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Abstract

Quantum information science is a rapidly evolving field both from the theo-
retical and the experimental viewpoint. The numerous studies in this field are
motivated by the fact that protocols exploiting quantum resources can per-
form tasks that are unfeasible in classical information theory. Examples are
the speed-up provided by quantum computation, the secure communication
guaranteed by quantum cryptography, or the possibility of making highly
sensitive measurements using quantum metrology. These protocols exploit
quantum properties without classical analogues, namely entanglement and
nonlocal correlations. Whereas these concepts caused severe criticism dur-
ing the developing stage of quantum mechanics due to the counter-intuitive
properties they give rise to, nowadays they are regarded as crucial resources
for different technological applications. Moreover, their study is also relevant
from a fundamental point of view.

Interestingly, the trustworthiness of quantum information protocols can
be authenticated relying upon as few assumptions as possible, adopting the
so-called “device-independent” framework. Indeed, this framework allows to
perform information processing tasks without making any assumptions on
the internal working of the involved devices, treating them as “black boxes”.
The quantum certification of device-independent protocols is guaranteed by
the nonlocal character of the correlations between the inputs and outputs
of those boxes. Unfortunately, demonstrating nonlocality is highly demand-
ing from the implementation point of view, since low levels of experimental
imperfections are tolerated. Those imperfections — e.g.noise and losses —
may alter the input/output statistics, thus undermining the reliability of
device-independent protocols. The experimental requirements for the secu-
rity of device-independent protocols can be relaxed considering partly-device-
independent scenarios, in which additional assumptions on the devices or the
systems used in the protocols are made. Indeed, partly-device-independent
protocols offer two main advantages: First, they are more secure than stan-
dard device-dependent protocols; second, they are in general more robust
to experimental imperfections than their fully-device-independent counter-



parts. The general aim of this Thesis is to provide bounds on imperfections
and losses arising in experimental implementations of device-independent
and partly-device-independent protocols that are necessary or sufficient for
security.

In the first part, we tackle the problem of secure implementation of quan-
tum key distribution protocols in the device-independent and partly-device-
independent scenarios. The goal is to establish conditions on the detection
efficiency necessary for the security of those protocols. To this aim, we present
a general attack on the detectors from which we derive bounds on the criti-
cal detection efficiency that do not depend on the number of measurements
applied nor on the number of outcomes.

In the second part, we study randomness certification in the steering
scenario and in the prepare-and-measure scenario. We devise an optimal
method for quantifying the local and global randomness that can be extracted
in both scenarios. Applying this method we provide sufficient conditions
for randomness certification in presence of noise and losses. Moreover, we
present a method that for any fixed state gives the optimal measurements
and steering inequality that certify the most randomness.

The next question we address is the secure implementation of semi-device-
independent protocols, whose quantum certification is provided by dimension
witnesses. We study the problem of the robustness of device-independent
dimension witnesses to loss, in the case in which shared randomness is allowed
between the preparing and the measuring devices. The main result in this
part is to provide thresholds for the critical detection efficiency necessary
to perform reliable dimension witnessing. Furthermore, we study detection
loophole attacks on semi-device-independent quantum and classical protocols
in the case in which the preparing and measuring devices do not share pre-
established correlations. We determine general conditions under which a
potential eavesdropper cannot exploit the experimental losses to hack such
protocols.

In the last part of the Thesis, we focus on a recently proposed quan-
tum process and its inverse, namely the quantum state joining and splitting
processes. In this context, we prove that a linear-optical realization of the
quantum state joining of two photons relying only on post-selection — and
thus simpler than the implementation originally proposed — is not possible,
thus implying that such implementation requires at least one ancilla photon.
Finally, we demonstrate that the quantum joining process is equivalent to
the preparation of a particular class of three-qubit entangled states, show-
ing that this process can also find application for generating complex cluster
states of entangled photons.
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Chapter 1

Introduction

In the last years, the distinguishing properties of quantum theory have been
exploited to accomplish tasks which are unfeasible in classical theory. For ex-
ample, protocols were proposed for secure quantum key distribution (QKD)
[BB84, [Eke91], quantum teleportation [BBCT93, BPM™97|, and quantum
randomness generation (QRG) [ROT94, [FSST07, [PAM™10]. The first pro-
tocols to be proposed were device dependent, namely their success critically
relies on the agreement between the description of the experimental setup and
its implementation. But this hypothesis is never exactly fulfilled in practice,
and a malicious adversary can exploit the mismatch between the theoretical
description and the experimental implementation to hack the protocol.

Subsequently, device-independent (DI) protocols were proposed, in a frame-
work where the devices are completely uncharacterized and the success of the
protocol only depends on the statistics between inputs and outputs. This
framework is highly suitable for adversarial scenarios, in which one would
choose to adopt a paranoid attitude and avoid as many assumptions as pos-
sible, for instance in cryptographic protocols. But DI protocols, while ex-
tremely robust due to the fact that they rely on very few hypotheses, are
very demanding from the experimental viewpoint. Indeed, realistic imple-
mentations of DI protocols are unavoidably subject to losses, and in this
situation the given protocol is secure and reliable only when the so-called
“detection loophole” is closed. In general, in order to close this loophole for
DI quantum information protocols, the experimental devices need to exhibit
very high detection efficiencies, which are too challenging for the current
technology.

In order to overcome these problems, partly-DI protocols were recently
introduced, which rely upon an intermediate level of trust between fully-DI
and device-dependent protocols. Indeed, they depend on more hypotheses
than fully DI protocols, but still do not assume a full characterization of the
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involved devices and systems, as happens in device-dependent ones. Thus,
partly-DI protocols constitute an opportunity to achieve a compromise be-
tween the assumptions under which they are valid and the level of losses they
can tolerate.

1.1 Motivations and Results

In this Thesis we consider the problem of dealing with imperfections that
are inevitably present in the implementation of DI and partly-DI quantum
information protocols. Such imperfections, e.g. losses and noise, can tamper
with the results of the given protocol causing misleading conclusions. For in-
stance, in experimental implementations of quantum cryptographic protocols
a malicious adversary can exploit the deviations from the theoretical model
used to prove security. Therefore, it is crucial to ensure that those proto-
cols cannot be sabotaged and to establish general conditions under which
the imperfections arising in their experimental realizations are harmless. We
examine this problem exploring different scenarios, such as the DI and partly-
DI ones. Clearly, the optimal framework is the one that can guarantee the
reliability of quantum information protocols making as few assumptions as
possible. The requirements for the experimental implementation of DI pro-
tocols, which are very demanding for the current technology, can be relaxed
considering partly-DI protocol, i.e. making some extra assumptions on the
experimental devices. Recently, those scenarios have been investigated in
order to look for the optimal trade-off between the assumptions made and
the robustness of the protocol to experimental imperfections. This Thesis
advances along these lines of research, investigating the amount of imper-
fections and losses that the implementation of DI and partly-DI quantum
information protocols can tolerate.

1.1.1 Device-independent and partly-device-independent
quantum key distribution protocols

Quantum key distribution (QKD) is one of the most remarkable applications
of quantum physics. It allows secure communication between two distant
parties guaranteed by the laws of quantum physics. Those laws ensure that
the parties will be able to detect any attempt of eavesdropping by a potential
external adversary. Unfortunately, when such protocols are implemented in
the lab, due to unavoidable experimental imperfections they differ from the
theoretical models used in the security proofs. An eavesdropper can then take
advantage of the discrepancies to hack the cryptographic systems. Adopting
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a device-independent (DI) framework, one can guarantee the security of a
QKD protocol without relying on any assumptions about the internal working
of the devices used in the protocol. The inconvenience is that, in order
to exclude attacks on the detectors, DI QKD protocols require very high
detection efficiencies. Indeed, especially in photonic implementations of DI
and partly-DI QKD protocols the eavesdropper can exploit the losses to
learn the key without being perceived. An example is the attack on the
detectors recently demonstrated in [LWWT10]. It is therefore necessary to
establish experimental requirements for the implementation of secure QKD.
More specifically, the issue we deal with is what amount of losses DI and
partly-DI QKD protocols can tolerate. Another natural question is how
much one can gain in terms of robustness to loss by considering partly-DI
protocols with respect to their fully-DI counterparts.

Contributions

In Chapter [3] we present a general detection attack for QKD protocols. This
attack applies to all protocols in which the key is constructed from the re-
sults of measurements performed by one of the parties on quantum particles
that have propagated through an insecure channel. Therefore, it applies in
particular to DI and partly-DI QKD protocols. From this attack we derive
general bounds on the critical detection efficiencies needed for the security of
this class of QKD protocols. Interestingly, the derived bounds do not depend
on the dimension of the involved systems, nor on the number of performed
measurements or the role of other parties in the protocol. They indicate
that the implementation of partly-DI protocols are, in terms of detection
efficiency, almost as demanding as fully-DI ones. The attack presented can
be improved when considering specific protocols, as we illustrate for the case
of two parties using untrusted measuring devices.

Moreover, we find out that this attack has a consequence also from a
more fundamental point of view. Indeed, we show that it implies the exis-
tence of a very weak form of intrinsic randomness, which we name “bound
randomness”. This property emerges in nonlocal correlations for which a no-
signalling eavesdropper cannot fix the results of all measurements in advance
but she can find out a posteriori the results of any implemented measure-
ments.

1.1.2 Randomness certification in the steering scenario

One of the most distinctive features of quantum mechanics is its intrinsically
random character. While in classical mechanics lack of predictability can
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always be attributed to ignorance or lack of control of the probed systems,
the rules of quantum physics say that one cannot predict the outcome of
a measurement even if all the variables of a system are known. This in-
herent unpredictability has been exploited in different applications such as
quantum random number generation [ROT94] and quantum key distribution
[SBPCT09].

Recent results have shown that the randomness observed in quantum
mechanics can be certified even without relying on any modelling of the
quantum devices used for the generation of the random data - i.e. in a DI
scenario - and therefore this is called DI randomness certification [Col06,
PAM™10]. In fact, by analyzing the data obtained in experiments involving
local measurements on bipartite entangled systems one can prove that no
one could have predicted this data in advance whenever a Bell inequality
violation is observed [Bel64, BCP™14]. Randomness certification has been
studied also in partly-DI scenarios |[LPY ™12, [LTBSI4], which involve some
extra assumptions on the systems or the devices.

The so-called “steering” scenario is a partly-DI scenario that recently has
been receiving lot of attention, since it allows for entanglement detection
which is more robust to noise and experimental imperfections than Bell non-
locality [WJIDO7, QVCT15]. It refers to the case where two parties apply
local measurements on an unknown bipartite system. While one of them has
complete knowledge of his measurement apparatuses, the other does not, and
treats her measuring device as a black box with classical inputs and outputs.
Indeed, quantum steering was initially introduced for entanglement certifi-
cation when one of the parties is trusted but the other is not. Subsequently,
it was shown to be useful for one-sided device independent quantum key
distribution (1SDIQKD) [BCW™12] and randomness certification [LTBS14].

The study of randomness certification in the steering scenario is impor-
tant from a fundamental point of view in order to understand how much
randomness can be maintained if we give up partial information about the
specific description of the systems [LTBS14, BQB14, LPY"12]. Further-
more, from a practical point of view the amount of randomness obtained in
the steering scenario gives an upper bound to what would be obtained in a
fully-DI setting, regardless of the number of measurements that the trusted
party would apply.

Contributions

In Chapter [4] we provide a general and optimal method to quantify the
amount of local or global randomness that can be certified from a single
measurement in a steering experiment. Using this method we compute the
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maximal amount of local and global randomness that can be certified by
measuring systems subject to noise and losses. We show that local random-
ness can be certified from a single measurement if and only if the detectors
used in the test have detection efficiency higher than 50%. These results can
be easily extended beyond the steering scenario, namely to the prepare-and-
measure scenario, where the state is also trusted, so that only the measuring
device on one side is untrusted. In this case we show that even noisy states
can perform very well for randomness certification.

Finally, we give a method to find the optimal steering inequality and the
optimal measurements which obtain the most randomness from any fixed
state. Using insight from this method, we demonstrate analytically that
all pure partially entangled states lead to maximal randomness certification
using only two fixed measurements.

1.1.3 Semi-device-independent protocols and device-
independent dimension witnesses

The dimensionality of a system is regarded as a resource in quantum infor-
mation processing. Indeed, higher-dimensional systems offer more degrees
of freedom for the encoding of information. The Hilbert space dimension
is usually intrinsic in the model considered for the description of the ex-
perimental setup. However, an interesting question in the DI framework is
whether it is possible to derive some properties of non-characterized devices
instead of assuming them, building only upon the knowledge of the corre-
lations between preparations, measurements and outcomes. In general one
could be interested in bounding the dimension of the systems prepared by
a non-characterized device; one could also ask whether a source is intrin-
sically quantum or can be described classically. The framework of device-
independent dimension witnesses (DIDWs) provides an effective answer to
these questions, and is suitable for experimental implementation and for ap-
plication in different contexts.

DIDWs are principally relevant for semi-device-independent (SDI) quan-
tum protocols, which realize information tasks in a scenario where no as-
sumption on the internal working of the devices used in the protocol is
made, except their dimension. Those protocols are indeed based on the
quantum certification provided by dimension witnesses for a fixed dimen-
sion. For instance, in [PB11] the authors present a quantum key distribution
protocol whose security against individual attacks in a SDI scenario is based
on DIDWs. Another example is given by quantum random access codes
(QRACSs), that make it possible to encode a sequence of qubits in a shorter
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one in such a way that the receiver of the message can guess any of the
original qubits with maximum probability of success. In [LPYT12, [PZ10]
QRACs were considered in the SDI scenario, with a view to their application
in randomness expansion protocols. The classical analogous of SDI quantum
protocols — namely, the case in which the exchanged system is classical — is
known as the problem of random access codes (RACs) [ALMOOQS]. In the
context of RACs, the aim of two distant parties is to optimally perform some
one-sided communication task under a constraint on the amount of classical
information exchanged.

Unavoidably, any implementation of protocols based on DIDWs is affected
by experimental imperfections and losses. They can reduce the value of the
dimension witness, thus making it impossible to witness the dimension of a
system. In particular, in a cryptographic scenario a malicious provider could
exploit the losses to skew the statistics of the experiment and ultimately
fake its result. Therefore it is highly relevant to determine whether it is
possible to perform reliable dimension witnessing in realistic scenarios and,
in particular, with non-optimal detection efficiency.

Contributions

In Chapter [5| we tackle the problem of the robustness of DIDWs to losses.
In particular, we consider the case where shared randomness between the
preparing and the measuring device is allowed. First, we give a characteriza-
tion of the sets of classical and quantum correlations obtained in this scenario
with states of bounded dimension, which allow us to introduce DIDWs as
tools to discriminate between these sets. Then, we provide the threshold
for the detection efficiency that can be tolerated in dimension witnessing,
both in the case where one is interested in lower bounding the dimension of
the system as well as in the case where one is interested in discriminating
between its quantum or classical nature.

In Chapter [6] we consider SDI classical and quantum protocols in the case
in which the involved parties are not allowed to share pre-established corre-
lations. In this case, the sets of d-dimensional classical correlations obtained
are in general non-convex. We show that the exploitation of those non-convex
sets allows dimension witnessing for an arbitrary non-zero value of the de-
tection efficiency. Moreover, we provide general conditions under which a
malicious provider cannot take advantage of the detection inefficiencies to
fake the performance of SDI quantum protocols. For classical protocols, we
provide conditions under which the worst case success probability of a RAC
cannot be increased resorting to the exploitation of losses.
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1.1.4 Joining and splitting the quantum states of pho-
tons

Quantum information technology promises a great enhancement of the com-
putational power at our disposal, as well as perfectly secure transmission of
information [BDOQ, [Ser(06, [LJL."10]. To turn this vision into a reality, one
of the greatest challenges today is to substantially increase the amount of
information — the number of qubits — that can be processed simultaneously.
In photonic approaches [KMNT07, [(OFV09, [PCL"12], the number of qubits
can be raised by increasing the number of photons. This is a fully scalable
method, in principle, but in practice it is limited to 6-8 qubits by the present
technology [YWXT12]. An alternative approach is that of using an enlarged
quantum dimensionality within the same photon, for example by combin-
ing different degrees of freedom, such as polarization, time-bin, wavelength,
propagation paths, or transverse modes such as orbital angular momen-
tum [MVWZ01, BLPKO5, MTTTO07, LBAT09, ICVDM™09, NSM™10, SK10,
NGMT™10]. Although not scalable, the latter approach may allow for a sub-
stantial increase in the number of qubits [GLY ™10, [Pil11, DLB™ 11, MSD™12].
Ideally, one would therefore like to combine these two methods and be able
to dynamically switch from one to the other, depending on the specific needs,
even during the computational process itself.

To this purpose, a quantum process called “quantum state joining” has
been recently introduced and experimentally demonstrated [VSAT13|. This
process consists in combining two arbitrary qubits initially encoded in sep-
arate input photons into a single output photon, within a four-dimensional
quantum space. The inverse process was also proposed, in which the four-
dimensional quantum information carried in a single input photon is split into
two output photons, each carrying a qubit [VSAT13]. Both processes are in
principle iterable, and hence may be used to realize an interface for convert-
ing a multi-photon encoding of quantum information into a single-photon
higher-dimensional one and vice versa, thus enabling a full integration of
the two encoding methods. These processes allow to multiplex and demulti-
plex the quantum information in photons, for instance to employ a smaller
number of photons in lossy transmission channels. In addition, the quantum
joining and splitting processes might also find application in the interfacing
of multiple photonic qubits with a matter-based quantum register [JSCT04],
another crucial element of future quantum information networks [Kim0§].
For example, interfacing with multilevel quantum registers |[GBR™06] may
be facilitated by the quantum joining/splitting schemes.

The scheme used in [VSAT13] for the experimental demonstration of
quantum joining is based on a double CNOT gate and a final projection.
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In general, there exist other schemes for applying several CNOT gates in se-
quence [Ral04] which are experimentally less demanding than the one used in
[VSAT13|. Tt is then natural to try an implementation exploiting these meth-
ods for the CNOT-based general scheme for quantum state joining. More
generally, one might ask whether it is possible to implement the quantum
joining process with a simpler linear-optical setup.

Contributions

In Chapter [7] we study the process of joining and splitting the states of pho-
tons from a theoretical point of view. We introduce some variants of the
original schemes which do not need a projection and feed-forward mecha-
nism to work (not considering the CNOT implementation), although at the
price of using a doubled number of CNOT gates. We formally prove that
quantum joining is impossible to achieve with an arbitrary linear optical
scheme involving only two photons and a final postselection step. Hence, at
least one ancilla photon is needed (or the presence of optical nonlinearity).
Furthermore, we analyze the relationship between the joining process of two
photonic qubits and a particular class of three-photon entangled states, in
which two photons are separately entangled with a common “intermediate”
photon. We show that the quantum joining process can be used to create
such cluster states and that, conversely, the quantum joining of two photons
can be immediately achieved by a teleportation scheme using a three-photon
entangled state of this class.
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Chapter 2

Background

In this Chapter we define some background notions and we analyze in detail
the different scenarios studied in this Thesis.

First, we introduce the device-independent (DI) scenario, which allows to
authenticate the trustworthiness of a protocol relying upon as few assump-
tions as possible. In this case, the quantum certification required to authen-
ticate DI quantum protocols is provided by Bell inequalities. We furthermore
describe the so-called “loopholes” arising in Bell experiments.Then, we define
the “steering” scenario, in which one of the parties has a complete character-
ization of the behaviour of his devices, while the other is treated in a DI way,
i.e. as a black box. The quantum certification in this case is provided by steer-
ing inequalities. Subsequently, we describe another partly-DI scenario that is
the “semi-device-independent” (SDI) framework, in which one makes an as-
sumption on the dimensionality of the physical systems shared by the parties
while the devices are uncharacterized. The quantum certification needed for
the reliability of SDI protocols is provided by dimension witnesses. We then
introduce the notion of intrinsic randomness, which represents a crucial re-
source for several applications, such as quantum key distribution, gambling
or numerical simulations. Finally, we describe the recently demonstrated
processes of quantum state joining and splitting. These processes allow to
transfer the quantum information initially encoded in two separate input
systems into a single output system within a higher-dimensional quantum
space, and vice versa.

2.1 Device-independent scenario

The device-independent (DI) scenario is a framework in which no assump-
tions are made on the internal working of the devices, nor on the physical
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systems shared by the involved parties. In this scenario all the N mea-
suring devices are treated as black boxes which receive some classical in-
put x; € {1,...,m} and produce a classical output a; € {1,...,d}, for
i=1,...,N (see Fig. 2.1). The relevant object in this scheme is the con-

ditional probability distribution P(as,...,ax|x1,...,2x) of obtaining out-
comes ay, . . .,ay when inputs x1, ...,y are provided. Although no assump-
X1 X2 XN

Figure 2.1: In the device-independent scenario the N measuring devices are
treated as black boxes. Every box receives a classical input z; € {1,...,m}
and produces a classical output a; € {1,...,d}, fori=1,... N.

tion is made on the devices, in the DI approach other assumptions are usually
required, namely the measurement independence and no-signalling assump-
tions:

e Measurement independence.

This assumption states that the choices of which measurements to per-
form have to be random and completely uncorrelated with any other
variable. Mathematically, it implies that every input choice x; is in-
dependent of any variable A\ lying outside the future light cone of x;,
i.e. p(x;|\) = p(x;). This assumption is also commonly called free will
assumption, since it states that the inputs xq,..., x5y must be freely
chosen by the parties. Conversely, if the measurement settings are de-
termined in advance, the obtained correlations cannot provide a DI
quantum certification. Recently, it was proved that in some contexts it
is possible to relax the measurement independence assumption and still
perform DI protocols considering only a small amount of measurement

independence [PRBT14].
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e No-signalling principle.

This principle states that the input choice on one site cannot influence
the statistics observed at a distant site. The no-signalling assumption
is formally expressed by the following constraints on the conditional
probability distribution:

ZP(al,...,ai,...,aN|a:1,...,xi,...xN)
a

1
:ZP(al,...,ai,...,aN\xl,...,mg,...xN), (2.1)
a;

for all a;,x; for i = 1,...,N. The constraints allow the defini-
tion of the marginal probability distributions observed by the N par-
ties. The no-signalling assumption is physically motivated by special
relativity, which prevents faster-than-light communication. Indeed, if
the measurements performed by two distant observers are space-like
separated, then the no-signalling constraints guarantee that the
observers cannot use their black boxes for sending information instan-
taneously.

In the following of this Thesis, we assume that measurement independence
and the no-signalling principle hold.

2.1.1 Bell nonlocality

Here we introduce the concepts of nonlocality and nonlocal correlations. For
this purpose, let us consider the following setup. Consider a source which
sends a physical system to each of two observers, called Alice and Bob, lo-
cated far apart from each other. The observers perform measurements on the
received systems adopting the DI scenario: they randomly choose a measure-
ment — labeled x for Alice, y for Bob — and register their outcome, denoted
a for Alice and b for Bob, as depicted in Fig. [2.2 We suppose that Alice
and Bob cannot communicate to each other during the measurement stage.
The validity of this assumption can be ensured by shielding their devices
or by placing their laboratories sufficiently far away such that the events
corresponding to their measurements are space-like separated (therefore sig-
nalling is impossible according to the no-signalling principle). Nevertheless,
we assume that their boxes are allowed to share a predetermined strategy.
The aim of the two parties is to construct the conditional probability
distribution P(a,b|z,y) of obtaining outcomes a and b when measurements
x and y are chosen. This distribution can be computed in a frequentist
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manner from the statistics of inputs and outputs collected in different runs
of the experiment under the 7.7.d. assumption, i.e. that one can reproduce
independent and identically distributed copies of the experiment. The whole
procedure is called a Bell experiment.

Bob
—
—
.

Figure 2.2: Bell experiment: Alice and Bob have two black boxes which
perform measurements x and y on the received systems obtaining outcomes
a and b, respectively. After repeating this procedure a large number of times,
they collect the statistics to construct the conditional probability distribution
P(a,blz,y).

Alice
y

a b

If Alice and Bob had previously agreed on a common strategy, then all the
possible conditional probability distributions that they can achieve classically
can be written as

P(a,blz,y) = /d)\p()\)P(a|x, AN)P(bly, N). (2.2)

In the variable A (usually called “hidden variable”) takes into account
the shared randomness between Alice and Bob, p()) is the probability distri-
bution from which A is drawn, and P(a|z, A) [P(bly, A)] is the probability of
obtaining outcome a (b) given input = (y) and hidden variable X\. A bipartite
probability distribution that can be written as in is said to have a local
hidden variable (LHV) model. Conversely, if P(a,b|x,y) cannot be written
as in the correlations measured cannot be explained by a LHV model
and therefore they are called “nonlocal”.

