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Resum 
Els grafs, són un tipus de dades que ens permet emmagatzemar la 

informació estructural d’un objecte conferint-nos la possibilitat de 

representar patrons que degut a la seva pròpia naturalesa requereixen 

d’aquesta particularitat, ja siguin imatges, estructures químiques o 

biològiques, xarxes, patrons biomètrics...  

Des de fa més de 30 anys, la recerca enfocada a com representar objectes 

mitjançant grafs i el posterior còmput de la distància entre aquestes 

representacions, ha ocupat el treball de molts investigadors. La definició 

d’un model adequat per mesurar la dissimilitud entre dues d’aquestes 

representacions, és una qüestió clau en el camp del reconeixement de 

patrons. A aquest problema se l’ha anomenat Error-Tolerant 

GraphMatching. Una de les aproximacions més populars per tal de trobar-

hi una solució ha estat la dist{ncia d’edició entre grafs (Graph Edit 

Distance), que consisteix a estimar la distància a partir de la suma del 

cost requerit per una sèrie d’operacions d’edició que transformen el graf 

objectiu amb el que estem intentant comparar.  

A la primera part d’aquesta tesi es proposen diferents mètriques per 

calcular la dissimilitud entre dues subestructures locals corresponents a 

dos dels nodes dels grafs que estem comparant i es demostra com 

cadascuna d’aquestes  mètriques afecta a la dist{ncia estimada resultant, 

en termes de precisió i temps de còmput requerit. 

Posteriorment, es defineixen una sèrie d’estratègies actives 

d’aprenentatge per tal d’afegir interactivitat al problema. Aquestes 

estratègies proposen a l’usuari, d’un en un, els aparellaments més 

dubtosos entre nodes de la solució trobada automàticament per tal de 

que hi faci les correccions oportunes, així, i després d’algunes 

interaccions el sistema acaba trobant la correspondència entre els grafs 

perfecta d’acord amb el criteri de l’usuari. 

Per altra banda, el problema de la dist{ncia d’edició requereix  que siguin 

definits un conjunt de paràmetres per assignar un cost a cadascuna de les 

operacions d’edició i poder calcular la dist{ncia final. La forma més 

habitual de parametrització ha estat a través d’un procés manual de 

prova i error sobre cada domini de dades amb el que es treballa. En 
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aquesta tesi es proposa un model per tal d’aprendre aquests costos de 

forma autom{tica a partir d’un conjunt de parelles de grafs i la 

correspondència entre els seus nodes, tal que les correspondències 

automàtiques entre els grafs calculades amb els paràmetres apresos 

s’aproximin a les desitjades. 

Deixant el problema de la dist{ncia d’edició de grafs, en aquesta tesi 

també es presenta un model basat amb metric-trees de prototips de 

classes de grafs per emmagatzemar col·leccions d’ aquests. Utilitzant la ja 

coneguda estratègia d'agrupar les dades que anem guardant de forma 

intel·ligent per no haver d’explorar totes les instàncies que tenim quan 

volem fer una cerca, però afegint el concepte de prototip com a estructura 

intermèdia. 

Finalment, proposem portar el concepte d’interactivitat a un altre domini, 

el de la relació de punts entre dues imatges, per poder millorar la precisió 

en el càlcul de la posició correlativa entre diferents robots que pertanyen 

a una mateixa flota que treballa de forma cooperativa.  
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Abstract 
Graphs are data types that can store structural information of objects and 

are commonly used to represent patterns that because of its nature 

require this peculiarity, as images, chemical or biological structures, 

networks, biometric patterns... 

For more than 30 years, researchers have been focused on how to 

represent objects through graphs and how to compute the distance 

between them. The definition of an adequate model for measure the 

dissimilarity between these representations is a key issue in pattern 

recognition. This is the Error-Tolerant Graph Matching problem. One of 

the most popular approaches in order to find a solution to this problem is 

the Graph Edit Distance, which estimates the distance between a pair of 

graph computing the sum of cost of different edit operations that 

transform one graph into another. 

The first part of this thesis presents different metrics to estimate 

dissimilarity between local substructures of two nodes. We demonstrate 

how metrics directly affect the performance of Graph Edit Distance in 

terms of computational cost and classification accuracy. 

Next, we define some active learning strategies adding interactivity to the 

Error-Tolerant Graph Matching. These strategies propose the most 

uncertain mappings between nodes automatically found in a complete 

correspondence set between two graphs and the user imposes 

corrections (or not) over this mappings. We demonstrate how after some 

interactions the system finds the perfect graphs correspondence 

according to the user criteria. 

On the other hand, Graph Edit Distance model requires configuring a set 

of parameters to assign an appropriate penalization cost to each edit 

operation. The most common way to fix these parameters is through a 

manual process of trial and error over each data domain. We propose a 

new model to learn these costs automatically. 

This thesis also presents a model based on metric-trees of Graph-Class 

Prototypes to store large collections of graphs. The proposed model is 

based on smartly grouping the data in a database. 
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Finally, we propose to bring the interactivity to a different domain, the 

problem of matching points between two images in order to improve the 

accuracy calculating the relative position between different robots of a 

fleet working cooperatively. 
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1.1 Graphs and Pattern Recognition 

Graphs are defined by a set of individual components (nodes) and structural 

relations between them (edges)1, offering a convenient way to formally 

model objects or patterns which are composed of complex subparts 

including the relations that might exist between these subparts. Attributed 

graphs are graphs in which some attributes are added on nodes and edges to 

represent local information or characterisation, becoming more relevant in a 

variety of applications, including machine learning [1], cheminformatics [2], 

bioinformatics [3], data mining [4], and many others. More precisely, in 

pattern recognition and computer vision, attributed graphs have been used 

to represent structural objects that have to be identified or classified. For 

instance, graphs are successfully applied in representation of 2D or 3D 

objects, handwritten characters, networks, proteins, fingerprints, and so on 

[5]. Note that, to generate graphs, the pattern recognition process has to 

extract them from the objects. This is not a trivial task since the quality of 

graph based representation is crucial for the rest of the process, but this will 

not be the central aim of the thesis. 

 
 

Figure 1.1. Attributed graphs can represent the structural relations between the 
component parts of the objects. 

1.2 Attributed Graphs 

We formally define an attributed graph as a triplet 𝐺 = (𝛴𝜈 , 𝛴𝑒 , 𝛾𝑣), where 

𝛴𝑣 = {𝑣𝑖  | 𝑖 =  1, … , 𝑛} is the set of nodes and 𝛴𝑒 =   𝑒𝑖𝑗  𝑖, 𝑗 ∈ 1, … , 𝑛  is the 

                                                             
1 The terms nodes/vertices and arcs/edges are used indistinctly in the literature. In this thesis will 

always be referred to as nodes and edges. 
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set of undirected and unattributed edges2. Function 𝛾𝑣 : 𝛴𝑣 → 𝛹𝑡  assigns 

attribute values from an arbitrary domain (defined in a metric space of  

𝑡 ∈ ℕ dimentions) to nodes. The order of a graph 𝐺 is equal to the number of 

nodes 𝑛. The number of edges of node 𝑣𝑖  is referred to as 𝐸(𝑣𝑖). Finally, the 

local structure3 of a node 𝑣𝑖  is generically referred as 𝑁𝑣𝑖
 (in Chapter 2 we 

discuss about different local structures). 

1.2.1 Correspondences between graphs 

We define a correspondence between two graphs or simply a 

correspondence, as follows:  

Let 𝐺𝑝 = (𝛴𝑣
𝑝

, 𝛴𝑒
𝑝

, 𝛾𝑣
𝑝

) and 𝐺𝑞 = (𝛴𝑣
𝑞

, 𝛴𝑒
𝑞

, 𝛾𝑣
𝑞

) be two attributed graphs of 

initial order 𝑛 and 𝑚. To allow maximum flexibility in the matching process, 

graphs are extended with null nodes to be of order 𝑛 + 𝑚. We refer to null 

nodes of 𝐺𝑝  and 𝐺𝑞  by 𝛴 𝑣
𝑝

⊆ 𝛴𝑣
𝑝

 and 𝛴 𝑣
𝑞

⊆ 𝛴𝑣
𝑞

 respectively. Let 𝑇 be a set of 

all possible correspondences between two sets 𝛴𝑣
𝑝

 and 𝛴 𝑣
𝑞

. We define the 

non-existent or null edges by 𝛴 𝑒
𝑝

⊆ 𝛴𝑒
𝑝

 and 𝛴 𝑒
𝑞

⊆ 𝛴𝑒
𝑞

. Correspondence 

𝑓𝑝→𝑞 : 𝛴𝑣
𝑝

→ 𝛴𝑣
𝑞

, assigns bijectively one node of 𝐺𝑝  to only one node of 𝐺𝑞 . 

The correspondence between edges is implicitly defined accordingly to the 

correspondence of their terminal nodes. 

1.2.1.1 Correspondences matrix 
A correspondence 𝑓 can be represented mathematically by means of a 

matrix 𝐹 ∈   𝑛 + 𝑚 𝑋 (𝑛 + 𝑚)  where 𝐹𝑖𝑎 ∈  0,1  such that 𝐹𝑖𝑎 = 1 if 

𝑣𝑖
𝑝

→ 𝑣𝑎
𝑞

 and 𝐹𝑖𝑎 = 0 otherwise. Due to the mapping has to be bijective, we 

have that  𝐹𝑖𝑎
𝑛+𝑚
𝑖=1 = 1 and  𝐹𝑖𝑎

𝑛+𝑚
𝑎=1 = 1. 

1.2.1.2 Normalised hamming distance between graphs 

correspondences 
In order to compare two correspondences between nodes, the hamming 

distance (∆𝐻) represents how far a particular correspondence 𝑓 ′  is with 

respect to another one 𝑓 ′′ . 

                                                             
2 In the present thesis we investigate graphs with attributed nodes only. Yet, all of our concepts can 

be extended to graphs with attributed edges. 
3 “Local structure” is also termed “neighbourhood” by some authors. 
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∆𝐻(𝑓 ′ , 𝑓 ′′ ) = 1 −
1

𝑛 + 𝑚
 𝐹𝑖𝑎

′ · 𝐹𝑖𝑎
′′

𝑛+𝑚

𝑖𝑎=1

 (1.1) 

1.3 Error-Tolerant Graph Matching 

The definition of an adequate dissimilarity model between two patterns is 

one of the most basic requirements in pattern recognition. The process of 

finding a distance value and a correspondence between two attributed 

graphs is commonly referred to as Error-Tolerant Graph Matching.  There 

are several Error-Tolerant Graph Matching models available. Spectral 

methods, for instance, constitute an important class of Error-Tolerant Graph 

Matching procedures with a quite long tradition [6, 7, 8, 9, 10]. Graph 

kernels constitute another important family of Error-Tolerant Graph 

Matching procedures and various types of graph kernels emerged during the 

last decade [11, 12, 13, 14, 15]. For an extensive review on these and other 

Error-Tolerant Graph Matching methods developed during the last forty 

years, the reader is referred to [16, 17, 5], but probably the most well known 

model for Error-Tolerant Graph Matching is the Graph Edit Distance. 

1.3.1 Graph Edit Distance 

The Graph Edit Distance dissimilarity model [18, 19] defines a distance 

between two graphs 𝐺𝑝  and 𝐺𝑞   by means of the minimum amount of 

distortion required to transform 𝐺𝑝  and 𝐺𝑞 . To this end, a number of 

distortions or edit operations, consisting of insertion, deletion, and 

substitution of both nodes and local structures are employed. Edit cost 

functions are typically introduced to quantitatively evaluate the level of 

distortion of each individual edit operation. The basic idea of this is to assign 

a cost to the edit operations proportional to the amount of distortion they 

introduce in the underlying graphs. 

A sequence (𝑒1 , … , 𝑒𝑘) of 𝑘 edit operations that transform 𝐺𝑝  completely 

into 𝐺𝑞  is called e𝑑𝑖𝑡 𝑝𝑎𝑡𝑕 𝜆(𝐺𝑝 → 𝐺𝑞)  between 𝐺𝑝  and 𝐺𝑞 . Note that in 

𝑒𝑑𝑖𝑡 𝑝𝑎𝑡𝑕 𝜆(𝐺𝑝 → 𝐺𝑞) each node of 𝐺𝑝  is either deleted or uniquely 

substituted with a node in 𝐺𝑞 , and likewise, each node in 𝐺𝑝   is either 

UNIVERSITAT ROVIRA I VIRGILI 
ACTIVE AND INTERACTIVE LEARNING STRATEGIES FOR ERROR-TOLERANT GRAPH MATCHING 
Xavier Cortés Llosa 



Introduction 

 
 

 5 

inserted or matched with a unique node in 𝐺𝑞 . The same applies for the local 

structures. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. An example of an edit path between two graphs. Green arrows: 
substitutions. Studded: deletions. Dotted: insertions. 

Note that given a local structure is inseparable from its node, an 

𝑒𝑑𝑖𝑡 𝑝𝑎𝑡𝑕 𝜆 𝐺𝑝 → 𝐺𝑞  can be related to an univocal correspondence 𝑓 

between nodes of the graphs. 

Deletion/insertion operations are transformed to assignations in 𝑓 of non-

null nodes of the first/second graph to null nodes of the second/first graph. 

Substitutions simply indicate node-to-node assignations in 𝑓. Using this 

transformation, given two graphs, 𝐺𝑝  and 𝐺𝑞 , and a correspondence 

between their nodes, 𝑓, the graph edit cost is given by: 

𝐸𝑑𝑖𝑡𝐶𝑜𝑠𝑡 𝐺𝑝 , 𝐺𝑞 , 𝑓 =  (1.2) 
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 𝐶𝑣𝑠 𝑣𝑖
𝑝

, 𝑣𝑎
𝑞
 

𝑣𝑖
𝑝
∈𝛴𝑣

𝑝
−𝛴 𝑣

𝑝

𝑣𝑎
𝑞
∈𝛴𝑣

𝑞
−𝛴 𝑣

𝑞

+  𝐶𝑣𝑑 𝑣𝑖
𝑝

, 𝑣𝑎
𝑞
 

𝑣𝑖
𝑝
∈𝛴𝑣

𝑝
−𝛴 𝑣

𝑝

𝑣𝑎
𝑞
∈𝛴 𝑣

𝑞

+ 

  
 

 𝐶𝑣𝑖 𝑣𝑖
𝑝

, 𝑣𝑎
𝑞
 

𝑣𝑖
𝑝
∈𝛴 𝑣

𝑝

𝑣𝑎
𝑞
∈𝛴𝑣

𝑞
−𝛴 𝑣

𝑞

+  𝐶𝑒𝑠 𝑒𝑖𝑗
𝑝

, 𝑒𝑎𝑏
𝑞

 

𝑒𝑖𝑗
𝑝
∈𝛴𝑒

𝑝
−𝛴 𝑒

𝑝

𝑒
𝑎𝑏
𝑞

∈𝛴𝑒
𝑞
−𝛴 𝑒

𝑞

+ 

 

 𝐶𝑒𝑑  𝑒𝑖𝑗
𝑝

, 𝑒𝑎𝑏
𝑞

 

𝑒𝑖𝑗
𝑝
∈𝛴𝑒

𝑝
−𝛴 𝑒

𝑝

𝑒𝑎𝑏
𝑞

∈𝛴 𝑒
𝑞

+  𝐶𝑒𝑖 𝑒𝑖𝑗
𝑝

, 𝑒𝑎𝑏
𝑞

 

𝑒𝑖𝑗
𝑝
∈𝛴 𝑒

𝑝

𝑒𝑎𝑏
𝑞

∈𝛴𝑒
𝑞
−𝛴 𝑒

𝑞

 

Being 𝑓 𝑣𝑖
𝑝
 = 𝑣𝑎

𝑞
 and 𝑓 𝑣𝑗

𝑝
 = 𝑣𝑏

𝑞
 

where 𝐶𝑣𝑠  is the cost of substituting node 𝑣𝑖
𝑝

 of 𝐺𝑝  by node 𝑣𝑎
𝑞

 of 𝐺𝑞 , 𝐶𝑣𝑑  is 

the cost of deleting node 𝑣𝑖
𝑝

 of 𝐺𝑝  and 𝐶𝑣𝑖  is the cost of inserting node 𝑣𝑎
𝑞

 of 

𝐺𝑞 . Equivalently for edges, 𝐶𝑒𝑠  is the cost of substituting edge 𝑒𝑖𝑗
𝑝

 of graph 𝐺𝑝  

by edge 𝑒𝑎𝑏
𝑞

 of 𝐺𝑞 , 𝐶𝑒𝑑  is the cost of assigning edge 𝑒𝑖𝑗
𝑝

 of 𝐺𝑝  to a non-existing 

edge of 𝐺𝑞  and 𝐶𝑒𝑖  is the cost of assigning edge 𝑒𝑎𝑏
𝑞

 of 𝐺𝑞  to a non-existing 

edge of 𝐺𝑝 . The cost of mapping two null nodes or null edges is always zero. 

With these costs, the Graph Edit Distance (𝐺𝐸𝐷) is defined as the minimum 

cost under all possible correspondences 𝑇. 

𝐺𝐸𝐷 𝐺𝑝 , 𝐺𝑞 = min
𝑓∈𝑇

𝐸𝑑𝑖𝑡𝐶𝑜𝑠𝑡 𝐺𝑝 , 𝐺𝑞 , 𝑓   (1.3) 

Finally, the optimal correspondence 𝑓  is the one that obtains the minimum 

cost, 

𝑓 = argmin
𝑓∈𝑇

𝐸𝑑𝑖𝑡𝐶𝑜𝑠𝑡 𝐺𝑝 , 𝐺𝑞 , 𝑓   (1.4) 

Using these definitions, the Graph Edit Distance depends on 𝐶𝑣𝑠 , 𝐶𝑣𝑑 , 𝐶𝑣𝑖 , 𝐶𝑒𝑠 , 

𝐶𝑒𝑑  and 𝐶𝑒𝑖  costs and several definitions of these costs have been published. 

There are two main options to define the costs on substituting nodes and 
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edges, 𝐶𝑣𝑠  and 𝐶𝑒𝑠 . The first one considers cost 𝐶𝑣𝑠 ∈ {0, 𝐾𝑣𝑠} where 

𝐶𝑣𝑠(𝑣𝑖
𝑝

, 𝑣𝑎
𝑞

) = 𝐾𝑣𝑠  if 𝑑𝑖𝑠𝑡(𝑣𝑖
𝑝

, 𝑣𝑎
𝑞

) > Threshold otherwise 𝐶𝑣𝑠 = 0 (similarly 

for 𝐶𝑒𝑠). Function 𝑑𝑖𝑠𝑡 is defined as a distance over the domain of the 

attributes. Specific examples of this cost can be found in [20, 21]. The second 

one corresponds to the case where 𝐶𝑣𝑠(𝑣𝑖
𝑝

, 𝑣𝑎
𝑞

) ∈ ℝ or 𝐶𝑒𝑠(𝑒𝑖𝑗
𝑝

, 𝑒𝑎𝑏
𝑞

) ∈ ℝ. In 

this case, node and edge substitution costs depend on the attributes of the 

nodes and edges that can be weighed as shown in [39] among others. 

Functions 𝐶𝑣𝑑 , 𝐶𝑣𝑖 , 𝐶𝑒𝑑  and 𝐶𝑒𝑖 , are usually defined as a constant, but in some 

cases depend on node or edge attributes [22, 23, 24]. 

1.3.2 Sub-optimal Error-Tolerant Graph Matching 

Computation 

Optimal algorithms for computing the Graph Edit Distance are typically 

based on combinatorial search procedures (such as 𝐴∗ based search 

techniques). These procedures explore the space of all possible mappings of 

the nodes and edges of 𝐺𝑝  to the nodes and edges of 𝐺𝑞  (i.e. the search space 

corresponds to the set of all edit paths 𝜆(𝐺𝑝 → 𝐺𝑞)). Yet, considering 𝑛 

nodes in 𝐺𝑝  and 𝑚 nodes in  𝐺𝑞 , the set of possible edit paths 𝜆(𝐺𝑝 → 𝐺𝑞) 

contains 𝑂(𝑛𝑚 ) edit paths. Therefore, exact Graph Edit Distance 

computation is exponential in the number of nodes of the involved graphs. 

1.3.2.1 Bipartite Graph Matching 
The problem of minimizing the Graph Edit Distance can be reformulated as 

an instance of a Quadratic Assignment Problem (QAP). QAPs belong to the 

most difficult combinatorial optimization problems for which only 

exponential run time algorithms are known to date (QAPs are known to be 

NP-complete). The Bipartite Graph Matching algorithm (BP-GED) [25] is an 

approximation for the Graph Edit Distance that reduces the QAP of graph 

edit distance computation to an instance of a Linear Sum Assignment 

Problem (LSAP). This algorithm first generates a cost matrix C which is 

based on costs of editing local substructures of both graphs. Formally, the 

cost matrix is defined by: 
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𝐶 =  

 
 
 
 
 
 
 
 
 
𝐶1,1 𝐶1,2 … 𝐶1,𝑚 𝐶1,𝜀 ∞ … ∞

𝐶2,1 𝐶2,2 … 𝐶2,𝑚 ∞ 𝐶2,𝜀 … ∞

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
𝐶𝑛,1 𝐶𝑛,2 ⋯ 𝐶𝑛,𝑚 ∞ ∞ … 𝐶𝑛,𝜀

𝐶𝜀,1 ∞ ⋯ ∞ 0 0 ⋯ 0
∞ 𝐶𝜀 ,2 ⋯ ∞ 0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
∞ ∞ ⋯ 𝐶𝜀 ,𝑚 0 0 ⋯ 0  

 
 
 
 
 
 
 
 

 

Where we define 𝐶𝑖,a , 𝐶𝑖,𝜀 ,and 𝐶𝜀,𝑎  according to the following three cases: 

1) If the original nodes 𝑣𝑖
𝑝

∈ 𝛴𝑣
𝑝

 and 𝑣𝑎
𝑞

∈ 𝛴𝑣
𝑞

 are mapped then 

𝐶𝑖,a = 𝛽 · 𝐶𝑣𝑠 +  1 − 𝛽 · 𝐶𝑒𝑠  (1.5) 

where 𝛽 ∈ ]0,1[ is a weighting parameter that controls what is more 

important, the cost of the pure node substitution 𝐶𝑣𝑠  = 𝐶(𝑣𝑖
𝑝

→ 𝑣𝑎
𝑞

) or the 

cost of substituting the local structures 𝐶𝑒𝑠  = 𝐶(𝑁𝑣𝑖
𝑝 → 𝑁𝑣𝑎

𝑞 ) of both nodes. 

𝐶𝑖,a = 𝛽 · 𝐶(𝑣𝑖
𝑝

→ 𝑣𝑎
𝑞

) +  1 − 𝛽 · 𝐶(𝑁𝑣𝑖
𝑝 → 𝑁𝑣𝑎

𝑞 ) (1.6) 

2) If one node 𝑣𝑖
𝑝

∈ 𝛴𝑣
𝑝

 in 𝐺𝑝  is deleted, we have 

𝐶𝑖,𝜀 = 𝛽 · 𝐾𝑣 +  1 − 𝛽 · 𝐶𝑒𝑑  (1.7) 

where  𝛽 ∈ ]0,1[ (as defined above), 𝐾𝑣  refers to a positive constant cost for 

deleting one node and 𝐶𝑒𝑑 = 𝐶(𝑁𝑣𝑖
𝑝 → 𝜀) refers to the cost of deleting the 

complete local structure of 𝑣𝑖
𝑝

. 

𝐶𝑖,𝜀 = 𝛽 · 𝐾𝑣 +  1 − 𝛽 · 𝐶(𝑁𝑣𝑖
𝑝 → 𝜀) (1.8) 

3) If one node 𝑣𝑎
𝑞

∈ 𝛴𝑣
𝑞

 in 𝐺𝑞  is inserted, we finally have (similar to case 
2) 

𝐶𝑖,𝜀 = 𝛽 · 𝐾𝑣 +  1 − 𝛽 · 𝐶𝑒𝑖  (1.9) 

where 𝐶𝑒𝑖 = 𝐶(𝜀 → 𝑁𝑣𝑎
𝑞 ) 
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𝐶𝜀,𝑎 = 𝛽 · 𝐾𝑣 +  1 − 𝛽 · 𝐶(𝜀 → 𝑁𝑣𝑎
𝑞 ) (1.10) 

𝐶(𝑣𝑖
𝑝

→ 𝑣𝑎
𝑞

) is a distance function defined through the node attribute values 

and 𝐾𝑣  gauges the importance of deleting or inserting nodes in the matching 

process.  𝐶𝑖,𝑎  is the cost to substitute the node and its local sub-structure and 

𝐶𝑖,𝜀  and 𝐶𝜀,𝑎  are the costs to delete and insert it, respectively. These costs 

depend on the used local sub-structures. Finally, the weighting parameter 𝛽 

has to be set in a validation or learning process. 

A linear assignment algorithm can be applied on 𝐶 in order to find a 

(optimal) correspondence of nodes and their local structures. A large 

number of solvers for linear sum assignment problems exist [26]. The time 

complexity of the best performing exact algorithms for LSAPs is cubic in the 

size of the problem. 

Any complete assignment of local substructures derived on C can be 

reformulated as an admissible edit path from 𝜆(𝐺𝑝 → 𝐺𝑞). That is, the global 

edge structure from 𝐺𝑝  and 𝐺𝑞  can be edited with respect to the node 

operations captured in the mapping of local substructures (this is due to the 

fact that edit operations on edges always depend on the edit operations 

actually applied on their adjacent nodes). Eventually, the total cost of all edit 

operations (applied on both nodes and edges) can be interpreted as a Graph 

Edit Distance approximation between graphs 𝐺𝑝  and 𝐺𝑞  (termed BP-GED 

from now on). 

The edit path found with this particular procedure considers the structural 

information of the graphs in an isolated way only (singular structures). Yet, 

the derived distance considers the local structure of 𝐺𝑝  and 𝐺𝑞   in a global 

and consistent way and thus the derived distance is in the best case equal to, 

or in general larger than the exact Graph Edit Distance. 

Recently, new approaches which use an approximation rather than an exact 

algorithm to suboptimally solve the LSAP stated on cost matrix C  has been 

proposed in [27, 28]. Moreover, in [29] it is proposed a new cost matrix and 

a different solver to fix the assignment problem. The remaining parts of 

these new approaches are identical with the original Bipartite Graph 

Matching framework. That is, based on the found assignment of local 

substructures an admissible edit path and its corresponding sum of costs is 
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derived. However, as the complexity of this suboptimal assignment 

algorithm decrease and the time complexity of the complete Graph Edit 

Distance approximation is further reduced.  

1.3.2.2 Probabilistic Approach 
Considering that the involved graphs have a degree of disturbance and also 

the exponential complexity of the problem, there are several Error-Tolerant 

Graph Matching algorithms that return a probability matrix to find the best 

correspondence 𝑓 and a distance between two graphs like Probabilistic 

Relaxation [30], Graduated-Assignment [31] and Expectation-Maximisation 

[33]. In fact, the input of these algorithms can be matrices 𝐶𝑣  and 𝐶𝑒  

capturing the assignation costs between nodes and edges of both graphs 

instead of graphs 𝐺𝑝  and 𝐺𝑞 . We represent this matrix by P where each cell 

contains 𝑃 𝑣𝑖
𝑝

, 𝑣𝑎
𝑞
 = 𝑃𝑟𝑜𝑏 𝑓 𝑣𝑖

𝑝
 = 𝑣𝑎

𝑞
 . Thus, given the probability matrix 

P, it is necessary to derive the final correspondence 𝑓 by a discretization 

process. There are several techniques to perform this discretization, e.g. 

[69]. Figure 1.3 represents the probabilistic graph matching paradigm. 

In general, if we want to solve the Error-Tolerant Graph Matching problem 

based on probabilities [32, 33, 30], given two graphs 𝐺𝑝  and 𝐺𝑞 , the 

objective function to optimize corresponds to the quadratic assignment 

problem objective function, 

𝐶𝑃 𝐺𝑝 , 𝐺𝑞 

=     𝑃 𝑣𝑖
𝑝

, 𝑣𝑎
𝑞
 𝑃 𝑣𝑗

𝑝
, 𝑣𝑏

𝑞
 𝐶𝑒 𝑣𝑖

𝑝
, 𝑣𝑎

𝑞
, 𝑣𝑗

𝑝
, 𝑣𝑏

𝑞
 

𝑣
𝑏
𝑞
∈𝛴𝑣

𝑞

𝑣
𝑏
𝑞
≠𝑣𝑎

𝑞

𝑣
𝑗
𝑝
∈𝛴𝑣

𝑝

𝑣
𝑗
𝑝
≠𝑣

𝑖
𝑝

𝑣𝑎
𝑞
∈𝛴𝑣

𝑞
𝑣

𝑖
𝑝
∈𝛴𝑣

𝑝

+   𝑃 𝑣𝑖
𝑝

, 𝑣𝑎
𝑞
 𝐶𝑣 𝑣𝑖

𝑝
, 𝑣𝑎

𝑞
 

𝑣𝑎
𝑞
∈𝛴𝑣

𝑞
𝑣𝑖

𝑝
∈𝛴𝑣

𝑝

 

 

(1.11) 

where 𝑃 is restricted to 

 𝑃 𝑣𝑖
𝑝

, 𝑣𝑎
𝑞
 

𝑣𝑖
𝑝
∈𝛴𝑣

𝑝

= 1, ∀𝑣𝑎
𝑞

∈ 𝛴𝑣
𝑞

 
and 

 𝑃 𝑣𝑖
𝑝

, 𝑣𝑎
𝑞
 

𝑣𝑎
𝑞
∈𝛴𝑣

𝑞

= 1, ∀𝑣𝑖
𝑝

∈ 𝛴𝑣
𝑝

 
(1.12) 
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Some methods use a Gradient Ascent technique [34] or a similar technique 

to get a local maximum of 𝐶𝑃  where 𝑃 𝑣𝑖
𝑝

, 𝑣𝑎
𝑞
 , ∀𝑣𝑖

𝑝
∈ 𝛴𝑣

𝑝
 and ∀𝑣𝑎

𝑞
∈ 𝛴𝑣

𝑞
, are 

the set of variables of the function. This technique takes steps proportional 

to the magnitude of the positive gradient with the aim of approaching to a 

local maximum of function 𝐶𝑃 . The magnitude of the gradient of 𝐶𝑃  with 

respect to variable 𝑃 𝑣𝑖
𝑝

, 𝑣𝑎
𝑞
  is,  

𝑀 𝑣𝑖
𝑝

, 𝑣𝑎
𝑞
 =

𝑑𝐶𝑃 𝐺𝑝 , 𝐺𝑞 

𝑑𝑃 𝑣𝑖
𝑝

, 𝑣𝑎
𝑞
 

=   𝑃 𝑣𝑗
𝑝

, 𝑣𝑏
𝑞
 𝐶𝑒 𝑣𝑖

𝑝
, 𝑣𝑎

𝑞
, 𝑣𝑗

𝑝
, 𝑣𝑏

𝑞
 

𝑣
𝑏
𝑞
∈𝛴𝑣

𝑞

𝑣
𝑏
𝑞
≠𝑣𝑎

𝑞

𝑣
𝑗
𝑝
∈𝛴𝑣

𝑝

𝑣𝑗
𝑝
≠𝑣𝑖

𝑝

 
(1.13) 

In Chapter 3, we show how an oracle can impose his feedback to update 

matrices 𝐶𝑣  and 𝐶𝑒 . Besides, we present different strategies which, with the 

information of the probability matrix P and the magnitude of the gradient 𝑀, 

derive the node that has to be queried to the oracle. 

