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Abstract

The lattice Boltzmann method (LBM) is a computational fluid dynamics technique
that is rapidly earning popularity due to its inherent properties: it deals with complex
geometries with relative ease, it is computationally easy to implement and it can
be effectively used with massive parallel computing tools. This features make the
lattice Boltzmann method a powerful alternative to be considered in many applications
—porous media, hemodynamics, multiphase flows, etc. However, the method is still not
entirely established in the scientific community due to its relatively late appearance.
In addition, the method is still under the development of new features and is in
constant evolution. One known topic that is still under active research are the boundary

conditions: some of them will be reviewed and analysed in this thesis.

On the other hand, the method also is known to be restrained in several ways.
For example, the method is limited to deal with low Mach numbers (Ma < 0.3). The
method is isothermal, and hence, it is limited only to low temperature variations.
The passive scalar transport model presents also restrictions to high Schmidt/Prandtl
numbers, as the scales of the hydrodynamic and passive scalar transport events can be
of different orders of magnitude, which at some extent can demand unfeasible amounts
of computational resources. While there are other techniques and methods that can
be coupled with the LBM to appease such problems, there is not much information
about the actual limits of the applicability of the LBM passive scalar model for high
Schmidt problems. A good scenario to test the extent of the limitations that arise from
a multi-scale problem can be the development of a growth model fully in LBM and

focused in the thrombosis process.

This thesis starts with an introductory part with an analysis of its fundamental
theory, derivation of its governing equations and shows the link between the method
and the the Navier-Stokes equations in an intelligible and simple way. We also provide
a passive scalar-based transport model that solves the advection-diffusion equation
with the intention to develop a thrombosis event. We end this part by adding the current
state of the art of the thrombosis model, specially focused when the LBM plays a

significant role in it.
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viii

The research of this thesis is composed of two parts. The first one presents
the analysis of the physical impact of using reflecting or non-reflecting boundary
conditions. The test case is a developed flow in a channel with a square obstacle
located in the centre. The performance of each combination of boundary conditions
is assessed by calculating the forces exerted by the fluid on the obstacle surface. The
overall study is presented as a parametric study using different Reynolds numbers
(50 < Re < 150), aspect ratios of the channel (g, %), angles of incidence (0°,15.3°
and 45°), inlet/outlet boundary condition combinations, including Equilibrium, Zou/He
and Characteristic boundary conditions. In addition, we develop an ill-posed algorithm
to set non-reflecting boundary conditions at both inlet and outlet. We conclude this part
of the research by deeply analysing two different characteristic boundary approaches
at the outlet: the Local One Dimensional Inviscid equations, and Thompson.

In the last part of the investigation, we develop a passive scalar-based solute
transport model in LBM for high Schmidt numbers (=~ 23 and ~ 1220). We propose a
simple hemodynamic scenario that consists of a two dimensional confined channel
with a width similar to a human coronary artery diameter (3mm). Only the platelets
are considered as the driven solute and therefore, we add a force term to the transport
equation that governs the platelet concentration to reproduce the margination effect that
they experiment in the blood flow. Finally, we develop a first order reaction boundary
condition which mimics a vessel rupture that triggers the coagulation. The results give
an excellent agreement of numerical platelet reaction rates and the theoretical values
for both Schmidt numbers considered and sets the basis for a full LBM growth model
in such conditions.
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Resumen

El método lattice Boltzmann (LBM) es una técnica de computacion de dindmica de
fluidos (CFD) que esta ganando popularidad rapidamente debido a sus inherentes
propiedades: trata formas geométricas complejas con relativa facilidad, es computa-
cionalmente facil de implementar y se puede usar con herramientas de paralelizacion
de forma eficaz. Estas caracteristicas lo convierten en una potente alternativa para ser
considerado en varias aplicaciones —medios porosos, hemodindmica, fluidos multifési-
cos, etc. No obstante, este método no esta enteramente establecido en la comunidad
cientifica debido a su relativa tardia aparicion. Ademas, el método estd todavia en con-
stante evolucion. Un aspecto que aun es objeto activo de investigacion es el desarrollo

de condiciones de frontera. En esta tesis se revisardn y analizardn algunas de ellas.

Aparte de las propiedades mencionadas, el método también posee importantes
limitaciones. Por ejemplo, es un método disefiado para flujos subsdnicos (Ma <
0.3). Es esencialmente isotérmico, por lo que solo tolera pequefias variaciones de
temperatura. El modelo de transporte basado en un escalar pasivo presenta restricciones
para elevados nimeros de Schmidt y Prandtl debido a la gran diferencia de escalas
en las que se desarrollan los diferentes mecanismos de difusion térmica o material,
con respecto a la de momento. Esta diferencia puede llegar a demandar un esfuerzo
computacional inasumible. Aunque existen diferentes técnicas y métodos que se
acoplan al LBM para mitigar esos problemas, no hay consenso general sobre cudl es
el limite del LBM en problemas de altos nimeros de Schmidt y Prandtl. Un escenario
apropiado para probar las limitaciones de este método es el de un episodio de trombosis

como problema con multiples escalas de tiempo.

Esta memoria consiste en una primera parte de introduccién, seguido de los
fundamentos del método asi como su relacion con las ecuaciones de Navier-Stokes de
forma inteligible y simple. También se afiaden otras implementaciones como el modelo
de transporte basado en un escalar pasivo, el cdlculo de fuerzas sobre superficies de
objetos y del esfuerzo cortante, todas ellas importantes para poder desarrollar un
modelo de trombosis. Finalizamos la parte de la teoria con el actual estado del arte
de los modelos de trombosis, enfocandolo especialmente sobre aquellos en los que el
LBM tiene un papel significativo.
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La parte de investigacién de la tesis esta compuesta de dos partes claramente
diferenciadas. La primera de ellas presenta el andlisis del efecto que se produce al
utilizar condiciones de frontera reflexivas o no-reflexivas. El caso de estudio consiste en
el flujo a través de un obstdculo orientable en la linia central de un canal bidimensional.
Se evalia el rendimiento de las posibles combinaciones de condiciones de frontera
calculando las fuerzas que el flujo ejerce sobre la superficie del obsticulo. El estudio
global se presenta en forma de estudio paramétrico utilizando diferentes nimeros
de Reynolds (50 < Re < 150), relaciones de aspecto del canal (%, %) angulos de
incidencia (0°,15.3° and 45°) y combinaciones de condiciones de frontera, incluyendo
entre ellas las de Equilibrio, Zou/He y las condiciones de frontera caracteristicas.
Adicionalmente, desarrolamos un algoritmo basado en este caso concreto capaz de
establecer una condicion de frontera no-reflexiva tanto en la entrada como en la salida.
Finalizamos esta parte de investigacion con un andlisis mas profundo de dos tipos
de condiciones de frontera caracteristicas: las LODI y la condicién de frontera de
Thompson.

En la dltima parte de la tesis, desarrollamos un modelo de transporte de materia
basado en un escalar pasivo a altos nimeros de Schmidt (= 60 y ~ 1220). Proponemos
con ese modelo un escenario hemodindmico que tiene como caso de estudio un canal
bidimensional con un didmetro similar al de una tipica arteria coronaria humana (3mm).
Considerando las plaquetas como un escalar pasivo, implementamos un término de
fuerza que las desplace lateralmente hacia la pared tal y como pasaria en condiciones
normales en la sangre. Este efecto de agrupamiento en las paredes se denomina
marginacion de las plaquetas. Finalmente, desarrollamos un modelo de reaccién
superficial de primer orden para que tras un evento de rotura de la pared del canal, se
pueda desencadenar la trombosis. Los resultados preliminares de la razén de reaccion
para estos altos nimeros de Schmidt coinciden muy bien con los valores analiticos.
Con estos resultados se abre la posibilidad de generar un modelo integral en LBM
con parte hidrodindmica y parte de transporte y reaccion para realizar simulaciones de

trombosis.
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Cp drag coefficient

Cy instantaneous drag coefficient

Cr lift coefficient

C instantaneous lift coefficient

Cs speed of sound

Cp.eq initial platelet concentration profile
Cpeq(%,R) platelet potential field, depending on space and radius
D solute diffusion coefficient

D, enhanced diffusivity

Dy,  thermal diffusion coefficient

E total kinetic energy

F body force

f density distribution function

Fp drag force

Fr lift force

fr vortex frequency

Fy force vector

g density distribution function for the passive scalar
h characteristic projected length
Jj momentum density

k parameter to keep checkerboard instabilities
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Symbols xxi

ky constant related to the enhanced diffusion model

ky binding kinetic constant

kip, Boltzmann constant of particle thermal diffusion

L characteristic length

Ly mean free path

L./h recirculation length ratio

L, channel diameter

M moment matrix

mj distribution functions in the moment space

M., margination conditioning parameter

N edge length of square obstacle

N nodes that has a nondimensional characteristic length
n constant related to the enhanced diffusivity

N”  mass flux

N number of time steps that has a nondimensional characteristic time
p pressure

0 blood flow

R channel radius

R specific gas constant

R.;  equivalent sphere radius of the particle

S relaxation rate matrix
s element j of the relaxation rate matrix S
Sp sink term for platelets

Sqp  shear rate tensor
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xxii Symbols
Sf surface

T temperature

t time

Sqp  shear rate tensor
Da  Damkholer number
Kn  Knudsen number
Ma  Mach number

Re  Reynolds number
Sc Schmidt number
Sh Sherwood number
St Strouhal number
Greek Symbols

B

@;

constant for the tanh function used in the platelet profile
discrete unitary increment

mass transport boundary layer

reactive surface length

constant for the tanh function used in the platelet profile
Kronecker delta

scalar shear rate

internal energy

diagonal matrix with local eigenvalues

constant for the tanh function used in the platelet profile
ith element from the vector of eigenvalues A

weight coefficient
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Symbols xxiii
U dynamic viscosity

Y kinematic viscosity

0] relaxation rate

(0] hematocrit

IT momentum flux

p macroscopic density

o shear stress

T relaxation time

0 obstacle incidence angle
Q collision matrix

o7 ith row of S

¢ lattice propagation speed

Zf,- set of lattice propagation speeds with i elements
5 drift term for platelet margination

Superscripts

a®?  equilibrium value of a

a” variable a as an input

a*?  non-equilibrium part of variable a

a®  variable a as an output

Subscripts

ac variable a addressed to the passive scalar algorithm for the solute transport
model

ay nondimensional variable of a

ap physical variable of a

ap variable a addressed to platelets
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xXxiv

A LATTICE

Symbols

ag
Ay B
ajp
Amax

Ary

reference/unperturbed value of a
tensor of variable a

variable a in lattice units

peak value of variable a

local value of variable a at the reacting wall

Other Symbols and Operators

ot

ox

IS

a <

da

N

QU

nondimensional lattice time
nondimensional lattice space
alternative nondimensional form of variable a
divergence differential operator
gradient differential operator

velocity gradient differential operator
collision operator

partial derivative of a

derivative of a

post-collision value of a

variable a is an array

specular direction of q;

opposite direction of q;
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Chapter 1
Introduction

The lattice Boltzmann method (LBM) is a non-conventional computational fluid
dynamics (CFD) method, introduced in the literature in the late 80s [47] as alternative
to traditional CFD methods. Traditional CFD methods are based on numerical solution
of Navier-Stokes equations (NS) which are solved using finite difference, finite volume
or finite element methods. The NS equations are partial differential equations that

describe the temporal evolution of fluid flow considering macroscopic variables.

In the context of variables, the term macroscopic variables refers to physical
properties associated with the continuum hypothesis (e.g. pressure, density, viscosity,
etc), while the term microscopic, which can be defined as a framework that cannot be
seen or it is hardly visible to the human eye due to its dimensions. In fluid dynamics,
if the scale is small enough, one can start to observe discontinuities on the previously
smooth, macroscopic variables of the fluid, and thus, the continuum hypothesis ceases
to be acceptable. These discontinuities are particles that are distinguishable at this
framework, and the magnitude of the mean free path of collision for these particles
starts to compete with the characteristic length of the system, which means that the
Knudsen number is now at bigger than 0.1. An example of a microscopic variable
could be a system of particles (atoms, molecules) that are confined in a volume. Each of
these particles will have its own velocity and direction. In addition, these particles can
eventually collide with the solid boundaries of the system of even with other particles,
which alter both velocity and directions of these particles. If we were able to observe
the system at this diminute scale, one would only see a bunch of particles travelling
relatively at a speed of the order of kg7, where kg is the Boltzmann constant and 7 is
the temperature of the medium. If one particle of that system were tracked, it would
show an erratic trajectory, constantly changing its direction due to the impacts with
other particles. Therefore, we can theoretically define the behavior of a fluid system

by gathering both the velocity and the position of each particle and compute their
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2 Introduction

temporal evolution by developing an operator to describe all of the collision events that
will take place. Such operator can be for example, for ideal gases, the Newton’s laws
of motion, or even more complicated models of collision that might include further
degrees of freedom of the particles, such as rotation or vibration. Anyway, it is quite
senseless to attempt such a pretentious calculation in any industrial approach, due to
the titanic computational effort that simulating a very little portion of the fluid would
demand. For example, to predict the behavior of 1 ml of water at room conditions, we

022 molecules.

would have to compute the microscopic variables of more than 3 x 1
Hence, this fact strongly encourages the usage of simulation methods that compute the
fluid as a global and smoother system, using the macroscopic variables.

Both macroscopic and microscopic worlds are connected. Both perspectives give
us the same relevant information, that is the fluid behavior. The difference between
these two approaches are the variables considered, and with them, the level of detail
of the fluid. The macroscopic variables are a statistical estimation of the microscopic
ones. For example, the variable density describes the mass value (where the mass is a
certain amount of particles) over a certain volume. This is, of course, an approximation
due to the fact that, even at rest, the particles of a fluid are always in constant motion,
colliding and travelling around. So it is really easy to see that if one counts the number
of particles over the same volume in two different instants, there exists the possibility
that we will not get the same exact number of particles, and thus there will be density
variations. That is why, in the microscopic scale, we can define a macroscopic variable
as an estimation that can carry statistic noise. The same happens with the linear
momentum of the fluid, which can be considered as an average of the velocity of all the
particles within a certain portion of the fluid. In fact, it is proven that the NS equations
can be derived from other more elemental equations [13] as both scales are linked.

Between the macroscopic and microscopic scales exists a transitional scale, the
mesoscopic scale. At this scale, instead of monitoring each particle or considering
a continuum medium, the framework focuses on groups of particles, or particle
distributions. The main variable used in this case is the distribution function f(¥,V,1),
which denotes the probability of finding a particle at a certain position, velocity, and
time. We will discuss more features of this variable in Sec. 2.1.1. The Boltzmann
equation (BE) is the one that describes the evolution of the particle distribution function
with the time and is the cornerstone of the LBM. As with the microscopic scale, the
Boltzmann equation can be connected to the NS equations (see Sec. 2.1.2), which
means that the BE can be used to model the fluid behavior as if the NS equations were
directly used.

The roots of the LBM come from the lattice gas cellular automata (LGCA), which

is based on a microscopic approach (i.e., it deals with single particles) and in the
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kinetic theory of gases. The core of this method consists in colliding and streaming
each single particle along a set of discrete directions available in the considered lattice
configuration. The simple collision events consider perfectly elastic collisions between
spherical particles. Although this method was able to reproduce the NS equations
with a very efficient code, it adds noticeable statistical noise [64]. This was highly
undesired in fluid-mechanical applications, as simulations do not reach any particular
steady state.

Unlike its predecessor, the LBM could overcome the LGCA issues, keeping a
similar approach as the former model. Instead of considering particles as single entities
on each node, it considers distributions of particles. Thus, we talk about probabilities
of finding a certain number of particles in a particular state. This is the main feature
that converts the LBM into a mesoscopic instead of a microscopic method. The LBM
still uses the core of the method i.e. the streaming and the collision of particles at each
time step and each node. However, the difference between the LGCA method relies
on the fact that particles are statistically treated with a probability according to their
state in the control volume. By discretizing the BE and applying a correct collision
operator we can develop a model able to simulate the fluid behaviour by means of the
lattice Boltzmann equation (LBE).

Certainly, we have a tool at our disposal that can simulate fluids, but, why and
when is it worth to use the LBM in detriment of other former CFD methods? The
answer to this question obviously relies on the nature of the system to be simulated.
Nonetheless, the LBM outperforms other CFD methods:

* It is computationally efficient: it is an explicit method (first order in time), and

its core only deals with linear operations.

* Itis versatile: it is easy to be implemented for different applications, such as
porous media, multiphase, multicomponent flows. It is normally used with uni-
form square lattices, which is excellent for computational memory efficiency and

it facilitates the development of algorithms for complex or moving geometries.

e It is suitable for parallel computing: its local computational implementation
perfectly matches with the parallel computational processing tools (OpenMP®
or Graphic Processing Units [GPU]), which can highly extend its applicability

to more demanding and complex systems.

Despite these many advantages, the method is not flawless. For example, it is
limited to work in the subsonic range (Ma < 0.3)*. Additionally, the method is isother-

“this affirmation is only relative to a simple and most popular LBE approximation. With higher
order schemes of the LBM, it is nowadays possible to reach velocities up to Ma = 2, e.g.,[73].
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Introduction

mal in nature, and therefore, it is only possible to couple thermal and hydrodynamic

models with a very limited range of temperature variations (keeping the speed of sound

constant) [28]. A common technique is to couple both models adding an additional dis-

tribution function that models a passive scalar which is advected by the flow velocity,

recovering the heat (or mass) transport equation.

Thesis goals

Two are the main goals in this thesis which are briefly summarised,

i)

1)

to advance in the knowledge and implementation of LBM boundary conditions.
This constitutes a relevant problem on its own, as boundary conditions are
naturally imposed in CFD simulations on the hydrodynamic fields, density,
velocity, temperature, instead of the particle distribution functions, which are
the simulated variables in the LBM. The streaming-collision events at the core
of the method make the fluid slightly compressible, this is why even in the
low sub-sonic regime, boundary reflections can introduce spurious effects in
the flow velocity and the forces experienced by objects immersed in the fluid.
Different types of boundary conditions and their combination have been used
traditionally with this method, and understanding the effects produced following
their implementation is of primary importance.

to carry out research in the applied field of hemodynamics, paying special
attention to the modelling of platelet behaviour. On one side, we propose a novel
LBM approach to model platelet margination, which is the near-wall migration
of platelets in arteries. The proposed model is based on the phenomenological
model provided by Eckstein and Belgacem [19]. On the other side, the thesis
collects a set of tools that are relevant to develop a growth model for platelets in
the LBM. This includes a validated surface reaction in similar conditions than
in a human coronary artery or a computational region algorithm to transform
reacted platelets into a solid thrombus.

