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Abstract
This thesis explores various economic environments where the structure of social
interactions across individuals determines outcomes. In the first chapter, I study
mutual insurance arrangements restricted on a social network. I test the theory
on data from Bolivian communities. I find that the observed exchanges across
households match the network-based sharing rule predicted by the theory. I argue
that this framework provides a reinterpretation of the standard risk sharing results,
predicting household heterogeneity in response to income shocks. In the second
paper, I study individual and collective behavior in coordination games where in-
formation is dispersed through a network. I show how changes in the distribution
of connectivities in the population affect the types of coordination in equilibrium
as well as the probability of success. In the third chapter, I explore a framework of
learning and turnover in the labor market. I show that positive assortative match-
ing (PAM) extends beyond the stable environment of Eeckhout and Weng (2010)
to a situation of residual uncertainty that exhibits periods of unlearning. I also
extend this setting to allow for career concerns and I show that PAM can only be
sustained under strong assumptions.

Resumen
Esta tesis explora diversos entornos económicos en los que la estructura de las in-
teracciones sociales entre los individuos determina los distintos resultados. En el
primer capı́tulo, se estudia acuerdos de seguro mutuo restringidos en una red soci-
al. Utilizo datos de comunidades bolivianas para medir las predicciones teóricas
y encuentro que los intercambios observados entre los hogares coinciden con la
regla de reparto basada en la red obtenida por la teorı́a. Sostengo que este marco
ofrece una reinterpretación de los resultados estándar de distribución de riesgos,
prediciendo heterogeneidad entre los hogares en respuesta a los shocks de ingre-
sos. En el segundo artı́culo, estudio el comportamiento individual y colectivo en
juegos de coordinación, donde la información se dispersa a través de una red.
Demuestro cómo los cambios en la distribución de las conectividades de la pobla-
ción afectan a los tipos de coordinación en equilibrio, ası́ como la probabilidad de
éxito. En el tercer capı́tulo, analizo un marco de aprendizaje y cambio de personal
en el mercado de trabajo. Muestro que emparejamiento selectivo positivo (PAM)
se extiende más allá del entorno estable de Eeckhout y Weng (2010) a una situa-
ción de incertidumbre residual que exhibe perı́odos de des-aprendizaje. También
extiendo esta configuración para permitir elementos de career concerns y muestro
que el equilibrio de PAM sólo puede sostenerse bajo fuertes supuestos.
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Preface

This doctoral thesis brings together the results from three independent research
projects at the intersection between information economics, development econo-
mics and the economics of social interactions. The three essays share a common
theme in that the particular structure of interactions between economic agents af-
fects payoffs, and therefore of economic outcomes.

In the first chapter, I investigate mutual insurance arrangements restricted on a
social network. My approach solves for Pareto-optimal sharing rules in a situation
where exchanges are limited within a given social network. I provide a formal
description of the sharing rule between any pair of linked households as a function
of their network position. I test the theory on a unique data set of indigenous
villages in the Bolivian Amazon, during the years 2004 to 2009. I find that the
observed exchanges across families match the network-based sharing rule, and
that the theory can account for the deviation from full insurance observed in the
data. I argue that this framework provides a reinterpretation of the standard risk
sharing results, predicting household heterogeneity in response to income shocks.
I show that this network-based variation in consumption behavior is borne out
in the data, and that it can be interpreted economically in terms of consumption
volatility.

In the second chapter, co-authored with Joan de Martı́, I study individual and
collective behavior in global games of regime change where information is disper-
sed through networks. Agents can choose between attacking and not attacking a
status quo whose strength is unknown. Communication with neighboring players
introduces local correlations in posterior beliefs and also induces more accurate
information. We provide general sparseness conditions on networks that allows
for asymptotic approximations. We characterize equilibrium behavior in these ca-
ses, where the accuracy effect dominates the correlation effect. Following this
equilibrium analysis, we show how changes in the distribution of connectivities in
the population affect the types of coordination in equilibrium as well as the likeli-
hood of a successful rally. We find that without a public signal strategic incentives
align, and the probability of success remains independent of the type of network.
With a public signal the network?s degree distribution unambiguously affects the
probability of success, although the direction of change is not monotone, and de-
pends crucially on the cost of attack.

Finally, in the third chapter I develop a framework where workers and firms
learn continuously about the worker’s productivity type, which itself fluctuates
randomly and continuously. Workers receive a competitive spot wage and must
decide when to switch between firms, given their belief about their own type.
Under supermodularity in production, I show that positive assortative matching
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(PAM) extends beyond the stable environment of Eeckhout and Weng (2010) to a
situation of residual uncertainty that exhibits periods of unlearning, defined as in-
creasing levels of uncertainty along a match. I show that risk-neutrality of workers
and skills evolving as a martingale are sufficient to retain PAM. I then extend this
setup to allow workers to exert a level of effort subject to classical career concerns
(a la Hölmstrom) and find that PAM can only be sustained under strong parameter
restrictions.

x



“Thesis” — 2016/4/20 — 10:07 — page xi — #11

Contents

List of Figures xiv

List of Tables xv

1 NETWORK-CONSTRAINED RISK SHARING IN VILLAGE ECONOMIES 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Network Constrained Risk Sharing: A Simple Example . . . . . 8

1.2.1 Canonical Model . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 Overlapping Sharing Groups . . . . . . . . . . . . . . . . 9
1.2.3 Risk Sharing Regressions under Local Insurance . . . . . 11

1.3 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.2 Constrained-Efficient Network Flows . . . . . . . . . . . 15
1.3.3 Comparative Statics and Implications for the Risk Sharing

Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4 Background and Data . . . . . . . . . . . . . . . . . . . . . . . 21

1.4.1 The Tsimane’ Indigenous Communities . . . . . . . . . . 21
1.4.2 The Data . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4.3 Constructing Networks . . . . . . . . . . . . . . . . . . 23
1.4.4 Descriptive and Network Statistics . . . . . . . . . . . . 25

1.5 Empirical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.5.1 Test of Full Risk Sharing . . . . . . . . . . . . . . . . . . 26
1.5.2 Estimating the Income Process . . . . . . . . . . . . . . . 28
1.5.3 Structural Estimation of Network Flows . . . . . . . . . 28
1.5.4 Revisiting the Risk-Sharing Test . . . . . . . . . . . . . . 30
1.5.5 Underlying Heterogeneity in Consumption . . . . . . . . 31

1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.7 Tables and Figures . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.8 Additional Results . . . . . . . . . . . . . . . . . . . . . . . . . 52

1.8.1 Contingent Sharing Rules . . . . . . . . . . . . . . . . . 52
1.8.2 A Model with Network Intermediation . . . . . . . . . . 52

xi



“Thesis” — 2016/4/20 — 10:07 — page xii — #12

1.8.3 Discussion of Weighted Even Path Centrality . . . . . . . 53
1.8.4 Individual and Aggregate Volatility . . . . . . . . . . . . 55
1.8.5 Alternative Centrality Measures . . . . . . . . . . . . . . 56
1.8.6 Estimating the Income Process . . . . . . . . . . . . . . 58

1.9 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2 REGIME CHANGE IN LARGE INFORMATION NETWORKS 67
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.2 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.3.1 Actions, Payoffs and Network . . . . . . . . . . . . . . . 71
2.3.2 Information, Communication, and Belief Formation . . . 72
2.3.3 Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.4 A Finite Network Example . . . . . . . . . . . . . . . . . . . . . 74
2.5 A Network Approximation . . . . . . . . . . . . . . . . . . . . . 77
2.6 Equilibrium With Diffuse Prior . . . . . . . . . . . . . . . . . . 80
2.7 Equilibrium With Non-Diffuse Prior . . . . . . . . . . . . . . . . 84
2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
2.9 Appendix (Sparseness Condition for Approximating Correlated

Networks) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
2.9.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . 95
2.9.2 Finite-Range Dependence and Strong Mixing Sequences . 96
2.9.3 A Naming Algorithm . . . . . . . . . . . . . . . . . . . 97
2.9.4 Conditions on the Growth Rate of Degrees . . . . . . . . 99
2.9.5 Power Functions (a+ b < 1) . . . . . . . . . . . . . . . . 100
2.9.6 A General Result . . . . . . . . . . . . . . . . . . . . . . 100

3 LEARNING, SORTING, AND TURNOVER IN UNSTABLE ENVI-
RONMENTS 101
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.1.1 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.2.1 No Career Concerns . . . . . . . . . . . . . . . . . . . . 105
3.2.2 Equilibrium Analysis . . . . . . . . . . . . . . . . . . . . 112

3.3 Introducing Career Concerns . . . . . . . . . . . . . . . . . . . . 116
3.3.1 Equilibrium Analysis . . . . . . . . . . . . . . . . . . . . 123

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

xii



“Thesis” — 2016/4/20 — 10:07 — page xiii — #13

List of Figures

1.1 A Simple Risk Sharing Economy . . . . . . . . . . . . . . . . . . 9
1.2 The Sharing Rule of a Simple Economy . . . . . . . . . . . . . . 11
1.3 Two Tsimane’ Villages: (a) Kinship Network (b) Trade Network . 13
1.4 Trade Network: Link exists if households exchange food at any

point in the sample. . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.5 Kinship Network: Link exists if Mean Genetic Relation is above 0 38
1.6 Coefficients to Network Centralities in Regression of Edge-Level

Exchanges: Trade Network (Households younger than 4 0) . . . . 44
1.7 Coefficients to Network Centralities in Regression of Edge-Level

Exchanges: Kinship Network . . . . . . . . . . . . . . . . . . . . 44
1.8 Coefficients to Network Centralities in Regression of Edge-Level

Exchanges: Updated Trade Network . . . . . . . . . . . . . . . . 45
1.9 Coefficients to Network Centralities in Regression of Edge-Level

Exchanges: Updated Trade Network (Households younger than 4 0) 45
1.10 Coefficient �2 as a function of Receiver’s degree. Panel A: Trade

Network. Panel B: Kinship Network . . . . . . . . . . . . . . . . 47
1.11 Coefficient �2 as a function of Receiver’s degree. Panel A: Up-

dated Trade Network. Panel B: Updated Trade Network (House-
holds younger than 40 ) . . . . . . . . . . . . . . . . . . . . . . . 47

1.12 Coefficients and Confidence Intervals for Equation 1.14 Partition-
ing Population according to Centrality Measure. Panel A: Trade
Network. Panel B: Kinship Network . . . . . . . . . . . . . . . . 51

1.13 Coefficients and Confidence Intervals for Equation 1.14 Partition-
ing Population according to Centrality Measure. Panel A: Up-
dated Trade Network. Panel B: Updated Trade Network (Age ¡
40) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.1 Size of Attack as a function of ✓ . . . . . . . . . . . . . . . . . . 82
2.2 Size of Attack as a function of ✓ . . . . . . . . . . . . . . . . . . 89
2.3 Less Informed Players choose larger x?

i for c sufficiently low . . . 90

xiii



“Thesis” — 2016/4/20 — 10:07 — page xiv — #14

2.4 Probability of Success against Cost of Failure for model simula-
tions under a powerlaw distributions and with parameters D =
200, �2

0 = 4, �2 = 16. Panel A: ✓0 = 0. Panel B: ✓0 = 2. . . . . . 91
2.5 Probability of Success against Cost of Failure for model simula-

tions under a powerlaw distributions and with parameters D =

200, ✓0 = 0. Panel A: ✓20
✓
= 1. Panel B: ✓20

✓
= 2. . . . . . . . . . . 92

2.6 The Naming Algorithm for a Tree network with n = 20 and d1 =
4, d2 = 4 (i.e. I = 20). Notice that for all i and j with |i� j| > 20
will necessarily lie more than two links away. . . . . . . . . . . . 98

3.1 Strength of Beliefs with Job Turnover: The first panel shows a
situation in which . . . . . . . . . . . . . . . . . . . . . . . . . . 107

xiv



“Thesis” — 2016/4/20 — 10:07 — page xv — #15

List of Tables

1.1 Household Summary Statistics: Variables expressed in adult-equivalent
terms. Averages taken over periods where data is available . . . . 35

1.2 Network Statistics Per Village: Trade Network . . . . . . . . . . . 36
1.3 Network Statistics Per Village: Kinship Network . . . . . . . . . 36
1.4 Hamming Distance per Village between Trade and Kinship Net-

works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.5 Local Correlations: Trade Network . . . . . . . . . . . . . . . . . 39
1.6 Local Correlations: Kinship Network . . . . . . . . . . . . . . . 40
1.7 Local Correlations: Trade Network . . . . . . . . . . . . . . . . . 41
1.8 Local Correlations: Kinship Network (Kinship) . . . . . . . . . . 42
1.9 Full Risk Sharing Test . . . . . . . . . . . . . . . . . . . . . . . 43
1.10 Regression of Edge-Level Exchanges on Predicted Sharing Rule

( = 0.9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
1.11 Regression of Edge-Level Exchanges on Alternative Local Measure 46
1.12 Full Risk Sharing Test for Model Consumption Data: Kinship

Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
1.13 Full Risk Sharing Test for Model Consumption Data: Trade Network 49
1.14 Full Risk Sharing Test for Model Consumption Data: Updated

Trade Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

xv



“Thesis” — 2016/4/20 — 10:07 — page xvi — #16



“Thesis” — 2016/4/20 — 10:07 — page 1 — #17

Chapter 1

NETWORK-CONSTRAINED
RISK SHARING IN VILLAGE
ECONOMIES
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1.1 Introduction
Vast areas of the developing world rely on informal mechanisms of insurance
against random fluctuations in crop-yields and other sources of income. Under-
developed markets and little financial involvement means that households must
often find alternative social arrangements with which to smooth consumption.
Typically, these risk sharing arrangements involve the exchanges of goods and
services within a village or broader community. A great deal of work has gone
into testing the “full risk-sharing hypothesis” under which, if communities are in-
deed hedging risk efficiently, idiosyncratic and independent movements in income
should not correlate with fluctuations in consumption.1 While this test is widely
accepted now as the standard approach to test full insurance, it can only provide
evidence for or against Pareto-optimal allocations; it fails, however, to provide an
accurate alternative characterization below efficiency. Moreover, most empirical
work on the subject has repeatedly rejected full risk sharing in a number of dif-
ferent contexts ranging from India to Tanzania and including Thailand, Peru, and
many others.

In this paper I present a complementary interpretation of the risk-sharing test
that provides a more detailed account of the type of behavior we might observe
when we reject full risk sharing. In particular, I account for local network inter-
actions by constraining Pareto-optimal allocations to a situation where exchanges
are limited within a given social arrangement. As a theoretical contribution, I
provide a formal description of the sharing rule between any pair of linked house-
holds strictly as a function of their network position. I structurally estimate the
sharing rule against a unique data set of indigenous communities in the Bolivian
Amazon, and I show that this description of sharing behavior does a remarkably
good job at describing observed transfers across families. I argue that this frame-
work provides a reinterpretation of the standard risk sharing results, predicting
household heterogeneity in response to income shocks. I show that this network-
based variation in consumption behavior is borne out in the data, and that it can be
interpreted economically in terms of consumption volatitliy. Finally, I show the
theory can account for the level of risk sharing observed in the data.

The current framework provides a general approach to modeling mutual in-
surance organized around local risk sharing groups. It generalizes recent work
that has approached within-group insurance largely as an empirical question.2

1Cochrane (1991) best explained this approach as the cross sectional equivalent to Hall’s per-
manent income hypothesis test, which regressed consumption growth rates over time on ex-ante
variables (Hall, 1978). Indeed, under complete borrowing and lending opportunities consumption
should not respond, over time, to forecastle shocks, just as it should not respond to idiosyncratic
shocks across households under full insurance.

2Hayashi et al. (1996) consider whether extended families can be viewed as collective units

2
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Rather than taking groups as separate, perfectly insured communities, I allow
for a fully general network with interconnected sharing groups that are specific
to each household. I argue that, in this environment, not defining the relevant
local sharing group biases the results of classical tests of full insurance. More
importantly, I show that controlling for this bias does not eliminate the correla-
tion between consumption and income across households: the network structure
generates underlying heterogeneity in sharing behavior, which implies that house-
holds’ income affects consumption even after appropriately controlling for local
aggregates.

I solve a constrained welfare problem in which transfers are limited along
a given social structure. The restriction on exchanges means that whatever a
household receives from its neighbors cannot be shared further down the net-
work; that is, I assume that income can be split and shared only amongst im-
mediate neighbors. This assumption is meant to capture the relatively low levels
of intermediation, relative to direct exchanges, that occur in these types of sub-
sistence economies, where mostly crops and other perishable goods are traded.3
Alternatively, even when risk-sharing involves the transfer of cash as well, urgent
liquidity needs often means households cannot immediately access distant funds
that must first be intermediated by the network.4 While I take the lack of any
intermediation as a simplifying assumption, I also show that most results can be
sustained when allowing for greater movement of funds.5

In this context of no intermediation I solve for the non-contingent (or fixed)
sharing rules that maximize welfare. These type of sharing rules specify a fraction
of each household’s income consumed by each sharing partner, where this fraction
is constant across all states of the world. In Section 1.2 I discuss the implications
of these type of sharing rules in the context of a very simple example, and I show

sharing risk efficiently. Mazzocco and Saini (2012), for instance, argue that the relevant sharing
group in India is the caste, rather than the village. Munshi and Rosenzweig (2009) also find that
the caste is the relevant group to explain migration patterns in rural india. More recently Attanasio
et al. (2015) test for efficient insurance within extended families in the U.S.

3Hooper (2011) for instance mentions it is quite rare to observe the same good exchange hands
twice within Tsimane’ communities. Similarly, Chiappori et al. (2013), Kinnan and Townsend
(2012) and Udry (1994) document that an overwhelming share of the economies they study in
Thailand and Nigeria are formed by crops, livestock and other perishable goods.

4You can think of this assumption as the complementary version of the assumptions driving
the model of Ambrus et al. (2014). In that model, funds can travel indefinitely along the network,
but each edge has some exogenous capacity constraint that limits the amount of funds it can inter-
mediate. In this case, intermediation is ruled out, but the amount of funds along any given edge
is endogenized. These type of limited interactions are also studied by Bourlés et al. (2015) in the
context of altruism in networks, with very different implications.

5In Section 1.8.2 I show how to extend results to a general case with network intermediation.
Notice that without some limit on how far funds can exchange hands along the network, the welfare
problem is unconstrained and full insurance obtains as the unique outcome.

3



“Thesis” — 2016/4/20 — 10:07 — page 4 — #20

that they allow me to isolate network effects from income distributions in order to
obtain simple predictions on sharing behavior across households.

Of course, various other explanations have been provided to account for the
failure of full risk sharing in village economies. For instance, a number of pa-
pers have argued that incomplete information, limited commitment, heteroge-
neous preferences, or the presence of outside markets are all capable of generating
inefficiencies in mutual insurance mechanisms.6 In this context, it is worth ask-
ing why it makes sense to model social networks as a constraint on the classical
welfare problem. Evidence suggests that individuals select into particular social
arrangements precisely to mitigate informational frictions and to guarantee com-
pliance, so that within these social arrangements mutual insurance mechanisms
function rather well.7 Moreover, there is strong evidence that informational fric-
tions within these social spaces are relatively unimportant.8 In this paper I abstain
from considering the forces that shape particular social networks. Instead, I take
them as given and study the type of efficient outcomes we expect within these
restricted environments.

My first main result relates constrained-efficient transfers to a global measure
of households’ relative importance in the network. This measure reflects a house-
hold’s direct and indirect interactions along the entire network. In this manner,
the proposed measure bears some similarity to previous statistics — for instance
Katz-Bonacich or PageRank — that capture higher-order dependencies as they
feed back along a given network of connections. The particular flavor of this
network measure has to do with the tradeoff faced by the planner between vari-
ance and covariance considerations. I find that, for any network, the constrained-
efficient exchanges across any pair of households follows a simple relationship
between the sender and receiver’s network measures.

I show that this framework redefines the relationship between consumption
and income in a setting of partial insurance on a network. This has important
implications for the standard risk sharing tests. Specifically, the model provides
heterogeneous predictions on household’s response to income shocks that emerge
from households’ different positions in the network. This provides insight into the

6See for instance Incomplete information (Udry, 1994); Limited Commitment (Ligon et al.
2002); Heterogeneous preferences (Schulhofer-Wohl 2015, Mazzocco & Saini 2015); Outside
Markets (Munshi & Rosenzweig 2014, Galeotti et al. 2015, Saidi 2015).

7Munshi (2014) describes the general tendency of households to arrange into particular social
patterns that avoid certain commitment issues. On the theoretical side, a long list of papers have
studied the type of networks that might emerge under limited commitment and similar frictions.
Bramoullé & Kranton (2007), Jackson et al. (2012), and Ambrus et al. (2015) are just a few.

8In his work on Nigerian communities, for instance, Udry (1994) argues that loan arrangements
are very informal, with no collateral, explicit interest rates or repayment dates, and that households
know each other well. Hooper (2011) also finds similar evidence of strong informational flows in
the Tsimane’ networks of Bolivia that I study in this paper.
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varied insurance possibilities of households when full risk sharing is rejected. I
show that, in certain scenarios, these values can be mapped to important economic
features, such as consumption volatility.

Having established the theoretical results, I examine a unique data set of about
250 households in 8 different indigenous villages in the Bolivian Amazon basin,
during the years 2004 to 2009. This data is particularly well suited for my analysis
as it provides information on the caloric exchanges across pairs of households over
time.9 This allows me to structurally estimate the model by fitting the theoretical
relationship between network position and exchanges at the edge level. Moreover,
compared to other models of risk sharing networks, I can estimate the model at
a much finer level of variation (i.e. using edge-level data), and separately from
aggregate considerations on consumption growth. I find that the empirical flows
across connected dyads indeed respond to the network structure as the model pre-
scribes. I show that once we account for this restriction on the planner’s problem,
we can effectively explain all the variation in consumption that correlates with
households’ income. Finally, I also test the model’s implication on network-based
heterogeneity of households’ response to own income shocks, and I find that the
data exhibits the same type of variation that the model prescribes. I do this by
constructing a couple of tests that can be applied to many other data sets that
include network and income data; it can be tested on a wide range of empirical
settings. The results suggest that previous failures of full-risk-sharing tests are
best understood by invoking restrictions on bilateral exchanges.

Related Literature
The distribution of uncertainty along social ties has, in the past several years,
drawn a lot of interest from economists. Starting with Bramoullé and Kranton
(2007a,b) and Bloch et al. (2008), a number of recent contributions — such as
Jackson et al. (2012), Billand et al. (2012), Ali and Miller (2013a,b), and Am-
brus et al. (2014) — have focused on enforcement concerns and the role of social
capital in sustaining cooperative behavior. Most of these studies assume networks
serve a dual role as both medium of exchange and social collateral, delivering ef-
ficient and stable structures for a set of exogenous, and fixed, bilateral transfers.
In other words, most of these papers assume a sharing behavior and find networks
that sustain it. Bramoullé and Kranton’s (2007a,b) model, for instance, assumes
that a connected component equally distributes its surplus independent of the so-
cial structure, so that inequality is ruled out. Billand et al. (2012) also assume a
sharing behavior whereby high-income households transfer a fixed amount to low-

9Exchanges are measured in calories: food is the primary source of income and trade for
subsistence economies like the Tsimane’ communities studied in this paper.
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income neighbors. I take a different view that abstracts from enforceability con-
siderations altogether and instead provides an endogenous prediction of efficient
transfers along a network. The focus on the distribution of surplus, and away from
enforceability, appears most recently in work by Ambrus et al. (2015) that stud-
ies cross-group incentives for social investments. However, their concern has to
do with network formation, so they also assume some exogenous split of surplus:
bilateral exchanges are assumed to split the total surplus according to the Shapley
value, which, in the particular setting they focus on, reduces to equal sharing. Per-
haps closest in spirit is the work by Ambrus et al. (2014) that similarly refrains
from assuming, a priori, the sharing pattern across connected pairs; they other-
wise assume a distribution of “link values” that are perfectly substitutable with
consumption, so that coalition-proof transfers are, again, ultimately determined
from outside the model. The current paper refrains from engaging with these diffi-
cult strategic considerations, and instead solves for a simple constrained-efficient,
network-based sharing rule that provides a number of testable implications.

On the empirical side, this paper joins the ranks of a long strand of research de-
voted to the estimation, and interpretation, of risk-sharing patterns in data. While
newer data sets have begun to include social surveys that allow us to test network
models directly, the empirical risk-sharing literature has a longer tradition, and
one that, with occasional exceptions, has overwhelmingly insisted that communi-
ties operate below efficiency. The work of Mace (1991), Cochrane (1991), and
Townsend (1994) provided the theoretical foundations for measuring correlations
between household income and consumption, which, by now, has become the hall-
mark of all empirical tests on risk sharing. Since then, a healthy number of studies
have sprung up to investigate one or another economic dimension of risk-sharing
communities — from the impact of kinship ties on credit constraints in the Philip-
pines (Kinnan and Townsend, 2012) to the decreased social mobility induced by
local sharing along caste lines (Munshi and Rosenzweig, 2009). Whatever the
particularities, all these studies perform the standard test of full risk-sharing and,
together, deliver a cogent narrative that by and large strays away from efficiency.
For instance, Ligon (1998) studies a private information alternative to the com-
plete market model and rejects full insurance in rural south India. Fafchamps and
Lund (2003) famously reject full insurance for Philippine communities and show
that the extent of risk sharing is limited by the extent of interpersonal networks.
Mazzocco and Saini (2012) reject full insurance for indian data at the village but
not at the caste level, while Munshi and Rosenzweig (2009) reject efficiency at
the caste level as well. On their study of investment decisions under exogenous
income shocks to networks in rural Mexico, Angelucci et al. (2015) however find
that they cannot reject full insurance within extended families. The list is long,
though, and more often than not signals of full risk-sharing are absent from a
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wide range of settings.10 More importantly, Saidi (2015) studies credit demand
in the same Tsimane’ indigenous communities that I study and also rejects full
insurance.

Finally, the paper also relates to a number of studies that have sought to pro-
vide a direct explanation for the repeated failure of efficiency in data. For in-
stance, Ligon et al. (2002) model optimal contracts under limited commitment.
They estimate their model on three separate indian villages, and argue that this
type of transaction cost accounts for the magnitude of departure from full in-
surance. More recently, a couple of studies have argued that heterogeneous risk
preferences might force an interpretation of full risk-sharing test that is far too pes-
simistic. (Mazzocco and Saini (2012) or Schulhofer-Wohl (2011)). Schulhofer-
Wohl (2012), for instance, argues that if households’ variation in risk preferences
are cyclical then not accounting for these explicitly introduces an omitted variable
bias that pushes the coefficient of own income upwards, leading to false rejections
of full insurance. Mazzocco and Saini (2012) have similarly developed empirical
tests for heterogeneous preferences and provided a modified empirical procedure
to test for efficiency. Most importantly, Fafchamps and Lund (2003) address the
failure of efficient insurance in the data by invoking the role of gifts and remit-
tances in risk-sharing and reject mutual insurance at the village level, suggesting
instead that households receive transfers from a network of family and friends.
Although they don’t model network flows explicitly, their findings serve as the
principal motivation for this paper.

The remainder of the paper is organized as follows. Section 1.2 goes over the
standard test of full insurance and argues how the current setup affects this esti-
mation procedure using a simple example. Section 1.3 introduces the theoretical
framework, solves for the efficient sharing behavior, and provides implications
for the test of full insurance. Section 1.4 provides background information about
the data and summary statistics. In Section 1.5 I structurally estimate the model,
and draw a number of testable implications for risk-sharing tests. Section 1.6
concludes.

10As Schulhofer-Wohl (2012) reminds us, full insurance has been rejected in data from the
United States (Attanasio and Davis 1996; Cochrane 1991; Dynarski and Gruber 1997; Hayashi et
al. 1996), Côte d’Ivoire (Deaton 1997), India (Munshi and Rosenzweig 2009; Townsend 1994),
Nigeria (Udry 1994), and Thailand ( Townsend 1995). Mace (1991) does not reject efficiency in
U.S. data, but Nelson (1994) overturns this result.
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1.2 Network Constrained Risk Sharing: A Simple
Example

In this section I present the canonical model of full risk sharing and I describe the
empirical approach that emerges from it to test full insurance from data. I then
describe the main assumptions behind this paper and how it refines the concept
of sharing groups. I use a very simple example to describe the sharing rules I
obtain, and I explain what they claim about the distribution of insurance across
the population. Finally, I present the implications of this model on the standard
risk-sharing tests and I show that, 1) not defining the appropriate local sharing
groups generates biased estimators, and 2) network asymmetries generate vary-
ing predictions on the impact of income shocks on consumption, which in turn
provides a network story behind the rejection of full insurance. Section 1.3 then
generalizes all these arguments to a full fledged model with an arbitrary network
and a general income process for households.

1.2.1 Canonical Model
The classical risk sharing models of Cochrane (1991), Mace (1991), and Townsend
(1994) solve for the ex-post pareto-optimal allocations by defining a planner prob-
lem as follows,

max
ci(!)

X

!

⇡ (!)
X

i

⌘i ui (ci (!))

where ⇡ (!) represents the probability of state ! and where ⌘i represents i0s Pareto
weight in the welfare function. This problem is subject to the constraint that total
consumption not exceed total income in any state of the world, or that

P
i

ci (!) 
P
i

yi (!) for all ! 2 ⌦, .11 The first order conditions yield the well known full

insurance equations known as Borch’s rule. It states that the ratio of marginal
utilities across any two agents is constant across states. Formally, we can solve
for the problem above and, for any two households i and j, obtain the following
expression,

u0
i (ci (!))

uj0 (cj (!))
=

⌘j
⌘i

, for all ! 2 ⌦ (1.1)

This expression has been used to develop a popular test of full insurance. Indeed,
equation (1.1) states that, under full risk sharing, consumption should not respond
to idiosyncratic shocks after controlling for aggregate shocks. The following type

11Nondecreasing utility functions on consumption means that the constraint will hold with
equality.
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1

23

Figure 1.1: A Simple Risk Sharing Economy

of regressions,

log(cit) = ↵i + �1log(yit) + �2log(ȳt) + ✏it (1.2)

where ȳt represents aggregate income, have been used to test for efficient out-
comes, in which case �1 = 0 and �2 = 1. Time and again, �1 is found to be
positive and significant and �2 below one. Unfortunately, not much can be learned
from these results other than the existence, or not, of full insurance. The follow-
ing approach attempts to give a more nuanced understanding of the type of sharing
behavior that might be generating these estimates.

1.2.2 Overlapping Sharing Groups
An important feature of the classical risk sharing model above is that all house-
holds form part of the same risk sharing group. In this paper, I relax this assump-
tion by considering the possibility that mutual insurance is local. This allows me
to capture a number of relevant intermediation costs that might make it impossi-
ble to define a unique sharing group.12 If these motives are strong, households
can only access local risk sharing groups defined by their immediate neighbors
(or trading partners).13

To fix ideas, consider the economy presented in Figure 1 where households
2 and 3 can only trade with household 1. For simplicity, imagine all households

12For instance, the Tsimane’ communities that I study in this paper transfer highly perishable
goods - mostly prepared food and game. In other contexts where risk sharing involves the transfer
of cash as well, urgent liquidity needs means individuals cannot immediately access distant funds
that must be intermediated.

13In Section 1.8.2 I show how to extend the model to all levels of intermediation. Notice that if
intermediation is sufficiently high, all households access the same risk sharing group and efficiency
obtains as above.
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obtain a random income realization yi (!) that is i.i.d. from some distribution
F (µ, �2). The lack of intermediation means households must access different,
overlapping risk sharing groups — for instance, the risk sharing group of house-
hold 2 consists of households 2 and 1 only. Let ↵ij represent the fraction of j0s
income consumed by i. The situation of this economy can be written as follows,

c1 (!) = ↵11y1 (!) + ↵12y2 (!) + ↵13y3 (!)
c2 (!) = ↵21y1 (!) + ↵22y2 (!)
c3 (!) = ↵31y1 (!) + + ↵33y3 (!)

(1.3)

This formulation provides a very tractable way to define the risk sharing rule in
this economy by expressing consumption explicitly in terms of bilateral transfers,
↵ij . Notice that we can describe the canonical model above as the particular case
where households 2 and 3 are able to trade with each other because they are di-
rectly connected.14 In this case, all households clearly access the same risk sharing
group and efficiency obtains.

