] + λ(λ3 − 2λ)v2

H +O(v∆) . (4.34)

SU(2)V fiveplets

The complex fiveplet in ∆̄ splits into two fiveplets: A scalar fiveplet FS which contains the neutral
scalar δ0

5R, and a pseudoscalar fiveplet FP which contains the neutral pseudoscalar δ0
5I . They are

defined as

FS =


1√
2
(δ++

5 + δ−−∗5 )
1√
2
(δ+

5 + δ−∗5 )

δ0
5R

1√
2
(δ−5 + δ+∗

5 )
1√
2
(δ−−5 + δ++∗

5 )

 , FP =


1√
2
(δ−−∗5 − δ++

5 )
1√
2
(δ−∗5 − δ+

5 )

δ0
5I

1√
2
(δ+∗

5 − δ−5 )
1√
2
(δ++∗

5 − δ−−5 )

 (4.35)

with masses squared

m2
FS

=
v2
H(2λµ− 6λ2v2

∆ −Aλ) + v∆[3λλ3v
2
H + 2v∆(A3 − λ2

3v∆)]− (λv2
H − 6λ3v

2
∆)µ∆

v∆
,

m2
FP

=
v2
H(2λµ− 6λ2v2

∆ + λλ3v∆ −Aλ)− 2v∆B∆ − (λv2
H − 4λ3v

2
∆)µ∆

v∆
. (4.36)
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The power expansion in v∆ of m2
FS

and m2
FP

reads as

m2
FS

=
v2
H

v∆
[λ(2µ− µ∆)−Aλ]− 3λ(2λ− λ3)v2

H +O(v∆) ,

m2
FP

=
v2
H

v∆
[λ(2µ− µ∆)−Aλ]− 2B∆ − λ(6λ− λ3)v2

H +O(v∆) . (4.37)

4.4 Parameter dependece and decoupling considerations

In order to investigate the parameter dependence of the model we choose a set of benchmark
parameters

Aλ = Aλ3 = 0, µ = µ∆ = 250 GeV, m3 = 500 GeV, B∆ = −m2
3, λ3 = −0.35 . (4.38)

As for the value of λ we will trade it for the mass mS1 ' 125 GeV. Since the relevant values of λ
are moderately small we will consistently neglect the radiative corrections to the mass eigenvalue
arising from the λ coupling and those from the bottom quark Yukawa coupling (since tanβ = 1),
and will only keep those coming from the top Yukawa coupling. Moreover as we are neglecting
trilinear soft supersymmetry breaking terms in Eq. (4.38) we will do so for the trilinear coupling
At in the stop sector which we will neglect. On the other hand this choice is the most conservative
one as, in the absence of threshold corrections from the stop sector, the only tree level contribution
to the Higgs mass comes from the coupling λ which (along with the leading radiative corrections)
has to cope with the experimental value of the Higgs mass. Therefore by including the leading
(∝ h2

t ) one-loop corrections and the subleading two-loop QCD corrections (∝ h2
tα3) [44] one

obtains for mt̃ ' 650 GeV that radiative corrections amount to a contribution ' (72 GeV)2 to
the squared Higgs mass which leaves a tree-level squared mass contribution ' (104 GeV)2. The
corresponding value of λ is plotted in Fig. 4.2 as a function of v∆.
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Figure 4.2: Left: Plot of λ as a function of v∆ for the values of supersymmetric parameters in
Eq. (4.38), λ3 = −0.35 and mS1 ' 126 GeV. Right: Plot of the scale at which the couplings reach
Landau poles as a function of v∆ for the (initial) values of λ(mt) as given in the left panel.
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Conditions for correct EW breaking

Conditions (4.12) guarantee the existence of a non-trivial extremal but by no means enforce
electroweak breaking. A set of sufficient conditions for the existence of a non-trivial minimum
can be imposed by the condition detH|0 < 0 (where H|0 is the Hessian matrix, or matrix of
second derivatives, at the origin) which implies that the origin is a saddle point. This condition
translates into a set of constraints in the space of supersymmetric parameters. To leading order
in v∆ these conditions can be written as

λ(2µ− µ∆)−Aλ >0

3v2
Hλ

2 − 2m2
3 <0 (4.39)

which hold for small values of v∆. Of course when v∆ grows conditions (4.39) are not a good
approximation. In order to illustrate this fact we show in Fig. 4.3 the plot of detH|0/v10, where
v2 = 2v2

H + 8v2
∆, in the (λ, v∆) plane for λ3 = −0.35 (left panel) and in the (λ3, v∆) plane for

λ = 0.45 (right panel). In both plots the region on the left (right) of the thick solid line fulfills
(does not fulfill) the EW breaking condition. In the plots of Fig. 4.3 we can see that, for fixed
values of the supersymmetric parameters, there is an upper bound on the value of v∆ such that
beyond the bound electroweak symmetry breaking does not hold. As we will see in the next
sections the chosen values of supersymmetric parameters are consistent with a SM-like Higgs
with a mass ∼ 125 GeV.
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Figure 4.3: Left: For the values of supersymmetric parameters given in Eq. (4.38), contour lines
of detH|0/v10 =-10 (dashed line), 0 (solid line) and 5 (dotted line) in the (λ, v∆) plane for
λ3 = −0.35. Right: Contour lines of detH|0/v10 =-10 (dashed line), 0 (solid line) and 5 (dotted
line) in the (λ3, v∆) plane for λ = 0.45.
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Landau poles

A very general feature of this model is that it requires an ultraviolet (UV) completion as the
dimensionless couplings reach Landau poles for scales below the Planck scale as an effect of the
renormalization group running. In the right panel of Fig. 4.2 we plot the value of the Landau
pole for the couplings as a function of v∆ for the custodial values of the parameters at mt given
in Eq. (4.38). The origin of the existence of the Landau pole is three-fold:

• The very existence of three SU(2)L triplets makes the weak coupling g to become non-
perturbative at one-loop at a scale ∼ 1013 GeV.

• Since the top sector obtains its mass at tree-level only from the SU(2)L doublet VEV vH ,
large values of v∆ necessitate large top Yukawa couplings at the electroweak scale in order
to reproduce the observed top mass. One can see this by writing the top Yukawa coupling
in terms of v∆ as

yt =
mt

vH
=

mt√
(v2 − 8v2

∆)/2
, (4.40)

which leads to the absolute constraint v > 2
√

2v∆ ⇒ v∆ . 62 GeV. Furthermore, if we
demand yt . 4π at the scale M, then it is typically difficult to get values for v∆ much
larger than ∼ 30 GeV if we want to have a UV completion around O(100 TeV), because yt
increases when run up to higher energies.

• The starting value of λ(mt) has to cope with the experimental value of the Higgs mass
mh = 125 GeV after considering the top-stop sector radiative corrections to the Higgs
mass. We have conservatively assumed zero mixing in the stop sector At ' 0 so that for
other values of the mixing (as e.g. for maximal mixing At '

√
6mQ) the initial value λ(mt)

can be decreased and thus the location of the Landau pole moved away.

As a consequence of this behaviour we conclude that the considered model requires low-scale
supersymmetry breaking (see Chapter 5).

General considerations on decoupling regions

The masses of the eigenstates studied earlier are provided in Fig. 4.4 for the choice of supersym-
metric parameters given in Eq. (4.38). We are using the same color code for the mass eigenstates
which are mixed, through a mixing angle, from the original interaction states: in all cases the
eigenstates which decouple in the v∆ → 0 limit (triplet-like) are presented in solid lines and their
companions in dashed lines. As we can see from Fig. 4.4, S1 (the SM-like Higgs) is the lightest
scalar and the second to lightest scalar is FS which is supermassive for v∆ → 0 but becomes as
massive as S1 for v∆ ' 25 GeV. We could think that this is in conflict with present experimental
data for the present choice of supersymmetric parameters. However, as we will see in the following
section, this state will be weakly coupled to gauge bosons, as its couplings are suppressed by sin θ,
and it is not coupled at all to fermions (see Chapters 5 and 8). The third to lightest scalar is S2

which is supermassive in the limit v∆ → 0 and whose mass becomes ' 300 GeV for v∆ ' 25 GeV.
Unlike FS this state is coupled to both gauge bosons and fermions but, as it is the orthogonal
combination to the SM-like Higgs S1, it is weakly coupled and should not be easily detected at
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LHC. Finally the heaviest scalars, T1 and T2 are superheavy. Similarly the lightest pseudoscalar
is A, the orthogonal combination to the Goldstone bosons, whose mass grows when v∆ → 0. In
the region v∆ ∼ 25 GeV its mass is mA ' 250 GeV. It does not couple to gauge bosons and its
coupling to fermions is suppressed by sin θ. Notice that rates with couplings proportional to sin θ
are suppressed by sin2 θ . 0.16 for v∆ . 25 GeV.

From the previous results in this section it is clear that there are three decoupling limits in
the Higgs sector:

• The limit m∆ →∞ (i.e. v∆ → 0) in which case all states arising from the triplet ∆̄ are very
heavy and decouple from the Higgs sector in the doublet H̄. In this limit the heavy states
are the scalar S2 and pseudoscalar P2 singlets, the scalar T2 and pseudoscalar A triplets
and the scalar FS and pseudoscalar FP fiveplets. Similarly the light states are (apart from
the massless Goldstone triplet G) the scalar S1 and pseudoscalar P1 singlets and the scalar
triplet T1. As v∆ < vH we expect this limit to provide an approximate classification of the
states.

• The limit mH →∞ (i.e. m2
3 →∞) in which case the previous light states split into heavy

and light states. Heavy states, with masses controlled by the supersymmetry breaking
parameter m2

H , i.e. by m2
3, are the pseudoscalar singlet P1 and the scalar triplet T1. In

particular P1 plays the role of the massive MSSM pseudoscalar, and the scalar triplet T1

that of massive neutral and charged Higgses in the MSSM with decoupled triplets. Finally
the only light scalar (not controlled by the supersymmetry breaking scale) is the scalar
singlet S1 which plays the role of the MSSM light SM-like Higgs.

• There is also the limit |B∆| → ∞ and m2
3 → ∞ in which we recover the scalar spectrum

found in the GM model. B∆ is the triplet sector equivalent of m2
3 so this limit is like taking

the decoupling limit of the MSSM thus getting rid of all scalars and pseudoscalars which
are controlled by the supersymmetry breaking parameters.
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Figure 4.4: Left: Masses (in GeV) of scalar multiplets as a function of v∆. From bottom-up the
different lines correspond to the mass eigenstates: S1, FS , S2, T1, T2. Right: The same for the
pseudoscalar multiplets. From bottom-up the different lines correspond to the mass eigenstates:
A, P1, FP , P2.

69



Chapter 4. The Supersymmetric Custodial Triplet Model

4.5 The fermion sector

In this section we will present the mass matrices for fermions in the Higgs doublet-triplet mixed
sectors. These matrices also present ordering under custodial symmetry since the change to
the custodial basis holds at the superfield level, however, the eigenvalues cannot be analitically
computed due to the presence of gauginos, which spoil the SU(2)V structure.

Neutralinos

In the basis (B̃, W̃3, H̃
0
1 , H̃

0
2 , φ̃

0, χ̃0, ψ̃0) the neutralino Majorana mass matrix is given by

M0
1/2 =



M1 0 −g′vH√
2

g′vH√
2

0 −
√

2g′v∆

√
2g′v∆

0 M2
gvH√

2
−gvH√

2
0

√
2gv∆ −

√
2gv∆

−g′vH√
2

gvH√
2

2λv∆ λv∆ − µ λvH 0 2λvH
g′vH√

2
−gvH√

2
λv∆ − µ 2λv∆ λvH 2λvH 0

0 0 λvH λvH µ∆ −λ3v∆ −λ3v∆

−
√

2g′v∆

√
2gv∆ 0 2λvH −λ3v∆ 0 −λ3v∆ + µ∆√

2g′v∆ −
√

2gv∆ 2λvH 0 −λ3v∆ −λ3v∆ + µ∆ 0


(4.41)

In Fig. 4.5 we make contour plots in the plane (v∆,M2) of the lightest neutralino mass eigenvalue
(left panel) and the heaviest neutralino mass eigenvalue (right panel), both in GeV, for the values
of parameters in Eq. (4.38) and M1 = 200 GeV.
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Figure 4.5: Contour plots in the plane (v∆,M2) of the lightest (left panel) and heaviest (right
panel) neutralino masses for the values of the supersymmetric parameters in Eq. (4.38) and
M1 = 200 GeV. All masses are in GeV

70



4.5. The fermion sector

Charginos

The mass Lagrangian for charginos with Qf = ±1 in the basis Ψ+ = (W̃+, H̃+
2 , φ̃

+, ψ̃+)T and

Ψ− = (W̃−, H̃−1 , φ̃
−, χ̃−)T is given by

L±1/2 = −1

2

(
Ψ+T Ψ−T

)( 0 M±T1/2

M±1/2 0

)(
Ψ+

Ψ−

)
+ h.c. (4.42)

where

M±1/2 =


M2 gvH

√
2gv∆ −

√
2gv∆

gvH λv∆ + µ −
√

2λvH
√

2λvH
−
√

2gv∆

√
2λvH µ∆ λ3v∆√

2gv∆ −
√

2λv∆ λ3v∆ µ∆

 (4.43)

In Fig. 4.6 we make contour plots in the plane (v∆,M2) of the simply charged lightest chargino
mass eigenvalue (left panel) and the heaviest chargino mass eigenvalue (right panel) for the values
of parameters in Eq. (4.38).
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Figure 4.6: Contour plots in the plane (v∆,M2) of the lightest (left panel) and heaviest (right
panel) chargino masses for the values of the supersymmetric parameters in Eq. (4.38). All masses
are in GeV.

Finally for the doubly charged fermions (ψ̃++, χ̃−−) the Dirac mass is given by

M±±1/2 = µ∆ − λ3v∆ (4.44)

which using the chosen set of parameters in Eq. (4.38) is M±±1/2 ' µ∆ = 250 GeV.
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4.6 Comments about unitarity restoration in the model

Perturbative unitarity translates into bounds on scattering amplitudes involving longitudinally
polarized gauge bosons [71]. In particular the condition to achieve perturbative unitarity is that
tree-level scattering amplitudes VLVL → VLVL, where VL denotes the longitudinal polarization
of the gauge boson V , mediated by the Higgs sector reproduce at high energy (s → ∞) the SM
behavior. These amplitudes involve the trilinear couplings gHV V where H goes over the set of
mass eigenstates described in Section 4.3. The relevant couplings can be found in Appendix A.3.

In order to exhibit how unitarity works in this model we will choose two particular amplitudes:
the elastic scatterings ZLW

+
L → ZLW

+
L and W+

LW
+
L →W+

LW
+
L .

The scattering ZLW
+
L → ZLW

+
L

In this reaction the SM Higgs h contributes in the t-channel and therefore in the limit s → ∞
the amplitude is proportional to t with the coupling

gSMhWW · gSMhZZ = g2m2
W / cos2 θW . (4.45)

In the supersymmetric custodial triplets model (SCTM) there are neutral scalars H0
i =

S1, S2, F
0
S which contribute in the t-channel and provide an amplitude proportional to t in the

limit where s → ∞. On the other hand F+
S is exchanged in the s and u-channels and provide

amplitudes proportional to s + u ' −t. Therefore the total amplitude is proportional to t with
a coupling equal to ∑

H0
i=S1,S2,F 0

S

gH0
iW

+W− · gH0
iZZ
− g2

F+
S W

−Z
. (4.46)

Now we can see that using Eqs. (A.33) the coupling in Eq. (4.46) reproduces the SM coupling of
Eq. (4.45).

The scattering W+
LW

+
L → W+

LW
+
L

In this reaction the SM Higgs h contributes in the t and u channels so that in the limit where
s→∞ the amplitude is proportional to t+ u with a coupling

(gSMhWW )2 = g2m2
W . (4.47)

Similarly to the previous amplitude, in the SCTM the neutral scalars H0
i contribute to the t

and u channels with an amplitude, in the limit s→∞, proportional to t+u ' −s. Moreover the
doubly charged scalar F++

S is exchanged in the s channel with an amplitude proportional to s.
Adding up the four terms one gets an amplitude which, in the asymptotic limit, is proportional
to the coupling ∑

H0
i=S1,S2,F 0

S

g2
H0
iW

+W− − g2
F++
S W−W−

(4.48)

which, using the actual values of the couplings in (A.33), reproduces the SM result, Eq. (4.47).
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4.7 A study of the light Higgs behavior

In this section we will study the light CP-even Higgs rates to a pair of gauge bosons V V (V =
W,Z, γ) and SM fermions ff (f = t, b, τ). We will first consider tree-level processes. The ratios
rHXX are the quantities

rHXX =
gHXX

gSM
hXX

H = S1, S2 with X = V (W,Z), f(t, b, τ) (4.49)

where gHXX and gSMhXX are the couplings between the Higgs H and the field X in the SCTM and
in the SM, respectively.

Tree-level rates

The angles αS and θ play a fundamental role in the interactions of the Higgs with the SM fields,
as shown in Eq. (A.33) and Table 4.1.

rS1V V rS1ff

cosαS cos θ −
√

8
3 sinαS sin θ

cosαS
cos θ

Table 4.1: Ratios (4.49) for the different channels.

We plot in Fig. 4.7 the ratios of the SM-like Higgs S1 couplings to gauge bosons rS1V V (left
panel, solid line) and fermions rS1ff (left panel, dashed line). As we can see from the left panel
of the couplings of the Higgs (S1) to V V and ff are in very good agreement with the 68% CL
intervals on rhV V and rhff (when profiling over the other parameter) as measured for instance
by the ATLAS Collaboration [72]: rhV V = [1.05, 1.21] and rhff = [0.73, 1.07].
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Figure 4.7: Left: Plots of the ratios rS1V V (upper solid line) and rS1ff (lower dashed line) as
functions of v∆. Right: Plots of the ratios rS2V V (upper solid line) and rS2ff (lower dashed line)
as functions of v∆.
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Other CP-even neutral states

The triplet-like singlet counterpart of the Higgs S2 and other CP−even neutral states couple to
SM particles as listed in Table 4.2. While the couplings of the singlets (S1 and S2) are controlled

rS2V V rS2ff

sinαS cos θ +
√

8
3 cosαS sin θ

sinαS
cos θ

rT 0
i V V

rT 0
1 uu

rT 0
1 dd

rT 0
2 uu

rT 0
2 dd

rF 0
SWW rF 0

SZZ
rF 0

Sff

0 −cosαT
cos θ

cosαT
cos θ

−sinαT
cos θ

sinαT
cos θ

sin θ√
3

−2 sin θ√
3

0

Table 4.2: Ratios (4.49) for the different channels. Notation is u = t, d = b, τ .

by the angles αS and θ, the couplings of the CP -even scalars contained in the triplets Ti (i = 1, 2)
and fiveplets F 0

S are controlled by the angles αT and θ. We plot results for the couplings of S2

to gauge bosons rS2V V (right panel, solid line) and fermions rS2ff (right panel, dashed line) in
the right plot of Figure 4.7. As we can see, in the given range of v∆ the signal strengths for the
orthogonal eigenstate S2 is very suppressed. For instance for the gluon fusion Higgs production
decaying into V V or ff the signal strength is ∝ r2

S2V V (ff) . 0.1. Similarly the pseudoscalar A

can decay to fermions with a signal strength ∝ r2
Aff . 0.1. This is a direct consequence of their

triplet-like nature.

The diphoton rate

In this model the extra charged states will contribute to the S1 → γγ decay rate when they
propagate in the loop. This rate is dominated in the Standard Model by the propagation of W
gauge bosons and top quarks in the loop. The extra contribution from a bosonic or fermionic
Q-charge sector can be determined from the QED effective potential [73, 74]

Lγγ = F 2
µν

α

16π
2
∑
J,Q

bQJ log detMQ
J (XR), J = 0, 1/2 ; X = H0

1 , H
0
2 , φ

0, ψ0, χ0 (4.50)

where b
Qf
1/2 = 4

3NcQ
2
f for a Qf -charge Dirac fermion, bQS0 = 1

3NcQ
2
S for a complex QS-charge

spin-0 boson (Nc being the number of colors of the corresponding field) and where we have
subtracted from the determinant in (4.50) possible zero-modes (e.g. charged Goldstone bosons).
By expanding Lγγ to linear order in the fields XR and projecting them into S1 we get for the
ratio rS1γγ the general expression[

A1(τW ) +
4

3
A1/2(τt)

]
rS1γγ

=

(
cosαS cos θ −

√
8

3
sinαS sin θ

)
A1(τW ) +

4

3

cosαS
cos θ

A1/2(τt)

+vH

{
cosαS
cos θ

(
∂f

∂H0
1R

+
∂f

∂H0
2R

)
−
√

2

3

sinαS
cos θ

(
∂f

∂ψ0
R

+
∂f

∂χ0
R

+
∂f

∂φ0
R

)}∣∣∣∣∣
vX

, (4.51)
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where A1(τW ) ' −8.3 and A1/2(τt) ' 1.4 and

f(XR) =
∑
Q,J

bQJ log detMQ
J (XR)

=
4

3
log detM±1/2 +

16

3
log detM±±1/2 +

1

6
log det

∣∣M±0 ∣∣2 +
2

3
log det

∣∣M±±0

∣∣2 . (4.52)

Where we have replaced the minimum conditions (4.12) in the mass matrices MQ
J in (4.52) but

not the field VEV’s so that they depend on the background fields H0
1R, H

0
2R, φ

0
R, ψ

0
R, χ

0
R. In

particular it is easy to deduce the contribution from the SM particles (t,W±) in the second line
of Eq. (4.52) from the general expression in the third line of (4.51) by using the background
dependent masses

mt = htH
0
2R, m2

W =
1

2
g2
[
(H0

1R)2 + (H0
1R)2 + 4(φ0

R)2 + 2(ψ0
R)2 + 2(χ0

R)2
]
. (4.53)

As we have, both in the fermionic and the bosonic sectors, doubly charged fields they are
expected to dominate the γγ production since it is proportional to Q2. Actually we define the
excess in γγ with respect to the Standard Model production as

rS1γγ = 1 + ∆rS1γγ (4.54)

where ∆rS1γγ is the excess in rS1γγ , with respect to the Standard Model contribution, coming
from the modified coupling of the Standard Model fields and from the extra charged particles.
This excess is plotted in the left panel of Fig. 4.8 where the solid line corresponds to the extra
contribution from W and t coming from the modified coupling of these particles to the Higgs S1,
the dashed line is the contribution from the doubly charged scalar F±±S which becomes lighter
with increasing values of v∆ (see Fig. 4.4) and the dotted line the contribution from the doubly
charged charginos, where we have taken M2 = 150 GeV. The full value of rS1γγ is plotted in the
right panel of Fig. 4.8 for M2 = 150 GeV (solid line) and M2 = 300 GeV (dashed line).
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Figure 4.8: Left: Contribution to ∆rS1γγ from W and t (solid line), from the doubly charged

scalar F±±S (dashed line) and from the doubly charged chargino (dotted line) for M2 = 150 GeV.
Right: Solid (dashed) line is the plot of rS1γγ for M2 = 150 GeV (300 GeV).
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Chapter 4. The Supersymmetric Custodial Triplet Model

Higgs signal strengths

From the values of rS1XX determined in the previous section one can compute the predicted
signal strength RS1XX of the decay channel S1 → XX, with X = V, f, γ:

RS1XX =
σ(pp→ S1)BR(S1 → XX)

[σ(pp→ h)BR(h→ XX)]SM
. (4.55)

In particular for the gluon-fusion (gF), the associated production with heavy quarks (S1tt), the as-
sociated production with vector bosons (V S1) and the vector boson fusion (VBF) production pro-

cesses, one can writeR(gF )
S1XX

= R(S1tt)
S1XX

= r2
S1ff

r2
S1XX

/D andR(V BF )
S1XX

= R(V S1)
S1XX

= r2
S1V V

r2
S1XX

/D
where D ' 0.74 r2

S1ff
+ 0.26 r2

S1V V
.
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Figure 4.9: Left: Plot of the gluon fusion Higgs strengths, normalized to the corresponding Stan-
dard Model values, for the γγ channel (solid line), bb and ττ channels (dashed line) and WW
and ZZ channels (dotted line) as a function of v∆. Right: The same for weak vector boson fusion
Higgs strengths.

In Fig. 4.9 we plot R(gF )
S1XX

(left panel) and R(V BF )
S1XX

(right panel) for X = γ (solid lines),
X = b, τ (dashed lines) and X = W, Z (dotted lines). The supersymmetric parameters are fixed
in Eq. (4.38) and M2 = 150 GeV. We can see that large values of v∆ trigger deviations with
the Standard Model expectations although no strong statement can be made at this moment
from experimental results. We can just quote the ATLAS best fits for global signal strengths
in individual channels [72]: Rhττ = 0.8 ± 0.7, RhWW = 1.0 ± 0.3 and RhZZ = 1.5 ± 0.4 and
Rhγγ = 1.6± 0.3.

4.8 Discussion: Towards the realistic SCTM

We have presented in this chapter a supersymmetric model which feeds new F-term contributions
to the tree level part of the Higgs mass. As a consequence of adding extra χSF’s to the particle
content of the MSSM, a set of new states which are not present in the minimal picture does
show up, these are ordered under a residual SU(2)V symmetry that the vacuum has if the VEV’s
acquired by the neutral components of the scalar triplets are aligned (vψ = vχ = vφ ≡ v∆). At
the same time this symmetry also protects the relation ρ = 1. It is shown in Figure 4.4 how
the new scalar states can be light if v∆ is sizable; these can contribute non negligibly to Higgs
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observables (Sec. 4.7), moreover, a sizable v∆ will be responsible for a great deal of the SCTM
interesting features as we will explore in the following chapters.

Thanks to the SU(2)V invariant structure, the model shows a great deal of calculability,
however, during this chapter we have considered that the Higgs sector respects a global SU(2)L⊗
SU(2)R invariance which is then broken to the diagonal (custodial) symmetry subgroup SU(2)V .
As the Yukawa and hypercharge couplings explicitly violate the custodial symmetry, radiative
corrections, mainly those of the top quark Yukawa coupling, will spoil the SU(2)L ⊗ SU(2)R
structure and therefore the custodial invariance of the vacuum. Since the model at tree-level
has proven to have interesting properties that we do not want to spoil, if we want the custodial
vacuum to be considered as a good approximation, we should study the effect of these custodially
breaking quantum corrections and see whether we can have realistic realizations of the SCTM
with remnants of the SU(2)V invariance.

77





5
The SCTM at the quantum level

In order to perform a realistic study of the SCTM the first thing that should be determined
is at which scale the full SU(2)L ⊗ SU(2)R invariance holds, Qcus. We point out that, as this
theory is supersymmetric, a natural choice for Qcus is the messenger scaleM, the scale at which
supersymmetry breaking is transmitted from the hidden to the observable sector. Thus, unlike
in the GM model, this allows Qcus to now be associated with a physical scale which, once known,
can be used to predict the value of ρ at the electroweak scale through RGE evolution. Conversely,
a measurement of ρ now gives a constraint on the scale of SUSY breaking. If we where to fix
Qcus to be below the messenger scaleM we would reintroduce the accidental emergence problem
of the global SU(2)L ⊗ SU(2)R described in Section 4.1. Also, requiring M to be above the
messenger scale will need of assumptions about the SUSY breaking mechanism which we will not
consider here. We conclude then that the best choice is Qcus ≡M and study different situations
generated by this assumption (Fig. 5.1).