Thesis structure

The thesis is arranged in the following chapters:

Chapter 2 is devoted to giving further details of the LBM. We provide an intro-

ductory part where we analyse the LBM and derive its fundamental equations.
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We also facilitate the information about the link between the LBM equations
and the classical Navier-Stokes equations. Additionally, this chapter offers a
brief state of the art of the LBM research related to biological flows, specifically

with the thrombosis phenomenon and the role of platelets in this process.

Chapter 3 reports all the different LBM boundary conditions used in this work.
This dedicated chapter introduces, classifies and properly analyses each of the

different algorithms used to model the boundary conditions used in this thesis.

Chapter 4 reports a comparison of reflective vs. non-reflective boundary condi-
tions and their performance. It contains the results of a parametric study on the
lift and drag forces experienced by an object immersed in the flow, and analyses
the efficiency of different sets of inlet/outlet boundary conditions upon different

Reynolds numbers, domain dimensions and angle of incidence of the obstacle.

Chapter 5 reports the results obtained for a transport and reaction model based on
the passive scalar technique. The simulation domain is a closed channel having
the dimensions of a hypothetical coronary artery. The results are validated
and discussed and a possible. The chapter ends with the most remarkable
conclusions, a description of the following steps to improve the tools and to
develop the growth model, and a possible future working environment for the

complete model.

Chapter 6 resumes all the remarks obtained during the previous chapters and

also gives a brief conclusion to the thesis.
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Chapter 2

Fundamental Theory

2.1 Theory of the Lattice Boltzmann Method

The kinetic gas theory describes the behavior of a gas by considering it as a system
of particles. Such particles are atoms and molecules that, even at macroscopic rest
(equilibrium state), collide with each other at velocities that can surpass the speed of
sound. It is easy to imagine that it is not possible nowadays to theoretically apply this
kinetic theory at the macroscopic level, as one must deal with a frame of more than
10?2 particles. Specifically, to implement such theorem in the tangible reality, one
would have to consider the position X, velocity vV in space and the internal energy for
each particle.

Instead of this detailed microscopic approach, the following section describes the
behavior of particles with a simpler approach. We will consider clusters of monoatomic
particles (no inner energy associated and typical from ideal gases), which will behave
as a macroscopic system. Nonetheless, each of the quantifiable macroscopic variables
(density, velocity) is bounded to the momentum and the density of the particles that
the cluster gathers. Summarizing, all of the macroscopic variables will be dependent
on an elemental variable, and with it, the approach shifts from a microscopic to a

mesoscopic point of view.

2.1.1 Density Distribution Function

The density distribution function f(¥,V,t) (we will often use f instead of the longer
notation of f(X,V,t)) is a variable that describes the mass density of particles in a given
control volume at a certain spot X, differential particle velocity range [V,V+ dV] and
time ¢. This variable is observable in the called phase—space. By applying the moments

on the density distribution function one can recover the macroscopic variables. A
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8 Fundamental Theory

moment is basically a velocity integral of f weighted over every possible particle
velocity. This step is obviously crucial to reach a reasonable understanding of the
system evolution. The used moments, which are able to recover the macroscopic
properties can be used in different orders to gather different macroscopic variables.

The zeroth order moment is

plr) = [ &7, @

where the distribution function is integrated over all possible velocities and weighted
with 7, which finally gives the macroscopic density p. Thus, the integration limits

will be from O to infinite, but for simplicity we are not going to specify them.

When the distribution function is integrated with v as weight gives the momentum,

pi(i,r) = [ Ff(%,7.00d7, 2.2)
where i is the macroscopic velocity of the control volume.

-2
If instead, f is weighted with %, the result gives the total kinetic energy E,

)
pn) = [ wnay 23)

which accounts for the purely translational motion of the fluid (% |t |2) plus the internal
energy € due to the thermal vibration of the particles which is independent of the bulk
velocity,

I
pE =p (8+§|ﬁ!2), 2.4)

The internal energy can be derived from the fluctuational part of the velocity, defined

as the thermal particle velocity,

¢=v—1i. 2.5
The first order moment of f weighted with ¢ is
/Ede:/Vfdﬁ—u/fdﬁzpu—pu:O. (2.6)

From Egq. 2.6, one can mathematically infer that the thermal molecular speed does
not contribute to the momentum. Therefore, the distribution of the thermal molecular

speed is essentially symmetrical.

The second order moment gives the momentum flux tensor,

puqup +p5aB —Oqp = /vavﬁfd\_/': Ha[% 2.7



UNIVERSITAT ROVIRA I VIRGILI
REVIEW OF BOUNDARY CONDITIONS AND INVESTIGATION TOWARDS THE DEVELOPMENT OF A GROWTH MODEL: A LATTICE
BOLTZMANN METHOD APPROACH

Albert Puig Aranega

2.1 Theory of the Lattice Boltzmann Method 9

and the second order central moment relative to the bulk velocity i, which corresponds

to the stress tensor is

paaﬁ —Opp = /(V(x — ua)(vl; — MB)fd\_;, (2.8)

where 0, is the shear stress tensor, and p&g is the normal stress tensor.

2.1.2 The Boltzmann Equation

Ludwig Boltzmann stated that, in a moving reference system, the rate change of the
density distribution function is determined by
o wvr+Evr—ay). 2.9)
Jt P
The Boltzmann equation (BE) (Eq. 2.9) statistically considers the behavior of a ther-
modynamic system that generally is not in its equilibrium state. Such system is defined
by the aforementioned density distribution function f(X,V,¢) in a phase space that
takes into account the position X and its velocity V. A principal statement consists
in considering three density distribution terms in a moving reference system that
modifies f. An external force term, diffusive term and the particle-particle collision
term. The first term in Eq. 2.9 is the change rate of f in a time step. The second
term is the advection of the particles, the third term of Eq. 2.9 is the external force F
which depends directly on the mass density p. On the right hand side of Eq. 2.9 we
have Q(f) representing the collision term. The only contribution that can change the
direction of the velocities for f is the collision term. When the control volume is in
an equilibrium state, the collision operator becomes zero. We will further discuss this
latter assumption in Secs. 2.1.3 and 2.1.4.
We now analyse the nature and applicability of the BE. The zeroth order of Eq. 2.9

must recover the mass conservation equation,

%/mmvjﬁmngﬁﬁw:/mﬂw (2.10)

since the integral | V;fdv = 0, and the collision operator is invariant (see Eq. 2.24
below), by combining Egs. 2.1 and 2.2 the zeroth order of Eq. 2.10 is the continuity

equation,
%/ﬂﬂV/Wﬂz/MﬁW:

ap o

E + V(pu) =0.

(2.11)
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10 Fundamental Theory

Now using the same procedure as in Eq. 2.10 for the first order moment of the BE, one
has

0 F
E/Vfd17+V~/vav5fd17+E'/vavvﬁfdﬁz/VQ(f)dV, 2.12)

where the integral [ve V), fdV = — [ g%g fdvV = —pdyp, O4p being the Kronecker
delta.
The equation that results from combining Eq. 2.2, Eq. 2.7 and Eq. 2.12 leads to

%jtv-naﬁ—ﬁzo. (2.13)

This latter formulation can be expressed as the Cauchy momentum equation

dp¥ B}
V- iy =~V V- Oy + F. (2.14)

2.1.3 Equilibrium Distribution Function

The equilibrium distribution function, namely (7, is an important element that con-
tributes on the relaxation of the distribution function in the LBM. In a system of
particles in local equilibrium state, that it has been unperturbed for a reasonable long
time, there is no significant redistribution of density and momentum, which means that
the density distribution remains unchanged over time. In other words, the collision
operator Q( f) should be zero. The mathematical expression without external forces
Eq. 2.9 becomes

aJf -

E—f—v-Vf:Q(f):O, (2.15)
A given particle system in equilibrium has a velocity distribution that is statistically
predictable. In a two dimensional ideal gas, the distribution function in equilibrium

responds to the Maxwell-Boltzmann distribution

S =2
F449(p, i) = exp(—“"”)

(27RT) 2RT
P

V-V =2Vl 4 u-id
eXpl| — 2RT .

(2.16)

~ (27RT)
From here, we will eventually shorten the f°/(p,v,u) into f“¢. Moreover, under
the assumption that f“¢ is a normal distribution, the speed of sound ¢y = v/RT is
the standard deviation. We are assuming an ideal gas and the fact that the LBM is

fundamentally isothermal, so that the speed of sound will be kept constant, as 7 is
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constant. Eq. 2.16 is left as

VeV =2Vl U U
£l = (2562)exp (— ) . 2.17)

N

The exponential term of the f“¢ in Eq. 2.17 can be approximated with polynomials by
applying an expansion of the velocity up to the second order, reaching the following

expression

- — = N2 - —
VRES P -9/, <1 L, (v- ) +M) ) (2.18)

Note that this approximation is only valid for low Mach numbers (Ma = u/c; < 0.3)
and therefore the system will only accept weak compressions.

Then, by means of a Gauss-Hermite quadrature, the velocity space can be converted

from a continuum into a discrete set of velocities with number i (details on the Gauss-

1

Hermite quadrature [32]). The term ﬁe 2 is linearized to the weight variable @,
- — = 2 - —

(i) = pay 1+ L Wi HiEy 2.19

fl (p7u) P 4 +C? _'_ 20? +2C? ( )

From Eq. 2.19 one can note that the variable f°/(p,i,V) has been converted into
4 (p,ii). We will later discuss the discretized Boltzmann equation in time and in
space in Sec. 2.1.5. For the purpose of this section, we will continue with the continuum
form of f and f*9.

Now we show the raw normal moments and the central moments of f“4. The

zeroth and first order raw moments are equal to Eq.2.1 and Eq.2.2,

p= / F4(p, i, V)dv, (2.202)

pii = / FF4(p, i, 7)d¥ (2.20b)

The first central moment of ¢ is also the same as Eq. 2.6

/ & feddy = / edv —ii / f64dv = pii — pii = 0. (2.21)

The second order central moment is developed as [65]

/cacﬁf“’dﬁ: POug; (2.22)
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12 Fundamental Theory

this latter derivation is important as it clearly states that, under equilibrium conditions,
the second order moment will only perceive the contribution of normal forces. This can
be clarified by checking Eq. 2.8, where the stress tensor does contain both normal and
shear contributions. It is also intuitive to think that if the given distribution functions at
a given node are at equilibrium, it means that they are fully relaxed —they only exert
pressure.

On the other hand, the energy moment (weighted with @) is calculated combining
Eq. 2.4 and Eq. 2.3,

1 1
5 [1ePreadi =3 [ (v=w(v—u)rav
1 1
:E/M%Ww+§wﬁ/ﬁmwm/www

1
=pE+plul* —plul®

(2.23)

Which relates the thermal particle velocity and the temperature with the internal energy

of the control volume, that is directly related to the temperature.

2.1.4 Collision Operator

The collision term specified in Eq. 2.9 is a rather complex integral that describes the
rate of change of the particle distribution function produced by collisions. The result
of this integral is discussed by Chapman and Cowling [12].

We skip the derivation process of the collision integral and focus on the results.

The integral of the collision operator has some conservation properties. Q( f) satisfies:

Mass conservation / Q(f)dv=0 (2.24a)
Momentum conservation / vQ(f)dv =0 (2.24b)
Energy conservation / PQ(f)dv =0 (2.24¢)

Additionally, the collision term must approach the density distribution function to-
wards its equilibrium state. In the LBM, the collision operator is greatly simplified
for practical and computational reasons. The two analysed forms of Q(f) are the
Bhatnagar—Gross—Krook and the Multiple Relaxation Time approaches (MRT). Unlike

the original collision operator, both models are able to thermalize the mesoscopic par-
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ticles in a control volume towards equilibrium without considering each two-particle
collision in detail.

The generalized equation with the matrix collision operator [34] is,
SiE+7i81,0 4 81) — fi(%,1) = = Y Qi;(f;(%,1) = [ (%.1)). (2.25)
J

Note that this equation is already discretized and the particle propagation speed
has become the discretized lattice propagation speed. In Sec. 2.1.5 we analyse the

discretized lattice Boltzmann equation with this formulation as the final result.

BGK model

The Bhatnagar—Gross—Krook model, popularly named as BGK, is linear approximation
of the collision operator from Eq. 2.25. The collision operator is given in Eq. 2.26,

Qf) = —0(f — fug) = —i(f—feq), (2.26)

where @ is the relaxation rate and /5 is the mean free path. It can be inferred that
this collision operator will satisfy the conservation of mass, momentum and energy
stated in Eq. 2.24 since the analysed moments of f“¢ are the same as f for the same
macroscopic variables. It is also intuitive to see that if there are no changes on
temperature, this characteristic frequency towards the thermalization of f will be linear
in this model. However, in LBM, the dimensionless relaxation rate is not derived
from this theorem. Instead, @ is determined from the viscous properties of the fluid
(see Sec. 2.1.5). Additionally, the distance between the groups of particles is also
determined by the lattice spacing, and not by their mean free path.

Multiple Relaxation Time model

The Multiple Relaxation Time model (MRT) is a generalized collision operator that
takes the form of a matrix in the evolution equation of the LBM (see Eq. 2.25). It
further decomposes the f; of the phase space into a q-dimensional space, called the
moment space. The collision matrix €2 from Eq. 2.25 becomes the q x q matrix,
where q is the number of velocities of the set (more details of the velocity sets in
Sec. 2.1.6). This matrix considers the hydrodynamic moments, (typically the density,
the momentum density and several second order tensors), but also considers some
non-hydrodynamic moments. Such moments appear for example in the D2Q9 model
because there are more possible velocities than possible hydrodynamic moments.

Therefore some non-hydrodynamic moments are invoked to fill in the relaxation time
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matrix and there is no general well-posed condition to specify them. Nevertheless, it is
usual to set the non-hydrodynamic relaxation times close to one, but there are other
techniques that allow to set the optimal values for these moments [8, 42]. Despite
the fact that this approach differs from the kinetic gas theory basis, it provides better
stability and accuracy than the LBGK method in most cases [16, 42].

For simplicity, we provide the already discretized MRT-D2Q9 general evolution
equation

[iGE+Et 4+ Ar) — fi(%,0) = MM LS (m (R, 1) — S (7,1))];, (2.27)

where the subscripts j and i refer to the index of the moment and the discrete velocity,
respectively.

m; and m?q are the transformed distribution functions and equilibrium distribution
functions into the moment space, respectively.

m;(%,t) = M- fj m! (X,1) = M- £ (2.28)

and the moment matrix M is defined as

I 1 1 1 11 1 1 1
-4 -1 -1 -1 -1 2 2 2 2
4 -2 =2 -2 =21 1 1 1
o 1 o0-1 01 -1 -1 1
M = o -2 o0 2 01 -1 -1 11, (2.29)
0 0 1 0 —-11 I -1 -1
O o0 -2 0 21 I -1 —1
o 1 -1 1-10 0 O0 O
o 0 0 o0 o001 -1 1 -1

where M is the orthonormalized moment-based matrix (using the Gram-Schmidt

procedure), which comes from a linear combination of the following moment set [42]

/
(Mo,Mx,My,sz,Mxy,Myz,szy,Mxyz,Mx2y2> . (2.30)
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The distribution function at equilibrium in the moment space m is
mgl =p
mi? = —=2p+(j2+j3)
my' =p —3(jz+Jj})
my!
3 = Jx
miq = —Jx , (2.31)
me! =
5 = Jy
mg' = —Jjy
m3t = ji = J
meg" = Jx: Jy

where j is the local momentum density j = #p. Note that 2.31 refers to the incompress-
ible MRT model. The MRT scheme starts with the diagonalization of the collision
matrix

Q=M'sm (2.32)

where M is used to project the density distribution functions onto the moment space.
Then, we apply the relaxation to all the moments. The conversion of f into the moment
space is performed using Eq. 2.28. The following equation describes the collision
which is done in the moment space
r ] ] eq

mi =m +s;(mf —m"). (2.33)
Finally, the m®"s are converted back to the f space, and the collision process is
completed.
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The relaxation time 7 is consists of a diagonal matrix S = diag(s;) with dimensions
g X q. The generalized relaxation rates are [61] are

so=1.0 (2.34a)
1
I TG (2.34b)
Sy =581 (234C)
s3=1.0 (2.34d)
s4=1.2 (2.34e)
s5=1.0 (2.341)
S =S4 (234g)
1

7=~ (2.34h)
— (2.34i)

(2.34))

where sq, 53 and s5 are arbitrarily set to 1, because they will not have significance on the
simulation due to the fact that they refer to the conservation of mass and momentum,
and the values of these equilibrium moments are always the same (m;q = m;j). The
coefficient u’ is the bulk viscosity, and both s; and s, can alternatively be fixed to
other values (close to 1) as we assume an incompressible LBM model. s4 and s¢
are chosen from values used by other authors (e.g. [37, 44, 45, 59]). Alternatively,
d’Humieres [18] proposed the magic relaxation rates’ for the s4 and sg in order to

damp slip velocity errors at the boundaries.

Finally, we see that s7 and sg are relaxation rates related with the viscosity of the
fluid.

As a particular case, the BGK collision model can be recovered from the MRT

model by setting all the S diagonal elements to the single relaxation rate 7!

1
S—-I, (2.35)
T

where I is the q X q identity matrix.
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2.1.5 Discretized Lattice Boltzmann Equation

The first step to discretize the Boltzmann equation is to work in the dimensionless

units. We consider the Boltzmann Equation without the force term

d
a—];—i—ﬁ-Vf:Q(f), (2.36)
By adding the BGK model in Eq. 2.26 we obtain
0 . c
_f+V'Vf:__0(f_feq)a (2.37)
ot lf

where we can associate the particle collision rate as the ratio of the mean thermal
particle speed co with the mean free path [;. A characteristic length L is added with
the mean thermal particle speed cg and p as a set of variables to nondimensionalize
Eq. 2.37, which results in the following expression

af 2 A 1 7~ req
of +_§"7f‘_‘__izﬁ(fm_'f‘ )7 (2-38)
where
¢ 2 (2.39a)
X L, .
poc0 (2.39b)
=5 _
ly
E=" (2.39d)
(&)
.3
F p‘;o , (2.39%)

A
=

The nondimensional phase space and time variables (£, ,7) are converted into the
lattice values, which conveniently change the propagation speed into the lattice propa-
gation speed &, the magnitude of which is unity in a uniform grid. This procedure is

further developed in Sec. 2.1.7.