In this paper I solve generically for the set of non-contingent sharing rules that
maximize welfare in this setup with no intermediation. A non-contingent sharing
rule means that the fraction ↵ij of j0s income consumed by i is constant across all
states !.15 In this paper I show how to solve analytically for this type of sharing
rule for any given network. As an example, consider the economy of figure 1,
and, in order to make the argument as simple as possible, set all Pareto weights
⌘i equal and set µ2 = �2. Applying the main theoretical result of this paper we
obtain the following simple description between a household’s consumption and
the incomes of its relevant sharing group:

c1 (!) = 5
21y1 (!) + 9

21y2 (!) + 9
21y3 (!)

c2 (!) = 8
21y1 (!) + 12

21y2 (!)
c3 (!) = 8

21y1 (!) + + 12
21y3 (!)

(1.4)

This situation is depicted in Figure 2. A great deal can be gleaned already from
this very simple example. Notice that households 2 and 3 share a larger fraction of
their income with 1 than 1 shares with them ( 9

21 > 8
21 ); still household 10s relevant

sharing group is larger and as a result 1 consumes much less of its own income
than 2 or 3 ( 5

21 < 12
21 ). Moreover, it is easy to show that consumption volatility

associates positively with this value, so that household 1 (with a lower coefficient)
14Or, alternatively, by intermediating through household 1.
15In 1.8.1 I discuss the alternative assumption that sharing rules are contingent — i.e. ↵ij (!).

I show how it restricts the set of states for which the efficient condition (1.1) holds, and I demon-
strate the inherent difficulty in isolating general network effects from particular income realizations
for these type of contingent sharing rules. I also provide some empirical evidence that suggests
informal exchanges in village economies might be closer to a fixed (or non-contingent rule) than
to an extremely flexible sharing rule.
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Figure 1.2: The Sharing Rule of a Simple Economy

obtains a less volatile consumption stream than households 2 and 3. This setup
therefore provides network-based heterogeneity on households’ response to own
income shocks and relates it to the distribution of risk sharing opportunities.

1.2.3 Risk Sharing Regressions under Local Insurance
Ultimately, these predictions generate enough information on household consump-
tion to provide reasonable explanations for the rejection of full insurance. I con-
sider how this affects the empirical tests of risk sharing described in the previous
section. Let us stick to the simple economy in Figure 1 and consider rewriting
equations (1.3) in the form of the classical risk-sharing specification of equation
(1.2) with a common aggregate income term,

c1t = (↵11 � ↵12) y1t + ↵12ȳt + ✏1t
c2t = (↵22 � ↵21) y2t + ↵21ȳt + (✏2t � ↵21y3t)
c3t = (↵33 � ↵31) y3t + ↵31ȳt + (✏3t � ↵31y2t)

These equations reflect three important themes of this paper: 1) coefficients on
own income are generically different from zero for all households — i.e. ↵ii 6=
↵ij 2) these coefficients vary according to households’ position in the network,
and 3) imposing the common sharing group on all households generates biased
estimates: notice the last two equations contain weighted incomes in the error
term.16 The classical risk sharing test in (1.2), pools these equations and obtains

16If incomes are positively correlated, then imposing a common aggregate variable biases es-
timates upwards. Schulhofer-Wolf similarly uncovers a bias in the classical risk-sharing specifi-
cation that comes from heterogeneity in income preferences. Here, the heterogeneity is induced
by positions in social structures. In any case, as I show below, we can adjust for the bias and still
expect positive coefficients to income in this setup.
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a unique estimate for �1; given the previous discussion we expect this estimate
to be different from zero and positive. In the first column of Table 1 I show the
estimates for the simple example of Figure 1 for simulated data.17 As expected,
�1 is statistically significant and close to 0.2, while the coefficient on the common
aggregate income term, �2 , is statistically lower than 1.

In order to isolate the network effect from the bias in �1, consider estimating
(1.2) with the relevant local sharing group instead. In this case, estimates are no
longer biased, but we still obtain heterogeneous estimates, �i, for the coefficients
on own income. As a result, the risk sharing test still delivers positive estimates.
To see this rewrite again equations (1.3) in the form of (1.2), but now we allow for
household-specific aggregates, ȳit, that sum over the incomes of i0s local sharing
group. In this case we have

c1t = (↵11 � ↵12) y1t + ↵12ȳ1t + ✏1t
c2t = (↵22 � ↵21) y2t + ↵21ȳ2t + ✏2t
c3t = (↵33 � ↵31) y3t + ↵31ȳ3t + ✏3t

Because aggregates are now household-specific, the additional terms in the error
term disappear and we obtain unbiased estimators. Notice, however, that coef-
ficients to own income are different from zero so long as ↵ii � ↵ij 6= 0. This
implies that the pooled regression will again deliver positive coefficient, �1, even
with the appropriate local aggregates. I present the results to this local sharing
group version of equation (1.2) in the right column of Table 1. Again, the coeffi-
cient to income is positive, as expected, although estimates decrease by one order
of magnitude.

Real world social structures are usually far more complicated than these sim-
ple examples. Figure 4 plots two of the networks I build from data in one of eight
indigenous communities I study in this paper; the one on the left is built from
kinship data and the one on the right on trade data.18 These networks are orders
of magnitude more complicated. Still, I show that the arguments above can be
extended generically for any network and general income process across house-
holds. Moreover, this unique data set contains information on the transfer of food
across households over time, so I am able to structurally estimate the endogenous,
network-based sharing rule that I derive in this paper. I find it does a remark-
ably good job at describing the patterns of exchange across households in these
subsistence economies.

17I simulate log-normal income data for all three households with t = 100, 000 and I obtain
household consumption as indicated by the sharing rule in (1.4). I then run the standard risk-
sharing regression on logged data, controlling for household fixed effects.

18Refer to section X for a detailed description of the types of networks constructed and a dis-
cussion on the relative merits of each. Refer to Figures 1 and 2 in the appendix for a visual plot of
all villages for each of the network types.
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Figure 1.3: Two Tsimane’ Villages: (a) Kinship Network (b) Trade Network

1.3 The Model
I study an economy in which households face uncertainty about their income real-
izations, but may redistribute incomes through a given network of social connec-
tions. I characterize efficient transfers as a function of households’ position in the
network when the movement of funds is restricted. In section 3.1 I describe the
theoretical setup. In section 3.2 I solve for the constrained-efficient set of transfers
and describe how they relate to the underlying network. In section 3.3 I provide
certain properties of the sharing rule and describe its behavior more closely for
some simple structures.

1.3.1 Setup
Consider a population of size N arranged in a network L = (V,E), consisting
of a set V of households (vertices) and a set E of pairs of elements of V that
represent links (edges) across these households. I assume the network is undi-
rected, so that the pair of vertices in E is unordered. It is also useful to define
an alternative characterization of this social structure by an adjacency matrix G,
where gij = 1 if and only if {i, j} , {j, i} 2 E. Each connection can represent
a friendship, kinship relation, or other type of social connection between the two
parties involved. We will refer to i’s neighborhood as the subset of N defined
by Ni = {j 2 N | eij 2 E} . The degree of a vertex i measures the number of
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connections of i and is defined as the cardinality of Ni.
All households face risky endowments. Denote the vector of random endow-

ments by y = (yi)i2N , drawn from some joint distribution F with mean µ and
variance �2. I assume a common covariance between the incomes of any two
agents and denote it by ⇢ 6= 0. I assume throughout that |⇢| < �2 so that incomes
are not perfectly correlated.

Households share incomes along a social network, so that consumption levels
will differ, in general, from their income realizations. Incomes can only be ex-
changed once, so that households consume incomes from immediate neighbors.19

The shares of neighboring endowments consumed by a given household are de-
fined ex-ante and are non-contingent. Together this implies that a household’s
consumption in state ! can be defined as a linear combination of neighbors’ in-
comes as,

ci (!) =
X

j

gij↵ijyj (!) (1.5)

where ↵ij represents the share of j0s endowment that is consumed by i. We will
also define ↵i = (↵ij)j2Ni

as the vector of i0s incoming shares. By defining the
“sharing matrix” A as Aij = gij↵ij , we can express equation (1.5) in matrix
form in the following way, c = Ay, where I drop the explicit dependency on !
from now on for notational convenience. Of course, the elements of A represent
percentage claims on neighboring incomes and must therefore satisfy a feasibility
condition that all claims on a given endowment sum to 1, which can be expressed
as 1 = A01. Finally, I assume all households have quadratic utility functions:

u (ci) = ci �
1

2
�c2i

where � is the common coefficient of risk aversion.
I now define the planner problem and provide a short discussion on the partic-

ular form of the objective function and the constraints.

Definition 1. The planner problem is defined as,

max
{↵ij}ij

E
P
i

u (ci) = min
{↵ij}ij

P
i

0

@µ2

 
P
j

gij↵ij

!2

+ �2
P
j

gij↵
2
ij + ⇢

P
k 6=j

gikgij↵ij↵ik

1

A

(1.6)
subject to ↵ij � 0 for all i, j 2 N and that

P
i

↵ij = 1 for all j 2 N

19In Section 1.8.2 I show how this assumption can be relaxed to allow for network intermedia-
tion.
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The form of equation (1.6) exploits the linear mean-variance tradeoff of ex-
pected utility: the first term in brackets corresponds to the squared mean of con-
sumption, while the next two terms correspond to the variance of consumption.20

The constraints on the planner problem reflect the standard feasibility conditions
that shares are positive and sum to one. Finally, since the sum is convex in shares
and the constraint set is linear, the maximization is a convex program and the first
order conditions completely characterize the optimal solution. In the next section
I define these optimality conditions and explore the type of network interactions
that are contained in them. I then provide the general solution for any network G
and a general class of distributions F .

1.3.2 Constrained-Efficient Network Flows
Having defined the economy and the welfare problem in the previous section, we
are now ready to obtain a description of the sharing rule for any given network.
To do this in a way that clarifies the type of network interactions that emerge,
I first analyze the planner’s optimality condition in some detail. The first order
conditions of (1.6) defines the share ↵ij that i receives from j (for each pair i, j 2
N ) as,

↵?
ij = gij(⇤j � 

X

k

gik↵
?
ik) for all i, j 2 N (1.7)

where ⇤j = �j

2(�2�⇢) , and �j > 0 is the multiplier for j0s constraint, and where

 = µ2+⇢
�2�⇢

> 0 captures the shape of the income distribution. It is worthwhile to
examine equation (1.7) in some detail. First of all, notice that if i and j are not
connected, gij = 0 and i consumes none of j0s income. Instead, if gij = 1 then the
fraction of j0s income consumed by i depends on two terms. The first term, ⇤j ,
captures the relationship among all of j0s shares, as governed by j0s constraint,P
i

↵ij = 1. It enters positively because a drop in one of j0s shares (holding

everything else constant) would increase ⇤j , and thus force all of j0s shares up to
meet the constraint. As such, this term effectively connects all of the first order
conditions pertaining to j. For instance, if no other effect existed, ⇤j would set all
of j0s shares equal to each other. However, in most situations j0s shares are not

20Notice we can write the planner problem as, Eu (ci) = E
P
i
(ci)� 1

2�
P
i

⇣
E (ci)

2 + var (ci)
⌘

and the first term drops out because aggregate consumption must equal aggregate income by
the constraints— i.e.

P
i
ci =

P
i
yi. Therefore, the planner problem reduces to minimizing

P
i

⇣
E (ci)

2 + var (ci)
⌘

which corresponds to the expression in Definition 1. In the appendix I

show this problem corresponds to the minimization of expected inequality and I relate it to other
similar results for CARA utility in Ambrus et al. (2015).
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equal, given the second term in (1.7). This second term determines how all shares
received by i affect ↵ij — the more i receives from some neighbor k the less
it receives from j (and vice versa), where the constant  mediates the strength
of this response. The value of  captures the relative variance and covariance
considerations of the planner: as covariance effects increase (and  increases),
j0s shares respond more to the value of other shares.21 To sum up, the share of
j0s income consumed by i responds, on the one hand, to all shares coming from j
(through ⇤j) and, on the other hand, to all shares going to i (through  ).

More generally, the second term in (1.7) defines a recursive relationship for
↵ij . Cutting through the recursivity allows us to reframe the optimality condition
(1.7) in terms of the constraints ⇤k as follows22,

↵?
ij = gij

 
⇤j �

 

1 + di

X

k

gik⇤k

!
for all i, j 2 N (1.8)

Given the arguments above, ⇤k connects all of household k0s optimality condi-
tions via k0s constraint (if ↵ik decreases, then ↵jk increases for all j connected to
k, holding everything else constant). Therefore, equation (1.8) expresses ↵ij not
as a function of all shares that i receives (as in (1.7)), but instead as a function of
the full set of interactions for each of i0s partners. That is, it contains all the indi-
rect interactions that affect ↵ij . The shape of this expression clarifies the form in
which indirect effects — captured by the values of ⇤ = (⇤1,⇤2, . . . ,⇤n) — feed
into the optimality condition of the planner. The challenge consists in determining
the exact shape of these indirect effects as a function of the network. It turns out
we can obtain a recursive formulation for these constants in the spirit of other well
known vertex similarity measures such as Katz-Bonacich or PageRank.23 This is
the content of Proposition 1.3.1.

Proposition 1.3.1. The constrained-efficient risk sharing agreement for any net-
work defined by G is characterized by a set of transfers given by,

↵ij = gij

 
Mj ( ,G)�  

1 + di

X

k

gikMk ( ,G)

!
(1.9)

where Mi ( ,G) corresponds to i’s Weighted Even-Path Centrality (WEPC) de-

21Conversely, when controlling the variance becomes more important to the planner than co-
variance effects, the term  decreases and the planner sets all of j0s shares much closer to each
other, as demanded by the ⇤j term in (1.7)

22This is shown in the proof of Proposition 1.3.1.
23See, for instance, Leich, Holme and Newman (2006) for a theoretical account of vertex simi-

larity in networks.
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fined recursively as,

Mi ( ,G) =
1

di

 
1 +

X

l,k

gikgkl
 

1 + dk
Ml ( ,G)

!
(1.10)

Proof. See Appendix.

Proposition 1.3.1 characterizes the full set of shares, A ( ,G), that defines
the interior solution to the planner problem for any given network. As discussed
above, the solution depends on the parameter  and on the positions of each
household in the network. The form in which the network defines the efficient
sharing rule has to do with interactions among neighbors of neighbors (in other
words, among households located two links apart). To gain some intuition, recall
the network interaction terms in equation (1.7): the shares going to household
i are substitutes. This implies that households two links apart (with a common
neighbor, say, i) interact directly as shown in equation (1.7). But indirect effects
play a crucial role here as well. To see this, notice that these two households not
only interact through their transfer to i, but also exchange resources with other
partners, and these other relations affect what i receives from them, given their
constraints that

P
i

↵ij = 1. This is the main message behind equation (1.8). As a

result, each household connected to i not only interacts directly with each other as
in (1.7), but they also interact indirectly with others’ sharing partners. The recur-
sive definition of network centrality in Proposition 1.3.1 reflects these arguments:
it says that i0s centrality depends on the centralities of i0s neighbors’ neighbors
(i.e. those households two links apart). Finally, Proposition 1.3.1 says that the
sharing rule between any two households depends positively on the sender’s mea-
sure, and negatively on the sum of measures of the receiver’s neighborhood. It
is sometimes helpful to think of this tradeoff as capturing the extent to which the
sender’s indirect interactions in the network cannot be accessed by any other of
the receiver’s partners.

The previous discussion argues that households at distance two interact di-
rectly, but also that households at distance four, six, eight etc.. interact indirectly.
With this in mind, I show that the centrality measure captures all these direct
and indirect effects across the network. The crucial element in this setting (fol-
lowing the previous arguments) consists of a network statistic that aggregates all
even-length paths for every household, weighted in some particular way. In other
words, Proposition 1.3.2 solves through the recursive definition of Proposition
1.3.1 in order to provide a reinterpretation of network centrality that clarifies the
previous discussion.

17
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Proposition 1.3.2. Household i0s WEPC measure corresponds to a weighted sum
of all even-length paths starting from i,

Mi ( ,G) =
1

di
+
X

q2N

X

j2N

X

⇡ij2⇧2q
ij

W (⇡ij) (1.11)

where the weight of each path ⇡q
ij = (i0, i1, i2, . . . iq) of length q from i to j (i.e.

i0 = i and iq = j) is given by,

W (⇡ij) =
1

di0

 

1 + di1

1

di2

 

1 + di3
. . .

1

diq
(1.12)

Proof. See Appendix.

Recursive measures like the one in equation (1.10) are common in the net-
works literature. These can be usually expressed similarly as the sum of all
weighted paths starting from some household. I refer the reader to Section 1.8.3
for a more detailed and technical discussion of these graph measures and how the
WEPC relates to them. In the context of the present discussion, however, it is
interesting to note that contrary to other similar measures that weight all paths of
a certain length equally, the current measure elicits path-specific weights, as de-
scribed in equation (1.12). These weights reveal once more how the constraints
(which weight all shares evenly as one over the degree, 1

di
) are used to connect

long chains of interactions, in which two households interact via a common neigh-
bor i through the term  

1+ di
, as shown in equation (1.8).

In the next section I work through some properties of the sharing rule, and
I argue the type of effects we expect in the estimation of standard tests for full
insurance for some simple networks. In a way, the reader might want to think of
this section as a more complete version of section 2, now that the sharing rule has
been defined.

1.3.3 Comparative Statics and Implications for the Risk Shar-
ing Test

Section 2 argues, like other recent papers, the importance of specifying the appro-
priate risk sharing group for each household when running the risk sharing tests.
However, it also makes the case that coefficients to own income can generally
be different from zero and that these coefficients vary across households, so that
full risk sharing is rejected even at the appropriate sharing level; If networks are
sufficiently symmetric, though, then households pass the Townsend (1994) test
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whenever local sharing groups are correctly controlled for. In this section I com-
plement these arguments by working through two simple network structures using
the sharing rule developed in the previous section.

First I show how, under symmetric structures, the sharing rule indeed boils
down to a simple intuitive sharing behavior that predicts the standard efficiency
results, when controlling for aggregate income of the relevant, household-specific
sharing group. The most symmetric structure is the regular network — this is
a network where every household is connected to k identical households, so all
households are in identical positions. Following the arguments of section 2, we
write household consumption in the form of risk sharing test

cit = (↵ii � ↵ij) yit + ↵ij ȳit + ✏it

where ȳit represents aggregate income of i0s local sharing group (i.e. i0s neighbor-
hood). It is clear that the coefficient to i0s own income is zero (as in the Townsend
tests) if ↵ii = ↵ij . This is true of regular networks.

Proposition 1.3.3. The constrained-efficient sharing arrangement for any regular
network with a common degree equal to k corresponds to the equal sharing rule
defined as,

↵?
ij = gij

1

k
(1.13)

As a result, the first-best allocation is obtained for complete networks.

Proof. See Appendix.

Of course the regular network is a very rare and extreme form of symmetry.
In reality, social networks are far less structured and will therefore predict widely
different transfers for different households. In these other cases, we expect instead
that ↵ii 6= ↵ij and therefore that the coefficients to own income will be positive
and different across households. To take the most extreme example, consider the
star network. In this network, one household is connected to all other households,
that are otherwise not connected to anyone. In this case, I show the sharing rule
simplifies to a simple expression relating to the size of the network and the level
of connectivity of each household.

Proposition 1.3.4. The constrained-efficient sharing arrangement for a star net-
work of size n is given by,

↵?
ij = gij

 
1

1 +
�
n
2 + 1

�
 

✓
1

dj
+ 

◆!

for all j 6= i.
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Proof. See Appendix.

It is easy to see from this expression that flows towards the center consumes a
smaller fraction of own income than other households. In fact, the star represents
an extreme situation in which the center can very quickly be left to consume none
of its own income. 24 Because the center mediates among a great number of other
households, it benefits from diversification so long as incomes are sufficiently
uncorrelated. Therefore, high centrality translates to lower consumption variance,
and therefore the distribution of coefficients to own income across the population
obtains a particular interpretation in terms of sharing opportunities — something
that is not available in the standard risk sharing tests of Townsend (1994).

Finally, the value of  can also provide drastically different predictions on the
type of sharing behavior. Notice that if  tends to zero — for instance for i.i.d.
variables (⇢ = 0) with small ratio µ2

�2 — then the optimality conditions imply that a
household shares equally with all its neighbors (i.e. that ↵ij = gij

1
dj

).25 This is not
surprising: extremely low values of represent situations where only minimizing
aggregate volatility of uncorrelated earnings is important; this is accomplished
by maintaining all shares as equal as possible.26 This result poses a challenge in
identifying the sharing behavior from data. Indeed if the true value of  is low, it
might be impossible to distinguish between sharing behavior described generally
in Proposition 1.3.1 and a simpler, heuristic behavior such as equal sharing; both
prescriptions should perform well as statistical models. In Section 3.4 I explore
an alternative theoretical prediction of Proposition 1 in order to strengthen the
belief that (1.9), and not (1.13), appropriately describes the sharing patterns of the
Tsimane’ communities.

On the other hand, as incomes correlate strongly across households the constrained-
efficient sharing rule trades off diversification opportunities. In these situations,
where  is greater than zero (possibly much greater), the planner’s previous ten-
dency to equate shares will lead to a large loss of surplus as strong correlation
effects hike up consumption volatility. Now, the incentives move in the opposite
direction and reigning in covariances is the primary concern; this is done by keep-
ing all of i0s incoming shares as different as possible. In particular, I show below

24More precisely, for n > 4 the center of the star consumes none of its own income if  �
2

n(n�4) (for n < 4 interior solutions exist for all values of  ). This implies that as n increases, the
space of parameters that guarantees an interior solution decreases.

25To see this notice that equation 1.7 in this case implies ↵ij = ⇤j for all j, meaning that any
two households connected to j receive the same fraction of j0s endowment. As a result, it must be
that ↵ij =

1
dj

. This represents equal-sharing.
26This is a classical iso-parametric problem of minimizing squares. Notice that for  ! 0, the

parameter �2 dominates over µ2 and ⇢ so the planner problem is reduced to minimizing
P
i,j
gij↵

2
ij

.
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that at this other extreme— that is as tends to infinity— a household’s net shares
with each of its partners tend to zero.

Proposition 1.3.5. As  grows, the net exchange for any two households falls. In
the limit, we have that

lim
 !1

|↵ij � ↵ji| = 0

for all i 6= j

Proof. See Appendix.

Large values of correspond to situations of negligible net bilateral exchanges.
This implies that household’s in-shares correspond to its out-shares, that all house-
holds consume a convex combination of their partners’ incomes.

1.4 Background and Data
In this paper I develop an alternative empirical specification to test risk-haring be-
havior by fitting (network) constrained-efficient exchanges across pairs of house-
holds, and recovering unexplained dependency between income and consumption.
To do this I use panel data collected by a team of anthropologists from the years
2004 to 2009 in the small-scale, hunter-gatherer economies of the Tsimane’ in the
Bolivian Amazon. Before describing the data set in more detail I provide a quick
description of the Tsimane’ social structure, their economy, and general patterns
of exchange (see Hooper (2011) for a much more thorough investigation into the
economic life-cycle of the Tsimane’).

1.4.1 The Tsimane’ Indigenous Communities
The Tsimane’ are an indigenous population of about 10 to 20, 000 individu-
als, residing in the Beni Department in lowland Bolivia. Tsimane’ settlements
are located primarily along the Maniqui and Quiquibey rivers, their tributaries
and nearby forests. The Tsimane’ organize primarily around a subsistence econ-
omy based on hunting, fishing, and slash-and-burn agricultural production of rice,
sweet manioc (or yucca), plantain, and maize. According to Hooper (2011), most
families maintain between 1 and 6 fields at one time (an average of 2.9 fields
per family) that range in size from 0.1 to 2 hectares (an average of 0.56 hectares
per field). While some of this production —- primarily, though not exclusively,
rice — is sold to outside nearby markets in San Borja, still, around 95% of Tsi-
mane’ subsistence consumption rests on own production and exchanges across
families.27

27See Martin, Melanie et al. (2012)
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The Tsimane’ social structure is primarily kin-oriented. Closely related nu-
clear families often reside together in small residential clusters, engaged in high
levels of cooperative labor, common and shared meals, and other forms of re-
source pooling; bilateral exchanges of food across households account for the
majority of this form of risk sharing.

The important gains that come from sharing uneven returns to productive effort
are not foreign to the Tsimane’. The exchange of food across households forms a
significant chunk of economic activity. In previous work on the Tsimane’, Hooper
(2011) shows clear evidence of reciprocity between families, and across types of
goods, suggesting an interest in both attenuating risk and exploiting gains from
specialization (see tables 5.1, 5.2 and 5.3 in Hooper (2011)). Around, 99% of
the Tsimane’ population engage in some form of food sharing at some point in
the sample, and only 3.2% form separate trading groups of less than four house-
holds. From total production, an average of 5% is sold to outside and the rest is
either consumed by the producing family, or exchanged with others. On average,
66% of a household’s production is exchanged with other families, while 31% of
a family’s consumption consists of food received from other households. Genetic
relatedness and the age of the household head interact as decisive attributes in
determining the patterns of caloric exchanges. Hooper finds that while age alone
does not seem to explain transfers, it nonetheless exhibits strong patterns of ex-
change between closely related families, not between unrelated ones. In terms of
relatedness, it alone forms a very good predictor of food sharing. As an example,
for two families with 40-year-old parents and zero net meat production, for exam-
ple, the effect of a 0.1 increase in relatedness on the gross number of meat calories
shared from one family to the other is 33.3 calories per day (Hooper, 2011).

1.4.2 The Data
The data comes from field work by a group of anthropologists at the Tsimane
Health and Life History Project.28 A series of field interviews were conducted
from the years 2004 to 2009 on 250 families (1245 individuals) residing in 11
different Tsimane’ villages. The villages are grouped into four separate regions:
“downstream”, “forest”, “tributary”, and “ton’tumsi”. Figure 2.1 in Hooper pro-
vides a breakdown of the different sample periods and sizes. Each family was
interviewed an average of 45.5 times (SD = 20.4), yielding a mean of 92.8 sample
days per individual (SD= 40.0). Households were surveyed on average twice per
week.

The surveys collected information on how many hours each family member
spent laboring in subsistence activities during the preceding two days. These in-

28Paul Hooper (Emory), Hillard Kaplan (UNM), and Michael Gurven (UCSB)
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clude hunting, fishing, and agricultural work. Quantities of edible products were
recorded, and, for each product, interviewees were asked which members of the
nuclear family, and which other community members had consumed portions of
the product in prepared meals, or had received portions as raw gifts. Families were
also asked whether they had received any gifts of food from other households.

For each product, the raw mass in kilograms was calculated from reported
quantities based on mean mass measurements derived from field guides and pre-
vious research with the Tsimane and other South American foragers. A product’s
total caloric value was based on estimates of mean dietary calories (assimilated
by a human consumer after processing) per kilogram (Hooper, 2011).

In all sample communities, a detailed census was established that provided
information on each individual’s sex, birth year, and biological parents and grand-
parents.29 Consanguineous and affinal relationships between individuals residing
in the same community were calculated on the basis of shared genetic ances-
try and marriage. Distance between households was constructed, when possible,
from GPS data. (See Hooper, 2011) for a detailed account of all data collection
procedures).

Together, this information constitutes an unbalanced panel of pairwise calo-
rie exchanges at a frequency that is perhaps too high for this type of analysis. I
therefore aggregate the data at a quarterly level. After discarding some patho-
logical cases, I am left with 243 households in 8 different communities, sampled
irregularly over 20 quarters, out of which an average household is sampled for 4.5
quarters (not always consecutive).30

1.4.3 Constructing Networks
As in most empirical studies of social networks, I confront the usual questions
regarding how to define the appropriate underlying (and unobserved) social struc-
tures. As explained above, the unit of analysis is considered to be a nuclear family;
I also refer to these as households. Although finer, within-household data on ex-
changes is available, all evidence suggests that these intra-family flows operate
efficiently as completely connected (or in any case very dense) networks, so that

29Where incomplete, these census data were supplemented with data from demographic inter-
views described in Gurven et al. (2007). Adult parents and their co-resident dependents (i.e.
offspring and adopted dependents) were classified together as nuclear families. Body mass in
kilograms, assessed using an electronic standing scale, was available from yearly physical ex-
ams conducted by Bolivian physicians and research assistants for 1198 individuals in the sample
(96%).

30I discard 5 households for which there is no reliable data. They appear to produce nothing and
receive nothing throughout the entire sample. I drop another two households for which no reliable
data on hours worked exists.
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for the purposes of this analysis they are best considered as distinct economic
units.31

I test the model on three types of networks; each is accompanied with its own
set of problems and advantages. The Trade Network establishes a link between
two households if ever the two engage in any food sharing. This method of con-
structing links by “revealed preferences” of course fails to account for additional
connections that could exist, but are otherwise not used. One could worry about
endogeneity issues coming from this type of network. There are two things to say
on this matter: First, the constrained-efficient exchanges I solve for are interior
solutions to the planner problem, so the model speaks only to situations where all
available links are utilized for some amount of food sharing, no matter how small.
In other words, the model makes no predictions about which connections should
be used, so taking observed trade as a link is not a huge problem. Secondly, It
seems reasonable to assume that if two households share no calories throughout
the entire sample then some social cost exists that impedes said relationship.

It is customary in these communities for households to split upon marriage
while remaining in the same village.32 In order to account for this type of network
modifications I also construct a dynamic version of the Trade Network. This net-
work constructs links if, at every quarter, households are observed exchanging
calories. For this particular network, then, the various centralities computed, and
therefore the theoretical predictions on bilateral exchanges, are time dependent.
While it might be unreasonable to assume in general that underlying social con-
nections should change often, I show in the next section that in fact these networks
show remarkable persistence over time, and in particular that the vast majority of
links persist once they appear.

Finally, networks are also built using kinship data. To refrain from the endo-
geneity issues above I make no judgement on the “appropriate” level of kinship
that determines the presence of a link. Instead, I construct links between house-
holds that share any level of genetic relatedness. This method poses its own set
of concerns, not least of which has to do with missing genetic information for
a number of households; this restricts the network artificially. Moreover, while
kinship appears repeatedly in sociological work as a crucial determinant of social
ties for a wide array of contexts, the Tsimane’s population exhibit a disproportion-
ately large share of endogamy33. This implies, as I describe in the next section,
that while kinship networks might very well capture the appropriate dimension
upon which social interaction develops, the level of connectivity might exceed
any reasonable, underlying structure that determines insurance.

31See for instance, Hooper (2011).
32Hooper (2011) documents the creation and destruction of households in the Tsimane’ context

somewhere between 5 to 10% of households.
33See Hooper (2011)
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1.4.4 Descriptive and Network Statistics
Table 1.1 provides some descriptive statistics for various demographic and eco-
nomic household attributes. Some of these represent cross sectional variability in
different measures of household wealth, specified in Bolivianos (the national cur-
rency) and split into animal (livestock), traditional (non-mechanized productive
tools) and modern (technological goods). These are used at times, together with
demographic variables such as family size, age and marital status, to control for
household-specific economic attributes.34 More importantly, the average income
and consumption variables represent the caloric production and flow data that are
used extensively to test the model predictions on bilateral exchanges. These vari-
ables are longitudinal, specifying, for every household and every available date,
the hours spent in each productive activity, the calories obtained as production,
and the ensuing flows of those calories to nearby families. The data set also pro-
vides information on hours spent in three general productive activities: Agricul-
ture, Fishing, and Hunting; Leisure is therefore defined as the number of hours in
the past two days not spent in any of these activities.

Next I present network statistics for each of the kinship and trade networks
that appear visually in figures 1 and 2. I show this information per village since
I consider the villages as eight separate network structures. As described above,
the kinship network is far denser, exhibiting larger cluster and closeness measures
and much lower diameters across most villages. By way of comparing these two
networks more rigorously, I also calculate the share of edges of each network that
are observed in the other one. I find that about 71% of the connections observed in
the data occur between households with some degree of genetic relatedness, while
only 35% of households with genetic affiliation actually share food. 35 Finally,
I present measures of persistence for the Updated Trade network to show that
while it might be worthwhile to allow for certain network changes that come from
the movement across villages or the creation of new families, networks are fairly
stable over time.

