
 
 
 

 
 
 

 
 

 
 
 

 
 
 
 
 

Techniques For Estimating the Generative Multifactor 
Model of Returns in a Statistical Approach to the 

Arbitrage Pricing Theory. Evidence from the Mexican 
Stock Exchange 

 
Rogelio Ladrón de Guevara Cortés 

 
 
 
 
 
 
 
 
 
 
 
 

 
ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió 
d’aquesta tesi per mitjà del servei TDX (www.tdx.cat) i a través del Dipòsit Digital de la UB (diposit.ub.edu) ha estat 
autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats 
d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició 
des d’un lloc aliè al servei TDX ni al Dipòsit Digital de la UB. No s’autoritza la presentació del seu contingut en una finestra 
o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de 
la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. 
 
 
ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La 
difusión de esta tesis por medio del servicio TDR (www.tdx.cat) y a través del Repositorio Digital de la UB 
(diposit.ub.edu) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos 
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro 
ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB. No se autoriza 
la presentación de su contenido en una ventana o marco ajeno a TDR o al Repositorio Digital de la UB (framing). Esta 
reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de 
partes de la tesis es obligado indicar el nombre de la persona autora. 
 
 
WARNING. On having consulted this thesis you’re accepting the following use conditions:  Spreading this thesis by the 
TDX (www.tdx.cat) service and by the UB Digital Repository (diposit.ub.edu) has been authorized by the titular of the 
intellectual property rights only for private uses placed in investigation and teaching activities. Reproduction with lucrative 
aims is not authorized nor its spreading and availability from a site foreign to the TDX service or to the UB Digital 
Repository. Introducing its content in a window or frame foreign to the TDX service or to the UB Digital Repository is not 
authorized (framing). Those rights affect to the presentation summary of the thesis as well as to its contents. In the using or 
citation of parts of the thesis it’s obliged to indicate the name of the author. 



 
 

  
 

 
 
 

 
 
 

TECHNIQUES FOR ESTIMATING THE 
GENERATIVE MULTIFACTOR MODEL 

OF RETURNS IN A STATISTICAL 
APPROACH TO THE ARBITRAGE 

PRICING THEORY. EVIDENCE FROM 
THE MEXICAN STOCK EXCHANGE. 

 
Rogelio Ladrón de Guevara Cortés 

  



 
 

 
 

  



 
 

 
 
 

FACULTAD D’ECONOMIA I EMPRESA 
DEPARTAMENT D’ECONOMETRIA, ESTADÍSTICA 

Y ECONOMÍA ESPAÑOLA. 
 
 

TECHNIQUES FOR ESTIMATING THE 
GENERATIVE MULTIFACTOR MODEL OF 

RETURNS IN A STATISTICAL APPROACH TO 
THE ARBITRAGE PRICING THEORY. EVIDENCE 

FROM THE MEXICAN STOCK EXCHANGE. 
 

Rogelio Ladrón de Guevara Cortés 
Universitat de Barcelona 

 
 

Supervisor:  
Dr. Salvador Torra Porras 

 
 

Date: 
September 2015 

 
 
 

 
  



 
 

 
  



 
 

 
 

PROGRAMA DE DOCTORAT D’ ESTUDIS 
EMPRESARIALS 

SUBPROGRAMA ADMINISTRACIÓ I DIRECCIÓ 
D’EMPRESAS 

ESPECIALITAT TÈQNIQUES I ANÀLISI A LA 
EMPRESA 

 
 

TECHNIQUES FOR ESTIMATING THE 
GENERATIVE MULTIFACTOR MODEL OF 

RETURNS IN A STATISTICAL APPROACH TO 
THE ARBITRAGE PRICING THEORY. EVIDENCE 

FROM THE MEXICAN STOCK EXCHANGE. 
 

Rogelio Ladrón de Guevara Cortés 
Universitat de Barcelona 

 
 

Supervisor:  
Dr. Salvador Torra Porras 

 
 

Date: 
September 2015 

 

 
  



 
 

 
  



 
 

 
 
 
 
 
 
 
 
 
 
 
    To my daughters, wife and parents.  

 
 
 
 
 
 
 

 
 

  



 
 

 
  



 
 

Acknowledgments 
 
 
First of all, I want to thank the Supervisor of this Doctoral Thesis, Dr. Salvador Torra 

Porras, for all his time, sacrifice, compromise, support and help for the elaboration of 

this Thesis, which was beyond his duty as an academic and professional, but also was 

that corresponding to a real friend. All his strict and demanding regime, under I was 

forged during this time, it has been of invaluable importance to my formation as 

academic and professional and it has let an important print in all my academic work as 

well. This Thesis is as yours as mine; thanks for everything with my most sincere 

admiration and respect. 

 

 I also have to thank and recognize the helpful and prompt advising of academics 

of different countries and Universities whose expertise in some of the techniques used 

in this Thesis was really important to developed this research; in addition, I 

acknowledge all their contributions in these techniques that were the base for 

developing some parts of our study: to Dr. Mathias Scholz currently in the Laboratory 

of Computational Metagenomics, University of Trento, Italy, for all his advising 

regarding Neural Networks Principal Component Analysis; and to Dr. Aappo 

Hyvärinen, from the Department of Computer Science, University of Helsinki, for his 

advising concerning Independent Component Analysis. 

 

In the same way, I want to thank Cristina Urbano at GVC-Gaesco, Spain, for the 

financial data provided on the Mexican Stock Exchange; without this information 

definitely this research had not been possible. 

 

I would like to thank all the academic and administrative support and help of the 

professors and administrative staff of the Faculty of Economics and Business of the 

University of Barcelona, during all these years of my PhD studies, specially to: Dra. 

Monserrat Guillén Estany, Dr. Ramón José Alemany Leira, Dra. Esther Hormiga Pérez, 

Dra. Mercedes Claramunt Bielsa, Dra. Mercedes Ayuso Gutiérrez, Dr. Dídac Ramirez i 

Sarrio, Dr. Antonio Alegre Escolano, Dra. Maite Vilalta Ferrer, Sra. Eloísa Perez 

Poblador and Sra. Coloma Grandes Tribó. Moreover, I acknowledge to the Doctors who 



 
 

will constitute the Jury for this dissertation, for the time dedicated to review this 

document and for all their comments and observations. 

 

In the personal ambit, I have to acknowledge to my dear wife, Isela Moreno 

Alcazar, for all her support, love, time and sacrifice that she have made in order to let 

me start and finish this Doctoral studies; without all your understanding, help and 

support I had not been able to do all this. 

 

 Thank you to my baby daughters Núria and Meritxell, for being my major 

motivation and force in this final stage of the elaboration of my Thesis.  

 

I want to thank to my mother and father, Guadalupe Cortés Arellano, and 

Rogelio Ladrón de Guevara Domínguez, whose endless and unconditional love, help 

and support allowed me to realize this dream of studying my PhD in Barcelona. Both of 

you have been always with me in everything and without your help and support this 

project had not been possible as well. 

 

 Specially, I want to thank to all my friends from Spain and their families: Mia, 

Andreu, Fede, Carlos, Jordi Bertrán, Jordi Vilanova, Sergie, Juan Carlos, Pepito, Borja, 

Juan, Victor and Marc; thank you for having made me feel at home when I was so far 

from my house, thank you for having open the doors of your houses to me and for 

having shared so many special moments with you and your families. All my eternal 

acknowledge and friendship. 

 

I also have to thank to all my life friends in Mexico: Samuel and Alfredo, for all 

their support, help and company in all the good and bad moments of my life; and to my 

cousins and friends Lalo, Pepe, Mauri, Ale, Vero and Bere, for all their support and help 

in the personal ambit during these last days of the elaboration of my Thesis.  

 

 Finally, my acknowledgment to my Institution the Universidad Veracruzana, for 

having allowed me to dedicate my time to accomplish my doctoral studies during the 

years I was in Barcelona and to finish this last stage of my dissertation. 

  



1 
 

Contents  
 
List of Figures. 5 
  
List of Tables. 11 
  
1. Introduction.  

1.1. Abstract. 19 
1.2. Object of study and context.  

1.2.1. Multifactor asset pricing models and risk factors. 19 
1.2.2. Dimension reduction or feature extraction techniques. 22 
1.2.3. The Mexican Stock Exchange. 25 

1.3. Methodology.  
1.3.1. Objectives, research questions and hypothesis. 26 
1.3.2. Scope and limitations. 28 

1.4. Contributions. 29 
1.5. Structure of the Thesis. 30 

  
2. Multifactor asset pricing models: Taxonomy of risk factors. 

A review of the state of the art.  
2.1. Introduction. 31 
2.2. Multifactor models. 32 

2.2.1. Classification according to the value of the risk factors. 33 
2.2.1.1. Market factor. 34 
2.2.1.2. Macroeconomic factors. 36 
2.2.1.3. Fundamental factors. 38 
2.2.1.4. Technical factors. 42 
2.2.1.5. Sector factors. 42 
2.2.1.6. Statistical factors. 43 
2.2.1.7. Comparison among the different models. 46 

2.2.2. Classification according to the estimation of the risk 
factors. 49 

2.2.3. Classification by the theoretical or empirical foundation 
of the model. 50 

2.2.3.1. Arbitrage models. (The Arbitrage Pricing 
Theory). 51 

2.2.3.2. Empirical models. 53 
  
  
  
  
  



2 
 

3. Databases and methodology for the econometric contrast.  
3.1. The Mexican Stock Exchange. 55 
3.2. Description of the databases.  

3.2.1. The data. 56 
3.2.2. Databases descriptive statistics. 60 

3.3. Methodology for the econometric contrast of the Arbitrage 
Pricing Theory. 69 

3.3.1. The Arbitrage Pricing Theory model. 69 
3.3.2. Statistical risk factors. 71 
3.3.3. Methodology for the econometric contrast. 72 

  
4. Principal Component Analysis and Factor Analysis: 

Estimation of the generative multifactor model of returns.  
4.1. Introduction and review of literature. 76 
4.2. Classical statistical risk extraction factors techniques.  80 

4.2.1. Principal Component Analysis (PCA). 81 
4.2.2. Factor Analysis (FA). 83 

4.3. Empirical study. Methodology and results. 84 
4.3.1. Preliminary tests. 85 
4.3.2. Extraction of underlying systematic risk factors via 

PCA and FA. 92 
4.3.3. Explanation of the variability by the extracted 

components or factors. 94 
4.3.4. Interpretation of the extracted factors. 98 
4.3.5. Results of the econometric contrast. 115

4.4. Conclusions. 129
  
  
5. Independent Component Analysis: Estimation of the 

generative multifactor model of returns.   
5.1. Introduction and review of literature. 132
5.2. Independent Component Analysis (ICA).  

5.2.1.  ICA Basics. 134
5.2.2.  ICA compared to PCA and FA. 139
5.2.3.  ICA in Finance. 141

5.3. Empirical study. Methodology and Results.  
5.3.1. Tests for univariate and multivariate normality. 140
5.3.2. Estimation of the ICA Model. 145
5.3.3. Ranking and orthogonalization of the Independent 

Components. 150
5.3.4. Extraction of underlying systematic risk factors via 

ICA. 152
5.3.5. Independence test. 155



3 
 

5.3.6. Explanation of the variability using the extracted 
components. 156

5.3.7. Interpretation of the extracted factors. 156
5.3.8. ICASSO Plots. 168
5.3.9. Results of the econometric contrast. 174

5.4. Conclusions. 182
  
6. Neural Networks Principal Component Analysis: Estimation 

of the generative multifactor model of returns.  
6.1. Introduction and review of literature. 186
6.2. Nonlinear Principal Component Analysis (NLPCA). 188

6.2.1. Neural Networks Principal Component Analysis 
(NNPCA).  190

6.2.2. Dealing with nonlinearity. 193
6.3. Empirical Study. Methodology and results.  

6.3.1. Extraction of underlying systematic risk factors via 
NNPCA. 194

6.3.2. Nonlinear principal components plots. 199
6.3.3. Interpretation of the extracted factors. 202
6.3.4. Results of the econometric contrast. 213

6.4. Conclusions. 223
  
7. Comparison of different latent factors extraction techniques.  

7.1. Introduction and review of literature. 226
7.2. Theoretical comparison.  

7.2.1. Matrix parallelism among PCA, FA, ICA and NNPCA. 229
7.3. Empirical comparison.  

7.3.1. Accuracy in the reproduction of the observed returns. 234
7.3.1.1. Graphical analysis.  234
7.3.1.2. Measures of reconstruction accuracy. 235

7.3.2. Underlying systematic risk structure.  246
7.3.2.1. Statistical and graphical analysis. 246

7.3.3. Results in the econometric contrast of the APT. 261
7.3.4. Interpretation of the underlying risk factors. 267

7.4. Conclusions. 281
  
8. Conclusions. 285
  
Future lines of research 295
Bibliography. 299
Appendix. 329
  
  



4 
 

  



5 
 

 

List of Figures 
 
Figure 2.1. Classification of multifactor models attending to the 
value of risk factors. 34 
  
Figure 2.2. Classification of multifactor models attending the 
estimation of risk factors. 49 
  
Figure 2.3. Classification of multifactor models according to their 
empirical or empirical foundations. 50 
  
Figure 3.1. Line plots (Multiple Graph). Database of weekly returns. 63 
  
Figure 3.2. Line plots (Multiple Graph). Database of daily returns. 64 
  
Figure 3.3. Box plots. Database of weekly returns. 65 
  
Figure 3.4. Histograms. Database of weekly returns. 66 
  
Figure 3.5. Box plots. Database of daily returns. 67 
  
Figure 3.6. Histograms. Database of daily returns. 68 
  
Figure 4.1. Principal Component Analysis. Observed and 
reproduced variables. Line plots. Database of weekly returns. Nine 
components extracted. 95 
  
Figure 4.2. Factor Analysis. Observed and reproduced variables. 
Line plots. Database of weekly returns. Nine components extracted. 96 
  
Figure 4.3. Loadings matrices plots for interpretation of extracted 
factors. Principal Component Analysis. Database of weekly returns. 
Nine components extracted. 99 
  
Figure 4.4. Loadings matrices plots for interpretation of extracted 
factors. Principal Component Analysis. Database of weekly 
excesses. Nine components extracted. 100
   
Figure 4.5. Loadings matrices plots for interpretation of extracted 
factors. Principal Component Analysis. Database of daily returns. 
Nine components extracted. 101
  



6 
 

  
Figure 4.6. Loadings matrices plots for interpretation of extracted 
factors. Principal Component Analysis. Database of daily excesses. 
Nine components extracted. 102
  
Figure 4.7. Loadings matrices plots for interpretation of extracted 
factors. Factor Analysis. Database of weekly returns. Nine 
components extracted. 103
  
Figure 4.8. Loadings matrices plots for interpretation of extracted 
factors. Factor Analysis. Database of weekly excesses. Nine 
components extracted. 104
  
Figure 4.9. Loadings matrices plots for interpretation of extracted 
factors. Factor Analysis. Database of daily returns. Nine 
components extracted. 105
  
Figure 4.10. Loadings matrices plots for interpretation of extracted 
factors. Factor Analysis. Database of daily excesses. Nine 
components extracted. 106
  
Figure 5.1. Schematic representation of Independent Component 
Analysis. 135
  
Figure 5.2. Independent Component Analysis. Observed and 
reproduced variables. Line plots. Database of weekly returns. Nine 
components extracted. 154
  
Figure 5.3. Loadings matrices plots for interpretation of extracted 
factors. Independent Component Analysis. Database of weekly 
returns. Nine components extracted. 158
  
Figure 5.4. Loadings matrices plots for interpretation of extracted 
factors. Independent Component Analysis. Database of weekly 
excesses. Nine components extracted. 159
  
Figure 5.5. Loadings matrices plots for interpretation of extracted 
factors. Independent Component Analysis. Database of daily 
returns. Nine components extracted. 160
   
Figure 5.6. Loadings matrices plots for interpretation of extracted 
factors. Independent Component Analysis. Database of daily 
excesses. Nine components extracted. 161



7 
 

  
Figure 5.7. Clusters plot. Database of weekly returns. Nine 
components extracted. 169
  
Figure 5.8. Clusters Quality Index (Iq) plot. Database of weekly 
returns. Nine components extracted. 170
  
Figure 5.9. R-index plot. Database of weekly returns. Nine 
components extracted. 171
  
Figure 5.10. Dendrogram and similarity matrix plots. Database of 
weekly returns. Nine components extracted. 173
  
Figure 5.11. Source estimates. Database of weekly returns. Nine 
components extracted. 174
  
Figure 6.1. Principal Component Analysis. 189
  
Figure 6.2. Non-linear Principal Component Analysis. 189
  
Figure 6.3. Auto-associative multilayer perceptron neural network 
or autoencoder. 191
  
Figure 6.4. Neural Networks Principal  Component Analysis. 
Observed and reproduced variables. Line plots. Database of weekly 
returns. Nine components extracted. 198
  
Figure 6.5. Nonlinear PCA plot. Database of weekly returns. Nine 
components estimated. 200
  
Figure 6.6. Nonlinear PCA plot. Database of weekly excesses. Nine 
components estimated. 201
  
Figure 6.7. Nonlinear PCA plot. Database of daily returns. Nine 
components estimated. 201
  
Figure 6.8. Nonlinear PCA plot. Database of daily excesses. Nine 
components estimated. 202
  
Figure 6.9. Loadings matrices plots for interpretation of extracted 
factors. Neural Networks Principal Component Analysis. Database 
of weekly returns. Nine components extracted. 205
  



8 
 

  
Figure 6.10. Loadings matrices plots for interpretation of extracted 
factors. Neural Networks Principal Component Analysis. Database 
of weekly excesses. Nine components extracted. 206
  
Figure 6.11. Loadings matrices plots for interpretation of extracted 
factors. Neural Networks Principal Component Analysis. Database 
of daily returns. Nine components extracted. 207
  
Figure 6.12. Loadings matrices plots for interpretation of extracted 
factors. Neural Networks Principal Component Analysis. Database 
of daily excesses. Nine components extracted. 208
  
Figure 7.1. Plot of the underlying systematic risk factors extracted 
by Principal Component Analysis. Database of weekly returns. Nine 
components estimated. 251
  
Figure 7.2. Plot of the underlying systematic risk factors extracted 
by Factor Analysis. Database of weekly returns. Nine factors 
estimated. 251
  
Figure 7.3. Plot of the underlying systematic risk factors extracted 
by Independent Component Analysis. Database of weekly returns. 
Nine components estimated.  252
  
Figure 7.4. Plot of the underlying systematic risk factors extracted 
by Neural Networks Principal Component Analysis. Database of 
weekly returns. Nine components estimated. 252
  
Figure 7.5. First underlying systematic risk factor extracted by the 
four techniques. Multiple graph. Database of weekly returns. Nine 
factors estimated. 253
  
Figure 7.6. First underlying systematic risk factor extracted by the 
four techniques. Multiple graph. Database of daily returns. Nine 
factors estimated. 253
  
Figure 7.7. Plot of the Betas computed in Principal Component 
Analysis. Database of weekly returns. Nine components estimated. 258
  
Figure 7.8. Plot of the Betas computed in Factor Analysis. Database 
of weekly returns. Nine factors estimated. 258
  



9 
 

  
Figure 7.9. Plot of the Betas computed in Independent Component 
Analysis. Database of weekly returns. Nine components estimated. 259
  
Figure 7.10. Plot of the Betas computed in Neural Networks 
Principal Component Analysis. Database of weekly returns. Nine 
components estimated. 259
  
Figure 7.11. Betas to the first underlying systematic risk factor 
extracted by the four techniques. Multiple graph. Database of 
weekly returns. Nine components estimated. 260
  
Figure 7.12. Betas to the first underlying systematic risk factor 
extracted by the four techniques. Multiple graph. Database of daily 
returns. Nine components estimated.  260
  
Figure 7.13. Loadings matrices. Diagram for interpretation of 
extracted factors. Principal Component Analysis. Database of 
weekly returns. Nine components. 270
  
Figure 7.14. Loadings matrices. Diagram for interpretation of 
extracted factors. Factor Analysis. Database of weekly returns. Nine 
components. 271
  
Figure 7.15. Loadings matrices. Diagram for interpretation of 
extracted factors. Independent Component Analysis. Database of 
weekly returns. Nine components. 272
  
Figure 7.16. Loadings matrices. Diagram for interpretation of 
extracted factors. Neural Networks Principal Component Analysis. 
Database of weekly returns. Nine components. 273
  
Figure 7.17.  Loadings matrices. Diagram for interpretation of 
extracted factors. Principal Component Analysis. Database of daily 
returns. Nine components. 274
  
Figure 7.18. Loadings matrices. Diagram for interpretation of 
extracted factors. Factor Analysis. Database of daily returns. Nine 
components. 275
  
Figure 7.19. Loadings matrices. Diagram for interpretation of 
extracted factors. Independent Component Analysis. Database of 
daily returns. Nine components. 276



10 
 

  
Figure 7.20. Loadings matrices. Diagram for interpretation of 
extracted factors. Neural Networks Principal Component Analysis. 
Database of daily returns. Nine components.  277
 
 

  



11 
 

List of Tables 
 
Table 2.1. Relationship among factor models. 48 
  
Table 3.1. Stocks used in the study. 57 
  
Table 3.2. Descriptive statistics. Database of weekly returns. 65 
  
Table 3.3. Descriptive statistics. Database of daily returns. 67 
  
Table 4.1. Bartlett’s spherecity test and Kaiser-Meyer-Olkin index. 
Database of weekly returns. 86 
  
Table 4.2. Bartlett’s spherecity test and Kaiser-Meyer-Olkin index. 
Database of weekly excesses. 87 
  
Table 4.3. Bartlett’s spherecity test and Kaiser-Meyer-Olkin index. 
Database of daily returns. 87 
  
Table 4.4. Bartlett’s spherecity test and Kaiser-Meyer-Olkin index. 
Database of daily excesses. 87 
  
Table 4.5. Anti-image correlation matrix and Measures of Sampling 
Adequacy (MSA). Database of weekly returns. 88 
  
Table 4.6. Anti-image correlation matrix and Measures of Sampling 
Adequacy (MSA). Database of weekly excesses. 89 
  
Table 4.7. Anti-image correlation matrix and Measures of Sampling 
Adequacy (MSA). Database of daily returns. 90 
  
Table 4.8. Anti-image correlation matrix and Measures of Sampling 
Adequacy (MSA). Database of daily excesses. 91 
  
Table 4.9. Number of Components or Factors to retain. 93 
  
Table 4.10. Variance explained and accumulated. Principal 
Component Analysis and Factor Analysis. Explained Variance. 97 
  
Table 4.11. Details of results. Sector interpretation of components. 
Principal Component Analysis. Nine components extracted. 107 
  
  



12 
 

Table 4.12. Details of results. Sector interpretation of components. 
Principal Component Analysis. Nine components extracted. (Cont.). 108
  
Table 4.13. Summary of results. Sector interpretation of 
components. Principal Component Analysis. Nine components 
extracted. 109
  
Table 4.14. Details of results. Sector interpretation of components. 
Factor Analysis. Nine factors extracted. 110
  
Table 4.15. Details of results. Sector interpretation of components. 
Factor Analysis. Nine factors extracted. (Cont.). 111
  
Table 4.16. Summary of results. Sector interpretation of factors. 
Factor Analysis. Nine factors extracted. 112
  
Table 4.17. Principal Component Analysis. Betas estimated 
simultaneously via Weighted Least Squares. Database of weekly 
returns. 117
  
Table 4.18. Principal Component Analysis. Betas estimated 
simultaneously via Weighted Least Squares. Database of weekly 
excesses. 117
  
Table 4.19. Principal Component Analysis. Betas estimated 
simultaneously via Weighted Least Squares. Database of daily 
returns. 118
  
Table 4.20. Principal Component Analysis. Betas estimated 
simultaneously via Weighted Least Squares. Database of daily 
excesses. 118
  
Table 4.21. Factor Analysis. Betas estimated simultaneously via 
Weighted Least Squares. Database of weekly returns. 119
  
Table 4.22. Factor Analysis. Betas estimated simultaneously via 
Weighted Least Squares. Database of weekly excesses. 119
  
Table 4.23. Factor Analysis. Betas estimated simultaneously via 
Weighted Least Squares. Database of daily returns. 120
  
Table 4.24. Factor Analysis. Betas estimated simultaneously via 
Weighted Least Squares. Database of daily excesses. 120



13 
 

  
Table 4.25. Principal Component Analysis. Summary of the 
econometric contrast. Weekly databases. 125
  
Table 4.26. Principal Component Analysis. Summary of the 
econometric contrast. Daily databases. 126
  
Table 4.27. Factor Analysis. Summary of the econometric contrast. 
Weekly databases. 127
  
Table 4.28. Factor Analysis. Summary of the econometric contrast. 
Daily databases. 128
  
Table 5.1. Jarque-Bera’s Test for Univariate Normality.  143
  
Table 5.2. Mardia Test for Multivariate Normality. 144
  
Table 5.3. Henze-Zirkler Test for Multivariate Normality. 144
  
Table 5.4. FastICA algorithm for estimating several ICs, with 
symmetric orthogonalization. 147
  
Table 5.5. Variance explained and accumulated. 157
  
Table 5.6. Details of results. Sector interpretation of components. 
Independent Component Analysis. Nine components extracted. 164
  
Table 5.7. Details of results. Sector interpretation of components. 
Independent Component Analysis. Nine components extracted. 
(Cont.). 165
  
Table 5.8. Summary of results. Sector interpretation of components. 
Independent Component Analysis. Nine components extracted. 166
  
Table 5.9. Independent Component Analysis. Betas estimated 
simultaneously via Weighted Least Squares. Database of weekly 
returns. 175
  
Table 5.10. Independent Component Analysis. Betas estimated 
simultaneously via Weighted Least Squares. Database of weekly 
excesses. 176
  
  



14 
 

Table 5.11. Independent Component Analysis. Betas estimated 
simultaneously via Weighted Least Squares. Database of daily 
returns. 176
  
Table 5.12. Independent Component Analysis. Betas estimated 
simultaneously via Weighted Least Squares. Database of daily 
excesses. 177
  
Table 5.13. Independent Component Analysis. Summary of the 
Econometric Contrast. Weekly databases. 179
  
Table 5.14. Independent Component Analysis. Summary of the 
Econometric Contrast. Daily databases. 180
  
Table 6.1. Details of results. Sector interpretation of components. 
Neural Networks Principal Component Analysis. Nine components 
extracted. 210
  
Table 6.2. Details of results. Sector interpretation of components. 
Neural Networks Principal Component Analysis. Nine components 
extracted. (Cont.). 211
  
Table 6.3. Summary of results. Sector interpretation of components. 
Neural Networks Principal Component Analysis. Nine components 
extracted. 212
  
Table 6.4. Neural Networks Principal Component Analysis. Betas 
estimated simultaneously via Seemingly Unrelated Regression. 
Database of weekly returns. 214
  
Table 6.5. Neural Networks Principal Component Analysis. Betas 
estimated simultaneously via Seemingly Unrelated Regression. 
Database of weekly excesses. 215
  
Table 6.6. Neural Networks Principal Component Analysis. Betas 
estimated simultaneously via Seemingly Unrelated Regression. 
Database of daily returns. 215
  
Table 6.7. Neural Networks Principal Component Analysis. Betas 
estimated simultaneously via Seemingly Unrelated Regression. 
Database of daily excesses. 216
  
  



15 
 

Table 6.8. Summary of the econometric contrast. Weekly databases. 221
  
Table 6.9. Summary of the econometric contrast. Daily databases. 222
  
Table 7.1. Matrix parallelism among techniques to extract the 
underlying factors of systematic risk. 230
  
Table 7.2. Summary of measures of reconstruction accuracy. 
Database of weekly returns. Nine underlying factors. 240
  
Table 7.3. Summary of measures of reconstruction accuracy. 
Database of daily returns. Nine underlying factors.  240
  
Table 7.4. Summary of measures of reconstruction accuracy. 
Database of weekly returns. Two underlying factors. 241
  
Table 7.5. Summary of measures of reconstruction accuracy. 
Database of daily returns. Two underlying factors. 241
  
Table 7.6. Factor Analysis (FA) vs. Principal Component Analysis 
(PCA). Measures of reconstruction accuracy obtained in FA minus 
measures of reconstruction accuracy obtained in PCA. Database of 
weekly returns. Nine underlying factors. 244
  
Table 7.7. Independent Component Analysis (ICA) vs. Principal 
Component Analysis (PCA). Measures of reconstruction accuracy 
obtained in ICA minus measures of reconstruction accuracy 
obtained in PCA. Database of weekly returns. Nine underlying 
factors. 244
  
Table 7.8. Neural Networks Principal Component Analysis 
(NNPCA) vs. Principal Component Analysis (PCA). Measures of 
reconstruction accuracy obtained in NNPCA minus measures of 
reconstruction accuracy obtained in PCA. Database of weekly 
returns. Nine underlying factors. 244
  
Table 7.9. Factor Analysis (FA) vs. Principal Component Analysis 
(PCA). Measures of reconstruction accuracy obtained in FA minus 
measures of reconstruction accuracy obtained in PCA. Database of 
weekly returns. Two underlying factors. 245
  
  
  



16 
 

Table 7.10. Independent Component Analysis (ICA) vs. Principal 
Component Analysis (PCA). Measures of reconstruction accuracy 
obtained in ICA minus measures of reconstruction accuracy 
obtained in PCA. Database of weekly returns. Two underlying 
factors. 245
  
Table 7.11. Neural Networks Principal Component Analysis 
(NNPCA) vs. Principal Component Analysis (PCA). Measures of 
reconstruction accuracy obtained in NNPCA minus measures of 
reconstruction accuracy obtained in PCA. Database of weekly 
returns. Two underlying factors. 245
  
Table 7.12. Descriptive Statistics. Underlying systematic risk factors 
extracted by Principal Component Analysis. Database of weekly 
returns. Nine components estimated. 248
  
Table 7.13. Descriptive Statistics. Underlying systematic risk factors 
extracted by Factor Analysis. Database of weekly returns. Nine 
factors estimated. 248
  
Table 7.14. Descriptive Statistics. Underlying systematic risk factors 
extracted by Independent Component Analysis. Database of weekly 
returns. Nine components estimated. 249
  
Table 7.15. Descriptive Statistics. Underlying systematic risk factors 
extracted by Neural Networks Principal Component Analysis. 
Database of weekly returns. Nine components estimated. 249
   
Table 7.16. Descriptive Statistics. Matrix of Betas computed in 
Principal Component Analysis. Database of weekly returns. Nine 
components estimated. 255
  
Table 7.17. Descriptive Statistics. Matrix of Betas computed in 
Factor Analysis. Database of weekly returns. Nine factors estimated. 256
  
Table 7.18. Descriptive Statistics. Matrix of Betas computed in 
Independent Component Analysis. Database of weekly returns. Nine 
components estimated. 256
  
Table 7.19. Descriptive Statistics. Matrix of Betas computed in 
Neural Networks Principal Component Analysis. Database of 
weekly returns. Nine components estimated. 256
  



17 
 

 
 
Table 7.20. Models that fulfill all the requirements in the 
econometric contrast of the APT. 262
  
Table 7.21. Betas statistically significant. 265
  
Table 7.22. Betas statistically significant. (Cont.). 266
  
Table 7.23. Comparative interpretation of the underlying systematic 
risk factors. Database of weekly returns. Nine components 
estimated. 279
  
Table 7.24. Comparative interpretation of the underlying systematic 
risk factors. Database of weekly excesses. Nine components 
estimated. 279
  
Table 7.25. Comparative interpretation of the underlying systematic 
risk factors. Database of daily returns. Nine components estimated. 280
  
Table 7.26. Comparative interpretation of the underlying systematic 
risk factors. Database of daily excesses. Nine components 
estimated. 280
  
 
 

 
  



18 
 

 
  



CHAPTER 1. INTRODUCTION. 
 

19 
 

 
CHAPTER 1 
 
Introduction. 
 

1.1. Abstract. 

 

This dissertation focuses on the estimation of the generative multifactor model of 

returns on equities, under a statistical approach to the Arbitrage Pricing Theory (APT), 

in the context of the Mexican Stock Exchange. Therefore, this research takes as 

frameworks two main issues: (i) the multifactor asset pricing models, specially the 

statistical risk factors approach, and (ii) the dimension reduction or feature extraction 

techniques: Principal Component Analysis, Factor Analysis, Independent Component 

Analysis and Non-linear Principal Component Analysis, utilized to extract the 

underlying systematic risk factors. The models estimated are tested using two 

methodologies: (i) capability of reproduction of the observed returns using the estimated 

generative multifactor model, and (ii) results of the econometric contrast of the APT 

using the extracted systematic risk factors. Finally, a comparative study among 

techniques is carried on based on their theoretical properties and the empirical results. 

 

1.2. Object of study and context. 

 

1.2.1. Multifactor asset pricing models and risk factors. 

 

Understanding the behavior of financial markets has been a constant during the history 

of finance, specially the uncovering of the risk factors that move the markets; many 

approaches have been developed through the years trying to provide answers to the 

question of what drive the returns on equities in different stock markets. One of those 

approaches has been the one focused in the asset pricing models, which has tried to find 

the risk factors that explain the behavior of the different financial assets such as stocks. 
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From the beginning of the modern finance, with the portfolio theory proposed by 

Markowitz (1952, 1959, 1987) and market model posed by Sharpe (1963), which 

derived in the classical Capital Asset Pricing Model (CAPM) developed by Treynor 

(1961), Sharpe (1963, 1964), Lintner (1965) and Mossin (1966); both academics and 

practitioners, have tried to determine a systematic risk factor that explains the returns on 

equities in order to be able to price stocks correctly.  The CAPM poses that the return on 

an equity is given by the systematic risk beta that moves all the stocks in the system, 

which corresponds to the sensitivity of the return on a specific stock to the variations of 

the Stock Market Index, plus the riskless inters rate and an idiosyncratic risk that affects 

only to that specific stock.  A large amount of theoretical and empirical studies have 

been developed through the years focusing in the classic CAPM, its derivations and 

extensions, including arguments and evidence in favor and against this model1. 

However the CAPM assumes that there is only one factor of systematic risk that 

explains the behavior of the stocks; i.e., the market factor, which in a global and 

complex economy represents a naive idea. 

 

Consequently, evolution of the financial science have resulted in other asset 

pricing models that have considered more than one systematic risk factor to explain the 

returns on equities. Perhaps the most renown alternative to the CAPM have been the 

Arbitrage Pricing Theory proposed by Ross (1976) and Roll & Ross (1980) which 

indeed considers a set of systematic factors based on two main pillars: a) a generative 

multifactor model of returns, and b) an arbitrage principle. 

 

Both unifactor and multifactor asset pricing models have been widely studied in 

financial literature up to the present2; for example, under the approach of the multifactor 

models we can find a large amount of studies which includes extensions of the classical 

CAPM where other systematic risk factors, in addition to the market one, have been 

considered. As a result, we can broadly divide the factor models in two types: 1) the 

models that consider that the risk factors are observables and can be proxied by some 

economic or financial observable variables directly or indirectly, and 2) the models that 

                                                            
1 An exhausted revision of seminal and more recent papers about the CAPM can be found in: Gómez-
Bezares (2000), Fama & French (2004) and Dempsey (2013). 
2 Interested reader can find a good revision of unifactor and multifactor asset pricing models in: Gómez-
Bezares (2000), Lee & Lee (2013) and Fabozzi (2013). 
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assume that the risk factors are unobservable and have to be estimated, via some 

statistical techniques, from the structure of the financial time series given by the actual 

quotations of the observed assets.  In addition, we can find mainly the following types 

of systematic risk factors: a) market, b) fundamental, c) macroeconomic, d) technical, 

and e) statistical. Market factor is actually the one considered in the classic CAPM; 

fundamental factors consider financial and accounting information of the companies as 

additional systematic risk factors; macroeconomic factors include macroeconomic 

variables; technical factors put attention in technical analysis indicators3; and finally, the 

statistical approach extracts the latent systematic risk factors from the actual returns on 

equities observed through a period of time. As we will explain in Chapter 2, and 

following Zangari (2003), those factors can be classified in function of their 

observability; i.e., market and macroeconomic factors are considered as observable 

while fundamental, technical and statistical are considered as unobservable. 

 

Each approach presents advantages and disadvantages and they are object of a 

continuous academic and professional discussion about the superiority of each one over 

the others. In fact, three of the most important international companies, that provide 

pricing services to the financial sector, base their models mainly in each one of these 

methodologies4. In addition, the most of the researches have given emphasis to the 

market, macroeconomic and fundamental risk factors to explain the returns on equities 

mainly in developed countries. Nevertheless, other underlying risk factors such as the 

statistical ones and the context of emerging markets such as the Mexican, have been out 

of the scope of financial research or at least have been sparsely studied5.  

 

In these Thesis we will focus in the statistical systematic risk factors approach 

which presents mainly two big differences regarding the other approaches. First, it 

considers that the systematic risk factors are not observable directly, but they are latent 

in the returns structure. Secondly, poses two separated stages in the process of identify 

those risk factor namely: a) risk extraction and b) risk attribution. The risk extraction 
                                                            
3 Such as: Excess stock return on previous month, trading volumes, etc. (See Zangari, 2003). 
4 For example, FTSE (http://www.ftse.com/analytics/birr), uses principally the macroeconomic approach; 
MSCI (https://www.msci.com/), the fundamental one; and Sungard (http://www.sungard.com/), the 
statistical. 
5 In this sense, this Thesis tries to fill this gap in financial literature considering that, in addition to its 
academic and scientific value per se, the importance and updating of the topic can also be supported by 
the interest of different companies that sell services of pricing returns and risk to different uses, such as 
performance evaluation and risk control. 
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stage represents the fact of extracting those unobservable systematic risk factors that 

drive the returns on equities and that are latent in the observable returns structure.  In 

this stage different dimension reduction and feature extraction techniques can be used to 

perform that extraction. As a result, we will have a set of systematic risk factors that 

explain the behavior of the stocks, but we won´t be able to identify the nature or names 

of them. In the risk attribution step, we will try to identify and give some meaning to 

those extracted factors via some additional methods such as: the association between 

stocks-sectors and the loading matrix, and the association of the extracted factors with 

some known economics or financial indicators6.  

 

1.2.2. Dimension reduction or feature extraction techniques. 

 

The four techniques7 that will be studied in this research can be considered as 

dimension reduction or feature extraction techniques8, that is, statistical or 

computational techniques capable of, in one hand, to reduce the dimensionality of a 

dataset that make possible to deal with a smaller amount of variables than the original 

ones9; or on the other hand, to extract the main features or characteristics that underlie 

in a dataset and allow to known the latent structure of some observable variables. 

Considering that in the context of the Arbitrage Pricing Theory we are interested in 

finding systematic risk factors as independent and uncorrelated as possible, next we 

briefly explain each technique used in this research as well as the properties of the 

                                                            
 
6 See Amenc & Lesourd (2003). 
7 The taxonomy and explanation of all the different existent techniques for this purpose is out of the scope 
of this dissertation; nevertheless, we are aware of the existence of a wide range of dimension reduction or 
feature extraction techniques, that could be classified under distinct approaches and can be used for these 
purposes. For taxonomy proposals and descriptions of some of those techniques, interested reader can 
consult: van der Maaten et al. (2009), Engel et al. (2011), Fodor (2002), Sarveniazi (2014), Sorzano et al. 
(2014).    
8 We chose the application of these four techniques attending a heuristic criteria that started with the 
classic techniques used to extract latent risk factors under a statistical approach, namely PCA and FA. 
Derived from the results obtained and the theoretical analysis of the properties of the extracted factors, we 
moved to more advanced technique that overcomes some weakness of the estimation produced by these 
two techniques; i.e., we used ICA in order to deal with the non-Gaussianity of the returns of the data and 
we used NNPCA in order to deal with the non-linearity in the extraction process. In other words, ICA 
considers higher order statistics in its estimation such as the kurtosis, while NNPCA incorporates the 
nonlinearity in the extraction process which produces non-linear components. 
9 In other words, we are interested to find those risk factors that in number are smaller than the number of 
directly observed factors. 
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component or factors extracted by each one of them, in order to justify the use of them 

and introduce the reader to the core of this dissertation. 

 

The classic techniques used to extract the underlying systematic risk factors, 

under a statistical approach, have been Principal Component Analysis (PCA) and Factor 

Analysis (FA). Principal Component Analysis represents more a geometric 

transformation than a statistical model, where we try to reduce the total amount of 

observed variables in a smaller number of synthetic new variables, which are formed by 

a combination of the original ones. The new synthetic variables or principal components 

are computed by a decomposition of the covariance matrix of the observed variables, 

where the principal components are ranked in a descendent order according the amount 

of variance explained by each one of them. Those principal components have the 

property of be linearly uncorrelated and, in our context, they will represent the 

underlying systematic risk factors from the dataset.  

 

 Factor Analysis is indeed a statistical multifactor model with explicit theoretical 

and distributional assumptions. In this case, the model considers that the variables are 

the result of a linear combination of a latent structure of common uncorrelated factors, 

that affect all the variables, plus a specific factor that affects only to each particular 

variable. Those underlying factors are estimated via a decomposition of the covariance 

matrix as well, but in this case it divides it in two parts, one explained by common 

factors (communality) and one explained by the specific factors (specificity). Then, the 

factors extracted have the property of be linearly uncorrelated too, but common to all 

the variables. In our context, they will represent the systematic risk factors as well. 

 

 Implicitly or explicitly the former techniques assume the multifactor normal 

distribution of the data, which implies a unlikely characteristic in the financial time 

series, since the most common is that this kind of data are univariate and multivariate 

non-Gaussian distributed, due to the long tails and leptokurtic distributions10.  

Independent Component Analysis (ICA) emerges as a solution to this problem since 

represents a technique capable to deal with the multivariate non-Gaussianity of the 

                                                            
10 See Richardson & Smith (1993), Dufour et al. (2003), Bai & Chen (2008), Lai et al. (2012), Tinca 
(2013), Duarte & Mascareñas (2014), Lakshmi & Roy (2012), Oprean (2012), Velásquez et al. (2012), 
Goncu et al. (2012), Bouri (2011) and Darushin & Lvova (2013). 
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variables. This technique goes beyond de correlation matrix considering higher order 

statistics in the estimation of the components to be extracted, which will denote a 

superior property: statistical independence11. Therefore, the independent component 

analysis extracts components from non-Gaussian time series that are not only linearly 

uncorrelated but also statistically independent which, in our context, represent more 

suitable systematic risk factors from a theoretically standpoint; i.e., they would be really 

statistically independent risk factors obtained from non-Gaussian data more suitable to 

introduce in a statistical approach to the APT.  

 

 Finally, the use of the Neural Networks Principal Component Analysis 

(NNPCA) responds to other weakness common to the three last techniques: the linear 

mixing of the factors estimated. That is, Principal Component Analysis, Factor Analysis 

and Independent Component Analysis poses that the factors and loadings of the model 

are result of a linear combination of those elements; however, Neural Networks 

Principal Component Analysis takes this mixing to the nonlinear level. In other words, 

we could consider this technique as an extension of the Principal Component Analysis 

where the extracted components are not only linearly uncorrelated but also nonlinearly 

too. In this case, the underlying components are nonlinearly mixed with their respective 

loadings via the joint effect of a nonlinear function applied to the hidden layers of 

weights considered in a neural network architecture used for the estimation. 

Consequently the systematic risk factors extracted by way of this technique will have 

the property of being nonlinearly uncorrelated, which theoretically represents a superior 

property compared to the previous components or factors; since now we would have 

risk factors that are not only linearly uncorrelated but nonlinearly uncorrelated too, 

which in a multifactor asset pricing model such as the APT would guarantee more 

different or independent risk factors to consider within the model12. 

  

                                                            
11 PCA and FA obtain linearly uncorrelated and statistically independent factors under the hypothesis of 
multivariate normality. 
12 We would like to remark that PCA is the only technique among those used in this study that produced 
the same solution independently of the number of components estimated. Conversely, FA, ICA and 
NNPCA will produce different results depending on the number of factors extracted due to the iterative 
nature of their estimation. 
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1.2.3. The Mexican stock market. 

 

In order to put in context the market object of this study, we will describe briefly the 

Mexican Stock Market.  

 

The Mexican Stock Market represents a very important emergent financial 

market which has been gradually flourishing through the years and has become in an 

attractive target of investment for important foreign institutional investors from different 

countries. Moreover, it has played a principal role in some of the financial crisis that 

took place in the last decades and whose effects reached the markets all around the 

world, such as: the Mexican Debt Crisis in 1982, the Mexican Peso Crisis (Tequila 

Crisis or December mistake crisis) in 1994, and obviously the Global Financial Crisis in 

2008-2009, where Mexico, as an appendage of United States of America’s Economy, 

suffered and transmitted its tremendous effects to other markets as well13.  

 

 The Mexican Stock Exchange (BMV, by its acronym in Spanish: Bolsa 

Mexicana de Valores) is the only stock exchange in Mexico; it is the second larger stock 

market in Latin America, only after the Brazil´s BM&F Bovespa and the fifth in 

America. It is part of the BMV Group which is a Mexican financial services company 

that owns and operates also other related financial services such as: the Derivatives 

Exchange (MexDer), the custody institution (Indeval) and the data market provider 

(ValMer). The BMV is a public company from June 2008 traded in the equities market 

of the BMV. The trading platform (SENTRA) has been completely electronic from 

1995 and from 2003, there has been access to the global market through the 

International Quotation System (SIC) from within the country. Currently it has alliances 

with the Chicago Mercantile Exchange (CME) and it is part of the Latin American 

Integrated Market (MILA by its acronym in Spanish) which integrates the Stock 

Exchanges of Colombia, Chile, Peru and Mexico. In addition to the equities market it 

trades debt instruments including government and corporate securities, mutual funds 

and warrants. The Exchange calculates 13 stock prices indexes. The major Index of the 

                                                            
13 Interested reader can find a complete description of the Mexican Debt Crisis (1982), the Mexican Peso 
Crisis (1994) and the impact and role of Mexico in the Global Financial Crisis (2008-2009) in Rabobank 
(2013a & 2013b) and Cypher (2010), respectively. 
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BMV, the Price and Quotation Index (IPC, by its acronym in Spanish: Índice de Precios 

y Cotizaciones) is a capitalization weighted index of the 35 leading stocks traded in the 

BMV14. The IPC decreased to 44,692.50 index points in June from 44,703.62 index 

points in May of 2015. Stock Market in Mexico averaged 13,981.93 index points from 

1988 until 2015, reaching an all-time high of 46,357.24 index points in September of 

2014 and a record low of 86.61 index points in January of 1988 (Trading Economics, 

2015). According to the World Federation of Exchanges (2015) the BMV’s domestic 

market capitalization in 2014 was 480,245.32 million of USD, which ranks it in the 22th 

place worldwide; in addition, currently there are 148 listed companies. 

 

1.3. Methodology. 

 

1.3.1. Objectives and hypothesis.  

 

The general objective of this Thesis is to estimate the generative multifactor model of 

returns on equities from a systematic risk factor statistical standpoint via the dimension 

reduction or feature extraction techniques: Principal Component Analysis (PCA), Factor 

Analysis (FA), Independent Component Analysis (ICA) and Nonlinear Principal 

Component Analysis (NLPCA), in order to extract the underlying systematic risk 

factors which will be tested in an average cross-section two stage econometric 

methodology of the Arbitrage Pricing Theory (APT), in the context of the Mexican 

Stock Exchange; once we have computed those results we will aim to compare the four 

techniques to the light of different criteria. 

 

In other words, our main purpose is to carry on different extraction techniques of 

latent risk factors in order to:   

  

                                                            
14 For details see: Bolsa Mexicana de Valores (2015). 
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1. Test the explanatory power of the generative multifactor model of returns on 

equities in the context of the Mexican stock market, and 

2. Test the presence of relevant risk premiums associated with those underlying 

risk factors in the context of a statistical approach of the asset pricing model 

APT. 

 

Consequently the specific objectives corresponding to each technique and the 

comparative study are defined as: 

 

1. To estimate the generative multifactor model of returns on equities PCA, FA, 

ICA and NNPCA.  

2. To build the reconstruction of the observed returns via the generative multifactor 

model generated by PCA, FA, ICA and NNPCA. 

3. To carry on the econometric contrast of the APT using the underlying systematic 

risk factors extracted by PCA, FA, ICA and NNPCA. 

4. To compare the four techniques in both a theoretical and empirical approach. 

 

Therefore, we pose the following general hypothesis: 

 

1. The generative multifactor model of returns is sensitive to the typology of the 

extraction technique used to extract the latent systematic risk factors. 

2. The average cross-section econometric contrast methodology of the Arbitrage 

Pricing Theory is conditioned to the extraction technique chosen, the frequency of 

the data and the expression of the model (returns or excesses). 

3. It exists stability in the interpretation of the latent risk factors according to the 

methodology used. 
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1.3.2. Scope and limitations. 

 

The scope and limitations of this research regarding the APT as an asset pricing model, 

the statistical risk factors approach, the extraction techniques employed, and the 

econometric contrast methodology used, is explained in detail in the related chapters. 

Nevertheless, we will like to provide to the reader an overview of the principal 

boundaries that outline the present investigation. 

 

Regarding the APT as an asset pricing model, we will focus only in the 

estimation of the generative multifactor model of returns via different techniques; 

however, the presence or absence of the arbitrage principle will be out of the scope of 

this research. Concerning the statistical approach considered, we will focus mainly in 

the first part of the process, i.e., the risk extraction stage; we will only propose a first 

attempt to the risk attribution step via some basic methodologies. About the 

econometric contrast of the APT using the systematic risk factors estimated via the four 

techniques studied, we will only make a first approach as well, using a two stage 

methodology, in order to evaluate the performance of this asset pricing model in the 

context of our research. In the first stage of the econometric contrast we estimate 

simultaneously, for all the system of equations, the sensitivities to the systematic risk 

factors (betas) extracted in each technique, then, in the second stage, we test the pricing 

model using an average cross-section methodology via ordinary least squares, corrected 

by heteroscedasticity and autocorrelation consistent covariance estimation.  
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1.4. Contributions. 

 

According to the above stated and as far as we concerned, this dissertation contributes 

to financial research by providing empirical evidence of the estimation of the generative 

multifactor model of returns on equities, extracting statistical underlying risk factors via 

classic and alternative dimension reduction or feature extraction techniques in the field 

of finance, in order to test the APT as an asset pricing model, in the context of an 

emerging financial market such as the Mexican Stock Exchange. In addition, this work 

presents an unprecedented theoretical and empirical comparative study among Principal 

Component Analysis, Factor Analysis, Independent Component Analysis and Neural 

Networks Principal Component Analysis, as techniques to extract systematic risk 

factors from a stock exchange, analyzing the level of sensitivity of the results in 

function of the technique carried on. 

 

 In addition, this dissertation represent a mainly empirical exhaustive study where  

objective evidence about the Mexican stock market is provided by way of the 

application of four different techniques for extraction of systematic risk factors, to four 

datasets15, in a test window that ranged from two to nine factors16, which produced 128 

models estimations, with all their corresponding phases and stages in each technique 

included in this Thesis, such as: a) estimation of the generative multifactor model of 

returns, b) simultaneously estimation of the betas, c) reconstruction of the observed 

returns via the estimated multifactor model of returns, d) interpretation of the estimated 

risk factors, e) a two-stage econometric contrast of the APT, f) comparison of the results 

of the four techniques under four different perspectives, etc. 

  

                                                            
15 Attending the information availability, on one hand we built four databases two of them with a weekly 
frequency and the other two with a daily periodicity. On the other hand, two of them were expressed in 
returns on equities and the other one in returns in excesses of the riskless interest rate. More details about 
the datasets used in this study appears in the Chapter 3 of this dissertation. 
16 The window of test was the result of computing the number of factors to retain using nine different 
criteria usually applied on PCA and FA. More details about are included in Chapter 3. 
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1.5. Structure of the Thesis. 

 

Finally, the structure of the Thesis is as follows. Chapter 2 presents a theoretical 

background of the Multifactor Asset Pricing Models as well as a proposal of taxonomy 

of risk factors. The Arbitrage Pricing Theory and the statistical risk factors approach, 

which represent the object of this Thesis, belong to this class of pricing models; thus, 

we will fix the standpoint of our research under the light of this classification. 

Considering that in following chapters, we will carry out our empiric study, the Chapter 

3 describes some elements that will be common for all the techniques used; i.e., the 

financial market studied, the databases utilized and the methodology of the econometric 

contrast carried on. The following three chapters will explain each technique and 

present the results of the empirical study. Therefore, in Chapter 4, we will extract the 

pervasive systematic risk factors via the classic latent variables analysis techniques: 

Principal Components Analysis and Factor Analysis, using in this last case the 

Maximum Likelihood (ML) procedure. In Chapter 5, we will extract the underlying risk 

factors by way of the signal processing technique known as Independent Component 

Analysis, using the ICASSO methodology to estimate the independent components. In 

Chapter 6, we will perform the extraction using the Nonlinear Principal Components 

Analysis via an auto-associative neural network approach known as Neural Network 

Principal Component Analysis (NNPCA). Chapter 7 presents a comparative study 

among techniques which includes both a theoretical and an empirical approach. First, 

we make a theoretical matrix parallelism among techniques and a comparison of the 

properties of the extracted component or factors. Secondly, we compare the empirical 

results obtained in each technique by way of four criteria: a) accuracy in the 

reproduction of the observed returns, c) statistical and graphical analysis of the 

underlying risk structure, c) results of the econometric contrast of the APT and d) 

interpretation of the factors. In Chapter 8 we draw the general conclusions and pose 

some future lines of research. Finally, we present the references consulted and an 

appendix including some additional figures and tables. 
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Chapter 2 
 
Multifactor asset pricing models: Taxonomy of risk 
factors. A review of the state of the art. 
 

2.1. Introduction. 

 

In the attempt to explain the equities’ price formation in the stock markets, multifactor 

asset pricing models have been an alternative to the classic Capital Asset Pricing Model 

(CAPM) from the beginnings of the modern financial economics. In the financial 

literature we can find many theoretical and empirical studies about this topic, being the 

Arbitrage Pricing Theory (APT) (Ross, 1976) the most representative multifactor asset-

pricing model. Following to Chan et al. (1998), we could set three typical uses that both 

academics and practitioners have made of this sort of models: a) prediction of future 

returns17, b) portfolio risk optimization18, and c) performance evaluation19. 

Nevertheless, as far as we concerned, in the literature we consider that there is not a 

clear and unified classification of them making the process of understanding the models, 

in any case some confusing, when we want to use them in empirical studies. The 

different approaches, theories and assumptions beneath the multifactor asset pricing 

models will guide us to diverse directions and methodologies when we conduct an 

empirical research. In order to propose an own clearer and unified taxonomy of the most 

relevant multifactor asset pricing models, that have been the base of the multifactor 

models found in financial literature, in this chapter we would try to make a brief review 

of them by taking account both some seminal and more recent works.  

 

 

 

                                                            
17 See Fama & French (1997). 
18 See Rosenberg (1974), and Elton et al. (1997). 
19 See Elton, et al. (1993) and Grinblatt & Titman (1994).  
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2.2. Multifactor models. 

 

Generally talking multifactor models has been an alternative to the CAPM but 

not a complete solution, they have some advantages over the CAPM since they 

represent a more generalized model20, consider other risk factors different to the market, 

and do not need so restrictive assumptions such as the normality in the returns 

distributions and the investors’ functions of utility; however they share some of its 

weaknesses like the linearity of their specification and the necessity of using historic 

data. We can distinguish three criteria to classify the multifactor models, the first 

attending to the value of the risk factors, the second according to the estimation of risk 

factors, and the third attending to the theoretical or empirical foundations of the model. 

 

We could formulate the traditional expression of a multifactor model of returns 

generation as follow: 

 

itjtjititiftit FFFRR   2211     (2.1) 

 

Where Rit represents the return on asset i in time t; Rft the risk-free interest rate; Bji the 

sensitivity of asset i to systematic risk factor j; Fjt the value of systematic risk factor j in 

time t common to all equities; and it the idiosyncratic risk that only affects to asset i. 

This multifactor model will lie beneath the Arbitrage Pricing Model and all the different 

types of multivariate models that we will review next, in other words, we assume that 

this generative multifactor model of returns exists in the financial markets and it will 

allow us to obtain the APT21. 

 

  

                                                            
20 In the sense that from a multifactor model approach the market model (CAPM) can be considered as a 
particular case of a multifactor model where there is only one systematic risk factor represented by the 
market. 
21 This multifactor model of returns can be expressed alternatively as returns in excesses of the riskless 
interest rate whose expression is as follows: 

itjtjititiftit FFFRR   2211
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In Figures 2.1, 2.2 and 2.3, we propose a taxonomy of the multifactor models 

following the three criteria stated before, according to the risk factors that they consider, 

based on partial classifications presented in Zangari (2003) and Amenc et al. (2003). 

 

2.2.1. Classification according to the value of the risk factors. 

 

A first criterion of classification, exposed in Figure 2.1, takes account the kind of risk 

factor that the model assumes, so following Zangari (2003) we can make a sub-

classification in this category depending on the assumed capacity to observe or not the 

value of the risk factors directly through some observable variables. Inside the 

observable factors we have market and macroeconomic factors, due to these two kinds 

of risks are taken from observable financial and economic indicators time series; the 

portfolio market for the former, and a set of predefined macroeconomic variables for the 

latter. The unobservable factors include fundamental, sector, technical and statistical 

factors. It is very important to stress the different philosophy underlying observable and 

unobservable approaches. The former, trust in the idea of the value of risk factors (Fs) 

can be observed directly through a market index or some macroeconomic time series. 

The latter, believe that value of risk factors can only be detected indirectly, through the 

securities’ exposure to those set of risk factors. Security specific models will take 

fundamental, technical or sector attributes as the measures of those exposures (s) to the 

values of risk factors (Fs). Statistical models will calculate value of factors (Fs) and their 

corresponding exposures or factor loadings (Bs) simultaneously by way of multivariate 

techniques such as: principal component analysis and factor analysis22.  

 

 

 

 

 

 

 

 

                                                            
22 In the classical version of the statistical models PCA and FA have been the traditional statistical 
techniques used to estimate the generative multifactor model of returns; nevertheless, in this dissertation 
we will use other two more advanced techniques to perform this estimation (ICA and NNPCA), in 
addition to the classic techniques PCA and FA. 
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Figure 2.1. Classification of multifactor models attending to the value of risk factors. 

 
Source: Adapted from Zangari (2003). 

 

2.2.1.1. Market factor. 

 

In other words we could interpret the market model practically as, the Capital Asset 

Pricing Model (CAPM)23, where we trust in the existence of only one kind of systematic 

risk premium corresponding to the market factor, which is represented for the returns of 

an index market in excess of the riskless interest rate. Returns on equities will be 

explained by the riskless asset interest rate plus the sensitivity of each asset for being 

exposed to the market factor. The expression of the CAPM is as follows: 

 

)()( fmifi RRERRE   ,       (2.2) 

 

where Ri is the return on equity i, Rf the riskless asset interest rate, Rm-Rf the market 

factor risk premium, - being Rm the return on the market index -, and finally the i the 

sensitivity of equity i to the market risk factor, in this case known as the systematic risk 

                                                            
23 For a deeper study of the original works about CAPM see Sharpe (1964), Lintner (1965) and Mossin 
(1966). 
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beta24. If we consider the CAPM a specific case of the APT where there is only one kind 

of risk factor and this is observable, we can include the CAPM as a multifactor model of 

the market risk factor class25. As we can consider that market factor is observable via a 

market index26, we estimate betas through a linear regression model. The CAPM has 

been widely contrasted, has been object of many critiques and of numerous new 

methodologies, either for the estimation of betas or for its econometric contrast, and has 

evolved in many new derivations of its original form. In financial literature we can find 

a large amount of theoretical and empirical studies where the CAPM has been objet of a 

strong academic discussion in favor and against this asset pricing model through the 

years; however, a revision of the state of the art of the CAPM is out of the scope of this 

dissertation27. Consequently, we will only give a short description of the CAPM’s more 

representative variations that have led to the majority of the versions of this model that 

have been applied in different studies.  

 

The consumption based CAPM includes the amount that an investor wishes to 

consume in the future computing a consumption beta that considers the covariance of 

the investor´s capacity to consume goods and services and the return of a market 

index28. The conditional CAPM or time varying CAPM is basically a variation of the 

static or classic CAPM where the betas and risk premiums vary over time29. The four 

moments CAPM or higher moments CAPM represents an extension of the classic 

CAPM where not only mean and variance are considered, but higher moments such as 

skewness and kurtosis30. The zero beta CAPM is a generalization of the classic CAPM 

                                                            
24 It is important to remark that the systematic risk factor is actually the market factor represented by (Rm-
Rf), and beta is really the exposure of each equity to this factor; however, when using this model betas are 
commonly understood as if betas themselves were the systematic risk. 
25 A deeper discussion about the consideration of the CAPM as a specific case of the APT or the APT as a 
multibeta interpretation of the CAPM, can be found in Shanken (1982, 1985), Connor (1984) and Dybvig 
& Ross (1985). 
26 A discussion about the observability of the market factor and the contrastability of the CAPM can be 
found in the known Roll’s critique (1977), Stambaugh (1982), Fama (1991) and Sharpe (1991). 
27 Interested reader can find some of the most representative earliest works in: Jensen et al. (1972), Fama 
& MacBeth (1973), Friend & Blume (1970), Blume (1971, 1975), Sharpe & Cooper (1972), Vasicek 
(1973), Statman (1981), Hawawini (1983), Reilly & Wright (1988), Miller & Scholes (1972), Blume & 
Friend (1973). Furthermore, some other representative more recent works  are: Carbonell & Torra (2003), 
Gómez-Bezares et al. (2004), Fama & French (2004), Dempsey (2013), Cáceres & García (2005), Moosa 
(2013), Novak (2015), Saji (2014), Bilgin & Basti (2014), Kalyvitis & Panopoulou (2013), Dajčman et al. 
(2013), Eikset & Lindset (2012),  
28 For details see: Marin & Rubio (2001) and Breeden et al. (2014). 
29 For details see: Nieto & Rodríguez (2005), Lewellen & Nagel (2003) and Tambosi et al. (2009). 
30 For details see: Jurcenzko & Maillet (2002), Hwang & Satchell (1999) and Fletcher & Kihanda (2005). 
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where it does not exist a riskless interest rate31. Finally, the integration of CAPM and 

APT refers to attempts done to mix or unify the two main asset pricing models in 

finance32. More recently, Chiarella et al. (2013) developed the evolutionary CAPM 

(ECAPM) where they incorporate the adaptive behavior of agents with heterogeneous 

beliefs within the mean-variance framework. 

 

2.2.1.2. Macroeconomic factors. 

 

Models using these kinds of factors rely on the idea of factor risk premiums (s) that 

affect the returns on equities can be identified using time series of predefined 

macroeconomic variables33. Although many studies have been done using this 

approximation, there is not a general theory about which macroeconomic measures must 

be used34. However, as Yip et al. (2000) point out, many of them coincide in basically 

four sets of macroeconomic magnitudes: change in inflation, industrial production, 

investor confidence and interest rates. Generally, in almost all the analyzed works the 

market factor is used as another macroeconomic factor too. In addition, in many of the 

classic works, authors have carried out multivariate techniques as principal components 

analysis and factor analysis, to reduce the dimensionality of the original predefined set 

of macroeconomics factors, in order to be able to work with a new fewer number of 

variables that combine the effect of all of them. Then, they estimate the sensitivities to 

each macroeconomic risk factor (s) using a cross-section or time series regression.  

 

  

  

                                                            
31 For details see: Marin & Rubio (2001), Black (1972) and Derindere & Adigüzel (2012). 
32 For details see: Wei (1988), Connor (1984) and Srivastava & Hung (2014). 
33 Strictly speaking, since the effect of expected changes of those macroeconomic variables are already 
incorporated to asset prices, this approach try to estimate the surprises in those macroeconomic variables 
and its effect on asset returns. A deeper explanation of the model’s estimation methodology that implies 
the obtaining of those innovations via autoregressive processes and a two-stage regression procedure can 
be found in the seminal studies of: Chen et al. (1986), Fama & Macbeth (1973), and Roll & Ross (1980). 
In addition a brief review about it can be consulted in Amenc & Lesourd (2003). 
34 See: Chen, et al. (1986), Hamao (1986), Berry, et al. (1988), Fama & French (1989, 1993), Chen 
(1991), Ferson & Harvey (1991), Pesaran & Timmermann (1995), Gangopadhyay (1996), Koutoulas & 
Kryzanowski (1996), and Bruno et al. (2002). 
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 This approach still have been popular in more recent studies such as: Bruno, et 

al. (2002), Twerefou et al. (2005), Shanken et al. (2006), Karanikas et al. (2006), Evans 

and Speight (2006)35, Entorf & Jamin (2007), Elhusseiny & Islam (2008), McSweeney 

& Worthington (2008), Mateev & Videv (2008), Javid & Ahmad (2009), Virk (2012), 

Leyva (2014) and Stancu (2014). This studies have carried on the macroeconomic 

approach to different countries and stock markets, and have used a diverse range of 

macroeconomic variables as risk factors, finding evidence in favor of distinct 

macroeconomic indicators depending on the country, the periods studied and the 

methodology of contrast used. 

 

The FTSE-BIRR model. 

 

The firm BIRR Portfolio Analysis Inc.36 use the macroeconomic approach in its 

commercial models. The unexpected changes in macroeconomic variables considered as 

proxies of systematic risk by this model are: investor confidence (confidence risk), 

interest rates (time horizon risk), inflation (inflation risk), real business activity 

(business cycle risk) and a market index (market timing risk)37. Once set the value of the 

observable factors through the corresponding macroeconomic time series, both the 

exposure to each factor and its risk premiums are estimated via regressions. This model 

is re-estimated every month and uses monthly data from April 1992. The BIRR’s core 

model includes five surprises in measured domestic macroeconomic factors but it can 

also be extended with some custom global factors. The advantage of this model is that 

using a much reduced number of observable factors it can explain the stocks’ behavior, 

and control the exposure to each kind of risk in a more intuitive way; since the included 

variables are better known and understood by the economic theory. As well as all the 

macroeconomic models, they have the disadvantage of presuppose both the number and 

nature of factor, which can result in flawed results.  

 

                                                            
35 In this study the authors use macroeconomic data sets but in real time. 
36 The Professors Edwin Burmeister, Roger Ibbotson, Steven Ross and Richard Roll, founded the firm 
BIRR Portfolio Analysis, Inc. in the late 1980’s. They developed this model to analyze US portfolios for 
exposure to a range of macroeconomic factors. FTSE Group purchased this firm in March 2010. See 
FTSE-BIRR website: http://www.ftse.com/Analytics/BIRR  
37 For details of each type of risk see: Roll et al. (2003). 
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2.2.1.3. Fundamental factors. 

 

Another trend of models has been that using fundamental variables or some security’s 

accounting-based characteristics to explain the returns on equities such as: size, 

leverage, book value to market value ratio, price-earnings ratio (PER), and cash flow to 

market value ratio. These models emerged in the eighties and nineties as a response to 

complete the explanation of asset returns not given by the market factor of the CAPM38. 

It is important to remark that the main difference between fundamental and 

macroeconomic factors as exposed in Yip et al. (2000), is the components that those 

models supposed to be known. Fundamental models assume the exposures 

(sensitivities) to the different kinds of systematic risk (s) as given and estimate the risk 

premium (s) of the security by being exposed to each class of systematic risk; whereas 

the macroeconomic models’ philosophy is in the contrary sense, they presuppose the s 

and estimate the s
39. Thus, in this case fundamental variables will represent the 

exposures to each kind of systematic risk or s, and the model will try to estimate the 

factor risk premiums or s by way of either a cross-section or a time series regression. 

Next we will expose briefly some of the most representative fundamental models. 

 

Fama and French three-factor model or Extended CAPM. 

 

Fama and French (1993, 1995 & 1996) proposed an extended model to explain asset 

returns considering two additional factors in addition to the marker factor: the book to 

market ratio, and the size of company, measured via its market capitalization. The 

formulation of this model is as follow: 

 

       HMLESMBERRERRE iiFmiFi 321)(          (2.3) 

 

                                                            
38 See: Rosenberg (1974), Keim & Stambaugh (1986), Jaffe et al. (1989), Fama (1991), Chan, et al.  
(1991), Fama & French (1992, 1993, 1995, 1996, 2012), Grinold & Kahn (1999), Lakonishok et al. 
(1994), Connor (1995), Carhart (1997), Brennan et al. (1998), Subrahmanyam (2005), Karanikas et al. 
(2006). 
39 Strictly speaking, the lambdas have to be calculated in a first stage, following a multifactor linear 
generative model of returns from the values of factors (F’s), which represent the elements that 
macroeconomic models consider as given and that can be observed.   
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Where E(Ri) represents the expected return of asset i; Rf, the risk free interest 

rate; E(Rm), the expected return of the market index; SMB (small minus big), the 

difference between the returns of a small capitalization portfolio and a big capitalization 

portfolio; HML (high minus low), the difference between the returns of a high book to 

market ratio portfolio and a low book to market ratio portfolio; and the s the factor 

loadings40. 

 

Although in their empirical studies this model achieves to explain the securities 

returns in a better way than the market model, they remark that the extra factors are not 

unique41. Actually, the explanatory power of other different fundamental factors has 

been demonstrated in several papers focused on the fundamental approach. 

 

Carhart (1997) four-factor model. 

 

It is practically an extension of the former model, where the momentum is added as the 

fourth factor. Its expression is as follow: 

 

       )1()( 4321 YRPRHMLESMBERRERRE iiiFmiFi      (2.4) 

 

Where PR1YR denotes the difference between the highest returns and average or lowest 

returns in the last year. 

 

  

                                                            
40 Strictly speaking this model mix one observable factor (the market) with two unobservable variables 
(SMB and HML); nevertheless, it is considered the seminal or classic model under the fundamental 
approach. 
41 In other words, as in the macroeconomic and technical approach, the fundamental one is subject to 
present the error in variables problem, since if we choose other different factors to use as explanatory 
variables, maybe we will have different results. 
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The MSCI-BARRA model. 

 

The company of support to investment processes MSCI-BARRA42 created this model 

that represents one of the most commercial fundamental multifactor models in the 

market. This model consider that asset returns can be explained by fundamental 

attributes of the firm, this characteristics would represent the exposure or sensitivity 

(betas) to the different kinds of systematic risk, these betas are supposed to be known, 

and then factor returns are calculated43.  

 

The returns on equities follow this factor model. 

itkt

K

k
iktit uR 




1

       (2.5) 

Where Rit, is the return on equity i in excess of the riskless interest rate; ik, the factor 

loading or exposure of asset i to risk factor k; k, the return on factor k; and ui, the 

specific return on equity i.  

 

 The Barra’s model poses two classes of factors: industrial sector factors, that 

measure the differences in behavior among assets of different industry sectors; and risk 

indices factors, that determine the variation in performance among securities 

considering non-industrial factors44. Thus, the Barra’s model considers 65 factors in 

total, estimating their returns monthly. 

 

  

                                                            
42 MSCI and Barra joined together in 2004 when MSCI acquired Barra. Barra Inc. has been working since 
1975. Morgan Stanley is the majority shareholder of MSCI Barra. See: MSCI-Barra website: 
www.mscibarra.com. Nevertheless, we conserve the reference to the original name of this model in order 
to identify it in the way of this model has been regularly named and is found in the majority of sources. 
43 For a deeper study about MSCI-Barra model see: Amenc et al. (2003), Sheik (1996), and Barra (1998). 
44 For the American Market, Barra had defined 52 industrial categories and the next 13 risk indices: 
volatility, momentum, size, size non-linearity, trading activity, growth, earnings yield, value, earnings 
variability, leverage, currency sensitivity, dividend yield, and non-estimation universe indicator. 
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This model has evolved too and different authors, members of MSCI Barra, have 

developed newer versions such as: Curds & Gilfedder’s (2005) United Kingdom equity 

model45, that represents a particular multifactor model for the British stock market; and 

the Hemmatti’s et al. (2005) Barra Integrated Model (BIM)46, that is a multi-asset class 

model for forecasting the risk of equities, bonds, currencies and commodities.  In 

addition, the MSCI-Barra’s research division frequently publishes recent papers about 

the current state of multifactor models for instance: Liu & Melas (2007), where the 

authors review the relationship between macroeconomic and fundamental models 

posing that fundamental models can be used as an approach to extract the effect of the 

macroeconomic factors and to understand the common factors affecting a portfolio 

return47; Miller (2006a), where the author propose an hybrid version of multifactor 

model combining fundamental and statistical factors48; and Miller (2006b) where the 

different kinds of factor models are revisited. 

 

Finally, more recent studies that have used the fundamental approach are: Case 

et al. (2011), Miranyan (2012), Carrasco-Gutierrez et al. (2012), Stancu & Stancu 

(2014). In all of them different factors, methodologies of contrast, specifications of the 

model and results in favor or against this approach have been reported. In addition, 

other companies such as Northfield49 has developed its asset pricing commercial models 

on this approach. 

 
                                                            
45 This paper refers to the newer version of the UK equity models (UKE7) but there are former versions 
(UKE6) that can be consulted in the MSCI website. 
46 This reference is about the newer version of the Barra Integrated Model (Version 204), former versions 
can be found in the MSCI Barra Website. 
47 They propose a decomposition of the fundamental factors returns into two parts: one due to 
macroeconomic influences and other due to sources other than macroeconomic, subsequently they split 
asset returns in three parts: a) a macroeconomic common factor component, b) an ex-macro common 
factor component and c) an specific return component. In addition, the authors distinguish two types of 
macroeconomic factors: a) economic variables like GDP growth, inflation, industrial production, etc., and 
b) market variables: like interest rate, exchange rates, commodity prices, etc. They pose that market 
variables are preferable to economic variables because they capture unanticipated changes in 
macroeconomic conditions, they are not subject to reporting lags and retrospective revisions and also, 
they are available at higher frequencies. 
48 The author proposes the integration of the statistical factors by way of keeping the original fundamental 
factor model, but extracting the statistical factors via a decomposition of the fundamental factor model’s 
residuals. Consequently, the asset returns are divided again in three blocks: a) fundamental common 
factors, b) statistical common factors, and c) specific return element. Besides he carries out an empirical 
study on the Japanese market, where the hybrid model outdoes modestly the forecasting performance of 
the fundamental standard Barra’s model for the Japanese market (JPE3). 
49 See Northfield website: http://www.northinfo.com/  
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2.2.1.4. Technical factors. 

 

This approximation to risk factors rests on the idea of stock prices collect all the 

information and effects of any endogenous and exogenous source that can affect the 

future returns on equities. Subsequently, the standpoint of these models is that the past 

returns on equities can explain their future returns. The same as in fundamental models, 

exposures to risk factors (s) are represented by securities specific’s characteristics 

named here technical factors like: excess stock returns on previous month or trading 

volumes; and similarly risk premiums (s) will be calculated via regressions models. 

Studies that have focused in this approach exclusively are scarce, however we can 

mention the following works: Levin (1995) that uses a multilayer feedforward neural 

network to predict the stocks return based on its exposure to various technical and 

fundamental factors; Su (2006) that tests two multifactor models that include technical 

factors on the Chinese stock market; Bettman (2007) that consider technical factors in 

the context of the Australian market; and Breloer et al. (2014) that compare country 

momentum and sector momentum in global equity mutual funds. 

 

2.2.1.5. Sector factors. 

 

This kind of factors are the another expression of security specific factors, and follow 

the same philosophy that fundamental and technical designations, with the difference of 

sector models will approach asset’s sensitivity to systematic risk factors (s) by the use 

of variables of the different industry sectors namely: energy, transportation, technology, 

etc. As in the technical factors, studies focused exclusively in this approach are scares, 

nevertheless we can mention the works of de Moor & Sercu (2010, 2011) where they 

compare country versus sector factors in international stock returns. 
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2.2.1.6. Statistical factors. 

 

This approach share a similar standing with the technical factors, about the stock prices 

gather all the effects of relevant facts or economic forces that can drive the assets 

returns, but with a different standpoint. The philosophy of these models is that 

systematic risk factors can be extracted from the own structure of historical returns of a 

set of assets, through the statistical analysis using some reduction of dimensionality 

techniques. As Miller (2006b) indicates: “statistical methods can uncover relations from 

the patterns in records of historical returns and order them by strength.” In this case, our 

first main objective will be uncover the pervasive systematic risk factors without taking 

care about the nature of the risk premiums (s) or that of the sensitivities to factors (s), 

since at first sight, they will not have a clear economic interpretation once extracted. In 

a second step, we could try to identify them with some macroeconomic, sectorial, or 

fundamental variables via correlations or other techniques50. 

 

Unlike fundamental and macroeconomics models, here we do not presuppose as 

known either the sensitivities to the systematic risk factors (s) or the risk premium for 

the exposure to each kind of risk factor (s); thus, both set of parameters are estimated 

simultaneously. We start decomposing the covariance matrix via classic multivariate, 

signal processing or neural networks techniques to extract the systematic risk factors 

and the equities’ exposure (s) to each kind of them; then, we estimate the risk premium 

for each type of systematic risk (s) generally through a cross-sectional regression. 

Statistical models have two important advantages: first, the systematic risk factors 

extracted are orthogonal51; secondly, they do not need to predefine a set of factors, i.e. 

the asset returns structure will generate them by way of the factor extraction techniques, 

making this type of factors less biased in terms of a subjective risk factors selection 

criterion. They have the disadvantage that the obtained factors do not have a direct 
                                                            
50The classical earliest empirical studies about the APT such as: Roll & Ross (1980), Reinganum (1981), 
Chen (1983), Cho et al. (1984), Bower, et al. (1984), Beenstock & Chan (1988), Connor & Korajczyk 
(1988) and Lehmann & Modest (1988) were done under this statistical scope focused only in the first 
step. Some more recent works that have been used this statistical standpoint like Gómez-Bezares (1994), 
and Jordan & García (2003), have made both the extraction and the later identification of factors. In 
addition, Amenc et al. (2003) present an alternative way for labelling the pervasive factors using known 
indicators to come back to an explicit factor decomposition from an implicit decomposition. 
51 That is completely uncorrelated each other. 
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economic interpretation; at first sight, each factor represents only a portfolio with 

sensitivity to itself equal to one, and null sensitivity to the rest of factors. 

 

The Sungard model. 

 

As in the case of FTSE-BIRR that bet for the macroeconomic models, and MSCI-

BARRA for the fundamental ones, Sungard52 has trust in the statistical approach for 

their commercial products. Their models are completely based on the Ross’s Theorem 

of the Arbitrage Pricing Theory; they factorize the variance-covariance matrix to 

decompose it in the common factors and the idiosyncratic elements but using a specific 

statistical estimation technique, different from the classical principal components 

analysis and the factor analysis, that enable to work with a large data sample53. 

Depending on the country, their equity risk models consider around 20 and 25 statistical 

factors for getting the risk measurements; later in a second step, they look for risk 

attributions by apportioning fractions of the estimates to some observable variables. In 

other words, they decompose explicit or observable factors with the help of implicit or 

statistical factors, in order to explain the latter by way of the former54. The procedure 

followed by this model begins gathering a large sample of asset returns observations 

(including all kinds of traded assets: stocks, bonds, commodities, currencies, etc.)55, that 

are grouped together for extracting the factors. The assets are clustered in homogeneous 

groups according to their covariance behavior; then, the returns on each group are 

calculated by adding the individual returns to obtain an index for each group. These 

indices represent the risk factors; they are constructed in such a way that they are 

uncorrelated and enable to compute the factor loadings, the coefficient of the specific 

                                                            
52 The original model was developed by the firm Advanced Portfolio Technologies (APT) which was 
founded in 1985 by Prof. John Blin and Steven Bender. This firm was acquired by Sungard in 2008 which 
recently (August 2015) has been acquired by Fidelity National Information Services Inc. (FIS). See 
Sungard website: http://www.sungard.com/ and FIS website: http://www.fisglobal.com/  
53 They use Monte Carlo simulation to probe that their technique produces a true factorial structure, 
solving the problem of factor analysis when working with large data samples.   
54 The interested reader can find an explanation and demonstration of their standpoint in the Sungard 
website. They distinguish between risk measurement and risk attribution, and remark that the popular risk 
models confuse these concepts, mixing them or reversing their order, subsequently they produce 
erroneous risk measurement and attributions.  
55 This is for avoiding the concentration ratio (number of asset over the number of time observations) 
“trap”, consisting in having a fewer number of assets than the number of return observations. According 
to the APT firm, the Ross’s APT theorem implies that the number of asset should be greater than the 
number of return observations due to the non-synchronicity of the prices frequency. 
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component, and later the factor risk premiums via regressions. The estimations use three 

and a half years of weakly returns56.  

 

The EM applications Inc. 

 

In addition, other important commercial company that based its models on this 

approach is EM applications57. According to this firm (EM applications, 2015a & 

2015b), we can summarize the main characteristics of the statistical factor models as 

follows: 

 

1. The attribution risk in the statistical factors are not pre-specified and can be 

given to different macroeconomic, fundamental or user selected factors. 

2. They starts with no assumptions about the factors or factor loadings and treat 

them both as unknown. 

3. The previous values are obtained as a result of an estimation based on the 

securities returns. 

4. Statistical factor models find independent factors that maximize the 

explanatory power for the security returns. 

5. The flexibility of the statistical factor modes allows portfolio managers to 

attribute the risk to any risk factor rather than being limited to pre-specified 

macroeconomic or fundamental indicator that could even exclude important 

and relevant risk factors. 

 

Finally, although in a smaller number, studies focused on this approach can be 

found in financial literature as well. A review of the state of the art on this issue is 

presented in Chapter 4 where we present the first techniques used for the estimation of 

the generative multifactor of returns under the statistical approach to the Arbitrage 

Pricing Theory used in this dissertation. 

 

 

                                                            
56 For more details about the model procedure see Sungard website: 
http://www.sungard.com/solutions/risk-management-analytics/investment-risk/APT and Amenc et al. 
(2003). 
57 See EM applications website: http://emapplications.com/index.php?q=research/statistical-factor-model 
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2.2.1.7. Comparison among the different models. 

 

Although it is difficult to determine which of the former multifactor models is the best, 

the empirical evidence of studies like Connor (1995), shows that statistical and 

fundamental models outperform macroeconomic models in terms of explanatory power; 

and that fundamentals outperform lightly the statistical ones. However, for many 

authors the macroeconomic models are the stronger, rather than the weaker in a 

theoretical and intuitive framework. Moreover, defenders of the macroeconomic models 

like Bumeister et al. (2003), pose that in addition to the intuitive interpretation of 

macroeconomics factors, this approach allow to account with additional information to 

estimate better both: risk exposures and risk premiums, and not only stock returns 

explaining stock returns. Nevertheless, supporters of the statistical approach such as 

Sungard and EM Application firms, criticize macroeconomic and fundamental models 

because they may present the specification error econometric problem, they do not take 

account variance-covariance matrix of returns and they confuse the risk measurement 

and risk attribution concepts. However, statistical models are very sensitive to the 

extraction technique used and may produce different number and structures of factors 

depending on the periods of time and on the number of assets58; in addition they have 

the problem of the not easy interpretation of factors. Maringer (2004) make a good 

summary revision of advantages, disadvantages and recommended uses of 

macroeconomic, fundamental and statistical models; and Miller (2006 a & b) carries out 

a newer comparison complementing that of Connor’s (1995) classic study. Evidently 

each of the most famous companies selling commercial products based on the different 

approaches defend their own as the best solution; in that sense FTSE, MSCI and 

SUNGARD justify strongly the macroeconomic, fundamental, and statistical models 

respectively. Evidence of empirical studies has shown results supporting the three 

models.  

 

  

                                                            
58 This is precisely one of the objectives of this dissertation. 
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However, the academic discussion around this issue persist until now; for 

example more recent studies such as Leyva (2014) contrasted the benefits of using the 

macroeconomic multifactor models against the others; whereas, EM Applications 

(2015a, 2015b) present a comparative study about the different characteristics, 

attributions and advantages of the macroeconomic, fundamental and statistical factors, 

pointing to the statistical approach as the best one. The main advantages that they state 

for the statistical factor model when compared with the macroeconomic and 

fundamental models are: a) reduced problem with missing data, b) data inputs consistent 

across countries, i.e., no difficulties resulting from different accounting methods or 

macroeconomic measurement approaches since the only input required are the securities 

returns, c) high-frequency data, d) no missing factors, e) no factors miss-specified, f) 

model flexible to attribute outputs to factors other than those the model covers. 

Conversely, they pointed that the disadvantage against those models is that its outputs 

are not directly attributable to risk factors as in the macroeconomic and fundamental 

models. On the other hand, Spyridis et al. (2012) found similar results in the application 

of a macroeconomic and a statistical approaches to the APT in the Athens Stock 

Exchanges, where both version produced partial results in favor of this asset pricing 

model. 

 

On the other hand, other studies have tried to hybridize some different methods 

as an option to put together the advantages of each model, for instance Liu & Melas 

(2007) propose a model that combine fundamental and macroeconomic models, and 

Miller (2006a) mix the fundamental and statistical approaches. Finally, in Table 2.1 we 

summarize the relationship between the former models in terms of their assumptions, 

inputs, estimation techniques, outputs and attributions. 

 

Consequently, according to the above stated, we consider that there is not an 

indisputable verdict about the absolute supremacy of any type of them over the others; 

nevertheless, in this research we will focus in the statistical approach since we believe 

that represent a better  choice given the characteristics and attributes explained in this 

section. 
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Table 2.1. Relationship among factor models. 

Factor model type Assumption Inputs Estimation Technique Outputs Attribution 
Market Market factor (Market 

index). 
Security returns and 
market index. 

Time-series regression. Security factor betas. Only one factor 
identified with the 
market index pre-
specified. 

Macroeconomic Macroeconomic factors 
(return factors) e.g. 
inflation and GNP 
growth explain all 
systematic risks. 

Security returns and 
macroeconomic 
variables. 

Time-series regression. Sensitivity to each factor 
(factor loadings) are 
estimated. (Security factor 
betas.) 

Only macroeconomic 
factors which are pre-
specified. 

Fundamental 
 

Fundamental factors (e.g. 
P/E, P/B, Size etc.) proxy 
for factor loadings. 

Security returns and 
security 
characteristics 
(Betas). 

Cross-section regression. Fundamental factors (return 
factors) are estimated. 
 

Only fundamental factors 
which are pre-specified. 

Technical Technical factors (e.g. 
excess stock return on 
previous month, trading 
volumes) proxy for factor 
loadings. 

Security returns and 
security 
characteristics 
(Betas). 

Cross-section regression. Technical factors (return 
factors) are estimated. 

Only technical factors 
which are pre-specified. 

Sector Sector factors (e.g. 
energy, transportation, 
technology) proxy for 
factor loadings. 

Security returns and 
security 
characteristics 
(Betas). 

Cross-section regression. Sector factors (return 
factors) are estimated. 

Only sector factors 
which are pre-specified. 

Statistical No prejudged return 
factors or factor loadings. 
Both are estimated by 
statistical technique 

Security returns. 1. Dimension reduction or feature 
extraction techniques.  

2. Cross-section regressions. 

Statistical Factors and 
Security Factors Betas. 
Both return factors and 
loadings on each factor are 
estimated. 

Attribution to any factors 
(Macroeconomic, 
Fundamental, etc.) users 
select. 

Source: Own elaboration adapted from Connor (1995), Zangari (2003) and EM Applications (2015a). 
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2.2.2. Classification according to the estimation of the risk factors. 

  

In Figure 2.2, we mix the former classification with the one proposed by Amenc et al. 

(2003), where they propose a different categorization depending on whether the factors 

are extracted from the own assets returns (implicit or endogenous models) or they are 

estimated from external identifiable variables (explicit or exogenous). According to this 

classification statistical models would be the only type of implicit or endogenous model, 

and therefore market, macroeconomic, fundamental, sector, and technical models would 

be included in the explicit or exogenous category.  

 

Figure 2.2. Classification of multifactor models attending the estimation of risk factors. 

 

Source: Adapted from Zangari (2003) and Amenc et al. (2003). 
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2.2.3. Classification by the theoretical or empirical foundation of the 

 model. 

 

In Figure 2.3, we present the above explained models inside another different criterion 

of classification proposed by Amenc et al. (2003), where they divide multifactor models 

in two categories: those based in a financial economics concept as the arbitrage theory, 

and those based only on empirical considerations. 

 

Figure 2.3. Classification of multifactor models according to their empirical or 

empirical foundations. 

 

Source: Adapted from Zangari (2003) and Amenc et al. (2003). 
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2.2.3.1. Arbitrage models. (The Arbitrage Pricing Theory). 

 

The Ross’ (1976) Arbitrage Pricing Theory propose that returns on equities are formed 

by the riskless asset interest rate plus the risk premium of a set of risk factors common 

to all the securities, to which each individual security will have an specific exposure; 

and also an specific risk premium that will only affects to each equity in particular. This 

theory and its derived pricing model rest on two main concepts: a generative multifactor 

model of returns and an arbitrage argument or arbitrage absence principle59. The APT’s 

pricing model equation is as follow: 

 

kikiiiRE   ...)( 22110       (2.6) 

 

Where 0 represents the riskless interest rate, the k , the risk premium associated to 

each different type of systematic risk factor, and the k , the sensitivity of equity i to 

each type of systematic risk (beta). When we use statistical models we consider that the 

risk factors are unobservable so, the estimation of this model implies first the extraction 

of the risk factors (s) through techniques of data reduction or feature extraction like: 

the classic multivariate methods of Principal Component Analysis (PCA) or Factor 

Analysis (FA), the signal processing technique of Independent Component Analysis 

(ICA), the neural networks procedures of Principal Component Neural Networks 

(PCNN) and other recent tools. Once we have extracted the systematic risk factors we 

can proceed to estimate the model parameters (s) by means of a linear multiple 

regression or other alternative methodology of econometric contrast. Something 

important to remark is that in this kind of models, risk premiums (s) represent 

attributes of the factors not of the individual securities, as we will see in the empirical 

models. When we use predefined macroeconomic variables in the APT-type models 

these s may represent the link of securities with some aspects of the economy, 

consequently we would include macroeconomic factors (models) inside this category as 

well. Some variations of the APT model are the followings: 

                                                            
59 For more details see Ross (1976), Roll & Ross (1980), Roll & Ross (1994), Gómez-Bezares (2000), 
Gómez-Bezares, et al. (1994), Marin & Rubio (2001), Amenc & Le Sourd (2003), amongst others. 
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Exact Arbitrage Pricing Theory (EAPT). 

 

Strictly speaking, the original Ross’ APT pricing equation has the problem of 

representing only an approximation of the asset pricing relation, mainly due to the 

problem of the impossibility of constructing a perfectly well diversified portfolio that 

eliminate completely the non-systematic risk in an economy with a finite number of 

assets. This situation could result in a miss pricing of some securities60, prompting many 

authors to improve the original model by transforming the approximate pricing relation 

into an exact pricing relation by way of adding additional restrictions61 or carrying out 

recent mathematical developments62. These kinds of approaches are known as Exact 

Arbitrage Pricing Theory. 

 

 Finally, other representative variation of the APT that have been applied on 

different studies through the years is the International APT, which represents an 

extension of this model to the international arena where it is assumed that the currency 

movements affect the assets factor loadings and the associated risk premiums, and it is 

included the joint hypothesis that the international capital market is integrated and that 

the APT is internationally valid63.   

 

  

                                                            
60 Nevertheless, empiric studies have shown that the pricing errors are negligible for all assets under 
consideration. 
61 See: Chamberlain (1983), Dybvig (1983), Grinblatt & Titman (1987), Connor (1984), Huberman et al. 
(1987), and Lehman & Modest (1988). 
62 See Khan & Sun (2003) where authors pose a tri-variate decomposition of risk: essential, non-essential 
and unsystematic risk.  
63 See: Dewachter et al. (2003), Morelli (2009) and Armstrong et al. (2012) 



CHAPTER 2. MULTIFACTOR ASSET PRICING MODELS. TAXONOMY OF RISK 
FACTORS. A REVIEW OF THE STATE OF THE ART. 

 

53 
 

 

2.2.3.2. Empirical models. 

 

As Amenc et al. (2003) expose, in arbitrage models the risk premiums are 

characteristics of the factors independently from the securities responding to the shocks 

of external influences; conversely, in empirical models risk premiums are associated to 

specific characteristics of the securities. Unlike the APT-type models empirical models 

do not follow strictly an arbitrage theory and do not presuppose a generative factor 

model of returns, their philosophy is basically the same that we explained in the 

fundamental factors section. This kind of models will try to explain the securities 

returns64 through a decomposition using security-specific factors; i.e. specific securities 

attributes that are not necessarily linked to the economy in general.  In other words, 

these models use specific securities’ information instead of macroeconomic variables. 

The three risk factors under the security-specific sub-category in Figure 2.3 would form 

part of this division, because the used data are related to characteristics of particular 

securities namely fundamental, technical or sectorial indicators. Once again, we could 

classify the CAPM (market factor model) within this category as a multifactor empirical 

model, considering it as a particular case where there is only one security-specific factor 

named the beta of each equity with the market index. The firm MSCI-BARRA model 

would be another example of empirical models too. 

 

 

 

 

  

                                                            
64 Strictly speaking: the risk premiums. 
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Chapter 3 
 
Databases and methodology for the econometric 
contrast. 
 
3.1. The Mexican Stock Exchange. 
 
The empirical study was carried out on the Mexican Stock Exchange (BMV); for this, 

two aspects were taken into account: first, that very little research has been done 

concerning this institution; second, its relevance as an emergent financial market. Some 

136 firms are listed on the BMV, its market value is about 42.86% of Mexico’s GNP 

and its average daily operation volume exceeds 94,785 million shares, which represent a 

value of about 222,557 million US dollars65. In spite of the international financial crisis, 

in 2009 its main index - the Prices and Quotations Index (IPC) - achieved 32,120.47 

points which represented an annual return of 48.79% in US dollars, its level of volatility 

during that year oscillated from 18% to 56% and the number of operations reached an 

all-time high of 61,024 transactions. All the foregoing conditions situated the BMV in 

the 26th and 21th places in the ranking of the main and emerging markets in the world, 

respectively in the hardest year of the financial crisis66. Along the last fifteen years 

(2000-2015) the IPC has appreciated by 504.95%, yielding an annual average return of 

12.09%67. Nevertheless, as an emerging financial market, its volatility is high, its 

liquidity is low and investment is mostly concentrated in the main index equities which 

is mainly represented by foreign institutional investors. 

 

 

 

 

                                                            
65 Figures taken from the Mexican Stock Exchange Annual Report 2013 (Bolsa Mexicana de Valores, 
2013).  
66 Figures taken from the Mexican Stock Exchange Annual Report 2010. (Bolsa Mexicana de Valores, 
2009). 
67 The returns are expressed in Mexican Pesos. The returns expressed in US dollars for these periods were 
not available. The figures were calculated with data taken from Bank of Mexico at September 14, 2015.  
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3.2. Description of the databases. 

 

3.2.1. The data. 

 

The stocks selected for this study formed part of the Price and Quotation Index (IPC 

by its acronym in Spanish) and represent leading companies in the industrial sectors to 

which they belong. Because of their importance in the Mexican Economy and their 

characteristics of liquidity and market value, these companies can be considered as 

representative of the Mexican stock market; thus, we can consider them to be 

characteristic securities of the BMV and the Mexican economy. Table 3.1 shows the 

names and sector of these shares 68.  

 

Both the period analyzed and the shares selected reflected the availability of data 

among the diverse information sources consulted. Our basic aim was to build a 

homogeneous and sufficiently broad database, capable of being processed with the 

multivariate and econometric techniques used in this study. 
 

 

 

 

 

                                                            
68 The two stocks not included in the daily databases are: CEMEXCP and KIMBERA. These stocks were 
not included in the weekly databases responding to information availability. 
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Table 3.1. Stocks used in the study. 
No. TICKER Name of the Company Sector Sub-sector Trade Sub-trade 

1 ALFAA  Grupo Alfa Industrials Capital goods 
Industrial conglomerates / 
Holdings 

Industrial conglomerates / 
Holdings 

2 ARA*  Consorcio Ara Industrials Construction House building House building 

3 AZTECAPO  TV Azteca 
Telecommunications 
services 

Communication media Communication media Radio & and television services 

4 BIMBOA  Grupo Bimbo Consumer staples Food, beverage & tobacco Food products 
Production and 
commercialization of food 
products 

5 CEMEXCP (1) Cemex Materials Materials Construction materials Construction materials 

6 CIEB  
Corporación Interamericana de 
Entretenimiento 

Consumer discretionary & 
services 

Consumer services Hotels, restaurants & leisure Leisure facilities 

7 COMERCIUBC  Controladora Comercial Mexicana Consumer staples Consumer staples Consumer staples Hypermarkets and supercenters 

8 CONTAL*  Grupo Continental Consumer staples Food, beverage & tobacco Beverages Soft drinks 

9 ELEKTRA*  Grupo Elektra 
Consumer discretionary & 
services 

Retailing Specialty retail Home furnishing retail 

10 FEMSAUBD  Fomento Económico Mexicano Consumer staples Food, beverage & tobacco Beverages Diversified beverages 

11 GCARSOA1  Grupo Carso Industrials Capital goods 
Industrial conglomerates / 
Holdings 

Industrial conglomerates / 
Holdings 

12 GEOB  Corporación GEO Industrials Construction House building House building 
13 GFINBURO  Grupo Financiero Inbursa Financial services Financial entities Financial groups Financial groups 
14 GFNORTEO  Grupo Financiero Banorte Financial services Financial entities Financial groups Financial groups 
15 GMODELOC  Grupo Modelo Consumer staples Food, beverage & tobacco Beverages Brewers 

16 KIMBERA (1) Kimberly-Clark de México Consumer staples 
Household & personal 
products 

Household products 
Household products / Cellulose 
and paper 

17 PE&OLES*  Industrias Peñoles Materials Materials Metals & mining Precious metals and minerals 

18 SORIANAB  Organización Soriana Consumer staples Consumer staples Consumer staples Hypermarkets and supercenters 

19 TELECOA1  Carso Global Telecom 
Telecommunications 
services 

Telecommunications 
services 

Wireless telecommunications 
services 

Wireless telecommunications 
services 

20 TELMEXL  Teléfonos de México 
Telecommunications 
services 

Telecommunications 
services 

Wireless telecommunications 
services 

Wireless telecommunications 
services 

21 TLEVISACPO Grupo Televisa 
Telecommunications 
services 

Communication media Communication media Radio & and television services 

22 WALMEXV Wal-Mart de México Consumer staples Consumer staples Consumer staples Hypermarkets and supercenters 

(1) Stock not included in the weekly databases responding to information availability. 
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First, we chose the IPC sample used from February 2005 to January 2006; then, 

we constructed two return databases taking into account, as the main criterion, that the 

equities chosen had remained in the IPC sample during all the considered periods for 

which information was available69. In accordance with these considerations, we 

prepared a database made up of 20 companies and 291 weekly quotations (DBWR) 

ranging from July 7, 2000 to January 27, 2006; in addition, one with 22 shares that 

included 1,410 observations (DBDR) from July 3, 200070 to January 27, 200671. We 

calculated the logarithmic weekly returns considering the assets’ closing prices72 for 

each Friday, in accordance with the following expression:  

     









1
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where rit is the return on equity "i" in time "t"; ln, the Neperian logarithm; Pit, the equity 

price "i" in time "t"; Pit-1, the equity price "i" in time "t" delayed one period. 

 

We also built two other databases considering the returns in excess of the 

riskless interest rate73. The interest rates considered as the riskless interest rate were the 

average weekly and daily funding interest rates using government securities, published 

by the Bank of Mexico. For the weekly databases, it was necessary to convert them into 

the weekly equivalent to make them comparable with our returns on equities. After that, 

we subtracted the daily and weekly riskless interest rates from the weekly and daily 

                                                            
69 Survival bias: Equities that did not remain in the IPC sample throughout the entire study period, 
because they were unlisted, substituted, or only present for some periods, were excluded. The purpose of 
this criterion was to work with a strong database (from a financial point of view), considering only stocks 
that had survived as part of the IPC sample throughout this period of time, satisfying all the listing and 
maintenance requirements established by the BMV. See Gómez-Bezares et al. (1994). 
70 In this case, we started in July because, until 2000, the IPC sample validity was half-yearly, with the 
new half-yearly sample beginning in July. From 2001 to 2010, the sample validity was yearly, changing 
each February. Currently, it changes in the month of August. 
71The number of assets and the periods considered were defined by the available information in 
accordance with the above-stated criteria. Unfortunately, since there are many gaps in the observations of 
several stocks in the Mexican market, it is very difficult to build a dataset of quotations which contains 
both a long number of observations and a large number of stocks. In our case, the 20 and 22 stocks 
considered represents the maximum number of shares from which we could obtain a good enough number 
of observations of all of them, that allowed us to build complete and homogeneous datasets for both 
periodicities (without missing values). This fact constitutes a very important aspect for the correct 
application of the extraction techniques presented. In addition, we decided to use two differently 
structured databases in order to test the case of weekly and daily returns as well as a larger and a smaller 
number of observations, according to the different studies found in literature.  
72 Although other studies have included other elements such as dividends and application rights to 
calculate the return on equities in addition to price variation, we could not incorporate them, as this sort of 
data was not available to us. 
73 The expressions of the models in returns and in excesses are presented in Chapter 2. 
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returns on equities, respectively, in the two databases described above. Thus, we 

produced two more new databases, including the same stocks and observations as in the 

former, but expressed as returns in excess over the riskless interest rate (DBWE and 

DBDE). Consequently, our study was applied to the four resulting databases, i.e., we 

tested the two model specifications for the two different databases.   

 

 The period analyzed in this study was considered according to the following 

criteria: 

 

1. In this Thesis we are testing different techniques for extracting the underlying 

systematic risk factors in the context of the Mexican Stock Exchange. Principal 

Component Analysis and Factor Analysis which represent the classic techniques to 

perform that extraction, under a statistical approach of the systematic risk factors, 

and Independent Component Analysis and the Neural Networks Principal 

Component Analysis, which represent alternative techniques to achieve this 

objective. 

 

2. The four techniques have an explanatory and a predictive character; however this 

research focuses only in the explanatory approach; that is, the potential of this 

technique to reproduce the observed returns on equities. 

 

3. The period data studied has been used to extract the generative underlying structure 

of returns, which explains the behavior of the returns in a period that will serve as a 

training period in future researches, where we will try to test the predictive capacity 

of our models in subsequent periods of time. 

 

4. Additionally, other reason for using this period of the dataset, was to be able to test 

this models in the pre-crisis periods, in order to be able to compare these results in 

future studies, where we will attempt to analyze the behavior of these techniques in 

crisis and post-crisis periods74.  

 

 
                                                            
74 Both the testing of the prediction power of the estimated models by way of the four techniques, and the 
comparison of the results in the crisis and post-crisis periods are out of the scope of this dissertation.  
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5. Finally, this period represents an interesting period of time in the Mexican political 

and economic spheres since represents the first six-year Presidential term of office 

where there was a political alternation in the Government of the Country; after more 

than 75 year of being ruled by the Institutional Revolutionary Party (PRI by its 

acronym in Spanish). This period corresponds to the Government of the first 

Mexican President of a different political party; Vicente Fox Quesada from the 

National Action Party (PAN, by its acronym in Spanish).  

 

3.2.2. Databases descriptive statistics. 

 

This section presents an exploratory statistical and graphical analysis of each database 

used in this study. For each one of them, we build: a) a figure with all the stocks plotted 

individually, b) the descriptive statistics and a test of univariate normality, c) the 

correlation matrix, d) the box plots, and e) the histograms with the normal distribution 

curve fit. For the sake of saving space we only present in this section some 

representative figures and tables related to the databases of weekly and daily returns75. 

First, in Figures 3.1 and 3.2 we present the graphics of all the stocks plotted individually 

corresponding to each database, respectively. Secondly, we present in Table 3.2, Figure, 

3.3 and 3.4, the descriptive statistics, the boxplots and the histograms corresponding to 

the first database, respectively. Thirdly, in Table 3.3, Figure 3.5 and Figure 3.6 we 

present the analogous tables and figures of the second dataset. 

 

 In the database of weekly returns the mean of the logarithmic returns for all the 

stocks considered, range from -0.19% to 0.82%, and the median from 0.00% to 1.28%; 

in almost all the stocks both values were close. In this database GEO B represented the 

stock that yielded the maximum average weekly return in the considered period, and 

CIE B, the one that generated the major average loss. The maximum logarithmic returns 

among the stocks oscillated from 10.37% to 26.20%, corresponding to TELMEX L and 

GEO B, respectively. On the other hand, the stocks highest average weekly losses 

fluctuated between -11.41% (GMODELO C) and -36.09% (ALFA A). The weekly 

                                                            
75 In the Section corresponding to Chapter 3 of the Appendix_2 of this dissertation, we include the figures 
and tables corresponding to the database of weekly excesses and the database of daily excesses, in 
addition to the correlation matrices of the four databases. 
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standard deviation ranged from 3.2% to 6.74%, which points to GMODELO C and 

GEO B, as the stocks with the lowest and highest volatility in the sample. Fourteen 

stocks present a negative skewness whereas six have a positive one, which implies that 

the returns of the sample reached more negative values. The twenty stocks are 

leptokurtic, with values higher than 3 in all the cases and reaching, in the case of 

TELMEX L, a maximum value of 7.78. Consequently, according to the results of the 

skewness and the kurtosis we can conclude that none of the stocks studied are univariate 

normally distributed, which will have implications on some aspects regarding the 

techniques used in this dissertation, as we will explain in the respective chapters. The 

Jarque-Bera test76 confirms this asseveration rejecting the null hypothesis of normality 

at the 5% significant lever for all the stocks, except in the case of ARA*. The former 

results can also be observed in the boxplots and the histograms presented in Figures 3.1 

and 3.2. Moreover, in the histograms we can see that the theoretical curve of the normal 

distribution do not fit the empirical distribution of the observed data, especially with 

respect to the leptokurtic shape of the distribution in almost all the variables. As a result 

of the temporal evolution observed in Figure 3.4, we can observe that in most of the 

cases there are presence of extreme values that will make difficult both, the suitable 

measure of the volatility and the application of certain multivariate statistical 

techniques.  

 

The results of the descriptive statistics of the database of weekly excesses are 

very similar to those obtained in the database of weekly returns, which implies that from 

a statistical and graphical standpoint, there is not significant difference in both 

expressions of the weekly databases77. Both expressions share also almost all the results 

concerning the stocks pointed in the descriptive statistics analysis above explained, 

except in the case that in this database the minimum median value corresponded to 

CONTAL*. Likewise, the Jarque-Bera test, and the conclusions derived from the 

boxplots and histograms are the same78. 

  

 

                                                            
76 We are aware of the  existence of other normality tests, however, we chose this because of the use of 
higher order moments, which will have implications in the techniques used in this study. 
77 See Table 3 of Chapter 3 in the Appendix_2. 
78 See Table 3 and Figures 1 and 2 of Chapter 3 in Appendix_2. 
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Finally, regarding to the correlation matrix of the four databases presented in the 

Appendix, we can determine that in all the cases the rates of returns are positively 

related, and that in almost all the cases we rejected the null hypothesis of non-

correlation among the stocks, except in the case of PEÑOLES* in the weekly 

databases79. This result may be considered normal, since PEÑOLES * is a mining 

company specialized in the extraction on precious minerals, thus, its anticyclical 

behavior can be a reason of its low or non-correlation with the rest of stocks in a weekly 

periodicity. As stated the major correlation were detected among stocks that belong to 

the same economic sector.  Further analysis about the correlation matrix of the 

databases studied is presented in Chapter 4, as preliminary test previous to the 

application of Principal Component Analysis and Factor Analysis. 

 

As stated above, the results of this exploratory analysis will have implications 

related to the application and settings of some parameters of the extraction techniques 

used in the following chapters of this dissertation. 

 
  

                                                            
79 See Tables 1, 2, 4, 5, 6, 7, 9 and 10 of Chapter 3 in Appendix_2. 
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Figure 3.1. Line plots (Multiple Graph). Database of weekly returns. 
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Figure 3.2. Line plots (Multiple Graph). Database of daily returns. 
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Table 3.2. Descriptive statistics. Database of weekly returns. 
 PE_OLES_BIMBOAGMODELOC FEMSAUBD CONTAL_ GEOB ARA_ WALMEXVSORIANABCOMERUBCELEKTRA_TELMEXLTELECOA1TLEVICPOTVAZTCPOGFNORTEOGFINBUROGCARSOA1 ALFAA CIEB 

 Mean  0.00473  0.00316  0.00187  0.00236  0.00204  0.00819  0.00490  0.00333  0.00075  0.00226  0.00265  0.00120  0.00132  0.00090 -0.00033  0.00685  0.00246  0.00341  0.00356 -0.00195 

 Median  0.00000  0.00191  0.00166  0.00175  0.00000  0.01281  0.00612  0.00295  0.00000  0.00095  0.00326  0.00000  0.00247  0.00201  0.00000  0.00774  0.00308  0.00616  0.00414  0.00042 

 Maximum  0.26198  0.17255  0.14711  0.14883  0.17023  0.24362  0.14126  0.13302  0.18310  0.17515  0.20223  0.10370  0.15319  0.16237  0.17154  0.20164  0.11297  0.13126  0.18784  0.13822 

 Minimum -0.19783 -0.15166 -0.11411 -0.16766 -0.15839 -0.23660 -0.13079 -0.13732 -0.17708 -0.14975 -0.20717 -0.20740 -0.15892 -0.22206 -0.17275 -0.12734 -0.21335 -0.15707 -0.36092 -0.26296 

 Std. Dev.  0.06740  0.04218  0.03214  0.04236  0.04384  0.06286  0.04060  0.03983  0.04383  0.04541  0.05687  0.03343  0.04444  0.04748  0.05275  0.04363  0.04259  0.04448  0.06189  0.05051 

 Skewness  0.34135  0.07769  0.31917 -0.25201  0.07159 -0.26224 -0.13353 -0.02611 -0.05328  0.13561 -0.24654 -0.57245 -0.12186 -0.39932 -0.35669  0.24866 -0.34963 -0.38022 -0.66087 -0.78432 

 Kurtosis  4.39484  4.77180  5.23799  4.74476  4.66921  5.12215  3.54832  4.59489  4.77280  4.46993  4.36743  7.78279  3.74571  5.74266  4.47000  4.52831  5.36087  4.30958  7.41083  6.21503 
 
 Jarque-Bera  29.24151  38.35626  65.67019  39.99115  34.03192  57.94051  4.51024  30.87516  38.24454  27.09040  25.62004  293.25403  7.46268  98.94046  32.37142  31.31952  73.50976  27.80589  257.08005 155.16387

 Probability  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.10486  0.00000  0.00000  0.00000  0.00000  0.00000  0.02396  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000 

 Observations  291  291  291  291  291  291  291  291  291  291  291  291  291  291  291  291  291  291  291  291 

 
Figure 3.3. Box plots. Database of weekly returns. 
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Figure 3.4. Histograms. Database of weekly returns. 
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Table 3.3. Descriptive statistics. Database of daily returns. 
 PE_OLES_ KIMBERA BIMBOA GMODELOCFEMSAUBDCONTAL_CEMEXCP GEOB ARA_ WALMEXVSORIANABCOMERUBC ELEKTRA_TELMEXLTELECOA1TLEVICPOTVAZTCPOGFNORTEOGFINBUROGCARSOA1 ALFAA CIEB 

 Mean  0.00103  0.00021  0.00065  0.00038  0.00050  0.00041  0.00077  0.00166  0.00101  0.00065  0.00017  0.00050  0.00053  0.00021  0.00025  0.00017 -0.00008  0.00142  0.00050  0.00071  0.00072 -0.00038 

 Median  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00057  0.00000  0.00000  0.00018  0.00000  0.00065  0.00063  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000 

 Maximum  0.17284  0.07140  0.13416  0.08319  0.08366  0.10476  0.07069  0.13482  0.07381  0.10450  0.07505  0.12618  0.12934  0.09048  0.09435  0.11929  0.10080  0.12981  0.10850  0.08851  0.11873  0.09308 

 Minimum -0.21357 -0.12347 -0.09773 -0.07743 -0.13353 -0.12434 -0.07464 -0.20733 -0.10821 -0.08852 -0.08496 -0.08618 -0.13902 -0.09986 -0.08427 -0.15453 -0.19462 -0.09706 -0.09856 -0.10483 -0.12943 -0.17632 

 Std. Dev.  0.02946  0.01513  0.01866  0.01579  0.01747  0.02111  0.01615  0.02453  0.01895  0.01873  0.01859  0.02044  0.02446  0.01562  0.01954  0.02197  0.02442  0.02050  0.01936  0.01921  0.02457  0.02132 

 Skewness -0.37290 -0.55302  0.37402  0.17371 -0.25180 -0.19380  0.13416 -0.10538 -0.04420  0.12443 -0.08386  0.43065 -0.12460 -0.10181 -0.11561 -0.10524 -0.50638  0.27478  0.21991 -0.23044 -0.11533 -0.66734 

 Kurtosis  10.16857  9.02902  7.62063  5.64679  7.19010  6.80465  4.20684  10.20437  5.93615  5.94402  4.61116  6.45394  6.49041  6.03784  4.79005  6.66166  8.03972  6.78240  5.04472  6.18174  6.39633  9.96161 
 
 Jarque-Bera  3051.74875  2207.37871 1287.20099  418.66316  1046.36974  859.25423  89.79688  3051.90518 506.94138  512.84070  154.15882  744.45079  719.39733  544.60981  191.39299  790.30896  1552.43422  858.25169  256.99029  607.23296  680.80834  2951.91390

 Probability  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000 

 Observations  1410  1410  1410  1410  1410  1410  1410  1410  1410  1410  1410  1410  1410  1410  1410  1410  1410  1410  1410  1410  1410  1410 

 
Figure 3.5. Box plots. Database of daily returns. 
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Figure 3.6. Histograms. Database of daily returns. 
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3.3. Methodology for the econometric contrast of the 
Arbitrage Pricing Theory. 
 
As a complement to the extraction of latent systematic risk factors by way of the four 

techniques used in this Thesis, we carried out an econometric contrast of the Arbitrage 

Pricing Theory (APT) using the underlying systematic risk factors extracted via 

Principal Component Analysis (PCA), Factor Analysis (FA), Independent Component 

Analysis (ICA) and Neural Networks Principal Component Analysis (NNPCA), in order 

to test its validity as a suitable pricing model for the sample and periods considered. The 

methodology for the contrast used to test the presence of relevant risk premiums 

represents only a first approach to the different existent econometric methodologies of 

validation of the APT, so the results should be viewed in that light80. 

 

3.3.1. The Arbitrage Pricing Theory model. 

The APT has been proposed as an alternative to the Capital Asset Pricing Model 

(CAPM), but it does not provide a complete solution. The APT has some advantages 

over the CAPM since it represents a more generalized model; it considers risk factors 

other than the market, it does not need restrictive assumptions such as normality in the 

distributions of returns and the investors’ utility functions, and the market portfolio does 

not play any role; however, it shares some of the CAPM’s weaknesses, like the linearity 

of its specification and the requirement of using historical data. The APT is supported in 

two main fundaments or pillars: a) a generative multifactor model of returns and b) an 

arbitrage argument. Thus, whereas the CAPM begins with the market model, the APT 

starts with a generative multifactor model of returns defined by the following 

expression: 

  

                                                            
80 The methodologies of contrast of the APT have presented many variations and version since the 
seminal empirical paper of Roll & Ross (1980). Interested reader can consult alernative methodologies of 
contrast in Campbell et al. (1997), Cochrane (2000), Nieto (2001a, 2001b), Marin & Rubio (2001), Leyva 
(2010, 2014).  
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itjtjititiiit FFFRER   ...)( 2211 ,      (3.2) 

where, jig represents the sensitivity of equity i to factor j, Fjt the value of the systematic 

risk factor j in time t common for all the stocks, and i the idiosyncratic risk affecting 

only equity i. 

 

The statistical approach to the APT assumes that the return on equity depends on 

a set of unobservable factors common to all stocks (Fs) and on one specific component 

(). It is assumed that the factors are uncorrelated with each other, as are the model’s 

residual terms, both with each other and with the factors. The problem here is that the 

values of the factors are unobservable, and so the betas cannot be estimated through a 

regression model, as is done in the market model. Subsequently, we need to use 

extraction techniques, such as the ones posed in this research, to estimate the former 

equation for all the assets simultaneously, and to be able to extract the value of the 

factors (Fs) and calculate their loadings or betas (s).  

 

The arbitrage argument or principle of arbitrage absence is based on the 

following reasoning. Taking into account the “single price law”, in the same market two 

identical assets should have the same price; otherwise it would be possible to carry out 

an arbitrage transaction and obtain a differential profit. At the heart of APT and its 

pricing model lies arbitrage opportunities analysis, since only in its absence can we 

define a linear relation between the expected returns and the systematic risks. In order to 

avoid arbitrage possibilities, the return on equity must be equal to the expected return on 

the portfolio that combines the factor portfolios and the riskless asset. An arbitrage 

portfolio is any portfolio constructed with no capital invested and no risk taken that 

yields a null return on average.  
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By applying the arbitrage argument to the multifactor generative model, we 

arrive at the fundamental APT pricing equation81: 

 

kikiiiRE   ...)( 22110 ,     (3.3) 

where, 0 represents the riskless interest rate, k the risk premium for each kind of 

systematic risk factor, and k the sensitivities or exposures to each type of systematic 

risk.  

 

3.3.2. Statistical risk factors. 

 

Our investigation is based upon the statistical approach of multivariate asset-pricing 

models; subsequently, we assume that the values of systematic risk factors are 

unobservable and that they must be extracted by means of statistical techniques. This 

approach presents certain advantages over others: gathering the required information is 

less expensive and more accessible than in macroeconomic or fundamental models; it is 

less subjectively biased because it does not predefine either the number or the nature of 

factors, so it is less exposed to an econometric specification error; and finally, the 

factors extracted are directly supported by a strong asset-pricing theory: the Ross (1976) 

APT.  

 In addition, it involves two differentiated processes namely, risk extraction and 

risk attribution, which make it more objective. Conversely, statistical factors do not 

have a direct economic or financial interpretation, although in a second phase they can 

be correlated or decomposed with the help of explicit variables82. In other words, from 

this standpoint, risk measurement and risk attribution are different steps of the process, 

while the rest of the approaches, such as the market, macroeconomic, fundamental and 

technical, usually mix these two differentiated processes in one step. 

 

                                                            
81 A mathematical demonstration for obtaining the fundamental pricing equation from the generative 
multifactor model of returns by the application of the arbitrage argument can be found in Amenc et al. 
(2003). 
82 See Amenc et al. (2003) and SUNGARD (2010). 
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3.3.3. Methodology for the Econometric contrast. 

The APT’s pricing equation in expression 3.2 can be tested by way of an average cross-

section methodology estimating the Ordinary Least Squares (OLS) coefficients of the 

following regression model: 

ikikiiiR   ...22110 ,      (3.4) 

Since both factors and sensitivities are computed simultaneously by the 

multivariate techniques usually employed, such as PCA and FA (Amenc & Le Sourd, 

2003), the straight methodology for contrasting the APT under the statistical approach, 

use directly the loadings estimated in expression 3.1 as the betas in the former 

regression model (Gómez-Bezares et al. 1994). Nevertheless, as Marin & Rubio (2001) 

and Nieto (2001a) remark, this methodology could present some econometric problems 

such as heteroscedasticity and autocorrelation in the residuals in addition to error in 

variables, which would yield inefficient OLS estimators with biased variances. One 

possible solution, not absent of problems but beneficial because of its simplicity, to the 

foregoing problems is to employ a two-stage methodology widely used in the 

fundamental and macroeconomic approach to the APT, where in a first stage we 

estimate the betas to use in expression 3.3 from the scores of the extracted factors, then 

in a second stage we estimate the lambdas.  

 

Following Bruno et al (2002)83, in the first stage we estimated the betas or 

sensitive to the underlying risk factors to use in expression 3.3, by regressing the factor 

scores obtained by PCA, FA, ICA and NNPCA as a cross-section on the returns and 

excesses. In order to improve the efficiency of the parameter estimates and to eliminate 

autocorrelation in the error terms of the regressions, we used Weighted Least Squares 

(WLS)84 for PCA, FA and ICA, and Seemingly Unrelated Regression (SUR) for 

NNPCA to estimate the entire system of equations at the same time.  

 
                                                            
83 In their work, the authors use principal component analysis to extract the underlying risk factors from a 
set of macroeconomic variables in the Spanish market. 
84 According to this methodology, as stated in the Eviews 7® User´s Guide II (Quantitative Micro 
Software, 2010): “The equation weights are the inverses of the estimated equation variances, and are 
derived from unweighted estimation of the parameters of the system”. 



CHAPTER 3. DATABASES AND METHODOLOGY FOR THE ECONOMETRIC 
CONTRAST. 

 

73 
 

 

 

We had to use two different methodologies for running this stage concerning the 

simultaneous computation of the betas, due to the nature of our data and the mathematic 

algorithms utilized in each technique. For PCA, FA and ICA, we used the Weighted 

Least Squares methodology; and for NNPCA, we used the Seemingly Unrelated 

Regression (SUR)85. 

 

The Weighted Least Squares methodology or cross-equation weighing accounts 

for cross-equation heteroscedasticity by minimizing the weighted sum-of-squared 

residuals. The equation weights are the inverses of the estimated equation variances, and 

are derived from the unweighted estimation of the parameters of the system. This 

method yields identical results to unweighted single-equation least squares if there are 

no cross-equation restrictions86. 

 

The Seemingly Unrelated Regression also known as the multivariate regression, 

or Zellner's method, estimates the parameters of the system, thus accounting for 

heteroscedasticity, and the contemporaneous correlation in the errors across equations. 

The estimates of the cross-equation covariance matrix are based upon parameter 

estimates of the unweighted system87.  

 

The SUR methodology supplies better estimators than WLS in the system of 

equation computing of parameters, free of the autocorrelation and heteroscedasticity in 

the residuals of the model, which makes the estimation of the betas more reliable. 

 

  

                                                            
85 Our first attempt to estimate all the betas in the system of equation for all the techniques was a 
Seemingly Unrelated Regression (SUR), however, the estimation was not possible since the SUR 
methodology requires computing the inverse of the residual matrix, and our data produce a residual 
matrix near a singular one; subsequently, it was not feasible to compute its inverse. Evidently, we are 
aware of this situation could have conditioned our results in the econometric contrast. 
86 For details see Greene (2008). 
87 For details see and Greene (2008) and Zellner (1962). 
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Later, in accordance with Jordan & García (2003)88, in the second stage we 

estimated the lambdas or risk premiums in expression 3.3 by regressing the betas 

obtained in the first stage as a cross-section on the average returns and excesses, using 

Ordinary Least Squares. In order to avoid the econometric problems of 

heteroscedasticity and autocorrelation in the residuals of the model estimated through 

OLS, we used Ordinary Least Squared corrected by heteroscedasticity and 

autocorrelation by means of the Newey-West heteroscedasticity and autocorrelation 

consistent covariance estimates (HEC). Additionally, we verified the normality in the 

residuals by carrying out the Jarque-Bera test of normality.  

 

In order to accept the APT pricing model, we require the statistical significance 

of at least one parameter lambda different from λ0
89

, and the equality of the independent 

term to its theoretic value, i.e., the average returns, in the models expressed in returns: 

      00 R ,        (3.5) 

and zero, in the models expressed in excesses of the riskless interest rate: 

      00          (3.6) 

We used Wald’s test to confirm these equalities. 

 

In addition, although other studies related to the APT have taken a weaker 

criterion for accepting the models, we were very demanding in this respect; i.e., we only 

accepted the models completely when not only the two previous requirements were 

fulfilled, but also when the results of the regression warranted a high adjusted R2, a 

global statistical significance of the model given by the F statistic, and also fulfilled  

normality in the residuals of the estimation measured by the Jarque-Bera test.  

 

                                                            
88 In their study the authors use factor analysis to extract the underlying risk factors from a set of returns 
on mutual funds in the Spanish market. 
89 The ideal situation is that more than one parameter different from  λ0 be statistically significant, since 
the APT assumes that there are multiple underlying risk factors in the economy affecting the returns on 
equities, not only one. 
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Chapter 4 

Principal Component Analysis and Factor Analysis: 
Estimation of the generative multifactor model of 
returns. 
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4.1. Introduction and Review of Literature. 

 

Following a generative multifactor model of returns and an arbitrage argument, the 

Arbitrage Pricing Theory (APT) prices an equity by considering a set of common 

systematic risk factors assumed to influence the return produced. Empirical studies, 

mainly of developed markets such as the New York (NYSE), American (AMEX), 

London (LSE) and Tokyo (TSE) Stock Exchanges, have proposed different approaches 

to identify the types of systematic risk factors considered by multifactor models. 

Zangari (2003) presents a classification of risk factors based on whether their value is 

observable or not, dividing them into market, macroeconomic, fundamental, sector, 

technical and statistical factors. In general, the empirical evidence provided is 

contradictory, both supporting and rejecting the APT, especially when statistical factors 

are used. The market factor approach is practically an interpretation of the Capital Asset 

Pricing Model (CAPM), where there is only one common factor and it is observable. 

Both macroeconomic and fundamental models have been widely discussed in the 

literature; in many empirical papers sets of predefined variables, procedures and 

methodologies, for different countries, are examined90. Overall, findings have been 

favorable for both approaches, although there is no generalized consensus about the 

nature of factors. The macroeconomic approach seeks to identify, a priori, a set of 

observable macroeconomic time series as proxies of the value of the systematic risk 

factors. According to Yip & Xu (2000), the macroeconomic variables can be classified 

into four categories: inflation, industrial production, investor confidence and interest 

rates. On the other hand, in the fundamental approach, the systematic risk factors are 

approximated by means of predefined financial and accounting variables that reflect the 

exposure to unobservable factors, such as size, leverage, cash flow, price-earnings ratio 

(PER) and book-to-market ratio. As in the macroeconomic models, there is no general 

agreement among the different studies on the nature of factors. The main difference 

between the macroeconomic and the fundamental standpoints is the elements they 

consider as given in a multifactor model. The former consider the value of the 

systematic risk factors as given and estimate, generally by way of a two stage 

                                                            
90 A revision of empirical studies using approaches other than the statistical one is beyond the scope of 
this research; however, interested readers can easily find many references in the financial literature. 



CHAPTER 4. PRINCIPAL COMPONENT ANALYSIS AND FACTOR ANALYSIS: 
ESTIMATION OF THE GENERATIVE MULTIFACTOR OF RETURNS. 

 

77 
 

methodology, first the exposures or sensitivities to each kind of systematic risk, and 

then, their related risk premiums. The latter considers as given the exposures or 

sensitivities to each kind of systematic risk, since it assumes that the values of the 

systematic risk are unobservable, and estimate the risk premiums for each one of them. 

The other two security-specific approaches use technical and sector variables as proxies 

of the effects of unobserved factors, although very little empirical investigation has been 

carried out exclusively under these perspectives. The statistical approach focuses mainly 

on uncovering a suitable number of pervasive factors, regardless of their nature91, 

through latent variables analysis techniques such as Principal Component Analysis 

(PCA) and Factor Analysis (FA). In this case, both the risk premiums and the exposure 

to them are usually estimated simultaneously. Roll & Ross (1980), Brown & Weinstein 

(1983), Chen (1983), Bower et al. (1984), Cho et al. (1984) Connor & Korajczyk 

(1988), Lehmann & Modest (1988) and Hasbrouck & Seppi (2001) obtained favorable 

results, revealing between three and five priced factors in the American stock market; 

Beenstock et al. (1988) identified twenty priced factors in the UK stock exchange and 

Elton & Gruber (1988) found four factors in the Japanese market. Nevertheless, 

Reinganum (1981) rejected statistical APT as a means of explaining stock price 

variations for the NYSE and AMEX, as did Gómez-Bezares et al. (1994), Nieto 

(2001a), and Carbonell & Torra (2003) for the Spanish Stock Exchange (SSE).  

Moreover, Abeysekera & Mahajan (1987) obtained mixed results for the London Stock 

Exchange, as did Jordán & García (2003) for the Spanish Mutual Funds Market.  

 

There is no clear supremacy of one approach over the others. Among the 

theoretical and empirical comparative studies made, Maringer (2004) presents a good 

summary of the advantages, disadvantages and recommended uses of macroeconomic, 

fundamental and statistical models; Connor (1995) shows that statistical and 

fundamental models outperform macroeconomic models in terms of explanatory power, 

and that fundamental models slightly outperform statistical ones for the USA market; 

Chan et al. (1998) found evidence that fundamental factors perform better than 

macroeconomic, technical, statistical and market factors in the UK and Japanese 

markets; on the other hand, Teker & Varela (1998) showed that the statistical model 

outperforms the macroeconomic one for the US market; and Cauchie et al. (2004) 
                                                            
91 In a second stage, it is possible to identify the pervasive factors with some financial or macroeconomic 
variables by means of correlation procedures or other kind of methodologies. 
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demonstrated that statistical factors yield a better representation of the determinants of 

the Swiss market stock returns than the macroeconomic ones. In addition, Miller 

(2006a) makes a new comparison, complementing that of Connor’s classic study. 

Consequently, three well-known risk analysis and portfolio management firms, MSCI92, 

FTSE93 and SUNGARD94, have opted mostly for the fundamental, macroeconomic and 

statistical approaches, respectively, for constructing their worldwide multifactor risk 

models, portfolio analytics and risk reporting commercial products. 

 

Other studies have attempted to combine the different approaches. Miller 

(2006b) proposed a hybrid version of a multifactor model, combining fundamental and 

statistical factors, in which the latter are used to explain the fundamental model’s 

residual part, obtaining modest results on the Japanese market. Liu & Melas (2007) 

proposed that fundamental models can be used as an approach to extract the effect of 

the macroeconomic factors, by dividing the model’s common fundamental factors into 

two sub-parts: one explained by macroeconomic factors and the other by non-

macroeconomic factors.  

 

Empirical investigation of multivariate asset-pricing models in emerging stock 

markets has been relatively scarce. Most studies have been based on a macroeconomic 

perspective, finding two or three priced factors. Results have been mixed concerning 

priced factors across the markets95. With respect to the present study, the following 

reviews have used the statistical definition of the APT: Ch'ng & Gupta (2001) on the 

Malaysia Stock Market, and Dhankar & Singh (2005) on the Indian Stock Exchange, 

revealing two and five priced factors, respectively; Iqbal & Heider (2005) on the 

Karachi Stock Exchange, and Mubben et al. (2015) on the Turkish stock market, finding 

two priced factors in both studies.  

                                                            
92 For a more extensive study of the MSCI models (before MSCI-BARRA) see Sheikh (1996), BARRA 
(1998), Amenc & Le Sourd (2003), and MSCI (2015). 
93 For more information about FTSE models (before FTSE-BIRR) see Burmeister et al. (2003) and FTSE 
(2015). 
94 For more details about Sungard model (before Sungard-APT) see Amenc & Le Sourd (2003) and 
Sungard (2010, 2015a, 2015b). Currently, Sungard will be bought by Fidelity National Information 
Services. 
95 Some references are: van Rensburg (2000) on Johannesburg; Ch'ng & Gupta (2001) on Malaysia; 
Aquino (2005) on the Philippines; Dhankar & Singh (2005) on India; Twerefou & Nimo (2005) on 
Ghana; Iqbal & Haider (2005) on Karachi; Shum & Tang (2005) on Hong Kong, Singapore, and Taiwan; 
and Fuentes et al. (2006) on Chile. 
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Little research has been carried out regarding the application of the APT for the 

Mexican Stock Exchange. To the best of our knowledge, the only references are de la 

Calle (1991), Navarro & Santillán (2001), López-Herrera & Vázquez. (2002 a and b), 

and Valdivieso (2004), all of whom used the macroeconomic approach. Although these 

authors found evidence of around four priced factors, there is a problem of low 

explanation power in some cases. In addition, Saldaña et al. (2007) used a 

macroeconomic and fundamental combined approach of the APT applied on the 

telecommunication sector of the Mexican Stock Exchange, finding favorable evidence 

of this asset pricing model. Conversely, Treviño (2011) presents a more robust 

econometric methodology for a longer period of time, finding little evidence in favor of 

a macroeconomic APT applied on the Mexican stock market. Additionally, López-

Herrera & Ortiz (2011) carry on a multifactor beta model to explain the relationship 

between macroeconomic factors and asset pricing in Mexico, United States and Canada, 

in order to analyze the integration of each market with global macroeconomic variables. 

 

Regarding studies focused on Latin America where APT has been used under 

different approaches we can mention the following. Arango et al. (2013) carry on the 

APT under the macroeconomic approach on the Colombian Stock Exchange, using 

principal component analysis to summarize the set of macroeconomic factors and 

financial variables utilized in the study. They find that risk perception is the most 

important variable to explain stock’s returns. Kristjanpoller & Morales (2011) apply the 

APT to the Chilean stock market under the macroeconomic approach as well; they find 

some evidence regarding the impact of some macroeconomic variables on the returns on 

equities. Londoño et al. (2010) test the APT on the Colombian market, under two 

approaches: a) a macroeconomic and b) a macroeconomic plus international stock 

markets indicators. Furthermore, they use a multilayer neural network to relate the main 

index from the Colombian Stock Exchange to the factors considered. Their findings 

show that the neural network approach is more effective than a traditional statistical 

one96. da Costa & Soares (2009) utilize a fundamental version of the APT applied to the 

Brazilian banking sector, finding weak evidence supporting this model. Oliveira (2011) 

                                                            
96 The better results may be explained by the non-linear specification of the APT, which is out of the 
scope of this study but represents a future line of research of the authors as a continuation of the present 
work. 
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presents a comparative study using both the macroeconomic and the statistical approach 

of the APT, applied on three groups of countries composed by developed and emerging 

markets, where some Latin American countries such as: Argentina,  Chile and Mexico, 

are included. In this case the statistical factors are extracted by means of principal 

component analysis. Finally, Tabak & Staub (2007) use the APT to infer the probability 

of financial institution failure for banks in Brazil. 

 

As stated before, the aim of the present study is to fill a gap in the financial 

literature by testing a statistical definition of the APT on an important emerging 

financial market, the Mexican Stock Exchange. In this chapter we shall extract the 

pervasive systematic risk factors by means of the two classic techniques used for 

extraction of latent factors: Principal Component Analysis, and Factor Analysis through 

Maximum Likelihood. The structure of the present chapter is as follows: sections 4.2 

presents the fundamentals of PCA and FA, section 4.3 describes the empirical study, 

and finally some conclusions are drawn in section 4.4.  

 

4.2. Classical statistical risk extraction factors techniques. 

 

 The two most commonly used multivariate analysis techniques for extracting 

risk factors are Principal Component Analysis and Factor Analysis, but there is still no 

firm view as to which one is the ideal technique. Classical studies have utilized both; for 

example: Roll & Ross (1980), in their seminal empirical work, carried out Factor 

Analysis through Maximum Likelihood (MLFA), suggesting that returns on equities are 

determined by the factor loadings or betas; however, Chamberlain & Rothschild (1983) 

and Connor & Korajczyk (1988) claimed that eigenvectors obtained by PCA could also 

be used as factor loadings. In opposition to these views, Shukla et al. (1990) asserted 

that PCA is only equivalent to FA when the idiosyncratic risk for every asset is the 

same, since PCA does not consider the specific risks. We could say that FA is closer to 

the underlying spirit of APT than is PCA; nevertheless, the latter presents some 

advantages such as: offering a unique mathematical solution, making less strong explicit 

assumptions about the data, and the possibility to estimate as many factors as there are 

variables.  
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4.2.1. Principal Component Analysis (PCA). 

 

Strictly speaking, PCA is not a model, as it merely represents a geometric 

transformation and projection of data in order to facilitate their interpretation. PCA 

seeks to obtain a smaller number of artificial variables, the principal components, via a 

linear combination of the original ones, assuming two basic restrictions:  the principal 

components must be orthogonal to each other, and they must have decreasing variances. 

Each original variable contributes with a different weight to the principal component 

formation. In other words, we want to project the original data onto a smaller dimension 

where the components will be mutually uncorrelated and at the same time retain the 

maximal possible variance, i.e. the risk. The mathematical expression of the idea behind 

PCA is as follows: 

    

pppjpjppp

phpjhjhhh

ppjj

ppjij

xaxaxaxay

xaxaxaxay

xaxaxaxay

xaxaxaxay




















2211

2211

222221212

12121111

      (4.1) 

 

Where: y denotes the principal components; a, the coefficients or loadings for each 

variable in each component construction, and x, the original variables. Generalizing in 

abbreviated matrix notation for the generic principal component h we have: 

 

hh Xay           (4.2) 

 

And considering all the equations together for all the observations:  
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In order to estimate the vector ah we have to decompose the covariance matrix 

by way of the linear algebra concept of eigenvalue decomposition (EVD)97, where ah 

will be the eigenvector associated with the h-esim eigenvalue (λh) of the covariance or 

correlation matrix, after been ranked from higher to lower. In the classic version for the 

econometric contrast of the APT, loadings a will represent the exposures to the 

pervasive systematic risk factors, the betas of the APT model that will be regressed on 

the asset returns to obtain the factor returns or factor risk premiums (lambdas in the 

APT pricing equation)98. These betas or factor loadings, which together form the factor 

matrix, are the correlation between each variable and the principal components. 

According to Uriel & Aldas (2005) we can compute them by using the correlation 

coefficient rhj between the h-esim component and the j-esim variable, as well. 

Expression 4.4 corresponds to the case when we use original values of data and 

expression 4.5 when we use standardized variables. 
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     hhjhj ar           (4.5) 

 

Finally in PCA, we can obtain as many principal components as there are 

variables, because the covariance matrix (S) to be decomposed will contain in its main 

diagonal the total amount of variance represented, in the case of using the correlation 

matrix, by the value of one. In other words, we will try to explain the total amount of 

variance of the observed variables. 

 

  

                                                            
97 The eigenvalue decomposition implies: S=ULU’; where S is the covariance matrix; U, the eigenvector 
matrix; L, the eigenvalue matrix, and U’ the matrix U transposed. When we use normalized data the 
matrix S is equal to the correlation matrix R. 
98 In this study we carry on a two-stage version for the econometric contrast explained in Chapter 3. 
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4.2.2. Factor Analysis (FA). 

 

Factor Analysis represents an explicit model with its own hypothesis, assuming that the 

original variables are a linear combination of the underlying factors. Although FA seeks 

to obtain a smaller number of factors, like PCA, its philosophy is completely different. 

In FA, we construct the p variables99 through a linear combination of their m pervasive 

common factors100 (with m<p), their particular weights or exposures (betas), and a 

specific error term. In order to construct those factors, it is necessary to estimate the 

commonality or proportion of the variance explained by the common factors. Then, we 

have to split the variance and covariance matrix into two parts, one explained by 

common factors and the other by the error term. The fundamental idea of FA can be 

expressed in formal terms as follows: 

 

pmpmhphpppp

jmjmhjhjjjj

mmhh

mmhh
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      (4.6) 

 

where µ1,  µ2, ..., µj, ... µp denote the vector of means of the variable; x1, x2, …, xj, … xp;  

the observable variables; f1, f2, …, fh, …, fm, the common factors; jh, the factor loading h 

in variable j; and u1, u2, …, up, are the specific factors. Generalizing for the generic 

variable j, we can express the value of a row of the former equations in condensed 

vector notation as follows: 

     jj uμ  fλx '
jj         (4.7) 

And gathering all the equations for all the observations: 

     UFΛ1μX  '         (4.8) 

 

  

                                                            
99 In our case, returns on equities.  
100 In our context, systematic risk factors. 
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 In FA the elements of matrix Λ (the  coefficients) are the factor loadings 

applied to the common factors. They constitute the elements of the factor matrix and 

can be computed by the correlation coefficient rhj in expressions 4.4 and 4.5 as well. 

There are many techniques to estimate the parameters of the factor model. We can 

divide them into two approaches: a) based on the eigenvalue decomposition and b) 

based on the estimation of equations to reconstruct the correlation matrix. In FA, the 

number of factors (m) is smaller than the number of variables (p) because the correlation 

matrix of returns to be decomposed contains in its main diagonal an estimation of the 

initial commonality101, depending on the estimation technique utilized. In other words 

we will explain only the amount of variance explained by common factors, i.e., the 

covariance or correlations among the variables. 

 

To summarize, the main difference between these techniques is that in PCA the 

components are constructed as a linear combination of the observable variables, 

whereas in FA, the observable variables are explained by the common factors. Thus, 

although in PCA we can express the variables in terms of the principal components by 

way of an algebraic transformation, both methods will not be equivalent unless the error 

term in FA tends to zero, since in FA we assume that the specific factors are 

uncorrelated with each other and with the common factors. 

 

4.3. Empirical Study. Methodology and results. 

 

According to the stated in Chapter 3 we take the Arbitrage Pricing Theory as our 

theoretical framework which poses on one hand, a generative multifactor model of 

returns, and on the another hand, an arbitrage absence principle, that together, produce 

an asset pricing model. Nevertheless, the scope and limitations of our research are given 

precisely for the statistical approach to the APT. Our study is focused in the risk 

extraction process whose main objective is to uncover the underlying multifactor 

structure of systematic risk driving the returns on equities, independently of the number 

                                                            
101 A number always less than one. 



CHAPTER 4. PRINCIPAL COMPONENT ANALYSIS AND FACTOR ANALYSIS: 
ESTIMATION OF THE GENERATIVE MULTIFACTOR OF RETURNS. 

 

85 
 

and nature of the factors. The risk attribution process is basically out of the scope of the 

present study, however, in this section we will attempt to provide a first approach to the 

meaning of the extracted systematic risk factors in order to be able to identify them. 

Likewise, the test of the arbitrage principle is out of the scope of the current study102. 

 

 In other words, the main objective of our empirical study is to uncover the 

underlying generative multifactor structure of returns of our sample, by way of the use 

of classic dimension reduction or feature extraction techniques such as PCA and FA. 

The results will show that the generative multifactor model of returns performs very 

well; however the systematic risk factors extracted and the betas estimated must be 

tested in order to verify whether or not they are priced according to the APT pricing 

model. In a second stage of our methodology, we run an econometric contrast in order 

to determine which of them are statistically significant and consequently determine 

whether or not the APT is accepted as an asset pricing model in the context of our study.  

 

4.3.1. Preliminary tests. 

 

First of all, the following tests were carried out to establish the adequacy of the sample 

to be treated with the statistical techniques used in this study.  

 

Strictly speaking, the first preliminary test consisted in verifying the univariate 

normal distribution of the returns on equities. We used the Jarque-Bera test on the four 

databases, finding that in most cases the stocks of our sample did not follow a univariate 

normal distribution as stated in Chapter 3103.  

 

The number of observations in all the databases was suitable. There were 291 

observations in two databases and 1,410 in the other two. Luque (2000) recommends 

having at least 100 cases and no fewer than 50. Hair et al. (1999) considered it 

necessary to have five times more observations than variables. In our case, those figures 

would represent 100 and 110, respectively. 

                                                            
102 Forthcoming researches will center on the risk attribution process of the statistical approach as well as 
on the test of the arbitrage principle of the APT. 
103 Although, the effects of this condition on our results are beyond the scope of this chapter, they will be 
treated in the following chapters. 
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 The correlation matrix structure ensured the existence of a sufficient correlation 

level among the variables, according to the results of the following tests. Visual 

inspection of the correlation matrix revealed that a large number of correlation 

coefficients exceeded the generally accepted parameters and the context of rates of 

returns on equities104.  

 

Bartlett’s sphericity test verified that the correlation matrix was significantly 

different from the identity matrix. In the four databases we obtained high values in this 

respect, fluctuating around 2,162.23 and 2,176.19 in the weekly databases, and around 

9,707.33 and 9,723.98 in the daily databases, with a significance level of zero in all four 

cases; we reject the null hypothesis that the correlation matrix was an identity matrix, 

and conclude that the variables were mutually correlated. The higher the value of the 

statistic and the smaller the significance level, the less probability that the correlation 

matrix is an identity matrix105. The Kaiser-Meyer-Olkin index, in all four databases, was 

also very good. The results for this statistic in all four databases reached levels higher 

than 0.90. Its feasible values range from 0 to 1, values over 0.80 are considered to be 

good to excellent. The objective of this test is to compare the magnitudes of the 

observed correlation and the partial correlation coefficients among variables106. Tables 

4.1 to 4.4 shows these previous tests results for the four databases. 

 
Table 4.1. Bartlett’s spherecity test and Kaiser-Meyer-Olkin index.  

Database of weekly returns. 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. ,926 

Bartlett's Test of Sphericity Approx. Chi-Square 2162,227 

df 190 

Sig. ,000 
 

  

                                                            
104 While some authors believe that a suitable correlation level must be higher than 0.3, many others think 
it must be at least 0.5. See Chapter 3 for consulting the correlation matrices of the four databases. 
105 For more details about Bartlett’s sphericity test, see Luque (2000). 
106 For details, see Visauta & Martori (2003). 
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Table 4.2. Bartlett’s spherecity test and Kaiser-Meyer-Olkin index.  
Database of weekly excesses. 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. ,926 

Bartlett's Test of Sphericity Approx. Chi-Square 2176,187 

df 190 

Sig. ,000 
 

Table 4.3. Bartlett’s spherecity test and Kaiser-Meyer-Olkin index.  
Database of daily returns. 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. ,955 

Bartlett's Test of Sphericity Approx. Chi-Square 9707,329 

df 231 

Sig. ,000 
 

Table 4.4. Bartlett’s spherecity test and Kaiser-Meyer-Olkin index.  
Database of daily excesses. 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. ,955 

Bartlett's Test of Sphericity Approx. Chi-Square 9723,978 

df 231 

Sig. ,000 
 

 

Finally, the anti-image correlation matrix and the Measures of Sampling 

Adequacy (MSA) also produced excellent results. The anti-image matrix is formed with 

the negatives of the partial correlation coefficient for each pair of variables, neutralizing 

the effect of the others. This measure requires small values for the coefficients. The 

levels obtained were over 0.90 in almost all cases. We found the MSA in the main 

diagonal of the anti-image correlation matrix. They would be the KMO, but for each 

variable individually, so their parameters and interpretation are the same as for the 

KMO107. Tables 4.5 to 4.8 display the results of these measures. Consequently, on the 

basis of the evidence produced, we were able to proceed with confidence to extract the 

risk factors using PCA and FA. 

 

                                                            
107 See Visauta & Martori (2003). 
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Table 4.5. Anti-image correlation matrix and Measures of Sampling Adequacy (MSA). Database of weekly returns. 
  

PE&OLES 
* 

BIMBO 
A 

GMODELO 
C 

FEMSA 
UBD 

CONTAL 
* 

GEOB 
 

ARA 
* 

WALMEX 
V 

SORIANA 
B 

COMER 
UBC 

ELEKTRA 
* 

TELMEX 
L 

TELECO 
A1 

TLEVI 
CPO 

TVAZT 
CPO 

GFNORTE 
O 

GFINBUR 
O 

GCARSO 
A1 

ALFA 
A 

CIE 
B 

PE&OLES* .795a -.006 -.033 .013 -.100 -.171 -.072 .039 .039 -.069 -.057 -.014 -.034 -.008 .023 .052 .006 .067 .025 -.030 
BIMBOA -.006 .875a .144 -.117 -.053 .037 -.002 .014 .044 -.107 -.002 .035 -.162 -.042 -.052 .088 -.004 .063 -.037 -.124 
GMODELOC -.033 .144 .921a -.104 -.013 .061 .043 .033 -.097 .000 -.024 -.044 -.058 -.047 -.104 -.012 .119 -.036 -.073 -.054 
FEMSAUBD .013 -.117 -.104 .941a -.041 -.043 -.002 -.170 -.048 .024 -.129 -.075 .067 -.197 .116 -.008 -.077 -.070 -.033 -.133 
CONTAL* -.100 -.053 -.013 -.041 .909a -.044 -.050 -.018 .095 -.080 -.016 .052 -.005 -.039 -.017 .046 .070 -.086 -.111 -.139 
GEOB -.171 .037 .061 -.043 -.044 .912a -.190 -.028 -.089 .053 -.092 .056 -.001 -.052 -.132 -.144 -.130 .079 -.066 .020 
ARA* -.072 -.002 .043 -.002 -.050 -.190 .927a .048 .019 -.112 -.081 -.099 .006 -.045 .105 .002 -.054 -.054 -.114 -.034 
WALMEXV .039 .014 .033 -.170 -.018 -.028 .048 .946a -.129 -.005 .039 -.053 -.025 -.242 -.074 -.100 .053 -.056 -.076 .034 
SORIANAB .039 .044 -.097 -.048 .095 -.089 .019 -.129 .945a -.184 .052 .048 -.067 -.043 -.140 -.035 -.051 -.096 -.029 -.194 
COMERUBC -.069 -.107 .000 .024 -.080 .053 -.112 -.005 -.184 .950a -.074 -.024 .043 -.031 -.052 -.131 -.016 -.048 -.059 -.108 
ELEKTRA* -.057 -.002 -.024 -.129 -.016 -.092 -.081 .039 .052 -.074 .923a .065 -.102 .013 -.347 -.062 -.001 -.056 -.148 .049 
TELMEXL -.014 .035 -.044 -.075 .052 .056 -.099 -.053 .048 -.024 .065 .877a -.603 -.127 -.136 -.056 .037 -.037 .031 -.029 
TELECOA1 -.034 -.162 -.058 .067 -.005 -.001 .006 -.025 -.067 .043 -.102 -.603 .864a -.098 .119 .005 -.129 -.224 -.061 .051 
TLEVICPO -.008 -.042 -.047 -.197 -.039 -.052 -.045 -.242 -.043 -.031 .013 -.127 -.098 .950a -.218 -.012 -.054 .023 -.002 -.018 
TVAZTCPO .023 -.052 -.104 .116 -.017 -.132 .105 -.074 -.140 -.052 -.347 -.136 .119 -.218 .908a -.024 .077 -.084 -.067 -.107 
GFNORTEO .052 .088 -.012 -.008 .046 -.144 .002 -.100 -.035 -.131 -.062 -.056 .005 -.012 -.024 .959a -.056 -.101 -.062 -.072 
GFINBURO .006 -.004 .119 -.077 .070 -.130 -.054 .053 -.051 -.016 -.001 .037 -.129 -.054 .077 -.056 .926a -.156 -.056 -.235 
GCARSOA1 .067 .063 -.036 -.070 -.086 .079 -.054 -.056 -.096 -.048 -.056 -.037 -.224 .023 -.084 -.101 -.156 .955a -.029 -.064 
ALFAA .025 -.037 -.073 -.033 -.111 -.066 -.114 -.076 -.029 -.059 -.148 .031 -.061 -.002 -.067 -.062 -.056 -.029 .965a -.004 
CIEB -.030 -.124 -.054 -.133 -.139 .020 -.034 .034 -.194 -.108 .049 -.029 .051 -.018 -.107 -.072 -.235 -.064 -.004 .936a 
Notes: a. Measures of Sampling Adequacy(MSA) 
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Table 4.6. Anti-image correlation matrix and Measures of Sampling Adequacy (MSA). Database of weekly excesses. 
  