In general, a Bell experiment can be extended to more than two parties
and it is defined by the triple (N, m,d), where N denotes the number of
parties, m is the number of possible inputs for each party, and d is the
number of outcomes. From a geometrical point of view, the conditional
probability distributions P(ay,...,ay|z1,...,zx) that can be observed in a
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(N, m, d) Bell experiment can be considered as vectors in the Euclidean space
R™" . In this space, the set of all local conditional probability distributions
obtainable in a (N, m,d) Bell experiment is characterized by a finite set of
linear inequalities and is represented with a polytope — i.e. a convex set
with a finite number of extreme points — which is usually referred to as local
polytope (see Fig2.3)).

Another interesting set in this space is the set of quantum correlations
achievable in a (N, m,d) Bell experiment. A conditional probability distri-
bution P(ay,...,ay|z1,...,2y) is quantum if there exist a quantum state
and quantum measurements that reproduce it, according to the Born rule
INCO0Q]:

P(ay,...,an|z1, ... on) = Te[p M @ ... @ MZN]. (2.3)

In the last equation, p is a positive operator of unit trace acting on a Hilbert
space H = H1®...®@Hy. The measurement operators M} represent Positive
Operator-Valued Measure (POVM) elements [NCO0], i.e. positive operators
acting on H;, fulfilling >, M7 =1 Vaz;,i € 1,...,N. These conditions
guarantee that the conditional probability distribution is positive and nor-
malized. Geometrically, the set of quantum correlations is represented by a
convex set with infinite extreme points. Therefore, unlike the local set, the
quantum set is not a polytope and cannot be characterized with a finite set
of linear inequalities.

In general, since every well-defined probability distribution has to be
positive and normalized, a conditional probability distribution arising in a
(N, m,d) Bell experiment must satisfy the following constraints:

e Positivity

P(ay,...,an|z1,...,2n) >0 Yai,...,aN,x1,..., TN

e Normalization

Z P(al,...,aN|x1,...,xN):1 V:Cl,...,xN

al,...,aN

The set that includes all the correlations satisfying those constraints and the
no-signalling conditions is a polytope called no-signalling polytope (see
Fig. [2.3).

Geometrically, the non-trivial facets of the local polytope L are described
by the so-called Bell inequalities and divide the local set from the nonlocal
one. It can be proved that quantum correlations described by can vi-
olate a Bell inequality and therefore can exhibit nonlocality. An example of
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Bell inequality

Figure 2.3: Geometrical representation of the probability space arising from
a Bell experiment. The local polytope L is strictly contained in the quan-
tum set (), which is a convex set with infinite extreme points. The facets
dividing the sets of local and nonlocal correlations correspond to tight Bell
inequalities. The no-signalling polytope NS strictly contains the quantum

set ().

quantum correlations which are nonlocal will be given in [2.1.3] This means
that the local polytope L is strictly contained in the set () of quantum corre-
lations. Thence, there exist correlations arising from quantum physics which
do not admit a LHV model. Precisely, the quantum certification needed in
the DI scenario to guarantee the “quantumness” of the correlations is given
by the violation of a Bell inequality. Since quantum theory is no-signalling,
the set () of quantum correlations is contained in the no-signalling polytope.
In [PR94] Popescu and Rohrlich identified the existence of no-signalling cor-
relations which are super-quantum (i.e. , they are not in the quantum set),
thus proving the strict inclusion of the quantum set @) into the no-signalling
polytope.

2.1.2 Entanglement

Let us consider a system made up of N subsystems. The quantum state
p € Hi ®...R® Hy describing such a system is said to be entangled if it
cannot be written as a convex combination of product states, i.e.

=30 @, (2.4)
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where p; € H; is the quantum state of the i-th subsystem. Conversely, if the
state p can be written as , it is said to be separable. The operational
meaning of this definition is that a multipartite state is separable if and
only if it can be prepared by the parties using only local operations and
classical communication (LOCC). Therefore, the preparation of entangled
states requires global operations due to interactions between subsystems.
For instance, entanglement can arise when two quantum states are produced
from a common source.

It is worth mentioning that some entangled states can lead to nonlocal
correlations when submitted to a Bell experiment. More precisely, while
entanglement is necessary to give rise to nonlocal correlations the converse
is not true, i.e. not all entangled states are nonlocal [Wer89).

2.1.3 CHSH inequality

In the simplest bipartite Bell scenario, i.e. the one where each of the two
parties can perform two measurements with two possible outcomes, the only
non-trivial facet of the local polytope is described by the so-called Clauser-
Horne-Shimony-Holt (CHSH) inequality [CHSH69]. The CHSH scenario is
the standard example to demonstrate that there are quantum correlations
that are nonlocal. Let us denote by x,y € {0,1} the measurement choice
of the parties Alice and Bob, respectively. The corresponding outcomes are
labelled a,, b, € {—1,1}. We consider now the correlator defined as

(A,B,) = Z abP(ab|zy).
a,b
It can be easily checked that the following inequality
(AoBo) + (A1Bo) + (AoB1) — (A1 By) < 2,

which is the famous CHSH inequality, must hold for any local correlations

satisfying ((2.2)).
It can be proved that the CHSH inequality is violated by the correlations
obtained performing measurements { M7} for Alice and {N]} for Bob, where

Mg:12+a%, MICL:IL2—I—an7
2 2
2 2
and oy = (0, &+ 0.)/v/2, on the two-qubit maximally entangled state
|00) + |11)
@) = L0

N

29



Indeed, calculating the corresponding conditional probability distribution
P(ab|zy) according to the quantum theory prescription (2.3)), one finds for
the CHSH expression the value 21/2. Therefore, this proves the existence of
quantum correlations that cannot be described by a LHV model.

In 1983, it was shown by Cirel’son [Cir80] that the maximal value achiev-
able by quantum mechanics for the CHSH expression is given by 2v/2, for all
states and measurements in any possible Hilbert space.

2.1.4 Loopholes in Bell experiments

In any implementation of DI quantum protocols one cannot avoid technical
imperfections that can affect the validity of the results of the Bell test, which
is required as quantum certification in a DI scenario. Indeed, there can be
unintended circumstances that open the possibility to reproduce an observed
violation of a Bell inequality with a LHV models. These situations are usually
referred to as “loopholes”. In the following we introduce briefly the main
loopholes arising in the implementation of a Bell test.

Locality loophole

One of the assumptions of the Bell test is the absence of communication
between the two measurement sites. In practice, this is usually ensured by
forbidding any light-speed communication, positioning the two sites at a
distance such that the measurement events are space-like separated. This
means that the measurement duration has to be shorter than the time it
would take for a light-speed signal to travel from one site to the other. When
this requirement is not satisfied, the so-called locality loophole arise. In this
case nothing prevents a signal in carrying influence from the remote setting
to the local outcome, which provides a LHV explanation for the results of
the Bell experiment.

Moreover, according to the measurement independence assumption, the
choices of which measurements to perform have to be random and uncorre-
lated with the hypothetical hidden strategy. Thence, in order to draw correct
conclusions on the nonlocal nature of the observed correlations, one has also
to exclude that the choice of measurement settings on one side is influenced
by an earlier event that could be correlated to the choice on the other side.
This means that the measurement choices must be free of any potential in-
fluence by the event which created the two entangled systems in the first
place. For this reason, the loophole that occurs when this condition cannot
be ensured is commonly called freedom of choice loophole.
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Detection loophole

In realistic implementations of Bell experiments it is common that some
particles emitted by the source will not be detected, especially in photonic
experiments. Hence, in Bell-based protocols the subset of detected particles
might display correlations that violate a Bell inequality although the entire
ensemble can be actually described by a LHV model. Then a malicious
adversary may exploit the inefficiencies of the untrusted devices to produce
a Bell inequality violation with local correlations, thus faking the success of
the protocol. This circumstance, arising when the efficiency of the detectors
is not perfect, is commonly referred to as detection loophole.

Due to experimental limitations, often the fair sampling assumption has
been invoked to justify the results of a Bell test performed with inefficient
detectors. This assumption states that the sample of the detected events
accurately represents the entire ensemble. Making the fair sampling assump-
tion, the experimenters are therefore allowed to discard the rounds in which
they observed undetected events. In DI cryptographic protocols this as-
sumption is generally avoided, since it opens the possibility of malicious
attacks [LWW™10].

To achieve a conclusive Bell violation without assuming that the detected
particles are a “fair” sample, a highly efficient experimental setup is neces-
sary. For instance, in order to demonstrate a conclusive violation of the
CHSH inequality with a two-qubit maximally entangled state the detection
efficiency has to be higher than 82.8% [GMS8T], which makes Bell-based pro-
tocols very demanding experimentally. In 1993, Eberhard [Ebe93] showed
that this critical efficiency can be lowered by considering non-maximally en-
tangled states, reaching the lowest critical efficiency of 66.7% for slightly
entangled states. Hence, if the experimenters do not want to rely on the fair
sampling assumption, they cannot simply post-process the obtained statis-
tics discarding all the events in which one or both detectors did not click. It
is required instead that the efficiency of their detectors must be higher than
a certain threshold, depending on the particular scenario, in order to prevent
the detection loophole.

One approach to deal with the losses in the experiment is to map every
no-click event into one of the possible outcomes of the measuring device.
However, if the parties have access to the full statistics it is more convenient
to model the experimental losses keeping track of the non-detected events by
adding another output to the statistics - the no-click outcome () - in order to
exploit all the available information.

In the following of this Thesis we will address the problem of experimental
losses for different DI and partly-DI protocols, deriving bounds on the critical
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detection efficiencies necessary for their reliability.

2.2 Steering scenario

The steering scenario [Sch35| is a framework with an intermediate level of
trust between the device-dependent and the fully-DI scenario. The scenario
considered is the following [W.JDQT]: two parties, Alice and Bob, are lo-
cated in distant laboratories and receive an unknown bipartite system from
a common source. One of the two parties, say Alice, does not trust her mea-
suring devices, which are treated as “black boxes”, i.e. in a DI way. She
can, nevertheless, choose which measurement to perform, which she labels
by x € {1,...,m}, each of which provides an outcomes, which she labels
a € {1,...,d}. The other party, Bob, has complete knowledge of his mea-
suring devices, which allow him to perform quantum state tomography on
his part of the system, and thus to obtain a complete description of his
subsystem (see Fig[2.4). Therefore, in addition to the assumptions of the
DI scenario, in the steering scenario we assume furthermore that Bob has a
complete characterization of his quantum devices.

Alice Bob

*7 | Tomography

Oa|x

Figure 2.4: Steering scenario: Alice and Bob measure an unknown bipartite
system received by an untrusted source. Alice treats her measurement device
as a black box with inputs z € {1,...,m} and outputs a € {1,...,d}. On the
other hand, Bob trusts his device and performs quantum state tomography
on his subsystem, obtaining a complete characterization of the assemblage
Oq|z-

Quantum steering was first introduced in the context of entanglement
certification with an untrusted party [WJDO07]. In the original scheme the
aim of the untrusted party Alice is to convince Bob that their systems are
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entangled by showing him that she can affect — or steer — the state of Bob’s
subsystem by making measurements on her part of the system. We notice
that the scenario considered in this Thesis differs from the original “steering
game” of [WJDO7], where Bob tells Alice which measurement he wants her
to perform. In fact, the present context is closer to the Bell scenario, with
the only difference that Bob now trusts his devices. For this reason, quan-
tum information protocols adopting this scenario are called one-sided device
independent (1SDI).

The states reconstructed by Bob will usually depend on Alice’s input and
output as pajz = Tra[(Mae ® 1g)pasl/P(alx), where pap is the unknown
state of the system shared with Alice, P(a|z) is the probability that Alice
observes outcome a given she chose x, and M, is the corresponding (un-
known) element of Alice’s measurement. The set of unnormalized states

Oalz = Tra[(Maz ® 1B)paB] = pajeP(alx) (2.5)

is called an assemblage and can be completely determined by Bob through
tomographic measurements.

As noticed in [W.JDOT], Bob can determine if psp is entangled by looking
at the form of the assemblage {0, }q,o. This is because separable states can
only lead to assemblages with the specific form

Tale Zq (alz, Aoy, (2.6)

where A is a hidden variable distributed according to ¢(\), which determines
both Alice’s response P(a|z, A), and the states sent to Bob, o). Assemblages
of this form are said to have a Local Hidden State (LHS) model. On the
contrary, quantum states leading to assemblages that cannot be decomposed
as in (2.6) are said to be steerable. In [WJDO0T7] the authors proved that
steerable states are a strict subset of entangled states. Moreover, they proved
that all the states that can exhibit Bell nonlocality are steerable, but the
converse is not true. Any assemblage which cannot be decomposed as
can be detected through the violation of a steering inequality [CTWR09]
(similar to a Bell inequality or an entanglement witness) or a simple semi-
definite program [PusI3|. A steering inequality is of the form

Z Tr[Fa\x 0a|m] < BLH87 (27)

a,r

where [, denotes the observable measured by Bob when Alice performs
measurement x and announces outcome a, and Bpps is the bound that can
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be attained with assemblages admitting a LHS model. Therefore, the quan-
tum certification required for protocols adopting the steering framework is
the violation of a steering inequality which not only guarantees that the
shared state is entangled, but also that Alice is performing incompatible
measurements [QVB14, [UMGI4].

Moreover, quantum steering was shown to be useful for one-sided device
independent quantum key distribution (1SDIQKD) [BCWT12] and random-
ness certification [LTBS14]. We investigate randomness certification in the
steering scenario in presence of noise and losses in Chapter [4, where we ad-
ditionally consider a prepare-and-measure version of this scenario, namely in
which Bob holds the source and therefore knows the state pap of the shared
system.

2.3 Semi-device-independent scenario

Recently, the semi-device-independent (SDI) scenario was introduced as an
intermediate solution between the device-dependent and the fully-DI sce-
nario. In the SDI scenario no assumption on the internal working of the
devices used in the protocol is made, except their dimension.

The general structure of a SDI protocol is given by a preparing device
(let us say on Alice’s side) and a measuring device (on Bob’s side) as in Fig.
[2.5] In the most general scenario, the devices may share a priori correlated
information, classical and quantum. However, in many realistic situations,
one can assume that the preparing and measuring devices are uncorrelated
and that all the correlations observed between the preparation and the mea-
surement are due to the mediating particle connecting the two devices. An
intermediate and also valid possibility is to assume that the devices only
share classical correlations. In this case, the value of a random variable \
distributed according to the distribution ¢, is accessible to preparing and
measuring devices. In this Section we focus on this last possibility, leaving
the discussion of the case in which the preparing and measuring devices are
uncorrelated to Chapter [6]

Alice chooses input = € {1,..., M} and sends a fixed state p, \ € B(H)
to Bob, where B(#) denotes the space of linear operators X : H — H. The
assumption made in a SDI scenario is that the Hilbert space H on which
pz acts has a fixed dimension d = d* (or its dimension is assumed to be
bounded by a given value d*). Bob chooses the value of index y € {1,..., K}
and performs a fixed POVM II, y on the received state, obtaining outcome
be{l,...,N}. After repeating the experiment several times (we consider the
asymptotic case), they collect the statistics about indexes z,y,b obtaining
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Alice

Px 2

S

Figure 2.5: Setup for a generic SDI protocol. Two distant parties Alice and
Bob are provided a black box each. Alice’s box is a preparing device which
sends the state p, » to Bob whenever Alice presses button z € {1,..., M}.
Bob owns a measuring device that performs measurement II, y on the re-
ceived state whenever Bob presses button y € {1, ..., K}, giving the outcome
be {1,...,N}. In the most general scenario, the preparing and measuring
devices share a hidden random variable A.

the conditional probabilities P(b|z,y). The goal of a SDI protocol is to
exploit the correlations between the two parties, encapsulated by P(b|z,vy),
to accomplish an information task, e.g. to distribute a secure key or generate
random numbers.

The quantum certification required to ensure the reliability of SDI pro-
tocols is provided by device-independent dimension witnesses (DIDWs) for a
fixed dimension [GBHA10Q]. Indeed, DIDWs provide a tool to distinguish be-
tween classical and quantum systems of the same dimension. These witnesses
were first introduced in [BPAT0§| in order to characterize the dimensional-
ity of an unknown physical system building only on the knowledge of the
observed correlations P(b|z,y).

Let us denote with Cy4« the set of correlations that can be obtained by
measuring classical states of dimension d = d* in a scenario with M prepa-
rations and K measurements with N outcomes. We say that a set R = {p;}
of states is classical when the states commute pairwise, [p;, px] = 0 for any
i,k [HGM™12, ZPWLI11l, [LLFTT, [HSS07, HHHP06]. We notice that, when
shared randomness is allowed between preparations and measurements, the
set of achievable correlations is convex. This is not true in the case in which
the preparing and measuring devices are not allowed to share pre-established
correlations. We will analyze both cases in Chapter [5| and [0}, respectively.
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A DIDW We,. (P) is defined as a function of the conditional probability
distribution P = {P(b|z,y)} such that

ch* (P) S Ld* VP € Cd*, (28)

for some L4« depending on We,,. This means that, once the dimensionality
of the shared systems is assumed in a SDI protocol, a violation of
certifies that the observed correlations P(b|x,y) cannot have been produced
with classical systems.

SDI protocols based on DIDWs have been introduced recently, such as
SDI quantum key distribution [PB11] and SDI randomness expansion [LPY"12].

2.4 Randomness

Quantum mechanics predicts the existence of intrinsically random processes.
Contrary to classical randomness, this lack of predictability cannot be at-
tributed to ignorance or lack of control. It turns out that the notions of ran-
domness and nonlocality are connected to each other: It can be proved [MAGO6]
that all no-signalling deterministic distributions are local. Indeed, a deter-
ministic conditional probability distribution Ppgr(a,b|x,y) can be written as

a mixture of deterministic correlations D(a, b|z,y), i.e. in which a and b are
deterministic functions of x and y:

Poer(a, bz, y) = ZPO\)DA(@’ blz,y).
A

Imposing the no-signalling conditions on Dy(a,b|z,y), one has that a is a
deterministic function of x only, and respectively b is a deterministic function
of y only: Dy(a,b|z,y) = Dy(a|x)Dx(bly). This implies that

Ppogr(a,blz,y) = ZP()\)D,\(G|$)D>\(5|?J)7

which shows that Ppgr(a,blz,y) admits a LHV model. Therefore, all no-
signalling nonlocal correlations are intrinsically random.

Using this relation between randomness and nonlocality, recent results
have shown that by analyzing the data obtained in experiments involving
local measurements on bipartite entangled systems one can prove that no
one could have predicted this data in advance whenever a Bell inequality
violation is observed [Bel64, BCP™14]. This protocol is called DI randomness
certification [Col06, [PAM™10], since randomness can be certified without
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relying on any modelling of the quantum devices used for the generation of
the random data - 7.e. in a DI scenario.

Here we introduce the framework used for DI randomness certification
INSPS14l [BSS14]. Let us consider a Bell scenario in which two distant par-
ties Alice and Bob want to extract private randomness from the outcomes
obtained performing untrusted measurements on their shared system. We
deal with the adversarial scenario — which is relevant for cryptographic tasks
— where a potential eavesdropper, Eve, wants to predict the boxes’ outcomes.

In the most general case, we do not make any assumption on the mea-
surement devices, so that they could even have been provided by Eve. We
also consider that the state pap of the system shared by the honest parties is
the reduced state of a tripartite entangled state papg shared by Alice, Bob
and Eve, i.e. pap = Trg[pape]. Hence, by applying measurements to her
subsystem Eve can in principle obtain information about Alice and Bob’s
outcomes (a,b). For any quantum realization of the conditional probability
distribution observed by the parties, any strategy of Eve can be seen as a
POVM measurement [NCO0] with elements {M¢} that she applies on her
reduced state pp = Trap[paBE]-

Local randomness

We describe in the following how to quantify the local randomness associated
with Alice’s output a when a certain input x = z* is used. The amount of
local randomness in Alice’s outcome can be quantified by the guessing prob-
ability, that is the probability that Eve can guess correctly the outcome a of
the measurement z* of Alice using an optimal strategy. This quantity, de-
noted Pyuess(*), is the probability that Eve’s guess e is equal to the outcome
a that Alice obtained, whenever Alice performs the specific measurement
r=21x" ie.

Pguess(x*> == Z PA(CL = €|$*> PE(€|CE =e€e,2, T = 13*)

Applying Bayes theorem and the no-signalling constraints, namely that the
marginal probability distribution for Alice do not depend on Eve’s input z,
this is equivalent to the joint probability that Alice and Eve give the same
outcome whenever Alice performs measurement = = z*:

Pguess(x*) = Z PAE(a =6, €|Z7ZL' = J}*) (29)
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One can also express the guessing probability as as an average over Alice’s
probabilities conditioned on Eve’s outcomes, i.e.

Piess (%) = ZPE(6|Z) Pa(a=cele,z,x =x").

Conditioning on Eve’s outcome defines a family of unnormalized conditional
probability distributions, given by

P. .(a,blx,y) = Pg(e|z)Pas(a,blz,y, e, 2),

such that averaging over these distributions one recovers the conditional
probability distribution for Alice and Bob: ) P, .(a,b|z,y) = Pag(a, bz, y).

In order to compute the optimal strategy for Eve, one has to maximize
her guessing probability Pyuess(z*) over all possible strategies (given by Eve’s
POVM elements {M¢}) and all possible quantum realizations compatible
with the conditional probability distribution observed in the experiment.
This would appear to consist in optimizing the set {papg, MZ, M}, M} of
state and measurements for Alice, Bob and Eve, which is a non-linear opti-
mization problem. However, it has been showed [NSPS14, [BSS14] that one
can instead replace this by an equivalent linear optimization over all unnor-
malized quantum distributions P, (a, b|z,y) that lead to the conditional prob-
ability distribution P°(a, b|z,y) observed by Alice and Bob. More precisely,
the maximization problem can be formulated as the following semidefinite
programme (SDP) [BV04]:

max Payess(z*) =, ﬁa(a|x*)
Pe
subject to > ﬁe(a, blz,y) = P°™(a,blz,y) Va,b,x,y
P.(a,b|z,y) is quantum Ve. (2.10)

Randomness is certified whenever the guessing probability is strictly less than
1, in which case Eve cannot predict Alice’s outcome with certainty.

Global randomness

One can also be interested in the DI guessing probability that quantifies
the global randomness of the outcome pair (a,b) obtained measuring inputs
x = z* and y = y*. When the correlations P(a,b|z,y) are extremal, i.e. they
cannot be decomposed as a convex mixture of other correlations, the guessing
probability is given by

G(P,z",y") = max P(a,b|x,y).

)
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In general, however, if the conditional probability distribution can be decom-
posed as P(a,blz,y) = >, ¢axPa(a,blz,y), the guessing probability is given
by the maximum of

G(P7 13*7y*|{(b\7 P)\})\) = ZQA HEL%X P)\(aab‘x7y)
\ )

over all convex decompositions of the observed correlations P(a,b|z,y). As
proved in [BSS14], this problem is equivalent to the following SDP:

I%&X Za,@ Paﬁ(a76|$*7y*)

of

subject to > s Papla, bz, y) = P*(a,blz,y) Ya,b,x,y
P,s(a,blx,y) is quantum Vo, 3. (2.11)

where a = {1,...|a|} and g = {1,...|b|}.

The guessing probability is related to the min-entropy Hi, (P, x*, y*) =
—log, G(P, z*,y*), which quantifies the number of random bits that can be
certified in a DI protocol.

2.5 Quantum state joining and splitting

In this Section we recall the main definitions of two recently demonstrated
processes, the “quantum state joining” process and its inverse, called “quan-
tum state splitting” [VSAT13]. These processes allow to integrate two dif-
ferent approaches to increase the amount of information that can be pro-
cessed simultaneously: First, raising the number of systems in which the
information is encoded; second, exploiting an enlarged dimensionality within
the same system by using different degrees of freedom of such system. The
quantum state joining and splitting processes combine these two methods
for photons and enable to switch from one to the other. In particular, in
the quantum state joining process two arbitrary qubits initially encoded in
separate input photons are combined into a single output photon, within a
four-dimensional quantum space. Conversely, in the quantum state splitting
process the four-dimensional quantum information carried in a single input
photon is split into two output photons, each carrying a qubit.