In tables 1.5 to 1.8 I provide some preliminary evidence to support the as-
sumption of no intermediation. Recall that this assumption implies that house-
hold consumption is a linear function of neighbors’ incomes. As a result, two

34I mostly use household fixed effects to control for time-invariant household specific attributes
such as these. However, when estimating the model’s prediction on bilateral flows, edge-specific
intercepts are unfeasible due to limited observations. In these cases I use a battery of controls such
as those in Table 1, and others.

35I also perform a second measure of network comparison known as the Hamming distance,
which measures the number of edges that need to be substituted to turn one network into another.
We can see in Table 1.4that across most villages, we need to substitute about a third of all available
dyads to move from the trade to the kinship network— in a couple of villages about half of that
share is required.
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households that share a common neighbor will both consume a fraction of that in-
come, and their consumption will be correlated. Households that are farther from
each other, however, will not share any neighbors and their consumption will only
co-move as per the underlying covariance across incomes. I therefore estimate
consumption of each household against the aggregate consumption of those other
households with which it shares a common neighbor (i.e. household in the set
N2

i ), and against the aggregate consumption of households with which it does not
share a common neighbor (i.e. households not in the set N2

i ). The results indi-
cate that households farther away cannot explain consumption, once we control
for aggregate income fluctuations.

1.5 Empirical Analysis
The theory above provides a number of predictions that can be tested directly
against data on bilateral exchanges within networks. In this section I first run the
standard test of full risk sharing and I find that full insurance is rejected in the
Tsimane’ data set. I then structurally estimate the sharing rule prescribed by the
theory as given in equation (1.9); I find that the constrained-efficient prediction
above appropriately describe the type of bilateral exchanges we observe across
households. I also show that the model can retrieve the observed deviation from
full insurance by estimating the risk sharing test on predicted consumption data.
Finally, I test the model’s implications on households’ heterogeneous response to
own income fluctuations. I find that the variation in household’s coefficients to
income follows the general pattern described by the model.

1.5.1 Test of Full Risk Sharing
In order to assess how well the data conforms with the model, I explore a number
of distinct predictions from the theory. Before I do this, however, I first perform
the classical risk sharing test of Mace (1991), Cochrane (1991), and Townsend
(1994), by running regressions of the form

�log (cit) = �1�log (yit) + �2�log(Xit) + ⌧vt + ✏it (1.14)

where �log (cit) and �log (yit) stand for household consumption and income
growth rates respectively, and ⌧vt represents village-time fixed effects that cap-
ture uninsurable aggregate shocks that hit village v at time t. First differencing
controls for any idiosyncratic time-invariant characteristic correlated with con-
sumption; I also run some specifications in logs, in which case I add household-
level fixed effects instead. Finally, Xit captures any other factors that could affect
the optimal allocation of consumption and should be controlled for. In particular,
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for some specifications I control for household leisure over time, which affects
consumption if preferences are non-separable and the planner cannot freely trans-
fer leisure across households (Cochrane, 1991). In other specifications, I instead
use leisure as an instrument to control for attenuation bias that might come from
measurement error in the income variable. Leisure is a suitable instrument as it is
undoubtedly correlated with income — households that spend more hours hunt-
ing, fishing, or harvesting will collect higher income, all else equal — but, because
leisure is a separate survey item, measurement error in leisure arguably does not
correlate with error in income (I follow Schulhofer-Wohl (2011) in this approach).
All variables are expressed in adult-equivalent terms: I divide by a measure of a
household’s average adult caloric intake developed for the Tsimane’ data set by
Hooper (2011); it estimates caloric consumption across gender and age levels,
and weights each household’s demographic composition accordingly.36 Standard
errors are clustered at the household level.

Recall that we cannot reject the hypothesis of full risk sharing for values of
�1 = 0 and �2 = 1. As shown in Table 1.9, I reject full insurance across all
specifications. Coefficients on own income are about �1 = 0.35 and statistically
significant at the 1% level. Leisure is negative associated with consumption, as
expected, but remains non-significant. Controlling for non-separabilities in in-
come and consumption does not change the log estimates and lowers the growth
rate estimates only by 0.005. The Instrumental Variables estimator controls for
attenuation bias and therefore provides slightly higher estimates both for logs and
growth rates; the difference, however, is quite small. All in all, I find a consid-
erable correlation between consumption and own-income, consistent with previ-
ous studies in similar settings. Although the magnitude of this association varies
across studies, a value of 0.35 falls well within the expected range. For instance,
Munshi and Rosenzweig (2009) estimate values between 0.17 and 0.26 for Indian
data, while Cochrane (1991) finds values between 0.1 and 0.2 in the PSID; Kinnan
(2014) finds values ranging from 0.07 to 0.3 for Thai data, depending on the type
of estimation.37 Overall, the results square fairly well with the literature and un-
equivocally reject full insurance. The theory provides new ways to think of partial
insurance within a network context and help us understand the type of behavior
that exists when we reject full insurance. To bring the main theoretical predictions
to data, I first estimate the income process; I then fit the sharing rule to data.

36See table 2.2 in Hooper (2011) for a more detailed explanation of this adult consumption
measure

37Saidi (2015) finds that the magnitude of departure from efficiency is smaller than mine in the
Tsimane’ communities. His data set comes from an entirely different survey corresponding to non-
overlapping sets of Tsimane’ villages. Moreover, he defines income from the sale of goods and
labor as a separate survey item, whereas consumption here is income plus transfers, and therefore
more tightly correlated.
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1.5.2 Estimating the Income Process
Before taking my model to data, it is necessary to obtain an estimate for the in-
come process. In this section I develop estimates of  = µ2+⇢

⇢��2 from panel data
on the income processes of households. I carry out two different estimation pro-
cedures that deliver similar results. I first perform a very simple non parametric
approach that uses basic moment estimators. I assume that income is described
by two transitory shocks, an aggregate and an idiosyncratic one,

yit = t + ✏it

with t ⇠ iid (µ, �2
) and ✏it ⇠ iid (0, �2

✏ ). I take the cross sectional average of
income as an estimator of the aggregate shock, ̂t =

1
n

P
i

yit , and I calculate the

variability of this estimator to obtain an estimate of its variance �̂2
 = var(̂t). I

obtain the variability in the residuals, yit� ̂t = ✏̂it, as an estimator of �̂2
✏ . Finally,

I compute the mean µ, the variance �2, and the common covariance term ⇢, as
follows: µ = 1

T

P
t

k̂t, �2 = �̂2
 + �̂2

✏ , and ⇢ = �̂2
. These values deliver an estimate

of  equal to 0.97± 0.2.
I also perform a more sophisticated estimation procedure, availing myself of a

vast and well established literature on estimating earnings processes from data.38

The estimation assumes a state space model for the income process. Income is
assumed to follow an aggregate shock, a temporary shock, and a persistent shock.

yit = t + ⌘it + ⌫it
⌘i,t = c+ �⌘i,t�1 + ✏it

This model is estimated by GMM. More information is given in Section 1.8.6,
where I go over the estimation details and I show that I obtain values of  close
to those obtained with the more naive approach of the previous paragraph.

1.5.3 Structural Estimation of Network Flows
Having constructed networks and estimated the underlying income process, we
are now ready to fit the model’s sharing rules against the Tsimane’s data set. To
bring the model to data, recall the closed form expression for the constrained-
efficient sharing rule as a linear function of global network measures shown in
equation (1.9),

↵?
ij = gij

 
Mj ( ,G)�  

1 + di

X

k

gikMk ( ,G)

!
(1.15)

38See, for instance, Lillard and Weiss (1979), MaCurdy (1982), Nakata & Tonetti (2015)
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and assume that shares are measured every period with additive error: observed
bilateral shares are ↵obs

ijt = ↵ijt + ✏ijt. Then the constrained-efficient sharing rule
proposed in this paper implies the following relationship,

↵obs
ijt = �1Mj + �2MNi

+ ✏ijt (1.16)

where MNi
=  

1� di

P
k

gikMk ( ,G) aggregates the WEPC centrality measure

across of all of i0s neighbors. Under such a specification the theory requires that
�1 = 1 , and �2 = �1. I control for village-level shocks by allowing for village-
time specific intercepts and control for a number of household-specific attributes,
such as household size, total wealth, marital status, and average age of the house-
hold heads.39 I show in Table 1.10 that we obtain estimates statistically indis-
tinguishable at the 5% level from �1 = 1 and �2 = �1 for the Kinship, Trade,
and Updated Trade networks, using a value of  = 0.9 as estimated in the pre-
vious section. Values for the Trade and Update Trade networks are statistically
indistinguishable at the 1% level. Moreover, in Figures 1.6 to 1.8 I plot the two
coefficients for a wide range of  values to clarify that these results are fairly ro-
bust to possible estimation errors. Both coefficients are statistically different from
zeros. We see that �2 clearly takes on values close to �1 for values of  away
from zero and that for most values it is statistically indistinguishable from �1
at the 95% confidence level. Already in this first direct approach the model per-
forms remarkably well at describing the observed relationship between network
structure and household exchanges.

I also perform a more demanding test of the model. Ideally, I would like to
estimate the sharing rule separately for each pair of households over time, and
obtain distinct coefficients to each of the centrality measures in equation (1.15).
The lack of sufficient longitudinal data, however, precludes this type of analy-
sis. As an alternative, notice that the second term in equation (1.15) varies ac-
cording to the degree of the receiving household. I exploit this variability by
splitting the population by their degree, di, and redefining MNi

in (1.16) as,
MNi

=
P
k

gikMk ( ,G). In this case, a successful model would obtain a neg-

ative coefficient of �2 (di) = �  
1+ di

that increases with the degree. Figures 1.10
and 1.11 plot �2 (di) against the degree of each group. I also plot the curve rep-
resenting the theoretical prediction of  

1+ di
. The positive relationship between

this coefficient and the degree of the receiving household is clear. Moreover, the
model and theoretical predictions move in a similar fashion and reasonably close
to each other.

39Because I assume networks to be undirected, any edge that only sustains unilateral exchanges
is complemented by adding a flow equal to zero in the opposite direction for any period in which
the household in question obtains positive production.
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Although the model seems to fit the sharing data quite well, we might still
worry that other network centrality measures could also predict similar results,
undermining the model’s predictive power. After all, it is well known that net-
work centrality measures often correlate strongly. In 1.8.5 I discuss the statistical
relationship between the centrality measure proposed here and several other fa-
miliar candidates in the network literature. I show that these other measures are
not strongly correlated with the WEPC centrality that I propose, and more impor-
tantly that they fail to explain the patterns of exchange observed in the Tsimane’
data.

1.5.4 Revisiting the Risk-Sharing Test
In this section I show that the positive coefficient on own income obtained in
the test of full insurance of Section 1.5.1 can be interpreted as capturing the bi-
lateral sharing arrangement proposed in this paper. To do this I run the income
data through my model to obtain household consumption under the constrained-
efficient arrangement that I propose. I then estimate the risk sharing test of equa-
tion (1.14) with predicted, rather than observed, consumption data. A successful
theory of partial insurance would retrieve the same coefficients to own income as
those observed in the data in section 1.5.1.

More concretely, I use the sharing rule of Proposition 1.3.1 to calculate the
consumption level of each household in every period, given income, as,

ĉit =
X

j

gij

 
Mj �

 

1 + di

X

k

gikMk

!
yjt

where I have dropped the explicit dependency on G and  for convenience. This
equation defines household consumption using the proposed sharing rule of the
model. Expected consumption data is used, in lieu of the actual consumption, to
test whether the type of variability in household consumption behavior proposed
by this model can replicate the departure from full efficiency observed in the data.

The results are presented in Tables 1.12 to 1.14 for the different networks
being analyzed, and for the value of estimated in section 4.3. Under my model’s
predictions, and for the output data available for the Tsimane’, the coefficient on
own income corresponding to the Trade Network shown in Table 1.13 oscillates
between 0.15 ± 0.023 for OLS to about 0.25 ± 0.06 for IV estimates. Compared
to the value of about 0.35 ± 0.07 that we obtain in Table 1.9, the model seems
to slightly underestimate the empirical loading on own income for this network
structure. However, it is worth noting that these differences are not large, and
that for the IV estimates the difference is statistically not significant. The results
for the kinship network presented in Table 1.12 show estimates far too low to
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resemble the magnitude of departure from efficiency in Table 1.9; the specification
in growth rates provides OLS estimates that are non significant, suggesting full
insurance under network constraints. This is not particularly surprising given that,
as mentioned above, kinship networks are excessively dense, so that the planner
problem is far less constrained than in the other network structures.40 On the other
hand, the results for the Updated Trade network in Table 1.14 are statistically
indistinguishable from the estimates in Table 1.9. Although these coefficients,
again, lie below the values provided by data, the differences now are negligible—
sometimes as small as 0.01 — and therefore are all statistically insignificant.

1.5.5 Underlying Heterogeneity in Consumption
The environment I describe not only accounts for the type of coefficients we ob-
tain when we reject full insurance, but, more importantly, defines a complete dis-
tribution of these coefficients based on network measures. Moreover, as argued
in Section 2, the size of these coefficients can provide information about the rel-
ative sharing opportunities of each household in certain environments. Indeed,
households with lower coefficients to their own income process are far more cen-
tral than others, and as a result obtain in general smoother consumption paths.
In other words, while the previous section showed that the model can generate a
common coefficient that reflects the observed departure from efficiency, the fol-
lowing estimation procedure implies that the theory also provides insight into the
type of asymmetric insurance possibilities affecting households as a result of their
social situation.

Recall that a household’s share of its own income left for consumption can be
described, for each i, as,

↵ii = Mi ( ,G)�  

1 + di

X

k

gikMk ( ,G) (1.17)

Retrieving precisely these values from data would require estimating each house-
hold’s theoretical consumption, as described in (1.17), independently. The short
time dimension of the panel unfortunately prohibits this type of analysis. More-
over, the variation across these values is often small for “similar” nodes and would
be difficult to extract from the inherent noise in data. Instead, I decide to rank the
population according to (1.17) and then split the population into equally sized
groups. I then estimate equation (1.14) separately for each group; This gives me
enough variability both within and across groups to effectively measure the ex-
pected positive difference across successive groups. 41

40For this same reason this network performs worst in the structural estimation of bilateral
exchanges of section 4.2 for the value of  estimated from data.

41In order to allow for as much intergroup variability as possible, group size was kept as small as
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The results are shown in Figures 1.12 and 1.13. The positive trend across
groups is evident for all networks, and is especially pronounced for the trade and
updated trade networks. In all these cases, while any two consecutive groups
might show little variation, the overall increase from the first to the last group
is generally about 0.5, and in all but the kinship network the difference is sta-
tistically significant. In other words, the positive association between income and
consumption found for the Tsimane’ data set can be further decomposed into those
households that, by the overall social arrangement, consume more or less of their
own income ex-post.

1.6 Conclusion
Time and again, evidence collected from risk-sharing communities in the devel-
oping world has concluded that households in these type of arrangements are only
partially insured against random fluctuations in income. In this paper I argue that
these insurance mechanisms overwhelmingly perform below full efficiency pre-
cisely because networks of interactions are not completely connected. I show that
if the underlying social structures are accounted for when deriving constrained-
efficient exchanges, then observed trades across pairs of households is well de-
scribed by the theory, and the distance from the Pareto frontier can be obtained.

I propose a constrained-efficient framework that relaxes a crucial assumption
in the classical risk-sharing literature, which allows all households to trade with
each other. Instead, I restrict the movement of goods along a given set of social
relations and I derive a full analytical description of the exchanges between any
two households as a function of their network position. I show that exchanges
are determined by a global network measure that accumulates all direct and indi-
rect interactions along the entire network. In other words, this theory endogenizes
pairwise sharing behavior along any given network. The theory is useful in pro-
viding a rich description of the type of partial insurance we might expect if we
believe network constraints are a relevant friction keeping communities below
full efficiency. More importantly, it can be easily tested in a number of different
settings, as long as income and network data is available. In this sense, it is capa-
ble of providing testable predictions at the pairwise level, generating much more
detailed variation on the exchanges generating consumption streams.

I test the theory with data from Tsimane’ indigenous communities in the Boli-
vian Amazon. I structurally estimate the constrained-efficient sharing rule against
bilateral exchanges observed across Tsimane’ households and find that the the-
ory does a good job of fitting empirical sharing behavior. Moreover, predicted

possible, while retaining enough observations to provide efficient standard errors. Average group
size was 35 households per group, leading to a total of 7 groups.
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consumption profiles generate the type of inefficiencies observed in these com-
munities, and other important implications on the distribution of insurance levels
across different households are also observed in data. Overall, evidence from Tsi-
mane’ communities suggest that accounting for incomplete social structures goes
a long way to explain the type of partial insurance mechanisms operating more
broadly in village economies.

Of course a number of other elements have been proposed that surely form part
of a full description of these complicated social arrangements. For instance, Ligon
et al. (2000) have studied the presence of limited commitment in these informal
exchanges and argue that incentive constraints under dynamic contracts indeed
lead to partial insurance similar to that first observed by Townsend (1994) for In-
dian villages. More recently, Schulhofer-Wohl (2015) and Mazzocco and Saini
(2012) have stressed that heterogeneous preferences might lead one to overesti-
mate the failure of full insurance. I believe these views and the one I propose here
are complementary and together build a richer story of informal insurance. Indeed
my model refrains from considering these and many other interesting dimensions,
and I try and stay as close as possible to the classical setup of risk-sharing pro-
posed by Mace (1991), Cochrane (1991), and Townsend (1994), while at the same
time allowing me to engage directly with a general network structure.

A network description of exchanges like the one proposed here holds great
promise for identifying vulnerable households, or determining superior social ar-
rangements. After all, one of the advantages of modeling social interactions ex-
plicitly in this context is that it provides a great deal of heterogeneity on consump-
tion volatility and inequality both across households and networks. It would be
interesting to know, for instance, which arrangements perform better than others,
and whether we can generally identify households that, if removed, would most
affect the sharing opportunities of the entire community. Indeed network mod-
els like this one have already answered these type of questions in other settings,
such as Ballester et al. (2007) which do a similar exercise for criminal networks.
Although I provide some tentative results on the ranking of households by con-
sumption volatility in section 1.8.4, the ordering is only partial and I am currently
working on new results. The challenge here, with respect to Ballester et al. (2007),
has to do with the complicated weighting scheme for paths that emerges in this
setting, and which is absent in the Bonacich centrality or other similar recursive
network measures. Indeed a lot of the existing tools to make progress on this front
utilize the convenient geometric weighting of Bonacich, but I am working on a re-
cursive formulation of WEPC that would allow me to make progress nonetheless.

Another ambitious proposal that emerges from this analysis seeks to struc-
turally estimate the underlying social structure. In other words, if we agree the
model performs well in this context, and might therefore be a good proxy for the
type of sharing behavior of the Tsimane’, then an exciting step forward would
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utilize the theory’s predictions in order to structurally back out an estimate of the
true underlying structure. This approach is not without its own set of challenges,
not least of which is that the model requires inputing an entire network described
by an n2 dimensional object. Extracting this from data is not simple. However,
there have been some recent developments by Manresa (2015) on estimating the
structure of interactions from panel data using a pooled lasso estimator that might
be very useful. If we can frame the spillover effects in an amenable way, it might
be possible to identify the most likely structure from within the class of sparse
networks.

Perhaps the most promising step forward involves more general results on
the welfare implications from my theory. Indeed, a theoretical result that relates
network-based heterogeneity in consumption behavior to more general welfare
implications would provide a clear economic interpretation to the coefficients of
empirical risk sharing tests. In other words, beyond rejecting or not full insurance,
the theory could allow data to speak more clearly on the distribution of welfare
across the population when full insurance is rejected. The distribution of house-
holds’ response to income shocks that this paper predicts could then be mapped
directly to a normative implication on welfare. It would form an important contri-
bution, and would come full circle towards a new interpretation of empirical risk
sharing test.
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1.7 Tables and Figures
This section presents all tables and figures in the order in which they appear in the
text. Some additional tables and figures can be found in the Online Appendix.

n mean sd median min max
HH Size 245 5.22 3.04 5.00 1.00 16.00

Mean Age Head of HH 245 36.96 16.33 34.00 14.50 86.00
No. of Dependents 245 3.12 2.74 2.00 0.00 13.00

% Rice Sold on Market 184 32.03 25.54 29.23 0.00 95.00
Animal Wealth (Bolivianos) 199 1478.28 3500.81 455.00 0.00 28250.00

Traditional Wealth (Bolivianos) 199 1179.94 1078.11 743.00 0.00 5917.50
Modern Wealth (Bolivianos) 199 3582.21 2356.61 3348.64 184.68 10726.22

Total Wealth (Bolivianos) 199 6259.17 5089.62 5403.40 363.20 35582.94
Avg. Income (Calories) 244 925.63 694.70 750.30 0.00 3896.01

Avg. Consumption (Calories) 246 888.02 694.77 707.66 46.67 4527.67
Avg. Out Flow (Calories) 242 353.53 536.24 174.18 0.00 4365.31

Avg. In Flow (Calories) 246 286.84 415.54 167.88 0.00 3441.35
Avg. Leisure (Hours) 244 46.22 1.48 46.61 35.97 48.00

Table 1.1: Household Summary Statistics: Variables expressed in adult-
equivalent terms. Averages taken over periods where data is available

35



“Thesis” — 2016/4/20 — 10:07 — page 36 — #52

n Edges Avg.Degree Diameter Density Cluster Avg.Between Avg.Closeness
1 27 73 5.407 6 0.193 0.596 0.026 0.066
2 38 121 6.368 5 0.163 0.441 0.055 0.344
3 11 45 8.182 2 0.682 0.676 0.042 0.753
4 20 46 4.600 6 0.219 0.484 0.058 0.115
5 13 51 7.846 3 0.560 0.624 0.054 0.642
6 27 189 14.000 3 0.500 0.627 0.024 0.645
7 46 122 5.304 10 0.113 0.357 0.064 0.205
8 65 320 9.846 5 0.149 0.315 0.022 0.422

Table 1.2: Network Statistics Per Village: Trade Network

n Edges Avg.Degree Diameter Density Cluster Avg.Between Avg.Closeness
1 26 194 14.923 5 0.287 0.687 0.043 0.229
2 38 292 15.368 4 0.202 0.806 0.017 0.077
3 11 111 20.182 2 0.917 0.940 0.010 0.928
4 20 110 11.000 5 0.275 0.810 0.029 0.092
5 13 121 18.615 3 0.716 0.871 0.030 0.779
6 26 210 16.154 4 0.311 0.781 0.025 0.155
7 44 768 34.909 4 0.397 0.691 0.016 0.609
8 64 1594 49.812 5 0.389 0.810 0.013 0.581

Table 1.3: Network Statistics Per Village: Kinship Network

Hamming Distance Normalized Hamming Distance
1 100 0.285
2 116 0.165
3 18 0.327
4 29 0.153
5 30 0.385
6 128 0.365
7 320 0.309
8 804 0.387

Table 1.4: Hamming Distance per Village between Trade and Kinship Networks

36



“Thesis” — 2016/4/20 — 10:07 — page 37 — #53

aac

aaqaa

aaqacaqc.

aaqai

aqm

aqs

aqs.

aaqca

aaqci

aqcm

aqcn

aqcq

aaqcu

aqlf

aaqli

aqlm

aqln

aqlq

aaqlu

aqqf

aaqqi

aqqm

aqqs

aaqqu

aaqaq

aqq.

aqqqac

aqqqf

aqqqal

aqqqm

aqqqaq

aqqqs

aqqqa aqqq.f

aqqqcc

aqqqcc.

aqqqcf

aqqqci

aqqqcl

aqqqcl.

aqqqcm

aqqqcn

aqqqcn.

aqqqcq

aqqqcs

aqqqcs.

aqqqcu

aqqqlc

aqqqlf

aqqqli

aqqqll aqqql.

aqqqlu

aqqqqa

aqqqqc

aqqqqc.

aqqqqi

aqqqql

aqqqqm

aqqqqm.

aqqqqn

aqqqqs

aqqqqu

aqqqqf

ccqcc

ccqcm

ccqcn

ccqcq

cciqqaccqqf

cciqqi

ccqqm

cc.

ccqqs

cciqqu

ccsqaa

ccsqac

ccsqf

ccsqm

ccsqaq

ccsqs ccsqau

ccsqcf

ccsqcl

ccsqcq

cc.

ccsqcs

ccsqla

ccsqlc

ccsqqa

ccsqqc

ccsqqf

ccsqqi

ccsqql

ccsqqs

cffcfc

cffcfq

cffqqa

cffqqc

cffqqf

cffqqf.

cffqqi

cffqql

cffqqm

cffqqn

cffqqs

cffqqs.

cffqqu

cfcc

cfic

cfcq

cfiqac

cfqf

cfql

cfiqaq cfqs

cfiq

cfiqca

cfqcc

cfqcf

cfiqci

cfqcl

cfqcm

cfqcn

cfqcq
cfqcs

cfiqcu

cfiqqa

cfqqc

cfiqqi

cfqql

cfqqm

cfqqn

cfqqs

cfiqqu

fccfl

fccqq

fccqu fccc

fccuf

fccl

fcqacfcqam fcqaq

fcqq.q

fcqa

fcqcc

fcqcq

fcqfi

fcqia

fcqii
fcqim

fcqin

fcqiu

fcqlc

fcql.

fcqlq

fcqmi

fcqms

fcqnl

fcqnu

fcqqa

fcqqc fcqqc.f

fcqqc.q

fcqqi

fcqq.f

fcqqn

fcqqu

fcqsc

fcqs.

fcqsl

fcqsq

fcqss

fcqua

fcquf

fcqum

fcqun

fcquq

fcquu

fcq.f

nccfa

nccfc

nccfl

nccfq

nccqc

nccqf

nccqi

nccqm

nccqn

ncqaa

ncqac

ncqaf

ncqai

ncqal

ncqm

ncqn

ncqn.

ncqaq

ncqas

ncqau

ncqca

ncqcc
ncqc.

ncqcf

ncqci

ncqcm ncqcn

ncqcq

ncqcs

ncqcu

ncqfa

ncqfc

ncqfm

ncqfq

ncqic

ncqla

ncql.f

ncqlc

ncqlf

ncqli
ncqll

ncqlm

ncqlq

ncqlq.

ncqls

ncqlu

ncqqa

ncqqc

ncqqf

ncqqi

ncqql

ncqqm

ncqqn

ncqq.

ncqqs

ncqqu

ncqsa

ncqsf

ncqsi

ncqsl

ncqsn

ncqs.

ncqss

ncqsu

nccc

Figure 1.4: Trade Network: Link exists if households exchange food at any point
in the sample.
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Figure 1.5: Kinship Network: Link exists if Mean Genetic Relation is above 0
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changes: Trade Network (Households younger than 4 0)
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Figure 1.8: Coefficients to Network Centralities in Regression of Edge-Level Ex-
changes: Updated Trade Network
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Table 1.10: Regression of Edge-Level Exchanges on Predicted Sharing Rule ( =
0.9)

Dependent variable:

↵ij (i.e. share from i to j)
Kinship Network Trade Network Updated Trade Network

(1) (2) (3)

Mj(G, ) 0.878⇤⇤⇤ 0.841⇤⇤⇤ 1.109⇤⇤⇤

(0.044) (0.111) (0.093)
MNi

(G, ) �1.324⇤⇤⇤ �0.697⇤⇤⇤ �0.946⇤⇤⇤

(0.113) (0.156) (0.133)

Village-Time Fixed Effects Y Y Y
Observations 11,943 2,059 1,730
Adjusted R2 0.092 0.180 0.202

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
Values in parentheses are standard errors clustered at the household level.

Table 1.11: Regression of Edge-Level Exchanges on Alternative Local Measure

Dependent variable:

↵ij (i.e. share from i to j)
Trade Network Kinship Network Updated Trade Network

(1) (2) (3)
|N2

i (G)|
P
i
gij|N2

i (G)| 0.096⇤⇤ 0.167⇤⇤⇤ �0.007

(0.049) (0.037) (0.054)

Village-Time Fixed Effects Y Y Y
Observations 5,586 11,931 2,742
Adjusted R2 0.057 0.043 0.080

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
Values in parentheses are standard errors clustered at the household level.
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Figure 1.10: Coefficient �2 as a function of Receiver’s degree. Panel A: Trade
Network. Panel B: Kinship Network
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Figure 1.11: Coefficient �2 as a function of Receiver’s degree. Panel A: Updated
Trade Network. Panel B: Updated Trade Network (Households younger than 40 )
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Figure 1.12: Coefficients and Confidence Intervals for Equation 1.14 Partitioning
Population according to Centrality Measure. Panel A: Trade Network. Panel B:
Kinship Network
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Figure 1.13: Coefficients and Confidence Intervals for Equation 1.14 Partitioning
Population according to Centrality Measure. Panel A: Updated Trade Network.
Panel B: Updated Trade Network (Age ¡ 40)
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1.8 Additional Results

1.8.1 Contingent Sharing Rules

Consider the set of contingent sharing rules that maximize welfare for the simple
economy in Figure 1. Shares from i to j now depend on the state of the world
!; intuitively, the distribution of income in each state will determine the sharing
opportunities. For instance, if household 1 obtains an income y1 (!) larger than
y2 (!) and y3 (!) then funds can readily be redistributed so that the efficient con-
dition of equation (1.1) holds for that particular state !. However, it is easy to see
that this will not be possible for all states: for instance if y1 (!) < ȳ (!)� y2 (!)
then the income of household 1 is not large enough to transfer the required re-
sources to household 2.

Intuitively, because sharing groups are local, household consumption is bounded
above by equation (1.3). A good way to think of this setting more generally is by
imagining that the lack of intermediation essentially sets capacity constraints on
what each node can transfer to its neighbors. This type of environment is ex-
plored in Ambrus et al. (2014) in the context of credit constraints on a network
with exogenous link values. Here, rather than limiting the transfer across nodes
by

As a result, only partial insurance is possible and the ratio of marginal utilities
is not constant across all states. As we have just seen, the ratio is constant only for
a subset of states where the income of the intermediating household is sufficiently
large. More generally we can define a set ⌦̄ (G) ✓ ⌦, such that for a given
network G it provides the subset of ⌦ such that full insurance is possible. The
previous discussion signals the inherent difficulty in isolating general network
effects from particular income realizations for these type of contingent sharing
rules. Not surprisingly, a large part of the literature on risk sharing networks have
dealt with fixed (or non-contingent) sharing rules.

1.8.2 A Model with Network Intermediation

In this section I show how to extend the current setup to a allow for network inter-
mediation. In particular, I relax the assumption of no-intermediation to a general
case where households can access income from households at some distance k
(the setup analyzed in the main text corresponds to the situation where k = 1).
To simplify the arguments, let k = 2 in what follows. However, all the arguments
below apply for all values of k . In this scenario, consumption by household i
is a linear function, not only of incomes of neighbors (as before), but also of the
income of neighbors’ neighbors (i.e. those households two links away from i) as
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follows,
ci (!) =

X

jk

gikgkj↵ik↵kjyj (!)

It is easy to see that the relationship between consumption and income is still de-
fined by my model’s predictions as given in Proposition 1.3.1, but where the prim-
itive of the model now is not the original network G, but rather a new network G̃
that is built from G by connecting all households that are two links apart. Indeed,
while the exact trade is hard to describe analytically as a function of the true net-
work G, it is nonetheless very easy to describe as a function of the network G̃:
it depends on the sharing rule of Proposition1.3.1. In other words, the theoretical
predictions of my model allow for general descriptions of intermediation, and the
general arguments on the implications for consumption behavior follow through.
The only caveat is that it is now difficult to characterize the type of exchanges
(in this case exchanges of exchanges) that will lead to an efficient solution, but
the efficient solution, in terms of consumption responses to income shocks, can
be described precisely by my model. Finally, notice that there is an upper limit
on the amount of intermediation that generates a situation of partial insurance.
Indeed, if k is larger than the minimum distance separating any two households,
then intermediation is sufficiently large that full insurance is retrieved.

1.8.3 Discussion of Weighted Even Path Centrality
Proposition 1.3.1 is powerful because it provides a full description of efficient
sharing-behavior under restricted bilateral exchanges for all possible social net-
works and distributional parameters. As a concrete prescription of network flows
to be tested against data, it suffices, and, as we will see in section 3, performs rea-
sonably well. In this section I describe the expression of the WEPC in equation
(1.10) in more detail and discuss what it can tell us about the optimal network
shares.

