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1 An overview of this thesis 

This is an introductory chapter, providing an overview of this document; therefore, the 

purpose of the thesis in addition to the structure of the work and the thesis will be briefly 

described in the following sections.  

1.1 Overview  

The work presented in this thesis focuses on the investigation of the proton transfer 

(PT) and its mechanism for the transferring, when the proton species is confined in pure 

liquid water. Our analysis is carried out by performing semi-classical molecular dynamics 

(MD) using the multistate empirical valence bond (MS-EVB) method, to reproduce 

intermolecular PT in liquid water and low-density amorphous ices, in bulk and in 

confined systems. The artificial neural network (ANN) approach along with statistical 

methods is then employed for modeling as well as analyzing the PT properties we are 

interested in [1-4].  

PT in aqueous environments is a fundamental process in many biological and chemical 

processes with interesting technological applications, from energy production to aerosol 

industry and to atmospheric chemistry [5-7].Due to this wide range of PT applications, 

many researches, experimental [8,9] as well as theoretical, are devoted to a deep analysis.  

A complete understanding of the PT process in aqueous environments even though the 

PT process in water and aqueous media is still a challenging topic to be understood, and 

an exhaustive description of the phenomena occurring in presence of the excess positive 

charge among water molecules is still lacking. The mechanism responsible for the charge 

migration is not yet completely characterized on the microscopic scale and is object of 

controversy because PT details cannot be captured by experimental measurements and 
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the modeling of water, at the basis of a theoretical approach, is difficult as well. 

Nevertheless, understanding the behavior of the excess charge in water is a first step 

towards more complicated applications, e.g., in biology, bioenergetics, enzyme functions 

and processes as complex as viral replication are connected to proton transport and 

storage or, in material science, proton migration through polymer electrolyte membranes 

is a critical components of the energy production process in hydrogen fuel cells [10 - 12].  

The main purpose of this thesis is to analyze the structural properties and dynamics of 

solvation of an excess proton in different geometries in the nanoscale. In a first step, we 

will analyze the case of proton transfer in liquid water and low-density amorphous ices 

without confinement, to later move on to simulate the proton transfer in liquid water 

confined inside two graphene slabs. The three relevant structures playing a fundamental 

role are the so called Zundel dimer, the hydronium ion and the Eigen complex. 

The work is organized as follows. Firstly, we have to identify the numerical method we 

want to use in order to produce our simulations in line with (1) the available 

computational models of PT in water which have a significant variation in their accuracy, 

efficiency, as well as complexity and obstacles, (2) the supplementary tools (e.g., ANN 

application) that has been designed to generate the outcome. Hence, nowadays, ANNs is 

common tools in computer science and mathematics [13]. They are mainly used in 

classification problems such as PT [14, 15]. In all applications, the general purpose of 

ANNs is to construct some input-output relations and to use these relations to analyze and 

classify data sets. On the other hand it will be interesting to evaluate our new developed 

ANN application; i.e.,  the use of the artificial neural networks AANs methodology in the 

classification of proton transfer events, fitting data as well as  in the prediction of the 

outcome of a reaction without computing the individual MD trajectories, based on 

applying the feed-forward back propagation neural network methodology to EVB output 

data to work as a classifier to distinguish between these two transfer cases “occurred” and 

“not occurred” which could be a good tool for further investigations of PT in future 

studies of presenting structural and dynamical properties of the solvated proton in 

confined and unconfined environment. Secondly, on the basis of the results widely 

discussed in the literature, we can identify the most important properties, local structure 

of the excess proton, dynamics of proton transfer, proton diffusion and velocity and 
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proton spectroscopy. We will analyze these properties to discuss our observations on the 

PT mechanism and to compare them with the results available from the literature. 

 

1.2 Structure of the thesis  

The thesis is organized as follows. Chapter 2 sheds light on the literature review and 

definitions to determine the state of the art in relation to the research question for the 

most relevant components of this thesis. In the first instance, aqueous proton transfer PT 

definition and its peculiar features, structure of excess proton in water, and PT under 

confinement followed by the proposed analysis. Subsequently, chapter 3 describes the 

computational methods used in this work in conjunction with a brief literature review of 

some available computer modeling of hydrated protons and supplementary applications 

for PT modeling including our ANN application, followed by a full description of our 

computational framework as follows: The adopted computational methods to study PT,  

including MD and MS - EVB tool that used throughout the thesis including the calculated 

quantities followed by an example for evaluating the use of ANN and the conclusions of 

this chapter.  

Chapter 4 presents a complete analysis by comparing our results with those presented in 

the literature. Results and discussions of PT will be reported by thorough analysis of the 

structure and dynamics of an excess proton based on investigating the PT in liquid water, 

without confinement and confined inside graphene slabs. More explanation about the 

chapter contents of its key sections and related subsections are fully described in the 

introduction section of the chapter. Finally the main conclusions from this thesis will be 

summarized at the end of chapter 4 followed by recommendations for future studies. 
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2 Description of Proton transfer in water 

The hydrogen ion H+ in aqueous solution is no more than a proton, a bare nucleus 

(aqueous proton). Although it carries only a single unit of positive charge, this charge is 

concentrated into a volume of space that is only about a hundred-millionth as large as the 

volume occupied by the smallest atom. The resulting extraordinarily high charge 

density of the proton strongly attracts it to any part of a nearby atom or molecule in 

which there is an excess of negative charge. In the case of water, this will be the lone pair 

(unshared) electrons of the oxygen atom; due to the electronic structure of water that is 

featured by two "lone pair"s electrons, which can interact with the hydrogen atoms in 

another water molecule forming O-H· · ·O hydrogen bonds, so that the tiny proton will 

be buried within the lone pair and will form a shared-electron (coordinate) bond with it, 

creating a hydronium ion, H3O
+. This indicates the peculiar features of the PT process in 

water where lone proton H+ does not exist in an isolated way. It is rather an “electron 

hole” with one missing electron from the excess proton and it is constantly moving. In a 

sense, OH2
is acting as a base here, and the product OH3  is the conjugate acid of water. 

In a related context it is worth mentioning here that hydrogen bonding and PT are not 

only between water molecules or between oxygen atoms, the donor and acceptor could be 

any two atoms with large negativity, such as nitrogen, chlorine or fluorine atoms.  
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Herein,  from the fundamental point of view, PT is the main reason for the neutral pH of 

water due to the process of water autoionization [16]  and it plays a key role in energy 

conversion processes such as in photosynthesis and in cellular respiration [7]. Hydronium 

species can be found in most aqueous environments, even in interstellar media [17]. From 

a general point of view, the high mobility of hydrogen cations in water stimulated great 

interest in numerous disciplines of science such as chemistry, biology and physics that 

allows the PT phenomenon to work  as an essential process that playing a key role in a 

wide variety of technological, medical, and chemical processes, such as in the energy 

production in fuel cell membranes [18,19], in fundamental molecular mechanisms 

occurring in viruses, such as the human immunodeficiency-1 protease (HIV-1PR) [12], in 

the activation of nicotine as it enters an aqueous environment [6], or as the main 

component in molecular reactions in aerosols [20] which are the base of atmospheric 

chemistry, to mention only a few. We refer to [10–12, 21, and 22] and references therein 

for a full description of the wide range of applications of PT in aqueous synthetic and 

biomolecular systems. 

Due to this wide range of PT applications, many researches, experimental [8, 9] as well 

as theoretical, are devoted to a deep analysis in addition to a complete understanding of 

the PT process in aqueous environments even though the PT process in water and 

aqueous media is still a challenging topic to be understood also an exhaustive picture of 

the phenomena occurring in presence of the excess positive charge among water 

molecules is still lacking. The mechanism that is responsible for the charge migration is 

not yet completely characterized on the microscopic scale and is object of controversy 

because PT details cannot be captured by experimental measurements and the modeling 

of water, at the basis of a theoretical approach, is difficult as well. Nevertheless, 

understanding the behavior of the excess charge in water is a first step toward more 

complicated applications, e.g., in biology, bioenergetics, enzyme functions and processes 

as complex as viral replication are connected to proton transport and storage or, in 

material science, proton migration through polymer electrolyte membranes is a critical 

components of the energy production process in hydrogen fuel cells [23, 24]. 

Our purpose in this thesis is to model the transfer process of one excess proton and its 

mechanism for the transfer, when the proton species is confined in pure liquid water 
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taking into account the influence of confining surfaces on microscopical structure and 

dynamics of the system. In the next section we qualitatively describe PT by means of the 

most recent results proposed in the literature and we introduce our approach to the study 

of proton transfer processes in confined pure liquid water besides the proposed analysis. 

2.1  Structure of excess proton in water 

Water behaves differently from most other chemical compounds with a number of unique 

and still mysterious chemical properties that make it an essential molecule to life on 

earth, thus, due to the capability of water molecules to form a highly dynamic hydrogen 

bond (HB) network. For example, it has a high freezing and boiling points; heat capacity, 

surface tension, in addition to smaller density in its solid phase (ice) than in liquid phase 

with maximum located at C4
. Furthermore, proton mobility in water at room 

temperature 300 K is at least 4.5 times faster than that of  any other cations in water, 

which can be concerned as a consequence of proton transfer PT along the HB in water.  

Explanations for this anomalously high mobility of protons in liquid water began with 

Grotthuss's idea of “structural diffusion” more than two centuries ago.  The Grotthuss 

mechanism for PT was first proposed in 1806 by T. Von Grotthuss [25] even though he 

did not know the chemical formula of water (he considers water as OH) in the following 

chemical reaction form: 

                          

According to this mechanism the excess proton hops between adjacent water molecules 

in the water wire through successive covalent bond formation and breaking events. 

Grotthuss, suggested that the mechanism of PT at normal (ambient) conditions is due to a 

fast jump between neighboring water molecules and the HBs dynamics produces a 

structural diffusion of the complex formed around the excess charge. This model 

accounts for the excess positive charge migration without an effective migration of the 

proton itself, because not only one but numerous protons are concerned in the shuttling 

process.  Herein, the charge migration is the outcome of successive proton jumps 

between the oxygen atoms in the water molecules; therefore the chemical bonds 

rearrangement is responsible for the PT. Moreover, the HB network reorganizes as well 

because the transfer takes place preferentially along HBs. Several variants to this 
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description have been proposed. Although “Grotthuss mechanism” is physically 

insightful, people still try to understand the detailed molecular mechanism of this 

fundamental process. Subsequent explanations have refined this concept by invoking 

thermal hopping [26], proton tunneling [27] or solvation effects [28]. 

According to Conway and Bockris [29] a field induced (the excess charge electric field) 

molecular reorientation of a water molecule in the first solvation shell of the hydronium 

ion allows the proton to hop between the two oxygen atoms but the activation energy for 

the transfer to a water molecule, not hydrogen bonded to molecules in the second 

solvation shell, is too high;  Bernal and Fowler [30] proposed a model for proton 

diffusion as a succession of transfers to freely rotating nearest neighbor water molecules 

that achieve the right orientation to accept the transferring proton, but even if the time of 

reorientation is similar to the PT rate, also in this case the energetic cost to break HBs is 

too high; the ‘Moses mechanism’, proposed by Agmon [27], describes the HBs cleavage 

in the second solvation shell of the hydronium ion as the precursor of the PT event. 

Actually, it has been known for a long time [28, 31] that small changes in the OO   

distance can largely impact the proton shuttling along the respective HBs. This illustrates 

that PT process is generally very sensitive to its local micro-environment. After years of 

investigations and discussions the current widest accepted microscopic picture of the 

hydrated proton in water involves a series of structures intermediate between two limiting 

cations: the Zundel cation [32] and the Eigen cation [33, 34] (see figure 2.1).  

 

 

      Figure 2.1: Structure of excess proton in water.  
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Modern research suggests that Grotthuss shuttling occurs by the Eigen-Zundel-Eigen 

(EZE) mechanism ( see figure 2.2 ), whereby one distorted Eigen cation (‘resting’ state of 

the solvated proton) is converted into another with the Zundel cation as an intermediate. 

The ratio of the population of two species is not clear but the interconversion between the 

two configurations [35, 36], due to the dynamics of the local solvent, plays a key role in 

PT to occur.  

 

 

Figure 2.2: EZE mechanism [37]. 

 

The PT event is the consequence of the isomerization of the Zundel and Eigen structures 

 
showing that the Zundel configuration is an important 

intermediary step for PT, even if the Eigen configuration is the lowest in energy. Herein, 

Eigen proposed the formation of an H9O4
+ complex. In which the central protonated 

water molecule, 

a3OH  is surrounded by three hydrogen-bonded water molecules OH2 , 

giving rise to the structure Eigen-like conformation.  

However such an Eigen complex is not symmetric because the three water molecules in 

the first solvation shell are not equal as shown in the figure below. One water molecule 

b2OH  has a shorter hydrogen bond to the aO  atom than the other two, forming a Zundel-

like 


25OH  conformation in a distorted Eigen structure. Zundel complex will be a 

symmetric configuration that is achieved when the excess proton is exactly shared by two 

water molecules. Herein, the identity of b2OH  changes within the three water molecules 

in the first solvation shell without actual PT occurrence, which is named “special pair 

(SP) dance” by Agmon and Voth , the donating hydronium and the receiving water 

molecule and happens on an average of 40 fs ( shown in figure 2.3). 
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Figure 2.3:  Special pair [38]. 

 

The outcome of such SP-dance process is the randomization of the proton hop direction 

so the proton mobility is diffusive as well as uncorrelated. The real PT happens when 

fluctuations in H-bond network cause a hydrogen bond between bO  and one water 

molecule in the second solvation shell to break and thus reduce the coordination number 

of b2OH  from 4 to 3 because the local solvent fluctuations around the H9O4
+ complex 

produce a HB rearrangement in the second solvation shell with a reduction in the 

coordination of one water molecule in the first solvation shell of the central hydronium 



aOH3 . The under-coordinated water molecule participates in only three HBs, instead of 

four as typically observed in pure water, acquiring a hydronium-like coordination 

structure (the hydronium ion is 3-fold coordinated in water). 

The proton in the ‘activated’ HB becomes equally shared by two water molecules and, 

since the potential energy surface (PES) for the PT is symmetric, the proton can either be 

transferred to the OH2  acceptor or return to the donor molecule. The SP is transformed 

now to a Zundel complex 22 HOHOH ba  
, in which the proton may rattle many times 

between aO  and bO , and finally a new Eigen complex centered at 


b3OH  may form. 
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This qualitative description illustrates PT as an Eigen-to-Zundel-to-Eigen (EZE) process 

[37], in which the Zundel configuration represents the transition state (because it is less 

stable), but some observations depict a different mechanism, the Zundel-to-Zundel (ZZ) 

process that is the interchange between two adjacent Zundel configuration during the PT 

event[37]. These observations are proposed on the basis of numerical simulations that are 

fundamental in the study of PT because proton is an elusive particle and it is not 

accessible by experiments. In the special-pair (SP) dance, the length of these hydrogen 

bonds fluctuates rapidly over time, with any one of the three bonds being shorter than the 

remaining two. This dance is a preparatory stage of proton transfer, during which the 

central hydronium ion searches for a partner.   

The successful partner accepts only one hydrogen bond, whereas most water molecules 

accept two. Once a successful partner is identified, the proton transfer event occurs 

between the special pair SP. The partner transfers significant electronic charge to the 

hydronium cation along the strong SP hydrogen bond. The SP dance demonstrates the 

sensitive coupling between the excess proton along with its surrounding hydrogen bond 

network. Proton transfer, therefore, occurs by means of a cooperative, diffusive process 

rather than by simple hopping. The rate-limiting step is the hydrogen bond cleavage 

between the first and second solvation shell. During computer simulations continuous 

interconversions between the two structures are usually seen, producing a hybrid 

 )O(H)O(H 2549 complex [39, 40]. The timescale for such   interconversions is that of 

picoseconds, involving changes of oxygen-oxygen O)(O distances and modifications of 

the hydrogen connectivity pattern between the hybrid complex at its coordination shells. 

During the whole process, neither a large delocalization of proton [27] nor proton 

tunneling [26] is likely to happen.  

2.2 Proton transfer under confinement 

Confinement in nanometer-sized environments can modify the behavior of liquid phases 

substantially. Evidences of this are the changes in most of the thermodynamic properties 

of these phases, reflected in shifts of equilibrium constants and corresponding changes in 

the phase diagrams. Perhaps one of the clearest examples of this is the phenomenon 

known as 'drying transition'.  
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This phenomenon is the total elimination of the aqueous phase plates located between 

two macroscopic hydrophobic plates when the distance between them is the order of a 

few nanometers. This phenomenon is the result of a subtle balance between the 

magnitude of the intermolecular water-water and water-wall forces and the competition 

between surface properties and properties of "bulk" water [41]. The analysis of liquid 

mixtures is equally interesting: the solvation in porous glasses like "Vycor" significantly 

affects the phase equilibrium in mixtures water/luditine and the critical behavior of 

mixtures formed by n-hexane/perfluorooctane, to cite two examples [42]. 

 

 In addition to the structural changes, major changes are also observed in the dynamic 

properties: in these cases, the changes involve significant slowdown of all dynamic 

modes, translational as well as rotational. These changes represent critical elements for 

the correct interpretation of many processes with direct practical applications such as 

nanoscale flow control through nanotubes [43] and membranes [44] the design of devices 

for the storage of gases [45] or processes of controlled release of drugs [46]. In a still 

broader context, the effects of confinement on water phases is relevant for understanding 

the behaviour of solvation layers to modulate the function of self-assembled structures 

and complex molecules such as proteins [47], DNA [48], or lipid bilayers. To cite some 

relevant examples [49] the analysis of protons under confinement has been performed 

from different perspectives. The case of aqueous reverse micelles is perhaps one of the 

clearest examples. There are at present a large number of publications that have analyzed 

its role as local pH control agents, such as in acid-base equilibrium and in catalytic 

processes. On the other hand, the research group responsible for this thesis has analyzed 

the case of protons dissolved in non-ionic micelles [50]. When confined in constrained 

geometries, the microscopical properties of the proton also suffer drastic changes. So, 

studies of PT near alumina surfaces [51] and in Nafion fuel cell membranes [52] reported 

changes in frequencies of vibrational motions and orientational relaxation times induced 

by the presence of the surface. 

 

Although many unanswered questions remain regarding the proton transfer as well as 

transport mechanisms in water, the findings of  a recent experimental study based on 
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ultrafast two dimensional infrared spectroscopy which was conducted for investigating 

the excess proton in liquid water (in aqueous hydrochloric acid solutions) [53], suggests a 

key role for the Zundel complex in aqueous proton transfer that  place important 

constraints on the role of the Zundel complex in this process as were observed by 

determining a lower limit on the lifetime of this complex of 480 fs when exciting O–H 

stretching vibrations and detecting the spectral response throughout the mid-IR region.  

