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Abstract

In this thesis we study feature subset selection and feature weighting algorithms.
Our aim is to make their output more stable and more useful when used to train a
classifier. We begin by defining the concept of stability and selecting a measure to
asses the output of the feature selection process. Then we study different sources of
instability and propose modifications of classic algorithms that improve their stability.
We propose a modification of wrapper algorithms that take otherwise unused information
into account to overcome an intrinsic source of instability for this algorithms: the feature
assessment being a random variable that depends on the particular training subsample.
Our version accumulates the evaluation results of each feature at each iteration to average
out the effect of the randomness. Another novel proposal is to make wrappers evaluate
the remainder set of features at each step to overcome another source of instability:
randomness of the algorithms themselves. In this case, by evaluating the non-selected
set of features, the initial choice of variables is more educated. These modifications do not
bring a great amount of computational overhead and deliver better results, both in terms
of stability and predictive power. We finally tackle another source of instability: the
differential contribution of the instances to feature assessment. We present a framework
to combine almost any instance weighting algorithm with any feature weighting one. Our
combination of algorithms deliver more stable results for the various feature weighting
algorithms we have tested. Finally, we present a deeper integration of instance weighting
with feature weighting by modifying the Simba algorithm, that delivers even better
results in terms of stability.





Chapter

1
Introduction

This thesis deals with the so-called feature subset selection (FSS) and feature weighting
(FW) problems in supervised inductive learning scenarios. The generic purpose of FSS is the
improvement of the inductive learner, either in terms of learning speed, generalization capacity
or simplicity of the representation by identifying the features that are of interest for the
learning purposes. A FSS algorithm should be able to identify the optimal subset of features
containing all the strongly relevant features (always necessary for an optimal subset) and a
minimal subset of the weakly relevant (needed for class discrimination in some situations)
without any redundant (features whose information is subsumed by some other feature or
group thereof) or irrelevant (not useful for the learner) features. FW, on the other hand,
aims at assigning weights to features proportional to their importance.

Traditionally, the main goal of FSS techniques in the classification case is to improve
predictive accuracy. Bearing in mind that the values of the criterion guiding the quest for
the best feature subset are realizations of a random variable, we claim that there is another
major challenge in both FSS and FW: model stability. This is particularly important in
greedy wrapper sequential FSS methods because the decision as to which feature should be
preferred at each step involves uncertainty. A different feature choice at an early step may
completely change the search path and lead to a substantially different set of features, as it
often happens. In some real-world application domains (such as biomedical ones), stability of
the selected or weighted features may be of paramount importance.

The focus of the thesis is to measure, study and eventually improve the stability and
accuracy of a classifier trained with the results obtained by FSS and FW processes. We do
so from a variety of perspectives and provide several modifications to well-known filters (using
a model-independent criterion based on prior knowledge of the data) and wrappers (using a
specific classifier to assess the usefulness of the feature sets) methods. All of our improvements
aim to maximize the usage of the available data at each step of the process.

3
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1.0.1 Characterization of the stability problem

Ill-posed problems are problems for which a solution is either non-uniquely determined, non-
existent or unstable under data perturbations. Typical examples of ill-posed problems abound
in mathematics, such as integral equations of the first kind and many inverse problems, like
systems of linear equations [77]; these problems are frequently encountered in science and
engineering. The term itself was introduced by Hadamard who investigated problems in
mathematical physics.

In this thesis the focus is in the stability of FSS algorithms, where we have identified
several sources of instability :

1. The algorithms are run on a random sample; by changing the sample different results
will be obtained.

2. The evaluation measure is computed in different views of the random sample (this is
known as resampling); by changing the view different results will be obtained.

3. The algorithm may have a randomized aspect as part of its execution: e.g. the relief
algorithm chooses observations at random from the sample; different executions will
yield different results.

4. The algorithm may be unstable in nature in the above sense: in the simplest situation,
the addition or elimination of a single observation to/from the sample may yield different
results;

5. There is an inherent lack of relevant features among those measured in the data sample.

Another common assumption (at least, an implicit one) is that classification accuracy will
change smoothly with changes in the training data. This is typically not the case, particularly
in small sample problems, where the presence or absence of certain data points can have a
large impact on model generation, selection and assessment. In the end, all causes except the
last one are amenable to study and ultimate control, which provides support for the goals of
this thesis. Note that in our view the outcome of a FSS algorithm is a random set, a random
vector composed of non-independent binary variables.

A key issue is found in the fact that different data points contribute differently to the
importance of features. Those that contribute a lot will positively contribute to the obtention
of more unstable solutions. Therefore a key issue is to be found in the interplay between the
method used for computing the observation weights and that used for computing the feature
weights. Traditionally, these two processes have been treated as separate and there are several
approaches in the literature; however, they are not independent and hence they should be
treated in a more unified way. Last but not least, the chosen learner could eventually make
use of both sets of weights to fit the data giving more importance to some features and to
some data points.

In summary, the ideas developed in this thesis ultimately advocate that getting additional
sources of information from the available data brings benefits in the stability of the obtained
models, many times without paying a toll in accuracy. This document is structured in chapters
focusing on specific points of view regarding FSS and FW stability and classification accuracy
of a learner trained with the resulting feature subset or feature weights.
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1.0.2 Hypothesis to be tested

Here we break the main goal in this thesis (i.e. having more reliable feature evaluations in
supervised learning) into different building blocks and formulate some hypotheses for each one
that may contribute to the overall goal. We have structured these building blocks according
to which of the sources of instability described above they are addressing. These building
blocks include the different parts of the FSS process:

1. The way instances are selected, weighted and used

2. The way features are selected

3. The way selected feature sets are evaluated; this includes their ability to deal with
irrelevant and redundant features and the use made of the information that is being
computed along the process

4. The outcome of the process, which can be selecting a subset of features, weighing features
or a combination of weighting instances and features

Random samples

The first source of instability described above was the one introduced by running the FSS
algorithms on different subsamples (e.g., in cross-validation partitioning). One of the topics
we tackle in this work is to study the existence of a relationship between feature subset
redundancy and the stability of the resulting subsets. The motivation for this hypothesis
is the following: according to [34], there is a subset of features (the strongly relevant) that
should always be included in the selected subset; some of them (the weakly relevant) should
only be included in certain situations. Our hypothesis here is that each of these weakly relevant
features should only be included if is not redundant to the rest of the selected features. The
problem is that since feature redundancy indicates that there is a certain degree of overlap
among the information some features provide about the class we are trying to predict, there
is no unambiguous way of choosing them. As an example, consider the extreme case of two
identical features. If the aim of FSS is to find a minimal subset of features with maximum
predictive power about the class, choosing both of them would not be optimal. Yet the
decision on which to choose is absolutely arbitrary. In real life problems we will rarely find
two identical features but one can find subsets of features that are almost equivalent.

With this scenario we will test the following hypothesis: a larger amount of feature
redundancy leads to more unstable results.

Chapter 4 introduces theoretical work on redundancy: a Markov Blanket based measure
that should indicate the index of redundancy a feature has with a given feature set. This can
afterwards be useful to study the effects redundancy has on FSS and FW stability. We also
provide initial theoretical work on feature importance and how it related to FW stability.

Intrinsic instability

Here we analyze a different approach to intrinsic instability: the effect of irrelevant features.
In some cases by adding more and more of these features we can introduce intrinsic instability.



6 CHAPTER 1. INTRODUCTION

Consider taking the popular FW algorithm Relief. This algorithm selects features that help
discriminate near instances using the average of feature differences to compute the distances;
let us consider again an extreme case. Imagine we have thousands of irrelevant features
and only a few relevant ones, which could be a quite realistic scenario in some biomedical
settings. Our hypothesis: using all the features for distance calculation may lead
to arbitrary distances between features when the number of irrelevant features
is vey high. The relevant features may make a very small contribution compared to the
vast number of irrelevant ones. Hence, adding more and more irrelevant features can mislead
Relief and, in the end, render it almost useless.

We analyze this in Chapter 5 and propose some modifications to overcome this limitation.
We analyze different distance metrics in addition to the original one and study the effect they
have in accuracy, redundancy detection and stability. We also test ways to use the weights
computed at each step to influence the distance calculation as the Simba algorithm does.
We propose a novel modification to both algorithms to improve their stability consisting in
incrementing the feature weights’ contribution to distance calculations over time to minimize
the impact of randomly choosing the first instances.

An additional example is found in sequential wrapper FSS algorithms. These algorithms
use an inducer to assess the feature subset quality at each iteration and add (or subtract) one
feature at each iteration, completely forgetting about the feature assessments done in previous
iterations. Consider, for example, an algorithm that sequentially subtracts features. In the
early iterations we are evaluating most of the features. Assume that feature xi has survived
until the n-th iteration. At this point xi has been evaluated n times together with the rest
of the features so we have some good insights on whether xi was useful when combined with
the previous subsets of features. Our hypothesis: taking into account the accumulated
evidence about the features in previous iterations will deliver better and more
stable results. Knowing that feature assessment is a random variable, taking various values
(the evaluations in all the previous iterations) into account the results will tend to average
leading to more stable results.

In Chapter 7 we show that by modifying existing sequential feature selection algorithms
to take the accumulated evidence into account, the resulting algorithms do improve in classi-
fication accuracy and stability.

Random parts of the algorithm

A fundamental characteristic of sequential FSS (SFSS) algorithms is that at each step of
the process they evaluate a subset of features. In the case of sequential forward selection
algorithms, they start with an empty set of features and add one feature to this set at each
iteration. Thus, at early stages, these algorithms do not take into account the intricate
relationships that may exist among features. In particular, at the first iteration, they are
evaluating each feature on their own. In problems with a high grade of dependency among
features this should not be a good idea. Let us devise again an example to demonstrate how
this leads to instability (and to lower performance). Assume we have a three-feature problem
like the one in Table 1.1 below:

In this problem we start evaluating each of the 3 features and every one of them is cor-
related 3/4 of the time with the class. With this setup every feature may be given the same
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f1 f2 fi C

0 1 0 0
0 0 0 0
1 0 0 0
1 1 0 1

Table 1.1: Two relevant features and one irrelevant: C = f1 ∧ f2

importance when evaluated separately. Thus a forward SFSS could select any of them at
random being this random selection the third source of instability described above. We can
also see that, being fi a constant feature, it will never add any value when combined with
one of the other two; while combining f1 and f2 leads to a 0% prediction error. Yet the
perfect subset {f1, f2} would never be found by a SFFS algorithm that chose fi in the first
iteration. The effects of bad choices in early iterations can dramatically affect stability of the
chosen subsets. Generalizing this problem leads to our next hypothesis: evaluating both
the selected and the remainder set of features will lead to better and more stable
results. By evaluating both sets of features –(quasi)individual contributions and (quasi)full
set interactions– we are taking two different perspectives of the same variable into account,
and this extra information may lead to more informed and stable results.

In Chapters 6 we explore this idea and give support to the hypothesis.

Different data points contribute differently to stability

The last source of instability we explore in this thesis is the study of the effect that different
data points have to the final result of FSS. As mentioned above, another of the sources of
instability might come for the algorithm itself to be unstable in nature. As an example of
what is meant, the addition of a single observation could lead to completely different results.
Our hypothesis: ignoring outlier data-points will lead to more stable solutions.
In fact, we will explore a soft version that consists in giving different importances to each
data point according to some criteria. We will use the margin based criteria presented in [29]
and a novel instance weighing measure that takes into account the distance of the instance
to the hypothesis margin in a similar way that Relief does in order to improve existing FW
algorithms. In Chapter 8 we outline a novel way to improve stability of both Relief and
Simba. We propose to use the information about the different contribution each instance
carries to feature importance detection. In fact, again in real-world domains, there may be
outlying instances that should downweighted; for example, in trying to predict cancer using
DNA microarray expression data, we should give less credit to instances corresponding to
people exposed to high levels of radiation even if we have no information about the exposure.
In this sense, instance weighting (IW) methods try to identify these instances and assign
them lower weights. Various authors have worked on IW schemes in order to improve FSS
but there is not much previous work on the combination of IW with FW in a synergistic
way [54, 53]. We outline different methods to combine IW with FW, from the use of instance
weights to drive the random instance choice at every step of FW to an embedded use of
instance weights inside Simba’s distance calculation. We have tested our new algorithms
against the original counterparts using a variety of data sets, ranging from classical UCI data
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to microarray datasets; we report results showing improved stability without loosing –and
sometimes even improving– the classification accuracy.

1.1 Document structure

We start by reviewing the current state of the art in Chapter 2. We review different well
known FS and FW algorithms and highlight their properties. Afterwards we provide an
exhaustive review of FSS stability measures. Finally, we introduce the concept of hypothesis
margin and describe two different studies that used this concept. One for FW – the Simba
algorithm – and the other one for IW – margin based instance weighting (MBIW).

The following set of chapters start with some common experimental settings across all
the experiments being conducted –Chapter 3. Then Chapters 4 to 8 explore the different
parts of the stability problem as described above. To avoid giving too much information,
only summaries of the results are displayed and discussed in the chapters. All the detailed
experimental results are to be found in Appendices A to C.

Finally, the conclusions and avenues for future work are presented in Chapter 9.

1.2 Main contributions

In this thesis an in-depth study of FSS and FW stability has been performed. We study
stability from different points of view to be able to detect the sources of instability and
propose novel ways to deal with it. Our main contributions aresummarized as:

A review of FSS stability measures. We have performed an exhaustive study of the state
of the art and compare the different properties of the proposed measures both from a
theoretical and from an experimental points of view. We also highlight the weaknesses
of some of the measures –e.g. some of them not having correction by chance. This is
a great weakness as the measure will always favor solutions with either very few (or
almost all) features in the selected set. With this study of the stability measures we
select the one that overcomes all the weaknesses that will be used to assess the presented
experimental work.

A study of the relationship between stability and feature redundancy. A novel the-
oretical definition of redundancy based on Markov Blankets is presented. With this
definition we are able to describe one of the possible sources of instability and note that
some of the classic feature selection algorithms such as Relief do not deal well with
feature redundancy.

A definition of feature importance. A novel theoretical definition of feature importance
and initial results on its stability are presented, based on its bias/variance decomposi-
tion.

Improvements of wrapper FSS algorithms We propose various novel ways of improving
classic algorithms, both for feature selection and feature weighting, guided by the above
hypotheses. We present a modification of FSS wrappers aimed at reducing the random
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parts of the algorithm by evaluating both the selected and the remainder set of features,
and prove it to be more stable –even slightly better in performance– when used to train
an classifier. Another modification for wrappers is presented that makes them better at
selecting features by accumulating all the evaluations of a given feature over time. This
modification will produce feature subsets leading to better classification performance
when used to train a classifier.

A unified framework for instance and feature weighting. To test our hypothesis that
different data points contribute differently to FSS and FW stability we have provided
a framework to combine FSS and FW algorithms with IW algorithms that assess the
importance each instance should have in the feature selection process.

Stability improvements for filters. Using the above framework we improve the stability
of five classic FW algorithms, with a special focus on one of them: Simba. We improve
this filter algorithm by weighing the contribution of the instances in distances calcu-
lations with the weights obtained in the IW phase. This modification improves both
stability and predictive power of the resulting feature set.

It is worth noting that all of our improvement proposals can be put in practice with almost
no extra cost, unlike some of the most popular stability improvement proposals –like ensemble
FSS. Moreover, the improvements in classification accuracy are achieved most of the times
without selecting larger feature sets.





Chapter

2
State of the art

This chapter presents a review of the current state of the art in feature subset selection and
feature weighting. A special emphasis is made to review current work on stability of feature
subset selection algorithms. We study both the different approaches to define and measure
stability and also the different proposals different authors have made to improve it. Finally
we outline the existing definitions of instance margins (e.g. the distance of an instance to the
decision boundary of a classifier) as we will use this concept to build more stable algorithms
throughout the following chapters.

2.1 Feature subset selection

Traditionally, feature selection research has focused on searching for relevant features. Based
on a review of previous definitions of feature relevance, John, Kohavi, and Pfleger classified
features into three disjoint categories, namely, strongly relevant, weakly relevant, and irrelevant
features [34]. Let Y be a certain feature set, C a class attribute, xi a feature in Y and
Xi = Y \ {xi}.

Definition 2.1 (Strong relevance). xi is strongly relevant when

P (C|xi, Xi) 6= P (C|Xi) (2.1)

Definition 2.2 (Weak relevance). xi is weakly relevant when

P (C|xi, Xi) = P (C|Xi), and
∃X ′i ⊂ Xi, such that P (C|xi, X ′i) 6= P (C|X ′i)

(2.2)

Definition 2.3 (Irrelevance). xi is irrelevant when

∀X ′i ⊆ Xi, P (C|xi, X ′i) = P (C|X ′i) (2.3)

11
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With the above definitions, a feature is relevant if it is either strongly or weakly relevant;
otherwise, it is irrelevant. The authors defined the solution to the feature selection problem
to be the subset containing all of the strongly relevant features, a subset of the weakly relevant
and none of the irrelevant. However, there is no clue on which of the weakly relevant features
one should include in the final subset and which of them to discard.

Another definition of FSS that overcomes the above ambiguity problem is to see feature
subset selection in a set Y of size n as a search problem where the search space is the power
set of Y , P(Y ) [46]. Without loss of generality, we assume that the evaluation measure
L : P(Y ) → R+ ∪ {0} is to be maximized. The criterion L may be problem-independent or
may be the classifier that will be used to solve a classification problem. In any case, we will
refer to L(X) as the usefulness of feature subset X.

Definition 2.4 (Feature Selection). Let L be an evaluation measure to be optimized (say to
maximize). The selection of a feature subset can be made under two premises:

• Find X∗ ⊂ Y , such that:
X∗ = arg max

X∈P(Y )

L(X) (2.4)

• Set a real value Lmin, this is, the minimum L that is going to be accepted. Being Xk

a subset of Y with exactly k attributes; find the Xk ⊆ Y with smaller k such that
L(Xk) ≥ Lmin. Alternatively, given ε > 0, find the Xk ⊆ Y with smaller k, such that
|L(Xk)− L(Y )| < εL(Y ).

Notice that, with this definition, the optimal subset of features always exists but is not
necessarily unique. Also noteworthy is the fact that, denoting by X∗ one of the optimal
solutions, either of L(X∗) > L(Y ), L(X∗) = L(Y ), L(X∗) < L(Y ) may occur.

Ideally, feature selection methods search through all the subsets of features and try to find
the best one. But it is clear to see that if we had to test all possible subsets, using either
of the methods, of features we would have a combinatorial explosion. If our initial set of
features is Y and |Y | = n, the number of evaluations we would have to do would be equal to
the cardinality of the power set of Y : |P(Y )| = 2n. A complete search (as with the branch
and bound method), is a possible procedure to guarantee the finding of an optimal subset;
this method also requires the monotonicity of the inducer evaluation. This implies that when
a feature is added to the current subset, the value of the criterion or evaluation function does
not decrease. In most practical applications this approach is computationally prohibitive and
the mainstream of research on FSS has thus been directed to sequential suboptimal search
methods.

A sequential feature selection algorithm (SFSA) is a polynomial-time computational solu-
tion that is motivated by a certain definition of usefulness. An important family of SFSAs
perform an explicit search in the space of subsets by iteratively adding and/or removing fea-
tures one at a time until some stop condition is met. These methods typically share the same
basic steps as seen in Fig. 2.1:

1. The subset generation to produce candidate subsets for evaluation
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2. The evaluation criterion providing the usefulness of each subset

3. The stopping criterion to decide when to stop

4. The result validation by prior knowledge or statistical tests

Yes

Subset

evaluation

Subset

generation

Candidate

Subset

Current

Input

features

best subset

Stopping
criterion

No

Figure 2.1: Feature selection framework

Looking at the evaluation criterion, John, Kohavi, and Pfleger [34] divided the feature selection
methods into two main approaches: filter methods and wrapper methods. These two families
of methods only differ in the way they evaluate the candidate sets of features. A third group
of methods called embedded methods are a more recent approach to feature selection where
the selection process is done implicitly as part of the classifier design.

Filters
Use a problem independent criterion, the basic idea of the filter methods is to select
the features according to some prior knowledge of the data. For example, selection
of features based on the conditional probability that an instance is a member of a
certain class given the value of its features [4]. Another criterion commonly used by
filter methods is the correlation of a feature with the class, i.e. selecting features with
high correlation [28]. A well known filter algorithm is relief [38, 43] that estimates
the usefulness of features according to how well their values distinguish between the
instances of the same and different classes that are near each other.

Wrappers
Suggest a set of features that is then supplied to a classifier, which uses it to classify
the training data and returns the classification accuracy or some other measure thereof
[41]. The search is guided by the classifier used as a black box (i.e. the feature selection
process does not depend on how the classifier works). It is suggested in literature
that wrapper methods, although they tend to overfit, perform better than filters [34,
39, 58] because using the classifier error rate used as the evaluation criterion catches
better the structure and properties of the classifier. Among the proposed algorithms
for attacking this problem are the sequential forward generation (SFG) and sequential
backward generation (SBG), the plus l - take away r or PTA(l, r) proposed by Stearns
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[75] or the floating search methods [57]. They both introduce methods for the generation
of the sets of features by combining steps of SFG with steps of SBG but keep using a
certain L(X) as evaluation criterion.

Embedded
The idea is to optimize the evaluation criterion L(·) directly and to perform feature
selection as part of the classifier training. This mechanism can be found in algorithms
like SVM [10], Adaboost [66], or CART [8].

Filter measures (e.g., probabilistic separability measures) do not induce the same prefer-
ence order as would be obtained by comparing classification error rates. This is due to the
fact that error rates not only capture class separability but any structural error imposed by
the form of the classifier. As the second aspect is not reflected in FSS when based exclusively
on filter measures, the resulting features may perform poorly when applied as the input to
the classifier. Therefore, the legitimate way of evaluating feature subsets must be through
the error rate of the classifier being designed [41].

Algorithm 2.1: SFG
1: X0 ← ∅ {Initial subset}
2: i← 0
3: repeat
4: Si+1 ← {X | X = Xi ∪ {x} ∧ x ∈ Y \Xi} {Subset generation}
5: Xi+1 ← arg max

X∈Si+1

J(X) {Subset evaluation}

6: i← i+ 1
7: until J(Xi) ≤ J(Xi−1) ∨ i = n {Stopping criterion}
8: if J(Xi) ≤ J(Xi−1) then
9: return Xi−1

10: else
11: return Xi {Selected subset}
12: end if

Algorithm 2.1 and Algorithm 2.2 describe two of the classic feature selection algo-
rithms using this point of view: sequential forward generation (SFG) and sequential backward
generation (SBG). In these algorithms X0 is the starting set of features of the algorithm, Sk
the set of sets of features generated during the subset generation phase and Xk the selected set
of features at iteration k. It can be seen that the subset evaluation phase in the two algorithms
is exactly the same while the initialization and the subset generation phases change.

2.2 Feature weighting

A different technique for the determination of feature usefulness is feature weighting (or
feature ranking). It works by assigning a numeric value to each feature so as to indicate
the feature’s differential importance for predicting the class. Feature weighting can help
solving the problem of feature selection. One possible approach to feature selection using
feature weighting would be to assign weights to features and then choose features according
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Algorithm 2.2: SBG
1: X0 ← Y {Initial subset}
2: i← 0
3: repeat
4: Si+1 ← {X | X = Xi \ {x} ∧ x ∈ Xi} {Subset generation}
5: Xi+1 ← arg max

X∈Si+1

J(X) {Subset evaluation}

6: i← i+ 1
7: until J(Xi) ≤ J(Xi−1) ∨ i = n {Stopping criterion}
8: if J(Xi) ≤ J(Xi−1) then
9: return Xi−1

10: else
11: return Xi {Selected subset}
12: end if

to their sorted weights. This can be done either by having a rule to binarize the weights, e.g.
select all the features with weight greater than a certain threshold, or by a search favouring
the evaluation of subsets containing features with greatest weight values. In fact, feature
selection could be seen as a specific kind of feature weighting where the weights assigned to
features are binary. We will explore various methods of existing feature weighting algorithms
than and will discuss their properties. This section will review some of the most used feature
weighting algorithms. Although the section is focused on feature weighting, most of the
methods described below can also be used for feature selection.

On following subsections S will be a dataset of {x1, · · · ,xN} instances and Y will represent
the sets of features. X or Xi are possible subsets of features from Y . x or x1 are specific
instances in S. C represents the set of possible class values. And their lower case versions
represent single value in its correspondent upper case set, e.g. we will use c ∈ C and x ∈ X.
We also will use a short notation to express probabilities, e.g. will write P (x) to represent
the probability for feature X to have value x or P (c|x) to express the conditional probability
of the class to have value c knowing that the feature X has value x.

Conditional Probabilities based methods

The first group of methods we will look at are the ones based on conditional probabilities of
class given a feature value. Two simple methods using this idea were introduced in [14]: per-
category feature importance and cross-category feature importance (or, in short, PCF and
CCF). One important limitation is that they can only deal with binary features, so numerical
features must be discretized and symbolic features converted to a group of binary features.
The weights assigned to features in the case of PCF depends on the class of the feature as
seen in Eq. 2.5

wPCF (X, c) = P (c|x), where x would be the positive feature value (2.5)

so we have a weight for each feature and class. CCF relies on the same idea but instead of
having one weight for each feature and class it have only a weight per feature. It does so by
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averaging the weights across classes. In fact, as it shows Eq. 2.6, it uses the summation of
squares of conditional probabilities.

wCCF (X) =
∑
c∈C

P (c|x)2, where x would be the positive feature value (2.6)

Later on [52] showed that PCF is too sensitive to class proportions and tends to answer the
most frequent class when using it for classifying.

A more sophisticated approach that also makes use of conditional probabilities is the one
used by the value difference method (VDM) introduced by [74]. This time no binarization of
features is required, although numeric features still have to be discretized in order to calculate
conditional probabilities as shown in Eq. 2.7. In addition this method does not assign weights
to each feature but to each value of each feature.

wV DM (X,x) =

√√√√∑
c∈C

(
P (x|c)
P (x)

)2

(2.7)

This weighting scheme was originally used to calculate distances between features.

Finally we have Gini-index gain [8] in Eq. 2.8 which can be interpreted as the expected
error rate

GG(X) =
∑
x∈X

P (x)
∑
c∈C

P (c|x)2 −
∑
c∈C

P (c)2 (2.8)

and is proven to be biased towards multiple valued features. In further sections we will see
that this particular measure has some relation with the Relief algorithm.

Information theory based methods

Not all the feature weighting methods are based on conditional probabilities, though. Now
we will describe some methods based on information theory [68, 69].

The first one is just using Shannon’s mutual information (MI) between two features X
and Y in Eq. 2.9,

MI(X,Y ) = H(X)−H(X|Y ) =
∑

x∈X,y∈Y
P (x, y)log2

P (x, y)

P (x)P (y)
(2.9)

which is defined using entropies and conditional entropies (see Eq. 2.10),

Entropy: H(X) = −
∑
x∈X

P (x) log2 P (x)

Conditional entropy: H(X|Y ) = H(X,Y )−H(Y ) (2.10)

Joint entropy: H(X,Y ) = −
∑

x∈X,y∈Y
P (x, y) log2 P (x, y)

to weight features. A more informal but maybe more intuitive definition of mutual information
is that MI measures the information of X that is also in Y . If the features are independent
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no information is shared so mutual information is zero. In the other end we have that one
feature is an exact copy of the other, all the information it contains is also shared by the other
so the mutual information is the same as the information conveyed by one of them, namely
its entropy. A very popular feature weighting method uses the idea of mutual information.
It was proposed by [33] and it is used in [60] when splitting nodes in top-down induction of
decision trees (TDIDT) –best known as ID3. The term information gain (IG) in Eq. 2.11 is
used there. Its intuitive interpretation would be: the more a feature reduces class entropy
when knowing its value, the larger its weight. This is just another way to say that the more
information is shared between an feature and the class, the larger its importance. Hence, if
we have a set of classes C we can define IG for the class knowing the value of a feature X as
shown in Eq. 2.11

IG(C|X) = MI(C,X). (2.11)

Later on, similar methods were introduced to reduce the bias of IG towards features with
a large number of values. The extreme case is found using an feature with an ID code. It
is clear that knowing the ID code we can precisely know the class of any instance in our
training set. The problem is that one could say nothing about a new instance –which will
likely have an unseen ID code. One of these methods is gain ratio (GR) in Eq. 2.12, used by
the C4.5 decision tree induction algorithm [59]. This method normalizes IG by the amount
of information needed to predict a features value (the entropy of the feature). There are
various other proposals, among them we find an entropic distance [48] in Eq. 2.13, and the
de Mántaras distance between the class and the feature –Eq. 2.14– which was proved to be
unbiased towards multiple-valued features.

GR(C|X) =
IG(C|X)

H(X)
(2.12)

DH(C,X) = H(C,X)−MI(C,X) (2.13)

DM (C,X) =
H(X|C) +H(C|X)

H(C,X)
= 2− H(X) +H(C)

H(C,X)
(2.14)

Distribution distance based methods

Another way to find dependencies between a feature and the class is to measure differences
between their distributions. Perhaps the simplest way to do so is to compute the difference
between the joint and the product distributions as shown in Eq. 2.15

Diff(C,X) =
∑

c∈C,x∈X
|P (c, x)− P (x)P (c)| (2.15)

and this distance can be directly used as the features weight. Large differences between the
joint and the product distributions indicate large dependency of the class on the feature, so
the feature should be given a large weight. This can easily be applied to continuous features
changing the sum for an integral. It can also easily be rescaled to the [0, 1] interval as it has
an upper bound of 1−

∑
x∈X P (x)2.

More distance functions can be used here. An interesting one is the Kullback-Leibler
divergence –which is not actually a metric distance as it is not symmetric, i.e., DKL(X||Y ) 6=
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DKL(Y ||X). The application to feature weighting is to have the weight be equal to the
distance between the joint and the product distributions, as described in Eq. 2.16.

DKL(P (X,C)||P (X)P (C)) =
∑

c∈C,x∈X
P (c, x) log

P (c, x)

P (x)P (c)
(2.16)

Note that this is exactly the same as the mutual information between the feature and the
class (see Eq. 2.9) so we have DKL(P (X,C)||P (X)P (C)) = MI(X,C).

Correlation based methods

Even though this approach to feature weighting is treated last, maybe is one of the simplest
as it does not care about continuous feature discretization or probability density estimations.
It is usual in statistics to construct contingency tables for pairs of discrete variables to analyze
their correlation. In our case (see Table 2.1) we will define a contingency table between the
set of classes ci ∈ C and the values of a feature xj ∈ X. The inner cells in row i and column
j of the table contain the number of instances of class ci that have feature X = xj . The row
marginal totals will tell the number of instances for the corresponding class and the column
marginal totals the number of instances with the corresponding value on feature X. Finally
the sum of either marginal totals should be the total number of instances m. Looking at this

x1 x2 . . . xv Tot.
c1 N11 N12 . . . N1v N1·
...

. . .
...

cw Nw1 Nw2 . . . Nwv Nw·

Tot. N·1 N·2 . . . N·v m

v No. of values for X
w No. of classes (C)
m Total no. of instances
Nci· Total no. in class c
N·xj Total no. with X = xj
Ncixj

No. with C = c ∧X = xj

Table 2.1: Contingency table of the class vs. the X feature values

table we can define the Chi-squared weight for feature X as shown in Eq. 2.17:

χ2(X) =
∑

x∈X,c∈C

(Ncx − Ecx)2

Ecx
(2.17)

where Ecx is the expected number of instances of class c with value x on feature X calculated
as Nc·N·x/m. The value χ2 is distributed approximately as a χ2 random variable with (v −
1)(w − 1) degrees of freedom. We should avoid terms with Ecx = 0 or replace them with a
small positive number. We can see that in the extreme case that X and C are completely
independent Ncx = Ecx is expected so large values of χ2(X) indicate strong dependence
between the feature and the class. Note that the result of χ2 depends not only on the joint
probabilities P (c, x) = Ncx/m but also on the number of instances m. This latter dependency
seems to make sense with the intuition that correlations calculated with small number of
instances shall be less accurate.

2.2.1 Relief

One common characteristic of the previous methods is that they treat features individually
assuming conditional independence of features upon the class. In contrast, Relief takes all
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other features in care when evaluating a specific feature. Another interesting characteristic
is that Relief is aware of contextual information, being able to detect local correlations of
feature values and their ability to discriminate from an instance of a different class.

The main idea behind the alforithm is to assign large weights to features that contribute
in separating near instances of different class and joining near instances belonging to the same
class. The word "near" in the previous sentence is of crucial importance, since we mentioned
that one of the main differences between Relief and other methods is the ability to take
local context into account. Relief does not reward features that separate (join) instances of
different (same) classes in general but features that do so for near instances.

Algorithm 2.3: Relief
Input: for each training instance a vector of feature values and the class value
Output: the vector W of estimations of the qualities of features

1 set all weights W [A] = 0.0;
2 for i = 1 to m do
3 randomly select an instance Ri;
4 find nearest hit H and nearest miss M ;
5 for A = 1 to n do
6 W [A] := W [A]− diff(A,Ri, H)/m+ diff(A,Ri,M)/m;
7 end
8 end

In Algorithm 2.3 we can see the original algorithm as presented by Kira and Rendell
[38]. We maintained the original notation that slightly differs from the used above as now
features (attributes) are labeled A. There we can see that in the aim of detecting whether the
feature is useful to discriminate near instances it selects two nearest neighbors of the current
instance Ri. The one from the same class (H) is called the nearest hit and the one from a
different class (M) is called the nearest miss1. With these two nearest neighbors it increases
the weight of the feature if it has a similar value for both Ri and H and decreases it otherwise.
The opposite occurs with the nearest miss: Relief increases the weight of a feature if it has
dissimilar values for Ri and M and decreases it otherwise.

One of the central parts of Relief is the difference function diff, which is also used to
compute the distance between instances as shown in Eq. 2.18.

δ(x1,x2) =
∑
i

diff(Ai,x1,x2) (2.18)

The original definition of diff was an heterogeneous distance metric composed of the overlap
metric in Eq. 2.19 for nominal features and the normalized Euclidean distance in Eq. 2.20
for linear features, which [83] called HEOM.

diff(A,x1,x2) =

{
0 if value(A,x1) = value(A,x2)

1 otherwise
(2.19)

1(The original Relief algorithm only dealt with two class problems).
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diff(A,x1,x2) =
|value(A,x1)− value(A,x2)|

max(A)−min(A)
(2.20)

The normalization by m guarantees that the weight range is [−1, 1]. In fact the algorithm
tries to approximate a probability difference in Eq. 2.21.

W [A] ≈P (different value of A|nearest instance from different class)−
P (different value of A|nearest instance from same class) (2.21)

We can see that for a dataset S, where |S| = d having a set of features Y , where |Y | = n,
this algorithm has cost O(m × d × n) as it has to loop over m instances. For each instance
in the main loop it has to compute its distance from all other instances so we have O(m× d)
times the complexity of calculating δ and we can easily see from Eq. 2.18 that its complexity
is O(n), so we have our complexity: O(m× d× n). As m is a user defined parameter we can
in some measure control the cost of Relief algorithm having a tradeoff between accuracy of
estimation (for large m) and low complexity of the algorithm (for small m); however m can
never be greater than n.

2.2.2 Extensions of Relief

The first modification proposed to the algorithm is to make it deterministic by changing the
outer loop through m randomly chosen instances for a loop over all instances. This obviously
increases the computational cost, which becomes O(d2 × n) but makes experiments more
reproducible –specially with small datasets. Kononenko uses this simplified version of the
algorithm in his paper [43] to test his new extensions to the original Relief. This version
is also used by other authors [41] and it is given the name Relieved with the final d for
"deterministic".

We can find some extensions to the original Relief algorithm proposed in [43] in order
to overcome some of its limitations: it couldn’t deal with incomplete datasets, it was very
sensible to noisy data and it could only deal with multi-class problems by splitting the problem
into series of two-class problems.

To enable Relief to deal with incomplete datasets, i.e. that contained missing values, a
modification of the diff function is needed. The new function must be capable of calculating
the difference between a value of a feature and a missing value and between two missing values
in addition to the calculation of difference between two known values. Kononenko proposed
various modifications of this function in its paper and found one that performed better than
the others it was the one in a version of Relief he called RELIEF-D (not to be confused with
the Relieved mentioned above). The difference function used by RELIEF-D can be seen in
Eq. 2.22.

diff(A,x1,x2) =

1− P (value(A,x2)|class(x1)) if x1 is missing
1−

∑
a∈A

[P (a|class(x1))× P (a|class(x2))] if both missing (2.22)

Giving Relief greater robustness against noise can be achieved by increasing the number
of nearest hits and misses to look at. This mitigates the effect of choosing a neighbor that
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would not have been the nearest without the effect of noise. The new algorithm has a new
user defined parameter k that controls the number of nearest neighbors to use. In choosing
k there is a tradeoff between locality and noise robustness –[43] states that k = 10 is a good
choice for most purposes.

The last limitation was that the algorithm was only designed for two-class problems.
The straightforward extension to multi-class problems would be to take as the near miss the
nearest neighbor belonging to a different class. This variant of Relief was called RELIEF-E
by Kononenko. However, later on, he proposes yet another variant which gave better results:
this was to take the nearest neighbor (or the k nearest) from each class and average their
contribution so as to keep the contributions of hits and misses symmetric and between the
interval [0, 1]. This produces the RELIEF-F (ReliefF from now on) algorithm, seen in Fig.
2.2.

Input: for each training instance a vector of feature values and the class value
Output: the vector W of estimations of the qualities of features

1. set all weights W [A] := 0.0;

2. for i := 1 to m do begin

3. randomly select an instance Ri;

4. find k nearest hits Hj ;

5. for each class C 6= class(Ri) do

6. find k nearest misses Mj(C);

7. for A := 1 to n do

8. W [A] := W [A]−
k∑
j=1

diff(A,Ri, Hj)/(m · k)+

9.
∑

C 6=class(Ri)

[
P (C)

1−P (class(Ri))

k∑
j=1

diff(A,Ri,Mj(C))

]
/(m · k);

10. end;

Figure 2.2: Pseudo code of the ReliefF algorithm

The aforementioned relation to impurity functions, in particular with the Gini-index gain
in Eq. 2.8 can be seen in [70]. This is the case when developing the probability difference in
Eq. 2.21 if the algorithm uses a large number of nearest neighbors (i.e., when the selected
instance could be anyone from the set of instances). This version of the algorithm is called
myopic ReliefF as it looses its context of locality property. Rewriting Eq. 2.21 by removing
the neighboring condition and by applying Bayes’ rule, we obtain Eq. 2.23.

W ′[A] =
Psamecl|eqvalPeqval

Psamecl
−

(1− Psamecl|eqval)Peqval
1− Psamecl

(2.23)
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For sampling with replacement we obtain we have:

Peqval =
∑
c∈C

P (c)2

Psamecl|eqval =
∑
x∈X

(
P (x)2∑
x∈X P (x)2

×
∑
c∈C

P (c|x)2

)

Now we can rewrite Eq. 2.23 to obtain the myopic Relief weight estimation:

W ′[A] =
Peqval ×GG′(X)

Psamecl1− Psamecl
(2.24)

Where GG′(A) is a modified Gini-index gain of attribute A as seen in Eq. 2.25.

GG′(X) =
∑
x∈X

(
P (x)2∑
x∈X P (x)2

×
∑
c∈C

P (c|x)2

)
−
∑
c∈C

P (c)2 (2.25)

As we can see the difference in this modified version from its original Gini-index gain described
above in Eq. 2.8 is that Gini-index gain used a factor:

P (x)∑
x∈X P (x)

= P (x)

while myopic ReliefF uses:
P (x)2∑
x∈X P (x)2

So we can see how this myopic ReliefF in Eq. 2.24 holds some kind of normalization for
multi-valued attributes when using the factor Peqval. This solves the bias of impurity functions
towards attributes with multiple values. Another improvement compared with Gini-index is
that Gini gain values decrease when the number of classes increase. The denominator of Eq.
2.24 avoids this abnormal behavior.