 

Figure 1.3. Probabilistic graph matching framework. 

1.3.3 Learning Error-Tolerant Graph Matching 

Methods based on Bipartite Graph Matching or on a probabilistic approach 

for Error-Tolerant Graph Matching require assigning a penalty cost to each 

edit operation according to the amount of distortion that it introduces in the 

transformation. 

An interesting question arises in this context: given the attributed graphs 

that represent some objects, how we gauge the weights of the attributes or 

the importance of each edit operation? Suppose we have an image retrieval 

application in which images are represented by adjacency graphs. In these 

graphs, one of the attributes on the nodes is the average colour hue of the 

region that the node represents and another attribute is the area of this 

UNIVERSITAT ROVIRA I VIRGILI 
ACTIVE AND INTERACTIVE LEARNING STRATEGIES FOR ERROR-TOLERANT GRAPH MATCHING 
Xavier Cortés Llosa 



Introduction 

 12 

 

region. If we consider the average colour hue of the region is more 

important than the area of the region, the “best” correspondence between 

nodes of both graphs is going to be different if we consider the area is more 

important than the average colour hue. Usually, there are some weights in 

the definitions of the distance between graphs to gauge the level of 

importance of each attribute [35, 21]. These distance weights are manually 

set at the validation process and little research has been carried out to 

automatically set them. 

 

Figure 1.4. An example of correspondences before learning (image above) and after 
learning (image bellow), between two graphs representing frames of a video 
sequence. Nodes on graphs are the extracted salient points. Blue lines are the edges 
between these nodes. Green lines: correct correspondences. Red lines: incorrect 
correspondences. 

Figure 1.4 shows the automatically obtained correspondence before 

learning the distance weights (above) and after learning (below) these 

weights. We see the number of correct node mappings (green lines) 

increases and the number of incorrect node mappings (red lines) decreases 

after the learning process. 
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Ref. Year Optimisation 
function 

Outlier 
nodes 

Optimisation 
Algorithm 

[37] 2005 -Recognition Ratio Yes -Self Organising Maps 
[41] 

[38] 2007 -Recognition Ratio Yes -Expectation 
Minimisation [42] 

[39] 2009 -Hamming Distance No -Bundle Method  
[43] 

[40] 2012 -Hamming Distance 
-Recognition Ratio 

No -Spectral [45] 

Table 1.1. Papers published about learning graph matching. 

Two research directions are related to automatically obtaining the edit 

costs. The first one approaches to graph classification problem [36] to obtain 

the edit costs such that classification ratio is maximised [37, 38]. Whereas 

the aim of the second one is to obtain the edit costs such that the distance 

between the automatic obtained correspondence and the ground-truth 

correspondence is minimised [39, 40]. In this second case, we discern 

between unsupervised and supervised methods. The unsupervised methods 

are the ones that the ground-truth correspondence is not needed in the 

learning process [40] and the supervised ones assume a ground-truth 

correspondence is accessible and they use this knowledge [39]. The first 

direction methods are applied to pattern recognition or classification 

whereas the second direction methods can be applied to a more broadly 

application areas such as simply matching two images or two sets of points. 

In [37, 38], they propose a method to automatically learn the weights in a 

stochastic context and perform a maximum likelihood parameter estimation 

of the distribution of edit operations. The underlying distortion model is 

learned using an Expectation Maximisation algorithm. In [40], they present 

an unsupervised method based on the gradient ascent of the first 

eigenvector of a matrix that represent the pairwise relations between nodes 

and edges of both graphs. In [39] the authors propose a supervised method 

in which the optimal predictor to fix the weights that minimize the same 

general expression (hamming distance).  

Table 1.1 lists the five papers that have been published related to learning 

the edit costs. The three main features of these methods are: The 

optimisation function, outliers and the optimisation algorithm. 
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1.4 Graph databases 

Indexing structures is another fundamental issue in pattern recognition and 

a key tool in database technology; they are used to obtain efficient access to 

large collections of objects representations. Traditional image database 

systems manage global properties of images, such as histograms [46]. Many 

techniques for indexing one-dimensional data sets have been defined. Since 

a total order function over a particular attribute domain always exists, this 

ordering can be used to partition the data and moreover it can be exploited 

to efficiently support queries. Several multi-dimensional indexes have 

appeared, such as, colour, texture, shape, with the aim of increasing the 

efficiency in executing queries on sets of objects characterized by multi-

dimensional features. 

Effective access to image databases requires queries addressing the 

expected appearance of searched images [47]. To this end, it is needed to 

represent the image as a set of entities and relations between them. The 

effectiveness of retrieval may be improved by registering images as 

structural elements rather than global features [48, 49]. In the most 

practiced approach to content-based image retrieval, the visual appearance 

of each spatial entity is represented independently by a vector of features. 

Mutual relationships between entities can be taken into account in this 

retrieval process. Thus, local entities and mutual relationships may be 

considered to have the same relevance and to be defined as parts of a global 

structure that captures mutual dependencies [50]. In this case, the model of 

content takes the structure of an attributed graph. 

While the distance between two sets of independent features can be 

computed in polynomial time [32, 51], the exact distance between two 

graphs is computed in exponential time with respect to the number of nodes 

of the graphs. Although, as we have been seeing throughout this thesis, some 

sub-optimal solutions have been presented to compare a pair of graphs, in 

which, the computational complexity is reduced to polynomial cost. 

Out of the specific context of content-based image retrieval, the problem of 

comparing an input graph against a large number of model graphs has been 

addressed in several approaches. In some applications, the classes of objects 

are represented explicitly by a set of graphs, which means that a huge 
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amount of model graphs must be matched with the input graph and so the 

conventional Error-Tolerant Graph Matching algorithms must be applied to 

each model-input pair sequentially. As a consequence, the total 

computational cost is linearly dependent on the number of model graphs 

and exponential (or polynomial if suboptimal methods are used) with the 

size of the graphs. For applications dealing with large databases, this may be 

prohibitive. To alleviate these problems, some attempts have been designed 

with the aim of reducing the computational time of matching the unknown 

input patterns to the whole set of models from the database. Those 

approaches assume that the graphs that represent a cluster or class are not 

completely dissimilar in the database and, in this way, only one structural 

model is defined from the graphs that represent the cluster. These 

structures are called Graph-Class Prototypes. In the classification process, 

only one comparison is needed for each cluster. 

Considering the current state of the art, some indexing techniques have been 

developed for graph queries. We divide these techniques into two 

categories. In the first ones, the index is based on several tables and filters 

[52, 53]. In the second ones, the index structure is based on metric-trees [54, 

55, 56]. 

In the first group of techniques, the ones that are not based on trees, we 

emphasize the method developed by Shasha et. al. [53] called GraphGrep. 

GraphGrep is based on a table in which each row stands for a path inside the 

graph (up to a threshold length) and each column stands for a graph. Each 

entry in the table compounds to the number of occurrences of a particular 

path in the graph. Queries are processed in two phases. The filtering phase 

generates a set of candidate graphs for which the count of each path is at 

least that of the query. Since indexing schemes based on paths do not ensure 

graph isomorphism, in a verification phase, each candidate is strictly 

compared to the query graph and only isomorphic graphs are returned. On 

the other hand, Yan et. al. [52] proposed GIndex that uses frequent patterns as 

indexing features. These frequent patterns reduce the index space as well as 

improve the filtering rate. The main drawback of these models is that the 

construction of the indices requires an exhaustive enumeration of the paths 

or fragments that increases the memory and time requirements of the 

model. Moreover, since paths or fragments carry little information about a 

graph, the lost of information at the filtering step seems to be unavoidable. 
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Considering the second group, the first time that metric trees were applied 

to graph databases was done by Berretti et. al. [54]. Attributed graphs were 

clustered hierarchically according to their mutual distances and indexed by 

metric-trees [57]. Queries are processed in a top-down manner by routing 

the query along the index tree. Each node of the index tree represents a 

cluster and it has one of the graphs of the cluster as a representative. The 

graph matching problem, in the tree construction and at query time, was 

solved by an extension of the A* algorithm that uses a look-ahead strategy 

plus a stopping threshold. A drawback of this method is that the 

computational cost is exponential with respect to the number of nodes in the 

graphs. Lee et. al. [56] used this technique to model graphical 

representations of foreground and background scenes in videos. The 

resulting graphs were clustered using the edit-distance metric, and 

similarity queries were answered using a multi-level index structure. 

More recently, He and Singh [55] proposed what they called a Closure-tree. 

It uses a similar structure than the one presented by Berretti [54] but, the 

representative of the cluster was not one of the graphs but a graph 

prototype (called closure graph) that could be seen as the union of the 

attributed graphs that compose the cluster. The structurally similar nodes 

that have different attributes in the graphs are represented in the Closure 

graph with only one node but with more than one attribute. Closure-trees 

have two main drawbacks. First, they can only represent discrete attributes 

at nodes of the attributed graphs. Second, they tend to generalize too much 

the set of graphs they represent, allowing graphs that have not been used to 

synthesize the closure graph.  

1.5 Objectives and organization of this thesis 

This thesis is organized as follows; the thesis is divided in 8 chapters, the 

present chapter introduces the reader to the domain and the final chapter 

presents the conclusions. In the middle are discussed the issues and models 

presented in the thesis. 

Chapter 2 is devoted to delve into the definition of the local structure of a 

node and propose eight different options to compute the distances or 

dissimilarities between them for Graph Edit Distance computation. 
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Chapter 3, propose a model for perform active and interactive Error-

Tolerant Graph Matching in which an active module queries one of the nodes 

of the graphs and the oracle (human or artificial) returns the node of the 

other graph it has to be imposed over the current correspondence between 

the involved graphs to improve it, the main aim of this model is to present 

an interactive framework that after a few interactions the model achieve the 

“perfect” correspondence between graphs. 

In Chapter 4 it is described the problem of Error-Tolerant Graph Matching 

using substitution weights, and a method to automatically learn these 

weights such that the hamming distance (section 1.2.1.2) between a ground 

truth correspondence between graphs and the automatically obtained 

correspondence is minimised similar to [39]. Experimental results show that 

depending of the database we obtain a higher improvement than the 

compared method while learning the weights. 

On the other hand, in Chapter 5, it is presented a method to learn the values 

for the insertion and deletion costs on nodes and edges without a human 

interaction such that the hamming distance between a ground truth node 

correspondence and the automatically obtained correspondence is 

minimised. This is because, in some applications, graphs in the reference and 

test databases are not split in classes and so it is not valid to minimise the 

classification accuracy. This is the case of some graph retrieval applications 

in which the aim is to find similar graphs without a previous classification. 

Moreover, there are some graph databases such that nodes and edges have 

only one or any attributes. In these cases, it has non-sense to learn the 

substitution weights for each feature as in [39, 40] but it is crucial to learn 

the best combinations of insertion and deletion costs on nodes and edges as 

unique Real numbers. Finally, we want the classical graph matching 

algorithms to be applied on our obtained costs. For this reason, the 

computed values have to be Real numbers and therefore, methods [37, 38] 

are not valid. 

In Chapter 6, it is presented and evaluated an indexing scheme, modelled by 

a metric-tree, in which the cluster knowledge embedded in each node of the 

metric-tree is represented by one of the six Graph-Class Prototypes 

presented in the literature. The different representations of Graph-Class 

Prototypes are: Set Median Graph [54]; Generalise Median Graph [59, 58, 61, 
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62] synthesised through a hierarchical method [63], through a genetic 

algorithm [64] or through an extension of the Graduated Assignment 

algorithm [65]; First-Order Random Graphs [22]; Function-Described 

Graphs [23, 66]; Second-Order Random Graphs [24] and Closure Graphs 

[55]. Moreover, are evaluated two types of graph queries; the ones that the 

user imposes the graphs to be queried and the ones that the user imposes 

the maximum distance between the query graph and the returned graphs. 

Finally, Chapter 7 explores the idea of bringing interactivity to the domain of 

3D points alignment on a cooperative robotics framework. It is presented a 

new model in order to cooperatively improve the pose estimation in a fleet 

of robots.  
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Chapter 2                  

On the Relevance of 

Structural 

Dissimilarity Metrics 

on Graph Edit 

Distance
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As we have seen in Chapter 1, graphs offer a convenient way to formally 

model objects or patterns.  

Note that there are several kinds of objects that can be represented using 

graphs, in which the structural relations between the local components play 

a different role. For this reason, it is very interesting to analyse how it affects 

the fact of considering individually these local components and its structural 

relations to estimate the structural dissimilarities between them. At this 

point, a question arises. Which is the best structure? It seems that 

considering a large structure, we keep more structural information and the 

distance is less sub-optimal, nevertheless, the computational cost increases. 

In this chapter, four different local structures depending on the amount of 

structural information which is taken into account are defined below. Then, 

eight metrics to estimate the dissimilarity between the different local 

structures are presented. 

Finally, to visualise the impact of the different metrics on the Graph Edit 

Distance, we show the classification accuracy results achieved by each 

metric in different databases using a nearest-neighbour classifier. 

2.1 Moving from global to local structure to 
solve the Graph Edit Distance problem 

In Chapter 1, section 1.2, we have seen that the local structure of a node in 

an attributed graph is termed 𝑁𝑣𝑖
. In this chapter we will present different 

definitions for 𝑁𝑣𝑖
. 

The first definition of 𝑁𝑣𝑖
 is the empty set. That is, no structural information 

of node 𝑣𝑖  is taken into account. Formally, 𝑁𝑣𝑖
𝑁𝑜𝑑𝑒 =  𝛴𝑣

𝑁𝑣𝑖
𝑁𝑜𝑑𝑒

, 𝛴𝑒

𝑁𝑣𝑖
𝑁𝑜𝑑𝑒

, 𝛾𝑣  with 

𝛴𝑣

𝑁𝑣𝑖
𝑛𝑜𝑑𝑒

= 𝛴𝑒

𝑁𝑣𝑖
𝑛𝑜𝑑𝑒

= {}. We refer to this type of local structure as Node. 

The second definition of 𝑁𝑣𝑖
 is given by 𝑁𝑣𝑖

𝐷𝑒𝑔𝑟𝑒𝑒
=  𝛴𝑣

𝑁𝑣𝑖

𝐷𝑒𝑔𝑟𝑒𝑒

, 𝛴𝑒

𝑁𝑣𝑖

𝐷𝑒𝑔𝑟𝑒𝑒

, 𝛾𝑣  

with 𝛴𝑣

𝑁𝑣𝑖

𝐷𝑒𝑔𝑟𝑒𝑒

= {} and 𝛴𝑒

𝑁𝑣𝑖

𝐷𝑒𝑔𝑟𝑒𝑒

= {𝑒𝑖𝑗 ∈ 𝛴𝑒}. In this case we regard the 

incident edges of 𝑣𝑖  as local structure only (without adjacent nodes). This 
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second definition of 𝑁𝑣𝑖
 is referred to as Degree from now on. The third 

definition of 𝑁𝑣𝑖
 used is given by the set of nodes that are directly connected 

to 𝑣𝑖  including all edges that connect these nodes with 𝑣𝑖 . Formally, 

𝑁𝑣𝑖
𝑆𝑡𝑎𝑟 =  𝛴𝑣

𝑁𝑣𝑖
𝑆𝑡𝑎𝑟

, 𝛴𝑒

𝑁𝑣𝑖
𝑆𝑡𝑎𝑟

, 𝛾𝑣  with 𝛴𝑣

𝑁𝑣𝑖
𝑆𝑡𝑎𝑟

=  𝑣𝑗 |𝑒𝑖𝑗 ∈ 𝛴𝑒  and 𝛴𝑒

𝑁𝑣𝑎
𝑆𝑡𝑎𝑟

= {𝑒𝑖𝑗 ∈

𝛴𝑒 |𝑣𝑗 ∈ 𝛴𝑣

𝑁𝑣𝑎
𝑆𝑡𝑎𝑟

}. We refer to this definition of local structure as Star. The last 

definition proposed is given by the whole edges of the graph (without 

nodes). We refer to this definition as Mesh. Formally, 

𝑁𝑣𝑖
𝑀𝑒𝑠𝑕 =  𝛴𝑣

𝑁𝑣𝑖
𝑀𝑒𝑠 𝑕

, 𝛴𝑒

𝑁𝑣𝑖
𝑀𝑒𝑠 𝑕

, 𝛾𝑣  with 𝛴𝑣

𝑁𝑣𝑖
𝑀𝑒𝑠 𝑕

=, {} and 𝛴𝑒

𝑁𝑣𝑖
𝑀𝑒𝑠 𝑕

= {𝛴𝑒}. Note that 

the Mesh structure is an extension of the Degree. In Figure 2.1 an illustration 

of the four different local structures (Node, Degree, Star and Mesh) is shown. 

Clearly, it is possible to define more levels of complexity. For instance, we 

could also have considered the whole edges and nodes connected to the 

adjacent nodes. But we decided not to consider them due to computational 

cost reasons, since the combinations of structures exponentially explode. 

   

 
a. Node b. Degree c. Star d. Mesh 

Figure 2.1. Degree, Star and Mesh structures (shown in red) of a single Node (shown 
in blue). 

2.2 Distances between local structures 

As has been commented on Chapter 1, section 1.3.1, a widely used method to 

evaluate the dissimilarity between two attributed graphs is the Graph Edit 

Distance. This dissimilarity model is to define a distance between two 

graphs 𝐺𝑝  and 𝐺𝑞   by means of the minimum amount of distortion required 

to transform 𝐺𝑝  into 𝐺𝑞 . Edit cost functions are typically introduced to 
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quantitatively evaluate the level of distortion of each individual edit 

operation. 

In this section, different methods inspired by the structures discussed in 

section 2.1 are proposed to determine costs 𝐶𝑖,𝑎 , 𝐶𝑖,𝜀  and 𝐶𝜀,𝑎 , which are used 

in some of the most popular Graph Edit Distance algorithms [25, 67, 68] 

such as Bipartite Graph Matching reviewed in Chapter 1, section 1.3.2.1, of 

this thesis. These three costs depend on two weighted disjoint costs. The 

first one only depends on the nodes and the second one depends on the rest 

of the local structure. 

We propose the following eight metrics to estimate the cost of structural 

dissimilarities. 

2.2.1 Node 

If the structural information of the nodes is not considered, that is we 

employ the Node local structure, we have 

𝐶(𝑁
𝑣𝑖

𝑝
𝑁𝑜𝑑𝑒 → 𝑁

𝑣𝑎
𝑞

𝑁𝑜𝑑𝑒 ) = 𝐶(𝑁
𝑣𝑖

𝑝
𝑁𝑜𝑑𝑒 → 𝜀) = 𝐶(𝜀 → 𝑁

𝑣𝑎
𝑞

𝑁𝑜𝑑𝑒 ) = 0 (2.1) 

2.2.2 Degree 

For BP [25] as well as for SFBP [67] the same definition of the local structure 

of a node 𝑣 has been used, viz.  𝑁𝑣  is defined to be the set of incident edges of 

node 𝑣. That is, the Degree local structure, as formally described in section 

2.1, is employed. Remember that in this thesis unlabeled edges are 

considered only, and thus, edge substitution is free of cost. Hence, using this 

definition of a local structure, the cost of substituting two local structures 

with each other is given by the difference of the numbers of edges of the 

involved nodes. Formally, 

𝐶(𝑁
𝑣𝑖

𝑝
𝐷𝑒𝑔𝑟𝑒𝑒

→ 𝑁
𝑣𝑎

𝑞
𝐷𝑒𝑔𝑟𝑒𝑒

) = 𝐾𝑒 ·  𝐸 𝑣𝑖
𝑝
 − 𝐸 𝑣𝑎

𝑞
   (2.2) 

where 𝐾𝑒  refers to a positive constant cost for deleting/inserting edges and 

E(.) refers to the number of edges of a certain node. 
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Likewise, the deletion and insertion costs of local structures depend on the 

number of incident edges 𝐸 𝑣𝑖
𝑝
  / 𝐸 𝑣𝑎

𝑞
  of the deleted or inserted node 𝑣𝑖

𝑝
 

and 𝑣𝑎
𝑞

, respectively. Formally, 

𝐶(𝑁
𝑣𝑖

𝑝
𝐷𝑒𝑔𝑟𝑒𝑒

→ 𝜀) = 𝐾𝑒 · 𝐸 𝑣𝑖
𝑝
  (2.3) 

𝐶(𝜀 → 𝑁
𝑣𝑎

𝑞
𝐷𝑒𝑔𝑟𝑒𝑒

) = 𝐾𝑒 · 𝐸 𝑣𝑎
𝑞
  (2.4) 

We name this particular definition of the cost for processing local structures 

as Degree. We will use this metric for local structures as basic reference 

system. 

Then, more definitions of the cost for processing local structures are 

presented. These definitions are based on the Star and Mesh local structures. 

2.2.3 Star 

The following four definitions of costs based on the Star structure assume 

that the complete local structure has to be inserted or deleted when the 

corresponding node is inserted or deleted, respectively. That is, insertion 

and deletion costs consider the cost of processing all edges that connect the 

central node and the cost of processing all adjacent nodes. Formally, the 

complete deletion and insertion costs of local structures depend on the 

number of adjacent nodes. 

𝐶(𝑁
𝑣𝑖

𝑝
𝑆𝑡𝑎𝑟 → 𝜀) =  𝐾𝑣 + 𝐾𝑒 · 𝐸 𝑣𝑖

𝑝
  (2.5) 

𝐶(𝜀 → 𝑁
𝑣𝑎

𝑞
𝑆𝑡𝑎𝑟 ) =  𝐾𝑣 + 𝐾𝑒 · 𝐸 𝑣𝑎

𝑞
  (2.6) 

Where  𝐾𝑣 + 𝐾𝑒  refers to the cost of deleting or inserting one edge and one 

node. 

The substitution cost 𝐶(𝑁
𝑣𝑖

𝑝
𝑆𝑡𝑎𝑟 → 𝑁

𝑣𝑎
𝑞

𝑆𝑡𝑎𝑟 ) for Star local structure is based on 

computing a distance between 𝑁
𝑣𝑖

𝑝
𝑆𝑡𝑎𝑟  and 𝑁

𝑣𝑎
𝑞

𝑆𝑡𝑎𝑟 . For this particular 
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computation every adjacent node and its corresponding edge is interpreted 

as an indivisible entity. That is, a Star local structure can be seen as a set of 

independent entities (nodes with adjacent edge), and thus, the computation 

of 𝐶(𝑁
𝑣𝑖

𝑝
𝑆𝑡𝑎𝑟 → 𝑁

𝑣𝑎
𝑞

𝑆𝑡𝑎𝑟 ) refers to an assignment problem between two 

independent sets. This assignment problem can be solved in the same way 

as it is done with complete graphs by means of a cost matrix that considers 

substitutions, insertions and deletions. Formally, 

𝐶(𝑁
𝑣𝑖

𝑝
𝑆𝑡𝑎𝑟 → 𝑁

𝑣𝑎
𝑞

𝑆𝑡𝑎𝑟 ) = 𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝐶𝑜𝑠𝑡  𝑁
𝑣𝑖

𝑝
𝑆𝑡𝑎𝑟 , 𝑁

𝑣𝑎
𝑞

𝑆𝑡𝑎𝑟   (2.7) 

In order to compute this assignment cost we use four different assignment 

algorithms. 

The first algorithm is given by an optimal algorithm for general Linear 

Assignment Problems known as Hungarian algorithm [68] that runs in cubic 

time. The second algorithm solves the assignment of 𝑁
𝑣𝑖

𝑝
𝑆𝑡𝑎𝑟  and 𝑁

𝑣𝑎
𝑞

𝑆𝑡𝑎𝑟  by 

means of the Hausdorff distance for subsets [28]. This assignment algorithm 

estimates the distance between two sets of entities by removing the 

restriction of finding a bijective mapping between the individual elements. 

In contrast with the Hungarian algorithm, Hausdorff assignments can be 

computed in quadratic time. 

The third algorithm computes the dissimilarity between 𝑁
𝑣𝑖

𝑝
𝑆𝑡𝑎𝑟  and 𝑁

𝑣𝑎
𝑞

𝑆𝑡𝑎𝑟  by 

finding a suboptimal assignment of the individual entities by means of the 

Greedy assignment algorithm [68]. 

Finally, we propose to use a Planar distance metric. In this case, the relative 

position of each local structure is considered. That is, the only allowed 

assignments of entities from 𝑁
𝑣𝑖

𝑝
𝑆𝑡𝑎𝑟  to entities of 𝑁

𝑣𝑎
𝑞

𝑆𝑡𝑎𝑟  are the ones that are 

generated from cyclic combinations of the neighbour nodes. Formally, the 

sets 𝑁
𝑣𝑖

𝑝
𝑆𝑡𝑎𝑟  and 𝑁

𝑣𝑎
𝑞

𝑆𝑡𝑎𝑟  are interpreted as strings and the assignment cost is 

computed through the Levenshtein distance on these strings [70]. 
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Figure 2.2. Optimal correspondences between two Star local structures using the 
different solvers proposed above to solve the assignment problem. Hungarian (red). 
Planar (green). Hausdorff (blue). 

Figure 2.2 is an example of matching two Stars. Arrows show the optimal 

correspondences using Hungarian (red), Planar (green) and Hausdorff 

(blue) assignment solvers. Numbers on the nodes are attributes 𝛾𝑣
𝑝
 𝑣𝑖

𝑝
  and 

𝛾𝑣
𝑞
 𝑣𝑎

𝑞
 . Edges do not have attributes and 𝐶 𝑣𝑖

𝑝
→ 𝑣𝑎

𝑞
 =  𝛾𝑣

𝑝
 𝑣𝑖

𝑝
 − 𝛾𝑣

𝑞
 𝑣𝑎

𝑞
  . 

In the Hungarian case (red arrows), 𝐶  𝑁
𝑣𝑖

𝑝
𝑆𝑡𝑎𝑟 → 𝑁

𝑣𝑎
𝑞

𝑆𝑡𝑎𝑟  = 1 + 0 + 1 + 12 =

14. In the Planar case (green arrows), 𝐶  𝑁
𝑣𝑖

𝑝
𝑆𝑡𝑎𝑟 → 𝑁

𝑣𝑎
𝑞

𝑆𝑡𝑎𝑟  = 1 + 17 + 1 +

5 = 24. The restriction to be the matching cyclic makes the distance value to 

be larger. And in the Hausdorff case (blue arrows), 𝐶  𝑁
𝑣𝑖

𝑝
𝑆𝑡𝑎𝑟 → 𝑁

𝑣𝑎
𝑞

𝑆𝑡𝑎𝑟  = 1 +

0 + 1 + 5 = 7. Note the matching in the Hausdorff is not bijective. In the 

Greedy case, the matching is always bijective but it depends on the order of 

presentation of the nodes. If we suppose the order of the adjacent nodes in 

the first structure is {50, 40, 10, 35} then we obtain the same matching and 

distance than the Hungarian (red arrows). 

 

2.2.4 Mesh 

The last two definitions of costs use the Mesh structure. The basic idea is to 

compute the costs using the differences between scores achieved by two 

centrality models, the Eigenvector and the Pagerank [71], determining the 

importance of a node in a graph using the Mesh structure. 

The first centrality is the Eigenvector. This centrality assigns a relative score 

to the nodes of the graph depending on the number of incident edges and 

the score of the neighbour nodes. 
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0 1 1 1 0
1 0 0 1 1
1 0 0 1 0
1 1 1 0 1
0 1 0 1 0 

 
 

 

Figure 2.3. An adjacency matrix of a graph representing the Mesh of the graph 
(Square matrix used to represent pairs of nodes connected by an edge or not using 
binary code). 

The eigenvector centralities given a specific node in both graphs are defined 

by,  

𝜓𝑖
𝑝

=
1

𝜆𝑝
·   𝑉𝑗

𝑝
 

{𝑒𝑖𝑗 ∈𝑁
𝑣
𝑖
𝑝

𝑀𝑒𝑠 𝑕 |𝑣𝑗 ∈𝑁
𝑣
𝑖
𝑝

𝑀𝑒𝑠 𝑕 }

 
and 

𝜓𝑎
𝑞

=
1

𝜆𝑞
·   𝑉𝑏

𝑞
 

{𝑒𝑎𝑏 ∈𝑁
𝑣𝑎
𝑞

𝑀𝑒𝑠 𝑕 |𝑣𝑏∈𝑁
𝑣𝑎
𝑞

𝑀𝑒𝑠 𝑕 }

 
(2.8) 

where 𝑉𝑗
𝑝

 and 𝑉𝑏
𝑞

 are the values of the 𝑗-th and 𝑏-th positions of the 

eigenvectors with the largest eigenvalues obtained through adjacency 

matrices A𝑝  and 𝐴𝑞  (Figure 2.3). Besides, 𝜆𝑝  and 𝜆𝑞  are the largest 

eigenvalues of these adjacency matrices. Thus, the substitution cost is simply 

computed as, 

𝐶(𝑁
𝑣𝑖

𝑝
𝑀𝑒𝑠𝑕 → 𝑁

𝑣𝑎
𝑞

𝑀𝑒𝑠𝑕 ) =  𝜓𝑖
𝑝

− 𝜓𝑎
𝑞
  (2.9) 

The deletion and insertion costs are computed assuming that the centrality 

of a null node is 0. 

𝐶(𝑁
𝑣𝑖

𝑝
𝑀𝑒𝑠𝑕 → 𝜀) = 𝜓𝑖

𝑝
 (2.10) 

𝐶(𝜀 → 𝑁
𝑣𝑎

𝑞
𝑀𝑒𝑠𝑕 ) = 𝜓𝑎

𝑞
 (2.11) 

The second centrality is the Pagerank. This centrality is a variation of the 

Eigenvector centrality. The difference consists in that the Eigenvector is 

normalised by the number of neighbours of the node. 
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𝜓𝑖
𝑝

=
1

𝜆𝑝
·  

 𝑉𝑗
𝑝
 

max  {1, 𝐸  𝑣𝑗
𝑝
 } 

{𝑒𝑖𝑗 ∈𝑁
𝑣
𝑖
𝑝

𝑀𝑒𝑠 𝑕 |𝑣𝑗∈𝑁
𝑣
𝑖
𝑝

𝑀𝑒𝑠𝑕 }

 

and 

𝜓𝑎
𝑞

=
1

𝜆𝑞
·  

 𝑉𝑏
𝑞
 

max {1, 𝐸 𝑉𝑏
𝑞
 } 

{𝑒𝑎𝑏 ∈𝑁
𝑣𝑎
𝑞

𝑀𝑒𝑠 𝑕 |𝑣𝑏∈𝑁
𝑣𝑎
𝑞

𝑀𝑒𝑠 𝑕 }

 

(2.12) 

This centrality is normalised by 𝑚𝑎𝑥  1, 𝐸 𝑉𝑗
𝑝
   instead of 𝐸 𝑉𝑗

𝑝
  to avoid 

dividing by 0. Then, the substitution, insertion and deletion costs are 

computed in a similar why than the eigenvector centrality but using the 

PageRank. 

2.3 Experimental Evaluation 

Database Ø nodes Ø edges Density 

LETTER-LOW 4.7 3.1 0.36 

LETTER-MED 4.7 3.2 0.37 

LETTER-HIGH 4.7 4.5 0.51 

GREC 11.5 12.2 0.21 

COIL-RAG 3 3 1 

FINGERPRINT 5.42 4.42 0.26 

PROTEINS 32.6 62.1 0.12 

Table 2.1. Summary of graph data set characteristics (mean number of nodes, mean 
number of edges, and mean graph density). 

