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Abstract

Automata are a widely used formalism in computer science as a concise representa-
tion for sets. They are interesting from a theoretical and practical point of view. This
work is focused on automata that are executed on tree-like structures, and thus, define
sets of trees. Moreover, we tackle automata that are enhanced with the possibility
to check (dis)equality constraints, i.e., where the automata are able to test whether
specific subtrees of the input tree are equal or different. Two distinct mechanisms are
considered for defining which subtrees have to be compared in the evaluation of the
constraints. First, in local constraints, a transition of the automaton compares sub-
trees pending at positions relative to the position of the input tree where the transition
takes place. Second, in global constraints, the subtrees tested are selected depending
on the state to which they are evaluated by the automaton during a computation.

In the setting of local constraints, we introduce tree automata with height con-
straints between brothers (TACBBH). These constraints are predicates on sibling sub-
trees that, instead of evaluating whether the subtrees are equal or different, compare
their respective heights. Such constraints allow to express natural tree sets like com-
plete or balanced (like AVL) trees. We prove decidability of emptiness and finiteness
for TACBBH, and also for the combination of TACBBH with the tree automata with
(dis)equality constraints between brothers of Bogaert and Tison (1992). We also
define a new class of tree automata with constraints that allows arbitrary local dise-
quality constraints and a particular kind of local equality constraints (TAihom,6≈). We
prove decidability of emptiness and finiteness for this class in exponential time. As a
consequence, we obtain several EXPTIME-completeness results for problems on im-
ages of regular tree sets under tree homomorphisms, like set inclusion, finiteness of
set difference, and regularity (also called HOM problem).

In the setting of global constraints, we study the class of tree automata with global
reflexive disequality constraints (TAG∧6≈R). Such kind of constraints is incomparable
with the original notion of global disequality constraints of Filiot et al. (2007): the
latter restricts disequality tests to only compare subtrees evaluated to distinct states,
whereas in TAG∧6≈R it is possible to test that all subtrees evaluated to the same given
state are pairwise different. The tests of TAG∧6≈R correspond to monadic key con-
straints, and thus, can be used to characterize unique identifiers, a typical integrity
constraint of XML schemas. We study the emptiness and finiteness problems for
TAG∧6≈R , and obtain decision algorithms that take triple exponential time.
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Chapter 1

Introduction

Computability has been one of the basic fields of study in computer science. It
is focused on proving which problems can be solved in an effective manner, and
also by what means they can be solved. A crucial aspect of such study is devising
methods and machines for performing computations, and then reasoning about their
capabilities. One particular kind of machine, called automaton, has proved to be a
simple but powerful formalism to define sets (also called languages in this context).
The goal of an automaton is to recognize the elements that belong to the language
and reject all the rest. Usually, the automaton operates by iteratively reading the
input element and, by means of transition rules, updating its state at each step of
the execution. At the end, when the whole input has been consumed, the element
is considered recognized if the automaton has reached a special final/accepting state,
and otherwise, the element is rejected. This idea can be applied to different kinds of
elements, the most basic ones being words, i.e., sequences of symbols of an underlying
alphabet. This work focuses on a generalization of words into tree-like structures:
terms. In this setting, the symbols in the alphabet are used for labeling the nodes of
the trees, and moreover, we consider that such symbols have an associated fixed arity
(the arity of the symbol labeling a node determines the exact number of children that
such node must have). For instance, given an alphabet where the symbol f has arity
2, and the symbols a and b have arity 0, it is possible to define a term like:

f

f

a b

a

Usually, such term is written simply as f(f(a, b), a).
Tree automata (TA) is the essential class of automata for recognizing languages

of terms. They characterize the regular tree languages [GS97, CDG+07], and due to
their good computational and expressiveness properties, TA have been a well studied
formalism. In particular, they have been used to, e.g., describe the parse trees of

3
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a context-free grammar or the well-formed terms over a sorted signature [MW67],
characterize the solutions of formulas in monadic second-order logic [Don70], or nat-
urally capture type formalisms for tree-structured XML data [MLMK05, BCH+09].
A (bottom-up) TA can be described by a set of rules of the form f(q1, . . . , qm) → q,
where q1, . . . , qm, q are state symbols and f is an alphabet symbol of arity m. Ad-
ditionally, we must specify the set of final states. A term is recognized/accepted by
the automaton if, and only if, there is an execution of the automaton on such term
(starting from its leaves and proceeding upward to the root) that reaches one of the
final states of the automaton.

Example 1.1. Consider the language L of terms that encode lists of binary numbers.
More precisely, a symbol f with arity 2 is used to chain the elements in the list like
f(e1, f(e2, . . . f(em,⊥) . . .)), where the ei’s are the binary numbers in the list and the
symbol ⊥ is used to mark the end of the list. Binary numbers are encoded as terms of
the form bn(bn−1(. . . b1(b0(⊥)) . . .)), where the bi’s are symbols in {0, 1} and ⊥ is used
in this case to mark the start of a number. A TA recognizing L can be constructed as
follows. First, it requires transition rules that recognize (non-empty) binary numbers:

⊥ → q 0(q)→ q 1(q)→ q
0(q)→ qnum 1(q)→ qnum

Second, it also needs transition rules that recognize lists of numbers:

⊥ → qlist f(qnum, qlist)→ qlist

Finally, the TA has to specify qlist as single final state. Note that there might be several
distinct executions of the TA on an input term, since there are multiple transition rules
with identical left-hand sides (two rules with 0(q), two with 1(q), and two with ⊥).
Thus, such TA is not deterministic. But this is not a problem: it suffices to consider
that a term is recognized by the TA if there exists an execution on the given term that
reaches the final state qlist, even if there are other possible executions reaching different
states. For instance, there is a successful execution on the term f(e1, f(e2,⊥)), where
e1 = 1(0(⊥)) and e2 = 0(⊥), that proceeds as follows (several transition rules are
applied simultaneously at each step in order to shorten the presentation; for clarity,
the specific positions where they are applied are made explicit, using λ to denote the
root position, 1 for first child, and 2 for second child):

f

1

0

⊥

f

0

⊥

⊥

−−−−−−−−−−−−−→
⊥→q at 1.1.1
⊥→q at 2.1.1
⊥→qlist at 2.2

f

1

0

q

f

0

q

qlist

−−−−−−−−−−−−−→
0(q)→q at 1.1

0(q)→qnum at 2.1

f

1

q

f

qnum qlist

−−−−−−−−−−−−−→
1(q)→qnum at 1

f(qnum,qlist)→qlist at 2

f

qnum qlist

−−−−−−−−−−−−−→
f(qnum,qlist)→qlist at λ

qlist

It is usual to represent an execution of a TA as a tree. Such tree has the same structure
as the input term, and each of its nodes is labeled with the rule applied on the input
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term at the corresponding position. In this way, the previous example execution could
be equivalently represented as follows:

f(qnum, qlist)→ qlist

1(q)→ qnum

0(q)→ q

⊥ → q

f(qnum, qlist)→ qlist

0(q)→ qnum

⊥ → q

⊥ → qlist

Unfortunately, many natural properties are not captured in the class of regular
tree languages. For instance, the language of terms of the form f(t, t), for an arbitrary
term t, is a typical example of non-regularity, and the proof for this fact is straightfor-
ward: intuitively, it suffices to observe that TA have finite memory (the states), and
thus, the information that a TA can record is not enough to always properly check
whether the two children of the root are identical. Due to these limitations, different
variations of tree automata that increase the expressive capabilities of plain TA have
been considered in the literature. We study the case where the automata are enhanced
with the possibility to check (dis)equality constraints. In this setting, the automata
are able to test whether specific subterms of the input term are equal or different,
and only accept such input term when it satisfies all those tests. There are diverse
mechanisms for selecting which subterms have to be compared in the evaluation of
the constraints, each leading to different expressiveness. We consider the cases where
the selection is local (relative to a rule application) and global (over the whole input).
The following sections describe these models of automata.

1.1 Local constraints, and tree homomorphisms
In automata with local constraints, each transition rule of the automaton has an
associated Boolean expression c that restricts its applicability. Usually, the atoms
occurring in c are predicates of the form p1 ≈ p2 or p1 6≈ p2, for positions p1 and p2.
Such an atom holds for a given rule application if the subterms pending at p1 and
p2, relative to the position where the rule is applied, are equal in the first case and
different in the second one. The rule can be applied if the entire constraint c holds.

Example 1.2. Consider again the TA of Example 1.1. With a slight modification
introducing local constraints, we can guarantee that all the (encodings of) numbers
occurring in a list are identical, i.e., that the automaton recognizes the language L′
of terms of the form f(e1, f(e2, . . . f(em,⊥) . . .)) satisfying e1 = e2 = . . . = em.
Note that, e.g., 1(⊥) and 0(1(⊥)) are considered different, even though both of them
represent the same natural number 1.

The precise construction of the automaton with local constraints is as follows.
First, we must discard the original transition rule f(qnum, qlist) → qlist, and second,
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introduce the following new rules:

f(qnum, qlist)
1≈2.1−−−−→ qlist f(qnum, q

′
list)→ qlist ⊥ → q′list

The local constraint 1 ≈ 2.1 checks that the current number of the list (pending at
position 1, i.e., first child) is identical to the next number of the list (pending at
position 2.1, i.e., second child’s first child). Only if such condition holds, the transition
rule can be applied. Note that 1 ≈ 2.1 trivially fails when there is no next number,
i.e., when position 2.1 does not exist. This can only happen when the second child is
⊥, and thus, such edge case is properly handled by the state q′list and the transition
rule f(qnum, q

′
list)→ qlist, that performs no local test.

Unfortunately, the increase in expressiveness obtained with local constraints comes
at the expense of other desirable properties, e.g.: emptiness and finiteness of the rec-
ognized language are decidable properties for plain TA, but they become undecidable
when local constraints are introduced in the automaton model [Mon81]. For this
reason, many restrictions on the form of the constraints have been studied in the
literature in order to obtain more tractable subclasses of automata. For instance,
emptiness and finiteness of the recognized language are decidable for the class AWCBB
of tree automata with local constraints where the positions p1, p2 involved in each
atom have length 1, i.e., where the (dis)equality tests are only performed between
brother positions [BT92]. This model of automata allowed to prove decidability of
fragments of quantifier-free formulas on one-step rewriting [CSTT99], as well as the
recognizability problem for regular tree languages under particular cases of tree ho-
momorphisms [BT92]. Another relevant model is the class RA of tree automata with
arbitrary local constraints but with a bound on the maximum number of equality
tests that can be performed at each branch of the input term. Emptiness is undecid-
able for general RA, but it becomes decidable for the fragment of RA of deterministic
and complete automata, and this latter result led to the decidability of fragments of
the first-order theory of reduction [DCC95]. Additionally, emptiness is decidable in
exponential time for the subclass TA6≈ of tree automata with only arbitrary local dis-
equality constraints, and this was used to prove EXPTIME-completeness of ground
reducibility [CJ03]. Recently, the class TAhom,6≈ of tree automata with arbitrary local
disequality constraints combined with a restricted version of local equality constraints
(called HOM equalities) has been introduced. Emptiness of the language recognized
by TAhom,6≈ has been shown decidable in triple exponential time, allowing to prove de-
cidability of the general case of the recognizability problem for regular tree languages
under tree homomorphisms [GG13].

It is clear from the previously cited literature that local constraints have been a
recurrent tool to tackle problems on tree homomorphisms. Since tree homomorphisms
play a central role in our work, let us precise their definition and hint how they relate
with local constraints. A tree homomorphism H is a special kind of function from
terms to terms that can be defined by giving, for each alphabet symbol f with arity
n, an equation of the following form:

H(f(x1, . . . , xn)) = t

where t is a term labeled by either alphabet symbols, or by H(x1), . . . ,H(xn), which
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may only appear at the leaves. Then, the image of a term under the tree homomor-
phism H is obtained by applying such equations on the term from its root position to
the leaves. For instance, given the term f(f(a, b), a), the application of the tree ho-
momorphism H defined by H(a) = a, H(b) = a, and H(f(x1, x2)) = g(H(x1), H(x1))
proceeds recursively as follows:

H

f

f

a b

a

= g

H

f

a b

H

f

a b

= g

g

H

a

H

a

g

H

a

H

a

= g

g

a a

g

a a

A tree homomorphism can also be applied to a language. Furthermore, for a language
represented by a TA, a representation of its image language under a tree homomor-
phism can be obtained by transforming directly the TA. Such transformation consists
in changing the left-hand side of each transition rule of the TA according to the given
tree homomorphism, and adding an equality atom between each two positions where
the tree homomorphism has a duplicated variable. For example, the language of all
terms over nullaries a, b and binary f can be recognized by a TA with the following
transition rules:

a→ q b→ q f(q, q)→ q

and by applying the previous H to it, and assuming H(q) = q, we obtain the following
transition rules:

H(a)→ q H(b)→ q H(f(q, q))→ q

; ; ;

a→ q a→ q g(q, q) 1≈2−−→ q

where the atom 1 ≈ 2 appears due to the duplication of the variable x1 in the image of
f under H. In this case, the obtained automaton is an AWCBB, i.e., a tree automaton
with constraints between brothers [BT92], and as expected by the definition of H and
the given TA, the language recognized by the obtained AWCBB is the set of complete
trees over nullary a and binary g (which is a classical example of non-regular set). In
general, the class AWCBB is not expressive enough to capture the result of such transfor-
mation: the resulting left-hand sides of the transition rules are not guaranteed to be of
the form h(q1, . . . , qm), where h is an alphabet symbol and q1, . . . , qm are states, and
moreover, the generated equality constraints might involve non-brother positions. For
instance, if H(f(x1, x2)) had been defined as g(g(H(x1), H(x2)), g(H(x2), H(x1))),
the transformation of the transition rule f(q, q) → q would generate a rule with
g(g(q, q), g(q, q)) as left-hand side, and with an equality constraint between the non-
brother positions 1.1 and 2.2, as well as between 1.2 and 2.1. The class TAhom intro-
duced in [GG13] properly captures these cases.

The previous examples already make an important property of tree homomor-
phisms clear: the image of a regular tree language under a tree homomorphism might
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be a non-regular set. The HOM problem questions, for a given regular tree language L
(described by a TA) and a tree homomorphism H, whether H(L) is regular. The study
of preservation of tree regularity by tree homomorphisms was introduced in [Tha69].
In that paper, tree homomorphisms are defined for the first time, and it is proved
that the application of linear tree homomorphisms (i.e., those without duplicated
variables) preserves regularity. Tree homomorphisms are also introduced in [Eng75]
as a particular case of tree transducers. In [HH92, VG92, KT95], HOM is proved
decidable for the particular cases where images are represented as instances of term
patterns, or as reducible terms of a term rewrite system. In [BST99], HOM is proved
decidable for the particular case of shallow tree homomorphisms. For the same par-
ticular case, it is shown in [DTT02] that tree homomorphisms preserving regularity
can be assumed to be linear. The HOM problem appears also in [Fül94], where the
more general case of regularity of the range of a top-down tree transducer is shown
undecidable. In [GMT08], HOM is proved decidable for the particular case where
the regular tree language is defined over a monadic signature, and the case where
images are represented as instances of term patterns constrained to regular tree lan-
guages. This particular case is proved to be EXPTIME-complete in [GGM11]. As a
consequence, HOM is EXPTIME-hard. Recently, in [GG13], HOM has been proved
decidable in triple exponential time.

1.2 Global constraints
An intrinsic limitation of local constraints is that the (dis)equality tests can only be
performed between subterms of the input that are pending at a bounded distance:
this is because a local constraint specifies fixed positions (interpreted relative to the
position where the rule is to be applied) for the subterms that have to be tested.
Recently, in [FTT07, FTT08, FTT10] a new kind of constraints has been proposed
that allows to perform (dis)equality tests between subterms that might be arbitrarily
faraway. In this new approach, the transition rules of the automata are unconstrained,
and it is the automaton itself that has an associated global constraint. Such constraint
is checked at the end of the computation, and the subterms of the input that are tested
for (dis)equality are selected depending on the states to which they are evaluated
during such computation. For instance, a global constraint can impose an equality
test between all the subterms that are evaluated to a state q, that is, it can force all
the subterms evaluated to q to be identical. Such restriction can be specified with the
following global constraint:

q ≈ q

Analogously, all subterms evaluated to q can be forced to be pairwise different with:

q 6≈ q

The precise interpretation of the previous atoms q ≈ q and q 6≈ q is as follows: the
subterms pending at any two distinct positions evaluated to the state q must be
identical in the case ≈, and different in the case 6≈.

Atoms of the form q ≈ q or q 6≈ q already allow to express properties that cannot
be defined by means of local constraints. For instance, reflexive disequality constraints
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like q 6≈ q correspond to monadic key constraints, and thus, can be used to characterize
unique identifiers, a typical integrity constraint of XML schemas. Nevertheless, global
constraints can be further generalized by considering non-reflexive atoms, that is,
atoms that relate different states q1, q2 as follows:

q1 ≈ q2
q1 6≈ q2

The interpretation of these atoms is straightforward: each subterm evaluated to state
q1 must be equal (in the case ≈) or different (in the case 6≈) to each subterm evaluated
to state q2. Note that, regardless of whether the states q1, q2 related in an atom are
identical or not, an expression of the form ¬(q1 ≈ q2) is not equivalent to q1 6≈ q2 since
an universal quantifier is involved in the interpretation of the atoms, and similarly
for ¬(q1 6≈ q2) and q1 ≈ q2. We denote the class of automata with global constraints
as TAG≈, 6≈, where the global constraint is an arbitrary Boolean combination of the
previous atomic predicates.

Example 1.3. Consider again the TA of Example 1.1, and the modified language L′
proposed in Example 1.2. It is possible to recognize L′ by adding to the plain TA of
Example 1.1 a simple global reflexive constraint: qnum ≈ qnum. Such constraint is only
satisfied when all the (encodings of) numbers occurring in a list are identical.

With global constraints it is also possible to recognize another interesting variant
L′′ of L: the language of lists that do not contain repeated (encodings of) numbers,
i.e., the language of terms of the form f(e1, f(e2, . . . f(em,⊥) . . .)) where the ei’s are
pairwise different. It suffices to use qnum 6≈ qnum as the global constraint. It is easy
to see that L′′ is an example of language that cannot be recognized by automata with
local constraints (this can be proved with a simple pumping argument).

As a final remark, note that the interpretations of the reflexive atoms q ≈ q
and q 6≈ q in TAG≈,6≈ only involve (dis)equality tests between subterms of the input
that are pending at distinct positions. The fact that the positions tested must be
distinct implies that no subterm is tested for (dis)equality against itself, which is
irrelevant for q ≈ q but becomes crucial for q 6≈ q: if subterms were tested against
themselves, q 6≈ q would only be satisfied by computations that had no occurrence of
the state q. In the definition from [FTT10] for tree automata with global constraints
(TAGED), subterms are tested against themselves, and hence, it is not possible to
define properties analogous to the interpretation of q 6≈ q in TAG≈,6≈ (see, e.g., [Vac10,
BCG+13]). Even so, TAGED has been a useful formalism to decide a fragment of the
spatial logic TQL, and fragments of monadic second order logic on trees extended with
predicates for subtree (dis)equality tests [FTT07, FTT08], and the subclass of TAGED
with only equality atoms of the form q ≈ q, called RTA, closed under special kinds of
term rewrite systems, has been used to analyze security protocols [JKV11].

1.3 Organization and summary
The remaining of this work is structured as follows. In Chapter 2 we formalize the
previous notions of term, tree automata, tree homomorphism, and other related con-
cepts. Chapters 3 to 5 present the studied problems and the corresponding obtained
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results; in particular, Chapters 3 and 4 focus on local constraints, whereas Chapter 5
deals with global constraints. In Chapter 6 we draw some conclusions and sketch
possible avenues of future research.

The contents of Chapters 3 to 5 can be summarized as follows.

Chapter 3
We present our work on automata with local constraints published in:

[CG14] Carles Creus and Guillem Godoy. Tree automata with height
constraints between brothers. In Rewriting Techniques and Ap-
plications (RTA), pages 149–163, 2014.

We introduce a new kind of automata with local constraints between brother positions
that differs from the previous literature in that, instead of testing subterms for either
syntactic equality or some notion of equivalence (like, e.g., in [JRV08]), the restrictions
are imposed on the height of the subterms involved in the constraints. We call them
tree automata with height constraints between brothers (TACBBH). More precisely, our
atomic predicates are of the form h(i) = h(j), for positions i and j of length 1, and are
satisfied when the subterms pending at i and j, relative to the application of the rule,
have identical height. We also consider inequality predicates of the form h(i) < h(j)
and comparisons introducing an integer constant x of the form h(i) = h(j) + x and
h(i) < h(j) + x, with the straightforward interpretations. It is easy to see that our
notion of constraints is incomparable with syntactic (dis)equality constraints between
brothers, i.e., AWCBB. For instance, the language of complete trees over a signature
with two nullary symbols a, b and a binary symbol f cannot be recognized by AWCBB:
intuitively, this is because, even if two terms t1 and t2 were inductively guaranteed to
be complete, it is not possible to check with only (dis)equality constraints whether t1
and t2 have identical height, and thus, whether f(t1, t2) is also complete. However,
such language can be recognized by a TACBBH with the unconstrained rules a→ q and
b→ q, and the constrained rule:

f(q, q) h(1)=h(2)−−−−−−→ q

Another interesting language that can be recognized by TACBBH is the language of
AVL trees, i.e., the set of trees where the heights of the two direct children of any
internal node differ by at most one. It suffices to replace the previous rule for f with:

f(q, q)

h(1)=h(2) ∨
h(1)=h(2)+1 ∨
h(1)=h(2)−1−−−−−−−−−−→ q

Note that the constraint requires the height of each child to be at most one more than
the height of the other child. It is easy to see that the language of AVL trees cannot
be recognized by the subclass of TACBBH whose atoms are restricted to be of the form
h(i) = h(j) or h(i) < h(j). Hence, AVL’s are an example of the fact that the atoms
that introduce an integer constant x of the form h(i) = h(j) + x and h(i) < h(j) + x
are strictly more expressive than the simple constraints h(i) = h(j) and h(i) < h(j).
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We denote as TACBBh the strict subclass of TACBBH that only allows atoms of such
simple forms.

We tackle the emptiness and finiteness problems for TACBBh and TACBBH, and also
for their extensions TACBBhe and TACBBHe that include the syntactic (dis)equality con-
straints between brothers of AWCBB. Note that TACBBhe strictly generalizes TACBBh and
AWCBB, and that TACBBHe strictly generalizes TACBBH and AWCBB, since the expressive
power of AWCBB is incomparable to the expressive powers of TACBBh and TACBBH. To
the best of our knowledge, our most general class TACBBHe has not been studied in
the literature. In particular, the definition of TACT in [Tre00] is incomparable with
TACBBHe, although a given tree automaton with height constraints is transformable
into a TACT by preserving emptiness (but not the language). Nevertheless, this does
not help in our setting to decide emptiness of our model, since emptiness of TACT
is undecidable. Also, the definition of VTAMR¬R in [CJP08] captures our automaton
models, but emptiness is only decidable for some particular subclasses that are in-
comparable with TACBBHe since, even though they can recognize the particular set of
complete trees, height of subtrees cannot be compared in general.

Chapter 4
We present an extension of our work on the HOM problem published in:

[CGGR12] Carles Creus, Adrià Gascón, Guillem Godoy, and Lander Ramos.
The HOM problem is EXPTIME-complete. In Logic in Computer
Science (LICS), pages 255–264, 2012.

Recall that the HOM problem questions, for a given regular tree language L (de-
scribed by a TA) and a tree homomorphism H, whether H(L) is regular. In that
publication we develop specific techniques to prove decidability of the HOM problem
in exponential time. Here, we present a more general framework and obtain further
results based on a new class of tree automata with local constraints. More precisely,
we define the class of tree automata with disequality and implicit HOM equality
constraints (TAihom,6≈). This class allows arbitrary local disequality constraints and a
particular kind of equality constraints: the left-hand side of the transition rules are
terms containing states at some leaf positions, and two positions with the same state
implicitly define a local equality constraint between such positions. For example, con-
sider the language of terms of the form h(t1, t2), where t1, t2 are different complete
trees over nullary a and binary g. Such language can be recognized by a TAihom,6≈ with
the following transition rules:

a→ q g(q, q)→ q h(q, q′) 1 6≈2−−→ qaccept
a→ q′ g(q, q)→ q′

where qaccept is the only final state. Note that equality constraints are implicitly
represented by the fact that the state q appears duplicated at positions 1 and 2 in
the left-hand sides of the rules for g. Note also that the rule for h has two distinct
states q and q′ at its left-hand side, since we do not require that its children are equal
(in fact, the constraint 1 6≈ 2 forces them to be different, as desired). This particular
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example does not show the full expressiveness of TAihom,6≈, and in fact, could have
been equivalently defined as an AWCBB. In general, however, this is not possible since
TAihom,6≈ are strictly more expressive than AWCBB: the class of languages recognizable
by AWCBB is included in the class of languages recognizable by TAihom,6≈ since any
AWCBB can be transformed into a TAihom,6≈ recognizing the same language, and it is
easy to prove that such inclusion is strict using the fact that TAihom,6≈ can define
(dis)equality tests between non-brother positions. At first look, the transformation
from AWCBB into TAihom,6≈ might seem surprising, since equalities in TAihom,6≈ can only
be tested between positions reaching the same state, whereas in AWCBB equalities
can be tested between any two brother positions, regardless of the states reached at
them. Nevertheless, AWCBB can be determinized [BT92], and thus, the expressiveness
of AWCBB is not reduced when restricting its equality constraints to only involve brother
positions reaching the same state.

We tackle the HOM problem by building on the results from [GG13] and rea-
soning on TAihom,6≈. In that paper, HOM is reduced to the emptiness problem of a
special kind of automata with local constraints (a class equivalent to TAihom, 6≈, but
technically more complex), and this latter problem is shown decidable in triple ex-
ponential time. We prove decidability of the emptiness and finiteness problems for
TAihom,6≈ in exponential time, and in this way, we lower the classification of HOM from
3EXPTIME in [GG13] to EXPTIME. This result is tight, since HOM is known to be
EXPTIME-hard [GGM11]. The techniques developed in [GG13] also allow to reduce
other problems to the emptiness of TAihom,6≈, like set inclusion and finiteness of set
difference for sets defined as images of regular tree languages under tree homomor-
phisms. Hence, we also improve the classification of these problems from 3EXPTIME
in [GG13] to EXPTIME, which is again tight [CDG+07]. A similar result is obtained
in the setting of term rewriting, since the set of reducible terms of a term rewrite
system can be described as the image of a tree homomorphism. In particular, we
prove that inclusion of sets of normal forms of term rewrite systems can be decided
in exponential time.

Chapter 5
We present our work on automata with global constraints published in:

[CGG13] Carles Creus, Adrià Gascón, and Guillem Godoy. Emptiness and
finiteness for tree automata with global reflexive disequality con-
straints. Journal of Automated Reasoning, 51(4):371–400, 2013.

We focus on tree automata with a particular kind of global constraints: reflexive dise-
qualities (TAG∧6≈R). More precisely, we consider the model where the global constraints
are restricted to be conjunctions of positive literals of the form q 6≈ q, or of the form
q1 6≈ q2 provided that the atoms q1 6≈ q1 and q2 6≈ q2 also occur in the constraint.
In other words, the global constraint of a TAG∧6≈R can alternatively be seen as a rela-
tion on a subset of its states (i.e., on those states occurring in the constraint) that
is symmetric (since atoms are considered unordered pairs) and reflexive (due to the
previous conditions on the form of the global constraints of TAG∧6≈R). These automata
are significant in the context of XML definitions since they can characterize monadic
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key constraints: in this setting, a state q of a given automaton corresponds to an
XML type, i.e., it defines a set of valid values, and a reflexive disequality constraint
like q 6≈ q specifies that all values of type q within an XML document must be distinct
for that document to be valid.

We tackle the emptiness and finiteness problems for TAG∧6≈R . Note that decidability
results for several fragments of tree automata with global constraints can be found in
the literature: emptiness of the subclass where the global constraint is a conjunction
of atoms over the predicates ≈ and 6≈ such that ≈ defines a reflexive relation and
6≈ defines an anti-reflexive relation is in NEXPTIME [Vac10], which coincides with
the best known complexity for deciding emptiness of the subclass where the global
constraint is a conjunction of atoms over the predicate 6≈ such that 6≈ defines an anti-
reflexive relation [FTT08, FTT10]; emptiness and finiteness for the subclass where
the global constraint is a conjunction of atoms over the predicate ≈ are EXPTIME-
complete [FTT08], which still holds when restricting the constraints to just two atoms
but decreases to PTIME when only a single atom is allowed [HHK12]; and emptiness
and finiteness for the subclass RTA where the global constraint is a conjunction of
atoms of the form q ≈ q are in PTIME, emptiness being actually decidable in linear
time [JKV11]. Nevertheless, all the previous subclasses of automata with global
constraints are incomparable with TAG∧6≈R , and thus far, the only known decidability
result that captures our model TAG∧6≈R is presented in [Vac10, BCG+13] for the full
TAG≈, 6≈ class: emptiness is proved decidable in non-elementary time, and decidability
of finiteness is left as an open question. We improve such results for the fragment
TAG∧6≈R by proving that emptiness and finiteness for TAG∧6≈R are in 3EXPTIME.





Chapter 2

Basic concepts and notations

Here we introduce background concepts that are required in the following chapters.
We focus on providing essential definitions; for a complete and detailed survey the
reader is referred to [CDG+07] and [BN98].

2.1 General notation on sets and complexity classes
We fix some basic notations for sets. The size of a finite set S is denoted by |S|, and
the powerset of S by 2S . Given two disjoint sets A and B, we sometimes denote their
union as A ] B in order to emphasize the fact that A and B are disjoint. In some
cases, we may simply define A and B as sets, and use A ] B to implicitly state that
they are disjoint.

A partition P of a set S is a set of non-empty sets P1, . . . , Pn satisfying that they
are pairwise disjoint and S = P1 ∪ . . . ∪ Pn. Each Pi is said to be a part of the
partition. We use the notation

⋃
P as shorthand for

⋃
i∈{1,...,n} Pi, that is, S =

⋃
P .

The partition P induces an equivalence relation on
⋃
P , which we denote as ∼P and

define as follows: e ∼P e′ if and only if e and e′ belong to the same part in P .
We use the Landau notation when arguing about the time and space complexity

of the presented algorithms. That is, given a function g : N→ R, we denote by O(g)
the class of all functions whose asymptotic growth rate is bounded by g. Formally:

O(g) = {f : N→ R | ∃c > 0 ∃n0 ∈ N ∀n ≥ n0 : |f(n)| ≤ c · |g(n)|}

However, many of our algorithms belong to exponential complexity classes, and the
standard O-notation is not convenient enough in such setting. In particular, we are
interested in abstracting away the specific base of exponential functions, or equiva-
lently, ignore any constant factor in the exponents. Such abstractions are not easy
with the standard O-notation (consider, e.g., O(2n) ( O(3n) ( O(22·n)). For this
reason, we adopt the usual notation 2O(g) to denote the following set of functions:

2O(g) = {f : N→ R | ∃c > 0 ∃n0 ∈ N ∀n ≥ n0 : |f(n)| ≤ 2c·|g(n)|}

15
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Note that, e.g., 2O(n) includes all functions of the form ab·n+c, for any constant num-
bers a, b, and c. This notation is straightforwardly generalized to higher exponential
classes 22O(g) , 222O(g)

, and so on.

2.2 Terms
A term is a generalization of a word into a tree structure, that is, a term is a tree
where nodes are labeled by symbols of a given alphabet Σ. In order to illustrate this
definition, consider the alphabet Σ = {+,−, 1, . . . , 9}. It is clear that in the context
of words, it is possible to represent with Σ operations of addition and subtraction of
natural numbers, e.g., the word 1 − 2 + 3 − 4 + 5. However, note that without the
use of parentheses it is not possible to determine from such word the order of the
operations. In the setting of terms, this order is given by the structure of the tree.
For example, in the following term it is clear how the expression has to be evaluated:

+

−

1 2

−

3 +

4 5

The previous generalization from words to terms is rather broad, and leads in
many cases to the intractability of decisional problems on tree languages. For this
reason, it is usual to consider some extra conditions restricting the definition of term.
We take the following three:

• We assume that terms are finite.

• We assume that the alphabet Σ is coupled with a total function arity : Σ → N
that assigns to each of the symbols in the alphabet an arity. In such case, Σ is
called a signature, and a node of a tree labeled by a symbol with arity n must
have exactly n children. Clearly, it is necessary that there exists at least one
symbol whose arity is 0, since otherwise, it would be impossible to construct
any valid finite term.

• We assume that the children of a node of the tree have an order. In general,
trees (and graphs) are unordered in the sense that there is no relation between
the edges connecting a node to other nodes. In an ordered tree, we have an
order for the edges that allows us to specifically refer to the i’th child of a node.

Combining these properties, we obtain the class of finite ranked ordered trees, which
from this point on we simply call terms. The following two definitions formalize the
notion of signature, and the set of all possible terms over a given signature.

Definition 2.1. A signature Σ is a finite set of alphabet symbols with arity, which
is partitioned as

⋃
i∈N Σ(i) satisfying that f ∈ Σ(m) if the arity of the alphabet symbol
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f is m. We sometimes denote Σ as {f1:m1, . . . , fn:mn}, where f1, . . . , fn are the
alphabet symbols and m1, . . . ,mn are the corresponding arities. We define maxar(Σ)
as max{m1, . . . ,mn}, and write simply maxar when Σ is known from the context. We
denote by arity(f) the arity of symbol f , and say that f is a constant/nullary when
arity(f) = 0.

Definition 2.2. Let Σ be a signature. The set of all terms over Σ is defined recursively
as T (Σ) = {f(t1, . . . , tm) | f ∈ Σ(m) ∧ t1, . . . , tm ∈ T (Σ)}.

Note that the base case of the previous recursive definition corresponds to the
terms of the form a(), where a ∈ Σ(0). For such terms a() we simply write a. Addi-
tionally, it is usual to denote terms of the form g(. . . (g(a)) . . .) with n occurrences of
the unary symbol g simply as gn(a).

In some contexts, terms can contain nodes that are not labeled by symbols of the
underlying signature, and instead are labeled by variables ranging over terms. Note
that, since we consider that the range of the variables are terms, it is necessary that
variables only occur at the leaves, i.e., that they behave as nullary symbols. In order
to define the set of terms containing variables, we fix the set X = {x1, x2, . . . } of
variables, and assume without loss of generality that X is disjoint from any given
signature Σ. Then, we can refine Definition 2.2 as follows.

Definition 2.3. Let Σ be a signature. The set T (Σ,X ) of all terms over Σ and X
is the smallest set containing X and such that f(t1, . . . , tm) is in T (Σ,X ) whenever
f ∈ Σ(m) and t1, . . . , tm ∈ T (Σ,X ).

Terms that contain no variable, i.e., terms in T (Σ), are said to be ground. A
language over Σ is a set of ground terms.

2.3 Positions
One of the benefits of dealing with ordered trees is that we can easily refer to specific
nodes within a term. For instance, in the example of term presented at the beginning
of Section 2.2, the node labeled by the symbol 2 can be unambiguously identified as
the second child of the first child of the root node. In general, the position of a node
within a term can be identified by a sequence of natural numbers as follows:

• The root node is identified with the empty sequence.

• The i’th child of a node at position p is identified with the position p concate-
nated with i.

Using this idea, we can formally define position and the set of positions of a term.

Definition 2.4. A position is a sequence of natural numbers. The empty sequence
is denoted by λ, the symbol . is used to denote the concatenation of two positions,
and the length of a position p is denoted by |p|. Note that |λ| = 0 and |i.p| = 1 + |p|,
where i is a natural number.

Given a term f(t1, . . . , tm), its set of positions is defined as Pos(f(t1, . . . , tm)) =
{λ}] {i.p | i ∈ {1, . . . ,m}∧ p ∈ Pos(ti)}. Given a set S and a term t, we use PosS(t)
to denote the set of positions of t that are labeled by symbols in S.
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Reasoning about the relationship between nodes of a term is simplified by instead
dealing with positions, and by using the following prefix relation.

Definition 2.5. Given two positions p1 and p2, we say that p1 is a prefix of p2,
denoted p1 ≤ p2, if p2 can be written of the form p1.p

′ for some position p′. Moreover,
if p′ is not λ, then p1 is said to be a strict prefix of p2, denoted p1 < p2. We define
p2 − p1 as the suffix p′. When p1 and p2 are incomparable with respect to this prefix
relation, i.e., when p1 6≤ p2 and p2 6≤ p1, they are said to be parallel, denoted p1 ‖ p2.

2.4 Functions and operations on terms
The size of a term is its number of nodes, and its height is the length of the longest
path from the root node to a leaf. Both concepts can easily be defined by means of
positions as follows.

Definition 2.6. Let t be a term. The size of t, denoted |t|, is |Pos(t)|, and the height
of t, denoted height(t), is max{|p| : p ∈ Pos(t)}. We say that t is flat if height(t) ≤ 1.

We perform three basic operations on terms. First, we want to refer to the symbol
labeling a concrete position of a term. Second, we want to refer to a specific subterm of
a term by means of the position where it occurs. Third, we want to replace a specific
subterm by a new term. These operations are naturally defined using a recursive
formulation as follows.

Definition 2.7. Let t = f(t1, . . . , tm) be a term. Let p ∈ Pos(t) be a position. Then:

• The symbol labeling t at position p, denoted t(p), is defined as f when p = λ,
and as ti(p′) when p = i.p′.

• The subterm of t at position p, denoted t|p, is defined as t when p = λ, and as
ti|p′ when p = i.p′. We say that the subterm is strict if p 6= λ.

• The replacement of the subterm of t at position p by a given term s, denoted
t[s]p, is defined as s when p = λ, and as f(t1, . . . , ti−1, ti[s]p′ , ti+1, . . . , tm) when
p = i.p′.

Example 2.8. Consider the term t = f(f(a, b), a) over the nullaries a, b and the
binary f . For all position p ∈ Pos(t), we depict t(p) using the tree structure of t as
follows:

t(λ) = f

t(1) = f

t(1.1) = a t(1.2) = b

t(2) = a

The subterm of t at position 1, i.e., the subterm t|1, is f(a, b). If we are given another
term s = a, then we can replace the subterm t|1 by s, i.e., perform the replacement
t[s]1, and in this way obtain as result the term f(a, a).
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2.5 Tree automata
The most essential class of tree languages defined by tree recognizers is composed of
the so-called regular tree languages. These languages are characterized by means of
automata that only have finite memory and whose transitions only depend on local
information. We assume that the reader knows the Boolean closure properties and
the decidability results on regular tree languages [GS84, GS97, CDG+07]. Here we
only recall the notion of tree automata.
Definition 2.9. A (bottom-up) tree automaton, or TA for short, is a 4-tuple A =
〈Q,Σ, F,∆〉, where Q is a finite set of states, Σ is a signature, F ⊆ Q is the subset
of final states, and ∆ is a set of transition rules of the form f(q1, . . . , qm)→ q, where
q1, . . . , qm, q ∈ Q and f ∈ Σ(m).

The size of A, denoted |A|, is |Q| plus the sum of sizes of all rules in ∆, where
the size of a rule of the form f(q1, . . . , qm)→ q is m+ 2.

Note that the notion of size of TA ignores the final state set F and the signature
Σ. This is because, when reasoning asymptotically with the size of a TA, they are
usually considered irrelevant. In particular, |F | ≤ |Q| holds, and it is usual to assume
that |Σ| and maxar(Σ) are bounded by the sum of sizes of the rules in ∆ (otherwise,
it must be the case that some symbol in Σ does not occur in any of the rules in ∆,
and thus such symbol is useless and could be discarded).
Example 2.10. Consider the TA A described by the following set of rules:

a→ q1
b→ q0

f(q0, q0)→ q0
f(q0, q1)→ q1
f(q1, q0)→ q1
f(q1, q1)→ q0

where q0 is the only final state. The automaton A runs bottom-up on an input term
like f(f(a, b), a) by successively applying its rules:

f

f

a b

a

−−−−−−−−−−−→
a→q1 at 1.1

f

f

q1 b

a

−−−−−−−−−−−→
b→q0 at 1.2

f

f

q1 q0

a

−−−−−−−−−−−→
f(q1,q0)→q1 at 1

f

q1 a

−−−−−−−−−−−→
a→q1 at 2

f

q1 q1

−−−−−−−−−−−→
f(q1,q1)→q0 at λ

q0

Note that the automaton reaches the state q0 at the root position of the input term.
Since such state is final, the term f(f(a, b), a) is considered to be in the language
recognized by A. It is easy to see that the language recognized by A is the set of terms
over binary f and nullaries a, b with an even number of a’s.
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The formal definition of run of an automaton, recognized language, and regularity
is as follows.

Definition 2.11. A run of a TA A = 〈Q,Σ, F,∆〉 on a term t ∈ T (Σ) is a mapping
r : Pos(t) → ∆ satisfying that, for each position p ∈ Pos(t), if t|p is of the form
f(t1, . . . , tm), then r(p) is a rule of the form f(q1, . . . , qm)→ q, and r(p.1), . . . , r(p.m)
are rules with right-hand sides q1, . . . , qm, respectively. We say that r(p) is the rule
applied at position p. The state reached by r is the right-hand side of r(λ). The run
r is called accepting if it reaches a state in F .

A term t is accepted/recognized by A if there exists an accepting run of A on t.
The language recognized by A, denoted L(A), is the set of terms accepted by A. By
L(A, q) we denote the set of terms for which there exists a run of A on them reaching
the state q. A language L is regular if there exists a TA A such that L(A) = L.

In many occasions, we will need to refer to the state occurring at the right-hand
side of a rule. For this reason, we introduce the following notation.

Definition 2.12. Given a rule f(q1, . . . , qm) → q, we define rhs(f(q1, . . . , qm) → q)
as q.

As a final remark, it is usual to treat runs as terms over the signature ∆, where a
rule of the form f(q1, . . . , qm)→ q in ∆ is treated as a symbol with arity m. The run
on the term f(f(a, b), a) presented in Example 2.10 can be represented as follows in
the interpretation of runs as terms:

f(q1, q1)→ q0

f(q1, q0)→ q1

a→ q1 b→ q0

a→ q1

Note that the run provides enough information to deduce the term that it recognizes.
For this reason, in many cases we just define a run and leave implicit the term being
recognized. Furthermore, in order to simplify the presentation, we straightforwardly
adapt notations on term to runs as follows.

Definition 2.13. Let r be a run of a TA A on a term t. We define term(r) as t,
Pos(r) as Pos(t), and height(r) as height(t). Given a position p ∈ Pos(r), the subrun
r|p is the run of A on t|p described by r|p(p′) = r(p.p′). Moreover, we say that the
subrun is strict if p 6= λ. Given two runs r1, r2 of A, and a position p ∈ Pos(r1) such
that r1|p and r2 reach the same state, the replacement r1[r2]p is the run r of A on
term(r1)[term(r2)]p defined as follows: r(p′) = r2(p′ − p) if p ≤ p′, and r(p′) = r1(p′)
otherwise.

2.6 Substitutions, tree homomorphisms, rewriting
Tree homomorphisms can be defined as functions commuting with a natural tree
operator: application of substitution. However, such definition is not very intuitive,
and thus, in Definition 2.15 we present them using a recursive formalization.
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Definition 2.14. A substitution σ is a mapping from variables to terms. Usually, a
substitution is written as a finite set of pairs {x1 7→ t1, . . . , xn 7→ tn}, where each xi
is a variable in X and each ti is a term in T (Σ,X ). Substitutions can be homomor-
phically extended to functions from terms to terms as follows: given a substitution
σ and a term t, by σ(t) we denote the result of simultaneously replacing in t every
x ∈ Dom(σ) by σ(x). For example, if σ is {x 7→ f(b, y), y 7→ a}, then σ(g(x, y)) is
g(f(b, y), a).

Definition 2.15. Let Σ1,Σ2 be two signatures. A tree homomorphism is a function
H : T (Σ1)→ T (Σ2) which can be defined as follows.

Let Xm represent the set of variables {x1, . . . , xm} for each natural number m. The
definition of H : T (Σ1)→ T (Σ2) requires to define H(f(x1, . . . , xm)) for each alpha-
bet symbol f ∈ Σ1 of arity m as a term tf ∈ T (Σ2,Xm). Then, H(f(t1, . . . , tm)) is
defined for each term f(t1, . . . , tm) ∈ T (Σ1) as {x1 7→ H(t1), . . . , xm 7→ H(tm)}(tf ).

The size of H, denoted |H|, is the sum of the sizes of all the terms tf .

Example 2.16. Consider the signatures Σ1 = {a:0, b:0, f :2}, Σ2 = {a:0, g:2}. Now
consider the tree homomorphism H : T (Σ1)→ T (Σ2) defined by H(a) = a, H(b) = a,
and H(f(x1, x2)) = g(x1, x1). The recursive application of H on the term f(f(a, b), a)
proceeds as follows:

H

f

f

a b

a

= g

H

f

a b

H

f

a b

= g

g

H

a

H

a

g

H

a

H

a

= g

g

a a

g

a a

We conclude by introducing the concept of term rewriting. Intuitively, a rewrite
rule l → r specifies a way to modify terms: if some subterm of a term t matches the
term l, then such subterm can be replaced by the term r (both l and r might contain
variables).