We first show how to parametrize the custodial breaking of the vacuum in Section 5.1, then
in Section 5.2 we study a general case without specifying the mechanism of supersymmetry
breaking but that will be useful to shed light on the nature of custodial breaking. We also study
a precise case of low-scale supersymmetry breaking where the SCTM is embedded into a gauge
mediation mechanism, thus providing a realistic UV complete scenario of the SCTM at the EW
scale (Sec. 5.3). We end up by summarizing the properties of the custodially broken SCTM at
the EW scale (Sec. 5.4) and compare them to the results of the tree level situation of Chapter 4.

5.1 Custodially breaking SCTM

Due to the presence of SU(2)L ⊗ SU(2)R breaking by U(1)Y and Yukawa interactions, the RGE
running will split the SU(2)L ⊗ SU(2)R invariant operators into SU(2)L ones, therefore, the
custodial potential of Chapter 4 needs to be rewritten 1

W = −λaH1 · Σ1H1 + λbH2 · Σ−1H2 +
√

2λcH1 · Σ0H2 +
√

2λ3 tr Σ1Σ0Σ−1

− µH1 ·H2 +
µa
2

tr Σ2
0 + µb tr Σ1Σ−1 + ytQ ·H2 t+ ybQ ·H1 b+ yτ L ·H1 e .

(5.1)

1We implicitly assume global lepton number conservation so that the supersymmetric SU(2)L⊗SU(2)R violating
operator Σ1LL is forbidden but in principle it can be included as part of a model to generate neutrino masses [75,76].
It is actually a natural choice to not introduce this operator since we expect the superpotential to be generated
in a custodial manner at the messenger scaleM, however, assuming lepton number conservation ensures that also
the trilinear term in the soft part of the potential is kept to zero.
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The scalar potential will be as in Eq. (4.8), where

VF =
∑
X

∣∣∣∣∂W 0

∂X

∣∣∣∣2 with X = H0
1 , H

0
2 , ψ

0, φ0, χ0, (5.2)

which are the neutral components of the SU(2)L doublets and triplets. Also, the neutral compo-
nents of the D-terms are given by

VD =
g2 + g′ 2

8
(|H0

1 |2 − |H0
2 |2 + 2|χ0|2 − 2|ψ0|2)2 (5.3)

and vanish in the custodial limit. g and g′ are the SU(2) and U(1)Y couplings respectively.
Finally, the soft SUSY breaking terms are given by 2

Vsoft = m2
H1
H†1H1 +m2

H2
H†2H2 +m2

Σ0
Σ†0Σ0 +m2

Σ1
Σ†1Σ1 +m2

Σ−1
Σ†−1Σ−1 −m2

3H1 ·H2

+

{
Ba
2

tr Σ2
0 +Bb tr Σ1Σ−1 −AaH1 · Σ1H1 +AbH2 · Σ−2H2 +

√
2AcH1 · Σ0H2

+
√

2A3 tr Σ1Σ0Σ−1 + at Q̃ ·H2t̃
∗
R + ab Q̃ ·H1b̃

∗
R + aτ L̃ ·H1τ̃

∗
R + h.c.

}
. (5.4)

Note that we are introducing the SU(2)L⊗SU(2)R explicit breaking related to the Yukawa sector
as we are not considering the custodial case anymore. The full SU(2)L ⊗ SU(2)R invariance of
the Higgs sector is recovered whenever

λa = λb = λc ≡ λ, µa = µb ≡ µ∆ ,

mH1 = mH2 ≡ mH , mΣ0 = mΣ1 = mΣ−1 ≡ m∆ , (5.5)

Aa = Ab = Ac ≡ Aλ, Ba = Bb ≡ B∆.

After solving the equations of minimum (EOM’s) for the scalar potential corresponding to the
five neutral field directions (H0

1 , H
0
2 , ψ

0, φ0, χ0) we can parametrize the minimum by two VEV’s
(vH , v∆) and three angles (β, θ1, θ0),

v1 =
√

2 cosβ vH , v2 =
√

2 sinβ vH ,

vψ = 2 cos θ1 cos θ0 v∆, vχ = 2 sin θ1 cos θ0 v∆ (5.6)

vφ =
√

2 sin θ0 v∆

With this parametrization, custodial symmetry is controlled by the three Euler angles (β, θ0, θ1)
where

tanβ =
v2

v1
, tan θ1 =

vχ
vψ

and tan θ0 =

√
2vφ√

v2
ψ + v2

χ

, (5.7)

in the custodial limit tanβ = tan θ0 = tan θ1 = 1. Notice that v2 = v2
1 + v2

2 + 2(2v2
φ + v2

ψ + v2
χ) =

2v2
H+8v2

∆ (where v = 174 GeV) for any value of tanβ and tan θ1,0 so one can trade the parameter

2We do not consider possible Dirac gaugino mass terms of the form mDΣ̃a0W̃
a which would violate the global

SU(2)L ⊗ SU(2)R. These terms could appear from D-term supersymmetry breaking corresponding to a hidden
U(1)′ whose chiral density breaks supersymmetry as W ′α = θαD and the effective operator (1/M)

∫
d2θW ′αW

α
a Σa0

yields a Dirac gaugino mass. We just assume that the UV completion of the SCTM can explain its absence.
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vH by v∆
3. In fact from the configuration in Eq. (5.6) the breaking of custodial symmetry (and

the value of the T parameter) is measured by (tan2 θ0 − 1) as

ρ− 1 ≡ ∆ρ ≡ αT =
2v2
φ − (v2

ψ + v2
χ)

1
2(v2

1 + v2
2) + 2(v2

ψ + v2
χ)

= −4
cos 2θ0 v

2
∆

v2
H + 8 cos2 θ0v2

∆

. (5.8)

Note that, besides the custodial vacuum, also 2v2
φ = v2

χ + v2
ψ can be responsible for ρ = 1.

Figure 5.1: Depiction of what we will consider as a realistic situation in the SCTM: Up to (small)
breaking effects caused by the SUSY breaking mechanism (Section 5.3), a (nearly) full SU(2)L ⊗
SU(2)R invariant situation is generated by UV dynamics at the scale at which supersymmetry
breaking is transmitted to the observable sector (the messenger scale, M). Then, due to the
explicit breaking of g′ and yt, the RG running of parameters down to the EW scale will deform
this situation into a non SU(2)L ⊗ SU(2)R invariant one and the vacuum will not fully respect
the remnant SU(2)V symmetry anymore. However, as we will consider O(100) TeV messenger
masses, the deformation caused by the running will be small enough and we expect the SU(2)V
breaking to be mild, i.e. most of the general features of the tree level (custodial) situation will
hold.

5.2 A study with universal soft terms

In this section we examine the electroweak vacuum of a theory that features SU(2)L ⊗ SU(2)R
invariance at the messenger scaleM which is then explicitly broken by the RGE running, in order
to derive constrains on how heavy the messenger masses M are and how large can v∆ be, i.e.
how much of a contribution is given by the triplet sector to EWSB. We will find that ρ ≈ 1 can
be accommodated even without custodial symmetry at the electroweak scale and with sizeable
contributions from the Higgs triplets to EWSB.

3The vacuum parametrization of Eq. (5.6) preserves the modulus (the EW VEV) and therefore the relation
(4.10) is valid for both custodial and non custodial situations.
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We begin by specifying that the messenger sector, which transmits supersymmetry breaking
to the observable sector, exhibits the SU(2)L ⊗ SU(2)R invariance and then proceeds through
effective operators as ∫

d2θ d2θ̄
X†X

M2
Y †Y, Y = H,∆, Q, L, U c, Dc, Ec, (5.9)

where X = θ2F is the spurion superfield responsible for supersymmetry breaking.

Procedure

For our analysis, given the boundary conditions at the scale M, we will consider M and v∆ as
free parameters. For each different (v∆, M) point we will run the RGE’s down to the EW scale
and after that solve the EOM’s to characterize the vacuum with the non custodial parameters
given after the running (see Figure 5.1), with the value of vH determined by (4.10) 4. As m2

3

and Ba,b have their RGE’s decoupled from the rest of the parameters, we can consistently fix
two parameters m2

3 and B+ ≡ Ba + Bb from their respective EOM’s. The other three EOM’s
(including the one for B− ≡ Ba − Bb), which vanish identically in the custodial limit, self-
consistently determine the values of the custodial breaking angles (tanβ, tan θ0, tan θ1), which are
therefore a prediction of the EOM’s for given values of v∆ and M. This procedure is explained
in detail in Appendix B.2 while the full set of RGE’s is given in Appendix B.1.

Note that the EOM’s are just criticality conditions as they do not tell us whether we are
really exploring a minimum of the potential, and much less if this minimum is the absolute
one. The minimum condition will be provided by the absence of tachyonic states in the scalar
spectrum. Moreover, each minimum that we will find is likely the deepest one since it consists
on a smooth deformation of an SU(2)V preserving minimum where the D-terms vanish, therefore
with minimized energy (see App. A.1).

Benchmark values

For illustrative purposes and considering the SU(2)L⊗SU(2)R invariant boundary conditions (5.5)
we will choose an example scenario by fixing the following parameters at the high scale M,

λ3 = −0.35, µ = µ∆ = 250 GeV,

Aλ = A3 = At = Ab ≡ A0 = 0, (5.10)

mH = m∆ = 1000 GeV, M1 = M2 = M3 ≡ m1/2,

mQ = mUc = mDc ≡ m0 = 500 GeV.

Our results will be shown for different values of m1/2: (1, 1.1, 1.2, 1.3) TeV 5. The parameter λ
is fixed by the condition that the Higgs field dominantly responsible for EWSB (h) has a mass
of ∼ 125 GeV.

4In contrast to the MSSM study performed in Chapter 3, this model features light stop masses and one can
consider v ∼ mstops ≡ Q0 to a good approximation. Hence, we neglect any threshold and running effects generated
between v and Q0.

5Since the values for the squark masses and for the gluino mass M3 increase as we run to lower scales, we
find that our benchmark point leads to a spectrum that satisfies current direct search constraints from the LHC
searches.
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Figure 5.2: Running of (m2
H1
,m2

H2
) (red lines from top to bottom) and (m2

Σ0
,m2

Σ+
,m2

Σ−
) (black

lines from bottom to top), normalized to their values at the scale M = 105 GeV for m1/2 = 1.2
TeV and v∆ = 20 GeV.

ρ parameter vs. custodially breaking vacuum

We show in Figure 5.2 the results of the RGE running parameters (m2
H1
,m2

H2
) (red lines from top

to bottom) and (m2
Σ0
,m2

Σ+
,m2

Σ−
) (black lines from bottom to top), normalized to their values at

the scale M (chosen to be 105 GeV), as functions of the renormalization group scale Q (<M)
and for v∆ = 20 GeV, m1/2 = 1.2 TeV. The dispersion in (m2

H1
,m2

H2
), which is responsible for

generating tanβ 6= 1 at QEW , is much larger than the dispersion in the sector (m2
Σ0
,m2

Σ+
,m2

Σ−
)

that is responsible for the departure of tan θ0 and tan θ1 from their custodial values. This is
because the largest contribution to the doublet splitting comes from the custodial breaking by
the top and bottom Yukawa sectors to which the doublet couples at tree-level. The splitting
in the triplet sector is instead mainly driven by the hypercharge interactions since triplets do
not couple to the top and bottom sectors at tree-level. Thus the splitting in the triplet mass
parameters due to the top and bottom Yukawa interactions is a higher order effect, giving in
general | tan θ0 − 1|, | tan θ1 − 1| < | tanβ − 1|.

These features can be seen by examining Eq. (5.8) and the right panel of Figure (5.3). In
the left panel we show the regions allowed at the 95% C.L. by the experimental value of the
T parameter (∆ρ = αT ), corresponding to the fit value T = 0.07 ± 0.08 [77]. We show results
for various values of the common gaugino mass m1/2 = 1 (black lines), 1.1 (blue lines), 1.2 (red
lines) and 1.3 (orange lines) TeV, at the scaleM. The allowed region is inside the corresponding
solid lines with the dashed lines indicating the T = 0 contour. One could interpret the funnel
regions that appear for large v∆ values as a fine-tuning of the scale M. However, in the absence
of a precise theory of supersymmetry breaking one could also interpret these regions as a precise
prediction of the scale M which should be provided by the underlying supersymmetry breaking
sector. We also show the low SU(2)L ⊗ SU(2)R scale M region only for illustrative purposes
to demonstrate that, as in the GM model, the parameter space for v∆ opens up considerably
as M → v. A proper treatment of this region should also include threshold corrections in the
renormalization group running. Furthermore, one must ensure that the physical particle masses
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are below M which is a consistency condition since, as discussed above, M serves as the cutoff
for the theory.

We see at this point that the extra freedom (A.27) of the SCTM with respect to the non-
supersymmetric GM model, comes into play allowing for T = 0 contours (dashed lines) through-
out the parameter space. In fact, generically the three VEV’s vφ, vψ, vχ are not equal along the
T = 0 contours. The new direction allows for Qcus scales well above ∼ 100 TeV and sizable triplet
VEV’s to be comfortably within the allowed region. These T = 0 contours will shift slightly after
including the sub-dominant one-loop corrections using the RGE improved Lagrangian, however,
as loop corrections to the ρ parameter are related to the custodial breaking and therefore pro-
portional to tanαi − 1 (with αi = β, θ0, θ1), we expect the shift to be small.
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Figure 5.3: Left: Regions allowed by the T parameter as a function of M and v∆. The region
between the solid lines corresponds to the allowed 95% CL interval, having fixed the parameters
as in Eq. (5.10) and for m1/2(M) =1 (solid black lines), 1.1 (solid blue lines), 1.2 (solid red
lines) and 1.3 (solid orange lines) TeV. The corresponding dashed lines are for T = 0. Right:
Contours of tanβ (blue dashed), tan θ0 (black solid), and tan θ1 (dark green dotted) for m1/2 = 1.2
TeV. Shaded pink region is allowed at 95 % CL by the T parameter.

In the right panel of Figure 5.3 we show contours of tanβ (blue dashed), tan θ0 (black solid),
and tan θ1 (dark green dotted). The shaded region is the one allowed by the T parameter at the
95% CL for m1/2 = 1.2 TeV. As expected from Eq. (5.8), in the region allowed by the ρ parameter
deviations from tan θ0 = 1 are very small. Furthermore, as anticipated from the results of the
running in Fig. 5.2, the violation of custodial symmetry is much larger in tanβ, which can have
values as large as tanβ & 2 than for the parameters tan θ0 and tan θ1 which depart from their
custodial values only by a few percent. We note the presence of a ‘crossover’ point where the
triplet VEV’s are aligned, tan θ0 = tan θ1 = 1, as found in the GM model. This limit is not
equivalent to the GM model since the scale M is still much greater than the electroweak scale
and after the RGE running it will lead to a significantly different scalar spectrum from the one
found in the GM model.
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After checking these results, let us emphasize that even a realistic (RGE improved) version
of the SCTM is free of the generic issues found in supersymmetric models with only one Higgs
triplet, which in general acquires a VEV that must be tuned to be very small (∼3 GeV at 95% CL
from Ref. [77] for our normalization choice, v = 174 GeV) in order to satisfy electroweak precision
data (see for example Refs. [63, 78]). In contrast, in the SCTM one can obtain triplet VEV’s as
large as ∼ 25 GeV. Although 25 GeV does not appear large, the actual contribution to EWSB
is much larger. As we can see from Fig. 5.4, for v∆ = 25 GeV triplets give a ∼ 15% contribution
which is significantly larger than the O(0.1%) allowed by the ρ parameter in conventional triplet
extended SUSY models.
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Figure 5.4: % of contribution to EWSB given by triplets (light blue) and doublets (light green)
derived from the relation (4.10), which at the same time is related to the definition of the doublet-
triplet mixing angle (4.32). Values of v∆ > 25 GeV are disfavored for a number of reasons: ρ
parameter constraints (Fig. 5.3), issues with Landau poles (Fig. 4.2), etc. Due to this, the actual
contribution to EWSB coming from the triplet sector is roughly bounded to be at most ∼ 15 %.

The Higgs boson Mass

Apart from electroweak data, the model needs to be contrasted with LHC data and in particular
with measurements of the Higgs properties. We focus on a subset of observables which reflect the
essential features of the model. Most of them will show a great similarity with the custodially
invariant picture, however, the mild custodial breaking induced by the RGE running will generate
properties that are unique of the quantum picture. We begin by analyzing the experimentally
measured Higgs mass and conclude that the value of ∼ 125 GeV can be obtained for messenger
scales & 100 TeV and triplet VEV’s as large as v∆ ∼ 25 GeV inside the allowed T -parameter
region.

The tree-level mass squared of the Higgs-like state (h 6) deviates from its custodial value
m2
h = 6λ2v2

H + O(v2
∆). This mass is computed numerically, however in the decoupling limit

(large values of m2
H and m2

Σ), and neglecting O(v2
∆) corrections one can write the analytical

6In the custodial theory this state was called S1 as it is the lightest custodial singlet. We are changing the
notation here as custodial symmetry is broken and therefore it no longer provides a good classification.
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Chapter 5. The SCTM at the quantum level

approximation

m2
h/v

2 ' 1

2
(g2

1 + g2
2) cos2 2β + λ2

c sin2 2β + 4λ2
a cos4 β + 4λ2

b sin4 β (5.11)

which reduces to 6λ2v2
H for v∆ = 0 and in the custodial limit tanβ = 1, λa = λb = λc ≡ λ. Since

strictly speaking we are not working in the decoupling limit and/or in the v∆ → 0 limit we will
compute the tree-level mass of the Higgs-like state numerically. For that we will compute the
squared mass matrix of the CP -even neutral Higgs sector

(M2
S)ij =

1

2

∂2V

∂ϕi∂ϕj
, (5.12)

with ϕi = (H0
1 , H

0
2 , ψ

0, φ0, χ0) and where the minimum conditions are applied. The SM-like
Higgs h is easily identified as the only state whose mass is not controlled by supersymmetry
breaking parameters and yields the pure SM Higgs in the strict decoupling limit (see Section 4.4
of Chapter 4).

Let U be the orthogonal matrix diagonalizing the squared mass matrix (5.12) such that
Uijϕj = Hi where we are calling the mass eigenstates as Hi (i = 1, . . . 5) and we identify the
lightest eigenstate (the SM-like Higgs) as h ≡ H1. Conversely the interaction states are projected
onto the mass eigenstates as ϕj = UjiHi so that the projection of the state ϕi onto h is given by
the matrix element Uj1. In particular the superpotential top Yukawa coupling projects into the
SM Yukawa coupling as

ytQLU
CH2 = ytULU

CU21 h+ · · · ≡ hSMt ULU
C h+ . . . (5.13)

where
yt =

mt

sinβ
√
v2 − 8v2

∆

, hSMt = U21yt . (5.14)

Finally vh can be obtained consistently from

vh =U1j〈ϕj〉 =
(√

2U11 cosβ +
√

2U12 sinβ
)
vH

+
(

2U13 cos θ1 cos θ0 +
√

2U14 sin θ0 + 2U15 sin θ1 cos θ0

)
v∆ (5.15)

where the values of β, θ1 and θ0 are provided by the solutions to the minimum equations
(App. B.2).

Radiative corrections are widely dominated by the top/stop sector as the top Yukawa coupling
is enhanced by a value of v∆ > 0, which makes the denominator in (5.14) smaller than in the
MSSM. Now the leading radiative corrections from the top/stop sector are given by

∆m2
h =

3

4π2

(
hSMt

)4
v2
h

[
log
Q2

0

m2
t

+Xt

]
with Xt = Ã2

t

(
1− Ã2

t

12

)
, (5.16)

and where Ãt = (At − µ/ tanβ)/Q0 and Q0 =
√
mt̃1

mt̃2
7. The prefactor in Eq. (5.16) can be

written as (
hSMt

)4
v2
h =

U2
21m

4
t

sin2 β(v2 − 8v2
∆)

, (5.17)

7t̃1 and t̃2 are the physical stop masses which are calculated by diagonalizing the stop mass matrix, Eq. (5.19).
Also note that At and µ are given at the weak scale after the RGE running, in particular the trilinear At is related
to the RGE parameter at by At = at/yt.
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5.2. A study with universal soft terms

from where the enhancement with respect to the MSSM correction when v∆ > 0 is manifest as
U21/ sinβ ∼ O(1). Thus the SCTM allows in general for larger tree-level and one-loop contri-
butions to the Higgs mass than those that can be found in the MSSM 8. Taking as an example
λ = 0.5, v∆ ∼ 25 GeV, andM∼ 100 TeV gives a tree-level contribution to the Higgs mass ∼ 100
GeV which is larger than mZ , the absolute upper bound on the tree-level contribution allowed
in the MSSM, Eq. (3.1).

By giving fixed boundary values for the soft-breaking terms and fixing the value of mh to its
experimental value, we can obtain the value of the parameter λ (the custodial value of parameters
λa,b,c) as a function of (M, v∆). To determine which are the competing effects leading to the 125
GeV Higgs mass we show in the left panel of Fig. 5.5 contour lines of λ (defined at the high scale
M) reproducing the observed Higgs mass (including the stop loop corrections) in the (v∆,M)
plane for the benchmark point (5.10) and fixing m1/2 = 1.2 TeV. The Higgs mass is achieved
both at tree-level through λ and radiatively through enhanced stop corrections at large v∆, or
large RGE effects for high scales ofM. In particular, smaller values of λ are required at largeM.
This might be at first surprising since λ (or more precisely λa,b,c) runs to smaller values as we go
down from M to QEW , implying small tree-level contributions from the triplet sector. However,
as we increase M beyond & 104 GeV, the increasing values of tanβ from tanβ = 1 (see right
panel Fig. 5.3) lead to the ‘turning on’ of the tree-level MSSM contribution, allowing for smaller
values of λ to be consistent with the observed Higgs mass. Fig. 5.5 also ensures that the correct
Higgs mass can be reproduced with perturbative values of λ.

Stops in the SCTM

We also examine whether light top squarks (. 1 TeV) together with small trilinear terms can be
accommodated in the SCTM while still reproducing the observed Higgs mass, in contrast to the
MSSM which requires large A-terms to avoid multi-TeV top squarks. In order to do this we have
to diagonalize the stop mass matrix to get the physical stop masses. These are given by

Lstop = −
(
t̃∗L t̃∗R

)
Mt̃

(
t̃L
t̃R

)
, (5.18)

with

Mt̃ =

 m2
Q̃

+m2
t mt

(
At − µ

tanβ

)
mt

(
At − µ

tanβ

)
m2
t̃

+m2
t

 , (5.19)

where the values of mQ̃ and mt̃ are given at the weak scale by the RGE’s (Appendix B.1). In
the right panel of Fig. 5.5 we show the allowed values for the physical lightest stop mass which
reproduces a Higgs mass of 125.5± 1.0 GeV, for the example parameter point, λ = 0.45,M = 65
TeV, m1/2 = 1.2 TeV, v∆ = 10 GeV and all other parameters fixed to the values in (5.10), except
we now allow the soft and trilinear mass parameters to be in the ranges m0 ∈ [500, 1000] GeV
and A0 ∈ [−250, 500] GeV. In the region allowed by the ρ parameter (shaded pink) we see top
squarks as light as ∼ 950 GeV which can produce the correct Higgs mass for modest values of
the trilinear couplings at the electroweak scale Xt ≡ At − µ/ tanβ ∼ −750 GeV. These numbers
should be compared to the MSSM prediction where for trilinear terms ∼ 1 TeV and tanβ ∼ 20,
the top squarks should be heavier than ∼ 6 TeV (Chapter 3 and [3,47,79,80]), showing that the
SCTM indeed helps to alleviate the MSSM fine-tuning problem (see also [81]).

8Actually, in the custodial limit where tanβ = 1 there is no tree-level contribution from the doublet (or MSSM)
sector to the Higgs mass (5.11), thus the SCTM makes most of the tree level Higgs mass with F-term contributions
coming from the triplet sector.
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Figure 5.5: Left: Contours of λ, defined at the high scale M, reproducing the observed value
of the Higgs mass ∼ 125 GeV for the SU(2)L ⊗ SU(2)R symmetric parameters in Eq. (5.10)
and m1/2 = 1.2 TeV. Right: The solid black lines represent the region producing a Higgs mass
of 125.5 ± 1.0 GeV in the Xt/mt̃ − mt̃ plane, where mt̃ is the physical mass of the lightest
stop and Xt ≡ At − µ/ tanβ. The shaded pink band is the region allowed by constraints on
the ρ parameter. We have fixed the parameters λ = 0.45, M = 65 TeV, m1/2 = 1.2 TeV,
v∆ = 10 GeV while the rest are given in (5.10), except we now allow m0 ∈ [500, 1000] GeV and
A0 ∈ [−250, 500]. We do not explicitly show the region favored by the MSSM since it arises only
at much heavier stop masses (mt̃ & 6 TeV [3, 47, 79, 80]).

Smoking guns

The next observables we consider, and potential smoking guns of the model at the LHC, are the
normalized couplings of the Higgs to gauge bosons and bottom quarks: rhWW , rhZZ , and rhbb,
where rhXX is defined in Eq. (4.49). Of course the rotation matrix U plays a major role in the
interaction of the Higgs h with the SM fields and the normalized couplings are given by

rhWW = U11 cosβ cos θ + U12 sinβ cos θ

+
√

2U13 cos θ1 cos θ0 sin θ + 2U14 sin θ0 sin θ +
√

2U15 sin θ1 cos θ0 sin θ

rhZZ = U11 cosβ cos θ + U12 sinβ cos θ

+ 2
√

2U13 cos θ1 cos θ0 sin θ + 2
√

2U15 sin θ1 cos θ0 sin θ

rhuu = U12 sinβ cos θ

rhdd = U11 cosβ cos θ (5.20)

where θ is defined in (4.32).

In the left panel of Figure 5.6, we show results for rhWW (dark green dotted), rhZZ (blue
dashed), and rhbb (black solid) in the (v∆,M) plane. Again we superimpose the region allowed
by electroweak precision constraints (pink shaded region). In the SCTM the Higgs can have cou-
plings to W and Z bosons larger than the ones predicted by the SM (see also Refs. [82,83]), but
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5.2. A study with universal soft terms

still well within current experimental bounds [84,85]. In particular, at large values of v∆, the two
couplings can deviate from the SM prediction by as much as (5− 10)% for our chosen parameter
point. Such a deviation could possibly be measured at a high luminosity LHC [86–89]. This is in
contrast to models with only additional Higgs doublets and singlets, which can only reduce the
Higgs couplings to gauge bosons. It has also interesting implications for trying to extract the total
width of the 125 GeV Higgs boson without making the theoretical assumption rhWW , rhZZ ≤ 1
(see e.g. [90, 91]). We also see in Fig. 5.6 that, for this parameter point, the Higgs coupling to
bottom quarks is only mildly modified with respect to the SM.
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Figure 5.6: Left: Contours of rhWW (dark green dotted), rhZZ (blue dashed), and rhbb (black
solid) in the (v∆,M) plane for the values of the parameters given in (5.10) and m1/2 = 1.2 TeV.
Right: Deviation from the universal condition λWZ = 1 along the 2v2

φ = v2
χ + v2

ψ direction (or
tan θ0 = 1, which provides ∆ρ = 0) as a function of m1/2 (black solid line) and v∆ (red dashed
line) for parameter values given in (5.10) and M = 850 TeV.

The breaking of ‘universality’

We also examine the ratio of the normalized couplings rhWW /rhZZ ≡ λWZ [84, 85] since it is
a direct measure of the violation of custodial symmetry induced by the RGE running. In the
SM and in the MSSM, custodial symmetry implies λWZ = 1, but in the SCTM it is possible to
have deviations from this universal relation. In the right panel of Fig. 5.6, we show the quantity
λWZ − 1 as a function of the gaugino mass m1/2 and v∆ along the 2v2

φ = v2
χ + v2

ψ (i.e. tan θ0 = 1
yielding ∆ρ = 0) direction for parameter values given in Eq. (5.10) and M = 850 TeV. Since in
the SCTM the ratio λWZ is a function of all three vacuum angles (β, θ0, θ1) it will be in general
different from one, even in the direction 2v2

φ = v2
χ + v2

ψ, on which ∆ρ = 0. At large values of v∆

deviations from universality as large as ∼ (10− 15)% are achievable. This is well within present
experimental constraints and potentially observable at a HL-LHC [86–89].
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Chapter 5. The SCTM at the quantum level

Other observables

Of course there are many additional Higgs observables that could be used to test the SCTM. Gener-
ically, the particle spectrum has several charged particles which can contribute to the hγγ decay
width. These particles will also modify the h→ 4` and h→ 2`γ decays, which could be used to
probe the underlying CP properties of the model [92–98].