In total, we have eight different cost models to compute the individual 

entries 𝑐𝑖,𝑎 , 𝑐𝑖,𝜀  and 𝑐𝜀,𝑎 . The aim of the first experiment is to show the 

quality of the obtained correspondences given the SFBP algorithm to 

compute the GED with the eight cost models described above and to 

evaluate this quality together with the runtime.  Figure 2.4 and Figure 2.5 

show the mean cost and runtime given 10 rounds. In each round, we 

randomly generated 200 pairs of graphs of order 10 with a specific density, 

one attribute on the nodes (natural number from 0 to 99) and unattributed 

edges. The correspondences has been obtained given the eight cost models 
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with 𝐾𝑣 = 𝐾𝑒 = 50. Finally, given this correspondences, we computed the 

cost using the equation (1.2). 

 

Figure 2.4. Mean sub-optimal GED for the SFBP and the eight cost models, increasing 
the density of the randomly generated graphs. Density=0: no edges. Density=1: 
completely connected. 

 

Figure 2.5. Mean runtime logarithmically scaled in seconds to compute the SFBP in 
the experiments shown in Figure 2.4. 

When the density is near to 0.5, more edges are deleted or inserted and for 

this reason, the whole correspondences tend to obtain larger GEDs. 

UNIVERSITAT ROVIRA I VIRGILI 
ACTIVE AND INTERACTIVE LEARNING STRATEGIES FOR ERROR-TOLERANT GRAPH MATCHING 
Xavier Cortés Llosa 



On the Relevance of Structural Dissimilarity Metrics on Graph Edit Distance 

 29 

Moreover, the presence of edges in the nodes is relevant to find structural 

similarities and so the differences between the obtained GEDs increase. If we 

focus on the runtime; Eigenvector, Pagerank, Nodes and Degree are constant 

with respect to the graph density (the figure is represented in logarithmic 

scale). In general, the centralities that obtain lower GED (the best ones) are 

the slowest ones. 

The aim of the second experiment is to compare SFBP using the eight cost 

models. Table 2.2 and Table 2.3 show the recognition ratio and mean 

runtime. We tested seven graph databases LETTER-LOW, LETTER-MEDIUM, 

LETTER-HIGH, GREC, COIL-RAG, FINGERPRINT and PROTEINS from the IAM 

repository [72] considering unlabelled edges, these databases are described 

in detail in the Databases annex of this thesis. We used the KNN classifier 

where K = 3. The Jonker–Volgenant solver [31] has been used on the graph 

matching algorithm SFBP and the cyclic string matching [70] to compute the 

Planar assignment for Star local structure. Note in SFBP, the computation of 

the costs 𝐶𝑖,𝑎 , 𝐶𝑖,𝜀  and 𝐶𝜀,𝑎  depends on the following parameters: In case of 

Degree and Star local structures, parameters are 𝐾𝑣 , 𝐾𝑒  and parameter 𝛽 is 

fixed to 0.5 for this local structures. In case of Mesh, parameters are 𝐾𝑣  and 

𝛽. We show the recognition ratio given four different costs configurations 

because we want to study the relevance of these costs in terms of accuracy 

and runtime. These values are the usual ones used to perform classification 

tasks in each dataset [167]. Given a database, best accuracies are marked in 

bold. And given a cost model and a database, best accuracies are underlined. 

Observing the achieved results in Table 2.2  and Table 2.3 we note that the 

different cost models configurations for the SFBP present a different 

performance depending on the database. We assume that it is because 

graphs that integrate each database have different topologies. 

In Table 2.1 we summarise the mean densities and the mean number of 

nodes and edges for each database. We want to relate these characteristics 

to the performance of the different centralities in terms of accuracy and 

runtime presented in Table 2.2 and Table 2.3. When the density is very low 

(PROTEINS) or very high (COIL-RAG) there is poor structural information 

and then centralities tend to obtain similar accuracies. This is due to the edit 

distance tends to be similar as shown in Figure 2.4. In this case, we 

recommend using the Node cost model because it is the fastest one. In 

sparse graphs (low densities) (GREC), the local structural information little 
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contributes on the global structure and for this reason, the local structures 

that consider the whole model obtain the highest accuracies, such as the 

Eigenvector and Pagerank. But note 𝛽 parameter influences the runtime on 

these costs models.  

 Parameters Node Degree Star Parameters Mesh 

 𝑲𝒗 𝑲𝒆 - - Planar Hungarian Hausdorff Greedy 𝑲𝒗 𝜷 Eigenvector Pagerank 

LETTER 

LOW 

1 1 0.90 0.95 0.98 0.98 0.97 0.98 1 0.7 0.95 0.95 

1 0.1 0.90 0.96 0.98 0.99 0.99 0.98 1 0.5 0.96 0.96 

0.1 1 0.80 0.96 0.98 0.98 0.98 0.98 1 0.3 0.95 0.95 

0.1 0.1 0.80 0.98 0.99 0.99 0.99 0.99 1 0.1 0.92 0.92 

LETTER 

MED 

1 1 0.59 0.87 0.94 0.94 0.93 0.92 1 0.7 0.79 0.77 

1 0.1 0.59 0.73 0.94 0.94 0.94 0.92 1 0.5 0.85 0.84 

0.1 1 0.08 0.86 0.89 0.89 0.89 0.88 1 0.3 0.88 0.87 

0.1 0.1 0.08 0.18 0.09 0.09 0.09 0.10 1 0.1 0.83 0.83 

LETTER 

HIGH 

1 1 0.65 0.79 0.90 0.88 0.90 0.79 1 0.7 0.69 0.68 

1 0.1 0.65 0.74 0.90 0.88 0.89 0.82 1 0.5 0.72 0.71 

0.1 1 0.08 0.81 0.80 0.80 0.80 0.80 1 0.3 0.76 0.76 

0.1 0.1 0.08 0.38 0.07 0.07 0.07 0.15 1 0.1 0.59 0.61 

GREC 

10 10 0.58 0.96 0.83 0.84 0.85 0.91 10 0.7 0.87 0.87 

10 5 0.58 0.92 0.63 0.65 0.66 0.89 10 0.5 0.93 0.93 

5 10 0.18 0.95 0.37 0.39 0.40 0.76 10 0.3 0.97 0.97 

5 5 0.18 0.87 0.14 0.14 0.14 0.42 10 0.1 0.97 0.96 

COIL 

RAG 

1 1 0.93 0.89 0.90 0.89 0.89 0.90 1 0.7 0.92 0.92 

1 0.1 0.93 0.92 0.90 0.90 0.91 0.91 1 0.5 0.92 0.91 

0.1 1 0.87 0.89 0.90 0.90 0.90 0.91 1 0.3 0.90 0.90 

0.1 0.1 0.87 0.93 0.91 0.91 0.91 0.91 1 0.1 0.88 0.88 

FINGERPRINT 

50 50 0.65 0.65 0.64 0.64 0.64 0.65 50 0.7 0.64 0.64 

50 5 0.65 0.65 0.64 0.64 0.65 0.65 50 0.5 0.64 0.64 

5 50 0.29 0.65 0.63 0.63 0.63 0.64 50 0.3 0.64 0.64 

5 5 0.29 0.49 0.37 0.37 0.37 0.40 50 0.1 0.63 0.63 

PROTEINS 

1 1 0.46 0.46 0.44 0.46 0.47 0.50 1 0.7 0.46 0.44 

1 0.1 0.46 0.49 0.41 0.43 0.45 0.52 1 0.5 0.46 0.44 

0.1 1 0.42 0.45 0.37 0.38 0.43 0.49 1 0.3 0.44 0.42 

0.1 0.1 0.42 0.43 0.32 0.31 0.33 0.38 1 0.1 0.42 0.44 

Table 2.2. Recognition ratio of the proposed cost models to estimate the structural 
dissimilarities using SFBP given the 7 datasets and different combinations of 
parameters. 

In the medium densities (LETTER), the local structure becomes the most 

relevant. This is due to the gap between distances maximises at medium 

densities (Figure 2.4). Then, the cost models based on the Star local 

structure achieve the best accuracies. We can decide which one to be used in 

this case depending on the compromise between accuracy and runtime. The 

Hungarian is the slowest one (Figure 2.5 and Table 2.3) but achieves the 

best accuracy in some cases (Table 2.2). Finally, although the FINGERPRINT 

database has a medium density, the structural information of this database 

with unlabelled edges does not contribute enough to improve the accuracy 

with respect to the Node. For this reason, accuracies in this database are 

almost equal. 
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 Parameters Node Degree Star Parameters Mesh 

 𝑲𝒗 𝑲𝒆 - - Planar Hungarian Hausdorff Greedy 𝑲𝒗 𝜷 Eigenvector Pagerank 

LETTER 

LOW 

1 1 0.67 0.61 0.95 3.14 1.60 1.33 1 0.7 0.95 0.95 

1 0.1 0.61 0.56 0.90 3.15 1.40 1.23 1 0.5 0.96 0.96 

0.1 1 0.48 0.55 0.85 3.09 1.26 1.08 1 0.3 0.95 0.95 

0.1 0.1 0.46 0.48 0.80 3.15 1.18 1.01 1 0.1 0.92 0.92 

LETTER 

MED 

1 1 0.63 0.61 0.94 3.13 1.44 1.36 1 0.7 0.79 0.77 

1 0.1 0.71 0.56 0.91 3.16 1.74 1.24 1 0.5 0.85 0.84 

0.1 1 0.48 0.55 0.86 3.09 1.25 1.09 1 0.3 0.88 0.87 

0.1 0.1 0.47 0.49 0.81 3.16 1.19 0.98 1 0.1 0.83 0.83 

LETTER 

HIGH 

1 1 0.74 0.61 1.24 3.68 1.76 1.74 1 0.7 0.69 0.68 

1 0.1 0.70 0.60 1.26 3.60 1.60 1.68 1 0.5 0.72 0.71 

0.1 1 0.46 0.57 1.17 3.52 1.35 1.20 1 0.3 0.76 0.76 

0.1 0.1 0.47 0.47 1.10 3.51 1.24 1.10 1 0.1 0.59 0.61 

GREC 

10 10 0.38 0.45 1.99 7.34 2.12 1.19 10 0.7 0.87 0.87 

10 5 0.40 0.42 2.01 7.48 2.08 1.80 10 0.5 0.93 0.93 

5 10 0.36 0.42 1.99 7.35 1.92 1.61 10 0.3 0.97 0.97 

5 5 0.34 0.40 1.97 7.34 1.78 1.48 10 0.1 0.97 0.96 

COIL 

RAG 

1 1 2.75 4.77 6.31 15.61 5.94 5.45 1 0.7 0.92 0.92 

1 0.1 2.76 3.60 5.66 13.17 4.92 4.77 1 0.5 0.92 0.91 

0.1 1 1.86 3.77 4.21 11.10 3.91 3.91 1 0.3 0.90 0.90 

0.1 0.1 1.22 2.84 3.32 6.45 2.22 2.10 1 0.1 0.88 0.88 

FINGERPRINT 

50 50 0.89 3.36 2.54 6.36 2.47 2.35 50 0.7 0.64 0.64 

50 5 0.83 1.67 1.88 5.44 1.89 2.30 50 0.5 0.64 0.64 

5 50 0.28 2.00 1.12 3.86 1.12 1.04 50 0.3 0.64 0.64 

5 5 0.28 0.39 0.95 3.72 0.88 0.74 50 0.1 0.63 0.63 

PROTEINS 

1 1 2.44 5.43 39.76 81.34 13.41 13.46 1 0.7 0.46 0.44 

1 0.1 2.83 7.03 54.13 97.73 14.87 14.98 1 0.5 0.46 0.44 

0.1 1 2.24 7.33 60.23 98.66 17.15 16.84 1 0.3 0.44 0.42 

0.1 0.1 2.23 4.26 58.42 81.05 15.29 15.65 1 0.1 0.42 0.44 

Table 2.3. Mean runtime spent for graph classification of the proposed cost models 
to estimate the structural dissimilarities using SFBP given the 7 datasets and 
different combinations of parameters (Matlab, i7 950, 3.07 GHz, 6 GB RAM, 
Windows 7). 

 

Figure 2.6. Accuracy with respect to runtime in seconds. 
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Figure 2.6  shows the mean of the best accuracies with respect to the mean 

runtime of the eight methods presented in Table 2.2 and Table 2.3 

throughout the seven databases. Given a method and a database Table 2.2 

and Table 2.3 show four results. From these four results we only have taken 

the one that obtained the maximum accuracy and its corresponding runtime, 

since it would be the one selected by an expert in a validation process. These 

last results have been show to analyse the general behaviour of the cost 

models independently of the topology of the databases. In general, we 

realise Node obtains a so low accuracy that does not compensate on the low 

runtime. Contrarily, Stars using Planar and Hungarian solvers have an 

interesting accuracy but they are too slow. Moreover, centralities based on 

Mesh are fast but do not achieve the best accuracies. In fact, several previous 

experimental validations on pattern recognition have shown us that these 

methods are too dependent on intraclass variations. All in all, from the 

results represented in this figure we could conclude the best centralities to 

be considered are the Degree, and Star using Hausdorff and Greedy 

assignment solvers. 
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Chapter 3                          

Interactive Graph 

Matching using 

Active Query 

Strategies
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In Chapter 1 we introduced the Error-Tolerant Graph Matching [5] problem 

(section 1.3). Due to distortions of the data and the complexity of the 

problem, in some applications, completely automatic processes do not 

return a satisfactory correspondence. In this chapter it is proposed a 

framework in which an active module, queries one of the nodes of one graph 

and an oracle (human or artificial) to impose a node of the other graph to be 

mapped. For each oracle node-to-node imposition, other mappings are 

automatically amended. The framework can be implemented over any graph 

matching algorithm that iteratively updates a probability matrix (see section 

1.3.2.2) between nodes since it only requires access to the probability 

matrix and to update the costs between nodes and edges of the graph 

matching method (Graduated Assignment [31] in our case). 

3.1 Overview of interactive Graph Matching 

On one hand, active learning is a discipline concerned with the design and 

development of algorithms that allow computers to evolve behaviours based 

on examples [73, 74]. In this discipline, a learner can take advantage of 

examples to capture characteristics of interest from the data with respect to 

their class. With the learned characteristics, the learner deduces the class of 

the new examples. On the other hand, Error-Tolerant Graph Matching [5] is 

another discipline that aims to find the best correspondence between the 

nodes of both graphs so that the cost of this optimal correspondence is the 

minimum among all possible correspondence. If we combine the Active 

Learning and Error-Tolerant Graph Matching disciplines, we can define a 

model in which examples and classes in the machine-learning discipline are 

composed of the set of nodes of one of the graphs and the nodes of the other 

graphs, respectively. Therefore, what we want to find is the best 

correspondence between the nodes of both graphs but with the minimum 

necessary help of an oracle. Note that in this chapter we do not perform a 

learning strategy such as Learning Graph Matching [39] or Semi-Supervised 

Learning [127] since we do not modify the matching cost function. 

Normally, two basic modules compose pattern recognition systems [73]. The 

first one extracts the main features given the raw data. The second one 

extracts the class of the object or simply obtains the most similar object from 

a database. In the semi-automatic methods, a specialist usually interacts in 
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the first module and modifies the automatically extracted features. Then, 

with the updated features, the automatic correspondence or query process 

is performed obtaining a result with higher quality. For instance, in the case 

of AFIS [20], the specialist usually verifies and modifies the extracted 

minutiae of the fingerprint to be queried. However, it is not so usual to apply 

any interaction on the second module [75, 76]. 

 

Figure 3.1. Semi-automatic image-correspondence process with human interaction 
in the local parts extraction and based on structural pattern recognition. 

Figure 3.1 shows a scheme of semi-automatic image-correspondence 

process in which an intermediate step has been incorporated. We wish to 

compare input images 𝐼𝑝  and 𝐼𝑞 . Both images are represented by some kind 

of representation that explore the local parts of the image 𝐺𝑝 = 𝐺 𝐼𝑝  and 

𝐺𝑞 = 𝐺 𝐼𝑞 , for instance vectors or attributed graphs. There is a first step in 

which representations 𝐺𝑝  and 𝐺𝑞  of the images 𝐼𝑝  and 𝐼𝑞  are obtained using 

methods such as [77, 78]. Then, in the semi-automatic methods, there is a 

second step in which the oracle edits the local parts of these representations 

(erase, create or modify their positions or values). We call the oracle 

feedback 𝑤1 and 𝑤2. Note that the oracle not only has access to the obtained 

representation but also to the original image since it is a valuable 

knowledge. The last step obtains the correspondence between nodes 𝑓 and a 

dissimilarity measure or cost 𝐶𝑓  in a completely automatic way through 

methods such as [32, 33, 79, 80, 81, 82]. 
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The aim of this chapter is to present a new model for add interactivity to the 

third step of Figure 3.1 and to keep the first and second steps as they are. 

This new interactive method is useful in two types of applications. The first 

ones are applications where it is crucial to have a perfect match but data is 

very noisy and it is difficult to extract the local parts of objects even though 

the number of these local parts may not be large. For instance, in medical 

applications, in which graphs are extracted from images. Other applications 

are the ones in which graphs have a large cardinality. Then, graph matching 

algorithms have to be very greedy and they are unlikely to obtain a 

satisfactory match. Conversely, this method is not useful in applications 

where an unclassified graph has to be compared with a large number of 

graphs in a database. For instance, fingerprint identification. The human 

interaction in each graph comparison would increase the run time 

considerably. In this type of application, it is usual to interact in the first step 

of the pattern recognition process as described in Figure 3.1. The extracted 

graph is corrected in the first step of the recognition process and graphs of 

the database are corrected in the enrolment process.  

The framework it is designed to be implemented over any graph matching 

algorithm that computes a probability matrix (see section 1.3.2.2). In section 

3.3, it is shown how the feedback of an oracle can be used to update matrices 

𝐶𝑣  and 𝐶𝑒 . Besides, we present different strategies which, with the 

information of the probability matrix P and the magnitude of the gradient 𝑀, 

derive the node that has to be queried to the oracle. 

The rest of the chapter is organised as follows. In 3.2, it is presented the 

active and interactive learning models; in other words, it is shown how to 

add interactivity to the third step of the image correspondence process 

(Figure 3.1). In 3.3, it is shown the algorithm to compute the active and 

interactive graph matching. Finally, in 3.4 it is shown the practical 

evaluation. 

3.2 Active Learning 

The key idea behind active learning [84, 85, 86] is that a machine learning 

algorithm can achieve a greater accuracy with fewer classified training 

examples if it is allowed to choose the data from which it learns. The learner 
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queries some elements and the answerer of the queries decides which 

classes these elements belong to. The answerer might be another automatic 

system or a human annotator and in general, it is called an oracle since it is 

assumed its answer is always correct. 

Active learning is well motivated in many modern machine-learning 

problems, where unclassified examples may be abundant but finding the 

class is difficult, time-consuming or expensive to obtain [73, 76]. Active 

learning has been applied in several fields such as speech recognition [87], 

information extraction [88, 89, 90, 91], robotics [92], transcription of text 

images [93, 94], object classification in general [95, 96, 97, 98, 99], 

biometrics [124], image segmentation [125], clustering [126]. And in 

general, it has been used for parameter selection [100]. 

3.2.1 Active Learning scenarios 

3.2.1.1 Membership query synthesis 
In this scenario, the learner may request the class for any unclassified 

instance in the input space, including and assuming instances where the 

learner synthetically generates [99, 101, 102, 103]. Query synthesis is 

reasonable for many problems but classifying such arbitrary instances can 

be awkward if the oracle is a human annotator. For instance, in [104], they 

employed this method to train a neural network to classify handwritten 

characters and they encountered the problem that most of the generated 

instances were not recognisable symbols for a human annotator. 

3.2.1.2 Stream-based Selective Sampling 
In this scenario, each unclassified instance is typically drawn one at a time 

from the input space and the learner must decide whether to query or 

discard it depending on some informativeness measure (also called query 

strategy) [106]. One approach is to compute an explicit region of uncertainty 

[106, 107], i.e., the part of the input space that it is still ambiguous to the 

learner and the learner only queries instances that fall within it. Another 

approach is to make a biased random decision, so that more informative 

instances are, more likely to be queried [108].  
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3.2.1.3 Pool-based Active Learning 
In this scenario, large collections of unclassified data can be gathered at once 

[95, 96, 109, 110, 111]. It assumes there is a small set of classified data and a 

large pool of unclassified data available. Thus, instances from the 

unclassified pool are queried in a greedy fashion, according to an 

informativeness measure used to evaluate all instances in the unclassified 

pool. The main difference between stream-based and pool-based active 

learning is that the former receives the instances sequentially and makes 

query decisions individually, whereas the latter evaluates and ranks the 

entire collection of unclassified instances and selects the best instance to be 

queried. 

3.2.2 Query Strategies 

Moreover, all active learning scenarios involve evaluating the 

informativeness of unlabelled instances. There have been many proposed 

ways of formulating such query strategies [84] and this subsection provides 

an overview of the strategies used to date. We use the following notation. 𝑥 

is an unclassified instance that can be queried, 𝑦 is one of the classes and  𝜃 

is a classification model. Finally, the element 𝑥𝐴
∗ refers to the most 

informative instance according to some query strategy 𝐴. Besides, the 

conditional probability 𝑃 𝑦 𝑥; 𝜃   represents the posterior class probability 

of class 𝑦 given an instance 𝑥 and a classification model 𝜃. 

3.2.2.1 Uncertainly Sampling 
The active learner queries the instances about which it is least certain how 

to classify [110]. This approach is often straightforward for probabilistic 

learning models. For instance, when there are only two classes, the sampling 

strategy simply queries the instance whose posterior probability of a class is 

nearest ½. For the multiple class case, there are three interesting options. 

3.2.2.1.1 Least Confident 

This strategy [111] queries the element whose highest probability of 

belonging to a class is the lowest among all the elements. 

𝑥𝐿𝐶
∗ = argmin

∀𝑥
𝑃 𝑦∗ 𝑥; 𝜃   (3.1) 
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where 𝑦∗ = argmax∀𝑦 𝑃 𝑦 𝑥; 𝜃   is the most likely class labelling. 

3.2.2.1.2 Margin sampling 

This strategy [112] aims to incorporate the posterior probability of the 

second most likely labelled. Intuitively, instances with large margins are 

easy, since the classifier has little doubt in differentiating between the two 

most likely class labels. On the contrary, instances with small margins are 

more ambiguous, thus knowing the true label would help the model for 

discriminate more effectively between them. If 𝑦1 and 𝑦2 are the first and 

second most probable class labels under the model 𝜃, respectively, the 

queried element is, 

𝑥𝑀𝑆
∗ = argmin

∀𝑥
 𝑃 𝑦1 𝑥; 𝜃  − 𝑃 𝑦2 𝑥; 𝜃    (3.2) 

3.2.2.1.3 Maximum Entropy 

This strategy [113] queries the element with maximum Shannon Entropy 

[114] given the probabilities. The main idea of the method is to query the 

elements that are more difficult to be classified, 

𝑥𝑀𝐸
∗ = argmax

∀𝑥
 − 𝑃 𝑦 𝑥; 𝜃  𝑙𝑜𝑔 𝑃 𝑦 𝑥; 𝜃   

∀𝑦

  (3.3) 

3.2.2.2 Query by committee 
This strategy [115, 116, 117] involves maintaining a committee of models 

which are all trained on the current labelled set but represent competing 

hypothesis. The most informative query is considered to be the instance 

about which they disagree most. To measure a level of disagreement, one 

option is the vote entropy [108] 

𝑥𝑄𝐵𝐶
∗ = argmax

∀𝑥
 − 

𝑉 𝑦 

𝐶
𝑙𝑜𝑔  

𝑉 𝑦 

𝐶
 

∀𝑦

  (3.4) 
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where 𝑉 𝑦  represents the number of votes that a class receives from among 

the committee member’s predictions and 𝐶 is the number of committees. 

3.2.2.3 Expected Model Change 
An active learner queries the instances that would impart the greatest 

change to the current model if we knew its class [118]. Since probabilistic 

models are usually trained using a Gradient Ascent technique [34], the 

change imparted to the model can be measured by the magnitude of the 

training gradient. Given that the learning module does not know the true 

class 𝑦 of an instance 𝑥 in advance, we must instead calculate the length as 

an expectation over the possible classes. Moreover, we assume the resulting 

magnitude of the training gradient 𝑀 when the pair  𝑥, 𝑦  has been added to 

the model 𝜃 is similar to the gradient magnitude of the probability related to 

 𝑥, 𝑦 . We make this approximation because the gradient magnitude should 

be nearly zero given the method converged in the previous round training 

and because we assume the training instances are independent. 

𝑥𝐸𝑀𝐶
∗ = argmax

∀𝑥
  𝑃 𝑦 𝑥; 𝜃  𝑀  𝑥, 𝑦 , 𝜃 

∀𝑦

  (3.5) 

3.2.2.4 Variance Reduction 
The aim of this strategy [103, 119], is to query the instance that minimises 

the learner’s future error by minimising its variance. They used the 

estimated distribution of the model’s output to estimate the variance 𝜎𝜃
2 of 

the learner after some new instance 𝑥 has been labelled to class 𝑦. 

𝑥𝑉𝑅
∗ = argmin

∀𝑥
 𝜎𝜃

2  (3.6) 

3.2.2.5 Estimated Error Reduction 
Similarly to Variance Reduction strategy, the aim of this strategy [120, 121, 

122] is to query the instance that minimises the learner’s future error but, 

instead of minimising the variance, the aim is to minimise the expectation of 

this error 𝐸𝜃 . 

UNIVERSITAT ROVIRA I VIRGILI 
ACTIVE AND INTERACTIVE LEARNING STRATEGIES FOR ERROR-TOLERANT GRAPH MATCHING 
Xavier Cortés Llosa 



Interactive Graph Matching using Active Query Strategies 

 41 

𝑥𝑉𝑅
∗ = argmin

∀𝑥
 𝐸𝜃  (3.7) 

3.2.2.6 Density-Weighted methods 
It has been suggested that Uncertainty Sampling and Query by Committee 

strategies are prone to querying outliers. Although they are the least certain 

instances, they are not representative of the other instances in the 

distribution. Therefore, knowing their label is unlikely to improve the 

accuracy of the data as a whole. These methods [111] are based on adding a 

weighting term which depends on the probability of the element being an 

outlier. 

3.3 Interactive graph matching using active 
queries 

In this section, it is explained how to add interactivity to the graph matching 

module. We define the input and output architecture and how we use the 

feedback to modify the nodes and edges costs. Secondly, are proposed 

different active strategies (inspired by the ones presented in 3.2.2) to decide 

which node has to be presented to the oracle. 

3.3.1 Adding interactivity into the graph matching 

module 

Human specialists are very good at finding the correspondences between 

local parts of an object, for instance, the minutiae of two fingerprints, but 

this is one of the most difficult tasks for an automatic system. When features 

that represent the object are structured on attributed graphs, we have an 

opportunity to have a second interaction on the system (at third step, Figure 

3.1). The new model shifts from the concept of fully automatic graph 

matching to a model where obtained mapping is conditioned by the 

feedback. This shift is caused by the fact that the correspondence obtained 

by the fully automatic system often turns out to be non-natural. Moreover, 

since our algorithm modifies the automatically-obtained costs matrices 

between nodes 𝐶𝑣  and edges 𝐶𝑒  to be adapted to the feedback, then mistakes 
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made at the first step of the structural pattern recognition are partially 

amended. 

In the Active and Interactive model presented in this thesis, the oracle can 

recursively interact in the graph matching process until he considers a 

satisfactory correspondence has been reached. In each interaction, the 

automatic process uses the hypothesis imposed by the oracle and, 

considering the graph-distance model, obtains a new correspondence 

between nodes. 

 

Figure 3.2. Interactive and Active Graph Matching Process (new step 3 of Figure 
3.1). 

Figure 3.2 shows a schematic view of the active and interactive graph 

matching process that substitutes step 3 of Figure 3.1. The oracle has access 

to the original images because they have more information. Moreover, the 

oracle also has access to both attributed graphs and the current 

correspondence 𝑓 between graph nodes. The output of the module is the 

same as the classical graph matching: the obtained 

correspondence 𝑓 𝐺𝑝 , 𝐺𝑞  and the cost related to this correspondence 

𝐶𝑓 𝐺𝑝 , 𝐺𝑞 . The active module presents to the specialist the node 𝑣𝑝∗
 which 

is supposed to produce a greater impact on the correspondence between 

both graphs if its mappings was certainly known (dashed line in Figure 3.2). 

Thus, these queries help the specialist (who acts as the oracle in the 

machine-learning scenario) to decide which node mapping he wants to 

interact with. In the system we propose, the feedback 𝑤 is not only the 

answer of the query 𝑣𝑝∗
 but also other suggestions of the current 

correspondence. This is because there is no sense in allowing the human to 
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amend a node mapping if he has detected that it is wrong even though the 

active module does not detected that it might be wrong. 

We represent the interactions as a vector 𝑤 =  𝑤(1), … , 𝑤(𝑘)  where each 

position represents a simple user action 𝑤(𝑚). In each interactive step of the 

algorithm, the user can interact with 𝑘 different number of possible simple 

actions. When the user wants to impose a mapping 𝑓 𝑣𝑖
𝑝
 = 𝑣𝑎

𝑞
, then the 

simple user action is 𝑤(𝑚) = 𝑆𝑒𝑡 𝑣𝑖
𝑝

, 𝑣𝑎
𝑞
 . Conversely, when the user accepts 

the current mappings for all the nodes, 𝑣𝑖
𝑝

→ 𝑓 𝑣𝑖
𝑝
 ∀𝑖 =  1, … , 𝑛 , the 

interaction is 𝑤(𝑚) = 𝑂𝐾. 

Figure 3.3 shows an example of a current correspondence in green 

(obtained through the algorithm presented in [80]), the imposed actions in 

purple and the selected node in red. 

 

Figure 3.3. Graphical representation of the current correspondence in green and the 
feedback in purple. 

If the feedback is 𝑆𝑒𝑡 𝑣𝑖
𝑝

, 𝑣𝑎
𝑞
 , then the node costs are modified as follows, 

 𝐶𝑣 𝑣𝑖
𝑝

, 𝑣𝑎
𝑞
 = 0 

𝐶𝑣 𝑣𝑖
𝑝

, 𝑣𝑏
𝑞
 = ∞∀𝑏 ≠ 𝑎 

𝐶𝑣 𝑣𝑗
𝑝

, 𝑣𝑎
𝑞
 = ∞∀𝑗 ≠ 𝑖 

 

 

The aim is to force the graph matching algorithm to impose this mapping at 

the following iterations and also to impose the global matching to be a 

bijection. 
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In the case of edge costs, the modus operandi is similar. Nevertheless, we 

need the correspondence of both terminal nodes to be accepted by the user 

in this iteration or previous ones. If it is not the case, this action has no 

influence on the edge costs. Therefore, if 𝑆𝑒𝑡 𝑣𝑖
𝑝

, 𝑣𝑎
𝑞
  and 𝑆𝑒𝑡 𝑣𝑗

𝑝
, 𝑣𝑏

𝑞
  then 

 𝐶𝑒 𝑣𝑖
𝑝

, 𝑣𝑎
𝑞

, 𝑣𝑗
𝑝

, 𝑣𝑏
𝑞
 = 0 ∧ 𝐶𝑒 𝑣𝑗

𝑝
, 𝑣𝑏

𝑞
, 𝑣𝑖

𝑝
, 𝑣𝑎

𝑞
 = 0 

𝐶𝑒 𝑣𝑖
𝑝

, 𝑣𝑎′
𝑞

, 𝑣𝑗
𝑝

, 𝑣𝑏′
𝑞

 = ∞ ∧ 𝐶𝑒 𝑣𝑗
𝑝

, 𝑣𝑏′
𝑞

, 𝑣𝑖
𝑝

, 𝑣𝑎′
𝑞
 = ∞ ∀𝑎 ≠

𝑎′and𝑏 ≠ 𝑏′ 

𝐶𝑒 𝑣𝑖′
𝑝

, 𝑣𝑎
𝑞

, 𝑣𝑗 ′
𝑝

, 𝑣𝑏
𝑞
 = ∞ ∧ 𝐶𝑒 𝑣𝑗 ′

𝑝
, 𝑣𝑏

𝑞
, 𝑣𝑖′

𝑝
, 𝑣𝑎

𝑞
 = ∞∀𝑖 ≠ 𝑖′and𝑗 ≠ 𝑗′ 

 

 

3.3.2 Active Learning strategies based on the 

probability matrix 

In this section, we present several strategies to select a node 𝑣𝑝∗
of 𝐺𝑝  that 

have to be queried to the oracle. The oracle feedback is 𝑣𝑞∗
 which means he 

believes 𝑓 𝑣𝑝∗
 = 𝑣𝑞∗

. From the three scenarios presented in section 3.2.1, 

the pool-based active learning is the one that can be addressed directly to 

our problem since we have access to all the elements to be classified (graph 

nodes of 𝐺𝑝) and also the predefined classes (graph nodes of 𝐺𝑞). Normally, 

query elements are selectively drawn from the set of unclassified elements. 

