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Abstract

he information about how, when, and where are produced the proteins has

been one of the major challenge in molecular biology. The studies about the

control of the gene expression are essential in order to have a better knowledge
about the protein synthesis.

The gene regulation is a highly controlled process that starts with the DNA
transcription. This process operates at the gene level, hereditary basic units,
which will be copied into primary ribonucleic acid (RNA). This first step is
controlled by the binding of specific proteins, called as Transcription Factors
(TF), with a sequence of the DNA (Deoxyribonucleic Acid) in the regulatory
region of the gene. These DNA sequences are known as binding sites (BS).

The binding sites motifs are usually very short (5 to 20 bp long) and highly
degenerate. These sequences are expected to occur at random every few hun-
dred base pairs. Besides, a TF can bind among different sites. Due to its highly
variability, it is difficult to establish a consensus sequence. The study and iden-
tification binding sites is important to clarify the control of the gene expression.

Due to the importance of identifying binding sites sequences, projects such
as ENCODE (Encyclopedia of DNA Elements), have dedicated efforts to map
binding sites for large set of transcription factor to identify regulatory regions.
The genome sequence availability and in gene expression analysis technologies
have also allowed the development of computational methods for motif detection.
Thanks for these advances, in the last years a large number of algorithms have
been applied to different motif models. Most of these algorithms are developed
to resolve sequences of prokaryotic organisms or simple eukaryotic organisms
like yeast. In general, the false positive rate (FPR) is high true positive rate
(TFR). To study higher organisms, with a higher complexity in their genomes,
it is necessary of more sensitive methods.

In this thesis, we have approached the problem of the binding site detection
from another angle. We have developed a set of toolkit for motif binding detec-
tion based on linear and non-linear models. First of all, we have been able to
characterize binding sites using different approaches. The first one is based on
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the information that there is in each binding sites position. The second one is
based on the covariance model of an aligned set of binding sites sequences.

From these motif characterizations, we have proposed a new set of compu-
tational methods to detect binding sites. First, it was developed a new method
based on parametric uncertainty measurement (Rényi entropy). This detection
algorithm evaluates the variation on the total Rényi entropy of a set of sequences
when a candidate sequence is assumed to be a true binding site belonging to the
set. This method was found to perform especially well on transcription factors
that the correlation among binding sites was null.

The correlation among binding sites positions was considered through linear,
Q-residuals, and non-linear models, a-Divergence and SIGMA. Q-residuals is a
novel motif finding method which constructs a subspace based on the covariance
of numerical DNA sequences. When the number of available sequences was
small, The Q-residuals performance was significantly better and faster than all
the others methodologies.

a-Divergence was based on the variation of the total parametric divergence
in a set of aligned sequenced with binding evidence when a candidate sequence
is added. Given an optimal g-value, the a-Divergence performance had a bet-
ter behavior than the others methodologies in most of the studied transcription
factor binding sites. And finally, a new computational tool, SIGMA, was devel-
oped as a trade-off between the good generalisation properties of pure entropy
methods and the ability of position-dependency metrics to improve detection
power. In approximately 70% of the cases considered, SIGMA exhibited better
performance properties, at comparable levels of computational resources, than
the methods which it was compared.

This set of toolkits and the models for the detection of a set of transcription
factor binding sites (TFBS) has been included in an R-package called MEET.



Resum

a informacié sobre com, quan i on es produeixen les proteines ha estat un

dels majors reptes en la biologia molecular. Els estudis sobre el control de

I’expressié genica son essencials per coneixer millor el procés de sintesis d’una
proteina.

La regulacié genica és un procés altament controlat que s’inicia amb la tran-
scripcié de ’ADN. En aquest procés, els gens, unitat basica d’heréncia, sén
copiats a acid ribonucleic (RNA). El primer pas és controlat per la unié de
proteines, anomenades factors de transcripcié (TF), amb una seqiiéncia d’ADN
(acid desoxiribonucleic) en la regié reguladora del gen. Aquestes seqiiéncies
s’anomenen punts d’unié i sén especifiques de cada proteina. La unié dels factors
de transcripcié amb el seu corresponent punt d’unié és I’inici de la transcripcié.

Els punts d’unié sén seqiiencies molt curtes (5 a 20 parells de bases de
llargada) i altament degenerades. Aquestes seqiiéncies poden succeir de forma
aleatoria cada centenar de parells de bases. A més a més, un factor de tran-
scripcié pot unir-se a diferents punts. A conseqiiéncia de l'alta variabilitat, és
dificil establir una seqiiéncia consensus. Pert tant, I'estudi i la identificacié del
punts d’unié és important per entrendre el control de 'expressié genica.

La importancia d’identificar seqiiencies reguladores ha portat a projectes com
PENCODE (Encyclopedia of DNA Elements) a dedicar grans esforgos a mapejar
les seqliencies d’'unié d’un gran conjunt de factors de transcripcié per identificar
regions reguladores. L’accés a seqiiencies genomiques i els avangos en les tec-
nologies d’analisi de I'expressié genica han permés també el desenvolupament
dels métodes computacionals per la recerca de motius. Gracies aquests avencos,
en els dltims anys, un gran nombre de algorismes han sigut aplicats en la recerca
de motius en organismes procariotes i eucariotes simples. Tot i la simplicitat
dels organismes, 'index de falsos positius és alt respecte als veritables positius.
Per tant, per estudiar organimes més complexes és necessari metodes amb més
sensibilitat.

En aquesta tesi ens hem apropat al problema de la deteccié dels punts d’unié
des de diferents angles. Concretament, hem desenvolupat un conjunt d’eines per
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la deteccié de motius basats en models lineals i no-lineals. Les seqiiéncies d’unié
dels factors de transcripcié han sigut caracteritzades mitjangant dues aproxima-
cions. La primera esta basada en la informacié inherent continguda en cada
posici6 de les seqliencies d’unié. En canvi, la segona aproximacié caracteritza la
seqiiencia d’unié mitjangant un model de covariancia.

A partir d’ambdues caracteritzacions, hem proposat un nou conjunt de metodes
computacionals per la deteccié de seqiiencies d’unié. Primer, es va desenvolu-
par un nou metode basat en la mesura parametrica de la incertesa (entropia
de Rényi). Aquest algorisme de deteccié avalua la variacié total de 'entropia de
Rényi d’un conjunt de seqiiencies d’unié quan una seqiiencia candidata és afegida
al conjunt. Aquest metode va obtenir un bon rendiment per aquells seqiiéncies
d’unié amb poca o nul-la correlacié entre posicions.

La correlacié entre posicions fou considerada a través d’un model lineal, Q-
residuals, i dos models no-lineals, a-Divergence i SIGMA. Q-residuals és una nova
metodologia per la recerca de motius basada en la construccié d’un subespai a
partir de la covariancia de les seqiiencies d’ADN numeriques. Quan el nombre de
seqiiencies disponible és petit, el rendiment de Q-residuals fou significant millor
i més rapid que en les metodologies comparades.

a-Divergence avalua la variacié total de la divergencia parameétrica en un
conjunt de seqiiéncies d’unié quan una seqiiencia candidata és afegida. Donat
un g-valor optim, a-Divergence va tenir un millor rendiment que les metodolo-
gies comparades en la majoria de seqiiencies d’unié dels factors de transcripcio
considerats. Finalment, un nou metode computacional, SIGMA, va ser desen-
volupat per tal millorar la poténcia de deteccié considerant les bones propietats
de generalitzacié dels metodes d’entropia purs i les metriques que consideren
la dependéncia entre posicions. En un 70% dels casos considerats, SIGMA va
obtenir millor rendiment que els metodes amb els quals va ser comparat.

Aquest conjunt d’eines més els models per la deteccié d’un conjunt de seqiiéncies
d’unié dels factors de transcripcié (TFBS) han sigut inclosos en un paquet en R
anomenat MEET.



Resumen

a informacion sobre como, cuando y dénde se producen las proteinas ha sido
L uno de los mayores retos en la biologia molecular. Los estudios sobre el
control de la expresion génica son esenciales para conocer mejor el proceso de
sintesis de una proteina.

La regulacién génica es un proceso altamente controlado que se inicia con la
transcripcién del ADN. En este proceso, los genes, unidad bésica de herencia,
son copiados a dcido ribonucleico (RNA). El primer paso es controlado por la
unién de unas proteinas, conocidas como factores de transcripcién (TF), con una
secuencia del dcido desoxirribonucleico (ADN) en la regién regulatoria del gen.
Estas secuencias se conocen como secuencias de unién y son especificas de cada
proteina. Estas proteinas son los factores de transcripcién (TF). La unién de los
factores de transcripcién con su correspondiente secuencia de unién es el inicio
de dicho proceso.

Los puntos de unién son secuencias muy cortas (5 a 20 pares de bases de
longitud) y altamente degeneradas. Estas secuencias pueden suceder de forma
aleatoria cada centenar de pares de bases. Ademds, un factor de transcripcién
puede unirse a diferentes puntos de unién. A consecuencia de la alta variabili-
dad, es dificil establecer una secuencia consensus. Por lo tanto, el estudio y la
identificacion de los puntos de unién es importante para entender el control de
la expresion génica.

La importancia de identificar secuencias reguladoras ha provocado que proyec-
tos como ENCODE (Encyclopedia of DNA Elements) a dedicar grandes esfuerzos
a mapear las secuencias de unién de un gran conjunto de factores de transcripcién
para identificar regiones reguladoras. El acceso a secuencias gendmicas y los ade-
lantos en las tecnologias de andlisis de la expresién génica ha permitido también
el desarrollo de los métodos computacionales para la busqueda de motivos. Di-
chos algoritmos han sido aplicados en la biisqueda de motivos en organismos
procariotas y eucariotas simples. Aunque la complejidad de los organismos estu-
diados no es alta, el indice de falsos positivos alto con respecto a los verdaderos
positivos. Por lo tanto, para estudiar organismos méas complejos son necesarios
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métodos con més sensibilidad.

En esta tesis, hemos planteado el problema de la deteccién de los puntos
des de diferentes dngulos. Se ha desarrollado un conjunto de herramientas para
la deteccién de motivos basados en modelos lineales y no-lineales. Las secuen-
cias de unién de los factores de transcripcién han sido caracterizadas mediante
dos aproximaciones. La primera aproximacién estd basada en la informacion
inherente contenida en cada posicién de las secuencias de unién. En cambio, la
segunda aproximacién caracteriza el motivo mediante un modelo de covarianza.

A partir de ambas caracterizaciones, proponemos un nuevo conjunto de métodos
computacionales para la deteccion de las secuencias de unién. Primero, se de-
sarrollé una metodologia basada en la medida paramétrica de la incertidumbre
(entropia Réenyi). Este algoritmo de deteccién evalda la variacién total de la
entropia de Réenyi de un conjunto de secuencias de unién cuando una secuencia
candidata es anadida al conjunto. Este método obtuvo un buen rendimiento
para esas secuencias de unién con poca o nula correlacién entre posiciones.

La correlacién entre posiciones fue considerada a través de un modelo lineal,
Q-residuals, y dos modelos no-lineales, a-Divergence y SIGMA. Q-residuals es
una nueva metodologia para la busqueda de motivos basada en la construccion
de un subespacio a partir de la covarianza de las secuencias de ADN numéricas.
Cuando el nimero de secuencias disponible es pequeno, el rendimiento de Q-
residuals fue significativamente mejor y mas rapido que en las metodologias
comparadas.

a-Divergence evalia la variacién total de la divergencia paramétrica en un
conjunto de secuencias de unién cuando una secuencia candidata es anadida.
Dado un g-valor éptimo, a-Divergence tuvo un mejor rendimiento que los métodos
comparados en la mayoria de puntos de unién considerados. Finalmente, un
nuevo método computacional, SIGMA, se desarrollé para mejorar la potencia de
deteccién considerando las buenas propiedades de generalizacién de los métodos
de entropia puros y las métricas que consideran la dependencia entre posiciones.
En un 70% de los casos considerados, SIGMA obtuvo mejores resultados que los
métodos con los cuales fue comparado.

Dicho conjunto de herramientas méas los modelos para la detecciéon de un
conjunto de secuencias de unién de los factores de transcripcién (TFBS) han
sido incluidos en un paquete en R llamado MEET.



Preface

This thesis is about novo motif detection, particularly applied to detection Trans-
cription Factor Binding Sites (TFBS). The core of this thesis is the development
of a new family of computational methods for the characterization and detection
of protein binding sequences through linear and nonlinear measurements.

The work performed about the motif detection has been raised since different
approximations. Linear model is based on covariance model, which considers
the correlation between binding sites positions. The nonlinear model is based
on information gain model which allow to consider the depedence or indepen-
dence among binding sites positions according to the TFBS characteristics. Both
models, linear and nonlinear model, have been shown to be useful in the charac-
terization and detection protein binding sites.

Specific Aims

The research in this PhD has been oriented to the development of new com-
putational methods for the characterization and the detection of Transcription
Factor Binding Sites. The following objectives were established for this thesis:

1. To study the biological problem of the control of gene expression: trans-
cription factors, DNA-protein binding sites, Regulatory regions in DNA,
architecture of DNA-binding domains. To gain knowledge on the process
of binding of the transcription factor with the gene promoter.

2. Characterization of protein binding sequences through linear and nonlinear
models.

3. Estimation of the positions of the site involved in the binding process by
means of linear and nonlinear models.

4. To detect binding sites of transcription factors considering a nonlinear mea-
surement called Rényi entropy which assumes independency among binding
sites positions.
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5. To study dependency among positions by means of linear and nonlinear
models.

6. To develop an optimization algorithm to calculate the correlated binding
sites positions.

7. To detect TFBS considering the correlation between binding sites positions
through linear and nonlinear model. This methodology has been applied
genome sequence.

8. Public distribution of the R-package produced during this thesis to scien-
tific community. This package implements most of the methods present
above.

9. To integrate both approximation in a detector based on nonlinear measure-
ment.

Contributions

The main contribution of this thesis is the development of a new family
of methodology for motif finding based on linear and nonlinear measurements.
This knowledge lets us to know better the process of binding of the transcription
factor with the gene promoter. Moreover, these methodologies allow to detect
sequences with a higher efficiency suitable to work with more complex organisms,
such as the eukaryotics organisms.

A part from that, an R library has been developed on motif detection. MEET is
an R-package that integrates a set of tools, internal and external algorithms, and
TF-models library (~ 500 models) for transcription factor binding sites detection.



Part 1

Framework



Chapter 1

Genomic Background

1.1 Introduction

There are different types of essential molecules for the life: small molecules, pro-
teins and nucleic acids (DNA and RNA). Small molecules carry energy, transmit
signals and are liked into macromolecules (e.g. simple sugars, amino acids, wa-
ter,...). On the other hand, the proteins are the chief actors within the cell, said
to be carrying out the duties specified by the information encoded in genes. Pro-
teins play a main role in catalyzing chemical reactions (enzymes), cell signalling
and signal transduction (e.g. transcription factors) and structural functions.

The information to produce each kind of protein is carried in the genetic ma-
terial. Nucleic Acids carry genetic information or form structures within cells.
The most common nucleic acids are deoxyribonucleic acid (DNA) and ribonu-
cleic acid (RNA). DNA acts as the permanent repository of genetic information
in most cells while RNA plays several important roles in the processes of tran-
scribing genetic information from deoxyribonucleic acid (DNA) into proteins [1].

The ability of cells to maintain a high degree of order in a chaotic universe
depends on the genetic information that is expressed, maintained, replicated, and
occasionally improved by the basic genetic processes RNA and protein synthesis,
DNA repair, DNA replication, and genetic recombination. In these processes,
which produce and maintain the proteins and nucleic acids of a cell, the infor-
mation in a linear sequence of nucleotides is used to specify either another linear
chain of nucleotides (a DNA or an RNA molecule) or a linear chain of amino
acids (a protein molecule) [1].
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1.2 Genetic Information

Nucleic Acids contains the information for determining the amino acid sequence
and hence the structure and function of all the cells proteins. Moreover, nucleic
acids are part of the cellular structures that select and align amino acids in the
correct order as a polypeptide chain is being synthesized, and they catalyze a
number of fundamental chemical reactions in cells, including formation of peptide
bonds between amino acids during protein synthesis [41].

Deoxyribonucleic acid (DNA) is a molecule that contains the genetic instruc-
tions used in the development and functioning of all known living organisms. A
DNA molecule consists of two long chains composed by the combination of four
nucleotides - adenine (A), thymine (T), cytosine (C) and guanine (G)- joined
by phosphodiester bonds [1]. Moreover, according to biochemical properties,
nitrogenous bases allow to arrange in three classes [27]:

1. Molecular structure: A and G are purines (R), while C and T are pyrimi-
dines (Y).

2. Strength of links: bases A and T are linked by two hydrogen bonds (W-
weak bond), while C and G liked by three hydrogen bonds (S-strong bond).

3. Radical content: A and C contain the amino (NHj) group in the large
groove (M class), while T and G contain the keto (C' = O) group (K class)

The information stored in DNA is arranged in hereditary units, now known
as genes, which control identifiable traits of an organism. Hence, a gene is a unit
of DNA that contains the information to specify synthesis of a single polypeptide
chain or functional RNA [41]. RNA, like DNA, it is composed of a linear sequence
of nucleotides, but it has two chemical differences: the sugar-phosphate backbone
of RNA contains ribose instead of a deoxyribose sugar and the base thymine (T)
is replaced by uracil (U), a very closely related base that likewise pairs with A [1].
A gene is a portion of DNA that contains coding sequences known as exons and a
regulatory region known as the promoter. Moreover, a eukaryotic gene contains
also noncoding sequences known as introns. The set of genes in an organism
is known as its genome, which may be stored in one or more chromosomes, as
shown in the Figure 1.1'. The region of the chromosome at which a particular
gene is located is called its locus. A chromosome consists of a single, very long
DNA helix on which thousands of genes are encoded (e.g. the genome of Homo
sapiens has approximately 3.000.000.0000 base pairs).

Thttp://www.genome.gov/. Last consulted 2012
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Chromosome

Intron Intron

Figure 1.1: Schema of the information stored in DNA from chromosome to gene.
Adapted from http://www.genome.gov/.

1.3 Regulation of Gene Expression

Each gene encodes the information to synthesize a particular protein or a par-
ticular functional ribonucleic acid (RNA) [70]. When a gene is active, the co-
ding and noncoding, in eukaryotic cells, sequences are copied in a process called
transcription, producing an RNA copy of the gene’s information. The molecules
resulting from gene expression, whether RNA or protein, are known as gene
products, and are responsible for the development and functioning of all living
things, as shown in the Figure 1.2.

2 3
1 DNA&—— RNA * Protein

Figure 1.2: Schema of the information flow in cells. Step 1 is the DNA replication.
Step 2 is the Transcription. And finally, step 3 is the Translation.
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The information flow could be described as follows:

1. DNA replication. A DNA sequence is copied to yield a molecule nearly
identical to the starting molecules.

2. Transcription. A portion of DNA sequence is converted to the corres-
ponding RNA sequence.

3. Translation. The polypeptide sequence corresponding to the mRNA
sequence is synthesized.

Transcription

The machinery for cell functions are proteins and its synthesis is regulated
through gene expression [80]. Gene regulation is a highly controlled process.
This process operates at the level of transcription by selecting those genes that
will be copied into the primary RNA transcript, as shown in the Figure 1.3 2.
The transcription is the central point of regulatory mechanisms and is controlled
by the presence of short DNA sequences within gene regulatory regions. These
regions are the binding sites for specific proteins that are known as Transcription
Factors (TF) [63]. The function of these proteins is to bind themselves to specific
sequences within the gene regulatory region. Then, these proteins interact with
one another and with the RNA polymerase (RNAP) enzyme itself in order to
regulate the rate of transcription. TFs recognize DNA sequences 6-8 bp long,
suggesting that gene regulation is carried out for a large number of TF.

Translation

In the eukaryotic cells, transcription and translation stages are not directly con-
nected, as the nuclear membrane physically separates the process, as shown in
the Figure 1.4 3. The mRNA obtained must be modified to leave the nucleus
using the processes of 7-metilguanosina, polyadenylation and splicing. After the
mRNA has been processed, it is translated into an amino acids sequence, process
known as translation. Here the ribosome, an enormously complex molecular ma-
chine composed of both RNA and protein, carries out the second process, called
translation. During translation, the ribosome assembles and links together amino
acids in the precise order dictated by the mRNA sequence according to the nearly
universal genetic code [41]. These polypeptides or proteins form structural pro-
teins and enzymes that control the metabolic processes in cells [80].

2 Adapted from http://www.genome.gov/. Last consulted 2012
3Adapted from http://www.genome.gov/. Last consulted 2012
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Cell

Nucleus

Figure 1.3: Gene is transcribed from DNA to mRNA by means of Transcription
process. Adapted from http://www.genome.gov/.

1.4 Regulatory regions in DNA

DNA sequence contains several regions that regulate the transcription. These re-
gions are fundamentals for the positioning of the basic transcriptional machinery
or for the regulation. In eukaryotic organisms, these regions are the following:
core, proximal and distal promoter, as shown Figure 1.5 4.

Core Promoter

The core promoter is a short of DNA (300-500bp) that contains several DNA
elements that facilitate the binding of regulatory elements, as shown Figure 1.6

4Adapted from [55]
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Figure 1.4: mRNA is translated to a sequence of amino acids through translation
process. Adapted from http://www.genome.gov/.

5. Specifically, the core promoter on the DNA is capable of initiating basal
transcription and it is used to position the RNA polymerase (RNAP). The main
element of the core promoter is the TATA-box, an AT-rich sequence acts as a bin-
ding site for TATA-binding protein (TBP). TBP together with TATA-associated
factors (TAFs) forms the complex TFIID, first step on the transcriptional com-

plex. More core promoter elements are the following [60]:

1. Inr. Initition (Inr) motif contains Transcription Start Site (TSS).

2. BRE. BRE is present in a subset of the TATA-containing core promoters.
According to the position regarding to the TATA-box, BRE can be define
upstream or downstream. Moreover, BRE can act in both a negative and
a positive manner.

3. DPE. DPE (downstream promoter element) is another motif important
for transcriptional activity. DCE is formed by three subunits.

5Adapted from [60]
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Distal Promoter Proximal Promoter

| |
[ \ I 1

Insulator Silencer  Enhancer Enhancer  Core Promoter
DMNA

] | | | 1 [ 1 I |
L ] 1 | L I 1 J 1 ]

Transcriptional machinery

Figure 1.5: Schema of the regulatory regions in DNA [55].

4. MTE. Motif ten element.
5. DCE. Downstream core element.

6. XCP1. X core promoter element 1.

BREd- BREY Inr MTE DPE

XCP1 DCE, DCE, DCE4

Core Promoter

Figure 1.6: Schema of the core promoter structure [60].

Proximal and Distal Promoter Elements

In general, the proximal and distal promoters are sequences upstream of the gene.
Specifically, distal promoter contains primary regulatory elements. On the other
hand, proximal promoter is composed of additional regulatory elements, often
with a weaker influence than proximal promoter. Proximal and distal promoter
elements are the following: enhancers, silencers and insulators.
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Enhancers

An enhancer is a short region of DNA that brings out transcription levels of genes.
These enhancer regions are non-coding sequences that are strongly conserved
and can be found up and downstream of the TSS. Its main characteristic is
that regulates gene expression in highly specific tissues, developmental stages, or
combinational of these [107].

Silencers

A silencers is a short region capable of binding transcription regulation factors
termed repressors. Two distinct classes of silencers exist: position-independent
silencers and position-dependence silencers or negative regulatory elements (NREs).
Position-Independent motifs are related to pre-initiation complex (PIC) and are
normally found upstream of the TSS. On the other hand, NREs function is pre-
vent the binding of TFs to their respective cis-regulatory motif and can be found
both up and downstream of the TSS [60].