Furthermore, the model will be tested by the direct searches for the additional scalars and
fermions arising in the spectrum. Particularly interesting signatures are the decays of the doubly
charged Higgs scalars to W±W± [99–101] and the decay of the singly charged scalars to W±Z,
a decay found only in models with larger than doublet representations [69]. Additionally, in the
SCTM the doubly charged Higgsino will decay to same sign W boson pairs plus missing energy.
In particular, a doubly charged fermion with a mass near that of the doubly charged scalar would
be a strong hint of the SCTM. We will further explore these possibilities in the next section
where the spectrum of the model is computed in a few benchmark cases within a specific gauge
mediation mechanism.

5.3 Gauge mediated supersymmetry breaking in the SCTM

In this section we explore the possibility of having a gauge mediated mechanism to break SUSY
in the SCTM. The interest of this study is twofold: (i), it will provide a UV completion to the
SCTM in the form of low-scale supersymmetry breaking (as required by ρ parameter constrains)
and (ii), it will also be interesting from a gauge mediation perspective as GMSB models run into
difficulties if they want to encompass the Higgs mass with a light superparticle spectrum. Let us
now motivate this as if we where trying to build a model for low-scale supersymmetry breaking
and see how the SCTM arises as a natural possibility.

Gauge mediation vs. the Higgs mass

Gauge mediated supersymmetry breaking is an elegant mechanism to transmit supersymmetry
breaking from the hidden to the observable sector which solves the supersymmetric flavor problem
(see Section 2.3). The supersymmetric flavor problem is just the realization that, depending on
the mediation mechanism, the supersymmetric theory can introduce flavor violating interactions
that could spoil its phenomenological viability. The problem is automatically solved by GMSB
models, as the gauge interactions are flavor diagonal, provided that the scale of messengers is low
enough so that the gravitational contributions to SUSY breaking can be neglected.

A main feature of GMSB in the MSSM is that the predicted value of the stop mixing pa-
rameter At is very small at the messenger scale M since it comes from two-loop diagrams. As
a consequence, minimal models of GMSB require superheavy (> 5 TeV) stops to reproduce the
experimental value of the Higgs mass (see Chapter 3 and Refs. [47, 79]), this fact reintroduces a
little hierarchy problem with stops very far away from the LHC reach. Two options appear to
tackle this problem in GMSB theories. One option is increasing the value of the radiative contri-
butions to the Higgs mass, either by generating large values of the mixing parameter At, or by
enlarging the MSSM with heavy vector-like fermions strongly coupled to the Higgs sector [102].
In particular, generating large values of At can be done by introducing direct messenger-MSSM
superpotential couplings [103–112]. These models, dubbed extended GMSB, do not necessarily
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5.3. Gauge mediated supersymmetry breaking in the SCTM

lead to minimal flavor violation (MFV) and the flavor constraints require a special texture. The
second option, without enlarging the SM gauge group, is increasing the value of the Higgs mass
by means of a tree-level F -term from an extended MSSM Higgs sector.

As we already know from previous chapters, the MSSM extensions which can increase the
Higgs mass by a tree-level F -term are the following: The singlet S and/or triplets with hyper-
charge Y = (0,±1), Σ0,±1. We can exclude the presence of the singlet, as it does not get any
mass from GMSB unless we enlarge the gauge group such that S transforms as a non-trivial
representation of the enlarged gauge group, or we consider an extended GMSB model with direct
superpotential messenger-MSSM couplings [113], which could result again in flavor constraints.
The only surviving possibility is then adding the triplets Σ0,±1, however introducing only Σ0 or
Σ±1 will spoil the ρ = 1 relationship unless v∆ is small enough, which requires a large soft mass
for the triplet. Since in GMSB the contribution to each mass is tied by the the gauge structure
of the theory, it will be impossible for gauge mediation to generate large SU(2)L triplet masses
while keeping the rest of the spectrum light. Therefore, trying to solve the ρ = 1 problem in
this way would recreate a strong naturalness (little hierarchy) problem. The way out is tied to
the SCTM, using the whole set Σ0,±1 and providing the theory with a global SU(2)L ⊗ SU(2)R
symmetry spontaneously broken to the custodial SU(2)V after EW breaking.

We know that custodial symmetry is spoiled by radiative corrections proportional to the
hypercharge and top Yukawa couplings and that the RGE running departs from the custodial
symmetry conditions. As concluded in the last section (see Fig. 5.8), one can allow for some
departure from the ρ = 1 custodial solution but not too much. This can be fulfilled in a GMSB
mechanism provided that the messenger scale M is low enough, which is a natural condition in
GMSB models, moreover, GMSB provides custodial boundary values to the Higgs sector, except
for the contribution of the hypercharge coupling that will break explicitly custodial invariance.
As we will see, this explicit breaking will not change the main features nor the phenomenology
of the model. The model is then able to fit the ∼ 125 GeV measurement without the need of
super-heavy stops and generates large triplet VEV’s that can participate in the EW breaking up
to a ∼ 15% order, as a byproduct, it will give rise to interesting phenomenology.

We are now going to define a non-minimal gauge mediated mechanism which will provide a soft
spectrum for the SCTM consistent with all electroweak and LHC data, thus alleviating the tension
between the Higgs mass, light stops and the supersymmetric flavor problem. Typical benchmark
scenarios for this model are proposed and a study on their phenomenology is performed.

Gauge mediation in the SCTM

In the minimal realization of gauge mediation (MGM) the messenger fields transform under r and
r̄ representations of SU(5) and feel the breaking of supersymmetry through the superpotential,
W = λijXΦiΦ̄j , where X is an spurion field that parametrizes the breaking of supersymmetry
in the secluded sector. As MGM provides a very rigid framework to encompass low energy
phenomenology, we will consider a particular model of general gauge mediation (GGM) [114]
where there is more flexibility to accommodate the supersymmetric mass spectrum of the SCTM.
We will consider a model where messengers transform only under one of the SM gauge groups
SU(3) ⊗ SU(2)L ⊗ U(1)Y and will choose (non-exotic) representations which are contained in
SU(5). In particular, to transmit supersymmetry breaking to the observable sector, we choose
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the messenger representations 9

Φ8 = (8,1)0, Φ3 = (1,3)0 and
[
Φ1 = (1,1)1, Φ̄1 = (1,1)−1

]
. (5.21)

According with GGM we will explore the more general case where the messengers have inde-
pendent mass terms instead of getting all their mass from the spurion superfield. For simplicity,
we also consider that the scalar component of X does not acquire a VEV 10, thus 〈X〉 = θ2F .

W =
(
λ̃ij8 X +Mij

8

)
Φ8iΦ8j +

(
λ̃ij3 X +Mij

3

)
Φ3iΦ3j +

(
λ̃ij1 X +Mij

1

)
Φ̄1iΦ1j . (5.22)

We now impose an O(n8)⊗O(n3)⊗O(n1) global symmetry in the superpotential, where n8, n3

and n1 are the of number of copies of each messenger respectively 11. Due to this symmetry,
the dot product is the only invariant that can be built, thus ensuring the diagonal form of λ̃ijA
(≡ δij λ̃A) and Mij

A (≡ δijMA) in the mass basis. Via messenger parity, this symmetry prevents
dangerous one-loop contributions to the masses of sleptons [36, 116]. Moreover for simplicity we
will consider a common messenger scale so that we will assume MA ≡M (A = 8, 3, 1).

Within this setup and with Λ8 ≡ λ̃8Λ, Λ3 ≡ λ̃3Λ and Λ1 ≡ λ̃1Λ (Λ ≡ F/M) the gaugino
masses at the messenger scale are;

M3 =
α3(M)

4π
3n8 g(Λ8/M) Λ8 ,

M2 =
α2(M)

4π
2n3 g(Λ3/M) Λ3 ,

M1 =
α1(M)

4π

6

5
n1 g(Λ1/M) Λ1 ,

(5.23)

where we are using SU(5) normalization for the U(1). For sfermions,

m2
f̃

= 2

{
Cf3

(
α3(M)

4π

)2

3n8 f(Λ8/M) Λ2
8 + Cf2

(
α2(M)

4π

)2

2n3 f(Λ3/M) Λ2
3

+ Cf1

(
α1(M)

4π

)2 1

2

(
6

5

)2

n1 f(Λ1/M) Λ2
1

}
.

(5.24)

Where Cfa is the quadratic Casimir of the sfermion f̃ 12. The functions g(x) and f(x) come from
two loop exact results and were first computed in Refs. [117,118]

g(x) =
1

x2
{(1 + x) log(1 + x)}+ (x→ −x) ,

f(x) =
1 + x

x2

{
log(1 + x)− 2Li2

(
x

1 + x

)
+

1

2
Li2

(
2x

1 + x

)}
+ (x→ −x) .

(5.25)

They become relevant for small values of M, as it is our case.

As showed in Eqs. (5.23) and (5.24) an unusual messenger sector will modify the boundary
conditions at the messenger scale with respect to the minimal scenario. For instance, assuming

9Φ8 and Φ3 where already used as messengers in [115].
10In fact we are assuming that 〈X〉 �MA, A = 8, 3, 1.
11In the case of n1, it is the number of pairs (Φ1, Φ̃1) due to anomaly cancelation.
12It is equal to N2−1

2N
for the fundamental N representation of SU(N) and, in our notation Cf1 = Y 2

f , where Yf

is the SM hypercharge of f̃ .
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g(xi) ' 1 we can write, at one loop, an RGE invariant gaugino mass relation which will be different
from the minimal case M1(M)/α1(M) = M2(M)/α2(M) = M3(M)/α3(M). In particular

M1(M)

α1(M)
:
M2(M)

α2(M)
:
M3(M)

α3(M)
=

6

5
n1λ̃1 : 2n3λ̃3 : 3n8λ̃8 . (5.26)

This shows that, besidesM and
√
F , the boundary conditions depend on the two sets of param-

eters: (n8, n3, n1) and (λ̃8, λ̃3, λ̃1). As a result of this, once the superpotential parameters, M
and
√
F are fixed, the low energy features of the theory will be determined by our choice of nA

and λ̃A.

Procedure

In a similar spirit to the one taken in the previous section (Fig. 5.1) we explore the model at
the EW scale by means of the EOM’s. Five neutral scalar fields will generate five minimization
conditions that will fix five parameters. Since we are working on a top down approach, where
we will run down from the messenger scaleM to the EW scale, we will need to keep consistency
between the boundary conditions and the EOM’s. As the parameters m2

3 and Ba,b have their
RGE’s decoupled from the rest, we can consistently fix two of them, e.g. m2

3 and Ba at the EW
scale. The value of Bb at the weak scale will be consistently fixed in agreement with its EOM by
choosing at the messenger scale M a custodial parameter B∆ satisfying the boundary condition
Ba(M) = Bb(M) ≡ B∆

13. The other three EOM’s self consistently determine the values of the
custodial breaking angles (tanβ, tan θ0, tan θ1) which are then a prediction of the EOM’s for a
given value of v∆.

Benchmark scenarios

Due to the strongest color contribution, if gluinos are heavier than stops they will raise the
stop masses through the RGE running, making their boundary condition at the messenger scale
unimportant. In a gauge mediated context we can generally say that, the heavier the gluino, the
heavier the stop. Therefore we will fix the gluino mass at the electroweak scale as low as possible
consistently with the most stringent bounds released by the LHC data [120], i.e. M3 = 1.5 TeV
at the low scale. For a fixed value of M (after considering the RGE running effects) this will fix
the supersymmetry breaking parameter F .

We will choose a low value of M so that the custodial breaking by the RGE running is
minimized. In fact loop corrections to the ρ parameter, that are related to the custodial breaking,
are parametrized by tanαi− 1, with αi = β, θ0, θ1. As explained in the previous section, because
of the strong effect of the top quark Yukawa coupling, the running differentiates the two soft
doublet masses from each other much more than the three triplet ones among themselves. This
results in a much bigger vacuum misalignment in the doublet sector that is dictated by the amount
of running (i.e. by the size of the messenger scale M) and with little dependence on v∆. We are
therefore left with a situation at the EW scale where tanβ 6= 1 and (tan θ0, tan θ1 ∼ 1) (right

13We expect the same physics responsible for generating the effective behaviour that we describe in this paper
to produce the correct values of m2

3 and B∆ at the messenger scale M. However, without proper identification of
the UV dynamics, one faces a µ-Bµ like problem in the triplet sector as well. Both problems could be solved from
a bottom up perspective by introducing direct SU(2)L ⊗ SU(2)R invariant superpotential couplings between the
messengers and the Higgs fields (doublets and triplets) as it is done in more minimal scenarios [119].
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Figure 5.7: Left: Running of (m2
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) (solid lines),

normalized to their values at the messenger scale for benchmark scenario #1. Right: Running of
gaugino (solid: M3 orange, M2 blue and M1 red) and squark (dashed: mQ̃ black, mt̃ gray and mb̃
brown) mass parameters for benchmark scenario #1.

panel of Fig. 5.8) and so the loop contributions to the ρ parameter coming from the doublet
(MSSM) sector will be dominant. As small values of M will minimize the resulting value of
tanβ − 1, we will fix the messenger scale to M = 100 TeV. In particular, as we will see in the
next section, this will translate into tanβ = 1.38 for the benchmark scenario #1 and tanβ = 1.32
for the benchmark scenario #2.

As a consequence of the low value of the messenger scale, the gravitino (G̃) is the LSP, as usual
in gauge mediation 14. Although the chosen value of M is also in agreement with cosmological
bounds on the gravitino mass [121], the gravitino will not provide the observed relic density by
itself, another component will have to enter to fill the DM relic density up to the current observed
value. Also, the next to lightest supersymmetric particle (NLSP) will play an important role in the
phenomenology of the model. In particular we will see that, in each of the benchmark scenarios
studied below, because of the low values of

√
F the decay NLSP → G̃+ ... will be prompt, i.e. it

will decay inside the detector but with no displaced vertex, and the experimental signature will
be an imbalance in the final state momenta and a pair of photons or charged leptons.

Benchmark scenario #1: a Bino-like NLSP

For this scenario we will choose the number of messengers and their couplings with the hidden
sector as

n1 = 1, n3 = 2, n8 = 6 and λ̃1 = 0.9, λ̃3 = 0.5, λ̃8 = 0.1 . (5.27)

Note in particular the hierarchy that we establish between λ̃8 and λ̃1. We do this to have stops
as light as possible along with sleptons above their experimental bounds. In minimal versions of
gauge mediation the contributions given by different gauge groups cannot be disentangled and it
is difficult to accommodate light stops without too light sleptons.

As in the general example presented in the previous section the SU(2)L ⊗ SU(2)R invariant
λ of the superpotential will be fixed at the messenger scale such that the correct Higgs mass is

14For the neutralino to be the LSP in this scenario, one would need to apply to the SCTM a mechanism similar
as that of Ref. [35].
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5.3. Gauge mediated supersymmetry breaking in the SCTM

reproduced 15,
λ(M) = 0.68 (5.28)

We also fix the superpotential parameter λ3 = 0.35, although it will have little effect on the low
energy spectrum. The boundary conditions at the messenger scale of µ (and µ∆) are adjusted
to make sure that the vacuum is close enough to the direction tan θ0 = 1, and ρ falls within
the allowed T parameter band. In this case we choose both parameters µ and µ∆ equal at the
messenger scale

µ(M) = µ∆(M) = 1.3 TeV . (5.29)

Of course, the values that will actually fix the Higgs mass are at the EW scale. λ and µ∆ are
superpotential parameters that we assume to be generated in an SU(2)L ⊗ SU(2)R invariant
fashion. We show how the running will split these supersymmetric parameters and their EW
scale values in Fig. 5.8.
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Figure 5.8: Left: For benchmark scenario #1, running of λa (red), λc (orange) and λb (blue).
Right: For benchmark scenario #1, running of µ (red), µa (blue) and µb (orange).

In this scenario the NLSP is a bino-like neutralino that will mainly decay to the gravitino
through the following process χ0

1 → γG̃. If we know its mass and the supersymmetry breaking
scale

√
F , we can calculate the average distance travelled in the LAB frame by an NLSP produced

with energy E before it decays [29],

LNLSPχ0
1

=
1

κγ

(
100 GeV

mχ0
1

)5( √
F

100 TeV

)4√
E2

m2
− 1 · 10−2 cm, (5.30)

with κγ = |N11 cos θW + N12 sin θW |2, N11 and N12 being the projections of χ0
1 to the Bino and

Wino respectively (in our case N11 ' 1 and N12 ' 0). In this scenario
√
F = 94 TeV and

mχ0
1

= 143 GeV, this translates in an average distance of flight well below the detector precision

(∼ 0.1 cm) even if the particle is boosted because it is produced with very high energy.

15To fit the 125 GeV value we include the dominant loop contributions to the Higgs mass [44].
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Benchmark scenario #2: τ̃R as the NLSP

Now we present an example of a spectrum where the NLSP is τ̃R. We also chooseM = 100 TeV
and a similar hierarchy between λ̃’s, the main difference with #1 will come in the larger number
of messengers,

n1 = 10, n3 = 6, n8 = 5 and λ̃1 = 0.9, λ̃3 = 0.5, λ̃8 = 0.2 . (5.31)

Custodial values in the superpotential are also asjusted at the messenger scale to get the correct
Higgs mass and ρ = 1 at the electroweak scale,

λ(M) = 0.78, λ3(M) = 0.35 and µ(M) = µ∆(M) = 1.5 TeV. (5.32)

The τ̃ will decay into the gravitino through τ̃ → τG̃ and we can get its average flight distance
from (5.30) with κγ = 1. In this case

√
F = 73 TeV and mτ̃ = 343 GeV and one finds that

LNLSP# 2 < LNLSP# 1 .

Phenomenology of the Gauge Mediated SCTM

Figs. 5.9 and 5.10 show the spectrum in the two previous benchmark scenarios with light stops
(in both cases below 1 TeV) 16, the correct Higgs mass and a non negligible contribution of the
triplet sector to EWSB. In particular, in both examples v∆ = 20 GeV (vH is set by the relation
(4.10)), which corresponds to about a 10% of the W and Z masses given by the triplets.

In both scenarios the gravitino cosmology is very simple as m3/2 ∼ O(few) eV and the
gravitinos are stable particles which do not overclose the Universe, Ω3/2h

2 ' 10−3. We now look
at phenomenological features and possible smoking gun signatures for the present model and in
particular for the two benchmark scenarios.

Neutralinos and Charginos

We first analyze the fermionic sector of the theory. The addition of three triplet chiral superfields
will enhance the number of neutralinos and charginos. Three extra neutralinos, two new charginos
and a doubly charged chargino will be present in the spectrum. The fermion spectrum comes
from the neutralino and chargino mass matrices, which are derived from the mass Lagrangian

L1/2 = − ∂2W

∂φiφj
ψiψj −

√
2ga(φT aψ)λa + Lsoft−fermions , (5.33)

where φ are the Higgs scalars, ψ their fermionic superpartners (higgsinos and tripletinos) and λa

the gauginos corresponding to each gauge group, ga. For neutralinos we have then

L0
1/2 = −1

2
ψ0
iM0 ij

1/2 ψ
0
j + h.c. , (5.34)

where ψ0
i =

(
B̃0, W̃ 3, H̃0

1 , H̃
0
2 , φ̃

0, χ̃0, ψ̃0
)

. For charginos the mass Lagragian is as in Eq. (4.42)

but with a mass matrix different from Eq. (4.43) since the parameters are not SU(2)L⊗SU(2)R
invariant anymore. Finally, the doubly charged chargino mass matrix is given by

L±1/2 = −1

2

(
ψ++ χ−−

)( 0 M±T1/2

M±1/2 0

)(
ψ++

χ−−

)
+ h.c. (5.35)

16The physical stop masses are derived as in the previous section by means of Eqs. (5.18) and (5.19).
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Figure 5.9: Left: Scalar spectrum for scenario #1. MSSM-like scalars are quoted as so. Right:
Fermion spectrum for scenario #1.

Figs. 5.9 and 5.10 show the different mass values for scenarios #1 and #2, respectively. As we
can see there is a clear hierarchy between states which in part will be determined by the relation
(5.26). In Fig. 5.9 this relation is,

M1

α1
:
M2

α2
:
M3

α3
= 1.08 : 2 : 1.8 [scenario #1]. (5.36)

The lightest fermion is the NLSP, a Bino-like neutralino. The next neutralino and first chargino
correspond to a Wino-like multiplet, since M2 at the low scale is around 450 − 500 GeV (right
panel of Fig. 5.8). In this scenario χ̃0

2 and the lightest chargino χ̃±1 are (quasi) degenerate in mass.
The ATLAS supersymmetric searches [122] on χ̃0

2χ̃
±
1 production followed by W and Z decays,

combined with three-lepton searches, exclude a mass region for degenerate χ̃0
2 and χ̃±1 between

100 GeV and 410 GeV. These bounds are satisfied since the mass of χ̃0
2 and χ̃±1 is ∼ 473 GeV.

The heavier states are doublet-like Higgsinos and tripletinos.

In scenario #2 the gaugino mass relation is

M1

α1
:
M2

α2
:
M3

α3
= 10.8 : 6 : 3 [scenario #2] , (5.37)

this different hierachy is explicit in Fig. 5.10, with a fermion spectrum heavier than in the previous
case, also satisfying all present experimental bounds.
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Figure 5.10: Left: Scalar spectrum for scenario #2. MSSM-like scalars are quoted as so. Right:
Fermion spectrum for scenario #2.).

Sleptons

ATLAS and CMS searches place strong bounds on slepton masses [122,123] 17. These will change
depending on whether τ̃R is the NLSP or not. If τ̃R is the NLSP, LHC searches give mτ̃R & 250
GeV and mτ̃L & 300 GeV. Bounds are relaxed if we have a neutralino NLSP to which the τ̃R
decays. In this case, from the exclusion regions in the (mχ̃0

1
,mτ̃R) plane from decays τ̃R → τ χ̃0

1,
it turns out that for mχ̃0

1
& 100 GeV there is no LHC constraint on mτ̃R , so that only the LEP

bound mτ̃R & 100 GeV survives. The latter case applies to our benchmark scenario #1 where
mχ̃0

1
> 100 GeV. In the benchmark scenario #2 we explore the former case and we can see from

the mass spectrum that mτ̃R and mτ̃L are above their experimental lower bounds.

Higgs scalars

There are a total of five neutral CP-even, 4 CP-odd, 5 singly charged, and two doubly charged
massive Higgs scalar fields in this model. We will calculate the scalar spectrum by diagonalizing

17We consider the physical masses of τ̃L,R to be the RGE parameters mτ̃L and mτ̃R , neglecting any possible
mixing between them. This is a good approximation since yτ � yt.
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the corresponding mass matrices, e.g. for real neutral scalars Eq. (5.12), but also

(M2
Ps)ij =

1

2

∂2V

∂ϕIi ∂ϕ
I
j

, (M2
Ch)ij =

∂2V

∂ϕ±i ∂ϕ
±∗
j

and (M2
D.Ch)ij =

∂2V

∂ϕ±±i ∂ϕ±±∗j

, (5.38)

where,

ϕIi = (H0 I
1 , H0 I

2 , ψ0 I , φ0 I , χ0 I) ,

ϕ±i = (H−1 , χ
−, φ−, H+

2 , ψ
+, φ+) , (5.39)

and ϕ±±i = (χ−−, ψ++) .

With the help of a smooth limit to the MSSM scalar sector when v∆ → 0, we can identify the
MSSM-like states as those which remain light in that limit (see Section 4.4). Due to the small
mixing angles between doublets and triplets, the MSSM-like scalars will have a larger doublet
component whereas the rest will be mainly composed of triplets.

Note that the doublet sector is in its decoupling regime and in both cases (Figs. 5.9 and 5.10)
there are some light triplet-like scalars, specifically a neutral (H), a charged (H±) and a doubly
charged (H±±) one. From Chapter 4 we know that, in the custodial case, scalars align themselves
under degenerate SU(2)V multiplets and in particular these light triplet-like scalars correspond
to FS , the SU(2)V fiveplet that for large enough v∆ is the lightest triplet-like multiplet, just
above the Higgs-like custodial singlet (see Fig. 4.4 in Sec. 4.4). Of course, since SU(2)V does not
hold anymore, the multiplet is not degenerate in mass, thus the mass splitting between H, H±

and H±± that we see in Figs. 5.9 and 5.10.

Probing these new triplet-sector states is challenging since the new SU(2)L triplets do not
couple to matter at tree level. For the neutral ones, searches for fermiophobic Higgses constrain
their masses to be roughly above 194 GeV [124]. Moreover, the main production process for these
states is vector boson fusion and the coupling between a Higgs like scalar and two vector bosons is
proportional to its VEV, which for the triplet like states will be v∆, around an order of magnitude
smaller than v. Due to this, the production cross section will then be smaller than the production
of doublet-like scalars and the bound on triplet-like neutral states can be significantly relaxed.
In Chapter 8 we perform an analysis that enables us to derive bounds which are independent of
the triplet VEV, hence, much more robust. Although fermiophobic neutral scalars do appear in
this model, they are not an exclusive feature of triplet Higgs sectors and cannot be considered as
a smoking gun of the model. Nevertheless the model features a few characteristic signatures:

• The first one is the appearance of light charged scalars with the coupling H±W∓Z and
decay channel H± → W±Z, which is forbidden for charged Higgses coming from doublet
representations. This possibility has been explored in [125]. Through the search of H± →
W±Z, and in the context of the non-supersymmetric GM model, ATLAS is able to put
bounds on the mass of the triplet-like H±. Here we can do a similar consideration to the
one we did in searches of fermiophobic neutral scalars. The width of H± is proportional
to the squared of sin θ = 2

√
2v∆/v, a factor which parametrizes the amount of mass given

by triplets to the W and the Z. The experimental bounds grow stronger as sin θ → 1 and
disappear for sin θ < 0.5. In our model v∆ is small compared to v so sin θ is at most 0.35
and the bounds do not apply. The triplet-like nature that is responsible for this suppression
in the couplings is explicitly shown in Figure 5.11.
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Figure 5.11: Plot that shows the composition of the lightest H± state for points computed with
different values of the messenger mass scale, M. Thick lines correspond to components coming
from the triplet sector and dashed ones are components of the doublet sector. The lightest H±

will be dominantly triplet like even including the custodial breaking caused by the running, this
means that its couplings to gauge bosons will be weighted by the factor ∼ v∆/v. The other possible
smoking gun of the model, the doubly charged state H±± will be totally triplet as there is no doubly
charged component coming from the doublet sector.

• The second one is a light doubly charged scalar. Since it does not couple to matter at tree
level its only decay mode is H±± →W±W±. In [101] this possibility is studied and bounds
on doubly charged scalars are given by looking at possible H±± →W±W± processes. The
authors find that with the current LHC data mH±± & 96 GeV, a bound obviously satisfied
by our benchmark scenarios.

Finally, there is also a light pseudoscalar in the spectrum. These are mostly constrained by
flavor measurements and electroweak precision observables in the two Higgs doublet model [126]
and require mA & 300 GeV. However, these bounds rely on the fact that the pseudoscalar has to
decay primarily on bb̄ and τ τ̄ which happens only when tanβ � 1. For our model tanβ ∼ 1 at
every point of the parameter space so the experimental constraints are relaxed.