The interaction between the stretching as well as bending vibrations characteristic of the 

flanking waters of the Zundel complex, ]O)[H(H 22 , at 3200 and 1760 cm−1, 

respectively were observed. Drawing conclusions regarding to Eigen species stability or 

role in aqueous proton transfer was not provided in the study because they did not 

observe the Eigen species in the described experiments. However, notations were 

addressed in which no sign of vibrational excitation transfer was observed from the 

Zundel stretch into the region characteristic of Eigen configurations (2000 to 2800 cm−1). 

A relatively long-lived Zundel complex represents an important part of the proton 

transfer mechanism; this configuration is not merely a fleeting transition state traversed 

during an Eigen-to-Eigen proton transfer. In addition to Zundel-to-Zundel transport, 

exchange processes involving Zundel-to-Eigen transport are still consistent with their 

data.  

2.3 Model of hydrophobic walls: flat graphene  

Confined water is generally liquid water held within nanometer-sized vessels. It is found 

widespread in nature in granular as well as porous material and around and within cells, 

macromolecules, supramolecular structures along with gels. It has recently been reviewed 

that its properties are difficult to predict and may be very different from those of bulk 

water [54]. This is particularly true when the confinement is on the nanoscale. Recently, 

it was experimentally found that confined water exists as a quasi two-dimensional layer 

with different properties than those of bulk water. Moreover, much theoretical and 

experimental work has studied the effects of nanoscale confinement on PT in water based 

on the constrained geometries hydrophilic (silica) versus and hydrophobic (graphene). 

Hence the term 'hydrophobic' is derived from hydro- (water) and phobos (fear) .In terms 

of chemistry, hydrophobicity is the physical property of a molecule (known as a 
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hydrophobe) that is seemingly repelled from a mass of water. In contrast to hydrophilic 

materials, such hydrophobic material has lacking affinity for water; tending to repel and 

not to absorb water; tending not to dissolve in or mix with or be wetted by water. 

However, smaller hydrophobic materials can be dissolved to a small extent in water as 

water molecules can arrange around them without breaking hydrogen bonds or losing 

much energy and the hydrophobic molecule can interact with these water molecules with 

multiple van der Waals interactions, due to the small size of water molecules in addition 

to the flexibility in their spatial arrangement [55, 56]. 

 

In this thesis, we considered two graphene slabs as hydrophobic containers of water to 

analyze the effects of water confinement, on proton solvation structure and on its 

dynamical properties. The water-graphene interaction has not been included here, so that 

this section will generally shed light on the graphene definition, atomic structure and 

properties as an introduction for our future studies. The graphene interaction with water 

will be considered when studying the PT under confinement (see chapter 4 section 4.5). 

2.3.1 Graphene properties 

Graphene the two-dimensional crystalline allotrope of carbon and is usually a 

hydrophobic material which was used in a recent experiment to confine water into 

monolayer, bilayer and three layered structures. Allotropy is the property of chemical 

elements to exist in two or more forms. Graphene has many extraordinary properties, 

based on its ability to conduct heat and electricity better than anything else, even though 

it is currently in its infant stages and is undergoing many applications and studies mean 

that it can be integrated into a huge number of applications such as photovoltaic cells; 

composite materials; biological engineering; optical electronics, lightweight 

aircraft/vehicles OLED Technologies and Energy Storage [57]. 

2.3.1.1 Atomic structure 

Graphene is a flat monolayer of carbon atoms tightly packed into a two-dimensional (2D) 

honeycomb lattice, and is a basic building block for graphitic materials of all other 

dimensionalities. Also graphene could be defined as an isolated atomic plane of graphite 

(singular layer of graphite) as shown in figure (2.4). The atomic structure of isolated, 
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single-layer graphene was studied by transmission electron microscopy (TEM) on sheets 

of graphene suspended between bars of a metallic grid.  Electron diffraction patterns 

showed the expected hexagonal lattice of graphene.  Suspended graphene also showed 

"rippling" of the flat sheet, with amplitude of about one nanometer. These ripples may be 

intrinsic to graphene as a result of the instability of two-dimensional crystals or may be 

extrinsic, originating from the ubiquitous dirt seen in all TEM images of graphene. 

Atomic resolution real-space images of isolated, single-layer graphene on SiO2 substrates 

were obtained by scanning tunneling microscopy. Graphene processed using lithographic 

techniques is covered by photoresist residue, which must be cleaned to obtain atomic-

resolution images. 

Graphene sheets in solid form (density > 1 g/cm3) regularly show evidence in diffraction 

for graphite's 0.34 nm (002) layering. This is true even of some single-walled carbon 

nanostructures. Transmission electron microscope studies show faceting at defects in flat 

graphene sheets. 

Furthermore, graphene physically acts as a 2D material (crystal of carbon) with many 

potential applications such as flexible electronics, efficient transistors and novel sensors.  

Due to this 2D structure, it is the only form of carbon (or solid material) in which every 

atom is available for chemical reaction from two sides. The atoms at the edges of a 

graphene sheet have special chemical reactivity. Moreover, it has the highest ratio of 

edge atoms of any allotrope. Defects within a sheet increase its chemical reactivity. It is 

commonly modified with oxygen- and nitrogen-containing functional groups and 

analyzed by infrared spectroscopy and X-ray photoelectron spectroscopy. However, 

determination with oxygen [58] and nitrogen [59] functional groups requires the 

structures to be well controlled.  
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Figure 2.4: Graphene versus other allotropes. Graphite (top right), Graphene (top left), 

carbon nanotube (bottom left), fullerene (bottom right).  

2.3.1.2  Electrical properties  

Graphene differs from most conventional three-dimensional materials. Intrinsic graphene 

is a semi-metal or zero-gap semiconductor. Understanding the electronic structure of 

graphene is the starting point for finding the band structure of graphite. Scientists have 

theorized about graphene for decades.  Graphene theory was first explored by P.R. 

Wallace (1947) [60] and it was originally observed in electron microscopes in 1962, but 

not studied further [61]. That the equation describing the E-k (energy-momentum) 

relation is 
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where the Fermi velocity is vF ~ 106m/s. This relation is linear for low energies near the 

six corners of the two-dimensional hexagonal Brillouin zone, leading to zero effective for 

electrons and holes. Due to this linear (or “conical") dispersion relation at low energies, 

electrons and holes near these six points, two of which are inequivalent, behave 

like relativistic particles described by the Dirac equation for spin 1/2 particles. Hence, the 

electrons and holes are called Dirac fermions, and the six corners of the Brillouin zone 

are called the Dirac points. 

The material was later rediscovered, isolated and characterized in 2004 by Andre Geim 

and Konstantin Novoselov. This work resulted in the two winning the Nobel Prize in 

Physics in 2010 "for groundbreaking experiments regarding the two-dimensional material 

grapheme [62].  In 2013, physicists from Stanford University reported that single-layer 

graphene is a hundred times more chemically reactive than thicker sheets. 

This leads to many properties that are electrically beneficial, such as high electron 

mobility and lowered power usage. Also electrons in grapheme have an ability to travel 

short distances without scattering which makes it one of the best materials for electrical 

applications. Some of its electrical properties can be summarized as follows [63]:  

 The Fermi level can be changed by doping to create a material that is better at 

conducting electricity 

 Experimental graphene's electron mobility is 15,000 cm2/(V*s) and theoretically 

potential limits of 200,000 cm2/(V*s) 

 Graphene electrons are like photons in mobility due to lack of effective electron 

and hole mass 

 These charge carriers are able to travel sub-micrometer distances without 

scattering  

2.3.1.3 Mechanical and optical properties 

Graphene's mechanical and optical properties (e.g., absorbs 2.3% white light, optical 

electronics absorb <10% white light; highly conductive; strong and flexible) allow its use 

to go beyond electrical applications. The mechanical strengths of graphene can be 

summarized as follows [64]: 

 Bond length is .142 nm long = very strong bond 
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 Strongest material ever discovered, graphene is about 100 times stronger than the 

strongest steel with a hypothetical thickness of 3.35Å which is equal to the 

thickness of the graphene sheet ultimate tensile strength of 130 gigapascals 

compared to 400 megapascals for structural steel 

 Very light, at 0.77 milligrams per square meter (paper is 1000 times heavier). 

 Single sheet of graphene can cover a whole football field while weighing under 1 

gram 

 Also, graphene is very flexible, yet brittle (preventing structural use) 

2.3.1.4 Thermal properties  

The near-room temperature thermal conductivity of graphene was recently measured to 

be between (4.84±0.44) ×103 to (5.30±0.48) ×103Wm−1K−1. These measurements, made 

by a non-contact optical technique, are in excess of those measured for carbon nanotubes 

or diamond. By using the Wiedemann-Franz law, it can be shown that the thermal 

conduction is phonon-dominated [65]. However, for a gated graphene strip, an applied 

gate bias causing a Fermi energy shift much larger than kBT can cause the electronic 

contribution to increase and dominate over the phonon contribution at low temperatures. 

Furthermore, graphene burns at very low temperature (e.g., 350 °C (620 K)). 

After reviewing the fascinating properties of graphene, we should be convinced of its 

interest of being considered as our hydrophobic water-proton container.   

2.4 Proposed analysis  

As explained in the above section a modern image of the lone proton has arisen after 

recent findings from both experimental and theoretical studies. From this image, there is 

a general consensus that for bulk water proton dynamics is directly associated with 

dynamics of the HB network of water. Nevertheless, aqueous proton transport processes 

occurring in complex, strongly confined environments, are not yet fully understood. In 

many cases proton conduction takes place in confined volumes [23, 24]. The 

understanding of proton conduction in confined geometries is thus essential to 

comprehend and ultimately control a wide variety of biological and technological 
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systems of fundamental and practical interest. Despite the large scientific and industrial 

relevance of PT, the mechanisms of proton conduction are still a largely unexplored area 

of research. The main reason for this missed knowledge is essentially the limited number 

of experimental techniques sufficiently sensitive to probe proton conductivity in confined 

spaces, and also the lack of accurate predictions coming from theory and simulation. Up 

to date, it has been observed that when confined in restricted geometries, microscopical 

properties of the proton also suffer drastic changes from those at bulk states. At the 

surroundings of the lone proton we should expect significant differences with local 

coordination shells of pure liquids, ices and vapors. However, since the calculation of the 

phase diagram of the water model employed by us is out of the scope of this thesis, we 

will consider a series of equally distributed thermodynamical states from low density 

amorphous (LDA) ices to dense liquids at variable densities and temperatures and explore 

the influence of such factors on the structural and dynamical characteristics of PT.  

 

Herein, analysis of protons under confinement has been performed from different 

perspectives. In this thesis, we will concentrate ourselves in the study of the topological 

characteristics of confinement in three‐ dimensional (3D) towards 2D geometries. 

Protons in condensed phases confined in 3D environments and also with dimensionality 

close to 1, such as carbon nanotubes [46] have been previously analyzed, and qualitative 

changes in their equilibrium properties and transport, with reduced dimensionality, were 

found. Several previous studies have analyzed the behavior of quasi two dimensional 

aqueous phases, confined between graphene sheets. However, to our best knowledge, no 

previous studies have considered the presence of aqueous protons inside narrow 

grapheme slabs in a wide variety of thermodynamic conditions. We believe therefore that 

it is a relevant topic, which will complete the previous analysis. Furthermore, we expect 

that the problem will have a number of features that can hardly be extrapolated from the 

knowledge in one and 3D. Hence, our interest to address the direct study of this type of 

problem should not be considered as an incremental aspect of previous studies, but as a 

project with its own scale. A prototype system to study is that of the aqueous proton 

confined inside a rectangular slab, changing gradually from a slab containing a large bulk 
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part, up to a system with compressed water forming one or two layers, namely a quasi-

two-dimensional water network inside a graphene slab.  

A very recent contribution that is worth mentioning here, in a similar fashion to the 

present work produced by Bankura and Chandra [66] who employed ab initio and 

quantum-classical simulations to model proton transfer in two-dimensional water layers, 

with  fixing the interpolate distance to 1.2 nm to  indicate that when water is strongly 

confined in two-dimensional environments, the lone proton is likely to be solvated as the 

Eigen cation and that PT rates are significantly lower than in the quasi-one-dimensional 

case.  In the present work, we considered variable interplate distances between 3.1 and 

0.7 nm and variable temperatures (100- 600 k). At the environment of an excess proton, 

we should expect further significant differences with local densities of pure liquids and 

solids due to the presence of the lone proton. Therefore, we should expect significant 

changes in the proton microscopical structure formed (in pure water at ambient 

conditions) by a series of structures intermediate between two limiting cations: the 

Zundel dimer (H5O2)
+ and a hydronium species (H3O)+ coordinated by water, i.e., the 

Eigen cation  (H9O4)
+. We also expect significant changes of the time scale of PT due to 

the presence of confining surfaces and also compared to the case of water inside carbon 

nanotubes. 

Accordingly, we will analyze the structural properties and dynamics of solvation of an 

excess proton in different geometries in the nanoscale. In a first step, we will analyze the 

case of proton transfer in liquid water and low-density amorphous ices without 

confinement, to later move on to simulate the proton transfer in liquid water confined 

inside graphene slabs. 

Our analysis is carried out by performing MD simulation and MS-EVB methods 

supported with an artificial neural network (ANN) pattern recognition and data mining 

software applications. Herein we have adopted the evaluation of the use of AANs 

methodology in the classification of PT events and chart patterns, thus to facilitate the 

modeling process by using these simulation methods, overcoming their limitations and 

allowing statistical filtering of the data along with the predicting of the PT dynamics in 

aqueous environments. Therefore besides presenting our evaluation of the use of our 
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ANN tool in the following chapter, let us describe some relevant aspects of PT in 

restricted aqueous geometries that this thesis will attempt to understand.  

 

1) It will be very important to know how, under restricted geometry of the 

aqueous phase by the presence of hydrophobic plates kept at fixed 

distance, the balance between the common Eigen and Zundel species in 

water should change from the typical situation at bulk unconfined 

solutions, where an equilibrated mixture of the two species exists. In 

addition, force fields between proton, water and constraining walls will 

need to be set up. 

2) Analyzing the characteristic time scales (for proton transfer rates, water 

and proton diffusion, residence times in coordination shells) under 

confinement. Evaluating what changes are introduced based on previous 

simulations in pure water to analyze the dynamics of hydrogen bonds. 

3) Predicting and interpreting the changes that will appear in the location of 

the characteristic frequencies of new modes and the overall shape of the 

spectrum, introduced by the confinement. 
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3 Computational Methods 

From the perspective of atomic level PT is difficult to be observed experimentally. 

Instead, the majority of knowledge about the PT mechanistic details is being obtained 

from computer simulations. A number of methods have been developed for simulating 

PT with a significant variation in their accuracy, efficiency, as well as complexity. In this 

work, we developed and tested a new computational framework to simulate and describe 

PT that meets these criteria in terms of technical analysis and software developments. 

Our analysis is carried out by performing semi-classical molecular dynamics using the 

multistate empirical valence bond method, to reproduce intermolecular PT in liquid water 

and low-density amorphous ices (confined and unconfined environments).  

The systems considered in the present work consisted in two parts: (1) a quantum particle 

(excess proton) and (2) a classical bath (liquid water, steam or amorphous ice) formed by 

125 water molecules. We are going to illustrate in this chapter the theoretical background 

at the basis of the techniques we used to study the PT process in water. Here we should 

distinguish between the effects of the quantum nature of the proton on its dynamics.  

In this study we employed a MS-EVB approach to model the quantum nature of proton, 

observed through its delocalization, together with MD techniques which allowed us to 

monitor the trajectory of all particles in time. The artificial neural network approach 

along with statistical methods is then employed for modeling as well as analyzing the PT 

properties we are interested in. On the one hand, this combined methodology has been 

widely used to study chemical reactivity in solution [67-71]. In particular this chapter will 

focus on the descriptions of our new developed computational framework based on ANN 
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application, including its validity and the network ability to learn PT chart patterns 

corresponding to the properties of the aqueous environments. This chapter will also 

present the evaluation of the need for such pattern recognition software in the PT 

investigation as well as analysis how the learning approach in error back propagation 

(multilayer perceptron MLP algorithms) could be satisfactorily employed in studying the 

aqueous proton transfer processes. In the meantime we will refer to several references for 

describing the theoretical background of the ANN method as it is a well known method 

this work will not focus on its topology or theoretical structure details. 

For the sake of concision, the following sections will restrict on describing our 

computational framework in line with reviewing some available computer modeling of 

hydrated proton with a focus on the MS-EVB and MD, besides identifying the most 

important computational terms related to ANN, to mention some:  (chart pattern 

recognition and ANN, automated chart pattern, physical mechanisms of our ANN 

application, the computing process via it, and its data resource).The validity of this 

method in detecting PT chart patterns via a case study will be shown at the end of this 

chapter with describing the statistical methods of the calculated quantities as well.  

3.1 Computer modelling of hydrated protons 

 

Numerical simulations are not yet resolutive for a full understanding of the PT 

mechanism. A model for proton solvation and PT must be able to describe the 

continuously changing network of hydrogen-bonded water molecules surrounding a 

hydrated proton. Moreover, the force fields, used in the simulations, have to be flexible 

[72] because they must allow for the bond-breaking and bond-forming at the basis of the 

chemical reaction in equation (2.1) and for the atoms identity to change. Traditional force 

fields, however, are not reactive; they lack the ability to describe the formation and 

cleavage of chemical bonds. Then, they have to conveniently reproduce the complex 

nature of the HB network in water, that is a very difficult solvent to model [e.g., several 

models exist to reproduce bulk water properties] and have to account for the solvent 

effect on the potential energy surface PES for PT.   
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Furthermore, quantum effects are supposed to be important, even at room temperature, 

due to the small mass of the proton, whose thermal de Broglie wavelength is  

around A1   thus of the same order of magnitude of proton displacements. It is 

important to note that quantum effects may be described in a variety of ways, whose 

choice will depend strongly of the characteristics of the system under study. So for fully 

quantum systems such as liquid helium or hydrogen, the choice of methods such as path 

integral Monte Carlo or ab initio Car-Parrinello molecular dynamics is in order. When 

the system under study consists of a quantum particle in a sea of classical molecules, 

other semiclassical methods such as empirical valence bond EVB are also very 

appropriate. A full classical description in a MD fashion is not possible to simulate the 

Grotthuss mechanism because classical force fields, used in standard MD, do not allow 

for bond-breaking as well as bond-forming, processes which are at the basis of a 

chemical reaction. The inconvenient of using first principles techniques is the 

computational cost that allows for simulations of only about a hundred of atoms for tens 

of picoseconds.  