In our case, an “unclassified element” is a node of 𝐺𝑝  whose mapping we do 

not know. For this reason, the pool of nodes to be queried is composed of 

nodes of 𝐺𝑝  that have never been queried before. In the strategies we 

present, there is a logical function 𝑄 𝑣𝑖
𝑝
 that shows if node 𝑣𝑖

𝑝
 has been 

queried before. This logical function is used to ensure a node is not queried 

several times. Note that in the case where 𝑄 𝑖 = 𝑇𝑟𝑢𝑒 for all nodes of 𝐺𝑝  

then the following strategies return an empty value. 

We leave for future work to address the other two depicted scenarios. On 

the one hand, the membership query synthesis scenario would involve 

generating new nodes of 𝐺𝑝 . It may be seen as the insert operation in the 

graph matching method based on edit costs [18]. On the other hand, the 

stream-based selective sampling scenario would be logical if we do not have 

access to the whole graph at once. For instance, in cases where graphs are 

dynamic and very large, such as social networks. 
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3.3.2.1 Uncertainly Sampling 
We define four different strategies based on Uncertainly Sampling: Least 

Confident, Least Confident given the Current Labelling, Margin Sampling and 

Maximum Entropy. 

3.3.2.1.1 Least Confident (LC) 

The learner queries the node 𝑣𝐿𝐶
𝑝∗

 of 𝐺𝑝  that has not been previously queried 

and whose maximum probability given the nodes of 𝐺𝑞  is the lower. Node 

𝑣𝐿𝐶
𝑝∗

 is obtained in two steps. Firstly, we obtain the set of nodes in 𝐺𝑞 : 

 𝑣𝑞{1}, … , 𝑣𝑞 {𝑖}, … , 𝑣𝑞 {𝑛}
  so that, 

𝑣𝑞 {𝑖} = argmax
∀𝑗= 1,..,𝑛 

𝑃 𝑣𝑖
𝑝

, 𝑣𝑗
𝑞
 ; ∀𝑖 =  1, . . , 𝑛  (3.8) 

note that 𝑣𝑞 {𝑖} represents the node selected of 𝐺𝑞  when 𝑣𝑖
𝑝

 is considered. For 

this reason, some of the nodes in this set can appear several times, 

𝑣𝑞 {𝑖} = 𝑣𝑞 {𝑗 }; 𝑖 ≠ 𝑗. 

And secondly, we select the node in 𝐺𝑝  so that its respective node in the set 

obtains the minimum probability, 

𝑣𝐿𝐶
𝑝∗

= argmin
∀𝑖= 1,..,𝑛 |𝑄 𝑖 = 𝐹𝑎𝑙𝑠𝑒

𝑃 𝑣𝑖
𝑝

, 𝑣𝑞 {𝑖}
  (3.9) 

Computational cost: 𝑂 𝑛2  

3.3.2.1.2 Least Confident given the Current Labelling (LCCL) 

The aim of this strategy is to query the nodes that are matched through the 

current correspondence but they have not been queried before. Therefore, it 

can be seen that the method tries to minimise the hamming distance 

between the current correspondence and the ideal correspondence (the 

correspondence that would have been predicted by the oracle if all the 

nodes were queried). The learner queries node 𝑣𝐿𝐶𝐶𝐿
𝑝∗

of 𝐺𝑝  that has not been 

previously queried and has the minimum probability given the current 

correspondence 𝑓. Formally, 
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𝑣𝐿𝐶𝐶𝐿
𝑝∗

= argmin
∀𝑖= 1,..,𝑛 |𝑄 𝑖 = 𝐹𝑎𝑙𝑠𝑒

𝑃 𝑣𝑖
𝑝

, 𝑓 𝑣𝑖
𝑝
   (3.10) 

Computational cost: 𝑂 𝑛  

3.3.2.1.3 Margin Sampling (MS) 

Defining 𝑣𝑞 {𝑖}
 as the most probable node with respect to 𝑣𝑖

𝑝
 and it is defined 

as in equation (3.11). We also define 𝑣𝑞 ′ {𝑖}
 as the second most probable 

node and defined in a similar way to 𝑣𝑞 {𝑖} but without considering node 

𝑣𝑞 {𝑖}. Thus, the queried element is, 

𝑣𝑀𝑆
𝑝∗

= argmin
∀𝑖= 1,..,𝑛 |𝑄 𝑖 = 𝐹𝑎𝑙𝑠𝑒

 𝑃 𝑣𝑖
𝑝

, 𝑣𝑞 {𝑖}
 − 𝑃  𝑣𝑖

𝑝
, 𝑣𝑞 ′ {𝑖}

   (3.11) 

Computational cost: 𝑂 𝑛2  

3.3.2.1.4 Maximum Entropy (ME) 

The selected node 𝑣𝑀𝐸
𝑝∗

 depends on the Shannon Entropy, 

𝑣𝑀𝐸
𝑝∗

= argmax
∀𝑖= 1,..,𝑛  ∧ 𝑄 𝑖 = 𝐹𝑎𝑙𝑠𝑒

−  𝑃 𝑣𝑖
𝑝

, 𝑣𝑎
𝑞
 𝑙𝑜𝑔 𝑃 𝑣𝑖

𝑝
, 𝑣𝑎

𝑞
  

𝑣𝑎
𝑞
∈𝛴𝑣

𝑞

 
(3.12) 

Computational cost: 𝑂 𝑛2  

3.3.2.2 Query by committee 
The general idea of this strategy would be to use several graph matching 

algorithms and then use the obtained correspondence as models. Due to the 

huge amount of time that would involve, we will leave the study of how to 

efficiently implement this method as a future work. 

We define two different strategies based on Expected Model Change: 

Maximum Gradient Norm and Maximum Probability Change given a 

Common Labelling. 

3.3.2.3 Expected Model Change 
We define two strategies. 
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3.3.2.3.1 Maximum Gradient Norm (MGN)  

The magnitude of the training gradient of variable 𝑃 𝑣𝑖
𝑝

, 𝑣𝑎
𝑞
  is defined as 

𝑀 𝑣𝑖
𝑝

, 𝑣𝑎
𝑞
  (section 3.1). The learner should query the node 𝑣𝑀𝐺𝑁

𝑝∗

 defined 

through the following equation, 

𝑣𝑀𝐺𝑁
𝑝∗

= argmax
∀𝑖= 1,..,𝑛  ∧ 𝑄 𝑖 = 𝐹𝑎𝑙𝑠𝑒

  𝑃 𝑣𝑖
𝑝

, 𝑣𝑎
𝑞
 𝑀 𝑣𝑖

𝑝
, 𝑣𝑎

𝑞
 

𝑣𝑎
2∈𝛴𝑣

2

  (3.13) 

Computational cost: 𝑂 𝑛4 , considering that computing M is 𝑂 𝑛2  

3.3.2.3.2 Maximum Probability Change given a Common Labelling (MPCCL) 

The learner should query the instance that if its current correspondence is 

changed, this would result a maximum increase in its probability, 

𝑣𝑀𝑃𝐶𝐶𝐿
𝑝∗

= argmax
∀𝑖= 1,..,𝑛  ∧ 𝑄 𝑖 = 𝐹𝑎𝑙𝑠𝑒

 𝑚𝑎𝑥
∀𝑎= 1,..,𝑛  

 𝑃 𝑣𝑖
𝑝

, 𝑣𝑎
𝑞
  − 𝑃 𝑣𝑖

𝑝
, 𝑓 𝑣𝑖

𝑝
    (3.14) 

If 𝑚𝑎𝑥
∀𝑗= 1,..,𝑛  

 𝑃 𝑣𝑖
𝑝

, 𝑣𝑎
𝑞
  > 𝑃 𝑣𝑖

𝑝
, 𝑓 𝑣𝑖

𝑝
  , the current mapping of 𝑣𝑖

𝑝
 is not the 

ideal one, considering only probabilities 𝑃 𝑣𝑖
𝑝

, 𝑣𝑎
𝑞
 , for all 𝑣𝑎

𝑞
∈ 𝛴𝑣

𝑞
. On the 

contrary, if 𝑚𝑎𝑥
∀𝑎= 1,..,𝑛  

 𝑃 𝑣𝑖
𝑝

, 𝑣𝑎
𝑞
  = 𝑃 𝑣𝑖

𝑝
, 𝑓 𝑣𝑖

𝑝
  , then, the current mapping is 

the one that obtains the maximum probability, therefore, it is the ideal case. 

Computational cost: 𝑂 𝑛2 . 

3.3.2.4 Variance Reduction & Estimated Error Reduction 
These methods are not presented in this thesis. Both methods are based on 

statistical analysis. In our case, we only have one instance per class. For this 

reason, it seems difficult to be applied in our domain. 

3.3.2.5 Density-Weighted methods 
It is not trivial to decide which node can be considered as an outlier simply 

considering the graph. For this reason, there are not considered this type of 

methods in this thesis. 
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3.3.3 Active & Interactive graph matching algorithm 

In this section it is presented the Active and Interactive Graph Matching 

algorithm that obtains a correspondence between nodes of attributed 

graphs 𝐺𝑝  and 𝐺𝑞  considering the oracle feedback. The algorithm computes 

several times a sub-optimal graph matching algorithm 𝐺𝑟𝑎𝑝𝑕_𝑀𝑎𝑡𝑐𝑕𝑖𝑛𝑔 (for 

instance [32, 33, 30]), but in each step, the cost matrices 𝐶𝑣  and 𝐶𝑒  are 

updated through the current feedback (section 3.3.1). However, as 

commented on section 3.1, we need the probability matrix 𝑃 to be 

accessible. This matrix is usually initialised depending on the edit costs or 

simply taking values 1/𝑛. The cost matrices 𝐶𝑣  and 𝐶𝑒  are application 

dependent and they are initialised through function 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑠𝑒_𝐶𝑜𝑠𝑡. The 

algorithm finishes when the feedback of the user is 𝑂𝐾 or all the nodes of 𝐺𝑝  

have been queried, 𝑄 𝑖 = 𝑇𝑟𝑢𝑒 for all nodes of 𝐺𝑝 . When the active 

algorithm is initialised, 𝑄 𝑣𝑖
𝑝
  takes the 𝐹𝑎𝑙𝑠𝑒 value for all nodes of 𝐺𝑝  and 

this value is changed to 𝑇𝑟𝑢𝑒 in each query. The final matching cost obtained 

at the end of the algorithm is computed through the original costs, 𝐶𝑣
0 and 

𝐶𝑒
0. This is because the aim of modifying these costs is to influence the 

correspondence but not to change the resulting cost given a correspondence. 

Function 𝐴𝑐𝑡𝑖𝑣𝑒_𝑄𝑢𝑒𝑟𝑦 returns a selected node that it is supposed to be the 

most informative for the system (section 3.3.2). Besides, function 

𝑂𝑟𝑎𝑐𝑙𝑒_𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘 returns the set of simple actions proposed by the user 

(section 3.3.1). We call 𝑘 the number of the user’s simple actions in each 

iteration and 𝑕𝑘 the total number of simple actions. Function 𝐴𝑝𝑝𝑒𝑛𝑑 

appends the new actions in the set 𝑤 into the historical set 𝑕𝑤. Finally, 

actions 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑣𝑒_𝑁𝑜𝑑𝑒_𝐶𝑜𝑠𝑡𝑠 and 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑣𝑒_𝐸𝑑𝑔𝑒_𝐶𝑜𝑠𝑡𝑠 updates the 

costs matrices (section 3.3.1). These functions are detailed above. The input 

of these two last functions is not 𝑤 but 𝑕𝑤. The reason is twofold. On one 

hand, we have realised that some graph matching algorithms modify the 

costs matrices and we want these matrices to be the original ones in each 

step, except the costs imposed by the interactive module. On the other hand, 

we need the history of all impositions to be considered in the edge case. 

Note that the algorithm does not control if the user imposes contradictory 

orders. 

Figure 3.4 shows the probabilistic graph matching framework with 

interactive and active learning. Dashed lines connect the active modules that 

do not appear in the classical framework shown in Figure 1.4. Moreover, we 
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have added the original costs 𝐶𝑣
0 and 𝐶𝑒

0, since the matching cost 𝐶𝑓  is 

computed through these costs. 

Algorithm Active & Interactive Graph Matching 

Input: Attributed Graphs 𝐺𝑝 and 𝐺𝑞 

Output: Correspondence 𝑓 and Cost 𝐶𝑓 

Pseudocode: 𝑕𝑘 = 0  // total number of actions 

𝐶𝑣
0 , 𝐶𝑒

0 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑠𝑒_𝐶𝑜𝑠𝑡 𝐺𝑝  , 𝐺𝑞 , 𝑘𝑣 , 𝑘𝑒 ; 𝐶𝑣 = 𝐶𝑣
0; 𝐶𝑒 = 𝐶𝑒

0. 

𝑃 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑠𝑒_𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 𝐶𝑣 , 𝐶𝑒 . 
 𝑃, 𝑓 = 𝐺𝑟𝑎𝑝𝑕_𝑀𝑎𝑡𝑐𝑕𝑖𝑛𝑔 𝑃, 𝐶𝑣 , 𝐶𝑒 . 

 Do  

  𝑣𝑝 = 𝐴𝑐𝑡𝑖𝑣𝑒_𝑄𝑢𝑒𝑟𝑦 𝑃, 𝑓 . 

 𝑤, 𝑘 = 𝑂𝑟𝑎𝑐𝑙𝑒_𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘 𝐺𝑝 , 𝐺𝑞  , 𝑣𝑝∗
, 𝑓, …  . 

𝑕𝑤 = 𝐴𝑝𝑝𝑒𝑛𝑑 𝑕𝑤, 𝑤 . 𝑕𝑘 = 𝑕𝑘 + 𝑘. 

𝐶𝑣 = 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑣𝑒_𝑁𝑜𝑑𝑒_𝐶𝑜𝑠𝑡𝑠 𝑕𝑤, 𝐶𝑣 , 𝑕𝑘 . 

𝐶𝑒 = 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑣𝑒_𝐸𝑑𝑔𝑒_𝐶𝑜𝑠𝑡𝑠 𝑕𝑤, 𝐶𝑒 , 𝑕𝑘 . 
 𝑃, 𝑓 = 𝐺𝑟𝑎𝑝𝑕_𝑀𝑎𝑡𝑐𝑕𝑖𝑛𝑔 𝑃, 𝐶𝑣 , 𝐶𝑒 . 

 Since 

Stop 

 

 Compute 𝐶𝑓 𝐶𝑣
0 , 𝐶𝑒

0     

End 

Algorithm 

 

Algorithm 3.1. Active & Interactive graph matching. 

 

Function Interactive Node Costs 

Input: Historical feedback 𝑕𝑤 

Cost Matrix 𝐶𝑣 

Total number of actions 𝑕𝑘 

Output: Cost Matrix 𝐶𝑣 

Pseudocode: Do ∀𝑚 =  1, … , 𝑕𝑘  

  //being 𝑕𝑤(𝑚) = 𝑆𝑒𝑡 𝑣𝑖
𝑝

, 𝑣𝑎
𝑞
  

𝐶𝑣 𝑣𝑖
𝑝

, 𝑣𝑎
𝑞
 = 0  

𝐶𝑣 𝑣𝑖
𝑝

, 𝑣𝑏
𝑞
 = ∞ ∀𝑏 ≠ 𝑎 

𝐶𝑣 𝑣𝑗
𝑝

, 𝑣𝑎
𝑞
 = ∞ ∀𝑗 ≠ 𝑖 

End Function  

Algorithm 3.2. Interactive Node Costs. 
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Figure 3.4. Probabilistic graph matching framework with interactive and active 
learning.   

Function Interactive Edge Costs 

Input: Historical feedback 𝑕𝑤 

Cost Matrix 𝐶𝑒 

Total number of actions 𝑕𝑘 

Output: Cost Matrix 𝐶𝑒 

Pseudocode: Do ∀𝑚1, 𝑚2 =  1, … , 𝑕𝑘 , 𝑚1 < 𝑚2       

  //being  𝑕𝑤 𝑚1 = 𝑆𝑒𝑡 𝑣𝑖
𝑝

, 𝑣𝑎
𝑞
 ∧ 

𝑕𝑤(𝑚2) = 𝑆𝑒𝑡 𝑣𝑗
𝑝

, 𝑣𝑏
𝑞
  

𝐶𝑒 𝑣𝑖
𝑝

, 𝑣𝑎
𝑞

, 𝑣𝑗
𝑝

, 𝑣𝑏
𝑞
 = 0 ∧ 𝐶𝑒 𝑣𝑗

𝑝
, 𝑣𝑏

𝑞
, 𝑣𝑖

𝑝
, 𝑣𝑎

𝑞
 = 0  

𝐶𝑒 𝑣𝑖
𝑝

, 𝑣𝑎′
𝑞

, 𝑣𝑗
𝑝

, 𝑣𝑏′
𝑞

 = ∞ ∧ 𝐶𝑒 𝑣𝑗
𝑝

, 𝑣𝑏′
𝑞

, 𝑣𝑖
𝑝

, 𝑣𝑎′
𝑞

 = ∞  ∀𝑎 ≠

𝑎′ and 𝑏 ≠ 𝑏′ 

𝐶𝑒 𝑣𝑖′
𝑝

, 𝑣𝑎
𝑞

, 𝑣𝑗′
𝑝

, 𝑣𝑏
𝑞
 = ∞ ∧ 𝐶𝑒 𝑣𝑗′

𝑝
, 𝑣𝑏

𝑞
, 𝑣𝑖′

𝑝
, 𝑣𝑎

𝑞
 = ∞  

∀𝑖 ≠ 𝑖′ and 𝑗 ≠ 𝑗′ 
 

End Function  

Algorithm 3.3. Interactive Edge Costs. 

The input of the Oracle_Feedback algorithm may contain extra information 

(like the images 𝐼𝑝  and 𝐼𝑞)  from which the graphs have been extracted. This 

is because the oracle, may need to see these extra information to propose a 

correspondence. 
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3.4 Experimental Evaluation 

To experimentally validate our method, we have used the well-known graph 

databases: LETTER-HIGH, COIL-DEL, GREC [72] described in the Databases 

annex of this thesis. These databases have different characteristics such as 

cardinality, diversity, mean number of nodes and so on. Nevertheless, we 

considered only the  𝑥, 𝑦  attribute on the nodes and edges have no 

attributes. Several graph matching algorithms and graph-class prototypes 

have been compared using these datasets [123]. We have not taken into 

consideration the separation of these graphs into classes in any of the 

experiments. We have also used HOUSE and HOTEL datasets [81] also 

described in the Databases annex. The first four rows of Table 3.1 show the 

main database characteristics. 

From each database, we have defined a test set as follows. The Test Set is 

composed of 𝑇 elements  𝐺𝑡 , 𝐺′𝑡 , 𝑓 𝑡  that have a pairs of graphs and a 

correspondence:   𝐺1, 𝐺′1 , 𝑓 1 …  𝐺𝑡 , 𝐺′𝑡 , 𝑓 𝑡 …  𝐺𝑇 , 𝐺′𝑇 , 𝑓 𝑇  .  Graphs 𝐺𝑡 , 

1 ≤ 𝑡 ≤ 𝑇, are the ones in the original databases.  𝑇 is the number of graphs 

of these datasets. Graphs 𝐺′𝑡 , 1 ≤ 𝑡 ≤ 𝑇, have been randomly generated 

through distorting 𝐺𝑡 . The attribute value of nodes has been modified as 

follows. We add a Gaussian random value (fifth and sixth row of Table 3.1) 

to the original attribute value. Edges have been removed or added following 

the probability shown in the last row of Table 3.1. Both graphs 𝐺𝑡  and 𝐺′𝑡  

have the same number of nodes. The correspondence 𝑓 𝑡  has been computed 

together with the generation of the distorted graph 𝐺′𝑡  and we assume it is 

the best correspondence between 𝐺𝑡  and 𝐺′𝑡 . Nevertheless, by construction, 

we do not guarantee this correspondence to obtain the minimum cost. We 

make the oracle’s feedbacks coincide with these correspondences. That is, 

we assume that the feedback at the Gth iteration of the test  𝐺𝑡 , 𝐺′𝑡 , 𝑓 𝑡  is 

𝑤𝑡(𝑚) = 𝑆𝑒𝑡  𝑣∗𝑡(𝑚), 𝑓 𝑡 𝑣∗𝑡(𝑚)   where 𝑣∗𝑡(𝑚) is the node of 𝐺𝑡  selected by 

the active method at the mth iteration. This is because we consider that the 

oracle feedback is composed of only one simple action and that it is related 

to the selected node by the active module. 

We have used Graduated Assignment [32] as the graph matching algorithm, 

which is based on probabilities. Other algorithms could be used such as 
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Expectation Maximization [33] or Probabilistic Relaxation [30], but we 

assume they have no influence on the relative differences between the active 

queries precision results, for these databases. 

Database 
LETTER 

HIGH 

COIL 

DEL 
GREC 

HOUSE-

HOTEL 

# Nodes 4.7 21.5 11.5 30 

# Edges 4.5 54.2 12.2 38.1 

Mean node value (x and y) 1.6 60.7 272,9 318.4 

St. Dev. node value 1 31.6 139,8 104.5 

Mean noise on node 0 0 0 0 

St. Dev. noise on node value  0.75 15 1-20 10 

Probability on edge noise 0.04 0.04 0.025-0.4 0. 04 

Table 3.1. Database characteristics.  

In this practical evaluation we show three different measures: node 

precision and learning curve and matching cost throughout the iterations. 

We want an active method to suggest a node 𝑣∗𝑡(𝑚)  of 𝐺𝑡  that the current 

mapping obtained by the graph matching algorithm 𝑓𝑡(𝑚) is different from 

the oracle’s mapping 𝑓 𝑡 . This is because, in this case, the active and 

interactive methods will help the system to improve its output since the 

oracle will try to correct the wrong mappings. We are not interested in the 

cases where 𝑓𝑡(𝑚) 𝑣∗𝑡(𝑚) = 𝑓 𝑡 𝑣∗𝑡(𝑚)  since the oracle’s interaction is 

going to be useless. Given an element of the test set  𝐺𝑡 , 𝐺′𝑡 , 𝑓 𝑡  and the 

obtained mapping 𝑓𝑡(𝑚) in the Gth iteration, the delta function represents the 

usefulness of the active and interactive actions as follows, 

𝛿 𝑤𝑡(𝑚), 𝑓𝑡(𝑚) =  
1 if   𝑤𝑡(𝑚) = 𝑆𝑒𝑡 𝑣∗𝑡(𝑚), 𝑣′   and 𝑓𝑡(𝑚) 𝑣∗ ≠ 𝑣′

0 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
  (3.15) 

If the active method has been useful then 𝛿 𝑤𝑡(𝑚), 𝑓𝑡(𝑚) = 1. Note that, due 

to the construction of our experiments, the delta function can be rewritten 

as, 

𝛿 𝑣∗𝑡(𝑚), 𝑓 𝑡 , 𝑓𝑡(𝑚) =  
1 if    𝑓𝑡(𝑚) 𝑣∗𝑡(𝑚) ≠ 𝑓 𝑡 𝑣∗𝑡(𝑚)  

0 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
  (3.16) 
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The 𝑁𝑜𝑑𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 of an active method is computed as the average delta 

function of all the elements  𝐺𝑡 , 𝐺′𝑡 , 𝑓 𝑡  of the test set at the first iteration. 

The first iteration is only used because the costs on nodes or edges could be 

different throughout the active techniques in the other ones. 

𝑁𝑜𝑑𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
 𝛿 𝑣∗𝑡(1), 𝑓 𝑡 , 𝑓𝑡(1) 𝑇

𝑡=1

𝑇
 (3.17) 

3.4.1 Noise Robustness Study 

Figure 3.5 shows the precision obtained at the first interaction of all 

strategies and also a random strategy on GREC database with different noise 

levels. In the random strategy, the selected node is obtained randomly. The 

precision on all strategies is better than the random strategy, although 

MPCCL clearly obtains the lower values and MGN the best ones. When noise 

level increases, the graph matching algorithm mismatches more node 

mappings, and then the precision tends to increase because the probability 

of selecting a non-correct mapped node increases (3.17). Clearly, when 

there is a high level noise, all strategies obtain similar results to the random 

one. 

 

Figure 3.5. Precision at first iteration of GREC database throughout different noise 
levels. 

The learning curve is obtained through the hamming distance between the 

current correspondence and the oracle’s correspondence of all the elements 
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 𝐺𝑡 , 𝐺′𝑡 , 𝑓 𝑡  of the test set at each iteration mth. This is because we want the 

current correspondence to be as similar as possible to the oracle’s 

correspondence. 

3.4.2 Node Precision and Learning Curve Study 

Figure 3.6 shows the average node precision. MPCCL strategy obtains the 

worst results and LC, LCCL, ME and MS obtain similar results. If the oracle’s 

correspondence does not obtain the minimum cost, in other words, it is not 

the optimal correspondence, MGN obtains bad results. This is because this 

method has a strong dependency on the cost function (more precisely, the 

gradient of the cost function). In LETTER and COIL datasets, the relative 

noise added to the original graphs is high (note the relation between the 

original values of node attributes and the added noise in Table 3.1), and so, 

the oracle’s correspondence is not usually the optimal one, in other words, it 

does not obtain the minimum cost. This is not the case with the HOUSE and 

HOTEL datasets, in which the relative noise is not so high. 

 

Figure 3.6. Precision at first iteration of some datasets applying the commented 
active methods and a random method. 

The learning curve is obtained through the hamming distance equation (1.1) 

between the current correspondence and the oracle’s correspondence of all 

the elements  𝐺𝑡 , 𝐺′𝑡 , 𝑓 𝑡  of the test set at each iteration 𝑞. This is because 

we want the current correspondence to be as similar as possible to the 

oracle’s correspondence. 
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𝐿𝑒𝑟𝑎𝑛𝑖𝑛𝑔𝐶𝑢𝑟𝑣𝑒(𝑞) =  
𝑛𝑡 − ∆𝐻 𝑓 𝑡 , 𝑓𝑡(𝑚) 

𝑛𝑡

𝑇

𝑡=1

 (3.18) 

 

 

a. Learning curve for LETTER-HIGH dataset. LC, LCCL, MS & ME obtain similar 
results. MGN, MPCCL and Random obtain similar results. 

 

 

b. Learning curve for COIL-DEL dataset. LC, LCCL, MS & ME obtain similar results. 
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c. Learning curve for HOUSE dataset. 

 

d. Learning curve for HOTEL dataset. 

Figure 3.7. Learning curves versus number of iterations of different active strategies. 

Figure 3.7 shows the learning curve for all databases applying the explained 

strategies. In LETTER and COIL datasets (figures Figure 3.7.a and Figure 

3.7.b), the best results appear in the Uncertain Sampling strategies (MS, LC, 

LCCL & ME). The Expected Model Change strategies (MPCCL & MGN) are not 

useful because they obtain similar results to random strategy. Conversely, 

ME obtains the best results in HOUSE and HOTEL datasets (figure Figure 

3.7.c and Figure 3.7.d). Note that there is a clear relation between the node 

precision (Figure 3.6) and the learning curve (Figure 3.7). If the strategy 

selects the nodes that have not been properly matched, then the system 
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learns faster. Since, in a real application, we cannot compute the learning 

curve because we do not have, a priori, the complete oracle’s 

correspondence, we can use the node precision to decide which strategy to 

use. 

 

 

a. Average cost curve for LETTER-HIGH dataset. LC, LCCL, MS & ME obtain similar 
results. 

 

 

b. Average cost curve for COIL-DEL dataset. 
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c. Average cost curve for HOUSE dataset. 

 

d. Average cost curve for HOTEL dataset. 

Figure 3.8. Average curves versus number of iterations of different active strategies. 

Finally, we show in Figure 3.8 the normalised average cost of the current 

correspondences throughout iterations. If the cost tends to decrease 

(HOUSE and HOTEL datasets), then the representation of objects through 

the attribute graphs is in accordance with the oracle’s feedback and the 

oracle improves the graph matching algorithm performance. In other words, 

the oracle proposes optimal correspondences. Conversely, if the cost tends 

to increase (LETTERs and COIL datasets , the oracle’s feedback is not in 

accordance of the representation of the objects and the distance measure. 

We have to consider that the increase or decrease of the cost is not related to 

the quality of the active method but to the relation between the 

representation of the data and the oracle’s point of view of the involved 
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objects. In our examples, the noise added to the graphs in the LETTER and 

COIL datasets is larger than in the HOUSE and HOTEL datasets. Therefore, in 

most of the cases, the oracle’s correspondence does not obtain the minimum 

cost, and so the cost, while the system learns, increases instead of decreases. 

𝐶𝑜𝑠𝑡(𝑞) =
 𝐶𝑓𝑡(𝑚 ) 𝐺𝑡 , 𝐺′𝑡 𝑇

𝑡=1

𝑇
 (3.19) 
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Chapter 4                          

Learning 

Substitution Weights 

for Error-Tolerant 

Graph Matching
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In Chapter 3 it has been presented a new framework to add interactivity to 

Error-Tolerant Graph Matching aiming to obtain the perfect correspondence 

after a few interactions. But this framework does not perform any learning 

strategy taking advantage of the knowledge provided by the oracle.  

The next two chapters explore the feasibility of learning the parameters for 

Graph Edit Distance to minimize the hamming distance between the optimal 

correspondence (the least cost correspondence) and the ground-truth one 

(provided by an oracle) using the Edit Cost Error as a loss function. The 

present chapter is focused on learning the substitution weights for the nodes 

attributes and Chapter 5 is focused on learning the insertions and deletions 

costs. 

4.1 Matching graphs with weighted attributes 

A particular way of defining a distance between nodes for Graph Edit 

Distance is weighting its attributes to control which attribute is more 

important.  