Insulators

An insulator is DNA sequence that can block enhancers and silencers interac-
tions. Two distinct types of insulators exist: enhancer-blocking insulators and
barrier insulators. The enhancer-blocking insulators control gene activation by
enhancers and interfere with the enhancer-promoter interaction only if insulator
is between the enhancer and the promoter. Whereas, barrier insulator safeguards
against the spread of heterochromatin.

1.5 Architecture of DNA-binding domains

To understand better the transcriptional regulatory processes, it is essential to
know the structure of the DNA-binding domains. A DNA-binding domain is the
specific region of a DNA-binding protein that allows to bind to TFs with DNA.
The main DNA-binding domain structures are the following: Heliz-turn-Helix
(HTH), Zinc-Finger and Domains with a-heliz

Helix-turn-Helix

Helix-turn-Helix (HTH) is made up of two «-helix linked by a sharp S-turn.
There are some domains that contain this structure. These domains are Homeo-
domain, Myb domain, Forkhead or winged helix and ETS-type DNA-binding
domains, as shown in the Figure 1.8.
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Figure 1.7: Different DNA-binding domains.a Helix-turn-Helix( pdb code 1IC8).
b Zinc-Finger(pdb code 2KMK). ¢ Domains with a-helix (pdb code 1C7U), d
B-barrel (pdb code 2KIN), e S-sandwich (pdb code 1BG1) and f Domains with
B-strand (pdb code 1INH2). All figures were produced with PyMol 1.3.

Homeodomain and Myb domain are characterized by the conserved pattern
of hydrophobic amino acids that form a hydrophobic core between three a-helices
(Figure 1.8 (a and b)) [70]. On the other hand, Forkhead or winged helix and
ETS-type DNA-binding domains have a structure of the hepatocyte nuclear fac-
tor (HNF3). Forkhead DNA-binding domain consist of three helices containing
a HTH motif, a twisted, antiparallel three -sheet and C-terminal random coil
(Figure 1.8 (¢)). The ETS is composed of three helices containing a HTH motif
and a four-stranded antiparallel S-sheet (Figure 1.8 (d)).

Zinc-finger

Zinc-finger consists of a two-stranded S-sheet and a a-helix that is held together
by a zinc ion ligated to two cysteine and two histidine residues. Other pro-
teins show different zinc-finger modules. These domains are Nuclear hormone
receptors, GATA factors and ZnyCysg binuclear cluster, as shown in the Figure
1.9.

Nuclear hormone receptors are characterized by eight cysteine residues that
nucleate two zinc-binding clusters. The main feature of this structural domain is
an arrangement of two helices that are oriented perpendicularly to each other and
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Figure 1.8: Different Helix-turn-Helix domains,a Homeo (pdb code 1K78), b
Myb (pdb code 1IMSE), ¢ Forkhead (pdb code 3G73) and d ETS type DNA-
binding domain (pdb code 1AWC). All figures were produced with PyMol.

crossing at their mid-points (Figure 1.9 (a)). GATA factors contain a C'ysaCyssy
motif. This structure is characterized by zinc ion bound to its four cysteine
ligands form the core of the domain. The core is composed of two small, irregular,
two-stranded antiparallel S-sheets and an a-helix followed by a long loop that
leads into the carboxyl terminal tail [70] (Figure 1.9 (b)). And finally, Zn,Cys®
has six cysteines that ligate two zinc ions in a single cluster. Moreover, it has
two short a-helices each capped at their N-terminus by a pair of cysteine ligands,
as shown in the Figure 1.9 (c).

a-helical structure

A part of HTH and Zinc-finger, there is a set of TF that are characterized for
its a-helical structure. These TF are classified in different patterns according



12 Genomic Background

Figure 1.9: Different Zinc-finger modules.a Nuclear Hormone Receptor (pdb
code 2EBL), b GATA factors (pdb code 3DFU) and c binuclear cluster (pdb
code 1D66). All figures were produced with PyMol.

to the residues as following: MADS, basic Leucine Zipper (bZip motif), basic
Helix-loop-Helix ( bHLH) and basic Helix-loop-Helix Zipper ( bHLHZ ) motifs
and High mobility group domain (HMG domain), as shown Figure 1.10.

MADS is characterized by its three layers. N-terminus is an antiparallel
coiled of two amphipathic a-helices , one from each monomer of the dimmer.
The coiled-coil is oriented parallel to the minor groove of the binding site and
the DNA is bent around the protein with each a-helix binding in adjacent major
grooves. The other layer is a four stranded antiparallel S-sheet (Figure 1.10 (a)).
Basic Leucine Zipper (bZip motif) consists of a basic region that binds to DBA
and a leucine-rich region which is involved in the dimerization of bZip proteins
(Figure 1.10 (b)). Basic Helix-loop-Helix (bHLH) is formed by a «a-helix that
interacts in the major grove of the DNA (Figure 1.10(c)). On the other hand,
basic Helix-loop-Helix Zipper (bHLHZ) is formed by four-helix bundle with the
DNA formed a coiled-coil leucine zipper (Figure 1.10 (d)). And finally, High
mobility group domain (HMG domain) is formed by three a-helices held together
by two hydrophobic cores (Figure 1.10 (e)).
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Figure 1.10: Different a-helical structure.a MADS (pdb code 1k60). b Basic
Leucine Zipper (pdb code 2WT7). ¢ basic Helix-loop-Helix (pdb code 1A0A). d
basic Helix-loop-Helix Zipper (pdb code 3SIU). e High Mobility Group (HMG)
(pdb code 3U2B). All figures were produced with PyMol.
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State of Art

2.1 Motif Finding Problem

Regulatory sequence detection is a critical facet for understanding the cell mecha-
nisms in order to coordinate the response to stimuli. Protein synthesis involves
the binding of a transcription factor (TF) to specific sequences, called trans-
cription factor binding sites (TFBS), in a process related to the gene expression
initiation.

The problem is that to find this kind of sequence is a complex task for several
reasons. First of all, TFBS are usually short (5—20bp) and highly degenerate. As
a consequence of this, it is difficult to establish a consensus sequences. Besides,
the spatial locations of TFBS relative to a gene are highly variable. TFBS can
be found close to gene or until hundred of thousands of nucleotides. Moreover,
one TF may bind to more than one site. Then, these sites are degenerate DNA
sequence. And finally, regulatory sequences can bind to work together with the
consideration that the limits of the modules are not clear.

Due to its characteristics, great efforts have been devoted to find TFBS
through experimental and computational methods. The experimental methods
are classified into footprinting methods [12] and on high-throughput methods. In
general, all of these methods are costly, time consuming, low resolution, signifi-
cant background noise, and the considerable systematic bias [60]. As consequence
of this, several computational method for the finding of protein binding sequences
have been developed to decrease labour intensive, the cost and, mainly, to reduce
the false positive rate and to increase the sensitivity [123].
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2.2 DNA Model

To describe DNA sequences, motifs or candidate sequences, is necessary to use
a model. The model provides a satisfying description of the phenomenon under
study [115]. These models can be classified into motif model and sequence model
according to biological sequence.

Motif Model

Many computational approaches for TFBS identification problem have been de-
veloped over the last decades. The main goal is mutual among all computational
approaches, which is to find protein binding sequence. The difference among
them is according to DNA motif model considered [16]. To consider a good
model is essential to carry out a good TFBS detection [39]. DNA motif model is
divided into three types: pattern models, profile models and, finally, numerical
models.

Pattern Models

Pattern models are considered the first method to represent DNA motif which
are simply strings over the 4-alphabets {A,C,T and G} than form DNA [39].
Given a set of aligned sequences with binding evidence, a consensus nucleotide
sequence is assigned to each position using the IUPAC (International Union of
Pure and Applied Chemistry) from the frequency of nucleotides in the positions
of the aligned sequences. The nucleotide with the highest frequency is taken as
the representative nucleotide. If there is ambiguity among nucleotides, IUPAC

code allows represent it through another letters, i. e. R, Y,...., to see Figure 2.1.
Sites1:  ATCGATC W=AorT
Sites 2: ACCGGTA S =CorG
Sites 3: TTCGTTC R =AorG
Sites 4: ACCGCTA Y =CorT
Sites 5: ATCGATC K =GorT
Sites 6: ACCGCTC M= AorC
Sites 7: ACCGGTA B =CG,orT
Sites 8: TTCGATA D =AG,orT
H=ACorT
V =A,CorG
Consensus AYCGNTM N =ACG,orT

Figure 2.1: Left to right: Consensus sequence and IUPAC code
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Through consensus sequence, a simple regular expression search is enough for
TFBS detection. This model has two main limitations. First of all, consensus
sequence assumes that the positions are independent and, moreover, the majority
binding sites are not represented with a consensus sequence [100].

Profile Models

A complex model was introduced to represent the majority binding sites through
profile model called Position Weight Matrix (PWM). Given a set of objects (let-
ters), this model represents these objects on profile from its empirical frequency.
This model allows to capture information on the variability of a set of binding
sites in a quantitative manner, which is not possible through pattern model [39].
According to quality of the set of objects, there are different kinds of approxi-
mation based on profile models.

Position Independence Model The first approximation considers that the
set of objects does not show dependencies among positions [117, 100]. This
model is based on Position Count Matrix (PCM), which is estimated from a
set of aligned sequences with binding evidence. PCM is a 4 % n matrix that
contains the number of sequences with letter {A, C,T and G} in each position,
to see Figure 2.2. Dividing PCM by the number total of sequences, N, obtains
the position frequency matrix (PFM). Using the eq. (2.1), the frequency matrix
is converted to a position weight matrix (PWM) or position specific scoring
matrices (PSSMs).

p(b, i)
p(b)

where p(b) is the background probability of the base b, p(b, 7) is the experimen-
tal frequency of the base b in position 7. The equation (2.1) converts normalized
frequency to a log-scale [130], to see Figure 2.2. The null values are a problem for
the log-conversion. There are different approximations to eliminate null values
[56]. A sampling correction, known as pseudocounts, is added to each cell of the
PFM [130]. This correction is defined as the square root of the number of sites,
to see eq. (2.2)

Wi = logs (2.1)

o~ Joi+s(b)

b,i) = 1ei T2

P9 = N

From position weight matrix, the score magnitude is defined as [116], to see
equation 2.3

(2.2)

score = Zwb’i (2.3)
i=1
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The advantages of this model are that the scores are proportional to binding
energies and the nucleotide probability values can determine the total the infor-
mation content for each position. But, at the same time, this model assumes
that the positions are independent which is its main limitation.

Sites 1: A T C A T c
Sites 2: A c c T A
Sites 3: T T C T T (s}
Sites 4: A c c c T A
Sites 5: A T C A T c
Sites 6: A c c c T (s}
Sites 7: A c c T A
Sites 8: T T C A T A
1|2 |3|4]s 6 7 8
w|A| 6|0 |0]| O3 0 4 0
3
»}g T|2|4a|loflo|1]|8]|0]lo
§ clofa|s|o|2|0]a]o
= oflofofe|2|o]|o]s
1|2 |3|4]s5 6 7 8
w| A 34| 0|0 |0 (38| 0 120
-
Bl Tt |1/4|2/2| 0| 0 |1/8] 1 0 0
&
Tlc| o |12|1)o0|1/a] 0 |1/2] 0
H
oo |0 |1 14| 0 0 1
1|2 |3|4]s 6 7 8
o A |16 |-19(-19/-19|06|-19| 1 |-19
o
gl 1t o |1 |19f|19[-1|1|-19]-19
L7
Slc|19| 1|2 |19 0 |-19| 1 |-19
z
-19|-19(-19| 2 | 0 [-19|-19]| 2

Motif Position

Figure 2.2: Up to down: A set of aligned binding sequences, Position Contant
Matrix, Position Frequency Matrix and Position Weight Matrix.

PWM Extension Position Weight Matrix assumes two strong assumptions:
independence between positions and that the variations of the TFBS come from
the same consensus sequence. Biological experiments have shown the dependence
among binding site positions [123] and that TFBS occur in clusters of functionally
interacting TF in promoter regions, called transcriptional modules [13, 73]. A
single factor may have different interaction partners for different genes [37]. To
incorporate these characteristics, PWM have been generalized through mixture
model and position dependencies model.

Position Dependencies Model PWM model considers to one mono-
nucleotide for each column. In order to consider the dependence among adjacent
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positions of the binding site, it is necessary to consider to multi-nucleotide at
each position [102, 40]. This model fit better to the real binding sites, but
a large number of cis-regulatory sequences are necessary to circumvent over-
fitting. Therefore, the mono-nucleotide models have only been rarely used [117].
To consider the dependence among all positions, another model it is necessary
due to mono-nucleotide requires to many parameters. Bayesian networks [87, 9]
, Markov models [139] and tree model are different models to consider general
dependencies among positions.

Mixture Model As is well known, a single transcription factor might bind
with different pattern of cis-regulatory sequences. Due to this characteristic,
PFM does not fit correctly due to consider a single distribution for each position.
The single distribution can be substituted by mixture distributions where each
parameter represents one kind of binding [9]. The limitation of this model is that
the number of parameter is high. However, many positions can be fitted with a
single distribution. Therefore, there is model that combines both distributions
[37].

Numerical Models

The conversion of genomic sequences from the symbolic, {A4,T,C and G}, into
digital genomic signals allows the detection of protein binding sequences based
on numerical methods. All kinds of mappings of symbolic genomic data have
to be both truthful and unbiased. The mapping is truthful if all biologically
relevant characteristics of the represented objects are expressed in corresponding
mathematical properties of the samples in the resulting digital signal [27]. The
methods of symbolic-to-digital conversion of genomic sequences are as follows:

Real Representation A simple way to transform a symbolic DNA sequence
to a numerical vector is to assign arbitrarily four real numbers to represent the
four nucleotides (e.g. A =1, T =2, C = 3, G = 4). This assignment may
introduce an additional mathematical assumption such as A < T < C < G,
which does not exist in symbolic sequences [136].

4-D Binary Indicators A symbolic DNA sequence can be represented by
means of the presence or absence of four nucleotides on the position. This nu-
merical representation is known as Voss’s 4-dimensional binary indicator. For
a symbolic DNA sequence, s[0],...,s[N — 1], over the alphabet {A,T,C and G},
four binary indicators sequences, us(n), ur(n), uc(n), and ug(n) were proposed
to identify the positions of the four symbols, that is ua[k] = 1 if s[k] = A, and
0 otherwise, and similarly in the remaining three cases [129].
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The advantage of the binary indicator representation of a DNA sequence is
that it does not predefine any mathematical relationship among the symbols,
only indicating the frequencies of the symbols. Thus it is widely utilized in the
studies of detecting symbol distributions and periodicity features of a sequence
[136]. However, this kind of representation is degenerated because two different
DNA sequences may have the same power spectrum.

3-D Representation The 4-D vector representation can be reduced to three
dimensions in which each of the four type nucleotides is represented as a 3-D
vector having magnitude equal to 1 and pointing to the four directions from the
centre to vertices of a regular tetrahedron [108]:

a=+k,

- 2v2. 1

P 1 2V27 2R 2.4

Ty i3l (24)

2v2- V6~ 1

o 2V2. VB 1

¢ 5 ‘T35

5 Q\f—' \[—.' 1~

§g=——F"1——7J— 3k,
3 3773

The mathematical description of the code can be simplified by rotating the
reference system [21]. It is also advantageous to give up the Euclidian normaliza-
tion condition and to choose integer £1 coordinates for the vertices of the cube,
including the points representing the bases, so that the base vectors in (2.5) take
the simple form (2.5), as shown in Figure 2.3.

G=i+]+Fk,
F=i—7—Fk, (2.5)
C=—i+j—k,
g=-i—-j—F

Each of the six edges corresponds to one class comprising a pair of nucleotides,
as shown in Figure 2.3. The representation is three dimensional and the axes
express the differences ”weak minus strong bonds”, ”"amino minus keto”, and
”purines minus oyrimidines”.

Complex Representation Projecting the basic tetrahedron on a plane can
reduce the dimensionality of the representation. Such planes can be chosen
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Figure 2.3: Nucleotide tetrahedron [21].

in various ways that conserve the symmetry of the representation and reflect
biological properties in corresponding mathematical properties [21]. For instance,
a pair of the Cartesian coordinate axes can define the planes. This representation
is accompanied by some loss of visual information associated with crossing and
overlapping of the resulting curve representing DNA by itself [113]. On the
other hand, the planes can be put in correspondence with a complex plane.
The complex representation has the advantage of better translating some of the
features of the basis into mathematical properties.

Z curve Representation The Z curve consists of a series of nodes P, (n =
1,2,...,N), whose coordinates are denoted by z,, y, and z,:

Tn = 2(A, + G) — n,
Yn = 2(A, + Cp) — n, (2.6)
zn =2(An, +Tp) — n,

where A,,, C,,G, and T,, are the cumulative counts of nucleotides, A, C,
G and T from beginning to the position n, respectively, n = 0,1,2,..., N and
Ay = Cy = Gg = Ty = 0. Therefore, a DNA sequence can be decomposed into
three series of digital signals. The connection of the nodes by line is called the
Z curve of the DNA sequence [136].



21 State of Art

DNA Sequences Model

Any computational method for motif detection needs a DNA sequences model to
estimate the random expectation. DNA sequences model is applied to generate
null model and servers as a reference to decide if motif might have specific biolog-
ical function [115]. The main sequence model are permutation model, Bernoulli
model and Markov model [115].

Permutation Model

The permutation model is first approximation of building random sequences.
This model builds a set of all sequences, S, that have the same length, [, and
containing the same number of {a, ¢, g and t} that the observed sequence Sps.
The characteristics of observed sequence are the frequencies of the nucleotides,
dinucleotides,... The stochastic model assumes that each nucleotide is inde-
pendent and that observed sequence has been randomly sampled from S with
uniform probability [115]. The length of the observed sequence and the words
with overlaps would make the calculation infeasible. This leads to the next ap-
proximation, Bernoulli Model.

Bernoulli Model

Bernoulli or Multinomial model considers that the sequence, S, with length [,
is a succession of independent random residues {a, ¢, g and ¢} with probabilities
w(a), p(c), u(g) and p(t) [115]. The simplest version of this model assumes that
residues are equiprobable, but it is not a realistic case. Generally, Bernoulli
model assumes that the probability is specific in each residue and constant on
the whole sequence. In this case, the probability for a sequence, p(w), is the
product of the probability of the residues. The generalization of the Bernoulli
model is Markov chain model, which assumes that the distribution of each residue
depends of previous residues.

Markov Model

The Markov model is a probabilistic model that assumes that the residues are
not necessarily independent and that the sequence is homogeneity. This means
that the probability of the residues at the position i depends on the previous
residues and that the sequence has the same probabilistic behaviour from its
beginning to its end [115]. The order de Markov chain, m, represents the length
of the memory in the sequence, e.g. when m = 1 each residues depends on its
predecessor. For m is equal to 0, Markov model is Bernoulli model. The observed
sequence allow estimate the transition probability. For each couple of residues
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(a,c) from T, the transition probability p(a,c) is the probability that X is a ¢,
given X;_1 is an a, to see equation 2.7.

pla,c) = p{X; =cX;—1 =a} (2.7)

The homogeneity assumption implies that the transition probability p(a,c)
does not depend on position i, Y .y u(a,c) = 1. Then, the distribution of
the residues X; given the previous letter X;_; is estimated from transition and
conditional probabilities, equation 2.8.

p{Xi=c} =) p{Xii1=a}p{X;=cX, 1 =a} (2.8)
a€eY
=Y p{Xi1 = a}p(a,c) (2.9)

2.3 Motif Detection Methods

The identification of specific regulatory motifs or transcription factor binding
sites in non-coding DNA sequences, which is essential to elucidate transcrip-
tional regulatory networks, has emerged an obstacle for many researchers. Conse-
quently, numerous motif discovery tools have been applied to solving this problem
[132, 86, 48, 23]. The motif discovery in silico are classified into different classes
according to the approach to the problem: deterministic, numerical, stochastic
and phylogenetic.

Deterministic Algorithms

A word-based or deterministic algorithms search coincides with a pattern se-
quence, normally consensus sequences. Specifically, the pattern sequence is
matched against candidate sequence. Each position is evaluated to a binary value
indicating success or not [98]. Due to the characteristics of the cis-regulatory
sequence, these algorithms can produce predictions with a low rate of false posi-
tives as well as a high rate of false negative. Deterministic algorithms are divided
into different models according to model used. These models are: Oligo model,
regular expression and mismatch expression.

Oligo model

One of the first contributions in computational methods for cis-regulatory se-
quences is based on oligo model. This model assigns 1 for a exact match, and
0 for all other sequences. One of the main algorithm based on oligo model is
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Dyad Analysis [126]. This algorithm is based on a systematic counting of pairs
of short words separated by a fixed distance, called spaced dyads, followed by a
calculation of their statistical significance [126]. The results are admissible for
short sequences. However, this method suffers important limitations: the motifs
can not include spacers and, moreover, oligo model considers only exact matches.

Regular expression

The regular expression model is based on word counting methodology. In con-
trast to oligo model, the regular expression model is more flexible than oligo
model. In this way, this model assigns 1 if the given substring is matched by an
underlying regular expression. The models used in motif discovery are typically
composed of exact symbols, ambiguous symbols, fixed gaps and/or flexible gaps
[16]. Moreover, the motifs can include spacers. Sisha et al [111] proposed an
algorithm based on regular expression model for the detection of transcription
factor binding sites.

Mismatch expression

The last methodology based on deterministic approaches is mismatch expression.
This methodology calculates the number of mistmatches, or Hamming distance,
between the candidate sequence and the consensus. If the number of mistmatches
is below a given threshold, the algorithm assigns 1 [124, 91]. From this idea,
there are different variant of the model, e. g. the threshold can be considered as
the sum of mistmatches between all motif occurrences and the underlying motif
substring [66]. There are different algorithms that use mistmach expression for
binding detection: Weeder [85] and Smile [74].

Numerical Algorithms

The conversion of genomic sequences from the symbolic into digital genomic
signals allows using genomic signal processing for detection of protein binding
sequences. A several number of methods have been employed, e.g: Support
Vector Machines (SVM) [127]. The main algorithms are based on following
techniques: Discrimiant analysis, Principal Component Analysis, Support Vector
Machines and two-class Kernel Method.

Linear Discriminant Analysis and Quadratic Discriminant Analysis

Two classical statistical pattern-recognition methods are Linear discriminant
analysis (LDA), [49] and Quadratic discriminant analysis (QDA). This method
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has been used to categorize samples into two classes. Linear discriminant ana-
lysis (LDA) estimates an optimal plane surface that best separates points into
two classes. Whereas, Quadratic discriminant analysis finds an optimal curved
surface instead [138]. Simonis et al [109] applied this classifiers to predict gene
co-regulation. Specifically, Simonis et al. established a method to discriminate
co-regulated from non-co-regulated genes on the basis of counts of pattern oc-
currences in their non-coding sequences.

Support Vector Machines

Several algorithms based on Support Vector Machines (SVM) has been used by
prediction regulatory motifs [118, 46, 52]. The goal of these algorithms is to clas-
sify the data in two class or categories: positive and negative binding sites [14].
In order to do this, the separator is chosen according to the maximum margin.
The margin is the distance of the closest data point to the separator. Therefore,
a SVM is a maximum margin classifier with an adjustable cost parameter.

The decision function, D(z), is build using the training scores. Given a
training set of number of scores of sequence {z1,zs,...,z,} with know labels
{y1,y2, ..., yn} where y; € {—1,41} such that, —1 are negative biding sites and
+1 are positive binding sites, to see equation (2.10,2.11).

x € class(+)whenD(z) > +1; ify; = +1 (2.10)

x € class(+)whenD(z) > +1; ify; = +1 (2.11)

where i € {1,2,3,4,...,n} and x is on decision boundary when, D(z) = 0.
Then, the discriminant function of hyperplane that divides the data points two
classes is (eq. 2.12 ),

D(z)=w*z+b (2.12)

where w is the weight vector, b is the bias value and w * x is the dot pro-
duct between the two vectors w and x. For correctly classification scores, it is
necessary to optimize min%wz. Several approach has been used to solve the
optimization problem [11, 15].