 

A good compromise is represented by the empirical valence bond model an approach in 

which the interatomic interactions are modeled using molecular mechanics force fields, 

that was firstly introduced in the work of Warshel and Weiss [73]. The EVB method 

incorporates an ab initio derived PES for a small set of coordinates representing the 

reaction in an empirical potential model, yielding an accurate as well as efficient 

description of the process typically in the form of reactant-like along with product-like 

states, as shown here. In its first form [74], the method was used for simulating the 

Zundel cluster H5O2
+ dynamics in bulk water, by means of a two states EVB model. The 

generalization to a multistate model was then proposed by Vuilleumier and Borgis [75] in 

order to account for multiple pathways that are possible, from the same starting structure, 

in the PT reaction due to the combined effect of molecular diffusion and HBs 

rearrangement. The use of the MS-EVB model in this thesis is described in section 3.2.2.   

 

On the other hand, the vibrational transitions associated with intermolecular proton 

transfer or “low-barrier” hydrogen bonds are very sensitive to the chemical environment, 
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and the infrared signatures exhibit a very diffuse character [76, 77]. These make 

computational simulations, valuable for assigning spectra and obtaining energetices and 

dynamics of the studied system especially when combining “molecular dynamics (MD) 

simulations” with EVB calculations. Accordingly, spectroscopic methods such as 

Fourier-transform infrared (FTIR) allowed Devlin and coworkers [78,79] to monitor the 

hydrogendeuterium exchange in water an hydrogen chloride adsorbed in ice surfaces and 

to obtain activation energies of Bjerrum defect formation. Ohmine and coworkers [80, 

81] have reported results from ab initio calculations and observed that PT in cubic ice Ic 

is still fast, but significantly less than in liquid water. Experiments on amorphous ice 

films by reactive ion scattering and low-energy sputtering have revealed that PT occurs 

up to temperatures of the order of 100 K [82,83].  A recent study by means of reactive ion 

scattering and infrared spectroscopy [84] indicates the existence of efficient proton-relay 

channels for hydronium on amorphous ice surfaces.  

 

In recent years, new advanced PT pattern recognition and data mining computer 

applications have been developed based on ANN techniques to support the theoretical 

investigations of PT process and chemical reactions in aqueous environments (e.g. MD , 

Monte Carlo simulations, ab initio…etc ) and to overcome the limitations of the outcome 

of these PT simulations ( e.g. quality of the underlying potential-energy surface (PES), 

accuracy of the energies and atomic forces, crowed chart pattern and large set of the 

simulated output data, non linearity of input data, time and length scales of molecular 

simulations). In this regard, it is worth mentioning some related applications here, such as 

those innovative classes of interatomic potentials simulations  based on ANN which has 

emerged as supplementary applications “tools” for molecular modeling in order to 

enhance the simulation accuracy, efficiency, and to reduce complexity when dealing with 

their input and output data (e.g., plotting a large set of the output data of such PT 

simulations will give noisy and crowd charts and finding appreciated PT patterns would 

be impossible) [1, 14, 85].  

 

The next section will briefly describe our ANN techniques in line with reviewing the 

main concepts of ANN methods , related literature of using ANN applications  in PT 
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simulation in water, definition of related terms (e.g., chart, automated pattern recognition, 

data mining…etc) to finally introduce a brief description of  the computational 

framework of this study including MS-EVB and MD plus its add- on ANN tool, how it 

works, the resource of data, its validity, and it ability in predicting beside explaining the 

calculated quantities followed by the conclusion. Our results in turn proved to be fully 

compatible with previous PT studies and it has been recently published [1]. 

3.1.1 Supplementary computer applications for PT modelling: Automated pattern 

recognition 

In general, charts can be used to formulate physical information including quantum 

information that is contained in a physical system and can even be the only tool a 

researcher utilizes. Even though creating charts and finding patterns on charts were 

difficult before the advent of computers and data feeds. With the advancement of 

technology and the increased popularity of data mining technical analysis, the use of 

charts has greatly increased nowadays, making them one of, if not the most important, 

tools used by scientific analysts to study physical phenomenon, such as the proton 

transfer PT phenomena in aqueous environments. Herein using automated pattern 

recognition and data mining tools to support theoretical investigations of PT in aqueous 

environments via the above mentioned high performance computational PT simulations 

are currently of great interest to understand this phenomenon, since PT could be viewed 

as a pattern classification problems in terms of a set of input features that allow the 

classification of the proton motion into two categories: transfer ‘occurred’ and transfer 

‘not occurred’. 

 

Hence, chart patterns refer to the graphical representations of the output data of specific 

software “PT model”, which is being used in the required simulation (e.g., MS-EVB, 

etc). Achieving the best results of using charts requires correctly identifying chart 

patterns on the required chart, for distinguishing one thing from another; so researcher 

must be able to identify chart patterns properly by defining methods of recognition using 

new technological pattern recognition tools. An important point before we proceed, 

patterns itself could be defined as regularities in the output data when using computer 
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simulation or an experimental results; however, the problem of searching for patterns in a 

large set of data is an essential problem of science and has a long and successful history 

[86-89]. Therefore, pattern recognition could be recognized as a key part of scientific 

investigation. Regularities in atomic spectra have been discovered in the early twentieth 

century and later on played a key role in the development of the quantum theory of the 

atom and so forth. The automatic discovery of regularities in data in the field of pattern 

recognition had become relevant through the use of computer algorithms and the analysis 

of these regularities by means of classifying the data into different categories; therefore, 

this problem had been considered and studied in many situations (e.g., medicine, finance, 

robotics, physical phenomena, PT). When automatic identification of patterns are 

required, the aim of pattern recognition is the same at all of these situations and would 

focus on classifying data patterns with respected to either the extracted statistical 

information from the patterns or on using some a priori knowledge for providing a 

reasonable answer for all possible inputs and to do "fuzzy" matching of inputs. Most 

commonly the patterns to be classified depended on using groups of observations and 

measurements, which served as defining points in a relevant multidimensional space [89]. 

Nevertheless the problem might be nonlinear (e.g.PT) in such a case we would need 

different classifying methods.  

 

For example, imagine a two-dimensional data set of the heights and weights of some 

different animals if there were two types of animal in that data collection as presented in 

figure. (3.1.a) The green circles showed examples of animals of class 1 (snarks) and the 

yellow diamonds showed examples of animals of class 2 (boojums). Given a new data 

point, which type of animal is it? In this case someone would look at some methods that 

draw a straight between classes – linear classifiers and then the decision boundary 

(dashed line) would present the set of points at which both classes would be equally 

likely. 
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Figure.3.1: Different patterns in data analysis 

 

Hence, data mining is the computational process of discovering patterns in large data sets 

involving methods at the intersection of artificial intelligence ANN, machine learning, 

statistics, and database systems [88, 89]. The overall goal of the data mining process is to 

extract information from a data set and transform it into an understandable structure for 

further use. Nowadays many data mining algorithms exist [90, 91]. While these 

algorithms are able to extract useful information in large amounts of data, they will be 

affected by data complexity. Among others ANNs has become the most common tool in 

computer science and mathematics with its good advantage of parallel computing, 

distributed information storage, fault tolerance capability, with adaptive learning ability, 

fitting capability, classification and predicting ability etc, [92-95]. They are mainly used 

in classification problems such as PT. This technique could be used for several purposes 

after generating the required data using a powerful theoretical simulation (e.g., data 

resampling (statics), data fitting capability, data analysis, data mining, pattern 

recognition, big data problems data corruption in output files, automatic estimation of 

data, predicting results, etc). 

 

In this, ANNs mimic human brain when coping with incomplete and confusing 

information sets.  Another important issue with implementing the ANN method here is 

that it is based on supervised learning which requires a data set, in many situations of 

considerable size, for which the target output is known taking into account the correlation 

between the inputs [88]. Output refers to an experimental data or output of computer 
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simulation that work as input of ANN network to start analyzing and classification of 

data this means that ANN allows learning by example. Therefore, to find an automated 

method for classifying data, we need a way for plotting data; so that the classes would be 

separated, then the need of a visualization tool would be important to see the 

characteristics of the data after finding ways of incorporating background a priori 

knowledge about the problem into a specific method. For example the implementation of 

the approach of learning in a multilayer perceptrons network which is the most suitable 

type of the artificial neural networks [88] types. We refer to the following references [96, 

97] for more information about the ANN structure and functionality, theory and 

applications. 

 

Although many ANN applications are possible but there is a little work that can be found 

in the literature since it has been developed by McCulloch and Pitts in 1943. Who 

developed ANN to investigate the neural signal processing in the brain [98]. The first 

application from which a physics results was extracted with using ANN was for the decay 

of the Z boson [99], the results used further for determining the decay probability of Z 

into the corresponding states. A good review of these applications until 1999 was 

published [92]. Other important physics results were obtained with such ANN 

applications in high-energy physics [93, 94]. In the meantime there are so many several 

data analysis applications that used standard method instead of using ANNs for automatic 

estimation of data and chart patterns in physics and some other related fields such as 

[100-101]. Even though, in all applications, ANNs gave better results than standard 

methods, mainly due to the highly non-linear character of the method [99]. In this regard, 

there are many new opportunities for using ANNs in physics nowadays, mapping sets of 

physical problems to analogous applications in other areas of science as well as 

engineering, such as medical diagnosis disease applications [101,102], where ANNs 

showed significant results in dealing with data represented in symptoms and images i.e. 

chart patterns. Therefore, we can say that ANNs are currently favored by the majority of 

the research scholars for supporting the theoretical simulations of PT including the 

current study. 
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3.1.2 Artificial Neural Networks application in PT simulation 

 

In all ANN applications, the general purpose of ANNs is to construct some input-output 

relations and to use these relations to analyze and classify data sets including chart 

patterns. In this regard the ANN modeling technique has many favorable features such as 

efficiency, generalization as well as simplicity, which make it an attractive choice for 

modeling of complex systems, such as PT, that allows the fitting and the predicting of the 

structural and dynamical properties of the solvated proton in confined and unconfined 

environment. The most promising application of the method published to date is to water 

clusters [14, 15,103]. 

 

Our PT investigations were based on the MS EVB simulation which had been proved to 

be a very successful method for the simulation of the PT in condensed media and that 

could be used for a variety of solvents, from pure water to mixtures in order to model PT 

processes for water complexes. However, using MD-EVB simulations is mainly based on 

analyzing the chart patterns of its output data, even though there are some obstacles that 

decreased its efficiency (e.g., number of water molecules, size of length measurements in 

three dimensions simulation of box volume, etc), also it does not support plotting charts 

and it has a huge set of tabulated output data that needs to be extracted and exported 

manually to any external plotting program (e.g., MS-Excel). This consumed more time 

and required greater attention for different quality characteristics, though, for large files it 

became tedious and error prone because plotting programs sometimes could not cope 

with very large files directly and had some limitations. Moreover plotting a large set of 

EVB output data will give noisy and crowd charts and finding patterns would be 

impossible  (e.g., up to 108, records in a table).  

 

An example of PT modelling limitations and obstacles could be based on the input of the 

simulation or the output of the simulation (e.g., plotting a large set of the output data of 

such PT simulations will give noisy and crowd charts patterns and making clear fits PT 

patterns would be impossible). Let us consider the pure water as an example of aqueous 

environments to show a sample of such chart patterns in a physical system based on EVB 
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simulation. EVB simulation will provide a long simulation for PT when placed in bulk 

water that consists of 125 water molecules to study the microscopic of water by means of 

a series of molecular dynamics simulations as explained in chapter 2. In aqueous PT, two 

dominant structures arise, namely the Eigen (H9O4
+) and Zundel (H5O2

+) solvation 

structure patterns, both complexes being the result of the solvation of the primary 

hydronium water complex (H3O
+). In both cases, PT could be viewed as a pattern 

classification problem based on a set of EVB input features (temperature, density, 

number of water molecules) to classify a proton transfer as ‘transfer occurred’ or as ‘not 

occurred’ [104,105]. Moreover the output chart will show two different chart patterns 

during this long simulation: a pattern that indicates proton transferred and a pattern that 

indicates proton non- transferred as a function of simulation time under a specified 

temperature. Such chart patterns are shown in figure 3.2. 

 

 

 

 

 

 

 

 

 

 

 

Figure.3.2: Graphical representation of original EVB simulation output data represent the 

time evolution of the hydronium (H3O
+) molecule label (called pivot from here) in pure 

water at room temperature. 

 

During the simulation as we could see from figure .3.2, each pivot will have an index, to 

determine the instantaneous tagged water molecule. Flat patterns indicate no transfer, 

whereas, permanent change of pivot label indicate that a PT has occurred. Spikes 

represent aborted transitions. Once characterizing the solvation of hydronium ion in water 
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and the corresponding proton transfer episodes, chart patterns that represent ‘transfer 

occurred’ are the required information needed for technical analysis, in order to extract 

the chemical properties of this system. Herein, the excess proton will attach itself to 

“one” water of 125 water molecules, forming a hydronium cation with dynamical label 

along the simulation; many separate pieces of information may share the same pattern, 

and give the same shape for a series of proton transfer that may attach itself to the 

remaining water molecules. For example, as in this simulation the proton was attached 

exclusively to a little group of molecules tagged 46, 49, 100 and 20. When it comes to 

analyze such chart patterns, we can say that all patterns are copies of each other and do 

not give a clear pattern information when trying to determine the tagged water molecule, 

which carries the excess proton in the system, as a function of simulation time. In other 

words such EVB output graphical representations could not make predictions of proton 

movement (transferred, non-transferred). Extracting the information beyond such chart 

pattern is complicated because it is a crude chart pattern, and presents a totally unclear 

(unpredictable) scenario of proton movement along hydrogen-bonded water molecules, 

where the motion could be described with the wired line between two flat peaks. It is 

essentially a statistical problem, with the particularity that the underlying mechanism of 

PT is based on a quantum process. So, a correct study will need to produce more charts 

by changing the temperature and again that would give another chart pattern, in general 

many simulations will give patterns that seem similar in nature, but in fact no two 

patterns are exactly alike. The challenge here is how to identify the specific pattern, 

which help in determining the molecular chemical properties, such as proton transfer 

rates, diffusion coefficient of the proton, and water local density at different temperatures 

and so on. Finding a normal fitting linear or logarithmic line for such chart is impossible 

by using automatic fitting techniques of chart plotting software (e.g., Origin, Excel).  

Therefore, it is difficult to find pattern on such charts to enable extracting information 

(e.g., slope), then a pattern recognition technique would be needed here for plotting and 

controlling the required smooth and clear charts that leads to better visualizing and 

analyzing.   
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So, we can assume that the ANNs is an efficient approach to be applied to solve this 

problem in our adoptive case that do not have algorithmic solutions in which inputs and 

outputs variables does not have a clear relationship between them (e.g., between 

temperature and pivot label there is not a linear relationship). Therefore applying ANNs, 

for handling these PT nonlinear functions in the data filtering, data mining as well as 

chart pattern recognition to find a solution was adopted in this study. 

 

Additionally, ANN fitting capability makes an attractive tool for the construction of 

potential-energy surfaces PES and for evaluation many physical quantities and properties 

based on powerful simulations. Hence, in case of PES, generally, it will be a tedious task 

when it comes to the construction of accurate potentials where result might need several 

months of ‘‘laborious iterative fitting’’. When an acceptable potential has been found, an 

extension for describing further bonding situations could then be very difficult due to the 

complex interdependence of all parameters. Over and over again a complete restart of the 

work is necessary. In particular in the case of force fields along with simple empirical 

potentials an extension to new systems regularly requires the introduction of new energy 

terms on a trial and error basis. Artificial neural networks approach could be considered 

here as a promising mathematical technique to construct PESs because ANN can ‘‘learn’’ 

the topology of a potential-energy surface from a set of reference points. So that in recent 

years, a new class of interatomic potentials based on ANN has emerged. These potentials 

have a very flexible functional form and can therefore accurately adapt to a reference set 

of electronic structure energies. Additional examples of using ANN are  the construction 

of the relationship between experimental vibrational spectra and a multidimensional PES 

of macromolecules, the prediction of the outcome of a reaction without computing the 

individual MD trajectories, the prediction of probabilities and rates of chemical reactions 

the prediction of force constants and vibrational frequencies in large organic molecules  

and the prediction of the outcome of trajectories in atomic and molecular scattering 

processes [14,15,106-108]. The current status of neural network potentials has been 

reviewed in [109]; open problems and limitations of the use of such ANN technique 

besides some possible solutions were presented as well. The study addressed that ANN 

techniques are promising candidates for future applications in large-scale molecular 
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dynamics simulations, because they can be evaluated several orders of magnitude faster 

than the underlying electronic structure energies. However, further methodical 

developments are needed to reach this goal. Herein [14] is a very recent study that has 

simulated PT reactions in liquid water by using ANN based on Ab initio molecular 

dynamics (AIMD) simulations to generate new class of reactive interatomic potentials 

which overcomes the limitations of AIMD simulation. The study also demonstrated the 

capability of ANN potentials to describe chemical reactions in the condensed phase. 

Another example is [15] presenting a reactive full-dimensional potential for protonated 

water clusters up to the octamer. A detailed investigation of this potential shows that the 

energetic, structural, and vibrational properties are in excellent agreement with DFT 

results making the ANN approach a very promising candidate for developing a high-

quality potential for water. This finding is further supported by first preliminary but very 

encouraging ANN-based simulations of the bulk liquid [15]. 

 

In terms of molecular dynamics simulation and computer modeling, choosing the 

unavoidable assumptions along with an approximation and simplifications of the  

computational procedure without affecting extensively the property of interest is an 

important part of the art of such computer simulation because one of the two basic 

problems in the field of molecular modeling and simulation is how to efficiently search 

the vast configuration space which is spanned by all possible molecular conformations 

for the global low (free) energy regions which will be occupied by a molecular system in 

thermal equilibrium. The derivation of a sufficiently accurate interaction energy function 

or force field for the molecular system of interest is the other basic problem. A recent 

study [110] reports a method of conducting molecular dynamics simulations that uses an 

ANN to significantly increase computational speed. The technique enables dynamical 

simulation of hard objects with essentially arbitrarily complex geometry and is well 

suited to the simulation of granular matter over a wide range of densities. 

 

Another study [111] proposed a novel potential for the water dimer, trimer, tetramer, 

pentamer, and hexamer that includes polarization explicitly, for use in molecular 

dynamics simulations. Using thousands of dimer, trimer, tetramer, pentamer, and 
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hexamer clusters sampled from a MD simulation lacking polarization, the authors train 

artificial neural networks for predicting the atomic multipole moments of a central water 

molecule. Moreover, as mentioned before in a recent paper based on the current study we 

have successfully evaluated the use of the AANs methodology in the classification and 

predicting of PT events, and PT structure patterns and dynamical properties based on 

MD-MS-EVB simulations [1] which could be added to the current available literature 

that has been considered the ANN applications to support the theoretical modeling of PT 

in water.  