Given two attributed graphs 𝐺𝑝  and 𝐺𝑞  (formally defined in 1.2) and a node 

assignment (unary assignment) 𝑣𝑖
𝑝

→ 𝑣𝑎
𝑞

 , the weighted distance between 

both graph nodes 𝑑(𝑣𝑖
𝑝

→ 𝑣𝑎
𝑞

) ∈ ℝ𝑡  is defined through any distance 

measure on their attribute values 𝑑(𝑣𝑖
𝑝

→  𝑣𝑎
𝑞

) = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  𝛾𝑝 𝑣𝑖
𝑝
 , 𝛾𝑞 𝑣𝑎

𝑞
   

and 𝑔(𝑒𝑖𝑗
𝑝

→ 𝑒𝑎𝑏
𝑞

) = 0 if both edges exist or both edges not exist or 

𝑔(𝑒𝑖𝑗
𝑝

→ 𝑒𝑎𝑏
𝑞

) = 1 otherwise. Following these definitions, we define the 

𝐿𝑜𝑐𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 of two graphs 𝐺𝑝  and 𝐺𝑞  given a bijective mapping 

represented by the correspondences matrix 𝐹 (defined in 1.2.1.1) as a vector 

of 𝑡 + 1 elements, 

Φ 𝐺𝑝 , 𝐺𝑞 , 𝑓 =   𝑑(𝑣𝑖
𝑝

→  𝑣𝑎
𝑞

)𝐹𝑖𝑎

𝑛+𝑚

𝑖𝑎=1

,  𝑔(𝑒𝑖𝑗
𝑝

→  𝑒𝑎𝑏
𝑞

)𝐹𝑖𝑎𝐹𝑏𝑗

𝑛+𝑚

𝑖𝑎𝑏𝑗 =1

  (4.1) 

We define the weighted cost 𝐶𝑤  of matching two graphs 𝐺𝑝  and 𝐺𝑞  given the 

correspondences 𝑓 as an inner product, 
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𝐶𝑤 𝐺𝑝 , 𝐺𝑞 , 𝑓 =  Φ 𝐺𝑝 , 𝐺𝑞 , 𝑓 , 𝑤  (4.2) 

Where 𝑤 ∈ ℝ𝑡+1 is a vector of weights 𝑤 =  𝑤1 , … , 𝑤𝑡 , 𝑤𝑡+1] that weights 

each of the attributes on the nodes  𝑤1, … , 𝑤𝑡] and the importance of the 

edges  𝑤𝑡+1]4. The aim of these weights is to gauge the importance of each of 

the attributes and they are application or database dependent. If we 

consider 𝑤 is an input parameter on the domain of function 𝐶𝑤 𝐺𝑝 , 𝐺𝑞 , 𝑓  

and we consider to be constants both graphs 𝐺𝑝 , 𝐺𝑞  and the correspondence 

𝑓; then 𝐶𝑤  is an increasing hyperplane such that when 𝑤 = 0   it happens that  

𝐶𝑤 = 0 due to Φ 𝐺𝑝 , 𝐺𝑞 , 𝑓 ≥ 0   (see [35] for more information). 

Finally, given two graphs 𝐺𝑝  and 𝐺𝑞  and a vector of weights 𝑤, the generic 

formulation of the graph matching problem with weighted attributes 

consists of finding the optimal correspondence 𝑓 
𝑤  given by the solution of 

the assignment problem. 

𝑓 
𝑤 = argmin

𝑓
𝐶𝑤  𝐺𝑝 , 𝐺𝑞 , 𝑓  (4.3) 

Note that there are several optimal matching matrices 𝑓 
𝑤  depending on the 

value of the weights 𝑤. And given a specific 𝑤, the matching 𝑓 
𝑤  cannot be 

unique [35]. 

4.1.1 An example of graph matching with weighted 

attributes 

Suppose we have two complete graphs with order 4. Nodes have two 

attributes that represent their bi-dimensional position (𝑋, 𝑌) and for 

simplicity we consider that the weight of the edges always is 1. Graph 𝐺𝑝  has 

the following node attributes: 𝑣1
𝑝

= (1,4), 𝑣2
𝑝

= (2,3), 𝑣3
𝑝

= (4,1), 

𝑣4
𝑝

= (2.5,2.5). Graph 𝐺𝑞  has the following node attributes: 𝑣1
𝑞

= (1,2), 

𝑣1
𝑞

= (2,1), 𝑣1
𝑞

= (4,4), 𝑣1
𝑞

= (1.5,1.5).  Figure 4.2 shows 8 different optimal 

correspondences between graphs of Figure 4.1 (as commented, the optimal 

correspondence depends on the weights 𝑤). Nodes of 𝐺𝑝  are represented by 

blue squares whereas nodes of 𝐺𝑞  are represented by red rhombus. Note 

                                                             
4 𝑤 can be extended to weight attributed edges. 
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that 𝑓 
 𝑤x ,𝑤𝑦   represents an optimal correspondence when the weights vector 

is 𝑤 =  𝑤x , 𝑤y . In the next section, we show that each of these eight pairs of 

weights (for instance 𝑤 =  25,5]) is located in a different correspondence 

region. 

We also show in Table 4.1 the obtained local distance and the Cost of each 

correspondence given the specific weights. In this example, we have defined 

𝑑𝑖𝑎 =   𝛾𝑥
𝑝
 𝑣𝑖

𝑝
 − 𝛾𝑥

𝑞
 𝑣𝑎

𝑞
  

2
,  𝛾𝑦

𝑝
 𝑣𝑖

𝑝
 − 𝛾𝑦

𝑞
 𝑣𝑎

𝑞
  

2
 . Moreover, in order to 

simplify the example, the graph is complete and so the structural 

information does not influence on the final distance and optimal node 

correspondence. 

 

Figure 4.1. Two graphs where the circles represent the nodes (X and Y are the 
attributes) and the lines between them represents the edges.  

  
𝑓1 = 𝑓 

 𝑤x =25,𝑤𝑦 =5  𝑓2 = 𝑓 
 𝑤x =25,𝑤𝑦 =20  
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𝑓3 = 𝑓 
 𝑤x =20,𝑤𝑦 =25  𝑓4 = 𝑓 

 𝑤x =5,𝑤𝑦 =25  

  
𝑓5 = 𝑓 

 𝑤x =−25,𝑤𝑦 =5  𝑓6 = 𝑓 
 𝑤x =−25,𝑤𝑦 =−20  

  
𝑓7 = 𝑓 

 𝑤x =−20,𝑤𝑦 =−25  𝑓8 = 𝑓 
 𝑤x =5,𝑤𝑦 =−25  

Figure 4.2. Two graphs and eight optimal correspondences 𝑓 
𝑤   (green arrows) given 

different weights 𝑤.  

 𝒘𝒙, 𝒘𝒚  𝚽  𝑮𝒑, 𝑮𝒒, 𝒇  𝒘𝒙,𝒘𝒚   𝑪𝒘  𝑮𝒑, 𝑮𝒒, 𝒇  𝒘𝒙,𝒘𝒚   𝒇  𝒘𝒙,𝒘𝒚  

 25,5]  0.5,17.5] 100 𝑓1 

 25,20]  6.5,8.5] 332.5 𝑓2 

 20,25]  20,25] 330 𝑓3 

 5,25]  15,2] 125 𝑓4 

 −25,5]  19,6] -445 𝑓5 

 −25, −20]  15,12] -615 𝑓6 

 −20, −25]  12.5,14.5] -612.5 𝑓7 

 5, −25]  3.5,20.5] -495 𝑓8 

Table 4.1. Local distance and Costs of the optimal correspondence given eight 
different weights combinations. For instance, in first row, 25 ∙ 0.5 + 5 ∙ 17.5 = 100. 

The local distance Φ defined in equation (4.1) is always positive and the cost 

𝐶𝑤  defined in equation (4.2) is positive or negative depending on the 

weights. Due to the graph matching problem has been defined such as the 

optimal correspondence is the one that minimises 𝐶𝑤  (equation (4.3)), if 
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negative weights are imposed, then it means that we wish to make the 

distance between the attributes as larger as possible, so, we want these 

attributes to be different. 

4.2 Correspondences Space 

The Correspondences Space (first defined in [35]) is a Euclidean space 

where the coordinates correspond to the graph edit insertion and deletion 

costs. In our case, each coordinate represents an element of the weights 

vector 𝑤. We can deduce some regions in this space, called Class of Costs 

[35], such that all points in each region of the Correspondence Space obtain 

the same optimal correspondence 𝑓 
𝑤 . 

Property 1: A Class of Costs is a region on the Correspondence Space that 

forms a radial sector that has its origin at 𝑤 = 0  . The hyperplanes that limit 

the radial sector are points such that more than one optimal correspondence 

achieves the same cost 𝐶𝑤 . 

Demo: Given two Classes of Costs, 𝑓′ and 𝑓′′, the border of these Classes of 

Costs is composed of points in the Correspondence Space such that both 

Classes have the same cost 𝐶𝑤  given a value of 𝑤. That is, 

 Φ 𝐺𝑝 , 𝐺𝑞 , 𝑓′ , 𝑤 =  Φ 𝐺𝑝 , 𝐺𝑞 , 𝑓′′ , 𝑤  for all values 𝑤.  

Then   Φ 𝐺𝑝 , 𝐺𝑞 , 𝑓′ − Φ 𝐺𝑝 , 𝐺𝑞 , 𝑓′′  , 𝑤 = 0, which is a first order 

equation system in which variables are the elements in vector 𝑤 and so the 

solution is an hyperplane. If 𝑤 = 0   then the equation holds for all 

correspondences and for this reason all borders of Classes of Costs converge 

to 0  . Moreover, it is obvious that argmin
𝑓

 𝐶𝑤 𝐺𝑝 , 𝐺𝑞 , 𝑓  = argmin
𝑓

 𝜏 ·

𝐶𝑤 𝐺𝑝 , 𝐺𝑞 , 𝑓    and so 𝑓 
𝑤 = argmin

𝑓
  Φ 𝐺𝑝 , 𝐺𝑞 , 𝑓 , 𝜏 · 𝑤  . Thus, all 

combinations of variables 𝑤 have to keep the same proportion∎ 

Figure 4.3 shows the Class of Costs on the Correspondence Space of two 

graphs in Figure 4.2. We can see that, given any combination of weights, 

there are only 8 Classes of Costs and so, 8 optimal correspondences which 

are the ones shown in Figure 4.2. Note that there are 4!  = 24  possible 
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correspondences but only 8 become optimal considering any combination of 

weights.  

Moreover, given the Correspondence Space and two graphs 𝐺𝑝  and 𝐺𝑞 , we 

can define a function defined through the Correspondence Space that its 

value in each point is the cost function given the optimal correspondence 

𝐶𝑤 𝐺𝑝 , 𝐺𝑞 , 𝑓 
𝑤 . This function is called 𝐸𝑑𝑖𝑡𝑆𝑢𝑟𝑓𝑎𝑐𝑒 [35]. 

𝐸𝑑𝑖𝑡𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝐺𝑝 ,𝐺𝑞  𝑤 = 𝐶𝑤 𝐺𝑝 , 𝐺𝑞 , 𝑓 
𝑤  (4.4) 

The aim of this definition is simply to show that we want the domain of the 

function to be the Correspondence Space instead of both graphs that are 

considered constants. Contrarily, the cost function assumes that the weights 

are constant and previously validated. 

 

Figure 4.3. The 8 Classes of Costs of our example. 
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a. 𝐸𝑑𝑖𝑡𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝐺𝑝,𝐺𝑞 𝑤  of graphs in Figure 4.2. 

 
b. Cost of correspondence 𝑓3, 𝐶𝑤 𝐺𝑝, 𝐺𝑞

, 𝑓3 . 

Figure 4.4. Costs surfaces. 

Figure 4.4.a shows the 𝐸𝑑𝑖𝑡𝑆𝑢𝑟𝑓𝑎𝑐𝑒 obtained from the example in Figure 

4.2. It is an increasing function composed of 8 planes where 

𝐸𝑑𝑖𝑡𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝐺𝑝 ,𝐺𝑞 (0  ) = 0 and at (0,0) the eight planes coincide. Note that 

the domain of each plane is a Class of Costs (Figure 4.3).  
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Moreover, the borders of these Classes of Costs coincide on the non-

derivable parts of the 𝐸𝑑𝑖𝑡𝑆𝑢𝑟𝑓𝑎𝑐𝑒. If we consider a specific 

correspondence, for instance 𝑓3, we see that it is only optimal in a small 

region (Figure 4.4.a) in which 𝐶𝑤 𝐺𝑝 , 𝐺𝑞 , 𝑓3  (Figure 4.4.b) obtains the 

minimum cost. 

4.3 Learning graph matching 

Similarly to [39], we approach the problem of learning the weights 𝑤 for 

graph matching as a supervised learning problem [141]. The training set is 

composed of 𝑁 observations. Each observation is composed of a pair of 

graphs  𝐺𝑝𝑛 , 𝐺𝑞𝑛
 . Moreover, the label (or class) of each pair of graphs is 

the matching 𝑓 𝑛  (this correspondence has to be seen as the ideal 

correspondence for an oracle, the ground-truth correspondence). Note that 

the optimal correspondence 𝑓 
𝑤
𝑛  given a pair of graphs  𝐺𝑝𝑛 , 𝐺𝑞𝑛

  depends 

on the weights 𝑤 (equation (4.3)) but the ideal correspondence matrix 𝑓 𝑛  

does not depend on them. For this reason, the aim of learning graph 

matching, we purpose, is to search for the weights 𝑤 such that 𝑓 
𝑤
𝑛  tends to be 

as close as possible to 𝑓 𝑛  given the training set of the 𝑁 pairs of graphs 

 𝐺𝑝𝑛 , 𝐺𝑞𝑛
  and the ideal set of correspondences matrices 𝑓 𝑛 . 

We use the standard approach of minimising the empirical risk plus a 

regularisation term weighted by a parameter 𝜆. The empirical risk is the 

average loss in the training set since the prediction of the loss on the test set 

is assumed not to be available. The optimal predictor will then be the one 

that minimises the following expression, 

1

𝑁
 ∆𝑤

𝐶  𝐺𝑝𝑛 , 𝐺𝑞𝑛 , 𝑓 𝑛 , 𝑓 
𝑤
𝑛 

𝑁

𝑛=1

+ 𝜆 · Ω 𝑤  (4.5) 

Where ∆ 𝐺𝑝𝑛 , 𝐺𝑞𝑛 , 𝑓 𝑛 , 𝑓 
𝑤
𝑛  is the loss incurred by the assignment problem 

when predicting 𝑓 
𝑤
𝑛  instead of 𝑓 𝑛  for training input  𝐺𝑝𝑛 , 𝐺𝑞𝑛

 . The 

regularisation term Ω 𝑤  penalises solutions of 𝑤 that are far away from the 

problem at hand. 
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In the following, we focus on setting up the optimisation problem by 

presenting three different options for the loss function ∆∈  0,1] and the 

regularisation term Ω ∈ [0, ∞). 

 

4.3.1 Minimising the hamming distance  

In fact, the main aim of the learning process at hand is to reduce to the 

minimum hamming distance (see equation (1.1)) between the automatic 

obtained correspondences and the ground-truth ones. But this loss function 

has two main problems. Firstly, it is not continuous on the border of the 

correspondence regions. Secondly, inside these regions, the function is 

constant. These two properties make the function not appropriate for the 

optimisation algorithms. In the following, we show the function that we 

propose to overcome these problems. 

 

Figure 4.5 shows ∆𝐻  defined in section 1.2.1.2 when the ideal 

correspondence is 𝑓3 (see Figure 4.2). 

 

Figure 4.5. Hamming distance when the ideal correspondence is 𝑓3 in Figure 4.2. 
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4.3.2 Edit Cost Error 

We propose the loss function called Edit Cost Error, ∆𝑤
𝐶 . It gauges how far we 

are to obtain the cost generated by the ideal correspondence matrix.  

∆𝑤
𝐶  𝐺𝑝𝑛 , 𝐺𝑞𝑛 , 𝑓 𝑛 , 𝑓 

𝑤
𝑛 =  𝐶𝑤 𝐺𝑝𝑛 , 𝐺𝑞𝑛 , 𝑓 𝑛 − 𝐶𝑤 𝐺𝑝𝑛 , 𝐺𝑞𝑛 , 𝑓 

𝑤
𝑛  

2
 (4.6) 

We assume that two correspondences that are close to each other tend to 

achieve similar costs 𝐶𝑤 . Although this relation is not true for all graphs and 

correspondences, the empirical evaluation shows that it is true for most of 

the graphs and correspondences in the datasets. Moreover, in cases where 

there are symmetries on the graphs, correspondences 𝑓 𝑛  and 𝑓 
𝑤
𝑛  can be 

completely different but represent a similar mapping between graph nodes. 

In these cases, our evaluation function obtains better results than the 

hamming distance function. 

 
a. Without the quadratic term. 
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b. With the quadratic term. 

Figure 4.6. Cost Error ∆𝒘
𝑪  when the ideal correspondence is 𝑓3.  

Property 2:  a) IF 𝑤 = 0   then ∆
0    
𝐶  𝑓 , 𝑓 

0     = 0. 

b) ∆𝑤
𝐶  𝐺𝑝 , 𝐺𝑞 , 𝑓 , 𝑓 

𝑤  is an increasing function such that ∆𝑤
𝐶  𝐺𝑝 , 𝐺𝑞 , 𝑓 , 𝑓 

𝑤 ≥ 0. 

Demo: a) It is trivial since  𝑉𝑒𝑐𝑡𝑜𝑟, 0   = 0 

 b) By definition of 𝑓 
𝑤  we have 𝐶𝑤 𝐺𝑝 , 𝐺𝑞 , 𝑓  ≥ 𝐶𝑤 𝐺𝑝 , 𝐺𝑞 , 𝑓 

𝑤  and so 

∆𝑤
𝐶  𝐺𝑝 , 𝐺𝑞 , 𝑓 , 𝑓 

𝑤 ≥ 0. Besides, given a specific correspondence 𝑕 and two 

weight vectors 𝑤 ′  and 𝑤 ′′  such that  𝑤 ′ ≥  𝑤 ′′   then ∆𝑤 ′
𝐶  𝐺𝑝 , 𝐺𝑞 , 𝑓 , 𝑕 ≥

∆𝑤 ′′
𝐶  𝐺𝑝 , 𝐺𝑞 , 𝑓 , 𝑕 . This is because ∆𝑤 ′

𝐶  𝐺𝑝 , 𝐺𝑞 , 𝑓 , 𝑕 =  𝑉, 𝑤 ′  ≥  𝑉, 𝑤 ′′  =

∆𝑤 ′′
𝐶  𝐺𝑝 , 𝐺𝑞 , 𝑓 , 𝑕  where 𝑉 =  Φ 𝐺𝑝 , 𝐺𝑞 , 𝑓  − Φ 𝐺𝑝 , 𝐺𝑞 , 𝑕  . The inequality 

 𝑉, 𝑤 ′  ≥  𝑉, 𝑤 ′′   holds since  𝑉, 𝑤 ′  ≥ 0 ∎ 

Figure 4.6 shows ∆𝑤
𝐶  when the ideal correspondence is 𝑓3 obtained through 

equation (4.6). 
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4.3.3 Regularization term 

 

Figure 4.7. Regularisation term. 𝜆 ∙ Ω𝑤
𝑐 . When 𝜆 = 1. 

 

Figure 4.8. Optimal predictor ∆𝑤
𝐶 + 1 ∙ Ω𝐶 𝑤 . 
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Due to properties 1 and 2, ∆𝐶  minimises at 𝑤 = 0  . But this is a solution that 

all correspondences 𝑓 
𝑤  obtain ∆

0    
𝐶  𝐺𝑝 , 𝐺𝑞 , 𝑓 , 𝑓 

𝑤 = 0 independently of how 

close are to the ground-truth correspondence 𝑓 . For this reason, we propose 

the following regularisation term: 

Ω𝑤
𝑐 =   𝑤 2 − 1 2 (4.7) 

Figure 4.8 shows loss function (4.8), which is our proposal of optimal 

predictor with the same data than in Figure 4.6 when the ideal 

correspondence is 𝑓3. Clearly, there are the same local minima. 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑤 =  ∆𝑤
𝐶 + 𝜆 · Ω𝑤

𝑐  (4.8) 

4.3.4 The algorithm 

Algorithm 4.1 schematically shows our optimisation algorithm. The 

algorithm seeks for the vector of weights 𝑤  that obtains the minimum value 

of 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑤  through any quadratic programming algorithm. For instance, 

trust-region [142], levenberg-marquardt [143] or nelder–mead [143]. 

Moreover the computation of ∆𝑤
𝐶  can be done by any quadratic [30, 32, 82, 

33, 25] or linear [69] assignment problem. 

Algorithm Class of Costs Predictor 

Define: 𝑓 
𝑤
𝑛 = argmin

𝑓
𝐶𝑤 𝐺𝑝𝑛 , 𝐺𝑞 𝑛 , 𝑓  

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑤 =
1

𝑁
 ∆𝑤

𝐶  𝐺𝑝𝑛 , 𝐺𝑞𝑛 , 𝑓 𝑛 , 𝑓 
𝑤
𝑛 

𝑁

𝑛=1

+ 𝜆 · Ω𝑤
𝑐  

Input: 𝑁 pairs of graphs  𝐺𝑝𝑛 , 𝐺𝑞𝑛  and correspondence 

matrices 𝑓 𝑛 

Output: A vector of optimal weights 𝑤  

Pseudocode: 𝑤 = argmin
𝑤

 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑤   

End 

Algorithm 

 

Algorithm 4.1. Active & Interactive graph matching. 

Optimization algorithms [142, 143, 143] need an initialization of weights. 

Due to, there is no aprioristic information of the best initialization, in the 
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validation step, several initializations could be evaluated. We have used the 

initialization 𝑤 =  1   because we assume in our datasets, the attributes 

positively contribute in the matching cost (attributes are intended to benefit 

the correspondence) and also we assure  𝑤 2 > 1. 

4.4 Experimental evaluation 

We split the practical evaluation in two sections. In the first one, we 

empirically validate the assumption that the lower is the Edit Cost Error, the 

lower is the hamming distance. We have made a comparative study with 

respect to the results presented in [39]. They used the Bundle method [145] 

(as the optimisation algorithm) and the Graduated Assignment algorithm 

[32] (for the quadratic assignment). It has been used the Trust-region [142] 

(as the optimisation algorithm) and the Fast Bipartite Graph Matching [67, 

29] (for the quadratic assignment). Trust-region was selected because it has 

an implementation in the MATLAB native libraries (we used default 

parameters). In some initial experiments, we also used the Nelder–Mead 

method [143] and we obtained similar results. We decided 𝜆 = 1 through a 

validation process. We validated our method with the same two databases 

used to validate the method we want to compare with [39].  We have used 

HOUSE, HOTEL and HORSE databases described in the Databases annex. 

4.4.1 Correlation between the Edit Cost Error and the 

Hamming Distance  

  
a. HOUSE  
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b. HOTEL  

Figure 4.9. (left) Edit Cost Error and (right) hamming distance with respect to the 
number of iterations. 

Figure 4.9 shows the evolution (with respect to iterations of the learning 

algorithm) of the Edit Cost Error and the Hamming Distance between the 

obtained correspondence and the ground-truth correspondence in the 

reference and test graphs of the HOUSE and HOTEL sequences. We realise 

that in both sets and in both functions, there is a general decrease in the 

metric value. Therefore, we empirically validate that making decrease the 

Edit Cost Error forces to decrease the hamming distance.  

4.4.2 Graph matching accuracy 

 
a. HOUSE 
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b. HOTEL 

Figure 4.10. Normalized hamming distance on the HOUSE and HOTEL sequences 
with respect to different frame separations (in [39], 𝝀𝑬 = 𝟎. 𝟏). our method 
without learning,  our method with learning,  results presented in [39] 
without learning,  results presented in [39] with learning. 

The minimisation of the hamming distance between the automatically 

extracted correspondence and a possible ground-truth correspondence is at 

the core of most of classification, clustering or machine learning in general 

applications based on graphs. For this reason, the aim of the following 

experiments is to show the obtained hamming distance between the 

automatically extracted correspondence and the ground-truth 

correspondence. We show some tests extracted from [39] and other ones 

obtained using our method. We not only show the hamming distance but the 

hamming distance improvement of the learned weights with respect to the 

initial weights, to compare the results with [39]. 

 
a. HOUSE 

UNIVERSITAT ROVIRA I VIRGILI 
ACTIVE AND INTERACTIVE LEARNING STRATEGIES FOR ERROR-TOLERANT GRAPH MATCHING 
Xavier Cortés Llosa 



Learning Substitution Weights for Error-Tolerant Graph Matching 

 

 78 

 

 
b. HOTEL 

Figure 4.11.  our improvement, improvement presented in [39] on the 
HOUSE and HOTEL sequences with respect to different frame separations. 

Figure 4.10 and Figure 4.11 shows the average hamming distance 

(normalised by the number of nodes) between the automatically extracted 

correspondence and the ground-truth correspondence using the HOUSE and 

HOTEL sequences. The horizontal axis is the distance in frames of the 

compared images (in fact, with respect to the extracted graphs from these 

images). As it is logical, in the whole experiments, the tests with learned 

costs outperform their corresponding tests without learning. In some cases 

we obtain better results than the ones in [39]. 

 
a. HORSE-NOISE 
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b. HORSE-ROTATE 

 
c. HORSE-SHEAR 

Figure 4.12. Normalized hamming distance on the HORSE database: NOISE, ROTATE 
and SHEAR sequences with respect to different frame separations. our method 
without learning,  our method with learning,  results presented in [39] 
without learning,  results presented in [39] with learning. 

Figure 4.12 shows the hamming distance (normalised by the number of 

nodes) and Figure 4.13 the improvement obtained with our method and the 

method in [8]. We obtain a higher improvement in HORSE-NOISE and 

HORSE-SHEAR databases. In the case of HORSE-ROTATE database, although 

we improve the hamming distance, the other method obtains better results 

due to it achieves a hamming distance of almost zero with the learned 

weights. Finally, note that our improvement is always positive but it is not 

the case of their method in the HORSE-SHEAR database. 
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a. HORSE-NOISE 

 
b. HORSE-ROTATE 

 
c. HORSE-SHEAR 

Figure 4.13.  our improvement, improvement presented in [39] on the 
HORSE database: NOISE, ROTATE and SHEAR sequences with respect to different 
frame separations. 

Figure 4.14 shows the 61 learned weights in HOUSE sequence. 
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Figure 4.14. Weights we learned on the HOUSE sequence (baseline 90).  

We note that the performance depends on the database but the average 

result with our method is slightly higher than [39]. 
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Chapter 5                                                   

Learning Edit Costs 

for Error-Tolerant 

Graph Matching
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The distortion of the Graph Edit Distance is defined through edit operations: 

insertion, deletion or substitution of nodes and edges.  To quantitatively 

evaluate the degree of distortion, a penalty cost to each edit operation is 

defined according to the amount of distortion that it introduces in the 

transformation. Although a proper definition of these costs is a cornerstone 

of classification or clustering applications, little research has been done to 

automatically find them. Usually, they are established through a manual 

validation process. 

In the Chapter 4 it has been shown how to learn the substitution weights for 

nodes attributes such that hamming distance between the automatic and the 

ground-truth correspondence is minimised.  The aim of the present chapter 

is to demonstrate the applicability of a loss function similar to Edit Cost 

Error presented in Chapter 4 when calculating the penalty cost of each edit 

operation (edit costs). 

5.1 On the influence of the Insertion and 
Deletion Edit Costs on the Hamming Distance 

As introduced in Chapter 1, the Graph Edit Distance is defined as the 

minimum amount of required distortion to transform one graph into the 

other through inserting, deleting and substituting nodes and edges. 

Moreover, some penalty costs are assigned to each edit operation. 

Deletion/Insertion operations are transformed to assignations in 𝑓of non-

null nodes of the first/second graph to null nodes of the second/first graph. 

Depending of this edit cost (𝐾𝑣  and 𝐾𝑒), a different optimal correspondence 

is achieved. 

Figure 5.1 shows the whole optimal correspondences that can be achieved 

through all possible combinations of  𝐾𝑣  , 𝐾𝑒] between two sample graphs. 

The domain of all of these combinations is called the Correspondences 

Space. In the case of the two involved graphs of this example, there are 

exactly 11 optimal correspondences. The Correspondences Space (see 4.2 

for more information) has an important role in our optimization method. 
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𝑓1 𝑓2 

  
𝑓3 𝑓4 

  
𝑓5 𝑓6 

  
𝑓7 𝑓8 
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𝑓9 𝑓10  

 

 

𝑓11   

Figure 5.1. The 11 optimal correspondences (green arrows) throughout the 
Correspondences Space given a pair of graphs. 

 

Figure 5.2. Hamming distance (normalised by the order of the graphs) between 𝑓1 
and the other correspondences. 
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Figure 5.2 shows the hamming distance (normalised by the number of 

nodes, 𝑛 = 4) between the first correspondence, 𝑓1, and the other ones. 

Each correspondence defines a flat region. Note that the  dH 𝑓1 , 𝑓1 = 0. 

Suppose a human specialist looks at two images and the attributed graphs 

extracted from these images and deduce a correspondence 𝑓  (for instance 

two X-ray images in which some local parts have been extracted such as 

bones). If we wish to automatize the process, we desire the automatically 

extracted correspondence 𝑓  to be as closer as possible to the 

correspondence deduced by the human, 𝑓 . The aim of this chapter is to 

define a learning model for compute costs 𝐾𝑣  and 𝐾𝑒  such that the hamming 

distance between the automatically obtained correspondence 𝑓  and the 

specialist’s correspondence 𝑓  is minimised. 

5.2 Learning 𝑲𝒗 and 𝑲𝒆costs 

The predictor is the one that minimises the following expression, 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟[𝐾𝑣 ,𝐾𝑒 ] =  ∆[𝐾𝑣 ,𝐾𝑒 ]
𝐶 + 𝜆 · Ω[𝐾𝑣 ,𝐾𝑒 ]

𝑐  (5.1) 

Where ∆ Kv ,Ke ] 𝐺
𝑝𝑛 , 𝐺𝑞𝑛 , 𝑓 𝑛 , 𝑓 𝑛  is the loss incurred by the assignment 

problem when predicting 𝑓 𝑛  instead of 𝑓 𝑛  given a training input  𝐺𝑝𝑛 , 𝐺𝑞𝑛
  

and a pair of costs 𝐾𝑣  and 𝐾𝑒 . 

Given all combinations of costs 𝐾𝑣  and 𝐾𝑒 , Figure 5.3 and Figure 5.4 show 

the Edit Cost of correspondence 𝑓1 and the optimal correspondence 𝑓  

respectively. 

Finally, Figure 5.5 shows the Edit Cost Error (equation (5.2)) where the 

ground-truth correspondence 𝑓  is 𝑓1. 

∆ 𝐾𝑣 ,𝐾𝑒 ]
𝐶  𝐺𝑝𝑛 , 𝐺𝑞𝑛 , 𝑓 𝑛 , 𝑓 

 𝐾𝑣 ,𝐾𝑒 ]
𝑛  =  𝐶 𝐾𝑣 ,𝐾𝑒 ] 𝐺

𝑝𝑛 , 𝐺𝑞𝑛 , 𝑓 [𝐾𝑣,𝐾𝑒 ]
𝑛  − 𝐶 𝐾𝑣 ,𝐾𝑒 ] 𝐺

𝑝𝑛 , 𝐺𝑞𝑛 , 𝑓 
 𝐾𝑣 ,𝐾𝑒]
𝑛   

2

 (5.2) 
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Figure 5.3. Edit Cost of 𝑓1. 

 

Figure 5.4. Edit Cost of the optimal correspondences. 
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Figure 5.5. Edit Cost Error where the ground-truth correspondence is 𝑓1.  

Equation (5.3) shows the quadratic regularization term based on the inner 

product of the weights to be optimized in order to prevent overfitting and 

underfitting as in [44]. 

𝛺 𝐾𝑣  , 𝐾𝑒 = 𝐾𝑣
2 + 𝐾𝑒

2 (5.3) 

5.3 Experimental evaluation 

From the practical point of view, given a database, users wish to know which 

combination of parameters is the best such that algorithms obtain the best 

results (classification ratio, clustering quality, run time and so on). The aim 

of the proposed method is to automatically compute the insertion and 

deletion edit costs, such that the accuracy of the automatically obtained 

correspondence is maximised. Thus, these costs can be published together 

with the database with the information of witch algorithms have been used. 