PE&OLES 
* 

BIMBO 
A 

GMODELO 
C 

FEMSA 
UBD 

CONTAL 
* 

GEO 
B 

ARA 
* 

WALMEX 
V 

SORIANA 
B 

COMER 
UBC 

ELEKTRA 
* 

TELMEX 
L 

TELECO 
A1 

TLEVI 
CPO 

TVAZT 
CPO 

GFNORTE 
O 

GFINBUR 
O 

GCARSO 
A1 

ALFA 
A 

CIE 
B 

PE&OLES* .800a -0.01 -0.03 0.01 -0.10 -0.17 -0.07 0.04 0.04 -0.07 -0.06 -0.01 -0.03 -0.01 0.02 0.05 0.01 0.07 0.03 -0.03 

BIMBOA -0.01 .876a 0.14 -0.12 -0.05 0.04 0.00 0.02 0.04 -0.11 0.00 0.04 -0.16 -0.04 -0.05 0.09 0.00 0.06 -0.04 -0.12 
GMODELOC -0.03 0.14 .921a -0.10 -0.01 0.06 0.04 0.03 -0.10 0.00 -0.02 -0.04 -0.06 -0.05 -0.10 -0.01 0.12 -0.04 -0.07 -0.05 
FEMSAUBD 0.01 -0.12 -0.10 .941a -0.04 -0.04 0.00 -0.17 -0.05 0.02 -0.13 -0.08 0.07 -0.20 0.12 -0.01 -0.08 -0.07 -0.03 -0.13 
CONTAL* -0.10 -0.05 -0.01 -0.04 .910a -0.05 -0.05 -0.02 0.09 -0.08 -0.02 0.05 -0.01 -0.04 -0.02 0.05 0.07 -0.09 -0.11 -0.14 
GEOB -0.17 0.04 0.06 -0.04 -0.05 .913a -0.19 -0.03 -0.09 0.05 -0.09 0.05 0.00 -0.05 -0.13 -0.14 -0.13 0.08 -0.07 0.02 
ARA* -0.07 0.00 0.04 0.00 -0.05 -0.19 .928a 0.05 0.02 -0.11 -0.08 -0.10 0.01 -0.05 0.10 0.00 -0.05 -0.05 -0.11 -0.03 
WALMEXV 0.04 0.02 0.03 -0.17 -0.02 -0.03 0.05 .946a -0.13 -0.01 0.04 -0.05 -0.03 -0.24 -0.07 -0.10 0.05 -0.06 -0.08 0.03 
SORIANAB 0.04 0.04 -0.10 -0.05 0.09 -0.09 0.02 -0.13 .945a -0.18 0.05 0.05 -0.07 -0.04 -0.14 -0.03 -0.05 -0.10 -0.03 -0.19 
COMERUBC -0.07 -0.11 0.00 0.02 -0.08 0.05 -0.11 -0.01 -0.18 .951a -0.07 -0.02 0.04 -0.03 -0.05 -0.13 -0.02 -0.05 -0.06 -0.11 
ELEKTRA* -0.06 0.00 -0.02 -0.13 -0.02 -0.09 -0.08 0.04 0.05 -0.07 .924a 0.06 -0.10 0.01 -0.35 -0.06 0.00 -0.06 -0.15 0.05 
TELMEXL -0.01 0.04 -0.04 -0.08 0.05 0.05 -0.10 -0.05 0.05 -0.02 0.06 .878a -0.60 -0.13 -0.14 -0.05 0.04 -0.04 0.03 -0.03 
TELECOA1 -0.03 -0.16 -0.06 0.07 -0.01 0.00 0.01 -0.03 -0.07 0.04 -0.10 -0.60 .865a -0.10 0.12 0.00 -0.13 -0.22 -0.06 0.05 
TLEVICPO -0.01 -0.04 -0.05 -0.20 -0.04 -0.05 -0.05 -0.24 -0.04 -0.03 0.01 -0.13 -0.10 .950a -0.22 -0.01 -0.06 0.02 0.00 -0.02 
TVAZTCPO 0.02 -0.05 -0.10 0.12 -0.02 -0.13 0.10 -0.07 -0.14 -0.05 -0.35 -0.14 0.12 -0.22 .909a -0.02 0.08 -0.08 -0.07 -0.11 
GFNORTEO 0.05 0.09 -0.01 -0.01 0.05 -0.14 0.00 -0.10 -0.03 -0.13 -0.06 -0.05 0.00 -0.01 -0.02 .959a -0.06 -0.10 -0.06 -0.07 
GFINBURO 0.01 0.00 0.12 -0.08 0.07 -0.13 -0.05 0.05 -0.05 -0.02 0.00 0.04 -0.13 -0.06 0.08 -0.06 .926a -0.16 -0.06 -0.23 
GCARSOA1 0.07 0.06 -0.04 -0.07 -0.09 0.08 -0.05 -0.06 -0.10 -0.05 -0.06 -0.04 -0.22 0.02 -0.08 -0.10 -0.16 .955a -0.03 -0.06 
ALFAA 0.03 -0.04 -0.07 -0.03 -0.11 -0.07 -0.11 -0.08 -0.03 -0.06 -0.15 0.03 -0.06 0.00 -0.07 -0.06 -0.06 -0.03 .965a 0.00 
CIEB -0.03 -0.12 -0.05 -0.13 -0.14 0.02 -0.03 0.03 -0.19 -0.11 0.05 -0.03 0.05 -0.02 -0.11 -0.07 -0.23 -0.06 0.00 .936a 

Notes: a. Measures of Sampling Adequacy(MSA)                                   
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Table 4.7. Anti-image correlation matrix and Measures of Sampling Adequacy (MSA). Database of daily returns. 

  
PE&OLES 

* 
KIMBER 

A 
BIMBO 

A 
GMODELO 

C 
FEMSA 

UBD 
CONTAL 

* 
CEMEX 

CP 
GEO 

B 
ARA 

* 
WALMEX 

V 
SORIANA 

B 
COMER 

UBC 
ELEKTRA 

* 
TELMEX 

L 
TELECO 

A1 
TLEVI 
CPO 

TVAZT 
CPO 

GFNORTE 
O 

GFINBUR 
O 

GCARSO 
A1 

ALFA 
A 

CIE 
B 

PE&OLES* .898a -.013 -.046 -.040 .023 -.090 -.013 -.064 -.027 -.018 -.029 -.029 -.033 -.002 -.015 .033 .002 .031 .036 -.006 .004 -.021 
KIMBERA -.013 .956a -.066 -.092 -.009 -.053 -.045 -.003 -.014 -.050 -.029 -.015 .022 -.050 .008 -.020 .029 -.064 .023 -.067 -.007 -.160 
BIMBOA -.046 -.066 .964a .028 -.033 -.096 -.040 -.024 -.043 -.027 -.036 -.021 -.055 -.025 -.042 .026 .007 .022 -.057 -.007 -.059 -.092 
GMODELOC -.040 -.092 .028 .962a -.062 -.086 -.001 .042 .023 -.134 -.050 -.033 -.035 -.041 -.030 -.013 -.012 -.057 .019 -.022 -.049 -.006 
FEMSAUBD .023 -.009 -.033 -.062 .968a .027 -.177 -.025 -.018 -.053 -.101 -.034 -.038 -.091 -.003 -.115 -.022 -.009 .015 -.063 -.017 -.078 
CONTAL* -.090 -.053 -.096 -.086 .027 .942a -.067 -.027 -.022 -.015 -.011 -.049 -.017 -.001 .011 -.020 -.025 .053 -.027 -.026 .010 -.045 
CEMEXCP -.013 -.045 -.040 -.001 -.177 -.067 .964a -.023 -.051 -.047 -.030 -.062 -.063 -.127 .035 -.104 -.018 -.083 -.058 .033 -.058 -.007 
GEOB -.064 -.003 -.024 .042 -.025 -.027 -.023 .962a -.128 -.039 -.066 -.041 -.069 .000 -.013 -.055 .009 -.089 -.008 .026 -.063 -.045 
ARA* -.027 -.014 -.043 .023 -.018 -.022 -.051 -.128 .965a -.009 .014 -.025 -.022 -.004 -.021 -.092 .006 -.074 -.077 -.001 -.036 -.072 
WALMEXV -.018 -.050 -.027 -.134 -.053 -.015 -.047 -.039 -.009 .970a -.117 -.007 -.012 -.014 -.083 -.133 -.044 -.057 -.026 -.117 -.043 .001 
SORIANAB -.029 -.029 -.036 -.050 -.101 -.011 -.030 -.066 .014 -.117 .969a -.100 -.003 .024 -.068 -.034 -.107 -.050 -.034 -.114 -.014 -.086 
COMERUBC -.029 -.015 -.021 -.033 -.034 -.049 -.062 -.041 -.025 -.007 -.100 .973a -.064 -.001 -.022 .010 -.016 -.104 -.017 -.036 -.075 -.042 
ELEKTRA* -.033 .022 -.055 -.035 -.038 -.017 -.063 -.069 -.022 -.012 -.003 -.064 .957a .039 -.011 -.065 -.243 -.083 -.040 -.069 -.090 -.034 
TELMEXL -.002 -.050 -.025 -.041 -.091 -.001 -.127 .000 -.004 -.014 .024 -.001 .039 .912a -.485 -.190 -.059 -.010 .005 -.029 .000 .033 
TELECOA1 -.015 .008 -.042 -.030 -.003 .011 .035 -.013 -.021 -.083 -.068 -.022 -.011 -.485 .921a -.025 -.034 -.061 -.087 -.127 -.091 -.054 
TLEVICPO .033 -.020 .026 -.013 -.115 -.020 -.104 -.055 -.092 -.133 -.034 .010 -.065 -.190 -.025 .952a -.274 -.025 -.016 -.030 -.038 -.016 
TVAZTCPO .002 .029 .007 -.012 -.022 -.025 -.018 .009 .006 -.044 -.107 -.016 -.243 -.059 -.034 -.274 .946a .001 .011 -.009 -.084 -.059 
GFNORTEO .031 -.064 .022 -.057 -.009 .053 -.083 -.089 -.074 -.057 -.050 -.104 -.083 -.010 -.061 -.025 .001 .968a -.075 -.017 -.023 -.047 
GFINBURO .036 .023 -.057 .019 .015 -.027 -.058 -.008 -.077 -.026 -.034 -.017 -.040 .005 -.087 -.016 .011 -.075 .965a -.128 -.036 -.098 
GCARSOA1 -.006 -.067 -.007 -.022 -.063 -.026 .033 .026 -.001 -.117 -.114 -.036 -.069 -.029 -.127 -.030 -.009 -.017 -.128 .967a -.075 -.078 
ALFAA .004 -.007 -.059 -.049 -.017 .010 -.058 -.063 -.036 -.043 -.014 -.075 -.090 .000 -.091 -.038 -.084 -.023 -.036 -.075 .975a .009 
CIEB -.021 -.160 -.092 -.006 -.078 -.045 -.007 -.045 -.072 .001 -.086 -.042 -.034 .033 -.054 -.016 -.059 -.047 -.098 -.078 .009 .962a 

Notes: a. Measures of Sampling Adequacy(MSA)                                        
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Table 4.8. Anti-image correlation matrix and Measures of Sampling Adequacy (MSA). Database of daily excesses. 
  

PE&OLES 
* 

KIMBER 
A 

BIMBO 
A 

GMODELO 
C 

FEMSA 
UBD 

CONTAL 
* 

CEMEX 
CP 

GEO 
B 

ARA 
* 

WALMEX 
V 

SORIANA 
B 

COMER 
UBC 

ELEKTRA 
* 

TELMEX 
L 

TELECO 
A1 

TLEVI 
CPO 

TVAZT 
CPO 

GFNORTE 
O 

GFINBUR 
O 

GCARSO 
A1 

ALFA 
A 

CIE 
B 

PE&OLES* ,.96a -.015 -.044 -.039 .028 -.089 -.015 -.068 -.029 -.022 -.027 -.030 -.033 -.005 -.015 .034 .003 .033 .035 -.004 .004 -.019 
KIMBERA -.015 .956a -.066 -.092 -.010 -.052 -.044 -.003 -.014 -.049 -.030 -.016 .023 -.049 .007 -.020 .029 -.065 .025 -.067 -.007 -.160 
BIMBOA -.044 -.066 .964a .028 -.033 -.096 -.040 -.024 -.043 -.027 -.035 -.020 -.056 -.025 -.042 .026 .006 .022 -.058 -.007 -.060 -.091 
GMODELOC -.039 -.092 .028 .962a -.061 -.086 -.001 .042 .023 -.134 -.050 -.033 -.035 -.041 -.030 -.013 -.012 -.057 .018 -.022 -.050 -.006 
FEMSAUBD .028 -.010 -.033 -.061 .968a .026 -.179 -.026 -.019 -.055 -.098 -.032 -.040 -.093 -.001 -.116 -.021 -.007 .011 -.062 -.019 -.074 
CONTAL* -.089 -.052 -.096 -.086 .026 .943a -.066 -.026 -.022 -.015 -.011 -.048 -.018 .000 .011 -.021 -.025 .053 -.027 -.026 .010 -.045 
CEMEXCP -.015 -.044 -.040 -.001 -.179 -.066 .964a -.021 -.050 -.045 -.032 -.063 -.062 -.125 .034 -.104 -.018 -.084 -.056 .032 -.057 -.009 
GEOB -.068 -.003 -.024 .042 -.026 -.026 -.021 .961a -.129 -.038 -.067 -.042 -.067 .001 -.015 -.054 .009 -.090 -.005 .026 -.061 -.046 
ARA* -.029 -.014 -.043 .023 -.019 -.022 -.050 -.129 .965a -.009 .013 -.026 -.021 -.003 -.022 -.092 .006 -.075 -.075 -.001 -.035 -.073 
WALMEXV -.022 -.049 -.027 -.134 -.055 -.015 -.045 -.038 -.009 .970a -.119 -.009 -.009 -.012 -.085 -.132 -.044 -.059 -.022 -.118 -.042 -.002 
SORIANAB -.027 -.030 -.035 -.050 -.098 -.011 -.032 -.067 .013 -.119 .970a -.099 -.005 .021 -.067 -.034 -.106 -.048 -.036 -.113 -.015 -.084 
COMERUBC -.030 -.016 -.020 -.033 -.032 -.048 -.063 -.042 -.026 -.009 -.099 .973a -.064 -.002 -.022 .010 -.015 -.104 -.017 -.035 -.075 -.042 
ELEKTRA* -.033 .023 -.056 -.035 -.040 -.018 -.062 -.067 -.021 -.009 -.005 -.064 .957a .041 -.012 -.065 -.244 -.084 -.040 -.070 -.090 -.035 
TELMEXL -.005 -.049 -.025 -.041 -.093 .000 -.125 .001 -.003 -.012 .021 -.002 .041 .912a -.486 -.190 -.059 -.012 .008 -.030 .001 .031 
TELECOA1 -.015 .007 -.042 -.030 -.001 .011 .034 -.015 -.022 -.085 -.067 -.022 -.012 -.486 .921a -.025 -.033 -.060 -.088 -.126 -.091 -.054 
TLEVICPO .034 -.020 .026 -.013 -.116 -.021 -.104 -.054 -.092 -.132 -.034 .010 -.065 -.190 -.025 .952a -.275 -.025 -.016 -.031 -.038 -.016 
TVAZTCPO .003 .029 .006 -.012 -.021 -.025 -.018 .009 .006 -.044 -.106 -.015 -.244 -.059 -.033 -.275 .946a .002 .010 -.009 -.085 -.059 
GFNORTEO .033 -.065 .022 -.057 -.007 .053 -.084 -.090 -.075 -.059 -.048 -.104 -.084 -.012 -.060 -.025 .002 .968a -.077 -.016 -.024 -.045 
GFINBURO .035 .025 -.058 .018 .011 -.027 -.056 -.005 -.075 -.022 -.036 -.017 -.040 .008 -.088 -.016 .010 -.077 .964a -.130 -.035 -.100 
GCARSOA1 -.004 -.067 -.007 -.022 -.062 -.026 .032 .026 -.001 -.118 -.113 -.035 -.070 -.030 -.126 -.031 -.009 -.016 -.130 .967a -.076 -.077 
ALFAA .004 -.007 -.060 -.050 -.019 .010 -.057 -.061 -.035 -.042 -.015 -.075 -.090 .001 -.091 -.038 -.085 -.024 -.035 -.076 .975a .008 
CIEB -.019 -.160 -.091 -.006 -.074 -.045 -.009 -.046 -.073 -.002 -.084 -.042 -.035 .031 -.054 -.016 -.059 -.045 -.100 -.077 .008 .962a 

Notes: a. Measures of Sampling Adequacy(MSA)  
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4.3.2. Extraction of underlying systematic risk factors via PCA and MLFA. 

 

In this study, we first obtained the generative multifactor model of returns in expression 3.1, using 

the classic multivariate techniques to extract the underlying factors Principal Component Analysis 

(PCA) and Maximum Likelihood Factor Analysis (MLFA)108.  

 

Since there is not a definite widespread criterion to define the best number of components to 

extract in PCA and in FA, we have used nine different criteria usually accepted in PCA and FA 

literature. These criteria have been: the arithmetic mean of the eigenvalues, the percentage of 

explained variance, the exclusion of the components or factors explaining a small amount of 

variance, the scree plot, the unretained eigenvalue contrast (Q statistic), the likelihood ratio contrast, 

Akaike’s information criterion (AIC), the Bayesian information criterion (BIC), and the maximum 

number of components feasible to estimate in each technique. Considering that each criterion 

indicated a different number of factors to extract in each database, for the sake of comparison 

among techniques and pursuing the main objective of extracting a smaller number of risk factors 

than the number of stocks, we chose a window test for all the databases ranging from two to nine 

factors according to the results presented in Table 4.9.  

 

  

                                                            
108 Using a Matlab® code programmed to perform the PCA and MLFA on our four databases, we obtained the scores of 
the principal components (Y) and the common factors (F) hierarchically ordered, as well as the matrices of weights for 
PCA and FA (A and Λ, respectively).  
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Table 4.9. Number of Components or Factors to retain. 

  
  

DATABASE OF 
WEEKLY 
RETURNS 

DATABASE OF
 WEEKLY 
EXCESSES 

DATABASE OF 
 DAILY 

RETURNS 

DATABASE OF
 DAILY 

EXCESSES 
CRITERIA PCA MLFA PCA MLFA PCA MLFA PCA MLFA 
Arithmetic mean of the eigenvalues. 4 3 4 5 4 2 4 2 
Percentage of explained variance (90%). 14 9 14 9 18 9 18 9 
Exclusion of the components/factors 
explaining a small amount of variance 
(<1%). 

19 13-14 19 14 21 13 21 13 

Scree plot. 3-4 4 3-4 5 3-4 4 3-4 3-4 
Unretained eigenvalues contrast (Q 
statistic).  

19 12 19 11 21 14 21 14 

Likelihood ratio contrast. 4 4 4 4 9 8 10 8 
Akaike's information criterion (AIC). 4 5 4 5 9 9 10 9 
Bayesian information criterion (BIC). 4 2 4 2 9 3 10 3 
Maximum number of components / 
factors feasible to estimate. 

20 14 20 14 22 15 22 15 

Number of components / factors to be 
tested. 

3, 4, 
14, 19, 

20 

2, 3, 4, 5, 
9 12, 13, 

14 

3, 4, 
14, 
19, 
20 

2, 4, 5, 9, 
11, 14 

3, 4, 9, 
18, 21, 

22 

2, 3, 4, 
8, 9, 

13, 14, 
15 

3, 4, 
10, 
18, 
21 

2, 3, 4, 8, 
9, 13, 14, 

15 

Comparable number of components / 
factors to be tested in each database. 

2, 3, 4, 5, 9, 12, 13, 
14 

2, 3, 4, 5, 9, 11, 
14 

2, 3, 4, 7, 8, 9, 
13, 14, 15 

2, 3, 4, 7, 8, 9, 10, 
13, 14, 15 

Comparable range of components / 
factors to be tested for all databases 
looking for a reduction in the 
dimensionality. 

2-9  2-9  2-9 2-9 

 
 

Subsequently, we estimated eight different multifactor models to extract from 2 to 9 

principal components and common factors for each one of our four databases109. Then, we 

proceeded to reconstruct the original variables according to the generation process of each 

technique by computing the following expression in PCA110: 

 

     'YAX      (4.9) 

 

And the following expression in FA111: 

 

      'FΛ1μX      (4.10) 

                                                            
109 The total number of estimated multifactor models was 32 for PCA and 32 for MLFA. 
110 This expression represents an algebraic transformation of the expression 4.3 taken from Peña (2002). 
111 This expression is the same expression that expression 4.8 but without including the matrix of specific factors U, 
because this matrix represents the error in reproduction of the original variables, which will be known after the 
reconstruction process and is computed by: U=X-Xr, where Xr is the matrix X reconstructed. 
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We use a graphic methodology in order to detect the suitability of the reproduction of the 

observed returns by way of our generative multifactor model estimated, from a visual standpoint. In 

order to observe the behavior of the complete series, we present the line plots including all the 

observations of the sample. For reasons of saving space, in this section we only present in this 

chapter the lines plots of the observed and reproduced returns of the first five stocks of the database 

of weekly returns, which belong to the experiment where we extracted nine underlying factors112. 

Nevertheless, the rest of the estimations when eight, seven, six, five, four, three and two 

components or factors where extracted present similar behavior113. Figure 4.1 show the results of 

PCA and Figures 4.2 those of FA. We can easily observe that the reconstruction of the observed 

returns or excesses was outstanding for almost all the stocks in the four databases, which imply that 

the estimation of the generative multifactor model of returns performed by both PCA and FA was 

successful. Nevertheless, the highest and lowest peaks in some stocks were not very well 

reconstructed.   

 

4.3.3. Explanation of the variability by the extracted components or factors. 
 

The amount of variance explained by the extracted components or factors, as well as the 

accumulated one, is presented in Table 4.10. We can observe that in all cases the three first 

components and factors explain between the 66% and the 84% of variability, which give some 

evidence about the importance of those components or factors. Factor analysis overcomes principal 

component analysis in this aspect, since in the four databases produce higher percentage of 

accumulated explanation. Moreover, in almost all cases the factors extracted by FA explain higher 

amounts of variance than those estimated by PCA. 

                                                            
112 All the empirical results presented in this document will be related to the experiment when nine factors were 
extracted, since this dimension was the one that produced the best level of reconstruction of the observed returns by 
way of the generative multifactor models of returns estimated by way of the four techniques in the four databases 
studied. 
113 The plots regarding the rest of the stocks in the four databases for PCA and FA are included in Appendix_2 from 
Figures 1 to 6 and Figures 7 to 12 of Chapter 4, respectively. For the sake of saving space, in all the empirical chapters 
of this dissertation we only present the results regarding the experiment when nine factors were extracted because, in 
general, it represents the best performance in the reconstruction of the observed returns. The results corresponding the 
rest of the experiments when eight, seven, six, five, four, three and two factors were extracted are not included in this 
dissertation since they represent an excessive amount of information to be included in the document. Nevertheless, the 
results of those experiments are considered in the analysis reported in this work. In addition, all that information will 
serve to analyze more deeply the sensitivity level of the results in a dynamic perspective in future researches. 
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Figure 4.1. Principal Component Analysis. Observed and reproduced variables. Line plots. Database of weekly returns. Nine components extracted. 

 
Note: Blue solid lines = Observed variables. Red dashed lines = Reproduced variables. 
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Figure 4.2. Factor Analysis. Observed and reproduced variables. Line plots. Database of weekly returns. Nine components extracted. 

 
Note: Blue solid lines = Observed variables. Red dashed lines = Reproduced variables. 
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Table 4.10. Variance explained and accumulated. Principal Component Analysis and Factor 
Analysis. Explained Variance. 

 
Principal Component Analysis Factor Analysis

  

  

Principal 

Component 

Explained 

Variance (%) 

Accumulated 

Explained 

Variance (%)

Factor 

 

Explained 

Variance (%) 

Accumulated 

Explained 

Variance (%) 

  

  

  

Database 

of weekly 

returns 

  

  

  

1 46.63 46.63 1 45.46 45.46 

2 13.08 59.70 2 15.67 61.13 

3 8.08 67.78 3 10.27 71.41 

4 6.90 74.68 4 5.82 77.23 

5 6.18 80.86 5 6.44 83.67 

6 5.33 86.19 6 6.91 90.58 

7 4.94 91.13 7 3.20 93.78 

8 4.61 95.74 8 3.36 97.15 

9 4.26 100.00 9 2.85 100.00 

  

  

  

Database 

of weekly 

excesses 

  

  

  

1 46.82 46.82 1 45.68 45.68 

2 13.04 59.86 2 15.68 61.36 

3 8.04 67.90 3 10.22 71.58 

4 6.88 74.78 4 5.80 77.38 

5 6.15 80.93 5 6.41 83.79 

6 5.32 86.25 6 6.85 90.64 

7 4.92 91.17 7 3.17 93.81 

8 4.59 95.76 8 3.35 97.16 

9 4.24 100.00 9 2.84 100.00 

  

  

  

Database 

of daily 

returns 

  

  

  

1 46.62 46.62 1 70.63 70.63 

2 12.81 59.43 2 7.73 78.36 

3 7.34 66.77 3 6.31 84.68 

4 6.62 73.39 4 3.32 88.00 

5 6.04 79.43 5 3.00 91.00 

6 5.87 85.30 6 2.54 93.54 

7 5.34 90.64 7 2.49 96.04 

8 4.89 95.53 8 2.49 98.53 

9 4.47 100.00 9 1.47 100.00 

  

  

  

Database 

of daily 

excesses 

  

  

  

1 46.64 46.64 1 71.03 71.03 

2 12.83 59.47 2 6.95 77.98 

3 7.35 66.82 3 6.31 84.28 

4 6.60 73.42 4 3.32 87.60 

5 6.04 79.46 5 2.83 90.43 

6 5.86 85.33 6 2.76 93.19 

7 5.33 90.66 7 3.19 96.38 

8 4.89 95.55 8 1.95 98.33 

9 4.45 100.00 9 1.67 100.00 
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4.3.4. Interpretation of the extracted factors. 

 

Although the second process of the statistical approach to the APT, i.e., the risk attribution stage, is 

out of the scope of this study, in this section we will make a first attempt to propose an 

interpretation of the meaning or nature of the systematic risk factors extracted, following a classic 

approach which has been widely used when PCA and FA are used to reduce dimensionality or to 

extract features from a multifactor dataset. This approach is based on using the factor loading 

matrix estimated in the extraction process to identify the loading of each variable in each 

component or factor; high factor loadings in absolute terms indicate a strong relation between the 

variables and the factor. In our context, the factors will be saturated with loadings of one stock or a 

group of stocks that may help us to identify those factors with some economic sectors, as a first 

approach of interpretation of each component or factor.  

 

 In line with the previously reported results, we only present the factor loading matrix plots 

of each database, which belong to the experiment where we extracted nine underlying factors; 

Figures 4.3 to 4.6 present the results of PCA and Figures 4.7 to 4.11 those for FA. In those figures 

we can distinguish visually the stocks with a major weight in the formation of each component114. 

 

In addition, we constructed some tables summarizing the results derived from the analysis of 

the factor loading matrices and plots, where we propose some economic sector that may be related 

to each factor. We group together the stocks with the highest loading in each factor according the 

economic sectors official classification used in the Mexican Stock Exchange. For each technique, 

first we present a table where we include: the name of the stocks with the major loadings in each 

component or factor, the description of the economic sector where they belong, and the sign of their 

corresponding loadings. Secondly, we propose a preliminary economic sector interpretation which 

is displayed separately also in a summary table. Tables 4.11 to 4.13 correspond to PCA and Tables 

4.14 to 4.16 to FA.  

 

                                                            
114 For the sake of saving space, the figures related to the experiments when eight, seven, six, five, four, three and two 
factors were extracted are not included in this document. 
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Figure 4.3. Loadings matrices plots for interpretation of extracted factors.  
Principal Component Analysis. 

 Database of weekly returns.  
Nine components extracted. 
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Figure 4.4. Loadings matrices plots for interpretation of extracted factors. 
 Principal Component Analysis.  

Database of weekly excesses.  
Nine components extracted. 
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Figure 4.5. Loadings matrices plots for interpretation of extracted factors.  

Principal Component Analysis.  
Database of daily returns.  

Nine components extracted. 
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Figure 4.6. Loadings matrices plots for interpretation of extracted factors.  

Principal Component Analysis.  
Database of daily excesses.  
Nine components extracted. 
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Figure 4.7. Loadings matrices plots for interpretation of extracted factors.  

Factor Analysis.  
Database of weekly returns.  
Nine components extracted. 
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Figure 4.8. Loadings matrices plots for interpretation of extracted factors.  

Factor Analysis.  
Database of weekly excesses.  
Nine components extracted. 
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Figure 4.9. Loadings matrices plots for interpretation of extracted factors. 

Factor Analysis.  
Database of daily returns.  

Nine components extracted. 
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Figure 4.10. Loadings matrices plots for interpretation of extracted factors.  

Factor Analysis.  
Database of daily excesses.  
Nine components extracted. 
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Table 4.11. Details of results. Sector interpretation of components.  

Principal Component Analysis.  
Nine components extracted. 

 
 

PRINCIPAL COMPONENT ANALYSIS 
 

Database of Weekly Returns Database of Weekly Excesses 
  Stocks Sector Interpretation   Stocks Sector Interpretation 

PC1 IPC (-) Market Market factor PC1 IPC (-) Market Market factor 

PC2 PE&OLES (+) Metal and mining: Precious metals and minerals Mining sector factor (Peñoles factor) PC2 PE&OLES (+) Metal and mining: Precious metals and minerals Mining sector factor (Peñoles factor) 

PC3 GEOB (-) Construction: House building Construction sector factor PC3 GEOB (-) Construction: House building Construction sector factor 

PC4 

ALFAA (+) Capital goods: Industrial Conglomerate / Holdings 

Capital goods consume sector factor PC4 

ALFAA (+) Capital goods: Industrial Conglomerate / Holdings 

Capital goods consume sector factor ELEKTRA* (+) Specialty retail: Home furnishing retail ELEKTRA* (+) Specialty retail: Home furnishing retail 

GEOB (-) Construction: House building GEOB (-) Construction: House building 

PC5 

ELEKTRA* (-) Specialty retail: Home furnishing retail 

Salinas Group  sector factor PC5 

ELEKTRA* (-) Specialty retail: Home furnishing retail 

Salinas Group  sector factor TVAZTECPO (-) 
Communication media: Radio & television services 

TVAZTECPO (-
) Communication media: Radio & television services 

ALFAA (+) Capital goods: Industrial Conglomerate / Holdings ALFAA (+) Capital goods: Industrial Conglomerate / Holdings 

PC6 

CONTAL* (-) Beverages: Soft drinks 

Ordinary consume sector factor PC6 

CONTAL* (-) Beverages: Soft drinks 

Ordinary consume sector factor 
CIEB (-) Hotels, restaurants & leisure: Leisure facilities CIEB (-) Hotels, restaurants & leisure: Leisure facilities 

COMERUBC (-) Consumer staples: Hypermarkets and supercenters COMERUBC (-) Consumer staples: Hypermarkets and supercenters 

TELECOA1 (+) Telecommunications services: Wireless telecommunications services TELECOA1 (+) Telecommunications services: Wireless telecommunications services 

PC7 BIMBOA (+) Food products: Production and commercialization of food products Food sector factor (Bimbo factor) PC7 BIMBOA (+) Food products: Production and commercialization of food products Food sector factor (Bimbo factor) 

PC8 

ELEKTRA* (-) Specialty retail: Home furnishing retail 

Miscellaneous sectors factor PC8 

ELEKTRA* (-) Specialty retail: Home furnishing retail 

Miscellaneous sectors factor 

GFINBURO(-) Financial services: Financial groups GFINBURO(-) Financial services: Financial groups 

WALMEXV (+) Consumer staples: Hypermarkets and supercenters WALMEXV (+) Consumer staples: Hypermarkets and supercenters 

TELEVICPO (+) Communication media: Radio & television services TELEVICPO (+) Communication media: Radio & television services 

CONTAL* (+) Beverages: Soft drinks CONTAL* (+) Beverages: Soft drinks 

PC9 

CONTAL* (+) Beverages: Soft drinks 

Beverages and food sector factor PC9 

CONTAL* (+) Beverages: Soft drinks 

Beverages and food sector factor 

BIMBOA (-) Food products: Production and commercialization of food products BIMBOA (-) Food products: Production and commercialization of food products 

GFINBURO (-) Financial services: Financial groups GFINBURO (+) Financial services: Financial groups 

ARA* (-) Construction: House building GFNORTEO (+) Financial services: Financial groups 

GFNORTEO (-) Financial services: Financial groups ARA* (+) Construction: House building 
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Table 4.12. Details of results. Sector interpretation of components.  
Principal Component Analysis.  

Nine components extracted. (Cont.) 
 
 

PRINCIPAL COMPONENT ANALYSIS 
 

Database of Daily Returns Database of Daily Excesses 
  Stocks Sector Interpretation   Stocks Sector Interpretation 

PC1 IPC (+) Market Market factor PC1 IPC (+) Market Market factor 

PC2 PE&OLES* (-) Metal and mining: Precious metals and minerals Mining sector factor (Peñoles factor) PC2 PE&OLES* (-) Metal and mining: Precious metals and minerals Mining sector factor (Peñoles factor) 

PC3 GEOB (-) Construction: House building Construction sector factor PC3 GEOB (-) Construction: House building Construction sector factor 

PC4 

CONTAL* (+) Beverages: Soft drinks 

Entertainment consume sector factor. PC4 

CONTAL* (+) Beverages: Soft drinks 

Entertainment consume sector factor. 
CIEB (+) Hotels, restaurants & leisure: Leisure facilities CIEB (+) Hotels, restaurants & leisure: Leisure facilities 

ELEKTRA (-) Specialty retail: Home furnishing retail ELEKTRA (-) Specialty retail: Home furnishing retail 

TVAZTECPO (-) Communication media: Radio & television services TVAZTECPO (-) Communication media: Radio & television services 

PC5 

ALFA (+) Capital goods: Industrial Conglomerate / Holdings 

Holding / Beverage / Salinas group factor. PC5 

ALFA (+) Capital goods: Industrial Conglomerate / Holdings 

Holding / Beverage / Salinas group factor. 
CONTAL* (-) Beverages: Soft drinks CONTAL* (-) Beverages: Soft drinks 

ELEKTRA (-) Specialty retail: Home furnishing retail ELEKTRA (-) Specialty retail: Home furnishing retail 

TVAZTECPO (-) Communication media: Radio & television services TVAZTECPO (-) Communication media: Radio & television services 

PC6 
ALFA (+) Capital goods: Industrial Conglomerate / Holdings 

Holding / Food and beverage sector factor PC6 
ALFA (+) Capital goods: Industrial Conglomerate / Holdings 

Holding / Food and beverage sector factor 
CONTAL* (+) Beverages: Soft drinks CONTAL* (+) Beverages: Soft drinks 

PC7 

ELEKTRA (+) Specialty retail: Home furnishing retail 

Ordinary consume sector factor PC7 

ELEKTRA (+) Specialty retail: Home furnishing retail 

Ordinary consume sector factor COMERUBC (+) Consumer staples: Hypermarkets and supercenters COMERUBC (+) Consumer staples: Hypermarkets and supercenters 

TELEVICPO (-) Communication media: Radio & television services TELEVICPO (-) Communication media: Radio & television services 

PC8 

COMERUBC (-) Consumer staples: Hypermarkets and supercenters 

Miscellaneous sectors factor PC8 

COMERUBC (+) Consumer staples: Hypermarkets and supercenters 

Miscellaneous sectors factor 
GFNORTEO (-) Financial services: Financial groups GFNORTEO (+) Financial services: Financial groups 

CIEB (+) Hotels, restaurants & leisure: Leisure facilities CIEB (-) Hotels, restaurants & leisure: Leisure facilities 

BIMBOA (+) Food products: Production and commercialization of food products BIMBOA (-) Food products: Production and commercialization of food products 

PC9 

CIEB (+) Hotels, restaurants & leisure: Leisure facilities 

Infrastructure / Financial sector factor PC9 

CIEB (-) Hotels, restaurants & leisure: Leisure facilities 

Infrastructure - Financial sectors factor 
GFINBURO (-) Financial services: Financial groups GFINBURO (+) Financial services: Financial groups 

ARA* (-) Construction: House building GFNORTEO (+) Financial services: Financial groups 

GFNORTEO (-) Financial services: Financial groups ARA* (+) Construction: House building 
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Table 4.13. Summary of results.  
Sector interpretation of components.  

Principal Component Analysis.  
Nine components extracted. 

 
 

PRINCIPAL COMPONENT ANALYSIS 
 

Database of Weekly Returns Database of Weekly Excesses Database of Daily Returns Database of Daily Excesses 

PC1 Market factor PC1 Market factor PC1 Market factor PC1 Market factor 

PC2 Mining sector factor (Peñoles factor) PC2 Mining sector factor (Peñoles factor) PC2 Mining sector factor (Peñoles factor) PC2 Mining sector factor (Peñoles factor) 

PC3 Construction sector factor PC3 Construction sector factor PC3 Construction sector factor PC3 Construction sector factor 

PC4 Capital goods consume sector factor PC4 Capital goods consume sector factor PC4 Entertainment consume sector factor. PC4 Entertainment consume sector factor. 

PC5 Salinas Group  sector factor PC5 Salinas Group  sector factor PC5 Holding / Beverage / Salinas group factor. PC5 Holding / Beverage / Salinas group factor. 

PC6 Ordinary consume sector factor PC6 Ordinary consume sector factor PC6 Holding / Food and beverage sector factor PC6 Holding / Food and beverage sector factor 

PC7 Food sector factor (Bimbo factor) PC7 Food sector factor (Bimbo factor) PC7 Ordinary consume sector factor PC7 Ordinary consume sector factor 

PC8 Miscellaneous sectors factor PC8 Miscellaneous sectors factor PC8 Miscellaneous sectors factor PC8 Miscellaneous sector factor 

PC9 Beverages and food sector factor PC9 Beverages and food sector factor PC9 Infrastructure / Financial sector factor PC9 Infrastructure - Financial sectors factor 
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Table 4.14. Details of results.  
Sector interpretation of components.  

Factor Analysis.  
Nine factors extracted. 

 
FACTOR ANALYSIS 

 
Database of Weekly Returns Database of Weekly Excesses 

  Stocks Sector Interpretation   Stocks Sector Interpretation 

F1 IPC (+) Market Market factor F1 IPC (+) Market Market factor 

F2 

TELECOA1 (+) 
Telecommunications services: Wireless telecommunications 
services 

Slim Group factor F2 

TELECOA1 (+) 
Telecommunications services: Wireless telecommunications 
services 

Slim Group factor TELMEXL (+) 
Telecommunications services: Wireless telecommunications 
services TELMEXL (+) 

Telecommunications services: Wireless telecommunications 
services 

GCARSOA1 (+) Capital goods: Industrial Conglomerate / Holdings GCARSOA1 (+) Capital goods: Industrial Conglomerate / Holdings 

GFINBURO (+) Financial services: Financial groups GFINBURO (+) Financial services: Financial groups 

F3 GEOB (+) Construction: House building Construction sector factor F3 GEOB (+) Construction: House building Construction sector factor 

F4 
COMERUBC (+) Consumer staples: Hypermarkets and supercenters 

Ordinary consume sector factor F4 
COMERUBC (+) Consumer staples: Hypermarkets and supercenters 

Ordinary consume sector factor 
GMODELOC (-) Beverages: Brewers GMODELOC (-) Beverages: Brewers 

F5 
TVAZTECPO 
(+) Communication media: Radio & television services Communication / commercial sectors factor F5 TVAZTECPO (+) Communication media: Radio & television services Communication / commercial sectors factor 
COMERUBC (-) Consumer staples: Hypermarkets and supercenters COMERUBC (-) Consumer staples: Hypermarkets and supercenters 

F6 
GEOB (+) Construction: House building 

Infrastructure / Mining  sectors factor F6 
GEOB (+) Construction: House building 

Infrastructure / Mining sectors factor PE&OLES (+) Metal and mining: Precious metals and minerals PE&OLES (+) Metal and mining: Precious metals and minerals 

CIEB (-) Hotels, restaurants & leisure: Leisure facilities CIEB (-) Hotels, restaurants & leisure: Leisure facilities 

F7 
WALMEXV (+) Consumer staples: Hypermarkets and supercenters 

Ordinary consume / entertainment sectors 
factor F7 

WALMEXV (+) Consumer staples: Hypermarkets and supercenters 
Ordinary consume / entertainment sectors 
factor TELEVICPO (+) Communication media: Radio & television services TELEVICPO (+) Communication media: Radio & television services 

CIEB (-) Hotels, restaurants & leisure: Leisure facilities CIEB (-) Hotels, restaurants & leisure: Leisure facilities 

F8 

PE&OLES (+) Metal and mining: Precious metals and minerals 

Miscellaneous sectors factor F8 

PE&OLES (+) Metal and mining: Precious metals and minerals 

Miscellaneous sectors factor 

CONTAL* (+) Beverages: Soft drinks CONTAL* (+) Beverages: Soft drinks 

BIMBOA (+) 
Food products: Production and commercialization of food 
products BIMBOA (+) 

Food products: Production and commercialization of food 
products 

GFNORTEO (-) Financial services: Financial groups GFNORTEO (-) Financial services: Financial groups 

SORIANAB (-) Consumer staples: Hypermarkets and supercenters SORIANAB (-) Consumer staples: Hypermarkets and supercenters 

F9 

ALFAA (+) Capital goods: Industrial Conglomerate / Holdings 

Capital goods consume / holdings sector factor 

F9 
ALFAA (+) Capital goods: Industrial Conglomerate / Holdings 

Capital goods consume / holding sectors factor 

ELEKTRA* (+) Specialty retail: Home furnishing retail ELEKTRA* (+) Specialty retail: Home furnishing retail 

GCARSOA1 (+) Capital goods: Industrial Conglomerate / Holdings   GCARSOA1 (+) Capital goods: Industrial Conglomerate / Holdings 

GEOB (-) Construction: House building   GEOB (-) Construction: House building 

TELEVICPO (+) Communication media: Radio & television services 
 

ARA* (-) Construction: Housing 

COMERUBC (-) Consumer staples: Hypermarkets and supercenters TELEVICPO (+) Communication media: Radio & television services 
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Table 4.15. Details of results.  
Sector interpretation of components.  

Factor Analysis.  
Nine factors extracted. (Cont.) 

 
FACTOR ANALYSIS 

 
Database of Daily Returns Database of Daily Excesses 

  Stocks Sector Interpretation   Stocks Sector Interpretation 

F1 IPC (+) Market Market factor F1 IPC (+) Market Market factor 

F2 
TELMEXL (-) 

Telecommunications services: Wireless telecommunications 
services 

Communication / commercial sector factor F2 
TELMEXL (-) 

Telecommunications services: Wireless telecommunications 
services 

Communication / commercial sectors factor TVAZTECPO 
(+) Communication media: Radio & television services TVAZTECPO (+) Communication media: Radio & television services 

ELEKTRA* (+) Specialty retail: Home furnishing retail ELEKTRA* (+) Specialty retail: Home furnishing retail 

F3 TVAZTECPO (-) Communication media: Radio & television services 
Radio and television sector factor (Azteca 
factor) F3 TVAZTECPO (-) Communication media: Radio & television services 

Radio and television sector factor (Azteca 
factor) 

F4 GFNORTEO (-) Financial services: Financial groups Financial sector factor (GF Norte Factor) F4 GFNORTEO (-) Financial services: Financial groups Financial sector factor (GF Norte Factor) 

F5 

CIEB (+) Hotels, restaurants & leisure: Leisure facilities 

Miscellaneous sectors factor F5 

WALMEXV (-) Consumer staples: Hypermarkets and supercenters 

Miscellaneous sectors factor 

ARA* (+) Construction: House building GMODELOC (-) Beverages: Brewers 

BIMBOA (+) 
Food products: Production and commercialization of food 
products CIEB (+) Hotels, restaurants & leisure: Leisure facilities 

PE&OLES (+) Metal and mining: Precious metals and minerals ARA* (+) Construction: House building 

WALMEXV (-) Consumer staples: Hypermarkets and supercenters GEOB (+) Construction: House building 

GMODELOC (-) Beverages: Brewers BIMBOA (+) 
Food products: Production and commercialization of food 
products 

F6 

GFNORTEO (-) Financial services: Financial groups 

Beverage / construction / financial sectors 
factor F6 

GFNORTEO (-) Financial services: Financial groups 

Beverage / construction / financial sectors 
factor 

FEMSAUBD (+) Beverages: Diversified beverages CONTAL* (+) Food and beverage processing 

CEMEXCP (+) Materials: Construction materials CEMEXCP (+) Materials: Construction materials 

CONTAL* (+) Food and beverage processing FEMSAUBD (+) Beverages: Diversified beverages 

F7 
PE&OLES (+) Metal and mining: Precious metals and minerals 

Mining / beverage sectors factor F7 PE&OLES (+) Metal and mining: Precious metals and minerals Mining sector factor (Peñoles factor). CONTAL* (+) Food and beverage processing 

GMODELOC (-) Beverages: Brewers 

F8 

CIEB (-) Hotels, restaurants & leisure: Leisure facilities 

Leisure / Mining – Holdings - Construction 
sectors factor F8 

KIMBERA (+) Household products: Cellulose and paper 

Financial / brewers / cellulose sector factor 
PE&OLES (+) Metal and mining: Precious metals and minerals GFNORTEO (+) Financial services 

ALFAA (+) Capital goods: Industrial Conglomerate / Holdings GMODELOC (+) Beverages: Brewers 

GEOB (+) Construction: House building GFINBURO (+) Financial services: Financial groups 

F9 

ARA* (+) Construction: House building 
Construction / communication / commercial 
sectors factor F9 

GEOB (-) Construction: House building 

Construction sector factor TELEVICPO (+) Communication media: Radio & television services ARA* (-) Construction: Housing 

COMERUBC (-) Consumer staples: Hypermarkets and supercenters TELEVICPO (+) Communication media: Radio & television services 
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Table 4.16. Summary of results.  
Sector interpretation of factors.  

Factor Analysis.  
Nine factors extracted. 

 
FACTOR ANALYSIS 

 
Database of Weekly Returns Database of Weekly Excesses Database of Daily Returns Database of Daily Excesses 

F1 Market factor F1 Market factor F1 Market factor F1 Market factor 

F2 Slim Group factor F2 Slim Group factor F2 Communication / commercial sector factor F2 Communication / commercial sector factor 

F3 Construction sector factor F3 Construction sector factor F3 Radio and television sector factor (Azteca factor) F3 Radio and television sector factor (Azteca factor) 

F4 Ordinary consume sector factor F4 Ordinary consume sector factor F4 Financial sector factor (GF Norte Factor) F4 Financial sector factor (GF Norte Factor) 

F5 Communication / commercial factor F5 Communication / commercial factor F5 Miscellaneous sectors factor F5 Miscellaneous sectors factor 

F6 Infrastructure / Mining  sector factor F6 Infrastructure / Mining  sector factor F6 Beverage / construction / financial sector factor F6 Beverage / construction / financial sector factor 

F7 Ordinary consume / entertainment sector factor F7 Ordinary consume / entertainment sector factor F7 Mining / beverage sector factor F7 Mining sector factor (Peñoles factor). 

F8 Miscellaneous sectors factor F8 Miscellaneous sectors factor F8 Leisure / Mining – Holdings - Construction sectors factor F8 Financial / brewers / cellulose sector factor 

F9 Capital goods consume / holding sector factor F9 Capital goods consume / holding sector factor F9 Construction / communication / commercial sector factor F9 Construction sector factor 
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In general, as expected by theory, in both techniques for the four datasets, the 

first component or factor is clearly related to the market factor115. In addition, there is 

no difference, regarding the interpretation of factors, in the models expressed in returns 

and those specified in excesses, with the exception of the factor seven, eight and nine 

extracted via factor analysis in the daily databases116. Concerning PCA, we can detect 

certain stability in the factor attribution until the fourth retained component; however, 

we can make a distinction regarding the fact that the second and third components are 

identified with the mining and construction sector, respectively, in the four databases; 

while, the fourth presents a little different construction between weekly and daily 

databases. From the fifth to the ninth components we can detect more clear differences 

in the interpretation of components extracted from the weekly and the daily databases. 

Respecting FA, there is a marked difference between the interpretation of factors that 

affect the weekly and daily returns, as we can observe in the Table 4.16. These results 

lead us to think that in this case the frequency of data affects more the factors extraction 

and consequently the way in that the covariance matrix is factorized. Relating both 

techniques, in addition to the first factor, only the third factor might be identified as the 

same factor for almost all the datasets and expression of the model, which corresponds 

to the construction sector. We can remark that we can identify two factors related to two 

important business groups in Mexico, which we may explain as market movers in the 

Mexican Stock Exchange. These components or factors are the PC5 extracted by PCA 

from the weekly databases, that it may be understood as the Salinas Group factor; and 

the F2, extracted by FA, in the weekly datasets, that we may associate with the Slim 

Group. 

 

  

                                                            
115 In PCA and FA the first component or factor, which is the one that explain the greatest amount of the 
variability, is usually formed by a combination of all the original variables. In our case, that conformation 
would be identified with the market factor since it would represent a combination of all the stocks 
considered in the study. 
116 We consider the same interpretation given that the loadings of the stocks in the construction of the 
components in these two databases were very similar; nevertheless, the signs of those loadings vary in 
some cases. 
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In addition, attending to the explained variance of each components or factors 

extracted (See Table 4.10), we could select the first three of them in each dataset as the 

main factors, which lead us to think that: the market factor (for all datasets and both 

techniques), mining factor (for PCA), the Slim Group and communication/commercial  

factors (for the weekly and daily datasets using FA, respectively), the construction 

sector (for PCA and weekly databases in FA), and the radio and television sector factor 

(for daily databases en FA), could be the most important factors explaining the returns 

on equities in the Mexican Stock Exchange. These results match approximately with the 

value of stock market capitalization of these companies and sectors in the Mexican 

Stock Exchange. 

 

 Furthermore, regarding to the results of the other experiments when we vary the 

number of retained factors, we can remark that in PCA the components retained have 

the same interpretation that in the experiment when 9 were conserved, fact that responds 

to the property of this technique of producing the same mathematic solution 

independently of the number of components extracted; since each extra component 

added represents only an extra dimension to the solution but without any change to the 

previously computed artificial synthetic variables. Concerning FA, the interpretation of 

the factors changed as the number of factors extracted fluctuated, as expected in theory, 

especially for the estimation technique used in this case, namely Maximum 

Likelihood117. 

 

Finally, the stocks that contributed more number of times in the formation of the 

components and factors estimated in PCA were, in the DBWR: ALFAA with seventeen 

times, CONTAL* with seven, ELEKTRA* with six and BIMBOA with three; in the 

DBWE: ALFAA in fifteen occasions, CONTAL* in seven, ELEKTRA* in six, and 

BIMBOA in three; in the DBDR: ELEKTRA* contributed in eighteen times, 

CONTAL* and TVAZTECPO in fifteen, and ALFAA in fourteen; finally, in the 

DBDE:  ELEKTRA* eighteen did it in eighteen cases, CONTAL* and TVAZTECPO in 

                                                            
117 In Maximum Likelihood Factor Analysis if we change the number of factors extracted we will have 
different solutions or estimations, i.e., the construction of the extracted factors will depend on the number 
of dimension that we choose to estimate. Consequently, the value and nature of those factors will change 
depending the dimension selected. 



CHAPTER 4. PRINCIPAL COMPONENT ANALYSIS AND FACTOR ANALYSIS: 
ESTIMATION OF THE GENERATIVE MULTIFACTOR OF RETURNS. 

 

115 
 

fifteen, and ALFAA in fourteen. ALFA was the stock with the major presence in the 

formation of the components of the weekly databases, while ELEKTRA* was it in the 

daily expressions. To the light of these results we dare to point to these stocks as one of 

the most important securities in our sample, given the frequency of their contribution to 

the systematic risk factors extracted. Therefore, they would represent securities that 

should be followed, analyzed and considered for the portfolios management in the 

context of the Mexican stock markets. 

 

Concerning FA, the number of times that one stock contribute in the formation 

of a factor is smaller than in PCA. Nevertheless, the analogue results for this technique 

are as follows. In the weekly databases, the stocks with a clearly higher frequency and 

the number of times that contributed to the formation of the extracted factors was: CIEB 

(nine), GEOB (six), and TVAZTECPO (three); in the DBDR, TVAZTECPO (nine) and 

CIEB (seven), and finally, in the DBDE, TVAZTECPO (12) and GFNORTE and 

GEOB (four).  In this technique, CIEB was the stock the higher number of contributions 

in the weekly datasets, and TVAZTECACPO in the daily ones.  

 

Accordingly, we can point the importance of the stocks marked in both 

techniques as important market movers in the sample and period studied. 

 

4.3.5. Results of the econometric contrast. 

 

As stated in Chapter 3, in the first stage of our econometric contrast 

methodology we estimated the betas or sensitive to the underlying factors to use in 

expression 4.11118, 

ikikiiiR   ...22110 ,   (4.11) 

by regressing the factor scores obtained by PCA and FA as a cross-section on the 

returns and excesses, by way of Weighted Least Squares (WLS) to estimate the entire 

system of equations at the same time. 

 

 
                                                            
118 Where, jig represents the sensitivity of equity i to factor j, Fjt the value of the systematic risk factor j 
in time t common for all the stocks, and i the idiosyncratic risk affecting only equity i. 
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The results of the regressions in the four databases were suitable, in both PCA 

and FA estimations, producing, in almost all cases, statistically significant parameters, 

high values of the R2 coefficients and results in the Durbin-Watson test of 

autocorrelation119, which lead us to the non-rejection of the null hypothesis of no-

autocorrelation120. Tables 4.17 to 4.20 present the results of the coefficients estimated 

for PCA and Tables 4.21 to 4.24 the equivalent ones for FA, which represent the betas 

to use in the second stage of the econometric contrast. All the tables correspond to the 

case where 9 components or factors were extracted. These tables show the sensitivity of 

the stock (i) to the risk factor (k). We can observe that in both techniques the values of 

all sensitivities in the case of beta number one is very similar for all the stocks, since 

this factor has been related to the market factor. Regarding PCA, we can distinguish the 

strong sensitivity of PEÑOLES* to beta number two and of GEOB to beta number three 

in the four databases; and of ALFAA to beta number four in the weekly databases. 

Nevertheless, analyzing their periodicity, it can be observed that there are differences, 

for example in the sing of beta number one between the database of weekly returns and 

the database of daily returns, which imply that the apparently market factor has an 

indirect relation with the weekly returns, while it has a direct relation with the daily 

returns. Concerning FA, we can remark that in this case the betas or sensitivities are 

clearly much smaller than in PCA, in addition, the importance order changes as well. 

 

  

                                                            
119 Value of the statistic more than 2. We are aware of the undefinition of this test related in the sense of 
the no-autocorrelation zone of order one is clear only with values close to 2, however, for practical 
reasons and in the context of our study we believe that this test is sufficient. 
120 For reason of saving space the complete results of the simultaneously estimation of the betas when 
nine factors were extracted is included in Appendix_1; Tables 1 to 4 correspond to PCA and Tables 5 to 
8, to FA. The results of the betas estimation for the experiments when eight, seven, six, five, four, three 
and two factors were extracted are not included in this dissertation; nevertheless, the results are similar to 
those reported in this chapter. 
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Table 4.17. Principal Component Analysis. 
 Betas estimated simultaneously via Weighted Least Squares. 

 Database of weekly returns. 
 

 β1 β2 β3 β4 β5 β6 β7 β8 β9 
PE&OLES*  -0.126897 0.914852 0.318767 0.038830 -0.072420 0.105669 -0.119725 0.020960 -0.064335
BIMBOA  -0.113679 -0.020017 0.201671 -0.012999 0.179627 -0.232653 0.586068 -0.005175 -0.530716
GMODELOC  -0.097420 -0.038412 0.070841 0.047867 -0.128884 0.049686 -0.150310 0.140175 0.089890
FEMSAUBD  -0.211808 -0.067626 0.105197 -0.099098 0.030042 0.013647 0.127503 0.166489 -0.016027
CONTAL*  -0.132309 0.080728 0.075499 0.160585 0.241953 -0.445564 0.223491 0.318993 0.659808
GEOB  -0.293667 0.269049 -0.765574 -0.367746 0.099028 0.015674 0.139301 0.122664 -0.033579
ARA*  -0.153875 0.081291 -0.077583 -0.012444 0.211205 0.069702 0.149491 -0.290541 0.208249
WALMEXV -0.191070 -0.098287 0.061952 -0.077264 -0.087542 0.142707 -0.030179 0.348935 -0.009896
SORIANAB  -0.227527 -0.096796 0.060851 -0.172514 -0.023314 -0.058331 -0.335898 0.072029 -0.152850
COMERUBC  -0.216157 -0.012800 0.121731 -0.001803 0.079592 -0.311785 -0.236521 -0.197895 -0.068402
ELEKTRA*  -0.306461 0.016709 -0.160190 0.358791 -0.508578 -0.184630 0.221530 -0.459268 0.070003
TELMEXL  -0.170229 -0.064603 0.161386 -0.077970 -0.068125 0.260308 0.136312 0.003331 0.081760
TELECOA1  -0.233999 -0.081362 0.226844 -0.088706 -0.029744 0.401071 0.267766 -0.093510 0.115624
TLEVICPO -0.275543 -0.080797 0.119662 -0.125244 -0.140376 0.136611 0.128401 0.344072 -0.020949
TVAZTCPO  -0.301458 -0.071828 -0.053150 0.088748 -0.454739 -0.222687 -0.094510 0.208810 -0.152757
GFNORTEO  -0.201459 -0.069185 -0.075840 -0.110932 -0.021209 0.085079 -0.318333 -0.141737 0.126113
GFINBURO  -0.188846 -0.038797 0.043815 -0.233515 0.257862 0.096592 -0.005313 -0.361445 -0.023839
GCARSOA1  -0.236767 -0.126960 0.166017 -0.077609 0.001292 0.162087 -0.030264 -0.173170 0.284472
ALFAA  -0.328798 -0.056609 -0.157671 0.706323 0.446003 0.256539 -0.169384 0.122174 -0.203166
CIEB  -0.263305 -0.059289 0.202602 -0.226510 0.246870 -0.409671 -0.214977 -0.086764 -0.102380

 

Table 4.18. Principal Component Analysis.  
Betas estimated simultaneously via Weighted Least Squares.  

Database of weekly excesses. 
 

 β1 β2 β3 β4 β5 β6 β7 β8 β9 
PE&OLES*  -0.128621 0.914825 0.318410 0.038227 -0.072042 0.105108 -0.119753 0.020881 -0.064310
BIMBOA  -0.114174 -0.019511 0.201153 -0.013230 0.179744 -0.231994 0.588670 -0.004762 -0.529515
GMODELOC  -0.097772 -0.038033 0.070472 0.047743 -0.129052 0.050038 -0.151242 0.140286 0.087455
FEMSAUBD  -0.211574 -0.067898 0.104672 -0.099130 0.030077 0.013791 0.127362 0.166301 -0.015360
CONTAL*  -0.132138 0.080704 0.073680 0.161726 0.240403 -0.444461 0.222137 0.318488 0.661647
GEOB  -0.294405 0.268035 -0.766692 -0.365744 0.098299 0.016143 0.139059 0.122631 -0.033239
ARA*  -0.154042 0.081230 -0.078866 -0.011561 0.210551 0.070341 0.148204 -0.290667 0.206675
WALMEXV -0.190599 -0.098560 0.061326 -0.077239 -0.087619 0.142942 -0.031129 0.348821 -0.011707
SORIANAB  -0.227958 -0.096911 0.061563 -0.173264 -0.022293 -0.059432 -0.334488 0.072405 -0.153292
COMERUBC  -0.216331 -0.012994 0.121894 -0.002108 0.079854 -0.312504 -0.235258 -0.197525 -0.070837
ELEKTRA*  -0.306127 0.015574 -0.159193 0.359006 -0.509815 -0.183407 0.220635 -0.459446 0.069949
TELMEXL  -0.170090 -0.064637 0.161012 -0.078322 -0.067872 0.260675 0.135428 0.003209 0.081848
TELECOA1  -0.233816 -0.081624 0.226978 -0.089406 -0.029093 0.401360 0.267023 -0.093712 0.117564
TLEVICPO -0.275457 -0.081309 0.120165 -0.125915 -0.139772 0.136608 0.128621 0.343970 -0.019275
TVAZTCPO  -0.301306 -0.072680 -0.051863 0.088200 -0.454759 -0.222681 -0.093589 0.208999 -0.152320
GFNORTEO  -0.201024 -0.069594 -0.076854 -0.110365 -0.021605 0.084983 -0.320213 -0.141859 0.120912
GFINBURO  -0.188711 -0.038977 0.042821 -0.233256 0.258189 0.096026 -0.005264 -0.361612 -0.022350
GCARSOA1  -0.236775 -0.127194 0.166393 -0.078233 0.001903 0.161825 -0.030778 -0.173324 0.286234
ALFAA  -0.328755 -0.057635 -0.155695 0.706754 0.445655 0.255859 -0.169158 0.122277 -0.203508
CIEB  -0.262681 -0.059909 0.201921 -0.226608 0.247301 -0.411142 -0.213159 -0.086897 -0.099466
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Table 4.19. Principal Component Analysis.  
Betas estimated simultaneously via Weighted Least Squares.  

Database of daily returns. 
 

 β1 β2 β3 β4 β5 β6 β7 β8 β9 
PE&OLES*  0.117277 -0.973511 0.096652 -0.100518 0.085719 -0.086521 0.000798 0.012306 -0.029220
KIMBERA  0.117706 -0.004097 0.009729 0.181604 0.033397 -0.042078 0.012899 0.010925 0.113274
BIMBOA  0.148436 -0.036119 -0.015305 0.231567 -0.008874 0.152692 0.107816 0.334676 0.138036
GMODELOC  0.129918 -0.006767 0.095008 0.080014 0.021540 0.001719 -0.062749 -0.171372 0.003197
FEMSAUBD  0.197091 0.047015 0.044271 0.039223 0.018307 -0.120970 -0.089376 -0.050793 0.075617
CONTAL*  0.132065 -0.115742 0.034728 0.510560 -0.510300 0.536398 -0.203487 -0.156846 -0.186973
CEMEXCP  0.180871 0.022931 0.014058 0.036934 -0.006984 -0.026538 -0.041823 -0.072307 -0.081715
GEOB  0.225849 -0.059157 -0.891996 -0.168168 -0.112279 0.010028 -0.202801 0.006027 0.116431
ARA*  0.163555 -0.001398 -0.198275 0.075148 0.025236 -0.058643 0.037707 0.190285 -0.385155
WALMEXV 0.224860 0.027891 0.066353 0.061221 0.064257 -0.107477 -0.162189 -0.101101 -0.027224
SORIANAB  0.218567 0.013687 0.024749 0.088093 0.033299 -0.113927 -0.018807 -0.107152 0.198334
COMERUBC  0.194787 -0.004795 -0.047340 0.106974 0.089717 0.088346 0.375847 -0.638845 0.281432
ELEKTRA*  0.294896 0.032482 0.089370 -0.417701 -0.409545 0.135759 0.551258 0.116898 -0.161634
TELMEXL  0.190876 0.040909 0.088137 0.034310 0.074800 -0.121430 -0.213092 -0.029400 -0.082459
TELECOA1  0.251475 0.045548 0.098991 0.076606 0.171658 -0.132722 -0.192538 0.006824 -0.106576
TLEVICPO 0.297633 0.085528 0.110027 -0.112249 -0.109032 -0.174872 -0.322397 -0.024119 -0.076632
TVAZTCPO  0.313603 0.080714 0.258394 -0.360452 -0.351377 -0.082768 -0.200247 0.048858 0.211246
GFNORTEO  0.213796 0.060403 -0.123404 0.044131 0.148043 -0.203432 0.279897 -0.312871 -0.348748
GFINBURO  0.178957 0.053846 -0.011782 0.209839 0.137777 -0.065131 0.199550 0.284825 -0.399761
GCARSOA1  0.221710 0.035970 0.107254 0.140309 0.136466 -0.071374 0.011392 0.051382 -0.010589
ALFAA  0.278485 0.061667 0.055725 -0.271528 0.553027 0.682432 -0.081255 0.103866 0.061710
CIEB  0.228982 0.003136 -0.036193 0.336151 -0.013054 -0.154383 0.259536 0.387151 0.508508

 

Table 4.20. Principal Component Analysis.  
Betas estimated simultaneously via Weighted Least Squares.  

Database of daily excesses. 
 

 β1 β2 β3 β4 β5 β6 β7 β8 β9 
PE&OLES*  0.118079 -0.972958 0.104142 -0.098391 0.086144 -0.084324 0.005527 -0.012651 0.026767
KIMBERA  0.117683 -0.004750 0.007423 0.181685 0.034709 -0.043325 0.014334 -0.010684 -0.116744
BIMBOA  0.148554 -0.034117 -0.014533 0.231737 -0.013885 0.154609 0.109080 -0.335570 -0.133567
GMODELOC  0.129964 -0.005979 0.093587 0.080585 0.022776 -0.000220 -0.064565 0.170599 -0.005777
FEMSAUBD  0.197273 0.049943 0.041920 0.036959 0.020576 -0.119149 -0.090113 0.045387 -0.069830
CONTAL*  0.132031 -0.113837 0.039342 0.516046 -0.519924 0.517525 -0.212240 0.158831 0.191227
CEMEXCP  0.180710 0.022115 0.014048 0.037865 -0.005807 -0.029204 -0.040273 0.073900 0.078389
GEOB  0.225912 -0.066407 -0.888977 -0.175217 -0.117905 0.015256 -0.204086 -0.015031 -0.113109
ARA*  0.163461 -0.004470 -0.199365 0.074394 0.025915 -0.059798 0.044059 -0.182403 0.393722
WALMEXV 0.224583 0.025755 0.063868 0.062880 0.068832 -0.112600 -0.159478 0.101917 0.018598
SORIANAB  0.218870 0.015463 0.020838 0.085677 0.035730 -0.111448 -0.021350 0.102211 -0.197457
COMERUBC  0.194981 -0.004605 -0.051674 0.103868 0.087896 0.095774 0.363958 0.642165 -0.303190
ELEKTRA*  0.294716 0.034451 0.098407 -0.417046 -0.414493 0.136446 0.549216 -0.105643 0.155258
TELMEXL  0.190680 0.039544 0.086025 0.036033 0.079554 -0.126301 -0.209399 0.029353 0.078784
TELECOA1  0.251431 0.044788 0.094781 0.077718 0.176687 -0.135186 -0.188568 -0.006760 0.104312
TLEVICPO 0.297497 0.085533 0.109895 -0.110632 -0.103030 -0.183195 -0.319764 0.021612 0.079015
TVAZTCPO  0.313559 0.083178 0.261388 -0.359072 -0.347054 -0.091471 -0.204962 -0.053859 -0.204059
GFNORTEO  0.213831 0.060804 -0.127953 0.039005 0.150508 -0.194530 0.280767 0.317314 0.356557
GFINBURO  0.178692 0.053612 -0.010548 0.211963 0.136967 -0.063631 0.213966 -0.275140 0.387564
GCARSOA1  0.221816 0.038297 0.105070 0.140427 0.137694 -0.068860 0.014821 -0.052385 0.007832
ALFAA  0.278381 0.061437 0.060906 -0.266147 0.539109 0.694619 -0.091003 -0.107861 -0.049547
CIEB  0.229171 0.005552 -0.041423 0.332039 -0.012116 -0.149154 0.261816 -0.390327 -0.502186
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Table 4.21. Factor Analysis.  
Betas estimated simultaneously via Weighted Least Squares.  

Database of weekly returns. 
 

 β1 β2 β3 β4 β5 β6 β7 β8 β9 
PE&OLES*  0.009629 0.004203 0.008389 0.003289 -0.002067 0.015692 -0.007586 0.013560 -0.006778
BIMBOA  0.009749 0.009747 0.001816 0.007814 0.001202 -0.004691 -0.002888 0.011802 -0.002531
GMODELOC  0.021039 -0.000397 -0.000014 -0.023029 -0.007402 0.000028 -0.000017 0.000003 -0.000008
FEMSAUBD  0.019823 0.013886 0.014335 0.000535 0.000828 -0.006752 0.007700 0.006005 0.001701
CONTAL*  0.012749 0.004389 0.008250 0.003650 -0.000274 0.000027 -0.003368 0.011949 0.003770
GEOB  0.023693 0.010908 0.030054 0.007289 0.009365 0.029412 -0.001585 -0.004425 -0.008015
ARA*  0.012591 0.010341 0.009801 0.005938 -0.001875 0.007792 -0.002889 0.003796 0.003231
WALMEXV 0.019203 0.012218 0.008153 0.002408 0.004630 -0.005041 0.015460 -0.001604 -0.000659
SORIANAB  0.025828 0.009555 0.009876 0.003841 0.001350 -0.006021 0.001045 -0.008807 -0.002127
COMERUBC  0.033530 -0.000911 -0.000259 0.023501 -0.019347 0.000052 0.000027 -0.000006 -0.000023
ELEKTRA*  0.032444 0.009432 0.008058 0.005220 0.011134 0.009093 -0.000512 0.006245 0.014227
TELMEXL  0.017544 0.020703 -0.003978 0.000488 0.002824 -0.000627 0.002124 0.000251 -0.002132
TELECOA1  0.022022 0.035284 -0.008214 0.000758 0.001975 0.002018 -0.001889 -0.000136 -0.000471
TLEVICPO 0.028704 0.017759 0.008797 0.002722 0.007136 -0.003890 0.012450 0.004494 -0.004526
TVAZTCPO  0.043241 -0.001596 -0.000411 0.005152 0.029489 -0.000012 -0.000079 -0.000009 -0.000034
GFNORTEO  0.020388 0.009793 0.010042 0.004801 0.001086 0.001053 0.002760 -0.009402 0.004587
GFINBURO  0.014630 0.016462 0.012985 0.006573 0.000535 -0.003244 -0.006876 -0.005041 0.001921
GCARSOA1  0.023859 0.019062 0.004728 0.002876 0.002349 -0.005364 -0.001397 -0.005880 0.009357
ALFAA  0.030779 0.014388 0.013717 0.004327 0.003554 0.004867 0.000977 0.004957 0.014523
CIEB  0.027029 0.012200 0.019444 0.006150 0.000869 -0.016698 -0.014130 0.001197 -0.004561

 

Table 4.22. Factor Analysis.  
Betas estimated simultaneously via Weighted Least Squares.  

Database of weekly excesses. 
 

 β1 β2 β3 β4 β5 β6 β7 β8 β9 
PE&OLES*  0.009629 0.004203 0.008389 0.003289 -0.002067 0.015692 -0.007586 0.013560 -0.006778
BIMBOA  0.009749 0.009747 0.001816 0.007814 0.001202 -0.004691 -0.002888 0.011802 -0.002531
GMODELOC  0.021039 -0.000397 -0.000014 -0.023029 -0.007402 0.000028 -0.000017 0.000003 -0.000008
FEMSAUBD  0.019823 0.013886 0.014335 0.000535 0.000828 -0.006752 0.007700 0.006005 0.001701
CONTAL*  0.012749 0.004389 0.008250 0.003650 -0.000274 0.000027 -0.003368 0.011949 0.003770
GEOB  0.023693 0.010908 0.030054 0.007289 0.009365 0.029412 -0.001585 -0.004425 -0.008015
ARA*  0.012591 0.010341 0.009801 0.005938 -0.001875 0.007792 -0.002889 0.003796 0.003231
WALMEXV 0.019203 0.012218 0.008153 0.002408 0.004630 -0.005041 0.015460 -0.001604 -0.000659
SORIANAB  0.025828 0.009555 0.009876 0.003841 0.001350 -0.006021 0.001045 -0.008807 -0.002127
COMERUBC  0.033530 -0.000911 -0.000259 0.023501 -0.019347 0.000052 0.000027 -0.000006 -0.000023
ELEKTRA*  0.032444 0.009432 0.008058 0.005220 0.011134 0.009093 -0.000512 0.006245 0.014227
TELMEXL  0.017544 0.020703 -0.003978 0.000488 0.002824 -0.000627 0.002124 0.000251 -0.002132
TELECOA1  0.022022 0.035284 -0.008214 0.000758 0.001975 0.002018 -0.001889 -0.000136 -0.000471
TLEVICPO 0.028704 0.017759 0.008797 0.002722 0.007136 -0.003890 0.012450 0.004494 -0.004526
TVAZTCPO  0.043241 -0.001596 -0.000411 0.005152 0.029489 -0.000012 -0.000079 -0.000009 -0.000034
GFNORTEO  0.020388 0.009793 0.010042 0.004801 0.001086 0.001053 0.002760 -0.009402 0.004587
GFINBURO  0.014630 0.016462 0.012985 0.006573 0.000535 -0.003244 -0.006876 -0.005041 0.001921
GCARSOA1  0.023859 0.019062 0.004728 0.002876 0.002349 -0.005364 -0.001397 -0.005880 0.009357
ALFAA  0.030779 0.014388 0.013717 0.004327 0.003554 0.004867 0.000977 0.004957 0.014523
CIEB  0.027029 0.012200 0.019444 0.006150 0.000869 -0.016698 -0.014130 0.001197 -0.004561
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Table 4.23. Factor Analysis.  
Betas estimated simultaneously via Weighted Least Squares.  

Database of daily returns. 
 

 β1 β2 β3 β4 β5 β6 β7 β8 β9 
PE&OLES*  0.004406 0.001995 0.002206 0.002532 0.003044 0.001843 0.005437 0.003992 0.000570
KIMBERA  0.006252 0.001452 0.003115 0.001575 0.000684 0.001334 0.001781 -0.002668 0.001112
BIMBOA  0.007350 0.002033 0.002759 0.001877 0.003416 0.000856 0.000491 0.001596 -0.000844
GMODELOC  0.006974 0.001412 0.001527 0.001408 -0.003040 0.001587 0.003316 -0.000530 0.000227
FEMSAUBD  0.010816 0.001894 0.001182 -0.001317 -0.001098 0.004127 -0.002428 -0.001104 -0.002131
CONTAL*  0.006177 0.002546 0.001894 0.002714 0.002886 0.003102 0.004032 0.002289 0.000442
CEMEXCP  0.009883 0.001615 0.001175 -0.003057 0.000586 0.003264 -0.000190 0.000397 -0.001545
GEOB  0.010238 0.004078 0.002680 -0.003554 0.002849 -0.000616 0.000357 0.003062 0.002278
ARA*  0.008084 0.002684 0.002378 -0.002897 0.003426 -0.000448 -0.001327 0.001889 0.003203
WALMEXV 0.012047 0.002804 0.001747 0.001271 -0.004371 0.001190 0.000206 0.000992 0.002504
SORIANAB  0.011291 0.003894 0.001791 0.001600 -0.001580 0.000239 -0.000366 -0.000317 -0.000795
COMERUBC  0.009443 0.003613 0.002724 -0.001013 0.000223 -0.000641 0.001908 0.000928 -0.002796
ELEKTRA*  0.014104 0.006692 -0.002196 -0.001233 0.001050 -0.001434 0.000919 0.002105 -0.002324
TELMEXL  0.012857 -0.006884 -0.000509 -0.000201 0.000469 0.000112 0.000343 -0.000223 -0.000086
TELECOA1  0.015022 -0.003426 0.001394 0.001868 -0.000755 -0.002844 -0.000728 0.001070 -0.000077
TLEVICPO 0.016463 0.002259 -0.003104 -0.001938 -0.000845 0.002342 -0.001872 0.000164 0.002888
TVAZTCPO  0.016902 0.006641 -0.010784 0.001135 0.000812 -0.001268 0.000815 -0.001061 -0.000210
GFNORTEO  0.010954 0.003613 0.004103 -0.005958 -0.001681 -0.004571 0.002340 -0.002739 -0.000016
GFINBURO  0.009040 0.002436 0.003206 0.000578 0.001108 -0.002706 -0.002680 0.001036 -0.000281
GCARSOA1  0.011721 0.002417 0.002930 0.003680 -0.002162 -0.001671 -0.002181 0.000656 -0.000699
ALFAA  0.013488 0.003696 0.000707 -0.000110 -0.000648 -0.001457 -0.000046 0.003773 -0.001701
CIEB  0.011381 0.004892 0.004317 0.003249 0.004715 -0.000265 -0.001385 -0.004385 0.000550

 

Table 4.24. Factor Analysis.  
Betas estimated simultaneously via Weighted Least Squares.  

Database of daily excesses. 
 

 β1 β2 β3 β4 β5 β6 β7 β8 β9 
PE&OLES*  0.004509 0.001781 0.002272 0.002361 0.002484 0.003027 0.007124 0.002491 -0.001249
KIMBERA  0.006293 0.001244 0.003108 0.001556 0.000052 0.001429 -0.001345 0.003250 -0.000639
BIMBOA  0.007417 0.001782 0.002702 0.001889 0.003077 0.001926 0.001242 -0.000221 0.001125
GMODELOC  0.007019 0.001161 0.001488 0.001424 -0.003584 0.000699 0.001481 0.002828 0.000128
FEMSAUBD  0.010844 0.001479 0.001054 -0.001073 -0.001880 0.003126 -0.002038 -0.001319 0.000825
CONTAL*  0.006236 0.002372 0.001846 0.002503 0.001658 0.003953 0.003432 0.002108 0.000602
CEMEXCP  0.009964 0.001421 0.001285 -0.003376 -0.000498 0.003859 -0.000399 -0.000721 0.002194
GEOB  0.010376 0.003901 0.002967 -0.003435 0.003323 0.000238 0.003506 -0.001502 -0.004135
ARA*  0.008145 0.002448 0.002454 -0.002498 0.003363 0.000505 0.000599 -0.001791 -0.003042
WALMEXV 0.012111 0.002382 0.001750 0.001500 -0.004465 0.000063 0.000872 -0.000556 -0.002282
SORIANAB  0.011419 0.003480 0.001766 0.001702 -0.001497 -0.000191 -0.000162 -0.000264 -0.000089
COMERUBC  0.009554 0.003301 0.002768 -0.000925 0.000286 -0.000371 0.001919 0.000659 0.002195
ELEKTRA*  0.014264 0.006459 -0.002070 -0.001111 0.001346 -0.000928 0.002140 -0.000696 0.002382
TELMEXL  0.012604 -0.006993 -0.000670 -0.000321 0.000434 0.000262 0.000010 0.000483 0.000058
TELECOA1  0.014978 -0.004053 0.001229 0.001935 0.000303 -0.002807 0.000728 -0.001107 0.000090
TLEVICPO 0.016500 0.001843 -0.003072 -0.001738 -0.001395 0.001865 -0.001217 -0.001517 -0.002720
TVAZTCPO  0.017049 0.006434 -0.010730 0.000871 0.001013 -0.001082 -0.000274 0.001362 0.000286
GFNORTEO  0.011103 0.003340 0.004402 -0.006111 -0.000750 -0.005231 -0.000627 0.003106 0.000292
GFINBURO  0.009111 0.002167 0.003245 0.000850 0.001925 -0.002113 -0.001223 -0.002835 0.001295
GCARSOA1  0.011811 0.001948 0.002834 0.003967 -0.001470 -0.002066 -0.000809 -0.002211 0.000920
ALFAA  0.013595 0.003317 0.000744 0.000140 -0.000110 -0.001185 0.002895 -0.002432 0.001845
CIEB  0.011516 0.004459 0.004229 0.003238 0.004426 0.000783 -0.004171 0.001939 -0.000817
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Continuing with the methodology described in Chapter 3, in the second stage of 

the econometric contrast, we estimated the lambdas or risk premiums in expression 4.11 

by regressing the betas obtained in the first stage as a cross-section on the returns and 

excesses, using ordinary least squared corrected by heteroscedasticity and 

autocorrelation by means of the Newey-West heteroscedasticity and autocorrelation 

consistent covariance estimates (HEC). Additionally, we verified the normality in the 

residuals by carrying out the Jarque-Bera test of normality and we used the Wald test to 

confirm the equalities assumed by the APT regarding the independent term.  

 

 In Tables 4.25 and 4.26, we present a summary of the results of the econometric 

contrast for PCA and in Table 4.27 and 4.28 for FA. The results of the explanation 

power, the adjusted R-squared (R2*), the statistical significance of the multivariate test 

(F), and the Jarque-Bera normality test of the residuals are suitable in all the contrasted 

models, except in the cases where only two factors were extracted using PCA; 

nevertheless, using FA there are more models that do not produce a good level of 

explanation and they are not statistically significant in multivariate terms. The 

univariate tests for the individual statistical significance of the parameters (Statistic t) 

priced from one to six factors different from 0 in PCA and from one to eight in MLFA, 

thus giving evidence in favor of the APT in 30 models using PCA and 27 utilizing FA. 

The total number of tested models was 32. Nevertheless, only three models in PCA and 

three in MLFA fulfilled both the statistical significance of the parameters and the 

equality of the independent term to its theoretic value, in addition to the fulfilment of 

normality in the residuals. Concerning the PCA these models were the one expressed in 

weekly returns when seven components were extracted and those expressed in daily 

returns when three, and nine components were retained. Regarding the MLFA those 

models were the ones using five factors in the weekly returns database, and eight and 

nine, in the daily returns dataset. Expressions in excesses did not produce any model 

that fulfil all the conditions to be completely accepted as valid. 
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We can make cross validation of the accepted models and the interpretation of 

factors under the approach proposed above, although we have to make a distinction 

first. Table 4.13 represents our interpretation of the extracted factors when nine 

components were estimated, and in the case of PCA the same interpretation works for 

the cases of the models that were completely accepted under this technique, despite they 

correspond to experiments were a different number of components were computed, i.e. 

seven, six and three. This fact is derived by the property of PCA explained in the 

interpretation section about the unique mathematical solution produced by PCA, that 

implies that additional dimensions do not affect the previously components computed, 

and only add an extra dimension to the new projected space. Nevertheless, for FA and 

the rest of the techniques used in this dissertation the mathematical solutions will 

depend of the number of components or factors estimated. 

 

 Consequently, we can state de following about the proposed cross validation: 

The significant components that affect the weekly model accepted in PCA, are the 

mining and construction sector factor. For the accepted daily models expressed in 

returns, the previous components are significant as well; additionally, the model with 

nine factors is affected by the entertainment consume, the holding-beverage-Salinas 

group, and infrastructure-financial sector factors.  

 

Concerning the accepted models in FA, for reason of saving space, the tables 

including the interpretation when five and eight factors were estimated and that 

correspond to the models completely accepted, one in the database of weekly returns 

and the other of the database of daily returns, are not included in the body of this 

document121; however, under the same methodology illustrated for the case of the 

experiment when nine factors were extracted, we can state the following. In the model 

with five factors of the weekly database of returns, the significant factors would be the 

market one, and a factor that contrasts the construction with the leisure sector.  

 

 
                                                            
121 Interested reader can consult the tables with the interpretation for all the experiments in the electronic 
appendix of this dissertation. 



CHAPTER 4. PRINCIPAL COMPONENT ANALYSIS AND FACTOR ANALYSIS: 
ESTIMATION OF THE GENERATIVE MULTIFACTOR OF RETURNS. 

 

123 
 

 

 

Finally, for the daily databases of returns, those would be represented by the 

construction materials and the leisure sector factors, in the case of the model using 8 

betas; and one factor that combine the holdings and beverage sector with the Salinas 

Group, and another one that contrasts the leisure sector to the mining-holdings-

construction sectors, in the case of the model with 9 betas. 

 

On the other hand, making a cross validation that relates the significant factors 

in the accepted models with the factors that explain the major amount of variance in 

their corresponding estimation, i.e., the first three components or factors, we can 

conclude that in the case of PCA only the significant factors related to the mining and 

construction sectors, correspond to the second and third components, while in FA, only 

the significant factor related to the market corresponded to the first one.  

 

Regarding the risk premiums (lambdas) we can observe that in the accepted 

models, the sensitivities to the extracted risk factors (betas) produce both positive and 

negative effects in the average returns of the stocks studied, although in most of the 

cases the relation is inverse (negative); i.e., increases in the values of the betas will 

produce reductions in the average returns. Regarding the values of these lambdas in all 

cases they present undersized values, which it may be explained by the periodicity of 

the datasets used in the study. For example, the results of the model with seven factors, 

imply that a change of one unity of risk related to the mining sector risk factor would 

produce a variation of 0.0029 in the average logarithmic weekly returns of the stocks 

considered, and a change of one unity of risk related to the construction sector risk 

factor would generate a decrease of 0.0077 in those rates of returns. In PCA the values 

of risk premiums in the accepted models ranged from -0.0077 to 0.0029 in weekly 

models and from -0.0013 to -0.0005 in daily expressions. In FA, those values fluctuated 

from 0.0007 to 0.2107 in the weekly databases, and from -0.1435 to 0.0546, in daily 

definitions. 
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 Additionally, in Tables 4.25 to 4.28, in order to establish a ratio that serves as an 

indicator of the relevance of the factors considered in each model, we also included a 

column with the percentage of factors statistically significant in relation to the total 

number of parameters estimated in the model. For the accepted models, this ratio ranged 

from about 28% to 66% of statistically significant estimated factors in the models 

accepted in the case of PCA, and from around 22% to 40%, in the case of FA. 

 

Finally, calls the attention that market factor was statistically significant only in 

one of the accepted models; further research would be needed about this issue, as well 

as about the meaning of the undersized value and signs of the estimated individual 

parameters. 

 

To summarize, for the sample and periods considered, we can accept only 

partially the validity of the APT using PCA and FA as a pricing model explaining the 

average returns (and returns in excesses) on equities of the Mexican Stock Exchange. 

On the other hand, the evidence showed that the APT is very sensitive to the number of 

factors extracted and to the periodicity and expression of the models. 
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Table 4.25. Principal Component Analysis. Summary of the econometric contrast. Weekly databases. 
      λ0 λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 R2* λsig / λtot F WALD J-B 
Database of weekly returns.   
  Model with 2 betas ● ● ●               6.62% 0.00% ● ○ ○ 
  Model with 3 betas 0.00563 ● 0.00296 -0.00770             51.99% 66.67% ○ ● ○ 
  Model with 4 betas 0.00574 ● 0.00292 -0.00777 ●           49.02% 50.00% ○ ● ○ 
  Model with 5 betas 0.00551 ● 0.00300 -0.00762 ● ●         46.62% 40.00% ○ ● ○ 
  Model with 6 betas 0.00572 ● 0.00292 -0.00775 ● ● ●       57.27% 33.33% ○ ● ○ 
  Model with 7 betas 0.00574 ● 0.00292 -0.00776 ● ● ● ●     53.72% 28.57% ○ ○ ○ 
  Model with 8 betas 0.00583 ● 0.00288 -0.00783 ● ● ● ● ●   53.57% 25.00% ○ ● ○ 
  Model with 9 betas 0.00579 ● 0.00290 -0.00780 ● ● ● ● ● ● 48.98% 22.22% ○ ● ○ 
Database of weekly excesses.   
  Model with 2 betas ● ● ●               6.62% 0.00% ● ○ ○ 
  Model with 3 betas 0.00392 ● 0.00298 -0.00769             51.99% 66.67% ○ ● ○ 
  Model with 4 betas 0.00403 ● 0.00294 -0.00776 ●           49.03% 50.00% ○ ● ○ 
  Model with 5 betas ● ● 0.00303 -0.00761 ● ●         46.62% 40.00% ○ ● ○ 
  Model with 6 betas 0.00402 ● 0.00295 -0.00775 ● ● ●       57.35% 33.33% ○ ● ○ 
  Model with 7 betas ● ● 0.00294 -0.00776 ● ● 0.00322 ●     53.80% 57.14% ○ ○ ○ 
  Model with 8 betas ● ● 0.00290 -0.00782 ● ● ● ● ●   80.53% 25.00% ○ ● ○ 
  Model with 9 betas ● ● 0.00292 -0.00780 ● ● ● ● ● ● 49.05% 22.22% ○ ● ○ 
Notes: 
* The level of statistical significance used in all the tests was 5%. 
λj: Estimated coefficients. H0: λj = 0. Numeric value of the coefficient = Rejection of H0. Parameter significant. ● = Non-rejection of H0. Parameter not significant 
R2*: Explanatory capacity of the model. 
λsig / λtot: Ratio number of significant lambdas / total number of lambdas in the model. 
F: Global statistical significance of the model. H0 = λ2 = λ3 = … = λk = 0. ○ = Rejection of H0. Model globally significant. ● = Non-rejection of H0. Model globally not 
significant. 
Wald: Wald's test for coefficient restrictions. Databases in returns: H0: λ0 = Average riskless interest rate. Databases in excesses: H0: λ0 = 0. ○ = Non-rejection of H0. The 
independent term is equal to its theoretic value. ● = Rejection of H0. The independent term is not equal to its theoretic value.  
J-B: Jarque-Bera's test for normality of the residuals. H0 = Normality. ○ = Non-rejection of H0. The residuals are normally distributed. ● = Rejection of H0. The residuals are 
not normally distributed. 
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Table 4.26. Principal Component Analysis. Summary of the econometric contrast. Daily databases. 
 λ0 λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 R2* λsig / λtot F WALD J-B 

Database of daily returns.           
   Model with 2 betas ● ● -0.00049        7.96% 50.00% ● ○ ○ 
   Model with 3 betas 0.00053 ● -0.00057 -0.00137       41.29% 66.67% ○ ○ ○ 
   Model with 4 betas ● ● ● -0.00129 ●      48.22% 25.00% ○ ○ ○ 
   Model with 5 betas ● ● ● -0.00130 ● ●     49.15% 20.00% ○ ● ○ 
   Model with 6 betas ● ● ● -0.00130 ● ● ●    46.66% 16.67% ○ ○ ○ 
   Model with 7 betas ● ● ● -0.00130 ● ● ● ●   43.35% 14.29% ○ ○ ○ 
   Model with 8 betas ● ● ● -0.00131 ● ● ● ● ●  65.02% 12.50% ○ ○ ○ 
   Model with 9 betas 0.00066 ● -0.00050 -0.00136 -0.00051 0.00041 ● ● ● -0.00094 70.55% 55.56% ○ ○ ○ 
Database of daily excesses.        
   Model with 2 betas ● ● -0.00052           -1.42% 50.00% ● ○ ○ 
   Model with 3 betas ● ● -0.00061 -0.00141          42.28% 66.67% ○ ○ ● 
   Model with 4 betas ● ● ● -0.00132 ●      49.80% 25.00% ○ ○ ○ 
   Model with 5 betas ● ● ● -0.00132 ● ●     50.60% 20.00% ○ ○ ○ 
   Model with 6 betas ● ● ● -0.00133 ● ● ●      48.44% 100.00% ○ ○ ○ 
   Model with 7 betas ● ● ● -0.00130 ● ● ● ●    43.35% 14.29% ○ ○ ○ 
   Model with 8 betas ● ● ● -0.001343 ● ● ● ● ●  45.03% 12.50% ○ ○ ○ 
   Model with 9 betas ● ● -0.00052 -0.001391 -0.00055 0.00041 ● ● ● 0.00097 73.51% 55.56% ○ ○ ○ 
Notes: 
* The level of statistical significance used in all the tests was 5%. 
λj: Estimated coefficients. H0: λj = 0. Numeric value of the coefficient = Rejection of H0. Parameter significant. ● = Non-rejection of H0. Parameter not significant 
R2*: Explanatory capacity of the model. 
λsig / λtot: Ratio number of significant lambdas / total number of lambdas in the model. 
F: Global statistical significance of the model. H0 = λ2 = λ3 = … = λk = 0. ○ = Rejection of H0. Model globally significant. ● = Non-rejection of H0. Model globally not significant. 
Wald: Wald's test for coefficient restrictions. Databases in returns: H0: λ0 = Average riskless interest rate. Databases in excesses: H0: λ0 = 0. ○ = Non-rejection of H0. The 
independent term is equal to its theoretic value. ● = Rejection of H0. The independent term is not equal to its theoretic value.  
J-B: Jarque-Bera's test for normality of the residuals. H0 = Normality. ○ = Non-rejection of H0. The residuals are normally distributed. ● = Rejection of H0. The residuals are not 
normally distributed. 
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Table 4.27. Factor Analysis. Summary of the econometric contrast. Weekly databases. 
  λ0 λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 R*2 λsig / λtot F WALD J-B 
Database of weekly returns.   
  Model with 2 betas 0.00457 ● ●               0.20% 0.00% ● ● ○ 
  Model with 3 betas 0.00337 ● ● 0.12722             11.05% 33.33% ● ○ ○ 
  Model with 4 betas 0.00376 ● ● ● 0.13780           14.79% 25.00% ● ○ ○ 
  Model with 5 betas 0.00309 -0.07078 ● ● ● 0.21077         52.58% 40.00% ○ ○ ○ 
  Model with 6 betas 0.00424 -0.09734 ● ● ● 0.20782 -0.13978       68.40% 50.00% ○ ● ○ 
  Model with 7 betas 0.00473 ● ● ● -0.15198 -0.06563 0.07245 ●     69.06% 42.86% ○ ● ○ 
  Model with 8 betas 0.00593 -0.10643 -0.05528 -0.06844 0.12686 -0.08073 0.09068 0.07573 0.17361   80.71% 100.00% ○ ● ○ 

Model with 9 betas 0.00590 -0.14932 ● ● 0.05005 ● 0.16900 0.09160 -0.11678 0.10175 77.77% 66.67% ○ ● ○ 
Database of weekly excesses.   
  Model with 2 betas 0.00287 ● ●               0.05% 0.00% ● ● ○ 
  Model with 3 betas ● ● ● 0.12758             11.09% 33.33% ● ○ ○ 
  Model with 4 betas 0.00205 -0.05436 -0.00193 0.02853 ●           14.81% 75.00% ● ○ ○ 
  Model with 5 betas ● -0.07021 ● ● ● 0.20969         52.20% 40.00% ○ ○ ● 
  Model with 6 betas 0.00255 -0.09697 ● ● ● 0.20709 ●       68.38% 33.33% ○ ● ○ 
  Model with 7 betas 0.00304 ● ● ● -0.15182 -0.06446 ● ●     69.00% 28.57% ○ ● ○ 
  Model with 8 betas 0.00424 -0.10598 -0.05599 -0.06776 0.12691 -0.08090 0.08932 0.07557 0.17512   80.76% 100.00% ○ ● ○ 
  Model with 9 betas 0.00421 -0.14882 ● 0.04280 0.04998 ● 0.16767 0.09366 -0.11721 0.10273 77.84% 77.78% ○ ● ○ 
Notes: 
* The level of statistical significance used in all the tests was 5%.  
λj: Estimated coefficients. H0: λj = 0. Numeric value of the coefficient = Rejection of H0. Parameter significant. ● = Non-rejection of H0. Parameter not significant 
R2*: Explanatory capacity of the model. 
λsig / λtot: Ratio number of significant lambdas / total number of lambdas in the model. 
F: Global statistical significance of the model. H0 = λ1 = λ2 = … = λk = 0. ○ = Rejection of H0. Model globally significant. ● = Non-rejection of H0. Model globally not significant. 
Wald: Wald's test for coefficient restrictions. Databases in returns: H0: λ0 = Average riskless interest rate. Databases in excesses: H0: λ0 = 0. ○ = Non-rejection of H0. The independent term 
is equal to its theoretic value. ● = Rejection of H0. The independent term is not equal to its theoretic value.  
J-B: Jarque-Bera's test for normality of the residuals. H0 = Normality. ○ = Non-rejection of H0. The residuals are normally distributed. ● = Rejection of H0. The residuals are not normally 
distributed. 
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Table 4.28. Factor Analysis. Summary of the econometric contrast. Daily databases. 
   λ0 λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 R*2 λsig / λtot F WALD J-B 
Database of daily returns.       
  Model with 2 betas 0.00094 -0.04908 ●               2.31% 50.00% ● ● ○ 
  Model with 3 betas 0.00086 -0.03853 0.02121 0.01201             -2.64% 100.00% ● ○ ○ 
  Model with 4 betas 0.00043 0.00113 0.02701 0.05664 0.06924           5.03% 100.00% ● ○ ○ 
  Model with 5 betas ● ● ● ● 0.10101 ●         23.10% 20.00% ● ○ ○ 
  Model with 6 betas ● ● ● ● ● ● 0.05257       33.30% 16.67% ● ○ ○ 
  Model with 7 betas 0.00107 -0.05676 ● ● -0.12533 0.07379 ● 0.05998     65.17% 57.14% ○ ● ○ 
  Model with 8 betas 0.00078 ● ● ● ● 0.05464 -0.14354 ● ●   71.69% 25.00% ○ ○ ○ 
  Model with 9 betas 0.00092 ● ● ● -0.1086 ● ● ● 0.1059 ● 70.26% 22.22% ○ ○ ○ 
Database of daily excesses.            
   Model with 2 betas 0.00072 -0.04878 ●             1.65% 50.00% ● ● ○ 
   Model with 3 betas ● ● ● ●           42.28% 66.67% ● ○ ○ 
   Model with 4 betas ● ● ● ● ●          3.51% 0.00% ● ○ ○ 
   Model with 5 betas ● ● ● ● 0.10455 ●        23.14% 20.00% ○ ○ ○ 
   Model with 6 betas ● ● ● ● ● ● ●      32.27% 0.00% ● ○ ○ 
   Model with 7 betas 0.00087 -0.05971 ● ● -0.13575 ● 0.06580 0.07526    67.22% 57.14% ○ ● ○ 
   Model with 8 betas 0.00084 -0.05614 ● ● 0.06366 ● -0.14532 0.03899 ●   75.19% 50.00% ○ ● ○ 
   Model with 9 betas 0.0008 ● ● ● -0.10328 ● ● 0.09296 -0.07264 ● 77.63% 33.33% ○ ● ○ 
Notes: 
* The level of statistical significance used in all the tests was 5%. 
λj: Estimated coefficients. H0: λj = 0. Numeric value of the coefficient = Rejection of H0. Parameter significant. ● = Non-rejection of H0. Parameter not significant 
R2*: Explanatory capacity of the model. 
λsig / λtot: Ratio number of significant lambdas / total number of lambdas in the model. 
F: Global statistical significance of the model. H0 = λ1 = λ2 = … = λk = 0. ○ = Rejection of H0. Model globally significant. ● = Non-rejection of H0. Model globally not significant. 
Wald: Wald's test for coefficient restrictions. Databases in returns: H0: λ0 = Average riskless interest rate. Databases in excesses: H0: λ0 = 0. ○ = Non-rejection of H0. The independent term 
is equal to its theoretic value. ● = Rejection of H0. The independent term is not equal to its theoretic value.  
J-B: Jarque-Bera's test for normality of the residuals. H0 = Normality. ○ = Non-rejection of H0. The residuals are normally distributed. ● = Rejection of H0. The residuals are not normally 
distributed. 

 

 



CHAPTER 4. PRINCIPAL COMPONENT ANALYSIS AND FACTOR ANALYSIS: 
ESTIMATION OF THE GENERATIVE MULTIFACTOR OF RETURNS. 

 

129 
 

4.4 Conclusions 

 

In general, and in accordance with the scope and limitations of this study, the 

generative multifactor model of returns estimated by means of PCA and FA was capable to 

reproduce the observed returns on equities of our sample; thus we can state that both 

techniques performed an outstanding extraction of the underlying systematic risk factors 

driving the returns on equities of our sample, under an statistical approach to the systematic 

risk factors theory.  Regarding the interpretation, according the basic approach carried on in 

this study, we uncover that factors or components driving the returns are sensitive to the 

technique used, the periodicity and the expression of the returns used in the model. 

 

 Conversely, for the sample and periods considered, we can accept only partially the 

validity of the APT using PCA and FA, as a pricing model explaining the average returns 

(and returns in excesses) on equities of the Mexican Stock Exchange, since we found certain 

evidence in favor of this asset pricing model such as several model with statistically 

significant risk premiums, but on the other hand, there were only a few models that fulfilled 

also the equality of the independent term to its theoretic value. On the other hand, the 

evidence showed that the APT is very sensitive to the number of factors extracted and to the 

periodicity and expression of the models.  

 

Consequently, we conclude that the performance of the APT statistical approach with 

respect to the Mexican Stock Exchange presents some inconsistencies that make it unstable 

and sensitive to the different techniques used for extracting risk factors. Further research will 

be required to examine alternative approaches for underlying factor extraction, such as 

Independent Component Analysis (ICA) and Neural Networks Principal Component Analysis 

(NNPCA)122, in order to uncover the true generative structure of returns on equities in this 

emerging market. Finally, our results are consistent with earlier studies in which this 

statistical approach was applied to other markets and with the number of priced factors found 

in Mexico through studies in which a macroeconomic approach was used123. 

 

                                                            
122 These techniques will be studied in the following chapters of this dissertation. 
123 See references in the introduction of this chapter. 
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Chapter 5 
Independent Component Analysis: Estimation of the 
generative multifactor model of returns.  
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5.1. Introduction and review of literature.  

 

The goal of the present chapter is to determine the statistical pervasive systematic risk factors 

in the Mexican Stock Exchange by means of a relatively new computational technique, 

namely, Independent Component Analysis (ICA). Also we intent to improve the results of the 

previous chapter and to detect a more realistic124 structure of the underlying factors explaining 

the returns on equities in the Mexican Stock Exchange (BMV for its acronym in Spanish). 

 

 Because of its nature, ICA is designed assuming a linear mix of variables that are not 

normally distributed, which is a relevant property for the problem we are dealing with. This 

technique helps to reveal a linear combination of underlying time series that explain the 

pervasive sources in some observed parallel time series, by extracting their statistically 

independent components. 

 

 Studies about ICA have been done mainly in fields such as: signal and image 

processing, speech and audio separation, biomedical signals and image analysis, 

telecommunications, neurophysiology, text and document processing, bioinformatics, 

environmental issues and some industrial applications. Two groups of researchers, one from 

France and another from Finland, are the authors of many of the seminal works on ICA. 

Several papers concerning the algorithms for estimating the independent components have 

been developed through the years125. 

 

 In recent years, studies about the applications of ICA in different fields of Finance 

have been made in some countries. They have used ICA for extracting: the factors influencing 

cash flow generation at a set of retail stores in Finland (Kiviluoto and Oja, 1998); the 

components producing variations in the Foreign Exchange in the USA, the UK and Finland 

                                                            
124 As stated in the introduction of this dissertation, with more realistic, we make reference to the fact that ICA is 
capable to extract factors from non-Gaussian data which is the nature of our financial series, while the classic 
techniques PCA and FA are actually developed to extract factors from data normally distributed. 
125 See Hyvärinen et al. (2001) for a complete reference and revision about ICA. 
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(Moody & Wu, 1997; Moody & Yang, 2001; Lesch et al., 1999; Cheung & Xu, 2001); the 

factors driving the yield curve dynamics of government bonds in Germany and the spot rate 

curve movements in Italy (Molgedey & Galic, 2001; Bellini & Sallinelli, 2003); the features 

moving the returns from index funds, hedge funds, thrift saving plan funds,  and real estate 

investment trusts in the USA and the UK (Rojas & Moody, 2001; Pike & Klepfish, 2004; 

Robinson, 2007; Nestler, 2007; Lizieri et al., 2007); the underlying factors explaining the 

stock returns in Japan, the USA, China and Italy (Back & Weigend, 1997; Yip & Xu, 2000; 

Cha & Chan, 2000; Chan & Cha, 2001; Wei et al., 2005; Coli et al., 2005; Korizis et al., 

2007; Bonhomme & Robin, 2009), as well as in simulated stock markets (Vessereau, 2000); 

the features of the volatility process related to a stock index (Capobianco, 2002a, 2002b, 

2003), and the relevant factors from implied volatility surfaces of index options (Ané & 

Labidi, 2001). Moreover, other uses of ICA in Finance have been to forecast financial time 

series126 (Mălăroiu et al, 2000; Chan, 2002; Lo & Coggins, 2003; Mok et al., 2004; Cichocki 

et al., 2005; Huang et al., 2006; Huang & Zhong, 2006; Lu et al., 2009a, 2009b; Lu, 2010; Lu 

& Wang, 2010), to manage investment portfolios (Clémençon & Slim, 2007), to allocate 

assets (Madan, 2006; Madan & Yen, 2008); to compute improved portfolio risk measures 

such as VaR (Chin et al., 1999; Wu et al., 2006; Chen et al., 2007, 2010; Broda & Paolella, 

2009); to cluster multivariate financial time series (Wu & Yu, 2006a); to describe the 

conditional higher moments risk in international stock markets (Xu & Jiang, 2006); to model 

the term structure of multiple yield curves (Wu and Yu, 2006b), as well as the volatility of 

market price indexes (Wu et al. 2006); and to discover causality in the stock market (Zhang & 

Chan; 2006, 2007)127. 

 

 To the best of our knowledge, there is no study concerning the application of the ICA 

in Finance focused on Mexico. Consequently, we shall try to fill this gap found in financial 

literature by contributing, with the application of a non-commonly used extraction technique 

to extract the underlying systematic risk factors in the Mexican Stock Exchange. Additionally, 

                                                            
126 In some of these studies ICA has been used in combination with other advanced forecasting techniques such 
as: neural networks, growing hierarchical self-organizing maps and support vector regression, or they have 
employed extended versions of the ICA like the Nonlinear ICA. 
127 In these studies the authors employ some extensions of the ICA basic model, like the Nonlinear ICA. 
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we will test the econometric contrast of the Arbitrage Pricing Theory (APT), by using the 

systematic risk factors extracted by ICA from this stock market.  

 

 The outline of this chapter is as follows: In section 2, we briefly describe the ICA 

technique; in section 3, we present an empirical study; and finally in section 4, we draw the 

main conclusions.  

 

5.2. Independent components analysis. 

 

5.2.1. ICA basics. 

 

Despite the widespread evidence concerning the non-Gaussianity of the returns on equities, 

the most popular latent variables analysis techniques used for extracting the pervasive factors 

underlying the financial multivariate data are, the Principal Component Analysis (PCA) and 

Factor Analysis (FA), which assume a Gaussian distribution of the latent factors.  

 

ICA represents an improved extraction technique for this kind of data, since it is based 

on a multivariate non-normality approach and looks for mutually and statistically independent 

components. According to Hyvärinen et al. (2001), statistical independence means that ‘the 

value of any one of the components gives no information on the values of the other 

components’. Also following De Lathauwer et al. (2000), mutually and statistically 

independent can be interpreted as ‘of different nature’. 

 

 ICA was introduced in the field of signal processing and neural computation as a tool 

to solve the problem of Blind Source Separation (BSS) and Signal Reconstruction. According 

to Oja (2004): ‘Blind Source Separation is a computational technique for revealing hidden 

factors that underlie sets of measurements or signals'. The most basic statistical approach to 

BSS is ICA.’ In addition, he states that: ‘Blind means that we know very little if anything 

about the original sources’. Figure 5.1 shows a schematic representation of ICA. 

 



CHAPTER 5. INDEPENDENT COMPONENT ANALYSIS: ESTIMATION OF THE 
GENERATIVE MULTIFACTOR MODEL OF RETURNS. 

 

135 
 

 

Figure 5.1. Schematic representation of Independent Component Analysis. 
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Source: Own elaboration based on Back & Weigend (1997) and Wei et al. (2005). 

 

This technique assumes that the observed variables are the result of an unknown 

mixing process of some latent original sources. Consequently, the observed variables can be 

decomposed by means of a demixing process, capable of estimating some statistically 

independent components that can be considered as reliable proxies for the original sources 

that generated the observed variables (s ≈ y)128. The main characteristic of the latent sources is 

that they are assumed to be non-Gaussian and mutually independent. They are known as the 

independent components of the multivariate observed data. According to Cha & Chan (2000), 

the formal expressions of the mixing and demixing processes are as follows129: 

 

    Mixing process: Asx           (5.1) 

    Demixing process: WAsWxy        (5.2) 

 
                                                            
128 This is true up to a scaling of variables and permutation of the variables. 
129 These expressions represent the most basic definition of the ICA model; some generalizations and 
modifications in them, such as the addition of a noise term, the case when the number of observed mixtures and 
the number of sources are different, or the mixing process is not linear, can be found in Hyvärinen et al. (2001). 
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Where x represents the vector of observed variables; A, the mixing matrix; s, the vector of 

original sources; y, the vector of the independent components; and W, the demixing matrix, 

which we assume that has inverse. Since we are ignorant130 of both the input and output 

processes and also the original sources, the ICA methodology makes several assumptions: a) 

both the original sources and the components y are non-Gaussian131 and mutually 

independent; b) the number of observed mixtures is equal to the number of original sources, 

so the unknown mixing matrix is square; c) if the independent components are equal to the 

original sources, the mixing matrix A will be the inverse of the demixing matrix W132: 

 

      A = W-1              (5.3)  

 

 Under these assumptions we can estimate both W and y from x by looking for some 

components as statistically independent as possible. Thus, the objective of ICA is to find a 

demixing linear mapping W in which the components y would be as statistically independent 

as possible. 

 

 In relevant literature we can find mainly three estimation criteria for ICA133: a) the 

maximization of nongaussianity, b) the maximum likelihood estimation, and c) the 

minimization of mutual information. As it is expressed in Hyvärinen (1999a, 1999b) and 

Hyvärinen & Oja (2000), under some conditions, the three approaches are essentially 

equivalent or at least closely related. Next we describe the criteria: 

  

                                                            
130 Since the input and output relationship is unknown. 
131 In the common ICA models only one component at most can be Gaussian. If there is more than one Gaussian 
component, ICA will not be able to separate them from each other; thus, all the Gaussian components will be 
linearly combined. 
132 This relation can be seen, too, as the demixing matrix W being the inverse of the mixing matrix A  
(W=A-1).  
133 A deeper study of the different approaches to estimate the ICA model, including their concepts, algorithms, 
numeric methods, and extensions, is out of the scope of this research; however, the interested reader can find a 
detailed study of them in Hyvärinen et al (2001). 
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a) Maximization of nongaussianity poses that, by finding the maximum 

nongaussianity of the dataset, we can find its independent sources. The two 

measures of nongaussianity used are kurtosis and negentropy. Since the value of 

kurtosis is zero for Gaussian random variables, and nonzero for non-Gaussian, we 

will try to maximize its absolute value. The entropy of a random variable is the 

degree of information that the observation of a variable gives. The more Gaussian 

the variable is, the larger its entropy. On the contrary, the value of negentropy is 

zero for Gaussian variables134. Since the negentropy will always be nonnegative, 

we will try to maximize it in order to maximize the nongaussianity.  

 

b) Maximum likelihood (ML) estimation, as a fundamental method of statistical 

estimation, can be used to estimate the independent components. This method 

consists in taking as estimates of the parameters the values that make the obtained 

measurements most likely given the model, i.e., the values of the parameters of the 

model that give the highest probability for the observations. Following Hyvärinen 

et al. (2001), in the context ICA, the derivation of the likelihood of the ICA model 

is based on a linear transform of the probability density function of the 

independent components. The likelihood is expressed as a function of the 

parameters of the model, which are the elements of the mixing matrix, where the 

likelihood is actually a function of the density of the independent components.  

 
c) Mutual information (MI) represents a measure of dependence between random 

variables. Its value is always non-negative, and it is zero for statistically 

independent variables. Finding a linear transformation W that minimizes the 

mutual information, we will discover the directions in which the negentropy is 

maximized. MI, as a higher order statistic, considers not only the second order 

dependence provided by the covariance but also the whole dependence structure of 

the variables.  

                                                            
134 Negentropy is a normalized version of entropy that is zero for a gaussian variable and always nonnegative. 
See details in Hyvärinen et al. (2001).   
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 The former three criteria allow for different methods for computing the ICs, which 

resemble one another in the sense that the optimization step is done by means of an iterative 

algorithm. The two main methods are: the adaptive algorithms based on gradient methods, 

and the fixed-point iteration scheme algorithm, known as fast fixed-point or Fast-ICA 

algorithm. 

 

 The gradient method is a typical technique used for the optimization of objective 

functions. In this case, we aim either to maximize the absolute value of kurtosis, the 

negentropy or the likelihood, or to minimize the mutual information. By computing their 

gradients, we will obtain the direction in which the kurtosis, the negentropy, or the likelihood 

of the following expression is maximized: 

      Wzy          (5.4) 

Where, z represents the observed variables after a whitening pre-processing.  

 

In the case of the mutual information approach, we will find the direction in which the 

mutual information of the foregoing expression is minimized. Then, we will move the vectors 

w in that direction. This method is closely related to the learning concept of the neural 

network and has the advantage of using the inputs z at once in the algorithm; nevertheless, it 

presents the drawbacks of slow convergence and dependence on the learning rate choice. 

 

 According to Hyvarinen & Oja (1997), the FastICA algorithm represents a 

transformation of a neural network learning rule into a fixed-point iteration scheme. The 

possible performance measurements or optimization criteria can be either of the two measures 

on nongaussianity used: on one hand, the maximum kurtosis, and on the other hand, the 

negentropy of a linear combination of the observed variables. It can find all the non-Gaussian 

independent components one by one, in spite of their probability distributions; besides, its 

convergence speed is faster and it is more reliable since there is no user-defined parameter to 

choose. 
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In addition, there are two methods to estimate several independent components: 

deflationary orthogonalization, where the independent components are estimated one by one, 

and the symmetric decorrelation, where they are estimated in parallel. 

 

5.2.2 ICA compared to PCA and FA 

 

 In reference to PCA and FA, Hyvärinen et al. (2001) state: ‘ICA is a much more 

powerful technique, capable of finding the underlying factors or sources when these classic 

methods fail completely’; furthermore, Oja et al. (2000) declare ‘ICA might reveal some 

driving mechanisms that otherwise remain hidden’. PCA and FA present a limitation that ICA 

overcomes. It is often believed that PCA and FA generate independent components; however, 

this is only true if the data are multivariate normally distributed, since uncorrelated 

components are also independent for Gaussian data. The real world data and specially the 

financial time series usually are non-Gaussian. ICA will search statistically independent 

components for non-Gaussian data. In addition, independence represents a stronger property 

than uncorrelatedness, since the former implies the latter but not vice versa. Therefore, 

uncorrelatedness is not enough to separate the underlying components. From a different 

perspective, PCA and FA techniques use only the covariance matrix to obtain linear 

decorrelated components, i.e., they minimize second-order statistics. Another problem related 

to the use of these two methods on financial time series is the fact that, in finance, probability 

distributions have long tails, and therefore the outliers can distort the estimation of the 

parameters in both cases.  The ICA techniques use statistics that are not considered in the 

covariance matrix, i.e., they additionally minimize higher-order statistics containing 

information not included in the covariance matrix135. Nevertheless, PCA generates a 

whitening or sphering136 procedure very useful for pre-processing the data before applying 

                                                            
135 This is the reason why ICA cannot be used for Gaussian variables, since they are defined only by the mean 
and the variance, and all the other statistics are zero.  
136 Whitening or sphering refers to the process of transforming linearly a set of random variables so as to get 
uncorrelated variables with variances equal to unity. Whitening is equivalent to performing PCA but conserving 
all the components. 
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ICA algorithms, since it reduces the search for the demixing matrix to the space of orthogonal 

matrices. Note that a whitening process is affected if the data has outliers, because of their 

influence in the covariance matrix. Therefore before the decision of doing a whitening 

preprocessing, the effect of the outliers on the covariance matrix should be checked. In our 

dataset, for instance the effect of the outliers was negligible on the covariance matrix. Another 

key difference between these methods is that while PCA and FA factorize the covariance 

matrix of the observed variables, ICA factorizes the joint probabilities of the independent 

signals. From a geometric standpoint, the directions obtained by the transformation can define 

the differences: PCA and FA will find the directions that capture the maximum amount of 

total and common variance, respectively; whereas ICA will find the directions most deviated 

from Gaussianity. 

 

 From a broad perspective the basic ICA model could be seen as a generalization of 

PCA or FA137, taken to a higher-order independence of the components or factors extracted. 

Conversely, ICA presents a special problem absent in both PCA and FA: the estimated 

independent components (ICs) are not explicitly ranked as in the other methods, where the 

factors are automatically ranked by their eigenvalues. Additionally, therefore we have to 

apply an algorithm able to order the ICs according to some criteria.  

 

 Summarizing, as stated in Hyvärinen et al. (2001, p. 287): ‘What distinguished ICA 

from PCA and classic factor analysis is that the nongaussian structure of the data is taken into 

account. This higher-order statistical information (i.e., information not contained in the mean 

and the covariance matrix) can be utilized, and therefore, the independent components can 

actually be separated, which is not possible by PCA and classic factor analysis’. 

 

                                                            
137 In the case of FA, where there is no presence of the error term. Nonetheless, when the error term cannot be 
assumed to be zero, this generalization would imply the presence of the noisy ICA model or the Independent 
Factor Analysis, where the hidden factors are independent and non-Gaussian instead of uncorrelated and 
Gaussian. 
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5.2.3. ICA in Finance. 

 

It is known that ICA assumes that there are independent components that generate the 

observed returns by means of a linear transformation. In the case of signal processing (i.e. 

blind source separation of audio signals), one has to posit the hypothesis that the functions of 

the original set are mutually independent, which can easily be checked by examining the 

physical process that generates the signals (i.e., different persons speaking can be assumed to 

generate independent signals). In the case of financial series, one has to posit the 

independence but the actual check of it by examining the physical process that generates the 

original signal is impossible. Nevertheless, it is reasonable to assume that there is a set of 

independent signals that underlie the observed time series, which might be related to political 

events, meteorological phenomena, short-time technical changes, internal dynamics of the 

markets and the economy. These signals could be assumed to be independent; and a linear 

combination of these markets (or a numerical expression of the factors), plus a component of 

noise could be a model for the generation of the observed time series.  

 

Consequently, ICA is very suitable for use on financial time series for the following 

reasons: first, ICA deals with the problem of blind source separation or dealing with parallel 

time series, like those obtained from financial variables; secondly, ICA works with 

nongaussian random variables, the most common nature of the financial data; thirdly, from 

the statistical and financial standpoints, ICA produces more reliable underlying components 

or factors, since they are statistically independent and not only uncorrelated. This fact 

contributes directly to the aim of extracting systematic risk factors affecting the returns on 

equities in a multifactor asset-pricing model like the APT.  
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5.3. Empirical study. Methodology and Results. 

 

5.3.1. Tests for univariate and multivariate normality. 

  

In the previous chapter we found a good results in the estimation of the generative multifactor 

model of returns via Principal Component Analysis (PCA) and Maximum Likelihood Factor 

Analysis (MLFA); however, it is known (Hyvärinen, 2001) that PCA (implicitly) and FA 

(explicitly) require a normally distributed multivariate sample in order to produce completely 

reliable results, i.e., they will only produce uncorrelated and independent components if the 

sample data have no higher order statistics beyond the variance. Thus, if the samples do not 

fulfill these conditions, we will be prompted to use a more suitable technique such as ICA to 

uncover the underlying sources in a non-Gaussian sample.  

 

 Therefore, we first tested the univariate normality (UVN) of each individual series, 

since ICA requires that not more than one of the observed signals (the returns on equities) be 

non-Gaussian.  We carried out the Jarque-Bera test for UVN (Jarque & Bera, 1980) on the 

four databases, rejecting the null hypothesis of normality at 5% of probability for all the 

stocks in the daily databases, but not rejecting it for only one stock in the weekly databases 

that was normally distributed. Table 5.1 presents these results.  
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Table 5.1. Jarque-Bera’s Test for Univariate Normality. 

STOCKS 
DBWR DBWE DBDR DBDE 

Jarque-Bera p-value Jarque-Bera p-value Jarque-Bera p-value Jarque-Bera p-value 
ALFAA 257.08005 0.00000 253.82792 0.00000 680.80834 0.00000 680.81895 0.00000
ARA_01 4.51024 0.10486 4.41149 0.11017 506.94138 0.00000 508.46176 0.00000
BIMBOA 38.35626 0.00000 38.80787 0.00000 1287.20099 0.00000 1287.55675 0.00000
CEMEXCP         89.79688 0.00000 90.82310 0.00000
CIEB 155.16387 0.00000 153.78293 0.00000 2951.91390 0.00000 2960.07901 0.00000
COMERUBC 27.09040 0.00000 25.70275 0.00000 744.45079 0.00000 740.85038 0.00000
CONTAL_01 34.03192 0.00000 33.07250 0.00000 859.25423 0.00000 857.36127 0.00000
ELEKTRA_01 25.62004 0.00000 25.06947 0.00000 719.39733 0.00000 717.46530 0.00000
FEMSAUBD 39.99115 0.00000 40.11908 0.00000 1046.36974 0.00000 1055.20377 0.00000
GCARSOA1 27.80589 0.00000 29.54416 0.00000 607.23296 0.00000 606.28756 0.00000
GEOB 57.94051 0.00000 58.22178 0.00000 3051.90518 0.00000 3046.60283 0.00000
GFINBURO 73.50976 0.00000 72.26142 0.00000 256.99029 0.00000 260.06846 0.00000
GFNORTEO 31.31952 0.00000 29.15816 0.00000 858.25169 0.00000 855.28213 0.00000
GMODELOC 65.67019 0.00000 64.14730 0.00000 418.66316 0.00000 416.20179 0.00000
KIMBERA         2207.37871 0.00000 2213.97563 0.00000
PE_OLES_01 29.24151 0.00000 28.42667 0.00000 3051.74875 0.00000 3020.95408 0.00000
SORIANAB 38.24454 0.00000 38.52444 0.00000 154.15882 0.00000 156.49754 0.00000
TELECOA1 7.46268 0.02396 7.78122 0.02043 191.39299 0.00000 191.66132 0.00000
TELMEXL 293.25403 0.00000 299.96063 0.00000 544.60981 0.00000 551.65619 0.00000
TLEVICPO 98.94046 0.00000 100.67490 0.00000 790.30896 0.00000 792.82003 0.00000
TVAZTCPO 32.37142 0.00000 32.43913 0.00000 1552.43422 0.00000 1544.07832 0.00000
WALMEXV 30.87516 0.00000 30.63142 0.00000 512.84070 0.00000 513.11548 0.00000

Notes:   
DBWR = Database of weekly returns. DBWE = Database of weekly excesses.  
DBDR= Database of daily returns. DBDE= Database of daily excesses.   
Numeric values in bold represent stocks with univariate normal distribution.  
H0 = Univariate Normality. p-value lower than 0.05 = Rejection of the H0. 

 
Although in statistical literature there are several approaches for assessing the 

multivariate normality (MVN) tests, for practical reasons we used two classical alternatives: 

the Mardia (1970) and the Henze-Zirkler (1990) MVN tests. Mardia’s test is based on the 

multivariate skewness and kurtosis of the sample. Henze-Zirkler’s (H-Z) test considers a 

measure of the distance between the characteristic function of the MVN and the empirical 

one, where the computed statistic will be lognormally distributed, if the data is multivariate 

normal. Both techniques have shown very good performance in measuring the MVN against 

other classic and newer alternatives, as Mecklin & Mundfrom (2004) remark in their study. 

We performed two tests following the accepted criteria of applying more than one MVN test 

when assessing this property of a sample138. Our results with both tests reject the null 

                                                            
138 We performed both MVN tests using the Matlab scripts developed by Trujillo et al.  (2003, 2007). 
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hypothesis of MVN at 5% of probability for all the databases. Tables 5.2 and 5.3 present the 

results of Mardia’s and H-Z’s tests, respectively. 

 

Table 5.2. Mardia Test for Multivariate Normality. 
  DBWR DBWE DBDR DBDE 
Multivariate Skewness (Ms) 3305.5000 3297.1000 6659.4000 6666.3000 
p-value 0.00000 0.00000 0.00000 0.00000 
Multivariate Skewness corrected (Msc) 3342.8000 3334.4000 6674.8000 6681.7000 
p-value 0.00000 0.00000 0.00000 0.00000 
Multivariate Kurtosis (Mk) 37.8253 37.7060 141.0476 141.1625 
p-value 0.00000 0.00000 0.00000 0.00000 
Notes: 
1) DBWR = Database of weekly returns. DBWE = Database of weekly excesses. 
2) DBDR= Database of daily returns. DBDE= Database of daily excesses.   
3) H0 = Multivariate Normality. p-value lower than 0.05 = Rejection of the H0.

 
 

Table 5.3. Henze-Zirkler Test for Multivariate Normality. 
  DBWR DBWE DBDR DBDE 
Henze-Zirkler's Statistic 1.05188 1.05174 1.22493 1.22283 
p-value 0.00000 0.00000 0.00000 0.00000 
Notes: 
1) DBWR = Database of weekly returns. DBWE = Database of weekly excesses.  
2) DBDR= Database of daily returns. DBDE= Database of daily excesses. 
3) H0 = Multivariate Normality. p-value lower than 0.05 = Rejection of the H0.

 
 

Mardia’s test generated three statistics with their associated p-values: multivariate 

skewness (Ms), multivariate skewness corrected for small samples (Msc), and multivariate 

kurtosis (Mk). The p-values of the three statistics made us reject the null hypothesis of MVN. 

We extended this analysis by making an experiment concerning the horizon of Mardia’s test, 

i.e., we ran the test using different numbers of observations so as to check the multivariate 

normality in different scenarios. The results showed that from 101 observations on inclusive, 

the sample is non-Gaussian according to the three statistics139. H-Z’s test computes the H-Z 

statistic and its associated probability, thereby leading us to reject the null hypothesis of 

multivariate normality for all the databases as well. 

 

  

 

 
                                                            
139 The results of these additional tests are not reported in this work. 
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 On the basis of the foregoing results140, we cannot accept as completely reliable the 

outcomes of techniques assuming the multivariate normality of data such as Principal 

Component Analysis and Factor Analysis, thus we are led to the application of more suitable 

techniques like ICA. In fact, this part of our investigation represents an important, but in most 

cases ignored, aspect in empiric studies that uses classic multivariate techniques to extract the 

pervasive factors; since in many cases the MVN is assumed but not tested, the results and 

conclusions may be flawed.  

 

5.3.2. Estimation of the ICA Model. 

 

In order to estimate the ICA model in expression (2), we used the ICASSO methodology 

(Himberg et al., 2004; Himberg & Hyvärinen, 2003), which is based on the FastICA 

algorithm (Hyvärinen & Oja, 1997, 2000; Hyvärinen, 1999a, 1999b) 141.  

 

According to the foregoing authors, the FastICA algorithm is based on a fixed-point 

iteration scheme for finding the local extrema of the objective functions for ICA estimation 

from a linear combination of the observed variables. The basic iteration for the vector w for 

each IC obtained by this method is: 

 

         wzwzwzw TT gEgE '            (5.5) 

 

 Where the nonlinearity "g" can be almost any smooth function such as142: 

  

                                                            
140 Considering that the results of kurtosis are positive and large which reveal the presence of outliers, which will 
have implications on the election of the non-linearity in the ICA estimation. 
141 We used the Matlab package developed by Himberg & Hyvärinen (2005) to estimate the ICA model using the 
ICASSO methodology. At the same time the ICASSO software uses the FastICA Matlab package by Gävert et 
al. (2005) to estimate the FastICA algorithm. 
142 Where y is a random variable assumed to be zero mean and unit variance, and 21 1  a is some suitable 

constant, often taken as 11 a . 
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   yayg 11 tanh ,                   (5.6) 

   2exp 2
2 yyyg             (5.7) 

  3
3 yyg  ,         (5.8) 

and "g" is the derivative of g(.)143. 

 

The final vector gives one of the ICs as a linear combination in y = wTz. To estimate n 

ICs we run the algorithm n times, including an orthogonalization projection inside the loop to 

ensure the estimation of a different IC. The specific resulting algorithm depends both on the 

estimation principle144 used and the approach selected to estimate several numbers of ICs145, 

i.e., the nonlinearity and the decorrelation method chosen146. 

 

Hyvärinen (A. Hyvärinen, personal communication, November 4, 2008) states that by 

setting the options, tanh nonlinearity (hyperbolic tangent) and symmetric approach, one can 

obtain a good estimation of the ICA model; this would be equivalent to performing three 

estimation approaches at the same time. In addition, the positive kurtosis obtained in the 

multivariate normality tests lead us to use the hyperbolic tangent function. Furthermore, as 

reported in Giannakopoulos et al. (1999) the best trade-off for estimating the ICA model, 

from statistical performance and computational load perspectives, is represented by the 

FastICA algorithm with symmetric orthogonalization and tanh nonlinearity estimation. This 

specification also yielded one of the best results performance for increasing the number of 

components, presented in the last cited reference. Note that the results are consistent with our 

results in the sense that a symmetric orthogonalization is not significantly affected by outliers, 

and that the best non linearity corresponds to a non-linearity fitted for long tail distributions, 

such as the tanh.  In our study we followed these specifications, which implies the use of the 

algorithm presented in Table 5.4. 

  

                                                            
143 According Hyvärinen et al. (2001), nonlinearity than (a1y) is optimal for leptokurtic long tail distributions; y3 
performs better for platykurtic short tail ones; and y·exp(+y2/2) is recommended for highly leptokurtic 
distributions or when robustness is very important. 
144 Maximum nongaussianity (kurtosis or negentropy), maximum likelihood or minimal mutual information. 
145 Deflationary (one by one) or symmetric (in parallel). 
146 For details on the different resulting algorithms see Hyvärinen et al. 2001.  
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Table 5.4. FastICA algorithm for estimating several ICs, with symmetric orthogonalization. 
1. Center the data to make its mean zero. 
2. Whiten the data to give z. 
3. Choose m, the number of independent components to estimate.  
4. Choose initial values for the wi, i = 1, ..., m, each of unit norm. Orthogonalize the matrix W as in step 6 below. 
5. For every i = 1, ..., m, let      wzwzwzw T

i
T
ii gEgE ' , where g is the nonlinearity function, e.g.    yayg 11 tanh . 

6. Do a symmetric orthogonalization of the matrix  TmwwW ,...,1  by   WWWW T 21
  

7. If not converged, go back to step 5. 
Notes:  
1) Convergence means that the old and new values of w point the same direction, i.e. their dot-product is almost equal to 1. 

Source: Taken from Hyvärinen et al. (2001). 
 

The election of the ideal number of ICs to estimate still represents an unsolved 

problem. Although in ICA literature we can find diverse criteria to determine this number, in 

most cases it is actually chosen by trial and error without any theoretical basis. One 

alternative is to reduce the number of dimensions in the whitening pre-processing stage, 

considering some criteria from among those used in PCA or FA, and to estimate the same 

number of ICs. For the sake of comparison with the results of the foregoing chapter, we use 

the same test window, which ranges from two to nine components. This window was given 

for the results of nine different criteria usually employed to select the number of components 

or factors in PCA and FA. The criteria adopted were: the arithmetic mean of the eigenvalues, 

the percentage of explained variance, the exclusion of the components or factors explaining a 

small amount of variance, the scree plot, the unretained eigenvalue contrast (Q statistic), the 

likelihood ratio contrast, Akaike’s information criterion (AIC), the Bayesian information 

criterion (BIC), and the maximum number of components feasible to estimate in each 

technique. 

 

As stated by Himberg & Hyvärinen (2003, 2005), one problem that the ICA estimation 

presents is that the reliability of the estimated ICs is not known since the results are 

stochastic, i.e., they might be dissimilar in different runs of the algorithm. Thus, the results of 

a single run of the FastICA algorithm could not be completely trusted and an additional 

analysis of the reliability of the estimation should be performed. In this context, reliability has 
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two aspects the algorithmic147 and the statistical148. The ICASSO methodology  represents an 

alternative for dealing with this problem, since it ensures the algorithmic and statistical 

stability and reliability of the estimated components by running the FastICA algorithm many 

times, using different initial conditions and/or a differently bootstrapped data set. According 

to Himberg & Hyvarinen (2003) and Himberg et al. (2004), we can ensure the algorithmic 

reliability by randomizing the initial values of the optimization, and we can ensure the 

statistical reliability by resampling the data set through bootstrapping.  

 

First, ICASSO runs the FastICA algorithm M times on data set  NxxxX ,, 21  

composed of N samples of k vectors; then, ICASSO forms clusters with the ICs produced in 

each run according to their similarity. Mutual similarities between estimates are computed, 

using the absolute value of their linear correlation coefficient as the measure of similarity: 

 

ijij r ,                (5.9) 

 

These elements form the similarity matrix, which can be obtained by: 

 

TWΣWR ˆˆ ,      (5.10) 

where, Σ  is the covariance matrix of dataset X , and Ŵ  is the estimates of demixing 

matrices iŴ from each run Mi ,,2,1  gathered in a single matrix: 

 

 TT
M

TT WWWW 21
ˆˆ       (5.11) 

 

  

                                                            
147 The algorithmic reliability is given by the fact that most ICA algorithms are based on the maximization or 
minimization of an objective function, whose global minimum or maximum cannot be found in some cases since 
it will depend on the point where the search starts; i.e. depending on the initial value of the optimization, 
different local minima or maxima of the contrast function could be found. 
148 The statistical reliability is given by the fact that the finite sample size (random sampling of the data) may 
induce statistical errors in the estimation. This statistical reliability can be understood basically as the notion of 
statistical significance. 
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 Then the similarity matrix is transformed into a dissimilarity matrix with the elements: 

 

ijijd 1        (5.12) 

 

Some clustering methods and validity indices are also used in order to agglomerate the 

estimates and to measure their dissimilarities or distances between them149. 

 

According to Himberg and Hyvärinen (2003, 2005), reliable estimates of ICs 

correspond to tight clusters, since they agglomerate estimates generated by many runs of the 

algorithm which are similar, even when the initial values and datasets for the estimation have 

been changed. Conversely, estimates which do not belong to any cluster are considered 

unreliable estimates. The centrotype of each cluster is considered a more reliable estimate 

than that generated by any single run. This centrotype is the point that has the maximum sum 

of similarities150 to other points of the cluster, i.e. the original estimate that is most similar to 

other estimates in the same cluster.  

 

In addition to the previously declared parameters for FastICA151, there are some 

additional parameters to set when using ICASSO, such as the resampling mode152, number of 

resampling cycles (M) and number of clusters (L). In order to ensure both statistical and 

algorithmic reliability, in our study we used both resampling modes, i.e., each time the dataset 

was bootstrapped and the initial conditions of the algorithm were randomized. We used the 

default number of resampling cycles fixed by the software, i.e., 30, and we set the number of 

clusters according to the number of ICs (m) estimated in each experiment in order to obtain 

squared mixing (A) and demixing (W) matrices. 

 

                                                            
149 The ICASSO software uses agglomerative hierarchical clustering with an average-linkage criterion as the 
clustering method, and a cluster quality index Iq to measure the compactness and isolation of a cluster. For 
details see Himberg and Hyvärinen (2003, 2005). 
150 As measured by the correlations coefficients. 
151 Contrast function, orthogonalization approach, etc. 
152 Different random initial condition and/or resampling the dataset by bootstrapping. 
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The demixing matrix (W) computed by ICASSO corresponds to the centrotypes of 

each cluster as well, which represents a more reliable estimate than that produced by a single 

run of FastICA; however, they are not strictly orthogonalized since the best estimates might 

correspond to several runs of the algorithm153. In the context of our research where we need to 

obtain orthogonalized ICs, we will have to make an orthogonalization procedure in a later 

step. 

 

Consequently, we first took the demixing matrix (W) produced by ICASSO, then we 

computed the mixing matrix 

1 WA  ,       (5.13) 

 

and the matrix of independent components or sources 

 

WXS  .       (5.14) 

 

5.3.3 Ranking and orthogonalization of the Independent Components 

 

Next, we ordered the independent components in terms of their explained variability by 

means of the criteria proposed by García-Ferrer et al. (2012). This criterion orders the 

components by energy. Note that the presence of high value spikes will give more 

significance to a given component, due to the fact that the components are squared. First, we 

compute the variance of the observed stocks by means of: 

       miaxvar
m

i
ijit ,,1,

1

2 


    (5.15) 

 

 

                                                            
153 This feature represents one of the most important advantages of ICASSO, since it allows combining 
information from several runs of the algorithms. Thus, we can obtain a set of components that are better than any 
component obtained in any single run, since some components might be well estimated in some runs and other 
components in other runs. See details in Himberg and Hyvärinen (2005). 
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Where, xit are the observed returns and aij, the elements of the mixing matrix A. The result is a 

vector where each element represents the variance of each observed stock.  

 

Then, the estimated ICs are weighted by the load that each IC has on the considered stock. 

       timii
iw

t saaadiags ,,, 21
)(      (5.16) 

 

Once we have the weighted ICs (st), we compute their variance: 

 

      mjiasvar ij
iw

jt ,,1,,2)(       (5.17) 

 

The result is a matrix where each row represents the variances of the weighted ICs for 

each stock, i.e. the first row shows the variances of the weighted ICs for the first stock and so 

forth. 

 

Therefore, the variability of the i-th stock explained by the j-th weighted IC, is 

computed by: 
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        (5.18) 

 

The result is a matrix where each element (i,j) represents the variability of each i-th 

stock, explained by the j-th weighted IC. 

 

The total variance on the whole set of stocks explained by each weighted IC is 

obtained by: 

1
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The resultant vector represents the variability of each IC; therefore we can rank them 

according to the amount of variance of the stocks that explains each one of them, thus 

obtaining a ranked matrix of independent components (Sr), as well as sorted mixing (Ar) and 

demixing matrices (Wr). 

 

Finally, we orthogonalized the matrix of ICs by means of the following process of 

transformation: 

       211

**2 






Trr SSV      (5.20) 

 

      ro S*VS        (5.21) 

 

Where V is a transformation matrix to decorrelate the matrix of sorted independent 

components, and So represents the matrix of orthogonalized ICs. 

 

 

5.3.4 Extraction of underlying systematic risk factors via ICA 

  

We estimated eight different multifactor models to extract from two to nine independent 

components for each one of our four databases154. Then, we proceeded to reconstruct the 

original variables according to the generation process of expression (1) but including the 

inverse of the transformation matrix V in order to orthogonalize the mixing matrix A as well. 

 

      0 1 r X S V A        (5.22) 

 

  

                                                            
154 The total number of estimated multifactor models was 32. 
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We carried out a graphical analysis in order to detect, from a visual stand point, the 

level of reconstruction of the observed returns, by way of our generative multifactor model of 

returns estimated by ICA. In order to observe the complete series of the dataset, we present 

the line plots of the first five stocks corresponding to the database of weekly returns when we 

extracted nine components; Figures 5.2 show the respective results155.  

 

We can easily observe that the generative multifactor model of returns estimated via 

ICA was capable to reproduce the observed returns in almost all cases. The reconstructed 

values were very similar to the observed returns or excesses for almost all the stocks in the 

four databases, which implies that the estimation of the generative multifactor model in the 

statistical approach of the APT performed by ICA was successful. Nevertheless, the highest 

and lowest peaks in some stocks were not very well reconstructed, specially in the cases of 

daily returns and excesses of GMODELO, CEMEX, SORIANA and GCARSO, due to the 

high volatility they presented during the studied period, whose reconstructions were deficient.    

                                                            
155 For reason of saving space, in this chapter we only show this results; figures with the plots of all the stocks 
for the four databases when nine factors were extracted appears in Appendix_2 from Figure 1 to Figure 6 of 
Chapter 5. The results of the rest of the estimations when two, three, four, five, six, seven and eight components 
were extracted presented similar behavior; however, those results are not included in this document for 
representing too much information to be inserted in this Thesis.  
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Figure 5.2. Independent Component Analysis. Observed and reproduced variables. Line plots. Database of weekly returns. Nine components extracted. 

 
Note: Blue solid lines = Observed variables. Red dashed lines = Reproduced variables. 
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5.3.5. Independence test. 

 

In order to test the independence of the computed ICs, we run the Hilbert-Schmidt 

Independence Criterion (HSIC) test (Gretton et al., 2008). This test, which is based on a 

sample of observed pairs (xi, yi), tests whether random variables X and Y are independent. It 

uses, as a statistic test, the so called Hilbert-Schmidt Independence Criterion. The HSIC 

population is zero at independence, so the sample is unlikely to be independent when the 

empirical HSIC is large. The test computes both HSIC and a threshold; when HSIC exceeds 

this threshold, we reject the independence hypothesis156. We remark that we are interested in 

warranting that the systematic risk factors extracted are statistically independent because this 

attribute implies that they are also linearly uncorrelated; however, the inverse situation can be 

warranted especially in non-Gaussian data.  

 

 We tested all the possible pairs combination of ICs in or der to be able to determine if 

each couple of ICs were statistically independent, e.g., IC1 vs IC2, IC1 vs IC3, IC1 vs IC4, 

…, IC1 vs IC9, IC2 vs IC3, IC2 vs IC4, …, IC2 vs IC9, and so on157. The results of our 

independence tests on the databases and the cases presented were as follows: For the database 

of weekly returns, 33 of the 36 pairs of independent components compared were independent, 

i.e., 91.67% of the cases; while in the database of weekly excesses, there were 32 (88.89%). 

In the daily databases, there were 14 combinations that passed the independence test in the 

models expressed in returns (38.89%); while in the models expressed in excesses there were 

12 (33.34%). Consequently, we can warrant that the estimated components are statistically 

independent in the terms of the test carried on. In addition, we can state that the statistical 

independence between each pair of components estimated from the weekly databases, showed 

a better performance than that computed from the daily ones. 

                                                            
156 In order to perform this test we used the Matlab® code developed by Gretton (2007) available at: 
http://people.kyb.tuebingen.mpg.de/arthur/indep.htm For a detailed explanation of the test and software utilized, 
see also Gretton et al. (2008). 
157 For the sake of saving space, the results of this tests are not included in this document, since it was applied to 
the entire window of test and to the four databases; nevertheless, they generated the conclusion stated in this 
section. 
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5.3.6. Explanation of the variability using the extracted components or 

factors. 

 

The amount of variance explained by means of the extracted independent components, as well 

as the accumulated one, is presented in Table 5.5. We can observe that in all cases the first 

four independent components explain between 19% and 68% of the variability, which gives 

some evidence as to the importance of those components. The extraction performed on the 

database of daily excesses overcomes the other three databases, since the first three 

components explain more than 60% of the variability.  When a fourth component is 

considered the accumulated explained variance almost reaches 70%. In general, the 

components extracted from the daily databases explain higher amounts of variance than those 

estimated from the weekly ones. 

 

5.3.7. Interpretation of the extracted factors. 

 

Although this study is mainly focused on the extraction process of systematic risk factors of 

the Mexican Stock Exchange, but not on the risk attribution stage of statistical approach to the 

Arbitrage Pricing Theory, in this section we will just make a first attempt to propose an 

interpretation of the meaning or nature of the systematic risk factors extracted. We will follow 

an analogue methodology similar to the classic approach used when PCA and FA are used to 

reduce dimensionality or to extract features from a multifactor dataset. This approach is based 

on the use of the factor loading matrix estimated in the extraction process to identify the 

loading of each variable in each component or factor; high factor loadings in absolute terms 

indicate a strong relation between the variables and the factor. In our context, the factors will 

be saturated with loadings of one stock or a group of stocks that may help us to identify those 

factors with certain economic sectors, as a first approach to the interpretation of each 

component or factor. For the case of ICA, that factor loading matrix is represented by the 

mixing matrix A, which was extracted from the estimated mixing process and which, in the 

context of our study, is expressed as ranked and orthogonalized. 
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 In line with the previously reported results, we only present the factor loading matrix 

plots from each database that belong to the experiment where we extracted nine underlying 

factors158. Figures 5.3 to 5.6 presents these results. 

 

Table 5.5. Variance explained and accumulated. 
  Independent Component Analysis 
  Independent Component Explained  Accumulated 

  Ranked 
Original 
number 

Variance 
(%) 

Explained Variance 
(%) 

  1 6 19.00 19.00 
  2 8 14.00 34.00 

  3 2 12.00 47.00 
Database of 4 4 11.00 58.00 

  5 7 10.00 68.00 
weekly returns 6 1 9.00 78.00 

  7 3 7.00 85.00 
  8 5 7.00 93.00 
  9 9 6.00 100.00 
  1 3 23.00 23.00 
  2 1 14.00 38.00 
  3 7 13.00 52.00 

Database of  4 9 9.00 61.00 
  5 8 9.00 71.00 

weekly excesses 6 4 9.00 80.00 
  7 6 7.00 87.00 
  8 5 6.00 94.00 
  9 2 5.00 100.00 
  1 9 26.00 26.00 
  2 6 16.00 43.00 
  3 7 10.00 53.00 

Database of  4 4 9.00 63.00 
  5 3 8.00 71.00 

daily returns 6 8 7.00 79.00 
  7 5 7.00 87.00 
  8 2 7.00 94.00 
  9 1 5.00 100.00 
  1 6 29.00 29.00 
  2 7 20.00 50.00 
  3 3 10.00 60.00 

Database of 4 5 8.00 68.00 
  5 8 7.00 75.00 

daily excesses 6 9 6.00 82.00 
  7 2 6.00 89.00 
  8 4 5.00 94.00 
  9 1 5.00 100.00 

 

                                                            
158 Results related to experiments where eight, seven, six, five, four, three and two, components were extracted 
are not included for the sake of saving space, as we have exposed before in this dissertation. 
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Figure 5.3. Loadings matrices plots for interpretation of extracted factors.  

Independent Component Analysis. 
 Database of weekly returns.  
Nine components extracted. 
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Figure 5.4. Loadings matrices plots for interpretation of extracted factors.  

Independent Component Analysis.  
Database of weekly excesses.  
Nine components extracted. 
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Figure 5.5. Loadings matrices plots for interpretation of extracted factors. 

 Independent Component Analysis.  
Database of daily returns.  

Nine components extracted. 
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Figure 5.6. Loadings matrices plots for interpretation of extracted factors.  

Independent Component Analysis.  
Database of daily excesses.  
Nine components extracted. 
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We constructed some tables summarizing the results derived from the analysis of the 

factor loading matrices and plots, where we propose a certain economic sector that may be 

related to each factor. We group together the stocks with the highest loading in each factor 

according to the official classification of the economic sectors used in the Mexican Stock 

Exchange. First, Tables 5.6 and 5.7 presents the details used for this interpretation which 

includes name of the stock, economic sector of each stock contributing to the formation of 

each factor, and sign of its loadings. Secondly, Table 5.8 presents a summary on the 

interpretation.  

 

 Daily databases provided clearer interpretations than weekly databases. In contrast to 

that expected in theory, the first component is not clearly related to the market factor159, 

except in the case of the database of daily excesses; however, in the case of the database of 

daily returns, market factor is related to the second component160.  

 

 On the other hand, in the database of weekly returns the first factor it is evidently 

related to the companies that form part of the Carso Group, owned by Carlos Slim Helú, for 

which reason we have named this first factor “the Slim Group”, plus another important group 

in the communications media such as Televisa. Moreover, in the case of the daily database 

expressed in excesses, the first factor was related to the construction sector or GEO factor.  