 

For the sake of concision, in this section we will restrict ourselves on providing a 

description on how to design a learning machine tool, which mapped sets of input data 

onto a set of appropriate output for recognizing EVB chart patterns automatically based 

on ANNs networks, this tool will also allow predicting PT properties based on one test 

EVB simulation: (Temperature =300 K, changing the density and then predicting PT 

transition rate, or predict it with using greater or smaller number of water molecules,  etc) 

as will be explained in the following sections. 

3.2 Computational framework 

 

We are going to illustrate in this section the theoretical background at the basis of the 

techniques we used to study the PT process in water and they are MD, MS-EVB and 

ANN respectively. The main structural, dynamical, and properties computed in this thesis 

from ensemble averages are also summarized in this section. In section 3.2.1 we will 

introduce a general introduction of MD, as we used numerical simulations of classical 

dynamics to reproduce the excess charge migration in water. Section 3.2.2 describes   in 

particular, how we used the empirical valence bond model to numerically simulate the 

two relevant PT structures: called Zundel dimer and the hydronium or Eigen complex. 

This will be followed by section 3.3, that include the calculated quantities and computing 

process in line with physical mechanism of the ANN method, the source of the data set, 

fitting statistical functions and method validity.  
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3.2.1 Computer simulation experiments: Molecular Dynamics 

 

The method of molecular dynamics solves Newton's equations of motion for a molecular 

system, “a given many-body systems obeying classical dynamic” which results in 

trajectories for all atoms in the system. It is a technique for computing trajectories. From 

these atomic trajectories a variety of properties can be calculated as a function of time. In 

this section the basic principles and approximations of MD simulations are outlined. 

More detailed description, several books and reviews are available [112-115].  Two main 

characteristics of MD, required for an N-body simulation:  

 Given the following many body system that includes many particles interacting 

with each other (Solid/liquid: Box of Volume V, Temperature T and Pressure P: 

Periodic boundary conditions) in which the finite size systems clusters: Free 

boundary conditions). 

 Given the forces acting on all the ions, and initial state at time t=0, Compute 

trajectories of all the particles as a function of time t, by using Newton's laws: 

Essentially exact 

 

Then, the main aim of such computer simulations of molecular systems is to compute 

macroscopic behavior from microscopic interactions. The most important contributions a 

microscopic consideration can offer are (1) the understanding and (2) interpretation of 

experimental results, (3) semiquantitative estimates of experimental results, in addition to 

(4) the capability to interpolate or extrapolate experimental data into regions that are only 

difficultly accessible in the laboratory [116]. 

 

At this point, we have entire phase space trajectories, therefore all the information to 

compute various statistical quantities from microscopic description. We may write the 

Hamiltonian for an N-particle system as the sum of their potential energy in addition to 

kinetic energy when the classical description of our systems is not subject to any external 

field as follows:  
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Where );....,( 1 Npp


 and );....,( 1 Nrr


 represent the momenta of the particles and their 

positions, respectively.  Newton’s equation of motion can be constructed 

straightforwardly with the help of the Hamiltonian in order to describe the time evolution 

of the system, given some initial coordinates and momenta:
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Herein, the Hamiltonian is conserved by these equations of motion and equivalent to the 

total energy conservation of the system. This provides a link between MD along with 

Statistical Mechanics, in view of the fact that a trajectory described by this Hamiltonian 

will correspond to a sample of a constant energy surface in the phase space of the 

microcanonical ensemble of the system.  

In Physics and Thermodynamics, the ergodic hypothesis [117] says that, over long 

periods of time, the time spent by a system in some region of the phase space of 

microstates with the same energy is proportional to the volume of this region, i.e., that all 

accessible microstates are equiprobable over a long period of time. The ergodic 

hypothesis is often assumed in the statistical analysis of computational physics. The 

analyst would assume that the average of a process parameter over time and the average 

over the statistical ensemble are the same. This assumption that it is as good to simulate a 

system over a long time as it is to make many independent realizations of the same 

system is not always correct. See, for example the Fermi–Pasta–Ulam experiment of 

1955 [118]. 

3.2.1.1 The integration of the equation of motion 

 

Analytical solution of the equation of motion is not possible to be found in case of many 

particle systems, such as molecular N-body systems, consequently an approximate 

solution is sought. The phase space trajectory is discretized in time in addition to that the 
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Newton equations are solved by means of finite difference methods.  Since the advent of 

MD [119, 120], various schemes based on finite differences have been proposed. As a 

rule leap-frog Verlet scheme has been used in this thesis. 
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We are interested in using the largest possible time step t  for the purpose of performing 

simulations, with the aim of ensuring an acceptable energy conservation in addition to 

that it will be always shorter than the characteristic time of the fastest motions of the 

system. This way will allow sampling trajectories by the side of constant volume as well 

as energy in the microcanonical ensemble. In view of the fact that temperature and 

pressure correspond to the most common conditions in condensed-phase experiments, 

studying the properties as a function of temperature along with pressure is a much more 

extensive issue to be adopted, which is the case of all the works performed in this thesis, 

with a focus on controlling our system temperature at constant volume. Herein the 

Berendsen thermostat [121] has been used for the purpose of thermalizing and on average 

maintaining constant temperature in the simulations. In this case the idea is that by 

scaling the velocities at every step by a factor of  1][
τ

t
1λ

0





T

T
 the system will be 

weakly coupled to an external heat bath  by means of fixed reference 

temperature 0T ,where   , is the empirical parameter of adjusting the coupling to the 

thermal bath and T is obtained from the instantaneous kinetic energy.  

 

Hunenberger [122] reviewed the various thermostat algorithms proposed to date, their 

physical basis, their advantages and their shortcomings. It is worth mentioning here his 
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general findings about the Berendsen equation of motion which is smooth and 

deterministic, but time irreversible where the ensemble generated by the Berendsen 

equations of motion is not a canonical ensemble but the equation can produce a weak-

coupling ensemble, and slightly underestimating temperature fluctuations from a truly 

(NVT) ensemble. Hence in the canonical ensemble (NVT), the temperature has a 

specified average (macroscopic) value, while the instantaneous observable representing 

the total energy of the system (i.e., the Hamiltonian H) can fluctuate. Accordingly, when 

possible, Berendsen thermostat has been used here for equilibrating the samples as well 

as creating   runs under conditions of constant energy.  

3.2.1.2 Force Fields  

 

The quality of the model that represents the dependence of the energy of the system on its 

particles’ coordinates plays a vital role in any successful MD simulation. The form of this 

potential function along with a set of adjusted parameters is what is recognized as force 

field (FF). In order to ensure a good accuracy in the description of the treated systems, in 

addition to affordable computational costs, the following potential formulations have 

been chosen in this Thesis. Here, we can distinguish three classes of potential models: (1) 

one accounting for water-water interactions, (2) carbon-water interactions and (3) proton-

water interactions. Proton-carbon forces have not been considered, due to the fact that 

carbon atoms forming graphene sheets are neutral and, given proton’s size (that of a 

hydrogen nucleus, without electronic cloud around, a mere point charge), and the short-

ranged Van der Waals forces can be neglected.  

3.2.1.2.1 Water-water forces 

 

The expression for the potential energy invoking pair-additivity can be formulated for 

enormous part of condensed phase simulations of water as a sum of intermolecular 

(“inter”) and intramolecular (“intra”) terms [123]: 
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where, in the intramolecular term: ri  is each of the atom-atom distances, ri0 are 

equilibrium values, θj stands for the intramolecular bending angle, with θj0 being the 

equilibrium value. The parameters for the flexible TIP3P model employed in this Thesis 

are [124]: 

 

In the intermolecular term, rij is the distance between two atoms or charged sites i and j 

and qi are the partial charges relative to the charge of the electron, so that the second term 

in equation (3.7) represents the Coulombic interactions where polarization effects 

occurring in condensed phases are taken into account in an average way by using 

effective charges. The Lennard-Jones term in water is usually applied only to the 

interaction between the oxygen atoms. So, the two parameters of the Lennard-Jones 

potential for water appearing at the first term of equation (3.7) accounts for Van der 

Waals interactions between oxygen particles and their values are: 

Long-range interactions (Coulomb terms) were handled by Ewald sum techniques [125], 

assuming a uniform neutralizing background, in order to counterpart the excess proton 

charge included in all systems. 
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3.2.1.2.2 Water-carbon forces 

 

The water-carbon interactions have been modeled by means of short-ranged 6-12 

Lennard-Jones terms, where the functional form is that of first term in formula (3.7). The 

carbon-oxygen and carbon-hydrogen σ and ε parameters have been calculated using the 

Lorentz-Berthelot mixing rules [126,127]. The values obtained are [128]:  

 

 

where the energy equivalence is of  1 kJ/mol = 120.33 K per molecule. 

3.2.1.2.3 Proton-water forces 

 

The interaction of proton with water oxygens and hydrogens has been adapted from the 

successful model proposed by Voth and co-workers [71, 74, 129, and 130]. These authors 

considered the EVB model methodology on order to assign the closest water molecule to 

the proton as the pivot anchor, forming the hydronium ion H3O
+, as it will be explained in 

the corresponding section (3.2.2). Once the hydronium ion is located, interactions with 

surrounding water have been taken into account. Within the EVB method, the diagonal hii 

and off-diagonal hij terms of the Hamiltonian are given by the following series of 

formulas. The diagonal terms include intramolecular interactions of hydronium and 

waters as well as intermolecular terms accounting for water-hydronium and water-water 

forces. 

 



51 
 

 

 

                                                                                                                                     (3.11) 

where  

 

                                                   (3.12) 

and 

 

                                        (3.13)            

and 

 

                                   (3.14) 

                                                         

 

with the function Vrep (ROOk) is given by:  

 



52 
 

                                                   (3.15) 

The Lennard-Jones parameters were given by Lorentz-Berthelot rules as: 

                                                                                   (3.16)                                                                                                                          

 

The off-diagonal terms include the coupling between diabatic states and are represented 

by: 

 

                                                                     (3.17) 

where Vconst. is a constant coupling term and: 

                                                                  (3.18) 

 

so that  

 

                                                                             (3.19) 

 

with  
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                                                     (3.20) 

 

Here ROO represents the OO distance in the Zundel dimer resulting from the coupling of 

two diabatic states. Finally, we define: 

 

                                                                                                (3.21) 

 

All parameters are reported in Table 3.1. The hydronium-carbon forces have been 

modeled simply using the same parameters as for water-carbon forces (3.10). 
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Table 3.1: Parameters of MD simulation [130] 
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3.2.2 Empirical Valence Bond method 

 

The essential idea is conceptually simple and is based on considering the dynamics of 

nuclei governed from the ground state of a valence bond Hamiltonian-type. This 

Hamiltonian is constructed by postulating that the possible states of the excess proton can 

be expressed as a linear combination of n diabatic possible states, each identified with the 

proton location at a specific water molecule. The Hamiltonian matrix of the system, 

expressed in the basis of this set of n states, has the following characteristics: The 

parameterization of diagonal elements include three contributions: (i) the kinetic energy 

of all particles, (ii) potential energy of the solvent and confining walls (considered 

through pseudo-potential classics that include the inclusion of intermolecular degrees of 

freedom) and (iii) interactions of the excess proton with the rest of the solvent and 

confining plates. On the other hand, the non-diagonal matrix elements are introducing the 

possibility of coupling between different diabatic states and thus enable the modelling of 

the proton transfer reaction. These elements are based on the reaction coordinate that 

describes the instantaneous transfer.  In this section we briefly review the multi-state 

empirical valence bond model in order to introduce the terminology as well as setting the 

notation. For a more detailed description we refer the reader to the original work of 

Warshel [70, 73].  

 

Herein, the EVB method assumes that the Born-Oppenheimer potential energy [131] 

surface })({
0

R driving the dynamics of the nuclei with coordinates {R} can be obtained 

from the lowest instantaneous eigen value of the EVB Hamiltonian. 

 

,φ({R})
ij

hφ({R})Ĥ iiEVB                                                                                     (3.22) 

where we have adapted the criterion of summation over repeated indexes. The EVB 

Hamiltonian is represented in terms of the basis set iφ  of diabatic (localized) VB states. 

In the case of an excess proton in water, these diabatic states are associated to 

configurations with the H+ located in particular water oxygen. The ground-state 0φ  of 
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EVBĤ  satisfies  ,ψ({R})εψĤ 000EVB
  and it can be expanded as a linear combination 

of diabatic states as follows: 

 i

i

i0 φcφ                                                                                                            (3.23) 

 leading to the final expression for the potential energy surface given by the following 

equation ({R})hijc jci({R})ε0  ,                                                                             (3.24) 

Dynamics of the nuclei of mass Mk is governed by the following Newton’s equation of 

motion:  

({R}),hCC
dt

Rd
M ij

RKji2

k

2

k                                                                               (3.25) 

 

In the framework of EVB methods, off-diagonal elements ijh  can be casted out in terms 

of nuclear coordinates, achieving an excellent agreement with results from full quantum 

calculations. The parametrization for water and hydronium species employed in the 

present work follows those proposed by Voth et al. [71, 74,129], which were applied to 

different environments and showed excellent agreement with experimental data. Diagonal 

elements iih include contributions from stretching and bending intramolecular interactions 

within the tagged H3O
+ and also inside the rest of water molecules, which are modeled 

using a flexible TIP3P force field. 

 

In addition, diagonal elements also include intermolecular interactions such as those 

between hydronium-solvent and solvent-solvent. Conversely, off-diagonal elements hij 

introduce the coupling between diabatic states i and j and have been modeled including 

interatomic contributions within a particular H5O2
+ Zundel water dimer spanned by states 

φ
i

and φ j
plus Coulomb interactions between the dimer and the rest of solvent. A 

complete list of parameters [130] is provided in table 3.1.  

 

Within this framework, Schmitt et al. were able to reproduce geometries and energies of 

relevant protonated water clusters ((H5O2)
 +, (H7O3

) +, and (H9O4)
 +), obtained from ab 

initio calculations. Oxygen-carbon and hydrogen-carbon forces were modeled by 
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Lennard-Jones terms with the same parametrization employed in previous works [128]. 

The construction of the EVB Hamiltonian was performed as follows: 

 

Water molecule closest to the excess proton is located and identified. It constitutes the 

initial pivot H3O
+ and the first diabatic state. From this pivot, the rest of the diabatic 

states are chosen in a tree-like construction via a HB connectivity pattern. The criterion to 

establish a HB is as follows: The maximum oxygen acceptor-proton donor distance is 

fixed up to 2.8 °A and the minimum threshold value of the H-O-O angle up to 30o. 

 

 All molecules lying in up to the third solvation shell and showing a connecting path with 

the original pivot were included in the construction of the L × L EVB Hamiltonian 

matrix, which was properly diagonalized. Typically L will be of the order of ∼10–20 

units for the connectivity pattern, with fluctuations of total energy always below 1%. At 

every time step, PT will be made possible by reassigning the pivot oxygen label to the 

instantaneous state exhibiting the largest 2

ic  coefficient; from this state, the list of 

participating VB states was reconstructed using the connectivity branching procedure 

mentioned above. 

Once the EVB matrix was formed, ground-state eigenvectors and Hellmann-Feynman 

forces were computed by means of 

XX k

ij
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where kX stands for any spatial coordinate. 

3.2.3 Characterization of the Hamiltonian  

 

In this work we implemented two cases of simulations: PT in 3D (confined and 

unconfined water, and PT in 2D (confined systems). The last case was divided into cases 

of 2D simulations 1) a simulation based on investigating the effect of confinement on PT 

in water at 300 K (ambient conditions), 2) a simulation based on investigating the effect 

of temperature and confinement on PT in water.  
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In the case of 3D simulations, all simulation experiments corresponded to microcanonical 

runs at temperatures fluctuating around T =100,125,150,175,200,225,250,273, 298, 400, 

500 and 600 K.  In order to differentiate temperature from density effects, we kept 

densities constant at the value of ambient conditions ( 1ρω  g cm−3). According to the 

phase diagram of the rigid TIP3P model [132] such conditions would correspond to 

liquid water states (between 298 and 225 K) to ices (from 200 to 100 K) and to high T 

sub-critical states (between 400 and 600 K). 

In case of 2D simulations when investigating the effect of confinement on PT, we 

simulated microcanonical runs at T = 100,200,300,400,500 and 600 K. In order to keep 

the HB network formed up to some extent (and, eventually to have the possibility of PT 

episodes at all states) we increased the density of the system from 


A.020 -3 (for a 3.1-nm-

wide slab) to values


A7.00 -3 (for a 0.7-nm-wide slab). This means that the simulations 

were performed with 125 water molecules in all cases into a slab of width ranging from d 

= 3.1 to 0.7 nm. According to the phase diagram of the rigid TIP3P model the states at 

300 K correspond to liquid water and those of 200 and 100 K to low density amorphous 

ices ices. States over 300 K (400 to 600 K) have not been evaluated for this case, but we 

believe that at the pressures considered in this work, all of them will correspond to liquid 

or very dense vapor states. 

 

However, all of these assignments of physical states of our (3D and 2D) simulations are 

only approximate , since (1) our model includes flexibility of the molecular bonds and (2) 

the pressure in our system will fluctuate, given that we performed our simulations at the 

microcanonical ensemble (fixed number of particles, volume, and energy), allowing 

temperature and pressure to slightly fluctuate. As a matter of fact, temperature variations 

are always small (within 3%), whereas the range of pressure fluctuations is up to 15% of 

the mean value.  

 

Finally in all cases the time step was set to 5.0t fs. We considered equilibration 

periods of approximately 20-30 ps, followed by trajectories of hundreds of ps, used to 

obtain meaningful statistical properties.  
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3.3 Calculated quantities 

 

Under the ergodic hypothesis, averages over the trajectory of a system obeying 

Hamilton's equations are thus equivalent to averages over a microcanonical ensemble. 