2.3 Stability

This section presents the state-of-the-art on stability of FSS methods. The subject has recently
become a topic of interest –the first publication about FSS stability is from 2002 and the rest
are between 2006 and 2008. We have found a more recent measure from Drotar and Smekal
[16] in 2015 but we have not been able to reproduce their results so even though we explain it
we are not using it in our experiments. The number of published papers is quite small (6) so
the review in this section is exhaustive to our knowledge. This section is divided into three
parts: one describing the exposed measures of stability, another describing the proposals on
FSS results stability improvement and a final one exposing our review and conclusions on
the first two parts. Every paper is not exposed as a whole but split to match this section’s
division. The aim of the first parts is not to make a critical review of the current publications
but to expose them and establish a common notation and criteria. The limitations of the
measures and improvements are discussed below on the last part 2.3.4.
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2.3.1 Measures of stability

The above mentioned papers mainly focus on measuring stability of the feature selection meth-
ods, introducing measures based on Hamming distance, Dunne, Cunningham, and Azuaje [18],
correlation coefficients and Jaccard index, Kalousis, Prados, and Hilario [36], consistency in-
dex, Kuncheva [45], Shannon entropy, Křížek, Kittler, and Hlaváč [44] and consistency mea-
sure Somol and Novovičová [73].

Let Y = {f1, f2, . . . , fn} be the set of all features and let X = {X1, . . . , Xm} be a system
of m > 1(m ∈ N) sets of feature subsets Xj = {fi|i = 1, . . . , dj , fi ∈ Y, dj ∈ {1, . . . , n}, j =
1, . . . ,m} obtained from m runs of a feature selection method. This set will also be referred
as Xk when all its feature subsets have the same cardinality k.

Dunne, Cunningham, and Azuaje stability metric

Let mj = {mj1, . . . ,mjn} be a feature mask, a vector which indexes indicate the presence in
Xj of features from Y . Each element of the vector being defined as:

mji =

{
1 if fi ∈ Xj ,
0 otherwise.

Given a pair of feature masks, mi and mj , we define the Hamming distance between them as
follows:

DH(mi,mj) =

n∑
k=1

|mik −mjk| (2.26)

To make this measure independent of the initial feature set length, we can normalize it dividing
it by n. Also, the Hamming distance is a measure of dissimilarity, to convert to a similarity
measure we can subtract it from 1. So, in set notation we have:

sDunne(Xi, Xj) = 1− DH(mi,mj)

n
= 1− |Xi \Xj |+ |Xj \Xi|

n
(2.27)

This Hamming distance can be used to yield a measure of the overall variation of all the
feature masks in X . First we compute the total Hamming distance, Ht, by summing the
individual Hamming distances between each pair of distinct masks:

stDunne(X ) =

m−1∑
i=1

m∑
j=i+1

sDunne(Xi, Xj) (2.28)

In the above equation, stDunne, is computed over P pairs of masks where P is m(m − 1)/2.
By dividing by the number of pairs we have the stability metric SDunne definition:

Definition 2.5. The Dunne, Cunningham, and Azuaje [18] stability metric SDunne is a
measure of stability based on the Hamming distance between the features masks in X defined
as:

SDunne(X ) =
2

m(m− 1)
stDunne(X ) (2.29)
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Kalousis, Prados, and Hilario generalized similarity metric

Kalousis, Prados, and Hilario [36] introduced a stability measure between two feature sets Xi

and Xj , Ji(Xi, Xj) as the Jaccard index between two sets:

Ji(Xi, Xj) = 1− |Xi|+ |Xj | − 2|Xi ∩Xj |
|Xi|+ |Xj | − |Xi ∩Xj |

=
|Xi ∩Xj |
|Xi ∪Xj |

(2.30)

We present it here divided by n to make it independent of the size of Y :

sKalousis(Xi, Xj) =
1

n

|Xi ∩Xj |
|Xi ∪Xj |

(2.31)

This similarity measure can again be used to yield a measure of the overall variation of all
the feature sets in X . The total similarity, stKalousis, by summing the individual similarities
between each pair of sets:

stKalousis(X ) =

m−1∑
i=1

m∑
j=i+1

S(Xi, Xj) (2.32)

And normalizing with the number of terms in the sum we have the similarity metric definition:

Definition 2.6. The Kalousis, Prados, and Hilario generalized similarity metric SKalousis is
a stability measure based on an adaptation of the Jaccard index defined as:

SKalousis(X ) =
2

m(m− 1)
stKalousis(X ) (2.33)

Kuncheva consistency index

Kuncheva [45] proposes a consistency index which is only applicable to subsets of the same
cardinality k. In the paper some desired properties of the stability measures are pointed
out. A comparison of the properties of the proposed consistency index and the previous
measures is made showing that the previous measures don’t match the desired properties.
These properties are:

Monotonicity For a fixed subset size, k, and number of features, n, the larger the intersec-
tion between the subsets, the higher the value of the consistency index.

Limits The index should be bound by constants which do not depend on n or k. The
maximum value should be attained when the two subsets are identical.

Correction for chance The index should have a constant value for independently drawn
subsets of features of the same cardinality, k.

The paper also shows that the two previous measures don’t satisfy the correction for chance
property described above. The proposed consistency index for two subsets Xi and Xj such
that |Xi| = |Xj | = k, where 0 < k < n is:

sKuncheva(Xi, Xj) =
|Xi ∩Xj | − k2

n

k − k2

n

=
|Xi ∩Xj |n− k2

k(n− k)
(2.34)
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Generalizing this index to the m sets of features in Xk, we can compute the total consistency
of every pair of subsets as:

stKuncheva(Xk) =

m−1∑
i=1

m∑
j=i+1

sKuncheva(Xi, Xj) (2.35)

And normalizing with the number of terms in the sum we have:

Definition 2.7. The Kuncheva consistency index SKuncheva is a stability measure based on
the sizes of the union and intersection of subsets of the same cardinality defined as:

SKuncheva(Xk) =
2

m(m− 1)
stKuncheva(Xk) (2.36)

Křížek, Kittler, and Hlaváč stability measure based on Shannon’s entropy

In their paper Křížek, Kittler, and Hlaváč [44] state that the previously proposed stability
measures have many limitations, unclear motivation, and empirically estimated bounds. The
authors suggest that the bounds of a stability measure should be reached in two extreme
cases. The lower bound should be reached in the case of a random feature selections which
selects every feature subset with the same probability and thus produces a uniform probability
distribution. The upper bound would be reached by a feature selection method which all the
time selected the same feature subset and thus creates a single peak probability distribution.
So they suggest to assess the stability of feature selection methods based on the properties
of the generated probability distributions of the selected feature subsets. The measure they
propose to measure the randomness of these probability distributions is entropy [68]. In
information theory, the concept of entropy indicates the amount of uncertainty about an
event associated with a given probability distribution. The entropy is maximal for a uniform
probability distribution (i.e., outcome of random feature selection). If the event is certain
(i.e., outcome of perfectly stable feature selection) then the entropy is zero. So the desired
properties are satisfied. Over the different entropy measures the authors derived their stability
measure from Shannon’s entropy [68]:

H(X) = −
m∑
i=1

P (xi) logP (xi) (2.37)

With X being a discrete random variable with possible states X = {x1, . . . , xm}, i.e. the
particular feature subsets. m ∈ N is the number of all possible states, i.e. the number of
possible different feature subsets, and P (xi) is the probability of the i-th state occurrence,
i.e. the probability of selecting a particular feature subset. The authors only define the
stability measure for subsets of a certain size k. So the probability of a certain subset Xi are
the number of occurrences of this subset in the m subsets in Xk divided by all the possible
subsets of Y of size k which is C(n, k) =

(
n
k

)
. So if the frequency of Xi is FXi

, the probability
estimate of its occurrence can be determined by normalizing its occurrence by the number of
subsets, i.e., FXi

= FXi
/m. The proposed measure is then:
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Definition 2.8. The Křížek, Kittler, and Hlaváč stability measure SKrizek for subsets in Xk
of the same cardinality k is a stability measure based on Shannon’s entropy defined as:

SKrizek(Xk) = −
∑

Xi∈Xk

FXi logFXi (2.38)

Somol and Novovičová consistency measures

Somol and Novovičová [73] propose three novel stability measures and compare them to the
generalized Kalousis, Prados, and Hilario generalized similarity metric SKalousis. The main
difference between this method and the above mentioned ones is that all the above methods
evaluate pairwise similarities between subsets in system Xk while the consistency measures
evaluate the overall occurrence of features in the system as a whole.

Let Ff be the number of occurrences (frequency) of feature f in system X as defined
below:

Ff = |{Xi|Xi ∈ X , f ∈ Xi}| (2.39)

Let X be the subset of Y representing all features that appear anywhere in X . Let N denote

the number of all features in system X , i.e., N =
m∑
i=1

|Xi|, so N ∈ N, N > n. The stability

measures proposed by the authors are:

Definition 2.9. The consistency SSomol(X ) of system X is defined as

SSomol(X ) =
1

|X|
∑
f∈X

Ff − 1

m− 1
(2.40)

Definition 2.10. The weighted consistency SWSomol(X ) of system X is defined as

SWSomol(X ) =
∑
f∈Y

Ff
N
· Ff − 1

m− 1
(2.41)

Neither of these measures satisfies the correction for chance property stated by Kuncheva.
The value of SWSomol(·) gets high when the sizes of the feature subsets approach the total
number of features in Y because in such system the subsets get necessarily more similar to
each other. So the authors propose a last measure that do satisfy this property by normalizing
SWSomol(·) by its range. The range of the function depend on the total number of features in
the system N , the number of sets m and the number of features |Y | = n. So for each of these
values we can find lower and upper bounds for SWSomol(·), to be denoted SWmin(N,m, n) and
SWmax(N,m) respectively.

Definition 2.11. The relative weighted consistency SrelSomol(X ) of system X and for given Y
is defined as

SrelSomol(X ) =
SWSomol(X )− SWmin(N,m, n)

SWmax(N,m)− SWmin(N,m, n)
(2.42)

No details on how to compute SWmin(N,m, n) and SWmax(N,m) will be given here for the
sake of simplicity, they can be found at [73].
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Drotar and Smekal histogram stability measure

Drotar and Smekal [16] introduce a novel stability measures and compare it to some previous
existing measures described above. Their measure which we will call SDrotar, express the
stability as the ratio between average number of feature occurrences of T features with highest
occurrence and average number of feature occurrences of other features. Let Ftop ⊂ F contain
T features with highest occurrence Nf and Fother = F \ Ftop \ F0 contain all other features
with Nf 6= 0. Here, F0 = {f1, . . . , fq}, where occurrences Nf1 = · · · = Nfq = 0.

SDrotar(X ) =

1
|Ftop|

∑
f∈Ftop

Nf

1 + 1
|Fother|

∑
f∈Fother

Nf
(2.43)

2.3.2 Experimental results

The aim of this section is to test the above described theoretical properties of the measures
in some datasets to show the practical effect of their differences. We analyze behavior of FSS
stability measures through two different perspectives: Influence of randomness in FSS process
and subset size.

Results on artificial data

The first evaluation will be with the synthetic data proposed by Kuncheva [45]. Assume
scenario where number of all features n = 10 and m = 2 runs of FS algorithm were performed
to obtain subset of selected features. Figure 2.3 shows the values of stability measures as
the function of subset size k. First k features of X1 and X2 are included in subset of selected
features. The X1 and X2 are as follows:

X1 = {f9, f7, f2, f1, f3, f10, f8, f4, f5, f6} (2.44)
X2 = {f3, f7, f9, f10, f2, f4, f8, f6, f1, f5} (2.45)

We have reproduced the original formula for SDrotar as described in [16] but we have not
been able to reproduce their results. In fact, is easy to see that with the given formula the
results will be constant for this problem as Ftop is always 2 and Fother is always 1 for k ≥ 2.
For k = 1 the above formula is not well defined as the value would be 0/0. But the authors
show varying results so there must be an error with the formula above. For this reason we
have decided to exclude SDrotar from our results.

As we can see all stability measures correctly identified a decrease in stability at k = 4. But
we can note that there is different behavior of stability measures with increasing subset size
for k > 5. SDunne is almost constant even though the feature choices vary. SKalousis does not
have a correction by chance so as more and more features are selected its value increases even
though the real robustness is not greater. As SKrizek only measures frequencies of subsets
of features and the two sequences start with a different feature, theres is no single subset
repetition leading to a constant value of 0. SWSomol and SKuncheva behave quite simialar and
are the only measures that are sensible enough to detect the stability changes and have the
correction by chance to detect that the stability decreases at the end.

In the next experiment we are maximizing the effect of noisy choices to illustrate even
more the weaknesses of some of the measures that have no correction by chance. Similarly
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subset size k

●

●

●

●
●

●

●

●

●

1 2 3 4 5 6 7 8 9

0.
0

0.
2

0.
4

0.
6

0.
8

Subset size

S
ta

bi
lit

y

● dunne
kalousis
kuncheva
krizek
somol

Figure 2.4: Comparison of stability mea-
sures for 100 randomly generated sequences
as function of subset size k

to what Kuncheva [45] also proposes, we generate 100 independent random sequences of 10
features. Again we will build subsets of features by selecting the first k features will study
the effect of increasing k. As the resulting feature subsets are completely random, a robust
stability measure should give us values that are close to 0. Again only SWSomol and SKuncheva
have the desired behavior as shown in Figure 2.4.

Results on real data

To validate the results also on real databases we evaluatefeature selection stability on various
datasets as described in Section 3.1.As a feature selection method we had have used both
ReliefF and Simba, the two filter algorithms that we deeply analyze in this thesis. In this
case we have chosen two filter algorithms for thier low computational time as we were not
pursuing to find the best possible subset but to evaluate the behavior of the different stability
measures on the results. Figures 2.5 to 2.8 show the results for all the different dataset and
agorithm combinations. Again we can see the same behavior as with the artificial datasets.
SWSomol and SKuncheva provide very similar results. These results indicate that both measures
are concise and are robust to changes in subset size. Dunne stability measure SDunne shows
unsatisfactory behavior, providing values close to 1 for large datasets. SKrizek fails to detect
the similarities and provide values close to 0 for every dataset and algorithm and SKalousis is
highly influenced by high dimensionality of dataset.

Conclusions on the stability measures

Only two of the presented stability measures give consistent results and have the needed
correction by chance: SWSomol and SKuncheva. In addition the results provided by the two
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Figure 2.5: Stability measures for ReliefF on UCI datasets
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Figure 2.6: Stability measures for ReliefF on microarray datasets
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Figure 2.7: Stability measures for Simba on UCI datasets
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Figure 2.8: Stability measures for Simba on microarray datasets
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measures are very similar, even identical in some cases. For these reasons we will only be
using [45] stability measure SKuncheva in further experiments throughout this work.

2.3.3 Improvements of stability

Here we present the current proposed improvements on stability found in literature. Different
approaches have been taken in order to improve stability, below we list each of them, give
references to the original sources and make a brief description of the proposal.

Multiple runs of the FS algorithm

Dunne, Cunningham, and Azuaje [18] propose a method to increase the stability of wrapper
feature selection methods solutions based on executing the algorithm multiple times and
selecting the features that appeared the most in the system of solutions. The authors see
this as applying a wrapper to the wrapper, so they call it the Wrapper-2 approach. Using
the notation above, X is the system of subsets of features resulting from a feature selection
process over Y . Ff is the number of occurrences (frequency) of feature f in the system,
as defined in (2.39). The Wrapper-2 idea is to select the features with higher values of Ff .
The paper mentions two possible selection criteria: Selecting the k features {f1, . . . , fk} with
highest values of Ffi or selecting features incrementally in rank order (as indicated by their
Ffi value) and evaluate the feature set by executing the inducer on a holdout set of examples
until adding more features no longer increased the performance. In the paper two experiments
are conducted. One to compare the stability of k runs of the aggregated method and k runs
of the normal method for three different wrapper feature selection search strategies: SFG,
SBG and RHC (Random Hill-Climbing search). And another to compare the performance of
the aggregated method with the original one. Ensemble techniques are said to have better
stability than single classifiers although no significance tests are provided. The performance
of the aggregated methods is also superior again with no significance tests run.

The authors also suggest that increasing the coverage of the search strategy may lead to
more stable feature selection methods but state that its evaluation was still at an early stage.

Re-sampling of the criterion estimate

Křížek, Kittler, and Hlaváč [44] state that the key factor for improving stability is improving
the estimate L(·) of the objective function values. The reason is that if the criterion is better,
the search algorithm is more likely to find the optimal solution giving more stable results.
Their improvement on the evaluation criterion estimate is based on re-sampling techniques
such as cross-validation, holdout validation or bootstrap. They present the results of an
experiment comparing the stability of a wrapper and a filter of the SFFS [57] feature selection
methods using various n-fold cross-validations, holdout validations and various bootstrap
variations. The filter version applies the Mahalanobis distance in the objective function
definition. The wrapper form uses prediction accuracy of a linear decision rule created by
the Gaussian classifier. Their results showed that the stability of the feature selection results
increased when using re-sampling techniques for the evaluation of the L(·) criterion. They
found that for the filter, The filter variant of the SFFS algorithm achieves better stability if
more samples are employed in the objective function estimation, i.e., using techniques like ten-
fold or leave-one-out cross-validation, for instance. On the other hand, the wrapper achieved
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the best stability with the 50/50 holdout validation. The authors argue that wrappers appear
to be much more sensitive to the correct objective function estimate than filters. So when
less data is used for the validation, the estimation’s variance increases and so the algorithm
becomes more sensitive to random perturbations in the data and fails to find a consistent
solution. The .632 bootstrap achieved the best stability factor, however, its performance was
by far the worst. Bootstrap techniques are supposed to give estimates with low variance [19]
which explains a good stability. Nevertheless, the bias of the estimate is high and as a result
the wrapper converged to a wrong solution.

Ensemble feature selection methods

Saeys, Abeel, and Peer [65] conduct a study of the stability of ensemble feature selection
techniques using the Jaccard index as the similarity measure the same as the used in [36].
The hypothesis is that similarly to the case of supervised learning, ensemble techniques might
be used to improve the stability of feature selection techniques. Indeed, in domains with
many features and few examples, it is often reported that several different feature subsets
may yield equally optimal results, and ensemble feature selection may reduce the in the paper
is done by adding up the feature rankings provided by the single feature selectors into a final
consensus ranking. Four feature selection methods were tested all being filter or embedded
comparing the stability of the single version with the ensemble one. For each of the feature
selection techniques, an ensemble version was created by instance perturbation using bagging
[6] to generate 40 bags from the data. For each of the bags, a separate feature ranking was
performed, and the ensemble was formed by aggregating the single rankings as mentioned
above. The results showed that the stability of the feature selection methods increased when
the number of bags increased while the performance of the algorithm was the same or slightly
better.

2.3.4 Conclusions on the stability state-of-the-art

In an effort to simplify the notation and unify some of the proposed methods we will introduce
some notation for the similarity measures, in which the presence of the feature is denoted by
+ and its absence by −. For any two feature subsets Xi, Xj of the set Y , to be compared
on the basis of a feature k, a score sijk can be defined, described below. First δijk is defined
as 0 when the comparison of Xi, Xj cannot be performed on the basis of feature k for some
reason (e.g., by because we are not willing to count a −,− match as a real match); δijk is 1
when such comparison is meaningful. The coefficient of similarity between Xi, Xj is defined
as the average score over all the partial comparisons.

Sij =

∑n
k=1 sijkδijk∑n
k=1 δijk

. (2.46)

With this formulation we can obtain multiple similarity scores by assigning different values
to δijk and sijk depending on what we consider to be a match. For instance if we assigned



2.3. STABILITY 35

the values as in the following table:

Values
Xi + + − −
Xj + − + −
sijk 1 0 0 0
δijk 1 1 1 0

we would obtain Jaccard index based similarity score like the one used in [36].

Then we call a the number of +,+ matches, b and c the number of +,− and −,+ matches
and d the number of −,− matches. We can see a graphical representation of the sets in the
following Venn diagram in figure 2.9.

Y

Xi X j

d

cb a

Figure 2.9: Venn diagram showing the a, b, c, d values.

We will now rewrite the similarity based measures using the a, b, c, d values and add the
other two measures just to have a compact summary of all measures. Let us first recall some
notation: FXi

is the probability estimate of the occurrence of Xi in Xk, i.e. the number of
occurrences of Xi , divided by the total number of subsets, m. Ff the frequency of feature
f in X and N > n the number of all features in X (with repetitions). Finally, that both X
and Xk represent a system of m subsets of Y with the only difference that the size of the
subsets in the latter is fixed to k as SKrizek(·) and SKuncheva(·) are only defined for systems
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of subsets of this same size k.

SDunne(X ) =
2

m(m− 1)

∑
Xi∈X

∑
Xj∈X\Xi

a+ d

n
(2.47)

SKalousis(X ) =
2

m(m− 1)

∑
Xi∈X

∑
Xj∈X\Xi

a

n− d
(2.48)

SKuncheva(X ) =
2

m(m− 1)

∑
Xi∈X

∑
Xj∈X\Xi

an− k2

k(n− k)
(2.49)

SKrizek(Xk) = −
∑

Xi∈Xk

FXi logFXi (2.50)

SWSomol(X ) =
∑
f∈Y

Ff
N

Ff − 1

m− 1
(2.51)

SrelSomol(X ) =
SWSomol(X )− SWmin(N,m, n)

SWmax(N,m)− SWmin(N,m, n)
(2.52)

As Kuncheva [45] state, a good similarity measure should be: monotone, bounded and
have some correction by chance (See section 2.3.1 for more details). They also show that the
SDunne and SKalousis measures are not corrected by chance so both tend to increase when
the size of the selected set approaches the total number of features n, this being a serious
limitation for these two measures. Another point of view is that of Křížek in his doctoral
thesis. There, strong concerns on the motivation and the empirically estimated bounds of
SDunne, SKalousis and SKuncheva are exposed.

Finally, the only measure that has been further used and analyzed is the one proposed
in SKalousis, which is compared to SWSomol and SrelSomol in [73] and used in the experiments
of [65] even though the papers describing the other previous measures are cited in both
papers. Authors do not clarify the reasons why they do not use the other measures for their
experiments and comparisons.

A strong weakness of entropy-based measures of stability that only focus on the distribu-
tion of feature subsets (like [44]) is that they only consider equality or non-equality of the
obtained feature subsets, disregarding the important information present in the features that
match or mismatch. To make this point clear, consider the following scenarios, in which we
have five possible outcomes (solution feature subsets) from a selection process carried out in
an initial set of size 20:

11110000000000000000 11111110000111111111
00001111000000000000 11111101000111111111
00000000111100000000 11111100100111111111
00000000000011110000 11111100010111111111
00000000000000001111 11111100001111111111

It should be clear that the situation on the left panel is a nightmare from the point of
view of feature selection and its stability. In contrast, the situation on the right panel is much
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better: the five selections only differ in two features when compared one against another.
However, the entropy of both distributions is the same.

Another weakness shared among all the measures, is that even though all of the papers use
SFSAs, no measure takes some important information about this particular search strategy
into account. They ignore the fact that features are added in order into the feature subsets.
However, this order has much to do with stability: among other reasons, because the selection
of the first features greatly conditions the selection of the subsequent features and thus greatly
influences the final selected subset. So maybe the choice of a different feature in a step where
every feature can be selected (e.g. at the beginning of the SFG) should have less importance
in stability calculation than differences when very few choices are available (e.g. at the end
of the SFG).

Moreover, as [44] explicitly states, stability does not say anything about the performance
of the selected features. Indeed, none of the proposed measures of stability takes performance
into account, only [65] introduces a method to balance stability against classification perfor-
mance by using an adaptation of the F-measure [78]. But none of them clarifies how stability
should influence the feature selection process.

Reviewing the proposed improvements, we observe that they are all based on the idea of
multiple runs of the feature evaluation criterion, either by running the whole feature selection
process multiple times [18], by resampling the data on every feature evaluation in every step of
the selection [44] or by running an ensemble of feature selectors [65]. So, all of the proposed
improvements are only to deal with the problem of data resampling. Besides, none of the
comparisons carried out in these papers give statistical significance of the stability differences
between the original algorithm and the proposed improvement.

Finally, an almost neglected idea in literature is that stability could be used to somehow
guide the feature selection process. Only Kalousis, Prados, and Hilario [36] points out as
future work that stability can provide an objective criterion on which the feature choices can
be based during feature selection in the absence of any significant difference in classification
performance. It seems clear to us that if we wanted to improve the stability of a feature
selection algorithm it should be taken into account during the process.

2.4 Instance margins

In machine learning the margin of an instance with respect to a classification rule measure
the classifier confidence when making its decision. [13] describes two different approaches to
define the margin of a particular instance x to a set of points S.

Definition 2.12. The sample margin is the distance between the instance and the decision
boundary induced by the classifier. Support Vector Machines [12] are based on this definition
of margin. See Figure 2.10a.

Definition 2.13. The hypothesis margin is the distance that the classifier can travel without
changing the way it labels the instance. Note that this definition requires a distance measure
between classifiers. This type of margin is used in AdaBoost [20]. See Figure 2.10b.

For 1-NN, the classifier is defined by a set of training points and the decision boundary
is the Voronoi tessellation (See Figure 2.11). The sample margin in this case is the distance
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(a) Sample Margin (b) Hypothesis Margin

Figure 2.10: Comparison of the two types of margins described above.

between the instance and the Voronoi tessellation, and therefore it measures the sensitivity
to small changes of the instance position. The margins for 1-NN were described by [13] and
the following results were proved:

1. The hypothesis margin lower bounds the sample margin

2. It is easy to compute the hypothesis margin of an instance x to a set o points S by the
following formula:

θS(x) =
1

2
(|x− nearmiss(x)| − |x− nearhit(x)|) (2.53)

were nearhit(x) and nearmiss(x) are the nearest points to x in S with the same class
and with a different class respectively.

2.4.1 Margin based instance weighting (MBIW)

Han and Yu [29] describe a framework of instance weighting employing the concept of margins
in a different way of the used in the large margin principles [26], [3]. By decomposing the
margin of an instance along each dimension, the instance in the original feature space can be
represented by a new vector (called margin vector) in the margin vector feature space defined
as follows.

Definition 2.14. Let x = (x1, . . . , xd) be an instance in the original feature space Rd, and
nearhit(x) and nearmiss(x) represent the nearest instances to x with the same and different
class, respectively. Every instance x ∈ Rd can be mapped to x′ according to:

x′j = |xj − nearmiss(x)j | − |xj − nearhit(x)j | (2.54)

where x′j is the jth coordinate of x′ in the new feature space R′d, and xj , nearhit(x)j , or
nearmiss(x)j is the jth coordinate of x, nearhit(x) or nearmiss(x) in Rd, respectively.
Vector x′ is called the margin vector of x, and R′d is called the margin vector feature space.
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Figure 2.11: Voronoi tessellation for the 1-NN classifier

In order to reduce the effect of noise and outliers in the training set, the authors do not
use one nearest neighbor as described in Eq. (2.54) but all the neighbors from each class. So
the margin vector definition can be extended as:

x′j =

m∑
l=1

|xj − nearmiss(l,x)j | −
h∑
l=1

|xj − nearhit(l,x)j | (2.55)

where nearhit(l,x)j and nearmiss(l,x)j is the jth component of the lth neighbor to x of
the same class and of different class, respectively. h represents the total number of instances
with the same class in the training set (i.e. hits) and m the total number of instances of
different class (i.e. misses). Note that h+m is the total number of instances in the training
set excluding x.

With this definition we see that the larger the value of x′j , the more the feature j contributes
to the margin of instance x. x′ captures the local profile of feature relevance for all features
at x. Then to compute overall relevance for each feature, one idea is to take average over all
margin vectors as relief does.

However the authors suggest not to take the average of all instances but to weight their
contribution based on their projections into the margin space. They state that more stable
feature weightings can be obtained by reducing the influence of instances that exhibit distinct
margin vectors from the majority of the instances as the presence or absence of these instances
will highly affect the decision on which feature is more relevant. Specifically the weight of an
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instance x is given by:

w(x) =
1/dist(x′)∑n
i=1 1/dist(x′i)

(2.56)

where

dist(x′) =
1

n− 1

n−1∑
i=1,x′i 6=x′

dist(x′,x′i)

Algorithm 2.4 describes the MBIW process for assigning weights to instances using the
definitions above.

Algorithm 2.4: Margin Based Instance Weighting (MBIW)
Input: training data S = {x1, . . . ,xn}, where xi = {xi,1, . . . , xi,d}
Output: weight vector w = {w1, . . . , wn} for all instances in S
// Feature Space Transformation

1 for i = 1 to n do
2 for i = j to d do
3 x′i,j =

∑m
l=1 |xj − nearmiss(l,x)j | −

∑h
l=1 |xj − nearhit(l,x)j |

4 end
5 end
// Instance Weighting

6 for i = 1 to n do
7 wi =

1/dist(x′i)∑n
j=1 1/dist(x′j)

8 end

Once weights have been assigned to features a regular feature selection algorithm that
can take instance weights into account can be run to find relevant features. So the instance
weighting is presented by the authors as a preprocessing step before applying one of the
current feature selection methods.

2.4.2 Margin based feature selection (Simba)

Bachrach, Navot, and Tishby [3] present a novel feature selection algorithm c that gives
weights to features based on their contributions to instances’ margins. The main idea is that
a good generalization can be guaranteed if many sample points have large margins so one
should select features that contribute more to these margins.

Definition 2.15. Let S = {x1, . . . ,xn} be the training set of instances and x = {x1, . . . , xd}
be a particular instance in S. Let w = {w1, · · · , wd} be a weight vector over the feature set,
then the margin of x is

θwS (x) =
1

2
(‖w − nearmis(x)‖w − ‖w − nearhit(x)‖w) (2.57)

where ‖z‖w =
√∑

i w
2
i z

2
i
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Definition 2.16. Let u(·) be a utility function. Given the training set S and the weight
vector w, the evaluation function is:

e(w) =
∑
x∈S

u
(
θwS\x(x)

)
(2.58)

The utility function controls the contribution of each margin term to the overall score. It
is natural to require the utility function to be non-decreasing; thus larger margin introduce
larger utility. We consider three utility functions: linear, zero-one and sigmoid. The linear
utility function is defined as u(θ) = θ. When the linear utility function is used, the evaluation
function is simply the sum of the margins. The zero-one utility is equals 1 when the margin is
positive and 0 otherwise. When this utility function is used the utility function is proportional
to the leave-one-out error. The sigmoid utility is u(θ) = 1/(1+exp(−βθ)). The sigmoid utility
function is less sensitive to outliers than the linear utility, but does not ignore the magnitude
of the margin completely as the zero-one utility does. Note also that for β → 0 or β → ∞
the sigmoid utility function becomes the linear utility function or the zero-one utility function
respectively. In the Simba algorithm we assume that the utility function is differentiable, and
therefore the zero-one utility cannot be used.

It is natural to look at the evaluation function solely for weight vectors w such that
maxw2

i = 1. However, formally, the evaluation function is well defined for any w, a fact
which we make use of in the Simba algorithm. We also use the notation e(F ), where F is a
set of features to denote e(xF).

The gradient of e(w) when evaluated on a sample S is:

(5e(w))i =
∂e(w)

∂wi
=
∑
x∈S

∂u(θ(x))

∂θ(x)

∂θ(x)

∂wi

=
1

2

∑
x∈S

∂u(θ(x))

∂θ(x)

( (xi − nearmiss(x)i)
2

‖x− nearmiss(x)‖w
− (xi − nearhit(x)i)

2

‖x− nearhit(x)‖w

)
wi

In Algorithm 2.5 we can see Simba using a stochastic gradient ascent over e(w) while
ignoring the constraint maxw2

i = 1, the projection on the constraint is only done at the end
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(See line 10). This is sound since e(λw) = λe(w).

Algorithm 2.5: Simba
1 initialize w = (1, 1, . . . , 1);
2 for t = 1 to T do
3 pick randomly an instance x from S ;
4 calculate nearmis(x) and nearhit(x) with respect to S \ {x} and the weight

vector w;
5 for i = 1 to d do
6 ∆i = 1

2
∂u(θ(x))
∂θ(x)

(
(xi−nearmiss(x)i)2
‖x−nearmiss(x)‖w

− (xi−nearhit(x)i)2
‖x−nearhit(x)‖w

)
wi

7 end
8 w := w + ∆

9 end
10 w← w2/

∥∥w2
∥∥
∞ where (w2)i := (wi)

2

The authors present results on a synthetic dataset to illustrate the quality of the margin
based evaluation function and the ability of Simba algorithm to deal with dependent features
compared to the well known Relief algorithm. The problem consisted of 1000 sample points
with 10 real valued features. The target concept is an xor function over the first 3 features.
Hence, the first 3 features are relevant while the other features are irrelevant. Notice that
this task is a special case of parity function learning and is considered hard for many feature
selection algorithms [25]. Thus for example, any algorithm which does not consider functional
dependencies between features fails on this task. Figure 2.12 present the results we have been
able to reproduce.

They also present results on real data using the AR face database [50] and show that
Simba outperforms Relief on this particular classification task and that it handles better
correlated features. One of the main advantages of the margin based criterion is the high
correlation that it exhibits with the features quality.
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Figure 2.12: The weights Simba and Relief assign to the 10features when applying on the
xor problem.





Chapter

3
Experimental setup

In various sections of this thesis experimental studies are being performed. In order not to
repeat the experimental setup in every one of them we present here a description of the used
datasets and framework. References are made to this section throughout the document.

3.1 Datasets for the experimental studies

Along this thesis various series of experimental work is performed in order to assess the
described proposals. Here we describe the datasets that are used along all the experiments.
We used datasets from two different sources. First of all we used datasets from the well known
UCI repository of machine learning databases [2]. The datasets used can be seen in Table
3.2. Here we present a brief description of each of them.

Diabetes Pima Indians Diabetes Data Set. Several constraints were placed on the selection
of these instances from a larger database. In particular, all patients here are females at
least 21 years old of Pima Indian heritage. There are 2 classes, 768 instances, 8 numeric
features.

Glass From USA Forensic Science Service this dataset contains 214 instances of different
types of glass defined by 10 attributes in terms of their oxide content (i.e. Na, Fe, K,
etc). There are 6 classes according to the type of glass (i.e. building windows, vehicle
windows, containers,...).

Heart Statlog (Heart) Data Set. This database contains 13 attributes from 270 patients.
The class attribute indicates the presence of heart disease in the patient.

Ionosphere Classification of radar returns from the ionosphere. There are 2 classes, 351 in-
stances, 34 numeric features. The targets were free electrons in the ionosphere. "Good"
radar returns are those showing evidence of some type of structure in the ionosphere.
"Bad" returns are those that do not: their signals pass through the ionosphere.

45
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Iris Perhaps the best known database to be found in the pattern recognition literature. The
data set contains 4 numeric features and 3 classes of 50 instances each, where each class
refers to a type of iris plant. One class is linearly separable from the other 2; the latter
are NOT linearly separable from each other.

Landsat Statlog (Landsat Satellite) Data Set. Multi-spectral values of pixels in 3x3 neigh-
bourhoods in a satellite image, and the classification associated with the central pixel
in each neighbourhood. 6435 instances with 36 attributes. The aim is to predict this
classification, given the multi-spectral values. In the sample database, the class of a
pixel is coded as a number from 1 to 7. There are no examples with class 6 in this
dataset.

LSVT Voice LSVT Voice Rehabilitation. 126 samples from 14 participants, 309 features.
Each attribute corresponds to the application of a speech signal processing algorithm
which aims to characterise objectively the signal. Aim: assess whether voice rehabil-
itation treatment lead to phonations considered ’acceptable’ or ’unacceptable’ (binary
class classification problem).

Mammogram Mammography data donated by the Pattern Recognition and Image Model-
ing Laboratory at University of California, Irvine. There are 86 cases with 65 features
each and a binary class indicating benign or malignant.

Musk This dataset describes a set of 102 molecules of which 39 are judged by human experts
to be musks and the remaining 63 molecules are judged to be non-musks. The 166
features that describe these molecules depend upon the exact shape, or conformation,
of the molecule.

Parkinsons Oxford Parkinson’s Disease Detection Dataset. This dataset is composed of a
range of biomedical voice measurements from 31 people, 23 with Parkinson’s disease
(PD). Each column in the table is a particular voice measure, and each row corresponds
one of 195 voice recording from these individuals ("name" column). The main aim of
the data is to discriminate healthy people from those with PD, according to "status"
column which is set to 0 for healthy and 1 for PD.

Pop Failures Climate Model Simulation Crashes Data Set. Given Latin hypercube samples
of 18 climate model input parameter values, predict climate model simulation crashes
and determine the parameter value combinations that cause the failures. 540 instances,
18 attributes, 2 classes.

Spect The dataset describes diagnosing of cardiac Single Proton Emission Computed Tomog-
raphy (SPECT) images. Each of the patients is classified into two categories: normal
and abnormal. There are 22 binary features extracted from the original SPECT images
and 267 instances.

Spectf The same data as the previous dataset but this time a continuous feature pattern of
size 44 was created for each patient. The same binary class and the same 267 instances.

Sonar There are 208 patterns obtained by bouncing sonar signals off a metal cylinder and
rocks at various angles and under various conditions. Each pattern is a set of 60 numbers



3.1. DATASETS FOR THE EXPERIMENTAL STUDIES 47

in the range 0.0 to 1.0. Each number represents the energy within a particular frequency
band, integrated over a certain period of time. The class is binary indicating whether
the object was a rock or a metal cylinder.

Vehicle Statlog (Vehicle Silhouettes) Data Set. 3D objects within a 2D image by application
of an ensemble of shape feature extractors to the 2D silhouettes of the objects. The
purpose is to classify a given silhouette as one of four types of vehicle, using a set of
features extracted from the silhouette. 18 attributes, 946 instances and 4 classes.

Waveform Artificial dataset where each class is generated from a combination of 2 of 3
"base" waves. There are 5000 instances with 21 features each, all of which include
noise, and 3 classes.

Wdbc Breast cancer databases obtained from the University of Wisconsin Hospitals, Madison
from Dr. William H. Wolberg [49]. Features 2 through 10 have been used to represent
instances. There are 699 instances with 10 features, each has one of 2 possible classes:
benign or malignant.

Another group of datasets that we use along the thesis are the ones used in a feature selec-
tion challenge organized by Guyon et al. during the Neural Information Processing Systems
2003 conference (NIPS 2003) [76]. A summary of the results of this challenge was published
by the authors in the next edition of the conference [27]. A number of distractor features
called ’probes’ having no predictive power had been added to each dataset. A brief description
of the 5 datasets is provided below and Table 3.4 show a summary of their characteristics. All
details about the preparation of the data are found in the technical report [24]. In all cases we
have used both the training and validation sets as we are performing a cross-validated test.

Arcene The dataset was obtained by merging three mass-spectrometry datasets to obtain
enough training and test data for a benchmark. The samples include patients with can-
cer (ovarian or prostate cancer), and healthy or control patients. The original features
indicate the abundance of proteins in human sera having a given mass value. Based on
those features one must separate cancer patients from healthy patients. 200 samples,
10000 variables and 2 classes.

Dexter A text classification problem in a bag-of-word representation. Te features represent
frequencies of occurrence of word stems in text. The task is to learn which Reuters
articles are about ’corporate acquisitions’. 600 samples, 20000 variables and 2 classes.

Dorothea This is a drug discovery dataset. Chemical compounds represented by structural
molecular features must be classified as active (binding to thrombin) or inactive. 1150
samples, 100000 variables and 2 classes.

Gisette This is a handwritten digit recognition problem. The task is to discriminate between
to confusable handwritten digits: the four and the nine. The digits have been size-
normalized and centered in a fixed-size image of dimension 28x28. The original data
were modified for the purpose of the feature selection challenge. In particular, pixels
were samples at random in the middle top part of the feature containing the information
necessary to disambiguate 4 from 9 and higher order features were created as products of
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these pixels to plunge the problem in a higher dimensional feature space. 7000 samples,
5000 variables and 2 classes.

Madelon Artificial dataset containing data points grouped in 32 clusters placed on the ver-
tices of a five dimensional hypercube and randomly labeled +1 or -1. The five dimensions
constitute 5 informative features. 15 linear combinations of those features were added
to form a set of 20 (redundant) informative features. Based on those 20 features one
must separate the examples into the 2 classes (corresponding to the +-1 labels). 2600
samples, 500 variables and 2 classes.