 

  

  

                                                            
159 We identify the market factor as the factor that is formed by a contribution of similar loadings of all the 
stocks considered, as explained in Chapter 1 for PCA and FA. 
160 Call the attention that in PCA and FA the first factor, which is the one with the major amount of variability 
explanation, is clearly identified with the market; whereas in ICA, although we have ranked the factors under the 
same criteria of variability explanation, in the cases when we could identify the market factor, this one was 
related to factor number two. In other words, when we have linearly uncorrelated but not statistically 
independent factors the market is the main source of risk; however, when we extract statistically independent 
factors that in addition are linearly uncorrelated, the marker factor is the second source of risk, and only for the 
daily periodicity of the data. 
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 There is no a homogeneous interpretation of the factors in all the databases, except in 

some cases such as: factor number five, identified with the construction sector in the 

databases of weekly and daily returns; factor number six, in the daily databases, associated 

with the ordinary consumptive sector; and factor number nine in the data base of weekly 

returns and in both daily databases, which is related to the mining sector. Another factor that 

attracted our attention is the one pertaining to the companies of the Salinas Group, owned by 

Carlos Salinas Pliego, which are clearly identified as factor number eight in the database of 

weekly returns, and as number four in the databases of weekly and daily excesses. 
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Table 5.6. Details of results. Sector interpretation of components.  
Independent Component Analysis.  

Nine components extracted. 
 

INDEPENDENT COMPONENT ANALYSIS 
 

Database of Weekly Returns Database of Weekly Excesses 
  Stocks Sector Interpretation   Stocks Sector Interpretation 

IC1 

GFINBURO(-) Financial services: Financial groups 

Slim Group plus Televisa factor  IC1 GEOB (-) Construction: House building 
Construction sector factor (GEO 
factor) 

TELEVICPO (-) Communication media: Radio & television services 

TELECOA1 (-) 
Telecommunications services: Wireless telecommunications 
services 

TELMEXL (-) 
Telecommunications services: Wireless telecommunications 
services 

IC2 

GFINBURO(-) Financial services: Financial groups 

Financial service, Holdings, Leisure and 
Communication media sectors factor. IC2 

ELEKTRA* (+) Specialty retail: Home furnishing retail 

Home furnishing, Holdings and 
Brewers / Construction sectors factor. 

ALFA (-) Capital goods: Industrial Conglomerate / Holdings GCARSOA1 (+) Capital goods: Industrial Conglomerate / Holdings 

CIEB (-) Hotels, restaurants & leisure: Leisure facilities GMODELOC (+) Beverages: Brewers 

TVAZTECPO (-) Communication media: Radio & television services GEOB (-) Construction: House building 

IC3 BIMBOA (-) 
Food products: Production and commercialization of food 
products 

Food products sector factor (Bimbo factor) IC3 
COMERUBC (+) Consumers staples: Hypermarkets and supercenters Consumer staples / Leisure sectors 

factor. CIEB (-) Hotels, restaurants & leisure: Leisure facilities 

IC4 

CONTAL* (-) Beverages: Soft drinks 

Consume sector plus communication media sectors 
factor. 

IC4 

BIMBOA (+) 
Food products: Production and commercialization of food 
products 

Food products, Communication 
media and Telecommunications / 
Leisure sector factors. 

ALFA (-) Capital goods: Industrial Conglomerate / Holdings TELECOA1 (+) 
Telecommunications services: Wireless telecommunications 
services 

FEMSAUBD (-) Beverages: Diversified beverages TELMEXL (+) 
Telecommunications services: Wireless telecommunications 
services 

TVAZTECPO (+) Communication media: Radio & television services TELEVICPO (+) Communication media: Radio & television services 

COMERUBC (+) Consumers staples: Hypermarkets and supercenters CIEB (-) Hotels, restaurants & leisure: Leisure facilities 

IC5 GEOB (-) Construction: House building Construction sector factor (Geo factor) IC5 
PE&OLES (+) Metal and mining: Precious metals and minerals Mining / Consumer staples sector 

factor  WALMEXV (-) Consumers staples: Hypermarkets and supercenters 

IC6 CONTAL* (-) Beverages: Soft drinks Beverage sector factor (Contal factor) IC6 ALFA (-) Capital goods: Industrial Conglomerate / Holdings Holding sector factor (Alfa factor) 

IC7 
ALFA (-) Capital goods: Industrial Conglomerate / Holdings 

Holdings / Leisure sectors factor  IC7 
CONTAL* (-) Beverages: Soft drinks Beverage / Financial services sector 

factor CIEB (+) Hotels, restaurants & leisure: Leisure facilities GFNORTEO (+) Financial services: Financial groups 

IC8 
TVAZTECPO (-) Communication media: Radio & television services 

Salinas Group factor IC8 PE&OLES (+) Metal and mining: Precious metals and minerals Mining sector factor (Peñoles factor) 
ELEKTRA* (-) Specialty retail: Home furnishing retail 

IC9 PE&OLES (+) Metal and mining: Precious metals and minerals Mining sector factor (Peñoles factor) IC9 

GFINBURO (-) Financial services: Financial groups 

Financial services and Leisure / 
House building, Holdings and 
Communication media sectors factor 

CIEB (-) Hotels, restaurants & leisure: Leisure facilities 

GEOB (+) Construction: House building 

ALFA (+) Capital goods: Industrial Conglomerate / Holdings 

TVAZTECPO (+) Communication media: Radio & television services 
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Table 5.7. Details of results. Sector interpretation of components.  
Independent Component Analysis.  

Nine components extracted. (Cont.) 
 

INDEPENDENT COMPONENT ANALYSIS 
 

Database of Daily Returns Database of Daily Excesses 
  Stocks Sector Interpretation   Stocks Sector Interpretation 

IC1 

TVAZTECPO 
(+) Communication media: Radio & television services Communication media plus consumer staples sectors 

factor. 
IC1 IPC (+) Market Market factor WALMEXV (+) Consumers staples: Hypermarkets and supercenters 

TELEVICPO (+) Communication media: Radio & television services 

IC2 IPC (-) Market Market factor IC2 

TELEVICPO (+) Communication media: Radio & television services 
Communication media and 
telecommunication sectors factor. 

TVAZTECPO (+) Communication media: Radio & television services 

TELMEXL (+) 
Telecommunications services: Wireless telecommunications 
services 

IC3 
BIMBOA (+) 

Food products: Production and commercialization of food 
products Food products, Leisure and House building sector 

factor 
IC3 CIEB (-) Hotels, restaurants & leisure: Leisure facilities Leisure sector factor 

CIEB (+) Hotels, restaurants & leisure: Leisure facilities 

ARA* (+) Construction: House building 

IC4 
ELEKTRA* (-) Specialty retail: Home furnishing retail 

Salinas Group factor IC4 
ELEKTRA* (+) Specialty retail: Home furnishing retail 

Salinas Group factor 
TVAZTECPO (-) Communication media: Radio & television services TVAZTECPO (+) Communication media: Radio & television services 

IC5 GEOB (+) Construction: House building Construction sector factor (Geo factor) IC5 ALFA (-) Capital goods: Industrial Conglomerate / Holdings Holdings sector factor (Alfa factor) 

IC6 COMERUBC (-) Consumers staples: Hypermarkets and supercenters 
Ordinary consume sector factor (Comercial Mexicana 
factor) 

IC6 COMERUBC (+) Consumers staples: Hypermarkets and supercenters 
Ordinary consume sector factor 
(Comercial Mexicana factor) 

IC7 ALFA (+) Capital goods: Industrial Conglomerate / Holdings Holdings sector factor (Alfa factor) IC7 CONTAL* (-) Beverages: Soft drinks Beverage sector factor (Contal factor) 

IC8 CONTAL* (+) Beverages: Soft drinks 
Beverage sector factor (Contal factor) IC8 GEOB (+) Construction: House building 

Construction sector factor (Geo 
factor) 

IC9 PE&OLES (+) Metal and mining: Precious metals and minerals Mining sector factor (Peñoles factor) IC9 PE&OLES (+) Metal and mining: Precious metals and minerals Mining sector factor (Peñoles factor) 
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Table 5.8. Summary of results. Sector interpretation of components.  
Independent Component Analysis.  

Nine components extracted. 
 

INDEPENDENT COMPONENT ANALYSIS 
 

Database of Weekly Returns Database of Weekly Excesses Database of Daily Returns Database of Daily Excesses 

IC1 Slim Group plus Televisa factor  IC1 Construction sector factor (GEO factor) IC1 
Communication media plus consumer 
staples sectors factor. IC1 Market factor 

IC2 
Financial service, Holdings, Leisure and 
Communication media sectors factor. IC2

Home furnishing, Holdings and Brewers / 
Construction sectors factor. IC2 Market factor IC2

Communication media and 
telecommunication sectors factor. 

IC3 Food products sector factor (Bimbo factor) IC3 Consumer staples / Leisure sectors factor. IC3 
Food products, Leisure and House building 
sectors factor IC3 Leisure sector factor 

IC4 
Consume sector plus communication 
media sectors factor. IC4

Food products, Communication media and 
Telecommunications / Leisure sectors 
factors. 

IC4 Salinas Group factor IC4 Salinas Group factor 

IC5 Construction sector factor (Geo factor) IC5 Mining / Consumer staples sector factor  IC5 Construction sector factor (Geo factor) IC5 Holding sector factor (Alfa factor) 

IC6 Beverage sector factor (Contal factor) IC6 Holdings sector factor (Alfa factor) IC6 
Ordinary consume sector factor 
(Comercial Mexicana factor) IC6

Ordinary consume sector factor 
(Comercial Mexicana factor) 

IC7 Holdings / Leisure sectors factor  IC7 Beverage / Financial services sectors factor IC7 Holdings sector factor (Alfa factor) IC7 Beverage sector factor (Contal factor) 
IC8 Salinas Group factor IC8 Mining sector factor (Peñoles factor) IC8 Beverage sector factor (Contal factor) IC8 Construction sector factor (Geo factor) 

IC9 Mining sector factor (Peñoles factor) IC9
Financial services and Leisure / House 
building, Holdings and Communication 
media sectors factor 

IC9 Mining sector factor (Peñoles factor) IC9 Mining sector factor (Peñoles factor) 
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 Nevertheless, there are other factors that although had a different interpretation share 

certain sectors across the databases, e.g., factor number seven, in databases expressed in 

returns, that have in common the holdings sector; and in databases expresses in excesses, that 

share a strong contribution of the beverage sector. These results give certain indication of the 

importance of those sectors in the formation of the referred factors. 

 

Furthermore, there are some factors that share the same interpretation in the different 

databases but are ranked in different order, such as: construction sector factor, beverage sector 

factor, holding sector factor, Salinas Group factor, mining sector factor and market factor. 

This fact make us to think about the importance of this sectors across the databases 

independently of their ranking. 

 

 Conversely, there are other factors whose meanings are not clearly identified since 

they are formed by stocks from different sectors, such as: factor number two in database of 

weekly returns; and two, four and nine, in database of weekly excesses. In some sense, those 

factors could be interpreted also as miscellaneous sector factors, which mix the effects of 

several economic sectors. 

 

 It is important to remark that there are some sectors or stocks which have a constant 

and strong contribution in the formation of several factors in the most of the databases, such 

as: communication media sector with TVAZTECPO and TLEVICPO, holding sector with 

ALFAA, the mining sector with PE&OLES*, the construction sector with GEO, and the 

leisure sector with CIEB161. This findings lead us to think in this stocks as important referents 

in the risk formation in the context of the Mexican Stock Exchange. 

 

Finally, attending to the explained variance of each one of the factors extracted (See 

Table 5.5), we can point the first four of them in each dataset as the main factors in terms of 

the explained variance, which leads us to attribute them the interpretation presented in Table 

                                                            
161 The sectors and stocks listed are ordered from higher to lower frequency in relation to its contribution to the 
formation of latent factors in the four databases. 
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5.8 for the first four factors in each database. Therefore we may conclude that the factors 

integrated by the companies of the Grupo Carso, Grupo Salinas, the market factor162, as well 

as, sectors related to construction, ordinary consume and leisure are the ones that explain the 

most of the variability of the Mexican Stock Market, under the scope of the Independent 

Component Analysis. 

 

5.3.8. ICASSO Plots. 

 

ICASSO also offers some graphic results in order to evaluate the reliability of the 

independent components via visualization of their clustering in the signal space. For 

illustrative purposes only, we will explain some of those that were found in the experiment, 

where nine independent components were extracted from the database of weekly returns163. 

The first one is the clusters plot, where each estimate computed in every run of the algorithm 

is represented by one point in the signal space and all the estimates which belong to the same 

cluster appear bounded by convex hulls. Points which appear close to each other and 

correspond to small clusters well-separated from the rest are considered reliable estimates; 

since in every run of the algorithm those estimates have been similar, it can be considered that 

they are very close to the real component. In contrast, points that do not belong to any cluster 

are considered unreliable estimates. In Figure 5.7, we show the clusters formed in the 

experiment described above. We can observe the formation of nine differentiated clusters 

where their centrotypes or best estimates of each one of them are surrounded with a blue 

circle. The thick/thin/color lines connecting the points represent the similarities ijij r  

between them, the darker the line the stronger the similarity. 

 

 

 

 

                                                            
162 Only in the case of daily databases. 
163 For the sake of saving space the results of the rest of our experiments are not included in this document; 
however, all these plots were elaborated for the four databases and for the entire window test which ranged from 
two to nine extracted factors. 
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Figure 5.7. Clusters plot. Database of weekly returns. Nine components extracted. 

 

Source: Own elaboration using Gävert, et al. (2005) Matlab® software ICASSO.  

 

 Another interesting graphic result that ICASSO produces is the one concerning the 

cluster quality index Iq, which reflects the compactness and isolation of a cluster. The Iq index 

represents the difference between the average intracluster similarities and the average 

intercluster similarities and is computed by means of the following expression (Himberg and 

Hyvärinen, 2003, 2005). 

   
  


m mm Ci Cj

ij
mmCji

ij

m

mq CCC
CI  11

,
2 ,  (5.23) 

where C is the set of indices of all the estimates; mC , the indices that belong to the m-th 

cluster; mC , the size of the m-th cluster and mC the indices that do not belong to the m-th 
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cluster. Iq will be equal to one for ideal clusters and its value will decrease when the clusters 

become less compact and isolated. Figure 5.8 presents the Iq index plot for the same 

experiment presented in Figure 8. The left panel shows the ICs ranked according to the 

quality of the estimation index Iq; i.e., in this experiment ICs 2, 3 and 1 are the best 

estimations which represent the most compact and isolated clusters. In addition, these results 

may indicate some interesting directions for further analysis and discussion on the nature of 

those ICs164. The left panel shows the ICs ranked according to the quality of the estimation 

index Iq. The right panel presents the number of estimates agglomerated in each cluster. 

 

Figure 5.8. Clusters Quality Index (Iq) plot. Database of weekly returns. Nine components 

extracted. 

 

Source: Own elaboration using Gävert, et al. (2005) Matlab® software ICASSO.  

 
                                                            
164 A deeper investigation on the estimated ICs derived from the results of the Iq index is out of the scope of this 
study. Although the Iq index could be used as a criterion to sort the ICs estimated by ICA, we used another 
ranking criterion, more suitable to the purposes of our research, which was explained in section 5.3.3. That is, 
the Iq index ranks the estimated components in function on the isolation or compactness of the cluster where 
each estimated independent component (the centrotype of each cluster) belongs; the most isolated cluster is 
considered the most independent and subsequently the best estimated. In our context, in order to be able to 
compare the factors extracted by the different techniques used in this study, we are more interested in obtaining a 
ranking in function of the amount of variability explained by each component,  that is the reason for using the 
criteria proposed by García-Ferrer et al. (2012) explained in the section 5.3.3. and not the Iq index criteria 
included in the ICASSO methodology. 



CHAPTER 5. INDEPENDENT COMPONENT ANALYSIS: ESTIMATION OF THE 
GENERATIVE MULTIFACTOR MODEL OF RETURNS. 

 

171 
 

  

The ICASSO software generates three additional plots that offer information about the 

clustering quality, a dendrogram and a similarity matrix, and source estimates. 

 

 The first one plots a relative clustering quality index, R-index (IR), which looks for 

compact and well-separated clusters. The minimum of IR suggests the best partition165. 

Additionally, the plot shows the reduced data dimensions and the maximum number of 

independent components extracted. Figure 5.9 shows the R-index plot, where we can observe 

that, in an extraction of nine components, the best number of clusters is indeed nine. 

 

Figure 5.9. R-index plot. Database of weekly returns. Nine components extracted. 

 

Source: Own elaboration using Gävert, et al. (2005) Matlab® software ICASSO.  

 

 

                                                            
165 For details of the R-index, see Himberg and Hyvärinen (2003) and Himberg et al. (2004). 
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The second additional graph shows the correlation structure as a matrix and a 

dendrogram representation for L clusters. Its purpose is to visualize the clustering and the 

similarities between estimates as a dendrogram (tree visualizations) of the clustering hierarchy 

and a corrgram (the values of the similarity matrix visualized as a gray level matrix). The 

entries in the corrgram are ordered according to the leaf ordering in the dendrogram. The 

clusters in the corrgram are indicated by red lines.  Figure 5.10 shows this plot. The left panel 

corresponds to the dendrogram where we can observe the nine clusters estimated. We have 

marked each cluster with rectangles of different colors to represent estimations that are very 

similar. We can find different levels of clustering when moving leftwards in the graph. The 

closer to the right the points are located, the more their similarity, i.e., when moving to the left 

of the plot, we can observe a diminishing level of similarity between the points. The right 

panel refers to the corrgram, which visually represents the correlation of the estimations 

arranged from the highest to the lowest level. The rows closer to the top show greater 

correlation with a darker scale of grays in the main diagonal of the matrix, while the rows 

closer to the bottom represent a lesser one with a lighter scale of grays in the same diagonal. 

Each row indicates the number of clusters that it represents, and its height permits us to 

distinguish the division of the nine clusters presented in the dendrogram, i.e., the rows help us 

to identify which hierarchy of clustering was last considered to form each of the nine clusters. 

In this case, the cluster whose estimations had the highest level of similarity was cluster 

number 5, whereas the one where they were least similar was number 9166. 

  

                                                            
166 Ranking according to the similarity of the estimations might be used as another criterion to sort the 
independent components, and might represent possible lines of interpretation of them; however, these lines of 
research are out of the scope of this work. 
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Figure 5.10. Dendrogram and similarity matrix plots. Database of weekly returns. Nine 

components extracted. 

 

Source: Own elaboration using Gävert, et al. (2005) Matlab® software ICASSO. 

 

Finally, the third additional graph plots the best estimated sources, i.e. the centroide or 

centrotype of each cluster of independent components extracted.  Figure 5.11 shows those 

independent components ranked according to the cluster quality index (Iq).  
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Figure 5.11. Source estimates. Database of weekly returns. Nine components extracted. 

 

Source: Own elaboration using Gävert, et al. (2005) Matlab® software ICASSO. 

 

5.3.9. Results of the econometric contrast. 

  

As stated in Chapter 3, in the first stage of our econometric contrast methodology we 

estimated the betas or sensitive to the underlying factors to use in expression 5.24167, 

 

ikikiiiR   ...22110 ,   (5.24) 

                                                            
167 Where, jig represents the sensitivity of equity i to factor j, Fjt the value of the systematic risk factor j in time t 
common for all the stocks, and i the idiosyncratic risk affecting only equity i. 
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by regressing the factor scores obtained by ICA as a cross-section on the returns and excesses, 

by way of Weighted Least Squares (WLS) to estimate the entire system of equations at the 

same time. 

 

The results of the regressions in the four databases were suitable, producing in almost 

all cases, statistically significant parameters, high values of the R2 coefficients and results in 

the Durbin-Watson test of autocorrelation168, which lead us to the non-rejection of the null 

hypothesis of no-autocorrelation in almost all the cases169. Tables 5.9 to 5.12 present the 

results of the coefficients estimated for ICA, which represent the betas to use in the second 

stage of the econometric contrast. All the tables correspond to the case where 9 components 

or factors were extracted170. 

Table 5.9. Independent Component Analysis.  
Betas estimated simultaneously via Weighted Least Squares.  

Database of weekly returns. 
 β1 β2 β3 β4 β5 β6 β7 β8 β9 

PE&OLES*  -0.012767 -0.012336 -0.034002 -0.036268 -0.035363 -0.174141 -0.154268 0.011862 0.516080

BIMBOA  0.012329 -0.134081 -0.189827 0.006463 0.013762 -0.167391 0.025539 -0.026878 -0.022708

GMODELOC  -0.028982 -0.025701 0.131136 0.001212 0.042247 -0.044834 -0.018247 0.022388 -0.004930

FEMSAUBD  -0.157323 -0.127534 0.110203 -0.105255 -0.020903 -0.093536 0.079821 0.015738 0.012016

CONTAL*  0.031415 -0.075419 0.059418 -0.172986 0.017206 -0.260805 -0.010615 0.070259 -0.022223

GEOB  -0.212195 -0.260124 0.035362 0.018874 -0.319361 -0.102635 -0.117817 -0.014985 0.045918

ARA*  -0.151417 -0.061775 -0.033847 -0.049611 0.027727 -0.095705 0.026926 0.058273 0.042625

WALMEXV -0.136857 -0.073254 0.119958 -0.004769 -0.007609 -0.105899 -0.064269 0.045970 -0.028585

SORIANAB  -0.041651 -0.174562 0.144037 0.118244 0.012086 -0.103805 0.001242 0.074667 -0.006245

COMERUBC  -0.030499 -0.144437 0.101540 0.098050 0.080191 -0.145403 0.037597 0.051612 0.059106

ELEKTRA*  -0.194373 -0.230002 0.109354 -0.088996 0.136142 -0.085833 -0.036559 -0.260815 0.055082

TELMEXL  -0.176716 -0.055716 0.011342 0.055673 0.083757 -0.106982 -0.013046 0.036848 -0.006061

TELECOA1  -0.243882 -0.095438 -0.027511 0.070791 0.127036 -0.136893 -0.010093 0.062864 -0.005955

TLEVICPO -0.225997 -0.114721 0.106550 0.012223 -0.010611 -0.181876 -0.067351 0.019521 -0.031829

TVAZTCPO  -0.082808 -0.220040 0.153903 0.124484 0.064322 -0.208528 -0.137382 -0.146965 -0.048224

GFNORTEO  -0.144652 -0.140925 0.145457 0.078824 0.005845 -0.013145 -0.007644 0.035280 0.058716

GFINBURO  -0.152498 -0.220113 -0.023794 0.059975 -0.007954 -0.037361 0.106724 0.057026 0.041651

GCARSOA1  -0.179941 -0.121136 0.086386 0.064333 0.111298 -0.120093 0.045973 0.077598 -0.003311

ALFAA  -0.105565 -0.379684 0.047561 -0.128422 0.157987 0.008243 -0.219870 0.151297 -0.010118

CIEB  -0.026916 -0.280997 0.112047 0.020773 0.015963 -0.146787 0.171918 0.041013 0.054851

  
                                                            
168 Value of the statistic more than 2. 
169 For reasons of saving space these results are not presented in this section, however the interested reader can 
consult the results of the estimation of the betas for all the equation system in the Appendix_1 of this 
dissertation, from Tables 9 to 12. 
170 In line to the previously reported results, those corresponding to the rest of the experiments of the test window 
are not included in this document; nevertheless, the results are similar to those reported in this chapter. 
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Table 5.10. Independent Component Analysis.  
Betas estimated simultaneously via Weighted Least Squares.  

Database of weekly excesses. 
 β1 β2 β3 β4 β5 β6 β7 β8 β9 

PE&OLES*  -0.227177 -0.027222 0.018121 -0.064798 0.307902 -0.077076 -0.130278 0.367506 0.087132

BIMBOA  -0.014020 0.071543 -0.102355 0.133377 -0.002661 0.016414 -0.106938 0.072439 -0.072367

GMODELOC  -0.085915 0.107972 0.007851 -0.063290 -0.075505 -0.042784 -0.020888 0.023930 0.036910

FEMSAUBD  -0.129522 0.096841 -0.138931 0.042600 -0.095134 -0.094311 -0.072260 0.024495 -0.023607

CONTAL*  0.001794 -0.003170 -0.094837 -0.065913 -0.069693 -0.081078 -0.284430 -0.018169 0.046644

GEOB  -0.373971 -0.120249 -0.226831 -0.084080 0.038431 -0.023132 -0.021412 -0.114226 0.186462

ARA*  -0.125621 0.078867 -0.122443 -0.046634 0.102040 -0.095682 -0.074784 -0.103418 -0.043887

WALMEXV -0.108247 0.065488 -0.110329 0.073741 -0.152221 -0.066954 -0.003986 0.051321 0.060970

SORIANAB  -0.169153 0.106242 -0.106058 -0.084742 -0.149305 -0.042908 0.026472 0.065133 -0.031173

COMERUBC  -0.142283 0.150823 0.008284 -0.137738 -0.070358 -0.104248 -0.062056 0.018430 -0.086369

ELEKTRA*  -0.114833 0.329107 -0.222339 -0.075643 0.074187 0.058892 -0.017533 -0.031562 0.114778

TELMEXL  -0.144206 0.124157 -0.045100 0.096259 -0.050609 -0.062521 -0.032137 0.011638 0.001767

TELECOA1  -0.200016 0.178365 -0.055179 0.144794 -0.039581 -0.103512 -0.041436 -0.002702 -0.013111

TLEVICPO -0.179406 0.126012 -0.171772 0.101795 -0.118754 -0.069637 -0.078233 0.057368 0.035504

TVAZTCPO  -0.137930 0.201054 -0.206934 -0.062244 -0.140475 0.080046 -0.036327 0.087234 0.151703

GFNORTEO  -0.154974 0.058549 -0.096937 -0.023351 -0.106642 -0.083053 0.126262 0.011981 0.021966

GFINBURO  -0.113793 0.023648 -0.218011 0.033178 0.022046 -0.078951 0.043449 -0.009902 -0.143292

GCARSOA1  -0.173625 0.176054 -0.098264 0.026367 -0.088692 -0.099184 -0.005512 -0.030770 -0.026170

ALFAA  -0.003896 0.170098 -0.262781 -0.073040 -0.021180 -0.354144 0.024540 0.036932 0.163243

CIEB  -0.148147 0.065302 -0.245903 -0.118529 -0.124645 -0.034527 -0.058188 0.118727 -0.167391

 
Table 5.11. Independent Component Analysis.  

Betas estimated simultaneously via Weighted Least Squares.  
Database of daily returns. 

 β1 β2 β3 β4 β5 β6 β7 β8 β9 

PE&OLES*  0.017825 -0.071532 0.017066 -0.037295 0.002327 0.002373 0.013725 0.027212 0.545156

KIMBERA  0.069789 -0.080806 0.072118 0.006285 -0.002726 -0.010078 0.009473 0.031072 0.010246

BIMBOA  0.050116 -0.093951 0.221996 -0.022390 0.015475 -0.051052 0.061919 0.069755 0.020740

GMODELOC  0.089915 -0.088661 -0.000148 0.000593 -0.019655 -0.016529 0.038902 0.047364 0.016753

FEMSAUBD  0.175436 -0.073934 0.074180 -0.017229 0.016530 -0.000973 0.046254 0.035813 0.000440

CONTAL*  -0.002412 -0.057722 0.020766 -0.015527 0.018122 -0.005381 0.029989 0.376939 0.027399

CEMEXCP  0.121940 -0.096468 0.044026 -0.037388 0.023611 0.010092 0.053221 0.056535 0.000707

GEOB  0.095509 -0.097057 0.038098 -0.024573 0.419657 0.005868 0.073757 0.020463 0.035254

ARA*  0.078563 -0.140830 0.108783 -0.027705 0.084755 0.087875 0.044563 0.042263 0.007662

WALMEXV 0.207020 -0.148236 0.028380 0.000561 0.013932 -0.004070 0.047324 0.055759 0.010772

SORIANAB  0.158036 -0.132436 0.059244 -0.027228 0.019469 -0.040607 0.053305 0.037768 0.012722

COMERUBC  0.093508 -0.160848 0.027296 -0.060858 0.026010 -0.276207 0.067940 0.037190 0.005429

ELEKTRA*  0.079657 -0.176873 0.075991 -0.358739 0.028552 0.040691 0.048156 0.043862 -0.001408

TELMEXL  0.189652 -0.092553 0.021104 0.000287 -0.002779 0.023777 0.049808 0.036087 0.006140

TELECOA1  0.224481 -0.150297 0.039664 0.014193 -0.008461 0.027326 0.075133 0.028608 0.010470

TLEVICPO 0.300127 -0.083979 0.036918 -0.087187 0.040676 0.065726 0.073374 0.069426 -0.001319

TVAZTCPO  0.315097 -0.012856 0.041183 -0.245562 0.015918 0.008446 0.109951 0.058721 0.004780

GFNORTEO  0.082357 -0.296812 -0.008843 -0.061881 0.042631 0.001896 0.029457 -0.038448 -0.023610

GFINBURO  0.056680 -0.176917 0.124597 -0.003960 -0.006157 0.107907 0.002572 0.031246 -0.022789

GCARSOA1  0.152550 -0.153670 0.076998 0.008727 -0.019060 0.026010 0.036341 0.032981 0.006784

ALFAA  0.074296 -0.122521 0.059019 -0.048551 -0.001870 0.039419 0.420289 0.011918 0.003390

CIEB  0.122768 -0.045258 0.290655 -0.034213 0.029070 -0.032606 0.020799 0.010831 0.016056
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Table 5.12. Independent Component Analysis.  
Betas estimated simultaneously via Weighted Least Squares.  

Database of daily excesses. 
 β1 β2 β3 β4 β5 β6 β7 β8 β9 

PE&OLES*  0.031453 0.016678 -0.031318 0.003498 -0.027512 0.018685 -0.016649 0.013230 0.549238

KIMBERA  0.091731 0.069932 -0.082432 -0.009987 -0.003873 0.024067 -0.030901 -0.003132 0.007666

BIMBOA  0.111691 0.021636 -0.136428 0.003590 -0.025652 -0.016057 -0.054930 0.016413 0.029529

GMODELOC  0.110765 0.093189 -0.008954 0.011703 -0.029344 0.024199 -0.048168 -0.032939 0.022111

FEMSAUBD  0.122709 0.156476 -0.066371 0.040762 -0.013752 0.016254 -0.026408 0.002579 0.001525

CONTAL*  0.070160 0.003313 -0.029169 0.010938 0.012761 0.011555 -0.382361 0.028242 0.038013

CEMEXCP  0.137193 0.107194 -0.036761 0.039116 -0.017672 0.015190 -0.043614 0.014817 0.011012

GEOB  0.149779 0.071752 -0.064429 0.030337 -0.071647 0.030360 -0.002757 0.410121 0.031078

ARA*  0.185545 0.063583 -0.090778 0.001844 0.026530 -0.023175 -0.029305 0.056304 0.028216

WALMEXV 0.170171 0.169453 -0.030913 0.029287 -0.039374 -0.008241 -0.037084 0.002315 0.019656

SORIANAB  0.139901 0.139454 -0.084166 0.028212 -0.009853 0.047273 -0.026130 0.011296 0.017195

COMERUBC  0.153648 0.082099 -0.035738 0.036753 -0.042645 0.313429 -0.031005 -0.002892 0.015754

ELEKTRA*  0.218433 0.007050 -0.068974 0.371244 -0.042131 0.016995 -0.034265 0.015514 0.031197

TELMEXL  0.133835 0.171736 -0.026638 0.015651 -0.025153 -0.026782 -0.025522 -0.003482 0.015218

TELECOA1  0.192995 0.185803 -0.049885 0.008133 -0.046396 -0.038774 -0.021927 -0.012226 0.023016

TLEVICPO 0.164617 0.278503 -0.062603 0.113878 -0.017378 -0.027908 -0.051477 0.034738 0.007384

TVAZTCPO  0.093744 0.270249 -0.105253 0.258821 -0.035683 -0.018184 -0.049580 0.016117 0.017564

GFNORTEO  0.320216 0.023462 -0.003832 0.025863 0.040032 0.029751 0.029971 0.012578 0.000430

GFINBURO  0.200712 -0.014624 -0.129070 0.007002 -0.024943 -0.077354 -0.013593 -0.007589 -0.003813

GCARSOA1  0.176324 0.105445 -0.083850 0.021429 -0.062612 -0.013604 -0.030341 -0.043782 0.013085

ALFAA  0.176618 0.090766 -0.098348 0.060669 -0.386188 0.005209 -0.046480 -0.015494 0.000284

CIEB  0.099355 0.077198 -0.348008 0.029199 0.026824 0.054270 -0.027821 0.004425 0.011871

 

 The previous tables shows the sensitivity of stock (i) to the risk factor (k). In the case 

of this technique we can observe that in all the cases the sensitivity or beta related to the 

extracted factors are very small, which lead us to think that all these factors affects in a small 

measure to the returns of the studied stocks. 

 

Ongoing with the methodology described in Chapter 3, in the second stage of the 

econometric contrast, we estimated the lambdas or risk premiums in expression 5.24 by 

regressing the betas obtained in the first stage as a cross-section on the returns and excesses, 

using ordinary least squared corrected by heteroscedasticity and autocorrelation by means of 

the Newey-West heteroscedasticity and autocorrelation consistent covariance estimates 

(HEC). Additionally, we verified the normality in the residuals by carrying out the Jarque-

Bera test of normality and we used the Wald test to confirm the equalities assumed by the 

APT regarding the independent term.  
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In Tables 5.13 and 5.14, we present a summary of the results of the econometric 

contrast for ICA. As we can observed in the figures presented in the tables, the results of the 

explanation power, the adjusted R-squared (R2*), the statistical significance of the multivariate 

test (F), and the Jarque-Bera normality test of the residuals are suitable in almost all the 

contrasted models, except in the cases where only two factors were extracted; in some other 

cases, expressions such as the models with 7 and 9 betas in the database of weekly returns and 

the models with 5, 7 and 8, in the database of weekly excesses.  

 

The univariate tests for the individual statistical significance of the parameters 

(Statistic t) priced from one to five factors exclusive of 0 in the weekly and daily databases, 

thus giving evidence in favor of the APT in 27 models171. Nevertheless, only four models 

fulfilled both the statistical significance of the parameters and the equality of the independent 

term to its theoretic value, in addition to the fulfilment of normality in the residuals. From the 

four models fully accepted, three models present only one statistically significant parameter 

outside of 0; this constitutes weak evidence in favor of the APT as a pricing model using 

these extracted factors, since as a multivariate asset pricing model, it should be expected that 

more than one underlying risk factor be priced. The referred models were the one expressed in 

weekly returns when six components were extracted, and those expressed in daily returns 

when three and five components were retained. The only model that presents two statistically 

significant parameters or priced factors is the one expressed in weekly returns when eight 

factors were estimated. 

 

  Moreover, there are ten other models which fulfil all the conditions for accepting the 

APT as a pricing model, except for the statistical significance of the independent term, and 

nine models that fail only in the equality of the independent term to its theoretical value, 

which provides some additional evidence in favor of this asset-pricing model. 

                                                            
171 The total number of tested models was 32. 
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Table 5.13. Independent Component Analysis. Summary of the Econometric Contrast. Weekly databases. 

    λ0 λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 R2* λsig / λtot F WALD J-B 
Database of weekly returns.   
    Model with 2 betas ● ● ●               5.78% 0.00% ● ○ ○ 
    Model with 3 betas 0.0053 ● ● 0.01665             46.78% 33.33% ○ ● ○ 
    Model with 4 betas 0.005460 ● -0.01492 -0.01220 ●           46.58% 50.00% ○ ● ○ 
    Model with 5 betas 0.005074 ● -0.01771 ● ● ●         47.28% 20.00% ○ ● ○ 
    Model with 6 betas 0.005460 ● -0.01899 ● ● ● ●       44.21% 16.67% ○ ○ ○ 
    Model with 7 betas 0.00505 ● 0.02036 ● ● ● ● ●     38.45% 14.29% ● ● ● 
    Model with 8 betas 0.00557 ● 0.01043 -0.01765 ● ● ● ● ●   49.69% 25.00% ○ ○ ○ 
    Model with 9 betas 0.00557 ● ● ● ● -0.01158 ● ● ● ● 34.51% 11.11% ● ○ ○ 
Database of weekly excesses.   
    Model with 2 betas ● ● ●               17.81% 0.00% ● ○ ○ 
    Model with 3 betas 0.00376 ● ● 0.01662             37.21% 33.33% ○ ● ○ 
    Model with 4 betas 0.00341 ● -0.01774 0.00891 ●           45.25% 50.00% ○ ● ○ 
    Model with 5 betas ● ● ● ● ● ●         -29.79% 0.00% ● ○ ○ 
    Model with 6 betas 0.00249 ● ● ● ● ● 0.01717       39.81% 16.67% ○ ● ○ 
    Model with 7 betas ● ● ● ● ● ● 0.01431 -0.00500     31.63% 14.29% ● ○ ○ 
    Model with 8 betas ● ● ● ● ● ● ● ● -0.01046   9.34% 12.50% ● ○ ○ 
    Model with 9 betas 0.0045 ● -0.01257 ● ● 0.01050 ● 0.01247 -0.01057 0.00941 63.49% 55.56% ○ ● ○ 

Notes: 
* The level of statistical significance used in all the test was 5%. 
λj: Estimated coefficients. H0: λj = 0. Numeric value of the coefficient = Rejection of H0. Parameter significant. ● = Not rejection of H0. Parameter not significant. 
R2*: Adjusted R-squared = Explanatory capacity of the model. 
λsig / λtot: Ratio number of significant lambdas / total number of lambdas in the model. 
F: Global statistical significance of the model. H0 = λ1 = λ2 = … = λk = 0. ○ = Rejection of H0. Model globally significant. ● = Not rejection of H0. Model globally not significant. 
Wald: Wald's test for coefficient restrictions. Databases in returns: H0: λ0 = Average riskless interest rate. Databases in excesses: H0: λ0 = 0. ○ = Not rejection of  H0. The independent term is equal 
to its theoretic value. ● = Rejection of H0. The independent term is not equal to its theoretic value. 
J-B: Jarque-Bera's test for normality of the residuals. H0 = Normality. ○ = Not rejection of H0. The residuals are normally distributed. ● = Rejection of H0. The residuals are not normally 
distributed. 
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Table 5.14. Independent Component Analysis. Summary of the Econometric Contrast. Daily databases. 

    λ0 λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 R2* λsig / λtot F WALD J-B 
Database of daily returns.   
    Model with 2 betas ● ● ●               -2.48% 0.00% ● ○ ○ 
    Model with 3 betas 0.00055 ● -0.00302 ●             30.49% 33.33% ○ ○ ○ 
    Model with 4 betas 0.00108 ● 0.00286 -0.00262 ●           52.34% 50.00% ○ ● ○ 
    Model with 5 betas 0.00105 ● ● -0.00254 ● ● ●       46.41% 20.00% ○ ○ ○ 
    Model with 6 betas ● ● ● ● ● 0.00291 -0.00162       40.33% 33.33% ○ ○ ○ 
    Model with 7 betas ● ● ● ● 0.00288 ● 0.00119 ●     40.22% 28.57% ○ ○ ○ 
    Model with 8 betas 0.00131 0.00244 0.00329 ● 0.00281 ● ● ● 0.00267   56.08% 50.00% ○ ● ○ 
    Model with 9 betas ● ● -0.00353 ● ● 0.00288 ● ● ● 0.00100 69.62% 33.33% ○ ○ ○ 
Database of daily excesses.   
    Model with 2 betas ● ● ●               -1.91% 0.00% ● ○ ○ 
    Model with 3 betas ● ● 0.00318 ●             34.55% 33.33% ○ ○ ○ 
    Model with 4 betas ● ● ● 0.00245 ●           50.53% 25.00% ○ ○ ○ 
    Model with 5 betas ● ● -0.00289 ● ● ●         39.87% 20.00% ○ ○ ○ 
    Model with 6 betas ● ● ● ● 0.00309 ● ●       36.25% 16.67% ○ ○ ○ 
    Model with 7 betas ● ● 0.00222 ● ● ● -0.00287 ●     45.30% 28.57% ○ ○ ○ 
    Model with 8 betas ● -0.00197 ● ● 0.00096 ● 0.00283 ● ●   44.95% 37.50% ○ ○ ○ 
    Model with 9 betas ● 0.00300 -0.00183 0.00250 ● -0.00076 ● ● 0.00274 0.00109 78.98% 66.67% ○ ○ ○ 

Notes: 
* The level of statistical significance used in all the test was 5%. 
λj: Estimated coefficients. H0: λj = 0. Numeric value of the coefficient = Rejection of H0. Parameter significant. ● = Not rejection of H0. Parameter not significant. 
R2*: Adjusted R-squared = Explanatory capacity of the model. 
λsig / λtot: Ratio number of significant lambdas / total number of lambdas in the model. 
F: Global statistical significance of the model. H0 = λ1 = λ2 = … = λk = 0. ○ = Rejection of H0. Model globally significant. ● = Not rejection of H0. Model globally not significant. 
Wald: Wald's test for coefficient restrictions. Databases in returns: H0: λ0 = Average riskless interest rate. Databases in excesses: H0: λ0 = 0. ○ = Not rejection of  H0. The independent term is equal 
to its theoretic value. ● = Rejection of H0. The independent term is not equal to its theoretic value. 
J-B: Jarque-Bera's test for normality of the residuals. H0 = Normality. ○ = Not rejection of H0. The residuals are normally distributed. ● = Rejection of H0. The residuals are not normally 
distributed. 



CHAPTER 5. INDEPENDENT COMPONENT ANALYSIS: ESTIMATION OF THE 
GENERATIVE MULTIFACTOR MODEL OF RETURNS. 

 

181 
 

After making a cross validation of the accepted models and the methodology for the 

interpretation of the factors proposed above, we could state the following172: The significant 

components that affect the weekly models accepted would be: the mining sector factor, in the 

model when six components were extracted; and the Group Carso factor and the 

communication media sector factor, in the model when eight components were estimated. For 

the accepted daily models the significant factors would be those of the construction sector 

factor, in the model when three components were extracted; and the mining sector factor, in 

the model when five factors were estimated. 

 

 On the other hand, after making a cross validation of those significant factors with the 

components that in each case explained the major amount of variability, i.e., the first four 

components173, in all the cases the significant factors were identified with the second or the 

third components.  

 

 Regarding the premiums risks (lambdas) of the significant risk factors, we find both 

negative and positive relation with the average returns of the stocks, and in all the cases 

present very low values. Considering the interpretation given to the factors of the accepted 

models we can state that in the model when six components were extracted, the variations of 

one unity of the value of the beta corresponding to the mining sector factor have a negative 

effect of -0.01899 on the average weekly returns, while in the model with eight factors, the 

Group Carso factor, has a positive effect of 0.01043 and the communication media sector 

factor a negative one of 0.01765. On the other hand, the construction sector factor presents a 

negative effect of -0.00302 on the average daily returns, while the mining sector factor 

produces negative variations of -0.00254. 

 

                                                            
172 We remark that Table 5.7 presents the interpretation of the components for the experiment when nine 
components were extracted. In ICA the components estimated will change depending on the number of them 
chosen to be computed; therefore, the interpretation of the components here stated corresponds to the results 
produced when three, five, six and eight components were extracted. The tables that contain those results are 
included in the electronic appendix of this dissertation. 
173 The same explanation of the previous note applies in this case. Table 5.5 refers to the experiment when nine 
components were estimated. The explained and accumulated variance that corresponds to the models when three, 
five, six and eight components were extracted, are included in the electronic appendix of this work. 
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 Finally, concerning the ratio number of significant lambdas / total number of lambdas 

in the model, the accepted models presented figures that ranged from 16% to 33%, which 

indicates non-strong evidence in favor of the APT, since there were a small number of factors 

priced in each expression. 

 

 Interestingly, the market factor was statistically significant in only one of the accepted 

models again; in addition, datasets expressed in excesses did not produce any fully accepted 

model, as well. Further research will be needed regarding this issue, as well as the 

significance of the undersized values and signs of the estimated individual parameters. 

 

 To summarize, for the sample and periods considered, we can accept only partially the 

validity of the APT using ICA as a pricing model explaining the average returns (and returns 

in excesses) on equities of the Mexican Stock Exchange. On the other hand, as in PCA and 

FA, the evidence showed that the statistical approach to the APT using the risk factors 

estimated by way of ICA, is very sensitive to the number of factors extracted, to the 

periodicity of data and the expression of the models, as well. 

 

5.4. Conclusions. 

 

Our results showed that the data of the Mexican Stock Exchange used in the study presented 

univariate and multivariate non-Gaussianity, revealing that classic techniques such as PCA 

and FA will produce a biased estimation of the betas. To the light of evidence presented in 

this Chapter, this discovery led us directly to the use of techniques more suitable for non-

Gaussian series such as ICA, which, by using the ICASSO software, produced a more reliable 

and realistic estimation of the underlying generative multifactor model of returns on equities 

in the Mexican Stock Exchange than those produced by PCA and FA, since this methodology 

is capable of extracting the underlying systematic risk factors from nongaussian financial time 

series, and  solves the problem that the normal ICA model estimation presents, as explained in 

this Chapter. 
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Regarding the results of our empirical study, on one hand, the reconstruction of the 

observed signals, by means of a reduced number of factors with respect to the original 

variables with our estimated ICA model was suitable. On the other hand, our econometric 

contrast of the APT in the stocks and periods used in this study produced signals in favor of 

the APT, revealing from 1 to 5 factors priced in the statistically significant models. 

 

 The preceding results represent a first approach to the application of the ICA in this 

context, so they should be viewed in that light.  The inexistence of unified criteria about 

the multiple aspects involved in the empirical application of the ICA, such as: estimation 

approach, estimation algorithm, nonlinear function, number of ICs to estimate, ordering 

algorithm and values to consider as betas; besides to the two differentiated elements of the 

APT, i.e., the returns generating model and the absence arbitrage principle, may lead us to 

unsuitable results in our empirical contrast. In addition, although theoretically the ICASSO 

methodology used produces better results for said model174, other estimation algorithms 

should be tested in further research.  

 

  

 

 

 

 

  

                                                            
174 In this context ICASSO methodology produces better results in terms of the algorithmic and statistical 
reliability explained in section 5.3.2. 
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Chapter 6 
 
Neural Networks Principal Component Analysis: 
Estimation of the generative multifactor model of returns. 
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6.1. Introduction and review of literature. 

 

Principal Components Analysis (PCA) and Factor Analysis (FA) have been the classic 

techniques used for extracting the underlying systematic risk factors of the generative 

multifactor model of returns in the statistical approach to the Arbitrage Pricing Theory (APT). 

Both techniques make a strong assumption about the multivariate Gaussianity of the observed 

variables; however, real life data sets, especially financial time series, are not normally 

distributed neither univariate neither multivariate, nor this causes the application of PCA or 

FA to yield unreliable results. A solution to this problem is to extract the components by 

means of the Independent Component Analysis (ICA), which is capable of extracting 

statistically independent components from a set of nongaussian data. In addition, the 

underlying risk factors extracted by ICA represent better estimations than those extracted by 

PCA and FA, because the first are statistically independent, whereas the latter are only 

linearly uncorrelated. 

 

Nevertheless, the three techniques (PCA, FA and ICA) make another strong 

assumption: the linearity of the model. In the present chapter we use another not commonly 

used extraction technique which deals with the nonlinearity problem: the Nonlinear Principal 

Components Analysis (NLPCA). This technique has been used in many fields of science as a 

dimensionality reduction or as a feature extraction technique175. For example, in Astronomy, 

Scholz & Vigario (2002) use NLPCA to detect nonlinearities, extract features and classify 

spectral data from a set of stars, showing that the nonlinear principal components perform 

better than standard PCA.  

  

                                                            
175 The main difference between these two approaches is the required aim of the components or factors extracted. 
Whereas in the dimensional reduction the only interest is in achieving a smaller dimension of usually noise-free 
variables; in the feature extraction, the concern is for identifying unique and meaningful components or factors 
representing the main characteristics of the variables.  
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They also apply it in the Physiology field, analyzing data from electromyographic 

recordings of muscle activities and obtaining similar results. In Biochemistry and 

Bioinformatics, Scholz et al. (2005, 2007) and Scholz (2006a, 2007) apply NLPC to analyze 

molecular data from metabolite levels of a plant and from the reproductive cycle of a parasite. 

Their findings demonstrate that the nonlinear components extracted by NLPCA are more 

suitable for interpreting this kind of large multi-dimensional biological data as well.  

 

Other fields of applications where there is an extensive list of studies are for instance: 

in Oceanography and Atmospheric Sciences, for extracting features from different 

atmospheric phenomena; in Chemical and Industrial Engineering, for detecting faults in 

nonlinear industrial and chemical separation processes; in Psychology, for dealing with 

nonlinear relationships applied to categorical data; and in Robotics, for characterizing 

humanoid motion and for transferring human skills to robots.  

 

In the field of Finance, the application of NLPCA has been little developed. Fan et al. 

(2008), use NLPCA to determine the nonlinear principal components driving the variations of 

the implied volatility smile derived from FTSE-100 stock index options; Ravi & Pramodh 

(2008) employ it for bankruptcy prediction in banks, and Weigang et al. (2007) utilize it to 

analyze and predict the trend of withdrawals from an employment time guarantee fund.  On 

the other hand, some works have used related techniques to extract nonlinear components in 

the field of finance, e.g., Ince & Trafalis (2007) and Lendasse et al. (2000), which employ 

Kernel PCA (KPCA) and Curvilinear Component Analysis (CLCA), respectively, to reduce 

the dimension from a set of technical analysis indicators that they use for predicting stock 

prices and a market index. In addition, Sun & Ni (2006) use KPCA to extract features from a 

set of stock prices with predictive purposes as well. 
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 Applications in other related areas such as Economics and Business are limited too. 

Lagona & Padovano (2007) use NLPCA to evaluate the nonlinear relationship between 

budget rules and fiscal performance, and Ferrari & Salini (2008) utilize it as a dimensionality 

reduction technique to measure the perception of consumers about the quality of services. 

 

As far as we are concerned, there is neither any reference using NLPCA to extract the 

underlying systematic risk factors affecting the returns on equities in the stock markets, nor 

any study using NLPCA applied to Mexico; consequently, the main objective of this research 

is to fill this gap in financial literature. The structure of this paper is as follows: Section 2 

presents a brief review of the NLPCA, Section 3 explains the empirical study and Section 4 

draws the conclusions.  

 

6.2. Non-linear Principal Component Analysis (NLPCA). 

The objective of Non-linear Principal Component Analysis (NLPCA) is to extract nonlinear 

components from a data set. NLPCA represents a nonlinear generalization of the standard 

PCA capable of handling and of discovering nonlinear relationships among variables and 

between components and variables, in other words, the subspace produced in the original data 

space is curved. Figures 6.1 and 6.2, taken from Scholz (2008), show two examples of PCA 

and NLPCA where two components are estimated. In the linear case, the two principal 

components describing the data are the two main orthogonal straight lines in the center of the 

plane surface, while in the nonlinear case they are the two main curved lines in the center of 

the curve surface. In that sense, now we are interested in making a nonlinear extraction of the 

systematic risk factors and for this purpose we will estimate the generative multifactor model 

of returns by means of the Neural Networks Principal Component Analysis.  
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Figure 6.1. Principal Component Analysis. 

 

Source: Figure taken from Scholz (2008). 

Figure 6.2. Non-linear Principal Component Analysis. 

 

Source: Figure taken from Scholz (2008). 
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6.2.1. Neural Networks Principal Component Analysis (NNPCA). 

 

In this study we will focus on one approach to perform NLPCA176 based on artificial neural 

networks (ANN)177. This approach, known as Neural Networks Principal Component 

Analysis (NNPCA) or Principal Component Neural Networks (PCNN)178, is commonly 

performed via an auto-associative neural network architecture named autoencoder, replicator 

network, bottleneck or sandglass type network179. This neural network (NN) is a multilayer 

perceptron180 where the output layer of the network is required to be identical to the input 

layer (identity mapping) by minimizing the square error
2

x̂x  . In the middle of the 

network there is a layer (bottleneck) where the reduction of dimension is done and represents 

the values of the principal components or scores. Figure 6.3 shows a diagram of this kind of 

NN.  

 

The first part of the process is the extraction of the principal components (bottle-neck 

layer) from the original data (input layer). The neural network estimates a first matrix of 

weights (W1) to generate the second hidden layer (mapping layer), which will represent a 

previous layer before the one of nonlinear principal components (NLPCs); then, the neural 

network estimates a second matrix of weights (W2), which will generate the bottle-neck layer 

or principal components (Z).  

                                                            
176 NLPCA belongs to the family of nonlinear versions of dimensionality reduction or feature extraction 
techniques, including Nonlinear Factor Analysis (NLFA) and Nonlinear Independent Component Analysis 
(NLICA). In addition, another related nonlinear approach in structural analysis is the Nonlinear Partial Least 
Squares (NLPLS). All these techniques are out of the scope of this dissertation. 
177 Other methods to extract nonlinear components are: the Locally Linear Embedding (LLE), the Isometric 
Feature Mapping (Isomap), the Principal Curves, the Self Organizing Maps (SOM), the Kernel PCA (KPCA), 
the Curvilinear Component Analysis (CLCA), and the Quantum-Inspired Evolutionary Algorithm (QIEA). All 
these techniques are out of the scope of this dissertation. 
178 The general technique used to extract non-linear principal components in this case is called Non-linear 
Principal Component Analysis (NLPCA); one of the particular methods or techniques to perform that estimation 
is based in the neural networks approach, which is known as Neural Networks Principal Component Analysis 
(NNPCA). 
179 Another approach used for estimating the NLPCA based on NN is the input training network (IT-net). For 
details see Martin & Morris (1999). 
180 For details on multilayer perceptron neural networks, and in general, on foundation of neural networks, see 
Bishop (1995). 



CHAPTER 6. NEURAL NETWORKS PRINCIPAL COMPONENT ANALYSIS: ESTIMATION OF THE GENERATIVE 
MULTIFACTOR MODEL OF RETURNS. 

 

191 
 

Figure 6.3. Auto-associative multilayer perceptron neural network or autoencoder. 
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Source: Own elaboration based on Scholz (2007) and Martin & Morris (1999)  
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The second part of the process is the reconstruction of the variables from the NLPCs. 

The neural network computes a third matrix of weights (W3) to produce a fourth hidden layer 

(demapping layer) as a previous step to the reconstructed variables, which will be used join to 

the fourth matrix of weights (W4), in order to reproduce the original variables (output layer). 

Actually, the second and fourth hidden layers are the ones that perform the nonlinear 

mapping.  

 

The formal expressions of the extraction and generation functions are: 

 

Extraction function: 

   xgxwz extr 1WW2,  ,      (6.1) 

 

Generation function: 

   zgzwx gen 34,ˆ WW       (6.2) 

 

Where z represents the scores or principal components; W1 and W2, the matrices of weights in 

the extraction process; x̂, the reconstructed variables; W3 and W4, the matrices of weights in 

the generation process; and g, the nonlinearity performing the nonlinear transformation, 

usually a tangent sigmoid function181. 

 

According to Scholz (2006a) there are several architectures for the auto-associative 

neural network approach, such as: the standard, the hierarchical, the circular and the inverse 

model, and all of them can be used in combination. The standard NNPCA is the naive model, 

where both of the extraction and generation processes are included and no additional 

                                                            
181 It is important to make a mention of differently to other types of neural networks, in NNPCA, as an 
unsupervised method there is not a training and testing stages (M. Scholz, personal communication, September 
14, 2015). In this case  the validation is done by using the error in missing data estimation as a criterion for 
model selection, i.e., the best model is the one able to predict missing values with the highest accuracy. (See: 
Scholz, 2012). Accordingly, the four techniques will be comparable in the sense that any of them make a 
separation of the dataset for the estimation of their models. 
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constraint regarding the order of components are imposed. The use of this version is 

recommended for non-periodic or non-cyclic data when the main interest is only the reduction 

of the dimensionality and not the extraction of meaningful features.  In the hierarchical 

NNPCA, the order of the nonlinear components is enforced to respect the hierarchical ranking 

obtained in linear PCA, thus yielding more meaningful features for the analysis. The circular 

version allows extracting circular components which describe a closed curve, instead of a 

standard curve with an open interval, more suitable for periodic or cyclic phenomena. Finally, 

the inverse definition only models the generation process. This version is more efficient since 

we only train the second part of the neural network and not the two processes. It produces 

results more suited for real processes, since it models the natural process generating the 

observed data. In addition, it allows dealing with missing data because it does not need the 

sample data as an input. All the former extensions can be used in combination or      

separately182. 

 

6.2.2. Dealing with nonlinearity. 

 

In many studies NLPCA has been used as a successful alternative to deal with the nonlinear 

relations among variables existent in different kinds of real data. Nevertheless, the use of 

NLPCA can be justified under a different perspective independently of the linear or nonlinear 

relation among the data set. Whereas PCA, FA and ICA represent linear models, NLPCA has 

the attribute of being a nonlinear system. As stated in Scholz (2006a): ‘Linear models can be 

expressed as a (weighted) sum of their individual parts (factors …). Nonlinear models, by 

contrast, cannot simply be expressed by a sum. More precisely, the linear transformation … of 

a linear model is given by a linear function. A function ƒ(x) is termed linear when it satisfies 

both properties: additivity ƒ(x+y) = ƒ(x) + ƒ(y)  and homogeneity ƒ(αx) = αƒ(x), otherwise it 

is a more complex nonlinear function.’ In other words, PCA, FA and ICA express the 

variables in the model as linear combinations, while NLPCA does it as a nonlinear mixing. In 

NLPCA performed via an autoencoder neural network, the nonlinear hidden layers enable, 

                                                            
182 For details about the different variants of the autoencoder neural network, see Scholz & Vigario (2002), 
Scholz et al (2005, 2007) and Scholz (2006a, 2007). 
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first, a nonlinear mapping from the observed variables in order to estimate the principal 

components, and then another nonlinear transformation (demapping) from the estimated 

components so as to approximate the reconstructed variables. As a nonlinear system 

characterized by the non-proportionality between its inputs and outputs, NLPCA will produce 

different insights of the studied phenomena. Particularly in the finance field, it could be 

assumed that simple variations in the underling systematic risk factors may generate complex 

effects in the returns on equities; i.e., the relation between the stock returns and the underlying 

systematic risk factors may be nonlinear. 

 

6.3. Empirical Study. Methodology and results. 

6.3.1. Extraction of underlying systematic risk factors via NNPCA. 

The APT assumes the following generative multifactor model of returns183: 

 

itjtjititiiit FFFRER   ...)( 2211       (6.3) 

 

From the statistical approach, neither the factors nor their sensitivities are given and 

we must estimate them simultaneously by way of statistical or feature extraction techniques 

such as, in this case, the NNPCA. Although NNPCA is capable of extracting the scores of the 

components (the Fs), it is very difficult to obtain a single matrix containing the equivalent to 

the sensitivities to each factor (betas) in the same sense that in PCA, FA and ICA184, because 

in this case there are two matrices of weights and a nonlinear transformation involved in the 

process of extraction the factors185. Consequently, we used the NLPCA for extracting only the 

scores of the underlying systematic risk (the Fs) in the expression 6.3. 

 

                                                            
183 Where, jig represents the sensitivity of equity i to factor j, Fjt the value of the systematic risk factor j in time t 
common for all the stocks, and i the idiosyncratic risk affecting only equity i. 
184 In NNPCA, in the extraction process we will get two loadings matrices (W1 and W2) which, along with the 
effect of the nonlinearity applied on the original variables, will produce one matrix of underlying factors (F).  
185 The analogous situation happens in the process of reproducing the variables, where there are two matrices of 
weights and a nonlinear transformation involved in the reproduction of the variables process.  
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For estimating the NNPCA model, we used its hierarchical extension (h-NNPCA) 

performed by an auto-associative neural network, which respects the ranking of the principal 

components in the linear PCA186. According to Scholz (2006a), this hierarchy implies the 

property of scalability which means that the first n components must explain, as much as 

possible, the variance in the n-dimensional subspace. In addition, hierarchical order will 

produce uncorrelated components. 

 

In addition, following to Scholz & Vigario (2002), the hierarchy constraints are based 

on searching in the original data space for the smallest mean square reconstruction error while 

using the first i-th components according to the following expression187: 
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Where, x and x̂ represent the observed and reproduced data respectively; N, the number of 

samples; and d, the dimensionality. The hierarchical error function extended to k components, 

with k<d, implies minimizing:  

 

kH EEEEE ,,3,2,13,2,12,11        (6.5) 

 

Therefore, as stated in Scholz (2006) the h-NLPCA can be interpreted as we look for a 

k-dimensional subspace of minimal mean square error (MSE), so that the (k-1)-dimensional 

                                                            
186 We used the Matlab® code created by Scholz (2006b) to perform the NLPCA estimation, available at 
http://www.nlpca.org/matlab.  
187 In the hierarchical version of the NNPCA, one way to rank the components according to the variability they 
explained, is ordering in function of the error in reconstruction that they produced; i.e., in certain sense the 
component that produces the smallest error is the one that explain the most amount of variability. For details see 
Scholz & Vigario (2002) and Scholz (2006a).  



CHAPTER 6. NEURAL NETWORKS PRINCIPAL COMPONENT ANALYSIS: 
ESTIMATION OF THE GENERATIVE MULTIFACTOR MODEL OF RETURNS. 

 

196 
 

subspace is also of MSE. Consequently, all the dimensional subspaces 1, ..., k, are of minimal 

MSE and represent their dimensionality in the best way188.  

 

For the sake of comparison with our former studies, we estimated 8 different neural 

networks to extract from two to nine nonlinear principal components in each database.  

 

In order to generate a loading matrix that make possible a fist attempt of interpretation 

of the latent risk factor extracted, as we did for PCA, FA and ICA in the previous chapters, we 

defined the neural network architecture as follows: a) five layers with the total number of 

stocks in each database (20 for the weekly databases and 22 in the daily ones as the number of 

neurons in the input and output layers, b) a mapping layer, a bottleneck layer, and a 

demapping layer  with a number of neurons that ranged from two to nine189. In terms of the 

neural networks notation, the architectures used were:  [20:2-9:2-9:2-9:20], in the weekly 

databases and [22:2-9:2-9:2-9:22], the daily expressions. Concerning the nonlinear 

transferring functions, following the recommendations of Martin & Morris (1999) for an 

autoencoder neural network to perform the NLPCA, we used a tangent sigmoid function from 

layer one to layer two and from layer  three to layer four; and a linear function from layer two 

to layer three and from layer four to layer five. 

 

We performed the NLPCA estimation on our four databases, in order to obtain the 

principal components hierarchically ordered, the four matrices of weights and the reproduced 

variables190. We emphasize that the objective of such estimation is to achieve a nonlinear 

transformation, first, from the observed variables to the principal components, and then to 

realize another nonlinear transformation capable of reproducing the observed variables from 

the extracted components.  
                                                            
188 In each iteration of the network, the error with 1, 2, 3, …, k components is computed separately in order to get 
the estimation that produces the minimal square error adapting the order of the components in function of the 
total hierarchical error. For details on the hierarchical error function, see Scholz & Vigario (2002) and Scholz 
(2006a). 
189 The number of neurons considered in the mapping layer, bottleneck layer, and demapping layer ranged from 
2 to nine, depending the number of factors extracted in each experiment, according to the test window used in all 
the techniques used in this dissertation.   
190 We estimate the NNPCA model by way of the Matlab® code by Scholz (2006b) available at: 
http://www.nlpca.org/matlab. 
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We used a graphical analysis in order to visualize the level of reconstruction of the 

observed variables by way of our estimated generative multifactor model of returns via 

NNPCA. In order to observe the behavior of the reconstruction during all the time of our 

sample, we constructed the line plots of the observed and reconstructed returns, of all the 

stocks in the four databases, including the complete series of returns.  

 

For reasons of saving space, in Figure 6.4 we present only the plots for the first five 

stock corresponding to the database of weekly returns when we extracted nine factors191. As 

we can observe in those graphics, the generative multifactor of returns estimated via NNPCA 

was capable to reproduce the observed returns and excesses for all the stocks in the four 

databases192. The only problem detected was in the reproduction of some observations in a 

few stocks presenting very high levels of volatility, where the reconstruction was not able to 

reach all the peaks completely193. These cases were mainly detected in the daily databases, 

especially in stocks such as: KIMBERA, BIMBOA and GMODELOC. Nevertheless, if we 

add more components to the extraction, the reproduction of all the series improves greatly, 

covering almost all the peaks of high volatility194. 

 

 

  

                                                            
191 In Appendix_2, from Figures 1 to 6 of Chapter 6; we show the line plots of the observed and reproduced 
returns and excesses for all the stocks and the four databases that belongs to the experiment where we extracted 
nine components. The results concerning the experiments when eight, seven, six, five, four, three and two 
components were are not included in this document for the sake of saving space; nevertheless, conclusions 
derived from their analysis are reported in this study. 
192 Evidently, the greater the number of components estimated, the better the reproduction capacity of the model.  
193 These results are similar to those obtained via ICA, FA and PCA. 
194 These experiments are not reported because we only focused on the range of estimation from two to nine 
components. In spite of these findings, further research about this loss of volatility in the reconstruction might be 
done, as an attempt to discover why these components fail in picking up the risk.  
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Figure 6.4. Neural Networks Principal Component Analysis. Observed and reproduced variables. Line plots. Database of weekly returns. Nine components extracted. 

 
Note: Blue solid lines = Observed variables. Red dashed lines = Reproduced variables.  

0 50 100 150 200 250 300
-0.5

0
0.5

PE&OLES* 

0 50 100 150 200 250 300
-0.2

0
0.2

BIMBOA 

0 50 100 150 200 250 300
-0.2

0
0.2

GMODELOC 

0 50 100 150 200 250 300
-0.2

0
0.2

FEMSAUBD 

0 50 100 150 200 250 300
-0.2

0
0.2

CONTAL* 



CHAPTER 6. NEURAL NETWORKS PRINCIPAL COMPONENT ANALYSIS: 
ESTIMATION OF THE GENERATIVE MULTIFACTOR MODEL OF RETURNS. 

 

199 
 

 

6.3.2. Nonlinear principal components plots. 

 

In addition, for visualization purposes in Figures 6.5 to 6.8, we present the plots 

generated by the software used for the extraction, where the first three principal components 

of the NLPCA are plotted as a grid in the original data space195. In this case the grids 

represent the new coordinates of the component space, thus giving a nonlinear or curved 

description of the data. Although it is not completely conclusive, the four figures show certain 

adjustment of the data to a nonlinear surface.  The grids represent the new coordinates in the 

space of the components and give a nonlinear or curved description of the data. 

                                                            
195 These figures correspond to the experiment when nine components were extracted, for reasons of saving 
space the figures corresponding to the rest of experiments when eight, seven, six, five, four, three and two factors 
were extracted are not included in this document; nevertheless, the results were similar to those presented in this 
Chapter. 
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Figure 6.5. Nonlinear PCA plot. Database of weekly returns. Nine components estimated.  

 
Source: Own elaboration using the Matlab® code by Scholz (2006b). 
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Figure 6.6. Nonlinear PCA plot. Database of weekly excesses. Nine components estimated.   

 
Source: Own elaboration using the Matlab® code by Scholz (2006b). 

 

Figure 6.7. Nonlinear PCA plot. Database of daily returns. Nine components estimated. 

 
Source: Own elaboration using the Matlab® code by Scholz (2006b). 
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Figure 6.8. Nonlinear PCA plot. Database of daily excesses. Nine components estimated. 

 
Source: Own elaboration using the Matlab® code by Scholz (2006b). 

 

6.3.3. Interpretation of the extracted factors. 

 

Although this study is mainly focused on the extraction process of systematic risk factors of 

the Mexican Stock Exchange, but not on the risk attribution stage of statistical approach to the 

Arbitrage Pricing Theory, in this section we will just make a first attempt to propose an 

interpretation of the meaning or nature of the systematic risk factors extracted196. We will 

follow an analogue methodology similar to the classic approach used when Principal 

                                                            
196 It is important to point that in this Chapter we have not been able to elaborate a table related to the variance 
explained and accumulated as in the other techniques, since in the case of NNPCA there is not a simple way to 
get the explained variance because there are not eigenvalues and eigenvectors like in PCA. In NNPCA the 
variance explained has to be approximated by relating it with the reconstruction error, since in NLPCA to 
minimize the square error is equivalent to maximize the variance. (Scholz, personal communication, July 29, 
2015). This task represents a more difficult and not completely equivalent methodology to those used in PCA, 
FA and ICA which is out of the scope of this study. See: Scholz (2015). 
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Component Analysis (PCA) and Factor Analysis (FA) are used to reduce dimensionality or to 

extract features from a multifactor dataset.  

 

 This approach is based on the use of the factor loading matrix estimated in the 

extraction process to identify the loading of each variable in each component; high factor 

loadings in absolute terms indicate a strong relation between the variables and the factor. In 

our context, the factors will be saturated with loadings of one stock or a group of stocks that 

may help us to identify those factors with certain economic sectors, as a first approach to the 

interpretation of each component.  

 

In the case of NNPCA, that factor loading matrix is not clearly defined, since the 

demixing process involves the combined effect of two loading matrices (W1 and W2) and a 

nonlinear function of transference; however, in order to use one of these matrices as an 

analogue one to those used in techniques such as PCA and FA, we can argument the 

following, considering the role that each matrix plays in the demixing process. 

 

Following the network architecture displayed in Figure 6.3. Matrix W1 makes a 

projection into the space where we have an internal representation in the form of the hidden 

units, thus, it would be equivalent to a mixing matrix such as those used in PCA and FA.  

 

In other words, from a structural point of view NNPCA makes a non-linear 

transformation given by W1. To that effect, it is necessary to subtract the medium value by 

way of the bias involved in the estimation and to scale the inputs somehow, so that the 

nonlinearity compress the margin properly. This makes the function of the first layer of the 

network to be different to that of other methods such as PCA and FA. On the other hand, 

matrix W2 makes a dimensionality change of the representation given the output of the first 

layer. Its function is to make a lineal transformation to rotate and scale the output, in such a 

way, the intermediate representation could be transformed by the second part of the network. 
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Furthermore, from a structural standpoint, the product (W1*x) in expression 6.1, 

generates the representation that will pass through the nonlinearity later. The function of the 

nonlinearity is to make a compression of the space in order to make easy the function of the 

posterior part of the neural network. From this standpoint, the projection form given by 

(W1*x) informs about the intermediate representation of the information and it could be 

compared with the latent factors estimated by PCA and FA; although it is important to remark 

that they are different things since they are obtained by way of different criteria. 

 

 According to the above stated, in this research we will use matrix W1 as a loading 

matrix to propose preliminary meanings to the extracted latent factors. 

 

 In line with the previously reported results, we only present the loading matrices plots 

from each database that belong to the experiment where we extracted nine underlying factors. 

Figures 6.9 to 6.12 present these results 197. 

 

 

                                                            
197 For reason of saving space, the figures with the results regarding the experiments when eight, seven, six, five, 
four, three and two components are not included in this dissertation. 
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Figure 6.9. Loadings matrices plots for interpretation of extracted factors.  

Neural Networks Principal Component Analysis.  
Database of weekly returns.  
Nine components extracted. 
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Figure 6.10. Loadings matrices plots for interpretation of extracted factors.  

Neural Networks Principal Component Analysis.  
Database of weekly excesses.  
Nine components extracted. 
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Figure 6.11. Loadings matrices plots for interpretation of extracted factors.  

Neural Networks Principal Component Analysis.  
Database of daily returns.  

Nine components extracted. 
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Figure 6.12. Loadings matrices plots for interpretation of extracted factors.  

Neural Networks Principal Component Analysis.  
Database of daily excesses.  
Nine components extracted. 
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 We constructed some tables summarizing the results derived from the analysis of the 

factor loading matrices and plots, where we propose a certain economic sector that may be 

related to each factor. We group together the stocks with the highest loading in each factor 

according to the official classification of the economic sectors used in the Mexican Stock 

Exchange. In Table 6.1 and 6.2 we present the details for this interpretation which include: the 

name of the stocks, the economic sector where they belong, and the sign of their loadings in 

each component. In Table 6.3 we present the summary of these interpretations. In line with 

the previous reported results, these tables contains those referred to the experiment when nine 

components were extracted198. 

 

There is not a clear interpretation of the factors using the matrix W1; however, we 

uncover that in this case the most of the factors are formed by a mixture of stocks from 

different industrial sectors instead of by a combination of shares from the same sector. In 

other words, excluding some factors that we could identify clearly; i.e.: number five (Salinas 

Group factor), in database of weekly returns; number five (Consumer sector factor), number 

six (Construction sector factor or GEO factor) and number eight (Food and Beverage sector 

factor), in database of weekly excesses; number one (Construction sector factor or Geo factor) 

and number two (Mining factor or Peñoles factor), in database of daily returns; and finally, 

number eight (Mining factor or Peñoles factor), in database of daily excesses; the rest of the 

factors represent a combination of sectors that in many cases have opposite signs. 

 

 

                                                            
198 Tables with the results of the rest of experiments when eight, seven, six, five, four, three and two components 
were extracted are included in the electronic appendix of this research. 
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Table 6.1. Details of results. Sector interpretation of components.  
Neural Networks Principal Component Analysis.  

Nine components extracted. 
NEURAL NETWORKS PRINCIPAL COMPONENT ANALYSIS 

Database of Weekly Returns Database of Weekly Excesses 
  Stocks Sector Interpretation   Stocks Sector Interpretation 

NLPC1 
CONTAL* (+) Beverages: Soft drinks 

Beverages and Leisure / 
Mining sectors factor. 

NLPC1 

PE&OLES* (+) Metal and mining: Precious metals and minerals 

Mining / Food products and beverages, 
Consumer staples and Communication 
media sectors factor. 

CIEB (+) Hotels, restaurants & leisure: Leisure facilities ALFAA (-) Capital goods: Industrial Conglomerate / Holdings 

PE&OLES* (+) Metal and mining: Precious metals and minerals BIMBOA (-) Food products: Production and commercialization of food products 
        COMERUBC (-) Consumer staples: Hypermarkets and supercenters 
      CONTAL* (-) Beverages: Soft drinks 
      TVAZTCPO (-) Communication media: Radio & television services 

NLPC2 
PE&OLES* (-) Metal and mining: Precious metals and minerals Mining and 

Telecommunications / 
Holding sectors factor. 

NLPC2 
PE&OLES* (-) Metal and mining: Precious metals and minerals 

Mining / House building sectors factor. 
TELECOA1 (-) Telecommunications services: Wireless telecommunications services GEOB (+) Construction: House building 

ALFAA (+) Capital goods: Industrial Conglomerate / Holdings         

NLPC3 
ALFAA (+) Capital goods: Industrial Conglomerate / Holdings Holding / Mining sectors 

factor. NLPC3 

GEOB (+) Construction: House building 
House building, Mining and Holdings 
sectors factor. 

PE&OLES* (+) Metal and mining: Precious metals and minerals PE&OLES* (+) Metal and mining: Precious metals and minerals 

        ALFAA (+) Capital goods: Industrial Conglomerate / Holdings 

NLPC4 
ELEKTRA* (-) Specialty retail: Home furnishing retail Home Furnishing and 

Beverages sectors factor. NLPC4 
CONTAL* (+) Beverages: Soft drinks 

Beverages, Leisure and Home furnishing 
sectors factor. CONTAL* (-) Beverages: Soft drinks CIEB (+) Hotels, restaurants & leisure: Leisure facilities 

        ELEKTRA* (-) Specialty retail: Home furnishing retail 

NLPC5 
ELEKTRA* (-) Specialty retail: Home furnishing retail 

Salinas Group Factor. 
NLPC5 

ELEKTRA* (-) Specialty retail: Home furnishing retail 
Consume sector factor TVAZTCPO (-) Communication media: Radio & television services WALMEXV (+) Consumer staples: Hypermarkets and supercenters 

        SORIANAB (+) Consumer staples: Hypermarkets and supercenters 

NLPC6 

GEOB (+) Construction: House building 
House building and 
Beverages / Consumer 
staples, Communication 
media and Mining sectors 
factors. 

NLPC6 GEOB (+) Construction: House building Construction sector factor (Geo Factor). 

CONTAL* (+) Beverages: Soft drinks 

ARA* (+) Construction: House building 

SORIANAB (-) Consumer staples: Hypermarkets and supercenters 

TVAZTCPO (-) Communication media: Radio & television services 

PE&OLES* (-) Metal and mining: Precious metals and minerals 

NLPC7 
ALFAA (+) Capital goods: Industrial Conglomerate / Holdings Holdings / Food products 

sectors factors. 

NLPC7 

GFINBURO(+) Financial services: Financial groups 

Financial and House building /Consumer 
staples sectors factors. 

BIMBOA (-) Food products: Production and commercialization of food products ARA* (+) Construction: House building 

        GEOB (+) Construction: House building 

        SORIANAB (-) Consumer staples: Hypermarkets and supercenters 

        WALMEXV (-) Consumer staples: Hypermarkets and supercenters 

NLPC8 
BIMBOA (+) Food products: Production and commercialization of food products Food products / 

Construction sectors 
factors. NLPC8 

BIMBOA (-) Food products: Production and commercialization of food products 

Food and beverages sector factor. GEOB (-) Construction: House building CONTAL* (-) Beverages: Soft drinks 
        ARA* (-) Construction: House building 

        GMODELOC (+) Beverages: Brewers 

NLPC9 

BIMBOA (+) Food products: Production and commercialization of food products Food products, Beverages 
and Construction sectors 
factors. 

NLPC9 GEOB (+) Construction: House building 

House building, communication media and 
consumer staples sector factor. 

GEOB (+) Construction: House building TVAZTCPO (+) Communication media: Radio & television services 

CONTAL* (+) Beverages: Soft drinks SORIANAB (+) Consumer staples: Hypermarkets and supercenters 

          WALMEXV (+) Consumer staples: Hypermarkets and supercenters 

  



CHAPTER 6. NEURAL NETWORKS PRINCIPAL COMPONENT ANALYSIS: ESTIMATION OF THE GENERATIVE 
MULTIFACTOR MODEL OF RETURNS. 

 

211 
 

Table 6.2. Details of results. Sector interpretation of components.  
Neural Networks Principal Component Analysis.  

Nine components extracted. (Cont.) 
NEURAL NETWORKS PRINCIPAL COMPONENT ANALYSIS 

Database of Daily Returns Database of Daily Excesses 
  Stocks Sector Interpretation   Stocks Sector Interpretation 

NLPC1 GEOB (+) Construction: House building Construction sector factor (Geo factor) NLPC1 
TVAZTCPO (-) Communication media: Radio & television services 

Salinas Group / Mining sector factor. ELEKTRA* (-) Specialty retail: Home furnishing retail 

PE&OLES* (+) Metal and mining: Precious metals and minerals 

NLPC2 PE&OLES* (+) Metal and mining: Precious metals and minerals Mining sector factor (Peñoles factor) NLPC2 

CONTAL* (-) Beverages: Soft drinks 
Beverages / Home furnishing and Financial 
services sectors factor. 

ELEKTRA* (+) Specialty retail: Home furnishing retail 

GFNORTEO (+) Financial services: Financial groups 

NLPC3 

COMERUBC (+) Consumer staples: Hypermarkets and supercenters 

Consumer staples, Financial services, Home furnishing 
and Mining sectors factors. 

NLPC3 

ELEKTRA* (+) Specialty retail: Home furnishing retail 

Salinas Group, Holdings and Mining / Leisure 
sectors factor. 

GFNORTEO (+) Financial services: Financial groups ALFAA (+) Capital goods: Industrial Conglomerate / Holdings 

ELEKTRA (+) Specialty retail: Home furnishing retail  TVAZTCPO (+) Communication media: Radio & television services 

PE&OLES* (+) Metal and mining: Precious metals and minerals PE&OLES* (+) Metal and mining: Precious metals and minerals 

GFINBURO (+) Financial services: Financial groups CIEB (-) Hotels, restaurants & leisure: Leisure facilities 

NLPC4 

TVAZTCPO (-) Communication media: Radio & television services 

Communication media and Beverage sectors factor 
NLPC4 

ALFAA (-) Capital goods: Industrial Conglomerate / Holdings 
Holdings / Leisure sectors factors. 

TLEVICPO (-) Communication media: Radio & television services CIEB (+) Hotels, restaurants & leisure: Leisure facilities 
CONTAL* (+) Beverages: Soft drinks         

NLPC5 

CONTAL* (+) Beverages: Soft drinks 

Beverages and mining / Home furnishing and house 
building sectors factor. 

NLPC5 
CONTAL* (+) Beverages: Soft drinks 

Beverages and House building / Mining sectors 
factors. PE&OLES* (+) Metal and mining: Precious metals and minerals GEOB (+) Construction: House building 

ELEKTRA* (-) Specialty retail: Home furnishing retail PE&OLES* (-) Metal and mining: Precious metals and minerals 

GEOB (-) Construction: House building         

NLPC6 

CONTAL* (+) Beverages: Soft drinks 

Beverages, Communication media, House building and 
Home furnishing sectors factor. 

NLPC6 
GEOB (+) Construction: House building 

House building and Holdings / Leisure sectors 
factor. TVAZTCPO (+) Communication media: Radio & television services ALFAA (+) Capital goods: Industrial Conglomerate / Holdings 

GEOB (+) Construction: House building CIEB (-) Hotels, restaurants & leisure: Leisure facilities 
ELEKTRA* (+) Specialty retail: Home furnishing retail         

NLPC7 

CIEB (+) Hotels, restaurants & leisure: Leisure facilities 

Leisure and Financial services sectors / Salinas Group 
factor. 

NLPC7 
TVAZTCPO (-) Communication media: Radio & television services 

Communication media / Financial services 
sectors factor. GFINBURO(+) Financial services: Financial groups GFINBURO(+) Financial services: Financial groups 

TVAZTCPO (-) Communication media: Radio & television services GFNORTEO (+) Financial services: Financial groups 

ELEKTRA* (-) Specialty retail: Home furnishing retail         

NLPC8 

GEOB (-) Construction: House building 

House building and Holdings / Home furnishing and 
Consumers staples sectors factor. 

NLPC8 PE&OLES* (+) Metal and mining: Precious metals and minerals Mining sector factor (Peñoles factor) 
ALFAA (-) Capital goods: Industrial Conglomerate / Holdings 

ELEKTRA* (+) Specialty retail: Home furnishing retail 

COMERUBC (+) Consumer staples: Hypermarkets and supercenters 

NLPC9 

ALFAA (-) Capital goods: Industrial Conglomerate / Holdings 

Holdings and House building / Mining and Home 
furnishing sectors factors. 

NLPC9 
PE&OLES* (+) Metal and mining: Precious metals and minerals 

Mining and Beverages sectors factor. 
GEOB (-) Construction: House building CONTAL* (+) Beverages: Soft drinks 

PE&OLES* (+) Metal and mining: Precious metals and minerals       

ELEKTRA* (+) Specialty retail: Home furnishing retail         
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Table 6.3. Summary of results. Sector interpretation of components.  

Neural Networks Principal Component Analysis.  
Nine components extracted. 

 
INDEPENDENT COMPONENT ANALYSIS 

 

Database of Weekly Returns Database of Weekly Excesses Database of Daily Returns Database of Daily Excesses 

NLPC1 
Beverages and Leisure / mining 
sectors factor. NLPC1

Mining / Food products and 
beverages, Consumer staples and 
Communication media sectors factor. 

NLPC1 
Construction sector factor (Geo 
factor) NLPC1

Salinas Group / Mining 
sector factor. 

NLPC2 
Mining and Telecommunications / 
Holding sectors factor. NLPC2

Mining / House building sectors 
factor. NLPC2 

Mining sector factor (Peñoles 
factor) NLPC2

Beverages / Home furnishing 
and Financial services 
sectors factor. 

NLPC3 Holding / Mining sectors factor. NLPC3
House building, Mining and Holdings 
sectors factor. 

NLPC3 
Consumer staples, Financial 
services, Home furnishing and 
Mining sectors factors. 

NLPC3
Salinas Group, Holdings and 
Mining / Leisure sectors 
factor. 

NLPC4 
Home Furnishing and Beverages 
sectors factor. 

NLPC4
Beverages, Leisure and Home 
furnishing sectors factor. 

NLPC4 
Communication media and 
Beverage sectors factor 

NLPC4
Holdings / Leisure sectors 
factors. 

NLPC5 Salinas Group Factor. NLPC5 Consume sector factor NLPC5 
Beverages and mining / Home 
furnishing and house building 
sectors factor. 

NLPC5
Beverages and House 
building / Mining sectors 
factors. 

NLPC6 
House building and Beverages / 
Consumer staples, Communication 
media and Mining sectors factors. 

NLPC6
Construction sector factor (Geo 
Factor). NLPC6 

Beverages, Communication 
media, House building and 
Home furnishing sectors factor. 

NLPC6
House building and Holdings 
/ Leisure sectors factor. 

NLPC7 
Holdings / Food products sectors 
factors. NLPC7

Financial and House building 
/Consumer staples sectors factors. NLPC7 

Leisure and Financial services 
sectors / Salinas Group factor. NLPC7

Communication media / 
Financial services sectors 
factor. 

NLPC8 
Food products / Construction sectors 
factors. 

NLPC8 Food and beverages sector factor. NLPC8 
House building and Holdings / 
Home furnishing and Consumers 
staples sectors factor. 

NLPC8
Mining sector factor 
(Peñoles factor) 

NLPC9 
Food products, Beverages and 
Construction sector factors. NLPC9

House building, communication 
media and consumer staples sectors 
factor. 

NLPC9 
Holdings and House building / 
Mining and Home furnishing 
sector factors. 

NLPC9
Mining and Beverages 
sectors factor. 
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In addition, we can distinguish the strong and constant contribution of some sectors or 

stocks in many factors in the four databases; e.g., mining sector with PEÑOLES (DBWR:4 + 

DBWE:3 + DBDR:4 + DBDE:5 = 16), beverage sector with CONTAL (DBWR:4 + DBWE:3 

+DBDR:3 + DBDE:3 = 13), construction sector with GEO (DBWR:3 + DBWE:5 + DBDR:5 

= 13), home furnishing sector with ELEKTRA (DBDR:6 + DBDE:3 = 9 ), holding sector with 

ALFA (DBWR:3 + DBDE:3 = 6), food products sector with BIMBO (DBWR:3), consumer 

staples with WALMEX (DBWE: 3) and SORIANA (DBWE:3), communication media sector 

with TVAZTECA (DBDR:3) and leisure sector with CIEB (DBDE:3). 

 

In this case, under the methodology used in this study to give some meaning to the risk 

factors, none of the components in any database is clearly related to market factor. Likewise, 

there is no a homogeneous interpretation of the factors in all the databases. Nevertheless, 

there are two factors that could have the same interpretation in the different databases but are 

ranked in different order; e.g., the mining and the construction factors, as can be observed in 

the referred table. 

 

6.3.4. Results of the Econometric contrast. 

As stated in Chapter 3, in the first stage of our econometric contrast methodology we 

estimated the betas or sensitive to the underlying factors to use in expression 6.5199, 

ikikiiiR   ...22110 ,       (6.6) 

by regressing the factor scores obtained by NNPCA as a cross-section on the returns and 

excesses, by way of Seemingly Unrelated Regression (SUR), to estimate the entire system of 

equations at the same time. 

  

                                                            
199 Where, jig represents the sensitivity of equity i to factor j, Fjt the value of the systematic risk factor j in time t 
common for all the stocks, and i the idiosyncratic risk affecting only equity i. 



CHAPTER 6. NEURAL NETWORKS PRINCIPAL COMPONENT ANALYSIS: 
ESTIMATION OF THE GENERATIVE MULTIFACTOR MODEL OF RETURNS. 

 

214 
 

 

The results of the regressions in the four databases were very good, producing in 

almost all cases, statistically significant parameters, high values of the R2 coefficients and 

results in the Durbin-Watson test of autocorrelation200, which lead us to the non-rejection of 

the null hypothesis of no-autocorrelation201. Tables 6.4 to 6.7 present the results of the 

coefficients estimated for NNPCA, which represent the betas to use in the second stage of the 

econometric contrast. All the tables correspond to the case where 9 components or factors 

were extracted202.  

 

Table 6.4. Neural Networks Principal Component Analysis. 
 Betas estimated simultaneously via Seemingly Unrelated Regression.  

Database of weekly returns. 
 β1 β2 β3 β4 β5 β6 β7 β8 β9 

PE&OLES*  -0.661146 0.404532 0.221154 -0.348588 -0.212235 0.231895 0.070423 -0.673661 5.852872

BIMBOA  -1.018037 -0.400656 0.438115 -0.625893 -0.096669 -0.791204 -1.111239 -0.635987 9.654203

GMODELOC  -3.890342 -1.713984 2.155201 -2.288916 -1.123985 -0.286422 0.422383 -5.831424 39.527120

FEMSAUBD  -1.991500 -0.850115 0.965746 -0.961114 -0.477731 -0.274462 -0.286570 -3.042211 18.786460

CONTAL*  -2.258178 -0.893738 1.203963 -1.529109 -0.467717 -1.087118 0.715768 -3.867295 22.248850

GEOB  0.511024 0.498312 -0.160461 1.147973 0.328838 -0.153578 -0.183413 1.111378 -8.338045

ARA*  -1.344151 -0.487022 0.738717 -0.704364 -0.126022 -0.156074 0.255672 -2.395672 12.489280

WALMEXV -3.176441 -1.396400 1.689594 -1.685988 -0.834470 -0.268451 -0.152103 -3.970040 31.247020

SORIANAB  -2.760023 -1.198632 1.420615 -1.328995 -0.680395 -0.156491 0.461066 -2.989794 26.553090

COMERUBC  5.139106 2.362867 -3.117944 3.055385 1.485774 0.435959 0.481870 8.626535 -55.419980

ELEKTRA*  0.164280 0.198944 -0.188980 -0.037455 -0.410214 -0.016089 -0.131377 -0.040359 -4.652279

TELMEXL  1.110381 0.512345 -0.794749 0.805337 0.344741 0.364371 -0.344495 1.551578 -13.072150

TELECOA1  2.214760 1.014007 -1.487876 1.477933 0.712469 0.588877 -0.645929 3.066804 -25.108640

TLEVICPO -0.921930 -0.356312 0.318817 -0.258356 -0.252440 -0.060988 -0.425646 -0.912894 7.067678

TVAZTCPO  0.217923 0.167963 -0.268234 0.237500 -0.263862 -0.061366 0.036825 1.370396 -5.149116

GFNORTEO  -3.074419 -1.340465 1.677342 -1.534849 -0.771012 -0.016945 0.581643 -3.956530 30.005960

GFINBURO  0.699775 0.349119 -0.542369 0.755233 0.441815 0.291611 -0.141626 0.850592 -9.004358

GCARSOA1  -0.453494 -0.197682 0.061953 -0.108553 -0.040953 0.233855 0.138577 -0.730015 2.539065

ALFAA  -0.052664 0.072603 -0.022153 -0.781726 0.395914 0.342193 -0.212150 0.667970 -2.643350

CIEB  0.707270 0.373413 -0.667428 0.733938 0.388800 -0.168995 0.617267 1.192863 -9.738467

 

  

                                                            
200 Value of the statistic more than 2. 
201 For reasons of saving space these results are not presented in this section, however the interested reader can 
consult the results of the betas for all the equation system for NNPCA when nine components were extracted in 
Appendix_1 from Tables 13 to 16. 
202 For the sake of saving space the results of the betas estimation for the experiments when eight, seven, six, 
five, four, three and two factors were extracted are not included in this dissertation; nevertheless, the results are 
similar to those reported in this chapter. 
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Table 6.5. Neural Networks Principal Component Analysis.  
Betas estimated simultaneously via Seemingly Unrelated Regression.  

Database of weekly excesses. 
 β1 β2 β3 β4 β5 β6 β7 β8 β9 

PE&OLES*  -0.043163 0.486162 0.121661 0.004812 -0.499104 -0.086944 -0.030139 0.230848 1.280904

BIMBOA  0.153674 0.045729 0.147311 0.014452 -1.668440 0.461090 1.513013 1.654952 8.051806

GMODELOC  0.004531 -0.007567 0.047386 -0.010580 -0.797574 -0.000274 -0.186712 0.074784 2.403672

FEMSAUBD  -0.078199 -0.025567 0.068588 0.082091 -0.528778 0.036231 0.271890 0.186012 1.987517

CONTAL*  -0.220585 0.010571 -0.020720 -0.122170 2.065821 0.195926 -0.630877 -0.927799 -4.671980

GEOB  -0.148365 0.129246 -0.222991 0.327174 -0.461602 0.100265 0.218690 0.283212 1.990332

ARA*  -0.447752 -0.033100 -0.158602 -0.070679 3.722934 -0.335731 -0.714461 -1.644692 -12.184710

WALMEXV -0.271972 -0.085520 -0.029591 0.009086 1.198038 -0.235595 -0.772432 -0.216296 -5.406945

SORIANAB  -0.204700 -0.066497 0.013455 0.074716 0.466036 -0.052683 -0.601527 0.106980 -2.186891

COMERUBC  -0.549244 -0.097007 -0.095963 -0.127488 4.095215 -0.195747 -1.466123 -1.380805 -14.655700

ELEKTRA*  -0.174958 0.015274 -0.041840 -0.219799 -1.255692 0.202962 0.551251 -0.204423 1.131834

TELMEXL  -0.205931 -0.052827 0.018535 0.007397 0.785378 -0.247164 -0.118289 -0.486135 -3.474624

TELECOA1  -0.289263 -0.068546 0.021333 -0.005011 1.249064 -0.375073 0.008123 -0.714292 -4.933621

TLEVICPO -0.277070 -0.064901 0.015916 0.042153 0.694879 -0.152665 -0.366217 -0.261792 -3.654387

TVAZTCPO  0.052864 0.011772 0.077374 -0.007142 -3.159456 0.414829 0.426167 1.222152 8.869991

GFNORTEO  -0.162738 -0.050966 -0.028292 0.066173 0.181307 -0.118540 -0.375837 -0.099638 -1.109637

GFINBURO  0.194463 0.046816 0.132634 0.215212 -2.595970 0.177413 1.423572 0.891450 11.357310

GCARSOA1  -0.340196 -0.105147 -0.010619 -0.024488 1.698205 -0.305285 -0.456768 -0.916672 -6.726470

ALFAA  -0.088369 -0.000211 -0.036272 -0.326857 -0.395250 -0.147516 0.252845 0.685454 5.094150

CIEB  0.216224 0.042960 0.230983 0.222422 -3.062860 0.562687 0.988704 1.233040 13.611410

 

Table 6.6. Neural Networks Principal Component Analysis. 
 Betas estimated simultaneously via Seemingly Unrelated Regression.  

Database of daily returns. 
 β1 β2 β3 β4 β5 β6 β7 β8 β9 

PE&OLES*  -0.038338 -0.442438 0.030615 -0.046444 0.129480 0.003988 -0.014879 0.006439 1.019991

KIMBERA  0.077976 -0.014725 -0.028925 -0.013048 -0.010713 0.203777 -0.119361 0.053778 6.114341

BIMBOA  -0.573015 0.023321 0.086986 0.431654 -0.091011 -0.674661 0.415778 -0.475327 -20.779020

GMODELOC  0.116145 -0.019705 -0.003043 -0.091161 -0.012834 0.305166 -0.170306 0.223829 8.025039

FEMSAUBD  -0.001580 0.010911 -0.006309 -0.051264 0.048139 0.084701 -0.106962 0.081577 4.653299

CONTAL*  -0.047465 -0.055500 0.011448 0.129665 -0.757126 0.237908 -0.092710 0.143984 1.110448

CEMEXCP  0.010020 -0.000139 -0.016461 -0.060534 -0.012478 0.156311 -0.096419 0.133969 4.755374

GEOB  -0.160941 -0.022096 -0.315774 -0.088388 -0.080340 -0.113839 -0.029102 -0.003862 -1.311625

ARA*  -0.367559 0.022457 -0.022127 0.222848 0.031997 -0.470141 0.233205 -0.236326 -11.659020

WALMEXV -0.278230 0.023390 0.053996 0.138225 0.090822 -0.308476 0.085523 0.013762 -6.415841

SORIANAB  -0.223950 0.013078 0.026909 0.115123 0.051610 -0.232138 0.073207 -0.031040 -4.269208

COMERUBC  0.192156 -0.027502 -0.080978 -0.152992 -0.013513 0.647395 -0.166292 0.444057 12.804310

ELEKTRA*  -0.278237 0.023310 0.064610 -0.136506 -0.301085 -0.119005 0.248398 -0.087945 -4.765151

TELMEXL  -0.257093 0.028976 0.062086 0.128207 0.113123 -0.327997 0.074919 -0.005984 -6.331497

TELECOA1  -0.607666 0.056768 0.126594 0.373054 0.205238 -0.810291 0.333888 -0.190420 -19.756100

TLEVICPO 0.292525 -0.001613 -0.045446 -0.367921 -0.019137 0.532455 -0.437547 0.312110 19.546310

TVAZTCPO  -0.258728 0.040846 0.122455 -0.126184 -0.169337 -0.333002 0.018069 -0.161110 -3.467456

GFNORTEO  0.085617 0.009229 -0.089211 -0.097295 0.168555 0.305925 -0.078290 0.365721 8.760370

GFINBURO  -0.247660 0.035318 0.018683 0.210425 0.093254 -0.207238 0.186200 -0.095708 -6.225637

GCARSOA1  -0.297732 0.028970 0.069805 0.198131 0.122770 -0.273227 0.144487 -0.075135 -7.335534

ALFAA  -0.083280 0.020138 0.006525 -0.146136 0.298487 0.711866 -0.129479 -0.124208 3.158050

CIEB  0.309391 -0.034740 -0.113025 -0.145258 -0.059051 0.582030 -0.305708 -0.208520 18.579130
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Table 6.7. Neural Networks Principal Component Analysis. 
Betas estimated simultaneously via Seemingly Unrelated Regression. 

Database of daily excesses. 
 β1 β2 β3 β4 β5 β6 β7 β8 β9 

PE&OLES*  -0.097772 0.533503 -0.041415 0.001193 0.043114 0.077819 -0.061091 -0.044924 0.292448

KIMBERA  1.934205 0.527653 0.100114 -0.234403 0.030347 -0.999937 4.600877 6.940297 -24.656670

BIMBOA  1.731509 0.485822 0.089567 -0.211853 0.012837 -1.064735 4.533703 6.768506 -22.280610

GMODELOC  -2.387162 -0.601416 -0.140141 0.308304 0.054216 1.124880 -5.666746 -8.652569 28.595070

FEMSAUBD  0.737080 0.186177 0.016741 -0.094387 0.006069 -0.372734 1.877825 3.257826 -10.305150

CONTAL*  -1.715419 -0.373859 -0.066750 0.241707 -0.316650 0.280945 -3.978198 -5.931457 20.286010

CEMEXCP  0.624589 0.170146 0.019648 -0.083074 -0.004646 -0.369818 1.779183 3.036110 -8.783847

GEOB  1.223633 0.389409 0.479473 -0.189436 -0.125639 -0.628082 2.993219 4.886910 -16.425120

ARA*  -4.645785 -1.187565 -0.110229 0.602297 0.083047 2.257217 -10.660530 -16.902480 56.296290

WALMEXV -0.195449 -0.040656 -0.032522 0.026580 0.057711 0.081098 -0.393842 -0.320910 0.990996

SORIANAB  0.381649 0.118982 0.018920 -0.046906 0.013540 -0.199454 1.042065 1.666630 -6.095472

COMERUBC  2.416777 0.660070 0.136078 -0.316441 0.032710 -1.263438 6.099257 8.910342 -31.058270

ELEKTRA*  -0.376405 -0.081354 -0.056572 -0.023416 -0.393025 0.245721 -0.069912 -1.245614 2.832206

TELMEXL  -0.654118 -0.172661 -0.068693 0.081955 0.066340 0.296039 -1.474741 -1.779940 6.893578

TELECOA1  -1.496942 -0.385918 -0.110092 0.192542 0.166826 0.698404 -3.384455 -4.728460 16.912070

TLEVICPO -3.168261 -0.840688 -0.179648 0.386420 -0.082192 1.544202 -7.463439 -11.004340 37.229890

TVAZTCPO  2.772315 0.706448 0.020152 -0.415274 -0.371423 -1.350791 6.806987 10.821610 -36.124720

GFNORTEO  -2.715507 -0.713770 -0.071300 0.355004 0.119207 1.417318 -5.889119 -9.371779 32.226650

GFINBURO  1.766658 0.450304 0.079845 -0.211588 0.101461 -0.926617 4.722877 7.065137 -22.862060

GCARSOA1  0.050808 0.019478 -0.034159 -0.003266 0.118251 -0.043357 0.282761 0.198584 -2.065460

ALFAA  -0.341686 -0.086610 -0.022527 -0.050329 0.486563 -0.126613 -0.465215 -0.755529 2.507180

CIEB  0.781452 0.232376 0.060058 -0.061175 0.026148 -0.423187 2.274551 2.986473 -11.115940
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 The previous tables shows the sensitivity of the stock (i) to the risk factor (k). As we 

can observe in this technique, in many cases the values of the betas are higher than those 

obtained in ICA, FA and PCA, especially in those related to beta number nine, which would 

imply a higher influence of these systematic risk factors in the formation of the returns of the 

studied stocks than those found in the other three techniques203. 

 

Continuing with the methodology described in Chapter 3, in the second stage of the 

econometric contrast, we estimated the lambdas or risk premiums in expression 6.5 by 

regressing the betas obtained in the first stage as a cross-section on the returns and excesses, 

using ordinary least squared corrected by heteroscedasticity and autocorrelation by means of 

the Newey-West heteroscedasticity and autocorrelation consistent covariance estimates 

(HEC). Additionally, we verified the normality in the residuals by carrying out the Jarque-

Bera test of normality and we used the Wald test to confirm the equalities assumed by the 

APT regarding the independent term.  

  

                                                            
203 In previous experiments we used the recommended architecture for this kind of neural network (Autoencoder) 
which considered the number of neurons for the input, demapping, mapping and output layers equal to the 
number of observed variables (See: Martin & Morris, 1999), e.g. [20-20-9-20-20] in the case of the weekly 
databases when we extracted nine factors. In that case the results of the betas estimated simultaneously were 
very similar to those obtained in the other techniques; those results are not included in this document. 
Nevertheless, for comparative reasons regarding the interpretation of the factors extracted in the four techniques 
used in this study, we decided to use a neural network architecture that considered the number of neurons of the 
demapping, bottleneck and mapping layer equal to the number of extracted factors, in order to produce a loading 
matrix with the dimensions needed for the interpretation methodology employed. Consequently, the results 
obtained in the simultaneously estimation of the betas, using the nonlinear principal components estimated under 
this new architecture, are those presented in these tables, which generate higher values specially concerning the 
beta number nine. We remark that in those experiments NNPCA produced the best results across the four 
techniques in terms of the reproduction accuracy and the econometric contrast; conversely, that topology of the 
neural network was not capable to produce a loading matrix with the suitable dimensions needed to interpret the 
extracted factors. Consequently, to the light of evidence found, we uncover an interesting trade-off produced in 
the different topologies of the neural network used between, on one side, the accuracy in the reproduction of the 
observed variables and the results of the econometric contrast, and on the other side, the capability to get a 
matrix for the interpretation of the extracted factors. For the purpose of counting with a preliminary 
interpretation to the risk factors extracted by the four techniques, we decided to weight more the interpretation 
side. 
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 In Tables 6.8 and 6.9, we present a summary of the results of the econometric contrast. 

In general, the results of the explanation power (R2), the statistical significance of the 

multivariate test (F), and the residual test are very good in all the contrasted models, except in 

the cases where only two factors were extracted. The univariate tests for the individual 

statistical significance of the parameters (Statistic t) priced from one to three factors different 

from 0, thus giving evidence in favor of the APT in 29 models204. Nevertheless, only four 

models fulfilled both the statistical significance and the equality of the independent term to its 

theoretic value, in addition to the fulfilment of the requirements imposed by the residual test. 

These two models were those expressed in weekly returns when six, seven and eight factors 

were extracted; and the one expressed in daily returns when three components were estimated. 

 

Moreover, there are sixteen other models which fulfil all the conditions for accepting 

the APT as a pricing model, except for the statistical significance of the independent term, and 

seven models that fail only in the equality of the independent term to its theoretical value, 

which provides some additional evidence in favor of this asset-pricing model. Furthermore, in 

all the accepted models there were more than one priced factor which gives additional 

evidence in favor of the APT as well.  

 

Making a cross-validation with the interpretation of the factors proposed in section 

6.3.3, the meaning of the significant factors corresponding to the fully accepted models are 

the following205. In the four models the statistical significant factors were the number two and 

number three, which correspond to the following interpretation derived from the analysis of 

the results referred to the number of components estimated in each case. Regarding the 

database of weekly returns, when six components were extracted, factor number two mixes 

the effect of the mining, telecommunications and beverage sectors; and factor number three is 

                                                            
204 The total number of tested models was 32. 
205 We remark that in the case of NNPCA, each estimation that consider a different number of components 
extracted implies different values of the components, therefore, the interpretation may be different depending on 
the number of components computed. Table 6.1 and 6.2 represents the interpretation of the experiment when 
nine components were extracted; tables containing the meanings given to the significant factors of the accepted 
models are included in the electronic appendix of this work. 
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clearly related to the holdings sector. In the model with seven components, the two priced 

factors were identified with the mining a leisure sector, respectively. Finally, in the model that 

considered eight factors, the second one was related to the beverage sector factor, while the 

third one contrasted the mining to the specialty retail sector. Concerning the model in the 

database of daily returns, factor number two was related to the Mining sector factor (Peñoles 

Factor); and number three corresponds to the construction sector. 

 

Concerning the value of the risk premiums (lambdas), in all the cases they were very 

small, which presents negative and positive effects on the average returns on equities. With 

respect to the accepted models, these values ranged from -0.002117 to 0.00378, in the weekly 

models, and from -.00104 to 0.00113 in the daily model. In this sense, we can observe that in 

the database of weekly returns, in the model with six betas, the factor that combine the 

mining, telecommunication, beverage and sectors yields increases of 0.00378 in the average 

weekly returns of the stocks studied, while the holdings sector factor produces decreases of -

0.00997. In the model with seven betas, the mining sector factor, generates changes of 

0.00362 and the leisure sector of -0.01168; and in the model with eight betas, the beverage 

sector factor causes fluctuations of 0.00303, while the factor that contrast the mining to the 

specialty retail sectors originates variations of -0.02117.  

 

Regarding the accepted daily model, the mining sector factor makes variate the 

average returns in 0.00113, whereas the construction sector factor, does it in -0.00104. 

 

 Interestingly, using this technique, the market factor was not clearly identified in any 

of the accepted models; however, the mining sector factor was repeatedly significant in the 

many of them. Once again in this technique, datasets expressed in excesses did not produce 

any fully accepted model. Further research will be needed regarding this issue, as well as the 

significance of the undersized values and signs of the estimated individual parameters. 
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Finally, regarding the ratio number of significant lambdas / total number of lambdas in 

the model, the results in the accepted models ranged from 25% to 66%, which give some 

evidence in favor of the APT, as well. To summarize, for the sample and periods considered, 

we can accept only partially the validity of the NNPCA-APT as a pricing model explaining 

the average returns (and returns in excesses) on equities of the Mexican Stock Exchange. On 

the other hand, the evidence showed that the APT is sensitive to the number of factors 

extracted and to the periodicity and expression of the models. 
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Table 6.8. Summary of the econometric contrast. Weekly databases. 
λ0 λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 R2* λsig / λtot F WALD J-B 

Database of weekly returns.   
  Model with 2 betas ● ● ●               9.45% 0.00% ● ● ○ 
  Model with 3 betas 0.005078 ● 0.01034 0.02173             51.89% 66.67% ○ ● ○ 
  Model with 4 betas 0.005582 ● 0.00193 0.01002 ●           48.58% 50.00% ○ ● ○ 
  Model with 5 betas 0.005411 ● -0.00892 0.02423 ● 0.00348         50.84% 60.00% ○ ● ○ 
  Model with 6 betas 0.004886 ● 0.00378 -0.00997 ● ● ●       47.96% 33.33% ○ ○ ○ 
  Model with 7 betas 0.005458 ● 0.00362 -0.01168 ● ● ● ●     55.59% 28.57% ○ ○ ○ 
  Model with 8 betas 0.005605 ● 0.00303 -0.02117 ● ● ● ● ● ● 50.58% 25.00% ○ ○ ○ 
  Model with 9 betas 0.005782 ● ● 0.02016 ● ● ● ● ● ● 46.35% 11.11% ● ○ ○ 
Database of weekly excesses.   
  Model with 2 betas ● ● ●               6.61% 0.00% ● ○ ○ 
  Model with 3 betas 0.003488 ● -0.00195 -0.02129             47.35% 66.67% ○ ● ○ 
  Model with 4 betas 0.003945 ● -0.00237 -0.00481 ●           49.04% 50.00% ○ ● ○ 
  Model with 5 betas ● ● -0.00505 -0.03206 ● ●         48.14% 40.00% ○ ○ ○ 
  Model with 6 betas ● ● -0.00404 -0.00882 ● 0.00147 ●       52.74% 50.00% ○ ○ ● 
  Model with 7 betas ● ● 0.00218 -0.00650 ● 0.00168 ● ●     51.67% 42.86% ○ ○ ● 
  Model with 8 betas ● ● 0.00439 -0.02272 ● ● ● ● ●   53.24% 25.00% ○ ○ ○ 
  Model with 9 betas 0.0433 ● 0.00613 -0.02391 ● ● ● ● ● -0.00040 57.13% 33.33% ○ ● ● 
Notes: 
* The level of statistical significance used in all the test was 5%. 
λj: Estimated coefficients. H0: λj = 0. Numeric value of the coefficient = Rejection of H0. Parameter significant. ● = Not rejection of H0. Parameter not significant. 
R2*: Adjusted R-squared = Explanatory capacity of the model. 
λsig / λtot: Ratio number of significant lambdas / total number of lambdas in the model. 
F: Global statistical significance of the model. H0 = λ2 = λ3 = … = λk = 0. ○ = Rejection of H0. Model globally significant. ● = Not rejection of H0. Model globally not significant. 

Wald: Wald's test for coefficient restrictions. Databases in returns: H0: λ0 = Average riskless interest rate. Databases in excesses: H0: λ0 = 0. ○ = Not rejection of  H0. The independent 
term is equal to its theoretic value. ● = Rejection of H0. The independent term is not equal to its theoretic value.  
J-B: Jarque-Bera's test for normality of the residuals. H0 = Normality. ○ = Not rejection of H0. The residuals are normally distributed. ● = Rejection of H0. The residuals are not normally 
distributed. 
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Table 6.9. Summary of the econometric contrast. Daily databases. 
  
  λ0 λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 R2* λsig / λtot F WALD J-B 
Database of daily returns.   

  Model with 2 betas ● ● ●               0.00% 0.00% ● ○ ○ 
  Model with 3 betas 0.00047 ● 0.00113 -0.00104             38.93% 66.67% ○ ○ ○ 
  Model with 4 betas ● ● 0.00090 -0.00184 ●           38.11% 50.00% ○ ○ ○ 
  Model with 5 betas ● ● ● -0.00229 ● ●         44.15% 20.00% ○ ○ ○ 
  Model with 6 betas 0.001226 ● ● 0.00401 ● ● ●       56.56% 16.67% ○ ○ ○ 
  Model with 7 betas ● ● ● 0.00211 ● ● ● ●     50.05% 14.29% ○ ○ ○ 
  Model with 8 betas ● ● ● -0.00163 ● ● ● ● ●   49.49% 12.50% ○ ○ ○ 
  Model with 9 betas ● ● ● -0.00361 ● ● 0.00058 ● ● ● 61.79% 22.22% ○ ○ ○ 
Database of daily excesses.   
  Model with 2 betas ● ● 0.00046               -1.36% 50.00% ● ○ ○ 
  Model with 3 betas ● ● 0.00085 0.00162             41.19% 66.67% ○ ○ ○ 
  Model with 4 betas 0.000636 ● -0.00043 -0.00140 ●           50.91% 50.00% ○ ● ● 
  Model with 5 betas ● ● -0.00080 -0.00174 ● ●         36.09% 40.00% ○ ○ ● 
  Model with 6 betas ● ● ● 0.00402 ● ● ●       48.02% 16.67% ○ ○ ○ 
  Model with 7 betas ● ● ● 0.00146 ● -0.00065 ● ●     44.49% 28.57% ○ ○ ○ 
  Model with 8 betas ● ● ● -0.00284 ● -0.00069 ● 0.00028 ●   62.43% 37.50% ○ ○ ○ 
  Model with 9 betas ● ● ● 0.00281 ● ● ● ● ● ● 55.92% 11.11% ○ ○ ○ 
Notes: 
* The level of statistical significance used in all the test was 5%. 
λj: Estimated coefficients. H0: λj = 0. Numeric value of the coefficient = Rejection of H0. Parameter significant. ● = Not rejection of H0. Parameter not significant. 
R2*: Explanatory capacity of the model. 
λsig / λtot: Ratio number of significant lambdas / total number of lambdas in the model. 
F: Global statistical significance of the model. H0 = λ2 = λ3 = … = λk = 0. ○ = Rejection of H0. Model globally significant. ● = Not rejection of H0. Model globally not 
significant. 
Wald: Wald's test for coefficient restrictions. Databases in returns: H0: λ0 = Average riskless interest rate. Databases in excesses: H0: λ0 = 0. ○ = Not rejection of  H0. 
The independent term is equal to its theoretic value. ● = Rejection of H0. The independent term is not equal to its theoretic value.  
J-B: Jarque-Bera's test for normality of the residuals. H0 = Normality. ○ = Not rejection of H0. The residuals are normally distributed. ● = Rejection of H0. The 
residuals are not normally distributed. 
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6.4. Conclusions. 

 

The theoretical attributes of the NLPCA present desirable features when we extract the 

underlying systematic factors via this alternative technique, since they represent nonlinearly 

uncorrelated factors and not only linearly uncorrelated ones. NNLPCA performed via 

NNPCA is capable of uncover both linear and nonlinear correlations while PCA for example 

identifies only linear correlations. In that sense, we may conclude that the factors obtained in 

this study represent a more desirable estimation of the underlying systematic risk factors 

under a statistical approach to the APT206. In our case, we believe that the extracted factors 

should be better estimations207, for use in a statistical approach to the APT because: first, they 

represent factors that have eliminated both linear and nonlinear correlations among variables, 

and second, they are the result of a nonlinear transformation, not only a linear mapping, which 

deals with any nonlinear effect of the systematic risk factors over the returns on equities.   

  

We should like to remark that our main goal in this chapter has been the estimation of 

the generative multifactor model of returns of the APT by way of the NNPCA, that is, the risk 

extraction stage of a statistical approach to the AP. Therefore, the interpretation of the 

components extracted represents only a first attempt to give meaning to the latent factors; 

however, further research will be needed about the risk attribution process of this statistical 

approach.  

 

  

                                                            
206 More desirable in the sense that under the scope of the APT in general and the statistical approach in 
particular, we look for obtaining risk factors as much independent or different as possible, in that sense having 
nonlinearly uncorrelated factors would suppose a better attribute of those extracted factors. 
207 Although this statement is object of academic discussion. 
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In the same way, the econometric contrast corresponds only to a first approach to the 

validation of the APT as a pricing model using the systematic risk factors estimated via this 

extraction technique; therefore its results should be seen under this perspective. For now, we 

could attribute the unsatisfactory results of the econometric contrast to two possible reasons: 

a) The methodology used for the contrast might not be the most suitable for a statistical 

approach to the APT, and perhaps it would be necessary to use time series moving regressions 

to estimate the sensitivities to the risk factors or betas (Nieto, 2001b; Roll & Ross, 1980), or 

mimicking portfolios as proxies of the underlying factors (Marin & Rubio, 2001; Zivot & 

Wang, 2003). b) The origin of the problem might not be in the first assumption of the APT, 

the generative multifactor model of returns, but in the second, the arbitrage absence principle 

(Khan & Sun, 2003); aspect that we have not investigated yet. Further research would be 

needed concerning these two possible causes of the results in the econometric contrast. 
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Chapter 7 
 
Comparison of different latent factors extraction 
techniques. 
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7.1. Introduction and review of literature. 

 

In the previous chapters we have presented three different dimension reduction or feature 

extraction techniques for extracting the underlying systematic risk factors driving the returns 

on equities in a statistical approach to the Arbitrage Pricing Theory (Ross, 1976). This 

approach assumes a priori neither the number nor the nature of either the systematic risk 

factors or the sensitive to them; therefore, we have to estimate both of them by using 

extraction and econometric techniques in two different stages. Our efforts to extract 

underlying factors with better statistical attributes led us to advance from classical 

multivariate techniques, such as Principal Component Analysis (PCA) and Factor Analysis 

(FA), to more advanced and sophisticated techniques - usually applied in fields like 

engineering, telecommunications, astronomy, biochemistry, bioinformatics, artificial 

intelligence and robotics - such as Independent Component Analysis (ICA) and Neural 

Networks Principal Component Analysis (NNPCA). 

 

Although the main objective of each technique is similar - to reduce the dimension or 

to extract the main features from a set of variables -, they are different in nature, assumptions, 

principles and internal algorithms; this makes it difficult to compare their results, i.e., the 

matrices used in the processes of extraction and generation, and the underlying factors 

extracted. In order to solve this problem, in this chapter we propose a set of statistical 

measures to compare the level of reconstruction of the four techniques, based on the degree of 

the accuracy in the reconstruction of the observed variables using the underlying systematic 

factors extracted by means of each technique.  

 

Comparative studies of all four techniques in literature are scarce. To the best of our 

knowledge, only Scholz (2006a) uses and compares three of them in the same study, i.e. PCA, 

ICA and NNPCA, carried over to molecular data in biochemistry in order to extract 

biologically meaningful components. The author explains the benefits and drawbacks of each 

kind of analysis to understand biological issues, concluding that, depending on the 



CHAPTER 7. COMPARISON OF DIFFERENT LATENT FACTORS EXTRACTION 
TECHNIQUES. 

 

227 
 

characteristics of the data and the purpose of the research, one specific kind of analysis is 

more suitable than the others. 

 

Comparative studies in economy and finance are not very frequent in literature, and 

they have dealt with only two of these techniques in the same review208. Some relevant 

references in these fields are the following209. Regarding PCA and FA, Ince & Trafalis (2007) 

use the components and factors extracted through PCA and FA as the input variables for two 

different forecasting models to compare their performance for stock price prediction on the 

NASDAQ. They found that the factors extracted through FA performed better than the 

components extracted through PCA.  

 

Concerning ICA, Bellini & Salinelli (2003) find that the immunization strategies to the 

US Treasury spot rates curve movements based on ICA perform better than those based on 

PCA. Lesch et al. (1999) apply PCA and ICA to perform feature extraction from currency 

exchange data of the British Pound against the US Dollar, showing that both techniques are 

capable of detecting deterministic structure in the data, but independent components are much 

closer in their morphology to the signals. Back & Weigend (1997) apply ICA and PCA on the 

Tokyo Stock Exchange, showing that while the reconstruction of the observed stock prices 

derived from the independent components extracted is outstanding, the reproduction resulting 

from the principal components is not. Yip & Xu (2000) carry ICA and PCA over to stocks 

from the S&P 500, finding that ICA gives a better indication of the underlying structure of the 

US stock market, in terms of the linear relationship between the components extracted 

through both techniques and some predefined macroeconomic factors. Rojas & Moody (2001) 

compare ICA and PCA by investigating the term structure and the interactions between the 

returns of iShares MSCI Index Funds and the returns of the S&P Depositary Receipts Index; 

they demonstrate that ICA has more influence in the average mutual information. Lizieri et al. 

                                                            
208 Comparative studies in fields different to finance and economics are out of the scope of this research; 
nevertheless, the interested reader can easily find some references of comparative studies between some of these 
techniques in literature. 
209 Although in the following papers the authors made a theoretical comparison of the techniques utilized, we 
will focus on the comparison of their empirical results. For detailed information about both the theoretical and 
the empirical comparison made in those works, the interested reader can consult the original sources. 
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(2007) compare the ICA and PCA components’ capability of capturing the kurtosis in real 

estate investment trusts (REIT) in the USA, therefore proving that ICA overcomes PCA. 

Nevertheless, Wei et al. (2005) uncover that, although both techniques produce similar 

results, PCA outperforms ICA in the reconstruction of mutual funds in the Chinese financial 

market. On the other hand, Coli et al. (2005), in an application of ICA and PCA to a stocks 

portfolio of the Milan Stock Exchange, uncover that, although the principal components 

present a minimum reprojection error when they are used to reconstruct the data, the 

independent  components  make  it  easier  to  distinguish  the  trend  and  the  cyclical  

components. 

 

Finally, regarding to NNPCA, Weigang et al. (2007) compare NNPCA and PCA in 

terms of their dimensional reduction capability, with the objective of extracting the main 

feature explaining the trends of withdrawals from an employment time guarantee fund, 

thereby showing that NNPCA is more suitable than PCA for dimension reduction in this 

context210.  Subsequently, the main contribution and objective of this chapter is to provide a 

theoretical and empirical comparative study among PCA, FA, ICA and NNPCA in the field of 

finance. First, the theoretical comparison will be made by way of a matrix parallelism among 

the four techniques and then, the empirical one will be performed by means of: a) the analysis 

of the reconstruction accuracy of the observed returns on equities, b) the statistical and 

graphical analysis of the components and betas estimated, c) the results of the econometric 

contrast using the different components or factors extracted through each technique, and 

finally, d) the schematic analysis of the loadings and interpretation given to each component 

in each technique. 

 

  

  

                                                            
210 Neither other techniques to produce non-linear components nor other methods to obtain non-linear principal 
component analysis (NLPCA) different than NNPCA are in the scope of this research; nevertheless, the 
interested reader can find in literature some works where techniques such as the quantum-inspired evolutionary 
algorithm (QIA) to extract non-linear principal components, or kernel principal component analysis (KPCA) and 
curvilinear component analysis (CCA) are compared with some of the techniques used in this study. 
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 The structure of this chapter is as follows: Section 7.2 presents the theoretical 

comparison via a matrix parallelism among the techniques used, where we explain the 

attributes of the factors extracted with each one of them. Section 7.3 describes the 

methodology and results of the empirical comparative study and section 7.4 draws some 

conclusions.  

 

7.2. Theoretical comparison. 

   

7.2.1. Matrix parallelism among PCA, FA, ICA and NNPCA. 

 

The four techniques used in our study, PCA, FA, ICA and NNPCA211, can be classified as 

latent variable analysis, dimension reduction or feature extraction techniques, whose main 

objective is to obtain some new underlying synthetic variables - from a set of observed data - 

capable of reproducing the behavior of the original data, in our context, returns on equities. 

Strictly speaking, we talk of latent variable analysis techniques, when we try to infer some 

unobservable artificial variables from a set of observable ones by using some mathematical 

models; we speak of dimension reduction techniques, when our objective is only to reduce the 

dimensionality of the problem by selecting a fewer number of new artificial variables created 

by the combination of the original ones, via some mathematical or geometric transformation 

of the observed variables; and, we refer to feature extraction techniques, when the new 

variables extracted represent the main or most relevant and meaningful components or factors 

resulting from specific combinations of the observed ones. Nevertheless, for our purposes, 

what we are prompt to obtain is a set of factors - hidden in the observed variables - to explain, 

in the best manner, why the returns on equities in our sample behave as they do.  

 

 The four classes of analysis include two different processes, the extraction of the 

underlying factors process and the generation of the original variables process.  

                                                            
211 The explanation of each class of analysis is discussed in Chapters 4, 5 and 6; in this Chapter, we will focus 
only on the comparison among the four techniques.  
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In Table 7.1 we present a matrix parallelism among the extraction and generation 

processes employed in each technique and the main attributes of their extracted components 

or factors.  

 

Table 7.1.  Matrix parallelism among techniques to extract the underlying factors of 
systematic risk. 

 Extraction Process. 
Generation 

Process. 
Attributes of the extracted 

components or factors. 

Principal 
Component 

Analysis (PCA) 
XAZ   'ZAX   

1. Linearly uncorrelated 
components. 

2. Minimum MSE 
reconstruction. 

3. No ambiguity in the 
base that spans the 
space. 

Factor Analysis 
(FA) 

XCF   
(Bartlett’s model) 

PQC   

 1UP  

  1
'

  1UQ  

UF1μX  '  

 

1. Linearly uncorrelated 
common factors. 

2. Rotation ambiguity in 
the factors.  

Independent 
Component 

Analysis (ICA) 
WXS   ASX   

1. Statistically independent 
components. 

2. At most one component 
with Gaussian 
distribution. 

 
Nonlinear Principal 

Component 
Analysis. 
(NLPCA) 

 

 XWWZ 12 g   ZWWX 34 g  1. Nonlinearly uncorrelated 
components. 

Notes: 
1. In PCA: Z = Matrix of principal components. X = Matrix of data. A = Matrix of loadings. 
2. In FA:  F = Matrix of common factors.  X = Matrix of data. Λ = Matrix of loadings. 

U = Matrix of specificities or uniqueness. µ = vector of means. 
3. In ICA: S = Matrix of independent components or original sources. X = Matrix of data.  

W = Demixing matrix. A = Mixing matrix. 
4. In NLPCA: Z = Matrix of nonlinear principal components. X = Matrix of data. W1 = Matrix of 

weights from the first layer to the second layer. W2 = Matrix of weights from the second layer to 
the third layer. W3 = Matrix of weights from the third layer to the fourth layer. W4 = Matrix of 
weights from the third layer from the fifth layer. g = Transferring nonlinear function. 
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Although the assumptions, principles, philosophy, methodology and algorithms 

utilized are different in each technique, we can try to make a first attempt, not exempt of 

critique, of  a matrix analogy among the extraction and generation process in the four kind of 

analysis that facilitate the comparison among them. For instance, the extraction and 

generation processes in NNPCA are equivalent to the demixing and mixing processes of ICA, 

where the combined effect of the matrices of weights (W1 and W2) and the nonlinear function 

in the extraction process would be equivalent to the effect of the demixing matrix (W) of 

ICA; the elements of the bottleneck layer (Z) would stand for the independent sources (S); 

and finally, the joint effect of the matrices of weights (W3 and W4) and the nonlinear function 

in the  generation  process would correspond to the effect of the mixing matrix (A).  

 

The same kind of analogy can be made to include PCA and FA in the former 

parallelism as well, taking the matrices of weights in the extraction process (A and C), the 

matrices of the extracted components or factors (Z and F), and the factor loading matrices in 

the generation process (A’ and Λ’), respectively. It is important to remark that, although there 

is a matrix parallelism among the elements of these techniques, in our context, the direct 

comparison of their values is not homogeneous among all of them, e.g., the generation 

processes in PCA, FA and ICA include only a linear mixing of the original data matrix and 

the demixing matrices; however, in NNPCA the process includes a non-linear combination of 

two matrices of weights and the original data matrix; thus, in this technique we do not have a 

single demixing matrix which, when multiplied directly by the data matrix, might produce the 

extracted factors. A similar situation occurs with the generation process, so we have to use 

other methods to compare the four techniques, such as the reconstruction accuracy of the 

observed variables. 
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On the other hand, strictly speaking, the FA should not be compared directly with the 

rest of these techniques since the FA includes an independent term corresponding to the 

specific factors (U), which is not considered in the rest of them212. Actually, the FA should be 

compared with the equivalent versions of the other techniques that consider an independent 

term in the model as well, e.g., the Noisy ICA (N-ICA) or Independent Factor Analysis (IFA) 

and the Non-linear Factor Analysis (NLFA). Nevertheless, PCA and FA have always been 

compared and in some cases even confused, since PCA is considered as a method of 

estimation within the FA, which is incorrect; thus, we decided to include FA results in this 

review, too. A next step in further research would be to compare FA with the equivalent 

versions of the independent and non-linear models. 

 

 From an interpretation standpoint of the extracted factors we could say that for PCA, 

FA and ICA, these factors may be interpreted as the coordinates of the observations in the 

space spanned by the demixing matrix of the table above. That is, first in PCA, the matrix A 

may be interpreted as a projection operator with directions that corresponds to the least error 

reconstruction. Secondly, in FA the matrix C may be interpreted as an operator that generates 

the variation around the mean value of the observations. Finally, in ICA the matrix W, 

represents a matrix that mixes unobservable factors using the criterion that the observable 

ones will have a maximum non-Gaussian distribution. On the other hand, although in 

NNPCA, we do not have a single demixing matrix, we could interpret the two matrices 

involved in the demixing process as stated in section 6.3.3 of Chapter 6. That is, matrix W1 

may be interpreted as an operator that makes a non-linear transformation of data, which 

makes the function of the first layer of the network to be different from that of the other 

methods; while matrix W2 makes a dimensionality change of the representation given the 

output of the first layer.  

 

                                                            
212 The complete factor analysis model specification includes the matrix of specific factors                             
U: UFΛ1μX  ' , however we cannot use this matrix in the generation process because it represents the error 

in the reconstruction of the original variables, which we will know after the reproduction of the variables by: 
 'FΛ1μXU  . 
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 In other words, considering that the matrices that generate the observations are 

obtained by way of different criteria and they look for finding different representation of data, 

they result not easily comparable in the sense that we are trying to compare objects with 

different dimensions. As an analogy, it is as if we would like to compare time and space units 

of measurement.  

 

Finally, in our financial context, the most important differences among the four 

techniques are perhaps the attributes of the components or factors extracted, because we 

progress from only linearly uncorrelated components in PCA to linearly uncorrelated common 

factors in FA, then to statistically independent components in ICA, and lastly to non-linearly 

uncorrelated components in NNPCA. From a theoretical standpoint, the former statement 

would imply the uncovering of a more realistic latent systematic risk factor structure, as we 

advance to more sophisticated techniques. This nature of the components or factors extracted 

through each technique is given mainly for the following conditions: First, while the 

orthogonal components extracted by using PCA explain the total amount of variance in the 

observed variables, the orthogonal factors produced by FA explain only the amount of 

variance explained by common factors, i.e., the covariance among the variables. Nevertheless, 

both PCA and FA consider only the second moment absence of linear correlation; on the 

other hand, ICA considers higher moment absences of linear correlation, which produce not 

only linearly uncorrelated components but also statistically independent ones. Finally, while 

the three former techniques only consider a linear mixing in the extraction and generation 

processes, NNPCA includes a nonlinear transformation in both processes, which generates 

not only linearly uncorrelated components but also non-linearly uncorrelated ones. 
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7.3. Empirical comparison.  

 

7.3.1. Accuracy in the reproduction of the observed returns. 

 

According to the models in Table 7.1, we first made the extraction of the underlying factors 

by using Matlab® scripts213, obtaining also the matrices of weights for the extraction process 

or demixing matrices and the matrices of loadings of the generation process or mixing 

matrices. For the estimation of the models, in PCA we used the classic linear version; in FA, 

the Maximum Likelihood method (MLFA); in ICA, the ICASSO software based on the 

FastICA algorithm; and in NNPCA, a hierarchical auto-associative neural network or 

autoencoder214. Secondly, we reconstructed the observed variables by means of the extracted 

factors and the mixing matrices.  

 

 We conducted our experiments for the four techniques, the four databases, and a test 

window ranging from two to nine extracted factors215. 

 

7.3.1.1. Graphical analysis. 

 

The results obtained in the reconstruction of the observed returns using the four 

techniques individually were, from a visual standpoint, at first sight outstanding for all of 

them, making it difficult to determine which one is the best. For reasons of saving space these 

figures are included in the Appendix_2 of this dissertation from Figures 1 to 8 of Chapter 7, 

                                                            
213 The PCA and FA scripts were of our own elaboration using the functions included in the software; ICA 
scripts were adapted from Himberg & Hyvärinen (2005); and NNPCA, from Scholz (2006b). 
214 For details about the estimation models, see Chapters 4, 5 and 6, respectively. 
215 Since there is not a definite widespread criterion to define the best number of components to extract in all the 
techniques, we have used nine different criteria usually accepted in PCA and FA literature. These criteria were: 
the eigenvalues arithmetic mean, the percentage of explained variance, the exclusion of the components or 
factors explaining a small amount of variance, the scree plot, the unretained eigenvalue contrast (Q statistic), the 
likelihood ratio contrast, Akaike’s information criterion (AIC), the Bayesian information criterion (BIC), and the 
maximum number of components feasible to estimate in each technique. The comparable window across the four 
techniques indicated the results of the former criteria ranged from two to nine factors. 
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which present the observed versus the reconstructed returns produced by the four techniques, 

from all the stocks of the four databases when nine factors were extracted216. The line plots 

include all the observations, showing that in general all the techniques reproduce the real 

values successfully for the entire period; we can distinguish that FA and ICA apparently 

present greater errors in the reconstruction. Derived from the graphic analysis we can detect 

that, given the number of factors extracted, the four techniques fail to reproduce the highest 

and lowest peaks in the observations, but, if we increase the number of factors extracted from 

all the techniques, this problem disappears217. In addition, we can observe that in some cases 

the best reconstruction of each individual asset is not produced by the same technique, i.e., 

while some stocks are reconstructed better by one technique, other shares are better 

reproduced through another method. All the former results are similar for the entire cases of 

our experiments.  

 

7.3.1.2. Measures of reconstruction accuracy. 

 

In order to obtain a more objective measure of the accuracy of the reconstruction using 

the systematic risk factors obtained with each technique, we used some statistics widely 

employed to evaluate the accuracy of forecasting models in economy and finance, which in 

our context will represent measures of reconstruction accuracy. These measures taken from 

Pérez & Torra (2001) and Diebold & López (1996) are the following: mean absolute error 

(MAE), mean absolute percentage error (MAPE), root mean square error (RMSE), Theil’s U 

statistic (U-Theil), confusion matrix (CM), confusion rate (CR), chi-squared contrast of 

independence, and Pesaran & Timmermann’s directional accuracy statistic (DA). 

 

  

                                                            
216 For the sake of saving space the results of the rest of experiments where eight, seven, six, five, four, three and 
two factors were extracted are not included in this document; nevertheless, the analysis and conclusions reported 
include the entire cases. 
217 The results of those additional experiments are not presented in this study, we only ran those experiments to 
test that the reproduction capacity of the techniques, considering all the factors feasible to compute in each one 
of them, was reliable. 
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The first four are measures of reconstruction accuracy, which represent different 

expressions to compute the error that we make in the reconstruction of the observed returns; 

these are their mathematical formulations: 
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where H denotes the total number of observations; h = 1, …, H; hr  are the observed returns 

and  hr̂ , the reconstructed returns. 

  

 The confusion matrix is a contingency table necessary to compute the contrasts for 

evaluating the direction-of-change reconstruction measures, namely, confusion rate and chi-

squared contrast; it is constructed in this manner: 
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where nij indicates the absolute frequency of occurrence of each condition. 
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 The confusion rate shows the percentage of incorrect reconstructions and is calculated 

by: 

  HnnCR 1001  ,       (7.6) 

The chi-squared ( 2̂ ) contrast assumes a null hypothesis of independence between the 

signs of the reconstruction and their real values; therefore, the rejection of the null hypothesis 

and the high values of the statistic imply a good performance based on the direction-of-

change reconstruction; its formulation is like this218: 
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where ni. y n.j are the marginal frequencies. 

 

Finally, the DA statistic is another directional accuracy reconstruction measure, with 

distribution N(0,1), which poses a null hypothesis of independence between the observed and 

the reconstructed values; its interpretation is similar to the former contrast and is built as 

follows:  

      SRISRSRISRDA   5.0varvar ,   (7.8) 
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218 The degrees of freedom for this contrast are calculated by:   11  kr , where ν denotes the degrees of 

freedom; r, the number of rows of the confusion matrix; and k, the number of columns. 
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where SR denotes the success ratio; SRI, the success ratio in the case of independence 

between the observed and reconstructed values under the null hypothesis, and I is an 

indicative function denoting the occurrence of the condition imposed inside the square 

brackets219. 

 

We computed all the foregoing measures for each individual stock and proposed the 

arithmetic mean, median and standard deviation for the MAE, MAPE, RMSE, U-Theil and 

CR as synthetic global measures to evaluate the errors in reconstruction for all the assets. In 

addition, we analyzed the results of the directional accuracy statistics 2 and DA individually 

for each stock in order to test the null hypothesis of independence in the reconstruction 

process. We replicated all these calculations for the four extraction techniques, the four 

databases, and the entire window of testing. 

 

For the sake of saving space in this Chapter, in Tables 7.2 and 7.3 we only present the 

the summary of the measures of the reconstruction accuracy corresponding to the databases of 

weekly returns and daily returns; nevertheless, in Tables 1 to 18 of Chapter 7 in Appendix_2, 

we include the results of the foregoing experiments applied on the four databases, when nine 

factors were extracted, for PCA, FA, ICA and NNPCA and a summary of the results for each 

database220. First of all, we have to remark that the results for all the techniques are 

outstanding and reflect a high quality reconstruction of the returns; however, in trying to find 

the best of these methods we can make the following distinctions. 

 

Regarding the measures of reconstruction accuracy MAE, MAPE, RMSE and U-Theil, 

the smaller errors in the reconstruction - in terms of their arithmetic mean - points to PCA and 

NNPCA as the best ones. Strictly speaking, PCA scored better results in all the foregoing 

measures, but the difference between both techniques in the computed error is negligible. 

However, in many cases NNPCA and in some of them FA and ICA, presented a smaller 

                                                            
219 If the condition is fulfilled, the indicator takes the value of 1. 
220 For reasons of saving space the results corresponding to the experiments when eight, seven, six, five, four, 
three and two factors were extracted are not included in this document; nevertheless the analysis and conclusions 
reported include the entire cases. 
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standard deviation of the former statistics, which means less sensitivity to the variations of 

mean values of the proposed synthetic measures. In addition, considering that the observed 

variables are not normally distributed and taking the median as a more suitable synthetic 

measure of the reconstruction accuracy in this case, the supremacy of PCA was not so 

evident, since in this case the four techniques were obtaining the best performance in different 

cases. Regarding the CR, the results are similar; PCA obtained the lowest percentage of 

incorrect reconstruction in terms of mean and median in all the cases, but in terms of standard 

deviation, the best results were for NNPCA and FA. Concerning the directional accuracy 

contrasts χ2 and DA for each stock, our findings show that in almost all the cases we reject the 

null hypothesis of independence at 5% level of statistical significance in both tests; therefore, 

we can establish the association between the signs of the predictions and the real values of the 

returns221. 

 

In summary, considering the results of the rest of experiments, in almost all cases of 

our study222, the results point to PCA as the best technique for the reconstruction in average 

terms of the measures of reconstruction used, when we retain a larger or medium number of 

factors; and to NNPCA, when we extract a smaller number of them, which would leads us to 

think that NNPCA performs better than the other techniques as a dimensional reduction or 

feature extraction technique, if the objective is to conserve the smaller number of 

components223.  

 

 

 

                                                            
221 We reject the null hypothesis of independence of the χ2 and DA contrast in almost all cases; nevertheless, for 
some specific stocks, we could not reject it. We consider that the effect of these few cases does not significantly 
affect the overall results and conclusions derived from these statistics. 
222 The results of the experiments when eight, seven, six, five, four, three and two components were extracted are 
included in the electronic appendix of this dissertation; however the conclusion related to this analysis include all 
the cases. 
223 See Tables 7.4 and 7.5, where exceptionally and as an example, we present the summary of the measures of 
the reconstruction accuracy corresponding to the databases of weekly returns and daily returns when two factors 
were extracted, in order to provide evidence supporting these conclusions. We remark that in some cases ICA 
also performed better than the other techniques in small dimensions experiments, but in the most cases NNPCA 
was more accurate in those low dimensions. 
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However, if we can conserve a medium or larger number of them, the results would 

lead us to think that PCA is the better choice among the four techniques studied. Besides, in 

the daily databases the supremacy of PCA over the other techniques is not so clear as in the 

weekly databases, since in some dimensions and measures the best results were obtained 

mainly by NNPCA, and in some exceptional cases by ICA and FA. 

 

 
Table 7.2. Summary of measures of reconstruction accuracy.  

Database of weekly returns. Nine underlying factors. 
 

  PCA FA ICA NNPCA 

  MEAN MEDIAN 
STD. 
DEV. MEAN MEDIAN

STD. 
DEV. MEAN MEDIAN

STD. 
DEV. MEAN MEDIAN

STD. 
DEV. 

MAE 0.015 0.0183 0.006 0.017 0.018 0.006 0.021 0.021 0.006 0.017 0.019 0.004 
MAPE 125.960 130.703 54.938 131.532 142.291 56.519 150.696 145.371 56.519 138.699 143.513 41.844 
RMSE 0.020 0.024 0.008 0.023 0.024 0.007 0.027 0.028 0.007 0.023 0.026 0.005 
U-Theil 0.267 0.287 0.140 0.277 0.297 0.161 0.367 0.328 0.161 0.295 0.320 0.109 
CR 0.170 0.187 0.082 0.180 0.197 0.103 0.230 0.213 0.103 0.190 0.194 0.078 
Notes:   
MAE: Mean absolute error.   
MAPE: Mean absolute percentage error.   
RMSE: Root mean square error.   
U-Theil: Theil's U statistic.   
CR: Confusion rate   
Marked cells represents the best results for each statistic across the four techniques.           

 

 

Table 7.3. Summary of measures of reconstruction accuracy.  
Database of daily returns. Nine underlying factors. 

 
  PCA FA ICA NNPCA 

  MEAN MEDIAN 
STD. 
DEV. MEAN MEDIAN

STD. 
DEV. MEAN MEDIAN

STD. 
DEV. MEAN MEDIAN STD. DEV. 

MAE 0.007 0.009 0.002 0.008 0.008 0.003 0.009 0.009 0.002 0.008 0.009 0.003 
MAPE 115.993 123.370 45.758 134.022 134.344 48.613 122.885 120.565 48.488 119.858 127.818 45.959 
RMSE 0.010 0.011 0.003 0.011 0.010 0.005 0.0124 0.013 0.003 0.010 0.012 0.004 
U-Theil 0.314 0.348 0.159 0.328 0.363 0.128 0.416 0.397 0.210 0.337 0.382 0.167 
CR 0.210 0.224 0.082 0.215 0.235 0.074 0.250 0.243 0.091 0.220 0.248 0.085 
Notes:   
MAE: Mean absolute error.   
MAPE: Mean absolute percentage error.   
RMSE: Root mean square error.   
U-Theil: Theil's U statistic.   
CR: Confusion rate   
Marked cells represents the best results for each statistic across the four techniques.   
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Table 7.4. Summary of measures of reconstruction accuracy.  
Database of weekly returns. Two underlying factors. 

 
  PCA FA ICA NNPCA 

  MEAN MEDIAN 
STD. 
DEV. MEAN MEDIAN

STD. 
DEV. MEAN MEDIAN

STD. 
DEV. MEAN MEDIAN

STD. 
DEV. 

MAE 0.025 0.025 0.004 0.026 0.026 0.008 0.025 0.026 0.004 0.025 0.025 0.004 
MAPE 159.118 160.532 33.076 160.591 169.752 40.795 159.913 162.722 33.955 160.609 165.707 33.324 
RMSE 0.034 0.034 0.006 0.035 0.034 0.011 0.034 0.034 0.006 0.034 0.034 0.006 
U-
Theil 0.466 0.443 0.117 0.472 0.458 0.157 0.468 0.447 0.117 0.465 0.441 0.116 
CR 0.273 0.264 0.058 0.273 0.276 0.081 0.273 0.268 0.059 0.270 0.266 0.062 
Notes:   
MAE: Mean absolute error.   
MAPE: Mean absolute percentage error.   
RMSE: Root mean square error.   
U-Theil: Theil's U statistic.   
CR: Confusion rate   
Marked cells represents the best results for each statistic across the four techniques.          

 

 
Table 7.5. Summary of measures of reconstruction accuracy.  

Database of daily returns. Two underlying factors. 
 

  PCA FA ICA NNPCA 

  MEAN MEDIAN 
STD. 
DEV. MEAN MEDIAN

STD. 
DEV. MEAN MEDIAN

STD. 
DEV. MEAN MEDIAN

STD. 
DEV. 

MAE 0.0110 0.011 0.002 0.011 0.011 0.003 0.011 0.011 0.002 0.011 0.011 0.002 
MAPE 138.764 138.488 33.172 139.837 139.159 41.594 140.248 139.286 34.827 139.736 139.540 33.065 
RMSE 0.015 0.015 0.003 0.015 0.016 0.005 0.015 0.015 0.003 0.015 0.015 0.003 
U-
Theil 0.486 0.476 0.124 0.497 0.493 0.155 0.485 0.478 0.121 0.486 0.476 0.123 
CR 0.293 0.300 0.059 0.290 0.296 0.082 0.292 0.297 0.060 0.293 0.299 0.059 

Notes:                         
MAE: Mean absolute error.   
MAPE: Mean absolute percentage error.   
RMSE: Root mean square error.   
U-Theil: Theil's U statistic.   
CR: Confusion rate   
Marked cells represents the best results for each statistic across the four techniques.           
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 Additionally, in order to analyze the performance of each technique in the individual 

reproduction of the observed variables, we took as benchmark the results of the MAE, MAPE, 

RMSE, U-Theil and CR obtained in PCA, and then we confronted them with the results from 

the same measures obtained with the rest of the techniques by subtracting the former from the 

latter. For the sake of saving space, in this Chapter we only include the results related to the 

database of weekly returns when nine components were extracted, which are presented in 

Tables 7.6 to 7.8; nevertheless, in Appendix_2, Tables 19 to 27 of Chapter 7 present said 

results which refers to the four databases when nine components were extracted as well224. 

Our findings reveal that in terms of the individual reconstruction of the observed returns, in 

the database of weekly returns when we compare FA vs. PCA, more than the 50% of the 

stocks are better reproduced by FA than by PCA; when we compare ICA vs. PCA, is clearer 

the best performance of PCA in about 60% to 90% of the cases, and when we compare 

NNPCA vs. PCA, the latter surpass the former in around 65% to 90% of the quality of the 

stocks reproduction. Regarding the database of weekly excesses, the results are very similar to 

those of the weekly returns database. On the other hand, concerning the database of daily 

returns when we compare FA vs. PCA, FA produces better individual reproductions than 

PCA in around 45% to 64% of the cases, while PCA performs better than ICA and NNPCA in 

about 50% to 86%, and 64% to 82% of the stocks, respectively. With respect to the database 

of daily excesses the results were very similar to those of the daily returns database, as well.  

 

  

                                                            
224 In line with the other empirical results reported, the results for the experiment when eight, seven, six, five, 
four, three and two factors where extracted are not included in this document; however, the analysis and 
conclusions reported include the entire cases. 
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In general, the foregoing results were similar in the totality of the cases and samples in 

our study, however, as in the average terms of the measures of reconstruction, in the models 

with a smaller number of components, the performance of NNPCA surpassed PCA but only 

in the weekly databases225. Interestingly, there was an exceptional case, in the experiment 

when seven factors were extracted, where a clear supremacy of ICA and NNPCA over PCA 

was detected. To the light of these results, we dare to point to NNPCA as a better technique 

for dimensionality reduction purposes, i.e., given a low dimension number of factors to 

extract, NNPCA performs a more accurate reconstruction. 

 

Additionally and by way of illustration, derived from the previous benchmark 

analysis, we detected that in the particular cases of the five most volatile226 stocks of the 

database of weekly returns, e.g., PEÑOLES*, GEOB, ELEKTRA*, TVAZTCPO and 

ALFAA; they were better reconstructed by PCA in all the cases, when nine factors were 

extracted and in almost all the cases, when two factors were estimated. Subsequently, to the 

light of this evidence, we dare to point to PCA as a better technique to reconstruct volatile 

stocks. 

 

 

 

                                                            
225 See Tables 7.9 to 7.11, where exceptionally and as an example, we present the results corresponding to the 
databases of weekly returns when two factors were extracted, in order to provide evidence supporting these 
conclusions. 
226 We employed as a simple and quick measure of volatility for this purpose, the standard deviation of the 
returns. 



CHAPTER 7. COMPARISON OF DIFFERENT LATENT FACTORS EXTRACTION TECHNIQUES. 
 

244 
 

Table 7.6. Factor Analysis (FA) vs. Principal Component Analysis (PCA). Measures of reconstruction accuracy obtained in FA minus 
measures of reconstruction accuracy obtained in PCA. Database of weekly returns. Nine underlying factors. 