It turns out that recursive expressions like the one in (1.10) are found often
in network analysis. These measures attempt to quantify associations between
vertices based solely on the structure of connections. For instance, in their well-
known work on strategic complementarities in networks, Ballester et al. (2007)
show that equilibrium actions depend on a similar recursive measure known as
Bonacich Centrality. More recently, Banerjee et al. (2012) have sought to identify
individuals in the network that are best placed to diffuse information on micro-
credit opportunities in India. They find that participation is higher if those first
informed have higher eigenvector centrality. 42 It is a matter of fact that global

42Already at the beginning of the internet boom, a number of algorithms surfaced that allowed
users to rank websites by their significance in the broader world wide web network. Procedures
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network measures such as these always appear in situations with entangled in-
teractions along a set of connections. All of these measures can be expressed
generically as

Bi = c+ �
X

k

gikBk (1.18)

for some constant c and with |�| < 1. This expression essentially says that i0s
measure depends linearly on the sum of measures that are connected to i. Let us
distinguish two crucial differences with respect to the WEPC measure defined in
(1.10). First of all, notice that equation (1.10) does not sum over all measures
that i is connected to, but instead sums over all measures that i0s partners are
connected to. In other words, the WEPC is defined recursively at distance two,
not one. This is not entirely rare in network analysis and in fact appears in some
work on vertex similarity by Jeh and Widom (2002). It has also appeared in newer
page-ranking algorithms, such as the HITS algorithm.43 Secondly, notice that, in
contrast to equation (1.18), the WEPC does not weight all neighboring measures
with a common parameter �. Instead, the measures at distance two are weighted
by the degree of the household that serves as a bridge between them. So for ex-
ample, imagine two households k and i are both linked to a third household l,
but are not linked to each other. Then, k0s measure will enter the definition of i0s
measure, weighed by the degree of l. Moreover, notice that the particular weight
has the familiar form of equation (1.8) that captures the full extent of l0s local in-
teractions with its partners. Remember that Mi (G, ) captures all of i0s indirect
interactions along the network. Following earlier discussions, these indirect inter-
actions affect i only in so far as they alter the sharing behavior of those at distance
two from i (with whom i actually interacts). It only seems natural, then, that i0s
measure, Mi (G, ), is defined recursively from the measures, Ml (G, ), for all
households l that that i directly interacts with (i.e. those that are at distance two
from i). In other words, the exact shape in the recursive definition of Mi (G, )
spells out quite clearly the preceding discussion on how indirect interactions ap-
pear in the local tradeoffs of each household. I show next that the recursiveness in
(1.10) can be undone into an expression that holds a lot more meaning in terms of
a household’s network position.

An important property of expressions like (1.18) is that, for appropriate values
of � — particularly for � < 1

⌫1
for ⌫1 the largest eigenvalue of G — we can write

them as,
S = I+ �G+ �2G2 + . . .

such as PageRank and HITS algorithm also refined measures recursively throughout the network.
43In the HTIS algorithm, a webpage is given both an authority and a hubness score, with the

property that a website’s authority is determined by the sum of the hubness scores of other websites
it links to, while a website’s hubness is determined by the sum of the authorities of websites it is
linked by. This implies that each one of this measures is defined recursively at distance two.
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In other words, all these recursive measures are often expressed as the sum of all

paths starting from i, which can be written as Bi =
P
j2N

1P
q=1

�qgqij . This framework

provides a much more natural way to think of the network statistic containing
information on the importance of each household in the general social structure.
After all, it measures a household’s accessibility by aggregating all locations that
can be reached by it at any length. Since we have just seen that the WEPC is a
particular version of these general recursive measures, it should not be surprising
that it too can be written as the accumulation of paths. Proposition 1.3.2 indeed
shows that we can similarly think of the WEPC measure accumulating such paths,
subject to the caveats discussed above: that only even paths are accumulated, and
that the weighting scheme for each path is particular to that path. Technically, the
current setting asks us to solve a modified version of these fixed points on a graph
that looks like, (D�G G)�1. I show in Proposition 1.3.2 that we can write this
as,

D�1
�
I+

�
A+AD�1A+AD�1AD�1A+AD�1AD�1AD�1A+ . . .

�
D�1

�

Unlike Bonacich and other types of centralities that weight all paths of a cer-
tain length equally, in this scenario each path elicits a specific set of weights, deter-
mined by the connectivity of each individual involved in that particular path. The
type of weighting scheme in equation 1.3.2 can be thought of in terms of the accu-
mulated local interactions mentioned above. Recall that indirect interactions only
represent the concatenation of various direct interactions linked together by the
network constraints. This can be gleaned from equation 1.3.2 where the weights
 

1+ dk
capture all the households in a given path engaged in direct interactions

and the weighs 1
di

capture the connecting household’s constraint. This weight-
ing scheme marks a crucial distinction vis-à-vis other measures, in that additional
paths does not guarantee an increase in households’ network measure.

1.8.4 Individual and Aggregate Volatility
In the context of bilateral risk-sharing in networks a natural concern seeks to dis-
tinguish amongst those households that, from their structural position in a broader
social arrangement, obtain smoother consumption streams than others. Said dif-
ferently, we can ask how a household’s consumption variability relates to its loca-
tion in the network. Proposition 1.3.1 defines transfers and therefore establishes,
for every household, a particular linear combination of neighboring incomes that
enter its consumption. The particularly complicated form of these transfers makes
it difficult to obtain an intuitive translation from network position to consumption
variance. In the following result I provide a first, partial attempt at ranking house-
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hold’s consumption variance from network characteristics; I am currently work-
ing on expanding this into a complete, intuitive ordering of variances on networks.
Notice we can write the variance of consumption of household i as ,

var (ci) =
�
�2 � ⇢

�
↵0
i↵i + ⇢10↵i↵

0
i1

where ↵i = (↵i1,↵i2, . . .↵in)
0 is defined as in (1.9). We want to find the house-

hold i? such that var (ci?) � var (ci) for all i 6= i?. Using the expression for
exchanges in (1.9) This next result allows us to rank variances when endowments
are independent across households.

Proposition 1.8.1. Let Hi =
⇣
diag (Gi)�  

1+ di
G0

iGi

⌘
. If ⇢ = 0 and H2

i �H2
j

is positive semi-definite, then var (ci) > var (cj)

Proof. See Appendix

The rather technical form of this result precludes a straightforward interpreta-
tion on the distribution of consumption volatility. In any case, it provides a testable
prediction on individual consumption volatility that is fairly quickly checked in
data. I am in the process of extending this result and testing it on the Tsimane’
data set.

Aggregate volatility of an entire village is perhaps even more important than
distinguishing amongst individual variances. After all, policy considerations can
emerge from a deeper understanding of what social arrangements are more con-
ducive to better insurance opportunities. In this respect, we might want to know
1) what type of network is persistently less volatile than another, or 2) what indi-
vidual, when removed, reduces volatility the most. After some manipulations, I
obtain a “useful” form that should allow me to conclude something about which
networks are prone to higher aggregate volatility. Specifically, I have that,

X

i

var (ci) / 10 (D�G G)�1 (D�G �G) (D�G G)�1 1

where � is a diagonal matrix similar to  , such that �ii =
2+ di
1+ di

. The familiar
quadratic form, although a complicated function of the adjacency matrix, might
conceal some useful properties that might allow me to answer these two questions.

1.8.5 Alternative Centrality Measures
As in most network papers that prescribe a centrality-based prediction on behav-
ior, a natural concern is that in fact other similar measures might be as successful
in explaining data, so that the predictions of the model are rendered mute. Most
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times this is dealt with by running a horse race against other measures and show-
ing that the theory’s predictions indeed outperform other measures. To do this, I
first show that the WEPC centrality presented in this paper is only weakly corre-
lated with other well known global network measures, such as Bonacich centrality
or eigenvalue centrality. Correlation with Bonacich is about 0.32 for the Kinship
Network and about 0.28 for the Trade Network. Correlation with eigenvalue cen-
trality is about 0.46 for the Kinship Network and about 0.38 for the Trade Net-
work. These values are not large, moreover if we substitute these measures for
the WEPC in the expression for the sharing rule in equation (1.9), we obtain non-
significant, and even negative, result. Of course, these values are not normalized,
so they predict shares that fail to satisfy the constraint (i.e. outside the interval
[0, 1] and/or don’t sum to one).

A possible objection, therefore, may be that any other linear function of arbi-
trary network measures that both defines values in [0, 1] and satisfies the feasibility
constraint,

P
j

↵ij = 1, would deliver similar results; said differently, one could ask

if (1.16) estimates nothing but a simple accounting identity of cross-claims on a
network. Indeed, while there exist many such matrices A (G) that satisfy the
feasibility constraints, the estimation procedure could fail to distinguish amongst
them, delivering “appropriate” fits to vastly different predictions. To test this I es-
timate a simple, intuitive alternative to equation (1.9) that only captures local node
characteristics. Specifically I consider the possibility that the share of j0s endow-
ment consumed by i is determined entirely by the size of i0s k � neighborhood
relative the total of all k � neighborhoods of all of j0s neighbors. This measure
captures i0s relative importance within j0s sphere of influence similar to (1.9), but
under a reduced, local notion of importance. We can express this sharing behavior
as,

↵ij =

��Nk
i (G)

��
P
i

gij
��Nk

i (G)
��

where |A| denotes the cardinality of set A. Indeed it is not difficult to see that this
first-order measure provides predictions within the unit interval and satisfies the
budget constraint. If the structural estimation of the sharing rule only captures an
accounting identity, the estimation of

↵obs
ijt = �1Lij + ✏ijt (1.19)

where Lij =
|Ni(G)|P

i
gij |Ni(G)| , should undoubtedly produce �1 = 1. I show results for

the 2� neighborhood in table 1.11, although similar results hold for all k values
tested (all below 10). The results show that indeed �1 is either not significant, or
far from one. Instead, relative neighborhood size fails to correlate with the sharing
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behavior of the Tsimane’ in any reasonable manner that would indicate that other
local measures can do as good a job at describing pairwise exchanges.

1.8.6 Estimating the Income Process
Before estimating the income process I control for predictable components. Al-
though the data set contains a number of time-invariant demographic statistics for
each household, the only time-varying, household-specific attribute that predicts
the level of income is hours worked. Therefore, I run the following first-stage
regression of log household income on hours invested in productive activities, to-
gether with household and village-time fixed effects,

log (yi,t) = hi,t + ⌧vt + �i + ✏it (1.20)

I choose to allow for household-specific intercepts rather than introducing a long,
but still incomplete, list of household demographic traits. I obtain a residual in-
come process for household i from (1.20) that I use as my unpredictable compo-
nent of income in order to estimate the parameter  .

The next step requires that we define a process for residual income,

ỹit = ⌘it + ⌫it
⌘i,t = c+ �⌘i,t�1 + ✏it

where ỹi,t is the residual from a log income regression for an individual i at time
t, ⌘it is the persistent component of income and is assumed to follow an AR(1)
process, ⌫it is the transitory component of income, ✏it is the shock to the persistent
component of household income. Finally, �it ⇠ (0, �2

�), ✏it ⇠ (0, �2
✏ ), ⌘i,0 ⇠

(0, �2
0) and are independent of each other for all i and t. The parameter vector

to estimate is ✓ = (�, c, �2
✏ , �

2
�). Notice that we don’t make any distributional

assumptions on the error terms besides defining first and second moments.
Before estimating the vector ✓ I relate its elements to the parameter of interest,

 . Recall that  = µ2+⇢
�2�⇢

where µ, �2, and ⇢ represented the mean, variance and
common covariance term of the joint distribution of income across households.
Given the description on residual income above we can conclude the following
relationship between the parameters of ✓ and the parameters that form the value
of  :

µ = c
1��

�2 = �2
✏

1
1��2 + �2

⌫

⇢ = � c
1��

Computing the cross-sectional covariances between period t and period t + k
(for all t and k) produces a total of T (T+1)

2 distinct moment conditions that relate
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residual income and distributional parameters.44 In particular, if we write down
the moment mtk (✓) between agents at time t and t+ k we have,

mtk (✓) = E [yi,t · yi,t+k]
= E [(⌘it + ⌫it) (⌘i,t+k + ⌫i.t+k)]

=

(
E [⌘2it] + �2

⌫ if k = 0

�kE [⌘2it] +
�
1� �k

�
E [⌘it]

2 if k > 0

where
E
⇥
⌘2it
⇤
= �2

✏

1

1� �2
+ E [⌘it]

2

and E [⌘it] =
c

1��
is the typical expression for the mean of an AR(1) process. The

above expressions represent an over-identified system for ✓, so moment conditions
cannot be solved explicitly.45 As usual in these cases, we look for the vector
✓ that minimizes the distance between theoretical moments and their empirical
counterparts,

✓̂ = min
✓

⇣
M (✓)� M̂

⌘0
W

⇣
M (✓)� M̂

⌘

where M (✓) and M̂ stack the moment conditions and the sample analogs respec-
tively, and where W is a weighting matrix. Following the general trend in the
literature I take W as the identity matrix.46 The non-linear GMM estimation de-
livers estimates of ✓̂ =

⇣
�̂, ĉ, �̂2

✏ , �̂
2
�

⌘
= (0.981, 0.00932, 0.521 ⇤ 10�5, 2.018).

This represents a negligible shock to the persistent component of income, and a
strong persistence parameter. the variance to transitory shocks is about 2. This im-
plies that household income can best be thought mostly of transitory shock with
a small common intercept. Using the expressions above we find that µ = 0.93,
�2 = 2.019, and ⇢ = 0.86. Together this implies an estimated value of = 1.474.
This value is close to other values found using more rudimentary estimates of sim-
pler models in the main text.

44Notice the matrix of moment conditions is symmetric (i.e. mtk (✓) = mkt (✓)) so we only
calculate the lower triangular part of the matrix, consistent of T (T+1)

2 distinct terms.
45In unbalanced panels like this one, moreover, we might estimate less conditions since it might

very well happen that no household is present both in period t and t + k. Formally, we estimate
the available moment conditions defined as, E [�i,t,k (m̂tk �mtk (✓))] where �i,t,k equals 1 only

if i is present at t and t + k, and is 0 otherwise, and where m̂t,k = 1
It,k

It,kP
i=1

yi,tyi,t+k, with It,k =
P
i
�i,t,k.
46Altonji and Segal (1996) show that the optimal weighting matrix introduces significant small

sample bias. They study the small sample properties of the GMM estimator with several alternative
weighting matrices and recommend using the identity matrix.
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1.9 Proofs
Lemma 1.9.1. Under quadratic utility, there exists no ex-ante conflict between
efficiency and equity. If L (C) is a network component, the ex ante Pareto-efficient
risk-sharing arrangement among agents in C minimizes expected cross-sectional
variability in consumption. Formally,

max
X

i2C

Eu (ci) = minE
X

i2C

(ci � c̄)2

and corresponds to solving the following mean and variance relation,

min
X

i2C

var (ci) + E (ci)
2 subject to

X

i2C

ci (!) =
X

i2C

yi (!) for every state !

(1.21)

Proof of Lemma Lemma 1.9.1
Consider the minimization of expected cross-sectional variability in consumption

defined as E
P

i

(ci � c̄)2
�

, where c̄ = 1
N

P
i

ci represents the average consump-

tion. This is equivalent to minimizing
P
i

c2i � 1
n

✓P
i

ci

◆2

. Since we have that
P

ci =
P

yi the second term drops out of the optimization problem. As a re-
sult, the problem reduces to minimizing E

P
c2i . Notice that the welfare problem

under quadratic utility corresponds to minimizing E
P
i

ci � 1
2�c

2
i . Distributing

the sum and imposing the feasibility condition that
P

ci =
P

yi, implies that
the planner essentially minimizes E

P
c2i . For the second statement, notice thatP

i

Ec2i =
P
i

var (ci) + E (ci)
2 follows from the definition of variance and the

linearity of the expectations operator.

Proof of Proposition 1.3.1
Proof. Recall the optimality conditions given in equation (1.7), that characterize
the dependency of shares across the network,

↵ij = gij(⇤j � 
X

k

gik↵ik) (1.22)

where  = µ2+⇢
�2�⇢

, ⇤j = �j

2(�2�⇢) and �j is the constant to the constraint on j0s
outgoing shares. We will rewrite these in matrix form by defining first the vector
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of i’s incoming shares ↵i = (↵i1,↵i2, . . . ,↵in)
0 and the vector of constraint multi-

pliers ⇤ = (⇤1,⇤2, . . . ,⇤n)
0. Let Gi represent the ith row of G and let  ̂ = � .

Then, equation (1.22) can be written as,
⇣
I�  ̂G0

iGi

⌘
↵i = diag (G0

iGi)⇤

and, because the matrix on the left-hand-side is full-rank, we can offer the follow-
ing formulation,

↵i =
⇣
I�  ̂Pi

⌘�1

diag (Pi)⇤ (1.23)

where I set Pi = G0
iGi

for ease of notation. Now, if the value of  ̂ is such
that  ̂ < 1

⌫max
where ⌫max is the leading eigenvalue of Pi then we can write the

following relation,
⇣
I�  ̂Pi

⌘�1

=
1X

k=0

 ̂kPk
i

The condition on  ̂ holds for all matrices Pi since, by the Perron-Frobenius the-
orem, 0 < min

j

P
k

Pi;kj  ⌫max  max
j

P
k

Pi;kj and  ̂ < 0. Now, because the

matrix Pi is idempotent up to a scalar corresponding to the degree of i — i.e.
Pk

i = dk�1
i Pi — then we can simplify the above series in the following way,

1X

k=0

 ̂kPk
i = I�  

1 + di
Pi

Finally, it can be easily checked that Pi · diag (Pi

) = Pi, which means we can
rewrite equation (1.23) as,

↵i =

✓
diag (Pi)�

 

1 + di
Pi

◆
⇤ (1.24)

where we still have to solve for ⇤ to obtain a closed form solution of ↵i. To do
this notice that 1.24 allows us to rewrite j0s constraint as,

1 =
X

i

↵ij = dj⇤j �
X

i

gij

 
 

1 + di

X

k

gik⇤k

!

which implies that

⇤j =
1

dj
+

1

dj

X

i,k

gjigik
 

1 + di
⇤k
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Proof of Proposition 1.3.2
Proof. If we impose the feasibility constraints on the vector equation (1.24) we
obtain that,

1 =
X

i

✓
diag (Pi)�

 

1 + di
Pi

◆
⇤

where 1 is an n � vector of ones. The properties of Pi means we can rewrite
equation (1.24) as a function of the original matrix G in the following way,

↵i =

✓
diag (Pi)�

 

1 + di
Pi

◆
(D�G G)�1 1

where  is a diagonal matrix with  ii =
 

1+ di
and  ij = 0 for all i 6= j. This

provides a closed form solution of the constrained-efficient flows on any given
network.

Finally, to arrive at the result we solve for the inverse matrix above as a series
of powers of G. The following formulation allows us to do so

(D�G G)�1 =
⇣
D

1
2

⇣
I�D� 1

2G GD� 1
2

⌘
D

1
2

⌘�1

= D� 1
2

⇣
I�D� 1

2G GD� 1
2

⌘�1

D� 1
2

the middle term being inverted can be expressed as a geometric series as long as
?? . Provided this is so, the following relation holds,

(D�G G)�1 = D�1 +D� 1
2

1X

k=1

⇣
D� 1

2G GD� 1
2

⌘k

D� 1
2

which can be understood as accumulating weighted even powers of the adjacency
matrix as follows,

D�1
�
I+

�
A+AD�1A+AD�1AD�1A+AD�1AD�1AD�1A+ . . .

�
D�1

�

where we set A = G G to ease notation. So the sharing rule weights all even
powers between i and j through the matrix  ̂ that appears between the product of
G. This can be surmised in the above expression and can be written as follows.
Consider the set of all paths of length q between i and j under G as

⇧q
ij (G) = {{i0, i1, i2, . . . iq} | i0 = i, iq = j and gn,n+1 = 1 for n = 0, 1, . . . q � 1}

for every ⇡ij 2 ⇧q
ij (G) let W (⇡) define the weights associated to this path. It is

not difficult to see that,

W (⇡ij) =
1

di

µ2 + ⇢

�2 � ⇢+ (µ2 + ⇢) di1

1

di2

µ2 + ⇢

�2 � ⇢+ (µ2 + ⇢) di3
. . .

1

dj
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Finally, let Mi represent the ith element of the vector (D�G G)�1 1. Then,
Mi =

1
d1

+
P
j

Mij , where

Mij =
1X

q=1

X

⇡2⇧2q
ij

W (⇡ij)

Proof of Proposition 1.3.3
Proof. Assume on the contrary that ↵ij 6= 1

d
. A regular network has the property

that Mi ( ,Greg) = Mj ( ,Greg) = M ( ,Greg) for all i and j. In that case, we
can write the assumption that equal sharing is not the solutions as,

↵?
ij = M ( ,Greg)

✓
1�  d

1 + d

◆
6= 1

d

which implies that

M ( ,Greg) 6=
1

d
+ 

Using the result from Proposition X, we can also write M ( ,Greg) as,

M ( ,Greg) =
1

d
+
X

q2N

X

j2N

X

⇡ij2⇧2q
ij

W (⇡ij)

where W (⇡) corresponds to a particular weighting scheme for paths between i
and j. So if equal sharing is not the solution for a regular network, then  6=P
q2N

P
j2N

P

⇡ij2⇧2q
ij

W (⇡ij). I show next that in fact they are equal.

By the symmetry of the complete network, we know that, W
�
⇡2q
ij

�
=
�
1
d

�q+1 �  
1+ d

�q

for any path of length 2q between i and j. Finally it is just a matter of finding how
many such paths there are. Let ⇧q

j = [
i
⇧q

ij and ⇧q
ij is the set of all paths of length

q between i and j. Define |A| as the cardinality of set A. Then we can write that,

X

q2N

X

j2N

X

⇡ij2⇧2q
ij

W (⇡ij) =
1

d

X

q2N

��⇧2q
j

��
✓
1

d

◆q ✓  

1 + d

◆q

The value of
��⇧2q

j

�� corresponds to the number of paths of length 2q starting from
j. All paths of length 2q contain 2q + 1 nodes, so this is equivalent to the number
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of ways to assign d values to each of the 2q remaining values (once we fix j). This
is a standard assignment problem in combinatorics and the solution is well known
and equal to d2q. This means that we can write the following,

1

d

1X

q=1

d2q
✓
1

d

◆q ✓  

1 + d

◆q

=
1

d

1X

q=1

✓
d 

1 + d

◆q

=  

where the second equality comes from the convergence of the geometric series.
This contradicts the original assumption that ↵ij 6= 1

d
and proves the result.

Let us define a household’s neighborhood centrality as a weighted average of
all of its neighboring centralities as follows,

MNi
(G, ) =

 

1 + di

X

k

gikMk (G, ) (1.25)

This term appears in the constrained-efficient solution to all of i0s incoming shares
and weights the total position of all of i0s neighbors by the connectivity of i. The
following two lemmas derive properties of this neighborhood centrality and are
used in a couple of proofs in the paper.

Lemma 1.9.2. The WEPC of agent i can be expressed as a function of the neigh-
borhood centralities of all its neighbors. In other words,

Mi (G, ) =
1

di

 
1 +

X

k

gikMNk
(G, )

!

where MNk
=  

1+ di

P
k

gikMk

Proof. Recall the two-step recursive expression of WEPC from equation 1.10,

Mi ( ,G) =
1

di

 
1 +

X

l,k

gikgkl
 

1 + dk
Ml ( ,G)

!
(1.26)

the second term in brackets above can be rewritten as
X

j

gij
 

1 + dj

X

k

gjkMk (G, )

and using the definition of MNj
in equation 1.25 we obtain the expression.
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Lemma 1.9.3. let n (C) equal the total number of households in any connected
component C, then the average neighborhood centrality over that component is
always equal to  . Formally,

X

i2C

MNi
=  n (C)

for all C.

Proof. Using the budget constraint and our constrained-efficient solution, ↵?
ij in

equation (1.9), we have that

n (C) =
X

i2C

X

j

gij↵ij =
X

i2C

X

j

gij (Mj �MNi
) =

X

i2C

X

j

gijMj�
X

i2C

MNi

X

j

gij

Now using the definition of MNi
in equation 1.25, we have the following relation-

ship

n (C) =
X

i2C

MNi

✓
1 + di
 

� di

◆

rearranging we get the result.

Lemmas 2 and 3 together imply the following useful result,

Lemma 1.9.4. The WEPC of a household i that is connected to all other house-
holds in a component Ci (G) is constant across all networks and equal to

Mi (G, ) =
1

di
+ 

for all G whenever di = |Ci (G)|.

Proof. Straightforward.

Proof of Proposition 1.3.4
Proof. let h represent the center (or hub) of the star and s represent the periph-
eral households (or spokes). Then, define the transfer from h to s as ↵sh =
Mh (G, )�MNs (G, ) using the constrained-efficient solution of equation 1.9
and the definition of neighborhood centrality in equation (1.25). By Lemma 2 we
can rewrite this as

↵sh = 1
dh

(1 + (n� 1)MNs +MNh
)�MNs

= 1
dh

(1 +MNh
) +MNs

⇣
n�1
dh

� 1
⌘
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and by lemma 3 we have that

MNs =
n �MNh

n� 1

which allows us to express ↵sh only as a function of MNh
.

Finally, since h by definition is connected to all other players in the network,
we can use corollary 1 together with the constraint on the shares sent by h to
obtain the following useful relationship between MNh

and ↵sh

1� (n� 1)↵sh =
1

dh
+ �MNh

this implies that we can express ↵sh uniquely as a function of parameters,  , n
and dh, as follows,

↵sh =
1

dh

✓
1

dh
+ + (n� 1)↵sh

◆
+
n � 1

dh
+ + (n� 1)↵sh � 1

n� 1

✓
n� 1

dh
� 1

◆

rearranging we get that

↵?
sh =

1

1 +
�
n
2 + 1

�
 

✓
1

dh
+ 

◆

this proves the result for transfers from h to s. Similar steps show that Proposition
1.3.4 also holds for transfers from s to h

Proof of Proposition 1.8.1
Proof. We write down the variability in consumption as var (ci) / ↵0

i↵i where

↵i =

✓
diag (Gi)�

 

1 + di
G0

iGi

◆
(D�G G)�1 1

let Hi =
⇣
diag (Gi)�  

1+ di
G0

iGi

⌘
. Then we have that,

var (ci) =
�
(D�G G)�1 1

�0
H0

iHi (D�G G)�1 1 (1.27)

Hi is symmetric so H0
iHi = H2

i . Equation (1.27) is a quadratic form on H2
i . The

result follows from standard properties of quadratic forms.
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Chapter 2

REGIME CHANGE IN LARGE
INFORMATION NETWORKS

Joint with Joan de Martı́, Universitat Pompeu Fabra
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2.1 Introduction

Global games of regime change describe coordination games of incomplete infor-
mation in which the status quo- i.e. a currency peg, a bank’s balance sheet, or a
political regime, - is abandoned when a sufficient fraction of the population attacks
it. So far all previous work has treated the population as an infinite, homogeneous,
mass of individuals, each with a private noisy signal of the fundamentals, with-
out any regard for the potential patterns of communication that admittedly exist
amongst individuals.1 In this paper we propose an approach to introduce networks
of communication within this class of games so as to draw some implications the
network architecture might impose on the outcomes of the game.

Our model assumes a population of individuals connected according to some
social network, each with an independent noisy signal on the underlying strength
of the status quo. This fundamental value essentially describes the minimal frac-
tion of individuals that are necessary for regime change. Individuals engage in
one round of communication in which each agent truthfully shares her signal to
her immediate neighbors. More connected agents, then, will receive a larger set of
signals and attain a more precise observation of the fundamental. Each agent can
then either choose to attack or not attack the status quo. Attacking can yield a pos-
itive payoff- if regime change is successful- or a negative payoff- if it is not. Not
attacking always yields a 0 payoff. Payoffs are discontinuous both in the state and
other players’ actions so that the payoff structure does not exhibit strategic com-
plementarities per se. The equilibrium is defined in threshold strategies, whereby
a player chooses to attack if she observes a signal realization below some cutoff
value.

To avoid dealing with intractable correlation effects that plague the system for
a generic class of networks, we focus instead on networks where each agent’s
neighborhood is sufficiently small relative to the entire population, such that these
correlation effects are negligible. In the end, we are left with an infinite popula-
tion split into various partitions of varying connectivity (or degree) and therefore
of varying precision in their private information. We identify the degree distribu-
tion of the network as a crucial determinant of individual strategies and aggregate
behavior, and compare the equilibrium outcomes for various degree distributions
ranked according to different measures of Stochastic Dominance. Moreover, we
present some results on uniqueness of equilibrium that relate meaningfully to pre-
vious models with a homogeneous population.

In the case of a diffuse common prior (i.e. no public information) we prove
that the probability of successful regime change does not vary with the degree dis-

1See for instance: Angeletos, Hellwig and Pavan (2006, 2007), Angeletos and Werning (2006),
and Edmond(2011)
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tribution: As remarked by Vives (2005) and others, maximal strategic uncertainty
with respect to others’ behavior induces “flatter” best response so that individu-
als are less concerned with the aggregate composition of the population. It turns
out that each individual responds to common beliefs about aggregate behavior by
selecting a threshold strategy commensurate with the probability that their pri-
vate signal is extreme. This implies that players with smaller tails in their private
signals compensate by selecting larger thresholds at exactly the proportions that
offset any differences across individuals. As a result, everyone in the population
(regardless of their degree) is equally propense to attack the regime, so that alter-
ing the proportion of highly connected individuals does not affect the aggregate
share of belligerents. This does not mean, however, that all equilibria are identical.
While the success probability remains unchanged, the size and composition of at-
tacks conditional on success/failure indeed respond to the varying connectivity of
the population. Populations with a larger (smaller) share of highly connected indi-
viduals will exhibit larger (smaller) successful attacks and smaller (larger) failed
attacks.

Introducing public information has important implications for equilibrium out-
comes: the degree distribution becomes an instrumental determinant of the suc-
cess probability, albeit with surprising considerations. It turns out that the cost
endured by attackers in the event of failure defines the direction of the compar-
ative statics and sheds some light into the strategic interactions of a population
with varying informativeness of the relevant state of the world. When costs are
sufficiently low, increasing the connectivity of the population (by way of First Or-
der Stochastic Dominance) actually lowers the success probability. The opposite
is true for sufficiently high costs. This surprising result reflects the fact that less
informed individuals place less weight on their private signal and respond more to
aggregate behavior. As costs fall less connected individuals increase their propen-
sity to attack far more than more connected agents. Moreover this difference
increases and becomes arbitrarily large as the costs of revolt approach zero.

The model attains uniqueness for a larger set of parameter values than under a
homogeneous population (i.e. without incorporating a communication network).
This is explained by noticing that the presence of varying degrees in this model
essentially translates into a convex combination of weights placed on the public
signal. As more weight is placed on high degree individuals (who in turn pay less
attention to the public signal) then we retain uniqueness for smaller public-signal
variances than the previous models allowed.

Finally the paper provides a methodological contribution to the literature by
identifying sufficient conditions on network sparseness that allow for an approxi-
mation of large networks by an infinite population partitioned by their connectiv-
ity. Not only do we gain tractability and insight but we are able to isolate the effect
of connectivity on informativeness by disregarding the local correlations induced
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by the network. We show these conditions are quite general and applicable to a
wide range of network global games and we hope these can be useful for future
research in the area.

2.2 Literature
Our paper mainly contributes to two general strains of literature: that on global
games pioneered by Carlsson & Van Damme (1993) and Morris & Shin (2002),
and on network theory. The paper essentially extends the static version of the
global game of regime change put forth by Angeletos et al. (2007) in considering
the role played by the exchange of private information within a network. Indeed
the presence of local communication lays the ground for a number of additional
questions on the role of connectivity in coordination not adressed in the basic
model of Angeletos et al. Others, such as Edmond (2011) and Bueno de Mesquita
(2011), have similarly dealt with discrete action global games in large popula-
tions, tackling diverse aspects such as the possibility of strategic action by the
status quo, but neglecting the impact of connectivity in shaping posterior beliefs
and equilibrium actions when coordinating aggregate behavior. Our paper shares
with Hellwig (2002) and Angeletos & Werning (2006) the study of the interac-
tion of private and public information in determining uniqueness of coordinating
equilibria.