We do not compare to any of the learning methods we commented (Table 

1.1) because they do not directly learn the insertion and deletion edit costs. 

Papers [37, 38] learn the weights of a Self Organising Map and the 

parameters of some probability distributions such that the classification 
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ratio is maximised. Papers [39, 40] learn the substitution weights 

considering nodes and edges have several attributes. Finally, paper [151] 

computes the insertion and deletion costs but it in limited costs rang and it 

needs a human to interact on the system at each iteration.  

We performed experiments using the BOAT, the EAST-PARK, the EAST-

SOUTH and the RESIDENCE sequences from the Tarragona Rotation Zoom 

repository and the LETTER-HIGH from the IAM repository, described in the 

Databases annex. 

We used the Fast Bipartite [67] as the graph matching algorithm with 

different combinations of costs 𝐾𝑣  and 𝐾𝑒 . We defined the node substitution 

cost, 𝐶𝑣𝑠 , as the normalised Euclidean distance between node features, 

𝐶𝑣𝑠 ∈  0,1] for Tarragona Rotation Zoom sequences. Recall that SURF 

features are composed of a vector of 64 elements. The structural 

dissimilarities costs 𝐶𝑒𝑠  are computed using the Degree local sub-structure 

presented in Chapter 1. Moreover, the optimisation algorithm has been the 

nelder-mead method [152] with 𝜆 = 1. 

5.3.1 Empirical validation of the Edit Cost Error 

As in section 4.4.1 the aim of this section is to shown empirically the 

correlation between the Edit Cost Error and the hamming distance 

(normalised by the order of the graph). Figure 5.6 shows this correlation in 

all pairs of graphs in the databases, taken arbitrarily costs 𝐾𝑣 = 1 and 

𝐾𝑒 = 1. We can deduce a positive linear relation although in some of the 

sequences there is a high linear approximation error. We show these 

scatters to empirically validate our initial assumption that when the Edit 

Cost Error increases, the hamming distance so it does. 

  
a. BOAT b. EAST-PARK 

UNIVERSITAT ROVIRA I VIRGILI 
ACTIVE AND INTERACTIVE LEARNING STRATEGIES FOR ERROR-TOLERANT GRAPH MATCHING 
Xavier Cortés Llosa 



Learning Edit Costs for Error-Tolerant Graph Matching 

 

 91 

  
c. EAST-SOUTH d. RESID 

Figure 5.6. Hamming distance (normalised) versus Edit Cost Error. 

Figure 5.7 shows the evolution of the average hamming distance 

(normalised) and the average Edit Cost Error through the iterations of our 

learning algorithm for the EAST-PARK and EAST-SOUTH sequences. Initially, 

we set the costs 𝐾𝑣 = 1 and 𝐾𝑒 = 1. Once again, we realise when our 

learning algorithm forces the Edit Cost Error to the decrease, the hamming 

distance so it does. 

  
a. BOAT b. EAST-PARK 

  
c. EAST-SOUTH d. RESID 

Figure 5.7. Hamming distance versus Edit Cost Error. 
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5.3.2 Graph matching accuracy 

The aim of this evaluation is to show the increase of accuracy when learned 

edit costs are used with respect to four different usual combinations of edit 

costs. The accuracy is defined as the average normalised number of nodes 

that have been correctly mapped: 1 −    𝑑𝐻 𝑓 𝑛 , 𝑓 𝑛 𝑁
𝑛=1  / 𝑚 · 𝑁 , 𝑚: 

number of nodes, 𝑁: number of graphs. 

 Initial Costs Learned Costs 

Databases 𝑲𝒗 𝑲𝒆 Accuracy 𝑲𝒗 𝑲𝒆 Accuracy 

BOAT 

1 1 0.0340 0.0487 -0.0021 0.7480 
0.5 0.5 0.0340 0.0487 -0.0021 0.7480 

1 0 0.0900 0.0487 -0.0021 0.7480 

0 1 0.0340 0.0487 -0.0021 0.7480 

EAST-PARK 

1 1 0.0260 0.0190 -0.0017 0.8160 
0.5 0.5 0.0280 0.0190 -0.0017 0.8160 

1 0 0.0680 0.0190 -0.0017 0.8160 

0 1 0.0260 0.0190 -0.0017 0.8160 

EAST-SOUTH 

1 1 0.0200 0.0135 0 0.8560 

0.5 0.5 0.0200 0.0135 0 0.8560 

1 0 0.0300 0.0135 0 0.8560 

0 1 0.0200 0.0135 0 0.8560 

RESID 

1 1 0.0440 0.0157 -0.0003 0.8360 

0.5 0.5 0.0440 0.0157 -0.0003 0.8320 

1 0 0.0820 0.0157 -0.0003 0.8320 

0 1 0.0440 0.0157 -0.0003 0.8320 

ALL SEQUENCES 

1 1 0.0310 0.0325 -0.0027 0.8095 

0.5 0.5 0.0315 0.0325 -0.0027 0.8095 

1 0 0.0675 0.0325 -0.0027 0.8095 

0 1 0.0310 0.0325 -0.0027 0.8095 

Table 5.1. Accuracy results and learned costs. 

Table 5.1 shows the obtained average accuracies in the four sequences of 

Tarragona Rotation Zoom database. The first Accuracy column has been 

obtained using the initial costs (no learning process is performed). The 

second Accuracy column has been obtained using the learned costs. Note 

that, given a database, the learning algorithm converges at the same costs 

independently of the initial costs and the Accuracy drastically increases. The 

first two combinations of initial costs are the usual ones considering that 
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𝐶𝑣𝑠 ∈  0,1] and 𝐶𝑒𝑠 ∈  0,1 . The last two combinations are considered to 

know if edges or nodes are useless. The last four rows are the results of 

learning all the graphs together. These results are used at section 5.3.3. 

Figure 5.8 shows some examples of correspondences given the initial costs 

(up) and the learned costs (down). The incorrect mappings have drastically 

reduced (red lines) whereas the correct mappings (green lines) have 

increased. Note missing mappings (yellow lines) have also increased. This is 

because the structure (Delaunay triangulation) is not correct and the 

algorithm decides not map the nodes instead of wrongly mapping them.  

 
a. BOAT 

 

 
b. EAST-SOUTH 
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c. EAST-PARK 

 

 
d. RESID 

Figure 5.8. Some examples of correspondences. Up: 𝐾𝑣 = 1 and 𝐾𝑒 = 1. Down: 
Learned costs. Yellow lines: missing mappings. Green lines: correct mappings. Red 
lines: incorrect mappings. 

In the same way than Table 5.1, Table 5.2 shows the Accuracy given different 

combinations of initial costs applied to the LETTER-HIGH database. We 

observe that in all initialisation values, the learning algorithm converges to a 

similar edit costs. For this reason, we computed the Accuracy and the Edit 

Cost Error (equation (5.2)) given all possible combinations of costs from -

0.5 to 0.5 with a resolution of 0.01 (in this case, there is no a learning 

process). Figure 5.9 shows the obtained values. We observe that in this 
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database, the Edit Cost Error defines a concave shape and also its global 

minimum is located at the point where the Accuracy obtains the global 

maximum. Therefore, we have empirically validated that while minimising 

the Edit Cost Error, the Accuracy is maximised. 

 Initial Costs Learned Costs 

Databases 𝑲𝒗 𝑲𝒆 Accuracy 𝑲𝒗 𝑲𝒆 Accuracy 

LETTER-HIGH 

0.5 0.5 0.6680 0.0198 0.0072 0.7197 
-0.5 -0.5 0.2186 0.0198 0.0072 0.7197 
0.5 -0.5 0.2186 0.0198 0.0072 0.7197 
-0.5 0.5 0.3756 0.0198 0.0072 0.7197 
0.5 0 0.5688 0.0198 0.0072 0.7197 
-0.5 0 0.2186 0.0198 0.0072 0.7197 

0 0.5 0.6711 0.0198 0.0072 0.7197 
0 -0.5 0.2186 0.0198 0.0072 0.7197 

Table 5.2. Accuracy results and learned costs. 

 
a. Accuracy 
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b. Edit Cost Error 

Figure 5.9. Accuracy and Edit Cost Error in LETTER-HIGH experiments.  

5.3.3 Classification and Clustering Accuracy 

Figure 5.10 shows the confusion matrices of the four sequences of 

Tarragona Rotation Zoom when the distance is computed through costs 

𝐾𝑣 = 1 and 𝐾𝑒 = 1 and through the learned costs  “ALL SEQUENCES” in 

Table 5.1). In the second case, the whole graphs are properly classified. 

  
a.  𝐾𝑣 = 1 and 𝐾𝑒 = 1 b.  𝐾𝑣 = 0.0325  and 𝐾𝑒 = −0.0027 

Figure 5.10. Confusion matrices.  
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a.  𝐾𝑣 = 1 and 𝐾𝑒 = 1 b.  𝐾𝑣 = 0.0325  and 𝐾𝑒 = −0.0027 

Figure 5.11. Multidimensionality reduction of the distance space.  BOAT,  EAST 
PARK,  EAST SOUTH,  RESID. 

Figure 5.11 shows the result of applying multidimensionality reduction to 

the space of distances between attributed graphs. Each symbol represents a 

different sequence. On the left, costs are 𝐾𝑣 = 1 and 𝐾𝑒 = 1. On the right, 

costs are the mean of the learned costs in the four sequences (Table 5.1). 

Clearly, graphs are grouped when learned costs are used to compute the Edit 

distance between graphs making the unsupervised clustering process to be 

really easy. 
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Chapter 6                          

Graph Databases 

Based on Metric-

Trees of Graph-Class 

Prototypes
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Metric-trees are well-know structures used to speed-up queries in 

databases. In this chapter, we evaluate the applicability of metric-trees to 

graph databases. In classical schemes based on metric-trees, the routing 

information kept in a metric-tree, the node is a selected element from the 

sub-cluster that represents. Nevertheless, defining a graph that represents a 

set of graphs is not a trivial task. In this chapter are evaluated the 

representational power of different Graph-Class Prototypes as routing nodes 

of the metric-tree. The considered prototypes are: Median Graphs, Set 

Median Graphs, Closure Graphs, First-Order Random Graphs, Function-

Described Graphs and Second-Order Random Graphs.  

6.1 Graph-Class Prototypes 

This section presents the most important models used to represent a set of 

attributed graphs. The first three models are non-probabilistic and the last 

three models are probabilistic. In each model, we briefly comment how to 

obtain the prototype given a computed Common Labelling and a set of 

attributed graphs. 

The Common Labelling is a function that assigns all the graph nodes of a set 

of attributed graphs to a virtual structure that represents the different 

nodes. That is, nodes in the attributed graphs that represent the same local 

part of the object or image have to be represented by only one node in the 

virtual structure. 

6.1.1 Median Graph 

A Median Graph [59, 58, 61, 62], is an attributed graph that minimizes the 

sum of distances between it and all the graphs in the set of attributed 

graphs. It has exactly the same information and domain than the attributed 

graphs that it represents. Notice that it is usually not a member of the set, 

and in general, more than one Median Graph may exist for a given set of 

graphs. Formally, Median Graph. Given a set of graphs 𝛤 = {𝐺1, 𝐺2 , … , 𝐺𝑁} in 

a set U and a distance between attributed graphs 𝑑(𝐺𝑝 , 𝐺𝑞), the Median 

Graph is defined as follows. 
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𝑔 =
𝑎𝑟𝑔𝑚𝑖𝑛
𝑔 ∈ U

 𝑑 𝑔, 𝐺𝑖 

𝐺𝑖∈Γ

 (6.1) 

That is, the Median Graph is the graph 𝑔 ∈ U that minimizes the sum of 

distances to all graphs in 𝛤. The set U represents the universe of attributed 

graphs in a specific domain. 

The computation of a Median Graph is a NP-complete problem. 

Nevertheless, several suboptimal methods to obtain approximate solutions 

for the Median Graph, in reasonable time. These methods apply some 

heuristic functions in order to reduce the complexity of the graph distance 

computation and the size of the search space. 

An alternative to Median Graphs, which is less computationally demanding, 

is the Set Median Graph. The difference between the two models consists in 

the search space where the Median Graph is looked for. The search space for 

the Median Graph is the whole universe of attributed graphs U.  

6.1.2 Set Median Graph 

In contrast, the search space for the Set Median Graph [54], is simply the set 

of graphs that represents Γ. Formally, Set Median Graph. Given a set of 

graphs 𝛤 = {𝐺1, 𝐺2 , … , 𝐺𝑁} and a distance between attributed graphs 

𝑑(𝐺𝑝 , 𝐺𝑞), the Set Median Graph is defined as follows. 

𝑔 = argmin
𝑔∈Γ

 𝑑 𝑔, 𝐺𝑖 

𝐺𝑖∈Γ

 (6.2) 

The computation of the Set Median Graph is exponential in the size of the 

graphs, due to the complexity of graph edit distance, but quadratic with 

respect to the number of graphs in the set. Nevertheless, Set Median Graphs 

have less ability to capture the information of the cluster than Median 

Graphs due to the reduction of the search space. 
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Figure 6.1. Clusters represented by a Set Median Graph. 

 

Figure 6.2. Clusters represented by a Median Graph. 

The advantages of using Median Graphs as routing elements in a metric-tree 

are manifold. The main effect of using them is the reduction of the overlap 

between sub-clusters, due to the radius of the covering region, dh, can be 

more tightly adjusted. In fact, if we use the Median Graphs as a routing 

element, the radius of the covering region has to be equal or lower than the 

radius of the covering region represented by a Set Median Graph of the 

cluster. 

Figure 6.1 and Figure 6.2 shows an example of representing the cluster by a 

Set Median Graphs (Figure 6.1) and by a Median Graph (Figure 6.2). Both 

figures show the same 6 elements in two sub-clusters and the radius of their 

covering regions. Suppose a hypothetical query graph Q with a query range 

represented by the outer doted circle. The execution of the search behaves 

very different on both representations. In the Set Median Graph approach, 

neither entry p or q holds for equations (6.1) and (6.2), so the subq and subp 

must be explored. However, in the Median Graph, (6.2) holds for both tree 

node entries p and q. Consequently, it can be assumed that none of the 

entries contain any desired graph. Thus, they can be discarded and not 

explored. 
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6.1.3 Closure Graph 

A Closure Graph [55], is another model graph that the structure of the 

attributes is different to the attributed graphs that represent. The 

structurally similar nodes of the set of attributed graphs that have different 

attribute values are represented in the Closure Graph with only one node 

but with more than one attribute. Closure Graphs need the attributes at 

nodes of the graphs to be discrete, if it is not the case; an extra discretization 

process has to be performed. Closure Graphs needs few more physical space 

than the Median Graphs. 

Formally, a Closure Graph 𝑀 =  𝛴𝜈
 , 𝛴𝑒

 , 𝛾𝜈 , 𝛾𝑒   is a graph where the node and 

edge attribute domains are a set of domains of the nodes and edges of the 

Attribute Graphs {v, v, ..., v} and {e, e, ..., e}. The specific value are {a1, 

a2, ..., at} and {b1, b2, ..., bh}. We synthesise a Closure Graph from a set of 

attributed graphs Γ and a Common Labelling 𝜓 as follows: 

𝛾𝑣  𝑣𝑗  =  ∪ 𝑎𝑘  ∃𝑎𝑘 = 𝛾𝑣  𝑕𝑖−1
 𝑣𝑗   , 1 ≤ 𝑖 ≤  𝛤 , 𝛾𝑣  𝑕𝑖−1

 𝑣𝑗   ≠ 𝜙   

𝛾𝑒  𝑒𝑞𝑗  =  ∪ 𝑏𝑘  ∃𝑏𝑘 = 𝜀, 𝜀 ≠ 𝜙  
(6.3) 

Being 𝜀  the attribute value of the edges 𝑒
𝑕 𝑖−1

 𝑣𝑞  ,𝑕 𝑖−1
 𝑣𝑗  

 in  𝐺𝑖 . The main idea 

of (6.3) is that nodes or edges of the Closure Graph can take all values that 

nodes or edges of the attributed graphs have taken. In the case that there 

does not exist a node or edge in the attributed graph, its value is not 

considered. 

 

Figure 6.3. Example of a Closure obtained by 3 attributed graphs. 
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Practical evaluations show that Median Graphs and Closure Graphs tend to 

generalize to much the set that they represent; allowing graphs that are 

distant from the ones that have not been used to synthesize them. To 

alleviate this weakness, the following probabilistic models have been 

defined. 

6.1.4 First-Order Random Graph (FORG) 

A First-Order Random Graph (FORG) [22], is a model graph that contains 

first-order probabilities on nodes and edges to describe a set of attributed 

graphs. To deal with the first-order probabilities, there is a random variable 

associated with each node or edge, which represents the attribute 

information of the corresponding graph nodes and edges in the set of 

attributed graphs. This random variable has a one-dimensional probability 

density function defined over the same attribute domain of the attributed 

graphs, including a null value that denotes the non-instantiation of a FORG 

graph node or edge in an attributed graphs. 

This model was the first probabilistic one that appeared in the literature to 

represent a set of attributed graphs. It assumes that the attributed graphs in 

a set or cluster had similar local parts. Nevertheless, in practical 

applications, some graphs can be quite different despite of belonging to the 

same class. For this reason, representing a set of graphs with only first order 

probabilities seems to be too restrictive. 

6.1.5 Function-Described Graph (FDG) 

A Function-Described Graph (FDG) [23, 66], is a model graph that appeared 

with the aim of overcoming the representational power of FORGs. It contains 

first-order probabilities of attributes and second-order structural 

information to describe a set of attributed graphs. The first order 

information was represented in the same way than FORGs trough 

probability density functions. The second-order structural information is 

qualitative information of the second-order joint probability of each pair of 

nodes or edges. This information is represented by binary relations called 

Antagonisms, Occurrences and Existences between nodes and edges. FDGs 

increased the representational power at the cost of increasing also the 

required physical space.  
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Two nodes or edges are antagonistic if they have never taken place together 

in any graph used to synthesise the FDG although these two nodes or edges 

are included in the FDG as different elementary parts. There is an 

occurrence relation between two nodes or edges of the FDG if always that 

one of related nodes or edges in the graph has appeared; also the other node 

or edge of the same graph has appeared. Finally, there is an existence 

relation between two nodes or edges if all the graphs in the class described 

by the FDG have at least one of the two nodes or edges. 

6.1.6 Second-Order Random Graph (SORG) 

   
a. Antagonisms b. Occurrences c. Existences 

Figure 6.4. Histograms of a Second-Order Random Graph. 

A Second-Order Random Graph (SORG) [24], is a probabilistic model closely 

related to FDGs. The main difference lies in the fact that the second-order 

structural information is not defined as binary relations but with the specific 

information of the second-order joint probability. Thus, the physical space 

needed to represent SORGs is much higher than FDGs but also its ability to 

represent the set of attributed graphs increases. In [23, 66], it is shown how 

to convert a SORG to an FDGs simply by analysing the second-order 

probabilities and deciding if the binary relations hold. 

6.2 Synthesis of Graph-Class Prototypes 

Two types of methods exist to generate Graph-Class Prototypes from a given 

set of graphs [23, 24]. We assume the structure of the metric-tree has been 

computed (section 6.3) and we have to compute the Graph-Class Prototype 

and the radius of the cluster dM. The first method is based on a Hierarchical 

Synthesis. The second one is based on a Global Synthesis based on a 

Common Labelling [155, 156, 157]. 
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6.2.1 Hierarchical Synthesis of Median Graphs 

In the Hierarchical method, each Graph-Class Prototype is computed only 

using two Graph-Class Prototypes or attributed graphs at a time. Therefore, 

a Common Labelling is not needed and Graph-Class Prototypes are 

computed as pairwise consecutive computations of other Graph-Class 

Prototypes obtained in lower levels of the tree.  

6.2.2 Global Synthesis of Median Graphs using a 

Common Labelling 

In the Global Synthesis, each Graph-Class Prototype is computed using the 

whole set of attributed graphs in the cluster that the metric-tree node 

represents, independently of whether the metric-tree node has other nodes 

as descendants in the tree. The first step of this method computes a Common 

Labelling from the attributed graphs of the sub-cluster and the second step 

obtains the Graph-Class Prototype. We have used two different Common 

Labelling algorithms, which have the main feature that are independent of 

the Graph-Class Prototype to be synthesised. The first one is based on the 

Graduated Assignment [65] and the second one is based on a genetic 

algorithm [64]. 

Note that the Set Median is a special prototype since it does not need to be 

synthesised. The Set Median is the graphs of the cluster that has the 

minimum distance between it and the other graphs. 

6.3 Metric-trees 

A metric-tree [57] is a scheme to partition a database in a hierarchical set of 

clusters, collecting similar objects. Each cluster has a routing object and a 

radius providing an upper bound for the maximum distance between the 

reference object and any other object in the cluster. Triangle inequality can 

be used during the access to the database to prune clusters that are bound 

out of an assigned range from the query. Figure 6.5 shows a graphical 

representation in a bi-dimensional space of two graphs (G11 and G12) 

together with the routing element M4 that represents the cluster that they 

belong to. The circumference represents the area influenced by the cluster of 
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M4 with its radius. The dashed partial circumference represents another 

cluster that contains M4 cluster and other ones.  

 

Figure 6.5. Graphical representation of a cluster. 

Formally, a metric-tree is a tree of nodes. Each node contains a fixed 

maximum number of m entries, <node> := {<entry>}m. In turn, each entry 

is constituted by a routing element M; a reference to the father rM of a sub-

index containing the element in the so-called covering region of M; and a 

radius dM providing an upper bound for the distance between M and any 

element in its covering region, <entry> := {M, rM, dM}. During retrieval of an 

element Q, triangular inequality is used to support efficient processing of 

queries. To this end, the distance between Q and any element in the covering 

region of a routing element M can be max-bounded using the radius dM plus 

the distance between Q and M. 

 

Figure 6.6. Example of a dendogram. 
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The metric-tree can be constructed using different schemes for the insertion 

of a new element and the selection of the routing element [57]. In this thesis, 

we use a general construction methodology from which we are able to 

construct a metric-tree independently of the type of the routing element. We 

use a non-balanced tree constructed through a hierarchical clustering 

algorithm and complete linkage clustering [154]. In this way, given a set of 

graphs, the distance matrix over the whole set is computed and then a 

dendogram is constructed. Using the dendogram and some horizontal cuts, a 

set of partitions that clusters the graphs in the database is obtained. With 

these partitions the metric-tree is generated. Finally, the information on the 

routing elements in the metric-tree is inserted, M and dM. 

In our case, M is a Graph-Class Prototype and dM is the maximum distance 

between the Graph-Class Prototype and any of the graphs in the covering 

region. Figure 6.6 shows an example of a dendogram. Graphs that represent 

components Gi are placed on the leaves of the dendogram and the routing 

elements Mj are placed on the junctions between the cuts and the horizontal 

lines of the dendograms. 

Dendogram of Figure 6.6 defines 4 different partitions. Figure 6.7 shows the 

obtained metric-tree. Note that in some tree nodes, there are Class-Graph 

Prototypes (Mj) together with original graphs (Gi). 

 

Figure 6.7. The obtained metric-tree. 

Two different types of queries can be performed to databases organised by 

metric-trees: KNN queries and similarity queries [63].  
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6.4 Queries on Graph Databases 

Two different types of queries can be performed to databases organised by 

metric-trees: KNN queries and similarity queries [63].  

6.4.1 Similarity queries on Graph Databases 

To perform similarity queries in metric trees, the tree is analyzed in a top 

down fashion. Specifically, if 𝑑𝑚𝑎𝑥  is the range of the query and Q is the 

query graph, the following conditions are employed, at each node of the tree, 

to check whether all the elements in the covering region of M, subM, can be 

discarded, accepted or need more exploration. The conditions are based on 

the evaluation of the distance between the routing element and the query 

element d(Q,M). 

If the following condition holds, we reject all elements deeper from the 

routing element.  

𝑑 𝑄, 𝑀 ≥ 𝑑𝑚𝑎𝑥 + 𝑑𝑀 → No element in subM is acceptable               (6.1) 

In a similar manner, the following condition checks whether all the elements 

in the covering region of M, subM, fall within the range of the query. In this 

case, all the elements in the region can be accepted: 

𝑑 𝑄, 𝑀 ≤ 𝑑𝑚𝑎𝑥 + 𝑑𝑀 → Every element in subM is acceptable             (6.2) 

In the critical case that neither of the two inequalities holds, the covering 

region of M, subM, may contain both acceptable and no acceptable elements, 

and the search must be repeated on the sub index subM. In the case where 

knowledge in the tree nodes is not the Median Graph but a Graph-Class 

Prototype 𝑑𝑚𝑎𝑥  needs to be adapted to each Graph-Class Prototype defining 

a conversion factor as a parameter or a function. 

6.4.2 Nearest Neighbours on Graph Databases 

The most common method to perform Nearest-Neighbour queries uses a 

branch-and-bound algorithm, which utilises two global structures: A priory 

queue PR that stores the possibly fruitful tree nodes to be explored and an 
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array NN that stores the best K elements found until the moment. PR is a 

queue of pointers to active sub-trees, i.e. sub-trees where objects that may 

be near to the query element can be found. The K values of NN are initialised 

to a null element. PR is initialised with one element which is the root of the 

metric tree. Note that PR does not have a maximum number of elements. 

Let Q be a query element and 𝑑𝑚𝑎𝑥
𝑁𝑁  𝑄  the maximum distance from Q to any 

element in NN. The distance 𝑑𝑚𝑎𝑥
𝑁𝑁  𝑄  is initialised to infinitive. In each 

iteration of the search algorithm, the tree node in PR with lower distance to 

Q is selected, let this node be named N and its children be N1, … , Nt. The 

distances between Q and all the children of N must be computed. 

If son Ni is a routing node, this node is inserted in PR if 𝑑 𝑁𝑖 , 𝑄 − 𝑑𝑁𝑖
≤

 𝑑𝑚𝑎𝑥
𝑁𝑁  𝑄 . This insertion is done due to it is possible to find an element with 

lower distance than the ones already found. On the contrary, it is not 

possible that any of their descendants have a distance lower than 𝑑𝑚𝑎𝑥
𝑁𝑁  𝑄  

and so, none of the nodes and leaves of the branch are explored. 

If son Ni is a leaf, that is, a database element, and 𝑑 𝑁𝑖 , 𝑄 ≤  𝑑𝑚𝑎𝑥
𝑁𝑁  𝑄 , array 

NN  and 𝑑𝑚𝑎𝑥
𝑁𝑁  𝑄  are updated to consider this element in the following way. 

There are two possibilities: 

If all NN has its K positions full with leaves, then the element with higher 

distance is discarded. Moreover, the distance 𝑑𝑚𝑎𝑥
𝑁𝑁  𝑄  is updated to be the 

maximum distance from Q to any element in NN. This new value has to be 

lower than the previous value since 𝑑𝑚𝑎𝑥
𝑁𝑁  𝑄  acts as a dynamic maximum 

search distance of range queries. 

If NN does not have its K positions full with leaves, then, the new tree leave 

Ni (that is, an element of the database) is inserted in an empty position of 

NN. Related to the distance 𝑑𝑚𝑎𝑥
𝑁𝑁  𝑄 , there are again two cases. If NN 

continues to be non full, then, the distance keeps with its initial value, which 

is infinitive. But, if the new situation of NN is that all the elements are used, 

𝑑𝑚𝑎𝑥
𝑁𝑁  𝑄  takes the maximum value of the distances between the leaves in 

NN and Q.  

The routing element M can be defined as one of the elements of the sub-

cluster or a new element that represents the elements of the sub-cluster. 

The main effect of using a new prototype might be the reduction of the 
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overlap between sub-clusters, due to the radius of the covering region can 

be more tightly adjusted. 

6.5 Experimental Evaluation 

We have selected four datasets form the repository presented in [66], 

described in the Databases annex. The datasets are COIL, LETTER (HIGH and 

LOW) and GREC. 

6.5.1 Graph prototypes for classification 

Table 6.1 presents classification accuracies achieved with different 

structural [59, 22, 66, 24, 55] and embedding [58, 158, 159] methods. The 

embedding methods in [158, 159] are based on representing each graph 

with a vector of distances which related each graph to a set of prototypes 

extracted from the training set. Different prototype selection methods are 

presented: sps-c, bps-c and k-cps-c. 

Once selected the embedding prototypes are performed, training is done 

using a SVM. In the original article, these methods are compared with the 

KNN classifier under the Graph Edit Distance. The method in [58] is 

addressed to compute the Median Graph to later apply a KNN classifier. The 

Median Graph is computed in an iterative form using an embedding space, 

the selected embedding is inspired in [158, 159]. It is important to highlight 

that, results extracted from [158, 159] may not be evaluated with the same 

version of the dataset presented here, since, even the dataset we used is 

downloaded from the same website cited in [158, 159], the number of 

training, validation and test elements do not seem to correspond. Even 

though, we assume that results can be compared since the results we 

obtained with the reference KNN method seem to correlate with the results 

obtained in [158, 159]. Under these considerations, obtained results show 

that structural/classical methods achieve recognition ratio on the same 

range as new methodologies based on graph embeddings. Some structural 

methods, such as the Generalized Median Graph, obtain less classification 

ratio than the embedding methodologies.  

However, more advanced structural methods, such as First Order Random 

Graphs, Function Described Graphs, Second Order Random Graphs, obtain 
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greater recognition ratio, even if the classification algorithm, i.e. the KNN, is 

much simpler than the SVM used in [158, 159]. With respect to the 

embedding method in [58], we see that the improvement of structural 

methods is notable. More advanced classification algorithms may further 

increase the recognition ratio. With respect to the approach with different 

representatives per class on structural algorithms, it is possible to note a 

general tendency on the decrease of the recognition ratio. This tendency 

increases in Closure Graphs. Thus, we could conclude that, in these datasets, 

it is better to use all the information available to generate a single prototype. 

One could think that some clustering schema to group elements, instead of 

random selection, should improve results. However, since, in this particular 

dataset, noise on elements is uniformly distributed, a random selection 

algorithm is as valid as any other grouping scheme. 

Alg. type Method 
LETTER 

LOW 

LETTER 

HIGH 
GREC Average 

Ref. systems 

KNN (T1) 0.91 0.62 0.86 0.80 

KNN (T2) 0.89 - - - 

KNN (T3) 0.91 0.81 0.96 0.89 

KNN (T4) 0.94 0.82 0.95 0.90 

KNN (T5) - - 0.98 - 

Embedding 

method 

Emb. Kernel (T1) 0.92 0.74 0.89 0.85 

sps-c (T2) 0.92 - - - 

bps-c (T2) 0.92 - - - 

k-cps-c (T2) 0.93 - - - 

Set Median (T5) - - 0.77 - 

Median Graph (T5) -  0.79 - 

Structural 

methods 

Set Median 0.96 0.69 0.85 0,83 

Median Graph 0.89 0.70 0.91 0.83 

Closure Tree 0.69 0.22 0.56 0.49 

FORG 0.92 0.79 0.83 0.84 

FDG 0.92 0.81 0.83 0,85 

SORG 0.93 0.79 0.89 0.87 

Table 6.1. Comparative study between embedding and structural methods for graph 
classification. Tags indicate: (T1) results extracted from [158], (T2) results 
extracted from [159], (T3) distance computed with the Graduated Assignment [32], 
(T4) distance computed with the Bipartite [25] (T5) results extracted from [58]. 
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6.5.2 Metric-trees queries 

We aim to compare four metric-trees that have been synthesised with 

different types of routing information. In each test, only one metric-tree is 

constructed with some graphs of the reference set. 