                                          FA > PCA FA = PCA FA < PCA 

  PE&OLES*  BIMBOA  GMODELOC FEMSAUBD  CONTAL*  GEOB  ARA*  WALMEXV SORIANAB COMERUBC ELEKTRA* TELMEXL TELECOA1  TLEVICPO TVAZTCPO GFNORTEO GFINBURO GCARSOA1 ALFAA  CIEB  Num. % Num. % Num. % 

MAE 0.04127 0.01187 -0.01801 -0.00351 0.01822 0.00630 0.00260 -0.00411 0.00063 -0.01968 0.01388 -0.00164 -0.01183 -0.00151 -0.01748 -0.00003 0.00166 -0.00046 0.02724 -0.00865 9 45% 0 0% 11 55% 

MAPE 211.94391 62.23932 -121.75513 -45.45593 111.29801 64.23943 20.24966 -27.79782 15.33633 -127.51700 64.08102 -10.43843 -99.90991 -7.66938 -86.91512 4.70337 -5.15125 6.00872 202.63774 -118.68114 10 50% 0 0% 10 50% 

RMSE 0.05323 0.01707 -0.02503 -0.00504 0.02466 0.00742 0.00282 -0.00524 0.00081 -0.02725 0.01770 -0.00152 -0.01488 -0.00221 -0.02298 -0.00011 0.00271 -0.00164 0.03675 -0.01102 9 45% 0 0% 11 55% 

U-Theil 0.51260 0.28311 -0.51180 -0.09041 0.37192 0.05810 0.05407 -0.09055 0.01256 -0.34481 0.17809 -0.02907 -0.17982 -0.02873 -0.23030 -0.00973 0.04652 -0.02564 0.33985 -0.12230 9 45% 0 0% 11 55% 

CR 0.36082 0.15120 -0.31615 -0.06186 0.17526 0.06186 0.00000 -0.03780 -0.01031 -0.20275 0.12027 -0.04467 -0.11684 0.00000 -0.12027 0.02062 0.05155 -0.01718 0.23024 -0.04811 8 40% 2 10% 10 50% 

Notes:   
FA > PCA: Cases where FA reproduce worse than PCA. i.e., FA's error in reproduction is greater than PCA's one. FA = PCA: Cases where FA reproduce just the same as PCA. i.e., FA's error in reproduction is equal to PCA's one. FA < PCA: Cases where FA reproduce better than PCA. i.e., FA's error in reproduction is less than PCA's one 
 

 
Table 7.7. Independent Component Analysis (ICA) vs. Principal Component Analysis (PCA).Measures of reconstruction accuracy obtained 

in ICA minus measures of reconstruction accuracy obtained in PCA. Database of weekly returns. Nine underlying factors. 
                                          ICA > PCA ICA = PCA ICA< PCA 

  PE&OLES*  BIMBOA  GMODELOC FEMSAUBD  CONTAL*  GEOB  ARA*  WALMEXV SORIANAB COMERUBC ELEKTRA* TELMEXL TELECOA1  TLEVICPO TVAZTCPO GFNORTEO GFINBURO GCARSOA1 ALFAA  CIEB  Num. % Num. % Num. % 

MAE 0.00598 0.01693 0.00649 -0.00002 0.01191 0.01735 0.00709 0.00548 0.00785 0.00501 0.01020 0.00008 0.00216 0.00246 -0.00573 0.00150 0.00265 0.00173 0.00900 -0.00090 17 85% 0 0% 3 15% 

MAPE 40.36378 147.07055 96.29655 -69.01105 120.11376 89.91737 33.54075 -23.96516 24.31992 16.35403 25.67545 8.06252 -17.11136 -9.10308 -22.91340 8.43151 41.91659 -22.19147 59.11461 -52.15880 13 65% 0 0% 7 35% 

RMSE 0.00771 0.02217 0.00707 -0.00099 0.01616 0.02327 0.00896 0.00696 0.01078 0.00640 0.01310 -0.00020 0.00248 0.00444 -0.00783 0.00125 0.00432 0.00278 0.01199 -0.00071 16 80% 0 0% 4 20% 

U-Theil 0.05943 0.29646 0.11368 0.00762 0.16097 0.23510 0.19689 0.19309 0.23770 0.14836 0.15507 -0.01572 0.05459 0.06349 -0.08635 0.01801 -0.02337 0.07039 0.10754 0.00420 17 85% 0 0% 3 15% 

CR 0.05155 0.18557 0.13058 0.02405 0.08935 0.12027 0.09278 0.09278 0.14777 0.05498 0.05842 0.00000 0.04124 0.03780 -0.04811 0.02062 0.00687 0.01375 0.05842 0.01031 18 90% 1 5% 1 5% 

Notes:   
ICA > PCA: Cases where ICA reproduce worse than PCA. i.e., ICA's error in reproduction is greater than PCA's one. ICA = PCA: Cases where ICA reproduce just the same as PCA. i.e., ICA's error in reproduction is equal to PCA's one. ICA < PCA: Cases where ICA reproduce better than PCA. i.e., ICA's error in reproduction is less than PCA's one. 

  

 
Table 7.8. Neural Networks Principal Component Analysis (NNPCA) vs. Principal Component Analysis (PCA). Measures of 

reconstruction accuracy obtained in NNPCA minus measures of reconstruction accuracy obtained in PCA. Database of weekly returns. 
Nine underlying factors. 

                                          
NNPCA > 

PCA 
NNPCA = 

PCA 
NNPCA < 

PCA 

  PE&OLES*  BIMBOA  GMODELOC FEMSAUBD  CONTAL*  GEOB  ARA*  WALMEXV SORIANAB COMERUBC ELEKTRA* TELMEXL TELECOA1  TLEVICPO TVAZTCPO GFNORTEO GFINBURO GCARSOA1 ALFAA  CIEB  Num. % Num. % Num. % 

MAE 0.00089 0.00110 0.00026 -0.00060 0.00863 0.00100 0.00104 0.00223 -0.00084 -0.00022 0.00446 0.00103 0.00233 0.00253 0.00120 -0.00014 0.00188 0.00219 0.00528 0.00201 16 80% 0 0% 4 20% 

MAPE 4.56469 34.36170 7.26120 0.64995 70.19244 7.10988 2.71002 1.57038 2.27286 9.10447 21.79925 5.51696 3.57004 17.69130 5.88784 6.78867 -5.59263 25.75705 60.30772 -26.73023 18 90% 0 0% 2 10% 

RMSE 0.00116 0.00160 0.00023 -0.00147 0.01161 0.00124 0.00091 0.00246 -0.00065 -0.00117 0.00632 0.00164 0.00296 0.00380 0.00113 -0.00031 0.00241 0.00284 0.00681 0.00292 16 80% 0 0% 4 20% 

U-Theil 0.00861 0.02137 0.00432 -0.02946 0.14647 0.00997 0.01232 0.04548 -0.01270 -0.02177 0.06005 0.03062 0.03912 0.05162 0.01238 -0.00753 0.04152 0.04395 0.05548 0.03408 16 80% 0 0% 4 20% 

CR 0.01031 -0.00687 0.00000 0.00344 0.08935 0.00000 -0.00344 0.01375 -0.02749 0.02062 0.01031 0.01031 0.03093 0.04124 0.01031 0.03780 0.04811 0.02062 -4.00000 -6.00000 13 65% 2 10% 5 25% 

Notes:  
NNPCA > PCA: Cases where NNPCA reproduce worse than PCA. i.e., NNPCA's error in reproduction is greater than PCA's one. NNPCA = PCA: Cases where NNPCA reproduce just the same as PCA. i.e., NNPCA's error in reproduction is equal to PCA's one. NNPCA < PCA: Cases where NNPCA reproduce better than PCA. i.e., NNPCA's error in reproduction is less than PCA's one.  
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Table 7.9. Factor Analysis (FA) vs. Principal Component Analysis (PCA). Measures of reconstruction accuracy obtained in FA minus 
measures of reconstruction accuracy obtained in PCA. Database of weekly returns. Two underlying factors. 

                                          FA > PCA FA = PCA FA < PCA 

  PE&OLES*  BIMBOA  GMODELOC FEMSAUBD  CONTAL*  GEOB  ARA*  WALMEXV SORIANAB COMERUBC ELEKTRA* TELMEXL TELECOA1  TLEVICPO TVAZTCPO GFNORTEO GFINBURO GCARSOA1 ALFAA  CIEB  Num. % Num. % Num. % 

MAE 0.03452 0.00018 0.00007 -0.00012 0.00043 0.00309 0.00018 -0.00024 -0.00110 -0.00062 0.00081 -0.00561 -0.01788 -0.00064 -0.00073 0.00011 0.00008 -0.00078 0.00201 -0.00094 10 50% 0 0% 10 50% 

MAPE 70.10854 14.16959 7.47549 12.12611 -1.01238 5.91353 3.34985 4.03498 -15.86795 -1.46500 -1.39449 -1.46028 -109.85861 11.87739 -0.63864 13.09233 5.79812 5.28762 3.15956 4.76344 13 65% 0 0% 7 35% 

RMSE 0.04688 -0.00006 -0.00023 -0.00058 0.00035 0.00467 0.00089 -0.00040 -0.00110 -0.00105 0.00137 -0.00853 -0.02379 -0.00122 -0.00122 -0.00050 0.00015 -0.00054 0.00254 -0.00144 7 35% 0 0% 13 65% 

U-Theil 0.67057 -0.00822 -0.01609 -0.01479 0.01097 0.06607 0.02230 -0.01283 -0.02197 -0.02477 0.01925 -0.18468 -0.33311 -0.01946 -0.01751 -0.01826 0.00116 -0.01216 0.03450 -0.02310 7 35% 0 0% 13 65% 

CR 0.28866 0.01031 0.01031 0.01718 0.01718 0.01375 -0.01031 -0.00344 0.00000 -0.04467 0.00687 -0.08591 -0.20619 -0.03093 0.00687 -0.01031 -0.02405 -0.00687 0.04124 0.01031 10 50% 1 5% 9 45% 

Notes:   
NNPCA > PCA: Cases where NNPCA reproduce worse than PCA. i.e., NNPCA's error in reproduction is greater than PCA's one. NNPCA = PCA: Cases where NNPCA reproduce just the same as PCA. i.e., NNPCA's error in reproduction is equal to PCA's one. NNPCA < PCA: Cases where NNPCA reproduce better than PCA. i.e., NNPCA's error in reproduction is less than PCA's one.  

 

 
Table 7.10. Independent Component Analysis (ICA) vs. Principal Component Analysis (PCA).Measures of reconstruction accuracy 
obtained in ICA minus measures of reconstruction accuracy obtained in PCA. Database of weekly returns. Two underlying factors. 

                                          ICA > PCA ICA = PCA ICA< PCA 

  PE&OLES*  BIMBOA  GMODELOC FEMSAUBD  CONTAL*  GEOB  ARA*  WALMEXV SORIANAB COMERUBC ELEKTRA* TELMEXL TELECOA1  TLEVICPO TVAZTCPO GFNORTEO GFINBURO GCARSOA1 ALFAA  CIEB  Num. % Num. % Num. % 

MAE 0.00096 0.00010 0.00001 -0.00005 0.00005 0.00085 0.00001 -0.00009 0.00013 0.00006 0.00012 0.00007 -0.00015 0.00018 0.00018 0.00041 -0.00001 -0.00005 -0.00009 0.00058 14 70% 0 0% 6 30% 

MAPE 6.69144 -13.79041 12.52097 1.41330 3.46990 -12.31372 -3.01024 -9.87405 6.07827 4.31694 -10.64708 -1.87898 0.79124 14.06788 -6.40208 10.78043 -0.24593 -0.90092 5.67200 9.14653 11 55% 0 0% 9 45% 

RMSE 0.00109 0.00015 -0.00001 -0.00014 -0.00001 0.00101 0.00007 0.00013 0.00005 0.00001 0.00067 0.00000 -0.00020 -0.00012 0.00040 0.00003 0.00002 -0.00004 -0.00019 0.00019 12 60% 0 0% 8 40% 

U-Theil 0.00987 0.03545 -0.03250 -0.00771 -0.00509 0.03336 0.01183 0.01427 -0.01037 -0.01266 0.02324 0.00305 -0.00427 -0.01805 0.01934 -0.02141 -0.00243 0.00423 -0.00751 -0.00953 9 45% 0 0% 11 55% 

CR -0.00344 0.01031 0.00344 0.00000 -0.01031 0.04124 0.00000 -0.00344 0.00687 -0.02062 0.00344 -0.01031 -0.01375 -0.00687 0.00687 -0.01375 0.00344 -0.00344 0.00000 0.01375 8 40% 3 15% 9 45% 

Notes:   
NNPCA > PCA: Cases where NNPCA reproduce worse than PCA. i.e., NNPCA's error in reproduction is greater than PCA's one. NNPCA = PCA: Cases where NNPCA reproduce just the same as PCA. i.e., NNPCA's error in reproduction is equal to PCA's one. NNPCA < PCA: Cases where NNPCA reproduce better than PCA. i.e., NNPCA's error in reproduction is less than PCA's one.  

 

 
Table 7.11. Neural Networks Principal Component Analysis (NNPCA) vs. Principal Component Analysis (PCA). Measures of 

reconstruction accuracy obtained in NNPCA minus measures of reconstruction accuracy obtained in PCA. Database of weekly returns. 
Two underlying factors. 

                                          
NNPCA > 

PCA 
NNPCA = 

PCA 
NNPCA < 

PCA 

  PE&OLES*  BIMBOA  GMODELOC FEMSAUBD  CONTAL*  GEOB  ARA*  WALMEXV SORIANAB COMERUBC ELEKTRA* TELMEXL TELECOA1  TLEVICPO TVAZTCPO GFNORTEO GFINBURO GCARSOA1 ALFAA  CIEB  Num. % Num. % Num. % 

MAE 0.00003 -0.00005 0.00006 0.00002 0.00001 -0.00019 0.00000 0.00008 -0.00008 0.00003 0.00000 -0.00002 -0.00003 -0.00009 0.00008 -0.00017 -0.00001 0.00001 0.00002 0.00008 11 55% 0 0% 9 45% 

MAPE -1.66542 9.15312 -0.21699 1.34230 0.91983 11.30110 7.36139 3.18513 -1.50095 0.81064 -0.29033 -0.33036 -2.68631 -1.56245 -3.46605 8.15575 1.63111 2.04339 0.99713 -5.37280 11 55% 0 0% 9 45% 

RMSE 0.00004 -0.00005 -0.00002 0.00000 0.00000 -0.00015 -0.00011 -0.00004 -0.00003 0.00000 0.00000 0.00000 -0.00002 -0.00006 -0.00016 -0.00035 0.00000 -0.00004 0.00001 -0.00028 4 20% 0 0% 16 80% 

U-Theil 0.00047 -0.00442 -0.00221 -0.00022 0.00002 -0.00369 -0.00587 -0.00167 -0.00001 0.00020 0.00041 0.00033 0.00010 -0.00026 -0.00116 -0.01048 -0.00023 -0.00103 0.00020 -0.00290 7 35% 0 0% 13 65% 

CR -0.01718 0.01031 -0.00344 -0.00344 -0.00687 0.00000 -0.01031 -0.01031 -0.01031 0.00000 0.00344 -0.00344 0.00344 -0.01375 -0.01718 0.00687 -0.00344 -0.01375 0.00000 -15.00000 4 20% 3 15% 13 65% 

Notes:   
NNPCA > PCA: Cases where NNPCA reproduce worse than PCA. i.e., NNPCA's error in reproduction is greater than PCA's one. NNPCA = PCA: Cases where NNPCA reproduce just the same as PCA. i.e., NNPCA's error in reproduction is equal to PCA's one. NNPCA < PCA: Cases where NNPCA reproduce better than PCA. i.e., NNPCA's error in reproduction is less than PCA's one.  
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7.3.2. Underlying systematic risk structure.  

 

The objective of this section is to continue the comparative study across the four 

techniques by means of the statistical and graphical analyses of both the underlying risk 

factors and their corresponding sensitivities (betas).  We have said that the Arbitrage Pricing 

Theory is integrated by two main assumptions, the generative multifactor model of returns 

and the arbitrage absence principle or arbitrage principle; however, our study has been 

focused only on the first part, i.e., the improved estimation of the generative multifactor 

model of returns under a statistical approach. In that sense, the APT assumes the following 

generative multifactor model of returns227: 

 

                             itjtjititiiit FFFRER   ...)( 2211               (7.15) 

 

In the four techniques used in our studies, we estimated this underlying structure of 

systematic risk, whose risk factors (Fs) and sensitivities to them (β) will be compared in this 

section. Therefore, we will continue the comparative study across the four techniques by 

means of the statistical and graphical analyses of both the underlying risk factors and their 

corresponding sensitivities (betas).   

 

7.3.2.1. Statistical and graphical analysis. 

 

In this section, we present the comparative study of both the underlying systematic risk 

factors extracted by PCA, FA, ICA and NNPCA, and the sensitivities to them (betas) 

estimated in the first stage of the econometric contrast. For the sake of saving space, in this 

Chapter we only present the results of the experiment when we extracted nine factors or 

components by way of the four techniques in the database of weekly returns using each 

technique; however, the conclusions derived are similar for all cases. Tables 7.12 to 7.15 

                                                            
227 Where, jig represents the sensitivity of equity i to factor j, Fjt the value of the systematic risk factor j in time t 
common for all the stocks, and i the idiosyncratic risk affecting only equity i. 
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show the descriptive statistics of the nine factors extracted by each technique228. As we can 

observe, although the scores of the underlying factors in all the techniques are not normalized, 

the mean of them in all the techniques is almost zero. The standard deviation of all the 

extracted factors within each technique is very similar; however, it is quite different across 

techniques. The skewness and kurtosis coefficients as well as the Jarque-Bera test indicate 

that in all cases, except the principal component number eight in the four databases, the 

underlying systematic risk factors are not univariate normally distributed.  

 

As expected, given the theoretical construction of the four techniques, the underlying 

factors are uncorrelated with each other in almost all the cases in the four databases, as Tables 

40 to 55 in the section corresponding to Chapter 7 of the Appendix_2 demonstrate229. In the 

most of the cases, the correlation is zero and we cannot reject the null hypothesis of non-

correlation at a 5% of statistical significance, except in the case of the ninth non-linear 

component extracted using NNPCA in the four databases, where we reject the null hypothesis 

of non-autocorrelation; nevertheless the correlation value of this component with the rest of 

them was negligible230.  

 

Therefore, to the light of the foregoing analysis, we may state that from a statistical 

descriptive scope, the extracted factors via the four techniques have a similar behavior. Next, 

we will analyze if the shape of them are similar, in order to detect if the factors extracted by 

way of the four techniques may be similar from a morphological standpoint. 

 

  

                                                            
228 The tables corresponding to the other three databases when nine factors were extracted are included in the 
Appendix_2, in Tables 28 to 39 of the section related to Chapter 7. For the same reason of saving space and in 
the line of all the empirical results reported in this dissertation, those corresponding to the experiments where 
eight, seven, six, five, four, three and two factors were extracted are not included in this document. 
229 In the same way, correlation matrices corresponding to the rest of experiments are not included in the present 
document. 
230 Nonetheless, we are aware of this fact could have affected the estimation of the betas and have conditioned 
the results in the econometric contrast of the APT. 
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Table 7.12. Descriptive Statistics.  
Underlying systematic risk factors extracted by Principal Component Analysis. 

 Database of weekly returns.  
Nine components estimated. 

 
 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 

 Mean -0.011147  0.005092 -0.004053 -0.001182  0.002419  0.002812  0.001521 -0.001205  0.001658
 Median -0.025207  0.005214 -0.002843 -0.001616  0.003391  0.004848  0.001526 -0.001049  0.001021
 Maximum  0.622778  0.221954  0.198317  0.164228  0.194522  0.155387  0.210445  0.121947  0.132637
 Minimum -0.375429 -0.269590 -0.184985 -0.181771 -0.162721 -0.142336 -0.176655 -0.123509 -0.097858
 Std. Dev.  0.128976  0.068302  0.053679  0.049616  0.046945  0.043626  0.041988  0.040538  0.038984
 Skewness  0.921649 -0.044638  0.207094  0.199238  0.169339  0.028023  0.206886 -0.075126  0.216159
 Kurtosis  5.568533  4.415327  4.220683  4.469012  4.864033  4.101746  6.211078  3.120087  3.753958

          
 Jarque-Bera  121.1907  24.38485  20.14714  28.09094  43.52054  14.75594  127.0970  0.448584  9.158622
 Probability  0.000000  0.000005  0.000042  0.000001  0.000000  0.000625  0.000000  0.799082  0.010262

          
 Observations  291  291  291  291  291  291  291  291  291 

 
 

Table 7.13. Descriptive Statistics. 
Underlying systematic risk factors extracted by Factor Analysis.  

Database of weekly returns.  
Nine factors estimated. 

 
 F1 F2 F3 F4 F5 F6 F7 F8 F9 

 Mean  0.043786  0.044102  0.115499 -0.019651 -0.068016  0.176449  0.091415 -0.033200  0.113345
 Median  0.058395  0.060544  0.163773 -0.009059 -0.007203  0.192711  0.061400  0.093805  0.059944
 Maximum  3.271584  4.609701  3.383498  2.972203  3.317964  4.405352  7.147668  5.241201  6.544539
 Minimum -3.465415 -4.513370 -5.060657 -3.900273 -4.535080 -4.235792 -3.653112 -6.625135 -5.246489
 Std. Dev.  1.001470  1.042931  1.166327  1.003150  1.004546  1.297407  1.413208  1.623710  1.716505
 Skewness -0.266661 -0.082358 -0.357369 -0.396239 -0.425664  0.075314  0.673684 -0.118020  0.262232
 Kurtosis  4.412059  5.257861  4.314169  4.525154  5.251143  4.084084  5.594026  4.870430  4.797944

          
 Jarque-Bera  27.62492  62.14144  27.13443  35.81864  70.23289  14.52487  103.6005  43.09496  42.53041
 Probability  0.000001  0.000000  0.000001  0.000000  0.000000  0.000701  0.000000  0.000000  0.000000

          
 Observations  291  291  291  291  291  291  291  291  291 
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Table 7.14. Descriptive Statistics. 
Underlying systematic risk factors extracted by Independent Component Analysis.  

Database of weekly returns.  
Nine components estimated. 

 
 IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 IC9 

 Mean -0.011864 -0.001814 -0.001780 -0.003053 -0.007886 -0.002532 -0.004920  0.007014  0.008120
 Median -0.008407 -0.008019 -0.010114 -0.004324 -0.014678 -0.007545 -0.005665  0.008347  0.004961
 Maximum  0.431340  0.914405  0.643291  0.558469  0.656328  0.408716  0.395152  0.579731  0.475467
 Minimum -0.538880 -0.270973 -0.442662 -0.366317 -0.384950 -0.476562 -0.669372 -0.369589 -0.370474
 Std. Dev.  0.116841  0.117430  0.117431  0.117404  0.117178  0.117417  0.117341  0.117234  0.117162
 Skewness -0.284181  1.839358  0.981947  0.312745  0.779060  0.049481 -0.748905  0.570886  0.291023
 Kurtosis  5.186298  15.23280  9.583743  4.807656  6.636865  4.571347  8.545598  5.680307  4.452942

          
 Jarque-Bera  61.87307  1978.490  572.3309  44.36363  189.8111  30.05696  400.0897  102.9132  29.70403
 Probability  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000

          
 Observations  291  291  291  291  291  291  291  291  291 

 
 

Table 7.15. Descriptive Statistics. 
Underlying systematic risk factors extracted by Neural Networks Principal Component Analysis.  

Database of weekly returns.  
Nine components estimated. 

 
 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 

 Mean  0.008312  0.000706  0.001963  0.000203  0.000679 -0.000337  0.000294 -0.000552  0.008267
 Median -0.008041 -0.000902  0.002824  0.001347  0.001878  0.000155  0.000146 -0.000467  0.007234
 Maximum  0.734043  0.329303  0.409686  0.134187  0.234243  0.073736  0.061220  0.063404  0.095442
 Minimum -0.398930 -0.376765 -0.441281 -0.139782 -0.176433 -0.098899 -0.127976 -0.040112 -0.040103
 Std. Dev.  0.142438  0.097186  0.122639  0.038168  0.055045  0.030888  0.020717  0.017621  0.015609
 Skewness  0.972586  0.077551  0.107231 -0.252996  0.341807 -0.219110 -0.755519  0.542766  0.868493
 Kurtosis  5.869496  4.496825  4.203884  4.616058  4.567893  3.082000  7.721504  3.824014  6.467057

          
 Jarque-Bera  145.7147  27.45755  18.13090  34.77048  35.47307  2.409976  297.9820  22.52074  182.3309
 Probability  0.000000  0.000001  0.000116  0.000000  0.000000  0.299696  0.000000  0.000013  0.000000

          
 Observations  291  291  291  291  291  291  291  291  291 
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Figures 7.1 to 7.4, plot the underlying systematic risk factors extracted by each 

technique in the database of weekly returns in the experiment where we estimated nine 

factors231.  Regarding the morphology of the underlying factors seen as signals, we can 

observe two important aspects in those figures. First, that the signals are quite different within 

each technique and across the four techniques; second, that all the signals present a very high 

volatility.   

 

In addition, we construct individual plots in order to compare the shape of each 

systematic risk factor extracted by each technique respecting the ranking produced by each 

one of them, which satisfies the criteria of the amount of variability explained. It is important 

to remark that this experiment represents only a first approach to detect whether the factors 

extracted by each technique might be the same or similar across techniques. For the sake of 

saving space, in this Chapter we only present the the plots of the first risk factor extracted by 

each technique in the databases of weekly and daily returns, which is presented in Figures 7.5 

and 7.6, respectively232. As we can observe the factors estimated by PCA and NNPCA are 

very similar, which leads us to think that they could be almost the same systematic risk 

factors from a morphological standpoint. On the other hand, factors computed by FA and ICA 

in some periods of the observations present some similarities as well, but not at the same level 

as NNPCA and PCA; as a matter of fact, in points of high volatility they behave very 

differently. In addition, the volatility observed in the factors produced by FA and ICA is very 

high compared with that presented in PCA and NNPCA components. Finally, the values of 

the extracted factor by each technique vary as well; FA and ICA present higher values than 

those produced by PCA and NNPCA. 

  

                                                            
231 The figures related to the other three databases are presented in the Section corresponding to the Chapter 7 in 
the Appendix_2 from Figures 9 to 20. The figures corresponding to the experiment when eight, seven, six, five, 
four, three and two factors were extracted are not included in this document. 
232 The plots containing all the ranked factors extracted in each database that correspond to the experiment when 
nine factors were extracted are included in the Appendix_2 from Figure 21 to Figure 56. The results of the rest of 
experiments are not included in this document. 
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Figure 7.1. Plot of the underlying systematic risk factors extracted by Principal Component 

Analysis. Database of weekly returns. Nine components estimated. 

 
 

 
Figure 7.2. Plot of the underlying systematic risk factors extracted by Factor Analysis. 

Database of weekly returns. Nine factors estimated. 
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Figure 7.3. Plot of the underlying systematic risk factors extracted by Independent 
Component Analysis. Database of weekly returns. Nine components estimated. 

 

 
 

Figure 7.4. Plot of the underlying systematic risk factors extracted by Neural Networks 
Principal Component Analysis. Database of weekly returns. Nine components estimated. 
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Figure 7.5. First underlying systematic risk factor extracted by the four techniques. Multiple 
graph. Database of weekly returns. Nine factors estimated. 

 
 
 

Figure 7.6. First underlying systematic risk factor extracted by the four techniques. Multiple 
graph. Database of daily returns. Nine factors estimated. 
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On the other hand, we made the same analysis of the matrix of sensitivities to the 

underlying systematic risk factors or betas, whose results are presented following the same 

structure of those corresponding to the risk factors. First, in line with the previously reported 

in this Chapter, in Tables 7.16 to 7.19 we present the descriptive statistics of the betas 

estimated in each technique for the database of weekly returns when nine components were 

extracted233. One of the main findings is that the mean of the values of the betas in general is 

very small, as they are practically zero in all cases, except in the case of the beta number nine 

extracted via NNPCA in the database of weekly returns, which presents very higher values 

with respect to all other cases. This beta reached a mean value of 3.642261, while the second 

larger absolute values ranged around 0.21 (PC1 in DBWR) and 0.54 (NLPC1 in DBWR); in 

general, the average higher values of the betas were produced by NNPCA. Another 

remarkable point is that in many cases the average  sensitivities to some underlying 

systematic risk are negative, as in the case of the sensitivity to the first, fourth and sixth 

principal components; to the seventh factor of FA; to the first, second, sixth, seventh and 

ninth independent components; and to the first, seventh and eight principal nonlinear 

components.  

 

Under a financial interpretation, the negative sensitivities implies that the reaction of 

the returns to the variation of those sensitivities to the related underlying factors would be 

inversely proportional, and that the changes in the returns on equities in relation to change in 

the value of these betas, would be very small in the most cases, except in the case mentioned 

above, where the value of the beta may be interpreted as a change in one unit of the factor 

number nine would change a variation of more than 3 points in the average returns of the 

stocks studied. In this case, according to the interpretation methodology used in the previous 

chapters. This factor correspond to the factor that combines the food products, beverages and 

construction sectors factor, in this case. The standard deviation of the betas is very similar 

                                                            
233 The tables corresponding to the other three databases when nine factors were extracted are included in the 
Appendix_2, in Tables 56 to 67 of the section related to Chapter 7. For the same reason of saving space and in 
the line of all the empirical results reported in this dissertation, those corresponding to the experiments where 
eight, seven, six, five, four, three and two factors were extracted are not included in this document. 
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within the factors extracted by each technique but quite different across them. In most cases 

the skewness and kurtosis produce values closer to those corresponding to a normal univariate 

distribution, which is confirmed by the Jarque-Bera test, except in nine cases spread in PCA, 

FA and NNPCA. The correlation matrices show that the betas are uncorrelated as well, except 

in some cases of the betas estimated in NNPCA, as tables 68 to 83 in the section 

corresponding to Chapter 7 in Appendix_2 demonstrate234. 

 

Therefore, to the light of the foregoing analysis, we may state that from a statistical 

descriptive standpoint, the estimated betas related to the underlying risk factors by PCA, FA 

and NNPCA present a similar behavior; however, those computed in NNPCA differs 

significantly from the former ones. As we did for the underlying systematic risk factors 

extracted, next, we will analyze the shape of the betas, in order to detect if the betas computed 

for the four techniques could be similar from a morphological scope. 

 

Table 7.16. Descriptive Statistics. Matrix of Betas computed in Principal Component 
Analysis. Database of weekly returns. Nine components estimated. 

 B1 B2 B3 B4 B5 B6 B7 B8 B9 
 Mean -0.213564  0.018963  0.032341 -0.014160  0.012927 -0.003497  0.013722  0.002956  0.012851
 Median -0.213982 -0.057949  0.073170 -0.077437 -0.009958  0.059694 -0.017746  0.012146 -0.018488
 Maximum -0.097420  0.914852  0.318767  0.706323  0.446003  0.401071  0.586068  0.348935  0.659808
 Minimum -0.328798 -0.126960 -0.765574 -0.367746 -0.508578 -0.445564 -0.335898 -0.459268 -0.530716
 Std. Dev.  0.067983  0.228589  0.227003  0.228955  0.229032  0.229388  0.228983  0.229396  0.229037
 Skewness  0.028040  3.267882 -2.206947  1.621110 -0.533978 -0.426090  0.494909 -0.261884  0.536034
 Kurtosis  2.000887  13.17860  8.740663  6.267261  3.420379  2.375802  3.073003  2.301176  5.509926

          
 Jarque-Bera  0.834476  121.9334  43.69806  17.65582  1.097707  0.929862  0.820890  0.635574  6.207549
 Probability  0.658864  0.000000  0.000000  0.000147  0.577612  0.628178  0.663355  0.727758  0.044879

          
 Observations  20  20  20  20  20  20  20  20  20 

 
  

                                                            
234 In the same sense, correlation matrices corresponding to the rest of experiments are not included in the 
present document. 
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Table 7.17. Descriptive Statistics. Matrix of Betas computed in Factor Analysis. Database of 

weekly returns. Nine factors estimated. 
 B1 B2 B3 B4 B5 B6 B7 B8 B9 

 Mean  0.022424  0.011371  0.007779  0.003715  0.002368  0.000885 -3.37E-05  0.001447  0.001073
 Median  0.021531  0.010624  0.008320  0.004084  0.001276  7.57E-06 -0.000295  0.000127 -2.85E-05
 Maximum  0.043241  0.035284  0.030054  0.023501  0.029489  0.029412  0.015460  0.013560  0.014523
 Minimum  0.009629 -0.001596 -0.008214 -0.023029 -0.019347 -0.016698 -0.014130 -0.009402 -0.008015
 Std. Dev.  0.008662  0.008500  0.008536  0.007928  0.008929  0.009544  0.006522  0.006521  0.006060
 Skewness  0.476343  0.789956  0.504166 -1.225394  0.737083  1.266237  0.489035  0.207862  0.882806
 Kurtosis  2.906572  4.413088  3.828497  9.337472  6.818580  5.495811  4.003653  2.368071  3.311818

          
 Jarque-Bera  0.763615  3.744118  1.419285  38.47493  13.96227  10.53542  1.636617  0.476801  2.678846
 Probability  0.682626  0.153807  0.491820  0.000000  0.000929  0.005155  0.441177  0.787887  0.261997

          
 Observations  20  20  20  20  20  20  20  20  20 

 
Table 7.18. Descriptive Statistics. Matrix of Betas computed in Independent Component 

Analysis. Database of weekly returns. Nine components estimated. 
 B1 B2 B3 B4 B5 B6 B7 B8 B9 

 Mean -0.113065 -0.147400  0.058264  0.007181  0.024688 -0.116170 -0.018071  0.019129  0.034793
 Median -0.140755 -0.130808  0.093963  0.015549  0.016585 -0.106440 -0.010354  0.038931 -0.004120
 Maximum  0.031415 -0.012336  0.153903  0.124484  0.157987  0.008243  0.171918  0.151297  0.516080
 Minimum -0.243882 -0.379684 -0.189827 -0.172986 -0.319361 -0.260805 -0.219870 -0.260815 -0.048224
 Std. Dev.  0.084422  0.093804  0.086419  0.082817  0.098622  0.065597  0.092158  0.086939  0.118395
 Skewness  0.196405 -0.723047 -1.230012 -0.580671 -1.983829 -0.107677 -0.227771 -1.937133  3.566360
 Kurtosis  1.749982  3.031648  4.278765  2.505637  8.604731  2.893551  3.061689  7.032685  15.16361

          
 Jarque-Bera  1.430704  1.743493  6.405795  1.327592  39.29610  0.048091  0.176103  26.06041  165.6909
 Probability  0.489020  0.418220  0.040644  0.514893  0.000000  0.976241  0.915714  0.000002  0.000000

          
 Observations  20  20  20  20  20  20  20  20  20 

 
Table 7.19. Descriptive Statistics. Matrix of Betas computed in Neural Networks Principal 

Component Analysis. Database of weekly returns. Nine components estimated. 
 B1 B2 B3 B4 B5 B6 B7 B8 B9 

 Mean -0.541890 -0.144045  0.182051 -0.199030 -0.082968 -0.050471  0.007347 -0.530388  3.642261
 Median -0.557320 -0.062540  0.141554 -0.303472 -0.169129 -0.061177 -0.047276 -0.654824  4.195968
 Maximum  5.139106  2.362867  2.155201  3.055385  1.485774  0.588877  0.715768  8.626535  39.52712
 Minimum -3.890342 -1.713984 -3.117944 -2.288916 -1.123985 -1.087118 -1.111239 -5.831424 -55.41998
 Std. Dev.  2.098866  0.957290  1.222231  1.277853  0.613240  0.402331  0.465539  3.185869  22.05250
 Skewness  0.718213  0.541731 -0.728126  0.646054  0.611902 -0.801233 -0.425304  0.901666 -0.672855
 Kurtosis  3.900535  3.582376  3.907497  3.292789  3.369601  3.736968  2.874113  4.588276  3.794487

          
 Jarque-Bera  2.395237  1.260878  2.453517  1.462722  1.361916  2.592514  0.616151  4.812191  2.035122
 Probability  0.301912  0.532358  0.293242  0.481254  0.506132  0.273554  0.734860  0.090167  0.361476

          
 Observations  20  20  20  20  20  20  20  20  20 
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 In Figures 7.7 to 7.10 we present the morphology of the betas treated as signals 

estimated in each technique for the database of weekly returns235. It can be seen that the form 

of the sensitivities to each factor is also very different and presents a high volatility as well. 

Additionally, as we did for the systematic risk factor, we plot the individual relationship of 

the betas to each factor in order to compare their shape and detect whether or not they are 

similar across the four techniques. The sensitivities to the first factor in the databases of 

weekly and daily returns when nine factors were computed are presented in Figures 7.11 and 

7.12236. 

 

As we can observe, in general, the betas are different in the four techniques; 

nevertheless, in some exceptional cases the betas estimated for PCA, FA and ICA present 

similar shape but NNPCA behave differently. Moreover, the volatility observed in the betas 

from the first two techniques presents a higher level than that produced by these last 

techniques.   As we have detected in the descriptive analysis, the highest values of the betas 

correspond to NNPCA, while the lowest correspond to FA. In addition, the former present the 

highest variability, and the latter the lowest. 

 

Consequently, these results reveal that the sensitives to the underlying risk factors 

extracted by way of PCA, FA, ICA and NNPCA are different and change significantly for 

each stock studied.  

 

  

                                                            
235 The figures related to the other three databases are presented in the Section corresponding to the Chapter 7 in 
the Appendix_2 from Figures 57 to 72. The figures corresponding to the experiment when eight, seven, six, five, 
four, three and two factors were extracted are not included in this document. 
236 The plots containing all the betas related to the ranked factors extracted in each database that correspond to 
the experiment when nine factors were extracted are included in the Appendix_2 from Figure 73 to Figure 108. 
The results of the rest of experiments are not included in this document. 
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Figure 7.7. Plot of the Betas computed in Principal Component Analysis.  

Database of weekly returns. Nine components estimated. 

 
 

Figure 7.8. Plot of the Betas computed in Factor Analysis.  
Database of weekly returns. Nine factors estimated. 
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Figure 7.9. Plot of the Betas computed in Independent Component Analysis.  

Database of weekly returns. Nine components estimated. 

 
 

Figure 7.10. Plot of the Betas computed in Neural Networks Principal Component Analysis. 
Database of weekly returns. Nine components estimated. 
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Figure 7.11. Betas to the first underlying systematic risk factor extracted by the four 
techniques. Multiple graph. Database of weekly returns. Nine components estimated. 

 
 

Figure 7.12. Betas to the first underlying systematic risk factor extracted by the four 
techniques. Multiple graph. Database of daily returns. Nine components estimated. 
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7.3.3. Results in the econometric contrast of the APT. 

 

The objective of this section is to continue the comparative study across the four techniques 

by means of the results of the econometric contrast of the APT, when we utilized the 

systematic risk factors and betas computed in each technique. 

 

As stated before, the Arbitrage Pricing Theory is integrated by two main assumptions, 

the generative multifactor model of returns and the arbitrage absence principle or arbitrage 

principle; however, our study has been focused mainly on the first part, i.e., the improved 

estimation of the generative multifactor model of returns under a statistical approach; the 

arbitrage principle is outside the scope of our research at this moment, although we recognize 

that some of the results obtained in the econometric contrast may have originated due to 

problems in this part of the pricing model; consequently the results in the econometric 

contrast should be seen under this light. Future lines of research will be focused on this aspect 

of the model.  

 

In order to perform the econometric contrast of the underlying structure of systematic 

risk, under the framework of the statistical approach to the Arbitrage Pricing Theory, in the 

previous chapters we have followed a two-stage methodology which is described in Chapter 

3. 

 

For the sake of saving space we will not present in this Chapter the results in the 

econometric contrast obtained in each technique; however, the interested reader can consult 

the details in the previous Chapters that correspond to each technique used. In this paper we 

only present two tables that allow the comparison of the main results in the econometric 

contrast.  
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In table 7.20, we present the models that fulfill all the requirements in the econometric 

contrast of the APT, according to the criteria stablished in Chapter 3. As we can observe, in 

the econometric contrast PCA and FA were the techniques that produced the smallest number 

of models that fulfilled all the requirements in only three models. ICA and NNPCA were the 

techniques that generated the biggest number of them, with four. Interestingly, only the 

models expressed in returns produced completely accepted validation of the APT. In general, 

the models accepted in each technique were different; nevertheless, there are some models 

that were accepted in two and three techniques. Those models were: the one with eight factors 

that was accepted in both ICA and NNPCA, and with seven in PCA and NNPCA, in the 

database of weekly returns. Regarding the database of daily returns, those models were the 

one with three factors that was accepted in PCA, ICA and NNPCA; and with nine, in PCA 

and FA.  This findings may indicate some relevance of these specifications; however a deeper 

analysis will be necessary on this matter. 

 

Table 7.20. Models that fulfill all the requirements  
in the econometric contrast of the APT. 

  PCA FA ICA NNPCA 
Database of weekly returns.         
Model with 5 betas   ○     
Model with 6 betas     ○ 
Model with 7 betas ○     ○ 
Model with 8 betas     ○ ○ 
          
Database of daily returns.         
Model with 3 betas ○   ○ ○ 
Model with 5 betas     ○   
Model with 8 betas   ○     
Model with 9 betas ○ ○     
          
Notes:   
PCA: Principal component Analysis.   
FA: Factor Analysis.   
ICA: Independent Component Analysis.   
NNPCA: Neural Networks Principal Component Analysis.   
○= Model which fulfill all the requirements of the econometric contrast. 
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Although only the models presented in Table 7.20 were the ones that fulfilled all the 

requirements of the econometric contrast of the APT, there were some other specifications of 

the model where we found partial evidence supporting the multifactor structure of the 

underlying systematic risks; i.e., models where betas different from β0 were statistically 

significant but where β0 was not equal to its theoretic value. In order to compare these results 

across techniques, in Tables 7.21 and 7.22, we show the value of the estimated lambdas (risk 

premiums) corresponding to the betas that were statistically significant in all the models. 

Models considering only two factors obtained the worst results; the rest of the specifications 

showed a relatively similar performance considering the number of statistically significant 

factors. The sensitivity to the underlying systematic risk factor that was statistically 

significant in most of the models was the β3 followed by β2, and then by β5 and β6, which may 

point to them as interesting factors to be analyzed more deeply. 

 

Moreover, the general values of the risk premiums produced in all models and across 

the four techniques are really low, in all the cases the produced values were smaller than one; 

additionally, many of them presented a negative sign.  

 

Finally, we made an additional statistical analysis of the estimated risk premiums 

presented in Tables 7.21 and 7.22, where we could detect the following interesting findings: 

 

a) FA detects the 38% of the total statistical significant risk premiums, but its values are 

those with the greatest dispersion in the weekly databases. Conversely, for daily data FA 

only contributes with the 28% of the relevant risk premiums at the same level that ICA; 

which could be explained because the higher moments of daily data are more relevant 

than those related to weekly data, since in the latter there is less noise. In addition, there is 

a clearly higher dispersion in the FA values than in the other techniques as well. 
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b) Regarding the behavior of the relevant risk premiums in function of the dimension of the 

model to contrast (number of betas), we observe that for the weekly databases, the higher 

the dimension of the model, the greater the grade of outliers in the risk premiums values; 

which becomes the models with the highest number of betas (8 and 9) those with the 

greatest dispersion of their values. In opposition, the dispersion in the daily does not 

change depending on the dimension, and it is not so evident the increase of atypical risk 

premiums as the number of betas considered in the model grows. If we make a 

segmentation among techniques, FA always presents the major variability in the relevant 

risk premiums. 

 

c) Concerning the ranking of the lambdas associated to the systematic risk factors, we can 

see that in both the weekly and daily frequencies, FA and ICA reveal a bigger number of 

relevant latent factors than PCA and NNPCA. 
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Table 7.21. Betas statistically significant. 

  DATABASE OF WEEKLY RETURNS DATABASE OF WEEKLY EXCESSES DATABASE OF DAILY RETURNS DATABASE OF DAILY EXCESSES   

    PCA FA ICA NNPCA   PCA FA ICA NNPCA   PCA FA ICA NNPCA   PCA FA ICA NNPCA Total 

Model with 2 betas λ1   λ1   λ1   λ1   0 

  λ2         λ2         λ2 -0.00049 -0.04908     λ2 -0.00052 -0.04878   0.00046 5 

Model with 3 betas λ1   λ1   λ1 -0.03853   λ1   1 

  λ2 0.00296 0.01034 λ2 0.00298 -0.00195 λ2 -0.00057 0.02121 -0.00302 0.00113 λ2 -0.00061 0.00085 10 

  λ3 -0.00770 0.12722 0.01665 0.02173 λ3 -0.00769 0.12758 0.01662 -0.02129 λ3 -0.00137 0.01201   -0.00104 λ3 -0.00141   0.00318 0.00162 14 

Model with 4 betas λ1   λ1   λ1 0.00113   λ1   1 

  λ2 0.00292 -0.01492 0.00193 λ2 0.00294 -0.05436 -0.01774 -0.00237 λ2 0.02701 0.00286 0.00090 λ2 -0.00043 11 

  λ3 -0.00777 -0.01220 0.01002 λ3 -0.00776 -0.00193 0.00891 -0.00481 λ3 -0.00129 0.05664 -0.00262 -0.00184 λ3 -0.00132 0.00245 -0.00140 14 

  λ4   0.13780     λ4   0.02853     λ4   0.06924     λ4         3 

Model with 5 betas λ1 -0.07078   λ1 -0.07021   λ1   λ1   2 

  λ2 0.00300 -0.01771 -0.00892 λ2 0.00303 -0.00505 λ2   λ2 -0.00289 -0.00080 7 

  λ3 -0.00762 0.02423 λ3 -0.00761 -0.03206 λ3 -0.00130 -0.00254 -0.00229 λ3 -0.00133 -0.00174 9 

  λ4   λ4   λ4 0.10101   λ4 0.10455   2 

  λ5   0.21077   0.00348 λ5   0.20969     λ5         λ5         3 

Model with 6 betas λ1 -0.09734   λ1 -0.09697   λ1   λ1   3 

  λ2 0.00292 -0.01899 0.00378 λ2 0.00295 -0.00404 λ2   λ2   6 

  λ3 -0.00775 -0.00997 λ3 -0.00775 -0.00882 λ3 -0.00130 0.00401 λ3 -0.00133 0.00402 8 

  λ4   λ4   λ4   λ4 0.00309   2 

  λ5 0.20782   λ5 0.20709 0.00147 λ5 0.00291   λ5   5 

  λ6   -0.13978     λ6     0.01717   λ6   0.05257 -0.00162   λ6       5 

Notes:   

PCA: Principal Component Analysis.   

FA: Factor Analysis.   

ICA: Independent Component Analysis.   

NNPCA: Neural Networks Principal Component Analysis.   

Numbers represent the risk premium of betas that were statistically significant at 5 % of error.   

Total: Number of times that the betas was statistically significant.                                   
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Table 7.22. Betas statistically significant. (Cont.) 

  DATABASE OF WEEKLY RETURNS DATABASE OF WEEKLY EXCESSES DATABASE OF DAILY RETURNS DATABASE OF DAILY EXCESSES   

    PCA FA ICA NNPCA   PCA FA ICA NNPCA   PCA FA ICA NNPCA   PCA FA ICA NNPCA Total 

Model with 7 betas λ1   λ1   λ1 -0.05676   λ1 -0.05971   2 

  λ2 0.00292 0.02036 0.00362 λ2 0.00294 0.00218 λ2   λ2 0.00222   6 

  λ3 -0.00776 -0.01168 λ3 -0.00776 -0.00650 λ3 -0.00130 0.00211 λ3 -0.00130 0.00146 8 

  λ4 -0.15198   λ4 -0.15182   λ4 -0.12533 0.00288   λ4 -0.13575   5 

  λ5 -0.06563   λ5 -0.06446 0.00168 λ5 0.07379   λ5 -0.00065 5 

  λ6 0.07245   λ6 0.00322 0.01431   λ6 0.00119   λ6 0.06580 -0.00287   6 

  λ7         λ7     -0.00500   λ7   0.05998     λ7   0.07526     3 

Model with 8 betas λ1 -0.10643   λ1 -0.10598   λ1 0.00244   λ1 -0.05614 -0.00197   5 

  λ2 0.00288 -0.05528 0.01043 0.00303 λ2 0.00290 -0.05599 0.00439 λ2 0.00329   λ2   8 

  λ3 -0.00783 -0.06844 -0.01765 -0.02117 λ3 -0.00782 -0.06776 -0.02272 λ3 -0.00131 -0.00163 λ3 -0.00134 -0.00284 11 

  λ4 0.12686   λ4 0.12691   λ4 0.00281   λ4 0.06366 0.00096   5 

  λ5 -0.08073   λ5 -0.08090   λ5 0.05464   λ5 -0.00069 4 

  λ6 0.09068   λ6 0.08932   λ6 -0.14354   λ6 -0.14532 0.00283   5 

  λ7 0.07573   λ7 0.07557   λ7   λ7 0.03899 0.00028 4 

  λ8   0.17361     λ8   0.17512 -0.01046   λ8     0.00267   λ8         4 

Model with 9 betas λ1 -0.14932   λ1 -0.14882   λ1   λ1 0.00300   3 

  λ2 0.00290   λ2 0.00292 -0.01257 0.00613 λ2 -0.00050   λ2 -0.00052 -0.00183 0.00281 8 

  λ3 -0.00780 0.02016 λ3 -0.00780 0.04280 -0.02391 λ3 -0.00136 -0.00353 -0.00361 λ3 -0.00139 0.00250   10 

  λ4 0.05005   λ4 0.04998   λ4 -0.00051 -0.10860   λ4 -0.00055 -0.10328   6 

  λ5 -0.01158   λ5 0.01050   λ5 0.00041 0.00288   λ5 0.00041 -0.00076   6 

  λ6 0.16900   λ6 0.16767   λ6 0.00058 λ6   3 

  λ7 0.09160   λ7 0.09366 0.01247   λ7   λ7 0.09296   4 

  λ8 -0.11678   λ8 -0.11721 -0.01057   λ8   λ8 -0.07264 0.00274   5 

  λ9   0.10175     λ9   0.10273 0.00941 -0.00040 λ9 -0.00094 0.10590 0.00100   λ9 0.00097   0.00109   9 

Notes:   

PCA: Principal Component Analysis.   

FA: Factor Analysis.   

ICA: Independent Component Analysis.   

NNPCA: Neural Networks Principal Component Analysis.   

Numbers represent the risk premium of betas that were statistically significant at 5 % of error.   

Total: Number of times that the betas was statistically significant.                                   
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7.3.4. Interpretation of the underlying risk factors. 

 

In order to compare if the meanings of each factor, in the four databases may be similar across 

the four techniques, under the scope of the methodology of interpretation used in the previous 

chapters, in this section we will compare the interpretation given to the extracted factors 

across techniques.  

 

 In Figures 7.13 to 7.20 we present a schematic representation of the loading matrices 

that we used for the interpretation under an economic sector approach; i.e., the contribution of 

each stock in the formation of each extracted factor. These figures, displays in green lines the 

positive loadings, and in red lines the negative ones. The wider the line the greater the 

contribution of each stock in the related factor. Circles next to the stock name filled in yellow 

color point the stocks with the higher frequency of contributions to different factors in each 

database. In line with all the reported results, in this Chapter we only present the figures that 

correspond to the experiment where nine factors were extracted in the database of weekly 

returns237. 

 

 We can observe that, as expected in theory, in PCA and FA we clearly can identify the 

first component or factor to the market one; however, in ICA and NNPCA we cannot do the 

same. Making a particular analysis by database we can state the following.  

 

In the database of weekly returns, when we use PCA, the stocks with the highest 

loadings in the components to which they contribute were: PEÑOLES*, BIMBOA, 

CONTAL*, GEOB, ELEKTRA* and ALFAA. On the other hand, the previous stocks are 

those with the highest frequency in their contribution to the formation of factors in addition 

to: WALMEXV, COMERUBC, TELECOA1, TELEVICPO, TVAZTCPO, GFINBURO and 

                                                            
237 The plots concerning the other three databases when we extracted nine factors are included in Figures 109 to 
116 of the section referred to Chapter 7 in Appendix_2. The results corresponding to the rest of the experiments 
are not included in this document. 
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CIEB. Concerning FA, the highest loadings corresponded to PEÑOLES*, GMODELOC, 

GEOB, WALMEXV, COMERUBC, ELEKTRA*, TELECOA1, TVAZTCPO and ALFAA; 

while all the stocks except FEMSAUBD and ARA* contributed in two or more factors. 

Concerning ICA, the highest loadings corresponded to PEÑOLES*, BIMBOA, CONTAL*, 

GEOB, ELEKTRA*, TELEVICPO, GFINBURO and ALFAA; while the highest frequency 

was related to CONTAL*, TVAZTECPO, GFINBURO, ALFAA and CIEB. Finally, in 

NNPCA the highest loadings were related to PEÑOLES*, BIMBOA, CONTAL*, GEOB, 

ELEKTRA* and ALFAA; while the highest frequency matches with the previous stocks plus 

TVAZTECPO. 

 

In the database of weekly excesses, when we use PCA, the results were the same that 

in the case of the database of weekly returns. Concerning FA, the results were almost the 

same as well with the exception of GMODELO in this case did not have a high loading. 

Concerning ICA, the results are similar in the most of the cases, however, there are some little 

differences,  in this case the highest loadings correspond to PEÑOLES*, BIMBOA, 

CONTAL*, GEOB, COMERUBC, ELEKTRA*, GFINBURO, ALFAA and CIEB; while the 

highest frequency was related to PEÑOLES, GEO, ALFAA and CIEB. Finally, in NNPCA 

the results are almost the same, with the exception that in this case,  GFINBURO substitutes 

ALFAA in the group of stocks with the highest loadings; while the highest frequency includes 

the same group of stocks, in addition to ARA*, WALMEXV, SORIANA B, TVAZTECPO, 

and ALFAA. 

 

In the database of daily returns when we use PCA, the stocks with the highest loadings 

in the components to which they contribute were: PEÑOLES*, CONTAL*, GEOB, 

ELEKTRA*, ALFAA and CIEB, which differs lightly to those from the databases of weekly 

returns and excesses. On the other hand, the foregoing stocks are those with the highest 

frequency in their contribution to the formation of factors in addition to: BIMBOA, ARA*, 

WALMEXV, TELEVICPO, TVAZTCPO, GFNORTEO and GFINBURO, which also 

coincide with many of the stocks considered in the previous databases.  Concerning FA, the 

highest loadings corresponded to PEÑOLES*, FEMSAUBD, ARA*, WALMEXV, 
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TELMEXL, TVAZTCPO, GFNORTE and ALFAA; while all the stocks except KIMBERA, 

SORIANAB, TELECOA1, GINBURO, and GCARSOA1 contributed in two or more factors. 

Concerning ICA, the highest loadings corresponded to PEÑOLES*, BIMBOA, CONTAL*, 

GEOB, ELEKTRA*, TELEVICPO, GFINBURO and ALFAA; while the highest frequency 

was related to these same stocks in addition to ARA*, WALMEXV, TLEVICPO and CIEB. 

Finally, in NNPCA the highest loadings were related to PEÑOLES*, CONTAL*, GEOB, 

COMERUBC, TVAZTECPO and ALFAA; while the highest frequency matches with the 

previous stocks in addition to ELEKTRA* and GFINBURO. 

 

In the database of daily excesses, when we use PCA, the results were the same that in 

the case of the database of daily return. Interestingly, in FA the results presents certain 

parallelism to those obtained in the database of daily returns; however, in many cases where 

there were two or more stocks belonging the same economic sector, in the database of daily 

returns the stock with the higher loading was one of them, and in the database of daily 

excesses was the another. Concerning ICA, the results are similar in the most of the cases, 

however, there are some little differences, in this case the highest loadings correspond to 

PEÑOLES*, CONTAL*, GEOB, COMERUBC, ELEKTRA*, TLEVICPO, ALFAA and 

CIEB; while the highest frequency was related to PEÑOLES, CONTAL, GEOB, 

COMERUBC, ELEKTRA*, TELMEXL, TLEVICPO, TVAZTCPO, CIEB.  

 

Finally, in NNPCA the results are almost the same, with the exception that in this case  

COMERUBC and CIEB do not present high loadings, but ELEKTRA* does it; while the 

highest frequency includes the same group of stocks, but replacing COMERUBC and 

GFINBURO by GFNORTE and CIEB.  
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Figure 7.13. Loadings matrices.  
Diagram for interpretation of extracted factors.  

Principal Component Analysis.  
Database of weekly returns. Nine components. 
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Figure 7.14. Loadings matrices. 
Diagram for interpretation of extracted factors. 

Factor Analysis. 
Database of weekly returns. Nine components. 
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Figure 7.15. Loadings matrices.  

Diagram for interpretation of extracted factors.  
Independent Component Analysis.  

Database of weekly returns. Nine components. 
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Figure 7.16. Loadings matrices. 
Diagram for interpretation of extracted factors. 
Neural Networks Principal Component Analysis. 
Database of weekly returns. Nine components. 
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Figure 7.17. Loadings matrices.  
Diagram for interpretation of extracted factors.  

Principal Component Analysis.  
Database of daily returns. Nine components. 
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Figure 7.18. Loadings matrices. 
 Diagram for interpretation of extracted factors. 

 Factor Analysis.  
Database of daily returns. Nine components. 

 
.  
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Figure 7.19. Loadings matrices.  
Diagram for interpretation of extracted factors.  

Independent Component Analysis.  
Database of daily returns. Nine components. 
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Figure 7.20. Loadings matrices.  
Diagram for interpretation of extracted factors.  
Neural Networks Principal Component Analysis.  

Database of daily returns. Nine components. 
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Additionally, we present a set of comparative tables about the interpretation of each 

ranked factor extracted by PCA, FA, ICA and NNPCA for each database. Tables 7.23 to 7.26 

present the results regarding the experiment when nine factors were extracted238. 

 

We can observe that in general the interpretation of the same factor across the four 

techniques is no clearly identified. In the best cases the same interpretation could be given in 

up to three techniques; as in the case of the market factor identified with factor number one 

for PCA, FA and ICA, in the database of daily excesses. In addition market factor was clearly 

identified in the four databases with the first factor when we used PCA and FA. Moreover in 

database of weekly returns, the factor number three in PCA and FA, and factor number five in 

PCA and NNPCA, were related to the construction and to the Salinas Group factors, 

respectively. In database of weekly excesses, we also find the same interpretation for the 

factor number three in PCA and FA. In database of daily returns, we can also identify the 

factor number two with the mining sector in PCA and NNPCA. Finally, in the database of 

daily excesses, we cannot clearly identify another additional factor with the same 

interpretation across techniques. On the other hand, there are many factors with the same 

meaning but in different order across the four techniques and the four databases. Moreover, 

there are many common sectors that contribute to many factors, such as: the food, beverage, 

holdings, consumer staples, specialty retail, telecommunication and communication media 

sectors factors, and evidently, the Slim and Salinas Groups factors. 

 

Lastly, there are two findings that call our attention. First, the fact that using NNPCA 

neither the market factor nor the Slim Group factor are clearly identified with any of the 

extracted factors. Secondly, the constant contribution of PEÑOLES in the formation and 

interpretation of many of factors across the four techniques, databases and window of test of 

the experiments. 

                                                            
238 The results corresponding to the rest of experiments are not included in this document for reasons of saving 
space. 
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Table 7.23. Comparative interpretation of the underlying systematic risk factors. Database of weekly returns.  
Nine components estimated. 

PCA FA ICA NNPCA 
PC1 Market factor F1 Market factor IC1 Slim Group plus Televisa factor  NLPC1 Beverages and Leisure / Mining sectors factor. 

PC2 
Mining sector factor (Peñoles 
factor) 

F2 Slim Group factor IC2 
Financial service, Holdings, Leisure and Communication 
media sectors factor. 

NLPC2 
Mining and Telecommunications / Holdings sectors 
factor. 

PC3 Construction sector factor F3 Construction sector factor IC3 Food products sector factor (Bimbo factor) NLPC3 Holdings / Mining sectors factor. 

PC4 
Capital goods consume sector 
factor 

F4 Ordinary consume sector factor IC4 Consume sector plus communication media sectors factor. NLPC4 Home Furnishing and Beverages sectors factor. 

PC5 Salinas Group  sector factor F5 Communication / commercial sectors factor IC5 Construction sector factor (Geo factor) NLPC5 Salinas Group Factor. 

PC6 
Ordinary consume sector 
factor F6 Infrastructure / Mining  sectors factor IC6 Beverage sector factor (Contal factor) NLPC6 

House building and Beverages / Consumer staples, 
Communication media and Mining sectors factors. 

PC7 
Food sector factor (Bimbo 
factor) 

F7 
Ordinary consume / entertainment sectors 
factor 

IC7 Holdings / Leisure sectors factor  NLPC7 Holdings / Food products sectors factors. 

PC8 Miscellaneous sectors factor F8 Miscellaneous sectors factor IC8 Salinas Group factor NLPC8 Food products / Construction sectors factors. 

PC9 
Beverages and food sector 
factor F9 

Capital goods consume / holdings sectors 
factor IC9 Mining sector factor (Peñoles factor) NLPC9 

Food products, Beverages and Construction sectors 
factors. 

 
Table 7.24. Comparative interpretation of the underlying systematic risk factors. Database of weekly excesses.  

Nine components estimated. 
PCA FA ICA NNPCA 

PC1 Market factor F1 Market factor IC1 Construction sector factor (GEO factor) NLPC1 
Mining / Food products and beverages, Consumer 
staples and Communication media sectors factor. 

PC2 
Mining sector factor (Peñoles 
factor) F2 Slim Group factor IC2 

Home furnishing, Holdings and Brewers / Construction 
sectors factor. NLPC2 Mining / House building sectors factor. 

PC3 Construction sector factor F3 Construction sector factor IC3 Consumer staples / Leisure sectors factor. NLPC3 House building, Mining and Holdings sectors factor. 

PC4 
Capital goods consume sector 
factor F4 Ordinary consume sector factor IC4 

Food products, Communication media and 
Telecommunications / Leisure sector factors. NLPC4 

Beverages, Leisure and Home furnishing sectors 
factor. 

PC5 Salinas Group  sector factor F5 Communication / commercial sectors factor IC5 Mining / Consumer staples sector factor  NLPC5 Consume sector factor 

PC6 Ordinary consume sector factor F6 Infrastructure / Mining  sectors factor IC6 Holdings sector factor (Alfa factor) NLPC6 Construction sector factor (Geo Factor). 

PC7 
Food sector factor (Bimbo 
factor) 

F7 
Ordinary consume / entertainment sectors 
factor 

IC7 Beverage / Financial services sector factor NLPC7 
Financial and House building /Consumer staples 
sectors factors. 

PC8 Miscellaneous sectors factor F8 Miscellaneous sectors factor IC8 Mining sector factor (Peñoles factor) NLPC8 Food and beverages sector factor. 

PC9 
Beverages and food sector 
factor 

F9 
Capital goods consume / holdings sectors 
factor 

IC9 
Financial services and Leisure / House building, Holdings 
and Communication media sectors factor 

NLPC9 
House building, communication media and consumer 
staples sector factor. 
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Table 7.25. Comparative interpretation of the underlying systematic risk factors. Database of daily returns.  
Nine components estimated. 

PCA FA ICA NNPCA 

PC1 Market factor F1 Market factor IC1 
Communication media plus consumer 
staples sectors factor. 

NLPC1 Construction sector factor (Geo factor) 

PC2 Mining sector factor (Peñoles factor) F2 Communication / commercial sector factor IC2 Market factor NLPC2 Mining sector factor (Peñoles factor) 

PC3 Construction sector factor F3 
Radio and television sector factor (Azteca 
factor) IC3 

Food products, Leisure and House building 
sector factor NLPC3 

Consumer staples, Financial services, Home 
furnishing and Mining sectors factors. 

PC4 Entertainment consume sector factor. F4 Financial sector factor (GF Norte Factor) IC4 Salinas Group factor NLPC4 
Communication media and Beverage sectors 
factor 

PC5 
Holdings / Beverage / Salinas group 
factor. 

F5 Miscellaneous sectors factor IC5 Construction sector factor (Geo factor) NLPC5 
Beverages and mining / Home furnishing and 
house building sectors factor. 

PC6 
Holdings / Food and beverage sector 
factor F6 

Beverage / construction / financial sectors 
factor IC6 

Ordinary consume sector factor (Comercial 
Mexicana factor) NLPC6 

Beverages, Communication media, House 
building and Home furnishing sectors factor. 

PC7 Ordinary consume sector factor F7 Mining / beverage sectors factor IC7 Holdings sector factor (Alfa factor) NLPC7 
Leisure and Financial services sectors / Salinas 
Group factor. 

PC8 Miscellaneous sectors factor F8 
Holdings / Mining / construction sectors 
factor IC8 Beverage sector factor (Contal factor) NLPC8 

House building and Holdings / Home furnishing 
and Consumers staples sectors factor. 

PC9 Infrastructure / Financial sector factor F9 
Construction / communication / commercial 
sectors factor 

IC9 Mining sector factor (Peñoles factor) NLPC9 
Holdings and House building / Mining and 
Home furnishing sectors factors. 

 
Table 7.26. Comparative interpretation of the underlying systematic risk factors. Database of daily excesses.  

Nine components estimated. 
PCA FA ICA NNPCA 

PC1 Market factor F1 Market factor IC1 Market factor NLPC1 Salinas Group / Mining sector factor. 

PC2 Mining sector factor (Peñoles factor) F2 Communication / commercial sectors factor IC2
Communication media and 
telecommunication sector factor. 

NLPC2 
Beverages / Home furnishing and Financial 
services sectors factor. 

PC3 Construction sector factor F3 
Radio and television sector factor (Azteca 
factor) 

IC3 Leisure sector factor NLPC3 
Salinas Group, Holdings and Mining / Leisure 
sectors factor. 

PC4 Entertainment consume sector factor. F4 Financial sector factor (GF Norte Factor) IC4 Salinas Group factor NLPC4 Holdings / Leisure sectors factors. 

PC5 
Holdings / Beverage / Salinas group 
factor. 

F5 Miscellaneous sectors factor IC5 Holdings sector factor (Alfa factor) NLPC5 
Beverages and House building / Mining sectors 
factors. 

PC6 
Holdings / Food and beverage sector 
factor 

F6 
Beverage / construction / financial sectors 
factor 

IC6
Ordinary consume sector factor (Comercial 
Mexicana factor) 

NLPC6 
House building and Holdings / Leisure sectors 
factor. 

PC7 Ordinary consume sector factor F7 Mining sector factor (Peñoles factor). IC7 Beverage sector factor (Contal factor) NLPC7 
Communication media / Financial services 
sectors factor. 

PC8 Miscellaneous sectors factor F8 Financial / brewers / cellulose sectors factor IC8 Construction sector factor (Geo factor) NLPC8 Mining sector factor (Peñoles factor) 

PC9 Infrastructure / Financial sector factor F9 Construction sector factor IC9 Mining sector factor (Peñoles factor) NLPC9 Mining and Beverages sectors factor. 
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7.4. Conclusions. 

 

From the theoretic standpoint, we could said that NNPCA would be the technique, 

which produce the underlying factors with the more desirable statistical attributes in the 

context of a statistical approach to the APT239; they are nonlinearly uncorrelated, warranting 

not only linearly uncorrelated systematic risk factors for the Arbitrage Pricing Theory (APT) 

model but also nonlinearly uncorrelated ones. 

 

Our findings in the empirical study do not demonstrate a clear hegemony of one 

technique over the others, since all the techniques were capable to reproduce the observed 

returns. Nevertheless, based on its theoretical statistical attribute and the evidence uncovered, 

we dare to point out the NNPCA as the best technique to reduce dimensionality, in other 

words, it was the technique with the best performance in the reconstruction of the observed 

returns when we considered a low number of dimensions. On the other hand, to the light of 

our results we would point to PCA as the best technique to reconstruct the observed returns, 

when we consider the average results of the measures of reconstruction considering a high 

number of dimensions  and also to reproduce the returns of the most volatile stocks, in almost 

all the cases. Moreover, FA was the best technique regarding the number of accurate 

reconstructed individual stocks, according the statistical measures used in this study. Lastly, 

ICA was the technique with the worst performance in the reconstruction240.  

 

According to the attributes of the components or factors produced by each technique, 

we could expect that the results in the reconstruction should be better as we move from basic 

techniques such as PCA and FA to advanced methods like ICA and NNPCA; however, in 

general, the ICA reconstruction was worse than the PCA in average terms of the first four 

measures of reconstruction accuracy in almost all cases. Furthermore, we must not forget the 

                                                            
239 In the APT we look for systematic risk factors as different as possible in order to catch the effect of different 
sources of risk that explain the returns on equities. The more uncorrelated and independent the factors, the better 
their theoretical attributes in this context. 
240 It is important to point that the results in the reconstruction obtained by ICA were suitable; simply the results 
of the others techniques were better. In addition, we remark that from a theoretical standpoint the factors 
extracted via ICA are statistically independent, which imply also absent of linear correlation, and would suppose 
a better behavior among them, specially considering the non-Gaussian nature of our data. 
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clarification stated in the section on matrix parallelism about the direct comparison of FA 

with the other types of analysis used in this study. A future step in research will be to compare 

FA to its equivalent versions for the independent and non-linear models. 

 

Accordingly, some natural expansions of this part of our research would be the search 

for some other measures to evaluate the accuracy of the reproduction – both in univariate and 

in multivariate terms – and some other methodologies to compare the results of the four 

techniques, a deeper study regarding the univariate and multivariate statistics and the 

morphology of the components and factors extracted, and the interpretation of the underlying 

factors of systematic risk, namely, the risk attribution process. 

 

Regarding the comparative analysis of the latent extracted factors and betas by way of 

the four techniques presented, under a statistical and graphical focus, the empirical results 

obtained will lead us to conclude that in general, PCA, FA and ICA produce similar 

systematic risk factors and sensitivities to them (betas) from an statistical and morphological 

standpoint, but NNPCA present a very different performance.  

 

Concerning the comparison of the results of the econometric contrast, the results may 

suggest that NNPCA could produce a better performance in the econometric contrast, since 

the first stage of it, i.e., the simultaneously estimation of the betas by means of the SUR, 

theoretically should surpass the WLS estimation used in the other three techniques, because of 

the reliability of the betas estimation. Nevertheless, the results of the average cross section 

contrast of the APT show that NNPCA and ICA were the techniques that produced the 

smallest number of models accepted. In this arena, PCA and FA were the techniques with the 

worst performance.  

 

As we stated before, the methodology used in the econometric contrast represents only 

a first approach to this issue, and our results should be seen under this light. Many other 

methodologies for contrasting the APT and multifactor models should be tested in future 

researches. 
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With respect to the comparative of the interpretation across the four techniques we can 

conclude that in addition to the market factor that was clearly identified as the first factor in 

PCA and FA, there is not a constant interpretation of the same factor across the four 

techniques. We remark that the interpretation methodology here used represents a first 

approach to give some meaning to the extracted factors but it is not definitive. In the same 

sense, the findings concerning the sensitivities that placed β3, β2, β5, and β6 as those that were 

the most common in the majority of the models across the four techniques, should be 

investigated more deeply in the risk attribution stage, using other methodologies of 

interpretation according to the statistical approach of the underlying systematic risk factor 

analysis.  

Finally, as reported in other comparative studies regarding some of the techniques 

used in this study and to the light of the evidence found, we could say that depending on the 

characteristics of the data and the purpose of the research, one specific kind of analysis is 

more suitable than the others. In our particular case, we can warrant that the extraction of risk 

factors is very sensitive to the technique used for this purpose, which could condition the 

results of the APT. 
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Chapter 8 
 
Conclusions. 
 
 
This dissertation have focused on the estimation of the underlying multifactor model driving 

the returns on equities of the Mexican Stock Exchange by means of different dimension 

reduction and feature extraction techniques in an Arbitrage Pricing Theory framework under a 

statistical approach. Under this conceptualization, both the latent systematic risk factors and 

the sensitivities to those factors (betas) can be computed from the observed returns on equities 

by way of statistical and computational techniques. There are two differentiated stages under 

this statistical scope regarding the systematic risk factors, namely, the risk extraction and the 

risk attribution processes; our empirical studies have focused mainly on the former. 

 

In Chapter 4 we estimated the underlying structure of systematic risk by using 

Principal Component Analysis and Factor Analysis; it included the testing of our models in 

two versions: returns and returns in excess of the riskless interest rate for weekly and daily 

databases, and a two-stage methodology for the econometric contrast. First, we extracted the 

underlying systematic risk factors by means of both the standard linear version of the 

Principal Component Analysis and the maximum likelihood Factor Analysis estimation, and 

we were able to reconstruct the observed returns with our generative multifactor model 

estimated in all cases. Then, for the purpose of estimating the betas simultaneously for all the 

systems of equations, we simultaneously estimated the sensitivities to the systematic risk 

factors (betas) by Weighted Least Squares (WLS). Finally, we tested the pricing model by 

using an average cross-section methodology via Ordinary Least Squares (OLS), corrected by 

a heteroscedasticity and autocorrelation consistent (HAC) estimation of covariance. Our 

results showed that the APT is very sensitive to the extraction technique utilized and to the 

number of components or factors retained, which suggests that APT explains partially the 

variations in average returns on the selected stocks of the Mexican Market for the periods 

considered. Nevertheless, we found certain evidence supporting the APT according to the 

methodology presented. 
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In Chapter 5 we tried to uncover a more realistic241 latent systematic risk factor 

structure by means of the Independent Component Analysis, in order to find out whether the 

statistical approach of the Arbitrage Pricing Theory performs better on the Mexican Stock 

Exchange, using the systematic risk factors and betas extracted via this technique, which is 

more appropriate for non-Gaussian financial time series. In order to ensure the correct 

performance of ICA and to demonstrate that the extraction of betas by classic multivariate 

may not be very reliable, we first tested the univariate and multivariate non-Gaussianity of the 

data by means of the Jarque-Bera test for univariate normality and the Mardia and Henze-

Zirkler tests for multivariate normality. In addition, to homogenize the criteria of ranking in 

the four techniques, we sorted out the independent component extracted by using the criteria 

proposed by Garcia-Ferrer et al. (2008). Moreover, we tested the statistical independence of 

the estimated factors, by way of the HSIC test (Groover et al., 2008) which warranted the 

statistically independence and consequently the linear uncorrelation of our risk factors.   The 

estimated generative multifactor model of returns reproduced the observed returns in all cases. 

The evidence we found in the econometric contrast showed mixed results for the acceptance 

of the APT; on one hand we found several model with statistically significant factors, but on 

the other hand, only a few models fulfilled all the requirements to accept the validity of the 

APT. 

 

In Chapter 6 we used the Nonlinear Principal Component Analysis (NLPCA) as an 

extension of the standard Principal Component Analysis (PCA) that overcomes the limitation 

of the PCA’s assumption about the linearity of the model. NLPCA belongs to the family of 

nonlinear versions of dimension reduction or underlying features extraction techniques, 

including nonlinear factor analysis and nonlinear independent component analysis, where the 

principal components obtained are non-linear. NLPCA can be achieved via an artificial neural 

network specification where the PCA classic model is generalized to a nonlinear mode, 

namely, Neural Networks Principal Component Analysis (NNPCA). We used an auto-

associative multilayer perceptron neural network or autoencoder, where the ‘bottleneck’ layer 

represents the principal nonlinear components, or in our context, the scores of the underlying 

factors of systematic risk. This neural network represents an alternative technique capable of 

                                                            
241 More realistic, in the sense that the generative multifactor model of returns estimated was computed by means 
of a technique which deals with the real non-gaussian nature of the data. 
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performing a nonlinear transformation of the observed variables into the principal nonlinear 

components, and to execute a nonlinear mapping that reproduces the original variables. The 

evidence found showed that the generative multifactor model of returns estimated via NLPCA 

was capable to reproduce the observed returns in all cases; nevertheless, the results in an 

econometric contrast led us to a partial acceptance of the APT in the samples and periods 

studied. 

 

 In the four techniques we proposed a first attempt to give an interpretation to the risk 

factors extracted, under an economic sector approach, by means of the loading matrices that 

contribute in the formation of the extracted factors in each technique. In general the 

interpretation of the extracted factors varied across techniques, although some factors share 

the same interpretation in particular cases. These common interpretation pointed to the market 

factor, the Slim and Salinas Groups factors, the mining, construction, consumer staples, 

specialty retail, leisure, telecommunication and communication media sectors factors as the 

most persistent and clearly identified systematic factors across the four techniques. In 

addition, there were many factors that did not produce a completely clear interpretation, since 

they mixed or contrasted the effect of diverse economic sectors. 

 

 In addition, an important conclusion related to this issue is that the market factor, 

identified as a similar loadings values for all the stocks, was clearly detected in PCA and FA 

which was related to the first factor that represents the one with more importance from the 

explained risk standpoint in both cases. Conversely, for the alternative techniques this fact 

does not happen; we could give that interpretation only in the case when two factors are 

extracted via ICA in the daily databases. 

 

Finally, in Chapter 7 we made a first attempt to compare the four techniques. From a 

theoretical standpoint, the estimated factors should be superior as we advance from classical 

techniques, i.e., Principal Component Analysis and Factor Analysis, to more sophisticated 

techniques, i.e., Independent Component Analysis and Neural Networks Principal Component 

Analysis242; however, their own internal assumptions, procedures and algorithms, make the 

                                                            
242 Given that we consider that the presence of relevant higher-order moments and non-linear components, 
respectively, would suppose that ICA and NNPCA would have had a better performance. 
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direct comparison among either the extracted factors or the factor loadings, produced by each 

one of them, problematic. This fact led us to compare the former techniques in such a way 

that they could be measured homogeneously. In order to present an objective and 

homogeneous comparative study concerning techniques, we carried on our research according 

to two different perspectives. First, we evaluated them from a theoretical and matrix scope, 

making a parallelism among their particular mixing and demixing processes, as well as the 

attributes of the systematic risk factors extracted by each method. Secondly, we carried on an 

empirical study in order to measure the level of accuracy in the reconstruction of the original 

variables, reproduced by the multifactor generative model of returns, when we employed the 

underlying systematic risk factors estimated by means of each extraction technique. Our 

results showed that the reproduction capacity of the four techniques is very good243; however, 

PCA is the one that presents the lowest level of error in reconstruction in almost all the cases 

and experiments, followed by NNPCA, FA and ICA. Third, we continued the empirical 

comparative study across the four techniques on one hand, by means of the statistical and 

graphic analyses of both the underlying risk factors and their corresponding sensitivities 

(betas); and, on the other hand, by means of the comparative analysis of the results obtained 

in the econometric contrast of the APT, when we utilized the systematic risk factors and betas 

computed in each technique. The results pointed to NNPCA and ICA as the techniques with 

the higher number of models completely accepted and PCA and FA, as those with the lower 

number244. In addition, we could detect that the betas that were statistically significant more 

times in the different expressions and frequencies of the models contrasted across the four 

techniques were:  the factor number three followed by factor number two, and then by factor 

number five and factor number six, which may point to them as interesting factors to be 

analyzed more deeply. Finally, we also compared the interpretation given to the factors 

extracted by the four techniques by way of the analysis of the stocks that contributed in the 

formation of each factor in each database across the four techniques and the comparison of the 

                                                            
243 We are aware of the good results showed in the statistics could be suitable due to we are working on the own 
databases studied; nevertheless, as we have stated along this dissertation, we are only studying the explanatory 
capacity of the four techniques; i.e., the forecasting properties of them are out scope of this research and it will 
be a future line of research derived from this work.  
244 It is important to remark that the four techniques produced very similar results both in the reproduction of the 
observed returns and in the econometric contrast. Actually, regarding the reproduction of the observed variables, 
the four techniques achieved a very good reconstruction in terms of the statistical measures used, i.e., any of 
them reproduced the observed variables in a very suitable way. Concerning the econometric contrast, the same 
situation occurred, the difference in the number of completely accepted models across the techniques was 
minimum. 
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meaning proposed to each factor extracted. The results pointed to the following stocks as 

those with the highest loadings in the formation of risk factors: PEÑOLES*, BIMBOA, 

CONTAL*, GEOB, ELEKTRA*, ALFAA, TELEVICPO, GFINBURO, COMERUBC, 

CIEB, FEMSAUBD, ARA*, WALMEXV, TELMEXL, TVAZTCPO and GFNORTE. 

Regarding the interpretation given to the extracted factors, in general, the interpretation of the 

same factor across the four techniques is no clearly identified. Nevertheless, to the light of the 

found evidence, there are some factors that share the same interpretation in two or more 

techniques, therefore, we dare to point in some cases to factor number one as the market 

factor, factor number three as the construction sector factor, factor number five as the Salinas 

Group factor, and factor number two as the mining sector factor245. In that sense we could 

identify the former factors as interesting sectors to consider for the risk management in the 

construction of portfolios in context of the Mexican Stock Exchange.  

 

Summarizing the results of the comparative study, we can conclude that the four 

techniques were capable to reproduce the observed returns; nevertheless, the hegemony of one 

of them over the others is not clear and is very sensitive to the number of components or 

factors retained, the expression of the model, and the specific asset analyzed; which may 

condition the empirical contrast of the APT later. Consequently, we might state that the 

selection of one or another technique will depend mainly on the number of dimensions to 

retain, the specific stock object of study, and the purpose of the research. That is, to the light 

of the evidence found we could say that if our objective is to reduce the dimensionality until 

the smallest number of factors (2-4), NNPCA will produce the best reconstructions in 

average; nevertheless, if we can handle a bigger number of factors (5-9), PCA will generate 

the best reproduction of the observed variables in average as well. In addition, PCA would be 

the best choice to reproduce volatile stocks individually. On the other hand, if the objective is 

to reproduce individual stocks or to find the maximum number of priced factors, FA would be 

the technique that produce the higher figures. Furthermore, if our objective is to warrant some 

statistical attributes of the extracted factors such as:  statistical independence or nonlinear 

uncorrelation, ICA and NNPCA would be the suitable techniques, respectively. Additionally, 

if our interest is to find the best results in the econometric contrast of the APT, these two last 

                                                            
245 We remark that the market factor was only clearly identified in PCA, FA and in the case of daily databases in 
ICA. In NNPCA was not possible to identify clearly this factor using the loading matrix considered for the 
interpretation of factors in this study. 
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techniques would extract the factors that generates more totally accepted models in the 

validation of the APT as an asset pricing model as well246. 

 

 According to the above stated and the empirical evidence obtained in this study we can 

make the following statements regarding the hypothesis posed in the introduction of this 

study. 

 

Regarding the hypothesis number one: The generative multifactor model of returns is 

sensitive to the typology of the extraction technique used to extract the latent systematic risk 

factors. We can conclude that, to the light of the evidence found, this hypothesis is fulfilled 

since each technique produced different generative multifactor models of returns as we 

showed along this dissertation, but specially as demonstrated in Chapter 7 via the comparative 

study of the four techniques. Nevertheless, under the scope of the quality of reconstruction of 

the observed returns by way of our generative models estimated, the four techniques produced 

a very suitable generative multifactor model of returns, in the four databases studied across all 

the window of test used in this study. This evidence was proved via the graphical analysis of 

the observed and reconstructed variables and the construction of a set of statistical measures 

used to test the quality of the reconstruction. Evidently, the greater the number of extracted 

factors the higher the level of the reconstruction; however, if we increase the dimension the 

improvement in the reconstruction does not improve significantly. Therefore, derived from 

the results obtained, we dare to point that PCA produces better results than the other 

techniques for a higher number of components extracted, while NNPCA does it when a 

smaller number of factors is estimated. In that sense, the practical application of the 

techniques used in this study, that allow to create non-observable systematic risk factors in the 

portfolio risk management industry, is to facilitate the control of the risk portfolio with a 

number of factors smaller than the number of observed assets. 

 

 With respect to the hypothesis number two: The average cross-section econometric 

contrast methodology of the Arbitrage Pricing Theory is conditioned to the extraction 

                                                            
246 We remark that these results correspond to the experiment when we use a topology of the neural network in 
NNPCA of the type [20-9-9-9-20] for the weekly databases, as an example. In our previous experiments not 
reported in this dissertation, when we used a topology of the type [20-20-9-20-20] in the same example, NNPCA 
surpassed to all the techniques in basically all the aspects. 
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technique chosen, the frequency of the data and the expression of the model (returns or 

excesses). The obtained results showed that this hypothesis is fulfilled as well. NNPCA and 

ICA produced the higher number of completely accepted models, however, the difference 

with the number of completely accepted models in FA and PCA was negligible. Regarding 

the frequency of the data, the daily databases produced more statistically significant factors 

than weekly databases across the four techniques and the entire test window about the number 

of extracted factors (137 versus 111). Finally, concerning the expression of the models, only 

those expressed in returns produced models that were completely accepted. Therefore, the 

obtained results showed partial evidence in favor of the APT as an asset pricing model using 

the underlying systematic risk factor extracted via the four techniques. In each technique we 

only obtained from three to four models, from a total number of 32 contrasted models, that 

were completely accepted according to all the conditions established in Chapter 3 to validate 

the APT247. However, all the techniques generated statistical significant risk factors that 

ranged from one to eight across the different specifications of the models, which produced 

113 models with priced factors from a total number of 128 contrasted models in the four 

techniques, which gives some evidence in favor of the APT. In general, in all the models that 

were not completely accepted but that produced statistical significant risk factors across the 

techniques, the only condition not fulfilled was the equality of the independent term to the 

theoretical value required in the APT, however they fulfilled the rest of the conditions, which 

provide certain evidence in favor of the APT as well.  As we have stated along this 

dissertation, the APT consider on one hand a generative multifactor of returns, and an 

arbitrage principle. This study have focused only in the first part of this model, i.e. in trying to 

obtain the best generative multifactor model of returns under a statistical scope to the 

systematic risk factors used in a multifactor asset pricing model such as the APT. 

Nonetheless, our results in the econometric contrast of the APT using the underlying factors 

extracted by the techniques proposed could be affected also by the not fulfilment of the 

arbitrage absence principle considered by the APT, which was out of the scope of this 

dissertation. Further research will be needed about this issue as well as the testing of other 

methodologies of contrast of the APT. 

 

                                                            
247 Our results are in line with those reported in other studies where the APT has been tested in different markets 
which have found both evidence in favor or against the APT as an asset pricing model. See references cited in 
the introduction of Chapter 2. 
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Concerning the hypothesis number three: It exists stability in the interpretation of the 

latent risk factors according to the methodology used. We can conclude that under the 

methodology used in this study to give some meaning to the factors extracted in each 

technique there was not a clear and homogenous interpretation across the techniques. 

However, to the light of the results of this research PCA and FA, perhaps would be the 

techniques that produced clearer interpretation of the factors associated, first to the market 

factor, and secondly to some economic sectors. In addition there were some factors that we 

dare to point as important in the Mexican stock market, given their persistent across the four 

techniques, the four databases and the entire test of window, namely: the market factor, the 

Slim Group factor, the Salinas Group factor, and the mining, construction, specialty retail, 

communication media, telecommunication, leisure and holdings sectors factors. 

 

On the other hand, another interesting conclusion to the light of the evidence found 

was that the nonlinear technique namely, NNPCA had a better performance in the 

reconstruction of the observed returns when we retained a smaller number of factors; i.e., this 

technique produced better reconstruction with a smaller number of factors than the rest of the 

techniques used in this study. Yet, with a bigger number of extracted factors PCA was the 

technique that produced the best reconstructions. To the light of these results we could state 

that under the methodology applied in this dissertation and the stocks and periods included in 

this study, it would appears that in our case, the no iterative technique which does not assume 

any model for its estimation and that in fact only represents a factorization method was 

superior to those iterative techniques. 

 

 Revisiting the contributions posed in the introduction of this dissertation, we can 

summarize them as follows: 

 

1. This dissertation contributed, from a statistical standpoint and in the context of an 

emerging market, with the analysis of different extraction techniques of non-

observable systematic risk factors, in order to explain the returns on equities 

generated in the Mexican stock market. 

 



CHAPTER 8. CONCLUSIONS. 

293 
 

2. In that sense, we have carried on classic extraction techniques such as: Principal 

Component Analysis and Factor Analysis, and alternative techniques such as: 

Independent Component Analysis and Neural Networks Principal Component 

Analysis. 

 

3. Consequently, we have tested the reproduction power of these four different 

techniques that allowed the reduction of the dimensionality of the problem to 

analyze; and 

 

4. We have tested the risk premiums associated to those latent systematic risk factors, 

in the context of the Arbitrage Pricing Theory, following one of the possibilities of 

its econometric contrast, by way of a two-stage returns-average cross-section 

methodology. 

 

 According to the above stated and to the light of the evidence found we can affirm that 

the purpose of this dissertation stated in the introduction, namely: to carry on different 

extraction techniques of latent risk factors in order to test the explanatory power of the 

generative multifactor model of returns on equities in the context of the Mexican stock 

market, and to test the presence of relevant risk premiums associated with those underlying 

risk factors in the context of a statistical approach of the asset pricing model APT, was 

fulfilled. Nevertheless, derived from the findings of this study and the limitations and scope of 

this dissertation, we can propose the following: 
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Future lines of research. 
 
 

1. Regarding the expression of the returns used in this study, one possible extension 

could be to include the dividends and application rights to calculate the return on 

equities in addition to price variation, if the information is available to us. 

 

2. In general, forthcoming researches could be centered on the risk attribution process of 

the statistical approach as well as on the test of the arbitrage principle of the APT. 

  

3. Regarding the risk attribution other methods could be carried on such as: the 

correlation or association of the underlying risk factors with macroeconomic or 

fundamental factors or the application of alternative techniques for this purpose for 

example genetic algorithms. In addition, we remark that the interpretation of the 

meaning of the factors proposed represented only a first basic approach, since the main 

objective of this research was the risk extraction and not the risk attribution under the 

statistical approach to the underlying multifactor risk analysis. 

 

4. Regarding to the econometric contrast of the APT using the underlying risk factors 

extracted by way of PCA, FA, ICA and NNPCA, we remark that in this study we have 

focused only on the returns generating process of the APT; as Reinganum (1981) 

stresses, many of the problems in the APT empirical contrast may be attributed also to 

violations of the absence arbitrage principle and not only to the misspecification of the 

returns generating model. Nonetheless, we leave all the aspects concerning the 

arbitrage conditions, as well as a deeper analysis of the different APT econometric 

contrast methodologies, to further investigations. Consequently, for now, we could 

attribute the unsatisfactory results of the econometric contrast to two possible reasons: 

a) The methodology used for the contrast might not be the most suitable for a 

statistical approach to the APT, and perhaps it would be necessary to use time series 

moving regressions to estimate the sensitivities to the risk factors or betas (Nieto, 

2001; Roll & Ross, 1980), or mimicking portfolios as proxies of the underlying factors 

(Marin & Rubio, 2001; Zivot & Wang, 2003). b) The origin of the problem might not 

be in the first assumption of the APT, i.e., the generative multifactor model of returns, 
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but in the second, that is, the arbitrage absence principle (Khan & Sun, 2003); aspect 

that we have not investigated yet. c) The relation among the risk factors and the 

returns on equities might be non-linear. Further research would be needed concerning 

these two possible causes of the results in the econometric contrast. 

 

5. In the same sense, regarding the econometric contrast, other methodologies and 

variations of the one used in this study can be tested in order to improve the 

estimation. For example to use a GARCH modelling for the simultaneously estimation 

of the betas, or to use mimicking portfolios in the econometric contrast of the APT, or 

in general to carry on other econometric contrast methodologies like those used in 

other studies.  

 

6. Moreover, the obtained results may be explained by a non-linear specification of the 

APT, which was out of the scope of this study but represents a natural future line of 

research as a continuation of the present work as well. 

 

7. Derived from the exhaustive amount of information obtained in all the experiments 

carried as a result to have applied four different techniques of extraction (PCA, FA, 

ICA, NNPCA), to two different periodicities of the databases (weekly and excesses), 

to two different expression of the models (returns and excesses), and a test window 

ranging from two to nine factors, we consider that a deeper analysis of the dynamic 

sensitivity of the results obtained could be another research line for future studies. 

 

8. Extension of the techniques already used such as in FA, the Independent Factor 

Analysis, where the hidden factors are independent and non-Gaussian instead of 

uncorrelated and Gaussian. 

 

9. Or in the case of ICA: the noisy ICA, the non-linear ICA, etc. That is, regarding ICA, 

the expression used in this study represents the most basic definition of the ICA 

model; some generalizations and modifications in them, such as the addition of a noise 

term, the case when the number of observed mixtures and the number of sources are 

different, or the mixing process is not linear, could be explored in future researches. 
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10. Also related to ICA, a deeper investigation on the estimated ICs derived from the 

results of the Iq as a criterion to sort the ICs estimated by the ICASSO methodology 

would be interesting, or a ranking according other criteria such as, the similarity of the 

estimations that could be used as another criterion to sort the independent components, 

and might represent possible lines of interpretation of them. 

 

11. Moreover, although theoretically the ICASSO methodology used produces better 

results for said model, other estimation algorithms should be tested in further research. 

  

12. Regarding NNPCA, another interesting line of research would be to carry on another 

methodology to get an equivalent to the loading matrix of the other techniques, in 

order to test if by using that loading matrix we could avoid the trade-off produced with 

the methodology used in this study, between on one hand, the accuracy in the 

reproduction and the results of the econometric contrast, and on the other hand, the 

capability to give meaning to those extracted factors. A possible methodology could 

be the one propose by Scholz, et al. (2007) where it is necessary to compute a loading 

in each point of the curve according to its direction. 

 
 

13. In addition, some natural expansions of this work would be the search for some other 

measures to evaluate the accuracy of the reproduction – both in univariate and in 

multivariate terms – and some other methodologies to compare the results of the four 

techniques, a deeper study regarding the univariate and multivariate statistics and the 

morphology of the components and factors extracted, and the interpretation of the 

underlying factors of systematic risk, namely, the risk attribution process. 

 

14. Another natural extension according to the predictive nature of the four techniques, 

would be the testing of the forecasting power of the estimated models by way of the 

four techniques in subsequent periods not included in this study, the comparison of the 

results in the crisis and post-crisis periods, and in other six-year Presidential terms of 

office in Mexico. 
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15. Derived of the previous points, the study with a more recent sample and other stocks 

would allow to compare also the results of this dissertation in an out of sample context 

and in a different window test regarding the stocks studied; evidently if the 

information is available.  

 

16. In the same line, extensions to other emergent and developed markets would be of 

interest as well, in order to compare the generative multifactor model of returns 

produced by PCA, FA, ICA and NNPCA in different countries. 

 

17. Further research about the financial implications of the results would be needed too. 

For instance, concerning the fact that there were stocks that were relevant in all the 

techniques such as: GEO, COMERCI, PEÑOLES and ALFA, which were some of the 

companies most affected in the last financial crisis. A deeper study about this issue 

would be interesting specially if we carry on this study in the financial crisis period. In 

some way, these techniques revealed the importance of these stocks and they might be 

used as a prevention mechanism in portfolios that may overweight these stocks in their 

construction. In other words, these techniques pointed those stocks as assets that we 

should follow and watch closely when we build portfolios, given their possible 

implications in crisis periods in order to avoid an over exposition to them. 

 

18. Finally, considering the wide range of dimension reduction or feature extraction 

technique that have been developed through the years in different fields of science, 

another possible extension to this research would be the application of other linear and 

non-linear techniques to perform the extraction of risk factors under a statistical 

approach to the equity risk factors. 
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the four techniques. Multiple graph. Database of weekly excesses. Nine 
components estimated. 617 
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Figure 84. Betas to the third underlying systematic risk factor extracted by the 
four techniques. Multiple graph. Database of weekly excesses. Nine 
components estimated. 618 
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four techniques. Multiple graph. Database of daily returns. Nine components 
estimated. 623 
  
Figure 95. Betas to the fifth underlying systematic risk factor extracted by the 
four techniques. Multiple graph. Database of daily returns. Nine components 
estimated. 624 
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four techniques. Multiple graph. Database of daily returns. Nine components 
estimated. 624 
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estimated. 628 
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four techniques. Multiple graph. Database of daily excesses. Nine components 
estimated. 629 
  
Figure 106. Betas to the seventh underlying systematic risk factor extracted by 
the four techniques. Multiple graph. Database of daily excesses. Nine 
components estimated. 630 
  
Figure 107. Betas to the eight underlying systematic risk factor extracted by the 
four techniques. Multiple graph. Database of daily excesses. Nine components 
estimated. 630 
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Figure 108. Betas to the ninth underlying systematic risk factor extracted by the 
four techniques. Multiple graph. Database of daily excesses. Nine components 
estimated. 631 
  
Figure 109. Loadings matrices. Diagram for interpretation of extracted factors. 
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Figure 116. Loadings matrices. Diagram for interpretation of extracted factors. 
Neural Networks Principal Component Analysis. Database of daily excesses. 
Nine components. 635 
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 Appendix_1 (Chapter 4) 
 

Table 1. Principal Component Analysis. Betas estimation for all the equation system via 
Weighted Least Squares. Database of weekly returns. 

 

 Coefficient Std. Error t-Statistic Prob.   

C(1) 0.000186 0.000181 1.030785 0.3027 
C(2) -0.126897 0.001382 -91.82221 0.0000 
C(3) 0.914852 0.002610 350.5703 0.0000 
C(4) 0.318767 0.003321 95.99847 0.0000 
C(5) 0.038830 0.003592 10.80879 0.0000 
C(6) -0.072420 0.003797 -19.07375 0.0000 
C(7) 0.105669 0.004086 25.86311 0.0000 
C(8) -0.119725 0.004245 -28.20310 0.0000 
C(9) 0.020960 0.004397 4.767006 0.0000 

C(10) -0.064335 0.004572 -14.07097 0.0000 
C(11) 0.003000 0.000913 3.284130 0.0010 
C(12) -0.113679 0.006990 -16.26311 0.0000 
C(13) -0.020017 0.013199 -1.516561 0.1294 
C(14) 0.201671 0.016795 12.00769 0.0000 
C(15) -0.012999 0.018170 -0.715376 0.4744 
C(16) 0.179627 0.019204 9.353546 0.0000 
C(17) -0.232653 0.020665 -11.25822 0.0000 
C(18) 0.586068 0.021471 27.29525 0.0000 
C(19) -0.005175 0.022239 -0.232714 0.8160 
C(20) -0.530716 0.023126 -22.94896 0.0000 
C(21) 0.001739 0.001597 1.089242 0.2761 
C(22) -0.097420 0.012217 -7.974038 0.0000 
C(23) -0.038412 0.023070 -1.665034 0.0960 
C(24) 0.070841 0.029355 2.413270 0.0158 
C(25) 0.047867 0.031758 1.507229 0.1318 
C(26) -0.128884 0.033565 -3.839798 0.0001 
C(27) 0.049686 0.036119 1.375619 0.1690 
C(28) -0.150310 0.037528 -4.005260 0.0001 
C(29) 0.140175 0.038870 3.606206 0.0003 
C(30) 0.089890 0.040420 2.223908 0.0262 
C(31) 0.000573 0.001775 0.322811 0.7469 
C(32) -0.211808 0.013585 -15.59170 0.0000 
C(33) -0.067626 0.025652 -2.636296 0.0084 
C(34) 0.105197 0.032640 3.222891 0.0013 
C(35) -0.099098 0.035313 -2.806253 0.0050 
C(36) 0.030042 0.037322 0.804933 0.4209 
C(37) 0.013647 0.040162 0.339794 0.7340 
C(38) 0.127503 0.041729 3.055521 0.0023 
C(39) 0.166489 0.043221 3.852024 0.0001 
C(40) -0.016027 0.044944 -0.356590 0.7214 
C(41) 0.000267 0.000584 0.457110 0.6476 
C(42) -0.132309 0.004471 -29.58967 0.0000 
C(43) 0.080728 0.008444 9.560995 0.0000 
C(44) 0.075499 0.010744 7.027242 0.0000 
C(45) 0.160585 0.011623 13.81552 0.0000 
C(46) 0.241953 0.012285 19.69525 0.0000 
C(47) -0.445564 0.013219 -33.70522 0.0000 
C(48) 0.223491 0.013735 16.27143 0.0000 
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C(49) 0.318993 0.014226 22.42247 0.0000 
C(50) 0.659808 0.014794 44.60097 0.0000 
C(51) -0.000282 0.000514 -0.548713 0.5832 
C(52) -0.293667 0.003934 -74.64564 0.0000 
C(53) 0.269049 0.007429 36.21650 0.0000 
C(54) -0.765574 0.009453 -80.98964 0.0000 
C(55) -0.367746 0.010227 -35.95921 0.0000 
C(56) 0.099028 0.010809 9.161937 0.0000 
C(57) 0.015674 0.011631 1.347626 0.1778 
C(58) 0.139301 0.012085 11.52705 0.0000 
C(59) 0.122664 0.012517 9.799822 0.0000 
C(60) -0.033579 0.013016 -2.579841 0.0099 
C(61) 0.000810 0.001737 0.466164 0.6411 
C(62) -0.153875 0.013288 -11.57992 0.0000 
C(63) 0.081291 0.025092 3.239740 0.0012 
C(64) -0.077583 0.031928 -2.429967 0.0151 
C(65) -0.012444 0.034542 -0.360267 0.7187 
C(66) 0.211205 0.036507 5.785271 0.0000 
C(67) 0.069702 0.039285 1.774273 0.0761 
C(68) 0.149491 0.040817 3.662432 0.0003 
C(69) -0.290541 0.042277 -6.872236 0.0000 
C(70) 0.208249 0.043963 4.736936 0.0000 
C(71) 0.002158 0.001516 1.423512 0.1546 
C(72) -0.191070 0.011598 -16.47378 0.0000 
C(73) -0.098287 0.021901 -4.487712 0.0000 
C(74) 0.061952 0.027868 2.223064 0.0263 
C(75) -0.077264 0.030150 -2.562656 0.0104 
C(76) -0.087542 0.031865 -2.747235 0.0060 
C(77) 0.142707 0.034290 4.161818 0.0000 
C(78) -0.030179 0.035627 -0.847078 0.3970 
C(79) 0.348935 0.036902 9.455801 0.0000 
C(80) -0.009896 0.038373 -0.257902 0.7965 
C(81) -0.000183 0.001551 -0.117929 0.9061 
C(82) -0.227527 0.011869 -19.17027 0.0000 
C(83) -0.096796 0.022412 -4.318974 0.0000 
C(84) 0.060851 0.028518 2.133802 0.0329 
C(85) -0.172514 0.030853 -5.591541 0.0000 
C(86) -0.023314 0.032608 -0.714967 0.4747 
C(87) -0.058331 0.035089 -1.662368 0.0965 
C(88) -0.335898 0.036458 -9.213350 0.0000 
C(89) 0.072029 0.037762 1.907459 0.0565 
C(90) -0.152850 0.039267 -3.892581 0.0001 
C(91) 0.001322 0.001754 0.753721 0.4510 
C(92) -0.216157 0.013424 -16.10213 0.0000 
C(93) -0.012800 0.025349 -0.504973 0.6136 
C(94) 0.121731 0.032255 3.774071 0.0002 
C(95) -0.001803 0.034896 -0.051656 0.9588 
C(96) 0.079592 0.036881 2.158053 0.0310 
C(97) -0.311785 0.039687 -7.856073 0.0000 
C(98) -0.236521 0.041235 -5.735883 0.0000 
C(99) -0.197895 0.042710 -4.633429 0.0000 

C(100) -0.068402 0.044413 -1.540147 0.1236 
C(101) -0.000330 0.000849 -0.388065 0.6980 
C(102) -0.306461 0.006498 -47.16135 0.0000 
C(103) 0.016709 0.012270 1.361691 0.1734 
C(104) -0.160190 0.015613 -10.25983 0.0000 
C(105) 0.358791 0.016892 21.24052 0.0000 
C(106) -0.508578 0.017853 -28.48712 0.0000 
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C(107) -0.184630 0.019211 -9.610604 0.0000 
C(108) 0.221530 0.019961 11.09839 0.0000 
C(109) -0.459268 0.020675 -22.21415 0.0000 
C(110) 0.070003 0.021499 3.256141 0.0011 
C(111) -0.000715 0.001102 -0.648828 0.5165 
C(112) -0.170229 0.008429 -20.19633 0.0000 
C(113) -0.064603 0.015916 -4.058963 0.0000 
C(114) 0.161386 0.020252 7.968863 0.0000 
C(115) -0.077970 0.021910 -3.558599 0.0004 
C(116) -0.068125 0.023157 -2.941880 0.0033 
C(117) 0.260308 0.024919 10.44629 0.0000 
C(118) 0.136312 0.025891 5.264871 0.0000 
C(119) 0.003331 0.026817 0.124226 0.9011 
C(120) 0.081760 0.027886 2.931956 0.0034 
C(121) -0.001827 0.001182 -1.544924 0.1224 
C(122) -0.233999 0.009048 -25.86103 0.0000 
C(123) -0.081362 0.017086 -4.761897 0.0000 
C(124) 0.226844 0.021741 10.43406 0.0000 
C(125) -0.088706 0.023521 -3.771381 0.0002 
C(126) -0.029744 0.024859 -1.196487 0.2316 
C(127) 0.401071 0.026750 14.99305 0.0000 
C(128) 0.267766 0.027794 9.633903 0.0000 
C(129) -0.093510 0.028788 -3.248183 0.0012 
C(130) 0.115624 0.029936 3.862412 0.0001 
C(131) -0.001214 0.001428 -0.850691 0.3950 
C(132) -0.275543 0.010924 -25.22447 0.0000 
C(133) -0.080797 0.020627 -3.917011 0.0001 
C(134) 0.119662 0.026247 4.559128 0.0000 
C(135) -0.125244 0.028396 -4.410645 0.0000 
C(136) -0.140376 0.030011 -4.677398 0.0000 
C(137) 0.136611 0.032295 4.230149 0.0000 
C(138) 0.128401 0.033555 3.826631 0.0001 
C(139) 0.344072 0.034755 9.899976 0.0000 
C(140) -0.020949 0.036140 -0.579663 0.5622 
C(141) -0.001064 0.001388 -0.766353 0.4435 
C(142) -0.301458 0.010624 -28.37573 0.0000 
C(143) -0.071828 0.020061 -3.580504 0.0003 
C(144) -0.053150 0.025526 -2.082169 0.0374 
C(145) 0.088748 0.027616 3.213598 0.0013 
C(146) -0.454739 0.029188 -15.57985 0.0000 
C(147) -0.222687 0.031408 -7.090091 0.0000 
C(148) -0.094510 0.032634 -2.896115 0.0038 
C(149) 0.208810 0.033801 6.177673 0.0000 
C(150) -0.152757 0.035148 -4.346097 0.0000 
C(151) 0.004436 0.001791 2.476968 0.0133 
C(152) -0.201459 0.013703 -14.70137 0.0000 
C(153) -0.069185 0.025876 -2.673682 0.0075 
C(154) -0.075840 0.032926 -2.303352 0.0213 
C(155) -0.110932 0.035622 -3.114146 0.0019 
C(156) -0.021209 0.037649 -0.563339 0.5732 
C(157) 0.085079 0.040513 2.100050 0.0358 
C(158) -0.318333 0.042093 -7.562538 0.0000 
C(159) -0.141737 0.043599 -3.250929 0.0012 
C(160) 0.126113 0.045337 2.781681 0.0054 
C(161) -0.000833 0.001565 -0.532221 0.5946 
C(162) -0.188846 0.011976 -15.76911 0.0000 
C(163) -0.038797 0.022614 -1.715626 0.0863 
C(164) 0.043815 0.028774 1.522694 0.1279 
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C(165) -0.233515 0.031131 -7.501143 0.0000 
C(166) 0.257862 0.032902 7.837312 0.0000 
C(167) 0.096592 0.035405 2.728201 0.0064 
C(168) -0.005313 0.036786 -0.144428 0.8852 
C(169) -0.361445 0.038102 -9.486237 0.0000 
C(170) -0.023839 0.039621 -0.601687 0.5474 
C(171) 0.000908 0.001518 0.598365 0.5496 
C(172) -0.236767 0.011615 -20.38468 0.0000 
C(173) -0.126960 0.021933 -5.788629 0.0000 
C(174) 0.166017 0.027908 5.948764 0.0000 
C(175) -0.077609 0.030193 -2.570445 0.0102 
C(176) 0.001292 0.031911 0.040500 0.9677 
C(177) 0.162087 0.034339 4.720266 0.0000 
C(178) -0.030264 0.035678 -0.848261 0.3963 
C(179) -0.173170 0.036954 -4.686062 0.0000 
C(180) 0.284472 0.038427 7.402828 0.0000 
C(181) -0.000680 0.000239 -2.852476 0.0044 
C(182) -0.328798 0.001825 -180.1166 0.0000 
C(183) -0.056609 0.003447 -16.42241 0.0000 
C(184) -0.157671 0.004386 -35.94758 0.0000 
C(185) 0.706323 0.004745 148.8471 0.0000 
C(186) 0.446003 0.005015 88.92865 0.0000 
C(187) 0.256539 0.005397 47.53497 0.0000 
C(188) -0.169384 0.005607 -30.20721 0.0000 
C(189) 0.122174 0.005808 21.03558 0.0000 
C(190) -0.203166 0.006039 -33.63974 0.0000 
C(191) -0.003081 0.001423 -2.164775 0.0304 
C(192) -0.263305 0.010889 -24.18050 0.0000 
C(193) -0.059289 0.020562 -2.883416 0.0039 
C(194) 0.202602 0.026164 7.743598 0.0000 
C(195) -0.226510 0.028306 -8.002124 0.0000 
C(196) 0.246870 0.029917 8.251902 0.0000 
C(197) -0.409671 0.032193 -12.72557 0.0000 
C(198) -0.214977 0.033449 -6.427060 0.0000 
C(199) -0.086764 0.034645 -2.504379 0.0123 
C(200) -0.102380 0.036026 -2.841824 0.0045 

Equation: PE_OLES_01=C(1)+C(2)*PC1+C(3)*PC2+C(4)*PC3+C(5)*PC4 
        +C(6)*PC5+C(7)*PC6+C(8)*PC7+C(9)*PC8+C(10)*PC9 
Observations: 291   
R-squared 0.997965    Mean dependent vary 0.004729 
Adjusted R-squared 0.997900    S.D. dependent var 0.067404 
S.E. of regression 0.003089    Sum squared resid 0.002681 
Durbin-Watson stat 2.095523    
Equation: BIMBOA=C(11)+C(12)*PC1+C(13)*PC2+C(14)*PC3+C(15)*PC4 
        +C(16)*PC5+C(17)*PC6+C(18)*PC7+C(19)*PC8+C(20)*PC9 
Observations: 291   
R-squared 0.867030    Mean dependent var 0.003161 
Adjusted R-squared 0.862771    S.D. dependent var 0.042175 
S.E. of regression 0.015623    Sum squared resid 0.068590 
Durbin-Watson stat 2.029709    
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Equation: GMODELOC=C(21)+C(22)*PC1+C(23)*PC2+C(24)*PC3+C(25) 
        *PC4+C(26)*PC5+C(27)*PC6+C(28)*PC7+C(29)*PC8+C(30)*PC9 
Observations: 291   
R-squared 0.300619    Mean dependent var 0.001865 
Adjusted R-squared 0.278219    S.D. dependent var 0.032142 
S.E. of regression 0.027307    Sum squared resid 0.209533 
Durbin-Watson stat 2.298799    
Equation: FEMSAUBD=C(31)+C(32)*PC1+C(33)*PC2+C(34)*PC3+C(35) 
        *PC4+C(36)*PC5+C(37)*PC6+C(38)*PC7+C(39)*PC8+C(40)*PC9 
Observations: 291   
R-squared 0.502035    Mean dependent var 0.002358 
Adjusted R-squared 0.486086    S.D. dependent var 0.042355 
S.E. of regression 0.030363    Sum squared resid 0.259065 
Durbin-Watson stat 2.316138    
Equation: CONTAL_01=C(41)+C(42)*PC1+C(43)*PC2+C(44)*PC3+C(45) 
        *PC4+C(46)*PC5+C(47)*PC6+C(48)*PC7+C(49)*PC8+C(50)*PC9 
Observations: 291   
R-squared 0.949645    Mean dependent var 0.002039 
Adjusted R-squared 0.948032    S.D. dependent var 0.043841 
S.E. of regression 0.009994    Sum squared resid 0.028068 
Durbin-Watson stat 2.126282    
Equation: GEOB=C(51)+C(52)*PC1+C(53)*PC2+C(54)*PC3+C(55)*PC4 
        +C(56)*PC5+C(57)*PC6+C(58)*PC7+C(59)*PC8+C(60)*PC9 
Observations: 291   
R-squared 0.981040    Mean dependent var 0.008191 
Adjusted R-squared 0.980433    S.D. dependent var 0.062862 
S.E. of regression 0.008793    Sum squared resid 0.021728 
Durbin-Watson stat 2.218143    
Equation: ARA_01=C(61)+C(62)*PC1+C(63)*PC2+C(64)*PC3+C(65)*PC4 
        +C(66)*PC5+C(67)*PC6+C(68)*PC7+C(69)*PC8+C(70)*PC9 
Observations: 291   
R-squared 0.481581    Mean dependent var 0.004898 
Adjusted R-squared 0.464977    S.D. dependent var 0.040605 
S.E. of regression 0.029700    Sum squared resid 0.247875 
Durbin-Watson stat 2.154514    
Equation: WALMEXV=C(71)+C(72)*PC1+C(73)*PC2+C(74)*PC3+C(75) 
        *PC4+C(76)*PC5+C(77)*PC6+C(78)*PC7+C(79)*PC8+C(80)*PC9 
Observations: 291   
R-squared 0.589620    Mean dependent var 0.003334 
Adjusted R-squared 0.576476    S.D. dependent var 0.039835 
S.E. of regression 0.025924    Sum squared resid 0.188846 
Durbin-Watson stat 2.409036    
Equation: SORIANAB=C(81)+C(82)*PC1+C(83)*PC2+C(84)*PC3+C(85) 
        *PC4+C(86)*PC5+C(87)*PC6+C(88)*PC7+C(89)*PC8+C(90)*PC9 
Observations: 291   
R-squared 0.645088    Mean dependent var 0.000746 
Adjusted R-squared 0.633721    S.D. dependent var 0.043833 
S.E. of regression 0.026528    Sum squared resid 0.197752 
Durbin-Watson stat 2.292097    
Equation: COMERUBC=C(91)+C(92)*PC1+C(93)*PC2+C(94)*PC3+C(95) 
        *PC4+C(96)*PC5+C(97)*PC6+C(98)*PC7+C(99)*PC8+C(100)*PC9 
Observations: 291   
R-squared 0.576971    Mean dependent var 0.002256 
Adjusted R-squared 0.563422    S.D. dependent var 0.045411 
S.E. of regression 0.030005    Sum squared resid 0.252977 
Durbin-Watson stat 2.220469    
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Equation: ELEKTRA_01=C(101)+C(102)*PC1+C(103)*PC2+C(104)*PC3 
        +C(105)*PC4+C(106)*PC5+C(107)*PC6+C(108)*PC7+C(109)*PC8 
        +C(110)*PC9   
Observations: 291   
R-squared 0.936802    Mean dependent var 0.002654 
Adjusted R-squared 0.934778    S.D. dependent var 0.056871 
S.E. of regression 0.014524    Sum squared resid 0.059277 
Durbin-Watson stat 2.072088    
Equation: TELMEXL=C(111)+C(112)*PC1+C(113)*PC2+C(114)*PC3 
        +C(115)*PC4+C(116)*PC5+C(117)*PC6+C(118)*PC7+C(119)*PC8 
        +C(120)*PC9   
Observations: 291   
R-squared 0.692273    Mean dependent var 0.001198 
Adjusted R-squared 0.682417    S.D. dependent var 0.033430 
S.E. of regression 0.018839    Sum squared resid 0.099732 
Durbin-Watson stat 2.185971    
Equation: TELECOA1=C(121)+C(122)*PC1+C(123)*PC2+C(124)*PC3 
        +C(125)*PC4+C(126)*PC5+C(127)*PC6+C(128)*PC7+C(129)*PC8 
        +C(130)*PC9   
Observations: 291   
R-squared 0.799319    Mean dependent var 0.001320 
Adjusted R-squared 0.792892    S.D. dependent var 0.044440 
S.E. of regression 0.020224    Sum squared resid 0.114933 
Durbin-Watson stat 2.262191    
Equation: TLEVICPO=C(131)+C(132)*PC1+C(133)*PC2+C(134)*PC3 
        +C(135)*PC4+C(136)*PC5+C(137)*PC6+C(138)*PC7+C(139)*PC8 
        +C(140)*PC9   
Observations: 291   
R-squared 0.743752    Mean dependent var 0.000899 
Adjusted R-squared 0.735544    S.D. dependent var 0.047478 
S.E. of regression 0.024416    Sum squared resid 0.167512 
Durbin-Watson stat 2.130634    
Equation: TVAZTCPO=C(141)+C(142)*PC1+C(143)*PC2+C(144)*PC3 
        +C(145)*PC4+C(146)*PC5+C(147)*PC6+C(148)*PC7+C(149)*PC8 
        +C(150)*PC9   
Observations: 291   
R-squared 0.803658    Mean dependent var -0.000334 
Adjusted R-squared 0.797369    S.D. dependent var 0.052751 
S.E. of regression 0.023745    Sum squared resid 0.158441 
Durbin-Watson stat 1.999357    
Equation: GFNORTEO=C(151)+C(152)*PC1+C(153)*PC2+C(154)*PC3 
        +C(155)*PC4+C(156)*PC5+C(157)*PC6+C(158)*PC7+C(159)*PC8 
        +C(160)*PC9   
Observations: 291   
R-squared 0.522566    Mean dependent var 0.006851 
Adjusted R-squared 0.507274    S.D. dependent var 0.043634 
S.E. of regression 0.030629    Sum squared resid 0.263614 
Durbin-Watson stat 2.166391    
Equation: GFINBURO=C(161)+C(162)*PC1+C(163)*PC2+C(164)*PC3 
        +C(165)*PC4+C(166)*PC5+C(167)*PC6+C(168)*PC7+C(169)*PC8 
        +C(170)*PC9   
Observations: 291   
R-squared 0.617323    Mean dependent var 0.002456 
Adjusted R-squared 0.605066    S.D. dependent var 0.042593 
S.E. of regression 0.026767    Sum squared resid 0.201331 
Durbin-Watson stat 2.076564    
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Equation: GCARSOA1=C(171)+C(172)*PC1+C(173)*PC2+C(174)*PC3 
        +C(175)*PC4+C(176)*PC5+C(177)*PC6+C(178)*PC7+C(179)*PC8 
        +C(180)*PC9   
Observations: 291   
R-squared 0.669994    Mean dependent var 0.003413 
Adjusted R-squared 0.659424    S.D. dependent var 0.044485 
S.E. of regression 0.025961    Sum squared resid 0.189385 
Durbin-Watson stat 2.143658    
Equation: ALFAA=C(181)+C(182)*PC1+C(183)*PC2+C(184)*PC3+C(185) 
        *PC4+C(186)*PC5+C(187)*PC6+C(188)*PC7+C(189)*PC8+C(190) 
        *PC9    
Observations: 291   
R-squared 0.995789    Mean dependent var 0.003559 
Adjusted R-squared 0.995654    S.D. dependent var 0.061893 
S.E. of regression 0.004080    Sum squared resid 0.004678 
Durbin-Watson stat 2.073691    
Equation: CIEB=C(191)+C(192)*PC1+C(193)*PC2+C(194)*PC3+C(195) 
        *PC4+C(196)*PC5+C(197)*PC6+C(198)*PC7+C(199)*PC8+C(200) 
        *PC9    
Observations: 291   
R-squared 0.775063    Mean dependent var -0.001948 
Adjusted R-squared 0.767859    S.D. dependent var 0.050515 
S.E. of regression 0.024339    Sum squared resid 0.166456 
Durbin-Watson stat 2.084575    
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Table 2. Principal Component Analysis. Betas estimation for all the equation system via 
Weighted Least Squares. Database of weekly excesses. 

 

 Coefficient Std. Error t-Statistic Prob.   

C(1) 0.000198 0.000181 1.094890 0.2736 
C(2) -0.128621 0.001383 -93.03156 0.0000 
C(3) 0.914825 0.002620 349.1881 0.0000 
C(4) 0.318410 0.003336 95.43473 0.0000 
C(5) 0.038227 0.003608 10.59520 0.0000 
C(6) -0.072042 0.003813 -18.89247 0.0000 
C(7) 0.105108 0.004103 25.61607 0.0000 
C(8) -0.119753 0.004264 -28.08716 0.0000 
C(9) 0.020881 0.004416 4.728943 0.0000 

C(10) -0.064310 0.004594 -13.99936 0.0000 
C(11) 0.002478 0.000907 2.730768 0.0063 
C(12) -0.114174 0.006938 -16.45520 0.0000 
C(13) -0.019511 0.013148 -1.483941 0.1379 
C(14) 0.201153 0.016744 12.01337 0.0000 
C(15) -0.013230 0.018107 -0.730692 0.4650 
C(16) 0.179744 0.019137 9.392393 0.0000 
C(17) -0.231994 0.020592 -11.26601 0.0000 
C(18) 0.588670 0.021397 27.51125 0.0000 
C(19) -0.004762 0.022160 -0.214901 0.8299 
C(20) -0.529515 0.023054 -22.96809 0.0000 
C(21) 0.000700 0.001591 0.439715 0.6602 
C(22) -0.097772 0.012167 -8.036113 0.0000 
C(23) -0.038033 0.023055 -1.649664 0.0991 
C(24) 0.070472 0.029361 2.400222 0.0164 
C(25) 0.047743 0.031750 1.503713 0.1327 
C(26) -0.129052 0.033557 -3.845757 0.0001 
C(27) 0.050038 0.036109 1.385767 0.1659 
C(28) -0.151242 0.037520 -4.030937 0.0001 
C(29) 0.140286 0.038858 3.610253 0.0003 
C(30) 0.087455 0.040426 2.163360 0.0306 
C(31) 0.000613 0.001770 0.346543 0.7289 
C(32) -0.211574 0.013536 -15.63033 0.0000 
C(33) -0.067898 0.025650 -2.647067 0.0081 
C(34) 0.104672 0.032666 3.204351 0.0014 
C(35) -0.099130 0.035324 -2.806323 0.0050 
C(36) 0.030077 0.037334 0.805602 0.4205 
C(37) 0.013791 0.040173 0.343277 0.7314 
C(38) 0.127362 0.041744 3.051041 0.0023 
C(39) 0.166301 0.043232 3.846749 0.0001 
C(40) -0.015360 0.044976 -0.341509 0.7327 
C(41) 0.000198 0.000583 0.340265 0.7337 
C(42) -0.132138 0.004455 -29.66207 0.0000 
C(43) 0.080704 0.008442 9.560359 0.0000 
C(44) 0.073680 0.010750 6.853748 0.0000 
C(45) 0.161726 0.011625 13.91166 0.0000 
C(46) 0.240403 0.012287 19.56598 0.0000 
C(47) -0.444461 0.013221 -33.61765 0.0000 
C(48) 0.222137 0.013738 16.16958 0.0000 
C(49) 0.318488 0.014228 22.38528 0.0000 
C(50) 0.661647 0.014802 44.70052 0.0000 
C(51) -0.000243 0.000513 -0.474545 0.6351 
C(52) -0.294405 0.003921 -75.09143 0.0000 
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C(53) 0.268035 0.007429 36.07779 0.0000 
C(54) -0.766692 0.009461 -81.03408 0.0000 
C(55) -0.365744 0.010231 -35.74758 0.0000 
C(56) 0.098299 0.010814 9.090351 0.0000 
C(57) 0.016143 0.011636 1.387348 0.1654 
C(58) 0.139059 0.012091 11.50127 0.0000 
C(59) 0.122631 0.012522 9.793534 0.0000 
C(60) -0.033239 0.013027 -2.551555 0.0108 
C(61) 0.000426 0.001732 0.246081 0.8056 
C(62) -0.154042 0.013244 -11.63107 0.0000 
C(63) 0.081230 0.025097 3.236675 0.0012 
C(64) -0.078866 0.031961 -2.467602 0.0136 
C(65) -0.011561 0.034562 -0.334508 0.7380 
C(66) 0.210551 0.036529 5.764023 0.0000 
C(67) 0.070341 0.039306 1.789567 0.0736 
C(68) 0.148204 0.040843 3.628629 0.0003 
C(69) -0.290667 0.042299 -6.871785 0.0000 
C(70) 0.206675 0.044006 4.696559 0.0000 
C(71) 0.001849 0.001510 1.224743 0.2207 
C(72) -0.190599 0.011548 -16.50451 0.0000 
C(73) -0.098560 0.021883 -4.503860 0.0000 
C(74) 0.061326 0.027869 2.200528 0.0278 
C(75) -0.077239 0.030137 -2.562961 0.0104 
C(76) -0.087619 0.031852 -2.750835 0.0060 
C(77) 0.142942 0.034274 4.170599 0.0000 
C(78) -0.031129 0.035614 -0.874063 0.3821 
C(79) 0.348821 0.036883 9.457544 0.0000 
C(80) -0.011707 0.038371 -0.305110 0.7603 
C(81) -0.000371 0.001547 -0.240111 0.8103 
C(82) -0.227958 0.011828 -19.27354 0.0000 
C(83) -0.096911 0.022412 -4.323971 0.0000 
C(84) 0.061563 0.028542 2.156899 0.0311 
C(85) -0.173264 0.030865 -5.613589 0.0000 
C(86) -0.022293 0.032622 -0.683385 0.4944 
C(87) -0.059432 0.035102 -1.693116 0.0905 
C(88) -0.334488 0.036475 -9.170424 0.0000 
C(89) 0.072405 0.037775 1.916768 0.0553 
C(90) -0.153292 0.039299 -3.900644 0.0001 
C(91) 0.001230 0.001748 0.703641 0.4817 
C(92) -0.216331 0.013371 -16.17912 0.0000 
C(93) -0.012994 0.025337 -0.512822 0.6081 
C(94) 0.121894 0.032267 3.777645 0.0002 
C(95) -0.002108 0.034893 -0.060413 0.9518 
C(96) 0.079854 0.036879 2.165316 0.0304 
C(97) -0.312504 0.039683 -7.874984 0.0000 
C(98) -0.235258 0.041235 -5.705358 0.0000 
C(99) -0.197525 0.042704 -4.625437 0.0000 

C(100) -0.070837 0.044428 -1.594445 0.1109 
C(101) -0.000255 0.000846 -0.301637 0.7629 
C(102) -0.306127 0.006470 -47.31276 0.0000 
C(103) 0.015574 0.012261 1.270239 0.2041 
C(104) -0.159193 0.015614 -10.19538 0.0000 
C(105) 0.359006 0.016885 21.26195 0.0000 
C(106) -0.509815 0.017846 -28.56775 0.0000 
C(107) -0.183407 0.019203 -9.551055 0.0000 
C(108) 0.220635 0.019954 11.05742 0.0000 
C(109) -0.459446 0.020665 -22.23334 0.0000 
C(110) 0.069949 0.021499 3.253628 0.0011 
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C(111) -0.000962 0.001098 -0.876275 0.3809 
C(112) -0.170090 0.008394 -20.26228 0.0000 
C(113) -0.064637 0.015907 -4.063471 0.0000 
C(114) 0.161012 0.020258 7.948239 0.0000 
C(115) -0.078322 0.021906 -3.575367 0.0004 
C(116) -0.067872 0.023153 -2.931504 0.0034 
C(117) 0.260675 0.024913 10.46327 0.0000 
C(118) 0.135428 0.025887 5.231456 0.0000 
C(119) 0.003209 0.026810 0.119697 0.9047 
C(120) 0.081848 0.027892 2.934466 0.0034 
C(121) -0.001477 0.001178 -1.254419 0.2097 
C(122) -0.233816 0.009007 -25.96000 0.0000 
C(123) -0.081624 0.017067 -4.782485 0.0000 
C(124) 0.226978 0.021735 10.44279 0.0000 
C(125) -0.089406 0.023504 -3.803838 0.0001 
C(126) -0.029093 0.024842 -1.171116 0.2416 
C(127) 0.401360 0.026731 15.01489 0.0000 
C(128) 0.267023 0.027776 9.613510 0.0000 
C(129) -0.093712 0.028766 -3.257745 0.0011 
C(130) 0.117564 0.029927 3.928414 0.0001 
C(131) -0.000767 0.001422 -0.539424 0.5896 
C(132) -0.275457 0.010878 -25.32250 0.0000 
C(133) -0.081309 0.020613 -3.944538 0.0001 
C(134) 0.120165 0.026251 4.577545 0.0000 
C(135) -0.125915 0.028387 -4.435636 0.0000 
C(136) -0.139772 0.030003 -4.658636 0.0000 
C(137) 0.136608 0.032284 4.231436 0.0000 
C(138) 0.128621 0.033546 3.834124 0.0001 
C(139) 0.343970 0.034742 9.900733 0.0000 
C(140) -0.019275 0.036144 -0.533272 0.5939 
C(141) -0.000995 0.001385 -0.718388 0.4725 
C(142) -0.301306 0.010589 -28.45553 0.0000 
C(143) -0.072680 0.020065 -3.622261 0.0003 
C(144) -0.051863 0.025553 -2.029643 0.0424 
C(145) 0.088200 0.027632 3.191917 0.0014 
C(146) -0.454759 0.029205 -15.57138 0.0000 
C(147) -0.222681 0.031426 -7.085992 0.0000 
C(148) -0.093589 0.032654 -2.866082 0.0042 
C(149) 0.208999 0.033818 6.180124 0.0000 
C(150) -0.152320 0.035183 -4.329392 0.0000 
C(151) 0.004002 0.001784 2.242972 0.0249 
C(152) -0.201024 0.013646 -14.73165 0.0000 
C(153) -0.069594 0.025858 -2.691405 0.0071 
C(154) -0.076854 0.032930 -2.333854 0.0196 
C(155) -0.110365 0.035610 -3.099278 0.0019 
C(156) -0.021605 0.037636 -0.574043 0.5660 
C(157) 0.084983 0.040498 2.098441 0.0359 
C(158) -0.320213 0.042082 -7.609335 0.0000 
C(159) -0.141859 0.043581 -3.255021 0.0011 
C(160) 0.120912 0.045340 2.666764 0.0077 
C(161) -0.000973 0.001560 -0.624040 0.5326 
C(162) -0.188711 0.011930 -15.81840 0.0000 
C(163) -0.038977 0.022606 -1.724183 0.0847 
C(164) 0.042821 0.028789 1.487393 0.1370 
C(165) -0.233256 0.031132 -7.492442 0.0000 
C(166) 0.258189 0.032904 7.846781 0.0000 
C(167) 0.096026 0.035406 2.712160 0.0067 
C(168) -0.005264 0.036790 -0.143073 0.8862 
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C(169) -0.361612 0.038101 -9.490797 0.0000 
C(170) -0.022350 0.039639 -0.563843 0.5729 
C(171) 0.001149 0.001511 0.760208 0.4472 
C(172) -0.236775 0.011555 -20.49163 0.0000 
C(173) -0.127194 0.021896 -5.809115 0.0000 
C(174) 0.166393 0.027884 5.967328 0.0000 
C(175) -0.078233 0.030153 -2.594516 0.0095 
C(176) 0.001903 0.031869 0.059702 0.9524 
C(177) 0.161825 0.034293 4.718961 0.0000 
C(178) -0.030778 0.035633 -0.863751 0.3878 
C(179) -0.173324 0.036903 -4.696724 0.0000 
C(180) 0.286234 0.038393 7.455461 0.0000 
C(181) -0.000546 0.000241 -2.259712 0.0239 
C(182) -0.328755 0.001847 -178.0201 0.0000 
C(183) -0.057635 0.003499 -16.46973 0.0000 
C(184) -0.155695 0.004457 -34.93608 0.0000 
C(185) 0.706754 0.004819 146.6527 0.0000 
C(186) 0.445655 0.005094 87.49488 0.0000 
C(187) 0.255859 0.005481 46.68275 0.0000 
C(188) -0.169158 0.005695 -29.70239 0.0000 
C(189) 0.122277 0.005898 20.73174 0.0000 
C(190) -0.203508 0.006136 -33.16577 0.0000 
C(191) -0.002573 0.001420 -1.812450 0.0700 
C(192) -0.262681 0.010857 -24.19473 0.0000 
C(193) -0.059909 0.020573 -2.911966 0.0036 
C(194) 0.201921 0.026200 7.706832 0.0000 
C(195) -0.226608 0.028332 -7.998212 0.0000 
C(196) 0.247301 0.029945 8.258571 0.0000 
C(197) -0.411142 0.032222 -12.75976 0.0000 
C(198) -0.213159 0.033481 -6.366463 0.0000 
C(199) -0.086897 0.034675 -2.506074 0.0122 
C(200) -0.099466 0.036074 -2.757266 0.0058 

Equation: PE_OLES_01=C(1)+C(2)*PC1+C(3)*PC2+C(4)*PC3+C(5)*PC4 
        +C(6)*PC5+C(7)*PC6+C(8)*PC7+C(9)*PC8+C(10)*PC9 
Observations: 291   
R-squared 0.997952    Mean dependent var 0.003041 
Adjusted R-squared 0.997887    S.D. dependent var 0.067481 
S.E. of regression 0.003102    Sum squared resid 0.002704 
Durbin-Watson stat 2.098103    
Equation: BIMBOA=C(11)+C(12)*PC1+C(13)*PC2+C(14)*PC3+C(15)*PC4 
        +C(16)*PC5+C(17)*PC6+C(18)*PC7+C(19)*PC8+C(20)*PC9 
Observations: 291   
R-squared 0.868231    Mean dependent var 0.001472 
Adjusted R-squared 0.864011    S.D. dependent var 0.042216 
S.E. of regression 0.015568    Sum squared resid 0.068103 
Durbin-Watson stat 2.031260    
Equation: GMODELOC=C(21)+C(22)*PC1+C(23)*PC2+C(24)*PC3+C(25) 
        *PC4+C(26)*PC5+C(27)*PC6+C(28)*PC7+C(29)*PC8+C(30)*PC9 
Observations: 291   
R-squared 0.302151    Mean dependent var 0.000176 
Adjusted R-squared 0.279800    S.D. dependent var 0.032167 
S.E. of regression 0.027298    Sum squared resid 0.209399 
Durbin-Watson stat 2.299519    
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Equation: FEMSAUBD=C(31)+C(32)*PC1+C(33)*PC2+C(34)*PC3+C(35) 
        *PC4+C(36)*PC5+C(37)*PC6+C(38)*PC7+C(39)*PC8+C(40)*PC9 
Observations: 291   
R-squared 0.502944    Mean dependent var 0.000669 
Adjusted R-squared 0.487024    S.D. dependent var 0.042404 
S.E. of regression 0.030371    Sum squared resid 0.259193 
Durbin-Watson stat 2.316372    
Equation: CONTAL_01=C(41)+C(42)*PC1+C(43)*PC2+C(44)*PC3+C(45) 
        *PC4+C(46)*PC5+C(47)*PC6+C(48)*PC7+C(49)*PC8+C(50)*PC9 
Observations: 291   
R-squared 0.949623    Mean dependent var 0.000350 
Adjusted R-squared 0.948009    S.D. dependent var 0.043836 
S.E. of regression 0.009995    Sum squared resid 0.028073 
Durbin-Watson stat 2.125635    
Equation: GEOB=C(51)+C(52)*PC1+C(53)*PC2+C(54)*PC3+C(55)*PC4 
        +C(56)*PC5+C(57)*PC6+C(58)*PC7+C(59)*PC8+C(60)*PC9 
Observations: 291   
R-squared 0.981098    Mean dependent var 0.006502 
Adjusted R-squared 0.980492    S.D. dependent var 0.062982 
S.E. of regression 0.008797    Sum squared resid 0.021744 
Durbin-Watson stat 2.218890    
Equation: ARA_01=C(61)+C(62)*PC1+C(63)*PC2+C(64)*PC3+C(65)*PC4 
        +C(66)*PC5+C(67)*PC6+C(68)*PC7+C(69)*PC8+C(70)*PC9 
Observations: 291   
R-squared 0.482051    Mean dependent var 0.003209 
Adjusted R-squared 0.465462    S.D. dependent var 0.040644 
S.E. of regression 0.029716    Sum squared resid 0.248127 
Durbin-Watson stat 2.154826    
Equation: WALMEXV=C(71)+C(72)*PC1+C(73)*PC2+C(74)*PC3+C(75) 
        *PC4+C(76)*PC5+C(77)*PC6+C(78)*PC7+C(79)*PC8+C(80)*PC9 
Observations: 291   
R-squared 0.590347    Mean dependent var 0.001645 
Adjusted R-squared 0.577227    S.D. dependent var 0.039850 
S.E. of regression 0.025911    Sum squared resid 0.188657 
Durbin-Watson stat 2.411701    
Equation: SORIANAB=C(81)+C(82)*PC1+C(83)*PC2+C(84)*PC3+C(85) 
        *PC4+C(86)*PC5+C(87)*PC6+C(88)*PC7+C(89)*PC8+C(90)*PC9 
Observations: 291   
R-squared 0.646695    Mean dependent var -0.000943 
Adjusted R-squared 0.635379    S.D. dependent var 0.043948 
S.E. of regression 0.026537    Sum squared resid 0.197890 
Durbin-Watson stat 2.292816    
Equation: COMERUBC=C(91)+C(92)*PC1+C(93)*PC2+C(94)*PC3+C(95) 
        *PC4+C(96)*PC5+C(97)*PC6+C(98)*PC7+C(99)*PC8+C(100)*PC9 
Observations: 291   
R-squared 0.578562    Mean dependent var 0.000568 
Adjusted R-squared 0.565064    S.D. dependent var 0.045490 
S.E. of regression 0.030001    Sum squared resid 0.252909 
Durbin-Watson stat 2.220610    
Equation: ELEKTRA_01=C(101)+C(102)*PC1+C(103)*PC2+C(104)*PC3 
        +C(105)*PC4+C(106)*PC5+C(107)*PC6+C(108)*PC7+C(109)*PC8 
        +C(110)*PC9   
Observations: 291   
R-squared 0.937035    Mean dependent var 0.000965 
Adjusted R-squared 0.935019    S.D. dependent var 0.056950 
S.E. of regression 0.014517    Sum squared resid 0.059222 
Durbin-Watson stat 2.072070    
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Equation: TELMEXL=C(111)+C(112)*PC1+C(113)*PC2+C(114)*PC3 
        +C(115)*PC4+C(116)*PC5+C(117)*PC6+C(118)*PC7+C(119)*PC8 
        +C(120)*PC9   
Observations: 291   
R-squared 0.693069    Mean dependent var -0.000491 
Adjusted R-squared 0.683239    S.D. dependent var 0.033465 
S.E. of regression 0.018835    Sum squared resid 0.099682 
Durbin-Watson stat 2.187132    
Equation: TELECOA1=C(121)+C(122)*PC1+C(123)*PC2+C(124)*PC3 
        +C(125)*PC4+C(126)*PC5+C(127)*PC6+C(128)*PC7+C(129)*PC8 
        +C(130)*PC9   
Observations: 291   
R-squared 0.800219    Mean dependent var -0.000369 
Adjusted R-squared 0.793821    S.D. dependent var 0.044505 
S.E. of regression 0.020209    Sum squared resid 0.114756 
Durbin-Watson stat 2.264464    
Equation: TLEVICPO=C(131)+C(132)*PC1+C(133)*PC2+C(134)*PC3 
        +C(135)*PC4+C(136)*PC5+C(137)*PC6+C(138)*PC7+C(139)*PC8 
        +C(140)*PC9   
Observations: 291   
R-squared 0.744968    Mean dependent var -0.000790 
Adjusted R-squared 0.736800    S.D. dependent var 0.047574 
S.E. of regression 0.024407    Sum squared resid 0.167390 
Durbin-Watson stat 2.132377    
Equation: TVAZTCPO=C(141)+C(142)*PC1+C(143)*PC2+C(144)*PC3 
        +C(145)*PC4+C(146)*PC5+C(147)*PC6+C(148)*PC7+C(149)*PC8 
        +C(150)*PC9   
Observations: 291   
R-squared 0.804169    Mean dependent var -0.002023 
Adjusted R-squared 0.797897    S.D. dependent var 0.052847 
S.E. of regression 0.023758    Sum squared resid 0.158605 
Durbin-Watson stat 1.999622    

     
Equation: GFNORTEO=C(151)+C(152)*PC1+C(153)*PC2+C(154)*PC3 
        +C(155)*PC4+C(156)*PC5+C(157)*PC6+C(158)*PC7+C(159)*PC8 
        +C(160)*PC9   
Observations: 291   
R-squared 0.523466    Mean dependent var 0.005163 
Adjusted R-squared 0.508203    S.D. dependent var 0.043658 
S.E. of regression 0.030617    Sum squared resid 0.263407 
Durbin-Watson stat 2.169587    
Equation: GFINBURO=C(161)+C(162)*PC1+C(163)*PC2+C(164)*PC3 
        +C(165)*PC4+C(166)*PC5+C(167)*PC6+C(168)*PC7+C(169)*PC8 
        +C(170)*PC9   
Observations: 291   
R-squared 0.618053    Mean dependent var 0.000767 
Adjusted R-squared 0.605819    S.D. dependent var 0.042633 
S.E. of regression 0.026767    Sum squared resid 0.201328 
Durbin-Watson stat 2.077508    
Equation: GCARSOA1=C(171)+C(172)*PC1+C(173)*PC2+C(174)*PC3 
        +C(175)*PC4+C(176)*PC5+C(177)*PC6+C(178)*PC7+C(179)*PC8 
        +C(180)*PC9   
Observations: 291   
R-squared 0.672170    Mean dependent var 0.001724 
Adjusted R-squared 0.661670    S.D. dependent var 0.044571 
S.E. of regression 0.025925    Sum squared resid 0.188866 
Durbin-Watson stat 2.144110    
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Equation: ALFAA=C(181)+C(182)*PC1+C(183)*PC2+C(184)*PC3+C(185) 
        *PC4+C(186)*PC5+C(187)*PC6+C(188)*PC7+C(189)*PC8+C(190) 
        *PC9    
Observations: 291   
R-squared 0.995671    Mean dependent var 0.001871 
Adjusted R-squared 0.995533    S.D. dependent var 0.061994 
S.E. of regression 0.004144    Sum squared resid 0.004824 
Durbin-Watson stat 2.077114    
Equation: CIEB=C(191)+C(192)*PC1+C(193)*PC2+C(194)*PC3+C(195) 
        *PC4+C(196)*PC5+C(197)*PC6+C(198)*PC7+C(199)*PC8+C(200) 
        *PC9    
Observations: 291   
R-squared 0.775057    Mean dependent var -0.003637 
Adjusted R-squared 0.767852    S.D. dependent var 0.050558 
S.E. of regression 0.024360    Sum squared resid 0.166744 
Durbin-Watson stat 2.084044    
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Table 3. Principal Component Analysis. Betas estimation for all the equation system via 
Weighted Least Squares. Database of daily returns. 

 
 

 Coefficient Std. Error t-Statistic Prob.   