Definition 2.17. A rewrite rule is a pair of terms l→ r. The application of a rewrite
rule l→ r to a term s[σ(l)]p at position p produces the term s[σ(r)]p. A term rewrite
system R is a set of rewrite rules. The application of a rule of R to a term s resulting
into a term t is denoted by s →R t, the transitive closure of this relation is denoted
by →+

R, and the reflexive-transitive closure by →∗R.





Chapter 3

Decidability of height and
equality constraints between
brothers

In this chapter we focus on automata with height constraints (TACBBH). Recall that
this model of automaton extends TA by adding local constraints to the transition
rules, and that such constraints compare the heights of brother subterms. More pre-
cisely, the atomic constraints in the transition rules of TACBBH are expressions of the
form h(i) = h(j) + x or h(i) < h(j) + x, where i, j are positions of length 1 and x
is an integer constant. Such atoms are satisfied if the expressions evaluate to true
after replacing h(i) and h(j) by the heights of the i’th and j’th child, respectively,
relative to the position of the input term where the constrained rule is to be applied.
We prove decidability of the emptiness and finiteness problems for TACBBH. Our ap-
proach consists in transforming the automaton into a normalized form, and obtaining
a recursive formulation to describe the set of reachable states when recognizing terms
of a specific height. The decision algorithm follows directly from such result. We
also adapt the method to automata (TACBBHe) that combine the height constraints of
TACBBH with the (dis)equality constraints between brothers of AWCBB from [BT92].

The remaining of this chapter is structured as follows. In Section 3.1 we formally
define the class of automata with height constraints. In Section 3.2 we tackle the
subclass of TACBBH where only simple height constraints are allowed, i.e., where the
integer constant x of all atomic predicates is 0 (thus, the atoms are of the form
h(i) = h(j) + 0 or h(i) < h(j) + 0, which we write as h(i) = h(j) and h(i) < h(j),
respectively). We call such subclass TACBBh. This section is intended as intuition for
the general case, i.e., for TACBBHe, since both approaches are analogous. The general
case is tackled in Section 3.3, where we also analyse the time complexities of the
decision algorithms for TACBBH, and for a class TACBBhe that mixes the simple height
constraints of TACBBh with the (dis)equality constraints of AWCBB.

23
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3.1 TA with height and equality constraints between
brothers

In this section we give a general definition of tree automata with constraints between
brothers. This definition is instantiated later, by considering distinct forms and inter-
pretations for the constraints. To simplify notations, along this chapter we consider
a fixed signature Σ.

Definition 3.1. A constraint structure is a tuple 〈C,PosVar, |=, |.|,Width〉. Here, C
(notion of syntax) is a set of elements called constraints. PosVar is a function that
maps each element of C to a finite set of natural numbers. Given c ∈ C, any partial
mapping I : N → T (Σ) satisfying PosVar(c) ⊆ Dom(I) is called an interpretation
of c. |= (notion of satisfaction) maps each pair c ∈ C and interpretation I of c to
either true (denoted I |= c) or false (denoted I 6|= c). |.| (notion of size) maps each
constraint c to a natural number. Width maps each constraint c to a natural number.

Given two constraints c1, c2 (not necessarily from the same constraint structure)
satisfying PosVar(c1) = PosVar(c2), we say that c1, c2 are compatible if there exists
I satisfying I |= c1 and I |= c2 (where |= refers to the satisfaction notion of each
corresponding structure). Otherwise, we say that c1, c2 are incompatible.

A set of constraints {c1, . . . , cn} of the same constraint structure and satisfying
PosVar(c1) = · · · = PosVar(cn) is called deterministic if all the constraints are pairwise
incompatible, and it is called complete if, for each I : PosVar(c1) → T (Σ), there is
some ci such that I |= ci.

Given two constraints c1, c2 (not necessarily from the same constraint structure)
satisfying PosVar(c1) ⊇ PosVar(c2), we say that c1 implies c2, denoted c1 |= c2, if
(I |= c1)⇒ (I |= c2) for each interpretation I of c1 (where |= refers to the satisfaction
notion of each corresponding structure).

Definition 3.2. Let S = 〈C,PosVar, |=, |.|,Width〉 be a constraint structure. A tree
automaton with constraints between brothers based on S, TACBBS for short, is a tuple
A = 〈Q,Σ, F,∆〉, where Q is a finite set of states, Σ is a signature, F ⊆ Q is the
subset of final states, and ∆ is a finite set of rules of the form f(q1, . . . , qm) c−→ q,
where q1, . . . , qm, q ∈ Q, f is a symbol in Σ of arity m, and c, called the (local)
constraint of the rule, is a constraint of C satisfying PosVar(c) ⊆ {1, . . . ,m}. The
rule is fully constrained if PosVar(c) = {1, . . . ,m}. The size of such rule is m+2+|c|,
and its width is Width(c). The size of A, denoted |A|, is |Q| plus the sum of sizes
of all its rules, and the width of A is the maximum between 1 and the widths of its
rules. We say that A is fully constrained, denoted TACBBF

S, if each of its rules is fully
constrained.

A run of A on a term t ∈ T (Σ) is a mapping r : Pos(t) → ∆ such that, for each
position p ∈ Pos(t), if t|p is of the form f(t1, . . . , tm), then r(p) is a rule of the form
f(q1, . . . , qm) c−→ q, the rules r(p.1), . . . , r(p.m) have q1, . . . , qm as right-hand sides,
respectively, and I = {1 7→ t|p.1, . . . ,m 7→ t|p.m} |= c. We say that r(p) is the rule
applied at position p. The state reached by r is the right-hand side of r(λ). The run
r is called accepting if it reaches a state in F . A term t is accepted/recognized by
A if there exists an accepting run of A on t. The language recognized by A, denoted
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L(A), is the set of terms accepted by A. By L(A, q) we denote the set of terms for
which there exists a run of A on them reaching q.

Definition 3.3. A height and equality constraint c is a Boolean combination (in-
cluding negation) of atoms of the form either h(i) = h(j) + x or h(i) < h(j) + x or
i ≈ j or i 6≈ j for distinct natural numbers i, j and integer number x. The width of
c, denoted Width(c), is 1 plus the maximum of the absolute values of such integers x.
The size of c, denoted |c|, is the number of such atoms occurring in c. By PosVar(c)
we denote the set of such naturals i, j occurring in c. An interpretation of c is a
partial mapping I : N → T (Σ) such that PosVar(c) ⊆ Dom(I), and we say that I
satisfies ( is a solution of) c, denoted I |= c, if, by replacing in c each natural i by the
term I(i), the expression evaluates to true by interpreting h as the height function, ≈
and 6≈ as syntactic equality and disequality between terms, respectively, = and < as
respectively equality and less of the evaluated expressions on integers (where + is the
addition operator on integers), and the Boolean operators in the usual way.

By CHe we denote the set of all height and equality constraints. By CH we denote
the subset of CHe of constraints with only atoms of the form h(i) = h(j) + x or
h(i) < h(j) + x (i.e., only height constraints). By Che we denote the subset of CHe
of constraints with only atoms of the form h(i) = h(j) + 0 or h(i) < h(j) + 0 or
i ≈ j or i 6≈ j (i.e., equality constraints and simple height constraints, that is, height
constraints where the integer constant is always 0). By Ch we denote the subset of
CHe of constraints with only atoms of the form h(i) = h(j)+0 or h(i) < h(j)+0 (i.e.,
only simple height constraints). We denote simple height constraint atoms simply as
h(i) = h(j) and h(i) < h(j), by omitting the integer constant 0. The constraint
structures He, he, H, h are defined as 〈C,PosVar, |=, |.|,Width〉, by replacing C by
CHe, Che, CH , Ch, respectively, and where PosVar, |=, |.|,Width are defined as above.

3.2 Decidability of simple height constraints
In this section we prove decidability of emptiness and finiteness of the language recog-
nized by TACBBh. A usual way to deal with automata with constraints is to transform
them into a normalized form that is easier to deal with. We proceed by normalizing
simple height constraints according to the following definition and lemma.

Definition 3.4. A normalized simple height constraint is an expression c of the form
S1 < S2 < · · · < Sn, where S1, . . . , Sn are non-empty, pairwise disjoint, finite sets of
natural numbers. By PosVar(c) we denote S1 ] . . . ] Sn. Note that {S1, . . . , Sn} is
a partition of PosVar(c). An interpretation of c is a partial mapping I : N → T (Σ)
such that PosVar(c) ⊆ Dom(I). We say that I satisfies ( is a solution of) c, denoted
I |= c, if:

• height(I(i1)) = height(I(i2)) holds for each i ∈ {1, . . . , n}, i1, i2 ∈ Si,

• height(I(i1)) < height(I(i2)) holds for each i ∈ {1, . . . , n−1}, i1 ∈ Si, i2 ∈ Si+1.

The size of c is |c| = |PosVar(c)|. The width of c is Width(c) = 1 (in simple height
constraints the width plays no important role). The structure of normalized simple



26 Chapter 3. Decidability of height and equality constraints between brothers

height constraints is the constraint structure nh = 〈Cnh,PosVar, |=, |.|,Width〉, where
Cnh is the set of all normalized simple height constraints, and PosVar, |=, |.|,Width are
defined as above.

Lemma 3.5. Let A = 〈Q,Σ, F,∆〉 be a TACBBh. Then, a TACBBF
nh A

′ = 〈Q,Σ, F,∆′〉
satisfying L(A′) = L(A) can be computed with time in O(|A| · 2maxar2).

Proof. We define ∆′ := {f(q1, . . . , qm) c′−→ q | c′ ∈ Cnh ∧ PosVar(c′) = {1, . . . ,m} ∧
∃(f(q1, . . . , qm) c−→ q) ∈ ∆ : (c′ |= c)}. Observe that a rule (f(q1, . . . , qm) c−→ q) ∈ ∆
can be applied at a position in a term if and only if one of the rules of the form
(f(q1, . . . , qm) c′−→ q) ∈ ∆′ generated from it can be applied at such position. Thus,
any run of A can be transformed into a run of A′ reaching the same states at each
position, and the reverse transformation is also possible. Hence, L(A′) = L(A).

To construct ∆′ we need to decide c′ |= c for each normalized simple height
constraint c′ and simple height constraint c. This is easy, since it suffices to check if c
evaluates to true after replacing each atom of the form h(i) = h(j) by true if i, j are
in the same set in c′, and by false otherwise, and after replacing each atom of the form
h(i) < h(j) by true if i occurs in c′ in a set previous to the one where j occurs, and
by false otherwise. The number of different normalized simple height constraints c′
to consider is bounded by 2maxar2 . Thus, |∆′| ≤ |∆| · 2maxar2 , and the time complexity
of the statement follows. �

Example 3.6. Consider the TACBBh A = 〈{q, qf},Σ, {qf},∆〉, where the signature Σ
is {a:0, g:1, f :2}, and the set of rules ∆ is:

a→ q
g(q)→ q
g(qf )→ qf

f(q, q) ¬(h(1)=h(2))−−−−−−−−→ qf

f(qf , q)
¬(h(1)=h(2))−−−−−−−−→ qf

f(q, qf ) ¬(h(1)=h(2))−−−−−−−−→ qf

f(qf , qf ) ¬(h(1)=h(2))−−−−−−−−→ qf

Note that the rules guarantee that any accepted term has at least one occurrence of
the alphabet symbol f , and moreover, the constraints ensure that there are no siblings
with identical height, that is, the language recognized by A is L(A) = {t ∈ T (Σ) |
(∃p ∈ Pos(t) : t(p) = f) ∧ (∀p ∈ Pos(t) : (t(p) = f ⇒ height(t|p.1) 6= height(t|p.2)))}.

The construction in the proof of Lemma 3.5 allows to obtain a TACBBF
nh A

′ from
A by just defining a new set of rules. In particular, for each of the rules of A, we
have to consider any possible normalized constraint c′, and create a new rule with
each c′ that implies the original (non-normalized) constraint of the rule. For the rule
a → q there is a single normalized constraint to consider: the empty one. For the
rules g(q) → q and g(qf ) → qf , since the alphabet symbol has arity 1, there is also
one single normalized constraint to consider, {1}, which clearly implies the empty
constraint of the original rules. For the remaining rules, i.e., the ones with the non-
normalized constraint c := ¬(h(1) = h(2)), since they have arity 2 we need to consider
the normalized constraints c1 := {1, 2}, c2 := {1} < {2}, and c3 := {2} < {1}. Note
that c1 6|= c, whereas c2 |= c and c3 |= c. Thus, each rule of A with the non-normalized
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constraint c produces two rules in A′, one with the constraint c2 and the other one
with c3. In summary, A′ has the following set of rules:

a −−→ q

g(q) {1}−−→ q

g(qf ) {1}−−→ qf

f(q, q) {1}<{2}−−−−−→ qf f(q, q) {2}<{1}−−−−−→ qf

f(qf , q)
{1}<{2}−−−−−→ qf f(qf , q)

{2}<{1}−−−−−→ qf

f(q, qf ) {1}<{2}−−−−−→ qf f(q, qf ) {2}<{1}−−−−−→ qf

f(qf , qf ) {1}<{2}−−−−−→ qf f(qf , qf ) {2}<{1}−−−−−→ qf

To decide emptiness of a TACBBF
nh A, we iteratively consider terms of increasing

height and, for each h ≥ 0, we compute which states are reachable by runs of A on
terms with height h. Clearly, such an approach is analogous to compute, for each
h ≥ 0, which rules of A can be applied at the root position of some term of height
h. Consider that we have already performed such computations up to some h, and
that now we tackle h + 1. For a rule of the form f(q1, . . . , qm) c−→ q to be applicable
at the root position of some term of height h + 1, it suffices to guarantee that (i)
there are runs on terms t1, . . . , tm of height at most h reaching the states q1, . . . , qm,
respectively, (ii) at least one of t1, . . . , tm has height h, and (iii) the interpretation
I = {1 7→ t1, . . . ,m 7→ tm} is a solution of the normalized constraint c. All these
conditions can be checked by considering the results obtained thus far for heights up
to h.

In order to deduce a termination criterion for such process, we need to refine the
approach. In particular, for each h ≥ 0, we compute some extra information that
allows to check the previous conditions (i) to (iii) for height h+ 1 by considering only
the results obtained for height h, instead of all heights up to h. This extra information
consists in memorizing whether a part of a constraint (a prefix, or infix) is satisfied
by taking into account runs on terms with height bounded by h. The next definition
formalizes the information computed for each h ≥ 0.
Definition 3.7. Let A = 〈Q,Σ, F,∆〉 be a TACBBF

nh. Let h be a natural number. Let q
be a state in Q. We define ExistTermA(h, q) as true if there exists a term with height
h in L(A, q), and as false otherwise. Let N : N → Q be a partial mapping. We say
that N and a partial mapping I : N → T (Σ) are compatible (with respect to A) if
Dom(N) ⊇ Dom(I) and I(i) ∈ L(A,N(i)) for each i ∈ Dom(I). Let c be a normalized
simple height constraint such that Dom(N) ⊇ PosVar(c). We define ExistSolA(h, c,N)
as true if there exists I : PosVar(c) → T (Σ) such that I is compatible with N and a
solution of c, and the highest term in I(PosVar(c)) has height h, and as false otherwise.
We define AccExistSolA(h, c,N) as

∨
h′≤h ExistSolA(h′, c,N). We omit the subindex

of ExistTermA, ExistSolA, AccExistSolA when A is clear from the context.
We define CA as the set of the pairs 〈c,N〉 satisfying that c is a normalized simple

height constraint, and there exists a transition rule (f(q1, . . . , qm) c′−→ q) ∈ ∆ such that
c is a non-empty prefix of c′ or a set occurring in c′, and N = {1 7→ q1, . . . ,m 7→ qm}.
Note that |CA| ≤ 2 ·maxar · |∆|. We define the configuration of A for height h as the
description of all values ExistTermA(h, q), ExistSolA(h, c,N), AccExistSolA(h, c,N) for
each 〈c,N〉 ∈ CA and q ∈ Q.
Example 3.8. Following Example 3.6, note that CA′ is the set of the pairs 〈{1}, N〉,
〈{2}, N ′〉, 〈{1} < {2}, N ′〉, and 〈{2} < {1}, N ′〉, where N and N ′ are any of the
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mappings {1 7→ q, 2 7→ q}, {1 7→ qf , 2 7→ q}, {1 7→ q, 2 7→ qf}, or {1 7→ qf , 2 7→ qf}
(i.e., the mappings corresponding to the rules with the alphabet symbol f), and N
may additionally be any of the mappings {1 7→ q} or {1 7→ qf} (i.e., the mappings
corresponding to the rules with the alphabet symbol g).

It is easy to see that ExistTerm(h, q) is true for any height h ≥ 0, since any term
of the form gn(a) reaches q, with n ≥ 0. On the other hand, note that the smallest
terms with an occurrence of f and with siblings of different height are f(a, g(a)) and
f(g(a), a), with height 2. These are precisely the smallest terms reaching qf , and thus,
ExistTerm(h, qf ) is true only for h ≥ 2.

By the previous observations, it is clear that ExistSol(0, c,N) and ExistSol(1, c,N),
with 〈c,N〉 ∈ CA′ , are necessarily false whenever qf ∈ N(PosVar(c)), since there is
no term of height 0 or 1 reaching the state qf . In the case of ExistSol(0, c,N), it
is also false whenever c is of the form {1} < {2} or {2} < {1}, since there is no
interpretation where the highest term has height 0 and there is another smaller term.
In the rest of cases, ExistSol(0, c,N) and ExistSol(1, c,N) are true. When considering
greater heights, the constraints are easier to satisfy. In particular, ExistSol(2, c,N) is
only false when c is of the form {i} < {j} and N(i) = qf , since the smallest term
reaching qf has height 2, and thus, it is not possible to find any solution for such c
and N . Finally, ExistSol(h, c,N) with h ≥ 3 is true for all 〈c,N〉 ∈ CA′ .

The following lemma gives an equivalent definition of ExistSol, AccExistSol, and
ExistTerm using a recursive formalization. It can be proved by induction on h and |c|.
This new definition shows that such values are computable, and moreover, it allows to
argue that the configuration of A for height h > 0 depends only on the configuration
for h− 1.

Lemma 3.9. Let A = 〈Q,Σ, F,∆〉 be a TACBBF
nh.

Then, ExistTerm, ExistSol, AccExistSol can also be defined recursively as follows:

• Assume h = 0. Then, ExistTerm(h, q) is true if and only if there exists a ∈ Σ(0)

satisfying a ∈ L(A, q). Moreover, if c is not just a set, then ExistSol(h, c,N) =
AccExistSol(h, c,N) = false, and otherwise if c is a set S, then ExistSol(h, c,N) =
AccExistSol(h, c,N) =

∧
q∈N(S) ExistTerm(h, q).

In the rest of cases assume h > 0.

• AccExistSol(h, c,N) = AccExistSol(h− 1, c,N) ∨ ExistSol(h, c,N)

• ExistSol(h, c′ < S,N) = AccExistSol(h− 1, c′, N) ∧ ExistSol(h, S,N)

• ExistSol(h, S,N) =
∧
q∈N(S) ExistTerm(h, q)

• ExistTerm(h, q) =
∨

(f(q1,...,qm)
c−→q)∈∆, m>0

ExistSol(h − 1, c, {1 7→ q1, . . . ,m 7→
qm})

Corollary 3.10. Let A = 〈Q,Σ, F,∆〉 be a TACBBF
nh. Let h be a natural number.

Then, the configuration of A for height h+1 can be computed from the configuration
of A for height h with time in O(maxar2 · |∆|+ |Q|).
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Proof. Straightforward from the definitions in Lemma 3.9. Observe that ExistTerm
can be computed with time in O(|Q|+ |∆|), afterwards ExistSol can be computed with
time in O(|CA| ·maxar), and finally AccExistSol with time in O(|CA|). The statement
follows since |CA| ≤ 2 ·maxar · |∆|. �

The previous result leads to the fact that, when we find the same configuration
for heights h1 < h2, the sequence of configurations is periodic with period h2 − h1
starting from h1. Thus, deciding emptiness corresponds to check whether there exists
a final state q satisfying ExistTerm(h, q) for some h < h2, and deciding finiteness
corresponds to check whether there exists a final state q satisfying ExistTerm(h, q) for
some h1 ≤ h < h2. Hence, the time complexity of both decision algorithms depends
on the cost from Corollary 3.10 to compute each configuration, and also the number
of different possible configurations stated in the following lemma.

Lemma 3.11. Let A = 〈Q,Σ, F,∆〉 be a TACBBF
nh.

Then, the number of different configurations of A considering all possible heights
is bounded by 2|Q| · (2 ·maxar · |∆|+ 1).

Proof. Consider any two heights 0 < h1 < h2 satisfying that AccExistSol for h1 − 1 is
equal to AccExistSol for h2−1, and ExistTerm for h1 is equal to ExistTerm for h2. Since
ExistSol for any height h > 0 depends only on AccExistSol for h− 1 and ExistTerm for
h, it follows that ExistSol for h1 is equal to ExistSol for h2. Moreover, it also follows
that AccExistSol for h1 is equal to AccExistSol for h2. Thus, the configurations of A
for h1 and h2 are equal, and hence, to prove the statement it suffices to bound the
number of different combinations of AccExistSol and ExistTerm. To this end, first note
that there are at most 2|Q| different definitions of ExistTerm in the configurations of
A. Second, note that AccExistSol(h, c,N) ⇒ AccExistSol(h + 1, c,N) for any h and
〈c,N〉 ∈ CA, and thus, there are at most |CA|+1 ≤ 2·maxar·|∆|+1 different definitions
of AccExistSol in the configurations of A. The statement follows by combining both
bounds. �

Corollary 3.12. Emptiness and finiteness of the language recognized by a TACBBF
nh

A = 〈Q,Σ, F,∆〉 are decidable with time in 2O(|Q|+log(maxar·|∆|)).

As a consequence of Lemma 3.5 we also obtain decidability for TACBBh.

Corollary 3.13. Emptiness and finiteness of the language recognized by a TACBBh
A = 〈Q,Σ, F,∆〉 are decidable with time in 2O(|Q|+log(|A|)+maxar2).

3.3 Decidability of the general case
The global approach to prove decidability of emptiness and finiteness for the general
case of height and equality constraints is analogous to the case of simple height con-
straints. We start with a process of normalization of the automata, where the notion
of normalized constraint is given in the following definition. Recall that, given a set of
sets S, we use the notation

⋃
S as shorthand for

⋃
P∈S P , and that we write e1 ∼S e2

to denote that the elements e1 and e2 belong to the same set in S.
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Definition 3.14. A normalized height and equality constraint is an expression c of
the form P1⊗1 P2⊗2 · · ·⊗n−1 Pn, where P1, . . . , Pn are partitions of non-empty finite
sets of natural numbers, each natural number occurs in at most one Pi, and each ⊗i
is an operator of the form either =h or ≤h for a natural number h > 0. By PosVar(c)
we denote the set of natural numbers occurring in P1, . . . , Pn. Note that P1 ] . . .]Pn
is a partition of PosVar(c). An interpretation of c is a partial mapping I : N→ T (Σ)
such that PosVar(c) ⊆ Dom(I). We say that I satisfies ( is a solution of) c, denoted
I |= c, if:

•
[
(I(i1) = I(i2))⇔ (i1 ∼Pi i2)

]
holds for each i ∈ {1, . . . , n}, i1, i2 ∈

⋃
Pi,

• height(I(i1)) = height(I(i2)) holds for each i ∈ {1, . . . , n}, i1, i2 ∈
⋃
Pi,

• height(I(i1)) + h = height(I(i2)) holds for each i ∈ {1, . . . , n − 1}, i1 ∈
⋃
Pi,

i2 ∈
⋃
Pi+1 such that the operator ⊗i is of the form =h,

• height(I(i1)) + h ≤ height(I(i2)) holds for each i ∈ {1, . . . , n − 1}, i1 ∈
⋃
Pi,

i2 ∈
⋃
Pi+1 such that the operator ⊗i is of the form ≤h.

The size of c is |c| = |PosVar(c)|. The width of c, denoted Width(c), is the maximum
between 1 and the natural numbers h occurring in the subscripts of the operators in c.
The structure of normalized height and equality constraints is the constraint structure
nHe = 〈CnHe,PosVar, |=, |.|,Width〉, where CnHe is the set of all normalized height and
equality constraints, and PosVar, |=, |.|,Width are defined as above.

Example 3.15. Consider the language of AVL trees over Σ = {a:0, b:0, f :2}, i.e., the
set of trees where the heights of the two direct children of any internal node differ by
at most one. Moreover, assume that we impose that all the siblings must be different,
i.e., that the two direct children of any internal node must be distinct trees. Such
language can be recognized by the TACBBHe A = 〈{q},Σ, {q},∆〉, where the set of rules
∆ contains a→ q, b→ q, and also:

f(q, q)

1 6≈2 ∧ (h(1)=h(2) ∨
h(1)=h(2)+1 ∨
h(1)=h(2)−1)−−−−−−−−−−−−−−−→ q

Note that the atom 1 6≈ 2 corresponds to the requirement that the siblings are distinct
terms, and that the rest of atoms correspond to the notion of AVL trees. It is easy
to see that such constraint cannot be directly expressed with a single normalized con-
straint, and that it requires to be decomposed into three distinct cases. First, the case
where the siblings have identical height and are distinct terms can be expressed with
the normalized constraint {{1}, {2}}. Second, the case where the height of the second
child is 1 plus the height of the first child can be expressed with {{1}} =1 {{2}}. And
third, the case where the height of the first child is 1 plus the height of the second child
can be expressed with {{2}} =1 {{1}}.

One of the essential differences between tackling TACBBHe and TACBBh is that, for
a TACBBHe A, it is not sufficient to iteratively consider increasing values for h, and
compute which states are reachable by runs of A on terms with height h. This is
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because, in later iterations of the process, such information is not enough to easily
deduce whether atoms of the form i ≈ j or i 6≈ j can be satisfied. Instead, for each
h ≥ 0, we need to count (up to a certain bound) the number of distinct terms of
height h that are recognized by each state of A. To ease the task of counting the
terms, in the normalization process for TACBBHe we also determinize the automaton,
according to the following definition.

Definition 3.16. We say that a TACBBF
nHe A = 〈Q,Σ, F,∆〉 is deterministic and

complete (or a dcTACBBF
nHe) if:

• for each f ∈ Σ(m), states q1, . . . , qm ∈ Q, and normalized height and equality
constraint c, there is at most one q ∈ Q such that (f(q1, . . . , qm) c−→ q) ∈ ∆,

• for each f ∈ Σ(m) and states q1, . . . , qm ∈ Q, the set of normalized height and
equality constraints {c | ∃q ∈ Q : (f(q1, . . . , qm) c−→ q) ∈ ∆} is non-empty,
deterministic, and complete.

Given a dcTACBBF
nHe A over Σ and a term t ∈ T (Σ), we denote by A(t) the state

reached by the unique run of A on t (such run exists thanks to the previous conditions).

The construction of a dcTACBBF
nHe from the given TACBBHe is presented in several

steps. First, we show how to obtain a deterministic and complete set of normalized
constraints by constructing them from the following limited number of operators.

Definition 3.17. Let m and w > 0 be natural numbers. A normalized constraint
with respect to m and w is a normalized height and equality constraint c over the
operators =1, =2, . . . , =w−1 and ≤w and satisfying PosVar(c) = {1, . . . ,m}.

We prove that the set C of the normalized constraints with respect to some m and
w > 0 is deterministic and complete. For C to be deterministic, it must satisfy that
its constraints are pairwise incompatible. For C to be complete, it must satisfy that
any interpretation is a solution of at least one of the constraints of the set. We prove
each property separately, and in Corollary 3.21 conclude that C is deterministic and
complete.

Lemma 3.18. Let m and w > 0 be natural numbers. Let c and c′ be two different
normalized constraints with respect to m and w.

Then, c and c′ are incompatible.

Proof. Since PosVar(c) = PosVar(c′) = {1, . . . ,m} and c and c′ are different by as-
sumption, it follows that necessarily m > 1. Consider the first difference of c and
c′ found by reading them from left to right, i.e., c and c′ have prefixes of the form
P1⊗1 P2⊗2 · · · ⊗n−1 Pn⊗n P and P1⊗1 P2⊗2 · · · ⊗n−1 Pn⊗′n P ′, respectively, where
either ⊗n 6= ⊗′n or P 6= P ′. We consider the following cases:

• Consider the case where n > 0 and ⊗n 6= ⊗′n. In such case, the natural num-
bers h, h′ occurring in ⊗n,⊗′n, respectively, are different, and without loss of
generality suppose h < h′. Consider an i occurring in Pn, and a j occurring in
P . Any solution I of c satisfies height(I(i)) +h = height(I(j)), and any solution
I of c′ satisfies height(I(i)) +h < height(I(j)). Thus, c and c′ are incompatible.
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• Consider the case where either n = 0 or ⊗n = ⊗′n, and therefore, P 6= P ′. We
consider two subcases. First, assume that there is an i occurring in only one of
P and P ′, say P . Let j be any natural number occurring in P ′. Any solution
I of c satisfies height(I(i)) ≤ height(I(j)), and any solution I of c′ satisfies
height(I(j)) < height(I(i)). Thus, c and c′ are incompatible.
Second, assume that there are different i, j that occur in the same part in either
P or P ′, say P , and i, j do not occur in the same part in P ′. Any solution I of
c satisfies I(i) = I(j), and any solution I of c′ satisfies I(i) 6= I(j). Thus, c and
c′ are incompatible. �

Definition 3.19. Let m and w > 0 be natural numbers. Let I : {1, . . . ,m} → T (Σ)
be a mapping. Let h1 < h2 < · · · < hn be the elements of height(I({1, . . . ,m})). The
constraint induced from I and w is the normalized constraint P1⊗1P2⊗2 · · ·⊗n−1Pn
with respect to m and w where:

• each Pi is a partition of {j ∈ {1, . . . ,m} | height(I(j)) = hi} satisfying that
(I(j1) = I(j2))⇔ (j1 ∼Pi j2) for each j1, j2 ∈

⋃
Pi,

• each ⊗i is the operator =hi+1−hi if hi+1 − hi < w, and ≤w otherwise.

Lemma 3.20. Let m and w > 0 be natural numbers. Let I : {1, . . . ,m} → T (Σ) be
a mapping. Let c be the constraint induced from I and w.

Then, I |= c.

Proof. Straightforward from the definition of induced constraint. �

Corollary 3.21. Let m and w > 0 be natural numbers. Let C be the set of normalized
constraints with respect to m and w.

Then, C is deterministic and complete.

Proof. By Lemma 3.18, any two different constraints in C are incompatible, and
thus C is deterministic. By Lemma 3.20, any interpretation I : {1, . . . ,m} → T (Σ)
satisfies the constraint c induced from I and w. Since such c is in C by definition, it
follows that C is complete. �

We are now ready to introduce the normalization process for TACBBHe. The idea
of the construction is that, for any term t, the normalized automaton simulates all
possible runs of the original automaton on t, and accepts those terms where the
original automaton could reach some final state.

Definition 3.22. Let A = 〈Q,Σ, F,∆〉 be a TACBBHe. For each natural number m,
let Cm be the set of normalized constraints with respect to m and the width of A. The
normalization of A is the TACBBF

nHe 〈2Q,Σ, {F ′ ∈ 2Q | F ′ ∩ F 6= ∅},∆′〉, where ∆′ is:

{f(S1, . . . , Sm) c−→ S | f ∈ Σ(m) ∧ c ∈ Cm ∧ S1, . . . , Sm ∈ 2Q ∧
S = {q ∈ Q | ∃(f(q1, . . . , qm) c′−→ q) ∈ ∆ :

q1 ∈ S1 ∧ . . . ∧ qm ∈ Sm ∧ c |= c′}}
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Example 3.23. Following Example 3.15, first note that the width of A is 2. The
normalization of A has the state set {∅, {q}}, the final state set {{q}}, and its rule
set has a→ {q}, b→ {q}, and also:

f(∅, ∅) c1−→ ∅
f(∅, {q}) c1−→ ∅
f({q}, ∅) c1−→ ∅

f({q}, {q}) c2−→ ∅
f({q}, {q}) c3−→ {q}

where c1 has to be replaced by each normalized constraint (with respect to m = 2 and
w = 2), c2 by each normalized constraint (with respect to m = 2 and w = 2) that does
not imply the original non-normalized constraint of the rule for f , and c3 by each
normalized constraint (with respect to m = 2 and w = 2) that implies such original
non-normalized constraint, i.e., by {{1}, {2}}, {{1}} =1 {{2}}, or {{2}} =1 {{1}} as
explained in Example 3.15.

Lemma 3.24. Let A = 〈Q,Σ, F,∆〉 be a TACBBHe with width w.
Then, the normalization A′ of A is deterministic and complete, i.e., a dcTACBBF

nHe,
and can be computed with time in 2O(log(|Σ|)+maxar·(|Q|+maxar+log(w))+log(|A|)).

Proof. The fact that A′ is a dcTACBBF
nHe follows from Definition 3.16, Corollary 3.21

and Definition 3.22. The time complexity follows from these observations: each rule
of A′ can be computed with time in O(|A|), the number of rules of A′ is bounded by
|Σ| · 2|Q|·maxar · |Cmaxar|, where Cmaxar is the set of normalized constraints with respect
to maxar and w, and |Cmaxar| is in 2O(maxar2+maxar·log(w)). �

It remains to see that the normalized automaton A′ preserves the language recog-
nized by the original automaton A. To this end, we first observe that the normalized
constraints are, in some sense, more precise than the original ones: given a normal-
ized constraint c1 and an original constraint c2, either c1 and c2 are incompatible, or
c1 |= c2 holds. Then, we show that, for any term t, the unique state A′(t) is precisely
the set of states that are reachable by runs of A on t.

Lemma 3.25. Letm and w > 0 be natural numbers. Let c1 be a normalized constraint
with respect to m and w. Let c2 be a height and equality constraint whose width is
smaller than or equal to w and satisfying PosVar(c2) ⊆ {1, . . . ,m}.

Then, either c1 and c2 are incompatible, or c1 |= c2 holds.

Proof (Sketch). It suffices to note that for any two solutions I1, I2 of c1 and any atom
c′2 occurring in c2, either I1 |= c′2 and I2 |= c′2, or I1 6|= c′2 and I2 6|= c′2. �

Lemma 3.26. Let A = 〈Q,Σ, F,∆〉 be a TACBBHe. Let A′ be the normalization of A.
Let t ∈ T (Σ) be a term.

Then, the state reached by the unique run of A′ on t is S = {q ∈ Q | t ∈ L(A, q)}.

Proof. We prove it by induction on height(t). Let t be more explicitly written of the
form f(t1, . . . , tm). By induction hypothesis, the states reached by the unique runs
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of A′ on t1, . . . , tm are S1, . . . , Sm, respectively, where Si = {q ∈ Q | ti ∈ L(A, q)}.
Let c be the constraint induced from I = {1 7→ t1, . . . ,m 7→ tm} and the width of
A. By Definition 3.22, A′ has the rule f(S1, . . . , Sm) c−→ S′, where S′ = {q ∈ Q |
∃(f(q1, . . . , qm) c′−→ q) ∈ ∆ : q1 ∈ S1 ∧ . . . ∧ qm ∈ Sm ∧ c |= c′}. Such rule can be
applied at the root position of t since I |= c holds by Lemma 3.20, and moreover, by
Corollary 3.21 no other rule can. It remains to prove S′ = S:

⊆) Let q ∈ S′. By definition there is a rule (f(q1, . . . , qm) c′−→ q) ∈ ∆ such that
q1 ∈ S1, . . . , qm ∈ Sm and c |= c′. Thus, I |= c′, and since we had that
t1 ∈ L(A, q1), . . . , tm ∈ L(A, qm), it follows t ∈ L(A, q), and hence, q ∈ S.

⊇) Let q ∈ S. By definition there is a run of A on t with a rule of the form
f(q1, . . . , qm) c′−→ q applied at the root position. Note that I |= c′, and since
I |= c, by Lemma 3.25, c |= c′. Since we had that q1 ∈ S1, . . . , qm ∈ Sm, it
follows q ∈ S′. �

Corollary 3.27. Let A be a TACBBHe. Let A′ be the normalization of A.
Then, L(A′) = L(A).

To decide emptiness of a dcTACBBF
nHe A, we iteratively consider increasing values

for h, and compute how many runs (up to a certain bound) of A on terms with height
h reach each state. We start by a previous definition describing which terms (and not
only how many of them) are reached, in order to ease later arguments.

Definition 3.28. Let A = 〈Q,Σ, F,∆〉 be a dcTACBBF
nHe. Let h be a natural number.

Let q be a state in Q. We define TermsA(h, q) as {t ∈ T (Σ) | A(t) = q∧height(t) = h}.
Let N : N→ Q be a partial mapping. We say that N and a partial mapping I : N→
T (Σ) are compatible (with respect to A) if Dom(N) ⊇ Dom(I) and A(I(i)) = N(i)
for each i ∈ Dom(I). Let c be a normalized height and equality constraint such
that Dom(N) ⊇ PosVar(c). We define SolsA(h, c,N) as the set of interpretations
I : PosVar(c) → T (Σ) such that I is compatible with N and a solution of c, and the
highest term occurring in I(PosVar(c)) has height h. We define AccSolsA(h, c,N) as⋃
h′≤h SolsA(h′, c,N). We omit the subindex of TermsA, SolsA, AccSolsA when A is

clear from the context.
We define CA as the set of the pairs 〈c,N〉 satisfying that c is a normalized height

and equality constraint, and there exists a transition rule (f(q1, . . . , qm) c′−→ q) ∈ ∆
such that c is a non-empty prefix of c′ or a partition occurring in c′, and N = {1 7→
q1, . . . ,m 7→ qm}. Note that |CA| ≤ 2 ·maxar · |∆|.

The following lemma gives an equivalent definition of Sols, AccSols, and Terms
using a recursive formalization. It can be proved by induction on h and |c|. This new
definition shows that such values are computable, and moreover, it allows to argue
that the values for a height h > 0 depend only on the values for heights h− i, with i
bounded by the width of A. In the statement, we use a special operator � between
sets of sets that is defined as follows. Given two sets of sets S1 and S2, by S1 � S2
we denote the set of the sets that are obtained by unioning any set Ŝ1 from S1 with
any set Ŝ2 from S2, i.e., S1 � S2 = {Ŝ1 ∪ Ŝ2 | Ŝ1 ∈ S1 ∧ Ŝ2 ∈ S2}. For example,
{{a, b}, {c}}� {{d, e}, {f}} = {{a, b, d, e}, {a, b, f}, {c, d, e}, {c, f}}.
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Lemma 3.29. Let A = 〈Q,Σ, F,∆〉 be a dcTACBBF
nHe.

Then, Terms, Sols, AccSols can also be defined recursively as follows:

• If h < 0, then Terms(h, q) = Sols(h, c,N) = AccSols(h, c,N) = ∅ for any q, c,N .

• Assume h = 0. Then, Terms(h, q) = {a ∈ Σ(0) | A(a) = q}. Moreover, if c is
not just a partition, then Sols(h, c,N) = AccSols(h, c,N) = ∅, and otherwise if c
is a partition P , then Sols(h, c,N) = AccSols(h, c,N) = {I : PosVar(P )→ Σ(0) |
(∀i ∈ Dom(I) : I(i) ∈ Terms(h,N(i))) ∧ (∀i, j ∈ Dom(I) : ((I(i) = I(j)) ⇔
(i ∼P j)))}.
In the rest of cases assume h > 0.

• AccSols(h, c,N) = AccSols(h− 1, c,N) ] Sols(h, c,N)

• Sols(h, c′ =h′ P,N) = Sols(h− h′, c′, N)� Sols(h, P,N)

• Sols(h, c′ ≤h′ P,N) = AccSols(h− h′, c′, N)� Sols(h, P,N)

• Sols(h, P,N) = {I : PosVar(P )→ T (Σ) | (∀i ∈ Dom(I) : I(i) ∈ Terms(h,N(i)))
∧(∀i, j ∈ Dom(I) : ((I(i) = I(j))⇔ (i ∼P j)))}

• Terms(h, q) = {f(I(1), . . . , I(m)) | (f(q1, . . . , qm) c−→ q) ∈ ∆ ∧ m > 0 ∧ I ∈
Sols(h− 1, c, {1 7→ q1, . . . ,m 7→ qm})}

As we have mentioned above, we are not interested in computing all the terms of
height h that can be recognized by each of the states, but only how many of them
there are, up to a certain bound. This bound is actually maxar: this is enough since
disequalities can only be tested between sibling positions, and hence, there are at
most maxar siblings that can be forced to be different in order to satisfy a constraint.

Definition 3.30. Let A = 〈Q,Σ, F,∆〉 be a dcTACBBF
nHe. Let h be a natural number.

Let q be a state in Q. We define #TermsA(h, q) as min{maxar, |TermsA(h, q)|}. Let c
be a normalized height and equality constraint. Let N : N → Q be a partial mapping
such that Dom(N) ⊇ PosVar(c). We define #SolsA(h, c,N) and #AccSolsA(h, c,N)
as min{maxar, |SolsA(h, c,N)|} and min{maxar, |AccSolsA(h, c,N)|}, respectively. We
omit the subindex of #TermsA, #SolsA, #AccSolsA when A is clear from the context.

We define the configuration of A for height h as the description of all values
#TermsA(h, q), #SolsA(h, c,N), #AccSolsA(h, c,N) for each 〈c,N〉 ∈ CA and q ∈ Q.

The following recursive definition follows from Lemma 3.29 and Definition 3.30.
To simplify the presentation, we introduce a special function for counting the number
of distinct ways to satisfy a constraint composed of a single partition. More pre-
cisely, for any height h and pair 〈c,N〉 ∈ CA such that c is a partition P , we define
permutations(h, P,N) as 0 when there is a part P ′ ∈ P such that |N(P ′)| > 1 (note
that such partition P is necessarily unsatisfiable for the given N since two distinct
states of a deterministic automaton recognize disjoint languages), and otherwise when
there is no such part P ′, as

∏
q∈N(PosVar(P ))

∏
0≤i<|{P ′∈P :N(P ′)={q}}|(#Terms(h, q)−i).

Lemma 3.31. Let A = 〈Q,Σ, F,∆〉 be a dcTACBBF
nHe.

Then, #Terms, #Sols, #AccSols can also be defined recursively as follows:
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• If h < 0, then #Terms(h, q) = #Sols(h, c,N) = #AccSols(h, c,N) = 0 for any
q, c,N .

• Assume h = 0. Then, #Terms(h, q) = min{maxar, |{a ∈ Σ(0) | A(a) = q}|}.
Moreover, if c is not just a partition, then #Sols(h, c,N) = #AccSols(h, c,N) =
0, and otherwise if c is a partition P , then #Sols(h, c,N) = #AccSols(h, c,N) =
min{maxar, permutations(h, P,N)}.
In the rest of cases assume h > 0.

• #AccSols(h, c,N) = min{maxar,#AccSols(h− 1, c,N) + #Sols(h, c,N)}

• #Sols(h, c′ =h′ P,N) = min{maxar,#Sols(h− h′, c′, N) ·#Sols(h, P,N)}

• #Sols(h, c′ ≤h′ P,N) = min{maxar,#AccSols(h− h′, c′, N) ·#Sols(h, P,N)}

• #Sols(h, P,N) = min{maxar, permutations(h, P,N)}

• #Terms(h, q) = min{maxar,
∑

(f(q1,...,qm)
c−→q)∈∆, m>0

#Sols(h − 1, c, {1 7→ q1,

. . . ,m 7→ qm})}

The cost of computing the configuration for a given height, provided that the
configurations for the w previous heights have already been computed, can easily
be deduced from the previous lemma. To simplify the arguments, we assume that
each of the arithmetic operations involved in the computation of #Terms, #Sols,
#AccSols can be done in constant time, and thus, to justify the cost of computing
the current configuration it suffices to consider the total amount of such operations.
This simplification will not affect the final complexity of the decision algorithm, since
the cost of the arithmetic operations will be subsumed by other factors.

Corollary 3.32. Let A = 〈Q,Σ, F,∆〉 be a dcTACBBF
nHe with width w. Let h be a

natural number.
Then, the configuration of A for height h + w can be computed from the configu-

rations of A for heights h, h+ 1, . . . , h+ w − 1 with time in O(maxar2 · |∆|+ |Q|).