We also use some larger microarray problems. These problems are difficult for several
reasons, in particular the sparsity of the data, the high dimensionality of the feature (gene)
space, and the fact that many features are irrelevant or redundant. The datasets used can be
seen in Table 3.3. We made a preliminary selection of genes on the basis of the ratio of their
between-groups to within-groups sum of squares [17]. The best 200 genes for each dataset
were selected.

Validation of the described approach uses six public-domain microarray gene expression
data sets, shortly described as follows:

1. Colon Tumor : Used originally by [1], it consists of 62 samples of colon tissue, of which
40 are tumorous and 22 normal, and contains 2,000 genes.

2. Leukemia: Used first by [22], the training set consisted originally of 38 bone marrow
examples (plus a further test set with 34 examples). This set of examples has been
merged to form a data sample of 72 examples, which are described by 7,129 probes:
6,817 human genes and 312 control genes. The goal is to tell acute myeloid leukemia
from acute lymphoblastic leukemia.

3. Lung Cancer : Studied by [23], the problem consists in distinguishing between malig-
nant pleural mesothelioma and adenocarcinoma of the lung. There are 181 examples
available, described by 12,533 genes.

4. Prostate Cancer : This data set was used by [71] to analyze differences in pathologi-
cal features of prostate cancer and to identify genes that might anticipate its clinical
behavior. There are 181 examples and 12,600 genes.

5. Breast Cancer : [79] studied 97 patients with primary invasive breast carcinoma; 24,481
genes were analyzed.

6. GCM : MIT 14 Global Cancer Map data set, first studied by [62] consists of 190 exam-
ples, 16,063 genes and 14 categories corresponding to different malignant tumors.

For comparative purposes, performance results using the whole set of features and the
reduced subset of 200 features are displayed in Table 3.1. In view of these results, it is clear
that these subsets constitute a very good departing point for further analysis with wrapper
methods.
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1NN LDA SVMr

Problem Y X200 Y X200 Y X200

Colon Tumor 23.9 23.2 24.8 20.0 31.0 14.8
Leukemia 9.7 8.3 14.1 3.1 26.7 2.8

Lung Cancer 1.8 2.0 N/A 1.8 4.4 1.0
Prostate Cancer 23.4 19.1 N/A 25.5 38.2 26.9

Breast Cancer 45.1 27.7 N/A 24.5 48.3 24.1
GCM 10.0 13.7 13.7 10.1 5.8 5.8

Table 3.1: Average test error (in %) for the different inducers in the preprocessing phase.
Y : using the full set of genes; X200: using the top pre-selected 200 genes; N/A: computation
unaffordable due to numerical inaccuracies in LDA.

3.2 Experimental setup for wrappers

We use a carefully designed resampling methodology in order to avoid feature selection bias
[63, 72] specially serious in high-dimensional biomedical data, such as gene expression mi-
croarrays which are datasets widely used throughout this work. In his paper, Dietterich [15]
shows a taxonomy of statistical questions in machine learning. As shown in Figure.3.1.

The paper focuses on the boxed node (Question 8). This is also the situation in most of
the problems used for the experimental work in this thesis. This is the situation where we are
comparing the prediction accuracy of set of algorithms when trained with a data set of a small
sample size S. Because S is small it will be necessary to use holdout and resampling methods.
In the above cited paper, five methods are compared to assess this question: McNemar’s test,

Table 3.2: UCI dataset descriptions

problem features classes examples

Diabetes 8 2 768
Glass 10 6 214
Heart 13 2 20
Ionosphere 34 2 351
Landsat 36 6 6,435
LSVT Voice 309 2 126
Mammogram 65 2 86
Musk 168 2 6,598
Parkinsons 23 2 197
Pop Failures 18 2 540
SpectF 44 2 267
Sonar 60 2 208
Vehicle 18 4 946
Waveform 21 3 5,000
Wdbc 10 2 699
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Table 3.3: Microarray dataset descriptions

problem features classes examples

ma_breast_cancer 24,481 2 97
ma_colon_tumor 2,000 2 62
ma_gcm 16,063 14 190
ma_leukemia 7,129 2 72
ma_lung_cancer 12,533 2 181
ma_prostate_cancer 12,600 2 136

Table 3.4: NIPS 2003 feature selection challengs dataset descriptions

problem features classes examples

Arcene 10,000 2 200
Dexter 20,000 2 600
Dorothea 100,000 2 1,150
Gisette 5,000 2 7,000
Madelon 500 2 2,600
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Figure 3.1: A taxonomy of statistical questions in machine learning.
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a test for the difference of two proportions, the resampled t test, the cross-validated t test and
a new test called the 5x2cv test. They show that the best test to minimize Type I error is the
proposed 5x2cv test so this will be the one we will be using in all of the experiments where
we the conditions for Question 8 are met. It shows that this test performs better than the
classic 10-fold cross-validated t test proposed by Kohavi [40]. It was found that the problem
of k-fold cross-validated t test was too large in some cases. The numerator of the t statistic
estimates the mean difference in the performance of the two algorithms over the k folds, while
the denominator estimates the variance of these differences. It is stated that the variance was
slightly underestimated when the training sets overlapped and the means were occasionally
poorly estimated. Moreover, if we replaced the numerator of the t statistic with the observed
difference from a single fold, the statistic would become well-behaved: this lead to the 5x2cv
test.

To compute this test we have to perform 5 replications of 2-fold cross-validation. In
each replication, the available data is randomly partitioned into to equal sized sets. Each
algorithm is trained using one of the sets and tested using the other one. In our case we
want to have different runs of the feature selection process to assess their stability and then
test the results with a learner to assess the prediction power of the resulting feature set. So
we need two nested loops of this 5x2 cross-validation. This requirement of two nested cross-
validation loops further discards 10-fold cross-validation as for problems with a few hundreds
of instances such as the gene expression microarray problems we are using the test could be
with only one or two instances. Figure 3.2 shows a graphical representation of the setup.

(50% samp.)

FS train set
(50% samp.)

Original
Data set

5x2 cross-val
set creation

5x2 cross-val
set creation

FS step train
(25% samp.)

Inducer train

FS step test
(25% samp.)

Select best
subset

Add/remove
one feature

More features to try?

FS Assessment
Learner + stat. test

Feature selection

Repeat 5x2-fold cross-validation

Repeat 5x2-fold cross-validation

Yes

Inducer test

FS test set

Figure 3.2: Graphical representation of the experimental setup





Chapter

4
On redundancy and importance

As we mentioned in Chapter 1, one of our hypothesis is that having redundant features in a
dataset may negatively affect feature selection algorithms stability. To test this hypothesis
we first give a formal definition of feature redundancy. Different definitions can be found
in literature. We will describe them along with the problems these definitions present. In
fact we propose to use a level of redundancy since most of the time we will not find two
completely redundant features but a feature that is redundant to a set of other features to
a certain degree. In addition, we provide initial work on the definition and study of feature
importance. Although the characterizations are of theoretical interest, we do not provide as
yet practical algorithms to compute them.

4.1 Problems of previous definitions

In general, the definitions of redundancy found in the literature are based on feature correla-
tion, i.e. two features are redundant if their values are correlated. One interesting particular
case is when one feature is an exact copy of another so their values are completely correlated,
one feature is obviously redundant. But in reality a feature may not be completely correlated
with another feature but may be (partially) correlated with a set of features. In such a case it
is not straightforward to determine the redundancy. We can take as an example the features
shown in Table 4.1. The feature fr is intuitively redundant with the set f1, f2 but is not
correlated with any of them, so it would not be redundant according to the correlation based
definition of redundancy. Therefore, we have to find a better definition for feature redundancy
that enables us to identify not only pairs of redundant features but features redundant with
any set of other features.

As for feature importance, although there are many metrics in the literature aimed at
ranking features –some of them being classifier-independent–, to the best of our knowledge
there is no previous attempt to give a formal definition.

53
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f1 f2 fr C

0 0 1 0
0 1 1 0
1 0 1 0
1 1 0 1

Table 4.1: Two relevant features and one redundant: C = f1 ∧ f2 and fr = f1 ∧ f2

4.2 Redundancy definition

4.2.1 Markov blankets

Before giving the formal definition of redundancy let us introduce some previous definitions:

Definition 4.1. Let U = {α, β, . . .} be a set of discrete variables in a problem domain. Each
variable is associated with a set of possible values. A configuration or a tuple u′ of U′ ⊆ U
is an assignment of values to every variable in U′.

Definition 4.2. A probabilistic domain model (PDM) P over U determines the prob-
ability P (u′) of every tuple u′ of U′ for each U′ ⊆ U.

Definition 4.3. For three disjoint subsets X, Y and Z ⊆ U, X and Y are said to be
conditionally independent given Z under P , noted I(X,Z,Y)P or simply I(X,Z,Y)
from now on, if (see [55, pp 83–97])

I(X,Z,Y) ≡ P (x|y, z) = P (x|z) whenever P (y, z) > 0 (4.1)

Using this notation we can express unconditional independence as I(X, ∅,Y), i.e.,

I(X, ∅,Y) ≡ P (x|y) = P (x) whenever P (y) > 0

Note that I(X,Z,Y) implies the conditional independence of all pairs of variables α ∈ X and
β ∈ Y, but the converse is not necessarily true.

Definition 4.4. A Markov Blanket BLI(α) of an element α ∈ U is any subset S ⊂ U for
which (see [55])

I(α,S,U− S− α) and α /∈ S. (4.2)

An intuitive interpretation of Def. 4.3 would be: Once Z is given, the probability of X
will not be affected by the discovery of Y. Or Y is irrelevant to X once we know Z. Note
that the Markov blanket condition in Def. 4.4 is stronger than conditional independence. It
is saying that not only that knowing α is irrelevant to the class, but also to the rest of the
features, so S has all the information that α has about C and all the information α has about
U− S− α. This takes us to our definition of redundancy:
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Definition 4.5. Given a set of features F and a class feature C, a redundant feature α ∈ F
is a feature for which exists a Markov blanket S = BLI(α) within {F, C} such that S ⊂ F.

An interesting property of Markov blankets is that if we removed a feature α such that
existed BLI(α) ⊂ U and now we are eliminating another feature β such that exists BLI(β) ⊂
U−α then we can prove that also exists BLI(α) ⊂ U−β, we can see the proof in [42]. That
is, a redundant feature remains redundant when other redundant features are removed. So
if we proceed to remove features using this criterion, we will never have to reconsider our
decisions.

A PDM P satisfies the following axioms:

• Symmetry:
I(X,Z,Y)⇔ I(Y,Z,X)

• Decomposition:
I(X,Z,Y ∪W)⇒ I(X,Z,Y) ∧ I(X,Z,W)

• Weak union:
I(X,Z,Y ∪W)⇒ I(X,Z ∪W,Y)

• Contraction:
I(X,Z,Y) ∧ I(X,Z ∪Y,W)⇒ I(X,Z,Y ∪W)

• Intersection (holds when P is strictly positive, i.e. P (u′) > 0, for each tuple u′ of each
U′ ⊆ U):

I(X,Z ∪W,Y) ∧ I(X,Z ∪Y,W)⇒ I(X,Z,Y ∪W)

4.2.2 Redundancy level

Unfortunately, we would rarely find a fully redundant feature, but rather one that its infor-
mation is nearly subsumed by other features. So we would like to know not only whether
a feature is redundant or not but its redundancy grade. We would like a function R′ which
given an feature α ∈ U and a set of features U ∈ U gives us a degree of redundancy of this
feature to the set. Ideally we would like a function R′ : U × U → [0, 1] than satisfies the
following conditions:

R′(α,BLI(α)) = 1

R′(α,U− αi) ≤ R′(α,U),∀αi ∈ U

To achieve this we should change the boolean definition of conditional independence to a
some function of P (x|y, z) and P (x|z).

Definition 4.6. Consider we have that U is our set of features, α is the feature we are
evaluating, and S is some subset of U not containing α. We defined u as a configuration of
U. We will write su, s−1u and αu for the configuration of S, the configuration of U − S − α
and the value of α respectively when the configuration of U is u. Now we can define U as the
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set of all possible configurations of U for which P (u − su − αu, su) > 0. With all that, we
define Redundancy level R′ as:

R′(α,U) = 1− max
S⊂U−α

(∑
u∈U

∣∣P (αu|su)− P (αu|s−1u , su)
∣∣

|U|

)
(4.3)

The calculation of this redundancy level is exponential in the number of features in our set,
as it compares the conditional probabilities of all possible subsets of U, so the max function
will have to compare |P(U)| = 2|U| terms. For each subset we also have an exponential
cost in the number of values of the features, because the sum is over each configuration u
of U. It is clear to see that, although Eq. 4.3 gives an intuitively consistent definition of
redundancy level, its computational cost might be too large for R′ to be directly applied in
a feature weighting (or feature selection) algorithm. We should then use an estimation of
R′ that maximized the tradeoff between accuracy and complexity. But in fact the aim of
the definition of R′ was not to have an efficient algorithm to calculate the redundancy level
of a feature. The definition had three basic (related) objectives: first of all to provide a
suitable formal definition of redundancy in order to study the effect of feature redundancy in
the different existing algorithms, for instance ReliefF. Second, to serve as a starting point
for new extensions to methods which performance decreases in the presence of redundant
features –again Relief is an example. Finally, to direct the development of new algorithms
that effectively and efficiently estimate redundancy.

4.3 Importance definition

The Bayes error rate is the lowest possible error rate for any classifier of a random outcome
and gives a statistical lower bound on the error achievable for a given classification problem
and associated choice of features [21].

4.3.1 The Bayes Error

In classification, one interested in determining the class or category of objects according to
Ω, a discrete random variable taking values in the finite set {ω1, . . . , ωK} that represent
the possible classes, with probabilities P (ω1), . . . , P (ωK) acting as priors. If the objects are
described by real-valued vectors, considering random vectors X = (X1, . . . , Xn) with p.d.f.
p(x) that measure continuous features of the objects. Let also P be the support of p, i.e.
P = {x ∈ Rd| p(x) > 0}.

In this setting, p(x|ωi), i = 1, . . . ,K are the conditional densities of x for every class.
Then, according to Bayes formula, the posterior probabilities are:

P (ωj |x) =
p(x|ωj)P (ωj)
m∑
i=1

p(x|ωi)P (ωi)
, with

K∑
j=1

P (ωj |x) = 1

The classifier that assigns a vector x to the class with the highest posterior is called the
Bayes classifier. The error associated with this classifier (more technically, the probability of
error) is called the Bayes error, which is expressed [21]:
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Pe = 1−
K∑
j=1

P (ωj)

∫
Rj

p(x|ωj) dx

where Rj is the region in P where class j has the highest posterior.

4.3.2 A definition of feature importance

Denote X = (X1, . . . , Xn) the full set of available features. We first consider the Bayes error
for a restricted set of features:

Definition 4.7 (restricted Bayes error). Given X, the full set of features, the restricted Bayes
error of a subset X0 ⊆ X is:

Pe(X0) = 1−
K∑
j=1

P (ωj)

∫
Rj

p0(x|ωj) dx

where p0 is the restriction of p to X0.

Definition 4.8 (relevant subset). Given X, the full set of features, the relevant subset for X
is the smallest non-empty X∗ such that

∀X̂ ⊆ X∗, Pe(X∗ \ X̂) > Pe(X
∗)

Notice that the relevant subset always exists but is not necessarily unique; in case more
than one relevant subset for X might exist, a feasible approach would be to choose the one
minimizing a general cost function, as follows: let c(x) ≥ 0 represent the cost of variable
x and call c(X̂) =

∑
x∈X̂

c(x), for any X̂ ⊆ X. It is assumed here that c is additive, that is,

c(X ′∪X ′′) = c(X ′)+c(X ′′) (together with non-negativeness, this implies that c is monotone).
The idea is then to look for the relevant subset of smallest cost; when c(x) = |x|, then cost
is size, and the standard selection setting is recovered. In general, other criteria would be
possible, like measurement cost, needed technical skill, etc, depending on the domain at hand.
Also noteworthy is the fact that X∗ = X is possible, in which case no feature selection is
possible without a degradation in accuracy.

Definition 4.9 (feature importance). Given X, the full set of features, the importance R of
a feature Xi ∈ X is:

R(Xi) =

{
Pe(X

∗ \ {Xi})− Pe(X∗) if Xi ∈ X∗,
0 otherwise.

where X∗ is the relevant subset for X; note that R(Xi) ≥ 0, by construction.
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Definition 4.10 (normalized feature importance). Given X, the full set of features, the
normalized importance r of a feature Xi ∈ X is:

r∗i =
R(Xi)∑d
j=1R(Xj)

Define now, for the sake of simplicity, the importance vector r∗ = (r∗1 , . . . , r
∗
n)T –thus this

vector contains the true relative importances for the full feature set X = (X1, . . . , Xn). If
we had an unlimited supply of data and computational resources, we could in principle find
the importance vector for a feature selection problem. However, in practice we have a data
set containing only a finite number of data points, and consequently we can only hope for an
estimation of it. Therefore the dependence of the importance vector on the available data set
is also of theoretical interest.

Consider now D = {(x1, t1), . . . , (xN , tN )} a training data set of length N , each multivari-
ate instance xn with its corresponding class label tn. In practice, the vector of importances
will be calculated (estimated) from the data D, yielding the empirical importance vector
rD = (rD1 , . . . , r

D
n )T .

Definition 4.11 (bias). The bias vector of an estimation rD of r∗ is:

B(rD) = ED[rD]− r∗

where the i-th component is bias(rDi ) = r∗i − ED[rDi ].

Definition 4.12 (variance). The variance vector of an estimation rD of r∗ is the vector V(rD)
whose i-th component is var(rDi ) = ED[(r∗i − ED[rDi ])2].

In all cases, the expectations are taken with respect to all datasets D of size N . We are
interested in studying the mean discrepancy (or square error) between the theoretical and the
empirical importance vectors.

Definition 4.13 (MSE). The mean square error or MSE of an estimation rD of r∗ is:

MSE(rD) = ED
[
‖rD − r∗‖2

]
We can now state our main result:

Theorem 4.14.
MSE(rD) =

∥∥B(rD)
∥∥2
2

+
∥∥V(rD)

∥∥
1

where ‖·‖2 and ‖·‖1 stand for the two- and one-norm, respectively.
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Proof. The MSE can be expressed as

ED
[
‖rD − r∗‖2

]
= ED

[
‖rD − ED[rD] + ED[rD]− r∗‖2

]
= ED

[
‖rD − ED[rD]‖2

]
(A)

+ ED
[
‖ED[rD]− r∗‖2

]
(B)

− 2ED
{

(rD − ED[rD])T (ED[rD]− r∗)
}

(C)

(B)
ED
[
‖ED[rD]− r∗‖2

]
= ED

[
‖r∗‖2

]
+ ED

(
ED
[
‖rD‖2

])
− 2ED

(
ED[rD]T r∗

)
= ‖r∗‖2 + ED

[
‖rD‖2

]
− 2 (r∗)TED[rD]

= ‖r∗ − ED[rD]‖2 =

d∑
j=1

(
r∗i − ED[rD]i

)2
=

d∑
j=1

(
r∗i − ED[rDi ]

)2
=

d∑
j=1

(bias(rDi ))2 =
∥∥B(rD)

∥∥2
2

(A)

ED
[
‖rD − ED[rD]‖2

]
= ED

[
‖rD‖2

]
− ‖ED

[
rD
]
‖2

=

d∑
j=1

ED[rDi ]−
d∑
j=1

(
ED[rD]i

)2
=

d∑
j=1

ED[rDi ]−
d∑
j=1

(
ED[rDi ]

)2
=

d∑
j=1

ED
[(
rDi − ED[rDi ]

)2]
=

d∑
j=1

var(rDi ) =

d∑
j=1

|var(rDi )| =
∥∥V(rD)

∥∥
1

(C)

ED
{

(rD − ED[rD])T (ED[rD]− r∗)
}

= ED
[
(rD)TED[rD]

]
− (r∗)TED[rD]− ‖ED[rD]‖2 + (r∗)TED[rD]

= ED[rD]TED[rD]− ‖ED[rD]‖2 = ‖ED[rD]‖2 − ‖ED[rD]‖2 = 0

We see that the expected squared difference between the theoretical and the empirical
importance vectors can be expressed as the sum of two terms. The first term represents the
extent to which the average estimation over all data sets differs from the theoretical one. The
second term measures the extent to which the point estimations for specific data sets vary
around their average, thus measuring the stability of the estimation in relation to a particular
choice of data.

On the other hand, the definition and study brings two distinctive advantages: first, it
is not dependent on the number of dimensions d or classes; second, although the focus is
in classification problems, the adaptation to regression problems would be straightforward,
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simply replacing the Bayes probability of error by the corresponding optimal error measure
(e.g., the error committed by the regression function in the regression case). The presented
bias/variance analysis turns out to be independent of the problem being a classification or a
regression one.
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5
A focus on Relief

In this chapter we present an on-depth study on a the popular Relief algorithm. We review
characteristics such as the metric it uses or its robustness against feature redundancy. We
also propose some modifications to improve it.

5.1 Study of Relief metric

Relief needs a heterogeneous metric to be able to handle both continuous and nominal
attributes. As we have seen in Chapter 2, the metric used in the original algorithm was the
Heterogeneous Euclidean-Overlap Metric (HEOM) which uses the euclidean distance (2.20)
for continuous attributes and overlap (2.19) for the nominal ones.

As Wilson and Martinez [83] pointed out, this approach does not take into account all the
information nominal attributes are providing. They are skipping some information that may
later be useful in the learning process.

To overcome this problem Stanfill and Waltz [74] introduced the Value Difference Metric
(VDM) to provide an appropriate distance function for nominal attributes. VDM defines the
distance between two instances as:

DV DM (x,y) =
∑
a∈A

dV DM (xa, ya, a)w (a, xa) (5.1)

where,

dV DM (x, y, a) =
∑
c∈C

(
Na=x,c
Na=x

− Na=y,c
Na=y

)2

(5.2)

w(a, x) =

√√√√∑
c∈C

(
Na=x,c
Na=x

)2

(5.3)
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Na=x,c is the number of instances of class c which have the x as the value for attribute a
and Na=x is the total number of instances which have x as the value for attribute a.

We can also express the VDM in a simpler way by using conditional probabilities:

dV DM (x, y, a) =
∑
c∈C

[P (c|xa)− P (c|ya)]
2 (5.4)

w(a, x) =

√∑
c∈C

[P (c|xa)]
2 (5.5)

Where P (c|xa) is de conditional probability of one instance to be of class c knowing that
its attribute a has a value of x.

The factor w(a, x) is the weight of an attribute and tries to bring information about the
discrimination power of this attribute. The minimum value of this weight represents a uniform
distribution of the attribute values among the different classes.

w(a, x) =

√∑
c∈C

1

|C|2
=

√
|C|
|C|2

=

√
1

|C|
= |C|−1/2 (5.6)

And will reach its maximum value when a is a perfect discriminator – when value x only
appears in instances belonging to one class. In addition we can easily see that this maximum
value is 1. This metric is not exempt of problems. As we have seen this metric only takes
into account the conditional probability distributions of the attribute values given a the class.
This will make two attributes with the same conditional probability distribution with respect
to the class will be at 0 distance according to this metric. This might not be interesting in
some cases. This is specially true in problems with two attributes with attributes having near
uniform distribution given the class when taken individually but that are good discriminators
when combined. The parity-n problem is a good example. This problem consists of n binary
attributes. The class will be 1 for instances with an even number of attributes with a value
of 1 and 0 otherwise. Every attribute has a uniform distribution given the class but the
combination of all of them constitute a perfect discriminator of the class. In this case the
VDM distance between two random instances will always be 0 provided that all the conditional
probabilities will have the same value so giving no information about which is the nearest
neighbour for a given instance. Moreover, if we add irrelevant attributes also uniformly
distributed given the class, they will also have the same conditional probability distribution.
Therefore the difference among two instances using this attributes will also be 0 and so Relief
will assign them exactly the same weight assigned to the relevant attributes. We can see that
for problems with attributes that are high interactions using the VDM is probably a bad idea.

5.2 Redundancy analysis

Relief gives us a measure of the attributes relevancy. Our aim is to study what happens
when attributes with a high level of redundancy by answering the following questions:

1. Will it give the same weight to two redundant variables?
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2. Can we conclude that two variables are redundant if they have the same weight?

3. Do redundant variables harm each other?

Let’s assume we have two attributes A1 and A2 which are completely redundant to each other,
they allow a learner to predict the class for the same instances. To answer the first question
we will assume we have a problem with these two attributes and a third one (which will be
called A3)) which is not redundant to the other two. We only have to prove that the difference
between the nearest hit and the nearest miss is the same for A1 and A2. If this was true the
weight update at each iteration of Relief would also be equal and at the end A1 and A2

would be assigned the same weights.

Lemma 5.1. If two variables are completely redundant to each other Relief will assign the
same weights to them.

Proof. Let’s start with a demonstration for two-classes problems, binary attributes and no
noise and then we will generalize it. In the given situation we have the following values:

Case 1: A1 = X1 A2 = X1 A3 = Y1 C = Z1

Case 2: A1 = X1 A2 = ¬X1 A3 = Y1 C = Z1

A otherwise the attributes would not be useful to determine the class in for the same instances.
The nearest hit and the nearest miss would be:

Case 1: A1 = X ′1 A2 = ¬X ′1 A3 = Y ′1 C = Z ′1

Where Z ′1 will be Z1 for the nearest hit and ¬Z1 for the nearest miss. If X ′1 have a different
value than X1 then the difference between the two attributes will be 1 and if they have equal
values will be 0.

Case 2: A1 = X ′1 A2 = ¬X ′1 A3 = Y ′1 C = Z ′1

If X ′1 is different from X1 then ¬X ′1 will also be different from ¬X1 and the difference will
be 1, otherwise both will be 0. The extension to non-binary attributes is fairly simple: the
attributes will have more possible values, but if A1 has the same values for the nearest hit
and the nearest miss, A2 will unavoidably also have the same value to meet the redundancy
hypothesis. And the same applies to different values. For problems with more that two classes
all the above also holds true: for each nearest misses the relationship between A1 and A2 is
still the same so the weight increment will be the same �

Now we will consider the case of two attributes that have a level of redundancy according
to Eq. 4.3 but are not completely redundant by introducing some noise in its values. Let’s
assume that the probability of a certain value to be affected by noise is Pn. Let’s see how this
noise affects the difference of a certain instance x1 with its nearest hit and its nearest miss
for an attribute A with a replica of A that we will call A′ and that is affected by noise with a
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probability Pn. The following formula computes the difference increase from x1 to any other
instance x2.

pdcA−A′ = p(V1 = V2) ∧ p(V ′1 6= V ′2) + p(V1 6= V2) ∧ p(V ′1 = V ′2) (5.7)

Where pdcA−A′ is the probability of a difference change between instances x1 and x2 for
attributes A and A′, V1 and V2 are the values for x1 and x2 respectively for A and V ′1 and
V ′2 the values for A′. As A and A′ are not independent, we can rewrite the formula as:

pdcA−A′ = p(V ′1 = V ′2 |V1 6= V2)p(V1 6= V2) + p(V ′1 6= V ′2 |V1 = V2)p(V1 = V2) (5.8)

By further developing the above formula, we can compute the probability of V ′1 to be equal to
V ′2 knowing that V1 and V2 were different. We will consider various cases: if V ′1 has changed
but V ′2 no, we know that the probability of them being equal knowing that they differed
before is of one in the number of possible values minus one. We have an analogous case if
the one that changed is V ′2 but V ′1 stayed the same. If both change then the probability of
them having the same value is the probability of the one change not to pick the same value
of the other one as we are assuming that both are changing. That makes the probability to
be again of one in the number of possible values except the previous one |V | − 1. We defined
the probability of changing a certain value to be Pn so we already have the first part of the
sum broken down. Now we analyze the reverse case: the probability of V ′1 to differ from V ′2
knowing that V1 and V2 were equal. This is a simpler situation. If only one of them varies
the difference will also vary. If both of them vary then the probabilty of the difference to vary
is the probability of the two variables not to pick the same value. That is: |V | − 2 divided
by |V | − 1, as once we pick a value for one of them that is the proportion of cases when the
second one will have a different value. Now we can rewrite the formula:

pdcA−A′ =
2 (ps (1− ps))
|V | − 1

+
ps2 (|V | − 2)

(|V | − 1)
2 p(V1 6= V2)+2 (ps (1− ps))+ps2 (|V | − 2)

(|V | − 1)
p(V1 = V2)

(5.9)

A specific case for this formula is when |V | is 2 (i.e. a binary attribute). In this case,
the two terms that multiply the probability of V1 and V2 to be different and to be equal will
be the same, so we can simplify the formula and knowing that the sum of the two is 1 (they
either have equal values or different values), we end up with a formula as simple as:

pdcA−A′ = 2 (ps (1− ps)) =
(
2ps− 2ps2

)
(5.10)

Let’s now study the effect to the weight increment. To simplify, let’s call D to the factor
multiplying the probability of V1 and V2 to be different and E to the factor multiplying the
probability of them being equal. We have:

pdwA−A′ = D ·p(V1 6= V2)NME ·p(V1 = V2)NM − (D ·p(V1 6= V2)NHE ·p(V1 = V2)NH) (5.11)

We just applied the above ideas to the formula that Relief uses for the weight increments:
the nearest miss difference adds to the weight (we seek attributes that make instances of other
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classes to be far) while the nearest hit subtract form the weight (we seek attributes that make
instances of the same class near). Simplifying:

pdwA−A′ = X(p(V1 6= V2)NM − p(V1 6= V2)NH) + Y (p(V1 6= V2)NHp(V1 6= V2)NM ) (5.12)

A first observation is that this formula, in the presented case where the attributes are
binary (i.e. |V | = 2), as D = E and the other terms cancel each other, we can deduct that
the added noise will not affect the weight calculation. For other values of |V | Fig. 5.1 shows
the importance of each term. We can see that as the relationship between the probabilities
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Figure 5.1: Pn = 0.1, |V | = 3

of the values to be different for the nearest hit andnearest miss increase, the weight change
probability also increases. This makes the noise to have more effect for variables which
have high values for this relationship. This means that noise will decrement the weights
for attributes where the values for instances and their nearest hits are often equal while
difference in values for instances and their nearest misses are often different (i.e. the most
relevant attributes). For attributes in the opposite situation (i.e. not that relevant as they had
negative contribution form the nearest hits) noise will increment their weights. The conclusion
is that noise will make the weights go to zero for both relevant and irrelevant features Let’s
see which is the contribution of the probability of noise Pn. In Fig. 5.2 we can see that Pn is

0

0.25

0.5

0.75

1

pcdNM

0

0.25

0.5

0.75

1

pcdNH

-0.2

0

0.2

DeltaW

0

0.25

0.5

0.75pcdNM

Figure 5.2: Pn = 0.2, |V | = 3

only controlling the range of the probability of the weight increment to vary.

Now we will study the inverse implication that we stated in question 2 above: Can we
conclude that two variables are redundant if they have the same weight?
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Lemma 5.2. Two attributes that are assigned the same weight by Relief are not necessarily
redundant.

Proof. It seems fairly obvious that the answer will be no. As we stated above Relief weights
are correlated with attributes contribution to te correct discrimination of the class by a
learner. Based on this, two attributes that are useful to determine the class of an instance the
same number of times but for completely different instances will be given the same weight.
We can give a simple counter-example: The extension to multiple variables of the XOR
problem (parity-n). In this problem the nearest hits will always subtract (instances of the
same class may have a different value in every attribute), and nearest misses will add or
subtract depending on how we break ties. If we break ties randomly it’s easy to see that
the contribution for nearest misses will also be the same for two redundant attributes. This
will lead the two attributes to be assigned the same weight even though they are in no way
redundant to each other. �

We will finally answer question 3 where we considered the effect of redundancy to the
algorithm performance. We start by studying the changes in the weights Relief assigns to
attributes before and after adding redundant attributes and then explaining the reasons for
that change. We will use the same problem we used before when answering question 1 but
first of all only with A2 and A3 and then we will add A1. What we empirically observe is that
the weight of A2 has diminished (and we know from question 1 that the weight for A1 will
be the same as for A2). The reason why the weight diminishes is that by adding a redundant
attribute A1 the nearest miss may change and if this change affects the variation in the weight
difference then it does it in a negative way: Let’s imagine that we have an instance x1 and
that its nearest miss NH(x1) is at distance d. If they have the same value for A2, then it’s
impossible that the nearest miss will change by adding A1 as the distance between the two
will be the same and if it was the nearest instance of different class it has to keep being it.
On the other hand if the two instances had different values for attribute A2, adding A1 may
make another instance x2 to be at the same distance (d+ 1) as NH(x1) in that case the new
nearest miss will have the same value for attribute A2 so it will have a negative impact in the
weight calculation. In the same way the contrary holds true for the nearest hit : For the same
instance x1 and its nearest hit, if both have the same value for A2 then it is impossible that
by adding A2 the nearest neighbour chages (using the same reasoning as above). But if they
have different values for A2, adding A1 may make another instance to become the nearest hit
and the new instance will have the same value for A2 so it will have a positive influence in
the weight.

With the above statements one could think that the two influences cancel each other but,
by definition of how Relief works, the more relevant an attribute the lower the differences
with near instances if the same class and the higher the differences with near instances of
different classes. That causes what we could call a ceiling effect to the influence of nearest
hits: even though the instances of the same class get closer when replicating the attribute the
weight variation is very low as it was not penalizing before but when instances of different
classes get closer they have a negative effect on the weight. And the same happens with
nearest misses. The result is that when adding redundant attributes to one of the existing its
weight will get closer to 0 as Šikonja and Kononenko [70] pointed out.
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5.3 Double Relief

When more and more irrelevant features are added to a dataset the distance calculation of
Relief degrades its performance as instances may be considered neighbors when in fact they
are far from each other if we compute its distance only with the relevant features. In such
cases the algorithm may lose its context of locality and in the end it may fail to recognize
relevant features.

The diff(Ai,x1,x2) function calculates the difference between the values of the feature Ai
for two instances x1 and x2. Sum of differences over all features is used to determine the
distance between two instances in the nearest hit and miss calculation (see Eq. 2.18).

As seen in the k-nearest neighbors classification algorithm (kNN) many weighting schemes
which assign different weights to the features in the calculation of the distance between in-
stances (see Eq. 5.13).

δ′(x1,x2) =

a∑
i=1

w(Ai) diff(Ai,x1,x2) (5.13)

In the same way that in [82] Relief’s estimates of features’ quality have been used suc-
cessfully as weights for the distance calculation of kNN we could use their estimation in the
previous iteration to compute the distance between instances while searching the nearest
hits and misses. We will refer to this version of ReliefF as double ReliefF or in short
dReliefF.

5.3.1 Progressively weighted double Relief

The problem using the weights estimates could be that in early iterations these estimations
could be too biased to the first instances and could be far from the optimal weights. Therefore,
for small t, W [Ai] is very different from W [Ai]t.

What we want is to begin the distance calculation without using the weight estimates and
then, as Relief’s weight estimates become more accurate (because more instances have been
taken into account), increase the importance of these weights in the distance calculation. Lets
have a distance calculation like the one in Eq. 5.14.

δ(x1,x2) =
a∑
i=1

f(W (Ai)t, t) diff(Ai,x1,x2) (5.14)

We would like a function f : R× (0,∞)→ R such that:

• f(w, t) is increasing with respect to t

• f is continuous

• f(w, 0) = 1

• limt→∞ f(w, t) = w
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One such function could be the one in Eq. 5.15. And we will refer to the version of
ReliefF using this distance equation as progressively weighted double Relief or in short
pdReliefF.

f(w, t) =
(w − 1)c(t)

c(t) + s
+ 1 (5.15)

Where s is a control parameter that determines the steepness and final value of the curve
described by f (see Fig. 5.3) and c(t) is a function of the iteration number (e.g. c(t) = t).
Another desirable property for our function would be that it always gives the same results
regardless of the number of iterations. In other words, if m is the total number of iterations,
we would like f(w,m) to be the same value whatever the value of m. To achieve that we must
make c(t) depend also on the total number of iterations m so as to decrement the steepness of
the function as the number of total iterations increases. A posible definition of c(t) is shown
in Eq. 5.16.

c (t) = (t/m)
a (5.16)

In Fig. 5.4 we can see how f varies the influence of different weights (even a non-realistic
one that is greater than 1) as iterations go on. We can see that with high values of s the
function converges in the first few iterations and then it stabilizes its value near w and for
low values of s it’s value remains near 1 till the end. To choose a value we can compute
the area left over and below the function. We can see the normal ReliefF as a particular
case where f(w, t) = 1 having maximum area and dReliefF as another particular case with
f(w, t) = w having minimum area. We want to choose the parameters to be in between the
two. Specifically we could choose the parameters so as to leave 1/3 of the area below the
function. For doing this we have to solve Eq. 5.17∫m

1
f(w, t) dt−

∫m
1
w dt∫m

1
1 dt−

∫m
1
w dt

=
1

3
(5.17)

A combination of parameters that solves the equation are: a = 2 and s = 0.0633657 ' 0.06.
Graphically it can be seen in Fig. 5.4 that those values make weights’ ponderations stay near
1 for half of the iterations and then takes values near the weights’ values. This value has been
chosen in our experiments.

5.3.2 Experimental design

Objective

The above sections present three algorithms:

ReliefF The algorithm presented by Kononenko in [43]

dReliefF The above algorithm using it’s own partial weigts to ponderate attributes in dis-
tance calculation
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pdReliefF The above using a function to progressively increment the weights ponderation
effect in distance calculation

The objective of the experiments which will be presented is to compare performance of the
three algorithms related to the factor of irrelevant attributes. The hypothesis is that the
performance of the non-modified algorithm will be more affected by the number of irrelevant
attributes increase due to their influence in distance calculation.

Factors

As stated before the key factor of the experiments is the ratio of irrelevant attributes, but
there are some nuisance factors which have effect on the experiments’ results. The factors
considered in the experiments are:

• Problem to solve

• Numeric vs. categoric attributes

• Number of relevant attributes

• Number of irrelevant attributes

• Data randomization

The main factor that will impact on performance results will be the problem we want to
solve and in addition will be the most difficult to reduce. In order to eliminate it’s influence,
all the possible problems would have to be tried which is obviously impossible. Another
factor that can clearly impact on performance is the type of the attributes as Relief has an
heterogeneous function for distance calculation which depends on whether the attributes are
numeric or categoric. Hence, to reduce the effect of these two factors the same experiments
will be run on six different problems, three with numeric attributes and three with categoric
ones. All the problems tested will be artificial to have sufficient knowledge about the data
not to make performance of the weighting dependent on performance of a classifier.

Ranges for each factor have to be chosen. There has to be at least one relevant attribute
and one irrelevant one in order to check whether the algorithm seems capable of distinguishing
them, so both of them will start at 1 in our experiments. The number of irrelevant attributes
will depend on the number of relevant ones in order to test with the same percentage of
irrelevant attributes for each number of relevant attributes. A good choice could be to have
at most twice the number of irrelevant attributes as the number relevant ones.

The upper bound for the number of relevant attributes will depend on the number of
instances that are to be generated. It is interesting to test the algorithms with a wide range
of attributes to instances ratios. We may arbitrarily set number of instances generated to
100. With that number of instances, it would be interesting to have at most 150 features for
the ratio of attributes to instances not to get too low. If we want total features to keep below
150 with a number of irrelevant attributes of twice the number of relevant ones, we have to
set upper bound to the number of relevant attributes to 50.

Finally 10 different sets of data will be generated for each combination of other factors to
reduce the possible effect of randomly generating a pathologic set of data.
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Design

Here we have to decide which of all the possible combinations of factors will be tried in the
experiments. The better way to reduce or eliminate the contribution to experimental error of
each of the factors would be to treat them as blocking factors. That is to create homogeneous
blocks in which the factors are kept constant while the target factor takes all its possible
values. When blocking is not possible because of limited resources a random subset of each
block can be run.

With the ranges described above, there are a total of 3× I ×N × (N − 1) different factor
combinations for each problem as seen on Eq. 5.18, where N is the number of relevant at-
tributes and I the number of iterations (i.e. random dataset generations) for each combination
of relevant and irrelevant attribute numbers. N∑

imp=1

2imp

× Iiterations × 3algorithms = 3× I ×N × (N − 1) (5.18)

That gives a total number of 76,500 different combinations for each problem. With that
number of combinations all combinations can be run. Hence the experimental design will be
a full blocking design as shown on Fig. 5.5 in an algorithmic way.