To describe these processes with a simpler language we will refer to the
polarization encoding of the qubits, although there is no general requirement
on the choice of encoding at input and output. Let us then assume that two
incoming photons, labeled 1 and 2, carry two polarization-encoded qubits,
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namely

V)1 = alH)y+ B[V),
|0)2 = V[H)2 + 6[V)2, (2.12)

where |H) and |V') denote the states of horizontal and vertical linear polar-
ization, corresponding to the logical 0 and 1, respectively. The two photons
together form a (separable) quantum system, whose overall quantum state
is given by the tensor product

(V)1 @ |@)2 = ay|H)1[H)s + ad|H)1[V)s
+ BY|V )i H)o + BV )1V )2 (2.13)

The physical process of quantum state joining corresponds to transforming
this two-photon system into a single-photon one, i.e., in an outcoming photon
3 having the following quantum state:

V)3 = ay|0)3 + ad|l)s + B7|2)3 + B]3)s, (2.14)

where |n) with n = 0,1,2,3 are four arbitrary single-photon orthogonal
states, defining a four-dimensional logical basis of a ququart. Of course
we cannot use only the two-dimensional polarization encoding for the out-
going photon. One possibility is to use four independent spatial modes.
Another option, adopted in [VSAT13], is to use two spatial modes combined
with the two polarizations. In the latter case, in the words of Neergaard-
Nielsen [NN13], “the information is transferred from a Hilbert space of size
2 (photons) x 2 (polarizations) to a Hilbert space of size 1 (photon) x 2
(polarizations) x 2 (paths)”. Although mathematically the quantum state
joining process described in is a simple change of basis, its physical
implementation is much more complicated.

More generally, the joining process should work even for entangled qubits,
both internally entangled (i.e., the two photons are entangled with each
other) and externally entangled (the two photons are entangled with other
particles outside the system). In the first case, the four coefficients obtained
in the tensor product a-v,ad, 5y, 50 are replaced with four arbitrary coef-
ficients «p, a1, g, 3. In the second case, the four coefficients are replaced
with four kets representing different quantum states of the external entangled
system.

The quantum state splitting process is defined as the inverse process of
quantum joining, transforming the ququart encoded in the input photon 3

|\I/>3 = O./|0>3 + 5|1>3 + ’}/|2>3 + 5|3>3,
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into a two-qubit state encoded in two output photons 1 and 2:

(V)12 = a|H)1|H)z + BIH) 1V )o +7[V)i[H)z + 6[V)1|V)a.
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Chapter 3

Necessary detection efficiencies
for secure quantum key
distribution

Quantum key distribution (QKD) allows two distant parties to produce a
shared secret key that can be used for cryptographic tasks. While conven-
tional cryptographic methods can be broken by a quantum adversary, in
QKD protocols the security of the generated key is guaranteed by the laws
of quantum physics.

Over the past few decades the problem of bridging the gap between real-
istic implementation of QKD protocols and their theoretical security proofs
has attracted a lot of attention. The security of standard QKD protocols
[BB84, [Eke91] relies on a very detailed modelling of the preparing and mea-
suring devices. However, unavoidable imperfections of the devices or unno-
ticed failures lead in practice to deviations from the model used to prove
security — deviations that can be taken advantage of by a potential eaves-
dropper. Indeed, standard QKD protocols, being dependent on the accuracy
with which the devices are described, can typically suffer attacks, for instance
on the detectors [LWW™10, (GLLL™11].

To overcome these problems one can shift to the DI paradigm [ABGT0T,
PABT09]. In this context the only object one relies on is the statistics
of inputs and outputs, and the security of a DI quantum key distribution
(DIQKD) protocol is guaranteed by the nonlocal character of these statis-
tics [BCPT14]. The DI scenario allows for the most general and powerful
quantum certification protocols as it depends on very few assumptions. Nev-
ertheless, their implementations are demanding because they require very
high detection efficiencies to close the detection loophole (e.g. with photonic
implementations [BCPT14, IGMR™13, ICMAT13]).
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In order to make the experimental implementations less demanding inter-
mediate scenarios have been introduced, in which the parties involved add
some extra assumptions to the fully-DI scheme. The focus is still on the
input /output statistics but with an intermediate level of trust between the
fully-DI framework and the device-dependent one. Examples are the semi-
device-independent (SDI) scenario [PB11] introduced in Section or the
one-sided device-independent (1SDI) one [TR11, TLGR12, BCW™12] intro-
duced in Section 2.2

All these different QKD solutions are based on different assumptions and,
thus, offer different levels of security. Although different QKD protocols use
different strategies, most of them share the property that the key is con-
structed from the results of measurements performed by one of the end-users
on quantum particles that have propagated through an insecure channel.
This is the case, for instance, of the famous Bennett-Brassard-84 [BB84] and
Ekert [Eke91] protocols, and standard DIQKD protocols, such as those intro-
duced in [AMPOG, ABGT07, PABT09]. Notice however that not every QKD
protocol is of this form, a paradigmatic example being measurement-device-
independent QKD [LCQ12, BP12].

In this Chapter, we consider the above scenario and therefore we focus
on an end-user in a cryptographic protocol who performs measurements on
some quantum systems received through an insecure channel. In Section
we introduce a simple detection attack that allows an eavesdropper to learn
the results of any subset of the measurements (including possibly all mea-
surements). The only requirement is that the eavesdropper has to be able
to control the detection efficiency of the measurements — which is a natural
assumption in the adversary model of cryptographic protocols based on un-
trusted measurements, such as 1SDI, SDI, and DI protocols. The attack also
applies to standard prepare-and-measure protocols if one cannot guarantee
that the eavesdropper is unable to tune the detection efficiencies. In fact
recent hacking attacks on standard QKD protocols have exploited the abil-
ity to manipulate detection efficiencies [LWW™10, (GLLL™11]. Our attack
defines detection efficiencies necessary for secure quantum key distribution
using the previous protocols. We then discuss how our attack can also be
applied to schemes for randomness generation. From a practical point of
view, our results imply that the implementation of partly-DI protocols are,
in terms of detection efficiency, almost as demanding as fully DI ones. More-
over, our attack has also implications from a fundamental point of view: in
Section we show that, as also observed independently in [Wool4l, WPS]|,
it implies the existence of a very weak form of intrinsic randomness in which
an eavesdropper limited only by the no-signalling principle [BHKO05] cannot
a priori fix the outputs of the measurements in a Bell test, but she can later
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find out the result of any implemented measurement. In analogy with results
in thermodynamics and entanglement theory [HHH98] we name this effect
bound randomness.

3.1 Detection attack to QKD protocols

The considered scenario consists of a party, say Bob, who measures quantum
systems received through an insecure channel (see Fig)3.1). The received
systems may have been prepared by another honest party, say Alice, or by an
untrusted source. In particular, they may be entangled with other quantum
systems. Bob performs on them one of Mp possible measurements with D
possible outcomes. We label the measurement choice and result by y =
1,...,Mp and b = 1,..., D respectively. In the absence of loss, let Bob’s
device give the outcome b with probability Q(b|y, p), where p is the state
of the system received by Bob and which may be correlated with classical
or quantum variables of other parties in the protocol. For simplicity in the
notation, we omit p in what follows, as our results are independent of it.

Bob
y=1{1....Ms}

Eve

1 1 1
b={1,..D}

Figure 3.1: DI or partially DI QKD scenario: Bob performs measurement
y € {1,..., Mg} on an unknown system delivered by an untrusted source
and receives output b € {1,..., D}.

In a realistic implementation with losses and inefficient detectors, each
measurement of Bob will have a detection efficiency 7,, and one more outcome
is observed, corresponding to the no-click events which we denote by b = ().
That different measurements may have different efficiencies naturally arises in
certain situations, e.g. in [CBST11]. In such a situation, Bob’s device then
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produces outcomes with probabilities P(bly) = n,Q(bly) for b = 1,..., D,
and P(Oly) =1 —1n,.

Here we exhibit a simple attack which allows Eve to learn the output of
any subset G € {1,..., Mg} of Bob’s measurements. This attack does not
modify any of Bob’s outcome probabilities, i.e., it reproduces the full lossy
behavior of Bob’s device. In particular, it does not rely on Bob performing
any kind of post-selection. The attack only requires that Eve is able to
tune arbitrarily the detection efficiency of Bob’s detectors depending on the
implemented measurement.

Let us now explain in detail how the attack works. Eve randomly selects
with probability 7, one of the measurement y € G whose outcomes she wants
to guess and with probability 1 — ZyEG 1y she does not select any particular
measurement. Depending on her choice, she then applies one of the two
following strategies.

(1) If she picked measurements y € G, she performs this measurement on the
incoming state. She obtains outcome b with probability Q(b|y), she reads the
outcome, and forwards the corresponding reduced state to Bob. On Bob’s
side, she forces Bob’s detector to click if he performs measurement y = ¥, in
which case he obtains the same outcome b. If otherwise y # ¥, she instructs
Bob’s device not to click, i.e., to output b = (.

(#7) If she did not select any particular measurement, she directly forwards
the state to Bob without intervention. However, she instructs Bob’s device
not to click (b = @) if y € G. If on the other hand y ¢ G, she allows his
detector to click with probability 7,,. Bob then obtains a proper result b with
probability 7,Q(bly) and a no-click result with probability 1 — 7,,.

Obviously, Eve can always correctly guess Bob’s output when y € G
since when Bob’s measuring device clicks, it always coincides with Eve’s
previous measurement result, and she always knows when his detector does
not click (gives outcome b = (). Moreover, defining the 7, such that 7, =
(1= 2> cqm)7y for y & G, it is straightforward that the strategy yields the
overall outcome probabilities P(bly) = 1,Q(bly) if b # 0 and P(Bly) = 1—mn,,
which correspond to lossy devices characterized by detection efficiencies 7,,.
The only requirement for the 7,5 to be well-defined is that ZyeG ny <1-—1,
where 7’ = max,¢¢ 1,.

Therefore, the attack works as long as Bob’s observed detector efficiencies
satisfy > omy < 1 —1, where ' = max,¢c 7, is the maximum detection
efficiency over the set of measurements complementary to G, i.e., those that
Eve is not interested in guessing (if this complementary set of measurements
is empty, i.e. when Eve wants to guess the output of all of Bob’s measure-
ment, we define = 0).

In the simple case where all detectors have the same efficiency n, = n,
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the attack works whenever n < 1/(|G| + 1) if |G| < Mp or when n < 1/Mp
if |G| = Mp. In particular, when Eve is interested in guessing a single
measurement of Bob, say ¢, then |G| = 1 and the attack works as long as
n < 1/2. Furthermore, if the detectors are not all equally efficient, Eve can
use the inefficiency of the measurements y # 7 that she is not interested in
to raise the critical efficiency of the measurement y that she wants to guess
above n; = 1/2, as long as n; < 1 — maxy,.; ;.

3.1.1 Application to QKD protocols

The above attack applies to any cryptographic protocol in which the key is
constructed from the results of measurements performed by one of the end-
users on quantum particles received through an insecure channel. It thus
applies to any Bell based DI protocol, but also to SDI approaches where
the dimension is fixed, protocols based on steering, or prepare-and-measure
protocols, unless the eavesdropper cannot tune Bob’s detection efficiencies.
In fact, in many of these protocols, the key is constructed from a single
measurement, which means that in the best case scenario (that of equal
detection efficiencies) they become insecure at n = 1/2. It is important to
notice that the obtained critical detection efficiencies apply to any scenario,
independently of the number of measurements Mg, outputs D, or the role of
other parties in the protocol.

By using many measurements for the key generation, one increases the
number of measurements that Eve needs to guess and the critical detection
efficiency for our attack decreases. However, this solution is demanding from
Alice’s and Bob’s point of view as many more symbols are sacrificed after
basis reconciliation, and also more statistics needs to be collected to have a
proper estimation of the protocol parameters. In fact the advantage of using
more measurements is limited when considering two distant parties connected
by a lossy channel. Take for instance a rather idealized situation in which all
losses come from the channel, denoted by no and are equal to ng = 10%,
where L is the distance in km. Thus, the improvement in distance with
the number of bases is only logarithmic. For instance, assuming a typical
value for the losses of « of the order of 0.2 dB/km, one has that in order to
compensate for the channel losses at 100 km Alice and Bob need to employ
100 bases (see Fig. [3.2).

A possible solution to overcome channel losses is to use heralded schemes
[GPS10, MBA13] or quantum repeaters based on entanglement swapping
[HKO™12]. Using such schemes, which are technologically more demanding,
the only relevant losses for security are those on the honest parties’ labs.
Alice and Bob can then decide which cryptographic solution to adopt, from
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Figure 3.2: Number of bases required Mp versus the channel length L (in
km), assuming a typical value of losses of 0.2 dB/km. Notice that Bob needs
to measure in 100 bases to compensate for the losses on a 100 km channel.

standard to fully device-independent, depending on the observed detection
inefficiencies and the plausibility of the assumptions needed for security.

Our attack also applies to randomness generation schemes based on cor-
relations between measurements on two different devices. In these schemes,
randomness is certified by the observed quantumness of the correlations, cer-
tified for instance by means of steering (see [LTBSI14] and Chapter {4) or
Bell inequalities [Col06, PAMT10]. As the particles come from an untrusted
source, one cannot exclude that the attack has been implemented on each of
the particles sent to the untrusted parties in the protocol (one in the case of
steering and two for Bell-based schemes).

In the case of Bell-based protocols, for instance, it is possible to guess
the result of one measurement on each device when their detection efficiency
is 1/2. Note that in the context of randomness expansion, it is usually the
case that one of the possible combinations of measurements is implemented
most of the time, as this requires much less initial randomness to run the
Bell test [PAMT10]. For all these protocols, randomness expansion is lost
when the critical detection efficiency is 1/2.
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3.1.2 TImproved attacks

The previous attack applies to many cryptographic scenarios because it is
independent of the number of measurements, outputs and actions by other
parties. Improvements however may be expected for concrete protocols. For
instance, we show in what follows how for two untrusted measuring devices,
Eve can improve the attack by exploiting the detection efficiency of the second
party too. Note though that the attack needs more operations from Eve’s
side on the untrusted devices than just varying the detection efficiency of the
implemented measurements. This improved attack is inspired by the local
models exploiting detection inefficiencies introduced in [MP03].

We thus consider a second party in the protocol, Alice, who performs
M4 measurements of D outputs. Her measurement choice and result are
labeled by x and a (see Fig. Again, in the presence of loss, the output
probability distribution has one more result because of the no-click events
and is of the form

P(ablzy) = n*Q(ablzy),
P(0b]zy) = n(1 —n)Q(bly),
P(aflzy) =n(1 —n)Q(alz),
P(00|xy) = (1 —n)?,

where the detection efficiencies have for simplicity all been taken to be equal
to n.

(3.1)

Bob Alice
y={1,...MB} x ={1,...Ma}
EERERERN EERER
Eve
EEER EEER
b={l.,..,D} a={1,...D}

Figure 3.3: Eve can improve the bound on the critical detection efficiency in
case of a DI scenario in which Alice and Bob want to extract a private key
from two untrusted devices: here Bob inputs measurement y € {1,..., Mg}
and receives output b € {1,..., D}, while Alice inputs measurement = €
{1,..., My} and receives output a € {1,...,D}.

In the improved attack, Eve’s goal is again to guess G measurements
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on Bob’s side. With probability ¢ Eve uses the previous attack and does
nothing on Alice’s side. With probability 1 — ¢ the attack works in the re-
verse direction: Eve fixes the output of one of Alice’s measurements (even
though she is still guessing Bob’s result), namely she picks one of Alice’s
measurements, say &, with probability 1/M4, and decides an output for this
measurement following the quantum probability Q(a|z). If Alice happens
to implement measurement ¥ she will obtain this outcome, otherwise she
observes a no-click. On Bob’s side, Eve computes the reduced state corre-
sponding to Alice’s result and, for each measurement by Bob, selects one
possible outcome following the probability Q(b|y, ax) predicted by this state.
This defines Bob’s result, whose detector always clicks. The intuition behind
the attack is that for those cases in which Eve fixes Alice’s result, she can al-
low any measurement on Bob to give a result, as Alice effectively implements
one single measurement and a hidden-variable model is enough to describe
the observed correlations.

So far the model never gives two no-click events, which does not corre-
spond to the expected behavior of actual lossy devices. To correct this, with
probability r, Eve runs the above protocol and with probability 1 — r, she
instructs both detectors not to click. We finally get

B q I—gq
P(ablzy) = (|G’/ + TA) Q(ab|zy)

Platley) = ra (1= 7 ) Qalo)

(3.2)
P(Obley) = r(1 - q) (1 - Mi) Qbly)
P@0|zy) =1—r=(1—n)

where |G|' = |G| + 1 when |G| < Mp and |G| = |G| when |G| = Mg, as in
the previous attack. Tuning the parameters so that the above probabilities

correspond to those of lossy devices with equal efficiencies 1 as in (3.1]), one
finds

G+ My -2

GIM, — 1 (3:3)

It is easy to see that this attack improves over the previous one, as the
corresponding critical detection efficiency is always larger than 1/|G|". For
example, in the simplest case where Alice performs 3 measurements, Bob
performs two, and Eve guesses a single outcome, (M4, M3, |G|) = (3,2,1),
n = 3/5, increasing the critical efficiency by a further 10%. In the opposite
limit, when M4 — oo, n — 1/|G|, showing that the advantage of attack-
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y={L...MB} x = {1,..Ma}
E
EEEEN * EEEEN
n=1 P(abelxyz) n=1
2 no-signalling 2
EEEN EEEN
b={1,..D} a={l,.D}

Figure 3.4: Setting for bound randomness: Alice and Bob wants to extract
private randomness from their untrusted devices with detection efficiency
n = 1/2; a no-signaling eavesdropper Eve performs the attack described in
Section [3.1] to learn Alice and Bob’s outputs.

ing Alice’s measurements decreases with the number of measurements she
performs.

3.2 Bound randomness

The results of this Chapter are not only limited to practical aspects of cryp-
tographic protocol implementations, but also have implications from a more
fundamental point of view. Our motivation in this scope is to understand
how the predictability on the outcomes of a Bell experiment is limited by the
no-signalling principle. In fact, as mentioned in Section[2.4] deterministic and
no-signalling models can only lead to local correlations. Thus, the presence of
non-locality, under the assumption of no-signalling, implies the existence of
intrinsic randomness. Our main result in this ambit is to show that in some
cases, this intrinsic Bell-certified randomness may appear in a very weak
form: there are non-local correlations for which a no-signalling eavesdrop-
per (i) cannot obviously fix the results of all measurements in advance but
(ii) can later find out with certainty the outcome of any measurement. As
mentioned, we dub this effect bound randomness (see also [Wool4, WPS]).
The construction of bound randomness relies on a couple of simple ob-
servations. First, in a randomness scenario consisting of two untrusted de-
vices with uniform detection efficiency n = 1/2, our (primary) attack can
be applied to both parties, so that the eavesdropper learns the result of one
measurement each for Alice and Bob, Z and y (see Fig. [3.4)). Let e = (e,, )
be Eve’s prediction for Alice and Bob’s outcomes for measurements & and
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y. This variable can take (D + 1)? possible values corresponding to the ideal
D-valued measurement outcomes plus the no-detection event. Eve obtains
outcome e with a certain probability P;(e) and given e, her attack defines a
joint probability Py;(ab|zy,e) for Alice and Bob. Since the attack does not
change the expected probabilities P(ab|zy) from Alice and Bob’s perspective,
we have that

Z j(abe|zy) = P(ablzy), (3.4)

where we have defined the tripartite conditional probability distribution

Pyj(abe|ry) = Pyy(e)Pyy(ablry, e). Note that the previous attack is nothing

but the preparation by Eve of the observed correlations p(ablry) as a mixture

of the correlations pz;(ablrye) with probabilities p(e) = pzy(abe|xy)/pzy(ablzye).
The second observation consists of noticing that the M,Mp different

attacks defined by each combination of measurement settings z = (z,y) can

be combined into a single tripartite conditional probability distribution

P(abelxyz) = P,(abe|zy) (3.5)

by adding an input z on Eve’s, where z defines the combination of settings
Eve wants to predict. It is easily verified that this tripartite distribution is
no-signalling, see also [HRW13], and thus represents a valid attack by a no-
signalling eavesdropper. By choosing her input z, Eve can steer the ensemble
of no-signalling correlations prepared between Alice and Bob. The honest
parties however cannot notice this because their observed mixed correlations
after summing over Eve’s measurement output are the same for any value of
z. Thus, Eve can choose a posteriori the attack that allows her to predict
the result of any given pair z of implemented measurements. The effect is
similar to what happens in the quantum case when predicting the result of
non-commuting variables on half of a maximally entangled state.

Note now that there exist correlations that are non-local — hence whose
outcomes cannot all be fixed in advance — even when the detection efficiency
is smaller than 1/2 — hence whose outcomes can all be perfectly guessed by
Eve a posteriori using the above construction. Examples of such correla-
tions were given in [Mas02], where it was shown that the critical detection
efficiency required to close the detection loophole decreases exponentially
with the dimension of the measured quantum state in a scenario in which
the number of measurements by Alice and Bob is exponentially large. For
these distributions, Eve cannot fix the measurement results, otherwise the
correlations would be local, but she can later predict the output of any imple-
mented measurements by choosing her input, as the previous attack applied.
More generally, any non-local correlations obtained for detection efficiencies
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n < 1/2 constitute examples of bound randomness. Finally, it can be ex-
plicitly checked that both the all-versus nothing example of [Cab01] and the
Peres-Mermin magic square [Ara04] exhibit bound randomness.

3.3 Discussion

We have provided a simple and general detection attack that allows an eaves-
dropper to guess some of (or all) the measurement results in a cryptographic
protocol. It applies basically to any protocol with untrusted detectors in
which she is able to tune the detection efficiency of untrusted devices, such
as DI and partly-DI protocols. From our attack we have derived bounds
on the critical detection efficiencies necessary for secure implementation of
a large class of QKD protocols. The derived bounds only depend on the
number of measurements that Eve wants to learn, and show that the imple-
mentation of most partly-DI solutions is, from the point of view of detection
efficiency, almost as demanding as fully DI ones.

We also showed that the attack can be improved when considering specific
protocols. Indeed, when considering two parties with untrusted detectors,
Eve can exploit the detection inefficiencies of one party to improve her attack
on the other. We present an analysis of the tightness of our attack in steering
scenarios in Chapter

From a more fundamental point of view, we have also showed how our
attack implies the existence of non-local correlations with a very weak form
of randomness in which an eavesdropper cannot obviously fix the results
of all measurements in advance but she can later find out with certainty
the result of any implemented measurement. In particular, we proved the
existence of bound randomness in the case of eavesdroppers limited only by
the no-signalling principle [BHKO5].
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Chapter 4

Optimal randomness
certification in the quantum
steering and
prepare-and-measure scenarios

Quantum theory, unlike classical physics, implies the existence of intrinsic
randomness that cannot be explained with our ignorance of underlying phys-
ical variables. Genuine random numbers constitute a useful resource for
many applications, such as cryptography or gambling. Randomness certi-
fication protocols have been studied in the DI scenario, where the random
character of the outputs obtained by the parties is guaranteed by the viola-
tion of a Bell inequality. However, DI protocols require low levels of losses
[BCPT14], which make them very demanding experimentally. In this Chapter
we will focus on the steering scenario [Sch35, WJD07], a bipartite framework
in which one of the parties has complete knowledge of his measurement ap-
paratuses, while the other does not, and treats her measuring device as a
black box (see Section . Quantum steering allows for entanglement de-
tection which is more robust to noise and experimental imperfections than
the DI scenario [W.JD07, QVCT™15] and is relevant for one-sided device inde-
pendent quantum key distribution (1SDIQKD) [BCW™12| and randomness
certification [LTBS14]. Several experimental groups have recently observed
steering, including in continuous-variable systems [OPKP92, BSLRO3|, us-
ing entangled states with a local model [SJWP10], using inefficient detectors
[SGAT12 BEST12, WRS™12], asymmetric states [HES™12], and multipartite
systems |[AWT™15, ICSAT15, [LCCT15].

The main result of this Chapter is a general and optimal method to
quantify the amount of local or global randomness that can be certified from
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a single measurement in the steering scenario. We apply this method to
compute the maximal amount of local and global randomness that can be
certified in presence of noise and losses. Using this method and the results
derived in Chapter 3| we show that local randomness can be certified from a
single measurement if and only if the detectors used in the test have detection
efficiency higher than 50%. Our method can be seen as the analogue of the
approach of [NSPS14| [BSS14] for the fully-DI scenario applied to a partly-
DI scenario. We compare the results obtained there to those obtained here,
in terms of the amount of randomness that can be obtained by measuring
systems subjected to white noise, and find that substantial benefits can be
obtained in the present setting.

We furthermore show that the results can be easily extended beyond the
steering scenario, namely to the prepare-and-measure scenario, where the
state is also trusted, so that only Alice’s measuring device is untrusted. We
show that in this case even noisy states can perform very well for randomness
certification.

Finally, we give a method to find the optimal measurements which attain
the most randomness from any fixed state. We use insight from this method
to demonstrate analytically that maximal randomness can be extracted from
all pure partially entangled states using only two fixed measurements.