Higgs couplings

We now calculate the normalized couplings of the Higgs to vector bosons and fermions, Eq. (5.20),
in the two benchmark scenarios to find that they agree with what was originally predicted in the
more general universal models (Fig. 5.6). We also look at the loop induced coupling rγγ that will
contribute to the h→ γγ rate 18. We end up by computing the predicted signal strength µhXX

18The formula for rhγγ is similar to what is given in Eq. (4.51), however, in the non custodial situation the
projections from gauge eigenstates to the Higgs mass eigenstate cannot be computed analytically and we have,[

A1(τW ) +
4

3
A1/2(τt)

]
rHγγ = A1(τW )rHWW +

4

3
A1/2(τt)rHuu (5.40)

+
v√
2

{
U11

∂f

∂H0
1

+ U12
∂f

∂H0
2

+ U13
∂f

∂ψ0
+ U14

∂f

∂φ0
+ U15

∂f

∂χ0

}
.
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of the decay channel h → XX, with X = V, f, γ. Results for the two benchmark scenarios are
presented in Tab. 5.3.

Scenario #1 WW ZZ bb̄ tt̄ γγ

rhXX 1.05 1.04 1.01 1.01 1.22

µ
(gF )
hXX , µ

(htt)
hXX 1.07 1.05 1 0.99 1.45

µ
(WF )
hXX , µ

(Wh)
hXX 1.16 1.14 1.08 1.07 1.58

µ
(ZF )
hXX , µ

(Zh)
hXX 1.14 1.11 1.06 1.05 1.54

Scenario #2 WW ZZ bb̄ tt̄ γγ

rhXX 1.05 1.04 1.01 1.01 1.18

µ
(gF )
hXX , µ

(htt)
hXX 1.07 1.06 0.99 0.95 1.35

µ
(WF )
hXX , µ

(Wh)
hXX 1.16 1.15 1.08 1.05 1.46

µ
(ZF )
hXX , µ

(Zh)
hXX 1.15 1.14 1.07 1.03 1.45

Table 5.1: Top: Higgs couplings and signal strengths for scenario #1. Bottom: Higgs couplings
and signal strengths for scenario #2.

From Tab. 5.3 we see that the benchmark points are in agreement with the ATLAS current
measurements [127] within the present uncertainties. The Higgs is a doublet-like state and there-
fore its couplings to vector bosons and fermions will not be greatly modified since the rest of the
doublet-like spectrum is heavy enough. However, because custodial invariance is broken at the
electroweak scale by the RGE running, it turns out that there is a corresponding breaking of uni-
versality as the parameter λWZ = rWW /rZZ departs from one. In particular as we can see from
Tab. 5.3, λWZ − 1 ' 1% for the benchmark scenario #1 and λWZ − 1 ' 3% for the benchmark
scenario #2. As emphasized in Section 5.2 this breaking is one of the possible smoking guns of
our model (left panel of Fig. 5.6).

As the precision in the measurements of the Higgs properties increases, Higgs couplings can
offer one of the most promising avenues to probe this model, in particular through the rhγγ
coupling which is loop induced and can have large modifications. New charged triplet-like light
scalar states like H± or H±± are present and will modify the coupling by circulating along
the loop. The lighter these particles are, the greater their effect will be in rhγγ and since the
masses of triplet-like states scale with v∆, h → γγ will soon put bounds on v∆. In order to
illustrate this point we show in Fig. 5.12 a scenario with the same values of the parameters as
the benchmark scenario #1, but with v∆ = 10 GeV. In this case the scalar spectrum is heavier
and the contributions to rhγγ are smaller 19.

5.4 Discussion: General features of the SCTM

During this chapter we explored how we expect a ‘realistic’ realization of the SCTM to work
(Fig. 5.1), we scanned the departure from custodial invariance and explored what are the conse-
quences for phenomenology in this consistent picture.

19The presence of light charginos could also modify rhγγ . Note however that in the cases under study µa,b is
large and no beyond the MSSM light charginos appear in the spectrum.

101



Chapter 5. The SCTM at the quantum level

hMSSM

593
505549 498

572
485

895

1161

429

153

H A H± H±± t
˜

τ
˜
L,R

0

200

400

600

800

1000

1200

M
as
s
[G
eV

]

WW ZZ bb̄ tt̄ γγ

rhXX 1.02 1.02 1 1 1.05

µ
(gF )
hXX , µ

(htt)
hXX 1.03 1.03 0.98 0.98 1.1

µ
(WF )
hXX , µ

(Wh)
hXX 1.07 1.08 1.03 1.03 1.15

µ
(ZF )
hXX , µ

(Zh)
hXX 1.08 1.08 1.03 1.03 1.15

Figure 5.12: Left: Scalar spectrum of the benchmark scenario #1 with v∆ = 10 GeV. λ, µ and
µ∆ are again adjusted at the messenger scale so the correct Higgs mass is reproduced and ρ = 1.
Other scalar states are above 1.3 TeV. Right: Higgs couplings and signal strengths with v∆ = 10
GeV.

We started by arguing that in the SCTM, the scale at which SU(2)L⊗SU(2)R holds is most
naturally identified with the messenger scale M, at which supersymmetry breaking is transmit-
ted to the observable sector. This leads to a connection between the experimentally measured
value of ρ and the supersymmetry breaking scale. With this identification, it is shown how once
the SU(2)L ⊗ SU(2)R boundary conditions are specified at the scale M, then for a given triplet
VEV v∆, the tree-level value of ρ can be predicted through renormalization group evolution (Ap-
pendix B.2). By utilizing an extra VEV direction (Appendix A.1), which itself is a consequence
of supersymmetry and anomaly cancellation, the scaleM at which SU(2)L⊗SU(2)R invariance
holds can be significantly higher than the electroweak scale. In particular, we have found that
scales M well above 100 TeV and triplet contributions to EWSB as large as 15% can easily
be accommodated with ρ within the T-parameter constrains, this is shown in the left pannel of
Fig. 5.3. At the same time we have checked that the ‘realistic’ SCTM can also give large tree-
level and one-loop contributions to the Higgs mass as it does in the fully custodial picture. This
allows to reproduce the measured Higgs mass even with small trilinear terms and top squarks
with masses below 1 TeV.

As a byproduct of this analysis we have found a way to reconcile the Higgs mass measurement
with low-scale supersymmetry breaking in the context of gauge mediation. We have proposed a
particular model of general gauge mediation characterized by three species of messengers trans-
forming as non-exotic representations under the SM gauge group, Eq. (5.21), with supersymmetric
masses and Yukawa couplings to the spurion field breaking supersymmetry in the hidden sector,
Eq. (5.22). In particular we have studied two benchmark scenarios consistent with all present
experimental bounds, with the lightest neutralino (Bino-like) (Fig. 5.9) and right-handed stau
(Fig. 5.10) as NLSP, respectively. For both scenarios the decay of the NLSP is prompt (inside
the detector but with no displaced vertex).

We now enumerate a number of characteristic features of the ‘realistic’ SCTM, some of them
particular to the SCTM embedded in gauge mediation:
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• The first distinct feature is of course (as we already mentioned) that we can reproduce the
Higgs mass with light stops (∼ 1 TeV) while in the MSSM or in particular, minimal gauge
mediation, values of the stops mass & 5 TeV are required (Chapter 3).

• There is an extended fermiophobic triplet Higgs sector, absent from the usual supersym-
metric extensions of the Standard Model, whose neutral components can acquire a sizeable
VEV v∆ (Fig. 4.1).

• The triplet VEV’s can contribute with a non negligible amount to the mechanism of elec-
troweak breaking. There is a direct relation between a sizable v∆ and light triplet-like states
(Fig. 4.4), in agreement with the upper bounds derived in [128]. This is a very interesting
fact that will be explored by LHC13, as well as the next generation of colliders.

• There is a rich phenomenology by new singly (H±) and doubly charged (H±±) scalars
which, if light enough, can contribute sizeably in loops to rγγ (Table 5.3 and Figure 5.12).
The couplings H±W∓Z and H±±W∓W∓ are proportional to v∆ and can thus provide
unique signatures for models with extended Higgs sectors contributing to EWSB.

• From looking at the spectrums of Figures 5.9 and 5.10 we can see that, although exact
custodial ordering is lost due to the RGE running, there is some remnant degeneracy. In
particular the SU(2)V fiveplet FS , Eq. (4.37), will be responsible for the appearance of a
neutral, a singly and a doubly charged state close in mass as the lightest scalars in the
spectrum (just above the light Higgs). Also, the lightest pseudoscalar and the next to
lightest singly charged state will correspond to the triplet A, Eq. (4.33).

• One can measure the amount of custodial breaking by the departure of the universality
parameter λWZ ≡ rWW /rZZ from its custodial value λWZ = 1 (Figure 5.6 and Table 5.3).

• The typical pattern for the values of Ma/αa is strongly spoiled with respect to minimal
gauge mediation. Also the sfermion spectrum is completely different from that of typical
MGM, Eq. (5.26).

Let us end this chapter by making the remark that although we have constructed generic
scenarios consistent with all experimental bounds, the constructions are by no means unique.
Any of those scenarios should be contrasted with future experimental data, in order to find
exclusion regions or some positive signatures which could unveil the true nature of the SCTM.
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6
DM phenomenology with custodial triplets

As explained in the Section 2.6 of Chapter 2, supersymmetry also provides a nice solution to
the dark matter problem. If R parity is assumed the lightest supersymmetric particle is stable
and, provided that it is neutral, it may behave as a good DM candidate. However, not all
dark matter candidates yield the correct relic abundance, only specific regions of the parameter
space will allow the lightest neutralino to freeze out to the observed relic abundance and in the
MSSM these regions are getting heavily constrained by experimental searches for DM. In this
chapter we focus on the dark matter properties of the neutralino sector of the SCTM which,
besides the interesting features described in the previous chapters, is able to generate neutralino
phenomenology worth being studied. Moreover, a (nearly) custodial potential is interesting from
a direct detection standpoint: The coupling of the Z to the neutralinos vanishes at tree level in
the custodial limit of the MSSM (tanβ = 1), leading to blind spots in the spin-dependent dark
matter searches [129], a property that will be maintained by a custodially symmetric extended
Higgs sector.

We start the Chapter by summarizing the status of neutralino dark matter as of today
(Sec. 6.1). We then explore the DM properties of the SCTM by means of a phenomenologi-
cal approach that parametrizes the custodial breaking while retaining some of the calculability
of the SU(2)V invariant situation (Sec. 6.2). From our study we find that there are large regions
of parameter space where dark matter annihilation in the early Universe occurs through the new
triplet states, we discuss these results and the consequences for direct and indirect detection in
detail in Section 6.3. We end up making a summary in Section 6.4.

6.1 The status of neutralino DM

If the mass parameters of the electroweakinos are well separated, mixing can be neglected and
the LSP can be a pure interaction eigenstate. If that is the case the pure bino does not annihilate
enough in the early Universe, while both the wino and higgsino annihilate easily and need a mass
near or above a TeV in order to freeze out with the correct relic abundance. If their masses are
lighter than this, the pure wino or higgsino leave too little dark matter 1 and as SU(2)L triplets,
the tripletinos should behave similarly to the wino in this regard.

To have neutralino dark matter lighter than a TeV and freeze out to the observed relic
abundance, the LSP must have a large bino component, and there must be a process which helps

1Actually, the pure wino may already be excluded by astrophysical gamma ray searches and after constraints
from LEP, the LHC, and astrophysics are applied, the only pure state that can generate the observed relic abundance
is the higgsino [130–132].
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the LSP to annihilate efficiently in the early universe. There are a few options to increase the
rate at which the bino annihilates:

• Mixing: If the composition of the LSP contains a substantial amount of wino, higgsino or
tripletino, the mixing can allow for efficient annihilations.

• Coannihilation: Having another supersymmetric particle slightly above the mass of the LSP
opens the possibility of t-channel annihilations, which can greatly increase the annihilation
cross section. For there to be enough of the heavier particle around as the universe expands
and cools down, the mass must not be more than ∼ 10% larger than the mass of the dark
matter candidate.

• Funnel/Resonance: If the mass of the LSP is approximately half the mass of another state,
the s-channel propagator becomes very large. There is a peak in the annihilation cross
section, and a corresponding dip in the relic abundance after freeze-out.

If the LSP is coannihilating with squarks or sleptons, there are strong limits on the model
from LHC searches. This is due to the production rate of squarks and the relatively clean signals
for sleptons. In this case, one would expect to find the squark or slepton before the DM candidate.

In the literature, both mixing and coannihilation among electroweakinos are referred to as
well tempering, [133]. Well tempering implies that there are multiple states around that can be
produced, which is good for the production cross section of beyond-the-Standard-Model states.
However, achieving the correct relic abundance requires the splitting to be small, which makes
detection difficult. There have recently been studies on detecting electroweakinos with small
splittings at colliders [134–142].

The resonant/funnel annihilations of the LSP do not need extra particles at the same mass,
but instead at nearly twice the mass of the DM particle. In the MSSM, the funnel particle can
be either of CP-even (H0

1 , H
0
2 ) or CP-odd (A0) nature [143–149]. Since the dark matter particle

itself cannot be detected at colliders, the way to look for such a model is through the heavier
states, however, as exemplified by the long search for the Higgs, searches for neutral scalars are
difficult. As will be shown later, in the SCTM, the triplet scalars provide a resonant channel
over much of the parameter space. Moreover, because of the degeneracy of states in the custodial
situation (Chapter 4), there are charged states near the neutral funnel that could aid in discovery.

6.2 Phenomenological approach to the SCTM

We know from Chapter 5 that a totally custodial situation at the EW scale is not realistic
from a theoretical point of view and deviations from SU(2)V are to be taken into account when
performing studies of the SCTM properties. For this study, we take a middle ground between
the calculable (but unrealistic) fully custodial model of Chapter 4, and Chapter 5, where we
perform a detailed analysis of the custodial breaking generated by the RGE running. In the
latter, phenomenological studies which need parameter scans are challenging as every point in
the parameter space is calculated in a non trivial way. In this chapter we assume a Higgs sector
with a potential allowing for a non custodial vacuum, provided that it only comes from the ratio
of the doublet VEV’s, parameterized by tanβ. We do this in agreement with what is found
performing the RGE analysis, i.e. because of the influence of the top quark Yukawa coupling,
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the running differentiates the two soft doublet masses from each other much more than the three
triplet ones among themselves (Figs. 5.2 and 5.8), resulting in a much bigger vacuum misalignment
in the doublet sector. This misalignement in the doublet sector translates into a departure from
tanβ = 1 and as the ρ parameter is affected only by the difference in the triplet VEV’s, one can
consider a breaking generated by tanβ without worrying too much about ρ parameter constrains.

Let us now present this approach in detail as something similar will be also used in Chapter 7.
The SU(2)L ⊗ SU(2)R invariant superpotential is defined as

W = λH̄ · ∆̄H̄ +
λ3

3
tr ∆̄3 +

µ

2
H̄ · H̄ +

µ∆

2
tr ∆̄2 , (6.1)

and again, the total potential
V = VF + VD + Vsoft , (6.2)

where the F and D terms are defined as in Chapters 4 and 5. The soft part of the potential in
this approach is

Vsoft = m2
H1
|H1|2 +m2

H2
|H2|2 +m2

Σ1
tr |Σ1|2 +m2

Σ−1
tr |Σ−1|2 +m2

Σ0
tr |Σ0|2

+

{
1

2
m2

3H̄ · H̄ +
1

2
B∆ tr ∆̄2 +AλH̄ · ∆̄H̄ +

1

3
Aλ3 tr ∆̄3 + h.c.

}
(6.3)

Note that the potential we just wrote is the same as that of Chapter 4 but with non custodial
soft masses that will be used to satisfy the EOM’s.

The SU(2)V breaking vacuum is parametrized as

v1 =
√

2 cosβ vH , v2 =
√

2 sinβ vH and vψ = vχ = vφ ≡ v∆, (6.4)

where the custodial symmetry is only broken in the vacuum by tanβ. As in the previous chapter,
the vacuum will preserve the relation (4.10) regardless of the tanβ value, fixing a vH for every
v∆. From close inspection of Eq. (5.8), we can determine that the ρ parameter is not affected
if custodial symmetry is broken in this way, however, only from the consideration of tanβ 6= 1
we already loose the degeneracy of minimization conditions present in the custodial situation.
The five EOM’s for this choice of vacuum are listed in Appendix C.1, where we can see that the
degeneracy is recovered when tanβ → 1. For the rest of the chapter we will refer to tanβ = 1 as
the custodial case and tanβ 6= 1 as the non custodial case.

Benchmark parameters

To begin a study of the dark matter properties of the model, we first choose a set of benchmark
values, given by

λ3 = 0.35,

m3 = 500 GeV,

B∆ = −(500 GeV)2,

Aλ = Aλ3 = At = Ab = Aτ = 0,

mQ̃3
= 800 GeV, and mũc3

= 700 GeV,

(6.5)

where other scalar soft masses have been decoupled and the ones corresponding to Higgs multiplets
are determined by the minimization conditions. The SCTM triplet F terms yield a large tree-
level Higgs mass, so smaller one-loop corrections are needed. This is the reason for our choice of
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relatively light stops albeit above the current experimental limits. The value of λ3 will not have
much of an effect. We are considering the case m2

3 = |B∆| for simplicity. Values of m3 and B∆ in
the ballpark of those in Eq. (6.5) should provide similar results while larger values will decouple
the heavy scalars more, and in addition will affect on how large v∆ can be in the minimization
of the potential. Similarly, we choose to examine the case in which all of the trilinear terms are
zero to help ensure that the EW vacuum is the deepest one. This leaves µ, µ∆, λ, and v∆ as the
remaining free parameters to study.

Scalar spectrum

As noted in the previous chapter, there is a total of five CP-even, five CP-odd, six singly charged,
and two doubly charged Higgs scalar fields in the SCTM. Since we will be examining both the
custodial and the non custodial setups of the model, we will not use the notation in terms of
SU(2)V multiplets, instead, we will work with mass eigenstates. After removing the Goldstone
bosons, they will be denoted as H0

1,...5, A0
1,...4, H±1,...5, and T±±1,2 .

To study the dark matter annihilation in the model, we are only interested in the spectrum
of the lightest neutral scalars rather than the charged components. Annihilating the neutralino
through a resonance of the Higgs or the heavy Higgs has been shown before in the MSSM. As a
new feature of this model, there are substantial regions of parameter space in the SCTM where
the annihilation can proceed through a triplet-like resonance. To do this, the soft masses of the
triplets must not be too large. Upon close examination of the minimization conditions for m2

Σ0
,

m2
Σ1

, and m2
Σ−1

written in Appendix C.1, we see that there is a piece that scales as v2
H/v∆ for

each soft mass. Smaller values for v∆ yield large soft masses for the triplets, decreasing the chance
of annihilating through the triplet funnel.

The Higgs mass

The results for the Higgs mass are pretty similar to what is presented in previous chapters. For
tanβ = 1, there is no tree-level contribution to the mass of the Higgs from the MSSM sector of
the model. Instead, the mass at tree level in the decoupling limit comes only from the triplet F
terms, and is given (at leading order in v∆) by

m2
h

∣∣
tanβ=1

= 6λ2v2
H . (6.6)

We also examine the model in which tanβ 6= 1 (but is still small 2) and the tree-level Higgs mass
can no longer be written in a simple form. However, we comment that there are now MSSM
contributions to the mass, and the triplet F terms contribute as λ2

(
4 cos4 β + 4 sin4 β + sin2 2β

)
.

Again, the SCTM allows for large tree-level contributions to the Higgs mass with no need of large
one-loop corrections, and thus no need for heavy stops.

The dominant radiative corrections to the Higgs mass depend on the top Yukawa coupling
which is defined as in Eq. (5.14). In the SCTM, increasing v∆ increases the top Yukawa, which
increases radiative corrections to the Higgs mass. In our study, we take the dominant one-loop
corrections found in Ref. [44], 3 we use 700 GeV for the right-handed soft mass and 800 GeV

2In agreement with the tanβ values found in Chapter 5.
3We will neglect radiative corrections proportional to λ2 as the parameter λ affects the Higgs mass at the tree

level and thus the corresponding radiative corrections are constrained to be small by perturbativity.
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for the left-handed soft mass. These were chosen to be slightly above the current experimental
bounds, regardless of the mass of the lightest neutralino. Raising the masses of the stops will not
affect our dark matter results, only worsen the fine-tuning of the model. Note that even though
the stop masses and At are fixed in the study, changing µ and tanβ affects the mixing and thus
the one-loop contributions to the Higgs mass. Therefore, by fixing the mass of the stops, the only
way to alter the mass of the Higgs is through the remaining parameters, µ, µ∆, λ, and v∆. To
study the effect of the triplet-like states on dark matter, we examine the case in which either the
doublet- or the triplet-like fermions are lighter. We fix µ∆ = 250 GeV and scan over the values
of µ.
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Figure 6.1: Top row: Maximal values of
√

2 v∆ that allow λ to set the Higgs mass to 125 GeV and
yield a minimized potential as a function of µ. Bottom: Value of λ needed to attain the observed
Higgs mass for v∆ = 10/

√
2 GeV. The triplet supersymmetric mass is set to µ∆ = 250 GeV, and

the other values are as in Eq. (6.5).

Recall that in order to achieve a minimum of the potential from the minimization conditions
(see Appendix C.1) rather than a saddle point, there exist constraints on the relationship between
µ and µ∆ beyond Eq. (4.39), which forces the origin to be a saddle point. However, the latter
equation might give us some intuition on which µ and µ∆ values we can take since a saddle point
at the origin forces the potential to have a minimum. When tanβ = 1 and Aλ = 0 the equation
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simplifies to 2µ > µ∆ and we see that we cannot look at regions where µ∆ is significantly heavier
than µ and still minimize the potential 4. Once µ and µ∆ are fixed, we have to chose λ and v∆.
We do this in two different ways:

• Maximizing v∆: We start with v∆ = 30/
√

2 GeV 5, which we take as the upper limit
as suggested by the analysis of Chapter 5. We then scan over λ to set the Higgs mass
(including radiative corrections). Once the lightest CP -even Higgs has a mass of 125 GeV,
we examine the rest of the spectrum. If other scalars have gone tachyonic, or the value of
λ needed is greater than 0.75, this value of v∆ is excluded. We then lower v∆ and repeat
the process until a 125 GeV Higgs is obtained and the vacuum minimized. The resulting
values of v∆ and λ are plotted in the top row of Fig. 6.1 over a range of µ.

• Keep the value of v∆ constant as we scan across µ. The region of µ that can yield the
correct Higgs mass and successfully minimize the potential is smaller for large values of v∆.
Because of this, we set v∆ = 10/

√
2 GeV for our study of this method. The lower panel

of Fig. 6.1 displays the values of λ needed for both tanβ = 1 and tanβ = 2. Note that
tanβ = 2 needs smaller values of λ because there are tree-level MSSM contributions to the
Higgs mass, this allows for a larger range of µ than the tanβ = 1 case.

Rest of the scalar spectrum

The spectrum of the light neutral scalars is plotted in Fig. 6.2 for v∆ = 10/
√

2 GeV and v∆

maximized in the left and right panels respectively. When tanβ = 1, shown in the upper panels,
the scalars H0

2 , A
0
1, and H0

3 have similar masses, which increase as a function of µ. The lightest
that these scalars can be is ∼ 300 GeV. The other neutral scalars all have masses greater than
600 GeV and therefore are not shown in the plots. In the lower panels, the same spectra is shown
for tanβ = 2. In this case, both H0

2 and A0
1 are nearly degenerate in mass, and much lower in

mass than when tanβ = 1. This partially comes from the smaller value of λ needed to raise the
Higgs mass for tanβ = 2. Conversely, the mass of H0

3 does not change much between the two
choices of tanβ. If the maximum v∆ is chosen instead of using the constant v∆ = 10/

√
2 GeV,

the masses of H0
2 , A

0
1, and H0

3 will drop. The separation of the states will also depend on v∆ so
increasing it helps to remove the degeneracy of the scalars.

We do not perform any collider constraints on searches for these extra possible scalars. How-
ever, we see that the model allows for some to be very light (Sec. 5.4). A dedicated search could
therefore exclude large regions of parameter space in a quicker and more conclusive way than
either Higgs precision measurements or direct detection experiments (see Chapter 8).

4Of course, this does not mean that triplets cannot be decoupled supersymmetrically. The limit µ∆ →∞ yields
the MSSM, in which case Eq. (4.39) does not apply.

5Because of computational issues, the paper in which this chaper is based, Ref. [7], had to be written using the
normalization where φ = (v+ φR + i φI)/

√
2 and v = 246 GeV. To keep the text as cohesive as possible we change

it here to the one that we use in the rest of the thesis, φ = v + (φR + i φI)/
√

2 and v = 174 GeV; therefore some
of the numbers and figures in this chapter will show values of v∆ weighted by a factor 1/

√
2.
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Figure 6.2: Left panels: Spectrum of the neutral light scalars when v∆ = 10/
√

2 GeV and λ is
changed to set the Higgs mass. Right panels: Spectrum of the neutral light scalars when we use
the maximum allowed value for v∆ for each µ value. The upper (lower) panels contain tanβ = 1
(tanβ = 2). Changing tanβ greatly affects the masses of H0

2 and A0
2, but H0

3 ’s mass is similar
for both choices.
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Neutralino spectrum and mixings

The SCTM adds three neutralinos to the four MSSM ones; the bino, wino, and the two higgsinos.
There are also two new charginos on top of the charged wino and higgsino, and finally a doubly
charged triplet fermion. In the following, we will collectively refer to the fermion components of
all of the triplet fields as tripletinos and to the combination of the neutralinos, charginos, and
doubly charged tripletinos as electroweakinos.

The mass Lagrangian in the basis ψ0 =
(
B̃0, W̃ 3, H̃0

1 , H̃
0
2 , φ̃

0, χ̃0, ψ̃0
)

is

L0
1/2 = −1

2
(ψ0)TM0

1/2ψ
0 + h.c. , (6.7)

where M0
1/2 is written in Appendix C.1. Overall, the masses are controlled by M1,M2, µ, and

µ∆ for the bino, wino, higgsinos, and tripletinos respectively, but there are also additional contri-
butions to the masses and mixings scaling with either vH or v∆. To provide a good dark matter
candidate, we want the LSP to be the lightest neutralino; its composition will then determine
the annihilation and direct detection cross sections.

The composition of the LSP in terms of the gauge eigenstates is shown in Fig. 6.3 for the case
in which the VEV of the triplets is constant (10 GeV) and tanβ = 1(2) in the top (bottom) row.
The left panels have the higgsino-like states lighter than the tripletino ones, using µ = 200 GeV
and µ∆ = 250 GeV. The middle panel has both the higgsino and tripletino masses set to
µ = µ∆ = 250 GeV. Finally, the right panel examines when the triplet states are lighter than
the higgsino, with µ = 400 GeV and µ∆ still at 250 GeV. To simplify the situation as much as
possible, we decouple the wino by setting M2 = 1 TeV.

In the custodial situation, the doublet components of the LSP are equal and the triplet
components are separately equal over most of the parameter space. The tanβ = 2 case has each
higgsino and tripletino contributing differently to the LSP. Despite the complexity of the plots,
there are a few overarching trends.