C(1) -1.52E-05 2.31E-05 -0.656807 0.5113 
C(2) 0.117277 0.000413 284.0886 0.0000 
C(3) -0.973511 0.000788 -1236.012 0.0000 
C(4) 0.096652 0.001040 92.91131 0.0000 
C(5) -0.100518 0.001096 -91.72998 0.0000 
C(6) 0.085719 0.001147 74.75726 0.0000 
C(7) -0.086521 0.001164 -74.35263 0.0000 
C(8) 0.000798 0.001220 0.654285 0.5129 
C(9) 0.012306 0.001274 9.656538 0.0000 

C(10) -0.029220 0.001333 -21.92088 0.0000 
C(11) 5.24E-05 0.000345 0.151695 0.8794 
C(12) 0.117706 0.006155 19.12253 0.0000 
C(13) -0.004097 0.011744 -0.348888 0.7272 
C(14) 0.009729 0.015511 0.627213 0.5305 
C(15) 0.181604 0.016339 11.11481 0.0000 
C(16) 0.033397 0.017097 1.953430 0.0508 
C(17) -0.042078 0.017351 -2.425144 0.0153 
C(18) 0.012899 0.018186 0.709281 0.4782 
C(19) 0.010925 0.019001 0.574953 0.5653 
C(20) 0.113274 0.019875 5.699194 0.0000 
C(21) 0.000492 0.000378 1.300405 0.1935 
C(22) 0.148436 0.006744 22.00902 0.0000 
C(23) -0.036119 0.012868 -2.806999 0.0050 
C(24) -0.015305 0.016995 -0.900583 0.3678 
C(25) 0.231567 0.017902 12.93496 0.0000 
C(26) -0.008874 0.018733 -0.473721 0.6357 
C(27) 0.152692 0.019011 8.031767 0.0000 
C(28) 0.107816 0.019926 5.410741 0.0000 
C(29) 0.334676 0.020819 16.07516 0.0000 
C(30) 0.138036 0.021777 6.338535 0.0000 
C(31) 0.000131 0.000358 0.365989 0.7144 
C(32) 0.129918 0.006377 20.37181 0.0000 
C(33) -0.006767 0.012167 -0.556181 0.5781 
C(34) 0.095008 0.016070 5.912076 0.0000 
C(35) 0.080014 0.016928 4.726648 0.0000 
C(36) 0.021540 0.017713 1.216039 0.2240 
C(37) 0.001719 0.017976 0.095599 0.9238 
C(38) -0.062749 0.018842 -3.330282 0.0009 
C(39) -0.171372 0.019687 -8.705039 0.0000 
C(40) 0.003197 0.020592 0.155253 0.8766 
C(41) 0.000230 0.000349 0.659640 0.5095 
C(42) 0.197091 0.006225 31.66077 0.0000 
C(43) 0.047015 0.011877 3.958500 0.0001 
C(44) 0.044271 0.015687 2.822226 0.0048 
C(45) 0.039223 0.016524 2.373686 0.0176 
C(46) 0.018307 0.017290 1.058782 0.2897 
C(47) -0.120970 0.017547 -6.893981 0.0000 
C(48) -0.089376 0.018392 -4.859456 0.0000 
C(49) -0.050793 0.019216 -2.643184 0.0082 
C(50) 0.075617 0.020101 3.761917 0.0002 
C(51) -9.63E-05 9.93E-05 -0.969381 0.3324 
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C(52) 0.132065 0.001772 74.53834 0.0000 
C(53) -0.115742 0.003380 -34.23930 0.0000 
C(54) 0.034728 0.004465 7.778296 0.0000 
C(55) 0.510560 0.004703 108.5591 0.0000 
C(56) -0.510300 0.004921 -103.6939 0.0000 
C(57) 0.536398 0.004994 107.4021 0.0000 
C(58) -0.203487 0.005235 -38.87219 0.0000 
C(59) -0.156846 0.005469 -28.67711 0.0000 
C(60) -0.186973 0.005721 -32.68173 0.0000 
C(61) 0.000280 0.000332 0.845019 0.3981 
C(62) 0.180871 0.005919 30.55964 0.0000 
C(63) 0.022931 0.011292 2.030680 0.0423 
C(64) 0.014058 0.014914 0.942565 0.3459 
C(65) 0.036934 0.015711 2.350911 0.0187 
C(66) -0.006984 0.016439 -0.424831 0.6710 
C(67) -0.026538 0.016683 -1.590653 0.1117 
C(68) -0.041823 0.017487 -2.391719 0.0168 
C(69) -0.072307 0.018270 -3.957569 0.0001 
C(70) -0.081715 0.019111 -4.275814 0.0000 
C(71) 6.40E-06 0.000102 0.062851 0.9499 
C(72) 0.225849 0.001815 124.4428 0.0000 
C(73) -0.059157 0.003463 -17.08451 0.0000 
C(74) -0.891996 0.004573 -195.0436 0.0000 
C(75) -0.168168 0.004817 -34.90780 0.0000 
C(76) -0.112279 0.005041 -22.27346 0.0000 
C(77) 0.010028 0.005116 1.960284 0.0500 
C(78) -0.202801 0.005362 -37.82103 0.0000 
C(79) 0.006027 0.005602 1.075852 0.2820 
C(80) 0.116431 0.005860 19.86809 0.0000 
C(81) 5.39E-06 0.000375 0.014365 0.9885 
C(82) 0.163555 0.006687 24.45981 0.0000 
C(83) -0.001398 0.012758 -0.109586 0.9127 
C(84) -0.198275 0.016850 -11.76728 0.0000 
C(85) 0.075148 0.017749 4.233841 0.0000 
C(86) 0.025236 0.018573 1.358797 0.1742 
C(87) -0.058643 0.018848 -3.111319 0.0019 
C(88) 0.037707 0.019756 1.908636 0.0563 
C(89) 0.190285 0.020641 9.218625 0.0000 
C(90) -0.385155 0.021591 -17.83867 0.0000 
C(91) 0.000189 0.000349 0.542248 0.5877 
C(92) 0.224860 0.006232 36.08428 0.0000 
C(93) 0.027891 0.011889 2.345889 0.0190 
C(94) 0.066353 0.015703 4.225540 0.0000 
C(95) 0.061221 0.016541 3.701169 0.0002 
C(96) 0.064257 0.017308 3.712484 0.0002 
C(97) -0.107477 0.017565 -6.118647 0.0000 
C(98) -0.162189 0.018411 -8.809266 0.0000 
C(99) -0.101101 0.019236 -5.255717 0.0000 

C(100) -0.027224 0.020121 -1.352977 0.1761 
C(101) -0.000126 0.000351 -0.357612 0.7206 
C(102) 0.218567 0.006266 34.88057 0.0000 
C(103) 0.013687 0.011955 1.144873 0.2523 
C(104) 0.024749 0.015790 1.567398 0.1170 
C(105) 0.088093 0.016633 5.296223 0.0000 
C(106) 0.033299 0.017405 1.913214 0.0557 
C(107) -0.113927 0.017663 -6.449983 0.0000 
C(108) -0.018807 0.018514 -1.015825 0.3097 
C(109) -0.107152 0.019343 -5.539502 0.0000 
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C(110) 0.198334 0.020233 9.802416 0.0000 
C(111) -0.000160 0.000240 -0.667304 0.5046 
C(112) 0.194787 0.004286 45.44628 0.0000 
C(113) -0.004795 0.008177 -0.586310 0.5577 
C(114) -0.047340 0.010801 -4.383151 0.0000 
C(115) 0.106974 0.011377 9.402583 0.0000 
C(116) 0.089717 0.011905 7.536190 0.0000 
C(117) 0.088346 0.012082 7.312418 0.0000 
C(118) 0.375847 0.012663 29.67981 0.0000 
C(119) -0.638845 0.013231 -48.28408 0.0000 
C(120) 0.281432 0.013840 20.33522 0.0000 
C(121) -5.06E-05 0.000192 -0.264082 0.7917 
C(122) 0.294896 0.003417 86.30378 0.0000 
C(123) 0.032482 0.006519 4.982443 0.0000 
C(124) 0.089370 0.008610 10.37941 0.0000 
C(125) -0.417701 0.009070 -46.05273 0.0000 
C(126) -0.409545 0.009491 -43.15185 0.0000 
C(127) 0.135759 0.009632 14.09500 0.0000 
C(128) 0.551258 0.010095 54.60444 0.0000 
C(129) 0.116898 0.010548 11.08249 0.0000 
C(130) -0.161634 0.011033 -14.64976 0.0000 
C(131) -0.000145 0.000266 -0.544594 0.5860 
C(132) 0.190876 0.004742 40.24855 0.0000 
C(133) 0.040909 0.009048 4.521291 0.0000 
C(134) 0.088137 0.011950 7.375187 0.0000 
C(135) 0.034310 0.012588 2.725546 0.0064 
C(136) 0.074800 0.013172 5.678560 0.0000 
C(137) -0.121430 0.013368 -9.083658 0.0000 
C(138) -0.213092 0.014012 -15.20815 0.0000 
C(139) -0.029400 0.014640 -2.008212 0.0446 
C(140) -0.082459 0.015313 -5.384827 0.0000 
C(141) -0.000286 0.000318 -0.900363 0.3679 
C(142) 0.251475 0.005665 44.39309 0.0000 
C(143) 0.045548 0.010808 4.214373 0.0000 
C(144) 0.098991 0.014275 6.934843 0.0000 
C(145) 0.076606 0.015037 5.094615 0.0000 
C(146) 0.171658 0.015734 10.90993 0.0000 
C(147) -0.132722 0.015968 -8.311868 0.0000 
C(148) -0.192538 0.016737 -11.50401 0.0000 
C(149) 0.006824 0.017487 0.390236 0.6964 
C(150) -0.106576 0.018291 -5.826643 0.0000 
C(151) -0.000240 0.000310 -0.776181 0.4376 
C(152) 0.297633 0.005525 53.87240 0.0000 
C(153) 0.085528 0.010541 8.113976 0.0000 
C(154) 0.110027 0.013922 7.903200 0.0000 
C(155) -0.112249 0.014665 -7.654109 0.0000 
C(156) -0.109032 0.015345 -7.105213 0.0000 
C(157) -0.174872 0.015573 -11.22898 0.0000 
C(158) -0.322397 0.016323 -19.75096 0.0000 
C(159) -0.024119 0.017055 -1.414238 0.1573 
C(160) -0.076632 0.017839 -4.295675 0.0000 
C(161) 0.000103 0.000286 0.358488 0.7200 
C(162) 0.313603 0.005105 61.43316 0.0000 
C(163) 0.080714 0.009739 8.287274 0.0000 
C(164) 0.258394 0.012864 20.08734 0.0000 
C(165) -0.360452 0.013550 -26.60109 0.0000 
C(166) -0.351377 0.014179 -24.78185 0.0000 
C(167) -0.082768 0.014389 -5.752037 0.0000 
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C(168) -0.200247 0.015082 -13.27705 0.0000 
C(169) 0.048858 0.015758 3.100491 0.0019 
C(170) 0.211246 0.016483 12.81585 0.0000 
C(171) 0.000198 0.000323 0.613529 0.5395 
C(172) 0.213796 0.005764 37.09261 0.0000 
C(173) 0.060403 0.010997 5.492755 0.0000 
C(174) -0.123404 0.014524 -8.496415 0.0000 
C(175) 0.044131 0.015300 2.884403 0.0039 
C(176) 0.148043 0.016009 9.247234 0.0000 
C(177) -0.203432 0.016247 -12.52107 0.0000 
C(178) 0.279897 0.017029 16.43606 0.0000 
C(179) -0.312871 0.017793 -17.58422 0.0000 
C(180) -0.348748 0.018611 -18.73851 0.0000 
C(181) -0.000272 0.000334 -0.814287 0.4155 
C(182) 0.178957 0.005962 30.01385 0.0000 
C(183) 0.053846 0.011376 4.733357 0.0000 
C(184) -0.011782 0.015025 -0.784148 0.4330 
C(185) 0.209839 0.015827 13.25834 0.0000 
C(186) 0.137777 0.016561 8.319285 0.0000 
C(187) -0.065131 0.016807 -3.875238 0.0001 
C(188) 0.199550 0.017616 11.32758 0.0000 
C(189) 0.284825 0.018406 15.47470 0.0000 
C(190) -0.399761 0.019253 -20.76399 0.0000 
C(191) 0.000334 0.000369 0.903670 0.3662 
C(192) 0.221710 0.006590 33.64427 0.0000 
C(193) 0.035970 0.012573 2.860974 0.0042 
C(194) 0.107254 0.016606 6.458871 0.0000 
C(195) 0.140309 0.017492 8.021212 0.0000 
C(196) 0.136466 0.018304 7.455675 0.0000 
C(197) -0.071374 0.018575 -3.842386 0.0001 
C(198) 0.011392 0.019470 0.585093 0.5585 
C(199) 0.051382 0.020342 2.525838 0.0115 
C(200) -0.010589 0.021278 -0.497629 0.6187 
C(201) -6.35E-05 9.60E-05 -0.661640 0.5082 
C(202) 0.278485 0.001712 162.6742 0.0000 
C(203) 0.061667 0.003266 18.88038 0.0000 
C(204) 0.055725 0.004314 12.91768 0.0000 
C(205) -0.271528 0.004544 -59.75304 0.0000 
C(206) 0.553027 0.004755 116.3056 0.0000 
C(207) 0.682432 0.004826 141.4203 0.0000 
C(208) -0.081255 0.005058 -16.06489 0.0000 
C(209) 0.103866 0.005285 19.65449 0.0000 
C(210) 0.061710 0.005528 11.16369 0.0000 
C(211) -0.000263 0.000242 -1.084743 0.2780 
C(212) 0.228982 0.004318 53.02707 0.0000 
C(213) 0.003136 0.008239 0.380669 0.7035 
C(214) -0.036193 0.010881 -3.326125 0.0009 
C(215) 0.336151 0.011462 29.32645 0.0000 
C(216) -0.013054 0.011994 -1.088349 0.2764 
C(217) -0.154383 0.012172 -12.68323 0.0000 
C(218) 0.259536 0.012758 20.34255 0.0000 
C(219) 0.387151 0.013330 29.04336 0.0000 
C(220) 0.508508 0.013943 36.46953 0.0000 
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Equation: PE_OLES_01=C(1)+C(2)*PC1+C(3)*PC2+C(4)*PC3+C(5)*PC4 
        +C(6)*PC5+C(7)*PC6+C(8)*PC7+C(9)*PC8+C(10)*PC9 
Observations: 1410   
R-squared 0.999139    Mean dependent var 0.001028 
Adjusted R-squared 0.999134    S.D. dependent var 0.029462 
S.E. of regression 0.000867    Sum squared resid 0.001052 
Durbin-Watson stat 1.919752    
Equation: KIMBERA=C(11)+C(12)*PC1+C(13)*PC2+C(14)*PC3+C(15) 
        *PC4+C(16)*PC5+C(17)*PC6+C(18)*PC7+C(19)*PC8+C(20)*PC9 
Observations: 1410   
R-squared 0.274220    Mean dependent var 0.000209 
Adjusted R-squared 0.269554    S.D. dependent var 0.015126 
S.E. of regression 0.012928    Sum squared resid 0.233975 
Durbin-Watson stat 1.864498    
Equation: BIMBOA=C(21)+C(22)*PC1+C(23)*PC2+C(24)*PC3+C(25)*PC4 
        +C(26)*PC5+C(27)*PC6+C(28)*PC7+C(29)*PC8+C(30)*PC9 
Observations: 1410   
R-squared 0.427527    Mean dependent var 0.000650 
Adjusted R-squared 0.423847    S.D. dependent var 0.018661 
S.E. of regression 0.014165    Sum squared resid 0.280896 
Durbin-Watson stat 1.903879    
Equation: GMODELOC=C(31)+C(32)*PC1+C(33)*PC2+C(34)*PC3+C(35) 
        *PC4+C(36)*PC5+C(37)*PC6+C(38)*PC7+C(39)*PC8+C(40)*PC9 
Observations: 1410   
R-squared 0.284625    Mean dependent var 0.000384 
Adjusted R-squared 0.280026    S.D. dependent var 0.015785 
S.E. of regression 0.013394    Sum squared resid 0.251156 
Durbin-Watson stat 1.997113    

     
Equation: FEMSAUBD=C(41)+C(42)*PC1+C(43)*PC2+C(44)*PC3+C(45) 
        *PC4+C(46)*PC5+C(47)*PC6+C(48)*PC7+C(49)*PC8+C(50)*PC9 
Observations: 1410   
R-squared 0.443803    Mean dependent var 0.000500 
Adjusted R-squared 0.440228    S.D. dependent var 0.017475 
S.E. of regression 0.013074    Sum squared resid 0.239306 
Durbin-Watson stat 1.836734    
Equation: CONTAL_01=C(51)+C(52)*PC1+C(53)*PC2+C(54)*PC3+C(55) 
        *PC4+C(56)*PC5+C(57)*PC6+C(58)*PC7+C(59)*PC8+C(60)*PC9 
Observations: 1410   
R-squared 0.969128    Mean dependent var 0.000405 
Adjusted R-squared 0.968930    S.D. dependent var 0.021111 
S.E. of regression 0.003721    Sum squared resid 0.019386 
Durbin-Watson stat 1.909330    
Equation: CEMEXCP=C(61)+C(62)*PC1+C(63)*PC2+C(64)*PC3+C(65) 
        *PC4+C(66)*PC5+C(67)*PC6+C(68)*PC7+C(69)*PC8+C(70)*PC9 
Observations: 1410   
R-squared 0.411717    Mean dependent var 0.000771 
Adjusted R-squared 0.407935    S.D. dependent var 0.016155 
S.E. of regression 0.012430    Sum squared resid 0.216324 
Durbin-Watson stat 1.858554    
Equation: GEOB=C(71)+C(72)*PC1+C(73)*PC2+C(74)*PC3+C(75)*PC4 
        +C(76)*PC5+C(77)*PC6+C(78)*PC7+C(79)*PC8+C(80)*PC9 
Observations: 1410   
R-squared 0.976010    Mean dependent var 0.001662 
Adjusted R-squared 0.975856    S.D. dependent var 0.024531 
S.E. of regression 0.003812    Sum squared resid 0.020341 
Durbin-Watson stat 1.968132    
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Equation: ARA_01=C(81)+C(82)*PC1+C(83)*PC2+C(84)*PC3+C(85)*PC4 
        +C(86)*PC5+C(87)*PC6+C(88)*PC7+C(89)*PC8+C(90)*PC9 
Observations: 1410   
R-squared 0.454136    Mean dependent var 0.001007 
Adjusted R-squared 0.450627    S.D. dependent var 0.018947 
S.E. of regression 0.014044    Sum squared resid 0.276111 
Durbin-Watson stat 1.960419    
Equation: WALMEXV=C(91)+C(92)*PC1+C(93)*PC2+C(94)*PC3+C(95) 
        *PC4+C(96)*PC5+C(97)*PC6+C(98)*PC7+C(99)*PC8+C(100)*PC9 
Observations: 1410   
R-squared 0.515032    Mean dependent var 0.000655 
Adjusted R-squared 0.511914    S.D. dependent var 0.018733 
S.E. of regression 0.013088    Sum squared resid 0.239802 
Durbin-Watson stat 1.914680    
Equation: SORIANAB=C(101)+C(102)*PC1+C(103)*PC2+C(104)*PC3 
        +C(105)*PC4+C(106)*PC5+C(107)*PC6+C(108)*PC7+C(109)*PC8 
        +C(110)*PC9   
Observations: 1410   
R-squared 0.502038    Mean dependent var 0.000171 
Adjusted R-squared 0.498837    S.D. dependent var 0.018590 
S.E. of regression 0.013160    Sum squared resid 0.242476 
Durbin-Watson stat 1.930672    
Equation: COMERUBC=C(111)+C(112)*PC1+C(113)*PC2+C(114)*PC3 
        +C(115)*PC4+C(116)*PC5+C(117)*PC6+C(118)*PC7+C(119)*PC8 
        +C(120)*PC9   
Observations: 1410   
R-squared 0.807360    Mean dependent var 0.000498 
Adjusted R-squared 0.806122    S.D. dependent var 0.020444 
S.E. of regression 0.009002    Sum squared resid 0.113446 
Durbin-Watson stat 2.019104    
Equation: ELEKTRA_01=C(121)+C(122)*PC1+C(123)*PC2+C(124)*PC3 
        +C(125)*PC4+C(126)*PC5+C(127)*PC6+C(128)*PC7+C(129)*PC8 
        +C(130)*PC9   
Observations: 1410   
R-squared 0.914502    Mean dependent var 0.000526 
Adjusted R-squared 0.913952    S.D. dependent var 0.024465 
S.E. of regression 0.007176    Sum squared resid 0.072101 
Durbin-Watson stat 1.974622    
Equation: TELMEXL=C(131)+C(132)*PC1+C(133)*PC2+C(134)*PC3 
        +C(135)*PC4+C(136)*PC5+C(137)*PC6+C(138)*PC7+C(139)*PC8 
        +C(140)*PC9   
Observations: 1410   
R-squared 0.596137    Mean dependent var 0.000215 
Adjusted R-squared 0.593541    S.D. dependent var 0.015623 
S.E. of regression 0.009960    Sum squared resid 0.138889 
Durbin-Watson stat 1.999640    
Equation: TELECOA1=C(141)+C(142)*PC1+C(143)*PC2+C(144)*PC3 
        +C(145)*PC4+C(146)*PC5+C(147)*PC6+C(148)*PC7+C(149)*PC8 
        +C(150)*PC9   
Observations: 1410   
R-squared 0.631576    Mean dependent var 0.000252 
Adjusted R-squared 0.629208    S.D. dependent var 0.019538 
S.E. of regression 0.011897    Sum squared resid 0.198163 
Durbin-Watson stat 2.059508    
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Equation: TLEVICPO=C(151)+C(152)*PC1+C(153)*PC2+C(154)*PC3 
        +C(155)*PC4+C(156)*PC5+C(157)*PC6+C(158)*PC7+C(159)*PC8 
        +C(160)*PC9   
Observations: 1410   
R-squared 0.722782    Mean dependent var 0.000171 
Adjusted R-squared 0.721000    S.D. dependent var 0.021968 
S.E. of regression 0.011603    Sum squared resid 0.188493 
Durbin-Watson stat 2.012088    
Equation: TVAZTCPO=C(161)+C(162)*PC1+C(163)*PC2+C(164)*PC3 
        +C(165)*PC4+C(166)*PC5+C(167)*PC6+C(168)*PC7+C(169)*PC8 
        +C(170)*PC9   
Observations: 1410   
R-squared 0.808455    Mean dependent var -7.68E-05 
Adjusted R-squared 0.807224    S.D. dependent var 0.024418 
S.E. of regression 0.010721    Sum squared resid 0.160923 
Durbin-Watson stat 1.987663    
Equation: GFNORTEO=C(171)+C(172)*PC1+C(173)*PC2+C(174)*PC3 
        +C(175)*PC4+C(176)*PC5+C(177)*PC6+C(178)*PC7+C(179)*PC8 
        +C(180)*PC9   
Observations: 1410   
R-squared 0.653504    Mean dependent var 0.001415 
Adjusted R-squared 0.651276    S.D. dependent var 0.020499 
S.E. of regression 0.012105    Sum squared resid 0.205159 
Durbin-Watson stat 1.918338    
Equation: GFINBURO=C(181)+C(182)*PC1+C(183)*PC2+C(184)*PC3 
        +C(185)*PC4+C(186)*PC5+C(187)*PC6+C(188)*PC7+C(189)*PC8 
        +C(190)*PC9   
Observations: 1410   
R-squared 0.584412    Mean dependent var 0.000502 
Adjusted R-squared 0.581741    S.D. dependent var 0.019363 
S.E. of regression 0.012523    Sum squared resid 0.219542 
Durbin-Watson stat 1.947898    
Equation: GCARSOA1=C(191)+C(192)*PC1+C(193)*PC2+C(194)*PC3 
        +C(195)*PC4+C(196)*PC5+C(197)*PC6+C(198)*PC7+C(199)*PC8 
        +C(200)*PC9   
Observations: 1410   
R-squared 0.484178    Mean dependent var 0.000711 
Adjusted R-squared 0.480862    S.D. dependent var 0.019209 
S.E. of regression 0.013840    Sum squared resid 0.268171 
Durbin-Watson stat 1.909993    
Equation: ALFAA=C(201)+C(202)*PC1+C(203)*PC2+C(204)*PC3+C(205) 
        *PC4+C(206)*PC5+C(207)*PC6+C(208)*PC7+C(209)*PC8+C(210) 
        *PC9    
Observations: 1410   
R-squared 0.978721    Mean dependent var 0.000723 
Adjusted R-squared 0.978584    S.D. dependent var 0.024569 
S.E. of regression 0.003595    Sum squared resid 0.018098 
Durbin-Watson stat 1.839195    
Equation: CIEB=C(211)+C(212)*PC1+C(213)*PC2+C(214)*PC3+C(215) 
        *PC4+C(216)*PC5+C(217)*PC6+C(218)*PC7+C(219)*PC8+C(220) 
        *PC9    
Observations: 1410   
R-squared 0.820211    Mean dependent var -0.000376 
Adjusted R-squared 0.819055    S.D. dependent var 0.021321 
S.E. of regression 0.009069    Sum squared resid 0.115152 
Durbin-Watson stat 1.915083    
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Table 4. Principal Component Analysis. Betas estimation for all the equation system via 
Weighted Least Squares. Database of daily excesses. 

 

 Coefficient Std. Error t-Statistic Prob.   

C(1) -1.15E-05 2.37E-05 -0.483041 0.6291 
C(2) 0.118079 0.000424 278.7032 0.0000 
C(3) -0.972958 0.000808 -1204.477 0.0000 
C(4) 0.104142 0.001067 97.58214 0.0000 
C(5) -0.098391 0.001126 -87.39225 0.0000 
C(6) 0.086144 0.001177 73.19011 0.0000 
C(7) -0.084324 0.001195 -70.57541 0.0000 
C(8) 0.005527 0.001253 4.412357 0.0000 
C(9) -0.012651 0.001308 -9.669087 0.0000 

C(10) 0.026767 0.001372 19.51193 0.0000 
C(11) -8.46E-06 0.000345 -0.024555 0.9804 
C(12) 0.117683 0.006146 19.14706 0.0000 
C(13) -0.004750 0.011719 -0.405342 0.6852 
C(14) 0.007423 0.015482 0.479438 0.6316 
C(15) 0.181685 0.016333 11.12384 0.0000 
C(16) 0.034709 0.017075 2.032771 0.0421 
C(17) -0.043325 0.017333 -2.499501 0.0124 
C(18) 0.014334 0.018173 0.788745 0.4303 
C(19) -0.010684 0.018981 -0.562877 0.5735 
C(20) -0.116744 0.019902 -5.866092 0.0000 
C(21) 0.000445 0.000378 1.176744 0.2393 
C(22) 0.148554 0.006739 22.04282 0.0000 
C(23) -0.034117 0.012849 -2.655165 0.0079 
C(24) -0.014533 0.016976 -0.856097 0.3920 
C(25) 0.231737 0.017909 12.93975 0.0000 
C(26) -0.013885 0.018722 -0.741630 0.4583 
C(27) 0.154609 0.019006 8.134832 0.0000 
C(28) 0.109080 0.019926 5.474109 0.0000 
C(29) -0.335570 0.020812 -16.12353 0.0000 
C(30) -0.133567 0.021822 -6.120823 0.0000 
C(31) 4.94E-05 0.000357 0.138189 0.8901 
C(32) 0.129964 0.006375 20.38700 0.0000 
C(33) -0.005979 0.012154 -0.491948 0.6228 
C(34) 0.093587 0.016058 5.828015 0.0000 
C(35) 0.080585 0.016940 4.756996 0.0000 
C(36) 0.022776 0.017710 1.286096 0.1984 
C(37) -0.000220 0.017978 -0.012213 0.9903 
C(38) -0.064565 0.018849 -3.425414 0.0006 
C(39) 0.170599 0.019687 8.665656 0.0000 
C(40) -0.005777 0.020642 -0.279868 0.7796 
C(41) 0.000165 0.000349 0.473800 0.6356 
C(42) 0.197273 0.006222 31.70675 0.0000 
C(43) 0.049943 0.011863 4.210099 0.0000 
C(44) 0.041920 0.015673 2.674723 0.0075 
C(45) 0.036959 0.016534 2.235391 0.0254 
C(46) 0.020576 0.017284 1.190427 0.2339 
C(47) -0.119149 0.017546 -6.790573 0.0000 
C(48) -0.090113 0.018396 -4.898451 0.0000 
C(49) 0.045387 0.019214 2.362157 0.0182 
C(50) -0.069830 0.020146 -3.466192 0.0005 
C(51) -7.92E-05 9.80E-05 -0.807951 0.4191 
C(52) 0.132031 0.001748 75.52996 0.0000 
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C(53) -0.113837 0.003333 -34.15579 0.0000 
C(54) 0.039342 0.004403 8.934584 0.0000 
C(55) 0.516046 0.004645 111.0915 0.0000 
C(56) -0.519924 0.004856 -107.0641 0.0000 
C(57) 0.517525 0.004930 104.9804 0.0000 
C(58) -0.212240 0.005169 -41.06371 0.0000 
C(59) 0.158831 0.005398 29.42213 0.0000 
C(60) 0.191227 0.005660 33.78472 0.0000 
C(61) 0.000260 0.000331 0.783556 0.4333 
C(62) 0.180710 0.005913 30.56267 0.0000 
C(63) 0.022115 0.011273 1.961694 0.0498 
C(64) 0.014048 0.014894 0.943173 0.3456 
C(65) 0.037865 0.015712 2.409883 0.0160 
C(66) -0.005807 0.016426 -0.353538 0.7237 
C(67) -0.029204 0.016675 -1.751393 0.0799 
C(68) -0.040273 0.017483 -2.303591 0.0213 
C(69) 0.073900 0.018260 4.047103 0.0001 
C(70) 0.078389 0.019145 4.094384 0.0000 
C(71) 1.05E-05 0.000102 0.102501 0.9184 
C(72) 0.225912 0.001825 123.8159 0.0000 
C(73) -0.066407 0.003479 -19.08899 0.0000 
C(74) -0.888977 0.004596 -193.4211 0.0000 
C(75) -0.175217 0.004849 -36.13772 0.0000 
C(76) -0.117905 0.005069 -23.26107 0.0000 
C(77) 0.015256 0.005146 2.964863 0.0030 
C(78) -0.204086 0.005395 -37.82996 0.0000 
C(79) -0.015031 0.005635 -2.667600 0.0076 
C(80) -0.113109 0.005908 -19.14531 0.0000 
C(81) -3.00E-05 0.000373 -0.080411 0.9359 
C(82) 0.163461 0.006663 24.53223 0.0000 
C(83) -0.004470 0.012704 -0.351866 0.7249 
C(84) -0.199365 0.016784 -11.87813 0.0000 
C(85) 0.074394 0.017706 4.201537 0.0000 
C(86) 0.025915 0.018510 1.400008 0.1615 
C(87) -0.059798 0.018791 -3.182323 0.0015 
C(88) 0.044059 0.019701 2.236377 0.0253 
C(89) -0.182403 0.020577 -8.864377 0.0000 
C(90) 0.393722 0.021575 18.24899 0.0000 
C(91) 0.000236 0.000349 0.675594 0.4993 
C(92) 0.224583 0.006223 36.09174 0.0000 
C(93) 0.025755 0.011864 2.170802 0.0300 
C(94) 0.063868 0.015674 4.074668 0.0000 
C(95) 0.062880 0.016536 3.802731 0.0001 
C(96) 0.068832 0.017287 3.981826 0.0001 
C(97) -0.112600 0.017548 -6.416532 0.0000 
C(98) -0.159478 0.018398 -8.667989 0.0000 
C(99) 0.101917 0.019217 5.303609 0.0000 

C(100) 0.018598 0.020148 0.923052 0.3560 
C(101) -0.000135 0.000351 -0.385104 0.7002 
C(102) 0.218870 0.006267 34.92329 0.0000 
C(103) 0.015463 0.011949 1.294067 0.1957 
C(104) 0.020838 0.015787 1.319968 0.1869 
C(105) 0.085677 0.016654 5.144499 0.0000 
C(106) 0.035730 0.017411 2.052191 0.0402 
C(107) -0.111448 0.017674 -6.305672 0.0000 
C(108) -0.021350 0.018530 -1.152165 0.2493 
C(109) 0.102211 0.019354 5.281059 0.0000 
C(110) -0.197457 0.020293 -9.730357 0.0000 
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C(111) -0.000132 0.000237 -0.556878 0.5776 
C(112) 0.194981 0.004220 46.19991 0.0000 
C(113) -0.004605 0.008047 -0.572297 0.5671 
C(114) -0.051674 0.010631 -4.860672 0.0000 
C(115) 0.103868 0.011215 9.261437 0.0000 
C(116) 0.087896 0.011724 7.496849 0.0000 
C(117) 0.095774 0.011902 8.046854 0.0000 
C(118) 0.363958 0.012479 29.16662 0.0000 
C(119) 0.642165 0.013033 49.27064 0.0000 
C(120) -0.303190 0.013665 -22.18659 0.0000 
C(121) -4.76E-05 0.000192 -0.248054 0.8041 
C(122) 0.294716 0.003424 86.07976 0.0000 
C(123) 0.034451 0.006528 5.277617 0.0000 
C(124) 0.098407 0.008624 11.41034 0.0000 
C(125) -0.417046 0.009098 -45.83850 0.0000 
C(126) -0.414493 0.009511 -43.57875 0.0000 
C(127) 0.136446 0.009655 14.13157 0.0000 
C(128) 0.549216 0.010123 54.25339 0.0000 
C(129) -0.105643 0.010573 -9.991574 0.0000 
C(130) 0.155258 0.011086 14.00484 0.0000 
C(131) -0.000158 0.000266 -0.594370 0.5523 
C(132) 0.190680 0.004739 40.23689 0.0000 
C(133) 0.039544 0.009035 4.376564 0.0000 
C(134) 0.086025 0.011937 7.206409 0.0000 
C(135) 0.036033 0.012593 2.861336 0.0042 
C(136) 0.079554 0.013165 6.042837 0.0000 
C(137) -0.126301 0.013364 -9.450578 0.0000 
C(138) -0.209399 0.014012 -14.94445 0.0000 
C(139) 0.029353 0.014635 2.005689 0.0449 
C(140) 0.078784 0.015345 5.134362 0.0000 
C(141) -0.000239 0.000318 -0.752252 0.4519 
C(142) 0.251431 0.005667 44.36884 0.0000 
C(143) 0.044788 0.010805 4.145253 0.0000 
C(144) 0.094781 0.014275 6.639805 0.0000 
C(145) 0.077718 0.015059 5.160918 0.0000 
C(146) 0.176687 0.015743 11.22334 0.0000 
C(147) -0.135186 0.015981 -8.459087 0.0000 
C(148) -0.188568 0.016755 -11.25417 0.0000 
C(149) -0.006760 0.017500 -0.386272 0.6993 
C(150) 0.104312 0.018349 5.684886 0.0000 
C(151) -0.000200 0.000310 -0.646396 0.5180 
C(152) 0.297497 0.005523 53.86584 0.0000 
C(153) 0.085533 0.010530 8.122736 0.0000 
C(154) 0.109895 0.013912 7.899210 0.0000 
C(155) -0.110632 0.014676 -7.538082 0.0000 
C(156) -0.103030 0.015343 -6.715103 0.0000 
C(157) -0.183195 0.015575 -11.76191 0.0000 
C(158) -0.319764 0.016330 -19.58154 0.0000 
C(159) 0.021612 0.017056 1.267145 0.2051 
C(160) 0.079015 0.017883 4.418439 0.0000 
C(161) 8.53E-05 0.000286 0.297770 0.7659 
C(162) 0.313559 0.005109 61.37423 0.0000 
C(163) 0.083178 0.009741 8.539084 0.0000 
C(164) 0.261388 0.012869 20.31089 0.0000 
C(165) -0.359072 0.013576 -26.44821 0.0000 
C(166) -0.347054 0.014193 -24.45248 0.0000 
C(167) -0.091471 0.014408 -6.348678 0.0000 
C(168) -0.204962 0.015106 -13.56835 0.0000 
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C(169) -0.053859 0.015778 -3.413627 0.0006 
C(170) -0.204059 0.016543 -12.33528 0.0000 
C(171) 0.000184 0.000321 0.574409 0.5657 
C(172) 0.213831 0.005719 37.38998 0.0000 
C(173) 0.060804 0.010904 5.576323 0.0000 
C(174) -0.127953 0.014406 -8.881953 0.0000 
C(175) 0.039005 0.015197 2.566561 0.0103 
C(176) 0.150508 0.015888 9.473353 0.0000 
C(177) -0.194530 0.016128 -12.06151 0.0000 
C(178) 0.280767 0.016909 16.60411 0.0000 
C(179) 0.317314 0.017661 17.96661 0.0000 
C(180) 0.356557 0.018518 19.25483 0.0000 
C(181) -0.000251 0.000336 -0.745298 0.4561 
C(182) 0.178692 0.006001 29.77830 0.0000 
C(183) 0.053612 0.011441 4.685888 0.0000 
C(184) -0.010548 0.015116 -0.697849 0.4853 
C(185) 0.211963 0.015946 13.29246 0.0000 
C(186) 0.136967 0.016670 8.216219 0.0000 
C(187) -0.063631 0.016923 -3.760062 0.0002 
C(188) 0.213966 0.017743 12.05941 0.0000 
C(189) -0.275140 0.018531 -14.84716 0.0000 
C(190) 0.387564 0.019430 19.94646 0.0000 
C(191) 0.000344 0.000369 0.931663 0.3515 
C(192) 0.221816 0.006587 33.67530 0.0000 
C(193) 0.038297 0.012559 3.049443 0.0023 
C(194) 0.105070 0.016592 6.332478 0.0000 
C(195) 0.140427 0.017504 8.022675 0.0000 
C(196) 0.137694 0.018299 7.524764 0.0000 
C(197) -0.068860 0.018576 -3.706972 0.0002 
C(198) 0.014821 0.019476 0.761019 0.4467 
C(199) -0.052385 0.020342 -2.575260 0.0100 
C(200) 0.007832 0.021328 0.367222 0.7135 
C(201) -6.29E-05 9.55E-05 -0.658342 0.5103 
C(202) 0.278381 0.001704 163.3238 0.0000 
C(203) 0.061437 0.003250 18.90479 0.0000 
C(204) 0.060906 0.004294 14.18543 0.0000 
C(205) -0.266147 0.004529 -58.75974 0.0000 
C(206) 0.539109 0.004735 113.8533 0.0000 
C(207) 0.694619 0.004807 144.5066 0.0000 
C(208) -0.091003 0.005040 -18.05722 0.0000 
C(209) -0.107861 0.005264 -20.49128 0.0000 
C(210) -0.049547 0.005519 -8.977395 0.0000 
C(211) -0.000221 0.000245 -0.902440 0.3668 
C(212) 0.229171 0.004367 52.47897 0.0000 
C(213) 0.005552 0.008326 0.666877 0.5049 
C(214) -0.041423 0.011000 -3.765663 0.0002 
C(215) 0.332039 0.011604 28.61302 0.0000 
C(216) -0.012116 0.012132 -0.998720 0.3179 
C(217) -0.149154 0.012315 -12.11135 0.0000 
C(218) 0.261816 0.012912 20.27720 0.0000 
C(219) -0.390327 0.013486 -28.94330 0.0000 
C(220) -0.502186 0.014140 -35.51546 0.0000 
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Equation: PE_OLES_01=C(1)+C(2)*PC1+C(3)*PC2+C(4)*PC3+C(5)*PC4 
        +C(6)*PC5+C(7)*PC6+C(8)*PC7+C(9)*PC8+C(10)*PC9 
Observations: 1410   
R-squared 0.999095    Mean dependent var 0.000805 
Adjusted R-squared 0.999089    S.D. dependent var 0.029496 
S.E. of regression 0.000890    Sum squared resid 0.001110 
Durbin-Watson stat 1.916113    
Equation: KIMBERA=C(11)+C(12)*PC1+C(13)*PC2+C(14)*PC3+C(15) 
        *PC4+C(16)*PC5+C(17)*PC6+C(18)*PC7+C(19)*PC8+C(20)*PC9 
Observations: 1410   
R-squared 0.275613    Mean dependent var -1.66E-05 
Adjusted R-squared 0.270956    S.D. dependent var 0.015126 
S.E. of regression 0.012915    Sum squared resid 0.233508 
Durbin-Watson stat 1.868259    
Equation: BIMBOA=C(21)+C(22)*PC1+C(23)*PC2+C(24)*PC3+C(25)*PC4 
        +C(26)*PC5+C(27)*PC6+C(28)*PC7+C(29)*PC8+C(30)*PC9 
Observations: 1410   
R-squared 0.428045    Mean dependent var 0.000397 
Adjusted R-squared 0.424368    S.D. dependent var 0.018665 
S.E. of regression 0.014161    Sum squared resid 0.280744 
Durbin-Watson stat 1.904802    
Equation: GMODELOC=C(31)+C(32)*PC1+C(33)*PC2+C(34)*PC3+C(35) 
        *PC4+C(36)*PC5+C(37)*PC6+C(38)*PC7+C(39)*PC8+C(40)*PC9 
Observations: 1410   
R-squared 0.284637    Mean dependent var 0.000143 
Adjusted R-squared 0.280038    S.D. dependent var 0.015787 
S.E. of regression 0.013395    Sum squared resid 0.251197 
Durbin-Watson stat 1.997184    
Equation: FEMSAUBD=C(41)+C(42)*PC1+C(43)*PC2+C(44)*PC3+C(45) 
        *PC4+C(46)*PC5+C(47)*PC6+C(48)*PC7+C(49)*PC8+C(50)*PC9 
Observations: 1410   
R-squared 0.443636    Mean dependent var 0.000231 
Adjusted R-squared 0.440059    S.D. dependent var 0.017471 
S.E. of regression 0.013073    Sum squared resid 0.239280 
Durbin-Watson stat 1.841278    
Equation: CONTAL_01=C(51)+C(52)*PC1+C(53)*PC2+C(54)*PC3+C(55) 
        *PC4+C(56)*PC5+C(57)*PC6+C(58)*PC7+C(59)*PC8+C(60)*PC9 
Observations: 1410   
R-squared 0.969923    Mean dependent var 0.000161 
Adjusted R-squared 0.969729    S.D. dependent var 0.021112 
S.E. of regression 0.003673    Sum squared resid 0.018888 
Durbin-Watson stat 1.911017    
Equation: CEMEXCP=C(61)+C(62)*PC1+C(63)*PC2+C(64)*PC3+C(65) 
        *PC4+C(66)*PC5+C(67)*PC6+C(68)*PC7+C(69)*PC8+C(70)*PC9 
Observations: 1410   
R-squared 0.411584    Mean dependent var 0.000550 
Adjusted R-squared 0.407801    S.D. dependent var 0.016145 
S.E. of regression 0.012424    Sum squared resid 0.216102 
Durbin-Watson stat 1.862335    
Equation: GEOB=C(71)+C(72)*PC1+C(73)*PC2+C(74)*PC3+C(75)*PC4 
        +C(76)*PC5+C(77)*PC6+C(78)*PC7+C(79)*PC8+C(80)*PC9 
Observations: 1410   
R-squared 0.975764    Mean dependent var 0.001474 
Adjusted R-squared 0.975608    S.D. dependent var 0.024548 
S.E. of regression 0.003834    Sum squared resid 0.020578 
Durbin-Watson stat 1.969803    
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Equation: ARA_01=C(81)+C(82)*PC1+C(83)*PC2+C(84)*PC3+C(85)*PC4 
        +C(86)*PC5+C(87)*PC6+C(88)*PC7+C(89)*PC8+C(90)*PC9 
Observations: 1410   
R-squared 0.457565    Mean dependent var 0.000797 
Adjusted R-squared 0.454078    S.D. dependent var 0.018949 
S.E. of regression 0.014001    Sum squared resid 0.274429 
Durbin-Watson stat 1.959397    
Equation: WALMEXV=C(91)+C(92)*PC1+C(93)*PC2+C(94)*PC3+C(95) 
        *PC4+C(96)*PC5+C(97)*PC6+C(98)*PC7+C(99)*PC8+C(100)*PC9 
Observations: 1410   
R-squared 0.515386    Mean dependent var 0.000450 
Adjusted R-squared 0.512270    S.D. dependent var 0.018722 
S.E. of regression 0.013075    Sum squared resid 0.239338 
Durbin-Watson stat 1.919344    
Equation: SORIANAB=C(101)+C(102)*PC1+C(103)*PC2+C(104)*PC3 
        +C(105)*PC4+C(106)*PC5+C(107)*PC6+C(108)*PC7+C(109)*PC8 
        +C(110)*PC9   
Observations: 1410   
R-squared 0.501307    Mean dependent var -8.42E-05 
Adjusted R-squared 0.498101    S.D. dependent var 0.018588 
S.E. of regression 0.013169    Sum squared resid 0.242783 
Durbin-Watson stat 1.931736    
Equation: COMERUBC=C(111)+C(112)*PC1+C(113)*PC2+C(114)*PC3 
        +C(115)*PC4+C(116)*PC5+C(117)*PC6+C(118)*PC7+C(119)*PC8 
        +C(120)*PC9   
Observations: 1410   
R-squared 0.813137    Mean dependent var 0.000260 
Adjusted R-squared 0.811936    S.D. dependent var 0.020449 
S.E. of regression 0.008868    Sum squared resid 0.110098 
Durbin-Watson stat 2.022106    
Equation: ELEKTRA_01=C(121)+C(122)*PC1+C(123)*PC2+C(124)*PC3 
        +C(125)*PC4+C(126)*PC5+C(127)*PC6+C(128)*PC7+C(129)*PC8 
        +C(130)*PC9   
Observations: 1410   
R-squared 0.914114    Mean dependent var 0.000287 
Adjusted R-squared 0.913562    S.D. dependent var 0.024469 
S.E. of regression 0.007194    Sum squared resid 0.072457 
Durbin-Watson stat 1.978284    
Equation: TELMEXL=C(131)+C(132)*PC1+C(133)*PC2+C(134)*PC3 
        +C(135)*PC4+C(136)*PC5+C(137)*PC6+C(138)*PC7+C(139)*PC8 
        +C(140)*PC9   
Observations: 1410   
R-squared 0.595737    Mean dependent var -1.50E-07 
Adjusted R-squared 0.593139    S.D. dependent var 0.015611 
S.E. of regression 0.009958    Sum squared resid 0.138815 
Durbin-Watson stat 2.005761    
Equation: TELECOA1=C(141)+C(142)*PC1+C(143)*PC2+C(144)*PC3 
        +C(145)*PC4+C(146)*PC5+C(147)*PC6+C(148)*PC7+C(149)*PC8 
        +C(150)*PC9   
Observations: 1410   
R-squared 0.631193    Mean dependent var 2.74E-05 
Adjusted R-squared 0.628823    S.D. dependent var 0.019544 
S.E. of regression 0.011907    Sum squared resid 0.198499 
Durbin-Watson stat 2.061218    
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Equation: TLEVICPO=C(151)+C(152)*PC1+C(153)*PC2+C(154)*PC3 
        +C(155)*PC4+C(156)*PC5+C(157)*PC6+C(158)*PC7+C(159)*PC8 
        +C(160)*PC9   
Observations: 1410   
R-squared 0.722699    Mean dependent var -5.84E-05 
Adjusted R-squared 0.720916    S.D. dependent var 0.021967 
S.E. of regression 0.011605    Sum squared resid 0.188544 
Durbin-Watson stat 2.014552    
Equation: TVAZTCPO=C(161)+C(162)*PC1+C(163)*PC2+C(164)*PC3 
        +C(165)*PC4+C(166)*PC5+C(167)*PC6+C(168)*PC7+C(169)*PC8 
        +C(170)*PC9   
Observations: 1410   
R-squared 0.808108    Mean dependent var -0.000324 
Adjusted R-squared 0.806875    S.D. dependent var 0.024428 
S.E. of regression 0.010735    Sum squared resid 0.161340 
Durbin-Watson stat 1.988435    
Equation: GFNORTEO=C(171)+C(172)*PC1+C(173)*PC2+C(174)*PC3 
        +C(175)*PC4+C(176)*PC5+C(177)*PC6+C(178)*PC7+C(179)*PC8 
        +C(180)*PC9   
Observations: 1410   
R-squared 0.658517    Mean dependent var 0.001169 
Adjusted R-squared 0.656322    S.D. dependent var 0.020498 
S.E. of regression 0.012017    Sum squared resid 0.202166 
Durbin-Watson stat 1.923406    
Equation: GFINBURO=C(181)+C(182)*PC1+C(183)*PC2+C(184)*PC3 
        +C(185)*PC4+C(186)*PC5+C(187)*PC6+C(188)*PC7+C(189)*PC8 
        +C(190)*PC9   
Observations: 1410   
R-squared 0.578003    Mean dependent var 0.000276 
Adjusted R-squared 0.575290    S.D. dependent var 0.019348 
S.E. of regression 0.012609    Sum squared resid 0.222579 
Durbin-Watson stat 1.958173    
Equation: GCARSOA1=C(191)+C(192)*PC1+C(193)*PC2+C(194)*PC3 
        +C(195)*PC4+C(196)*PC5+C(197)*PC6+C(198)*PC7+C(199)*PC8 
        +C(200)*PC9   
Observations: 1410   
R-squared 0.484555    Mean dependent var 0.000455 
Adjusted R-squared 0.481241    S.D. dependent var 0.019216 
S.E. of regression 0.013841    Sum squared resid 0.268186 
Durbin-Watson stat 1.910104    
Equation: ALFAA=C(201)+C(202)*PC1+C(203)*PC2+C(204)*PC3+C(205) 
        *PC4+C(206)*PC5+C(207)*PC6+C(208)*PC7+C(209)*PC8+C(210) 
        *PC9    
Observations: 1410   
R-squared 0.978882    Mean dependent var 0.000496 
Adjusted R-squared 0.978746    S.D. dependent var 0.024567 
S.E. of regression 0.003581    Sum squared resid 0.017958 
Durbin-Watson stat 1.837752    
Equation: CIEB=C(211)+C(212)*PC1+C(213)*PC2+C(214)*PC3+C(215) 
        *PC4+C(216)*PC5+C(217)*PC6+C(218)*PC7+C(219)*PC8+C(220) 
        *PC9    
Observations: 1410   
R-squared 0.815813    Mean dependent var -0.000633 
Adjusted R-squared 0.814629    S.D. dependent var 0.021312 
S.E. of regression 0.009176    Sum squared resid 0.117876 
Durbin-Watson stat 1.915608    
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Table 5. Factor Analysis. Betas estimation for all the equation system via Weighted Least 
Squares. Database of weekly returns. 

 

 Coefficient Std. Error t-Statistic Prob.   

C(1) 0.002221 0.003370 0.658880 0.5100 
C(2) 0.009629 0.003296 2.921327 0.0035 
C(3) 0.004203 0.003165 1.328025 0.1842 
C(4) 0.008389 0.002830 2.964347 0.0030 
C(5) 0.003289 0.003290 0.999590 0.3176 
C(6) -0.002067 0.003286 -0.629004 0.5294 
C(7) 0.015692 0.002544 6.167879 0.0000 
C(8) -0.007586 0.002336 -3.247802 0.0012 
C(9) 0.013560 0.002033 6.670244 0.0000 

C(10) -0.006778 0.001923 -3.524531 0.0004 
C(11) 0.004100 0.001961 2.091487 0.0365 
C(12) 0.009749 0.001917 5.084560 0.0000 
C(13) 0.009747 0.001841 5.293852 0.0000 
C(14) 0.001816 0.001646 1.103182 0.2700 
C(15) 0.007814 0.001914 4.082051 0.0000 
C(16) 0.001202 0.001911 0.628652 0.5296 
C(17) -0.004691 0.001480 -3.169851 0.0015 
C(18) -0.002888 0.001359 -2.125499 0.0336 
C(19) 0.011802 0.001183 9.980128 0.0000 
C(20) -0.002531 0.001119 -2.262370 0.0237 
C(21) 4.67E-06 2.57E-06 1.818372 0.0691 
C(22) 0.021039 2.51E-06 8373.642 0.0000 
C(23) -0.000397 2.41E-06 -164.3519 0.0000 
C(24) -1.45E-05 2.16E-06 -6.717644 0.0000 
C(25) -0.023029 2.51E-06 -9180.697 0.0000 
C(26) -0.007402 2.50E-06 -2955.204 0.0000 
C(27) 2.84E-05 1.94E-06 14.64745 0.0000 
C(28) -1.69E-05 1.78E-06 -9.519070 0.0000 
C(29) 3.15E-06 1.55E-06 2.035356 0.0419 
C(30) -7.83E-06 1.47E-06 -5.340861 0.0000 
C(31) -0.000217 0.001479 -0.146653 0.8834 
C(32) 0.019823 0.001447 13.70216 0.0000 
C(33) 0.013886 0.001389 9.995613 0.0000 
C(34) 0.014335 0.001242 11.53993 0.0000 
C(35) 0.000535 0.001444 0.370313 0.7112 
C(36) 0.000828 0.001442 0.573856 0.5661 
C(37) -0.006752 0.001117 -6.046145 0.0000 
C(38) 0.007700 0.001025 7.510409 0.0000 
C(39) 0.006005 0.000892 6.729579 0.0000 
C(40) 0.001701 0.000844 2.015154 0.0439 
C(41) 0.000660 0.002066 0.319447 0.7494 
C(42) 0.012749 0.002020 6.310967 0.0000 
C(43) 0.004389 0.001940 2.262388 0.0237 
C(44) 0.008250 0.001735 4.756285 0.0000 
C(45) 0.003650 0.002017 1.809814 0.0704 
C(46) -0.000274 0.002014 -0.135881 0.8919 
C(47) 2.72E-05 0.001559 0.017423 0.9861 
C(48) -0.003368 0.001432 -2.352827 0.0187 
C(49) 0.011949 0.001246 9.589986 0.0000 
C(50) 0.003770 0.001179 3.198673 0.0014 
C(51) -0.000302 0.000817 -0.369172 0.7120 
C(52) 0.023693 0.000799 29.63701 0.0000 
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C(53) 0.010908 0.000768 14.20968 0.0000 
C(54) 0.030054 0.000686 43.78173 0.0000 
C(55) 0.007289 0.000798 9.133325 0.0000 
C(56) 0.009365 0.000797 11.75030 0.0000 
C(57) 0.029412 0.000617 47.66116 0.0000 
C(58) -0.001585 0.000567 -2.797047 0.0052 
C(59) -0.004425 0.000493 -8.973353 0.0000 
C(60) -0.008015 0.000466 -17.18329 0.0000 
C(61) 0.001396 0.001908 0.731857 0.4643 
C(62) 0.012591 0.001866 6.747648 0.0000 
C(63) 0.010341 0.001792 5.771237 0.0000 
C(64) 0.009801 0.001602 6.117523 0.0000 
C(65) 0.005938 0.001863 3.187864 0.0014 
C(66) -0.001875 0.001860 -1.007819 0.3136 
C(67) 0.007792 0.001440 5.409764 0.0000 
C(68) -0.002889 0.001322 -2.184757 0.0289 
C(69) 0.003796 0.001151 3.298048 0.0010 
C(70) 0.003231 0.001089 2.968300 0.0030 
C(71) 0.000873 0.001210 0.721354 0.4707 
C(72) 0.019203 0.001183 16.23024 0.0000 
C(73) 0.012218 0.001136 10.75413 0.0000 
C(74) 0.008153 0.001016 8.025684 0.0000 
C(75) 0.002408 0.001181 2.039066 0.0415 
C(76) 0.004630 0.001180 3.925315 0.0001 
C(77) -0.005041 0.000913 -5.520199 0.0000 
C(78) 0.015460 0.000838 18.43860 0.0000 
C(79) -0.001604 0.000730 -2.197994 0.0280 
C(80) -0.000659 0.000690 -0.954331 0.3400 
C(81) -0.000864 0.001609 -0.536992 0.5913 
C(82) 0.025828 0.001574 16.41384 0.0000 
C(83) 0.009555 0.001511 6.323722 0.0000 
C(84) 0.009876 0.001351 7.309500 0.0000 
C(85) 0.003841 0.001571 2.445240 0.0145 
C(86) 0.001350 0.001569 0.860402 0.3896 
C(87) -0.006021 0.001215 -4.956970 0.0000 
C(88) 0.001045 0.001115 0.937460 0.3486 
C(89) -0.008807 0.000971 -9.074307 0.0000 
C(90) -0.002127 0.000918 -2.316504 0.0206 
C(91) -4.84E-06 4.04E-06 -1.198742 0.2307 
C(92) 0.033530 3.95E-06 8483.676 0.0000 
C(93) -0.000911 3.80E-06 -239.9798 0.0000 
C(94) -0.000259 3.39E-06 -76.39801 0.0000 
C(95) 0.023501 3.95E-06 5956.176 0.0000 
C(96) -0.019347 3.94E-06 -4910.006 0.0000 
C(97) 5.19E-05 3.05E-06 17.02638 0.0000 
C(98) 2.67E-05 2.80E-06 9.521014 0.0000 
C(99) -5.71E-06 2.44E-06 -2.343685 0.0191 

C(100) -2.32E-05 2.31E-06 -10.05051 0.0000 
C(101) -0.002216 0.001895 -1.169688 0.2422 
C(102) 0.032444 0.001853 17.50861 0.0000 
C(103) 0.009432 0.001779 5.300856 0.0000 
C(104) 0.008058 0.001591 5.064297 0.0000 
C(105) 0.005220 0.001850 2.821536 0.0048 
C(106) 0.011134 0.001847 6.026982 0.0000 
C(107) 0.009093 0.001430 6.357332 0.0000 
C(108) -0.000512 0.001313 -0.389648 0.6968 
C(109) 0.006245 0.001143 5.463822 0.0000 
C(110) 0.014227 0.001081 13.15910 0.0000 
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C(111) 0.000344 0.001019 0.338076 0.7353 
C(112) 0.017544 0.000996 17.61132 0.0000 
C(113) 0.020703 0.000957 21.64313 0.0000 
C(114) -0.003978 0.000855 -4.650150 0.0000 
C(115) 0.000488 0.000994 0.490262 0.6240 
C(116) 0.002824 0.000993 2.843508 0.0045 
C(117) -0.000627 0.000769 -0.815807 0.4146 
C(118) 0.002124 0.000706 3.008751 0.0026 
C(119) 0.000251 0.000614 0.407947 0.6833 
C(120) -0.002132 0.000581 -3.667679 0.0002 
C(121) -0.000237 0.000290 -0.817097 0.4139 
C(122) 0.022022 0.000283 77.76472 0.0000 
C(123) 0.035284 0.000272 129.7543 0.0000 
C(124) -0.008214 0.000243 -33.77911 0.0000 
C(125) 0.000758 0.000283 2.680442 0.0074 
C(126) 0.001975 0.000282 6.996105 0.0000 
C(127) 0.002018 0.000219 9.230564 0.0000 
C(128) -0.001889 0.000201 -9.412253 0.0000 
C(129) -0.000136 0.000175 -0.780405 0.4352 
C(130) -0.000471 0.000165 -2.853075 0.0043 
C(131) -0.001408 0.001300 -1.082509 0.2791 
C(132) 0.028704 0.001272 22.57176 0.0000 
C(133) 0.017759 0.001221 14.54305 0.0000 
C(134) 0.008797 0.001092 8.056603 0.0000 
C(135) 0.002722 0.001270 2.144120 0.0321 
C(136) 0.007136 0.001268 5.628798 0.0000 
C(137) -0.003890 0.000982 -3.962752 0.0001 
C(138) 0.012450 0.000901 13.81527 0.0000 
C(139) 0.004494 0.000784 5.729076 0.0000 
C(140) -0.004526 0.000742 -6.099710 0.0000 
C(141) 1.08E-05 9.05E-06 1.190237 0.2340 
C(142) 0.043241 8.85E-06 4883.686 0.0000 
C(143) -0.001596 8.50E-06 -187.7504 0.0000 
C(144) -0.000411 7.60E-06 -54.09975 0.0000 
C(145) 0.005152 8.84E-06 582.8812 0.0000 
C(146) 0.029489 8.83E-06 3340.766 0.0000 
C(147) -1.20E-05 6.83E-06 -1.760493 0.0784 
C(148) -7.87E-05 6.27E-06 -12.53579 0.0000 
C(149) -9.33E-06 5.46E-06 -1.708372 0.0876 
C(150) -3.39E-05 5.17E-06 -6.563199 0.0000 
C(151) 0.003265 0.001805 1.809327 0.0705 
C(152) 0.020388 0.001765 11.55238 0.0000 
C(153) 0.009793 0.001695 5.778867 0.0000 
C(154) 0.010042 0.001515 6.626957 0.0000 
C(155) 0.004801 0.001762 2.725127 0.0064 
C(156) 0.001086 0.001759 0.617076 0.5372 
C(157) 0.001053 0.001362 0.772613 0.4398 
C(158) 0.002760 0.001251 2.206457 0.0274 
C(159) -0.009402 0.001089 -8.637762 0.0000 
C(160) 0.004587 0.001030 4.454424 0.0000 
C(161) 0.000571 0.001736 0.329089 0.7421 
C(162) 0.014630 0.001698 8.615494 0.0000 
C(163) 0.016462 0.001631 10.09538 0.0000 
C(164) 0.012985 0.001458 8.905013 0.0000 
C(165) 0.006573 0.001695 3.877224 0.0001 
C(166) 0.000535 0.001693 0.316043 0.7520 
C(167) -0.003244 0.001311 -2.474635 0.0134 
C(168) -0.006876 0.001203 -5.714186 0.0000 
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C(169) -0.005041 0.001047 -4.812971 0.0000 
C(170) 0.001921 0.000991 1.938723 0.0526 
C(171) 0.001016 0.001425 0.713183 0.4758 
C(172) 0.023859 0.001394 17.11768 0.0000 
C(173) 0.019062 0.001338 14.24251 0.0000 
C(174) 0.004728 0.001197 3.950414 0.0001 
C(175) 0.002876 0.001391 2.066731 0.0388 
C(176) 0.002349 0.001390 1.690689 0.0910 
C(177) -0.005364 0.001076 -4.985677 0.0000 
C(178) -0.001397 0.000988 -1.414485 0.1573 
C(179) -0.005880 0.000860 -6.839766 0.0000 
C(180) 0.009357 0.000813 11.50566 0.0000 
C(181) -0.002110 0.002424 -0.870543 0.3840 
C(182) 0.030779 0.002370 12.98487 0.0000 
C(183) 0.014388 0.002276 6.321354 0.0000 
C(184) 0.013717 0.002035 6.739669 0.0000 
C(185) 0.004327 0.002366 1.828715 0.0675 
C(186) 0.003554 0.002363 1.503894 0.1327 
C(187) 0.004867 0.001830 2.659870 0.0078 
C(188) 0.000977 0.001680 0.581438 0.5610 
C(189) 0.004957 0.001462 3.390454 0.0007 
C(190) 0.014523 0.001383 10.50145 0.0000 
C(191) -0.000940 0.000782 -1.201902 0.2295 
C(192) 0.027029 0.000765 35.32056 0.0000 
C(193) 0.012200 0.000735 16.60216 0.0000 
C(194) 0.019444 0.000657 29.59181 0.0000 
C(195) 0.006150 0.000764 8.050093 0.0000 
C(196) 0.000869 0.000763 1.139597 0.2545 
C(197) -0.016698 0.000591 -28.26883 0.0000 
C(198) -0.014130 0.000542 -26.05603 0.0000 
C(199) 0.001197 0.000472 2.536413 0.0112 
C(200) -0.004561 0.000446 -10.21661 0.0000 

Equation: PE_OLES_01=C(1)+C(2)*F1+C(3)*F2+C(4)*F3+C(5)*F4+C(6)*F5 
        +C(7)*F6+C(8)*F7+C(9)*F8+C(10)*F9  
Observations: 291   
R-squared 0.302134    Mean dependent var 0.004729 
Adjusted R-squared 0.279782    S.D. dependent var 0.067404 
S.E. of regression 0.057203    Sum squared resid 0.919475 
Durbin-Watson stat 1.944887    
Equation: BIMBOA=C(11)+C(12)*F1+C(13)*F2+C(14)*F3+C(15)*F4+C(16) 
        *F5+C(17)*F6+C(18)*F7+C(19)*F8+C(20)*F9  
Observations: 291   
R-squared 0.396816    Mean dependent var 0.003161 
Adjusted R-squared 0.377497    S.D. dependent var 0.042175 
S.E. of regression 0.033276    Sum squared resid 0.311142 
Durbin-Watson stat 2.016096    
Equation: GMODELOC=C(21)+C(22)*F1+C(23)*F2+C(24)*F3+C(25)*F4 
        +C(26)*F5+C(27)*F6+C(28)*F7+C(29)*F8+C(30)*F9 
Observations: 291   
R-squared 0.999998    Mean dependent var 0.001865 
Adjusted R-squared 0.999998    S.D. dependent var 0.032142 
S.E. of regression 4.36E-05    Sum squared resid 5.34E-07 
Durbin-Watson stat 2.065627    
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Equation: FEMSAUBD=C(31)+C(32)*F1+C(33)*F2+C(34)*F3+C(35)*F4 
        +C(36)*F5+C(37)*F6+C(38)*F7+C(39)*F8+C(40)*F9 
Observations: 291   
R-squared 0.659493    Mean dependent var 0.002358 
Adjusted R-squared 0.648587    S.D. dependent var 0.042355 
S.E. of regression 0.025108    Sum squared resid 0.177148 
Durbin-Watson stat 2.299263    
Equation: CONTAL_01=C(41)+C(42)*F1+C(43)*F2+C(44)*F3+C(45)*F4 
        +C(46)*F5+C(47)*F6+C(48)*F7+C(49)*F8+C(50)*F9 
Observations: 291   
R-squared 0.380321    Mean dependent var 0.002039 
Adjusted R-squared 0.360474    S.D. dependent var 0.043841 
S.E. of regression 0.035060    Sum squared resid 0.345406 
Durbin-Watson stat 2.113680    
Equation: GEOB=C(51)+C(52)*F1+C(53)*F2+C(54)*F3+C(55)*F4+C(56)*F5 
        +C(57)*F6+C(58)*F7+C(59)*F8+C(60)*F9  
Observations: 291   
R-squared 0.952796    Mean dependent var 0.008191 
Adjusted R-squared 0.951285    S.D. dependent var 0.062862 
S.E. of regression 0.013875    Sum squared resid 0.054095 
Durbin-Watson stat 2.099735    
Equation: ARA_01=C(61)+C(62)*F1+C(63)*F2+C(64)*F3+C(65)*F4+C(66) 
        *F5+C(67)*F6+C(68)*F7+C(69)*F8+C(70)*F9  
Observations: 291   
R-squared 0.383692    Mean dependent var 0.004898 
Adjusted R-squared 0.363953    S.D. dependent var 0.040605 
S.E. of regression 0.032383    Sum squared resid 0.294679 
Durbin-Watson stat 2.136564    
Equation: WALMEXV=C(71)+C(72)*F1+C(73)*F2+C(74)*F3+C(75)*F4 
        +C(76)*F5+C(77)*F6+C(78)*F7+C(79)*F8+C(80)*F9 
Observations: 291   
R-squared 0.742534    Mean dependent var 0.003334 
Adjusted R-squared 0.734288    S.D. dependent var 0.039835 
S.E. of regression 0.020534    Sum squared resid 0.118479 
Durbin-Watson stat 2.361338    
Equation: SORIANAB=C(81)+C(82)*F1+C(83)*F2+C(84)*F3+C(85)*F4 
        +C(86)*F5+C(87)*F6+C(88)*F7+C(89)*F8+C(90)*F9 
Observations: 291   
R-squared 0.623891    Mean dependent var 0.000746 
Adjusted R-squared 0.611845    S.D. dependent var 0.043833 
S.E. of regression 0.027309    Sum squared resid 0.209562 
Durbin-Watson stat 2.271616    
Equation: COMERUBC=C(91)+C(92)*F1+C(93)*F2+C(94)*F3+C(95)*F4 
        +C(96)*F5+C(97)*F6+C(98)*F7+C(99)*F8+C(100)*F9 
Observations: 291   
R-squared 0.999998    Mean dependent var 0.002256 
Adjusted R-squared 0.999998    S.D. dependent var 0.045411 
S.E. of regression 6.86E-05    Sum squared resid 1.32E-06 
Durbin-Watson stat 2.113368    
Equation: ELEKTRA_01=C(101)+C(102)*F1+C(103)*F2+C(104)*F3+C(105) 
        *F4+C(106)*F5+C(107)*F6+C(108)*F7+C(109)*F8+C(110)*F9 
Observations: 291   
R-squared 0.690151    Mean dependent var 0.002654 
Adjusted R-squared 0.680227    S.D. dependent var 0.056871 
S.E. of regression 0.032160    Sum squared resid 0.290628 
Durbin-Watson stat 2.145126    
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Equation: TELMEXL=C(111)+C(112)*F1+C(113)*F2+C(114)*F3+C(115)*F4 
        +C(116)*F5+C(117)*F6+C(118)*F7+C(119)*F8+C(120)*F9 
Observations: 291   
R-squared 0.740843    Mean dependent var 0.001198 
Adjusted R-squared 0.732542    S.D. dependent var 0.033430 
S.E. of regression 0.017289    Sum squared resid 0.083991 
Durbin-Watson stat 2.244640    
Equation: TELECOA1=C(121)+C(122)*F1+C(123)*F2+C(124)*F3+C(125) 
        *F4+C(126)*F5+C(127)*F6+C(128)*F7+C(129)*F8+C(130)*F9 
Observations: 291   
R-squared 0.988149    Mean dependent var 0.001320 
Adjusted R-squared 0.987769    S.D. dependent var 0.044440 
S.E. of regression 0.004915    Sum squared resid 0.006787 
Durbin-Watson stat 2.308975    
Equation: TLEVICPO=C(131)+C(132)*F1+C(133)*F2+C(134)*F3+C(135) 
        *F4+C(136)*F5+C(137)*F6+C(138)*F7+C(139)*F8+C(140)*F9 
Observations: 291   
R-squared 0.790613    Mean dependent var 0.000899 
Adjusted R-squared 0.783906    S.D. dependent var 0.047478 
S.E. of regression 0.022071    Sum squared resid 0.136878 
Durbin-Watson stat 2.112495    
Equation: TVAZTCPO=C(141)+C(142)*F1+C(143)*F2+C(144)*F3+C(145) 
        *F4+C(146)*F5+C(147)*F6+C(148)*F7+C(149)*F8+C(150)*F9 
Observations: 291   
R-squared 0.999992    Mean dependent var -0.000334 
Adjusted R-squared 0.999992    S.D. dependent var 0.052751 
S.E. of regression 0.000154    Sum squared resid 6.64E-06 
Durbin-Watson stat 2.064724    
Equation: GFNORTEO=C(151)+C(152)*F1+C(153)*F2+C(154)*F3+C(155) 
        *F4+C(156)*F5+C(157)*F6+C(158)*F7+C(159)*F8+C(160)*F9 
Observations: 291   
R-squared 0.522555    Mean dependent var 0.006851 
Adjusted R-squared 0.507263    S.D. dependent var 0.043634 
S.E. of regression 0.030629    Sum squared resid 0.263619 
Durbin-Watson stat 2.179748    
Equation: GFINBURO=C(161)+C(162)*F1+C(163)*F2+C(164)*F3+C(165) 
        *F4+C(166)*F5+C(167)*F6+C(168)*F7+C(169)*F8+C(170)*F9 
Observations: 291   
R-squared 0.536088    Mean dependent var 0.002456 
Adjusted R-squared 0.521230    S.D. dependent var 0.042593 
S.E. of regression 0.029472    Sum squared resid 0.244070 
Durbin-Watson stat 2.210548    
Equation: GCARSOA1=C(171)+C(172)*F1+C(173)*F2+C(174)*F3+C(175) 
        *F4+C(176)*F5+C(177)*F6+C(178)*F7+C(179)*F8+C(180)*F9 
Observations: 291   
R-squared 0.713476    Mean dependent var 0.003413 
Adjusted R-squared 0.704299    S.D. dependent var 0.044485 
S.E. of regression 0.024190    Sum squared resid 0.164432 
Durbin-Watson stat 2.161129    
Equation: ALFAA=C(181)+C(182)*F1+C(183)*F2+C(184)*F3+C(185)*F4 
        +C(186)*F5+C(187)*F6+C(188)*F7+C(189)*F8+C(190)*F9 
Observations: 291   
R-squared 0.571923    Mean dependent var 0.003559 
Adjusted R-squared 0.558212    S.D. dependent var 0.061893 
S.E. of regression 0.041138    Sum squared resid 0.475554 
Durbin-Watson stat 2.245936    
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Equation: CIEB=C(191)+C(192)*F1+C(193)*F2+C(194)*F3+C(195)*F4 
        +C(196)*F5+C(197)*F6+C(198)*F7+C(199)*F8+C(200)*F9 
Observations: 291   
R-squared 0.933024    Mean dependent var -0.001948 
Adjusted R-squared 0.930878    S.D. dependent var 0.050515 
S.E. of regression 0.013281    Sum squared resid 0.049563 
Durbin-Watson stat 2.062797    
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Table 6. Factor Analysis. Betas estimation for all the equation system via Weighted Least 
Squares. Database of weekly excesses. 

 

 Coefficient Std. Error t-Statistic Prob.   

C(1) 0.001642 0.003356 0.489405 0.6246 
C(2) 0.009858 0.003296 2.990897 0.0028 
C(3) 0.004299 0.003163 1.358862 0.1742 
C(4) 0.008548 0.002828 3.022641 0.0025 
C(5) 0.003281 0.003291 0.997156 0.3187 
C(6) -0.002085 0.003286 -0.634602 0.5257 
C(7) 0.015826 0.002541 6.228713 0.0000 
C(8) -0.007313 0.002333 -3.134575 0.0017 
C(9) 0.013530 0.002033 6.654278 0.0000 

C(10) -0.006844 0.001922 -3.560022 0.0004 
C(11) 0.003321 0.001951 1.701886 0.0888 
C(12) 0.009862 0.001916 5.146104 0.0000 
C(13) 0.009772 0.001839 5.312826 0.0000 
C(14) 0.001756 0.001644 1.067713 0.2857 
C(15) 0.007845 0.001913 4.100498 0.0000 
C(16) 0.001225 0.001910 0.641174 0.5214 
C(17) -0.004592 0.001477 -3.108293 0.0019 
C(18) -0.002983 0.001356 -2.199186 0.0279 
C(19) 0.011817 0.001182 9.996664 0.0000 
C(20) -0.002588 0.001118 -2.315798 0.0206 
C(21) 3.65E-06 2.57E-06 1.421095 0.1553 
C(22) 0.021115 2.52E-06 8362.753 0.0000 
C(23) -0.000393 2.42E-06 -162.2875 0.0000 
C(24) -1.39E-05 2.17E-06 -6.420674 0.0000 
C(25) -0.022994 2.52E-06 -9122.257 0.0000 
C(26) -0.007401 2.52E-06 -2940.407 0.0000 
C(27) 2.82E-05 1.95E-06 14.46996 0.0000 
C(28) -1.64E-05 1.79E-06 -9.198750 0.0000 
C(29) 3.13E-06 1.56E-06 2.012007 0.0443 
C(30) -7.89E-06 1.47E-06 -5.359486 0.0000 
C(31) -3.06E-05 0.001474 -0.020727 0.9835 
C(32) 0.019924 0.001448 13.76253 0.0000 
C(33) 0.013974 0.001389 10.05726 0.0000 
C(34) 0.014234 0.001242 11.45917 0.0000 
C(35) 0.000564 0.001445 0.389955 0.6966 
C(36) 0.000844 0.001443 0.584927 0.5586 
C(37) -0.006993 0.001116 -6.266294 0.0000 
C(38) 0.007491 0.001025 7.310823 0.0000 
C(39) 0.006016 0.000893 6.736366 0.0000 
C(40) 0.001689 0.000844 2.000857 0.0455 
C(41) 0.000160 0.002055 0.077683 0.9381 
C(42) 0.012794 0.002018 6.338714 0.0000 
C(43) 0.004409 0.001937 2.276063 0.0229 
C(44) 0.008226 0.001732 4.749781 0.0000 
C(45) 0.003703 0.002015 1.837514 0.0662 
C(46) -0.000234 0.002012 -0.116065 0.9076 
C(47) 6.12E-05 0.001556 0.039316 0.9686 
C(48) -0.003416 0.001429 -2.391244 0.0168 
C(49) 0.011954 0.001245 9.600817 0.0000 
C(50) 0.003733 0.001177 3.171342 0.0015 
C(51) -0.000121 0.000817 -0.148575 0.8819 
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C(52) 0.023950 0.000802 29.85186 0.0000 
C(53) 0.011092 0.000770 14.40466 0.0000 
C(54) 0.030303 0.000688 44.02075 0.0000 
C(55) 0.007260 0.000801 9.063803 0.0000 
C(56) 0.009337 0.000800 11.67326 0.0000 
C(57) 0.029144 0.000618 47.12186 0.0000 
C(58) -0.001189 0.000568 -2.093182 0.0364 
C(59) -0.004471 0.000495 -9.033512 0.0000 
C(60) -0.007997 0.000468 -17.09014 0.0000 
C(61) 0.000872 0.001899 0.458958 0.6463 
C(62) 0.012694 0.001865 6.805739 0.0000 
C(63) 0.010403 0.001790 5.811481 0.0000 
C(64) 0.009826 0.001600 6.140238 0.0000 
C(65) 0.005973 0.001862 3.207662 0.0013 
C(66) -0.001852 0.001859 -0.995767 0.3194 
C(67) 0.007799 0.001438 5.424460 0.0000 
C(68) -0.002856 0.001320 -2.163507 0.0305 
C(69) 0.003767 0.001151 3.274222 0.0011 
C(70) 0.003180 0.001088 2.923198 0.0035 
C(71) 0.000575 0.001200 0.478684 0.6322 
C(72) 0.019255 0.001179 16.33355 0.0000 
C(73) 0.012266 0.001131 10.84127 0.0000 
C(74) 0.008089 0.001011 7.997144 0.0000 
C(75) 0.002453 0.001177 2.083925 0.0372 
C(76) 0.004665 0.001175 3.969076 0.0001 
C(77) -0.005336 0.000909 -5.871535 0.0000 
C(78) 0.015380 0.000834 18.43390 0.0000 
C(79) -0.001629 0.000727 -2.239428 0.0252 
C(80) -0.000553 0.000688 -0.804857 0.4209 
C(81) -0.001007 0.001604 -0.627639 0.5303 
C(82) 0.026002 0.001575 16.50686 0.0000 
C(83) 0.009636 0.001512 6.373716 0.0000 
C(84) 0.009815 0.001352 7.261978 0.0000 
C(85) 0.003841 0.001573 2.442449 0.0146 
C(86) 0.001342 0.001570 0.854443 0.3929 
C(87) -0.006150 0.001214 -5.064417 0.0000 
C(88) 0.000907 0.001115 0.813978 0.4157 
C(89) -0.008739 0.000972 -8.993453 0.0000 
C(90) -0.002135 0.000919 -2.323400 0.0202 
C(91) -3.20E-06 4.05E-06 -0.791358 0.4288 
C(92) 0.033628 3.98E-06 8459.625 0.0000 
C(93) -0.000910 3.82E-06 -238.4476 0.0000 
C(94) -0.000257 3.41E-06 -75.48171 0.0000 
C(95) 0.023536 3.97E-06 5930.754 0.0000 
C(96) -0.019321 3.96E-06 -4875.348 0.0000 
C(97) 5.24E-05 3.06E-06 17.09381 0.0000 
C(98) 2.81E-05 2.81E-06 9.977810 0.0000 
C(99) -5.93E-06 2.45E-06 -2.419119 0.0156 

C(100) -2.29E-05 2.32E-06 -9.890411 0.0000 
C(101) -0.001884 0.001886 -0.998847 0.3179 
C(102) 0.032576 0.001852 17.58564 0.0000 
C(103) 0.009481 0.001778 5.332637 0.0000 
C(104) 0.008108 0.001589 5.101206 0.0000 
C(105) 0.005225 0.001849 2.825671 0.0047 
C(106) 0.011139 0.001847 6.031969 0.0000 
C(107) 0.009015 0.001428 6.313172 0.0000 
C(108) -0.000492 0.001311 -0.375099 0.7076 
C(109) 0.006234 0.001143 5.455566 0.0000 



APPENDIX 
 

386 
 

C(110) 0.014234 0.001080 13.17458 0.0000 
C(111) -2.33E-05 0.001010 -0.023068 0.9816 
C(112) 0.017619 0.000992 17.75728 0.0000 
C(113) 0.020705 0.000952 21.74261 0.0000 
C(114) -0.004099 0.000851 -4.815259 0.0000 
C(115) 0.000525 0.000991 0.529757 0.5963 
C(116) 0.002849 0.000989 2.880139 0.0040 
C(117) -0.000575 0.000765 -0.752139 0.4520 
C(118) 0.002104 0.000702 2.995447 0.0028 
C(119) 0.000222 0.000612 0.362075 0.7173 
C(120) -0.002143 0.000579 -3.703324 0.0002 
C(121) -0.000112 0.000295 -0.379380 0.7044 
C(122) 0.022136 0.000290 76.39500 0.0000 
C(123) 0.035217 0.000278 126.6340 0.0000 
C(124) -0.008330 0.000249 -33.50668 0.0000 
C(125) 0.000779 0.000289 2.691302 0.0071 
C(126) 0.001983 0.000289 6.866146 0.0000 
C(127) 0.002120 0.000223 9.489509 0.0000 
C(128) -0.001869 0.000205 -9.111857 0.0000 
C(129) -0.000138 0.000179 -0.770401 0.4411 
C(130) -0.000469 0.000169 -2.774627 0.0055 
C(131) -0.000933 0.001293 -0.721087 0.4709 
C(132) 0.028853 0.001270 22.71388 0.0000 
C(133) 0.017847 0.001219 14.63914 0.0000 
C(134) 0.008718 0.001090 7.998518 0.0000 
C(135) 0.002726 0.001268 2.149828 0.0316 
C(136) 0.007135 0.001266 5.634621 0.0000 
C(137) -0.004150 0.000979 -4.238559 0.0000 
C(138) 0.012364 0.000899 13.75287 0.0000 
C(139) 0.004513 0.000784 5.759622 0.0000 
C(140) -0.004486 0.000741 -6.055325 0.0000 
C(141) 8.81E-06 9.03E-06 0.976301 0.3290 
C(142) 0.043353 8.86E-06 4890.754 0.0000 
C(143) -0.001595 8.51E-06 -187.4300 0.0000 
C(144) -0.000409 7.61E-06 -53.83492 0.0000 
C(145) 0.005148 8.85E-06 581.7731 0.0000 
C(146) 0.029497 8.84E-06 3337.951 0.0000 
C(147) -8.23E-06 6.83E-06 -1.205086 0.2282 
C(148) -7.81E-05 6.27E-06 -12.44955 0.0000 
C(149) -9.63E-06 5.47E-06 -1.760634 0.0784 
C(150) -3.44E-05 5.17E-06 -6.644969 0.0000 
C(151) 0.002806 0.001793 1.565248 0.1176 
C(152) 0.020451 0.001761 11.61445 0.0000 
C(153) 0.009838 0.001690 5.821357 0.0000 
C(154) 0.010007 0.001511 6.623673 0.0000 
C(155) 0.004843 0.001758 2.755329 0.0059 
C(156) 0.001118 0.001755 0.636705 0.5243 
C(157) 0.000920 0.001357 0.678075 0.4978 
C(158) 0.002700 0.001246 2.166455 0.0303 
C(159) -0.009464 0.001086 -8.713762 0.0000 
C(160) 0.004620 0.001027 4.499190 0.0000 
C(161) 9.69E-05 0.001725 0.056177 0.9552 
C(162) 0.014730 0.001694 8.696068 0.0000 
C(163) 0.016527 0.001626 10.16662 0.0000 
C(164) 0.012888 0.001453 8.867861 0.0000 
C(165) 0.006607 0.001691 3.907025 0.0001 
C(166) 0.000559 0.001689 0.331184 0.7405 
C(167) -0.003271 0.001306 -2.504919 0.0123 
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C(168) -0.007070 0.001199 -5.897348 0.0000 
C(169) -0.005040 0.001045 -4.823379 0.0000 
C(170) 0.001812 0.000988 1.833779 0.0667 
C(171) 0.000940 0.001422 0.660849 0.5087 
C(172) 0.024000 0.001397 17.18537 0.0000 
C(173) 0.019116 0.001340 14.26263 0.0000 
C(174) 0.004610 0.001198 3.847362 0.0001 
C(175) 0.002888 0.001394 2.071263 0.0384 
C(176) 0.002352 0.001392 1.689508 0.0912 
C(177) -0.005413 0.001077 -5.028493 0.0000 
C(178) -0.001621 0.000988 -1.640493 0.1010 
C(179) -0.005834 0.000861 -6.772742 0.0000 
C(180) 0.009290 0.000814 11.40579 0.0000 
C(181) -0.001511 0.002408 -0.627442 0.5304 
C(182) 0.030977 0.002365 13.10042 0.0000 
C(183) 0.014497 0.002269 6.388271 0.0000 
C(184) 0.013746 0.002029 6.775671 0.0000 
C(185) 0.004316 0.002361 1.828238 0.0676 
C(186) 0.003537 0.002357 1.500417 0.1336 
C(187) 0.004701 0.001823 2.579248 0.0099 
C(188) 0.000910 0.001674 0.543498 0.5868 
C(189) 0.005004 0.001459 3.430739 0.0006 
C(190) 0.014577 0.001379 10.56991 0.0000 
C(191) -0.000615 0.000796 -0.772626 0.4398 
C(192) 0.027105 0.000781 34.68451 0.0000 
C(193) 0.012251 0.000750 16.33491 0.0000 
C(194) 0.019107 0.000670 28.49708 0.0000 
C(195) 0.006183 0.000780 7.924919 0.0000 
C(196) 0.000894 0.000779 1.147683 0.2511 
C(197) -0.016564 0.000602 -27.49685 0.0000 
C(198) -0.014311 0.000553 -25.87447 0.0000 
C(199) 0.001225 0.000482 2.541653 0.0111 
C(200) -0.004656 0.000456 -10.21598 0.0000 

Equation: PE_OLES_01=C(1)+C(2)*F1+C(3)*F2+C(4)*F3+C(5)*F4+C(6)*F5 
        +C(7)*F6+C(8)*F7+C(9)*F8+C(10)*F9  
Observations: 291   
R-squared 0.303663    Mean dependent var 0.003041 
Adjusted R-squared 0.281360    S.D. dependent var 0.067481 
S.E. of regression 0.057205    Sum squared resid 0.919555 
Durbin-Watson stat 1.944252    
Equation: BIMBOA=C(11)+C(12)*F1+C(13)*F2+C(14)*F3+C(15)*F4+C(16) 
        *F5+C(17)*F6+C(18)*F7+C(19)*F8+C(20)*F9  
Observations: 291   
R-squared 0.398596    Mean dependent var 0.001472 
Adjusted R-squared 0.379334    S.D. dependent var 0.042216 
S.E. of regression 0.033259    Sum squared resid 0.310827 
Durbin-Watson stat 2.014698    
Equation: GMODELOC=C(21)+C(22)*F1+C(23)*F2+C(24)*F3+C(25)*F4 
        +C(26)*F5+C(27)*F6+C(28)*F7+C(29)*F8+C(30)*F9 
Observations: 291   
R-squared 0.999998    Mean dependent var 0.000176 
Adjusted R-squared 0.999998    S.D. dependent var 0.032167 
S.E. of regression 4.38E-05    Sum squared resid 5.40E-07 
Durbin-Watson stat 2.069948    
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Equation: FEMSAUBD=C(31)+C(32)*F1+C(33)*F2+C(34)*F3+C(35)*F4 
        +C(36)*F5+C(37)*F6+C(38)*F7+C(39)*F8+C(40)*F9 
Observations: 291   
R-squared 0.659832    Mean dependent var 0.000669 
Adjusted R-squared 0.648937    S.D. dependent var 0.042404 
S.E. of regression 0.025125    Sum squared resid 0.177383 
Durbin-Watson stat 2.299181    
Equation: CONTAL_01=C(41)+C(42)*F1+C(43)*F2+C(44)*F3+C(45)*F4 
        +C(46)*F5+C(47)*F6+C(48)*F7+C(49)*F8+C(50)*F9 
Observations: 291   
R-squared 0.381197    Mean dependent var 0.000350 
Adjusted R-squared 0.361378    S.D. dependent var 0.043836 
S.E. of regression 0.035031    Sum squared resid 0.344828 
Durbin-Watson stat 2.115737    
Equation: GEOB=C(51)+C(52)*F1+C(53)*F2+C(54)*F3+C(55)*F4+C(56)*F5 
        +C(57)*F6+C(58)*F7+C(59)*F8+C(60)*F9  
Observations: 291   
R-squared 0.952640    Mean dependent var 0.006502 
Adjusted R-squared 0.951123    S.D. dependent var 0.062982 
S.E. of regression 0.013924    Sum squared resid 0.054481 
Durbin-Watson stat 2.100483    
Equation: ARA_01=C(61)+C(62)*F1+C(63)*F2+C(64)*F3+C(65)*F4+C(66) 
        *F5+C(67)*F6+C(68)*F7+C(69)*F8+C(70)*F9  
Observations: 291   
R-squared 0.385357    Mean dependent var 0.003209 
Adjusted R-squared 0.365671    S.D. dependent var 0.040644 
S.E. of regression 0.032371    Sum squared resid 0.294449 
Durbin-Watson stat 2.138521    
Equation: WALMEXV=C(71)+C(72)*F1+C(73)*F2+C(74)*F3+C(75)*F4 
        +C(76)*F5+C(77)*F6+C(78)*F7+C(79)*F8+C(80)*F9 
Observations: 291   
R-squared 0.744583    Mean dependent var 0.001645 
Adjusted R-squared 0.736403    S.D. dependent var 0.039850 
S.E. of regression 0.020460    Sum squared resid 0.117627 
Durbin-Watson stat 2.363038    
Equation: SORIANAB=C(81)+C(82)*F1+C(83)*F2+C(84)*F3+C(85)*F4 
        +C(86)*F5+C(87)*F6+C(88)*F7+C(89)*F8+C(90)*F9 
Observations: 291   
R-squared 0.625060    Mean dependent var -0.000943 
Adjusted R-squared 0.613051    S.D. dependent var 0.043948 
S.E. of regression 0.027338    Sum squared resid 0.210007 
Durbin-Watson stat 2.271911    
Equation: COMERUBC=C(91)+C(92)*F1+C(93)*F2+C(94)*F3+C(95)*F4 
        +C(96)*F5+C(97)*F6+C(98)*F7+C(99)*F8+C(100)*F9 
Observations: 291   
R-squared 0.999998    Mean dependent var 0.000568 
Adjusted R-squared 0.999998    S.D. dependent var 0.045490 
S.E. of regression 6.90E-05    Sum squared resid 1.34E-06 
Durbin-Watson stat 2.111820    
Equation: ELEKTRA_01=C(101)+C(102)*F1+C(103)*F2+C(104)*F3+C(105) 
        *F4+C(106)*F5+C(107)*F6+C(108)*F7+C(109)*F8+C(110)*F9 
Observations: 291   
R-squared 0.691218    Mean dependent var 0.000965 
Adjusted R-squared 0.681328    S.D. dependent var 0.056950 
S.E. of regression 0.032149    Sum squared resid 0.290427 
Durbin-Watson stat 2.145642    
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Equation: TELMEXL=C(111)+C(112)*F1+C(113)*F2+C(114)*F3+C(115)*F4 
        +C(116)*F5+C(117)*F6+C(118)*F7+C(119)*F8+C(120)*F9 
Observations: 291   
R-squared 0.743433    Mean dependent var -0.000491 
Adjusted R-squared 0.735216    S.D. dependent var 0.033465 
S.E. of regression 0.017220    Sum squared resid 0.083325 
Durbin-Watson stat 2.247655    
Equation: TELECOA1=C(121)+C(122)*F1+C(123)*F2+C(124)*F3+C(125) 
        *F4+C(126)*F5+C(127)*F6+C(128)*F7+C(129)*F8+C(130)*F9 
Observations: 291   
R-squared 0.987629    Mean dependent var -0.000369 
Adjusted R-squared 0.987232    S.D. dependent var 0.044505 
S.E. of regression 0.005029    Sum squared resid 0.007106 
Durbin-Watson stat 2.311543    
Equation: TLEVICPO=C(131)+C(132)*F1+C(133)*F2+C(134)*F3+C(135) 
        *F4+C(136)*F5+C(137)*F6+C(138)*F7+C(139)*F8+C(140)*F9 
Observations: 291   
R-squared 0.791923    Mean dependent var -0.000790 
Adjusted R-squared 0.785258    S.D. dependent var 0.047574 
S.E. of regression 0.022046    Sum squared resid 0.136572 
Durbin-Watson stat 2.116130    
Equation: TVAZTCPO=C(141)+C(142)*F1+C(143)*F2+C(144)*F3+C(145) 
        *F4+C(146)*F5+C(147)*F6+C(148)*F7+C(149)*F8+C(150)*F9 
Observations: 291   
R-squared 0.999992    Mean dependent var -0.002023 
Adjusted R-squared 0.999992    S.D. dependent var 0.052847 
S.E. of regression 0.000154    Sum squared resid 6.65E-06 
Durbin-Watson stat 2.066727    
Equation: GFNORTEO=C(151)+C(152)*F1+C(153)*F2+C(154)*F3+C(155) 
        *F4+C(156)*F5+C(157)*F6+C(158)*F7+C(159)*F8+C(160)*F9 
Observations: 291   
R-squared 0.525270    Mean dependent var 0.005163 
Adjusted R-squared 0.510065    S.D. dependent var 0.043658 
S.E. of regression 0.030559    Sum squared resid 0.262409 
Durbin-Watson stat 2.183523    
Equation: GFINBURO=C(161)+C(162)*F1+C(163)*F2+C(164)*F3+C(165) 
        *F4+C(166)*F5+C(167)*F6+C(168)*F7+C(169)*F8+C(170)*F9 
Observations: 291   
R-squared 0.539321    Mean dependent var 0.000767 
Adjusted R-squared 0.524566    S.D. dependent var 0.042633 
S.E. of regression 0.029397    Sum squared resid 0.242828 
Durbin-Watson stat 2.212381    
Equation: GCARSOA1=C(171)+C(172)*F1+C(173)*F2+C(174)*F3+C(175) 
        *F4+C(176)*F5+C(177)*F6+C(178)*F7+C(179)*F8+C(180)*F9 
Observations: 291   
R-squared 0.713483    Mean dependent var 0.001724 
Adjusted R-squared 0.704306    S.D. dependent var 0.044571 
S.E. of regression 0.024237    Sum squared resid 0.165065 
Durbin-Watson stat 2.161704    
Equation: ALFAA=C(181)+C(182)*F1+C(183)*F2+C(184)*F3+C(185)*F4 
        +C(186)*F5+C(187)*F6+C(188)*F7+C(189)*F8+C(190)*F9 
Observations: 291   
R-squared 0.575415    Mean dependent var 0.001871 
Adjusted R-squared 0.561816    S.D. dependent var 0.061994 
S.E. of regression 0.041037    Sum squared resid 0.473218 
Durbin-Watson stat 2.248414    
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Equation: CIEB=C(191)+C(192)*F1+C(193)*F2+C(194)*F3+C(195)*F4 
        +C(196)*F5+C(197)*F6+C(198)*F7+C(199)*F8+C(200)*F9 
Observations: 291   
R-squared 0.930273    Mean dependent var -0.003637 
Adjusted R-squared 0.928040    S.D. dependent var 0.050558 
S.E. of regression 0.013562    Sum squared resid 0.051686 
Durbin-Watson stat 2.060123    
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Table 7. Factor Analysis. Betas estimation for all the equation system via Weighted Least 
Squares. Database of daily returns. 

 

 Coefficient Std. Error t-Statistic Prob.   

C(1) 0.000304 0.000657 0.462068 0.6440 
C(2) 0.004406 0.000637 6.921585 0.0000 
C(3) 0.001995 0.000558 3.573825 0.0004 
C(4) 0.002206 0.000498 4.428499 0.0000 
C(5) 0.002532 0.000400 6.325931 0.0000 
C(6) 0.003044 0.000379 8.025707 0.0000 
C(7) 0.001843 0.000384 4.796170 0.0000 
C(8) 0.005437 0.000334 16.29213 0.0000 
C(9) 0.003992 0.000330 12.09747 0.0000 

C(10) 0.000570 0.000295 1.930953 0.0535 
C(11) 8.85E-05 0.000279 0.316741 0.7514 
C(12) 0.006252 0.000271 23.10988 0.0000 
C(13) 0.001452 0.000237 6.118659 0.0000 
C(14) 0.003115 0.000212 14.71596 0.0000 
C(15) 0.001575 0.000170 9.260985 0.0000 
C(16) 0.000684 0.000161 4.244365 0.0000 
C(17) 0.001334 0.000163 8.167413 0.0000 
C(18) 0.001781 0.000142 12.55835 0.0000 
C(19) -0.002668 0.000140 -19.02270 0.0000 
C(20) 0.001112 0.000125 8.859308 0.0000 
C(21) 0.000244 0.000390 0.625610 0.5316 
C(22) 0.007350 0.000378 19.45786 0.0000 
C(23) 0.002033 0.000331 6.134419 0.0000 
C(24) 0.002759 0.000296 9.334950 0.0000 
C(25) 0.001877 0.000237 7.904984 0.0000 
C(26) 0.003416 0.000225 15.17701 0.0000 
C(27) 0.000856 0.000228 3.752425 0.0002 
C(28) 0.000491 0.000198 2.477468 0.0132 
C(29) 0.001596 0.000196 8.151831 0.0000 
C(30) -0.000844 0.000175 -4.819616 0.0000 
C(31) -5.08E-06 0.000278 -0.018274 0.9854 
C(32) 0.006974 0.000269 25.90609 0.0000 
C(33) 0.001412 0.000236 5.977878 0.0000 
C(34) 0.001527 0.000211 7.248653 0.0000 
C(35) 0.001408 0.000169 8.320076 0.0000 
C(36) -0.003040 0.000160 -18.95626 0.0000 
C(37) 0.001587 0.000162 9.769232 0.0000 
C(38) 0.003316 0.000141 23.49482 0.0000 
C(39) -0.000530 0.000140 -3.796197 0.0001 
C(40) 0.000227 0.000125 1.818854 0.0689 
C(41) 0.000177 0.000220 0.803274 0.4218 
C(42) 0.010816 0.000214 50.65574 0.0000 
C(43) 0.001894 0.000187 10.11055 0.0000 
C(44) 0.001182 0.000167 7.073457 0.0000 
C(45) -0.001317 0.000134 -9.808437 0.0000 
C(46) -0.001098 0.000127 -8.632433 0.0000 
C(47) 0.004127 0.000129 32.01711 0.0000 
C(48) -0.002428 0.000112 -21.68434 0.0000 
C(49) -0.001104 0.000111 -9.972256 0.0000 
C(50) -0.002131 9.90E-05 -21.51204 0.0000 
C(51) -8.98E-05 0.000410 -0.218975 0.8267 



APPENDIX 
 

392 
 

C(52) 0.006177 0.000397 15.54954 0.0000 
C(53) 0.002546 0.000348 7.305803 0.0000 
C(54) 0.001894 0.000311 6.092142 0.0000 
C(55) 0.002714 0.000250 10.86680 0.0000 
C(56) 0.002886 0.000237 12.19344 0.0000 
C(57) 0.003102 0.000240 12.93663 0.0000 
C(58) 0.004032 0.000208 19.36101 0.0000 
C(59) 0.002289 0.000206 11.11594 0.0000 
C(60) 0.000442 0.000184 2.397502 0.0165 
C(61) 4.94E-05 0.000244 0.202630 0.8394 
C(62) 0.009883 0.000236 41.83075 0.0000 
C(63) 0.001615 0.000207 7.790973 0.0000 
C(64) 0.001175 0.000185 6.355506 0.0000 
C(65) -0.003057 0.000149 -20.57778 0.0000 
C(66) 0.000586 0.000141 4.164358 0.0000 
C(67) 0.003264 0.000143 22.88664 0.0000 
C(68) -0.000190 0.000124 -1.536756 0.1244 
C(69) 0.000397 0.000122 3.237993 0.0012 
C(70) -0.001545 0.000110 -14.09498 0.0000 
C(71) 0.000364 0.000490 0.741947 0.4581 
C(72) 0.010238 0.000475 21.57030 0.0000 
C(73) 0.004078 0.000416 9.794634 0.0000 
C(74) 0.002680 0.000371 7.215685 0.0000 
C(75) -0.003554 0.000298 -11.90919 0.0000 
C(76) 0.002849 0.000283 10.07467 0.0000 
C(77) -0.000616 0.000286 -2.150847 0.0315 
C(78) 0.000357 0.000249 1.435413 0.1512 
C(79) 0.003062 0.000246 12.44368 0.0000 
C(80) 0.002278 0.000220 10.34666 0.0000 
C(81) 0.000112 0.000319 0.349854 0.7265 
C(82) 0.008084 0.000309 26.16741 0.0000 
C(83) 0.002684 0.000271 9.902838 0.0000 
C(84) 0.002378 0.000242 9.836081 0.0000 
C(85) -0.002897 0.000194 -14.91563 0.0000 
C(86) 0.003426 0.000184 18.61197 0.0000 
C(87) -0.000448 0.000186 -2.403215 0.0163 
C(88) -0.001327 0.000162 -8.191035 0.0000 
C(89) 0.001889 0.000160 11.79593 0.0000 
C(90) 0.003203 0.000143 22.35138 0.0000 
C(91) 3.97E-06 0.000243 0.016353 0.9870 
C(92) 0.012047 0.000235 51.22923 0.0000 
C(93) 0.002804 0.000206 13.59242 0.0000 
C(94) 0.001747 0.000184 9.495408 0.0000 
C(95) 0.001271 0.000148 8.600296 0.0000 
C(96) -0.004371 0.000140 -31.19640 0.0000 
C(97) 0.001190 0.000142 8.386559 0.0000 
C(98) 0.000206 0.000123 1.671840 0.0946 
C(99) 0.000992 0.000122 8.135169 0.0000 

C(100) 0.002504 0.000109 22.95941 0.0000 
C(101) -0.000219 0.000346 -0.632236 0.5272 
C(102) 0.011291 0.000335 33.72168 0.0000 
C(103) 0.003894 0.000294 13.25693 0.0000 
C(104) 0.001791 0.000262 6.835626 0.0000 
C(105) 0.001600 0.000211 7.601124 0.0000 
C(106) -0.001580 0.000199 -7.921035 0.0000 
C(107) 0.000239 0.000202 1.180214 0.2379 
C(108) -0.000366 0.000176 -2.084639 0.0371 
C(109) -0.000317 0.000174 -1.828139 0.0675 
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C(110) -0.000795 0.000155 -5.116680 0.0000 
C(111) -0.000366 0.000409 -0.893259 0.3717 
C(112) 0.009443 0.000397 23.81062 0.0000 
C(113) 0.003613 0.000348 10.38688 0.0000 
C(114) 0.002724 0.000310 8.778925 0.0000 
C(115) -0.001013 0.000249 -4.062053 0.0000 
C(116) 0.000223 0.000236 0.944888 0.3447 
C(117) -0.000641 0.000239 -2.677616 0.0074 
C(118) 0.001908 0.000208 9.174650 0.0000 
C(119) 0.000928 0.000206 4.514295 0.0000 
C(120) -0.002796 0.000184 -15.19975 0.0000 
C(121) -0.000289 0.000431 -0.670366 0.5026 
C(122) 0.014104 0.000417 33.78378 0.0000 
C(123) 0.006692 0.000366 18.27309 0.0000 
C(124) -0.002196 0.000327 -6.724125 0.0000 
C(125) -0.001233 0.000262 -4.698752 0.0000 
C(126) 0.001050 0.000249 4.223126 0.0000 
C(127) -0.001434 0.000252 -5.690083 0.0000 
C(128) 0.000919 0.000219 4.199820 0.0000 
C(129) 0.002105 0.000216 9.728309 0.0000 
C(130) -0.002324 0.000194 -12.00298 0.0000 
C(131) 2.07E-05 4.70E-05 0.439074 0.6606 
C(132) 0.012857 4.56E-05 282.0912 0.0000 
C(133) -0.006884 4.00E-05 -172.1931 0.0000 
C(134) -0.000509 3.57E-05 -14.27734 0.0000 
C(135) -0.000201 2.87E-05 -6.998671 0.0000 
C(136) 0.000469 2.72E-05 17.26299 0.0000 
C(137) 0.000112 2.75E-05 4.084583 0.0000 
C(138) 0.000343 2.39E-05 14.34705 0.0000 
C(139) -0.000223 2.36E-05 -9.425262 0.0000 
C(140) -8.63E-05 2.11E-05 -4.082026 0.0000 
C(141) -0.000150 0.000245 -0.614046 0.5392 
C(142) 0.015022 0.000237 63.30797 0.0000 
C(143) -0.003426 0.000208 -16.45803 0.0000 
C(144) 0.001394 0.000186 7.506121 0.0000 
C(145) 0.001868 0.000149 12.52254 0.0000 
C(146) -0.000755 0.000141 -5.341698 0.0000 
C(147) -0.002844 0.000143 -19.85494 0.0000 
C(148) -0.000728 0.000124 -5.849773 0.0000 
C(149) 0.001070 0.000123 8.695586 0.0000 
C(150) -7.70E-05 0.000110 -0.699904 0.4840 
C(151) -0.000314 0.000256 -1.229869 0.2188 
C(152) 0.016463 0.000248 66.50769 0.0000 
C(153) 0.002259 0.000217 10.40563 0.0000 
C(154) -0.003104 0.000194 -16.02421 0.0000 
C(155) -0.001938 0.000156 -12.45122 0.0000 
C(156) -0.000845 0.000147 -5.728911 0.0000 
C(157) 0.002342 0.000149 15.67498 0.0000 
C(158) -0.001872 0.000130 -14.42067 0.0000 
C(159) 0.000164 0.000128 1.280457 0.2004 
C(160) 0.002888 0.000115 25.15660 0.0000 
C(161) 0.000192 0.000112 1.710507 0.0872 
C(162) 0.016902 0.000109 155.6906 0.0000 
C(163) 0.006641 9.52E-05 69.73786 0.0000 
C(164) -0.010784 8.49E-05 -126.9540 0.0000 
C(165) 0.001135 6.83E-05 16.63129 0.0000 
C(166) 0.000812 6.47E-05 12.54856 0.0000 
C(167) -0.001268 6.55E-05 -19.35277 0.0000 
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C(168) 0.000815 5.69E-05 14.31378 0.0000 
C(169) -0.001061 5.63E-05 -18.84919 0.0000 
C(170) -0.000210 5.04E-05 -4.173790 0.0000 
C(171) 0.000137 0.000154 0.888745 0.3741 
C(172) 0.010954 0.000149 73.37237 0.0000 
C(173) 0.003613 0.000131 27.58789 0.0000 
C(174) 0.004103 0.000117 35.12867 0.0000 
C(175) -0.005958 9.39E-05 -63.47633 0.0000 
C(176) -0.001681 8.89E-05 -18.90001 0.0000 
C(177) -0.004571 9.01E-05 -50.72312 0.0000 
C(178) 0.002340 7.83E-05 29.90024 0.0000 
C(179) -0.002739 7.74E-05 -35.39010 0.0000 
C(180) -1.64E-05 6.92E-05 -0.236137 0.8133 
C(181) 1.28E-05 0.000384 0.033437 0.9733 
C(182) 0.009040 0.000372 24.32717 0.0000 
C(183) 0.002436 0.000326 7.474442 0.0000 
C(184) 0.003206 0.000291 11.02744 0.0000 
C(185) 0.000578 0.000234 2.474285 0.0134 
C(186) 0.001108 0.000221 5.002805 0.0000 
C(187) -0.002706 0.000224 -12.06569 0.0000 
C(188) -0.002680 0.000195 -13.75613 0.0000 
C(189) 0.001036 0.000193 5.377366 0.0000 
C(190) -0.000281 0.000172 -1.631075 0.1029 
C(191) 0.000447 0.000295 1.515642 0.1296 
C(192) 0.011721 0.000285 41.05635 0.0000 
C(193) 0.002417 0.000250 9.652877 0.0000 
C(194) 0.002930 0.000223 13.11810 0.0000 
C(195) 0.003680 0.000179 20.50622 0.0000 
C(196) -0.002162 0.000170 -12.71157 0.0000 
C(197) -0.001671 0.000172 -9.698611 0.0000 
C(198) -0.002181 0.000150 -14.57290 0.0000 
C(199) 0.000656 0.000148 4.434727 0.0000 
C(200) -0.000699 0.000132 -5.279834 0.0000 
C(201) -0.000243 0.000475 -0.510300 0.6098 
C(202) 0.013488 0.000460 29.29537 0.0000 
C(203) 0.003696 0.000404 9.151360 0.0000 
C(204) 0.000707 0.000360 1.962857 0.0497 
C(205) -0.000110 0.000289 -0.380547 0.7035 
C(206) -0.000648 0.000274 -2.363097 0.0181 
C(207) -0.001457 0.000278 -5.240793 0.0000 
C(208) -4.57E-05 0.000241 -0.189465 0.8497 
C(209) 0.003773 0.000239 15.80928 0.0000 
C(210) -0.001701 0.000214 -7.966192 0.0000 
C(211) -0.000264 0.000231 -1.141193 0.2538 
C(212) 0.011381 0.000224 50.75608 0.0000 
C(213) 0.004892 0.000197 24.87338 0.0000 
C(214) 0.004317 0.000175 24.60910 0.0000 
C(215) 0.003249 0.000141 23.04575 0.0000 
C(216) 0.004715 0.000134 35.29873 0.0000 
C(217) -0.000265 0.000135 -1.959728 0.0500 
C(218) -0.001385 0.000118 -11.77704 0.0000 
C(219) -0.004385 0.000116 -37.72457 0.0000 
C(220) 0.000550 0.000104 5.284240 0.0000 
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Equation: PE_OLES_01=C(1)+C(2)*F1+C(3)*F2+C(4)*F3+C(5)*F4+C(6)*F5 
        +C(7)*F6+C(8)*F7+C(9)*F8+C(10)*F9  
Observations: 1410   
R-squared 0.306524    Mean dependent var 0.001028 
Adjusted R-squared 0.302066    S.D. dependent var 0.029462 
S.E. of regression 0.024613    Sum squared resid 0.848137 
Durbin-Watson stat 1.925699    
Equation: KIMBERA=C(11)+C(12)*F1+C(13)*F2+C(14)*F3+C(15)*F4+C(16) 
        *F5+C(17)*F6+C(18)*F7+C(19)*F8+C(20)*F9  
Observations: 1410   
R-squared 0.524711    Mean dependent var 0.000209 
Adjusted R-squared 0.521655    S.D. dependent var 0.015126 
S.E. of regression 0.010462    Sum squared resid 0.153222 
Durbin-Watson stat 1.935444    
Equation: BIMBOA=C(21)+C(22)*F1+C(23)*F2+C(24)*F3+C(25)*F4+C(26) 
        *F5+C(27)*F6+C(28)*F7+C(29)*F8+C(30)*F9  
Observations: 1410   
R-squared 0.391221    Mean dependent var 0.000650 
Adjusted R-squared 0.387307    S.D. dependent var 0.018661 
S.E. of regression 0.014607    Sum squared resid 0.298710 
Durbin-Watson stat 1.881518    
Equation: GMODELOC=C(31)+C(32)*F1+C(33)*F2+C(34)*F3+C(35)*F4 
        +C(36)*F5+C(37)*F6+C(38)*F7+C(39)*F8+C(40)*F9 
Observations: 1410   
R-squared 0.567900    Mean dependent var 0.000384 
Adjusted R-squared 0.565122    S.D. dependent var 0.015785 
S.E. of regression 0.010410    Sum squared resid 0.151703 
Durbin-Watson stat 1.917907    
Equation: FEMSAUBD=C(41)+C(42)*F1+C(43)*F2+C(44)*F3+C(45)*F4 
        +C(46)*F5+C(47)*F6+C(48)*F7+C(49)*F8+C(50)*F9 
Observations: 1410   
R-squared 0.778180    Mean dependent var 0.000500 
Adjusted R-squared 0.776754    S.D. dependent var 0.017475 
S.E. of regression 0.008257    Sum squared resid 0.095439 
Durbin-Watson stat 1.995952    
Equation: CONTAL_01=C(51)+C(52)*F1+C(53)*F2+C(54)*F3+C(55)*F4 
        +C(56)*F5+C(57)*F6+C(58)*F7+C(59)*F8+C(60)*F9 
Observations: 1410   
R-squared 0.473991    Mean dependent var 0.000405 
Adjusted R-squared 0.470609    S.D. dependent var 0.021111 
S.E. of regression 0.015360    Sum squared resid 0.330307 
Durbin-Watson stat 1.989090    
Equation: CEMEXCP=C(61)+C(62)*F1+C(63)*F2+C(64)*F3+C(65)*F4 
        +C(66)*F5+C(67)*F6+C(68)*F7+C(69)*F8+C(70)*F9 
Observations: 1410   
R-squared 0.682218    Mean dependent var 0.000771 
Adjusted R-squared 0.680175    S.D. dependent var 0.016155 
S.E. of regression 0.009136    Sum squared resid 0.116855 
Durbin-Watson stat 1.949455    
Equation: GEOB=C(71)+C(72)*F1+C(73)*F2+C(74)*F3+C(75)*F4+C(76)*F5 
        +C(77)*F6+C(78)*F7+C(79)*F8+C(80)*F9  
Observations: 1410   
R-squared 0.443829    Mean dependent var 0.001662 
Adjusted R-squared 0.440254    S.D. dependent var 0.024531 
S.E. of regression 0.018353    Sum squared resid 0.471566 
Durbin-Watson stat 1.720838    
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Equation: ARA_01=C(81)+C(82)*F1+C(83)*F2+C(84)*F3+C(85)*F4+C(86) 
        *F5+C(87)*F6+C(88)*F7+C(89)*F8+C(90)*F9  
Observations: 1410   
R-squared 0.605045    Mean dependent var 0.001007 
Adjusted R-squared 0.602506    S.D. dependent var 0.018947 
S.E. of regression 0.011946    Sum squared resid 0.199778 
Durbin-Watson stat 1.874364    
Equation: WALMEXV=C(91)+C(92)*F1+C(93)*F2+C(94)*F3+C(95)*F4 
        +C(96)*F5+C(97)*F6+C(98)*F7+C(99)*F8+C(100)*F9 
Observations: 1410   
R-squared 0.765896    Mean dependent var 0.000655 
Adjusted R-squared 0.764392    S.D. dependent var 0.018733 
S.E. of regression 0.009093    Sum squared resid 0.115757 
Durbin-Watson stat 1.908075    
Equation: SORIANAB=C(101)+C(102)*F1+C(103)*F2+C(104)*F3+C(105) 
        *F4+C(106)*F5+C(107)*F6+C(108)*F7+C(109)*F8+C(110)*F9 
Observations: 1410   
R-squared 0.518015    Mean dependent var 0.000171 
Adjusted R-squared 0.514917    S.D. dependent var 0.018590 
S.E. of regression 0.012948    Sum squared resid 0.234695 
Durbin-Watson stat 1.863937    
Equation: COMERUBC=C(111)+C(112)*F1+C(113)*F2+C(114)*F3+C(115) 
        *F4+C(116)*F5+C(117)*F6+C(118)*F7+C(119)*F8+C(120)*F9 
Observations: 1410   
R-squared 0.440931    Mean dependent var 0.000498 
Adjusted R-squared 0.437337    S.D. dependent var 0.020444 
S.E. of regression 0.015335    Sum squared resid 0.329236 
Durbin-Watson stat 2.087763    
Equation: ELEKTRA_01=C(121)+C(122)*F1+C(123)*F2+C(124)*F3+C(125) 
        *F4+C(126)*F5+C(127)*F6+C(128)*F7+C(129)*F8+C(130)*F9 
Observations: 1410   
R-squared 0.567366    Mean dependent var 0.000526 
Adjusted R-squared 0.564584    S.D. dependent var 0.024465 
S.E. of regression 0.016143    Sum squared resid 0.364844 
Durbin-Watson stat 1.942258    
Equation: TELMEXL=C(131)+C(132)*F1+C(133)*F2+C(134)*F3+C(135)*F4 
        +C(136)*F5+C(137)*F6+C(138)*F7+C(139)*F8+C(140)*F9 
Observations: 1410   
R-squared 0.987356    Mean dependent var 0.000215 
Adjusted R-squared 0.987275    S.D. dependent var 0.015623 
S.E. of regression 0.001762    Sum squared resid 0.004348 
Durbin-Watson stat 2.136919    
Equation: TELECOA1=C(141)+C(142)*F1+C(143)*F2+C(144)*F3+C(145) 
        *F4+C(146)*F5+C(147)*F6+C(148)*F7+C(149)*F8+C(150)*F9 
Observations: 1410   
R-squared 0.780886    Mean dependent var 0.000252 
Adjusted R-squared 0.779477    S.D. dependent var 0.019538 
S.E. of regression 0.009175    Sum squared resid 0.117854 
Durbin-Watson stat 2.185444    
Equation: TLEVICPO=C(151)+C(152)*F1+C(153)*F2+C(154)*F3+C(155) 
        *F4+C(156)*F5+C(157)*F6+C(158)*F7+C(159)*F8+C(160)*F9 
Observations: 1410   
R-squared 0.811354    Mean dependent var 0.000171 
Adjusted R-squared 0.810142    S.D. dependent var 0.021968 
S.E. of regression 0.009572    Sum squared resid 0.128268 
Durbin-Watson stat 1.948855    
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Equation: TVAZTCPO=C(161)+C(162)*F1+C(163)*F2+C(164)*F3+C(165) 
        *F4+C(166)*F5+C(167)*F6+C(168)*F7+C(169)*F8+C(170)*F9 
Observations: 1410   
R-squared 0.970635    Mean dependent var -7.68E-05 
Adjusted R-squared 0.970446    S.D. dependent var 0.024418 
S.E. of regression 0.004198    Sum squared resid 0.024670 
Durbin-Watson stat 1.986941    
Equation: GFNORTEO=C(171)+C(172)*F1+C(173)*F2+C(174)*F3+C(175) 
        *F4+C(176)*F5+C(177)*F6+C(178)*F7+C(179)*F8+C(180)*F9 
Observations: 1410   
R-squared 0.921205    Mean dependent var 0.001415 
Adjusted R-squared 0.920698    S.D. dependent var 0.020499 
S.E. of regression 0.005773    Sum squared resid 0.046654 
Durbin-Watson stat 1.939089    
Equation: GFINBURO=C(181)+C(182)*F1+C(183)*F2+C(184)*F3+C(185) 
        *F4+C(186)*F5+C(187)*F6+C(188)*F7+C(189)*F8+C(190)*F9 
Observations: 1410   
R-squared 0.452814    Mean dependent var 0.000502 
Adjusted R-squared 0.449297    S.D. dependent var 0.019363 
S.E. of regression 0.014369    Sum squared resid 0.289062 
Durbin-Watson stat 2.034833    
Equation: GCARSOA1=C(191)+C(192)*F1+C(193)*F2+C(194)*F3+C(195) 
        *F4+C(196)*F5+C(197)*F6+C(198)*F7+C(199)*F8+C(200)*F9 
Observations: 1410   
R-squared 0.671860    Mean dependent var 0.000711 
Adjusted R-squared 0.669751    S.D. dependent var 0.019209 
S.E. of regression 0.011039    Sum squared resid 0.170596 
Durbin-Watson stat 1.931628    
Equation: ALFAA=C(201)+C(202)*F1+C(203)*F2+C(204)*F3+C(205)*F4 
        +C(206)*F5+C(207)*F6+C(208)*F7+C(209)*F8+C(210)*F9 
Observations: 1410   
R-squared 0.478250    Mean dependent var 0.000723 
Adjusted R-squared 0.474896    S.D. dependent var 0.024569 
S.E. of regression 0.017804    Sum squared resid 0.443752 
Durbin-Watson stat 1.759372    
Equation: CIEB=C(211)+C(212)*F1+C(213)*F2+C(214)*F3+C(215)*F4 
        +C(216)*F5+C(217)*F6+C(218)*F7+C(219)*F8+C(220)*F9 
Observations: 1410   
R-squared 0.835687    Mean dependent var -0.000376 
Adjusted R-squared 0.834631    S.D. dependent var 0.021321 
S.E. of regression 0.008670    Sum squared resid 0.105240 
Durbin-Watson stat 1.957247    
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Table 8. Factor Analysis. Betas estimation for all the equation system via Weighted Least 
Squares. Database of daily excesses. 

 Coefficient Std. Error t-Statistic Prob.   

C(1) 0.000178 0.000625 0.285003 0.7756 
C(2) 0.004509 0.000605 7.453823 0.0000 
C(3) 0.001781 0.000524 3.401647 0.0007 
C(4) 0.002272 0.000474 4.790457 0.0000 
C(5) 0.002361 0.000387 6.101814 0.0000 
C(6) 0.002484 0.000358 6.935238 0.0000 
C(7) 0.003027 0.000370 8.177315 0.0000 
C(8) 0.007124 0.000313 22.77484 0.0000 
C(9) 0.002491 0.000317 7.846910 0.0000 

C(10) -0.001249 0.000283 -4.416970 0.0000 
C(11) 0.000108 0.000276 0.389812 0.6967 
C(12) 0.006293 0.000268 23.51839 0.0000 
C(13) 0.001244 0.000232 5.372352 0.0000 
C(14) 0.003108 0.000210 14.81785 0.0000 
C(15) 0.001556 0.000171 9.092524 0.0000 
C(16) 5.20E-05 0.000158 0.328527 0.7425 
C(17) 0.001429 0.000164 8.725383 0.0000 
C(18) -0.001345 0.000138 -9.719257 0.0000 
C(19) 0.003250 0.000140 23.14927 0.0000 
C(20) -0.000639 0.000125 -5.110651 0.0000 
C(21) 0.000232 0.000390 0.593671 0.5527 
C(22) 0.007417 0.000378 19.61946 0.0000 
C(23) 0.001782 0.000327 5.445676 0.0000 
C(24) 0.002702 0.000296 9.117486 0.0000 
C(25) 0.001889 0.000242 7.809907 0.0000 
C(26) 0.003077 0.000224 13.74975 0.0000 
C(27) 0.001926 0.000231 8.327056 0.0000 
C(28) 0.001242 0.000195 6.352221 0.0000 
C(29) -0.000221 0.000198 -1.115541 0.2646 
C(30) 0.001125 0.000177 6.370489 0.0000 
C(31) -2.84E-05 0.000277 -0.102718 0.9182 
C(32) 0.007019 0.000268 26.20013 0.0000 
C(33) 0.001161 0.000232 5.006351 0.0000 
C(34) 0.001488 0.000210 7.083680 0.0000 
C(35) 0.001424 0.000171 8.307204 0.0000 
C(36) -0.003584 0.000159 -22.60141 0.0000 
C(37) 0.000699 0.000164 4.264990 0.0000 
C(38) 0.001481 0.000139 10.69294 0.0000 
C(39) 0.002828 0.000141 20.11836 0.0000 
C(40) 0.000128 0.000125 1.022609 0.3065 
C(41) 9.58E-05 0.000279 0.343529 0.7312 
C(42) 0.010844 0.000270 40.13923 0.0000 
C(43) 0.001479 0.000234 6.326887 0.0000 
C(44) 0.001054 0.000212 4.975457 0.0000 
C(45) -0.001073 0.000173 -6.209317 0.0000 
C(46) -0.001880 0.000160 -11.75423 0.0000 
C(47) 0.003126 0.000165 18.90748 0.0000 
C(48) -0.002038 0.000140 -14.58929 0.0000 
C(49) -0.001319 0.000142 -9.305574 0.0000 
C(50) 0.000825 0.000126 6.532205 0.0000 
C(51) -3.08E-05 0.000429 -0.071808 0.9428 
C(52) 0.006236 0.000416 15.00535 0.0000 
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C(53) 0.002372 0.000360 6.593432 0.0000 
C(54) 0.001846 0.000326 5.666339 0.0000 
C(55) 0.002503 0.000266 9.414447 0.0000 
C(56) 0.001658 0.000246 6.738001 0.0000 
C(57) 0.003953 0.000254 15.54533 0.0000 
C(58) 0.003432 0.000215 15.97157 0.0000 
C(59) 0.002108 0.000218 9.668130 0.0000 
C(60) 0.000602 0.000194 3.099141 0.0019 
C(61) 8.18E-05 0.000193 0.423439 0.6720 
C(62) 0.009964 0.000187 53.22816 0.0000 
C(63) 0.001421 0.000162 8.771689 0.0000 
C(64) 0.001285 0.000147 8.759896 0.0000 
C(65) -0.003376 0.000120 -28.19121 0.0000 
C(66) -0.000498 0.000111 -4.491772 0.0000 
C(67) 0.003859 0.000115 33.68750 0.0000 
C(68) -0.000399 9.68E-05 -4.123068 0.0000 
C(69) -0.000721 9.82E-05 -7.340845 0.0000 
C(70) 0.002194 8.75E-05 25.07573 0.0000 
C(71) 0.000250 0.000422 0.592925 0.5532 
C(72) 0.010376 0.000409 25.38492 0.0000 
C(73) 0.003901 0.000354 11.02743 0.0000 
C(74) 0.002967 0.000320 9.259665 0.0000 
C(75) -0.003435 0.000261 -13.13771 0.0000 
C(76) 0.003323 0.000242 13.73483 0.0000 
C(77) 0.000238 0.000250 0.950981 0.3416 
C(78) 0.003506 0.000211 16.59064 0.0000 
C(79) -0.001502 0.000214 -7.005140 0.0000 
C(80) -0.004135 0.000191 -21.64793 0.0000 
C(81) 9.64E-05 0.000339 0.283903 0.7765 
C(82) 0.008145 0.000329 24.77147 0.0000 
C(83) 0.002448 0.000285 8.603374 0.0000 
C(84) 0.002454 0.000258 9.519216 0.0000 
C(85) -0.002498 0.000210 -11.87663 0.0000 
C(86) 0.003363 0.000195 17.27876 0.0000 
C(87) 0.000505 0.000201 2.509094 0.0121 
C(88) 0.000599 0.000170 3.526185 0.0004 
C(89) -0.001791 0.000173 -10.38332 0.0000 
C(90) -0.003042 0.000154 -19.79391 0.0000 
C(91) 4.93E-05 0.000250 0.197141 0.8437 
C(92) 0.012111 0.000242 50.03209 0.0000 
C(93) 0.002382 0.000210 11.37053 0.0000 
C(94) 0.001750 0.000190 9.220987 0.0000 
C(95) 0.001500 0.000155 9.687793 0.0000 
C(96) -0.004465 0.000143 -31.16391 0.0000 
C(97) 6.25E-05 0.000148 0.422129 0.6729 
C(98) 0.000872 0.000125 6.968210 0.0000 
C(99) -0.000556 0.000127 -4.378664 0.0000 

C(100) -0.002282 0.000113 -20.17366 0.0000 
C(101) -0.000278 0.000350 -0.794156 0.4271 
C(102) 0.011419 0.000339 33.71654 0.0000 
C(103) 0.003480 0.000293 11.87311 0.0000 
C(104) 0.001766 0.000265 6.651318 0.0000 
C(105) 0.001702 0.000217 7.854567 0.0000 
C(106) -0.001497 0.000200 -7.467384 0.0000 
C(107) -0.000191 0.000207 -0.922508 0.3563 
C(108) -0.000162 0.000175 -0.923200 0.3559 
C(109) -0.000264 0.000178 -1.484169 0.1378 
C(110) -8.92E-05 0.000158 -0.563341 0.5732 
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C(111) -0.000365 0.000424 -0.861970 0.3887 
C(112) 0.009554 0.000411 23.26564 0.0000 
C(113) 0.003301 0.000355 9.287602 0.0000 
C(114) 0.002768 0.000322 8.597583 0.0000 
C(115) -0.000925 0.000263 -3.519800 0.0004 
C(116) 0.000286 0.000243 1.176717 0.2393 
C(117) -0.000371 0.000251 -1.475793 0.1400 
C(118) 0.001919 0.000212 9.036942 0.0000 
C(119) 0.000659 0.000215 3.057186 0.0022 
C(120) 0.002195 0.000192 11.43650 0.0000 
C(121) -0.000242 0.000431 -0.560620 0.5751 
C(122) 0.014264 0.000417 34.16716 0.0000 
C(123) 0.006459 0.000361 17.87471 0.0000 
C(124) -0.002070 0.000327 -6.326198 0.0000 
C(125) -0.001111 0.000267 -4.160948 0.0000 
C(126) 0.001346 0.000247 5.446542 0.0000 
C(127) -0.000928 0.000255 -3.631433 0.0003 
C(128) 0.002140 0.000216 9.913723 0.0000 
C(129) -0.000696 0.000219 -3.176008 0.0015 
C(130) 0.002382 0.000195 12.21143 0.0000 
C(131) 2.05E-05 5.62E-05 0.363817 0.7160 
C(132) 0.012604 5.45E-05 231.3854 0.0000 
C(133) -0.006993 4.71E-05 -148.3335 0.0000 
C(134) -0.000670 4.27E-05 -15.67987 0.0000 
C(135) -0.000321 3.48E-05 -9.212426 0.0000 
C(136) 0.000434 3.22E-05 13.47003 0.0000 
C(137) 0.000262 3.33E-05 7.855490 0.0000 
C(138) 9.77E-06 2.82E-05 0.347032 0.7286 
C(139) 0.000483 2.86E-05 16.90657 0.0000 
C(140) 5.83E-05 2.55E-05 2.291028 0.0220 
C(141) -0.000140 0.000240 -0.582109 0.5605 
C(142) 0.014978 0.000233 64.41102 0.0000 
C(143) -0.004053 0.000201 -20.13547 0.0000 
C(144) 0.001229 0.000182 6.741125 0.0000 
C(145) 0.001935 0.000149 13.00657 0.0000 
C(146) 0.000303 0.000138 2.201886 0.0277 
C(147) -0.002807 0.000142 -19.72834 0.0000 
C(148) 0.000728 0.000120 6.054257 0.0000 
C(149) -0.001107 0.000122 -9.071535 0.0000 
C(150) 8.97E-05 0.000109 0.825099 0.4093 
C(151) -0.000255 0.000268 -0.953071 0.3406 
C(152) 0.016500 0.000260 63.54947 0.0000 
C(153) 0.001843 0.000225 8.199208 0.0000 
C(154) -0.003072 0.000204 -15.09184 0.0000 
C(155) -0.001738 0.000166 -10.46244 0.0000 
C(156) -0.001395 0.000154 -9.076510 0.0000 
C(157) 0.001865 0.000159 11.73669 0.0000 
C(158) -0.001217 0.000134 -9.061851 0.0000 
C(159) -0.001517 0.000136 -11.13163 0.0000 
C(160) -0.002720 0.000121 -22.41559 0.0000 
C(161) 0.000165 0.000112 1.463789 0.1433 
C(162) 0.017049 0.000109 156.5213 0.0000 
C(163) 0.006434 9.43E-05 68.24593 0.0000 
C(164) -0.010730 8.54E-05 -125.6662 0.0000 
C(165) 0.000871 6.97E-05 12.49959 0.0000 
C(166) 0.001013 6.45E-05 15.71515 0.0000 
C(167) -0.001082 6.67E-05 -16.22603 0.0000 
C(168) -0.000274 5.63E-05 -4.859291 0.0000 
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C(169) 0.001362 5.72E-05 23.82575 0.0000 
C(170) 0.000286 5.09E-05 5.623610 0.0000 
C(171) 0.000117 0.000139 0.844255 0.3985 
C(172) 0.011103 0.000134 82.55485 0.0000 
C(173) 0.003340 0.000116 28.69542 0.0000 
C(174) 0.004402 0.000105 41.75127 0.0000 
C(175) -0.006111 8.60E-05 -71.03101 0.0000 
C(176) -0.000750 7.96E-05 -9.414943 0.0000 
C(177) -0.005231 8.23E-05 -63.55247 0.0000 
C(178) -0.000627 6.95E-05 -9.019689 0.0000 
C(179) 0.003106 7.06E-05 44.01316 0.0000 
C(180) 0.000292 6.29E-05 4.650718 0.0000 
C(181) 2.29E-05 0.000370 0.061844 0.9507 
C(182) 0.009111 0.000359 25.39537 0.0000 
C(183) 0.002167 0.000311 6.978891 0.0000 
C(184) 0.003245 0.000281 11.53626 0.0000 
C(185) 0.000850 0.000229 3.702603 0.0002 
C(186) 0.001925 0.000212 9.063073 0.0000 
C(187) -0.002113 0.000220 -9.624450 0.0000 
C(188) -0.001223 0.000186 -6.590655 0.0000 
C(189) -0.002835 0.000188 -15.05776 0.0000 
C(190) 0.001295 0.000168 7.721300 0.0000 
C(191) 0.000433 0.000291 1.487226 0.1370 
C(192) 0.011811 0.000282 41.89144 0.0000 
C(193) 0.001948 0.000244 7.981998 0.0000 
C(194) 0.002834 0.000221 12.82187 0.0000 
C(195) 0.003967 0.000180 21.99474 0.0000 
C(196) -0.001470 0.000167 -8.805855 0.0000 
C(197) -0.002066 0.000173 -11.97262 0.0000 
C(198) -0.000809 0.000146 -5.550956 0.0000 
C(199) -0.002211 0.000148 -14.94618 0.0000 
C(200) 0.000920 0.000132 6.980211 0.0000 
C(201) -0.000192 0.000476 -0.404099 0.6861 
C(202) 0.013595 0.000461 29.51856 0.0000 
C(203) 0.003317 0.000399 8.321845 0.0000 
C(204) 0.000744 0.000361 2.061597 0.0393 
C(205) 0.000140 0.000295 0.475995 0.6341 
C(206) -0.000110 0.000273 -0.405275 0.6853 
C(207) -0.001185 0.000282 -4.203327 0.0000 
C(208) 0.002895 0.000238 12.15501 0.0000 
C(209) -0.002432 0.000242 -10.06285 0.0000 
C(210) 0.001845 0.000215 8.571586 0.0000 
C(211) -0.000241 0.000241 -1.000070 0.3173 
C(212) 0.011516 0.000234 49.24378 0.0000 
C(213) 0.004459 0.000202 22.03065 0.0000 
C(214) 0.004229 0.000183 23.06793 0.0000 
C(215) 0.003238 0.000150 21.64740 0.0000 
C(216) 0.004426 0.000138 31.97243 0.0000 
C(217) 0.000783 0.000143 5.472587 0.0000 
C(218) -0.004171 0.000121 -34.49413 0.0000 
C(219) 0.001939 0.000123 15.79816 0.0000 
C(220) -0.000817 0.000109 -7.471566 0.0000 
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Equation: PE_OLES_01=C(1)+C(2)*F1+C(3)*F2+C(4)*F3+C(5)*F4+C(6)*F5 
        +C(7)*F6+C(8)*F7+C(9)*F8+C(10)*F9  
Observations: 1410   
R-squared 0.373905    Mean dependent var 0.000805 
Adjusted R-squared 0.369880    S.D. dependent var 0.029496 
S.E. of regression 0.023414    Sum squared resid 0.767504 
Durbin-Watson stat 1.917975    
Equation: KIMBERA=C(11)+C(12)*F1+C(13)*F2+C(14)*F3+C(15)*F4+C(16) 
        *F5+C(17)*F6+C(18)*F7+C(19)*F8+C(20)*F9  
Observations: 1410   
R-squared 0.534182    Mean dependent var -1.66E-05 
Adjusted R-squared 0.531187    S.D. dependent var 0.015126 
S.E. of regression 0.010356    Sum squared resid 0.150158 
Durbin-Watson stat 1.947969    
Equation: BIMBOA=C(21)+C(22)*F1+C(23)*F2+C(24)*F3+C(25)*F4+C(26) 
        *F5+C(27)*F6+C(28)*F7+C(29)*F8+C(30)*F9  
Observations: 1410   
R-squared 0.389419    Mean dependent var 0.000397 
Adjusted R-squared 0.385494    S.D. dependent var 0.018665 
S.E. of regression 0.014631    Sum squared resid 0.299703 
Durbin-Watson stat 1.881179    
Equation: GMODELOC=C(31)+C(32)*F1+C(33)*F2+C(34)*F3+C(35)*F4 
        +C(36)*F5+C(37)*F6+C(38)*F7+C(39)*F8+C(40)*F9 
Observations: 1410   
R-squared 0.571408    Mean dependent var 0.000143 
Adjusted R-squared 0.568653    S.D. dependent var 0.015787 
S.E. of regression 0.010368    Sum squared resid 0.150498 
Durbin-Watson stat 1.924389    
Equation: FEMSAUBD=C(41)+C(42)*F1+C(43)*F2+C(44)*F3+C(45)*F4 
        +C(46)*F5+C(47)*F6+C(48)*F7+C(49)*F8+C(50)*F9 
Observations: 1410   
R-squared 0.644143    Mean dependent var 0.000231 
Adjusted R-squared 0.641855    S.D. dependent var 0.017471 
S.E. of regression 0.010456    Sum squared resid 0.153046 
Durbin-Watson stat 1.986808    
Equation: CONTAL_01=C(51)+C(52)*F1+C(53)*F2+C(54)*F3+C(55)*F4 
        +C(56)*F5+C(57)*F6+C(58)*F7+C(59)*F8+C(60)*F9 
Observations: 1410   
R-squared 0.423218    Mean dependent var 0.000161 
Adjusted R-squared 0.419511    S.D. dependent var 0.021112 
S.E. of regression 0.016085    Sum squared resid 0.362211 
Durbin-Watson stat 1.983031    
Equation: CEMEXCP=C(61)+C(62)*F1+C(63)*F2+C(64)*F3+C(65)*F4 
        +C(66)*F5+C(67)*F6+C(68)*F7+C(69)*F8+C(70)*F9 
Observations: 1410   
R-squared 0.799897    Mean dependent var 0.000550 
Adjusted R-squared 0.798610    S.D. dependent var 0.016145 
S.E. of regression 0.007245    Sum squared resid 0.073490 
Durbin-Watson stat 1.945266    
Equation: GEOB=C(71)+C(72)*F1+C(73)*F2+C(74)*F3+C(75)*F4+C(76)*F5 
        +C(77)*F6+C(78)*F7+C(79)*F8+C(80)*F9  
Observations: 1410   
R-squared 0.587338    Mean dependent var 0.001474 
Adjusted R-squared 0.584686    S.D. dependent var 0.024548 
S.E. of regression 0.015820    Sum squared resid 0.350370 
Durbin-Watson stat 1.798144    
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Equation: ARA_01=C(81)+C(82)*F1+C(83)*F2+C(84)*F3+C(85)*F4+C(86) 
        *F5+C(87)*F6+C(88)*F7+C(89)*F8+C(90)*F9  
Observations: 1410   
R-squared 0.551842    Mean dependent var 0.000797 
Adjusted R-squared 0.548961    S.D. dependent var 0.018949 
S.E. of regression 0.012726    Sum squared resid 0.226733 
Durbin-Watson stat 1.856775    
Equation: WALMEXV=C(91)+C(92)*F1+C(93)*F2+C(94)*F3+C(95)*F4 
        +C(96)*F5+C(97)*F6+C(98)*F7+C(99)*F8+C(100)*F9 
Observations: 1410   
R-squared 0.751211    Mean dependent var 0.000450 
Adjusted R-squared 0.749612    S.D. dependent var 0.018722 
S.E. of regression 0.009368    Sum squared resid 0.122870 
Durbin-Watson stat 1.893770    
Equation: SORIANAB=C(101)+C(102)*F1+C(103)*F2+C(104)*F3+C(105) 
        *F4+C(106)*F5+C(107)*F6+C(108)*F7+C(109)*F8+C(110)*F9 
Observations: 1410   
R-squared 0.505904    Mean dependent var -8.42E-05 
Adjusted R-squared 0.502727    S.D. dependent var 0.018588 
S.E. of regression 0.013108    Sum squared resid 0.240545 
Durbin-Watson stat 1.845889    
Equation: COMERUBC=C(111)+C(112)*F1+C(113)*F2+C(114)*F3+C(115) 
        *F4+C(116)*F5+C(117)*F6+C(118)*F7+C(119)*F8+C(120)*F9 
Observations: 1410   
R-squared 0.399802    Mean dependent var 0.000260 
Adjusted R-squared 0.395944    S.D. dependent var 0.020449 
S.E. of regression 0.015893    Sum squared resid 0.353632 
Durbin-Watson stat 2.073514    
Equation: ELEKTRA_01=C(121)+C(122)*F1+C(123)*F2+C(124)*F3+C(125) 
        *F4+C(126)*F5+C(127)*F6+C(128)*F7+C(129)*F8+C(130)*F9 
Observations: 1410   
R-squared 0.566764    Mean dependent var 0.000287 
Adjusted R-squared 0.563979    S.D. dependent var 0.024469 
S.E. of regression 0.016158    Sum squared resid 0.365497 
Durbin-Watson stat 1.941677    
Equation: TELMEXL=C(131)+C(132)*F1+C(133)*F2+C(134)*F3+C(135)*F4 
        +C(136)*F5+C(137)*F6+C(138)*F7+C(139)*F8+C(140)*F9 
Observations: 1410   
R-squared 0.981881    Mean dependent var -1.50E-07 
Adjusted R-squared 0.981764    S.D. dependent var 0.015611 
S.E. of regression 0.002108    Sum squared resid 0.006222 
Durbin-Watson stat 2.139029    
Equation: TELECOA1=C(141)+C(142)*F1+C(143)*F2+C(144)*F3+C(145) 
        *F4+C(146)*F5+C(147)*F6+C(148)*F7+C(149)*F8+C(150)*F9 
Observations: 1410   
R-squared 0.789317    Mean dependent var 2.74E-05 
Adjusted R-squared 0.787962    S.D. dependent var 0.019544 
S.E. of regression 0.009000    Sum squared resid 0.113394 
Durbin-Watson stat 2.188685    
Equation: TLEVICPO=C(151)+C(152)*F1+C(153)*F2+C(154)*F3+C(155) 
        *F4+C(156)*F5+C(157)*F6+C(158)*F7+C(159)*F8+C(160)*F9 
Observations: 1410   
R-squared 0.792085    Mean dependent var -5.84E-05 
Adjusted R-squared 0.790748    S.D. dependent var 0.021967 
S.E. of regression 0.010049    Sum squared resid 0.141367 
Durbin-Watson stat 1.943614    

     



APPENDIX 
 

404 
 

Equation: TVAZTCPO=C(161)+C(162)*F1+C(163)*F2+C(164)*F3+C(165) 
        *F4+C(166)*F5+C(167)*F6+C(168)*F7+C(169)*F8+C(170)*F9 
Observations: 1410   
R-squared 0.970408    Mean dependent var -0.000324 
Adjusted R-squared 0.970218    S.D. dependent var 0.024428 
S.E. of regression 0.004216    Sum squared resid 0.024881 
Durbin-Watson stat 1.980370    
Equation: GFNORTEO=C(171)+C(172)*F1+C(173)*F2+C(174)*F3+C(175) 
        *F4+C(176)*F5+C(177)*F6+C(178)*F7+C(179)*F8+C(180)*F9 
Observations: 1410   
R-squared 0.935924    Mean dependent var 0.001169 
Adjusted R-squared 0.935512    S.D. dependent var 0.020498 
S.E. of regression 0.005205    Sum squared resid 0.037935 
Durbin-Watson stat 1.946273    
Equation: GFINBURO=C(181)+C(182)*F1+C(183)*F2+C(184)*F3+C(185) 
        *F4+C(186)*F5+C(187)*F6+C(188)*F7+C(189)*F8+C(190)*F9 
Observations: 1410   
R-squared 0.488200    Mean dependent var 0.000276 
Adjusted R-squared 0.484910    S.D. dependent var 0.019348 
S.E. of regression 0.013886    Sum squared resid 0.269944 
Durbin-Watson stat 2.039507    
Equation: GCARSOA1=C(191)+C(192)*F1+C(193)*F2+C(194)*F3+C(195) 
        *F4+C(196)*F5+C(197)*F6+C(198)*F7+C(199)*F8+C(200)*F9 
Observations: 1410   
R-squared 0.679588    Mean dependent var 0.000455 
Adjusted R-squared 0.677528    S.D. dependent var 0.019216 
S.E. of regression 0.010912    Sum squared resid 0.166710 
Durbin-Watson stat 1.926562    
Equation: ALFAA=C(201)+C(202)*F1+C(203)*F2+C(204)*F3+C(205)*F4 
        +C(206)*F5+C(207)*F6+C(208)*F7+C(209)*F8+C(210)*F9 
Observations: 1410   
R-squared 0.476884    Mean dependent var 0.000496 
Adjusted R-squared 0.473521    S.D. dependent var 0.024567 
S.E. of regression 0.017825    Sum squared resid 0.444836 
Durbin-Watson stat 1.761414    
Equation: CIEB=C(211)+C(212)*F1+C(213)*F2+C(214)*F3+C(215)*F4 
        +C(216)*F5+C(217)*F6+C(218)*F7+C(219)*F8+C(220)*F9 
Observations: 1410   
R-squared 0.820804    Mean dependent var -0.000633 
Adjusted R-squared 0.819652    S.D. dependent var 0.021312 
S.E. of regression 0.009051    Sum squared resid 0.114682 
Durbin-Watson stat 1.963791    
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Table 9. Independent Component Analysis. Betas estimation for all the equation system via 
Weighted Least Squares. Database of weekly returns. 