Then again, (as in Sec. 2.1.3 and Sec. 2.1.4), we discretize f and E into arrays

of i velocity directions. Then a first order finite differences and a forward time step
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approximation [61] is applied at Eq. 2.38, resulting in

[EE+A)— [i(®1) 2 FREACE AL — F(F 1+ A
+ & =
At ZXtéi

= —o(fi(¥,1) = f;*).
(2.40)
This formula can be further elaborated knowing that the magnitude of the propagation
speed is the rate of the propagation of f over a unit of lattice spacing at each unit of
time spacing (§ = £¥).
Moreover, with the assumption of an isothermal ideal gas (p = pc? and y=1),
Eq. 2.40 becomes

[i@HAE 1+ A1) — [i(7 1)+ = ——(fi®1) — £, (2.41)

At
T
where f;? is taken from Eq. 2.19 and 7 is the lattice relaxation time. From Eq. 2.41
the core of the LBM algorithm is foreshadowed: the left hand side describes the
propagation of the distribution function according the discretized directions in a time
step, and the right hand side describes the change of the distribution function, that
tends towards equilibrium with a relaxation time 7.

By performing a Chapman-Enskog expansion of Eq. 2.41 with a perturbation of
the order of the Knudsen number Kn, the Navier-Stokes equations can be recovered
with a kinematic viscosity related to the relaxation time [13]

v = (r — 1) 2. (2.42)

where V is the kinematic viscosity of the fluid.

2.1.6 Velocity Sets

We now seek to define the lattice configuration in order to transform the LBE into the
LBM. From Eq. 2.41 we take into account that the continuous velocity is discretized
and coupled with grid and time. The velocity discretization models are called Finite
Discrete Velocity Models (FDVM). The most used notation to sort the different
FDVMs is D<x>Q<y>, where “x” is the number of dimensions and “y” is the number
of possible directions of the grid. Commonly, these models also include a null velocity
component which is normally indexed as the Oth direction.

In a uniform grid, all the lattice spaces must be equidistant and additionally, a
grid must fulfill symmetry in order to satisfactorily recover from the moments the
macroscopic equations. In a discretized formalism, this is done by means of weighted

summations with the weighting factor ®;.
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& S
Fig. 2.1 D2Q9 model.

The D2Q9 model is the preferred FDVM in this thesis to solve the hydrodynamics
of the flow. As its name indicates, it considers 9 possible velocity directions in a
two dimensional space. This set sorts the velocity magnitudes into three possible
levels, which are the null, orthogonal, and diagonal velocity magnitudes. From these
three velocity magnitudes along with the speed of sound c;, we can build a set of
4 equations with 4 variables [29]. Hence, the set of variables which fulfills the
system of equations is shown at table 2.1. Solving the system of equations results in

Table 2.1 Set of D2Q9 velocities with its corresponding weight coefficients

i &i o;

0 (0,00 4/9
1 (1,0) 1/9
2 (0,1) 1/9
3 (1,00 1/9
4 (0,-1) 1/9
5 (1,1) 1/36
6 (-1,1) 1/36
7 (-1,-1) 1/36
8 (1,-1) 1/36

Wy = 4/9,0)1,4 = 1/9,605_8 = 1/36,Cs = Co/\/g.
We can further express the particle directions from Table 2.1 with aid of the vectors
expressed in Eq. 2.43,

B (0,0) for i=0
Ei=1q (cos([5(i—1)]),sin([F(i—1)]))-c for iel—4 (243)
(cos([F(2i=9)]),sin([F(2i=9)])) - V2 for i€5-9,

A sketch of how the velocities are distributed for the D2Q9 model is shown at Fig. 2.1.

Knowing the speed of sound, the thermal propagation velocity can be derived,
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¢, = VRT = \C—% s ¢o=/3RT. (2.44)

The pressure in the LBM for an ideal, incompressible gas is

P

p=pRT =pct= 3 (2.45)

Eq. 2.44 is added to Eq. 2.19, resulting in the used f*¢ for the LBGK method with the
D2Q9 velocity set.

—

E..i1)2 i
2(51 i) 3u ”) : (2.46)

4 _ 5w 1+3§i-ﬁ+ i
Ji P l< c(z) 2 cé 20(2)

Where # and p can be recovered with the sum expressed by the appropriate moments,

p(E,1) =Y fi(%,0) (2.47)

(2.48)

2.1.7 Dimensional analysis

As we know, the LBM formalism is not built upon direct physical variables. Instead it
uses the so-called ’lattice units’ that come from a transformation of the nondimensional
quantities. The lattice framework is constrained by the assumption of incompressibility,
which states that the Mach number must be kept under 0.3, and moreover, we already
know that the speed of sound in the LBM is constant to ¢/ V/3. In order to understand
the process of conversion of the physical variables to these ’lattice’ variables, we
follow and briefly explain the work proposed by Litt [43].

First of all one must take into account three possible systems. The physical system,
which is normally the relevant system in real applications as it expresses all the desired
magnitudes of the variables in physical units (e.g. SI units). The nondimensional
system, which is very useful in numeric simulations as it the most used system to
validate the results in a dimensionless form with the respective benchmarks. Such
system is also useful as an abstraction tool, because this system has a higher degree
of freedom due to the characteristic variable connection between the two systems. In
other words, a physical system is normally a closed one with defined magnitudes of the
desired variables, however, the dimensionless system has infinite plausible possibilities,
as the characteristic variables can be varied. It is also important to mention that the

nondimensional numbers (e.g. Reynolds number) describe certain aspects of a system
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as a whole, such as the degree of turbulence in the case of the Reynolds, and these
aspects can be achieved with multiple combinations of their conforming variables.
Finally, the discrete system is the one used to calculate the outcome and to set the
input parameters of the simulations, which in our thesis, it is done with the LBM. It
is important to emphasize that the nondimensional numbers are the ones that act as
bridge between systems, and they must be equal when changing from a system to
another. In other words the Reynolds taken from the physical units must be the same
as with the Reynolds of the lattice units or the Reynolds with the nondimensional
system. As an example, we will explain the process to move from a physical system to
a system with lattice units.

First of all, one needs to know that we use a set of characteristic variables to move
from the physical system to the nondimensional system. We choose a characteristic
velocity ug , and a characteristic length Ly ;. Our first step is to recover the variables
in the Navier-Stokes equations in the nondimensional form. Let us first take a look at
the incompressible Navier-Stokes equation without force term in physical units

d 1 2
yup%-(up-vp)up =——V,pp+VV,up,, (2.49)
p Po,p
where the subscript 0’ means a reference value, the subscript ’p’ means physical unit.

The pressure p can be recovered from 2.45.

We first connect the physical units with their nondimensional values using the

aforementioned characteristic variables.

u07PL0,P L07p
Re, = ———= lop=—- Ly = LqLo p Up = Uquo,p Pp = PaPo,p;
VP l/[()’p
(2.50)
We can infer
If L u ug gL
10ad = O Log = ~0p upq = 20p Re,; = 204704 (2.51)
lo,p Lo,p uo,p Va

From this derivation, we can directly associate the nondimensional viscosity v, with

Re, as we can infer from Eq. 2.51 that the nondimensional reference values are always

1

unity in the defined system and therefore v; = ..

The discretization of the nondimensional variables is performed firstly defining dx

and &¢, which refer to the nondimensional lattice space and time, respectively.

Si— L sx= L (2.52)
N; N
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where N and N; are the number of nodes that conform the nondimensional characteristic
length and the number of time steps needed to reach the nondimensional reference
time. The choice of these parameters is bound to provide a sufficient resolution able to
dissipate the weak-compressions that the LBM needs to do to calculate the density and
momentum. A known constraint of these parameters is 8¢ ~ 8x>. This constraint is
applied in order to keep the compressibility errors (velocity close to Ma) in the same
order as the lattice errors (grid resolution) in a hypothetical refining/coarsening of the
grid.

We can transform all relevant nondimensional variables into lattice units using this

combination of these stated parameters and basic dimensional manipulation.

ox 5x°
g = tlb6t L, = le(Sx Uug g = ulbg Vg = VZbE (2.53)

and knowing that the reference nondimensional velocity is unity (Eq. 2.51, we can
state 5
t
up = <. (2.54)
ox

where the subscript '1b’ refers to lattice units.

The parameters Ax and At in Sec. 2.1.5 are the lattice spacing units. In other words,
one can define them as the transformation of the dimensionless spacing and time
resolution into lattice units. This can be done with the assumption of constant lattice
spacing (uniform grid) with the following definition using the same procedure as in

Eq. 2.53

:§:1 and Az:ﬁ—L (2.55)
ox

Ax 5=

2.2 Computational Details

The previous section provided a reasonable theoretical framework of the LBM. In this
section, we seek to put this knowledge into practice and to give an explanation of how

to computationally implement the LBM in a computer.

The LBM stores the relevant simulation data at every node of the grid. Each node
contains the information of the array of f;s, and the number of elements of this array
corresponds to the number of velocities of the chosen FDVM. This information is
dynamic and is propagated at every time step to the neighbouring nodes (at exception
of the direction &, that remains on the same node due to its null speed). It is also
possible to recover the macroscopic properties of the fluid in each node by applying
Eqgs. 2.47, 2.48 and also 2.42.
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Fig. 2.2 Propagation step for a D2Q9 model.

_collision ~,

Fig. 2.3 Collision step for a D2Q9 model.

The core of the LBM algorithm consists in the propagation step and the collision
step. To simplify, we show Eq. 2.41 split into these two steps, respectively.

fi(@+EAtt+ M) = fi(®,1), (2.56a)

FiE0) = @0+ (7)) (2.56b)

where f; is the post-collision distribution function. Eq. 2.56a represents the propagation
of the density distribution functions to their corresponding neighbouring nodes, located
at x + Até,-. Fig. 2.2 shows an example of the propagation step of a node (central black
dot) relative to the attached nodes (outer black dots). Each differently coloured arrow
represents a f; in a certain direction. The semi-transparent coloured arrows are these
f;s that will be moved to the central node after the streaming process, while the opaque
coloured arrows represent the f;s that will propagate to the outer nodes. After the
propagation step (¢ + At), the semi-transparent arrows are all shifted to the central
node, and the opaque arrows now are moved to the neighbouring nodes keeping their
previous directions (see the right image of Fig. 2.2. Also note that for simplicity, the

magnitudes of the represented f;s in this example are all equal. Eq. 2.56b describes
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the collision process. The distribution functions are modified towards its equilibrium
values f;? with a defined relaxation rate. A visual example is shown at Fig. 2.3. Black
arrows are the values of each f;, and the grey arrows are the fieq( p,u) values previously
determined by means of Eq. 2.46 and the local macroscopic properties. On the left side
of Fig. 2.3 we see all the f; values at a given node prior to the collision and additionally
we see their corresponding equilibrium values (the grey arrows). On the right side
of the figure, after applying the collision step, the magnitudes of all the f; values get
visibly closer to the fieq values.

In a typical simulation, collision and propagation steps, which represent the core
of the simulation, are repeated in a closed loop to generate the desired evolution of
the system, in an iterative process until a desired state is reached. In order to give
a better understanding of the LBM computational algorithm, we provide a scheme
of the complete computational sequence in Fig. 2.4. In order to start with the
simulation, an initial state (generally the macroscopic variables) needs to be specified.
Subsequently, the algorithm calculates the f;?s with Eq. 2.46, and then the initial
condition is completed by setting f; = fl-eq. From this point, the main loop starts and
computes the f;s that are in the boundary domains and recalculates the macroscopic
properties. The simulation reaches the collision step, and finally, the streaming step,
which is the last part of the loop. Once is finished, the simulation restarts the loop
until a specified criterion stops the simulation. Meanwhile, a periodic output can be
specified to gather relevant information about the simulation. We will extensively

discuss the boundary condition treatments in Chapter 3.

2.3 Secondary variables

In the previous sections, we have presented the core of the hydrodynamic LBM. We
now proceed to describe other tools and implementations to give the LBM an added
value, and to enable a physical interpretation to some of the simulation outputs.

The density and velocity contours of the outputs alone do not give us enough
information of what happens in a simulation. In this section we provide details of
the procedure used to get additional properties of the flow that are relevant for the

interpretation of our results.

2.3.1 Force exerted on a bluff body and drag and lift coefficients

We aim to calculate the hydrodynamic force of a fluid exerted onto a fixed immersed
body in the LBM. Let us consider a two-dimensional closed channel (see Fig. 2.5) with

a velocity inlet and a pressure outlet BC as an example. It is obvious that the square
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Fig. 2.4 Scheme of the lattice Boltzmann method algorithm.
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flow direction
e

R L/ |

I—» . . —_— 1

- |
o Uer =9 | outlet
inlet | R —_ X

— .7 _— v

R bluff body :

Fig. 2.5 Scheme of a closed channel with a velocity
inlet (left) and a pressure outlet (right).

obstacle placed in the channel will experiment a drag force in the direction of the fluid.
In addition, a vertical force can be significant when the degree of turbulence of the
flow reaches a critical value, that is a critical Reynolds. In order to proceed with our
investigation we calculate these forces exerted on the fluid with an exclusive technique
for LBM, which was first proposed by Ladd [41] and is named momentum exchange
method (MEM). This explicit method calculates the force vector on a surface solely by
the use of the distribution functions. The method consists in, for a desired surface Sf,
summing up all of the f;s that are going to be streamed from a fluid node towards a
boundary node X, and all of the f;s that come from a boundary and go towards a fluid

node xy. The mathematical expression leads to

Fo=Y &alfi(R1)+ fi(%,1)), (2.57)

XpeSSf

where o is the component of the force F considered and f; is the opposite direction of
fi-

While this is the general form, the implementation is a lot simpler when the wall
boundary is straight, placed right in the middle between two nodes and when the

mid-way Bounce-Back (BB) is used. The following expression is obtained,

Fo=2 Y &afi(Z1). (2.58)

)?fESf

Subsequently, the drag and lift coefficients can be calculated knowing Eq. 2.57 and

Eq. 2.59
Fp F

= T 5 7 CL = 5 4
pu%mxh pu%wxh

where Fp and Fy, are respectively, the axial and transverse components (with respect to

Cp (2.59)

the flow) of the force, # is the projected length of the incidence of the obstacle on the

direction of the flow, and Cp and Cy, are the drag and lift coefficients, respectively.
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2.3.2 Strouhal number

During the simulations we encounter a periodic generation of vorticity on the wake
of the obstacle at Chapter 4. In order to validate and verify if the vortex rate is in

agreement with the benchmarks, the Strouhal number is used

hfy

Umax

St = (2.60)
where u,,,, 1s the peak velocity, / is the characteristic projected length, and f is the

vortex frequency.

This vortex frequency f, can be numerically obtained by applying a fast Fourier
transform (FFT) to the lift coefficient output data (Eq. 2.59, right).

2.3.3 Shear stress and shear rate

As seenin Sec. 2.1.1, the central second moment of f leads to the stress tensor (Eq. 2.8),
from which one can separate the normal force and the shear force contributions. It is
worth to mention that the shear stress is also locally calculated with the non-equilibrium
part of the distribution functions [49],

Oup (X,1) = (1——) YA, (@afzﬁ 25: & aﬁ) (2.61)

where 04 is the shear stress tensor, and f”eq(x t) is the non-equilibrium part of f
(f"1 = f — f°?). In our framework we consider an incompressible, Newtonian fluid.
From this assumption, we can relate the shear stress and the shear rate directly by a

proportional relation

Sui) = 2550 = () L (Sutip - 3G 03 ) D

where Sy is the shear rate tensor which can be then transformed into a scalar

YR 1) =2) \/SapSap- (2.63)
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2.4 LBM passive scalar model

LBM is also useful to simulate systems where a passive scalar that acts as a solute in a
fluid system is transported using the advection-diffusion equation (ADE) [13].

aC -

W—l—V- (uC)—-V-(DVC) =S (2.64)
where C is the solute concentration, i is the local velocity and D is the diffusivity of

the solute species C.
The passive scalar is coupled to the flow field by the advective term at Eq. 2.64.

In order to fulfill the governing ADE in the LBM framework, we use a similar
procedure as that used in Sec. 2.1. In this case, we introduce a new density distribution
function for the concentration g, from which we recover the local concentration by
applying the corresponding zeroth moment. First of all let us consider the discretized

evolution equation with a general collision operator

gi(¥+ &1+ 81) = gi(F,1) + Y Qijc(g)(%.1) —g7(%,1)) (2.65)
J

where the collision operators £2;; . can be taken as in Sec. 2.1.4. The collision operators
of SRT and MRT read, respectively,

1
Qic= —z (2.66)

(4
Qijc=—M;'SM, (2.67)

where 7. is the relaxation time for the species C, M, is the moment matrix and S, is

the matrix with the relaxation times for each individual moment.

The macroscopic concentration C can be recovered with the zeroth order moment
as in Eq. 2.47

C(x,1) =Y gi(®1). (2.68)
i
For a SRT model, the evolution equation reads

1

gi(X+&or,t+01r) = gi(X,1) — T—(gi()?yl) —gi1(x,1)) (2.69)
C
while for the MRT model it reads
gi(f+ 6,’51‘,1/‘ + 5t) = gi(f,[) —MCTISCJ(mJ'?C()_C’,Z) —m;?c()_c’,t)). (2.70)
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Fig. 2.6 Finite discrete velocity model “D2Q5”.

Both of these equations have the same structure as Eqgs. 2.41 and 2.27.

In this section, nevertheless, we will focus on developing the MRT model, as it
is more stable than the SRT model and we will definitely need that plus of stability.
For this purpose, we consider the D2Q5 model (see Fig. 2.6) for the concentration
because, unlike the case of the momentum transfer equation, it is enough to recover

the macroscopic concentrations with it. The velocity set of the D2Q5 model is

0,0 for i=0
Si= (0.0 T tmy : (2.71)
(cos([Z(i—1)]),sin([3(i—1)]))-c for iel—4
We consider the moment matrix M, [45, 53]
1 1 1 1
0O1 0 -1 O
M. = 00 1 0 -1, (2.72)
-4 1 1 1 1
01 -1 1 —1
where the relaxation time 7, is related to the mass diffusivity of species C
(4+k) 1
= To—= . 2.73
e 0 ¢~ 5 (2.73)

The quantities m; . in Eq. 2.70 are the distribution functions in the moment space,

which are obtained with the transformation matrix M; .- g; = m; .. The equilibrium
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moments for Eq. 2.70 are

maqc =C

m‘f?c =u,C

mgqc =u,C , (2.74)
mg?c =kC

my, =0

where k is a parameter that needs to be smaller than one in order to keep the simulation
from “checkerboard” instabilities [70].