In Sec. 6.1, we argued that the bino component of the LSP must dominate in order to
achieve the correct relic abundance of dark matter. The interesting regions to examine in the
compositions plots are then M1 < µ, µ∆. In this region, even when µ > µ∆, the second-largest
component of the LSP is higgsino rather than tripletino which is true even for quite large values
of the higgsino mass. This is due to the mixing of the bino with the higgsinos or tripletinos,
which comes from off-diagonal terms in the neutralino mass matrix (C.4) weighted with vH or
v∆, respectively. Because of Eq. (4.10), vH � v∆ and the higgsino mass needs to be much larger
than the tripletino mass in order for the triplet contribution to the LSP to be larger than the
higgsino component. So even though the mass of the higgsino can be larger than the tripletino
mass, the mixing of the bino with the higgsino can be what causes the correct annihilation rate.
As µ is further increased, the amount of higgsino in the LSP drops past the point where mixing
alone can yield the correct relic abundance. Looking only at regions where M1 < µ∆, we see
that the triplet states do not contribute much to the LSP. By removing the higgsino, the LSP
is made more pure bino, rather than increasing the triplet amount. The only possibility of well
tempering for this will then require coannihilations of the bino-like LSP with a triplet-like state.
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Figure 6.3: Composition of the LSP in terms of gauge eigenstates. The top row shows tanβ = 1
and the bottom shows tanβ = 2. The columns correspond to µ = (200, 250, 400) GeV, respectively,
while the tripletino mass is set to µ∆ = 250 GeV and v∆ = 10/

√
2 GeV. The wino has been

decoupled with M2 = 1 TeV. Note in the top middle and top right plots the presence of a triplet-
like eigenvalue, which is totally decoupled from the rest of the neutralino mass matrix, made out
of only ψ̃, φ̃, and χ̃. It corresponds to an SU(2)V fiveplet in the custodial basis.

6.3 Dark matter phenomenology

To examine the dark matter phenomenology of the SCTM the model was implemented into
SARAH [150–154]. With this, a code was generated for SPheno [155,156] and CalcHep [157].
The SPheno code calculates the spectrum, outputting a parameter card that can be read by
MicrOMEGAs 3 [158]. The program MicrOMEGAs 3 uses the CalcHep code to calculate
the dark matter properties.

Thermal relic density

For each of the choices of tanβ and the method of picking v∆, we scan over the possible µ values
for µ∆ = 250 GeV, using 50 GeV step sizes. At each point in µ, we then scan over M1 to find the
bino masses that yield the correct relic abundance of dark matter. We start with M1 = 40 GeV
and take 1 GeV steps until M1 > 100 GeV, at which point a 5 GeV step is used to save on
computing time.

Figure 6.4 shows an example of the relic abundance calculated at each M1 value for the point
µ = 200 GeV, v∆ = 10/

√
2, and tanβ = 1. The gray line marks Ωh2 = 0.1187, the observed

relic abundance in the Universe [159]. The scalar masses do not depend on the M1 value and are
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Figure 6.4: Relic abundance for the model with µ = 200 GeV, µ∆ = 250 GeV, v∆ = 10/
√

2 GeV,
and tanβ = 1. The gray line marks the observed relic abundance in the Universe today. As the
mass of the LSP crosses over half the mass of one of the scalars in the model, the annihilation
cross section greatly increases, leading to lower relic abundances. When the LSP mass gets close
to the mass of the higgsino, the mixing and coannihilations take over and the relic abundance
stays below the observed value.

given by
mH0

1
= 125 GeV, mH0

2
= 299 GeV,

mA0
1

= 325 GeV, mH0
3

= 337 GeV, and others > 700 GeV.
(6.8)

Three dips in the relic abundance are seen in the plot. These correspond to the H0
1 funnel, the

H0
2 funnel, and one for the nearly degenerate A0

1 and H0
3 states occurring when the bino mass is

roughly half the scalar mass. There are three M1 values of this model point that yield the correct
relic abundance. The first two correspond to going into and out of the lightest Higgs funnel, and
the third one is at the start of the H0

2 funnel. However, the next funnels corresponding to A0
1 and

H0
3 are close together, so the effect of having multiple nearly resonant s-channel annihilations

keeps the relic abundance below the observed value. Then M1 runs into the region where M1 > µ
and the higgsino becomes the LSP, leaving not enough dark matter in the current Universe.

Determination of the mechanism responsible for Ωh2
theory = Ωh2

observed

For each µ value in our model scans, we do the same process. Whenever the relic abundance at
one M1 value crosses from one side of the observed value to the other at the next M1 step, we
do a more dedicated scan to find the M1 value to a higher degree of accuracy. We then classify
the point according to the process that is driving the annihilations by comparing the LSP mass
to half the mass of the scalars or 10% higher than the LSP mass with that of the next to lightest
electroweakino. The piece giving the minimum of

min

(∣∣∣∣mχ̃0
1
−
mH0

1

2

∣∣∣∣ , ∣∣∣∣mχ̃0
1
−
mH0

2

2

∣∣∣∣ , ∣∣∣∣mχ̃0
1
−
mA0

1

2

∣∣∣∣ , ∣∣∣∣mχ̃0
1
−
mH0

3

2

∣∣∣∣ , ∣∣∣mχ̃
0(±)
NLSP

− 1.1×mχ̃0
1

∣∣∣) (6.9)

114



6.3. Dark matter phenomenology

yields a classification of the given scalar funnel or well tempering. This classification is only
an approximation of what is actually causing the annihilations. In the nonrelativistic limit,
annihilations through scalars occur through the p-wave, while pseudoscalars occur through the
s-wave. Thus, when A0

1 is close in mass to either H0
2 or H0

3 , the classification scheme could point
to the scalar instead of the pseudoscalar, even though the pseudoscalar contribution is larger. In
addition, when the funnels are close to the well tempered region both process can be responsible
for the annihilation.

Results

The results of the classifications are plotted in Fig. 6.5 for the different model choices in the mχ̃0
1

vs. µ plane. The LSP is mostly bino, so M1 ∼ mχ̃0
1
. The triplet scalars can be very light for

tanβ = 2 or if tanβ = 1 when the VEV of the triplets takes on the maximum value allowed.
Recall that Fig. 6.2 shows that these masses increase as a function of µ. As such, the funnels for
the triplet-like H0

2 , A0
1, and H0

3 , scalars smoothly transition up to the point where well tempering
happens at a lighter mass than needed for a triplet funnel.

For every model choice examined, there is an M1 value that will yield the correct relic abun-
dance either through a triplet-like scalar or well tempering. When µ is large enough and the
triplet scalars funnels are not possible, the higgsinos are heavy enough that the well tempering
is not caused by bino-higgsino mixing but instead by coannihilations with the triplet fermions.
Thus, each model point examined is capable of setting the correct relic abundance using particles
beyond the MSSM content.

The large VEV of the triplets allows for the triplet scalars to be light. The lightness of these
scalars is what allows the model points examined to always be able to set the relic abundance
using either the triplet scalar funnels or the triplet fermions. However, lowering the triplet VEV
v∆, raising the triplet supersymmetric mass µ∆, or lowering the wino mass M2, can disturb the
possibility of achieving the correct relic abundance through a triplet state. The MSSM limit of
the model takes the VEV of the triplets to zero. In this case, the triplet scalar soft masses go to
infinity and do not contribute to the annihilations 6. The higgsino alone satisfies the correct relic
abundance if its mass is ∼ 1.1 TeV. As such, if µ∆ is much larger than that, the triplet fermions
cannot play a role in well tempering. Such a large value of µ would also keep the triplet scalars
heavy, so such a case would have no way of using the triplet superfield to set the relic abundance.
Finally, the wino has been raised above the mass of the higgsinos and tripletinos for this study.
bino-wino well tempering can also be done if M1 'M2 < µ, µ∆. In this case the relic abundance
could be set before the triplets have a chance to affect things.

Direct detection

There have been many experimental searches for the direct detection of dark matter. For the
mass ranges considered here, the Particle Data Group [159] shows that the best limits are cur-
rently coming from the LUX Collaboration [161] for spin-independent searches and the COUPP
Collaboration [162, 163] for spin-dependent measurements. Super-Kamiokande [164] and Ice-
Cube [165, 166] have better spin-dependent exclusions, but are indirect constraints that rely on
the annihilation of dark matter in the current Universe and depend on the byproducts of the

6This also happens in triplet models in which the ρ parameter is not protected by a custodial symmetry, as the
triplet extension of the MSSM [160], and v∆ is strongly constrained by electroweak precision observables.
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Figure 6.5: Points that yield the correct relic abundance of dark matter. The upper row is for the
custodial case, while the lower has tanβ = 2. The left panels keep v∆ = 10/

√
2 GeV constant,

and the right panels use the maximum allowed value for v∆ for each µ value. The points are
labelled corresponding to which annihilation channel dominates in the early Universe.

annihilation that change as the LSP composition changes. We then only compare our results
with the LUX and COUPP constraints.

The spin-independent cross sections for the points satisfying the correct relic abundance are
shown in Fig. 6.6. The micrOMEGAs 3 output provides both the cross section of the dark
matter with a proton and a neutron; we take the maximum of these. The points are marked
in the same fashion as Fig. 6.5 to show how the relic abundance is being achieved. The upper
(lower) panels show tanβ = 1 (2) while the left and right panels display v∆ = 10/

√
2 GeV and

when v∆ is maximized at each point, respectively. The shaded blue region is excluded by the
LUX bound, and the dashed blue line is the projected sensitivity of LUX.

The spin-independent cross section is mediated by the doublet scalars. There is not much
difference between the tanβ = 1 and tanβ = 2 models in terms of the cross sections. For
v∆ = 10/

√
2 GeV, both have a region where the dark matter mass is between 100 and 200 GeV

which can be excluded by LUX. The points are achieved through a triplet funnel, and to get
masses in this range for the LSP, the values of µ are low. Referring back to Fig. 6.3, low values

116



6.3. Dark matter phenomenology

●●

●●

●●
●●
●●
●●
●●
●●
●●
●●
●●

■ ■
▼

▼
▼
▼
▼
▼
▼
▼
▼

Current Lux Bound

Projected Lux Bound

50 100 150 200 250

1.×10-47

1.×10-46

1.×10-45

1.×10-44

mχ1
0[GeV]

S
pi
n
-
In
de
pe
nd
en
tC
ro
ss
S
ec
tio
n
[c
m
2
]

vΔ=10 GeV; tanβ=1

●●

●

●●

●●
●●
●●●●●
●●●●●●●●●●●●●●●

■

■ ■

■
■

■
■

◆

◆

◆

◆

▲
▲

▲ ▲

▼

▼
▼▼▼▼▼▼▼▼▼▼▼

Current Lux Bound

Projected Lux Bound

50 100 150 200 250

1.×10-47

1.×10-46

1.×10-45

1.×10-44

mχ1
0[GeV]

S
pi
n
-
In
de
pe
nd
en
tC
ro
ss
S
ec
tio
n
[c
m
2
]

vΔ=max; tanβ=1

●●●●

●● ●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●●●

■ ■ ■
■

◆
◆

▲▲ ▼ ▼

▼
▼
▼
▼
▼
▼
▼
▼▼▼

Current Lux Bound

Projected Lux Bound

50 100 150 200 250

1.×10-47

1.×10-46

1.×10-45

1.×10-44

mχ1
0[GeV]

S
pi
n
-
In
de
pe
nd
en
tC
ro
ss
S
ec
tio
n
[c
m
2
]

vΔ=10 GeV; tanβ=2

●●

●●

●●

●●

●●
●●●●
●●●●●●●●●●●●

■■ ■

■

■
■

■

◆

◆
◆

▲
▲

▲
▲

▲

▲

▼

▼

▼
▼▼▼▼▼▼▼▼▼

Current Lux Bound

Projected Lux Bound

50 100 150 200 250

1.×10-47

1.×10-46

1.×10-45

1.×10-44

mχ1
0[GeV]

S
pi
n
-
In
de
pe
nd
en
tC
ro
ss
S
ec
tio
n
[c
m
2
]

vΔ=max; tanβ=2

● H1
0 Funnel

■ H2
0 Funnel

◆ A1
0 Funnel

▲ H3
0 Funnel

▼ Well Tempering

Figure 6.6: Spin-independent dark matter nucleon cross sections. Each point meets the correct
relic abundance with the annihilation mode marked. Points with smaller higgsino components
have a lower spin-independent cross section. Left (right) column features v∆ = 10/

√
2 GeV

(maximum allowed v∆) while top (bottom) row tanβ = 1 (tanβ = 2).

for µ and M1 give the LSP a moderate higgsino component. This higgsino component is what
drives the nuclear cross sections to be so large. The cross sections are lower when the maximum
value of v∆ is used. In this case, there are few points that are currently excluded by LUX. The
larger value of v∆ lowers the masses of the triplet-like scalars. This pushes the triplet funnels and
the well-tempering regions to larger values of µ, further decreasing the higgsino component and
the spin-independent cross section. Fortunately, there are still many points that can be probed
by LUX in the future. However, the points which are well tempered through bino-tripletino
coannihilations remain under the projected bound, due to the minimal higgsino component of
the LSP.

The spin-dependent interactions are mediated by the Z boson and the cross sections are
shown in Fig. 6.7. The panels use the same labelling as Figs. 6.5 and 6.6. In the custodial case,
with tanβ = 1, the mass eigenstates of both the fermions and the scalars of the Higgs doublet
and triplet superfields form representations of SU(2)V . The parity-violating Z coupling therefore
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Figure 6.7: Spin-dependent dark matter nucleon cross sections. Each point meets the correct relic
abundance with the annihilation mode marked. The parity-violating Z couplings vanish in the
custodial case. Left (right) column features v∆ = 10/

√
2 GeV (maximum allowed v∆) while top

(bottom) row tanβ = 1 (tanβ = 2)

vanishes in this case. And while this is also true in the MSSM for tanβ = 1, the SCTM provides
motivation for this choice of tanβ, whereas this situation is excluded in the former. The model
points examined for tanβ = 2 no longer have vanishing Z couplings with the LSP. The cross
sections are much larger in this case, particularly for the well-tempered points, which have low
spin-independent cross sections. However, even these large cross sections are still ∼ 2 orders of
magnitude below the COUPP bound.

Indirect detection

The direct detection experiments rely on dark matter interacting with detectors on Earth. It
is also possible to observe astrophysical objects containing large dark matter densities. In these
regions of space, the LSP can still annihilate. The annihilation does not occur through a diphoton
process, which would lead to a monochromatic signal. Instead, experiments must search for
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Figure 6.8: Annihilation cross section times velocity of dark matter in the Galaxy in the current
Universe. Each point meets the correct relic abundance with the annihilation mode in the early
Universe marked. The lines mark the limits assuming the annihilation occurs 100% of the time
through the given channel, each resulting in different spectra of photons measured here on Earth.

photons coming from the byproducts of the annihilation.

The annihilation cross section in the current Universe can be much different than in the early
Universe. Scalar funnels (not pseudo) are velocity suppressed in the nonrelativistic limit. As the
temperature has cooled since freeze-out, the annihilations proceeding through scalars should be
significantly smaller than the ∼ 3 × 10−26cm3/sec needed at freeze-out. For the well tempering
through coannihilations, the coannihilating particle is no longer around in the current Universe,
so we expect the annihilation cross section to be lower now as well.

The Fermi-LAT Collaboration [167,168] has placed limits on the annihilation cross section of
dark matter from the observation of satellite galaxies. The limits are framed in the context of
the annihilations proceeding 100% of the time through either the e+e−, µ+µ−, τ+τ−, uū, bb̄, or
W+W− channel. In Fig. 6.8, the resulting limits are plotted with our model points yielding the
correct relic abundance. The upper (lower) panels show tanβ = 1 (2), while the left and right
panels display v∆ = 10/

√
2 GeV and when v∆ is maximized at each point, respectively. A few
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Chapter 6. DM phenomenology with custodial triplets

points for the tanβ = 2 case are possibly excluded by these searches. However, these each have
the largest annihilation channel being χ̃0

1χ̃
0
1 → H0

1Z. The spectrum of photons coming from the
decays of the H0

1 and Z will not map directly onto any of the Fermi-LAT limits. The fact that
the SCTM has more neutral Higgs funnels opens the possibility of having different annihilation
modes. A more detailed study would therefore be needed in order to conclusively exclude points
from the SCTM due to indirect constraints.

We also note that some of the points marked as annihilating through the pseudoscalar A0
1 have

particularly large annihilations in the current Universe. These interesting points have A0
1 very

close in mass to either H0
2 or H0

3 , and there are interference effects in the early universe keeping
the annihilation cross section small enough. In the current Universe, when the scalars do not play
as much of a role, the annihilations proceed with less interference. Similarly, many points marked
as H0

3 funnels seem to have annihilation rates larger than expected in the current Universe. If
the rates are scaled up by the larger velocity at freeze-out, the annihilation rate would seem to
be too large. However, these points lie close to the well-tempered region, so it is likely that a
simple classification does not work well for points where both processes are important.

6.4 Discussion

In this chapter, we studied the case where the lightest supersymmetric particle of the SCTM is a
neutralino. In order for the dark matter candidate to yield the correct relic abundance, it must
have a large bino component to not annihilate too quickly in the early Universe. Well tempering
mixes the bino with either the higgsino, wino or, in the SCTM case tripletino, in just the right
amount to give the observed relic abundance. If the bino component is too large, dark matter
does not annihilate quickly enough in the early universe, unless the mass of the dark matter
particle is about half the mass of a boson and there is a funnel (Section 6.1).

The SCTM offers new methods to annihilate dark matter in the early universe through triplet
fermion co-annihilations or triplet scalar portals. We studied the annihilation of dark matter in
the early universe over a large range of values for the higgsino mass parameter µ (Section 6.3).
We compared the model points giving the correct relic abundance (Fig. 6.5) with the current
best direct detection limits (Figures 6.6 and 6.7). The points with low µ values have at least
a moderate higgsino component and have either been excluded already, or can be discovered
in future results. At large values of µ the light triplet states still provide an efficient means of
annihilating the dark matter, but hope of a direct detection is lost. This is an extra motivation for
a detailed study of the LHC phenomenology of the SCTM. Actually, for the study of dark matter,
we were only concerned with the neutral triplet states. However as we know from Chapters 4
and 5, the triplets contain charged states. In fact, the second lightest CP-even Higgs, H0

2 , is
close in mass to both the lightest charged and doubly charged scalars. In addition, the mixing
of the triplet like fermions leaves charged and doubly charged states very near in mass to the
lightest neutral one. If the relic abundance of dark matter relies on these light states, they should
be accessible at the LHC. Thus a dedicated study of methods for searching for doubly charged
fermions and scalars could offer valuable constraints on models such as these with exotic particle
content (Chapter 8).
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7
Properties of the EW phase transition

Electroweak Baryogenesis is an interesting mechanism that could explain the observed asymmetry
between matter and antimatter in the universe [169] (for reviews see [170–175]). It ties together
cosmology and physics at the electroweak scale, specifically the process of electroweak symmetry
breaking. For this scenario to work, the Electroweak Phase Transition (EWPT) needs to be a
strong first order one, i.e. it should proceed through bubble nucleation and sphaleron transitions
should be sufficiently suppressed in the broken phase. The latter point prevents the asymmetry
generated in the bubble walls to not be washed out once the broken phase fills up the universe.
With a 125 GeV Higgs the Standard Model potential does not feature a barrier between unbroken
and broken phases at zero temperature, although this barrier could in principle be produced by
temperature dependent contributions to the potential via cubic terms. However, the SM degrees
of freedom are not sufficient to generate a large enough barrier [176] and one needs to add
light degrees of freedom beyond the SM ones to radiatively generate the barrier, heavy degrees of
freedom decouple from the thermal bath and only light states provide a non negligible contribution
to the effective potential. Moreover the Sakharov conditions for successful baryogenesis require
a much larger amount of CP violation than the one present in the SM, one thus expects extra
sources from BSM physics. Supersymmetric extensions of the SM can be responsible for both,
the extra amount of CP violation and a strong enough first order EWPT.

In principle, the MSSM is able to generate a first order EWPT by the introduction of light
stops which can generate large cubic terms at finite temperature. The problem in this case is
that stops are required to be really light (below ∼ 150 GeV [177]) and, unless one goes to very
contrived models, this mass range for stops is excluded by experimental searches. Moreover such
light degrees of freedom modify the Higgs couplings and we would have seen these modifications
by now [178–180]. This problem can actually be generalized to any BSM proposal that tries
to generate a first order EWPT radiatively: new light degrees of freedom below experimental
bounds are commonly required and it often becomes difficult to accommodate a strong enough
first order EWPT with collider searches.

An interesting way out to the MSSM difficulties is to modify the tree level potential and try
to generate a barrier already at T = 0. This can be done by extending the Higgs sector of the
MSSM, for instance by adding a gauge singlet field, the NMSSM [181]. As we previously pointed
out, the NMSSM can run into problems with tadpole generation and/or domain walls [65, 66].
Therefore, it is interesting to consider different extensions of the MSSM such as the SCTM and
study the properties of their electroweak phase transition. The SCTM is able to generate a barrier
between the origin and the EW minimum already at tree level. In this chapter we explore this
fact and analyze the behavior of its EWPT for the purpose of being able to generate successful
EWBG in supersymmetric extensions of the SM.
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Chapter 7. Properties of the EW phase transition

The chapter is organized as follows. In Section 7.1 we study the finite temperature potential
of the model and then show the results for the strength of the phase transition in Section 7.2.
We then study the process of thermal tunneling (Sec. 7.3) and the possible Gravitational Waves
that could be generated as a result of the phase transition (Sec. 7.4). We discuss our results and
their connection to the collider phenomenology of the SCTM in Section 7.5.

7.1 The SCTM phase transition

For this study we take a similar approach to that of the previous chapter: We will parametrize
the possible custodial breaking of the vacuum by allowing for tanβ 6= 1 to deal with it. As
we already argued, the full RGE analysis of Chapter 5 is too rigid as a framework to perform
dedicated studies of non trivial features of the model such as the nature of the electroweak phase
transition (or the DM phenomenology). This approach will capture the main properties of the
custodial breaking without the need to perform a thorough study from a UV complete model.

Scalar potential at zero temperature and the vacuum

We will consider the SU(2)L ⊗ SU(2)R invariant superpotential of Eq. 6.1. As always, the total
potential is given by

Vtree = VF + VD + Vsoft , (7.1)

where the F - and D-terms are defined as usual and the soft terms are

Vsoft = m2
H1
|H1|2 +m2

H2
|H2|2 +m2

Σ1
tr |Σ1|2 +m2

Σ−1
tr |Σ−1|2 +m2

Σ0
tr |Σ0|2

+

{
1

2
m2

3H̄ · H̄ +
1

2
B∆ tr ∆̄2 +AλH̄ · ∆̄H̄ +

1

3
Aλ3 tr ∆̄3 + h.c.

}
. (7.2)

Note that the equation above is the same as that of Chapter 6. The custodial breaking of the
soft masses that explicitly spoils the SU(2)L⊗SU(2)R invariant structure is accounted for in the
minimization process next described.

In order to explore the potential in detail, to the tree level piece one has to add the Coleman-
Weinberg contribution for the one-loop radiative corrections at T = 0, which will depend on
the considered background scalar fields: H0

1 , H
0
2 from the usual MSSM SU(2)L doublets, and

ψ0, φ0, χ0, corresponding to the new triplet sector. We will work for simplicity in the MS renor-
malization scheme for which

∆V T=0
1 (φk) =

∑
i

ni
64π2

m4
i (φk)

(
log

m2
i (φk)

Q2
− Ci

)
, (7.3)

where Ci = 5/6 for gauge bosons and Ci = 3/2 for the rest of states, and ni is the number
of degrees of freedom for each particle (nW = 6, nZ = 3, nt = −12, nt̃1 = 6, nt̃2 = 6, . . . ).

We also write φk ≡ H0
1 , H

0
2 , ψ

0, φ0, χ0 for simplicity. In the MS (as in any mass independent
renormalization scheme) decoupling of heavy particles is not automatically implemented, but has
to be done by hand at a scale of the order of their mass where they are integrated out, eventually
leaving some threshold corrections (the run-and-match procedure) in the low energy effective
theory. The run-and-match procedure guarantees the absence of large logarithms in the effective
potential (for useful examples of this procedure in the MSSM see Refs. [182,183]). On the other
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7.1. The SCTM phase transition

hand the MS renormalization scheme changes the location of the tree-level potential minimum
as well as the value of the (running) Higgs masses. In other words the tree-level potential must
be minimized after inclusion of radiative corrections, as we will do next.

The total background-dependent one-loop zero temperature potential is then

V1(φk) = Vtree(φk) + ∆V T=0
1 (φk) (7.4)

and the EWSB vacuum is derived by solving the five minimization conditions

∂V1(φk)

∂H0
1

∣∣∣∣
φk=vk

=
∂V1(φk)

∂H0
2

∣∣∣∣
φk=vk

=
∂V1(φk)

∂ψ0

∣∣∣∣
φk=vk

=
∂V1(φk)

∂φ0

∣∣∣∣
φk=vk

=
∂V1(φk)

∂χ0

∣∣∣∣
φk=vk

= 0 ,

(7.5)
where we impose the EW vacuum to be at

v1 =
√

2 cosβ vH , v2 =
√

2 sinβ vH and vψ = vχ = vφ ≡ v∆. (7.6)

So that we allow breaking of custodial invariance only in the doublet sector, which, as we know,
is a very good approximation as that breaking is triggered in the running mainly by the top
Yukawa coupling (Figs. 5.2 and 5.8). The Higgs mass is computed numerically from the scalar
mass matrix that is derived from the above potential, and we have checked that it is very well
approximated by the analytical expressions from Refs. [44,184], although the plots are based on
the numerical calculation. Note that we are only including dominant contributions to the Higgs
mass. From Chapters 4 and 5 we know that because we have introduced three extra SU(2)L
triplets, the scalar sector of the model is enhanced with respect to the MSSM by a new set of
states, however, these carry a large triplet component and couple very weakly to the Higgs, thus
making their contributions to the Higgs mass unimportant.

To set the Z mass, we use the relation (4.10) that will fix vH once we choose v∆. Finally, in
order to solve the five minimization conditions we need to fix five parameters. We will choose for
them the soft scalar masses mH1 ,mH2 and mΣ1 ,mΣ−1 ,mΣ0 as we did in the previous chapter.

Finite temperature scalar potential

The finite temperature potential at one-loop is

V1(φk, T ) = Vtree(φk) + ∆V T=0
1 (φk) + ∆V1(φk, T ) + ∆Vdaisy(φk, T ) (7.7)

with the finite temperature part

∆V1(φk, T ) =
T 4

2π2

(∑
i

niJi

[
m2
i (φk)

T 2

])
, (7.8)

where the thermal integrals are 1

J±(y) ≡
∫ ∞

0
dxx2 log

(
1∓ e−

√
x2+y

)
. (7.9)

1These integrals can also be written in terms of an infinite sum of Bessel functions [176]

J±(y) ≡ −
∞∑
n=1

(±1)n

n2
y2K2 (ny) .

By truncating the sum to a large enough order, one can obtain a more calculable situation which still represents a
good approximation to the thermal integrals written above. We will not use any high (low) temperature expansion
in this work since our interesting parameter space does not qualify for any of the two regimes.
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Here Ji = J+(J−) if the ith particle is a boson (fermion). The Daisy piece is given by

∆Vdaisy(φk, T ) = − T

12π

∑
i=bosons

ni
[
M3

i (φk, T )−m(φk)
3
]
, (7.10)

where

M2
i = m2

i (φk) + Πi(φk, T ) . (7.11)

Since the thermal corrections to the (un-resummed) one-loop potential potential automatically
decouple heavy degrees of freedom we will only Daisy resum the longitudinal components of light
gauge bosons WL, ZL and γL just as in the SM [172]. In the one-loop approximation

ΠWT
(φk, T ) = ΠZT (φk, T ) = ΠγT (φk, T ) = 0 ,

ΠWL
(φk, T ) =

11

6
g2T 2

(7.12)

and the SM Debye masses M2
i for ZL, γL are given by

M2
ZL

=
1

2

(
m2
Z(φk) +

11

6

g2

cos2 θW
T 2 + ∆(φk, T )

)
,

M2
γL

=
1

2

(
m2
Z(φk) +

11

6

g2

cos2 θW
T 2 −∆(φk, T )

)
.