1. for each problem in problems do begin

2. for impAtts := 1 to 50 do begin

3. for irrAtts := 1 to impAtts ∗ 2 do begin

4. for iteration := 1 to 10 do begin

5. execute problem with each algorithm;

6. end;

Figure 5.5: Pseudo code of the experimental design

Problems

RDG1NamedContinuous

A data generator that produces data randomly with numeric attributes by producing a deci-
sion list. The decision list consists of rules. The rules have the form cx :=

∧n
1 t, where t is an

inequality term (i.e. x < y or x ≥ y) between some attribute and a random value. For each
rule, the number n will be a random number in the range [1..10]. An example set of rules can
be seen on Eq. 5.19.

RULE 0: c0 := a1 < 0.986 ∧ a0 >= 0.65

RULE 1: c1 := a1 < 0.95 ∧ a2 < 0.129

RULE 2: c2 := a1 >= 0.562

(5.19)
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Instances are generated randomly one by one. The class will be determined by the first rule
that is true for the current instance. If decision list fails to classify the current instance, a new
rule according to this current instance is generated and added to the decision list. Irrelevant
attributes are generated randomly in the range [0, 1].

RandomRBFRandRed1

Radial basis functions (RBF) are functions which characteristic feature is that their response
decreases (or increases) monotonically with distance from a central point. There are different
formulas to describe the specific shape of the function and they usually have parameters to
control the center and the distance scale. In this particular case, the function f(x) used is
the Gaussian which is described by Eq. 5.20 and can be seen on Fig. 5.6. Its parameters
are its mean µ and its standard deviation σ. A Gaussian RBF monotonically decreases with
distance from the center.

f(x) =
1

σ
√

2π
exp

(
− (x− µ)

2

2σ2

)
(5.20)

RandomRBF data is generated by first creating a random set of centers for each class.
Each center is randomly assigned a weight, a central point per attribute, and a standard
deviation. To generate new instances, a center is chosen at random taking the weights of each
center into consideration. Attribute values are randomly generated and offset from the center,
where the overall vector has been scaled so that its length equals a value sampled randomly
from the Gaussian distribution of the center. The particular center chosen determines the
class of the instance. RandomRBF data contains only numeric attributes as it is non-trivial
to include nominal values. Irrelevant attributes are generated following the same Gaussian
distribution for some random centers and standard deviation.

NonMonotonic

Let ra be a random value in the range [0..1] to act as a ponderator for the attribute a. Now,
for each instance i generate a random value ri in the rage [0..N ], where N is the number of
important attributes. The value ai of the attribute a for instance i will be the one in Eq.
5.21.

ai = { ra × ri if (i mod 2) 6= 0
ra ×

√
ri if (i mod 2) = 0

(5.21)

The class for instance i will be the integer part of ri. Irrelevant attributes are created randomly
following a uniform distribution in the range [0, 1].

MajorityN

Creates n binary attributes and i irrelevant attributes. The class attribute is 1 when the
instance has a majority of 1s in the relevant attributes and 0 otherwise.

ModuloP

Each Modulo-p problem is described by a set |R| = n of relevant attributes and i irrelevant
attributes, both with integer values in the range [0, p). The class c can be defined as in Eq.



5.3. DOUBLE RELIEF 73

−4 −2 0 2 4

0
.0

0
.1

0
.2

0
.3

0
.4

x

f(
x
)

Figure 5.6: Plot of function f(x) with µ = 0 and σ = 1



74 CHAPTER 5. A FOCUS ON RELIEF

5.22.
c =

∑
r∈R

(r mod p) (5.22)

RDG1NamedCategoric

The same data generator as for RDG1NamedContinuous but this time generating boolean
attributes instead of numeric ones so now the rules are boolean predicates.

5.3.3 Results

In this section the results of the above described experiments are presented. Six plots are
presented in Fig. 5.7. To clearly understand what the axes represent some notation has to be
introduced. Let R = r1, r2, . . . , rn be the set relevant attributes and I = i1, i2, . . . , im the set
of irrelevant ones having |R| = n and |I| = m. And let w(a) be the weight assigned by the
algorithm to attribute a. Now, the x-axis represents the total number of attributes (m + n)
and the y-axis the separability s (i.e. the maximum weight assigned to a relevant attribute
minus the maximum weight assigned to an irrelevant one). Formulas are shown in Eq. 5.23.

x-axis: m+ n

y-axis: s =

(
max
ar∈R

w(ar)

)
−
(

max
ai∈I

w(ai)

) (5.23)

Now, in order to accentuate the global differences between the three algorithms six more
plots are presented with the accumulated results for the y-axis. Fig. 5.8 shows these results.
Now the x-axis keeps the same definition as before while the y-axis is the accumulated value
of the separability, so now the formula for the y-axis value at point xn is the one in Eq. 5.24
knowing that si is the separability defined in Eq. 5.23 at point xi.

y-axis:
n∑
i=0

si (5.24)

For this new axis definition, the slope of the function indicates positive or negative separability.
If function descends at some point then separability was negative, on the other hand if function
is ascending at this point then separability was positive. The steepness of the slope indicates
the magnitude of the separability (either if it was positive or negative). And finally the
separation between the curves for each algorithm tells about the accumulated difference of
separabilities. If at the end one algorithm is above another it shows that the accumulated
(and so the mean) separability is greater for this particular algorithm so one can conclude
that in average this algorithm outperforms the other.

5.3.4 Conclusions

By looking at the results above, it can be seen that none of the three algorithms is clearly
better than another for the chosen set of problems. Looking at the first set of plots having
separability is in the x-axis, we can see that the curves for three algorithms are almost the
same, only when there are few attributes dReliefF seems to have different behavior.
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Figure 5.7: Separability versus total number of attributes for the three algorithms.
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Figure 5.8: Accumulated separability versus total number of attributes for the three algo-
rithms.
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An anomaly is the problem of the random RBFs, there dReliefF is clearly worse. In fatct,
except for the majority problem dReliefF is always the worse algorithm and even there it
is non-significantly better. A difference between dReliefF and the other two algorithms is
that it uses the calculated weights as distance ponderations starting at the first iteration of
the algorithm. That certainly may cause ReliefF to get stuck into a local minimum found
in those first iterations because the distance function that is using does not take into account
some of the relevant variables. In a section above where pdReliefF is introduced, we stated
the hypothesis that using the weights estimates since the first iteration may cause decrease
performance due to the fact that these estimations may be too biased to the first instances
and, so, may be far from the optimal weights. Now the results help support this hypothesis.
That could also explain why dReliefF’s behaviour is different from the others when few
attributes are evaluated as opposed as when more attributes are present. When there are
few attributes to calculate distance with, making a mistake on choosing their ponderations
makes big changes in the results, so problems with few attributes are more sensible to wrong
distance calculations and cause dReliefF to either have much higher or lower performance
depending on how close are the early weights to the real optimal weights. If the first instances
seen by the algorithm are not representative of the whole set, for example because they share
some common characteristic that is rare among other instances, then the weights used will
be biased; on the other hand if these first instances give more accurate weight approximates,
then is possible that dReliefF’s worked better than the rest.

There is also another characteristic of the results to be pointed out. In the second set
of plots where differences among the algorithms stand out clearer, one can see differences
between the behavior of the normal version of the algorithm as opposed to the modified
ones. In these plots, two parallel curves for the separability of two algorithms, indicate that
their performance evolves in the same way, meanwhile divergent curves indicate that the
performance of one of them increases (decreases) more than the other. Having this in mind
the results show that for the two first problems with numeric attributes the performance of
dReliefF decreases very quick, normal ReliefF is the best of the three and pdReliefF is
close to it though its performance also decreases faster than normal ReliefF’s. Results for
NonMonotonic are not clear as separability for that particular problem keeps very high for any
number of attributes and the three algorithms perform almost identical. Some modifications
could be applied to the generation of the problem to make it more difficult for ReliefF to
discriminate attributes’ relevance (e.g. adding more noise to the relevant ones) and compare
the performance degradation for the three algorithms. The odd thing is that on the contrary
of what happens with numeric problems, when we move onto the categoric ones we can see
that now the algorithm which suffers the least performance decrease is dReliefF followed
by pdReliefF.

The final conclusion looking at these experimental results must be that although the per-
formance of the three algorithms is frequently almost the same, the new algorithm pdReliefF
introduced seems to be always in the middle of the other two quite stick to the better of the
two while the other two are better or worse depending on the problem type, maybe depending
on whether attributes are numeric or categoric. And also that dReliefF is very sensible to
early errors on weight approximation of ReliefF so it must be used carefully.

As future work, more problems could be tested and specific experiments should be con-
ducted to get deeper in the hypothesis that the different versions of ReliefF perform different
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on problems with numeric or categoric attributes. Also some tests on real data should be done
using different classifiers to contrast them to the results on artificially generated ones.



Chapter

6
The Remainder Set of Features

In this chapter we explore one of the sources of instability we mentioned in the introduction:
random parts of the algorithm. Specifically we tackle how sequential feature subset selection
algorithms evaluate features. We describe a modification of these family of algorithms to test
the hypothesis that the way these algorithms select features is a source of instability. If our
hypothesis was right modification should lead to more stable results and maybe to better
prediction power.

6.1 The Remainder Set of Features

As the goal of feature selection is to find an optimal subset X∗ as seen in Eq. (2.4), it seems
plausible to choose an Xk for each iteration as in (6.1) in a stepwise and greedy way, which
is exactly what the previously described feature selection algorithms do:

Xk = arg max
X∈Sk

J(X), k = 1, . . . , n (6.1)

In real problems, features are far from independent, thus not always the best feature set in
every iteration has to be the best option. Quite possibly there is some combination of features
that would be a better choice than the feature which maximizes J(X) in this iteration. So
we see that the forward steps in the previous algorithms are not taking into account some
information they could use. Only the usefulness of every generated subset of features is
measured, as in (6.1). However, by considering the current set of features Xk another set
is implicitly created, the set of remaining features or remainder set Yk = Y \ Xk. This set
can also give information about the new variable to be added or removed at every step. It is
our conjecture that a way to enhance the detection of feature interactions is to see how the
addition of a feature to Xk (a removal, from the point of view of Yk) affects the usefulness of
the remainder set.

79
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The intuitive explanation is that the optimal setX∗ the algorithm is trying to find could be
either in Xk, in Yk or split among the two. The evaluation criterion should give higher values
to a set containing X∗ and the performance of this set should be affected when removing a
feature from X∗. So, the idea is to add the most useful feature to Xk and whose removal is
most harmful to Yk, i.e. to maximize J(Xk) and minimize J(Yk). The general idea is called
Remainder Subset Awareness for obvious reasons.

This idea tries to improve the weaknesses of SFG and SBG described below:

1. SFG at its first steps evaluates the features on their own, not taking into account the
relationships between them [25], so two features that are very good when used together
but that are not that good individually may not be selected.

2. SBG at its first steps evaluates each feature with all the irrelevant and redundant fea-
tures, which may discard a useful feature due to the effects of the unuseful ones over
the evaluation criterion.

In SFG we know for sure that initially X∗ ⊆ Y0. So looking at the features in Y0 could be
seen as some kind of in the search space lookahead without really looking at future states. By
knowing that a feature removal is very harmful for Yk we know that even though this feature
is not very good for Xk right now it may be good for it in the future when other variables
from Yk have been added to Xk. In the same way, in SBG if a feature about to be removed
from Xk behaves very well in Yk it may indicate that the interactions with the rest of features
in Xk are masking the true value of this feature and that this feature may be useful in the
future when some other features have been discarded.

In a more formal manner, we know that by definition of X∗ in (2.4) we know that:

J(X∗) > J(X∗ \ {x}), ∀x ∈ X∗ (6.2)

From the above equation, it should also be true (but it is not) that:

J(Xk \ {z}) > J(Xk \ {x}), ∀Xk ) X∗,∀x ∈ X∗,∀z /∈ X∗ (6.3)

This equation states that removing a feature in X∗ from any set Xk that contains X∗ is
always more harmful than removing a feature not in X∗ from this same set.

If (6.3) was always true, SBG would always find X∗ as it would remove one feature not in
X∗ at each step until X∗ was found. But it would only be always true if the J criterion was
not affected by the addition of unuseful features. It will not be true if the features in Xk \X∗
affect the results of the J criterion. As said in the introduction, irrelevant or redundant
features may lead classifiers to find false regularities and learn from that instead of learning
from the features that really determine the instance class. So, for example, J may be higher
due to overfitting on the input data.

Looking at the remainder can help bypassing these evaluation criteria limitations. Two
artificial problems have been chosen to illustrate the benefits of the remainder set awareness.
As the best solution to these problems is known the benefits of the new algorithm can clearly
be explained. These problems have been chosen because they have some special characteristics
that make either SFG or SBG fail to find the best solution.

These two problems are:
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corrAl This dataset has two classes and six boolean features (A0; A1; B0; B1; I; C). Feature
I is irrelevant, feature C is correlated to the class label 75% of the time, and the other
four features are relevant to the boolean target concept: (A0 ∧ A1) ∨ (B0 ∧ B1). SFG
will choose C first as it is the best feature when taken all alone [34]. The hypothesis
is that the usefulness of the remainder set would be so high if C was chosen that the
modified version of SFG would not choose it.

antiCorrAl This dataset has been generated ad hoc for this chapter. It is a three class
problem with 11 continuous features (I1, I2, . . . , I9, C1, C2). The class is numeric and
can be 1, 2 o 3. Features I1 to I9 are random values of a normal distribution with
mean equal to the class of the example and standard deviation of 1. So the value of the
feature n for the example i that has class Yi, is generated as Ini = rnorm(µ = Yi, σ = 1),
where rnorm is a function that generates random deviates for the normal distribution.
Feature C1 is generated as C1i = rnorm(µ = Yi, σ = 0.5). Finally the last feature C2 is
generated by the formula: C2i = C1i − Yi + rnorm(µ = 1, σ = 0.2). So the problem is
separable and using C1 and C2 the class can be easily predicted. SBG will discard C2

the first as I features mask the usefulness of the C group and C2 is the worst feature
when taken all alone. But if we had to choose the feature which most harmed Y0, it
would be C1, so the hypothesis is that the remainder set aware would choose C1 in
the first place and then as the C group is the best, it would chose C2 finding the best
solution.

The experiments were run using the algorithm and experimental setup explained in the
following sections (this setup includes an external loop of cross-validation so the feature subset
selection was executed 10 times for each dataset).

SFG on corrAl: The hypothesis was confirmed: a conventional SFG chose feature C the
first in most cases followed by the other features. Surprisingly the final solution contained the
irrelevant feature on some cases. On the other hand the modified version almost always chose
one of the relevant features in the first place and the final solution was the best one most of
the time. Sometimes the feature C was chosen in the third place as adding one of the relevant
features to the current set din’t make it much better (two were missing) and removing it from
the remainder set was not that bad (the other two were missing there). That is the worst
scenario where X∗ is completely split between Xk and Yk.

SBG on antiCorrAl: The hypothesis was also confirmed. The conventional SBG dis-
carded C2 in most cases. The median of the iteration number where it discarded C2 was 3,5
and it found the best solution in some cases. On the other hand the remainder set aware SFG
always selected C1 and C2. In most of the runs the best solution was found.

Table 6.1 shows the mean error rates for the SFG or SBG and for the remainder set aware
SFG (RSA) and the p-value of the Wilcoxon-Mann-Whitney test showing that the difference
on the means is statistically significant. It also shows the median number of selected features
for each algorithm with its absolute deviation.

6.2 Combination function

With the above formulation we have a multi-objective problem, since not always the subset
with maximum J(Xk) will be the same as the subset with minimum J(Yk). So it will not
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Table 6.1: Results for the SFG on corrAl and SBG on antiCorrAl datasets

Problem µerr µerr RSA p-val #feat #feat RSA

corrAl 0.077 0.009 0.002 5.00± 0.00 4.00±0.00
antiCorrAl 0.132 0.023 0.007 7.00±2.22 2.00±0.00

be possible to satisfy both objectives with the same single solution. In this case, either the
two solutions have to be explored or a trade-off has to be found that partly optimizes both
objectives. If both solutions are chosen for further exploration, then the search space is highly
increased over the original version of the algorithm, and the complexity of the algorithm grows
from polynomial to exponential, which is unfeasible. A reasonable alternative is to choose
the subset which maximizes some predefined function f of the two criteria among the two
candidate subsets, as expressed by:

arg max
X∈Sk

f [J(X), J(Y \X)], k = 1, . . . , n (6.4)

The function f : (0, 1)2 → (0, 1) has to be chosen to be continuous in both arguments,
increasing in the first and decreasing in the second and to permit control on the relative
importance of the two arguments (thus it is non-symmetrical). Following this alternative,
an algorithm of the sequential kind can be modified by replacing the evaluation function
J(X) with the one in (6.4). As an example, Algorithm 6.1 shows the straightforward

Algorithm 6.1: Remainder set aware SFG (RSA)
1: X0 ← ∅ {Initial subset}
2: i← 0
3: repeat
4: Si+1 ← {X | X = Xi ∪ {x} ∧ x ∈ Y \Xi} {Subset generation}
5: Xi+1 ← arg max

X∈Si+1

f [J(X), J(Y \X)] {Subset evaluation}

6: i← i+ 1
7: until J(Xi) ≤ J(Xi−1) ∨ i = n {Stopping criterion}
8: return Xi−1 {Selected subset}

Remainder Subset Aware version of the original SFG presented in Algorithm 2.1. Other
forward/backward algorithms would be modified analogously though we will only consider
the forward version in this work.

The chosen evaluation function f , which combines the usefulness of the selected subset of
features with that of the remaining subset is shown in (6.5).

f(x, y) =
x ∗ wx− y ∗ wy + 1

2
, wx,wy ∈ (0, 1) (6.5)
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Note that wx = 1∧wy = 0 recovers the conventional algorithms and wx = 0.5∧ xy = 0.5
corresponds to mean between x and 1 − y. In general, greater values of wy over wx give
more weight to the evaluation of the inducer in the remainder set. The values of these
weights have been selected taking into account the weaknesses of SFG and SBG presented
on the previous section. As seen before on one hand a set of irrelevant features may hide a
good variable and on the other hand a bad feature when taken all alone could improve when
evaluated in a group. So it is not the size of the set that matters. We chose the weights to be
proportional to the usefulness of the set we are about to modify. So, if we wanted to compute
f [J(Xk), J(Y/Xk)], the weights would be wx = J(Xk−1) and wy = J(Y/Xk−1). This setting
gives more importance to the better sets of features. So, when Xk is better than Yk, the
features that make it even better are prefered. But when Yk is better than Xk (e.g. at the
first steps of SFG) the features that harm Yk the most are prefered over others that helped
more Xk.

6.3 Experimental work

Experimental work is presented in order to assess the described modification with a group of
four sequential algorithms, using the datasets described in Section 3.1.

The algorithms were implemented using the R language for statistical computing [61] in
order to implement conventional SFG and SBG algorithms and the modified remainder set
aware version of SFG. The experimental setup consists of the two nested cross-validation loops
described in 3.2. For every fold and repetition of the outer cross-validation loop, a two feature
selection processes are conducted with the same examples, i.e. one with the original algorithm
and one with the RSA. Both SFG and SBG are compared with the remainder set aware
version of SFG. Each feature selection iteration uses a learner and another 5x2-fold cross-
validation for estimating feature usefulness. In our case we have run the experiments using
three different learners: the 1-nearest neighbor (1NN) [80] (which uses Euclidean distance),
the Fisher’s linear discriminant analysis (LDA) [21] and a support vector machine (SVM) [12]
with a linear kernel (the regularization constant or cost and the kernel width) are kept fixed
to their default values in all the experiments, since we are only interested in the influence
that different feature subsets have on the modelling1. It is important to mention that there
was no stopping criterion in the experiments: forward methods run until all the features were
selected and backward ones until all of them were removed. Then the best of the obtained
sequence of subsets was returned. Once the best subset of features is found a test is conducted
on the features that did not participate in the feature selection process using the same 1NN
algorithm. Then the classification error is returned and a Wilcoxon-Mann-Whitney test is
made on the resulting set of classification errors from the two algorithms to determine if the
difference is statistically significant. The results are displayed in Tables 6.2 and 6.3. The
tables also show the median of the size of the final selected subsets and its absolute deviation.

1These values are 1 for the cost parameter and the inverse of the number of features for the smoothing
parameter in the kernel.
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6.3.1 Stability results

As the main objective of our work is to improve stability of FSS algorithms an assessment
of the stability for each execution has been performed. In addition to the above displayed
classification error we computed the stability of the FSS algorithm results using Kuncheva’s
index. Since the stability index needs a constant number of selected features we calculated
the stability for each size of the possible features sets instead of doing so for only the sizes
of the best sets. Tables 6.4 and 6.5 show the summary stability results by averaging all the
stability scores for each subset size. Appendix A contains all the charts showing the individual
stability for each possible subset size.

6.4 Discussion

A few datasets have shown statistically significant results according to the Wilcoxon-Mann-
Whitney test. In all the statistically significant differences RSA is better than the original
SFG or SBG algorithms.
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Table 6.2: Classification error and number of features comparing SFG to RSA. Figures in
boldface correspond to statistically significant improvements.

Problem Ind. Err ErrRSA p-val NF NFRSA

diabetes knn 0.314 0.321 0.238 3.6 4.2
heart-statlog knn 0.239 0.282 0.02 5 6.3
ionosphere knn 0.113 0.13 0.007 7.2 6.6
landsat_train knn 0.118 0.112 0.11 20.1 21.6
leaf knn 0.398 0.419 0.04 9.5 9.5
ma_breast_cancer knn 0.303 0.289 0.453 35.1 46.1
ma_colon_tumor knn 0.239 0.232 0.416 25.1 54.4
ma_gcm knn 0.482 0.459 0.116 49.7 61
ma_leukemia knn 0.094 0.092 0.383 2.5 5
ma_lung_cancer knn 0.03 0.033 0.444 2 6.7
ma_prostate_cancer knn 0.112 0.107 0.361 30.4 33.8
mammogram knn 0.3 0.288 0.419 18 18.3
parkinsons knn 0.152 0.171 0.071 9.7 10.9
pop_failures knn 0.084 0.081 0.222 6.6 5.8
sonar knn 0.212 0.186 0.11 19.8 25.8
spectf knn 0.253 0.247 0.323 10.3 9.4
vehicle knn 0.312 0.326 0.026 11.3 9.6
waveform knn 0.218 0.221 0.161 15.9 16.3
wdbc knn 0.083 0.092 0.223 16 15.4
diabetes lda 0.238 0.234 0.032 4.7 4.9
heart-statlog lda 0.178 0.17 0.389 6.9 6.8
landsat_train lda 0.161 0.164 0.138 17.3 17.6
leaf lda 0.25 0.242 0.203 10.3 11
ma_breast_cancer lda 0.318 0.342 0.297 14.1 16.4
ma_colon_tumor lda 0.232 0.242 0.444 18.7 65.8
ma_gcm lda 0.502 0.485 0.203 47.3 72.6
ma_leukemia lda 0.094 0.09 0.453 11.2 32.5
ma_lung_cancer lda 0.033 0.032 0.399 3.2 4.7
ma_prostate_cancer lda 0.262 0.251 0.306 19.7 50
mammogram lda 0.138 0.158 0.136 6.5 6
pop_failures lda 0.057 0.061 0.187 8.5 10.4
spectf lda 0.232 0.224 0.221 7.8 9.3
vehicle lda 0.24 0.235 0.277 15.2 14.5
waveform lda 0.146 0.145 0.078 18.3 17.6
wdbc lda 0.043 0.04 0.156 13.3 12.8
diabetes svm 0.24 0.235 0.339 4.9 5.1
heart-statlog svm 0.187 0.174 0.13 7 6.8
ionosphere svm 0.142 0.146 0.176 10.8 8.7
landsat_train svm 0.135 0.137 0.092 18.3 20.5
leaf svm 0.278 0.271 0.078 11.2 11.5

Continued on next page
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Table 6.2 – continued from previous page
Problem Ind. Err ErrRSA p-val NF NFRSA

ma_breast_cancer svm 0.27 0.289 0.312 39.5 25.4
ma_colon_tumor svm 0.203 0.177 0.102 23.3 38
ma_leukemia svm 0.089 0.061 0.143 3.5 10.6
ma_lung_cancer svm 0.03 0.03 0.444 2.2 3.4
ma_prostate_cancer svm 0.191 0.166 0.07 40.6 52
mammogram svm 0.195 0.155 0.118 7.8 13.2
parkinsons svm 0.15 0.154 0.201 6.9 7.7
pop_failures svm 0.06 0.058 0.658 8.3 11.5
sonar svm 0.276 0.288 0.107 12.1 19.3
spectf svm 0.233 0.231 0.5 13.9 14.6
vehicle svm 0.22 0.227 0.096 15.7 15.2
waveform svm 0.137 0.135 0.239 17.4 17.9
wdbc svm 0.03 0.033 0.337 10 10.1

Average 0.1933 0.1919 14.6075 19.0774

Table 6.3: Classification error and number of features comparing SBG to RSA. Figures in
boldface correspond to statistically significant improvements.

Problem Ind. Err ErrRSA p-val NF NFRSA

diabetes knn 0.32 0.325 0.337 5.1 4.3
heart-statlog knn 0.255 0.211 0.07 3.7 3.4
ionosphere knn 0.119 0.121 0.541 8 10.7
landsat_train knn 0.115 0.111 0.154 25.9 30.6
leaf knn 0.408 0.418 0.11 8.5 9.9
ma_breast_cancer knn 0.276 0.247 0.077 42.5 51.7
ma_colon_tumor knn 0.21 0.223 0.249 32.6 35.9
ma_gcm knn 0.573 0.533 0.003 41.4 29.8
ma_leukemia knn 0.122 0.083 0.029 12.1 13.7
ma_lung_cancer knn 0.027 0.021 0.211 33.2 30.8
ma_prostate_cancer knn 0.157 0.171 0.361 39.9 16.1
mammogram knn 0.278 0.3 0.317 10.9 16.3
parkinsons knn 0.136 0.151 0.089 12.9 12.7
pop_failures knn 0.095 0.091 0.238 8.6 7.4
sonar knn 0.233 0.21 0.277 20.9 15
spectf knn 0.268 0.265 0.571 11.5 9.5
vehicle knn 0.317 0.329 0.181 12.1 9.6
waveform knn 0.224 0.221 0.193 16.8 17.1
wdbc knn 0.078 0.088 0.071 15.5 23

Continued on next page
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Table 6.3 – continued from previous page
Problem Ind. Err ErrRSA p-val NF NFRSA

diabetes lda 0.235 0.235 0.383 4.7 5.7
landsat_train lda 0.164 0.161 0.026 17.5 32.1
leaf lda 0.245 0.247 0.453 11.9 11.8
ma_breast_cancer lda 0.322 0.272 0.179 29.1 30.1
ma_colon_tumor lda 0.19 0.232 0.219 63 55.8
ma_gcm lda 0.496 0.477 0.22 117 119.1
ma_leukemia lda 0.139 0.136 0.639 41.8 22.2
ma_lung_cancer lda 0.039 0.039 0.682 26.9 23.4
ma_prostate_cancer lda 0.271 0.312 0.053 32.1 58.6
mammogram lda 0.179 0.212 0.361 6.4 10.6
pop_failures lda 0.055 0.059 0.029 8.1 7.8
sonar lda 0.278 0.265 0.278 14.1 9.5
spectf lda 0.235 0.231 0.287 8.7 8
vehicle lda 0.239 0.226 0.029 13.8 16
waveform lda 0.145 0.145 0.287 17.9 18.1
wdbc lda 0.043 0.042 0.406 9.2 12.4
diabetes svm 0.238 0.24 0.36 5.2 5.5
heart-statlog svm 0.183 0.169 0.186 7.5 7
ionosphere svm 0.145 0.136 0.061 10.6 8.8
landsat_train svm 0.138 0.132 0.012 17.4 33.7
leaf svm 0.267 0.274 0.187 11.6 11.3
ma_breast_cancer svm 0.266 0.251 0.187 23.1 21.4
ma_colon_tumor svm 0.213 0.2 0.316 18 28
ma_gcm svm 0.417 0.409 0.361 63.9 47
ma_leukemia svm 0.083 0.084 0.472 9.2 5.5
ma_lung_cancer svm 0.033 0.029 0.361 7.7 5.9
ma_prostate_cancer svm 0.203 0.148 0.007 31.7 54.8
mammogram svm 0.175 0.165 0.305 8 8
parkinsons svm 0.147 0.143 0.13 8.3 8.1
pop_failures svm 0.056 0.054 0.296 7.3 6.7
sonar svm 0.278 0.262 0.203 11.1 11.7
spectf svm 0.24 0.236 0.287 9.4 8.5
vehicle svm 0.227 0.221 0.207 14.9 16
waveform svm 0.137 0.136 0.461 18.6 17.6
wdbc svm 0.039 0.031 0.006 12.7 16.6

Average 0.2031 0.1986 20.0093 20.5704
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Table 6.4: Stability results comparing SFG to RSA. Figures in boldface correspond to
statistically significant improvements.

Problem Ind. Stab StabRSA p-val

diabetes knn 0.316±0.1128 0.3913±0.1414 0.4688
heart-statlog knn 0.4524±0.2383 0.234±0.1416 0.001
ionosphere knn 0.1316±0.0954 0.102±0.0527 0.0898
landsat_train knn 0.2434±0.2069 0.2168±0.0982 0.942
leaf knn 0.2322±0.0983 0.5389±0.1845 0.0017
ma_breast_cancer knn 0.0666±0.0296 0.037±0.025 0
ma_colon_tumor knn 0.1273±0.0552 0.0307±0.0201 0
ma_gcm knn 0.2716±0.115 0.294±0.1505 0
ma_leukemia knn 0.2908±0.1166 0.0234±0.0321 0
ma_lung_cancer knn 0.3359±0.1361 0.0459±0.0228 0
ma_prostate_cancer knn 0.1087±0.063 0.0548±0.0275 0
mammogram knn 0.0768±0.0401 0.0712±0.0232 0.5699
parkinsons knn 0.2952±0.1668 0.0509±0.0623 0
pop_failures knn 0.2176±0.1359 0.2942±0.1647 2e-04
sonar knn 0.1871±0.0746 0.0976±0.0674 0
spectf knn 0.0438±0.0309 0.0265±0.0345 0.0187
vehicle knn 0.6687±0.151 0.4173±0.0856 0
waveform knn 0.4067±0.1407 0.6078±0.1777 2e-04
wdbc knn 0.1736±0.2352 0.2336±0.2475 0.4622
diabetes lda 0.507±0.3332 0.6192±0.2613 0.2945
heart-statlog lda 0.1323±0.1181 0.3969±0.1022 5e-04
landsat_train lda 0.1864±0.2149 0.2148±0.0983 0.0074
leaf lda 0.1697±0.0977 0.3887±0.134 0.0024
ma_breast_cancer lda -0.0202±0.0144 -0.0097±0.012 0
ma_colon_tumor lda -0.0162±0.0149 -0.0182±0.0069 0.4136
ma_gcm lda 0.0127±0.0263 0.0028±0.0288 0
ma_leukemia lda 0.1182±0.0799 0.0034±0.0155 0
ma_lung_cancer lda 0.0097±0.0169 0.001±0.0093 0
ma_prostate_cancer lda -3e-04±0.0195 0.0109±0.0249 0
mammogram lda 0.0915±0.1304 0.0889±0.1139 0.8655
pop_failures lda 0.1995±0.1363 0.2371±0.1525 0.0525
spectf lda -0.0209±0.0373 -0.0454±0.0132 0
vehicle lda 0.3202±0.2164 0.3281±0.1968 1
waveform lda 0.4546±0.112 0.5929±0.1914 0.0083
wdbc lda 0.1097±0.119 0.1142±0.0473 0.1004
diabetes svm 0.4266±0.341 0.4446±0.3683 0.5896
heart-statlog svm 0.2333±0.1556 0.2619±0.0949 0.083
ionosphere svm 0.0979±0.1661 0.178±0.1135 3e-04
landsat_train svm 0.22±0.2442 0.1378±0.0892 0.0126
leaf svm 0.1649±0.0877 0.4612±0.2178 0.0012

Continued on next page
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Table 6.4 – continued from previous page
Problem Ind. Stab StabRSA p-val

ma_breast_cancer svm -0.0055±0.0132 -0.0084±0.0105 0.0033
ma_colon_tumor svm -0.0051±0.0169 -0.019±0.0082 0
ma_leukemia svm 0.3708±0.1013 -0.0087±0.0076 0
ma_lung_cancer svm 0.4847±0.1387 0.0065±0.0112 0
ma_prostate_cancer svm 0.0272±0.0253 0.0227±0.0329 0
mammogram svm 0.035±0.0903 0.1028±0.1062 0
parkinsons svm 0.0705±0.1106 0.0574±0.0609 0.5168
pop_failures svm 0.1532±0.144 0.0506±0.1194 0.0067
sonar svm 0.0171±0.0754 0.0335±0.0293 3e-04
spectf svm 0.1356±0.2313 -0.0145±0.0224 0
vehicle svm 0.1732±0.0924 0.3294±0.1704 0.0099
waveform svm 0.5186±0.118 0.5994±0.1951 0.1327
wdbc svm 0.1319±0.1003 0.1687±0.0606 0.0667

Average 0.1915±0.1166 0.1792±0.0922

Table 6.5: Stability results comparing SBG to RSA. Figures in boldface correspond to
statistically significant improvements.

Problem Ind. Stab StabRSA p-val

diabetes knn 0.4751±0.2878 0.5647±0.2722 0.0754
heart-statlog knn 0.1846±0.2314 0.3806±0.1782 0.0067
ionosphere knn 0.1313±0.1236 0.2456±0.1612 0
landsat_train knn 0.1252±0.1949 0.4437±0.1982 0
leaf knn 0.2824±0.1673 0.5586±0.1574 0.0011
ma_breast_cancer knn 0.0154±0.0692 0.0339±0.0761 0
ma_colon_tumor knn 0.0068±0.0705 0.0983±0.0807 0
ma_gcm knn 0.0123±0.0792 0.1073±0.0707 0
ma_leukemia knn 0.1133±0.0742 0.1113±0.0747 0.1145
ma_lung_cancer knn 0.0345±0.0626 0.1741±0.0858 0
ma_prostate_cancer knn 0.0218±0.0821 0.0992±0.1017 0
mammogram knn 0.1175±0.173 0.149±0.1683 0
parkinsons knn 0.1659±0.2134 0.256±0.2477 5e-04
pop_failures knn 0.3325±0.2825 0.36±0.2849 0.0294
sonar knn 0.0614±0.1145 0.2851±0.1262 0
spectf knn 0.0652±0.1266 0.089±0.1324 0
vehicle knn 0.5209±0.1585 0.4759±0.166 0.4079
waveform knn 0.4604±0.1009 0.5916±0.1881 0.002
wdbc knn 0.2159±0.2315 0.3366±0.2925 0

Continued on next page
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Table 6.5 – continued from previous page
Problem Ind. Stab StabRSA p-val

diabetes lda 0.567±0.3934 0.5883±0.3707 0.2807
landsat_train lda 0.1576±0.1929 0.1601±0.1915 0.6318
leaf lda 0.3087±0.2012 0.4404±0.2861 0.01
ma_breast_cancer lda 0.0152±0.0652 0.0157±0.0675 0.1233
ma_colon_tumor lda -0.005±0.0671 0.0546±0.0645 0
ma_gcm lda 0.017±0.0809 0.0358±0.0862 0
ma_leukemia lda 0.1015±0.0582 0.0313±0.0582 0
ma_lung_cancer lda 0.0579±0.056 0.011±0.0583 0
ma_prostate_cancer lda 0.0139±0.0831 0.0357±0.075 0
mammogram lda 0.1171±0.1742 0.1012±0.162 0
pop_failures lda 0.4186±0.356 0.3416±0.3075 2e-04
sonar lda 0.0601±0.1192 0.2019±0.1435 0
spectf lda 0.0836±0.1319 0.0556±0.1279 0
vehicle lda 0.4471±0.2554 0.2433±0.1385 3e-04
waveform lda 0.4013±0.175 0.5926±0.1645 1e-04
wdbc lda 0.0904±0.1624 0.3056±0.1541 0
diabetes svm 0.5457±0.3915 0.54±0.378 0.7874
heart-statlog svm 0.313±0.234 0.4994±0.2561 0.0017
ionosphere svm 0.1653±0.1953 0.3009±0.2301 0
landsat_train svm 0.1605±0.2554 0.2632±0.223 0
leaf svm 0.3486±0.1165 0.4941±0.1985 0.0057
ma_breast_cancer svm 0.0186±0.0717 0.0349±0.0719 0
ma_colon_tumor svm 0.0056±0.0638 0.0627±0.0617 0
ma_gcm svm 0.0157±0.0814 0.0677±0.0828 0
ma_leukemia svm 0.4118±0.073 0.0454±0.0566 0
ma_lung_cancer svm 0.5206±0.2155 0.0521±0.0549 0
ma_prostate_cancer svm 0.0184±0.081 0.101±0.0919 0
mammogram svm 0.1324±0.2 0.1783±0.2026 0
parkinsons svm 0.1361±0.1832 0.2184±0.2282 0.0094
pop_failures svm 0.4104±0.2957 0.3778±0.2867 0.0673
sonar svm 0.038±0.1217 0.142±0.108 0
spectf svm 0.0942±0.1233 0.0676±0.1313 0
vehicle svm 0.3793±0.1979 0.2365±0.1415 7e-04
waveform svm 0.4776±0.1266 0.5411±0.1548 0.348
wdbc svm 0.1107±0.1783 0.3576±0.1544 0

Average 0.1944±0.1597 0.2436±0.1599
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It is seen that for both SFG performance is in general increased (as expressed by the chosen
J) at the price of selecting some more features from an average of 14.6 for the non modified
version to 19 for the RSA. In the case of the backward version, the number of selected features
is almost exactly the same in both versions and also the performance roughly the same on
average but we find a greater number of problems where the performance is significantly
better. Whenever the conventional and the modified algorithm are in ties or very close to, the
modified versions offer a solution with a lower number of features, which is also interesting
from the point of view of feature selection. Detailed experiment results are displayed in Tables
6.2 and 6.3. Regarding stability we can see very different results between SFG and SBG and
among the different inducers. Even though the results for stability of SFG are greater 65%
of the time only 33% of them are statistically significant, very similar to the percentage of
executions, 30%, where stability was worsened. Taking a deeper look at the results we can
see that they vary a lot among inducers. While SBG 1NN achieved the best results, SFG
1NN was the most harmed one while for the LDA and SVM learners SFG is highly benefited
from taking the remainder set of features into account. In the case of LDA, only one problem
has lower stability results when using the RSA version and 40% of them have statistically
significant better results. Globally 35 of the total 54 executions of SBG have significantly
higher stability and only 19% have a significantly lower value. The results for SBG with the
1NN learner are the most remarkable: we have made them more stable in 84% of the problems
and for no problem they are worse.

6.5 Conclusions

We have presented a modification for feature subset selection algorithms that iteratively
evaluate subsets of features, by making them compute not only the usefulness of the selected
set but also the usefulness of the remainder set. A set of experiments have been conducted
in order to compare the modified versions of the algorithms with their original versions.
Our experimental results indicate a very significant stability improvement and in some cases
improvement in performance too while keeping the size of the final subset roughly equal or
lower. The fact that the modified version does not always improve the results of the original
should not be a surprise. According to the No free lunch theorems , if an algorithm achieves
superior results on some problems, it must pay with inferiority on other problems. However,
it is possible to modify a search algorithm to obtain a version that is generally superior in
performance to the original version [84]. In the present situation this fact can be explained
by the way the modified version selects subsets of features. For instance, given two features:
One that makes a significant reduction of the performance of the remainder set and not a big
change on the performance of the selected set. And one that increases the performance of the
selected set a bit more than the first one but does not make a big change on the remainder
one. A conventional algorithm would always select the latter while the modified version would
maybe select the former. That could lead the modified version to avoid local maxima by not
selecting the best feature in this iteration feature and end with a better subset; but when the
algorithm has selected a set close to optimal subset, the modification may cause the algorithm
to loose precision in choosing features. The improved results on stability can intuitively be
explained by the way the algorithm is using information about features. It is reevaluating
features that have been discarded in previous SBG iterations (or not yet included for SFG)
thus somehow evaluating the whole feature set at each iteration. This gives it a better overview
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of the features and makes it more robust to dataset perturbations. An interesting fact are the
differences among the different inducers that should be further investigated in future work.