The relaxation matrix is

S0.c =0 (2.75a)
1
e 2.75b
s1, T ( )
1
S2.0=— (2.75¢)
C
1
$30=— (2.75d)
——+0.5
6(z.—05) |
S47C =83 (2.756)
(2.75%)

As in the MRT procedure to compute the flow field, this one can also be converted into

the SRT model by equating the elements of the diagonal relaxation time matrix to %

1
Se=—L (2.76)
Tc

2.5 Growth model for platelets

We have seen throughout this chapter some implementations that aim to compute
variables like forces on a boundary, or local shear forces in a LBM model. The
additional target of these implementations is to enhance the passive scalar model for
LBM. Now we try to develop a good set of tools to implement a full growth model
for human platelets. The model adopts some general rules that can be useful for other
applications such as dendritic growth [50] or clogging in porous media through mass
transport and reaction [77].

Blood is a colloidal system composed of mainly plasma and blood cells. As a
matter of fact, this mixture is a very complex system to predict due to its sensitivity

to many factors. Numerous hemodynamic computations and experimental set ups
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have been trying to understand and predict the blood cell distribution under diverse
conditions [20, 24, 68].

It is proven that the platelets experiment a lateral migration towards the vessel
walls. A well established hypothesis states that platelets passively migrate to the
walls in response to the combination of the flow shear rate and the red blood cells
(RBCs) presence [27], which are much bigger than platelets. Specifically, the shear
rate enhances the RBCs to deform and they tend to concentrate on the center of the
vessels. Thus the platelets tend to stay close to the walls, due to the fact that the
available volume fraction at the centerline of the channel is mostly occupied by the
red blood cells.

When it comes to study the hydrodynamic flow and blood cell transport, one
possible way is to consider the RBCs and the platelets as physical entities that interact
reciprocally with the fluid. One accurate and popular technique is called the immersed
boundary method (IBM). This technique, which is also used in LBM [15, 21, 22], uses
a Lagrangian grid for each considered particle membrane in the system and models
the interaction of the forces exerted on each membrane separately. Nevertheless, there
are also other techniques that use the advection-diffusion equation to determine the
platelet transport as a continuum solute mixed with the plasma, due to the low Stokes
number of platelets. This is obviously an approximation and does not consider the
possible interactions of the platelets with the hydrodynamic field.

The platelet transport problem becomes much more complicated when is coupled
with a clotting process. There exist extensive reviews about the state of the art of
this problem [14, 74]. Specifically, Cito et al. state that LBM is suitable to deal
with this multi-scale problem. Focusing on the LBM, Bernsdorf et al. [9] provide
an “aging” clot model based on tracking a passive scalar transport with governing
advection-diffusion equations (ADE). A similar work by Harrison et al. [31] traces
the age of the platelets and its concentration to create the clotting phenomenon. In
another work, Harrinson et al. consider another aging clotting model that also requires
of the shear stress threshold for the activation of platelets [30]. The aggregation of
RBCs was also considered in the LBM by means of a shear stress threshold clotting
model for stented arteries with aneurysms using a passive-scalar suspension model
RBC transport [56]. Recently, Malaspinas et al. presented a work where the clotting
platelet function is implicitly considered with the modeling of several proteins with a
Lagrangian point particle model where, in order to make this a feasible problem, the
transport of these point-like particles was determined with a first order Euler scheme
in detriment of the ADE.

Most of the LBM cited works are preliminary clotting models that can be eventually
applied to the coagulation of blood. These approaches additionally need to simplify
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the reaction cascade that takes place and only consider a primary platelet plug with an
heuristic model —the triggers are the shear rate and aging factors instead of the reaction
of the chemical species that participate in blood clotting processes, such as thrombin,
von Willebrand factor, collagen, etc.

On top of that, it is non-trivial to couple both hydrodynamic and solute transport
LBM meshes in the range of typical human artery diameters (1cm-0.1mm), due to the
difference of scales between both processes (both relaxation times are 2-3 orders of
magnitude distant). This issue is a consequence of a very high Péclet number which
is translated into a very thin material transport boundary layer and this ends up in
elevating the computational resources required for an acceptable accuracy of the mass
transport at the walls.

As a result, many different approaches have been coupled to the lattice Boltzmann
method to deal with the species transport, treated as passive scalars or by tracking the
suspended particles individually, while the LBM computes the hydrodynamics of the
system. On the other side, this problem of scale separation is not so relevant when the
scale of the problem is reduced to lesser physical problems, such as stenosed arterioles
[25].

It is still needed to explore the feasibility, development and understanding of the
limitations of using the LBM within this framework. Therefore, in this thesis, we
consider the coupling of the hydrodynamic and passive scalar models in LBM for a
human coronary artery. We will describe the developed tools towards the creation of a

preliminary growth model suitable for thrombus formation in the following sections.

2.5.1 Enhanced diffusion

A colloidal system under shear forces can experiment changes in its hydrodynamic
state (shear thinning) and the diffusion of the species. The constant (e.g., shear

independent) diffusion for a given species is,

klhT

= 2.77
STHR. 2.77)

th
where k;j, is the Boltzmann constant, y is the dynamic viscosity of the fluid and
R.4 refers to the radius of the equivalent sphere of the particle. Hence, this thermal
diffusion is not sufficient to describe the solute transport in a particulate suspension. In
fact, the diffusion of the platelets is enhanced with the shear rate of the fluid [69, 71].
Zydney and Colton [80] developed a mathematical model to describe this concept.
The correlation reads
D, = kga*$(1—9)" 7+ Dy, (2.78)
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where ¢ is the local hematocrit, a and k; are constants related to the scale of the
particle collisions and to the enhanced diffusion, respectively, and » is another constant
within 0.5 <n < 1.1.

The platelets present a spontaneous peak concentration near the artery vessels,
which coincides with the maximum shear rate zone of a blood vessel. If this model
is applied, one can infer that the maximum diffusion will also be located close to the
wall. Therefore, something else must be pushing against the diffusion flux to create

such concentration gradients near the wall, we discuss this issue in the section below.

2.5.2 Margination effect

It is proven that the distribution of blood cells in the arteries is bound to a specific
pattern which differs from the elementary uniform concentration, typical of a diffu-
sive/convective system. Platelets are rigid and discoid particles that are transported
along the blood vessels with a pulsated flow. Such flow is laminar and has a significant
shear rate which will depend mainly on the size of the vessel and the flow rate. In
fact, if the platelets are examined without the presence of the RBCs, they also experi-
ment a noticeable lateral migration from the centre of the channel due to the called
Segré-Silberberg effect [1]. After adding the RBCs to the system, platelets are further
pushed to the walls and can reach proportions of 17 times the average concentration
of platelets near the wall. This fact stresses the necessity to model with non-uniform
distributions of platelets when considering the blood clotting process as a reaction-
diffusion problem, as there are strong gradients of concentration at the walls. On the
other hand, RBCs collide and are deformed at a rate that is described mainly by the
shear rate, and present a higher concentration at the centre of the channel [27, 38, 68].
In summary, platelets passively migrate to the walls in response to the shear rate, the
viscosity, and the hematocrit conditions. In fact, it is remarkable that this natural
behaviour is crucial for an effective coagulation and preservation of RBCs when a
vessel rupture occurs. There exist some techniques that mimic this concentration
distributions. Eckstein and Belgacem were the first ever to implement a drift term as
an additional term for the Fick’s law related to a potential field. Bark et al. [38] used a
similar approach for both the platelets and the RBCs which included a drift term in the
ADE. A different approach was used by Zavodszky et al., which applied a fictitious
force based on the negative gradient of the shear stress. In this thesis, we develop a
drift force model based on the potential field, by explicitly applying a force term on
the distribution functions of the species.

2 1 9Cp.eq(X,R)

Ci(cpveq) = Dp (f) Cp.eq ()?,R) ox

M, 4, (2.79)
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where C,( .eq) 1S the drift term, M., is a conditioning constant that amplifies the drift
term and C,, ., is the potential field where the platelets would go spontaneously. We
arbitrarily set the potential field for the platelets to be as in Bark’s work [38]

4B°C,
(1+tanh [B(y/R—6,)]) A 22— *POr=1) (2B — 2B +1)]

Cp,eq (y7 R) =
(2.80)

where R is the non-occluded width of the channel, § and & are constants used to shape
the hyperbolic tangent, y denotes the radial vertical position and A is a normalisation
constant that scales the total surface averaged concentration to unity in non-dimensional
units. We can see that the distribution of platelets will only depend on the transversal

position y and the total radius R.

This potential concentration profile can be considered as time dependent as long
as there is any source that modifies the radius of the channel, such as a thrombosis
phenomenon (see Sec. 2.5.3). It is important to remark that this drift term is only
considered for the lateral migration, and hence, the axial contributions have not been

taken into account in this model.

The calculated drift term is then considered as a source term added to the collision

step of the lattice Boltzmann algorithm,
gil%0) = gilT.1 +Z( (81050 — 857(p,0)) ) + 0l (Cpe) CplEo). (281)

As we can see in Eq. 2.81, the drift term is applied explicitly to the vertical distribution
functions. Note that E,- is dependent on the i-direction considered. This means that the
magnitude of the drift term changes over the different considered g;s. This can provoke
a mass imbalance, which is very likely to happen due to the hyperbolic nature of Cp, »4.
To solve this issue we consider a second order centred stencil for the spatial derivatives
in Eq. 2.79. With this differential stencil and regarding that only the vertical directions
are considered, we can guarantee that the drift term is invariant. To exemplify this
latter statement, if we imagine our D2Q5 model, there are only two directions with
vertical components available in this model, hence the centred approximation will only
change the sign of (f from one direction to another. In other words, it will subtract
some value Z’i from g; and add this very same value to g;, keeping the mass balance

(same concentration) unchanged.
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2.5.3 Thrombosis phenomenon

We aim to develop a growth model able to recreate at some extent a thrombosis model
using both hydrodynamic and solute transport models in LBM. We will give a brief
review of the phenomenon of thrombosis and we will propose the tools for a possible

implementation of this phenomenon in LBM.

Thrombosis is the formation of a blood clot (thrombus) inside a blood vessel of
the circulatory system. This phenomenon normally occurs during the coagulation
process, which this latter is triggered when a blood vessel is damaged. The blood clot
that forms during the coagulation is normally reabsorbed in a healthy blood vessel.
However, the thrombosis has the risk of total occlusion of the vessel if it happens in an
artery with the atherosclerosis disease. A total occlusion of an artery can be deadly
in certain areas of the vascular system (e.g., in a human coronary artery or inside the

brain blood vessels).

Along with thromboembolism (a dislodged thrombus that occludes another down-
stream artery), the thrombosis-derived diseases are currently the first cause of human
death over the world. It is certainly obvious that it is a priority to invest more research
to deeply understand the thrombosis phenomenon. Specifically, we want to focus our

study on the platelets, which play an active role during the coagulation.

Platelets move within the arteries, where in normal conditions, present a near-
wall excess due to their natural lateral migration (see Sec. 2.5.2). This phenomenon
enhances their clotting ability. When there is physical tissue damage, the exposed
part of the subendothelium contains high amounts of collagen and von Willebrand
factor that, in contact with platelets, cause them to get stuck and activated. Gradually,
platelets stack and cover the damaged area in the coagulation step called deposition.
Then, platelets become activated with the aforementioned coagulation factors. They
change their shape, expand in a branch-wise way and release other coagulation factors
that enhance the attraction and deposition of more platelets. These coagulation factors,
mainly thrombin, further activate the resting platelets that are stuck on the damaged
region, leading to a feedbacked reaction which is called thrombin burst. As a result,
a significant amount of platelets and other blood cells get stuck in an loose primary
plug in the called aggregation step. Finally, due to the vasoconstriction and the plug
volume itself, the shear rate is gradually augmented in the damaged zone, leading to
the activation of other coagulation factors (mainly fibrin) that stabilise the clot. After
hemostasis is finally reached, the clot is gradually dissolved by plasmin and later

reabsorbed by the body, leaving the damaged zone prepared to be fully repaired.

Platelets are therefore only the tip of the iceberg of a much more complex process,

which involves the understanding of multiple topics, such as hydrodynamics, bind-
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ing reaction kinetics, multicomponent flow, membrane interaction, etc. Despite the
platelets, there are more than a dozen of other factors involved in the regulation of
the clotting process. Hence it is usual to find works that partially reduce this coagula-
tion cascade into the main agonists: platelets and thrombin. An example can be the
work by Bedekar et al. [7], which uses the transport equations to model the platelets
(whether they are resting, activated or bound to a surface), thrombin, prothrombin and
antithrombin, which intend to mimic the platelet steps of deposition and aggregation.
In another different approach of thrombus growth modelling, Bark et al. [6] proposed
an interesting way to simplify a significant part of the coagulation phenomenon. They
provided a correlation based in vitro experiments of an stenosed tube with an reactive
part. This experimental fit relates the lag time of platelets to reach the aggregation step
to a power law function dependent to the shear rate. They assume that the platelets
need a time in order to be deposited and subsequently be activated in order to start
the thrombin burst phenomenon that conforms the aggregation step. As a result, their
model accurately fits the experimental results with a relatively easy approach. Later
on, in another work, Bark et al. [38] used the same technique combined with a compu-
tational model to describe the thrombus growth under several stenosis and elevated
shear rates using the ADE with platelets and RBCs. For the reader’s information, it
was also previously stated that the platelets adhesion is enhanced with the shear stress

[2].

In our model, we will describe the coagulation process by considering the platelets
as a continuum solute species, using the Eq. 2.64 as the governing equation and
considering a source term S, as a sink of platelet concentration. The source term can

be considered as a first order reaction sink term
Sp = krtcpmw ) (282)

where k,; is the reaction rate constant. The reaction takes place at the fluid nodes
attached to the wall nodes that are either thrombus or the “damaged surface” nodes.
This sink term S, is considered as a flux of platelets that deposits on the reactive fluid

nodes.

Since we assume the platelets to be a continuum medium with a relatively low
Stokes number, the reaction rate can be also decoupled from the hydrodynamics. The
derivation of S, becomes straightforward by assuming that each node is a perfectly
mixed batch reactor. The reaction term is explicitly calculated in the LBM with a

Neumann boundary condition, which is discussed later in Chapter 3.
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In such conditions, the Sherwood number is typically used to describe the transport

at the boundary wall
N//( )6f

Sh(¥) =~
p

(2.83)

where Sh(X) is the local Sherwood, N“(X) is the local mass flux due to the reaction
(Sp), 67 is the active surface length where the reaction occurs, Cy is the concentration
out of the mass transport boundary layer and D), is the diffusion coefficient of the

platelets. The Sh indicates the overall mass transport rate over the diffusion rate.

We can analytically determine the Sherwood number assuming a constant shear
rate on the mass transport boundary layer [3, 57] to validate the proposed reaction-
advection-diffusion model.

- 3/2 reo
Sh(%,) = Dade g 22 @) gy,

_T(1)3) D&’ = ;
& = 315r023) Re%fScxd

(2.84)

1/2
where Da = kgco is the Damkholer number, Reg, = f (v) Oy is the Reynolds number
based on the shear rate of the model and the surface reaction length, I" is the Gamma
function, v is the kinematic viscosity of the blood, Sc = v/ D,, is the Schmidt number

of the model and X is the nondimensional position of the reactive surface.

This correlation is limited to a steady state and constant shear rate. We assume
that the mass transport boundary layer is much smaller than the momentum boundary

layer, and therefore this assumption is presumed to be valid.

Once the platelet reaction rate is controlled and validated, we move forward to the
last essential step to develop a basic thrombosis model: the transformation of the re-

acted platelet species into a solid static boundary attached to the wall surface/thrombus.

The depletion of platelets (the sink term) can be counted and accumulated at each
time step in a separate memory grid during the simulation. When the accumulated
volume fraction of platelets in a reactive node reaches the 80% the node is converted
into a thrombus node. The 80% threshold corresponds to the packing factor of
the platelets [72]. Fig 2.7 describes the computational scheme of the reactive wall
conversion to thrombus wall. From Fig. 2.7, the white coloured cells correspond to the
normal fluid nodes, the grey coloured cells correspond to the reactive zones and the
yellow coloured cells are either the thrombus or the vessel wall. In the fluid zone, the
normal hydrodynamics and the former Eq. 2.81 without reaction are applied. On the
non-reactive wall channel nodes, normal mid-way no-slip BB is applied, and finally,
on the reactive nodes (thrombus or active nodes), the reaction boundary condition is
applied with the procedure explained in Sec. 3.2.1. The total accumulated platelet
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Fig. 2.7 Sketch of the computational region. From a fluid node towards
a thrombus node.

concentration is transformed into volume and divided by the volume of a fictitious cell
(taking into account the lattice spacing Ax from Sec. 2.1.7).

2.6 Code and tools

The simulations performed for this thesis were done in FORTRAN 90 inspired on
the Palabos code [46]. Drag and lift forces and the Strouhal number were obtained
by importing the data into the open-source SCILAB® software, and the results were
visually enhanced by using the plotting tool GNUplot®. The visualisations of the
streamlines, the velocity, density and concentration fields were displayed using the
open-source software Paraview® software.

The recirculation length was obtained by measuring the distance between the
centre of the obstacle and the stagnation point behind the two vortexes at the rear of
the obstacle. This stagnation point is determined by means of the velocity streamlines
displayed in Paraview®, and then presented by means of the GNUplot® tool.



UNIVERSITAT ROVIRA I VIRGILI
REVIEW OF BOUNDARY CONDITIONS AND INVESTIGATION TOWARDS THE DEVELOPMENT OF A GROWTH MODEL: A LATTICE
BOLTZMANN METHOD APPROACH

Albert Puig Aranega

Chapter 3

LBM Boundary Conditions

The purpose of the computational fluid dynamic (CFD) simulations is to predict
the behaviour of a desired fluid system. Such systems usually are at a non-steady
state that can be provoked by many factors (e.g. bluff objects, domain limits, high
turbulence). The calculation of the flow properties at a boundary node can not be
done using the same procedure as for inner nodes; appropriate boundary conditions
need to be specified for the hydrodynamic problem to be well-posed and therefore the
elemental equations governing the fluid dynamics can not be applied at the boundaries.
Numerically, the boundaries of a given domain are generally crucial and need to be
carefully treated in order to mitigate possible artificial errors. Indeed, LBM is not

exempt of this issue.