The data may be non-linearly. In this situation, the linear classifier does
not classify satisfactorily. In order to solve this problem, one approach is to
map the data into a high dimensional feature space, called a feature space, in-
cluding non-linear features and then use a linear classifier. In this new space,
nonlinear decision boundaries have been estimated using kernel methods. The

kernel functions widely used are the following:
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e Polynomial kernel of degree d

kgo(z,2') = (z+2’ +6)° (2.13)

e Gaussian kernel )
ky(z,2) = exp(——x — 2'?) (2.14)
Y

where v is the width of the Gaussian Kernel.

e Sigmoid kernel
ko(z,2") = tanh(a(z * 2’ + §)) (2.15)

One-class SVM  To apply SVM is necessary to know the positive and negative
samples. Sometimes, it is no possible to determine experimentally where trans-
cription factor will certainly not bind (a negative set of sequences) [47]. In this
sense, recognition of TFBSs only may be characterized as a one-class classifica-
tion problem [52]. There are several different approach for the one-class problem
[62, 103, 119]. Jian et al [52] estimate the support of probability of distribution
of known TFBS through one-class SVM and incorporates multiple factors to aid
the recognition of TFBS. Scholkopf et al [103] proposed hyperplane method and,
finally, Tax et al [119] used a method based on Support Vector Data Description
(SVDD). This method creates outlier uniformly in and around target class. One-
class SVM is based on hyperplane method. Given a set of training examples,
{z1, 9, ...,2,} for a class X where, X € R,,. If the mapping function is such as
¢ : X — H. Where H is the feature space. The optimisation problem is defined
as, to see equation 2.16.

1, 1
ind 5 —_ i i) = p— 7.:1727 PR3} ’LZO 2.16
mm{2w+m;§ pbows(e) 2 p—&i=1,23..n & (2.16)

The decision function is,

D(z) = sign(w x ¢(x) — p) (2.17)

where w is the weight vector, v is the upper bond of fraction on the outliers
and lower bound on the fraction of the support vector and 0 < v < 1, £ is the
slack variable to penalize misclassification, p is the bias and n is the number of
examples.
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Stochastic Algorithms

Computational methods for motif detection based on probabilistic models avoid
any numerical representation of the nucleotides. The main approaches based on
statistical used to detect TFBS are Expectation maximization (EM) and Gibbs’s
sampling (GS). Both approaches is based on PWM, whereas EM is deterministic
and GS is stochastic. Given the same set of initial parameter, EM will always
converge to the same solution. Instead, GS may give different solutions.

Expectation maximization

Expectation maximization (EM) algorithm is a deterministic approach for TFBS
detection. This algorithm considers that all sequence is composed for two parts
statistically different: background genomic sequence and the binding sites. Each
part is modeled differently. The binding sites are modeled as a PFM where each
P(b,1) is the probability of observing a specific based b € {A,C,G, T} and i is
the position. Instead, the background is modeled as an overall probability for
each of the four bases. The overall probability is P(b,0) where 0 is any position
except binding site positions. In the simplest case, the overall probability is
equiprobable.

The motif finding problem consists of determining the PFM for TF, binding
site locations and background probability. To do this, EM takes as an input a
set of unaligned sequences and a motif length and returns probabilistic model of
the motif. EM algorithm assumes that each sequence of the dataset contains a
motif whose position is unknown. The motif has been generated by a sequence
of independent and multinomial random variables. As the set of sequences in
the dataset are unaligned, it is necessary to determinate an offset. EM considers
a initial step, Py(b,7) and P(b,0), where each sequence and each position are
equally likely to be true binding sites. This measure is used to estimate P(b,1).
EM algorithm recalculates successively Py(b,i) and P(b,¢) until is minor than
error, €. The likelihood [5] of the model is just the probability of the data given
the model, to see equation 2.18.

w
log(likelihood) = N Z Z P(b,7) xlog(P(b, j)) (2.18)
j=1be{A,C,GT}
+NL-W)x > P(b0)xlog(P(b,0)) (2.19)
be{A,C,G.T}

+ Nlog( ) (2.20)

1
L-W+1
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where N is the number of the sequences in the dataset, L is the length of the
sequences, W is the length of the shared motif. EM algorithm determines a local
maximum for the likelihood of the model parameters [25]. Although, EM has
some limitations [30], which are associated with data input. First, the algorithm
assumes that the user knows the length of the binding site, but usually this is
not the case. Second, EM assumes that in each sequence in dataset contains
exactly one motif. This means that these sequences with multiple appearances
will under-contribute, and the sequences with no motif will be over-represented
[5]. Therefore, the algorithm’s sensitive depends of the set of initial parameters
[5]. The main computational method based on EM is MEME (Multiple expecta-
tion—maximization for Motif Elicitation) [5, 7]. (MEME) algorithm is employing
a maximum-likelihood ratio heuristic for determining the best number of model
free parameters, found by help of an EM-based approach on a two-component
mixture model. The algorithm is multi-initialized for searching over several pos-
sible motif widths and a greedy algorithm seeks multiple motifs [5, 7]. For each
motif discovered, MEME reports the occurrences (sites), consensus sequence,
and the level of conservation (measured as the information content) at each po-
sition in the pattern. The MAST (Motif Alignment and Search Tool) sequence
homology search algorithm uses the QFAST algorithm to calculate the statis-
tical significance of the found matches. MAST compares a group of motifs to
each sequence in a database of sequences. For each motif, it finds the position
in the sequence that best matches it, calculates the -value of the match (posi-
tion value)[6]. This value is normalized for the length of the sequence (sequence
value). The significance of the combined match is finally obtained from the pro-
duct of values for all the motifs. MEME/MAST may encounter local-maximum
problems when dealing with large data sets and requires of multiple runs to
ensure meaningful finding

Gibbs’ sampling

The Gibbs’ sampling is a stochastic approach for TFBS detection. This algo-
rithm uses a random sampling step. It means, indeed, that with same initial
parameters, the solutions may be different. Therefore, Gibbs’ sampling is more
likely to find global optimum than EM, if run enough. Gibb’s sampling take
as an input a set of sequences and returns a probabilistic model from Bayesian
theory [64, 30]. The main characteristic of Gibb’s sampling is that the algorithm
requires no prior knowledge about binding site to build the optimal motif profile.
Gibb’s algorithm iterates in various steps: predictive update and sampling step.
First of all, a sequence is chosen randomly from a set of sequences. From this
set of sites aligned, a probabilistic profile and background model are generated.
From these measurements, sampling step, the likelihood ratio is calculated for
each possible subsequence in the selected sequence. By means of likelihood ra-
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tion, a new motif start position is estimated. The stochastic process ensure that
the model is the global optimum. One a optimal motif profile has been generated,
the algorithm is re-run for allowing predictions for multiple binding motifs. Some
algorithms based on Gibb’s sampling are[125], GLAM [36], Motif Sampler[120],
AlignACE [50]....GLAM is an algorithm to estimate the width of the aligned
motif automatically [36] and the statistical significance alignment. MotifSam-
pler [120] uses Gibbs sampling to model the background through Markov model.
And finally, AlignACE [50] takes as an input a set of sequences and returns these
motifs that are overrepresented.

Phylogenetic Motif Model

Phylogenetic Motif Models (PMMs) considers the idea of the evolutionary con-
servation [44] which is an extension of the PWM. Given a motif, PWM is based
on an estimation of the probability in a single genome. Whereas, PMM takes
into consideration the probability of an ungapped region in a multiple alignment
sequences that evolved independently from a mutual ancestral.

A class of scanning algorithm, which are an extension of simple PWM scan-
ning algorithms, has used this model. The main difference between these algo-
rithms is that PWM scans a single sequence, whereas PMM algorithm scans a
multiple alignment of orthologous sequences. This approach needs an explicit
model nucleic acid substitution and a phylogenetic tree. These model describes
the relationship and evolutionary distance among the species [44]. A motif detec-
tion based on PMM is Monkey algorithm [79]. MONKEY(79)] is an algorithm of
identification of TFBS in multispecies alignments. MONKEY algorithm uses a
PMM [42] to calculate the likelihood of conserved sites and statistical significance
to each hit.
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Chapter 3

Computational Detection of
Transcription Factor
Binding Sites through
Differential Rényi Entropy

This chapter is an exact copy of the paper:

e Computational Detection of Transcription Factor Binding Sites
through Differential Rényi Entropy. J.Maynou, M. Vallverdd, F.
Claria, J.J. Gallardo-Chacén, P. Caminal and A. Perera. IEEE Trans.
Information Theory, vol. 56, no. 2, pp: 734-741, Feb. 2010.

3.1 Abstract

Regulatory sequence detection is a critical facet for understanding the cell mecha-
nisms in order to coordinate the response to stimuli. Protein synthesis involves
the binding of a transcription factor to specific sequences in a process related to
the gene expression initiation. A characteristic of this binding process is that
the same factor binds with different sequences placed along all genome. Thus,
any computational approach shows many difficulties related with this variabi-
lity observed from the binding sequences. This paper proposes the detection of
transcription factor binding sites based on a parametric uncertainty measure-
ment (Rényi entropy). This detection algorithm evaluates the variation on the
total Rényi entropy of a set of sequences when a candidate sequence is assumed
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to be a true binding site belonging to the set. The efficiency of the method
is measured in form of Receiver Operating Characteristic curves on different
transcription factors from Saccharomyces cerevisiae organism. The results are
compared with other known motif detection algorithms such as Motif Discovery
scan (MDscan) and Multiple EM for Motif Elicitation (MEME).

Binding Sites, Gene Regulation, Motif Detection, Rényi Entropy, Sequence
Analysis, Transcription Factor.

3.2 Background

Deoxyribonucleic acid (DNA) is a molecule that contains the genetic instruc-
tions used in the development and functioning of all known living organisms. A
DNA molecule consists of two long chains composed by the combination of four
nucleotides (adenine (A), thymine (T), cytosine (C) and guanine (G)) joined
by phosphodiester bonds [1]. Watson and Crick proposed in 1953 a theoreti-
cal structure based in the X-ray diffraction data analysis consisting in a double
helix [131]. Their proposal consisted of a molecule with the nitrogenous bases
in the inner part and the pentose phosphates on the outer part. The structure
is stabilized thanks to the hydrogen bounds between the so called complemen-
tary bases (A with T and G with C). This simple three-dimensional structure
contains the necessary material not only for the synthesis of all the necessary
molecules in a living organism and its replication but also for cell self regula-
tion. Several motifs in the DNA sequence are used by cells as the labels for the
different functions such as replication spots and chromosome segregation during
cell division, or methylation points for genes or even chromosomes inactivation
[1]. The machinery for these cell functions is composed mainly by proteins and
their synthesis start with a process called gene transcription [80]. Accurate gene
temporal and spatial regulation allows the diversity in cell behaviour, which is
necessary to maintain life. One first step in the control of the transcription pro-
cess is the association between specific proteins with their target binding sites in
the DNA sequence [45]. In addition, they also bind other modulation factors and
the RNA polymerase enzyme [62]. These proteins, that carry out their function
in gene regulatory regions, are known as transcription factors. Transcription
factors recognise specific motifs in the DNA sequence, however they do not open
the double helix in order to interact directly with nitrogenous bases but the in-
teraction is with the domains generated by the nucleotide residues in the helix
surface structure. As a result, a distinctive pattern of non covalent interactions
is produced such as Van der Waals attraction, hydrogen and ionic bonds or hy-
drophobic interactions. All these bindings are weak but they have an additive
effect in the association, which provides the structure with stability, specificity
and flexibility [63]. Besides, due to this intrinsic complexity in the relationships
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between acid nucleic and proteins, it is difficult to establish a specific sequence for
binding detection [80]. Any method aiming the detection of binding sites within
DNA sequences must consider the variability shown on these. Moreover, there
is a connection dependence between binding site positions (along the sequence)
which is related with interaction stability between the transcription factor and
its binding sites.

Information theory has been applied in genetics aiming for different problems:
from the visualization of the information of a sequence set to its characterization
with entropies [97, 101, 100, 117]. Nevertheless, main efforts for the detection
of binding sites have employed alternative ways to detect variable binding mo-
tifs, not fully based on information theory. Most relevant are the probabilistic
methods, where the most representative models are based on Position Weight
Matrices (PWM) or Position-Specific Weight Matrices (PSWM). A PWM is a
matrix of score values corresponding to the symbols of the alphabet and its re-
lationship to each position in a standard pattern [98]. There are several types
of PWMs: frequency matrices contain the absolute frequency of a nucleotide
at each motif position, weight matrices contain the relative frequency of a nu-
cleotide at a motif position as an estimation of the probability of this fact, and
finally, log-odds matrices contain the log of the quotient between the probability
of finding a particular nucleotide at a certain position in sequences containing the
real motif and the background frequency of the letter at the same position [130].
In particular, publicly available detectors have been published like MDScan [69]
and MEME/MAST [4]. MDScan is based on the combination of word enume-
ration and position-specific weight matrix. This method constructs a frequency
matrix from the occurrences collected for each consensus to explore the regu-
latory regions of the most over expressed genes [86]. Each matrix is evaluated
according to the approximate Maximum a Posteriori (MAP) scoring function
[69] against a background model of the 3rd order. The score matrices are opti-
mized by means of a larger set of highly expressed genes. MEME/MAST is a
tool for discovering motifs, sequence patterns that occurs repeatedly in a group
of related DNA sequences, and for searching sequence databases using obtained
motifs. Given a set of unaligned sequences, the MEME algorithm is employing
a maximum likelihood ratio heuristic for determining the best number of model
free parameters, found by help of an Expectation Minimization (EM) based ap-
proach on a two-component mixture model. The algorithm is multi-initialized
for searching over several possible motif widths and a greedy algorithm seeks
multiple motifs [4, 5]. For each motif discovered, MEME reports the occurrences
(sites), consensus sequence and the level of conservation (measured as the infor-
mation content) at each position in the pattern. The MAST (Motif Alignment
and Search Tool) sequence homology search algorithm uses the QFAST algorithm
to calculate the statistical significance of the found matches. MAST compares
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a group of motifs to each sequence in a database of sequences. For each motif,
it finds the position in the sequence that best matches it, calculates the p-value
of the match (position p-value) [6]. This p-value is normalized for the length
of the sequence (sequence p-value). The significance of the combined match is
finally obtained from the product of p-values for all the motifs. MEME/MAST
may encounter local-maximum problems when dealing with large data sets and
requires of multiple runs to ensure meaningful findings [69].

In this paper, we propose the detection of transcription factor binding sites
using a differential measure based on a parametric entropy. The method eva-
luates a total parametric entropy contained in an aligned set of sequences with
known binding and analyses the total information change when the candidate
sequence is included in the set. The performance of the parametric entropy
measure based detector is compared against MDScan and MEME/MAST.

3.3 Method

Given the assumption that the total information content can be computed from
a set of similar objects, the variation on this total information when a new object
is added to this set will depend on the similitude of the new object to the set.
The total information will not vary if the new object does not add variability on
the previous set. On the other hand, the total information will increase if this
new object is dissimilar to the set.

This paper employs this rational for constructing a detector based on the
total variation of Rényi parametric entropy of a set of sequences when a new
sequences is assumed that belongs to the set.

From this principle, the proposed method starts with a matrix of aligned
sequences with binding evidence. The transcription factor binding sites, TFBS,
are detected in a candidate sequence by means of the total parametric entropy
of the aligned sequences summing for each specific position [89], Fig. 3.1.

Any new candidate sequence added to the training matrix will cause a va-
riation on the order or the information of the set of aligned sequences. The de-
tection of an active site depends on the change of this measure from the aligned
sequences if the candidate sequence is assumed to belong to the set of aligned se-
quences. For random sequences, the disorder observed from the set will increase.
For a true binding site, the candidate sequence is not expected to modify in a
significant way the total information on the aligned sequence set.

A classical uncertainty measure is the Shannon entropy. This paper employs
Rényi entropy for this measurement [57]. Rényi is a parametric entropy which
depends on ¢, namely the order in the Rényi entropy. This parameter modulates
the probability of occurrence of each symbol, emphasizing or suppressing this
value as ¢ decreases or increases, respectively. This measurement allows us to
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Figure 3.1: Information content in a matrix of aligned sequences as a Redundancy
profile.

build a parametric detector with variable sensibility modulated by the Rényi
order, q. We define a set of functions in order to measure the variation on the
total Rényi entropy from the set of aligned sequences.

Given the small number of sequences available for each transcription fac-
tor (see Table 5.1), the detector has been characterized through a leave-one-out
cross-validation. Each individual sequence is used as a test sequence of a training
classifier with the rest of n — 1 sequences, where n is the number of sequences.
The results have been obtained in contrast with randomly generated candidate
sequences. These random sequences have been generated considering the nu-
cleotide frequency statistics of the transcription factor organism. Each random
sequence contained 1000 nucleotides. That is done successively for each sequence
within the training matrix.

3.4 Information content measures

Shannon [104] defined the entropy of a system as a measure of uncertainty of
its structure. Shannon’s entropy is based on the concept that the information
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Table 3.1: Summary of The Transcription Factors Analyzed

Organism TF Bases Sequences Binding domain
S. cerevisiae MCM1 38 16 MADs box
S. cerevisiae ~ ROX1 12 20 HMG-box
S. cerevisiae ~ ABF1 37 22 Zinc finger

Table 3.2: Statistics of H;* for no equiprobable genomic composition
n  E(HYY) sdox E(Hy:) sdos E(H®) sdi E(Hy®)  sda
2 0.730 0.444 0.730 0.444  0.730 0444  0.730  0.444
3 1.120 0.425 1.101 0.432 1.078  0.439 1.037  0.455
4
5

1.359 0.389 1.324 0.396 1.282  0.405 1.208  0.417
1.517 0.352 1.470 0.359 1.414  0.367 1.319  0.379
10 1.847 0.215 1.775 0.219 1.694  0.234 1.572  0.269
25 1.978 0.050 1.917 0.074 1.852  0.110 1.752  0.161
50 1.989 0.009 1.946 0.037 1.898  0.067 1.819  0.109

gain from an event is inversely related to its probability of occurrence [80]. The
Rényi entropy [96] is a parametric entropy measure that can be considered as a
generalization of Shannon entropy. The Rényi entropy of a random variable X
with N possible states (X1, Xa,---, X;,- -, Xn), where the probability for each

state i, given by p; such that Ziilpi =1, is defined as,

N
1
Hy = qzoggzp‘g (3.1)
i=1

where, variable X are nucleotides A, T, C' and G in each DNA sequence
position and the Rényi order ¢ is a positive real number different than 1 (also
known as o parameter in [96]). The Rényi entropy is a nonnegative measurement
for all ¢ > 0 and converges to Shannon entropy when ¢ tends to 1.

N
lim H, = — Zp,;loggpi (3.2)
i=1

A normalized redundancy R can be defined as,

H,
—_— 3.3
Hq |mam ( )
where the redundancy is normalized depending on the maximum entropy.

This quantity covaries with the information content and is normalized between

Ry= 1-
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0 and 1. Redundancy nulls when all the four bases are having similar represen-
tation. In contrast, redundancy takes 1 when there is a complete conservation
of a base at that position. For a group of aligned sequences, the measurement
of the redundancy gives information about the complexity of the nucleotides
distribution in the conserved sequence.

3.5 Database Description

The algorithm requires a group of aligned nucleotide sequences with binding evi-
dence. These sequences are obtained from the organism Saccharomyces cerevisiae
which was the first eukaryotic organism with its genome completely sequenced.
This organism contains around sixteen million of nucleotides distributed among
sixteen chromosomes. The following transcription factors have been conside-
red: MCM1, ROX1 and ABF1. A brief summary of the data for each trans-
cription factor (TF) is shown in Table 5.1, where Bases is number of bases in
the alignment, Sequences is number of aligned sequences and, finally, the bin-
ding domain is the binding structure with binding sites. Each transcription fac-
tor shows different structural strategies to interact with binding sites. MCM1
presents a quaternary structure acting as a dimer. It is also able to interact
with other proteins acting as repressor or activator depending on the comple-
mentary elements in the complex [93]. On the other hand, ROX1 binds to DNA
by means of a high-mobility-group motif (HMG) acting as a repressor of hy-
poxic genes under normoxic conditions. Many genes are repressed coordinately
when oxygen is present allowing the aerobic metabolism. Furthermore, these
genes will be activated together if there is a decrease in oxygen concentration
allowing fast adaptive response [8, 68]. Finally, ABF1, which is directly in-
volved in regulation of genes related with chromatin stability and accessibility
(http://www.yeastgenome.org), shows a zinc finger motif. This DNA binding
element presents a Zinc atom in the polypeptide chain in order to maintain a
tertiary structure able to interact with DNA.

The dataset has been obtained from the TRANSFAC database, version 7.0
Public 2005, [135], http://www.genregulation. com/pub/databases.html. An
R library has been developed for automatic sequence extraction from the data-
base given a transcription factor name [95]. These sequences have been aligned
by means of MUSCLE [31], MUltiple Sequence Comparison by Log-Expectation,
to obtain an aligned matrix of the sequences and each nucleotide involved in
each position. MUSCLE is based on a progressive alignment method split in
two stages: a first stage in which MUSCLE performs a pairwise alignment, and
a second step in which the multiple alignment is built by adding the sequences
sequentially to the growing alignment according to the pairwise alignment. Fur-
ther information on sequence alignment problems can be found in Morgenstern
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et al. [78].

3.6 Correction of the Finite Sample Size Effect

Every aligned matrix of sequences is formed by a finite number of samples. The
probability estimation error using the nucleotide frequency causes a bias on the
uncertainty measurement [102]. To correct for this, we have precomputed the
exact Rényi entropy correction factor for small samples, n < 50.

The probability of obtaining a particular combination of n bases, ny, can
be found by means of a multinomial distribution. The information, Hg*, is
calculated and weighted by the probability of the obtained combination.

If na, nr, nc and ne are the number of A, T, C and G in a concrete
position, and P4, Pr, Pc and Pg are the frequencies of each base within the
genome. Then, the probability to obtain a particular combination of n, to ng,
called np, can be estimated by means of [102]:

ny __ n' n A nTmT nc nag
Pb—mPA Pt PC PG (34)

where n = na + np + ne + ng. Py*, Pp™, PA¢ and PSS are the proba-

bilities corresponding to the frequency of each nucleotide in the Saccharomyces
cerevisiae with values taken from literature [39]. The factorial computes the
number of possibilities associated to each combination. From the uncertainty
Hny, defined in [102], the probability, P™ of obtaining the parametric uncer-
tainty, H;'*, can be defined as:

el
1 np\ ¢
H™ — logs > (7) 3.5
q 1— q Ong:A n ( )
B(H") =S PrH (3.6)
allny

The correction for the standard deviation finite sample is then:

Var =Y P™(Hy*)* - E(H}")| (3.7)
allny,
sd = [rVar(H")]" (3.8)

where r is the length of the binding site. If we consider r = 1, the finite
sample correction for different parameters of Rényi entropy, are shown in the
Fig. 3.2 and also in Table 3.2.
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Figure 3.2: E(H,") regarding number of sites, n.

3.7 Motif Detection

Using the matrix of aligned sequences, Rényi entropy is computed for each po-
sition on the binding site following the schema shown in Fig. 3.3. The values of
the redundancy for each variable position (nonconserved among all sequences)
are close to 0. On highly ordered positions, the redundancy has values close to
the unity.