Chapter

7
Exploiting the Accumulated Evidence

This chapter studies another of the hypothesis presented in Chapter 1: the intrinsic instability
introduced by using a inducer in wrapper sequential feature subset selection algorithms. The
result of the inducer, which is a random variable, is used to assess feature importance. We
propose to diminish the effect of this random variable by remembering all of the previous
evaluations of each feature. If our hypothesis is true, by accumulating the results of different
evaluations we should obtain more stable results.

7.1 Introduction

The selection of a new feature (either to be removed or added to the current set) involves
the evaluation of many models. These models typically consist of the addition (deletion) of
one feature to (from) the current set. As we have seen in Chapter 2 wrapper methods use
and inducer to build temporary solutions and return their evaluation using some resampling
method (e.g. cross-validation) [39].

In the standard procedure, only the best such model evaluation is considered for selecting
which feature should removed or added, and the remaining evaluations are readily discarded.
Yet there is valuable information in the discarded evaluations: the very many evaluated
subsets contain information on the relevance of the features that belong to the subset; this
relevance does not depend on the subset being selected or not. When an inducer is requested
to estimate the predictive accuracy of a model using a given feature subset within a wrapper
strategy, no indication is given on which feature is the most recent addition (or deletion): the
inducer just sees a feature subset which has to be evaluated as a whole.

Since the most difficult part of a FSS process is to evaluate the interactions between
features, the accumulated evaluation of a feature in diverse contexts should account for many
of these interactions, and ultimately provide with a more informed estimation of usefulness
for the chosen inducer. The different contexts of a particular feature x are given by all those

93
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subsets which are being evaluated along the search process (not necessarily to assess the
influence of x, as noted above), either containing or not containing x.

Our idea is to accumulate the inducer evaluations as a rich source of information. This
information can then be used in conventional existing algorithms, such as the well-known
forward or backward selection. This idea can be applied to any sequential search algorithm
and any inducer and, as shown below, at a negligible extra cost.

Here we present experimental results showing good performance in a suite of benchmark
microarray problems. The proposed modification always achieves improvements when applied
to standard backward selection, either in the estimated predictive accuracy, in the size of the
delivered gene subsets, or in both.

7.2 Accumulated evidence and feature relevance

The idea consists on accumulating the evidence in favor or against a feature, taking into
account its history of evaluations alongside different feature subsets. A further explanation
can be to extract the most of every subset evaluation, normally the most costly part of a FSS
process.

Let Yx = {X ∈ P(Y )|x ∈ X} be the set of all feature subsets of the initial set that contain
a certain feature x (note that |Yx| = 2n−1 for all x ∈ Y ).

Let L+
x and L−x be the average evaluation of all subsets containing and not containing x:

L+
x =

1

2n−1

∑
X∈Yx

JL(X)

L−x =
1

2n−1

∑
X 6∈Yx

JL(X)

Given an inducer L (either filter or wrapper) define, for a given feature x ∈ Y , the relevance
of x as:

RL(x) = L+
x − L−x (7.1)

The above definition can be more compactly expressed as:

RL(x) =
1

2n−1

∑
X 6∈Yx

JL(X ∪ {x})− JL(X)
 (7.2)

Remark 1. Defining feature relevance with expression (7.2) is very attractive, since it
captures feature interactions in all possible ways. We take the freedom of presenting an
informal but hopefully illustrative analogy of what this measure captures. Imagine we are
willing to evaluate the average influence of a basketball player on a team scoring: we can
compute the difference in points that the team scores with and without this player, no matter
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what other players are playing in the player’s team. If this difference is positive, then we can
conclude that this player’s accomplishments are positive for the team; otherwise we conclude
that we should better sell the player at the best possible price! Note that in this example,
only subsets X of size 4 are considered and Y \X is the bench1.

Remark 2. Full evaluation of expression (7.2) has an exponential cost in n, making it
unfeasible for most practical applications; an estimation is therefore mandatory via Monte
Carlo techniques, generating feature subsets randomly from a precise probability distribution
determined by the FSS algorithm being used. Oddly, although RL(x) takes into account all
possible feature interactions, by its very nature it does not capture redundancy: two identical
features will have the same relevance. This is true even by making JL cope with redundancy.
However, since a search algorithm will impose an order on the evaluated feature subsets, the
current state can be used to ascertain redundancy, as will be shown below.

The above expressions can be conveniently generalized by considering a weighing function
w:

RwL(x) =

∑
X 6∈Yx

JL(X ∪ {x})− JL(x)
wx(X)∑

X 6∈Yx

wx(X)
(7.3)

For example, the choice wx(X) = |X|/|Y | = |X|/n gives more importance to improve-
ments in JL achieved in a scenario with already many features (improving performance in
such a case has a certain merit); alternatively, one could choose wx(X) = JL(X); this choice
expresses the belief that an improved performance when JL(X) is already high should be re-
warded, and less so when it is low (it has a much lower merit). Many alternatives are possible
and the best one (if such choice exists at all) is at the moment an open question. Note that
eq. (7.3) reduces to eq. (7.1) when wx(X) = 1 for all x.

In the following, we present a practical method to approximate this measure of relevance
and integrate it in a SBG search algorithm at no additional cost. The idea consists on
accumulating the evidence in favor or against a feature by taking into account the history of
evaluations throughout the search process.

7.2.1 Practical computation of the accumulated evidence

Let Xk denote the current set, where |Xk| = k, for notational simplicity (thus X0 = ∅ and
Xn = Y ); let Xn−k be the set of features not in Xk, i.e. Xn−k = Y \ Xk. Assume first we
are in front of performing a forward step. Given Xk, in a classical SFG, the set

{
JL(Xk ∪ {x}) | x ∈ Xn−k

}
is computed (7.4)

and the feature x′ = arg max
x∈Xn−k

JL(Xk ∪ {x}) is selected. However, all the remaining infor-

mation:

1Incidentally, this way of ranking players (together with rebounds, assists, etc) is used in the NBA.
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{
JL(Xk ∪ {x}) | x ∈ Xn−k, x 6= x′

}
is discarded, (7.5)

yet sometime in the future these individual features x (and eventually x′ itself) will be
considered again for inclusion or exclusion from the current set in forward or backward steps,
respectively.

Conversely, in a backward step the search algorithm is going to evaluate a feature x for
possible exclusion from Xn−k in such a way that the set{

JL(Xn−k \ {x}) | x ∈ Xn−k

}
is computed (7.6)

and the feature x′ = arg max
x∈Xn−k

JL(Xn−k \ {x}) is selected for removal. Again, the informa-

tion: {
JL(Xn−k \ {x}) | x ∈ Xn−k, x 6= x′

}
is discarded. (7.7)

Yet, sometime in the future these individual features x (and eventually x′ itself) will be
considered again for inclusion or exclusion from the current set in forward or backward steps,
respectively. Reasoning in more general terms, the search algorithm always evaluates a feature
x for possible inclusion in (or exclusion from) the current subset using information about x.

Now let PL denote the set of feature subsets that the search algorithm has evaluated so far
(implying a call to L). Let PL|x = {X ∈ PL|x ∈ X}. For every x ∈ Y , define the accumulated
evaluations (or simply accumulators) as the Monte Carlo estimations:

L̂+
x =

∑
X∈PL|x

JL(X)wx(X)∑
X∈PL|x

wx(X)
(7.8)

L̂−x =

∑
X 6∈PL|x

JL(X)wx(X)∑
X 6∈PL|x

wx(X)
(7.9)

which are approximations to the weighted versions of L+
x and L−x , respectively. These

two approximated values depend on the search algorithm, which determines the strategy to
traverse the search space. Different FSS algorithms (such as SFG or SBG) provide different
traces of evaluated subsets at any given number of algorithmic steps. In these conditions, the
impact of the considered feature in the current subset X can be used to ascertain redundancy
and make it influence the search, by modullating the effect of the accumulated evaluations.
Consider now, for λ ∈ [0, 1],

R̂wL(x) =
λ

2
(L̂+

x − L̂−x + 1) + (1− λ)ĴL(x), (7.10)
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where ĴL(x) = JL(X \ {x}) in a backward step (the effect of removing x from X) and
ĴL(x) = JL(X∪{x}) in a forward step (the effect of adding x to X) and λ is a free parameter.
This scheme generalizes conventional forward and backward steps (as used by SFG, SBG or
any other sequential algorithm) in two ways:

1. By setting λ = 0, the conventional forward and backward steps are recovered and
both relevance and redundancy are evaluated using ĴL(x). By setting λ = 1, a pure
arithmetic average between L̂+

x and 1− L̂−x is computed.

For other values of λ, the search history makes an influence on the search itself, condi-
tioning the selection of features. In this case, only a 1− λ fraction of the importance is
assigned to the current subset evaluation.

2. The search history itself is formed by all known contexts in which the considered fea-
ture could appear or not (and not only by previous evaluations of the feature), thus
conforming a broader picture of its true relevance.

Example. Consider the following feature subset mask (n = 20) for a current feature
subset X8 ⊂ Y where the i-th index is 1 when feature xi ∈ X8 and 0 otherwise:

10010010001010100101

signaling the presence of features number 1, 4, 7, etc. An evaluation JL(X) of this subset
is indeed expressing how good is to have the first feature but not the second or the third, also
how good is to have the seventh feature but not the one before the last, and so forth. For
this reason, all the features in Y (and not only those in X) should have their accumulators
updated every time.

7.3 A practical algorithm

We illustrate the approach on the popular SBG search algorithm (Algorithm 2.2) and give
a practical implementation of the previous ideas for it (SBG+, Algorithm 7.1). In addition,
for simplicity of presentation, we fix wx(X) = 1. In this case, normalization simply amounts
to a division by the number of performed accumulations. The initialization of the accumulated
relevances is 0 for all x ∈ Y . The results are first accumulated and then used; for this reason,
even in the first algorithmic step (the first discarded feature) the behavior of both algorithms
may start to diverge. At the end of the FSS process, n+x (resp. n−x ) will be the number
of times that a feature subset (resp. not) containing x has been evaluated. Note that the
computation is done at a negligible overhead in cost; this is due to the fact that the inducer
is called exactly the same number of times for SBG than for the accumulated counterpart
SBG+.
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Algorithm 7.1: SBG+ (inducer L, feature set Y , λ ∈ [0, 1])
1: Xn ← Y
2: k ← 0
3: {Initialize accumulators and counters}
4: ∀x ∈ Y, L̂+

x ← L̂−x ← 0
5: ∀x ∈ Y, n+

x ← n−x ← 0
6: repeat
7: for all x ∈ Xn−k do
8: compute the set

{
JL(Xn−k \ {x})

}
9: end for

10: {Update accumulators and counters}
11: for all x ∈ Y do
12: if x ∈ Xn−k then
13: L̂+

x ← L̂+
x +

∑
y∈Xn−k\{x}

JL(Xn−k \ {y})

14: n+x ← n+x + 1
15: else
16: L̂−x ← L̂−x + JL(Xn−k \ {x})
17: n−x ← n−x + 1
18: end if
19: end for
20: x′ ← arg max

x∈Xn−k

{
λ
2 (L̂+

x /n
+
x − L̂−x /n−x + 1)

21: +(1− λ)ĴL(Xn−k \ {x})
}

22: Xn−k ← Xn−k \ {x′}
23: k ← k + 1
24: until k = n
25: return arg max

k=1÷n
JL(Xk)

7.4 Experimental work

Experimental work is now presented in order to assess the described modifications using two
sequential algorithms: SBG and its accumulated counterpart SBG+. The algorithms were
implemented using the R language for statistical computing [61].

The experimental setup consists of the two nested cross-validation loops described in 3.2.
For every fold and repetition of the outer cross-validation loop, two feature selection processes
are conducted with the same examples, one with the original algorithm (SBG) and one with
the accumulated version (SBG+).

Each feature selection iteration uses the 1-nearest-neighbor learner implementation in [80]
(which uses Euclidean distance), linear discriminant analysis (LDA) and the Support Vector
Machine with radial kernel (SVMr). The parameters of the SVM (here again the regulariza-
tion constant or cost and the kernel width) are kept fixed to their default values in all the
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experiments, since we are only interested in the influence that different feature subsets have
on the modelling2.

The evaluation of these inducers is resampled in a second (inner) 5x2cv loop for a more
informed estimation of usefulness. In all cases, stratification is used to keep the same propor-
tion of class labels across the partitioned sets. After some preliminary experiments, we set
λ = 2

3 in expression (7.10). It is very important to mention that there is no stopping criterion
in the algorithms: the two backward methods run until all the features have been removed.
Then the best subset in the obtained sequence of subsets is returned. This setting avoids the
specification of an a priori size for the solution. It also eliminates the possibility that the
accumulated algorithm performs differently simply because it merely influences the stopping
point.

Once the best feature subset is found (a different one in every outer loop), this subset is
evaluated in the corresponding test set. The final test error (the one reported) is the mean
of these 10 values.

7.4.1 Benchmarking microarray data sets

In a microarray gene expression context, there is a wide spectrum of FSS algorithms. Com-
monly found methods fall into the filter category: a list of the top-ranked genes based on some
inducer-free figure of merit is generated, followed by and inductive process where a classifier is
incrementally evaluated [64]. This constitutes a fast and low complexity approach. However,
considering individual contributions only can hinder the discovery of possible interactions
between genes.

Many authors have claimed that the wrapper approach, if affordable, is preferable to the
filter approach (e.g. [47, 39] ). It is therefore of the greatest importance to take the most of
every evaluation of the inducer, which is normally the more costly part.

The description of the used datasets can be found at Section 3.1. It is important to
stress that there has been little effort to find the best models among those represented by
the considered inducers: in other words, nearest-neighbors is limited to just one neighbour
and the SVM parameters have been set to their default values. All the effort is devoted to
find good feature subsets and to compare the two search algorithms in similar experimental
circumstances.

7.4.2 Stability results

Here again stability for the modified versions will be assessed by using Kuncheva’s index
for each size of the possible features sets. Table 7.2 show the summary stability results by
averaging all the stability scores for each subset size. Appendix B contains all the charts
showing the individual stability for each possible subset size.

2These values are 1 for the cost parameter and the inverse of the number of features for the smoothing
parameter in the kernel.
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Table 7.1: Classification error and number of features comparing SBG+ to SBG. Figures
in boldface correspond to statistically significant improvements.

Problem Ind. Err Err+ p-val NF NF+

diabetes knn 0.314 0.315 0.571 4.5 4.8
heart-statlog knn 0.227 0.236 0.429 4.4 3.9
ionosphere knn 0.136 0.132 0.238 7.2 7.2
landsat_train knn 0.113 0.116 0.042 23.1 23.3
leaf knn 0.424 0.438 0.22 9.5 9.2
ma_breast_cancer knn 0.293 0.262 0.054 34.2 60.2
ma_colon_tumor knn 0.2 0.181 0.053 73.8 37.4
ma_gcm knn 0.552 0.548 0.249 49.2 44.2
ma_leukemia knn 0.108 0.081 0.088 28.3 7.2
ma_lung_cancer knn 0.034 0.033 0.5 20 17.4
ma_prostate_cancer knn 0.154 0.14 0.141 28.3 18.3
mammogram knn 0.272 0.279 0.367 17.6 17.3
parkinsons knn 0.142 0.142 0.706 9.2 13.6
pop_failures knn 0.091 0.092 0.318 6.2 5.8
sonar knn 0.205 0.193 0.342 19.9 25.3
spectf knn 0.282 0.287 0.4 11.5 16.1
vehicle knn 0.325 0.315 0.143 11.6 10.5
waveform knn 0.222 0.221 0.342 16.6 16.2
wdbc knn 0.083 0.084 0.446 18.5 19.2
antiCorrAl lda 0.005 0.004 0.5 2.9 3
diabetes lda 0.234 0.239 0.062 5.3 5.7
heart-statlog lda 0.174 0.184 0.028 6.8 7.4
iris lda 0.071 0.064 0.231 2 2.2
landsat_train lda 0.163 0.163 0.406 15.8 18
leaf lda 0.241 0.225 0.078 10.9 11.2
ma_breast_cancer lda 0.368 0.274 0.014 52.6 22.4
ma_colon_tumor lda 0.223 0.19 0.174 79.2 70.5
ma_gcm lda 0.478 0.46 0.385 136.2 147.2
ma_leukemia lda 0.157 0.167 0.406 32.5 30
ma_lung_cancer lda 0.033 0.027 0.567 13.4 4.1
ma_prostate_cancer lda 0.265 0.248 0.297 44.3 23.5
mammogram lda 0.184 0.158 0.136 5.5 5.8
pop_failures lda 0.056 0.055 0.228 7.9 7.5
sonar lda 0.281 0.279 0.5 9.2 11.8
spectf lda 0.219 0.231 0.092 9.3 8
vehicle lda 0.233 0.236 0.239 15.9 14.2
waveform lda 0.144 0.147 0.033 17.8 16.4
wdbc lda 0.047 0.045 0.383 11.2 12.9
diabetes svm 0.238 0.236 0.241 5.2 4.7
heart-statlog svm 0.183 0.186 0.476 7.5 7.7

Continued on next page
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Table 7.1 – continued from previous page
Problem Ind. Err Err+ p-val NF NF+

ionosphere svm 0.145 0.141 0.399 10.6 8.7
landsat_train svm 0.138 0.135 0.042 17.4 20.9
leaf svm 0.267 0.265 0.476 11.6 11.5
ma_breast_cancer svm 0.256 0.237 0.22 17.5 13
ma_colon_tumor svm 0.187 0.181 0.304 14.2 15.5
ma_gcm svm 0.527 0.512 0.203 16.6 18.6
ma_leukemia svm 0.092 0.078 0.439 37.2 6.1
ma_lung_cancer svm 0.033 0.034 0.312 8.8 4.5
ma_prostate_cancer svm 0.22 0.219 0.361 8.1 12.9
mammogram svm 0.362 0.453 0.088 43.3 39.8
parkinsons svm 0.147 0.14 0.238 8.3 5.8
pop_failures svm 0.056 0.055 0.417 7.3 6.7
sonar svm 0.278 0.266 0.318 11.1 18.3
spectf svm 0.24 0.228 0.13 9.4 9.9
vehicle svm 0.227 0.229 0.444 14.9 13.7
waveform svm 0.137 0.138 0.203 18.6 17.5
wdbc svm 0.039 0.035 0.171 12.7 9.7

Average 0.2022 0.1976 20.2211 17.9719

Table 7.2: Stability results comparing SBG+ to SBG. Figures in boldface correspond to
statistically significant improvements.

Problem Ind. Stab Stab+ p-val

diabetes knn 0.4427±0.238 0.4699±0.3412 0.726
heart-statlog knn 0.3022±0.1885 0.3053±0.1679 0.8888
ionosphere knn 0.1581±0.1412 0.16±0.2081 0.9047
landsat_train knn 0.188±0.1667 0.1902±0.1838 0.9187
leaf knn 0.2745±0.1829 0.3586±0.1486 0.0025
ma_breast_cancer knn 0.0107±0.0644 0.0253±0.0738 0
ma_colon_tumor knn 0.0061±0.0689 0.0254±0.0737 0
ma_gcm knn 0.0086±0.0727 0.015±0.0834 0.0053
ma_leukemia knn 0.0701±0.0687 0.0396±0.0814 0
ma_lung_cancer knn 0.0328±0.0644 0.014±0.077 0
ma_prostate_cancer knn 0.0331±0.0837 0.0455±0.0984 0
mammogram knn 0.0952±0.1582 0.0824±0.1866 0.0232
parkinsons knn 0.2129±0.2082 0.2015±0.1867 0.5315
pop_failures knn 0.3704±0.2675 0.3566±0.2917 0.1182
sonar knn 0.0674±0.1146 0.083±0.1113 2e-04

Continued on next page
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Table 7.2 – continued from previous page
Problem Ind. Stab Stab+ p-val

spectf knn 0.0629±0.1191 0.0946±0.1196 0
vehicle knn 0.4685±0.0851 0.5434±0.0813 0.0013
waveform knn 0.448±0.1382 0.4607±0.1233 0.3048
wdbc knn 0.2603±0.2426 0.3286±0.2563 0
antiCorrAl lda 0.6006±0.3146 0.545±0.3287 0.1073
diabetes lda 0.5139±0.4005 0.58±0.3317 0.2945
heart-statlog lda 0.3238±0.2264 0.33±0.28 0.8888
iris lda 0.3181±0.2509 0.4292±0.2008 0.0975
landsat_train lda 0.1375±0.2005 0.1253±0.2052 0.0276
leaf lda 0.4454±0.2894 0.4282±0.2878 0.4324
ma_breast_cancer lda -0.0011±0.0705 0.0151±0.0682 0
ma_colon_tumor lda 0.0054±0.065 0.013±0.0703 0
ma_gcm lda 0.0236±0.0824 0.0228±0.0885 0.1252
ma_leukemia lda 0.2043±0.0765 0.0205±0.062 0
ma_lung_cancer lda 0.0386±0.0595 0.0068±0.0667 0
ma_prostate_cancer lda 0.0083±0.0683 0.0357±0.0735 0
mammogram lda 0.0852±0.1942 0.1546±0.2164 0
pop_failures lda 0.4219±0.3428 0.4205±0.3549 0.675
sonar lda 0.0549±0.1217 0.0442±0.1119 0
spectf lda 0.0744±0.1307 0.0599±0.1212 0.0048
vehicle lda 0.4491±0.2655 0.521±0.2553 4e-04
waveform lda 0.4315±0.1413 0.4718±0.1967 0.0181
wdbc lda 0.0826±0.1623 0.1247±0.1446 0
diabetes svm 0.5457±0.3915 0.5498±0.4046 1
heart-statlog svm 0.313±0.234 0.2985±0.2364 0.7266
ionosphere svm 0.1653±0.1953 0.1983±0.2196 0.0031
landsat_train svm 0.1605±0.2554 0.2002±0.2517 0
leaf svm 0.3486±0.1165 0.3593±0.1451 0.3794
ma_breast_cancer svm 0.0155±0.0784 0.0165±0.0713 0.0589
ma_colon_tumor svm 0.014±0.0672 0.0108±0.0694 0.0052
ma_gcm svm 0.0148±0.085 0.0355±0.0899 0
ma_leukemia svm 0.3589±0.1162 0.0112±0.0656 0
ma_lung_cancer svm 0.4243±0.1778 0.0183±0.0582 0
ma_prostate_cancer svm 0.0112±0.0864 0.0385±0.0966 0
mammogram svm 0.1038±0.095 0.0332±0.0995 0
parkinsons svm 0.1361±0.1832 0.1526±0.2158 0.2372
pop_failures svm 0.4104±0.2957 0.4395±0.3218 0.3604
sonar svm 0.038±0.1217 0.0626±0.1168 0
spectf svm 0.0942±0.1233 0.0803±0.119 0.016
vehicle svm 0.3793±0.1979 0.4493±0.2266 3e-04
waveform svm 0.4776±0.1266 0.5162±0.1184 0.0458
wdbc svm 0.1107±0.1783 0.1092±0.1533 0.537

Continued on next page
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Table 7.2 – continued from previous page
Problem Ind. Stab Stab+ p-val

Average 0.2079±0.1625 0.2057±0.1656
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7.5 Discussion

The results of the FSS process are displayed in Table 7.1. The first table shows the (cross-
validated) average test error for the two algorithms and the different inducers. The second
table shows the (cross-validated) average size of the final selected subsets.

The first fact to note is that the accumulated version outperforms the standard version
(though in general by a modest margin) in all cases. This is a very remarkable result, given
the big differences among the problems and among the inducers. We also can see that the
average classification error for the SBG+ version among all problems and inducer algorithms
is slightly lower (0.1976 versus 0.2022 of the non modified version). Second, SBG+ finds in
general solutions of lower size than SBG does, sometimes by a substantial amount (e.g., 1NN
in Colon Tumor and Leukemia, most of LDA, or Leukemia and Lung Cancer with the SVM).
Given that there is no stopping condition, our explanation is that the standard backward
version is greedier than the accumulated one. By the (early) inclusion of some (or many)
features that are not as good as they look in that moment, and cannot be removed, SBG is
driven toward worse local minima of the error function as compared to SBG+. The greediness
itself is explained by the purely local (in the temporal sense) character of SBG and it also
explains the worse prediction results of this algorithm.

Feature selection appears to be a viable avenue for dimensionality reduction in this field:
a reduction of two orders of magnitude in the number of features by univariate methods
shows substantial improvements (Table 3.1). With a further reduction of another order of
magnitude, mean performance of the finally selected classifiers is similar to that achieved
using the previously reduced subset. This behavior is important, both for computational and
scientific reasons. Even without optimization of free parameters (a necessary step in normal
conditions), cross-validated wrapper computations with 200 features may take several days
of computing time on a modest machine. Scientifically, coping with hundreds of features and
pretending interpretability of the role of every feature in the model is out of the question in
many cases. This is aggravated in the present situation of data scarcity.

The results diverge for different classifiers, as it may be reasonably expected. This is of
the greatest importance when assessing whether an improvement is consistent, or is limited
to a certain type of method. In this sense, 1NN seems to be the best method for Prostate
Cancer, LDA for Lung Cancer and the SVM for the other three (in all cases using SBG+).
The SVM tends to deliver smaller gene subsets, both for SBG and SBG+. Given that the
SVM parameters were not optimized beyond educated guesses, we think there is room for
further improvement in the modeling, specially on the accuracy side.

Comparison to other results in the literature using the same data sets is a delicate un-
dertaking in general. The methodological steps can be very different, especially concerning
resampling techniques. We have found that many times there are no true test sets: feature
subsets or model parameters (or both) are optimized by means of one or several resampled
runs of cross-validation. This procedure is dangerous in that it cannot deliver an unbiased
estimation of true error, given that, although test observations have not been used to create
the model, they have been used to decide upon competing ones (namely, in the feature selec-
tion process itself). The stability of these results is also compromised if only one resample is
carried out. On the other hand, the delivered gene subset size is a very important issue to
bear in mind, if the solutions are to become interpretable and useful from the clinical point
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of view. That said, we compare with several references illustrative of some work on the same
data. A comprehensive list of recent usages of these datasets can be found in the review [5]
conducted by Bolón-Canedo et al.:

1. For the Colon Tumor data set, [81] report an error of 12.7% with 94 genes, while [9]
report an error of 23.0% with 33 genes, both using radial SVMs. For this dataset, we
report a test error of 18.1% using an average of 15 genes.

2. For the Leukemia problem, the original poster [22] report a cross-validated median
prediction strength of 0.77 and [9] report an error of 4.0% with 30 genes using a radial
kernel, and an extraordinary 1.4% using only two genes and filter methods for ranking
is reported by [30]. For this dataset, we report an average test error of 6.1% using an
average of 6 genes.

3. The Lung Cancer data set is apparently the easiest to separate. Accuracy values as
high as 99% are achieved by [9] (using a SVM and 38 genes) and by [32], this time using
5NN and as much as 135 genes. For this dataset, we report an average test error of
2.7% using an average of 4 genes.

4. In the Prostate Cancer problem, as low as 7% error as been reported (half our best
result) using a radial SVM and 47 genes (nearly three times our result) [9].

5. For the Breast Cancer problem, an error of 21% is reported using a radial SVM and 46
genes [9], and an error of 32% using again a SVM and 8 genes [30]. For this dataset, we
report an average test error of 23.7% using an average of 13 genes.

6. Finally for GCM, an error of 29,2% is reported using SVM one vs. all and 30 genes [62].
For this dataset, we report an average test error of 40.6% using an average of 147 genes.

Regarding stability we can see a variety of results. Even though the average results
on stability are almost identical (0.2057 for SBG+ versus 0.2079 for SBG), we can see a
significant improve of the FSS stability in almost half of the problems (43%). For another
36% the difference in stability is not statistically significant. And 21% of them suffer from
worse stability. When using 1NN learner we find the most stability improvement with 47%
of the problems being more stable and only 16% being less stable. This learner also drew the
least stable results among the three in their non-modified versions.

7.6 Conclusions

This chapter has presented a modification suitable for feature subset selection algorithms that
iteratively evaluate subsets of features, by making them accumulate all the “log of merit” of
the features in quite different contexts. The idea consists in that the current subset evaluation
is not used directly to select the feature to add (or remove), but to accumulate information on
the usefulness of the feature in many contexts. The different contexts of a particular feature x
are given by all those subsets that contain x (they express how good is to have x) and do not
contain x (they express how good is not to have x). The accumulated information is then used
to decide which feature should be added or removed (namely, that feature with the highest
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(lowest) accumulated usefulness which has not yet been added (removed)). Therefore, the
search history makes an influence on the search itself, conditioning the selection of features.
This view is consistent with the definition of a search algorithm as a mapping from its history
(including its present state) to the set of possible moves. In these conditions, less importance
is assigned to the current subset evaluation than in a classical FSS setting (where it is the
only source of information). Our experimental results indicate a general improvement in
stability and performance, without any additional modelling effort. We have seen that the
improvements on stability are greater when using learners that lead to less stable results when
not using the accumulated information.

Future work may include exploring SFG. The decision to study SBG in the first place is
consistent with the goal of discovering feature interactions. Having all the features from the
beginning greatly facilitates this task. Nonetheless, the more modest computational demands
that SFG entails in practice (if cut before exhaustion of features) may be an appealing char-
acteristic. It is relevant to point out that the presented algorithmic modification may be of
little help if an algorithm has many opportunities to rectify its decisions (e.g., the PTA(l, r)
family of algorithms). However, even in this case, the forward or backward steps will be more
informed, possibly making the search algorithm deliver better solutions at earlier stages. Un-
fortunately, the O(nl+r+1) cost of PTA(l, r) can well make it prohibitively high for microarray
data problems in wrapper mode.

A clear avenue for further research is the setting of the free parameter, λ. It is our
conjecture that an adaptive value may deliver better results. In this sense, the influence of
past evaluations may be different at early or last stages of a search process.



Chapter

8
Combining Instance and Feature
Weighting

In this chapter we present a novel method that aims at providing a more stable selection
of feature subsets when variations in the training process occur. This is accomplished by
executing an instance weighting (IW) process that assigns different importances to instances
according to their outlying behavior; this weighting is a preprocessing step to the feature
weighting (FW) that is independent of the learner or the specific FSS or FW algorithm.
We report performance in two series of experiments: first using well-known benchmarking
datasets and then some challenging microarray gene expression problems. Our results show
increases in FSS stability for most subset sizes and most problems, without compromising
prediction accuracy.

8.1 Introduction

Let’s recall the definition of the hypothesis margin seen in Chapter 2:

θS(x) =
1

2
(|x− nearmiss(x)| − |x− nearhit(x)|) (2.53)

With this definition we can see Relief as a filter algorithm that uses the hypothesis-
margin concept in Eq. 2.53 to assess the importance of each feature in a dataset D as the
accumulated influence that each feature has in computing the margin of every instance in
D [38]. RelievedF[41], a deterministic variant of the algorithm, picks one instance at a
time and computes the hypothesis margin of each feature independently, accumulating the
feature-wise distances to its nearest hit and nearest miss. As a result, the weight wj given to
feature Xj is its average distance to the selected neighbors:

wj =

N∑
n=1

(
|(xn)j −m(xn)j | − |(xn)j − h(xn)j |

)
, j ∈ {1, . . . , d}. (8.1)

107
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As we have seen in section “Margin based feature selection (Simba)” of Chapter 2, Simba
is a more recent feature weighing algorithm that assigns weights to features based on their
contributions to the hypothesis margins of the instances [3]. Since better generalization is
expected if instances have larger margins, one should favour features that contribute more to
these margins.

8.2 Logistic instace weighting

Here we present a novel instance weighting mehtod as an alternative to the Margin Based
Instance Weighting With the purpose of obtaining a more robust evaluation, the average
margin between every instance in D and all the rest can be calculated as seen in Eq. 2.53
introduced in Chapter 2 and reproduced here to improve legibility.

θS(x) =
1

2
(|x− nearmiss(x)| − |x− nearhit(x)|) (2.53)

Instances x achieving highly positive θS(x) present good modeling behavior (being far
from misses and close to hits), while those with highly negative θS(x) become outlying ones
(surrounded by misses and far from hits). The presence or absence of these latter instances
in a training sub-sample is therefore a source of unstability.

With our Logistic Instance Weighting function we aim to use the above properties to give
more importance to instances that are far from the hypothesis margin expecting a higher level
of stability of the resulting FSS. In order to obtain a bounded positive weight in (0, 1), we
use a logistic function:

ω(x) =
1

1 + exp {−α z (θS (x))}
, (8.2)

where α is a parameter controlling the slope, and z(·) is the standard score z(x) = (x−µ̂D)/σ̂D,
being µ̂D and σ̂D the sample mean and standard deviation of θS(x), for all x ∈ D, respectively.
A suitable value for α will depend on the problem and the user’s needs. As a default value,
under the assumption that hypothesis margins loosely follow a Gaussian distribution, we
propose to set α = 3.03, which corresponds to assign a weight of 0.954 to an instance whose
average margin is two standard deviations from the mean, that is θS(x) = 2σ̂D.

In order to illustrate the procedure, a simple example is provided. Consider a 2D syn-
thetic dataset containing N = 30 instances, obtained by equally sampling from one of two
distributions: either x ∼ N (µ1,Σ) or x ∼ N (µ2,Σ), where µ1 = (0, 0)

T
, µ2 = (0, 0.25)

T and
Σ = diag(0.01, 0.01). Fig. 8.1 shows the weighted dataset, which clearly assigns low values to
instances close to the boundary between classes and those inside opposite-class region; and
assigns higher values the farther from the boundary inside the proper-class region. This is
consistent with the intuition that outlying instances are a source of instability and therefore,
must be lowly rated.
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Figure 8.1: Importances assigned to the synthetic example data. These importances are
computed using the formula in Eq. 8.2. The “+” and “o” symbols denote the two classes.

8.3 Combining Instance and Feature Weighting

One problem with the definition of the hypothesis-margin concept in Eq. 2.53 is the presence
of outliers, or redundant or noisy features, which might mislead the margin calculus of an
instance. The proposed method extends Simba to incorporate the instance weights, obtained
both with the Margin Based Instance weighting by Han and Yu [29] introduced in Chapter 2
and with the Logistic Instance Weighting (LIW) presented in the previous Section, into the
feature weights, to influence the way Simba behaves. We can consider different points of view
for the combination of instance and feature weighting. First of all we can consider the way
we execute the two algorithms:

1. The IW method is executed and the IWs are handed over to the FW method, which is
in turn executed and the cycle recommences.

2. The IW method is executed as a subroutine of the FW method: when the FWs are
updated (within the FW loop), so are the IWs.

In this chapter we have focused on the first approach leaving the second as future work as
explained in Chapter 9.
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Once we decided that way of classifying the interplay between both algorithms is by
taking into account how do we make one influence the other. As we decided to run IW first
we considered different approaches to modify the FW algorithm (i.e. (Simba) in our case)
to take instance weights into account. The first way of doing so is by altering the way in
wchich (Simba) selects the instances. We tested two different modifications (being Normal
the unmodified version of the algorithm):

Normal: The unmodified version of the algorithm that uses all instances drawn in a random
order.

Sample: Based selection on a probability distribution, according to the obtained weights
(some instances may be selected more than once and some none).

Order: Iterate over every instance, and base the iteration order directly on the instance
weights, from the instance with the largest weight downwards (all instances are selected
exactly once).

Aiming at a deeper integration of IW and FW, we also propose to use the instance weights
in the ∆ calculation of the feature weights, which gives rise to another three variations:

Normal∆: Original Simba instance selection and use instance weights when computing the
∆ feature weights.

Sample∆: Same as above but using Sample instance selection.

Order∆: Same as above but using Order instance selection.

In any case, we call the methods SimbaLIW: Simba with Logistic Instance Weighting
and SimbaMIW: Simba with Margin Based Instance Weighting (pseudo-code is shown in
Algorithm 8.1).

8.4 Experimental Work

This section provides empirical evaluation of the proposed method. First, we illustrate Sim-
baLIW using a synthetically generated dataset; given that the truth behind the features is
perfectly known, one has the possibility of assessing true performance. Then, the algorithm is
tested to verify its real applicability, in three groups of problems: first using some well-known
datasets from the UCI machine learning repository [2], then the ones used in a feature selec-
tion challenge organized by Guyon et al. during the Neural Information Processing Systems
2003 conference (NIPS 2003) [76] and finally in widely-used cancer microarray data. These
are different problems: first, the number of features is in the range of tens to a hundred for
the former, and in the range of thousands for the latter; second, the number of instances is
generally much lower for the microarray data.

The stability of an algorithm in selecting a subset of k features out of the initial full
feature size d over a batch ofM runs can be evaluated using the Kuncheva [45] stability index
SKuncheva 2.34 that we described in Chapter 2.
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Algorithm 8.1: SimbaLIW/SimbaMIW (D,ω) (strategy can be either sample, or-
der, normal)
1 w← (1, 1, . . . , 1) // Feature weights
2 for n← 1 to N do
3 if strategy is order then
4 let x be the instance ranked in position n according to ω
5 else if strategy is sample then
6 draw an instance x from D, according to the distribution ω/ ‖ω‖1
7 else
8 let x be the nth instance of a random permutation of D
9 end

10 calculate m(x) and h(x) with respect to D \ {x} and the weight vector w;
11 for i← 1 to d do
12 ∆i ← 1

2

(
(xi−(m(x))i)

2

‖x−m(x)‖w
− (xi−(h(x))i)2
‖x−h(x)‖w

)
wi

13 end
14 if using ∆ combination then
15 w← w + ω(x)∆
16 else
17 w← w + ∆
18 end
19 end
20 w← w2/

∥∥w2
∥∥
∞ where (w2)i := (wi)

2

8.4.1 Synthetic Data

We first use a synthetic dataset designed to verify the performance of stable feature subset
strategies [29] It consists of M = 500 training sets, each of the form Xm ∈ RN×d, with
N = 100 instances and d = 1, 000 features, for m = 1, . . . ,M . Every instance is equiprobably
drawn from one of two distributions: x ∼ N (µ1,Σ) or x ∼ N (µ2,Σ), where

µ1 = (0.5, ..., 0.5︸ ︷︷ ︸
50

, 0, ..., 0︸ ︷︷ ︸
950

), µ2 = −µ1,

and

Σ =


Σ1 0 · · · 0
0 Σ2 · · · 0
...

...
. . .

...
0 0 · · · Σ100

 ,
being Σi ∈ R10×10, with 1 in its diagonal elements and 0.8 elsewhere. Class labels are assigned
according to the expression:

yi = sgn

 d∑
j=1

Xi,jrj

 , r = (0.02, ..., 0.02︸ ︷︷ ︸
50

, 0, ..., 0︸ ︷︷ ︸
950

).
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Figure 8.2: Feature stability on Han & Yu synthetic data. Left plot shows the average
SKuncheva over 500 repetitions of the process, as a function of increasing subset size (the bold
line is the normal Simba, the dashed line is the weighted SimbaLIW version). Right plot
shows the corresponding average precisions (n for normal, w for weighted).

Figure 8.3: Boxplots of precision and recall at the point of maximum stability (42 features
for Simba and 40 for SimbaLIW) on Han & Yu synthetic data.

The plots in Fig. 8.2 show the stability and accuracy results obtained by averaging 500
runs of independent artificial data generation, comparing Simba against SimbaLIW. The left
plot is the average SKuncheva as a function of subset size (size has been cut at 200 for clarity,
the rest of the plot being similar to the shown slice). It can be seen the stability is increased
at all subset sizes, topping in the 40-50 range (recall that this problem has exactly 50 relevant
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features). The plot on the right shows boxplots of the distribution of precision over the 500
runs when the first 50 features are kept (thus we use the knowledge that only 50 features
are relevant). Welch’s t-test for a difference on the means (0.4722 vs. 0.5414) over the 500
independent results is highly significant (p-value < 2.2e-16). Notice the recall is the same for
both methods because there are exactly 50 relevant variables (out of the 1,000).