 Coefficient Std. Error t-Statistic Prob. 
C(1) -0.001368 0.000601 -2.274993 0.0229 
C(2) -0.012767 0.005087 -2.509499 0.0121 
C(3) -0.012336 0.005062 -2.437212 0.0148 
C(4) -0.034002 0.005062 -6.717751 0.0000 
C(5) -0.036268 0.005063 -7.163728 0.0000 
C(6) -0.035363 0.005073 -6.971341 0.0000 
C(7) -0.174141 0.005062 -34.40050 0.0000 
C(8) -0.154268 0.005066 -30.45451 0.0000 
C(9) 0.011862 0.005070 2.339569 0.0193 

C(10) 0.516080 0.005073 101.7228 0.0000 
C(11) 0.002929 0.001472 1.989907 0.0466 
C(12) 0.012329 0.012453 0.990074 0.3222 
C(13) -0.134081 0.012389 -10.82227 0.0000 
C(14) -0.189827 0.012389 -15.32184 0.0000 
C(15) 0.006463 0.012392 0.521531 0.6020 
C(16) 0.013762 0.012417 1.108319 0.2678 
C(17) -0.167391 0.012391 -13.50922 0.0000 
C(18) 0.025539 0.012399 2.059730 0.0395 
C(19) -0.026878 0.012411 -2.165703 0.0304 
C(20) -0.022708 0.012418 -1.828547 0.0675 
C(21) 0.001725 0.001582 1.090541 0.2755 
C(22) -0.028982 0.013379 -2.166137 0.0303 
C(23) -0.025701 0.013311 -1.930775 0.0536 
C(24) 0.131136 0.013311 9.851573 0.0000 
C(25) 0.001212 0.013314 0.091019 0.9275 
C(26) 0.042247 0.013340 3.166865 0.0015 
C(27) -0.044834 0.013313 -3.367732 0.0008 
C(28) -0.018247 0.013322 -1.369739 0.1708 
C(29) 0.022388 0.013334 1.679030 0.0932 
C(30) -0.004930 0.013342 -0.369467 0.7118 
C(31) -8.17E-05 0.001562 -0.052322 0.9583 
C(32) -0.157323 0.013217 -11.90296 0.0000 
C(33) -0.127534 0.013150 -9.698533 0.0000 
C(34) 0.110203 0.013150 8.380592 0.0000 
C(35) -0.105255 0.013153 -8.002510 0.0000 
C(36) -0.020903 0.013179 -1.586137 0.1128 
C(37) -0.093536 0.013151 -7.112247 0.0000 
C(38) 0.079821 0.013160 6.065397 0.0000 
C(39) 0.015738 0.013172 1.194769 0.2322 
C(40) 0.012016 0.013181 0.911654 0.3620 
C(41) 0.000963 0.001111 0.866680 0.3862 
C(42) 0.031415 0.009400 3.341958 0.0008 
C(43) -0.075419 0.009352 -8.064331 0.0000 
C(44) 0.059418 0.009352 6.353439 0.0000 
C(45) -0.172986 0.009354 -18.49270 0.0000 
C(46) 0.017206 0.009373 1.835777 0.0664 
C(47) -0.260805 0.009353 -27.88393 0.0000 
C(48) -0.010615 0.009359 -1.134118 0.2568 
C(49) 0.070259 0.009368 7.499740 0.0000 
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C(50) -0.022223 0.009374 -2.370654 0.0178 
C(51) 0.001697 0.001503 1.129105 0.2589 
C(52) -0.212195 0.012711 -16.69367 0.0000 
C(53) -0.260124 0.012646 -20.56909 0.0000 
C(54) 0.035362 0.012646 2.796199 0.0052 
C(55) 0.018874 0.012649 1.492104 0.1357 
C(56) -0.319361 0.012674 -25.19782 0.0000 
C(57) -0.102635 0.012648 -8.114822 0.0000 
C(58) -0.117817 0.012656 -9.309032 0.0000 
C(59) -0.014985 0.012668 -1.182863 0.2369 
C(60) 0.045918 0.012676 3.622448 0.0003 
C(61) 0.002131 0.001893 1.125661 0.2604 
C(62) -0.151417 0.016017 -9.453710 0.0000 
C(63) -0.061775 0.015935 -3.876646 0.0001 
C(64) -0.033847 0.015935 -2.124047 0.0337 
C(65) -0.049611 0.015939 -3.112645 0.0019 
C(66) 0.027727 0.015970 1.736176 0.0826 
C(67) -0.095705 0.015937 -6.005209 0.0000 
C(68) 0.026926 0.015948 1.688402 0.0914 
C(69) 0.058273 0.015962 3.650662 0.0003 
C(70) 0.042625 0.015972 2.668675 0.0076 
C(71) 0.001042 0.001686 0.617882 0.5367 
C(72) -0.136857 0.014263 -9.595163 0.0000 
C(73) -0.073254 0.014190 -5.162188 0.0000 
C(74) 0.119958 0.014190 8.453484 0.0000 
C(75) -0.004769 0.014194 -0.336022 0.7369 
C(76) -0.007609 0.014222 -0.535029 0.5927 
C(77) -0.105899 0.014192 -7.461800 0.0000 
C(78) -0.064269 0.014202 -4.525503 0.0000 
C(79) 0.045970 0.014215 3.233951 0.0012 
C(80) -0.028585 0.014224 -2.009718 0.0445 
C(81) -8.17E-05 0.001647 -0.049612 0.9604 
C(82) -0.041651 0.013929 -2.990128 0.0028 
C(83) -0.174562 0.013858 -12.59610 0.0000 
C(84) 0.144037 0.013858 10.39352 0.0000 
C(85) 0.118244 0.013862 8.530392 0.0000 
C(86) 0.012086 0.013889 0.870226 0.3842 
C(87) -0.103805 0.013860 -7.489512 0.0000 
C(88) 0.001242 0.013869 0.089551 0.9286 
C(89) 0.074667 0.013882 5.378624 0.0000 
C(90) -0.006245 0.013891 -0.449587 0.6530 
C(91) 0.001720 0.001878 0.915915 0.3598 
C(92) -0.030499 0.015885 -1.919976 0.0549 
C(93) -0.144437 0.015804 -9.139275 0.0000 
C(94) 0.101540 0.015804 6.425011 0.0000 
C(95) 0.098050 0.015808 6.202718 0.0000 
C(96) 0.080191 0.015839 5.062972 0.0000 
C(97) -0.145403 0.015806 -9.199313 0.0000 
C(98) 0.037597 0.015816 2.377085 0.0175 
C(99) 0.051612 0.015831 3.260176 0.0011 
C(100) 0.059106 0.015841 3.731235 0.0002 
C(101) 0.001912 0.001116 1.713276 0.0867 
C(102) -0.194373 0.009442 -20.58572 0.0000 
C(103) -0.230002 0.009394 -24.48384 0.0000 
C(104) 0.109354 0.009394 11.64087 0.0000 
C(105) -0.088996 0.009396 -9.471514 0.0000 
C(106) 0.136142 0.009415 14.46068 0.0000 
C(107) -0.085833 0.009395 -9.135869 0.0000 
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C(108) -0.036559 0.009401 -3.888746 0.0001 
C(109) -0.260815 0.009410 -27.71650 0.0000 
C(110) 0.055082 0.009416 5.849847 0.0000 
C(111) -0.000693 0.001072 -0.646509 0.5180 
C(112) -0.176716 0.009071 -19.48052 0.0000 
C(113) -0.055716 0.009025 -6.173443 0.0000 
C(114) 0.011342 0.009025 1.256672 0.2089 
C(115) 0.055673 0.009027 6.167283 0.0000 
C(116) 0.083757 0.009045 9.259982 0.0000 
C(117) -0.106982 0.009026 -11.85239 0.0000 
C(118) -0.013046 0.009032 -1.444421 0.1487 
C(119) 0.036848 0.009041 4.075867 0.0000 
C(120) -0.006061 0.009046 -0.670014 0.5029 
C(121) -0.001366 0.001214 -1.125247 0.2605 
C(122) -0.243882 0.010272 -23.74355 0.0000 
C(123) -0.095438 0.010219 -9.339132 0.0000 
C(124) -0.027511 0.010219 -2.692109 0.0071 
C(125) 0.070791 0.010221 6.925699 0.0000 
C(126) 0.127036 0.010242 12.40390 0.0000 
C(127) -0.136893 0.010220 -13.39410 0.0000 
C(128) -0.010093 0.010227 -0.986905 0.3237 
C(129) 0.062864 0.010237 6.141087 0.0000 
C(130) -0.005955 0.010243 -0.581405 0.5610 
C(131) -0.002517 0.001548 -1.625578 0.1041 
C(132) -0.225997 0.013100 -17.25195 0.0000 
C(133) -0.114721 0.013033 -8.802320 0.0000 
C(134) 0.106550 0.013033 8.175391 0.0000 
C(135) 0.012223 0.013036 0.937646 0.3485 
C(136) -0.010611 0.013062 -0.812408 0.4166 
C(137) -0.181876 0.013035 -13.95338 0.0000 
C(138) -0.067351 0.013043 -5.163702 0.0000 
C(139) 0.019521 0.013055 1.495280 0.1349 
C(140) -0.031829 0.013063 -2.436454 0.0149 
C(141) -0.000335 0.000905 -0.370830 0.7108 
C(142) -0.082808 0.007653 -10.82068 0.0000 
C(143) -0.220040 0.007614 -28.90040 0.0000 
C(144) 0.153903 0.007614 20.21389 0.0000 
C(145) 0.124484 0.007615 16.34626 0.0000 
C(146) 0.064322 0.007630 8.429556 0.0000 
C(147) -0.208528 0.007615 -27.38516 0.0000 
C(148) -0.137382 0.007620 -18.02984 0.0000 
C(149) -0.146965 0.007627 -19.26960 0.0000 
C(150) -0.048224 0.007632 -6.318979 0.0000 
C(151) 0.004630 0.001780 2.601503 0.0093 
C(152) -0.144652 0.015057 -9.607236 0.0000 
C(153) -0.140925 0.014980 -9.407643 0.0000 
C(154) 0.145457 0.014980 9.710201 0.0000 
C(155) 0.078824 0.014983 5.260817 0.0000 
C(156) 0.005845 0.015013 0.389348 0.6970 
C(157) -0.013145 0.014982 -0.877395 0.3803 
C(158) -0.007644 0.014992 -0.509887 0.6102 
C(159) 0.035280 0.015006 2.351133 0.0188 
C(160) 0.058716 0.015015 3.910506 0.0001 
C(161) 1.80E-05 0.001362 0.013234 0.9894 
C(162) -0.152498 0.011526 -13.23083 0.0000 
C(163) -0.220113 0.011467 -19.19497 0.0000 
C(164) -0.023794 0.011467 -2.074937 0.0380 
C(165) 0.059975 0.011470 5.228928 0.0000 
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C(166) -0.007954 0.011492 -0.692092 0.4889 
C(167) -0.037361 0.011469 -3.257667 0.0011 
C(168) 0.106724 0.011476 9.299637 0.0000 
C(169) 0.057026 0.011487 4.964461 0.0000 
C(170) 0.041651 0.011494 3.623703 0.0003 
C(171) 0.001691 0.001559 1.084833 0.2780 
C(172) -0.179941 0.013187 -13.64538 0.0000 
C(173) -0.121136 0.013120 -9.233060 0.0000 
C(174) 0.086386 0.013120 6.584433 0.0000 
C(175) 0.064333 0.013123 4.902414 0.0000 
C(176) 0.111298 0.013149 8.464621 0.0000 
C(177) -0.120093 0.013121 -9.152540 0.0000 
C(178) 0.045973 0.013130 3.501334 0.0005 
C(179) 0.077598 0.013142 5.904426 0.0000 
C(180) -0.003311 0.013150 -0.251799 0.8012 
C(181) 0.000517 0.000622 0.830427 0.4063 
C(182) -0.105565 0.005264 -20.05523 0.0000 
C(183) -0.379684 0.005237 -72.50189 0.0000 
C(184) 0.047561 0.005237 9.082016 0.0000 
C(185) -0.128422 0.005238 -24.51707 0.0000 
C(186) 0.157987 0.005248 30.10204 0.0000 
C(187) 0.008243 0.005237 1.573764 0.1156 
C(188) -0.219870 0.005241 -41.95219 0.0000 
C(189) 0.151297 0.005246 28.84123 0.0000 
C(190) -0.010118 0.005249 -1.927577 0.0540 
C(191) -0.002647 0.001328 -1.994118 0.0462 
C(192) -0.026916 0.011231 -2.396635 0.0166 
C(193) -0.280997 0.011173 -25.14870 0.0000 
C(194) 0.112047 0.011173 10.02803 0.0000 
C(195) 0.020773 0.011176 1.858753 0.0631 
C(196) 0.015963 0.011198 1.425543 0.1541 
C(197) -0.146787 0.011175 -13.13562 0.0000 
C(198) 0.171918 0.011182 15.37439 0.0000 
C(199) 0.041013 0.011193 3.664298 0.0003 
C(200) 0.054851 0.011200 4.897610 0.0000 

Equation: PE_OLES_01=C(1)+C(2)*IC1+C(3)*IC2+C(4)*IC3+C(5)*IC4 
        +C(6)*IC5+C(7)*IC6+C(8)*IC7+C(9)*IC8+C(10)*IC9 
Observations: 291 
R-squared 0.977372     Mean dependent var 0.004729 
Adjusted R-squared 0.976647     S.D. dependent var 0.067404 
S.E. of regression 0.010300     Sum squared resid 0.029814 
Durbin-Watson stat 2.258163    
Equation: BIMBOA=C(11)+C(12)*IC1+C(13)*IC2+C(14)*IC3+C(15)*IC4 
        +C(16)*IC5+C(17)*IC6+C(18)*IC7+C(19)*IC8+C(20)*IC9 
Observations: 291 
R-squared 0.653712     Mean dependent var 0.003161 
Adjusted R-squared 0.642621     S.D. dependent var 0.042175 
S.E. of regression 0.025213     Sum squared resid 0.178627 
Durbin-Watson stat 1.998779    
Equation: GMODELOC=C(21)+C(22)*IC1+C(23)*IC2+C(24)*IC3+C(25) 
        *IC4+C(26)*IC5+C(27)*IC6+C(28)*IC7+C(29)*IC8+C(30)*IC9 
Observations: 291 
R-squared 0.311757     Mean dependent var 0.001865 
Adjusted R-squared 0.289714     S.D. dependent var 0.032142 
S.E. of regression 0.027089     Sum squared resid 0.206196 
Durbin-Watson stat 2.280189    
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Equation: FEMSAUBD=C(31)+C(32)*IC1+C(33)*IC2+C(34)*IC3+C(35) 
        *IC4+C(36)*IC5+C(37)*IC6+C(38)*IC7+C(39)*IC8+C(40)*IC9 
Observations: 291 
R-squared 0.613209     Mean dependent var 0.002358 
Adjusted R-squared 0.600821     S.D. dependent var 0.042355 
S.E. of regression 0.026760     Sum squared resid 0.201227 
Durbin-Watson stat 2.160279    
Equation: CONTAL_01=C(41)+C(42)*IC1+C(43)*IC2+C(44)*IC3+C(45) 
        *IC4+C(46)*IC5+C(47)*IC6+C(48)*IC7+C(49)*IC8+C(50)*IC9 
Observations: 291 
R-squared 0.817398     Mean dependent var 0.002039 
Adjusted R-squared 0.811549     S.D. dependent var 0.043841 
S.E. of regression 0.019032     Sum squared resid 0.101782 
Durbin-Watson stat 2.238104    
Equation: GEOB=C(51)+C(52)*IC1+C(53)*IC2+C(54)*IC3+C(55)*IC4 
        +C(56)*IC5+C(57)*IC6+C(58)*IC7+C(59)*IC8+C(60)*IC9 
Observations: 291 
R-squared 0.837596     Mean dependent var 0.008191 
Adjusted R-squared 0.832394     S.D. dependent var 0.062862 
S.E. of regression 0.025736     Sum squared resid 0.186113 
Durbin-Watson stat 2.334525    
Equation: ARA_01=C(61)+C(62)*IC1+C(63)*IC2+C(64)*IC3+C(65)*IC4 
        +C(66)*IC5+C(67)*IC6+C(68)*IC7+C(69)*IC8+C(70)*IC9 
Observations: 291 
R-squared 0.381978     Mean dependent var 0.004898 
Adjusted R-squared 0.362184     S.D. dependent var 0.040605 
S.E. of regression 0.032428     Sum squared resid 0.295499 
Durbin-Watson stat 2.125986    
Equation: WALMEXV=C(71)+C(72)*IC1+C(73)*IC2+C(74)*IC3+C(75) 
        *IC4+C(76)*IC5+C(77)*IC6+C(78)*IC7+C(79)*IC8+C(80)*IC9 
Observations: 291 
R-squared 0.490768     Mean dependent var 0.003334 
Adjusted R-squared 0.474458     S.D. dependent var 0.039835 
S.E. of regression 0.028878     Sum squared resid 0.234335 
Durbin-Watson stat 2.538214    
Equation: SORIANAB=C(81)+C(82)*IC1+C(83)*IC2+C(84)*IC3+C(85) 
        *IC4+C(86)*IC5+C(87)*IC6+C(88)*IC7+C(89)*IC8+C(90)*IC9 
Observations: 291 
R-squared 0.598882     Mean dependent var 0.000746 
Adjusted R-squared 0.586035     S.D. dependent var 0.043833 
S.E. of regression 0.028202     Sum squared resid 0.223497 
Durbin-Watson stat 2.258559    
Equation: COMERUBC=C(91)+C(92)*IC1+C(93)*IC2+C(94)*IC3+C(95) 
        *IC4+C(96)*IC5+C(97)*IC6+C(98)*IC7+C(99)*IC8+C(100)*IC9 
Observations: 291 
R-squared 0.513962     Mean dependent var 0.002256 
Adjusted R-squared 0.498395     S.D. dependent var 0.045411 
S.E. of regression 0.032162     Sum squared resid 0.290657 
Durbin-Watson stat 2.161451    
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Equation: ELEKTRA_01=C(101)+C(102)*IC1+C(103)*IC2+C(104)*IC3 
        +C(105)*IC4+C(106)*IC5+C(107)*IC6+C(108)*IC7+C(109)*IC8 
        +C(110)*IC9 
Observations: 291 
R-squared 0.890513     Mean dependent var 0.002654 
Adjusted R-squared 0.887006     S.D. dependent var 0.056871 
S.E. of regression 0.019117     Sum squared resid 0.102695 
Durbin-Watson stat 2.168836    
Equation: TELMEXL=C(111)+C(112)*IC1+C(113)*IC2+C(114)*IC3 
        +C(115)*IC4+C(116)*IC5+C(117)*IC6+C(118)*IC7+C(119)*IC8 
        +C(120)*IC9 
Observations: 291 
R-squared 0.707525     Mean dependent var 0.001198 
Adjusted R-squared 0.698157     S.D. dependent var 0.033430 
S.E. of regression 0.018366     Sum squared resid 0.094789 
Durbin-Watson stat 2.101021    
Equation: TELECOA1=C(121)+C(122)*IC1+C(123)*IC2+C(124)*IC3 
        +C(125)*IC4+C(126)*IC5+C(127)*IC6+C(128)*IC7+C(129)*IC8 
        +C(130)*IC9 
Observations: 291 
R-squared 0.787804     Mean dependent var 0.001320 
Adjusted R-squared 0.781008     S.D. dependent var 0.044440 
S.E. of regression 0.020796     Sum squared resid 0.121528 
Durbin-Watson stat 2.242494    
Equation: TLEVICPO=C(131)+C(132)*IC1+C(133)*IC2+C(134)*IC3 
        +C(135)*IC4+C(136)*IC5+C(137)*IC6+C(138)*IC7+C(139)*IC8 
        +C(140)*IC9 
Observations: 291 
R-squared 0.697621     Mean dependent var 0.000899 
Adjusted R-squared 0.687936     S.D. dependent var 0.047478 
S.E. of regression 0.026523     Sum squared resid 0.197668 
Durbin-Watson stat 2.115810    
Equation: TVAZTCPO=C(141)+C(142)*IC1+C(143)*IC2+C(144)*IC3 
        +C(145)*IC4+C(146)*IC5+C(147)*IC6+C(148)*IC7+C(149)*IC8 
        +C(150)*IC9 
Observations: 291 
R-squared 0.916404     Mean dependent var -0.000334 
Adjusted R-squared 0.913726     S.D. dependent var 0.052751 
S.E. of regression 0.015494     Sum squared resid 0.067459 
Durbin-Watson stat 2.197551    
Equation: GFNORTEO=C(151)+C(152)*IC1+C(153)*IC2+C(154)*IC3 
        +C(155)*IC4+C(156)*IC5+C(157)*IC6+C(158)*IC7+C(159)*IC8 
        +C(160)*IC9 
Observations: 291 
R-squared 0.527060     Mean dependent var 0.006851 
Adjusted R-squared 0.511912     S.D. dependent var 0.043634 
S.E. of regression 0.030484     Sum squared resid 0.261132 
Durbin-Watson stat 2.177658    
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Equation: GFINBURO=C(161)+C(162)*IC1+C(163)*IC2+C(164)*IC3 
        +C(165)*IC4+C(166)*IC5+C(167)*IC6+C(168)*IC7+C(169)*IC8 
        +C(170)*IC9 
Observations: 291 
R-squared 0.709140     Mean dependent var 0.002456 
Adjusted R-squared 0.699824     S.D. dependent var 0.042593 
S.E. of regression 0.023336     Sum squared resid 0.153025 
Durbin-Watson stat 2.116904    
Equation: GCARSOA1=C(171)+C(172)*IC1+C(173)*IC2+C(174)*IC3 
        +C(175)*IC4+C(176)*IC5+C(177)*IC6+C(178)*IC7+C(179)*IC8 
        +C(180)*IC9 
Observations: 291 
R-squared 0.650960     Mean dependent var 0.003413 
Adjusted R-squared 0.639780     S.D. dependent var 0.044485 
S.E. of regression 0.026699     Sum squared resid 0.200308 
Durbin-Watson stat 2.200741    
Equation: ALFAA=C(181)+C(182)*IC1+C(183)*IC2+C(184)*IC3+C(185) 
        *IC4+C(186)*IC5+C(187)*IC6+C(188)*IC7+C(189)*IC8+C(190)*IC9 
Observations: 291 
R-squared 0.971271     Mean dependent var 0.003559 
Adjusted R-squared 0.970351     S.D. dependent var 0.061893 
S.E. of regression 0.010657     Sum squared resid 0.031915 
Durbin-Watson stat 1.939524    
Equation: CIEB=C(191)+C(192)*IC1+C(193)*IC2+C(194)*IC3+C(195) 
        *IC4+C(196)*IC5+C(197)*IC6+C(198)*IC7+C(199)*IC8+C(200)*IC9 
Observations: 291 
R-squared 0.803673     Mean dependent var -0.001948 
Adjusted R-squared 0.797385     S.D. dependent var 0.050515 
S.E. of regression 0.022738     Sum squared resid 0.145284 
Durbin-Watson stat 2.148308    
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Table 10. Independent Component Analysis. Betas estimation for all the equation system via 
Weighted Least Squares. Database of weekly excesses. 

 Coefficient Std. Error t-Statistic Prob. 
C(1) 0.001423 0.000797 1.785959 0.0742 
C(2) -0.227177 0.006724 -33.78679 0.0000 
C(3) -0.027222 0.006712 -4.055800 0.0001 
C(4) 0.018121 0.006705 2.702371 0.0069 
C(5) -0.064798 0.006707 -9.661126 0.0000 
C(6) 0.307902 0.006717 45.84223 0.0000 
C(7) -0.077076 0.006721 -11.46777 0.0000 
C(8) -0.130278 0.006712 -19.40839 0.0000 
C(9) 0.367506 0.006721 54.67944 0.0000 

C(10) 0.087132 0.006718 12.97012 0.0000 
C(11) 0.003270 0.001890 1.729978 0.0837 
C(12) -0.014020 0.015955 -0.878737 0.3796 
C(13) 0.071543 0.015926 4.492088 0.0000 
C(14) -0.102355 0.015911 -6.432846 0.0000 
C(15) 0.133377 0.015915 8.380467 0.0000 
C(16) -0.002661 0.015938 -0.166946 0.8674 
C(17) 0.016414 0.015948 1.029186 0.3034 
C(18) -0.106938 0.015928 -6.713805 0.0000 
C(19) 0.072439 0.015948 4.542063 0.0000 
C(20) -0.072367 0.015941 -4.539711 0.0000 
C(21) 0.000365 0.001428 0.255845 0.7981 
C(22) -0.085915 0.012048 -7.130836 0.0000 
C(23) 0.107972 0.012027 8.977617 0.0000 
C(24) 0.007851 0.012015 0.653436 0.5135 
C(25) -0.063290 0.012018 -5.266108 0.0000 
C(26) -0.075505 0.012035 -6.273560 0.0000 
C(27) -0.042784 0.012043 -3.552496 0.0004 
C(28) -0.020888 0.012028 -1.736597 0.0825 
C(29) 0.023930 0.012044 1.986962 0.0470 
C(30) 0.036910 0.012038 3.066206 0.0022 
C(31) 0.000711 0.001689 0.421341 0.6735 
C(32) -0.129522 0.014251 -9.088786 0.0000 
C(33) 0.096841 0.014225 6.807696 0.0000 
C(34) -0.138931 0.014212 -9.775828 0.0000 
C(35) 0.042600 0.014215 2.996814 0.0027 
C(36) -0.095134 0.014235 -6.682985 0.0000 
C(37) -0.094311 0.014245 -6.620662 0.0000 
C(38) -0.072260 0.014227 -5.079187 0.0000 
C(39) 0.024495 0.014245 1.719530 0.0856 
C(40) -0.023607 0.014238 -1.658007 0.0974 
C(41) 0.001508 0.001231 1.224935 0.2207 
C(42) 0.001794 0.010387 0.172720 0.8629 
C(43) -0.003170 0.010368 -0.305756 0.7598 
C(44) -0.094837 0.010358 -9.155505 0.0000 
C(45) -0.065913 0.010361 -6.361640 0.0000 
C(46) -0.069693 0.010376 -6.716927 0.0000 
C(47) -0.081078 0.010383 -7.808937 0.0000 
C(48) -0.284430 0.010369 -27.42974 0.0000 
C(49) -0.018169 0.010383 -1.749953 0.0802 
C(50) 0.046644 0.010378 4.494636 0.0000 
C(51) 0.000544 0.001146 0.475174 0.6347 
C(52) -0.373971 0.009668 -38.68086 0.0000 
C(53) -0.120249 0.009651 -12.45997 0.0000 
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C(54) -0.226831 0.009642 -23.52620 0.0000 
C(55) -0.084080 0.009644 -8.718307 0.0000 
C(56) 0.038431 0.009658 3.979376 0.0001 
C(57) -0.023132 0.009664 -2.393618 0.0167 
C(58) -0.021412 0.009652 -2.218498 0.0266 
C(59) -0.114226 0.009664 -11.81950 0.0000 
C(60) 0.186462 0.009660 19.30343 0.0000 
C(61) 0.001220 0.001446 0.843799 0.3988 
C(62) -0.125621 0.012204 -10.29310 0.0000 
C(63) 0.078867 0.012182 6.473788 0.0000 
C(64) -0.122443 0.012171 -10.06032 0.0000 
C(65) -0.046634 0.012174 -3.830598 0.0001 
C(66) 0.102040 0.012191 8.370001 0.0000 
C(67) -0.095682 0.012199 -7.843200 0.0000 
C(68) -0.074784 0.012184 -6.138013 0.0000 
C(69) -0.103418 0.012199 -8.477329 0.0000 
C(70) -0.043887 0.012194 -3.599243 0.0003 
C(71) 0.001441 0.001518 0.949474 0.3424 
C(72) -0.108247 0.012811 -8.449253 0.0000 
C(73) 0.065488 0.012788 5.120903 0.0000 
C(74) -0.110329 0.012776 -8.635429 0.0000 
C(75) 0.073741 0.012780 5.770252 0.0000 
C(76) -0.152221 0.012798 -11.89455 0.0000 
C(77) -0.066954 0.012806 -5.228253 0.0000 
C(78) -0.003986 0.012790 -0.311627 0.7553 
C(79) 0.051321 0.012806 4.007541 0.0001 
C(80) 0.060970 0.012800 4.763235 0.0000 
C(81) -0.000255 0.001583 -0.161024 0.8721 
C(82) -0.169153 0.013364 -12.65723 0.0000 
C(83) 0.106242 0.013340 7.964074 0.0000 
C(84) -0.106058 0.013328 -7.957833 0.0000 
C(85) -0.084742 0.013331 -6.356837 0.0000 
C(86) -0.149305 0.013350 -11.18420 0.0000 
C(87) -0.042908 0.013359 -3.212042 0.0013 
C(88) 0.026472 0.013342 1.984217 0.0473 
C(89) 0.065133 0.013359 4.875703 0.0000 
C(90) -0.031173 0.013352 -2.334658 0.0196 
C(91) 0.001227 0.001714 0.715900 0.4741 
C(92) -0.142283 0.014466 -9.835703 0.0000 
C(93) 0.150823 0.014440 10.44477 0.0000 
C(94) 0.008284 0.014426 0.574205 0.5659 
C(95) -0.137738 0.014430 -9.545283 0.0000 
C(96) -0.070358 0.014450 -4.868933 0.0000 
C(97) -0.104248 0.014460 -7.209386 0.0000 
C(98) -0.062056 0.014442 -4.297066 0.0000 
C(99) 0.018430 0.014460 1.274511 0.2025 
C(100) -0.086369 0.014453 -5.975775 0.0000 
C(101) 0.001089 0.001304 0.835370 0.4035 
C(102) -0.114833 0.011003 -10.43631 0.0000 
C(103) 0.329107 0.010983 29.96387 0.0000 
C(104) -0.222339 0.010973 -20.26232 0.0000 
C(105) -0.075643 0.010976 -6.891793 0.0000 
C(106) 0.074187 0.010991 6.749613 0.0000 
C(107) 0.058892 0.010999 5.354457 0.0000 
C(108) -0.017533 0.010985 -1.596127 0.1105 
C(109) -0.031562 0.010999 -2.869606 0.0041 
C(110) 0.114778 0.010993 10.44065 0.0000 
C(111) -0.001223 0.001125 -1.087602 0.2768 
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C(112) -0.144206 0.009493 -15.19053 0.0000 
C(113) 0.124157 0.009476 13.10201 0.0000 
C(114) -0.045100 0.009467 -4.763843 0.0000 
C(115) 0.096259 0.009470 10.16513 0.0000 
C(116) -0.050609 0.009483 -5.336921 0.0000 
C(117) -0.062521 0.009489 -6.588553 0.0000 
C(118) -0.032137 0.009477 -3.391011 0.0007 
C(119) 0.011638 0.009489 1.226418 0.2201 
C(120) 0.001767 0.009485 0.186292 0.8522 
C(121) -0.001788 0.001279 -1.397665 0.1623 
C(122) -0.200016 0.010798 -18.52353 0.0000 
C(123) 0.178365 0.010779 16.54806 0.0000 
C(124) -0.055179 0.010768 -5.124200 0.0000 
C(125) 0.144794 0.010771 13.44292 0.0000 
C(126) -0.039581 0.010786 -3.669588 0.0002 
C(127) -0.103512 0.010793 -9.590223 0.0000 
C(128) -0.041436 0.010780 -3.843927 0.0001 
C(129) -0.002702 0.010794 -0.250320 0.8023 
C(130) -0.013111 0.010788 -1.215312 0.2243 
C(131) -0.000930 0.001502 -0.619271 0.5358 
C(132) -0.179406 0.012680 -14.14821 0.0000 
C(133) 0.126012 0.012658 9.955277 0.0000 
C(134) -0.171772 0.012646 -13.58338 0.0000 
C(135) 0.101795 0.012649 8.047730 0.0000 
C(136) -0.118754 0.012667 -9.375239 0.0000 
C(137) -0.069637 0.012675 -5.493909 0.0000 
C(138) -0.078233 0.012659 -6.180000 0.0000 
C(139) 0.057368 0.012675 4.526002 0.0000 
C(140) 0.035504 0.012669 2.802386 0.0051 
C(141) -0.000407 0.001366 -0.297850 0.7658 
C(142) -0.137930 0.011525 -11.96757 0.0000 
C(143) 0.201054 0.011505 17.47592 0.0000 
C(144) -0.206934 0.011494 -18.00409 0.0000 
C(145) -0.062244 0.011497 -5.414095 0.0000 
C(146) -0.140475 0.011513 -12.20166 0.0000 
C(147) 0.080046 0.011521 6.948090 0.0000 
C(148) -0.036327 0.011506 -3.157267 0.0016 
C(149) 0.087234 0.011521 7.572028 0.0000 
C(150) 0.151703 0.011515 13.17427 0.0000 
C(151) 0.003600 0.001791 2.009727 0.0445 
C(152) -0.154974 0.015118 -10.25095 0.0000 
C(153) 0.058549 0.015091 3.879716 0.0001 
C(154) -0.096937 0.015077 -6.429652 0.0000 
C(155) -0.023351 0.015080 -1.548403 0.1216 
C(156) -0.106642 0.015102 -7.061608 0.0000 
C(157) -0.083053 0.015112 -5.495904 0.0000 
C(158) 0.126262 0.015092 8.365892 0.0000 
C(159) 0.011981 0.015112 0.792805 0.4279 
C(160) 0.021966 0.015105 1.454245 0.1459 
C(161) -4.05E-05 0.001401 -0.028909 0.9769 
C(162) -0.113793 0.011823 -9.624961 0.0000 
C(163) 0.023648 0.011802 2.003815 0.0451 
C(164) -0.218011 0.011790 -18.49064 0.0000 
C(165) 0.033178 0.011793 2.813281 0.0049 
C(166) 0.022046 0.011810 1.866718 0.0620 
C(167) -0.078951 0.011818 -6.680626 0.0000 
C(168) 0.043449 0.011803 3.681251 0.0002 
C(169) -0.009902 0.011818 -0.837902 0.4021 
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C(170) -0.143292 0.011812 -12.13084 0.0000 
C(171) 0.000932 0.001607 0.580026 0.5619 
C(172) -0.173625 0.013561 -12.80361 0.0000 
C(173) 0.176054 0.013536 13.00607 0.0000 
C(174) -0.098264 0.013523 -7.266173 0.0000 
C(175) 0.026367 0.013527 1.949253 0.0513 
C(176) -0.088692 0.013546 -6.547536 0.0000 
C(177) -0.099184 0.013555 -7.317170 0.0000 
C(178) -0.005512 0.013538 -0.407151 0.6839 
C(179) -0.030770 0.013555 -2.269991 0.0232 
C(180) -0.026170 0.013549 -1.931577 0.0535 
C(181) -0.000507 0.001015 -0.499433 0.6175 
C(182) -0.003896 0.008565 -0.454834 0.6492 
C(183) 0.170098 0.008549 19.89572 0.0000 
C(184) -0.262781 0.008541 -30.76565 0.0000 
C(185) -0.073040 0.008544 -8.549181 0.0000 
C(186) -0.021180 0.008556 -2.475563 0.0133 
C(187) -0.354144 0.008561 -41.36557 0.0000 
C(188) 0.024540 0.008550 2.870070 0.0041 
C(189) 0.036932 0.008561 4.313822 0.0000 
C(190) 0.163243 0.008557 19.07662 0.0000 
C(191) -0.000991 0.001053 -0.940672 0.3469 
C(192) -0.148147 0.008889 -16.66544 0.0000 
C(193) 0.065302 0.008874 7.359168 0.0000 
C(194) -0.245903 0.008865 -27.73827 0.0000 
C(195) -0.118529 0.008867 -13.36693 0.0000 
C(196) -0.124645 0.008880 -14.03693 0.0000 
C(197) -0.034527 0.008886 -3.885685 0.0001 
C(198) -0.058188 0.008874 -6.556784 0.0000 
C(199) 0.118727 0.008886 13.36140 0.0000 
C(200) -0.167391 0.008882 -18.84706 0.0000 

 
Equation: PE_OLES_01=C(1)+C(2)*IC1+C(3)*IC2+C(4)*IC3+C(5)*IC4 
        +C(6)*IC5+C(7)*IC6+C(8)*IC7+C(9)*IC8+C(10)*IC9 
Observations: 291 
R-squared 0.960371     Mean dependent var 0.003041 
Adjusted R-squared 0.959101     S.D. dependent var 0.067481 
S.E. of regression 0.013647     Sum squared resid 0.052333 
Durbin-Watson stat 2.138073    
Equation: BIMBOA=C(11)+C(12)*IC1+C(13)*IC2+C(14)*IC3+C(15)*IC4 
        +C(16)*IC5+C(17)*IC6+C(18)*IC7+C(19)*IC8+C(20)*IC9 
Observations: 291 
R-squared 0.429863     Mean dependent var 0.001472 
Adjusted R-squared 0.411603     S.D. dependent var 0.042216 
S.E. of regression 0.032383     Sum squared resid 0.294667 
Durbin-Watson stat 2.060684    
Equation: GMODELOC=C(21)+C(22)*IC1+C(23)*IC2+C(24)*IC3+C(25) 
        *IC4+C(26)*IC5+C(27)*IC6+C(28)*IC7+C(29)*IC8+C(30)*IC9 
Observations: 291 
R-squared 0.440001     Mean dependent var 0.000176 
Adjusted R-squared 0.422065     S.D. dependent var 0.032167 
S.E. of regression 0.024454     Sum squared resid 0.168035 
Durbin-Watson stat 2.120731    
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Equation: FEMSAUBD=C(31)+C(32)*IC1+C(33)*IC2+C(34)*IC3+C(35) 
        *IC4+C(36)*IC5+C(37)*IC6+C(38)*IC7+C(39)*IC8+C(40)*IC9 
Observations: 291 
R-squared 0.549188     Mean dependent var 0.000669 
Adjusted R-squared 0.534749     S.D. dependent var 0.042404 
S.E. of regression 0.028924     Sum squared resid 0.235079 
Durbin-Watson stat 2.328372    
Equation: CONTAL_01=C(41)+C(42)*IC1+C(43)*IC2+C(44)*IC3+C(45) 
        *IC4+C(46)*IC5+C(47)*IC6+C(48)*IC7+C(49)*IC8+C(50)*IC9 
Observations: 291 
R-squared 0.775889     Mean dependent var 0.000350 
Adjusted R-squared 0.768711     S.D. dependent var 0.043836 
S.E. of regression 0.021082     Sum squared resid 0.124886 
Durbin-Watson stat 2.035919    
Equation: GEOB=C(51)+C(52)*IC1+C(53)*IC2+C(54)*IC3+C(55)*IC4 
        +C(56)*IC5+C(57)*IC6+C(58)*IC7+C(59)*IC8+C(60)*IC9 
Observations: 291 
R-squared 0.905943     Mean dependent var 0.006502 
Adjusted R-squared 0.902931     S.D. dependent var 0.062982 
S.E. of regression 0.019623     Sum squared resid 0.108199 
Durbin-Watson stat 2.328541    
Equation: ARA_01=C(61)+C(62)*IC1+C(63)*IC2+C(64)*IC3+C(65)*IC4 
        +C(66)*IC5+C(67)*IC6+C(68)*IC7+C(69)*IC8+C(70)*IC9 
Observations: 291 
R-squared 0.640100     Mean dependent var 0.003209 
Adjusted R-squared 0.628573     S.D. dependent var 0.040644 
S.E. of regression 0.024770     Sum squared resid 0.172412 
Durbin-Watson stat 2.192797    
Equation: WALMEXV=C(71)+C(72)*IC1+C(73)*IC2+C(74)*IC3+C(75) 
        *IC4+C(76)*IC5+C(77)*IC6+C(78)*IC7+C(79)*IC8+C(80)*IC9 
Observations: 291 
R-squared 0.587450     Mean dependent var 0.001645 
Adjusted R-squared 0.574237     S.D. dependent var 0.039850 
S.E. of regression 0.026002     Sum squared resid 0.189991 
Durbin-Watson stat 2.380656    
Equation: SORIANAB=C(81)+C(82)*IC1+C(83)*IC2+C(84)*IC3+C(85) 
        *IC4+C(86)*IC5+C(87)*IC6+C(88)*IC7+C(89)*IC8+C(90)*IC9 
Observations: 291 
R-squared 0.630898     Mean dependent var -0.000943 
Adjusted R-squared 0.619077     S.D. dependent var 0.043948 
S.E. of regression 0.027124     Sum squared resid 0.206737 
Durbin-Watson stat 2.199651    
Equation: COMERUBC=C(91)+C(92)*IC1+C(93)*IC2+C(94)*IC3+C(95) 
        *IC4+C(96)*IC5+C(97)*IC6+C(98)*IC7+C(99)*IC8+C(100)*IC9 
Observations: 291 
R-squared 0.596350     Mean dependent var 0.000568 
Adjusted R-squared 0.583422     S.D. dependent var 0.045490 
S.E. of regression 0.029361     Sum squared resid 0.242234 
Durbin-Watson stat 2.373684    
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Equation: ELEKTRA_01=C(101)+C(102)*IC1+C(103)*IC2+C(104)*IC3 
        +C(105)*IC4+C(106)*IC5+C(107)*IC6+C(108)*IC7+C(109)*IC8 
        +C(110)*IC9 
Observations: 291 
R-squared 0.850999     Mean dependent var 0.000965 
Adjusted R-squared 0.846226     S.D. dependent var 0.056950 
S.E. of regression 0.022332     Sum squared resid 0.140144 
Durbin-Watson stat 2.209381    
Equation: TELMEXL=C(111)+C(112)*IC1+C(113)*IC2+C(114)*IC3 
        +C(115)*IC4+C(116)*IC5+C(117)*IC6+C(118)*IC7+C(119)*IC8 
        +C(120)*IC9 
Observations: 291 
R-squared 0.678792     Mean dependent var -0.000491 
Adjusted R-squared 0.668504     S.D. dependent var 0.033465 
S.E. of regression 0.019268     Sum squared resid 0.104318 
Durbin-Watson stat 2.196527    
Equation: TELECOA1=C(121)+C(122)*IC1+C(123)*IC2+C(124)*IC3 
        +C(125)*IC4+C(126)*IC5+C(127)*IC6+C(128)*IC7+C(129)*IC8 
        +C(130)*IC9 
Observations: 291 
R-squared 0.765038     Mean dependent var -0.000369 
Adjusted R-squared 0.757512     S.D. dependent var 0.044505 
S.E. of regression 0.021916     Sum squared resid 0.134965 
Durbin-Watson stat 2.143143    
Equation: TLEVICPO=C(131)+C(132)*IC1+C(133)*IC2+C(134)*IC3 
        +C(135)*IC4+C(136)*IC5+C(137)*IC6+C(138)*IC7+C(139)*IC8 
        +C(140)*IC9 
Observations: 291 
R-squared 0.716421     Mean dependent var -0.000790 
Adjusted R-squared 0.707338     S.D. dependent var 0.047574 
S.E. of regression 0.025737     Sum squared resid 0.186128 
Durbin-Watson stat 2.090370    
Equation: TVAZTCPO=C(141)+C(142)*IC1+C(143)*IC2+C(144)*IC3 
        +C(145)*IC4+C(146)*IC5+C(147)*IC6+C(148)*IC7+C(149)*IC8 
        +C(150)*IC9 
Observations: 291 
R-squared 0.810152     Mean dependent var -0.002023 
Adjusted R-squared 0.804071     S.D. dependent var 0.052847 
S.E. of regression 0.023392     Sum squared resid 0.153760 
Durbin-Watson stat 2.051300    
Equation: GFNORTEO=C(151)+C(152)*IC1+C(153)*IC2+C(154)*IC3 
        +C(155)*IC4+C(156)*IC5+C(157)*IC6+C(158)*IC7+C(159)*IC8 
        +C(160)*IC9 
Observations: 291 
R-squared 0.521373     Mean dependent var 0.005163 
Adjusted R-squared 0.506044     S.D. dependent var 0.043658 
S.E. of regression 0.030684     Sum squared resid 0.264563 
Durbin-Watson stat 2.188241    
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Equation: GFINBURO=C(161)+C(162)*IC1+C(163)*IC2+C(164)*IC3 
        +C(165)*IC4+C(166)*IC5+C(167)*IC6+C(168)*IC7+C(169)*IC8 
        +C(170)*IC9 
Observations: 291 
R-squared 0.693047     Mean dependent var 0.000767 
Adjusted R-squared 0.683215     S.D. dependent var 0.042633 
S.E. of regression 0.023996     Sum squared resid 0.161798 
Durbin-Watson stat 2.141113    
Equation: GCARSOA1=C(171)+C(172)*IC1+C(173)*IC2+C(174)*IC3 
        +C(175)*IC4+C(176)*IC5+C(177)*IC6+C(178)*IC7+C(179)*IC8 
        +C(180)*IC9 
Observations: 291 
R-squared 0.630519     Mean dependent var 0.001724 
Adjusted R-squared 0.618685     S.D. dependent var 0.044571 
S.E. of regression 0.027523     Sum squared resid 0.212861 
Durbin-Watson stat 2.235721    
Equation: ALFAA=C(181)+C(182)*IC1+C(183)*IC2+C(184)*IC3+C(185) 
        *IC4+C(186)*IC5+C(187)*IC6+C(188)*IC7+C(189)*IC8+C(190)*IC9 
Observations: 291 
R-squared 0.923813     Mean dependent var 0.001871 
Adjusted R-squared 0.921373     S.D. dependent var 0.061994 
S.E. of regression 0.017383     Sum squared resid 0.084914 
Durbin-Watson stat 2.286933    
Equation: CIEB=C(191)+C(192)*IC1+C(193)*IC2+C(194)*IC3+C(195) 
        *IC4+C(196)*IC5+C(197)*IC6+C(198)*IC7+C(199)*IC8+C(200)*IC9 
Observations: 291 
R-squared 0.876601     Mean dependent var -0.003637 
Adjusted R-squared 0.872649     S.D. dependent var 0.050558 
S.E. of regression 0.018042     Sum squared resid 0.091472 
Durbin-Watson stat 2.046890    
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Table 11. Independent Component Analysis. Betas estimation for all the equation system via 
Weighted Least Squares. Database of daily returns. 

 Coefficient Std. Error t-Statistic Prob. 
C(1) -2.01E-05 4.26E-05 -0.471163 0.6375 
C(2) 0.017825 0.000795 22.41580 0.0000 
C(3) -0.071532 0.000798 -89.62016 0.0000 
C(4) 0.017066 0.000795 21.46093 0.0000 
C(5) -0.037295 0.000795 -46.90062 0.0000 
C(6) 0.002327 0.000797 2.921783 0.0035 
C(7) 0.002373 0.000795 2.983619 0.0029 
C(8) 0.013725 0.000795 17.25851 0.0000 
C(9) 0.027212 0.000795 34.22184 0.0000 

C(10) 0.545156 0.000795 685.3918 0.0000 
C(11) -8.87E-05 0.000357 -0.248001 0.8041 
C(12) 0.069789 0.006670 10.46335 0.0000 
C(13) -0.080806 0.006695 -12.07019 0.0000 
C(14) 0.072118 0.006670 10.81249 0.0000 
C(15) 0.006285 0.006670 0.942378 0.3460 
C(16) -0.002726 0.006681 -0.408023 0.6833 
C(17) -0.010078 0.006670 -1.510948 0.1308 
C(18) 0.009473 0.006670 1.420198 0.1556 
C(19) 0.031072 0.006670 4.658865 0.0000 
C(20) 0.010246 0.006671 1.535763 0.1246 
C(21) 0.000293 0.000318 0.920827 0.3571 
C(22) 0.050116 0.005932 8.447715 0.0000 
C(23) -0.093951 0.005955 -15.77813 0.0000 
C(24) 0.221996 0.005932 37.42036 0.0000 
C(25) -0.022390 0.005932 -3.774341 0.0002 
C(26) 0.015475 0.005942 2.604325 0.0092 
C(27) -0.051052 0.005932 -8.605678 0.0000 
C(28) 0.061919 0.005933 10.43680 0.0000 
C(29) 0.069755 0.005932 11.75874 0.0000 
C(30) 0.020740 0.005934 3.495167 0.0005 
C(31) 3.14E-05 0.000370 0.084935 0.9323 
C(32) 0.089915 0.006903 13.02588 0.0000 
C(33) -0.088661 0.006928 -12.79660 0.0000 
C(34) -0.000148 0.006903 -0.021487 0.9829 
C(35) 0.000593 0.006903 0.085912 0.9315 
C(36) -0.019655 0.006914 -2.842776 0.0045 
C(37) -0.016529 0.006903 -2.394563 0.0166 
C(38) 0.038902 0.006903 5.635508 0.0000 
C(39) 0.047364 0.006902 6.861898 0.0000 
C(40) 0.016753 0.006904 2.426474 0.0153 
C(41) 0.000238 0.000355 0.670111 0.5028 
C(42) 0.175436 0.006624 26.48656 0.0000 
C(43) -0.073934 0.006648 -11.12083 0.0000 
C(44) 0.074180 0.006624 11.19942 0.0000 
C(45) -0.017229 0.006623 -2.601327 0.0093 
C(46) 0.016530 0.006634 2.491516 0.0127 
C(47) -0.000973 0.006623 -0.146905 0.8832 
C(48) 0.046254 0.006624 6.982896 0.0000 
C(49) 0.035813 0.006623 5.407170 0.0000 
C(50) 0.000440 0.006625 0.066448 0.9470 
C(51) -0.000132 0.000135 -0.974697 0.3297 
C(52) -0.002412 0.002525 -0.955110 0.3395 
C(53) -0.057722 0.002534 -22.77489 0.0000 
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C(54) 0.020766 0.002525 8.224079 0.0000 
C(55) -0.015527 0.002525 -6.149481 0.0000 
C(56) 0.018122 0.002529 7.165065 0.0000 
C(57) -0.005381 0.002525 -2.130944 0.0331 
C(58) 0.029989 0.002525 11.87602 0.0000 
C(59) 0.376939 0.002525 149.2855 0.0000 
C(60) 0.027399 0.002526 10.84829 0.0000 
C(61) 0.000311 0.000343 0.906557 0.3646 
C(62) 0.121940 0.006403 19.04291 0.0000 
C(63) -0.096468 0.006427 -15.00923 0.0000 
C(64) 0.044026 0.006403 6.875332 0.0000 
C(65) -0.037388 0.006403 -5.838937 0.0000 
C(66) 0.023611 0.006414 3.681262 0.0002 
C(67) 0.010092 0.006403 1.576108 0.1150 
C(68) 0.053221 0.006404 8.310944 0.0000 
C(69) 0.056535 0.006403 8.829336 0.0000 
C(70) 0.000707 0.006405 0.110437 0.9121 
C(71) -0.000104 0.000137 -0.755167 0.4502 
C(72) 0.095509 0.002558 37.34090 0.0000 
C(73) -0.097057 0.002567 -37.80536 0.0000 
C(74) 0.038098 0.002558 14.89503 0.0000 
C(75) -0.024573 0.002558 -9.607745 0.0000 
C(76) 0.419657 0.002562 163.8063 0.0000 
C(77) 0.005868 0.002558 2.294401 0.0218 
C(78) 0.073757 0.002558 28.83527 0.0000 
C(79) 0.020463 0.002558 8.000879 0.0000 
C(80) 0.035254 0.002558 13.77989 0.0000 
C(81) 0.000116 0.000376 0.307389 0.7585 
C(82) 0.078563 0.007016 11.19767 0.0000 
C(83) -0.140830 0.007042 -19.99844 0.0000 
C(84) 0.108783 0.007016 15.50510 0.0000 
C(85) -0.027705 0.007016 -3.948921 0.0001 
C(86) 0.084755 0.007027 12.06063 0.0000 
C(87) 0.087875 0.007016 12.52512 0.0000 
C(88) 0.044563 0.007016 6.351315 0.0000 
C(89) 0.042263 0.007016 6.024115 0.0000 
C(90) 0.007662 0.007018 1.091761 0.2749 
C(91) 1.50E-05 0.000327 0.045748 0.9635 
C(92) 0.207020 0.006100 33.94015 0.0000 
C(93) -0.148236 0.006122 -24.21276 0.0000 
C(94) 0.028380 0.006100 4.652783 0.0000 
C(95) 0.000561 0.006099 0.091905 0.9268 
C(96) 0.013932 0.006109 2.280418 0.0226 
C(97) -0.004070 0.006099 -0.667229 0.5046 
C(98) 0.047324 0.006100 7.758302 0.0000 
C(99) 0.055759 0.006099 9.141937 0.0000 
C(100) 0.010772 0.006101 1.765631 0.0775 
C(101) -0.000386 0.000374 -1.032695 0.3018 
C(102) 0.158036 0.006977 22.65182 0.0000 
C(103) -0.132436 0.007003 -18.91221 0.0000 
C(104) 0.059244 0.006977 8.491598 0.0000 
C(105) -0.027228 0.006977 -3.902853 0.0001 
C(106) 0.019469 0.006988 2.786072 0.0053 
C(107) -0.040607 0.006977 -5.820375 0.0000 
C(108) 0.053305 0.006977 7.640034 0.0000 
C(109) 0.037768 0.006976 5.413753 0.0000 
C(110) 0.012722 0.006978 1.823094 0.0683 
C(111) -0.000110 0.000227 -0.482885 0.6292 
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C(112) 0.093508 0.004236 22.07472 0.0000 
C(113) -0.160848 0.004252 -37.83142 0.0000 
C(114) 0.027296 0.004236 6.443934 0.0000 
C(115) -0.060858 0.004236 -14.36752 0.0000 
C(116) 0.026010 0.004243 6.130413 0.0000 
C(117) -0.276207 0.004236 -65.20648 0.0000 
C(118) 0.067940 0.004236 16.03814 0.0000 
C(119) 0.037190 0.004236 8.779959 0.0000 
C(120) 0.005429 0.004237 1.281442 0.2000 
C(121) -0.000156 0.000256 -0.609660 0.5421 
C(122) 0.079657 0.004778 16.67302 0.0000 
C(123) -0.176873 0.004795 -36.88434 0.0000 
C(124) 0.075991 0.004778 15.90575 0.0000 
C(125) -0.358739 0.004777 -75.09087 0.0000 
C(126) 0.028552 0.004785 5.966623 0.0000 
C(127) 0.040691 0.004778 8.517134 0.0000 
C(128) 0.048156 0.004778 10.07908 0.0000 
C(129) 0.043862 0.004777 9.181311 0.0000 
C(130) -0.001408 0.004779 -0.294570 0.7683 
C(131) -0.000138 0.000273 -0.505491 0.6132 
C(132) 0.189652 0.005099 37.19746 0.0000 
C(133) -0.092553 0.005117 -18.08577 0.0000 
C(134) 0.021104 0.005099 4.139155 0.0000 
C(135) 0.000287 0.005098 0.056272 0.9551 
C(136) -0.002779 0.005107 -0.544180 0.5863 
C(137) 0.023777 0.005098 4.663539 0.0000 
C(138) 0.049808 0.005099 9.768579 0.0000 
C(139) 0.036087 0.005098 7.078393 0.0000 
C(140) 0.006140 0.005100 1.203961 0.2286 
C(141) -0.000346 0.000327 -1.059014 0.2896 
C(142) 0.224481 0.006099 36.80386 0.0000 
C(143) -0.150297 0.006122 -24.55007 0.0000 
C(144) 0.039664 0.006099 6.502954 0.0000 
C(145) 0.014193 0.006099 2.327115 0.0200 
C(146) -0.008461 0.006109 -1.384981 0.1661 
C(147) 0.027326 0.006099 4.480195 0.0000 
C(148) 0.075133 0.006100 12.31758 0.0000 
C(149) 0.028608 0.006099 4.690581 0.0000 
C(150) 0.010470 0.006101 1.716251 0.0861 
C(151) -0.000192 0.000312 -0.614444 0.5389 
C(152) 0.300127 0.005820 51.56400 0.0000 
C(153) -0.083979 0.005842 -14.37483 0.0000 
C(154) 0.036918 0.005820 6.342840 0.0000 
C(155) -0.087187 0.005820 -14.97981 0.0000 
C(156) 0.040676 0.005830 6.977096 0.0000 
C(157) 0.065726 0.005820 11.29234 0.0000 
C(158) 0.073374 0.005821 12.60561 0.0000 
C(159) 0.069426 0.005820 11.92853 0.0000 
C(160) -0.001319 0.005822 -0.226558 0.8208 
C(161) 7.10E-05 0.000258 0.275212 0.7832 
C(162) 0.315097 0.004817 65.41577 0.0000 
C(163) -0.012856 0.004835 -2.659007 0.0078 
C(164) 0.041183 0.004817 8.549742 0.0000 
C(165) -0.245562 0.004817 -50.98172 0.0000 
C(166) 0.015918 0.004825 3.299275 0.0010 
C(167) 0.008446 0.004817 1.753439 0.0795 
C(168) 0.109951 0.004817 22.82532 0.0000 
C(169) 0.058721 0.004817 12.19152 0.0000 
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C(170) 0.004780 0.004818 0.992129 0.3211 
C(171) 2.06E-05 0.000303 0.067900 0.9459 
C(172) 0.082357 0.005662 14.54486 0.0000 
C(173) -0.296812 0.005683 -52.22538 0.0000 
C(174) -0.008843 0.005662 -1.561694 0.1184 
C(175) -0.061881 0.005662 -10.92906 0.0000 
C(176) 0.042631 0.005671 7.516841 0.0000 
C(177) 0.001896 0.005662 0.334936 0.7377 
C(178) 0.029457 0.005662 5.202153 0.0000 
C(179) -0.038448 0.005662 -6.790648 0.0000 
C(180) -0.023610 0.005664 -4.168831 0.0000 
C(181) -0.000223 0.000375 -0.593626 0.5528 
C(182) 0.056680 0.006997 8.100740 0.0000 
C(183) -0.176917 0.007023 -25.19144 0.0000 
C(184) 0.124597 0.006997 17.80754 0.0000 
C(185) -0.003960 0.006997 -0.565985 0.5714 
C(186) -0.006157 0.007008 -0.878594 0.3796 
C(187) 0.107907 0.006997 15.42232 0.0000 
C(188) 0.002572 0.006997 0.367543 0.7132 
C(189) 0.031246 0.006997 4.465922 0.0000 
C(190) -0.022789 0.006998 -3.256319 0.0011 
C(191) 0.000145 0.000388 0.375003 0.7077 
C(192) 0.152550 0.007230 21.09833 0.0000 
C(193) -0.153670 0.007257 -21.17445 0.0000 
C(194) 0.076998 0.007230 10.64919 0.0000 
C(195) 0.008727 0.007230 1.207002 0.2274 
C(196) -0.019060 0.007242 -2.631802 0.0085 
C(197) 0.026010 0.007230 3.597353 0.0003 
C(198) 0.036341 0.007231 5.025890 0.0000 
C(199) 0.032981 0.007230 4.561621 0.0000 
C(200) 0.006784 0.007232 0.938109 0.3482 
C(201) -0.000117 0.000129 -0.911274 0.3622 
C(202) 0.074296 0.002405 30.89762 0.0000 
C(203) -0.122521 0.002414 -50.76442 0.0000 
C(204) 0.059019 0.002405 24.54452 0.0000 
C(205) -0.048551 0.002404 -20.19170 0.0000 
C(206) -0.001870 0.002408 -0.776234 0.4376 
C(207) 0.039419 0.002405 16.39336 0.0000 
C(208) 0.420289 0.002405 174.7787 0.0000 
C(209) 0.011918 0.002404 4.956758 0.0000 
C(210) 0.003390 0.002405 1.409431 0.1587 
C(211) -0.000385 0.000334 -1.155136 0.2480 
C(212) 0.122768 0.006225 19.72054 0.0000 
C(213) -0.045258 0.006249 -7.243008 0.0000 
C(214) 0.290655 0.006225 46.68878 0.0000 
C(215) -0.034213 0.006225 -5.495880 0.0000 
C(216) 0.029070 0.006235 4.662116 0.0000 
C(217) -0.032606 0.006225 -5.237708 0.0000 
C(218) 0.020799 0.006226 3.340884 0.0008 
C(219) 0.010831 0.006225 1.739889 0.0819 
C(220) 0.016056 0.006227 2.578590 0.0099 
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Equation: PE_OLES_01=C(1)+C(2)*IC1+C(3)*IC2+C(4)*IC3+C(5)*IC4 
        +C(6)*IC5+C(7)*IC6+C(8)*IC7+C(9)*IC8+C(10)*IC9 
Observations: 1410 
R-squared 0.997084     Mean dependent var 0.001028 
Adjusted R-squared 0.997066     S.D. dependent var 0.029462 
S.E. of regression 0.001596     Sum squared resid 0.003566 
Durbin-Watson stat 1.843278    
Equation: 
KIMBERA=C(11)+C(12)*IC1+C(13)*IC2+C(14)*IC3+C(15)*IC4 
        +C(16)*IC5+C(17)*IC6+C(18)*IC7+C(19)*IC8+C(20)*IC9 
Observations: 1410 
R-squared 0.221835     Mean dependent var 0.000209 
Adjusted R-squared 0.216833     S.D. dependent var 0.015126 
S.E. of regression 0.013386     Sum squared resid 0.250863 
Durbin-Watson stat 1.831335    
Equation: BIMBOA=C(21)+C(22)*IC1+C(23)*IC2+C(24)*IC3+C(25)*IC4 
        +C(26)*IC5+C(27)*IC6+C(28)*IC7+C(29)*IC8+C(30)*IC9 
Observations: 1410 
R-squared 0.595532     Mean dependent var 0.000650 
Adjusted R-squared 0.592932     S.D. dependent var 0.018661 
S.E. of regression 0.011906     Sum squared resid 0.198460 
Durbin-Watson stat 1.880038    
Equation: GMODELOC=C(31)+C(32)*IC1+C(33)*IC2+C(34)*IC3+C(35) 
        *IC4+C(36)*IC5+C(37)*IC6+C(38)*IC7+C(39)*IC8+C(40)*IC9 
Observations: 1410 
R-squared 0.234688     Mean dependent var 0.000384 
Adjusted R-squared 0.229768     S.D. dependent var 0.015785 
S.E. of regression 0.013854     Sum squared resid 0.268688 
Durbin-Watson stat 2.007036    
Equation: FEMSAUBD=C(41)+C(42)*IC1+C(43)*IC2+C(44)*IC3+C(45) 
        *IC4+C(46)*IC5+C(47)*IC6+C(48)*IC7+C(49)*IC8+C(50)*IC9 
Observations: 1410 
R-squared 0.425010     Mean dependent var 0.000500 
Adjusted R-squared 0.421314     S.D. dependent var 0.017475 
S.E. of regression 0.013293     Sum squared resid 0.247392 
Durbin-Watson stat 1.842175    
Equation: CONTAL_01=C(51)+C(52)*IC1+C(53)*IC2+C(54)*IC3+C(55) 
        *IC4+C(56)*IC5+C(57)*IC6+C(58)*IC7+C(59)*IC8+C(60)*IC9 
Observations: 1410 
R-squared 0.942743     Mean dependent var 0.000405 
Adjusted R-squared 0.942375     S.D. dependent var 0.021111 
S.E. of regression 0.005068     Sum squared resid 0.035954 
Durbin-Watson stat 1.881456    
Equation: CEMEXCP=C(61)+C(62)*IC1+C(63)*IC2+C(64)*IC3+C(65) 
        *IC4+C(66)*IC5+C(67)*IC6+C(68)*IC7+C(69)*IC8+C(70)*IC9 
Observations: 1410 
R-squared 0.371209     Mean dependent var 0.000771 
Adjusted R-squared 0.367167     S.D. dependent var 0.016155 
S.E. of regression 0.012851     Sum squared resid 0.231220 
Durbin-Watson stat 1.877554    
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Equation: GEOB=C(71)+C(72)*IC1+C(73)*IC2+C(74)*IC3+C(75)*IC4 
        +C(76)*IC5+C(77)*IC6+C(78)*IC7+C(79)*IC8+C(80)*IC9 
Observations: 1410 
R-squared 0.956490     Mean dependent var 0.001662 
Adjusted R-squared 0.956211     S.D. dependent var 0.024531 
S.E. of regression 0.005133     Sum squared resid 0.036891 
Durbin-Watson stat 1.907998    
Equation: ARA_01=C(81)+C(82)*IC1+C(83)*IC2+C(84)*IC3+C(85)*IC4 
        +C(86)*IC5+C(87)*IC6+C(88)*IC7+C(89)*IC8+C(90)*IC9 
Observations: 1410 
R-squared 0.451246     Mean dependent var 0.001007 
Adjusted R-squared 0.447718     S.D. dependent var 0.018947 
S.E. of regression 0.014081     Sum squared resid 0.277573 
Durbin-Watson stat 1.924340    
Equation: WALMEXV=C(91)+C(92)*IC1+C(93)*IC2+C(94)*IC3+C(95) 
        *IC4+C(96)*IC5+C(97)*IC6+C(98)*IC7+C(99)*IC8+C(100)*IC9 
Observations: 1410 
R-squared 0.575714     Mean dependent var 0.000655 
Adjusted R-squared 0.572987     S.D. dependent var 0.018733 
S.E. of regression 0.012242     Sum squared resid 0.209796 
Durbin-Watson stat 1.937401    
Equation: SORIANAB=C(101)+C(102)*IC1+C(103)*IC2+C(104)*IC3 
        +C(105)*IC4+C(106)*IC5+C(107)*IC6+C(108)*IC7+C(109)*IC8 
        +C(110)*IC9 
Observations: 1410 
R-squared 0.436316     Mean dependent var 0.000171 
Adjusted R-squared 0.432692     S.D. dependent var 0.018590 
S.E. of regression 0.014002     Sum squared resid 0.274478 
Durbin-Watson stat 1.844564    
Equation: COMERUBC=C(111)+C(112)*IC1+C(113)*IC2+C(114)*IC3 
        +C(115)*IC4+C(116)*IC5+C(117)*IC6+C(118)*IC7+C(119)*IC8 
        +C(120)*IC9 
Observations: 1410 
R-squared 0.828185     Mean dependent var 0.000498 
Adjusted R-squared 0.827081     S.D. dependent var 0.020444 
S.E. of regression 0.008501     Sum squared resid 0.101182 
Durbin-Watson stat 2.009160    
Equation: ELEKTRA_01=C(121)+C(122)*IC1+C(123)*IC2+C(124)*IC3 
        +C(125)*IC4+C(126)*IC5+C(127)*IC6+C(128)*IC7+C(129)*IC8 
        +C(130)*IC9 
Observations: 1410 
R-squared 0.847374     Mean dependent var 0.000526 
Adjusted R-squared 0.846393     S.D. dependent var 0.024465 
S.E. of regression 0.009588     Sum squared resid 0.128711 
Durbin-Watson stat 1.954464    
Equation: TELMEXL=C(131)+C(132)*IC1+C(133)*IC2+C(134)*IC3 
        +C(135)*IC4+C(136)*IC5+C(137)*IC6+C(138)*IC7+C(139)*IC8 
        +C(140)*IC9 
Observations: 1410 
R-squared 0.573761     Mean dependent var 0.000215 
Adjusted R-squared 0.571021     S.D. dependent var 0.015623 
S.E. of regression 0.010232     Sum squared resid 0.146585 
Durbin-Watson stat 2.002171    
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Equation: TELECOA1=C(141)+C(142)*IC1+C(143)*IC2+C(144)*IC3 
        +C(145)*IC4+C(146)*IC5+C(147)*IC6+C(148)*IC7+C(149)*IC8 
        +C(150)*IC9 
Observations: 1410 
R-squared 0.609970     Mean dependent var 0.000252 
Adjusted R-squared 0.607463     S.D. dependent var 0.019538 
S.E. of regression 0.012241     Sum squared resid 0.209784 
Durbin-Watson stat 2.050123    
Equation: TLEVICPO=C(151)+C(152)*IC1+C(153)*IC2+C(154)*IC3 
        +C(155)*IC4+C(156)*IC5+C(157)*IC6+C(158)*IC7+C(159)*IC8 
        +C(160)*IC9 
Observations: 1410 
R-squared 0.719041     Mean dependent var 0.000171 
Adjusted R-squared 0.717234     S.D. dependent var 0.021968 
S.E. of regression 0.011681     Sum squared resid 0.191037 
Durbin-Watson stat 2.022355    
Equation: TVAZTCPO=C(161)+C(162)*IC1+C(163)*IC2+C(164)*IC3 
        +C(165)*IC4+C(166)*IC5+C(167)*IC6+C(168)*IC7+C(169)*IC8 
        +C(170)*IC9 
Observations: 1410 
R-squared 0.844269     Mean dependent var -7.68E-05 
Adjusted R-squared 0.843268     S.D. dependent var 0.024418 
S.E. of regression 0.009667     Sum squared resid 0.130835 
Durbin-Watson stat 1.965004    
Equation: GFNORTEO=C(171)+C(172)*IC1+C(173)*IC2+C(174)*IC3 
        +C(175)*IC4+C(176)*IC5+C(177)*IC6+C(178)*IC7+C(179)*IC8 
        +C(180)*IC9 
Observations: 1410 
R-squared 0.694659     Mean dependent var 0.001415 
Adjusted R-squared 0.692696     S.D. dependent var 0.020499 
S.E. of regression 0.011364     Sum squared resid 0.180791 
Durbin-Watson stat 1.903539    
Equation: GFINBURO=C(181)+C(182)*IC1+C(183)*IC2+C(184)*IC3 
        +C(185)*IC4+C(186)*IC5+C(187)*IC6+C(188)*IC7+C(189)*IC8 
        +C(190)*IC9 
Observations: 1410 
R-squared 0.477418     Mean dependent var 0.000502 
Adjusted R-squared 0.474059     S.D. dependent var 0.019363 
S.E. of regression 0.014042     Sum squared resid 0.276064 
Durbin-Watson stat 1.936692    
Equation: GCARSOA1=C(191)+C(192)*IC1+C(193)*IC2+C(194)*IC3 
        +C(195)*IC4+C(196)*IC5+C(197)*IC6+C(198)*IC7+C(199)*IC8 
        +C(200)*IC9 
Observations: 1410 
R-squared 0.432955     Mean dependent var 0.000711 
Adjusted R-squared 0.429310     S.D. dependent var 0.019209 
S.E. of regression 0.014511     Sum squared resid 0.294801 
Durbin-Watson stat 1.917399    
Equation: ALFAA=C(201)+C(202)*IC1+C(203)*IC2+C(204)*IC3+C(205) 
        *IC4+C(206)*IC5+C(207)*IC6+C(208)*IC7+C(209)*IC8+C(210)*IC9 
Observations: 1410 
R-squared 0.961665     Mean dependent var 0.000723 
Adjusted R-squared 0.961418     S.D. dependent var 0.024569 
S.E. of regression 0.004826     Sum squared resid 0.032605 
Durbin-Watson stat 1.949986    



APPENDIX 
 

426 
 

Equation: CIEB=C(211)+C(212)*IC1+C(213)*IC2+C(214)*IC3+C(215) 
        *IC4+C(216)*IC5+C(217)*IC6+C(218)*IC7+C(219)*IC8+C(220)*IC9 
Observations: 1410 
R-squared 0.658791     Mean dependent var -0.000376 
Adjusted R-squared 0.656598     S.D. dependent var 0.021321 
S.E. of regression 0.012494     Sum squared resid 0.218540 
Durbin-Watson stat 1.892553    
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Table 12. Independent Component Analysis. Betas estimation for all the equation s system via 

Weighted Least Squares. Database of daily excesses. 

 Coefficient Std. Error t-Statistic Prob. 
C(1) -1.30E-05 4.98E-05 -0.261975 0.7933 
C(2) 0.031453 0.000932 33.74189 0.0000 
C(3) 0.016678 0.000930 17.92975 0.0000 
C(4) -0.031318 0.000931 -33.65319 0.0000 
C(5) 0.003498 0.000930 3.761020 0.0002 
C(6) -0.027512 0.000930 -29.58504 0.0000 
C(7) 0.018685 0.000930 20.09506 0.0000 
C(8) -0.016649 0.000930 -17.90589 0.0000 
C(9) 0.013230 0.000931 14.20986 0.0000 

C(10) 0.549238 0.000930 590.4980 0.0000 
C(11) -7.81E-05 0.000346 -0.225811 0.8214 
C(12) 0.091731 0.006473 14.17234 0.0000 
C(13) 0.069932 0.006459 10.82746 0.0000 
C(14) -0.082432 0.006462 -12.75694 0.0000 
C(15) -0.009987 0.006457 -1.546579 0.1220 
C(16) -0.003873 0.006457 -0.599781 0.5487 
C(17) 0.024067 0.006456 3.727683 0.0002 
C(18) -0.030901 0.006456 -4.786182 0.0000 
C(19) -0.003132 0.006465 -0.484508 0.6280 
C(20) 0.007666 0.006458 1.186979 0.2352 
C(21) 0.000215 0.000419 0.513426 0.6077 
C(22) 0.111691 0.007833 14.25866 0.0000 
C(23) 0.021636 0.007817 2.768009 0.0056 
C(24) -0.136428 0.007820 -17.44565 0.0000 
C(25) 0.003590 0.007815 0.459340 0.6460 
C(26) -0.025652 0.007814 -3.282723 0.0010 
C(27) -0.016057 0.007814 -2.055061 0.0399 
C(28) -0.054930 0.007814 -7.030074 0.0000 
C(29) 0.016413 0.007824 2.097830 0.0359 
C(30) 0.029529 0.007816 3.778026 0.0002 
C(31) -5.02E-05 0.000353 -0.142256 0.8869 
C(32) 0.110765 0.006610 16.75811 0.0000 
C(33) 0.093189 0.006596 14.12901 0.0000 
C(34) -0.008954 0.006599 -1.357021 0.1748 
C(35) 0.011703 0.006594 1.774830 0.0759 
C(36) -0.029344 0.006594 -4.450288 0.0000 
C(37) 0.024199 0.006593 3.670369 0.0002 
C(38) -0.048168 0.006593 -7.305906 0.0000 
C(39) -0.032939 0.006602 -4.989377 0.0000 
C(40) 0.022111 0.006595 3.352680 0.0008 
C(41) 0.000179 0.000352 0.508486 0.6111 
C(42) 0.122709 0.006581 18.64691 0.0000 
C(43) 0.156476 0.006567 23.82886 0.0000 
C(44) -0.066371 0.006570 -10.10254 0.0000 
C(45) 0.040762 0.006565 6.208787 0.0000 
C(46) -0.013752 0.006565 -2.094779 0.0362 
C(47) 0.016254 0.006564 2.476131 0.0133 
C(48) -0.026408 0.006564 -4.023035 0.0001 
C(49) 0.002579 0.006573 0.392388 0.6948 
C(50) 0.001525 0.006566 0.232239 0.8164 
C(51) -5.33E-05 6.94E-05 -0.766844 0.4432 
C(52) 0.070160 0.001300 53.97994 0.0000 
C(53) 0.003313 0.001297 2.554041 0.0107 
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C(54) -0.029169 0.001298 -22.47960 0.0000 
C(55) 0.010938 0.001297 8.435366 0.0000 
C(56) 0.012761 0.001297 9.841563 0.0000 
C(57) 0.011555 0.001296 8.912664 0.0000 
C(58) -0.382361 0.001296 -294.9259 0.0000 
C(59) 0.028242 0.001298 21.75516 0.0000 
C(60) 0.038013 0.001297 29.31144 0.0000 
C(61) 0.000257 0.000337 0.762351 0.4459 
C(62) 0.137193 0.006310 21.74058 0.0000 
C(63) 0.107194 0.006297 17.02284 0.0000 
C(64) -0.036761 0.006300 -5.835143 0.0000 
C(65) 0.039116 0.006296 6.213191 0.0000 
C(66) -0.017672 0.006295 -2.807212 0.0050 
C(67) 0.015190 0.006295 2.413118 0.0158 
C(68) -0.043614 0.006295 -6.928787 0.0000 
C(69) 0.014817 0.006303 2.350760 0.0187 
C(70) 0.011012 0.006297 1.748867 0.0803 
C(71) -2.42E-05 0.000103 -0.235921 0.8135 
C(72) 0.149779 0.001920 77.99778 0.0000 
C(73) 0.071752 0.001916 37.44455 0.0000 
C(74) -0.064429 0.001917 -33.60776 0.0000 
C(75) 0.030337 0.001916 15.83523 0.0000 
C(76) -0.071647 0.001916 -37.40065 0.0000 
C(77) 0.030360 0.001915 15.85014 0.0000 
C(78) -0.002757 0.001915 -1.439531 0.1500 
C(79) 0.410121 0.001918 213.8276 0.0000 
C(80) 0.031078 0.001916 16.21967 0.0000 
C(81) 0.000224 0.000388 0.578724 0.5628 
C(82) 0.185545 0.007254 25.57906 0.0000 
C(83) 0.063583 0.007238 8.784119 0.0000 
C(84) -0.090778 0.007242 -12.53542 0.0000 
C(85) 0.001844 0.007237 0.254880 0.7988 
C(86) 0.026530 0.007236 3.666177 0.0002 
C(87) -0.023175 0.007236 -3.202911 0.0014 
C(88) -0.029305 0.007236 -4.050129 0.0001 
C(89) 0.056304 0.007245 7.771362 0.0000 
C(90) 0.028216 0.007238 3.898351 0.0001 
C(91) 0.000101 0.000351 0.287476 0.7737 
C(92) 0.170171 0.006575 25.88305 0.0000 
C(93) 0.169453 0.006561 25.82883 0.0000 
C(94) -0.030913 0.006564 -4.709684 0.0000 
C(95) 0.029287 0.006559 4.465139 0.0000 
C(96) -0.039374 0.006559 -6.003334 0.0000 
C(97) -0.008241 0.006558 -1.256625 0.2089 
C(98) -0.037084 0.006558 -5.654754 0.0000 
C(99) 0.002315 0.006567 0.352538 0.7244 
C(100) 0.019656 0.006560 2.996232 0.0027 
C(101) -0.000234 0.000381 -0.614176 0.5391 
C(102) 0.139901 0.007133 19.61298 0.0000 
C(103) 0.139454 0.007118 19.59199 0.0000 
C(104) -0.084166 0.007121 -11.81916 0.0000 
C(105) 0.028212 0.007116 3.964363 0.0001 
C(106) -0.009853 0.007116 -1.384685 0.1662 
C(107) 0.047273 0.007115 6.643977 0.0000 
C(108) -0.026130 0.007115 -3.672491 0.0002 
C(109) 0.011296 0.007125 1.585454 0.1129 
C(110) 0.017195 0.007117 2.415893 0.0157 
C(111) -4.43E-05 0.000163 -0.271281 0.7862 
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C(112) 0.153648 0.003053 50.31900 0.0000 
C(113) 0.082099 0.003047 26.94408 0.0000 
C(114) -0.035738 0.003048 -11.72353 0.0000 
C(115) 0.036753 0.003046 12.06496 0.0000 
C(116) -0.042645 0.003046 -13.99975 0.0000 
C(117) 0.313429 0.003046 102.9049 0.0000 
C(118) -0.031005 0.003046 -10.17968 0.0000 
C(119) -0.002892 0.003050 -0.948099 0.3431 
C(120) 0.015754 0.003047 5.170824 0.0000 
C(121) -0.000117 0.000181 -0.644674 0.5191 
C(122) 0.218433 0.003395 64.33042 0.0000 
C(123) 0.007050 0.003388 2.080615 0.0375 
C(124) -0.068974 0.003390 -20.34737 0.0000 
C(125) 0.371244 0.003387 109.5927 0.0000 
C(126) -0.042131 0.003387 -12.43793 0.0000 
C(127) 0.016995 0.003387 5.017773 0.0000 
C(128) -0.034265 0.003387 -10.11672 0.0000 
C(129) 0.015514 0.003391 4.574548 0.0000 
C(130) 0.031197 0.003388 9.208021 0.0000 
C(131) -0.000205 0.000268 -0.766281 0.4435 
C(132) 0.133835 0.005013 26.69739 0.0000 
C(133) 0.171736 0.005002 34.33076 0.0000 
C(134) -0.026638 0.005005 -5.322716 0.0000 
C(135) 0.015651 0.005001 3.129357 0.0018 
C(136) -0.025153 0.005001 -5.029654 0.0000 
C(137) -0.026782 0.005000 -5.355988 0.0000 
C(138) -0.025522 0.005000 -5.103956 0.0000 
C(139) -0.003482 0.005007 -0.695445 0.4868 
C(140) 0.015218 0.005002 3.042300 0.0023 
C(141) -0.000343 0.000336 -1.022117 0.3067 
C(142) 0.192995 0.006288 30.69437 0.0000 
C(143) 0.185803 0.006274 29.61339 0.0000 
C(144) -0.049885 0.006277 -7.947110 0.0000 
C(145) 0.008133 0.006273 1.296479 0.1948 
C(146) -0.046396 0.006272 -7.396818 0.0000 
C(147) -0.038774 0.006272 -6.182196 0.0000 
C(148) -0.021927 0.006272 -3.496092 0.0005 
C(149) -0.012226 0.006280 -1.946696 0.0516 
C(150) 0.023016 0.006274 3.668598 0.0002 
C(151) -0.000126 0.000297 -0.423906 0.6716 
C(152) 0.164617 0.005565 29.58264 0.0000 
C(153) 0.278503 0.005553 50.15526 0.0000 
C(154) -0.062603 0.005555 -11.26898 0.0000 
C(155) 0.113878 0.005552 20.51275 0.0000 
C(156) -0.017378 0.005551 -3.130438 0.0017 
C(157) -0.027908 0.005551 -5.027906 0.0000 
C(158) -0.051477 0.005551 -9.274077 0.0000 
C(159) 0.034738 0.005558 6.250065 0.0000 
C(160) 0.007384 0.005552 1.329957 0.1835 
C(161) 0.000123 0.000305 0.403494 0.6866 
C(162) 0.093744 0.005711 16.41613 0.0000 
C(163) 0.270249 0.005698 47.42553 0.0000 
C(164) -0.105253 0.005701 -18.46217 0.0000 
C(165) 0.258821 0.005697 45.43050 0.0000 
C(166) -0.035683 0.005697 -6.263832 0.0000 
C(167) -0.018184 0.005696 -3.192379 0.0014 
C(168) -0.049580 0.005696 -8.704210 0.0000 
C(169) 0.016117 0.005704 2.825801 0.0047 
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C(170) 0.017564 0.005698 3.082573 0.0021 
C(171) 2.90E-05 0.000289 0.100327 0.9201 
C(172) 0.320216 0.005416 59.12652 0.0000 
C(173) 0.023462 0.005404 4.341314 0.0000 
C(174) -0.003832 0.005407 -0.708814 0.4784 
C(175) 0.025863 0.005403 4.786781 0.0000 
C(176) 0.040032 0.005403 7.409574 0.0000 
C(177) 0.029751 0.005402 5.507198 0.0000 
C(178) 0.029971 0.005402 5.548059 0.0000 
C(179) 0.012578 0.005409 2.325216 0.0201 
C(180) 0.000430 0.005404 0.079532 0.9366 
C(181) -0.000222 0.000372 -0.597889 0.5499 
C(182) 0.200712 0.006956 28.85506 0.0000 
C(183) -0.014624 0.006941 -2.106819 0.0351 
C(184) -0.129070 0.006944 -18.58649 0.0000 
C(185) 0.007002 0.006940 1.009032 0.3130 
C(186) -0.024943 0.006939 -3.594624 0.0003 
C(187) -0.077354 0.006938 -11.14872 0.0000 
C(188) -0.013593 0.006938 -1.959160 0.0501 
C(189) -0.007589 0.006948 -1.092269 0.2747 
C(190) -0.003813 0.006941 -0.549348 0.5828 
C(191) 0.000210 0.000386 0.542788 0.5873 
C(192) 0.176324 0.007228 24.39607 0.0000 
C(193) 0.105445 0.007212 14.62038 0.0000 
C(194) -0.083850 0.007216 -11.62077 0.0000 
C(195) 0.021429 0.007211 2.971926 0.0030 
C(196) -0.062612 0.007210 -8.683964 0.0000 
C(197) -0.013604 0.007209 -1.886963 0.0592 
C(198) -0.030341 0.007209 -4.208595 0.0000 
C(199) -0.043782 0.007219 -6.064959 0.0000 
C(200) 0.013085 0.007212 1.814464 0.0696 
C(201) -1.32E-05 0.000130 -0.101702 0.9190 
C(202) 0.176618 0.002436 72.49710 0.0000 
C(203) 0.090766 0.002431 37.33633 0.0000 
C(204) -0.098348 0.002432 -40.43673 0.0000 
C(205) 0.060669 0.002430 24.96188 0.0000 
C(206) -0.386188 0.002430 -158.9034 0.0000 
C(207) 0.005209 0.002430 2.143648 0.0321 
C(208) -0.046480 0.002430 -19.12679 0.0000 
C(209) -0.015494 0.002433 -6.367585 0.0000 
C(210) 0.000284 0.002431 0.116834 0.9070 
C(211) -8.56E-05 0.000190 -0.450762 0.6522 
C(212) 0.099355 0.003553 27.96510 0.0000 
C(213) 0.077198 0.003545 21.77489 0.0000 
C(214) -0.348008 0.003547 -98.11603 0.0000 
C(215) 0.029199 0.003544 8.237897 0.0000 
C(216) 0.026824 0.003544 7.568376 0.0000 
C(217) 0.054270 0.003544 15.31375 0.0000 
C(218) -0.027821 0.003544 -7.850302 0.0000 
C(219) 0.004425 0.003549 1.246980 0.2124 
C(220) 0.011871 0.003545 3.348651 0.0008 
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Equation: PE_OLES_01=C(1)+C(2)*IC1+C(3)*IC2+C(4)*IC3+C(5)*IC4 
        +C(6)*IC5+C(7)*IC6+C(8)*IC7+C(9)*IC8+C(10)*IC9 
Observations: 1410 
R-squared 0.996022     Mean dependent var 0.000805 
Adjusted R-squared 0.995997     S.D. dependent var 0.029496 
S.E. of regression 0.001866     Sum squared resid 0.004876 
Durbin-Watson stat 1.832000    
Equation: 
KIMBERA=C(11)+C(12)*IC1+C(13)*IC2+C(14)*IC3+C(15)*IC4 
        +C(16)*IC5+C(17)*IC6+C(18)*IC7+C(19)*IC8+C(20)*IC9 
Observations: 1410 
R-squared 0.270711     Mean dependent var -1.66E-05 
Adjusted R-squared 0.266023     S.D. dependent var 0.015126 
S.E. of regression 0.012958     Sum squared resid 0.235088 
Durbin-Watson stat 1.850781    
Equation: BIMBOA=C(21)+C(22)*IC1+C(23)*IC2+C(24)*IC3+C(25)*IC4 
        +C(26)*IC5+C(27)*IC6+C(28)*IC7+C(29)*IC8+C(30)*IC9 
Observations: 1410 
R-squared 0.298515     Mean dependent var 0.000397 
Adjusted R-squared 0.294006     S.D. dependent var 0.018665 
S.E. of regression 0.015683     Sum squared resid 0.344323 
Durbin-Watson stat 1.891197    
Equation: GMODELOC=C(31)+C(32)*IC1+C(33)*IC2+C(34)*IC3+C(35) 
        *IC4+C(36)*IC5+C(37)*IC6+C(38)*IC7+C(39)*IC8+C(40)*IC9 
Observations: 1410 
R-squared 0.301844     Mean dependent var 0.000143 
Adjusted R-squared 0.297356     S.D. dependent var 0.015787 
S.E. of regression 0.013233     Sum squared resid 0.245155 
Durbin-Watson stat 2.005582    
Equation: FEMSAUBD=C(41)+C(42)*IC1+C(43)*IC2+C(44)*IC3+C(45) 
        *IC4+C(46)*IC5+C(47)*IC6+C(48)*IC7+C(49)*IC8+C(50)*IC9 
Observations: 1410 
R-squared 0.434967     Mean dependent var 0.000231 
Adjusted R-squared 0.431335     S.D. dependent var 0.017471 
S.E. of regression 0.013175     Sum squared resid 0.243008 
Durbin-Watson stat 1.853748    
Equation: CONTAL_01=C(51)+C(52)*IC1+C(53)*IC2+C(54)*IC3+C(55) 
        *IC4+C(56)*IC5+C(57)*IC6+C(58)*IC7+C(59)*IC8+C(60)*IC9 
Observations: 1410 
R-squared 0.984905     Mean dependent var 0.000161 
Adjusted R-squared 0.984808     S.D. dependent var 0.021112 
S.E. of regression 0.002602     Sum squared resid 0.009480 
Durbin-Watson stat 1.855626    
Equation: CEMEXCP=C(61)+C(62)*IC1+C(63)*IC2+C(64)*IC3+C(65) 
        *IC4+C(66)*IC5+C(67)*IC6+C(68)*IC7+C(69)*IC8+C(70)*IC9 
Observations: 1410 
R-squared 0.391542     Mean dependent var 0.000550 
Adjusted R-squared 0.387630     S.D. dependent var 0.016145 
S.E. of regression 0.012634     Sum squared resid 0.223463 
Durbin-Watson stat 1.873345    
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Equation: GEOB=C(71)+C(72)*IC1+C(73)*IC2+C(74)*IC3+C(75)*IC4 
        +C(76)*IC5+C(77)*IC6+C(78)*IC7+C(79)*IC8+C(80)*IC9 
Observations: 1410 
R-squared 0.975628     Mean dependent var 0.001474 
Adjusted R-squared 0.975472     S.D. dependent var 0.024548 
S.E. of regression 0.003845     Sum squared resid 0.020693 
Durbin-Watson stat 1.949667    
Equation: ARA_01=C(81)+C(82)*IC1+C(83)*IC2+C(84)*IC3+C(85)*IC4 
        +C(86)*IC5+C(87)*IC6+C(88)*IC7+C(89)*IC8+C(90)*IC9 
Observations: 1410 
R-squared 0.416380     Mean dependent var 0.000797 
Adjusted R-squared 0.412629     S.D. dependent var 0.018949 
S.E. of regression 0.014523     Sum squared resid 0.295265 
Durbin-Watson stat 1.904555    
Equation: WALMEXV=C(91)+C(92)*IC1+C(93)*IC2+C(94)*IC3+C(95) 
        *IC4+C(96)*IC5+C(97)*IC6+C(98)*IC7+C(99)*IC8+C(100)*IC9 
Observations: 1410 
R-squared 0.508860     Mean dependent var 0.000450 
Adjusted R-squared 0.505702     S.D. dependent var 0.018722 
S.E. of regression 0.013163     Sum squared resid 0.242561 
Durbin-Watson stat 1.942296    
Equation: SORIANAB=C(101)+C(102)*IC1+C(103)*IC2+C(104)*IC3 
        +C(105)*IC4+C(106)*IC5+C(107)*IC6+C(108)*IC7+C(109)*IC8 
        +C(110)*IC9 
Observations: 1410 
R-squared 0.413521     Mean dependent var -8.42E-05 
Adjusted R-squared 0.409751     S.D. dependent var 0.018588 
S.E. of regression 0.014281     Sum squared resid 0.285520 
Durbin-Watson stat 1.887170    
Equation: COMERUBC=C(111)+C(112)*IC1+C(113)*IC2+C(114)*IC3 
        +C(115)*IC4+C(116)*IC5+C(117)*IC6+C(118)*IC7+C(119)*IC8 
        +C(120)*IC9 
Observations: 1410 
R-squared 0.911199     Mean dependent var 0.000260 
Adjusted R-squared 0.910628     S.D. dependent var 0.020449 
S.E. of regression 0.006113     Sum squared resid 0.052321 
Durbin-Watson stat 1.945908    
Equation: ELEKTRA_01=C(121)+C(122)*IC1+C(123)*IC2+C(124)*IC3 
        +C(125)*IC4+C(126)*IC5+C(127)*IC6+C(128)*IC7+C(129)*IC8 
        +C(130)*IC9 
Observations: 1410 
R-squared 0.923312     Mean dependent var 0.000287 
Adjusted R-squared 0.922819     S.D. dependent var 0.024469 
S.E. of regression 0.006798     Sum squared resid 0.064697 
Durbin-Watson stat 1.943108    
Equation: TELMEXL=C(131)+C(132)*IC1+C(133)*IC2+C(134)*IC3 
        +C(135)*IC4+C(136)*IC5+C(137)*IC6+C(138)*IC7+C(139)*IC8 
        +C(140)*IC9 
Observations: 1410 
R-squared 0.589314     Mean dependent var -1.50E-07 
Adjusted R-squared 0.586674     S.D. dependent var 0.015611 
S.E. of regression 0.010036     Sum squared resid 0.141021 
Durbin-Watson stat 2.005565    
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Equation: TELECOA1=C(141)+C(142)*IC1+C(143)*IC2+C(144)*IC3 
        +C(145)*IC4+C(146)*IC5+C(147)*IC6+C(148)*IC7+C(149)*IC8 
        +C(150)*IC9 
Observations: 1410 
R-squared 0.587807     Mean dependent var 2.74E-05 
Adjusted R-squared 0.585157     S.D. dependent var 0.019544 
S.E. of regression 0.012588     Sum squared resid 0.221850 
Durbin-Watson stat 2.045579    
Equation: TLEVICPO=C(151)+C(152)*IC1+C(153)*IC2+C(154)*IC3 
        +C(155)*IC4+C(156)*IC5+C(157)*IC6+C(158)*IC7+C(159)*IC8 
        +C(160)*IC9 
Observations: 1410 
R-squared 0.744437     Mean dependent var -5.84E-05 
Adjusted R-squared 0.742795     S.D. dependent var 0.021967 
S.E. of regression 0.011141     Sum squared resid 0.173763 
Durbin-Watson stat 2.001929    
Equation: TVAZTCPO=C(161)+C(162)*IC1+C(163)*IC2+C(164)*IC3 
        +C(165)*IC4+C(166)*IC5+C(167)*IC6+C(168)*IC7+C(169)*IC8 
        +C(170)*IC9 
Observations: 1410 
R-squared 0.782356     Mean dependent var -0.000324 
Adjusted R-squared 0.780957     S.D. dependent var 0.024428 
S.E. of regression 0.011433     Sum squared resid 0.182992 
Durbin-Watson stat 1.979497    
Equation: GFNORTEO=C(171)+C(172)*IC1+C(173)*IC2+C(174)*IC3 
        +C(175)*IC4+C(176)*IC5+C(177)*IC6+C(178)*IC7+C(179)*IC8 
        +C(180)*IC9 
Observations: 1410 
R-squared 0.721986     Mean dependent var 0.001169 
Adjusted R-squared 0.720199     S.D. dependent var 0.020498 
S.E. of regression 0.010843     Sum squared resid 0.164591 
Durbin-Watson stat 1.878498    
Equation: GFINBURO=C(181)+C(182)*IC1+C(183)*IC2+C(184)*IC3 
        +C(185)*IC4+C(186)*IC5+C(187)*IC6+C(188)*IC7+C(189)*IC8 
        +C(190)*IC9 
Observations: 1410 
R-squared 0.485230     Mean dependent var 0.000276 
Adjusted R-squared 0.481921     S.D. dependent var 0.019348 
S.E. of regression 0.013926     Sum squared resid 0.271511 
Durbin-Watson stat 1.980196    
Equation: GCARSOA1=C(191)+C(192)*IC1+C(193)*IC2+C(194)*IC3 
        +C(195)*IC4+C(196)*IC5+C(197)*IC6+C(198)*IC7+C(199)*IC8 
        +C(200)*IC9 
Observations: 1410 
R-squared 0.436606     Mean dependent var 0.000455 
Adjusted R-squared 0.432984     S.D. dependent var 0.019216 
S.E. of regression 0.014470     Sum squared resid 0.293134 
Durbin-Watson stat 1.900160    
Equation: ALFAA=C(201)+C(202)*IC1+C(203)*IC2+C(204)*IC3+C(205) 
        *IC4+C(206)*IC5+C(207)*IC6+C(208)*IC7+C(209)*IC8+C(210)*IC9 
Observations: 1410 
R-squared 0.960834     Mean dependent var 0.000496 
Adjusted R-squared 0.960582     S.D. dependent var 0.024567 
S.E. of regression 0.004877     Sum squared resid 0.033305 
Durbin-Watson stat 1.937013    



APPENDIX 
 

434 
 

Equation: CIEB=C(211)+C(212)*IC1+C(213)*IC2+C(214)*IC3+C(215) 
        *IC4+C(216)*IC5+C(217)*IC6+C(218)*IC7+C(219)*IC8+C(220)*IC9 
Observations: 1410 
R-squared 0.889321     Mean dependent var -0.000633 
Adjusted R-squared 0.888610     S.D. dependent var 0.021312 
S.E. of regression 0.007113     Sum squared resid 0.070832 
Durbin-Watson stat 1.969913    
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 Appendix_1 (Chapter 6) 
 

Table 13. Neural Networks Principal Component Analysis. Betas estimation for all the 
equation system via Seemingly Unrelated Regression. Database of weekly returns. 

 Coefficient Std. Error t-Statistic Prob.   

C(1) -0.038980 0.005307 -7.345416 0.0000 
C(2) -0.661146 0.067151 -9.845636 0.0000 
C(3) 0.404532 0.029816 13.56784 0.0000 
C(4) 0.221154 0.038556 5.735842 0.0000 
C(5) -0.348588 0.039660 -8.789495 0.0000 
C(6) -0.212235 0.018520 -11.45980 0.0000 
C(7) 0.231895 0.010187 22.76454 0.0000 
C(8) 0.070423 0.009890 7.120349 0.0000 
C(9) -0.673661 0.099911 -6.742580 0.0000 
C(10) 5.852872 0.697788 8.387748 0.0000 
C(11) -0.068864 0.026749 -2.574463 0.0101 
C(12) -1.018037 0.338478 -3.007694 0.0026 
C(13) -0.400656 0.150286 -2.665960 0.0077 
C(14) 0.438115 0.194345 2.254317 0.0242 
C(15) -0.625893 0.199906 -3.130942 0.0018 
C(16) -0.096669 0.093350 -1.035551 0.3005 
C(17) -0.791204 0.051346 -15.40922 0.0000 
C(18) -1.111239 0.049853 -22.29049 0.0000 
C(19) -0.635987 0.503607 -1.262865 0.2067 
C(20) 9.654203 3.517222 2.744838 0.0061 
C(21) -0.297804 0.039847 -7.473665 0.0000 
C(22) -3.890342 0.504220 -7.715567 0.0000 
C(23) -1.713984 0.223876 -7.655939 0.0000 
C(24) 2.155201 0.289510 7.444305 0.0000 
C(25) -2.288916 0.297793 -7.686261 0.0000 
C(26) -1.123985 0.139061 -8.082677 0.0000 
C(27) -0.286422 0.076489 -3.744623 0.0002 
C(28) 0.422383 0.074264 5.687595 0.0000 
C(29) -5.831424 0.750207 -7.773083 0.0000 
C(30) 39.52712 5.239499 7.544065 0.0000 
C(31) -0.138861 0.045097 -3.079145 0.0021 
C(32) -1.991500 0.570655 -3.489851 0.0005 
C(33) -0.850115 0.253374 -3.355178 0.0008 
C(34) 0.965746 0.327655 2.947445 0.0032 
C(35) -0.961114 0.337030 -2.851719 0.0044 
C(36) -0.477731 0.157383 -3.035458 0.0024 
C(37) -0.274462 0.086567 -3.170523 0.0015 
C(38) -0.286570 0.084049 -3.409563 0.0007 
C(39) -3.042211 0.849053 -3.583063 0.0003 
C(40) 18.78646 5.929844 3.168121 0.0015 
C(41) -0.166940 0.032081 -5.203682 0.0000 
C(42) -2.258178 0.405951 -5.562691 0.0000 
C(43) -0.893738 0.180244 -4.958482 0.0000 
C(44) 1.203963 0.233086 5.165307 0.0000 
C(45) -1.529109 0.239755 -6.377790 0.0000 
C(46) -0.467717 0.111959 -4.177579 0.0000 
C(47) -1.087118 0.061582 -17.65328 0.0000 
C(48) 0.715768 0.059790 11.97129 0.0000 
C(49) -3.867295 0.603997 -6.402839 0.0000 
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C(50) 22.24885 4.218355 5.274295 0.0000 
C(51) 0.072997 0.014648 4.983389 0.0000 
C(52) 0.511024 0.185354 2.757020 0.0059 
C(53) 0.498312 0.082298 6.054955 0.0000 
C(54) -0.160461 0.106425 -1.507732 0.1317 
C(55) 1.147973 0.109470 10.48662 0.0000 
C(56) 0.328838 0.051120 6.432732 0.0000 
C(57) -0.153578 0.028118 -5.461969 0.0000 
C(58) -0.183413 0.027300 -6.718466 0.0000 
C(59) 1.111378 0.275780 4.029942 0.0001 
C(60) -8.338045 1.926067 -4.329053 0.0000 
C(61) -0.089508 0.047902 -1.868560 0.0617 
C(62) -1.344151 0.606145 -2.217542 0.0266 
C(63) -0.487022 0.269132 -1.809607 0.0704 
C(64) 0.738717 0.348033 2.122551 0.0338 
C(65) -0.704364 0.357990 -1.967552 0.0492 
C(66) -0.126022 0.167171 -0.753847 0.4510 
C(67) -0.156074 0.091951 -1.697374 0.0897 
C(68) 0.255672 0.089276 2.863837 0.0042 
C(69) -2.395672 0.901857 -2.656377 0.0079 
C(70) 12.48928 6.298629 1.982856 0.0474 
C(71) -0.232244 0.043038 -5.396256 0.0000 
C(72) -3.176441 0.544595 -5.832661 0.0000 
C(73) -1.396400 0.241803 -5.774936 0.0000 
C(74) 1.689594 0.312693 5.403371 0.0000 
C(75) -1.685988 0.321639 -5.241862 0.0000 
C(76) -0.834470 0.150196 -5.555855 0.0000 
C(77) -0.268451 0.082614 -3.249466 0.0012 
C(78) -0.152103 0.080211 -1.896299 0.0580 
C(79) -3.970040 0.810281 -4.899587 0.0000 
C(80) 31.24702 5.659054 5.521596 0.0000 
C(81) -0.198878 0.038280 -5.195337 0.0000 
C(82) -2.760023 0.484391 -5.697930 0.0000 
C(83) -1.198632 0.215072 -5.573164 0.0000 
C(84) 1.420615 0.278125 5.107837 0.0000 
C(85) -1.328995 0.286082 -4.645504 0.0000 
C(86) -0.680395 0.133592 -5.093076 0.0000 
C(87) -0.156491 0.073481 -2.129688 0.0332 
C(88) 0.461066 0.071343 6.462632 0.0000 
C(89) -2.989794 0.720704 -4.148434 0.0000 
C(90) 26.55309 5.033447 5.275330 0.0000 
C(91) 0.425291 0.036680 11.59462 0.0000 
C(92) 5.139106 0.464144 11.07222 0.0000 
C(93) 2.362867 0.206083 11.46563 0.0000 
C(94) -3.117944 0.266500 -11.69962 0.0000 
C(95) 3.055385 0.274124 11.14598 0.0000 
C(96) 1.485774 0.128008 11.60684 0.0000 
C(97) 0.435959 0.070409 6.191768 0.0000 
C(98) 0.481870 0.068361 7.048858 0.0000 
C(99) 8.626535 0.690581 12.49171 0.0000 

C(100) -55.41998 4.823061 -11.49062 0.0000 
C(101) 0.040277 0.032409 1.242759 0.2140 
C(102) 0.164280 0.410102 0.400584 0.6887 
C(103) 0.198944 0.182087 1.092571 0.2746 
C(104) -0.188980 0.235470 -0.802564 0.4223 
C(105) -0.037455 0.242207 -0.154642 0.8771 
C(106) -0.410214 0.113104 -3.626881 0.0003 
C(107) -0.016089 0.062211 -0.258618 0.7959 
C(108) -0.131377 0.060402 -2.175046 0.0297 
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C(109) -0.040359 0.610173 -0.066144 0.9473 
C(110) -4.652279 4.261489 -1.091703 0.2750 
C(111) 0.101918 0.032021 3.182842 0.0015 
C(112) 1.110381 0.405191 2.740386 0.0062 
C(113) 0.512345 0.179907 2.847827 0.0044 
C(114) -0.794749 0.232650 -3.416065 0.0006 
C(115) 0.805337 0.239307 3.365289 0.0008 
C(116) 0.344741 0.111750 3.084941 0.0020 
C(117) 0.364371 0.061466 5.927967 0.0000 
C(118) -0.344495 0.059679 -5.772507 0.0000 
C(119) 1.551578 0.602867 2.573665 0.0101 
C(120) -13.07215 4.210464 -3.104682 0.0019 
C(121) 0.193988 0.036053 5.380589 0.0000 
C(122) 2.214760 0.456214 4.854651 0.0000 
C(123) 1.014007 0.202562 5.005921 0.0000 
C(124) -1.487876 0.261946 -5.680079 0.0000 
C(125) 1.477933 0.269441 5.485185 0.0000 
C(126) 0.712469 0.125821 5.662549 0.0000 
C(127) 0.588877 0.069206 8.508987 0.0000 
C(128) -0.645929 0.067193 -9.612979 0.0000 
C(129) 3.066804 0.678782 4.518101 0.0000 
C(130) -25.10864 4.740656 -5.296448 0.0000 
C(131) -0.050416 0.044100 -1.143216 0.2530 
C(132) -0.921930 0.558041 -1.652085 0.0986 
C(133) -0.356312 0.247773 -1.438056 0.1505 
C(134) 0.318817 0.320412 0.995019 0.3198 
C(135) -0.258356 0.329580 -0.783895 0.4331 
C(136) -0.252440 0.153904 -1.640238 0.1010 
C(137) -0.060988 0.084653 -0.720448 0.4713 
C(138) -0.425646 0.082191 -5.178750 0.0000 
C(139) -0.912894 0.830285 -1.099494 0.2716 
C(140) 7.067678 5.798766 1.218824 0.2230 
C(141) 0.041687 0.038164 1.092309 0.2747 
C(142) 0.217923 0.482925 0.451257 0.6518 
C(143) 0.167963 0.214422 0.783329 0.4335 
C(144) -0.268234 0.277283 -0.967364 0.3334 
C(145) 0.237500 0.285217 0.832701 0.4050 
C(146) -0.263862 0.133188 -1.981121 0.0476 
C(147) -0.061366 0.073259 -0.837670 0.4023 
C(148) 0.036825 0.071128 0.517736 0.6047 
C(149) 1.370396 0.718524 1.907236 0.0565 
C(150) -5.149116 5.018222 -1.026084 0.3049 
C(151) -0.219527 0.045532 -4.821419 0.0000 
C(152) -3.074419 0.576151 -5.336135 0.0000 
C(153) -1.340465 0.255814 -5.239993 0.0000 
C(154) 1.677342 0.330811 5.070394 0.0000 
C(155) -1.534849 0.340276 -4.510603 0.0000 
C(156) -0.771012 0.158899 -4.852208 0.0000 
C(157) -0.016945 0.087401 -0.193872 0.8463 
C(158) 0.581643 0.084858 6.854292 0.0000 
C(159) -3.956530 0.857231 -4.615479 0.0000 
C(160) 30.00596 5.986956 5.011889 0.0000 
C(161) 0.072054 0.046056 1.564467 0.1178 
C(162) 0.699775 0.582790 1.200732 0.2299 
C(163) 0.349119 0.258762 1.349190 0.1773 
C(164) -0.542369 0.334623 -1.620838 0.1051 
C(165) 0.755233 0.344197 2.194190 0.0283 
C(166) 0.441815 0.160730 2.748800 0.0060 
C(167) 0.291611 0.088408 3.298479 0.0010 
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C(168) -0.141626 0.085836 -1.649953 0.0990 
C(169) 0.850592 0.867109 0.980952 0.3267 
C(170) -9.004358 6.055945 -1.486863 0.1371 
C(171) -0.014105 0.044180 -0.319264 0.7495 
C(172) -0.453494 0.559052 -0.811184 0.4173 
C(173) -0.197682 0.248222 -0.796392 0.4258 
C(174) 0.061953 0.320993 0.193005 0.8470 
C(175) -0.108553 0.330177 -0.328771 0.7423 
C(176) -0.040953 0.154183 -0.265611 0.7905 
C(177) 0.233855 0.084807 2.757504 0.0058 
C(178) 0.138577 0.082340 1.682986 0.0924 
C(179) -0.730015 0.831789 -0.877644 0.3802 
C(180) 2.539065 5.809272 0.437071 0.6621 
C(181) 0.026279 0.017042 1.541977 0.1231 
C(182) -0.052664 0.215653 -0.244206 0.8071 
C(183) 0.072603 0.095751 0.758250 0.4483 
C(184) -0.022153 0.123822 -0.178913 0.8580 
C(185) -0.781726 0.127365 -6.137687 0.0000 
C(186) 0.395914 0.059476 6.656727 0.0000 
C(187) 0.342193 0.032714 10.46016 0.0000 
C(188) -0.212150 0.031762 -6.679302 0.0000 
C(189) 0.667970 0.320861 2.081808 0.0374 
C(190) -2.643350 2.240912 -1.179587 0.2382 
C(191) 0.073735 0.043280 1.703684 0.0885 
C(192) 0.707270 0.547656 1.291449 0.1966 
C(193) 0.373413 0.243162 1.535654 0.1247 
C(194) -0.667428 0.314450 -2.122525 0.0338 
C(195) 0.733938 0.323447 2.269116 0.0233 
C(196) 0.388800 0.151041 2.574145 0.0101 
C(197) -0.168995 0.083078 -2.034170 0.0420 
C(198) 0.617267 0.080661 7.652573 0.0000 
C(199) 1.192863 0.814834 1.463934 0.1433 
C(200) -9.738467 5.690858 -1.711248 0.0871 

     
Equation: PE_OLES_=C(1)+C(2)*PC1+C(3)*PC2+C(4)*PC3+C(5)*PC4 
        +C(6)*PC5+C(7)*PC6+C(8)*PC7+C(9)*PC8+C(10)*PC9 
Observations: 291   
R-squared 0.997509    Mean dependent var 0.004729 
Adjusted R-squared 0.997429    S.D. dependent var 0.067404 
S.E. of regression 0.003418    Sum squared resid 0.003282 
Durbin-Watson stat 1.960664    
Equation: BIMBOA=C(11)+C(12)*PC1+C(13)*PC2+C(14)*PC3+C(15)*PC4 
        +C(16)*PC5+C(17)*PC6+C(18)*PC7+C(19)*PC8+C(20)*PC9 
Observations: 291   
R-squared 0.838351    Mean dependent var 0.003161 
Adjusted R-squared 0.833173    S.D. dependent var 0.042175 
S.E. of regression 0.017226    Sum squared resid 0.083384 
Durbin-Watson stat 1.969302    
Equation: GMODELOC=C(21)+C(22)*PC1+C(23)*PC2+C(24)*PC3+C(25) 
        *PC4+C(26)*PC5+C(27)*PC6+C(28)*PC7+C(29)*PC8+C(30)*PC9 
Observations: 291   
R-squared 0.382377    Mean dependent var 0.001865 
Adjusted R-squared 0.362596    S.D. dependent var 0.032142 
S.E. of regression 0.025661    Sum squared resid 0.185039 
Durbin-Watson stat 2.351086    
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Equation: FEMSAUBD=C(31)+C(32)*PC1+C(33)*PC2+C(34)*PC3+C(35) 
        *PC4+C(36)*PC5+C(37)*PC6+C(38)*PC7+C(39)*PC8+C(40)*PC9 
Observations: 291   
R-squared 0.544425    Mean dependent var 0.002358 
Adjusted R-squared 0.529833    S.D. dependent var 0.042355 
S.E. of regression 0.029042    Sum squared resid 0.237012 
Durbin-Watson stat 2.279936    
Equation: CONTAL_=C(41)+C(42)*PC1+C(43)*PC2+C(44)*PC3+C(45) 
        *PC4+C(46)*PC5+C(47)*PC6+C(48)*PC7+C(49)*PC8+C(50)*PC9 
Observations: 291   
R-squared 0.784818    Mean dependent var 0.002039 
Adjusted R-squared 0.777926    S.D. dependent var 0.043841 
S.E. of regression 0.020660    Sum squared resid 0.119941 
Durbin-Watson stat 1.878161    
Equation: GEOB=C(51)+C(52)*PC1+C(53)*PC2+C(54)*PC3+C(55)*PC4 
        +C(56)*PC5+C(57)*PC6+C(58)*PC7+C(59)*PC8+C(60)*PC9 
Observations: 291   
R-squared 0.978180    Mean dependent var 0.008191 
Adjusted R-squared 0.977482    S.D. dependent var 0.062862 
S.E. of regression 0.009433    Sum squared resid 0.025005 
Durbin-Watson stat 2.072245    
Equation: ARA_=C(61)+C(62)*PC1+C(63)*PC2+C(64)*PC3+C(65)*PC4 
        +C(66)*PC5+C(67)*PC6+C(68)*PC7+C(69)*PC8+C(70)*PC9 
Observations: 291   
R-squared 0.440728    Mean dependent var 0.004898 
Adjusted R-squared 0.422815    S.D. dependent var 0.040605 
S.E. of regression 0.030849    Sum squared resid 0.267408 
Durbin-Watson stat 1.998635    
Equation: WALMEXV=C(71)+C(72)*PC1+C(73)*PC2+C(74)*PC3+C(75) 
        *PC4+C(76)*PC5+C(77)*PC6+C(78)*PC7+C(79)*PC8+C(80)*PC9 
Observations: 291   
R-squared 0.530918    Mean dependent var 0.003334 
Adjusted R-squared 0.515894    S.D. dependent var 0.039835 
S.E. of regression 0.027716    Sum squared resid 0.215859 
Durbin-Watson stat 2.362696    
Equation: SORIANAB=C(81)+C(82)*PC1+C(83)*PC2+C(84)*PC3+C(85) 
        *PC4+C(86)*PC5+C(87)*PC6+C(88)*PC7+C(89)*PC8+C(90)*PC9 
Observations: 291   
R-squared 0.693511    Mean dependent var 0.000746 
Adjusted R-squared 0.683695    S.D. dependent var 0.043833 
S.E. of regression 0.024652    Sum squared resid 0.170771 
Durbin-Watson stat 2.311981    
Equation: COMERUBC=C(91)+C(92)*PC1+C(93)*PC2+C(94)*PC3+C(95) 
        *PC4+C(96)*PC5+C(97)*PC6+C(98)*PC7+C(99)*PC8+C(100)*PC9 
Observations: 291   
R-squared 0.737809    Mean dependent var 0.002256 
Adjusted R-squared 0.729411    S.D. dependent var 0.045411 
S.E. of regression 0.023622    Sum squared resid 0.156794 
Durbin-Watson stat 2.034560    
Equation: ELEKTRA_=C(101)+C(102)*PC1+C(103)*PC2+C(104)*PC3 
        +C(105)*PC4+C(106)*PC5+C(107)*PC6+C(108)*PC7+C(109)*PC8 
        +C(110)*PC9   
Observations: 291   
R-squared 0.869497    Mean dependent var 0.002654 
Adjusted R-squared 0.865318    S.D. dependent var 0.056871 
S.E. of regression 0.020871    Sum squared resid 0.122407 
Durbin-Watson stat 2.077531    
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Equation: TELMEXL=C(111)+C(112)*PC1+C(113)*PC2+C(114)*PC3 
        +C(115)*PC4+C(116)*PC5+C(117)*PC6+C(118)*PC7+C(119)*PC8 
        +C(120)*PC9   
Observations: 291   
R-squared 0.631299    Mean dependent var 0.001198 
Adjusted R-squared 0.619491    S.D. dependent var 0.033430 
S.E. of regression 0.020621    Sum squared resid 0.119493 
Durbin-Watson stat 1.975485    
Equation: TELECOA1=C(121)+C(122)*PC1+C(123)*PC2+C(124)*PC3 
        +C(125)*PC4+C(126)*PC5+C(127)*PC6+C(128)*PC7+C(129)*PC8 
        +C(130)*PC9   
Observations: 291   
R-squared 0.735504    Mean dependent var 0.001320 
Adjusted R-squared 0.727032    S.D. dependent var 0.044440 
S.E. of regression 0.023218    Sum squared resid 0.151482 
Durbin-Watson stat 2.136120    
Equation: TLEVICPO=C(131)+C(132)*PC1+C(133)*PC2+C(134)*PC3 
        +C(135)*PC4+C(136)*PC5+C(137)*PC6+C(138)*PC7+C(139)*PC8 
        +C(140)*PC9   
Observations: 291   
R-squared 0.653287    Mean dependent var 0.000899 
Adjusted R-squared 0.642182    S.D. dependent var 0.047478 
S.E. of regression 0.028400    Sum squared resid 0.226649 
Durbin-Watson stat 2.099857    
Equation: TVAZTCPO=C(141)+C(142)*PC1+C(143)*PC2+C(144)*PC3 
        +C(145)*PC4+C(146)*PC5+C(147)*PC6+C(148)*PC7+C(149)*PC8 
        +C(150)*PC9   
Observations: 291   
R-squared 0.789657    Mean dependent var -0.000334 
Adjusted R-squared 0.782920    S.D. dependent var 0.052751 
S.E. of regression 0.024578    Sum squared resid 0.169739 
Durbin-Watson stat 2.071429    
Equation: GFNORTEO=C(151)+C(152)*PC1+C(153)*PC2+C(154)*PC3 
        +C(155)*PC4+C(156)*PC5+C(157)*PC6+C(158)*PC7+C(159)*PC8 
        +C(160)*PC9   
Observations: 291   
R-squared 0.562437    Mean dependent var 0.006851 
Adjusted R-squared 0.548422    S.D. dependent var 0.043634 
S.E. of regression 0.029322    Sum squared resid 0.241599 
Durbin-Watson stat 2.241876    
Equation: GFINBURO=C(161)+C(162)*PC1+C(163)*PC2+C(164)*PC3 
        +C(165)*PC4+C(166)*PC5+C(167)*PC6+C(168)*PC7+C(169)*PC8 
        +C(170)*PC9   
Observations: 291   
R-squared 0.530141    Mean dependent var 0.002456 
Adjusted R-squared 0.515092    S.D. dependent var 0.042593 
S.E. of regression 0.029660    Sum squared resid 0.247199 
Durbin-Watson stat 2.060965    
Equation: GCARSOA1=C(171)+C(172)*PC1+C(173)*PC2+C(174)*PC3 
        +C(175)*PC4+C(176)*PC5+C(177)*PC6+C(178)*PC7+C(179)*PC8 
        +C(180)*PC9   
Observations: 291   
R-squared 0.603628    Mean dependent var 0.003413 
Adjusted R-squared 0.590933    S.D. dependent var 0.044485 
S.E. of regression 0.028452    Sum squared resid 0.227471 
Durbin-Watson stat 2.190921    
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Equation: ALFAA=C(181)+C(182)*PC1+C(183)*PC2+C(184)*PC3+C(185) 
        *PC4+C(186)*PC5+C(187)*PC6+C(188)*PC7+C(189)*PC8+C(190) 
        *PC9    
Observations: 291   
R-squared 0.969531    Mean dependent var 0.003559 
Adjusted R-squared 0.968555    S.D. dependent var 0.061893 
S.E. of regression 0.010975    Sum squared resid 0.033848 
Durbin-Watson stat 2.059566    
Equation: CIEB=C(191)+C(192)*PC1+C(193)*PC2+C(194)*PC3+C(195) 
        *PC4+C(196)*PC5+C(197)*PC6+C(198)*PC7+C(199)*PC8+C(200) 
        *PC9    
Observations: 291   
R-squared 0.705015    Mean dependent var -0.001948 
Adjusted R-squared 0.695567    S.D. dependent var 0.050515 
S.E. of regression 0.027872    Sum squared resid 0.218292 
Durbin-Watson stat 2.043159    
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Table 14. Neural Networks Principal Component Analysis. Betas estimation for all the 
equation system via Seemingly Unrelated Regression. Database of weekly excesses. 

 Coefficient Std. Error t-Statistic Prob.   

C(1) 0.001219 0.000210 5.816567 0.0000 
C(2) -0.043163 0.005096 -8.469813 0.0000 
C(3) 0.486162 0.001853 262.4244 0.0000 
C(4) 0.121661 0.002177 55.88483 0.0000 
C(5) 0.004812 0.002726 1.765012 0.0776 
C(6) -0.499104 0.047689 -10.46583 0.0000 
C(7) -0.086944 0.006015 -14.45413 0.0000 
C(8) -0.030139 0.017609 -1.711597 0.0870 
C(9) 0.230848 0.020857 11.06816 0.0000 
C(10) 1.280904 0.178775 7.164915 0.0000 
C(11) 0.002893 0.000732 3.948999 0.0001 
C(12) 0.153674 0.017817 8.625089 0.0000 
C(13) 0.045729 0.006477 7.060157 0.0000 
C(14) 0.147311 0.007611 19.35417 0.0000 
C(15) 0.014452 0.009532 1.516092 0.1296 
C(16) -1.668440 0.166732 -10.00671 0.0000 
C(17) 0.461090 0.021031 21.92475 0.0000 
C(18) 1.513013 0.061565 24.57585 0.0000 
C(19) 1.654952 0.072921 22.69513 0.0000 
C(20) 8.051806 0.625040 12.88207 0.0000 
C(21) -0.001067 0.001573 -0.678399 0.4975 
C(22) 0.004531 0.038271 0.118389 0.9058 
C(23) -0.007567 0.013913 -0.543853 0.5866 
C(24) 0.047386 0.016349 2.898381 0.0038 
C(25) -0.010580 0.020476 -0.516724 0.6054 
C(26) -0.797574 0.358142 -2.226975 0.0260 
C(27) -0.000274 0.045174 -0.006075 0.9952 
C(28) -0.186712 0.132242 -1.411896 0.1580 
C(29) 0.074784 0.156635 0.477443 0.6331 
C(30) 2.403672 1.342592 1.790321 0.0735 
C(31) -0.002657 0.001887 -1.408226 0.1591 
C(32) -0.078199 0.045889 -1.704079 0.0884 
C(33) -0.025567 0.016682 -1.532607 0.1254 
C(34) 0.068588 0.019604 3.498759 0.0005 
C(35) 0.082091 0.024552 3.343599 0.0008 
C(36) -0.528778 0.429433 -1.231341 0.2182 
C(37) 0.036231 0.054166 0.668878 0.5036 
C(38) 0.271890 0.158566 1.714682 0.0865 
C(39) 0.186012 0.187814 0.990404 0.3220 
C(40) 1.987517 1.609844 1.234602 0.2170 
C(41) -0.004596 0.001495 -3.075207 0.0021 
C(42) -0.220585 0.036354 -6.067714 0.0000 
C(43) 0.010571 0.013216 0.799898 0.4238 
C(44) -0.020720 0.015530 -1.334154 0.1822 
C(45) -0.122170 0.019450 -6.281239 0.0000 
C(46) 2.065821 0.340200 6.072374 0.0000 
C(47) 0.195926 0.042911 4.565881 0.0000 
C(48) -0.630877 0.125617 -5.022219 0.0000 
C(49) -0.927799 0.148788 -6.235718 0.0000 
C(50) -4.671980 1.275330 -3.663349 0.0003 
C(51) -0.001445 0.000648 -2.230661 0.0257 
C(52) -0.148365 0.015760 -9.413988 0.0000 
C(53) 0.129246 0.005729 22.55888 0.0000 
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C(54) -0.222991 0.006733 -33.12129 0.0000 
C(55) 0.327174 0.008432 38.80197 0.0000 
C(56) -0.461602 0.147482 -3.129887 0.0018 
C(57) 0.100265 0.018603 5.389879 0.0000 
C(58) 0.218690 0.054457 4.015817 0.0001 
C(59) 0.283212 0.064502 4.390754 0.0000 
C(60) 1.990332 0.552876 3.599961 0.0003 
C(61) -0.004872 0.001634 -2.982419 0.0029 
C(62) -0.447752 0.039735 -11.26835 0.0000 
C(63) -0.033100 0.014445 -2.291464 0.0220 
C(64) -0.158602 0.016975 -9.343463 0.0000 
C(65) -0.070679 0.021259 -3.324622 0.0009 
C(66) 3.722934 0.371843 10.01210 0.0000 
C(67) -0.335731 0.046902 -7.158122 0.0000 
C(68) -0.714461 0.137301 -5.203595 0.0000 
C(69) -1.644692 0.162627 -10.11325 0.0000 
C(70) -12.18471 1.393955 -8.741110 0.0000 
C(71) -0.003170 0.001571 -2.017917 0.0436 
C(72) -0.271972 0.038208 -7.118109 0.0000 
C(73) -0.085520 0.013890 -6.156920 0.0000 
C(74) -0.029591 0.016322 -1.812942 0.0699 
C(75) 0.009086 0.020442 0.444475 0.6567 
C(76) 1.198038 0.357555 3.350644 0.0008 
C(77) -0.235595 0.045100 -5.223869 0.0000 
C(78) -0.772432 0.132025 -5.850634 0.0000 
C(79) -0.216296 0.156378 -1.383163 0.1667 
C(80) -5.406945 1.340389 -4.033863 0.0001 
C(81) -0.005481 0.001649 -3.323942 0.0009 
C(82) -0.204700 0.040112 -5.103227 0.0000 
C(83) -0.066497 0.014582 -4.560257 0.0000 
C(84) 0.013455 0.017135 0.785226 0.4324 
C(85) 0.074716 0.021461 3.481536 0.0005 
C(86) 0.466036 0.375366 1.241551 0.2145 
C(87) -0.052683 0.047346 -1.112706 0.2659 
C(88) -0.601527 0.138602 -4.339956 0.0000 
C(89) 0.106980 0.164168 0.651652 0.5147 
C(90) -2.186891 1.407161 -1.554116 0.1202 
C(91) -0.007892 0.001650 -4.782822 0.0000 
C(92) -0.549244 0.040136 -13.68449 0.0000 
C(93) -0.097007 0.014591 -6.648507 0.0000 
C(94) -0.095963 0.017146 -5.596865 0.0000 
C(95) -0.127488 0.021474 -5.936963 0.0000 
C(96) 4.095215 0.375595 10.90328 0.0000 
C(97) -0.195747 0.047375 -4.131846 0.0000 
C(98) -1.466123 0.138687 -10.57149 0.0000 
C(99) -1.380805 0.164268 -8.405809 0.0000 

C(100) -14.65570 1.408017 -10.40875 0.0000 
C(101) -0.005943 0.000953 -6.238753 0.0000 
C(102) -0.174958 0.023173 -7.549985 0.0000 
C(103) 0.015274 0.008424 1.813112 0.0699 
C(104) -0.041840 0.009899 -4.226515 0.0000 
C(105) -0.219799 0.012398 -17.72838 0.0000 
C(106) -1.255692 0.216856 -5.790455 0.0000 
C(107) 0.202962 0.027353 7.420152 0.0000 
C(108) 0.551251 0.080073 6.884372 0.0000 
C(109) -0.204423 0.094843 -2.155392 0.0312 
C(110) 1.131834 0.812941 1.392271 0.1639 
C(111) -0.004715 0.001235 -3.819317 0.0001 
C(112) -0.205931 0.030031 -6.857246 0.0000 
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C(113) -0.052827 0.010917 -4.838848 0.0000 
C(114) 0.018535 0.012829 1.444775 0.1486 
C(115) 0.007397 0.016067 0.460373 0.6453 
C(116) 0.785378 0.281031 2.794630 0.0052 
C(117) -0.247164 0.035448 -6.972656 0.0000 
C(118) -0.118289 0.103769 -1.139925 0.2544 
C(119) -0.486135 0.122910 -3.955207 0.0001 
C(120) -3.474624 1.053520 -3.298109 0.0010 
C(121) -0.006383 0.001373 -4.647959 0.0000 
C(122) -0.289263 0.033403 -8.659679 0.0000 
C(123) -0.068546 0.012143 -5.644798 0.0000 
C(124) 0.021333 0.014270 1.494975 0.1350 
C(125) -0.005011 0.017871 -0.280369 0.7792 
C(126) 1.249064 0.312589 3.995868 0.0001 
C(127) -0.375073 0.039428 -9.512833 0.0000 
C(128) 0.008123 0.115422 0.070377 0.9439 
C(129) -0.714292 0.136712 -5.224791 0.0000 
C(130) -4.933621 1.171823 -4.210209 0.0000 
C(131) -0.006880 0.001747 -3.937234 0.0001 
C(132) -0.277070 0.042503 -6.518869 0.0000 
C(133) -0.064901 0.015451 -4.200445 0.0000 
C(134) 0.015916 0.018157 0.876597 0.3807 
C(135) 0.042153 0.022740 1.853697 0.0638 
C(136) 0.694879 0.397741 1.747067 0.0807 
C(137) -0.152665 0.050169 -3.043034 0.0024 
C(138) -0.366217 0.146864 -2.493583 0.0127 
C(139) -0.261792 0.173954 -1.504955 0.1324 
C(140) -3.654387 1.491037 -2.450903 0.0143 
C(141) -0.005123 0.001410 -3.634614 0.0003 
C(142) 0.052864 0.034287 1.541812 0.1232 
C(143) 0.011772 0.012464 0.944424 0.3450 
C(144) 0.077374 0.014647 5.282574 0.0000 
C(145) -0.007142 0.018344 -0.389321 0.6971 
C(146) -3.159456 0.320857 -9.846928 0.0000 
C(147) 0.414829 0.040471 10.25004 0.0000 
C(148) 0.426167 0.118475 3.597104 0.0003 
C(149) 1.222152 0.140328 8.709241 0.0000 
C(150) 8.869991 1.202818 7.374339 0.0000 
C(151) 0.000549 0.002010 0.273094 0.7848 
C(152) -0.162738 0.048894 -3.328353 0.0009 
C(153) -0.050966 0.017775 -2.867317 0.0042 
C(154) -0.028292 0.020887 -1.354492 0.1756 
C(155) 0.066173 0.026159 2.529593 0.0114 
C(156) 0.181307 0.457554 0.396252 0.6919 
C(157) -0.118540 0.057713 -2.053955 0.0400 
C(158) -0.375837 0.168949 -2.224555 0.0262 
C(159) -0.099638 0.200113 -0.497911 0.6186 
C(160) -1.109637 1.715262 -0.646920 0.5177 
C(161) -5.06E-05 0.001501 -0.033737 0.9731 
C(162) 0.194463 0.036510 5.326277 0.0000 
C(163) 0.046816 0.013273 3.527265 0.0004 
C(164) 0.132634 0.015597 8.503938 0.0000 
C(165) 0.215212 0.019534 11.01759 0.0000 
C(166) -2.595970 0.341661 -7.598096 0.0000 
C(167) 0.177413 0.043095 4.116780 0.0000 
C(168) 1.423572 0.126157 11.28417 0.0000 
C(169) 0.891450 0.149427 5.965801 0.0000 
C(170) 11.35731 1.280806 8.867314 0.0000 
C(171) -0.004942 0.001691 -2.921814 0.0035 
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C(172) -0.340196 0.041139 -8.269338 0.0000 
C(173) -0.105147 0.014955 -7.030650 0.0000 
C(174) -0.010619 0.017574 -0.604256 0.5457 
C(175) -0.024488 0.022010 -1.112573 0.2659 
C(176) 1.698205 0.384982 4.411124 0.0000 
C(177) -0.305285 0.048559 -6.286836 0.0000 
C(178) -0.456768 0.142153 -3.213215 0.0013 
C(179) -0.916672 0.168374 -5.444270 0.0000 
C(180) -6.726470 1.443210 -4.660771 0.0000 
C(181) -0.004826 0.000648 -7.448784 0.0000 
C(182) -0.088369 0.015760 -5.607029 0.0000 
C(183) -0.000211 0.005729 -0.036860 0.9706 
C(184) -0.036272 0.006733 -5.387430 0.0000 
C(185) -0.326857 0.008432 -38.76330 0.0000 
C(186) -0.395250 0.147486 -2.679904 0.0074 
C(187) -0.147516 0.018603 -7.929667 0.0000 
C(188) 0.252845 0.054459 4.642871 0.0000 
C(189) 0.685454 0.064504 10.62657 0.0000 
C(190) 5.094150 0.552892 9.213637 0.0000 
C(191) -0.004416 0.001349 -3.274211 0.0011 
C(192) 0.216224 0.032806 6.590920 0.0000 
C(193) 0.042960 0.011926 3.602146 0.0003 
C(194) 0.230983 0.014015 16.48153 0.0000 
C(195) 0.222422 0.017552 12.67219 0.0000 
C(196) -3.062860 0.307002 -9.976672 0.0000 
C(197) 0.562687 0.038723 14.53093 0.0000 
C(198) 0.988704 0.113359 8.721871 0.0000 
C(199) 1.233040 0.134269 9.183370 0.0000 
C(200) 13.61141 1.150880 11.82696 0.0000 

     
Equation: PE_OLES_=C(1)+C(2)*PC1+C(3)*PC2+C(4)*PC3+C(5)*PC4 
        +C(6)*PC5+C(7)*PC6+C(8)*PC7+C(9)*PC8+C(10)*PC9 
Observations: 291   
R-squared 0.997463    Mean dependent var 0.003041 
Adjusted R-squared 0.997382    S.D. dependent var 0.067481 
S.E. of regression 0.003453    Sum squared resid 0.003350 
Durbin-Watson stat 2.206805    
Equation: BIMBOA=C(11)+C(12)*PC1+C(13)*PC2+C(14)*PC3+C(15)*PC4 
        +C(16)*PC5+C(17)*PC6+C(18)*PC7+C(19)*PC8+C(20)*PC9 
Observations: 291   
R-squared 0.920768    Mean dependent var 0.001472 
Adjusted R-squared 0.918230    S.D. dependent var 0.042216 
S.E. of regression 0.012072    Sum squared resid 0.040950 
Durbin-Watson stat 2.241646    
Equation: GMODELOC=C(21)+C(22)*PC1+C(23)*PC2+C(24)*PC3+C(25) 
        *PC4+C(26)*PC5+C(27)*PC6+C(28)*PC7+C(29)*PC8+C(30)*PC9 
Observations: 291   
R-squared 0.370326    Mean dependent var 0.000176 
Adjusted R-squared 0.350158    S.D. dependent var 0.032167 
S.E. of regression 0.025930    Sum squared resid 0.188942 
Durbin-Watson stat 2.238772    

  



APPENDIX 
 

446 
 

Equation: FEMSAUBD=C(31)+C(32)*PC1+C(33)*PC2+C(34)*PC3+C(35) 
        *PC4+C(36)*PC5+C(37)*PC6+C(38)*PC7+C(39)*PC8+C(40)*PC9 
Observations: 291   
R-squared 0.479059    Mean dependent var 0.000669 
Adjusted R-squared 0.462374    S.D. dependent var 0.042404 
S.E. of regression 0.031092    Sum squared resid 0.271649 
Durbin-Watson stat 2.267884    
Equation: CONTAL_=C(41)+C(42)*PC1+C(43)*PC2+C(44)*PC3+C(45) 
        *PC4+C(46)*PC5+C(47)*PC6+C(48)*PC7+C(49)*PC8+C(50)*PC9 
Observations: 291   
R-squared 0.694061    Mean dependent var 0.000350 
Adjusted R-squared 0.684262    S.D. dependent var 0.043836 
S.E. of regression 0.024631    Sum squared resid 0.170485 
Durbin-Watson stat 2.022975    
Equation: GEOB=C(51)+C(52)*PC1+C(53)*PC2+C(54)*PC3+C(55)*PC4 
        +C(56)*PC5+C(57)*PC6+C(58)*PC7+C(59)*PC8+C(60)*PC9 
Observations: 291   
R-squared 0.972148    Mean dependent var 0.006502 
Adjusted R-squared 0.971256    S.D. dependent var 0.062982 
S.E. of regression 0.010678    Sum squared resid 0.032040 
Durbin-Watson stat 2.065596    
Equation: ARA_=C(61)+C(62)*PC1+C(63)*PC2+C(64)*PC3+C(65)*PC4 
        +C(66)*PC5+C(67)*PC6+C(68)*PC7+C(69)*PC8+C(70)*PC9 
Observations: 291   
R-squared 0.574842    Mean dependent var 0.003209 
Adjusted R-squared 0.561225    S.D. dependent var 0.040644 
S.E. of regression 0.026923    Sum squared resid 0.203675 
Durbin-Watson stat 2.247096    
Equation: WALMEXV=C(71)+C(72)*PC1+C(73)*PC2+C(74)*PC3+C(75) 
        *PC4+C(76)*PC5+C(77)*PC6+C(78)*PC7+C(79)*PC8+C(80)*PC9 
Observations: 291   
R-squared 0.591074    Mean dependent var 0.001645 
Adjusted R-squared 0.577977    S.D. dependent var 0.039850 
S.E. of regression 0.025888    Sum squared resid 0.188322 
Durbin-Watson stat 2.395548    
Equation: SORIANAB=C(81)+C(82)*PC1+C(83)*PC2+C(84)*PC3+C(85) 
        *PC4+C(86)*PC5+C(87)*PC6+C(88)*PC7+C(89)*PC8+C(90)*PC9 
Observations: 291   
R-squared 0.629443    Mean dependent var -0.000943 
Adjusted R-squared 0.617575    S.D. dependent var 0.043948 
S.E. of regression 0.027178    Sum squared resid 0.207552 
Durbin-Watson stat 2.419533    
Equation: COMERUBC=C(91)+C(92)*PC1+C(93)*PC2+C(94)*PC3+C(95) 
        *PC4+C(96)*PC5+C(97)*PC6+C(98)*PC7+C(99)*PC8+C(100)*PC9 
Observations: 291   
R-squared 0.653721    Mean dependent var 0.000568 
Adjusted R-squared 0.642631    S.D. dependent var 0.045490 
S.E. of regression 0.027194    Sum squared resid 0.207805 
Durbin-Watson stat 2.309825    
Equation: ELEKTRA_=C(101)+C(102)*PC1+C(103)*PC2+C(104)*PC3 
        +C(105)*PC4+C(106)*PC5+C(107)*PC6+C(108)*PC7+C(109)*PC8 
        +C(110)*PC9   
Observations: 291   
R-squared 0.926350    Mean dependent var 0.000965 
Adjusted R-squared 0.923991    S.D. dependent var 0.056950 
S.E. of regression 0.015701    Sum squared resid 0.069272 
Durbin-Watson stat 2.014486    
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Equation: TELMEXL=C(111)+C(112)*PC1+C(113)*PC2+C(114)*PC3 
        +C(115)*PC4+C(116)*PC5+C(117)*PC6+C(118)*PC7+C(119)*PC8 
        +C(120)*PC9   
Observations: 291   
R-squared 0.641779    Mean dependent var -0.000491 
Adjusted R-squared 0.630306    S.D. dependent var 0.033465 
S.E. of regression 0.020347    Sum squared resid 0.116339 
Durbin-Watson stat 2.021183    
Equation: TELECOA1=C(121)+C(122)*PC1+C(123)*PC2+C(124)*PC3 
        +C(125)*PC4+C(126)*PC5+C(127)*PC6+C(128)*PC7+C(129)*PC8 
        +C(130)*PC9   
Observations: 291   
R-squared 0.749422    Mean dependent var -0.000369 
Adjusted R-squared 0.741397    S.D. dependent var 0.044505 
S.E. of regression 0.022632    Sum squared resid 0.143934 
Durbin-Watson stat 2.136762    
Equation: TLEVICPO=C(131)+C(132)*PC1+C(133)*PC2+C(134)*PC3 
        +C(135)*PC4+C(136)*PC5+C(137)*PC6+C(138)*PC7+C(139)*PC8 
        +C(140)*PC9   
Observations: 291   
R-squared 0.644957    Mean dependent var -0.000790 
Adjusted R-squared 0.633586    S.D. dependent var 0.047574 
S.E. of regression 0.028798    Sum squared resid 0.233033 
Durbin-Watson stat 2.144234    
Equation: TVAZTCPO=C(141)+C(142)*PC1+C(143)*PC2+C(144)*PC3 
        +C(145)*PC4+C(146)*PC5+C(147)*PC6+C(148)*PC7+C(149)*PC8 
        +C(150)*PC9   
Observations: 291   
R-squared 0.812758    Mean dependent var -0.002023 
Adjusted R-squared 0.806761    S.D. dependent var 0.052847 
S.E. of regression 0.023231    Sum squared resid 0.151649 
Durbin-Watson stat 1.949979    
Equation: GFNORTEO=C(151)+C(152)*PC1+C(153)*PC2+C(154)*PC3 
        +C(155)*PC4+C(156)*PC5+C(157)*PC6+C(158)*PC7+C(159)*PC8 
        +C(160)*PC9   
Observations: 291   
R-squared 0.442085    Mean dependent var 0.005163 
Adjusted R-squared 0.424216    S.D. dependent var 0.043658 
S.E. of regression 0.033128    Sum squared resid 0.308390 
Durbin-Watson stat 2.086308    
Equation: GFINBURO=C(161)+C(162)*PC1+C(163)*PC2+C(164)*PC3 
        +C(165)*PC4+C(166)*PC5+C(167)*PC6+C(168)*PC7+C(169)*PC8 
        +C(170)*PC9   
Observations: 291   
R-squared 0.673783    Mean dependent var 0.000767 
Adjusted R-squared 0.663334    S.D. dependent var 0.042633 
S.E. of regression 0.024737    Sum squared resid 0.171952 
Durbin-Watson stat 2.221252    
Equation: GCARSOA1=C(171)+C(172)*PC1+C(173)*PC2+C(174)*PC3 
        +C(175)*PC4+C(176)*PC5+C(177)*PC6+C(178)*PC7+C(179)*PC8 
        +C(180)*PC9   
Observations: 291   
R-squared 0.621039    Mean dependent var 0.001724 
Adjusted R-squared 0.608901    S.D. dependent var 0.044571 
S.E. of regression 0.027874    Sum squared resid 0.218323 
Durbin-Watson stat 2.233078    
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Equation: ALFAA=C(181)+C(182)*PC1+C(183)*PC2+C(184)*PC3+C(185) 
        *PC4+C(186)*PC5+C(187)*PC6+C(188)*PC7+C(189)*PC8+C(190) 
        *PC9    
Observations: 291   
R-squared 0.971251    Mean dependent var 0.001871 
Adjusted R-squared 0.970330    S.D. dependent var 0.061994 
S.E. of regression 0.010678    Sum squared resid 0.032042 
Durbin-Watson stat 1.910017    
Equation: CIEB=C(191)+C(192)*PC1+C(193)*PC2+C(194)*PC3+C(195) 
        *PC4+C(196)*PC5+C(197)*PC6+C(198)*PC7+C(199)*PC8+C(200) 
        *PC9    
Observations: 291   
R-squared 0.812707    Mean dependent var -0.003637 
Adjusted R-squared 0.806708    S.D. dependent var 0.050558 
S.E. of regression 0.022228    Sum squared resid 0.138835 
Durbin-Watson stat 2.024732    
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Table 15. Neural Networks Principal Component Analysis. Betas estimation for all the 
equation system via Seemingly Unrelated Regression. Database of daily returns. 

 Coefficient Std. Error t-Statistic Prob.   

C(1) 0.001083 3.21E-05 33.72380 0.0000 
C(2) -0.038338 0.001965 -19.51268 0.0000 
C(3) -0.442438 0.000438 -1009.385 0.0000 
C(4) 0.030615 0.000587 52.17144 0.0000 
C(5) -0.046444 0.001441 -32.21937 0.0000 
C(6) 0.129480 0.001275 101.5129 0.0000 
C(7) 0.003988 0.003222 1.237927 0.2158 
C(8) -0.014879 0.001601 -9.293047 0.0000 
C(9) 0.006439 0.001535 4.194359 0.0000 
C(10) 1.019991 0.082563 12.35414 0.0000 
C(11) -0.000902 0.000416 -2.168032 0.0302 
C(12) 0.077976 0.025449 3.063982 0.0022 
C(13) -0.014725 0.005678 -2.593560 0.0095 
C(14) -0.028925 0.007601 -3.805394 0.0001 
C(15) -0.013048 0.018671 -0.698842 0.4847 
C(16) -0.010713 0.016521 -0.648454 0.5167 
C(17) 0.203777 0.041732 4.882986 0.0000 
C(18) -0.119361 0.020739 -5.755452 0.0000 
C(19) 0.053778 0.019885 2.704462 0.0068 
C(20) 6.114341 1.069422 5.717427 0.0000 
C(21) 0.005498 0.000427 12.87284 0.0000 
C(22) -0.573015 0.026130 -21.92903 0.0000 
C(23) 0.023321 0.005829 4.000550 0.0001 
C(24) 0.086986 0.007804 11.14580 0.0000 
C(25) 0.431654 0.019171 22.51593 0.0000 
C(26) -0.091011 0.016964 -5.365093 0.0000 
C(27) -0.674661 0.042849 -15.74508 0.0000 
C(28) 0.415778 0.021294 19.52573 0.0000 
C(29) -0.475327 0.020417 -23.28075 0.0000 
C(30) -20.77902 1.098043 -18.92368 0.0000 
C(31) -0.001114 0.000425 -2.619359 0.0088 
C(32) 0.116145 0.026018 4.463976 0.0000 
C(33) -0.019705 0.005804 -3.394843 0.0007 
C(34) -0.003043 0.007771 -0.391532 0.6954 
C(35) -0.091161 0.019089 -4.775658 0.0000 
C(36) -0.012834 0.016891 -0.759801 0.4474 
C(37) 0.305166 0.042665 7.152608 0.0000 
C(38) -0.170306 0.021202 -8.032382 0.0000 
C(39) 0.223829 0.020330 11.01007 0.0000 
C(40) 8.025039 1.093329 7.340002 0.0000 
C(41) -0.000117 0.000423 -0.275854 0.7827 
C(42) -0.001580 0.025858 -0.061097 0.9513 
C(43) 0.010911 0.005769 1.891473 0.0586 
C(44) -0.006309 0.007723 -0.816937 0.4140 
C(45) -0.051264 0.018971 -2.702227 0.0069 
C(46) 0.048139 0.016786 2.867711 0.0041 
C(47) 0.084701 0.042402 1.997568 0.0458 
C(48) -0.106962 0.021072 -5.076122 0.0000 
C(49) 0.081577 0.020204 4.037624 0.0001 
C(50) 4.653299 1.086585 4.282498 0.0000 
C(51) 0.000241 0.000151 1.596360 0.1104 
C(52) -0.047465 0.009230 -5.142274 0.0000 
C(53) -0.055500 0.002059 -26.95190 0.0000 
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C(54) 0.011448 0.002757 4.152434 0.0000 
C(55) 0.129665 0.006772 19.14724 0.0000 
C(56) -0.757126 0.005992 -126.3515 0.0000 
C(57) 0.237908 0.015136 15.71794 0.0000 
C(58) -0.092710 0.007522 -12.32539 0.0000 
C(59) 0.143984 0.007212 19.96402 0.0000 
C(60) 1.110448 0.387875 2.862902 0.0042 
C(61) 9.65E-05 0.000400 0.241336 0.8093 
C(62) 0.010020 0.024461 0.409646 0.6821 
C(63) -0.000139 0.005457 -0.025473 0.9797 
C(64) -0.016461 0.007306 -2.253149 0.0243 
C(65) -0.060534 0.017946 -3.373101 0.0007 
C(66) -0.012478 0.015880 -0.785768 0.4320 
C(67) 0.156311 0.040111 3.896941 0.0001 
C(68) -0.096419 0.019933 -4.837064 0.0000 
C(69) 0.133969 0.019113 7.009455 0.0000 
C(70) 4.755374 1.027885 4.626368 0.0000 
C(71) 0.002372 0.000139 17.01476 0.0000 
C(72) -0.160941 0.008530 -18.86851 0.0000 
C(73) -0.022096 0.001903 -11.61158 0.0000 
C(74) -0.315774 0.002548 -123.9521 0.0000 
C(75) -0.088388 0.006258 -14.12420 0.0000 
C(76) -0.080340 0.005537 -14.50883 0.0000 
C(77) -0.113839 0.013987 -8.138967 0.0000 
C(78) -0.029102 0.006951 -4.186885 0.0000 
C(79) -0.003862 0.006665 -0.579424 0.5623 
C(80) -1.311625 0.358428 -3.659382 0.0003 
C(81) 0.003924 0.000493 7.952236 0.0000 
C(82) -0.367559 0.030189 -12.17542 0.0000 
C(83) 0.022457 0.006735 3.334522 0.0009 
C(84) -0.022127 0.009016 -2.454024 0.0141 
C(85) 0.222848 0.022148 10.06159 0.0000 
C(86) 0.031997 0.019598 1.632673 0.1025 
C(87) -0.470141 0.049504 -9.497099 0.0000 
C(88) 0.233205 0.024601 9.479528 0.0000 
C(89) -0.236326 0.023588 -10.01889 0.0000 
C(90) -11.65902 1.268575 -9.190643 0.0000 
C(91) 0.002558 0.000416 6.144541 0.0000 
C(92) -0.278230 0.025465 -10.92584 0.0000 
C(93) 0.023390 0.005681 4.117157 0.0000 
C(94) 0.053996 0.007606 7.099357 0.0000 
C(95) 0.138225 0.018683 7.398397 0.0000 
C(96) 0.090822 0.016532 5.493817 0.0000 
C(97) -0.308476 0.041758 -7.387164 0.0000 
C(98) 0.085523 0.020752 4.121237 0.0000 
C(99) 0.013762 0.019897 0.691660 0.4892 

C(100) -6.415841 1.070096 -5.995575 0.0000 
C(101) 0.001581 0.000440 3.589718 0.0003 
C(102) -0.223950 0.026947 -8.310825 0.0000 
C(103) 0.013078 0.006012 2.175433 0.0296 
C(104) 0.026909 0.008048 3.343492 0.0008 
C(105) 0.115123 0.019770 5.823093 0.0000 
C(106) 0.051610 0.017493 2.950263 0.0032 
C(107) -0.232138 0.044188 -5.253467 0.0000 
C(108) 0.073207 0.021959 3.333779 0.0009 
C(109) -0.031040 0.021055 -1.474226 0.1404 
C(110) -4.269208 1.132348 -3.770225 0.0002 
C(111) -0.001851 0.000438 -4.224699 0.0000 
C(112) 0.192156 0.026806 7.168507 0.0000 
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C(113) -0.027502 0.005980 -4.598919 0.0000 
C(114) -0.080978 0.008006 -10.11459 0.0000 
C(115) -0.152992 0.019666 -7.779360 0.0000 
C(116) -0.013513 0.017402 -0.776545 0.4374 
C(117) 0.647395 0.043956 14.72818 0.0000 
C(118) -0.166292 0.021844 -7.612669 0.0000 
C(119) 0.444057 0.020945 21.20137 0.0000 
C(120) 12.80431 1.126417 11.36730 0.0000 
C(121) 0.002150 0.000228 9.443108 0.0000 
C(122) -0.278237 0.013931 -19.97308 0.0000 
C(123) 0.023310 0.003108 7.500369 0.0000 
C(124) 0.064610 0.004161 15.52868 0.0000 
C(125) -0.136506 0.010220 -13.35621 0.0000 
C(126) -0.301085 0.009044 -33.29276 0.0000 
C(127) -0.119005 0.022844 -5.209557 0.0000 
C(128) 0.248398 0.011352 21.88116 0.0000 
C(129) -0.087945 0.010885 -8.079603 0.0000 
C(130) -4.765151 0.585387 -8.140174 0.0000 
C(131) 0.002027 0.000317 6.391681 0.0000 
C(132) -0.257093 0.019397 -13.25436 0.0000 
C(133) 0.028976 0.004327 6.696150 0.0000 
C(134) 0.062086 0.005793 10.71699 0.0000 
C(135) 0.128207 0.014231 9.009081 0.0000 
C(136) 0.113123 0.012592 8.983596 0.0000 
C(137) -0.327997 0.031807 -10.31204 0.0000 
C(138) 0.074919 0.015807 4.739755 0.0000 
C(139) -0.005984 0.015156 -0.394815 0.6930 
C(140) -6.331497 0.815087 -7.767876 0.0000 
C(141) 0.005179 0.000330 15.70067 0.0000 
C(142) -0.607666 0.020180 -30.11302 0.0000 
C(143) 0.056768 0.004502 12.60981 0.0000 
C(144) 0.126594 0.006027 21.00437 0.0000 
C(145) 0.373054 0.014805 25.19772 0.0000 
C(146) 0.205238 0.013100 15.66669 0.0000 
C(147) -0.810291 0.033091 -24.48703 0.0000 
C(148) 0.333888 0.016444 20.30401 0.0000 
C(149) -0.190420 0.015767 -12.07686 0.0000 
C(150) -19.75610 0.847976 -23.29794 0.0000 
C(151) -0.003575 0.000324 -11.04619 0.0000 
C(152) 0.292525 0.019796 14.77667 0.0000 
C(153) -0.001613 0.004416 -0.365309 0.7149 
C(154) -0.045446 0.005913 -7.686319 0.0000 
C(155) -0.367921 0.014524 -25.33190 0.0000 
C(156) -0.019137 0.012852 -1.489062 0.1365 
C(157) 0.532455 0.032462 16.40219 0.0000 
C(158) -0.437547 0.016132 -27.12253 0.0000 
C(159) 0.312110 0.015468 20.17773 0.0000 
C(160) 19.54631 0.831878 23.49660 0.0000 
C(161) 0.001220 0.000344 3.550705 0.0004 
C(162) -0.258728 0.021022 -12.30772 0.0000 
C(163) 0.040846 0.004690 8.709544 0.0000 
C(164) 0.122455 0.006279 19.50371 0.0000 
C(165) -0.126184 0.015423 -8.181623 0.0000 
C(166) -0.169337 0.013647 -12.40846 0.0000 
C(167) -0.333002 0.034471 -9.660214 0.0000 
C(168) 0.018069 0.017131 1.054780 0.2915 
C(169) -0.161110 0.016425 -9.808615 0.0000 
C(170) -3.467456 0.883363 -3.925292 0.0001 
C(171) 5.84E-05 0.000416 0.140428 0.8883 
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C(172) 0.085617 0.025462 3.362593 0.0008 
C(173) 0.009229 0.005680 1.624707 0.1042 
C(174) -0.089211 0.007605 -11.73109 0.0000 
C(175) -0.097295 0.018680 -5.208412 0.0000 
C(176) 0.168555 0.016529 10.19734 0.0000 
C(177) 0.305925 0.041752 7.327140 0.0000 
C(178) -0.078290 0.020749 -3.773215 0.0002 
C(179) 0.365721 0.019895 18.38293 0.0000 
C(180) 8.760370 1.069940 8.187719 0.0000 
C(181) 0.002309 0.000474 4.867762 0.0000 
C(182) -0.247660 0.029017 -8.535076 0.0000 
C(183) 0.035318 0.006473 5.455917 0.0000 
C(184) 0.018683 0.008666 2.155734 0.0311 
C(185) 0.210425 0.021289 9.884376 0.0000 
C(186) 0.093254 0.018837 4.950509 0.0000 
C(187) -0.207238 0.047582 -4.355391 0.0000 
C(188) 0.186200 0.023646 7.874524 0.0000 
C(189) -0.095708 0.022672 -4.221355 0.0000 
C(190) -6.225637 1.219330 -5.105785 0.0000 
C(191) 0.002824 0.000440 6.413533 0.0000 
C(192) -0.297732 0.026939 -11.05192 0.0000 
C(193) 0.028970 0.006010 4.820303 0.0000 
C(194) 0.069805 0.008046 8.675765 0.0000 
C(195) 0.198131 0.019765 10.02456 0.0000 
C(196) 0.122770 0.017489 7.019952 0.0000 
C(197) -0.273227 0.044176 -6.185024 0.0000 
C(198) 0.144487 0.021953 6.581616 0.0000 
C(199) -0.075135 0.021049 -3.569497 0.0004 
C(200) -7.335534 1.132039 -6.479932 0.0000 
C(201) 0.000514 7.86E-05 6.531099 0.0000 
C(202) -0.083280 0.004810 -17.31300 0.0000 
C(203) 0.020138 0.001073 18.76543 0.0000 
C(204) 0.006525 0.001437 4.541536 0.0000 
C(205) -0.146136 0.003529 -41.40845 0.0000 
C(206) 0.298487 0.003123 95.58472 0.0000 
C(207) 0.711866 0.007888 90.24777 0.0000 
C(208) -0.129479 0.003920 -33.03118 0.0000 
C(209) -0.124208 0.003759 -33.04719 0.0000 
C(210) 3.158050 0.202135 15.62351 0.0000 
C(211) -0.004072 0.000211 -19.25567 0.0000 
C(212) 0.309391 0.012936 23.91720 0.0000 
C(213) -0.034740 0.002886 -12.03779 0.0000 
C(214) -0.113025 0.003864 -29.25383 0.0000 
C(215) -0.145258 0.009491 -15.30535 0.0000 
C(216) -0.059051 0.008398 -7.031757 0.0000 
C(217) 0.582030 0.021212 27.43813 0.0000 
C(218) -0.305708 0.010542 -29.00029 0.0000 
C(219) -0.208520 0.010108 -20.63014 0.0000 
C(220) 18.57913 0.543588 34.17868 0.0000 
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Equation: PE_OLES_=C(1)+C(2)*PC1+C(3)*PC2+C(4)*PC3+C(5)*PC4 
        +C(6)*PC5+C(7)*PC6+C(8)*PC7+C(9)*PC8+C(10)*PC9 
Observations: 1410   
R-squared 0.998867    Mean dependent var 0.001028 
Adjusted R-squared 0.998860    S.D. dependent var 0.029462 
S.E. of regression 0.000995    Sum squared resid 0.001385 
Durbin-Watson stat 1.996303    
Equation: KIMBERA=C(11)+C(12)*PC1+C(13)*PC2+C(14)*PC3+C(15) 
        *PC4+C(16)*PC5+C(17)*PC6+C(18)*PC7+C(19)*PC8+C(20)*PC9 
Observations: 1410   
R-squared 0.279140    Mean dependent var 0.000209 
Adjusted R-squared 0.274506    S.D. dependent var 0.015126 
S.E. of regression 0.012884    Sum squared resid 0.232389 
Durbin-Watson stat 1.860410    
Equation: BIMBOA=C(21)+C(22)*PC1+C(23)*PC2+C(24)*PC3+C(25)*PC4 
        +C(26)*PC5+C(27)*PC6+C(28)*PC7+C(29)*PC8+C(30)*PC9 
Observations: 1410   
R-squared 0.500695    Mean dependent var 0.000650 
Adjusted R-squared 0.497485    S.D. dependent var 0.018661 
S.E. of regression 0.013229    Sum squared resid 0.244994 
Durbin-Watson stat 1.911890    
Equation: GMODELOC=C(31)+C(32)*PC1+C(33)*PC2+C(34)*PC3+C(35) 
        *PC4+C(36)*PC5+C(37)*PC6+C(38)*PC7+C(39)*PC8+C(40)*PC9 
Observations: 1410   
R-squared 0.308155    Mean dependent var 0.000384 
Adjusted R-squared 0.303708    S.D. dependent var 0.015785 
S.E. of regression 0.013172    Sum squared resid 0.242895 
Durbin-Watson stat 2.007770    
Equation: FEMSAUBD=C(41)+C(42)*PC1+C(43)*PC2+C(44)*PC3+C(45) 
        *PC4+C(46)*PC5+C(47)*PC6+C(48)*PC7+C(49)*PC8+C(50)*PC9 
Observations: 1410   
R-squared 0.442405    Mean dependent var 0.000500 
Adjusted R-squared 0.438820    S.D. dependent var 0.017475 
S.E. of regression 0.013091    Sum squared resid 0.239908 
Durbin-Watson stat 1.853306    
Equation: CONTAL_=C(51)+C(52)*PC1+C(53)*PC2+C(54)*PC3+C(55) 
        *PC4+C(56)*PC5+C(57)*PC6+C(58)*PC7+C(59)*PC8+C(60)*PC9 
Observations: 1410   
R-squared 0.951317    Mean dependent var 0.000405 
Adjusted R-squared 0.951004    S.D. dependent var 0.021111 
S.E. of regression 0.004673    Sum squared resid 0.030570 
Durbin-Watson stat 1.917350    
Equation: CEMEXCP=C(61)+C(62)*PC1+C(63)*PC2+C(64)*PC3+C(65) 
        *PC4+C(66)*PC5+C(67)*PC6+C(68)*PC7+C(69)*PC8+C(70)*PC9 
Observations: 1410   
R-squared 0.416169    Mean dependent var 0.000771 
Adjusted R-squared 0.412415    S.D. dependent var 0.016155 
S.E. of regression 0.012383    Sum squared resid 0.214687 
Durbin-Watson stat 1.863187    
Equation: GEOB=C(71)+C(72)*PC1+C(73)*PC2+C(74)*PC3+C(75)*PC4 
        +C(76)*PC5+C(77)*PC6+C(78)*PC7+C(79)*PC8+C(80)*PC9 
Observations: 1410   
R-squared 0.969212    Mean dependent var 0.001662 
Adjusted R-squared 0.969014    S.D. dependent var 0.024531 
S.E. of regression 0.004318    Sum squared resid 0.026105 
Durbin-Watson stat 1.929200    
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Equation: ARA_=C(81)+C(82)*PC1+C(83)*PC2+C(84)*PC3+C(85)*PC4 
        +C(86)*PC5+C(87)*PC6+C(88)*PC7+C(89)*PC8+C(90)*PC9 
Observations: 1410   
R-squared 0.353528    Mean dependent var 0.001007 
Adjusted R-squared 0.349372    S.D. dependent var 0.018947 
S.E. of regression 0.015283    Sum squared resid 0.327001 
Durbin-Watson stat 1.916651    
Equation: WALMEXV=C(91)+C(92)*PC1+C(93)*PC2+C(94)*PC3+C(95) 
        *PC4+C(96)*PC5+C(97)*PC6+C(98)*PC7+C(99)*PC8+C(100)*PC9 
Observations: 1410   
R-squared 0.529431    Mean dependent var 0.000655 
Adjusted R-squared 0.526406    S.D. dependent var 0.018733 
S.E. of regression 0.012892    Sum squared resid 0.232682 
Durbin-Watson stat 1.902735    
Equation: SORIANAB=C(101)+C(102)*PC1+C(103)*PC2+C(104)*PC3 
        +C(105)*PC4+C(106)*PC5+C(107)*PC6+C(108)*PC7+C(109)*PC8 
        +C(110)*PC9   
Observations: 1410   
R-squared 0.464936    Mean dependent var 0.000171 
Adjusted R-squared 0.461496    S.D. dependent var 0.018590 
S.E. of regression 0.013642    Sum squared resid 0.260542 
Durbin-Watson stat 1.842921    
Equation: COMERUBC=C(111)+C(112)*PC1+C(113)*PC2+C(114)*PC3 
        +C(115)*PC4+C(116)*PC5+C(117)*PC6+C(118)*PC7+C(119)*PC8 
        +C(120)*PC9   
Observations: 1410   
R-squared 0.562203    Mean dependent var 0.000498 
Adjusted R-squared 0.559388    S.D. dependent var 0.020444 
S.E. of regression 0.013570    Sum squared resid 0.257819 
Durbin-Watson stat 1.992373    
Equation: ELEKTRA_=C(121)+C(122)*PC1+C(123)*PC2+C(124)*PC3 
        +C(125)*PC4+C(126)*PC5+C(127)*PC6+C(128)*PC7+C(129)*PC8 
        +C(130)*PC9   
Observations: 1410   
R-squared 0.917431    Mean dependent var 0.000526 
Adjusted R-squared 0.916900    S.D. dependent var 0.024465 
S.E. of regression 0.007052    Sum squared resid 0.069631 
Durbin-Watson stat 1.977398    
Equation: TELMEXL=C(131)+C(132)*PC1+C(133)*PC2+C(134)*PC3 
        +C(135)*PC4+C(136)*PC5+C(137)*PC6+C(138)*PC7+C(139)*PC8 
        +C(140)*PC9   
Observations: 1410   
R-squared 0.607454    Mean dependent var 0.000215 
Adjusted R-squared 0.604931    S.D. dependent var 0.015623 
S.E. of regression 0.009820    Sum squared resid 0.134997 
Durbin-Watson stat 2.046099    
Equation: TELECOA1=C(141)+C(142)*PC1+C(143)*PC2+C(144)*PC3 
        +C(145)*PC4+C(146)*PC5+C(147)*PC6+C(148)*PC7+C(149)*PC8 
        +C(150)*PC9   
Observations: 1410   
R-squared 0.728350    Mean dependent var 0.000252 
Adjusted R-squared 0.726604    S.D. dependent var 0.019538 
S.E. of regression 0.010216    Sum squared resid 0.146112 
Durbin-Watson stat 2.110332    
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Equation: TLEVICPO=C(151)+C(152)*PC1+C(153)*PC2+C(154)*PC3 
        +C(155)*PC4+C(156)*PC5+C(157)*PC6+C(158)*PC7+C(159)*PC8 
        +C(160)*PC9   
Observations: 1410   
R-squared 0.793194    Mean dependent var 0.000171 
Adjusted R-squared 0.791864    S.D. dependent var 0.021968 
S.E. of regression 0.010022    Sum squared resid 0.140617 
Durbin-Watson stat 1.928299    
Equation: TVAZTCPO=C(161)+C(162)*PC1+C(163)*PC2+C(164)*PC3 
        +C(165)*PC4+C(166)*PC5+C(167)*PC6+C(168)*PC7+C(169)*PC8 
        +C(170)*PC9   
Observations: 1410   
R-squared 0.811268    Mean dependent var -7.68E-05 
Adjusted R-squared 0.810054    S.D. dependent var 0.024418 
S.E. of regression 0.010642    Sum squared resid 0.158561 
Durbin-Watson stat 1.977403    
Equation: GFNORTEO=C(171)+C(172)*PC1+C(173)*PC2+C(174)*PC3 
        +C(175)*PC4+C(176)*PC5+C(177)*PC6+C(178)*PC7+C(179)*PC8 
        +C(180)*PC9   
Observations: 1410   
R-squared 0.607135    Mean dependent var 0.001415 
Adjusted R-squared 0.604609    S.D. dependent var 0.020499 
S.E. of regression 0.012890    Sum squared resid 0.232614 
Durbin-Watson stat 1.921999    
Equation: GFINBURO=C(181)+C(182)*PC1+C(183)*PC2+C(184)*PC3 
        +C(185)*PC4+C(186)*PC5+C(187)*PC6+C(188)*PC7+C(189)*PC8 
        +C(190)*PC9   
Observations: 1410   
R-squared 0.428121    Mean dependent var 0.000502 
Adjusted R-squared 0.424445    S.D. dependent var 0.019363 
S.E. of regression 0.014690    Sum squared resid 0.302106 
Durbin-Watson stat 1.962358    
Equation: GCARSOA1=C(191)+C(192)*PC1+C(193)*PC2+C(194)*PC3 
        +C(195)*PC4+C(196)*PC5+C(197)*PC6+C(198)*PC7+C(199)*PC8 
        +C(200)*PC9   
Observations: 1410   
R-squared 0.499126    Mean dependent var 0.000711 
Adjusted R-squared 0.495906    S.D. dependent var 0.019209 
S.E. of regression 0.013638    Sum squared resid 0.260399 
Durbin-Watson stat 1.939402    
Equation: ALFAA=C(201)+C(202)*PC1+C(203)*PC2+C(204)*PC3+C(205) 
        *PC4+C(206)*PC5+C(207)*PC6+C(208)*PC7+C(209)*PC8+C(210) 
        *PC9    
Observations: 1410   
R-squared 0.990238    Mean dependent var 0.000723 
Adjusted R-squared 0.990176    S.D. dependent var 0.024569 
S.E. of regression 0.002435    Sum squared resid 0.008302 
Durbin-Watson stat 1.971607    
Equation: CIEB=C(211)+C(212)*PC1+C(213)*PC2+C(214)*PC3+C(215) 
        *PC4+C(216)*PC5+C(217)*PC6+C(218)*PC7+C(219)*PC8+C(220) 
        *PC9    
Observations: 1410   
R-squared 0.906255    Mean dependent var -0.000376 
Adjusted R-squared 0.905653    S.D. dependent var 0.021321 
S.E. of regression 0.006549    Sum squared resid 0.060042 
Durbin-Watson stat 1.948649    
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Table 16. Neural Networks Principal Component Analysis. Betas estimation for all the 
equation system via Seemingly Unrelated Regression. Database of daily excesses. 