The measurement of the variation of the total redundancy when the candi-
date sequence is added to the set has been computed by using two functions.
These functions consider normalized and nonnormalized forms as in eq. (3.9)
and (3.10),

L

w(g,i,0) = | > Ryy [ (3.9)
=1
L m. 1~

p(q,i,0) = [Z_lﬂR” (3.10)

where , v and 3 are
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B(q,i,0) = RI" + RS (3.12)

where i is a specific position of the binding site and 6 is the aligned set of
sequences. The redundancy profile is an L-dimensional vector, where L is the
total number of positions of the binding site. The Rj" measurement determines
the Rényi entropy for a position on the set of aligned sequences whereas the R
will contain the equivalent parametric entropy when the candidate sequence is
assumed to belong to the set. The variation in the parametric entropy of the
aligned sequences is considered by means of the difference between redundancies,
v. For a random sequence, the order of the system decreases, increasing the
value of v. Both expressions (3.9) and (3.10) define indexes which allow for the
discrimination between a random sequence and a sequence that belongs to a
binding site. The developed method, Fig. 3.3, based on the criterion defined
previously, is as follows:

1. For each position within the matrix of aligned sequences, the probability
corresponding to each nucleotide is estimated. Missing values are imputed
to a multistate nucleotide with probabilities corresponding to the frequency
of each nucleotide in the corresponding organism, with the corresponding
statistics found in Thakurta et al. [39] .

2. The redundancy profile is calculated from the PWM, correcting finite sam-
ple effects as in Schneider [102].

3. Steps 1 an 2 are repeated, adding the candidate sequence to the set.

4. For each redundancy profile variation obtained from the studied sequences,
a scalar quantity is computed using the different functions defined in (3.9)
and (3.10).

3.8 Results

The redundancy measurement provides information about the symbolic variance
observed in a position of the set of aligned sequences. The lower is the symbolic
variance, the higher values of redundancy are obtained. In fact, the redundancy
gives information on how much a particular position has been conserved on the
sequences. In Figure 3.4, we can visualize the variability of each position of the
MCM1, ROX1 and ABF1 transcription factor by means of the correspondent
redundancy profile for different g-values. The dependence of the entropic profiles
with ¢ is also shown. As ¢ increases, the noise in the redundancy also increases.
On the other hand, with low ¢ values the redundancy signal also decreases.
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Table 3.3: Area Under Convex Surface

MCM1 ABF1 ROX1

q w p w p w p

0.1 0.96526  0.97136  0.97582  0.97102  0.99892  0.99934
0.2 0.96737  0.96988  0.97673  0.97031  0.99897  0.99949
0.3 0.97095 097375 097751  0.97205  0.99899  0.99951
0.4 0.97428  0.98038  0.98032  0.97331  0.99906  0.99954
0.5 0.97781  0.98323  0.98273  0.97556  0.99914  0.99959
0.6 0.98042  0.98478  0.98467  0.98073  0.99917  0.99961
0.7 0.98312  0.98557  0.98658  0.98119  0.99928  0.99965
0.8 0.98591  0.99307  0.98807 0.98212 0.99935  0.99968
0.9 0.98785  0.99238  0.98972  0.98085  0.99942  0.99971
1.0 0.98975  0.99289  0.99091  0.97817  0.99945  0.99975
1.1 0.99148 0.99319 0.99213  0.97840  0.99949  0.99976
1.2 0.99295  0.99265  0.99282  0.97426  0.99952  0.99977
1.3 0.99415  0.99086  0.99305  0.96304  0.99954 0.99977
1.4 0.99503  0.98792  0.99351  0.96071  0.99955  0.99977
1.5 0.99573  0.98335 0.99354 0.95524  0.99958  0.99976
1.6 0.99636 0.97676  0.99342  0.94968  0.99959  0.99976
1.7 0.85695  0.97236  0.99318  0.94382  0.99960 0.99976
1.8 0.87206  0.97283  0.96513  0.88819  0.68167  0.92628
1.9 0.88576  0.94642  0.96466  0.87922  0.68665  0.92806
2.0 0.89408  0.95321  0.96413  0.87017  0.69188  0.92965
MEME 0.99723 0.99898 0.99921
MDscan 0.97929 0.97547 0.96758
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Redundancy
Redundancy

Figure 3.4: Left to right: Redundancy profile for different ¢g-values for the recog-
nizers MCM1, ABF1 and ROX1 of the Saccharomyces cerevisiae.

Therefore, the redundancy profile of the transcription factor depends on the
Rényi order. An optimal g-value is suggested as a trade-off between the noise
included in the redundancy signal and the attenuation of the same one. In
summary, the Rényi order modulates the amplitude, Fig. 3.4 (left), and the
number of positions that belong to a binding site, Fig. 3.4 (right). This is also
interesting in order to evaluate the positions involved to the binding sites once
the best ¢ value is found.

The detector proposed in this paper evaluates the perturbation into the to-
tal Rényi value to check whether the information is destroyed with addition of
the candidate sequence to the set of aligned sequences.The performance of the
detector in the case of ABF'1, ROX1 and MCM1 as a Receiver Operating Cha-
racteristic (ROC) for different functions and given for different values of ¢ is
shown on Fig. 3.5, respectively. The best learning system will be the one which
produces a larger area under the convex surface, AUC. The performance of the
Rényi based detector is compared against two publicly available detectors: MD-
scan.2004 [69] and MEME [4], version 4.1.0. The default parameters have been
used by these algorithms except the witdh of motifs.

In Table 3.3, it can be observed that the detector has a different behaviour
depending on the g-value and the function used. Specifically, the number of
true and false positives depends on the g¢-value and the considered function.
For example, given a number of true positives, the number of false positives
changes according to the functional and the g-value. Considering any of the two
functions employed, if ¢ decreases, the number of positions of the transcription
factor that we consider decreases, but the number of true positives and false
positives increases.

The Rényi order g does depend on the transcription factor binding sites cha-
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Figure 3.6: Left to right:Area under convex surface versus Rényi parameter for
MCM1, ABF1 and ROX1. On the right figure, performance of MDscan falls
below the axis.

racteristics. Therefore, a g-value should be adjusted for each training sequence
set and for each function considered.

Given a training sequence set and a function as defined in eq. (6.5), the
optimal g-value has been estimated by means of leave-one-out cross-validation
from g-value set. For each g-value, ROC curve has been calculated. From this
results, the optimal g-value has been considered according to the area under
convex surface maximum.

Generally, low ¢ values will depress the Redundancy profile, turning w and
p more selective, whereas large ¢ values will promote redundancy values. Large
q values will show large number of true positives at the cost of introducing
additional noise in the w and p, increasing false positives. Therefore, an optimal
g-value is the result of a balance between the noise and the attenuation of the
redundancy signal and it is obtained using on the cost criteria established, and
considering the AUC maximum.

In Fig. 3.6, the area under convex surface is shown as function and the
g-value. Establishing an optimal function and g-value allows us not only to
parametrize and optimize the detector, but also to define the effective positions
in the binding site that play a role in the binding process. The best functional
and optimal g-value can be selected for the application given the cost criterion
established for miss classifications of True Positives or the area under convex
surface maximum.

The performance of MDscan and MEME has also been tested with the same
data and the same validation conditions. The Area under convex surface for the
different methods is compared in Table 3.3, where the maximum AUC for each
transcription factor and function in shown in bold.

The AUC of a classifier is equivalent to the probability that the classifier
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will rank a randomly chosen positive instance higher than a randomly chosen
negative instance one [34]. This statistic will always be between 0 and 1.0. AUC
takes 1.0 when the computational method classify all the sequences correctly
and 0.5 when the classifier is random. In Table 3.3, it can be observed that the
AUC for parametric entropy measure method is larger than MDscan and that
the performance of the proposed detector is similar to the one showed by MEME
for this data. In the case of ROX1 transcription factor, the proposed detector
improves MEME probably because the later is not able to fit a proper statistical
model from the poor binding profile shown by ROX1.

In summary, the proposed method improves the performance given by MD-
scan in all cases when the proper g-value has been adjusted through leave-one-out
cross-validation. The performance of the detector in comparison to MEME de-
pends on the binding site structure. For binding sites that show no correlation
between the positions involved in the binding, the entropy based method out-
performs MEME. This is seen in the case of ROX1. On the contrary, ABF1 is
known to show certain correlation between the positions on the binding. MEME
is able to model this correlation between positions, which could explain the differ-
ence in performance between MEME and our method in this case. An additional
benefit of the proposed method is that with the process of optimizing the g-value
we obtain the positions in the profile that are involved in the binding process.
Figure 3.4 shows that for the range of the optimal g-value for MCM1 binding
site positions (¢ = 1.6), more positions around the main peak are included into
consideration by the algorithm. The nucleotides included in the binding profile
are specific for each transcription factor due to the binding mechanism.

3.9 Conclusions

In this contribution, we have presented a methodology to detect the transcription
factor binding sites. This method is based on the variation of the total parame-
tric Rényi entropy in a set of aligned sequences with binding evidence when the
candidate sequence is assumed to belong to the aligned set of sequences. The
detector employs a parametric entropy, yielding to a parametric detector that
depends on the order of the Rényi entropy ¢. This parametrization provides two
main advantages. First, it leverages the strong and weak symbol probabilities
when computing the total entropy of the binding sequences, obtaining a detector
with variable sensibility. Secondly, through the optimization of the Rényi pa-
rameter, an estimation of the positions of the site involved in the binding process
is determined. The detector has to carefully consider the finite sample effects for
computing the entropies.

This algorithm has been applied on the detection of ABF1, MCM1 and
ROX1 recognizers from a random sequence. The obtained results improve bin-
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ding site detection based on Shannon entropy. The parametric uncertainty mea-
sure gives additional information related to binding site than Shannon entropy.
The Rényi order ¢ depends on the transcription factor binding sites characte-
ristics. This parameter is adjusted for each sequence set and for each function
considered by means of a cross validation.

The proposed method has shown better performance than MDscan, which
is a combined word enumeration and position specific weight matrix in the case
of binding site discrimination against random generated sequences. Moreover,
the obtained results are comparable with the results of MEME, which is based
on the technique of expectation maximization to fit a two-component finite mix-
ture model. Specifically, our method improves the results of MEME for ROX1
transcription factor and is comparable with the rest of factors despite assuming
independency between positions in the binding sequence.



Chapter 4

A Subspace Method for the
Detection of Transcription
Factor Binding sites

This chapter is an exact copy of the paper:

e A subspace method for the detection of transcription factor bin-
ding sites. E. Pairo, J. Maynou, S. Marco, A. Perera: Bioinformatics
28(10):1328-1335(2012).

4.1 Abstract

The identification of the sites at which transcription factors (TF) bind to DNA is
an important problem in molecular biology. Many computational methods have
been developed for motif finding, most of them based on position-specific scoring
matrices (PSSM) which assume the independence of positions within a binding
site. However, some experimental and computational studies demonstrate that
interdependences within the positions exist. In this paper, we introduce a novel
motif finding method which constructs a subspace based on the covariance of
numerical DNA sequences. When a candidate sequence is projected into the
modelled subspace, a threshold in the Q-residuals confidence allows us to predict
whether this sequence is a binding site. Using the TRANSFAC and JASPAR
databases, we compared our Q-residuals detector with existing PSSM methods.
In most of the studied transcription factor binding sites, the Q-residuals detec-
tor performs significantly better and faster than MATCH and MAST. As com-
pared to Motifscan, a method which takes into account interdependences, the
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performance of the Q-residuals detector is better when the number of available
sequences is small.

4.2 Background

Deoxyribonucleic acid (DNA) sequence motifs are short sequence patterns with
biological function. In the gene promoter region, there are DNA sequence motifs
which hint at the interaction between the gene regulation machinery and the
nucleic acids. They are involved in several DNA and ribonucleic acid (RNA)
processes, such as the binding of some proteins to DNA, the ribosome binding
to mRNA, and mRNA processing [26]. Protein biosynthesis starts with a trans-
cription process. This process, for example in eukaryotes, is led by several types
of RNA polymerase which require special DNA sequences in promoters and a set
of transcription factor proteins.

Due to the importance of gene regulation, a major problem in molecular bio-
logy is to discover the location of the transcription factor binding sites (TFBS)
within the genome. But the fact that most transcription factors bind to short,
degenerate sequences makes it difficult to find sequence patterns to model the
binding sites [130]. Many algorithms try to characterize these patterns, and such
algorithms may be classified into consensus-based methods or alignment-based
methods [86].

Most of the algorithms developed target the location of transcription factor
binding sites. These follow one of two strategies: (1) to discover common binding
sites into a set of unaligned sequences of corregulated genes and (2) to make use
of the previous knowledge of sequences to search for a motif within a genome
[33, 23, 98, 43].

The algorithms which use the previous knowledge of the binding site se-
quences are mostly based on Position Specific Scoring Matrices (PSSM) [117].
PSSM are matrices of frequencies of each nucleotide in each position of the bin-
ding site. Some examples of these algorithms are MATCH [54], which uses infor-
mation at each position to construct a PSSM; MAST [6], based on the QFAST
algorithm and part of MEME suite [7]; rVISTA [71] which uses evolutionary
data; and ITEME [75] which calculates the information loss of the binding sites.
These models assume that the positions in binding sites are statistically inde-
pendent. However, experimental evidence shows that TFBS have interdepen-
dences between positions [18] and some computational studies suggest the same
[123]. These findings have motivated the development of new strategies which
take into account position interdependences. Models based on Markov chains,
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such as WAM [137], are restricted to modelling interdependences between adja-
cent positions. Other algorithms estimate non-adjacent interdependences using
permuted Markov models [139]; Bayesian networks [9]; variable order Bayesian
networks [10, 19]; or graphs [81]. Detectors constructed using these techniques
have higher accuracy, but require the tuning of many parameters for optimal
operation which typically requires a large number of binding site instances. Ad-
ditionally, most of these algorithms are computationally intensive.

On the other hand, a large body of knowledge exists for specific event detec-
tion in numerical sequences (signals), and the conversion of symbolical DNA
sequences into numerical DNA sequences has been widely used in genomic signal
processing to extract relevant biological information from DNA sequences. For
example, numerical conversions have been used to identify protein coding regions
by studying their periodicity [2, 22, 106].

In this paper, we propose a detector based on the Q-residuals of a numerical
sequences covariance model. This contribution aims to study to what extent the
covariance can capture information on position interdependences between bin-
ding sites. Our hypothesis is that, when projected into the subspace defined by
the covariance, sequences belonging to the modelled TFBS should have smaller
Q-residuals than chromosomic or random sequences, consequently Q-residuals
could be used to detect binding sites. The proposed detector was compared to
the PSSM based methods, MAST and MATCH, using real genomic data. It
was also compared to the Motifscan method which calculates interdependences
between positions.

4.3 Data

TFBS sequences were extracted from the TRANSFAC 7.0 2005 public database
[135] and from JASPAR 2010 [92]. For the JASPAR database, the motifs with
10 or more sequences were extracted. To carry out the study, we selected 43
motifs corresponding to Homo sapiens, 25 from Mus musculus, 11 from Rattus
norvegicus; a further 10 were randomly chosen from all the TFBS available for
Drosophila melanogaster. For the TRANSFAC database, the 108 motifs with
more than 10 sequences were chosen. These motifs were multiple-aligned using
the CLUSTALW?2 algorithm [61] with default parameters. The alignment was
performed N times, where IV is the number of sequences for each motif, using
a leave-one-out cross validation (L.O.0O.) procedure. The 23 TFBS motifs hav-
ing a core with more than 5 consecutive positions without gaps at each step of
the L.O.0. procedure were used to compare our method to the existing PSSM
algorithms. These binding sites correspond to eukaryotic organisms of different
level of complexity, ranging from Saccharomyces cerevisiae to Homo sapiens and
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including Drosophila melanogaster, Rattus norvegicus, Mus musculus and Gallus
gallus. The number of selected sequences from JASPAR totalled 89 motifs. The
relation of the 89 JASPAR motifs and the 23 TRANSFAC motifs is given in the
supplementary material 2, and a summary of the TF used for each organism can
be seen in table 4.1.

All promoter sequences from the organisms used, with the exception of Sac-
charomyces cerevisiae, were extracted from the Eukaryotic promoter database
(EPD) sequences [99], using the EPD version based on EMBL release 105 (Septem-
ber, 2010). The sequences located at the positions from -1000 to 500 relative to
the Transcription Start Site (T'SS) were used to construct the background model,
consisting of the nucleotide frequencies for the promoters of each organism. In
Saccharomyces cerevisiae, the extracted sequences correspond to promoter se-
quences in chromosome 1 and 16 of the EMBL chromosome database [53], release
94 (March, 2008).

In each organism, we randomly chose two promoter sequences of length 1501 nu-
cleotides for use as background sequences. In Drosophila melanogaster, we used
the sequences from -1000 to 500 relative to TSS of FFAF gene as background 1
and the same range of nucleotides from gene C'G12170 as background 2. In Mus
musculus, the same range of nucleotides was set and the Igk'T gene was used
as background 1, while gene Igk’ M PC11 was used as background 2. In Rat-
tus norvegicus, background 1 was extracted from the myosin LC'37P2 gene and
background 2 from PSBPC?2. For Homo sapiens, the promoter corresponding to
background 1 was in the region of the gene RPS9P2+ while the promoter corres-
ponding to background 2 was relative to PSM A2 TSS. In the study of Gallus
gallus, background 1 was relative to apoVLDLII TSS and background 2 rela-
tive to a’ A — globin TSS. Finally, in Saccharomyces cerevisiae, the background
1 sequence generally corresponded to positions 44730-46230 in chromosome 1.
However, an exception was made for ABF1 binding sites, since ABF1 binding
sites are present in that promoter; for ABF1 background 1, the sequence used
corresponded to the positions 678930-680430 in this organism’s chromosome 16
while, for background 2, the positions from 11410 to 12910 in chromosome 1 were
used in all the organism’s studied binding sites.

4.4 Preprocessing

The aligned matrix of DNA sequences had to be converted to a rectangular
matrix of numerical sequences.

The first step was to translate symbolic DNA to numerical sequences using
the conversion process proposed by Silverman et al [108], where each nucleotide
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Table 4.1: Information about motifs used for each organism

Organism JASPAR TRANSFAC Total
Saccharomyces cerevisiae 0 7 7
Drosophila melanogaster 10 3 13
Mus musculus 25 4 29
Rattus norvegicus 11 4 15
Homo sapiens 43 4 47
Gallus gallus 0 1 1
TOTAL 89 23 112

is placed at the vertex of a regular tetrahedron as in equation (4.1):

A=(0,0,1)
TE@%ZQ_§ (4.1)

where A, C, G and T are points in 3-D Euclidian space corresponding to the
a, ¢, g and t nucleotides respectively. This conversion was chosen because it is
symmetric for all nucleotides and is widely used in genomic signal processing
[67].

After conversion, each DNA sequence of length M became a sequence of length
3 x M, concatenating numerical vectors corresponding to each nucleotide. Then,
the N sequences belonging to the same transcription factor were arranged in
matrix format. The result was an N x (3M) matrix of numerical DNA.

Where gaps were produced during the alignment process, we imputed the nume-
rical value of these gaps into the mean of the chromosome, taking into account
the nucleotide probability distribution of the background organism and the con-
version process. The location of the gaps within the tetrahedron is thus given
by equation (4.2)

GAP = P(a)A + P(c)C + P(g)G + P(t)T (4.2)

In this equation, GAP is a three-element vector corresponding to the posi-
tion of the gap within the tetrahedron; A, C, G, T are the positions of a, ¢, g,
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t nucleotides in the vertexes of the tetrahedron; P(a), P(c), P(g), P(t) are the
nucleotides probabilities in the promoter of the organism. Only those positions
where the information was available for at least half of the sequences were im-
puted, the others were neglected.

4.5 Definition of the Subspace Method

A covariance subspace model was computed for each binding motif using a Prin-
cipal Component Analysis (PCA) of the numerical DNA sequence representation
[88]. To carry out the PCA, first the covariance of the numerical DNA matrix
was calculated, then the data projected into the subspace where the covariance
matrix is diagonal. In this subspace, relatively few components explain most of
the covariance, thus reducing the dimensionality of the problem. This yields a
bilinear decomposition of the set of aligned DNA sequences as defined in equation
(4.3):

X=ABT+FE (4.3)

where X is a N x (3M) TFBS numerical matrix, with N being the number of
TFBS sequences and M the number of TFBS positions. A is the projected data,
consisting of an N x nPCS matrix called scores, where nPC'S is the number of
principal components chosen to construct the subspace. B is the (3M) x nPCS
loading matrix which defines the subspace into which data is projected, and F
is the N x (3M) error matrix.

The covariance is a 3M x 3M matrix which captures the covariances between
the numerical positions. When it is diagonal, no interdependences exist between
positions of a specific binding site. This information is, in our model, explained
in those loadings which are almost zero when a position is conserved, and which
differ from zero (either in a positive or negative sense) when a position varies.
In the supplementary material 1, an example of the covariance matrix and the
loadings for the DL binding sites, where covariances exists, is presented.

The detector was built using the Q-residuals, which are the square of the
Fuclidean distance from a sequence to the subspace generated by the Princi-
pal Components model. Given a candidate sequence, the Q-residuals can be
calculated using equation (4.4):

Q=EET (4.4)
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where E is the 3M error vector obtained from projecting the sequence into
the Principal Components subspace, and Q is the Q-residual of the candidate
sequence.

The model should explain most of the variance and, as outlined above, se-
quences belonging to the studied TF should have smaller Q-residuals than the
other sequences. Defining a threshold in Q-residuals should be sufficient to al-
low distinguishing between TFBS and sequences not belonging to the modelled
TFBS. The threshold chosen is based on the Q-residuals statistics [51], resulting
in a confidence interval for a sequence belonging to our model. The Q-residuals
distribution corresponding to the modelled TFBS sequences are first converted
into a new N(0,1) quantity C' (i.e. C is normally distributed with mean pu =0
and variance o = 1 ). The quantile with the desired confidence interval can be
then calculated from this normal distribution. The constructed detector depends
on the number of principal components chosen.

4.6 Comparison to PSSM algorithms

To compare our detector to existing PSSM methods, the MEET R package (avai-
lable in the R-forge project http://r-forge.r-project.org/projects/meet),
was developed [84]. This R package allows us to combine several alignment
methods with different algorithms to search for TFBS within a large sequence.
The package can be configured to call external alignment methods including
CLUSTALW2, MUSCLE [31], and MEME which has as an internal multiple
alignment method. The proposed Q-residuals method is compared both with
MAST and with an implementation of the MATCH algorithm which takes into
account the probability distribution of the nucleotides in the promoter sequences
of each organism.

To implement MATCH, the algorithm explained in [54] was used, however
the background nucleotide probability distribution specific for each organism was
also used. To detect a motif, first the PSSM matrix was calculated. Then, using
this matrix, the information of each position was calculated as in equation (4.5).

)= Y fain(2) (15)

B=A,C,G,T

where I(i) is the information of position 4, f; p is the frequency of the B
nucleotide in this position and Pg is the background probability of the B nu-
cleotide. The Score of a sequence of length M was calculated as in equation
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(4.6).

M
Score = Z I(i) fi b (4.6)

i=1
where f; 1, is the frequency of the corresponding b; nucleotide for the sequence
in position ¢ and (%) is the information in the same position. Finally a Similarity
Score for the sequence and the core (first five consecutive more conserved posi-
tions), as explained in equation (4.7) was used to discriminate between TFBS and
other sequences as in the MATCH program (publicly available in TRANSFAC

7.0).

Score — Min
Mazx — Min
Max and Min being the maximum and minimum possible scores for a candi-
date sequence.
Comparison with the MAST algorithm was done using the downloadable MEME
4.4.0 source available at the MEME suite - this allowed us to combine different
alignment algorithms to construct the PSSM and then use the PSSM as an input
to MAST. To calculate the PCA model and the Q-residuals in R, the pcaMeth-
ods R package was used [114].
CLUSTALW?2 with the default parameters, gapextend = 0.2, gapopen = 10 was
used to align the sequences in all the methods compared in TRANSFAC.