Proof. Straightforward from the definitions in Lemma 3.31. Observe that #Terms
can be computed with time in O(|Q| + |∆|). Afterwards, #Sols for the case where
the considered constraint is a single partition can be computed with time in O(|CA| ·
maxar), and for the remaining cases in O(|CA|). Overall, #Sols can be computed with
time in O(|CA| · maxar). Finally, #AccSols can be computed with time in O(|CA|).
The statement follows since |CA| ≤ 2 ·maxar · |∆|. �

The previous result leads to the fact that, when we find the same w consecutive
configurations starting at two different heights h1 < h2, the sequence of configurations
is periodic with period h2−h1 starting from h1. Thus, deciding emptiness corresponds
to check whether there exists a final state q satisfying #Terms(h, q) ≥ 1 for some
h < h2, and deciding finiteness corresponds to check whether there exists a final state
q satisfying #Terms(h, q) ≥ 1 for some h1 ≤ h < h2. Hence, the time complexity
of both decision algorithms depends on the cost from Corollary 3.32 to compute
each configuration, and also the number of different possible groups of w consecutive
configurations.
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Lemma 3.33. Let A = 〈Q,Σ, F,∆〉 be a dcTACBBF
nHe.

Then, the number of different configurations of A considering all possible heights
is bounded by (maxar + 1)|Q|+2·maxar·|∆| · (2 ·maxar2 · |∆|+ 1).

Proof. Similar to Lemma 3.11, except that instead of dealing with truth values we
have numbers in {0, . . . ,maxar}, and that we need to take into account the number of
different #Sols. More precisely, there are at most (maxar + 1)|Q| different definitions
of #Terms in the configurations of A, there are at most (maxar + 1)|CA| different
definitions of #Sols in the configurations of A, and finally, since #AccSols(h, c,N) ≤
#AccSols(h + 1, c,N) for any h and 〈c,N〉 ∈ CA, there are at most |CA| · maxar + 1
different definitions of #AccSols in the configurations of A. The statement follows by
combining these bounds and noting that |CA| ≤ 2 ·maxar · |∆|. �

Corollary 3.34. Emptiness and finiteness of the language recognized by a dcTACBBF
nHe

A = 〈Q,Σ, F,∆〉 with width w are decidable with time in 2O(w·log(maxar)·(|Q|+maxar·|∆|)).

As a consequence of Lemma 3.24 we also obtain decidability for TACBBHe.

Corollary 3.35. Emptiness and finiteness of the language recognized by a TACBBHe
A = 〈Q,Σ, F,∆〉 are decidable with time in 22O(log(|Σ|)+maxar·(|Q|+maxar+log(w))+log(|A|)) , where
w is the width of A.

As a final remark, we consider the simpler cases of TACBBhe and TACBBH. For the
normalization A′ of a TACBBhe A, since the normalized constraints would only have
operators of the form ≤1, we could refine Lemma 3.33 as we did in Lemma 3.11
and ignore the number of different #Sols, thus obtaining that the number of possible
configurations ofA′ is bounded by (maxar+1)|Q′|·(2·maxar2·|∆′|+1). Moreover, for the
sequence of configurations to become periodic it would suffice that two configurations
coincided (since we look for identical groups of w = 1 consecutive configurations),
and hence we would get the following result.

Corollary 3.36. Emptiness and finiteness of the language recognized by a TACBBhe A

are decidable with time in 2O(log(maxar)·2|Q|+log(|Σ|)+maxar·(|Q|+maxar)+log(|A|)), where Q
is the state set of A and Σ its signature.

For the normalization A′ of a TACBBH A, it is not required to obtain a deterministic
and complete automaton, and instead of using partitions in the normalized constraints
we can simply use sets, as we did for TACBBh. Thus, a refined normalization process
can preserve the same state set Q and generate the rule set ∆′ combining ideas from
Lemmas 3.5 and 3.24 with time in 2O(maxar2+maxar·log(w)+log(|A|)). Also, we do not need
to count the number of terms for each state, just a truth value. Hence, Lemma 3.33
could be refined to state that the number of configurations of A′ is bounded by
2|Q|+2·maxar·|∆′| · (2 ·maxar · |∆′|+ 1).

Corollary 3.37. Emptiness and finiteness of the language recognized by a TACBBH A

are decidable with time in 22O(maxar2+maxar·log(w)+log(|A|)) , where w is the width of A.





Chapter 4

EXPTIME-completeness of
the HOM problem

Here we focus on automata with arbitrary local disequality constraints, and with
implicit HOM equality constraints (TAihom, 6≈). The equalities are called implicit since
they are not explicitly written in the transitions rules, and instead, are encoded in
the left-hand sides as follows: two positions of the left-hand side with the same state
implicitly define a local equality constraint between such positions. Moreover, the left-
hand sides are allowed to be arbitrary terms containing states at some leaf positions,
and thus, it is possible to define equality constraints between non-brother positions.
This definition of equality constraints is specially suited to recognize sets defined as
images of regular tree languages under tree homomorphisms. For this reason, several
decision problems on such kind of sets can be reduced to the emptiness problem for
TAihom,6≈, like set inclusion, finiteness of set difference, or regularity [GG13]. The latter
problem, also called the HOM problem, can be formally defined as follows:

Input: a TA A and a tree homomorphism H.
Question: is H(L(A)) regular?

We tackle the emptiness problem for TAihom,6≈, and in this way, conclude EXPTIME-
completeness of all those problems.

The remaining of this chapter is organized as follows. In Section 4.1 we summarize
the approach to prove decidability of emptiness of TAihom,6≈, providing intuition on the
crucial insights. In Section 4.2 we recall some known hardness results, the definition
of TAhom,6≈ from [GG13], and some results of that paper. In Section 4.3 we formally
define TAihom,6≈ and show their equivalence with TAhom,6≈. In Sections 4.4 and 4.5 we
introduce some technical results on a combinatorial property, define a special kind of
positions and replacements, and obtain a necessary condition for minimal accepting
runs of TAihom, 6≈. In Section 4.6 we give the algorithm deciding emptiness of TAihom,6≈ in
exponential time. In Section 4.7 we show the consequences of this result by reducing
other problems to it. In particular, we prove that HOM is EXPTIME-complete.

39
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4.1 Intuition on the approach
Tree automata with disequality constraints (TA 6≈) are a particular case of TAihom,6≈
where only disequality constraints are allowed. Emptiness of TA 6≈ was proved decid-
able in exponential time in [CJ03], and we generalize the techniques of that paper to
TAihom,6≈. Nevertheless, the proofs in [CJ03] are too complex to allow direct general-
izations, and need to be refined. In this section we give an overview of our approach,
its common points with [CJ03], and its differences. The explanation uses an example
of TAihom, 6≈ that also allows to justify the advantages of this formalism with respect
to the notion of TAhom,6≈ introduced in [GG13].

The algorithm deciding emptiness of TAihom,6≈ looks for an accepting run by itera-
tively generating all possible runs in increasing order of size: new runs are constructed
using the previous runs as direct subruns. In order to guarantee termination, some
runs are discarded when the algorithm realizes that they cannot be subruns of the
minimum accepting run. Below we briefly describe the involved discarding criterion.

In order to determine that a run r′ cannot be subrun of the minimum accepting
run, we prove that any run r having r′ as subrun can be transformed into a smaller run
reaching the same state. The transformation proceeds by replacing subruns of r by
other smaller subruns. Note that the result of the replacement must be a new correct
run, and in particular, it must still satisfy the equality and disequality constraints.
Recall that an equality constraint demands identity of the respective pending sub-
terms. To this end, it is convenient to replace all subruns that the constraints force
to be identical by the same smaller subrun.

Arguments based on multiple replacements have already appeared in the litera-
ture, and, in particular, in [GG13] they are used to deal with images of regular tree
languages under tree homomorphisms. In fact, TAihom,6≈ are expressively equivalent
to the TAhom,6≈ defined in [GG13]. Nevertheless, the fact that equalities of TAihom,6≈
are implicitly forced by identity of states provides a great advantage to reason about
replacements. To support this statement, consider the language of terms of the form
h(t1, t2), where t1, t2 are different complete trees over nullary a and binary g. Such
language can be recognized by a TAihom,6≈ with the following transition rules:

a→ q g(q, q)→ q h(q, q′) 1 6≈2−−→ qaccept
a→ q′ g(q, q)→ q′

where qaccept is the only final state. Now, consider the following run r of such au-
tomaton on the term h(g(g(a, a), g(a, a)), g(a, a)):

h(q, q′) 1 6≈2−−→ qaccept

g(q, q)→ q

g(q, q)→ q

a→ q a→ q

g(q, q)→ q

a→ q a→ q

g(q, q)→ q′

a→ q a→ q
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Note that the terms pending at the positions 1.1.1, 1.1.2, 1.2.1, 1.2.2 are forced to be
identical by the implicit equality constraints: the same sequence of states qaccept.q.q.q
is found while traversing the run from the root position to any of them. Moreover,
note that the subruns pending at the positions 1.1.1, 1.1.2, 1.2.1, 1.2.2 are the same
run a → q. Without loss of generality, we can assume that runs are “uniform” in
the sense that the implicit equality constraints force not only identity of the pending
subterms but also of the pending subruns.

For a given arbitrary run, a sequence of states q1.q2 . . . qn describes a set of posi-
tions whose pending subterms (and subruns if the given run is uniform) are forced to
be identical. We call such a sequence of states an abstract position, and adapt typical
notations of subterm location and replacement to abstract positions. For example,
r|q1.q2...qn denotes the subrun pending at any of the positions referred by q1.q2 . . . qn,
and r[r′]q1.q2...qn denotes the simultaneous replacement of all such subruns by a new
subrun r′. For instance, in the previous example run, r[r|qaccept.q.q.q]qaccept.q.q is:

h(q, q′) 1 6≈2−−→ qaccept

g(q, q)→ q

a→ q a→ q

g(q, q)→ q′

a→ q a→ q

Note that the implicit equality constraints are still satisfied after the replacement,
but the result is not a correct run since the disequality constraint of the rule applied
at the root is not satisfied.

In general, given a replacement r[r′]q1...qn on a uniform run r of a TAihom,6≈ A, the
subruns of r whose disequality constraints may be affected by the replacement are
the ones occurring in positions defined by prefixes of q1 . . . qn, i.e., the subruns r|q1...qi
for i ≤ n. The number of different such subruns is just n, although there could be
many occurrences of them in r. For each rule application at each of such positions,
the number of different disequality constraints appearing in them is bounded by the
size of the automaton. Hence, n · |A| bounds the number of disequality constraints
that might be falsified by replacements at q1 . . . qn. Suppose that we have K runs
r1, . . . , rK reaching the same state as r|q1...qn . Suppose also that no two replacements
r[ri]q1...qn , r[rj ]q1...qn falsify the same disequality. Obviously, in the case where K >
n · |A|, some r[ri]q1...qn does not falsify any disequality, and hence, it is a correct run.
However, we are interested in defining a K depending only on |A| that guarantees
the existence of a decreasing replacement satisfying all disequalities. To this end, we
extend an argument from [CJ03] to prove that, for each TAihom,6≈ A, there exists a
natural number K exponentially bounded by |A| satisfying the following property:
given a run r, an abstract position P = q1 . . . qn, and runs r1, . . . , rK smaller than
r|P , if all the replacements r[r1]P , . . . , r[rK ]P falsify different disequalities, then there
exists a prefix P ′ of P and a run r′ smaller than r|P ′ such that r[r′]P ′ does not falsify
any disequality.

In general, finding such runs r1, . . . , rK satisfying the above conditions is not an
easy task. The following notion of independence, given in [CJ03], helps to overcome
this problem: the runs r1, . . . , rK on terms t1, . . . , tK are independent with respect
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to a set of positions P if, for each position p ∈ P, either all the terms t1|p, . . . , tK |p
are identical, or they are pairwise different. It is not difficult to see that, under
certain additional conditions, if the runs r1, . . . , rK , r̄ are independent with respect
to the set of positions that can be affected by constraints, then all the replacements
r[r1]P , . . . , r[rK ]P falsify different disequalities, for any run r and abstract position P
holding r|P = r̄.

The previous property allows the algorithm to discard a new generated run r̄ if
there exist certain r1, . . . , rK chosen among the previously generated runs and such
that r1, . . . , rK , r̄ are independent (with respect to the set of positions P that can be
affected by constraints).

In [CJ03], the existence of such r1, . . . , rK for the given r̄ is determined using the
following combinatorial property: given a natural number K and a set of runs S with
size K |P| · |P|!, there always exists an independent (with respect to P) subset S̃ of S
with size K. But the arguments of that paper are complicated because the property
itself does not assure that r̄ is part of S̃, making it difficult to adapt their arguments
to our setting. For this reason, we define a new notion on sets of runs and natural
numbers K, namely K-smallness. With this notion, when a set S is K-small, but the
addition of a new run r̄ gives rise to a non-K-small set S]{r̄}, it follows the existence
of an independent subset S̃ of S ] {r̄} with size K and containing r̄.

We summarize the algorithm deciding emptiness of TAihom, 6≈ as follows. We itera-
tively generate all possible runs in increasing order of size: new runs are constructed
using as direct subruns the previous runs that have not been discarded as part of the
minimum counterexample. A new run r̄ is discarded if it produces non-K-smallness.
Recall that this implies that r̄ is the biggest run of an independent set of size K, and
thus it is not part of a minimum counterexample. We prove that this iterative process
is complete and terminates in exponential time.

4.2 Summary of known results
We first list some known hardness results that are related to our setting.

Proposition 4.1. The following problems are EXPTIME-hard:

• The HOM problem (from [GGM11]).

• The problems of deciding equivalence and inclusion between the languages recog-
nized by two TA (since universality of TA is EXPTIME-hard and can be reduced
to equivalence and to inclusion [CDG+07]), and finiteness of their difference
(since inclusion can be reduced to finite difference).

In the remaining of this section we cite definitions and results from [GG13]. We
also sketch some of the constructions of that paper, in order to give intuition for the
stated complexities and for other constructions presented later in this chapter.

Definition 4.2. A tree automaton with disequality and HOM equality constraints,
TAhom,6≈ for short, is a tuple A = 〈Q,Σ, F,∆〉, where Q is a finite set of states, Σ
is a signature, F ⊆ Q is the subset of final states, and ∆ is a finite set of rules of
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the form l
c−→ q, where l is a term in T (Σ ] Q) \ Q, interpreting the states of Q as

nullary symbols, and c is a conjunction/set of unordered pairs of the form p̄1 6≈ p̄2,
for arbitrary positions p̄1, p̄2, or of the form p1 ≈ p2, where p1 and p2 are different
positions in Pos(l) satisfying l(p1) = l(p2) ∈ Q. Moreover, for all distinct positions
p1, p2, p3, if p1 ≈ p2 and p2 ≈ p3 occur in c, then p1 ≈ p3 also occurs in c. When no
atom of the form p̄1 6≈ p̄2 occurs in the rules of A, we say that A is a TAhom. When
only atoms of the form p̄1 6≈ p̄2 occur in the rules of A, and moreover, all the left-hand
sides of the rules are flat and only their root position is labeled by an alphabet symbol,
we say that A is a TA 6≈.

A run of A on a term t ∈ T (Σ) is a partial mapping r : Pos(t)→ ∆ such that r(λ)
is defined, and satisfying the following conditions for each position p for which r(p)
is defined, say, as a rule l c−→ q. For each position p′ ∈ Pos(l), it holds that r(p.p′)
is defined if and only if l(p′) ∈ Q. Moreover, if l(p′) is in Q, then r(p.p′) is a rule
with the state l(p′) as right-hand side. Otherwise, if l(p′) is in Σ, then l(p′) = t(p.p′).
In addition, for each (p1 ≈ p2) ∈ c, t|p.p1 = t|p.p2 holds, and for each (p̄1 6≈ p̄2) ∈ c,
either one of p.p̄1, p.p̄2 is not in Pos(t) or both of them are and t|p.p̄1 6= t|p.p̄2 holds.

The state reached by r is the right-hand side of r(λ). The run r is accepting if
the state reached by r is in F . By L(A) we denote the language recognized by A, that
is the set of terms t such that there exists an accepting run of A on t.

Given a run r of A on a term t, and a position p such that r(p) is defined, we define
the subrun r|p as the run of A on t|p described by r|p(p′) = r(p.p′). A run r on t is
deterministic if, for each two positions p1, p2 where r is defined and t|p1 = t|p2 holds,
the subruns r|p1 and r|p2 are identical. We say that a TAhom,6≈ A admits deterministic
accepting runs if, for each t ∈ L(A), there is a deterministic accepting run of A on t.

The above definition differs from the one given in [GG13], where an atom p1 ≈ p2
requires not only identity of subterms, but also identity of subruns. Nevertheless, it
is also shown there that both conditions lead to the same expressiveness.

In order to be able to reason about the complexity of the constructions, the fol-
lowing notions of size are required.

Definition 4.3. The size of a TAhom,6≈ A = 〈Q,Σ, F,∆〉, denoted |A|, is |Q| plus the
sum of sizes of all rules in ∆, where the size of a rule l c−→ q is |l|+ |c|+ 1, and |c| is
the sum of the lengths of all the occurrences of positions in c.

By n≈(A) (respectively, n 6≈(A)) we denote the number of distinct equality atoms
(respectively, disequality atoms) in the rules of A. By h≈(A) (respectively, h6≈(A)) we
denote the maximum among the lengths of the positions occurring in equality atoms
(respectively, disequality atoms) in the rules of A. By Poslhs(A) we denote the set
of positions of left-hand sides of rules of A, i.e.,

⋃
(l
c−→q)∈∆

Pos(l). By hlhs(A) we
denote the maximum among the heights of the left-hand sides of the rules of A, i.e.,
max{|p| : p ∈ Poslhs(A)}. We just write n≈, n 6≈, h≈, h6≈, Poslhs, hlhs when A is clear
from the context.

The following proposition establishes that the class of TAhom can be used to rep-
resent images of regular tree languages under tree homomorphisms.

Proposition 4.4. Let A = 〈Q,Σ1, F,∆〉 be a TA. Let H : T (Σ1)→ T (Σ2) be a tree
homomorphism.
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Then, a TAhom A′ can be computed satisfying L(A′) = H(L(A)) with time and
space in O(|A′|), where |A′| ≤ (|A| · (|H|+ |H|3))2.

Proof (Sketch of the construction). The construction of A′ is a direct application of
H to the rules of A. More precisely, for each rule f(q1, . . . , qm) → q of A, a rule
H(f(q1, . . . , qm)) c−→ q is added to A′, where H is assumed to be the identity for all
symbols in Q, and the constraint c has an atom p1 ≈ p2 for each two distinct positions
p1, p2 that are labeled by the same variable xi in the term H(f(x1, . . . , xm)). Hence,
for each rule of A, a rule with size bounded by |H|+ |H|3 +1 is added to A′, where |H|
bounds the size of its left-hand side, and |H|3 bounds the size of its constraint (note
that there are up to |H|2/2 different atoms, and each atom has size at most 2 · |H|).
Thus, the summed size of the constructed rules is bounded by |∆| · (|H|+ |H|3 + 1),
and hence, |A| · (|H|+ |H|3) bounds the size of the automaton constructed thus far.
The last step of the construction of A′ consists in eliminating the rules of the form
q1 → q2, since they are not allowed in the definition of TAhom. This produces at most
an additional quadratic increase in size. �

In [GG13], the regularity of a TAhom A is characterized in terms of an operation
that “linearizes” the automaton. This linearization depends on a natural number h
and consists in computing a new automaton where the equality tests can only be
satisfied if the height of the involved subterms is bounded by h. In other words, the
equality tests between terms with height greater than h are always falsified, even if
the terms are indeed equal. It follows that there are only finitely many terms that
can satisfy equality tests after the linearization.

Definition 4.5. Let A = 〈Q,Σ, F,∆〉 be a TAhom. Let h be a natural number. The
linearization of A by h is the TAhom 〈Q,Σ, F,∆′〉, denoted linearize(A, h), where ∆′ is
the set of all rules of the form l[s1]p1 . . . [sn]pn → q such that:

• a rule of the form l
c−→ q occurs in ∆,

• p1, . . . , pn are the positions occurring in c,

• for each i ∈ {1, . . . , n}, si is a term such that height(si) ≤ h and there is a run
of A on it reaching the state l(pi),

• for each i, j ∈ {1, . . . , n} such that pi ≈ pj occurs in c, si = sj holds.

It is straightforward that a linearization of any TAhom is computable and recognizes
a regular tree language, since no equality constraints appear. It is also clear that L(A)
includes the language of any of its linearizations. Moreover, in the case where L(A)
is included in some of its linearizations, we can conclude that L(A) is regular. The
following lemma and definition from [GG13] bound the h for which we should test
such inclusion.

Lemma 4.6. There effectively exists a polynomial P satisfying the following condi-
tion. Let A be a TAhom. Let ȟ be 2P(|A|).

Then, L(A) is regular if and only if L(A) ⊆ L(linearize(A, ȟ)).
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Definition 4.7. Let A be a TAhom. By ȟ(A) we denote the function 2P(|A|) given by
Lemma 4.6, and write ȟ when A is clear from the context.

The previous lemma leads to a simple decision algorithm of HOM: given a TAhom A
recognizing the image of a regular tree language under a tree homomorphism, L(A) is
regular if and only if L(A) ⊆ L(linearize(A, ȟ)) if and only if L(A)∩L(linearize(A, ȟ)) is
empty. Hence, the straightforward approach to decide regularity of L(A) consists in (i)
constructing an automaton A′ that recognizes L(linearize(A, ȟ)), then (ii) constructing
an automaton A′′ that recognizes L(A)∩L(A′), and finally (iii) deciding emptiness of
L(A′′). The following two propositions summarize the results from [GG13] establish-
ing that, given two TAhom A1 and A2, we can compute in exponential time a TAhom,6≈
recognizing L(A1) ∩ L(A2). Note that this construction is more general than what is
required for steps (i) and (ii) above, since the complement computed in (i) is done on
a linearized automaton, i.e., on a TAhom as expressive as a TA since it has no equality
constraints. However, by reasoning with two TAhom, this result allows to tackle other
decision problems on homomorphisms apart from regularity.

Proposition 4.8. Let A be a TAhom over signature Σ.
Then, a TA 6≈ A′ satisfying L(A′) = L(A) can be computed with time and space

in 2O(maxar(Σ)·|Σ|·|A|), and such that A′ admits deterministic accepting runs and the
following bounds hold:

• h 6≈(A′) = h≈(A),

• n 6≈(A′) = n≈(A).

Proof (Sketch of the construction). The construction proceeds in two steps. In the
first step, the rules of the TAhom A are flattened. Recall that rules of TAhom have
arbitrary terms as left-hand sides, whereas rules of TA 6≈ have flat left-hand sides.
However, due to the restrictions imposed on the positions occurring in the equality
constraints of TAhom, in general it is not possible to convert a TAhom into an equivalent
TAhom with only flat rules. For this reason, the class of automata TA≈ is introduced,
defined analogously to TA 6≈ but with arbitrary equality constraints instead of arbitrary
disequality constraints. Then, the transformation of the TAhom A into an equivalent,
flattened TA≈ A′′ is straightforward:

• The states of A′′ include all the states of A and also new states of the form qr,p,
where r is a rule of A and p is a position of the left-hand side of r (except λ
and positions labeled by states). The final states of A′′ coincide with the final
states of A.

• For each rule r = (f(t1, . . . , tm) c−→ q) of A, a rule f(s1, . . . , sm) c−→ q is added to
A′′, where si = qr,i when ti is not a state, and si = ti otherwise.

• For each state of the form qr,p, a single rule of the form f(s1, . . . , sm)→ qr,p is
added to A′′, where f ∈ Σ(m) is the symbol labeling the left-hand side l of the
rule r at position p, i.e., f = l(p), and si = qr,p.i when l(p.i) is not a state, and
si = l(p.i) otherwise.
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It is easy to see that the size of A′′ is bounded by 4 · |A|: note that (i) the number
of states of A′′ is bounded by |A|, that (ii) the sum of sizes of the left-hand sides of
the rules of A′′ is bounded by twice the sum of sizes of the left-hand sides of the rules
of A, and thus, by 2 · |A|, that (iii) the sum of sizes of the right-hand sides of the
rules of A′′, i.e., the number of rules of A′′, is bounded by once the sum of sizes of the
left-hand sides of the rules of A, and thus, by |A|, and finally that (iv) A′′ contains
exactly the same constraints as A.

The second step computes the complement of the TA≈ A′′ to obtain the desired
TA 6≈ A′. The idea of this last construction is to define an automaton A′ whose runs
compute sets of unreachable states of A′′. Hence, A′ accepts those terms reaching a
set of states that contains all the final states of A′′. More precisely, the states of A′
are sets of states of A′′, and the rules of A′ ensure that there exists a run of A′ on a
term t reaching a state S if and only if, for each state q ∈ S, there is no run of A′′

on t reaching q. Therefore, the rules of A′ are of the form f(S1, . . . , Sm) D−→ S, where
S1, . . . , Sm, S are sets of states of A′′, and D is a disequality constraint such that, for
each of its atoms p1 6≈ p2, the atom p1 ≈ p2 occurs in some rule of A′′. Moreover,
the right-hand-side state S only contains states q of A′′ that are guaranteed to be
unreachable given the information provided by f , S1, . . . , Sm, and D, that is, states
q satisfying the following property: for each rule g(q1, . . . , qn) c−→ q of A′′, either
the alphabet symbol g is not f , or a state qi occurs in Si (and thus, by induction
it is unreachable), or p1 ≈ p2 occurs in c and its negation p1 6≈ p2 occurs in D.
The number of states of A′ is bounded by 2|Q′′|, where Q′′ is the set of states of
A′′, the number of rules of A′ is bounded by 2|Q′′|·(maxar(Σ)+1) · |Σ| · 2n≈(A′′), and
the size of each of such rules is bounded by |A′′|. Thus, |A′| can be bounded by
2|Q′′|+ |A′′| ·2|Q′′|·(maxar(Σ)+1) · |Σ| ·2n≈(A′′) ≤ 2|A|+4 · |A| ·2|A|·(maxar(Σ)+1) · |Σ| ·2n≈(A).

The complexity for the construction of the TA 6≈ A′ from the TAhom A given in the
statement is a weaker expression with respect to the previous explanations, but more
convenient for further reasonings. �

Proposition 4.9. Let A1 be a TAhom. Let A2 be a TA 6≈ over the same signature as
A1 and such that admits deterministic accepting runs.

Then, a TAhom,6≈ A satisfying L(A) = L(A1) ∩ L(A2) can be computed with time
and space in 2O((|Poslhs(A1)|+n≈(A1)+|Poslhs(A1)|·n 6≈(A2))·log(|A1|·|A2|)), and such that the
following bounds hold:

• h≈(A) = h≈(A1),

• n≈(A) = n≈(A1),

• h6≈(A) ≤ hlhs(A1) + h 6≈(A2),

• n6≈(A) ≤ |Poslhs(A1)| · n 6≈(A2),

• Poslhs(A) = Poslhs(A1).

Proof (Sketch of the construction). This algorithm is a variation of the typical prod-
uct construction. The basic idea is that the states of A are pairs of the form 〈q1, q2〉,
where q1 is a state of A1 and q2 is a state of A2, and the rules of A simulate both
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automata A1 and A2 simultaneously. The only difficulty stems from the fact that the
rules of A1 are not necessarily flat, and moreover, as argued in the proof of Propo-
sition 4.8, in general they cannot be flattened since the definition of HOM equality
constraint imposes that the two positions involved in an equality atom p1 ≈ p2 must
be defined in the left-hand side of the rule where such atom occurs. Furthermore,
the symbols labeling the left-hand side of the rule at such positions p1, p2 must be
identical states (this conditions is why we require that A2 admits deterministic ac-
cepting runs: determinism guarantees that the same pair 〈q1, q2〉 can be reached at
each identical subterm in accepting runs).

To overcome the previous problem, it suffices to simulate an execution of A2 on the
left-hand side of each rule in order to define which state of A2 is reached at the root.
Moreover, the disequality constraints that have to be satisfied along such simulated
execution must be added to the constraint of the rule. For instance, if the simulated
execution of A2 has tested the disequality p1 6≈ p2 at a position p of the left-hand
side of the rule (guessing that it is satisfied), then we must add the atom p.p1 6≈ p.p2
to the rule to guarantee that the simulation is valid (i.e., that the guess is correct).
Note that there might be several possible executions of A2 on the same rule, and all
of them must be considered independently.

In summary, each rule of A is obtained from a rule of A1 by (i) replacing each
state of A1 by a pair of states 〈q1, q2〉, where q1 is a state of A1 and q2 is a state of A2,
satisfying that the same state pair is used at positions p1, p2 if the rule has the equality
constraint p1 ≈ p2, (ii) simulating an execution of A2 on the left-hand side of the rule
in order to define the state of A2 occurring in the right-hand side of the rule, and
(iii) extending the constraint of the rule with the disequality atoms that have been
tested along the simulated execution of A2. To bound the number of rules of A, note
that the number of possible left-hand sides is bounded by (|Σ|+ |Q1| · |Q2|)|Poslhs(A1)|,
the number of possible right-hand sides is bounded by |Q1| · |Q2|, and the number of
possible constraints is bounded by 2n≈(A1)+|Poslhs(A1)|·n 6≈(A2), where Q1 is the set of
states of A1, Q2 is the set of states of A2, and Σ is the underlying signature. Hence, the
number of rules of A is bounded by (|A1| · |A2|)|Poslhs(A1)|+1 ·2n≈(A1)+|Poslhs(A1)|·n 6≈(A2),
assuming that |Σ| is bounded by |A1|. Finally, note that the size of each rule of A is
bounded by the maximum size of the rules of A1 (in turn bounded by |A1|) plus the
maximum size of the disequality constraints that can be defined (i.e., |Poslhs(A1)| ·
n6≈(A2) · 2 · (hlhs(A1) + h 6≈(A2))), and that A has |Q1| · |Q2| states.

The complexity for the construction of the TAhom,6≈ A from the TAhom A1 and the
TA 6≈ A2 given in the statement is a weaker expression with respect to the previous
explanations, but more convenient for further reasonings. �

We cite one additional result from [GG13] that reasons about the finiteness of
the language recognized by TAhom, 6≈. Intuitively, the authors define an exponential
function h̃ such that, for any given TAhom,6≈ A, the language recognized by A is finite
if and only if there is no term in L(A) with height greater than h̃(A). Note that, in
this way, in order to decide finiteness of L(A), it suffices to construct a new TAhom,6≈ A

′

recognizing the language {t ∈ L(A) | height(t) > h̃(A)} and test emptiness of L(A′)
instead. The following proposition formally establishes the complexity of computing
such A′.
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Proposition 4.10. Let A be a TAhom,6≈.
Then, a TAhom,6≈ A

′ satisfying that L(A′) is empty if and only if L(A) is finite can
be computed with time and space in 2O((n≈(A)+n 6≈(A))·max{hlhs(A),h 6≈(A)}·|Poslhs(A)|·log |A|),
and such that the following bounds hold:

• h≈(A′) = h≈(A),

• n≈(A′) = n≈(A),

• h6≈(A′) = h 6≈(A),

• n6≈(A′) = n 6≈(A),

• Poslhs(A′) = Poslhs(A).

Proof (Sketch of the construction). The function h̃ mentioned above is more precisely
defined in [GG13] as h̃(A) = |∆| · (h2 + h) · (2 · n · h)4·n·h, where ∆ is the set of rules
of A, h = max{hlhs(A), h6≈(A)}, and n = n≈(A) + n 6≈(A). This definition guarantees
that any term accepted by A with height greater than h̃(A) can be pumped to obtain
another higher term also accepted by A. Thus, the automaton A′ of the statement can
be defined as the TAhom,6≈ recognizing {t ∈ L(A) | height(t) > h̃(A)}, and such A′ can
be obtained from A straightforwardly: it suffices that the states record the height of
the recognized term (up to h̃(A) + 1), and that no state with recorded height smaller
than h̃(A) + 1 is final. The size of A′ is bounded by |A| · (h̃(A) + 2)|Poslhs(A)|. �

4.3 TA with disequality and implicit HOM equality
constraints

The notion of TAhom from [GG13] detailed in Section 4.2 is a straightforward applica-
tion of a homomorphism to the rules of a TA. Its main disadvantage is that dealing
with constrained rules makes the presentation of technical proofs a laborious task. For
this reason, we define an equivalent kind of automata in which equality constraints
are implicitly encoded in the left-hand sides of the rules. Intuitively, a state that
appears duplicated in the left-hand side l of a rule, implicitly forces an equality test
between all the positions of l where such state occurs.

Definition 4.11. A tree automaton with disequality and implicit HOM equality
constraints, TAihom,6≈ for short, is a tuple A = 〈Q,Σ, F,∆〉, where Q is a finite set
of states, Σ is a signature, F ⊆ Q is the subset of final states, and ∆ is a finite
set of rules of the form l

c−→ q, where l is a term in T (Σ ] Q) \ Q, interpreting the
states of Q as nullary symbols, and c, called the disequality constraint of the rule, is a
conjunction/set of unordered pairs of the form p̄1 6≈ p̄2, for arbitrary positions p̄1, p̄2.

A run of A on a term t ∈ T (Σ) is a partial mapping r : Pos(t)→ ∆ such that r(λ)
is defined, and satisfying the following conditions for each position p for which r(p)
is defined, say, as a rule l c−→ q. For each position p′ ∈ Pos(l), it holds that r(p.p′)
is defined if and only if l(p′) ∈ Q. Moreover, if l(p′) is in Q, then r(p.p′) is a rule
with the state l(p′) as right-hand side. Otherwise, if l(p′) is in Σ, then l(p′) = t(p.p′).
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In addition, (i) for each two positions p1, p2 ∈ Pos(l) satisfying l(p1) = l(p2) ∈ Q,
t|p.p1 = t|p.p2 holds, and (ii) for each two positions p̄1, p̄2 satisfying (p̄1 6≈ p̄2) ∈ c,
either one of p.p̄1, p.p̄2 is not in Pos(t) or both of them are and t|p.p̄1 6= t|p.p̄2 holds.
We say that r is a weak run when conditions (i) and (ii) are not enforced. Moreover,
since t can be deduced from r, we often do not make explicit t and just say that r is
a (weak) run of A.

The state reached by a weak run r is the right-hand side of r(λ), and we say that
r is accepting if the state reached by r is in F . By L(A) we denote the language
recognized by A, that is the set of terms t for which there exists an accepting run of
A on t. Given a weak run r of A on a term t, we define Pos(r) as Pos(t), height(r) as
height(t), and term(r) as t. Moreover, given a position p such that r(p) is defined, we
define the weak subrun r|p as the weak run of A on t|p described by r|p(p′) = r(p.p′).
Note that if r is a run, then so is r|p. Given two weak runs r1, r2 and a position p
such that r1(p) is defined and r1|p, r2 reach the same state, we define the replacement
r1[r2]p as the weak run r on term(r1)[term(r2)]p described as follows: r(p′) = r2(p̂) if
p′ is of the form p.p̂, and r(p′) = r1(p′), otherwise.

The notions of size of automata, and n6≈, h6≈, hlhs and Poslhs are defined identically
for TAihom,6≈ as for TAhom,6≈ (see Definition 4.3).

Example 4.12. In order to give intuition on TAihom,6≈, and in particular, on their im-
plicit equality constraints, we define a TAhom,6≈ A and then transform it into a TAihom,6≈
A′ that recognizes the same language. Consider a signature Σ consisting of a nullary
symbol a, and binary symbols f and g. Let A = 〈Q,Σ, F,∆〉, where Q = {q, qaccept},
F = {qaccept}, and ∆ = {a → q, f(f(q, q), q) 1.1≈2−−−−→ q, g(q, q) 1.1 6≈2−−−−→ qaccept}. Note
that the left-hand side of the second rule is not flat, and that the disequality atom of
the third rule involves a position which is not defined in its left-hand side. Now we
show how to transform A into an equivalent TAihom,6≈ A′ = 〈Q′,Σ, F,∆′〉. Since du-
plication of states occurring in left-hand sides of rules of a TAihom,6≈ implicitly encode
equality constraints, in order to preserve the recognized language we need to introduce
a new state q′ as a synonym for q. Hence, Q′ = {q, q′, qaccept}. To present the rules of
∆′, we use the compact notation l c−→ q1|q2 to simultaneously denote the rules l c−→ q1

and l c−→ q2. In this way, ∆′ = {a→ q|q′, f(f(q, q′), q)→ q|q′, g(q, q′) 1.1 6≈2−−−−→ qaccept}.
Note that the equality atom 1.1 ≈ 2 no longer appears explicitly, since it is implied by
the fact that the state q occurs at positions 1.1 and 2 in the left-hand side f(f(q, q′), q).

The implicit equality constraints of a TAihom,6≈ can be assumed to ask for equality
not only of subterms, but also of subruns. Runs holding this property are called
uniform.

Definition 4.13. Let A = 〈Q,Σ, F,∆〉 be a TAihom,6≈. A run r of A is called uniform
if, for each positions p, p1, p2 such that r(p) is defined as a rule l c−→ q satisfying
l(p1) = l(p2) ∈ Q, r|p.p1 = r|p.p2 holds.

Lemma 4.14. Any run of a TAihom,6≈ A can be transformed into a uniform run on
the same term and reaching the same state.

With the previous lemma it is clear that the classes of languages recognizable
by TAihom,6≈ with runs and with uniform runs coincide. We straightforwardly extend
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the notion of uniform runs to the setting of weak runs, and call them uniform weak
runs. Note that weak runs do not have to satisfy the disequality constraints or
the implicit equality constraints occurring in the rules applied, whereas a uniform
weak run guarantees that equality constraints are satisfied. For this reason, uniform
weak runs do not allow an equivalent of Lemma 4.14, i.e., it is possible that a weak
run cannot be transformed into a uniform weak run recognizing the same term and
reaching the same state. In fact, note that the class of languages recognizable by
TAihom,6≈ with weak runs coincides with the class of regular tree languages, and that
the class of languages recognizable by TAihom,6≈ with uniform weak runs is not regular.

The following definitions and lemmas show equivalence in expressiveness between
TAhom,6≈ and TAihom,6≈.

Definition 4.15 (transformation of TAhom,6≈ into TAihom,6≈). Let A = 〈Q,Σ, F,∆〉
be a TAhom,6≈. We define the TAihom,6≈ A′ = 〈Q′,Σ, F ′,∆′〉 from A as the result of
the following construction. Let k be |Poslhs(A)|. The set of states Q′ is defined as
{qi | 1 ≤ i ≤ k, q ∈ Q}. The set of final states F ′ is defined as {qi | 1 ≤ i ≤ k, q ∈ F}.
In order to define ∆′, we have to choose, for each rule l c−→ q in ∆, a term rename(l, c)
which is obtained by replacing each occurrence of a state of Q in l by a state of Q′
according to the following condition: an occurrence of a state q in l is replaced by a
state of the form qi, for 1 ≤ i ≤ k, and two occurrences of states at distinct positions
p1, p2 in l are replaced by the same state if and only if p1 ≈ p2 occurs in c. Once
rename(l, c) is defined for each rule l c−→ q in ∆, we define ∆′ as the set of rules
{rename(l, c) c′−→ qi | (l c−→ q) ∈ ∆, c′ = {(p̄1 6≈ p̄2) ∈ c}, 1 ≤ i ≤ k}.

Lemma 4.16. Let A be a TAhom,6≈. Let A′ be the TAihom,6≈ obtained from A with the
construction of Definition 4.15.

Then, L(A′) = L(A) and the following bounds hold:

• |A′| ≤ |A| · |Poslhs(A)|,

• h6≈(A′) = h6≈(A),

• n6≈(A′) = n6≈(A),

• Poslhs(A′) = Poslhs(A).

Moreover, A′ can be computed with time and space in O(|A′|).

Example 4.17 (continuation of Example 4.12). The construction of the TAihom, 6≈ A′

from the TAhom,6≈ A detailed in Example 4.12 is done manually and obtains a rather
small automaton. Here, we apply the construction of Definition 4.15 in order to
obtain another TAihom,6≈ A′′ = 〈Q′′,Σ, F ′′,∆′′〉 recognizing the same language as A.
First, note that |Poslhs(A)| = |{λ, 1, 1.1, 1.2, 2}| = 5. Hence, the states in Q′′ are of
the form qi and qiaccept, for 1 ≤ i ≤ 5, and F ′′ = {qiaccept | 1 ≤ i ≤ 5}. Second, in order
to obtain ∆′′, we need to define rename for each of the rules of A. We arbitrarily choose
the following: rename(a, ∅) = a, rename(f(f(q, q), q), 1.1 ≈ 2) = f(f(q1, q2), q1), and
rename(g(q, q), 1.1 6≈ 2) = g(q1, q2). Finally, using this definition for rename, the
rules of ∆′′ are of the form a→ qi, f(f(q1, q2), q1)→ qi, and g(q1, q2) 1.1 6≈2−−−−→ qiaccept,
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for 1 ≤ i ≤ 5. It is easy to see that many of the states introduced in A′′ are useless. In
particular, all the states qi with i > 2 are useless. Moreover, even though all the states
of the form qiaccept are useful, note that having just one of them suffices. By cleaning
the useless and redundant states, we would obtain a TAihom,6≈ that is essentially the
one constructed in Example 4.12.

Definition 4.18 (transformation of TAihom,6≈ into TAhom,6≈). Let A = 〈Q,Σ, F,∆〉 be a
TAihom,6≈. We define the TAhom,6≈ A

′ from A as 〈Q,Σ, F,∆′〉, where ∆′ is the set of rules
{l c′−→ q | (l c−→ q) ∈ ∆, c′ = c ] {p1 ≈ p2 | p1, p2 ∈ PosQ(l), p1 6= p2, l(p1) = l(p2)}}.

Lemma 4.19. Let A be a TAihom,6≈. Let A′ be the TAhom,6≈ obtained from A with the
construction of Definition 4.18.

Then, L(A′) = L(A) and the following bounds hold:

• |A′| ≤ |A|+ |A| · |Poslhs(A)|2 · hlhs(A),

• h≈(A′) ≤ hlhs(A),

• n≈(A′) ≤ |Poslhs(A)|2/2,

• h6≈(A′) = h 6≈(A),

• n6≈(A′) = n 6≈(A),

• Poslhs(A′) = Poslhs(A).

Moreover, A′ can be computed with time and space in O(|A′|).

4.4 Independent sets
The contents presented in this section is rather abstract and its results seem, at first
look, to fit better in a handbook on combinatorics than in a work on tree automata.
Nevertheless, in [CJ03], similar notions were needed to prove EXPTIME-completeness
of emptiness for tree automata with disequality constraints. We explain the differences
with such notions after Definition 4.20.

4.4.1 Independent sets of tuples
We assume a given set (the universe) U and a natural number n, and work with
n-tuples t = 〈e1, . . . , en〉 of elements of U . For such a tuple t, with t[i] we denote the
i’th component ei. We denote the set of all such possible tuples as T . For a given
finite set of tuples, we are interested on finding a “big” subset which is independent
according to the following definition.

Definition 4.20. A finite set of tuples {t1, . . . , tk} ⊆ T is independent if for all
i ∈ {1, . . . , n}, either all the elements t1[i], . . . , tk[i] are the same, or the elements
t1[i], . . . , tk[i] are pairwise different.
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Note that, if a set is independent, then any of its subsets also is.
In [CJ03], it is proved for a fixed natural number K that, given a set S with Kn ·n!

tuples, there effectively exists an independent subset S̃ of S with size K. This fact
is used in [CJ03] to decide emptiness of tree automata with disequality constraints
in exponential time. In order to produce simpler arguments in our setting, we need
more than just the existence of such S̃. We also need to ensure that a certain tuple
t in S is also in S̃. As a first step, we note that, since all tuples of an independent
subset coincide at certain components, we can restrict our search of such S̃ to subsets
of S whose tuples already coincide with t at some fixed components.

Definition 4.21. Let S, t, I be such that t ∈ S ⊆ T and I ⊆ {1, . . . , n}. We define
the set of tuples coincident(S, t, I) as {t′ ∈ S | ∀i ∈ I : t′[i] = t[i]}.

Note that, if t′ ∈ coincident(S, t, I), then coincident(S, t′, I) = coincident(S, t, I).
For a natural number K, we define a counting property on sets of tuples, namely
K-smallness, that will be useful to construct an independent set of size K containing
a specific tuple t.

Definition 4.22. Let K be a natural number. Let S ⊆ T be a set of tuples. We say
that S is K-small if the following statement holds:

∀t ∈ S : ∀I ( {1, . . . , n} : |coincident(S, t, I)| < Kn−|I| · (n− |I|)!

Example 4.23. Consider tuples of n = 3 elements with N as the underlying universe.
Let S = {t1 = 〈1, 1, 1〉, t2 = 〈1, 2, 2〉, t3 = 〈1, 2, 3〉}, and let K = 3. In order to see
whether S is K-small, we need to consider every tuple t ∈ S and every strict subset
I of the indexes {1, 2, 3}. We first consider any such I with |I| ≤ 1, and observe that
the statement of K-smallness is trivially satisfied: |coincident(S, t, I)| ≤ |S| = 3 for
any t ∈ S, which is strictly less than Kn−|I| · (n − |I|)! ≥ 33−1 · (3 − 1)! = 18. We
now consider any such I with |I| = 2. In this case, the strict upper bound imposed
by the definition of K-smallness is Kn−|I| · (n − |I|)! = 33−2 · (3 − 2)! = 3. It is
easy to see that the bound is again satisfied: for any t ∈ S, observe that if 2 ∈ I
it follows |coincident(S, t, I)| ≤ 2 since t1[2] 6= t2[2] = t3[2], and if 3 ∈ I it follows
|coincident(S, t, I)| = 1 since t1[3], t2[3], t3[3] are pairwise different. Since the bound
is satisfied in all the cases, S is K-small.