4.1 Randomness and steering

The scenario considered in this Section is the steering scenario described in
Section and illustrated in Figlf.Ifa). In this scenario the relevant ob-
ject is the assemblage that is determined by Bob through tomographic
measurements. The confirmation of steering, which is authenticated by the
violation of a steering inequality (2.7)), not only guarantees that the shared
state is entangled but also that Alice is performing incompatible measure-
ments [QVB14], [UMGI4]. Tt is thus very intuitive to expect a relation be-
tween steering and randomness: first, the correlations (entanglement) shared
between Alice and Bob allows Bob to certify steering, and consequently the
incompatibility of Alice’s measurements. Second, since Alice’s measurements
are incompatible not all the outcomes she receives are predictable, and thus
they are random.

There are several motivations to quantify the amount of randomness in
the steering scenario. From a fundamental point of view, it is important
to understand how much randomness can be maintained if we renounce
partial information about the specific description of the involved systems
[LTBS14, BQB14, LPY"12]. From a practical point of view, the amount of
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Figure 4.1: Setup for randomness certification in the quantum steering and
prepare-and-measure scenarios. (a) Steering scenario: Alice and Bob measure
an unknown bipartite system delivered by an untrusted source. Alice treats
her measurement device as a black box with inputs z € {1,...,ma} and
outputs a € {1,...,ds} and Bob performs tomography on his subsystem.
(b) Prepare-and-measure scenario: similar to the previous scenario, but now
Bob holds the source and then knows the bipartite state pag.

randomness certified in the steering scenario gives an upper bound to what
Alice and Bob would obtain in a fully-DI setting, regardless of the number
of Bob’s measurements. Furthermore, it is a scenario that appears naturally
in some asymmetric applications. For instance the present results give a
way of quantifying the amount of randomness in remote untrusted stations.
This is relevant, for instance, when the provider of a quantum random num-
ber generator wants to remotely check if the devices they provided are still
functioning properly.

4.1.1 Local randomness certification

In order to certify the local randomness of Alice’s outcomes we work in the
adversarial scenario, where a potential eavesdropper, Eve, wants to predict
them. This framework is relevant for cryptographic tasks, namely for one-
sided device-independent quantum key distribution (1SDIQKD). In the most
general case, we do not make any assumption on Alice’s measurement de-
vice, so that it could even have been provided by Eve. As commented in
Section [2.4]in the context of DI randomness certification, the bipartite state
pap is considered as the reduced state of a tripartite entangled state papg
shared by Alice, Bob and Eve, i.e. pap = Trg[pagg]. Hence, by applying mea-
surements to her subsystem Eve can in principle obtain information about
Alice’s outcome.

In this Section we will focus on the case where Alice and Bob want to
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extract randomness from the outcomes of a single given measurement of
Alice, let us say z* € {1,...,ma}. We consider the case where Eve also
knows from which measurement z* Alice is going to extract randomness, so
she can optimize her attack to obtain information about this measurement
setting. The figure of merit we use to evaluate the amount of randomness in
Alice’s outcomes is Eve’s guessing probability Pyess(*), i.e. the probability
that Eve’s guess e is equal to the outcome a that Alice obtained, whenever

Alice performs the specific measurement x = z*. The definition given by

Eq. for the guessing probability in the DI scenario (see Section is
used in this Chapter. This quantity is equal to the joint probability that Alice
and Eve give the same outcome whenever Alice measurements x = z*. One
can certify randomness whenever Pyess(2*) is strictly less than 1, otherwise
Eve would be able to predict Alice’s outcome with certainty.

After Alice and Eve have applied their measurements, the assemblage
prepared will be

Oz = Trap[(Ma: ® 1 @ Me) passl; (4.1)

where M, is the element of Eve’s (optimal) measurement which yields out-
come e € {1,...,da}. However, since Alice and Bob do not have access to
Eve’s outcomes, the assemblage they will reconstruct will be given by

03]‘[;5 = Z e (4.2)

In order to compute the optimal strategy for Eve we need to maximize
her guessing probability (for a given input z* of Alice), over all strategies.
Naively, this would appear to constitute optimizing the triple { pasg, Majz, M},
of state, measurements for Alice, and measurement for Eve, which is a non-
linear optimization problem. However, just as in the DI case considered in
Section [2.4] we can instead replace this by an equivalent linear optimization
over all physical assemblages {O’Z‘x}me’z that are compatible with the no-

signalling principle and the observed assemblage {Ugrxs}(w. More precisely,

the maximization problem can be formulated as the following semidefinite
programme (SDP) [BV04]:

( gIlE}iX Pguess(m*) = Ze Tr(gcez:e|:r*)
U(L\ac a,e,x
subject to Do Ools = ‘72}}8 Va,x
Za U(ez|x — Za O‘z‘x, Ve, X 7& CE,
0, = 0 Va, z,e. (4.3)
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In the objective function we used Pg(e)Pa(alz,e) = P(aelz) = Tr[of, ] to
re-express Pyuess(*). The first constraint assures that the decomposition for
Eve is compatible with the assemblage Alice and Bob observe. The second
constraint is the no-signalling condition — i.e. Alice cannot signal to Bob
and to Eve. The last one is the requirement for every Ogle 1O be a valid
(unnormalized) quantum state. We defer to the appendix the full proof that
this optimization problem is equivalent to optimizing over states and mea-
surements, which follows from the Gisin-Hughston-Jozsa-Wootters (GHJW)
theorem [Gis89, [HJW93] (which shows that all bipartite no-signalling assem-
blages have quantum realizations), combined with the fact that Eve, making
only one measurement, also cannot signal.

Notice that the SDP can be seen as the steering analogue of the
SDP provided in in Section [2.4] which bounds the amount of ran-
domness given an observed nonlocal probability distribution P°*(ab|zy). As
mentioned before, the SDP provides an upper bound on the amount
of randomness (i.e. a lower bound on the Pyuess) that can be found using
the SDP given in Section . This follows because does not allow Eve
to attack the measurements of Bob. Thus, our SDP bounds the maximal
amount of randomness that could be obtained if Bob were to perform any
number of measurements (that Eve can attack) and compute the random-
ness based on the obtained probability distribution. The number of random
bits is quantified by the min-entropy Hupin(A|X) = —logy Pyee(7*), where
Py s (%) is the result of the maximization (4.3).

In Fig. we plot the amount of randomness certified in the case that
Alice applies two mutually unbiased Pauli spin measurements on a two-qubit
Werner state pap = v|® (@, |+ (1 —v)1/4, where |®,) = (]00) + |11))/v/2,
and compare it with the amount of randomness obtained in the case Bob also
treats his measuring device as a black box (i.e. the fully device-independent
case). In both cases randomness can be certified as long as v > 1/1/2, which
is the critical amount of noise for demonstrating either steering or nonlocality
with only two measurements [CJWR09]. All numerical SDP calculations were
performed using the cvx package for MATLAB [GB13, [GBO0S]|, along with the
library QETLAB [Johl15].

In Fig. [£.3] we also compute the amount of randomness that can be ob-
tained by measuring the same spin measurements with detection efficiency
n (for visibility v = 1 and v = 0.9), again comparing to the case where Bob
treats his measuring device as a black box. That is, (for steering) instead
of ideal measurements, with elements M,|,, we consider inefficient measure-

59



1.0
Hmin

0.6 S

0.4 - ]

0.0 kil ‘ ‘
0.7 0.8 0.9 v 1.0

Figure 4.2: Random bits certified H,,;, versus the visibility v of the two-qubit
Werner state. We compare the randomness obtained with our method in the
steering scenario (solid line) with the fully-DI case as in Section [2.4] (dashed
line).

ments Mé@, with one additional outcome a = (), given by

m NMajz, a
A@w‘{<1—mm a

[I N

0
. (4.4)

(the measurements of Bob are similarly made inefficient in the nonlocality
scenario).

In this case, two comparisons are made: (i) the case where Bob’s detec-
tion efficiency is 1; and (ii) where Bob also has detection efficiency 7. As
one can see, for v = 1 randomness can be certified in the steering scenario
whenever the detection efficiency is higher than 50%, matching the threshold
below which no randomness can be obtained (derived in Chapter [3]). There-
fore, by bringing together the results shown in Fig and the bounds on
critical detection efficiencies derived in Chapter [3| we prove that randomness
certification in the steering scenario can be achieved in presence of losses if
and only if the detection efficiency is higher than 50%.

Moreover, we see that due to the much larger detection efficiencies for
the CHSH inequality (82.8%) and for the DI case where Bob’s measuring
device is perfectly efficient (70.7%), the steering scenario offers a significant
advantage when using the maximally entangled state over the nonlocality
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Figure 4.3: Random bits certified H,,;, versus the detection efficiency 7 for
the two-qubit Werner state. Black lines: v = 1; Red lines: v = 0.9. Solid
lines: our steering method; Dot-dashed lines: DI method in the case where
Bob’s detection efficiency is 1; Dashed lines: DI method where both Alice
and Bob’s detectors have efficiency 7.

scenario, for the entire range of visibility which is experimentally significant
(i.e. for v = 0.9 and above).

Finally, in Fig. 1.4 we plot the number of random bits certified in the case
that Alice performs measurements in four mutually unbiased bases on her
half of the entangled two-qutrit state (|00) + [11) +]22))/+/3 in the presence
of losses. Again, we see that whenever the detection efficiency is above 50%
Alice is able to certify local randomness. Moreover, for efficiency n = 1 she
certifies Hy,;, = log, 3 bits of randomness.

4.1.2 Global randomness certification

In the steering scenario one can also consider global randomness extraction
from both the untrusted and trusted devices. Indeed, even though Bob trusts
his devices, and knows which measurement he performs, there is still an
optimal state that Eve can distribute which allows her to predict the outcome
of Bob’s measurement. This is because although Eve is not able to change
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Figure 4.4: Random bits certified H,,;, versus the detection efficiency 7 for
the two-qutrit maximally entangled state |<I>f)) = (]00) + |11) + |22))//3.

the measurements performed by Bob, nor his reduced state, she still has
additional classical side information that she can use to help her in guessing
the result of Bob (since she holds the source).

Consider that, additionally to the outcomes of Alice’s measurement x =
x*, Eve wants to guess the outcomes of a measurement M, performed by
Bob. Eve now has a pair of guesses (e, ¢’), which will be her guess for the
pair (a,b). She will thus perform a measurement with elements M, on her
share of the state, which after Alice also measures will lead to the assemblage
for Bob agf; = Trap[(Maz ® 1 ® Meer)papg]. Similarly to the case of local
randomness, the global guessing probability P, (defined in in the DI
scenario) can straightforwardly be shown to be the solution to the following
SDP

. ee’
Py = max E Te[My=er 05 1]
{Ua‘z a,e,e! ee!
ee/ __ _obs
s.t. E Talz = Oalns Va, x (4.5)
ee’
ee! __ ee’ vV 7é / /
Ua|a:_ 0a|x’7 X xTr,a,e, e
a a
i
ot =0, Va,z, e, e

alz
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Figure 4.5: Global randomness obtained by measuring a two-qubit Werner
state (with visibility v), with X and Z measurements for Alice, and X mea-
surement for Bob, computed using Eq. (red solid curve). As a matter
of comparison we also plot the amount of global randomness obtained in
the device-independent scenario, using the SDP given in (blue dashed
curve).

obs

alz?

We again require consistency with the observed assemblage ¢°°, and demand
positivity and no-signalling.

We computed the global randomness which can be certified without losses
assuming X and Z measurements for Alice, and an X measurement for Bob,
on two-qubit Werner states. The results can be seen in Fig. [£.5] alongside the
corresponding curve calculated using the method described in Section for
the nonlocality scenario. As one can see, randomness can be certified in the
device-independent scenario only when the observed correlations cannot be
reproduced by a LHV model. Indeed, the visibility threshold for randomness
certification in this scenario matches with the visibility required for the vio-
lation of the CHSH inequality, which is v = 1/4/2. In the steering scenario,
however, one can certify global randomness also from states that lead to a
LHS model, i.e. from Werner states with visibility v < 1/2, as was noted
also in [LTBSI14]. In this case, Bob can always extract some randomness
from states with visibility v > 0, as he owns a complete characterization of
his system. As a result, we observe that the lower bound on the amount of
global randomness that can be extracted in the steering scenario presented
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in [LTBS14] is tight.

4.2 Prepare-and-measure scenario

Up to now we have considered the steering scenario, where Alice and Bob
receive an unknown state pap from an untrusted source. It turns out that
the results on local randomness straightforwardly apply to the case where
Bob prepares a known state and sends half of it to Alice (see Fig[t.1(b)). In
this case, since the global state pap is known, the assemblages reconstructed
by Bob have to come from unknown measurements on this state, i.e. o4, =
> Tral(Mg, ® 1p)pas]. Thus the SDP (4.3) can be replaced by

{MIEH%X Pguess(aj*) = Ze Tr[(M;:epc* X EB)pAB]
alzfa-ew
subject to > Tra[(Mg), ® 1p)pap] = ag"ﬁj Va,z
Za Mcf\m = Za M§|m’ vx/ 7& €T, e (46>
Ea,e M§|m =1 Vi
M =0 Ya,zx,e.

alz

This SDP can be understood as the maximization of Eve’s guessing proba-
bility over all possible POVM measurements (where the outcome e goes to
Eve and the outcome a goes to Alice), with Eve oblivious of z, that can be
applied to the state pap, given the observation of the assemblage {Ug‘k;s}a,a:-
A derivation of this SDP can be found in

We used the above program to calculate the amount of randomness that
can be obtained from the two qubit Werner state, and from the isotropic
two-qutrit state pap = U|<I>f)><<l)f)| + (1 —v)1/9, where @f)) = (]00) +
111) = |22))/4/3. In both cases we consider that Alice performs two mutually
unbiased measurements (Pauli X and Z for qubits, and their generalization
for qutrits).

For the case of no-losses, we observe that the amount of randomness that
can be extracted in the prepare-and-measure scenario is independent of the
visibility v, and equal to 1 bit and 1 trit = log,(3) bits respectively. More
precisely, for all v > 0.05 we observed numerically that Pyuess < 0.339. This
coincides with the amount which is obtained in the steering scenario for
v = 1, i.e. the ideal case. Therefore, this demonstrates that if knowledge
of the state is assumed, then the lack of visibility cannot be used by Eve to
guess the outcomes of Alice’s measurements.

Turning to the case of losses, consistently with the above, we observe
that, independent of the visibility, the dependence of the randomness on the

64



loss coincides with that found in the steering scenario for perfect visibility.
That is, the solid black curves in Figs. [4.3]and [4.4] are obtained, for any fixed
value of the visibility v.

This shows that the prepare-and-measure scenario greatly improves over
the steering scenario when considering lack of visibility (i.e. noise) on the
state.

4.3 Improving the randomness extraction

1.0
Hmin

0.8

0.6

0.4 50 100 150 200

no. of iterations

Figure 4.6: Plot of the random bits certified versus the number of steps of the
see-saw iteration for a two-qubit partially entangled state |¢)) = cos 8]00) +
sin@|11) with @ = 7/7 and starting with random measurements with n = 1
(black curve) and n = 0.9 (red curve).

The SDP (4.3) provides a way of quantifying the randomness in Alice’s
outcomes given the observation of a given assemblage. A natural question
is, given a fixed state distributed between Alice and Bob and a fixed number
of measurements for Alice, what is the best scheme they can implement (i.e.
the best choice of measurements) which allows for the certification of the
most randomness.

Here we propose a numerical see-saw method that, starting from an initial
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amount of certified randomness, seeks for measurement schemes that lead to
higher randomness certification. We focus on the case of local randomness;
a similar scheme can also be implemented for global randomness.

Every SDP has a dual program, also an SDP, that can be obtained
through the theory of Lagrange multipliers [BV04]. The dual of is
equivalent to

min Tr Fa . O.obs 4.7
{Fa\m}a,m Zavx ( ‘ a|:1:) ( )
subject to Tt[owes] <D Tr(Fopa0a) Va0

where in the constraint, Vo,|, should be understood as for all no-signalling
assemblages, i.e. those satisfying > o4, = >, 0o for all 2’ # . This
problem is not in the form of an SDP; however, in Appendix we derive
the dual SDP and show its equivalence to (4.7)), which is easier to interpret.
Since strong duality holds, the optimal value of this optimization problem
is equal to the optimal value of , Le. Phes(@®) = >, Tr(Fy, 02"0;).
Moreover, it outputs the coefficients F;|x of the optimal steering inequality
that gives the tight upper bound on Py . (7*).

Once we have solved the dual problem (4.7) we can run a second SDP

that optimizes the violation of the steering inequality >,  Tr(F, i Oqjz) OVEr
Alice’s measurements { Mg, } oz
i T Ma X Fa X
o > Tr[(Majs @ Fujz)pas)
subject to YoaMap =1 YV
Mgz =0 Va,z (4.8)

The solution of this optimization problem provides the measurements for Al-
ice that allow for the certification of the most randomness using the steering
inequality provided by the first SDP.

At this point, one can perform a see-saw iteration of the two SDPs in
order to obtain the maximal randomness that can be certified from a given
state, along with the optimal steering inequality and measurements M,,.
The algorithm acts according to the scheme depicted in : given a state

pap and a set of measurements {Mé‘zi}m for Alice, they lead to the assem-
blage {JOb&(i)}M using Eq. (2.5)). This assemblage is input in the dual SDP

alz .
(4.7) which provides the optimal steering inequality {F;klﬂ(cz)}“’x' This steering

inequality is in turn used in the SDP (4.8]) to obtain the optimal set of mea-
surements {MJI:S:Z)}W’ i.e. the measurements attaining the maximal violation.
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At this point, we set {Mﬁ:l)}a,x = {M:\S)}a,z and repeat the iteration.

Eq.(2:5) obs, (i+1
pAB;{ a|ac}ax —_— {O-a|ac ( )}ax
0 } spP@E) (4.9)

{M H—l }a . {Far;—l }a7$
Hence, for every given initial state, the SDP and its dual give the
best inequality to certify randomness from an assemblage, while the SDP
gives the best set of measurements — and therefore the best assemblage
— for a given steering inequality.

In Fig. we plot the result of this see-saw iteration, starting from two
randomly chosen projective measurements, for n = 1 and n = 0.9, for the
two-qubit partially entangled state |¢)) = cos6]00) + sinf|11). When there
are no losses, one bit of randomness is already known to be possible from any
partially entangled state in the fully device-independent scenario [AMP12].
Since this scenario is more demanding, it implies one bit can also be obtained
from any partially entangled state of two qubits in the steering scenario. If
the method works it should be able to reproduce this result and, as can be
seen, 1 bit of randomness is indeed found, thus demonstrating the utility of
the method.

Further exploration showed numerically that contrary to the fully-DI case,
here the measurements which achieve 1 bit of randomness from any partially
entangled state can always be taken to be X and Z measurements (with the
randomness obtained from the X measurement).

In Appendix [B]we show that this numerical evidence can in fact be turned
into an analytic construction, which proves that 1 random bit can be obtained
from any partially entangled state of two qubits (which is notably completely
different to the approach used in [AMP12] for nonlocality). Moreover, the
construction generalizes to qudits in a straightforward manner, showing that
1 dit of randomness can be obtained by performing two generalized Pauli
measurements on any Schmidt-rank d state.

4.4 Discussion

We presented a method that certifies the optimal amount of local or global
randomness that can be extracted in a steering experiment. Our method
relies on optimization techniques that quantify the amount of certified ran-
domness and provide the optimal steering inequality for randomness certifi-
cation. Applying this method to realistic implementations - i.e. in presence
of noise and losses - we have shown that a detection efficiency above 50%
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is sufficient to achieve reliable local randomness certification in the steering
scenario. Moreover, recalling the results derived in Chapter [3| we can con-
clude that having a detection efficiency higher than 50% is also a necessary
condition to certify randomness in this scenario.

We also considered the case where additionally the source is trusted
(prepare-and-measure scenario), and showed that in this scenario even states
with low visibility are useful for randomness certification.

Finally, we have introduced a method which produces, for any given initial
state, the optimal measurements which in turn give the optimal assemblage
from which maximal randomness can be certified. Using this method as a
starting point, we have shown analytically that 1 dit of randomness can be
obtained from any pure entangled Schmidt-rank d state.
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Chapter 5

Robustness of
device-independent dimension
witnesses

Device-independent dimension witnesses (DIDWs) provide a tool to test the
dimensionality of an unknown physical system in a DI way.

DIDWs were first introduced in [BPAT08] in the context of nonlocal cor-
relations for multipartite systems. Later, the authors of [GBHATQ] devel-
oped a general formalism for tackling the problem of DIDWs in a prepare-
and-measure scenario. The derived formalism allows one to establish lower
bounds on the classical and quantum dimension necessary to reproduce the
observed correlations. Shortly after, the photon experimental implementa-
tions followed, making use of polarization and orbital angular momentum
degrees of freedom [HGM™12] or polarization and spatial modes [ABCB12]
to generate ensembles of classical and quantum states, and certifying their
dimensionality as well as their quantum nature.

The framework of DIDWs is suitable for experimental implementation
and for application in different contexts, such as quantum key distribu-
tion [PBI11] or quantum random access codes [LPY ™12, [PZ10]. Indeed, apart
from the fundamental interest of characterizing the Hilbert space dimension,
it turns out that DIDWs can also distinguish between classical and quantum
systems of the same dimension. Therefore, they provide a quantum certifi-
cation for semi-device-independent (SDI) protocols, where no assumption is
made on the devices used by the honest parties, except that they prepare
and measure systems of a given dimension.

Clearly any experimental implementation of DIDWs is unavoidably af-
fected by losses - that can be modelled as a constraint on the measurements
- and can reduce the value of the dimension witness, thus making it impos-
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sible to witness the dimension of a system. In this Chapter we tackle the
problem of robustness of DIDWs to loss, i.e. the problem of whether it is
possible to perform reliable dimension witnessing with non-optimal detec-
tion efficiency. We study this problem in the case where shared randomness
between preparations and measurements is allowed (we will analyze the case
in which no shared correlations are allowed between the parties in Chapter
@. The main result is to provide the threshold in the detection efficiency that
can be tolerated in dimension witnessing, in the case where one is interested
in the dimension of the system as well as in the case where the goal is to
discriminate between its quantum or classical nature.

In Section we discuss some relevant properties of the sets of quantum
and classical correlations. Then, in Section we introduce the concept
of dimension witness as a tool to discriminate whether a given correlation
matrix belongs to these sets. The main result we provide here is a bound on
the critical detection efficiency necessary for reliable dimension witnessing as
a function of the dimension of the system. We summarize our results and
discuss some further developments in Section [5.3]

5.1 Sets of classical and quantum correlations

The general setup for performing DI dimension witnessing (introduced in
[GBHA1Q]) is given by a preparing device (let us say on Alice’s side) and a
measuring device (on Bob’s side) as in Fig. 5.1

i€[1,M] ke[1,K]
Alice | 0is ™ Bob
je[1,N]

Figure 5.1: Setup for witnessing the dimension of a quantum or classical
system. In the most general scenario considered here, Alice and Bob share
a hidden random variable A. Alice (on the left hand side) owns a preparing
device which sends the state p; » to Bob whenever Alice presses button i €
[1, M]. Bob owns a measuring device that performs measurement Il y on the
received state whenever Bob presses button k € [1, K|, giving the outcome
J € [1,NJ.
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In the most general scenario, the devices may share a priori correlated
information, classical and quantum. In this Chapter we focus on the case
in which the devices share a random variable A distributed according to the
distribution ¢, (the case in which the preparing and measuring devices are
uncorrelated is considered in Chapter @

We notice that the notation used here is slightly different from the one
used in Section In the scenario considered in this Chapter, Alice chooses
the value of index ¢ € [1, M] and sends a fixed state p;,» € B(#H) to Bob,
where B(#H) denotes the space of linear operators X : H — H. Bob chooses
the value of index k € [1, K] and performs a fixed POVM Il  on the received
state, obtaining outcome j € [1, N]. After repeating the experiment several
times (we consider the asymptotic case), they collect the statistics about
indexes 4, j, k obtaining the conditional probabilities pjj; .

We now introduce the set Q (the set C) of correlations achievable with
quantum (classical) preparations. In the following, we say that a set R =
{pi} of states is classical when the states commute pairwise, [p;, px] = 0 for
any 7, k [HGM™12, [ZPWLIT [LLF11l [HSS07, HHHPOG6]. Likewise, a POVM
I1 = {II} is said to be classical when [[I/,II] = 0 for any j, 1.

Formally, for any M, K, N, d € N we define the set of quantum correlations
Q(M,K,N,d) as the set of correlations pjj; with ¢« € [I,M], k € [1, K]
and j € [1, N] such that there exist a Hilbert space H with dim#H = d, a
quantum set R = {p; € H}M of states and a set P = {II}}¥ of POVMs
1T, = {IT, € B(H)}Y for which pj; x = Tr[p,I1}], namely

Q := {p | 3 d-dimensional Hilbert space H,
3 quantum set {p; € B(H)} of states,
3 set {IT;} of POVMSs I, = {II}, € B(H)}¥
such that pjj;, = Tr[p,I11]}.