More precise efforts to model regime change with heterogeneous agents, such
as Chwe(2000) and Guimaraes and Morris (2005), distinguish agents’ possibly
different action spaces contingent on types or their network position in sequential
action games, but similarly make no effort to model varying connectivity and its
role in the sharing of private information. Moreover, the latter focus on continuous
action spaces, which disregards some of the inherent complications of correlated
signals in threshold equilibria with finite players. We show that these considera-
tions are not innocent, and that the strategic impact of connectivity on equilibrium
outcomes is far from obvious. Most recently, an attempt to adress the role of net-
works by Dahleh et al. (2012) has provided a partial characterization for finite
populations. Their results are silent to non-regular network structures and their
focus on multiplicity is strangely at odds with the solution concept employed.
Finally, Hassanpour (2010) provides an applied study that underscores the empir-
ical importance of these types of models in recent experiences with large scale
coordinated attacks on regimes. His theoretical model, however, allows for con-
tinuous belief updating a la deGroot, which fundamentally undermines the impact
of limited local communication in coordinated attacks.

The network literature includes a rich tradition of modelling communication.
Bloch & Dutta (2009) propose a model of network formation where agents can
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choose to invest in links of communication with varying degrees. Their work es-
tablishes stable and efficient architectures, rather than exploring the impact of
exchange on games of coordination. Galeotti et al. (2010) consider a model
where individuals are partially informed about the structure of the social net-
work and provide results characterizing how the network structure shape indi-
vidual behaviour and payoffs. Finally, Hagenback & Koessler (2009) consider
strategic communication in networks by modelling a cheap talk communication
stage within networks .

We assume in this paper that communication is truthful and limited to direct
network neighbors. This is a modelling assumption shared with Calvó-Armengol
& de Martı́ (2007, 2009) that deals directly with the role of communication net-
works in a class of global games with continuous quadratic payoffs. They provide
a knowledge index that essentially compounds higher-order expectations in order
to map beliefs into actions. Regime change models, however, are discrete action
games that require a consideration of the entire posterior distributions. As such, a
new approach that resolves the underlying correlations is warranted.

The recent paper by Barberà and Jackson (2016) characterizes the set of mono-
tone threshold equilibria for a discrete version of a similar collective action game,
with an infinite number of players but with a finite number of possible signals. The
analysis reveals non-linearities in the participation decisions and non-monotonicities
in the participation rate if players can receive more signals. Their model assumes
that all individuals receive the same number of signals and, in network terms, this
could represent the case of a regular network where all players have exactly the
same number of connections.

2.3 Model
This section develops a model that builds on the original model of regime change
by Angeletos et al. (2007) by introducing a stage of communication in networks
loosely inspired by the work of Calvó-Armengol & de-Martı́ (2007). By approxi-
mating large networks with an infinite population the model essentially introduces
heterogeneous variances to the original analysis by Angeletos et al. which allows
for a different set of comparative statics exercises.

2.3.1 Actions, Payoffs and Network

There is a population N of individuals connected according to some network G
to be specified below. Each agent takes an action ai 2 {0, 1} where ai = 1 will
represent an attack on the status quo. The payoffs are as follows:
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Regime Change (A � ✓) Failure (A < ✓)

ai = 1 1� c �c
ai = 0 0 0

where ✓ is some exogenous parameter, A = 1
N

P
n

ai is the proportion of the

population that chooses to attack the status quo and c 2 (0, 1) represents the cost
of attack.

There is a network G that captures the communication process. We assume
gij = gji (undirected channels) and gij 2 (0, 1), with gij = 1 meaning that
agents i and j communicate with each other. For computational simplicity me let
gii = 1. We define the neighborhood of i as Ni = {j 2 N |gij = 1} and we denote
its cardinality as the degree (that is, di = |Ni|) . Let Nd represent the number of
individuals in the network with degree d. Finally, let D = max

i=1,...N
{di}

2.3.2 Information, Communication, and Belief Formation
Agents have a common prior belief ✓0 with a corresponding variance �2

0 (can be
diffuse or not). Each agent then receives an i.i.d. signal xi = ✓ + ✏i where
✏i ⇠ N(0, �2). There is one round of truthful communication in which each agent
transmits their signal to his/her neighbors. Alternatively you could think of the
network as describing a technology whereby being connected to someone implies
that their private information is readily available. In any case, after the dispersal
of information, each agent i contains a vector composed of di independent signals
with which to update beliefs about the strength of the status quo, ✓, using Bayes’
rule. Clearly, in the measure that agents’ signal vectors overlap their posterior
beliefs about fundamentals are correlated, meaning that agents that share most of
their neighbors will also have very similar information; in the limit, a complete
network corresponds to a situation of common knowledge.

Formally, agent i forms the following posterior distribution of ✓ conditioned
on the entire vector of private signals,

✓ | xi ⇠ N

✓
�2

�2 + di�2
0

✓0 +
�2
0

�2 + di�2
0

hx
i

,1
di
i , �2�2

0

�2 + di�2
0

◆
(2.1)

where h·i represents the dot product of two vectors and 1
di

is a vector of ones of
dimension di. This updating process is instrumental to equilibrium since it refines
agents’ beliefs about the probability of success (holding everyone’s equilibrium
behavior fixed) and therefore allows players to obtain their optimal best response.

Now, since we are dealing with payoffs that are discontinuous in actions, our
equilibrium must be defined in monotone cutoff strategies. In other words, players
will choose to attack if their vector of signals is ”below” some optimal frontier, to
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be specified below. As will become clear later, the shape of this frontier responds
directly to the strength of correlation effects: when correlations are strong (i.e. in
the case of finite networks) the frontier will be highly non-linear, while negligible
correlation effects (in the case of infinite population) will lead to a linear frontier
and allow for a tractable solution to the model.

2.3.3 Strategies
Because this is a game of incomplete information and finite actions, the equi-
librium is defined in terms of threshold strategies on private signals such that if
player i receives a vector of signal realization below some frontier she then takes
action 1, and conversely takes action 0 if she observes a private signal above said
bounds. Of course the value and shape of the threshold will make player i indif-
ferent between the two available actions, which given our payoff structure implies
that P (A � ✓ | x

i

) = c where the posterior probability is calculated by Bayes’
rule as indicated in equation (2.1). As such, player i will choose to attack the
status quo for all signal vectors in the set,

Bi(A) = {x
i

| P (A � ✓ | x
i

)  c} (2.2)

where we can now express the equilibrium size of attack, A, in terms of equilib-
rium threshold strategies as,

A =
1

n

X

n

ai =
1

n

nX

i

1{xi2Bi} (2.3)

where 1 here represents the indicator function. The set Bi(A) contains all vectors
of signal realizations that induces agent i to attack the status quo. Recall, how-
ever, that agent i knows some of these realizations are observed, as well, by other
neighboring players. This means that if she observes, say, a very high realization
for the signal of an influential neighbor, she can infer many others have observed
it as well. Then she might expect that the share of attackers, A, will be low, and
will therefore need to observe much much lower realizations in her remaining sig-
nals such that she believes a low A is sufficient for success. In other words, the
upper boundary of the set Bi can take on strange, non-linearities corresponding
to the network topology and ensuing correlations. The following section works
through an example of this sort, but in general these considerations complicate
the analysis considerably and it is precisely what we try to avoid with an infinite
population approach.

The size of attack, A, is essentially a binomial random variable (or a sum of
bernoulli random variables). But the correlations implicit in the network structure
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guarantees these are not independent bernoulli draws. This means that a player’s
position in the network admittedly affect her expectation about A. To see this
notice that players are correlated amongst individuals up to two links apart (I am
correlated with my friend’s friend since both of us received my friend’s signal).
This guarantees that my belief about the possible states in which, say, A = 1

3 is not
the same as someone else with a different set of neighbors (and thus a different set
of correlations). This seems to imply that any two individuals (even of the same
degree) can arrive at radically different beliefs about the possible value of A. Of
course, common knowledge of the network structure would guarantee that every
player knows everyone’s correlation structure when calculating their thresholds,
so that in equilibrium every player would know each other’s threshold strategies
perfectly and in fact would end up calculating the exact same distribution for A.2

With all this we can then formally define a Bayesian Nash Equilibrium of this
model as a situation where given everyone else’s strategies, B�i, player i forms
beliefs about the size of attack A, and given A and the vector of incoming signals,
x
i

, player i chooses optimal strategy Bi.

Definition. An equilibrium corresponds to a complete strategy profile B = (B1 . . . , Bn)
such that equations (2.2) and (2.3) hold simultaneously.

Calculating this equilibrium, however, implies going through every possible
network structure, calculating each player’s correlation to obtain a distribution of
A, and then for each possible realization of A compute the equilibrium threshold
for each player. The computational difficulty explodes as N increases.3 In order
to circumvent these issues and arrive at a tractable model, this paper formally
approximates a large network with an infinite population by showing that these
correlation effects become negligible in the limit. Before we proceed, however, it
is worth exploring the types of equilibria we might expect in finite networks.

2.4 A Finite Network Example
In this section we seek to underline the correlation effects that guide equilibrium
behavior in finite networks by working through an amenable example with three

2This model deals with very large networks and the idea that the entire geometry is somehow
known by everyone is untenable. Fortunately it is not necessary. It suffices that players all know the
degree distribution of the network and that they have a common prior belief about the likelihood
of each particular architecture that is possible given this degree distribution.

3It is important to note that in this scenario we would be left with a distribution of finite support,
not a fixed share, which would preclude any clear cut prediction about which values of ✓ guarantee
success and which guarantee failure in equilibrium. Equilibrium in that case would assign to each
value of ✓ a probability of success.
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players. Given the difficulties in solving the model for a general finite network
of size n, the next section will show that these correlation effects disappear for
large (and sufficiently sparse) networks; this will allow us to solve the model
asymptotically. In any case, we will stress that the following intuition is analogous
to the behavior we might expect for any large, but finite, network.

In order to solve the model with finite agents we must consider the possibility
that players a priori will not weight all signals equally when defining equilibrium
strategies- i.e. the upper boundary of set Bi is not linear. In the infinite population
scenario agents simply take an average of all signals in anticipation of the negligi-
ble impact of correlations. This in turn means that the position in the network turns
out to be irrelevant (all that matters is the degree of each player) and all incoming
signals are equally useful when calculating posteriors. But with finite agents the
position in the network is crucial in determining equilibrium strategies. As an
example, a player might choose to weight one of his neighbor’s signals more if
this neighbor happens to be in a privileged position- i.e. a ”hub”’s signal gets read
by a large share of the total population. This implies that depending on others’
equilibrium strategies, best response functions may take on different shapes cor-
responding to different weights placed on each signal. Formally, best responses
here are not a linear mapping of all incoming signals (as is the case for infinite
players) but instead will be shaped by the relative position of each neighbors who
transmitted each signal.

To begin fixing ideas, consider the game described above played by three
agents (call them a, b, and c) connected in a star-like network as shown in fig-
ure 1. It should be clear from the communication process that after the signals
have dispersed through the network all agents are correlated to each other, and in
particular agents b and c are correlated vis-a-vis a’s signal.4 An equilibrium here
corresponds to a vector of equilibrium strategies B = (Ba, Bb, Bc) defined as in
equation (2.2) and where the share of agents that attack, A, is given by the relation
A (✓) = 1

3

P
i

1{xi2B?
i }.

As the hub, a’s private information will take on a heftier share of others’ best
response correspondences. To develop some intuition consider how player b finds
her optimal strategy. Given the strategies of other players fixed, imagine b ob-
serves signals (xa, xb) such that xa is very large. Although player b has no direct
contact with c, she knows c has also observed this signal and can reason that it
will drive c’s posterior beliefs about ✓ upward. Then, given c’s beliefs about A
fixed, player b can argue that c will need to observe a very low realization of xc

(the only remaining signal observed by c) in order for P (A � ✓ | x
c

)  c, which

4Because communication occurs for one round only, correlations emerge across players with
at most 2 degrees of separation. If we added a fourth player d connected to c, then b and c would
lie 3 links apart and would not be correlated in their posterior estimates of ✓
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we know induces c to attack. In sum, a high realization of xa gives player b some
confidence that c is very unlikely to attack, even as b and c are not directly con-
nected. It should be clear that b can perform similar reasoning with respect to
a’s equilibrium behavior ex-post. Now consider what happens when b observes
a very low realization of xa instead. In this scenario b will argue that c will at-
tack more often than before because, keeping others’ strategies fixed, b can reason
that this low realization of xa will induce c’s beliefs about ✓ downward and thus
P (A � ✓ | x

c

)  c holds for larger realizations of xc than before. Together, these
arguments suggest that low values of xa raise b’s belief about c’s (and a’s) propen-
sity to attack, while high values of xa lower these beliefs.

This reasoning will affect b’s equilibrium strategy because it affects her belief
about the aggregate size of attack A. Since networks here are small, forming
expectations about other’s equilibrium action will in fact affect the belief about A
and therefore will impact best responses. To see this notice that out indifference
condition Pr (A > ✓ | x

i

) = c, which defines the boundary of our set Bi, can be
reformulated as

1̂

�1

Pr (A (✓;B) > ✓)Pr (✓ | x?
i ) d✓ = c

where the dependence of A on players’ equilibrium strategies B = (B1 . . . , Bn)
is made explicit. After rearranging and noticing that necessarily A 2 [0, 1] gives
the following meaningful expression

1̂

0

Pr (A (✓;B) > ✓)Pr (✓ | x?
i

) d✓ = c� Pr (✓ < 0 | x?
i ) (2.4)

Notice this equation essentially defines a best response correspondence Bi (B�i)
for each i that is non-linear following the intuition above: when determining the
set of vectors x?

i

that satisfy the indifference condition, players must take into ac-
count that signal realizations will not only affect their inference of ✓ as determined
by Pr (✓ | x?

i ) but also how they will affect their beliefs about aggregate equilib-
rium behavior as defined by Pr (A (✓;B) > ✓). While all signals will contribute
equally to statistical inference on the state of the world (the first effect), the previ-
ous discussion makes clear that signals will nonetheless have a varying impact on
the belief about aggregate behavior in equilibrium (the second effect).

In later sections we show that under large networks this entire reasoning may
be disregarded: the fact that c is more or less likely to attack (given an observation
of a common signal xa) will not affect b’s belief about A when the population
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tends to infinity.5 As a result, there is no strategic reason for players to take into
account the correlation structures generated by the network; Indeed, a’s signal is
no more valuable than b’s signal if the information it provides about c’s equilib-
rium behavior does not move b’s beliefs about A. More formally, since beliefs
about A remain constant ex-post we will see that the above equation can be sim-
plified by identifying regions

⇣
�1, ✓̂

⌘
where success occurs with probability 1

and regions
⇣
✓̂,1

⌘
where success never occurs, so that the above equation can be

rewritten as
✓̂̂

�1

Pr (✓ | x?
i ) = Pr

⇣
✓ < ✓̂ | x?

i

⌘
= c (2.5)

which allows us to solve the model analytically- more on that later. In short, when
signals cannot inform players on aggregate behavior they merely retain their role
in statistical inference (updating beliefs about ✓), and they are all equally valuable
in this sense.

Returning to b’s equilibrium strategy, consider how her reasoning above af-
fects her best response correspondence. We have seen that a high realization of
xa will not only force b’s posterior beliefs about ✓ upward, but it will also allow
b to conclude that both a and c will now attack less often in equilibrium, so that
aggregate behavior A goes down. This will make b more reluctant to engage in
attacking the status quo, unless his remaining signal xb is extremely favorable for
success. What is important here is that although we could make the same argu-
ment for a high realization of xb, this signal will only allow b to form beliefs about
a’s equilibrium behavior, while xa allows b to form beliefs about the equilibrium
behavior of both a and c. In other words, a’s signal moves b’s beliefs about aggre-
gate behavior much more than her own signal and so b will react more strongly
to it. This unequal weighting that results from correlations in the network is what
generates nonlinear strategies in finite networks as shown in figure 2.

We may now proceed with some general results for finite networks that, al-
though not precise and analytical, nonetheless capture the basic strategic insight
of the model when correlations are significant.

2.5 A Network Approximation
The reader can think that a network in this model generates two main effects:
imbuing the system with correlation and allowing for the pooling of information.

5In truth, it is not sufficient that the population tend to infinity. We must also ensure that no
player remains too central as population grows or else her signal would indeed move beliefs on
aggregate behavior. This sparseness condition will be specified in the next section.
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This paper focuses on the latter by assuming that we are in sufficiently large net-
works with only local correlation effects, such that they become strategically irrel-
evant. Then, the only effect of the network is that agents with larger degree have
more precise signals. Of course not all network architectures exhibit a sufficiently
local correlation- consider the complete network where correlation is maximal
across all players. Clearly we are after a condition on sparseness that guarantees
local correlation effects. So before we proceed let us formalize the admissible
structures.

Formally, let Nd be the subset of players with degree d. Then we can extend
the previous definition of A by partitioning the total population n into degrees in
the following way,

A =
1

n

NX

j

1{xj2Bj} =
1

n

DX

d=1

X

j2Nd

1{xj2Bj}

Notice that each for each j 2 Nd the random variable 1{xj2Bj} is a weakly de-
pendent Bernoulli with probability parameter P (x

j

2 Bd). This symmetry across
players of the same degree arises from the fact we deal with asymptotically large
populations, where local correlations become strategically negligible. This ”price-
taking” effect implies that the identity of each incoming signal does not condition
the behavior of A, so that in equilibrium players’ position in the network becomes
irrelevant and all that matters is the impact of degree on the precision of the pos-
terior distribution. Moreover, since each incoming signal now has the same value,
players will weight them all the same in a simple average, and the upper bound-
ary of Bi is linear with a slope of �1. That is, to maintain indifference between
attacking or not, a low realization of one signal can be offset by a higher realiza-
tion of another by exactly the same amount, something that did not occur in the
finite case above.(see figure) Formally what this means is that strategies can now
be formulated in terms of the average of all incoming signals as such,

Bi =

⇢
xi |

1

di
hxi,1di

i  x?

�

where we have that x? satisfies our indifference condition P (A � ✓ | x?) = c. 6

All this allows us to rewrite the above equation as,

1

n

DX

d=1

X

j2Nd

1{xj2B⇤
d} =

DX

d=1

nd

n

 
1

nd

X

j2Nd

1{x̄jx⇤
d}

!

6Notice the probability now is conditioned on the average realization, rather than on the entire
vector. A cursory look at equation (2.1) should reveal that these are equivalent formulations
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where x̄j = 1
dj

⌦
xj,1dj

↵
. Now, if we can apply the Law of Large Numbers to

the terms in brackets the share of players with degree d to attack the status quo
converges from a binomial variable to a fixed share P (x̄d  x⇤

d). In that case we
obtain that

A �!
n!1

DX

d=1

PdP (x̄d  x⇤
d) (2.6)

where Pd is the share of the population with degree d. Of course the elements
summed in the bracketed terms are not independent random variables so the clas-
sical LLN does not apply. Instead we rely on LLN for weakly dependent random
variables. The weak correlation structures that allow for LLN also condition the
admissible network architecture by requiring a minimum level of sparseness. This
is formalized in the following proposition that places conditions on the growth
rate of the maximal degrees in order to assure that these limit properties hold in
equilibrium.

Proposition 2.5.1. Let d1 = max (D) and d2 = max (D \ {d1}). If d1 · d2 2
o (n), then equation (2.6) holds.

Proof. See the Supplementary Appendix for a proof and a more general method-
ological result on convergence for a wide class of correlation structures.

By placing a bound on the growth rate of maximal degrees, proposition 2.5.1
essentially forces us to concentrate on networks that are sufficiently sparse in that
no one individual contains too many links relative the size of the population. In-
tuitively, if we are trying to coordinate with a large set of individuals then our
local correlations with a small subset of the population becomes strategically in-
significant and we can disregard them when developing our optimal strategies. As
such, all incoming signals are equally valuable and the upper frontier of the set
Bi is linear. This is the key step in the model, and what allows us to proceed with
an analytical solution that focuses on the network effect on precision and ignores
correlations. As a counter example consider a star network. Clearly the maximal
degree in this network grows linearly with n so that the proposition fails. In this
case it is fairly straightforward that correlations remain a crucial determinant of
equilibrium for all population sizes: all spokes know that everyone else has ob-
served the hub’s signal, so its’ realization will move everyone’s beliefs about A
much more than their own realization. In other words, the frontier of Bi is not
linear because correlation effects imply that not all signals are equally valuable.

If we are willing to focus on the networks prescribed by the proposition above,
we can proceed and think of the network as summarized by the degree distribu-
tion. We are left with an infinite population that is split into D partitions with
proportions Pd for d = 1, . . . , D. Each partition has measure 1 and each agent of
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partition d 2 {1, 2, . . . , D} will have degree d. In this sense, the following model
essentially extends the standard global game of regime change to a population
with heterogeneous variances.

2.6 Equilibrium With Diffuse Prior
Agents have a diffuse prior over the state of the world (i.e. ✓ is distributed uni-
formly over the real line). Next, suppose there is a degree-specific threshold strat-
egy x?

d 2 < such that each agent with degree d attacks if and only if x  x?
d. The

measure of agents who attack is given by

A(✓) =
DX

d=1

Pd · �
 p

d

�
(x?

d � ✓)

!

where � is the CDF of the standard normal. Because A(✓) is decreasing in ✓ we
can be sure there exists a value ✓̂ that is a fixed point of A(✓). Formally, ✓̂ solves,

A(✓̂) =
DX

d=1

Pd · �
 p

d

�

⇣
x?
d � ✓̂

⌘!
= ✓̂ (2.7)

Finally, notice that there is regime change whenever ✓  ✓̂. Standard Bayesian up-
dating implies that the posterior expectation for an agent i of degree d that receives
a signal realization xi is ✓ | xi ⇠ N(xi,

�2

d
). Therefore, to this particular agent,

the probability of regime change is given by, pr(✓  ✓̂ | xi) = �
⇣p

d
�

⇣
✓̂ � xi

⌘⌘
.

The agent will find it optimal to attach wheneverthe posterior probability of regime
change is greater than the marginal cost from attacking c, or whenever, xi  x?

d

where x?
d solves,

�

 p
d

�

⇣
✓̂ � x?

d

⌘!
= c for d = 1, . . . , D (2.8)

A Bayesian Equilibrium is a D+1� tuple,
⇣
✓̂; x?

1, x
?
2, . . . , x

?
D

⌘
that solves equa-

tions (2.7) and (2.8). Notice players are strategic, and respond to everyone else’s
strategy through the parameter ✓̂. We are essentially describing a coordination
game of incomplete information with heterogeneous precisions.

Strategic response to others’ strategies does not mean, however, that we face
pathological, corner equilibria where everyone chooses never (always) to attack.
Consider the response of individual i to a population where every other player
chooses never to attack (i.e. everyone chooses x?

j = �1). In that case A (✓) = 0
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for all values of ✓ so that ✓̂ = 0. But consider introducing this to equation (2.8);
Because c > 0 player i will choose an equilibrium threshold x?

i bounded away
from �1, so that never attacking is not an equilibrium strategy. In fact this will
constitute an equilibrium if and only if c = 1. Intuitively, even though everyone
else is choosing not to attack, there is still a positive probability that ✓  0 (recall
that player i’s posterior belief about theta is ✓ | xi ⇠ N (xi, �

2)) so player i
will choose to attack for some positive probability as a result.7. This is true as
well when considering the equilibrium where everyone always attacks (i.e. this
will only be an equilibrium for c = 0). Together this implies we have a unique
equilibrium. Our first result establishes the existence of this unique equilibrium
by explicitly solving for ✓̂ (c, p) in equation (2.7), and then establishes its lack of
response to the degree distribution.

Proposition 2.6.1. There exists a unique equilibrium to this static one-shot game
in monotone strategies. The probability of regime change, Pr(✓ < ✓̂), does not
change with degree distribution p and decreases with c.

Proof. First rewrite equation (2.8) to get the best reply function for a player i of
degreed,

x?
d = ✓̂ � �p

d
��1 (c)

Then substituting this into equation (2.7) gives

A(✓̂) =
DX

d=1

Pd·�
 p

d

�

✓
✓̂ � �p

d
��1 (c)� ✓̂

◆!
=

DX

d=1

Pd·�
 p

d

�

✓
� �p

d
��1 (c)

◆!

=
DX

d=1

Pd·�
�
���1 (c)

�
=

DX

d=1

Pd

�
1� �

�
��1 (c)

��
=

DX

d=1

Pd (1� c) = 1�c = ✓̂

Then ✓̂ = 1 � c is independent of the degree distribution (p1, p2, . . . , pD) and
clearly decreases with c. This implies that the probability of regime change
Pr

⇣
✓  ✓̂

⌘
is also invariant to the degree distribution. Finally, we can calculate

threshold strategies (x?
1, x

?
2, . . . , x

?
D) that define the equilibrium by substituting in

for ✓̂ to obtain x?
d = 1� c� �p

d
��1 (c).

7With a bounded distribution of private noise this corner equilibria could be retrieved. To see
this imagine instead that ✏i ⇠ U (✏, .✏). Players’ posterior beliefs about ✓ would be ✓ | xi ⇠
U (xi � ✏, xi + ✏). If ✏ and ✏ are sufficiently close, we cannot rule out a situation where all players
believe the probability that ✓ = 0 is 0 (alternatively 1), so that each player reacts to ✓̂ = 0 (✓̂ = 1)
by choosing an equilibrium strategy consistent with never (always) attacking the regime, which
means choosing x

?
i = �1 (x?

i = +1).
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Figure 2.1: Size of Attack as a function of ✓

This result at first glance is not at all intuitive. In fact, we would expect the
degree distribution to have an impact on the probability of regime change. It turns
out that the range of ✓ where attacks are successful does not change as we alter
the average connectivity of the society. Why? With a diffuse prior, players pay
no attention to prior information; only private signals feed the inference of poste-
rior beliefs. As a result, the strategic uncertainty of each agent is maximal with
respect to the behavior of others. Formally, each player’s higher-order beliefs on
✓ characterized by equation (2.8) have the same shape as the commonly observed
distributions of private signals that sum in equation (2.7). Players have no way
of improving on these beliefs. So even though different degrees select different
threshold strategies, it turns out that precisely at the value of ✓ where the size of
attack is the smallest successful attack, the propensity to take action is identical
across the entire population. This is important because it implies that shuffling
the distribution of degrees will not modify where the smallest successful attack is
defined, so it will not modify the range of ✓ where successful attacks begin. As a
result, the probability of observing a success will also remain fixed.

It is important to stress that threshold strategies are not identical. In fact thresh-
old strategies depend crucially on d. However, the behavior of the population in
equilibrium cannot be glimpsed directly from these values. Instead, the share of
individuals of degree d that decide to attack the status quo in equilibrium is de-
fined by Pr (xd  x?

d | ✓), and this need not obey the ordering of threshold strate-
gies x?

d. To see this consider the case of c > 1
2 . Players with a larger degree

have a tighter posterior of ✓ and will choose a strictly higher threshold defined by
x?
d = ✓̂ � �p

d
��1 (c). However, notice that for the same threshold x?, these high
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degree individuals will observe x  x? less often than low degree individuals. It
turns out that at ✓̂ high degree players will choose a threshold that is larger by the
amount that exactly compensates the lower probability of observing a signal to the
left of said threshold. As a result, even though it is true that x?

1 < x?
2 < · · · < x?

D,
in equilibrium we have that Pr(x1  x?

1 | ✓̂) = Pr(x2  x?
2 | ✓̂) = · · · =

Pr(xD  x?
D | ✓̂). This striking result comes from the fact that the shape of

the posterior belief about ✓ (which chooses the threshold x?
d) and the shape of

the distribution of signals (which determines Pr (xd  x?
d) ) are exactly the same.

Once we introduce a prior with finite variance players make us of it as a public
coordinating device and higher order beliefs about ✓ will depart from higher order
beliefs about xd ⇠ N

⇣
✓, �

2

d

⌘
. As we will see, however, too little strategic uncer-

tainty in the form of too low a prior variance, leads to multiplicity by increasing
strategic complementarities of the model.

Proposition 2.6.1 should not convey the idea that the propensity to attack is
independent of the degree distribution. This is only true at the point ✓̂ = A

⇣
✓̂
⌘

,
which as mentioned above implies that the likelihood of observing a successful
attack remains fixed for all p. However, the equilibrium is defined for all values
of ✓ 6= ✓̂. In these cases, the size of the attack responds directly to the weights cho-
sen for each degree. In other words, conditional on the attack being too small to
be successful, its size will vary with the degree distribution. The same applies for
attacks large enough to be successful. In order to gain some intuition, Figure 2.1
plots the size of attack A (✓) for two different populations: one with pd = 1 and
the other with pd0 = 1 (where d0 > d). You can think that a population with posi-
tive weight on both these degrees will have an A (✓) line somewhere in between.
What is important to note first is that proposition 2.6.1 can be thought of as stating
that these two lines (and in fact all other lines for all degrees d = 1, 2, . . . , D) in-
tersect at the 45� line. It should be clear that any convex combination of these two
functions (i.e. for any degree distribution) will always cross the 45� at the same
point of intersection ✓̂ = 1 � c. For all values different form ✓̂, however, the two
curves take on quite different values and it is here where the degree distribution
will determine the size of attacks. This is the content of our next result.

Proposition 2.6.2. Define A
p

(✓) as the equilibrium size of attack under degree
distribution p and state of the world ✓. Let p0 FOSD p then:

• for ✓ > ✓̂ (failure) A
p

(✓) > A
p

0 (✓) and A
p

(✓)� A
p

0 (✓) increases with ✓

• for ✓¡✓̂ (success) A
p

(✓) < A
p

0 (✓) and A
p

0 (✓)� A
p

(✓) increases with ✓

Moreover, this effect is largest whenever c = 1
2 and decreases monotonically

as c ! {0, 1}
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Proof. Consider the equilibrium size of attack by plugging in equilibrium thresh-
old strategies found in proposition 1 into the definition of A (✓)

A(✓) =
DX

d=1

Pd · �
 p

d

�

✓
1� c� �p

d
��1 (c)� ✓

◆!
=

DX

d=1

Pd · �
 p

d

�
(1� c� ✓)� ��1 (c)

!

Notice that whenever ✓ > ✓̂ (✓ < ✓̂) then the factor multiplying
p
d
�

above is
positive (negative) so that the argument of � is larger (smaller) for a larger degree.
Then, by shifting weight to larger degrees (FOSD) we increase the weights on
those terms in the summation that are larger (smaller) leading to a total value of
A (✓) that is larger (smaller). For the second part of the proof notice that for c = 1

2
we have ��1 (c) = 0 and that as c tends to the extremes ��1 (c) tends to ±1.

Proposition 2.6.2 essentially states that in a population with equal weights,
unsuccessful attacks are composed by a majority of less connected individuals,
while successful attacks are composed by a majority of more connected individ-
uals. This confirms our intuition that more connected individuals, because they
are more informed, miscoordinate less often. After all, they obtain a more precise
estimate of the true parameter, so it only makes sense that once ✓ is too large to
guarantee success they retreat from attacking in larger shares. Graphically, you
can see that for ✓ > ✓̂ the slope of A (✓) is steeper for the more connected individ-
ual.

What seems harder to reconcile, however, is that the difference in performance
across degrees diminishes monotonically as the costs of revolt become more ex-
treme. The intuition here is that the informational advantage of more informed
individuals is greatest when the costs of attack are the least extreme. In other
words, for costs neither too high nor too low more informed individuals shirk
from attacking much more quickly as ✓ rises, creating a large advantage vis-a-vis
the less informed. But for extreme costs these individuals respond less to the value
of ✓ and choose to attack more or less the same for all state of the world (after all,
either the costs are so low that attacking is almost always a better option, or too
high to attack regardless of the state of the world).

2.7 Equilibrium With Non-Diffuse Prior
Next we turn to the case where player’s hold a finite-variance prior about the
state of the world, and must therefore incorporate it into their posterior beliefs.
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It turns out that in this scenario the previous results change dramatically. In par-
ticular, with the presence of a public signal the degree distribution completely
determines the probability of success. Most interestingly, this comparative static
is not monotone- so that more average connectivity means a greater probability
of success- and instead depends on the cost of attack, c. When the costs are high
more connectivity translates to a larger share of success, but the opposite is true
for sufficiently low costs.