The following lemma states that K-small sets are indeed “small”.

Lemma 4.24. Let K be a natural number. Let S ⊆ T be a non-empty K-small set.
Then, |S| < Kn · n!.

Proof. Note that for any tuple t ∈ S, S = coincident(S, t, ∅) holds. Thus, |S| =
|coincident(S, t, ∅)| < Kn−|∅| · (n− |∅|)! = Kn · n!. �

The following lemma holds by Definitions 4.21 and 4.22.

Lemma 4.25. Let K be a natural number. Let S ⊆ T be a set of tuples.
Then, checking whether S is K-small can be done with at most |S|2 · 2n · n com-

parisons between elements occurring in the tuples of S.
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In order to show that detecting K-smallness is enough for our purposes, we prove
in Lemma 4.31 that, given a set S and a tuple t ∈ S such that S \ {t} is K-small but
S is not, there always exists an independent subset S̃ ⊆ S of size K and including
t. To this end, as a first ingredient, we relate the existence of an independent subset
of S with the existence of an edge-free subset of nodes of a graph. In the literature,
edge-free subsets of nodes are simply called independent. Here, we use this other
name in order to avoid confusion with our notion of independent sets of tuples.

Definition 4.26. Let G = 〈V,E〉 be an undirected graph. Let Ṽ be a subset of V .
We say that Ṽ is edge-free in G if each two nodes of Ṽ are not connected, i.e., if
{(u, v) | u, v ∈ Ṽ } ∩ E = ∅.

The graph where we want to find edge-free subsets of nodes is defined to have
coincident(S, t, I) as its set of nodes, for a fixed I, and to have an edge between each
two different tuples t1, t2 if and only if t1 and t2 coincide at some component not in
I. This is defined formally as follows.

Definition 4.27. Let S, t, I be such that t ∈ S ⊆ T and I ⊆ {1, . . . , n}. We define
graph(S, t, I) as the undirected graph G = 〈V,E〉 with V = coincident(S, t, I) and
E = {(t1, t2) ∈ V 2 | t1 6= t2 ∧ ∃i ∈ {1, . . . , n} \ I : t1[i] = t2[i]}.

Example 4.28. Following Example 4.23, consider graph(S, t2, I = {2}). Note that
its set of nodes is {t2, t3} since t1[2] 6= t2[2] = t3[2]. Also note that the graph has
the edge (t2, t3) since these tuples coincide at their first component, which is an index
not included in I. It follows that the graph has no edge-free subset of nodes with size
greater than 1. Consider now graph(S, t2, I ′ = {1, 2}), and note that its set of nodes
is {t2, t3} since t2[1] = t3[1] and t1[2] 6= t2[2] = t3[2], and its set of edges is empty
since t2[3] 6= t3[3], where 3 is the only index not included in I ′. Thus, the whole
graph is edge-free. It is easy to conclude that all the nodes that conform this graph
correspond to an independent subset of S: the nodes/tuples coincide at their respective
components 1, 2 since the graph has been defined with I ′ = {1, 2}, and moreover, the
tuples are pairwise different at all other components, i.e., at component 3, since the
whole graph is edge-free.

The following trivial lemma formally establishes the relation between independent
sets of tuples and edge-free sets of nodes of a graph.

Lemma 4.29. Let S, t, I be such that t ∈ S ⊆ T and I ⊆ {1, . . . , n}. Let S̃ be a
subset of coincident(S, t, I) which is edge-free in graph(S, t, I).

Then, S̃ is independent.

In the proof of Lemma 4.31, the existence of an edge-free subset of nodes is con-
cluded using, as a last ingredient, the following simple and well-known statement from
graph theory, where maxdegree(G) denotes the maximum among all degrees of nodes
of G.

Lemma 4.30. Let G = 〈V,E〉 be an undirected graph. Let u be a node of G.
Then, there exists a subset Ṽ of V which is edge-free in G, includes u, and satisfies

|Ṽ | =
⌈

|V |
maxdegree(G)+1

⌉
.
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Lemma 4.31. Let K be a natural number. Let S ⊆ T be a set of tuples which is not
K-small. Let t ∈ S be a tuple satisfying that S \ {t} is K-small.

Then, there exists an independent set S̃ of tuples such that t ∈ S̃ ⊆ S and |S̃| ≥ K.

Proof. Since S is notK-small, there is a set I ( {1, . . . , n} and a tuple t′ ∈ S satisfying
|coincident(S, t′, I)| ≥ Kn−|I| · (n− |I|)!. Among all the possible I’s satisfying such a
condition, we choose one maximal in size.

Note that t belongs to coincident(S, t′, I), since otherwise, coincident(S, t′, I) =
coincident(S \ {t}, t′, I), and hence, |coincident(S \ {t}, t′, I)| ≥ Kn−|I| · (n − |I|)!,
which implies that S\{t} is not K-small, contradicting the assumptions of the lemma.
Therefore, coincident(S, t′, I) = coincident(S, t, I). In other words, the mentioned
tuple t′ can be assumed to be t.

In the case |I| = n−1, we have |coincident(S, t, I)| ≥ Kn−(n−1) ·(n−(n−1))! = K.
In this case, note that coincident(S, t, I) itself is necessarily an independent set because
its tuples coincide in all components but one, and hence they must be all pairwise
different at such component. Thus, we conclude by defining S̃ as coincident(S, t, I).

At this point, we assume |I| < n− 1. Under this assumption, by the maximality
selection of I, the following condition holds:

∀t′ ∈ S : ∀I ′ ( {1, . . . , n}, |I ′| = |I|+1 : |coincident(S, t′, I ′)| < Kn−|I|−1 ·(n−|I|−1)!

Now, we analyse some properties of G = 〈V,E〉 = graph(S, t, I). First, note that
|V | = |coincident(S, t, I)| ≥ Kn−|I| · (n − |I|)!, since coincident(S, t, I) is the set of
nodes of G. Second, we bound maxdegree(G) by bounding the degree of each node t′
of G as follows:

degree(G, t′) ≤
∑
i∈{1,...,n}\I

(∣∣{t′′ ∈ coincident(S, t, I) | t′[i] = t′′[i]}
∣∣− 1

)
=
∑
i∈{1,...,n}\I(|coincident(S, t′, I ] {i})| − 1)

< (n− |I|) ·Kn−|I|−1 · (n− |I| − 1)!− 1
= Kn−|I|−1 · (n− |I|)!− 1

Therefore, maxdegree(G) < Kn−|I|−1 · (n − |I|)! − 1. By Lemma 4.30, there exists a
subset S̃ of coincident(S, t, I) which is edge-free in G, includes t, and satisfies:

|S̃| =
⌈

|V |
maxdegree(G) + 1

⌉
≥
⌈
Kn−|I| · (n− |I|)!
Kn−|I|−1 · (n− |I|)!

⌉
= K

By Lemma 4.29, it follows that S̃ is an independent set. �

Example 4.32. Consider again the definitions of Example 4.23, and let t4 = 〈1, 2, 4〉.
Clearly, S]{t4} is not K-small: coincident(S]{t4}, t4, I = {1, 2}) = {t2, t3, t4}, which
has cardinal 3, and thus, does not satisfy that it is strictly less than Kn−|I| ·(n−|I|)! =
33−2 · (3− 2)! = 3. Since S was K-small, by Lemma 4.31 there exists an independent
subset S̃ of S ] {t4} with size at least K and including t4: {t2, t3, t4} is such a subset
(in this example there is no other possible definition of S̃).

In the following corollary we restate the result from [CJ03] as a particular con-
sequence of Lemmas 4.24 and 4.31. This result is useful when it is not necessary to
have a distinguished tuple t in the independent subset.



4.4. Independent sets 55

Corollary 4.33. Let K be a natural number. Let S ⊆ T be a set of tuples such that
|S| ≥ Kn · n!.

Then, there exists an independent subset of tuples S̃ ⊆ S satisfying |S̃| ≥ K.

4.4.2 Independent sets of terms
In this section we translate the previous definitions and results from tuples to terms
and positions.

Definition 4.34. Let P be a set of positions. Let p1, . . . , pn be the positions in P ,
ordered lexicographically1. Let t ∈ T (Σ) be a term. We define TupleP (t) as the tuple
〈s1, . . . , sn〉, where each si is t|pi when pi is in Pos(t), and a special symbol ⊥ not in
Σ, otherwise.

Let S ⊆ T (Σ) be a set of terms. We define TuplesP (S) as {TupleP (t) | t ∈ S}.
We say that S is P -independent if TuplesP (S) is independent. Let K be a natural
number. We say that S is (K,P )-small if TuplesP (S) is K-small.

In order to adapt the previous results we need to guarantee that there is a bijection
between the set of terms S and the set of tuples TuplesP (S). In our concrete setting,
this holds thanks to the fact that the considered set of positions P always contains λ.
Hence, consider a set of positions P including λ and a set of terms {t1, . . . , tm} ⊆ T (Σ)
such that P ∩ Pos(t1) = . . . = P ∩ Pos(tm). Note that in this case, {t1, . . . , tm}
is P -independent if and only if for each p ∈ P , either p is not in any of the sets
Pos(t1), . . . ,Pos(tm), or it is in all of them and either t1|p = . . . = tm|p or the subterms
t1|p, . . . , tm|p are pairwise different.

The following facts are straightforwardly implied by Lemmas 4.24, 4.25, and 4.31,
and Corollary 4.33, respectively.

Lemma 4.35. Let P be a set of positions including λ and let K be a natural number.
Let S ⊆ T (Σ) be a non-empty (K,P )-small set of terms.

Then, |S| < K |P | · |P |!.

Lemma 4.36. Let P be a set of positions including λ and let K be a natural number.
Let S ⊆ T (Σ) be a set of terms.

Then, checking whether S is (K,P )-small can be done with at most |S|2 · 2|P | · |P |
comparisons between elements of {t|p | t ∈ S ∧ p ∈ Pos(t) ∩ P} ] {⊥}.

Lemma 4.37. Let P be a set of positions including λ, let K be a natural number,
and let S ⊆ T (Σ) be a set of terms which is not (K,P )-small. Let t ∈ S be a term
satisfying that S \ {t} is (K,P )-small.

Then, there exists a P -independent set S̃ of terms such that t ∈ S̃ ⊆ S and
|S̃| ≥ K.

Corollary 4.38. Let P be a set of positions including λ, let K be a natural number,
and let S ⊆ T (Σ) be a set of terms such that |S| ≥ K |P | · |P |!.

Then, there exists a P -independent set of terms S̃ ⊆ S satisfying |S̃| ≥ K.
1The concrete selected order for positions is not important at all, but we choose this one in order

to fix a precise definition.
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4.5 Constraint-satisfying replacements
In this section we study how to perform replacements on runs of TAihom,6≈ in a way
that guarantees that all constraints are satisfied, i.e., that the weak run resulting
from the replacement is actually a run. We start in Section 4.5.1 focusing on the
implicit equality constraints. This is the simplest case since, in order to satisfy the
equalities tested by the run, it can be proved that it suffices to perform the replace-
ment simultaneously at several parallel positions. Moreover, these positions for the
replacement can be easily defined by considering the positions of the run involved
in equality tests. The remaining sections are devoted to disequality constraints. In
Section 4.5.2 we formalize a criterion to distinguish two different kinds of disequal-
ity constraints. Intuitively, this distinction depends on how “close” are the positions
tested by the disequality constraint to the positions where the replacement is per-
formed. The “closest” ones are studied in Section 4.5.3 and the “furthest” ones in
Section 4.5.4.

Recall that the reason to study replacements on runs of TAihom, 6≈ is to be able
to reason about the emptiness of the recognized language: if any “big enough” run
can be reduced by means of a decreasing replacement, then emptiness can be decided
by checking only “small” runs. In order to formalize the notion of such decreasing
replacements, we assume a given well-founded ordering �, total on terms, fulfilling
the strict size relation (if |t| < |t′|, then t � t′) and monotonic (if s � t|p, then
t[s]p � t). Note that a Knuth-Bendix ordering [KB70] with the standard term size
comparison as first component satisfies these conditions. We consider this ordering
extended to runs r, r′ in a way such that r � r′ if term(r)� term(r′).

4.5.1 Equality constraints
We start by defining a kind of replacement that satisfies all the implicit equality
constraints occurring in the rules applied in a run. Note that, in general, a simple
replacement r[r′]p is not enough, since equality tests checked at positions above p may
become falsified after the replacement. To satisfy these equality tests it is necessary
that such a replacement is done at the same time at all the subruns involved in an
equality test, i.e., a replacement needs to be performed simultaneously at multiple
parallel positions. In order to simplify the definition of these positions, we reason
over uniform weak runs. Recall that uniform weak runs satisfy the implicit equality
constraints occurring in the rules applied, and moreover, an implicit equality con-
straint asks for equality not only of subterms but also of weak subruns. Using these
properties of uniform weak runs and the fact that equality constraints of TAihom, 6≈ are
implicitly defined by duplication of states, we can easily define the positions for the
replacement with the following notion of abstract positions. Given a uniform weak
run r and a position p ∈ Pos(r), we describe the abstract position of p in r as a
sequence of the form q1.q2 . . . qn.p̄, where q1, . . . , qn are states and p̄ is a position.
Intuitively, q1, . . . , qn are the states found while traversing r from the root to p, and
p̄ is the residual suffix of p after the last state.

Definition 4.39. Let A = 〈Q,Σ, F,∆〉 be a TAihom,6≈. Let r be a uniform weak run
of A, and let p be a position in Pos(r). We define the abstract position of p in r,
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denoted abstractr(p), recursively as follows, where we explicitly write r(λ) as a rule
l
c−→ q. For the case where p is in PosΣ(l), abstractr(p) is defined as q.p. For the case

where p is of the form p1.p2, where p1 is a position in PosQ(l), abstractr(p) is defined
as q.abstractr|p1

(p2). We write abstract(p) when r is clear from the context.
We denote abstract positions as P , with possible subscripts, and say that P is a

pure abstract position when it is of the form q1 . . . qn.λ, for q1, . . . , qn ∈ Q.
Example 4.40. Consider the following uniform run r of some unspecified TAihom, 6≈:

f(qg, qf )→ qf

g(q, q)→ qg

h(q)→ q

h(q)→ q

a→ q

h(q)→ q

h(q)→ q

a→ q

f(qg, qf )→ qf

g(q, q)→ qg

h(q)→ q

a→ q

h(q)→ q

a→ q

⊥ → qf

We depict the abstract position corresponding to each of the positions in Pos(r) using
the same tree structure of term(r):

qf .λ

qf .qg.λ

qf .qg.q.λ

qf .qg.q.q.λ

qf .qg.q.q.q.λ

qf .qg.q.λ

qf .qg.q.q.λ

qf .qg.q.q.q.λ

qf .qf .λ

qf .qf .qg.λ

qf .qf .qg.q.λ

qf .qf .qg.q.q.λ

qf .qf .qg.q.λ

qf .qf .qg.q.q.λ

qf .qf .qf .λ

Note that all the abstract positions are pure: this is because all the rules applied
in r have a single alphabet symbol. Also note that the sibling positions 1.1 and 1.2
have the same abstract position qf .qg.q.λ: this is related to the fact that the rule
g(q, q) → qg applied at position 1 has two occurrences of the state q at its left-hand
side, i.e., it has an implicit equality constraint between its two children. Moreover,
since r is uniform, the respective children of 1.1 and 1.2 also share common ab-
stract positions: abstract(1.1.1) = abstract(1.2.1) = qf .qg.q.q.λ and abstract(1.1.1.1) =
abstract(1.2.1.1) = qf .qg.q.q.q.λ. Since g(q, q) → qg is also applied at 2.1, an analo-
gous analysis can be made for the abstract positions corresponding to positions of the
form 2.1.1.p and 2.1.2.p.
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Note that, for a uniform weak run r and a position p ∈ Pos(r), r(p) is defined
if and only if abstract(p) is a pure abstract position. Furthermore, if two positions
p1, p2 ∈ Pos(r) satisfy that abstract(p1), abstract(p2) are pure and identical, then
r(p1) and r(p2) are defined and r|p1 and r|p2 are equal. Intuitively, according to the
definition of uniform weak run of a TAihom,6≈, for positions sharing the same sequence of
states q1 . . . qn from the root, the corresponding uniform weak subruns must coincide.
For this reason, with r|q1...qn.λ we denote such a uniform weak subrun, and with
r(q1 . . . qn.λ) the rule applied at the root position of r|q1...qn.λ. In addition, given a
uniform weak run r′ reaching the same state as r|q1...qn.λ, we denote as r[r′]q1...qn.λ
the result of replacing by r′ the uniform weak subrun at each position p holding
abstractr(p) = q1 . . . qn.λ. It is straightforward that such r[r′]q1...qn.λ is also a uniform
weak run. The following lemma formally states this property.
Lemma 4.41. Let A be a TAihom,6≈. Let r, r′ be uniform weak runs of A. Let P be a
pure abstract position of r such that r|P and r′ reach the same state.

Then, r[r′]P is a uniform weak run.
The previous fact is equivalent to saying that a replacement r[r′]P defined by

means of a pure abstract position P necessarily satisfies the equality tests. However,
note that nothing is guaranteed about the disequality constraints occurring in the
rules applied in r[r′]P , even in the case where r and r′ are uniform runs. Dealing
with disequality constraints requires more complex arguments, and we present them
in the following sections.

Before concluding this section, we give some additional definitions on abstract
positions. This formalism, besides simplifying the previous Lemma 4.41, also helps
in making the remaining reasonings of our work simpler and more accessible. For
this reason, we are interested in adapting some typical operations on positions to
the setting of abstract positions. In particular, we need to relax the conditions on
abstract positions by allowing concatenations of the form P.p, where P is a pure
abstract position and p is a position. We also need to compare abstract positions
between them by means of a prefix relation. Such a relation is more complex for
abstract positions than for positions, since an abstract position implicitly represents
a set of positions.
Definition 4.42. Let A be a TAihom, 6≈. Let r be a uniform weak run of A, and
let P, P̄ be abstract positions of r more explicitly written of the form q1 . . . qn.p and
q̄1 . . . q̄m.p̄, respectively. We say that P is a prefix of P̄ , denoted P ≤ P̄ , if n ≤ m,
q1 . . . qn = q̄1 . . . q̄n, and the following conditions hold:
• if n = m, then p ≤ p̄,

• if n < m, then the left-hand side l of the rule r(q1 . . . qn.λ) has an occurrence of
state q̄n+1 in the subterm l|p.

Moreover, we say that P is m− n steps above P̄ . We say that P is a strict prefix of
P̄ , denoted P < P̄ , if P ≤ P̄ and P 6= P̄ . We say that P and P̄ are parallel, denoted
P ‖ P̄ , if neither P ≤ P̄ nor P̄ ≤ P hold.

Let P be a pure abstract position of r more explicitly written of the form q1 . . . qn.λ.
Let p be a position in Pos(r|P ). By the concatenation P.p we denote the abstract
position q1 . . . qn−1.abstractr|P (p).
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It is important to remark that the previous definitions on abstract positions con-
tradict a usual intuition on positions. Consider two parallel abstract positions P1
and P2 of a uniform weak run r and note that, even though they are parallel, it is
possible that both of them are prefix of a common abstract position P of r, i.e., that
P1, P2 ≤ P . It is easy to see that this is only possible in the case where P1, P2
and P can be written of the form q1 . . . qn.p1, q1 . . . qn.p2 and q1 . . . qn.qn+1 . . . qm.p,
respectively, with p1 and p2 being parallel positions and n < m, and moreover, the
left-hand side of the rule r(q1 . . . qn.λ) has an occurrence of the state qn+1 below the
positions p1 and p2. The following technical lemma proves that, in the particular case
where one of P1, P2 is a pure abstract position, then it is not possible that both of
them are prefix of P .

Lemma 4.43. Let A be a TAihom, 6≈. Let r be a uniform weak run of A. Let P1, P2 be
parallel abstract positions of r such that at least one of them is pure.

Then, there is no abstract position P of r such that P1 ≤ P and P2 ≤ P .

Proof. Assume without loss of generality that P1 is pure, and consider any abstract
position P of r such that P1 ≤ P . In order to conclude, it suffices to prove P2 6≤ P . Let
P1 and P2 be more explicitly written of the form q1 . . . qn.λ and q1 . . . qi.q̄i+1 . . . q̄m.p2,
respectively, where q1 . . . qi is the maximal common prefix of P1 and P2. Note that
since P1 6≤ P2 and P1 is pure, necessarily i < n. In the case where i = m, the
left-hand side of the rule r(q1 . . . qi.λ) does not have any occurrence of the state qi+1
below position p2: otherwise P2 ≤ P1 contradicting the assumption that P1 and P2
are parallel. Hence, in this case P2 6≤ P . In the case where i < m, we have that
qi+1 6= q̄i+1, and hence, P2 6≤ P follows again. This concludes the proof. �

As a final remark, note that an abstract position is defined with respect to a con-
crete uniform weak run, which leads to some counterintuitive cases when comparing
abstract positions of different uniform weak runs. For example, consider two uniform
weak runs r1 and r2, and positions p1 ∈ Pos(r1) and p2 ∈ Pos(r2). Clearly, it is possi-
ble for p1 and p2 to be equal and yet abstractr1(p1) 6= abstractr2(p2), and it is also pos-
sible that P = abstractr1(p1) = abstractr2(p2) and yet abstract−1

r1 (P ) 6= abstract−1
r2 (P ).

For these reasons, comparing abstract positions of r1 and r2 can only be done when
r1 and r2 are “similar”. In our setting, we are interested in the case where r1 and
r2 can be written of the form r[r′1]P and r[r′2]P , respectively, for some uniform weak
runs r, r′1, r′2 and pure abstract position P of r. Note that in such case, an abstract
position P1 of r1 and an abstract position P2 of r2 can be compared if P is not a
strict prefix of P1 or P2.

4.5.2 Classifying disequality constraints
We now consider the disequality constraints of the rules applied in r[r′]P , where r
and r′ are uniform runs and P is a pure abstract position of r such that r|P and
r′ reach the same state. Recall that r[r′]P is necessarily a uniform weak run as
stated in Lemma 4.41. Moreover, since r and r′ are uniform runs, for r[r′]P to
satisfy all the constraints—and thus be a run—it only remains to prove that the
disequality constraints of rules applied at prefixes of P are satisfied. That is, we have
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to show that term(r[r′]P )|p̄.p̄1 6= term(r[r′]P )|p̄.p̄2 holds for each triplet of positions
〈p̄, p̄1, p̄2〉 satisfying the following conditions: r(p̄) is defined, the atom p̄1 6≈ p̄2 occurs
in the disequality constraint of the rule r(p̄), abstractr(p̄) < P , and p̄.p̄1, p̄.p̄2 ∈
Pos(r[r′]P ). We can generalize this idea to abstract positions in order to simplify
further reasonings. Consider any two such triplets 〈p̄, p̄1, p̄2〉 and 〈p̄′, p̄1, p̄2〉 such
that abstractr(p̄) = abstractr(p̄′). Note that, since r is a uniform run, it follows that
r|p̄ = r|p̄′ . Therefore, a replacement at P satisfies term(r[r′]P )|p̄.p̄1 6= term(r[r′]P )|p̄.p̄2

if and only if it also satisfies term(r[r′]P )|p̄′.p̄1 6= term(r[r′]P )|p̄′.p̄2 . In other words,
different triplets with the same abstract positions are actually equivalent and we only
need to reason about one of them. The following definition formalizes these triplets
with abstract positions. Moreover, it also distinguishes the case where the positions
are “close” to P , i.e., the test involves subterms of term(r′), from the one where the
positions are “far” from P .

Definition 4.44. Let A be a TAihom,6≈. Let r be a uniform weak run of A, and let
P be a pure abstract position of r. Let P̄ be a pure abstract position of r such that
P̄ < P , and let p̄1, p̄2 be positions such that the atom p̄1 6≈ p̄2 occurs in the disequality
constraint of the rule r(P̄ ). We say that a disequality is tested (by r) at 〈P̄ , p̄1, p̄2〉.
Moreover, we say that it is a close disequality (of r) with respect to P if P ≤ P̄ .p̄1 or
P ≤ P̄ .p̄2, and otherwise, we say that it is a far disequality (of r) with respect to P .
We say that it is falsified if p̄1, p̄2 ∈ Pos(r|P̄ ) and term(r|P̄ )|p̄1 = term(r|P̄ )|p̄2 .

Example 4.45. Consider the following uniform weak run of an unspecified TAihom,6≈:

f(q1, q2) 1 6≈2−−→ q2

f(q1, q2)→ q1

a→ q1 b→ q2

f(q1, q2) 1 6≈2−−→ q2

f(q1, q2)→ q1

a→ q1 b→ q2

f(q1, q2) 1 6≈2−−→ q2

a→ q1 b→ q2

Note that none of the applied rules involves an implicit equality constraint, and that
the rules applied at positions p1 = λ, p2 = 2, p3 = 2.2 have the same disequality
constraint 1 6≈ 2. Let P1 = abstract(p1), P2 = abstract(p2), P3 = abstract(p3). With
respect to P3, note that 〈P1, 1, 2〉 is a far disequality since P1 < P3 but P3 6≤ P1.1
and P3 6≤ P1.2, whereas 〈P2, 1, 2〉 is a close disequality since P2 < P3 and P3 ≤ P2.2
(actually, P3 = P2.2). Also, the disequality tested at 〈P3, 1, 2〉 classifies neither as
close nor far with respect to P3 since P3 6< P3. Finally, note that the disequality
tested at 〈P2, 1, 2〉 is falsified since the subterms being compared are both f(a, b).

When r and P are clear from the context, we just say that a disequality tested at
〈P̄ , p̄1, p̄2〉 is close/far, and omit that the distinction is done with respect to P . In our
setting, since we want to reason about the disequality tests falsified when performing
a replacement, such an implicit P corresponds to where the replacement takes place.
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In some cases, when p̄1, p̄2 are clear from the context or not relevant, we just say that
a disequality is tested at P̄ . Finally, we say that a disequality tested at 〈P̄ , p̄1, p̄2〉 is
tested d steps above P if P̄ is d steps above P . We deal with close and far disequalities
separately in the following sections.

4.5.3 Close disequalities
We first tackle the falsified close disequalities in the replacement r[r′]P . Recall that, in
this case, such disequalities are necessarily tested at triplets 〈P̄ , p̄1, p̄2〉 where P̄ < P
and P ≤ P̄ .p̄1 ∨ P ≤ P̄ .p̄2. The following example illustrates some of the challenges
of dealing with close disequalities.

Example 4.46. Let Σ = {⊥:0, a:0, h:1, g:2, f :2}, and consider the language L of
terms of the form f(e1, f(e2, . . . f(em,⊥) . . .)), where m ≥ 0 and each ei is a term of
the form g(hαi(a), hβi(a)) with distinct αi, βi ≥ 0, and if i < m, then ei|1 6= ei+1|1
and ei|2 6= ei+1|2 (i.e., αi 6= αi+1 and βi 6= βi+1). Such language can be recognized
by TAihom,6≈ using only disequality constraints. In particular, to ensure that αi, βi are
distinct for each subterm ei, we could use a disequality constraint of the form 1 6≈ 2 at
the root position of each ei. Nevertheless, to better illustrate different cases of close
disequalities, we perform such test from the direct parent of ei instead. Let A be the
TAihom,6≈ 〈{q, q′, qg, qf},Σ, {qf},∆〉, where ∆ is the set with the unconstrained rules
a→ q, a→ q′, h(q)→ q, h(q)→ q′, g(q, q′)→ qg, ⊥ → qf , and the constrained rule:

f(qg, qf )

1.1 6≈1.2 ∧
1.1 6≈2.1.1 ∧
1.2 6≈2.1.2−−−−−−−→ qf

Note that the first disequality atom corresponds to the test αi 6= βi, whereas the next
two atoms to αi 6= αi+1 and βi 6= βi+1, respectively. It is easy to see that L(A) = L.
As an additional remark, note that since all the rules have a single alphabet symbol and
have no implicit equality constraints, there is a bijection between positions and abstract
positions for all runs of A. Thus, in this example both notions are interchangeable.

Assume a given accepting uniform run r of A where we want to replace one of
its subruns r|P reaching qg (i.e., recognizing one of the subterms ei) by a new run
also reaching qg chosen among some candidate runs r1, . . . , rn of A, such that the
close disequalities are satisfied after the replacement. Assume also that P is neither
the shortest nor the longest abstract position of r of the form qf . . . qf .qg.λ (i.e., that
0 < i < m). Under these conditions, each of the replacements r[rj ]P might falsify at
most the following 5 distinct close disequalities with respect to P :

• Let P̄1 be the abstract position one step above P (i.e., the direct parent). The
disequalities 〈P̄1, 1.1, 1.2〉, 〈P̄1, 1.1, 2.1.1〉, 〈P̄1, 1.2, 2.1.2〉 tested by the rule r(P̄1)
are close with respect to P since P̄1 < P ≤ P̄1.1.1, P̄1.1.2 (actually, P = P̄1.1).

• Let P̄2 be the abstract position two steps above P (i.e., the grandparent). The
disequalities 〈P̄2, 1.1, 2.1.1〉, 〈P̄2, 1.2, 2.1.2〉 tested by the rule r(P̄2) are close with
respect to P since P̄2 < P ≤ P̄2.2.1.1, P̄2.2.1.2 (actually, P = P̄2.2.1). Note that
r(P̄2) also tests 〈P̄2, 1.1, 1.2〉, but it is a far disequality with respect to P since
P̄2 < P and P 6≤ P̄2.1.1, P 6≤ P̄2.1.2.
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Hence, each of the close disequalities to consider involves the subterm term(rj |1) or
term(rj |2): in the case of 〈P̄1, 1.1, 1.2〉, both subterms are compared against each other,
whereas in the remaining close disequalities the tests compare one of those subterms
against another subterm pending at a position parallel to P . These two situations
require different techniques to find an rj satisfying all close disequalities:

• To satisfy 〈P̄1, 1.1, 1.2〉, we need to guarantee term(rj |1) 6= term(rj |2). To this
end, in general it is convenient that each of the runs in the list of candidates
r1, . . . , rn satisfies that its subruns pending at 1 and 2 recognize distinct terms if,
and only if, the subterms term(r|P )|1 and term(r|P )|2 that they replace are dis-
tinct. Such condition is captured by the notion of ∼A-equivalence between terms
that will be introduced in Definition 4.49. We will prove in Lemma 4.50 that,
when r1, . . . , rn recognize terms ∼A-equivalent to the subterm term(r|P ) being re-
placed, then all the replacements r[rj ]P satisfy the close disequality 〈P̄1, 1.1, 1.2〉.

• To satisfy the remaining close disequalities, we need to guarantee that term(rj |1)
is different from term(r|P̄1.2.1.1) and term(r|P̄2.1.1), and that term(rj |2) is differ-
ent from term(r|P̄1.2.1.2) and term(r|P̄2.1.2). Since these cases are analogous, we
just focus on guaranteeing term(rj |1) 6= term(r|P̄1.2.1.1). To this end, we use the
notion of independence from Section 4.4.2: if term(r|P ), term(r1), . . . , term(rn)
form a {1, 2}-independent set, then either term(r|P )|k, term(r1)|k, . . . , term(rn)|k
are equal or they are pairwise different, for k ∈ {1, 2}. We will prove in
Lemma 4.50 that, when {1, 2}-independence holds and the candidates r1, . . . , rn
recognize distinct terms, then term(rj |1) 6= term(r|P̄1.2.1.1) is falsified by at most
one of the candidates rj among r1, . . . , rn. Thus, since we have 4 such close
disequalities to consider, we need n > 4 candidates to ensure the existence of an
rj satisfying all close disequalities.

From the previous example, it is easy to see that a close disequality 〈P̄ , p̄1, p̄2〉
in a replacement r[r′]P necessarily involves a subterm of term(r′) pending at some
position p′, where p′ is suffix of p̄1 or p̄2. We define the set of such suffixes as follows.

Definition 4.47. Let A be a TAihom,6≈. We define the set of positions suff 6≈(A) as the
set of suffixes of the positions occurring in the disequality constraints of the rules of
A, i.e., {p | ∃(l c−→ q) ∈ ∆,∃p1, p2 : (p1.p 6≈ p2) ∈ c} where ∆ is the set of rules of
A (recall that disequality atoms are unordered pairs). We just write suff 6≈ when A is
clear from the context.

Example 4.48. Consider the TAihom,6≈ A from Example 4.46, and note that suff 6≈ is
{λ, 1, 1.1, 2.1.1, 2, 1.2, 2.1.2}. This is a strict superset of the positions of the candi-
date runs r1, . . . , rn identified in Example 4.46 as being involved in some close dise-
quality (with respect to P in the replacements r[rj ]P ), i.e., positions 1 and 2.

In order to define replacements that do not falsify any close disequality, we first
introduce an equivalence relation ∼A on terms, induced by a TAihom,6≈ A. Intuitively,
two terms are equivalent if they share the same set of positions among the positions in
suff 6≈, and moreover, they satisfy the same equality and disequality relations among
subterms at such positions.
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Definition 4.49. Let A be a TAihom, 6≈. We define the equivalence relation ∼A on
T (Σ) as t ∼A t′ if and only if the following conditions hold:

• Pos(t) ∩ suff 6≈ = Pos(t′) ∩ suff 6≈,

• ∀p1, p2 ∈ Pos(t) ∩ suff 6≈ : (t|p1 = t|p2 ⇔ t′|p1 = t′|p2).

Now, consider a specific disequality tested by the uniform run r at 〈P̄ , p̄1, p̄2〉, and
assume that it is a close disequality with respect to a pure abstract position P of r.
Given some candidate uniform runs r1, . . . , rn for replacements of the form r[ri]P , we
prove that at most one of those replacements can falsify the close disequality tested at
〈P̄ , p̄1, p̄2〉 if r|P , r1, . . . , rn recognize distinct terms that are ∼A-equivalent and form
a suff 6≈-independent set.

Lemma 4.50. Let A be a TAihom,6≈. Let r be a uniform run of A, and let P be a pure
abstract position of r. Let a close disequality with respect to P be tested at 〈P̄ , p̄1, p̄2〉.
Let r1, . . . , rn be uniform runs of A reaching the same state as r|P and such that
the terms term(r|P ), term(r1), . . . , term(rn) are pairwise different, ∼A-equivalent, and
form a suff 6≈-independent set.

Then, for at most one i ∈ {1, . . . , n}, the replacement r[ri]P falsifies the close
disequality tested at 〈P̄ , p̄1, p̄2〉.

Proof. We start considering the case {p̄1, p̄2} 6⊆ Pos(r|P̄ ). This is straightforward,
since the assumptions that term(r|P ), term(r1), . . . , term(rn) are ∼A-equivalent and
〈P̄ , p̄1, p̄2〉 is close with respect to P guarantee that {p̄1, p̄2} 6⊆ Pos(r[ri]P |P̄ ) for
each i ∈ {1, . . . , n}, and thus, in all the replacements the close disequality tested at
〈P̄ , p̄1, p̄2〉 is trivially satisfied. Hence, from now on we assume {p̄1, p̄2} ⊆ Pos(r|P̄ ),
and note that {p̄1, p̄2} ⊆ Pos(r[ri]P |P̄ ) follows for each i ∈ {1, . . . , n}.

We reason on the underlying terms. Let t = term(r|P̄ ), and let si = term(ri) for
each i ∈ {1, . . . , n}. Note that t|p̄1 6= t|p̄2 holds. Let S be the set of positions of
t where the replacements take place, i.e., S = {p ∈ Pos(t) | ∃p̄ ∈ abstract−1

r (P̄ ) :
abstractr(p̄.p) = P} (note that the set could be equivalently defined changing the
existential quantifier in the condition by a universal quantifier). By definition, S is
a non-empty set of parallel positions, and moreover, the subterms of t pending at
the positions in S are all identical. To ease the presentation, we denote by t|S the
subterm of t pending at any of the positions in S, and by t[si]S the simultaneous
replacement in t of all the subterms pending at positions in S by si. Note that, by
the assumptions of the lemma, t|S , s1, . . . , sn are distinct terms, ∼A-equivalent, and
form a suff 6≈-independent set. In order to conclude, it suffices to show that at most
one i ∈ {1, . . . , n} satisfies t[si]S |p̄1 = t[si]S |p̄2 .

By the assumption that 〈P̄ , p̄1, p̄2〉 is close with respect to P , it follows that there
exists p ∈ S such that p ≤ p̄1 or p ≤ p̄2. Since both cases are symmetric, without loss
of generality we assume p ≤ p̄1. Let p̄′1 be p̄1 − p and note that p̄′1 ∈ suff 6≈. Now, we
distinguish cases depending on p̄2 and the positions in S. First, assume that there
exists p′ ∈ S such that p′ ≤ p̄2. Let p̄′2 be p̄2−p′ and note that p̄′2 ∈ suff 6≈. In this case,
it suffices to prove that at most one i ∈ {1, . . . , n} satisfies si|p̄′1 = si|p̄′2 . But, since
t|S ∼A si and t|S |p̄′1 = t|p|p̄′1 = t|p̄1 6= t|p̄2 = t|p′ |p̄′2 = t|S |p̄′2 , it follows si|p̄′1 6= si|p̄′2 , for
all i ∈ {1, . . . , n}. Second, assume that p̄2 is parallel to all positions in S, and consider
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any i, j ∈ {1, . . . , n} such that t[si]S |p̄1 = t[si]S |p̄2 and t[sj ]S |p̄1 = t[sj ]S |p̄2 . Note
that, in this case, this condition is equivalent to saying si|p̄′1 = t|p̄2 and sj |p̄′1 = t|p̄2 .
It suffices to note that necessarily i = j: otherwise, t|S |p̄′1 = si|p̄′1 = sj |p̄′1 since
{t|S , s1, . . . , sn} is suff 6≈-independent, and thus, t|p̄1 = t|p̄2 since t|S |p̄′1 = t|p|p̄′1 = t|p̄1 ,
contradicting t|p̄1 6= t|p̄2 . Third, assume that there exists p′ ∈ S satisfying p̄2 < p′.
Then, for all i ∈ {1, . . . , n} it follows height(t[si]S |p̄1) < height(t[si]S |p̄2), and thus,
t[si]S |p̄1 6= t[si]S |p̄2 . �

Now we are ready to construct a replacement r[r′]P that does not falsify any
close disequality. From the previous result, it is clear that a single candidate r′
for the replacement at P might not suffice, and instead, we require some uniform
runs r1, . . . , rn such that n is greater than the number of different close disequalities
in r. Moreover, these r1, . . . , rn must reach the same state as r|P and satisfy that
term(r|P ), term(r1), . . . , term(rn) are pairwise different, ∼A-equivalent, and form a
suff 6≈-independent set. These conditions are enough to guarantee that if r[ri]P falsifies
a close disequality tested at 〈P̄ , p̄1, p̄2〉, then no other r[rj ]P , with i 6= j, can falsify
the close disequality tested at 〈P̄ , p̄1, p̄2〉. The following lemma states the number
n of needed candidates to construct m replacements that do not falsify any close
disequality.

Lemma 4.51. Let A be a TAihom,6≈. Let m be a natural number, and let n = h6≈ ·
n6≈ + m. Let r be a uniform run of A, and let P be a pure abstract position of r.
Let r1, . . . , rn be uniform runs of A reaching the same state as r|P and such that
the terms term(r|P ), term(r1), . . . , term(rn) are pairwise different, ∼A-equivalent, and
form a suff 6≈-independent set.

Then, there exists a subset {i1, . . . , im} of {1, . . . , n} such that the replacements
r[ri1 ]P , . . . , r[rim ]P do not falsify any close disequality.

Proof. Note that by Lemma 4.50, each close disequality can be falsified in at most one
of the replacements r[r1]P , . . . , r[rn]P . Also note that, since a close disequality can be
tested at most h6≈ steps above P and there are n 6≈ different disequality atoms in the
rules of A, it follows that there are at most h6≈ ·n6≈ different close disequalities that we
need to consider. Therefore, n− h6≈ · n6≈ = m of the replacements r[r1]P , . . . , r[rn]P ,
say, r[ri1 ]P , . . . , r[rim ]P , do not falsify any close disequality. �

The previous result is not enough for our purposes, since the arguments in Sec-
tion 4.5.4 need a bound for the case where the candidate terms are not assumed to
be ∼A-equivalent or forming a suff 6≈-independent set. These assumptions are neces-
sary when the replacement must be performed at a fixed pure abstract position P of
the uniform run r, but not when such P can be chosen among several possibilities.
Hence, consider some pure abstract positions P1, . . . , Pn of r such that r|P1 , . . . , r|Pn
reach the same state and recognize distinct terms. We prove that, when n is “big
enough”, there exists a subset {i1, . . . , im} of {1, . . . , n} such that the replacements
r[r|Pi1 ]Pim , . . . , r[r|Pim−1

]Pim do not falsify any close disequality with respect to Pim .
The value of such n is given by means of the function Bclose of Definition 4.54, which
uses as intermediate result the following bound for the number of equivalence classes
induced by the relation ∼A.
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Definition 4.52. Let A be a TAihom, 6≈. We define Beq(A) as 2|suff 6≈| · |suff 6≈||suff 6≈|.

Lemma 4.53. Let A be a TAihom,6≈.
Then, the number of different equivalence classes induced by ∼A is bounded by

Beq(A).

Proof. The first condition of the definition of ∼A induces as many equivalence classes
as subsets of suff 6≈ are, and this is bounded by 2|suff 6≈|. The second condition of the
definition of ∼A depends on which subterms pending at positions in suff 6≈ are equal
or different. This condition induces as many equivalence classes as the number of
partitions of the set suff 6≈, and this is bounded by |suff 6≈||suff 6≈|. The statement follows
by combining both bounds. �

We now give the concrete definition of Bclose for the number of needed candidates.

Definition 4.54. Let A be a TAihom,6≈. Let m be a natural number. We define
Bclose(A,m) as (h6≈ · n6≈ +m)|suff 6≈| · |suff 6≈|! · Beq(A).

Lemma 4.55. Let A be a TAihom, 6≈. Let m be a natural number, and let n =
Bclose(A,m). Let r be a uniform run of A. Let P1, . . . , Pn be pure abstract posi-
tions of r such that the subruns r|P1 , . . . , r|Pn reach the same state and the terms
term(r|P1), . . . , term(r|Pn) are pairwise different.

Then, there exists a subset {i1, . . . , im} of {1, . . . , n} such that r|Pi1 � . . .� r|Pim
and the replacements r[r|Pi1 ]Pim , . . . , r[r|Pim−1

]Pim do not falsify any close disequality.

Proof. By Lemma 4.53, there are n′ := n/Beq(A) pure abstract positions among
P1, . . . , Pn satisfying that the terms recognized by the subruns at such positions
are ∼A-equivalent. Without loss of generality, we assume that these n′ pure ab-
stract positions are the first ones, i.e., that the terms term(r|P1), . . . , term(r|Pn′ ) are
∼A-equivalent. Since n′ is (h6≈ · n6≈ + m)|suff 6≈| · |suff 6≈|!, by Corollary 4.38 there
exists a suff 6≈-independent subset of {term(r|P1), . . . , term(r|Pn′ )} with size n′′ :=
h6≈ · n 6≈ + m. Without loss of generality, we assume that this subset is formed by
the terms recognized by the subruns at the n′′ first pure abstract positions, i.e., that
{term(r|P1), . . . , term(r|Pn′′ )} is suff 6≈-independent. We also assume without loss of
generality that term(r|P1) � . . . � term(r|Pn′′ ). Let the im of the statement be
defined as n′′. By Lemma 4.51 applied on r, Pim and r|P1 , . . . , r|Pn′′−1 , it follows
that there exists a subset {i1, . . . , im−1} of {1, . . . , n′′ − 1} such that the replace-
ments r[r|Pi1 ]Pim , . . . , r[r|Pim−1

]Pim do not falsify any close disequality. We conclude
the proof by assuming without loss of generality that i1 < . . . < im−1, and thus,
r|Pi1 � . . .� r|Pim−1

� r|Pim . �

4.5.4 Far disequalities
We start with a result on far disequalities analogous to the statement on close dise-
qualities of Lemma 4.50. More precisely, consider a specific disequality tested by the
uniform run r at 〈P̄ , p̄1, p̄2〉, and assume that it is a far disequality with respect to
a pure abstract position P of r. Given some candidate uniform runs r1, . . . , rn for
replacements of the form r[ri]P , we prove that at most one of those replacements can
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falsify the far disequality tested at 〈P̄ , p̄1, p̄2〉. In contrast with Lemma 4.50, in this
case the only needed assumptions on r1, . . . , rn are that they reach the same state as
r|P and recognize pairwise different terms.