(4.7)

SimilarityScore =

4.7 Validation

The MEET R package performs a double L.O.O to calculate the ROC curves,
the Area under ROC curve (AUC), and the errors associated with them. Given
a motif of IV sequences, first a sequence A is removed and inserted into the back-
ground sequence. Then, the remaining N — 1 sequences of the same motif are
used for a standard L.O.O to construct models with N — 2 sequences. These
N — 2 sequences are first aligned and the chosen algorithm is applied to build a
model. Finally, each one of the N — 1 models of the L.O.0O. is used to detect the
sequence A within the known position of the background. After that, sequence
A is again inserted into the group and another sequence B is used, this whole
process being repeated N times. As the location of the true positives is known,
the threshold of the detectors can be varied in order to generate the N different
ROC curves and AUCs. Thresholding is detector-specific; for Q-residuals it is
the residuals statistics of the PCA model, for MATCH it is the sequence similar-
ity and for MAST it is the p-value. Once the N ROC curves are generated, the
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standard deviation is used to estimate the variability of the ROC curve points
and the AUC.

In the case of the Q-residuals detector, AUC was calculated for from 1 to 10 prin-
cipal components; in the case of MATCH, the varying parameter was the Core
Similarity, ranging from 0.5 to 0.95 in increments of 0.05. Only one set of ROC
curves and AUCs was calculated in MAST because the length of the sequence
(the parameter to optimize in MEME) is defined by the number of positions of
the PSSM constructed using the aligned sequences.

The mean and the variance of AUC for the studied range of principal compo-
nents were calculated for each motif. Models built using different numbers of
principal components can have an equivalent performance when the AUC mean
and the AUC variance are taken into account. Between these models, the one
with smallest AUC variance averaged between backgrounds 1 and 2 was chosen
as the best model. The same criterion was used to choose the threshold of Core
Similarity in the MATCH algorithm.

As the number of negative examples greatly exceeded the number of positive
examples in this study, it was also convenient to compare the algorithms using
Precision-Recall (PR) curves. There exists a unique correspondence between the
PR curves and the ROC curves, and when an algorithm dominates in the ROC
spaces it also dominates in the PR space, however optimizing the AUC under the
two different methods is not the same thing [24]. To show that the PR curves
confirm the results obtained with the ROC curves, we calculated the curves with
the optimal parameters for each detector (supplementary material 3). The ROC
curves, the AUC and the PR curves were calculated using the ROCR package
[110].

4.8 Interdependences between positions

The improvement in detection of Q-residuals should be linked to the interdepen-
dences between positions in each binding site. To study this relation, the mutual
information M1I; ; between positions ¢ and j of the binding sites was calculated
using equation (4.8):

Py, v,
MI":E:P""Z _Lbisbyig 4.8
" bib bty 11002 Py, i, Py, 5 (48)
ibj

where b; and b; correspond to the nucleotides in the studied positions i, j
and P, is the probability of the b; nucleotide in the position ¢. The joint pro-
bability of having nucleotide b; in position 7 and b; in position j is described by
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Py, p,. The Bayes Factor (BF) described in equation (4.9) was used to test the
Null hypothesis, Hy, of independence between positions 7 and j against H;, the
alternative hypothesis of dependence, in order to determine the significance of
the dependencies found:

(X0, 0, Obib, T(N(bi, i) + a,)
I(M+32,, 5, b, I(ow,)

i b,
HF(N(bj7J)+abJ) H F(abi,bj>
F(abJ) bi,bj F(N(bl7bjﬂlﬂj) + abi,b]')

BF(Ho; Hl) =

(4.9)
bj

where M is the size of the bindings sites sequences, IVp, ; is the number of
b; nucleotides in position 7, and « refers to the parameter of the Dirichlet prior
distribution. This measure was used in previous studies to show which positions
of a transcription factor have interdependences [140, 123]. When ay, 5, = 1 and
oy, = ij ap, b, the Bayes Factor is related to the mutual information as shown
in equation (4.10) [77].

lOgg(BF(HO; Hl)) ~ —MML;J (410)

Formula (4.10), where M1; ; is the mutual information and M the size of
the binding sites, was used to calculate the Bayes Factor, BF(Hy; Hy). And
as in [123], a threshold of BF < 0.1 was set to indicate strong evidence of
interdependences between positions. For each motif, the percentage of positions
showing interdependences, I4.,, was calculated.

4.9 Comparison to Motifscan

Naughton et al [81], used 94 JASPAR (2006) motifs to compare Motifscan, a
graph-based method which takes into account interdependences, to PSSM me-
thods. To do the comparison, they calculated the ROCy curves, where N is the
number of sequences for the selected motif, and its AUC.

Using the same methodology and 93 of the 94 motifs of the old JASPAR version
(the old version of the remaining one was not available), the AUC of the ROCy
curves was calculated for the Q-residuals detector, and the results were used
to compare the detectors. The comparison between Motifscan and Q-residuals
using the 93 JASPAR motifs is available as supplementary material 4.
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4.10 Results

In this section, we first present the results of the comparison between the Q-
residuals detector, MATCH and MAST using the 112 motifs presented above
and two different backgrounds for each organism. Then, we describe in more
detail the comparison between MAST and Q-residuals, and show a study of the
interdependences. We present an analysis of the computational time needed for
each one of the studied detection algorithms, and finally we compare the Q-
residuals detector to the results obtained with Motifscan.

One example of detection can be seen in the cMyB motif in figure 4.1, a set
of transcription factor binding sites for Homo sapiens. The ROC curves show
the performance of the three algorithms using the first background for Homo
sapiens. A significant improvement is observed when the Q-residuals detector is
used in place of MAST or MATCH.

To visualize the performance of the three different detectors in all the studied
transcription factors, Table 4.2 summarizes the results for Q-residuals, MATCH
and MAST for the two different backgrounds in each organism for TRANSFAC.
The best number of components (usually between 1 and 4) is shown, together
with the mean AUC for each background and method. The results for all the
studied transcription factors are available as supplementary material 2.

To quantify the differences in performance between the Q-residuals detector
and the other algorithms, a Wilcoxon rank-test [134] was performed on the AUC
distributions, using the null hypothesis that the two distributions are the same
versus the alternative hypothesis that AUC using Q-residuals is closer to 1 than
when MAST or MATCH are used. In table 4.2 and the supplementary material
2, the increment in AUC and the significance of the test are displayed, and it
can be seen that Q-residuals performs significantly better than Match in 57 of
the 112 motifs studied and significantly better than MAST in 63 of them, with
p — value < 0.05.

To better visualize the detectors, we present the AUC box plots in figure
4.2. These box plots represent the AUC and its variation when the leave-one-out
cross validation is applied. Figure 4.2 shows the box-plots for the first back-
ground and the JASPAR motifs corresponding to Mus musculus. In most cases,
not only is the mean AUC closer to one in Q-residuals, but the variance is also
smaller, which suggests that the Q-residuals algorithm behaves more robustly

An average of the PR curves obtained in each leave-one-out iteration is also
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Figure 4.1: ROC curve for Q-residuals in black, MAST in red and MATCH in
green using the cMyB transcription factor and the Homo Sapiens background
1. The ideal number of components and the ideal MATCH Core Similarity were
used to compute the ROC curve. The error bars correspond to the variation in
detection using the L.O.O cross validation. The figure shows the improvement
of detection using Q-residuals

presented as supplementary material 3, showing that, when these curves are
used, the Q-residuals detector also performs better than the PSSM algorithms
in most of the cases.

The percentage of positions showing interdependences, Idep, varies among
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Figure 4.2: Box plot of the AUC and its variation for the studied transcription
factors, comparing the Q-residuals detector with the chosen number of compo-
nents (in white) to MAST (in gray). The results correspond to the background
1 of each organism. Idep corresponds to the rate of positions within a binding
site which have significant interdependences.

the studied binding sites as can be observed in figure 4.2. A correlation test
was performed between the Idep and the improvement in binding site detection
when Q-residuals detector was compared to MAST. The improvement in bin-
ding site detection was derived by subtracting the mean AUC for each binding
site calculated using each method. Results show a significant correlation bet-
ween the number of strong interdependent sites within a binding locus and the
amount of improvement of the Q-residuals detector over MAST (as measured in
terms of AUC). Performing the test on the results for JASPAR database gave a
p — value = 0.004; the corresponding result for the TRANSFAC database was a
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p — value = 0.04.

The computational times of the Q-residuals detector, of MAST and of our
R implementation of MATCH were compared for the detection of TFBS within
promoter sequences. To compare the three algorithms, the MAST algorithm
(MEME version 4.4.0), the C code for Q-residuals using the ideal number of
components, and our implementation of MATCH algorithm in R with the ideal
Core Similarity were used. The background corresponded to background 1 for
each organism - this consisted of 1500 nucleotides. The threshold for each method
was set in such a way that the number of positives was similar. In the case of
MAST a p-value of p=0.001 was chosen, for Q-residuals a confidence interval of
C=0.95 was set, and for MATCH the Similarity was set to S=0.85. The time
was calculated for 100 iterations of the program. The average computational
time in detection for the TRANSFAC database motifs are 0.003 £ 0.001s using
the Q-residuals detector, 0.0191 4+ 0.001s using MAST and 0.33 4+ 0.03s for the
R implementation of MATCH. The results show that the Q-residuals detector
is faster than MAST and the R implementation of MATCH in all the studied
binding sites.

The Q-residuals detector was also compared to Motifscan, an algorithm which
takes into account interdependences. Using the same criteria as [81], a 5% in-
crease in the ROCy AUC was required for an improvement to be considered
significant. The results showed that in 34 of the 93 studied motifs Motifscan
performs better than either the Q-residuals detector or the PSSMs methods,
that Q-residuals is the best detector in 25 of the 93 motifs while PSSM is best
in just 1 of them. The three detectors perform equally well in 16 motifs; Q-
residuals and Motifscan are equally good and better than PSSM in 16 motifs;
Q-residuals and PSSM are better than Motifscan in 3 motifs; and Motifscan and
PSSM are better than Q-residuals in 9 of the 93 motifs. The AUC performance
is shown in the supplementary material 4. A visualization of the results in figure
4.3 shows that the performance of Q-residuals is more sensitive to the number
of positions. When the sequences are short, the number of false positives using
the Q-residuals detector increases, leading to a smaller AUC. Motifscan performs
better in this situation but, on the other hand, it needs more training sequences,
so when the number of sequences is small, Q-residuals performs better than Mo-
tifscan. Focussing on the 37 motifs which have less than 20 sequences available,
in 43.24% of the cases the AUC of Q-residuals shows it to be significantly the
best algorithm, while Motifscan is best in just 27.02% of the instances.

In most cases, even if Motifscan is significantly better than Q-residuals, the
Q-residuals algorithm performs better than PSSM methods for this comparison
also.
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Figure 4.3: Number of positions and number of sequences of the motifs where
Motifscan was the best algorithm, green point; where Q-residuals was the best
algorithm, black box; or where both perform equally well (less than 5% differ-
ence in AUC) in blue triangle. Q-residuals performs better for small number
of sequences, but performs worse when the number of position per sequence is
small.



62 A Subspace Method for the Detection of Transcription Factor Binding sites

4.11 Conclusions

Calculating the residuals of the covariance model of the numerical TFBS has
been demonstrated to be an effective method of detecting TFBS within real
data, with better performance than existing MEME and MATCH methods.
The results show that, when there are no interdependences, our method is at least
as good as the PSSM methods we used for comparison, but we also found a corre-
lation between the improvement in AUC and the percentage of positions showing
interdependences in a transcription factor. This result proves that covariance can
capture position interdependences in TFBS, and that a covariance-based model
can be useful in detecting TFBS within large databases.

When we compared the computational time of the Q-residuals detector and
PSSM based methods, we found that Q-residuals is faster; in contrast, other
methods which take into account interdependences usually carry a high compu-
tational cost. Another advantage of the Q-residuals detector, as compared to
methods which take into account position interdependences, is that Q-residuals
does not need a large amount of data in order to build a reliable detector.

The ideal number of components was chosen following a robustness criterion,

biasing sequence background independence. Usually the number of components
which satisfies the above condition is small, models having between 1 and 4 com-
ponents explain most of the variance of the motif. Differences in detection using
a range of components are not always significant.
As compared to a method which takes into account interdependences, Q-residuals
shows a significant performance improvement when the number of sequences is
small, but it also shows a larger sensitivity to the number of positions. Q-
residuals needs more positions than Motifscan or PSSM to decrease the number
of false positives.



Table 4.2: Results for Q-residuals detector compared to MATCH and MAST algorithms, corresponding to the 2 backgrounds of each
organism in TRANSFAC. The AUC shown for each method is the mean of the areas using the cross-validation method and the number of
principal components for Q-residuals is chosen as the number of components with less variance in the AUC. The AAUC is the mean AUC
improvement of Q-residuals versus MATCH and MAST, respectively. The level of significance corresponds to the p-value calculated when a
Wilcoxon-rank test is performed, with the null hypothesis being that the AUC distributions using Q-residuals detector and the other algorithm
are the same and the alternative hypothesis being that the AUC distributions calculated with the Q-residuals detector is closer to one.

description of the 89 JASPAR motifs and 23 TRANSFAC motifs can be found in the supplementary material 2.

A

TF nPCs  Q-residuals 1  Q-residuals 2 Match 1  Match 2 AAUC Match ! MAST 1 MAST 2 AAUC MAST!
ABF1 4 0.9991 0.9975 0.9902 0.9964 5.1073 *¥x 0.9957 0.9986 1.14-1073
BCD 3 0.9961 0.9952 0.9912 0.9884 5.85 - 107 3%*x* 0.9913 0.9947 2.68 - 107 *
CATS 3 0.9998 0.9995 0.9971 0.9978 2.21 . 107 3%*x* 0.9999 0.9992 9.02-107°
CEBP 335 3 0.9931 0.9965 0.9863 0.9878 7.75 . 1073 ** 0.9936 0.9946 6.66 - 104
cJun 1 0.9868 0.9915 0.9700 0.9813 1.35 - 1072 ** 0.9575 0.9880 1.64 - 107 2%
cMyB 1 0.9905 0.9907 0.9714 0.9714 1.92 . 107 2%x* 0.9818 0.9869 6.21 - 107 3*
DL 1 0.9982 0.9962 0.9835 0.9864 1.23 - 1072 *¥x 0.9682 0.9917 1.73 - 107 2%
E2F 4 0.9997 0.9998 0.9991 0.9998 3.00- 1074 * 0.9988 0.9995 5.26 - 104
GAL4 1 0.9998 0.9999 0.9742 0.9759 2.48 . 1072 *¥x 0.9875 0.9653 2.34 .10 2%
GCN4 1 0.9988 0.9997 0.9936 0.9937 5.68 - 1073 *¥x 0.9951 0.9935 5.06 - 10~ 3¥¥*
HNF1 o 9 0.9945 0.9940 0.9807 0.9850 1.14-1072 * 0.9943 0.9921 2.1-1073
HNF4 o 4 0.9957 0.9972 0.9870 0.9938 6.05-1073 * 0.9937 0.9957 1.79 1073
HNF6 « 1 0.9977 0.9996 0.9961 0.99358  3.81 .10 3%x* 0.9838 0.9949 9.37 - 107 3*
IRF1 2 0.9992 0.9994 0.9727 0.9912 1.74 - 107 2%* 0.9970 0.9992 1.22-1073
IRFS8 3 0.9991 0.9981 0.9926 0.9791 1.28 - 1072 **¥x 0.9928 0.9967 3.86 - 10 3**
KR 3 0.9923 0.9965 0.9933 0.9838 5.85-1073 * 0.9926 0.9929 1.69-1073
LyF1 3 0.9952 0.9958 0.9689 0.9823 1.99 - 107 2x** 0.9903 0.9853 7.68 - 107 3%*
MIG1 1 0.9986 0.9954 0.9766 0.9475 3.49 . 1072 *¥x 0.9895 0.9896 7.49 - 1073
NF « B 2 0.9998 0.9999 0.9995 0.9999 3.08 - 10 4* 0.9991 0.9998 4.38 . 1074 *¥x
p50 2 0.9996 0.9999 0.9995 0.9999 4.86-107° 0.9994 0.9998 1.72-107% *
RFX1 7 0.9921 0.9969 0.9721 0.9867 1.51 - 1072 **x 0.9871 0.9837 9.09 - 107 3%
ROX1 8 0.9998 0.9985 0.9997 0.9993 —3.5-10"% 0.9996 0.9980 3.40 - 107 3%
T3R « 6 0.9923 0.9919 0.9754 0.9852 1.18 - 10~ 2%k 0.9854 0.9757 1.15 - 10~ 2%

§9715 burpug 40390, u0d1LdSUDL]T, [0 U0119213(T Y] 40f POy Py 290dsqng ¥ €9



Chapter 5

Computational Detection on
cis-regulatory sequences
through a-Divergence
Analysis

5.1 Background

The information theory has been applied in genetics for the visualization of the
information of a set of sequences and its characterization with entropies [101, 75].
Previous contributions have explored the use of an information gain method in
order to detect binding sequences [75]. This contribution assumes no correlation
between binding site positions. We propose an information theoretic methodol-
ogy to binding site detection that measures the correlation among binding sites
base positions through a-Divergence. The performance of the parametric di-
vergence measure based detector is compared against MEME/MAST and Rényi
algorithm (first order).

5.2 Method

The method is based on the idea that total information content in a set of objects
can be computed by means of divergence measurements. When a new object is
added to set, the total information will change according to similitude between
of the new object to the set.If the new object is similar to the set, the total
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information variation is not significant. On the other hand, if this new object is
different to the set, the total information will increase.

The set of objects is a matrix of aligned sequences with binding evidence.
Hence, we construct a detector based on the total information variation of a set
of sequences when a candidate sequences is added to the set. The information
of a set of sequences is measured by means of a-Divergence which considers
dependence between binding site positions. Any candidate sequence added to
the training matrix will cause a variation on the information and the correlation
between binding sites of the set of aligned sequences. For random sequences, the
correlation between binding site positions in the system will decrease. For a true
binding site, the variation on the correlation between binding site positions will
be not significant on the aligned sequence set.

A classical divergence measure is the Kullback-Leibler divergence [58]. This
algortihm employs Rényi Divergence, known as a-Divergence, for this measure-
ment. Rényi Divergence is a parametric divergence which depends on ¢ ( or ¢),
namely the order in the Rényi entropy. The joint probability occurrence of each
couple of symbols is modulated, emphasizing or suppresing this value, according
to g-value[75]. If ¢-value decreases, the probability of occurence of each couple
of symbols increases. On the contrary, If g-value increases, the probability de-
creases. Hence, a parametric detector that considers based on K, dependency
model, can be built through this measurement. Moreover, detector’s sensibility
is moduled by ¢ Rényi order.

For each transcription factor (see Table 5.1), the number of sequences availa-
ble in the dataset is small. Hence, the detector has been characterized by means
of leave one out cross validation (LOOCYV). Each individual sequence is used
as a test sequence of a training classifier with the rest n — 1 sequences, where
n is the number of sequences. Each new set of training sequences is relined up
with Multiple Sequence Alignment (MSA). The results have been calculated with
genomic sequence of the organism eukariotics considered (see Table 5.2 ).

5.3 Information content measures

The Kullback-Leibler (KL) divergence is a measure in statistics that quantifies,
in bits, the proximity of two probability distributions P and @ [58]. The Rényi
divergence is a parametric divergence measure that can be considered as a gen-
eralization of Kullback-Leibler divergence. This divergence is also known as the
a-Divergence. Rényi divergence of order ¢ for two discrete variables, X and Y,
with N possible states (X1, Xo, -+, X;, -+, Xn) and (Y1,Yo,---,Y;, -+, YN),
is defined as,
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Dy(X;Y) ZOQQZPL] Qi (5.1)

where, variables X and Y are nucleotides in two different positions. The
Rényi divergences are non-negative for all ¢ > 0 and converges to Kullback-
Leibler divergence when ¢ tends to 1.

lim Dy (X; Y) = ZZPilogg(Pi> (5.2)
q—1 ~ Qi

In our case, P = p(X,Y) and @ = p(X)p(Y), the Kullback-Leibler diver-
gence is the mutual information which is a quantity that measures the mutual
dependence of two variables,

_ Jio p(X,Y)
=22 pXY)lege (0m) 53)
— H(X)+ H(Y) - HX,Y) (5.4)

where H(X) and H(Y) are the marginal entropies, and H(X,Y) is the joint
entropy of X and Y. The mutual information measure is symmetric and non-
negative. I(X; Y) = 0 holds if and only if two variables (X,Y") are statiscally
independent under no finite sample effect.

5.4 Database Description

A set of aligned nucletotides sequences with binding evidence are required by a-
Divergence algorithm. These sequences come from different organisms eukariotic
(see Table 5.1). One transcription factor binding site has been considered for
each organism. Each transcription factor is characterized by its structure and its
strategies to interact with cis-regulatory sequences, Table 5.1. The dataset has
been obtained from Jaspar [128], http://jaspar.genereg.net/. The results
have been computed from genomic sequences which have been obtained from
Eukaryotic Promoter Database (EPD) [99], Table 5.2.

5.5 Motif Detection

The measurement of the correlation between binding site positions is computed
by means of a-Divergence from the matrix of aligned sequences. The studied
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Table 5.1: Summary of The recognizers Analyzed

Organism Recognized Base Aligned Sequences
Mus musculus Mycn 31 6
Rattus norvegicus CREB1 12 16
Drosophila melanogaster VIS 34 6
Homo sapiens FELK1 28 16

Table 5.2: Summary of Background Sequences

Recognized Background Sequences Range
Mycn EPO7T119(+)MmIgk' MPC11  (—1000,500)
CREB1 EP24038(+)RnmyosinLC3yP2  (—1000, 500)
VIS EP17014(4+)DmsnRN AU 1 (—1000, 500)
ELK1 EP74078(+)HsRPS9P2+ (—1000, 500)

has been done from ¢ values between 0 and 2. When ¢ tends to 1, a-Divergence
converges to mutual information. In this case, for high correlation between
positions, the values of mutual information are close to H;( site position ).
On the other hand, the mutual information close to zero when the positions are
non-correlated. When ¢ tends to 2, a-Divergence converges to X 2-Divergence
[59]. From this rational, a function has been used to evaluation of the variation
of the a-Divergence between the training matrix and the training matrix when
the candidate sequence is added to the set. This function is defined as,

n=[y*(R*R)"*™ v=| D, — D | (5.5)

where, Dy is the a-Divergence matrix of the set of aligned sequences, Dy
is the a-Divergence matrix considering the training matrix with the candidate
sequence, R is the redundancy of the set of aligned sequence and R; is the
transpose redundancy. The variation of the information matrix when adding
the candidate sequence has been considered by the variation produced in the
total cross-site a-Divergence, Fig 5.1. For a true binding site, the dependence
between site positions will be equal. Hence, v will be about 0 because the
binding sequence does not modify the aligned sequence set information. On the
other hand, when the sequence is a random sequence, the dependence between
positions will decrease and ~ will increase. We can define a detector that allows
for the discrimination between a random sequence and a sequence that belongs
to a binding site. Hence, the developed algorithm, based on the criterion defined
previously, is as follows:

1. A preliminary study about the significant dependencies between binding
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Figure 5.1: (left) Mutual Information heatmap between binding site positions
for ABF1. Redundancy is plotted on top; (right) Product between mutual In-
formation matrix weighted by the exterior product of the redundancy profile.

site positions is computed by means of a-Divergence.

. Significant dependencies between binding site positions have been chosen

from error finite sample effects [38, 59].