This will allow using all statistical mechanics tools for connecting microscopic details 

available from the simulated trajectories to physical observables such as equilibrium 

thermodynamic properties, transport coefficients, and spectra. Through MD we are able 

to produce trajectories in the microcanonical or canonical ensembles by numerically 

integrating the equations of motion for a Hamiltonian that accurately describes the system 

under study. Our MD simulation will produce the related trajectory data, which consists 

of the position, velocity, and energy of each particle at every time point considered in our 

under study PT simulations. As a final point ergodic hypothesis can be invoked to justify 

equating trajectory averages with ensemble-based thermodynamic properties. But the 

strength of MD over statistical mechanics is that detailed trajectory histories are available 

and thus quantities defined in terms of atomic motion or position can be investigated in 

addition to statistical mechanics observables which can be used as an input for the ANN 

pattern recognition tool. Therefore, several “computing  tools” ,i.e.,  plotting, chart 

fitting, automated chart pattern recognition and data mining tools have been linked to our 

EVB simulation in one framework to get better visualization and to enable analyzing , 

computing, and evaluating the following physical properties i.e., (dynamics of proton 

transfer, solvation structure, proton diffusion and spectroscopy ) including  the analysis of 

calculated radial distribution function RDF, via applying statistical mechanics to derive 

information on macroscopic observables from the generated microscopic data which will 

be saved in the database of the framework after each simulation. The physical mechanism 

of the use of these tools is presented in the following section including the calculated 

quantities. The details of the calculated quantities and their related statistical theories will 

be explained in section 3.3.3 in details.   

3.3.1 ANN application: Pattern recognition and data mining tool  

 



60 
 

We proposed a chart pattern recognition tool that was optimally programmed by using 

Python to work as a first helpful ready to use add-on tool of the MS-EVB simulation. 

This tool is expected to provide a better visualization of the graphical representation of 

EVB output data, plus enabling automatic recognition of patterns on charts based on 

well-known filtering, correlating and classification functions.  

 

It was designed to serve two purposes: 1) Facilitating the work of analysing output data 

of PT case under study after running separated specific simulations by the use of data 

mining and chart pattern recognition, to be applied with independent goals at each stage 

of the process to control charts in monitoring and filtering EVB output files with more 

accuracy, therefore, if any ‘out of control’ condition should be found, the reasons for the 

variation outside the stable patterns would be discovered. 2) Predicting PT chemical 

properties for future modelling (e.g., predict the number of water molecule at 300 K in 

case of changing the confinement volume based on historical or experimental data and so 

on). Afterwards, the proposed tool will simply enable the technical analysis of several 

important chemical properties, by means of the EVB simulation output graphical data, 

having the aim of enhancing the performance and efficiency for systems of large amounts 

of molecules. 

 

 In this pattern recognition tool, ANN with back propagation function  were applied to the 

literature data generated by EVB simulation, and stored in a database to construct a 

classifier system which could be used to predict and  analysis the  chemical properties of 

proton transfer phenomena in aqueous environments based on chart patterns. These 

properties are: the proton transfer rate, the hydronium-water local density field, the 

diffusion coefficient of proton, and its velocity. 

 

 In other words, this model would be a physically based model. Firstly, EVB must be run 

to generate data of possible conditions based on changing the input parameters to 

compose the output data sets in the database. Subsequently, this data would be used as 

input in the current ANN model. Of course, the model techniques could only pickup the 

required behaviour if the available physical condition were accurate and describe the 



61 
 

relevant process in detail. The challenge of composing the input file of the tool by 

choosing the right data and the right examples for the training phase is often the most 

complicated part of using the ANN pattern recognition technique. 

 

 The data must be processed before applying the ANN approach and there are some 

modifications that must be made to the data set to make it perform better in the training 

phase. Herein, from the normalized database, the ANN will be trained with N data points 

and tested (or validated) with N points based on the case study and the selected chemical 

properties to be predicted, for example, how to predict the proton transfer rate based on 

the chart patterns, as it is fully explained in the section of case study and presented in 

figure 3.3.  

 

Figure 3.3: Optimal ANN structure, together with a flowchart of the back propagation 

(BP) algorithm [89] for the prediction of proton transfer rate, plus the basic algorithm 

loop of the proposed tool, that will be fully explain in the case study. 

As the tool will provide an easy to use database, where the original EVB calculated and 

collected data would be represented in the form of database files (i.e. output of EVB) 
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after several simulations, as shown in figure 3.3 and figure 3.4  ; these data might be then 

cleaned resampled or reduced by using ANNs data mining techniques; and feature 

extraction algorithms, the feature space dimension might be reduced; the system would 

then use description algorithms or classification algorithms based on the requested 

diagnostic purpose [89]. For instance, the system could predict the proton transfer and 

describe patterns in different classes depending on their characteristics thus to cope with 

the nonlinearity of the EVB input and output (see figure 3.1 and 3.4). 

 

 

 

 

Figure 3.4: Object/process diagram of the proposed chart pattern recognition system 

following the typical pattern recognition system architecture of Schalkoff [133]. 
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3.3.2 ANN Computing process  

 

Generally, the computing process of the ANN algorithm are typically defined by three 

types of parameters: the interconnection pattern between different layers of neurons, the 

learning process for updating the weights of the interconnections and the activation 

function that converts a neuron's weighted input to its output activation. Consequently, 

during the computational process, our tool would allow the operating BP algorithm in 

two phases via its graphical user interface (GUI): 

 

 Training phase, where the training data samples would be provided at the input 

layer for training the network with predefined set of data classes. The ANNs 

would be trained using a BP algorithm, based on the concept of improving the 

performance of network by reduction of the error from the output data [104]. 

Once the network is trained, it could be saved for further use. The program uses 

data files, which have been computed using EVB, as the main source of data for 

pattern recognition of proton transfer and it could be considered then as time 

series data of the selected required input. This is true for all other input and output 

parameters (e.g. ‘number of chemical species’; ‘masses’; ‘number of atoms of 

each species’; ‘temperature’; ‘simulation time’; ‘density correlation function of 

pivot’, etc). In short for training multilayer perceptron algorithm MLP the 

problem of estimating the weights consists of the following parts: Initializing the 

weights randomly; computing the derivative of the error function with respect to 

the weights via the error back propagation algorithm, updating the estimated 

weights via the gradient descent or scaled conjugate gradient method [134]. 

Hence, a multilayer perceptron (MLP) is a feedforward artificial neural network 

model that maps sets of input data onto a set of appropriate outputs [135]. An 

MLP consists of multiple layers of nodes in a directed graph, with each layer fully 

connected to the next one. Except for the input nodes, each node is a neuron (or 

processing element) with a nonlinear activation function. MLP utilizes a 

supervised learning technique called backpropagation for training the network. 
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MLP is a modification of the standard linear perceptron and can distinguish data 

that are not linearly separable [136].  

 

 Testing phase, during this phase the input layer would be provided with a random 

test data (experimental) to predict the applied patterns.  Several experimental data 

were conducted to the new tool database; to compare the ANN results with the 

experimental values in the testing phase for providing validity and accuracy [134]. 

 

For more explanation, the user of the proposed tool will start providing the algorithm 

with examples of target output data; furthermore the network will change the network’s 

weights so that, when training will be finished, it will give the user the required output for 

a particular input. Each input pattern of this training set would be applied to the input 

units and then it would be propagated forward. The pattern of the activation arriving at 

the output layer would be compared with the correct (associated) output pattern for 

calculating an error signal. The error signal for each such target output pattern would then 

be back propagated from the outputs to the inputs in order to appropriately adjust the 

weights in each layer of the network. The procedure would be repeated until the error 

function would reach the range of the error tolerance factor that had been set by the user. 

After back propagation network had been learned the correct classification for a set of 

inputs, it could be tested on a second set of inputs to see how well it classifies untrained 

pattern. In this case, the back propagation network could make a reasonable prediction 

about what data that was missing from the current available information of a hidden data 

which is a very difficult task to be done in real world, but the use of BP technique of this 

tool would allow user to guide the tool to find some corrected pre-information (such as 

desired output) as shown in figure 3.3.   

3.3.3 General steps of the data set preparations and calculated quantities  

 

This part is very important because the ANN tool is only as good as the quality of the 

data set; in this part user can create the ANN input file by re-sampling output files of 

EVB that is  available in the database.  The proposed tool will consider a number of 
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factors as input, in order to produce an output, which will give the result of whether a 

proton suffered a transfer episode or it did not. In many computational methods any small 

change in the input pattern might impose a drastic change in the desired output pattern 

[89,137], so that, in order to get the best classification performance evaluations, this tool 

provides two kinds of data modification techniques, which could be easily controlled 

from the main window on click. They are as follows: 

3.3.3.1 The ANNs modification parameters of learning and testing 

 

As the accuracy of the ANN network output is dependent upon the accuracy of the 

analytical numerical model used for training this network user of this tool can continue 

examining the behavior of changing the value of modification parameters of learning and 

testing algorithms on the output results with comparing it with an available experimental 

value, thus to investigate under what cases the pattern recognition tool could effectively 

be used for the prediction of proton transfer’s chemical properties. Accordingly, these 

fitting parameters would be some constants for adjusting the algorithm of computational 

process [138] from the main window related to:  

 

 The construction of the neural network itself (e.g. the number of hidden layers, 

the number of neurons in each hidden layer, the nature of the node nonlinearity 

that was used in the hidden layer (sigmoid or tansh) [134]. 

 The generalized delta rule (e.g. learning rate, momentum term and the set of 

initial weights) [134]. 

 

3.3.3.2  ANN input modification functions  

 

These functions could be defined as regularities in the output data of EVB simulation to 

create the required chart patterns following statistical functions. In other words these 

function are a technique to modify the ANN input data set, firstly the tool will extract 

data set from the large EVB output tables subsequent to any specified case study, then the 

user will determine the related fitting function on click from the main window to generate 
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the required fitting input to be learned and tested via neural network, any time user could 

adjust the two fitting techniques spontaneously, and continue attempting until reaching a 

smooth chart pattern instead of the original crowd chart pattern of EVB data that shown 

in figure 3.2 . This tool will provide a good statistical technique to enable plotting smooth 

charts patterns to study the local structure of the hydrated proton and the nature of proton 

transfer dynamics in different aqueous environment. On the other hand the tool provides 

four types of fitting function (physical regularities on PT) as follows: 

3.3.3.2.1  Local structure of the hydrated proton:  Hydronium-water local density 

field  

 

As the presence of an excess proton in water promotes a disruption in its local hydrogen-

bond structure, the structure of water is therefore fundamentally important for 

characterising the nature of the hydrogen bond at the atomic level. In confined 

environment with a similar fashion as it happens when a solvated ion in water produces a 

large anomaly in the tetrahedral structure of the bulk liquid, the presence of an excess 

proton also creates a disruption in its local hydrogen-bond structure. When a PT event 

occurs, the structure around the lone proton changes dramatically as explained in chapter 

2, three relevant complexes may arise: the proton attached to a single water (single 

hydronium, H3O
+), the so-called Zundel dimer (H5O2)

 + and the three-coordinated 

hydronium (H9O4)
 + known as the Eigen complex. It is commonly accepted that PT is the 

result of the continuous interconversion of the three above mentioned structures, with 

percentages of each depending on the thermodynamic conditions of the system. In most 

cases, continuous interconversions between the Zundel and Eigen complexes generate a 

hybrid (H9O4)
 +/ (H5O2)

 + structure. Each transfer of the lone proton between two water 

molecules will involve changes in pivot oxygen-water oxygen OO* and pivot oxygen-

water hydrogen HO* distances and changes of the local hydrogen connectivity pattern 

between the complex at its closest solvation shells [39, 40]. 

 

Herein in condensed matter, pair distribution functions can be used for revealing the 

structural correlations. The structure of water is therefore fundamentally important for 
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characterising the nature of the hydrogen bond at the atomic level. The radial distribution 

function (RDF) is a useful tool to describe the structure of a system, particularly of 

liquids and it is the most commonly used function for addressing the local structure in 

liquid-state physics. In general, when there are two solutes dissolved in water, the 

Brownian motion separates them by different distances r  at different time. The radial 

distribution function, (r)gαβ gives the probability of finding a particle in the distance r    

from another particle. If we count the appearance of two molecules at separation r , from 

0r to r , we can get the radial distribution function (r)gαβ  (or pair correlation 

function) [131, 138]. 

 

This function describes the local environment of any reference particle, in this case the 

oxygen atom of the water molecules, in terms of the probability to find a neighboring 

particle located at a distance r . It gives the probability of finding a pair of atoms at a 

distance r  apart, relative to the probability expected for a completely random distribution 

at the same density. RDF's reveal the local structure of the system but it only give 

information about inter-particle distances. The results can be compared as well with X-

ray and neutron diffraction experiments. For computing it in numerical simulations, we 

average over several configurations the number of   particles n  inside a spherical layer 

of thickness r at a distance r from  particles 
rr
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inside a spherical layer of thickness r and radius r centered at an atom . This will be a 

part of the output data but of the MD-EVB simulation. In this study we expect that both 

temperature and confinement will have observable effects on the local proton structure. 

In the case of a distinguishable particle, such as the proton, we can analyze solvation 

structures by means of local pivot oxygen-water (O, H) density fields given by: 
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This give us an information equivalent to RDF, when a tagged particle (O*) i present at 

the system. 

 

Using this fitting function will allow composing an input file for the ANN tool through 

spatial correlations with respect to the hydronium label, where 
*0r ,  is the coordinate of 

the instantaneous pivot oxygen and 
ir is the coordinate of site  H O,  in the i-th 

solvent molecule. This will allow displaying the oxygen-oxygen )(00 r  and oxygen-

hydrogen )(0 rH radial density fields to compare local structures produced by different 

FF's or between optimized FF's and reference based on the output data of the EVB 

simulation. 

 

This input will be tested with neural networks until getting a smooth chart which to 

present the locations of main important peaks at different pivot solvent density fields. On 

the other hand the tool provides a special fitting function to deal with   O*’s z-position 

*

ZO  at different slab widths for evaluating the location and mobility of the proton species, 

based on computing oxygen pivot *

ZO  position in case of confinement at different slab 

widths, (between d = 3.1 and 0.7) nm, for a time interval of 50 ps. 

 

To evaluate the location and mobility of the proton species based on the output data of 

EVB simulation we need to detect the oxygen pivot *

ZO  position at the required slab 

widths, for a specific time interval because the proton z-position is extremely important 

for monitoring the simulation, we need to make sure that the proton is there (inside the 

width of the determined slabs) and also, the proton must fulfill the condition: -13.6 < Zp 

< 13.6. Therefore the ANN tool allows extracting the related coordination data by a direct 

reading from the large output files of the EVB simulation.  The tool will simply allow 

output data re-sampling for finding the required  sZp ' to work as input file for the fitting 

function pp ZtZ  5.16)( .The output files will be t and )(tzp to draw the related chart 

pattern through the fitting process based on )ˆˆˆ( zzjyixr pppi 


 and 
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)ˆˆˆ( 000 zzjyixr 


 with 2

0

2

0

2

0 )()()( zzyyxxr ppp  the tool will find 

rri   list, then automatically, which means that the range for sorting data is restricted to 

the ( 


) slap width as shown in the figure 3.5. 

 

 

Figure 3.5: Proton Z- position data, re-sampling and fitting ANN window. 

3.3.3.2.2 Proton transfer dynamics: Population relaxations and proton transfer 

rate  

 

This tool allows initial analyzing of the nature of the proton transfer dynamics in liquid 

water and ices by direct inspection of the time evolution of the pivot oxygen label during 

50 ps time intervals based on extracting the related data for plotting the related charts of 

“time evolution of pivot-oxygen labeling in different aqueous environments”. But such 

charts will illustrate a rough picture of PT dynamics as described before in figure (3.1) 

which cannot provide a quantitative estimation of PT rates. However, this tool allows 

improving the calculations based on using time correlation functions. In order to do this, 

we need to ensure that PTs are sufficiently frequent to collect statistics. This happened in 

all cases for the full length of our simulations (250 ps).  
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This tool provides a good technique to enable plotting smooth charts patterns to study the 

nature of proton transfer dynamics in different aqueous environment, therefore, figure 3.1 

could be significantly improved by performing an analysis based on time correlation 

functions following literature study [71,139]. The general form of equilibrium time 

correlation functions for the population relaxation of different reactant species is as 

follows 

2

i

ii

)(

(0)δh(t)δh
C(t)

h



                                                                                                 (3.28) 

where hthth  )()(  describes the instantaneous fluctuation of the population of i-th 

reactant away from its equilibrium value. The characteristic function is 1)( tih  if the 

tagged reactant species, i.e., “if the hydronium label at time t  corresponding to the 

th -i water molecule” is present in the system at time t and 0)( tih  otherwise.  

 

With such choice we can expect that C(t ) defined in equation  (3.16) will show at least 

three qualitatively different time domains:  (1) a resonant time  rsn in the  subpicosecond 

scale, associated to the rapid exchange of the pivot label, i.e., the excess proton, along a 

“special” bond, represented by spikes in the history of the pivot labels depicted in the 

charts of  the EVB time evolution of pivot-oxygen labelling in different aqueous 

environments; (2) an intermediate time  prs characterizing the lifetime of the resonance 

episodes and (3) the residence time  rsd of the proton when attached to one particular 

pivot water. In case of confinement simulation this time should be equivalent to the 

integrated relaxation time defined in Ref [66] as well as other calculated quantities which 

is the most equivalent recent references. To mention some other related up to date 

references we have to mention the work of Wolf and Groenhof [140] which they have 

proposed new classical model with explicit proton transfer by  providing a way to model 

PT in a very efficient computational procedure using classical force fields, but still 

capturing the key aspects of the phenomenon. 

  

Herein population relaxations of the pivot label are the most natural functions to 

investigate our adoptive cases. As it is usual in EVB-MD simulations of PT in water, 
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population relaxations of the pivot label are the most appropriate stochastic functions to 

compute, since the jump patterns of the excess proton are simply a sequence of PT 

episodes, in a large number of cases in this work we may deal with “resonant” episodes 

where the proton resonates between two valence bond states having large ic coefficients 

of equation (3.12), the so-called “special” bond [75], including aborted transitions, 

represented by isolated spikes.  

 

The power of chart pattern recognition will be appeared at the last smooth chart so that 

plotting this chart with respect to time will represent a fitting chart and smooth chart, thus 

it will simply allow calculating the slope as  

 

  

k
PT
 lim

t


d lnC(t)

dt







                                                                                               (3.29)       

 

According to Onsager’s regression hypothesis [138] the proton transfer rate 
1  can be 

obtained as temporal decay of )(tc at long time span [141]. The span will be changed on 

click from the tool GUI until finding a reasonable value of rate. Correspondingly, average 

mean residence time of the proton in pivot water could be estimated from the following 

equation  

k PTrsd
1 .                                                                                                                    (3.30) 

 

3.3.3.2.3 Proton transfer dynamics: Diffusion coefficient of proton 

 

The diffusion coefficient of aqueous protons at ambient conditions is known to be 

approximately fourfold that observed for neat water. So, the experimental value is of 



A0.93 2/ps [142] for a proton diffusing in water at 298.15 K and at the density of 1gcm−3, 

whereas the value of the diffusion coefficient of bulk liquid water is of


A 0.23 2/ps [143]. 