As a matter of fact, an ideal LBM BC would be able to provide macroscopic values
at the boundary nodes as if they were calculated by the elemental fluid equations
without generating any perturbation. However this is theoretically impossible to
achieve, as the problem is underdetermined due to the lack of information that is
inherent to such domain boundaries. We show Fig. 3.1 as an illustrative example
of what happens with the information at the boundaries of a simulation domain in
the LBM. In the streaming step, the values of the non-existing incoming velocity
populations from the outside of the computational domain need to be artificially
generated in order to calculate the macroscopic variables, and therefore, to proceed
with the simulation. The magnitude of these new distribution functions needs to be in
concordance with the information from the bulk in order to minimise the impact of
the boundary on the simulation. There exist many types of boundary conditions that
efficiently generate or modify the f; values. The complexity of the implementation
of these BCs will depend on the nature of the system and the desired accuracy of the
fluid properties at the boundary. There are usually two ways to obtain the unknown

populations coming from the boundaries. One can first fix or predict a desired set of
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Fig. 3.1 Density distribution functions before and after the streaming
step at a given boundary.

macroscopic properties at the boundary node and then calculate the corresponding
unknown populations. The other way is just to take the opposite path. First, one can
calculate the unknown populations under some assumptions and then the macroscopic
properties are normally computed with Eqs. 2.47, 2.48 and 2.68.

Throughout this thesis, we have used a significant amount of different BCs. There-
fore, we found relevant to dedicate a separate chapter for them. We first introduce
a general classification of the BCs, which applies to the whole field of CFD and we

subsequently list and describe each of the BCs used in our approach.

3.1 Classification of boundary conditions

In CFD problems, BCs can be classified in four categories. Firstly, the periodic
boundary conditions, which are relatively easy to implement. Due to its simplicity,
they are often used in tests and preliminary simulations. The purpose of this type of
BC is to transport the populations that are about to leave the domain to the opposite
site of the domain in the direction of motion (see Fig. 3.2). Its is a well-known way
to reproduce a part of a whole, homogeneous system in a smaller domain, which
can reduce dramatically the required computational effort. The Dirichlet boundary
condition, which is probably the most popular type, fixes a macroscopic variable at the
boundary U , for example,

U(x,) =a, (3.1)
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Fig. 3.2 Density distribution functions before and after the streaming step at a given
periodic boundary.

where a is a predefined value and X, is the local position of the boundary wall. They
are vastly used for flow velocity BCs, as well as in pressure BCs or even to mimic

walls, with the so called no-slip BC, which sets the velocity at the boundary to zero
(ﬁ(zw) =0).

On the other side, the Neumann boundary condition fixes the derivatives of Utoa
fixed value, as shown at Eq. 3.2
dU (%)
——F=a 3.2
d,fn ) ( )
where again a is a predefined value, dx, is the normal distance between the fluid node
X and the physical location of the boundary wall X,,. Neumann boundary conditions
are normally used as a flux condition, such as sources or sinks of U (e.g. reaction heat,

reaction of a solute, adiabatic walls, etc).

The last group is that of more complex boundary conditions, also called third
type boundary conditions such as the Robin boundary conditions. The Robin BCs
determine a boundary value problem by solving a linear combination of a Neumann
and a Dirichlet BCs. The mathematical form of the Robin is expressed in Eq. 3.3,

respectively.
dU (%, -
1ﬂ+azU(fw) = as, (3.3)
dx,,

where ay,as,a3,a4,as are constants. One popular Robin BC can be a convective BC.

a

There exist other more complex boundary conditions that are classified in higher

order types, but we will skip its explanation as they are not used in this thesis.
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3.2 Bounce-back/specular boundary conditions

In the LBM, there is an explicit way to set a wall, which is done by means of different
types of bounce-back rules. This implementation consists in generating the unknown
population values directly from the outgoing density distribution functions. Another
important feature from this implementation is that it can provide second order accuracy
when the boundary is exactly in the middle of a link between two nodes [26]. Lets
then further analyse the possible types of bounce-back (BB), specular reflection rules
and their corresponding features.

One popular and straightforward way to determine the unknown distributions with
the BB rule is to to do a full-way bounce-back. This technique basically applies to
the outgoing populations that cross the solid boundary. After reaching a wall node
(“ghost node” in Figs. 3.3), these populations are reoriented and sent back to the
domain in the next streaming step. The incoming populations from the ghost nodes
conform the aforementioned unknown populations. This method therefore demands
of two streaming steps to fulfil both no-slip and free-slip BCs. This feature can be
clearly understood by looking at Figs. 3.3 and 3.4, respectively. For a no-slip wall
(see Fig. 3.3), the blue arrows in the rightmost picture are the result of the outgoing
populations from the leftmost picture. Even though this scheme is popular for its
simplicity, it is not flawless, as it is not strictly mass-conservative. This is due to the
delay of a full time step elapsed between the leaving of the outgoing populations and
the corresponding entering of the incoming populations. Thus, these incoming and
outgoing populations do not need to necessarily be the same, and therefore, they can
differ in magnitude when the no-slip condition is completed,

[i(®p,1) = fi(Rp,1), (3.4)

where ¥, is the wall node which is attached to a fluid node, i is the opposite direction
of the velocity i, and f represents the post-collision distribution function. Therefore,
this method just changes the direction of f;(X,) into f;(X,) in an algorithm that is
fully independent of the streaming step. For a free-slip case, the same treatment is
applied, but instead of a total reflection, the outgoing populations are reoriented with a
specular reflection (see Fig. 3.4). The effect of this reflection is equivalent to setting the
normal velocity component to zero and the gradient of the transversal velocity to zero,
which can be interpreted as a Dirichlet BC for the normal velocity component, and a
Neumann BC for the parallel velocity component. The computational formulation is
similar to Eq. 3.4,

fi(®p,1) = fi(®p,1), (3.5)
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Fig. 3.3 Full-way bounce-back scheme on a no-slip wall.
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Fig. 3.4 Full-way bounce-back scheme on a free-slip wall.

where z;represents the specular reflection of the i direction, according to the orientation
of the boundary. In summary, we can assume that in addition to its simplicity and
its independence from other routines, the full-way BB scheme provides a fully local
computational procedure. Nevertheless, one can notice that this procedure is done on
a node out of the fluid domain. Another feature of full-way BB method is that the
distribution functions that are under this BB rule skip the collision step. Unlike the
full-way BB, the mid-way BB does conserve the mass balance at the boundary. In this
case, the BB rule is directly applied within a single streaming step, which means that
the particle distribution will travel a distance of a full node. Therefore, as its name
suggests, the mid-way BB rule considers that the physical boundary is located right in
the middle between the fluid node and the ghost node. This fact makes the mid-way
BB to be second order accurate in space. We show in Figs. 3.5 and 3.6 sketches of
how the midway scheme works. In fact, during the computational routine, this scheme
is performed during each streaming step. The outgoing populations (blue arrows) are
stored. Subsequently, the streaming step is performed for all the other populations,
and finally, the stored populations that leave the domain are reoriented and replaced in
the prescribed directions.

The procedure of the mid-way no-slip BC is fully local and fulfils the idea of
bouncing back the particles to their original node in one single stage. However,
Fig. 3.6 reveals that the free-slip BC with this scheme is forced to be non-local, as

the density distributions that have a direction component parallel to the boundary are
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Fig. 3.5 Mid-way bounce-back rule on a no-slip wall.
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Fig. 3.6 Mid-way bounce-back rule scheme on a free-slip wall.

streamed back towards different nodes. Specifically, with the mid-way technique, the
fis with velocities with a parallel component to the wall are shifted one node at the
end of the specular reflection procedure (from n; to ny). The general formulation of

the mid-way no-slip BB was proposed by Ladd [41]
Fi(Ept 4 A) = Fi(7.1) = 60p (G- ih), (3.6)

where X is a fluid node attached to a wall node, and i, is the velocity of the wall. If
we consider a steady wall (i,, = 0), the right term is nullified. It is important to notice
that the no-slip mid-way BB with a steady wall is applicable to both hydrodynamic

and passive scalar distribution functions,
hi(Xp,t + At) = hi(Rp,1), (3.7)

where h; can be either f; for momentum transfer problems, or g; for heat or mass
transport processes. Meanwhile, if we want to fix a certain value of a passive scalar C

at the wall, the anti-bounceback condition can be used [70],

S o 4+k d4+k >
gi(Xp,t +At) = —gi(Xr,t) + l—OCW * (1 + l—o(éi-uw)> , (3.8)
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where C,, is the concentration at the wall. For the reader’s interest, note that the
right hand side of Eqgs. 3.6, 3.7 and 3.8 contains a Az, which means that the midway
bounce-back is applied during the streaming step.

The expression for a free-slip boundary condition with the midway BB scheme is
hi(Xp + ATyt + Ar) = hi(%,1), (3.9)

where AT; is the distance to the destination node. This distance is one (in lattice
Boltzmann units) when the direction i has a parallel velocity component with respect
to the wall, and has a null value when i is normal to the boundary.

The specular reflection not only can act as a free-slip wall, but can also be used as

a mirror boundary condition for axisymmetric problems (used in Sec. 5.4).

3.2.1 Boundary condition for surface reaction

We use a Neumann boundary condition to set a flux of reactant at a boundary. Briefly
explained, the value of the concentration on the wall is determined, and the unknown
distribution functions are calculated.

Firstly let us consider the final step and we will trace back all the necessary
variables used in the process. We use the same anti-bounceback rule reported in 3.8
for a reactive wall

- 4+k

g{(ffat+At) :_gl(xf7t)+1—0CrWa (310)

where C,, is the concentration on the physical reactive wall. The concentration on
the wall is the key variable for the mid-way BB rule (3.10). Due to the mid-way BB
rule, we know that the location of C,, is the midpoint between the fluid node and
the wall node. C,,, can be approximated with a first order finite difference scheme.
Additionally, in a steady state and near the wall, we can approximate the fluxes in a

control volume as

dc C;—C
—D,— =N"(%)=S,=—-D,~L_—*
() =Sy ==Dr =554,

3.11
P, @3.11)

Sp 1s the sink term mentioned in Sec. 2.82. Cy represents the concentration at the fluid
node attached to a reactive wall, after subtracting the reacted part with the assumption
that the wall acts as a perfectly mixed batch reactor and D), is the platelet diffusion

coefficient. The concentration Cr can be expressed as

Cr = Ch(1—kn), (3.12)
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where C} is the concentration at the fluid node before the subtraction of the sink term.
The local flux N”(¥) in Eq. 3.11 is obtained numerically by means of

N"(F) = knC}(3). (3.13)

The reaction flux is the local subtracted concentration from the fluid cell next to a

reactive wall and at each time step.

Combining the Egs. 3.11, 3.13 and 3.12 we obtain

Cr(X)ky 0.5dy

Cru(¥) = € ==L
4

(3.14)

This is a plausible approximation of C,,, which neglects the advective transport near

the wall and the axial diffusion.

3.2.2 Second order bounce-back for curved walls

After understanding the bounce-back algorithm, one can notice that it has some
limitations. The wall boundary needs to be a straight wall placed exactly between two
nodes in order to be second order accurate in space. When any simple BB rule is used
into a non-straight wall with an off-lattice node, it just degenerates its accuracy [52], as
the simulation will interpret the boundary in a staircase-like shape (See Fig. 3.7). The
fluid nodes attached to the boundary have at least one velocity direction towards the
wall nodes, with corresponding particle distribution functions that should be bounced
back. These fluid-solid links are seen in Fig. 3.7, where the green nodes are the ones
which will hydrodynamically act as effective wall in the simulation. For this purpose,
several second order bounce-back stencils for curved boundary geometries have been
developed and contrasted [52]. Filippova and Hénel [23] first proposed a second order
BB that intended to interpolate the resulting bounced velocity distribution function
with a fictitious f¢¢ and the current value of the f at the boundary. This method was
then improved by Mei, Luo and Shyy (often referred as MLS bounce-back [48]) who
corrected the instability present when the wall node was very close to the physical
location wall. We first show the notation used for the calculations in Fig. 3.8: X,
denotes a wall node attached to a fluid node ¥ » A 1s the normalised distance between
the physical wall node (yellow nodes) and the boundary fluid node (red node), relative
to the distance of the corresponding fluid-solid link (dx), and X,, denotes the physical
wall nodes. These X,, can be off-lattice locations and they are computationally stored

in a Lagrangian array. This array is afterwards used to calculate the distance between
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Fig. 3.7 Mid-way bounce-back rule applied on an arbitrary curved wall.
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Fig. 3.8 Mei et al. bounce-back rule applied on an arbitrary curved wall.
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the fluid node and the physical wall A,

Pt (3.15)
Xy — X
The mathematical expression for the MLS-BB takes the following form
~ ., ~ eq* - 3 2
FiGont) = (1= 00 + 20 Gpt) - 200 5 (G ), (B16)
where the fictitious equilibrium distribution function £¢¢ is
fz (Xp,t) = @ip (Xp,t) |1+ C—zél Upr + 2_04(51 ufp)” — 2—6_2uf- Ur| . (3.17)

Here iy = ii(Xy,t) is the velocity at the fluid boundary node X, and finally, i, and x
are proposed to be

0— s U, 2A—1 1

ﬁbf:%"i‘% and y = - for AEE
(3.18)

~ ~ 2A—1 1

Upp = Uy and yx = R for A<§

There are several other approaches that deal with off-lattice boundaries with second
order accuracy ([10, 78]), only the MLS-BB method has been explained here as it is
the one used in this thesis, and besides, it is found to be the one that minimises the

errors in laminar regimes [52].

3.3 Simple inlet/outlet boundary conditions

So far we have reviewed boundary conditions focused on the wall treatment®. The
presented methods directly produce new values for the unknown distribution functions
from the outgoing ones. The methods from this section will calculate the unknown f;s
more elaborately. This fact responds to the necessity of fixing a desired macroscopic
value/gradient at the open boundary. We will better discuss this issue in detail by

analysing these inlet/outlet BCs.

*It is important to stress that the bounce-back rules analysed at Egs. 3.6, 3.8 can be used also as an
inlet BC, as soon as you set a velocity value according to the hydrodynamic flux at the wall.
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3.3.1 Equilibrium boundary condition

The equilibrium boundary condition (EBC) was first proposed by [75] and consists
in replacing the missing f;s with their corresponding equilibrium values. Having in
mind that this method is only first order accurate, added to the fact that the provided
values do not consider shear forces (see Sec. 2.1.3), we consequently avoid the use of
this BC at inlets, as it would provide an incorrect solution whenever we would try to
fix a shear flow (Poiseuille flow, constant shear, etc). Hence, the outlet for this BC is

formulated as
fi = 17 (po, (% — Ax)) (3.19)

where Ax represents the normal distance from the fluid node to the boundary location
(Xp)-

3.3.2 Zou/He boundary conditions

The idea of the Zou/He BC (ZH-BC) [79] is similar to the BB rule. However, only the
non-equilibrium part of the outgoing distributions is bounced back, which is formally

expressed as

fim £ = fi— f4. (3.20)

To facilitate the understanding of this procedure, we will focus on an example of
unknown populations to be determined at the inlet and outlet boundaries in Fig. 3.9.

The missing populations for our inlet/outlet are highlighted in blue at Fig. 3.9.
The channel has no-slip horizontal walls at the top and the bottom, with a developed
incoming flow on the left boundary as the inlet, and the corresponding outlet on the
right. Typically, this problem is dealt with a Dirichlet condition where the velocity is
fixed at the inlet and the pressure is fixed at the outlet. We rely on the macroscopic
LBM averages (Eq. 2.47,Eq. 2.48) and the non-equilibrium assumptions from the
ZH-BC approach to conform a determined system of linear algebraic equations. We
start with the inlet BC, by identifying the missing populations, fi, fs, f3.

We remark that we have four unknown variables f1, fs, fs, p as we know the two
velocity components. We set a trivial horizontal # = (uy,0) and write the following

system of equations,

4 e e e 2
f-1=ia-17 = fi=f+( 1q—f3q)=f3+§l?ux (3.21)

_ Zifié’i,y
P

_ Zifiéi,x a

nd u
0 y

(3.22)

Ux
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Fig. 3.9 Unknown distribution functions for a vertical boundary as
inlet/outlet with the D2Q09 discrete velocity set.
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p= Zf (3.23)

We can obtain the value of p by combining Eq. 3.23 and Eq. 3.22, where we can get
rid of the three unknown

fi+fs+fs=p—(fo+t i+ fs+fatfotfi)=puc+fz+fotfi (3.24)

The resulting density is

b fo+ 2+ fa+2(f3+ fo+ f7)

. (3.25)
1 - ux
Hence we can combine Eq. 3.21 and Egs. 3.22 to determine the missing f's
2
fi =f3+§Pux (3.26)
1 1
/s =f7—§(f2—f4)+gpux (3.27)
1 1
L =f6+§(f2—f4)+gpux- (3.28)

At the outlet we set the pressure boundary condition, and additionally, set the vertical
velocity to zero (1, = 0) to have a determined system of equations. Hence,

ux:fo+f2+f4+2(f1+f5+f8)_1‘ (3.29)

P

and the unknown populations at the outlet are obtained combining Eqs. 3.21 and 3.22

2
= 3P (3.30)

f6:f8+%(f2_f4)_ép”x (3.31)

1 1
J7 :fS_E(fz—le)_gP”x- (3.32)
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3.4 Characteristic boundary condition

In the aforementioned inlet/outlet BCs, it is common to find that density perturbations
due to compressibility effects inherent to the method propagate in the system and are
reflected on the boundaries back to the domain. Any simple Dirichlet inlet velocity
or outlet pressure BC is not able to absorb these pressure waves, as they have one of
the macroscopic variables tied to a desired state. This issue can be problematic as
these waves can interact with the surrounding obstacles and other boundaries of the
domain. Therefore, a perfect flow BC (for inlet/outlet) should avoid the reflection of
these pressure waves in order to avoid a possible degeneration of the accuracy of the
model. However, we clearly stated that there is no perfect non-reflecting boundary
condition (NRBC) due to the lack of information on the boundaries of the domain
(Fig. 3.1). Regarding this issue, we introduce a popular BC scheme that can reduce

significantly these undesired density and velocity reflections.