Analogously, for any M, K, N,d € N we define the set of classical correla-
tions C(M, K, N,d) as the set of correlations p;;, with i € [1, M], k € [1, K]
and j € [1,N] such that there exist a Hilbert space H with dim#H = d, a
classical set R = {p; € B(H)}M of states and a set P = {II;}X of POVMs
I, = {T1}, € B(H)}Y for which pjj; = Tr[p;IT}], namely

C := {p | 3 d-dimensional Hilbert space H,
3 classical set {p; € B(H)} of states,
3 set {11} of POVMSs II;, = {II}, € B(H)}Y
such that pj; 1, = Tr[piH{;]}.
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We write Q and C omitting the parameters M, K, N, d whenever they are
clear from the context.

We notice that, when shared randomness is allowed between quantum
(classical) preparations and measurements, the set of achievable correlations
is given by Conv @ (Conv (), where for any set X we denote with Conv X
the convex hull of X.

Here we show that it is not restrictive to consider only classical POV Ms
in the definitions of classical correlations. Concretely, we prove that for any
correlation p = {p;j;x} € C there exist a classical set R = {p;} of states and
a set Q = {Ax} of classical POVMs A, = {A}} such that p;;x = Tr[p;Al.
Indeed, if p = {pjj;x} € C, by hypothesis there exist a classical set R = {p;} of
states and a set P = {II;} of POVMs II;, = {IT}} such that p;j; s = Tr[p;IT}]
for any i,j,k. Take A, = 7.(i|TEL|i)|i)(i| where {|i)} is an orthonormal
basis with respect to which the p;’s are diagonal (it is straightforward to
verify that Ai > 0 for any k,j and Zj Ai/, = 1 for any k). Therefore we

have pjjir = Tr[piA{;] for any 1, j, k which proves the previous statement,
i.e. that every set of probabilities obtained with commuting states can be
performed with classical states and classical POVMs. This clearly implies
that commuting states may be equally regarded as classical variables, and
the measurements as read-out of those classical variables.

Since classical correlations can always be reproduced by quantum ones,
we immediately have C C Q and ConvC C Conv Q. Moreover, by definition
we have C C ConvC and Q C Conv Q. In Appendix [C|] we show an example
where C is non-convex (namely C C ConvC) and C C Q. Therefore, when the
preparing and the measuring device are not allowed to share pre-established
correlations, the sets of interest are non-convex and cannot be represented
by a polytope. We postpone the analysis of this case to Chapter [6]

The relations between the sets of quantum and classical correlations are
schematically depicted in Fig. [5.2]

5.2 Device-independent dimension witnesses

Building only on the knowledge of pj|; , the task of a DIDW is to provide a
lower bound on the dimension d of H or to certify that the states p; must be
quantum if their dimension is assumed to be smaller than a given value.
For any set of correlations X between M preparations and K measure-
ments with N outcomes, a DIDW Wx(p) is a function of the conditional
probability distribution p = {p;;x} withi € [1, M], k € [1, K], and j € [1, N]
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Figure 5.2: Schematic representation of the sets of classical and quantum
correlations between preparations, measurements and outcomes. Dashed line
represents the (non-convex) set C of classical correlations without shared
randomness; the rectangle represents the set Conv C of classical correlations
with shared randomness; the ellipsoid represents the set Conv Q of quantum
correlations with shared randomness.

such that
Wx(p)>L=p¢gX, (5.1)

for some L which depends on Wy.

For any M,N,K,d € N when X = ConvC(M,N,K,d) [when X =
Conv Q(M, N, K,d)|] we say that Wx(p) is a classical (quantum) dimen-
sion witness for dimension d in the presence of shared randomness, since
in this case the convex hulls of the correlation sets are involved. Given a set
R = {pi} of states and a set P = {II; »} of POVMs I \ = {Hi%\}, we define
Weonve(R, P) := Weonve(p) with p = {pji} and pjiin = >, ax Tr[pially, ],
and analogously for Weony o-

Here we will consider only linear DIDWs, namely inequalities of the form

of Eq. (5.1]) such that

Wi(p) =c-p= Z Ci jkDjli k> (5.2)

i7j7k’,

where ¢ is a constant vector.

Notice that for any function W (p) and constant L, the witness W (p) > L
is only a representative of a class of equivalent witnesses such that if W’(p) >
L' is a member of the class, then W(p) > L if and only if W/(p) > L' for any
conditional distribution p. The following Lemma provides a transformation
that preserves this equivalence.
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Lemma 1. Given a function W(p) = 3_, ;. ¢ijxpjik and a constant L, take
W'(p) = > ik CijuPilik With ¢, = cijr + iy and L' = L+ 37 o for
any ;i that does not depend on outcome j. Then one has W(p) > L if and
only if W'(p) > L' for any p.

Proof. 1t follows immediately by direct computation. n

In the following our task is to find a set R of quantum states and a set P
of POVMs such that a linear witness W (R, P) maximally violates inequality
(5-1). In order to simplify the optimization problem, we notice that due to
linearity the maximum of any linear dimension witness W (R, P) is achieved
by an ensemble R of pure states and without shared randomness. Therefore,
the maximization of Eq. is equivalent to the maximization of

W(R,P) = cijr(wilTH|vy),

Z-7]'7k;

over the sets R = {5} of pure states and the sets P = {Il;} of POVMs
I, = {II.}, where ¢ := |¢)(3)| denotes the projector corresponding to the
pure state ) € H.

5.2.1 Robustness of DIDWs to loss

In practical applications, losses (due to imperfections in the experimental
implementations or artificially introduced by a malicious provider) can no-
ticeably affect the effectiveness of dimension witnessing. The main result of
this Section is to provide a threshold value for the detection efficiency which
allows to witness the dimension of the systems prepared by a source or to dis-
criminate between its quantum or classical nature, when shared randomness
between preparing and measuring devices is allowed. The task is to deter-
mine whether a given conditional probability distribution belongs to ConvC
or Conv Q. The situation is illustrated in Figure [5.3]

The experimental implementation is lossy and it can be modelled con-
sidering an ideal preparing device followed by a measurement device with
non-ideal detection efficiency. This means that any POVM II; y on Bob’s

side is replaced by a POVM H,(cn/)\ with detection efficiency 7, namely

I o= {0l (1 — )1} (5.3)

We notice that each lossy POVM has one outcome more than the ideal one,
corresponding to the no-click event. In a general model, the detection effi-
ciency n may be different for any POVM IIj, y. Nevertheless, in the following
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ConvC
Conv Q

Figure 5.3: The Figure illustrates the problem of the robustness of device
independent dimension witness. The convex hulls Conv Q and Conv C of the
sets of quantum and classical correlations are represented as in Fig[5.2] In the
presence of loss, only a subset of the possible correlations is attainable. The
subset, surrounded by bold line in the figure, is parametrised by detection
efficiency 1. The task is to find the threshold value in 7 such that dimension
witnessing is still possible. For example, when the task is to discriminate
between the quantum or classical nature of a source, one is interested in
achieving correlations in the dashed region, and our goal is to determine the
values of 77 such that this area is not null.

we assume that they have the same detection efficiency, which is a reasonable
assumption if the detectors have the same physical implementation H Anal-
ogously given a set P = {II;»} of POVMs we will denote with P(" = {H,(ji}

the corresponding set of lossy POVMs. Upon defining p™ := {pﬁ)k} with

py']l.) L= 2o Trlp;, AH?&”], one clearly has

p! = np™ + (1 —n)p®. (5.4)

To attain our task we maximize a given dimension witness over the set
of lossy POVMs as given by Eq. . Due to the model of loss intro-
duced in Eq. and to the freedom in the normalization of dimension
witnesses given by Lemma (1} in the following without loss of generality for
any dimension witness W as given in Eq. it is convenient to take

CiNk = 0, VZ, k. (55)

!This is not the case in the hybrid scenario where different types of detectors (e.g.
photodetectors and homodyne measurements) are used. A similar scenario was proposed
for example in the context of Bell inequalities [CBS™T11].
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Here we prove that, given a set R = {p;,}}1, of states and a set P =
{ILep Sy of POVMs I, = {11 ,}}7", for any linear dimension witness
W(p) = >, CijkDilik wWith ¢ € [1,M], j € [1, N], and k € [1, K] normalized
as in Eq. one has

W (R, P™) = nW (R, PV). (5.6)

Indeed, one has

1 0
W(R,P™) =Y "ciju [np§|3,k +(1 - n)pﬁ\f,k] = nW(R, PY),
irj,k
where the first equality follows from Eq. (5.4)) and the second from the fact
that W (p®) = 0 due to the normalization given in Eq. (5.5)).

In particular from ([5.6) it follows that for any linear dimension witness
W one has

My — (1)
I%’E}DXW(R,P ) nr%?})XW(R,P )

Yy — (1)
argn}%%aXW(R,P ) argr%?ﬁxW(R,P ).

Therefore, it is possible to recast the optimization of dimension witnesses
in the presence of loss to the optimization in the ideal case. Then due to
linearity we have noticed that it is not restrictive to carry out the optimiza-
tion with pure states and no shared randomness. Consider the case where
M=d+1, K =d,and N = 3. Using the technique discussed in Appendix
one can verify that the witness given by Eq. with the following
coefficients

-1 ifi+k< M, j=1
0 otherwise

is the most robust to non-ideal detection efficiency. This fact should not be
surprising, as we notice that this witness relies on only 2 out of 3 outcomes.
According to [GBHALO0], we denote it I4y1. In [GBHATO] (see also [Mas03])
it was conjectured that for any dimension d the dimension witness I is
tight in the absence of loss.

Here we provide upper and lower bounds for the maximal value I, , :=
maxp p Iz41 where the maximization is over any set R = {p; € B(H)} of
states and any set P = {II;,} of POVMs TI;, = {TI} € B(H)} with dimH = d.
We prove that for any dimension d we have

Ly > I+ 1. (5.8)

76



This follows from the recursive expression Iy, = I; + C', where

d

C:=— Z(¢i|m|¢i> + (Y| [Yara),

=1

and noticing that I; and C can be optimized independently.

A tight upper bound for I3 was provided in [GBHA10Q]. In the following we
provide a constructive proof suitable for generalization to higher dimensions.
We notice that for dimension d = 2 we have

Iy = V2. (5.9)

The previous statement follows from standard optimization with Lagrange
multipliers method and from the straightforward observation that given two
normalized pure states |vg) and |v1), if a pure state |u) can be decomposed
as follows

) = (volu)|vo) + (vi]w)lvr),

then [(volu)| = [(v1u)].
Making use of (5.8) and (5.9)), we provide upper and lower bounds on
I;,, as follows

d—2+vV2<1I;, <d, (5.10)

where the second inequality follows from the non discriminability of d + 1
states in dimension d (see [GBHAI0]).

We now make use of these facts to provide our main result, namely a
lower threshold for the detection efficiency required to reliably dimension
witnessing. We consider the problem of lower bounding the dimension of a
system prepared by a non-characterized source in Proposition [I} as well as
the problem of discriminating between the quantum or classical nature of a
source in Proposition [2|

Proposition 1. For any d there exists a dimension witnessing setup such
that it is possible to discriminate between the quantum and classical nature of
a d-dimensional system using POV Ms with detection efficiency n whenever

N2 1ge = (d —1)/Iat1. (5.11)
Furthermore one has
d—1 d—1

< Nge < ————. 5.12
d > Tq d—2—i—\/§ ( )
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Proof. We provide a constructive proof of the statement. Take M = d + 1,
K =d, and N = 3, and we show that [;,, satisfies the thesis.

We notice that the maximum value of I;,, attainable with classical states
is given by d — 1 [GBHAI0]. Then 7, is the minimum value of the detection
efficiency such that I;,; can discriminate a quantum system from a classical
one. Due to Eq. we have Eq. (5.11). From Eq. the lower and
upper bounds for 1, given in Eq. straightforwardly follow. m

Notice that ;.1 in Eq. @ can be numerically evaluated with the
techniques discussed in Appendix E Figure plots the value of 1, for
different values of the dimension d of the Hilbert space H. The threshold in
the detection efficiency when d =2 is . =1/ V2, going asymptotically to 1
with d as ~ 1+ 1/d.

0.9

nqc

0.8 |

Figure 5.4: Threshold value (middle line) of the detection efficiency 7. as in
Eq. as a function of the dimension d, obtained through numerical op-
timization of ;41 with Algorithm 2] The lower bound (lower line) and upper
bound (upper line) given by Eq. @ are also plotted. As expected, the
upper bound is tight for d = 2. The detection efficiency 74 asymptotically
goes to 1 as d — oo since its upper and lower bound do the same.

Proposition 2. For any d there exists a dimension witnessing setup such
that it is possible to lower bound the dimension of a d+ 1-dimensional system
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using POV Ms with detection efficiency n whenever

N 2 Naim = Lat1/d. (5.13)

Furthermore one has

2 -2
T
Proof. We provide a constructive proof of the statement. Take M = d + 1,
K =d, and N = 3, and we show that I;,, satisfies the thesis.
We notice that the maximum value of /;,; attainable in any dimension
> d is given by d [GBHAI0]. Then 7, is the minimum value of the detection
efficiency such that I;,; can lower bound the dimension of a d+1 dimensional

system. Due to Eq. (5.6) we have Eq. (5.13). From Eq. (5.10) the lower
bound to Nqim given by Eq. (5.14]) straightforwardly follows. O

Notice that ;.1 in Eq. can be numerically evaluated with the
techniques discussed in Appendix Figure |5.5| plots the value of nqi, for
different values of the dimension d of the Hilbert space H. The threshold
in the detection efficiency when d = 2 is 1y = 1/ V2, going asymptotically
to 1 with d as ~ 14 1/d. We notice that ng, grows faster than 7., thus
showing that for fixed dimension, the discrimination between the quantum
or classical nature of the source is more robust to loss than lower bounding
the dimension of the prepared states.

5.3 Discussion

In this Chapter we addressed the problem whether a lossy setup can provide a
reliable lower bound on the dimension of a classical or quantum system. First
we provided some relevant properties of the sets of classical and quantum
correlations attainable in a dimension witnessing setup. Then we introduced
analytical and numerical tools to address the problem of the robustness of
DIDWs, and we provided the amount of loss that can be tolerated in dimen-
sion witnessing. The presented results are highly relevant for experimental
implementations of DIDWs, and can be naturally applied to SDIQKD and
QRACs:.

We notice that, while we provided analytical proofs of our main results,
i.e. Propositions [I] and [2] their optimality as a bound relies on numerical
evidences. In particular, they are optimal if the dimension witness I,y is
indeed the most robust to loss for any d, which is suggested by numerical

evidence obtained with the techniques of Appendix and Appendix [D.2]

79



Figure 5.5: Threshold value (upper line) of the detection efficiency 7gim as
in Eq. as a function of the dimension d, obtained through numerical
optimization of I;1 with Algorithm[2] The lower bound (lower line) given by
Eq. is also plotted. As expected, the lower bound is tight for d = 2.
The detection efficiency 74, asymptotically goes to 1 as d — oo since its
lower bound does the same (and 7gi, < 1 is a trivial upper bound).

Thus, a legitimate question is whether the bounds provided in Propositions
and [2] are indeed optimal. Moreover, it is possible to consider models of
loss more general than the one considered in this Chapter, e.g. one in which
a different detection efficiency is associated to any POVM.

A natural generalization of the problem of DIDWs, in the ideal as well
as in the lossy scenario, is that in the absence of correlations between the
preparations and the measurements. In this case, as discussed above, the
relevant sets of correlations are Q and C, which are non-convex as shown in
Section (5.2 The non-convexity of the relevant sets allows the exploitation
of non-linear witnesses [BQBI14] - as opposed to what we did in the present
Chapter. We address the problem to investigate the conditions under which
this exploitation allows to dimension witness for any non-null value of the
detection efficiency in Chapter [6]

Another natural generalization is that of entangled assisted DIDWs, namely
when entanglement is allowed to be shared between the preparing device on
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Alice’s side and the measuring device on Bob’s side. This problem is similar
to that of super-dense coding [BW92]. Indeed, consider again Fig. [5.1} In the
simplest super-dense coding scenario, Alice presses one button out of M = 4,
while Bob always performs the same POVM (K = 1) obtaining one out of
N = 4 outcomes. The dimension of the Hilbert space H is dim(H) = 2,
but a pair of maximally entangled qubits is shared between the parties. In
this case, the results of [BW92] imply that a classical system of dimension 4
(quart) can be sent from Alice to Bob by sending a qubit (corresponding to
half of the entangled pair).

Consider the general scenario where now the two parties are allowed to
share entangled particles. The super-dense coding protocol automatically
ensures that by sending a qubit Alice and Bob can always achieve the same
value of any DIDW as attained by a classical quart. Remarkably, the super-
dense coding protocol turns out not to be optimal, as we identified more
complex protocols beating it. In particular, we found a (M =4, K =2 N =
4) situation for which, upon performing unitary operations on her part of
the entangled pair and subsequently sending it to Bob, Alice can achieve
correlations that cannot be reproduced upon sending a quart. This thus
proves the existence of communication contexts in which sending half of a
maximally entangled pair is a more powerful resource than a classical quart.
This observation is analogous to that done in [PZ10], where it was shown
that entangled assisted QRACs (where an entangled pair of qubits is shared
between the parties) outperform the best of known QRACs.
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Chapter 6

Detection loophole attacks on
semi-device-independent
quantum and classical protocols

Recently, semi-device-independent (SDI) quantum protocols were proposed,
in order to realize information tasks —e.g. secure key distribution, random ac-
cess coding, and randomness generation — in a scenario where no assumption
on the internal working of the devices used in the protocol is made, except
their dimension. Those partly-DI protocols offer two main advantages: on
the one hand, their implementation is often less demanding than fully-DI pro-
tocols; on the other hand, they are more secure than their device-dependent
counterparts. The security of SDI protocols is based on the quantum certi-
fication provided by dimension witnesses for a fixed dimension [GBHAT0].

SDI classical protocols — in which the exchanged system is classical —
have also been proposed, and they are known as random access codes (RACs)
[ALMOQS]. In this context, the aim of two distant parties is to optimally per-
form some one-sided communication task under a constraint on the amount
of classical information exchanged.

Despite their security, real world implementations of SDI (quantum or
classical) protocols are subject to detection loophole (DL) attacks — as hap-
pens for any fully DI protocol. In a DL attack, a malicious provider exploits
non-ideal detection efficiencies to skew the statistics of the experiment and
ultimately fake its result. The main result of this Chapter is to provide con-
ditions under which DL attacks are harmless in faking the result of a SDI
(quantum or classical) protocol.

The problem of DL attack on SDI protocols shares analogies with the
problem of the robustness to loss of device-independent dimension witness

(DIDWs) [GBHA10, [HGM™12, [ABCB12|, addressed in Chapter . Nev-

83



ertheless, while in the latter the task is to devise conditions under which
dimension witnessing is possible even in the presence of loss, in the present
Chapter we consider an adversarial scenario, and the task is to prevent the
exploitation of non-ideal detection efficiencies by a malicious eavesdropper to
produce input/output statistics which would be forbidden in the absence of
DL. Moreover, oppositely to what we do in Chapter [, where no assumption
is made about the functioning of the devices apart from their dimension,
here we consider protocols in which the preparing and measuring devices
do not share pre-established correlations, but only local randomness is al-
lowed. In this case the set of d-dimensional classical correlations is in general
non-convex (see Section and Appendix and its characterization is a
complex problem. Yet, we show that these non-convex sets of correlations are
interesting when considering scenarios with inefficient detectors since their
exploitation allows dimension witnessing for an arbitrary non-zero value of
the detection efficiency.

In Section we introduce DL attacks and present our main results. In
Section we derive conditions under which DL attacks on SDI quantum
protocol are harmless, in the general framework where only the statistics of
the protocol is taken into account. We address the problem of the certification
of SDI classical protocols, in the framework of RACs, in Section Finally,

we summarize and discuss our results in Section [6.41

6.1 Detection loophole attack

The general structure of SDI (quantum and classical) protocols is the one
introduced in Section The existing quantum protocols for QKD [PB11]
and QRG |[LPY™12], as well as classical RACs, are examples of this structure.
In this Chapter we consider SDI protocols in which the two parties, Alice and
Bob, have access to uncorrelated random number generators. Notice that the
assumption of uncorrelation is fulfilled by a broad class of protocols. Indeed,
in any SDI setup one necessarily has to assume that the devices are shielded
— namely they cannot communicate except through message A. Then to
have shared (classical or quantum) randomness one is forced to introduce a
trusted third party random generator, or to allow for infinite local memory
on each device storing previously distributed randomness.

For each round, we denote by j (i) the random variable generated by
Alice’s (Bob’s) generator and with ¢; (p;) its probability distribution. As
said, these probability distributions are independent. Random variables j
and ¢ represent the strategy that Alice and Bob apply, respectively. This
scheme is depicted in Fig. [6.1]
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Alice | Bob

B

Figure 6.1: Scheme of a generic SDI (quantum or classical) protocol in which
no shared randomness is allowed between the preparing and the measuring
device. In this case, Alice and Bob’s boxes are allowed to use a classical
random generator (dashed-line boxes), which outcome — j for Alice’s box and
7 for Bob’s — is not accessible to the parties but can influence the outcome
of the box.

In each run, Alice and Bob get classical inputs x and y respectively.
Alice sends a message A — which may be classical or quantum — to Bob, who
then returns a classical value b. Finally, collecting the statistics of several
runs (the asymptotic case is always considered), they obtain the conditional
probability distribution P(b|x,y) of outcome b given inputs = and y, namely

Pble,y) == 3 piags PO A, y) Py (Alo). (6.1)

7.77

It is important to stress that — as Eq. clearly shows — access is granted
only to the inputs x,y and the output b, while no knowledge of the internal
behavior of the black boxes (including the random variables i, j) and of the
message A is provided. The goal is to exploit the correlations between the
two parties, encapsulated by P(b|z,y) to accomplish an information task,
e.g. to distribute a secure key or generate random numbers.

When studying DL attacks, we assume that for each round of the exper-
iment Alice or Bob can claim that their detector did not click, and in this
case this round of the experiment is discarded from the statistics. In general,
Alice’s box can decide whether to click after receiving her input x and ran-
dom variable 7, while Bob’s box after receiving his input y, the message A
and random variable 7. Thus, the detection efficiencies, i.e. the probabilities
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that the detector clicks, are denoted with n;(x) for Alice and 7;(A,y) for
Bob. We notice that these probabilities cannot be estimated as they depend
on the variables ¢ and j internal to the devices. The conditional probability
distribution of outcome b given inputs x and y in the presence of a DL attack
is given by

23,4 Pigimi (A, y)n; (2) P (0] A, y) Py (Al x)
Zz‘,j,A pigini (A, y)n;(x) Pj(Alz)

We use the subscript DL whenever a distribution is obtained resorting to DL
attack, i.e. discarding the no-click events. We are assuming that for every
input x,y there is a non-zero probability of click, namely denominator in
Eq. is strictly larger than 0 for any x and y.

Notice that whether Alice uses DL is not relevantf] since any settings
that she can prepare with DL can also clearly be achieved without resorting
to it, so Eq. can be simplified as

o o) = ZeaPICA DR OIA D) P(AR) 65
, Zi,APmi(Aa?/)P(A|fU) ’
where P(Alz) := X, qjm;(2) Py (Al2)] 5, am;(a).

Independently of the task to be realized, all the known examples of SDI
quantum protocols are based on the quantum certification provided by di-
mension witnesses |[GBHATO| or, in other words, on the fact that, for a
fixed dimension of the exchanged system A, there are quantum distributions
P(b|x,y) that cannot be attained when system A is classical - a system is
classical if the states in which it can be prepared are pairwise commuting.
This quantum certification plays here the same role as Bell violations for
fully DI protocols. Our purpose is then to understand how a DL attack can
mimic correlations that are intrinsically quantum exploiting the losses in the
implementation. That is, rather than analyzing the effect of losses for a given
quantum protocol, we study situations in which the observed correlations are
useless for any quantum protocol. This is analogous to what is done when
studying the detection loophole for Bell inequalities.

On the other hand, for classical protocols such a general approach is
obviously not possible. However, when addressing the problem of classical

PDL<b’xa y) =

(6.2)

#This may be no more true if other constraints are introduced, since in this case the sets
of distributions P(A|z) and Ppr(A|z) attainable by Alice can be different. For example,
suppose that Alice is computationally constrained to prepare message A in time polynomial
in the size of . On the one hand, without resorting to DL it is impossible to obtain the
distribution P(A|x) = 04 (), with f(z) some NP-hard function (as long as we assume
that P # NP). On the other hand, exploiting DL Alice can randomly choose A and check
in polynomial time whether A = f(x), clicking only in this case.
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RACS, one is usually interested in maximizing some figure of merit related
to the particular communication task, such as the worst case or average
probability of correct detection. Here we will focus on the former - being
the latter related by Yao’s principle [ALMOOS, [Yao77] — and we will devise
conditions under which it cannot be improved resorting to DL attack.