(7.13)

Where

∆2(φk, T ) = m4
Z(φk) +

11

3

g2 cos2 2θW
cos2 θW

(
m2
Z(φk) +

11

12

g2

cos2 θW
T 2

)
T 2 . (7.14)

7.2 Strength of the phase transition

We have found that µ and µ∆ are the parameters to which the potential shows more sensitivity for
creating a barrier between the origin and the EW minimum already at T = 0, they are therefore
critical to the study of the phase transition. To simplify the study we will make contour plots
of different quantities on the (µ, µ∆) plane while holding other parameters fixed. To start doing
numerical computations we first choose a set of benchmark values given by

Aλ = Aλ3 = At = 0, λ3 = 0.35,

m3 = 750 GeV, B∆ = −(750 GeV)2,

mQ̃3
= 800 GeV, and mũc3

= 800 GeV.

(7.15)

In the left panel of Fig. 5.9 we plot regions in the (v∆, µ∆) plane, for µ = 750 GeV and
different values of tanβ, where the origin is a false minimum at zero temperature and therefore
there is a barrier separating the origin from the true EW minimum. These regions are then
eligible to generate, at finite temperature, a strong enough EWPT as that exhibited in the right
panel of Fig. 5.9. One can realize from the plot in the left panel of Fig. 5.9 that this region only
appears, and becomes important, when v∆ is non negligible. By means of the needed sizeable
values of v∆, the plot shows how critical is for the appearance of the barrier to have a non
negligible contribution of the triplet sector to EWSB.
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Figure 7.1: Left: For λ = 0.7, µ = 750 GeV, and tanβ = 1 (blue), tanβ = 1.5 (red), regions
in the (v∆, µ∆) plane where the zero temperature tree level potential shows a false minimum at
the origin. Right: For tanβ = 1, v∆ = 20, GeV µ = 650 GeV and µ∆ = 415 GeV sections
of the five-dimensional potential at different temperatures along the direction that joins the false
and true vacuums by a straight line, T = 0 and T = Tc are depicted with dotted and dashed lines
respectively.

For any fixed value of tanβ and points outside the corresponding band the zero temperature
potential does not fulfil our required conditions for having a strong enough EWPT at finite
temperature. In particular for points below the corresponding band the EW vacuum is a false
minimum (or even it does not exist) and thus no transition from the origin to the EW minimum is
possible at any temperature. This is exhibited at a particular point below the band, for the zero
temperature potential along the direction where the slope of the barrier is minimized, in the left
panel of Fig. 7.2 (solid line) where we can see that the EW minimum is not the true minimum. For
points inside the corresponding band the EW minimum is the true minimum and the EWPT can
proceed through a strong enough first order phase transition. The zero temperature potential for
a point inside the band is exhibited in the left panel of Fig. 7.2 (dashed line). Finally for points
above the corresponding band, the origin of the zero temperature potential becomes a saddle
point as shown in the left panel of Fig. 7.2 (dotted line). Therefore in this region the barrier
between the origin and the EWSB minimum can only be generated by thermal corrections, and
the EWPT is too weak (or not even first order) as it happens in the SM or in the MSSM. At each
point the value of the parameter λ is adjusted such that the value of the Higgs mass reproduces
the experimental result mh = 125 GeV. The needed values of λ are provided in the right panel of
Fig. 7.2 where we show, for v∆ = 20 GeV, in the (µ, µ∆) plane contour lines of constant values
of λ inside the bands for tanβ = 1 (blue) and tanβ = 1.5 (red).

Once identified the region in the parameter space where our potential is able to generate a
first order EWPT we will study its temperature dependence. We will search for points where the
phase transition is strong enough as to avoid any washout of the generated baryon asymmetry
due to sphaleron transitions. This condition translates into the following bound for the Standard
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Figure 7.2: Left: Sections of the potential at zero temperature in the direction of minimum slope
for values of µ and µ∆ above (dotted), inside (dashed) and below (solid) the bands where a first
order phase transition is realized. Right: For v∆ = 20 GeV, values of λ that are needed to get
the correct Higgs mass in the (µ, µ∆) plane for tanβ = 1 (blue) and tanβ = 1.5 (red).

Model [185],
v(Tn)

Tn
& 1 (7.16)

where v(Tn) is the VEV of the Higgs field at the nucleation temperature (the temperature at which
bubbles of the true vacuum start to nucleate and expand). We do not expect this bound to be
very different in the present model, since the sphaleron energy is dominated by the contributions
from the gauge field configurations excited in the sphaleron rather than the scalar ones [186].

The condition v(Tc)/Tc . v(Tn)/Tn, where v(Tc) is the Higgs VEV at the critical temperature
(the temperature at which both minima are degenerate) and is defined by

v(Tc) =
√
H0

1 (Tc)2 +H0
2 (Tc)2 + 2ψ0(Tc)2 + 4φ0(Tc)2 + 2χ0(Tc)2 , (7.17)

is generically satisfied, as we will see later on in this paper. Therefore, it is sufficient to consider
the EWPT strong enough when the condition v(Tc) & Tc is fulfilled. In fact, this sufficient
condition is much simpler to analyze than (7.16) as it can (and will) be easily done in the full
five-dimensional Higgs potential.

In Figure 7.3 we present results for the critical temperature (left panel) and the order param-
eter of the phase transition at the critical temperature (right panel) in the (µ, µ∆) plane. Our
results for the EWPT are even stronger than what it is shown in the left and right panels of
Fig. 7.3, since the true order parameter of the EWPT (the order parameter at the nucleation
temperature) will be bigger than the one at the critical temperature, as it was already observed.
We only show points where the strong phase transition is generated by the zero temperature po-
tential exhibiting a false minimum at the origin, the blue (for tanβ = 1) and red (for tanβ = 1.5)
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Figure 7.3: Critical temperature in GeV (left panel) and order parameter of the phase transition
(right panel) in the (µ, µ∆) plane for v∆ = 20 GeV and tanβ = 1 (blue), tanβ = 1.5 (red). In
both plots we have shown the band where there is a barrier between the origin and the global EW
minimum in the zero temperature effective potential for tanβ = 1 (blue) and tanβ = 1.5 (red).
At each point λ is adjusted such that the Higgs mass reproduces the experimentally observed value.

bands. We can see in the right panel of Fig. 7.3 that the strength of the phase transition increases
as we approach the lower boundary of the corresponding band, as we will see in section 7.4, this
region will be favored for the detection of the gravitational waves emitted during the EWPT.

7.3 Thermal tunnelling and nucleation temperature

Once we have computed the strength of the phase transition at the critical temperature, the next
step is to compute the tunneling temperature to make sure that bubble nucleation does happen.
Of course this is ensured if the phase transition is generated radiatively since there is no barrier
at zero temperature and, as the universe cools down, we will always cross a point where the
tunneling probability is O(1). However, in the region we are interested in, this is not guaranteed
as there is a barrier at zero temperature and it could be too strong for the field to tunnel from
the symmetric to the broken phase at any temperature.

The computation of the thermal tunneling in the five-field case presents computational chal-
lenges that are out of the scope of this work, hence, we will use an approximation to strip down
our five field configuration to a one-dimensional field space. We will first consider the following,

H0
1 →

v1(T )

v2(T )
H0

2 and ψ0 → vψ(T )

vφ(T )
φ0, χ0 → vχ(T )

vφ(T )
φ0. (7.18)

For the doublet sector this approximation is expected to be a very good one near the decoupling
limit, where all scalar masses are much heavier than the SM Higgs mass, which is nearby the

127



Chapter 7. Properties of the EW phase transition

spectrum we are considering in this paper 2, for the dependence of tanβ on the temperature is
a mild one [187]. Also, the smallness of v∆ with respect to vH will ensure that the triplet sector
is well approximated by Eq. (7.18). Moreover, as pointed out in Ref. [188], the tunneling path
is the one where the barrier is minimized and any approximation will only overestimate the size
of it. In other words, if one finds that tunneling happens within the approximation, it is certain
that it will also happen in the full five-dimensional field space.

In order to go from the two field configuration (H0
2 , φ

0) to one direction we will further reduce
our field space by considering the smooth direction that joins the origin and the electroweak
minimum passing through the saddle point, as can be seen in Fig. 7.4. We have chosen this
direction by considering an ellipse in the (H0

2 , φ
0) plane,

H0
2 → f(φ0) =

1− a+

√
a2 + (a− 1)2 −

(
φ0

vφ
− a
)2
 v2(T ) (7.19)

where the parameter a is the eccentricity of the ellipse. By tuning a we can get the right path
and ensure that we connect smoothly the origin, the saddle point and the EW minimum at any
temperature.

Figure 7.4: Two dimensional projection of the tree level potential in a point which exhibits a first
order phase transition between the origin and the EW minimum (which for the considered point
is located at v∆ = 20 GeV and vH = 116.35 GeV). The orange plane that intersects the potential
corresponds to the ellipsoidal direction that joins the origin and the EW minimum.

2For a light spectrum our calculation of the approximated nucleation temperature might require strong correc-
tions.
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The tunneling probability per unit time and unit volume from the false (symmetric) to the
real (broken) minimum in a thermal bath is given by [189],

Γ

ν
∼ A(T ) exp [−B(T )], B(T ) ≡ S3(T )

T
(7.20)

where the prefactor is A(T ) ' T 4 and S3 is the three-dimensional effective action. At very high
temperature the bounce solution has O(3) symmetry and the euclidean action is simplified to

S3 = 4π

∫ ∞
0

r2dr

[∑
k

1

2

(
dφk
dr

)2

+ V (φk, T )

]
, (7.21)

where r2 = ~x 2. Using (7.18) and (7.19) we can rewrite it as,

S3 = 4π

∫ ∞
0

r2dr

[
1

2
F (φ0)

(
dφ0

dr

)2

+ V (φ0, T )

]
, (7.22)

where

F (φ0) =

(
1 +

v1(T )2

v2(T )2

)
f ′(φ0) +

(
1 +

vψ(T )2

vφ(T )2
+
vχ(T )2

vφ(T )2

)
. (7.23)

The bounce will be the solution to the euclidean equations of motion which yield the following
equation

F (φ0)

[
d2φ0

dr2
+

2

r

dφ0

dr

]
+

1

2
F ′(φ0)

(
dφ0

dr

)2

= V ′(φ0, T ) , (7.24)

with the boundary conditions

lim
r→∞

φ(r) = 0 and dφ/dr|r=0 = 0. (7.25)

The nucleation temperature Tn is defined as the temperature at which the probability for a bubble
to be nucleated inside a horizon volume is of order one, in our case it turns out to happen when
S3(Tn)/Tn ∼ 135.

In Figure 7.5 we plot the effective action over the temperature for two points of the (µ, µ∆)
plane. These plots show how the nucleation temperature depends on the strength of the phase
transition. If the phase transition is not very strong then there is no large gap between the Tn and
Tc (right plot). When the phase transition is very strong, a supercooling phenomenon happens
and the nucleation temperature is quite smaller than Tc (left plot in the figure). Of course if we
move in the parameter space to points where φ(Tc)/Tc is even larger, we will eventually find a
situation where S3/T never reaches the correct value and bubble nucleation does not happen as
the universe cools down. These points correspond to a thin band that is located at the bottom
of the blue and red bands that we plot in Fig. 7.3.

7.4 Gravitational waves from the phase transition

It is known that a strong enough first order phase transition can generate sizable gravitational
waves (GW’s). Since we are able to generate such a strong phase transition, due to the tree level
nature of the barrier, we analyze in this section the possible spectrum of GW’s. The spectrum
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Figure 7.5: Left: Plot of the effective action over the temperature for µ = 650 GeV, µ∆ = 475
GeV, v∆ = 20 GeV and tanβ = 1. The order parameter at the critical temperature is φ(Tc)/Tc =
1.82 and Tc = 89 GeV. The dashed line corresponds to S3(T )/T ∼ 135 and the crossing point
with the thick blue line happens at the nucleation temperature Tn = 65 GeV. Right: The same for
µ = 650 GeV, µ∆ = 375 GeV, v∆ = 20 GeV and tanβ = 1.5, where φ(Tc)/Tc = 1.65, Tc = 96
GeV and Tn = 79 GeV.

can be characterized by only two parameters: the duration of the phase transition 1/β, which is
given by

β

H
= T

d

dT

(
S3

T

)
, (7.26)

and the latent heat

ε = ∆V (Tn)− Tn
d∆V (T )

dT

∣∣∣
Tn
, (7.27)

where

∆V (T ) = V (0, T )− V (〈φ(T )〉, T ) . (7.28)

The latent heat is usually normalized to the energy density of the radiation in the plasma, through
the dimensionless parameter α,

α =
ε

π2

30 g∗T
4
n

(7.29)

where g∗ is the effective number of degrees of freedom at the temperature Tn.

In Figure 7.6 we show results for the computation of the α (left panel) and β/H (right panel)
parameters along a vertical straight line of the band in Fig. 7.3 which corresponds to a fixed
µ = 650 GeV value. In Figure 7.7 we also show the values of the nucleation temperature (right
panel) and the order parameter at that temperature (left panel). Note that for stronger values
of the phase transition, α gets bigger and β/H smaller. This means that the energy gap between
the false and the true vacuum is big at the nucleation temperature and that the phase transition
happens fast, which is precisely what one needs to get observable gravitational waves.

The above described parameters, which only depend on the finite temperature effective poten-
tial, are the only input coming from the particle physics model. Once we determine these two, we
have to plug them into the cosmological picture. First we will treat the expanding bubbles, and
the fluid they drag with, as if the bubbles where the only existing object. The collisions of these

130



7.4. Gravitational waves from the phase transition

460 470 480 490 500

0.10

0.15

0.20

μΔ (GeV)

α

460 470 480 490 500
0

200

400

600

800

μΔ (GeV)

β
/H

Figure 7.6: Left: Values of the α parameter for v∆ = 20 GeV, µ = 650 GeV and tanβ = 1. The
number of effective degrees of freedom at the time of nucleation is g∗ = 115.75 . Right: Values of
the β/H parameter for the same values of the model parameters.
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Figure 7.7: Left: Values of the order parameter at the nucleation temperature as a function of
µ∆ for v∆ = 20 GeV, µ = 650 GeV and tanβ = 1. Right: Nucleation temperature Tn for the
same values of the parameters.

vacuum bubbles will then generate a GW spectrum [190]. In the second part we will consider
calculations that model the fluid in a more detailed manner, in this case the phase transition
leads to the creation of sound waves which in turn will produce gravitational waves [191]. The
formulas corresponding to each case are detailed in Appendix C.2.

Results for the spectrum of GW’s

As we said in the previous section, when the phase transition is not radiatively generated, there
can be points in the parameter space where the barrier is so large that no nucleation is possible.
It is precisely close to these regions, but still inside the region where the nucleation still happens,
where the characteristics of the phase transition will be optimized for the detection of its GW
spectrum. In particular the parameter β/H, will be minimized close to the region where S3/T
never reaches the value ∼ 135 and β/H ∼ 0. As can be seen in Fig. 7.6, approaching this region
we have found points where β/H ∼ 50 and α ∼ 0.22. A spectrum coming from a point of these
characteristics is shown in Fig. 7.8 and may be probed by eLISA [192, 193] and BBO [194, 195].
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In the case of eLISA, the chances for detecting GWs improve with the design. Design 3, which
features three 5 Gm arms and 5 years of data taking, is the one that could probe both GW’s
coming from bubble collisions, in the envelope approximation, and GW’s coming from sound
waves. We also see that the latter could be detected by eLISA, even with design 1.
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Figure 7.8: Spectrum of the stochastic gravitational wave background coming from bubble col-
lisions (dashed) and sound waves (solid) for a point where α ∼ 0.22 and β/H ∼ 57, which
corresponds to µ = 650 GeV and µ∆ = 455 GeV. The sensitivity curves of the eLISA designs are
displayed in blue; design 1 (dotted), design 2 (dashed) and design 3 (solid).

7.5 Discussion

During this chapter we have explored the nature of the EWPT in the SCTM. We have shown
that, thanks to a tree level effect by which there is a barrier separating the minimum at the
origin and the EWSB minimum, an important part of the parameter space of the model exhibits
a phase transition whose order parameter is strong enough, both for the purpose of EWBG and
for the detection of gravitational waves. We have decided not to focus on the regions where no
barrier is generated at tree level (above the bands in Figs. 7.3 and 7.2), as analyzing the phase
transition in this region would involve the consideration of higher order loop corrections in the
thermal effective potential, which goes beyond the scope of our study.

In Sec. 7.2 we have discussed how the appearance of the barrier is directly linked to a non
negligible contribution of the triplet sector to EWSB (Fig. 7.1). Moreover, as large v∆ is tied to
the presence of light triplet-like states, we can establish a relation between a strong EWPT and
collider searches. One therefore expects these new states to be there in the regions where a barrier
is generated at tree level, however, their detection is challenging due to their triplet like nature.
In Chapter 5, we already studied the consequences for collider phenomenology of a scenario where
EWSB is driven by doublets, but also features some triplet impurities. Modified Higgs coupling
rates (h→ γγ) or some signals such as W±W± or W±Z, which are specific of Higgs sectors with
triplet representations, could act as smoking gun signals of the model and therefore probe the
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nature of the phase transition at high temperature. A dedicated search of the lightest neutral
triplet-like state could also be of great help in constraining this scenario (Chapter 8).

We also have checked that nucleation does happen in most parts of the parameter space where
the order parameter is larger than one. The potential of the model features a five-dimensional
field space due to the introduction of three new triplet chiral superfields, on top of the two usual
MSSM doublets. To simplify the calculation of the nucleation temperature, we have minimized
the euclidean action functional in the multi-field configuration space by using a smooth path
going from the minimum at the origin to the EWSB minimum at finite temperature through
the saddle point. Because of the character of our parameter space we are confident enough that
the approximation works properly up to small corrections. In the last section it is shown how
future interferometers such as eLISA could observe gravitational waves generated during the
phase transition for some parts of the parameter space.
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As it can be seen for instance in the Figures 5.9 and 5.12 of Chapter 5, the SCTM scalar spectrum
features a doublet MSSM-like spectrum that is difficult to probe, it is superheavy and out of the
reach of LHC. However, there is also a set of light triplet-like states which is well within LHC reach
and could thus provide a promising avenue to test the model, moreover, in Fig. 4.4 (Chapter 4)
and Section 5.4 (Chapter 5), it is shown that the mass of the triplet-like states is tied to the value
of v∆. Therefore searching for these scalars is also testing the nature of EWSB and probing the
interesting properties that the SCTM has shown to feature when v∆ is sizable (both in particle
physics and cosmology). It is then of great importance to perform a collider study searching for
these triplet-like states. In particular to search for the SU(2)V custodial fiveplet (H5) 1 that
features a neutral CP -even (H0

5 ), singly (H±5 ), and doubly (H±±5 ) charged components and that,
for reasonable values of v∆, is always going to be in the ballpark of O(150− 400) GeV masses.

As the fiveplet does not couple to quarks (it is fermiophobic), production via gluon fusion
is not available. Furthermore, if the VEV of the fermiophobic Higgs is small (as compared to
the SM-like Higgs doublet VEV), vector boson fusion (VBF) and associated Higgs vector boson
production (VH) quickly become highly suppressed. Since these are the dominant production
mechanisms in the SM, they have been assumed as the production mechanisms in almost all
Higgs-like boson searches regardless of if they are fermiophobic or not. On the other hand since
LHC measurements of the 125 GeV Higgs boson couplings seem to indicate a SM-like Higgs
boson, this implies a small VEV for any additional exotic Higgs boson. As these measurements
increase in precision without observing a deviation from the SM prediction, previous collider
searches for fermiophobic Higgs bosons, which assumed SM-like production mechanisms, become
increasingly obsolete.

However, Drell-Yan (DY) Higgs pair production of the fiveplets is sizable even in the limit
of small exotic Higgs VEV. Furthermore, since there is no bb̄ decay to compete with, custodial
fiveplets can have large branching ratios to vector boson pairs and in particular photons. This can
be combined with DY pair production to place stringent constraints on the fiveplet Higgs bosons
using multiphoton final states. Actually, the W boson mediated H±5 H

0
5 production channel (see

Figure 8.1), followed by H±5 → W±H0
5 and H0

5 → γγ decays, leads to a 4γ + X final state,
which has been proposed as a probe [196, 197] of fermiophobic Higgs bosons at high energy
colliders. However, the H± → W±H0

F decay requires a mass splitting between the charged
and neutral Higgs. In custodial Higgs triplet models such as the SCTM or the GM model, the
neutral and charged Higgs scalars are predicted to be degenerate, thus the CDF 4γ + X search

1Since the collider analysis performed in this chapter can be extended to the non-supersymmetric GM model
(where only one SU(2)V fiveplet is present in the scalar spectrum) we change the notation here and denote the
fiveplet as H5 instead of FS .
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of Ref. [198] cannot be applied to this case 2. We show for the first time that when the W boson
loop dominates the effective couplings to photons, a custodial fiveplet scalar below ∼ 110 GeV
is ruled out by 8 TeV LHC diphoton searches independently of the Higgs triplet VEV’s. Larger
masses possibly up to ∼ 150 GeV can also be ruled out if charged scalar loops produce large
constructive contributions to the effective photon couplings. We also find that diboson searches,
and in particular ZZ searches, may be useful for higher masses allowing us to potentially obtain
limits again for custodial fiveplet masses up to ∼ 250 GeV independently of the Higgs triplet
VEV’s.

8.1 Pair production of H0
5

The main focus of this study will be the pp → W± → H0
5H
±
5 production channel shown in

Fig. 8.1. The relevant vertex for this Drell-Yan pair production reads

VWH5H5 ≡ ig
√

3

2
(p1 − p2)µ , (8.1)

where we can see the coupling does not depend on the triplet VEV’s and therefore DY is not
suppressed even in the case when the triplet VEV’s are small. We show in Figure 8.2 the cross
section (solid blue) as a function of H0

5 for the H0
5H
±
5 channel. We see that it can be ∼ O(100) fb

all the way up to ∼ 200 GeV at 8 TeV (dashed blue curve) while at 13 TeV (solid blue curve) it will
be increased by roughly a factor of ∼ 2. If the fiveplet is instead produced in pair with a custodial
triplet which is 100 GeV heavier (dotted blue) the cross section is considerably reduced. Note
that there are also NLO contributions which may generate ∼ O(1) K-factors for Higgs pair
production [199–201], but we do not explore this issue here as it does not qualitatively affect
the discussion. Our leading order results for the pp → W± → H±5 H

0
5 production cross sections

are obtained from Madgraph [202] using a modified version of the GM model implementation of
Ref. [203], which, since the light triplet-like scalar spectrums of the GM model and the SCTM
are identical, provides a good description of the fiveplet dynamics.

W±
H0

F

H±
N

Figure 8.1: The dominant contribution to custodial fiveplet scalar pair production.

To demonstrate the utility of the DY Higgs pair production mechanism we show for compar-
ison results for VBF single H0

5 production. We see clearly that once the measurements of the

2Throughout this chapter we assume that the SU(2)V custodial ordering holds and the fiveplet is degenerate
in mass. We consider this to be a good approximation since the mass splitting generated in the RGE improved
SCTM between the neutral and singly charged components (which is critical for DY pair production, see Fig. 8.1)
is not going to be larger than ∼ 15 GeV (see Chapter 5, in particular Figs. 5.9 and 5.10). Furthermore, the CDF
search was not able to rule out fermiophobic Higgs masses when mH0 > mH± , which is precisely the situation that
we encounter in realistic SCTM scenarios.
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8.2. Decay of H0
5

pp → H5
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Figure 8.2: Drell-Yan Higgs pair production cross sections for a custodial fiveplet scalar at the
LHC with

√
s = 8 TeV (dashed blue curve) and

√
s = 13 TeV (thick blue solid curve). We also

show the case where the fiveplet is produced along with a custodial triplet (blue dotted) which is
100 GeV more massive (see text for more information).

Higgs boson at 125 GeV constrain sθ � 1 3, the VBF production channel quickly becomes highly
suppressed relative to the DY Higgs pair production. Similar behavior can be seen for the VH
production channels which are typically smaller than the VBF cross sections except at very low
masses [204–206].

To summarize, we see that ∼ O(100) fb cross sections are obtained for the pp→ H0
5H
±
5 Higgs

pair production channel in the mass range 45−250 GeV. Crucially this production mechanism is
independent of the Higgs triplet VEV’s unlike VBF and VH production. As we will see, diphoton
and diboson searches at the 8 TeV are sensitive to ∼ O(100) fb cross section times branching
ratios. Thus if the branching ratios to dibosons are large, searches at the LHC for pairs of photons
or Z and W bosons should be able to probe the fiveplet in this mass range.

8.2 Decay of H0
5

In addition to the WH5H5 vertex of Eq. (8.1), H0
5 will have tree level couplings to WW and

ZZ pairs which are generated during EWSB and which will be proportional to the triplet Higgs
VEV’s. These can be parametrized as

L ⊃ sθ
H0

5

v

(
gZm

2
ZZ

µZµ + 2gWm
2
WW

µ+W−µ

)
, (8.2)

where gZ = 4/
√

3 and gW = −2/
√

3. The ratio λWZ = gZ/gW is fixed by custodial symmetry to
be λWZ = −1/2 while for a custodial singlet such as the Higgs one has λWZ = 1 [207]. At one
loop the couplings in Eq. (8.2) will also generate effective couplings to γγ and Zγ pairs via the W
boson loops shown in Fig. 8.3. We can parametrize these couplings with the effective operators

L ⊃ H0
5

v

(cγγ
4
FµνFµν +

cZγ
2
ZµνFµν

)
, (8.3)

3θ is the angle that mixes the doublet and triplet sectors (see Eq. (4.32)).
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where Vµν = ∂µVν − ∂νVµ. We again define similar ratios,

λV γ = cV γ/gZ , (8.4)

where V = Z, γ and we have implicitly absorbed a factor of sθ into cV γ . There are also contri-
butions to the effective couplings in Eq. (8.3) from the additional charged Higgs bosons which
are necessarily present in the GM model and the SCTM. These contributions can be large or
small depending on the model and parameter choice. They can in principle lead to large enhance-
ments [208] when there is constructive interference with the W boson loop, or suppressions if
there are cancellations between the different contributions [209, 210] leading to small cV γ effec-
tive couplings.

H0
F

W±

W±

V

γ

W±

V

γ

W±

W±

H0
F

H0
F

Z,W±

Z,W∓

Figure 8.3: One loop contributions from W boson loops to the H0
5 → V γ decays (V = Z, γ).

γγ
WW
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Vγ (V = Z,γ)
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Figure 8.4: Branching ratios for H0
5 as a function of its mass.

We show the Branching Ratios of H0
5 in Figure 8.4. To obtain the three and four body decays

we have integrated the analytic expressions for the H0
5 → V γ → 2`γ and H0

5 → V V → 4` fully
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8.3. Bounds on the H0
5

differential decay widths computed and validated in [97,211,212]. For the explicitW loop functions
which contribute to the effective couplings we use the parametrization and implementation found
in [213]. The branching ratios will only depend on the ratios λWZ and λV γ , and in some cases only
on λWZ if the W loop (see Fig. 8.3) dominates the H0

5V γ effective couplings (solid curves). In
this case any sθ dependence in λV γ cancels explicitly. At low masses, below ∼ 100 GeV, the
branching ratio into pairs of photons starts to become significant and quickly dominant below
the W mass, or at higher masses if the couplings to photons are enhanced (dashed lines). We
note that these branching ratios include the γ∗γ contribution which, as shown in Fig. 8.4, can
be sizeable at low masses. At larger masses the three and four body decays involving W and Z
bosons become relevant and eventually completely dominant above the WW and ZZ thresholds.