The characteristic boundary condition (CBC) computes the macroscopic properties
of the fluid (U (p,ux,uy)) at each timestep by solving a hyperbolic system of equations
at the boundaries, and in addition assuming that the incoming pressure waves from
the outside of the domain are set to zero. These assumptions lead to a set of inviscid
constitutive equations resembling the Euler equations. Since we use an isothermal LB

model, there is no point in solving the energy equation in this system,

oU 90 a0
S tAG B =0, (3.33)

where U is the vector of the macroscopic variables of the system and the coefficient

matrices A and B are given by

uc, p 0 uy, 0 p p
2 7
A=| % u 0|, B=| 0 u 0 |, U=\ u |. (334
2
0 0 u 5 0 u iy

Here uy, u, are the velocity components in the x and y direction, respectively, and p is
the density. Matrices A and B can be diagonalized,

SAS™! = A, TBT ' =M, (3.35)
where A and M are diagonal matrices with local eigenvalues

A = diag(uy — cs,uy, Uy + C5), M = diag(uy — cg,uy,uy +cs), (3.36)
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and c; is the speed of sound. Matrices S and T are given by [33]
2 —cp O 2 0 —cp
S=1 0 o 1], T=1 0 1 0 (3.37)
2 cp O 2 0 cp

Incoming and outgoing waves are identified by the sign of each eigenvalue of A and
M, taking into account the relative position of the boundary. Given a vertical boundary
parallel to the y-axis, wherever the A eigenvalues are positive, the corresponding waves
move along the positive x-axis direction, and oppositely, the wave propagates along
the negative x-axis direction if the eigenvalue is negative. So, for instance, outgoing
waves will correspond to negative eigenvalues at the inlet and positive eigenvalues at
the outlet. Thompson [67] proposed to annihilate the incoming waves due to the lack

of information from the outside of the domain and in order to minimise the reflections,

- L
JToU - %1
L;J _ il 5= for'outgo.mg waves io=| L, | (3.38)
0 for incoming waves L ’
x,3

where 4; is the ith eigenvalue and Zr is the ith row of S. The wave amplitudes L, are
expressed in characteristic coordinates by means of
oU U -
A=—=S"TAS— :=S"L;, -

3.39
ox ox ( )

Following the work by [35], the Local One Dimensional Inviscid (LODI) equations
have been used to compute U at the boundaries. The LODI approach assumes that
there are no contributions from the y-axis derivatives,

U

—+S'L,=0.

5 (3.40)

In addition to the LODI approach, we also consider Thompson’s BC. The y-derivatives
of the macroscopic fluid properties are also included in the Euler hyperbolic system of
equations, resulting in
U U -
—+B—+S 'L, =0.
5 + Iy + x

The x-derivatives are computed for both CBC using a one-sided second order stencil.

(3.41)

The y-direction derivatives, instead, are computed by means of a centred second order

approximation.
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The last step consists in computing the equilibrium distribution functions at the
boundary nodes using Eq. 2.46 and the values of U computed with the CBC procedure.
Furthermore, the modified Equilibrium Boundary Condition (mEBC) approach is
adopted from [33] which is expected to improve the solution at the boundary. The

neq

mEBC linearly extrapolates the non-equilibrium information (f; ™~ = f; — fieq) from
the two lattice nodes nearest to the boundary,

JiG) = 1) + 217 Rp 1) — ;7 (For2), (3.42)

where X;, are the boundary nodes, and (Xp1 1), (Xp12) correspond to the nearest two
fluid nodes in the perpendicular direction to the boundary.
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Chapter 4

Reflective vs non-reflective boundary
conditions

Effective non-reflective boundary conditions (BC) for LBM have been proposed in
several occasions [33, 35, 36, 39, 54, 61, 66]. However, beyond the initial BC tests,
there is not that much investigation on the impact of using a reflecting or a non-
reflecting boundary condition, at exception of [36], where the authors assess the
performance of different sets of popular BC schemes on the fluctuations of the drag
experienced by a square obstacle in a confined channel. In order to add scientific
knowledge about the physical impact of reflected waves that arise in the simulations,
we provide an extended parametric study that will mainly focus on the physical
variations that can occur when dealing with one BC or another. The parametric study
will be done on a well-known case: a developed flow past a square obstacle in an open
channel.

4.1 Physical Model

We first show in Fig. 4.1 the physical model used for simulations. The square cylinder
is located at the centerline of the y-axis and at one fifth of the total channel length L.

We consider two different channel widths with ratios AR = Lﬂ = %, %6 respectively,

where L, is the total height of the channel and N the edge lengtﬁ of the square obstacle,
respectively. This dimensionless control variable has been selected instead of the
usual blockage ratio ([55, 62]) to keep the size of the channel width, regardless of the
orientation of the square. Additionally, we set the square cylinder at three different
angles of incidence 6 = 0,15.3,45 degrees, which correspond with a subset of the
angles used by [76]. Consequently, the projected length of the obstacle / increases

as the angle goes from 0° to 45°. The range of Reynolds numbers is 50 < Re < 150,
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Y

Fig. 4.1 Domain dimensions.

Fig. 4.2 Example on how the recirculation length is determined.

whereas the critical Re for the periodic vortex shedding regime in the nearly freestream
case, is 38 < Re < 48 ([76]). The drag and lift coefficients and Strouhal number are
respectively determined with Eqgs. 2.59 and 2.60. No-slip walls with simple bounce
back (BB) are considered at the top and the bottom boundaries of the channel, and
no-slip walls with second order BB (Sec. 3.2.2) are implemented at the obstacle
boundaries. Once the simulations are finished, we calculate the time-averaged values
of the velocity in a single period of vortex shedding to lay out the main features of the
unsteady flow regime. The streamlines of these time-averaged velocities are used to
determine the recirculation length ratio (L,/h) (see Fig. 4.2 as an example). The used
mesh is uniform and has 2080 x 320 and 2080 x 640 nodes for AR = %, % respectively.
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4.2 Parametric approach

The following parametric study consists in preparing a set of simulations by changing
the following parameters:

* Reynolds number: 50 to 150

1
* Aspect ratio of the ch l: -, —
spect ratio of the channe 216

* Angle of incidence: 0, 15.3 and 45 degrees

* Boundary Condition configurations

Inlet with Zou/He. Outlet with Equilibrium: ZH/Eq
Inlet with Zou/He. Outlet with Zou/He: ZH/ZH
Inlet with Zou/He. Outlet with CBC: ZH/CBC
Inlet with CBC. Outlet with CBC: CBC/CBC

We choose the LODI approach [35] for the CBC in this parametric study. Velocity
is fixed at the inlet (Poiseuille flow with u,,, = 0.1, avoiding a Mach number bigger
than 0.3) and the reference density is fixed at the outflow (pgp = 1), both in lattice
units. The Reynolds number is varied by changing the value of viscosity. The chosen
values of the velocity and viscosity are in fact the same as in [36], which facilitates the
comparison. In addition, the simulation is initialised by setting the reference Poiseuille
flow

N\ 2
y——

fio(y) = tmax [ 1= | —22R | |, 4.1)

2AR

along with the reference density in the domain. N /2AR represents here the half of the
channel width, and y is the y-axis spatial coordinate. The probability densities f;(X,#o)s

are initially set to their corresponding f;?(p, ) values, as explained at Sec. 2.2.

4.2.1 Validation

Figure 4.3 shows the mean drag coefficient Cp, the mean peak-to-peak lift coefficient
ACy, and the Strouhal number St versus Re, for the parameters AR = % (N =40) and
0 = 0°. ZH-BC was applied at the inlet and Eq-BC at the outlet. Results of [36] for
the same value of AR are also included, as well as results from Ref. [11], which were
obtained at a higher AR = 6.25% and thus consistently give smaller values for the

drag coefficient. Good agreement is shown between our results and the bibliography.
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(a) Cp vs Re. (b) ACy vs Re. (c) St vs Re.

Fig. 4.3 Plot of a) Cp vs Re, b)ACy, vs Re, ¢) St vs Re, along with benchmark results
[11, 36].

Specifically, St shows a small deviation which does not exceed 4% at Re = 75 whereas
both Cp and ACy fall close to the results reported in [36].

4.2.2 Mesh independence test

A grid independence test is shown in Fig. 4.4, where the drag and lift coefficients
are evaluated combining different meshes (N = 10,20,30,40) and different reference
velocities (uyq = 0.1,0.05, which correspond to Ma= 0.173,0.087, respectively).
Figure 4.4 shows that the relative errors of Cp, ACy, obtained after diffusive scaling
of the system, from N = 20, u,4x = 0.1 to N = 40, u;,qr = 0.05, are within 1.5%.
Comparing the results N = 40 at u,,,,, = 0.1 and 0.05, the relative difference is about
1%, therefore for the tests presented in the following sections we have used the
configuration N = 40 at u,,,,, = 0.1, which saves half of the computation time with

higher robustness while providing the same relevant information.

4.2.3 Time stability

Figure 4.5 demonstrates that the number of time steps used guarantees a fully converged
solution in all the cases. Additionally, we can observe in Fig. 4.5c a faster stabilisation
of the drag coefficient with the ZH/CBC configuration.
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Fig. 4.4 Mesh independence test for Cp (left) and ACy, (right) at Re= 60, using
N =10,20,30,40, tyqc = 0.1 (in blue) and u;,4, = 0.05 (in red). The ZH/ZH
configuration is considered for the test.

4.2.4 CBC inlet velocity correction

We saw in Sec. 3.4 that CBC-LODI does not fix neither the density nor the velocity
as it has a dynamic response which depends on the information of the neighbour
nodes and the previous (in time) values of the magnitudes. Therefore, it is a priori
not possible to fix the inlet velocity with a CBC approach. Nevertheless, we can
neglect this problem by considering two facts. Firstly, it is crucial to remark that
CBC-LODI (Eq. 3.40), unlike Thompson BC, only considers the spatial derivatives
on the perpendicular direction to the boundary and therefore the flow is unaffected
by the information carried by the y-axis nodes in our inlet boundary configuration,
where there obviously exists a velocity gradient due to the initially imposed developed
Poiseuille flow. Secondly, from the inlet up to the obstacle, the macroscopic variables
remain mostly unaltered, as in this part of the flow there is no influence from the
obstacle. As a result, throughout our simulations, the flow near the inlet does only
experiment significant axial fluctuations at the beginning of the simulation, when
the initial pressure wave caused by the square obstacle reaches the inlet boundary
(see Fig. 4.6). Under the aforementioned assumptions, we analysed the CBC-LODI
behaviour at the inlet by running a set simulations. The tested parameters are: AR = é,
6 = (0°,15.3°), CBC-LODI at inlet/outlet and Re = (50,100, 150). Analysing the

simulation outputs, we found that the values of the velocity and the density at the
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Fig. 4.5 Time evolution of the drag and lift coefficients for a test case, with Re= 100,
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(c) ZH/CBC configuration.

AR =} and 6 = 0°.
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(a) Test example: pressure wave instants after initialisation.

(b) Test example: pressure wave approaching the inlet.

(c) Test example: reflected pressure wave coming from the inlet.

Fig. 4.6 Example of a initial pressure wave after initialisation (zoomed). Zou/He inlet
test case with Re =50, AR = % and 6 = 0°
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inlet fluctuated to mitigate the incoming pressure waves, acting as an open boundary
condition. After absorbing the first pressure wave produced by the initial condition
around the obstacle, we observed a general reduction of the velocity around 1-3.5%
at the centerline. After waiting until the simulation was periodic, the inlet velocity
remained parabolic, with fluctuations not bigger than 0.05% at the centerline, and with
the aforementioned velocity reduction.

To compensate for this undesired velocity offset, we first ran every possible CBC-
LODI/CBC-LODI simulation until the first big wave passed through and the velocity
profile at the inlet was quasi-constant (showing only small fluctuations). Then, we
individually calculated this deviation with respect to the theoretical velocity ug(y)
according to the parabolic flow. Subsequently, we introduced a correction on the real
initial velocity condition to counteract the effects of the initial wave as seen in Eq. 4.2.
After applying this procedure, we greatly neutralised the velocity offset problems
originated from the first pressure wave, and we obtained the velocity inlet profiles in
all cases with a maximum deviation of 0.08% with respect to the initial Poiseuille flow

at the centerline.
”6 ) = ”0()’) + Atcorr(y) 4.2)

where u(y) is the corrected initial velocity profile and Auc,-(y) is the difference
between the analytic velocity and the velocity value obtained at the inlet after applying
the CBC at the inlet without any correction. By judging Fig. 4.7, we assume that the
magnitude of these perturbations is greatly diminished up to negligible discrepancies
with the analytic solution when compared with the uncorrected inlet profile. Analysing
the near wall values we can observe that the errors grow rapidly, but the impact of
those on the parabolic velocity is still small and we will consider them negligible as
there is still room for a complete development of the flow before the fluid takes contact
with the obstacle. Additionally, it is worth to mention that the errors are minimal at
the centerline, which is in fact the most important part of our study as it is where the
obstacle lies.

Furthermore, we will observe later in Sec. 4.4.1 that the fluctuations of the drag
and lift coefficients are two or three orders of magnitude higher, which guarantees that
the results are not significantly perturbed by the implementation of the CBC at the

inlet.

4.3 Analysis of the flow

In this section we will briefly describe the typical flow patterns of this problem, which

will serve not only as references for validation by comparing them with other known
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Fig. 4.7 Velocity obtained at the inlet applying CBC, with respect to the Poiseuille
velocity profile and its errors before and after the correction has been applied. Re =

100, AR = § and 6 = 0°
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(a) Re = 60. (b) Re = 90. (c) Re = 150.

Fig. 4.8 Zoomed part of the simulation domain where the wake of the obstacle is
formed. Both x and y axes are normalised with the projected length of the obstacle 4.
Time-averaged streamlines for 6 = 0° and AR = % and different Reynolds numbers.

a) Re = 60, b) Re =90, ¢) Re = 150
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Fig. 4.9 Zoomed part of the simulation where the wake of the obstacle is formed. Both
x and y axes are normalised with the projected length of the obstacle 4. Time-averaged
streamlines for Re = 120, AR = % and different angles of incidence, a) 6 = 0°, b)
0 = 15° and ¢) 8 = 45°.

benchmarks ([76]), but also will give us a good perspective of how the wake of the
flow responds to the considered parameters.

Figure 4.8 shows the time-averaged velocity streamlines for 8 = 0°, at different
Re. The streamlines are used to determine L, /h (see Sec. 4.1 for details of L, /hand
Sec 2.6 for how it is obtained).

Figures 4.8a and 4.8b constitute a clear example of main separation pattern. In
addition, in Fig. 4.8c a new pair of secondary vortexes appear on the upper and lower
edges of the square obstacle. This dual secondary vortex pattern is typical for 6 = (°
and Re > 130 conditions. Figure 4.9c shows the wakes behind the obstacle for the
different angles of incidence 6. We observe that as 6 increases, the wake is visibly
reduced. Moreover, Fig. 4.9b shows that the separation point on the upper edge shifts
to the left corner. All these flow patterns are also reported in [76] for the freestream

case.

4.4 The effect of the boundary conditions

In the following study we focus on the comparative analysis of the different BCs
considered in Sec. 4.2 by studying different outputs: Cp and AC, (difference between
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maximum and minimum lift coefficients), instantaneous C; and C;, and recirculation
length ratio L, /h.

4.4.1 Mean drag and lift coefficients

Figure 4.10 shows the plots of the time-averaged Cp and ACy, within a vortex shedding
cycle vs. Re, as compared with results from [11, 36]. Since no significant differences
were observed between the two reflective BCs (ZH/Eq vs ZH/ZH), only the values
for ZH/ZH, ZH/CBC and CBC/CBC configurations are reported. Fig. 4.10 shows
that the deviations of Cp and ACy, for configurations of the type ZH/ZH (red-squared
dots) and ZH/CBC (blue-circled dots) are clearly negligible. The maximum deviation
obtained for Cp is 0.365% and for ACy, is 3.71%, and both occur for 6 = 45° and
AR = 1/8. In contrast, when CBC are implemented at the inlet (green-lines), the Cp
is significantly smaller. We observe that the magnitude of this mismatch depends
directly on AR, which is more pronounced when AR is increased. In parallel, ACy,
is also slightly diminished when a non-reflective BC is implemented at the inlet at
exception of 8 = (°.

From these observations, we can state that there is no significant effect on the
mean time-averaged forces by changing reflective (ZH) to non-reflective (CBC) at
the outlet. However by applying non-reflective BC at the inlet, the suppression of
the incoming pressure waves at the inlet eventually modifies the forces downstream,
and as a result, lesser values of both Cp and AC} are obtained (green lines from
Fig. 4.10). The proximity of the channel walls, controlled by the parameter AR,
enhances the effect of the reflective contributions —reflections from a distant boundary
will reach the obstacle more attenuated. Therefore, the differences of the drag and
lift coefficients between the ZH/CBC and the CBC/CBC combinations increase, as
the channel becomes narrower. For instance, for AR = 1/8, the net drag reduction
after applying CBC at the inlet is relatively bigger than the drag reduction in a channel
of AR = 1/16. The increase of the angle of incidence from 6 = 0 to 45°, which
exemplifies changes in the shape of the object, even magnifies the deviations (however
increasing 0 for the same channel width, effectively brings the obstacle slightly closer

to the channel walls as the projected length of the square cylinder is bigger).

4.4.2 Phase diagrams of drag and lift coefficients

Phase diagrams of the instantaneous C; vs C,; for each incidence angle and for each
AR are presented in Fig. 4.11. They are useful to assess how the fluctuations of the lift

and drag forces within a vortex cycle are modified as a function of the chosen BC set.
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Fig. 4.10 Plots of Cp vs Re and ACy, vs Re for 6 = 0,15.3 and 45°. Coloured lines:
present data; black lines: reference values ([11, 36]). Filled and empty symbols
represent AR = 1/8 and AR = 1/16, respectively. We use red squares for the ZH/ZH
configuration, blue circles for ZH/CBC and green triangles for CBC/CBC.
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In each figure, ZH/ZH, ZH/CBC and CBC/CBC configurations are plotted for 70 <
Re < 150. The patterns of the ZH/Eq (black-dashed line) configuration are added
in Figs. 4.11a-4.11b only, as this is the only case where some noticeable differences
are worth to report. Figure 4.11 shows that the oscillations of C; and C; increase in
amplitude as the Reynolds number increases (the arrows indicate the direction of the
increase of Re). The shape of the phase diagram depends on the angle of incidence;
for symmetric geometries (0 and 45°), the pattern is symmetric with respect to the
horizontal axis at C; = 0, and reveals the biperiodicity of C,, feature not observed in
the phase diagrams for the intermediate angle 6 = 15.3°.