The main reason for such an enhancement of the diffusion is well known and is based on 

the Grotthuss translocation mechanism [25], in addition to the usual hydrodynamic 
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Stokes mass diffusion. This scenario will be compared with our results based on the 

present output data of the MD+MS-EVB simulations, and our calculation of diffusion 

coefficients of aqueous protons pD that  obtained from long time slopes of mean square 

displacements of the proton coordinate pr , following Einstein's relationship [137]: 

dt

rtrd

imD
pp

t
p

2

)0()(
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1

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

                                                                                      (3.31) 

 

 

Where the proton coordinate was defined as a weighted sum of the coordinates of the L 

pivot molecules i

pvtr : 

i

pvt

L

i

ip rcr  2                                                                                                                 (3.32)  

 

The analyzing tool also provides a fitting function to allow automatically computing the 

diffusion coefficient of the proton .The user will simply compose the input file based on 

data set (Time, ppp Z,Y,X ), to calculate the mean square displacement and then test this 

file with neural network until getting a smooth chart to find the slope shown in the 

following function, 

 
dt

rtrd pp

2

)0()( 

,                                                                                                     (3.33)     

and then related pD  pattern. 

 

3.3.3.2.4 Proton transfer dynamics: Proton spectroscopy fitting function   

 

As mentioned before, the widest employed experimental tools for the study of the 

microscopic vibrations of water are Raman and infrared spectroscopy. Infrared spectra 

report properties such as the absorption coefficient, α (ω), or, equivalently, the imaginary 

part of the dielectric constant, )(   [134], which are of quantum nature. Such properties 

can be computed in our MD-EVB framework with the aid of an absorption line-shape 
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function I (ω), i.e., the Fourier transform of the time derivative of the dipole moment, 

)(t [144].However, these functions may include oscillations that eventually reduce the 

quality of the spectral densities obtained from MD. To cope with this issue our ANN tool 

provides a fitting function to allow computing an alternative observable, namely the 

velocity autocorrelation function of the lone proton 

(t)V(0)V(t)C ppp                                                                                                     (3.34) 

 

Where the proton velocity )(tvp  can be obtained directly from the time derivative of its 

position rp: 

dt

tdr
tV

p
p

)(
)(                                                                                                                 (3.35) 

Based on equation (3.22) and by means of the usual Fourier transform, we can then 

obtain the vibrational density of states )(pS  [130] given by the following equation  

 





0

pp e)(dtC)(S tit                                                                                                      (3.36) 

 

Therefore this tool will simply allow computing the )(pS for all slab widths considered 

along the present work based on extracting and fitting the related )(tVp data from the EVB 

simulation output files in order to create the required  chart pattern.  

3.4 Running the EVB pattern recognition tool 

 

Our new ANN tool could be easily running via its flexible GUI to control running the 

EVB simulation including its add-on ANN tools. Fig 3.6 presented the main window of 

the tool. Screen monitor appeared while running the EVB simulation. After setting the 

input file, at any time user can stop simulation. During the simulation the tool will 

continue plotting patterns step by step, at the end user can start data file re sampling from 

“tool menu”, to find pattern on charts and plot smooth charts, as shown in figure 3.7. 
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Figure 3.6: The main window of Ptransfer  

Figure 3.7: The main window of the ANN application, which is the add-on tool of EVB 

simulation (data filtering and re-sampling, data editor including and file manipulation). 
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From the GUI of the tool, the user could start training and testing the output data of the 

EVB code. Herein, ANN network had to be setup according to the user needs. Choosing 

the number of neurons as the number of possible classes in the data would be strongly 

recommended. User needs just to enter historical data as inputs and results (desired 

outputs) by browsing the saved output file from any computer directory (C, D, E…etc). If 

user wants a pattern recognizer, then he must use a column for each pattern in the desired 

outputs table as appeared in figure 3.8. 

 

 

Figure 3.8: Input data set, two files of training phase 

 

The user should use the “browse” button in the main screen to enter the two required 

input files to be trained after pressing “train”: file1 (input.csv), file2 (output.csv). Data set 

consists of two inputs (I1 and I2) and one output (O). Here there are some re-sampled data 

from the computed results of EVB output. But user can set the values based on his case 

study just to learn the network. Once the neural network would be trained, user could use 

new sets of data (test) to predict their possible results (outputs) according to what was 

learned in the training, as presented in figure 3.9. 
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Figure 3.9: Inputs files for testing phase insert them then press test 

 

On the other hand, as patterns and relationships between numbers are often easier to 

recognize when shown in a chart, this tool allows drawing charts simply by loading files 

from database with EVB output results to the main window of the tool on a right click, 

(see figure3.6). After re-sampling the required file of a large set of data, the user can set 

required fitting function ( )(tvp , )(ln tC , MSD,..., density fields...etc) on click, directly a 

new window will be open with presenting the required chart pattern to start analyzing 

data, for more accuracy user can change the ANN fitting parameters constant until getting 

a satisfied result as would be explained in the case study. The tool could be used for 

analysing one or several separated simulations as well as predicting (to be used in 

modelling larger PT simulation in future work based on the current historical data).   

 

3.5 Finding proton transfer chemical properties in aqueous environments based 

on the ANN method  

 

This section presents the using of ANN tool for solving a real problem, in this situation 

this required expanding the example that appeared in figure 3.1 and taking into account 

the tool structure diagram of figure 3.3 to see how it logically works and how to get better 

output results.   
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3.5.1  Physical Case study 

 

It is well known that confining environments, with characteristic lengths at the nanometer 

scale, are able to significantly change the equilibrium properties and dynamics associated 

with any reactive process in solution. In this regard, this case study will show how to 

provide the EVB simulation with clear chart patterns to analyze the structural properties 

and dynamics of solvation of an excess proton located in aqueous environments of pure 

water, in order to find the most important chemical propriety, the so called proton transfer 

rate.  We assume that this example could be repeated using another environments for 

predicting, e.g., strong acids and ionic solutions confined in different geometries, varying 

from hydrophobic to hydrophilic nature.  

 

3.5.1.1 Data statistics of model variables 

 

Variables Range                         

Input layer [A] 

 

Simulation Time [A1] 1 – 100000 fs 

Temperatures [A2] T=250, 273, 298 K 

Correlation function of Pivot water[A3] 1-300; data modification to reduce the size of 

data set of simulation time from 100000 to 300 

based on the number of tagged water 

molecular (i.e., 49, 64, 118…). 

Density [A4] 0.0333 Å-3 

Number of water molecules [A5] 125 to 400 

Output Layer  

Proton transfer rate                                                          could be any known experimental value 

 

 Table 3.1: Model variables for computing proton transfer rate. 
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This example is to run an  EVB simulation for a long simulation (105 fs) of time, for 

evaluating the proton transfer rate in a bulk of pure water with 125 water molecular at 

density 1 gcm-3 and three temperatures T=250, 273, 298 K based on using the new tool. 

User has to run the EVB for generating the output files for the three temperatures. These 

output files will be stored in the new tool data base to be used as an input of the ANN 

pattern recognitions tool, starting with composing the sample of input data with 

extracting and fitting the required data, simply on clicking the related icon from the main 

window of the tool, in this case )(ln tC will be the target.  

 

As we pointed out above, this statistical function could be defined as regularities in the 

output data of EVB in order to create the required chart patterns of proton transfer. The 

computed value of proton transfer rate in this case study was training and testing several 

times by changing the number of neurons in hidden layer, thus for achieving more 

accuracy during learning process, this constant has been changed randomly from 1 

neuron to 15 neurons using the main window after several runs. Then, another attempt 

could be done with using other constants. This allows training the modified data with 

different initial values of the hydronium label values in order to reach a suitable average 

data set. Figure 3.10 (a), presents three crowded chart patterns, figure 3.10. (b) presents 

results obtained for the dynamics of proton transfer and their conversion to a simple 

chart, by using new computational tools, comparing the two figures showed that smooth 

chart in figure 3.10 (b) are only a patterns of proton transferred “occurred”, which 

presents a clear behaviour with respect to time, that could be used to analyze proton 

transfer instead of using the unsophisticated chart of figure. 3.10(a). One additional 

feature is that the tool will allow drawing the three charts together with the experimental 

chart in single one chart, as shown in figure 3.10 (b).  
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Figure 3.10: Logarithm of population relaxations of hydronium label (pivot) at different 

water states along T=250, 273, 300 K. ρ=1.0 gcm-3; red dotted lines represented 

experimental tested data. 

 

3.6 Results and discussion 

 

Three layers ANN with a tangent sigmoid transfer function at hidden layer and one linear 

transfer function at output layer were used in the above case study to find the proton 

transfer rate. Eleven neurons were used in the hidden layer. Furthermore, this is not a 

fixed ANN structure and the tool will simply allow constructing any ANN structure from 

the main window following the variables of any other case study (e.g., 20 layers ANN 

with another activation function tansh…, etc). 
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3.6.1  Optimization of the ANN structure 

 

The optimal architecture of the ANN pattern recognition model in addition to its 

parameter variation was determined based on the minimum value of the mean square 

error (MSE) of the training as well as prediction set. MSE was defined 

as

2
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MSE . Where, MSE: mean square error; N: number of 

patterns; A: pattern index, 
At : Ath target value (experimental value), 

AO : Ath output, 
Ad : 

different between 
At  and 

AO . Figure 3.11 illustrates the dependence between the neuron 

number at hidden layer and MSE for the MLP back propagation algorithm. 

Figure 3.11: Dependence between MSE and number of neurons at hidden layer  

 

As a result, with increasing the number of neurons, the network gave several local 

minimum values in addition to different MSE values that were obtained for the training 

set.  One neuron was used as an initial guess in the hidden layer for optimizing the ANN 

network. The MSE of the network was much higher for the 1 (MSE 0.151) and 2 (MSE 

0.077) hidden neurons than those with 3(MSE 0.082), 4 (MSE 0.045), 5 (MSE 0.043) and 

6 (MSE0.038). With 7 hidden neurons, the MSE decreased significantly from 0.038 to 

0.0048. With a further increasing in the number of neurons from 7 to 11a gradual 
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decrease was observed in the MSE. The MSE reached its minimum value of (MSE 

0.000117) with 11 hidden neurons. For this reason, the ANN network containing 11 

hidden neurons (MSE 0.000117) was chosen as the best case. When the number of 

neurons exceeded 11, the MSE showed a slight increase from 0.000117 to 0.0012 at 13 

neurons. A sharp increase in the MSE was resulted from a further increasing in the 

number of neurons from 13 to 15. This growth can be attributed to the characteristics of 

the MSE performance index and the input vector [A] used in this case study. Here, the 

initial weights had an important role on learning but unfortunately no one could estimate 

the proper initially weights set and each attempt were started  the learning process again 

using  different random initial weights. Finally when the differences between training 

error and validation error started to increase, training was stopped after   iterations 1000 

for the MLP network.  

 

The flowchart of the MLP algorithm; together with this optimal 3 layers ANN network, 

were shown in figure 3.3 On the other hand a statistical analysis for estimating the 

relationships among input variables and network response between ANN graphical output 

of the network and the corresponding experimental data was performed as appeared in 

figure 3.10. The performance control of ANN graphical outputs was evaluated by 

estimating the correlation coefficient (R2) which was defined 

as:
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R  where,  R: correlation coefficient; N: number of 

patterns; A: index number of pattern; 
At : target value (experimental value); 

AO : output of 

Ath   pattern which proposed by ANN model. Therefore, test outputs showed a very small 

deviation in proton transfer rate values from the experimental data with an average value 

of about 0.12 (±0.19) where the proton transfer rates at three different temperatures was 

found to be 0.45, 0.47, 0.50 ps-1, obtained from a window between 1000 and 2000 fs, for 

250, 273 and 298 K respectively. Therefore it can be seen that the proposed ANN model 

shows a good performance on prediction of the experimental data based on R2 values in 

table 3.2. These results showed a good agreement with previous studies [139].  
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3.6.2 Sensitivity analysis 

In this work, a sensitivity analysis was conducted for determining the degree of 

effectiveness of a variable using the proposed ANN pattern recognition model. In this 

analysis, performance evaluations of various possible combinations of variables were 

investigated. Consequently, performance of the groups of (1, 2, 3, 4, 5) variables were 

tested here based on the optimal ANN structure by using the MLP with 11 hidden 

neurons. The groups of input vectors were defined in [A1, A 2, A3, A4, and A5] arrays, 

as shown in fig.3.3 and table.3.1. The groups were vary from groups of  1 to 5 variables 

with all expected combination probabilities , such as the  one variables group  (e.g., 

example, A1, A2, A3, A4, A5) ; groups of two variables, (e.g., A1+A2, A1+A3, A1+A4, 

A1+A5, A2+A3, A2+A4, A2+A5, A3+A4, A3+A5, A4+A5); group of three variables ( 

e.g.,  A1+A2+A3, A1+A2+A4, A1+A2+A5, A1+A3+A4, A1+A4+A5,A2+A3+A4, 

A2+A3+A4, A2+A3+A5, A2+A4+A5, A3+A4+A5), group of four variables  (e.g., 

A1+A2+A3+A4,  A1+A2+A3+A5,  A1+A2+A4+A5, A1+A3+A4+A5, A2+A3+A4+A5), 

and finally the group of five variables( e.g., A1+A2+A3+A4+A5). Then best results of 

the performance evaluation of these 30 combinations are summarized in table .3.2  

 

Combination MSE R2 Iteration Gradient Best linear 

equation 

    A2 82.456 0.832 1000 910923.2   6.2369.0  XY  

A2+A3 0.1174 0.858 800 1410122.3   3.979.0  XY  

A1+A2+A3 0.05631 0.919 780 1410831.3   3.1571.0  XY  

A1+A2+A3+A5 0.02921 0.921 900 810321.6   4.1184.0  XY  

A1+A2+A3+A4+A5 0.000011671 0.949 1000 1010398.0   8.797.0  XY  

 

Table.3.2 Best group performance according to number of parameters: Gradient: is a 

formula used to update the search direction in internal parameter space. For more details 

see Ref. [145]. 
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Performance evaluation of combinations of input variables showed a good agreement 

between ANN output and experimental data as a function of temperature [A2] when it 

comes to group of one variable that gives the lowest MSE. The temperature A2 and 

correlation function of pivot A3 was the best combination of two variables to affect the 

proton transfer rate computed value, it was very close to the experimental value with a 

minimum MSE in the group of two variables  that was determined to be MSE=0.1174. As 

for the constant density it presented no effect in the results, in which predicting the proton 

transfer rate will not be possible based on water density a lone A4, but also it will have a 

clear effect in the group of 5 variables. The minimum MSE in the group of four variables 

(A1+A2+A3+A5) was determined to be 0.02921 with no effect of density A4.  For 5 

operating variables (A1+A2+A3+A4+A5 ) ,the proposed ANN pattern recognition model 

showed a precise and an effective prediction of the experimental data with a very  

satisfactory correlation coefficient of 0.949 with a very small MSR of  0.000011671. The 

sensitivity analysis showed that MSE values decreased as the number of variables used in 

the ANN model increased. The relative increases in the performance due to inclusions of 

A2 (temperature) were found to be larger than the contribution of others.  For concluding, 

a simulation based on the ANN model can provide a further contribution to develop a 

better understanding of the dynamic behaviour of proton transfer process where still some 

phenomena cannot be explained in all detail but by some meaning the effect of these 

variables will explain the physical meaning of the phenomena. These results showed a 

good agreement with literature studies results such as [89,145]. Which confirm what 

already known about MLP networks behaviour, subsequently, this will confirm the fact 

that a pattern recognition problem of proton transfer could be well solved by using the 

feed-forward back-propagation neural network approach. In this regard, it is noteworthy 

to mention that this phenomenon had been the main topic of many previous studies based 

on developing such ANN applications  [14,15,103], but each study has its particular 

objectives and it is targeting some specific chemical characteristics, usually others than 

those we have been adopted here (e.g., proton transfer rate) but all of these studies 

including the current study, agreed on the importance of the use the ANN neural network, 

in solving the problem of nonlinearity relationship between input variables and the 

required output. Therefore, the current proposed tool is expected to be used as a 
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supplementary material in analyzing the proton transfer phenomena and would help 

researchers in making their decisions toward this phenomenon using the EVB simulation 

based on automatically charts fitting and drawing of the large output file in one 

workstation via a flexible GUI.  Furthermore, any user can use this tool simply following 

its manual, without having to learn the theory or programming languages to start 

analyzing his data and reported the scientific findings.   

3.7 Summary and Conclusions 

 

An overview of theoretical background at the basis of the techniques we used to study the 

PT process in water has been given, with a detailed explanation of the state of art of the 

use of the ANN techniques in supporting the theoretical investigation of PT based on MD 

and Ms-EVB. The main structural, dynamical, and properties computed in this thesis 

from ensemble averages were also summarized. Herein we have adopted the evaluation 

of the use of AANs methodology in the classification of PT events and chart patterns, 

thus to facilitate the theoretical modeling process by using these simulation methods 

along with to overcoming their limitations and allowing statistical filtering of the data 

along with the predicting of the PT dynamics in aqueous environments and for finding PT 

chemical properties in aqueous environments. The second part of the chapter showed that 

how this study was successfully produced a flexible utility program to simplify the 

studying of proton transfer phenomena via using the EVB simulation based on ANN tool. 