. Considering all the significant position, the joint probability for each pos-

sible state of two symbols have been calculated. Each value has been saved
in a matrix 4x4 where each row and each column corresponds a symbol of

{4, C, G and T}.

. Considering the training matrix with the new sequence added, we read of

the symbol {A, C, G and T} in the new sequence only for the significant
positions in the training matrix. From the symbols, we look for the joint
probability on the matrix saved.

. a-Divergence is calculated from the joint probability.

. A scalar quantity has to be computed using the function defined in equation

(5.5) from the a-Divergence.
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Figure 5.2: Left ot right: a-Divergence heatmap between binding site positions
for VIS for ¢ equal to 0.1,1 and 2.

5.6 Results

The a-Divergence measurement determines the correlation through binding site
position. When this measurement is zero, we consider that doesn’t exist depen-
dence between site positions. On the other hand, if this measurement is positive,
there is correlation between site positions. According to the amplitude value,
the dependence between binding site positions will be high or low. The number
binding sites correlated and its amplitude can be modulated by ¢ parameter,
Figure 5.2.

Generally, low g-value will depress the divergence matrix, whereas large g¢-
value will promote divergence values. Therefore, large g-value will show large
number of binding site dependence at the cost of introducing additional noise.

The performance of the detector is shown as a Receiver Operating Charac-
teristic (ROC) for different cis-regulatory sequences and g¢-values, Fig 5.3. The
performance of the a-Divergence detector has been compared against a MEME /-
MAST [4] and Rényi algorithm (first order)[75]. The detector that produces a
bigger area under the convex surface (AUC) will the best learning system.

In Table 5.3, it can be observed that the a-Divergence has a better behaviour
than the other detectors. Therefore, assuming position dependence modulated
by g-value helps to improve over Entropy method and MEME/ MAST. Moreover,
given one Transcription Factor Binding Site, we can be observed how the number
of true positives and false positives depends on the g-value, Figure 5.3. The best
g-value can be chosen for the detection according to the cost criterion established
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organisms.



Computational Detection on cis-regulatory sequences through a-Divergence

71 Analysis
Table 5.3: Area Under Convex Surface
Entropy Divergence MEME/MAST
TEBS q AUC Error q AUC Error AUC Error

Mycn 0.5 0.99817  0.00862

0. 0.99933 0.00345  0.99872  0.00905
CREB1 1.5 0.99971  0.00084 O.

1

2

5

5 0.99987  0.00036  0.99952  0.00142
5 0.99532 0.01168  0.97874  0.04769
0 0.99398 0.00358  0.98849  0.02085

VIS 0.5  0.93448 0.0849
ELK1 1.5 0.99341  0.01941

Drosophila melanogaster VIS Homo sapiens ELKA
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Figure 5.4: Left ot right: Boxplot AUC for differents TFBS and organisms.

between True Positive and False Positive and the area under convex surface
maximum.

Given the optimal g-value, the difference between populations for each TFBS
and method is shown in the Figure 5.4. It is observed how the populations
are different according to method used and the TFBS. Basically, the degree of
dispersion and skewness in the data depends on the degree of conservation of the
binding site positions. Given biding positions conserved, the degree of dispersion
in the data is low and skewness is high. As binding positions conserved decreases,
the degree of dispersion increases and skewness decreases.

5.7 Conclusions

We have presented a methodology to detect the cis-regulatory sequences. This
method is based on the variation of the total parametric divergence in a set of
aligned sequenced when a candidate sequence is added. From this measurement,
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the correlation between binding site positions have been considered. The detec-
tor employs a parametric divergence. This parameterization allow modulation
of the number binding sites correlated and its amplitude. The parametric di-
vergence measurement gives additional information related to binding site than
mutual information. The g-value depends on the transcription factor binding
sites characteristics. This parameter should be adjusted for each cis-regulatory
sequence set by means of a cross validation. This algorithm has been applied
on the detection of Mycn, CREB1, VIS and ELK1 recognizers from genomic se-
quences. The obtained results improve cis-regulatory sequences detection based
on Rényi and MEME/MAST. This method and Rényi algorithm are included in
the R-package MEET with the name ITEME (Information Theory Elements for
Motif Estimation).



Chapter 6

Sequence Information Gain
based on Motif Analysis

This chapter is an exact copy of the paper:

e Sequence Information Gain based on Motif Analysis. J. Maynou,
E. Paird, S. Marco and A. Perera. BMC Bioinformatics 2015, 16:377 (9
November 2015).

6.1 Abstract

The detection of regulatory regions in candidate sequences is essential for the un-
derstanding of the regulation of a particular gene and the mechanisms involved.
This paper proposes a novel methodology based on information theoretic metrics
for finding regulatory sequences in promoter regions.

This methodology (SIGMA) has been tested on genomic sequence data for
Homo sapiens and Mus musculus. SIGMA has been compared with different pub-
licly available alternatives for motif detection, such as MEME/MAST, Biostrings
(Bioconductor package), MotifRegressor, and previous work such Qresiduals pro-
jections or information theoretic based detectors. Comparative results, in the
form of Receiver Operating Characteristic curves, show how, in 70% of the stu-
died Transcription Factor Binding Sites, the SIGMA detector has a better per-
formance and behaves more robustly than the methods compared, while having
a similar computational time. The performance of SIGMA can be explained by
its parametric simplicity in the modelling of the non-linear co-variability in the
binding motif positions.
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Sequence Information Gain based Motif Analysis is a generalisation of a
non-linear model of the cis-regulatory sequences detection based on Informa-
tion Theory. This generalisation allows us to detect transcription factor binding
sites with maximum performance disregarding the covariability observed in the
positions of the training set of sequences. SIGMA is freely available to the public
at http://b2slab.upc.edu.

6.2 Background

The information encoded in genetic sequences is expressed by means of a gene
regulation process, which begins with a gene transcription step. The binding
between specific proteins and their target sites in DNA is a key step in the con-
trol of the transcription process. These proteins — transcription factors (TF) —
recognise specific motifs in DNA known as Transcription Factor Binding Sites
(TFBS) or cis-regulatory sequences. The prediction, identification and detection
of cis-regulatory sequences is a key factor in understanding gene regulation and
in inferring regulatory networks [132, 133]. TFBS are usually very short (5 to
20 base pairs long) and highly degenerate, which gives rise to an extremely dif-
ficult identification problem due to low statistical power, as short sequences are
expected to occur at random every few hundred base pairs. Due to their high va-
riability, a consensus sequence approach for detection is insufficient. There is also
evidence that this variability exhibits correlation between positions among the
regulatory sequence [105, 123], and that this correlation could contain informa-
tion which would help reduce the false positive rate and increase the sensitivity
of a detector [83].

Due to the importance of identifying cis-regulatory sequences, much effort
has been devoted to mapping the binding sites for a large set of transcription
factors. An important recent project is the ENCODE (Encyclopedia of DNA
Elements) project, which has been able to map 4 million regulatory regions in
the human genome, opening new possibilities for computational methods [29].
Motif detection methods may be classified in different ways, depending on the
approach adopted. Some reviews focus on the biology of motif discovery in regu-
latory regions [130, 98], whereas other publications focus more on the representa-
tion of the motifs: consensus-based methods and alignment-based methods [86]:
consensus-based methods use word algorithms which consider binary hit/no-hit
values [16, 111}, and alignment-based methods use a set of alignment sequences
with binding evidence to assign putative motifs to a candidate sequence. These
latter methods could be classified as either numerical or stochastic models: nu-
merical models are based on a mathematical representation of the nucleotides,
whereas stochastic models, which are probably the most popular methods, are
based on Position Weight Matrices (PWM) or Position Specific Weight Matrices
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(PSWM) [117]. A PWM is a matrix of scores corresponding to the frequency
of the sequence symbols for each binding site position. The PWMs allow the
capture of the variability over a sequence of nucleotides from a set of binding
site positions [39], although there is the implicit assumption of independence
between the residues of the aligned sequence matrix. PWM representations have
been used in several algorithms to discover over-represented patterns from can-
didate sequences [112].

As noted above, statistical studies have shown the dependence among binding
site positions variability. The common strategies for incorporating these depen-
dencies within motif detectors include the extension of the PSSM approach to
include pairs of correlated positions [81, 56], m*" order Markov chains (HMM)
[139, 32] and Bayesian Networks[10, 94, 140, 9]. HMM can model the position
interdependencies as long as high order HMMs, or a Bayesian approach are used
but, in order to train any of both methods model sufficiently well, a huge training
set of sequences would be required (£ 1000 or more sequences per model).

A popular method, based on some of the previous work, is MEME/MAST,
which provides an improved detection performance [3]. MAST is part of the
MEME suite and uses a Q-FAST algorithm for finding motifs. Although these
strategies may perform well in some datasets, they have shown certain limitations
in the number of dependencies which may be considered between positions, in
their ability to model dependencies between more distant positions, and in the
large number of parameters which need to be adjusted in the models [105].

Previous work by our group proposed a parametric detector using the Rényi
Entropy for binding site detection [75]. This measurement allowed us to build
variable-sensitivity detectors modulated by the Rényi order — this assumed in-
dependence between binding site positions. A first approximation for modelling
the correlation among binding site positions, known as Qresiduals, used a li-
near embedding to represent the set of binding site sequences [83] and employed
a residuals-based approach as the detection statistic. Other non-related work
modelled the pure correlation between binding site positions through non-linear
correlations based on the variation of mutual information [76].

Statistical pattern recognition has also been applied to identification of se-
quence motif. Luo et al [72] propose to use discriminant analysis for the predic-
tion of Transcription Start Sites (TSS). From non-parametric measure, similar
to Shannon information, Luo et al [72] provide information about the variance
observed in the dataset. This strategy has good performance for the binding mo-
tif detection when the motif positions are not correlated among them. But, this
measurement does not allow modelling the dependencies among motif positions.

In this paper, we propose a generalisation of a non-linear model based on
Information Theory, which allows modeling DNA contact by the protein and the
biological interaction among binding sites using a small training set of sequences
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(5-50 sequences model). This new approach aims at a trade-off between the good
generalisation properties of pure entropy methods and the ability of position-
dependency metrics to improve detection power.

The performance of the proposed detector method, named SIGMA (Sequence
Information Gain based Motif Analysis), is compared with different computa-
tional methods for binding site detection: MEME/MAST [3], Biostrings [82],
MotifRegressor [20], Qresiduals [83] and a previously published set of algorithms
based on information theory [75, 76].

6.3 Information Gain Space

The information gain has been measured for each TFBS by means of two para-
metric uncertainty estimators. The rationale is based on the idea that the total
information gain of a set of true TFBS aligned sequences will change according
to the similitude of the new candidate sequence to that set (Figure 6.1). The
first estimator measures the total amount of information change produced by as-
suming position independence, whereas the second estimator measures the total
amount of change of per-position mutual information (capturing pure correlation
among binding site positions). Both estimators are computed by a parametric
uncertainty measurement.

Let us consider a set of I aligned sequences (s;) with binding evidence M =
{si,i = 1,--- , I}, and the same set including a candidate sequence s., S =
scUM.

Following Figure 6.1, let a be the coordinate corresponding to the set M,
with axes determined by the two measures previously mentioned. When a new
candidate sequence is considered in S, both measures will vary to b or g depending
on the nature of the candidate sequence. When the candidate sequence is a
binding site sequence, (b,) the variation on the information will be not significant.
However, when the candidate sequence is a genomic sequence, (g), the amount of
information will vary significantly. With a sufficient training set, this information
gain space can be split in two regions, genomic and binding, by means of a simple
discriminant analysis which will define a decision boundary, as highlighted as a
dashed line in Figure 6.1. The decision boundary shape is the result of applying
non-linear function.

6.4 Information content measures

We have employed as parametric uncertainty measurements the Rényi entropy
and Rényi Divergence (also called a-Divergence) [96], which are defined as:



7 Sequence Information Gain based on Motif Analysis

B Training matrix
m Training Matrix + genomic sequence

®m Training Matrix + binding site

TFBS positions mutual Information

1
]
1
1
]
1
1
1
: == Binding Site Boundary
]
]
]
1
1
1
1
1
\

-
& 4-
\ QO
B0 - )
& S.._____Bindingregion
; Non binding region

Individual Position Information
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produced by assuming position independence. Y-axis shows the total amount
of information change produced by assuming the correlation among positions.
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green box Training matrix with binding sites sequence. The broken line is the
decision boundary.
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H,(X) = —lo Y p(X,)" (6.1)
=1
1 4 4
Dy(X;Y) = pa 1loggzzP(XZ-,Yj)qQ(Xi7Y})1_q (6.2)
i=1 j=1

where X; and Y; are the nucleotides {A, T, C' and G} at different DNA
sequence positions, P(X,Y) = p(X,Y), Q(X,Y) = p(X) * p(Y) and the ¢ is
the Rényi order which modulates the probability of occurrence of each symbol.
p(X,Y) is the joint probability of X and Y, p(X) and p(Y) are the marginal
probability. Both measurements (H,(X) and Dy(X; Y)) depend on ¢ which is
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a positive real number (¢ # 1)and both are non-negative for all ¢ > 0. This
parametrisation allows the building of a variable-sensitivity detector exploiting
the statistical properties of the Redundancy, R, where R is defined as [75].

The measurement of the variation when the candidate sequence is added
to the set has been computed using two heuristic functions, see (eq.6.3 and
eq.6.4). These functions depend on two parameters, v and w, which measure
the difference between redundancies, eq.6.5, and divergence, eq.6.6, between the
set of aligned sequences without the candidate sequences, s;, and with candidate
sequence, M. These are estimated as described in Maynou et al [75].

L
plg, M) = | RMiy; |7 (6.3)
=1
L
(g, M) =Y [ R |w; [ (6.4)
i=1

where, ; and w; are

— M; S
~i =] R — R, (6.5)

w; =| D)t — DY | (6.6)

where L is the number of nucleotides in the binding region, M is the aligned
set of sequences with binding evidence and ¢ is a specific column of M. Réw
is the redundancy, normalized depending on the maximum entropy on the set
of aligned sequences, whereas R;? contains the equivalent parametric entropy
when the candidate sequence is assumed to belong to the set. The redundancy
profile is a L-dimensional vector, where L is the total number of positions of the
binding site. D(]IW is the divergence matrix of the set of aligned sequences and
DqS is the divergence matrix considering the training matrix with the candidate
sequence. The main diagonal is set to zero in each of these matrices, D(]]w and
DqS . The variation in the information is therefore calculated by means of v and
w and g-values are optimised at the validation stage within the range (0,2]. As ¢
increases, the noise included in the redundancy signal also increases [75]. From
g-values higher than 2, signal-to-noise ratio is not optimal.

For a genomic sequence, the order of the system will decrease the values of ~y
and w, whereas for a binding sequence the order of the system will not be altered
substantially. Each candidate sequence will therefore be characterised by the
pair (z = (p,n)) and classified as genomic or binding by means of a Quadratic
Discriminant Analysis (QDA), as shown in Figure 6.6. The decision boundary,
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H(y), is defined from the distribution of the variation on the information, z, for
each class, genomic or binding, in the information gain space.

Binding site detection by means of the SIGMA algorithm can be summarized
as follows, see Figure 6.2:

1. Given a set of aligned sequences with binding evidence M, estimate the
redundancy profile R} and the Rényi Divergence D} (eq. 6.1) and (eq.
6.2).

2. Given a new candidate sequence, re-estimate both values assuming the
candidate sequence belongs to M, R;f and D;f -

3. Compute the variation on the information z = (p,n) as defined in eq. (6.3)
and eq. (6.4).

4. Quadratic Discriminant Analysis is applied to the information gain space
from the set of computed features.

5. Steps 3 and 4 are iterated over for each candidate sequence.

Additionally, for characterisation of the results we define a heuristic magni-
tude C, related to the Complexity of M, in order to characterise the degree of
pure correlation between the variability of binding site positions in M, see (eq.
6.7). C computes element by element the ratio between divergence value, where
D, |;,; is the element of D, at row ¢ and column j, and maximun entropy, Hqz
without to considerer the main diagonal. The average of the ratios define the
complexity of M.

N
_ Zi,j:l D, |i>j .
Nx(N—=1)% Hpaw

where D is the parametric uncertainty measurement considered, IV is the size
of the binding sites, ¢ is the Rényi order and H,,; is the maximum entropy for
the set of probabilities p(X) and p(y), see section 2.2.. C is a value between
0 and 1. When C is close to 1, the degree of correlation among binding site
positions is high.

i # ] (6.7)

6.5 Database Description

Data has been obtained from the Jaspar database [128], http://jaspar.genereg.
net/ (see Table 6.1 and Table 6.2).

The JASPAR Core provides non-redundancy and high-quality alignment ma-
trices for each transcription factor [128]. Results have been computed with
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Figure 6.2: The essential steps in the training and detection process are shown
for the SIGMA algorithm.

background genomic sequences from the Eukaryotic Promoter Database (EPD)
[99], using the EPD version based on the EMBL release 105 (sept 2010). The
background loci chosen were EP74078(+)HsRPS9P2+ for Homo sapiens and
EPO07119(+)MmIgk0 M PC11 for Mus musculus.

6.6 Optimization

To apply SIGMA methodology to TFBS detection over genomic sequence, we
should calculate the variation of the information, eq.6.4, as many times as the
length of the sequence I (typically millions nucleotides). Given a sequence posi-
tion, we must calculate the divergence between the binding site positions. This
means that we must compute w times the joint probability for each training
matrix, where L is the total number of binding site positions in M. The running
time of the algorithm depends on the length of the candidate sequence and on
the number of binding site positions.The run time is therefore linear in the length
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Table 6.1: Summary of the Transcription Factors Analysed for the Homo sapiens

organism obtained from Jaspar database.

TF Family Base  Sequences
ELKY Ets 9 20
ETS1 Ets 6 40

NFATC?2 REL 7 26
MYCMAX bHLH 12 21
E2F1 E2F 8 10
MAX bHLH 12 17
NFIL3 bZIP 11 23
NFE2L2 bZIP 11 20
INSM1 Zinc finger 12 24
CREBI1 bZIP 12 16
Irf2 IRF 18 12
FOXO03 Forkhe 8 13
HLF bZIP 12 18
NFKappaB REL 10 38
MZF114 Zinc finger 6 20
ESR1 HNR 9 18
FOXD1 Forkhe 8 20
MZF1513 Zinc finger 10 16
Apl bZIP 7 18

Table 6.2: Summary of the Transcription Factors Analysed for the Mus musculus

organism from Jaspar database.

TF Family Base Sequences
Paz2 Homeo 8 31
FOXO03 Forkhe 8 13
NFkappaB REL 10 38
ARID3A ARID 6 27
EBF1 bHLH 25 10
Eni1 Homeo 11 10
NR3C1 HNR 18 9
Egri Zinc finger 11 15
Apl bZIP 7 18
Runx1 Runt 11 26
CREB1 bZIP 12 16
AhrARNT bHLH 6 24
Pdx1 Homeo 6 31
NFATC2 REL 7 26
Lhz3 Homeo 13 20
ARNT bHLH 6 20
ELF5 ETS 9 44
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Figure 6.3: Left: Rényi Divergence, D considering all possibles correlations
between binding site positions. Right: Dé\il considering only significant de-
pendences between binding site positions after applying the error finite sample
correction. Black boxes mean maximum correlation and white boxes mean zero

correlation between binding site positions.

of the input sequence and quadratic in the length of the binding site L.

T(L) € O(L?) (6.8)

The optimization algorithm is based on considering only the correlated bin-
ding site positions. The n function has been calculated considering only the
Rényi-divergence of the correlated binding site positions (showing positive corre-
lations) through a screening on the possible positive dependencies between these
positions.

Any two binding site positions are considered to be correlated if the Rényi
divergence score is bigger than the error finite sample. This error yields to a bias
on the uncertainty parametric measurement caused by estimating the probability
using the nucleotide frequencies [75]. After the screening, we only compute based
on the correlated positions of the training matrix as shown in Figure 6.3.

For each pair of positions (i,5) in M where 4,j = {1, ..., L}, the joint proba-
bility for all the possible combinations of (z;,z;)={A, C, G and T} are precom-
puted and stored in a 4 x 4 matrix. We construct a library (B; j s, ;) of sixteen
4 x 4 matrices containing all the possible joint probability values for each pair of
positions ¢ and j (as illustrated in Figure 6.4).

For each new candidate sequence, we have to consider only the symbols
matching correlated positions and read the joint probability value from the
lookup table Bivj,ij. The Rényi divergence and the discrimination function, n
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Figure 6.4: For each pair of positions ¢ and j we calculate a joint probability
matrix, B jz, «;, using all possible combinations of {4, C, G and T'}.

are then computed from these values. The estimated total number of significant
transcription factor site dependencies in Homo sapiens and Rattus novergicus
is approximately 50% and 37% [122]. In this way, the computing time can be
reduced by approximately an order of magnitude.

6.7 Validation

In order to build a model for each set of binding site sequences, the SIGMA de-
tector has been characterized by means of leave-one-out cross validation (loo-cv).
Each method has its own characteristic parameter. The range of the parame-
ter used is different for each detector, see Table 6.3. The detector performance
depends on the value of these parameters which have been selected employing
loo-cv. Taking as a criteria a heuristic magnitude, v4,.. This parameter has
been computed from the mean and variance of the area under the N ROC curve
(AUCYy) [83], which will be maximised for all methods.

Vaue = MHauc * (1 - Uauc) (69)

where figye and og,. are the mean and the variance of AUCy. vy is a value
between 0 and 1. When v, is close to 1, the mean is close to 1 and the variance
is close to 0.
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Table 6.3: Summary of the characteristic parameters and the range considered
for the validation of each computational method used.

Method Parameter Range
SIGMA Rényi Order (0,2]
MEME/MAST Length Motif (L) [1,L]
Qresiduals Principal Components [1,10]
Entropy Rényi Order (0,2]
Divergence Rényi Order (0,2]
Biostrings Not Applicable Not Applicable
MotifRegressor Length Motif (L) [1,1]

From the performance data, we have calculated the mean and standard de-
viation of the AUC for each transcription factor and method by means of the
outer loo-cv. This process has been repeated for all the TFs listed in Table 6.1
and Table 6.2.

6.8 Results and Discussion

We first show a characterisation of how the performance of the individual algo-
rithms based on Entropy and Divergence depends on the complexity properties
of the training matrix (M) C, (eq. 6.7), see Figure 6.5. The performance of
these algorithms will vary on C depending on the design of each algorithm and
the true correlation between positions found for each set of binding sequences.
As one would expect, the total Entropy algorithm has a better behaviour with
low values of C, whereas a Divergence based approach improves its performance
when C' is large. The SIGMA approach is partially based on both measurements
and aims at finding a trade-off between both approximations in order to max-
imise the performance over the full dynamic range of C.

Figure 6.6 shows an example of real case where each input sequence is repre-
sented as a point in (p,n) coordinates. This set of samples includes genomic or
binding sequences as shown in the figure. It is clear from the figure that both
variables are contributing to the separation of the true binding site sequences.

The performance of SIGMA, MEME/MAST, Qresiduals, Entropy, Diver-
gence, Biostrings and MotifRegressor has been compared against the same set
of TFs under the same validation conditions described in the previous section.
In Figure 6.8, it can be observed that the mean and standard deviation depend
both on the Transcription Factor and on the method considered. The perfor-
mance among all the methods has been compared by means of the v, parameter
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quences. Grey points correspond to candidate sequences which are false binding
site sequences.
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Table 6.4: Per CPU, the total run time was calculated on a 2.3GH z Intel Core
2 Duo P8600 computer with 4GB RAM.

Method Run time (s) sd (s)
SIGMA 0.132 0.007
Qresiduals 0.119 0.006
Entropy 0.051 0.003
Divergence 0.081 0.004
MEME/MAST 0.019 0.001
Biostrings 0.004 0.0001
MotifRegressor 0.144 0.02

described in eq. (6.9).