An increase of the Reynolds number reduces the values of the drag coefficient for
0 = 0°. We find the opposite effect regarding 0 = 45°, where the values of C; are
augmented, whereas for the intermediate angle 15.3°, the shift is not as remarkable
when Re increases. The behaviour of C; is more obvious: in all cases we find higher
peak-to-peak lift fluctuations as Re increases. These results are consistent with those
shown in Fig. 4.10 and were also reported in [76].

As shown in Fig. 4.11, the effect of applying CBC at the outlet (cyan/blue lines)
is to reduce the instantaneous drag fluctuations, specially at high Re. It is also worth
to mention that the overall values of the drag are slightly reduced when the CBC is
applied at the inlet (blue-solid line). This effect is in agreement with the overall drop
of Cp already observed in Fig. 4.10. When Re> 110, the shape of the patterns of the
reflective and non-reflective conditions at the outlet differ considerably. Particularly,
6 = 0° shows a different phase shift. The use of a reflective BC at the outlet produces
also wider C; oscillations. Moreover, consistently with the reduction of the drag
pointed out above, the use of a non-reflective BC at the inlet shifts the phase diagrams
to the left. In other words, CBC at the outlet results in diminished perturbations on
the wake past the object and the oscillations of the drag are diminished. In contrast,
CBC implementation at the inlet reduces the reflections produced by the upstream
faces of the obstacle, and net drag is thus reduced, without further diminishing the
drag oscillations.

4.4.3 Recirculation Length Ratio

We have seen throughout the analysis how the width of the channel influences the
forces experienced by the immersed object, and one expects a similar effect on the
recirculation length, which is a measure of the time-averaged topology of the flow
around the obstacle.

A comparison of the results of the recirculation length ratio L,/h (in a time-

averaged vortex cycle) obtained for the different BC configurations is presented in
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Fig. 4.11 Phase diagrams for 8 = 0,15.3 and 45° for the four BC configurations
studied: ZH/Eq (black-dashed), ZH/ZH (black-solid), ZH/CBC (cyan-dashed) and
CBC/CBC (blue-solid lines), for a) AR = 1/8 and b) AR = 1/16.
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Figs. 4.12a, 4.12b, for AR = 1/8 and 1/16 respectively. Again, the results for the
ZH/Eq configuration have been omitted as they do not significantly differ from those
of ZH/ZH. The reference values by [76] are also shown mainly as a guide because they
were obtained at a very different blockage ratio (1%) which means nearly freestream
conditions, far from our channel aspect ratios. Yet one can observe how the results
for AR = 1/16 get closer to the results of [76]; as a matter of fact, simulations made
with even wider channels should confirm a much closer agreement. For the present
discussion, however, it is more informative to focus our attention onto bigger values
of AR. The ZH/ZH and ZH/CBC trend lines do not show significant differences
in from Fig. 4.12. In Fig. 4.12a, the CBC/CBC combination renders slight L,/h
differences, with respect to either ZH/ZH or ZH/CBC, specially at low Reynolds
numbers. In addition, in Fig. 4.12b, the biggest differences between CBC/CBC and
the inlet-reflective combinations are detected for 8 = 0° when the Reynolds number is
increased. In this case, the non-reflecting nature of the CBC has a greater impact on
L, /h if applied at the inlet than at the outlet. This layout of the obstacle walls might
be an important factor to take into account due to the fact that the obstacle and channel
walls are parallel. The pressure waves that propagate in the y-direction between the
channel walls and the obstacle will bounce repeatedly until viscous dissipation damps
them. As an example, we can observe in Fig. 4.12b that the trends of CBC/CBC with
the angle of incidence equal to zero significantly differ from those with reflecting BC
at the inlet beyond Re = 80. On top of that, while the relative difference between the
values of CBC/CBC and the values reported in [76] remains similar for all the different
blockages, the ZH/CBC and ZH/ZH values show an increasing relative difference with
the Reynolds number if they are compared with the reference values. We infer that
this reported divergence of recirculation length at high Reynolds numbers (Re = 80)
and for 6 = 0° between reflective and non-reflective BCs at the inlet is a consequence
of the reflection of pressure waves at this particular angle of incidence plus the fact
that it is incremented with less blockage effect. Nevertheless, a deeper study of this

phenomenon should be considered.

4.4.4 Thompson vs LODI CBCs

We now carry out a comparison of the flow variables for two types of characteristic
BCs applied at the outlet: LODI- and Thompson-CBC. The density, x-velocity and
y-velocity are shown respectively in Fig. 4.13. To provide an additional perspective,
the reflecting BC values are also included.

Both reflective boundary conditions (Eq and ZH) set a constant density at the

boundary and, in the case of ZH, the y-velocity vanishes at the outlet. As a result,
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Fig. 4.12 Plot of L, vs Re for a)AR = 1/8, and b)AR = 1/16. for the four different BC
configurations studied, ZH/ZH (red-short-dashed lines), ZH/CBC (blue-long-dashed)
and CBC/CBC (green-dot-dashed lines). Different symbols correspond to the three
angles considered: 6 = 0° (plus and crosses), 15.3° (triangles and inverted triangles)
and 45° (squares and diamonds), and solid black lines refer to the results of [76].
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Fig. 4.13 y-profiles of the averaged macroscopic quantities at the outlet for Re = 100
and 8 = 0°: density (a), x-velocity (b) and y-velocity components (c).

the macroscopic quantities display a discontinuity at the outlet. That is why, in order
to compare relevant information from the four different BC scenarios, the y-profiles
shown in Fig. 4.13 are not for the boundary nodes (the last column of the domain),
but for the previous column. The y-profile of the cycle-averaged density at the outlet
is shown in Fig. 4.13a, where three facts are worth a comment. Firstly, the density
profiles of the non-reflecting boundary conditions (LODI and Thompson) oscillate
along the y-section, while the ZH and Equilibrium BCs show a constant density at the
outlet. In addition, the LODI-CBC density values are visibly shifted downwards about
0.35-0.20% from the reference density at p = 1. Remarkably, the Thompson-CBC
density values fall much closer to the reference density.

The cycle-averaged profiles of the x-velocity u, are shown in Fig. 4.13b. At
exception of the LODI, which reaches a more parabolic-like profile, the shape of the
u, profiles is not fully parabolic in the rest of the cases studied.

The net flow along the y-direction tends to zero as the antisymmetry of all the
profiles shown in Fig. 4.13c indicates but, unlike the density and the x-velocity, the
solution for the LODI-CBC cycle-averaged y-velocity (uy) profile differs significantly
from the rest. The Thompson u, profile shows small averaged u, velocities, which
are similar to those obtained with the two reflective boundary conditions. The LODI
values instead, differ from all the rest, showing spurious contributions to the averaged
uy throughout the entire profile.

In order to understand the extent and nature of these irregular LODI values in
Fig. 4.13c, a zoomed view of the cycle-averaged u, contours for LODI and Thompson

approaches is illustrated in Fig. 4.14. The coloured shades are scaled to a maximum
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value of 0.001 in LB units, which is two orders of magnitude below the maximum
value of u, in the whole domain. In other words, the scale is magnified in order to
detect minimal perturbations. Additionally, the velocity vector field is zoomed and
included as an inset. Fig. 4.14b shows the Thompson solution with barely visible
averaged u, at the outlet, whereas the LODI solution displays the unnatural behaviour
mentioned above: in Fig. 4.14a, artificial u, contributions have their origin at the
boundary, distorting the cycle-averaged velocity field. The zoomed view of the velocity
vectors confirms that the velocities slightly deviate from the x-axis direction, for the
LODI-CBC case.

Note that the CBC method is also a Dirichlet type of BC, with macroscopic values
of density and velocity updated at each timestep. The reduced density values in the
LODI density profile are related to the one-dimensional basis of the LODI equations,
as the y-derivatives are omitted in the LODI-CBC algorithm. The same applies to the
velocity profiles, which show unrealistic behaviour (Fig. 4.13c). The flow structures
that propagate from the obstacle are greatly damped when they reach the outlet,
but the vorticity is still significant and the averaged x-velocity profiles should not
necessarily be parabolic (Fig. 4.13b). Additionally, the averaged outlet y-velocities
should fall close to zero everywhere, but this is not the case for the LODI-CBC results.
It is important then to consider the Thompson CBC treatment and incorporate the
derivatives in the y-direction in problems with spatial structures leaving the boundaries.
Notwithstanding this evidence, the distorted velocity field at the outlet is of a very
local character and its effect on the forces, when the obstacle is far away from the
boundary as in our case, is negligible (the averaged Cp not showing deviations larger
than 0.3% for the range of Re considered).

4.5 Conclusions

Within the framework of the Lattice Boltzmann Method, a comparison of reflective and
non-reflective boundary conditions has been presented by means of a parametric study
of the drag and lift forces and the characteristics of the flow past a square obstacle in a
channel. In addition to this, an analysis focused on Thompson-CBC and LODI-CBC
has been carried out at the outlet.

By applying non-reflective boundary conditions at both inlet and outlet, both
the cycle-averaged drag coefficient and its amplitude oscillations are reduced. This
reduction is more relevant as Re increases.

We have shown that both LODI and Thompson CBC methods are worth to consider

within the low-Reynolds number regime, in problems where objects are immersed in
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(a) LODI-CBC at the outlet

(b) Thompson at the outlet

Fig. 4.14 Cycle-averaged u, at the channel outlet, covering the full section from node
1380 to node 2080 in the x-axis. Re= 100, 6 = 0°, AR — %. Inset: zoomed area of the
velocity vector field from the top highlighted area of the outlet.
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the flow and vortex structures propagate to the outlet boundary. At higher Re, where
viscous effects become less important, the effect of CBC may become even more
determinant, as the trend of the results presented indicates. CBC at the inlet indeed
absorb persistent pressure waves that propagate close to the inlet, specially when the
top/bottom walls of the obstacle are parallel to the walls of the channel.

We have observed remarkable differences when analysing LODI vs Thompson
approaches. While both provide the expected drag and lift forces and remove pressure
wave reflections, the LODI-CBC approach becomes inappropriate when the dimen-
sionality of the flow increases, producing abnormal velocity profiles at the outlet. In
these cases we observe that the Thompson characteristic approach provides a more

accurate flow solution.
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Chapter 5

Platelet modelling

We have described the blood platelets, its function in the coagulation process and the
motivation for the scientific community to numerically simulate such phenomenon in
Sec. 2.5.2. In the same section, we additionally proposed a margination model with a
drift term to reproduce the platelet margination by means of a drift force term added to
the evolution equation that led to Eq. 2.81.

Furthermore, we briefly explained the thrombosis phenomenon, the key role that
platelets play, and proposed a surface reaction model at Secs. 2.5.3 and 3.2.1. The
proposed equation (see Eq. 3.10) can be used to develop a preliminary platelet binding
model. Once this step is validated, we could implement a computational region
algorithm to enable the thrombus growth in the simulation (see Fig. 2.7). Hence, it is
of prime importance to first validate the reaction rates in order to correctly reproduce a
hypothetical thrombus growth.

In this section, the margination drift term described in Chapter 2 and the platelet
binding model with a surface reaction described in Secs. 2.5.3 and 3.2.1 are examined.
We will first expose the used physical model and subsequently analyse the features of
the described tools on the former chapters. We will finally show the obtained outputs
and compare them with the available literature.

5.1 Numerical and physical details

The physical domain consists of a closed channel where we consider a developed
Poiseuille flow (Eq. 4.1) at the inlet and a fixed pressure condition at the outlet.
Both conditions are applied with the aid of ZH-BC Eq. 3.20. The top and bottom
walls are no-slip using the mid-way BB. The grid considered is uniform, 100 x 500.
Typical lumen diameters for coronary arteries are ranged from 0.5 to Smm in normal

men [17]. We choose a physical diameter of 0.003m and a length of 0.015m for
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Fig. 5.1 The upper figure shows the flow conditions, with a developed flow at the inlet
and a pressure condition at the outlet, both using ZH approach. The bottom figure
shows the passive scalar initial condition. At the inlet, we set the hyperbolic platelet
concentration profile from Eq. 2.80, and at the outlet, the unknown distributions are
calculated with an equilibrium boundary condition.

this study. We as well set a common blood flow rate for this artery diameter [38].
Table 5.1 gathers the used parameters for the simulations. For this study, the diffusivity
is artificially increased in order to speed up the simulations and to avoid possible
numerical instabilities (also explained in Sec. 2.5).

The inlet concentration profile is set as in Eq. 2.80 with a Dirichlet condition
(Eq. 3.8). Figure 5.1 depicts the hydrodynamic (upper figure) and the passive scalar

(bottom figure) models used with this domain.

5.2 Validation of the passive scalar LBM

5.2.1 Validation of the advection-diffusion equation

We first validate the ADE with the following set up: a square domain L, = L, = 2m with

periodic boundaries and a fixed velocity of u, = u, = 0.8m/s. An initial concentration
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Table 5.1 Constants used in the model

Nomenclature Value Description

a 4um Particle scale collisions of the order of a RBC

k 0.15 Constant for the enhanced diffusion model

Dy, 3.1 x 1071* m2/s Thermal diffusion coefficient

D, 1.55 x 1077 m?/s Arbitrary thermal diffusion coefficient

D, 3.04 x 1072 m?/s Enhanced thermal diffusion of coefficient

B -7.87 Constant for the tanh function used in the platelet profile
Op 0.77 Constant for the tanh function used in the platelet profile
ki, 1.38 x 10723 m? kg/s? Boltzmann constant

ks 10_3, 1074 binding constant rates used at Sec. 5.2.2 and Sec. 5.4, respectively [38].
p 1025kg/m?3 plasma density

u 0.0038kg/m/s dynamic viscosity of blood at high shear rates

R 0.0015m radius of the channel

Ly 0.015m Length of the channel

Or 0.6L, Length of the reacting surface

Qo 2ml/s Blood flow at the channel

Rey 1.9um Equivalent radius of a sphere of a platelet

T 310K Temperature

field is applied as a Gaussian-like pulse [51] with the following form

2

_ 2
Cola.va) = exp <_(xd xd0)”  (Ya—yao) > 7 5.0)
Dd,x Dd7y

where Eq. 5.1 is non-dimensionalised. Both x and y indexes are x4,y € [0,2], the
initial position (x4,0,v4,0) = (0.5,0.5) and D4 , and D ,, are the diffusion coefficients
in each axis direction. We define the diffusion to be isotropic with D; = 0.01. We run
a simulation up to time # = 1.25s and we compare the results with the analytic solution

for this problem,

1 ) b (_ (xg — tgata —xa0)*  (Va — Uayta —yd,0)2>

1+4td B

C ty) =
(xd»)’d, d) ( Dx(1+4td) Dy<1+4td)

(5.2)
Equation 5.2 is the two-dimensional analytic solution of a Gaussian pulse with certain
diffusion coefficients D,, Dy, advected with a certain velocity (u,,u,) [S1].

We use uniform grids with 80 x 80 and 120 x 120 nodes. The obtained results are
displayed in Fig. 5.2 and show a combination of the different meshes and relaxation
time schemes (MRT and SRT) used for the validation. In Fig. 5.2b we can appreciate
the second norm error for the considered parameters. We can observe that there is
a significant reduction of the error when MRT is used, and these discrepancies are
further reduced by refining the mesh 1.5 times. With this validation, we decided to use
the MRT scheme for the simulation.
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(b) Local norm errors from Fig. 5.2a.

Fig. 5.2 Plot concentration profiles and its local norm errors in the region x = [1,2]
and y = 1.5. Numerical tests include: N80 with SRT, N80 with MRT, N120 with MRT.
a) Concentration profiles. Black dotted lines are the analytic solution profiles, red line
is the SRT profile with N80 grid, blue line is the MRT profile with N80 grid and the
green line is the MRT concentration profile with 1.5 times refined grid. b) Local norm

error of Fig. 5.2a values. Red is SRT errors, blue is MRT errors and green is MRT

with a grid 1.5 times refined
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5.2.2 Validation of the reaction kinetics model

We consider a preliminary kinetic reaction in the bulk fluid as a sink term in the ADE
equation that governs the passive scalar dynamics.

We consider a first order reaction rate of k,; = 10~3s~!. This parameter is also
considered at [38]. The total time for the reaction is 10* seconds, which is arbitrarily
set to give enough reaction time to completely remove the reactant with concentration
C. The analytic formulation can be straightforwardly derived from the following

expression,
C(t) = e Fnl, (5.3)

Figure 5.3a shows the agreement of our simulations with the analytic results, which
is enhanced with a lower 6¢ as seen in Fig. 5.3b, as the norm errors are sensibly

decreased.

5.3 Margination parameter of the drift term

In this section we aim at determining the value of the optimal margination parameter
M, (described in Sec. 2.5.2) for the model described in Sec. 5.1. The value of M, is
directly related to the magnitude of the drift force in Eq.2.79. For this purpose, we
do not implement any reaction at the boundary. The optimal M,; is determined by
trying a set of different values within a range, and selecting the one which 1) keeps
the near-wall concentration constant and 2) closest to the values of the potential field
concentration taken as a reference. The range of reported values is M., € [8,11],
which corresponds to the range of better platelet cross-sectional concentration profiles,
according to the two aforementioned criteria. Figure 5.4 shows the evolution of the
near-wall platelet concentration along the channel. In this figure, we can observe the
importance of the drift term  for the specified values of the M., parameter. The black
dashed line corresponds to the reference value of the concentration on the wall, which
should keep constant along the channel, while the black line line corresponds to the
wall concentration without the margination term implemented. A general drop of the
concentration is observed near the inlet, and a similar phenomenon occurs at the outlet.
This phenomenon is due to the fact that the boundary conditions do not include the
drift term, combined with the effect of a relatively large material diffusivity (see data
in Table 5.1). Thus, the vertical g;s streaming from the limiting wall-nodes of the
domain make a noticeable impact on the inner nodes. These two factors end up in an
initial decay of the concentration near the wall. The contribution of the drift term does
not fully revert this first diffusive flux, but still, if a high enough M, is chosen, the

wall concentration gradually recovers.
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Fig. 5.3 Test case. Concentration evolution in time. a) Concentration versus time.
Black dotted line is the analytic solution, red line is the done with a 6t = 400—1 and
blue line with a 6t = 8000—1. b) Local norm error of Fig. 5.3a values. Red line are

the errors using the 8¢ = 400~!, blue line are the errors using the 5t = 8000—1
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Fig. 5.4 Platelet concentration on the wall as a function of the x; coordinate along the
channel. Different margination parameters were used, M.; = [8.0,9.0,9.5,9.7,10, 11].