 Coefficient Std. Error t-Statistic Prob.   

C(1) 0.009501 0.001815 5.235693 0.0000 
C(2) -0.097772 0.020310 -4.813884 0.0000 
C(3) 0.533503 0.005340 99.91115 0.0000 
C(4) -0.041415 0.001191 -34.76147 0.0000 
C(5) 0.001193 0.002640 0.451810 0.6514 
C(6) 0.043114 0.001549 27.83342 0.0000 
C(7) 0.077819 0.010028 7.760557 0.0000 
C(8) -0.061091 0.048294 -1.264980 0.2059 
C(9) -0.044924 0.074491 -0.603083 0.5465 
C(10) 0.292448 0.250479 1.167554 0.2430 
C(11) -0.172948 0.014765 -11.71352 0.0000 
C(12) 1.934205 0.165255 11.70440 0.0000 
C(13) 0.527653 0.043447 12.14482 0.0000 
C(14) 0.100114 0.009694 10.32777 0.0000 
C(15) -0.234403 0.021478 -10.91374 0.0000 
C(16) 0.030347 0.012603 2.407846 0.0161 
C(17) -0.999937 0.081589 -12.25586 0.0000 
C(18) 4.600877 0.392944 11.70875 0.0000 
C(19) 6.940297 0.606089 11.45095 0.0000 
C(20) -24.65667 2.038007 -12.09843 0.0000 
C(21) -0.154369 0.019068 -8.095752 0.0000 
C(22) 1.731509 0.213416 8.113291 0.0000 
C(23) 0.485822 0.056109 8.658575 0.0000 
C(24) 0.089567 0.012519 7.154566 0.0000 
C(25) -0.211853 0.027737 -7.637849 0.0000 
C(26) 0.012837 0.016276 0.788683 0.4303 
C(27) -1.064735 0.105367 -10.10504 0.0000 
C(28) 4.533703 0.507463 8.934057 0.0000 
C(29) 6.768506 0.782728 8.647334 0.0000 
C(30) -22.28061 2.631963 -8.465396 0.0000 
C(31) 0.213255 0.017070 12.49313 0.0000 
C(32) -2.387162 0.191053 -12.49479 0.0000 
C(33) -0.601416 0.050229 -11.97343 0.0000 
C(34) -0.140141 0.011207 -12.50482 0.0000 
C(35) 0.308304 0.024831 12.41626 0.0000 
C(36) 0.054216 0.014571 3.720889 0.0002 
C(37) 1.124880 0.094325 11.92553 0.0000 
C(38) -5.666746 0.454286 -12.47396 0.0000 
C(39) -8.652569 0.700706 -12.34836 0.0000 
C(40) 28.59507 2.356161 12.13629 0.0000 
C(41) -0.065694 0.016932 -3.879861 0.0001 
C(42) 0.737080 0.189512 3.889351 0.0001 
C(43) 0.186177 0.049824 3.736666 0.0002 
C(44) 0.016741 0.011117 1.505918 0.1321 
C(45) -0.094387 0.024630 -3.832135 0.0001 
C(46) 0.006069 0.014453 0.419894 0.6746 
C(47) -0.372734 0.093565 -3.983689 0.0001 
C(48) 1.877825 0.450624 4.167165 0.0000 
C(49) 3.257826 0.695058 4.687130 0.0000 
C(50) -10.30515 2.337169 -4.409243 0.0000 
C(51) 0.153269 0.007382 20.76295 0.0000 
C(52) -1.715419 0.082621 -20.76242 0.0000 
C(53) -0.373859 0.021722 -17.21126 0.0000 
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C(54) -0.066750 0.004846 -13.77293 0.0000 
C(55) 0.241707 0.010738 22.50924 0.0000 
C(56) -0.316650 0.006301 -50.25278 0.0000 
C(57) 0.280945 0.040791 6.887360 0.0000 
C(58) -3.978198 0.196458 -20.24964 0.0000 
C(59) -5.931457 0.303023 -19.57429 0.0000 
C(60) 20.28601 1.018930 19.90912 0.0000 
C(61) -0.055276 0.014586 -3.789648 0.0002 
C(62) 0.624589 0.163253 3.825898 0.0001 
C(63) 0.170146 0.042920 3.964223 0.0001 
C(64) 0.019648 0.009576 2.051789 0.0402 
C(65) -0.083074 0.021218 -3.915332 0.0001 
C(66) -0.004646 0.012451 -0.373130 0.7091 
C(67) -0.369818 0.080600 -4.588301 0.0000 
C(68) 1.779183 0.388184 4.583350 0.0000 
C(69) 3.036110 0.598748 5.070768 0.0000 
C(70) -8.783847 2.013321 -4.362864 0.0000 
C(71) -0.107838 0.004493 -23.99890 0.0000 
C(72) 1.223633 0.050293 24.33010 0.0000 
C(73) 0.389409 0.013222 29.45071 0.0000 
C(74) 0.479473 0.002950 162.5255 0.0000 
C(75) -0.189436 0.006536 -28.98142 0.0000 
C(76) -0.125639 0.003836 -32.75600 0.0000 
C(77) -0.628082 0.024830 -25.29495 0.0000 
C(78) 2.993219 0.119587 25.02964 0.0000 
C(79) 4.886910 0.184455 26.49380 0.0000 
C(80) -16.42512 0.620239 -26.48190 0.0000 
C(81) 0.415727 0.017420 23.86507 0.0000 
C(82) -4.645785 0.194972 -23.82800 0.0000 
C(83) -1.187565 0.051260 -23.16766 0.0000 
C(84) -0.110229 0.011437 -9.638039 0.0000 
C(85) 0.602297 0.025340 23.76861 0.0000 
C(86) 0.083047 0.014870 5.585036 0.0000 
C(87) 2.257217 0.096260 23.44910 0.0000 
C(88) -10.66053 0.463605 -22.99485 0.0000 
C(89) -16.90248 0.715080 -23.63719 0.0000 
C(90) 56.29629 2.404495 23.41294 0.0000 
C(91) 0.017755 0.017314 1.025504 0.3051 
C(92) -0.195449 0.193782 -1.008602 0.3132 
C(93) -0.040656 0.050947 -0.798012 0.4249 
C(94) -0.032522 0.011367 -2.861061 0.0042 
C(95) 0.026580 0.025185 1.055361 0.2913 
C(96) 0.057711 0.014779 3.904961 0.0001 
C(97) 0.081098 0.095673 0.847662 0.3966 
C(98) -0.393842 0.460777 -0.854735 0.3927 
C(99) -0.320910 0.710718 -0.451529 0.6516 

C(100) 0.990996 2.389826 0.414673 0.6784 
C(101) -0.034321 0.017951 -1.911993 0.0559 
C(102) 0.381649 0.200911 1.899590 0.0575 
C(103) 0.118982 0.052821 2.252542 0.0243 
C(104) 0.018920 0.011785 1.605425 0.1084 
C(105) -0.046906 0.026112 -1.796335 0.0725 
C(106) 0.013540 0.015323 0.883684 0.3769 
C(107) -0.199454 0.099193 -2.010766 0.0444 
C(108) 1.042065 0.477729 2.181290 0.0292 
C(109) 1.666630 0.736865 2.261786 0.0237 
C(110) -6.095472 2.477748 -2.460086 0.0139 
C(111) -0.215799 0.020998 -10.27718 0.0000 
C(112) 2.416777 0.235018 10.28336 0.0000 
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C(113) 0.660070 0.061788 10.68280 0.0000 
C(114) 0.136078 0.013786 9.870796 0.0000 
C(115) -0.316441 0.030545 -10.35990 0.0000 
C(116) 0.032710 0.017924 1.824936 0.0680 
C(117) -1.263438 0.116032 -10.88872 0.0000 
C(118) 6.099257 0.558828 10.91437 0.0000 
C(119) 8.910342 0.861955 10.33736 0.0000 
C(120) -31.05827 2.898370 -10.71577 0.0000 
C(121) 0.033825 0.010704 3.160019 0.0016 
C(122) -0.376405 0.119806 -3.141781 0.0017 
C(123) -0.081354 0.031498 -2.582843 0.0098 
C(124) -0.056572 0.007028 -8.049821 0.0000 
C(125) -0.023416 0.015571 -1.503831 0.1326 
C(126) -0.393025 0.009137 -43.01431 0.0000 
C(127) 0.245721 0.059150 4.154199 0.0000 
C(128) -0.069912 0.284876 -0.245411 0.8061 
C(129) -1.245614 0.439402 -2.834794 0.0046 
C(130) 2.832206 1.477513 1.916874 0.0553 
C(131) 0.058336 0.013082 4.459203 0.0000 
C(132) -0.654118 0.146421 -4.467368 0.0000 
C(133) -0.172661 0.038495 -4.485244 0.0000 
C(134) -0.068693 0.008589 -7.997859 0.0000 
C(135) 0.081955 0.019030 4.306622 0.0000 
C(136) 0.066340 0.011167 5.940747 0.0000 
C(137) 0.296039 0.072290 4.095142 0.0000 
C(138) -1.474741 0.348162 -4.235794 0.0000 
C(139) -1.779940 0.537016 -3.314500 0.0009 
C(140) 6.893578 1.805746 3.817580 0.0001 
C(141) 0.133602 0.015381 8.686057 0.0000 
C(142) -1.496942 0.172154 -8.695364 0.0000 
C(143) -0.385918 0.045261 -8.526574 0.0000 
C(144) -0.110092 0.010098 -10.90195 0.0000 
C(145) 0.192542 0.022374 8.605461 0.0000 
C(146) 0.166826 0.013129 12.70630 0.0000 
C(147) 0.698404 0.084995 8.217011 0.0000 
C(148) -3.384455 0.409349 -8.267892 0.0000 
C(149) -4.728460 0.631394 -7.488926 0.0000 
C(150) 16.91207 2.123095 7.965764 0.0000 
C(151) 0.282807 0.014493 19.51397 0.0000 
C(152) -3.168261 0.162207 -19.53222 0.0000 
C(153) -0.840688 0.042645 -19.71341 0.0000 
C(154) -0.179648 0.009515 -18.88064 0.0000 
C(155) 0.386420 0.021082 18.32967 0.0000 
C(156) -0.082192 0.012371 -6.644045 0.0000 
C(157) 1.544202 0.080084 19.28231 0.0000 
C(158) -7.463439 0.385697 -19.35053 0.0000 
C(159) -11.00434 0.594912 -18.49743 0.0000 
C(160) 37.22989 2.000423 18.61102 0.0000 
C(161) -0.248089 0.014267 -17.38873 0.0000 
C(162) 2.772315 0.159685 17.36110 0.0000 
C(163) 0.706448 0.041983 16.82717 0.0000 
C(164) 0.020152 0.009367 2.151339 0.0315 
C(165) -0.415274 0.020754 -20.00941 0.0000 
C(166) -0.371423 0.012178 -30.49834 0.0000 
C(167) -1.350791 0.078839 -17.13354 0.0000 
C(168) 6.806987 0.379701 17.92721 0.0000 
C(169) 10.82161 0.585664 18.47751 0.0000 
C(170) -36.12472 1.969326 -18.34369 0.0000 
C(171) 0.243728 0.017704 13.76668 0.0000 
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C(172) -2.715507 0.198154 -13.70405 0.0000 
C(173) -0.713770 0.052096 -13.70103 0.0000 
C(174) -0.071300 0.011624 -6.134151 0.0000 
C(175) 0.355004 0.025754 13.78465 0.0000 
C(176) 0.119207 0.015112 7.888105 0.0000 
C(177) 1.417318 0.097831 14.48737 0.0000 
C(178) -5.889119 0.471171 -12.49890 0.0000 
C(179) -9.371779 0.726750 -12.89547 0.0000 
C(180) 32.22665 2.443735 13.18745 0.0000 
C(181) -0.157590 0.018276 -8.622632 0.0000 
C(182) 1.766658 0.204558 8.636487 0.0000 
C(183) 0.450304 0.053780 8.373119 0.0000 
C(184) 0.079845 0.011999 6.654233 0.0000 
C(185) -0.211588 0.026586 -7.958685 0.0000 
C(186) 0.101461 0.015601 6.503649 0.0000 
C(187) -0.926617 0.100993 -9.175069 0.0000 
C(188) 4.722877 0.486398 9.709894 0.0000 
C(189) 7.065137 0.750237 9.417208 0.0000 
C(190) -22.86206 2.522712 -9.062493 0.0000 
C(191) -0.004312 0.016810 -0.256510 0.7976 
C(192) 0.050808 0.188148 0.270041 0.7871 
C(193) 0.019478 0.049465 0.393767 0.6938 
C(194) -0.034159 0.011037 -3.095109 0.0020 
C(195) -0.003266 0.024453 -0.133577 0.8937 
C(196) 0.118251 0.014349 8.240955 0.0000 
C(197) -0.043357 0.092891 -0.466752 0.6407 
C(198) 0.282761 0.447379 0.632040 0.5274 
C(199) 0.198584 0.690052 0.287782 0.7735 
C(200) -2.065460 2.320336 -0.890156 0.3734 
C(201) 0.030593 0.005679 5.387106 0.0000 
C(202) -0.341686 0.063562 -5.375622 0.0000 
C(203) -0.086610 0.016711 -5.182838 0.0000 
C(204) -0.022527 0.003728 -6.041827 0.0000 
C(205) -0.050329 0.008261 -6.092386 0.0000 
C(206) 0.486563 0.004848 100.3722 0.0000 
C(207) -0.126613 0.031381 -4.034652 0.0001 
C(208) -0.465215 0.151138 -3.078074 0.0021 
C(209) -0.755529 0.233121 -3.240932 0.0012 
C(210) 2.507180 0.783881 3.198418 0.0014 
C(211) -0.070576 0.018261 -3.864835 0.0001 
C(212) 0.781452 0.204387 3.823389 0.0001 
C(213) 0.232376 0.053735 4.324483 0.0000 
C(214) 0.060058 0.011989 5.009333 0.0000 
C(215) -0.061175 0.026564 -2.302965 0.0213 
C(216) 0.026148 0.015588 1.677493 0.0935 
C(217) -0.423187 0.100909 -4.193749 0.0000 
C(218) 2.274551 0.485994 4.680206 0.0000 
C(219) 2.986473 0.749613 3.984019 0.0001 
C(220) -11.11594 2.520614 -4.410012 0.0000 
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Equation: PE_OLES_=C(1)+C(2)*PC1+C(3)*PC2+C(4)*PC3+C(5)*PC4 
        +C(6)*PC5+C(7)*PC6+C(8)*PC7+C(9)*PC8+C(10)*PC9 
Observations: 1410   
R-squared 0.997902    Mean dependent var 0.000805 
Adjusted R-squared 0.997888    S.D. dependent var 0.029496 
S.E. of regression 0.001356    Sum squared resid 0.002572 
Durbin-Watson stat 2.014164    
Equation: KIMBERA=C(11)+C(12)*PC1+C(13)*PC2+C(14)*PC3+C(15) 
        *PC4+C(16)*PC5+C(17)*PC6+C(18)*PC7+C(19)*PC8+C(20)*PC9 
Observations: 1410   
R-squared 0.471715    Mean dependent var -1.66E-05 
Adjusted R-squared 0.468319    S.D. dependent var 0.015126 
S.E. of regression 0.011029    Sum squared resid 0.170294 
Durbin-Watson stat 1.856582    
Equation: BIMBOA=C(21)+C(22)*PC1+C(23)*PC2+C(24)*PC3+C(25)*PC4 
        +C(26)*PC5+C(27)*PC6+C(28)*PC7+C(29)*PC8+C(30)*PC9 
Observations: 1410   
R-squared 0.421372    Mean dependent var 0.000397 
Adjusted R-squared 0.417653    S.D. dependent var 0.018665 
S.E. of regression 0.014243    Sum squared resid 0.284019 
Durbin-Watson stat 1.882480    
Equation: GMODELOC=C(31)+C(32)*PC1+C(33)*PC2+C(34)*PC3+C(35) 
        *PC4+C(36)*PC5+C(37)*PC6+C(38)*PC7+C(39)*PC8+C(40)*PC9 
Observations: 1410   
R-squared 0.351799    Mean dependent var 0.000143 
Adjusted R-squared 0.347632    S.D. dependent var 0.015787 
S.E. of regression 0.012751    Sum squared resid 0.227613 
Durbin-Watson stat 2.043201    
Equation: FEMSAUBD=C(41)+C(42)*PC1+C(43)*PC2+C(44)*PC3+C(45) 
        *PC4+C(46)*PC5+C(47)*PC6+C(48)*PC7+C(49)*PC8+C(50)*PC9 
Observations: 1410   
R-squared 0.479260    Mean dependent var 0.000231 
Adjusted R-squared 0.475913    S.D. dependent var 0.017471 
S.E. of regression 0.012648    Sum squared resid 0.223959 
Durbin-Watson stat 1.833759    
Equation: CONTAL_=C(51)+C(52)*PC1+C(53)*PC2+C(54)*PC3+C(55) 
        *PC4+C(56)*PC5+C(57)*PC6+C(58)*PC7+C(59)*PC8+C(60)*PC9 
Observations: 1410   
R-squared 0.932216    Mean dependent var 0.000161 
Adjusted R-squared 0.931780    S.D. dependent var 0.021112 
S.E. of regression 0.005514    Sum squared resid 0.042567 
Durbin-Watson stat 1.905602    
Equation: CEMEXCP=C(61)+C(62)*PC1+C(63)*PC2+C(64)*PC3+C(65) 
        *PC4+C(66)*PC5+C(67)*PC6+C(68)*PC7+C(69)*PC8+C(70)*PC9 
Observations: 1410   
R-squared 0.547478    Mean dependent var 0.000550 
Adjusted R-squared 0.544569    S.D. dependent var 0.016145 
S.E. of regression 0.010895    Sum squared resid 0.166193 
Durbin-Watson stat 1.896656    
Equation: GEOB=C(71)+C(72)*PC1+C(73)*PC2+C(74)*PC3+C(75)*PC4 
        +C(76)*PC5+C(77)*PC6+C(78)*PC7+C(79)*PC8+C(80)*PC9 
Observations: 1410   
R-squared 0.981423    Mean dependent var 0.001474 
Adjusted R-squared 0.981304    S.D. dependent var 0.024548 
S.E. of regression 0.003357    Sum squared resid 0.015773 
Durbin-Watson stat 1.885705    

  



APPENDIX 
 

461 
 

Equation: ARA_=C(81)+C(82)*PC1+C(83)*PC2+C(84)*PC3+C(85)*PC4 
        +C(86)*PC5+C(87)*PC6+C(88)*PC7+C(89)*PC8+C(90)*PC9 
Observations: 1410   
R-squared 0.531453    Mean dependent var 0.000797 
Adjusted R-squared 0.528441    S.D. dependent var 0.018949 
S.E. of regression 0.013012    Sum squared resid 0.237048 
Durbin-Watson stat 1.947513    
Equation: WALMEXV=C(91)+C(92)*PC1+C(93)*PC2+C(94)*PC3+C(95) 
        *PC4+C(96)*PC5+C(97)*PC6+C(98)*PC7+C(99)*PC8+C(100)*PC9 
Observations: 1410   
R-squared 0.525863    Mean dependent var 0.000450 
Adjusted R-squared 0.522815    S.D. dependent var 0.018722 
S.E. of regression 0.012933    Sum squared resid 0.234164 
Durbin-Watson stat 1.881621    
Equation: SORIANAB=C(101)+C(102)*PC1+C(103)*PC2+C(104)*PC3 
        +C(105)*PC4+C(106)*PC5+C(107)*PC6+C(108)*PC7+C(109)*PC8 
        +C(110)*PC9   
Observations: 1410   
R-squared 0.482967    Mean dependent var -8.42E-05 
Adjusted R-squared 0.479644    S.D. dependent var 0.018588 
S.E. of regression 0.013409    Sum squared resid 0.251711 
Durbin-Watson stat 1.896770    
Equation: COMERUBC=C(111)+C(112)*PC1+C(113)*PC2+C(114)*PC3 
        +C(115)*PC4+C(116)*PC5+C(117)*PC6+C(118)*PC7+C(119)*PC8 
        +C(120)*PC9   
Observations: 1410   
R-squared 0.415427    Mean dependent var 0.000260 
Adjusted R-squared 0.411669    S.D. dependent var 0.020449 
S.E. of regression 0.015685    Sum squared resid 0.344426 
Durbin-Watson stat 2.054896    
Equation: ELEKTRA_=C(121)+C(122)*PC1+C(123)*PC2+C(124)*PC3 
        +C(125)*PC4+C(126)*PC5+C(127)*PC6+C(128)*PC7+C(129)*PC8 
        +C(130)*PC9   
Observations: 1410   
R-squared 0.893906    Mean dependent var 0.000287 
Adjusted R-squared 0.893224    S.D. dependent var 0.024469 
S.E. of regression 0.007996    Sum squared resid 0.089506 
Durbin-Watson stat 1.985367    
Equation: TELMEXL=C(131)+C(132)*PC1+C(133)*PC2+C(134)*PC3 
        +C(135)*PC4+C(136)*PC5+C(137)*PC6+C(138)*PC7+C(139)*PC8 
        +C(140)*PC9   
Observations: 1410   
R-squared 0.610662    Mean dependent var -1.50E-07 
Adjusted R-squared 0.608159    S.D. dependent var 0.015611 
S.E. of regression 0.009772    Sum squared resid 0.133691 
Durbin-Watson stat 1.986439    
Equation: TELECOA1=C(141)+C(142)*PC1+C(143)*PC2+C(144)*PC3 
        +C(145)*PC4+C(146)*PC5+C(147)*PC6+C(148)*PC7+C(149)*PC8 
        +C(150)*PC9   
Observations: 1410   
R-squared 0.656626    Mean dependent var 2.74E-05 
Adjusted R-squared 0.654418    S.D. dependent var 0.019544 
S.E. of regression 0.011489    Sum squared resid 0.184810 
Durbin-Watson stat 2.007262    
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Equation: TLEVICPO=C(151)+C(152)*PC1+C(153)*PC2+C(154)*PC3 
        +C(155)*PC4+C(156)*PC5+C(157)*PC6+C(158)*PC7+C(159)*PC8 
        +C(160)*PC9   
Observations: 1410   
R-squared 0.758693    Mean dependent var -5.84E-05 
Adjusted R-squared 0.757142    S.D. dependent var 0.021967 
S.E. of regression 0.010826    Sum squared resid 0.164071 
Durbin-Watson stat 2.004222    
Equation: TVAZTCPO=C(161)+C(162)*PC1+C(163)*PC2+C(164)*PC3 
        +C(165)*PC4+C(166)*PC5+C(167)*PC6+C(168)*PC7+C(169)*PC8 
        +C(170)*PC9   
Observations: 1410   
R-squared 0.810880    Mean dependent var -0.000324 
Adjusted R-squared 0.809664    S.D. dependent var 0.024428 
S.E. of regression 0.010657    Sum squared resid 0.159009 
Durbin-Watson stat 2.030441    
Equation: GFNORTEO=C(171)+C(172)*PC1+C(173)*PC2+C(174)*PC3 
        +C(175)*PC4+C(176)*PC5+C(177)*PC6+C(178)*PC7+C(179)*PC8 
        +C(180)*PC9   
Observations: 1410   
R-squared 0.586423    Mean dependent var 0.001169 
Adjusted R-squared 0.583764    S.D. dependent var 0.020498 
S.E. of regression 0.013225    Sum squared resid 0.244848 
Durbin-Watson stat 1.854986    
Equation: GFINBURO=C(181)+C(182)*PC1+C(183)*PC2+C(184)*PC3 
        +C(185)*PC4+C(186)*PC5+C(187)*PC6+C(188)*PC7+C(189)*PC8 
        +C(190)*PC9   
Observations: 1410   
R-squared 0.505292    Mean dependent var 0.000276 
Adjusted R-squared 0.502112    S.D. dependent var 0.019348 
S.E. of regression 0.013652    Sum squared resid 0.260929 
Durbin-Watson stat 1.966729    
Equation: GCARSOA1=C(191)+C(192)*PC1+C(193)*PC2+C(194)*PC3 
        +C(195)*PC4+C(196)*PC5+C(197)*PC6+C(198)*PC7+C(199)*PC8 
        +C(200)*PC9   
Observations: 1410   
R-squared 0.575737    Mean dependent var 0.000455 
Adjusted R-squared 0.573009    S.D. dependent var 0.019216 
S.E. of regression 0.012557    Sum squared resid 0.220744 
Durbin-Watson stat 1.851959    
Equation: ALFAA=C(201)+C(202)*PC1+C(203)*PC2+C(204)*PC3+C(205) 
        *PC4+C(206)*PC5+C(207)*PC6+C(208)*PC7+C(209)*PC8+C(210) 
        *PC9    
Observations: 1410   
R-squared 0.970373    Mean dependent var 0.000496 
Adjusted R-squared 0.970183    S.D. dependent var 0.024567 
S.E. of regression 0.004242    Sum squared resid 0.025193 
Durbin-Watson stat 1.870912    
Equation: CIEB=C(211)+C(212)*PC1+C(213)*PC2+C(214)*PC3+C(215) 
        *PC4+C(216)*PC5+C(217)*PC6+C(218)*PC7+C(219)*PC8+C(220) 
        *PC9    
Observations: 1410   
R-squared 0.592962    Mean dependent var -0.000633 
Adjusted R-squared 0.590346    S.D. dependent var 0.021312 
S.E. of regression 0.013641    Sum squared resid 0.260496 
Durbin-Watson stat 1.998047    
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Appendix_2 (Chapter 3) 
Table 1. Correlation matrix. Database of weekly returns. 

 PE_OLES_ BIMBOA GMODELOC  FEMSAUBD CONTAL_ GEOB ARA_ WALMEXV SORIANAB COMERUBC ELEKTRA_  TELMEXL TELECOA1 TLEVICPO TVAZTCPO GFNORTEO GFINBURO GCARSOA1  ALFAA  CIEB  

PE_OLES_  1.00000                    

 -----                    

 -----                    

BIMBOA  0.07160 1.00000                   

 1.22033 -----                   

 0.22334 -----                   

GMODELOC  0.06507 0.00913 1.00000                  

 1.10845 0.15517 -----                   

 0.26859 0.87680 -----                   

FEMSAUBD  0.08579 0.27110 0.28842 1.00000                 

 1.46384 4.78795 5.12080 -----                 

 0.14433 0.00000 0.00000 -----                 

CONTAL_  0.16487 0.17577 0.13083 0.23985 1.00000                

 2.84169 3.03535 2.24345 4.20007 -----                

 0.00481 0.00262 0.02563 0.00004 -----                

GEOB  0.23308 0.11829 0.12743 0.30987 0.20383 1.00000               

 4.07454 2.02519 2.18414 5.54045 3.53949 -----               

 0.00006 0.04377 0.02976 0.00000 0.00047 -----               

ARA_  0.17673 0.15213 0.10574 0.26653 0.21005 0.35963 1.00000              

 3.05246 2.61669 1.80766 4.70106 3.65224 6.55207 -----              

 0.00248 0.00935 0.07170 0.00000 0.00031 0.00000 -----              

WALMEXV  0.04167 0.18173 0.24122 0.47716 0.19367 0.29463 0.20703 1.00000             

 0.70894 3.14167 4.22560 9.23020 3.35593 5.24130 3.59749 -----             

 0.47893 0.00185 0.00003 0.00000 0.00090 0.00000 0.00038 -----             

SORIANAB  0.06163 0.17411 0.31288 0.42109 0.15854 0.34235 0.24598 0.45702 1.00000            

 1.04972 3.00585 5.60017 7.89245 2.72965 6.19426 4.31415 8.73500 -----            

 0.29472 0.00288 0.00000 0.00000 0.00673 0.00000 0.00002 0.00000 -----            

COMERUBC  0.14205 0.24945 0.21091 0.33519 0.25727 0.26923 0.31794 0.33046 0.46159 1.00000           

 2.43960 4.37902 3.66793 6.04807 4.52597 4.75235 5.70083 5.95217 8.84581 -----           

 0.01530 0.00002 0.00029 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 -----           

ELEKTRA_  0.15410 0.19459 0.26054 0.40156 0.23546 0.38490 0.31358 0.33890 0.35987 0.38125 1.00000          

 2.65133 3.37247 4.58764 7.45399 4.11854 7.08939 5.61406 6.12374 6.55710 7.01077 -----           

 0.00846 0.00085 0.00001 0.00000 0.00005 0.00000 0.00000 0.00000 0.00000 0.00000 -----           

Notes: Number for each factor represent the Correlation, the value of the t-statistic and its corresponding p-value, respectively. 
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Table 2. Correlation matrix. Database of weekly returns. (Cont.) 

 PE_OLES_ BIMBOA GMODELOC  FEMSAUBD  CONTAL_ GEOB ARA_ WALMEXV SORIANAB COMERUBC ELEKTRA_  TELMEXL TELECOA1 TLEVICPO TVAZTCPO GFNORTEO GFINBURO GCARSOA1  ALFAA  CIEB  

TELMEXL  0.10121 0.23865 0.30597 0.43269 0.17032 0.25268 0.32043 0.44907 0.40268 0.34737 0.37171 1.00000         

 1.72951 4.17774 5.46360 8.15911 2.93841 4.43954 5.75056 8.54418 7.47880 6.29745 6.80679 -----         

 0.08479 0.00004 0.00000 0.00000 0.00356 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 -----         

TELECOA1  0.11165 0.29981 0.29228 0.41168 0.19353 0.27031 0.31239 0.43129 0.42532 0.34095 0.40650 0.77490 1.00000        

 1.90999 5.34245 5.19558 7.67944 3.35342 4.77303 5.59033 8.12664 7.98902 6.16560 7.56363 20.84120 -----        

 0.05712 0.00000 0.00000 0.00000 0.00090 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -----        

TLEVICPO  0.11177 0.26536 0.31520 0.54566 0.25062 0.36695 0.31108 0.57354 0.48750 0.40360 0.43641 0.57384 0.55380 1.00000       

 1.91202 4.67878 5.64615 11.06949 4.40091 6.70601 5.56440 11.90251 9.49187 7.49904 8.24572 11.91177 11.30677 -----       

 0.05686 0.00000 0.00000 0.00000 0.00002 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -----       

TVAZTCPO  0.10197 0.21638 0.33823 0.38286 0.23856 0.39465 0.23297 0.45461 0.50050 0.41831 0.57978 0.46107 0.41017 0.57219 1.00000      

 1.74255 3.76776 6.11003 7.04536 4.17612 7.30172 4.07264 8.67677 9.82812 7.82913 12.09707 8.83323 7.64564 11.86057 -----      

 0.08248 0.00020 0.00000 0.00000 0.00004 0.00000 0.00006 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -----      

GFNORTEO  0.05191 0.09805 0.21834 0.34300 0.14836 0.35688 0.25108 0.38794 0.39837 0.38561 0.36933 0.37716 0.36502 0.40078 0.39888 1.00000     

 0.88371 1.67498 3.80349 6.20760 2.55033 6.49453 4.40969 7.15527 7.38353 7.10489 6.75622 6.92293 6.66531 7.43669 7.39464 -----     

 0.37759 0.09502 0.00017 0.00000 0.01128 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -----     

GFINBURO  0.08642 0.20161 0.10648 0.37731 0.14639 0.33591 0.29816 0.28320 0.38300 0.31851 0.29902 0.36044 0.42775 0.38861 0.28989 0.34252 1.00000    

 1.47466 3.49919 1.82055 6.92629 2.51571 6.06280 5.31020 5.01993 7.04844 5.71216 5.32715 6.56913 8.04494 7.16996 5.14929 6.19779 -----    

 0.14139 0.00054 0.06971 0.00000 0.01242 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -----    

GCARSOA1  0.04721 0.18904 0.28712 0.43812 0.24883 0.26558 0.30650 0.42767 0.47723 0.39753 0.41881 0.52828 0.58335 0.48159 0.46175 0.42422 0.45257 1.00000   

 0.80345 3.27260 5.09553 8.28553 4.36741 4.68308 5.47403 8.04312 9.23192 7.36505 7.84050 10.57711 12.20968 9.34168 8.84971 7.96385 8.62791 -----    

 0.42237 0.00119 0.00000 0.00000 0.00002 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -----    

ALFAA  0.10033 0.20587 0.25928 0.37517 0.28111 0.34774 0.33542 0.37606 0.38041 0.37290 0.45565 0.36030 0.39664 0.41717 0.43759 0.36150 0.33307 0.40389 1.00000  

 1.71431 3.57643 4.56383 6.88037 4.97974 6.30505 6.05285 6.89956 6.99278 6.83213 8.70178 6.56618 7.34543 7.80339 8.27318 6.59129 6.00510 7.50550 -----   

 0.08754 0.00041 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -----   

CIEB  0.11736 0.28604 0.25577 0.45957 0.29705 0.30342 0.28940 0.35581 0.51093 0.44318 0.34534 0.38954 0.38559 0.45473 0.45034 0.38074 0.47448 0.45742 0.36780 1.00000 

 2.00894 5.07474 4.49766 8.79673 5.28856 5.41342 5.13974 6.47226 10.10411 8.40455 6.25555 7.19008 7.10441 8.67972 8.57449 6.99970 9.16344 8.74466 6.72392 -----  

 0.04547 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -----  

Notes: Number for each factor represent the Correlation, the value of the t-statistic and its corresponding p-value, respectively. 
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Table 3. Descriptive statistics. Database of weekly excesses. 
 PE_OLES_BIMBOAGMODELOC FEMSAUBD CONTAL_ GEOB ARA_ WALMEXVSORIANABCOMERUBCELEKTRA_TELMEXLTELECOA1TLEVICPOTVAZTCPOGFNORTEOGFINBUROGCARSOA1 ALFAA CIEB 

 Mean  0.00304  0.00147  0.00018  0.00067  0.00035  0.00650  0.00321  0.00165 -0.00094  0.00057  0.00097 -0.00049 -0.00037 -0.00079 -0.00202  0.00516  0.00077  0.00172  0.00187 -0.00364 

 Median -0.00171  0.00016  0.00014  0.00033 -0.00175  0.01030  0.00446  0.00162 -0.00097 -0.00053  0.00170 -0.00150  0.00064  0.00072 -0.00090  0.00615  0.00150  0.00516  0.00302 -0.00101 

 Maximum  0.26081  0.17076  0.14537  0.14565  0.16682  0.24075  0.13863  0.12968  0.18103  0.17202  0.20134  0.10083  0.15032  0.16109  0.17026  0.19913  0.11071  0.12978  0.18671  0.13679 

 Minimum -0.20082 -0.15340 -0.11759 -0.16931 -0.16156 -0.23987 -0.13210 -0.13975 -0.18046 -0.15102 -0.20866 -0.21005 -0.16157 -0.22510 -0.17371 -0.12899 -0.21499 -0.16054 -0.36257 -0.26460 

 Std. Dev.  0.06748  0.04222  0.03217  0.04240  0.04384  0.06298  0.04064  0.03985  0.04395  0.04549  0.05695  0.03346  0.04451  0.04757  0.05285  0.04366  0.04263  0.04457  0.06199  0.05056 

 Skewness  0.33157  0.06986  0.28733 -0.27229  0.05970 -0.28474 -0.14225 -0.06265 -0.07206  0.12747 -0.25002 -0.60626 -0.14578 -0.41347 -0.36505  0.23791 -0.35555 -0.40089 -0.67092 -0.78742 

 Kurtosis  4.38012  4.78357  5.22716  4.73558  4.64723  5.11601  3.53187  4.58449  4.77665  4.43347  4.34816  7.82378  3.74615  5.76030  4.46368  4.47594  5.33539  4.33932  7.37421  6.19422 
 
 Jarque-Bera  28.42667  38.80787  64.14730  40.11908  33.07250  58.22178  4.41149  30.63142  38.52444  25.70275  25.06947  299.96063  7.78122  100.67490  32.43913  29.15816  72.26142  29.54416  253.82792 153.78293

 Probability  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.11017  0.00000  0.00000  0.00000  0.00000  0.00000  0.02043  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000 

 Observations  291  291  291  291  291  291  291  291  291  291  291  291  291  291  291  291  291  291  291  291 
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Table 4. Correlation matrix. Database of weekly excesses. 
 PE_OLES_ BIMBOA GMODELOC  FEMSAUBD  CONTAL_ GEOB ARA_ WALMEXV SORIANAB COMERUBC ELEKTRA_  TELMEXL TELECOA1 TLEVICPO TVAZTCPO GFNORTEO GFINBURO GCARSOA1  ALFAA  CIEB  

PE_OLES_  1.00000                    

 -----                    

 -----                    

BIMBOA  0.07388 1.00000                   

 1.25934 -----                   

 0.20892 -----                   

GMODELOC  0.06770 0.01098 1.00000                  

 1.15351 0.18661 -----                   

 0.24965 0.85210 -----                   

FEMSAUBD  0.08813 0.27265 0.28998 1.00000                 

 1.50414 4.81761 5.15102 -----                  

 0.13364 0.00000 0.00000 -----                  

CONTAL_  0.16637 0.17642 0.13114 0.24059 1.00000                

 2.86830 3.04697 2.24879 4.21384 -----                

 0.00443 0.00253 0.02528 0.00003 -----                

GEOB  0.23536 0.12144 0.13121 0.31252 0.20611 1.00000               

 4.11680 2.07984 2.24994 5.59303 3.58078 -----               

 0.00005 0.03842 0.02521 0.00000 0.00040 -----               

ARA_  0.17883 0.15377 0.10738 0.26810 0.21062 0.36216 1.00000              

 3.08988 2.64558 1.83608 4.73082 3.66271 6.60519 -----              

 0.00220 0.00860 0.06737 0.00000 0.00030 0.00000 -----              

WALMEXV  0.04376 0.18287 0.24205 0.47802 0.19383 0.29720 0.20811 1.00000             

 0.74461 3.16218 4.24092 9.25176 3.35878 5.29148 3.61709 -----             

 0.45711 0.00173 0.00003 0.00000 0.00089 0.00000 0.00035 -----             

SORIANAB  0.06485 0.17714 0.31596 0.42333 0.16063 0.34535 0.24881 0.45888 1.00000            

 1.10474 3.05978 5.66125 7.94351 2.76664 6.25584 4.36709 8.77996 -----            

 0.27019 0.00242 0.00000 0.00000 0.00603 0.00000 0.00002 0.00000 -----            

COMERUBC  0.14451 0.25155 0.21339 0.33717 0.25854 0.27214 0.31989 0.33208 0.46391 1.00000           

 2.48268 4.41846 3.71321 6.08839 4.54991 4.80779 5.73981 5.98509 8.90238 -----           

 0.01361 0.00001 0.00025 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 -----           

ELEKTRA_  0.15622 0.19671 0.26286 0.40326 0.23685 0.38698 0.31547 0.34054 0.36223 0.38318 1.00000          

 2.68879 3.41072 4.63145 7.49157 4.14441 7.13454 5.65149 6.15729 6.60667 7.05233 -----           

 0.00759 0.00074 0.00001 0.00000 0.00004 0.00000 0.00000 0.00000 0.00000 0.00000 -----           

Notes: Number for each factor represent the Correlation, the value of the t-statistic and its corresponding p-value, respectively. 
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Table 5. Correlation matrix. Database of weekly excesses. (Cont.) 
 PE_OLES_ BIMBOA GMODELOC  FEMSAUBD  CONTAL_ GEOB ARA_ WALMEXV SORIANAB COMERUBC ELEKTRA_  TELMEXL TELECOA1 TLEVICPO TVAZTCPO GFNORTEO GFINBURO GCARSOA1  ALFAA  CIEB  

TELMEXL  0.10380 0.24022 0.30725 0.43403 0.17079 0.25606 0.32181 0.44976 0.40543 0.34954 0.37377 1.00000         

 1.77426 4.20691 5.48868 8.19023 2.94674 4.50316 5.77823 8.56070 7.53988 6.34228 6.85057 -----         

 0.07707 0.00003 0.00000 0.00000 0.00347 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 -----         

TELECOA1  0.11406 0.30155 0.29422 0.41324 0.19464 0.27313 0.31412 0.43248 0.42765 0.34308 0.40826 0.77570 1.00000        

 1.95169 5.37659 5.23335 7.71470 3.37336 4.82676 5.62467 8.15419 8.04261 6.20921 7.60282 20.89476 -----        

 0.05194 0.00000 0.00000 0.00000 0.00084 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -----        

TLEVICPO  0.11445 0.26769 0.31782 0.54722 0.25221 0.36955 0.31333 0.57489 0.48984 0.40585 0.43827 0.57568 0.55540 1.00000       

 1.95850 4.72319 5.69837 11.11467 4.43076 6.76100 5.60905 11.94433 9.55168 7.54923 8.28899 11.96889 11.35396 -----       

 0.05113 0.00000 0.00000 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -----       

TVAZTCPO  0.10454 0.21883 0.34081 0.38491 0.24024 0.39697 0.23543 0.45631 0.50264 0.42043 0.58110 0.46329 0.41222 0.57382 1.00000      

 1.78705 3.81252 6.16276 7.08976 4.20733 7.35269 4.11806 8.71771 9.88432 7.87739 12.13860 8.88715 7.69163 11.91120 -----      

 0.07498 0.00017 0.00000 0.00000 0.00003 0.00000 0.00005 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -----      

GFNORTEO  0.05394 0.09941 0.21936 0.34411 0.14871 0.35912 0.25219 0.38853 0.40029 0.38707 0.37083 0.37807 0.36633 0.40245 0.40059 1.00000     

 0.91833 1.69843 3.82230 6.23032 2.55656 6.54145 4.43043 7.16813 7.42576 7.13656 6.78818 6.94253 6.69277 7.47367 7.43238 -----     

 0.35921 0.09050 0.00016 0.00000 0.01108 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -----     

GFINBURO  0.08864 0.20314 0.10813 0.37862 0.14705 0.33840 0.29950 0.28420 0.38524 0.32040 0.30088 0.36175 0.42916 0.39056 0.29211 0.34350 1.00000    

 1.51281 3.52687 1.84913 6.95435 2.52739 6.11352 5.33637 5.03910 7.09693 5.74994 5.36344 6.59648 8.07739 7.21224 5.19227 6.21776 -----    

 0.13142 0.00049 0.06546 0.00000 0.01202 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -----    

GCARSOA1  0.05006 0.19144 0.28957 0.43990 0.25021 0.26862 0.30861 0.42919 0.47959 0.39975 0.42070 0.53006 0.58477 0.48365 0.46380 0.42568 0.45419 1.00000   

 0.85214 3.31589 5.14310 8.32723 4.39336 4.74070 5.51560 8.07798 9.29128 7.41380 7.88339 10.62673 12.25478 9.39376 8.89980 7.99724 8.66681 -----    

 0.39484 0.00103 0.00000 0.00000 0.00002 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -----    

ALFAA  0.10279 0.20839 0.26220 0.37730 0.28291 0.35005 0.33767 0.37809 0.38295 0.37515 0.45732 0.36292 0.39874 0.41932 0.43954 0.36342 0.33523 0.40611 1.00000  

 1.75678 3.62219 4.61902 6.92592 5.01423 6.35270 6.09862 6.94292 7.04740 6.87996 8.74210 6.62115 7.39161 7.85215 8.31894 6.63149 6.04902 7.55483 -----   

 0.08001 0.00034 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -----   

CIEB  0.11928 0.28735 0.25718 0.46064 0.29770 0.30564 0.29071 0.35675 0.51240 0.44455 0.34687 0.39077 0.38696 0.45623 0.45185 0.38166 0.47544 0.45882 0.36958 1.00000 

 2.04233 5.10003 4.52427 8.82255 5.30132 5.45697 5.16506 6.49191 10.14373 8.43681 6.28721 7.21701 7.13402 8.71575 8.61064 7.01963 9.18721 8.77840 6.76160 -----  

 0.04203 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -----  

Notes: Number for each factor represent the Correlation, the value of the t-statistic and its corresponding p-value, respectively. 
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Figure 1. Box plots. Database of weekly excesses. 
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Figure 2. Histograms. Database of weekly excesses. 
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Figure 3. Line plots (Multiple Graph). Database of weekly excesses. 
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Table 6. Correlation matrix. Database of daily returns. 
 PE_OLES_  KIMBERA BIMBOA GMODELOC  FEMSAUBD CONTAL_ CEMEXCP GEOB ARA_ WALMEXV SORIANAB COMERUBC  ELEKTRA_ TELMEXL TELECOA1 TLEVICPO TVAZTCPO GFNORTEO GFINBURO GCARSOA1  ALFAA  CIEB  

PE_OLES_  1.00000                      

 -----                       

 -----                       

KIMBERA  0.08800 1.00000                     

 3.31490 -----                     

 0.00094 -----                     

BIMBOA  0.11619 0.22692 1.00000                    

 4.38967 8.74302 -----                    

 0.00001 0.00000 -----                    

GMODELOC  0.10568 0.25877 0.15813 1.00000                   

 3.98767 10.05224 6.00909 -----                    

 0.00007 0.00000 0.00000 -----                    

FEMSAUBD  0.07556 0.26340 0.25771 0.30200 1.00000                  

 2.84340 10.24561 10.00809 11.88727 -----                  

 0.00453 0.00000 0.00000 0.00000 -----                  

CONTAL_  0.14488 0.18280 0.21139 0.19981 0.16677 1.00000                 

 5.49435 6.97699 8.11553 7.65168 6.34651 -----                 

 0.00000 0.00000 0.00000 0.00000 0.00000 -----                 

CEMEXCP  0.10004 0.27512 0.26690 0.26662 0.46625 0.22258 1.00000                

 3.77267 10.73778 10.39190 10.38022 19.77653 8.56687 -----                

 0.00017 0.00000 0.00000 0.00000 0.00000 0.00000 -----                

GEOB  0.12631 0.18008 0.19929 0.15316 0.27131 0.15258 0.27935 1.00000               

 4.77778 6.86934 7.63126 5.81577 10.57703 5.79313 10.91679 -----               

 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -----               

ARA_  0.09329 0.19280 0.21364 0.15923 0.27106 0.15208 0.29798 0.29579 1.00000              

 3.51582 7.37298 8.20601 6.05213 10.56673 5.77388 11.71338 11.61898 -----              

 0.00045 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -----              

WALMEXV  0.11131 0.29997 0.26303 0.36804 0.41829 0.20364 0.40155 0.28896 0.27398 1.00000             

 4.20273 11.79911 10.22993 14.85276 17.27979 7.80482 16.45232 11.32590 10.68979 -----             

 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -----             

SORIANAB  0.12055 0.28190 0.27005 0.30735 0.42666 0.19807 0.37946 0.30203 0.25609 0.45892 1.00000            

 4.55661 11.02489 10.52406 12.11959 17.70184 7.58242 15.38969 11.88858 9.94089 19.38156 -----            

 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -----            

Notes: Number for each factor represent the Correlation, the value of the t-statistic and its corresponding p-value, respectively. 
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Table 7. Correlation matrix. Database of daily returns. (Cont.) 
 PE_OLES_  KIMBERA BIMBOA GMODELOC  FEMSAUBD CONTAL_ CEMEXCP GEOB ARA_ WALMEXV SORIANAB COMERUBC  ELEKTRA_ TELMEXL TELECOA1 TLEVICPO TVAZTCPO GFNORTEO GFINBURO GCARSOA1  ALFAA  CIEB  

COMERUBC  0.10643 0.21505 0.21352 0.23462 0.30643 0.18424 0.32365 0.24512 0.22847 0.30638 0.35744 1.00000           

 4.01651 8.26276 8.20103 9.05664 12.07939 7.03373 12.83547 9.48700 8.80600 12.07706 14.36106 -----            

 0.00006 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -----            

ELEKTRA_  0.11521 0.21654 0.26344 0.26775 0.36937 0.19128 0.38246 0.30006 0.27216 0.37468 0.36831 0.32306 1.00000          

 4.35196 8.32282 10.24707 10.42779 14.91472 7.31254 15.53207 11.80317 10.61296 15.16405 14.86513 12.80915 -----          

 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -----          

TELMEXL  0.09541 0.29710 0.27497 0.31962 0.45830 0.19003 0.46224 0.27167 0.28747 0.45122 0.40081 0.30219 0.35920 1.00000         

 3.59658 11.67533 10.73125 12.65696 19.34864 7.26308 19.55988 10.59253 11.26208 18.97253 16.41603 11.89547 14.44233 -----         

 0.00033 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -----         

TELECOA1  0.10918 0.28945 0.29815 0.32544 0.42856 0.19149 0.40761 0.29011 0.30208 0.48384 0.44978 0.32916 0.38772 0.70269 1.00000        

 4.12127 11.34705 11.72047 12.91461 17.79810 7.32062 16.74925 11.37525 11.89069 20.74524 18.89677 13.07990 15.78305 37.05900 -----        

 0.00004 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -----        

TLEVICPO  0.08346 0.29138 0.25926 0.31792 0.49344 0.21484 0.48566 0.32879 0.35003 0.51154 0.45026 0.32101 0.45866 0.57431 0.52748 1.00000       

 3.14284 11.42943 10.07288 12.58225 21.28731 8.25406 20.84746 13.06381 14.02130 22.33863 18.92175 12.71851 19.36772 26.32407 23.29726 -----       

 0.00171 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -----       

TVAZTCPO  0.09362 0.23334 0.24327 0.28623 0.40879 0.20146 0.40042 0.27509 0.27216 0.43415 0.44161 0.30922 0.51318 0.46555 0.46083 0.59328 1.00000      

 3.52832 9.00409 9.41093 11.20911 16.80745 7.71751 16.39717 10.73659 10.61309 18.08381 18.46898 12.20087 22.43568 19.73839 19.48428 27.65428 -----      

 0.00043 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -----      

GFNORTEO  0.06104 0.26444 0.19913 0.26685 0.32858 0.12297 0.36597 0.29668 0.28942 0.36894 0.35861 0.32853 0.35744 0.35913 0.39230 0.38421 0.33491 1.00000     

 2.29479 10.28880 7.62469 10.38983 13.05425 4.64955 14.75589 11.65730 11.34564 14.89474 14.41518 13.05204 14.36126 14.43893 16.00348 15.61518 13.33698 -----     

 0.02189 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -----     

GFINBURO  0.04817 0.19056 0.23913 0.18532 0.27382 0.16145 0.30868 0.21541 0.26688 0.31389 0.31417 0.24294 0.29839 0.31931 0.37673 0.33153 0.28831 0.30653 1.00000    

 1.80971 7.28404 9.24094 7.07656 10.68306 6.13855 12.17719 8.27742 10.39093 12.40532 12.41743 9.39736 11.73114 12.64367 15.26051 13.18570 11.29813 12.08393 -----    

 0.07055 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -----    

GCARSOA1  0.09785 0.29793 0.25616 0.28991 0.39377 0.19723 0.33744 0.23906 0.25608 0.45260 0.44163 0.31062 0.37943 0.43384 0.49344 0.43584 0.39107 0.33434 0.37255 1.00000   

 3.68918 11.71131 9.94369 11.36634 16.07445 7.54919 13.45086 9.23802 9.94056 19.04557 18.47020 12.26186 15.38812 18.06794 21.28739 18.17064 15.94383 13.31152 15.06390 -----    

 0.00023 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -----    

ALFAA  0.08635 0.22497 0.25787 0.26824 0.33961 0.16109 0.35772 0.27827 0.26275 0.37500 0.34911 0.31172 0.38543 0.37914 0.42423 0.41191 0.40359 0.31176 0.28687 0.37604 1.00000  

 3.25230 8.66385 10.01471 10.44813 13.54856 6.12460 14.37403 10.87080 10.21808 15.17886 13.97910 12.31011 15.67368 15.37441 17.57886 16.96192 16.55182 12.31194 11.23665 15.22777 -----   

 0.00117 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -----   

CIEB  0.11027 0.34282 0.29633 0.24188 0.36495 0.20954 0.32736 0.26959 0.29054 0.34551 0.39214 0.29370 0.33657 0.33713 0.38692 0.37881 0.36338 0.32331 0.32958 0.38282 0.29236 1.00000 

 4.16307 13.69348 11.64216 9.35372 14.70861 8.04115 12.99991 10.50488 11.39365 13.81530 15.99566 11.52918 13.41149 13.43692 15.74475 15.35903 14.63563 12.82015 13.09883 15.54928 11.47147 -----  

 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -----  

Notes: Number for each factor represent the Correlation, the value of the t-statistic and its corresponding p-value, respectively. 
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Table 8 Descriptive statistics. Database of daily excesses. 
 PE_OLES_ KIMBERA BIMBOA GMODELOCFEMSAUBDCONTAL_CEMEXCP GEOB ARA_ WALMEXVSORIANABCOMERUBCELEKTRA_TELMEXLTELECOA1TLEVICPOTVAZTCPOGFNORTEOGFINBUROGCARSOA1 ALFAA CIEB 

 Mean  0.00080 -0.00002  0.00040  0.00014  0.00023  0.00016  0.00055  0.00147  0.00080  0.00045 -0.00008  0.00026  0.00029 -0.00000  0.00003 -0.00006 -0.00032  0.00117  0.00028  0.00046  0.00050 -0.00063 

 Median -0.00021 -0.00016 -0.00020 -0.00020 -0.00021 -0.00021 -0.00015 -0.00012 -0.00021  0.00039 -0.00019 -0.00024 -0.00003 -0.00017  0.00047  0.00044 -0.00023 -0.00014 -0.00020 -0.00012 -0.00014 -0.00022 

 Maximum  0.17239  0.07119  0.13392  0.08276  0.08348  0.10427  0.07044  0.13464  0.07363  0.10401  0.07475  0.12593  0.12917  0.09005  0.09407  0.11882  0.10065  0.12945  0.10831  0.08819  0.11830  0.09282 

 Minimum -0.21392 -0.12370 -0.09798 -0.07766 -0.13401 -0.12475 -0.07485 -0.20780 -0.10847 -0.08897 -0.08545 -0.08636 -0.13929 -0.10024 -0.08464 -0.15498 -0.19479 -0.09729 -0.09904 -0.10502 -0.12970 -0.17657 

 Std. Dev.  0.02950  0.01513  0.01866  0.01579  0.01747  0.02111  0.01614  0.02455  0.01895  0.01872  0.01859  0.02045  0.02447  0.01561  0.01954  0.02197  0.02443  0.02050  0.01935  0.01922  0.02457  0.02131 

 Skewness -0.36953 -0.56206  0.37445  0.16696 -0.25673 -0.19616  0.13159 -0.11444 -0.04955  0.11425 -0.08832  0.42730 -0.12661 -0.11298 -0.12422 -0.11223 -0.50827  0.27160  0.22082 -0.23650 -0.12146 -0.66967 

 Kurtosis  10.13262  9.03499  7.62115  5.64060  7.20681  6.79993  4.21518  10.19755  5.94021  5.94647  4.62252  6.44672  6.48541  6.05595  4.78902  6.66666  8.02482  6.77663  5.05710  6.17743  6.39550  9.97069 
 
 Jarque-Bera  3020.95408 2213.97563 1287.55675  416.20179  1055.20377  857.36127  90.82310  3046.60283 508.46176  513.11548  156.49754  740.85038  717.46530  551.65619  191.66132  792.82003  1544.07832  855.28213  260.06846  606.28756  680.81895  2960.07901

 Probability  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000 

 Observations  1410  1410  1410  1410  1410  1410  1410  1410  1410  1410  1410  1410  1410  1410  1410  1410  1410  1410  1410  1410  1410  1410 
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Table 9. Correlation matrix. Database of daily excesses. 
 PE_OLES_  KIMBERA BIMBOA GMODELOC  FEMSAUBD CONTAL_ CEMEXCP GEOB ARA_ WALMEXV SORIANAB COMERUBC  ELEKTRA_ TELMEXL TELECOA1 TLEVICPO TVAZTCPO GFNORTEO GFINBURO GCARSOA1  ALFAA  CIEB  

PE_OLES_  1.000000                      

 -----                       

 -----                       

KIMBERA  0.089879 1.000000                     

 3.386251 -----                     

 0.0007 -----                     

BIMBOA  0.114996 0.227198 1.000000                    

 4.343832 8.754162 -----                    

 0.0000 0.0000 -----                    

GMODELOC  0.105648 0.258953 0.158338 1.000000                   

 3.986583 10.05993 6.017273 -----                    

 0.0001 0.0000 0.0000 -----                    

FEMSAUBD  0.072823 0.264251 0.257976 0.302320 1.000000                  

 2.739824 10.28102 10.01927 11.90095 -----                  

 0.0062 0.0000 0.0000 0.0000 -----                  

CONTAL_  0.144354 0.182615 0.211647 0.199843 0.167337 1.000000                 

 5.473973 6.969537 8.125780 7.653154 6.368857 -----                 

 0.0000 0.0000 0.0000 0.0000 0.0000 -----                 

CEMEXCP  0.102073 0.274756 0.267749 0.267085 0.468444 0.222634 1.000000                

 3.850232 10.72241 10.42754 10.39969 19.89556 8.569026 -----                

 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 -----                

GEOB  0.130537 0.180426 0.199452 0.153612 0.272029 0.152246 0.278698 1.000000               

 4.940465 6.883151 7.637541 5.833252 10.60743 5.780147 10.88913 -----               

 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -----               

ARA_  0.096402 0.192777 0.213770 0.159417 0.271811 0.151719 0.297309 0.296325 1.000000              

 3.634240 7.371924 8.211188 6.059366 10.59829 5.759694 11.68435 11.64196 -----              

 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -----              

WALMEXV  0.114736 0.299690 0.263458 0.368378 0.419870 0.203328 0.400557 0.288991 0.273703 1.000000             

 4.333914 11.78713 10.24787 14.86835 17.35918 7.792300 16.40366 11.32722 10.67798 -----             

 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -----             

SORIANAB  0.119704 0.283219 0.270183 0.307852 0.426170 0.198510 0.381626 0.303794 0.257612 0.461111 1.000000            

 4.524242 11.08102 10.52976 12.14128 17.67691 7.600006 15.49238 11.96485 10.00412 19.49912 -----            

 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -----            

Notes: Number for each factor represent the Correlation, the value of the t-statistic and its corresponding p-value, respectively. 
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Table 10. Correlation matrix. Database of daily excesses. (Cont.) 
 PE_OLES_  KIMBERA BIMBOA GMODELOC  FEMSAUBD  CONTAL_ CEMEXCP GEOB ARA_ WALMEXV SORIANAB COMERUBC  ELEKTRA_ TELMEXL TELECOA1 TLEVICPO TVAZTCPO GFNORTEO GFINBURO GCARSOA1  ALFAA  CIEB  

COMERUBC  0.107086 0.215941 0.213334 0.234814 0.305778 0.184219 0.324848 0.246816 0.229732 0.307891 0.357506 1.000000           

 4.041459 8.298626 8.193622 9.064459 12.05100 7.032867 12.88838 9.557021 8.857188 12.14299 14.36414 -----            

 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -----            

ELEKTRA_  0.114912 0.216045 0.264377 0.268160 0.371371 0.191644 0.381988 0.298412 0.270986 0.373428 0.369628 0.323294 1.000000          

 4.340638 8.302796 10.28628 10.44480 15.00839 7.326909 15.50960 11.73196 10.56355 15.10497 14.92679 12.81950 -----          

 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -----          

TELMEXL  0.098336 0.296805 0.275706 0.320095 0.460398 0.189914 0.461438 0.271397 0.286996 0.450402 0.403186 0.303680 0.358347 1.000000         

 3.707868 11.66267 10.76255 12.67808 19.46090 7.258297 19.51671 10.58084 11.24196 18.92930 16.53216 11.95990 14.40289 -----         

 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -----         

TELECOA1  0.110840 0.289755 0.298177 0.325601 0.428795 0.191336 0.407781 0.290893 0.302537 0.484273 0.450605 0.329859 0.387250 0.703195 1.000000        

 4.184857 11.35989 11.72182 12.92179 17.81026 7.314687 16.75789 11.40863 11.91033 20.76941 18.94003 13.11123 15.76063 37.11153 -----        

 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -----        

TLEVICPO  0.084321 0.291223 0.260098 0.318426 0.495236 0.215103 0.485437 0.327976 0.349440 0.510898 0.451810 0.321704 0.458615 0.573985 0.527425 1.000000       

 3.175298 11.42279 10.10760 12.60448 21.39016 8.264846 20.83475 13.02735 13.99438 22.30071 19.00363 12.74913 19.36539 26.30202 23.29412 -----       

 0.0015 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -----       

TVAZTCPO  0.092981 0.233320 0.243894 0.286567 0.409884 0.201807 0.400688 0.274362 0.271713 0.433842 0.442281 0.309249 0.513620 0.465630 0.460564 0.593561 1.000000      

 3.504144 9.003422 9.436698 11.22366 16.86175 7.731529 16.41006 10.70578 10.59413 18.06816 18.50408 12.20218 22.46193 19.74284 19.46980 27.67479 -----      

 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -----      

GFNORTEO  0.060855 0.264988 0.199044 0.266935 0.328200 0.123000 0.367033 0.297676 0.290164 0.370055 0.358609 0.328560 0.357966 0.360329 0.392666 0.384951 0.335139 1.000000     

 2.287710 10.31187 7.621306 10.39342 13.03734 4.650685 14.80560 11.70018 11.37742 14.94678 14.41496 13.05337 14.38533 14.49441 16.02092 15.65075 13.34744 -----     

 0.0223 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -----     

GFINBURO  0.049076 0.189660 0.240386 0.185800 0.276709 0.161711 0.307449 0.213420 0.265284 0.311900 0.316445 0.243771 0.298252 0.317654 0.376395 0.331166 0.288902 0.307594 1.000000    

 1.843729 7.248240 9.292565 7.095384 10.80492 6.148851 12.12374 8.197100 10.32426 12.31801 12.51731 9.431630 11.72506 12.57051 15.24468 13.16958 11.32342 12.13004 -----    

 0.0654 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -----    

GCARSOA1  0.096486 0.298240 0.256582 0.290193 0.394233 0.197624 0.338384 0.239018 0.256143 0.453029 0.441794 0.310373 0.380440 0.434666 0.493308 0.436684 0.391703 0.334280 0.374020 1.000000   

 3.637433 11.72452 9.961275 11.37867 16.09660 7.564716 13.49329 9.236475 9.943045 19.06815 18.47875 12.25126 15.43609 18.11043 21.28008 18.21426 15.97450 13.30891 15.13283 -----    

 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -----    

ALFAA  0.087169 0.224747 0.258863 0.268838 0.341698 0.161445 0.357305 0.277188 0.261985 0.374068 0.350819 0.312465 0.385429 0.378501 0.424166 0.411854 0.404027 0.312617 0.286409 0.377078 1.000000  

 3.283371 8.654651 10.05620 10.47327 13.64279 6.138476 14.35488 10.82520 10.18633 15.13505 14.05731 12.34274 15.67355 15.34423 17.57554 16.95929 16.57334 12.34940 11.21694 15.27696 -----   

 0.0011 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -----   

CIEB  0.109251 0.343902 0.296261 0.242113 0.364232 0.209810 0.329255 0.271180 0.291865 0.347446 0.391805 0.293582 0.337753 0.339216 0.387578 0.380199 0.363939 0.323136 0.331699 0.382818 0.293897 1.000000 

 4.124163 13.74258 11.63921 9.363457 14.67525 8.051978 13.08429 10.57169 11.45029 13.90352 15.97940 11.52399 13.46486 13.53079 15.77635 15.42466 14.66167 12.81250 13.19339 15.54909 11.53753 -----  

 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -----  

Notes: Number for each factor represent the Correlation, the value of the t-statistic and its corresponding p-value, respectively. 

 

  



APPENDIX 
 

476 
 

Figure 4. Box plots. Database of daily excesses. 
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Figure 5. Histograms. Database of daily excesses. 
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Figure 6. Line plots (Multiple Graph). Database of daily excesses. 
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Appendix_2 (Chapter 4) Figure 1. Principal Component Analysis. Observed and reproduced variables. Line Plots.  
Database of weekly returns. Nine components extracted. 

  

  

Note: Blue solid lines = Observed variables. Red dashed lines = Reproduced variables. 
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Figure 2. Principal Component Analysis. Observed and reproduced variables. Line Plots.  

Database of weekly excesses. Nine components extracted. 
  

  

Note: Blue solid lines = Observed variables. Red dashed lines = Reproduced variables. 
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Figure 3. Principal Component Analysis. Observed and reproduced variables. Line Plots.  
Database of daily returns. Nine components extracted. 

  

  

Note: Blue solid lines = Observed variables. Red dashed lines = Reproduced variables. 
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Figure 4. Principal Component Analysis. Observed and reproduced variables. Line Plots. 
 Database of daily returns. Nine components extracted. (Cont.) 

 

Note: Blue solid lines = Observed variables. Red dashed lines = Reproduced variables. 
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Figure 5. Principal Component Analysis. Observed and reproduced variables. Line Plots.  
Database of daily excesses. Nine components extracted. 

  

  

Note: Blue solid lines = Observed variables. Red dashed lines = Reproduced variables. 
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Figure 6. Principal Component Analysis. Observed and reproduced variables. Line Plots.  

Database of daily excesses. Nine components extracted. (Cont.) 
 

Note: Blue solid lines = Observed variables. Red dashed lines = Reproduced variables. 
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Figure 7. Factor Analysis. Observed and reproduced variables. Line Plots.  
Database of weekly returns. Nine factors extracted. 

  

  

Note: Blue solid lines = Observed variables. Red dashed lines = Reproduced variables. 
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Figure 8. Factor Analysis. Observed and reproduced variables. Line Plots.  
Database of weekly excesses. Nine factors extracted. 

  

  

Note: Blue solid lines = Observed variables. Red dashed lines = Reproduced variables. 

  

0 50 100 150 200 250 300
-0.5

0
0.5

PE&OLES* 

0 50 100 150 200 250 300
-0.2

0
0.2

BIMBOA 

0 50 100 150 200 250 300
-0.2

0
0.2

GMODELOC 

0 50 100 150 200 250 300
-0.2

0
0.2

FEMSAUBD 

0 50 100 150 200 250 300
-0.2

0
0.2

CONTAL* 

0 50 100 150 200 250 300
-0.5

0
0.5

GEOB 

0 50 100 150 200 250 300
-0.2

0
0.2

ARA* 

0 50 100 150 200 250 300
-0.2

0
0.2

WALMEXV

0 50 100 150 200 250 300
-0.2

0
0.2

SORIANAB 

0 50 100 150 200 250 300
-0.2

0
0.2

COMERUBC 

0 50 100 150 200 250 300
-0.5

0
0.5

ELEKTRA* 

0 50 100 150 200 250 300
-0.5

0
0.5

TELMEXL 

0 50 100 150 200 250 300
-0.2

0
0.2

TELECOA1 

0 50 100 150 200 250 300
-0.5

0
0.5

TLEVICPO

0 50 100 150 200 250 300
-0.2

0
0.2

TVAZTCPO 

0 50 100 150 200 250 300
-0.2

0
0.2

GFNORTEO 

0 50 100 150 200 250 300
-0.5

0
0.5

GFINBURO 

0 50 100 150 200 250 300
-0.2

0
0.2

GCARSOA1 

0 50 100 150 200 250 300
-0.5

0
0.5

ALFAA 

0 50 100 150 200 250 300
-0.5

0
0.5

CIEB 



APPENDIX 
 

487 
 

Figure 9. Factor Analysis. Observed and reproduced variables. Line Plots.  
Database of daily returns. Nine factors extracted. 

  

  

Note: Blue solid lines = Observed variables. Red dashed lines = Reproduced variables. 

  

0 50 100 150 200 250 300 350 400 450 500
-0.5

0
0.5

PE&OLES* 

0 50 100 150 200 250 300 350 400 450 500
-0.2

0
0.2

KIMBERA 

0 50 100 150 200 250 300 350 400 450 500
-0.2

0
0.2

BIMBOA 

0 50 100 150 200 250 300 350 400 450 500
-0.1

0
0.1

GMODELOC 

0 50 100 150 200 250 300 350 400 450 500
-0.2

0
0.2

FEMSAUBD 

0 50 100 150 200 250 300 350 400 450 500
-0.2

0
0.2

CONTAL* 

0 50 100 150 200 250 300 350 400 450 500
-0.1

0
0.1

CEMEXCP 

0 50 100 150 200 250 300 350 400 450 500
-0.5

0
0.5

GEOB 

0 50 100 150 200 250 300 350 400 450 500
-0.2

0
0.2

ARA* 

0 50 100 150 200 250 300 350 400 450 500
-0.2

0
0.2

WALMEXV

0 50 100 150 200 250 300 350 400 450 500
-0.1

0
0.1

SORIANAB 

0 50 100 150 200 250 300 350 400 450 500
-0.2

0
0.2

COMERUBC 

0 50 100 150 200 250 300 350 400 450 500
-0.2

0
0.2

ELEKTRA* 

0 50 100 150 200 250 300 350 400 450 500
-0.1

0
0.1

TELMEXL 

0 50 100 150 200 250 300 350 400 450 500
-0.2

0
0.2

TELECOA1 

0 50 100 150 200 250 300 350 400 450 500
-0.2

0
0.2

TLEVICPO

0 50 100 150 200 250 300 350 400 450 500
-0.2

0
0.2

TVAZTCPO 

0 50 100 150 200 250 300 350 400 450 500
-0.2

0
0.2

GFNORTEO 

0 50 100 150 200 250 300 350 400 450 500
-0.1

0
0.1

GFINBURO 

0 50 100 150 200 250 300 350 400 450 500
-0.1

0
0.1

GCARSOA1 



APPENDIX 
 

488 
 

 
Figure 10. Factor Analysis. Observed and reproduced variables. Line Plots.  

Database of daily returns. Nine factors extracted. (Cont.) 
 

Note: Blue solid lines = Observed variables. Red dashed lines = Reproduced variables. 
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Figure 11. Factor Analysis. Observed and reproduced variables. Line Plots.  
Database of daily excesses. Nine factors extracted. 

  

  

Note: Blue solid lines = Observed variables. Red dashed lines = Reproduced variables. 
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Figure 12. Factor Analysis. Observed and reproduced variables. Line Plots.  

Database of daily excesses. Nine factors extracted. (Cont.) 
 

Note: Blue solid lines = Observed variables. Red dashed lines = Reproduced variables. 
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Appendix_2 (Chapter 5) Figure 1. Independent Component Analysis. Observed and reproduced variables. Line Plots.  
Database of weekly returns. Nine components extracted. 

  

  

Note: Blue solid lines = Observed variables. Red dashed lines = Reproduced variables. 
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Figure 2. Independent Component Analysis. Observed and reproduced variables. Line Plots.  
Database of weekly excesses. Nine components extracted. 

  

  

Note: Blue solid lines = Observed variables. Red dashed lines = Reproduced variables. 
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Figure 3. Independent Component Analysis. Observed and reproduced variables. Line Plots.  
Database of daily returns. Nine components extracted. 

  

  

Note: Blue solid lines = Observed variables. Red dashed lines = Reproduced variables. 
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Figure 4. Independent Component Analysis. Observed and reproduced variables. Line Plots.  

Database of daily returns. Nine components extracted. (Cont.) 
 

Note: Blue solid lines = Observed variables. Red dashed lines = Reproduced variables. 
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Figure 5. Independent Component Analysis. Observed and reproduced variables.  
Line Plots. Database of daily excesses. Nine components extracted. 

  

  

Note: Blue solid lines = Observed variables. Red dashed lines = Reproduced variables. 
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Figure 6. Independent Component Analysis. Observed and reproduced variables. Line Plots.  

Database of daily excesses. Nine components extracted. (Cont.) 
 

Note: Blue solid lines = Observed variables. Red dashed lines = Reproduced variables. 
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Appendix_2 (Chapter 6) Figure 1. Neural Networks Principal Component Analysis. Observed and reproduced variables. Line Plots.  
Database of weekly returns. Nine components extracted. 

  

  

Note: Blue solid lines = Observed variables. Red dashed lines = Reproduced variables. 
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Figure 2. Neural Networks Principal Component Analysis. Observed and reproduced variables. Line Plots.  
Database of weekly excesses. Nine components extracted. 

  

  

Note: Blue solid lines = Observed variables. Red dashed lines = Reproduced variables. 
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Figure 3. Neural Networks Principal Component Analysis. Observed and reproduced variables. Line Plots.  
Database of daily returns. Nine components extracted. 

  

  

Note: Blue solid lines = Observed variables. Red dashed lines = Reproduced variables. 
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Figure 4. Neural Networks Principal Component Analysis. Observed and reproduced variables. Line Plots. 

Database of daily returns. Nine components extracted. (Cont.) 
 

Note: Blue solid lines = Observed variables. Red dashed lines = Reproduced variables. 
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Figure 5. Neural Networks Principal Component Analysis. Observed and reproduced variables. Line Plots.  
Database of daily excesses. Nine components extracted. 

  

  

Note: Blue solid lines = Observed variables. Red dashed lines = Reproduced variables. 
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Figure 6. Neural Networks Principal Component Analysis. Observed and reproduced variables. Line Plots.  
Database of daily excesses. Nine components extracted. (Cont.) 

 

Note: Blue solid lines = Observed variables. Red dashed lines = Reproduced variables. 

  

0 500 1000 1500
-0.2

0
0.2

ALFAA 

0 500 1000 1500
-0.2

0
0.2

CIEB 



APPENDIX 
 

503 
 

Appendix_2 (Chapter 7) Figure 1. Observed vs. reconstructed returns. Database of weekly returns. Nine underlying factors extracted. 
Line plots. 
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Figure 2. Observed vs. reconstructed returns. Database of weekly returns. Nine underlying factors extracted. Line plots. (Cont.) 
  

  

Notes: 
---------- Observed returns. 
---------- PCA reconstruction. 
---------- FA reconstruction. 
---------- ICA reconstruction. 
---------- NNPCA reconstruction. 
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Figure 3. Observed vs. reconstructed returns. Database of weekly excesses. Nine underlying factors extracted. Line plots. 
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Figure 4. Observed vs. reconstructed returns. Database of weekly excesses. Nine underlying factors extracted. Line plots. (Cont.) 
  

  

Notes: 
---------- Observed returns. 
---------- PCA reconstruction. 
---------- FA reconstruction. 
---------- ICA reconstruction. 
---------- NNPCA reconstruction. 
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Figure 5. Observed vs. reconstructed returns. Database of daily returns. Nine underlying factors extracted. Line plots. 
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Figure 6. Observed vs. reconstructed returns. Database of daily returns. Nine underlying factors extracted. Line plots. (Cont.) 
  

  

  
Notes: 
---------- Observed returns. 
---------- PCA reconstruction. 
---------- FA reconstruction. 
---------- ICA reconstruction. 
---------- NNPCA reconstruction. 
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Figure 7. Observed vs. reconstructed returns. Database of daily excesses. Nine underlying factors extracted. Line plots. 
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Figure 8. Observed vs. reconstructed returns. Database of daily excesses. Nine underlying factors extracted. Line plots. (Cont.) 
  

  

  
Notes: 
---------- Observed returns. 
---------- PCA reconstruction. 
---------- FA reconstruction. 
---------- ICA reconstruction. 
---------- NNPCA reconstruction. 
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Appendix_2 (Chapter 7)  
 
 

Table 1.  Measures of reconstruction accuracy. Database of weekly returns.  
Nine underlying factors extracted by Principal Component Analysis. 

 
  PE&OLES*  BIMBOA  GMODELOC FEMSAUBD  CONTAL*  GEOB  ARA*  WALMEXV SORIANAB COMERUBC ELEKTRA* TELMEXL  TELECOA1  TLEVICPO TVAZTCPO GFNORTEO GFINBURO GCARSOA1 ALFAA  CIEB  MEAN MEDIAN 

STD. 
DEV. 

MAE 0.00238 0.01233 0.01987 0.02200 0.00755 0.00683 0.02253 0.01934 0.02038 0.02194 0.01123 0.01411 0.01568 0.01807 0.01782 0.02383 0.02062 0.01942 0.00321 0.01865 0.01589 0.01836 0.00654 

MAPE 24.38628 148.86221 148.64425 229.40075 83.01079 47.06025 117.84273 163.87517 131.15406 151.01142 82.64110 120.08024 130.25326 159.93665 89.10080 113.61154 172.80171 156.55299 31.39494 217.58479 125.96030 130.70366 54.93866 

RMSE 0.00304 0.01564 0.02689 0.02984 0.00982 0.00865 0.02920 0.02557 0.02607 0.02951 0.01428 0.01853 0.01996 0.02402 0.02336 0.03042 0.02632 0.02553 0.00407 0.02411 0.02074 0.02407 0.00867 

U-Theil 0.02256 0.19212 0.54068 0.41242 0.11358 0.06861 0.42159 0.36282 0.33032 0.36969 0.12762 0.30259 0.23711 0.27196 0.23387 0.40202 0.34554 0.31525 0.03288 0.25417 0.26787 0.28727 0.14074 

CM 
145 3 129 28 102 52 125 30 139 15 165 7 132 36 125 29 125 29 120 32 140 14 125 23 134 19 142 16 130 20 139 29 130 28 134 32 152 3 131 22         

 
  

1 142 23 111 46 91 43 93 14 123 8 111 35 88 41 96 31 106 35 104 18 119 35 108 24 114 21 112 20 121 33 90 36 97 31 94 5 131 26 112         
 

  

CR 0.01375 0.17526 0.33677 0.25086 0.09966 0.05155 0.24399 0.24055 0.20619 0.23024 0.10997 0.19931 0.14777 0.12715 0.13746 0.21306 0.21993 0.21649 0.02749 0.16495 0.17062 0.18729 0.08203 

χ2 275.27103 122.42915 30.93801 71.35575 186.28856 232.18997 72.93307 77.69004 99.90738 84.31807 176.70721 105.72297 144.04897 160.86158 152.88207 91.83172 89.83217 90.83136 259.77247 130.24356     
 

p-value 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000     
 

DA -0.29260 -2.21428 -5.47305 -2.79415 -1.44879 1.56178 -2.77241 -2.77776 -2.64515 -3.36584 -0.83205 -2.52004 -1.42144 -0.66754 -2.16830 -1.37420 -2.43859 -1.86200 0.68663 -2.06638     
 

p-value 0.38491 0.01340 0.00000 0.00260 0.07370 0.94083 0.00278 0.00274 0.00408 0.00038 0.20269 0.00587 0.07759 0.25221 0.01507 0.08469 0.00737 0.03130 0.75384 0.01940       

Notes: 
           

  

MAE: Mean absolute error. 
         

  

MAPE: Mean absolute percentage error. 
         

  

RMSE: Root mean square error. 
         

  

U-Theil: Theil's U statistic. 
         

  

CM: Confusion matrix. 
         

  

CR: Confusion rate 
          

  

χ2: Chi-squared independence contrast statistic. 
         

  

DA: Pesaran & Timmerman's directional accuracy statistic. 
        

  

Marked cells represents the best results for each statistic across the four techniques.                                                                
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Table 2. Measures of reconstruction accuracy. Database of weekly returns.  
Nine underlying factors extracted by Factor Analysis. 

 
  PE&OLES*  BIMBOA  GMODELOC  FEMSAUBD  CONTAL*  GEOB  ARA*  WALMEXV SORIANAB COMERUBC  ELEKTRA* TELMEXL  TELECOA1  TLEVICPO TVAZTCPO  GFNORTEO GFINBURO  GCARSOA1  ALFAA  CIEB  MEAN MEDIAN 

STD. 
DEV. 

MAE 0.04365 0.02420 0.00186 0.01848 0.02577 0.01313 0.02513 0.01523 0.02101 0.00226 0.02511 0.01247 0.00385 0.01656 0.00035 0.02380 0.02227 0.01895 0.03045 0.01001 0.01773 0.01872 0.01081 

MAPE 236.33019 211.10153 26.88912 183.94481 194.30879 111.29968 138.09238 136.07734 146.49039 23.49442 146.72212 109.64181 30.34334 152.26727 2.18568 118.31492 167.65046 162.56171 234.03268 98.90365 131.53262 142.29139 68.61165 

RMSE 0.05627 0.03271 0.00186 0.02481 0.03448 0.01606 0.03201 0.02033 0.02688 0.00226 0.03198 0.01701 0.00507 0.02181 0.00038 0.03031 0.02902 0.02389 0.04082 0.01309 0.02305 0.02435 0.01418 

U-Theil 0.53516 0.47522 0.02888 0.32201 0.48550 0.12671 0.47565 0.27227 0.34288 0.02488 0.30570 0.27352 0.05729 0.24323 0.00357 0.39229 0.39206 0.28960 0.37273 0.13186 0.27755 0.29765 0.16621 

CM 
106 42 108 49 154 0 135 20 123 31 166 6 145 23 135 19 130 24 152 0 134 20 132 16 150 3 145 13 145 5 155 13 130 28 141 25 134 21 135 18         

 
  

67 76 46 88 6 131 35 101 49 88 27 92 48 75 40 97 33 104 8 131 47 90 29 114 6 132 24 109 0 141 55 68 51 82 33 92 54 82 16 122         
 

  

CR 0.37457 0.32646 0.02062 0.18900 0.27491 0.11340 0.24399 0.20275 0.19588 0.02749 0.23024 0.15464 0.03093 0.12715 0.01718 0.23368 0.27148 0.19931 0.25773 0.11684 0.18041 0.19759 0.10329 

χ2 18.50807 34.46063 267.82089 112.28480 58.34573 171.61811 71.08423 103.37939 107.09630 260.53921 85.66236 139.72667 256.09701 161.21623 271.66644 79.91704 59.27951 101.64309 69.22332 170.71901       

p-value 0.00002 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000       

DA -5.02647 -4.81617 0.58448 -1.73887 -3.20851 1.46967 -1.56318 -1.53731 -2.41809 0.15940 -1.70586 -1.81193 0.47465 -0.36111 -0.17677 -0.49977 -2.58314 -1.16554 -1.83988 -1.58885       

p-value 0.00000 0.00000 0.72055 0.04103 0.00067 0.92917 0.05901 0.06211 0.00780 0.56332 0.04402 0.03500 0.68248 0.35901 0.42984 0.30862 0.00490 0.12190 0.03289 0.05605       

Notes:   

MAE: Mean absolute error.   

MAPE: Mean absolute percentage error.   

RMSE: Root mean square error.   

U-Theil: Theil's U statistic.   

CM: Confusion matrix.   

CR: Confusion rate   

χ2: Chi-squared independence contrast statistic.   

DA: Pesaran & Timmerman's directional accuracy statistic.   

Marked cells represents the best results for each statistic across the four techniques.                                                                
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Table 3. Measures of reconstruction accuracy. Database of weekly returns.  
Nine underlying factors extracted by Independent Component Analysis. 

 
  PE&OLES*  BIMBOA  GMODELOC  FEMSAUBD  CONTAL*  GEOB  ARA*  WALMEXV SORIANAB  COMERUBC  ELEKTRA*  TELMEXL  TELECOA1  TLEVICPO TVAZTCPO  GFNORTEO GFINBURO  GCARSOA1  ALFAA  CIEB  MEAN MEDIAN 

STD. 
DEV. 

MAE 0.00837 0.02926 0.02636 0.02197 0.01946 0.02418 0.02963 0.02481 0.02822 0.02695 0.02143 0.01419 0.01784 0.02053 0.01209 0.02534 0.02327 0.02115 0.01221 0.01776 0.02125 0.02170 0.00604 

MAPE 64.75006 295.93277 244.94080 160.38970 203.12454 136.97762 151.38348 139.91001 155.47398 167.36545 108.31655 128.14276 113.14190 150.83357 66.18740 122.04305 214.71830 134.36152 90.50956 165.42599 150.69645 145.37179 56.51906 

RMSE 0.01075 0.03781 0.03396 0.02886 0.02598 0.03192 0.03816 0.03253 0.03685 0.03591 0.02737 0.01833 0.02243 0.02847 0.01553 0.03167 0.03064 0.02831 0.01605 0.02341 0.02775 0.02866 0.00787 

U-Theil 0.08199 0.48858 0.65436 0.42004 0.27455 0.30371 0.61847 0.55591 0.56802 0.51805 0.28269 0.28687 0.29170 0.33545 0.14752 0.42003 0.32217 0.38563 0.14042 0.25837 0.36773 0.32881 0.16104 

CM 
139 9 95 62 68 86 114 41 126 28 149 23 109 59 112 42 97 57 107 45 124 30 125 23 127 26 140 18 134 16 137 31 133 25 128 38 138 17 132 21 

   
  

10 133 43 91 50 87 39 97 27 110 27 92 39 84 55 82 46 91 38 101 19 118 35 108 29 109 30 103 10 131 37 86 41 92 29 96 8 128 30 108 
   

  

CR 0.06529 0.36082 0.46735 0.27491 0.18900 0.17182 0.33677 0.33333 0.35395 0.28522 0.16838 0.19931 0.18900 0.16495 0.08935 0.23368 0.22680 0.23024 0.08591 0.17526 0.23007 0.21306 0.10320 

χ2 219.94528 23.41937 1.76444 58.49817 112.17316 120.30600 31.26769 31.47260 25.09213 53.84063 128.86890 105.72297 112.11844 129.69669 196.65352 78.23813 85.49444 83.41037 200.33935 122.44880 
  

p-value 0.00000 0.00000 0.18407 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
  

DA -0.87402 -6.12856 -9.26425 -3.86141 -3.09519 -0.41152 -5.13480 -4.32960 -6.40265 -4.63846 -2.51230 -2.63807 -2.23363 -1.20333 -1.82230 -2.00389 -2.15205 -2.33318 -1.00171 -2.07532 
  

p-value 0.19105 0.00000 0.00000 0.00006 0.00098 0.34035 0.00000 0.00001 0.00000 0.00000 0.00600 0.00417 0.01275 0.11443 0.03421 0.02254 0.01570 0.00982 0.15824 0.01898       

Notes:   

MAE: Mean absolute error.   

MAPE: Mean absolute percentage error.   

RMSE: Root mean square error.   

U-Theil: Theil's U statistic.   

CM: Confusion matrix.   

CR: Confusion rate   

χ2: Chi-squared independence contrast statistic.   

DA: Pesaran & Timmerman's directional accuracy statistic.   

Marked cells represents the best results for each statistic across the four techniques.                                                                
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Table 4. Measures of reconstruction accuracy. Database of weekly returns.  
Nine underlying factors extracted by Neural Networks Principal Component Analysis. 

 
  PE&OLES*  BIMBOA  GMODELOC  FEMSAUBD  CONTAL*  GEOB  ARA*  WALMEXV SORIANAB  COMERUBC  ELEKTRA*  TELMEXL  TELECOA1  TLEVICPO TVAZTCPO  GFNORTEO  GFINBURO  GCARSOA1  ALFAA  CIEB  MEAN MEDIAN 

STD. 
DEV. 

MAE 0.00327 0.01343 0.02014 0.02139 0.01618 0.00783 0.02357 0.02156 0.01954 0.02173 0.01569 0.01514 0.01802 0.02060 0.01902 0.02370 0.02250 0.02161 0.00849 0.02066 0.01770 0.01984 0.00564 

MAPE 28.95097 183.22391 155.90545 230.05069 153.20323 54.17013 120.55274 165.44554 133.42692 160.11589 104.44035 125.59720 133.82330 177.62795 94.98864 120.40022 167.20908 182.31004 91.70267 190.85457 138.69997 143.51326 48.30197 

RMSE 0.00420 0.01725 0.02712 0.02838 0.02143 0.00988 0.03011 0.02803 0.02542 0.02835 0.02060 0.02016 0.02292 0.02783 0.02449 0.03011 0.02872 0.02836 0.01088 0.02704 0.02306 0.02623 0.00737 

U-Theil 0.03117 0.21349 0.54500 0.38296 0.26005 0.07858 0.43390 0.40830 0.31761 0.34792 0.18767 0.33321 0.27623 0.32358 0.24626 0.39449 0.38706 0.35919 0.08836 0.28824 0.29516 0.32060 0.12809 

CM 
145 3 131 26 112 42 126 29 124 30 164 8 134 34 122 32 128 26 117 35 139 15 128 20 133 20 136 22 124 26 140 28 125 33 136 30 148 7 125 28         

 
  

4 139 23 111 56 81 45 91 25 112 7 112 36 87 42 95 26 111 38 101 20 117 41 102 32 106 27 106 17 124 45 78 45 88 39 86 14 122 30 108         
 

  

CR 0.02405 0.16838 0.33677 0.25430 0.18900 0.05155 0.24055 0.25430 0.17869 0.25086 0.12027 0.20962 0.17869 0.16838 0.14777 0.25086 0.26804 0.23711 0.07216 0.19931 0.19003 0.19416 0.07847 

χ2 263.67498 127.45583 30.14226 69.45731 112.52152 232.33347 74.53255 69.52049 119.71109 71.85658 167.45945 99.84530 120.06848 126.80269 145.08568 67.01241 60.94914 76.54302 213.02648 104.78986     
 

p-value 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000     
 

DA -0.52159 -1.99269 -4.32113 -2.81993 -2.98580 1.47699 -2.45497 -2.99878 -2.40829 -3.60123 -0.95578 -2.29180 -1.58466 -1.25905 -2.88421 -1.70586 -3.06953 -1.78048 0.18158 -2.76968     
 

p-value 0.30098 0.02315 0.00001 0.00240 0.00141 0.93016 0.00704 0.00136 0.00801 0.00016 0.16959 0.01096 0.05652 0.10401 0.00196 0.04402 0.00107 0.03750 0.57204 0.00281       

Notes:   

MAE: Mean absolute error.   

MAPE: Mean absolute percentage error.   

RMSE: Root mean square error.   

U-Theil: Theil's U statistic.   

CM: Confusion matrix.   

CR: Confusion rate   

χ2: Chi-squared independence contrast statistic.   

DA: Pesaran & Timmerman's directional accuracy statistic.   

Marked cells represents the best results for each statistic across the four techniques.                                                                
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Table 5. Measures of reconstruction accuracy. Database of weekly excesses.  

Nine underlying factors extracted by Principal Component Analysis. 
 

  PE&OLES*  BIMBOA  GMODELOC FEMSAUBD  CONTAL*  GEOB  ARA*  WALMEXV SORIANAB COMERUBC ELEKTRA* TELMEXL  TELECOA1  TLEVICPO TVAZTCPO GFNORTEO GFINBURO GCARSOA1 ALFAA  CIEB  MEAN MEDIAN STD. DEV. 

MAE 0.00239 0.01221 0.01987 0.02200 0.00754 0.00683 0.02255 0.01932 0.02038 0.02193 0.01122 0.01412 0.01566 0.01806 0.01783 0.02375 0.02061 0.01939 0.00324 0.01861 0.01588 0.01833 0.00653 

MAPE 63.51663 1141.86372 183.08889 200.28641 106.64852 68.98367 172.34345 197.41781 253.62837 885.96090 97.73153 143.56062 210.69336 406.78044 741.33417 177.97465 504.39862 314.23490 25.05059 316.22644 310.58618 198.85211 295.70373 

RMSE 0.00305 0.01550 0.02683 0.02985 0.00982 0.00865 0.02920 0.02553 0.02608 0.02951 0.01427 0.01853 0.01991 0.02400 0.02337 0.03035 0.02632 0.02550 0.00411 0.02408 0.02072 0.02404 0.00866 

U-Theil 0.02266 0.19027 0.53916 0.41255 0.11370 0.06871 0.42319 0.36272 0.32943 0.36900 0.12750 0.30270 0.23653 0.27117 0.23340 0.40231 0.34600 0.31479 0.03321 0.25330 0.26761 0.28693 0.14068 

CM 
141 0 119 28 95 51 117 29 126 9 159 6 122 36 120 31 117 25 108 32 135 15 118 24 125 22 133 17 123 18 136 26 119 30 123 31 149 1 124 18       

3 147 27 117 49 96 47 98 18 138 8 118 41 92 39 101 32 117 40 111 18 123 36 113 26 118 26 115 22 128 33 96 39 103 35 102 4 137 31 118       

CR 0.01031 0.18900 0.34364 0.26117 0.09278 0.04811 0.26460 0.24055 0.19588 0.24742 0.11340 0.20619 0.16495 0.14777 0.13746 0.20275 0.23711 0.22680 0.01718 0.16838 0.17577 0.19244 0.08685 

χ2 279.23875 112.58123 28.46685 67.36360 193.69735 236.71926 63.06926 78.08112 107.98967 74.57736 173.88030 101.37013 130.71882 144.62385 153.09653 100.48911 80.45217 86.21603 271.42857 129.23581       

p-value 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000       

DA -0.53398 -3.11289 -5.93063 -3.38207 -2.30299 1.26093 -2.95798 -3.06799 -3.33823 -4.39370 -1.26208 -3.21118 -2.41599 -1.52366 -2.64432 -1.44771 -3.15926 -2.73838 0.38432 -2.50355       

p-value 0.29668 0.00093 0.00000 0.00036 0.01064 0.89633 0.00155 0.00108 0.00042 0.00001 0.10346 0.00066 0.00785 0.06380 0.00409 0.07385 0.00079 0.00309 0.64963 0.00615       

Notes:   

MAE: Mean absolute error.   

MAPE: Mean absolute percentage error.   

RMSE: Root mean square error.   

U-Theil: Theil's U statistic.   

CM: Confusion matrix.   

CR: Confusion rate   

χ2: Chi-squared independence contrast statistic.   

DA: Pesaran & Timmerman's directional accuracy statistic.   

Marked cells represents the best results for each statistic across the four techniques.                                                                

  



APPENDIX 
 

516 
 

Table 6. Measures of reconstruction accuracy. Database of weekly excesses.  
Nine underlying factors extracted by Factor Analysis. 

 
  PE&OLES*  BIMBOA  GMODELOC FEMSAUBD  CONTAL*  GEOB  ARA*  WALMEXV SORIANAB COMERUBC ELEKTRA* TELMEXL  TELECOA1  TLEVICPO TVAZTCPO GFNORTEO GFINBURO GCARSOA1  ALFAA  CIEB  MEAN MEDIAN STD. DEV. 

MAE 0.04359 0.02417 0.00017 0.01833 0.02580 0.01232 0.02500 0.01506 0.02096 0.00057 0.02482 0.01239 0.00365 0.01650 0.00203 0.02366 0.02216 0.01890 0.03011 0.01038 0.01753 0.01862 0.01092 

MAPE 521.00959 766.60313 9.43772 188.19276 201.85124 123.47529 210.22801 165.01503 298.24406 28.21334 189.57948 122.85918 43.43839 322.35893 111.38840 191.21319 493.97614 3183.55703 181.61566 130.03368 374.11451 188.88612 686.22969 

RMSE 0.05623 0.03273 0.00018 0.02470 0.03442 0.01520 0.03190 0.02013 0.02686 0.00057 0.03172 0.01693 0.00495 0.02166 0.00204 0.03012 0.02889 0.02383 0.04047 0.01367 0.02286 0.02426 0.01429 

U-Theil 0.53646 0.47594 0.00277 0.32182 0.48632 0.12068 0.47969 0.27116 0.34187 0.00633 0.30418 0.27202 0.05586 0.24134 0.01927 0.39448 0.39123 0.28992 0.37074 0.13702 0.27595 0.29705 0.16916 

CM 
100 41 96 51 146 0 126 20 104 31 159 6 132 26 129 22 118 24 140 0 128 22 120 22 143 4 132 18 137 4 141 21 119 30 128 26 125 25 123 19       

66 84 51 93 1 144 36 109 54 102 25 101 52 81 33 107 33 116 5 146 43 98 28 121 6 138 25 116 0 150 52 77 48 94 35 102 50 91 17 132       

CR 0.36770 0.35052 0.00344 0.19244 0.29210 0.10653 0.26804 0.18900 0.19588 0.01718 0.22337 0.17182 0.03436 0.14777 0.01375 0.25086 0.26804 0.20962 0.25773 0.12371 0.18419 0.19416 0.10822 

χ2 21.49807 25.99735 287.02716 111.40098 52.48290 179.93791 61.35874 112.64179 108.19905 271.66202 90.19272 125.63196 252.41305 144.45503 275.40066 70.20198 63.08601 97.52606 69.48269 164.74700       

p-value 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000       

DA -5.32233 -5.81561 0.05812 -2.31173 -4.78568 1.01571 -2.04691 -2.02414 -3.21647 -0.64817 -2.18166 -2.98820 -0.29793 -1.63237 -1.03091 -1.22843 -3.20823 -2.19125 -2.56809 -2.65993       

p-value 0.00000 0.00000 0.52317 0.01040 0.00000 0.84512 0.02033 0.02148 0.00065 0.25844 0.01457 0.00140 0.38288 0.05130 0.15129 0.10964 0.00067 0.01422 0.00511 0.00391       

Notes:   

MAE: Mean absolute error.   

MAPE: Mean absolute percentage error.   

RMSE: Root mean square error.   

U-Theil: Theil's U statistic.   

CM: Confusion matrix.   

CR: Confusion rate   

χ2: Chi-squared independence contrast statistic.   

DA: Pesaran & Timmerman's directional accuracy statistic.   

Marked cells represents the best results for each statistic across the four techniques.                                                                
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Table 7. Measures of reconstruction accuracy. Database of weekly excesses.  
Nine underlying factors extracted by Independent Component Analysis. 

 
  PE&OLES*  BIMBOA  GMODELOC  FEMSAUBD  CONTAL*  GEOB  ARA*  WALMEXV SORIANAB  COMERUBC  ELEKTRA*  TELMEXL  TELECOA1  TLEVICPO TVAZTCPO  GFNORTEO  GFINBURO  GCARSOA1  ALFAA  CIEB  MEAN MEDIAN STD. DEV. 

MAE 0.01240 0.02783 0.02337 0.02185 0.02165 0.02116 0.02020 0.02085 0.02142 0.03639 0.02373 0.01523 0.01993 0.01928 0.02257 0.02942 0.02443 0.02199 0.01757 0.01407 0.02177 0.02153 0.00535 

MAPE 98.63311 
500.1135

3 
1059.06266 232.88104 303.85734 145.08437 190.41471 180.51948 216.51927 775.77828 122.30686 125.88343 215.19561 285.53647 754.63538 170.67432 327.80976 3346.74473 95.49296 201.11109 467.41272 215.85744 725.91528 

RMSE 0.01552 0.03687 0.03165 0.02925 0.02747 0.02871 0.02615 0.02799 0.02816 0.05046 0.03076 0.02059 0.02611 0.02616 0.02940 0.03692 0.03204 0.02831 0.02354 0.01846 0.02873 0.02823 0.00735 

U-Theil 0.12216 0.53899 0.44259 0.36863 0.35058 0.25573 0.32981 0.42151 0.39282 0.64757 0.32513 0.36799 0.35637 0.29779 0.33464 0.53100 0.45294 0.33143 0.21330 0.18626 0.36336 0.35347 0.12374 

CM 
130 11 83 64 110 36 115 31 104 31 142 23 127 31 112 39 120 22 71 69 121 29 115 27 124 23 134 16 117 24 103 59 107 42 124 30 126 24 123 19       

15 135 46 98 44 101 46 99 37 119 24 102 35 98 34 106 31 118 59 92 28 113 32 117 23 121 26 115 31 119 38 91 39 103 36 101 19 122 27 122       

CR 0.08935 0.37801 0.27491 0.26460 0.23368 0.16151 0.22680 0.25086 0.18213 0.43986 0.19588 0.20275 0.15808 0.14433 0.18900 0.33333 0.27835 0.22680 0.14777 0.15808 0.22680 0.21478 0.08499 

χ2 196.43151 17.71916 59.12239 65.13799 82.37708 130.93246 85.52885 72.31738 118.18553 3.98329 107.56166 103.00516 136.07254 147.57961 112.91452 33.47948 57.19801 86.18191 144.59941 136.59179       

p-value 0.00000 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.04595 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000       

DA -1.82221 -7.36780 -4.17983 -3.60883 -4.91442 -0.74112 -2.35438 -3.93662 -2.98142 -8.86886 -2.89093 -3.57800 -2.52700 -1.41030 -3.33857 -4.93380 -4.52303 -2.63766 -2.28836 -2.63104       

p-value 0.03421 0.00000 0.00001 0.00015 0.00000 0.22931 0.00928 0.00004 0.00143 0.00000 0.00192 0.00017 0.00575 0.07923 0.00042 0.00000 0.00000 0.00417 0.01106 0.00426       

Notes:   

MAE: Mean absolute error.   

MAPE: Mean absolute percentage error.   

RMSE: Root mean square error.   

U-Theil: Theil's U statistic.   

CM: Confusion matrix.   

CR: Confusion rate   

χ2: Chi-squared independence contrast statistic.   

DA: Pesaran & Timmerman's directional accuracy statistic.   

Marked cells represents the best results for each statistic across the four techniques.                                                                
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Table 8. Measures of reconstruction accuracy. Database of weekly excesses.  
Nine underlying factors extracted by Neural Networks Principal Component Analysis. 

 
  PE&OLES*  BIMBOA  GMODELOC  FEMSAUBD  CONTAL*  GEOB  ARA*  WALMEXV SORIANAB  COMERUBC  ELEKTRA*  TELMEXL  TELECOA1  TLEVICPO TVAZTCPO  GFNORTEO  GFINBURO  GCARSOA1  ALFAA  CIEB  MEAN MEDIAN STD. DEV. 

MAE 0.00333 0.01205 0.01897 0.02322 0.01863 0.00895 0.02313 0.02016 0.02039 0.02423 0.01219 0.01509 0.01732 0.02122 0.01938 0.02552 0.02146 0.02151 0.00811 0.01981 0.01773 0.01959 0.00595 

MAPE 30.90712 1098.95294 163.27860 217.30132 182.79141 118.11590 188.70843 209.16978 283.36557 562.47343 119.18551 148.52232 189.99328 341.52203 481.45156 213.15501 486.20913 3386.24525 62.06549 308.41213 439.59131 211.16240 733.03182 

RMSE 0.00450 0.01574 0.02522 0.03017 0.02469 0.01158 0.02947 0.02629 0.02700 0.03136 0.01604 0.01994 0.02220 0.02859 0.02518 0.03270 0.02737 0.02871 0.01029 0.02589 0.02315 0.02556 0.00772 

U-Theil 0.03345 0.19596 0.48144 0.42023 0.31110 0.09189 0.42144 0.37377 0.34349 0.40032 0.14238 0.33231 0.26624 0.33442 0.25419 0.44898 0.36296 0.36558 0.08325 0.27565 0.29695 0.33337 0.12835 

CM 
138 3 120 27 99 47 115 31 116 19 157 8 129 29 117 34 116 26 101 39 135 15 126 16 132 15 129 21 119 22 131 31 117 32 127 27 138 12 117 25       

3 147 26 118 48 97 55 90 31 125 10 116 46 87 39 101 28 121 42 109 14 127 42 107 35 109 28 113 20 130 49 80 44 98 44 93 11 130 34 115       

CR 0.02062 0.18213 0.32646 0.29553 0.17182 0.06186 0.25773 0.25086 0.18557 0.27835 0.09966 0.19931 0.17182 0.16838 0.14433 0.27491 0.26117 0.24399 0.07904 0.20275 0.19381 0.19244 0.08268 

χ2 267.47281 117.61246 35.05197 49.94222 126.31982 222.22441 66.71031 71.93884 115.07054 57.11657 186.49982 109.22002 127.58201 127.98277 147.11000 55.96361 66.47715 75.85229 206.22357 103.37109       

p-value 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000       

DA -0.89761 -2.99545 -5.46204 -3.64396 -3.45207 1.02343 -2.28289 -3.40264 -3.46902 -5.23813 -1.24624 -2.25370 -1.62941 -1.98581 -3.13901 -2.22590 -3.41035 -2.38458 -0.89380 -3.33400       

p-value 0.18470 0.00137 0.00000 0.00013 0.00028 0.84695 0.01122 0.00033 0.00026 0.00000 0.10634 0.01211 0.05161 0.02353 0.00085 0.01301 0.00032 0.00855 0.18571 0.00043       

Notes: 
              

  

MAE: Mean absolute error. 
            

  

MAPE: Mean absolute percentage error. 
           

  

RMSE: Root mean square error. 
           

  

U-Theil: Theil's U statistic. 
            

  

CM: Confusion matrix. 
           

  

CR: Confusion rate 
             

  

χ2: Chi-squared independence contrast statistic. 
           

  

DA: Pesaran & Timmerman's directional accuracy statistic. 
          

  

Marked cells represents the best results for each statistic across the four techniques.                                                                
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Table 9. Summary of measures of reconstruction accuracy.  

Database of weekly excesses. Nine underlying factors. 
 

  PCA FA ICA NNPCA 
  MEAN MEDIAN STD. DEV. MEAN MEDIAN STD. DEV. MEAN MEDIAN STD. DEV. MEAN MEDIAN STD. DEV. 
MAE 0.01588 0.01833 0.00653 0.01753 0.01862 0.01092 0.02177 0.02153 0.00535 0.01773 0.01959 0.00595 
MAPE 310.58618 198.85211 295.70373 374.11451 188.88612 686.22969 467.41272 215.85744 725.91528 439.59131 211.16240 733.03182 
RMSE 0.02072 0.02404 0.00866 0.02286 0.02426 0.01429 0.02873 0.02823 0.00735 0.02315 0.02556 0.00772 
U-Theil 0.26761 0.28693 0.14068 0.27595 0.29705 0.16916 0.36336 0.35347 0.12374 0.29695 0.33337 0.12835 
CR 0.17577 0.19244 0.08685 0.18419 0.19416 0.10822 0.22680 0.21478 0.08499 0.19381 0.19244 0.08268 
Notes:   
MAE: Mean absolute error.   
MAPE: Mean absolute percentage error.   
RMSE: Root mean square error.   
U-Theil: Theil's U statistic.   
CR: Confusion rate   
Marked cells represents the best results for each statistic across the four techniques.   
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Table 10. Measures of reconstruction accuracy. Database of daily returns.  
Nine underlying factors extracted by Principal Component Analysis. 

 
  PE&OLES*  KIMBERA  BIMBOA  GMODELOC 

FEMSA 
UBD  

CONTAL*  CEMEXCP  GEOB  ARA*  WALMEXV SORIANAB 
COMER 

UBC  
ELEKTRA* TELMEXL  

TELECO 
A1  

TLEVI 
CPO 

TVAZT 
CPO  

GFNORTEO GFINBURO 
GCARSO 

A1  
ALFAA  CIEB  MEAN MEDIAN STD. DEV. 

MAE 0.00066 0.00915 0.01015 0.00973 0.00959 0.00284 0.00945 0.00291 0.01051 0.00973 0.00986 0.00672 0.00546 0.00745 0.00896 0.00852 0.00800 0.00909 0.00959 0.01021 0.00271 0.00674 0.00764 0.00903 0.00291 

MAPE 14.04408 175.10998 172.59098 150.21170 190.31924 52.82353 135.01519 40.65644 107.02219 149.50125 123.03559 92.86413 115.39920 107.67843 135.56941 149.99749 78.03250 123.70468 118.25280 145.00308 50.17161 124.84694 115.99320 123.37014 45.75802 

RMSE 0.00086 0.01288 0.01412 0.01335 0.01303 0.00371 0.01239 0.00380 0.01399 0.01304 0.01311 0.00897 0.00715 0.00993 0.01186 0.01156 0.01068 0.01206 0.01248 0.01380 0.00358 0.00904 0.01025 0.01196 0.00396 

U-Theil 0.01466 0.55906 0.45758 0.55138 0.44751 0.08855 0.46680 0.07773 0.44047 0.40523 0.41299 0.23111 0.14943 0.35856 0.33820 0.28460 0.23046 0.32473 0.36516 0.42340 0.07331 0.22258 0.31470 0.34838 0.15945 

CM 
701 98 520 244 550 206 523 215 538 188 686 124 558 173 739 85 571 233 575 178 577 194 606 144 652 110 591 165 596 155 619 126 625 121 614 181 580 190 560 211 685 44 597 144       

14 597 250 396 192 462 225 447 210 474 45 555 204 475 30 556 182 424 185 472 178 461 109 551 73 575 156 498 141 518 109 556 81 583 130 485 147 493 191 448 41 640 115 554       

CR 0.07943 0.35035 0.28227 0.31206 0.28227 0.11986 0.26738 0.08156 0.29433 0.25745 0.26383 0.17943 0.12979 0.22766 0.20993 0.16667 0.14326 0.22057 0.23901 0.28511 0.06028 0.18369 0.21074 0.22411 0.08208 

χ2 1011.28302 121.75286 264.84278 197.37014 266.37307 822.63199 303.69893 987.73627 233.28001 328.09478 310.06039 580.43115 773.90020 415.36157 472.70540 625.87036 720.02673 437.77872 383.58920 256.42989 1090.21275 564.92515       

p-value 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000       

DA -4.10572 -11.97050 -10.32298 -11.00096 -9.75563 -5.36586 -8.74954 -1.79479 -11.40962 -8.21448 -9.65765 -8.31687 -4.11641 -8.05274 -6.59667 -5.35879 -6.92241 -7.53917 -10.11015 -9.70048 -1.86250 -8.12492       

p-value 0.00002 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.03634 0.00000 0.00000 0.00000 0.00000 0.00002 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.03127 0.00000       

Notes:        

MAE: Mean absolute error. 
   

MAPE: Mean absolute percentage error. 
   

RMSE: Root mean square error. 
   

U-Theil: Theil's U statistic. 
   

CM: Confusion matrix. 
   

CR: Confusion rate 
   

χ2: Chi-squared independence contrast statistic. 
   

DA: Pesaran & Timmerman's directional accuracy statistic. 
   

Marked cells represents the best results for each statistic across the four techniques.                                                                          
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Table 11. Measures of reconstruction accuracy. Database of daily returns.  
Nine underlying factors extracted by Factor Analysis. 

 
  PE&OLES*  KIMBERA  BIMBOA  GMODELOC 

FEMSA 
UBD  CONTAL*  CEMEXCP  GEOB  ARA*  WALMEXV SORIANAB 

COMER 
UBC  ELEKTRA* TELMEXL  TELECOA1 

TLEVICP
O TVAZTCPO  GFNORTEO GFINBURO 

GCARSO 
A1  ALFAA  CIEB  MEAN MEDIAN STD. DEV. 

MAE 0.01744 0.00775 0.01062 0.00783 0.00628 0.01119 0.00687 0.01288 0.00897 0.00697 0.00969 0.01150 0.01209 0.00134 0.00694 0.00715 0.00323 0.00453 0.01077 0.00836 0.01285 0.00664 0.00872 0.00809 0.00359 

MAPE 221.96630 187.47029 180.76977 153.58010 166.57924 160.19465 119.85489 135.42971 97.66074 122.33090 126.01342 138.65036 201.70571 24.37325 110.80487 133.25973 35.27921 67.28081 118.78265 132.43440 169.97758 144.09367 134.02237 134.34472 48.61311 

RMSE 0.02454 0.01043 0.01456 0.01038 0.00823 0.01531 0.00913 0.01833 0.01194 0.00908 0.01291 0.01531 0.01611 0.00177 0.00915 0.00955 0.00419 0.00589 0.01433 0.01100 0.01777 0.00864 0.01175 0.01071 0.00510 

U-Theil 0.53492 0.39973 0.47926 0.37472 0.25021 0.42938 0.30863 0.44520 0.35293 0.25823 0.40372 0.44907 0.37517 0.05673 0.24865 0.22874 0.08649 0.14588 0.44183 0.31450 0.42668 0.21174 0.32829 0.36382 0.12895 

CM 

553 246 572 192 563 193 573 165 619 107 608 202 623 108 651 173 648 156 634 119 583 188 572 178 580 182 707 49 630 121 640 105 665 81 712 83 577 193 617 154 569 160 599 142       

243 368 186 460 236 418 180 492 130 554 153 447 152 527 204 382 164 442 146 511 181 458 218 442 174 474 24 630 120 539 92 573 31 633 74 541 197 443 166 473 215 466 107 562       

CR 0.34681 0.26809 0.30426 0.24468 0.16809 0.25177 0.18440 0.26738 0.22695 0.18794 0.26170 0.28085 0.25248 0.05177 0.17092 0.13972 0.07943 0.11135 0.27660 0.22695 0.26596 0.17660 0.21567 0.23582 0.07446 

χ2 122.07321 298.94267 210.40687 365.57661 620.83637 340.81517 561.56652 280.20980 405.46649 545.21515 314.77313 266.38137 341.60702 1133.85105 608.11946 731.11016 1002.90244 844.81718 275.18718 413.33472 308.14317 591.30027       

p-value 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000       

DA -12.53817 -9.08071 -10.00677 -8.38348 -5.43198 -9.99071 -5.44041 -6.64916 -7.88568 -5.14191 -9.05792 -10.20659 -7.82762 -1.77544 -4.80284 -4.13834 -4.67326 -2.97717 -9.83988 -6.77886 -8.13807 -7.98827       

p-value 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.03791 0.00000 0.00002 0.00000 0.00145 0.00000 0.00000 0.00000 0.00000       

Notes:        

MAE: Mean absolute error. 
   

MAPE: Mean absolute percentage error. 
   

RMSE: Root mean square error. 
   

U-Theil: Theil's U statistic. 
   

CM: Confusion matrix. 
   

CR: Confusion rate 
   

χ2: Chi-squared independence contrast statistic. 
   

DA: Pesaran & Timmerman's directional accuracy statistic. 
   

Marked cells represents the best results for each statistic across the four techniques.                                                                          
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Table 12.  Measures of reconstruction accuracy. Database of daily returns.  
Nine underlying factors extracted by Independent Component Analysis. 

 
  PE&OLES*  KIMBERA  BIMBOA  GMODELOC  

FEMSA 
UBD  

CONTAL*  CEMEXCP  GEOB  ARA*  WALMEXV SORIANAB  
COMER 

UBC  
ELEKTRA*  TELMEXL  TELECOA1  TLEVICPO TVAZTCPO  GFNORTEO  GFINBURO  

GCARSO 
A1  

ALFAA  CIEB  MEAN MEDIAN STD. DEV. 

MAE 0.00162 0.00970 0.01157 0.01147 0.01009 0.00476 0.01104 0.00580 0.01238 0.00961 0.01097 0.00747 0.00928 0.00796 0.01015 0.00921 0.00733 0.00876 0.01209 0.01229 0.00559 0.01304 0.00919 0.00966 0.00286 

MAPE 33.46406 130.89520 259.84127 126.89733 150.38011 80.57067 100.51408 67.42225 143.54997 176.70651 104.29250 95.82328 159.28527 97.93972 120.89040 139.81878 73.62928 115.08435 120.24047 125.82404 82.42687 197.97536 122.88508 120.56544 48.48872 

RMSE 0.00215 0.01416 0.01576 0.01581 0.01402 0.00642 0.01457 0.00804 0.01635 0.01269 0.01487 0.00996 0.01265 0.01082 0.01350 0.01239 0.00967 0.01145 0.01600 0.01746 0.00781 0.01774 0.01247 0.01309 0.00391 

U-Theil 0.03678 0.74546 0.37735 0.79971 0.55387 0.15898 0.73918 0.17375 0.41724 0.34940 0.57012 0.27362 0.30152 0.44255 0.44545 0.33413 0.20756 0.31001 0.55024 0.68505 0.17267 0.51925 0.41654 0.39730 0.21090 

CM 
674 125 476 288 584 172 399 339 506 220 634 176 501 230 683 141 575 229 578 175 557 214 584 166 599 163 567 189 574 177 600 145 626 120 618 177 524 246 493 278 622 107 450 291   

20 591 250 396 182 472 306 366 206 478 68 532 231 448 61 525 186 420 173 484 197 442 100 560 117 531 149 505 159 500 109 556 81 583 129 486 184 456 218 421 73 608 217 452   

CR 0.10284 0.38156 0.25106 0.45745 0.30213 0.17305 0.32695 0.14326 0.29433 0.24681 0.29149 0.18865 0.19858 0.23972 0.23830 0.18014 0.14255 0.21702 0.30496 0.35177 0.12766 0.36028 0.25093 0.24326 0.09163 

χ2 910.71989 78.07690 345.15033 10.23519 220.71316 617.78022 167.99532 721.80300 231.82318 358.42182 240.88086 552.81083 513.75163 382.53580 384.69890 578.32379 722.73036 448.45169 215.94721 124.35131 783.99538 112.89753   

p-value 0.00000 0.00000 0.00000 0.00138 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000   

DA -5.81078 -14.47671 -8.79727 -17.90250 -11.24078 -8.00677 -11.82896 -4.84127 -10.89936 -8.14740 -10.51360 -9.11174 -7.09392 -9.25627 -7.60368 -6.02572 -6.86500 -7.48469 -12.83115 -13.15868 -4.95717 -15.94377   

p-value 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000   

Notes:       

MAE: Mean absolute error.   

MAPE: Mean absolute percentage error.   

RMSE: Root mean square error.   

U-Theil: Theil's U statistic.   

CM: Confusion matrix.   

CR: Confusion rate   

χ2: Chi-squared independence contrast statistic.   

DA: Pesaran & Timmerman's directional accuracy statistic.   

Marked cells represents the best results for each statistic across the four techniques.                                                                          
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Table 13. Measures of reconstruction accuracy. Database of daily returns.  
Nine underlying factors extracted by Neural Networks Principal Component Analysis. 

 
  PE&OLES*  KIMBERA  BIMBOA  GMODELOC  FEMSAUBD  CONTAL*  CEMEXCP  GEOB  ARA*  WALMEXV SORIANAB  COMERUBC  ELEKTRA*  TELMEXL  TELECOA1  TLEVICPO TVAZTCPO  GFNORTEO  GFINBURO  

GCARSO 
A1  

ALFAA  CIEB  MEAN MEDIAN STD. DEV. 

MAE 0.00082 0.00919 0.01056 0.00974 0.00965 0.00358 0.00949 0.00323 0.01137 0.00973 0.01025 0.01051 0.00552 0.00747 0.00899 0.00865 0.00799 0.00983 0.01110 0.01020 0.00202 0.00672 0.00803 0.00934 0.00307 

MAPE 17.69108 177.45250 174.85017 149.95884 192.69450 65.50270 136.40245 44.12774 102.19402 151.15144 126.30740 126.99367 120.44250 106.91376 137.27803 151.77436 78.45733 128.64360 119.01178 147.08345 39.36300 142.60267 119.85895 127.81864 45.95939 

RMSE 0.00112 0.01297 0.01477 0.01337 0.01313 0.00468 0.01242 0.00432 0.01568 0.01302 0.01367 0.01412 0.00722 0.00999 0.01197 0.01179 0.01066 0.01315 0.01477 0.01379 0.00268 0.00887 0.01083 0.01269 0.00421 

U-Theil 0.01892 0.56549 0.49030 0.55381 0.45235 0.11239 0.46791 0.08864 0.52798 0.40411 0.43822 0.40243 0.15094 0.36103 0.34179 0.29183 0.23012 0.36224 0.46347 0.42247 0.05460 0.21676 0.33717 0.38234 0.16745 

CM 
704 95 523 241 568 188 527 211 547 179 672 138 566 165 733 91 584 220 577 176 553 218 552 198 660 102 594 162 592 159 611 134 617 129 604 191 554 216 569 202 689 40 596 145       

16 595 255 391 220 434 234 438 213 471 53 547 213 466 28 558 226 380 185 472 185 454 178 482 69 579 150 504 140 519 110 555 87 577 149 466 189 451 193 446 40 641 102 567       

CR 0.07872 0.35177 0.28936 0.31560 0.27801 0.13546 0.26809 0.08440 0.31631 0.25603 0.28582 0.26667 0.12128 0.22128 0.21206 0.17305 0.15319 0.24113 0.28723 0.28014 0.05674 0.17518 0.22034 0.24858 0.08544 

χ2 1012.67755 118.87743 244.88065 189.53422 276.95427 758.24659 302.03647 976.81738 176.57144 331.87091 256.27086 305.72363 809.30692 435.48962 466.23635 602.77424 680.82280 373.14251 252.26152 267.39540 1107.82691 597.62147       

p-value 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000       

DA -3.97432 -11.92185 -9.85019 -10.84015 -9.17572 -5.81982 -8.38913 -2.06333 -10.47837 -8.11079 -10.69723 -10.64670 -3.58643 -8.00172 -6.80232 -5.72192 -7.41026 -8.33735 -11.08168 -9.27978 -1.54242 -8.33980       

p-value 0.00004 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.01954 0.00000 0.00000 0.00000 0.00000 0.00017 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.06149 0.00000       

Notes:        

MAE: Mean absolute error.   

MAPE: Mean absolute percentage error.   

RMSE: Root mean square error.   

U-Theil: Theil's U statistic.   

CM: Confusion matrix.   

CR: Confusion rate   

χ2: Chi-squared independence contrast statistic.   

DA: Pesaran & Timmerman's directional accuracy statistic.   

Marked cells represents the best results for each statistic across the four techniques.                                                                          
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Table 14. Measures of reconstruction accuracy. Database of daily excesses.  

Nine underlying factors extracted by Principal Component Analysis. 
 

  
PE&OLES*  KIMBERA  BIMBOA  GMODELOC  

FEMSA 
UBD  CONTAL*  CEMEXCP  GEOB  ARA*  WALMEXV SORIANAB 

COMER 
UBC  ELEKTRA*  TELMEXL  

TELECO 
A1  

TLEVI 
CPO 

TVAZT 
CPO  GFNORTEO GFINBURO 

GCARSO 
A1  ALFAA  CIEB  MEAN MEDIAN STD. DEV. 

MAE 0.00068 0.00914 0.01015 0.00973 0.00958 0.00281 0.00944 0.00293 0.01049 0.00972 0.00986 0.00662 0.00547 0.00745 0.00897 0.00852 0.00800 0.00903 0.00965 0.01021 0.00269 0.00682 0.00763 0.00900 0.00291 

MAPE 64.01302 898.54840 361.29302 248.42817 271.60307 201.54638 207.29064 162.22866 434.28193 276.59018 331.51445 311.24061 232.55076 215.72164 203.71372 353.45525 299.05284 406.97458 377.79056 309.04129 73.33729 331.97519 298.73598 287.82151 165.01988 

RMSE 0.00089 0.01287 0.01412 0.01335 0.01303 0.00366 0.01238 0.00382 0.01395 0.01303 0.01312 0.00884 0.00717 0.00992 0.01187 0.01157 0.01070 0.01198 0.01257 0.01380 0.00357 0.00915 0.01024 0.01192 0.00396 

U-Theil 0.01504 0.55811 0.45733 0.55152 0.44771 0.08739 0.46716 0.07818 0.43873 0.40520 0.41347 0.22730 0.14981 0.35888 0.33847 0.28467 0.23066 0.32208 0.36899 0.42335 0.07304 0.22548 0.31466 0.34867 0.15944 

CM 
619 13 465 225 501 174 489 200 512 184 596 45 533 169 671 30 489 153 548 167 520 154 545 95 622 81 549 138 578 143 603 118 566 84 562 130 509 153 519 180 667 34 547 103       

62 716 284 436 225 510 242 479 224 490 118 651 216 492 90 619 262 506 202 493 230 506 158 612 96 611 191 532 149 540 118 571 123 637 180 538 209 539 220 491 54 655 158 602       

CR 0.05319 0.36099 0.28298 0.31348 0.28936 0.11560 0.27305 0.08511 0.29433 0.26170 0.27234 0.17943 0.12553 0.23333 0.20709 0.16738 0.14681 0.21986 0.25674 0.28369 0.06241 0.18511 0.21225 0.22660 0.08627 

χ2 1130.50922 110.50539 267.91018 197.47576 251.43266 842.97062 291.97907 978.10865 248.42610 320.42636 297.71606 584.08272 791.26249 404.23448 483.43395 623.67925 704.68457 445.53274 336.66739 265.03727 1080.87811 562.67563       

p-value 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000       

DA -4.71733 -12.76250 -10.82657 -11.48513 -10.27213 -5.76460 -9.17228 -1.80032 -11.31384 -8.41633 -9.77153 -8.53486 -4.42113 -8.27447 -6.79663 -5.45544 -7.47453 -7.59333 -10.40265 -9.90642 -2.02037 -8.41844       

p-value 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.03590 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.02167 0.00000       

Notes:              
  

MAE: Mean absolute error. 
           

  

MAPE: Mean absolute percentage error. 
         

  

RMSE: Root mean square error. 
          

  

U-Theil: Theil's U statistic. 
           

  

CM: Confusion matrix. 
          

  

CR: Confusion rate 
            

  

χ2: Chi-squared independence contrast statistic. 
         

  

DA: Pesaran & Timmerman's directional accuracy statistic. 
         

  

Marked cells represents the best results for each statistic across the four techniques.                                                                
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Table 15. Measures of reconstruction accuracy. Database of daily excesses.  
Nine underlying factors extracted by Factor Analysis. 

 
  

PE&OLES*  KIMBERA  BIMBOA  GMODELOC  
FEMSA 

UBD  CONTAL*  CEMEXCP  GEOB  ARA*  WALMEXV SORIANAB 
COMER 

UBC  ELEKTRA* TELMEXL  
TELECO 

A1  
TLEVI 
CPO 

TVAZT 
CPO  GFNORTEO GFINBURO 

GCARSO 
A1  ALFAA  CIEB  MEAN MEDIAN STD. DEV. 

MAE 0.01688 0.00768 0.01059 0.00781 0.00781 0.01172 0.00551 0.01136 0.00948 0.00714 0.00973 0.01178 0.01211 0.00159 0.00680 0.00748 0.00327 0.00407 0.01044 0.00825 0.01285 0.00694 0.00869 0.00803 0.00348 

MAPE 879.76492 1035.67658 356.87661 295.33775 280.34243 561.45932 162.41181 554.67716 441.41868 227.31411 305.91633 382.33148 364.35525 57.08020 175.25285 374.86629 125.62686 206.98741 355.31411 290.04579 240.54848 387.51019 366.41430 330.61522 229.48457 

RMSE 0.02334 0.01032 0.01458 0.01033 0.01042 0.01603 0.00723 0.01581 0.01270 0.00934 0.01306 0.01585 0.01611 0.00210 0.00897 0.01001 0.00423 0.00529 0.01384 0.01087 0.01778 0.00903 0.01169 0.01065 0.00487 

U-Theil 0.49049 0.39433 0.48089 0.37282 0.33090 0.46009 0.23628 0.36279 0.38358 0.26723 0.41080 0.47454 0.37554 0.06762 0.24309 0.24130 0.08721 0.13077 0.42106 0.31016 0.42767 0.22211 0.32688 0.36781 0.12538 

CM 
466 166 517 173 498 177 531 158 558 138 494 147 615 87 581 120 537 105 607 108 516 158 497 143 545 158 660 27 608 113 615 106 610 40 649 43 518 144 568 131 538 163 544 106       

312 466 203 517 263 472 199 522 175 539 251 518 127 581 229 480 251 517 159 536 222 514 290 480 186 521 49 674 115 574 102 587 73 687 119 599 230 518 184 527 222 487 147 613       

CR 0.33901 0.26667 0.31206 0.25319 0.22199 0.28227 0.15177 0.24752 0.25248 0.18936 0.26950 0.30709 0.24397 0.05390 0.16170 0.14752 0.08014 0.11489 0.26525 0.22340 0.27305 0.17943 0.21983 0.24574 0.07596 

χ2 159.48054 307.94144 204.47697 345.29045 437.48287 276.90145 686.25904 368.93439 368.38452 546.28909 303.57792 226.68084 370.36276 1123.51886 645.11983 700.53068 995.48987 847.08405 318.11881 434.33663 292.85505 580.54910       

p-value 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000       

DA -12.39812 -10.00214 -10.93681 -9.24652 -7.81947 -11.06670 -4.79353 -6.64930 -8.61598 -5.28749 -10.00381 -10.75266 -8.52687 -2.39225 -5.19174 -4.81052 -5.15568 -2.93359 -9.84218 -7.29445 -8.90849 -8.63818       

p-value 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00837 0.00000 0.00000 0.00000 0.00168 0.00000 0.00000 0.00000 0.00000       

Notes:              
  

MAE: Mean absolute error. 
           

  

MAPE: Mean absolute percentage error. 
         

  

RMSE: Root mean square error. 
          

  

U-Theil: Theil's U statistic. 
           

  

CM: Confusion matrix. 
          

  

CR: Confusion rate 
            

  

χ2: Chi-squared independence contrast statistic. 
         

  

DA: Pesaran & Timmerman's directional accuracy statistic. 
         

  

Marked cells represents the best results for each statistic across the four techniques.                                                                
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Table 16. Measures of reconstruction accuracy. Database of daily excesses.  
Nine underlying factors extracted by Independent Component Analysis. 

 
  PE&OLES*  KIMBERA  BIMBOA  GMODELOC 

FEMSA 
UBD  

CONTAL*  CEMEXCP  GEOB  ARA*  WALMEXV SORIANAB 
COMER 

UBC  
ELEKTRA* TELMEXL  

TELECO 
A1  

TLEVI 
CPO 

TVAZT 
CPO  

GFNORTEO GFINBURO 
GCARSO 

A1  
ALFAA  CIEB  MEAN MEDIAN STD. DEV. 

MAE 0.00160 0.01002 0.01098 0.01004 0.00969 0.00240 0.01060 0.00346 0.01326 0.00991 0.01281 0.00483 0.00545 0.00750 0.01117 0.00836 0.00862 0.00823 0.01122 0.01138 0.00380 0.00564 0.00823 0.00915 0.00342 

MAPE 138.51127 1190.93107 293.69166 348.06470 222.44258 160.77993 133.26909 188.11519 757.46743 256.54305 209.16412 243.99977 259.91599 208.38972 164.56585 399.24138 287.38694 369.46196 345.72736 222.42241 100.63946 300.17020 309.13187 250.27141 239.01061 

RMSE 0.00213 0.01365 0.01575 0.01363 0.01344 0.00319 0.01401 0.00473 0.01764 0.01322 0.01742 0.00635 0.00719 0.01002 0.01497 0.01127 0.01168 0.01085 0.01486 0.01601 0.00497 0.00730 0.01110 0.01245 0.00470 

U-Theil 0.03628 0.51209 0.57456 0.49401 0.50631 0.07669 0.68027 0.09941 0.43632 0.42817 0.76254 0.16216 0.15440 0.36598 0.53723 0.26501 0.26720 0.28640 0.50083 0.60537 0.10172 0.18040 0.36515 0.39708 0.21279 

CM 
598 34 476 214 475 200 491 198 504 192 593 48 528 174 649 52 496 146 545 170 421 253 570 70 623 80 544 143 544 177 592 129 554 96 573 119 491 171 492 207 653 48 559 91       

89 689 283 437 259 476 244 477 215 499 112 657 217 491 101 608 267 501 204 491 290 446 129 641 98 609 178 545 182 507 123 566 136 624 162 556 248 500 228 483 69 640 124 636       

CR 0.08723 0.35248 0.32553 0.31348 0.28865 0.11348 0.27730 0.10851 0.29291 0.26525 0.38511 0.14113 0.12624 0.22766 0.25461 0.17872 0.16454 0.19929 0.29716 0.30851 0.08298 0.15248 0.22469 0.24113 0.09247 

χ2 965.75180 124.88329 174.01233 197.70103 252.36915 849.62591 280.91768 868.77579 254.28465 310.91373 74.84388 731.02257 788.43185 419.77866 339.16035 581.98682 635.71070 512.43633 236.85262 207.11287 981.75829 681.17659       

p-value 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000       

DA -5.80229 -12.17596 -12.19926 -11.37622 -10.70212 -5.96750 -9.43692 -2.97622 -10.89657 -8.57497 -15.11837 -7.22271 -4.36777 -8.55765 -8.60750 -6.03348 -8.10966 -7.01000 -11.30485 -11.34467 -2.76629 -7.87435       

p-value 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00146 0.00000 0.00000 0.00000 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00283 0.00000       

Notes:              
  

MAE: Mean absolute error. 
           

  

MAPE: Mean absolute percentage error. 
         

  

RMSE: Root mean square error. 
          

  

U-Theil: Theil's U statistic. 
           

  

CM: Confusion matrix. 
          

  

CR: Confusion rate 
            

  

χ2: Chi-squared independence contrast statistic. 
         

  

DA: Pesaran & Timmerman's directional accuracy statistic. 
         

  

Marked cells represents the best results for each statistic across the four techniques.                                                                
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Table 17. Measures of reconstruction accuracy. Database of daily excesses.  
Nine underlying factors extracted by Neural Networks Principal Component Analysis. 

 
  PE&OLES*  KIMBERA  BIMBOA  GMODELOC  

FEMSA 
UBD  

CONTAL*  CEMEXCP  GEOB  ARA*  WALMEXV SORIANAB 
COMER 

UBC  
ELEKTRA*  TELMEXL  

TELECO 
A1  

TLEVI 
CPO 

TVAZT 
CPO  

GFNORTEO  GFINBURO  
GCARSO 

A1  
ALFAA  CIEB  MEAN MEDIAN STD. DEV. 

MAE 0.00142 0.00918 0.01053 0.00976 0.00937 0.00527 0.00871 0.00331 0.01117 0.00986 0.01007 0.01200 0.00614 0.00743 0.00891 0.00904 0.00886 0.01046 0.01063 0.00951 0.00334 0.01025 0.00842 0.00928 0.00280 

MAPE 141.56359 788.17718 351.20025 247.53902 282.61137 366.03502 242.98183 187.08432 424.15472 274.76746 322.12206 354.94969 245.47541 240.20368 206.94231 312.02176 331.11462 364.52242 355.96698 362.74210 87.25119 496.85516 317.55828 317.07191 140.37384 

RMSE 0.00193 0.01226 0.01461 0.01342 0.01273 0.00696 0.01129 0.00444 0.01536 0.01307 0.01342 0.01628 0.00812 0.00990 0.01175 0.01230 0.01184 0.01419 0.01407 0.01273 0.00441 0.01371 0.01131 0.01251 0.00382 

U-Theil 0.03284 0.44079 0.48897 0.56070 0.43300 0.17139 0.38139 0.09106 0.50315 0.40161 0.42787 0.49132 0.17204 0.35437 0.33606 0.30506 0.25834 0.39760 0.43323 0.36379 0.09065 0.36399 0.34087 0.37269 0.14619 

CM 
607 25 473 217 498 177 504 185 519 177 568 73 542 160 662 39 497 145 546 169 504 170 486 154 623 80 535 152 580 141 582 139 550 100 542 150 493 169 555 144 656 45 494 156       

92 686 253 467 249 486 254 467 206 508 166 603 173 535 95 614 287 481 201 494 235 501 251 519 99 608 170 553 153 536 131 558 140 620 216 502 222 526 206 505 58 651 214 546       

CR 0.08298 0.33333 0.30213 0.31135 0.27163 0.16950 0.23617 0.09504 0.30638 0.26241 0.28723 0.28723 0.12695 0.22837 0.20851 0.19149 0.17021 0.25957 0.27730 0.24823 0.07305 0.26241 0.22689 0.25390 0.07754 

χ2 989.44194 157.47393 224.86757 203.80188 294.89099 629.26744 392.75467 930.98982 227.14938 318.43145 258.97212 263.14009 785.50345 416.41046 478.72914 536.70601 614.33616 329.87535 281.89785 360.78065 1028.47159 320.77186       

p-value 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000       

DA -5.25486 -12.34292 -10.95345 -10.67566 -9.90070 -7.16533 -8.68345 -2.28159 -10.77422 -8.51859 -10.64226 -11.52327 -4.36776 -9.05781 -6.69930 -6.56369 -8.32283 -8.65727 -11.26426 -7.99205 -2.60827 -11.22998       

p-value 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.01126 0.00000 0.00000 0.00000 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00455 0.00000       

Notes:              
  

MAE: Mean absolute error. 
           

  

MAPE: Mean absolute percentage error. 
         

  

RMSE: Root mean square error. 
          

  

U-Theil: Theil's U statistic. 
           

  

CM: Confusion matrix. 
          

  

CR: Confusion rate 
            

  

χ2: Chi-squared independence contrast statistic. 
         

  

DA: Pesaran & Timmerman's directional accuracy statistic. 
         

  

Marked cells represents the best results for each statistic across the four techniques.                                                                
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Table 18. Summary of measures of reconstruction accuracy.  
Database of daily excesses. Nine underlying factors. 

 
  PCA FA ICA NNPCA 
  MEAN MEDIAN STD. DEV. MEAN MEDIAN STD. DEV. MEAN MEDIAN STD. DEV. MEAN MEDIAN STD. DEV. 
MAE 0.00763 0.00900 0.00291 0.00869 0.00803 0.00348 0.00823 0.00915 0.00342 0.00842 0.00928 0.00280 
MAPE 298.73598 287.82151 165.01988 366.41430 330.61522 229.48457 309.13187 250.27141 239.01061 317.55828 317.07191 140.37384 
RMSE 0.01024 0.01192 0.00396 0.01169 0.01065 0.00487 0.01110 0.01245 0.00470 0.01131 0.01251 0.00382 
U-Theil 0.31466 0.34867 0.15944 0.32688 0.36781 0.12538 0.36515 0.39708 0.21279 0.34087 0.37269 0.14619 
CR 0.21225 0.22660 0.08627 0.21983 0.24574 0.07596 0.22469 0.24113 0.09247 0.22689 0.25390 0.07754 
Notes:   
MAE: Mean absolute error.   
MAPE: Mean absolute percentage error.   
RMSE: Root mean square error.   
U-Theil: Theil's U statistic.   
CR: Confusion rate   
Marked cells represents the best results for each statistic across the four techniques.   
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Table 19.  Factor Analysis (FA) vs. Principal Component Analysis (PCA). Measures of reconstruction accuracy obtained in FA minus 
measures of reconstruction accuracy obtained in PCA. Database of weekly excesses. Nine underlying factors. 

                                          FA > PCA FA = PCA FA < PCA 

  PE&OLES*  BIMBOA  GMODELOC FEMSAUBD  CONTAL*  GEOB  ARA*  WALMEXV SORIANAB COMERUBC ELEKTRA* TELMEXL TELECOA1  TLEVICPO TVAZTCPO GFNORTEO GFINBURO GCARSOA1 ALFAA  CIEB  Num. % Num. % Num. % 

MAE 0.04120 0.01196 -0.01970 -0.00367 0.01826 0.00550 0.00245 -0.00426 0.00058 -0.02136 0.01360 -0.00173 -0.01201 -0.00156 -0.01580 -0.00009 0.00154 -0.00049 0.02687 -0.00822 9 45% 0 0% 11 55% 

MAPE 457.49297 -375.26059 -173.65117 -12.09366 95.20272 54.49162 37.88456 -32.40278 44.61568 -857.74756 91.84795 -20.70144 -167.25497 -84.42151 -629.94577 13.23854 -10.42248 2869.32213 156.56507 -186.19276 9 45% 0 0% 11 55% 

RMSE 0.05318 0.01724 -0.02666 -0.00515 0.02460 0.00655 0.00269 -0.00540 0.00078 -0.02893 0.01745 -0.00161 -0.01496 -0.00233 -0.02133 -0.00023 0.00257 -0.00167 0.03636 -0.01041 9 45% 0 0% 11 55% 

U-Theil 0.51379 0.28567 -0.53638 -0.09073 0.37262 0.05197 0.05650 -0.09156 0.01245 -0.36267 0.17668 -0.03068 -0.18067 -0.02983 -0.21413 -0.00783 0.04523 -0.02488 0.33753 -0.11628 9 45% 0 0% 11 55% 

CR 0.35739 0.16151 -0.34021 -0.06873 0.19931 0.05842 0.00344 -0.05155 0.00000 -0.23024 0.10997 -0.03436 -0.13058 0.00000 -0.12371 0.04811 0.03093 -0.01718 0.24055 -0.04467 9 45% 2 10% 9 45% 

Notes:   

FA > PCA: Cases where FA reproduce worse than PCA. i.e., FA's error in reproduction is greater than PCA's one.   