8.3 Bounds on the H0
5

In Figure 8.5 we show the pp → W± → H±5 H
0
5 production cross section times branching ratio

for a custodial fiveplet decay into photon (blue), WW (brown), and ZZ (red) pairs at 8 TeV
(top) and 13 TeV (bottom). We also show the limits (dashed lines) coming from ATLAS diphoton
searches at 8 TeV [214] (blue) as well as CMS 7+8 TeV searches [215] for decays to WW (brown)
and ZZ (red). To estimate the limits at 13 TeV we have simply rescaled the 8 TeV limits by
a factor of 2 which is roughly the increase in Higgs pair production cross section. Our leading
order results for the pp → W± → H±5 H

0
5 production cross sections are calculated using the

Madgraph/GM model implementation from [202, 203]. The branching ratios are obtained from
the partial widths into γγ, V ∗γ (V = Z, γ),WW , and ZZ which are computed for the mass range
45− 250 GeV.

We focus on the regime where the effective couplings of the fiveplet to γγ and Zγ are dom-
inated by the W loop contribution shown in Fig. 8.3. The effects of the charged scalar sector
could in principle be large leading to enhanced or suppressed effective couplings to photons. As
discussed above, this can affect the upper limit of masses which can be ruled out and could in
principle allow for masses up to the WW threshold to be ruled out by diphoton searches. Since
these effects are more model dependent we do not consider them here.

We see in the top of Fig. 8.5 that by exploiting the H0
5H
±
5 Higgs pair production mechanism,

custodial fiveplet scalars with masses ∼ 107 GeV can be ruled out by 8 TeV diphoton searches,
independently of the Higgs triplet VEV’s. These are the first such limits on custodial fiveplet
scalars and in particular, since the charged and neutral components are degenerate, limits from
Tevatron 4γ+X searches do not apply. This is because for cases like the custodial fiveplet where
the masses are degenerate, the H±5 → H0

5W
± decay is not available. In this case the one loop

H±5 → W±γ decay can become dominant leading instead to a 3γ + W signal. Examining this
decay as well should improve the sensitivity relative to LHC diphoton searches, but we do not
explore that here.

To emphasize the utility of the DY pair production mechanism, we also show in the top of
Fig. 8.5 the cross section times branching ratio assuming the VBF production (gray shaded region)
mechanism at 8 TeV. We have fixed sθ = 0.4 for the doublet-triplet VEV mixing angle. The value
sθ = 0.4 is towards the upper limit of values still allowed by electroweak precision and 125 GeV
Higgs data (sθ = 0.4 corresponds roughly to v∆ ∼ 25 GeV), but we can see in Fig. 8.5 this
already renders diphoton searches for custodial fiveplet scalars based on VBF (and similarly for
VH) production irrelevant.
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Figure 8.5: Top: Drell-Yan H0
5H
±
5 production cross sections times branching ratio at 8 TeV

(solid curves) into γγ (blue), ZZ (red), and WW (brown) for the fermiophobic fiveplet found in
custodial Higgs triplet models. The 95% exclusion limits (dashed curves) from diphoton 8 TeV
ATLAS [214] and 7+8 TeV CMS WW and ZZ searches [215] are also shown for each channel. In
the gray shaded region we show for comparison the sθ = 0.4 contour for single H0

5 VBF production
(see text). Bottom: Similar to top, but for 13 TeV. For the 13 TeV limits we have simply rescaled
8 TeV limits by a factor of 2.
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8.4. Discussion

We also emphasize that ruling out a custodial fiveplet below ∼ 110 GeV independently of the
VEV allows us to unambiguously close the fiveplet ‘window’ at masses below ∼ 100 GeV [216]
which is still allowed by electroweak precisions data [100] and essentially unconstrained by other
LEP, Tevatron, and LHC direct searches. Thus we are able to rule out an interesting region of
parameter space of custodial Higgs triplet models which would otherwise be difficult to constrain
directly. We estimate in the bottom of Fig. 8.5 that 13 TeV diphoton searches will be sensitive to
scalar masses up to ∼ 125 GeV in the regime of dominant W boson loop, though NLO Higgs pair
production effects [201] may allow this to be extended further. The diphoton search discussed
here may of course be useful for other scalars which are found in custodial Higgs triplet models,
but we do not explore this here.

Finally, we also see in Fig. 8.5 that WW and ZZ searches may be useful for probing custodial
fiveplet scalars independently of the Higgs triplet VEV’s as well. Though 8 TeV searches are not
quite sensitive, larger Higgs pair production cross sections at 13 TeV (see Figure 8.1) should allow
for fiveplet masses well above diphoton limits to be probed and possibly as high as ∼ 250 GeV. In
particular, as we can see in the bottom of Fig. 8.5, the ZZ channel should become sensitive with
early 13 TeV data for masses around the ZZ threshold. These also serves as a useful compliment
to W+W+ searches for the doubly charged component of the custodial fiveplet [217].

8.4 Discussion

As a way of probing the model, in this chapter we examined the collider properties of the SCTM
scalar fiveplet. By using the Drell Yan pair production mechanism that opens up for representa-
tions larger than the doublet, we where able to derive bounds on the mass of the fiveplet. As v∆

scales with the masses of the triplet-like states, these lower bounds on the fiveplet mass can be
translated to upper bounds on v∆ which will give us valuable information about features of the
SCTM difficult to probe otherwise (see Chapters 6 and 7).

Let us emphasize that this study is valid both for the SCTM and the GM model. In particular,
this is the first time that a custodial fiveplet scalar below ∼ 110 GeV is ruled out by 8 TeV dipho-
ton searches and possibly up to higher masses if charged scalar loops produce large constructive
contributions to the effective photon couplings. Since these limits are largely independent of the
Higgs triplet VEV’s, they robustly close the ‘fiveplet window’ at masses below ∼ 110 GeV still
allowed by electroweak precision and 125 GeV Higgs boson data. We also find that 13 TeV dibo-
son searches, and in particular ZZ searches, may be useful for larger fiveplet masses, allowing us
to potentially obtain limits up to ∼ 250 GeV, also independently of the VEV. Note that above
∼ 200 GeV, these limits can become really interesting as they will start to probe the realistic re-
alizations of the SCTM that we introduced in Chapter 5 and put upper bounds on triplet VEV’s
below v∆ ∼ 25 GeV.

Along with direct searches, precision studies of the Higgs are important to test the value of v∆.
Loop induced couplings like hγγ can get severely modified in the presence of light charged states.
Since the fiveplet has charged and doubly charged components, it will also reveal its presence in
deviations from rhγγ = 1 (the ratio of the coupling with respect to the SM value). For instance,
for v∆ ∼ 20 GeV we have mH5 ∼ 250 GeV and then rhγγ ∼ 1.2 (see Figures 5.9 and 5.10,
and Table 5.3) which, translated to signal strengths for different production mechanisms, can be
close to the precision available at LHC. This deviation gets softened for smaller triplet VEV’s,
in particular for v∆ ∼ 10 GeV, mH5 ∼ 500 GeV and rhγγ ∼ 1.05 (Fig. 5.12).
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Final remarks





The way in which progress in theoretical physics is carried out is twofold:

• Sometimes theory needs to adapt to new experimental results which cannot be explained
by current theories. For instance, the formulation of quantum mechanics was triggered by
experiments at the beggining of the XXth century who disagreed with the predictions of
classical mechanics.

• The opposite is also possible, reductionism and the search for theoretical consistency can
often lead to the construction of mathematical frameworks that are then vindicated by
experiment. General relativity was formulated by Einstein in a single paper appeared in
1915, it follows from seeking to incorporate gravity to his 1905 special theory of relativity.
Since 1915, GR has been able to pass a number experimental tests with tremendous success,
the most recent just this year, the direct discovery of gravitational waves [218].

I think that the work presented in this thesis is a an example of the former approach. The 2012
discovery of the Higgs boson not only represents the experimental closure of the Standard Model
but also the first direct probe of the mechanism by which the electroweak symmetry is broken
and, since EWSB is universal, a new window to physics beyond the SM. It is therefore mandatory
to use it as a tool to put to test the plethora of BSM proposals that have been appearing steadily
for decades now. This is what we did with supersymmetry and in particular with the MSSM in
Chapter 3. By using a run and match procedure we analyzed the consequences of a 125 GeV
Higgs for minimal versions of supersymmetry. From this analysis we concluded that it is difficult
to construct natural versions of SUSY using only the minimal picture and tried to solve this by
giving up on minimality.

It is not the intention of these final remarks to be a thorough summary of the thesis, we refer
the reader to the discussion section of each of the chapters for details. However, let us list a few
generalities of the SCTM that we consider worth mentioning.

In Chapters 4 and 5 we introduced the SCTM. The main goal of the SCTM is to fit the
observed Higgs mass in a more natural way without having to rely on large radiative corrections
(e.g. superheavy stops). In addition we found many interesting features that alleviate some of the
shortcomings of the MSSM when applied to cosmology (Chapters 6 and 7), or when embedded
in a SUSY breaking mechanism such as gauge mediation (Section 5.3 of Chapter 5).

The SCTM is very non minimal, three extra SU(2)L triplet χSF’s translate into a lot of new
DOF’s to cope with. However, beyond the singlet, it is the most minimal extension of the MSSM
that can feature the custodial pattern (1.22) when breaking the EW symmetry [207]. Because of
this pattern, after EWSB the mass eigenstates get ordered under the SU(2)V remnant symmetry
of the vacuum (Chap. 4). We consider this to be one of the most appealing features of the model,
it allows to keep track of the plethora of new states that are introduced and most importantly,
it holds to very good degree after quantum corrections (in the form of RGE’s) are introduced
and consistently considered. The latter point is one of the strengths of the SCTM with respect
to its non-supersymmetric counterpart. Besides worsening the hierarchy problem of the SM by
introducing new scalar masses, the GM model shows no theoretical consistency when carefully
analyzed (see Sec. 4.1); this is due to the custodial breaking that loop corrections introduce in
the theory and for which it lacks a reasonable explanation. In Chapter 5 we showed how these
problems are overcome in the supersymmetric picture and demonstrated that realistic scenarios
of the SCTM where the custodial breaking is taken into account can be easily derived.
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During the course of our studies one thing became evident, besides the Higgs, sizable values
of v∆ are tied to the presence of light states in the spectrum of the model, in particular to
triplet-like states which couple very weakly. Since a sizable value of v∆ is responsible for a lot
of the interesting features of the model, collider searches for these states can act as a probe.
This is why we performed a detailed collider analysis to constrain these new states in Chapter 8.
Although with 8 TeV data one is not able to derive sufficiently large upper bounds on the mass
of these states, at 13 TeV LHC could start to probe larger masses that would translate into
meaningful upper bounds on v∆, thus constraining the SCTM at a broader level than just its
collider phenomenology. It is also worth mentioning that this collider study generated very
interesting results that apply to more general situations than just the SCTM (or GM model) (see
the original Ref. [9]). This is proof that sometimes studying non minimal situations presents non
standard challenges which can lead to insights in directions that are not always expected.

In addition, for the SCTM the interplay between direct searches and precision measurements
of the Higgs properties, in particular of loop induced couplings such as hγγ, is of great importance.
Some of the light triplet-like states mentioned above are charged and can modify loop induced
couplings in a non negligible manner (see Chapters 4 and 5), for which LHC13 or next generation
colliders could be sensitive.

Let us end these remarks by mentioning that although the SCTM does fit the Higgs mass in
a more natural way, it does not solve the problem of not finding the superpartners responsible
for canceling dangerous loop corrections to the Higgs mass. Because this model softens the Higgs
sensitivity to UV physics in the same way as the MSSM, the final test to its naturalness will be
given by the bounds on stops and gluinos. Just as for the MSSM, the more severe these bounds
are, the more pressing is the need for an explanation of the hierarchy between QEW and QExp.
At some point, the bounds can get to a point where both minimality and naturalness are lost
and less baroque realizations of SUSY will be favored. It is in the hands of LHC13-14 and next
generation colliders to tell us whether our strategy of continuing to work on non minimal model
building is right, or wrong (Fig. 2).
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A
Tree level SCTM

A.1 The SCTM and the custodial SU(2)V

In this appendix we present the transformation properties of the doublets (bidoublets) and triplets
(bitriplets) under SU(2)L ⊗ SU(2)R and discuss how the SU(2)V custodial symmetry of the
vacuum protects the ρ parameter. We also comment on fine-tuning considerations about the
determination of the custodial vacuum at tree level.

SU(N) groups

Let us start by making a summary of the few properties of SU(N) groups that are relevant to
this work.

Any representation n of an SU(N) group is specified by a set of generators that obey,

[T an , T
b
n] = ifabcT cn . (A.1)

We can build the complex conjugate n̄ of that representation by taking

T an̄ = T̄ a = −(T an)∗ = −(T an)t , (A.2)

where we used the fact that the matrices associated to these generators are hermitian. When
defining a finite SU(N) transformation we have to take into account whether we are acting on a
multiplet with components ξb, or in his complex conjugate (ξ̄b):

Uξ = (exp {iθcTc})ab ξb , (A.3)

Ū ξ̄ = (exp {iθcT̄c})ab ξ̄b . (A.4)

Note that by changing the representation from n to n̄ we also raise the group index of the
multiplet, this is important as, for instance, the scalar (dot) product of SU(2) changes sign when
raising and lowering indices, εij = −εij . We can make the Ū transformation act on the right by
transposing the whole thing,

[Ū ξ̄]T = [(exp {iθcT̄c})abξ̄b]T = ξ̄b(exp {iθcT̄c})ba = ξ̄TU† , (A.5)

and thus recover the way of writing transformations under SU(2)R that is generally used in the
literature of custodial triplet models.
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Appendix A. Tree level SCTM

SU(2)L ⊗ SU(2)R representations

A finite SU(2)L ⊗ SU(2)R transformation acting on the Higgs bidoublet (2L, 2̄R),

H̄ → UL ⊗ ŪR H̄ , (A.6)

leads to the usual transformation

H̄T → ULH̄TU†R . (A.7)

In detail, (
H0

1 H−1
H+

2 H0
2

)
→ exp {iθaLσa/2}

(
H0

1 H−1
H+

2 H0
2

)
exp {−iθaRσa/2} , (A.8)

where UL will act on the rows of the matrix and UR on the columns. σa are the pauli matrices
and θL,R the parameters of the transformation.

For this multiplet to break SU(2)L ⊗ SU(2)R to SU(2)V the relation 〈H̄T 〉 = UL〈H̄T 〉 U†R
needs to hold. In matrix form, this relation is written as(

v1 0
0 v2

)
= exp {iθaLσa/2}

(
v1 0
0 v2

)
exp {−iθaRσa/2} . (A.9)

If we make θL = θR and v1 = v2 ≡ vH the vacuum leaves unbroken the vectorial subgroup
SU(2)L+R ≡ SU(2)V , i.e. the custodial symmetry.

Let us now do the same with the bitriplet (3L, 3̄R). If we use the vector representation,
∆̄T = (Σ−1,Σ0,Σ1), an SU(2)L ⊗ SU(2)R transformation reads

∆̄T → UL∆̄TU†R , (A.10)

which in matrix form χ0 φ+ ψ++

χ− φ0 ψ+

χ−− φ− ψ0

→ exp {iθaLta}

 χ0 φ+ ψ++

χ− φ0 ψ+

χ−− φ− ψ0

 exp {−iθaRta} . (A.11)

ta are the generators of SU(2) in 3 dimensions 1. The custodial condition for EW breaking in
the case of triplets is

〈∆̄T 〉 = UL〈∆̄T 〉 U†R , (A.13)

in detail vχ 0 0
0 vφ 0
0 0 vψ

 = exp {iθaLta}

vχ 0 0
0 vφ 0
0 0 vψ

 exp {−iθaRta} . (A.14)

This relation is preserved (the unbroken subgroup is the vectorial one) if vχ = vψ = vφ ≡ v∆ and
θL = θR.

1

ta = {t1, t2, t3} =

 1√
2

0 1 0
1 0 1
0 1 0

 ,
1√
2

0 −i 0
i 0 −i
0 i 0

 ,

1 0 0
0 0 0
0 0 −1

 . (A.12)
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As it more useful in order to work along doublet representations, we can consider the 2
dimensional basis for triplets which uses the pauli matrices to contract the DOF’s, Σ2×2 = ξaσ

a.
An SU(2) transformation in this basis has the following form

ξaσ
a → U (ξaσ

a)U † , (A.15)

ξ̄aσ̄a → Ū (ξ̄aσ̄a) Ū
† . (A.16)

Similarly to (A.5), using T an̄ = −(T an)T we can see that ŪT = U † and (Ū †)T = U , so by taking
the transpose of the expressions above we can go from one to another 2. In this basis the SU(2)L
triplets and the bitriplet (3L, 3̄R) of the model are defined in Eqs. (4.4) and (4.5), also, an
SU(2)L ⊗ SU(2)R transformation acting on the bitriplet reads

∆̄2×2 → ŪR ⊗ UL ∆̄2×2 U
†
L ⊗ Ū

†
R , (A.17)

where UL = exp {iθaLσa/2} and ŪR = exp {iθaRσ̄a/2}. The condition to get an SU(2)V invariant
vacuum,

〈∆̄〉 = ŪR

(
−UL 1√

2
〈Σ0〉U †L −UL〈Σ−1〉U †L

−UL〈Σ1〉U †L UL
1√
2
〈Σ0〉U †L

)
Ū †R , (A.18)

is only preserved when vχ = vψ = vφ ≡ v∆ and θL = θR, just as it happens with the vectorial
ordering of DOF’s. Note that we have dropped the 2 × 2 subindex on ∆̄ and Σi as this basis is
the one which will be most used in this work, otherwise, we consider that context will allow the
reader to distinguish between both bases.

From what is presented above, one would naively consider that the triplet is a complex
representation of SU(2) since none of the two bases seem to be real, however, the triplet is the
adjoint of SU(2) and there should be a basis where its nature as a real representation is manifest.
The real basis for the adjoint representation of any SU(N) group is given by (T aA)bc = −ifabc.

ρ parameter at tree level

We now compute the tree-level contributions to the ρ parameter coming from the triplet sector.
The triplet contribution to the W± and Z masses is derived from the kinetic term,

1

2
trSU(2)R,SU(2)L [(Dµ∆̄)†(Dµ∆̄)] , (A.19)

which is the same thing as writing,

1

2
trSU(2)L [(DµΣ−1)†(DµΣ−1)] +

1

2
trSU(2)L [(DµΣ0)†(DµΣ0)] +

1

2
trSU(2)L [(DµΣ1)†(DµΣ1)] .

(A.20)
The covariant derivatives in the spin-1 vector representation of the triplet and bitriplet

DµΣY = ∂µΣY − ig taW a
µΣY − ig′BµY ΣY , (A.21)

Dµ∆̄ = ∂µ∆̄ + ig taW
a
µ ∆̄− ig′ t3Bµ∆̄ . (A.22)

2In the triplet case, we use the notation U and U to differentiate between transformations acting on 2 × 2
matrices or vectors, U = exp {iθaσa/2} and U = exp {iθata} respectively. Note that for doublets U = U .
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Appendix A. Tree level SCTM

Note that the definition of the covariant derivative for ∆̄ is different since we identify Y = T3R =
−t3. In the 2× 2 basis the covariant derivatives read

DµΣY = ∂µΣY − ig
[
σa

2
,W a

µ

]
ΣY − ig′BµY ΣY , (A.23)

Dµ∆̄ = ∂µ∆̄ + ig

[
σa

2
,W a

µ

]
∆̄− ig′

[
σ3

2
, Bµ

]
∆̄ . (A.24)

Where the identification is now Y = T3R = −σ3/2.

The final result does not depend on the basis and the contributions to the W± and Z masses
coming from ∆̄ are given by

1

2
trSU(2)R,SU(2)L [(Dµ∆̄)†(Dµ∆̄)] ⊃ g2

(
v2
χW

+
µ W

µ− +
v2
χ

cos2 θW
ZµZ

µ + v2
φW

+
µ W

µ−

+ v2
φW

−
µ W

µ+ + v2
ψW

−
µ W

µ+ +
v2
ψ

cos2 θW
ZµZ

µ

)
, (A.25)

which together with the usual contributions coming from the doublets allow us to the compute
deviation from ρ = 1 that is generated by the triplet sector

ρ− 1 ≡ ∆ρ =
2(2v2

φ − v2
ψ − v2

χ)

v2
1 + v2

2 + 4(v2
χ + v2

ψ)
. (A.26)

From above we see that, if v1 = v2 and vφ = vψ = vχ (which corresponds to the custodial SU(2)V
invariant vacuum), then ∆ρ = 0. However, unlike in the GM model, custodial symmetry is no
longer a necessary (although certainly sufficient) condition for ρ = 1 at tree level. ∆ρ = 0 is also
satisfied along the more general non-custodial direction

2v2
φ = v2

ψ + v2
χ . (A.27)

This ‘extra direction’ for the VEV’s is a consequence of supersymmetry, where the Y = 1 and
Y = −1 triplets are separate fields with distinct VEV’s. in contrast to the GM model where they
make up one complex field with hypercharge Y = 1. As we explain in Chapter 5, this additional
direction allows us to have the scale M at which the SU(2)L ⊗ SU(2)R symmetry is imposed to
be much higher than the electroweak scale.

The custodial vacuum at tree level

A five dimensional neutral scalar potential such as the one that the SCTM features is certainly
a difficult function to scan for possible minima. Therefore, it is reasonable to ask if, beyond the
custodial minimum, there are extra minima to which we could tunnel from the custodial one.
Basically, how likely is the custodial minimum? If indeed the SCTM is realized in nature, is a
fine-tuning required to break the EW symmetry by means of a custodial vacuum or does it come
from the structure of the potential? Or in other words, is ρ = 1 an automatic prediction and
therefore a consequence of the model? Since one of the main motivations to build the SCTM
was to solve fine-tuning problems of the MSSM, it is important to study the potential and see if
indeed, ρ = 1 is a consequence of the structure of the model or a tuning imposed by hand.
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A.1. The SCTM and the custodial SU(2)V

For the sake of clarity, let us review the approaches to this matter in the non supersymmetric
GM model where the literature is extense and, at tree level, the situation is very similar to the
SCTM. In the original paper by Georgi and Machacek, Ref. [67], an SU(2) symmetry of the
vacuum was first proposed as a way of keeping ρ = 1 at tree level in the presence of SU(2)L
triplets. In that paper, Georgi and Machacek did not claim that small ρ was a consequence
of their model but rather that it could be tuned so. However, the original GM paper is very
brief and the structure of the potential which could generate EWSB and give rise to the SU(2)
invariant vacuum is not discussed. Of course, without a precise knowledge of the potential, any
comments about the determination of the vacuum are meaningless and one cannot consider the
SU(2) symmetry as something arising from the structure of the theory. However this point is
clarified by Golden and Chanowitz in Ref. [68], one of the first papers where the GM model is
discussed in depth. They propose an SU(2)L ⊗ SU(2)R invariant potential for which the only
possible vacuum is the SU(2)V invariant one. If the potential is given and it is such that only a
custodially preserving VEV configuration solves the EOM’s, we can consider that ρ = 1 at tree
level is an automatic consequence of the structure of the model and no fine-tuning is needed to
set it small.

At tree level, the SCTM features a scalar potential that is SU(2)L ⊗ SU(2)R invariant (see
Appendix A.2). The criticality conditions of this potential are five (one for each scalar field
subject to get a VEV, 2 coming from the doublets v1,2 and 3 from the triplets vψ, vφ, vχ).
Given the SU(2)L ⊗ SU(2)R invariant structure of the potential only two solutions are found:
(i), the custodial one (v1 = v2 ≡ vH and vψ = vφ = vχ ≡ v∆) where the 5 criticality conditions
degenerate into only 2 (see Eq. (4.12)), and (ii), a more general one (v1 = v2 ≡ vH , vψ = vχ ≡ v∆

and vφ) where the 5 conditions degenerate into 3. Upon close numerical inspection of (ii) we
find that there is always a custodial minimum that goes along and that, for most parts of the
parameter space, the configuration (ii) is a saddle point rather than a minimum of the potential.
However, beyond this subtlety the important point is the following: No other VEV configurations
are subject to solve the 5 criticality conditions if the parameters of the potential are such that
the SU(2)L⊗SU(2)R invariance is maintained, moreover, (i) and (ii) are the only configurations
which make the D-term part of the potential vanish, thus minimizing the energy. This behavior
is similar to the simpler case of the MSSM where the conditions of SU(2)L⊗SU(2)R invariance,
i.e. m1 = m2, lead to the minimum condition tanβ = 1, i.e. v1 = v2. Therefore we conclude
that, in the SCTM, the SU(2)V custodial invariance of the vacuum is an automatic consequence
of the structure of our model and ρ = 1 at tree level is a prediction.

This discussion applies to the tree level case of the SCTM presented in Chapter 4. In the RGE
improved scenario of Chapter 5, the vacuum which provides ρ = 1 is not exactly the custodial
one but rather the direction (A.27) for which the fine-tuning discussion is more subtle (see ‘ρ
parameter vs. custodially breaking vacuum’ in Section 5.2).
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Appendix A. Tree level SCTM

A.2 Full SU(2)V invariant scalar potential

The superpotential of Eq. (6.1) in component fields is given by

W0 = λ

{
H0

1φ
0H0

2 +H0
2χ

0H0
2 +H0

1ψ
0H0

1 +H−1 φ
0H+

2 −H+
2 χ
−−H+

2 −H−1 ψ++H−1

+
√

2(H−1 H
0
2φ

+ +H+
2 H

0
2χ
− −H−1 H0

1ψ
+ −H+

2 H
0
1φ
−)

}
+ λ3{−φ0χ0ψ0 + ψ++φ0χ−− + φ+ψ0χ− + φ−χ0ψ+ − φ+χ−−ψ+ − φ−ψ++χ−}

+ µ∆

{
1

2
φ0φ0 + ψ0χ0 + φ+φ− + ψ+χ− + ψ++χ−−

}
+ µ{H−1 H+

2 −H0
1H

0
2} , (A.28)

and correspondingly the F-term potential

VF =
∣∣∣λ(φ0H0

2 + 2H0
1ψ

0 −
√

2H−1 ψ
+ −
√

2H+
2 φ
−
)
− µH0

2

∣∣∣2
+
∣∣∣λ(φ0H0

1 + 2H0
2χ

0 +
√

2H−1 φ
+ +
√

2H+
2 χ
−
)
− µH0

1

∣∣∣2
+
∣∣λ(H0

1H
0
2 +H−1 H

+
2 )− λ3(χ0ψ0 − ψ++χ−−) + µ∆φ

0
∣∣2

+
∣∣λH0

1H
0
1 − λ3(φ0χ0 − φ+χ−) + µ∆χ

0
∣∣2 +

∣∣λH0
2H

0
2 − λ3(φ0ψ0 − φ−ψ+) + µ∆ψ

0
∣∣2 (A.29)

+
∣∣∣λ(φ0H+

2 − 2ψ++H−1 +
√

2H0
2φ

+ −
√

2H0
1ψ

+) + µH+
2

∣∣∣2
+
∣∣∣λ(φ0H−1 − 2χ−−H+

2 +
√

2H0
2χ
− −
√

2H0
1φ
−) + µH−1

∣∣∣2
+
∣∣∣√2λH−1 H

0
2 + λ3(ψ0χ− − χ−−ψ+) + µ∆φ

−
∣∣∣2 +

∣∣∣−√2λH0
1H

+
2 + λ3(χ0ψ+ − ψ++χ−) + µ∆φ

+
∣∣∣2

+
∣∣∣−√2λH−1 H

0
1 + λ3(φ−χ0 − φ+χ−−) + µ∆χ

−
∣∣∣2 +

∣∣∣√2λH0
2H

+
2 + λ3(φ+ψ0 − φ−ψ++) + µ∆ψ

+
∣∣∣2

+
∣∣−λH−1 H−1 + λ3(φ0χ−− − φ−χ−) + µ∆χ

−−∣∣2 +
∣∣−λH+

2 H
+
2 + λ3(φ0ψ++ − φ+ψ+) + µ∆ψ

++
∣∣2 .