The plots in Fig. 8.3 do not use this knowledge. Rather, for both methods, we select the
feature subset showing maximum stability and compute the corresponding average precision
(left) and recall (right)1.

We also reproduced the results for the xor problem presented in Section 2.4.2 as shown in
Figure 8.4.We can see that all algorithms outperform Relief and that SimbaLIW seems
to be the one that converges first to the correct feature weights.

1 Recall = True positives / (True Positives + False Negatives); Precision = True positives / (True
Positives + False Positives). A True Positive is a selected and relevant feature, a False Negative is a
discarded and relevant feature, etc.
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Figure 8.4: The weights Simba, SimbaLIW, SimbaMIW and Relief assign to the 10 features
when applying on the xor problem.
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8.4.2 Real Data

A collection of 15 UCI, 5 NIPS and 6 microarray datasets presenting a variety of diseases is
used. The description of the data can be found in Section 3.1.

8.4.3 Experimental setting

The experimental setup consists of the two nested cross-validation loops described in Section
3.2. For every fold and repetition of the outer cross-validation loop, two feature-weighting
processes are conducted with the same instances: one with the original Simba algorithm and
one with our modified version taking instance weights into account. SKuncheva is computed
for every subset length at every partition loop and then averaged over the 10 times. Once
the features have been obtained we test the obtained feature weights using a modified k-
NN classifier as shown in Algorithm 8.2 that accepts both instance and feature weights,
recording prediction accuracy on the leftout test parts. We use these weights to perform an
inner 5x2-fold cross-validation with the purpose of estimating the prediction error of each
classifier. This error is then computed for each fold to compare the feature sets selected
by both Simba, SimbaMiw and SimbaLIW. This modified k-NN classifier uses the feature
weights to ponderate the distance calculation between two instances as shown in Eq. 8.3 (see
line 3 in the algorithm). In addition instead of using a majority voting as the original k-NN
does to compute the label of the test instance it uses the instance weights to give make more
relevant instances more influent in the voting (see line 8 in the algorithm). By using an
algorithm that accepts feature weights we overcome the need of finding a suitable feature set
given the resulting weights of the FW process as we did in our previous paper [56]. If we
wanted to use the traditional version of k-NN at this point we would have to decide a size
k of the selected feature set, order the features according to their weights and keep the first
k or execute the classifier for every possible size and keep the feature set size that gave the
better prediction accuracy.

Algorithm 8.2: Instance and Feature Weighted k-Nearest Neighbor Algorithm
Input : Training set T = {x1, ...xN}, constant k, instance weights ω, feature weights

w, new instance xt to be classified
Output: Class prediction for xt

1 Initialize all ci ∈ c to 0;
; // class counters

2 foreach xn ∈ T do
3 distn ← dw(xn,xt) ; // where dw is the weighted distance in Eq. 8.3
4 end
5 Sort dist in descending order;
6 Ik ← nearest k instances according to dist;
7 foreach x ∈ Ik do
8 ci ← ci + ω(x) ; // where i is the class of x and ω(x) its instance

weight
9 end

10 return arg max
i∈c

ci;
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Here dw(x,y) is the weighted distance between instances x and y using the feature weights
x as seen in Eq. 8.3.

dw(x,y) =

√√√√ d∑
i=1

wi(xi − yi)2 (8.3)

We have moved the detailed results for these experiments to Appendix C for the sake
of simplicity. There we can find Figures C.1 to C.9 that show results on feature subset
selection stability on UCI, NIPS and microarray data for normal, sample and order delta
weight combinations. They also display average test errors when training a classifier using
the resulting feature weights. To help summarizing the results we also present Tables C.1
to C.36 with the average and starndard deviation of the classification errors and the average
and standard deviation of the stability for each algorithm and weight combination. We have
summarized the results shown in those tables to Figures 8.5 and 8.6 where we can see the
number of problems (including UCI, NIPS and microarray) which the modified versions of the
FSS algorithm had better/equal/worse stability results and also the number of problems which
the classification error of the resulting feature sets was better/equal/worse. We can clearly
see that both modifications lead to more stable results most of the time. In fact, SimbaMIW
is only significantly less stable than Simba in the NIPS Challenge Madelon dataset when
using sampleδ weight combination. We can also see that SimbaMIW delivers the most stable
feature sets of the three, followed by SimbaLIW. Being the latter the algorithm leading to
lower classification errors on average.
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Figure 8.5: Number of problems where SimbaLiw was better/equal/worse than non-
modified Simba regarding stability and classification error.
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Figure 8.6: Number of problems where SimbaMiw was better/equal/worse than non-
modified Simba regarding stability and classification error.

Excluding small variations at the very first and last iterations, the same general trend can
be observed in all sets of plots, showing that stability is enhanced for most subset sizes and
virtually all problems except for the UCI datasets when using the order delta combination. It
is interesting to note that the small or null gains correspond to very small (sizes 1−5) or large
(near full size) subsets, where the set of possible combinations is much smaller. Remarkably,
on all other sizes, both SimbaMIW and SimbaLIW choose feature subsets in a more stable
way when the training set changes.

It is beyond the intention of this study to search for the best absolute subset (or best
subset size) for each problem. Rather, the motivation is to study stability for all sizes and
a glimpse at possible differences in test accuracy. In this sense, as it could reasonably be
expected, performance varies for the different chosen sizes. Some problems seem to benefit
from an aggressive FSS process and others the other way around.

8.5 Generalizing to other feature weighting algorithms

These IW algorithms have been chosen specifically to help Simba as they use the same margin
concept but here we want to apply the same concept of IW and FW combination to different
FW algorithms.

Here we present a framework that can be used to combine any IW and FW algorithms.
We propose to use the instance weights to resample the input data that the FW algorithm
receives. We will use a sample with replacement method similar to the sample and order
stratgies described above for Simba as a previous step to calling the FW algorithm. The steps
can bee seen in Algorithm 8.3. Of course, the order version only makes sense for algorithms
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that iterate over the instances such as Relief or RandomForests [7]. The versions we
are using of these algorithms iterate over the selected instances in the same order that they
appeared in the original dataset. Our version of Relief takes a number of random instances
over the original dataset but then iterates over them in the original order. Same holds true for
the RandomForests algorithm. This algorithm selects the instances to build the trees with
the bagging [6] algorithm, thus randomly. But once a bag of instances is selected it iterates
over each instance in the bag in the same order they appeared in the original dataset. As
an example, if the original dataset contained the instances {x1, x2, x3, x4, x5} a possible bag
of instances could be {x4, x2, x3, x2, x5}. In this example RandomForests would iterate
over the instances in this bag as {x2, x2, x3, x4, x5} preserving the original order among them.
Other FW algorithms based on the mutual information or the joint entropy between a feature
and the class that do not iterate over instances can also use a resampled input data set with
the sample strategy. The frequencies of the features’ values will vary as the input data may
contain repetitions of certain instances and may omit others.

Algorithm 8.3: IW and FW combination framework
Input : Training set T = {x1, ...xN}, classes C (where x = {x1, . . . , xd} is a

particular instance with d features)
Output: Feature weights: w = {w1, . . . , wd}

1 Instance weights: ω = iw(T,C) ; // where iw(·) can be any IW algorithm
2 for n← 1 to N do
3 if strategy is order then
4 S′[n]← the instance ranked in position n according to ω
5 else if strategy is sample then
6 S′[n]← an instance x from D, drawn according to the distribution ω/ ‖ω‖1
7 end
8 w = fw(S′, ω) ; // where fw(·) can be any FW algorithm

We have tested this framework with three well known FW methods in addition to the
experiments with Simba presented above: Relief, RandomForests, IG (information gain)
and 1R [31]. Figures 8.7 to 8.12 show the summary results for the different algorithms and
strategies. Appendix C contain all the detailed results for each algorithm in Figures C.28 to
C.72 and Tables C.37 to C.84.

By looking at the charts we can see that for the majority of the problems the stability is
improved while keeping or improving prediction power.

The exceptions are Relief and RandomForests with the sample strategy. By looking
at the detailed results the bad results are most of the time concentrated in the problems with
lots of features and few examples such as the microarray ones. A possible explanation is that
we are losing some instances in the resampling. As we stated before the sample strategy draws
random examples with replacement from the original dataset with a probability proportional
to the instance weights. We also pointed out that this may lead to omitting some of the
instances. In these kind of problems where only a few instances are present omitting one
may have a big impact both on FW stability and on classification error. A possible way of
overcoming this situation would be to make a deeper integration of both algorithms as we did
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Figure 8.7: Number of problems where dataset resampling according to rliw instance weights
delivered better/equal/worse results regarding stability and classification error for Relief.

with Simba to make the internal resampling aware of the instance weights. We will leave this
as future work.

We also note that IG is already almost 100% stable so applying IW makes no sense in
most cases. But even with this situation IW manages to improve stability. IW only affects IG
in the choice of the most relevant features as seen in the detailed experiments Figures C.66
and C.67. In some cases the original version presents instability in the ranking of these
most relevant features, all of these situations are solved by IW. But unfortunately there are
other situations where the original algorithm was completely stable and by using IW some
instability is introduced precisely in the order of these high relevant features.

The best results are achieved with the order strategy for Relief and RandomForests.
The former significantly outperforms the original algorithm in 55% of the problems and un-
derperforms it in 21%. Even better results are achieved with the latter, outperforming the
original version in 63% of the problems and underperforming it in 15%. Regarding the IW
algorithm, RLIW is clearly better for Relief while MBIW helps RandomForests more.
This again might be because we designed RLIW to use the exact margin definition as Relief
does. This also suggests us that by further studying the RandomForests algorithm a better
IW technique could be found in addition to deepening the integration of the instance weights.

8.6 Conclusions

In this chapter we have introduced a new method for improving the stability of feature subset
selection algorithms, which draws upon previous algorithmic work on feature weighting and
hypothesis margins for instances. Our strategy uses a double set of weights, one for the
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Figure 8.8: Number of problems where dataset resampling according to mbiw instance
weights delivered better/equal/worse results regarding stability and classification error for
Relief.

features and another one for the instances. The suitability for standard feature selection
practice has been assessed using data from different environments: microarray gene expression
and real-world datasets from the UCI repository and from the NIPS 2003 feature selection
challenge. We have presented a novel modification of Simba FW algorithm that takes instance
weights into account that clearly outperform the original algorithm on most cases. Again we
will cite the No free lunch theorems that state that if a machine learning algorithm achieves
superior results on some problems, it must pay with inferiority on other problems. We also
defined a framework to be able to apply the idea of IW and FW combination for any two
choices of algorithms and tested it with a number of classic algorithms. We have proven
that the least stable ones (i.e. Relief and RandomForests) can be substantially more
stable with this technique and even the more stable IG and 1R algorithms can be slightly
improved. It is also important to note that the prediction error of a classifier trained with
the resulting feature weights is not negatively affected and even improved in some cases.
It could also be argued that models showing high stability are inherently more robust to
input variance, and therefore more advisable to rely upon, despite showing lower prediction
accuracy in certain cases. The reported results on the non-modified algorithms used in this
combination framework suggest that there is still more room for stability enhancement by a
deeper integration of the two algorithms.

The present work offers a number of interesting avenues for further research. First, there
are several alternative ways to combine the instance weighting idea and the Simba feature
weighting algorithm. In particular, the instance weights can be updated at each iteration,
given that the feature weights are re-computed, which would lead to a synergetic process.
Second we devised an opportunity for even more stability improvement by modifying the FW
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Figure 8.9: Number of problems where dataset resampling according to rliw instance weights
delivered better/equal/worse results regarding stability and classification error for Random-
Forests.

algorithms so modifications for Relief and RandomForests can be explored. Finally, we
have seen that by using an IW schemes that uses the same information as the FW algorithm
better results are achieved. This being the case of RLIW and Relief, so other IW schemes
could be designed to improve RandomForests.

Part of this work has been submitted to ESANN 2016 and is under review as listed in
Appendix D.
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Figure 8.10: Number of problems where dataset resampling according to mbiw instance
weights delivered better/equal/worse results regarding stability and classification error for
RandomForests.
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Figure 8.11: Number of problems where dataset resampling according to rliw instance
weights delivered better/equal/worse results regarding stability and classification error for
InformationGain.
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Figure 8.12: Number of problems where dataset resampling according to mbiw instance
weights delivered better/equal/worse results regarding stability and classification error for
InformationGain.
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Figure 8.13: Number of problems where dataset resampling according to rliw instance
weights delivered better/equal/worse results regarding stability and classification error for
1R.
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Figure 8.14: Number of problems where dataset resampling according to mbiw instance
weights delivered better/equal/worse results regarding stability and classification error for
1R.



Chapter

9
Conclusions and future work

In this thesis we have widely studied feature subset selection (FSS) and feature weighting
(FW) stability. Stability for these algorithms is a paramount subject both to have a better
description of the input data and to allow better comparisons of the different methods. This
is specially important for the DNA microarray problems that are used throughout the thesis.
These problems are characterized by having a large number (i.e. tens of thousands) of features
and a small (i.e. hundreds) of examples. Having unstable FSS results does not help doctors
trying to study which genes are the ones that should be analyzed to help them have an early
diagnosis. We have found out that stability is not a topic that had been deeply studied. In fact
we have identified several weaknesses to some of the previously proposed stability measures.
Once a stability measure have been chosen, we have outlined and studied different sources
of instability for FSS algorithms: The effect of redundant features, the intrinsic instability
introduced by the usage of random variables to assess feature importance, the effect of ran-
domly choosing the instances at each iteration, the order in which features are evaluated in
sequential algorithms or the different contributions two instances may have to stability (e.g.
a patient living near a source of radiation may introduce a great amount of instability when
we want to assess the prediction power of each gene and we don’t have a lot of patients). Dif-
ferent experiments have been conducted to test hypothesis on each of the instability sources
with a robust experimental framework consisting of two nested loops of cross-validation. The
outer loop gives us 10 runs of the FSS or FW algorithms and a set of instances that we use to
assess the prediction power of the selected features that have not been used in the FSS/FW
process. Inside the FSS/FW process another loop of cross-validation is performed to train the
inducer using a set of instances and assess the importance of the features with another set.
We used statistical significance tests to compare the results of two FSS/FW algorithms. Our
experiments on each of the hypotheses used this experimental setup and a set of 25 real life
problems obtained from the UCI machine learning datasets, the NIPS 2003 feature selection
challenge datasets and some public DNA microarray problems. In addition for each of the
modifications we have proposed various variants have been tested to make our results even
more robust. In the case of wrapper FSS we have tested our proposals using three different

125
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inducers (1NN, LDA and SVM) and in the case of filters we have tested our modifications
with five different FW algorithms (Relief, IG,RandomForests, 1R and much deeply with
Simba). Below we describe the principal conclusions:

• Fist of all we have had a look on how to define stability and analyzed different measures
to do so. As we have seen in Chapter 2 there seems to be a clear winner regarding
the assessment of FSS stability. SKuncheva presented by Kuncheva [45] in 2007 remains
unbeaten as it has correction by chance and it is the more sensible of the presented
stability measures. On the other hand if we want to measure the stability of FW
methods we have two alternatives. Either we set a cutting point for the number of
selected features and assess the stability of the resulting FSS problem or we use a rank
order correlation index as we did in 8 such as the Spearman’s rho, Kendall Rank or
Gini Index. We have shown that many of the alternative stability measures such as
SKalousis or SDunne are not a good choice as they favor feature subsets that are either
nearly empty or nearly complete.

• We have also presented a robust framework in Chapter 3 that allows us to assess different
FSS and FW algorithms and evaluate both their stability and the prediction power of
the resulting feature sets (or feature weights) by using a double loop of 5x2cv. This
framework allows to evaluate different algorithms even when the size of the training
data set is very small making it very suitable for problems, such as the gene expression
microarray problems used in this thesis, with very few instances and a lot of features.

By using this framework and with the stability measure in place we have explored
several ways to improve stability and performance of FSS and FW both wrapper and
filter algorithms.

• Regarding wrappers, we presented two novel modifications of the wrapping algorithm:
The remainder set aware (RSA) and the accumulated evidence (SBG+) in Chapters 6
and 7. For each modification we have tested various inducers (1NN, LDA and SVM) to
asses the quality of the proposed modification. We have proven that both modifications
render improved stability results for most of the problems and also better performance
regarding classification error of the resulting inducer.

• We introduced various novel combinations of instance weighting and feature weighting
for filter algorithms in Chapter 8. We have tested the existing margin based instance
weighting (MBIW) strategy and proposed the novel logistic instance weighting (LIW)
one targeted to improve the Simba algorithm —an improved version of the well known
Relief algorithm. We also modified Simba to use the instance weights in two different
ways: the first one by influencing the way the algorithm selects the instances at each
iteration and then a deeper integration that weigh the instance contributions in the
FW calculations. These combinations of Simba with MBIW and LIW —which we have
called SimbaLIW and SimbaMIW— lead to more stable results for the FSS and FW
problems without incrementing the computational cost in a significant way as some of
the other stability improvement methods do such as ensemble FS. We have also proved
that this improvement on stability results in feature sets with equal and even higher
prediction power when used by a classifier. We have also defined a framework to combine
any IW and FW algorithms by resampling the input data of the FW algorithm according
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to the results of IW using two different strategies: sorting the input data according to the
ranking of each instance (order) and sampling instances at random with replacement
with the probability for each instance to be chosen at each step proportional to the
weight assigned by the IW algorithm (sample). We have tested this framework with
four classic FW algorithms: Relief, RandomForests, InformationGain and 1R.
We have proven that stability is very significantly increased for the two former ones.
In the case of the two latter we have seen that, as they are performing very simple
computations, their stability is already near 100% so it can seldom be improved. Even in
this situation the combination with IW managed to improve stability in some cases. We
also have proven that by training an inducer with the set of resulting features can lead
to significantly higher performance, especially for Relief and the order strategy where
almost 30% of the problems achieved significantly lower classification error percentages.

The topic of feature selection stability is a large one, and there are many avenues for new
work towards achieving stability –both of selected features and model predictions– without
sacrificing overall accuracy through feature weighting and observation weighting.

Current work concentrates in developing further some of the methods already presented in
the thesis. In all cases, the general idea is to add more flexibility by generalizing the methods
and at the same time to carry further the possibilities of the methods.

We next detail four current developments; these have the advantage that can be developed
independently of one another. We intend to include in the final document those that lead to
increased performance.

Throughout this chapter, we use the abbreviations IW (Importance weighting, for obser-
vations) and FW (Feature weighting).

9.1 Use a generalized distance

The standard unweighted Euclidean distance is not the only possible choice to measure dis-
tance between two observations drawn from two probability densities f1 and f2, corresponding
to different groups or classes in a classification setting.

We consider a general distance introduced in [11]:

dα(f1, f2) = − log

∫
f1(x)αf2(x)1−α dx, α ∈ [0, 1],x ∈ Rd

When α = 0.5, it reduces to − log
∫ √

f1(x)f2(x) dx, sometimes referred to as the Bhat-
tacharyya measure of affinity. If f1 and f2 are multivariate Gaussian densities with means
µ1, µ2 and covariance matrices Σ1,Σ2 (resp.), then:

d0.5(f1, f2) =
1

8
(µ1 − µ2)TΣ−1(µ1 − µ2) +

1

2
log

(
|Σ|√
|Σ1||Σ2|

)
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where Σ = 1
2 (Σ1 + Σ2) –see [35]. This distance easyly generalizes to accommodate more

than two classes. The idea is to use Σi,Σj when computing the distance between two ob-
servations from classes i and j. This measure takes into account the covariance structure of
the classes and as such it is a much more informed one than standard Euclidean distance. In
practice, Σi and Σj are replaced by the sample covariance matrices Σ̂i and Σ̂j .

The aim is to use this generalized distance d0.5 in place of standard Euclidean distance,
both in the definition of the hypothesis margin and in the Simba algorithm. This step is not
free of issues, which are specified and dealt with below.

We are currently extending the hypothesis margin of an instance x to a set of data points
D to:

θD(x) =
1

2

(
d0.5(x,m(x))− d0.5(x, h(x))

)
where m(x) and h(x) are the near hit and near miss: the instances in D nearest to x

with the same and with a different class label, respectively. Specifically, the first d uses Σi
and Σj , being i the class of x and j that of m(x). Since –by definition– the classes of x and
h(x) coincide, the same (common) covariance matrix Σi is used in the second d (being i the
class of x). The same method is followed for the co mputation of m(x) and h(x) themselves.

There is a first concern in what regards computational requirements. The new distance
demands a matrix inversion (actually one for every posible class pair); it also requires matrix
multiplication operators every time the distance is evaluated. The proposed solution is to
perform a coordinate transform for every X ∼ N(µ,Σ) to Y ∼ N(0, I). Departing from the
Schur decomposition Σ = Q∆QT , where Q is an orthogonal matrix (whose columns are the
eigenvectors of Σ) and ∆ = diag(λ1, . . . , λd) contains the eigenvalues of Σ.

Now

(x− µ)TΣ−1(x− µ) = (x− µ)T (Q∆QT )(x− µ)

= (x− µ)TQT∆−1Q(x− µ) = (QA(x− µ))T I(QA(x− µ)) = yT Iy

where A = diag((λ1)−1/2, . . . , (λd)
−1/2). Therefore we propose to preprocess the data xn

from a certain class j as yn = QjAjxn, being QjAj the matrices derived from Σj . Note that
the transformation yn = QjAj(xn − µj) is sometimes known as the whitening transform. In
our case there is no need to center the data, because this could lead to a loss in separability
(although both possibilities will be explored). The new determinants now all evaluate to 1.

We can now use the FW methods to the transformed data. In particular, both Relief
and Simba assume that the covariance structure in the groups is precisely the identity matrix
(this is implicit in the use of unweighted Euclidean distance).

A second concern was found in the way standard Simba uses the FWs. These are used to
weight the previously unweighted Euclidean distance. Since the proposed distance is a fully
weighted one, both sets of weights “interfered”. These are different kinds of weights: those
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in the covariance matrices reflect the statistical distribution of the classes, while the FWs
reflect the importance of every feature to separate the classes. Now that Simba gets truly
uncorrelated data, this issue is settled.

9.2 Use of the learned weights

The primary aim of computing IWs and FWs has been to enhance the stability of the selected
features. Feature selection can often be considered part of model construction and becomes
an important step, but not the only one. We propose to use the sets of learned weights also
for building the models, by incorporating them (as far as possible) into the learning algorithm
itself.

Note that, in so doing, the whole process still falls into the filter approach (as opposed to
the wrapper one), inasmuch the classifier’s predictions are not fed back to guide the process.

Another issue is found in the study of the stability of the predictions (regardless of ac-
curacy), across the data partitions. In two class problems, we can calculate the correlation
between two classifier’s outputs as:

ρ =
N11N00 −N01N10√

(N11 +N10)(N01 +N00)(N11 +N01)(N10 +N00)
,

where Nab is the number of predicted observations for which one classifier gives a value a
and the other gives a value b, and a, b ∈ {0, 1}. This measure should be extended to more than
two classes. A trivial way would be to consider an agreement when predictions coincide (a
’1’) and a disagreement when predictions do not coincide (a ’0’) and then apply the previous
measure.

The incorporation of the IWs seems the most general avenue. Many learning methods are
willing to accept (or to be extended with) information on how important every observation
is to the fit. These include classical regression methods (like Logistic regression or PLS [85]),
modern regression methods (like the LASSO or the Elastic net), nearest neighbours, discrim-
inant analysis or even the Support Vector Machine [86]. The references given correspond to
specific proposals in the literature with this aim.

9.3 Explore the interplay

The study of possible synergies between the IW and the FW methods opens a wealth of
possibilities. From a very general point of view, the IW method uses the FW method and
vice versa. Since the former does not imply an iterative procedure, two basic schemes can be
derived:

1. The IW method is executed and the IWs are handed over to the FW method, which is
in turn executed and the cycle recommences.

2. The IW method is executed as a subroutine of the FW method: when the FWs are
updated (within the FW loop), so are the IWs.
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The way the IWs are used to influence the FW method has been a specific subject of this
thesis. We have introduced the ’order’ and ’sample’ methods into the Simba algorithm with
good results. We are now studying a third method, described below.

In a sense, the ’order’ and ’sample’ methods are extremers in that the former is too
deterministic and the latter too stochastic. We pretend to derive a midway method by first
sampling a number q of observations uniformly at random, and then choosing the one with
the largest IW. An inspiration for this procedure is found in evolutionary algorithms, where
a form of selection called tournament selection is used to select individuals for reproduction
[51]. As a first idea, we propose to use q =

√
N , being N the total number of observations.

9.4 Optimization of Simba

Simba’s original FW update rule is derived as an optimization problem. However, it is
not entirely solved as such. First, the information supplied by the gradient 5e(w) of e(w)
is typically used in standard optimization methods like gradient descent (GD), which are
iterated until convergence. Therefore a full GD should be performed at every Simba iteration
step. Moreover, Simba uses a constant learning rate of 1, which could be largely suboptimal.
Second, GD is a first-order method, having little access to the local curvature of the function
being optimized.

This proposed line of research entails the proper analysis of e(w) as a function of the
utility function u (e.g., if u is continuously differentiable, then so is e(w)). If the final form of
e(w) is quadratic on w, then algorithms like Newton-Raphson (NR) [37] will find the global
optimum in one step. If, albeit not quadratic, e(w) is convex, then NR can still be applied;
it will take a small number of iterations to converge, but the existence of a unique optimum
is still guaranteed. In a nutshell, to maximize e(w) we need to iterate the step:

w(new) ← w(old) −H−1w 5 e(w)

where 5e(w) is the gradient vector and Hw = 5(5e(w))T is the Hessian matrix, both
evaluated at w(old). This algorithm is the standard in many classical methods, like Logistic
regression.

9.5 Progressively weighted Simba

In Chapter 5 we proposed a modification of Relief (dRelief) that was very similar to Simba
yet proved to be inferior to it. But then we introduced the concept of progressively increasing
the effect of the previously computed feature weights on the computation of the weights in
the current iteration that significantly improved the previous version.

It would be interesting to apply the progressive approach to the influence the previously
computed weights has to Simba which may lead to an algorithm which outperforms both its
ancestors.
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9.6 Study the effect of redundancy and importance on FSS
stability

In Chapter 4 we presented a theoretical definition of a redundancy index based on Markov
Blankets. Several algorithms have been developed that try to approximate the Markov Blan-
ket definition that have a reasonable cost. Schlüter [67] wrote an exhaustive survey of the
different algorithms comparing their properties. One interesting research line would be to
study the correlation of feature redundancy with the instability of FSS and FW algorithms,
aimed at proposing modifications of these algorithms that cope with redundancy, thus leading
to more stable results. Concerning the study on feature importance, despite the fact that as
yet it is impractical –given that it requires the Bayes error–, a good starting point would
be to use artificial problems where this knowledge is available and test the definition and its
influence on instability of FSS and FW.

9.7 Analysis of the influence of the inducer in remainder subset
aware FSS

We described a way to improve stability of wrapper sequential FSS algorithms in Chapter 6.
We explored the effect of taking the remainder subset of features into account when selecting
the next included (or discarded) feature at each step of Sequential Forward (or Backward)
Generation algorithms. This modification often lead to improvements of stability but have
substantially different results when different inducers are used. Another line of future work
could be to test when this modification is most helpful and to provide a theoretical explanation
of the reasons why it is or it is not helpful for a particular algorithm and inducer.
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Figure A.1: Stability results for RSA SBG (1)
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Figure A.2: Stability results for RSA SBG (2)
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Figure A.3: Stability results for RSA SBG (3)
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Figure A.4: Stability results for RSA SBG (4)
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Figure A.5: Stability results for RSA SBG (5)
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Figure A.6: Stability results for RSA SBG (6)
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Figure A.7: Stability results for RSA SBG (7)
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Figure A.8: Stability results for RSA SBG (8)
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Figure A.9: Stability results for RSA SFG (9)
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Figure A.10: Stability results for RSA SBG (10)
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Figure A.11: Stability results for RSA SBG (11)
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Figure A.12: Stability results for RSA SBG (12)
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Figure A.13: Stability results for RSA SBG (13)
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Figure A.14: Stability results for RSA SBG (14)
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Figure A.15: Stability results for RSA SBG (15)
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Figure A.16: Stability results for RSA SBG (16)
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Figure A.17: Stability results for RSA SBG (17)
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Figure B.1: Stability results for SBG+ vs SBG (1)
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Figure B.2: Stability results for SBG+ vs SBG (2)
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Figure B.3: Stability results for SBG+ vs SBG (3)
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Figure B.4: Stability results for SBG+ vs SBG (4)
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Figure B.5: Stability results for SBG+ vs SBG (5)
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Figure B.6: Stability results for SBG+ vs SBG (6)
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Figure B.7: Stability results for SBG+ vs SBG (7)
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Figure B.8: Stability results for SBG+ vs SBG (8)
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Figure B.9: Stability results for SBG+ vs SBG (9)
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Figure B.10: Stability results for SBG+ vs SBG (10)
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Figure C.1: Feature stability on UCI data with normal∆ combination. Left plots show
average SKuncheva against subset size (the bold line is the normal Simba, the dashed line is the
weighted SimbaMIW version and the dotted one the weighted SimbaLIW verion). Right
plot shows the average test errors for Simba, SimbaMIW and SimbaLIW respectively.



165

Stability
normal_normal
mbiw_normal
rliw_normal

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

(a) sonar stability

Original MBIW LIW

0.
25

0.
30

0.
35

0.
40

(b) sonar error

Stability
normal_normal
mbiw_normal
rliw_normal

0 10 20 30 40

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

(c) spectf stability

Original MBIW LIW

0.
20

0.
25

0.
30

0.
35

(d) spectf error

Stability
normal_normal
mbiw_normal
rliw_normal

0 5 10 15 20 25 30

0.
0

0.
5

1.
0

1.
5

(e) wdbc stability

●

Original MBIW LIW

0.
36

0.
38

0.
40

0.
42

(f) wdbc error

Figure C.2: Feature stability on UCI data with normal∆ combination (continued). Left
plots show average SKuncheva against subset size (the bold line is the normal Simba, the
dashed line is the weighted SimbaMIW version and the dotted one the weighted SimbaLIW
verion). Right plot shows the average test errors for Simba, SimbaMIW and SimbaLIW
respectively.
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Figure C.3: Feature stability on UCI data with normal∆ combination (continued). Left
plots show average SKuncheva against subset size (the bold line is the normal Simba, the
dashed line is the weighted SimbaMIW version and the dotted one the weighted SimbaLIW
verion). Right plot shows the average test errors for Simba, SimbaMIW and SimbaLIW
respectively.
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Figure C.4: Feature stability on UCI data with normal∆ combination (continued). Left
plots show average SKuncheva against subset size (the bold line is the normal Simba, the
dashed line is the weighted SimbaMIW version and the dotted one the weighted SimbaLIW
verion). Right plot shows the average test errors for Simba, SimbaMIW and SimbaLIW
respectively.
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Figure C.5: Feature stability on UCI data with normal∆ combination (continued). Left
plots show average SKuncheva against subset size (the bold line is the normal Simba, the
dashed line is the weighted SimbaMIW version and the dotted one the weighted SimbaLIW
verion). Right plot shows the average test errors for Simba, SimbaMIW and SimbaLIW
respectively.
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Figure C.6: Feature stability on microarray data with normal∆ combination. Left plots
show average SKuncheva against subset size (the bold line is the normal Simba, the dashed
line is the weighted SimbaMIW version and the dotted one the weighted SimbaLIW ve-
rion). Right plot shows the average test errors for Simba, SimbaMIW and SimbaLIW
respectively.
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Figure C.7: Feature stability on microarray data with normal∆ combination (continued).
Left plots show average SKuncheva against subset size (the bold line is the normal Simba, the
dashed line is the weighted SimbaMIW version and the dotted one the weighted SimbaLIW
verion). Right plot shows the average test errors for Simba, SimbaMIW and SimbaLIW
respectively.
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Figure C.8: Feature stability on NIPS Challenge data with normal∆ combination. Left
plots show average SKuncheva against subset size (the bold line is the normal Simba, the
dashed line is the weighted SimbaMIW version and the dotted one the weighted SimbaLIW
verion). Right plot shows the average test errors for Simba, SimbaMIW and SimbaLIW
respectively.
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Figure C.9: Feature stability on NIPS Challenge data with normal∆ combination. Left
plots show average SKuncheva against subset size (the bold line is the normal Simba, the
dashed line is the weighted SimbaMIW version and the dotted one the weighted SimbaLIW
verion). Right plot shows the average test errors for Simba, SimbaMIW and SimbaLIW
respectively.
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Figure C.10: Feature stability on UCI data with sample∆ combination. Left plots show
average SKuncheva against subset size (the bold line is the normal Simba, the dashed line is the
weighted SimbaMIW version and the dotted one the weighted SimbaLIW verion). Right
plot shows the average test errors for Simba, SimbaMIW and SimbaLIW respectively.
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Figure C.11: Feature stability on UCI data with sample∆ combination (continued). Left
plots show average SKuncheva against subset size (the bold line is the normal Simba, the
dashed line is the weighted SimbaMIW version and the dotted one the weighted SimbaLIW
verion). Right plot shows the average test errors for Simba, SimbaMIW and SimbaLIW
respectively.
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Figure C.12: Feature stability on UCI data with sample∆ combination (continued). Left
plots show average SKuncheva against subset size (the bold line is the normal Simba, the
dashed line is the weighted SimbaMIW version and the dotted one the weighted SimbaLIW
verion). Right plot shows the average test errors for Simba, SimbaMIW and SimbaLIW
respectively.
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Figure C.13: Feature stability on UCI data with sample∆ combination (continued). Left
plots show average SKuncheva against subset size (the bold line is the normal Simba, the
dashed line is the weighted SimbaMIW version and the dotted one the weighted SimbaLIW
verion). Right plot shows the average test errors for Simba, SimbaMIW and SimbaLIW
respectively.
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Figure C.14: Feature stability on UCI data with sample∆ combination (continued). Left
plots show average SKuncheva against subset size (the bold line is the normal Simba, the
dashed line is the weighted SimbaMIW version and the dotted one the weighted SimbaLIW
verion). Right plot shows the average test errors for Simba, SimbaMIW and SimbaLIW
respectively.
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Figure C.15: Feature stability on microarray data with sample∆ combination. Left plots
show average SKuncheva against subset size (the bold line is the normal Simba, the dashed
line is the weighted SimbaMIW version and the dotted one the weighted SimbaLIW ve-
rion). Right plot shows the average test errors for Simba, SimbaMIW and SimbaLIW
respectively.
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Figure C.16: Feature stability on microarray data with sample∆ combination (continued).
Left plots show average SKuncheva against subset size (the bold line is the normal Simba, the
dashed line is the weighted SimbaMIW version and the dotted one the weighted SimbaLIW
verion). Right plot shows the average test errors for Simba, SimbaMIW and SimbaLIW
respectively.
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Figure C.17: Feature stability on NIPS Challenge data with sample∆ combination. Left
plots show average SKuncheva against subset size (the bold line is the normal Simba, the
dashed line is the weighted SimbaMIW version and the dotted one the weighted SimbaLIW
verion). Right plot shows the average test errors for Simba, SimbaMIW and SimbaLIW
respectively.
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Figure C.18: Feature stability on NIPS Challenge data with sample∆ combination. Left
plots show average SKuncheva against subset size (the bold line is the normal Simba, the
dashed line is the weighted SimbaMIW version and the dotted one the weighted SimbaLIW
verion). Right plot shows the average test errors for Simba, SimbaMIW and SimbaLIW
respectively.
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Figure C.19: Feature stability on UCI data with order∆ combination. Left plots show
average SKuncheva against subset size (the bold line is the normal Simba, the dashed line is the
weighted SimbaMIW version and the dotted one the weighted SimbaLIW verion). Right
plot shows the average test errors for Simba, SimbaMIW and SimbaLIW respectively.
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Figure C.20: Feature stability on UCI data with order∆ combination (continued). Left
plots show average SKuncheva against subset size (the bold line is the normal Simba, the
dashed line is the weighted SimbaMIW version and the dotted one the weighted SimbaLIW
verion). Right plot shows the average test errors for Simba, SimbaMIW and SimbaLIW
respectively.
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Figure C.21: Feature stability on UCI data with order∆ combination (continued). Left
plots show average SKuncheva against subset size (the bold line is the normal Simba, the
dashed line is the weighted SimbaMIW version and the dotted one the weighted SimbaLIW
verion). Right plot shows the average test errors for Simba, SimbaMIW and SimbaLIW
respectively.
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Figure C.22: Feature stability on UCI data with order∆ combination (continued). Left
plots show average SKuncheva against subset size (the bold line is the normal Simba, the
dashed line is the weighted SimbaMIW version and the dotted one the weighted SimbaLIW
verion). Right plot shows the average test errors for Simba, SimbaMIW and SimbaLIW
respectively.
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Figure C.23: Feature stability on UCI data with order∆ combination (continued). Left
plots show average SKuncheva against subset size (the bold line is the normal Simba, the
dashed line is the weighted SimbaMIW version and the dotted one the weighted SimbaLIW
verion). Right plot shows the average test errors for Simba, SimbaMIW and SimbaLIW
respectively.
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Figure C.24: Feature stability on microarray data with order∆ combination. Left plots show
average SKuncheva against subset size (the bold line is the normal Simba, the dashed line is the
weighted SimbaMIW version and the dotted one the weighted SimbaLIW verion). Right
plot shows the average test errors for Simba, SimbaMIW and SimbaLIW respectively.
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Figure C.25: Feature stability on microarray data with order∆ combination (continued).
Left plots show average SKuncheva against subset size (the bold line is the normal Simba, the
dashed line is the weighted SimbaMIW version and the dotted one the weighted SimbaLIW
verion). Right plot shows the average test errors for Simba, SimbaMIW and SimbaLIW
respectively.
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Figure C.26: Feature stability on NIPS Challenge data with order∆ combination. Left
plots show average SKuncheva against subset size (the bold line is the normal Simba, the
dashed line is the weighted SimbaMIW version and the dotted one the weighted SimbaLIW
verion). Right plot shows the average test errors for Simba, SimbaMIW and SimbaLIW
respectively.
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Figure C.27: Feature stability on NIPS Challenge data with order∆ combination. Left
plots show average SKuncheva against subset size (the bold line is the normal Simba, the
dashed line is the weighted SimbaMIW version and the dotted one the weighted SimbaLIW
verion). Right plot shows the average test errors for Simba, SimbaMIW and SimbaLIW
respectively.



191

Stability
normal_sample
mbiw_sample
rliw_sample

0 5 10 15 20 25 30

−0
.1

0
−0

.0
5

0.
00

0.
05

0.
10

(a) ionosphere stability

●

●

Original MBIW LIW

0.
16

0.
18

0.
20

0.
22

0.
24

0.
26

(b) ionosphere error

Stability
normal_sample
mbiw_sample
rliw_sample

0 10 20 30 40 50 60

−0
.1

0
−0

.0
5

0.
00

0.
05

0.
10

(c) mammogram stability

Original MBIW LIW

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

(d) mammogram error

Stability
normal_sample
mbiw_sample
rliw_sample

0 50 100 150

−0
.0

5
0.

00
0.