Lemma 4.56. Let A be a TAihom, 6≈. Let r be a uniform run of A, and let P be a pure
abstract position of r. Let a far disequality with respect to P be tested at 〈P̄ , p̄1, p̄2〉.
Let r1, . . . , rn be uniform runs of A on distinct terms and reaching the same state as
r|P .

Then, for at most one i ∈ {1, . . . , n}, the replacement r[ri]P falsifies the far dise-
quality tested at 〈P̄ , p̄1, p̄2〉.

Proof. We start considering the case {p̄1, p̄2} 6⊆ Pos(r|P̄ ). This is straightforward,
since the assumption that 〈P̄ , p̄1, p̄2〉 is far with respect to P guarantees that {p̄1, p̄2} 6⊆
Pos(r[ri]P |P̄ ) for each i ∈ {1, . . . , n}, and thus, in all the replacements the far
disequality tested at 〈P̄ , p̄1, p̄2〉 is trivially satisfied. Hence, from now on we as-
sume {p̄1, p̄2} ⊆ Pos(r|P̄ ), and note that {p̄1, p̄2} ⊆ Pos(r[ri]P |P̄ ) follows for each
i ∈ {1, . . . , n}.

We reason on the underlying terms. Let ti = term(r|P̄ .p̄i) for i ∈ {1, 2}, and note
that t1 6= t2 holds. For i ∈ {1, 2}, let Si be the sets of positions of ti where the replace-
ments take place, i.e., Si = {p ∈ Pos(ti) | ∃p̄ ∈ abstract−1

r (P̄ ) : abstractr(p̄.p̄i.p) = P}.
By definition, Si is a (maybe empty) set of parallel positions, and moreover, the
subterms of ti pending at the positions in Si are all identical. As in the proof of
Lemma 4.50, we denote by ti[s]Si the simultaneous replacement in ti of all the sub-
terms pending at positions in Si by a term s. In order to conclude, it suffices to show
that at most one term s satisfies t1[s]S1 = t2[s]S2 .

We assume that there exists a term s satisfying t1[s]S1 = t2[s]S2 , and prove that
it is unique. Note that, for each position p1 ∈ S1, there is no position p2 ∈ S2 such
that p1 < p2 or p2 < p1: otherwise, the condition t1[s]S1 = t2[s]S2 would be false
for any s. Also, note that S1 6= S2: otherwise, the condition t1[s]S1 = t2[s]S2 would
imply t1 = t2 since all the replaced subterms of t1 and t2 are identical by definition.
Hence, there exists a position p ∈ (S1 − S2) ∪ (S2 − S1). Without loss of generality,
assume that such a p is in S1 − S2. The condition t1[s]S1 = t2[s]S2 and the fact that
any position in S2 is parallel with p implies s = t2|p, and we are done. �

It is clear from the previous result that a single candidate r′ for the replacement
r[r′]P is not enough to guarantee that no far disequality is falsified. In particular, given
some candidates r1, . . . , rn recognizing distinct terms, each specific far disequality
can only be falsified by one of the ri’s when performing the replacement at P . In
contrast to our arguments in Section 4.5.3 dealing with close disequalities, note that
the number of far disequalities is not bounded. For this reason, the definition of
the number n of needed candidates is more complex. We start with the following
intermediate lemma where we only consider far disequalities that are “near” P , i.e.,
far disequalities tested at a bounded distance from the pure abstract position where
the replacement is performed.

Lemma 4.57. Let A be a TAihom,6≈. Letm, k be natural numbers, and let n = k·n6≈+m.
Let r be a uniform run of A, and let P be a pure abstract position of r. Let r1, . . . , rn
be uniform runs of A on distinct terms reaching the same state as r|P , and such that,
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for a given natural number d, the replacements r[r1]P , . . . , r[rn]P do not falsify any
far disequality tested at most d steps above P .

Then, there exists a subset {i1, . . . , im} of {1, . . . , n} such that the replacements
r[ri1 ]P , . . . , r[rim ]P do not falsify any far disequality tested at most d+ k steps above
P .

Proof. Note that by Lemma 4.56, each far disequality can be falsified in at most one
of the replacements r[r1]P , . . . , r[rn]P . Also note that, among the far disequalities
that are tested at most d+k steps above P , we do not need to consider the ones that
are tested at most d steps above P since they are already satisfied by assumption.
Hence, since there are n6≈ different disequality atoms in the rules of A, it follows that
there are at most k ·n6≈ different far disequalities that we need to consider. Therefore,
n− k · n 6≈ = m of the replacements r[r1]P , . . . , r[rn]P , say, r[ri1 ]P , . . . , r[rim ]P , do not
falsify any far disequality tested at most d+ k steps above P . �

Now we are ready to tackle the far disequalities that are not “near” P . Consider
that we have candidates r1, . . . , rn such that the replacements r[r1]P , . . . , r[rn]P do not
falsify any close disequality. We assume that all of them falsify some far disequality,
since otherwise, no further arguments would be needed. We define an n “big enough”
to guarantee that we are able to construct from subruns of r and from r1, . . . , rn
new candidates r′1, . . . , r′n for replacements at a pure abstract position P ′ < P such
that, again, r[r′1]P ′ , . . . , r[r′n]P ′ do not falsify any close disequality. Note that in the
case where all of them falsify some far disequality, this argument can be iterated
to obtain new candidates r′′1 , . . . , r′′n to perform replacements at a P ′′ < P ′ < P ,
i.e., at a pure abstract position closer to the root. Hence, we are guaranteed to
eventually find a replacement that does not falsify any far disequality. The number
n of needed candidates is given by means of the function B of Definition 4.59 and
the proof of this fact is given in Lemma 4.60. The function B takes two natural
numbers M and N for which we do not give a concrete definition until Lemma 4.62.
At this point it suffices to assume that they satisfy M · N ≥ B(A,M,N) = n. In
order to illustrate the definition of B, we sketch the steps that we perform in the
proof of Lemma 4.60 to construct the new candidates r′1, . . . , r′n and to find the new
pure abstract position P ′ for the replacement. We start by noting that, since all the
replacements r[r1]P , . . . , r[rn]P falsify far disequalities, we can consider the maximal
pure abstract positions P̄1, . . . , P̄n such that, for i ∈ {1, . . . , n}, the replacement r[ri]P
falsifies a far disequality tested at P̄i. We also assume without loss of generality that
P̄1 ≥ P̄2 ≥ . . . ≥ P̄n by reordering the runs ri if necessary (see Figure 4.58). Now,
the proof proceeds as follows:

• As an initial step, we need the pure abstract positions P̄1, . . . , P̄n to be spaced
between them. In particular, we want any two P̄i, P̄j to be more than h6≈ +
hlhs steps away from each other. To this end, we first remove from P̄1, . . . , P̄n
any repetition of pure abstract positions. Recall that, by Lemma 4.56, the far
disequalities falsified by a candidate ri are necessarily different from the far
disequalities falsified by any other candidate rj . However, since a rule may
have several different disequality atoms, it follows that we can have several
occurrences of identical P̄i’s. But there are at most n6≈ occurrences of the
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Figure 4.58: Abstract positions where a far disequality is falsified when performing
the replacements r[r1]P , . . . , r[rn]P of Lemma 4.60: for each replacement
r[ri]P , the pure abstract position P̄i corresponds to the deepest pure
abstract position where a far disequality becomes falsified in r[ri]P . The
figure also representes for one of such P̄i the two positions p̄i1 and p̄i2
involved in the falsified disequality atom of the rule r(P̄i), and also the
extension p′i that guarantees that P̄i.p̄i2.p′i is pure and parallel to P , and
P̄i.p̄i1.p

′
i is a prefix of P . Note that, since P is an abstract position,

each replacement r[ri]P actually involves simultaneous replacements at
several parallel positions of r, and hence, the single path depicted in the
figure should be understood as all paths in r with abstract position P .

same element, and hence, it is possible to take from P̄1, . . . , P̄n a selection with
n1 := n/n6≈ distinct pure abstract positions, say P̄1, . . . , P̄n1 . Finally, we can
take a new selection with n2 := n1/(1 + h6≈ + hlhs) pure abstract positions from
P̄1, . . . , P̄n1 , say P̄1, . . . , P̄n2 , that are more than h 6≈+ hlhs steps away from each
other.

• We now consider each selected P̄i and their corresponding positions p̄i1, p̄i2 of
the far disequality tested at P̄i and falsified by r[ri]P , and consider common
extensions of P̄i.p̄i1, P̄i.p̄i2 defined by positions p′i satisfying that either P̄i.p̄i1.p′i
or P̄i.p̄i2.p′i is pure in r and the terms pending at such abstract positions in r
are still different (and note that the terms pending at such abstract positions in
r[ri]P must coincide). We prove that for each of such p′i, one of the extensions,
say P̄i.p̄i1.p′i, is a prefix of P , and that the other one, i.e., P̄i.p̄i2.p′i, is parallel
to P . Among all the possible p′i, we choose a minimal one in size such that the
extension P̄i.p̄i2.p

′
i parallel to P is pure. Thanks to the fact that the selected

P̄1, . . . , P̄n2 are spaced between them by more than h6≈+hlhs steps, this extension
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can be done for each P̄i without reaching any larger P̄j . Let Qi be the extension
P̄i.p̄i2.p

′
i. We prove that the subruns r|Q1 , . . . , r|Qn2

recognize distinct terms.

• At this point, we split {1, . . . , n2} into two subsets depending on how close
the corresponding P̄i’s are to P : one subset with the n3 closest ones, and the
other with the n4 := n2 − n3 remaining ones. Say they are {1, . . . , n3} and
{n3 + 1, . . . , n2}, respectively. Recall that each P̄i is the maximal pure abstract
position where a far disequality is falsified by the replacement r[ri]P . This
means that the P̄i’s that are furthest from P necessarily correspond to the
replacements where all the falsified far disequalities are “very far” from P . We
now extract M + 1 indexes from {1, . . . , n3}, say {1, . . . ,M + 1}, such that,
for each i ∈ {1, . . . ,M}, the replacement r[r|Qi ]QM+1 does not falsify any close
disequality with respect to P̄M+1. Moreover, for each of such i, we extract a set
of N indexes from {n3 + 1, . . . , n2} such that, for each of such indexes j, the
simultaneous replacement r[r|Qi ]QM+1 [rj ]P does not falsify any close disequality
with respect to P̄M+1. We prove that n3 := |Q|·Bclose(A,M+1+(2·h6≈+hlhs)·n6≈)
suffices to guarantee the existence of such M + 1 indexes, where the factor |Q|
is required in order to guarantee that r|Q1 , . . . , r|QM reach the same state as
r|QM+1 . For each of such i ∈ {1, . . . ,M} the generation of the subset of size N
from {n3 + 1, . . . , n2} must be done depending on i since, even though for all
j ∈ {n3+1, . . . , n2} the replacement r[rj ]P does not falsify any disequality below
P̄M+1, it might be the case that it falsifies some such disequality when combined
with the replacement at QM+1. We prove that n4 := N + (2 · h6≈ + hlhs) · n 6≈
suffices to guarantee the existence of such N indexes.
To summarize, it is possible to combine each of the M replacements at QM+1
with theN corresponding replacements at P , and thus we can define theM ·N ≥
B(A,M,N) = n needed candidates as runs of the form r[r|Qi ]QM+1 [rj ]P |P̄M+1

and the abstract position P ′ as P̄M+1.

By considering the values given to n1, n2, n3, and n4 in the previous explanation,
we can finally define the global bound B(A,M,N) and prove the main result of this
section.

Definition 4.59. Let A be a TAihom, 6≈. Let M,N be natural numbers. We define:

B(A,M,N) = n6≈ · (1 + h6≈ + hlhs) ·
(
|Q| · Bclose(A,M + 1 + (2 · h6≈ + hlhs) · n6≈)
+N + (2 · h6≈ + hlhs) · n6≈

)
Lemma 4.60. Let A = 〈Q,Σ, F,∆〉 be a TAihom,6≈. Let M,N be natural numbers
satisfying M · N ≥ B(A,M,N). Let n = B(A,M,N). Let r be a uniform run of A,
and let P be a pure abstract position of r. Let r1, . . . , rn be uniform runs of A on
distinct terms reaching the same state as r|P , and such that r1, . . . , rn � r|P and
each one of the replacements r[r1]P , . . . , r[rn]P falsifies at least one far disequality but
does not falsify any close disequality.

Then, there exists a pure abstract position P ′ < P of r and uniform runs r′1, . . . , r′n
of A on distinct terms reaching the same state as r|P ′ , and such that r′1, . . . , r′n �
r|P ′ and each one of the replacements r[r′1]P ′ , . . . , r[r′n]P ′ does not falsify any close
disequality.
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Proof. For each i ∈ {1, . . . , n}, let P̄i be the maximal pure abstract position such
that the replacement r[ri]P falsifies a far disequality tested at P̄i. Without loss of
generality, we assume that P̄1 ≥ P̄2 ≥ . . . ≥ P̄n by reordering the runs ri if necessary.
Note that |term(r|P̄1

)| ≤ |term(r|P̄2
)| ≤ . . . ≤ |term(r|P̄n)|. By Lemma 4.56 and the

fact that there are n6≈ different disequality atoms in the rules of A, it follows that
for each pure abstract position P ′ < P at most n6≈ of the pure abstract positions P̄i
coincide with P ′. Thus, we can choose a subset S of {1, . . . , n} with size

n′ := n/(n6≈ · (1 + h 6≈ + hlhs)) = |Q| · Bclose(A,M + 1 + (2 · h6≈ + hlhs) · n6≈)
+N + (2 · h 6≈ + hlhs) · n6≈

satisfying that P̄j is more than h6≈ + hlhs steps above P̄i for each i, j ∈ S with i < j,
and that P̄i is more than h 6≈ + hlhs steps above P for each i ∈ S. Without loss of
generality, we assume that S is {1, . . . , n′}. Note that P̄1 > P̄2 > . . . > P̄n′ and
|term(r|P̄1

)| < |term(r|P̄2
)| < . . . < |term(r|P̄n′ )|.

Consider any k in S. Since the replacement r[rk]P falsifies a disequality tested
at P̄k, it follows that there exist positions p̄k1, p̄k2 such that the atom p̄k1 6≈ p̄k2
occurs in the disequality constraint of the rule r(P̄k), and moreover, term(r|P̄k)|p̄k1 6=
term(r|P̄k)|p̄k2 and term(r[rk]P |P̄k)|p̄k1 = term(r[rk]P |P̄k)|p̄k2 . Let pk be the shortest
position such that at least one of P̄k.p̄k1.pk, P̄k.p̄k2.pk is defined in r (i.e., corresponds
to a pure abstract position of r), and moreover, term(r|P̄k)|p̄k1.pk 6= term(r|P̄k)|p̄k2.pk

and term(r[rk]P |P̄k)|p̄k1.pk = term(r[rk]P |P̄k)|p̄k2.pk . Note that |p̄k1|, |p̄k2| ≤ h6≈ and
|pk| ≤ hlhs, which implies that P̄i is not a prefix of P̄k.p̄k1.pk or P̄k.p̄k2.pk for each i ∈ S
with i < k, and neither P is prefix of P̄k.p̄k1.pk or P̄k.p̄k2.pk. Also note that P̄k.p̄k1.pk
and P̄k.p̄k2.pk are necessarily parallel and at least one of them is a prefix of P ,
since otherwise, either term(r|P̄k)|p̄k1.pk 6= term(r|P̄k)|p̄k2.pk or term(r[rk]P |P̄k)|p̄k1.pk =
term(r[rk]P |P̄k)|p̄k2.pk would be impossible. By Lemma 4.43, without loss of gener-
ality, we can assume that P̄k.p̄k1.pk is a prefix of P , and that P̄k.p̄k2.pk is not a
prefix of P . Let p′k be the shortest extension of pk such that P̄k.p̄k2.p

′
k is defined in r

(i.e., corresponds to a pure abstract position of r), and moreover, term(r|P̄k)|p̄k1.p′k
6=

term(r|P̄k)|p̄k2.p′k
and term(r[rk]P |P̄k)|p̄k1.p′k

= term(r[rk]P |P̄k)|p̄k2.p′k
. Note that in the

case where P̄k.p̄k2.pk already corresponds to a pure abstract position of r, then p′k
is just pk. In any case, we have |p′k| ≤ hlhs. Let Qk be the pure abstract position
P̄k.p̄k2.p

′
k. Observe that all of such Qk are parallel with P .

We prove that the terms term(r|Q1), . . . , term(r|Qn′ ) are distinct by showing that
term(r|Qi) is a strict subterm of term(r|Qj ) for each 1 ≤ i < j ≤ n′. From the
fact that P̄j is more than h6≈ + hlhs steps above P̄i, it follows that P̄j .p̄j1.p′j is a
strict prefix of P̄i, and thus also of Qi. Hence, term(r|Qi) is a strict subterm of
term(r|P̄j )|p̄j1.p′j . Moreover, since Qi is parallel with P , term(r|Qi) is also a strict
subterm of term(r[rj ]P |P̄j )|p̄j1.p′j . Since term(r[rj ]P |P̄j )|p̄j1.p′j = term(r[rj ]P |P̄j )|p̄j2.p′j ,
it follows that term(r|Qi) is also a strict subterm of term(r[rj ]P |P̄j )|p̄j2.p′j , i.e., of
term(r[rj ]P |Qj ). Finally, since Qj is parallel with P , term(r|Qi) is also a strict subterm
of term(r|Qj ).

Let m = M+1+(2 ·h6≈+hlhs) ·n 6≈, and consider the first |Q| ·Bclose(A,m) elements
of S, i.e., {1, . . . , |Q| · Bclose(A,m)}. Necessarily, there exists Bclose(A,m) elements
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among them, say {1, . . . ,Bclose(A,m)} without loss of generality, such that the sub-
runs of r at the pure abstract positions Q1, . . . , QBclose(A,m) reach the same state.
By Lemma 4.55, there exists a subset {i1, . . . , im} of {1, . . . ,Bclose(A,m)} such that
r|Qi1 � . . . � r|Qim and the replacements r[r|Qi1 ]Qim , . . . , r[r|Qim−1

]Qim do not fal-
sify any close disequality. Moreover, by Lemma 4.57, there exists a subset {j1, . . . , jM}
of {i1, . . . , im−1} such that the replacements r[r|Qj1 ]Qim , . . . , r[r|QjM ]Qim do not fal-
sify any far disequality tested at most 2 · h6≈ + hlhs steps above Qim . Note that, since
P̄im is at most h 6≈ + hlhs steps above Qim , the replacements do not falsify any dise-
quality tested at most h6≈ steps above P̄im , and hence, they do not falsify any close
disequality with respect to P̄im .

Now, consider the last |S| − |Q| · Bclose(A,m) remaining elements of S. Observe
that S′ := S \{1, . . . , |Q| ·Bclose(A,m)} = {|Q| ·Bclose(A,m)+1, . . . , n′} = {n′− (N +
(2 · h 6≈ + hlhs) · n 6≈) + 1, . . . , n′}. Also, note that, for each i ∈ S′, the replacement
r[ri]P does not falsify any disequality tested below or at P̄im . Thus, for each i ∈ S′
and each k ∈ {1, . . . ,M}, since P̄im .p̄im1.p

′
im

and P̄im .p̄im2.p
′
im

are parallel, it follows
that the replacement r[r|Qjk ]Qim [ri]P does not falsify any disequality tested below
or at P̄im .p̄im1.p

′
im
. Recall that |p̄im1| ≤ h 6≈ and |p′im | ≤ hlhs. By Lemma 4.57, for

each fixed k ∈ {1, . . . ,M}, we can choose a subset Sk of S′ with size N such that, for
each i ∈ Sk, the replacement r[r|Qjk ]Qim [ri]P does not falsify any disequality tested
below or at P̄im , and moreover, it does not falsify any disequality tested at most h6≈
steps above P̄im , i.e., it does not falsify any close disequality with respect to P̄im . Let
rki be r[r|Qjk ]Qim [ri]P |P̄im for each k ∈ {1, . . . ,M} and each i ∈ Sk. Note that all
such rki’s are uniform runs of A on distinct terms reaching the same state as r|P̄im .
Moreover, each of such rki satisfies rki � r|P̄im , and the replacement r[rki]P̄im , which
in fact produces r[r|Qjk ]Qim [ri]P , does not falsify any close disequality with respect
to P̄im . Observe that there are M ·N ≥ n of such rki’s. Thus, by defining P ′ as P̄im
and r′1, . . . , r′n as n of such rki’s, the lemma follows. �

At this point it is clear that, by iterative applications of Lemma 4.60, we can
construct a replacement that does not falsify any disequality or implicit equality
constraint—i.e., a replacement that produces a run—whenever we have B(A,M,N)
candidates for the replacement that do not falsify any close disequality. Moreover,
note that since the candidates considered are smaller than the subrun being replaced,
such replacement necessarily decreases the size of the starting run. The following
corollary is an immediate consequence of this fact stating that, when the starting run
is accepting, then it is not a minimum accepting run since we can decrease its size by
performing such a replacement.
Corollary 4.61. Let A be a TAihom,6≈. LetM,N be natural numbers satisfyingM ·N ≥
B(A,M,N). Let n = B(A,M,N). Let r be an accepting uniform run of A, and let P
be a pure abstract position of r. Let r1, . . . , rn be uniform runs of A on distinct terms
reaching the same state as r|P , and such that r1, . . . , rn � r|P and each one of the
replacements r[r1]P , . . . , r[rn]P does not falsify any close disequality.

Then, r is not a minimum accepting run.
In order to conclude, it only remains to prove that there exist M and N satisfying

M ·N ≥ B(A,M,N). In the following lemma we give concrete values for M and N
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that satisfy that condition. Note that there exist alternative definitions, but the ones
we use are rather straightforward and lead to a simple proof.

Lemma 4.62. Let A be a TAihom, 6≈. Let M,N be natural numbers defined as:

M = n 6≈ · (1 + h 6≈ + hlhs) + 1
N = n 6≈ · (1 + h 6≈ + hlhs) ·

(
|Q| · Bclose(A,M + 1 + (2 · h 6≈ + hlhs) · n6≈)
+ (2 · h6≈ + hlhs) · n6≈

)
Then, M ·N = B(A,M,N).

Proof. It follows by replacing the N in the definition of B by the definition of N in
the statement, and factoring the result. More precisely, let X = n 6≈ · (1 + h 6≈ + hlhs)
and Y =

(
|Q| ·Bclose(A,M +1+(2 ·h6≈+ hlhs) ·n6≈)+(2 ·h6≈+ hlhs) ·n6≈

)
, and note that

M = X + 1 and N = X · Y . Then, B(A,M,N) = X · (Y +N) = X · (Y +X · Y ) =
X · ((1 +X) · Y ) = (1 +X) ·X · Y = M ·N . �

4.6 Emptiness decision algorithm
In this section we introduce an algorithm that decides emptiness of the language
recognized by TAihom, 6≈ in exponential time. In contrast to the previous section, we
can now refrain from reasoning on runs since most of the information they provide
is superfluous in our current setting. In particular, the only relevant data that the
algorithm needs from a run is the term it recognizes and the state it reaches. For this
reason, we focus on a formalism simpler than runs, namely, (term,state)-pairs defined
as follows.

Definition 4.63. Let A = 〈Q,Σ, F,∆〉 be a TAihom,6≈. A (term,state)-pair 〈t, q〉 ∈
T (Σ)×Q is called a feasible pair of A if there exists a run of A on t reaching q, and
moreover, it is called accepting if such run is accepting, i.e., if q ∈ F .

We compare (term,state)-pairs by the lexicographic extension of � and an arbi-
trary total ordering on states. We also use � to denote the ordering on (term,state)-
pairs.

Two sets of feasible pairs, called Definitive and Candidates, are maintained as data
structures of the algorithm. Initially, Definitive is empty, and Candidates has all the
feasible pairs 〈t, q〉 such that there exists a run with only one applied rule on t and
reaching q. At each iteration, the minimum pair 〈t, q〉 with respect to� in Candidates
is considered. The pair 〈t, q〉 is added to the set Definitive unless it is realized that it
cannot be used to construct the minimum term with respect to � of L(A). This fact
can be detected using the results of the previous section. The following Corollary 4.66
is a direct consequence of combining Corollary 4.61 with Lemma 4.51, and translating
the reasoning to the setting of (term,state)-pairs. We also provide Definitions 4.64
and 4.65 to simplify the notation.

Definition 4.64. Let A = 〈Q,Σ, F,∆〉 be a TAihom, 6≈. Let 〈t, q〉, 〈t′, q′〉 ∈ T (Σ) × Q
be feasible (term,state)-pairs. We say that 〈t′, q′〉 is a piece of 〈t, q〉 if there exists a
run r of A on t reaching q such that there is a position p ∈ Pos(t) satisfying that r(p)
is defined, r|p reaches q′, and t|p = t′.
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Definition 4.65. Let A be a TAihom,6≈. Let M,N be natural numbers defined as in
Lemma 4.62. We define K(A) as h6≈ · n 6≈ + B(A,M,N).

Corollary 4.66. Let A = 〈Q,Σ, F,∆〉 be a TAihom,6≈. Let t, s1, . . . , sK(A) be dis-
tinct terms in T (Σ) with runs of A on them reaching a state q ∈ Q, and such that
{t, s1, . . . , sK(A)} is suff 6≈-independent, t ∼A s1, . . . , sK(A), and s1, . . . , sK(A) � t.

Then, 〈t, q〉 is not a piece of the minimum accepting pair of A.

According to the previous corollary, in order to discard the addition of 〈t, q〉
to Definitive, we should consider the set {s | 〈s, q〉 ∈ Definitive ∧ s ∼A t} and
check whether it has a subset {s1, . . . , sK(A)} such that {t, s1, . . . , sK(A)} is suff 6≈-
independent. The time complexity of searching for such subset is too high for our
goals. Fortunately, Section 4.4.2 gives us an alternative criterion to determine, in
some cases, that such a subset exists. Along the execution of the algorithm we pre-
serve an invariant stating that each of such sets {s | 〈s, q〉 ∈ Definitive ∧ s ∼A t} is
a (K(A)+1, suff 6≈)-small set of terms. If the addition of t to this set makes it non-
(K(A)+1, suff 6≈)-small, then, by Lemma 4.37, it follows the existence of the subset
{s1, . . . , sK(A)} mentioned above. Thus, in this case we must discard the pair 〈t, q〉,
since it is not a piece of the minimum accepting pair of A.

In the case where the pair 〈t, q〉 is not discarded, it is added to the set Definitive and
used to generate new feasible (term,state)-pairs, which are added to Candidates. This
generation is performed (i) using the left-hand sides of rules in ∆ to determine the
symbols in the top-most positions of the new terms, (ii) using the feasible (term,state)-
pairs in Definitive to instantiate the states appearing in such left-hand sides, and
also (iii) guaranteeing that the specific pair 〈t, q〉 is used for the instantiation. This
last condition ensures that all the pairs added to Candidates are new, i.e., that the
algorithm has still not considered them to be added to Definitive (although they may
be already in Candidates due to a previous generation). This generation is defined
formally as follows.

Definition 4.67. Let A = 〈Q,Σ, F,∆〉 be a TAihom,6≈. Let S ⊆ T (Σ) × Q be a set
of feasible (term,state)-pairs. Let 〈t, q〉 ∈ S be a feasible (term,state)-pair. We define
the set of instantiations of ∆ with S and 〈t, q〉 as the set of feasible pairs:{

〈t′ = l[t1]p1 . . . [tn]pn , q′〉 | ∃(l
c−→ q′) ∈ ∆, {p1, . . . , pn} = PosQ(l),

∀i ∈ {1, . . . , n} : 〈ti, l(pi)〉 ∈ S,
∃i ∈ {1, . . . , n} : 〈ti, l(pi)〉 = 〈t, q〉,
∀i, j ∈ {1, . . . , n} : (l(pi) = l(pj)⇒ ti = tj),
∀(p̄1 6≈ p̄2) ∈ c : (p̄1, p̄2 ∈ Pos(t′)⇒ t′|p̄1 6= t′|p̄2)

}
Example 4.68. Consider a TAihom,6≈ A over {a:0, f :2} with set of states {q1, q2, q3}
and set of rules ∆ = {a→ q1|q2, f(q1, q2)→ q1|q2, f(q1, q1)→ q3}, where we use the
notation l → q1|q2 to simultaneously denote the rules l → q1 and l → q2. Consider
the set of feasible (term,state)-pairs S = {〈a, q1〉, 〈a, q2〉}. The set of instantiations
of ∆ with S and 〈a, q1〉 ∈ S is obtained as follows, were we take into account the
conditions of Definition 4.67 progressively. First, we need to consider all the rules
in ∆ and replace, in all possible ways, each of the states occurring at their left-
hand sides by the term part of a pair in S, ensuring that the state part of such pair
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matches the state being replaced. Thus, we would obtain 〈a, q1〉, 〈a, q2〉 from the
rules a → q1|q2 (where no state replacement is performed), 〈f(a, a), q1〉, 〈f(a, a), q2〉
from the rules f(q1, q2) → q1|q2 (obtained by replacing q1 and q2 by the terms of the
pairs 〈a, q1〉, 〈a, q2〉 ∈ S, respectively), and 〈f(a, a), q3〉 from the rule f(q1, q1) → q3
(obtained by replacing twice q1 by the term of the pair 〈a, q1〉 ∈ S). Nevertheless, since
we are doing the instantiation of ∆ with S and 〈a, q1〉 ∈ S, Definition 4.67 requires
that 〈a, q1〉 ∈ S is used to replace at least one of the states occurring at the left-hand
side of the rules. Thus, rules a → q1|q2 cannot actually be used in the instantiation
of this example, and the pairs obtained are just 〈f(a, a), q1〉, 〈f(a, a), q2〉, 〈f(a, a), q3〉
since all of them have used 〈a, q1〉 to replace (at least) an occurrence of q1. Finally,
the last two conditions of Definition 4.67 ensure that the pairs generated are feasible,
meaning that the (dis)equality constraints of the rules used in the instantiation are
respected. In this example there is no disequality constraint, and the single implicit
equality constraint of A occurs in the rule f(q1, q1) → q3 between positions 1, 2, and
has been respected when instantiating the pair 〈f(a, a), q3〉. In summary, the set of
instantiations of ∆ with S and 〈a, q1〉 ∈ S is {〈f(a, a), q1〉, 〈f(a, a), q2〉, 〈f(a, a), q3〉}.

When there are no more pairs in Candidates to be considered, the algorithm stops
and states non-emptiness if there is a (term,state)-pair in Definitive where the state
is final. We present in Algorithm 4.69 a formalization of the previous explanations.

Algorithm 4.69 Emptiness decision for the language recognized by a TAihom, 6≈ A.
Input: a TAihom,6≈ A = 〈Q,Σ, F,∆〉.
Data structures: Definitive,Candidates sets of elements in T (Σ)×Q.
(1) Insert in Candidates the pairs 〈l, q〉 such that there exists a rule (l c−→ q) ∈ ∆

with l ∈ T (Σ) and satisfying ∀(p̄1 6≈ p̄2) ∈ c : (p̄1, p̄2 ∈ Pos(l)⇒ l|p̄1 6= l|p̄2).
(2) While Candidates is not empty:

(a) Let 〈t, q〉 be the smallest pair in Candidates with respect to �.
(b) Remove 〈t, q〉 from Candidates.
(c) If {s | 〈s, q〉 ∈ Definitive ∧ s ∼A t} ] {t} is (K(A)+1, suff 6≈)-small:

(i) Insert 〈t, q〉 in Definitive.
(ii) Insert in Candidates all the elements in the set of instantiations of ∆

with Definitive and 〈t, q〉.
(3) If there is a pair 〈t, q〉 ∈ Definitive with q ∈ F , then output ‘NON-EMPTY’, else

output ‘EMPTY’.

Example 4.70. Consider the signature Σ with binary symbols h, g and a nullary
symbol a, and the language of terms over Σ of the form h(t1, t2) satisfying that t1, t2
are different complete trees over g and a. Such language is recognized by the TAihom,6≈

A = 〈{q, q′, qaccept},Σ, {qaccept}, {a → q|q′, g(q, q) → q|q′, h(q, q′) 1 6≈2−−→ qaccept}〉,
where again we use l→ q|q′ to simultaneously denote the rules l→ q and l→ q′.

In order to apply Algorithm 4.69, we first need to fix an ordering � for terms. We
choose a natural recursive definition: for distinct terms t, t′, if |t| < |t′|, then t� t′,
and in the case |t| = |t′| (which implies that the sizes are at least 2 since t 6= t′), t� t′
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if (t(λ) = g ∧ t′(λ) = h)∨ (t(λ) = t′(λ)∧ t|1 � t′|1)∨ (t(λ) = t′(λ)∧ t|1 = t′|1 ∧ t|2 �
t′|2). To lexicographically extend the ordering to (term,state)-pairs we simply assume
〈t, q〉 � 〈t, q′〉 � 〈t, qaccept〉.

We execute Algorithm 4.69 step by step. First, Candidates := {〈a, q〉, 〈a, q′〉} is set
at Step 1. Second, Step 2 is executed repeatedly, where the first four iterations proceed
as follows (to ease the presentation, we do not discuss (K(A)+1, suff 6≈)-smallness in
detail):

1. The �-minimum pair extracted from Candidates is 〈a, q〉. Since Definitive is
still empty, Step 2.c is satisfied with a trivial (K(A)+1, suff 6≈)-smallness test.
Hence, Definitive := {〈a, q〉}, and the pair 〈a, q〉 and the current Definitive are
used to instantiate 2 new feasible pairs for Candidates:

Candidates := {〈a, q′〉} ] {〈g(a, a), q〉, 〈g(a, a), q′〉}

2. The �-minimum pair extracted from Candidates is 〈a, q′〉. Now, Definitive is
non-empty, but its subset {s | 〈s, q′〉 ∈ Definitive} is, and thus, Step 2.c is
satisfied. Hence, Definitive := {〈a, q〉, 〈a, q′〉}. In this case, the instantiation
does not produce any feasible pair: since it is required that the current pair
〈a, q′〉 is used in the instantiation, the only transition rule that we can use is
h(q, q′) 1 6≈2−−→ qaccept, but it is easy to see that the disequality constraint 1 6≈ 2
cannot be satisfied with the current feasible pairs in Definitive. Hence:

Candidates = {〈g(a, a), q〉, 〈g(a, a), q′〉}

3. The �-minimum pair extracted from Candidates is 〈g(a, a), q〉. Now, note that
{s | 〈s, q〉 ∈ Definitive ∧ s ∼A g(a, a)} is empty since suff 6≈ = {λ, 1, 2}. Thus,
again Step 2.c is satisfied. Hence, Definitive := {〈a, q〉, 〈a, q′〉, 〈g(a, a), q〉}, and
the instantiation produces 3 new feasible pairs:

Candidates := {〈g(a, a), q′〉} ] {〈g(g(a, a), g(a, a)), q〉, 〈g(g(a, a), g(a, a)), q′〉,
〈h(g(a, a), a), qaccept〉}

At this point it would be possible to conclude L(A) 6= ∅ due to the presence of
the feasible pair 〈h(g(a, a), a), qaccept〉 in Candidates. Nevertheless, the algorithm
does not stop its execution until Candidates is empty.

4. The �-minimum pair extracted from Candidates is 〈g(a, a), q′〉. As before,
Step 2.c is satisfied since {s | 〈s, q′〉 ∈ Definitive ∧ s ∼A g(a, a)} is empty.
Hence, Definitive := {〈a, q〉, 〈a, q′〉, 〈g(a, a), q〉, 〈g(a, a), q′〉}, and the instantia-
tion produces 1 new feasible pair:

Candidates := {〈g(g(a, a), g(a, a)), q〉, 〈g(g(a, a), g(a, a)), q′〉,
〈h(g(a, a), a), qaccept〉} ] {〈h(a, g(a, a)), qaccept〉}

In the next iteration of Step 2, the algorithm will extract from Candidates the pair
〈h(a, g(a, a)), qaccept〉 generated in the 4th iteration (which is, in fact, the�-minimum
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accepting pair of A), and insert it into Definitive. Hence, once Candidates is completely
emptied, the algorithm will halt with output ‘NON-EMPTY’, as expected. Note that, in
the detailed iterations, the feasible pairs instantiated are all new, even though this is
in general not the case: the instantiation might produce feasible pairs that are already
in Candidates (the new pairs are only guaranteed to be �-greater than all the feasible
pairs in Definitive).

Now it remains to prove that our algorithm is correct and terminates in the desired
time. We start stating its time complexity.

Lemma 4.71. Let A be a TAihom,6≈.
Then, Algorithm 4.69 on input A takes time in 2O(|suff 6≈|2·|Poslhs|·log |A|).

Proof. Let A be 〈Q,Σ, F,∆〉 more explicitly written. First note that, by Defini-
tions 4.52, 4.54, 4.59, and 4.65, and Lemma 4.62, K(A) is in 2O(|suff 6≈|·log |A|). Now,
consider any maximal subset of Definitive with (term,state)-pairs having the same
state and with all the terms belonging to the same equivalence class of ∼A, and note
that, since Algorithm 4.69 guarantees that such subset is (K(A)+1, suff 6≈)-small, by
Lemma 4.35 it follows that its size is in 2O(|suff 6≈|2·log |A|). By Lemma 4.53, there
are |Q| · Beq(A) of such subsets, and thus, we have that the size of Definitive is
in 2O(|suff 6≈|2·log |A|). Each time a pair is added to Definitive, new pairs are gener-
ated and added to Candidates. When this happens, the maximum number of new
pairs that can be generated in the instantiation is bounded by |∆| · |Definitive||Poslhs|.
Hence, the number of pairs inserted in Candidates during the whole execution is in
2O(|suff 6≈|2·|Poslhs|·log |A|). Since each iteration of the algorithm removes a pair from
Candidates, it follows that the number of iterations is in 2O(|suff 6≈|2·|Poslhs|·log |A|).

It remains to prove that each iteration takes time in 2O(|suff 6≈|2·|Poslhs|·log |A|). To
avoid double exponential blowup, we consider a directed acyclic graph (DAG) repre-
sentation for terms. More precisely, the algorithm uses a DAG as an internal data
structure, where each node is labeled by a symbol f ∈ Σ and has arity(f) ordered out-
edges. In this way, each node of the DAG implicitly represents a term over Σ, and thus,
each of the terms considered by the algorithm is simply a reference to the appropriate
node in the DAG. Additionally, we consider that the DAG is minimum, meaning that
each two distinct nodes of the DAG represent different terms (note that each time
a new node has to be inserted into the DAG, it can be checked in linear time with
respect to the size of the DAG whether the DAG already contains a node representing
the desired term). This implies that the total size of the representation, i.e., the size
of the DAG, equals the number of distinct terms generated by the algorithm, which
is in 2O(|suff 6≈|2·|Poslhs|·log |A|). Now, we analyse the cost of performing each of the steps
in the loop when using such an internal data structure. For Step 2.a, it is necessary
to select the minimum pair in Candidates with respect to �. To this end, it suffices
to compute, for each two distinct nodes of the DAG representing terms t, t′, whether
t � t′. The cost of this computation is polynomial with respect to the size of the
DAG when using a dynamic programming scheme, and hence, this step takes time in
2O(|suff 6≈|2·|Poslhs|·log |A|). For Step 2.c, ∼A-equivalence with a term t must be checked:
this consists in testing, for each node of the DAG representing a term t′ and each two
positions p1, p2 ∈ suff 6≈, whether the subterms of t, t′ pending at positions p1, p2 exist,
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and when they do, whether t|p1 , t|p2 are represented by the same node of the DAG
(i.e., are equal terms) if and only if t′|p1 , t

′|p2 are represented by the same node of the
DAG (i.e., are equal terms). Also for Step 2.c, it is necessary to test (K(A)+1, suff 6≈)-
smallness: by Lemma 4.36, this requires at most |Definitive|2 · 2|suff 6≈| · |suff 6≈| equal-
ity comparisons between subterms, and such comparisons consist simply in checking
whether the nodes of the DAG representing the involved subterms coincide. Thus,
this step also takes time in 2O(|suff 6≈|2·|Poslhs|·log |A|). Finally, for Step 2.c.ii, we need
to insert into the DAG the newly instantiated terms, and also avoid the insertion of
repeated elements in Candidates. As justified before, inserting a node into the DAG
takes linear time with respect to the size of the DAG, as we need to keep the DAG
minimum. Avoiding repeated elements in Candidates is straightforward: it suffices to
check whether Candidates already contains a (term,state)-pair with the same state
and referencing the same node of the DAG as the (term,state)-pair to be inserted.
Hence, this also takes time in 2O(|suff 6≈|2·|Poslhs|·log |A|), and we are done. �

We now prove Algorithm 4.69 to be correct. We start stating the following trivial
property of our algorithm: whenever a feasible pair is not generated, it is due to
having previously discarded another pair needed for its construction.

Lemma 4.72. Let A = 〈Q,Σ, F,∆〉 be a TAihom, 6≈. Let 〈t, q〉 ∈ T (Σ)×Q be a feasible
(term,state)-pair of A satisfying that it is not generated by Algorithm 4.69 on input
A.

Then, there exists a feasible pair 〈t′, q′〉 ∈ T (Σ)×Q of A such that it is a piece of
〈t, q〉 and is discarded by Algorithm 4.69 on input A.

Proof. We proceed by induction on height(t). Let r be a run of A on t reaching q and
let l c−→ q be the rule applied at root position in r. Let p1, . . . , pm be the positions in
PosQ(l). Note that necessarily m > 0, since otherwise the pair 〈t, q〉 is generated at
Step 1 of Algorithm 4.69. Let t1, . . . , tm be the terms t|p1 , . . . , t|pm and q1, . . . , qm be
the states l(p1), . . . , l(pm), respectively. Note that height(ti) < height(t) since pi 6= λ,
and that qi is the state reached by the subrun r|pi , for all i ∈ {1, . . . ,m}. Since
〈t, q〉 is not generated by Algorithm 4.69 on input A, then there exists i ∈ {1, . . . ,m}
satisfying that 〈ti, qi〉 is either discarded or not generated. Note that such imust exist,
since otherwise, 〈t, q〉 is generated at Step 2.c.ii of Algorithm 4.69, contradicting the
definition of 〈t, q〉.

In order to conclude, first assume that 〈ti, qi〉 is discarded. In this case, the
statement holds by defining the pair 〈t′, q′〉 of the lemma as 〈ti, qi〉. Next, assume
that 〈ti, qi〉 is not generated. In this case, by induction hypothesis, there exists a
feasible pair 〈t̂, q̂〉 ∈ T (Σ)×Q of A such that it is a piece of 〈ti, qi〉 and is discarded
by Algorithm 4.69 on input A. Hence, the statement holds by defining the pair 〈t′, q′〉
of the lemma as 〈t̂, q̂〉. �

We are finally ready to prove the soundness and completeness of Algorithm 4.69.

Lemma 4.73. Let A be a TAihom,6≈.
Then, L(A) is empty if and only if Algorithm 4.69 on input A outputs ‘EMPTY’.
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Proof. Let A be 〈Q,Σ, F,∆〉 more explicitly written. The left-to-right direction fol-
lows trivially, since in this case it is not possible to generate a feasible pair 〈t, q〉 ∈
T (Σ) × Q of A satisfying that q ∈ F , and hence, the algorithm necessarily outputs
‘EMPTY’. For the other direction, we proceed by contradiction by assuming that there
exists an accepted term, but the algorithm cannot find any accepting pair of A and
outputs ‘EMPTY’. Let 〈t, q〉 ∈ T (Σ) × Q be the minimum accepting pair of A with
respect to �. By assumption, 〈t, q〉 is either discarded or not generated by the al-
gorithm. The former case is not possible, since it implies that Definitive contains at
least one pair 〈t′, q〉 such that t′ ∼A t, and therefore 〈t′, q〉 is an accepting pair of A,
contradicting the fact that the algorithm finds no accepting pairs of A. Hence, assume
that 〈t, q〉 is not generated by the algorithm. By Lemma 4.72, it follows that there
exists a feasible pair 〈t′, q′〉 of A such that it is a piece of 〈t, q〉 and is discarded by
the algorithm. Consider that the execution of the algorithm is at the iteration when
the pair 〈t′, q′〉 is discarded and let S be {s | 〈s, q′〉 ∈ Definitive ∧ s ∼A t′}]{t′}. We
know that S \ {t′} is (K(A)+1, suff 6≈)-small, but S is not. Hence, by Lemma 4.37,
it follows that there exists a suff 6≈-independent set of terms S̃ ⊆ S including t′ and
satisfying |S̃| ≥ K(A) + 1. By definition, all the terms in S̃ \ {t′} also have runs of
A on them reaching the state q′, are ∼A-equivalent to t′, and smaller than t′ with
respect to �. By Corollary 4.66, it follows that 〈t′, q′〉 is not a piece of the minimum
accepting pair of A, contradicting the selection of 〈t, q〉. �

The next corollary follows from Lemmas 4.71 and 4.73.

Corollary 4.74. Emptiness of the language recognized by a TAihom,6≈ A can be decided
with time in 2O(|suff 6≈|2·|Poslhs|·log |A|).