The number of graphs used to construct the metric-trees is 50 randomly 

extracted from the reference set, with 7 dendogram cuts (number of levels 

of the metric-tree, due to the computational runtime required by the method 

used to generate the metric-tree). The distances to set the cuts are the 

following; distance of cut 0 = Dmax, distance of cut 1 = Dmax·6/7, distance cut 

2 = Dmax·5/7, ..., distance of cut 6 = Dmax/7. Where Dmax is the maximum 

distance of any two graphs of the metric-tree. Each experiment consists of 

50 graph queries over the metric-tree. For the KNN queries, the number of 

elements to be retrieved are 3 (k = 3) and for the D-max queries, the range 

of the query is 0.6·Dmax (dmax = 0.6·Dmax).  

6.5.2.1 Quality indices 
Four quality indices have been used: Access ratio, precision, recall and F-

measure. 

6.5.2.1.1 Access Ratio 

This index evaluates the capacity of the metric-tree to properly route the 

queries. Given a query graph Q, this index is the number of accessed nodes 

and leaves of the metric-tree or the number of matching performed, R. 

Finally, it is normalized by the number of graphs used to generate the 

metric-tree, N. If the access ratio is higher than 1, then it is faster not to use a 

metric-tree since without the metric-tree, the system would perform less 

comparisons. 

𝐴𝑐𝑐𝑒𝑠𝑠𝑅𝑎𝑡𝑖𝑜( 𝑄, 𝐾, 𝑇)  =  
𝑅

𝑁
 (6.4) 

6.5.2.1.2 Precision 

Precision is the number of items correctly labelled as belonging to the class 

divided by the total number of elements labelled as belonging to the positive 

class for KNN and under acceptable distance for DMAX. We obtain this 
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metrics as follows, from the K graphs returned by the metric-tree with 

minimum distance between them and Q for DMAX, and the number of 

elements of the same class as Q for KNN, and the number of true positives 

Tp. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛( 𝑄, 𝐾, 𝑇)  =  
𝑇𝑝

𝐾
 (6.5) 

6.5.2.1.3 Recall 

Recall is the number of items correctly labelled as belonging to the class 

divided by the total number of elements that actually belong to the class for 

KNN and under acceptable distance for DMAX. We obtain this metrics as 

follows, from the C graphs returned by all the reference set with minimum 

distance between them and Q for DMAX, and the number of elements of the 

same class as Q for KNN, and the number of true positives Tp. 

𝑅𝑒𝑐𝑎𝑙𝑙( 𝑄, 𝐾, 𝑇)  =  
𝑇𝑝

𝐶
 (6.6) 

6.5.2.1.4 F-Measure 

The F-measure is a measure of a test's accuracy computed through the 

precision and recall. 

𝐹𝑚𝑒𝑠𝑢𝑟𝑒 =  
2 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
=  

2 𝑇𝑝

𝐶 + 𝐾
 (6.7) 

6.5.2.2 Results 
Table 6.2 and Table 6.3 show the access ratio in nearest neighbour and 

similarity queries. Lower is the access ratio faster is the query. Besides, if the 

access ratio is greater than 1, the number of comparisons done using the 

metric-tree is higher than if there was no metric-tree and the graphs of the 

whole database where all compared. This situation does not appear in the 

KNN queries, which means that it is worth to structure the database in a 

metric-tree. On the contrary, some values of Table 6.3 (similarity query) are 

greater than 1. To reduce this problem, dmax whole have to be reduced but 
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we preferred to use the same value for all the experiments for the 

compactness of the result values. Besides, some cells of Table 6.3 have value 

0.02. This is because, given a query, only the root node of the metric-tree is 

explored. Considering that the metric-tree has been built using 50 graphs, 

the value comes from 0.02 = 1/50. Again, this problem could be solved by 

adapting dmax value to each Graph-Class Prototype. In general, Median 

Graphs are the prototypes with better access ratio. So, they obtain faster 

queries (except for the commented extreme values, 0.02). 

Access Ratio 

(k=3) 
Synthesis COIL LETTER-LOW LETTER-HIGH GREC 

Set Median - 0.54 0.34 0.35 0.45 

Generalise Median Hierarchical 0.38 0.31 0.33 0.37 

Generalise Median Genetic 0.40 0.38 0.36 0.57 

Generalise Median 

Graduated 

Assignment 

0.44 0.34 0.37 0.40 

Closure Graph 0.65 0.33 0.57 0.80 

FORG 0.42 0.35 0.42 0.47 

SORG 0.35 0.33 0.36 0.38 

FDG 0.45 0.36 0.45 0.56 

Table 6.2. Access ratio on nearest neighbour queries. 

Access Ratio 

(dmax = 0.6·Dmax) 
Synthesis COIL LETTER-LOW LETTER-HIGH GREC 

Set Median - 0.02 1.03 1.46 0.06 

Generalise Median Hierarchical 0.47 0.99 1.34 1.07 

Generalise Median Genetic 0.92 1.65 1.66 0.78 

Generalise Median 

Graduated 

Assignment 

0.89 0.98 1.30 0.94 

Closure Graph 0.02 0.02 0.02 0.02 

FORG 0.02 0.02 0.02 0.02 

SORG 0.02 2.27 2.78 0.02 

FDG 0.02 0.47 0.04 0.02 

Table 6.3. Access ratio on similarity queries. 

Table 6.4 and Table 6.5 show the mean precision. SORGs and Closures are 

the prototypes that obtain the best results although there are other 

prototypes with similar values. In general, prototypes computed using the 

Graduated Assignment obtains better results than the Hierarchical and 

Genetic synthesis. Considering values on Table 6.2 and Table 6.4 (KNN), we 

can conclude that the probabilistic prototypes are slower but obtain greater 

precision.  And considering values on tables Table 6.3 and Table 6.5 
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(similarity), we realise that the fact that some queries only explore the root 

node penalises the obtained precision. 

Precision 

(k=3) 
Synthesis COIL LETTER-LOW LETTER-HIGH GREC 

Set Median - 0.46 0.76 0.42 0.48 

Generalise Median Hierarchical 0.37 0.62 0.34 0.22 

Generalise Median Genetic 0.11 0.16 0.22 0.34 

Generalise Median 

Graduated 

Assignment 

0.32 0.94 0.46 0.32 

Closure Graph 0.62 0.98 0.38 0.59 

FORG 0.58 0.86 0.42 0.57 

SORG 0.65 0.81 0.50 0.37 

FDG 0.48 0.84 0.44 0.53 

Table 6.4. Precision on nearest neighbour queries. 

Precision 

(dmax = 0.6·Dmax) 
Synthesis COIL LETTER-LOW LETTER-HIGH GREC 

Set Median - 0.75 0.99 0.99 0.78 

Generalise Median Hierarchical 0.81 0.99 0.99 0.98 

Generalise Median Genetic 0.89 1 0.99 0.92 

Generalise Median 

Graduated 

Assignment 

0.99 0.99 0.99 0.97 

Closure Graph 0.75 0.62 0.74 0.77 

FORG 0.75 0.62 0.74 0.77 

SORG 0.75 1 1 0.77 

FDG 0.75 0.82 0.78 0.77 

Table 6.5. Precision on similarity queries. 

Recall 

(k=3) 
Synthesis COIL LETTER-LOW LETTER-HIGH GREC 

Set Median - 0.26 0.58 0.32 0.50 

Generalise Median Hierarchical 0.24 0.48 0.26 0.22 

Generalise Median Genetic 0.06 0.12 0.18 0.34 

Generalise Median 

Graduated 

Assignment 

0.18 0.72 0.36 0.34 

Closure Graph 0.38 0.76 0.30 0.60 

FORG 0.38 0.66 0.32 0.58 

SORG 0.40 0.62 0.38 0.38 

FDG 0.30 0.64 0.32 0.54 

Table 6.6.Recall on nearest neighbour queries. 

Table 6.6 and Table 6.7 show the recall results. In general, probabilistic 

prototypes obtain greater recall than non-probabilistic ones, except in some 

cases. Note that in cases that the access ratio is 0.02, the recall is always 1. 
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This is because, if all graphs of the database are accepted, then the recall has 

to be 1 by definition. 

Recall 

(dmax = 0.6·Dmax) 
Synthesis COIL LETTER-LOW LETTER-HIGH GREC 

Set Median - 1 0.99 1 0.99 

Generalise Median Hierarchical 1 1 0.98 0.90 

Generalise Median Genetic 0.92 1 1 0.96 

Generalise Median 

Graduated 

Assignment 

1 0.98 0.98 0.90 

Closure Graph 1 1 1 1 

FORG 1 1 1 1 

SORG 1 1 1 1 

FDG 1 0.60 0.90 1 

Table 6.7. Recall on similarity queries. 

Finally, Table 6.8 summarises the results presented in the last 6 tables. Each 

value is the average of the eight corresponding values. Statistically best 

values are bolded. FORGs obtain the fastest queries (lower access 

ratio).Generalise Median (with Graduated Assignment) and SORGs obtain 

the greatest precision. Set Median, Closure Graphs, FORGs and SORGs obtain 

the greatest recall. Finally, Generalise Median (with Graduated Assignment) 

and SORGs obtain the best F-measure. 

Prototype Synthesis Access Ratio Precision Recall F-measure 

Set Median - 0.53 0.70 0.70 0.70 

Generalise Median Hierarchical 0.65 0.66 0.63 0.64 

Generalise Median Genetic 0.84 0.57 0.57 0.57 

Generalise Median 

Graduated 

Assignment 

0.70 0.74 0.68 0.71 

Closure Graph 0.30 0.68 0.75 0.71 

FORG 0.21 0.66 0.74 0.70 

SORG 0.81 0.73 0.72 0.72 

FDG 0.29 0.64 0.32 0.67 

Table 6.8. Average results of access ratio, precision, recall and F-measure. 
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Chapter 7                                                   

Cooperative Pose 

Estimation Based on 

Interactive Points 

Alignment
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Throughout this thesis we have explored the way to improve the Error-

Tolerant Graph Matching performance taking advantage of the feedback 

provided by an oracle. On the one hand, it has been explored different active 

query strategies to obtain the perfect correspondence between two graphs 

after few interactions (Chapter 3) and on the other hand, it has been 

proposed a loss function to find the parameters such that the hamming 

distance between the automatic/suboptimal and the ground-truth 

correspondence is minimized (Chapter 4 and Chapter 5).  

The present chapter delves into the idea of using an interactive feedback to 

improve automatic results, bringing it to a different domain. In this chapter 

we focus on the implementation of interactivity in a framework of 

cooperative robotics. 

Given a fleet of autonomous robots performing a cooperative task, it is 

crucial for the robots to share their relative position. If the site has not been 

explored before, auto localise each robot through landmarks is not possible. 

Moreover, not always the GPS information is available or it has the desirable 

accuracy. Our framework is composed of a fleet of robots that have 2D and 

3D cameras, a human coordinator and a human-machine interface. 3D-

images are used to automatically align them and deduce the relative position 

between robots. 2D-images are used to reduce the alignment error in an 

interactive manner. A human visualises both 2D-images and the current 

automatic alignment and imposes a new alignment through the human-

machine interface. Since the information is shared through the whole fleet, 

robots can deduce the position of other ones that do not visualise the same 

scene. Practical evaluation shows that in situations that there is a large 

difference between images, the cooperative and interactive processes are 

crucial to achieve an acceptable result. 

7.1 Introduction 

In recent years, interaction between robots and humans and also 

cooperation between robots has increased rapidly. Applications of this field 

are very diverse, ranging from developing automatic exploration sites [160] 

to using robot formations to transport and evacuate people in emergency 

situations [161]. Within the area of social and cooperative robots [162], 
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interactions between a group of people and a set of accompanying robots 

have become a primary point of interest [163]. 

One of the low level tasks that these systems have to face is the automatic 

pose estimation. If the information of GPS is not available or its accuracy is 

not enough, one of the usual methods is to localise the robots through 

detecting landmarks or identifying scenes previously classified. The problem 

of comparing or aligning two images is usually called image registration in 

the computer vision research field. Image registration tries to determine 

which parts of one image correspond to which parts of another image. This 

problem often arises at the early stages of many computer vision 

applications such as scene reconstruction, object recognition and tracking, 

pose recovery and image retrieval. Therefore, it has been of basic 

importance to develop effective methods that are both robust in the sense of 

being able to deal with noisy measurements and in the sense of having a 

wide field of application. 

 

Figure 7.1. Three robots performing guiding tasks. Robots are located to fence the 
group. 

We present an interactive and cooperative method to deduce the relative 

pose of each robot with respect to the rest of the fleet. The proposed model 

is part of a larger project in which social robots guide people through urban 

areas [163] and they have tracking abilities [166]. Figure 7.1 represents 

three robots performing guiding tasks in an indoor environment. Robots 

fence the visitor group to force them to follow a specific tour. Robots need to 

work in a cooperative manner to keep a triangular shape in which people 

have to be inside. In these cooperative tasks, it is crucial to have a low-level 

computer vision task such that images extracted from the three robots are 

properly aligned to correctly deduce their relative pose. In the proposed 
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environment, there is a human that, through our human-machine interface, 

gives orders to the robots and controls their tasks. Robots have embedded 

2D and 3D cameras [167] and the human can visualise the 2D cameras. 

7.2 Image Registration 

The three typical steps involved in the solution of the image registration 

problem are the following [175]. First, some salient points are selected from 

both images. Second, a set of tentative matches between these sets of points 

is computed together with the image alignment. And third, a process of 

outlier rejection that eliminates the spurious correspondences can further 

refine these tentative matches and the initial alignment. 

Salient points, which play the role of parts of the image to be matched, are 

image locations that can be robustly detected among different instances of 

the same scene with varying imaging conditions. These points can be 

corners (intersection of two edges) [176], maximum curvature points [177] 

or isolated points of maximum or minimum local intensity [178]. There is an 

evaluation of the most competent approaches in [83]. When salient points 

have been detected, several correspondence methods can be applied that 

obtain the alignment (or homography) that maps one image into the other 

[179], discards outlier points [180] or characterises the image into an 

attributed graph [79, 80]. Typically, these methods have been applied on 2D 

images but recently, 3D shape retrieval methods have appeared [181]. 

The main drawback of image registration methods is that their ability to 

obtain the correspondence parameters strongly depends on the reliability of 

the initial tentative correspondences. Moreover, it is needed to jointly 

estimate the image alignment parameters and correspondence parameters. 

Considering the alignment parameters, there are two basic strategies. The 

first one is to consider a rigid deformation and the second one is to consider 

non-rigid deformation. In the first case, it is assumed the whole image (and 

so, the extracted salient points) suffers from the same deformation and so 

the image alignment parameters are applied equally to the whole salient 

points or image pixels. Some examples are [79, 182, 183, 32]. In the second 

case, each salient points suffers a different projection and there are different 
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alignment parameters applied to each salient point or image region. Some 

examples are [184, 185]. Usually, the rigid strategy is applied to detect 

objects on outdoor images in which the deformation is mostly due to the 

change of the point of view. The non-rigid strategy is mostly applied to 

object detection or matching in medical or industrial images due to it is 

assumed objects suffer from deformations although the point of view is the 

same. 

7.3 Human Interactivity 

Humans are very good at finding the correspondences between local parts of 

an image regardless of the intrinsic or extrinsic characteristics of the point 

of view. Human interactivity on image registration has been applied on 

medical images [186, 187, 188] and two systems have been patented [189, 

190]. These papers and patents are really specific on some medical 

environments and for this reason cannot be applied on our problem. In 

[186], they show a comparison of 3-D images on MRI-SPECT format and they 

concretise on images from the brain. In [187], authors present a method to 

validate the 3D position given 3D medical images. Finally, in [188], the aim is 

to solve the registration problem given similar medical images extracted 

from different sensors or technologies. Patent [189] defines a system for 

registration thorax X-Ray images such that it does not depend on bony 

structures. Finally, patent [190] defines a multi-scale registration for 

medical images where images are first aligned at a course resolution, and 

subsequently at progressively finer resolutions; user input is applied at the 

current scale. Another usual application of human interaction is semi-

automatic video annotation [191]. 

Current automatic methods to extract parts of images and their 

correspondences in non-controlled environments are far away of having the 

performance of a human. Figure 7.2 shows two images. In each image 50 

salient points have been extracted by method [77]. Outlier detector [180] 

has considered 43 salient points where outliers and only 7 where inliers. 

The correspondence detector has missed 6 of the 7 points (red lines) and 

only has hit 1 point (green line). This is because of the large differences 

between both images and more precisely, due to the lack of ability of the 

initial correspondence detector to find a good initial correspondence. 
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For this reason, in this chapter, we propose a semi-automatic method in 

which humans can interact into the system when it is considered the quality 

of the automatically found correspondences is not good enough and then 

they impose a partial and initial correspondence between some local parts 

of two scenes.  

 

Figure 7.2. An example of automatic registration image where only one point has 
been properly matched (green line) and 6 points have been improperly matched 
(red lines). 

A human-machine interface (HMI), also named human-computer interface, 

provides more natural, powerful, and compelling interactive experiences. 

For decades, HMI has been an active research field closely related to new 

technology advances. Paper published in [194] provides an interesting 

review of the current trends and key aspects of HMI, for instance in non-

desktop computing. Some of the latest applications have been natural 

language understanding [195], semi-supervised database indexing [196], 

image segmentation [197, 198] or handwritten text transcription  [94] 

between others. Finally, human interactivity specifically applied to pattern 

recognition has been considered in [75]. 

Considering the visual presentation of the HMI, three main approaches have 

been proposed in the literature: (a) side-by-side views [199, 200], (b) 

superimposed or merged views [201, 202] and (c) animations [203, 204]. 

These approaches are often complemented with techniques for highlighting 

the correspondences between points such as lines that go from one set of 

points to the other [199, 205] or elements colour coding [206, 207]. We have 

used the side-by-side view (Figure 7.2). 
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7.4 Overview of the proposed model for pose 
estimation 

In this chapter, we concretise on how to deduce the relative pose of our 

robots in an interactive and cooperative manner and the experimental 

section only tests this aspect. The other technical and theoretical and 

technical aspects are not intended to be discussed in this thesis. 

We say it is an interactive method because a human helps the image 

processing modules incorporated on the robots to automatically solve the 

3D registration problem when it is necessary. Figure 7.3 shows part of our 

human-machine interface.  We can visualize the 2D cameras of robots 1 and 

2 and the correspondences imposed by the user. Both robots go on the 

pavement and Robot 1 follows Robot 2. Since the 2D and 3D cameras in each 

robot are calibrated, the imposed correspondence in the 2D domain is 

translated to a correspondence in the 3D domain and so this interaction 

influences over the obtained 3D alignment and the relative pose is 

recomputed. 

Thanks to this interaction, the accuracy of the pose estimation of the whole 

feet of robots increases. This type of interaction is completely different from 

the ones presented in [160, 161, 163] since in those cases, the human 

interaction is performed in a higher level. For instance, in [160, 161], the 

interaction is based on imposing orders such us “move straight ahead” or 

“go up stairs”. In  163], the orders are “follow this person” or “bring me to 

the exit”. In  171], the interaction is used to learn the matching process. 

Nevertheless, our experience has shown us that in most of the cases, robots 

cannot perform these orders due to they cannot solve the low-level 

registration problem. Therefore, human interaction in this low-level task, 

that it is really easy for humans, frequently makes not necessary to interact 

on higher level tasks in which the interaction is more complicated do to the 

need of having more knowledge of the current situation such as position of 

other robots, automatically built map of the environment or current position 

of other objects. 

UNIVERSITAT ROVIRA I VIRGILI 
ACTIVE AND INTERACTIVE LEARNING STRATEGIES FOR ERROR-TOLERANT GRAPH MATCHING 
Xavier Cortés Llosa 



Cooperative Pose Estimation Based on Interactive Points Alignment 

 

 126 

 

 

Figure 7.3. Screen shot of our human-machine interface with 2D images of Robots 1 
and 2. 

Besides, it is a cooperative model since the relative pose of two robots is 

deduced through the other robots when these robots do not share any part 

of the scene they visualise. Figure 7.4 shows the position of three robots in 

the 2D plane. Robot 1 and 2 can theoretically deduce their relative position 

through 3D image registration [172] but this is not possible between Robot 

1 and 3 since they do not share any part of the 3D image. This problem is 

solved through the cooperation of the robots. Robot 2 deduces its relative 

position with respect to Robot 3 and shares this information with Robot 1. 

 

Figure 7.4. Three robots visualising the same scene. 

Figure 7.5 shows a schematic view of our method based on an Interactive 

Pose Estimation module and a human-machine interface. The input of the 

general system is the 2D and 3D images of all robots and the output is their 

relative pose and the regression error (as it does the GPS). We are interested 
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on minimising the pose error but in a real application, we cannot deduce this 

error since we do not have the ground-truth pose, but we can obtain the 

regression error between aligned images. We know the lowest is the 

regression error, the best is the pose estimation. Then, we assume there is a 

direct dependency between the regression error and the pose error. Thus, 

reducing the regression error, the system tends to reduce the pose error. 

 

Figure 7.5.  Basic scheme of our method composed of an Interactive Pose Estimation 
module and the human-machine interface. 

On the one hand, the human-machine interface receives from the fleet of 

robots the 2D-images and from the Interactive Pose Estimation module the 

current poses of the robots in the feet and the deduced error of these poses. 

The human-machine interface outputs the user impositions to the 

Interactive Pose Estimation module and it does not output any information 

to the fleet of robots. On the other hand, the Interactive Pose Estimation 

receives from the fleet of robots the 3D images and returns to it the poses 

estimation and the regression errors. 

The proposed human-machine interface is as follows. On the left side of it, 

the user visualises the deduced current pose of the fleet. On the middle of 

the interface, it is shown the regression error between any combinations of 

robots’ images. We make this matrix to be symmetric since we introduce in 

cell [𝑖, 𝑗] and in [𝑗, 𝑖]the same values, which are the last regression error 

while deducing the position of the 𝑖𝑡𝑕  robot with respect to the 𝑗𝑡𝑕  robot or 

vice versa. The maximum regression errors are highlighted on bold to 

attract the attention to the user. On the right side of it, the user visualises the 

2D images of two manually selected robots together with the imposed 
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correspondences. The user can visualise any of the combinations of 2D 

images by selecting one of the cells in the middle of the human-machine 

interface. Then he can update the imposed correspondence by erasing or 

creating mappings between points. The two robots in the left panel and the 

regression errors in the central panel that correspond to the current images 

in the right panel are highlighted in red. If the regression error between two 

robots is higher than a threshold, we assume that the corresponding images 

do not share any salient points and then the regression error is 

automatically hided (marked with a hyphen). Nevertheless, if the user 

considers that these robots really visualise the same part scene, he can 

select those robots. Note the 2D images are not an input of the Interactive 

Pose Estimation module but they are used to be visualised by the user and 

impose the points correspondences. 

A preliminary version of this method was presented in [170, 173], in which, 

was presented a simple interactive method to estimate the homography 

between two 2D images. There were no 3D images and so the poses of 

robots were not deduced. When we put into practice our system, we realised 

most of the cases that robots did not correctly react to the humans orders 

where due to they did not solve appropriately the low-level image 

registration problem. Therefore, putting the human interaction into the 

image alignment problem, most of these non-correct robot reactions are 

solved. Nevertheless, technology tends to make systems to run as much 

autonomous as possible. For this reason, the main weakness of our method 

is that robots are less autonomous. Better registration methods are going to 

be discovered, and then, less need of human interaction is going to be 

needed. A similar interaction method was presented in [174]. In that case, 

there is only one robot and the human decides if a selected part of the image 

is a human’s face and in the case that it is, imposes the name of the person. 

Finally, Figure 7.6 shows the general scheme of one relative pose estimation. 

First, a pair of robots is selected according to the scheduler strategy. Then, 

the Robot Interactive Homography Estimation module (section 7.5) 

estimates the homography between the selected robots according to the 3D 

images of the robots cameras and the user imposed correspondences. Then, 

the Cooperative Pose Estimation module (section 7.6) updates the relative 

poses according to the previously estimated homography and the current 

relative poses. This process is recursively executed by the task scheduler. 
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Figure 7.6.  General scheme of one relative pose estimation.  

7.5 Interactive Pose Estimation module 

Figure 7.7 shows our Interactive Pose Estimation general scheme, which is 

the upper module in Figure 7.5. The aim of the Scheduler is to keep updated 

the consistency of the relative position information between the robots. To 

achieve this, it is responsible for selecting the pairs of robots to deduce their 

relative pose using an implementation of the weighted round robin 

algorithm [208]. This selection depends on the time elapsed since the last 

pose update, the known current pose, the regression errors and also the 

correspondences imposed by the user. The scheduler also provides to the 

Robot Interactive Homography Estimation module the homography 𝐻𝑖,𝑗
∗ , 

deduced from the user imposed correspondences. Then, the Robot 

Interactive Homography Estimation module (Figure 7.8) deduces the 

relative homography 𝐻𝑖,𝑗  of the 𝑖𝑡𝑕  robot with respect to the 𝑗𝑡𝑕  one. It takes 

into consideration the imposed correspondences between these robots if 
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they are any, and also the 3D-image alignment 𝐻𝑖,𝑗
∗ . Moreover, the module 

returns a regression error of the obtained projection 𝐸𝑟𝑟𝑜𝑟𝑖,𝑗 . As we have 

seen in Figure 7.5, this regression error is visualised at the human-machine 

interface to help the user to decide which pairs of robots need some point 

mappings to be manually imposed. The Cooperative Pose Estimation module 

deduces the pose of the whole fleet taking into consideration these 

homographies and the regression errors. To do so, it keeps a graph in which 

nodes represent robots and the weight of edges are the regression errors. 

Thus, to deduce the relative pose between two robots, the classical Dijkstra 

algorithm is performed (section 7.6). 

 

Figure 7.7.  Interactive Pose Estimation module bounded by the dashed rectangle. 

The Alignment Estimation Given a Correspondence module deduces a 

homography 𝐻𝑖,𝑗
∗  between these images taking into consideration the 

human’s correspondence proposal. It is based on the Direct Linear 

Transformation algorithm [209, 210] that solves a set of variables from a set 

of similarity relations. It obtains a matrix homography (or linear 

transformation) 𝐻𝑖,𝑗
∗  which contains the unknown parameters to be solved. 

In [170], authors used this algorithm to obtain a homography between two 

sets of 2D points. In this scheme, the same method is used but with 3D 

points. 

We assume the transformation between two 3D images (and so, their 3D 

points salient points) can be modelled as an affine transformation in the 3D 

space. Then homography 𝐻𝑖,𝑗
∗  is computed as follows,  
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𝐻𝑖,𝑗
∗  =   

0
0 𝑏

0 𝑥
0 𝑦

0 0
0 0

𝑐 𝑧
0 1

  

  

Where 𝑎 = 𝑆 · 𝑐𝑜𝑠 𝛽 · 𝑐𝑜𝑠 𝛾 , 𝑏 = 𝑆 · 𝑐𝑜𝑠 𝛼 · 𝑐𝑜𝑠 𝛾  and  𝑐 = 𝑆 · 𝑐𝑜𝑠 𝛼 ·

𝑐𝑜𝑠 𝛽 . Parameter 𝑆 is the scale and 𝛼,  𝛽 and 𝛾 are the three orientation 

angles of one robot with respect to the other. Besides 𝑥, 𝑦 and 𝑧 is the 

translation of one robot with respect to the other. The 𝑛 correspondences 

imposed by the user between the two 3D points are represented by 

 𝑥𝑖
𝑘 , 𝑦𝑖

𝑘 , 𝑧𝑖
𝑘 →  𝑥𝑗

𝑘 , 𝑦𝑗
𝑘 , 𝑧𝑗

𝑘 , being 1 ≤ 𝑘 ≤ 𝑛. In this case, the error function is 

usually estimated as follows: 

  

𝐸 𝑎, 𝑏, 𝑐, 𝑥, 𝑦, 𝑧 =  

   𝑎 · 𝑥𝑖
𝑘 + 𝑥 − 𝑥𝑗

𝑘  
2

+  [𝑏 · 𝑦𝑖
𝑘 + 𝑦 − 𝑦𝑗

𝑘 ]2 +  [𝑐 · 𝑧𝑖
𝑘 + 𝑧 − 𝑧𝑗

𝑘 ]2 

𝑛

𝑘=1

 

 

Then, values  𝑎, 𝑏, 𝑐, 𝑥, 𝑦, 𝑧  are obtained in a minimisation process through 

deriving the function; 
𝛿𝐸

𝛿𝑎
= 0,   

𝛿𝐸

𝛿𝑏
= 0, 

𝛿𝐸

𝛿𝑐
= 0, 

𝛿𝐸

𝛿𝑥
= 0,  

𝛿𝐸

𝛿𝑦
= 0 and  

𝛿𝐸

𝛿𝑧
= 0. 

Note that to obtain an exact value of the angles and translations, a minimum 

of 𝑛 = 6 is needed. Nevertheless, thanks to the Cooperative Pose Estimation 

module and the fact that the 3D points are shared in several images, these 

values can be estimated in fewer points per image.  

If the user does not impose correspondences between two specific images, 

the module returns the identity matrix for this pair of images. 

Figure 7.8 shows the Robot Interactive Homography Estimation module. The 

Salient Point Extractor module obtains a pair of sets of 3D-points [172] 

given a pair of 3D-images. The set of points 3𝐷𝑝𝑜𝑖𝑛𝑡𝑠𝑖  are projected to 𝐻𝑖,𝑗
∗  

to obtain the same set of points but referenced in the same coordinate 

system than the set 3𝐷𝑝𝑜𝑖𝑛𝑡𝑠𝑗  and considering the human’s correspondence 
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proposal. We call this set of points 3𝐷𝑝𝑜𝑖𝑛𝑡𝑠𝑖
∗. This process provides a better 

initial alignment to the Iterative Closest Point algorithm (ICP) [179] to find a 

final alignment of both sets of points through homography 𝐻′𝑖,𝑗 . The 

regression error 𝐸𝑟𝑟𝑜𝑟𝑖,𝑗  is defined as the sum of square distance between 

points in 3𝐷𝑝𝑜𝑖𝑛𝑡𝑠𝑖
∗ and the projected points 3𝐷𝑝𝑜𝑖𝑛𝑡𝑠𝑗 ·𝐻𝑖,𝑗

∗ . The module 

returns homography 𝐻𝑖,𝑗 = 𝐻𝑖,𝑗
∗ · 𝐻′𝑖,𝑗 .0 

 

Figure 7.8.  Robot Interactive Homography Estimation module. 

7.6 Cooperative Pose Estimation 

Figure 7.9.a shows a scene where four robots visualise an object and there is 

a high overlapping between images of the first three robots but Robot 4 only 

shares part of the image with Robot 3. Initially, they do not know the relative 

position of the other robots (remember, robots do not have any system to 

locate themselves in the scene) and therefore they do not know which robot 

is close to another. Robot 1 can deduce the relative position of Robot 2 
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directly (through homography 𝐻1,2) or indirectly through Robot 3 (applying 

the product of homographies 𝐻1,3 · 𝐻3,2). How do we know which is the best 

way to deduce the relative position? The method we propose obtains the 

final homography between Robot 1 and Robot 2 that achieves the lower 

regression error. In this example, 𝐸𝑟𝑟𝑜𝑟1,2 = 10, 𝐸𝑟𝑟𝑜𝑟1,3 = 3 and 

𝐸𝑟𝑟𝑜𝑟3,2 = 5, then 𝐸𝑟𝑟𝑜𝑟1,2 ≥ 𝐸𝑟𝑟𝑜𝑟1,3 + 𝐸𝑟𝑟𝑜𝑟3,2 and for this reason, we 

decide the homography between Robot 1 and Robot 2 is computed as 

𝐻1,3 · 𝐻3,2 instead of 𝐻1,2 although we see in the scene that Robot 1 is closer 

to Robot 2 than Robot 3. Since each homography can be achieved by several 

combinations, we select the combination that minimises the sum of 

regression errors. Moreover, the Robot 1 and 2 can only deduce the position 

of Robot 4 through Robot 3. Thus, the homography between Robot 1 and 

Robot 4 is computed as 𝐻1,3 · 𝐻3,4 and the homography between Robot 2 and 

Robot 4 is computed as 𝐻2,3 · 𝐻3,4. 