The chapter presented the computational framework as a utility program consists of a 

flexible GUI in addition to a pattern recognition tool supported with easy to use data base 

system. The ANN tool could be run under several operating systems (Windows, UNIX, 

LINUX, MacIntosh) without the need if installing supplementary and computer 

configuration software’s. The tool can simplify plotting and re-sampling as well as data 

statistical fitting and mining based on the EVB output files and now it can be used as a 

supplementary tool for analyzing the proton transfer phenomenon in several aqueous 

environments and accessing to its deeper physical knowledge with predicting PT 

properties.  
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The new linked tool defined a chart pattern recognition tool as a deployed system for the 

classification of proton transfer data patterns as well as categorizing them into predefined 

set of classes based on the EVB generated output files to be trained and tested using the 

feed forward back propagation algorithm that would repeat the procedure of weight 

adjustments until the error would be reduced to the negligible amount to reach the error 

tolerance range. Therefore, using feedback information obtained from the difference 

between the actual and the desired result could increase the performance and the 

efficiency of the ANN network. This information would then be used for adjusting the 

interconnections between the neurons at the input layer for matching the actual result 

with the desired one. The ANN method substantially speeds up the MS-EVB PT structure 

calculations and has superior accuracy in mimicking the results of such calculations. Our 

ANN- EVB add on tool has simplify our PT analysis of the microscopic dynamics of 

liquid water and amorphous ices. Our analysis through the thesis were carried out by 

performing semi-classical molecular dynamics using the multistate empirical valence 

bond method, already largely applied to investigate PT process in water. The artificial 

neural network approach along with statistical methods is then employed for modelling as 

well as analyzing the PT properties we were interested in. So we can use it to present 

structural and dynamical properties of the solvated proton in confined and unconfined 

environment. This application has been tested for predicting chemical properties for 

future studies; in the meantime it could be used for data statistical fitting and pattern 

recognition based on separated simulations to facilitate analyzing the output data of the 

EVB simulation. Our results in turn proved to be fully compatible with previous proton 

transfer studies. We strongly recommend researchers in this field to make use of this 

simple and powerful ANN tool. 
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4 EVB-Molecular dynamics simulations  

Despite being a ubiquitous element in the chemical physics of solutions, it was not until 

recently that the structure of aqueous protons was properly understood. This was largely 

the result of a series of computer simulation experiments that were able to reveal the 

structural characteristics of PT. Thus, there is a general consensus to describe the aqueous 

proton in terms of a “default” within the three-dimensional network of hydrogen bonds of 

water. Hence, dynamics of the proton is regulated by the control of the hydrogen-bond 

network. The temperature and, more specifically, the thermodynamical state of the 

system play a central role both on structure and location of the proton species and also on 

dynamics of the PT. Whereas plenty of information about PT in liquid water and in 

biomolecular systems at ambient conditions is available [146], its characteristics at low 

temperatures, such as in supercooled states, for the wide variety of ice classes and for 

high- and low-density amorphous ices is still largely unknown. Given the complexity of 

the phase diagram of water [147], studies of structure and dynamics of aqueous lone 

protons are usually reported for restricted regions of the diagram. For instance, proton 

arrangements in ice I were studied by means of dielectric relaxation and infrared 

spectroscopy and analyzed by Von Hippel [148].  

 

Recently, a work based on multistate empirical valence bond calculations on PT in one-

dimensional water chains confined in carbon nanotubes confirmed early results from 

Hummer et al. [149] and revealed that the rate of PT inside the tubes was one order of 

magnitude faster than in bulk [150].  On the other hand, ab initio molecular dynamics 

simulations of water inside nanotube channels [149, 151] have revealed different 

mobilities for hydroxide and hydronium ions inside the tubes, depending on the size of 
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the tube and the degree of functionalization of the tube walls. A very recent work [152] 

reports proton transfer within graphene layers when surrounded by water. Protonated 

water clusters also provide very valuable information toward understanding proton and 

water properties at interfaces. First, characteristic signatures of Zundel and Eigen species 

have been revealed by photoevaporation of weakly bound argon in photofragmentation 

mass spectroscopy and compared to ab initio data at MP2 level [8, 9], with reasonably 

good agreement in most cases. Second, infrared spectroscopy of protonated benzene-

water nanoclusters [153] indicated a local ordering of the first water shell around the 

proton induced by the interface. Very recently, Wang and Agmon [154] have analyzed 

the balance between dominant structures around the protonated water dimer in water-

benzene mixtures, with a clear predominance of a so-called crouching Zundel isomer, 

symmetrically attached to a benzene ring. 

 

The main purpose of this chapter is to report our results in comparison with those 

presented in the literature, based on analyzing the structure and dynamics of an excess 

proton in liquid water under two aqueous systems: (unconfined-bulk and confined-inside 

graphene slabs) following different geometries in the nanoscale along with wide range of 

temperatures ranging from ices to liquid water up to sub-critical high-temperature states 

analysis. Our results and discussions of PT will be reported in this chapter as summarized 

in table 4.1. 

 

We employed MD simulations together with a multidimensional empirical valence bond 

procedure, in order to construct a suitable Hamiltonian for the semi-classical system; 

formed by a quantum particle (the lone proton) embedded in a sea of classical TIP3P 

waters. The artificial neural network approach along with statistical methods is then 

employed to work as supplementary computational tool to simplify modeling as well as 

analyzing the PT properties we are interested in. These PT properties will be shown in 

this chapter based on different chart patterns related to different physical cases with 

referring to the related fitting function as defined in Chapter 3. 
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Table 4.1: Summary of the results 

 

In a first step, we will analyze the case of proton transfer in liquid water and low-density 

amorphous ices without confinement, to later move on to simulate the proton transfer in 

Aqueous 

Systems 

Systems 

consists 

Numb

er 

Proposed 

analyzing 

Calculated quantities : Dynamical 

parameters for the aqueous protons 

 

Unconfined-Bulk 

3D water 

 

 

 

 

(1) a 

quantum 

particle 

(excess) 

proton) 

 

 

 

1 H+ 

 

Local 

structure of 

the excess 

proton and of 

solvating 

water 

molecules 

The local pivot-water density profiles (3D). 

The oxygen pivot )( *

zO z-position at 

different slab widths. 

)(* rO  ; and iC coefficients of equation 

(3.12). 

 

Confined-inside 

graphene slabs-

2D water 

 

(2) a 

classical 

bath (liquid 

water or 

amorphous 

ice) 

 

125 

water 

molec

ules 

 

Dynamics of 

proton 

transfer 

 

Proton Transition rate 
1  including 

resonant time rsn , intermediate time prs and 

residence time rsd . 

Proton diffusion pD . 

Proton spectroscopy )(pS  based on 

proton velocity )(tv p . 

Temperatures  

(K) 

 (100, 150, 200, 225, 250,273, 298, 400,500, 600).  

Graphene slabs 

width of (nm) 

3.1, 2.7, 2.3, 1.9, 1.5, 1.1, 0.9, and 0.7. 

Simulation   In 3D: (1) constant density and volume, different T’s; in 2D: (1) different slab 

widths at 300k, (2) different slab widths at different T’s; in all cases simulation time 

is 100 ps.  

Hydrophobic walls: flat graphene slabs. 

Computing Tools MD,MS-EVB,ANN 
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liquid water confined inside hydrophobic graphene slabs at the nanometric scale (with 

interplate distances between 3.1 and 0.7 nm wide). The analysis of the effects of 

confinement on proton solvation structure and on its dynamical properties has been 

considered for varying densities between 0.07 and 0.02 A-3. The system is organized in 

one interfacial and a bulk-like region, both of variable size. A wide range of 

thermodynamic states, from low density amorphous ices (down to 100 K) to high 

temperature liquids under the critical point (up to 600 K) has been also considered. The 

chapter splits into two key sections. Section (4.1) reports the results of analyzing the 

local structure of the hydrated proton. On the other hand section (4.2) reports the results 

of analyzing proton transfer dynamics. Each section has its two main subsections based 

on the nature of the aqueous system followed by the chapter conclusion and remarks. 

Herein, our discussion in each section will start with the related investigations on 

unconfined water which is a first step into the study of PT in two-dimensional systems.  

4.1  Local structure of the hydrated proton 

4.1.1  Unconfined-Bulk water  

 

Figure 4.1: Snapshots of local configurations around the pivot water (oxygen in blue) at 

different thermodynamic states (left to right): T = 150, 225, and 298 K. Only water 

molecules having largest coefficients iC (typically 20–30 molecules) are explicitly 

shown. 
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In order to initially understand the solvation structure of proton, we introduce snapshots 

of the local water structure at several different temperatures as shown above in figure 4.1.  

 

There we have only included, for the sake of clarity, those molecules having the largest 

weighting coefficients iC from equation (3.12) (of the order of 20 molecules), which 

usually are the water molecules of the first and second solvation shells of the 

instantaneous hydronium species.  From this picture we can have a first direct indication 

of the fact that the local environment of the proton (first water shell) is essentially the 

same in all cases, namely a three coordinated Eigen cation, although the general structure 

of the local cluster may be quite different for the three temperatures considered. We 

observe, for instance, that as temperature decreases the local environment of the proton 

becomes more localized, with a closer first solvation shell. We will analyze microscopic 

details of solvation by considering the local pivot-water density fields )(* rO  . Spatial 

correlations of oxygen pivot-oxygen water sites are shown in top panel at left side of 

figure 4.2. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Oxygen pivot (O*)-oxygen solvent (O) site-site pair correlation functions at 

different thermodynamic states (top left). Oxygen pivot (O*)-hydrogen solvent (H) 

(bottom left). Oxygen-oxygen pair correlation functions (top right), oxygen hydrogen pair 

correlation functions (bottom right). 
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Interestingly, structures of the pivot-oxygen profiles are dominated by a first solvation 

shell located at r = 2.5


A , including three or four acceptor water molecules, being 

essentially the same at all temperatures. Those similar local structures reveal that the 

proton is able to promote a considerable extent of solvent clustering in its close vicinity at 

low temperatures in ice ambients in a close fashion to what is seen at ambient conditions. 

Moreover, the presence of a second shell located at 


A 4.5 =r  is also clearly perceptible 

in all thermodynamic states investigated. These molecules correspond to the second 

solvation shell of the hydronium, and some of them may act as hydrogen bond acceptors 

or donors with respect to the inner ones. As temperature decreases, the position of such 

second shell waters tends to move at lower distances, from  A 4.6


  at 298 K to  A 4.2


  

at 100 K. The local cluster tends to become smaller as temperature goes down. This 

promotes a larger extent of water localization in a similar fashion as it happens in cubic 

ice [80, 81], since packing and ordering is common for solid-like states, instead of the 

typical tendency to disorder of liquid-like states. 

The analysis of the oxygen pivot-hydrogen water profiles is shown at the bottom panel at 

left side of figure 4.2 and it provides complementary information. Here, in all cases, we 

found main peaks located at


A3.15r  . At low temperatures, these peaks include 

exclusively the six hydrogen atoms corresponding to the water molecules belonging to 

the first solvation shell; as temperature increases the number of hydrogen atoms included 

in the first peak raises to 9 . An analysis of the connectivity of these new hydrogen 

atoms reveals that, typically, two of them belong to molecules from the second shell 

acting as hydrogen bond donors to the inner ones. At 100 K, we observe how the 

structure of water hydrogens around the pivot oxygen enhances and reveals three maxima 

at 5.2 4.3, , and 


A6 suggesting a tendency of the system to evolve towards a more 

ordered solid-like configuration. We finally remark that, regardless the temperature 

investigated, we found no evidences of pivot acceptor hydrogen bonding of the type O–

H· · · O. As we will discuss in the following sections, these observations concerning the 

hydrogen bond connectivity may have relevance in determining the mechanisms that 

drive the transfer of the proton.  
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At the right column of figure 4.2 we displayed the oxygen-oxygen )(rOO  and oxygen-

hydrogen )(rHO  radial density fields. The locations of the main peaks are in overall 

good agreement with the findings of Botti et al. [155] (Figure 4.2) obtained from neutron 

diffraction experiments of HCl dissolved in water, which indicates that the local water 

ordering due to the presence of the lone proton is not qualitatively different of that 

produced by protons of strong acids like HCl, where Zundel and Eigen structures 

solvating a lone proton in water survive to the influence of large anions such as chlorine 

[156].Interestingly, up to three-four water layers can be observed in the O-O and O-H 

profiles for temperatures corresponding to LDA ices, which indicates that in such 

systems solid-like structures tend to appear. 

4.1.2 Water Confined-inside graphene slabs 

4.1.2.1 The effects of confinement on the local structure of the hydrated proton 

We report snapshots of the local proton structure for three different widths of the slab (d 

= 3.1, 1.5, and 0.7 nm) in Fig. 4.3. As we did above we just included, for the sake of 

clarity, those molecules having the largest weighting coefficients iC from Eq. (3.12) (22 

molecules for d = 3.1 nm, 14 for d = 1.5 nm, and 8 for d = 0.7 nm), which are molecules 

belonging to the first and second solvation shells of the instantaneous hydronium 

(“pivot”) species. Visual inspection gives a first direct indication on how the local 

environment of the proton is organized.  

So, at large interplate distances the proton is found at the central part of the system, with 

the number of diabatic states being quite large, very similar to the case of the 

unconstrained solvated proton [2] as explained in section 4.1.1. As the graphene plates 

are placed closer, the number of diabatic states decreases and the number of water layers 

potentially involved in PT drops to two (d = 1.5 nm) and to roughly one (d = 0.7 nm). 

The lone proton shows a clear tendency to stay close to the interface, as we will point out 

with more detail below. In summary, the general structure of the local cluster is 

dramatically affected by the presence of the graphene plates, which force the system to 

become quasi-two-dimensional. 
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Figure 4.3: Snapshots of local configurations around the pivot water at different slab 

widths (top to bottom): d = 3.1, 1.5, and 0.7 nm. Only water molecules having largest 

coefficients Ci (typically 20–30 molecules) are explicitly shown. Carbon atoms (cyan), 

oxygens (red), hydrogens (white), oxygen (blue). 

 

To evaluate the location and mobility of the proton species, we computed oxygen pivot 

(O*) z position at different slab widths, between d = 3.1 and 0.7 nm, for a time interval of 

50 ps. The results are reported in figure 4.4.  
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Figure 4.4: Oxygen pivot )(O* z  position at different slab widths, between d = 3.1 and 

0.7 nm. Here 0*

0 z  corresponds to the center of the slab. d =3.1 nm (full red line); d 

=2.7 nm (dashedgreen line); d = 2.3 nm (dotted blue line); d = 1.9 nm (dot-dashed orange 

line); d = 1.5 nm (brown squares); d = 1.1 nm (magenta triangles); d = 0.9 nm (violet 

diamonds); d = 0.7 nm (cyan stars). 

 

There we observe that  in the equilibrated system the lone proton shows a tendency to be 

transferred in a set of z values ranging from 0.85 to 1.5 nm for the widest slab (d = 3.1 

nm) to values fluctuating around 0.2 nm for the narrowest case (d = 0.7 nm), where 

resonant episodes (see below) are hinted. This indicates the tendency of water to mainly 

diffuse along the XY plane, when constrained inside a narrow slab. This was already 

observed for pure water (with no presence of an excess proton) close to a graphene wall 

[157]. For systems including a lone proton close to hydrophobic interfaces, lateral 

diffusion of the proton has been observed in membranes made by n-decane molecules 

[158] together with the well-known high affinity of the proton for the membrane water 

interface and also high proton mobility. 
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Oxygen pivot-oxygen water density profiles are shown in the top-left panel in figure 4.5. 

In all cases, the first solvation shell of the proton is centered at r = 2.4


A . This value was 

already found for unconstrained water at low temperatures in section (4.1.1) [2]. From 

this information we can observe that the solvent clustering promoted by the proton is 

strong enough to be barely affected by confinement. In other words, the dynamical 

equilibrium between Zundel dimer and Eigen cation structures will likely remain in 

confinement up to a large extent. However, for graphene-graphene distances  1.1d nm 

the height of the first maxima is reduced. About the second shell around the proton, its 

center is located at shorter distances as d decreases (about 4 


A  instead of 4.5 


A  for the 

unconstrained case). At shortest distances such as d = 0.9 and 0.7 nm marked oscillations 

of the second shell maxima are seen. This indicates that local clusters tend to become 

smaller as the two graphene plates become closer. This promotes a larger extent of proton 

localization in a similar fashion as when proton is at the air-water interface [159]. The 

analysis of the oxygen pivot-hydrogen water profiles is shown at the bottom panel at the 

left-hand side of figure 4.5 and it provides complementary information. Here we found 

main peaks located at r = 3


A  (first) and r = 5 


A  (second) for the unconstrained system, 

which are reproduced when the interplate distances are over 1.1 nm. The values are in 

overall agreement with diffraction data obtained by Soper and coworkers [155] for a 

concentrated HCl aqueous solution. When d = 1.1 nm is reached, the position of the 

second maximum tends to shift backwards, up to be located around 4.75 


A for the case of 

d = 0.7 nm, favoring higher proton localization. At large slab widths these peaks include 

exclusively the six hydrogen atoms corresponding the water molecules belonging to the 

first solvation shell; as width decreases the number of hydrogen atoms included in the 

second shell tends to be significantly smaller as indicated by short second-shell peaks 

and, especially, by the clear tendency of the first minimum to disappear. This suggests 

the gradual destruction of the HB network connecting the first and second coordination 

shells of the lone proton as the interplate distance decreases. The density profiles of 

oxygen-oxygen )(rOO  and oxygen-hydrogen )(rHO  (right-hand side of figure 4.5) 

concern the HB connectivity and will have relevance on the mechanisms that drive the 

transfer of the proton. At the first sight, we can distinguish interfacial and bulk-like 
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regions. The latter becomes highly fluctuating at low interplate separations (0.7 and 1.1 

nm). The locations of the main peaks are in overall good agreement with the findings of 

Botti et al. [155] for the unconstrained case. As the interplate distance is reduced, 

maxima corresponding to the second peaks tend to mess up and move to intermediate 

values, suggesting that as the system is compressed along the Z axis it gradually becomes 

a quasi-two-dimensional water layer. As described in Ref. [160], the HB network is 

distorted and eventually broken, at least partially. 

 

 

Figure 4.5: Oxygen pivot (O*)-oxygen solvent (O) site-site pair correlation functions at 

different states (top left). Oxygen pivot (O*)-hydrogen solvent (H) (bottom left). 

Oxygen-oxygen pair correlation functions (top right), Oxygen-hydrogen pair correlation 

functions (bottom right). Unconstrained water (black circles); d = 3.1 nm (full red line); d 

= 2.7 nm (dashed green line); d = 2.3 nm (dotted blue line); d = 1.9 nm (dot-dashed 

orange line); d = 1.5 nm (brown squares); d = 1.1 nm (magenta triangles); d = 0.7 nm 

(cyan stars). 
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4.1.2.2 The effects of temperature and confinement on the local structure of the 

hydrated proton  

To provide a visual perspective of the local structure of the protonated water, we report 

selected snapshots of molecules around the lone proton as shown in figure 4.6 having the 

largest weighting coefficients iC of equation (3.12) (of the order of 15-25 molecules) for 

the intermediate distance d = 1.5 nm at temperatures of 100, 300 and 500 K. From this 

picture we can observe that the proton together with its local environment (first water 

shell) mostly consist of a three coordinated Eigen cation, which keeps the proton 

separated from the graphene layers. We couldn't find any configuration where the 

hydronium was in direct contact with the surface. Conversely, for the closest d = 0.7 nm 

case, some configurations of the proton show it in direct interaction with the carbon 

walls, where as for the d = 3.1 nm case, the local structure is more populated and the 

proton tends to be around the central part of the system (see figure 4.3). 