05

(e) musk stability

Original MBIW LIW

0.
30

0.
35

0.
40

(f) musk error

Figure C.28: Feature stability on UCI data with sample∆ combination. Left plots show
average SKuncheva against subset size (the bold line is the normal Relief, the dashed line is
the weighted MBIW + Relief version and the dotted one the weighted RLIW + Relief
verion). Right plot shows the average test errors for Relief, MBIW + Relief and RLIW
+ Relief respectively.
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Figure C.29: Feature stability on UCI data with sample∆ combination (continued). Left
plots show average SKuncheva against subset size (the bold line is the normal Relief, the
dashed line is the weighted MBIW + Relief version and the dotted one the weighted
RLIW + Relief verion). Right plot shows the average test errors for Relief, MBIW +
Relief and RLIW + Relief respectively.
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Figure C.30: Feature stability on UCI data with sample∆ combination (continued). Left
plots show average SKuncheva against subset size (the bold line is the normal Relief, the
dashed line is the weighted MBIW + Relief version and the dotted one the weighted
RLIW + Relief verion). Right plot shows the average test errors for Relief, MBIW +
Relief and RLIW + Relief respectively.
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Figure C.31: Feature stability on UCI data with sample∆ combination (continued). Left
plots show average SKuncheva against subset size (the bold line is the normal Relief, the
dashed line is the weighted MBIW + Relief version and the dotted one the weighted
RLIW + Relief verion). Right plot shows the average test errors for Relief, MBIW +
Relief and RLIW + Relief respectively.
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Figure C.32: Feature stability on UCI data with sample∆ combination (continued). Left
plots show average SKuncheva against subset size (the bold line is the normal Relief, the
dashed line is the weighted MBIW + Relief version and the dotted one the weighted
RLIW + Relief verion). Right plot shows the average test errors for Relief, MBIW +
Relief and RLIW + Relief respectively.
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Figure C.33: Feature stability on microarray data with sample∆ combination. Left plots
show average SKuncheva against subset size (the bold line is the normal Relief, the dashed
line is the weighted MBIW + Relief version and the dotted one the weighted RLIW +
Relief verion). Right plot shows the average test errors for Relief, MBIW + Relief and
RLIW + Relief respectively.
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Figure C.34: Feature stability on microarray data with sample∆ combination (continued).
Left plots show average SKuncheva against subset size (the bold line is the normal Relief,
the dashed line is the weighted MBIW + Relief version and the dotted one the weighted
RLIW + Relief verion). Right plot shows the average test errors for Relief, MBIW +
Relief and RLIW + Relief respectively.
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Figure C.35: Feature stability on NIPS Challenge data with sample∆ combination. Left
plots show average SKuncheva against subset size (the bold line is the normal Relief, the
dashed line is the weighted MBIW + Relief version and the dotted one the weighted
RLIW + Relief verion). Right plot shows the average test errors for Relief, MBIW +
Relief and RLIW + Relief respectively.
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Figure C.36: Feature stability on NIPS Challenge data with sample∆ combination. Left
plots show average SKuncheva against subset size (the bold line is the normal Relief, the
dashed line is the weighted MBIW + Relief version and the dotted one the weighted
RLIW + Relief verion). Right plot shows the average test errors for Relief, MBIW +
Relief and RLIW + Relief respectively.



200 APPENDIX C. COMBINED IW AND FW DETAILED RESULTS

Stability
normal_order
mbiw_order
rliw_order

0 5 10 15 20 25 30

−0
.1

0
−0

.0
8

−0
.0

6
−0

.0
4

−0
.0

2
0.

00
0.

02

(a) ionosphere stability

●

Original MBIW LIW

0.
18

0.
19

0.
20

0.
21

0.
22

0.
23

(b) ionosphere error

Stability
normal_order
mbiw_order
rliw_order

0 10 20 30 40 50 60

−0
.1

0
−0

.0
5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

(c) mammogram stability

●

Original MBIW LIW

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

(d) mammogram error

Stability
normal_order
mbiw_order
rliw_order

0 50 100 150

−0
.0

5
0.

00
0.

05
0.

10
0.

15

(e) musk stability

●

Original MBIW LIW

0.
25

0.
30

0.
35

(f) musk error

Figure C.37: Feature stability on UCI data with order∆ combination. Left plots show
average SKuncheva against subset size (the bold line is the normal Relief, the dashed line is
the weighted MBIW + Relief version and the dotted one the weighted RLIW + Relief
verion). Right plot shows the average test errors for Relief, MBIW + Relief and RLIW
+ Relief respectively.
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Figure C.38: Feature stability on UCI data with order∆ combination (continued). Left plots
show average SKuncheva against subset size (the bold line is the normal Relief, the dashed
line is the weighted MBIW + Relief version and the dotted one the weighted RLIW +
Relief verion). Right plot shows the average test errors for Relief, MBIW + Relief and
RLIW + Relief respectively.
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Figure C.39: Feature stability on UCI data with order∆ combination (continued). Left plots
show average SKuncheva against subset size (the bold line is the normal Relief, the dashed
line is the weighted MBIW + Relief version and the dotted one the weighted RLIW +
Relief verion). Right plot shows the average test errors for Relief, MBIW + Relief and
RLIW + Relief respectively.
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Figure C.40: Feature stability on UCI data with order∆ combination (continued). Left plots
show average SKuncheva against subset size (the bold line is the normal Relief, the dashed
line is the weighted MBIW + Relief version and the dotted one the weighted RLIW +
Relief verion). Right plot shows the average test errors for Relief, MBIW + Relief and
RLIW + Relief respectively.
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Figure C.41: Feature stability on UCI data with order∆ combination (continued). Left plots
show average SKuncheva against subset size (the bold line is the normal Relief, the dashed
line is the weighted MBIW + Relief version and the dotted one the weighted RLIW +
Relief verion). Right plot shows the average test errors for Relief, MBIW + Relief and
RLIW + Relief respectively.
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Figure C.42: Feature stability on microarray data with order∆ combination. Left plots
show average SKuncheva against subset size (the bold line is the normal Relief, the dashed
line is the weighted MBIW + Relief version and the dotted one the weighted RLIW +
Relief verion). Right plot shows the average test errors for Relief, MBIW + Relief and
RLIW + Relief respectively.
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Figure C.43: Feature stability on microarray data with order∆ combination (continued).
Left plots show average SKuncheva against subset size (the bold line is the normal Relief,
the dashed line is the weighted MBIW + Relief version and the dotted one the weighted
RLIW + Relief verion). Right plot shows the average test errors for Relief, MBIW +
Relief and RLIW + Relief respectively.
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Figure C.44: Feature stability on NIPS Challenge data with order∆ combination. Left plots
show average SKuncheva against subset size (the bold line is the normal Relief, the dashed
line is the weighted MBIW + Relief version and the dotted one the weighted RLIW +
Relief verion). Right plot shows the average test errors for Relief, MBIW + Relief and
RLIW + Relief respectively.
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Figure C.45: Feature stability on NIPS Challenge data with order∆ combination. Left plots
show average SKuncheva against subset size (the bold line is the normal Relief, the dashed
line is the weighted MBIW + Relief version and the dotted one the weighted RLIW +
Relief verion). Right plot shows the average test errors for Relief, MBIW + Relief and
RLIW + Relief respectively.
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Figure C.46: Feature stability on UCI data with sample∆ combination. Left plots show av-
erage SKuncheva against subset size (the bold line is the normal RandomForests, the dashed
line is the weighted MBIW + RandomForests version and the dotted one the weighted
RLIW + RandomForests verion). Right plot shows the average test errors for Random-
Forests, MBIW + RandomForests and RLIW + RandomForests respectively.
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Figure C.47: Feature stability on UCI data with sample∆ combination (continued). Left
plots show average SKuncheva against subset size (the bold line is the normal Random-
Forests, the dashed line is the weighted MBIW + RandomForests version and the dot-
ted one the weighted RLIW + RandomForests verion). Right plot shows the average test
errors for RandomForests, MBIW + RandomForests and RLIW + RandomForests
respectively.
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Figure C.48: Feature stability on UCI data with sample∆ combination (continued). Left
plots show average SKuncheva against subset size (the bold line is the normal Random-
Forests, the dashed line is the weighted MBIW + RandomForests version and the dot-
ted one the weighted RLIW + RandomForests verion). Right plot shows the average test
errors for RandomForests, MBIW + RandomForests and RLIW + RandomForests
respectively.
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Figure C.49: Feature stability on UCI data with sample∆ combination (continued). Left
plots show average SKuncheva against subset size (the bold line is the normal Random-
Forests, the dashed line is the weighted MBIW + RandomForests version and the dot-
ted one the weighted RLIW + RandomForests verion). Right plot shows the average test
errors for RandomForests, MBIW + RandomForests and RLIW + RandomForests
respectively.
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Figure C.50: Feature stability on UCI data with sample∆ combination (continued). Left
plots show average SKuncheva against subset size (the bold line is the normal Random-
Forests, the dashed line is the weighted MBIW + RandomForests version and the dot-
ted one the weighted RLIW + RandomForests verion). Right plot shows the average test
errors for RandomForests, MBIW + RandomForests and RLIW + RandomForests
respectively.
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Figure C.51: Feature stability on microarray data with sample∆ combination. Left plots
show average SKuncheva against subset size (the bold line is the normal RandomForests,
the dashed line is the weighted MBIW + RandomForests version and the dotted one
the weighted RLIW + RandomForests verion). Right plot shows the average test er-
rors for RandomForests, MBIW + RandomForests and RLIW + RandomForests
respectively.
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Figure C.52: Feature stability on microarray data with sample∆ combination (continued).
Left plots show average SKuncheva against subset size (the bold line is the normal Random-
Forests, the dashed line is the weighted MBIW + RandomForests version and the dotted
one the weighted RLIW + RandomForests verion). Right plot shows the average test er-
rors for RandomForests, MBIW + RandomForests and RLIW + RandomForests
respectively.
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Figure C.53: Feature stability on NIPS Challenge data with sample∆ combination. Left
plots show average SKuncheva against subset size (the bold line is the normal Random-
Forests, the dashed line is the weighted MBIW + RandomForests version and the dot-
ted one the weighted RLIW + RandomForests verion). Right plot shows the average test
errors for RandomForests, MBIW + RandomForests and RLIW + RandomForests
respectively.
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Figure C.54: Feature stability on NIPS Challenge data with sample∆ combination. Left
plots show average SKuncheva against subset size (the bold line is the normal Random-
Forests, the dashed line is the weighted MBIW + RandomForests version and the dot-
ted one the weighted RLIW + RandomForests verion). Right plot shows the average test
errors for RandomForests, MBIW + RandomForests and RLIW + RandomForests
respectively.
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Figure C.55: Feature stability on UCI data with order∆ combination. Left plots show av-
erage SKuncheva against subset size (the bold line is the normal RandomForests, the dashed
line is the weighted MBIW + RandomForests version and the dotted one the weighted
RLIW + RandomForests verion). Right plot shows the average test errors for Random-
Forests, MBIW + RandomForests and RLIW + RandomForests respectively.
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Figure C.56: Feature stability on UCI data with order∆ combination (continued). Left plots
show average SKuncheva against subset size (the bold line is the normal RandomForests,
the dashed line is the weighted MBIW + RandomForests version and the dotted one
the weighted RLIW + RandomForests verion). Right plot shows the average test er-
rors for RandomForests, MBIW + RandomForests and RLIW + RandomForests
respectively.
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Figure C.57: Feature stability on UCI data with order∆ combination (continued). Left plots
show average SKuncheva against subset size (the bold line is the normal RandomForests,
the dashed line is the weighted MBIW + RandomForests version and the dotted one
the weighted RLIW + RandomForests verion). Right plot shows the average test er-
rors for RandomForests, MBIW + RandomForests and RLIW + RandomForests
respectively.
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Figure C.58: Feature stability on UCI data with order∆ combination (continued). Left plots
show average SKuncheva against subset size (the bold line is the normal RandomForests,
the dashed line is the weighted MBIW + RandomForests version and the dotted one
the weighted RLIW + RandomForests verion). Right plot shows the average test er-
rors for RandomForests, MBIW + RandomForests and RLIW + RandomForests
respectively.
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Figure C.59: Feature stability on UCI data with order∆ combination (continued). Left plots
show average SKuncheva against subset size (the bold line is the normal RandomForests,
the dashed line is the weighted MBIW + RandomForests version and the dotted one
the weighted RLIW + RandomForests verion). Right plot shows the average test er-
rors for RandomForests, MBIW + RandomForests and RLIW + RandomForests
respectively.
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Figure C.60: Feature stability on microarray data with order∆ combination. Left plots
show average SKuncheva against subset size (the bold line is the normal RandomForests,
the dashed line is the weighted MBIW + RandomForests version and the dotted one
the weighted RLIW + RandomForests verion). Right plot shows the average test er-
rors for RandomForests, MBIW + RandomForests and RLIW + RandomForests
respectively.
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Figure C.61: Feature stability on microarray data with order∆ combination (continued).
Left plots show average SKuncheva against subset size (the bold line is the normal Random-
Forests, the dashed line is the weighted MBIW + RandomForests version and the dotted
one the weighted RLIW + RandomForests verion). Right plot shows the average test er-
rors for RandomForests, MBIW + RandomForests and RLIW + RandomForests
respectively.
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Figure C.62: Feature stability on NIPS Challenge data with order∆ combination. Left plots
show average SKuncheva against subset size (the bold line is the normal RandomForests,
the dashed line is the weighted MBIW + RandomForests version and the dotted one
the weighted RLIW + RandomForests verion). Right plot shows the average test er-
rors for RandomForests, MBIW + RandomForests and RLIW + RandomForests
respectively.
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Figure C.63: Feature stability on NIPS Challenge data with order∆ combination. Left plots
show average SKuncheva against subset size (the bold line is the normal RandomForests,
the dashed line is the weighted MBIW + RandomForests version and the dotted one
the weighted RLIW + RandomForests verion). Right plot shows the average test er-
rors for RandomForests, MBIW + RandomForests and RLIW + RandomForests
respectively.
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Figure C.64: Feature stability on UCI data with sample∆ combination. Left plots show
average SKuncheva against subset size (the bold line is the normal IG, the dashed line is the
weighted MBIW + InformationGain version and the dotted one the weighted RLIW
+ InformationGain verion). Right plot shows the average test errors for IG, MBIW +
InformationGain and RLIW + InformationGain respectively.
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Figure C.65: Feature stability on UCI data with sample∆ combination (continued). Left
plots show average SKuncheva against subset size (the bold line is the normal IG, the dashed
line is the weighted MBIW + InformationGain version and the dotted one the weighted
RLIW + InformationGain verion). Right plot shows the average test errors for IG,
MBIW + InformationGain and RLIW + InformationGain respectively.
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Figure C.66: Feature stability on UCI data with sample∆ combination (continued). Left
plots show average SKuncheva against subset size (the bold line is the normal IG, the dashed
line is the weighted MBIW + InformationGain version and the dotted one the weighted
RLIW + InformationGain verion). Right plot shows the average test errors for IG,
MBIW + InformationGain and RLIW + InformationGain respectively.
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Figure C.67: Feature stability on UCI data with sample∆ combination (continued). Left
plots show average SKuncheva against subset size (the bold line is the normal IG, the dashed
line is the weighted MBIW + InformationGain version and the dotted one the weighted
RLIW + InformationGain verion). Right plot shows the average test errors for IG,
MBIW + InformationGain and RLIW + InformationGain respectively.
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Figure C.68: Feature stability on UCI data with sample∆ combination (continued). Left
plots show average SKuncheva against subset size (the bold line is the normal IG, the dashed
line is the weighted MBIW + InformationGain version and the dotted one the weighted
RLIW + InformationGain verion). Right plot shows the average test errors for IG,
MBIW + InformationGain and RLIW + InformationGain respectively.



232 APPENDIX C. COMBINED IW AND FW DETAILED RESULTS

Stability
normal_sample
mbiw_sample
rliw_sample

0 50 100 150 200

0.
6

0.
8

1.
0

1.
2

1.
4

(a) breast cancer stability

●

●

●

Original MBIW LIW

0.
45

0.
50

0.
55

0.
60

(b) breast cancer error

Stability
normal_sample
mbiw_sample
rliw_sample

0 50 100 150 200

0.
6

0.
8

1.
0

1.
2

1.
4

(c) colon tumor stability

Original MBIW LIW

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

(d) colon tumor error

Stability
normal_sample
mbiw_sample
rliw_sample

0 50 100 150 200

0.
6

0.
8

1.
0

1.
2

1.
4

(e) gcm stability

●

Original MBIW LIW

0.
84

0.
86

0.
88

0.
90

0.
92

0.
94

(f) gcm error

Figure C.69: Feature stability on microarray data with sample∆ combination. Left plots
show average SKuncheva against subset size (the bold line is the normal IG, the dashed line is
the weighted MBIW + InformationGain version and the dotted one the weighted RLIW
+ InformationGain verion). Right plot shows the average test errors for IG, MBIW +
InformationGain and RLIW + InformationGain respectively.
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Figure C.70: Feature stability on microarray data with sample∆ combination (continued).
Left plots show average SKuncheva against subset size (the bold line is the normal IG, the
dashed line is the weighted MBIW + InformationGain version and the dotted one the
weighted RLIW + InformationGain verion). Right plot shows the average test errors for
IG, MBIW + InformationGain and RLIW + InformationGain respectively.
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Figure C.71: Feature stability on NIPS Challenge data with sample∆ combination. Left
plots show average SKuncheva against subset size (the bold line is the normal IG, the dashed
line is the weighted MBIW + InformationGain version and the dotted one the weighted
RLIW + InformationGain verion). Right plot shows the average test errors for IG,
MBIW + InformationGain and RLIW + InformationGain respectively.
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Figure C.72: Feature stability on NIPS Challenge data with sample∆ combination. Left
plots show average SKuncheva against subset size (the bold line is the normal IG, the dashed
line is the weighted MBIW + InformationGain version and the dotted one the weighted
RLIW + InformationGain verion). Right plot shows the average test errors for IG,
MBIW + InformationGain and RLIW + InformationGain respectively.
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Figure C.73: Feature stability on UCI data with sample∆ combination. Left plots show
average SKuncheva against subset size (the bold line is the normal 1R, the dashed line is the
weightedMBIW+ 1R version and the dotted one the weightedRLIW + 1R verion). Right
plot shows the average test errors for 1R, MBIW + 1R and RLIW + 1R respectively.
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Figure C.74: Feature stability on UCI data with sample∆ combination (continued). Left
plots show average SKuncheva against subset size (the bold line is the normal 1R, the dashed
line is the weighted MBIW + 1R version and the dotted one the weighted RLIW + 1R
verion). Right plot shows the average test errors for 1R, MBIW + 1R and RLIW + 1R
respectively.
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Figure C.75: Feature stability on UCI data with sample∆ combination (continued). Left
plots show average SKuncheva against subset size (the bold line is the normal 1R, the dashed
line is the weighted MBIW + 1R version and the dotted one the weighted RLIW + 1R
verion). Right plot shows the average test errors for 1R, MBIW + 1R and RLIW + 1R
respectively.
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Figure C.76: Feature stability on UCI data with sample∆ combination (continued). Left
plots show average SKuncheva against subset size (the bold line is the normal 1R, the dashed
line is the weighted MBIW + 1R version and the dotted one the weighted RLIW + 1R
verion). Right plot shows the average test errors for 1R, MBIW + 1R and RLIW + 1R
respectively.
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Figure C.77: Feature stability on UCI data with sample∆ combination (continued). Left
plots show average SKuncheva against subset size (the bold line is the normal 1R, the dashed
line is the weighted MBIW + 1R version and the dotted one the weighted RLIW + 1R
verion). Right plot shows the average test errors for 1R, MBIW + 1R and RLIW + 1R
respectively.
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Figure C.78: Feature stability on microarray data with sample∆ combination. Left plots
show average SKuncheva against subset size (the bold line is the normal 1R, the dashed
line is the weighted MBIW + 1R version and the dotted one the weighted RLIW + 1R
verion). Right plot shows the average test errors for 1R, MBIW + 1R and RLIW + 1R
respectively.
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Figure C.79: Feature stability on microarray data with sample∆ combination (continued).
Left plots show average SKuncheva against subset size (the bold line is the normal 1R, the
dashed line is the weighted MBIW + 1R version and the dotted one the weighted RLIW
+ 1R verion). Right plot shows the average test errors for 1R, MBIW + 1R and RLIW
+ 1R respectively.
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Figure C.80: Feature stability on NIPS Challenge data with sample∆ combination. Left
plots show average SKuncheva against subset size (the bold line is the normal 1R, the dashed
line is the weighted MBIW + 1R version and the dotted one the weighted RLIW + 1R
verion). Right plot shows the average test errors for 1R, MBIW + 1R and RLIW + 1R
respectively.
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Figure C.81: Feature stability on NIPS Challenge data with sample∆ combination. Left
plots show average SKuncheva against subset size (the bold line is the normal 1R, the dashed
line is the weighted MBIW + 1R version and the dotted one the weighted RLIW + 1R
verion). Right plot shows the average test errors for 1R, MBIW + 1R and RLIW + 1R
respectively.
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Problem Weighted Normal p-value

diabetes 0.4735±0.1505 0.4211±0.1563 0.4688
glass 0.2136±0.1335 0.2105±0.0935 0.9326
heart_statlog 0.2945±0.1499 0.4078±0.2121 0.021
ionosphere 0.261±0.1223 0.1465±0.0451 0
landsat_train 0.6044±0.1132 0.2809±0.1325 0
lsvt_voice 0.2963±0.1683 0.2289±0.262 0
mammogram 0.2169±0.0973 0.1747±0.1043 0.0155
musk 0.2465±0.067 0.1043±0.0479 0
parkinsons 0.4871±0.165 0.3287±0.2138 0
pop_failures 0.3754±0.2649 0.2488±0.2397 0.0013
sonar 0.3962±0.1487 0.3767±0.1624 0.0088
spectf 0.2545±0.11 0.0804±0.0551 0
vehicle 0.489±0.1673 0.5324±0.172 0.7119
waveform 0.5401±0.0927 0.2572±0.0571 0
wdbc 0.7246±0.1852 0.3758±0.3204 0

Table C.1: Summary of stability results on UCI datasets for SimbaMiw with normal∆
combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

diabetes 0.2688±0.0242 0.2922±0.0178 0.2205
glass 0.4037±0.0514 0.4262±0.0377 0.5501
heart_statlog 0.3437±0.0365 0.357±0.0122 0.3134
ionosphere 0.1863±0.0312 0.2354±0.0281 0.067
landsat_train 0.1243±0.0014 0.1425±0.0049 5e-04
lsvt_voice 0.4349±0.0329 0.4317±0.0468 0.8541
mammogram 0.507±0.0921 0.4558±0.0353 0.3455
musk 0.2681±0.0314 0.3429±0.0258 0.0134
parkinsons 0.1959±0.0193 0.2021±0.0548 0.8223
pop_failures 0.0796±0.0068 0.0639±0.0048 0.0146
sonar 0.3615±0.0357 0.3212±0.0422 0.2306
spectf 0.2586±0.0544 0.1955±0.0323 0.0626
vehicle 0.4203±0.0181 0.5348±0.0162 1e-04
waveform 0.1742±0.0035 0.2106±0.0043 1e-04
wdbc 0.3789±0.0101 0.4014±0.019 0.0899

Table C.2: Summary of classification error results on UCI datasets for SimbaMiw with
normal∆ combination. Significantly better results shown in bold face.
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Problem Weighted Normal p-value

ma_breast_cancer 0.1786±0.0387 0.1268±0.0296 0
ma_colon_tumor 0.1919±0.0859 0.1364±0.0811 0
ma_gcm 0.4216±0.1069 0.2859±0.1738 0
ma_leukemia 0.3004±0.1188 0.1654±0.0866 0
ma_lung_cancer 0.52±0.0594 0.372±0.0973 0
ma_prostate_cancer 0.3805±0.1496 0.1521±0.1549 0

Table C.3: Summary of stability results on Microarray datasets for SimbaMiw with
normal∆ combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

ma_breast_cancer 0.2875±0.0632 0.2917±0.0329 0.9181
ma_colon_tumor 0.3032±0.0489 0.4258±0.053 0.0173
ma_gcm 0.6547±0.0272 0.6632±0.0341 0.6885
ma_leukemia 0.0833±0.0393 0.2167±0.0304 0.0109
ma_lung_cancer 0.0578±0.0372 0.06±0.0186 0.9142
ma_prostate_cancer 0.2529±0.0554 0.2794±0.0453 0.2205

Table C.4: Summary of classification error results on Microarray datasets for SimbaMiw
with normal∆ combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

arcene 0.3073±0.1014 0.144±0.0912 0
dexter 0.2903±0.0849 0.2299±0.0674 0
dorothea 0.1685±0.0597 0.1218±0.0384 0
gisette 0.5947±0.0577 0.5061±0.13 0
madelon 0.3067±0.1575 0.6993±0.182 0

Table C.5: Summary of stability results on NIPS datasets for SimbaMiw with normal∆
combination. Significantly better results shown in bold face.
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Problem Weighted Normal p-value

arcene 0.268±0.0665 0.376±0.0518 0.0928
dexter 0.2387±0.0565 0.1887±0.0183 0.0995
dorothea 0.0814±0.0031 0.0835±0.0059 0.4581
gisette 0.0478±0.002 0.0552±0.0031 0.022
madelon 0.2929±0.0096 0.1371±0.0032 0

Table C.6: Summary of classification error results on NIPS datasets for SimbaMiw with
normal∆ combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

diabetes 0.464±0.151 0.4211±0.1563 0.4017
glass 0.3429±0.1951 0.2105±0.0935 0.0249
heart_statlog 0.295±0.2774 0.4078±0.2121 0.0923
ionosphere 0.1914±0.0599 0.1465±0.0451 0
landsat_train 0.2428±0.1171 0.2809±0.1325 0.0011
lsvt_voice 0.2695±0.2546 0.2289±0.262 0
mammogram 0.0644±0.1063 0.1747±0.1043 0
musk 0.1084±0.0337 0.1043±0.0479 0.0688
parkinsons 0.3507±0.1651 0.3287±0.2138 0.2157
pop_failures 0.1762±0.1737 0.2488±0.2397 2e-04
sonar 0.3283±0.1586 0.3767±0.1624 0
spectf 0.0927±0.0896 0.0804±0.0551 0.6625
vehicle 0.4233±0.1087 0.5324±0.172 0.0041
waveform 0.2218±0.0872 0.2572±0.0571 0.0613
wdbc 0.2205±0.258 0.3758±0.3204 1e-04

Table C.7: Summary of stability results on UCI datasets for SimbaLiw with normal∆
combination. Significantly better results shown in bold face.
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Problem Weighted Normal p-value

diabetes 0.2719±0.0201 0.2922±0.0178 0.1847
glass 0.4598±0.0589 0.4262±0.0377 0.4537
heart_statlog 0.3689±0.0632 0.357±0.0122 0.6936
ionosphere 0.2411±0.0237 0.2354±0.0281 0.6164
landsat_train 0.1928±0.0036 0.1425±0.0049 0
lsvt_voice 0.4476±0.0411 0.4317±0.0468 0.3262
mammogram 0.2884±0.0453 0.4558±0.0353 0.0011
musk 0.316±0.0261 0.3429±0.0258 0.0682
parkinsons 0.1938±0.0402 0.2021±0.0548 0.7611
pop_failures 0.0699±0.0085 0.0639±0.0048 0.2272
sonar 0.2462±0.0364 0.3212±0.0422 0.0295
spectf 0.2316±0.0187 0.1955±0.0323 0.0584
vehicle 0.4525±0.0171 0.5348±0.0162 0.0013
waveform 0.2178±0.0057 0.2106±0.0043 0.1408
wdbc 0.3817±0.0192 0.4014±0.019 0.0604

Table C.8: Summary of classification error results on UCI datasets for SimbaLiw with
normal∆ combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

ma_breast_cancer 0.1763±0.0212 0.1268±0.0296 0
ma_colon_tumor 0.2313±0.144 0.1364±0.0811 0
ma_gcm 0.3126±0.2065 0.2859±0.1738 0
ma_leukemia 0.2067±0.0971 0.1654±0.0866 0
ma_lung_cancer 0.3846±0.1029 0.372±0.0973 2e-04
ma_prostate_cancer 0.2028±0.161 0.1521±0.1549 0

Table C.9: Summary of stability results on Microarray datasets for SimbaLiw with
normal∆ combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

ma_breast_cancer 0.3417±0.0891 0.2917±0.0329 0.3624
ma_colon_tumor 0.3677±0.0629 0.4258±0.053 0.2954
ma_gcm 0.6695±0.0354 0.6632±0.0341 0.8194
ma_leukemia 0.1167±0.0232 0.2167±0.0304 0.0061
ma_lung_cancer 0.06±0.0099 0.06±0.0186 1
ma_prostate_cancer 0.2971±0.0366 0.2794±0.0453 0.5473

Table C.10: Summary of classification error results on Microarray datasets for SimbaLiw
with normal∆ combination. Significantly better results shown in bold face.
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Problem Weighted Normal p-value

arcene 0.1498±0.1109 0.144±0.0912 0
dexter 0.2978±0.0597 0.2299±0.0674 0
dorothea 0.2159±0.0795 0.1218±0.0384 0
gisette 0.4746±0.1558 0.5061±0.13 0
madelon 0.5986±0.1595 0.6993±0.182 0

Table C.11: Summary of stability results on NIPS datasets for SimbaLiw with normal∆
combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

arcene 0.322±0.013 0.376±0.0518 0.0781
dexter 0.1913±0.0146 0.1887±0.0183 0.8361
dorothea 0.0856±0.0023 0.0835±0.0059 0.5012
gisette 0.0655±0.0032 0.0552±0.0031 1e-04
madelon 0.1395±0.006 0.1371±0.0032 0.1993

Table C.12: Summary of classification error results on NIPS datasets for SimbaLiw with
normal∆ combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

diabetes 0.2776±0.159 0.3663±0.1533 0.0781
glass 0.1579±0.1245 0.2557±0.1408 0.1083
heart_statlog 0.3066±0.1443 0.277±0.2032 0.3394
ionosphere 0.2433±0.1152 0.0916±0.0336 0
landsat_train 0.5319±0.0999 0.2851±0.1477 0
lsvt_voice 0.2435±0.1838 0.2318±0.2645 0.1949
mammogram 0.1531±0.0913 0.0685±0.0591 0
musk 0.1746±0.0415 0.1047±0.0557 0
parkinsons 0.4434±0.1757 0.243±0.2157 0
pop_failures 0.3175±0.2283 0.2806±0.2492 0.1454
sonar 0.3308±0.164 0.2899±0.1619 0
spectf 0.1452±0.0695 0.1269±0.0994 0.0063
vehicle 0.4222±0.2121 0.4704±0.216 0.3778
waveform 0.4254±0.0563 0.2133±0.0702 0
wdbc 0.6514±0.204 0.3769±0.32 0

Table C.13: Summary of stability results on UCI datasets for SimbaMiw with sample∆
combination. Significantly better results shown in bold face.
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Problem Weighted Normal p-value

diabetes 0.2604±0.0137 0.2911±0.0162 0.0338
glass 0.4112±0.0391 0.4879±0.0829 0.0526
heart_statlog 0.3733±0.0634 0.3378±0.0358 0.2098
ionosphere 0.1691±0.0154 0.2549±0.0138 5e-04
landsat_train 0.1222±0.0047 0.145±0.0063 4e-04
lsvt_voice 0.4349±0.0329 0.4317±0.0468 0.8541
mammogram 0.5395±0.0861 0.4186±0.0717 0.0082
musk 0.2613±0.0325 0.342±0.0175 0.0214
parkinsons 0.1876±0.036 0.1814±0.0369 0.656
pop_failures 0.0818±0.0064 0.0803±0.0077 0.6483
sonar 0.3769±0.0249 0.2846±0.0474 0.0195
spectf 0.2466±0.0381 0.203±0.0255 0.0859
vehicle 0.4241±0.0223 0.522±0.0157 0.0018
waveform 0.1774±0.0016 0.2218±0.0048 1e-04
wdbc 0.3789±0.0101 0.4014±0.019 0.0899

Table C.14: Summary of classification error results on UCI datasets for SimbaMiw with
sample∆ combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

ma_breast_cancer 0.1374±0.0293 0.1178±0.0348 0
ma_colon_tumor 0.1958±0.0965 0.1315±0.0937 0
ma_gcm 0.3582±0.1049 0.2267±0.1583 0
ma_leukemia 0.2542±0.1157 0.2128±0.0859 0.0425
ma_lung_cancer 0.536±0.0639 0.3616±0.091 0
ma_prostate_cancer 0.2995±0.1365 0.1069±0.12 0

Table C.15: Summary of stability results on Microarray datasets for SimbaMiw with
sample∆ combination. Significantly better results shown in bold face.
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Problem Weighted Normal p-value

ma_breast_cancer 0.3333±0.0642 0.3542±0.051 0.3739
ma_colon_tumor 0.3419±0.0669 0.3548±0.0395 0.7489
ma_gcm 0.6442±0.0424 0.6526±0.0197 0.6651
ma_leukemia 0.1389±0.034 0.1556±0.0913 0.7527
ma_lung_cancer 0.0667±0.0444 0.0578±0.0093 0.7235
ma_prostate_cancer 0.2471±0.0366 0.2471±0.0283 1

Table C.16: Summary of classification error results on Microarray datasets for SimbaMiw
with sample∆ combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

arcene 0.2209±0.0938 0.1076±0.0745 0
dexter 0.2089±0.0654 0.2118±0.0543 0.8337
dorothea 0.1237±0.0332 0.1058±0.0285 0
gisette 0.5371±0.076 0.5033±0.121 0.0105
madelon 0.2519±0.1523 0.694±0.1876 0

Table C.17: Summary of stability results on NIPS datasets for SimbaMiw with sample∆
combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

arcene 0.292±0.0311 0.342±0.054 0.0601
dexter 0.1987±0.0556 0.1607±0.0144 0.2251
dorothea 0.0821±0.0015 0.0852±0.0055 0.3456
gisette 0.0483±0.0019 0.053±0.0034 0.034
madelon 0.2946±0.0168 0.1432±0.0095 0

Table C.18: Summary of classification error results on NIPS datasets for SimbaMiw with
sample∆ combination. Significantly better results shown in bold face.
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Problem Weighted Normal p-value

diabetes 0.4249±0.2015 0.3663±0.1533 0.1094
glass 0.2744±0.1677 0.2557±0.1408 0.5541
heart_statlog 0.3748±0.178 0.277±0.2032 0.0161
ionosphere 0.2031±0.0882 0.0916±0.0336 0
landsat_train 0.2851±0.1546 0.2851±0.1477 0.9727
lsvt_voice 0.267±0.2625 0.2318±0.2645 0
mammogram 0.115±0.0712 0.0685±0.0591 0
musk 0.1436±0.0472 0.1047±0.0557 0
parkinsons 0.363±0.1681 0.243±0.2157 0
pop_failures 0.2722±0.1649 0.2806±0.2492 0.4307
sonar 0.3107±0.1554 0.2899±0.1619 1e-04
spectf 0.1027±0.0511 0.1269±0.0994 0.0139
vehicle 0.4327±0.1166 0.4704±0.216 0.9632
waveform 0.205±0.0822 0.2133±0.0702 0.4749
wdbc 0.4362±0.2878 0.3769±0.32 4e-04

Table C.19: Summary of stability results on UCI datasets for SimbaLiw with sample∆
combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

diabetes 0.2969±0.0267 0.2911±0.0162 0.7202
glass 0.4374±0.0306 0.4879±0.0829 0.1473
heart_statlog 0.4074±0.0174 0.3378±0.0358 0.0214
ionosphere 0.2126±0.0204 0.2549±0.0138 6e-04
landsat_train 0.2067±0.0028 0.145±0.0063 1e-04
lsvt_voice 0.4476±0.0411 0.4317±0.0468 0.3262
mammogram 0.4233±0.0907 0.4186±0.0717 0.9465
musk 0.3008±0.0196 0.342±0.0175 0.02
parkinsons 0.1938±0.0367 0.1814±0.0369 0.7024
pop_failures 0.0818±0.007 0.0803±0.0077 0.7717
sonar 0.2942±0.0344 0.2846±0.0474 0.743
spectf 0.2±0.0269 0.203±0.0255 0.8486
vehicle 0.4364±0.0165 0.522±0.0157 0.0027
waveform 0.2281±0.0066 0.2218±0.0048 0.1666
wdbc 0.3817±0.0192 0.4014±0.019 0.0604

Table C.20: Summary of classification error results on UCI datasets for SimbaLiw with
sample∆ combination. Significantly better results shown in bold face.
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Problem Weighted Normal p-value

ma_breast_cancer 0.1544±0.0464 0.1178±0.0348 0
ma_colon_tumor 0.1888±0.0804 0.1315±0.0937 0
ma_gcm 0.3018±0.1907 0.2267±0.1583 0
ma_leukemia 0.2078±0.099 0.2128±0.0859 0.0024
ma_lung_cancer 0.3749±0.1021 0.3616±0.091 0
ma_prostate_cancer 0.1578±0.1225 0.1069±0.12 0

Table C.21: Summary of stability results on Microarray datasets for SimbaLiw with
sample∆ combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

ma_breast_cancer 0.3583±0.0742 0.3542±0.051 0.9193
ma_colon_tumor 0.3548±0.0395 0.3548±0.0395 1
ma_gcm 0.64±0.0336 0.6526±0.0197 0.5354
ma_leukemia 0.1667±0.052 0.1556±0.0913 0.862
ma_lung_cancer 0.0533±0.0093 0.0578±0.0093 0.4766
ma_prostate_cancer 0.2824±0.0319 0.2471±0.0283 0.1533

Table C.22: Summary of classification error results on Microarray datasets for SimbaLiw
with sample∆ combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

arcene 0.233±0.1185 0.1076±0.0745 0
dexter 0.3479±0.0683 0.2118±0.0543 0
dorothea 0.3724±0.141 0.1058±0.0285 0
gisette 0.4603±0.1506 0.5033±0.121 0
madelon 0.6119±0.1663 0.694±0.1876 0

Table C.23: Summary of stability results on NIPS datasets for SimbaLiw with sample∆
combination. Significantly better results shown in bold face.
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Problem Weighted Normal p-value

arcene 0.272±0.0455 0.342±0.054 0.0924
dexter 0.2013±0.0145 0.1607±0.0144 0.0162
dorothea 0.097±0.0067 0.0852±0.0055 0.0185
gisette 0.0694±0.0034 0.053±0.0034 0.0039
madelon 0.1357±0.0092 0.1432±0.0095 0.0219

Table C.24: Summary of classification error results on NIPS datasets for SimbaLiw with
sample∆ combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

diabetes 0.4769±0.1481 0.3665±0.1721 0.2969
glass 0.2123±0.1339 0.2699±0.1934 0.25
heart_statlog 0.2945±0.1499 0.3421±0.1688 0.3983
ionosphere 0.261±0.1223 0.1226±0.0583 0
landsat_train 0.6031±0.1146 0.2695±0.1081 0
lsvt_voice 0.2079±0.1913 0.3099±0.2318 0
mammogram 0.2142±0.0982 0.1851±0.1233 0.1651
musk 0.2481±0.0672 0.1552±0.0666 0
parkinsons 0.5061±0.1601 0.2887±0.2483 0
pop_failures 0.3754±0.2649 0.2382±0.2328 9e-04
sonar 0.3962±0.1487 0.3842±0.1671 0.143
spectf 0.2545±0.1098 0.0471±0.0464 0
vehicle 0.4998±0.17 0.4933±0.2121 0.6112
waveform 0.5401±0.0927 0.28±0.1154 0
wdbc 0.7132±0.1569 0.3363±0.3223 0

Table C.25: Summary of stability results on UCI datasets for SimbaMiw with order∆
combination. Significantly better results shown in bold face.
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Problem Weighted Normal p-value

diabetes 0.2557±0.0137 0.2677±0.0145 0.2423
glass 0.4262±0.0497 0.4879±0.053 0.1218
heart_statlog 0.363±0.0257 0.4119±0.0334 0.0959
ionosphere 0.176±0.0063 0.2114±0.0194 0.0112
landsat_train 0.1226±0.0039 0.1473±0.0063 0.0015
lsvt_voice 0.4508±0.0741 0.4254±0.0609 0.6895
mammogram 0.5023±0.0709 0.3209±0.0416 0.0041
musk 0.2504±0.0132 0.3756±0.0239 0.0011
parkinsons 0.2062±0.0292 0.2062±0.0273 1
pop_failures 0.0781±0.0026 0.0818±0.0037 0.189
sonar 0.3788±0.0161 0.3019±0.0388 0.0255
spectf 0.2256±0.0232 0.2165±0.0263 0.5291
vehicle 0.4241±0.0169 0.5177±0.0093 0.0011
waveform 0.1766±0.0065 0.2317±0.0061 0
wdbc 0.3866±0.0253 0.381±0.026 0.7876