4.7 Consequences
In this section we state the consequences that follow from the decidability of the empti-
ness problem for TAihom,6≈ in exponential time. Since the constructions from [GG13]
summarized in Section 4.2 deal with the class TAhom,6≈, we begin by translating Corol-
lary 4.74 to the setting of TAhom,6≈.

Corollary 4.75. Emptiness of the language recognized by a TAhom,6≈ A can be decided
with time in 2O((h 6≈·n 6≈)2·|Poslhs|·log |A|).

Proof. Follows from Lemma 4.16, Corollary 4.74, and the definition of suff 6≈ for
TAihom, 6≈. �

Theorem 4.76. Deciding emptiness and finiteness of the language recognized by a
TAhom,6≈ A is in EXPTIME.

Proof. Decidability of emptiness in exponential time follows directly from Corol-
lary 4.75. In the case of finiteness, by Proposition 4.10, a TAhom,6≈ A′ such that
L(A′) is empty if and only if L(A) is finite can be computed in exponential time with
respect to |A|. Moreover, the bounds on h6≈(A′), n 6≈(A′), |Poslhs(A′)|, and |A′| are
such that, by Corollary 4.75, emptiness of L(A′) can be decided in exponential time
with respect to |A|. �
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Note that, since TAihom, 6≈ can be transformed into TAhom,6≈ in polynomial time as
detailed in Lemma 4.19, from the previous result it follows that the finiteness problem
for TAihom, 6≈ is also decidable in exponential time.

Now we give decidability results on the images of regular tree languages under
tree homomorphisms.
Theorem 4.77. The inclusion problem for images of regular tree languages under
tree homomorphisms, i.e., deciding H1(L(A1)) ⊆ H2(L(A2)) for TA A1, A2 and tree
homomorphisms H1, H2 given as input, is EXPTIME-complete.
Proof. By Proposition 4.4, two TAhom A′1, A

′
2 recognizing H1(L(A1)) and H2(L(A2)),

respectively, can be computed in polynomial time with respect to the size of the input.
By Propositions 4.8 and 4.9, a TAhom,6≈ A recognizing L(A′1)∩L(A′2) can be computed
in exponential time with respect to the size of the input. Moreover, the bounds on
h6≈(A), n 6≈(A), |Poslhs(A)|, and |A| are such that, by Corollary 4.75, emptiness of
L(A) can be decided in exponential time with respect to the size of the input. Thus,
we conclude by noting that emptiness of L(A′1)∩L(A′2) is equivalent to H1(L(A1)) ⊆
H2(L(A2)), and that the problem is EXPTIME-hard by Proposition 4.1. �

Corollary 4.78. The equivalence problem for images of regular tree languages under
tree homomorphisms, i.e., deciding H1(L(A1)) = H2(L(A2)) for TA A1, A2 and tree
homomorphisms H1, H2 given as input, is EXPTIME-complete.
Corollary 4.79. The inclusion and equivalence problems for ranges of bottom-up tree
transducers are EXPTIME-complete.
Theorem 4.80. The finite difference problem for images of regular tree languages
under tree homomorphisms, i.e., deciding finiteness of H1(L(A1))\H2(L(A2)) for TA
A1, A2 and tree homomorphisms H1, H2 given as input, is EXPTIME-complete.
Proof. By Propositions 4.4, 4.8, 4.9 and 4.10, a TAhom,6≈ A such that L(A) is empty if
and only if H1(L(A1))∩H2(L(A2)) is finite can be computed in exponential time with
respect to the size of the input. Moreover, the bounds on h 6≈(A), n 6≈(A), |Poslhs(A)|,
and |A| are such that, by Corollary 4.75, emptiness of L(A) can be decided in exponen-
tial time with respect to the size of the input. Thus, we conclude by noting that finite-
ness of H1(L(A1))∩H2(L(A2)) is equivalent to finiteness of H1(L(A1)) \H2(L(A2)),
and that the problem is EXPTIME-hard by Proposition 4.1. �

Our results have also implications in the context of term rewriting. The set of
reducible terms of a term rewrite system can be described as the image of a regular
tree language under a tree homomorphism, and the set of normal forms, i.e., the set
of terms for which no rule can be applied, is just its complement. Thus, we can
decide inclusion and equality of such sets with respect to two given term rewrite
systems in exponential time. Since ground reducibility is a particular case of such
problems and it is shown EXPTIME-hard in [CJ03], we conclude that these problems
are EXPTIME-complete.
Corollary 4.81. Deciding Red(R1) = Red(R2), Red(R1) ⊆ Red(R2), NF(R1) =
NF(R2), and NF(R1) ⊆ NF(R2) for given term rewrite systems R1, R2 is EXPTIME-
complete, where Red(R) and NF(R) denote the set of reducible terms and the set of
normal forms, respectively, with respect to R.
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In [GT95], the question Rel(L1) ⊆ L2 is shown decidable for given regular tree
languages L1, L2 and where the relation Rel is defined in several ways according
to a given term rewrite system R. Tree homomorphisms are used to describe the
image of L1 through this relation: two tree homomorphisms Hl and Hr, and a tree
language Rc are defined satisfying Rel(L1) = Hr(H−1

l (L1) ∩ Rc), so that deciding
Rel(L1) ⊆ L2 is done by testing Hr(H−1

l (L1) ∩ Rc) ⊆ L2. The tree homomorphisms
Hl, Hr depend only on the rewrite system R. The tree language Rc depends also
on the relation Rel. Our results allow to improve the results in [GT95] where Rc is
a regular tree language. These are when Rel is one of the following relations: the
one rewriting step, the one parallel rewriting step, the one-pass innermost-outermost
step for left-linear term rewrite systems, and the one-pass outermost-innermost step
for right-linear term rewrite systems (see [GT95] for details). In those cases, we are
able to extend the results to decide the question Rel1(L1) ⊆ Rel2(L2): analogously,
tree homomorphisms H1,l, H1,r, H2,l, H2,r and regular tree languages R1,c, R2,c can be
defined such that Rel1(L1) = H1,r(H−1

1,l (L1) ∩ R1,c) and Rel2(L2) = H2,r(H−1
2,l (L2) ∩

R2,c), so that deciding Rel1(L1) ⊆ Rel2(L2) is done by testing H1,r(H−1
1,l (L1)∩R1,c) ⊆

H2,r(H−1
2,l (L2)∩R2,c). Under the given assumptions, H−1

1,l (L1)∩R1,c and H−1
2,l (L2)∩

R2,c are regular languages. Thus, the above inclusion relates two images of regular
tree languages under tree homomorphisms.

Corollary 4.82. Deciding the inclusion H1,r(H−1
1,l (L1)∩R1,c) ⊆ H2,r(H−1

2,l (L2)∩R2,c)
is EXPTIME-complete for given tree homomorphisms H1,l, H1,r, H2,l, H2,r and given
regular tree languages L1, L2, R1,c, R2,c.

Corollary 4.83. Deciding the equality Rel1(L1) = Rel2(L2) and inclusion Rel1(L1) ⊆
Rel2(L2) is EXPTIME-complete for given regular tree languages L1, L2 and a given
term rewrite system R, where Rel1,Rel2 are defined as either the one rewriting step,
the one parallel rewriting step, the one-pass innermost-outermost step if R is left-
linear, and the one-pass outermost-innermost step if R is right-linear.

Now it only remains to tackle the HOM problem. Recall that, by Lemma 4.6, given
a TAhom A recognizing the image of a regular tree language under a tree homomor-
phism, L(A) is regular if and only if L(A)∩L(linearize(A, ȟ)) is empty. Unfortunately,
the cost of computing a TAhom,6≈ recognizing L(A) ∩ L(linearize(A, ȟ)) is triple expo-
nential when using the constructions from [GG13], as summarized in Definition 4.5
and Propositions 4.8 and 4.9. In order to lower it to a single exponential, we extend
several ideas and transformations from [GG13]. In particular, we refine Definition 4.5
and Proposition 4.8 to obtain in exponential time a TA6≈ recognizing L(linearize(A, ȟ)).
The desired TAhom,6≈ can then be obtained by intersecting with Proposition 4.9 such
TA 6≈ with the given TAhom.

In Definition 4.84 we propose a construction that, for a given TAhom A and nat-
ural number h, directly computes in exponential time a TA6≈ A′ that recognizes
L(linearize(A, h)). Intuitively, the idea of the construction is to obtain an automa-
ton A′ whose runs compute sets of unreachable states of the linearized A. More
precisely, the states of A′ are sets of states of A, and the rules of A′ ensure that there
exists a run of A′ on a term t reaching a state S if and only if, for each state q in S,
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there is no run of the linearized A on t reaching q. This is the typical idea for the con-
struction of a complement automaton, but here we must also deal with the fact that
(i) since we want to recognize the complement of the linearization, we must consider
that the equality constraints of A are falsified whenever the involved subterms have
height greater than the given h (even if the subterms are indeed equal), and (ii) the
left-hand sides of the rules of A are not necessarily flat. For (i), it suffices that the
states record the height of the recognized subterms (up to h + 1) and then consider
that a rule of A is not applicable if an equality constraint has to be tested between
subterms having height greater than h. For (ii), we proceed as in Proposition 4.8 by
introducing new states of the form qr,p, where r is a rule of A and p is a position of
the left-hand side of r (except λ and positions labeled by states). The goal of these
new states is to be able to deal with each non-flat rule as if it was decomposed into
several flat rules.

Hence, the states of A′ are the pairs of the form 〈S, h〉, where h is a number in
{0, . . . , h + 1} and S is a set containing states of A and new states of the form qr,p,
and the rules of A′ are of the form f(〈S1, h1〉, . . . , 〈Sm, hm〉)

D−→ 〈S, h〉, where D is a
disequality constraint constructed by negating equality atoms occurring in the rules
of A. The actual definition of the set of rules of A′ is quite involved. Intuitively, the
rules are defined considering any possible combination of alphabet symbol f of arity
m, states 〈S1, h1〉, . . . , 〈Sm, hm〉, and disequality constraint D, and then, for each of
such combinations, considering all the possible states 〈S, h〉 that are valid as right-
hand side. The notion of valid in this case can be interpreted as follows. On the one
hand, the height h must be exactly one more than the maximum among the heights
h1, . . . , hm of the left-hand side, unless one of them is already h + 1, in which case
h = h + 1. On the other hand, the set S must contain states of A that are guaranteed
to be unreachable with runs of the linearized A given the information provided by
f and D, and inductively by 〈S1, h1〉, . . . , 〈Sm, hm〉. More precisely, for each term t

where the rule f(〈S1, h1〉, . . . , 〈Sm, hm〉)
D−→ 〈S, h〉 can be applied at the root position,

and for each rule r of A reaching a state occurring in S, we must guarantee that r is
not applicable at the root position of t. This is equivalent to the union of the following
cases:

• The alphabet symbols occurring in the left-hand side of the rule r do not match
with the symbols occurring at the root position of t at the respective positions.
Note that this forces the states to keep information about the symbols occurring
below in some way.

• A state occurring in the left-hand side of r at a certain position p is unreachable
by the linearized A on t|p. Thus, we also need to keep information about the
unreachable states below.

• The equality constraint of r cannot be satisfied by the linearized A, either
because two subterms involved in an equality test are different, one of them
does not exist, or their height is greater than h.

If r is a flat rule with only the root position labeled by an alphabet symbol, then
the previous conditions can be checked as follows. The first item is satisfied if the
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alphabet symbol of r does not match with the alphabet symbol f of the rule that is
being generated. The second item is satisfied if one of the sets Si occurring in the
left-hand side of the constructed rule contains the state occurring in the left-hand
side of r at position i. And finally, the third item is satisfied if r has an equality
atom p1 ≈ p2 and the recorded heights at those two positions of the generated rule
are h + 1, or if D includes the negation of such atom, i.e., p1 6≈ p2. In the case where
r is not a flat rule, these conditions can be checked analogously using the states of
the form qr,p as intermediate steps of the computation.

Definition 4.84. Let A = 〈Q,Σ, F,∆〉 be a TAhom. Let h be a natural number. The
h-complement of A is the TA 6≈ 〈Q̄,Σ, F̄ , ∆̄〉 where:

• Q̄ = 2Q]Q′ × {0, . . . , h + 1}, where the set of new states Q′ is defined as {qr,p |
r = (l c−→ q) ∈ ∆ ∧ p ∈ PosΣ(l) \ {λ}},

• F̄ = {〈S, h〉 ∈ Q̄ | F ⊆ S},

• ∆̄ is the set of all rules of the form f(〈S1, h1〉, . . . , 〈Sm, hm〉)
D−→ 〈S, h〉 satisfying

the following conditions:

– f is a symbol in Σ with arity m,
– 〈S1, h1〉, . . . , 〈Sm, hm〉, 〈S, h〉 ∈ Q̄,
– h = min{h + 1,max{1 + h1, . . . , 1 + hm}} where max ∅ = 0,
– D is a conjunction of disequality atoms, and each p1 6≈ p2 occurring in D

satisfies that the atom p1 ≈ p2 occurs in the constraint of some rule in ∆,
– each state q ∈ Q occurring in S satisfies the following condition for each

rule r ∈ ∆ of the form f(l1, . . . , lm) c−→ q: there exists i ∈ {1, . . . ,m} such
that (li ∈ Q∩Si)∨ (qr,i ∈ Q′ ∩Si), or there exists j ∈ {1, . . . ,m} such that
the position j occurs in c and hj = h + 1, or there exist positions p1, p2
such that p1 ≈ p2 occurs in c and p1 6≈ p2 occurs in D,

– each state qr,p ∈ Q′ occurring in S, with r being l c−→ q more explicitly
written, satisfies the following condition: l(p) 6= f , or there exists i ∈
{1, . . . , arity(l(p))} such that (l(p.i) ∈ Q ∩ Si) ∨ (qr,p.i ∈ Q′ ∩ Si), or there
exists j ∈ {1, . . . , arity(l(p))} such that the position p.j occurs in c and
hj = h + 1.

Example 4.85. Consider a signature Σ consisting of a binary symbol f and a nullary
symbol a. Let A = 〈Q,Σ, F,∆〉 be a TAhom, where Q = F = {q} and ∆ = {a →
q, f(f(q, q), f(q, q)) c−→ q} with c forcing equality between the positions 1.1, 1.2, 2.1
and 2.2. It is clear that A recognizes the language of complete trees over Σ having an
even height. Now we assume a given natural number h and show how to construct
the h-complement TA6≈ A′ = 〈Q̄,Σ, F̄ , ∆̄〉 of A. First we focus on the set Q′ of
Definition 4.84. Recall that Q′ contains new states whose goal is to identify positions
of the left-hand sides of the rules of A that are unreachable. Only the rule r =
(f(f(q, q), f(q, q)) c−→ q) requires to introduce such new states, and we have Q′ =
{qr,1, qr,2}. It follows that the set of states Q̄ are the pairs of the form 〈S, h〉, where
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S ⊆ {q, qr,1, qr,2} and h ∈ {0, . . . , h + 1}, and that the set of final states F̄ has the
pairs 〈S, h〉 satisfying that q ∈ S. Now it only remains to define ∆̄. Each of the rules
of ∆̄ has a constraint D composed of disequality atoms obtained by negating some
of the equality atoms occurring in the rules of A. This implies that, in our case, D
can be any conjunction of atoms of the from p̄1 6≈ p̄2, where p̄1 and p̄2 are different
positions in {1.1, 1.2, 2.1, 2.2}. To simplify the explanation, we denote by D any of
such possible constraints. Then, the rules of ∆̄ have two possible forms. The first
option is a D−→ 〈S, 0〉, where S ⊆ {qr,1, qr,2}. Note that the height of the recognized
term is necessarily 0, and that we do not allow S to contain the state q (since runs of
A on the term a can reach q). The other option is f(〈S1, h1〉, 〈S2, h2〉)

D−→ 〈S3, h3〉,
where 〈S1, h1〉 and 〈S2, h2〉 are any state of Q̄, and 〈S3, h3〉 satisfies the following
conditions. First, h3 is the minimum between h + 1 and max{1 + h1, 1 + h2}. And
second, S3 only contains states of Q and Q′ that are guaranteed to be unreachable
given the information provided by 〈S1, h1〉, 〈S2, h2〉, and the constraint D: qr,1 and
qr,2 are guaranteed to be unreachable if either q ∈ S1, q ∈ S2, h1 > h, or h2 > h, and
q is guaranteed to be unreachable if either qr,1 ∈ S1, qr,2 ∈ S2, or D is not empty.
Note how the linearization is subtly simulated in this construction by considering qr,1
and qr,2 unreachable when any of the recognized subterms has height greater than h.

Lemma 4.86. Let A be a TAhom with signature Σ, and let h be a natural number. Let
A′ be the h-complement of A.

Then, L(A′) = L(linearize(A, h)). Moreover, A′ can be computed with time and
space in 2O((|A|+log(h))·maxar(Σ)+log(|Σ|)), and such that the following bounds hold:

• h 6≈(A′) = h≈(A),

• n 6≈(A′) = n≈(A).

Proof (Sketch). The fact L(A′) = L(linearize(A, h)) can be proved by induction on
the height of the recognized terms. However, since the proof is quite technical but
not conceptually difficult, we just give the needed intuition. Consider a run r of A′
on a term t reaching a state 〈S, h〉. Recall that the goal of S is to compute states
of A that cannot be reached by linearize(A, h) when recognizing t. In order to reason
about the definition of S, consider a state q ∈ S and a rule l c−→ q of A, and note that
we must guarantee that such rule cannot be applied at the root position of t. This
condition is equivalent to the union of the following particular cases:

• The alphabet symbols occurring in l do not match with the symbols occurring
in t at the respective positions.

• For a position p ∈ Pos(l) labeled by a state q of A, the state q cannot be reached
by linearize(A, h) when recognizing t|p.

• The constraint c is unsatisfiable since it contains an atom p1 ≈ p2 and either
the subterms t|p1 and t|p2 do not exist, or are different, or their height is greater
than h.

If each rule of A with right-hand side q satisfies any of the previous conditions, then
q cannot be reached by linearize(A, h) when recognizing t. Note that the definition of
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the rules of A′ checks precisely these conditions, and that the only difficulty stems
from the fact that the left-hand sides of the rules of A are not necessarily flat. The
h-complement construction deals with the non-flat rules by introducing new states
that identify each of the positions of their left-hand sides (except λ and the positions
labeled by states), and then using these new states to propagate upwards the relevant
information.

The previous justifications are enough to see that the definition of A′ is sound. In
order to see that it is also complete, note that the states 〈S, h〉 of A′ are constructed
considering any possible combination of S and h, and moreover, for the rules of A′
any possible left-hand side f(〈S1, h1〉, . . . , 〈Sm, hm〉) and disequality constraint D is
considered. This is enough to guarantee that, among all the possible runs of A′ on a
term t, there are runs computing maximal sets of unreachable states. This maximality
implies completeness.

It only remains to analyse the cost of the construction. Note that the number
k of states of A′ is bounded by 2|A| · (h + 2). Moreover, note that the number of
different rules of A′ is at most kmaxar(Σ)+1 · |Σ| ·2n≈(A), and that the size of each one of
them is bounded by maxar(Σ) + 2 + |A|, where |A| bounds the size of the disequality
constraint. Hence, |A′| is in 2O((|A|+log(h))·maxar(Σ)+log(|Σ|)+n≈(A)). It is easy to see
that the cost of computing the transformation is polynomial with respect to |A′|, and
that h6≈(A′) = h≈(A) and n 6≈(A′) = n≈(A), and hence, the statement holds. �

As a technical detail, in order to apply Proposition 4.9 to the h-complement of a
TAhom, we also need to show that it admits deterministic accepting runs (see Defini-
tion 4.2 for the notion of determinism). The proof is not technically difficult, but we
include it to provide more intuition on the transformation.

Lemma 4.87. Let A be a TAhom, and let h be a natural number. Let A′ be the
h-complement of A.

Then, A′ admits deterministic accepting runs.

Proof. We first note that, for any term t, there exists a run r of A′ on t that computes
maximal sets of unreachable states. In other words, an r satisfying that, for each
position p ∈ Pos(t), the subrun r|p reaches the state of the form 〈S, h〉 where h =
min{h + 1, height(t|p)} and S is such that there exists no run of A′ on t|p reaching
a state of the form 〈S′, h〉 with S′ 6⊆ S. We call such r a maximal run of A′ on t.
The previous fact is not enough, since a maximal run needs not be deterministic: this
is because although two occurrences of the same subterm are evaluated to the same
state in a maximal run, it might happen that this state is reached using rules whose
constraint is different. However, it is easy to see that, among all the maximal runs of
A′ on t, there necessarily exists a maximal run r satisfying r(p1) = r(p2) if t|p1 = t|p2 ,
for each two positions p1, p2 ∈ Pos(t). Such r is necessarily deterministic. In order to
conclude, we just note that any term in L(A′) admits a deterministic maximal run of
A′ on it, and such run is necessarily accepting by the definition of the final states of
an h-complement. �

Note that Lemmas 4.86 and 4.87, and Proposition 4.9 guarantee that we can com-
pute a TAhom,6≈ recognizing L(A) ∩ L(linearize(A, ȟ)) with size exponentially bounded
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by |A|, even though ȟ itself is already exponential with respect to |A|. We can finally
state the complexity of deciding HOM.

Theorem 4.88. The HOM problem is EXPTIME-complete.

Proof. Assume a given TA A and a tree homomorphism H. By Propositions 4.4
and 4.9 and Lemmas 4.6, 4.86, and 4.87, a TAhom,6≈ A

′ such that L(A′) is empty if and
only if H(L(A)) is regular can be computed in exponential time with respect to the
size of A and H. Moreover, the bounds on h6≈(A′), n6≈(A′), |Poslhs(A′)|, and |A′| are
such that, by Corollary 4.75, emptiness of L(A′) can be decided in exponential time
with respect to the size of A and H. Thus, we conclude by noting that the problem
is EXPTIME-hard by Proposition 4.1. �





Chapter 5

Decidability of global reflexive
disequality constraints

In this chapter we focus on automata with global disequality constraints. In this
setting, the constraints that must be satisfied by the runs are associated with the
automaton itself and not with its transitions. The atomic predicates occurring in
such constraints are disequality expressions of the form q1 6≈ q2, for states q1 and q2
of the automaton, and are satisfied by a run r on a term t if the following property
holds: for each two distinct positions p1 and p2 of t such that the subrun r|p1 reaches
q1 and the subrun r|p2 reaches q2, the subterms t|p1 and t|p2 are different. We tackle
the emptiness and finiteness problems for the subclass TAG∧6≈R of tree automata with
global reflexive disequality constraints. More precisely, this subclass is defined by
imposing the following additional requirements on the form of the global disequality
constraint: (i) the global constraint is a conjunction of positive atoms, instead of an
arbitrary Boolean expression, and (ii) the global constraint defines a reflexive relation
on the states occurring in it, that is, whenever the constraint has an atom of the form
q1 6≈ q2, then it also contains the reflexive atoms q1 6≈ q1 and q2 6≈ q2. We obtain triple
exponential time algorithms for both decision problems. The outline of the proof for
emptiness proceeds as follows. In a first step, a transformation of the given TAG∧6≈R is
defined in order to obtain a simpler setting for the remaining reasonings. Then, an
inference system is used to construct runs on this new setting. Such inference system
guarantees along the construction of the runs that the global disequality constraint is
satisfied. Finally, we show that the inference takes triple exponential time, and that it
constructs an accepting run if and only if the language recognized by the given TAG∧6≈R
is not empty. Finiteness of the recognized language is tackled similarly. In particular,
we prove that the number of inference steps performed to construct a run has a direct
correspondence with the height of such run. Hence, if we detect that it is possible
to pump some of the inference steps performed while constructing an accepting run,
then we can conclude that there are arbitrarily high terms in the language.

The organization of this chapter is as follows. In Section 5.1 we give a general
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definition for tree automata with global (dis)equality constraints, introducing a uni-
form notation to easily refer to variants on the form of the global constraint. We
also summarize how those variants compare with each other with respect to expres-
siveness, giving especial emphasis to the expressive power of classes closely related to
the model TAG∧6≈R studied in this chapter. In Section 5.2 we give an overview of the
original insight that led to the proof for the decidability of the emptiness and finite-
ness problems for TAG∧6≈R . In Sections 5.3 and 5.4 we analyse properties of TAG∧6≈R and
define the transformation that simplifies the setting, respectively, and in Section 5.5
we present the inference system and tackle the decision of emptiness and finiteness for
TAG∧6≈R . Finally, in Section 5.6 we show how to adapt the previous decision results to
automata with global reflexive disequality constraints that run on unranked ordered
terms.

5.1 TA with global constraints
We define a class of tree automata with global constraints that generalizes the orig-
inal notion of automata with global constraints TAGED from [FTT08, FTT10]. Our
definition is parametric in order to easily restrict which type of atoms may occur in
the global constraint. Intuitively, with the constraint type ≈ as parameter we allow
atoms of the form q1 ≈ q2, and with the constraint type 6≈ we allow atoms of the form
q1 6≈ q2. To obtain a unified notation for the automaton classes studied here and in
the literature, we also define several particularizations of those two constraint types.

Definition 5.1. A tree automaton with global constraints over the constraint types
τ1, . . . , τn is denoted TAGτ1,...,τn and defined as a tuple A = 〈Q,Σ, F,∆, C〉, where
〈Q,Σ, F,∆〉 is a TA, denoted ta(A), and C, called the (global) constraint, is a Boolean
combination of atomic constraints of types τ1, . . . , τn. A TAGτ1,...,τn is called positive
conjunctive, denoted TAG∧τ1,...,τn , when its global constraint is a conjunction of atomic
constraints. For the fragment TAG∧τ1,...,τn , the global constraint C is indistinguishably
treated as a set of atoms, and moreover, we denote that a state q is involved in some
atom of C as q ∈ C, and say that q is a constrained state.

We define the constraint types ≈ and 6≈ as follows: an atom of type ≈ (respectively,
6≈) is an unordered pair of the form q1 ≈ q2 (respectively, q1 6≈ q2), where q1, q2 ∈ Q.
Additionally, for the positive conjunctive fragment of automata with global constraints
we introduce several particular cases of both constraint types. These new types are
defined by restricting which kind of relation may be induced on the states occurring in
the global constraint:

• The type ≈I is the particular case of ≈ where the atoms of type ≈ only relate
identical states, that is: the constraint has no atom of the form q1 ≈ q2 where
q1 and q2 are distinct states. Analogously for the type 6≈I .

• The type ≈R is the particular case of ≈ where the induced relation on the states
occurring in atoms of type ≈ is reflexive, that is: whenever the constraint has
an atom of the form q1 ≈ q2, then it also contains the reflexive atoms q1 ≈ q1
and q2 ≈ q2. Analogously for the type 6≈R.
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• The type ≈A is the particular case of ≈ where the induced relation on the states
occurring in atoms of type ≈ is anti-reflexive, that is: the constraint has no
atom of the form q ≈ q. Analogously for the type 6≈A.

A run of A on a term t ∈ T (Σ) is a run of ta(A) on t satisfying the global
constraint C, where the satisfiability of Boolean expressions is as usual, and the sat-
isfiability of the atomic predicates of types ≈ and 6≈ is defined as follows: an atom of
the form q1 ≈ q2 (respectively, q1 6≈ q2) is satisfied if and only if, for each distinct
p1, p2 ∈ Pos(t) such that the right-hand sides of the rules r(p1) and r(p2) are q1 and
q2, respectively, t|p1 = t|p2 (respectively, t|p1 6= t|p2). We adapt the usual definitions
on runs: term(r) = t, Pos(r) = Pos(t), height(r) = height(t), and the notion of sub-
run r|p and replacement r[r′]p for p ∈ Pos(r) and some other run r′ of A. The state
reached by r is the right-hand side of r(λ). The run r is called accepting if it reaches
a state in F . A term t is accepted/recognized by A if there exists an accepting run of
A on t. The language recognized by A, denoted L(A), is the set of terms accepted by
A. By L(A, q) we denote the set of terms for which there exists a run of A on them
reaching q.

We remark that a constraint of the form ¬(q1 ≈ q2) is not equivalent to q1 6≈ q2
since a universal quantifier is involved in the interpretation of the atoms. Similarly
for ¬(q1 6≈ q2) and q1 ≈ q2.

It is easy to see that the class RTA from [JKV11] is equivalent to TAG∧≈I , and that
the class TAGED from [FTT10] is equivalent to TAG∧≈,6≈A . We informally generalize Defi-
nition 5.1 in order to capture the automaton models studied in [Vac10] and [BCG+13].
First, we adopt from [Vac10] the constraint type N, which allows to impose restric-
tions on the number |q| of occurrences of a given state q in a run, or the number ‖q‖
of distinct subterms reaching a given state q in a run. The atoms of type N are ex-
pressions of the form a1|q1|+ . . .+an|qn|⊗k or of the form a1‖q1‖+ . . .+an‖qn‖⊗k,
where ⊗ is any operator in {≥,≤,=} and a1, . . . , an, k are natural numbers, with
straightforward interpretations. In [BCG+13], a class TABG≈,6≈,N is introduced merg-
ing the model with global constraints TAG≈,6≈,N and the model with local constraints
AWCBB. Moreover, all constraints in TABG≈,6≈,N are interpreted modulo a flat equational
theory: local and global (dis)equality tests are performed modulo the given theory,
and the number ‖q‖ is reinterpreted to be the number of distinct equivalent classes
(modulo the given theory) of subterms reaching q in a run. For a formal definition of
flat equational theories, see [BCG+13].

5.1.1 Analysis of the expressive power
Here we summarize how the distinct classes of automata with global constraints relate
to each other in terms of expressiveness (see Figure 5.2). We start with known results
from the literature. First, in [Vac10] it is shown effective equivalence between the
classes TAG≈,6≈,N and TAG∧≈,6≈. In [BCG+13], a reworked proof is proposed for effective
equivalence between TABG≈,6≈,N and its positive conjunctive fragment TABG∧≈,6≈. The
constructions used in this latter proof easily allow to conclude effective equivalence
between the subclass of TAG≈,6≈,N where the global constraint has no atom of the form
q 6≈ q and TAG∧≈,6≈A (i.e., TAGED), which in turn is proved in [FTT10] to be effectively
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TABG≈,6≈,N TABG≈,6≈ TABG∧≈,6≈

TABG∧≈ TAG≈,6≈,N TAG≈,6≈ TAG∧≈,6≈ TABG∧6≈

TAG∧≈ TAG∧≈,6≈A(TAGED) TAG∧6≈

TAG∧≈R TAG∧≈A AWCBB TAG∧6≈A TAG∧6≈R

TAG∧≈I (RTA) TA TAG∧6≈I

Figure 5.2: Classes of tree automata with local and global constraints. Effective strict
inclusion is denoted , effective equivalence is denoted , otherwise
the classes are incomparable.

equivalent to TAG∧≈I ,6≈A by means of an exponential time transformation (these two
relations are not depicted in Figure 5.2 to keep its presentation simpler). Such expo-
nential time transformation also leads in [FTT10] to the effective equivalence between
the classes TAG∧≈, TAG∧≈R , and TAG∧≈I (i.e., RTA). To prove that these classes are also
equivalent to TAG∧≈A as depicted in Figure 5.2, it suffices to transform TAG∧≈I into
TAG∧≈A . Since this is out of scope and rather straightforward, we just do it intuitively:
for each atom of the form q ≈ q in the given TAG∧≈I , we generate a synonym q′ of q and
replace the atom by q ≈ q′, and additionally, force accepting runs to have either (i)
no occurrences of q and q′, (ii) exactly one occurrence of q and none of q′, (iii) exactly
one occurrence of q′ and none of q, or (iv) some occurrences of both q and q′ (this can
be done by enriching the states to count, up to 2, the number of occurrences of q and
q′ in a run). Strict inclusion of TAG∧≈,6≈A (i.e., TAGED) in TAG≈,6≈ is proved in [Vac10].
From the constructions done in that proof it can also be concluded that TAG∧6≈I is
incomparable with TAG∧≈,6≈A (i.e., TAGED). Finally, the incomparability between the
automaton models with global constraints and AWCBB is also tackled in [Vac10].

We now characterize the expressiveness of TAG∧6≈R by comparing it with two close
variants of the disequality constraint: TAG∧6≈A and TAG∧6≈I . In Lemma 5.3 we conclude
that the classes of languages recognizable by TAG∧6≈R and TAG∧6≈I are incomparable with
the class of languages recognizable by TAG∧6≈A . In Lemma 5.4 we show that TAG∧6≈R are
strictly more expressive than TAG∧6≈I . To ease the presentation, we denote terms of
the form f(t1, f(t2, f(t3, . . . f(tn−1, tn) . . .))) as f[t1,t2,t3,...,tn−1,tn], where n ≥ 2 and f
is a binary symbol. Note that, for i ∈ {1, . . . , n− 1}, the term ti occurs in such term

at the position
i−1︷ ︸︸ ︷

2 . . . 2 .1, whereas tn occurs at the position
n−1︷ ︸︸ ︷

2 . . . 2. In order to use a
uniform notation in the arguments, we will reason on the first n − 1 terms ti, and
ignore the last term tn.
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Lemma 5.3. The class of languages recognizable by TAG∧6≈A is incomparable with the
classes of languages recognizable by TAG∧6≈R and TAG∧6≈I with respect to inclusion.

Proof. We first show that the class of languages recognizable by TAG∧6≈A does not in-
clude the classes of languages recognizable by TAG∧6≈R and TAG∧6≈I . This can be directly
concluded from [Vac10] since, as stated before, the arguments there for proving strict
inclusion of TAG∧≈, 6≈A (i.e., TAGED) in TAG≈,6≈ also allow to conclude that TAG∧≈,6≈A (i.e.,
TAGED) and TAG∧6≈I are incomparable.

We now show that the class of languages recognizable by TAG∧6≈A is not included
in the class of languages recognizable by TAG∧6≈R . Since TAG∧6≈I is a particular case
of TAG∧6≈R , this claim holds also for TAG∧6≈I . Consider the following language over the
signature Σ := {a:0, h:1, f :2}:

L := {f[hk(a),hk1 (a),...,hkn (a),a] | n ≥ 1 ∧ k, k1, . . . , kn ≥ 0 ∧ k 6= k1, . . . , kn}

It is straightforward that L can be recognized by a TAG∧6≈A . We proceed by contradic-
tion assuming that there exists a TAG∧6≈R A recognizing L. Let n be a natural number
strictly greater than the number of states of A, and consider the following term in L
of the form f[t,t1,t2,...,tnn ,a]:

f

n! + n− 1


h
...
h

a


= t

f

n− 1


h
...
h

a


= t1

f

n− 1


h
...
h

a


= t2

...
f

. . . n− 1


h
...
h

a


= tnn

a

By the assumption, there exists an accepting run r of A on such term. Since n is
greater than the number of states of A, and nn is greater than the number of different
sequences of states of A of length n, there exist two distinct i, j ≥ 1 such that the

positions pi :=
i︷ ︸︸ ︷

2 . . . 2 .1 and pj :=
j︷ ︸︸ ︷

2 . . . 2 .1 are defined in r and the subruns r|pi and
r|pj are identical. Since the relation defined by the global constraint of A is reflexive,
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the identical subruns r|pi and r|pj cannot contain constrained states. Moreover, since
height(r|pi) = n− 1 and n is greater than the number of states of A, the run r|pi can
be pumped to obtain another run r′ of A satisfying the following conditions: the term
recognized by r′ is hn!+n−1(a) = t, the states reached by r′ and r|pi coincide, and r′
does not contain constrained states. It is easy to see that r[r′]pi satisfies the global
constraint ofA, and that it is an accepting run ofA on the term f[t,t1,...,ti−1,t,ti+1,...,tnn ],
which is not in L, a contradiction. �

Lemma 5.4. The class of languages recognizable by TAG∧6≈I is strictly included in the
class of languages recognizable by TAG∧6≈R .

Proof. Since TAG∧6≈I is the particular case of TAG∧6≈R where only atoms of the form q 6≈ q
are allowed, the inclusion holds and it suffices to prove that it is strict. Consider the
following language over the signature Σ := {a:0, h:1, f :2, g:3}:

L := {g(f[hα1 (a),...,hαn (a),a], h
β(a), f[hγ1 (a),...,hγm (a),a]) |n,m ≥ 1,

α1, . . . , αn, β, γ1, . . . , γm ≥ 0,
∀1≤i<j≤n : αi 6= αj ,
∀1≤i<j≤m : γi 6= γj ,
β 6= α1, . . . , αn, γ1, . . . , γm}

It is straightforward that L can be recognized by a TAG∧6≈R . We proceed by contradic-
tion assuming that there exists a TAG∧6≈I A recognizing L. Let n be a natural number
strictly greater than the number of states of A, and consider the following term t ∈ L,
where k = 2 · n · (n+ 1):

g

f

n!
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h
...
h

a

f
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a

a

By the assumption, there exists an accepting run r of A on t. We now define all the
subruns of r|1 that recognize subterms of t|1 of the form h(h(. . . h(a) . . .)). Moreover,
we want to refer to them by their height. Hence, let ri,d be the subrun of r|1 at position
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i−1︷ ︸︸ ︷
2 . . . 2 .1.

i·n!−d︷ ︸︸ ︷
1 . . . 1, for all i ∈ {1, . . . , k} and d ∈ {0, . . . , i ·n!}. Note that height(ri,d) = d

for all i ∈ {1, . . . , k} and d ∈ {0, . . . , i · n!}. Consider two different runs ri,d and rj,d,
and observe that ri,d and rj,d cannot reach the same state q of A if q is a constrained
state, because the atom q 6≈ q of the global constraint of A would be falsified since
term(ri,d) = term(rj,d) = hd(a). It follows that, for a fixed d, the number of ri,d’s
reaching some constrained state is smaller than n. Hence, for a fixed d, the number of
ri,d’s containing some constrained state is smaller than n · (d+ 1). Let ri be ri,i·n!, for

all i ∈ {1, . . . , k}. Note that those are the subruns of r|1 at positions
i−1︷ ︸︸ ︷

2 . . . 2 .1. The
number of ri’s whose subrun of height n contains a constrained state is smaller than
n · (n+ 1). Let r̄i,d be the subruns of r|3 defined analogously to the definition of ri,d
as subruns of r|1, and let r̄i be r̄i,i·n!. By an analogous argument, the number of r̄i’s
whose subrun of height n contains a constrained state is smaller than n · (n+ 1). By
definition of k, it follows that there exists e ∈ {1, . . . , k} such that re and r̄e satisfy
that their subruns of height n do not contain any constrained state. Moreover, since
term(re) = term(r̄e) = he·n!(a), it follows that re,d and r̄e,d cannot reach the same
state q of A if q is a constrained state, for all d ∈ {0, . . . , e · n!}.

Note that the subruns of re and r̄e of height n, which do not have constrained
states, can be pumped to transform re and r̄e into new runs rie and r̄ie, for i ≥ 0,
satisfying the following conditions:

(a) term(rie) = term(r̄ie) = h(i+e)·n!(a), i.e., we can obtain runs on terms of the form
h(h(. . . h(a) . . .)) with a height greater than e · n! and multiple of n!.

(b) For each position p ∈ Pos(rie) such that rie|p reaches a constrained state, it holds
that p ∈ Pos(re) and re|p reaches a constrained state. Analogous for r̄ie and r̄e.

(c) For each position p ∈ Pos(rie) such that rie|p and r̄ie|p reach constrained states,
it holds that such states differ.

A particular consequence of condition (b) is that, for all i ≥ 0, any position p such
that rie|p or r̄ie|p reaches a constrained state necessarily satisfies |p| < e · n! − n. By
condition (a), for each i ≥ 2 · k − e, the runs rie and r̄ie satisfy that height(rie) =
height(r̄ie) ≥ 2 · k · n!. For any such i, the height of any subrun of rie or r̄ie reaching a
constrained state is greater than 2 · k ·n!− (e ·n!−n) = (2 · k− e) ·n! +n ≥ k ·n! +n.
Hence, since k ·n! is the maximum height of r1, . . . , rk, r̄1, . . . , r̄k, constraints between
subruns of rie, r̄ie and of r1, . . . , rk, r̄1, . . . , r̄k are satisfied. Therefore, the subrun r|2
and the subrun re must share a constrained state at the same respective position,
since otherwise, we can replace re by r2·k−e

e and obtain an accepting run on a term
not in L. The same applies to r̄e.

Let pe be the position
e−1︷ ︸︸ ︷

2 . . . 2 .1, i.e., the position where re occurs in r|1 and r̄e
occurs in r|3. Let p, p̄ be the shortest positions in Pos(r|2) such that re|p and r|2.p
reach the same constrained state and r̄e|p̄ and r|2.p̄ reach the same constrained state.
By condition (c), it follows that p 6= p̄. Assume without loss of generality that p < p̄.
We want to pump re and r̄e to obtain runs of height 3 ·k ·n!, and swap the subruns of
r at positions 1.pe.p and 2.p to obtain an accepting run r′ on a term not in L. First,
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let r′e be r3·k−e
e , and let r̄′e be r̄3·k−e

e . Note that height(r′e) = height(r̄′e) = 3 · k · n!
and, by the same arguments as before, the height of any subrun of r′e or r̄′e reaching a
constrained state is greater than 3 ·k ·n!− (e ·n!−n) = (3 ·k−e) ·n!+n ≥ 2 ·k ·n!+n.
Hence, since 2 · k · n! is the maximum height of r|2, r1, . . . , rk, r̄1, . . . , r̄k, constraints
between subruns of r′e, r̄′e and of r|2, r1, . . . , rk, r̄1, . . . , r̄k are satisfied. Second, let r′ be
the replacement r[r|2.p]1.pe.p[r′e|p]2.p[r̄′e]3.pe . Note that term(r′) 6∈ L since term(r′)|2 =
term(r′)|3.pe = h3·k·n!(a). By condition (c) in the definition of rie and r̄ie and the
assumption p < p̄, constraints between the subruns r′|2 and r′|3.pe are satisfied.
Finally, constraints between r′|1.pe , which has height equal to 2 · k · n!, and any other
subrun of r′ are also satisfied by a height argument. Hence, r′ is an accepting run, a
contradiction. �

5.2 Intuition on the approach
Consider a TAG∧6≈R A. Clearly, the main difficulty to decide emptiness and finiteness
of L(A) is related to the global disequality constraint and how it affects the language
recognized by each of the states of A. Hence, an obvious first step is trying to
identify which are the states where the decision of emptiness and finiteness can be
done in a simple manner. To this end, we look for the states q of A satisfying the
following property: there is a run r of A reaching q, the run r can be pumped without
introducing new occurrences of constrained states, and moreover, every subrun of
r reaching a constrained state can be pumped in such way. Note that this property
means that r can be made arbitrarily high, and moreover, each of its subruns reaching
a constrained state can also be made arbitrarily high. We denote as Q∞A the set of
states satisfying such property, and prove that it can be efficiently computed. Our
interest in Q∞A is twofold: on the one hand, the emptiness and finiteness decision for
each state in Q∞A is trivial since its recognized language is infinite by definition, and
on the other hand, the states in Q∞A can be exploited to ease the construction of runs
of A. In order to illustrate how the construction of a run can be simplified thanks to
the information provided by Q∞A , consider a run r of ta(A) that is not a valid run
of A since the global constraint is falsified. Moreover, assume that the constraint is
falsified due to a subrun of r that contains an occurrence of a state q ∈ Q∞A . Under
these assumptions, note that r could be modified to obtain a valid run r′ of A as
follows: it suffices to fix the conflicting subrun of r by replacing its subrun reaching
q by another one, chosen among the infinitely many available runs reaching q whose
constrained subruns are all higher than r itself. Hence, during the construction of a
run of A it is possible to ignore subruns that reach states in Q∞A , since any possible
conflict they have can be fixed.

At this point, it only remains to focus on the states that are not in Q∞A . Hence,
consider a state q 6∈ Q∞A , and assume that it occurs in the global constraint. We
prove the following property: the runs of A reaching q where there is exactly one
occurrence of a constrained state, i.e., the q at the root position, necessarily satisfy
that their height is linearly bounded by the size of A (otherwise, it would be possible
to perform pumpings on some of those runs, concluding that q ∈ Q∞A ). Moreover,
since TAG∧6≈R ensure that the global disequality constraint is a reflexive relation, the
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previous property leads to a proof for the following crucial insight: there is a bound
for the number of subruns within any run that reach a constrained state not in Q∞A
and that have no other occurrence of constrained states (otherwise, there would be
two of these subruns reaching the same constrained state and recognizing the same
term, thus falsifying the reflexive disequality constraint). A direct consequence of this
fact is that we are able to bound the number of parallel positions in a run where the
pending subruns contain constrained states not in Q∞A .

Using the previous ideas, we propose an inference ruleR that non-deterministically
tries to construct accepting runs, starting from their root position and expanding them
towards the leaves at each inference step. We ensure termination of this process in
triple exponential time by (i) leaving the subruns reaching a state in Q∞A unexpanded
since they are irrelevant to our goal, (ii) proving that the number of relevant subruns
to expand occurring at parallel positions can be bounded, and also (iii) avoiding cycles
in the inference. In order to give further intuition on how the top-down construction
of runs proceeds, the following example applies an analogous idea in the setting of TA.