The D-terms are

D1 − iD2 = −g
{
H0∗

1 H−1 +H+∗
2 H0

2

+
√

2
[
φ0∗φ− − φ0φ+∗ + ψ+∗ψ0 − ψ+ψ++∗ + χ−∗χ−− − χ−χ0∗]}

D1 + iD2 = (D1 − iD2)∗

D3 = −g
2

{
|H0

1 |2 − |H0
2 |2 − |H+

2 |2 − |H−1 |2

+ 2
[
|χ0|2 − |ψ0|2 + |φ+|2 − |φ−|2 + |ψ++|2 − |χ−−|2

]}
DY = −g

′

2

{
|H0

2 |2 − |H0
1 |2 + |H+

2 |2 − |H−1 |2

+ 2
[
|ψ0|2 − |χ0|2 + |ψ++|2 + |ψ+|2 − |χ−−|2 − |χ−|2

]}
, (A.30)
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hence VD,

VD =
g2

8

{
|H0

1 |2 − |H0
2 |2 + |H+

2 |2 − |H−1 |2 + 2|χ0|2 − 2|ψ0|2

+ 2|φ+|2 − 2|φ−|2 + 2|ψ++|2 − 2|χ−−|2
}2

+
g2

2

∣∣H0
1H
−∗
1 +H0 ∗

2 H+
2

+
√

2
[
φ0φ−∗ − φ0φ+ + ψ+ψ0∗ − ψ+∗ψ++ + χ−χ−−∗ − χ−∗χ0

]∣∣∣2
+
g′2

8

{
|H0

2 |2 − |H0
1 |2 + |H+

2 |2 − |H−1 |2 + 2|ψ0|2 − 2|χ0|2

+ 2|ψ+|2 − 2|χ−|2 + 2|ψ++|2 − 2|χ−−|2
}2

. (A.31)

Finally, the soft breaking potential (7.2) can be written as

Vsoft = m2
H

(
|H0

1 |2 + |H0
2 |2 + |H−1 |2 + |H+

2 |2
)

+m2
∆

(
|φ0|2 + |φ−|2 + |φ+|2 + |ψ0|2 + |ψ+|2 + |ψ++|2 + |χ0|2 + |χ−|2 + |χ−−|2

)
+

{
m2

3(H−1 H
+
2 −H0

1H
0
2 ) +B∆(φ0φ0/2 + ψ0χ0 + φ+φ− + ψ+χ− + ψ++χ−−)

+Aλ3

(
−φ0χ0ψ0 + φ0ψ++χ−− + φ+ψ0χ− + φ−χ0ψ+ − φ+χ−−ψ+ − φ−ψ++χ−

)
+Aλ

(
H0

1φ
0H0

2 +H0
2χ

0H0
2 +H0

1ψ
0H0

1 +H−1 φ
0H+

2 −H+
2 χ
−−H+

2 −H−1 ψ++H−1

+
√

2
[
H−1 φ

+H0
2 −H0

1φ
−H+

2 +H0
2χ
−H+

2 −H−1 ψ+H0
1

])
+ h.c.

}
. (A.32)

By taking the neutral and real part of this potential, we get the five minimization conditions that
degenerate into two for a custodial configuration of the VEV’s, Eq. (4.12).
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A.3 gHV V couplings

These are the relevant couplings used to study the restoration of unitarity in the SCTM (Chap. 4)
and the collider properties of FS (Chap. 8) 3:

gF++
S W−W− = gF−−S W+W+ = −

√
2gmW sin θ

gS1W+W− = gmW

(
cos θ cosαS −

2
√

6

3
sin θ sinαS

)

gS2W+W− = gmW

(
cos θ sinαS +

2
√

6

3
sin θ cosαS

)

gF 0
SW

+W− = −gmW sin θ√
3

gS1ZZ =
gmW

cos2 θW

(
cos θ cosαS −

2
√

6

3
sin θ sinαS

)

gS2ZZ =
gmW

cos2 θW

(
cos θ sinαS +

2
√

6

3
sin θ cosαS

)

gF 0
SZZ

=
2gmW sin θ√

3 cos2 θW

gF−S W+Z = gF+
S W

−Z = −gmW sin θ

cos θW
gG−W+Z = gG+W−Z = −gmW sin θW tan θW (A.33)

3We are missing intentionally a global factor iηµν .
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B
Loop level SCTM

B.1 Renormalization group equations

In this appendix we present the complete set of one loop renormalizaton group equations of the
SCTM used in Chapter 5. Wity dx/dt = (1/16π2)βx we first write tye beta functions for the
gauge coupling constants 1

βg1 =
102

10
g3

1, βg2 = 7g3
2, βg3 = −3g3

3. (B.1)

Yukawa couplings

βyt = yt

(
6y2
t + y2

b + 6λ2
b + 3λ2

c −
16

3
g2

3 − 3g2 − 13

9
g′ 2
)

(B.2)

βyb = yb

(
6y2
b + y2

t + 6λ2
a + 3λ2

c −
16

3
g2

3 − 3g2 − 7

9
g′ 2
)

(B.3)

βλa = λa
(
6λ2

c + 14λ2
a + 6y2

b + 2λ2
3 − 7g2 − 3g′ 2

)
(B.4)

βλb = λb
(
6λ2

c + 14λ2
b + 6y2

t + 2λ2
3 − 7g2 − 3g′ 2

)
(B.5)

βλc = λc
(
8λ2

c + 6λ2
a + 6λ2

b + 3y2
t + 3y2

b + 2λ2
3 − 7g2 − g′ 2

)
(B.6)

βλ3 = λ3

(
6λ2

3 + 2λ2
a + 2λ2

b + 2λ2
c − 12g2 − 4g′ 2

)
(B.7)

βyτ = yτ

(
4y2
τ + 3y2

b + 6λ2
a + 3λ2

c − 3g2
2 −

9

5
g2

1

)
. (B.8)

Superpotential mass terms

βµ = µ(3y2
t + 3y2

b + 6λ2
a + 6λ2

b + 6λ2
c − 3g2 − g′ 2) (B.9)

βµa = 2µa(2λ
2
c + 2λ2

3 − 4g2) (B.10)

βµb = µb(2λ
2
a + 2λ2

b + 4λ2
3 − 8g2 − 4g′ 2) . (B.11)

Gaugino masses

βM1 =
102

5
g2

1M1, βM2 = 14g2
2M2, βM3 = (−6)g2

3M3. (B.12)

1Note that we use g1 by identifying it with g′ through the GUT normalization g1 =
√

5/3 g′.
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Soft scalar mass terms

βm2
y1

= 2m2
y1

(3y2
b + 6λ2

a + 3λ2
c) + 6y2

b (m
2
Q̃

+m2
b̃
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2
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)
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1S (B.13)

βm2
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Q̃
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)
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βm2
Σ0
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2 (B.15)

βm2
Σ1

= 2m2
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2
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βm2
t̃

= 2m2
t̃
(2y2

t ) + 4y2
t (m

2
y2

+m2
Q̃
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βm2
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Trilinear terms

βat = at(3y
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b ) + yt(2ytat + 2ybab)−
1

30
g2

1(at − 2M1yt)−
3

2
g2

2(at − 2M2yt)

− 8

3
g2

3(at − 2M3yt)−
3

10
g2

1(at − 2M1yt) (B.23)
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βab = (ab(3y
2
b + 6λ2

a + 3λ2
c) + yb(6ybab + 12λaAa + 6λcAc)−

3

2
g2

2(ab − 2M2yb)

+ ab(2y
2
b ) + yb(4ybab)−

2

15
g2

1(ab − 2M1yb)−
8

3
g2

3(ab − 2M3yb)

+ ab(y
2
b + y2

t ) + yb(2ybab + 2ytat)−
1

30
g2

1(ab − 2M1yb)−
3

2
g2

2(ab − 2M2yb)

− 8

3
g2

3(ab − 2M3yb))−
3

10
g2

1(ab − 2M1yb) (B.24)

βAa = 2(Aa(3y
2
b + 6λ2

a + 3λ2
c) + λa(6ybab + 12λaAa + 6λcAc)−

3

2
g2

2(Aa − 2M2λa)

− 3

10
g2

1(Aa − 2M1λa))−
6

5
g2

1(Aa − 2M1λa)

+Aa(2λ
2
a + 2λ2

3) + λa(4Aaλa + 4A3λ3)− 4g2
2(Aa − 2M2λa) (B.25)

βAb = 2(Ab(3y
2
t + 6λ2

b + 3λ2
c) + λb(6ytat + 12λbAb + 6λcAc)−

3

2
g2

2(Ab − 2M2λb)

− 3

10
g2

1(Ab − 2M1λb))−
6

5
g2

1(Ab − 2M1λb)

+Ab(2λ
2
b + 2λ2

3) + λb(4Abλb + 4A3λ3)− 4g2
2(Ab − 2M2λb)−

6

5
g2

1(Ab − 2M1λb) (B.26)

βAc = Ac(3y
2
t + 6λ2

b + 3λ2
c) + λc(6ytat + 12λbAb + 6λcAc)−

3

2
g2

2(Ac − 2M2λc)

+Ac(3y
2
b + 6λ2

a + 3λ2
c) + λc(6ybab + 12λaAa + 6λcAc)−

3

2
g2

2(Ac − 2M2λc)

+Ac(2λ
2
c + 2λ2

3) + λc(4Acλc + 4A3λ3)− 4g2
2(Ac − 2M2λc)

− 3

10
g2

1(Ac − 2M1λc) (B.27)

βA3 = A3(2λ2
b + 2λ2

3) + λ3(4λbAb + 4λ3A3)− 6

5
g2

1(A3 − 2M1λ3)− 4g2
2(A3 − 2M2λ3)

+A3(2λ2
a + 2λ2

3) + λ3(4λaAa + 4λ3A3)− 6

5
g2

1(A3 − 2M1λ3)− 4g2
2(A3 − 2M2λ3)

+A3(2λ2
c + 2λ2

3) + λ3(4λcAc + 4λ3A3)− 4g2
2(A3 − 2M2λ3) (B.28)

βaτ = 9y2
τaτ + 6λ2

aaτ + 3λ2
caτ + 3aτy

2
b + aτy

2
τ − 3g2

2aτ −
9

5
g2

1aτ

+ yτ (12λaAa + 2yτaτ + 6λcAc + 6g2
2M2 + 6ybab +

18

5
g2

1M1) (B.29)

Soft bilinear terms

βm2
3

= m2
3(3y2

t + 3y2
b + 6λ2

a + 6λ2
b + 6λ2

c − 3g2
2 −

3

5
g2

1)

+
2

5
µ(15g2

2M2 + 3g2
1M1 + 30λcAc + 15ybab + 15ytat + 30λaAa + 30λbAb) (B.30)
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βBa = 4µa(4g
2
2M2 + 2λcAc + 2λ3A3) + 2Ba(2λ

2
c + 2λ2

3 − 4g2
2)) (B.31)

βBb = Bb(2λ
2
a + 2λ2

b + 4λ2
3 − 8g2

2 −
12

5
g2

1)

+
2

5
µb(10λaAa + 10λbAb + 20λ3A3 + 12g2

1M1 + 40g2
2M2) (B.32)

B.2 Minimization procedure after the RGE running

We will here make a systematic study of the minimum induced by radiative corrections at the
electroweak scale starting from a theory at the scaleM which is SU(2)L⊗SU(2)R invariant. For
pedagogical reasons we will start with the case of the MSSM with custodial symmetry at M.

Warming up with the MSSM

In the MSSM the Higgs potential is a function of two fields V = V (H0
1 , H

0
2 ) the real parts of

the neutral components of the Higgs doublets (H1, H2). These two degrees of freedom will make
up the CP -even MSSM mass eigenstates (h,H). At the minimum the VEV’s are defined as
v2 = v sinβ and v1 = v cosβ where v = 174 GeV. The equations of minimum ∂V/∂H0

1,2 = 0
provide the equations

m2
2 −m2

3 cotβ − m2
Z

2
cos 2β = 0 , (B.33)

m2
1 −m2

3 tanβ +
m2
Z

2
cos 2β = 0 , (B.34)

where m2
1,2 ≡ m2

H1,2
+|µ|2. Now the linear combinations Eq. (B.33) ± Eq. (B.34) lead respectively

to

m2
3 =

tanβ

tan2 β + 1
(m2

1 +m2
2) , (B.35)

tan2 β =
m2

1 + 1
2m

2
Z

m2
2 + 1

2m
2
Z

, (B.36)

where we are assuming m2
1 ≥ m2

2.

Now we can first assume that the Higgs sector has custodial symmetry and that therefore
m1 = m2. In this case we see that Eq. (B.36) is identically satisfied for tanβ = 1, which is
precisely the custodial symmetric minimum, while Eq. (B.35) yields m2

3 = (m2
1 +m2

2)/2 which is
the condition for EWSB.

Second, we will assume that the theory is SU(2)L ⊗ SU(2)R symmetric at the scale M
where supersymmetry breaking is communicated to the observable sector. In this case, as there
are couplings which do not respect the custodial symmetry (in particular g′ and ht), even if
m1 = m2, at Q = M at the EW scale the latter equality will not hold. In this case at the
EW scale a value tanβ 6= 1 will be generated and the value of m2

3 will then be correspondingly
obtained from Eq. (B.35).
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The SCTM

We will now apply the previous procedure to the case of the SCTM. The Higgs sector is SU(2)L⊗
SU(2)R invariant at the scaleM but the RGE running will spoil the custodial symmetry mainly
because the couplings (g′, ht) break it. So in principle (as the MSSM example above) we should
write the most general potential for this theory (see Eqs. (5.1), (5.3) and (5.4)). The EOM are
the solutions to the equations ∂V/∂H0

1 = ∂V/∂H0
2 = ∂V/∂ψ0 = ∂V/∂φ0 = ∂V/∂χ0 = 0 which

are satisfied at the (real part of the) field VEV’s (H0
1 , H

0
2 , ψ

0, φ0, χ0) = (v1, v2, vψ, vφ, vχ).

Doublet sector

The equation (1/H0
1 )∂V/∂H0

1 + (1/H0
2 )∂V/∂H0

2 = 0 allows to trade the parameter m2
3 by the

other supersymmetric parameters, as

1

sin 2β

[
m2

3 −Acvφ − λc(λ3vχvΨ + λcv1v2 + µavφ)− 2(λcvφ − µ)(λavψ + λbvχ)
]

=
1

2
(m2

Hu +m2
Hd

) +Aavψ +Abvχ + (λ3vφ + µb)(λbvψ + λavχ)

+ λ2
av

2
1 + λ2

bv
2
2 + (λcvφ − µ)2 + 2

[
λ2
av

2
ψ + λ2

bv
2
χ

]
, (B.37)

where tanβ = v2/v1. The value of m2
3 from Eq. (B.37) is now replaced into the equation

(1/H0
1 )∂V/∂H0

1 − (1/H0
2 )∂V/∂H0

2 = 0 which then becomes

g′ 2 + g2

2
(v2

2 − v2
1 + 2v2

ψ − 2v2
χ) = 2 cos 2β(λcvφ − µ)2

+2 cos2 β
{
m2
H1

+ 2Aavψ + 2λa(λ3vφ + µb)vχ + 2λ2
a(v

2
1 + 2v2

ψ)
}

−2 sin2 β
{
m2
H2

+ 2Abvχ + 2λb(λ3vφ + µb)vψ + 2λ2
b(v

2
2 + 2v2

χ)
}
, (B.38)

this equation is identically satisfied in the custodial limit.

Triplet sector

Likewise equation (1/ψ0)∂V/∂ψ0 + (1/χ0)∂V/∂χ0 yields the parameter Bb as a function of the
other supersymmetric parameters as

v2
ψ + v2

χ

vψvχ
[−Bb −A3vφ − λ3(λcv1v2 + µavφ + λ3vψvχ)] =

m2
Σ1

+m2
Σ−1

+ (λ3vφ + µb)

(
λav

2
1

vχ
+
λbv

2
2

vψ

)
+ 2(λ3vφ + µb)

2 + 4(λ2
av

2
1 + λ2

bv
2
2)

+
Aav

2
1 + 2λav1v2(λcvφ − µ)

vψ
+
Abv

2
2 + 2λbv1v2(λcvφ − µ)

vχ
. (B.39)

The value of Bb is then replaced into equation (1/ψ0)∂V/∂ψ0−(1/χ0)∂V/∂χ0 which then becomes

(g′ 2 + g2)(v2
2 − v2

1 + 2v2
ψ − 2v2

χ) = −2
v2
ψ − v2

χ

v2
ψ + v2

χ

(λ3vφ + µb)
2

−2
v2
ψ

v2
ψ + v2

χ

{
m2

Σ1
+ 4λ2

av
2
1 + (λ3vφ + µb)

λbv
2
2

vψ
+
Aav

2
1 + 2λav1v2(λcvφ − µ)

vψ

}
+2

v2
χ

v2
ψ + v2

χ

{
m2

Σ−1
+ 4λ2

bv
2
2 + (λ3vφ + µb)

λav
2
1

vχ
+
Abv

2
2 + 2λbv1v2(λcvφ − µ)

vχ

}
, (B.40)
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again this equation is identically satisfied in the custodial limit. Finally the value of Ba is obtained
from the equation ∂V/∂φ0 = 0 as

−
[
Ba + µ2

a +m2
Σ0

]
vφ = (Ac + λcµa)v1v2 + (A3 + λ3µa)vψvχ

+λcv1(2λbv2vχ + λcv1vφ − v1µ) + λcv2(2λav1vψ + λcv2vφ − v2µ)

+λ3vχ
[
λav

2
1 + vχ(λ3vφ + µb)

]
+ λ3vψ

[
λbv

2
2 + vψ(λ3vφ + µb)

]
. (B.41)

If we define B∓ = Ba ∓Bb then the EoM for B− is

B− =A3

(
vφ −

vψvχ
vφ

)
+

1

v2
ψ + v2

χ

[
vψvχ(m2

Σ1
+m2

Σ−1
)− (v2

ψ + v2
χ)m2

Σ0

]
+λ3

[
λcv1v2 + λav

2
1

(
vφvψ
v2
ψ + v2

χ

− vχ
vφ

)
+ λbv

2
2

(
vφvχ

v2
ψ + v2

χ

− vψ
vφ

)]

+λ2
3

[
vψvχ

2v2
φ + v2

ψ + v2
χ

v2
ψ + v2

χ

− (v2
ψ + v2

χ)

]
+ µ2

b

2vψvχ

v2
ψ + v2

χ

− µ2
a

+λ3vφ

[
µa

(
1− vψvχ

v2
φ

)
+ µb

(
4vψvχ

v2
ψ + v2

χ

−
v2
ψ + v2

χ

v2
φ

)]

+
Aav

2
1vψ +Abv

2
2vχ

v2
ψ + v2

χ

−Ac
v1v2

vφ
+ µb

λav
2
1vψ + λbv

2
2vχ

v2
ψ + v2

χ

− µa
λcv1v2

vφ

+(λcvφ − µ)

[
2v1v2

λavχ + λbvψ
v2
ψ + v2

χ

− λc
v2

1 + v2
2

vφ

]

+4(λ2
av

2
1 + λ2

bv
2
2)

vψvχ

v2
ψ + v2

χ

− 2λcv1v2
λavψ + λbvχ

vχ
, (B.42)

which is also identically satisfied in the custodial limit. In fact we have written the different lines
of Eq. (B.42) in such a way that they cancel independently in the custodial limit. Finally the
parametersm2

3, and B+ are given by Eqs. (B.37), and (B.39) and (B.41), respectively. Eqs. (B.38),
(B.40), and (B.42), which are identically satisfied in the custodial limit, will be used to compute
the departure from the custodial symmetry triggered by the RGE running.

Solving the equations, finding the correct vacuum

As Eqs. (B.38), (B.40), and (B.42) do not depend on the parameters m2
3 and B+, we will use these

to compute the departure of the vacuum solution with respect to the custodial configuration by
considering the general configuration (5.6) and (5.7). Using the field configuration of Eq. (5.6)
we can write an explicit solution to Eq. (B.38) as

tan2 β =
Pa − Pb +

√
(Pa − Pb)2 + 4QaQb

2Qb
, (B.43)

where Pa,b and Qa,b are given by

Pa = m2
H1

+ 2Aavψ + 2λavχ(λ3vφ + µb) + 4λ2
av

2
ψ + (λcvφ − µ)2 +

g′ 2 + g2

2
(v2
H + v2

χ − v2
ψ) ,

Pb = m2
H2

+ 2Abvχ + 2λbvψ(λ3vφ + µb) + 4λ2
bv

2
χ + (λcvφ − µ)2 +

g′ 2 + g2

2
(v2
H + v2

ψ − v2
χ) ,

Qa = Pa + 4v2
Hλ

2
a, Qb = Pb + 4v2

Hλ
2
b . (B.44)
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and where vφ,ψ depend on θ0,1 through Eq. (5.6). In the custodial limit Eq. (B.43) yields tanβ = 1.
Notice that Eq. (B.43) is a straightforward generalization of the similar one for the MSSM,
Eq. (B.36).

Now on general grounds Eqs. (B.38), (B.40), and (B.42) should be solved numerically, after
running the RGE, to get the correct values of tanβ, tan θ0 and tan θ1. Eq. (B.37) will determine
the value of m2

3(QEW ) and the equation for B+ (a linear combination of Eqs. (B.41) and (B.39))
will fix the custodial value B∆ at the high scale M. Finally, notice that the RGE’s for the
parameters involved in (B.38) and (B.40) are decoupled fromm2

3, Bb and Ba so that this procedure
for finding the vacuum solution is fully consistent with the RGE running of the theory.
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C
Cosmology in the SCTM

C.1 EOM’s and neutralino mass matrix in the DM study

Equations of minimum

The minimization conditions are

∂V

∂H0
1

∣∣∣∣
v1

=
∂V

∂H0
2

∣∣∣∣
v2

=
∂V

∂φ0

∣∣∣∣
vφ

=
∂V

∂ψ0

∣∣∣∣
vψ

=
∂V

∂χ0

∣∣∣∣
vχ

= 0 . (C.1)

With the parametrization of custodial breaking given in Eq. (7.6) we get for the doublet soft
masses

m2
1 ≡ m2

H1
+ µ2 = 2v∆(λµ−A− λµ∆)− v2

∆(2λ3λ+ 5λ2)

+ tβ

{
m2

3 + v∆(4λµ−A− λµ∆)− v2
∆(λ3λ+ 4λ2)

}
− g′ 2 + g2

2
v2
Hc2β − 2v2

Hλ
2(c2

β + 1) ,

m2
2 ≡ m2

H2
+ µ2 = 2v∆(λµ−A− λµ∆)− v2

∆

(
2λ3λ+ 5λ2

)
(C.2)

+
1

tβ

{
m2

3 + v∆(4λµ−A− λµ∆)− v2
∆(λ3λ+ 4λ2)

}
− g′ 2 + g2

2
v2
Hc2β − 2v2

Hλ
2(s2

β + 1) ,

and for the triplet masses

m2
Σ1

= −
{
B∆ + µ2

∆ + v∆ (A3 + 3λ3µ∆) +
v2
H

v∆

(
2Ac2

β + 2λµ∆s
2
β − 4cβsβλµ

)
+ v2

H

(
−(g′ 2 + g2)c2β + 2cβsβ(λ3λ+ 2λ2) + 2s2

βλ3λ+ 8c2
βλ

2
)

+ 2v2
∆λ

2
3

}
,

m2
Σ−1

= −
{
B∆ + µ2

∆ + v∆ (A3 + 3λ3µ∆) +
v2
H

v∆

(
2As2

β + 2λµ∆c
2
β − 4cβsβλµ

)
+ v2

H

(
−(g′ 2 + g2)c2β + 2cβsβ(λ3λ+ 2λ2) + 2c2

βλ3λ+ 8s2
βλ

2
)

+ 2v2
∆λ

2
3

}
, (C.3)

m2
Σ0

= −
{
B∆ + µ2

∆ + v∆ (A3 + 3λ3µ∆)

+
v2
H

v∆
(2cβsβ(A+ λµ∆)− 2λµ) + v2

H

(
cβsβ8λ2 + (2λ3λ+ 2λ2)

)
+ 2v2

∆λ
2
3

}
.

By making tanβ → 1 we recover the custodial limit where the five minimization conditions
degenerate into only two, Eq. (4.12).
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Neutralino mass matrix

Now we write the full neutralino mass matrix. The matrix M0
1/2 of eq. (6.7) is



M1 0 −g′cβvH g′sβvH 0 −
√

2g′v∆

√
2g′v∆

0 M2 gcβvH −gsβvH 0
√

2gv∆ −
√

2gv∆

−g′cβvH gcβvH 2λv∆ λv∆ − µ
√

2λsβvH 0 2
√

2λcβvH
g′sβvH −gsβvH λv∆ − µ 2λv∆

√
2λcβvH 2

√
2λsβvH 0

0 0
√

2λsβvH
√

2λcβvH µ∆ −λ3v∆ −λ3v∆

−
√

2g′v∆

√
2gv∆ 0 2

√
2λsβvH −λ3v∆ 0 µ∆ − λ3v∆√

2g′v∆ −
√

2gv∆ 2
√

2λcβvH 0 −λ3v∆ µ∆ − λ3v∆ 0


(C.4)

where sβ and cβ are shorthand for the sine and cosine of β respectively. Note that when tanβ → 1
we recover the matrix (4.41).

C.2 Formulae for the spectrum of gravitational waves

We present here the set of formulas used to calculate the spectrum presented in Figure 7.8.

Gravitational waves from bubble collisions

In the case we use the envelope approximation to model bubble collisions the peak frequency
is [190]

f̃env = 16.5µHz

(
f

β

)(
β

H

)(
Tn

100 GeV

)( g∗
100

)1/6
(C.5)

and the energy density

h2Ω̃env = 1.84× 10−6κ2

(
v3
b

0.42 + v2
b

)(
H

β

)2( α

α+ 1

)2(100

g∗

)1/3

. (C.6)

The efficiency factor κ is

κ =
1

1 + 0.715α

(
0.715α+

4

27

√
3α

2

)
(C.7)

the bubble wall velocity vb is

vb =

√
1/3 +

√
α2 + 2α/3

1 + α
, (C.8)

and
f

β
=

0.62

1.8− 0.1vb + v2
b

. (C.9)

The spectrum then has the following shape

Ωenv(f) = Ω̃env
3.8(f/f̃env)

2.8

2.8 + (f/f̃env)3.8
. (C.10)

166



C.2. Formulae for the spectrum of gravitational waves

Gravitational waves from sound waves

The peak amplitude of GW radiation from sound waves is given by [191,219]

h2Ω̃sw = 2.65 · 10−6 vb κ
2

(
H

β

)(
α

α+ 1

)2 ( g∗
100

)−1/3
, (C.11)

which is larger than the result one gets from the envelope approximation by a factor β/H. The
peak frequency is

f̃sw = 19µHz
1

vb

(
β

H

)(
Tn

100 GeV

)( g∗
100

)1/6
(C.12)

and the fit to the numerical spectrum is given by

Ωsw(f) = Ω̃sw

(
7

4 + 3(f/f̃sw)2

)7/2

(f/f̃sw)3 . (C.13)
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