To begin the analysis, notice that if the prior is not diffuse, and instead follows
a normal distribution,

✓ ⇠ N (✓0, �
2
0)

then the posterior distribution of the state of the world, ✓, looks like,

✓|xi ⇠ N (
di�

2
0xi + �2✓0

di�2
0 + �2

,
�2
0�

2

di�2
0 + �2

)

The computation of A(✓) remains unaffected to the . However, the last part of the
analysis changes and leads to

x⇤
d = (1 +Rd)✓̂ �

�p
d

p
1 +Rd�

�1(c)�Rd✓0. (2.9)

where
Rd =

�2

d�2
0

Plugging this in the equation A(✓̂) = ✓̂ leads to

X

d

Pd�

✓
�

�2
0

p
d

⇣
✓̂ � ✓0

⌘
�
p
1 +Rd�

�1 (c)

◆
= ✓̂ (2.10)

An Equilibrium is a D + 1 � tuple
⇣
✓̂, (x?

d)
D
d=1

⌘
that solves equations (2.9) and

(2.10).

Equilibrium Analysis

One first thing to notice is that, in equation (2.9), as �2
o ! 1 , the equilibrium

strategy for all degrees x?
d tends to ✓̂ � �p

j
��1(c) (the solution to section 2.6) and

that similarly x?
d tends to ✓̂ for sufficiently large degrees. This seems to suggest

that as the public signal becomes more noisy and agents switch to the private
signal, then the same effect as in diffuse prior starts kicking in. In other words
the marginal effect of degree on the weights placed on each signal disappears. In
a sense, we can think of the degree distribution as determining how strongly the
population will value their private signal against the public signal.
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Before we proceed to establish the effect of the degree distribution on the size
and outcome of coordinated attacks, we shall establish the existence of a unique
equilibrium. Unlike the previous section, the presence of a public signal means
we can only guarantee uniqueness above a minimum public variance. The reason
rests on arguments from Morris-Shin (2002). As the public signal variance di-
minishes, all players will shift their posterior beliefs towards said signal, in effect
increasing the level of correlated beliefs and, in a sense, continuously increasing
the level common knowledge. At a certain point the level of strategic uncertainty
is sufficiently low to generate multiplicity. The following result establishes the
lower bound on public variance to guarantee uniqueness.

Proposition 2.7.1. A unique equilibrium exists if �2
0 > �p

2⇡

P
d

pdp
d

Proof. Rewrite equation (2.10) as F
⇣
✓̂; ✓0, �2, �2

0

⌘
= 0 where

F
⇣
✓̂; ✓0, �

2, �2
0

⌘
=
X

d

Pd�

✓
�

�2
0

p
d

⇣
✓̂ � ✓0

⌘
�
p

1 +Rd�
�1 (c)

◆
� ✓̂

Note that F
⇣
✓̂; ·

⌘
is continuous and differentiable in ✓̂ 2 (0, 1) and that

F (0; ·) =
X

d

pd�

✓
�✓0�

�2
0

p
d
�
p

1 +Rd�
�1 (c)

◆
> 0

and

F (1; ·) =
X

d

pd�

✓
�

�2
0

p
d
(1� ✓0)�

p
1 +Rd�

�1 (c)

◆
� 1 < 0

Then I need to show F is monotonically decreasing in ✓̂. Notice that

@F

@✓̂
=
X

d

pd�

✓
�

�2
0

p
d

⇣
✓̂ � ✓0

⌘
�
p

1 +Rd�
�1 (c)

◆
·
✓

�

�2
0

p
d

◆
� 1

and given that max
✓̂

� (·) = 1p
2⇡

the condition 1p
2⇡

�
�2
0

P pdp
d
< 1 =) �2

0 >

�p
2⇡

P pdp
d

is both necessary and sufficient for F to be monotonic in ✓̂.

This result suggests that introducing heterogeneity in the model retrieves unique-
ness for a greater range of parameter values. This is to be expected since the pres-
ence of a degree distribution essentially introduces a mass of individuals with a
lower private variance with respect to the homogeneous population scenario. The
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presence of more informed individuals strengthens the role of private information,
making coordination more difficult. In other words, the presence of varying de-
grees in this model essentially translates into a convex combination of weights
placed on the public signal. As more weight is placed on high degree individuals
(who in turn pay less attention to the public signal) then we retain uniqueness for
smaller public-signal variances than the previous models allowed.

There is no explicit analytical solution to equation (2.10) of the form ✓̂ (c,p)
that would describe the impact of p on the probability of regime change. How-
ever, we can use the implicit function theorem to say something about the com-
parative statics across various types of degree distributions. I will focus on the
set of parameter values that guarantees uniqueness (i.e. �2

0 > �). The first result
establishes a surprising non-monotone comparative statics for a population com-
posed of only 2 degrees and completely general class of degree distributions. The
following result focuses on power-law distributions in order to extend the result
to an arbitrary number D of degrees.

Proposition 2.7.2. Let �2
0 > � and D = 2. Define two general degree distribu-

tions p = (p1, (1� p1)) and p0 = (p01, (1� p01)) such that p FOSD p0 (i.e. such
that p1 < p01). Then, there exists a threshold ĉ 2 (0, 1) such that

• for all c 2 (0, ĉ) the probability of regime change is lower under p than
under p0

• for c 2 (ĉ, 1) the probability of regime change is larger under p than under
p0.

Proof. Rewrite equation (0.6) for D = 2

p1�

✓
�

�2
0

⇣
✓̂ � ✓0

⌘
�
p

1 +R1�
�1 (c)

◆
+

(1� p1)�

✓
�

�2
0

p
2

⇣
✓̂ � ✓0

⌘
�
p

1 +R2�
�1 (c)

◆
= ✓̂

define an implicit function F
⇣
✓̂ (p1) , p1

⌘
= 0. Applying the implicit function

theorem as before we obtain

@✓̂

@p1
= �

@F
@p1
@F

@✓̂

=

�
�
⇣

�
�2
0

⇣
✓̂ � ✓0

⌘
�

p
1 +R1��1 (c)

⌘
� �

⇣
�

�2
0

p
2

⇣
✓̂ � ✓0

⌘
�

p
1 +R2��1 (c)

⌘

P
d

pd�
⇣

�
�2
0

p
d

⇣
✓̂ � ✓0

⌘
�
p
1 +Rd��1 (c)

⌘⇣
�

�2
0

p
d

⌘
� 1
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Whenever �2
0 > � the denominator is negative (see previous proof). As a re-

sult, the sign of the comparative static is determined entirely by the sign of the
numerator. Notice that

@✓̂

@p1
= 0 =) �

�2
0

⇣
✓̂ � ✓0

⌘
�
p
1 +R1�

�1 (c) =
�

�2
0

p
2

⇣
✓̂ � ✓0

⌘
�
p
1 +R2�

�1 (c)

rearranging we get:

�

0

@

⇣
✓̂ � ✓0

⌘⇣
�
�2
0
� �

�2
0

p
2

⌘

p
1 +R1 �

p
1 +R2

1

A = c

where ✓̂ is endogenously determined in equilibrium and decreases with c (check
equation (2.10)). Since � (·) is a continuous, monotone function defined over the
interval [0, 1] and moves positively with ✓̂, we can be sure there exists a unique ĉ
that solves,

�

0

@

⇣
✓̂(ĉ)� ✓0

⌘⇣
�
�2
0
� �

�2
0

p
2

⌘

p
1 +R1 �

p
1 +R2

1

A = ĉ

Finally, notice that for all c < ĉ the left hand side of this equation is larger than
the right hand side so that @✓̂

@p1
> 0 and for all c > ĉ the left hand side is smaller

than the right so that @✓̂
@p1

< 0, thus proving the result.

The non-monotonicity implied by proposition 2.7.2 is surprising. Indeed, in-
creasing the average connectivity of the population does not increase the like-
lihood of success unambiguously. Instead, a low cost of failure increases the
marginal propensity to attack of low connected individuals by far more than the
corresponding increase experienced by highly connected individuals. As a result,
low connected players choose to attack more often for a greater range of ✓ val-
ues, including the precise value ✓̂ that determines the likelihood of success. It is
still true (as in proposition 2.6.2) that all failed attacks will register greater par-
ticipation by less connected (i.e. less informed) individuals. But if costs are low,
some successful attacks also will contain greater shares of low connected players.
Intuitively, the low risk involved in attacking the status quo gives less informed
individuals an advantage by being more reckless (i.e counting more on rare tail
events). Anticipating this behavior, the minorities of more informed individu-
als will respond by adhering more to this propensity of attack than their signals
would normally prescribe (Equilibrium threshold strategies respond to ✓̂ and this
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Figure 2.2: Size of Attack as a function of ✓

captures the strategic response of players to aggregate behavior). Of course as
more informed individuals cease to be a minority, the opposite will occur and less
informed individuals will strategically respond to their expected aggregate behav-
ior. As such, they will choose to be more cautious about attacking the regime
than their dispersed, low-quality information would initially prescribe. Figure 2.2
plots the size of attacks as a function of ✓ for both low high costs. You can see in
the right-hand panel that for costs sufficiently low, the mass of attackers of lower
degree is in fact superior to the mass of attackers of high degree for all values
of ✓ corresponding to failed attacks (as was the case in the previous section) but
also for some values of ✓ corresponding to successful attacks. In other words, less
connected players surpass more connected players in their shares of attack at a
lower value of ✓ than was the case with no prior information. Then, if the shares
of low connected individuals increase the value of ✓̂ will increase and so will the
probability of regime change.

But the question remains. Why are players with more dispersed posterior
beliefs more willing to take action when the costs are low? A look at figure 2.3
reveals that this result comes from the symmetry of distributions. Less connected
individuals attain a more dispersed posterior belief about the state of the world,
✓, and so must center their distributions further away from the critical cutoff ✓̂ in
order to attain a probability of success equal to c. When c > 1

2 (Right-hand panel)
the cutoff will certainly lie to the right of every player’s expected belief, and less
connected players will therefore choose a lower equilibrium threshold. With a
lower threshold there is no hope to attack in greater shares. But when c < 1

2 (Left-
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Figure 2.3: Less Informed Players choose larger x?
i for c sufficiently low

hand panel) the cutoff will lie to the left of the distribution’s center, whatever it
turns out to be. In that case more dispersed distributions will center further to
the right than less dispersed ones and thus low degree individuals will choose an
equilibrium threshold that is larger. Moreover this effect increases with c and we
can attain arbitrarily large distances between the threshold strategies of large and
low degree players. If costs are sufficiently low, so that this distance is sufficiently
large, then less connected individuals can attain such a larger threshold h that the
probability of attack is larger at ✓̂ (see figure 2.2).

Intuitively, the high expected gains and low expected losses that come with
low values of c mean that players need not be very sure of the probability of suc-
cess (remember at equilibrium players choose threshold such that probability of
success equals c). In that case being less informed has a strategic advantage in so
far as more weight is given to rare events, and these rare events are now enough to
trigger action. Then as a low connected individual you will attack unsuccessfully
more often than others, but you will also sometimes attack successfully more of-
ten than others. As a result, the status quo will need to be stronger to survive a
population with your equilibrium behavior.

The previous result showed that the model exhibits non-monotone compara-
tive statics with respect to the degree distribution for a general class of distribu-
tions and D = 2. Of course we would like to say something for a wider support
of the degree distribution. The difficulty emerges in expressing a FOSD shift in
one single parameter. We need this since our proofs rest on totally differentiating
an implicit function in ✓. Indeed for a great many number of distributions this
cannot be done. Following a vast number of studies8 that have documented the
prevalence of scale-free characteristics across most types of large networks, we

8See, for instance, Barabasi & Reka (1999), Barabasi (2004),
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Figure 2.4: Probability of Success against Cost of Failure for model simulations
under a powerlaw distributions and with parameters D = 200, �2

0 = 4, �2 = 16.
Panel A: ✓0 = 0. Panel B: ✓0 = 2.

focus on degree distributions where the probability that a vertex is connected to
k other vertices decays as a power law following P (k) / k�� . Then, we can
consider shifts in � as FOSD movements in the degree distributions. To see that
this is equivalent, notice that lower values of � imply that the probably of degrees
decays more slowly, so that at least for large values of d, a power-law distribution
with �0 > � is First Order Stochastically dominated with respect to a power-law
distribution with parameter �.

We solve the model numerically by first simulating power law degree distri-
butions for D = 200 and a wide array of different �0s. We then find the ✓̂ that
solves the equilibrium condition shown in equation (2.10). Recall that the value of
✓̂ specifies the likelihood of successful regime change in equilibrium. From this
exercise we therefore obtain the success probability as a function of c, for each
different power law distribution (parametrized by �). We plot the results in Fig-
ures 2.4 and 2.5 for different values of ✓0, �0, and �. The two panels of Figure 2.4
capture the effect of changing ✓0, the mean of the prior beliefs about the strength
of the status quo. The left panel corresponds to ✓0 = 0 and the right panel corre-
sponds to ✓0 = 2. As found in Proposition 2.7.2 for the case of D = 2, raising
the prior beliefs about ✓ lowers the value ĉ at which the comparative statics are re-
versed. In any case, notice that there exists one unique value ĉ (�, �0, ✓0) 2 (0, 1)
such that, to the left of ĉ increasing � increases the probability of regime change,
and to the right of ĉ the probability of success decreases with �. The two panels of
Figure 2.5 capture the effect of an increase in ✓20

✓
. Again, it is clear that there exists

one unique value ĉ (�, �0, ✓0) 2 (0, 1) where the ordering of the curves is reversed.
However, in this case, raising ✓20

✓
in fact increases the value of ĉ. This was also true

in Prop 2.7.2 for the case of D = 2. In general, while an analytical solution for
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Figure 2.5: Probability of Success against Cost of Failure for model simulations
under a powerlaw distributions and with parameters D = 200, ✓0 = 0. Panel A:
✓20
✓
= 1. Panel B: ✓20

✓
= 2.

power law distributions (P (k) / k��) is hard to come by, the numerical results
presented in Figures 2.4 and 2.5 have been carried out for an extensive range of
parameter values. 9 We can therefore state the following useful observation.

Observation: Let �2
0 > �. For the class of degree distributions following a

Power Law (i.e. P (d) / d�� for some � > 0), there exists a unique threshold
ĉ (�, �0, ✓0) 2 (0, 1) such that for all 0 < c < ĉ the probability of regime change
INCREASES with �, and for all 1 > c > ĉ the probability of regime change
DECREASES with �. Moreover, ĉ (�, �0, ✓0) decreases with ✓0 and increases with
✓20
✓

.
The results above suggests that, as with the case where D = 2, the success

probability does not respond monotonically to a FOSD shift in the degree distri-
bution, and instead identifies a threshold cost where the direction of comparative
statics is reversed. The intuition corresponds to the arguments presented above
and can be seen clearly in Figures 2.4 and 2.5.

2.8 Conclusion
Models of large-scale coordination with incomplete information have, by and
large, neglected the role of communication, and in particular the role of connectiv-
ity in pooling information. In this paper, we propose a model of large-scale coor-
dination within a network of truthful communication. We assume agents observe
the private information held by their neighbors within a given social network.

9Only some examples are shown here. Code available upon request.

92



“Thesis” — 2016/4/20 — 10:07 — page 93 — #109

This generates a situation of locally public signals that correlate posterior beliefs
according to the structure of social interactions. Moreover, a connectivity effect
guarantees that the strength of posterior beliefs In this environment, we describe
the equilibrium for two-action, two-outcome global games with large networks.

The main technical contribution of this paper provides an upper bound on
network density as a function of size, such that, for any communication protocol,
the correlation of posterior beliefs is sufficiently mild relative to the connectivity
effect. This implies that, for large networks, the connectivity effect dominates and,
in the limit, the problem reduces to independent posterior beliefs with strength
proportional to connectivity. This result essentially transforms the problem into a
set of mixing sequences and applies a weak form of the Law of Large Numbers
under finite range dependence. This allows us to solve for an equilibrium, simply
as a function of a network’s degree distribution.

After characterizing the equilibrium, we perform comparative statics on the
network by shifting the degree distribution. We show that these considerations
are not innocent, and that the strategic impact of connectivity on equilibrium out-
comes is far from obvious. Indeed, largely connected individuals, while they care
little (a priori) for publicly observed information, must strategically respond to
the behavior of less connected individuals, and therefore to the public signal indi-
rectly. We show that, when prior beliefs are diffuse (i.e. publicly-held information
is completely uninformative of the state of the world), then the probability of suc-
cessful coordination does not depend at all on the degree distribution. However,
the size of successful and unsuccessful attacks does vary with the degree distri-
bution – more informed populations will correspond with smaller, unsuccessful
attacks and larger successful attacks. On the other hand, when public information
provides information, shifting the degree distribution affects the likelihood of co-
ordination, and we show that the effect is non-monotone and depends crucially
on the cost of mis-coordination. In particular, if the cost of failure is sufficiently
small, then the probability of success increases as networks are, on average, less
connected. The opposite is true for large failure costs. Intuitively, if payoffs don’t
fall by much when coordination fails then the probability of success is maximized
by having less informed individuals that are less selective about when to attack.
Indeed in this scenario failure is also more ubiquitous, but so are successful at-
tacks, increasing the total probability.

We have considered here equilibrium and comparative statics results in the
world where information’s noise does not vanish. Part of the literature of global
games has focused attention in what happens when noise tends to zero. In that
sense, the work of Sakovics and Steiner (2013) is complementary to our approach:
in their paper, different infinte groups can receive information with different prob-
ability distributions and they provide a closed form expression of the common
threshold for all groups in the limiting case where noise vanishes.
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A more thorough investigation of these type of communication protocols on
coordination games is warranted. Particularly, the solution for finite populations
introduces complicated correlation effects. It would be worthwhile to provide
more nuanced predictions on the impact of social structure on equilibrium ac-
tions. As mentioned above, if posterior beliefs are correlated across nearby play-
ers, particularly popular signals will provide information on the state of the world
(as always), but at the same time they will also provide information on others’
equilibrium actions. Equilibrium considerations therefore will depend on a more
detailed description of the network structure than that provided solely by the de-
gree distribution. Secondly, while this paper obtains predictions as to the type of
network that maximizes the probability of success (in terms of degree distribu-
tions), it does not, for the time being, provide predictions as to the most efficient
network. These need not coincide if those networks that maximize the probability
of success also increase the size of unsuccessful attacks. These considerations are
left for future research.
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2.9 Appendix (Sparseness Condition for Approximat-
ing Correlated Networks)

2.9.1 Background
The following discussion proves we can impose conditions on the network ar-
chitecture that guarantee correlations across players are sufficiently local and can
be disregarded when dealing with large populations. Recall that players optimally
choose a threshold strategy following an updated belief about the share of the pop-
ulation that will choose to attack the status quo. In particular, players must form
beliefs about the value of A defined as the share of the population that choose
ai = 1

A =
1

n

DX

d=1

X

j2Nd

1{xjx⇤
d} =

DX

d=1

nd

n

 
1
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j2Nd
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d}

!

With a finite population, A is a binomial random variable and calculating the equi-
librium translates into a grueling combinatorics exercise that requires calculating,
for each player, the level of correlations with every other individual in order to
form high-level posterior beliefs. For networks exceeding 5 players the calcu-
lations become highly intractable and provide little insight. Instead, we propose
approximating a large network with an infinite population in order to rid the model
of correlation effects and focus instead on the relation between connectivity and
informativeness. Formally, we provide conditions on the network architecture that
guarantees that,

lim
n!1

 
1

nd

X

j2Nd

1{xjx⇤
d}

!
= Pr (xd  x?

d)

Then we have that

A �!
DX

d=1

pd · Pr (xd  x?
d)

where pd is the share of the population with degree d. Not only do we gain in
tractability, but we are now able to express the equilibrium as a fixed prediction of
success/failure and size/composition of attacks for each value of ✓- the alternative
would provide for each state of the world ✓ a probability of success and failure
and a distribution of possible sizes and compositions of attacks.

In short, the network here introduces two effects: local correlation in private
information, and precision stemming from the connectivity of each individual.
The following is a methodological contribution for ridding the model of the former
effect in order to exploit the impact of the latter effect on the equilibrium.

95



“Thesis” — 2016/4/20 — 10:07 — page 96 — #112

2.9.2 Finite-Range Dependence and Strong Mixing Sequences
Lemma 2.9.1. If a sequence {xi}1i=1 of random variables (with the same mean)
exhibits finite-range dependence- i.e. there exists an I such that if | i � i0 |� I
then xi and xi0 are independent- and if the random variables emerge from some
finite-moment generating function, then the LLN applies.

Proof. Construct a new sequence {yi}1i=1 in the following way: for i = 1, 2, . . . , I
yi = xi , yI+i =

1
2 (xi + xI+i), y2I+i =

1
3 (xi + xI+i + x2I+i) and so on for all

integer multiples of I . In general for n 2 Z+ and for i = 1, 2, . . . , I , we have

that ynI+i = 1
n+1

nP
k=0

ykI+i. We have constructed a new sequence from sums of

the original sequence in a way that guarantees that the finite-range dependence is
preserved. Now we can talk about limits of the sequence and use the well known
fact that if the partitions of a sequence all converge to the same limit, then the
original sequence must also converge to this limit.

Consider partitioning the sequence {yi}1i=1 into I sub-sequences in the follow-
ing sense: first take {y1, yI+1, y2I+1, . . .}, then {y2, yI+2, y2I+2, . . .}, and so on.
Then we can be sure from the way we have constructed the sequence yn that each
of these sub-sequences contains independent and identically distributed random
variables so that SLLN applies- i.e. such that each of these sequences converges
to the same limit E [x]. This implies that the entire sequence yn converges to E [x]
- There is a theorem: if a set of sub-sequences that covers the original sequence
converge to the same point, then the sequence also converges to that point. But if
yn converges, then so must the sequence composed from summing together blocks
of I elements in the sequence yn. This is clear from the definition of convergence
(pick a larger N but still should get close to the limit). Formally define the se-

quence zn = 1
I

nIP
k=(n�1)I+1

yn. Then we have that z1 = 1
I

IP
i=1

xi, z2 = 1
2I

2IP
i=1

xi and so

on. Because this sequence converges, we get that lim
n!1

1
nI

nIP
i=1

xi = E [x] so that the

LLN applies over the original sequence xn.

The above proof is mine, but the Lemma is certainly true since it refers to the
limiting properties of a particular case of weakly dependent random sequences
called “Mixing Sequences”. What follows is an attempt to establish a direct trans-
lation between this lemma and the theorems that prove SLLN for strong-mixing
sequences in the mathematics and statistics literature (in particular Theorem A of
Li & Zhang (2010)).

We start by defining a strong-mixing sequence.

Definition. Let hXni = {x1, x2, . . .} be a sequence of random variables defined
in a probability space (⌦, F, P ), and define a function ↵ (s), called the strong

96



“Thesis” — 2016/4/20 — 10:07 — page 97 — #113

mixing coefficient, as

↵ (s) = sup
�
|P (A \B)� P (A)P (B)| : A 2 F j

�1, B 2 F1
j+s, and�1 < j < 1

 

where F b
a ⇢ F denotes the subset of the sigma algebra generated by {xa, xa+1, . . . xb}.

The process hXni is Strong Mixing if ↵ (s) ! 0 as s ! 1.

Next we need to show that if a random sequence satisfies finite-range depen-
dence, then it must necessarily satisfy the strong-mixing (or ↵-mixing) property.

Lemma 2.9.2. If a sequence satisfies Finite Range Dependence then it also satis-
fies the Strong Mixing Property.

Proof. Our definition of finite range dependence in lemma 0.1. can be expressed
in terms of sigma-algebras as saying that for all j 2 Z, there exists an I such that
for every s > I we have ↵̂ (s, j) = 0, where,

↵̂ (s, j) = sup
�
|P (A \ B)� P (A)P (B)| : A 2 F j

j , B 2 F j+s
j+s ,

 

But notice that, by finite range dependence, if xj is independent of xj+s then it is
also independent of xk for all k > j + s. Similarly all xm with m < j are also
independent of xj+s (and consequently also independent of all xk with k > j+s).
As a result we can redefine ↵̂ (s, j) as,

↵̂ (s, j) = sup
�
|P (A \B)� P (A)P (B)| : A 2 F j

�1, B 2 F1
j+s,

 

In this case it is easy to see that for ĵ 2 argmax (↵̂ (s, j)) we can establish that
↵̂
⇣
s, ĵ

⌘
= ↵ (s). And finally since we have that ↵̂

⇣
s, ĵ

⌘
= 0 for all s > I then

this implies that ↵ (s) ! 0 as s ! 1. This completes the proof.

Finally by Theorem A of Li 6 Zhang (2010) that establishes SLLN for strong
mixing sequences, we have that Lemma 8.1 is proven.

2.9.3 A Naming Algorithm
Once the above Lemma is shown to hold, we can construct an algorithm for as-
signing indexes to the players in the network such that the resulting sequence has
finite-range dependence. In that case, by the above lemma, the LLN applies to
sub-sequences corresponding to players of the same degree, and thus equation
(0.1) holds.

Algorithm. Start from any node in the network, call it 1. Assign consecutive
indexes to each of 10s neighbors. Next, starting from the neighbor with the
lowest index, assign consecutive indexes to the neighbors of 10s neighbors.
If a node is already named, do not rename it. Continue in this way.
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Figure 2.6: The Naming Algorithm for a Tree network with n = 20 and d1 = 4,
d2 = 4 (i.e. I = 20). Notice that for all i and j with |i� j| > 20 will necessarily
lie more than two links away.

Recall that D represents both the maximal degree and the set containing the
degree of each player in the network. Now define d1 = max (D) and d2 =
max (D \ {d1}) Given this naming algorithm, we can find a value of I < n such
that the sequence of all players has finite-range dependence. Specifically, we have
that when

I = d1 (1 + d2)

there is finite-range dependence for the entire sequence of nodes. To see this
notice that any two players i and j with |i� j| > d1 (1 + d2) must necessarily
lie more than two links away from each other. Given our information aggregation
procedure, this guarantees that they are not correlated. Of course this is not true
for the complete network, but in that case I = (n� 1)n which is greater than
n for n > 2. Clearly the network must be sufficiently sparse such that I < n10.
Although the algorithm gives some freedom as to the precise labeling of the nodes
it guarantees that any two nodes with labels I units away will necessarily lie more
than two links away from each other. Figure 4 illustrates the algorithm and shows
how the value I = d1 (1 + d2) guarantees two degrees of separation for a tree
network of 21 players. The reason for using the tree is that, because no neighbor of
1’s neighbors is also 1’s neighbor, it constitutes the starkest example imaginable.

The only concern now is that not all nodes in the network have the same ex-
pected value (different degrees have different success probabilities in their Bernoulli
random variables). In other words, the above argument constructs a sequence of
Bernoulli random variables with finite-range dependence, but does not guarantee
that they correspond to players of the same degree- i.e. with the same success
probability Pr (xd  x?

d). But this is not a problem. Consider constructing D
sub-sequences corresponding to players of the same degree. These sub-sequences

10In fact, the next section imposes additional conditions on the behavior of I as a function of
the total population n. That is, I < n is a necessary, but not sufficient condition for convergence
of (0.1).
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are also finite-range dependent,11 and because they only include players of a given
degree all necessarily have the same expected value- recall that all players of the
same degree choose the same threshold strategy x?

d. Then by Lemma 0.1, the LLN
holds for each sub-sequence. Equation (0.1) follows.

The argument above has assumed that I corresponds to a fixed integer. It is
easy to see that fixing the maximum degree while increasing the total population
increases network sparseness. It turns out, however, that weaker conditions exist.
Specifically we can establish the same result for values of I that grow with n,
provided the growth rate is sufficiently slow. The following section formalizes
this result.

2.9.4 Conditions on the Growth Rate of Degrees

In this section we specify sufficient conditions on the behavior of the largest de-
grees in the network, d1 > d2 > . . . in order to guarantee that we can construct
sequences of nodes with finite-range dependence, and hence the law of large num-
bers applies. As mentioned above, we need LLN to hold so that we can approxi-
mate the network with an infinite population and gain tractability. The algorithm
above guarantees that we can construct I = d1 (1 + d2) sequences of independent
random variables, each with n

I
elements. Of course, we need that as n tends to

infinity, the value of I does not grow too fast so that we can be sure that n
I

also
tends to infinity. Otherwise the sequences would only contain a finite number of
terms (which is not possible). We could just impose that d1, d2, . . . are fixed to
some constant, but we are interested in finding weaker conditions. So we need
that

n

I (n)
�!
n!1

1

this implies that I 0 (n)�!0.
In general for I = d1 + d1d2 we have that I 0 (n) = d01 (n) + d01 (n) d2 (n) +

d1 (n) d02 (n). We know that in general for any i 2 E, d0i (n) � 0 (otherwise noth-
ing to prove) and so the condition that I 0 (n) ! 0 implies that all three terms go
to zero. The first condition simply implies concavity- i.e. d001 (n) < 0. This makes
sense, it says that as n grows, the maximum degree should grow at a slower rate.
The next two conditions however impose additional conditions on the concavity
of these functions. So far I only have results for the case where degrees follow a
power function of the entire population.

11It is easy to see that if a sequence is finite-range dependent, then so are all of its sub-sequences.
The same value of I in fact works.
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2.9.5 Power Functions (a+ b < 1)
let d1 = na and d2 = nb the concavity condition implies that a, b < 1. Now we
seek additional restrictions on a and b in order to guarantee convergence. Notice
that d01 (n) d2 (n) = ana�1+b so in order to guarantee d01 (n) d2 (n) ! 0 we need
that a + b < 1. The same condition results from imposing d1 (n) d02 (n) ! 0.
This means that given our aggregating procedure that defines I and given that we
impose that degrees follow a power function of n, the condition for finite-range
dependence is a+ b < 1. So in the case of a regular network (where d1 = d2) the
condition becomes a < 1

2 .
In general we can think of a number of communication protocols that generate

all sorts of local correlations. We have assumed in this model that correlations
are present up to 2 links of separation. But there is no reason why this should be
the case. In general, if correlations emerged at k degrees of separation, then we
would need to redefine our I . In this case

I = d1 + d1d2 + d1d2d3 + · · ·+ d1d2d3 . . . dk =
kX

j=1

jY

l=1

dl

Then if we let d1 = na, d2 = nb, . . .,dk = nk, following the same argument
as before, we can show that the new condition implies that all of the exponents
sum to less than 1. That is we need a + b + c + · · · + k < 1. So it should be
clear that as the aggregation procedure generates correlations that stretch farther
across the network, then the restrictions on the concavity of the degrees becomes
stronger in the sense that it imposes structure on the shape of smaller degrees.
What is interesting however, is that it does not impose a slower growth on the
largest degree d1 directly. It just requires that the sum of exponents be less than 1.
So in fact, it is possible to maintain the same growth rate of d1 as before, provided
that the lower degrees grow slower (or not at all). In fact if all degrees lower than
d2 were fixed to some constant integer, then the condition would be the same for
any aggregating procedure.

2.9.6 A General Result
We now provide a general characterization that guarantees I(n)

n
! 0. Notice that

for any general k the convergence rate of I (n) is determined by the last term in

the sum in 2.9.5, so that the necessary condition becomes

kQ
j=1

dj

n
! 0 or, what is

the same, that
kQ

j=1
dj 2 o (n).
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Chapter 3

LEARNING, SORTING, AND
TURNOVER IN UNSTABLE
ENVIRONMENTS
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3.1 Introduction
Complementarities in production incentivizes workers and firms to sort according
to their marginal productivity. This result, known as Positive Assortative Match-
ing (PAM), was introduced by Becker (1973) in the context of the marriage mar-
ket, and has since appeared in a variety of different settings, most importantly in
labour market models. For instance, Sattinger (1980) shows that assortativity can
explain why the distribution of worker earnings is skewed to the right relative to
the distribution of their measured skills. Kremer (1993) uses complementarities
in production to explain the wage differences between developing and developed
countries that cannot be accounted for by their differences in levels of physical
or human capital. More recently the notion of assortative matching has also been
applied to frictional search and matching models by Shimer and Smith (2000) and
others. However, any reasonable labor market sorting model must account for job
turnover as well, and the majority of existing models do not incorporate any form
of worker mobility.

More recently, Eeckhout & Weng (2009) analyze a model of learning and sort-
ing that captures job turnover and other relevant worker characteristics over the
life cycle. In that model, workers and firms learn continuously about the worker’s
productivity type, and workers face the possibility of switching to a more suitable
match at any given moment.1 A match therefore provides value to the worker
both in terms of competitive wages received, and in the learning experience as-
sociated with that match. Indeed, different firms can provide different learning
opportunities, and the authors find that, under complementarities in production,
PAM obtains even when learning in the more productive firm is slower.2 A crucial
element of their model is that worker types are fixed to either “high” or “low”. All
market participants, therefore, hold decreasing degrees of uncertainty (on aver-
age) along the worker’s life-cycle. In fact, after enough time, uncertainty vanishes
and workers’ types are fully revealed. This implies that the value a particular
worker perceives in a given match is determined entirely by the firm and worker
types only. In other words, workers are summarized by commonly-held posterior
beliefs about their underlying type.