In Figure 6.7, the v, parameter is shown for each transcription factor and
method. Based on the vg4,. values, in approximately 70% of the TFBS under
study, SIGMA shows better performance than the other methods. In 20% of
the TFs, the performance of the others methods is better than that of SIGMA.
In the remaining cases, the SIGMA performance is similar to one or several of
the computational methods considered. In most cases, the mean AUC is close
to one and the variance is approximately zero, which suggests that SIGMA also
behaves more robustly than other methods, as seen in Table 6.5 and Table 6.6.

We computed a Wilcoxon rank-test [134] in order to estimate whether the
improvement in performance is statistically significant. The null hypothesis was
that the AUC distributions between SIGMA and other methods were the same
and the alternative hypothesis was that the AUC distributions were different.
The level of significance is represented by —log10(Pvaiue). ANY Dyaiue > 0.05 is
shown in bold, see Table 6.7 and Table 6.8). In most cases, it can be observed
that the difference between the AUC distributions is significant.

The computational time of SIGMA was compared with the set of computa-
tional methods considered. The C code for Qresiduals, Entropy and Divergence
using the model obtained in validation and MEME/MAST (Version 4.4.0) was
used and has been made publicly available. The run time was obtained in com-
parison with randomly generated candidate sequences of 1500 nucleotides. The
total time has been calculated from 100 iterations of each algorithm. The av-
erages of the computational times in detection for the set of TF considered of
Homo sapiens (Table 6.5 and Table 6.6) are shown in Table 6.4.
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Figure 6.7: Top to bottom: Performance of each algorithm ( 0o MAST,/A SIGMA,
-+ Divergence, x Entropy,{> Qresiduals, 7 Biostring, = MotifRegressor) is shown
through vgue, (eq. 6.9), for a set of TFBS for the Mus musculus and Homo
sapiens organisms. When v,,. is close to 1, the mean is close to 1 and the
variance is close to zero. For each TF, the best computational method will be
that for which v, is closest to 1.
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6.9 Conclusions

A new methodology based on a discriminant analysis of two information theoretic
measures has been proposed for binding site detection.

The variation on the information has been measured through two parame-
tric uncertainty measurements (the Rényi entropy and Rényi divergence). The
method focusses on the variation in these information measures when a new se-
quence is assumed to belong to a training set of sequences with known binding
properties.

This methodology allows us to detect cis-regulatory sequences with maxi-
mum performance disregarding the co-variability observed in the positions of
the training set of sequences. SIGMA has been characterised on the detection
problem for a large set of transcription factors and compared with different motif
detection algorithms. AUC distributions have been calculated which show that
there is a statistically significant difference between SIGMA performance and the
performance of the other methods. In approximately 70% of the cases conside-
red, SIGMA has exhibited better performance properties, at comparable levels
of computational resources, than the methods with which it was compared.

As you can see through the heuristic parameter, SIGMA method is more
robust than the other methods. A model based on both parametric uncertainty
measurements can be useful to detect cis-regulatory sequences. But when the
number of the positions involved in the binding sites process is small, the SIGMA
performance is comparable with the rest of the computational methods.
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Figure 6.8: Top to bottom: Box plot of the AUC and its variation for the studied
transcription factors for the Homo sapiens and Mus musculus organisms using
different computational methods: black MAST, red SIGMA, green Divergence,
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background sequences used have been EP74078(+)HsRPS9P2+ for the Homo
sapiens and EPO7119(4+)MmIgk0 M PC11 for the Mus musculus.



Table 6.5: Results for the set of computational methods considered for each TF of the Homo sapiens organism.
The vgyc is defined through the mean and variance of the AUCy using a cross-validation method. Given a TF and

method, Vgqe is chosen with maximum mean and lower variance in the AUCy.

VAUC

TFBS MEME/MAST  Qresiduals SIGMA  Entropy Divergence Biostrings  MotifRegressor
ELK4 0.99923 0.99993 1 1 0.99961 1 0.99566
ETS1 0.98621 0.98845 0.99707  0.98533 0.99473 0.99508 0.99415
NFATC2 0.98291 0.98915 0.97952 0.97091 0.94311 0.98284 0.98263
MYCMAX 0.9951 0.98872 0.98823 0.98187 0.96281 0.99178 0.98581
E2F1 0.99991 0.99963 1 0.99915 0.99685 0.99958 0.99566
MAX 0.99968 0.99743 1 0.99741 0.99275 0.99852 0.98583
NFIL3 0.9992 0.9994 0.99256 0.99558 0.999823 0.99917 0.98408
NFE2L2 0.98975 0.93901 0.98573 0.94418 0.96973 0.99974 0.9845
INSM1 0.99993 0.99891 1 0.99741 0.9906 0.99842 0.98885
CREBI1 0.99965 0.99763 1 0.99793 0.99962 0.99953 0.99567
Irf2 0.99995 1 1 1 0.99773 0.99995 0.98817
FOXO03 0.99638 0.99817 1 0.99688 0.95549 0.98567 0.9915
HLF 0.99943 0.99343 1 0.99155 0.98706 0.99113 0.99216
NFkappaB 0.99987 1 1 1 0.98657 0.98256 0.98217
MZF114 0.99387 0.97925 1 0.97751 0.98682 0.98743 0.98775
ESR1 0.99962 0.99901 1 0.99725 0.98974 0.98903 0.9957
FOXD1 0.99814 0.99436 1 0.99043 0.99549 0.99787 0.99133
MZF1513 0.99719 0.97549 1 0.98534 0.9833 0.98193 0.98585
Apl 0.98465 0.97231 1 0.97121 0.95825 0.97469 0.99445
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Table 6.6: Results for the set of computational methods considered for each TF of the Mus musculus organism.
The Vg is defined through the mean and variance of the AUCy using a cross-validation method. Given a TF and
method, the v, is chosen with maximum mean and lower variance in the AUCy.

vavuc
TFBS MEME/MAST Qresiduals SIGMA Entropy Divergence  Biostrings MotifRegressor
Pax2 0.89161 0.96215 0.98572 0.96323 0.94998 0.98245 0.93971
FOXO3 0.98005 0.97719 1 0.93721 0.91796 0.97079 0.972
NFkappaB 0.92656 0.99944 0.982322 0.99949 0.99723 0.99939 0.96767
ARID3A 0.99757 0.99764 1 0.99771 0.99548 0.99753 0.98933
EBF1 0.80379 0.99787 1 0.9964 0.99593 0.99769 0.95929
Enl 0.85943 0.90921 1 0.93119 0.94558 0.8736 0.96797
NR3C1 0.91904 0.98873 1 0.99017 0.98844 0.95811 0.94069
Egrl 0.99983 0.99996 1 0.99956 0.99826 0.99969 0.961
Apl 0.98823 0.97044 1 0.99828 0.99672 0.96902 0.98861
Runx1 0.99937 0.99891 0.99323 0.99601 0.99743 0.99951 0.93645
CREBI1 0.99997 0.99953 1 1 0.99958 0.99987 0.97698
AhrARNT 0.87593 0.99816 1 0.99828 0.99672 0.99721 0.99901
Pdx1 0.93796 0.99565 0.99499 0.99669 0.97722 0.99871 0.94051
NFATC2 0.91883 0.98219 0.98581 0.95394 0.934316 0.93503 0.9475
Lhx3 0.99961 0.99924 0.98846 0.99862 0.99852 0.9981 0.97183
ARNT 0.99998 0.99935 1 0.99945 0.99945 0.9999 0.9999
ELF5 0.98992 0.99045 0.98593 0.99641 0.99593 0.99453 0.97089
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Table 6.7: The level of significance corresponding to —l0g10(Pyaiue) calculated using the Wilcoxon-rank test for
the Homo sapiens organism. The null hypothesis is that the AUC distributions between SIGMA and the other
computational methods are the same and the alternative hypothesis is that the AUC distributions are different.
Poatue > 0.05 is in shown in bold.

—l10g10(Pvalue)

TFBS Qresiduals MEME/MAST Entropy Divergence Biostrings MotifRegressor
ELK4 1.58 1.46 5.80 9.41 9.48 9.60
ETS1 3.48 7.55 7.96 7.52 7.51 7.85
NFATC2 0.71 7.61 2.81 5.21 9.48 9.59
MYCMAX 2.25 7.59 2.31 7.83 7.55 9.60
E2F1 1.58 7.12 2.33 3.12 7.56 9.6
MAX 3.73 4.16 2.66 5.13 5.10 6.46
NFIL3 1.20 6.10 1.19 6.05 6.21 7.82
NFE2L2 1.20 4.10 0.80 2.98 4.35 5.11
INSM1 2.33 8.63 1.20 2.08 8.95 10.11
CREB1 2.31 8.47 1.20 1.20 8.47 8.68
Irf2 0.80 6.79 3.37 6.14 6.78 6.89
FOXO03 2.31 6.11 5.63 5.20 6.48 8.26
HLF 3.38 4.45 0.80 1.20 2.08 6.02
NFkappaB 1.20 6.87 3.40 6.50 6.83 6.96
MZF114 7.52 13.95 10.99 3.90 14.11 9.65
ESR1 1.95 6.10 3.74 5.43 6.11 7.81
FOXD1 1.95 1.32 1.20 1.09 7.11 8.22
MZF1513 6.10 3.72 3.41 3.78 3.71 4.32
Apl 4.75 13.51 2.67 3.03 13.5 17.14
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Table 6.8: The level of significance corresponding to —log1o(Pyaiue) calculated using the Wilcoxon-rank test for
the Mus musculus organism. The null hypothesis is that the AUC distributions between SIGMA and the other
computational methods are the same and the alternative hypothesis is that the AUC distributions are different.
Povalue > 0.05 is in shown in bold.

—l0g10(Pvatue)

TFBS Qresiduals MEME/MAST Entropy Divergence  Biostrings MotifRegressor
Pax2 3.40 10.11 0.81 1.20 9.89 11.37
FOXO3 2.66 4.06 4.06 4.06 4.06 4.13
NFkappaB 7.14 8.80 5.65 4.88 9.13 11.08
ARID3A 10.05 2.68 0.17 0.17 2.68 9.5
EBF1 6.78 3.09 3.52 5.61 3.73 14.27
Enl 4.06 4.82 2.66 5.10 5.10 6.47
NR3C1 3.37 5.79 0.80 1.20 4.53 7.14
Egrl 1.20 2.15 2.43 2.14 2.15 7.89
Apl 4.75 4.76 2.66 4.76 4.76 4.89
Runx1 4.75 10.65 10.21 10.21 10.23 12.7
CREBI1 1.57 3.71 3.01 2.66 3.71 3.72
AhrARNT 1.19 3.80 6.35 11.04 11.13 11.36
Pdx1 2.06 9.15 0.80 0.80 9.15 9.59
NFATC2 0.21 0.66 3.67 0.05 4.25 15.46
Lhx3 4.47 5.78 0.80 0.80 5.47 7.36
ARNT 0.80 0.48 0.45 1.78 0.45 11.28
ELF5 2.37 2.20 6.15 9.48 9.48 9.57
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Chapter 7

An R library for the
detection of TFBS

7.1 Introduction

MEET 5.1 is an R-package including 523 models carefully built and a set of tools
for TFBS detection. The models allow the detection of cis-regulatory sequences
in different organisms and the different tools allow a directly comparison among
algorithms on the same dataset. The parametric space can be independently
explored for each one of the included algorithms. The MEET 5.1 R-package is
available as a contributed package from the Comprehensive R Archive Network
(CRAN). A web interface of for the MEET package is also available.

Internal algorithms

The package includes three algorithms, ITEME(Entropy [75] and Divergence
[76]) and Q-residuals [83]. ITEME calculate the information of an aligned set
of binding sites, and then the variation of this information when a candidate
sequence is added to the model. The assumption made is that, when the new
sequence is a binding site, the information gain will be near zero, because the
sequence will be similar to the previous ones, but when the sequence is not a
binding site the information added will be larger. To calculate the variation
of the information, two approaches can be taken: to consider that the position
within the binding sites are independent using a Rényi entropy [96] or to take
into account position interdependences using the divergence.

The Q-residuals detector is based on a principal components analysis (PCA)
of the numerical representation of DNA sequences. The first step is to convert
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the aligned binding sites sequences into a matrix of numerical DNA sequences
through the conversion proposed by [108]. Each nucleotide is placed at the ver-
tex of a regular tetrahedron. Using this conversion, the M aligned sequences of
length L became a M x 3 - L matrix of numerical sequences. Then a PCA is
applied to the numerical sequences matrix.
The error F of the principal components model is a matrix of M x (3L) dimen-
sions that is used to calculate the residuals used to detect the binding sites.

In a similar manner the hypothesis of the method is that, when a new se-
quence is projected into the principal components subspace, binding sites will
have smaller Q-residuals than genomic sequences.

External algorithms

The package allows the use of MDscan and MEME/MAST [4, 6] if these programs
are detected as available on the installation system. The package also includes
a custom implementation of the MATCH algorithm [54] in R, as there no exists
any public version. MATCH uses the information per position in order to define
a similarity score between the motif and a candidate sequence. where Max and
Min are the maximum and minimum possible scores for a candidate sequence.
This score is calculated for the sequence and the core (which is defined as the
5 consecutive positions with more information), then a threshold is set in these
scores in order to differentiate binding sites. The main difference between the
included implementation and the original algorithm in MATCH is that, in order
to calculate the information, the nucleotide probabilities in the background of
the organism have been considered.

MEME/MAST can be downloaded from the MEME suite [7] and MDscan from
the MDscan web page [69]. The current version of MEET 5.1 is prepared to
work with MEME version 4.4.0. and MDscan (2004).

7.2 Architecture of MEET 5.1

The package includes a library of 523 optimized models from 181 motifs extracted
from the JASPAR (2010) core. This consists on the Q-residuals, the Divergence
and the Entropy models of the TFBS that have more than 10 available sequences
in the JASPAR (2010) database and correspond to the organisms: Drosophila
melanogaster, Rattus norvegicus, Mus musculus and Homo sapiens. A relation
with the number of models for each organism and algorithm can be seen in
Table 7.1. The toolkit includes means for html output reports and a web service
is available exposing the detection mode with the constructed motifs.
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Organism Entropy Divergence Qresiduals TOTAL
Drosophila melanogaster 92 92 102 286
Homo sapiens 43 43 43 129
Rattus norvegicus 11 11 11 33
Mus musculus 25 25 25 75
TOTAL 171 171 181 523

Table 7.1: Summary of the models included for each organism and method to
the models library of the MEET 5.1 R-package.

In order to build new models MEET 5.1 offers a training mode. In this
mode, a leave-one-out (l.o.0.) cross validation studies the performance of the
algorithms dependending on their parameters. It calculates the Receiving Ope-
rating Characteristics (ROC) curve and its Area Under Curve (AUC) to choose
the parameters that provide with a high AUC with small variance in each step
of the l.o.o. (see Table 7.2 and Table 7.3).

The training mode is also included in the MEET 5.1 package to allow the
construction of models for motifs not included in the library. The constructed
models can be directly used in the detection mode.

The architecture of MEET 5.1 can be seen in the Figure 7.1. All the implemented
algorithms can be combined using the same input and output parameters.
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Homo sapiens
TF Sequences CQresiduals CEntropy CDiuergence

ELK1 28 0.9988 0.9741 0.9904

RREB1 11 1 1 1
SRY 28 0.9988 0.9892 0.9932

TLX1-NFIC 16 1 1 1
RXRAVDR 10 1 1 0.9987
RORA-1 25 1 1 0.9998
ETS1 40 0.9953 0.9854 0.9947
E2F1 10 1 0.9992 0.9969
NKX31 20 0.9998 0.9948 0.9991
Irf-2 12 1 1 0.9977

Mus musculus
TF Sequences CQresiduals OEntropy CDivergence

PPARgamma-RXRA 31 1 1 1
ARID3A 27 0.9977 0.9977 0.9956
ARNT 20 1 0.9995 0.9995

T 40 1 1 1
ELF5 44 0.9966 0.9965 0.9959
CREB1 16 1 1 0.9996
Hand1-Tcfe2a 29 0.9995 0.9957 0.9964
RUNX1 26 0.9999 0.9960 0.9974
NFkappaB 38 0.9999 0.9995 0.9972
Mycn 31 0.9994 0.9963 0.9964

Table 7.2: List of the first 10 TF for Homo sapiens and Mus musculus with the
performance of each of the algorithms present in the MEET 5.1 models library,
according to Equation 7.1.
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Rattus norvegicus

TF Sequences CQresiduals OEntropy CDi'Ue'r‘gence
AP1 18 0.9959 0.9678 0.9794
CREB1 16 1 0.9990 0.9995
FEV 13 1 1 0.9945
Foxd3 47 1 0.9977 0.9720
Foxql 18 1 0.9994 0.9899
Mafb 15 0.9986 0.9811 0.9761
NFkappaB 38 1 0.9998 0.9952
NR3C1 9 0.9994 0.9881 0.9836
SP1 8 0.9996 0.9928 0.9875
NFATC2 26 0.9974 0.9556 0.9882

Drosophila melagonaster

TF Sequences CQresiduals CEntropy ODivergence
Abd-B 21 0.9975 0.9931 0.9954
BH-2 22 0.9980 0.9907 0.9942
CG15696 33 0.9975 0.9796 0.9908
dl-2 23 0.9989 1 0.9994

Dr 21 1 1 1
opa 21 0.9998 0.9984 0.9970
ro 23 0.9999 0.9975 0.9984
Six4 22 0.9966 0.9802 0.9950
slpl 41 0.9983 0.9960 0.9944
ttk 22 1 0.9974 1

Table 7.3: List of the first 10 TF for Rattus norvegicus and Drosophila melago-
naster with the performance of each of the algorithms present in the MEET 5.1
models library, according to Equation 7.1.
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7.3 Training mode

To allow the use of motifs not included in the library, MEET 5.1 includes a
training mode. Using this mode it is possible to optimize the parameters of a
detector and to output a model compatible with the detection mode. The inputs
of the training mode are the binding sequences and also a background sequence
in fasta format (a DNAmeet.afa background sequence of 1500 nulceotides is in-
cluded in the package). If the binding sequences to construct the model are not
aligned, MEET 5.1 allows the use of two alignment algorithms MUSCLE [31]
and CLUSTALW [121] when they are installed in the computer. MEME [4] can
also be used as a motif discovery algorithm if the input are fasta sequences of
corregulated genes.

The optimization of the parameters is performed using a double l.0.0..This
procedure can be performed for a range of parameters, and the best model is
chosen in a heuristic procedure using Equation 7.1 [83] which takes into account
the highest AUC and also the stability of the detection.

C = WAUC)(1 - o(AUC)), (7.1)

where p(AUC) is the mean of the AUCs for all the steps of the L.o.o. and o (AUC)
is the variance.

The function Construct model calls one of the algorithms to perform the double
l.o.o. Then the ROC curve and the AUC are computed and these results are
used to create the best model. The output is the best model, the AUC and the
ROC curve corresponding to the best parameters.

The next R code is an example of how to run MEET 5.1 in training mode,
using the Q-residuals detector and AP1 binding sites of Homo sapiens. In the
code, TF are the AP1 binding site sequences in fasta format needed to construct
the model, seqin is a DNA background sequence needed for the training mode,
alg is the desired alignment, in this case the sequences are previously aligned,
mode refers to the training or detection, org refers to the background organism
(Homo sapiens), method is the algorithm used and finally vector indicates the
parameters that we want to evaluate. In the example a number of components
Q-residuals from 1 to 8 is studied to look for the optimal model.

library ("MEET")

pathMEET <<- system.file( , package = )

TrainingResult <<- MEET(TF = paste(pathMEET, ),
seqin = paste(pathMEET, ),
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alg = 5

mode = ,

org = ,
method = ,
vector c(1:8))

The output is a list that can be divided in three parts: two generic parts
which have the consensus sequence of the motif and the input parameters of the
MEET function (organism, algorithm, etc.) and the third part that contains the
results.

print(TrainingResult$$Consensus)
[1] ||w|| Ilbll Ilhll ||n|| llkll ||V|l ||r||
print (TrainingResult$Results$model)

The results part is also a list which incorporates the chosen model, the AUC
for the range of parameters studied and the ROC curve of the chosen model.

model
Importance of component(s):

PC1 PC2 PC3 PC4 PC5 PC6 PC7
R2 0.2844 0.1813 0.1520 0.1218 0.08648 0.0764 0.0432

Cumulative R2 0.2844 0.4657 0.6178 0.7396 0.82608 0.9025 0.9457
21 Variables
18 Samples
0 NAs (0O %
7 Calculated component(s)
Scores structure:
[1] 18 7
Loadings structure:
[1] 21 7
Numerical Matrix

[,1] [,2] [,3]
0.00000 0.00000 1.0000
-0.47140 .81650 -0.3333
.47140 -0.81650 -0.3333
0.94281 .00000 -0.3333
.04243 .07348 0.0600
.00000 .00000 1.0000
.47140 .81650 -0.3333

P I H Q>
| |
o O o
O O O O O O

(e]
|
o
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g -0.47140 -0.81650 -0.3333
t 0.94281 0.00000 -0.3333
JacksonPars$h0

0.2955

JacksonPars$x1

1.54

JacksonPars$x2

-0.925

JacksonPars$x3

3.987

ncolTFBS

7

The AUC and the ROC curve can be used to compare the performance of

different detectors, and also to compare the AUC of the studied detector in the
range of studied parameters. This allows the user to have another criteria to
choose the optimal model and to build a custom motif detector.
The chosen model can be easily recovered from the MEET results. If the user
prefers to visualize how the performance of the detector changes as the main
parameter is changed, a simple boxplot of the AUC can be helpful to visualize
the mean and the variance of the AUC using each one of the parameters. In
the example above, with the Q-residuals detector and the AP1 motif from Homo
sapiens, the following text will recover the model and plot the AUC for the
number of principal components going from 1 to 10 as it can be seen in the
equation 7.2.

As an example, the training mode of MEET 5.1 R-package can be used to
compare the performance of the different searching algorithms in 9 transcription
factors from the JASPAR database [17]: AP1, E2F1, ETS1, HLF, NFLI3 from
Homo sapiens, ARNT, FOXO3, NFxB, SPZ1 from Mus musculus and ROX1
from the organism Saccharomyces cerevesiae from TRANSFAC 7.0 (2005) data-
base [135].

As a background, a promoter sequence of each one of the organisms has been
chosen randomly. For human and mouse the background has been extracted
from Eukaryotic Promoter Database (EPD) [99], and the EPD version based on
the EMBL release 105 (sept 2010) has been used. The range of nucleotides goes
from the positions —1000 to 500 relative to the transcription start site (TSS)
from Igk'T gene in mouse and RPS9P2+ gene in humans. In Saccharomyces
cerevesiae the nucleotides corresponding to the positions 44730-46230 in chro-
mosome 1 were used, and they can be found in EMBL chromosome database
[53], release 94 (march 2008).
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Figure 7.2: Boxplot of the AUC for Q-residuals detector and the AP1 motif from
Homo sapiens.

The range of parameters to study in Q-residuals is a set from 1 to 10 principal
components. In MATCH, the Core Similarity has been explored from 0 to 0.95
each 0.05, and, finally, in both Divergence and Entropy from ITEME the values
q=0.1,0.2,0.5,1, 2 have been studied. The results can be observed in Table 7.4
where the mean AUC for all the algorithms is shown.