FA = PCA: Cases where FA reproduce just the same as PCA. i.e., FA's error in reproduction is equal to PCA's one.   

FA < PCA: Cases where FA reproduce better than PCA. i.e., FA's error in reproduction is less than PCA's one.                                     

 
 

Table 20.  Independent Component Analysis (ICA) vs. Principal Component Analysis (PCA).Measures of reconstruction accuracy obtained 
in ICA minus measures of reconstruction accuracy obtained in PCA. Database of weekly excesses. Nine underlying factors. 

                                          ICA > PCA ICA = PCA ICA< PCA 

  PE&OLES*  BIMBOA  GMODELOC FEMSAUBD  CONTAL*  GEOB  ARA*  WALMEXV SORIANAB COMERUBC ELEKTRA* TELMEXL TELECOA1  TLEVICPO TVAZTCPO GFNORTEO GFINBURO GCARSOA1 ALFAA  CIEB  Num. % Num. % Num. % 

MAE 0.01000 0.01562 0.00349 -0.00015 0.01411 0.01433 -0.00235 0.00153 0.00103 0.01446 0.01250 0.00111 0.00428 0.00122 0.00474 0.00567 0.00382 0.00260 0.01433 -0.00454 17 85% 0 0% 3 15% 

MAPE 35.11648 -641.75018 875.97377 32.59463 197.20882 76.10070 18.07126 -16.89834 -37.10911 -110.18263 24.57533 -17.67718 4.50226 -121.24397 13.30122 -7.30033 -176.58886 ####### 70.44237 -115.11535 11 55% 0 0% 9 45% 

RMSE 0.01247 0.02137 0.00481 -0.00060 0.01765 0.02006 -0.00305 0.00246 0.00208 0.02096 0.01649 0.00206 0.00620 0.00217 0.00603 0.00657 0.00572 0.00280 0.01943 -0.00561 17 85% 0 0% 3 15% 

U-Theil 0.09950 0.34872 -0.09657 -0.04392 0.23688 0.18702 -0.09338 0.05879 0.06339 0.27858 0.19763 0.06530 0.11984 0.02661 0.10123 0.12868 0.10694 0.01664 0.18009 -0.06704 16 80% 0 0% 4 20% 

CR 0.07904 0.18900 -0.06873 0.00344 0.14089 0.11340 -0.03780 0.01031 -0.01375 0.19244 0.08247 -0.00344 -0.00687 -0.00344 0.05155 0.13058 0.04124 0.00000 0.13058 -0.01031 12 60% 1 5% 7 35% 

Notes:   

ICA > PCA: Cases where ICA reproduce worse than PCA. i.e., ICA's error in reproduction is greater than PCA's one.   

ICA = PCA: Cases where ICA reproduce just the same as PCA. i.e., ICA's error in reproduction is equal to PCA's one.   

ICA < PCA: Cases where ICA reproduce better than PCA. i.e., ICA's error in reproduction is less than PCA's one.                                     
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Table 21. Neural Networks Principal Component Analysis (NNPCA) vs. Principal Component Analysis (PCA). Measures of reconstruction 
accuracy obtained in NNPCA minus measures of reconstruction accuracy obtained in PCA. Database of weekly excesses. Nine underlying 

factors. 
                                          

NNPCA > 
PCA 

NNPCA = 
PCA 

NNPCA < 
PCA 

  PE&OLES*  BIMBOA  GMODELOC FEMSAUBD  CONTAL*  GEOB  ARA*  WALMEXV SORIANAB COMERUBC ELEKTRA* TELMEXL TELECOA1  TLEVICPO TVAZTCPO GFNORTEO GFINBURO GCARSOA1 ALFAA  CIEB  Num. % Num. % Num. % 

MAE 0.00094 -0.00016 -0.00090 0.00122 0.01109 0.00212 0.00058 0.00084 0.00001 0.00229 0.00097 0.00097 0.00167 0.00317 0.00156 0.00177 0.00084 0.00212 0.00487 0.00120 18 90% 0 0% 2 10% 

MAPE -32.60951 -42.91078 -19.81029 17.01491 76.14289 49.13223 16.36498 11.75197 29.73720 -323.48748 21.45398 4.96170 -20.70007 -65.25841 -259.88261 35.18036 -18.18950 3072.01035 37.01490 -7.81431 11 55% 0 0% 9 45% 

RMSE 0.00145 0.00025 -0.00161 0.00032 0.01487 0.00293 0.00027 0.00076 0.00092 0.00185 0.00177 0.00141 0.00228 0.00459 0.00181 0.00235 0.00105 0.00321 0.00618 0.00182 19 95% 0 0% 1 5% 

U-Theil 0.01078 0.00569 -0.05772 0.00768 0.19740 0.02318 -0.00175 0.01105 0.01406 0.03133 0.01488 0.02962 0.02971 0.06325 0.02079 0.04667 0.01696 0.05079 0.05004 0.02235 18 90% 0 0% 2 10% 

CR 0.01031 -0.00687 -0.01718 0.03436 0.07904 0.01375 -0.00687 0.01031 -0.01031 0.03093 -0.01375 -0.00687 0.00687 0.02062 0.00687 0.07216 0.02405 0.01718 -11.00000 -7.00000 12 60% 0 0% 8 40% 

Notes:   

NNPCA > PCA: Cases where NNPCA reproduce worse than PCA. i.e., NNPCA's error in reproduction is greater than PCA's one.   

NNPCA = PCA: Cases where NNPCA reproduce just the same as PCA. i.e., NNPCA's error in reproduction is equal to PCA's one.   

NNPCA < PCA: Cases where NNPCA reproduce better than PCA. i.e., NNPCA's error in reproduction is less than PCA's one.                                   

 
 

Table 22.  Factor Analysis (FA) vs. Principal Component Analysis (PCA). Measures of reconstruction accuracy obtained in FA minus 
measures of reconstruction accuracy obtained in PCA. Database of daily returns. Nine underlying factors. 

                                              FA > PCA FA = PCA FA < PCA 

  
PE&OLES 

*  
KIMBER 

A  
BIMBO 

A  
GMODELO 

C  
FEMSA 

UBD  
CONTAL 

*  
CEMEX 

CP  
GEO 

B  
ARA 

*  
WALMEX 

V 
SORIANA 

B  
COMER 

UBC  
ELEKTRA 

*  
TELMEX 

L  
TELECO 

A1  
TLEVI 

CPO 
TVAZT 

CPO  
GFNORTE 

O  
GFINBUR 

O  
GCARSO 

A1  
ALFA 

A  
CIE 

B  
Num. % Num. % Num. % 

MAE 0.01678 -0.00140 0.00046 -0.00190 -0.00331 0.00835 -0.00257 0.00997 -0.00154 -0.00277 -0.00017 0.00478 0.00663 -0.00612 -0.00202 -0.00137 -0.00477 -0.00456 0.00118 -0.00185 0.01014 -0.00010 7 32% 0 0% 14 64% 

MAPE 207.92222 12.36031 8.17879 3.36839 -23.74001 107.37112 -15.16030 94.77327 -9.36146 -27.17035 2.97783 45.78623 86.30651 -83.30519 -24.76454 -16.73775 -42.75329 -56.42387 0.52985 -12.56868 119.80597 19.24673 10 45% 0 0% 10 45% 

RMSE 0.02367 -0.00246 0.00044 -0.00297 -0.00480 0.01160 -0.00326 0.01454 -0.00206 -0.00396 -0.00021 0.00633 0.00896 -0.00816 -0.00271 -0.00201 -0.00649 -0.00617 0.00185 -0.00279 0.01418 -0.00040 8 36% 0 0% 14 64% 

U-Theil 0.52026 -0.15933 0.02168 -0.17666 -0.19731 0.34083 -0.15817 0.36747 -0.08754 -0.14700 -0.00926 0.21796 0.22574 -0.30183 -0.08955 -0.05586 -0.14396 -0.17885 0.07667 -0.10890 0.35337 -0.01084 8 36% 0 0% 14 64% 

CR 0.26738 -0.08227 0.02199 -0.06738 -0.11418 0.13191 -0.08298 0.18582 -0.06738 -0.06950 -0.00213 0.10142 0.12270 -0.17589 -0.03901 -0.02695 -0.06383 -0.10922 0.03759 -0.05816 0.20567 2.00000 9 41% 0 0% 13 59% 

Notes:   

FA > PCA: Cases where FA reproduce worse than PCA. i.e., FA's error in reproduction is greater than PCA's one.   

FA = PCA: Cases where FA reproduce just the same as PCA. i.e., FA's error in reproduction is equal to PCA's one.   

FA < PCA: Cases where FA reproduce better than PCA. i.e., FA's error in reproduction is less than PCA's one.                                       
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Table 23.  Independent Component Analysis (ICA) vs. Principal Component Analysis (PCA).Measures of reconstruction accuracy obtained 

in ICA minus measures of reconstruction accuracy obtained in PCA. Database of daily returns. Nine underlying factors. 
                                              ICA > PCA ICA = PCA ICA< PCA 

  
PE&OLES 

*  
KIMBER 

A  
BIMBO 

A  
GMODELO 

C  
FEMSA 

UBD  
CONTAL 

*  
CEMEX 

CP  
GEO 

B  
ARA 

*  
WALMEX 

V 
SORIANA 

B  
COMER 

UBC  
ELEKTRA 

*  
TELMEX 

L  
TELECO 

A1  
TLEVI 

CPO 
TVAZT 

CPO  
GFNORTE 

O  
GFINBUR 

O  
GCARSO 

A1  
ALFA 

A  
CIE 

B  
Num. % Num. % Num. % 

MAE 0.00096 0.00055 0.00141 0.00174 0.00050 0.00191 0.00159 0.00289 0.00187 -0.00012 0.00111 0.00075 0.00382 0.00051 0.00118 0.00069 -0.00067 -0.00033 0.00251 0.00208 0.00289 0.00630 19 86% 0 0% 3 14% 

MAPE 19.41998 -44.21478 87.25029 -23.31437 -39.93913 27.74714 -34.50111 26.76582 36.52778 27.20526 -18.74309 2.95915 43.88607 -9.73872 -14.67900 -10.17870 -4.40322 -8.62033 1.98767 -19.17904 32.25526 73.12842 11 50% 0 0% 11 50% 

RMSE 0.00129 0.00128 0.00164 0.00246 0.00099 0.00271 0.00218 0.00424 0.00235 -0.00035 0.00176 0.00099 0.00550 0.00090 0.00164 0.00083 -0.00101 -0.00062 0.00352 0.00367 0.00422 0.00869 19 86% 0 0% 3 14% 
U-
Theil 0.02211 0.18640 -0.08023 0.24833 0.10636 0.07043 0.27237 0.09602 -0.02323 -0.05583 0.15713 0.04251 0.15209 0.08398 0.10725 0.04953 -0.02289 -0.01472 0.18508 0.26165 0.09937 0.29667 17 77% 0 0% 5 23% 

CR 0.02340 0.03121 -0.03121 0.14539 0.01986 0.05319 0.05957 0.06170 0.00000 -0.01064 0.02766 0.00922 0.06879 0.01206 0.02837 0.01348 -0.00071 -0.00355 0.06596 0.06667 0.06738 0.17660 17 77% 1 5% 4 18% 

Notes:   

ICA > PCA: Cases where ICA reproduce worse than PCA. i.e., ICA's error in reproduction is greater than PCA's one.   

ICA = PCA: Cases where ICA reproduce just the same as PCA. i.e., ICA's error in reproduction is equal to PCA's one.   

ICA < PCA: Cases where ICA reproduce better than PCA. i.e., ICA's error in reproduction is less than PCA's one.                                       

 

Table 24.  Neural Networks Principal Component Analysis (NNPCA) vs. Principal Component Analysis (PCA). Measures of 
reconstruction accuracy obtained in NNPCA minus measures of reconstruction accuracy obtained in PCA. Database of daily returns. Nine 

underlying factors. 
                                              NNPCA > PCA 

NNPCA = 
PCA NNPCA < PCA 

  
PE&OLES 

*  
KIMBER 

A  
BIMBO 

A  
GMODELO 

C  
FEMSA 

UBD  
CONTAL 

*  
CEMEX 

CP  
GEO 

B  
ARA 

*  
WALMEX 

V 
SORIANA 

B  
COMER 

UBC  
ELEKTRA 

*  
TELMEX 

L  
TELECO 

A1  
TLEVI 

CPO 
TVAZT 

CPO  
GFNORTE 

O  
GFINBUR 

O  
GCARSO 

A1  
ALFA 

A  
CIE 

B  
Num. % Num. % Num. % 

MAE 0.00015 0.00004 0.00041 0.00001 0.00006 0.00073 0.00004 0.00032 0.00085 0.00000 0.00038 0.00379 0.00006 0.00002 0.00003 0.00013 -0.00001 0.00074 0.00151 0.00000 -0.00068 -0.00002 17 77% 0 0% 5 23% 

MAPE 3.64701 2.34251 2.25919 -0.25286 2.37525 12.67917 1.38726 3.47130 -4.82818 1.65019 3.27180 34.12954 5.04330 -0.76467 1.70862 1.77687 0.42484 4.93892 0.75897 2.08037 -10.80862 17.75573 18 82% 0 0% 4 18% 

RMSE 0.00025 0.00008 0.00065 0.00003 0.00010 0.00097 0.00003 0.00052 0.00168 -0.00002 0.00055 0.00515 0.00007 0.00006 0.00011 0.00022 -0.00003 0.00109 0.00229 0.00000 -0.00090 -0.00017 17 77% 0 0% 5 23% 

U-Theil 0.00426 0.00642 0.03272 0.00243 0.00484 0.02384 0.00111 0.01091 0.08752 -0.00112 0.02524 0.17132 0.00151 0.00246 0.00360 0.00723 -0.00033 0.03752 0.09831 -0.00092 -0.01870 -0.00582 17 77% 0 0% 5 23% 

CR -0.00071 0.00142 0.00709 0.00355 -0.00426 0.01560 0.00071 0.00284 0.02199 -0.00142 0.02199 0.08723 -0.00851 -0.00638 0.00213 0.00638 0.00993 0.02057 -26.00000 9.00000 -0.00355 -0.00851 14 64% 0 0% 8 36% 

Notes:   

NNPCA > PCA: Cases where NNPCA reproduce worse than PCA. i.e., NNPCA's error in reproduction is greater than PCA's one.   

NNPCA = PCA: Cases where NNPCA reproduce just the same as PCA. i.e., NNPCA's error in reproduction is equal to PCA's one.   

NNPCA < PCA: Cases where NNPCA reproduce better than PCA. i.e., NNPCA's error in reproduction is less than PCA's one.                                     
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Table 25.  Factor Analysis (FA) vs. Principal Component Analysis (PCA). Measures of reconstruction accuracy obtained in FA minus 
measures of reconstruction accuracy obtained in PCA. Database of daily excesses. Nine underlying factors. 

                                              FA > PCA FA = PCA FA < PCA 

  
PE&OLES 

*  
KIMBER 

A  
BIMBO 

A  
GMODELO 

C  
FEMSA 

UBD  
CONTAL 

*  
CEMEX 

CP  
GEO 

B  
ARA 

*  
WALMEX 

V 
SORIANA 

B  
COMER 

UBC  
ELEKTRA 

*  
TELMEX 

L  
TELECO 

A1  
TLEVI 
CPO 

TVAZT 
CPO  

GFNORTE 
O  

GFINBUR 
O  

GCARSO 
A1  

ALFA 
A  

CIE 
B  

Num. % Num. % Num. % 

MAE 0.01620 -0.00146 0.00043 -0.00192 -0.00177 0.00891 -0.00393 0.00844 -0.00101 -0.00259 -0.00013 0.00517 0.00664 -0.00585 -0.00217 -0.00103 -0.00474 -0.00496 0.00079 -0.00196 0.01016 0.00012 7 32% 0 0% 13 59% 

MAPE 815.75190 137.12818 -4.41641 46.90958 8.73936 359.91294 -44.87883 392.44850 7.13674 -49.27607 -25.59812 71.09088 131.80449 -158.64144 -28.46086 21.41105 
-

173.42598 -199.98716 -22.47645 -18.99550 167.21119 55.53499 10 45% 0 0% 10 45% 

RMSE 0.02245 -0.00255 0.00046 -0.00301 -0.00261 0.01237 -0.00515 0.01199 -0.00125 -0.00369 -0.00006 0.00701 0.00894 -0.00782 -0.00290 -0.00155 -0.00647 -0.00668 0.00127 -0.00292 0.01421 -0.00012 8 36% 0 0% 14 64% 

U-Theil 0.47545 -0.16378 0.02356 -0.17869 -0.11682 0.37270 -0.23088 0.28461 -0.05515 -0.13797 -0.00267 0.24724 0.22573 -0.29126 -0.09538 -0.04336 -0.14345 -0.19131 0.05206 -0.11319 0.35463 -0.00338 8 36% 0 0% 14 64% 

CR 0.28582 -0.09433 0.02908 -0.06028 -0.06738 0.16667 -0.12128 0.16241 -0.04184 -0.07234 -0.00284 0.12766 0.11844 -0.17943 -0.04539 -0.01986 -0.06667 -0.10496 0.00851 -0.06028 0.21064 -3.00000 8 36% 0 0% 14 64% 

Notes:   

FA > PCA: Cases where FA reproduce worse than PCA. i.e., FA's error in reproduction is greater than PCA's one  

FA = PCA: Cases where FA reproduce just the same as PCA. i.e., FA's error in reproduction is equal to PCA's one 

FA < PCA: Cases where FA reproduce better than PCA. i.e., FA's error in reproduction is less than PCA's one.  

 
 

Table 26.  Independent Component Analysis (ICA) vs. Principal Component Analysis (PCA).Measures of reconstruction accuracy obtained 
in ICA minus measures of reconstruction accuracy obtained in PCA. Database of daily excesses. Nine underlying factors. 

                                              ICA > PCA ICA = PCA ICA< PCA 

  
PE&OLES 

*  
KIMBER 

A  
BIMBO 

A  
GMODELO 

C  
FEMSA 

UBD  
CONTAL 

*  
CEMEX 

CP  
GEO 

B  
ARA 

*  
WALMEX 

V 
SORIANA 

B  
COMER 

UBC  
ELEKTRA 

*  
TELMEX 

L  
TELECO 

A1  
TLEVI 
CPO 

TVAZT 
CPO  

GFNORTE 
O  

GFINBUR 
O  

GCARSO 
A1  

ALFA 
A  

CIE 
B  

Num. % Num. % Num. % 

MAE 0.00092 0.00088 0.00083 0.00031 0.00011 -0.00041 0.00116 0.00054 0.00277 0.00018 0.00295 -0.00179 -0.00002 0.00005 0.00220 -0.00016 0.00061 -0.00080 0.00157 0.00117 0.00111 -0.00118 16 73% 0 0% 6 27% 

MAPE 74.49825 292.38266 -67.60136 99.63653 -49.16049 -40.76645 -74.02155 25.88653 323.18549 -20.04713 -122.35033 -67.24084 27.36523 -7.33192 -39.14787 45.78613 -11.66590 -37.51262 -32.06320 -86.61888 27.30216 -31.80499 8 36% 0 0% 14 64% 

RMSE 0.00124 0.00079 0.00164 0.00028 0.00041 -0.00047 0.00163 0.00091 0.00369 0.00019 0.00430 -0.00249 0.00002 0.00010 0.00310 -0.00029 0.00098 -0.00112 0.00230 0.00221 0.00140 -0.00184 17 77% 0 0% 5 23% 

U-Theil 0.02124 -0.04602 0.11723 -0.05750 0.05860 -0.01070 0.21312 0.02124 -0.00240 0.02297 0.34907 -0.06514 0.00459 0.00710 0.19876 -0.01966 0.03654 -0.03569 0.13184 0.18202 0.02867 -0.04508 14 64% 0 0% 8 36% 

CR 0.03404 -0.00851 0.04255 0.00000 -0.00071 -0.00213 0.00426 0.02340 -0.00142 0.00355 0.11277 -0.03830 0.00071 -0.00567 0.04752 0.01135 0.01773 -0.02057 0.04043 0.02482 0.02057 -0.03262 13 59% 1 5% 8 36% 

Notes:   

ICA > PCA: Cases where ICA reproduce worse than PCA. i.e., ICA's error in reproduction is greater than PCA's one.   

ICA = PCA: Cases where ICA reproduce just the same as PCA. i.e., ICA's error in reproduction is equal to PCA's one.   

ICA < PCA: Cases where ICA reproduce better than PCA. i.e., ICA's error in reproduction is less than PCA's one.                                           
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Table 27.  Neural Networks Principal Component Analysis (NNPCA) vs. Principal Component Analysis (PCA). Measures of 

reconstruction accuracy obtained in NNPCA minus measures of reconstruction accuracy obtained in PCA. Database of daily excesses. 
Nine underlying factors. 

                                              
NNPCA > 

PCA 
NNPCA = 

PCA 
NNPCA < 

PCA 

  
PE&OLES 

*  
KIMBER 

A  
BIMBO 

A  
GMODELO 

C  
FEMSA 

UBD  
CONTAL 

*  
CEMEX 

CP  
GEO 

B  
ARA 

*  
WALMEX 

V 
SORIANA 

B  
COMER 

UBC  
ELEKTRA 

*  
TELMEX 

L  
TELECO 

A1  
TLEVI 

CPO 
TVAZT 

CPO  
GFNORTE 

O  
GFINBUR 

O  
GCARSO 

A1  
ALFA 

A  
CIE 

B  
Num. % Num. % Num. % 

MAE 0.00074 0.00004 0.00037 0.00003 -0.00021 0.00247 -0.00072 0.00038 0.00068 0.00013 0.00021 0.00538 0.00067 -0.00002 -0.00006 0.00052 0.00086 0.00144 0.00098 -0.00070 0.00065 0.00343 17 77% 0 0% 5 23% 

MAPE 77.55057 
-

110.37122 -10.09277 -0.88915 11.00830 164.48863 35.69119 24.85566 -10.12721 -1.82272 -9.39239 43.70908 12.92465 24.48204 3.22859 -41.43349 32.06177 -42.45216 -21.82358 53.70081 13.91390 164.87997 13 59% 0 0% 9 41% 

RMSE 0.00105 -0.00061 0.00049 0.00008 -0.00030 0.00330 -0.00109 0.00062 0.00141 0.00004 0.00030 0.00745 0.00095 -0.00002 -0.00011 0.00073 0.00114 0.00222 0.00151 -0.00106 0.00084 0.00457 16 73% 0 0% 6 27% 

U-Theil 0.01780 -0.11732 0.03164 0.00918 -0.01471 0.08400 -0.08577 0.01289 0.06442 -0.00359 0.01440 0.26402 0.02223 -0.00451 -0.00241 0.02040 0.02768 0.07551 0.06424 -0.05956 0.01761 0.13850 15 68% 0 0% 7 32% 

CR 0.02979 -0.02766 0.01915 -0.00213 -0.01773 0.05390 -0.03688 0.00993 0.01206 0.00071 0.01489 0.10780 0.00142 -0.00496 0.00142 0.02411 0.02340 0.03972 -16.00000 36.00000 0.01064 0.07730 16 73% 0 0% 6 27% 

Notes:   

NNPCA > PCA: Cases where NNPCA reproduce worse than PCA. i.e., NNPCA's error in reproduction is greater than PCA's one.  

NNPCA = PCA: Cases where NNPCA reproduce just the same as PCA. i.e., NNPCA's error in reproduction is equal to PCA's one.  

NNPCA < PCA: Cases where NNPCA reproduce better than PCA. i.e., NNPCA's error in reproduction is less than PCA's one.  
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Table 28. Descriptive Statistics.  
Underlying systematic risk factors extracted by Principal Component Analysis.  

Database of weekly excesses.  
Nine components estimated. 

 
 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 

 Mean -0.003944  0.004444 -0.005162 -0.000683  0.001970  0.002940  0.001034 -0.001306  0.001183
 Median -0.018028  0.004528 -0.003617 -0.001256  0.003050  0.005046  0.001186 -0.001126  0.000367
 Maximum  0.629557  0.221396  0.195834  0.164721  0.194416  0.155592  0.210075  0.121766  0.132099
 Minimum -0.363198 -0.271023 -0.187150 -0.181187 -0.162916 -0.142107 -0.177662 -0.123575 -0.098442
 Std. Dev.  0.129471  0.068324  0.053651  0.049613  0.046942  0.043625  0.041983  0.040538  0.038966
 Skewness  0.938542 -0.048849  0.194382  0.202973  0.165787  0.030853  0.197779 -0.075662  0.213711
 Kurtosis  5.532192  4.420852  4.205177  4.470771  4.872565  4.106448  6.228674  3.118512  3.746119
          
 Jarque-Bera  120.4672  24.59392  19.44352  28.22650  43.84936  14.88993  128.2922  0.447944  8.965015
 Probability  0.000000  0.000005  0.000060  0.000001  0.000000  0.000584  0.000000  0.799337  0.011305

          
 Observations  291  291  291  291  291  291  291  291  291 

 
 

Table 29.  Descriptive Statistics.  
Underlying systematic risk factors extracted by Factor Analysis.  

Database of weekly excesses.  
Nine factors estimated. 

 
 F1 F2 F3 F4 F5 F6 F7 F8 F9 

 Mean -0.010375  0.020263  0.094906 -0.001050 -0.050618  0.172400  0.089901 -0.057687  0.115530
 Median  0.019440  0.037504  0.139633  0.010611  0.007328  0.210599  0.065640  0.074827  0.055845
 Maximum  3.219921  4.585031  3.361418  3.009800  3.332350  4.393575  7.180688  5.202817  6.542632
 Minimum -3.495538 -4.555539 -5.050026 -3.881935 -4.527498 -4.267591 -3.652854 -6.636535 -5.250893
 Std. Dev.  1.001466  1.043466  1.167205  1.003160  1.004565  1.299144  1.414999  1.623506  1.717104
 Skewness -0.280476 -0.096280 -0.367291 -0.384665 -0.421962  0.065676  0.671595 -0.123232  0.266944
 Kurtosis  4.407937  5.275117  4.295725  4.511692  5.254126  4.091403  5.621050  4.868059  4.810644
          
 Jarque-Bera  27.85059  63.21049  26.89948  34.88460  70.24367  14.65202  105.1730  43.04846  43.20705
 Probability  0.000001  0.000000  0.000001  0.000000  0.000000  0.000658  0.000000  0.000000  0.000000
          
 Observations  291  291  291  291  291  291  291  291  291 
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Table 30.  Descriptive Statistics.  
Underlying systematic risk factors extracted by Independent Component Analysis.  

Database of weekly excesses.  
Nine components estimated. 

 
 IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 IC9 

 Mean -0.008638 -0.005140  0.000992  0.002767  0.006742 -0.007971  0.005398 -0.007975  0.007122
 Median -0.012539 -0.008304 -0.003487  0.005139  0.013511 -0.001292  0.004035 -0.006177  0.003603
 Maximum  0.415626  0.501133  0.699571  0.801505  0.420690  0.381084  0.376822  0.385994  0.527122
 Minimum -0.496107 -0.489496 -0.500822 -0.430767 -0.546495 -0.498110 -0.403888 -0.412370 -0.486254
 Std. Dev.  0.117125  0.117331  0.117440  0.117411  0.117250  0.117172  0.117319  0.117172  0.117227
 Skewness -0.026483  0.173564  0.725231  0.867447 -0.576825 -0.605917  0.184283 -0.003401  0.310700
 Kurtosis  4.902311  5.239622  8.202715  11.05570  5.653329  5.375522  3.862407  4.365454  6.928474

          
 Jarque-Bera  43.91181  62.27892  353.7115  823.3382  101.4991  86.22873  10.66499  22.60720  191.8060
 Probability  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.004832  0.000012  0.000000

          
 Observations  291  291  291  291  291  291  291  291  291 

 
 
 

Table 31.  Descriptive Statistics.  
Underlying systematic risk factors extracted by Neural Networks Principal Component 

Analysis.  
Database of weekly excesses.  
Nine components estimated. 

 
 NLPC1 NLPC2 NLPC3 NLPC4 NLPC5 NLPC6 NLPC7 NLPC8 NLPC9 

 Mean -0.032427  0.001364 -0.007715 -0.000105  0.000289  2.83E-05  1.66E-05 -0.001149  0.000868
 Median -0.051926 -0.000716 -0.006380  0.002560 -0.001281  0.001611 -0.001294 -0.002289  0.000310
 Maximum  0.912474  0.423712  0.552756  0.240414  0.088477  0.182419  0.112763  0.107839  0.030885
 Minimum -0.590841 -0.536643 -0.527206 -0.312991 -0.070386 -0.217993 -0.115541 -0.085313 -0.045956
 Std. Dev.  0.197048  0.131792  0.155788  0.082926  0.022358  0.059835  0.027906  0.029189  0.009032
 Skewness  0.849719 -0.040225 -0.059633 -0.259078  0.335065 -0.044494 -0.150707  0.483618 -0.245111
 Kurtosis  5.315203  4.495666  4.068316  4.477247  4.272467  3.736754  5.790559  4.107664  5.752322

          
 Jarque-Bera  100.0101  27.20232  14.01072  29.71526  25.07748  6.677540  95.52159  26.21990  94.76406
 Probability  0.000000  0.000001  0.000907  0.000000  0.000004  0.035481  0.000000  0.000002  0.000000

          
 Observations  291  291  291  291  291  291  291  291  291 
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Table 32. Descriptive Statistics.  
Underlying systematic risk factors extracted by Principal Component Analysis.  

Database of daily returns.  
Nine components estimated. 

 
 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 

 Mean  0.002356 -0.000888 -0.001444  3.56E-05  0.000459  0.000219  0.000173 -0.000464 -0.001062
 Median  0.004679 -0.000175 -0.000674  0.000324  0.000285 -0.000131  0.000277 -0.000223 -0.001148
 Maximum  0.281589  0.231344  0.201636  0.096705  0.076712  0.097097  0.094186  0.075873  0.071273
 Minimum -0.288696 -0.158477 -0.112046 -0.095009 -0.088460 -0.130121 -0.078700 -0.077866 -0.089422
 Std. Dev.  0.055753  0.029222  0.022125  0.021004  0.020073  0.019779  0.018870  0.018061  0.017266
 Skewness -0.359818  0.458384  0.446221  0.102483 -0.053424 -0.206969  0.005597 -0.256610 -0.192315
 Kurtosis  6.227632  10.75667  11.97917  4.624837  4.374398  6.236806  4.148166  4.633559  4.552262

          
 Jarque-Bera  642.4597  3584.123  4783.543  157.5738  111.6477  625.5851  77.45655  172.2497  150.2506
 Probability  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000

          
 Observations  1410  1410  1410  1410  1410  1410  1410  1410  1410 

 
 

Table 33. Descriptive Statistics.  
Underlying systematic risk factors extracted by Factor Analysis.  

Database of daily returns.  
Nine factors estimated. 

 
 F1 F2 F3 F4 F5 F6 F7 F8 F9 

 Mean  0.031484  0.026179  0.073571 -0.102281 -0.016817 -0.010096  0.054212  0.099900  0.011072
 Median  0.056286  0.044787  0.075229 -0.060716 -0.060043 -0.044646  0.056825  0.123132 -0.004629
 Maximum  5.437062  6.346658  8.526800  5.898412  7.925382  7.372848  8.861919  11.57495  8.929773
 Minimum -5.071681 -7.532544 -5.587499 -7.979299 -8.295717 -9.380654 -13.60707 -7.378506 -9.603469
 Std. Dev.  1.026482  1.170193  1.311893  1.632713  1.722922  1.700520  1.957714  1.980070  2.212974
 Skewness -0.206572 -0.331211  0.353673 -0.304647 -0.078220 -0.092978 -0.174892  0.141992  0.080211
 Kurtosis  5.619349  6.150133  6.519527  4.174457  4.710548  4.310302  5.689783  5.205288  4.417756

          
 Jarque-Bera  413.1111  608.7757  757.1351  102.8470  173.3388  102.8989  432.2401  290.4566  119.6013
 Probability  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000

          
 Observations  1410  1410  1410  1410  1410  1410  1410  1410  1410 
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Table 34. Descriptive Statistics. 
Underlying systematic risk factors extracted by Independent Component Analysis.  

Database of daily returns.  
Nine components estimated. 

 
 IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 IC9 

 Mean -0.000716 -0.004623 -0.000710  0.000558  0.003100  0.000652  0.000872  0.000469  0.001338
 Median -0.000302 -0.002535 -0.000865  0.001314  0.001219  0.003475 -0.000983 -0.000647 -0.000403
 Maximum  0.274543  0.217066  0.249965  0.310819  0.307332  0.257947  0.263235  0.284191  0.301550
 Minimum -0.212093 -0.257235 -0.354758 -0.221701 -0.487456 -0.266238 -0.282570 -0.293566 -0.410542
 Std. Dev.  0.053276  0.053080  0.053277  0.053278  0.053191  0.053277  0.053274  0.053279  0.053264
 Skewness  0.080145  0.000858 -0.342233  0.311607 -0.311076 -0.346124  0.011715 -0.125102 -0.434181
 Kurtosis  5.246531  4.766196  7.193612  6.628106  12.39919  4.879718  6.729938  6.619434  10.88330

          
 Jarque-Bera  298.0150  183.2678  1060.724  796.1534  5212.993  235.7371  817.3880  773.3206  3695.402
 Probability  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000

          
 Observations  1410  1410  1410  1410  1410  1410  1410  1410  1410 

 
 
 

Table 35.  Descriptive Statistics. 
Underlying systematic risk factors extracted by Neural Networks Principal Component 

Analysis.  
Database of daily returns.  

Nine components estimated. 
 

 NLPC1 NLPC2 NLPC3 NLPC4 NLPC5 NLPC6 NLPC7 NLPC8 NLPC9 
 Mean  0.003576  6.58E-05  3.09E-05 -0.000143 -0.000230  9.18E-05 -0.000569 -0.000205  0.000123
 Median -0.000438  0.001537  0.001743  0.000376 -0.000252 -0.000453 -0.001856 -0.000549  0.000266
 Maximum  0.510622  0.495791  0.514135  0.238636  0.094086  0.121683  0.382520  0.176716  0.014278
 Minimum -0.488768 -0.339496 -0.290268 -0.176419 -0.105797 -0.144047 -0.271144 -0.117490 -0.017372
 Std. Dev.  0.098811  0.064724  0.059985  0.046905  0.020779  0.026247  0.070637  0.025368  0.003034
 Skewness  0.347196  0.435479  0.328774  0.147100 -0.171743 -0.091483  0.137538  0.406506 -0.147188
 Kurtosis  6.095872  10.13615  10.40109  4.606178  4.946722  5.797478  4.099136  6.078564  5.822009

          
 Jarque-Bera  591.4130  3036.385  3243.496  156.6487  229.5779  461.7375  75.42137  595.6394  472.9604
 Probability  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000

          
 Observations  1410  1410  1410  1410  1410  1410  1410  1410  1410 
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Table 36. Descriptive Statistics.  
Underlying systematic risk factors extracted by Principal Component Analysis.  

Database of daily excesses.  
Nine components estimated. 

 
 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 

 Mean  0.001299 -0.000775 -0.001450 -0.000186  0.000438  0.000231  0.000141  0.000445  0.001051
 Median  0.003761 -8.33E-05 -0.000667 -2.56E-05  0.000281  3.52E-05  0.000277  0.000178  0.000922
 Maximum  0.279606  0.231728  0.201739  0.096357  0.075342  0.096440  0.094476  0.078563  0.088257
 Minimum -0.289879 -0.158224 -0.111699 -0.095638 -0.088929 -0.128845 -0.078053 -0.076033 -0.072492
 Std. Dev.  0.055779  0.029255  0.022144  0.020990  0.020079  0.019779  0.018865  0.018062  0.017227
 Skewness -0.370363  0.455393  0.448615  0.098302 -0.060974 -0.207582  0.011371  0.264926  0.189832
 Kurtosis  6.220801  10.71636  11.93088  4.623772  4.366512  6.242142  4.137685  4.661385  4.542228

          
 Jarque-Bera  641.6812  3546.842  4733.233  157.1732  110.5807  627.6759  76.07213  178.6553  148.2034
 Probability  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000

          
 Observations  1410  1410  1410  1410  1410  1410  1410  1410  1410 

 
 

Table 37. Descriptive Statistics.  
Underlying systematic risk factors extracted by Factor Analysis.  

Database of daily excesses.  
Nine factors estimated. 

 
 F1 F2 F3 F4 F5 F6 F7 F8 F9 

 Mean  0.013640  0.021834  0.064796 -0.101075 -0.014891 -0.019101  0.109525 -0.036138 -0.017815
 Median  0.040461  0.045539  0.052420 -0.064870 -0.011659 -0.018433  0.164255 -0.001650  0.039969
 Maximum  5.342337  6.436236  8.390022  5.578374  6.637788  6.227631  11.64881  10.37396  7.136281
 Minimum -5.140210 -7.472201 -5.566796 -7.434362 -7.571372 -7.222651 -10.37229 -10.86416 -11.26957
 Std. Dev.  1.027398  1.187039  1.310642  1.606169  1.735676  1.678947  1.987070  1.958003  2.198530
 Skewness -0.231324 -0.320561  0.332646 -0.329934 -0.123856 -0.038627 -0.032251 -0.075319 -0.232246
 Kurtosis  5.633297  6.088529  6.412157  4.125209  4.535853  3.875016  5.576763  5.159592  4.573902

          
 Jarque-Bera  419.9626  584.5655  710.0191  99.96426  142.1871  45.33276  390.3273  275.3336  158.2090
 Probability  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000

          
 Observations  1410  1410  1410  1410  1410  1410  1410  1410  1410 
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Table 38. Descriptive Statistics. 
Underlying systematic risk factors extracted by Independent Component Analysis.  

Database of daily excesses.  
Nine components estimated. 

 
 IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 IC9 

 Mean  0.003770 -0.001501  0.002198 -0.000981 -0.000800 -0.000249  0.000224  0.002735  0.001359
 Median  0.001574 -0.001192  0.001295 -0.001394  0.001749 -0.001340  0.000275  0.000582 -0.000744
 Maximum  0.242804  0.242646  0.450886  0.221878  0.295940  0.302749  0.296157  0.297699  0.309549
 Minimum -0.222830 -0.224994 -0.236029 -0.308617 -0.272096 -0.274313 -0.275637 -0.480584 -0.407771
 Std. Dev.  0.053148  0.053260  0.053236  0.053272  0.053275  0.053281  0.053281  0.053211  0.053264
 Skewness -0.030118  0.016222  0.672834 -0.315673  0.123218  0.302979  0.120556 -0.382851 -0.396603
 Kurtosis  5.044371  4.595748  9.872250  6.485997  7.171820  5.214765  7.024793  11.93690  10.77099

          
 Jarque-Bera  245.7559  149.6636  2881.021  737.3581  1026.058  309.7517  955.1041  4726.701  3584.776
 Probability  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000

          
 Observations  1410  1410  1410  1410  1410  1410  1410  1410  1410 

 
 

Table 39. Descriptive Statistics. 
Underlying systematic risk factors extracted by Neural Networks Principal Component 

Analysis.  
Database of daily excesses.  
Nine components estimated. 

 
 NLPC1 NLPC2 NLPC3 NLPC4 NLPC5 NLPC6 NLPC7 NLPC8 NLPC9 

 Mean  0.003576  6.58E-05  3.09E-05 -0.000143 -0.000230  9.18E-05 -0.000569 -0.000205  0.000123
 Median -0.000438  0.001537  0.001743  0.000376 -0.000252 -0.000453 -0.001856 -0.000549  0.000266
 Maximum  0.510622  0.495791  0.514135  0.238636  0.094086  0.121683  0.382520  0.176716  0.014278
 Minimum -0.488768 -0.339496 -0.290268 -0.176419 -0.105797 -0.144047 -0.271144 -0.117490 -0.017372
 Std. Dev.  0.098811  0.064724  0.059985  0.046905  0.020779  0.026247  0.070637  0.025368  0.003034
 Skewness  0.347196  0.435479  0.328774  0.147100 -0.171743 -0.091483  0.137538  0.406506 -0.147188
 Kurtosis  6.095872  10.13615  10.40109  4.606178  4.946722  5.797478  4.099136  6.078564  5.822009

          
 Jarque-Bera  591.4130  3036.385  3243.496  156.6487  229.5779  461.7375  75.42137  595.6394  472.9604
 Probability  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000

          
 Observations  1410  1410  1410  1410  1410  1410  1410  1410  1410 
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Table 40. Correlation Matrix.  
Underlying systematic risk factors extracted by Principal Component Analysis.  

Database of weekly returns.  
Nine components estimated. 

 
 PC1  PC2  PC3 PC4 PC5 PC6 PC7 PC8  PC9  
PC1  1.000000         

 -----          
 -----          
          

PC2  1.46E-14 1.000000        
 2.49E-13 -----         
 1.0000 -----         
          

PC3  4.74E-16 -2.00E-17 1.000000       
 8.06E-15 -3.40E-16 -----       
 1.0000 1.0000 -----       
          

PC4  1.05E-17 -3.64E-18 2.31E-16 1.000000      
 1.79E-16 -6.19E-17 3.92E-15 -----      
 1.0000 1.0000 1.0000 -----      
          

PC5  1.03E-16 9.33E-17 -2.27E-16 -6.11E-16 1.000000     
 1.75E-15 1.59E-15 -3.85E-15 -1.04E-14 -----     
 1.0000 1.0000 1.0000 1.0000 -----     
          

PC6  5.73E-16 2.14E-16 -2.24E-16 -2.91E-17 -2.81E-16 1.000000    
 9.73E-15 3.63E-15 -3.80E-15 -4.95E-16 -4.78E-15 -----    
 1.0000 1.0000 1.0000 1.0000 1.0000 -----    
          

PC7  -1.04E-15 2.49E-16 -9.85E-17 -4.90E-17 9.71E-16 4.42E-16 1.000000   
 -1.77E-14 4.23E-15 -1.68E-15 -8.33E-16 1.65E-14 7.52E-15 -----   
 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 -----   
          

PC8  1.66E-16 -8.97E-17 3.04E-16 -1.85E-16 -1.16E-16 -6.70E-17 -3.12E-15 1.000000  
 2.82E-15 -1.52E-15 5.18E-15 -3.14E-15 -1.98E-15 -1.14E-15 -5.30E-14 -----   
 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 -----   
          

PC9  -6.52E-16 2.10E-16 6.32E-17 4.44E-16 5.34E-16 1.70E-16 9.89E-16 6.47E-16 1.000000 
 -1.11E-14 3.58E-15 1.08E-15 7.54E-15 9.08E-15 2.90E-15 1.68E-14 1.10E-14 -----  
 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 -----  

Notes: Number for each factor represent the Correlation, the value of the t-statistic and its corresponding p-
value, respectively. 
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Table 41. Correlation Matrix.  
Underlying systematic risk factors extracted by Factor Analysis.  

Database of weekly returns.  
Nine factors estimated. 

 
 F1  F2  F3 F4 F5 F6 F7 F8  F9  
F1  1.000000         

 -----          
 -----          
          

F2  -4.07E-16 1.000000        
 -6.92E-15 -----         
 1.0000 -----         
          

F3  7.87E-17 -1.76E-14 1.000000       
 1.34E-15 -2.99E-13 -----       
 1.0000 1.0000 -----       
          

F4  -2.27E-16 2.94E-16 5.94E-16 1.000000      
 -3.85E-15 4.99E-15 1.01E-14 -----      
 1.0000 1.0000 1.0000 -----      
          

F5  -5.78E-17 1.51E-14 -1.17E-16 -1.22E-16 1.000000     
 -9.83E-16 2.57E-13 -1.99E-15 -2.07E-15 -----     
 1.0000 1.0000 1.0000 1.0000 -----     
          

F6  -4.41E-16 1.78E-16 -1.22E-15 5.90E-16 3.63E-16 1.000000    
 -7.50E-15 3.03E-15 -2.08E-14 1.00E-14 6.16E-15 -----    
 1.0000 1.0000 1.0000 1.0000 1.0000 -----    
          

F7  1.72E-16 -1.50E-16 4.67E-16 -2.62E-16 -3.15E-17 -1.48E-16 1.000000   
 2.92E-15 -2.54E-15 7.94E-15 -4.46E-15 -5.36E-16 -2.52E-15 -----   
 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 -----   
          

F8  5.97E-16 -8.97E-16 -2.21E-16 3.58E-16 -1.16E-15 6.46E-16 1.92E-16 1.000000  
 1.02E-14 -1.52E-14 -3.76E-15 6.08E-15 -1.98E-14 1.10E-14 3.26E-15 -----   
 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 -----   
          

F9  -4.28E-16 -3.65E-16 3.12E-16 -3.98E-16 2.99E-16 3.88E-16 9.07E-17 1.79E-16 1.000000 
 -7.27E-15 -6.20E-15 5.31E-15 -6.76E-15 5.08E-15 6.60E-15 1.54E-15 3.04E-15 -----  
 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 -----  

Notes: Number for each factor represent the Correlation, the value of the t-statistic and its corresponding 
p-value, respectively. 
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Table 42.  Correlation Matrix.  
Underlying systematic risk factors extracted by Independent Component Analysis.  

Database of weekly returns.  
Nine components estimated. 

 
 IC1  IC2  IC3 IC4 IC5 IC6 IC7 IC8  IC9 
IC1  1.000000         

 -----          
 -----          
          

IC2  -0.001574 1.000000        
 -0.026757 -----         
 0.9787 -----         
          

IC3  -0.001544 -0.000235 1.000000       
 -0.026255 -0.003994 -----       
 0.9791 0.9968 -----       
          

IC4  -0.002650 -0.000403 -0.000396 1.000000      
 -0.045047 -0.006853 -0.006725 -----      
 0.9641 0.9945 0.9946 -----      
          

IC5  -0.006857 -0.001043 -0.001024 -0.001756 1.000000     
 -0.116571 -0.017734 -0.017401 -0.029856 -----     
 0.9073 0.9859 0.9861 0.9762 -----     
          

IC6  -0.002198 -0.000334 -0.000328 -0.000563 -0.001456 1.000000    
 -0.037358 -0.005683 -0.005577 -0.009568 -0.024760 -----    
 0.9702 0.9955 0.9956 0.9924 0.9803 -----    
          

IC7  -0.004272 -0.000650 -0.000638 -0.001094 -0.002831 -0.000907 1.000000   
 -0.072623 -0.011048 -0.010841 -0.018600 -0.048132 -0.015425 -----   
 0.9422 0.9912 0.9914 0.9852 0.9616 0.9877 -----   
          

IC8  0.006096 0.000927 0.000910 0.001561 0.004041 0.001295 0.002517 1.000000  
 0.103641 0.015767 0.015471 0.026544 0.068689 0.022013 0.042793 -----   
 0.9175 0.9874 0.9877 0.9788 0.9453 0.9825 0.9659 -----   
          

IC9  0.007061 0.001074 0.001054 0.001809 0.004680 0.001500 0.002916 -0.004161 1.000000
 0.120048 0.018263 0.017920 0.030746 0.079563 0.025498 0.049568 -0.070738 ----- 
 0.9045 0.9854 0.9857 0.9755 0.9366 0.9797 0.9605 0.9437 ----- 

Notes: Number for each factor represent the Correlation, the value of the t-statistic and its corresponding p-
value, respectively. 
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Table 43. Correlation Matrix.  
Underlying systematic risk factors extracted by Neural Networks Principal Component Analysis.  

Database of weekly returns.  
Nine components estimated. 

 
 NLPC1  NLPC2  NLPC3 NLPC4 NLPC5 NLPC6 NLPC7 NLPC8  NLPC9 
NLPC1  1.000000         

 -----          
 -----          
          

NLPC2  -0.031396 1.000000        
 -0.533994 -----         
 0.5938 -----         
          

NLPC3  0.081554 0.013761 1.000000       
 1.391059 0.233967 -----       
 0.1653 0.8152 -----       
          

NLPC4  0.002295 -0.016403 0.008593 1.000000      
 0.039020 -0.278894 0.146084 -----      
 0.9689 0.7805 0.8840 -----      
          

NLPC5  -0.010637 0.012771 -0.015357 0.025418 1.000000     
 -0.180835 0.217130 -0.261103 0.432246 -----     
 0.8566 0.8283 0.7942 0.6659 -----     
          

NLPC6  0.011823 -0.001015 0.008820 0.007008 0.029393 1.000000    
 0.201007 -0.017249 0.149948 0.119139 0.499902 -----    
 0.8408 0.9862 0.8809 0.9052 0.6175 -----    
          

NLPC7  0.022828 -0.008263 -0.015000 0.003180 0.027881 -0.004091 1.000000   
 0.388179 -0.140481 -0.255025 0.054068 0.474165 -0.069548 -----   
 0.6982 0.8884 0.7989 0.9569 0.6357 0.9446 -----   
          

NLPC8  0.006632 -0.040477 0.014436 0.032910 -0.023997 0.012208 0.113703 1.000000  
 0.112738 -0.688670 0.245444 0.559766 -0.408064 0.207552 1.945569 -----   
 0.9103 0.4916 0.8063 0.5761 0.6835 0.8357 0.0527 -----   
          

NLPC9  0.834854 0.224315 -0.356144 0.139490 0.092716 0.034431 0.040925 0.151507 1.000000
 25.78245 3.913077 -6.479285 2.394742 1.582997 0.585677 0.696304 2.605696 ----- 
 0.0000 0.0001 0.0000 0.0173 0.1145 0.5585 0.4868 0.0096 ----- 

Notes: Number for each factor represent the Correlation, the value of the t-statistic and its corresponding p-
value, respectively. 
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Table 44. Correlation Matrix.  
Underlying systematic risk factors extracted by Principal Component Analysis.  

Database of weekly excesses.  
Nine components estimated. 

 
 PC1  PC2  PC3  PC4 PC5 PC6 PC7  PC8  PC9 

PC1  1.000000         
 -----          
 -----          
          

PC2  1.37E-14 1.000000        
 2.32E-13 -----         
 1.0000 -----         
          

PC3  6.45E-16 6.64E-16 1.000000       
 1.10E-14 1.13E-14 -----        
 1.0000 1.0000 -----        
          

PC4  -1.38E-16 -7.62E-17 -2.19E-16 1.000000      
 -2.35E-15 -1.30E-15 -3.73E-15 -----      
 1.0000 1.0000 1.0000 -----      
          

PC5  8.02E-16 -1.31E-17 1.12E-16 -5.10E-16 1.000000     
 1.36E-14 -2.22E-16 1.90E-15 -8.67E-15 -----     
 1.0000 1.0000 1.0000 1.0000 -----     
          

PC6  -4.74E-16 -1.88E-19 1.81E-16 3.06E-16 7.72E-16 1.000000    
 -8.06E-15 -3.20E-18 3.07E-15 5.19E-15 1.31E-14 -----    
 1.0000 1.0000 1.0000 1.0000 1.0000 -----    
          

PC7  -6.52E-17 1.32E-16 -8.00E-17 3.69E-16 -9.90E-17 -1.81E-15 1.000000   
 -1.11E-15 2.24E-15 -1.36E-15 6.27E-15 -1.68E-15 -3.07E-14 -----    
 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 -----    
          

PC8  5.89E-16 4.59E-18 1.68E-16 -1.17E-16 1.74E-16 3.43E-16 -5.63E-15 1.000000  
 1.00E-14 7.80E-17 2.86E-15 -1.99E-15 2.97E-15 5.82E-15 -9.57E-14 -----   
 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 -----   
          

PC9  -6.07E-16 -1.97E-17 3.35E-16 3.83E-17 4.29E-17 -6.17E-16 4.59E-16 -1.35E-16 1.000000
 -1.03E-14 -3.34E-16 5.69E-15 6.51E-16 7.30E-16 -1.05E-14 7.81E-15 -2.29E-15 ----- 
 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ----- 

Notes: Number for each factor represent the Correlation, the value of the t-statistic and its corresponding p-value, 
respectively. 
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Table 45. Correlation Matrix.  
Underlying systematic risk factors extracted by Factor Analysis.  

Database of weekly excesses.  
Nine factors estimated. 

 
 F1  F2  F3  F4 F5 F6 F7  F8  F9 
F1  1.000000         

 -----          
 -----          
          

F2  1.62E-16 1.000000        
 2.76E-15 -----         
 1.0000 -----         
          

F3  4.36E-16 -1.95E-14 1.000000       
 7.41E-15 -3.31E-13 -----        
 1.0000 1.0000 -----        
          

F4  -1.60E-16 9.07E-16 8.03E-16 1.000000      
 -2.72E-15 1.54E-14 1.36E-14 -----      
 1.0000 1.0000 1.0000 -----      
          

F5  9.47E-16 1.30E-14 1.70E-16 1.89E-17 1.000000     
 1.61E-14 2.21E-13 2.89E-15 3.22E-16 -----     
 1.0000 1.0000 1.0000 1.0000 -----     
          

F6  2.80E-16 -2.79E-16 -3.17E-16 1.35E-16 -4.38E-17 1.000000    
 4.76E-15 -4.74E-15 -5.38E-15 2.29E-15 -7.44E-16 -----    
 1.0000 1.0000 1.0000 1.0000 1.0000 -----    
          

F7  -7.23E-16 1.44E-16 1.03E-16 -2.46E-16 -5.96E-17 -8.02E-17 1.000000   
 -1.23E-14 2.44E-15 1.75E-15 -4.18E-15 -1.01E-15 -1.36E-15 -----    
 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 -----    
          

F8  2.37E-16 -4.92E-16 -4.42E-16 1.62E-15 5.15E-16 -5.48E-16 3.77E-16 1.000000  
 4.03E-15 -8.36E-15 -7.51E-15 2.75E-14 8.75E-15 -9.31E-15 6.41E-15 -----   
 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 -----   
          

F9  -5.34E-18 4.28E-16 -5.94E-17 -5.64E-16 3.11E-17 1.68E-16 1.64E-17 -1.21E-15 1.000000
 -9.08E-17 7.27E-15 -1.01E-15 -9.60E-15 5.28E-16 2.86E-15 2.80E-16 -2.05E-14 ----- 
 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ----- 

Notes: Number for each factor represent the Correlation, the value of the t-statistic and its corresponding p-value, 
respectively. 
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Table 46. Correlation Matrix.  
Underlying systematic risk factors extracted by Independent Component Analysis.  

Database of weekly excesses.  
Nine components estimated. 

 
 IC1  IC2  IC3  IC4 IC5 IC6 IC7  IC8  IC9 
IC1  1.000000         

 -----          
 -----          
          

IC2  -0.003242 1.000000        
 -0.055111 -----         
 0.9561 -----         
          

IC3  0.000625 0.000371 1.000000       
 0.010622 0.006309 -----        
 0.9915 0.9950 -----        
          

IC4  0.001744 0.001036 -0.000200 1.000000      
 0.029646 0.017608 -0.003394 -----      
 0.9764 0.9860 0.9973 -----      
          

IC5  0.004256 0.002528 -0.000487 -0.001360 1.000000     
 0.072346 0.042970 -0.008282 -0.023115 -----     
 0.9424 0.9658 0.9934 0.9816 -----     
          

IC6  -0.005034 -0.002990 0.000576 0.001609 0.003925 1.000000    
 -0.085584 -0.050832 0.009798 0.027345 0.066729 -----    
 0.9319 0.9595 0.9922 0.9782 0.9468 -----    
          

IC7  0.003405 0.002023 -0.000390 -0.001088 -0.002655 0.003141 1.000000   
 0.057888 0.034383 -0.006627 -0.018496 -0.045135 0.053394 -----    
 0.9539 0.9726 0.9947 0.9853 0.9640 0.9575 -----    
          

IC8  -0.005037 -0.002992 0.000577 0.001609 0.003927 -0.004646 0.003143 1.000000  
 -0.085630 -0.050860 0.009803 0.027360 0.066766 -0.078983 0.053423 -----   
 0.9318 0.9595 0.9922 0.9782 0.9468 0.9371 0.9574 -----   
          

IC9  0.004496 0.002671 -0.000515 -0.001437 -0.003506 0.004147 -0.002805 0.004150 1.000000
 0.076439 0.045401 -0.008751 -0.024423 -0.059599 0.070505 -0.047689 0.070543 ----- 
 0.9391 0.9638 0.9930 0.9805 0.9525 0.9438 0.9620 0.9438 ----- 

Notes: Number for each factor represent the Correlation, the value of the t-statistic and its corresponding p-value, 
respectively. 
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Table 47. Correlation Matrix.  
Underlying systematic risk factors extracted by Neural Networks Principal Component Analysis.  

Database of weekly excesses.  
Nine components estimated. 

 
 NLPC1  NLPC2  NLPC3 NLPC4 NLPC5 NLPC6 NLPC7  NLPC8  NLPC9 
NLPC1  1.000000         

 -----          
 -----          
          

NLPC2  -0.007002 1.000000        
 -0.119045 -----         
 0.9053 -----         
          

NLPC3  -0.064065 -0.041441 1.000000       
 -1.091348 -0.705109 -----       
 0.2760 0.4813 -----       
          

NLPC4  -0.033752 -0.025272 0.026521 1.000000      
 -0.574109 -0.429759 0.451016 -----      
 0.5663 0.6677 0.6523 -----      
          

NLPC5  0.037700 0.006554 0.001482 0.050342 1.000000     
 0.641353 0.111413 0.025186 0.856895 -----     
 0.5218 0.9114 0.9799 0.3922 -----     
          

NLPC6  -0.021561 0.024785 -0.030980 0.010405 -0.041740 1.000000    
 -0.366624 0.421475 -0.526910 0.176899 -0.710206 -----    
 0.7142 0.6737 0.5987 0.8597 0.4781 -----    
          

NLPC7  0.011832 -0.014836 -0.002364 0.019425 -0.047141 -0.017784 1.000000   
 0.201162 -0.252242 -0.040186 0.330291 -0.802297 -0.302374 -----    
 0.8407 0.8010 0.9680 0.7414 0.4230 0.7626 -----    
          

NLPC8  -0.012715 -0.010108 -0.028500 0.029144 0.093808 -0.104539 0.045230 1.000000  
 -0.216176 -0.171841 -0.484700 0.495651 1.601793 -1.786954 0.769697 -----   
 0.8290 0.8637 0.6283 0.6205 0.1103 0.0750 0.4421 -----   
          

NLPC9  -0.566061 -0.066771 -0.111176 -0.032228 0.608848 -0.154398 -0.328179 -0.276592 1.000000
 -11.67330 -1.137650 -1.901779 -0.548165 13.04750 -2.656619 -5.906146 -4.892952 ----- 
 0.0000 0.2562 0.0582 0.5840 0.0000 0.0083 0.0000 0.0000 ----- 

Notes: Number for each factor represent the Correlation, the value of the t-statistic and its corresponding p-value, 
respectively. 
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Table 48. Correlation Matrix.  
Underlying systematic risk factors extracted by Principal Component Analysis.  

Database of daily returns.  
Nine components estimated. 

 
 PC1  PC2  PC3  PC4 PC5 PC6 PC7  PC8  PC9 
PC1  1.000000         

 -----          
 -----          
          

PC2  5.14E-15 1.000000        
 1.93E-13 -----         
 1.0000 -----         
          

PC3  -1.32E-16 8.67E-15 1.000000       
 -4.94E-15 3.25E-13 -----        
 1.0000 1.0000 -----        
          

PC4  -2.19E-16 -4.61E-17 5.30E-17 1.000000      
 -8.21E-15 -1.73E-15 1.99E-15 -----      
 1.0000 1.0000 1.0000 -----      
          

PC5  1.80E-16 4.55E-16 2.77E-16 -5.93E-16 1.000000     
 6.77E-15 1.71E-14 1.04E-14 -2.22E-14 -----     
 1.0000 1.0000 1.0000 1.0000 -----     
          

PC6  6.88E-16 1.32E-16 1.74E-16 -2.07E-16 -1.36E-16 1.000000    
 2.58E-14 4.96E-15 6.52E-15 -7.78E-15 -5.12E-15 -----    
 1.0000 1.0000 1.0000 1.0000 1.0000 -----    
          

PC7  -2.90E-16 -1.79E-17 -1.18E-17 -8.54E-17 2.44E-16 3.96E-17 1.000000   
 -1.09E-14 -6.70E-16 -4.43E-16 -3.21E-15 9.15E-15 1.49E-15 -----    
 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 -----    
          

PC8  1.21E-16 2.24E-16 1.44E-17 -1.62E-16 2.95E-16 -1.03E-17 -5.64E-16 1.000000  
 4.54E-15 8.40E-15 5.42E-16 -6.09E-15 1.11E-14 -3.88E-16 -2.11E-14 -----   
 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 -----   
          

PC9  -1.23E-15 -1.37E-16 1.35E-16 -2.72E-16 4.19E-16 -6.76E-16 -6.57E-16 -7.06E-16 1.000000
 -4.63E-14 -5.15E-15 5.08E-15 -1.02E-14 1.57E-14 -2.54E-14 -2.47E-14 -2.65E-14 ----- 
 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ----- 

Notes: Number for each factor represent the Correlation, the value of the t-statistic and its corresponding p-value, 
respectively. 
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Table 49. Correlation Matrix.  
Underlying systematic risk factors extracted by Factor Analysis.  

Database of daily returns.  
Nine factors estimated. 

 
 F1  F2  F3  F4 F5 F6 F7  F8  F9 
F1  1.000000         

 -----          
 -----          
          

F2  -1.48E-14 1.000000        
 -5.55E-13 -----         
 1.0000 -----         
          

F3  4.49E-17 1.30E-16 1.000000       
 1.69E-15 4.88E-15 -----        
 1.0000 1.0000 -----        
          

F4  1.53E-16 3.48E-16 -6.10E-15 1.000000      
 5.76E-15 1.31E-14 -2.29E-13 -----      
 1.0000 1.0000 1.0000 -----      
          

F5  -1.48E-16 -2.75E-16 -8.59E-17 1.11E-15 1.000000     
 -5.56E-15 -1.03E-14 -3.22E-15 4.17E-14 -----     
 1.0000 1.0000 1.0000 1.0000 -----     
          

F6  5.20E-17 2.57E-16 -1.15E-16 5.67E-16 -1.11E-15 1.000000    
 1.95E-15 9.65E-15 -4.33E-15 2.13E-14 -4.17E-14 -----    
 1.0000 1.0000 1.0000 1.0000 1.0000 -----    
          

F7  -1.61E-16 -1.63E-16 2.36E-17 -1.58E-18 1.10E-15 -5.63E-16 1.000000   
 -6.03E-15 -6.11E-15 8.84E-16 -5.92E-17 4.13E-14 -2.11E-14 -----    
 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 -----    
          

F8  -5.46E-17 6.96E-17 -1.55E-16 2.46E-16 5.20E-16 -2.19E-16 -1.40E-15 1.000000  
 -2.05E-15 2.61E-15 -5.83E-15 9.25E-15 1.95E-14 -8.20E-15 -5.24E-14 -----   
 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 -----   
          

F9  2.22E-16 -8.37E-17 5.51E-16 1.90E-16 4.97E-16 -1.09E-15 -3.38E-16 6.86E-16 1.000000
 8.33E-15 -3.14E-15 2.07E-14 7.12E-15 1.87E-14 -4.09E-14 -1.27E-14 2.57E-14 ----- 
 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ----- 

Notes: Number for each factor represent the Correlation, the value of the t-statistic and its corresponding p-value, 
respectively. 
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Table 50. Correlation Matrix.  
Underlying systematic risk factors extracted by Independent Component Analysis.  

Database of daily returns.  
Nine components estimated. 

 
 IC1  IC2  IC3  IC4 IC5 IC6 IC7  IC8  IC9 
IC1  1.000000         

 -----          
 -----          
          

IC2  -0.001171 1.000000        
 -0.043957 -----         
 0.9649 -----         
          

IC3  -0.000179 -0.001162 1.000000       
 -0.006728 -0.043609 -----        
 0.9946 0.9652 -----        
          

IC4  0.000141 0.000913 0.000140 1.000000      
 0.005287 0.034266 0.005245 -----      
 0.9958 0.9727 0.9958 -----      
          

IC5  0.000784 0.005080 0.000778 -0.000611 1.000000     
 0.029413 0.190632 0.029180 -0.022929 -----     
 0.9765 0.8488 0.9767 0.9817 -----     
          

IC6  0.000165 0.001067 0.000163 -0.000128 -0.000714 1.000000    
 0.006180 0.040051 0.006131 -0.004817 -0.026799 -----    
 0.9951 0.9681 0.9951 0.9962 0.9786 -----    
          

IC7  0.000220 0.001427 0.000218 -0.000172 -0.000955 -0.000201 1.000000   
 0.008262 0.053549 0.008197 -0.006441 -0.035831 -0.007528 -----    
 0.9934 0.9573 0.9935 0.9949 0.9714 0.9940 -----    
          

IC8  0.000118 0.000767 0.000117 -9.22E-05 -0.000513 -0.000108 -0.000144 1.000000  
 0.004438 0.028763 0.004403 -0.003460 -0.019246 -0.004044 -0.005406 -----   
 0.9965 0.9771 0.9965 0.9972 0.9846 0.9968 0.9957 -----   
          

IC9  0.000338 0.002190 0.000335 -0.000263 -0.001465 -0.000308 -0.000412 -0.000221 1.000000
 0.012679 0.082177 0.012579 -0.009884 -0.054987 -0.011553 -0.015446 -0.008297 ----- 
 0.9899 0.9345 0.9900 0.9921 0.9562 0.9908 0.9877 0.9934 ----- 

Notes: Number for each factor represent the Correlation, the value of the t-statistic and its corresponding p-value, 
respectively. 
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Table 51. Correlation Matrix.  
Underlying systematic risk factors extracted by Neural Networks Principal Component Analysis.  

Database of daily returns.  
Nine components estimated. 

 
 PC1  PC2  PC3 PC4 PC5 PC6 PC7  PC8  PC9 
NLPC1  1.000000         

 -----          
 -----          
          

NLPC2  0.006846 1.000000        
 0.256904 -----         
 0.7973 -----         
          

NLPC3  -0.011131 0.009930 1.000000       
 -0.417697 0.372634 -----       
 0.6762 0.7095 -----       
          

NLPC4  -0.004152 0.001389 0.005626 1.000000      
 -0.155788 0.052125 0.211104 -----      
 0.8762 0.9584 0.8328 -----      
          

NLPC5  0.001019 0.000724 0.002434 0.000349 1.000000     
 0.038241 0.027163 0.091345 0.013112 -----     
 0.9695 0.9783 0.9272 0.9895 -----     
          

NLPC6  -0.002984 -0.000808 -0.000312 -0.001940 0.007762 1.000000    
 -0.111962 -0.030316 -0.011706 -0.072785 0.291250 -----    
 0.9109 0.9758 0.9907 0.9420 0.7709 -----    
          

NLPC7  -0.008100 -0.005810 0.006042 -0.003105 0.002493 -0.029730 1.000000   
 -0.303967 -0.217998 0.226721 -0.116499 0.093561 -1.116077 -----    
 0.7612 0.8275 0.8207 0.9073 0.9255 0.2646 -----    
          

NLPC8  0.000494 -0.002052 -0.004535 -0.012528 0.008983 0.001942 -0.022507 1.000000  
 0.018525 -0.076986 -0.170187 -0.470125 0.337096 0.072852 -0.844746 -----   
 0.9852 0.9386 0.8649 0.6383 0.7361 0.9419 0.3984 -----   
          

NLPC9  -0.772205 0.035355 0.106552 0.252924 0.006187 -0.332129 0.456862 -0.128653 1.000000
 -45.60420 1.327462 4.021086 9.809512 0.232178 -13.21260 19.27182 -4.867934 ----- 
 0.0000 0.1846 0.0001 0.0000 0.8164 0.0000 0.0000 0.0000 ----- 

Notes: Number for each factor represent the Correlation, the value of the t-statistic and its corresponding p-value, 
respectively. 
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Table 52. Correlation Matrix.  
Underlying systematic risk factors extracted by Principal Component Analysis.  

Database of daily excesses.  
Nine components estimated. 

 
 PC1  PC2  PC3  PC4 PC5 PC6 PC7  PC8  PC9 
PC1  1.000000         

 -----          
 -----          
          

PC2  1.30E-14 1.000000        
 4.89E-13 -----         
 1.0000 -----         
          

PC3  2.43E-16 1.27E-14 1.000000       
 9.13E-15 4.77E-13 -----        
 1.0000 1.0000 -----        
          

PC4  -5.05E-16 -2.24E-16 -2.91E-16 1.000000      
 -1.89E-14 -8.39E-15 -1.09E-14 -----      
 1.0000 1.0000 1.0000 -----      
          

PC5  -7.91E-17 8.17E-17 3.32E-17 -2.16E-16 1.000000     
 -2.97E-15 3.07E-15 1.25E-15 -8.11E-15 -----     
 1.0000 1.0000 1.0000 1.0000 -----     
          

PC6  1.07E-16 -3.28E-16 -2.88E-17 -3.26E-16 6.20E-16 1.000000    
 4.02E-15 -1.23E-14 -1.08E-15 -1.22E-14 2.33E-14 -----    
 1.0000 1.0000 1.0000 1.0000 1.0000 -----    
          

PC7  -5.34E-16 2.01E-16 -3.48E-16 1.23E-16 -3.38E-16 3.96E-17 1.000000   
 -2.00E-14 7.53E-15 -1.30E-14 4.61E-15 -1.27E-14 1.49E-15 -----    
 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 -----    
          

PC8  6.72E-17 3.59E-16 -1.84E-16 1.30E-17 3.53E-16 7.82E-16 3.14E-16 1.000000  
 2.52E-15 1.35E-14 -6.92E-15 4.87E-16 1.32E-14 2.94E-14 1.18E-14 -----   
 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 -----   
          

PC9  4.61E-17 -2.20E-17 -1.87E-16 -1.31E-16 -8.26E-16 -6.05E-16 -3.28E-16 -8.66E-17 1.000000
 1.73E-15 -8.25E-16 -7.02E-15 -4.92E-15 -3.10E-14 -2.27E-14 -1.23E-14 -3.25E-15 ----- 
 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ----- 

Notes: Number for each factor represent the Correlation, the value of the t-statistic and its corresponding p-value, 
respectively. 
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Table 53. Correlation Matrix.  
Underlying systematic risk factors extracted by Factor Analysis.  

Database of daily excesses.  
Nine factors estimated. 

 
 F1  F2  F3  F4 F5 F6 F7  F8  F9 
F1  1.000000         

 -----          
 -----          
          

F2  -3.58E-15 1.000000        
 -1.34E-13 -----         
 1.0000 -----         
          

F3  1.57E-16 3.56E-16 1.000000       
 5.90E-15 1.33E-14 -----        
 1.0000 1.0000 -----        
          

F4  -4.89E-16 6.41E-16 -1.22E-14 1.000000      
 -1.83E-14 2.41E-14 -4.57E-13 -----      
 1.0000 1.0000 1.0000 -----      
          

F5  -4.86E-16 2.74E-16 -5.32E-17 3.04E-16 1.000000     
 -1.83E-14 1.03E-14 -2.00E-15 1.14E-14 -----     
 1.0000 1.0000 1.0000 1.0000 -----     
          

F6  4.27E-16 3.98E-16 1.46E-16 -8.79E-16 7.06E-16 1.000000    
 1.60E-14 1.49E-14 5.46E-15 -3.30E-14 2.65E-14 -----    
 1.0000 1.0000 1.0000 1.0000 1.0000 -----    
          

F7  -5.83E-16 7.78E-16 4.03E-16 -3.92E-16 5.67E-16 -2.57E-16 1.000000   
 -2.19E-14 2.92E-14 1.51E-14 -1.47E-14 2.13E-14 -9.64E-15 -----    
 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 -----    
          

F8  -1.00E-17 5.55E-16 -9.43E-17 3.51E-16 5.94E-16 1.49E-16 -1.56E-16 1.000000  
 -3.76E-16 2.08E-14 -3.54E-15 1.32E-14 2.23E-14 5.60E-15 -5.84E-15 -----   
 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 -----   
          

F9  -7.14E-17 -5.80E-17 3.52E-16 -1.97E-16 8.03E-16 1.09E-17 1.11E-16 -1.04E-15 1.000000
 -2.68E-15 -2.18E-15 1.32E-14 -7.39E-15 3.01E-14 4.10E-16 4.16E-15 -3.90E-14 ----- 
 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ----- 

Notes: Number for each factor represent the Correlation, the value of the t-statistic and its corresponding p-value, 
respectively. 
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Table 54. Correlation Matrix.  
Underlying systematic risk factors extracted by Independent Component Analysis.  

Database of daily excesses.  
Nine components estimated. 

 
 IC1  IC2  IC3  IC4 IC5 IC6 IC7  IC8  IC9 
IC1  1.000000         

 -----          
 -----          
          

IC2  0.002000 1.000000        
 0.075057 -----         
 0.9402 -----         
          

IC3  -0.002931 0.001164 1.000000       
 -0.109975 0.043693 -----        
 0.9124 0.9652 -----        
          

IC4  0.001307 -0.000519 0.000761 1.000000      
 0.049029 -0.019479 0.028541 -----      
 0.9609 0.9845 0.9772 -----      
          

IC5  0.001067 -0.000424 0.000621 -0.000277 1.000000     
 0.040019 -0.015899 0.023296 -0.010386 -----     
 0.9681 0.9873 0.9814 0.9917 -----     
          

IC6  0.000332 -0.000132 0.000193 -8.61E-05 -7.03E-05 1.000000    
 0.012446 -0.004945 0.007245 -0.003230 -0.002636 -----    
 0.9901 0.9961 0.9942 0.9974 0.9979 -----    
          

IC7  -0.000299 0.000119 -0.000174 7.76E-05 6.33E-05 1.97E-05 1.000000   
 -0.011213 0.004455 -0.006527 0.002910 0.002375 0.000739 -----    
 0.9911 0.9964 0.9948 0.9977 0.9981 0.9994 -----    
          

IC8  -0.003648 0.001449 -0.002124 0.000947 0.000773 0.000240 -0.000217 1.000000  
 -0.136885 0.054384 -0.079684 0.035525 0.028996 0.009018 -0.008124 -----   
 0.8911 0.9566 0.9365 0.9717 0.9769 0.9928 0.9935 -----   
          

IC9  -0.001811 0.000720 -0.001054 0.000470 0.000384 0.000119 -0.000108 -0.001313 1.000000
 -0.067972 0.027005 -0.039568 0.017640 0.014398 0.004478 -0.004034 -0.049250 ----- 
 0.9458 0.9785 0.9684 0.9859 0.9885 0.9964 0.9968 0.9607 ----- 

Notes: Number for each factor represent the Correlation, the value of the t-statistic and its corresponding p-value, 
respectively. 
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Table 55. Correlation Matrix.  
Underlying systematic risk factors extracted by Neural Networks Principal Component Analysis.  

Database of daily excesses.  
Nine components estimated. 

 
 NLPC1  NLPC2  NLPC3 NLPC4 NLPC5 NLPC6 NLPC7  NLPC8  NLPC9 
NLPC1  1.000000         

 -----          
 -----          
          

NLPC2  0.044574 1.000000        
 1.674222 -----         
 0.0943 -----         
          

NLPC3  -0.028272 -0.041707 1.000000       
 -1.061302 -1.566363 -----       
 0.2887 0.1175 -----       
          

NLPC4  0.041066 -0.021142 -0.012066 1.000000      
 1.542249 -0.793477 -0.452805 -----      
 0.1232 0.4276 0.6508 -----      
          

NLPC5  0.002983 -0.012726 0.008762 -0.034101 1.000000     
 0.111948 -0.477555 0.328778 -1.280309 -----     
 0.9109 0.6330 0.7424 0.2006 -----     
          

NLPC6  -0.016539 0.005358 0.051204 0.025883 -0.006191 1.000000    
 -0.620689 0.201069 1.923861 0.971548 -0.232309 -----    
 0.5349 0.8407 0.0546 0.3314 0.8163 -----    
          

NLPC7  -0.025707 -0.005844 0.010382 0.031880 0.038827 -0.059480 1.000000   
 -0.964945 -0.219295 0.389598 1.196861 1.458012 -2.235843 -----    
 0.3347 0.8265 0.6969 0.2316 0.1451 0.0255 -----    
          

NLPC8  -0.081394 0.016232 0.072651 -0.041117 -0.078575 0.155891 -0.094338 1.000000  
 -3.064326 0.609162 2.733342 -1.544167 -2.957556 5.921950 -3.555720 -----   
 0.0022 0.5425 0.0063 0.1228 0.0032 0.0000 0.0004 -----   
          

NLPC9  0.826611 0.153200 0.017111 -0.131789 -0.012831 -0.095547 0.307618 0.292922 1.000000
 55.11492 5.817254 0.642147 -4.988682 -0.481489 -3.601716 12.13109 11.49567 ----- 
 0.0000 0.0000 0.5209 0.0000 0.6302 0.0003 0.0000 0.0000 ----- 

Notes: Number for each factor represent the Correlation, the value of the t-statistic and its corresponding p-value, 
respectively. 
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Appendix_2 (Chapter 7) Figure 9.  Plot of the underlying systematic risk factors 
extracted by Principal Component Analysis. Database of weekly excesses. Nine components 

estimated. 

 
 

Figure 10. Plot of the underlying systematic risk factors extracted by Factor Analysis. 
Database of weekly excesses. Nine factors estimated. 
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Figure 11. Plot of the underlying systematic risk factors extracted by Independent Component 
Analysis. Database of weekly excesses. Nine components estimated. 

 
 

Figure 12. Plot of the underlying systematic risk factors extracted by Neural Networks 
Principal Component Analysis. Database of weekly excesses. Nine components estimated. 
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Figure 13. Plot of the underlying systematic risk factors extracted by Principal Component 

Analysis. Database of daily returns. Nine components estimated. 

 
 

Figure 14. Plot of the underlying systematic risk factors extracted by Factor Analysis. 
Database of daily returns. Nine factors estimated. 
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Figure 15. Plot of the underlying systematic risk factors extracted by Independent Component 

Analysis. Database of daily returns. Nine components estimated. 

 
 

Figure 16. Plot of the underlying systematic risk factors extracted by Neural Networks 
Principal Component Analysis. Database of daily returns. Nine components estimated. 
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Figure 17.  Plot of the underlying systematic risk factors extracted by Principal Component 

Analysis. Database of daily excesses. Nine components estimated. 

 
 

Figure 18. Plot of the underlying systematic risk factors extracted by Factor Analysis. 
Database of daily excesses. Nine factors estimated. 
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Figure 19. Plot of the underlying systematic risk factors extracted by Independent Component 

Analysis. Database of daily excesses. Nine components estimated. 

 
 

Figure 20. Plot of the underlying systematic risk factors extracted by Neural Networks 
Principal Component Analysis. Database of daily excesses. Nine components estimated. 
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Figure 21.  First underlying systematic risk factor extracted by the four techniques. Multiple 
graph. Database of weekly returns. Nine factors estimated. 

 
 
 

Figure 22. Second underlying systematic risk factor extracted by the four techniques. 
Multiple graph. Database of weekly returns. Nine factors estimated. 
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Figure 23. Third underlying systematic risk factor extracted by the four techniques. Multiple 
graph. Database of weekly returns. Nine factors estimated. 

 
 
 

Figure 24. Fourth underlying systematic risk factor extracted by the four techniques. Multiple 
graph. Database of weekly returns. Nine factors estimated. 
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Figure 25. Fifth underlying systematic risk factor extracted by the four techniques. Multiple 
graph. Database of weekly returns. Nine factors estimated. 

 
 
 

Figure 26. Sixth underlying systematic risk factor extracted by the four techniques. Multiple 
graph. Database of weekly returns. Nine factors estimated. 
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Figure 27. Seventh underlying systematic risk factor extracted by the four techniques. 
Multiple graph. Database of weekly returns. Nine factors estimated. 

 
 

Figure 28. Eight underlying systematic risk factor extracted by the four techniques. Multiple 
graph. Database of weekly returns. Nine factors estimated. 
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Figure 29. Ninth underlying systematic risk factor extracted by the four techniques. Multiple 

graph. Database of weekly returns. Nine factors estimated. 
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Figure 30.  First underlying systematic risk factor extracted by the four techniques. Multiple 

graph. Database of weekly excesses. Nine factors estimated. 

 
 

Figure 31.  Second underlying systematic risk factor extracted by the four techniques. 
Multiple graph. Database of weekly excesses. Nine factors estimated. 
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Figure 32. Third underlying systematic risk factor extracted by the four techniques. Multiple 

graph. Database of weekly excesses. Nine factors estimated. 

 
 
 

Figure 33. Fourth underlying systematic risk factor extracted by the four techniques. Multiple 
graph. Database of weekly excesses. Nine factors estimated. 
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Figure 34. Fifth underlying systematic risk factor extracted by the four techniques. Multiple 

graph. Database of weekly excesses. Nine factors estimated. 

 
 
 

Figure 35.  Sixth underlying systematic risk factor extracted by the four techniques. Multiple 
graph. Database of weekly excesses. Nine factors estimated. 
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Figure 36.  Seventh underlying systematic risk factor extracted by the four techniques. 

Multiple graph. Database of weekly excesses. Nine factors estimated. 

 
 

Figure 37.  Eighth underlying systematic risk factor extracted by the four techniques. 
Multiple graph. Database of weekly excesses. Nine factors estimated. 
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Figure 38. Ninth underlying systematic risk factor extracted by the four techniques. Multiple 

graph. Database of weekly excesses. Nine factors estimated. 
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Figure 39.  First underlying systematic risk factor extracted by the four techniques. Multiple 

graph. Database of daily returns. Nine factors estimated. 

 
 

Figure 40.  Second underlying systematic risk factor extracted by the four techniques. 
Multiple graph. Database of daily returns. Nine factors estimated. 
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Figure 41.  Third underlying systematic risk factor extracted by the four techniques. Multiple 

graph. Database of daily returns. Nine factors estimated. 

 
 
 

Figure 42.  Fourth underlying systematic risk factor extracted by the four techniques. 
Multiple graph. Database of daily returns. Nine factors estimated. 
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Figure 43. Fifth underlying systematic risk factor extracted by the four techniques. Multiple 
graph. Database of daily returns. Nine factors estimated. 

 
 
 

Figure 44.  Sixth underlying systematic risk factor extracted by the four techniques. Multiple 
graph. Database of daily returns. Nine factors estimated. 
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Figure 45.  Seventh underlying systematic risk factor extracted by the four techniques. 

Multiple graph. Database of daily returns. Nine factors estimated. 
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Figure 46. Eighth underlying systematic risk factor extracted by the four techniques. Multiple 

graph. Database of daily returns. Nine factors estimated. 

 
 
 

Figure 47.  Ninth underlying systematic risk factor extracted by the four techniques. Multiple 
graph. Database of daily returns. Nine factors estimated. 
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Figure 48.  First underlying systematic risk factor extracted by the four techniques. Multiple 

graph. Database of daily excesses. Nine factors estimated. 

 
 
 

Figure 49. Second underlying systematic risk factor extracted by the four techniques. 
Multiple graph. Database of daily excesses. Nine factors estimated. 
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Figure 50. Third underlying systematic risk factor extracted by the four techniques. Multiple 

graph. Database of daily excesses. Nine factors estimated. 

 
 
 

Figure 51. Fourth underlying systematic risk factor extracted by the four techniques. Multiple 
graph. Database of daily excesses. Nine factors estimated. 
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Figure 52.  Fifth underlying systematic risk factor extracted by the four techniques. Multiple 

graph. Database of daily excesses. Nine factors estimated. 

 
 
 

Figure 53.  Sixth underlying systematic risk factor extracted by the four techniques. Multiple 
graph. Database of daily excesses. Nine factors estimated. 
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Figure 54.  Seventh underlying systematic risk factor extracted by the four techniques. 
Multiple graph. Database of daily excesses. Nine factors estimated. 

 
 
 

Figure 55. Eighth underlying systematic risk factor extracted by the four techniques. Multiple 
graph. Database of daily excesses. Nine factors estimated. 
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Figure 56. Ninth underlying systematic risk factor extracted by the four techniques. Multiple 

graph. Database of daily excesses. Nine factors estimated. 
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Table 56. Descriptive Statistics. Matrix of Betas computed in Principal Component Analysis. 
Database of weekly excesses. Nine components estimated. 

 B1 B2 B3 B4 B5 B6 B7 B8 B9 
 Mean -0.213618 0.018645  0.032165-0.014136 0.012903-0.003496 0.013655  0.002923  0.012855 
 Median -0.213953-0.058772 0.072076-0.077736-0.009851 0.060190-0.018021 0.012045 -0.017317
 Maximum -0.097772 0.914825  0.318410  0.706754  0.445655  0.401360  0.588670  0.348821  0.661647 
 Minimum -0.328755-0.127194-0.766692-0.365744-0.509815-0.444461-0.334488-0.459446-0.529515
 Std. Dev.  0.067803  0.228617  0.227030  0.228957  0.229033  0.229388  0.228988  0.229396  0.229036 
 Skewness  0.020598  3.269301 -2.213245 1.627610-0.539764-0.426233 0.506540-0.263241 0.551485 
 Kurtosis  1.999151  13.18839  8.774399  6.273850  3.430912  2.377632  3.107553  2.301330  5.536192 

          
 Jarque-Bera  0.836163  122.1305  44.11458  17.76213  1.125888  0.928367  0.864917  0.637770  6.374011 
 Probability  0.658309  0.000000  0.000000  0.000139  0.569530  0.628648  0.648912  0.726959  0.041295 

          
 Observations  20  20  20  20  20  20  20  20  20 

 
Table 57. Descriptive Statistics. Matrix of Betas computed in Factor Analysis.  

Database of weekly excesses. Nine factors estimated. 
 B1 B2 B3 B4 B5 B6 B7 B8 B9 

 Mean  0.022544 0.011422  0.007743  0.003735  0.002379  0.000831-6.64E-05  0.001448  0.001060 
 Median  0.021626 0.010748  0.008387  0.004078  0.001283  9.96E-06-0.000285 0.000112 -2.86E-05 
 Maximum  0.043353 0.035217  0.030303  0.023536  0.029497  0.029144  0.015380  0.013530  0.014577 
 Minimum  0.009858-0.001595-0.008330-0.022994-0.019321-0.016564-0.014311-0.009464-0.007997
 Std. Dev.  0.008669 0.008493  0.008564  0.007926  0.008924  0.009525  0.006503  0.006521  0.006067 
 Skewness  0.476575 0.768106  0.518040-1.220873 0.738424  1.255856  0.463756  0.206923  0.886852 
 Kurtosis  2.891278 4.368870  3.908515  9.336240  6.824044  5.402429  4.049998  2.364219  3.326630 

          
 Jarque-Bera  0.766931 3.528126  1.582385  38.42505  14.00366  10.06697  1.635643  0.479571  2.710592 
 Probability  0.681496 0.171347  0.453304  0.000000  0.000910  0.006516  0.441392  0.786797  0.257871 

          
 Observations  20  20  20  20  20  20  20  20  20 

 
Table 58. Descriptive Statistics. Matrix of Betas computed in Independent Component 

Analysis. Database of weekly excesses. Nine components estimated. 
 B1 B2 B3 B4 B5 B6 B7 B8 B9 

 Mean -0.137247 0.098974 -0.124538-0.012394-0.038042-0.067917-0.041284 0.031819  0.014986 
 Median -0.140107 0.101541 -0.108194-0.054439-0.070025-0.073356-0.034232 0.021180  0.011866 
 Maximum  0.001794  0.329107  0.018121  0.144794  0.307902  0.080046  0.126262  0.367506  0.186462 
 Minimum -0.373971-0.120249-0.262781-0.137738-0.152221-0.354144-0.284430-0.114226-0.167391
 Std. Dev.  0.082626  0.094594  0.086405  0.086399  0.109293  0.084934  0.080735  0.097659  0.096045 
 Skewness -0.697534 0.034277  0.047476  0.479672  1.671156-1.549694-0.970520 1.880488  0.011039 
 Kurtosis  4.940058  3.966488  1.996327  1.918160  6.014849  7.997286  5.821683  8.284079  2.441013 

          
 Jarque-Bera  4.758363  0.782332  0.846979  1.742265  16.88364  28.81590  9.774611  35.05536  0.260795 
 Probability  0.092626  0.676268  0.654758  0.418477  0.000216  0.000001  0.007542  0.000000  0.877746 

          
 Observations  20  20  20  20  20  20  20  20  20 
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Table 59.  Descriptive Statistics. Matrix of Betas computed in Neural Networks Principal 
Component Analysis. Database of weekly excesses. Nine components estimated. 

 B1 B2 B3 B4 B5 B6 B7 B8 B9 
 Mean -0.144037 0.006534  0.012514  0.007574  0.086608-0.005091-0.003256-0.014183-0.161302
 Median -0.168848-0.016567 0.014686  0.006105-0.106972-0.069814-0.074214-0.012427 0.011099 
 Maximum  0.216224  0.486162  0.230983  0.327174  4.095215  0.562687  1.513013  1.654952  13.61141 
 Minimum -0.549244-0.105147-0.222991-0.326857-3.159456-0.375073-1.466123-1.644692-14.65570
 Std. Dev.  0.202123  0.127139  0.104594  0.147370  1.973171  0.270882  0.743907  0.871323  7.309528 
 Skewness  0.090094  2.821949 -0.161143-0.031310 0.239173  0.617816  0.401103  0.061453  0.016501 
 Kurtosis  2.588814  11.36687  3.277949  3.561855  2.682065  2.412702  2.910472  2.466058  2.610547 

          
 Jarque-Bera  0.167951  84.88170  0.150937  0.266335  0.274915  1.559753  0.542958  0.250167  0.127302 
 Probability  0.919454  0.000000  0.927309  0.875318  0.871572  0.458463  0.762251  0.882423  0.938332 

          
 Observations  20  20  20  20  20  20  20  20  20 
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Table 60.  Descriptive Statistics. Matrix of Betas computed in Principal Component Analysis. 
Database of daily returns. Nine components estimated. 

 B1 B2 B3 B4 B5 B6 B7 B8 B9 
 Mean  0.205518-0.026812-0.005948 0.037367  0.003264  0.002050  0.002088-0.005036-0.008586
 Median  0.205444 0.025411  0.039499  0.068185  0.029268-0.068253-0.030315 0.006426 -0.018906
 Maximum  0.313603 0.085528  0.258394  0.510560  0.553027  0.682432  0.551258  0.387151  0.508508 
 Minimum  0.117277-0.973511-0.891996-0.417701-0.510300-0.203432-0.322397-0.638845-0.399761
 Std. Dev.  0.058053 0.216485  0.218133  0.214840  0.218192  0.218208  0.218207  0.218157  0.218041 
 Skewness  0.196386-4.048221-3.179878-0.253019-0.341232 2.085362  0.854016-0.748609 0.122531 
 Kurtosis  2.206404 18.25849  13.74259  3.294214  4.581156  6.631329  3.151524  4.795651  3.142666 

          
 Jarque-Bera  0.718726 273.5095  142.8622  0.314084  2.718660  28.03302  2.695307  5.010522  0.073708 
 Probability  0.698121 0.000000  0.000000  0.854668  0.256833  0.000001  0.259849  0.081654  0.963817 

          
 Observations  22  22  22  22  22  22  22  22  22 

 
Table 61.  Descriptive Statistics. Matrix of Betas computed in Factor Analysis.  

Database of daily returns. Nine factors estimated. 
 B1 B2 B3 B4 B5 B6 B7 B8 B9 

 Mean  0.010677 0.002380  0.001147  0.000101  0.000413  9.43E-05  0.000397  0.000497  1.22E-05 
 Median  0.010885 0.002491  0.001842  0.000857  0.000527-7.64E-05  0.000274  0.000792 -8.17E-05 
 Maximum  0.016902 0.006692  0.004317  0.003680  0.004715  0.004127  0.005437  0.003992  0.003203 
 Minimum  0.004406-0.006884-0.010784-0.005958-0.004371-0.004571-0.002680-0.004385-0.002796
 Std. Dev.  0.003346 0.002893  0.003209  0.002477  0.002319  0.002165  0.002109  0.002084  0.001650 
 Skewness  0.075258-1.620962-2.540091-0.681584-0.041245-0.080846 0.629179-0.444208 0.325880 
 Kurtosis  2.352901 6.581487  9.865981  2.796291  2.386254  2.555385  2.927780  2.967787  2.472821 

          
 Jarque-Bera  0.404609 21.39236  66.87079  1.741414  0.351531  0.205175  1.456289  0.724462  0.644149 
 Probability  0.816846 0.000023  0.000000  0.418656  0.838815  0.902499  0.482804  0.696122  0.724644 

          
 Observations  22  22  22  22  22  22  22  22  22 

 
Table 62. Descriptive Statistics. Matrix of Betas computed in Independent Component 

Analysis. Database of daily returns. Nine components estimated. 
 B1 B2 B3 B4 B5 B6 B7 B8 B9 

 Mean  0.125132 -0.116101  0.066777-0.049075 0.033456  0.000450 0.063920 0.051062  0.031444 
 Median  0.094508 -0.096762  0.042604-0.025901 0.016224  0.004121 0.047740 0.036639  0.007223 
 Maximum  0.315097 -0.012856  0.290655  0.014193  0.419657  0.107907 0.420289 0.376939  0.545156 
 Minimum -0.002412-0.296812 -0.008843-0.358739-0.019655-0.276207 0.002572-0.038448-0.023610
 Std. Dev.  0.083025  0.059465  0.070115  0.087545  0.089333  0.072744 0.083358 0.076299  0.115508 
 Skewness  0.806248 -1.073562  1.974684-2.624960 3.904274-2.413494 3.754415 3.696723  4.268469 
 Kurtosis  3.034655  5.043703  6.568053  9.130191  17.45278  10.84144 16.70739 16.70546  19.52406 

          
 Jarque-Bera  2.384564  8.054628  25.96780  59.71249  247.3682  77.72240 223.9188 222.2942  317.0969 
 Probability  0.303528  0.017822  0.000002  0.000000  0.000000  0.000000 0.000000 0.000000  0.000000 

          
 Observations  22  22  22  22  22  22  22  22  22 
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Table 63.  Descriptive Statistics. Matrix of Betas computed in Neural Networks Principal 
Component Analysis. Database of daily returns. Nine components estimated. 

 B1 B2 B3 B4 B5 B6 B7 B8 B9 
 Mean -0.119893-0.012807-0.001845 0.019282-0.007870-0.004477 0.003028  0.003802 -0.172247
 Median -0.122111 0.011995  0.008987-0.048854 0.010642-0.054925-0.021991-0.004923-0.145817
 Maximum  0.309391  0.056768  0.126594  0.431654  0.298487  0.711866  0.415778  0.444057  19.54631 
 Minimum -0.607666-0.442438-0.315774-0.367921-0.757126-0.810291-0.437547-0.475327-20.77902
 Std. Dev.  0.247487  0.099766  0.094423  0.193479  0.211303  0.420271  0.205113  0.213034  10.49282 
 Skewness -0.103990-3.847167-1.602713 0.379405-2.057010 0.015676  0.061142  0.144390 -0.034435
 Kurtosis  2.463291  17.18474  6.661458  2.693511  8.414006  2.208827  2.774900  3.088573  2.755183 

          
 Jarque-Bera  0.303703  238.7089  21.70761  0.613918  42.38357  0.574692  0.060155  0.083636  0.059289 
 Probability  0.859116  0.000000  0.000019  0.735681  0.000000  0.750252  0.970370  0.959044  0.970791 

          
 Observations  22  22  22  22  22  22  22  22  22 
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Table 64.  Descriptive Statistics. Matrix of Betas computed in Principal Component Analysis. 
Database of daily excesses. Nine components estimated. 

 B1 B2 B3 B4 B5 B6 B7 B8 B9 
 Mean  0.205540-0.026666-0.006038 0.037381  0.003131  0.001901  0.002352  0.005226  0.008298 
 Median  0.205552 0.023935  0.040631  0.068637  0.030312-0.066245-0.030811-0.008722 0.013215 
 Maximum  0.313559 0.085533  0.261388  0.516046  0.539109  0.694619  0.549216  0.642165  0.393722 
 Minimum  0.117683-0.972958-0.888977-0.417046-0.519924-0.194530-0.319764-0.390327-0.502186
 Std. Dev.  0.057972 0.216504  0.218130  0.214838  0.218194  0.218209  0.218205  0.218152  0.218053 
 Skewness  0.197833-4.041332-3.143075-0.230206-0.434586 2.097280  0.830105  0.778501 -0.110605
 Kurtosis  2.202977 18.22104  13.56084  3.317536  4.519788  6.742978  3.079893  4.874525  3.117541 

          
 Jarque-Bera  0.725814 272.2588  138.4598  0.286741  2.809780  28.97053  2.532459  5.443260  0.057521 
 Probability  0.695651 0.000000  0.000000  0.866433  0.245394  0.000001  0.281893  0.065767  0.971649 

          
 Observations  22  22  22  22  22  22  22  22  22 

 
Table 65. Descriptive Statistics. Matrix of Betas computed in Factor Analysis.  

Database of daily excesses. Nine factors estimated. 
 B1 B2 B3 B4 B5 B6 B7 B8 B9 

 Mean  0.010746 0.002076  0.001164  0.000152  0.000366  0.000262  0.000622  4.79E-05 -3.34E-05 
 Median  0.010974 0.002269  0.001806  0.000860  0.000295  0.000250  0.000305-0.000410 0.000207 
 Maximum  0.017049 0.006459  0.004402  0.003967  0.004426  0.003953  0.007124  0.003250  0.002382 
 Minimum  0.004509-0.006993-0.010730-0.006111-0.004465-0.005231-0.004171-0.002835-0.004135
 Std. Dev.  0.003342 0.002899  0.003211  0.002479  0.002265  0.002249  0.002350  0.001904  0.001763 
 Skewness  0.076609-1.565711-2.497213-0.751624-0.207834-0.325778 0.687129  0.324049 -0.719137
 Kurtosis  2.369068 6.327439  9.719117  3.061907  2.578481  3.050174  4.217956  1.839652  2.824028 

          
 Jarque-Bera  0.386422 19.13785  64.24992  2.074957  0.321253  0.391456  3.091002  1.619234  1.924634 
 Probability  0.824308 0.000070  0.000000  0.354347  0.851610  0.822236  0.213205  0.445029  0.382007 

          
 Observations  22  22  22  22  22  22  22  22  22 

 
Table 66. Descriptive Statistics. Matrix of Betas computed in Independent Component 

Analysis. Database of daily excesses. Nine components estimated. 
 B1 B2 B3 B4 B5 B6 B7 B8 B9 

 Mean  0.147800 0.099561 -0.076087 0.051725-0.037076 0.016234-0.045470 0.023507  0.040329 
 Median  0.144840 0.086432 -0.065400 0.027037-0.025403 0.013372-0.030621 0.007860  0.016475 
 Maximum  0.320216 0.278503 -0.003832 0.371244  0.040032  0.313429  0.029971  0.410121  0.549238 
 Minimum  0.031453-0.014624-0.348008-0.009987-0.386188-0.077354-0.382361-0.043782-0.003813
 Std. Dev.  0.059802 0.080791  0.070664  0.090617  0.082854  0.073110  0.077497  0.088956  0.114223 
 Skewness  0.735317 0.697162 -2.663075 2.666694-3.549238 3.119452-3.939217 3.954645  4.294559 
 Kurtosis  4.570998 2.861136  11.12761  9.119144  15.80892  13.80057  17.86903  17.82951  19.66242 

          
 Jarque-Bera  4.244902 1.799802  86.55704  60.39820  196.5853  142.6116  259.5613  258.9319  322.1252 
 Probability  0.119738 0.406610  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000 

          
 Observations  22  22  22  22  22  22  22  22  22 
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Table 67. Descriptive Statistics. Matrix of Betas computed in Neural Networks Principal 
Component Analysis. Database of daily excesses. Nine components estimated. 

 B1 B2 B3 B4 B5 B6 B7 B8 B9 
 Mean -0.153356-0.000188 0.003934  0.011566  0.005673  0.011585-0.113363-0.190890 0.604049 
 Median -0.023482 0.069230 -0.027525-0.035161 0.031529-0.084985 0.110835  0.076830 -0.886506
 Maximum  2.772315  0.706448  0.479473  0.602297  0.486563  2.257217  6.806987  10.82161  56.29629 
 Minimum -4.645785-1.187565-0.179648-0.415274-0.393025-1.350791-10.66053-16.90248-36.12472
 Std. Dev.  1.910751  0.513759  0.133741  0.249862  0.187730  0.946124  4.552608  6.994788  23.58244 
 Skewness -0.578208-0.623105 2.001670  0.570823-0.244804 0.649418-0.558019-0.595869 0.581020 
 Kurtosis  2.749818  2.608357  8.363808  2.846333  4.469168  2.871715  2.687833  2.828300  2.773077 

          
 Jarque-Bera  1.283231  1.564222  41.06408  1.216386  2.198323  1.561479  1.231075  1.328909  1.285011 
 Probability  0.526441  0.457439  0.000000  0.544333  0.333150  0.458067  0.540350  0.514554  0.525973 

          
 Observations  22  22  22  22  22  22  22  22  22 

 

  



APPENDIX 
 

588 
 

 
Table 68  Correlation matrix. Betas computed in Principal Component Analysis. Database of 

weekly returns. Nine components estimated. 
 B1  B2  B3  B4 B5 B6 B7  B8  B9 
B1  1.000000         

 -----          
 -----          
          

B2  0.274319 1.000000        
 1.210263 -----         
 0.2418 -----         
          

B3  0.471119 -0.012441 1.000000       
 2.266020 -0.052786 -----        
 0.0360 0.9585 -----        
          

B4  -0.204519 0.005401 0.009275 1.000000      
 -0.886437 0.022914 0.039354 -----      
 0.3871 0.9820 0.9690 -----      
          

B5  0.186645 -0.004929 -0.008465 0.003675 1.000000     
 0.806031 -0.020911 -0.035914 0.015590 -----     
 0.4307 0.9835 0.9717 0.9877 -----     
          

B6  -0.050418 0.001331 0.002287 -0.000993 0.000906 1.000000    
 -0.214179 0.005649 0.009701 -0.004211 0.003843 -----    
 0.8328 0.9956 0.9924 0.9967 0.9970 -----    
          

B7  0.198168 -0.005233 -0.008987 0.003902 -0.003561 0.000962 1.000000   
 0.857768 -0.022202 -0.038131 0.016553 -0.015106 0.004081 -----    
 0.4023 0.9825 0.9700 0.9870 0.9881 0.9968 -----    
          

B8  0.042616 -0.001125 -0.001933 0.000839 -0.000766 0.000207 -0.000813 1.000000  
 0.180967 -0.004774 -0.008200 0.003560 -0.003249 0.000878 -0.003449 -----   
 0.8584 0.9962 0.9935 0.9972 0.9974 0.9993 0.9973 -----   
          

B9  0.185540 -0.004900 -0.008415 0.003653 -0.003334 0.000901 -0.003539 -0.000761 1.000000
 0.801089 -0.020787 -0.035701 0.015498 -0.014144 0.003821 -0.015017 -0.003229 ----- 
 0.4335 0.9836 0.9719 0.9878 0.9889 0.9970 0.9882 0.9975 ----- 

Notes: Number for each factor represent the Correlation, the value of the t-statistic and its corresponding p-value, 
respectively. 
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Table 69  Correlation matrix. Betas computed in Factor Analysis. Database of weekly 
returns. Nine factors estimated. 

 B1  B2  B3  B4 B5 B6 B7  B8  B9 
B1  1.000000         

 -----          
 -----          
          

B2  -0.176560 1.000000        
 -0.761038 -----         
 0.4565 -----         
          

B3  -0.043950 -0.115967 1.000000       
 -0.186646 -0.495349 -----        
 0.8540 0.6263 -----        
          

B4  0.193799 -0.049381 0.165280 1.000000      
 0.838107 -0.209760 0.711004 -----      
 0.4130 0.8362 0.4862 -----      
          

B5  0.417522 0.059878 0.105560 -0.086326 1.000000     
 1.949442 0.254497 0.450370 -0.367622 -----     
 0.0670 0.8020 0.6578 0.7174 -----     
          

B6  -0.075838 -0.127475 0.296413 0.067045 0.128165 1.000000    
 -0.322682 -0.545280 1.316750 0.285091 0.548279 -----    
 0.7507 0.5923 0.2044 0.7788 0.5902 -----    
          

B7  0.165454 0.108284 -0.130134 -0.130138 0.139718 -0.080446 1.000000   
 0.711773 0.462127 -0.556845 -0.556863 0.598645 -0.342415 -----    
 0.4857 0.6495 0.5845 0.5845 0.5569 0.7360 -----    
          

B8  -0.312901 -0.186321 -0.101715 0.007030 -0.049518 0.112593 -0.135558 1.000000  
 -1.397710 -0.804584 -0.433791 0.029825 -0.210344 0.480747 -0.580483 -----   
 0.1792 0.4316 0.6696 0.9765 0.8358 0.6365 0.5688 -----   
          

B9  0.244735 0.063382 -0.097131 0.000293 0.065954 -0.069757 0.064657 -0.004408 1.000000
 1.070886 0.269449 -0.414051 0.001244 0.280429 -0.296678 0.274891 -0.018700 ----- 
 0.2984 0.7906 0.6837 0.9990 0.7823 0.7701 0.7865 0.9853 ----- 

Notes: Number for each factor represent the Correlation, the value of the t-statistic and its corresponding p-value, 
respectively. 
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Table 70.  Correlation matrix. Betas computed in Independent Component Analysis. 

Database of weekly returns. Nine components estimated. 
 B1  B2  B3  B4 B5 B6 B7  B8  B9 
B1  1.000000         

 -----          
 -----          
          

B2  0.101359 1.000000        
 0.432254 -----         
 0.6707 -----         
          

B3  -0.084303 -0.159021 1.000000       
 -0.358945 -0.683365 -----        
 0.7238 0.5031 -----        
          

B4  -0.134654 0.023895 0.146417 1.000000      
 -0.576537 0.101405 0.627963 -----      
 0.5714 0.9204 0.5379 -----      
          

B5  0.055462 0.010325 0.073410 -0.028163 1.000000     
 0.235667 0.043806 0.312296 -0.119531 -----     
 0.8164 0.9655 0.7584 0.9062 -----     
          

B6  -0.337940 -0.319723 0.118984 0.022365 0.090293 1.000000    
 -1.523382 -1.431615 0.508416 0.094910 0.384653 -----    
 0.1450 0.1694 0.6173 0.9254 0.7050 -----    
          

B7  0.075702 0.119232 -0.030562 0.184804 0.062287 -0.019100 1.000000   
 0.322100 0.509493 -0.129723 0.797798 0.264777 -0.081049 -----    
 0.7511 0.6166 0.8982 0.4354 0.7942 0.9363 -----    
          

B8  0.121964 0.093902 -0.124976 -0.017293 0.009422 0.204540 0.114150 1.000000  
 0.521343 0.400161 -0.534420 -0.073378 0.039975 0.886530 0.487483 -----   
 0.6085 0.6937 0.5996 0.9423 0.9686 0.3870 0.6318 -----   
          

B9  0.231060 0.253417 -0.228061 -0.107586 -0.192894 -0.078164 -0.212978 -0.043897 1.000000
 1.007572 1.111436 -0.993771 -0.459114 -0.834046 -0.332641 -0.924808 -0.186418 ----- 
 0.3270 0.2810 0.3335 0.6516 0.4152 0.7432 0.3673 0.8542 ----- 

Notes: Number for each factor represent the Correlation, the value of the t-statistic and its corresponding p-value, 
respectively. 
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Table 71.  Correlation matrix. Betas computed in Neural Networks Principal Component 

Analysis. Database of weekly returns. Nine components estimated. 
 B1  B2  B3  B4 B5 B6 B7  B8  B9 
B1  1.000000         

 -----          
 -----          
          

B2  0.987092 1.000000        
 26.14941 -----         
 0.0000 -----         
          

B3  -0.997698 -0.982196 1.000000       
 -62.41914 -22.18221 -----        
 0.0000 0.0000 -----        
          

B4  0.972338 0.960348 -0.968428 1.000000      
 17.66139 14.61393 -16.48143 -----      
 0.0000 0.0000 0.0000 -----      
          

B5  0.950406 0.933671 -0.945090 0.921097 1.000000     
 12.96488 11.06085 -12.26914 10.03739 -----     
 0.0000 0.0000 0.0000 0.0000 -----     
          

B6  0.600766 0.599271 -0.605925 0.585187 0.562715 1.000000    
 3.188335 3.175949 -3.231492 3.061716 2.888035 -----    
 0.0051 0.0052 0.0046 0.0067 0.0098 -----    
          

B7  -0.172991 -0.163441 0.173804 -0.164966 -0.169491 -0.119766 1.000000   
 -0.745172 -0.702871 0.748786 -0.709613 -0.729648 -0.511806 -----    
 0.4658 0.4911 0.4637 0.4870 0.4750 0.6150 -----    
          

B8  0.986664 0.973560 -0.984811 0.959100 0.936476 0.596771 -0.179408 1.000000  
 25.71731 18.08182 -24.06376 14.37500 11.32812 3.155342 -0.773719 -----   
 0.0000 0.0000 0.0000 0.0000 0.0000 0.0055 0.4491 -----   
          

B9  -0.999558 -0.985840 0.996753 -0.972190 -0.948457 -0.605253 0.172549 -0.987415 1.000000
 -142.6458 -24.94200 52.51934 -17.61224 -12.69761 -3.225832 0.743212 -26.48879 ----- 
 0.0000 0.0000 0.0000 0.0000 0.0000 0.0047 0.4669 0.0000 ----- 

Notes: Number for each factor represent the Correlation, the value of the t-statistic and its corresponding p-value, 
respectively. 
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Table 72.  Correlation matrix. Betas computed in Principal Component Analysis. Database 

of weekly excesses. Nine components estimated. 
 B1  B2  B3  B4 B5 B6 B7  B8  B9 
B1  1.000000         

 -----          
 -----          
          

B2  0.270470 1.000000        
 1.191934 -----         
 0.2488 -----         
          

B3  0.469853 -0.012163 1.000000       
 2.258202 -0.051606 -----        
 0.0366 0.9594 -----        
          

B4  -0.204761 0.005301 0.009208 1.000000      
 -0.887532 0.022488 0.039067 -----      
 0.3865 0.9823 0.9693 -----      
          

B5  0.186830 -0.004836 -0.008402 0.003661 1.000000     
 0.806859 -0.020519 -0.035646 0.015534 -----     
 0.4303 0.9839 0.9720 0.9878 -----     
          

B6  -0.050544 0.001308 0.002273 -0.000991 0.000904 1.000000    
 -0.214716 0.005551 0.009643 -0.004203 0.003834 -----    
 0.8324 0.9956 0.9924 0.9967 0.9970 -----    
          

B7  0.197768 -0.005119 -0.008893 0.003876 -0.003536 0.000957 1.000000   
 0.855964 -0.021720 -0.037733 0.016443 -0.015003 0.004059 -----    
 0.4033 0.9829 0.9703 0.9871 0.9882 0.9968 -----    
          

B8  0.042261 -0.001094 -0.001900 0.000828 -0.000756 0.000204 -0.000800 1.000000  
 0.179460 -0.004641 -0.008063 0.003514 -0.003206 0.000867 -0.003394 -----   
 0.8596 0.9963 0.9937 0.9972 0.9975 0.9993 0.9973 -----   
          

B9  0.186140 -0.004818 -0.008371 0.003648 -0.003328 0.000900 -0.003523 -0.000753 1.000000
 0.803771 -0.020443 -0.035514 0.015477 -0.014121 0.003820 -0.014948 -0.003194 ----- 
 0.4320 0.9839 0.9721 0.9878 0.9889 0.9970 0.9882 0.9975 ----- 

Notes: Number for each factor represent the Correlation, the value of the t-statistic and its corresponding p-value, 
respectively. 
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Table 73. Correlation matrix. Betas computed in Factor Analysis. Database of weekly 

excesses. Nine factors estimated. 
 B1  B2  B3  B4 B5 B6 B7  B8  B9 
B1  1.000000         

 -----          
 -----          
          

B2  -0.176639 1.000000        
 -0.761388 -----         
 0.4563 -----         
          

B3  -0.041388 -0.115492 1.000000       
 -0.175746 -0.493290 -----        
 0.8625 0.6278 -----        
          

B4  0.193432 -0.048646 0.164474 1.000000      
 0.836458 -0.206631 0.707440 -----      
 0.4139 0.8386 0.4884 -----      
          

B5  0.418025 0.060689 0.105945 -0.087294 1.000000     
 1.952288 0.257958 0.452032 -0.371777 -----     
 0.0666 0.7994 0.6566 0.7144 -----     
          

B6  -0.075164 -0.125914 0.301730 0.065792 0.124229 1.000000    
 -0.319798 -0.538494 1.342711 0.279737 0.531175 -----    
 0.7528 0.5968 0.1961 0.7829 0.6018 -----    
          

B7  0.163485 0.104010 -0.124207 -0.129450 0.142388 -0.070778 1.000000   
 0.703068 0.443684 -0.531077 -0.553870 0.610319 -0.301042 -----    
 0.4910 0.6626 0.6019 0.5865 0.5493 0.7668 -----    
          

B8  -0.310870 -0.186121 -0.099413 0.007031 -0.049650 0.114926 -0.132105 1.000000  
 -1.387666 -0.803688 -0.423873 0.029832 -0.210907 0.490844 -0.565429 -----   
 0.1822 0.4321 0.6767 0.9765 0.8353 0.6295 0.5788 -----   
          

B9  0.246515 0.062910 -0.097371 -0.000397 0.067688 -0.070072 0.063289 -0.004714 1.000000
 1.079180 0.267435 -0.415083 -0.001683 0.287836 -0.298023 0.269051 -0.020000 ----- 
 0.2948 0.7922 0.6830 0.9987 0.7768 0.7691 0.7910 0.9843 ----- 

Notes: Number for each factor represent the Correlation, the value of the t-statistic and its corresponding p-value, 
respectively. 
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Table 74. Correlation matrix. Betas computed in Independent Component Analysis. Database 

of weekly excesses. Nine components estimated. 
 B1  B2  B3  B4 B5 B6 B7  B8  B9 
B1  1.000000         

 -----          
 -----          
          

B2  0.331284 1.000000        
 1.489637 -----         
 0.1536 -----         
          

B3  -0.012450 -0.090017 1.000000       
 -0.052827 -0.383468 -----        
 0.9585 0.7059 -----        
          

B4  0.082262 0.076745 0.136017 1.000000      
 0.350195 0.326564 0.582485 -----      
 0.7303 0.7478 0.5675 -----      
          

B5  -0.208394 -0.247634 0.162011 -0.131783 1.000000     
 -0.903986 -1.084398 0.696558 -0.564029 -----     
 0.3779 0.2925 0.4950 0.5797 -----     
          

B6  -0.250603 0.056186 0.026159 0.021364 -0.045040 1.000000    
 -1.098265 0.238755 0.111022 0.090659 -0.191282 -----    
 0.2866 0.8140 0.9128 0.9288 0.8504 -----    
          

B7  -0.240207 0.224975 -0.233752 0.016730 -0.234559 -0.122939 1.000000   
 -1.049852 0.979598 -1.019984 0.070990 -1.023711 -0.525571 -----    
 0.3077 0.3403 0.3213 0.9442 0.3195 0.6056 -----    
          

B8  0.007380 -0.112380 0.293267 -0.062674 0.317006 0.031413 -0.187004 1.000000  
 0.031310 -0.479829 1.301452 -0.266428 1.418082 0.133339 -0.807639 -----   
 0.9754 0.6371 0.2095 0.7929 0.1732 0.8954 0.4298 -----   
          

B9  -0.181921 0.039776 -0.177716 -0.170458 0.182573 -0.043925 0.004296 -0.001160 1.000000
 -0.784925 0.168887 -0.766182 -0.733933 0.787832 -0.186539 0.018228 -0.004920 ----- 
 0.4427 0.8678 0.4535 0.4724 0.4410 0.8541 0.9857 0.9961 ----- 

Notes: Number for each factor represent the Correlation, the value of the t-statistic and its corresponding p-value, 
respectively. 
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Table 75. Correlation matrix. Betas computed in Neural Networks Principal Component 

Analysis. Database of weekly excesses. Nine components estimated. 
 B1  B2  B3  B4 B5 B6 B7  B8  B9 
B1  1.000000         

 -----          
 -----          
          

B2  0.408412 1.000000        
 1.898277 -----         
 0.0738 -----         
          

B3  0.744706 0.256418 1.000000       
 4.734128 1.125518 -----        
 0.0002 0.2752 -----        
          

B4  0.392949 0.175917 0.202180 1.000000      
 1.812979 0.758175 0.875865 -----      
 0.0865 0.4582 0.3926 -----      
          

B5  -0.933612 -0.350757 -0.651582 -0.367507 1.000000     
 -11.05534 -1.589096 -3.644224 -1.676522 -----     
 0.0000 0.1294 0.0019 0.1109 -----     
          

B6  0.780729 0.266903 0.533160 0.288334 -0.761729 1.000000    
 5.300875 1.174999 2.673718 1.277558 -4.988057 -----    
 0.0000 0.2553 0.0155 0.2176 0.0001 -----    
          

B7  0.875718 0.312794 0.600988 0.321644 -0.853947 0.698676 1.000000   
 7.695087 1.397183 3.190183 1.441204 -6.962468 4.143240 -----    
 0.0000 0.1793 0.0051 0.1667 0.0000 0.0006 -----    
          

B8  0.917697 0.337290 0.643601 0.339808 -0.919649 0.757884 0.824615 1.000000  
 9.800255 1.520075 3.567689 1.532901 -9.934612 4.928702 6.184508 -----   
 0.0000 0.1459 0.0022 0.1427 0.0000 0.0001 0.0000 -----   
          

B9  0.973534 0.359258 0.670145 0.364225 -0.970300 0.786086 0.888631 0.939512 1.000000
 18.07262 1.633243 3.830591 1.659248 -17.01751 5.395554 8.220578 11.63750 ----- 
 0.0000 0.1198 0.0012 0.1144 0.0000 0.0000 0.0000 0.0000 ----- 

Notes: Number for each factor represent the Correlation, the value of the t-statistic and its corresponding p-value, 
respectively. 
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Table 76. Correlation matrix. Betas computed in Principal Component Analysis. Database of 

daily returns. Nine components estimated. 
 B1  B2  B3  B4 B5 B6 B7  B8  B9 
B1  1.000000         

 -----          
 -----          
          

B2  0.459336 1.000000        
 2.312619 -----         
 0.0315 -----         
          

B3  0.101126 -0.003538 1.000000       
 0.454578 -0.015822 -----        
 0.6543 0.9875 -----        
          

B4  -0.645063 0.022567 0.004968 1.000000      
 -3.775291 0.100948 0.022219 -----      
 0.0012 0.9206 0.9825 -----      
          

B5  -0.055473 0.001941 0.000427 -0.002725 1.000000     
 -0.248465 0.008679 0.001911 -0.012188 -----     
 0.8063 0.9932 0.9985 0.9904 -----     
          

B6  -0.034849 0.001219 0.000268 -0.001712 -0.000147 1.000000    
 -0.155946 0.005452 0.001200 -0.007657 -0.000658 -----    
 0.8776 0.9957 0.9991 0.9940 0.9995 -----    
          

B7  -0.035492 0.001242 0.000273 -0.001744 -0.000150 -9.42E-05 1.000000   
 -0.158823 0.005553 0.001222 -0.007798 -0.000671 -0.000421 -----    
 0.8754 0.9956 0.9990 0.9939 0.9995 0.9997 -----    
          

B8  0.085607 -0.002995 -0.000659 0.004206 0.000362 0.000227 0.000231 1.000000  
 0.384257 -0.013394 -0.002949 0.018809 0.001618 0.001016 0.001035 -----   
 0.7048 0.9894 0.9977 0.9852 0.9987 0.9992 0.9992 -----   
          

B9  0.146052 -0.005109 -0.001125 0.007175 0.000617 0.000388 0.000395 -0.000952 1.000000
 0.660243 -0.022851 -0.005031 0.032090 0.002760 0.001734 0.001766 -0.004259 ----- 
 0.5166 0.9820 0.9960 0.9747 0.9978 0.9986 0.9986 0.9966 ----- 

Notes: Number for each factor represent the Correlation, the value of the t-statistic and its corresponding p-value, 
respectively. 
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Table 77. Correlation matrix. Betas computed in Factor Analysis. Database of daily returns. 

Nine factors estimated. 
 B1  B2  B3  B4 B5 B6 B7  B8  B9 
B1  1.000000         

 -----          
 -----          
          

B2  0.051407 1.000000        
 0.230201 -----         
 0.8203 -----         
          

B3  -0.632639 -0.187459 1.000000       
 -3.653248 -0.853472 -----        
 0.0016 0.4035 -----        
          

B4  -0.164877 -0.097116 0.015083 1.000000      
 -0.747585 -0.436379 0.067460 -----      
 0.4634 0.6672 0.9469 -----      
          

B5  -0.335864 0.138137 0.092591 0.057809 1.000000     
 -1.594665 0.623745 0.415865 0.258964 -----     
 0.1265 0.5398 0.6819 0.7983 -----     
          

B6  -0.344291 -0.104240 -0.039180 0.166107 0.064101 1.000000    
 -1.639979 -0.468727 -0.175353 0.753321 0.287258 -----    
 0.1166 0.6443 0.8626 0.4600 0.7769 -----    
          

B7  -0.516958 0.037349 0.025315 0.093873 0.114412 0.150616 1.000000   
 -2.700795 0.167147 0.113248 0.421674 0.515048 0.681346 -----    
 0.0138 0.8689 0.9110 0.6778 0.6122 0.5035 -----    
          

B8  -0.150863 -0.004591 -0.020708 -0.004024 0.137991 0.051068 0.209536 1.000000  
 -0.682490 -0.020532 -0.092629 -0.017994 0.623073 0.228683 0.958349 -----   
 0.5028 0.9838 0.9271 0.9858 0.5403 0.8214 0.3493 -----   
          

B9  -0.071158 -0.085551 0.040333 -0.067123 0.106448 0.084468 -0.020974 -0.002352 1.000000
 -0.319039 -0.384002 0.180522 -0.300860 0.478770 0.379107 -0.093821 -0.010520 ----- 
 0.7530 0.7050 0.8586 0.7666 0.6373 0.7086 0.9262 0.9917 ----- 

Notes: Number for each factor represent the Correlation, the value of the t-statistic and its corresponding p-value, 
respectively. 
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Table 78. Correlation matrix. Betas computed in Independent Component Analysis. Database 

of daily returns. Nine components estimated. 
 B1  B2  B3  B4 B5 B6 B7  B8  B9 
B1  1.000000         

 -----          
 -----          
          

B2  0.204708 1.000000        
 0.935287 -----         
 0.3608 -----         
          

B3  -0.146504 0.224511 1.000000       
 -0.662333 1.030348 -----        
 0.5153 0.3151 -----        
          

B4  -0.188798 0.011276 0.033970 1.000000      
 -0.859791 0.050430 0.152007 -----      
 0.4001 0.9603 0.8807 -----      
          

B5  -0.074587 0.025930 -0.046371 -0.012539 1.000000     
 -0.334493 0.116000 -0.207599 -0.056078 -----     
 0.7415 0.9088 0.8376 0.9558 -----     
          

B6  0.117817 -0.013304 0.028349 -0.049340 0.020604 1.000000    
 0.530588 -0.059504 0.126831 -0.220923 0.092163 -----    
 0.6015 0.9531 0.9003 0.8274 0.9275 -----    
          

B7  0.068120 0.041481 -0.083115 -0.110199 -0.002477 0.056326 1.000000   
 0.305353 0.185667 -0.372993 -0.495845 -0.011078 0.252298 -----    
 0.7633 0.8546 0.7131 0.6254 0.9913 0.8034 -----    
          

B8  -0.223099 0.367854 -0.114033 0.036075 -0.080679 -0.017438 -0.115642 1.000000  
 -1.023527 1.769137 -0.513320 0.161435 -0.361988 -0.077999 -0.520659 -----   
 0.3183 0.0921 0.6134 0.8734 0.7212 0.9386 0.6083 -----   
          

B9  -0.299097 0.233850 -0.142224 0.054208 -0.027997 -0.023612 -0.131656 -0.021267 1.000000
 -1.401770 1.075636 -0.642576 0.242783 -0.125254 -0.105625 -0.593955 -0.095129 ----- 
 0.1763 0.2949 0.5278 0.8106 0.9016 0.9169 0.5592 0.9252 ----- 

Notes: Number for each factor represent the Correlation, the value of the t-statistic and its corresponding p-value, 
respectively. 
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Table 79.  Correlation matrix. Betas computed in Neural Networks Principal Component 

Analysis. Database of daily returns. Nine components estimated. 
 B1  B2  B3  B4 B5 B6 B7  B8  B9 
B1  1.000000         

 -----          
 -----          
          

B2  -0.267883 1.000000        
 -1.243455 -----         
 0.2281 -----         
          

B3  -0.532361 0.098841 1.000000       
 -2.812455 0.444206 -----        
 0.0108 0.6617 -----        
          

B4  -0.818624 0.191732 0.458337 1.000000      
 -6.374378 0.873661 2.306250 -----      
 0.0000 0.3927 0.0319 -----      
          

B5  -0.089761 0.010140 0.040436 0.055142 1.000000     
 -0.403050 0.045348 0.180982 0.246977 -----     
 0.6912 0.9643 0.8582 0.8074 -----     
          

B6  0.916032 -0.189898 -0.482286 -0.798855 -0.065508 1.000000    
 10.21332 -0.864988 -2.462116 -5.939238 -0.293593 -----    
 0.0000 0.3973 0.0230 0.0000 0.7721 -----    
          

B7  -0.949251 0.200266 0.502591 0.831793 0.069107 -0.881585 1.000000   
 -13.49734 0.914134 2.599877 6.701465 0.309799 -8.352435 -----    
 0.0000 0.3715 0.0171 0.0000 0.7599 0.0000 -----    
          

B8  0.705007 -0.135012 -0.366648 -0.601014 -0.055322 0.634762 -0.665064 1.000000  
 4.445688 -0.609373 -1.762437 -3.362969 -0.247787 3.673761 -3.982745 -----   
 0.0002 0.5491 0.0933 0.0031 0.8068 0.0015 0.0007 -----   
          

B9  0.990995 -0.207318 -0.524345 -0.868305 -0.072531 0.920490 -0.958772 0.695595 1.000000
 33.09836 -0.947748 -2.753878 -7.828500 -0.325227 10.53457 -15.08839 4.329961 ----- 
 0.0000 0.3546 0.0122 0.0000 0.7484 0.0000 0.0000 0.0003 ----- 

Notes: Number for each factor represent the Correlation, the value of the t-statistic and its corresponding p-value, 
respectively. 
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Table 80.  Correlation matrix. Betas computed in Principal Component Analysis. Database 

of daily excesses. Nine components estimated. 
 B1  B2  B3  B4 B5 B6 B7  B8  B9 
B1  1.000000         

 -----          
 -----          
          

B2  0.457482 1.000000        
 2.300807 -----         
 0.0323 -----         
          

B3  0.102816 -0.003572 1.000000       
 0.462255 -0.015973 -----        
 0.6489 0.9874 -----        
          

B4  -0.646280 0.022451 0.005046 1.000000      
 -3.787508 0.100429 0.022565 -----      
 0.0012 0.9210 0.9822 -----      
          

B5  -0.053300 0.001852 0.000416 -0.002616 1.000000     
 -0.238706 0.008281 0.001861 -0.011698 -----     
 0.8138 0.9935 0.9985 0.9908 -----     
          

B6  -0.032367 0.001124 0.000253 -0.001588 -0.000131 1.000000    
 -0.144825 0.005028 0.001130 -0.007104 -0.000586 -----    
 0.8863 0.9960 0.9991 0.9944 0.9995 -----    
          

B7  -0.040036 0.001391 0.000313 -0.001965 -0.000162 -9.84E-05 1.000000   
 -0.179191 0.006220 0.001398 -0.008787 -0.000725 -0.000440 -----    
 0.8596 0.9951 0.9989 0.9931 0.9994 0.9997 -----    
          

B8  -0.088981 0.003091 0.000695 -0.004367 -0.000360 -0.000219 -0.000271 1.000000  
 -0.399522 0.013824 0.003107 -0.019529 -0.001611 -0.000978 -0.001210 -----   
 0.6937 0.9891 0.9976 0.9846 0.9987 0.9992 0.9990 -----   
          

B9  -0.141352 0.004910 0.001104 -0.006937 -0.000572 -0.000347 -0.000430 -0.000955 1.000000
 -0.638555 0.021960 0.004935 -0.031023 -0.002558 -0.001554 -0.001922 -0.004271 ----- 
 0.5304 0.9827 0.9961 0.9756 0.9980 0.9988 0.9985 0.9966 ----- 

Notes: Number for each factor represent the Correlation, the value of the t-statistic and its corresponding p-value, 
respectively. 
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Table 81. Correlation matrix. Betas computed in Factor Analysis. Database of daily excesses. 

Nine factors estimated. 
 B1  B2  B3  B4 B5 B6 B7  B8  B9 
B1  1.07E-05         

 -----          
 -----          
          

B2  5.28E-07 8.02E-06        
 0.255687 -----         
 0.8008 -----         
          

B3  -6.50E-06 -1.53E-06 9.84E-06       
 -3.669593 -0.782075 -----        
 0.0015 0.4433 -----        
          

B4  -1.24E-06 -7.10E-07 5.49E-08 5.87E-06      
 -0.708422 -0.465366 0.032315 -----      
 0.4869 0.6467 0.9745 -----      
          

B5  -1.55E-06 1.02E-06 7.47E-07 4.14E-08 4.90E-06     
 -0.979042 0.736220 0.483962 0.034508 -----     
 0.3393 0.4701 0.6337 0.9728 -----     
          

B6  -3.18E-06 -3.24E-07 -9.23E-08 9.25E-07 4.94E-07 4.83E-06    
 -2.210376 -0.232935 -0.059885 0.789191 0.456134 -----    
 0.0389 0.8182 0.9528 0.4393 0.6532 -----    
          

B7  -2.71E-06 2.53E-07 1.08E-07 1.06E-07 7.49E-07 9.32E-07 5.27E-06   
 -1.735881 0.174375 0.066797 0.085083 0.665996 0.840341 -----    
 0.0980 0.8633 0.9474 0.9330 0.5130 0.4107 -----    
          

B8  -2.45E-06 1.81E-07 2.57E-07 4.24E-07 1.28E-08 5.31E-07 3.95E-07 3.46E-06  
 -1.968580 0.153349 0.197043 0.422865 0.013948 0.586278 0.415428 -----   
 0.0630 0.8797 0.8458 0.6769 0.9890 0.5642 0.6823 -----   
          

B9  1.97E-07 1.75E-07 -3.32E-07 4.98E-07 -4.58E-07 -4.13E-07 -2.70E-07 -5.42E-09 2.97E-06
 0.156645 0.160255 -0.275364 0.537167 -0.541198 -0.491315 -0.305945 -0.007562 ----- 
 0.8771 0.8743 0.7859 0.5971 0.5943 0.6286 0.7628 0.9940 ----- 

Notes: Number for each factor represent the Correlation, the value of the t-statistic and its corresponding p-value, 
respectively. 
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Table 82.  Correlation matrix. Betas computed in Independent Component Analysis. 
Database of daily excesses. Nine components estimated. 

 B1  B2  B3  B4 B5 B6 B7  B8  B9 
B1  1.000000         

 -----          
 -----          
          

B2  -0.078607 1.000000        
 -0.352634 -----         
 0.7281 -----         
          

B3  0.181189 0.073497 1.000000       
 0.823938 0.329580 -----        
 0.4197 0.7451 -----        
          

B4  0.159493 0.201969 -0.031257 1.000000      
 0.722523 0.922239 -0.139852 -----      
 0.4783 0.3674 0.8902 -----      
          

B5  -0.066672 -0.055605 -0.019957 -0.096992 1.000000     
 -0.298831 -0.249060 -0.089269 -0.435815 -----     
 0.7682 0.8059 0.9298 0.6676 -----     
          

B6  -0.069052 -0.121957 0.060619 -0.028915 0.015731 1.000000    
 -0.309548 -0.549511 0.271598 -0.129366 0.070359 -----    
 0.7601 0.5887 0.7887 0.8984 0.9446 -----    
          

B7  0.397473 0.165598 -0.106993 0.037780 -0.063518 0.027174 1.000000   
 1.937150 0.750946 -0.481249 0.169077 -0.284635 0.121570 -----    
 0.0670 0.4614 0.6356 0.8674 0.7789 0.9045 -----    
          

B8  -0.000952 -0.075429 0.027292 -0.005453 -0.001163 0.024519 0.063101 1.000000  
 -0.004259 -0.338291 0.122097 -0.024387 -0.005199 0.109684 0.282758 -----   
 0.9966 0.7387 0.9040 0.9808 0.9959 0.9138 0.7803 -----   
          

B9  -0.459519 -0.242764 0.152617 -0.101749 0.047831 0.011941 0.036316 0.009892 1.000000
 -2.313789 -1.119151 0.690615 -0.457407 0.214151 0.053407 0.162516 0.044243 ----- 
 0.0314 0.2763 0.4977 0.6523 0.8326 0.9579 0.8725 0.9651 ----- 

Notes: Number for each factor represent the Correlation, the value of the t-statistic and its corresponding p-value, 
respectively. 
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Table 83. Correlation matrix. Betas computed in Neural Networks Principal Component 

Analysis. Database of daily excesses. Nine components estimated. 
 B1  B2  B3  B4 B5 B6 B7  B8  B9 
B1  1.000000         

 -----          
 -----          
          

B2  0.973128 1.000000        
 18.89966 -----         
 0.0000 -----         
          

B3  0.656782 0.642634 1.000000       
 3.895102 3.751044 -----        
 0.0009 0.0013 -----        
          

B4  -0.992263 -0.964984 -0.649807 1.000000      
 -35.74116 -16.45225 -3.823219 -----      
 0.0000 0.0000 0.0011 -----      
          

B5  -0.153220 -0.150892 -0.110651 0.159135 1.000000     
 -0.693410 -0.682626 -0.497902 0.720858 -----     
 0.4960 0.5027 0.6240 0.4793 -----     
          

B6  -0.989462 -0.961391 -0.650968 0.980939 0.152257 1.000000    
 -30.56116 -15.62388 -3.835065 22.57612 0.688946 -----    
 0.0000 0.0000 0.0010 0.0000 0.4988 -----    
          

B7  0.998950 0.970945 0.654462 -0.992522 -0.156657 -0.987451 1.000000   
 97.51314 18.14515 3.871004 -36.36277 -0.709349 -27.96276 -----    
 0.0000 0.0000 0.0010 0.0000 0.4863 0.0000 -----    
          

B8  0.999317 0.971324 0.653242 -0.992476 -0.151825 -0.988859 0.998283 1.000000  
 120.9454 18.27019 3.858405 -36.25078 -0.686947 -29.70895 76.21442 -----   
 0.0000 0.0000 0.0010 0.0000 0.5000 0.0000 0.0000 -----   
          

B9  -0.999897 -0.971950 -0.654941 0.993284 0.155273 0.988792 -0.998999 -0.999370 1.000000
 -312.1752 -18.48173 -3.875959 38.39377 0.702929 29.61881 -99.88091 -125.9642 ----- 
 0.0000 0.0000 0.0009 0.0000 0.4902 0.0000 0.0000 0.0000 ----- 

Notes: Number for each factor represent the Correlation, the value of the t-statistic and its corresponding p-value, 
respectively. 
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Figure 57. Plot of the Betas computed in Principal Component Analysis.  
Database of weekly excesses. Nine components estimated. 

 
 
 

Figure 58. Plot of the Betas computed in Factor Analysis.  
Database of weekly excesses. Nine components estimated. 
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Figure 59. Plot of the Betas computed in Independent Component Analysis.  
Database of weekly excesses. Nine components estimated. 

 
 

Figure 60. Plot of the Betas computed in Neural Networks Principal Component Analysis. 
Database of weekly excesses. Nine components estimated. 
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Figure 61. Plot of the Betas computed in Principal Component Analysis.  
Database of daily returns. Nine components estimated. 

 
 

Figure 62. Plot of the Betas computed in Factor Analysis.  
Database of daily returns. Nine components estimated. 

 
  

.10

.15

.20

.25

.30

.35

2 4 6 8 10 12 14 16 18 20 22

B1

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

2 4 6 8 10 12 14 16 18 20 22

B2

-1.2

-0.8

-0.4

0.0

0.4

2 4 6 8 10 12 14 16 18 20 22

B3

-.6

-.4

-.2

.0

.2

.4

.6

2 4 6 8 10 12 14 16 18 20 22

B4

-.6

-.4

-.2

.0

.2

.4

.6

2 4 6 8 10 12 14 16 18 20 22

B5

-.4

-.2

.0

.2

.4

.6

.8

2 4 6 8 10 12 14 16 18 20 22

B6

-.4

-.2

.0

.2

.4

.6

2 4 6 8 10 12 14 16 18 20 22

B7

-.8

-.6

-.4

-.2

.0

.2

.4

2 4 6 8 10 12 14 16 18 20 22

B8

-.6

-.4

-.2

.0

.2

.4

.6

2 4 6 8 10 12 14 16 18 20 22

B9

.004

.008

.012

.016

.020

2 4 6 8 10 12 14 16 18 20 22

B1

-.008

-.004

.000

.004

.008

2 4 6 8 10 12 14 16 18 20 22

B2

-.012

-.008

-.004

.000

.004

.008

2 4 6 8 10 12 14 16 18 20 22

B3

-.008

-.006

-.004

-.002

.000

.002

.004

2 4 6 8 10 12 14 16 18 20 22

B4

-.006

-.004

-.002

.000

.002

.004

.006

2 4 6 8 10 12 14 16 18 20 22

B5

-.006

-.004

-.002

.000

.002

.004

.006

2 4 6 8 10 12 14 16 18 20 22

B6

-.004

-.002

.000

.002

.004

.006

2 4 6 8 10 12 14 16 18 20 22

B7

-.006

-.004

-.002

.000

.002

.004

.006

2 4 6 8 10 12 14 16 18 20 22

B8

-.004

-.002

.000

.002

.004

2 4 6 8 10 12 14 16 18 20 22

B9



APPENDIX 
 

607 
 

Figure 63. Plot of the Betas computed in Independent Component Analysis.  
Database of daily returns. Nine components estimated. 

 
 

Figure 64. Plot of the Betas computed in Neural Networks Principal Component Analysis. 
Database of daily returns. Nine components estimated. 
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Figure 65. Plot of the Betas computed in Principal Component Analysis.  

Database of daily excesses. Nine components estimated. 

 
 

Figure 66. Plot of the Betas computed in Factor Analysis.  
Database of daily excesses. Nine components estimated. 
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Figure 67. Plot of the Betas computed in Independent Component Analysis.  
Database of daily excesses. Nine components estimated. 

 
 

Figure 68. Plot of the Betas computed in Neural Networks Principal Component Analysis. 
Database of daily excesses. Nine components estimated. 
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Figure 69. Plot of the Betas computed in Principal Component Analysis.  
Database of daily excesses. Nine components estimated. 

 
 

Figure 70. Plot of the Betas computed in Factor Analysis.  
Database of daily excesses. Nine components estimated. 
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Figure 71. Plot of the Betas computed in Independent Component Analysis.  
Database of daily excesses. Nine components estimated. 

 
 

Figure 72. Plot of the Betas computed in Neural Networks Principal Component Analysis. 
Database of daily excesses. Nine components estimated. 
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Figure 73. Betas to the first underlying systematic risk factor extracted by the four 

techniques. Multiple graph. Database of weekly returns. Nine components estimated. 

 
 
 

Figure 74. Betas to the second underlying systematic risk factor extracted by the four 
techniques. Multiple graph. Database of weekly returns. Nine components estimated. 
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Figure 75. Betas to the third underlying systematic risk factor extracted by the four 
techniques. Multiple graph. Database of weekly returns. Nine components estimated. 

 
 
 

Figure 76. Betas to the fourth underlying systematic risk factor extracted by the four 
techniques. Multiple graph. Database of weekly returns. Nine components estimated. 
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Figure 77.  Betas to the fifth underlying systematic risk factor extracted by the four 

techniques. Multiple graph. Database of weekly returns. Nine components estimated. 

 
 
 

Figure 78. Betas to the sixth underlying systematic risk factor extracted by the four 
techniques. Multiple graph. Database of weekly returns. Nine components estimated. 
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Figure 79. Betas to the seventh underlying systematic risk factor extracted by the four 
techniques. Multiple graph. Database of weekly returns. Nine components estimated. 

 
 
 

Figure 80. Betas to the eight underlying systematic risk factor extracted by the four 
techniques. Multiple graph. Database of weekly returns. Nine components estimated. 
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Figure 81. Betas to the ninth underlying systematic risk factor extracted by the four 
techniques. Multiple graph. Database of weekly returns. Nine components estimated. 
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Figure 82. Betas to the first underlying systematic risk factor extracted by the four 
techniques. Multiple graph. Database of weekly excesses. Nine components estimated. 

 
 
 

Figure 83. Betas to the second underlying systematic risk factor extracted by the four 
techniques. Multiple graph. Database of weekly excesses. Nine components estimated. 
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Figure 84. Betas to the third underlying systematic risk factor extracted by the four 
techniques. Multiple graph. Database of weekly excesses. Nine components estimated. 

 
 
 

Figure 85. Betas to the fourth underlying systematic risk factor extracted by the four 
techniques. Multiple graph. Database of weekly excesses. Nine components estimated. 
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Figure 86. Betas to the fifth underlying systematic risk factor extracted by the four 

techniques. Multiple graph. Database of weekly excesses. Nine components estimated. 

 
 
 

Figure 87. Betas to the sixth underlying systematic risk factor extracted by the four 
techniques. Multiple graph. Database of weekly excesses. Nine components estimated. 
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Figure 88. Beta to the seventh underlying systematic risk factor extracted by the four 
techniques. Multiple graph. Database of weekly excesses. Nine components estimated. 

 
 
 

Figure 89. Betas to the eight underlying systematic risk factor extracted by the four 
techniques. Multiple graph. Database of weekly excesses. Nine components estimated. 
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Figure 90. Betas to the ninth underlying systematic risk factor extracted by the four 

techniques. Multiple graph. Database of weekly excesses. Nine components estimated. 
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Figure 91. Betas to the first underlying systematic risk factor extracted by the four 
techniques. Multiple graph. Database of daily returns. Nine components estimated. 

 
 

Figure 92. Beta to the second underlying systematic risk factor extracted by the four 
techniques. Multiple graph. Database of daily returns. Nine components estimated. 
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Figure 93. Betas to the third underlying systematic risk factor extracted by the four 
techniques. Multiple graph. Database of daily returns. Nine components estimated. 

 
 
 

Figure 94. Betas to the fourth underlying systematic risk factor extracted by the four 
techniques. Multiple graph. Database of daily returns. Nine components estimated. 

 
 

  

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

2 4 6 8 10 12 14 16 18 20 22

PCB3

-.012

-.008

-.004

.000

.004

.008

2 4 6 8 10 12 14 16 18 20 22

FB3

-.1

.0

.1

.2

.3

2 4 6 8 10 12 14 16 18 20 22

ICB3

-.4

-.3

-.2

-.1

.0

.1

.2

2 4 6 8 10 12 14 16 18 20 22

NLPCB3

-.6

-.4

-.2

.0

.2

.4

.6

2 4 6 8 10 12 14 16 18 20 22

PCB4

-.008

-.006

-.004

-.002

.000

.002

.004

2 4 6 8 10 12 14 16 18 20 22

FB4

-.4

-.3

-.2

-.1

.0

.1

2 4 6 8 10 12 14 16 18 20 22

ICB4

-.4

-.2

.0

.2

.4

.6

2 4 6 8 10 12 14 16 18 20 22

NLPCB4



APPENDIX 
 

624 
 

 
Figure 95. Betas to the fifth underlying systematic risk factor extracted by the four 
techniques. Multiple graph. Database of daily returns. Nine components estimated. 

 
 
 

Figure 96. Betas to the sixth underlying systematic risk factor extracted by the four 
techniques. Multiple graph. Database of daily returns. Nine components estimated. 
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Figure 97. Betas to the seventh underlying systematic risk factor extracted by the four 

techniques. Multiple graph. Database of daily returns. Nine components estimated. 

 
 
 

Figure 98. Betas to the eight underlying systematic risk factor extracted by the four 
techniques. Multiple graph. Database of daily returns. Nine components estimated. 
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Figure 99. Betas to the ninth underlying systematic risk factor extracted by the four 
techniques. Multiple graph. Database of daily returns. Nine components estimated. 
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Figure 100. Betas to the first underlying systematic risk factor extracted by the four 
techniques. Multiple graph. Database of daily excesses. Nine components estimated. 

 
 
 

Figure 101. Betas to the second underlying systematic risk factor extracted by the four 
techniques. Multiple graph. Database of daily excesses. Nine components estimated. 
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Figure 102. Betas to the third underlying systematic risk factor extracted by the four 
techniques. Multiple graph. Database of daily excesses. Nine components estimated. 

 
 
 

Figure 103. Betas to the fourth underlying systematic risk factor extracted by the four 
techniques. Multiple graph. Database of daily excesses. Nine components estimated. 
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Figure 104. Betas to the fifth underlying systematic risk factor extracted by the four 
techniques. Multiple graph. Database of daily excesses. Nine components estimated. 

 
 
 

Figure 105. Betas to the sixth underlying systematic risk factor extracted by the four 
techniques. Multiple graph. Database of daily excesses. Nine components estimated. 
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Figure 106. Betas to the seventh underlying systematic risk factor extracted by the four 

techniques. Multiple graph. Database of daily excesses. Nine components estimated. 

 
 
 

Figure 107. Betas to the eight underlying systematic risk factor extracted by the four 
techniques. Multiple graph. Database of daily excesses. Nine components estimated. 

 
 
  

-.4

-.2

.0

.2

.4

.6

2 4 6 8 10 12 14 16 18 20 22

PCB7

-.006

-.004

-.002

.000

.002

.004

.006

.008

2 4 6 8 10 12 14 16 18 20 22

FB7

-.4

-.3

-.2

-.1

.0

.1

2 4 6 8 10 12 14 16 18 20 22

ICB7

-12

-8

-4

0

4

8

2 4 6 8 10 12 14 16 18 20 22

NLPCB7

-.4

-.2

.0

.2

.4

.6

.8

2 4 6 8 10 12 14 16 18 20 22

PCB8

-.003

-.002

-.001

.000

.001

.002

.003

.004

2 4 6 8 10 12 14 16 18 20 22

FB8

-.1

.0

.1

.2

.3

.4

.5

2 4 6 8 10 12 14 16 18 20 22

ICB8

-20

-15

-10

-5

0

5

10

15

2 4 6 8 10 12 14 16 18 20 22

NLPCB8



APPENDIX 
 

631 
 

 
 

Figure 108. Betas to the ninth underlying systematic risk factor extracted by the four 
techniques. Multiple graph. Database of daily excesses. Nine components estimated. 
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Figure 109. Loadings matrices. Diagram for interpretation of extracted factors. Principal 

Component Analysis. Database of weekly excesses. Nine components. 

 
 

Figure 110.  Loadings matrices. Diagram for interpretation of extracted factors. Factor 
Analysis. Database of weekly excesses. Nine components. 
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Figure 111. Loadings matrices. Diagram for interpretation of extracted factors. Independent 

Component Analysis. Database of weekly excesses. Nine components. 

 
 

Figure 112. Loadings matrices. Diagram for interpretation of extracted factors. Neural 
Networks Principal Component Analysis. Database of weekly excesses. Nine components. 
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Figure 113. Loadings matrices. Diagram for interpretation of extracted factors. Principal 
Component Analysis. Database of daily excesses. Nine components. 

 
 

 
Figure 114. Loadings matrices. Diagram for interpretation of extracted factors. Factor 

Analysis. Database of daily excesses. Nine components. 
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Figure 115. Loadings matrices. Diagram for interpretation of extracted factors. Independent 
Component Analysis. Database of daily excesses. Nine components. 

 
 

Figure 116. Loadings matrices. Diagram for interpretation of extracted factors. Neural 
Networks Principal Component Analysis. Database of daily excesses. Nine components. 

 
 