Instead, I consider the possibility that the strength of beliefs is endogenous
and related to workers’ decisions about switching jobs. I do this by consider-
ing an alternative setting in which worker’s productivity is not fixed, but instead
follows a continuous-time stochastic process independent of output. Productivity
can evolve randomly for a number of reasons, ranging from environments sub-

1The model can be thought of as bringing together the classical matching framework of Becker
with the learning model of Jovanovic (1979) that first accounted for job turnover.

2A 3-year job at an investment fund admittedly reveals information differently from a 3-year
job at the cheesecake factory.
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ject to important technological changes, to settings in which workers suffer non-
negligible productivity shocks that tend to disappear on average as the time hori-
zon expands. For instance, a worker’s productivity may vary if unforeseen events
force him to be assigned to a different task at which his productivity changes,
or because tasks itself evolve due to technological progress. These changes also
affect an employer’s inference process about a worker’s ability, as current perfor-
mance can become a poor predictor of future one.

Uncertainty in skills plays an important role in the evolution of the mar-
ket’s beliefs. While firms can influence an employee’s productivity through tai-
lored programs such as compensation schemes, on-the-job training or learning-
by-doing, exogenous forces that affect the work environment can also have an
important impact on performance. In settings where wages are based on per-
ceived skills, the degree of randomness of the environment is thus expected to
influence the strategic behavior of a worker whose ultimate goal is to affect his
future income stream by building a good reputation.

Skills evolving randomly implies that market participants now learn over a
changing and uncertain environment. As a result, uncertainty no longer vanishes,
but instead converges deterministically to a long-run residual strength of beliefs
that depends on firm characteristics. This setting has important implications on
workers’ decisions to switch firms that are absent in the stable environment of
Eeckhout and Weng (2009). In particular, it is now possible for the level of uncer-
tainty about a worker’s productivity to increase deterministically after switching
from one firm to the next. This process of unlearning comes from the fact that,
in this context, bayesian updating “chases a moving target”, and that some firms
provide better learning opportunities than others. In the stable environment of
Eeckhout and Weng (2009), even as some firms provide better learning oppor-
tunities than others, what has been learned so far cannot be unlearned – types
are fixed, so that all signals accrued from output reveal additional information
about the underlying type. In the current setting, however, the underlying type
is itself random, and switching to a firm with slower learning means that output
realizations are now less precise in pinpointing the new, random productivity val-
ues. As a result uncertainty increases. Taken together, these arguments imply that
the option value of learning that comes from switching jobs differs wildly from
Eeckhout and Weng (2009).

This paper asks when PAM can be expected as the unique equilibrium config-
uration in non-stationary environments like this one. I show that PAM obtains if
the underlying skills process of workers follows a martingale, and if workers are
risk-neutral. The intuition driving these results draws on the continuity of sam-
ple paths of posterior beliefs, which rules out “large surprises”. This allows us
to conclude that, even as workers never cease to learn (contrary to the framework
of Eeckhout and Weng (2009)), they nonetheless can hold sufficiently extreme
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beliefs such that they will remain in the current firm under any reasonable time
frame. Moreover, if the underlying skills process satisfies the martingale property
(and workers are risk-neutral), expected discounted payoffs are unaffected by the
time-dependent path of posterior variance. Indeed, while the strength of beliefs
matters for how additional information feeds into future worker types, conditional
expectations remain unaffected. This implies that under these assumptions the
value function depends only on worker-firm types, and not on the current period
directly. PAM follows by arguments similar to Eeckhout and Weng (2009).

After establishing PAM as the unique equilibrium, I extend this environment
to allow the possibility that workers can exert a private level of effort that affects
the trend of the output process. I follow recent work by Cisternas (2012) that
models the classical career concerns model of Holmstrom (1999) in continuous
time. Under a deterministic equilibrium, effort levels are found to depend on
the market’s posterior strength of beliefs. This implies that workers’ payoffs now
directly depend on the learning process, and the martingale property of skills is not
sufficient to retain stationarity. In other words, introducing career concerns leads
to non-stationary payoff streams and to value functions that are time-dependent.
I find that the no-deviation condition of Eeckhout and Weng (2015), which rules
out off-equilibrium deviations, can no longer be framed simply as the second-
derivative version of the smooth pasting condition. In this scenario, there is no
unique threshold that organizes workers across firm types for all periods. Instead,
I characterize the equilibrium in terms of a distribution of threshold types and
provide a new characterization of PAM for unstable environments.

3.1.1 Literature
This paper investigates a labor market model of learning similar to others in
the literature (Jovanovic (1979, 1984), Moscarini (2005) or Eeckhout and Weng
(2009)). However, it also relates very closely to the experimentation literature
(Bolton and Harris (1999)) and the literature on continuous time games (Sannikov
(2007)), including principal-agent models of information extraction (Sannikov
(2007, 2008) and Cisternas (2012)), and mutli-armed bandit problems (Eeckhout
and Weng (2015)) .

The model builds on the framework in Eeckhout and Weng (2009) that an-
alyzes learning and turnover in a stationary environment with a continuum of
agents, learning in all states, and a competitive spot wage. They specialize to
a world where all abilities are simply “high” or “low”, whereas I allow for the un-
derlying skills process of workers to follow a stochastic process. I show this has
important implications for the types of learning paths workers can expect upon
switching firms. Anderson and Smith (2010) were the first to explore the pos-
sibility that workers in a matching model have evolving characteristics. In the
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employment version of their model, they show PAM can fail because the tran-
sition function that maps current types to future types is not a martingale. In
line with these results I show that non-stationary environments can retrieve PAM
if beliefs evolve as a martingale. I show that if payoffs are directly affected by
time-dependent properties of the learning process, non-stationarity alters the no-
deviation condition of Eeckhout and Weng (2015).

Section 3.2 introduces the baseline model without effort provision, but with
random skills. I show that the evolution of market beliefs is defined by two dy-
namic processes that track the posterior mean and variance. I show that the mar-
tingale property of beliefs allows us to retain stationarity and to pin down the
value function for extreme types. This allows us to establish PAM as the unique
equilibrium configuration in this setting with persistent learning. In Section 3.3 I
introduce the possibility that workers can exert a private level of effort that affects
the mean of the output process. These career concern incentives distort payoffs
and generate a direct time dependence on the value function. I show that the
no-deviation condition looks very different in this setting, and I discuss the im-
plications this has for establishing PAM as an equilibrium allocation. Section 3.4
concludes with a discussion on future paths of research.

3.2 The Model

3.2.1 No Career Concerns
The economy is populated by a unit measure of workers and a unit measure of
firms, both infinitely lived. Both workers and firms are ex ante heterogeneous.
The firm’s type y 2 {H,L} determines the volatility of output and the marginal
productivity given workers’ abilities, and is observable to all agents. The econ-
omy contains a fraction ⇡ of H type firms and (1� ⇡) of L type firms. The worker
ability ✓t is unobservable to both worker and firms and we assumes evolve accord-
ing to a stochastic differential equation (SDE). I assume a common prior of ✓0 and
the discount rate is r > 0. A worker-firm pair (✓, y) produces stochastic output
in continuous time and at firm-specific levels of volatility. More concretely, let us
define the evolution of output for a match between a firm of type y 2 {H,L} and
a worker of type ✓ 2 R as

d⇠t,y = Ay✓tdt+ �⇠ydZ
⇠
t (3.1)

where Ay = ↵1{y=H}+�1{y=L} determines the different productivity parameters
for high and low firms, ✓t corresponds to a worker’s underlying (and unknown)
productivity at time t, Z⇠ :=

�
Z⇠
�
t�0

is a one-dimensional Brownian motion and
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�⇠y > 0 represents the volatility of the signal’s noise component. We assume strict
super modularity and worker monotonicity by imposing ↵ > � > 0.

The evolution of worker productivity (or skills) follows a similar, but indepen-
dent, stochastic process defined by,

d✓t = ✓t + �✓dZ
✓
t (3.2)

where �✓ > 0 represents the volatility of productivity shocks for the worker. The
parameter k 2 R will be referred to as the slope of the skills process. For simplic-
ity I assume in most of the analysis that skills evolve as a martingale (i.e.  = 0),
representing rapidly changing environments and/or workers who easily adjust to
new scenarios. However, most of the results hold for  6= 0 since we only require
the martingale property of posterior beliefs, which holds even for skills processes
that are themselves not a martingale.

Since the market does not observe ✓, it must form beliefs about the worker’s
skills based on observation of ⇠. Given equations 3.1 and 3.2 we can formulate
the evolution of posterior beliefs held by firm and worker. Notice that since infor-
mation is symmetric, the following description represents the evolution of beliefs
for all market participants. Following standard results from Lipster and Shiryaev
(1977) the conditional distribution of ✓t given all available public information
Ft := �

⇣
(⇠s,y)st

⌘
retains the gaussian structure at all t � 0. The posterior mean

mt = E [✓t | Ft] and posterior variance �t = E
⇥
(✓ �mt)

2 | Ft

⇤
evolve respec-

tively as,

dmt,y =
Ay�t
�⇠

dZt (3.3)

�̇t,y = �2
✓ �

✓
Ay�t
�⇠y

◆2

(3.4)

where dZt = 1
�⇠

(d⇠t � AyE [✓t | Ft] dt) is a diffusion process measurable with
respect to the filtration {Ft}t�0 and captures unexpected movements in output.
Equation 3.3 essentially describes the well-known Kalman-Bucy filter for a continuous-
time state-space model.

A couple of interesting features are worth noting. First, the evolution of the
posterior mean, mt,y, preserves the stochastic structure of skills. Second, the pos-
terior mean’s response to unexpected innovations increases with the posterior vari-
ance, �t,y, and with the firm’s signal-to-noise ratio, Ay

�⇠y
. This means beliefs react

more strongly to new information whenever beliefs are less precise or signals are
more accurate. Notice that by assuming  = 0 we obtain that the evolution of
the posterior mean is a martingale, E [dmt | Ft] = 0; there is as much good news
as bad news to be expected in the future. Most importantly, the posterior vari-
ance evolves deterministically with time; as opposed to the stable environment in
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Figure 3.1: Strength of Beliefs with Job Turnover: The first panel shows a situa-
tion in which

Eeckhout and Weng (2009), all output realizations here are equally informative.
This means the entire trajectory of �t is perfectly anticipated by all market par-
ticipants whenever �0 is common knowledge. However, notice that �t evolves at
different speeds according to firms’ signal to noise ratio Ay

�⇠y
, which implies, as in

Eeckhout and Weng (2009), that switching jobs affects the speed of learning. This
setup nonetheless represents a drastic departure from Eeckhout and Weng (2009)
because our volatility parameter is a function of time, while theirs depends on the
current state of beliefs. Said differently, the evolution of beliefs in Eeckhout and
Weng (2009) corresponds to a geometric brownian motion, while the posterior
mean here is defined by a diffusion process with time-varying parameters. As ex-
plained below, this means that the value function now depends explicitly on time,
as well as on currently held beliefs.

As long as skills evolve randomly (i.e. �✓ 6= 0) the model exhibits long-run
residual uncertainty. The unique, steady-state level of residual uncertainty can be
found by setting equation 3.4 to zero. In that case we have that,

�?
y =

�✓�⇠y

Ay

(3.5)

This long-run measure of uncertainty varies across firms according to the signal-
to-noise ratio, and can lead to varying dynamics in the evolution of uncertainty.
For instance, imagine that �⇠H

↵
>

�⇠L

�
. This means that learning in H-type firms is

slower (and converges to a higher level of residual uncertainty) than L-type firms,
which exhibit faster learning. The first panel of Figure 1 shows what occurs when
a worker switches from an H-type firm to an L-type firm at time t?: learning
accelerates because the posterior variance decreases faster after switching. Con-
versely, a worker that switches from an L-type firm to an H-type firm experiences
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a slow-down in learning, or even a period of unlearning, depending on the time,
t?, where the switch takes place. These two scenarios are shown in the last two
panels of figure 1. If the worker switches from an L firm to an H firm early on –
before the level of uncertainty falls below the long-run level of the “slower” firm
– then learning slows down. This is shown in the second panel of Figure 1. If, on
the other hand, the worker switches firms later on – when beliefs are more precise
than they could ever be in the “slower” firm – then uncertainty will increase, and
beliefs will become more dispersed over time until they converge to the higher
level of residual uncertainty. This is shown on the third panel of Figure 1. An im-
mediate consequence of these dynamics is that the time t? at which workers switch
firms determines the future evolution of beliefs about a worker’s productivity, by
affecting the dynamics of the posterior variance. This phenomenon is entirely ab-
sent in the model of Eeckhout and Weng (2009), where worker types are fixed.
In that case, all information accrued thus far impacts posterior beliefs equally and
no process of unlearning can ever occur. Notice also that, to the extent workers
transition across firms in equilibrium, this model exhibits an ever evolving level
of uncertainty across the life cycle of the worker.

We may now define an equilibrium as in Eeckhout & Weng (2009). Consider
a competitive equilibrium that defines a wage schedule wy (m) specifying wages
for each belief m about a worker’s skill. Let Vy represent the discounted compet-
itive profits of firm y and rVy the flow profits. Then we define an equilibrium as
follows:

Definition. In a competitive equilibrium there is a wage schedule wy (m) =
Aym � Vy and worker m chooses the firm y with the highest discounted present
value. The market clears such that a measure (1� ⇡) of workers are employed in
the L firm and a measure ⇡ in the H firm.

A couple of remarks are in order. As Eeckhout & Weng (2009) rightly point
out, identical types will obtain identical payoffs. More importantly, the definition
places restrictions on off-equilibrium prices, requiring that a worker not employed
at a firm y on equilibrium must expect a wage wy (m), in order to guarantee the
firm cannot do better if employment suddenly happened. Lastly, wages are spot
prices and therefore must be self-enforcing. In this sense, firms define the pro-
ductive and learning possibilities of workers but themselves are price takers. This
essentially boils down to a decision problem for the worker about when to switch
firms.

In order to solve the model we need to write down the expected discounted
payoff for each worker. Toward this end, let us formulate the worker’s problem as
follows: a worker that starts off in firm y at time t obtains the following expected
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present value of payoffs,

Vy (m, t) = E

2

4
⌧(m̄)ˆ
0

e�r(s�t) (ms,y � Vy) ds+ e�r⌧(m̄)V�y (m) | Ft

3

5

subject to equations 3.3 and 3.4 for all s > t. In the equation above, m̄ rep-
resents a critical value at which workers decide to switch firms, and ⌧ (m̄) =
inf {t � 0 | mt = m̄} is a stopping time marking the first passage through m̄.
From this expression we can arrive at a differential equation of the value function
using Feynman-Kac’s Formula and Itô’s Lemma as follows,

rVy (m, t) = wy (m) +
1

2

✓
Ay�t
�⇠

◆2

V 00
y (m, t) +

@Vy (m, t)

@t
(3.6)

The arguments above suggest that the deterministic behavior of posterior vari-
ance in 3.4 forces the value function to depend on time, t, as well as on worker
type, mt. Indeed, a worker of type m at two different times– t1 and t2 – faces two
different paths for � and, as a result, two different paths for how future innova-
tions in output affect beliefs (recall that �t affects the stochastic evolution of mt,
as per equation 3.3).3 Moreover, these paths can look very different, as shown in
Figure 1, and can even consist of periods of unlearning. The value function cap-
tures the total flow payoff to a worker m in firm y. This is equal to the wage plus
a second term that captures the option value of learning, similar to Eeckhout and
Weng (2009). The third term (absent in Eeckhout and Weng (2009)) accounts for
the fact that time now functions as a state variable: holding fixed the worker type,
m, the expected future payoff of workers depends on calendar time, by affecting
the response to innovations. I show that in the current setting, where skills evolve
as a martingale (i.e.  = 0) and workers are risk-neutral, the future evolution
of � does not affect current expectations and therefore keeps discounted payoffs
constant. As a result, we can establish that only the worker’s type, m, functions as
a state variable in this particular setting. In the next section I show how relaxing
these assumptions can alter results and, in some instances, overturn PAM.

Lemma 3.2.1. If skills evolve as a martingale (i.e.  = 0) and workers are risk
neutral, the value function does not explicitly depend on time and equation 3.6
can be simplified as,

rVy (m) = wy (m) +
1

2

✓
Ay�t
�⇠

◆2

V 00
y (m) (3.7)

3Said differently, because the diffusion process of beliefs depends on time-varying coefficients,
the expected present value depends on time too.
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Proof. Consider the expected present value at time t of a worker that remains in
firm y forever. We can write this formally as,

Vy (m, t) = E

2

4
1̂

0

e�r(s�t)f (ms) ds | Ft

3

5

where f (ms) = ms,y � Vy corresponds to the flow payoffs, and Ft is the sigma-
algebra generated from all information held at t. Consider the effect of a change
in time, holding everything else constant. Because of risk-neutrality on the worker
side, f (ms) is linear in ms so we can rewrite the above equation as

Vy (m, t) =

1̂

0

e�r(s�t) (E [ms | Ft]� Vy) ds

Because skills evolve as a martingale (i.e.  = 0) then the evolution of posterior
beliefs are themselves a martingale (i.e. E [mt+h | Ft] = mt for any h > 0), as
seen from equation 3.3. This implies that,

Vy (m, t) =

tˆ
0

er(t�s) (ms � Vy) ds+
1

r
(mt � Vy)

Notice that, for any arbitrary time period t, the future expected payoffs for workers
only depend on r, m, and Vy. This is because the future looks identical to a
risk-neutral worker holding beliefs with martingale property. This implies that,
@V (m,t)

@t
= lim

h!0

V (m,t+h)�V (m,t)
h

= 0, which proves the result.

Essentially, Lemma 3.2.1 argues that, while the posterior variance evolves de-
terministically over time, the expected, discounted future payoffs of a risk-neutral
worker only depends on the posterior beliefs, m, and not on the beliefs’ disper-
sion. Indeed, if skills fluctuate randomly with no trend, then the expected behavior
of beliefs (and therefore wages) can best be predicted with currently held beliefs,
which implies that the current (and future) level of uncertainty does not affect ex-
pected payoffs. It follows that the three different types of learning behavior shown
in Figure 1 do not affect the value function, and therefore do not affect workers’
decisions of where to switch jobs in this particular setting. Of course if workers
were risk-averse, or if beliefs themselves exhibited persistence, then time would
continue to function as a state variable. The next couple of sections explore sim-
ilar environments, but in which calendar time remains a crucial determinant of
future expected payoffs.

110



“Thesis” — 2016/4/20 — 10:07 — page 111 — #127

Although learning is a persistent phenomenon in this model, the value of learn-
ing can certainly be zero for some workers. It is the option value of switching to
a more suitable match that generates the value of learning. Indeed, workers with
sufficiently extreme types never change jobs, even as they continually update their
type. This implies that, while learning is a persistent phenomenon in this model,
we can nonetheless obtain accurate expressions for the value function of some
extreme types. This is the content of the next result.

Lemma 3.2.2. Workers with sufficiently extreme beliefs never switch jobs and
obtain no option value from learning. As a result, their value function equals the
present value of flow payoffs. Formally,

lim
m!±1

Vy (m) =
wy (m)

r

Proof. Firs we obtain an explicit solution to the Bellman equation (an ordinary
differential equation with non-constant coefficients) by standard techniques as:

Vy (m) =
wy (m)

r
+Be y,tm + Ce� y,tm (3.8)

where B and C are constants to be determined by the cutoff m̄, and where

 y,t =
�⇠

p
2r

Y �t

Now following Dixit (1993), if m is not restricted on the lower side, but instead
has an upper barrier at some point m̄ then starting from very negative values of m
it is very unlikely that we reach m̄ at any reasonable future time. Then, the present
value of flow payoffs should be a good approximation for the value function. But
with  1 > 0, e� 1m goes to 1 as m ! �1. This would ruin the desired
approximation unless C = 0. We can make a similar argument for why B = 0
as m ! +1. Taken together, these arguments allow us to conclude that at the
extremes the value function must equal the discounted flow payoffs of the worker,
or more formally that,

Vy (m) !
m!±1

wy (m)

r

Plugging the above result into 3.6 we see that V 00
y (m) !

m!±1
0. Workers with

limiting types never switch jobs and obtain no option value from learning.

Contrary to Eeckhout & Weng (2009), extreme values of m here do not rep-
resent a situation where learning never happens. In their model, the response of
beliefs to new information vanishes as the underlying skill set of the worker is
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ultimately revealed. If workers don’t learn, their value functions are fully char-
acterized as the discounted flow payoffs. Instead, the speed of learning in this
setting is deterministic and converges to a situation with long-run residual un-
certainty. Learning here is a persistent phenomenon and new output realizations
always shift posterior beliefs, regardless of what those beliefs are. We can be
sure, however, that for extreme values of m workers receive their discounted flow
payoffs almost surely. After all, sample paths are continuous and no positive prob-
ability is placed on reaching a bounded threshold m̄ in finite time.

The current environment with randomly fluctuating skills introduces two main
differences with respect to the setting in Eeckhout and Weng (2009). Lemma 2.1
and Lemma 2.2 demonstrate that under certain mild conditions, these differences
are innocuous, and a similar analysis to Eeckhout and Weng (2009) applies. The
following subsection shows how the analysis in Eeckhout and Weng (2009) ap-
plies to this setting, and therefore establishes assortative matching as the unique
equilibrium in this environment. The next sections explore other type of environ-
ments where the previous two lemma’s no longer hold and PAM is not guaranteed
as the unique equilibrium outcome.

3.2.2 Equilibrium Analysis
As with any model of optimal control we can identify some well-known smooth-
ness properties on the value function that rules out kinks and discontinuities at
the barriers where workers decide to switch. These are commonly known as
value-matching and smooth-pasting conditions and require that at any equilib-
rium cutoff the worker must receive the same value across jobs and that the
marginal value must also be identical. Formally we can express these conditions
as Vy (m̄) = V�y (m̄) and V 0

y (m̄) = V 0
�y (m̄) respectively. Following Eeckhout

and Weng (2015) I show that an equilibrium requires an additional no-deviation
condition that rules out deviations from the equilibrium prescriptions.

Next I go on to show some properties of the value function that will allow us
to arrive at the equilibrium characterization.

Lemma 3.2.3. The Equilibrium value functions Vy are strictly convex for m 2 R

Proof. As in Eeckhout & Weng (2009) we can argue that Vy (m) >
wa?

y (m)

r
for

all m finite since otherwise all the workers would stay in one firm y forever
and markets would not clear. Then, from Lemma 3.2.1 it must be the case that
1
2

⇣
Y �t
�⇠

⌘2

V 00
y (m) > 0 which is only true if Vy is convex.

Intuitively market clearing requires some workers to work for high firms and
some with low firms. This means some worker must change jobs at some point
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so the value of learning must be positive to make the switch profitable. But the
value of learning can only be positive if the value function is convex. Now, since
we know what the value function looks like for some extreme beliefs (shown
in Lemma 2.2), then we can use convexity and the smooth pasting condition to
acquire additional properties of the value function.

Lemma 3.2.4. The Equilibrium value functions Vy are strictly increasing.

Proof. Imagine workers with m < m̄ work for firm y. It is straightforward that
lim

m!�1
V 0
y (m) = Ay

r
> 0 and since Vy is strictly convex, V 0

y (m) > 0 for all

m 2 (�1, m̄). At m̄ the worker will switch to firm �y but smooth pasting
implies V 0

�y (m̄) = V 0
y (m̄) > 0. Then strict convexity again ensures V 0

�y (m) > 0
and so on in the case of multiple switching points. This guarantees the value
function is increasing over the entire domain.

With this we can prove a crucial implication of super modularity which allows
us to hone in on an equilibrium sorting result.

Lemma 3.2.5. Under super modularity, in any equilibrium, the limiting “bad”
worker m ! �1 matches with L firm while the limiting “good” worker m ! 1
matches with the H firm. The opposite under strict submodularity. Moreover,

min (↵, �)

r
< V 0

y (m) <
max (↵, �)

r

where ↵ = lim
h!0

↵(m+h)�↵m
h

is the infinitesimal change in expected output of a firm
y for an infinitesimal increase in the worker type (similarly for �).

Proof. Imagine workers with m 2 (�1, m̄) are employed in firm y and workers
with m 2 (m̂,1) are employed in firm �y. We know that lim

m!�1
V 0
y (m) =

Ay

r
< A�y

r
= lim

m!1
V 0
�y (m) by convexity, so under supermodularity it must be that

lim
m!�1

V 0
y (m) = �

r
< ↵

r
= lim

m!1
V 0
�y (m), which means workers with extremely

low types go to L firm (with productivity parameter �) and the opposite for high
types.

So far we have focused on equilibrium path behavior. In order to properly
characterize the equilibrium we need to make sure we are not allowing for any
profitable deviation off-equilibrium. As in Eeckhout and Weng (2009) we con-
sider the equivalent in continuous time of a one-shot deviation. That is, we make
sure no worker wants to deviate from their equilibrium strategy for a time inter-
val [t, t + dt) and take the limit as dt ! 0. We find that in this modified setting
we obtain the same condition on the marginal value of learning as Eeckhout and
Weng (2009). This result is crucial to determine PAM as the unique equilibrium.
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Lemma 3.2.6. To deter possible deviations, a necessary condition is:

V 00
H (m̄) = V 00

L (m̄)

for any cutoff m̄.

Proof. Let ⌃t,L = 1
2

⇣
��t
�⇠L

⌘2

and ⌃t,H = 1
2

⇣
↵�t
�⇠H

⌘2

. Without loss of generality,
consider that on equilibrium workers with m > m̄ work on H firms (L firms for
m < m̄). Consider a one-shot deviation from a worker in a high type firm that
switches to a low firm for dt at time t̂ and then goes back to equilibrium behavior.
In this case, the value function is defined as

ṼL (m) = wL (m) dt+ e�rdtE [VH (m+ dm)]

where dm = Y �t
�⇠L

dZa?

t .
Apply Ito’s Lemma and get,

ṼL (m) = wL (m) dt+ e�rdt
⇥
VH (m, t) + ⌃t̂,LV

00
H (m, t) dt

⇤

this implies

lim
dt!0

ṼL (m)� VH (m)

dt
= wL (m)� wH (m) +

�
⌃t̂,L � ⌃t̂,H

�
V 00
H (m)

which must be less than zero for any m > m̄. In particular we have for m ! m̄
that,

wL (m̄)� wH (m̄) +
�
⌃t̂,L � ⌃t̂,H

�
V 00
H (m̄)0

=) wL (m̄)+⌃t̂,LV
00
L (m̄)�wH (m̄)�⌃t̂,HV

00
H (m̄)+⌃t̂,L (V

00
H (m̄)� V 00

L (m̄))  0

by value matching at m̄ this implies that,

V 00
H (m̄)  V 00

L (m̄)

Similarly we can consider a one shot deviation from a m < m̄ worker moving
to a high type firm for dt before switching back to equilibrium behavior. A sim-
ilar argument allows us to conclude that in this scenario delivers the following
condition

V 00
L (m̄)  V 00

H (m̄)

Together these two conditions imply that in order to prevent any one-shot devia-
tion from equilibrium behavior it must be the case that V 00

H (m̄) = V 00
L (m̄).
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With all this we can now proceed to characterize the equilibrium allocation.
We show that, under strict supermodularity, it is impossible to have two cutoffs
m1 < m2 such that workers with m < m1 match with low-type firms, workers
with m 2 [m1,m2] match in high-type firms, and workers with m > m2 match in
low-type firms.

Theorem 3.2.7. PAM is the unique stationary competitive equilibrium allocation
under supermodularity.

Given Lemma 3.2.5, workers with sufficiently low m0s will accept low type
offers and workers with high m0s will accept high-type offers. Then, all we need
to prove is that, under supermodularity, it is impossible to have a worker first
accept low type offers, then accept high-type offers and finally accept low-type
offers again. If this is ruled out, there must exist a unique cutoff m̄, such that
m < m̄ will accept low offers and m > m̄ will accept high type offers. This
corresponds to the PAM allocation. In other words, all we need to show in order
to prove the above theorem is the following claim,

Claim 3.2.8. Under strict supermodularity it is impossible to have m1 < m2 and
equilibrium value function VH VL1 and VL2 such that

VH (m1) = VL1 (m1) and V 00
H (m1) = V 00

L1 (m1)

VH (m2) = VL2 (m2) and V 00
H (m2) = V 00

L2 (m2)

are satisfied simultaneously.

Proof. By contradiction suppose claim 0.6 is true. Then, by the value matching
condition we have

wH (m1) + ⌃HV
00
H (m1) = wL (m1) + ⌃LV

00
L1 (m1)

and
wH (m2) + ⌃HV

00
H (m2) = wL (m2) + ⌃LV

00
L2 (m2)

Let sH = ↵
�⇠H

and sL = �
�⇠L

then we can invoke the no-deviation condition and
rewrite the above equations as:

s2H � s2L
s2H

rVH (m1) = wL (m1)�
s2L
s2H

wH (m1)

and
s2H � s2L

s2H
rVH (m2) = wL (m2)�

s2L
s2H

wH (m2)
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Taken together we have that:

s2H � s2L
s2H

r [VH (m2)� VH (m1)] = [wL (m2)� wL (m1)]�
s2L
s2H

[wH (m2)� wH (m1)]

Now since VH is convex and V 0
H (m1) > �

r
by Lemma 0.3, then we have the

following

s2H � s2L
s2H

� (m2 �m1) < � (m2 �m1)�
s2L
s2H

↵ (m2 �m1)

4. This implies ↵ < �, a contradiction to supermodularity!

Theorem 3.2.7 extends the results of Eeckhout and Weng (2009) into unstable
environments characterized by residual uncertainty and very diverse learning en-
vironments. It establishes that under supermodularity, even if workers’ skills are
subject to some form of random fluctuation, workers with better posteriors about
their ability sort into more productive jobs. In other words, productivity consider-
ations dominate the learning advantages in this setup because competitive wages
adjust and offset the difference in learning speeds. The arguments from Eeckhout
and Weng (2009) apply in this environment given lemmas 2.1 and 2.2. In the next
section, I show what happens in setting where Lemma 2.1 fails to hold.

3.3 Introducing Career Concerns
In this section I consider the possibility that workers can exert a hidden effort level
that affects the trend of the output process. In doing so, workers can attempt to
manipulate the inference process of firms, in order to command higher wages.5
Formally, we modify the description of output in equation 3.1 for the following
expression,

d⇠t,y = (Ay✓t + at) dt+ �⇠ydZ
⇠
t (3.9)

where, as before, Ay = ↵1{y=H} + �1{y=L} determines the different productivity
parameters for high and low firms, ✓t corresponds to a worker’s productivity level
at time t, Z⇠ :=

�
Z⇠
�
t�0

is a one-dimensional Brownian motion, and �⇠y > 0
represents the volatility of the signal’s noise component. The additional term, at,

4Here as in Eeckhout and Weng, we are using that rVL1 = rVL2 which holds by the assumption
of perfect competition.

5As with the majority of these career concerns models, along the equilibrium path the firm
perfectly anticipates the effort level of the worker, and is therefore not fooled. However the worker
is trapped into exerting effort given the market’s expectations. That is, effort provision is sustained
purely by off-equilibrium beliefs.
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corresponds to the worker’s effort choice, and I assume it enters additively in the
trend component of output. Notice that workers’ effort profile will affect the type
of information that the market can obtain about the underlying skills process. I
again impose strict super modularity and worker monotonicity by assuming that
↵ > � > 0. The evolution of skills remains unchanged, and is described in
equation 3.2.

Given equations 3.9 and 3.2 and a conjectured effort level by the firm, a?, we
can formulate the evolution of posterior beliefs by the firm. Following standard
results from Lipster and Shiryaev (1977) the conditional distribution of ✓t given all
available public information Ft retains the gaussian structure at all t � 0 and the
posterior mean m?

t = Ea? [✓t | Ft] and posterior variance �?
t = Ea?