Example 5.5. Consider the language of terms over Σ = {a:0, b:0, f :2} with an even
number of a’s. This language can be recognized by the TA A having the following set
of transition rules:

a→ q1
b→ q0

f(q0, q0)→ q0
f(q0, q1)→ q1
f(q1, q0)→ q1
f(q1, q1)→ q0

where q0 is the only final state of A. Our goal is to find a term in L(A) by non-
deterministically constructing an accepting run of A. To this end, we proceed by suc-
cessively expanding top-down the run being constructed. To simplify the presentation,
we denote the positions where such an expansion needs to be performed as:

q?

where q is a state of A representing the fact that the expansion of this node must
produce a subrun reaching q. Since we focus on generating an accepting run, we begin
the construction at a final state of A, and hence, the computation starts with the
following node:

q0?

To expand the previous node, we can choose between three different rules of A. We
non-deterministically choose f(q1, q1)→ q0 and obtain:

f(q1, q1)→ q0

q1? q1?

Note that now we have two new nodes to expand: the direct children of the root node.
This forces us to choose in which order we want to proceed the expansion. We decide
to prioritize the expansion of the nodes that have greater estimated height. Proceeding
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in order of height is not strictly necessary for plain TA, but it will be crucial when
adapting the method to TAG∧6≈R . We non-deterministically decide that the height of
the subrun at position 1 will be greater than the height of the subrun at position 2.
Therefore, we expand at position 1 by non-deterministically guessing the transition
rule f(q1, q0)→ q1:

f(q1, q1)→ q0

f(q1, q0)→ q1

q1? q0?

q1?

At this point we have three nodes to expand at positions 1.1, 1.2, and 2, and again
need to estimate their height in order to proceed. Non-deterministically we decide
that all the subruns at such positions will have the same height (which is consistent
with the previous decision), and thus, we expand them simultaneously. We also guess
non-deterministically the transition rules a→ q1, b→ q0, and a→ q1 for each of the
positions, respectively, and obtain:

f(q1, q1)→ q0

f(q1, q0)→ q1

a→ q1 b→ q0

a→ q1

Since there are no more nodes to expand, the computation ends at this point. Note
that we have successfully generated an accepting run on the term f(f(a, b), a), which
is in L(A).

Adapting from TA to TAG∧6≈R the generation of runs sketched in the previous ex-
ample requires to take especial care with constrained states. For instance, if at a
concrete step two nodes with the states q1 and q2 are expanded, and the atom q1 6≈ q2
occurs in the constraint, then it must be guaranteed that the expansion of those nodes
will eventually produce subruns recognizing different subterms. This can be achieved
either by making such subterms differ at their root position (i.e., performing an ini-
tial expansion of the nodes using transition rules whose alphabet symbols differ), or
by deferring it to be checked at some later point of the expansion of the respective
children. Note that, due to the fact that the expansion is done in order of height, if
those nodes with q1 and q2 are expanded at different inference steps, then they will
satisfy the constraint for free, since the expansion will produce subruns with different
height. The previous ideas are focused on ensuring that the inferences are sound, but
nothing is said about completeness.

5.3 Compatible runs
We start by defining a notion of compatibility between runs which, in the next section,
allows us to simplify the decision of emptiness and finiteness. Note that any run of a
TAG∧6≈R A is a run of ta(A), but the converse is not true since a run r of ta(A) may
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not satisfy the global constraint of A. In such case, there must exist two different
positions p1, p2 of r satisfying that the atom rhs(r(p1)) 6≈ rhs(r(p2)) occurs in the
constraint of A and term(r|p1) = term(r|p2). We can see the subruns r|p1 and r|p2 as
incompatible, since, whenever a run r′ of ta(A) contains them as subruns, r′ is not a
run of A since the constraint is falsified.

Definition 5.6. Let A be a TAG∧6≈R . Two runs r1, r2 of A are compatible if, for
every pair of positions p1 ∈ Pos(r1), p2 ∈ Pos(r2) such that the global constraint of A
contains the atom rhs(r1(p1)) 6≈ rhs(r2(p2)), it holds that term(r1|p1) 6= term(r2|p2).

We say that a set of runs of A is a compatible set if its runs are pairwise com-
patible.

The following example illustrates how the incompatibility between runs affects the
language recognized by a TAG∧6≈R .

Example 5.7. Let Σ be the signature {a:0, h:1, f :2}. Let A be a TAG∧6≈R more explic-
itly defined as A = 〈{qf , qh, qa},Σ, {qf},∆, qa 6≈ qa〉, where the set of transition rules
∆ is:

a→ qa
h(qa)→ qh
h(qh)→ qh

f(qh, qh)→ qf

It is easy to see that the language recognized when ignoring the global disequality
constraint is L(ta(A)) = {f(hn(a), hm(a)) | n,m ≥ 1}, whereas, as justified below,
trying to satisfy the constraint leads to L(A) being empty. First, note that any term
of the form hn(a), with n ≥ 1, has an associated run of A of the form:

n− 1


h(qh)→ qh

...
h(qh)→ qh

h(qa)→ qh

a→ qa

Now, consider two runs r1, r2 of A on the terms hn(a) and hm(a), with n,m ≥ 1,
and let p1, p2 be the positions of the single leaf in r1 and r2, respectively. Note that
term(r1|p1) = term(r2|p2) = a and rhs(r1(p1)) = rhs(r2(p2)) = qa. Since the constraint
of A is qa 6≈ qa, the runs r1, r2 are not compatible. It follows that any compatible set
of runs of A reaching qh has at most one single run, even though there are infinitely
many runs reaching qh. Thus, L(A) = ∅ since reaching the final state qf requires two
compatible subruns reaching qh.

Let us give some intuition on how the notion of compatibility is related with the
reflexivity of the constraints of a TAG∧6≈R A, since it is a key point in the proof of the
following lemma. Let R be a compatible set of runs of A. Consider a run r ∈ R and
its subrun r|p, for any position p ∈ Pos(r) such that r|p reaches a constrained state.
Recall that when a state q occurs in the constraint of a TAG∧6≈R , it necessarily occurs
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at least in an atom of the form q 6≈ q, i.e., in a reflexive atom. This fact implies that
the only run of R containing r|p as a subrun is precisely r, since otherwise R would
not be a compatible set. Actually, the definition of compatibility further guarantees
that only r has a subrun reaching the state rhs(r(p)) after recognizing term(r|p). This
fact is used in the proof of the following lemma to bound the number of runs in R
that are incompatible with a certain fixed run.

Lemma 5.8. Let A be a TAG∧6≈R . Let r be a run of A, and let R be an infinite
compatible set of runs of A.

Then, there exists S ⊆ R such that S ∪ {r} is an infinite compatible set of runs.

Proof. Let A be 〈Q,Σ, F,∆, C〉 more explicitly written. Let p ∈ Pos(r) be a position
such that rhs(r(p)) is a constrained state. Since R is a compatible set, there are at
most |Q| runs r′ ∈ R for which there exists a position p′ satisfying that C contains the
atom rhs(r′(p′)) 6≈ rhs(r(p)) and term(r′|p′) = term(r|p). By defining S as the result
of removing from R all such runs r′ for all such positions p, the result follows. �

Example 5.9. Let Σ be the signature {a:0, h:1, f :2}. Let A be a TAG∧6≈R more explic-
itly defined as A = 〈{qf , qh, q},Σ, {qf},∆, qh 6≈ qh〉, where the set of transition rules
∆ is:

a→ q
h(q)→ q
h(q)→ qh

f(qh, qh)→ qf

Note that its recognized language is L(A) = {f(hn(a), hm(a)) | n,m ≥ 1 ∧ n 6= m}.
Let R be the set of runs of A on terms of the form f(h2·n(a), h2·n+1(a)), with n ≥ 1.
Note that R is infinite, and moreover, it is a compatible set. Consider a run r of
A on a term f(hm1(a), hm2(a)), with m1,m2 ≥ 1 and m1 6= m2. By Lemma 5.8, r
is compatible with an infinite number of runs in R. In fact, it is easy to see that r
can be incompatible with at most two runs in R, the ones recognizing a term where
the root node has hm1(a) or hm2(a) as a direct child. Hence, there exists an infinite
compatible set of runs from R and containing r.

Corollary 5.10. Let A be a TAG∧6≈R . Let S1, . . . , Sn be infinite compatible sets of runs
of A.

Then, there exists S ⊆ (S1 ∪ . . . ∪ Sn) such that S is an infinite compatible set of
runs, and, for every i ∈ {1, . . . , n}, S ∩ Si is infinite.

Proof. By applying Lemma 5.8 several times, we can guarantee that there exists a
selection r1 ∈ S1, . . . , rn ∈ Sn satisfying the following conditions: the ri’s are pairwise
different, E := {r1, . . . , rn} is a compatible set, and there exist S′1 ( S1, . . . , S

′
n ( Sn

such that S′1 ] E, . . . , S′n ] E are infinite compatible sets. We can repeat the same
argument in order to find a new selection r′1 ∈ S′1, . . . , r

′
n ∈ S′n satisfying that the

r′i’s are pairwise different, E′ := {r′1, . . . , r′n} is a compatible set, and there exist
S′′1 ( S′1, . . . , S

′′
n ( S′n such that S′′1 ]E′, . . . , S′′n]E′ are infinite compatible sets. Note

that E ] E′ is a compatible set. Clearly, this process can be iterated to generate an
infinite number of compatible sets E,E′, E′′, . . ., pairwise disjoint, and such that the
infinite union S := E]E′]E′′] . . . is the infinite compatible set of the statement. �
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To simplify the decision procedure for emptiness and finiteness of the language
recognized by a TAG∧6≈R A, we compute which states have infinite sets of compatible
runs reaching them. In the next section, this allows us to define from A a simpler
automaton such that the emptiness of the recognized language is preserved, and its
finiteness may change only under certain conditions.
Definition 5.11. Let A = 〈Q,Σ, F,∆, C〉 be a TAG∧6≈R . We define its set of states
with infinite compatible runs, denoted by Q∞A , to be the set of states q ∈ Q such that
there exists an infinite compatible set of runs of A reaching q.

We use Q∞ as a shorthand when A is clear from the context.
Algorithm 5.12 computes the set Q∞ for a given TAG∧6≈R A. Its correctness is stated

in the following two lemmas. With respect to its running time, first note that the
algorithm checks finiteness and emptiness of the language recognized by the states of
the TA A0 constructed in step 1. The construction of A0 can be done in polynomial
time, and such properties can be decided in polynomial time for TA [CDG+07]. Next,
in step 3, it incrementally computes the set InfCom in at most |Q| − 1 steps, using
operations that can be all computed in polynomial time. It follows that the algorithm
takes polynomial time.

Algorithm 5.12 Computation of the set Q∞ for a given TAG∧6≈R A.
Input: a TAG∧6≈R A = 〈Q,Σ, F,∆, C〉.
(1) Let A0 be the TA 〈Q,Σ, F,∆0〉, where ∆0 is the subset of rules in ∆ that have

no constrained state, i.e., ∆0 = {(f(q1, . . . , qm)→ q) ∈ ∆ | q1, . . . , qm, q 6∈ C}.
(2) InfCom := {q ∈ Q | L(A0, q) is infinite}.
(3) While there exists a transition rule (f(q1, . . . , qm)→ q) ∈ ∆ satisfying that:

• q 6∈ InfCom
• ∃i ∈ {1, . . . ,m} : qi ∈ InfCom
• ∀i ∈ {1, . . . ,m} : qi ∈ InfCom ∨ L(A0, qi) 6= ∅

do:
• InfCom := InfCom ] {q}.

(4) Output InfCom.

Example 5.13. We apply Algorithm 5.12 to the TAG∧6≈R A from Example 5.9 in order
to compute Q∞A . The TA A0 constructed in step 1 is obtained from A by discarding the
global constraint and the transition rules that involve constrained states. Since only
qh is a constrained state, A0 is the TA 〈{qf , qh, q},Σ, {qf}, {a → q, h(q) → q}〉. The
definition of the set of final states of A0 as {qf} is arbitrary since we are not interested
in the language recognized by A0 (which in this example is empty), but in the language
recognized by each of its states. In particular, note that L(A0, qh) = L(A0, qf ) = ∅
and L(A0, q) is infinite. Thus, in step 2, InfCom is initialized to be {q}. Next, the
loop of step 3 is executed twice:
• In the first iteration, the transition rule h(q)→ qh of A satisfies all the required
conditions, and thus, InfCom is set to {q, qh}.
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• In the second iteration, the transition rule f(qh, qh) → qf of A satisfies all the
required conditions, and thus, InfCom is set to {q, qh, qf}.

As InfCom already contains all the states of A, step 3 finishes, and the output of the
algorithm is the set {q, qh, qf}. This was the expected result since Q∞A = {q, qh, qf}
clearly follows from the explanations in Example 5.9: the set R defined there is an
infinite compatible set of runs on terms of the form f(h2·n(a), h2·n+1(a)), with n ≥ 1,
and hence, qf ∈ Q∞A since all the runs in R reach qf , and moreover, q, qh ∈ Q∞A since
it is possible to define infinite compatible sets of runs for them by properly extracting
subruns of the runs in R.

Lemma 5.14. Let A be a TAG∧6≈R . Let InfCom be the output of Algorithm 5.12 on
input A. Let r be a run of A satisfying that rhs(r(p)) ∈ InfCom for each position
p ∈ Pos(r) \ {λ} such that r|p reaches a constrained state, and moreover, there is
some p ∈ Pos(r) such that rhs(r(p)) ∈ InfCom.

Then, rhs(r(λ)) ∈ InfCom.

Proof. Let S be the set of positions p ∈ Pos(r) satisfying that r|p reaches a state in
InfCom and such that they are minimal with respect to the prefix relation ≤. Note
that S is a set of parallel positions and that, by the assumptions, S 6= ∅ holds. Let P
be the set of prefixes of the positions in S, i.e., P = {p ∈ Pos(r) | ∃p′ ∈ S : p ≤ p′}.
By induction on the terms pending at positions in P , it is easy to see that, for each
p ∈ P , the state rhs(r(p)) is added to InfCom either in step 2 or step 3 of the algorithm,
since the second and third conditions of step 3 are satisfied by the assumption of the
lemma and induction hypothesis. Since λ ∈ P , the statement holds. �

Lemma 5.15. Let A be a TAG∧6≈R . Let InfCom be the output of Algorithm 5.12 on
input A.

Then, InfCom = Q∞A .

Proof. Let A be 〈Q,Σ, F,∆, C〉 more explicitly written. We prove each direction
separately:

⊆) We first prove soundness showing that any state q ∈ InfCom is also in Q∞A . We
use induction on the number of iterations of the algorithm until q was added to
InfCom.
First assume that q was added in step 2 of the algorithm. Hence, there are in-
finitely many different runs of A0 reaching q and, since runs of A0 are compatible
runs of A, it follows directly that q ∈ Q∞A .
Now assume that q was added after some iterations of step 3 of the algorithm.
Hence, there exists a rule (f(q1, . . . , qm) → q) ∈ ∆ where each qi either has
already been added to InfCom or it has non-empty language in A0. Moreover,
there exists at least one j such that qj is in InfCom. To prove q ∈ Q∞A , it suffices
to show that there exists an infinite compatible set of runs of A reaching q with
the rule f(q1, . . . , qm)→ q at their root position. We show that this set can be
obtained by properly selecting runs reaching each qi. We consider the following
cases:
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(a) For every state qi 6∈ InfCom, we take any run of A0 reaching that qi, which
exists because in this case L(A0, qi) 6= ∅. Note that the selected run of A0

is also a run of A, and moreover, it is always compatible with any other
run of A since it does not involve constrained states.

(b) For all the states in InfCom appearing in the left-hand side of the rule, say
the states with indexes {i1, . . . , ik} ⊆ {1, . . . ,m}, by induction hypothesis
it holds that qi1 , . . . , qik ∈ Q∞A . Moreover, note that there exists at least
one such state, i.e., 1 ≤ k ≤ m. Hence, by Corollary 5.10, there exists a
compatible set containing an infinite number of runs reaching each qij .

Using the runs selected in (a) and the infinitely many compatible runs of (b),
we can obtain infinitely many compatible runs of A with f(q1, . . . , qm) → q at
their root position, and hence, q ∈ Q∞A .

⊇) We prove completeness by contradiction. Assume that there is a state q ∈ Q∞A
such that q 6∈ InfCom. Since q ∈ Q∞A , there exists an infinite compatible set of
runs S such that rhs(r(λ)) = q, for each r ∈ S. We distinguish two cases.
First, if there exists an infinite subset of runs in S not containing any state
occurring in the constraint of A, then L(A0, q) is infinite. Therefore, q was added
to InfCom in step 2 of the algorithm, in contradiction with the assumption.
Otherwise, there exists an infinite compatible set R ⊆ S such that every run in
R contains a state occurring in the constraint of A. Note that, by Lemma 5.14
and the fact that q 6∈ InfCom holds by the assumption, we can conclude that each
run r ∈ R satisfies the following property: there exists a position p ∈ Pos(r)\{λ}
such that r|p reaches a constrained state not in InfCom. We define R̃ as the set
of subruns of runs in R such that the only occurrence of a constrained state not
in InfCom is at their root position. More formally:

R̃ = {r|p | r ∈ R, p ∈ Pos(r),
∀p′ ∈ Pos(r|p) : (rhs(r|p(p′)) ∈ C ∧ rhs(r|p(p′)) 6∈ InfCom⇔ p′ = λ)}

Note that R̃ is an infinite compatible set. Moreover, every strict subrun of each
r ∈ R̃ does not contain constrained states, since otherwise, rhs(r(λ)) ∈ InfCom
by Lemma 5.14. It follows that all strict subruns of runs in R̃ are runs of A0.
Since R̃ is infinite and ∆ is finite, there exists an infinite compatible set R̃′ ⊆ R̃
such that every run in R̃′ has the same rule f(q1, . . . , qm)→ q̃′ at root position.
Finally, since R̃′ is infinite, there exists j ∈ {1, . . . ,m} such that L(A0, qj) is
infinite, and thus, qj ∈ InfCom. Hence, q̃′ was added to InfCom in step 3 of the
algorithm, a contradiction with the definition of R̃. �

5.4 Transformation of the automaton
Taking advantage of the fact that the set Q∞ can be computed, we simplify our
problem by transforming the initial TAG∧6≈R and adopting a slightly different notion of
run. One of the goals of the transformation, as shown in the following example, is to
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simplify runs of the TAG∧6≈R by ignoring subruns reaching states in Q∞, since they are
not relevant in our setting.

Example 5.16. Let A be the TAG∧6≈R defined in Example 5.9. Recall that the con-
straint of A concerns runs reaching qh, and yet, as seen in Example 5.13, qh ∈ Q∞A .
Therefore, the constraint is not relevant for the emptiness decision, since enough com-
patible runs reaching qh can always be found. For this reason, we will represent all
terms reaching qh with a new constant symbol N. If we replace the rule h(q) → qh
by the new rule N→ qh, then emptiness of the language is preserved under a relaxed
notion of run. In this new notion, satisfiability of constraints is reinterpreted so that
they are additionally satisfied when the symbol N appears in the terms associated with
the involved subruns, i.e., a subrun with N always satisfies a disequality.

As a final remark, note that after representing all the terms reaching qh by the
constant symbol N, the language recognized is {f(N,N)}, which is finite although the
original language was infinite. Hence, finiteness of the recognized language is not
preserved by this transformation, but it is easy to see that any occurrence of the
symbol N in a term of the language guarantees that the original language was infinite.

The actual transformation of the automaton that we will propose is more complex
than the previous sketch. In particular, it will modify the recognized language of all
states in Q∞A . Thus, A would be transformed in such a way that its recognized language
would be reduced to {N} instead of {f(N,N)}, since its final state qf is in Q∞A .

As seen in the previous example, we need to compare terms using the following
notion, which depends on a special symbol of the signature denoted by N.

Definition 5.17. Let Σ be a signature, and let N be a symbol in Σ. We define the
relation =N on T (Σ) as t1 =N t2 if and only if t1 = t2 and there is no occurrence of
N in t1 or t2.

Hence, if N occurs in t1 or t2, then t1 6=N t2. Note that =N is a partial equivalence
relation, i.e., it is symmetric and transitive, but not reflexive.

Now, we formally define the notion of run commented in the previous example in
terms of =N. The difference with the usual definition of run is that a term containing
N always satisfies a disequality with any other term (even itself).

Definition 5.18. Let A be a TAG∧6≈R with signature Σ, and let N be a symbol in
Σ. We define a N-run r of A as a run of ta(A) satisfying that, for every pair of
distinct positions p1, p2 ∈ Pos(r) such that the global constraint of A contains the
atom rhs(r(p1)) 6≈ rhs(r(p2)), it holds that term(r|p1) 6=N term(r|p2). With LN(A) we
denote the set of terms t ∈ T (Σ) such that there exists a N-run of A on t reaching a
final state.

Analogously to Definition 5.6, two N-runs r1, r2 of A are N-compatible if, for
every pair of positions p1 ∈ Pos(r1), p2 ∈ Pos(r2) such that the global constraint of A
contains the atom rhs(r1(p1)) 6≈ rhs(r2(p2)), it holds that term(r1|p1) 6=N term(r2|p2).

We are now ready to formalize the transformation of the automaton sketched in
Example 5.16. It suffices to introduce a new constant symbol N, a new state qN, and
a new rule N→ qN, also make such new state qN final in the case where F ∩Q∞ was
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not empty, remove all transition rules where the right-hand side is a state in Q∞, and
finally, replace by qN any state in Q∞ occurring in the left-hand side of the remaining
transition rules. It is clear that any state that was in Q∞ becomes useless after such
transformation, and thus, we could remove all of them from the state set, final state
set, and the global constraint, without further affecting the recognized language. It is
also possible that other states become useless if they only appeared in runs reaching
states in Q∞. These states could also be cleaned. In either case, such cleaning is not
strictly necessary, and thus, we keep the useless states in the resulting automaton in
order to simplify the description of the transformation.

To ease the presentation of our decision procedure for the emptiness and finiteness
for TAG∧6≈R , we combine the previous transformation introducing N with another one
that extends the information recorded by the states. In particular, we want that
the state reached at the root position of any N-run has information of whether a
constrained state has appeared in such N-run. To this end, it suffices to split each
state q into a state qc and a state qc̄, and modify the set of rules to guarantee the
following property: a state of the form qc is only reachable with N-runs that involve
some constrained state, and similarly, a state of the form qc̄ is only reachable with
N-runs that do not involve any constrained state. The following definition formalizes
this combined transformation.

Definition 5.19. Let A = 〈Q,Σ, F,∆, C〉 be a TAG∧6≈R , and let N be a symbol not in
Σ. We define the TAG∧6≈R AN as 〈Qc

N ]Qc̄
N,ΣN, FN,∆N, CN〉, where:

• QxN = {qx | q ∈ Q ] {qN}} with x ∈ {c, c̄},

• ΣN = Σ ] {N:0},

• FN = {qx | q ∈ F ∧ x ∈ {c, c̄}} ] {qxN | F ∩Q∞A 6= ∅ ∧ x ∈ {c, c̄}},

• CN = {qc
1 6≈ qc

2 | (q1 6≈ q2) ∈ C},

• ∆N is the set of transition rules containing N→ qc̄
N and also all the rules of the

form f(qx1
1 , . . . , qxmm ) → qx, with x1, . . . , xm, x ∈ {c, c̄} such that x = c if and

only if q ∈ C or there is some i ∈ {1, . . . ,m} such that xi = c, and satisfying
that there exists a rule (f(q′1, . . . , q′m) → q) ∈ ∆ such that q 6∈ Q∞A and, for
every i ∈ {1, . . . ,m}, if q′i ∈ Q∞A then qi = qN, and qi = q′i otherwise.

Note that, by definition, no rule of AN has qc
N as right-hand side, and thus, such

state is useless. The only reason to distinguish between qc
N and qc̄

N was to simplify
the presentation of the transformation, and henceforth, we refer to qc̄

N simply as qN.
Also note that AN can be computed with time in O(|∆| · 2maxar + |Q|+ |C|), since, in
particular, |∆N| ≤ 1 + |∆| · 2maxar and |Qc

N ]Qc̄
N| = 2 · (|Q|+ 1).

Example 5.20. Let Σ be the signature {a:0, h:1, g:2, f :2}. Consider the language
of terms of the form f(e1, f(e2, . . . f(em, a) . . .)), where each ei is a term of the form
g(hl(a), hr(a)) with l, r ≥ 1, satisfying that all the subterms e1|1, . . . , em|1 are pair-
wise different (i.e., the l’s are distinct), and all the subterms e1|2, . . . , em|2 are pair-
wise different (i.e., the r’s are distinct) and have height bounded by a given n ≥ 1
(i.e., all the r’s satisfy 1 ≤ r ≤ n). Such language is recognized by the TAG∧6≈R



104 Chapter 5. Decidability of global reflexive disequality constraints

A = 〈{qlist, qg, q, ql, q0, . . . , qn−1, qr},Σ, {qlist},∆, ql 6≈ ql ∧ qr 6≈ qr〉, where the set of
transition rules ∆ is:

a→ q
h(q)→ q
h(q)→ ql

a→ q0
h(qi)→ qi+1 for i ∈ {0, . . . , n− 2}
h(qi)→ qr for i ∈ {0, . . . , n− 1}

g(ql, qr)→ qg
a→ qlist

f(qg, qlist)→ qlist

Note that the constraint on qr could be equivalently checked with plain TA techniques
since L(A, qr) is finite. Nevertheless, this would require an automaton with a number
of states in 2O(n).

To apply the construction of Definition 5.19 on A, we first need to compute Q∞A . It
is easy to see that Q∞A only contains the states q and ql since, in particular, the states
q0, . . . , qn−1, qr recognize finite languages, and this fact combined with the constraint
on qr implies that there are no infinite compatible sets of runs reaching qg or qlist.
Thus, the TAG∧6≈R AN over the extended signature ΣN = Σ]{N:0} is defined as follows.
Its set of states is obtained by adding the new state qN and applying the labels c
(meaning that the N-run has seen a constrained state) and c̄ (meaning that only non-
constrained states have been seen in the N-run) to each of the states, i.e., its set of
states is {qxN, qxlist, q

x
g , q

x, qxl , q
x
0 , . . . , q

x
n−1, q

x
r | x ∈ {c, c̄}}. Its set of final states is

{qc
list, q

c̄
list}, since the original set of final states only contained qlist, and such state is

not in Q∞A (otherwise, we would also include qc
N and qc̄

N as final states). Its global
disequality constraint is qc

l 6≈ qc
l ∧ qc

r 6≈ qc
r. Finally, to obtain its set of transition rules

we ignore the rules of A reaching a state in Q∞A (i.e., a → q, h(q) → q, h(q) → ql),
replace by qN all states in Q∞A occurring in the left-hand side of the remaining rules,
and properly label the states with c or c̄. We also have to add the rule N→ qc̄

N. Hence,
the resulting set of transition rules is:

N→ qc̄
N

a→ qc̄
0

h(qxi )→ qxi+1 for i ∈ {0, . . . , n− 2} and x ∈ {c, c̄}
h(qxi )→ qc

r for i ∈ {0, . . . , n− 1} and x ∈ {c, c̄}
g(qxN, qyr )→ qzg for x, y, z ∈ {c, c̄} such that (x = c ∨ y = c)⇔ (z = c)

a→ qc̄
list

f(qxg , q
y
list)→ qzlist for x, y, z ∈ {c, c̄} such that (x = c ∨ y = c)⇔ (z = c)

Note that AN has many useless states. For instance, qc
0, . . . , q

c
n−1 are unreachable,

and since qr is constrained in A, qc̄
r is unreachable in AN, and thus, so is qc̄

g. Also, as
expected, qx and qxl with x ∈ {c, c̄} are useless because there is no rule reaching them
since q, ql ∈ Q∞A . As a final remark, it is easy to verify that any N-run of AN reaches
a state labeled with c if and only if it has some occurrence of a constrained state.

In order to give more intuition on the transformation, we discuss some important
properties of the automaton AN. As a first remark, note that the fact that a N-run r
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of AN reaches a state in Qc
N if and only if r involves some state occurring in CN can be

proved by induction on height(r) and distinguishing cases according to the definition
of ∆N. Now, note that any state of the form qc̄ necessarily recognizes a finite language
over T (ΣN). This is easy to see when q is a constrained state of A, as qc̄ is useless
and its language is empty. Otherwise, the property can be proved by contradiction:
if qc̄ can be reached by an infinite number of N-runs not involving constrained states,
then q ∈ Q∞A by Lemmas 5.14 and 5.15, and hence, qc̄ is useless and its language is
empty by Definition 5.19, a contradiction. Next, note that every N-run of AN with
a rule of the form f(. . . , qN, . . .) → qx at its root position, for x ∈ {c, c̄}, necessarily
satisfies qx ∈ Qc

N, i.e., x = c. If this was not the case, then it is trivial to see that
q ∈ Q∞A follows from Lemmas 5.14 and 5.15, which leads to a contradiction with the
form of the rule and the definition of ∆N. Finally, we give a technical statement that
is also related to rules having an occurrence of qN at their left-hand side.

Lemma 5.21. Let A be a TAG∧6≈R . Let r be a N-run of AN. Let p be a position and
let k1 be a natural number such that p.k1 ∈ Pos(r) and rhs(r(p.k1)) = qN.

Then, there is a natural number k2 such that p.k2 ∈ Pos(r) and rhs(r(p.k2)) 6= qN.

Proof. Assuming that r(p) is a rule of the form f(qN, . . . , qN) → q leads to a con-
tradiction with the fact that rhs(r(p)) 6= qN by Lemmas 5.14 and 5.15, and Defini-
tion 5.19. �

We now characterize how the language recognized by a TAG∧6≈R A is related to
LN(AN) in terms of emptiness and finiteness. We start with a technical lemma stating
that, if LN(AN) contains a term with an occurrence of N, then L(A) has infinite terms.

Lemma 5.22. Let A be a TAG∧6≈R . Let r be an accepting N-run of AN on a term with
an occurrence of N.

Then, there exist infinitely many accepting runs of A.

Proof. The case where r = (N → qN) follows trivially. Otherwise, let A be more
explicitly written as 〈Q,Σ, F,∆, C〉, and letM : Pos(r)→ Q be a mapping satisfying:

• M(p) = q if r(p) = (l→ qx) 6= (N→ qN), where x ∈ {c, c̄},

• M(p) = q if r(p) = (N→ qN), where q ∈ Q∞A ,

• for each p ∈ Pos(r) such that term(r) at position p is labeled by a symbol
f ∈ Σ(m) different from N, the rule f(M(p.1), . . . ,M(p.m))→M(p) is in ∆.

Note that such mapping M exists by Definition 5.19. Let {p1, . . . , pn} be the set of
positions in Pos(r) satisfying r(pi) = (N → qN) and, for each i ∈ {1, . . . , n}, let Si
be an infinite set of compatible runs of A reaching M(pi). Such infinite sets exist by
definition ofM sinceM(pi) ∈ Q∞A . By Corollary 5.10, there exists S ⊆ (S1∪ . . .∪Sn)
such that S is an infinite compatible set of runs of A and, for every i ∈ {1, . . . , n},
S ∩ Si is infinite. This fact guarantees that it is possible to replace the N-subruns of
r at positions p1, . . . , pn to obtain infinitely many accepting runs of A. �

The following two lemmas state that emptiness of the recognized language is pre-
served by the transformation, and show how its finiteness is changed.
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Lemma 5.23. Let A be a TAG∧6≈R . L(A) is empty if and only if LN(AN) is empty.

Proof. We prove each direction separately:

⇒) Given an accepting run r of A, it is easy to construct an accepting N-run of
AN. Since the precise construction is quite technical, we just describe it briefly.
Intuitively, it consists in replacing the subruns of r at minimal positions (with
respect to the prefix relation ≤) that reach a state inQ∞A by the N-run (N→ qN),
and changing each state q by qc or qc̄ depending on whether there is a constrained
state in the corresponding N-subrun.

⇐) Let r be an accepting N-run of AN on a term t. The case where t does not
contain any occurrence of N is straightforward: it suffices to replace in r every
occurrence of a state of the form qc or qc̄ by q, thus obtaining an accepting run
r′ of A on t. Otherwise, the statement follows from Lemma 5.22. �

Lemma 5.24. Let A be a TAG∧6≈R . L(A) is infinite if and only if LN(AN) is infinite
or it contains a term with an occurrence of N.

Proof. We prove each direction separately:

⇒) If there exist infinitely many accepting runs of A not containing any state in
Q∞A , then those runs can easily be converted into accepting N-runs of AN by
properly changing each state q by qc or qc̄, and thus, LN(AN) is infinite and the
statement holds. Otherwise, let r be an accepting run of A containing some state
in Q∞A . It is easy to construct from r an accepting N-run r′ of AN by replacing
the subruns of r at minimal positions (with respect to the prefix relation ≤)
that reach a state in Q∞A by the N-run (N→ qN), and changing each state q by
qc or qc̄ depending on whether there is a constrained state in the corresponding
N-subrun. The accepting N-run r′ recognizes a term with an occurrence of N,
and we are done.

⇐) If there exist infinitely many accepting N-runs of AN not containing the state qN,
then those N-runs can easily be converted into accepting runs of A by replacing
each state of the form qc or qc̄ by q, and thus, L(A) is infinite and the statement
holds. Otherwise, in the case where there exists an accepting N-run of AN

containing the state qN, the statement follows from Lemma 5.22. �

The following lemma is crucial in our global approach. It gives an upper bound
for the number of N-runs that can be pairwise N-compatible when each of the N-runs
contains some constrained state.

Lemma 5.25. Let A = 〈Q,Σ, F,∆, C〉 be a TAG∧6≈R . Let r1, . . . , rn be N-runs of AN

pairwise N-compatible and such that ri reaches a state in Qc
N, for i ∈ {1, . . . , n}.

Then, n ≤ |Q| · |Σ|maxar|Q| .

Proof. For each i ∈ {1, . . . , n}, let r′i be a N-subrun of ri reaching a state in Qc
N and

with no other occurrence of states in Qc
N (such N-subrun exists by the assumptions

of the lemma). Note that r′1, . . . , r′n are pairwise N-compatible.



5.5. Emptiness and finiteness decision algorithms 107

We argue by contradiction assuming that n > |Q| · |Σ|maxar|Q| . Let each r′i be more
explicitly written as (li → qc

i )(r′i,1, . . . , r′i,mi). Note that, for each i ∈ {1, . . . , n} and
j ∈ {1, . . . ,mi}, the state qN does not occur in r′i,j , since otherwise qi ∈ Q∞A holds
by Lemmas 5.14 and 5.15, and Definition 5.19, implying that qc

i is useless by the
definition of ∆N, a contradiction. Moreover, height(r′i,j) < |Q| − 1, since otherwise
r′i,j can be pumped, implying again that qi ∈ Q∞A by Lemmas 5.14 and 5.15, and
Definition 5.19, and leading to a contradiction. The bound |Q| − 1 is enough since
r′i,j cannot have any occurrence of a state of the form qc (otherwise r′i,j would have
a constrained state) or any occurrence of qc̄

i (which is useless since qi ∈ C). Now,
note that the number of different terms of height h is bounded by |Σ|maxarh+1 , and
hence, by the assumption that n > |Q| · |Σ|maxar|Q| , it follows that there exist different
i, j ∈ {1, . . . , n} such that qc

i = qc
j and term(r′i) =N term(r′j). This is in contradiction

with the N-compatibility of r′i and r′j since the atom qc
i 6≈ qc

j is necessarily in CN. �

The following corollary is not used in the remaining arguments, but we have
included it since it is a direct consequence of Lemma 5.25, and its statement gives
more intuition on an important property of N-runs. Intuitively, it states that, for any
N-run r of AN, there exists a bound for the number of occurrences of states in Qc

N at
parallel positions of r.

Corollary 5.26. Let A = 〈Q,Σ, F,∆, C〉 be a TAG∧6≈R . Let r be a N-run of AN. Let
p1, . . . , pn ∈ Pos(r) be pairwise parallel positions such that the N-subrun r|pi reaches
a state in Qc

N, for i ∈ {1, . . . , n}.
Then, n ≤ |Q| · |Σ|maxar|Q| .

5.5 Emptiness and finiteness decision algorithms
As a consequence of Lemma 5.23, deciding emptiness of the language recognized by
a given TAG∧6≈R A can be reduced to test whether there exists an accepting N-run
of AN. And, as a consequence of Lemma 5.24, deciding finiteness of the language
recognized by A can be reduced to test whether LN(AN) is infinite or contains a term
with an occurrence of the symbol N. We tackle both problems with an algorithm that
non-deterministically simulates the construction of accepting N-runs in a top-down
manner. More concretely, in an intermediate step of the algorithm, the top-most part
of an accepting N-run r has been already non-deterministically constructed, and it
remains to determine its N-subruns r1, . . . , rn at certain parallel positions. Moreover,
such ri’s are required to reach some specific states, and to recognize terms satisfying
certain equality and disequality constraints (with respect to =N) between them. The
states that the ri’s have to reach are determined by the part of r that has already been
constructed. The (dis)equality constraints between the terms recognized by the ri’s
are either determined by the constraint CN and the states reached by the ri’s, or they
are inherited from the part of r that has already been constructed. The algorithm
proceeds by guessing the rule at the root position of some of the ri’s, hence extending
the constructed part of r. In particular, the ri’s whose root is determined at this
step of the algorithm are the ones that are guessed to have maximal height among
all the ri’s. By always extending r in this order, we partially construct in the same
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step all the N-subruns of r that have identical height, which allows to either satisfy
or propagate the (dis)equality constraints that have to be satisfied.

The algorithm is presented as an inference system that deals with pairs of the
form 〈M,S〉, where M and S are partitions of labeled states of AN, i.e., M and S
are sets of non-empty disjoint sets of pairs 〈q, `〉. To ease the presentation, we denote
the labeled states 〈q, `〉 as q`. Our labels are used simply as identifiers to distinguish
repeated occurrences of the same state. We define the labels as sequences of natural
numbers standing for the position in the constructed N-run where the state occurs.

Let us specify the role of 〈M,S〉 and how this data structure is helpful to formalize
the behaviour of the algorithm as sketched above. The inference starts with a pair
of the form 〈{{qλf }}, ∅〉, where qf is guessed among the final states of AN, and then
non-deterministically constructs a N-run r reaching qf , if possible. This construction
is done top-down, by guessing the rules of ∆N to be used. In an intermediate step,
〈M,S〉 contains the states at the deepest positions of the partially constructed r,
i.e., for an element q` of 〈M,S〉 it holds that rhs(r(`)) = q. The process guarantees
some invariant properties on 〈M,S〉 to keep track of the constraints imposed by the
automaton. Consider two different elements q`11 , q

`2
2 of 〈M,S〉. If both of them occur

in M , then height(r|`1) = height(r|`2). If one of them, say q`11 , occurs in M and the
other one, say q`22 , occurs in S, then height(r|`1) > height(r|`2). Moreover, q`11 and q`22
belong to the same part in M or S if and only if term(r|`1) =N term(r|`2).

Before introducing the inference system, we start by giving a definition that relates
pairs 〈M,S〉 with N-runs that satisfy the conditions imposed by the pair. Recall that,
given a set of sets T , we use the notation

⋃
T as shorthand for

⋃
P∈T P , and that we

write e1 ∼T e2 to denote that the elements e1 and e2 belong to the same set in T .

Definition 5.27. Let A be a TAG∧6≈R . Let M,S be such that M ] S is a partition of
the set {q`11 , . . . , q

`n
n } of labeled states of AN. Let r1, . . . , rn be N-runs of AN. We say

that r1, . . . , rn fit 〈M,S〉 if the following conditions hold:

(F1) ri reaches the state qi, for each i ∈ {1, . . . , n},

(F2)
(
q`ii ∈

⋃
M
)
⇔ (height(ri) = max{height(rj) | j ∈ {1, . . . , n}}), for each i ∈

{1, . . . , n} such that qi 6= qN,

(F3)
(
q`ii ∼M]S q

`j
j

)
⇔ (term(ri) =N term(rj)), for each distinct i, j ∈ {1, . . . , n},

(F4) r1, . . . , rn are pairwise N-compatible.

Let us remark that condition (F2) ignores the N-runs reaching the state qN. This
is because such N-runs recognize the term N, which is used as a representation for an
infinite number of terms. Also note that a particular consequence of condition (F3)
is that, if there is some occurrence of qN in M or S, then it must be in a part of the
form {q`N}, otherwise it is impossible to find N-runs fitting such partition.

Example 5.28. Let Σ be the signature {a:0, b:0, h:1, f :2}. Let A be a TAG∧6≈R defined
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as 〈{qf , qh, q},Σ, {qf},∆, q 6≈ q〉, where the set of transition rules ∆ is:

a→ q
b→ q

h(q)→ qh
h(qh)→ qh

f(qh, qh)→ qf

Note that L(A) = {f(hn(α1), hm(α2)) | n,m ≥ 1 ∧ α1, α2 ∈ {a, b} ∧ α1 6= α2}, and
that L(A) = LN(AN) since Q∞A = ∅. Moreover, it is easy to see that the states of AN

of the form qc̄ are useless. For this reason, in the discussion below we refer to the
states of the form qc simply as q.

Note that any accepting N-run of AN fits the pair 〈{{qλf }}, ∅〉. In particular, the
N-run on the term t = f(h(h(a)), h(b)) fits such pair. Now, consider the N-runs on
the terms t|1 = h(h(a)) and t|2 = h(b), and note that they fit the pair 〈{{q1

h}}, {{q2
h}}〉

but not 〈{{q1
h}, {q2

h}}, ∅〉, since the height of t|1 is greater than the height of t|2 (thus
falsifying condition (F2) of fitness for the second pair). Moreover, observe that the
N-runs on the terms t|1.1 = h(a) and t|2 = h(b) do not fit 〈{{q1

h}}, {{q2
h}}〉 since their

height coincides (thus falsifying condition (F2) of fitness). Finally, note that there are
no N-runs fitting pairs of the form 〈{{q`1 , q`2}}, ∅〉, since the atom q 6≈ q occurring in
the constraint requires the N-runs reaching q to recognize different terms (with respect
to =N) in order to be N-compatible, and yet, they are forced to be equal since q`1 and
q`2 are in the same part (thus either condition (F3) or (F4) of fitness is falsified).

As a final ingredient to present the inference system, we define the clean operation
on partitions of labeled states. Its goals are (i) to erase the occurrences of the state qN
from the given partition, and (ii) to collapse any two labeled states q`1 , q`2 occurring
in the same part to just one of them whenever q ∈ Qc̄

N. This technical operation allows
to bound |

⋃
(M ] S)| for the pairs 〈M,S〉 considered by the decision procedure, and

hence, is key to guarantee its termination.

Definition 5.29. Let A = 〈Q,Σ, F,∆, C〉 be a TAG∧6≈R , and let T be a partition of
labeled states of AN. We define clean(T ) as the partition of labeled states {fold(P ) |
P ∈ T \ {{q`N} | ` ∈ N∗}}, where fold(P ) is a maximal subset of P such that each two
distinct q`1 , q`2 ∈ fold(P ) satisfy q ∈ Qc

N.

Note that we have not fixed a precise definition for fold, as any maximal subset
can be chosen. We could have specified that, e.g., when a part contains multiple
occurrences of a state in q ∈ Qc̄

N, the fold of such part erases all of them except the
one whose label is minimum in lexicographical order. However, such precision is not
relevant for our inference system.

Example 5.30. Let A be a TAG∧6≈R , let T be a partition of labeled states of AN, and let
P be a part in T . We start considering P = {q̂`1 , q̂`2 , q̌`3 , q`4}, where q̂, q̌ are distinct
states in Qc̄

N, and q ∈ Qc
N. By the definition of fold, any two occurrences of a state

in Qc̄
N have to be collapsed into just one of them. Thus, fold(P ) erases either q̂`1 or

q̂`2 , and hence, fold(P ) is either {q̂`1 , q̌`3 , q`4} or {q̂`2 , q̌`3 , q`4}. Note that q̌`3 is kept
since it is the single occurrence of the state q̌ ∈ Qc̄

N, and q`4 has a state in Qc
N.
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We now consider some cases dealing with the state qN. First, if P is a part of the
form {q`N}, then fold(P ) is never considered due to the definition of clean, and hence,
P 6∈ clean(T ). Now consider that P is a part of the form {q`1N , q`2N }. In this case, since
qN ∈ Qc̄

N by definition, fold(P ) is either {q`1N } or {q`2N }. Moreover, fold(P ) ∈ clean(T ),
and hence, clean(T ) contains a part of the form {q`N}. Although one of the goals of
the clean operation is precisely to erase the occurrences of the state qN, this is not a
contradiction since the inference system will guarantee that qN only appears in parts
of the form {q`N} before applying the clean operation.

Finally, since T is a partition, any two distinct parts P1, P2 ∈ T that are not of
the form {q`N} satisfy that fold(P1) and fold(P2) are disjoint and parts of clean(T ).