6.2 Certification of semi-device-independent
quantum protocols

In this Section, we focus on SDI quantum protocols, namely where the ex-
changed system A is quantum. As mentioned, the success of SDI quantum
protocols depends on the generated statistics. Usually, for a given protocol,
a large enough value of a particular function of such statistics ensure the
success of the protocol. For instance, the protocol in [PB11] is secure only
when it is assumed that the dimension of the measured systems is two and
a large value of a dimension witness is observed. Yet, in general, a necessary
condition for the successful performance of any protocol is the ability to dis-
criminate whether the source is intrinsically quantum or it can be described
as a classical distribution, building only on the knowledge of the conditional
probability distribution P(b|z,y). That is, it is necessary to certify that
the observed correlations cannot be explained classically and, therefore, are
potentially useful for quantum protocols without classical analogue. The
advantage of this approach is that it allows one to evaluate necessary condi-
tions for security irrespectively of the particular protocol considered. Indeed,
finding a DL attack able to fake an intrinsically quantum distribution by ex-
ploiting detection inefficiencies makes the observed correlations useless for
any protocol. In this Section we provide conditions under which DL attack
can by no means recast a classical P(b|z,y) into an intrinsically quantum
Ppr(b|z,y) thus faking the result of the protocol.

We say that a conditional probability distribution P(b|z,y) of outcome b
given inputs z on Alice’s side and y on Bob’s side admits a classical (quan-
tum) d-dimensional model if it can be written as

P(blz,y) =Y piPi(b] A y)P(Alz),
Ayl

where

Y P(Alx)=1,Vx, Y P(blAy) =1, VA, y,i, (6.4)
A b

P(Alz) > 0VA,z, Pi(blA,y) >0Vb, A, y,i
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for some probability p; and where A is a classical (quantum) d-dimensional
system. Given some correlations with losses, we say that DL attacks are
harmless whenever there is no classical attack faking the correlations.

The probability of click on Bob’s side given he received message A from
Alice and input y is given by

Qb # 0| A, y) mez (A,y),

where () denotes the no-click event. Now we show that whenever

Q(b#0|A, y) = Q(bA0]y), (6.5)

DL attacks are harmless. Formally, we want to prove that if Q(b#£0|A4,y) =
Q(b#0]y) for any A,y, then if Ppr(b|x,y) does not admit a d-dimensional
classical (quantum) model then neither P(b|z,y) does. To show this, we
prove that under the hypothesis , if P(b|x,y) admits a d-dimensional
classical (quantum) model then also Ppy(b|z,y) admits a d-dimensional clas-
sical (quantum) model.

Let us then assume that P(b|x,y) admits a classical (quantum) model,
namely it can be written as

P(blx,y) = Zpl (b|A,y)P(Alx),

with P;(b|A, y), P(A|z) satisfying Eq. (6.4) and for some probability p;. Then
by definition
2.4 Pii(A, y) P(Alz)
Upon introducing the hypothesis Q(b#0|A, y) = Q(b#0|y) one has
>iaPini(A,y) Pi(b|A, y) P(Alz)
Qb#0y) '

PDL(b|x7 y) =

PDL(b\HU,Z/) =

Thus, setting

> pini( A, y) Pi(b| A, y)

Q(b#0y) ’
one clearly has Y, Ppr(b|A,y) =1 and Pp.(b|A,y) > 0 for any b, A,y. Then
Ppr(b|x,y) admits the d-dimensional classical (quantum) model

Ppr(blz,y) ZPDL b|A, y)P(Alz).

Ppr(b|A,y) =

88



Then, whenever Ppy(b|z,y) does not admit a d-dimensional classical (quan-
tum) model, also P(b|x,y) does not.

At this point it is convenient to discuss condition in relation with the
fair sampling assumption. As we have seen above, the latter states that the
set of events in which the detectors clicked is a randomly chosen sample from
the total set of events that one would have obtained with perfect detectors,
1.€.

Ppr(blz,y) = P(b|x,y). (6.6)

One can clearly see by using Eq. , that does not necessarily im-
ply the fair sampling assumption. Indeed, in order to fulfill the fair sam-
pling assumption for every choice of {p;, P(A|z), P;(b|A,y)}, one needs that
n:(A,y) = n(y). On the other hand, in order to fulfill for every function
p; it suffices that n;(A,y) = n;(y). In this sense, the condition gen-
eralizes the fair sampling assumption, providing strictly weaker hypothesis
under which DL-attacks are harmless.

Nonetheless, the fair sampling assumption and our slightly more general
condition have in common that they refer to properties of the internal
working of the devices. In particular, condition 7;(A,y) = n;(y) — or the
more constraining fair sampling assumption — cannot be verified solely from
the statistics, since the message A sent by Alice is not directly accessible to
the parties.

Here we provide a much stronger condition for DL attacks to be harmless,
as it is stated only in terms of the probability Q(b+#£0|z, y) of click given inputs
x on Alice’s side and y on Bob’s side, namely

Q(b#0]z,y) szm (A, y)P(Alx). (6.7)

Notice that this probability is accessible to the parties, being a function of
the inputs x,y which are in turn accessible. In the following we show that
whenever statistics of bidimensional systems fulfill

Q0AD|x,y) = Q(b#0]y) Va,y (6.8)

DL-attacks are harmless.

Specifically, we want to show that if Eq. holds, then if Ppp(b|z,y)
does not admit a 2-dimensional classical model then neither P(b|z,y) does.
Let us prove a converse equivalent statement, 7.e. that if condition holds,
then whenever P(b|z,y) admits a 2-dimensional classical model then also
Ppr(blz,y) admits a 2-dimensional classical model. We notice that by hy-
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pothesis [Eq. ], for any pair of inputs xg, 7 on Alice’s side one has

> QUA0|A,y) [P(Alr=x0) — P(Alz=a1)] = 0,

where the sum is over A =0, 1.
Rearranging explicitly the terms in previous Equation and using the fact
P(A=1|z) =1— P(A = 0Jx) for any x, one obtains that either

P(A=0|z=1z¢) = P(A=0|z=1,),

for any zo,z;, namely the message A sent by Alice is independent on her
input x, or

Q(bA0[A=0,y) = QbAD|A=1,y),

for any y, namely the detection probability on Bob’s side is independent on
the message A received from Alice.

In the former case P(b|x,y) clearly admits a classical local model, namely
one in which no message is sent from Alice to Bob, and the same holds true
for Ppr,(b|z,y) due to Eq. (6.3)). In the latter case the hypothesis of the
previous statement is satisfied, and accordingly to what we proved the thesis
follows.]

As said, contrary to the previous proof that used the hypothesis ,
this result is much stronger, as it is proven under an assumption that can
be verified only from the observed statistics. The price to pay is that it
only holds for systems of dimension two. Condition is, therefore, highly
inequivalent to or the fair sampling assumption. In fact, the attack
presented in [LWW™10, IGLLL"11] fulfills condition (6.8]), however clearly
violates the fair sampling assumption (but also violates the assumption on
the dimension).

Recalling the definition of the sets of classical correlations given in Sec-
tion for DIDWSs, we have just proved that if condition holds, then if
Ppr(blx,y) & C(M, K, N,2) also P(blz,y) € C(M, K, N,2), for any non-null
value of the overall detection efficiency. Thus, adding an additional constraint
to the devices, namely that they do not share correlations, one can exploit
the non-convexity of the set C(M, K, N,2) to perform detection-loophole-
free dimension witnessing (for dimension 2) for any value of the detection
efficiency. This is very useful for experimental implementation of dimension
witnessing in presence of loss, where the task is to determine whether the
observed conditional probability distribution Ppy(b|z,y) belongs to the set
C of classical correlations. Indeed, if Ppp(b|z,y) violates a DIDW for di-
mension 2, and therefore does not admit a bidimensional classical model,
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then the experimenter can deduce that the ideal conditional probability dis-
tribution P(b|x,y) (without post-processing) also cannot be described by a
bidimensional classical model, as long as condition is met.

6.3 Certification of semi-device-independent
classical protocols

In this Section, we focus on SDI classical protocols, namely where the ex-
changed system A is classical. We devise functions of the input/output statis-
tics that cannot be altered by DL attacks. Thus, any certification for SDI
classical protocols building only on the value of these functions will be im-
mune to DL attacks. Again, the main advantage is that, as above, these
functions can be verified only from the observed statistics.

A SDI classical protocol can be viewed as a random access code [ANTSV02,
HINT06] (RAC), and in the following it will be convenient to work in the
framework of RACs. In this framework, the aim of the two distant parties
Alice and Bob is to optimally perform some communication task by means
of one-sided communication of classical information. RACs are usually de-
noted with the notation n — m. Here n is the number of input bits of Alice,
namely the dimension of input = is dim(x) = 2", while m is the number of
bits sent by Alice, namely the dimension of message A is dim(A) = 2™ (see
Fig. .

In this scenario, the relevant figures of merit usually considered are the
worst case or the average success probability to have that b = f(x,y) for a
specific Boolean function f(z,y) € {0,1}. Here we will focus on the former,
being the latter related through Yao’s principle [Yao77]. The worst case
probability of success P* is defined as

PY¢:=min P(B=f(z,y)|z,y).
Y

The probability that b = f(x,y) with the DL exploit is given by

Yoiawi(A,z,y)Pi(b=f(z,y)|A,y)
Zi,A wi(Av a7y) 7

where w;(A,z,y) = pini(A,y)P(A|x) and the worst case probability that
b= f(x,y) is given by

PDL(b:f(xa y)|LL’, y) = (69)

Ppy = min Ppr(b=f(z,y)|z,y).
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Here we provide conditions under which the worst case success proba-
bility of a RAC cannot be increased resorting to DL exploitation. When
these hypotheses are satisfied, a protocol relying on the worst case success
probability may not be affected by DL attack.

Specifically, we prove that given a RAC, if the worst case success proba-
bility without resorting to DL attack is P**=1/2, then the worst case prob-
ability of success resorting to DL attack is Pp§=1/2.

The proof proceeds by absurd assuming P“¢ = 1/2 and Pj§ > 1/2.
Equation is the weighted sum over indices i and A of the numbers
Pi(b = f(z,y)|A,y) with weights w;(A,z,y)/ >, ywi(A, z,y) and therefore
is upper bounded by

PDL(b:f(l',y”x,y) < HIIAaZX{Pla):f(:U?Z/)‘Aa y)}:
and one has

Py < minmax{P;(b=f(z,y)|4, )}
:E,y ,l

Since we are assuming Pj¢ > 1/2 there exists a strategy iy of Bob and a
message Ap of Alice such that for all x, y one has P, (b = f(z,y)|Ao,y) > 1/2.
Then Bob can exploit a new strategy where he applies strategy i, whenever
he gets Ay and returns a random number otherwise, for which the probability
P(b=f(z,y)|x,y) of b=f(x,y) given inputs = and y is given by

B(b=f(zp)le.v) = | Py(b=F(.)|40.9) 5| P(dol2) + 5.

This new strategy does not resort to DL and since P; (b = f(z,y)| Ao, y) >
1/2 it has the worst case success probability greater than

pwe — %,Ln{p(b:f(x’ y)le,y)} > %

which contradicts the assumptions.[]

Now we show that for any n — 1 RAC, the worst case success probability
resorting to DL attack is Pj§=1/2, i.e. DL attacks are harmless. Indeed, in
[ANTSV99] it was shown that for any n — 1 RAC the hypothesis P** = 1/2
is fulfilled, so the statement follows.

One may ask whether it is possible to relax this hypothesis, namely if
also RACs with P*¢ > 1/2 cannot be affected by DL attack. We provide
here an example of RAC with worst case success probability larger than 1/2,
and show that this probability can be increased using DL attack. Consider
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the 3 — log6 RAC. Alice is given three independent bits xg, 1, 2, namely
r = xg® 1 ® Te, and she can send to Bob a 6-dimensional message or,
equivalently, one bit Ay and one trit A;, namely A = Ay ® A;. Bob’s input
is the trit y = 0, 1,2 and the function to be computed is f(z,y) = z,. Here
we show that the worst case success probability P“¢ without resorting to DL
of 3 = logb6 RAC is P*¢ < 0.981, while there exists a DL attack such that
the worst case success probability is PAf = 1.

First, we prove that for the 3 — log6 RAC one has P“¢ < 0.981. An
explicit upper bound for the worst case quantum success probability — which
is clearly at least as large as the classical one P"“¢ — was derived in [Nay99]
in the context of quantum finite automata, namely

(1= h(P*))n < m,

where h(.) is the Shannon binary entropy function. Setting n = 3 and m =
log 6 we get P"¢ < 0.981.

Now we provide a protocol using DL which achieves the worst case success
probability Pjf = 1. The idea is to use part of the communicated message to
distribute randomness. Alice can choose the trit A; at random and encode
Ao = z4,, in other words she sends one of her bits randomly to Bob but
also sends him information regarding which bit it is. If y = A; then Bob
returns y = Ap which is equal to z,. If y # A; his detector does not
click. The detection efficiency of Bob’s device with this protocol is given by
ni(A,y) = 0y 4,, and the worst case success probability is given by Pp¢ = 1.

6.4 Discussion

In this Chapter we addressed the problem of how non-ideal detection effi-
ciencies can be exploited to fake the result of SDI quantum and classical
protocols through DL attacks. For quantum protocols, we discussed general
conditions under which DL attacks are harmless in terms of the detection
probability. Furthermore we showed that an extra assumption on the func-
tioning of the devices - namely that they do not share correlations - allows
one to bound the dimension for an arbitrary non-zero value of the detection
efficiency. In this case, we presented the requirements to answer the question
whether the ideal conditional probability distribution P(b|x,y) € C from the
knowledge of Ppr(blz,y) only. These results are thus of relevance for the
quantum certification of the devices. For classical protocols, we provided
conditions under which DL attacks cannot increase the worst case success
probability of a RAC. Our main results can be used as a general guideline to
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devise quantum and classical protocols resistant to attacks that take advan-
tage of detection inefficiencies, being thus of relevance for applications such
as quantum key distribution, quantum randomness generation, and RACs. A
natural follow-up question is to understand how DL attacks apply to specific
examples of SDI protocols.
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Chapter 7

Joining and splitting the
quantum states of photons

In order to exploit the enhanced computational power provided by quantum
information technology, one major challenge nowadays is to significantly in-
crease the amount of information that can be processed simultaneously. In
photonic approaches [KMNT07, [OFV09, [PCL712], one can raise the num-
ber of qubits by increasing the number of photons in which information is
encoded. Alternatively, one can exploit an enlarged quantum dimensionality
within the same photon by combining different degrees of freedom, such as
polarization, time-bin, wavelength, propagation paths, or transverse modes
such as orbital angular momentum [MVWZ01, BLPKO05, MTTTO07, LBAT09,
CVDM™09, NSM™10, [SK10, NGM™10].

In this Chapter we study the recently demonstrated processes of quantum
state joining and splitting [VSAT13|, which combine these two methods and
enable to dynamically switch from one to the other even during the compu-
tational process itself. More precisely, in the quantum state joining process
two arbitrary qubits initially encoded in separate input photons are com-
bined into a single output photon, within a four-dimensional quantum space.
The quantum state splitting process consists in the inverse process, namely
in which the four-dimensional quantum information carried in a single input
photon is split into two output photons, each carrying a qubit. Since both
processes are in principle iterable [VSAT13|, they provide a useful interface
for converting multiparticle quantum information protocols into protocols
that exploit many degrees of freedom of one particle and vice versa, thus
allowing to integrate the two encoding methods. These processes can be
used to multiplex and demultiplex the quantum information across photons
in quantum communication networks, for example with the purpose of using
a smaller number of photons in lossy transmission channels. The idea of mul-
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tiplexing /demultiplexing the quantum information in photons was proposed
for example in [GECPO§|, but a complete implementation scheme had not
been developed (in particular, the proposal reported in [GECPO§| relies on
the existence of a hypothetical CNOT gate in polarization encoding between
photons which is independent of the spatial mode of the photons, but the
proposal does not include a discussion on how to realize this gate in practice)
and had not been experimentally demonstrated. In addition, the quantum
joining and splitting schemes might also find application in the storing of
multiple incoming photonic qubits in a smaller number of multilevel matter
registers [JSCT04].

This Chapter is structured as follows. In Section , the joining/splitting
schemes are revisited by adopting the more general photon occupation-number
formalism and some variants of the original schemes are introduced which do
not need a projection and feed-forward mechanism to work (not considering
the CNOT implementation), although at the price of using a doubled number
of CNOT gates. In Section [7.2) we then develop a formal proof of the fact
that quantum joining is impossible for an arbitrary linear optical scheme in-
volving only two photons and a final post-selection step. Hence, at least one
ancilla photon is needed (or the presence of optical nonlinearity). In Section
7.3, we analyze the relationship between the joining process of two photonic
qubits and a particular class of three-photon entangled states, in which two
photons are separately entangled with a common “intermediate” photon.
We show that the quantum joining process can be used to create such clus-
ter states and that, conversely, having at one’s disposal one of these states,
the quantum joining of two other photons can be immediately achieved by a
teleportation scheme. We also note that these three-photon entangled states
are of the same kind as the “linked” multiphoton states first introduced by
Yoran and Reznik to perform deterministic quantum computation with linear
optics [YRO03]. Finally, in Section we draw some concluding remarks.

7.1 Joining and splitting schemes in a photon-
number notation

In this Section, we revisit the joining and splitting schemes introduced in
[VSA™13| adopting the more general photon-number notation, as opposed
to the polarization-ket notation used in [VSAT13] and in Section 2.5 In
particular, photonic qubits will be represented as pairs of modes, with one
photon that can occupy either one, as in the “dual-rail” qubit encoding. Of
course, the two modes can also correspond to two orthogonal polarizations
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of a single spatial mode, thus reproducing the polarization-encoding case.

Given two modes forming a qubit, the |10) ket, where the 0’s and 1’s
refer here to the photon numbers, corresponds to having a photon in the first
mode, encoding the logical 0 of the qubit. The |01) ket will then represent
the photon in the second path, encoding the logical 1 of the qubit. For our
schemes, we will however also need the |00) ket, representing a vacuum state,
i.e. the “empty” qubit.

The basic difficulty with implementing the quantum state joining/splitting
processes is that a form of interaction between photons is needed. But pho-
tons do not interact in vacuum and exhibit exceedingly weak interactions in
ordinary nonlinear media. A way to introduce an effective interaction, known
as the Knill-Laflamme-Milburn (KLM) method [KLMO1], is based on exploit-
ing two-photon interferences and a subsequent “wavefunction collapse” oc-
curring on measurement. This idea allowed for example the first experimen-
tal demonstrations of controlled-NOT (CNOT') quantum logical gates among
qubits carried by different photons [OPWT03|, [PFJEF03, (GPW 04, ZZCT05],
and is at the basis of the implementation of the quantum joining and splitting
processes described in this Section.

To get the main idea of the quantum joining implementation, consider
again the two input photons given in Eq. (2.12). A single CNOT gate using
one photon qubit as “target” and the other as “control” may be used to
transfer a qubit from a photon to another, if the receiving photon initially
carried a zeroed qubit. In order to obtain the state joining, we might then
try for example to transfer the qubit ¢ from photon 2 to photon 1, while
preserving the other qubit ¢ by storing it into a different degree of freedom
of photon 1 (for example spatial modes). However, the interference processes
utilized in the KLM CNOT require the two photons to be indistinguishable
in everything, except for the qubit ¢ involved in the transfer. So, they are
disrupted by the presence of the second qubit ¢ carried by the target photon,
even if stored in different degrees of freedom.

To get around this obstacle, the authors of [VSAT13| proposed a scheme
that is based on the following three main subsequent steps: (i) “unfold” the
target qubit ¢ (carried by input photon 1) initially travelling in mode ¢, by
turning it into the superposition «|H ), + B|H),, of two zeroed polarization
qubits, travelling in separate optical modes ¢; and ¢»; (ii) duplicate the control
qubit ¢ (carried by input photon 2) travelling in mode ¢ on an ancillary
photon travelling in mode a, thus creating the entangled state y|H).|H), +
0|V)elV)a; (iii) execute two KLM-like CNOT operations (of the Pittman
kind [PJFO1, PFJF03]), one with modes ¢ and ¢, the other with modes a
and t,. In this way, each CNOT operates with a target photon that carries a
zeroed qubit and no additional information, but the target photon is always
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interacting with either the control qubit or its entangled copy.

To complete the process, the photons travelling in modes ¢ and a must
be finally measured. For certain outcomes of this measurement, occurring
with probability 1/32, the outgoing target photon is then collapsed in the
final “joined” state |¢p ® ¢) = ay|H), + ad|V)y, + By|H)y, + 56|V )1,, which
contains all the quantum information of the two input photons. The success
probability can be raised to 1/8 by exploiting a feed-forward scheme and
using other measurement outcomes. This probabilistic feature of the setup
is common to all KLM-based implementations of CNOT gates (although, in
principle, the success probability could be raised arbitrarily close to 100% by
using a large number of ancilla photons).

7.1.1 Quantum state joining scheme

Let us first consider the joining process, schematically illustrated in Fig.[7.T}.
Labelling as ¢ (for control) and ¢ (for target) the travelling modes of the two
input photons, the input state is taken to be the following:

|\D>1 = a0\10>t|10>c+a1\10>t|01>c
+as]01)]10), + a3]01),|01),, (7.1)

which may represent both separable and non-separable two-photon states.
The qubit “unfolding” step corresponds to adding two empty modes for
photon ¢ and rearranging the four modes so as to obtain the following state:

W)y = ol1000)]10), + a1]1000Y|01).
+2]0010)¢[10).. + a3]0010)]01),
= ap[10)4,]00),[10). + a1[10),]00),,[01).
+a3|00)¢,[10)4,|10). + c3]00),, [10)4,|01)., (7.2)

where in the second expression we have split the four ¢ modes, so as to treat
the first two as one qubit (1) and the final two as a second qubit (¢2). Notice
that both of them are initialized to logical zero, but with the possibility for
each of them to be actually empty.

Each of these qubits must now be subject to a CNOT gate, using the
same ¢ qubit as control. The action of the CNOT gate in the photon-number
notation is described by the following equations:

Ucnor|10)[10); = [10).]10),
Ucnor|01)c[10), = [01)|01),
Ucnor|10).[01), = [10)]01), (7.3)
Ucnor|01)[01); = [01).]10),
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Figure 7.1: Optical schemes for quantum state joining and splitting. Each
line represents a separate photonic mode (either spatial or of polarization).
A qubit is represented by a double parallel line, as in a dual-rail implemen-
tation. A single-photon ququart, as obtained after the quantum joining, is
represented by four parallel lines. H stands for a Hadamard quantum gate,
CNOT for a controlled NOT quantum gate and r-CNOT for a CNOT gate in
which the control and target ports have been reversed. The “0” sign corre-
sponds to a vacuum detection (no photons). |¥); is the input state and |¥),
the final (target) state. (a) Scheme for quantum joining based on a double
CNOT gate and final projection. Feed-forward is needed to obtain deter-
ministic behavior (not considering the CNOT contribution). (b) Alternative
scheme for deterministic quantum joining, using four CNOT gates, with the
second two gates having inverted control and target ports. This leads to a
deterministic behavior without projection and feed-forward (not considering
the CNOT success probability). (c¢) Scheme for quantum splitting, with dou-
ble CNOT gate and final projection. This scheme is probabilistic (with a
50% success probability, not considering the CNOT gates contribution) and
could be made deterministic only by combining quantum non-demolition
measurements and feed-forward. (d) Alternative scheme for deterministic
quantum splitting by using four CNOT gates (not considering the CNOT
success probability).
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However, in the present implementation of the quantum fusion we need to
have the CNOT act also on “empty target qubits”, that is vacuum states.
For these we assume the following behavior:

Ucnor|10).]00), = ]10).]00),
UCNOT|01>C|OO>t = N‘01>c|00>t (7‘4>

where 1 is a possible complex amplitude rescaling relative to the non-vacuum
case. A unitary CNOT must have || = 1, but probabilistic implementations
do not have this requirement. The quantum joining scheme works if the two
CNOT's have the same p. In particular the CNOTs implementation proposed
by Pittman et al. and used in [VSAT13| have pu = 1, so for brevity we will
remove g in the following expressions.