⇥
(✓ �m?

t )
2 | Ft

⇤

evolve respectively as,

dm?
t,y =

Ay�t
�⇠

dZa?

t (3.10)

d�?
t,y =

 
�2
✓ �

✓
Ay�t
�⇠y

◆2
!
dt (3.11)

where dZa?

t = 1
�⇠

(d⇠t � (a?t + Aym
?
t ) dt) is a diffusion process measurable with

respect to the filtration {Ft}t�0 and captures the unexpected movement in output.
Notice that the evolution of the posterior mean and variance are very similar to the
baseline model with no career concerns. This implies that all the arguments above
about residual uncertainty and learning behavior extends to this setting as well.
However, I will show that with career concerns these elements severely transform
the problem at hand.

Indeed we could allow for the worker to have additional sources of information
other than the past history of output realizations. We will define Fw ⌘ (Fw

t )t�0

as the worker’s information structure, containing, in particular, the public infor-
mation generated by output F ⌘ (Ft)t�0. Given a strategy a 2 A the worker’s
posterior mean evolves as dmt,y = �t,ydZ

w
t where Zt is an Fw-progressively mea-

surable Brownian motion and �ty is any non-negative process. If instead we im-
pose that the worker has no additional information other than the effort level, then
the posterior mean would evolve as dmt,y =

Y �t
�⇠

dZa
t and, since along the equilib-

rium path it must be that a = a?, then we have symmetric learning across worker
and firm. We assume the latter for the time being.

I follow Cisternas (2012) in solving for an equilibrium profile of effort a?
that only depends on the evolution of the market’s posterior variance. The reason
for focusing on equilibria that are deterministic is, first, that forcing the solution
to depend on output directly is technically difficult, and, more importantly, that
workers’ incentives would otherwise be distorted away from pure reputational
considerations. Holmstrom (1999) also focuses on what he calls non-contingent
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equilibria in his seminal work on career concerns. Indeed, the scope of this paper
is to determine the sorting effects from introducing career concern incentives in
the classical way of Holmstrom.

Definition. A public equilibrium effort level, a?, is deterministic if it depends only
on the evolution of the market’s posterior variance.

As before, we assume a competitive spot wage that pays workers’ expected
productivity minus firms’ profits. In this case, we can define the wage as,

wa?

y (m, t) := lim
h!0

Ea? [⇠t+h | Ft]� ⇠t
h

� Vy = a?t +m?
t � Vy (3.12)

where Vy is firm y0s profits. Notice that, unlike in the previous section, the deter-
ministic evolution of the posterior variance now directly affects payoffs. This is
because the effort level a?, which enters the wage directly, responds to � only by
the assumption of deterministic public equilibria. This implies that Lemma 2.1 is
not applicable in this setting, and the value function therefore depends explicitly
on time, as shown below.

The worker’s problem can be defined as follows: given a conjecture a?, a
worker that starts off in firm y solves at all periods t � 0 and for any history Ft

the following problem:

max
a2A

Vy (m, t) = Ea

2

4
⌧(m̄)ˆ
0

e�r(s�t)
�
wa?

y (m, s)� g (as)
�
ds+ e�r⌧(m̄)V�y (m) | Ft

3

5

(3.13)
subject to (for all s > t)

dm?
s = ��s,ym

?
sdt+ �s,y (d⇠s,y � a?sds)

d⇠s,y = (as + Ayms) ds+ �⇠dZ
a
s

ms = m0 +
Ay

�⇠

sˆ
0

�sdZs

where we define �s,y =
Ay�t
�2
⇠

and where ⌧ (m̄) = inf {t � 0 | mt = m̄} is a stop-
ping time marking the first passage through m̄. Notice the incentives for signal
jamming that arise by affecting the evolution of output, in turn affecting the evo-
lution of the firm’s posterior mean. The worker is aware that by deviating from
a?, she can affect the evolution of m?. In other words, the worker may induce a
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distribution over outcome paths that differs from the one anticipated by the mar-
ket (Ea [·] operator). This in turn affects the market’s beliefs about how skilled the
worker is. As a consequence, an increase in effort today generates, on average, a
boost in the reputational component of future wages.

It is clear from the problem above that the optimal strategy a 2 A should in
principle depend on the cutoff m̄ at which the worker decides to switch firms.
In other words, a comprehensive model should have a (⌧ (m̄)). However this
would mean that actions depend the stochastic history which we rule out since we
only deal with non-contingent strategies a la Holmstrom. As such, we solve the
model as if actions were taken sequentially: that is, choose an action profile for a
given match and then given these equilibrium actions fixed, we choose an optimal
switching cutoff.

Proposition 3.3.1. The unique Equilibrium in deterministic and adapted strate-
gies is characterized by the first order condition

g0
�
a?t,y

�
=

A2
y�t,y

�2
⇠y

1̂

t

e
�
´ s
t

 
r+

A2
y�u,y

�2
⇠y

!
du

ds (3.14)

and da?t,y
dt

 0 () d�t,y
dt

 0.

Proof. See Cisternas (2012) - Prop.10

A couple of important remarks are in order. First, recall that as �t decreases
over time, the sensitivity to new information decreases. This in turn decreases
workers’ benefits from signal jamming, since beliefs become less uncertain, and
thus less flexible to new information. This goes in line with the traditional idea that
career concerns motives generate higher returns under more uncertainty. However,
it can be shown that as � decreases past beliefs are held longer in employers’
estimations of a particular worker. As explained extensively by Cisternas (2012),
the second result in Proposition 3.3.1 argues that, in a standard career concerns
environment a la Holmstrom, short-term losses losses outweigh any long-term
benefits from persistent distortions in beliefs. Secondly, Proposition 3.3.1 clarifies
the form in which effort moves with �. As � decreases over time, so does the
equilibrium effort a?t . Indeed equilibrium effort profiles decrease deterministically
from some initial point and similarly converge to a long-run steady state level of
effort.

In order to make progress we need to know more about the behavior of a?.
In particular, it is important to determine whether equilibrium effort not only de-
creases together with �, but whether its rate of change is also proportional to that
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of �. Knowing this and the steady-state level of effort allows us to rank equilib-
rium effort levels across firms at any point in time according to their signal-to-
noise ratios . This is the content of the following lemma.

Lemma 3.3.2. The equilibrium level of effort satisfies d2a?t,y
dt2

� 0 () d2�t,y
dt2

� 0.
As a result, if AL

�2
⇠L

> AL

�2
⇠L

then a?t,L � a?t,H for all t � 0.

Proof. To prove the first statement let pt,y =
A2

y�t,y

�2
⇠y

, �t,y =
´1
t

e�
´ s
t r+pu,yduds ,

and lt,y = pt,y�t,y. One can show that,

d2log (lt,y)

dt2
=

˙̇�t
�t

+
�̇t
�t

✓
pt,y �

�̇t
�t

◆
+

1

�t,y

✓
r + pt,y �

1

�t,y

◆

and I drop the firm-type index, y, on the �0
ts where possible for convenience. From

the ODE that governs �t, (see equation 3.4) it can be shown that ˙�t,y
�t,y

= �✓

�t,y
� pt,y

and that
˙̇�t,y
�̇t,y

= �2pt,y. This implies that

d2log (lt,y)

dt2
= ��✓�̇t

�2
t

+
1

�t,y

✓
r + pt,y �

1

�t,y

◆

Now suppose �t > �? which occurs if and only if �̇t  0 and ˙̇�t � 0 (from the
definition of � in 3.4). Then,

�t,y <
1

r +
A2

y�
?

�2
⇠y

:=
1

r + p?y

implying that,

d2log (lt,y)

dt2
> ��✓�̇t

�2
t

+
1

r + p?y

✓
r + pt,y �

1

r + p?y

◆
> 0

To prove the second statement, notice that at steady state equilibrium effort
levels can be ranked. In particular we can substitute the steady state level of � into
the first order condition for effort and obtain the following expression.

g0
�
a?y
�
=

�✓Ay

r�⇠y + �✓Ay

It is clear from this that if AL

�2
⇠L

> AL

�2
⇠L

and g (·) is convex, then a?L > a?L in steady

state. Now, if AL

�2
⇠L

> AL

�2
⇠L

then for all t � 0 it must be the case that �̇t,L < �̇t,H < 0.
Together this implies that a?t,L � a?t,H for all t � 0.
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Lemma 3.3.2 states that ’signal jamming’ incentives move in tandem with the
posterior mean-squared error at a speed proportional to �. This implies that the
various learning experiences outlined in Figure 1 can be thought to operate simi-
larly in the effort choices of workers, and, therefore, that effort levels can increase
during the episodes of unlearning, as described above. The main difference now
is that the behavior of � directly affects payoffs through its impact on a?, whereas
in the previous section � only imposed second-order effects on beliefs, which did
not affect current expectations. Moreover, Lemma 3.3.2 establishes that firms
with faster learning experience a more rapid decrease in signal-jamming incen-
tives while converging to a higher steady-state level of effort than slower learning
firms. This is explained by the fact that firms with faster learning indeed obtain
a lower long-run level of uncertainty, which decreases the short-term incentives
to distort market expectations, but increase the long-run benefits from past distor-
tions.

We can arrive at an expression for the value function by first simplifying the
constraints in (3.13) to get a unique expression for m?

s as a function of parame-
ters. The first and second constraint, together with the fact that on equilibrium
firms perfectly anticipate the optimal effort level of workers (i.e. a = a?), can be
expressed together as,

dm?
s = �s,y (ms �m?

s) ds+ �s,y�⇠dZ
a?

s (3.15)

where it is clear that asymmetric learning generates beliefs that are not a mar-
tingale and drift according to the difference in beliefs across market participants.
However, we assume for now that the filtration from which beliefs are updated is
identical across all agents.6 This implies the third constraint is in fact identical
to equation 3.10 which means that ms = m?

s for all s on the equilibrium path.
The three constraints, therefore, are expressed together as in equation 3.10. Intu-
itively, in a career concerns model the firm is never fooled on equilibrium, and if
we assume the only additional information for the worker is his effort level, then
learning must be symmetric on equilibrium.

Now we are ready to express the value function using Feynman-Kac as,

rVy (m, t) = w̃a?

y (m, t) +
1

2

✓
Y �t
�⇠

◆2

V 00
y (m, t) +

@Vy (m, t)

@t
(3.16)

where w̃a?

y (m) = a?t +m?
t � g (a?t )� Vy is the competitive spot wage paid to the

worker net of effort costs (i.e. w̃a?

y = wa?

y � g (a?t )). The solution to this second

6In other words, the only additional information workers have with respect to firms is their
private effort provision. But this is correctly anticipated by firms in equilibrium, so that learning
remains symmetric.
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order partial differential equation is complicated to find (if it exists analytically),
but we can make progress by working out some properties of the last term in
equation 3.16. Recall from Lemma Lemma 3.2.1 that the direct effect from an
infinitesimal change in time on expected future beliefs is zero. Therefore, we
only need to consider the direct effect on payoffs, given that equilibrium effort
depends directly on the time evolution of �. In other words, we have the following
relationship,

@Vy (m, t)

@t
=

@Vy (m, t)

@at

@at
@t

I show that this derivative is negative in the martingale setting (i.e.  = 0) for all
t.

Lemma 3.3.3. If skills evolve as a martingale (i.e.  = 0) and workers exert
hidden effort as in (3.14), the value function depends explicitly on time and the
derivative is negative,

@Vy (m, t)

@t
< 0

Proof. From Lemma 3.2.1 we know that when beliefs are a martingale time has
no first-order impact on posterior expectations and, if payoffs only depend on mar-
ket beliefs, the value function is unaffected. We therefore only need to consider
the direct effect of an infinitesimal change in time on payoffs. Given the direct
relationship between effort at and the time evolution of �t, we have that

@Vy (m, t)

@t
=

@Vy (m, t)

@at

@at
@t

Now, the first term on the right-hand-side of this equation corresponds to the di-
rect effect on flow payoffs at time t of a marginal increase in at. Given the def-
inition of w̃a?

y (m) in equation 3.16 above, we have that Ea?
h
@Vy(m,t)

@at

i
= 1 +

Ea?
h
@mt

@at
| Ft

i
� g0 (a?t ) = 1 � g0 (a?t ), where the last equality comes from the

martingale property of mt.
I claim that, given  = 0 , then g0 (at) < 1 for all r > 0. To see this, substitute

the steady state value of � in equation (3.5) into the optimality condition for effort
in equation (3.14). In steady state, effort is constant, say to a?, and characterized
by the first order condition,

g0 (a?) =
�✓Ay/�⇠

r + �✓Ay/�⇠

This implies that g0 (a?) % 1 as r ! 0. Then, for all r > 0, we have that
g0 (a?) < 1. This implies that @Vy(m,t)

@at
> 0. Finally notice that, by Proposition
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3.3.1 and equation 3.4, the following is true: @at
@t

() @�t
@t

< 0 Together this
implies that @Vy(m,t)

@at
@at
@t

< 0, which proves the desired result.

Lemma 3.3.3 allows us to sign the derivative of the value function with re-
spect to time by noticing that equilibrium effort is persistently bellow the efficient
benchmark g0 (a?) = 1. I show below that we can establish convexity as before
and, as a result, extend some of the properties of the value function that we es-
tablished in the previous section. However, I also show that the no-deviation con-
dition looks quite different from before and I argue that this might work against
establishing PAM as the unique equilibrium configuration.

3.3.1 Equilibrium Analysis
The arguments above help us to derive some properties of the value function that
will allow us to arrive at the equilibrium configuration. I show that we can use
Lemma 3.3.3 to establish convexity, and to pinpoint the value function for extreme
types. However, I also show that with career concerns the no-deviation condition
can no longer be framed as the second derivative version of the smooth-pasting
condition.

Lemma 3.3.4. The Equilibrium value functions Vy are strictly convex for m 2 R

Proof. As in Eeckhout & Weng (2009) we can argue that Vy (m) >
wa?

y (m)

r
for

all m finite since otherwise all the workers would stay in one firm y forever and
markets would not clear. Then, from Lemma 3.3.3 @Vy(m,t)

@t
< 0, and from equation

3.16 it must be the case that 1
2

⇣
Y �t
�⇠

⌘2

V 00
y (m) > 0 which is only true if Vy is

convex.

After we sign the movement of the value function over time in Lemma 3.3.3,
convexity follows quite naturally. More importantly, once we have established that
the value function is convex, we use the smooth pasting condition to conclude that
it must also be increasing and, using the arguments for extreme types in Lemma
3.2.2, we can also establish that supermodularity pushes extremely bad workers to
work with L type firms and extremely good workers to work with the H type firm.
In other words, Lemma 3.2.4 and Lemma 3.2.5 follow immediately as before.

So far, the basic properties of the value function that existed in the baseline
model without career concerns also hold in this environment. Indeed, since we
can establish convexity, and since we can be sure that extreme types stay in the
same firm forever, the other lemmas follow through as before. However, payoffs
now directly depend on the current strength of market beliefs, via its impact on
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the equilibrium profile of effort. 7 As shown in Figure 3.2.1, the strength of
beliefs evolves in very distinct paths according to the time and type of switching
that takes place. This has important implications on the conditions that must hold
in order to rule out possible deviations from equilibrium allocations. As before,
we are after a condition on the value function that deters workers from one-shot
deviations away from equilibrium. However, the following lemma makes clear
how non-stationary environments such as this one completely alter the standard
no-deviation condition of Eeckhout and Weng (2015).

Lemma 3.3.5. In the model with Career Concerns, a necessary condition to deter
possible deviations is:

(
V 00
H (m̄, t) � V 00

L (m̄, t) if AH

�⇠H

< AL

�⇠L

V 00
H (m̄, t)  V 00

L (m̄, t) if AH

�⇠H

> AL

�⇠L

for any cutoff m̄ and for all periods t � 0.

Proof. I consider the first case only (the second case follows an identical argu-

ment). Let ⌃t,L = 1
2

⇣
��t
�⇠L

⌘2

and ⌃t,H = 1
2

⇣
↵�t
�⇠H

⌘2

. Without loss of generality,
consider that on equilibrium worker with m > m̄ work on H firms (L firms for
m < m̄). Consider a one-shot deviation from a worker in a high type firm that
switches to a low firm at time t̂ for dt and then goes back to equilibrium behavior.
In this case, the value function is defined as

ṼL

�
m, t̂

�
= wa?

L

�
m, t̂

�
dt+ e�rdtE

⇥
VH

�
m+ dm, t̂+ dt

�⇤

where dm = Ay�t
�⇠L

dZa?

t . 8 Apply Ito’s Lemma and get,

ṼL

�
m, t̂

�
= wa?

L (m) dt+e�rdt

"
VH

�
m, t̂

�
+ ⌃t,LV

00
H

�
m, t̂

�
dt+

@VH

�
m, t̂

�

@t
dt

#

Define
@aH!L

t̂

@t
as the derivative of a? for a worker that switches from H to L at

time t̂, and define
@aH

t̂

@t
as the derivative of a? for a worker that, at time t̂ still works

for H and has not switched firms. With this notation we can obtain the expected
gains from deviating as follows,

lim
dt!0

ṼL

�
m, t̂

�
� VH

�
m, t̂

�

dt
=

7As in Holmstrom’s classical model of career concerns, the equilibrium provision of effort
relates directly to the firm’s certainty about a worker’s type.

8I assume that during the deviation from equilibrium firms still perfectly anticipate the equilib-
rium effort level of the worker. This is common procedure, as in Cisternas and Holmsotrom.
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wa?

L

�
m, t̂

�
�wa?

H

�
m, t̂

�
+(⌃L � ⌃H)V

00
H

�
m, t̂

�
+
@VH

�
m̄, t̂

�

@at

 
@aH!L

t̂

@t
�

@aH
t̂

@t

!

This must be less than zero for any m > m̄. In particular we have for m ! m̄, at
t̂, that,

wa?

L

�
m̄, t̂

�
+ ⌃L,t̂V

00
L

�
m̄, t̂

�
+

@VL

�
m̄, t̂

�

@t

�wa?

H (m̄)� ⌃H,t̂V
00
H (m̄)�

@VH

�
m̄, t̂

�

@t
+ ⌃L,t̂ (V

00
H (m̄)� V 00

L (m̄))

+
@VH

�
m̄, t̂

�

@at

@aH!L
t̂

@t
�

@VL

�
m̄, t̂

�

@at

@aL
t̂

@t
 0

by value matching at m̄ and t̂ this implies that,

⌃L,t̂ (V
00
H (m̄)� V 00

L (m̄)) +
@VH

�
m̄, t̂

�

@at

@aH!L
t̂

@t
�

@VL

�
m̄, t̂

�

@at

@aL
t̂

@t
 0

Now, from Lemma 3.3.2 we know that
@VH(m̄,t̂)

@at
>

@VL(m̄,t̂)
@at

> 0 and that
@aH!L

t̂

@t
<

@aL
t̂

@t
< 0. This implies that indeed it is possible for V 00

H (m̄) � V 00
L (m̄). Similarly

we can consider a one shot deviation from a m < m̄ worker moving to a high type
firm for dt before switching back to equilibrium behavior. A similar argument
allows us to conclude that in this scenario delivers the following condition,

⌃H,t̂ (V
00
L (m̄)� V 00

H (m̄)) +
@VL

�
m̄, t̂

�

@at

@aL!H
t̂

@t
�

@VH

�
m̄, t̂

�

@at

@aH
t̂

@t
 0

Again, from Lemma 3.3.2 we know that
@VH(m̄,t̂)

@at
>

@VL(m̄,t̂)
@at

> 0 and that either
@aL!H

t̂

@t
> 0 >

@aH
t̂

@t
or

@aL!H
t̂

@t
>

@aH
t̂

@t
> 0. This implies that V 00

H (m̄) � V 00
L (m̄).

Together these two conditions imply that in order to prevent any one-shot devia-
tion from equilibrium behavior it must be the case that V 00

H (m̄) � V 00
L (m̄). The

second case follows similarly.

The no-deviation condition in this environment looks very different from the
stationary environment of the previous section. Indeed, the evolution of equilib-
rium effort now matters for payoffs and drives a wedge between the option value
of learning workers perceive across jobs at the cutoff. As shown in Figure 3.2.1,
the particular slopes of a? upon switching will depend on when this switching
takes place, and the type of switch in question. The result above states that we
can nonetheless obtain a general pattern that deters deviations and thus pinpoints
the relative curvatures of the value function in equilibrium. In particular, to deter
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possible deviations, the option value of learning must compensate workers from
entering firms where learning is quicker and additional rents can be extracted.
This result requires certain properties of the equilibrium effort schedule. In par-
ticular, it must be the case that effort provision in equilibrium drops at a speed
proportional to the drop in posterior variance. This is what allows us to pinpoint
the direction in which the value functions must differ in order to deter deviations
from the equilibrium threshold strategy.

The next natural step is to consider whether PAM can still be expected in this
environment. While I have not yet been able to prove this analytically, a number
of informal arguments can be made. First of all, it seems unlikely that PAM can be
defined as in the stationary environment of the previous section. The direct impact
of �t on payoffs implies that two workers who reach a candidate threshold m̄ at
two different times t1 and t2 expect different future payoff streams. In this context
it seems unreasonable to expect a unique threshold m̄ that orders workers across
firms independent of the time t̂ at which this threshold is reached. In any case,
Lemma 3.3.5 can characterize the no-deviation condition of workers independent
of the time at which they contemplate deviating from their prescribed strategies.
This is quite remarkable considering the above arguments, and it provides some
evidence that even in this unstable environment, certain orderings can be made
to pinpoint equilibrium allocations. However, even with a time-independent no-
deviation condition, it seems intuitive that we cannot rule out the existence of
multiple cutoffs (as in the proof of Theorem 3.2.7) since the optimal effort a?
need not be equal across the two cutoffs. This intuition needs to be formalized
into a general result of sorting in unstable environments that I leave for future
research.

3.4 Conclusion
This paper considers a model of turnover in the labor market where workers’ de-
cisions to switch jobs are subject to the learning experience of each match. The
main objective is to determine whether equilibrium strategies predict sorting of
workers across firms under complementarities in production. Building on previ-
ous work by Eeckhout and Weng (2012), the current framework considers that
learning occurs in unstable environments, where the unobserved skill set of work-
ers evolves randomly over time. I show that modeling the underlying state as a
diffusion process has important implications for the type of learning experiences
workers can expect upon switching firms. In particular, I show that episodes of
unlearning, in which the strength of beliefs decays, is now possible. As a result,
the period at which workers switch becomes just as relevant as the beliefs about
their underlying productivity. I show that under certain conditions (risk neutrality
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and skills evolving as a martingale), these learning experiences are a second-order
effect that do not effect future expected payoffs, and PAM can be sustained as
in Eeckhout and Weng (2009). The argument requires that posterior beliefs have
infinite support, so that the continuity of sample paths allows us to pin point the
value function at the extremes. I also show that relaxing these conditions can
generates equilibria with no unique sorting result.

I then extend the basic setup to allow workers to exert a level of effort that
is unobservable to firms and which can affect the output process from which the
market forms beliefs about the worker’s type. These “signal-jamming” incentives
generate spot wages that depend on equilibrium effort provisions directly, so that
payoffs become time dependent. As a result, the no-deviation condition in Eeck-
hout and Weng (2015) looks very different and PAM breaks down. As it pertains
to previous results in the literature, it is interesting to note that the career con-
cerns version of the model still sustains bayesian learning processes. Payoffs are
non-stationary because effort not only affects the value of learning, it also directly
affects wages.

These results open the door to a number of additional queries on the robust-
ness of PAM as an equilibrium configuration in non-stationary environments. For
instance, it would be worthwhile to explore other assumptions on the behavior of
the underlying skills process. A particularly relevant approach would allow for the
possibility that effort directly affects the skills process, instead of output. These
type of human capital accumulation stories are analyzed in the work of Cisternas
(2012) and they represent very different learning environments from the career
concerns motives studied here. In particular, if the skills process is unobservable,
the market cannot fully anticipate the equilibrium investments, and learning is no
longer symmetric across market participants. It would be interesting to know the
equilibrium implications of this environment. Eeckhout and Weng (2009) explore
a human capital accumulation story, but these fluctuations are exogenous and are
not strategically modeled as an investment decision. Secondly, While PAM ob-
tains in the case with no career concerns, the learning process is quite different
from the work of Eeckhout and Weng (2009) so we should therefore expect that
the equilibrium distribution should look quite differently. Indeed we should pro-
ceed and characterize the stationary distribution in equilibrium. All this is left for
future research.
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Calvó-Armengol, A. and de Martı́ Beltran, J. (2009). Information gathering in
organizations: Equilibrium, welfare, and optimal network structure. Journal
of the European Economic Association, 7(1):116–161.

Carlsson, H. and van Damme, E. (1993). Global games and equilibrium selection.
Econometrica, 61(5):989–1018.

Chade, H. and Eeckhout, J. (2013). Stochastic sorting. Working paper, Society
for Economic Dynamics.

Chanrasekhar, A. G., Kinnan, C., and Larreguy, H. (2015). Social networks as
contract enforcement: Evidence from a lab experiment in the field. Working
Paper 20259, NBER.

Chwe, M. (1999). Structure and strategy in collective action. American Journal
of Sociology, 105:128–156.

Chwe, M. (2000). Communication and coordination in social networks. Review
of Economic Studies, 67:1–16.

Cisterns, G. (2012). Shock persistence, endogenous skills and career concerns.
Working paper, MIT.

Cochrane, J. (1991). A simple test of consumption insurance. Journal of Political
Economy, 99(5):957–976.

Cripps, M. W., Ely, J., Mailath, G., and Samuelson, L. (2008). Common learning.
Econometrica, 76(4):909–933.

Dahleh, M., Tahbaz-Salehi, A., Tsitsiklis, J., and Zoumpoulis, S. (2012). Structure
and strategy in collective action. Working paper, MIT Lab.

Dewatripont, M., Jewitt, I., and Tirole, J. (1999). The economics of career con-
cerns, part i: Comparing information structures. Review of Economic Studies,
66(1):199–217.

DeWeerdt, J. and Dercon, S. (2006). Risk-sharing networks and insurance against
illness. Journal of Development Economics, 81(2):337–356.

Dixit, A. (1993). The Art of Smooth Pasting. Routledge, New York.

131



“Thesis” — 2016/4/20 — 10:07 — page 132 — #148

Edmond, C. (2013). Information manipulation, coordination, and regime change.
Review of Economic Studies, 80(4):1422–1458.

Eeckhout, J. and Jovanovic, B. (2011). Occupational choice and development.
Journal of Economic Theory, 147(2):657–683.

Eeckhout, J. and Weng, X. (2009). Assortative learning. Working paper.

Eeckhout, J. and Weng, X. (2015). Common value experimentation. Journal of
Economic Theory, 160:317–339.

Fafchamps, M. and Gubert, F. (2007). The formation of risk sharing networks.
Journal of Development Economics, 83(2):326–350.

Fafchamps, M. and Lund, S. (2003). Risk-sharing networks in rural philippines.
Journal of Development Economics, 71(2):261–287.

Faingold, E. and Sannikov, Y. (2007). Reputation effects and equilibrium degen-
eracy in continuous-time games. Discussion Paper 1624, Cowles Foundation.

Farber, H. and Gibbons, R. (1996). Learning and wage dynamics. The Quarterly
Journal of Economics, 111(4):1007–1047.

Foster, A. and Rosenzweig, M. (2001). Imperfect commitment, altruism, and the
family: Evidence from transfer behavior in low-income rural areas. Review of
Economics and Statistics, 83(3):389–407.

Galeotti, A. and Goyal, S. (2010). The law of the few. American Economic
Review, 100(4):1468–1492.

Gibbons, R. and Murphy, K. (1992). Optimal incentive contracts in the presence
of career concerns: Theory and evidence. The Journal of Political Economy,
100(3):468–505.

Guimaraes, B. and Morris, S. (2007). The law of the few. Journal of Monetary
Economics, 54(8):2205–2230.

Gurven, M., Kaplan, H., and Zelada Supa, A. (2007). Mortality experience of
tsimane amerindians of bolivia: Regional variation and temporal trends. Amer-
ican Journal of Human Biology, 19:376–398.

Hagenbach, J. and Koessler, F. (2010). Strategic communication networks. Review
of Economic Studies, 77(3):1072–1099.

Hall, R. (1978). Stochastic implications of the life cycle-permanent income hy-
pothesis: Theory and evidence. Journal of Political Economy, 86(6):971–987.

132



“Thesis” — 2016/4/20 — 10:07 — page 133 — #149

Harris, M. and Holmstrom, B. (1982). A theory of wage dynamics. The Review
of Economic Studies, 49(3):315–333.

Hassanpour, N. (2010). Dynamic models of mobilization in political networks.
Working paper, Duke Univeristy.

Hayashi, F., Altonji, J., and Kotlikoff, L. (1996). Risk-sharing between and within
families. Econometrica, 64(2):261–294.

Holmstrom, B. (1979). Moral hazard and observability. The Bell Journal of Eco-
nomics, 10(2):74–91.

Holmstrom, B. (1999). Managerial incentive problems: A dynamic perspective.
The Review of Economic Studies, 66(1):169–182.

Hooper, P. (2011). The structure of energy production and redistribution among
tsimane’ forager-horticulturalists. Phd dissertation, University of New Mexico.

Hörner, J. and Samuelson, L. (2013). Incentives for experimenting agents. The
RAND Journal of Economics, 44(4):632–663.

Jackson, M., Rodriguez-Barraquer, T., and Tan, X. (2012). Social capital and
social quilts: Network patterns of favor exchange. American Economic Review,
102(5):1857–1897.

Jovanovic, B. (1979). Job matching and the theory of turnover. The Journal of
Political Economy, 87(5):972–990.

Karlan, D., Mobius, M., Rosenblat, T., and Szeidl, A. (2009). Trust and social
collateral. Quarterly Journal of Economics, 124(4):1307–1361.

Keller, G., Rady, S., and Cripps, M. (2005). Strategic experimentation with expo-
nential bandits. Econometrica, 73(1):39–68.

Kinnan, C. (2014). Distinguishing barriers to insurance in thai villages. Working
paper, Northwestern University.

Leicht, E., Holme, P., and Newman, M. (2006). Vertex similarity in networks.
Physical Review, 73(2):026120.

Li, B. and Zhang, K. (2010). Strong law of large numbers for *- mixing sequence.
International Journal of Mathematical, Computational, Physical, Electrical
and Computer Engineering, 4(8):1098–1100.

Ligon, E. (1998). Risk sharing and information in village economies. Review of
Economic Studies, 65(4):847–864.

133



“Thesis” — 2016/4/20 — 10:07 — page 134 — #150

Ligon, E., Thomas, J., and Worrall, T. (2000). Mutual insurance, individual sav-
ings and limited commitment. Review of Economic Dynamics, 3(2):216–246.

Liptser, R. and Shiryaev, A. (2001). Statistics of Random Processes I and II.
Springer-Verlag, New York.

Mace, B. (1991). Full insurance in the presence of aggregate uncertainty. Journal
of Political Economy, 99(5):928–956.

Martin, M., Lassek, W., Gaulin, S., Evans, R., Woo, J., Geraghty, S., Davidson,
B., Morrow, A., Kaplan, H., and Gurven, M. (2012). Fatty acid composition in
the mature milk of bolivian forager-horticulturalists: Controlled comparisons
with a us sample. Maternal and Child Nutrition, 8(3):404–418.

Mazzocco, M. and Saini, S. (2012). Testing efficient risk sharing with heteroge-
neous risk preferences. American Economic Review, 102(1):428–68.

Morris, S. and Shin, H. S. (2003). Global games: Theory and applications. In De-
watripont, M., Hansen, L., and Turnovsky, S., editors, Advances in Economics
and Econometrics, chapter 3, pages 56–114. Cambridge University Press.

Moscarini, G. (2005). Job matching and the wage distribution. Econometrica,
73(2):481–516.

Munshi, K. and Rosenzweig, M. (2009). Why is mobility in india so low? social
insurance, inequality, and growth. Working Paper 14850, NBER.

Munshi, K. and Rosenzweig, M. (2016). Networks and misallocation: Insur-
ance, migration, and the rural-urban wage gap. American Economic Review,
106(1):46–98.

Nakata, T. and Tonetti, C. (2015). Small sample properties of bayesian estimators
of labor income processes. Journal of Applied Economics, 18(1):121–148.

Rochet, J.-C. and Vives, X. (2004). Coordination failures and the lender of last
resort: Was bagehot right after all? Journal of the European Economic Asso-
ciation, 2(6):1116–1147.
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