The clean operation preserves the fitness property when the state qN only occurs in
parts of the form {q`N}: the fact that there exist N-runs fitting a pair 〈M,S〉 trivially
implies the existence of N-runs fitting 〈clean(M), clean(S)〉, and the other direction is
stated in the next lemma. Let us remark that condition (b) in the statement is rather
technical. It guarantees the preservation of occurrences of the state qN in the N-runs
of the fitting, which is useful later to prove decidability of finiteness for TAG∧6≈R .

Lemma 5.31. Let A be a TAG∧6≈R . Let M,S be such that M ] S is a partition of the
set {q`11 , . . . , q

`n
n } of labeled states of AN, and such that the state qN only occurs in

M and S in parts of the form {q`N}. Let M̂ be clean(M) and Ŝ be clean(S), where⋃
(M̂ ] Ŝ) = {q̂ ˆ̀1

1 , . . . , q̂
ˆ̀̂
n

n̂ }. Let r̂1, . . . , r̂n̂ be N-runs of AN fitting 〈M̂, Ŝ〉.
Then, there exist N-runs r1, . . . , rn of AN fitting 〈M,S〉 and satisfying:

(a) max{height(ri) | i ∈ {1, . . . , n}} = max{height(r̂i) | i ∈ {1, . . . , n̂}},

(b) there exists a N-subrun of r1, . . . , rn reaching qN if and only if qN occurs among
q1, . . . , qn or there exists a N-subrun of r̂1, . . . , r̂n̂ reaching qN.

Proof. Let AN be 〈Qc
N ] Qc̄

N,ΣN, FN,∆N, CN〉 more explicitly written. We construct
the N-runs r1, . . . , rn fitting 〈M,S〉 as follows, where for each ri we distinguish cases
depending on whether q`ii occurs in

⋃
(M̂ ] Ŝ) or it has been removed by clean:

(i) For each i ∈ {1, . . . , n} such that q`ii ∈
⋃

(M̂ ] Ŝ), we define ri to be r̂j , where
j is the index satisfying q`ii = q̂

ˆ̀
j

j . Note that the set of such ri’s is {r̂1, . . . , r̂n̂}.

(ii) For each i ∈ {1, . . . , n} such that q`ii 6∈
⋃

(M̂ ] Ŝ), by definition of the clean
operation, either (ii.1) qi = qN holds or (ii.2) qi ∈ Qc̄

N holds. In the case (ii.1),
by the assumptions of the lemma, note that the element q`ii appears in M ] S
in a part of the form {q`ii }. In this case, we define ri to be the N-run (N→ qN).
In the case (ii.2), by definition of the clean operation, there exists exactly one
j ∈ {1, . . . , n} satisfying q`jj ∈

⋃
(M̂ ] Ŝ), q`ii ∼M]S q

`j
j , and qi = qj . In this

case, we define ri to be the rj defined in (i). In both cases, ri is N-compatible
with any other N-run.

The fact that the N-runs r1, . . . , rn fit 〈M,S〉 trivially follows from the fact that
r̂1, . . . , r̂n̂ fit 〈M̂, Ŝ〉 and the conditions on the definitions done in (ii). Condition (a)
of the statement trivially follows from the facts that r1, . . . , rn include all r̂1, . . . , r̂n̂,
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that the definitions of the ri’s done in (i) and (ii.2) preserve the maximum height, and
that the definition done in (ii.1) has height 0, i.e., minimum height. Condition (b)
of the statement holds since r1, . . . , rn include all r̂1, . . . , r̂n̂, the construction done
in (ii.1) introduces the N-run (N→ qN) if and only if there exists i ∈ {1, . . . , n} such
that qi = qN, and (ii.2) only replicates N-runs among r̂1, . . . , r̂n̂. �

Our inference system uses the rule R in Definition 5.32 to non-deterministically
construct N-runs. As commented at the beginning of this section, the construction
proceeds top-down and prioritizes the expansion of the N-subruns that are guessed to
be maximal in height. In our formalism, this corresponds to guess a rule reaching each
of the labeled states in M , replace such states by the states occurring in the left-hand
side of the guessed rules, and leave the labeled states in S unchanged (condition (a) in
the application of R). The resulting set of labeled states is then non-deterministically
partitioned (also condition (a)) satisfying the following properties:

• Two labeled states q`11 , q
`2
2 in the same part stay in the same part when they are

in S (condition (c), left-to-right direction). Otherwise, if they are in the same
part ofM , rules having q1 and q2 as right-hand sides and with the same alphabet
symbol are guessed. Moreover, the corresponding states in the left-hand sides
of the guessed rules are placed in the same parts (condition (b), left-to-right
direction). Eventually, in both cases, two N-compatible N-runs reaching states
q1 and q2 and recognizing the same term (with respect to =N) will be generated.
The right-to-left direction of conditions (b) and (c) guarantee that such treat-
ment is only given to labeled states belonging to the same part.

• Labeled states q`11 , q
`2
2 are placed in different parts whenever CN contains the

atom q1 6≈ q2 (condition (d)), in order to guarantee that CN is satisfied.

• Since each labeled state q` in M must be reached by a term of maximal height,
at least one state in the left-hand side of the rule guessed for q` must also be
reached by a term of maximal height (condition (e)).

Definition 5.32. Let A = 〈Q,Σ, F,∆, C〉 be a TAG∧6≈R . Let M,S be such that M ] S
is a partition of labeled states of AN, and each two distinct q`ii , q

`j
j ∈

⋃
(M ]S) satisfy

that `i ‖ `j. Let
⋃
M be more explicitly written as {q`11 , . . . , q

`n
n }. We define the

non-deterministic inference rule R as follows:

R : 〈M,S〉
〈clean(M ′), clean(S′)〉

where a rule (fi(qi,1, . . . , qi,mi) → qi) ∈ ∆N is guessed for each i ∈ {1, . . . , n}, and
M ′, S′ are guessed satisfying:

(a) M ′ ] S′ is a partition of {q`i.ki,k | i ∈ {1, . . . , n}, k ∈ {1, . . . ,mi}} ]
⋃
S,

(b)
(
q`ii ∼M q

`j
j

)
⇔
(
fi = fj ∧ ∀k ∈ {1, . . . ,mi} : q`i.ki,k ∼M ′]S′ q

`j .k
j,k

)
for each dif-

ferent q`ii , q
`j
j ∈

⋃
M ,
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(c)
(
q̂

ˆ̀∼S q̌
ˇ̀
)
⇔
(
q̂

ˆ̀∼M ′]S′ q̌
ˇ̀
)
for each different q̂ ˆ̀

, q̌
ˇ̀ ∈
⋃
S,

(d)
(
q̂

ˆ̀ 6∼M ′]S′ q̌
ˇ̀
)
for each different q̂ ˆ̀

, q̌
ˇ̀ ∈
⋃

(M ′ ]S′) such that one of q̂, q̌ is qN
or CN contains the atom q̂ 6≈ q̌,

(e) either
⋃

(M ′ ] S′) = ∅, or for each i ∈ {1, . . . , n} there is some k ∈ {1, . . . ,mi}
such that

(
qi,k 6= qN ∧ q`i.ki,k ∈

⋃
M ′
)
.

We denote by →R the derivation relation between pairs of partitions of labeled
states. As usual, →+

R denotes its transitive closure and →∗R its reflexive-transitive
closure. By abuse of notation, 〈M,S〉 →+

R 〈M ′, S′〉 and 〈M,S〉 →∗R 〈M ′, S′〉 are
also used to denote concrete derivations with R from 〈M,S〉 to 〈M ′, S′〉, having at
least one derivation step in the case of →+

R and with any number of derivation steps
in the case of →∗R. The length of a derivation 〈M,S〉 →∗R 〈M ′, S′〉 is its number
of steps, and is denoted as |〈M,S〉 →∗R 〈M ′, S′〉|. Finally, to make explicit the
guesses M ′, S′ done by R, we use the notation 〈M,S〉 →R 〈clean(M ′), clean(S′)〉 or
〈M,S〉 →+

R 〈clean(M ′), clean(S′)〉, where the latter denotes the guess done at the last
derivation step.
Example 5.33. Let Σ be the signature {a:0, b:0, h:1, f :5}, and consider the language
over Σ of the terms of the form:

f

n1


h
...
h

a

n2


h
...
h

a

n3


h
...
h

α1

n4


h
...
h

α2

n5


h
...
h

α3

where the ni’s are natural numbers such that n1 6= n2, and the αj’s are symbols in
{a, b} such that α1 6= α2 6= α3. Note that this last condition implies that α1, α2, α3
may either be a, b, a or b, a, b, respectively. This language is recognized by the TAG∧6≈R
A = 〈{qf , q, q′, q3, q4, q5},Σ, {qf},∆, C〉, where:
• C is the constraint {q′ 6≈ q′} ] {qi 6≈ qi | i ∈ {3, . . . , 5}} ] {q3 6≈ q4, q4 6≈ q5},

• ∆ is the set {f(q′, q′, q3, q4, q5)→ qf}]{a→ q, a→ q′, h(q)→ q, h(q)→ q′}]
{a→ qi, b→ qi, h(qi)→ qi | i ∈ {3, . . . , 5}}.

Note that the accepting runs of A are of the following form, where only the right-hand
side of the rules is depicted and numeric exponents are used to denote unary trees of
a specific height within the run:

qf

q′

qn1

q′

qn2

qn3+1
3 qn4+1

4 qn5+1
5
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Since Q∞A = {q, q′}, the accepting N-runs of AN are of the following form, depicting
them with the same simplification as above:

qf

qN qN qn3+1
3 qn4+1

4 qn5+1
5

where qf , q3, q4, q5 are states in Qc
N, for which the label c has been omitted to ease the

presentation. Consider the following accepting N-run r:

f(qN, qN, q3, q4, q5)→ qf

N→ qN N→ qN h(q3)→ q3

h(q3)→ q3

a→ q3

h(q4)→ q4

b→ q4

h(q5)→ q5

h(q5)→ q5

a→ q5

The following derivation with R implicitly constructs the previous N-run r:

〈{{qλf }}, ∅〉
→R 〈{{q3

3 , q
5
5}}, {{q4

4}}〉
→R 〈{{q3.1

3 , q5.1
5 }, {q4

4}}, ∅〉
→R 〈{{q3.1.1

3 , q5.1.1
5 }, {q4.1

4 }}, ∅〉
→R 〈∅, ∅〉

The derivation starts from the final state qf . In the first step, the transition rule
f(qN, qN, q3, q4, q5) → qf is guessed, and the elements of the form q`N are removed by
the clean operation. Moreover, since q3 6≈ q4 and q4 6≈ q5 occur in the constraint, q3

3
and q5

5 have to be placed in a different part than q4
4 (see condition (d) in the application

of R). In this derivation, the terms that correspond to q3
3 and q5

5 have been guessed
to be equal with respect to =N, and for this reason, they are placed in the same part.
Moreover, the terms that correspond to q3

3 and q5
5 have been guessed to be higher than

the term that corresponds to q4
4. Checking that the remaining derivation steps are

correct is analogous. As a final remark, note that the N-subrun r|λ fits the starting
pair of the derivation, that r|3, r|5, r|4 fit the second pair, that r|3.1, r|5.1, r|4 fit the
third pair, and finally that r|3.1.1, r|5.1.1, r|4.1 fit the fourth pair of the derivation.

The following lemma and corollary state the correctness of R, i.e., that a deriva-
tion of the form 〈{{qλf }}, ∅〉 →∗R 〈∅, ∅〉, where qf is a final state, corresponds to the
existence of an accepting N-run. Properties (C1) and (C2) in the lemma relate the
form of the derivation with the form of the N-run (in particular, with its height and
occurrences of qN). This is later useful when deciding finiteness.

Lemma 5.34. Let A be a TAG∧6≈R . Let M,S be partitions of labeled states of AN such
that 〈{{qλ}}, ∅〉 →∗R 〈M,S〉, where q is a state of AN. Let

⋃
(M]S) be more explicitly

written as {q`11 , . . . , q
`n
n }.
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Then, there exists a derivation d of the form 〈M,S〉 →∗R 〈∅, ∅〉 if and only if there
exist N-runs r1, . . . , rn of AN fitting 〈M,S〉. Moreover, d and r1, . . . , rn satisfy the
following conditions:

(C1) |d| = max{1 + height(ri) | i ∈ {1, . . . , n}},

(C2) there exists a N-subrun of r1, . . . , rn reaching qN if and only if d can be written
of the form 〈M,S〉 →+

R 〈clean(M ′), clean(S′)〉 →∗R 〈∅, ∅〉 for some M ′, S′ such
that a part of the form {q`N} occurs in M ′ ] S′ or M ] S.

Proof. Since 〈M,S〉 is derived from 〈{{qλ}}, ∅〉 using R, either 〈M,S〉 = 〈{{qλ}}, ∅〉
or 〈M,S〉 = 〈clean(M ′), clean(S′)〉, for some M ′, S′ satisfying conditions (a) to (e) of
Definition 5.32 with respect to some M ′′, S′′ such that 〈{{qλ}}, ∅〉 →∗R 〈M ′′, S′′〉 →R

〈M,S〉. In either case, it is easy to see that that the elements occurring in M are
distinct from the elements occurring in S, i.e., that M ] S is a partition of labeled
states of AN, that the labels occurring inM,S are pairwise parallel, that q`ii 6∼M]S q

`j
j

for each different q`ii , q
`j
j such that the atom qi 6≈ qj occurs in the global constraint

of AN, and that M = ∅ implies S = ∅. These properties trivially hold because
of conditions (a), (d), and (e) in the application of R and the fact that the initial
〈{{qλ}}, ∅〉 satisfies them. Moreover, since the clean operation removes all parts of
the form {q`N}, the presence of such a part in M ] S necessarily implies that q = qN
and 〈M,S〉 = 〈{{qλN}}, ∅〉.

After those general remarks, we prove each direction separately:

⇒) We use induction on |d|. For the base case, i.e., when the derivation has 0 steps,
M = S = ∅ and the statement trivially holds (in particular, condition (C1) holds
since the maximum of an empty set is 0, by convention). For the inductive case,
we write d more explicitly as 〈M,S〉 →R 〈clean(M̂), clean(Ŝ)〉 →∗R 〈∅, ∅〉, where⋃

(M̂ ] Ŝ) = {q̂ ˆ̀1
1 , . . . , q̂

ˆ̀̂
n

n̂ }.
To construct the N-runs r1, . . . , rn fitting 〈M,S〉 of the statement, we first need
to obtain N-runs r̂1, . . . , r̂n̂ fitting 〈M̂, Ŝ〉. As a first step, by induction hy-
pothesis, there exist N-runs r̃1, . . . , r̃ñ fitting 〈clean(M̂), clean(Ŝ)〉 and satisfying
conditions (C1) and (C2) for the subderivation 〈clean(M̂), clean(Ŝ)〉 →∗R 〈∅, ∅〉
of length |d| − 1. Since condition (d) in the application of R guarantees that
the state qN only occurs in M̂ and Ŝ in parts of the form {q`N}, we can ap-
ply Lemma 5.31 on M̂, Ŝ and r̃1, . . . , r̃ñ and conclude that there exist N-runs
r̂1, . . . , r̂n̂ fitting 〈M̂, Ŝ〉 and satisfying the following conditions:

– max{1+height(r̂i) | i ∈ {1, . . . , n̂}} = |d|−1, by the fact that condition (C1)
is satisfied for r̃1, . . . , r̃ñ and by property (a) of Lemma 5.31,

– there exists a N-subrun of r̂1, . . . , r̂n̂ reaching qN if and only if a part of the
form {q`N} is in M̂ ] Ŝ or there exists a N-subrun of r̃1, . . . , r̃ñ reaching qN,
by property (b) of Lemma 5.31.

We now construct r1, . . . , rn from r̂1, . . . , r̂n̂ and the guesses done in the appli-
cation of R. For each i ∈ {1, . . . , n} such that q`ii ∈

⋃
S, by condition (a) of

R it follows that there is j ∈ {1, . . . , n̂} such that q`ii = q̂
ˆ̀
j

j . In this case we
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define ri as r̂j . For each i ∈ {1, . . . , n} such that q`ii ∈
⋃
M , we proceed as

follows. Let fi(qi,1, . . . , qi,mi)→ qi be the rule of AN guessed for q`ii in the ap-
plication of R. Again by condition (a) of R, it follows that, for k ∈ {1, . . . ,mi},
there exist jk ∈ {1, . . . , n̂} such that q`i.ki,k = q̂

ˆ̀
jk
jk

. In this case we define ri as
(fi(qi,1, . . . , qi,mi)→ qi)(r̂j1 , . . . , r̂jmi ).
It remains to prove that the constructed r1, . . . , rn fit 〈M,S〉 and satisfy con-
ditions (C1) and (C2). We prove separately each of the conditions of fitness
from Definition 5.27, condition (C1) is proved together with (F2), and (C2) is
trivially satisfied by construction.

– Condition (F1) is satisfied by construction.
– We prove that condition (F2) is satisfied distinguishing cases depending on

whether clean(M̂) is empty or not.
First assume that clean(M̂) = ∅. Note that clean(Ŝ) = ∅ follows from
the fact that r̃1, . . . , r̃ñ fit 〈clean(M̂), clean(Ŝ)〉, and hence, they satisfy
condition (F2). Thus, S = ∅ by condition (a) in the application of R.
Moreover, the rules guessed for each q`ii ∈

⋃
M in the application of R

are either of the form fi(qN, . . . , qN) → qi or ai → qi, where ai is a con-
stant symbol. The former case is not possible by Lemma 5.21, and hence,
height(r1) = . . . = height(rn) = 0. Since we had S = ∅, it follows that con-
dition (F2) holds. Finally, |d| = 1 = max{1 + height(ri) | i ∈ {1, . . . , n}},
thus satisfying condition (C1) in this case.
Now assume that clean(M̂) 6= ∅. Recall that |d| − 1 = max{1 + height(r̂j) |
j ∈ {1, . . . , n̂}}. By construction of r1, . . . , rn, condition (e) in the appli-
cation of R, and the fact that r̂1, . . . , r̂n̂ fit 〈M̂, Ŝ〉, the following holds
for each q`ii ∈

⋃
(M ] S). If qi = qN, then condition (F2) holds trivially.

If q`ii ∈
⋃
M , then 1 + height(ri) = 1 + (|d| − 1) = |d|. If q`ii ∈

⋃
S,

then q`ii ∈
⋃

(M̂ ] Ŝ) by condition (a) in the application of R, and hence,
1 + height(ri) ≤ |d| − 1. It follows that condition (F2) is satisfied also in
this case. Moreover, since

⋃
M is not empty, |d| = max{1 + height(ri) |

i ∈ {1, . . . , n}}, thus satisfying condition (C1) also in this case.
– We consider any two distinct labeled states q`ii , q

`j
j ∈

⋃
(M ] S) in order

to see that condition (F3) is satisfied. First, assume that both of them are
in
⋃
M . In this case, term(ri) =N term(rj) if and only if q`ii ∼M q

`j
j holds

by the fact that r̂1, . . . , r̂n̂ fit 〈M̂, Ŝ〉 and condition (b) in the application
of R. Second, assume that both of them are in

⋃
S. In this case, con-

dition (F3) holds by the fact that r̂1, . . . , r̂n̂ fit 〈M̂, Ŝ〉 and condition (c)
in the application of R. Third, assume that one of them is in

⋃
M and

the other one is in
⋃
S. In this case, term(ri) 6=N term(rj) since r1, . . . , rn

satisfy condition (F2).
– We consider any two distinct labeled states q`ii , q

`j
j ∈

⋃
(M ] S) in order

to see that condition (F4) is satisfied. First, assume that both of them are
in
⋃
M . Note that any two strict N-subruns of ri and rj are N-compatible

since r̂1, . . . , r̂n̂ fit 〈M̂, Ŝ〉. If the atom qi 6≈ qj does not occur in the
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global constraint of AN, then ri and rj are trivially N-compatible. Oth-
erwise, if the atom qi 6≈ qj occurs in the global constraint of AN, then
q`ii 6∼M q

`j
j holds by condition (d) in the application of R in the deriva-

tion 〈{{qλ}}, ∅〉 →∗R 〈M,S〉, and hence, term(ri) 6=N term(rj) since con-
dition (F3) is satisfied, thus implying that ri and rj are N-compatible.
Second, assume that q`ii ∈

⋃
S. In this case, ri is N-compatible with

any other rj by the fact that r̂1, . . . , r̂n̂ fit 〈M̂, Ŝ〉 and r1, . . . , rn satisfy
condition (F2). The case q`jj ∈

⋃
S is analogous.

⇐) We assume that there exist N-runs r1, . . . , rn fitting 〈M,S〉, and use induction
on the value h = max{height(rj) | j ∈ {1, . . . , n}} to prove 〈M,S〉 →∗R 〈∅, ∅〉
and conditions (C1) and (C2). For the base case, assume that h = 0. If n = 0,
then the statement trivially holds, because M = S = ∅ and max{1+ height(ri) |
i ∈ {1, . . . , n}} = max ∅ = 0 by convention. Otherwise, when n > 0, each N-run
ri is of the form (fi → qi), and S = ∅ by condition (F2) of fitting. Consider
the case in which the rule guessed for each q`ii ∈

⋃
M in the application of R

is precisely fi → qi. Note that condition (b) in the application of R holds since
r1, . . . , rn fit 〈M,S〉, and the remaining conditions of R are trivially satisfied.
Therefore, by defining d as 〈M,S〉 →R 〈∅, ∅〉, condition (C1) is satisfied since
|d| = 1 = max{1 + height(ri) | i ∈ {1, . . . , n}}, and condition (C2) trivially
holds.
For the inductive case, i.e., h > 0, we construct M̂, Ŝ satisfying that 〈M,S〉 →R

〈clean(M̂), clean(Ŝ)〉 and show that there are N-runs fitting 〈clean(M̂), clean(Ŝ)〉
with height strictly smaller than h. Consider that the rule guessed for each
q`ii ∈

⋃
M in the application of R is precisely ri(λ) = (fi(qi,1, . . . , qi,mi)→ qi).

Assume that M̂ and Ŝ are guessed satisfying the following conditions, where we
denote an element q`ii ∈

⋃
S as q`i.λi,λ in order to simplify the presentation:

(i) M̂ is a partition of the set {q`i.ji,j | i ∈ {1, . . . , n}, j ∈ Pos(ri), |j| ≤ 1, qi,j =
rhs(ri(j)), height(ri|j) = h− 1},

(ii) Ŝ is a partition of the set {q`i.ji,j | i ∈ {1, . . . , n}, j ∈ Pos(ri), |j| ≤ 1, qi,j =
rhs(ri(j)), height(ri|j) < h− 1, (height(ri) < h⇒ j = λ)},

(iii)
(
q
`i1 .j1
i1,j1

∼M̂]Ŝ q
`i2 .j2
i2,j2

)
⇔ (term(ri1 |j1) =N term(ri2 |j2)), for each different

q
`i1 .j1
i1,j1

, q
`i2 .j2
i2,j2

∈
⋃

(M̂ ] Ŝ).

We now prove that 〈clean(M̂), clean(Ŝ)〉 can be derived from 〈M,S〉 withR using
the considered guesses. Condition (a) in the application of R is trivially satisfied
by conditions (i) and (ii) in the definition of M̂ and Ŝ. Condition (b) follows from
the fact that r1, . . . , rn fit 〈M,S〉, the selections of the rules, and condition (iii).
Condition (c) follows from the fact that r1, . . . , rn fit 〈M,S〉, and condition (iii).
In order to see that condition (d) holds, first note that, for each different
q
`i1 .j1
i1,j1

, q
`i2 .j2
i2,j2

∈
⋃

(M̂ ] Ŝ) such that the atom qi1,j1 6≈ qi2,j2 occurs in the global
constraint of AN, necessarily term(ri1 |j1) 6=N term(ri2 |j2) since r1, . . . , rn fit
〈M,S〉, and thus, ri1 , ri2 are N-compatible. Hence, q`i1 .j1i1,j1

6∼M̂]Ŝ q
`i2 .j2
i2,j2

follows
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from condition (iii). The other case of condition (d), i.e., when qi1,j1 or qi2,j2 is
qN, also holds by condition (iii). Finally, condition (e) follows from Lemma 5.21
and condition (i). Altogether implies that 〈M,S〉 →R 〈clean(M̂), clean(Ŝ)〉.
By the definition of M̂, Ŝ and the clean operation, 〈clean(M̂), clean(Ŝ)〉 is fitted
by the ri|j ’s such that q`i.ji,j ∈

⋃
(clean(M̂) ] clean(Ŝ)). Moreover, the maxi-

mum height of such ri|j ’s is h − 1 by conditions (i) and (ii), and the fact that⋃
M̂ is not empty. Thus, we can apply induction hypothesis and conclude

that 〈clean(M̂), clean(Ŝ)〉 →∗R 〈∅, ∅〉 satisfying conditions (C1) and (C2) for the
N-runs ri|j ’s such that q`i.ji,j ∈

⋃
(clean(M̂) ] clean(Ŝ)). Hence, the derivation

d exists, condition (C1) is satisfied since |d| = 1 + |〈clean(M̂), clean(Ŝ)〉 →∗R
〈∅, ∅〉| = 1 + h = max{1 + height(ri) | i ∈ {1, . . . , n}}, and condition (C2) holds
by construction of M̂, Ŝ. �

Corollary 5.35. Let A be a TAG∧6≈R . L(A) is not empty if and only if there exists a
derivation of the form 〈{{qλf }}, ∅〉 →∗R 〈∅, ∅〉, where qf is a final state of AN.

Proof. Follows by Lemmas 5.23 and 5.34. �

Lemma 5.36. Let A = 〈Q,Σ, F,∆, C〉 be a TAG∧6≈R . Let q be a state of AN such that
〈{{qλ}}, ∅〉 →∗R 〈M,S〉 →∗R 〈∅, ∅〉.

Then, |
⋃

(M ] S)| ≤ 2 · |Q| · |Σ|maxar|Q| .

Proof. We assume that q 6= qN, since the case where q = qN follows trivially. Let⋃
(M ] S) be more explicitly written as {q`11 , . . . , q

`n
n }, assuming without loss of

generality that the states q1, . . . , qn are sorted satisfying that q1, . . . , qk ∈ Qc̄
N and

qk+1, . . . , qn ∈ Qc
N. Note that the cases k = 0 and k = n are possible. Let r1, . . . , rn

be N-runs of AN fitting 〈M,S〉, which are guaranteed to exist by Lemma 5.34.
First, consider the N-runs r1, . . . , rk reaching the states q1, . . . , qk ∈ Qc̄

N, respec-
tively. We write those states more explicitly as q̄c̄

1, . . . , q̄
c̄
k, respectively. Note that

the state qN does not occur in any of such ri, since otherwise q̄i ∈ Q∞A follows by
Lemmas 5.14 and 5.15, and Definition 5.19, implying that q̄c̄

i is useless by the defi-
nition of ∆N, a contradiction. Moreover, height(ri) < |Q|, since otherwise ri can be
pumped, implying again that q̄i ∈ Q∞A by Lemmas 5.14 and 5.15, and Definition 5.19,
and leading to a contradiction. Hence, since the number of different terms of height
h is bounded by |Σ|maxarh+1 , it follows that |Σ|maxar|Q| bounds the number of different
parts inM ]S where the labeled states q`11 , . . . , q

`k
k occur. Finally, since the definition

of clean guarantees that each part in M ] S may contain at most |Q| occurrences of
states in Qc̄

N, it follows that k ≤ |Q| · |Σ|maxar|Q| .
Now, consider the N-runs rk+1, . . . , rn reaching the states qk+1, . . . , qn ∈ Qc

N,
respectively. These runs are pairwise N-compatible, since r1, . . . , rn fit 〈M,S〉. Hence,
we can apply Lemma 5.25 and conclude that n− k ≤ |Q| · |Σ|maxar|Q| .

In summary, |
⋃

(M ] S)| = n = k + (n− k) ≤ 2 · |Q| · |Σ|maxar|Q| . �

We are finally ready to tackle the emptiness problem for TAG∧6≈R . To ease the
presentation, from now on we assume that two pairs of partitions of labeled states
〈M,S〉 and 〈M ′, S′〉 are equivalent, denoted 〈M,S〉 ≡ 〈M ′, S′〉, if they are equal up
to renaming of the labels.
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Theorem 5.37. Emptiness of the language recognized by a TAG∧6≈R A can be decided
in triple exponential time.

Proof. Let A be 〈Q,Σ, F,∆, C〉. By Corollary 5.35, emptiness of L(A) can be reduced
to the existence of a derivation of the form 〈{{qλf }}, ∅〉 →∗R 〈∅, ∅〉, where qf is a final
state of AN. Recall that AN can be computed with time in O(|∆| · 2maxar + |Q|+ |C|).
Note that we do not have to consider derivations containing a subderivation of the
form 〈M,S〉 →+

R 〈M ′, S′〉, with 〈M,S〉 ≡ 〈M ′, S′〉, since the existence of a derivation
〈M ′, S′〉 →∗R 〈∅, ∅〉 implies the existence of a derivation 〈M,S〉 →∗R 〈∅, ∅〉 of the same
length. Intuitively, this corresponds to ignore cyclic subderivations in an alternative
setting where the pairs 〈M,S〉 do not contain labels, and instead,M and S are defined
as partitions of a multiset of states of AN. By Lemma 5.36, the pairs 〈M,S〉 that have
to be considered satisfy that |

⋃
(M ] S)| ≤ 2 · |Q| · |Σ|maxar|Q| . In the interpretation

with multisets, such bound implies that there exists a multiset U of states of AN whose
cardinal is in 22O(log(log(|Σ|)·maxar)·|Q|) and satisfying that, for any of the pairs 〈M,S〉 to
be considered, M ] S is a partition of a subset of U . Also note that, still in such
interpretation, the number of partitions of subsets of U is in 2O(|U |·log(|U |)). By the
previous facts and by the observations in the alternative setting of multisets, it is easy
to see that the total number of non-equivalent pairs that have to be considered in the
derivations with R is triple exponential. �

Note that it can be derived from our arguments that there exists a triple ex-
ponential upper bound for the height of a minimal accepting N-run. The traditional
approach to decide emptiness consists in generating all terms with height smaller than
the bound, and checking whether one of them is accepted by the given automaton.
However, this approach would lead to an algorithm with cost doubly exponential with
respect to the bound for the height.

In order to conclude, we tackle the finiteness problem for TAG∧6≈R . The following
definition and its corresponding lemma show how derivations with R relate to the
finiteness of the recognized language.

Definition 5.38. Let A be a TAG∧6≈R . A final state qf of AN is said to be a witness
of infiniteness if it satisfies one of the following conditions:

(W1) The state qf is qN.

(W2) There is a derivation of the form 〈{{qλf }}, ∅〉 →
+
R 〈clean(M), clean(S)〉 →∗R 〈∅, ∅〉

such that a part of the form {q`N} occurs in M ] S.

(W3) There is a derivation of the form 〈{{qλf }}, ∅〉 →∗R 〈M,S〉 →+
R 〈M ′, S′〉 →∗R 〈∅, ∅〉

such that 〈M,S〉 ≡ 〈M ′, S′〉.

Lemma 5.39. Let A be a TAG∧6≈R . L(A) is infinite if and only if there exists a final
state qf of AN such that qf is a witness of infiniteness.

Proof. We prove each direction separately:

⇒) Let q be a final state of A such that L(A, q) is infinite. Note that such state is
guaranteed to exist by the assumption. We consider distinct cases for q, and for
each of them prove the existence of a witness.
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First, assume that q ∈ Q∞A . In this case, qN is a final state of AN and condi-
tion (W1) trivially holds for qf := qN.
Second, assume that q 6∈ Q∞A and that there exists an accepting run r of A
reaching q and containing a state in Q∞A . In this case, it is easy to construct
from r an accepting N-run r′ of AN having some occurrence of the state qN.
Intuitively, it suffices to replace the subruns of r at minimal positions (with
respect to the prefix relation ≤) that reach a state inQ∞A by the N-run (N→ qN),
and add c or c̄ to each state depending on whether there is a constrained state in
the corresponding N-subrun. By condition (C2) of Lemma 5.34, qf := rhs(r′(λ))
satisfies condition (W2).
Finally, assume that q 6∈ Q∞A and that there is no run of A reaching q and
involving states in Q∞A . In this case, since L(A, q) is infinite, there necessarily
exist arbitrarily high accepting runs of A reaching q and involving some con-
strained state. It follows that there exist arbitrarily high accepting N-runs of
AN reaching qf := qc. Thus, by condition (C1) of Lemma 5.34, there are ar-
bitrarily long derivations of the form 〈{{qλf }}, ∅〉 →∗R 〈∅, ∅〉. Since any derived
pair 〈M,S〉 satisfies that |

⋃
(M ]S)| is bounded as stated in Lemma 5.36, there

exists a derivation of the form 〈{{qλf }}, ∅〉 →∗R 〈M,S〉 →+
R 〈M ′, S′〉 →∗R 〈∅, ∅〉,

with 〈M,S〉 ≡ 〈M ′, S′〉, and thus, qf satisfies condition (W3).

⇐) If qf satisfies condition (W1), then (N → qN) is an accepting N-run of AN and
the statement follows from Lemma 5.24. If qf satisfies condition (W2), then, by
condition (C2) of Lemma 5.34, there exists an accepting N-run of AN reaching qf
and containing the N-subrun (N→ qN). Hence, the statement follows again from
Lemma 5.24. Finally, if qf satisfies condition (W3), note that the subderivation
〈M,S〉 →+

R 〈M ′, S′〉 can be pumped, and hence, we can construct arbitrarily
long derivations. Thus, by condition (C1) of Lemma 5.34, an infinite number of
accepting N-runs of AN fitting 〈{{qλf }}, ∅〉 exist. Thus, LN(AN) is infinite and
the statement follows by Lemma 5.24. �

Theorem 5.40. Finiteness of the language recognized by a TAG∧6≈R A can be decided
in triple exponential time.

Proof. By Lemma 5.39, infiniteness of L(A) can be reduced to the existence of a
witness of infiniteness in AN. Finding a witness satisfying condition (W1) of Def-
inition 5.38 is straightforward. The justification for the time complexity to detect
a witness satisfying conditions (W2) or (W3) is analogous to the arguments in the
proof of Theorem 5.37. The only difference is that, for condition (W3), we need to
consider derivations with at most one subderivation of the form 〈M,S〉 →+

R 〈M ′, S′〉,
with 〈M,S〉 ≡ 〈M ′, S′〉. This modification does not affect the time complexity, and
the statement holds. �

5.6 Unranked ordered terms
Our results on TAG∧6≈R can be generalized from ranked to unranked ordered terms
following the same approach as in [Vac10, BCG+13]. In the unranked setting, terms
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are constructed over a given unranked signature Σ, i.e., over a set of symbols that
do not have an associated arity. Hence, the only difference between ranked and
unranked ordered terms is that, in the latter, the number of children of any position
is arbitrary since it does not depend on the symbol labeling it. We denote as U(Σ) the
set of unranked ordered terms over Σ, and recall from [Vac10, BCG+13] the definition
extending the automaton model for unranked ordered terms of [Mur99] with global
constraints.

Definition 5.41. A hedge automaton with global constraints over the constraint
types τ1, . . . , τn, denoted HAGτ1,...,τn , is a tuple A = 〈Q,Σ, F,∆, C〉, where Q is a
finite set of states, Σ is an unranked signature, F ⊆ Q is the subset of final states, C
is a Boolean combination of atomic constraints of types τ1, . . . , τn, and ∆ is a finite
set of transition rules of the form a(L)→ q, where a ∈ Σ, q ∈ Q, and L is a regular
word language over the alphabet Q, assumed given by a finite state automaton with
input alphabet Q. Analogously to Definition 5.1, the subclass of HAGτ1,...,τn where the
global constraint is a conjunction of positive literals is denoted HAG∧τ1,...,τn .

The notion of run of TAGτ1,...,τn is extended to HAGτ1,...,τn in the natural way. A
run of A on an unranked ordered term t ∈ U(Σ) is a mapping r : Pos(t) → ∆
satisfying that, for each position p ∈ Pos(t) with n children, if r(p.1), . . . , r(p.n) are
rules with right-hand side states q1, . . . , qn, respectively, then r(p) is a rule of the form
t(p)(L)→ q such that the word q1 · · · qn belongs to L. Moreover, r satisfies the global
constraint C. A run r is called accepting if the right-hand side state of r(λ) is in F .
By L(A) we denote the language recognized by A, that is, the set of unranked ordered
terms t such that there exists an accepting run of A on t.

Example 5.42. Recall from Example 1.3 the language representing lists of pairwise
different (encodings of) numbers: a term of the form f(e1, f(e2, . . . f(em,⊥) . . .)) is
used to represent the list of numbers e1, . . . , em, where each of the ei’s is a term of
the form bn(bn−1(. . . b1(b0(⊥)) . . .)), with n > 0 and b0, . . . , bn ∈ {0, 1}. Note that the
symbol f with arity 2 is used for chaining the elements in the list, and the symbol ⊥
with arity 0 for starting the numbers and the list. The same idea can be more naturally
expressed in the unranked setting as follows. Let Σ be the unranked signature {0, 1, f},
and let L be the language of unranked ordered terms of the form f(e1, . . . , em), where
the ei’s are pairwise different and each of them is of the form bn(bn−1(. . . b1(b0) . . .)),
with n > 0 and b0, . . . , bn ∈ {0, 1}. Such language L can be recognized by the HAG∧6≈R
A = 〈{q, qnum, qlist},Σ, {qlist},∆, qnum 6≈ qnum〉, where the set of transition rules ∆ is:

0({ε, q})→ q
1({ε, q})→ q
0({ε, q})→ qnum
1({ε, q})→ qnum

f({qnum}∗)→ qlist

where we have explicitly written the regular word languages on the left-hand side of
the rules instead of giving a finite state automaton recognizing each of them, and use ε
to denote the empty word. An unranked ordered term representing, e.g., the numbers
1, 2, 5 is for instance f(1, 1(0), 1(0(1))) (note that the encoding of a number is not
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unique, as any amount of leading zeros is admitted by A), and it is recognized by A
with the following accepting run.

f({qnum}∗)→ qlist

1({ε, q})→ qnum 1({ε, q})→ qnum

0({ε, q})→ q

1({ε, q})→ qnum

0({ε, q})→ q

1({ε, q})→ q

Note that the global disequality constraint is satisfied since all the subterms reaching
qnum are pairwise different.

In order to translate the decidability results from the ranked to the unranked
setting, the extension encoding described in [CDG+07] is used in [Vac10, BCG+13] to
reduce the question on the unranked setting to the ranked one. Such encoding allows
to transform unranked ordered terms into binary ranked ordered terms; briefly: let
@ be a new symbol, and let Σ@ := {a:0 | a ∈ Σ} ] {@:2} for any given unranked
signature Σ, then curry : U(Σ)→ T (Σ@) is a bijective function recursively defined as
follows:

curry(a(t1, . . . , tn)) =
{
a if n = 0
@(curry(a(t1, . . . , tn−1)), curry(tn)) otherwise

Example 5.43. The unranked ordered term f(1, 1(0), 1(0(1))) from Example 5.42 is
transformed through curry as follows:

f

1 1

0

1

0

1

7→curry @

@

@

f 1

@

1 0

@

1 @

0 1

Proposition 5.44 ([Vac10, BCG+13]). Let A be an HAG≈,6≈,N with unranked signature
Σ and global constraint C.

Then, a TAG≈,6≈,N A′ over Σ@ and with global constraint C can be constructed in
linear time satisfying that L(A′) = {curry(t) | t ∈ L(A)}.

The linear time complexity as well as the preservation of the global constraint
stated in Proposition 5.44 are not present in the original statement from [Vac10,
BCG+13], but can easily be deduced from the construction done in the proof.

By Proposition 5.44 and Theorems 5.37 and 5.40, we reach the following result.

Corollary 5.45. Emptiness and finiteness are decidable for HAG∧6≈R in triple expo-
nential time.





Chapter 6

Conclusions

We have tackled decidability problems on tree automata enhanced with local con-
straints and global constraints. An analysis of the obtained results, together with
discussions on possible extensions, is presented below.

6.1 Local constraints, and tree homomorphisms
The new classes of automata introduced in Chapter 3 extend the current literature by
allowing constraints that test the height of sibling subterms. The obtained time com-
plexity to decide emptiness and finiteness is exponential for the simplest case TACBBh,
and double exponential for TACBBH, TACBBhe, and TACBBHe. For TACBBhe and TACBBHe
both problems are at least EXPTIME-hard due to the equality tests [CDG+07], but
the precise hardness for our automata is unknown and deserves further analysis. Ad-
ditionally, it would also be interesting to study other extensions of these constraints.
In particular, we have focused on constraints between brother positions, but empti-
ness and finiteness with arbitrary positions for the height constraints might also be
decidable. Moreover, several classes of (dis)equality constraints with non-brother po-
sitions are known to be decidable, such as the class TA 6≈ of automata with arbitrary
local disequality constraints [CJ03], or the class of deterministic and complete reduc-
tion automata, i.e., automata with arbitrary local (dis)equality constraints but with
a bound on the maximum number of equality tests that can be performed at each
branch of the input term [DCC95]. Extending those models with height constraints
might preserve the decidability, and should also be considered.

In Chapter 4 we have proved that the emptiness and finiteness problems for the
class TAihom,6≈ of tree automata with local constraints are decidable in exponential
time. As a consequence, we have obtained EXPTIME-completeness of set inclusion,
finiteness of set difference, and regularity (HOM problem) for languages defined as
images of regular tree languages under tree homomorphisms. Hence, we have deter-
mined the exact complexity of HOM and other problems that were proved decidable
in triple exponential time in [GG13]. To this end, we have used some intermediate
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results from [GG13]. It would be interesting to study whether such intermediate re-
sults can be obtained in a simpler and clearer manner using the new class TAihom,6≈.
Also, we have obtained simpler combinatoric arguments than the ones used in [CJ03]
to prove decidability of emptiness for TA6≈. Hence, it could be interesting to study
whether those proofs can be rewritten with the present approach in order to make
them more accessible. In [DCC95], emptiness of deterministic and complete reduction
automata is proved decidable. It could also be worth studying whether our techniques
can be applied to this problem in order to improve the obtained time complexity.

6.2 Global constraints
In Chapter 5 we have presented triple exponential time algorithms for the emptiness
and finiteness problems for TAG∧6≈R , i.e., for tree automata with global constraints
where the constraint is a conjunction of atoms over the predicate 6≈, and the formula
defines a reflexive relation on the states occurring in it. This automaton model is a
meaningful fragment of the class TAG≈,6≈ from [Vac10] that is incomparable with the
class TAGED from [FTT08, FTT10]. Our results on TAG∧6≈R are naturally translated to
HAG∧6≈R , i.e., to unranked tree automata with global reflexive disequality constraints,
concluding that its emptiness and finiteness problems are also in 3EXPTIME. We
have not tackled the hardness of any of those problems, but such study should be a
natural next step of research. Additionally, our work on TAG∧6≈R can be extended in
different directions. On the one hand, several variants like adding equality constraints
or removing the reflexivity condition are interesting and deserve further study. On
the other hand, it might be possible to generalize the interpretation of the global dis-
equality constraint. In particular, we believe that our results (on the ranked setting)
can be extended to the case where term equality is interpreted modulo commutativity
of some alphabet symbols. To this end, it seems necessary to adapt the conditions in
the application of the inference rule R (recall Definition 5.32). More precisely, con-
dition (b) should establish a bijection between the respective direct children of two
labeled states in the same part, ensuring that bijected children go to the same part,
and hence generate the same term; moreover, for labeled states in different parts such
a bijection should be impossible, or the guessed alphabet symbols fi and fj should
differ. More general interpretations of term equality, such as the equality modulo flat
equational theories of TABG≈,6≈,N [BCG+13], would require further refinements to the
inference rule, but are also interesting and should be considered.

Many relevant problems are still open in the general setting of global constraints.
In particular, emptiness for TAG≈,6≈ is known to be decidable [Vac10], but with non-
elementary time complexity. A challenging question would be to investigate the pre-
cise complexity of such problem, avoiding the use of Higman’s Lemma in the algo-
rithm. To this end, several partial results are known: in [FTT08, FTT10], a direct
reduction into solving positive and negative set constraints [CP94, GTT94, Ste94] is
used to show that emptiness is decidable in NEXPTIME for TAG∧6≈A , and furthermore,
in [Vac10], an algorithm from [Cha99] on t-dag automata is adapted to decide in
NEXPTIME the emptiness problem for TAG∧≈R,6≈A ; on the other hand, the problem is
at least EXPTIME-hard, since it is for the fragment TAG∧≈R [FTT08]. Finally, it would
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be interesting to study whether the class TABG≈,6≈,N from [BCG+13] mixing the global
constraints of TAG≈,6≈,N with the local constraints of AWCBB can be further extended
with the height constraints introduced in Chapter 3. However, proving decidability of
such extension might require a distinct approach than the one proposed in [BCG+13]:
height constraints force a specific ordering on (the height of) siblings, and this seems
to conflict with the definition of the well quasi-ordered set in [BCG+13], which is
crucial in the current approach. This is an interesting problem and deserves further
analysis.
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