Let us then consider the action of these two CNOT gates to the unfolded

state given in Eq. (7.2)):

W), = Ucnor,Ucnor, | ¥
= Of0|10>t1|00>t2|10>c + a1|01>t1|00>t2|01>c
+a2|00>t1|10>t2|10>c + a3‘00>t1|01>t2|01>c (75)

If now we project the ¢ photon state on |+) = (]10) +]01))/+/2, so as to erase
the ¢ qubit, and reunite the ¢; and ¢, kets, we obtain

W), = ap]1000); + 1 [0100); + a5|0010); + a5/0001), (7.6)

which is the desired joined state. Since the ¢ qubit measurement has a prob-
ability of 50% of obtaining |+), without feed-forward the described method
has a success probability of 50% not considering the CNOT success proba-
bility.

If the outcome of the ¢ measurement is |—) = (|10) —[01))/v/2, we obtain
the following target state:

[0}, = ap|1000); — 1]0100); + 12]0010); — v3/0001),. (7.7)

This state can be transformed back into |¥),, as given in Eq. (7.6), by a
suitable unitary transformation. Therefore, the success probability of the
joining scheme can be raised to 100% (again not considering CNOT's success
probabilities) by a simple feed-forward mechanism.

Alternative to this feed-forward scheme, one might recover a deterministic
behavior for the joining step (not considering the CNOT) by avoiding the c-
photon projection and applying two additional CNOT gates in which control
and target qubits have swapped roles, so as to “disentangle” the ¢ and t
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photons. This alternative is illustrated in Fig. [7.Ip. In other words, after the
first two CNOT's, we must apply a third CNOT with ¢; used as control and
c as target and a fourth CNOT with ¢, as control and c as target. This time,
for a proper working of the scheme, we must consider the possibility that the
control port of the CNOT is empty. As for the previous case of empty target
qubit, the CNOT outcome in this case is taken to be simply identical to the
input except for a possible amplitude rescaling, i.e.

Uenor|00).10), = 4/[00).|10),
Ucnor|00)[01) = 4/|00).[01), (7.8)

which is what occurs indeed in most CNOT implementations. Moreover, we
again assume y = 1 in the following, for simplicity. Let us then take the
state given in Eq. and apply the two “reversed” CNOT gates, denoted
as r-CNOT:

U)o = U..onoT, Ur.oNoTs |W)
= |10). (]10)41]00)s2 + 1|01)41]00) 42
+a2|00)41]10) 2 + a3]00)41|01)42) (7.9)
= [10). @ [¥),

where |¥), is given in Eq. . After this step, one can just discard photon
¢ and photon ¢t will continue to hold the entire initial quantum information.
We notice that this second implementation method does not require the
feed-forward, which is an advantage in terms of resources, but it needs four
CNOTs instead of two. Since CNOT implementations based on linear optics
are actually probabilistic, the final success probability will be significantly
smaller than the first method without feed-forward, so this scheme is not
convenient at the present stage.

7.1.2 Quantum state splitting scheme

Let us now move to the quantum state splitting process, illustrated in Fig.
. We assume to have an input photon encoding two qubits (i.e., a
ququart) in the four-path state

1) = p|1000) + 1]0100) + 12]0010) + c30001) (7.10)

We label this input photon as ¢ (for control). We also label the first two
modes as ¢; and the last two modes as ¢;. We then take another photon,
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labeled as ¢ (for target), that is initialized in the logical zero state of two
other modes, so that the initial two-photon state is the following:

|\Il>z = (a0|10>61|00>02 + a1|01>61|00>02
+02[00)c, [10)c, + @3]00)c, [01)c,)[10);

We now apply the two CNOT gates in sequence, using the ¢ photon as target
qubit in both cases and the ¢; and ¢y modes of the ¢ photon as control qubit
in the first and second CNOT, respectively. In order to do these operations
properly, we need to define the CNOT operation also for the case when the
control qubit is empty, as already discussed above. Hence, we obtain

UCNOTlﬁCNOT2|‘I’>i = ay|10)., |00),|10),
+0a1]01),]00),|01); + a2|00),[10).,[10);
$03J00) [01)., 01}

Now we need to erase part of the information contained in the control photon.
This is accomplished by projecting onto |+)., = (]10)., + |01).,)/v/2 combi-
nations of the first and second pairs of modes, while keeping unaffected their
relative amplitudes. In other words, we must apply an Hadamard trans-
formation on each pair of modes, and take as successful outcome only the
logical-zero output (corresponding to the |+) combination of the inputs).
The projection is actually performed by checking that no photon comes out
of the |—) (i.e., logical one) output ports of the Hadamard. The two sur-
viving output modes are then combined into a single output c-photon qubit,
which together with the ¢t-photon qubit form the desired split-qubit output.
Indeed, we obtain the following projected output:

1TY; = apl10).]10Y; + ay]10).01),
Fas|01)]10), + a01).|01), (7.11)

which describes the same two-qubit state as the input, but encoded in two
photons instead of one. The proposed scheme for splitting has a 50% proba-
bility of success, not considering the CNOT contribution. It might be again
possible to bring the probability to 100% (not considering CNOTSs) by de-
tecting the actual c-photon output mode pair after the Hadamard gates by
a quantum non-demolition approach or in post-selection, and then applying
an appropriate unitary transformation to the ¢ photon.

Also in this case, we can replace the projection and feed-forward scheme
by the action of a third and fourth CNOT gates in which the target and
control roles are reversed, that is, using the ¢t photon as control and ¢; and ¢y
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as targets of the third and fourth CNOT gates, respectively. This is shown
in Fig. [7.Id. After the four CNOTs, one obtains the following state:

ag10)¢,[00), [10); 4 @1]10)c, [00),|01), +

0200, [10),[10); + 3]00).,[10),,|01),

— p|1000)|10); + a1]1000),]01); +

(2)0010)|10); + 3]0010)]01),, (7.12)

where in the second equality we have regrouped the four ¢ modes. Then, an
inverse unfolding step, that is simply discarding the second and fourth mode
of the ¢ photon, which are always empty, will lead to final state |¥); given
in Eq. with 100% probability. In this splitting case, the advantage of
using this alternative scheme is more marked, as it is the only possibility to
avoid post-selection or quantum nondemolition steps.

The CNOT gates utilized in the joining and splitting processes described
in this Section can be implemented using different methods. In particular,
since the photons being processed in each CNOT stage have no additional
information, linear-optics KLM-like schemes based on two-photon interfer-
ence can be used. It is for this reason that our schemes require the unfolding
step and a double CNOT, rather than using a single CNOT for transferring
the qubit from one photon to the other (if nonlinear-optical CNOT gates will
ever be realized, they might possibly allow for a CNOT operation to be per-
formed while another degree of freedom is present and remains unaffected,
thus making the joining/splitting schemes much simpler). The only require-
ment for these CNOT gates is that they must be applicable also to the case
when one of the input qubits is empty, i.e., there is a vacuum state at one
input port. As we show in the next Section, this is a nontrivial requirement.

7.2 Unfeasibility of the quantum joining with
two photons and post-selection

There exist different linear-optical based implementations of CNOT gates.
The simplest are those based on post-selection and not requiring ancillary
photons, such as the scheme first proposed by Ralph et al. [RLBW02] and
Hofmann and Takeuchi [HT02] and later experimentally demonstrated by
O’Brien et al. [OPW™03]. Although such CNOT gates are based on post-
selection and hence require destroying the output photons, there exist also
schemes for applying several CNOT gates in sequence, with only one final
post-selection step [Ral04]. These schemes require only the two photons
to be combined and a final post-selection step based on photon detection.
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Given the CNOT-based general scheme for quantum joining described in the
previous Section, it is then natural to try an implementation exploiting these
schemes.

More generally, one might ask whether a proper mixing of the two photon
modes in a suitable linear-optical setup, followed by a filtering step on one
of the two photons might suffice to obtain the joining onto the remaining
photon. In this Section we prove that this is not possible: In particular,
we show that no possible unitary evolution of the two photons as resulting
from propagation through an arbitrary linear optical system, followed by an
arbitrary projection for one of the two photons can lead to the quantum
joining. This in turn shows that the joining scheme cannot be based on
the CNOT gates of Ralph’s kind and requires at least one ancilla photon.
With one ancilla photon, it is possible to implement for example the CNOT
gates proposed by Pittman [PJEOI] and thus successfully obtain the quantum
joining of two photon states, as demonstrated in [VSAT13]. Of course the
demonstrated implementation is probabilistic, because the CNOT gates are
implemented in a probabilistic way.

We notice that the two-photon input state can be written in full generality
as follows:

W), = o|1010) + a;|1001) + a2[0110) + a5/0101)
= (aoaiaf + arafaf + asajad + asazaf) |0)
(7.13)

where the four coefficients aq, aq, ag, a3 define the input quantum informa-
tion, a;} denote the creation operators for an arbitrary orthonormal set of
input modes [¢);, and |()) denotes the global vacuum state. The mode-indices
1 here can be taken to include also the polarization degree of freedom, and
we have selected four arbitrary modes 1-4 to encode the input information,
with modes 1-2 used for one qubit and modes 3-4 for the other (possibly
entangled with each other).

The propagation through an arbitrary linear-optical system can be de-
scribed by the following transformation of the creation operators:

af — b = Zuijd;_ (7.14)
J

where u;; are the coefficients of a unitary matrix describing the propagation

and the operators 13;“ create the propagated (output) modes |x);. Applying
this transformation to the input state Eq. (7.13]) we obtain the following prop-
agated two-photon state (here we are using the Schrodinger representation,
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in which the evolution acts on the state):
0), = (o bf + aub} b + o} b + agbfb} ) |0) (7.15)

Now, let us act on this state with a projector II corresponding to the detection
of a single photon in the arbitrary mode |¢) = >, ¢n|X)n, as given by the
following;:

T=> b (7.16)
h
Thus, we obtain the following projected one-photon state

V) = M),
= 3 0 (bt + anbi b} + s b + agbih} ) 10) (7.17)
h

= g (93101 + #11x)3) + ar (P1lx)1 + B11X)a)
+ag (P3]X)2 + @51X)3) + as (di]X)2 + dalx)4) -

Hence, due to the bosonic nature of the photons, the final state results to be
a linear combination of the following four “symmetrized” optical modes

Jo = &31x)1+ d1X)3,
luh = @ix)1 + dilx)a,
w2 = ¢3x)2 + d5lx)s, (7.18)
[u)s = @ilx)2 + P3[x)4-

The input quantum information will be preserved if and only if the four
modes |u); form a linearly independent set. This in turn will depend on the
determinant of the following matrix M of coefficients, expressing the linear
dependence of the four |u); modes on the propagated modes |x);:

o3 0 o7 O

| 21 0O 0 @1
M= s | (7.19)

0 ¢y 0 ¢3

A simple calculation shows that the determinant of this matrix is identically
nil, thus proving the statement. If the optical system includes losses from
media absorption, these can be included in the treatment as additional non-
optical excitation modes in which the input optical modes can be transformed
in the course of propagation. In other words, Eq. will include also
the creation operators of material excitations, although the latter will not
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contribute to the |u); and |¢) modes. Thus the proof remains valid even in
lossy optical systems.

As a consequence of our proof, we can state that in general the mixing
of two photons in a linear optical scheme followed by a final post-selection
step can only lead to a loss of some information, e.g., ending up with a
qutrit instead of a ququart. Alternatively, one may somehow preserve the
initial information conditioned on the fact that there is “less information to
start with”, because the input two-photon state is properly constrained, for
example, to a separable state [GW03], BvET06].

Beside this mathematical proof, one might be interested in seeking a
more physical explanation for why the joining scheme using two CNOT in
series following the concept of [Ral04] fails. To this purpose, we carried
out a detailed analysis, of which we report here only the main conclusions.
The problem is that the scheme given in [Ral04] is conceived for executing
multiple CNOT in series, with the assumption that each control or target
port of all the gates is occupied by a photon carrying the corresponding
qubit. In the case of quantum joining, instead, the target ports may see the
presence of “empty” qubits (or vacuum states), which open up new possible
photonic evolution channels in the setup that are not excluded in the final
post-selection step and which are instead absent in the standard case. These
channels alter the final probabilities and disrupt the CNOT proper workings.

7.3 Three-photon entangled states

In this Section, we explore the relationship between the joining process of
two photonic qubits and a particular class of three-photon entangled states
(TPES), in which two photons are separately entangled with a common
“intermediate” photon. This intermediate doubly-entangled photon must
clearly hold two separate qubits, as defined by exploiting four orthogonal op-
tical modes. A schematic diagram of this particular form of entangled cluster
is given in Fig.

An example of such three-photon entangled states can be defined as fol-
lows:

(V)23 = 5 ([H1[V)2 = [V)1|H)2) [H)s @ ([u)rld)s — |d)1u)s) [u)a,  (7.20)

N | —

where photon 1 is the intermediate photon, entangled with photons 2 and 3,
and we introduced |u) and |d), to refer to the “up” and “down” paths of a
dual-rail qubit encoding. It is understood that the three photons are iden-
tified by a further label associated with propagation modes. Other possible
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Figure 7.2: Schematic representation of the TPES state given in Eq.
of the main text. The three red spheres represent the three photons, with
photon 1 separately entangled with photons 2 and 3. Each line correspond
to an entanglement link. In the specific example, the upper (green) line
corresponds to a polarization maximal entanglement in Bell state |®~), while
the lower (yellow) line indicates a spatial-mode maximal entanglement (in a
dual-rail basis) in Bell state |¢~). Other TPES states can be obtained by
changing the specific Bell states used for the two entanglement links.
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pair-wise maximally-entangled TPES are obtained from by exchang-
ing H and V and/or u and d in photon 1, or by changing the — sign into a
+ in one or both the factors, for a total of 16 possible independent combina-
tions. These can be also written more compactly in terms of the Bell basis
of maximally entangled qubit pairs, defined as follows

1

95y = D, = V3V (7.21a)
ooy VDA L

95)5 = Z(HMV), £ V), bl (7.21b)
SR e A NS .
)y = o)y £ k) ) ), (7.210)
1655 = — (Ju)ald) ; & |d)s ;)| H Yo H) . (7.21d)

V2

Using this notation, Eq. can be for example rewritten as [¢))103 =
|®7)12|H)3 @ | )13|u)2, and the other TPES are obtained by replacing one
or both the Bell states with another one. Notice that states and
(7.21b)) are Bell states with respect to the polarization degree of freedom of
the pair, while states and are Bell states with respect to the
spatial-mode (or propagation path) degree of freedom of the pair.

Here and in the following discussion, for the sake of definiteness, we have
adopted a notation referring to the specific case in which the double entan-
glement exploits two separate degrees of freedom, that is the polarization and
a pair of spatial modes. We stress, however, that there is no actual require-
ment of using this specific choice of degrees of freedom for the validity of our
analysis. There is even no need of using two separate degrees of freedom,
as all qubit entanglements could for example also be encoded using a set of
four spatial modes, e.g., four parallel paths, or four eigenmodes of the orbital
angular momentum of light.

The state , or anyone of the other TPES, can be used as a resource
for carrying out a two-in-one qubit teleportation of the quantum state, i.e.,
the teleportation of the four-dimensional quantum state initially encoded in
two input photons in a single output photon. Actually, the problem of prepar-
ing three-photon entangled states such as is essentially equivalent to
that of realizing the quantum joining. Indeed, quantum state joining can be
used to prepare the three-photon entangled state and, conversely, state
can be used to carry out the quantum state joining of two photonic
qubits via teleportation. We prove this in detail in Appendix [E]

Following the same ideas, one may use the state joining protocol to cre-
ate even more complex entanglement clusters of photons, exploiting multiple
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degrees of freedom per photon. In particular, we notice that the TPES intro-
duced above belong to the family of “linked” states first proposed by Yoran
and Reznik in order to perform deterministic quantum computation with lin-
ear optics [YRO3]. Not surprisingly, the optical scheme proposed in [YRO3]
to create such linked states is also very similar to that used for quantum-state
joining (but it did not include explicitly the KLM gate implementations).

7.4 Discussion

In summary, we have revisited the quantum-state joining and splitting pro-
cesses recently introduced in [VSAT13] from a theoretical point of view. After
casting the associated formalism in the more general photon-number nota-
tion, we have introduced some modified schemes that do not require feed-
forward or post-selection. Next, we have provided a formal proof that the
quantum joining of two photon states with linear optics cannot be accom-
plished using only post-selection and requires the use of at least one ancilla
photon, despite the existence of linear-optical implementations of CNOT
gates which do not require ancillary photons. Finally, we have investigated
the relationship between the state-joining scheme and the generation of clus-
ters of three-photon entangled states involving more than one qubit per par-
ticle. This shows that the joining/splitting processes find application for
the generation of complex cluster states of entangled photons, which is of
fundamental interest and might open the way to novel quantum protocols.
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Chapter 8

Conclusions

In this Thesis we analyzed several aspects of the problem of experimental
imperfections, such as noise and losses, occurring in realistic implementa-
tions of different quantum information protocols, both in the DI framework
and in partly-DI scenarios. We showed the general importance of deriving
conditions for having a trustworthy quantum certification of such protocols.
Indeed, since the DI and partly-DI scenarios do not rely on a complete char-
acterization of the involved devices, one has to rule out the interference of
malicious adversaries exploiting the experimental losses in order to authenti-
cate the reliability of the given protocol. In this Chapter we summarize the
main results obtained and discuss open problems and further developments.

Necessary detection efficiencies for secure implementation of QKD
protocols

In recent years, several hacking attacks have broken the security of quantum
cryptography implementations by exploiting the presence of losses and the
ability of the eavesdropper to tune detection efficiencies. In Chapter [3| we
have presented a simple attack of this form that applies to any protocol
in which the key is constructed from the results of untrusted measurements
performed on particles coming from an insecure source or channel. Because of
its generality, this attack applies to a large class of protocols, from standard
prepare-and-measure to DI schemes. Obviously our attack cannot be applied
to protocols in which the key is not constructed from measurement results,
such as in measurement-device-independent schemes [LCQ12, [BP12]. These
protocols, almost by definition, are only sensitive to attacks on the devices
that prepare the quantum states. The generality of our attack also implies
that the implementation of partly DI solutions is, from the point of view of
detection efficiency, almost as demanding as DI ones, which, in turn, offer
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stronger security.

Interestingly, the critical detection efficiency corresponding to our attack
only depends on the number of measurements that Eve wants to learn, but
is independent of the total number of measurements Mg, number of outputs
D, or dimension of the quantum systems used.

We have also presented an improved attack that applies to protocols
with two untrusted detectors. In this attack, the eavesdropper exploits the
detection inefficiencies of one of the parties to improve her attack on the
other party. More generally, it would be interesting to derive a formalism
to study the robustness of concrete protocols to detection attacks, as these
are the most advanced at the moment. This will allow us to understand for
which protocols the detection bounds for security derived in Chapter [3| are
tight. An analysis of the tightness of our attack in the steering scenario has
been presented in Chapter ] showing that the derived bound is tight for
certifying randomness from a single measurement.

Finally, our results imply also the existence of an intriguing and weak form
of certified randomness, that we named bound randomness. In a scenario in
which an eavesdropper is limited only by the no-signalling principle, there
exist non-local correlations for which she can find out a posteriori the results
of any implemented measurements. A final open question is to understand
if this form of randomness exists in the quantum case, that is, when the
eavesdropper is limited by the quantum formalism.

Randomness certification in the steering and prepare-and measure
scenarios

The study of randomness certification in scenarios with intermediate levels
of trust such as the steering and prepare-and-measure scenarios is motivated
by the fundamental question of how much randomness can be kept if we give
up partial information about the description of the devices and systems used
in the protocol. Moreover, from a more practical point of view, the amount
of randomness obtained in the steering scenario gives an upper bound to
what would be obtained in a fully-DI setting, regardless of the number of
measurements performed.

Our main result in this area is a general and optimal method to quantify
the amount of local or global randomness that can be extracted from a single
measurement in two scenarios: (i) the quantum steering scenario, where two
parties measure a bipartite system in an unknown state but one of them does
not trust his measurement apparatus, and (ii) the prepare-and-measure sce-
nario, where additionally the quantum state is known. We used this method
to compute the maximal amount of local and global randomness that can be
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certified by measuring systems subject to noise and losses in those two sce-
narios. Using also the results of Chapter [3| we proved that local randomness
can be certified from a single measurement if and only if the detectors used in
the test have detection efficiency higher than 50%. Furthermore, we showed
that the results obtained for the steering scenario can easily be extended to
the prepare-and-measure scenario. In this case we showed that even noisy
states can perform very well for randomness certification. Finally, we pre-
sented a method to find the best measurements which can certify the most
randomness from any fixed state. Using insight from this method, we showed
analytically that one can certify maximal randomness from all pure partially
entangled states using only two fixed measurements. Since local randomness
certification is of fundamental importance for one-sided-device-independent
and DI quantum key distribution, the results presented in Chapter 4] have a
natural application in cryptographic protocols.

Device-independent dimension witnesses and semi-device-independent
protocols

A DIDW is a tool for bounding the dimension of the Hilbert space of an
unknown classical or quantum system in a DI framework, i.e. adopting as
few assumptions as possible. Furthermore, when the dimension is assumed,
DIDWs can be used to distinguish between the classical and quantum nature
of a source. Thus, they provide a quantum certification for SDI protocols, in
a scenario in which only the dimension of the exchanged system is assumed
while the devices are uncharacterized. In Chapter [5| we have given a char-
acterization of the sets of classical and quantum correlations achievable in
the framework of DIDWs with local and shared randomness, and we have
provided analytical and numerical tools for the optimization of DIDWs in the
realistic case in which the implementation is affected by loss. Using these
tools, we have derived upper and lower bounds for the critical detection effi-
ciency necessary for performing reliable dimension witnessing. The presented
results are of fundamental importance for experimental implementations of
DIDWs and SDI protocols based on DIDWs.

A natural generalization of the problem of DIDWs is that of entangled
assisted DIDWs, namely when entanglement is allowed to be shared between
the preparing device on Alice’s side and the measuring device on Bob’s side.
We compared entangled assisted DIDWs with super-dense coding, finding
that in some communication contexts the former outperform the latter. This
indicates that the problem of entangled assisted DIDWs deserves further
investigation.

Another development of this problem is to study the robustness of DIDWs
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considering models of loss more general than the one considered in Chapter 7]
e.g. one in which a different detection efficiency is associated to each POVM.

Finally, a further generalization of the problem of DIDWs is the case in
which no shared randomness is allowed between the preparations and the
measurements. In this case, the non-convexity of the relevant sets enables
the exploitation of non-linear witnesses which allow to dimension witness for
arbitrarily low values of the detection efficiency [BQB14]. We have addressed
this problem in Chapter [6] investigating the conditions under which one
can perform dimension witnessing for any non-null value of the detection
efficiency with independent devices.

Chapter [0] tackles the problem of DL attacks to SDI quantum and clas-
sical protocols. SDI classical protocols are represented by random access
codes, which provide a general framework for describing one-sided classical
communication tasks. In this context, we have provided general conditions
under which detection inefficiencies can be exploited by a malicious provider
to fake the performance of SDI quantum and classical protocols — and dis-
cussed how to prevent it. Some of the presented results hold in the hypothesis
that the message sent by Alice is 2-dimensional. For the classical case, we
showed through the example of 3 — log6 RAC that this assumption cannot
be relaxed trivially. Thus, it remains an open problem how to devise more
general conditions under which DL attacks are harmless.

Joining and splitting the quantum states of photons

Recently, a photonic process named quantum state joining has been experi-
mentally demonstrated [VSAT13|, which consists in the transfer of the inter-
nal two-dimensional quantum states of two input photons, i.e., two photonic
qubits, into the four-dimensional quantum state of a single photon, i.e., a
photonic ququart. A scheme for the inverse process, namely quantum state
splitting, has also been theoretically proposed. Both processes can be iterated
in a cascaded layout, to obtain the joining and/or splitting of more than two
qubits, thus leading to a general scheme for varying the number of photons
in the system while preserving its total quantum information content.