When M.; = 8 (red line), the diffusion flux close to the wall is clearly larger than
the drift term, as the wall concentration keeps diminishing along the channel. The
same happens but at a less extent when M.; = 9. Nonetheless, the wall concentration
is kept fairly constant for x; € [0.4,0.9] for M.; = 9.5. As the margination parameter
is increased beyond M, > 9.7, the concentration raises after the initial decay at the
inlet, without reaching a constant value along the studied channel. Nevertheless, the
trend of the margination values of M_.; > 9.7 suggests that the concentration would
eventually achieve an constant asymptotic concentration value with a longer channel.
Specifically, when M.; = 10.0, we can foresee that the concentration at the wall
would reach an asymptotic value that would be much closer to the analytic platelet
concentration profile than the asymptotic value obtained at M.; > 9.7. However, we
only considered this particular channel length to preserve a fine mesh with a good
computational performance. Additionally, in a more advanced scenario, it would be
inefficient to simulate a very long channel upstream just to reach a perfect platelet
profile at the moment that the flow crosses the active area of study (e.g.,a hypothetical
surface reaction or an obstacle).

We now take a closer look at the cross-sectional distribution of the concentration
for different longitudinal coordinates. The three plots in Fig. 5.5 show the zoom of the
cross-sectional concentration for the values of the margination parameter that present

a better behaviour near the wall (according to our previously established criteria)
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M4 =19.0,9.5,9.7]. We can see that all the plotted concentration profiles follow the
potential field values C,, (C,4 values correspond the initial condition, when x; = 0)
with a reasonable agreement everywhere with the exception of the wall, where the
desired concentration specified by the potential field is not reached. This phenomenon
occurs due to the fact that the concentration gradients on the wall are extreme for this
Ceq profile.

We additionally observe in Fig. 5.5b that M.; = 9.5 is the optimal value because
it best keeps the concentration at the walls constant in the desired channel region
(x4 €0.4,0.8)). In fact, the relative difference between the concentration at x; = 0.4
and x; = 0.8 is below 0.05%. This constant longitudinal concentration is indeed a
critical attribute to take into account if we want the model to be steady. On the other
hand, if the margination parameter is increased, for M.; = 9.7 a progressive increase
of the wall concentration along the channel is obtained, (Fig. 5.5c, whereas the values
of the wall concentration are closer to the potential field values C,, than those obtained
with M4 =9.5.

One possible simple solution to overcome the concentration decay near the walls
observed in Fig. 5.4 would be to supply the initial concentration profile with a higher
concentration at the wall. This procedure could be applied by taking the results from
Fig.5.5 as a feedback to correct the concentration decay on the walls, similarly as it
was done for the velocity correction used in Sec. 4.2.4. Nevertheless, more research
should be done on this feature with different longitudes of the channel to improve the
results and to optimise the M., parameter. Additionally, the algorithm should be also

improved in order to minimise the first early decay.

5.4 Reaction on a surface

We enable a surface sink reaction in the cent er of the channel wall with a total length
of x4 € [0.2,0.8], where we apply the reaction using Eq. 3.10. The numerical model
is the same as in Sec. 5.3. Initially, we set for the whole channel the same inlet
concentration (Cp = 1), and we fix a developed velocity field. We do not activate
neither the thrombosis computational region algorithm (illustrated in Fig. 2.7) nor
the enhanced diffusion model (See 2.5.1) as we seek to firstly validate the surface
reaction model. Therefore, we set a constant diffusivity for the passive scalar that is
high enough to let the simulation run smoothly whether the simulation is coupled with
the hydrodynamic model or not (the problem of coupling both the hydrodynamic and
material transport models has been explained in Sec. 2.5). At the same time, we keep

a high Péclet number in the channel (see Table 5.1 for the rest of the parameters used).



UNIVERSITAT ROVIRA I VIRGILI
REVIEW OF BOUNDARY CONDITIONS AND INVESTIGATION TOWARDS THE DEVELOPMENT OF A GROWTH MODEL: A LATTICE

BOLTZMANN METHOD APPROACH
Albert Puig Aranega

5.4 Reaction on a surface 83

rrrrrrrrrrrrrrrrrrrrrrrrrrrr — X4=0
D otxg=04
D% xg=06
C [ x3=0.8
o ‘ x4 =0.9
.a Xq=1
=
C
()
(&)
C N
O ™S
Oo025¢ T
\\\\kﬁkumghﬁ
0 ‘
0 0.05 0.1
Yd
(a)M.; =9.0.

Concentration

0 0.05 0.1
Yd
(b) M,y = 9.5.

Concentration

0 0.05 0.1
Ydq
(©) Moy =9.7.

Fig. 5.5 Cross-sectional concentration profiles at different longitudinal levels of the
channel. a) M., =9.0b)M.;=9.5¢c) M.y, =9.7
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conc_Platelet

Fig. 5.6 Test case for a Schmidt number of 23, Péclet number of around 446 (based on
the shear rate and reacting surface) and a constant reaction rate k,; = 10~*m /s. This is
a qualitative image to show the steady mass transport boundary layer thickness.

We would like to emphasise that this reaction model is not considering the platelet
deposition step. Instead, we consider a plain first order reaction as in Sec. 5.2.2, with
a kinetic reaction constant for the binding platelets of K,; = 10*4m/ s [38] that has
also been used for the platelet aggregation step. To speed up the simulation to its
steady state, we have reduced the number of computational nodes to a half by applying
a symmetric BC (see Eq. 3.7) at the centerline of the channel. Fig. 5.6 shows the
concentration field in the steady state. One can see from Fig. 5.6 that around the Péclet
number of 450, the boundary layer is very small if compared with the hydrodynamic
boundary layer, where the latter covers the whole radius of the channel in a laminar
developed flow. This fact lets us assume a constant shear rate in the area covered by
the mass transport boundary layer. We therefore change the hydrodynamic field of the
simulations from a Poiseuille flow to a Couette flow. With this assumption, we use
the wall shear rate (calculated as explained in Sec. 2.3.3) as an input for the constant
shear rate of the Couette flow. With this transformation of the physical model, we
can compare the results of the Sherwood number obtained from our simulations with
the analytic ones, Eq. 2.84. Additionally, the physical domain of the simulation can
be significantly reduced with this transformation. Fig. 5.7 shows the discrepancies
between the analytic and numerical solution of the Sherwood number characterising
the mass transport at the reactive wall, using different mesh refinements. A general
good agreement is observed. Such agreement is even more explicit as the grid density
is increased. In order to speed up the simulations with the higher grid resolutions, the
domain size was gradually divided by lowering the height. This procedure has been
applied taking into account that the mass transport boundary layer does not reach the
upper boundary of the considered domain (see the sketch of this reduction procedure
in Fig. 5.8).

The averaged relative errors of the Sherwood number with respect to the analytic
values are displayed in Table 5.2. Table 5.2 confirms that the relative error of the

averaged Sherwood number starts to converge on the finer N = [150,200] meshes,
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Fig. 5.7 Local Sherwood number on the reactive wall of the channel, along the
channel length. Four different mesh refinements and the theoretical solution (Eq. 2.84,
black line) are shown.

Table 5.2 Relative errors of the averaged Sh with different mesh refinements.

Number nodes of radius N Relative error (%)

50 1.367
100 0.8825
150 0.721
200 0.638

which means that the numerical solution can be assumed to be mesh independent for
N =200 with a relative error below 0.65%.

To put these values in the context of the application, the shear rate used for the
simulations is of approximately 380s~'. This shear rate, used in the Couette flow
configuration was actually the wall shear rate of the developed flow in the channel,
simulated using the parameters of Table 5.1. The magnitude of this shear rate is
sensibly higher than the shear rates typical of a healthy coronary artery [60]. In fact,
to extrapolate our model to an ill artery, such as a stenosed artery or an eventual
thrombosis, one must take into account that the shear rates may experiment increments
from one to three orders of magnitude [38]. We also have to take into account that the
diffusivity of the fluid used for these simulations (Table 5.1) was trivially set in order
to avoid possible numerical instabilities, but yet it was low enough to be in the range
of high Péclet and Schmidt numbers (Reg fScl/ 2 ~ 445), which enable the assumption

made in Sec. 2.5.3 and 3.2.1 regarding a very thin mass transport boundary layer.
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Fig. 5.8 Sketch of the domain reduction. The zoomed inset from the first image
displays the wall shear rate, which is the one used for the Couette flow simulation. At
the bottom image we describe the dimensions of the simulated physical domain.

As an example of the narrower case of an ill artery, we set up another Couette
flow simulation using the enhanced diffusion model (Eq. 2.78) to calculate the real
diffusion of the colloidal mixture. As this enhanced diffusion model is shear rate-
dependent, the diffusion is kept constant in the whole domain. In order to keep the
relaxation time for the concentration within appropriate values, the mesh is refined
up to N = 400. Additionally, the shear rate is increased by ten times (7 = 3800~!) in
order to mimic the same shear rate that would be found in a mildly stenosed artery. To
speed up the simulation, the real domain has been reduced eight times with respect
to the radius (see Fig. 5.8), so only the closest part to the wall is simulated. By using
the enhanced diffusion model (with an homogeneous constant hematocrit of ¢ = 0.45
for Eq. 2.78), and considering a shear rate of 3800~ I the Schmidt number becomes
~ 1220. This value represents a value of the diffusivity about 53 times higher than the
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Fig. 5.9 Local Sherwood number computed on the active portion of the wall and its
analytic solution Eq. 2.84. The Schmidt number is 1220, the Péclet number, based on
the shear rate and the reacting surface is around 10000, and the reaction rate is
constant, k,; = 10~%m/s.

previous value set arbitrarily, meaning that the mass transport boundary layer becomes
much thinner, which at the same time needs a much higher grid resolution to simulate
it. Figure 5.9 shows the increase of the Sherwood number by nearly two orders of
magnitude with respect to the previous setup, Fig. 5.7. This is due to the fact that the
diffusion coefficient is inversely proportional to the Damkhdler number, which at the
same time denotes the reaction rate over the diffusion rate. Additionally, the shear
rate increment also enhances the flow advection, and thus, the mass transfer rate at the
wall is favoured with higher shear rates. The relative error for the averaged Sherwood
number does not exceed the 0.93%. The accuracy in this latter case is remarkable
as we are pushing the simulation to the relaxation time limits (7 ~ 0.5003) and we
have not increased the mesh resolution proportionally to the boundary layer thickness
reduction (Rengcl/2 ~ 10%).

One has to note that, from this latter conditions of the model, we were able to
significantly reduce the amount of physical domain space. This can only be done
under the Couette flow assumption plus the fact that we should have enough vertical
space to correctly develop the mass transport boundary layer. On the other hand, if
we keep the enhanced diffusion model on Eq. 2.78, we will not be able to reduce the
boundary layer any further, and thus we will not be able to crop the physical domain
from this latter point. The reason behind this issue is the dual dependence of the mass
transport boundary layer with both the shear rate and the diffusion coefficient. For

the considered conditions, Pallares and Grau [57] propose an estimation of the mass
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Fig. 5.10 Output from a growth simulation with the computational
region algorithm. Arbitrary simulation with two divided contours: upper
half shows a concentration contour with blue to red (low to high) colour

code; the lower half shows the different computational regions. The

yellow coloured region is the formed thrombus. Cyan coloured part is
the stenosed region. Red surface is the liquid phase attached to a solid
wall. Green surface is the solid wall attached to a liquid phase.

transport boundary layer thickness (Eq. 5.4). We can see that if we increase the shear
rate, automatically, the diffusion will be proportionally increased by the same amount
(the thermal diffusion on Eq. 2.78 is negligible).

1
5fD 3
O ~ (T) 5.4

5.5 Computational Region Algorithm

We perform a simulation test with the computational region algorithm explained at
Sec. 2.5.3 to prove that the algorithm works properly. Figure 2.7 displays a preliminary
simulation output that shows the growth effect after applying the computational region
algorithm with the reaction surface. The output is divided into two separated variable
contours. The upper half of the figure displays the concentration contour and the
lower half is the region-types contour. Both hydrodynamic and reaction-transport
variables are arbitrarily set for this test which its main purpose is to verify that the
growth occurs. Additionally, this particular domain has been reduced to the half with
a symmetry at the center of the x-axis artery with a mild stenosis at the central part
of wall the cylinder. The stenosis domain is represented with the cyan coloured part
and it is essentially a no-slip wall. The yellow coloured region above the stenosis is
the thrombus region that acts as a solid wall and has been formed from the reacted

platelets that were close to the surface of the blood vessel or other thrombus.

From Fig. 2.7 one can infer that the computational region works and only will need

to be correctly calibrated.
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5.6 Conclusions and future work

We presented a work towards the development of an integral growth model in the
framework of the Lattice Boltzmann Method. We propose a set of tools and their
corresponding validations which include: a passive scalar particle distribution function
model, a shear rate-dependent diffusion coefficient model for the species, a proposal
for a vertical force term to mimic the margination phenomenon that the platelets
experiment on the arteries which is based on a phenomenological model and a steady
state validation of a wall surface reaction which could be the initial step to model a
thrombosis event.

We have successfully simulated, in a LBM environment, the concentration distribu-
tion and the wall mass transfer of a two dimensional channel that has similar physical,
hydrodynamic and platelet transport conditions than a human coronary artery.

We have contributed to a more accurate and realistic LBM model for platelet
distribution based on the passive scalar approach. As a novelty, we have proposed a
method to introduce a lateral drift term for the LBM based in Bark’s drift term [38].
This model is not fully satisfactory and presents some limitations. For example, the
model requires a predefined potential field, and presents an early wall concentration
decay that is gradually corrected, away from the inlet and the outlet. Despite its
limitations and with an appropriate conditioning it can maintain a constant peak
concentration near the wall even with high concentration gradients. Such gradients
would rapidly disperse the near wall-excess platelet concentration towards the uniform
solution without the drift term.

The presented results of this part of the thesis, although preliminary, are relevant
in numerous fields and can digress from the original thrombus growth model idea
of this thesis. If we focus on the validated first order reaction, we can find many
medical or industrial applications and other processes that can be simulated with a
surface reaction in the LBM hydrodynamic regime. For instance, one could model the
electrochemical reactions on the surface of an electrode, a heterogeneous reaction on a
catalytic surface or even one can calculate the exchange of chemicals in a biological
surface. The versatility of the presented work can be reoriented to the development
or improvement of microfluidic devices, such as the surface-based biosensors [63].
Additionally, this surface reaction model can be directly used to test and predict the
deposition rate of platelets in other proposed phenomenological models [58].

However, there is still work to do to fulfil the target of developing a growth model.
Firstly, we need to improve the performance of the drift term for platelets. From
thereon, the model is prepared to computationally implement the clogging/thrombosis

process (see Sec. 2.5.3). The model will be no longer reducible (as we have done in
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Sec. 5.4) due to the fact that the hydrodynamic field will change in time with the shape
of the thrombus/wall, which at the same time will change both the mass transport and
hydrodynamic conditions. The full model, supplied with the appropriate parameter
values, will demand a significant amount of computational resources. That is why the
following step has to be writing the corresponding parallel code, preferably in GPU.
With an effective parallel computing tool, enabling a local refining feature near
the mass transport layer, and a fine optimisation of the code, we could have a simple
and effective growth model. A long-term goal would be to carry out a parametric
study on the dependence of the thrombus production rates as a function of parameters
like the shear rate, the kinetic reaction constant rate, the physical degree of stenosis,
margination term parameter, etc. Other future ideas include the comparison of the
obtained numerical growth rates with other different computational models, such as in

Bark et al. [38], or even with in vitro [40] or ex vivo [4, 5] experiments.
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Chapter 6
Conclusions and remarks

We will collect the most important conclusions of the thesis and provide some personal

remarks in this chapter.

We have developed a code able to reproduce the Navier-Stokes and the advection-
diffusion-reaction governing equations under isothermal flow conditions through the

lattice Boltzmann method. The code has been applied to study two different topics.

The first part of the study was devoted to the understanding of the impact of
different combinations of inlet/outlet boundary conditions on the forces over a blunt
body with different orientations with respect to the main flow direction. The analysis
was completed with a full parametric study on different domain dimensions and
different Reynolds numbers. The results of using reflective or non-reflective boundary
conditions have been reported, highlighting the significant differences shown by
the forces exerted on the obstacle. As a novelty (even though it is an ill-posed
condition), we have set a non-reflective boundary condition at the inlet by means of a
feedback-type algorithm. With this feature, the inlet velocity profile showed minimal
deviations from the analytic parabolic flow. We concluded this part of the work by
comparing two different non-reflective boundary condition: Thompson BC and LODI
BC. Results of this analysis were focused on the outlet of the domain and showed that
the Thompson BC provides a better numerical solution when the flow presents a strong

two-dimensional movement —for example, this is observed when vortexes are present.

In the second part of the thesis we explored the advantages and limits of the
passive scalar modelling of platelets in hemodynamics using the LBM. We ran LBM
simulations in a domain that mimics a human coronary artery. The blood flow was
simplified by considering the platelets as a continuum. We developed a novel way (and
still improvable) to reproduce the platelet migration effect by considering a potential
field used in other simulations performed with other CFD methods. We additionally

validated both solute transport and surface reaction. The combination of all these



UNIVERSITAT ROVIRA I VIRGILIT

REVIEW OF BOUNDARY CONDITIONS AND INVESTIGATION TOWARDS THE DEVELOPMENT OF A GROWTH MODEL: A LATTICE
BOLTZMANN METHOD APPROACH

Albert Puig Aranega

92 Conclusions and remarks

aforementioned implementations with other sophistications reported in Chapter 2 settle
the seed to develop an integral growth model in LBM that might be considered as a
tool to model thrombosis and other hemodynamics phenomena.

To address the initial objective of the thesis, we derived and presented the fun-
damental LBM equations and described its origins. Additionally, we studied two
topics that are currently under debate: the analysis of the boundary conditions and
hemodynamics applications. Both studies were performed within the LBM framework

with the aim to bring an added value to their respective topics.
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