7.4 Detection mode

The detection mode of the MEET R-package can be used to look for binding
sites within genomic sequences. The input can be (1) one of the models included
in the library (2) one model constructed using the training mode (3) the para-
meters needed to construct one model. As in the case of the training mode, the
generic function Detection() calls a specific function for one of the algorithms.
It can be directly a prediction function which looks for binding sites or, in the
case the inputed values are the parameters, first a model function. When the
prediction function has looked for binding sites within the inputed problem se-
quence, the ouput given is: the sequences of the binding sites found, their p-value
and their position within the larger sequence. If the searched binding sites be-
long to the models included in the MEET library the found sequences can also be
visualized with a generated HTML file, using the function writeResultsHTML().
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Comparison Results

TF Qresiduals | Entropy | Divergence | MATCH | MAST
AP1 0.9893 0.9921 0.979 0.9868 0.9925
E2F1 0.9998 0.9979 0.9992 0.9995 0.9999
ETS1 0.9965 0.9956 0.9972 0.9922 0.9931
HLF 0.9985 0.9974 0.9965 0.9953 0.9688
NFLI3 0.9993 0.9992 0.9997 0.9980 0.9999
ARNT 0.9998 0.9998 0.9998 1 0.9999
FOXO3 0.9914 0.9747 0.9663 0.9765 0.9947
NFxB 0.9998 0.9747 0.9663 0.9765 0.9865
SPZ1 0.9944 0.9931 0.9960 0.9910 0.9913
ROX1 0.9999 0.9992 0.9941 0.9997 0.9937

Table 7.4: Table with the comparison of the performance of the detectors in-
cluded in MEET 5.1 using 10 sets of transcription factor binding sites in JAS-
PAR and TRANSFAC database and backgrounds corresponding to promoters of
each organism (human, mouse and yeast). The result shown is the mean of the
AUC for each TFBS and each method. The best method depends on the binding
sites.

In the next example, the model obtained with the training method and the
Qresiduals algorithm shown above is used for the detection of the AP1 binding
sites in an Homo sapiens promoter. As the output of the training mode is directly
used as a model for the detection mode there is no need to include the parameters
of the algorithm. In the example, segin is a DNA sequence with unknown binding
sites, mode is detection, model refers to the built model using the training mode
in the example above, threshold is the desired p-value threshold and method is
the desired algorithm, in this case Q-residuals.

testAP1 <<- MEET(TF = paste(pathMEET, , Sep = ),
seqin = paste(pathMEET, ),
mode = ,
alg = 5

model = FinalModel,
threshold = 0.1,
method = )

print (testAP1$$Results)

Position  Value Direction Sequence
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1 "76" "0.089673" "t "TGAGTAAA"
2 797" "0.089673" i "TGAGTAAG"

In the next example we used the detection mode of the MEET 5.1 package in
order to find annotated some TFBS in the UCSC Genome Browser on Human
[28] database, to see Table 7.7. For each TF, we used candidate sequences from
—1000 to 1000 relative to TFBS position, to see Table 7.5. Each background
sequence has been extrated from Ensembl database version 2012 [35]. A brief
summary of the candidate sequence for each transcription factor (TF) is shown
in Table 7.5.

TF Reference Genome Chr Start End
PPARG GRCh37 1 1.533.773  1.535.795
SRF GRCh37 1 1.321.188 1.323.205
FOX08 GRCh37 1 1.629.932 1.631.945
Paz6 GRCh37 1 1.607.019 1.609.039

Table 7.5: Candidate Sequence description.

Position Value Direction Sequence
1 "1003" "o" "f "TGTAAACAT"
2 "291" "0.0004983" "f" "AGTTCACAC"
3 "686" "0.0009965" "f" "AGTAACCAG"

In Table 7.6, we have compared the results using some methods included in
the library and the results obtained using another motif detection toolkits such
as the rtfbs package [90] and TFBS::Site perl module [65]. The results show that
MEET-package is comparable with rtfbs package and TFBS::Site perl modul
in all the binding sites studied. The Detection Rank and the Run Time change
according to TF and method considered, but in all the cases have the same order
of magnitude.

A web service of the detection mode is publicly available through http://
sisbio.recerca.upc.edu:8080/. This platform is mainly based on the Python
language and is developed using a web framework named web.py (http://webpy.org/ ).
In order to access R from Python in a simple and robust way it is used the RPiy?
package. The web pages are created in HyperText Markup Language (HTML)
and, to make the user interface dynamic and user friendly, it is used JavaScript,
Asynchronous JavaScript And XML (AJAX) and JQuery (hitp://jquery.com/ ),
are employed to make the result similar to a dynamic online application rather
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TF Method Score Detection Rank  Run Time (s)
MEET (Entropy) 3.0 % 103 7 0.23
Paz6 rtfbs 21.46 6 0.75
TFBS::Site 7.36 2 0.48
MEET (Qresiduals) 0.96 10 0.32
PPARG rtfbs 29.58 7 0.15
TFBS::Site 4.16 6 0.49
MEET (Divergence) 1.0% 1073 3 0.49
SRF rtfbs 19.59 2 0.15
TFBS::Site 6.8 4 0.52
MEET (Entropy) 0 1 0.18
FOX03 rtbs 16.83 1 0.17
TFBS::Site 12.15 1 0.49

Table 7.6: TFBS detection through MEET 5.1, rtfbs and TFBS::Site perl mo-
dule. Detection Rank is the order that have been found the TFBS according to
each method.

than a static Web site. The Figure 7.3 shows the configuration step where the
user needs to upload or paste a DNA sequence in FASTA format, select one
or more models provided by the application (Transcription Factors), select the
detection algorithm (Method) and select the p-value used as the threshold in
detection (Threshold). The models provided by the application are grouped by
organism and each organism contains a set of TF that can be selected.
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51
CTGATA E E IATCG CTGATA

~ Parameters

Paste the FASTA sequence or upload it

Upload Seq Clean Seq

Transcription Factors:

» DrosophilaMelanogaster
» HomoSapiens
+ MusMusculus

» RattusMNorvegicus
Method: | Entropy =
| |
Threshold:

Get TFBS

» TFBS Results

Figure 7.3: Initial view of the web of the MEET 5.1 R-package. The user can
choose several motifs for each organism, paste or upload a sequence in .fasta
format and then then the package will look for binding sites within the sequence.



TF Chr Organism Position TFBS Sequence
PPARG 1 Homo sapiens 1.858.134 ATGTAGGCCACCAGCAGGCA
SRF 1 Homo sapiens 1.322.191 ACCTAATATAG
FOXO03 1 Homo sapiens 1.630.932 TGTAAACA
Pax6 1 Homo sapiens 1.858.134 TGTAAACA

Table 7.7: HMR conserved Transcription Factor Binding Sites from UCSC Genome Browser on Human Feb. 2009.
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Chapter 8

Results and Conclusions

8.1 Summary of Results

The characterization of the TFBS through the uncertainty measurement pro-
vides information about the variance of the set of nucleotide {A, C', G and T' }
in each binding sites position. Classically, this uncertainty has been measured by
means of Shannon entropy. A generalisation of Shannon entropy has been pro-
posed to characterize the transcription factor binding sites called Rényi entropy.
This measurement depends on the Rényi order (¢). From this measurement,
we have estimated the redundancy profile. Biologically, the redundancy profile
gives information on how much a particular position has been conserved on the
sequences. As we have visualized, the redundancy profile depends on the Rényi
order. As  increases, the noise in the redundancy also increases. With low q
values the redundancy signal also decreases. Hence, the redundancy profile of
the transcription factor depends on the Rényi order. We have just concluded
that the optimal ¢-value is suggested as a tradeoff between the noise included
in the redundancy signal and the attenuation of the same one. The Rényi or-
der allows to modulate the amplitude and the number position that belong to a
binding site. The nucleotides included in the binding profile are specific for each
transcription factor due to the binding mechanism.

A first approximation, we have presented a non-linear method to detect the
transcription factor binding sites assuming independency between positions in
the binding sequence. The algorithm evaluates the variation on the total Rényi
entropy of a set of sequences when a candidate sequence is assumed to be a
true binding site belonging to the set. The parametrization provides two main
advantages. First, it leverages the strong and weak symbol probabilities when
computing the total entropy of the binding sequences, obtaining a detector with
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variable sensibility. Secondly, the optimization of Rényi order allow to determi-
nate the positions of the site involved in the binding process. Hence, the Rényi
order depends on the TFBS characteristics and has to be adjusted for each
TFBS. The results obtained has shown better performance than MDscan, which
is a method based on deterministic models. The performance of the detector in
comparison MEME depends on the binding site structure.

To consider the correlation among binding sites position, we have applied
a linear and non-linear model to represent the set of binding sequences. The
linear model is based on the residuals of the covariance of the numerical TFBS.
This approximation has been demonstrated to be an effective method to detect
TFBS. The performance has been compared against external algorithms. The re-
sults shown that when there are not correlation between positions, this method
are comparable with results of PSSM methods. As the number of correlation
between binding sites positions increases, the Q-residuals performance improves
the results obtained for the other methods when the number of sequences is
small, but it shows a larger sensitivity to the number of positions. These results
prove that covariance can capture position interdependences in TFBS, and that
a covariance-based model can be useful to detect TFBS within large databases.
In general, the number of principal components that explain all the variance are
between 1 and 4. This methodology shows a larger sensitivity to the number
of positions, but it shows a significantly improvement on the performance with
when the number of sequences is small. Q-residuals need more positions than
Motifscan or PSSM to decrease the number of false positives. Instead, the com-
putational time of the Q-residuals detector and PSSM based methods we found
that Q-residuals is faster, in contrast with other methods that take into account
interdependences which usually have a high computational cost.

The non-linear is based on the idea that total information content in a set of
objects can be computed by means of divergence measurements. The informa-
tion of a set of sequences is measured by means of a-Divergence which considers
dependence among binding site positions. We have observed that the number
binding sites correlated and its amplitude can be modulated by g-value (or « pa-
rameter). Large ¢-value will show large number of binding site dependence at the
cost of introducing additional noise. The performance of the a-Divergence detec-
tor has been compared against a MEME/MAST and Rényi entropy. The results
shown a-Divergence has a better behavior than the other detectors. Therefore,
assuming position dependence modulated by g-value helps to improve over En-
tropy method and MEME/MAST. Given one Transcription Factor Binding Site,
we can be observed how the number of true positives and false positives depends
on the g-value. The best g-value can be chosen for the detection according to
the cost criterion established between True Positive and False Positive and the
area under convex surface maximum.
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Both non-linear models, Rényi entropy and a-Divergence, have been inte-
grated in one detector called SIGMA (Sequence Information Gain based on Motif
Analysis). This new methodology allows us to detect cis-regulatory sequences
with maximum performance regarding the conservation and the co-variability
observed in the positions of the training set of sequences. The method focusses
on the variation in these information measures when a new sequence is assumed
to belong to a training set of sequences with known binding properties. SIGMA
has been characterised on the detection problem for a large set of transcription
factors and compared with different motif detection algorithms. AUC distribu-
tions have been calculated which show that there is a statistically significant
difference between SIGMA performance and the performance of the other me-
thods. In approximately 70% of the cases considered, SIGMA has exhibited
better performance properties, at comparable levels of computational resources,
than the methods with which it was compared.

All these tools for the detection of cis-regulatory sequences have been pub-
lished into a R-packages. The MEET 5.1 library consists in 523 motif models
from four different organisms Drosophila melagonaster, Rattus norvegicus, Mus
musculus and Homo sapiens. The models have been built using three different
algorithms, Q-residuals, Rényi Divergence and Rényi Entropy. This package in-
cludes three detectors and can access to some external detectors that can be
executed and controlled directly from MEET 5.1. The package also includes an
interface to external alignment algorithms. All the internal and external algo-
rithms can be combined in order to optimize the best detection possible. The
training mode of MEET 5.1 allows the direct comparison between algorithms,
which can be carried out using not only the ROC curves and the AUC but also
the error associated to them. MEET 5.1 has as an output the optimal model,
which can be used in the detection mode in order to find unknown binding
sites within a large sequence. The output of MEET 5.1 also allows the user
to choose any model to run the detection mode. The package is documented
and freely available from the Comprehensive R Archive Network (CRAN) at
http://CRAN.R-projct.org., and A web interface of for the MEET package is
also available

8.2 Conclusions

The research presented here has contributed to improve the computational rep-
resentation and discovery of transcription factor binding sites in the following
aspects.

e We have applied parametric uncertainty measurement, Rényi Entropy and
Rényi Divergence, to evaluate the complexity of the nucleotides distribution
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in the conserved sequence. To evaluate the variance of the set of nucleotide
in each binding sites position, we have corrected the effect of finite sample
size. The Rényi order modulates the amplitude and the number of positions
involved to the binding sites. We have suggested an optimal g-value as
a trade-off between the noise included in the redundancy signal and the
attenuation of the same one.

We have proposed a parametric detector using the Rényi Entropy for fin-
ding regulatory sequences in promoter regions. This measurement allowed
us to build variable-sensitivity detectors modulated by the Rényi order.
This methodology assumed the independence among binding sites. This
approximation has shown better performance than others algorithms when
the correlation between binding sites is null.

The correlation among binding sites positions have been considered through
linear and non-linear model.

Q-residuals used a linear embedding to represent the set of binding site se-
quences and employed a residuals-based approach as the detection statistic.
Q-residuals detector performs significantly better and faster than MATCH
and MAST in most of the studied transcription factor binding sites. Com-
pared to Motifscan, a method that take into account interdependences,
the performance of the QQ-residuals detector is better when the number of
available sequences is small.

a-Divergence is a non-linear model based on the variation on the correla-
tion among binding site position when a new sequence is added to the set.
We have observed that the number binding sites correlated and its ampli-
tude can be modulated by g-value (or « parameter). The best g-value can
be chosen for the detection according to the cost criterion established bet-
ween True Positive and False Positive and the area under convex surface
maximum. Given an optimal g-value, the performance a-Divergence has a
better behavior than Rény algorithm and MAST.

Both non-linear models based on Information Theory has been integrated
in one detector called SIGMA. This new approach aims at a trade-off bet-
ween the good generalisation properties of pure entropy methods and the
ability of position-dependency metrics to improve detection power. In ap-
proximately 70% of the cases considered, SIGMA has exhibited better per-
formance properties, at comparable levels of computational resources, than
the methods with which it was compared.

A set of tools was coded as an R package named MEET 5.1. The core
of the package relies in 523 models carefully built and a set of tools for
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cis-regulatory detection. The models allow the detection of cis-regulatory
sequences in different organisms and different tools allow a directly compa-
rison among algorithms on the same dataset. The package is documented
and freely available from the Comprehensive R Archive Network (CRAN)
at http://CRAN.R-projct.org.



Chapter 9

Publications

9.1 Indexed Journal Papers

e J. Maynou, E. Pairé and A. Perera.Sequence Information Gain based
on Motif Analysis.BMC Bioinformatics 2015, 16 :377 (9 November 2015)

e E. Paird, J. Maynou, S. Marco and A. Perera. A subspace method for
the detection of transcription factor binding sites. Bioinformat-
ics (Oxford, England), 28(10):1328-35, May 2012. ISSN 1367-4811. doi:
10.1093/bioinformatics/bts147.

e J.Maynou, M. Vallverdd, F. Claria, J.J. Gallardo-Chacén, P. Caminal and
A. Perera. Computational detection of Transcription Factor Bin-
ding Site using a parametric entropy measure. IEEE Trans. Infor-
mation Theory, vol. 56, no. 2, pp: 734-741, Feb. 2010.

9.2 International Conference
International Conferences

e L. Pairé, J. Maynou, M. Vallverdi, P. Caminal, S. Marco and A. Per-
era, MEET: Motif Elements Estimation Toolkit. 33%" Annual In-
ternational Conference of the IEEE Engineering in Medicine and Biology
Society.

e J. Maynou, M. Vallverdu, F. Claria, J.J. Gallardo-Chacén, P. Caminal and
A. Perera. Transcription Factor Binding Site Detection through



116

Publications

Position Cross-Mutual Information variability analysis. 315 An-
nual International Conference of the IEEE Engineering in Medicine and
Biology Society.

J. Maynou, M. Vallverdd, F. Claria, A. Perera and P. Caminal. Detec-
tion of transcripction factor binding sites using Rényi Entropy.
8th IEEE International Conference on Biolnformatics and BioEngineering,
2008.

9.3 National Conferences

J. Maynou, E. Pairé, R. Massanet, M. Vallverdu, P. Caminal y A. Perera.
Caracterizacion y andlisis de las interacciones de regulaciéon entre
los factores de transcripcion y los genes, XXIX Congreso Anual de
la Sociedad Espanola de Ingenierfa Biomédica.

J. Maynou, M. Vallverdd, P. Caminal y A. Perera. Algoritmo de bisqueda
de secuencias cis-regulatorias basado en el analisis del incremento
de la informacién mediante la divergencia de Rényi, XXIX Con-
greso Anual de la Sociedad Espaniola de Ingenieria Biomédica.

E. Pair6, J. Maynou*, M. Vallverdd, J.J. Gallardo-Chacén, P. Caminal, S.
Marco and A. Perera. MEET: Motif Elements Estimation Toolkit,
XXVIII Congreso Anual de la Sociedad Espanola de Ingenieria Biomédica.

J. Maynou, M. Vallverdu, F. Claria, J.J. Gallardo-Chacén, P. Caminal and
A. Perera. Deteccién de los puntos de unién de los factores de tran-
scripcién mediante el analisis de la variabilidad de la informacion
mutua cruzada. XXVII Congreso Anual de la Sociedad Espanola de
Ingenieria Biomédica.

J. Maynou, M. Vallverdu, F. Claria, A. Perera and P. Caminal, Deteccién
de los puntos de union de los factores de transcripcion mediante
la medida de la entropia de Rényi . XXVI Congreso Anual de la
Sociedad Espanola de Ingenieria Biomédica.

9.4 Software published on open source license

MEET R package containing several motif model and algorithms to detect
transcription factor binding sites (Chapter 6). The package is available as a
contributed package from the Comprehensive R Archive Network (CRAN).
A web interface of for the MEET package is also available.
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Chapter 10

Appendix A: Database
Description

10.1 Transcription Factor Databases

The transcription factor databases store information about transcriptional regu-
lation. These databases are classified according to the kind of stored information
and the considered organism. A brief summary of the different databases is shown
in table 10.1 '

The dataset used in this thesis comes from TRANSFAC and Jaspar databases.
TRANSFAC? is a database about eukaryotic transcription regulating DNA se-
quence elements and the transcription factors binding to and acting through
them [135]. All information about transcription factors is classified in six tables:
SITES, GENE, FACTOR, CELL, CLASS and MATRIX. SITE gives informa-
tion on (regulatory) transcription factor binding sites within eukaryotic genes.
GENE gives a short explanation of the gene where a site (or group of sites) be-
longs to. FACTOR describes the proteins binding to these sites. CELL gives
brief information about the cellular source of proteins that have been shown to
interact with the sites. CLASS contains some background information about
the transcription factor classes, while the MATRIX table gives nucleotide distri-
bution matrices for the binding sites of transcription factors, as shown in table
10.2.

On the other hand, JASPAR? is open-access collection of transcription factor
binding site (TFBS) matrices [128]. JASPAR contains different collections of

Lhttp://bioinformatics.wikidot.com/transcription-factor-databases. Last consulted 2009
2http://www.gene-regulation.com.
Shttp://jaspar.binf.ku.dk/.



119 Appendiz A: Database Description
Table 10.1: Transcription Factor Databases
Database Organism Comment Access
Transfac eukaryotic Cis-acting regulatory DNA ele- Registration
ments and transacting factors
Jaspar eukaryotic Trasnscription Factors modelled — Free
as matrices
TRRD Eukaryotic Transcription  Regulatory Re-  Free
gions Database
TRED Human, Transcriptional Regulatory Ele-  Free
mouse, rat ment Database
Protein eukaryotic Database of Transcription fac- Registration
Lounge tors of humans and others organ-
sms
PLACE Plants Database of Plant Cis-acting Re-  Free
gulatory DNA elements
SCPD Yeast The Promoter Database of Sac- Free
(S.cerevisiae) charomyces cerevisiae
EPD FEu-  eykaryotic Non-redundant collection of eu- Free
karyotic karyotic POL II promoters
promoter
database
RegulonDB Prokaryotic Database of Transcription factor Free
(E. coli) of Escherichia coli

Table 10.2: Information contents of TRANSFAC release 7.0 (2005).

Tables Entries
SITE 7915
GENE 2397
FACTOR 6133
CELL 1307
CLASS 50
MATRIX 398
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TFBS models derived by diverse approaches, but only three subsets is applying
for genome analysis.

1. The JASPAR CORE database contains a curated, non-redundant set of
profiles, derived from published collections of experimentally defined trans-
cription factor binding sites for different organisms.

2. The JASPAR FAM partition houses familial 15 binding profiles (also re-
ferred to as consensus profiles) for 11 major structural classes of factors.
The collection facilitates prediction of TF binding domain structures based
on profile information alone.

3. JASPAR phyloFACTS. This new subset of the database contains a set of
matrices that are derived from evolutionarily conserved sequences in the
regulatory regions of mammalian genes.
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Appendix B: Glossary

10.

Adenine is one of four chemical bases in DNA which encode the cell’s
genetic instructions. Adenine forms chemical bonds with thymine (T).

Amino Acids are a set of 20 different molecules used to build proteins.

Binding site is a region on a protein, DNA, or RNA to which to specific
other molecules and ions form a chemical bond.

bp abbreviation of nucleotides or base pairs.

Cis-regulatory element is a region of DNA or RNA that regulates the ex-
pression genes. A cis-element may be located in several regions of the DNA:
upstream or downstream of the gene’s coding sequence and introns. Gen-
erally, a cis-regulatory elements are binding sites for several transcription
factors.

Chromosome is an organized structure of DNA located in the nucleus of
the cell.

Cytosine is one of for chemical bases in DNA which encode the cell’s
genetic instructions. Cytosine forms chemical bonds with guanine (G).

DNA Deoxyribonucleic acid. It is the molecule that carries genetic in-
structions in all living organisms.

. DN A-binding domain is a protein domain that may contain one or se-

veral motif that recognize DNA.

DNA replication is the process by which DNA is duplicated.
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11. Enhancer is a region of DNA located in the promoter domain that en-
hances the transcription levels of genes.

12. Exon is the portion of a gene that codes for amino acids.

13. Gene is the basic unit of inheritance.

14. Gene expression is the process by which the information encoded in a
gene is used for the protein synthesis.

15. Gene regulation is the process of control of the gene information.

16. Genome is the set of hereditary material in a living organism.

17. Genotype is an individual’s collection of genes.

18. Guanine is one of for chemical bases in DNA which encode the cell’s
genetic instructions. Guanine forms chemical bonds with cytosine (c).

19. Insulator is a region of DNA located in the promoter domain that its
main function is enhancer-blocking.

20. Intron is the portion of a gene that does not code for amino acids.

21. Nucleic acids are macromolecules that its main functions are storage and
expression of genetic information.

22. Nucleotide is the basic element of nucleic acids (RNA or DNA). Nu-
cleotide is formed by a sugar molecule attached to a phosphate group and
a nitrogen-containing base.

23. Promoter is a sequence of DNA located near the genes. Generally, pro-
moter is upstream of the gene that regulates. Promoter is an essential
element in the transcription process.

24. Protein is a amino acids sequence essential for all living organisms. Pro-
teins have to do several functions in the cell: structural, mechanical, bio-
chemical and cell signaling.

25. RNA Ribonucleic acid.

26. Silencer is a region of DNA located in the promoter domain that is capable
of binding transcription regulation factors termed repressors.

27. Thymine is one of for chemical bases in DNA which encode the cell’s
genetic instructions. Thymine forms chemical bonds with adenine (A).

28. Transcription is the process of making an RNA copy of a gene sequence.
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29. Transcription Factors are proteins that bind to specific DNA sequences
to regulate transcription.

30. Transcription Factor Binding Sites is a specific region of the DNA
that binds with a transcription factor.

31. Translation is the process of translating messenger RNA to an amino
acids sequence.
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