In Chapter [7] we revisited these processes from a theoretical point of
view. We introduced some modified schemes that are in principle unitary
(not considering the implementation of the CNOT gates) and do not require
projection and feed-forward steps. This can be particularly important in the
quantum state splitting case, to obtain a scheme that does not rely on post-
selection. These schemes for multiplexing the quantum information across
photons, despite having a relatively low success probability, may already find
application in quantum communication or in interfacing with atomic mem-
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ories, when high losses are involved. In this context, a possible advantage
could be in the overall rate of decoherence of the stored quantum information,
which for entangled states will scale with the number of involved registers.
Moreover, we formally proved that it is impossible to transfer all the quan-
tum information encoded in two input photons into one output photon using
linear optics and post-selection, without including ancillary photons in the
process. Therefore, the quantum joining of two photon states with linear
optics requires the use of at least one ancilla photon. This is somewhat un-
expected, given that the demonstrated joining scheme involves the sequential
application of two CNOT quantum gates, for which a linear optical scheme
with just two photons and post-selection is known to exist. Furthermore,
we explored the relationship between the joining scheme and the generation
of clusters of multi-particle entangled states involving more than one qubit
per particle. This shows that the joining/splitting processes can be interest-
ingly applied to the study of fundamental issues in quantum physics, such
as for generating qudit cluster states or for converting the local properties
of a particle into nonlocal ones by splitting them among separable particles.
Finally, we notice that if the recent attempts at achieving gigantic nonlinear
interactions among photons will succeed [SKFP11l, PFL™12|, deterministic
schemes for quantum state joining and splitting should also become possible,
likely making the associated photon multiplexing/demultiplexing an impor-
tant resource for future quantum communication networks.
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Appendix A

Derivation of the SDPs
presented in Chapter

A.1 Obtaining the SDP for the guessing prob-
ability in the steering scenario

In this Appendix we will show how to arrive at the SDP (4.3) for Eve’s
guessing probability.

The most general attack that Eve can implement in the case that she
is interested in guessing the result of a single measurement (x = z*) of
Alice, is to distribute a state papg to Alice and Bob (keeping a part for
herself) on which she will perform a measurement with POVM elements
M., for e = 1,...,da, and distribute to Alice a set of measuring devices
which implement the POVMs with elements M,,, for x = 1,...,ma and
a=1,...,dx. When Eve obtains outcome e from her measurement she will
give this as her guess for the outcome of Alice. Thus, the guessing probability
of Eve is given by

Pyuess(27) = Tr[(My—efor ® M, )pag] (A1)

Alice and Bob can however determine the assemblage agﬁf that they hold, (i.e.

the set of conditional states prepared for Bob, along with the corresponding
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probabilities). Thus the optimization problem we need to solve is given by

max Yo Tr[(Mazejor @ Me)pag]

pABEy{Ma\z}a,zy{Me}e

subject to Trp[(Maz ® 1) pa) = o°P Va,x

alz?
paBe = 0, Trpage =1
My = 0,Va,z Y My, = 1,Vx
M, =0Ye S, M, =1 (A.2)

Here, the first constraint is the consistency with the observed assemblage,
the second constraints demand that pagg is a valid quantum state and the
third and fourth constraints that the measurements M,, and M, are valid
POV Ms.

Defining now the joint assemblage for Alice, Bob and Eve,
Oape = Trap[(Ma ® 1 ® M.) pasgl, (A.3)

it is straightforward to see that all of the constraints appearing in are
satisfied whenever the constraints in (A.2]) are satisfied, and that the objec-
tive functions match. Thus it is straightforward to see that the optimization
problem is at least a relaxation of . What we will show now is
that they are in fact equivalent optimization problems by showing that any
solution to also implies a solution to .

First of all, consider an assemblage g satisfying all of the constraints
in (4.3). For a fixed e, we can define Py(e) = >_, Trog . Note that Pg(e) is
indeed independent of z, since ), Oole =
no-signalling. Moreover, we define 67, = oy, /Pgs(e), which has the following
properties

P
¢ Oglar 18 independent of x, due to

WO = D00ty Vex#ad, Ty Go,=1 Ve (Ad)

which show that for each e, &7, is a valid assemblage [Pusl3]. From the

GHJW theorem [Gis89, [HJW93] it therefore follows that there is a quantum
state pjp and POVM elements M7, such that

TrA[<M§|:c ® ﬂB)pZB] = 6Lez|x (A5>

Now, we finally consider that Eve also sends an additional degree of freedom
which is read by the measuring device of Alice — an auxiliary classical ‘flag’
system, which we label A’. This system has orthogonal states |e), for e =
1,...,da. This will be read by Alice’s measuring device, and, conditioned
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on the flag, the appropriate measurement will be made. We can thus now
construct the complete strategy of Eve

PABE ZPE (e|lar ® g @ le){e|e
a|1‘ Z | |A' ® M
M, =le )( & (A.6)

Clearly this defines a valid state and valid measurements, hence they satisfy
the latter constraints of . Furthermore, by construction it also satisfies
the first consistency constraint, which is straightforwardly verified.

In total, we thus conclude that the two optimization problems are equiva-
lent, since the solution to either one implies a solution to the other, obtaining
the same Pyess(*). We thus focus on the problem (4.3)) which is easier to
solve, being an SDP optimization, linear in the optimization variables Tala-

A.2 Derivation of the Prepare-and-Measure
SDP

In this Appendix we will show that the amount of randomness that can be
certified in the prepare-and-measure scenario when Alice receives her share
of the state through an untrusted channel, and does not trust her measuring
device, is given by the SDP in the main text.

Bob prepares a known bipartite state pag half of which is sent to Alice
through the insecure quantum communication channel. Eve can intercept the
state, and the most general operation she can perform (in the case that she is
guessing only the outcome of a single measurement = = z*) is a measurement
with Kraus operators K., i.e. the POVM elements are M, = KgKe, and the
state prepared by Eve after obtaining outcome e is

= (K. ® 1)pap(Kl® 1)
AR Tr[ K, pa K]

(A7)

which occurs with probability Pg(e) = Tr[M.pa]. Eve will guess that the
outcome of Alice’s measurement is e. Eve now forwards the state onto Alice,
and since she controls completely Alice’s device, she will allow the device
to perform the measurement N§|x when her outcome was e, and when Alice
chooses to make measurement x (that is, Eve sends the classical information
of which outcome she obtained along with the quantum state). Thus, the
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probability for Alice to obtain outcome a, given that she made measurement
x and Eve obtained outcome e is given by

TI[N§|xKepAK;r]
Py(al|z,e) = AN (A.8)

Putting everything together, we see therefore that the guessing probability
is obtained by allowing Eve to optimize over all available strategies, and is
given by

max Pavess(z*) = >, Tr[Ng_,- KepaK]] (A.9)

Ke,N¢

alz

subject to > Tra[(N¢

alz

® 1)(K. ®ﬂ>pAB(Kl®ﬂ)]=a°bs Va,x

alz

> a Noje = Ve, x
N KIK. =1

Nf\ =0 Va,e,z
Currently, this optimization is not in the form of an SDP, due to the nonlinear
nature of the objective function and the constraints. However, it can easily
be written in the form of an SDP by introducing the new variable M oz =
KIN¢ K.. The three final constraints on N¢_and K, imply the following

alz alz
constraints on M€

alz’

Z M Z a\x” \V/C,ZE,%ZE,

Zae e = Ve, (A.10)
M(f'x > O, Va,e, .

However, we can see that whenever we have a set of M alz satisfying the above
constraints, it implies that there exist N ¢ and K, satisfying the original
constraints — i.e. the two sets are equlvalent To see this, we denote first
M, =3, Mg, = 0 (which is independent of z), and therefore we can write
M, = K!K,, for some K., which is always possible for a positive semi-
definite operator. Moreover, since ) . Mg, = = > KIK, = 1, the second
constraint is satisfied. Finally, defining Ny, = (K{)~™' Mg, (K.)™' = 0 (using
the pseudo-inverse when necessary), we also have that

Z = (K)7'M(K) ™ = (K) KK (K)™ =1 (A.11)

Thus, we can re-express the optimization problem (A.9) in the form of the
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following SDP

max Pyuess(") = 32, Tr[M_ - -PA] (A.12)
alz
subject to >° Tra[(Mg, ® L)pas] = o)y Va,x
>0 My, :Z Mg, Ve,x#a
Zae =1 v,
M¢ i 0 Va,e,x

alz

which is exactly the optimization problem given in the main text.

A.3 Deriving the dual of the SDP (4.3

In this Appendix we show the explicit form of the dual of the SDP (4.3]), and
explain why Eq. (4.7) is an equivalent form, which is easier to interpret.
As a reminder, the primal problem is given by

meaX Pguess<x*) = Ze Tr[o-sze\ac*]

g
alz

subject to . oa‘ 02@5 Va,zx
0Ol = 20 Oajar Ve, x # x*
O = 0 Va,x,e. (A.13)

Let us introduce dual variables F,,, G§ and ng with respect to the first,
second and third set of constraints respectively, and form the Lagrangian for
this problem,

ZTT Oq= e|m* + ZTI’ a|a: a|z Zga|z
+ Z Tr[Ge (o5, — oo )] + Z Tr[H, a\:c%\x (A.14)

aex aexr

After re-arranging, and grouping terms, this is equivalent to

Z Tr[Fopu00] (A.15)

—|—ZTI‘ ae x:c*]l a|m+G§ :(:x ZG’+H693 a|x]

aexr

This Lagrangian provides an upper bound on the primal objective as long
as Hj‘x > 0. Moreover, it provides a non-trivial upper bound only when the
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inner bracket in the second line identically vanishes for each value of a, e, x.
Thus, we arrive at the dual problem

B 2 e TrlFapog)y] (A.16)
subject to  0qe0z0+ 1 — Fyjp + G5 — 0 0r Y0 GO + Hj‘x =0 Va,e,x
H¢ =0 Va,e,x

alz

However, H j‘x is playing the role of a slack variable, since it doesn’t appear
in the objective function, so we can finally simplify the dual to arrive at

min > e Tr[Fop00s] (A.17)

Fa|zaG§ a|33
subject to  Fujp — 0q,0z2+1 — G5 + 0500y, G5 = 0 Va,e,x

The dual is easily seen to be strictly feasible, for example by taking G¢ = 0
and I, = al for o > 1. Thus strong duality holds, and the optimal value
of the dual is equal to the optimal value of the primal. In the form (A.17]),
the dual is seen manifestly to be an SDP, as expected. Finally, to understand
the meaning of the constraint, we multiply by an arbitrary valid assemblage
O4je, and take the sum in @ and x and the trace. We find

> Tr[Fuu0as) > Tr[oe,] = Ple]a”) (A.18)

ax

must hold for all e. Since this condition also holds for all valid assemblages,
we see that the second constraint enforces that the value of the inequality
is a uniform upper bound on the probability that any individual outcome
occurs for the measurement z*, independent of the assemblage. Hence, one
sees immediately why this bounds the guessing probability.
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Appendix B

Maximal local randomness
from all pure states

In this Appendix we will show analytically that appropriate measurements
on all partially entangled qudit states necessarily lead to 1 dit of randomness.

Consider first the partially entangled two-qubit state in Schmidt form,
|1h) = cos 0]00)+sin O|11), for 6 € (0, 7/4], and that Alice’s two measurements
are X and Z measurements, that are labelled 0 and 1 respectively. The
assemblage created for Bob is then

1
Oolo — §M9><T9‘,

1
J10 = §|T—0><T—0 |>
oop = cos>0]0)(0],
ol = sin?6]1)(1], (B.1)
where | 19) = cos0]0) + sinf|1). Crucially, each element of the assemblage
is pure, i.e. each element is of the form o4, = P(a|r)l,,, where II,, is

a one-dimensional projector. The purity of Bob’s assemblage substantially
constrains Eve’s possible strategies, such that

Ug\ac = Q<a€|x)Ha|x (BQ)

where each g(ae|z) > 0. This says that Eve must prepare the same pure
state for Bob in each instance, all she can vary is the probability of the two
outcomes (which must still be positive). To be consistent with the observed
assemblage, we must have that

Zq(ae|x) = P(a|z). (B.3)

e
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The guessing probability also now becomes

Pguess(x* = O) = Z Tr[UZ:e\O] = Q(OO‘O) + q(ll’O). (B4>

Now, the no-signalling constraint says that Tai0 = 22aTap for all e.
Specifically, in the case at hand

q(0e|0)Ip0 + q(1e|0)I1yo = q(0e|1)ITo; + g(Le 1)y, (B.5)

which must be true for all matrix elements. While the projectors on the
right-hand-side, corresponding to measurements of Z, are diagonal, the left-
hand-side, corresponding to X, are in general not diagonal. Thus, taking the
trace with |1)(0|, we arrive at the condition

cos fsin 0(q(0e|0) — ¢(1e|0)) = 0. (B.6)

Since cos@sinf # 0 for § € (0,7/4], this implies that ¢(0e|0) = ¢(1e|0).
In particular, this says that ¢(01|0) = ¢(11]0). However, to be consistent
q(00[0) + ¢(01]0) = p(0]0) = 1/2, and thus we arrive at

1/2 = q(00[0) + ¢(01]0) = ¢(00]0) + ¢(11]0) = Pyuess- (B.7)

Thus, analytically it must be the case that Pyuess = 1/2, and hence 1 bit of
randomness is obtained by measuring X and Z on any partially entangled
state of two qubits.

The above also extends to qudits; assuming that the state has Schmidt-
rank d then 1 dit of randomness can always be obtained. Let us now write
the state as

9) = 3 VAl k) (5.5)

where >, A, =1, and A\, > 0. Alice’s first measurement will now be in the
Fourier-transform basis, with eigenstates

i _Ldilwak
o) = 75 2 ) (B.9)

and w = €2™/? the corresponding root of unity. Her second measurement will

be in the Z basis with eigenstates {|a)}. For Alice’s first measurement she
obtains each outcome with equal probability p(a|0) = 1/d, and prepares the
pure states for Bob II,o, given by

Moo = Y VAR k) (1. (B.10)
kl
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For Alice’s second measurement, she obtains outcome a with probability
p(all) = A,, and prepares the state Il,; = |a){(a|. As above, the purity of
Bob’s assemblage means that Eve is again forced to use strategies of the form
0. = qlaelz)lly,. For consistency we still have ), g(aelz) = p(alz), for
the guessing probability Pyuess(z* = 0) = > ¢(ee|0), and from no-signalling
> a q(ae|0)yo = g(ae|1),y. Once again, the right-hand-side is diagonal,
and hence by looking at the off-diagonal matrix elements, i.e. by taking the
trace with |k)(l|, we find that

D~ qlae)0)v/ Mehw ™ =0 (B.11)

a

Since, by assumption of being Schmidt-rank d, none of the Schmidt coeffi-
cients vanish, we therefore must have that

> q(ael0)w P = 0. (B.12)

Considering only the elements with £ =0 (and [ = 1,...,d — 1), along with
the equation ) q(ae|0) = P(e), which says that Eve’s probability to output
e is just the conditional distribution, we notice that this set of equations,
when combined, has the familiar form of a discrete Fourier transform (up to
normalization):

1 1 ... Cfll 1 q(0el0) P(e)

1 w ... W 1e|0 0

: : . : g :| ) - ; (B.13)
1wt L @D’ q(d —1,¢|0) 0

Thus, this equation is readily inverted, and we obtain as solution ¢(ael0) =
P(e)/d for all a,e. In particular, this implies that Eve’s guess is com-
pletely uncorrelated from Alice’s, and her guessing probability is Pyuess =
. q(eel0) = 23 P(e) = 1/d. Thus 1 dit of randomness is obtained from

Alice’s measurement.
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Appendix C

Non-convexity of the set of
classical correlations C

In this Appendix we show an example where the set of classical correlations C
introduced in Section [5.1]in the framework of DIDWs is non-convex (namely
C C ConvC) and C C Q. Take M =3, K =2 N = 2, and d = 2
and consider the following conditional probability distribution of obtaining
outcome j given 7, k

Djlia = ) Dijli2 = (C.1)

O NI =
== O
N =N
= Ol

where the i’s label the rows and the j’s the columns.

First we show that p € ConvC. Indeed p can be obtained when Alice
and Bob share classical correlations represented by a uniformly distributed
random variable X taking values 1, 2 making use of the classical set R = {p; »}
of states and of the set P = {II;,} of classical POVMs Il , = {Hf;jk}, with

p11 =10)(0], p21 =10){0, ps1 = [1)(1],
P12 = |0><0|> P22 = |1><1|7 P32 = |1><1|,
and
I, = [0)(0], T3, = [0){0],
I}, = [0)(0], T3, = [1)(1],

which proves that p = {pjir = >, & Tr[pi,,\Hiﬂ\]} € ConvC.
Now we show that p € Q. Indeed p can be obtained by Alice and Bob
making use of the quantum set R = {p;} of states and of the set P = {II;}
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of quantum POVMs T, = {IT}}, with

pr=10)(0], po=|+)+], ps=]1)(1],

and
I} = [0)(0], II3 = |+)(+],

which proves that p € O.

Finally, we verify that if Alice and Bob make use of classical sets of states
and POVMS and do not have access to shared randomness there is no way to
achieve the probability distribution p given by . Indeed, to have perfect
discrimination between p; and p3 with POVM II; (see ), one must take
p1 and p3 orthogonal - let us say without loss of generality p; = |0)(0| and
ps = |1)(1], and T} = [0)(0] and TI? = |1)(1]. Due to the hypothesis of
classicality of the sets of states, p, must be a convex combination of p;
and p3. Then, in order to have pj2; as in , one has to choose p; =
(p1 + p3)/2 = 1/2. Finally, the only possible choice for I, is II} = 1 and
IT} = 0, which is incompatible with the remaining entries of p;;;» in (C.I).
This proves that p & C.
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Appendix D

Algorithms for numerical
optimization of
device-independent dimension
witnesses

In this Appendix we show the algorithms used for numerical optimization of
DIDWs. In Section we consider linear DIDWs and present the algorithm
used to find, among all the tight classical DIDWs in the simplest non-trivial
scenario, the most robust to loss, which is labeled I;,;. In we prove an
useful Lemma which allows us to simplify the algorithm presented in Section
[D.1] and we use the new algorithm to optimize /4.

D.1 Numerical optimization of DIDWs

Given a linear dimension witness W the following algorithm converges to a
local maximum of W (R, P).

Algorithm 1. For any set R©) = {¢§0)} of pure states and any set P =
(Y of POVMs TIY = {1123,

1. let |1/_1Z-(n+1)> = [(1 —e)l+ed Ci,j,kﬂij(n)} Wz(n)>7

2
2. et T = {[(1 —e)l+ed, ci,j,k¢§”)} \/H?J(n)} :

3. normalize |¢§"+1)) — ||@Z§”+1)||—1/2|&z(n+1)>’
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, 1. 1 .
4. normalize H{f"*” =S, 21‘[%(”“)5]C : with S = Y, Hi;(ml)_

As for all steepest-ascent algorithm, there is no protection against the
possibility of convergence toward a local maximum, rather than the global
one. Hence one should run the algorithm for different initial ensembles in
order to get some confidence that the observed maximum is the global max-
imum (although this can never be guaranteed with certainty). Any initial
set of states and any initial set of POVMs can be used as a starting point,
except for a subset corresponding to minima of W (R, P). These minima are
unstable fix-points of the iteration, so even small perturbations let the itera-
tion converge to some maxima. The parameter ¢ controls the length of each
iterative step, so for € too large, an overshooting can occur. This can be kept
under control by evaluating W (R, P) at the end of each step: if it decreases
instead of increasing, we are warned that we have taken € too large.

Referring to Fig. [5.1] the simplest non-trivial scenario one can consider
is the one with M = 3 preparations and K = 2 POVMs each with N = 3
outcomes, one of which corresponding to no-click event. In this case one has
several tight classical DIDWs. Applying Algorithm [I| we verified that among
them the most robust to loss is given by Eq. with coefficients given by

Eq. .

D.2 Numerical optimization of I,

The following Lemma proves that the POVMs maximizing I;.; for any di-
mension d are such that one of their elements is a projector on a pure state,
thus generalizing a result from [Mas05].

Lemma 2. For any dimension d, the marimum of Iqy1 is achieved by a set
P = {Ily} of POVMs II), = {II;} with I}, a projector with rankIl} = 1 for
any k.

Proof. For any fixed set R = {¢;} of pure states define Ay := —3_,, ¥,
B =y, and X}, := Ay + By. Then clearly A, <0, By > 0 and rank By = 1
for any k. From Eq. it follows immediately that the optimal set P* =
(Tt} of POVMSs II; = {II}’} is such that TI}' = arg ming Tr[XT]. The
optimum of I;; is achieved when II} is the sum of the eigenvectors of Xy
corresponding to positive eigenvalues.

Upon denoting with A;(Ag) > -+ > A\, (Ay) the eigenvalues of Ay, the
Weyl inequality (see for instance [BhaO6]) A\ (Xy) < A1(Ax) + A\n(Byg) holds
for any n. Since A\;(Ax) < 0 and A\, (Bg) = 0 for any k and for any n # 0,
the thesis follows immediately. ]
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Algorithm (1] can be simplified using Lemma [2| The following algorithm
converges to a local maximum of I, ;.

Algorithm 2. For any set R©) = {wzgo)} of pure states and any set P =
{11} of POVMs I} = {11V},

T (n+1 n n n n
1 det [y = 1) + € 0, 4 cagalm ™) ),

_(n+1 n n n n
2. let |7y = |n™) + e 3 cigu (W ) ™),

3. normalize |¢f"+1)> — ||1/j§”+1)||—1/2|1;£n+1)>}

4. mormalize |7T,(€n+1)> = ||7_r,(§n+1)H_1/2|7_T,E:n+1)>.

The same remarks made about Algorithm [I] hold true for Algorithm [2|
Nevertheless, we verified that in practical applications Algorithm |2 always
seems to converge to a global, not a local maximum. This can be explained
considering that without loss of generality it optimizes over a smaller set
of POVMs when compared to Algorithm [I, Moreover, we noticed that the
optimal sets of states and POVMs are real, namely there exists a basis with
respect to which states and POVM elements have all real matrix entries. A
similar observation was done in [FFWT1] in the context of Bell’s inequalities.
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Appendix E

Equivalence of quantum state

joining and the preparation of a
TPES

In this Appendix we show that the problem of preparing a TPES such as
(7.20)):

(V128 = 5 ([H)1[V)2 = [V)1lH)2) [H)s @ ([u)1ld)s — |d)1[u)s) [u)2  (E.1)

N | —

is essentially equivalent to that of realizing the quantum state joining. Pre-
cisely, we show that quantum state joining can be exploited to prepare the
TPES and, conversely, state can be used to carry out the quantum
state joining of two photonic qubits via teleportation.

Indeed, to obtain the three-photon state (E.I), or anyone of the other
TPES, one must simply apply the quantum state joining protocol to two
photons each taken from a separate entangled pair. In particular, one pair
(say, photons 2 and 4) must be entangled in polarization and the other (pho-
tons 3 and 5) in the spatial degree of freedom defined by modes |u) and
|d). Then photons 4 and 5 are state-joined into photon 1, so that their po-
larization and spatial modes properties are both transferred into this single
photon. This leads immediately to state (E.IJ).

Conversely, let us assume that we have initially three photons (labeled 1,
2, 3) in state (E.1)) and that the qubits we want to join are encoded in two
other photons (labeled 4 and 5), as described by the states

(V) = (| H)a + BV )a) @ 1), (E.2)
V)5 = [H)s @ (v|u)s + 0]d)s). (E.3)
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Recasting the overall 5-photon initial state [1))19345 = [t0)193]10)4|t))5 in
terms of the basis (7.21]) for the states of the pairs 2, 4 and 3, 5, one obtains

the following expression:

[Vzsss = 7197)2al6 Nss al )1 — BV (2fu)s — Sle)
— 218 aul as(al H — BIVI) (b + 6ld))
218l Vs (al )y — BV )2) (3 — 1)
— 2180 (0l Y — BV Bl + 1))
— 11970l )ss al )y + BIVI) (ol — d1d))
+ 218 aal a0l s + BV (b + 61d))
— 1187 ) a0 (0 H + BVl — 1 ld))
218l Dan(al )y + BV )2) (3 +7ld)
+ 1216 )55 (BIH) — alV ) (s — 8ldhy)
— 1)l Yss (B — alV )l + 1)
+ )l (B — alV)2) (Bl — 21d))
— 1Ol s (B — alV ) Bl +41d))
— 1)l )ss (B + alV ) (s — 8ldhy)
210 )aal6 Vas (BLE)s + alV ) (s + )
— )l (B + afV)2) (Ol — 21d))

)l s (B + alV)) Gl +7ld)). (B4)

Then, to obtain the state-joining one needs to perform a Bell measurement
in polarization on the photons 2 and 4 and another Bell measurement in the
modes u and d on the photons 3 and 5. Whatever the outcome of the two Bell
measurements, one may carry out an appropriate unitary transformation in
order to cast photon 1 in the desired “joined” state

(V)1 = (alH)1 + BIV)1) @ (Su)r + v]d)r).
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The unitary transformation must be selected according to the result of the
two Bell measurements, out of 16 possible results (and if a different TPES
state is used in the process, it affects only the set of unitary transformations
to be used).

It is interesting to note that, if a method for deterministic complete Bell
state measurement is available, the quantum state joining obtained by this
teleportation method can be also accomplished in a deterministic way. In-
deed, one needs to prepare in advance a TPES using the probabilistic joining
protocol by making as many attempts as needed. Then, one can complete the
joining of the input photons deterministically by using the above described
teleportation protocol.
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