Table C.26: Summary of classification error results on UCI datasets for SimbaMiw with
order∆ combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

ma_breast_cancer 0.1786±0.0387 0.1512±0.0332 0
ma_colon_tumor 0.2018±0.0787 0.1847±0.1074 0.3673
ma_gcm 0.4344±0.1018 0.2936±0.1835 0
ma_leukemia 0.2953±0.1059 0.1589±0.094 0
ma_lung_cancer 0.5407±0.0518 0.3622±0.086 0
ma_prostate_cancer 0.3821±0.1487 0.1161±0.1478 0

Table C.27: Summary of stability results on Microarray datasets for SimbaMiw with
order∆ combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

ma_breast_cancer 0.3125±0.0751 0.2958±0.0373 0.5965
ma_colon_tumor 0.3806±0.077 0.3871±0.0395 0.9001
ma_gcm 0.6337±0.049 0.6632±0.0387 0.2804
ma_leukemia 0.1278±0.0576 0.1222±0.0505 0.8276
ma_lung_cancer 0.0267±0.0127 0.0511±0.0405 0.3404
ma_prostate_cancer 0.25±0.0389 0.2618±0.0381 0.6797

Table C.28: Summary of classification error results on Microarray datasets for SimbaMiw
with order∆ combination. Significantly better results shown in bold face.
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Problem Weighted Normal p-value

arcene 0.3023±0.1007 0.1407±0.1042 0
dexter 0.2894±0.0852 0.2379±0.0622 0
dorothea 0.1692±0.0618 0.1237±0.0343 0
gisette 0.5947±0.0577 0.5108±0.1306 0
madelon 0.3068±0.1573 0.6944±0.1825 0

Table C.29: Summary of stability results on NIPS datasets for SimbaMiw with order∆
combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

arcene 0.284±0.0541 0.268±0.0148 0.5821
dexter 0.1827±0.0098 0.2173±0.0223 0.0334
dorothea 0.081±0.0047 0.0797±0.0069 0.7205
gisette 0.0477±0.0013 0.055±0.0043 0.0352
madelon 0.2843±0.0042 0.1343±0.0088 0

Table C.30: Summary of classification error results on NIPS datasets for SimbaMiw with
order∆ combination. Significantly better results shown in bold face.
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Problem Weighted Normal p-value

diabetes 0.4222±0.2166 0.3665±0.1721 0.2188
glass 0.3021±0.1662 0.2699±0.1934 0.9453
heart_statlog 0.3014±0.2638 0.3421±0.1688 0.1514
ionosphere 0.2506±0.0718 0.1226±0.0583 0
landsat_train 0.5528±0.1915 0.2695±0.1081 0
lsvt_voice 0.3525±0.2803 0.3099±0.2318 0
mammogram 0.105±0.089 0.1851±0.1233 0
musk 0.1148±0.0283 0.1552±0.0666 0
parkinsons 0.3443±0.2168 0.2887±0.2483 0.0012
pop_failures 0.2394±0.1677 0.2382±0.2328 0.2243
sonar 0.3293±0.1759 0.3842±0.1671 0
spectf 0.0495±0.0366 0.0471±0.0464 0.1075
vehicle 0.3523±0.0909 0.4933±0.2121 0.011
waveform 0.0844±0.062 0.28±0.1154 0
wdbc 0.2625±0.2898 0.3363±0.3223 0

Table C.31: Summary of stability results on UCI datasets for SimbaLiw with order∆
combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

diabetes 0.2807±0.0153 0.2677±0.0145 0.026
glass 0.4673±0.0187 0.4879±0.053 0.5509
heart_statlog 0.3807±0.0238 0.4119±0.0334 0.2434
ionosphere 0.2526±0.0263 0.2114±0.0194 0.0086
landsat_train 0.1981±0.0049 0.1473±0.0063 2e-04
lsvt_voice 0.3619±0.0207 0.4254±0.0609 0.126
mammogram 0.4186±0.0678 0.3209±0.0416 0.0863
musk 0.384±0.0365 0.3756±0.0239 0.3513
parkinsons 0.2186±0.0523 0.2062±0.0273 0.6807
pop_failures 0.0796±0.0086 0.0818±0.0037 0.4263
sonar 0.3058±0.0307 0.3019±0.0388 0.9062
spectf 0.2391±0.0423 0.2165±0.0263 0.4049
vehicle 0.453±0.0308 0.5177±0.0093 0.0069
waveform 0.254±0.0074 0.2317±0.0061 0.0135
wdbc 0.3817±0.0265 0.381±0.026 0.9675

Table C.32: Summary of classification error results on UCI datasets for SimbaLiw with
order∆ combination. Significantly better results shown in bold face.
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Problem Weighted Normal p-value

ma_breast_cancer 0.1802±0.0274 0.1512±0.0332 0
ma_colon_tumor 0.2734±0.1049 0.1847±0.1074 0
ma_gcm 0.5075±0.1319 0.2936±0.1835 0
ma_leukemia 0.2719±0.1177 0.1589±0.094 0
ma_lung_cancer 0.4557±0.0902 0.3622±0.086 0
ma_prostate_cancer 0.1866±0.1146 0.1161±0.1478 0

Table C.33: Summary of stability results on Microarray datasets for SimbaLiw with
order∆ combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

ma_breast_cancer 0.2583±0.0316 0.2958±0.0373 0.121
ma_colon_tumor 0.3226±0.0684 0.3871±0.0395 0.1161
ma_gcm 0.7179±0.0292 0.6632±0.0387 0.0237
ma_leukemia 0.1444±0.0663 0.1222±0.0505 0.6135
ma_lung_cancer 0.0556±0.0136 0.0511±0.0405 0.862
ma_prostate_cancer 0.2206±0.0403 0.2618±0.0381 0.2312

Table C.34: Summary of classification error results on Microarray datasets for SimbaLiw
with order∆ combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

arcene 0.2404±0.0938 0.1407±0.1042 0
dexter 0.3185±0.0622 0.2379±0.0622 0
dorothea 0.2275±0.0827 0.1237±0.0343 0
gisette 0.5558±0.1249 0.5108±0.1306 0
madelon 0.5895±0.1594 0.6944±0.1825 0

Table C.35: Summary of stability results on NIPS datasets for SimbaLiw with order∆
combination. Significantly better results shown in bold face.
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Problem Weighted Normal p-value

arcene 0.358±0.0572 0.268±0.0148 0.0231
dexter 0.2113±0.0107 0.2173±0.0223 0.6959
dorothea 0.0877±0.0038 0.0797±0.0069 0.0949
gisette 0.0512±0.0027 0.055±0.0043 0.2234
madelon 0.1568±0.0056 0.1343±0.0088 0.0176

Table C.36: Summary of classification error results on NIPS datasets for SimbaLiw with
order∆ combination. Significantly better results shown in bold face.



260 APPENDIX C. COMBINED IW AND FW DETAILED RESULTS

Problem Weighted Normal p-value

diabetes 0.0239±0.0621 -0.0209±0.0466 0.0156
heart_statlog 0.0076±0.0368 -0.0248±0.0363 0.064
ionosphere -0.0092±0.0319 -0.0195±0.0354 0.3263
landsat_train -0.021±0.0204 -0.0158±0.031 0.2726
leaf -0.0572±0.0214 -0.0492±0.038 0.5417
lsvt_voice 0.036±0.0532 0.0348±0.0584 0.3442
mammogram 0.0248±0.0227 0.0157±0.0447 0.3654
musk -0.0216±0.0204 -0.0139±0.022 0
parkinsons 0.0703±0.0448 0.0305±0.0309 0.0014
pop_failures -0.0619±0.0269 -0.0527±0.017 0.2243
sonar -0.0134±0.0134 -0.0074±0.0183 0.0178
spectf -0.0024±0.0304 0.0056±0.0169 0.2022
vehicle 0.0308±0.0538 0.0064±0.0871 0.0395
waveform -0.0415±0.019 -0.0402±0.0342 0.8695
wdbc -0.0308±0.024 6e-04±0.0212 1e-04

Table C.37: Summary of stability results on UCI datasets for MBIW + Relief with
sample∆ combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

diabetes 0.2568±0.0091 0.2911±0.0131 0.0158
heart_statlog 0.3704±0.0343 0.3852±0.0474 0.6453
ionosphere 0.1726±0.0117 0.2366±0.0287 0.007
landsat_train 0.1274±0.0028 0.1318±0.0079 0.2937
leaf 0.8353±0.015 0.7341±0.0261 0.001
lsvt_voice 0.4571±0.0362 0.4222±0.0774 0.295
mammogram 0.5535±0.0761 0.5395±0.0861 0.8047
musk 0.3908±0.0181 0.316±0.0202 9e-04
parkinsons 0.1691±0.0297 0.1856±0.0292 0.3653
pop_failures 0.0877±0.002 0.0892±0.0037 0.4766
sonar 0.4154±0.0583 0.375±0.0296 0.3467
spectf 0.2511±0.0351 0.2511±0.0355 1
vehicle 0.4255±0.0124 0.5324±0.0228 6e-04
waveform 0.223±0.007 0.3011±0.0117 4e-04
wdbc 0.2923±0.0238 0.3965±0.0214 0.002

Table C.38: Summary of classification error results on UCI datasets for MBIW + Relief
with sample∆ combination. Significantly better results shown in bold face.
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Problem Weighted Normal p-value

ma_breast_cancer -0.0316±0.0083 -0.013±0.0069 0
ma_colon_tumor -0.0018±0.014 -0.0206±0.0199 0
ma_gcm -0.0108±0.0149 0.012±0.0114 0
ma_leukemia -0.0112±0.0109 -0.0078±0.0145 0.0385
ma_lung_cancer -0.0215±0.0138 -0.0147±0.0075 0
ma_prostate_cancer -0.0024±0.0302 -0.0041±0.0169 0.6472

Table C.39: Summary of stability results on Microarray datasets for MBIW + Relief
with sample∆ combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

ma_breast_cancer 0.3417±0.0745 0.2708±0.0675 0.2611
ma_colon_tumor 0.271±0.0629 0.2516±0.077 0.6072
ma_gcm 0.6589±0.0205 0.6295±0.0485 0.166
ma_leukemia 0.1111±0.0393 0.0667±0.0465 0.1778
ma_lung_cancer 0.0644±0.0165 0.08±0.0093 0.1836
ma_prostate_cancer 0.2765±0.0619 0.3676±0.0375 0.0143

Table C.40: Summary of classification error results on Microarray datasets for MBIW +
Relief with sample∆ combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

arcene -0.0118±0.0231 -0.0164±0.0158 0.0284
dexter 0.1208±0.0887 0.0883±0.0788 0
dorothea 0.1436±0.0975 0.2994±0.1185 0
gisette -0.0059±0.0101 -0.007±0.0159 0.0211
madelon -0.0321±0.0081 -0.0159±0.0068 0

Table C.41: Summary of stability results on NIPS datasets for MBIW + Relief with
sample∆ combination. Significantly better results shown in bold face.
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Problem Weighted Normal p-value

arcene 0.274±0.0573 0.322±0.0415 0.2151
dexter 0.2793±0.0511 0.2413±0.0141 0.1989
dorothea 0.0824±0.0029 0.0762±0.0087 0.2236
gisette 0.0883±0.0047 0.1194±0.0035 7e-04
madelon 0.4963±0.0108 0.4085±0.0058 2e-04

Table C.42: Summary of classification error results on NIPS datasets for MBIW + Relief
with sample∆ combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

diabetes -0.044±0.0391 -0.0209±0.0466 0.5294
heart_statlog 0.0337±0.0347 -0.0248±0.0363 0.0049
ionosphere -0.0035±0.0302 -0.0195±0.0354 0.0197
landsat_train -0.0013±0.0256 -0.0158±0.031 0.0515
leaf -0.0489±0.0341 -0.0492±0.038 0.4561
lsvt_voice 0.0078±0.0493 0.0348±0.0584 0
mammogram -0.0337±0.017 0.0157±0.0447 0
musk 0.0154±0.0137 -0.0139±0.022 0
parkinsons -0.0095±0.0237 0.0305±0.0309 0
pop_failures -0.042±0.0168 -0.0527±0.017 0.0382
sonar -0.0019±0.0178 -0.0074±0.0183 0.0339
spectf 0.0074±0.025 0.0056±0.0169 0.5105
vehicle 0.0091±0.052 0.0064±0.0871 0.4851
waveform -0.0339±0.0222 -0.0402±0.0342 0.4813
wdbc 0.0771±0.0582 6e-04±0.0212 0

Table C.43: Summary of stability results on UCI datasets for RLIW + Relief with
sample∆ combination. Significantly better results shown in bold face.
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Problem Weighted Normal p-value

diabetes 0.2542±0.0264 0.2911±0.0131 0.0114
heart_statlog 0.3481±0.0181 0.3852±0.0474 0.1634
ionosphere 0.1829±0.0259 0.2366±0.0287 0.0789
landsat_train 0.1561±0.0055 0.1318±0.0079 0.0016
leaf 0.7435±0.0206 0.7341±0.0261 0.3375
lsvt_voice 0.4476±0.0566 0.4222±0.0774 0.6556
mammogram 0.4791±0.0535 0.5395±0.0861 0.3203
musk 0.2916±0.0265 0.316±0.0202 0.0307
parkinsons 0.1753±0.0146 0.1856±0.0292 0.5185
pop_failures 0.0922±0.0072 0.0892±0.0037 0.405
sonar 0.3942±0.0414 0.375±0.0296 0.5083
spectf 0.2662±0.033 0.2511±0.0355 0.5393
vehicle 0.5139±0.0169 0.5324±0.0228 0.2347
waveform 0.3499±0.0051 0.3011±0.0117 5e-04
wdbc 0.0944±0.0164 0.3965±0.0214 0

Table C.44: Summary of classification error results on UCI datasets for RLIW + Relief
with sample∆ combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

ma_breast_cancer -0.0193±0.0073 -0.013±0.0069 0
ma_colon_tumor -0.0143±0.0155 -0.0206±0.0199 0.0333
ma_gcm 0.0021±0.0127 0.012±0.0114 0
ma_leukemia -0.0108±0.011 -0.0078±0.0145 0.02
ma_lung_cancer -0.0263±0.0106 -0.0147±0.0075 0
ma_prostate_cancer -0.0139±0.0135 -0.0041±0.0169 0

Table C.45: Summary of stability results on Microarray datasets for RLIW + Relief with
sample∆ combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

ma_breast_cancer 0.2875±0.0427 0.2708±0.0675 0.7235
ma_colon_tumor 0.3871±0.0323 0.2516±0.077 0.0146
ma_gcm 0.6695±0.0191 0.6295±0.0485 0.1786
ma_leukemia 0.1222±0.0954 0.0667±0.0465 0.089
ma_lung_cancer 0.0644±0.0093 0.08±0.0093 0.1079
ma_prostate_cancer 0.2294±0.0132 0.3676±0.0375 0.0033

Table C.46: Summary of classification error results on Microarray datasets for RLIW +
Relief with sample∆ combination. Significantly better results shown in bold face.
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Problem Weighted Normal p-value

arcene 0.0252±0.0218 -0.0164±0.0158 0
dexter 0.1548±0.0996 0.0883±0.0788 0
dorothea 0.4635±0.2009 0.2994±0.1185 0
gisette -0.0172±0.0082 -0.007±0.0159 0
madelon -0.0204±0.0058 -0.0159±0.0068 0

Table C.47: Summary of stability results on NIPS datasets for RLIW + Relief with
sample∆ combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

arcene 0.34±0.0367 0.322±0.0415 0.6152
dexter 0.2207±0.0261 0.2413±0.0141 0.3133
dorothea 0.0897±0.0044 0.0762±0.0087 0.0415
gisette 0.0698±0.0035 0.1194±0.0035 0
madelon 0.3902±0.0109 0.4085±0.0058 0.0358

Table C.48: Summary of classification error results on NIPS datasets for RLIW + Relief
with sample∆ combination. Significantly better results shown in bold face.
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Problem Weighted Normal p-value

diabetes -0.013±0.0626 -0.0232±0.0419 1
heart_statlog -0.0268±0.029 -0.0644±0.0225 0.0068
ionosphere -0.0259±0.0261 -0.0183±0.0245 0.0602
landsat_train 0.0075±0.0169 7e-04±0.0317 0.1609
leaf 0.0176±0.0306 -0.0259±0.0689 0.0803
lsvt_voice -0.0135±0.0107 -0.0087±0.0118 0
mammogram 0.0113±0.0267 -0.0259±0.0192 0
musk -0.006±0.0086 -0.0292±0.0079 0
parkinsons 0.0677±0.0602 0.1276±0.0869 0.0029
pop_failures -0.0642±0.0236 0.0024±0.0275 2e-04
sonar -0.0044±0.0183 -0.0317±0.0127 0
spectf -0.0213±0.0179 0.0147±0.0339 0
vehicle 0.0429±0.0403 -0.0246±0.0287 0
waveform -0.0516±0.0216 -0.038±0.0213 0.08
wdbc -0.0304±0.0316 0.0329±0.0391 0

Table C.49: Summary of stability results on UCI datasets for MBIW + RandomForests
with sample∆ combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

diabetes 0.3432±0.0203 0.3521±0.0151 0.4591
heart_statlog 0.3289±0.0525 0.3481±0.0367 0.6493
ionosphere 0.1726±0.0153 0.192±0.0244 0.3073
landsat_train 0.1252±0.0047 0.1294±0.0024 0.1847
leaf 0.6671±0.0411 0.8647±0.0208 0.0015
lsvt_voice 0.4825±0.0611 0.4159±0.0174 0.0393
mammogram 0.4512±0.0606 0.5023±0.0265 0.1894
musk 0.2756±0.0215 0.2748±0.0198 0.9623
parkinsons 0.1897±0.0237 0.1608±0.0156 0.1148
pop_failures 0.0862±0.0017 0.0967±0.0083 0.08
sonar 0.4308±0.0691 0.2385±0.0356 3e-04
spectf 0.2436±0.0181 0.2301±0.0351 0.2552
vehicle 0.4014±0.0203 0.6043±0.0477 0.0015
waveform 0.5371±0.0108 0.2426±0.0095 0
wdbc 0.1035±0.0107 0.0775±0.007 0.0164

Table C.50: Summary of classification error results on UCI datasets for MBIW + Ran-
domForests with sample∆ combination. Significantly better results shown in bold face.
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Problem Weighted Normal p-value

ma_breast_cancer -0.0154±0.0066 -0.0164±0.0084 0.4003
ma_colon_tumor -0.0152±0.0128 -0.0219±0.0065 0
ma_gcm -0.0106±0.0107 -0.0149±0.0137 2e-04
ma_leukemia -0.0263±0.0077 -0.0212±0.0093 0
ma_lung_cancer -0.0287±0.0071 -0.0099±0.0086 0
ma_prostate_cancer -0.0135±0.0089 0.0011±0.0117 0

Table C.51: Summary of stability results on Microarray datasets for MBIW + Random-
Forests with sample∆ combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

ma_breast_cancer 0.2083±0.0295 0.3583±0.1014 0.0387
ma_colon_tumor 0.3226±0.0456 0.3742±0.0743 0.3058
ma_gcm 0.6674±0.0377 0.6695±0.0284 0.9405
ma_leukemia 0.2056±0.0317 0.0611±0.0124 4e-04
ma_lung_cancer 0.0756±0.0199 0.0689±0.005 0.4676
ma_prostate_cancer 0.3118±0.0218 0.2853±0.0305 0.2761

Table C.52: Summary of classification error results on Microarray datasets for MBIW +
RandomForests with sample∆ combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

arcene -0.0181±0.008 -0.0102±0.0149 0
dexter 0.002±0.0179 0.0192±0.0338 0
dorothea 0.3164±0.1742 0.1915±0.0978 0
gisette 1e-04±0.0147 0.001±0.0082 0.1011
madelon -0.0293±0.0052 -0.0194±0.0073 0

Table C.53: Summary of stability results on NIPS datasets forMBIW + RandomForests
with sample∆ combination. Significantly better results shown in bold face.
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Problem Weighted Normal p-value

arcene 0.288±0.0517 0.362±0.0164 0.0596
dexter 0.196±0.0055 0.3107±0.0269 6e-04
dorothea 0.0877±0.0047 0.0863±0.0083 0.5275
gisette 0.0718±0.0019 0.0788±0.0018 0.0049
madelon 0.3803±0.0081 0.4294±0.0124 0.0051

Table C.54: Summary of classification error results on NIPS datasets for MBIW + Ran-
domForests with sample∆ combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

diabetes 0.0348±0.0779 -0.0232±0.0419 0.0781
heart_statlog 0.0052±0.0508 -0.0644±0.0225 0.0068
ionosphere -0.0462±0.024 -0.0183±0.0245 2e-04
landsat_train -0.0301±0.0186 7e-04±0.0317 1e-04
leaf -0.0276±0.0415 -0.0259±0.0689 1
lsvt_voice -0.0242±0.0084 -0.0087±0.0118 0
mammogram -0.0075±0.017 -0.0259±0.0192 0
musk -0.0226±0.0146 -0.0292±0.0079 0
parkinsons 0.0984±0.0944 0.1276±0.0869 0.2877
pop_failures -0.0324±0.025 0.0024±0.0275 0.0056
sonar -0.0186±0.0175 -0.0317±0.0127 1e-04
spectf 0.0343±0.0354 0.0147±0.0339 1e-04
vehicle -0.0146±0.0329 -0.0246±0.0287 0.4586
waveform -0.0208±0.0263 -0.038±0.0213 0.0296
wdbc 0.0223±0.0305 0.0329±0.0391 0.0071

Table C.55: Summary of stability results on UCI datasets for RLIW + RandomForests
with sample∆ combination. Significantly better results shown in bold face.
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Problem Weighted Normal p-value

diabetes 0.2688±0.0302 0.3521±0.0151 0.0044
heart_statlog 0.3481±0.0228 0.3481±0.0367 1
ionosphere 0.1863±0.0244 0.192±0.0244 0.6584
landsat_train 0.1272±0.0052 0.1294±0.0024 0.4836
leaf 0.7765±0.0093 0.8647±0.0208 0.001
lsvt_voice 0.5111±0.0133 0.4159±0.0174 7e-04
mammogram 0.4837±0.0861 0.5023±0.0265 0.6702
musk 0.2664±0.0278 0.2748±0.0198 0.6557
parkinsons 0.2103±0.0347 0.1608±0.0156 0.0078
pop_failures 0.0773±0.0085 0.0967±0.0083 0.0029
sonar 0.3904±0.0323 0.2385±0.0356 5e-04
spectf 0.2346±0.0312 0.2301±0.0351 0.8733
vehicle 0.4416±0.0133 0.6043±0.0477 0.0026
waveform 0.1972±0.0052 0.2426±0.0095 0.0014
wdbc 0.0845±0.0114 0.0775±0.007 0.3894

Table C.56: Summary of classification error results on UCI datasets for RLIW + Ran-
domForests with sample∆ combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

ma_breast_cancer -0.0154±0.0085 -0.0164±0.0084 0.2333
ma_colon_tumor -0.0183±0.0079 -0.0219±0.0065 1e-04
ma_gcm -0.0113±0.0113 -0.0149±0.0137 0
ma_leukemia -0.0188±0.0072 -0.0212±0.0093 0.1116
ma_lung_cancer -0.0162±0.0064 -0.0099±0.0086 0
ma_prostate_cancer -0.0182±0.0062 0.0011±0.0117 0

Table C.57: Summary of stability results on Microarray datasets for RLIW + Random-
Forests with sample∆ combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

ma_breast_cancer 0.4125±0.0913 0.3583±0.1014 0.5206
ma_colon_tumor 0.3097±0.054 0.3742±0.0743 0.2488
ma_gcm 0.6589±0.0362 0.6695±0.0284 0.635
ma_leukemia 0.2667±0.1465 0.0611±0.0124 0.0378
ma_lung_cancer 0.0667±0.0136 0.0689±0.005 0.778
ma_prostate_cancer 0.2588±0.0322 0.2853±0.0305 0.2552

Table C.58: Summary of classification error results on Microarray datasets for RLIW +
RandomForests with sample∆ combination. Significantly better results shown in bold face.
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Problem Weighted Normal p-value

arcene -0.0192±0.0094 -0.0102±0.0149 0
dexter 0.0913±0.0494 0.0192±0.0338 0
dorothea 0.565±0.2223 0.1915±0.0978 0
gisette 0.0182±0.0265 0.001±0.0082 0
madelon -0.0249±0.0056 -0.0194±0.0073 0

Table C.59: Summary of stability results on NIPS datasets for RLIW + RandomForests
with sample∆ combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

arcene 0.258±0.0319 0.362±0.0164 0.0018
dexter 0.2153±0.0234 0.3107±0.0269 0.0031
dorothea 0.0863±0.0026 0.0863±0.0083 1
gisette 0.0573±0.0014 0.0788±0.0018 0
madelon 0.3486±0.0116 0.4294±0.0124 3e-04

Table C.60: Summary of classification error results on NIPS datasets for RLIW + Ran-
domForests with sample∆ combination. Significantly better results shown in bold face.
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Problem Weighted Normal p-value

diabetes 0.9778±0 0.9778±0
heart_statlog 0.9778±0 0.9366±0.0696 0.1003
ionosphere 0.9778±0 0.9497±0.0399 1e-04
leaf 0.9778±0 0.9778±0
mammogram 0.9548±0.0796 0.9328±0.1062 3e-04
musk 0.9715±0.0193 0.9778±0 0
parkinsons 0.9272±0.044 0.9778±0 2e-04
pop_failures 0.9778±0 0.9778±0
sonar 0.9582±0.0605 0.8885±0.1151 0
spectf 0.9373±0.0423 0.9778±0 0
vehicle 0.9778±0 0.9778±0
wdbc 0.9054±0.0712 0.9778±0 0

Table C.61: Summary of stability results on UCI datasets for MBIW + IG with sample∆
combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

diabetes 0.349±0 ltNA 0.349±0
heart_statlog 0.4±0 ltNA 0.4±0
ionosphere 0.3486±0 ltNA 0.3486±0
leaf 0.9647±0.0093 0.9635±0.0134 0.9023
mammogram 0.6047±0.0285 0.5349±0.087 0.1841
musk 0.4244±0 ltNA 0.4244±0
parkinsons 0.2165±0 ltNA 0.2165±0
pop_failures 0.0855±0 ltNA 0.0855±0
sonar 0.5231±0.0211 0.5154±0.0161 0.405
spectf 0.1955±0 ltNA 0.1955±0
vehicle 0.7589±0.0082 0.7556±0.0027 0.3846
wdbc 0.3873±0 ltNA 0.3873±0

Table C.62: Summary of classification error results on UCI datasets for MBIW + IG with
sample∆ combination. Significantly better results shown in bold face.
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Problem Weighted Normal p-value

ma_breast_cancer 0.9576±0.0468 0.9708±0.0173 0
ma_colon_tumor 0.9091±0.1059 0.9194±0.1291 0
ma_gcm 0.9778±0 0.9748±0.0176 0.0059
ma_leukemia 0.9539±0.0528 0.9504±0.0742 0.9247
ma_lung_cancer 0.9709±0.0173 0.9406±0.0885 0
ma_prostate_cancer 0.9712±0.0174 0.9778±0 0

Table C.63: Summary of stability results on Microarray datasets for MBIW + IG with
sample∆ combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

ma_breast_cancer 0.575±0.0186 0.5833±0.051 0.7489
ma_colon_tumor 0.3548±0.1094 0.5226±0.0803 0.0109
ma_gcm 0.8758±0.0485 0.8842±0.0494 0.8297
ma_leukemia 0.3333±0 ltNA 0.3333±0
ma_lung_cancer 0.1889±0 0.0956±0.0169 2e-04
ma_prostate_cancer 0.5412±0.0677 0.5382±0.0638 0.941

Table C.64: Summary of classification error results on Microarray datasets for MBIW +
IG with sample∆ combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

arcene 0.9695±0.0224 0.9778±0 0
dexter 0.9778±0 0.9778±0
dorothea 0.9778±0 0.9778±0
madelon 0.9778±0 0.9778±0

Table C.65: Summary of stability results on NIPS datasets forMBIW + IG with sample∆
combination. Significantly better results shown in bold face.
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Problem Weighted Normal p-value

arcene 0.48±0.0728 0.462±0.0716 0.3739
dexter 0.5293±0.0322 0.5373±0.0348 0.4144
dorothea 0.1009±0 ltNA 0.1009±0
madelon 0.5035±0.0128 0.5049±0.0099 0.8968

Table C.66: Summary of classification error results on NIPS datasets for MBIW + IG
with sample∆ combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

diabetes 0.8623±0.0673 0.9778±0 0.035
heart_statlog 0.9778±0 0.9366±0.0696 0.1003
ionosphere 0.9519±0.0407 0.9497±0.0399 0.0906
leaf 0.9778±0 0.9778±0
mammogram 0.9778±0 0.9328±0.1062 2e-04
musk 0.9694±0.0188 0.9778±0 0
parkinsons 0.9368±0.0484 0.9778±0 0.0011
pop_failures 0.9778±0 0.9778±0
sonar 0.9614±0.0456 0.8885±0.1151 0
spectf 0.9778±0 0.9778±0
vehicle 0.9778±0 0.9778±0
wdbc 0.9778±0 0.9778±0

Table C.67: Summary of stability results on UCI datasets for RLIW + IG with sample∆
combination. Significantly better results shown in bold face.
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Problem Weighted Normal p-value

diabetes 0.349±0 ltNA 0.349±0
heart_statlog 0.4±0 ltNA 0.4±0
ionosphere 0.3486±0 ltNA 0.3486±0
leaf 0.9671±0.0159 0.9635±0.0134 0.7407
mammogram 0.5256±0.0816 0.5349±0.087 0.896
musk 0.4244±0 ltNA 0.4244±0
parkinsons 0.2165±0 ltNA 0.2165±0
pop_failures 0.0855±0 ltNA 0.0855±0
sonar 0.5462±0.0387 0.5154±0.0161 0.1733
spectf 0.1955±0 ltNA 0.1955±0
vehicle 0.7678±0.0114 0.7556±0.0027 0.1078
wdbc 0.3873±0 ltNA 0.3873±0

Table C.68: Summary of classification error results on UCI datasets for RLIW + IG with
sample∆ combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

ma_breast_cancer 0.9557±0.0286 0.9708±0.0173 0
ma_colon_tumor 0.9402±0.07 0.9194±0.1291 0
ma_gcm 0.9778±0 0.9748±0.0176 0.0059
ma_leukemia 0.9484±0.0693 0.9504±0.0742 0
ma_lung_cancer 0.9719±0.0176 0.9406±0.0885 0
ma_prostate_cancer 0.9778±0 0.9778±0

Table C.69: Summary of stability results on Microarray datasets for RLIW + IG with
sample∆ combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

ma_breast_cancer 0.4±0.0401 0.5833±0.051 5e-04
ma_colon_tumor 0.2903±0.094 0.5226±0.0803 0.0137
ma_gcm 0.8632±0.0471 0.8842±0.0494 0.4565
ma_leukemia 0.3333±0 ltNA 0.3333±0
ma_lung_cancer 0.1889±0 0.0956±0.0169 2e-04
ma_prostate_cancer 0.5059±0.0483 0.5382±0.0638 0.3455

Table C.70: Summary of classification error results on Microarray datasets for RLIW +
IG with sample∆ combination. Significantly better results shown in bold face.
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Problem Weighted Normal p-value

arcene 0.9778±0 0.9778±0
dexter 0.9778±0 0.9778±0
dorothea 0.9778±0 0.9778±0
madelon 0.9778±0 0.9778±0

Table C.71: Summary of stability results on NIPS datasets for RLIW + IG with sample∆
combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

arcene 0.43±0 0.462±0.0716 0.3739
dexter 0.5187±0.0292 0.5373±0.0348 0.495
dorothea 0.1009±0 ltNA 0.1009±0
madelon 0.5042±0.0153 0.5049±0.0099 0.9025

Table C.72: Summary of classification error results on NIPS datasets for RLIW + IG with
sample∆ combination. Significantly better results shown in bold face.
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Problem Weighted Normal p-value

diabetes 0.9778±0 0.9778±0
heart_statlog 0.9778±0 0.9778±0
ionosphere 0.9778±0 0.9563±0.042 0.0025
landsat_train 0.9778±0 0.9778±0
leaf 0.9778±0 0.9778±0
lsvt_voice 0.9558±0.0437 0.9305±0.0793 0
mammogram 0.9566±0.028 0.8145±0.106 0
musk 0.97±0.019 0.9057±0.1114 0
parkinsons 0.9778±0 0.9016±0.0628 5e-04
pop_failures 0.9778±0 0.9306±0.0537 0.0038
sonar 0.9183±0.0658 0.9341±0.0454 0
vehicle 0.9778±0 0.9778±0
waveform 0.9778±0 0.9778±0
wdbc 0.8976±0.1081 0.9778±0 0

Table C.73: Summary of stability results on UCI datasets for MBIW + 1R with sample∆
combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

diabetes 0.2578±0.0196 0.2578±0.018 1
heart_statlog 0.357±0.0376 0.3881±0.038 0.3751
ionosphere 0.1977±0.0367 0.16±0.0134 0.0756
landsat_train 0.1256±0.0042 0.1241±0.0063 0.7391
leaf 0.6859±0.0392 0.6918±0.0588 0.8872
lsvt_voice 0.4349±0.0414 0.4254±0.0284 0.6657
mammogram 0.414±0.0666 0.4279±0.0208 0.7102
musk 0.2487±0.01 0.2345±0.0237 0.3098
parkinsons 0.1897±0.0056 0.1979±0.0321 0.5543
pop_failures 0.0781±0.0079 0.0751±0.0031 0.2943
sonar 0.3769±0.0393 0.3538±0.0506 0.4175
vehicle 0.4099±0.0195 0.4307±0.026 0.2367
waveform 0.1714±0.0061 0.1754±0.0047 0.4215
wdbc 0.3718±0.0313 0.3514±0.0298 0.3023

Table C.74: Summary of classification error results on UCI datasets for MBIW + 1R with
sample∆ combination. Significantly better results shown in bold face.
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Problem Weighted Normal p-value

ma_breast_cancer 0.9629±0.0401 0.9462±0.0651 0
ma_colon_tumor 0.9034±0.1022 0.8597±0.1546 0
ma_gcm 0.966±0.0234 0.9778±0 0
ma_leukemia 0.9222±0.0836 0.9581±0.0355 0
ma_lung_cancer 0.9695±0.017 0.9486±0.0538 0
ma_prostate_cancer 0.9759±0.0166 0.9706±0.0172 0

Table C.75: Summary of stability results on Microarray datasets for MBIW + 1R with
sample∆ combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

ma_breast_cancer 0.3333±0.0691 0.275±0.0309 0.2212
ma_colon_tumor 0.4±0.0984 0.3161±0.1005 0.2857
ma_gcm 0.6505±0.0437 0.6421±0.0387 0.7931
ma_leukemia 0.1167±0.0362 0.1278±0.0465 0.6702
ma_lung_cancer 0.0822±0.0243 0.0667±0.0079 0.2056
ma_prostate_cancer 0.3059±0.0242 0.2735±0.0246 0.0628

Table C.76: Summary of classification error results on Microarray datasets for MBIW +
1R with sample∆ combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

arcene 0.9778±0 0.9778±0
dexter 0.9678±0.0287 0.9738±0.0124 0
dorothea 0.9778±0 0.9778±0
gisette 0.9778±0 0.9778±0
madelon 0.9778±0 0.9778±0

Table C.77: Summary of stability results on NIPS datasets forMBIW + 1R with sample∆
combination. Significantly better results shown in bold face.
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Problem Weighted Normal p-value

arcene 0.256±0.0602 0.258±0.055 0.9458
dexter 0.2093±0.0252 0.2133±0.0422 0.8682
dorothea 0.0821±0.0061 0.0828±0.0026 0.8446
gisette 0.0485±0.0015 0.0483±0.0016 0.8815
madelon 0.2911±0.0102 0.2892±0.0124 0.656

Table C.78: Summary of classification error results on NIPS datasets for MBIW + 1R
with sample∆ combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

diabetes 0.9778±0 0.9778±0
heart_statlog 0.9778±0 0.9778±0
ionosphere 0.9778±0 0.9563±0.042 0.0025
landsat_train 0.9778±0 0.9778±0
leaf 0.9778±0 0.9778±0
lsvt_voice 0.9468±0.0474 0.9305±0.0793 0
mammogram 0.9778±0 0.8145±0.106 0
musk 0.9778±0 0.9057±0.1114 0
parkinsons 0.9778±0 0.9016±0.0628 5e-04
pop_failures 0.9277±0.0523 0.9306±0.0537 0.4677
sonar 0.93±0.0954 0.9341±0.0454 8e-04
vehicle 0.9778±0 0.9778±0
waveform 0.9778±0 0.9778±0
wdbc 0.9778±0 0.9778±0

Table C.79: Summary of stability results on UCI datasets for RLIW + 1R with sample∆
combination. Significantly better results shown in bold face.
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Problem Weighted Normal p-value

diabetes 0.2599±0.0087 0.2578±0.018 0.7825
heart_statlog 0.3689±0.0707 0.3881±0.038 0.6177
ionosphere 0.1749±0.0125 0.16±0.0134 0.1443
landsat_train 0.1245±0.0031 0.1241±0.0063 0.9073
leaf 0.6682±0.0429 0.6918±0.0588 0.5562
lsvt_voice 0.4921±0.0251 0.4254±0.0284 0.0171
mammogram 0.4791±0.0453 0.4279±0.0208 0.0858
musk 0.258±0.0182 0.2345±0.0237 0.1522
parkinsons 0.2103±0.0237 0.1979±0.0321 0.4263
pop_failures 0.0751±0.0031 0.0751±0.0031 1
sonar 0.3538±0.0515 0.3538±0.0506 1
vehicle 0.4284±0.0139 0.4307±0.026 0.882
waveform 0.1745±0.0048 0.1754±0.0047 0.7871
wdbc 0.3465±0.0175 0.3514±0.0298 0.7882

Table C.80: Summary of classification error results on UCI datasets for RLIW + 1R with
sample∆ combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

ma_breast_cancer 0.9778±0 0.9462±0.0651 0
ma_colon_tumor 0.9357±0.0681 0.8597±0.1546 0
ma_gcm 0.9778±0 0.9778±0
ma_leukemia 0.9458±0.0443 0.9581±0.0355 0
ma_lung_cancer 0.9429±0.0552 0.9486±0.0538 0
ma_prostate_cancer 0.9778±0 0.9706±0.0172 0

Table C.81: Summary of stability results on Microarray datasets for RLIW + 1R with
sample∆ combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

ma_breast_cancer 0.3333±0.0607 0.275±0.0309 0.1281
ma_colon_tumor 0.3161±0.062 0.3161±0.1005 1
ma_gcm 0.6716±0.041 0.6421±0.0387 0.3351
ma_leukemia 0.1167±0.0692 0.1278±0.0465 0.587
ma_lung_cancer 0.08±0.0122 0.0667±0.0079 0.1447
ma_prostate_cancer 0.3±0.0717 0.2735±0.0246 0.4103

Table C.82: Summary of classification error results on Microarray datasets for RLIW +
1R with sample∆ combination. Significantly better results shown in bold face.
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Problem Weighted Normal p-value

arcene 0.9778±0 0.9778±0
dexter 0.9778±0 0.9738±0.0124 0
dorothea 0.9778±0 0.9778±0
gisette 0.9778±0 0.9778±0
madelon 0.9778±0 0.9778±0

Table C.83: Summary of stability results on NIPS datasets for RLIW + 1R with sample∆
combination. Significantly better results shown in bold face.

Problem Weighted Normal p-value

arcene 0.302±0.0602 0.258±0.055 0.207
dexter 0.1847±0.0259 0.2133±0.0422 0.3214
dorothea 0.0824±0.002 0.0828±0.0026 0.8466
gisette 0.048±0.0015 0.0483±0.0016 0.7459
madelon 0.2948±0.0083 0.2892±0.0124 0.3576

Table C.84: Summary of classification error results on NIPS datasets for RLIW + 1R
with sample∆ combination. Significantly better results shown in bold face.
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