 

 

a.  b. 

Figure 7.9.  a. Four robots visualising an object and the homographies that transform 
their coordinate systems into the coordinate systems of the other robots. b. Graph of 
the current regression errors estimated by the Iterative Closest Point algorithm. 

To do so, we use a graph that it is dynamically updated when new regression 

errors are obtained from the Iterative Closest Point algorithm (Figure 7.9.b). 

Nodes represent robots and the attributes on the edges are the last obtained 

regression error. Thus, a combination such as 𝐻1,3 · 𝐻3,2 is defined as a path 

from Robot 1 to Robot 2 composed of two steps 𝑁𝑜𝑑𝑒1 → 𝑁𝑜𝑑𝑒3 → 𝑁𝑜𝑑𝑒2. 

In general, the homography between Robot 𝑖 and Robot 𝑗 is decided through 

the less costly path in the graph from the first robot to the second one. That 

is, 𝐻𝑖,𝑗 = 𝐻𝑖,𝑎 · 𝐻𝑎,𝑏 · 𝐻𝑏,𝑐 ··· 𝐻𝑘,𝑗  if 𝑁𝑜𝑑𝑒𝑖 → 𝑁𝑜𝑑𝑒𝑎 → 𝑁𝑜𝑑𝑒𝑏 → 𝑁𝑜𝑑𝑒𝑐 →

⋯ → 𝑁𝑜𝑑𝑒𝑘 → 𝑁𝑜𝑑𝑒𝑗  is the path from 𝑁𝑜𝑑𝑒𝑖  to 𝑁𝑜𝑑𝑒𝑗  such that 
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𝐸𝑟𝑟𝑜𝑟𝑖,𝑎 + 𝐸𝑟𝑟𝑜𝑟𝑎,𝑏 + 𝐸𝑟𝑟𝑜𝑟𝑏,𝑐 +··· +𝐸𝑟𝑟𝑜𝑟𝑘,𝑗  obtains the minimum value. 

We use the well-known Dijkstra algorithm [211] to obtain this minimum 

path between two nodes of the graph. 

7.7 Experimental Evaluation 

The practical evaluation is explained in the following subsections. In 

“Sagrada Família” database section of the Databases annex, we describe the 

experimental setup of this chapter. In the following two sections of this 

chapter, we analyse the robots’ position error and the runtime. Due to the 

nature of our database we know the real position of the robots. Thus, the 

position error is computed as the Euclidean distance between the correct 

position and the deduced one. In 7.7.1, we analyse the influence of the 

human interaction and we do not have used the Cooperative Pose 

Estimation module (all used paired images have some 3D-points in 

common). In 7.7.2, we have considered the whole system and dataset.  

7.7.1 Interactive Pose Estimation 

Figure 7.10 shows the robot position error in meters of the system with 

respect to the number of interactions and the level of separation between 

images (from 5 to 45). In these first experiments, the cooperative module 

has not been used. As it is supposed to be, far away are the images, larger is 

the error since less 3D-points are shared (see “Sagrada Família” database 

section of the Databases annex) and also larger is the distortion between 

images. Moreover, when only one or two interactions are imposed, only 

translations can be deduced in the alignments, for this reason, the robot 

position error reduction is not so important. It is clear that with three 

interactions, the error is drastically reduced independently of the level of 

separation between paired images. This is because an affine homography 

can be deduced. Finally, when more than three interactions are imposed, the 

error is only slightly reduced. 

Given the results of Figure 7.10, we could recommend to the user to interact 

a maximum of three times per pair of robots through all pairs of robots 

instead of interacting more than three times in some few pairs of robots and 

keeping some pairs of robots without interaction. Nevertheless, since we 
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assume robots are moving and therefore images are constantly updated, we 

only have the reliable information of the current regression error. From 

Figure 7.10, we see it is better to interact on the pairs of robots that have the 

largest regression errors because in these cases the human interaction 

accentuates the regression error’s decrease. We highlight the need of this 

human’s interaction through painting in bold the pairs of robots with the 

largest regression errors in the human-machine interface (Figure 7.5).  

 

Figure 7.10. Mean robot position error in meters with respect to the number of 
interactions and the level of separation. 

A crucial aspect of the cooperative robotic systems is the ability to keep the 

information updated in time. In this case, we need to know the pose of the 

fleet of robots in real time. The most costly process is the ICP algorithm 

(Figure 7.8) that it is performed each time a new image arrives, 

independently if there is human interaction or not. It has a quadratic worst 

cost with respect to the number of elements in the images (note the huge 

number of points shown in the Figure A.9 of the Databases annex). Another 

costly process is the Alignment Estimation Given the Correspondences 

(Figure 7.7), which it is performed through the Direct Linear Transform 

algorithm. Nevertheless, it is only performed with the points that the human 

has interacted and, as explained before, we recommend a maximum of three 

interactions. For this reason, the runtime of this algorithm is almost 
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negligible. Another process to be considered is the Cooperative Pose 

Estimation based on the Dijkstra algorithm (Figure 7.7). This algorithm has 

a quadratic cost with respect to the number of nodes in the graph [211]. 

Since in our framework the number of robots (which it is the number of 

nodes in the graph) is lower than ten, again, the runtime does not affect so 

much at the general runtime since it has the same complexity than the ICP 

but with really less points. For this reason, we have only analysed the 

runtime of computing the ICP. 

 

Figure 7.11. Runtime of the ICP module in seconds with respect to the number of 
interactions and the level of separation (Matlab, i7 950, 3.07 GHz, 6 GB RAM, 
Windows 7). 

Figure 7.11 shows the runtime in seconds of the ICP with respect to the 

number of interactions and the level of separation between images (from 5 

to 45). ICP is a regression method that finds the solution accurately and 

faster when the initial alignment is more congruent to the affine matrix. 

Considering the human’s interactions, more interactivity, more accurate is 

the homography matrix 𝐻𝑖,𝑗
∗  deduced in the Alignment Estimation Given a 

Correspondence module and so more easy is the task of the ICP to find the 

homography 𝐻′𝑖,𝑗 . 
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Finally, it is important to consider that previous human interactions 

positively influence on the pose accuracy and runtime of the following non-

interactive estimations. That is, the following estimations tend to be more 

accurate and faster deduced. 

7.7.2 Cooperative pose estimation 

Table 7.1 shows the robot position error of the whole system given the 

separation between robots of 50, 100, 150 and 200 meters and considering 

that the human has not interacted, interacted once or three times in all 

images pairs that have three or more common points. When the separation 

between robots increases, so it does the error. The error is really large in the 

cases that there is no interaction. This column is useful to show the level of 

difficulty of the SAGRADA_FAMILIA database. We realise the automatic 

method fails on deducing the homography between images and so the 

position of the robots. We believe this is because the images are so distant 

that they share really few points and the point of view of these points are 

really distinct (Figure A.9 of the Databases annex). 

Separation between robots (meters) 
Number of imposed correspondences 

0 1 2 

50 38.33 28.13 7.09 
100 83.36 63.91 14.65 
150 144.28 131.60 22.41 
200 168.15 158.07 24.79 

Table 7.1. Robot position error in meters obtained using the whole system. 

Separation between robots (meters) 
Number of imposed correspondences 

0 1 2 

30 1.25 1.53 1.75 
60 1.03 1.97 2.47 

120 1 2.19 3.61 
180 1.19 2.02 4.47 

Table 7.2. Average number of required steps obtained using the whole system. 

Moreover, we can see that with one interaction, the system achieves better 

results but the reduction of the error is not so significant. With three 

interactions, the system obtains an important reduction with respect to non-

human interaction case. Similarly to the errors shown in Figure 7.10, there is 
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not an important reduction of the error with more than 3 interactions. We 

conclude the human interaction is crucial in this database to reduce the 

position error. Moreover, more than 3 interactions are not needed. 

Finally, Table 7.2 shows the average number of required steps to deduce the 

cooperative pose estimation module and computed by the Dijkstra 

algorithm. As it is expected, the more separated are the images, the more 

steps are needed. In general, the number of steps tends to increase when the 

number of interactions increases. This is because the regression errors 

computed by the ICP tend to decrease when interactions increase (section 

5.2) and then the Dijkstra algorithm finds larger paths but with lower costs. 

 

UNIVERSITAT ROVIRA I VIRGILI 
ACTIVE AND INTERACTIVE LEARNING STRATEGIES FOR ERROR-TOLERANT GRAPH MATCHING 
Xavier Cortés Llosa 



 

 139 

Chapter 8                                                   

Conclusions & Future 

Work
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8.1 Contributions of this thesis 

The breadth of the topics covered in this thesis make it necessary to 

summarize the discussion about the experimental results separately. The 

following subsections correspond to conclusions drawn from experimental 

results. Chapter 4 and Chapter 5 are discussed together (in section 8.1.3). 

8.1.1 On the relevance of structural dissimilarity 

metrics on Graph Edit Distance 

In Chapter 2 four specific definitions for node local structures have been 

presented, namely Node, Degree, Star and Mesh. For the computation of both 

Node and Degree no additional algorithm is required.  Yet, for Star and Mesh 

structures four and two particular algorithms are needed respectively. In 

total, there are eight different cost models, viz. Nodes, Degree, Hungarian, 

Planar, Hausdorff, Greedy, Eigenvector and Pagerank and it has been shown 

the relevance of the each one to estimate the structural dissimilarities on 

Graph Edit Distance for graph classification while using the SFBP and the 

recognition ratio and runtime in different databases with different 

configurations of edit costs. We conclude that when the structural 

information is not so relevant, Node cost model achieves similar accuracies 

than the other ones but it is really much faster. Besides, when the structural 

information and nodes’ attributes are equally important, the Degree cost 

model can be a good option because it presents a good balance between 

accuracy and runtime. In the cases that the attributes of the nodes are not 

important or graphs are sparse, the cost models that really takes into 

consideration the Mesh of the graph, such as Eigenvector and Pagerank, are 

the ones that achieve the best accuracies. Hungarian and Planar solvers for 

the Star local structure are good options when the local structural 

information is useful and the main goal is the accuracy in detriment of the 

runtime. Finally, we could say that Hausdorff and Greedy solvers for the Star 

local structure are faster than Hungarian and Planar and more accurate than 

Degree and Node. Nevertheless, in a real application, we need to study in 

depth the type of data we have or test the behaviour of these centralities in a 
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validation process to select the best cost model in order to maximise the 

specific goals (accuracy or runtime).  

8.1.2 Using active queries for interactive Error-

Tolerant Graph Matching 

In Chapter 3 it has been presented an active and interactive algorithm for 

graph matching. In relation to the active part, there are 6 different strategies. 

These strategies are based on classical active machine learning but they are 

applied to the case of searching for the best mapping between nodes. 

Moreover they are based on the probability matrix between nodes that some 

sub-optimal algorithms iteratively compute to find the best correspondence. 

In relation to the interactive part, it has been presented a method to modify 

the edit costs so that the original values are updated to force the 

correspondence to be similar to the one proposed by the oracle. Given that 

our new algorithm only updates the costs between nodes and edges and 

reads the probability matrix, it is not necessary to modify the code of the 

well-known graph matching algorithms. 

The method is proposed to be used in applications where obtaining the 

perfect correspondence is crucial. For instance, medical applications in 

which the doctor wishes to compare two images and find the mappings 

between their parts. In applications where there is a need for comparing the 

unclassified graph with a large number of graphs in a database (for instance, 

Automatic Fingerprint Identification System , the oracle’s feedback could 

penalise the run-time of the system. Therefore, there is a compromise 

between run time and performance. Finally, there are applications with huge 

graphs (for instance, social networks or ontologies). If the oracle selects 

some of the nodes to be mapped, then, the graph matching algorithm could 

be greedier and solve the problem faster. 

Experimental evaluation shows that MGN is the best strategy. However, we 

have to ensure that the extracted features and the definition of the matching 

cost function is concordant with what the oracle sees and believes. 
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8.1.3 Learning edit cost for graph matching 

In Chapter 4 it has been presented a model for automatically learn the 

substitution weights (importance of each attribute) on nodes and edges 

while solving the graph matching problem. The importance on the attributes 

is gauged by some weights on the graph distance function, which are usually 

manually validated. More concretely, the aim of Chapter 4 is to present an 

optimisation function to find the weights such that minimize the distance 

between the ground-truth correspondence and the automatically-found 

correspondence (hamming distance). 

As we have shown, the hamming distance is a step function depending on 

the weights and classical optimisation techniques based on the gradient 

cannot be applied due the value of the hamming distance at each region is 

constant in its domain. Some literature exists that solve this problem using a 

different loss function based on external variables, that is, to validate the 

solution with features not used to compute the graph distance (for instance, 

the point position). Nevertheless, this approach requires the premise that 

the ground-truth correspondence must be consistent of these external 

variables (for instance, the oracle wants to minimise the point position 

error).  If we do not want to be restricted to this premise, we need to define 

a loss function that only depends on the correspondence cost. In this 

chapter, we show that the costs distance between the ground-truth and the 

automatically obtained correspondence is a good loss function. That is, there 

is a relation between the costs distance and the hamming distance functions. 

It is also shown that Class of Costs (regions in the weight space with the 

same optimal correspondence) are radial sectors that have their origin at 

point 𝑤 = 0  . Thus, the predictor function is a radial function. For this reason, 

it has been proposed a regularization term that assures any correspondence 

is restricted but the optimisation process does not tend to obtain the trivial 

solution 0  .  

Experimental results show that in some cases we obtain a higher 

improvement than the compared method while learning the weights. 

On the other hand, in Chapter 5 it has been defined a method to 

automatically establish the insertion and deletion edit costs. The aim is that, 
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when a new database is presented to do research on different topics related 

to machine learning, these costs are computed and put together with the set 

of attributed graphs and so, the whole experiments are performed with the 

same pair of costs that have been shown that minimise the hamming 

distance between the automatically obtained correspondence and a ground-

truth correspondence. 

There are some structural pattern recognition applications that a human can 

easily define a ground-truth correspondence, for instance, we are very good 

at finding the correspondences between local parts of two images or 

characters regardless of the intrinsic or extrinsic characteristics of the point 

of view. Nevertheless, in another ones (for instance, chemical structures) it 

can be very difficult to define it due to the complexity of the structure or the 

number of local parts. The method we present has sense in the cases were a 

reliable ground-truth can be defined. 

8.1.4 Graph databases based on metric-trees of 

Graph-Class Prototypes 

In Chapter 6 it has evaluated a graph indexing technique based on metric-

trees and several Graph-Class Prototypes. Specifically, we have studied the 

behaviour of Graph-Class Prototypes as routing elements of metric-trees. 

Several papers have been published that compare the accuracy of the 

evaluated Graph-Class Prototypes. 

The evaluation has been performed using four different datasets with 

different characteristics. We see, from the practical validation, that 

probabilistic prototypes seem to achieve better results on KNN queries. On 

the contrary, the Generalise Median together with the Set Median seems to 

give better results on similarity queries at the cost of giving a larger access 

ratio. Up to now, Set Median Graphs and Closure Graphs where the only 

prototypes used as routing elements of metric-trees. Therefore, a general 

conclusion of this work is that other existing Graph-Class Prototypes, such as 

the probabilistic ones (FDGs or SORGs), can also be successfully used as 

routing elements of metric-trees in graph databases. Nevertheless, there is 

not an important quality difference between probabilistic methods 

(expressed through the four commented measures). 
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Table 6.1 shows some precision results obtained from the same databases 

but any indexing structure was used. As a conclusion of these results, we 

may say the probabilistic methods (SORGs and FDGs) obtain the best 

average results. And also, Set Medians only have good precision when there 

is small variability between graphs of the same class (LETTER-LOW).  

These results have to be seen as the ground-truth of our method. The aim of 

indexing the reference database with a metric tree is to speed-up the system. 

The reduction of the time needed to query each graph is represented by the 

access-ratio measure. If the access ratio is (for instance) 0.5 then the run 

time with the indexing structure is half of the original run time. Therefore, 

the access ratio have to be lower than 1. Nevertheless, when we introduce 

indexing structures (metric-trees) in which the distance between elements 

is computed by sub-optimal algorithms, the triangle inequality is not 

guarantee anymore and false rejections appear. 

The last two columns of Table 6.8 summarise the quality of the database 

queries. A high reduction of the access ratio is not admissible if it is related 

to an important reduction of the precision. If we admit a maximum precision 

lost of 10%, then only the Generalise Median with Graduated Assignment 

can be used and the run time is 72% of the run time without indexing 

structure. In this case, the speed-up seems to be not really important. 

Nevertheless, if we increase the maximum precision lost of 20%, then FDGs 

may be a good option since the run time is approximately 1/3 of the original. 

Note that SORGs obtain access ratio greater than 1 and so, the indexing 

scheme is useless. The third first options seem to be not interesting since 

they have similar access ratio than Generalise Median with Graduated 

Assignment but with higher precision lost. Finally, we can conclude that the 

two admissible options are Generalise Median with Graduated Assignment 

and FDGs. 

8.1.5 Cooperative pose estimation 

When a fleet of robots has a task to perform in a collaborative way, one of 

the most important low-level tasks that it has to face is the pose estimation 

of all robots. Clearly, the imminent reaction of each robot directly depends 

on its pose and the relative pose of the other robots with respect to them. 

Besides, an inaccurate pose estimation of one of the robots influences not 
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only at the low-level behaviour of this robot but also on the high-level task of 

the whole fleet. Our experience has shown us that most of the cases the high-

level task has not been accurately carried out is because pose estimation 

was not properly solved. 

It is usual to solve the pose estimation through image alignment when GPS 

or landmarks cannot be used. Nevertheless, depending on the environment, 

this is a really difficult task. For this reason, we have advocated for 

incorporating human interactivity, which only is demanded when the 

automatic image alignment solver is not able to achieve a good estimation. 

Our policy is based on it is worth to ask to a human to solve a low level task 

than not to achieve a high level task, although the human response could be 

slower than the automatic system. Nevertheless, note that while the human 

interacts on a pair of robots, the other ones can automatically solve the 

image alignment and pose estimation. 

The novelty of the model presented in Chapter 7 is to use human interaction 

to improve the pose accuracy of a fleet of robots in a cooperative robotics 

framework. The system automatically aligns the 3D-points but manually 

aligns the 2D-points when it is needed. Both, the 2D and 3D cameras are 

embedded in the robots. In this chapter, we have only explored how the 

interactive image alignment is solved to achieve the pose estimation. We 

have depicted the whole framework and we have concretised on the 

modules that specifically deduces the pose of the fleet given the human 

interaction. The method we have commented is part of a larger project in 

which social robots guide people through outdoor or indoor scenes. 

Experimental section shows that it is clear that pose accuracy increases with 

only few human interactions. Moreover, the runtime of the alignment 

module (based on ICP algorithm) is reduced when the initial estimation is 

close to the solution. Therefore, an initial human interaction, not only makes 

the automatic system to achieve a better pose estimation but also to reduce 

the runtime of subsequent image alignments. 
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8.2 Future work and perspectives 

The contributions of this thesis have been showed above. At this point it is 

necessary to think about what can be considered as future work and reflect 

on how will evolve the state of the art of the domain. 

In Chapter 2 we have explored different definitions of local structures and 

how it is possible to define different metrics between them, it will be 

interesting as a future work to study how using cliques5 of different order as 

a local structure (a local structure that can be seen as an extension of Star) 

affects the Graph Edit Distance performance in terms of classification 

accuracy and runtime. 

Moreover, active and interactive strategies presented in Chapter 3, 

introduces a new strategy to find the “ideal” correspondence between two 

graphs after few interactions in which only is required to impose a partial 

mapping between nodes each iteration, but it have the limitation that not 

learns parameters during the iterative process. On contrary, in Chapter 4 

and Chapter 5, it is presented a model for learn the parameters for Error-

Tolerant Graph Matching but we need an amount of training examples 

(whole correspondences between graphs). As future work, the model for 

learning edit cost can be adapted to an online system to learn the weights at 

each oracle’s interaction when it imposes only one node mapping using 

active queries strategies to choose the node that must be imposed. It also 

can be applied to multiple image registration or multiple graph 

correspondence problems incorporating consensus strategies.  

In Chapter 6 it has been demonstrated that structured class prototypes 

continue to be usable and competitive although embedding methods are 

currently the most commonly used paradigm for graph classification. With 

respect to the evolution of the state of the art, always is difficult to predict 

how will evolve the domain, but given the excellent results of deep learning 

in other branches of pattern recognition and machine learning in general, it 

would not be surprising that the next paradigm for graph classification uses 

artificial neural networks. Schematically, converting graphs to vectors (a 

                                                             
5 A subset of the nodes, 𝛴𝑐  ⊆ 𝛴𝜈 , such that every two distinct nodes are adjacent. 
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process similar to embedded methods) that can be processed as inputs by 

the input layers of neural networks. 

Finally as a future work related to the cooperative framework presented in 

Chapter 7, since we consider the methodology has been validated in the 

SAGRADA_FAMILIA database, it will be interesting to integrate this method 

in a real-time robot environment. 
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Databases
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This annex provides a detailed description of the databases used in the 

experiments of the thesis. 

I Databases for learning graph matching 

In pattern recognition, benchmarking is a process to measure the quality of 

the representation of the objects or the quality of the algorithms involved in 

comparing, classifying or clustering these objects. The objective of 

benchmarking is to compare the performance of the involved object 

representations with the pattern recognition algorithms. 

The IAM graph database repository [72] composed of twelve databases of 

diverse attributed graphs has been largely cited and used as a benchmark to 

compare new algorithms with the current state of the art. The aim of this 

repository is always been to increase the recognition ratio in a classification 

framework.  

Nevertheless, in this thesis we needed to train and evaluate not only the 

classification accuracy but also the hamming distance (Chapter 3, Chapter 4 

and Chapter 5). For this reason, a basic requirement in the datasets to use is 

to dispose of a ground-truth correspondence between the nodes of the 

graphs of the same class. For this reason, we added a ground-truth 

correspondence to the databases described in this section. This ground-

truth is independent of the graph matching algorithm and also on their 

specific parameters, since it has been imposed by a human or deduced using 

another technique described above. 

The databases described in this section can be used either to compare the 

classification accuracy or assess the hamming distance. 

I.1 General structure 

Databases are composed of 𝑁 registers of elements  𝐺𝑝 𝑖 , 𝐺𝑞 𝑖 , 𝑓 𝑖 , 𝐶𝑖  that have 

a pairs of graphs and a correspondence. attributed graphs 𝐺𝑝 𝑖
 and 𝐺𝑞 𝑖

 need 

to be defined in the same attribute domain (graph class 𝐶𝑖), but may have 

different orders. The ground-truth correspondence 𝑓 𝑖 between nodes of 𝐺𝑝 𝑖
 

and 𝐺𝑞 𝑖
 may have some nodes of 𝐺𝑝 𝑖

  mapped to nodes of 𝐺𝑞 𝑖
, and other ones 

UNIVERSITAT ROVIRA I VIRGILI 
ACTIVE AND INTERACTIVE LEARNING STRATEGIES FOR ERROR-TOLERANT GRAPH MATCHING 
Xavier Cortés Llosa 



Databases 

 

 151 

mapped to the null node. Nevertheless, two nodes of 𝐺𝑝 𝑖
 cannot be mapped to 

the same node of 𝐺𝑞 𝑖
. The null node is a mechanism to represent that a node of 

𝐺𝑝 𝑖
 do not have to be mapped to any node of 𝐺𝑞 𝑖

 [35]. Note some nodes of 𝐺𝑞 𝑖
 

may not have been mapped to any node of 𝐺𝑝 𝑖
 through 𝑓 𝑖. 

I.2 Databases 

I.2.a LETTERS 

The letters graph database consists of a set of 2250 graphs that represent 

artificially distorted 15 different classes of letters of the Latin alphabet. For 

each class, a prototype line drawing was manually constructed. These 

prototype drawings are then converted into prototype graphs by 

representing lines by undirected edges and ending points of lines by nodes.  

Attributes on nodes are only the bi-dimensional position of the junctions 

and edges do not have attributes. Figure A.1 shows 4 samples of letter A. 

There are three variants of the database depending on the degree of 

distortion with respect to the original prototype (adding, deleting and 

moving nodes and edges), viz. low, medium and high (LETTER-LOW, 

LETTER-MED, LETTER-HIGH). The ground-truth correspondence between 

the nodes is well-known, because graphs of each class are generated from an 

original prototype. 

 

Figure A.1. Different instances of letter A.  

I.2.b HOUSE-HOTEL 

The HOUSE-HOTEL database, consisting in CMU sequences of 111 frames of 

a toy house and 101 frames of a hotel [147], respectively. Each frame of 

these sequences has the same 30 hand-marked salient points identified and 

labelled. Each salient point represents a node on the graph and it has 60 

Context Shape features. They triangulated the set of landmarks using the 

Delaunay triangulation to generate the non-attributed edges of the graph. 
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They made three sets of pairs of frames considering different baselines 

(number of frames of separation into the video sequence). One set was used 

to learn, another to validate and the third one to test the learned weights. 

From each set, it has been manually defined the ground-truth 

correspondence between their graphs. 

  
a. HOUSE b. HOTEL 

Figure A.2. Examples of HOUSE and HOTEL original images databases with salient 
points and edges. 

I.2.c HORSE 

Consists of a set of points from an original image (drawing taken from [148, 

149, 150], with 35 hand-marked salient point). There are three datasets 

(HORSE-NOISE, HORSE-SHEAR, HORSE-ROTATION) artificially generated 

applying common transformations. Each node represents a salient point and 

contains 60 Context Shape features. Edges have been deduced through 

Delaunay triangulation. Due to distortions have been artificially created, the 

ground-truth correspondence have been easily deduced. 

I.2.d TARRAGONA ROTATION ZOOM 

The public database called Tarragona Rotation Zoom database [217] is 

composed of 4 sequences. Each sequence has 10 attributed graphs (50 

nodes each) and 10 node correspondences. Each node correspondence 

represents the exact correspondence between the nodes of the first graph in 

the sequence and the nodes of other graphs. Each attributed graph in each 

sequence represents one of the images from the public image databases 

called BOAT, EAST_PARK, EAST_SOUTH and RESIDENCE. Nodes are salient 
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points from the images extracted through the SURF extractor. Only the best 

50 points were selected. Attributes on the nodes are the SURF features. 

Edges have been computed through Delaunay triangulation and do not have 

attributes. Due to the presence of outliers in the salient points, the node 

correspondences are not bijective. The reference set (test set) of each 

database consists of 5 attributed graphs extracted from even (odd) images 

of the initial sequences. The ground-truth correspondence between nodes is 

deduced from the homography that relates the original images. 

 a. BOAT  b. EAST_PARK  c. EAST_SOUTH  d. RESID 

Figure A.3. The first image of each of the 4 classes and their graphs. 

II Databases for graph classification 

The following databases (part of the IAM graph repository [72]) are used in 

the experiments to evaluate the classification accuracy. 

II.1 Databases 

II.1.a GREC 

The GREC database is composed of a set of 150 symbols from architecture, 

electronics and other technical fields. We have used a subset of 22 different 

symbols (classes), which are composed only of straight lines. These images 

are converted into graphs by assigning a node to each junction or terminal 

point and an edge to each line. For each of the 22 symbols in the dataset 

there are 50 distorted instances. So, totally we have 1100 images. The 

complete dataset is split into a reference set of 440 (20 graphs for each 

class) and a test set of 660 elements (30 graphs per class). 
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Figure A.4. Different original images with different distortion levels used to 
construct the instances for GREC database. 

II.1.b COIL 

The COIL-RAG database [214] consists of images of 100 different objects. 

Images of the objects are taken at pose intervals of 5 degrees. The images 

are segmented and transformed into graphs. Nodes feature the color 

histogram of the corresponding segment. Edges represent the adjacency 

regions featured with the length, in pixels, of the common border of two 

adjacent regions. 

The COIL-DEL database uses the same original images as the COIL-RAG 

database but a different a different graph is generated for each image. Nodes 

represent 2D points detected using the Harris Corners detection [215], and 

edges the connections deduced using Delaunay triangulation. 

 

Figure A.5. Original images of COIL databases. 
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II.1.c FINGERPRINTS 

The FINGERPRINTS database consists of a set of graphs generated from 

skeletonised fingerprint images. Ending points and bifurcation points of the 

regions are represented by nodes. Additional nodes are inserted in regular 

intervals between ending points and bifurcation points. The edges link 

nodes that are directly connected. Each node is featured with a two-

dimensional attribute giving its position. The edges are attributed with an 

angle denoting the orientation of the edge with respect to the horizontal 

direction. 

 

Figure A.6. Original examples of the four fingerprint classes. 

II.1.d PROTEINS 

The PROTEINS database consists of 600 graphs representing proteins 

originally used in [216]. It consists of six classes of proteins (100 per class), 

using reference, validation and test set of equal size (200). The proteins are 

converted into graphs. Nodes are labeled with their type and their amino 

acid sequence. Each node is connected with an edge to its three nearest 

neighbors in space. Edges are labeled with their type and the distance they 

represent in angstroms.  

 

Figure A.7. Examples of 6 original images of the 6 different classes of proteins. 
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III “Sagrada Família” database 

The SAGRADA_FAMILIA database was created using a sequence of 360 2D-

pictures taken of “Sagrada Família” church in Barcelona  Spain . This 

sequence of pictures has been taken around the church and each picture is 

taken in an increase of approximate one degree with respect to the centre of 

the church. Given the whole sequence, we used the method called Bundler 

[212] to extract 100,532 3D-points of the church and the information of 

which 2D-pictures visualise these 3D points. Each picture has captured from 

4,000 to 40,000 3D-points. Moreover, the method returns the relation 

between the 3D-points and the position in pixels in the pictures. Then, the 

positions of the cameras were deduced by the pose estimation method 

presented in [213]. 

 

Figure A.8. “Sagrada Família” point cloud  red points  and the camera poses  blue 
points) in a 3D coordinate system (in meters) in which the origin of the axes is the 
centre of the church. 

Figure A.8 shows the obtained 3D model of “Sagrada Família”  red points , 

and the different poses of the camera that has captured the images of the 
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model (blue points). Axes are expressed in meters and the centre of the 

church is the origin of the coordinate system. Note there are some noisy 

points in the sky.  

In general, when the number of 3D-points shared by two 3D-images 

increases, the alignment algorithms tend to find a better homography since 

the ratio of the signal versus noise tends to increase. We have paired each of 

the 360 images to another one that is T images far away in the sequence. 

Figure A.9 shows the number of pairs of pictures with respect to the number 

of 3D-points in common considering four different levels of separation 

between images (5, 20, 40, 60). Note the maximum separation is 180. There 

are 360 pairs but the area of each plot is slightly lower than 360 since there 

are few pairs of pictures with more than 30,000 points in common that have 

not been considered in the plot. Clearly, when the separation between 

pictures increases, the number of common points tends to reduce.  

  

a. Separation of 5 images b. Separation of 20 images 
  

  
c. Separation of 40 images d. Separation of 60 images 

Figure A.9. Number of pairs of images with respect to the number of common 3D-
points given different separation values. 
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