 

 

 

Figure 4.6: Snapshots of local configurations around the pivot water confined inside the 

graphene slab 1.5 nm wide at different thermodynamic states (left to right): T = 100, 300 

and 500 K. Only water molecules having largest coefficients iC (usually 15-25 

molecules) have been shown. 
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On the other hand figure 4.7 presents the density profiles of oxygen-oxygen )(* rOO   (in 

the left side panels) and pivot oxygen-hydrogen )(* rHO  (the right side panels). 

 

 

Figure 4.7: Pivot oxygen-solvent oxygen density felds (left side) and pivot oxygen-

solvent hydrogen density fields (right side) at different thermodynamic states. Interplate 

separations: d = 3.1 nm (top figures); d = 1.5 nm (middle figures) and d = 0.7 nm (bottom 

figures). 

 

From the former we can distinguish a marked first solvation shell centered 

around  2.4 =r 


A  for all interplate distances with a slight tendency to increase 

localization as d decreases. The location of this maximum is in good agreement with the 

findings of Bankura and Chandra [66]. This fact indicates that the proton is able to 

promote a remarkable extent of solvent clustering in its close vicinity, regardless of the 
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temperature considered, from ice-like ambients to high sub-critical temperatures, in a 

close fashion to what is seen at ambient conditions for the unconstrained case (see section 

4.1.1). A second solvation shell located at 4.25 =r 


A  at ambient conditions for the 

widest graphene channels (d = 3.1; 1.5 nm) can be also observed for the low temperatures 

but it quickly disappears above 300 K. This is consistent with the picture of the lone 

proton loosing most of its hydrogen-bond connections to waters potentially participating 

of a second coordination shell. In the particular case of d = 0.7 nm, the distance between 

the two plates is so short that there is only room available for two water layers, eventually 

distorted from planar configurations. Such strong confinement effect of the graphene 

plates produces some reduction in size of the water second coordination shell at all 

temperatures, eventually shifting towards lower distances, centered 

around 4-3.8 =r 


A . This indicates that the local cluster around hydronium tends to 

become smaller as confinement becomes more important. This larger extent of water 

localization is similar to the case of cubic ice and of unconstrained amorphous ice 

(section 4.1.1). 

 

Analysis of the oxygen pivot-hydrogen water density profiles is based on )(* rHO    at the 

right side of figure 4.7. Here, in all cases; we found main peaks located around 3 =r 


A , in 

a close fashion as it was recently reported from ab-initio and quantum-classical 

simulations [66]. As a general trend the height of this peak diminishes as temperature 

increases. At the lowest temperature such peak includes exclusively the six hydrogen 

atoms contained in the first solvation shell of the hydronium. As temperature increases 

the width of this band becomes larger (the first minimum shifts by 0.25 =r 


A  and the 

averaged number of hydrogen atoms indicated by coordination numbers raises 

to 109 . At 100 K the structure of water hydrogens around the pivot oxygen enhances, 

suggesting a tendency of the system to evolve towards a solid-like configuration for all 

considered interplate distances. Finally, we didn't find any evidence of pivot acceptor 

hydrogen bonding of the type O...HO , formed by means of the lone sp3 orbital of the 

acceptor oxygen, in the usual way of most of studies of confined water. 
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4.2 Proton transfer dynamics 

4.2.1 Unconfined-Bulk water 

4.2.1.1 Population relaxations and proton transfer rate 

 

We will start analyzing the nature of the proton transfer dynamics in liquid water and ices 

by direct inspection of the time evolution of the pivot oxygen label during 50 ps time 

intervals, as shown in figure 4.8. Seven representative temperatures (100, 125, 150, 225, 

250, 273, and 298 K) are shown, but the effect of temperature on the frequency of proton 

transfer episodes is directly seen, by simply counting the number of transitions in the four 

plots: At T = 298 K (bottom panel), approximately  25-20 water molecules retain the 

pivot label during time intervals of the order of 0.5 ps or longer, roughly delivering a 

transfer time of 0.4–0.5 ps−1. That number is at least fivefold smaller as we move to ice-

like temperatures, keeping the density constant. A few PT can be still seen at 150 K and 

even one of them has been captured at 100 K (given the short time interval considered 

here). We should point out that the predicted rate of transfer at ambient conditions is a 

factor 8  larger than the one inferred from results of NMR experiments [161–162], 

being that this a well-known deficiency of the semi-classical picture adopted here; 

moreover, the explicit incorporation of quantum fluctuations in the transferring proton 

yields a better agreement with the experiments, leading to rates at least twice as large as 

the semi-classical ones [74].The overall jump patterns look quite similar in all 

thermodynamic states and can be regarded as a sequence of episodes in which the proton 

resides in one water during a few ps, interrupted by intervals in which the proton 

resonates rapidly between two valence bond states, establishing what is usually called a 

“special” bond [75]. Some few isolated spikes reveal single attempts of aborted 

transitions in all cases. The crude picture provided above may be substantially improved 

using fitting functions from our ANN application. To do this, we will need that in all 

cases proton transfers were sufficiently frequent to collect statistics without employing 

special techniques designed to analyze rare events dynamics, such as transition path 

sampling or other importance sampling schemes [125]. Results for the population 

relaxation of the pivot label are shown in figure 4.9. 
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Figure 4.8: Time evolution of pivot-oxygen labeling in different aqueous environments; 

from liquid to LDA ice systems (top to bottom). 
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Figure 4.9: Logarithm of the population relaxations for the pivot-oxygen label at different 

thermo dynamical states. Linear fits between 1–2 ps are represented by dashed lines. 
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Figure 4.10:  Logarithm of proton transfer rates kp as a function of inverse temperatures. 

Straight lines represent the best linear fits for different temperature ranges: overall (red 

line); between 298 and 225 K (green line); between 225 and 175 K (orange line); and 

between 175 and 100 K (blue line). The results for the thermo dynamical states 

considered in this case are reported in Table 4.2. 
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Table 4.2: Dynamical parameters for the aqueous protons at different thermodynamic 

states: proton transfer rates
1

rsd , residence time  rsd , and diffusion coefficient of the 

lone proton D . 

 

The general trend is a systematic slowdown of proton dynamics when the system is 

cooled down to LDA ice states: proton transfer rates decrease and, equivalently, the 

estimated residence time’s  rsd increase. The comparison to other simulation works 

reveals a good overall agreement with findings from Day et al. [67], who obtained a 

value for the proton transfer rate of 0.3 ps−1 at room temperature (300 K), for an EVB 

model different of the one used in the present work. In the case of cubic ice, it was 

observed [80, 81] that the ratio between PT rates of liquid and ice phases is about a factor 

2. This fact was attributed to the larger extent of localization and alignment of the 

*OO  pairs, which would be at the basis of the PT mechanism in ices. In our case, 

when cooling down the system PT rates tend to decrease, following a monotonic behavior 

and showing a tendency to satisfy an Arrhenius-like dependence (see figure 4.10) with 

some clear deviations. Hence, assuming the following dependence of the proton transfer 

rate with temperature: 
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TK

E

p
B

k

Aek                                                                                                                   (4.1) 

Where A is a proportional factor and 
Bk  is Boltzmann’s constant, we can obtain an 

estimation of the PT activation energy kE . Given the slope of the straight line shown in 

the Arrhenius plot of Fig. 4.10 (red line), we get a value of kE  = 3.2 kJ/mol for the 

overall linear fit to the whole set of values. This is in qualitative good agreement (order 

of magnitude) with the 10 kJ/mol obtained by Moon et al. [163,164] by means of a 

reactive ion scattering technique for the activation energy of PT at the surface of 

polycrystalline ice film, prepared at 135 K. Therefore, PT is an activated process at low 

temperatures and it requires surmounting an energy barrier of quite important magnitude. 

When the process of PT is mediated by hydroxide ions, the energy barrier has been 

measured at 9.6 kJ/mol [83]. It should be noted that at the different subintervals of 

temperatures (between 298 and 250 K, from 225 up to 175 K and from 175 to 100 K) 

different slopes can be obtained, revealing different behavior when the system is at liquid 

phase, which undergoes the phase transition from liquid to LDA ice and at the LDA ice 

phase (in all cases at temperature ranges different from experimental data, because of the 

present water model). A fine tuning of the slopes is also shown at each range. At the 

liquid phase (green line), we get an estimated activation energy of 12.8 kJ/mol, at the 

interval between 225 and 175 K the value is just of 0.6 kJ/mol and at the LDA ice phase, 

we get about 3.4 kJ/mol. We should note that Luz and Meiboom [165] obtained10 kJ/mol 

for the activation energy of PT in pure water between 288 and 348 K from proton 

magnetic relaxation measurements, in excellent agreement with the 12.8 kJ/mol reported 

here in the range of 250–298 K. 

 

In conclusion, the largest energy barrier to surmount for the proton corresponds to the 

liquid phase and the lowest to the range 225 to 175 K. This suggests that the slowdown of 

PT at low temperatures is mainly due to the lack of thermal energy, since the energy 

barriers are lower than at high temperatures, probably due to the higher degree of 

localization of the proton, as we can note from figure 4.3, where LDA ice has a local 

structure richer than that of water at ambient conditions, with 2–3 water layers clearly 

distinguishable. 
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Some years ago [26], the existence of a direct relationship between the likeliness of PT 

and the distance between oxygens of solvating water molecules was suggested. At small 

distances, if the lone proton is equally shared by two waters (Zundel dimer) it 

corresponds to a minimum in the external potential of the proton along the O-O axis. 

 

However, if the proton is closer to one of the waters, the potential shows a maximum. 

Nevertheless, it was indicated [26] that the correct picture should be given by a two 

dimensional potential depending on at least two variables: OOR   and the proton 

displacement coordinate. Indeed the consideration of multidimensional reaction 

coordinates for water autoionization was already suggested by Geissler et al. [16]. In our 

case, the connection between O-O distances and activation energies for PT would be in 

agreement with the simple description pointed out above, since states with lowest 

activation energies (between 225 and 175 K) are those showing O-O distances smaller 

than the corresponding ones at liquid states (see figure 4.5, left side). 

4.2.1.2 Diffusion coefficient of proton 

 

Results for the diffusion coefficients are shown in figure 4.11 and numerically reported in 

table 4.2. Two important features should be discussed: (1) The general trend of the proton 

mobility is a neat reduction from A 0.94 2 /ps at room temperature to lower values of 

about one order of magnitude smaller at 100 K. pD at 298 K is in overall good agreement 

with previous works [137] and in excellent agreement with the experimental value 



A 0.93 2/ ps [143] (this may be fortuitous). (2) The simulation results also predict the 

qualitative changes observed experimentally in hexagonal ice networks [148], where the 

mobility of protons is due to collective effects, affecting the diffusive regime of the 

proton and turning it from a highly mobile solute at ambient conditions into a much 

slower particle at lower temperatures, with transport properties very much akin to those 

of a prototypical cation of small size, such as Li+, whose diffusion coefficient is of the 

order of 0.1 


A 2/ps  at 298 K [142]. Again proton diffusion can be regarded as an 
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activated process (see linear fits in figure 4.11), but in this case the overall activation 

energy (red line, 5.1ED kJ/mol) is very far from experimental findings reporting 

activation energies of water self-diffusion, between 14 and 70 kJ/mol for water at ice 

surfaces and in bulk, respectively [164]. The fits at the two phases reveal slightly higher 

activation energy at the liquid phase (blue line, about 2.9 kJ/mol vs. 1.5 kJ/mol for LDA 

ices, green line). 

 

 

 

Figure 4.11: Logarithm of diffusion coefficient of proton pD  as a function of inverse 

temperatures. Straight lines represents the best linear fits, for liquid states (blue line), 

LDA ices (green line), and overall (red line). 

 

The qualitative change in the results for the diffusion constants suggests that the role of 

the Grotthus mechanism as a key factor to determine the abnormal, high conductivity of 

the proton should become less important at low temperatures. A crude estimate of this 

contribution is normally obtained using simple random walk arguments: results from the 
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proton transfer rates show that at ambient conditions the proton jumps a characteristic 

OO   distance, say


A5.3OOd , every 2  ps. During this time interval, the center of 

mass of a water molecule travels typically


A2)6( 2/1  Dl ; so l is comparable to OOd   

and the proton transfer increases its mobility in a sizable fashion. A similar calculation 

performed at T = 250 K gives an average time for PT of approximately 5 ps and water 

diffusion is significantly slower (about


A 0.02 2/ps [166]) yielding 


A0,8l   and showing 

that spatial displacements during the proton translocation are negligible compared to that 

of the center of mass of the water molecules operated by ordinary diffusion. Even though 

our model EVB Hamiltonian is likely to predict a lower rate of proton transfer and a 

subestimation of the actual diffusion, we do believe that the differences are sufficiently 

large to guarantee that the qualitative picture captured by our simulation experiments 

remains physically meaningful. 

4.2.1.3  Proton spectroscopy 

 

)(pS Has been computed here based on the length of )(tCp  that has been of 0.5 ps, 

which is long enough to capture all relevant proton vibrations, but also much shorter than 

the proton residence time (always larger than 2 ps, see table 4.2). As a matter of fact, we 

will be able to obtain relevant modes of vibration of the hydronium H3O
+ complex.  

The results are shown in figure 4.12, together with the corresponding )(pS  obtained 

from supplementary simulations of an isolated Zundel dimer (H5O2)
+ and of an Eigen 

complex (H9O4)
+, i.e., in the gas phase at 298 K, in order to help explaining the physical 

origin of the bands observed in )(pS . We have chosen to show the full frequency range, 

although the spectral domain where proton vibrations are located is between 1500 and 

3600 wave numbers [144].  
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Figure 4.12: Vibrational densities of states of the lone proton )(pS (in arbitrary units): 

(top) proton in isolated Zundel and Eigen complexes in gas phase at 298 K; (bottom) 

proton in water from liquid (298 K) to LDA ice states (100 K). 

 

A common feature in the spectrum of the excess proton is found at all temperatures 

(bottom of figure 4.12): a series ofmaxima between 500 and 4500 cm−1 is observed, 

structured into two groups of vibrations, the first one between 500 and 1900 wave 

numbers and a second one between 1900 and 4500 wave numbers. Since these are 

frequencies of proton vibrations, they will describe both regular molecular water motions 

and vibrations due to the particular characteristics of the lone proton/hydronium complex.  

It has to be pointed out that in the present case the OH stretch of the proton will be 

coupled to other vibrational degrees of freedom, i.e., the microscopic motion associated 

with such a wide vibrational band should be regarded as a combination of collective 

vibrations involving the proton and water molecules nearby. Leaving apart the band with 

maxima around 700 cm−1, typical of librational modes in water [167, 168], we observe 

maxima centered around 1500, 2300, 3000, and 3900 cm−1.  The locations of the maxima 

associated to proton vibrations are in good qualitative agreement with experimental data 
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available. So, FTIR measures of HCl and NaCl aqueous solutions at different 

concentrations at room temperature [144], where relevant maxima associated with 

hydrated protons were found around 1200, 1800, and 2900 cm−1. Headrick et al. [9] 

reported proton vibrations at 3160 cm−1 for a Zundel dimer from photoevaporation of 

argon in photofragmentation mass spectroscopy [9], which is also in good qualitative 

agreement with the features reported in the present work.  Finally, Kobayashi et al. [81] 

found a value for the stretching of the proton in cubic ice around 2600 cm−1. This value, 

about 13% larger than our findings, may be attributed to the fact that the proton structure 

in cubic ice shows an important extent of directionality towards its surrounding oxygens  

(O − H+ − O*) that would favor fast vibrational motions, instead of the less ordered LDA 

structures considered here. 

 

In order to enlighten further the meaning of the spectral densities of states reported, we 

can establish a relationship with the data displayed at the top of figure 4.11. There we can 

observe that in gas phase ambients the vibrational bands associated with the Zundel 

dimer and the Eigen complex are centered around different frequencies. In particular, if 

we focus on the relevant range for proton vibrations (between 1500 and 3500 wave 

numbers in this case) proton vibrational modes at the Zundel dimer occur at different 

frequencies (about 1880 and 3500 cm−1) than those inside the Eigen complex (around 

1400, 2750, and 3650 cm−1). First of all, these values should be compared with 

experimental data. So, on the one hand, Schwartz [169] reported the finding of a 

frequency maximum about 2660 cm−1 for a H9O4
+ cluster (Eigen complex) from infrared 

absorption spectra of several water clusters in the gas phase. Such frequency has been 

attributed [170] to an H-bonded H3O+ stretch.  

 

On the other hand, a maximum at about 1740 cm−1 was reported from experimental 

measurements of the gas-phase infrared spectrum of the protonated water dimer [171] 

(H5O2
+). In summary, there is an overall reasonable agreement of our findings with 

experimental data. The reported results from computed vibrational density of states by 

Schmitt and Voth [130] for a different potential model were of 1550 and 2860 cm−1 for 

the two complexes, what indicates again a good agreement with our results. The 
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relationship of the proton vibrations for the excess proton in bulk at different 

temperatures (bottom of figure 4.12) with the corresponding findings for the proton 

located at Zundel and Eigen complexes in vacuo (top of figure 4.12) can be explained as 

follows: 

 

(1) The signatures of the Eigen-like bands are found, for our model, about 1400 (A), 

2750 (B) and 3650 cm−1 (C) (top of figure 4.12). Bands located at corresponding 

maxima in bulk (bottom of Fig.4.12) are observed in all thermodynamical states 

considered, although the maxima are centered at the values of 1400 (A), 2370 (B), 

and 4050 cm−1 (C) at 298 K. The first of them remains essentially unchanged with 

temperature, whereas the band at 2370 wave numbers is red-shifted by 70 cm−1 at 

100 K. Finally, the highest frequency feature is also red-shifted by 150 cm−1 at 

100 K. The values around 4000 cm−1 (more than the corresponding 3650 cm−1 

obtained in vacuo) should be attributed to shortcomings of the potential model, 

since hydrogen vibrations in water are always restricted to smaller values [172]. 

 

(2) Concerning Zundel-like bands, the lowest frequency one located at 1880 cm−1 (D) 

is absent in the liquid and LDA ice spectra, whereas the band at higher frequency 

around 3500 cm−1 (E) appears to be of low intensity at ambient conditions and 

located at 3400 cm−1. At lowest temperatures, this mode would red-shift by some 

100 cm−1.  

 

(3) A band around 2960 cm−1 (F) at 298 K and absent for LDA ice stat should be, at 

thelight of our results, unassigned with respect of the Zundel or Eigen structures. 

Together with this description, we can compare our results with those of 

Vuilleumier and Borgis [75] for a flexible SPC/E model, where the stretching 

modes of the hydronium complex were found at 2000 and 2650 cm−1 and with 

those obtained by Voth and coworkers [144], who assigned the modes around 

1680–1880 and 3250–3400 cm−1 to pure Zundel-like vibrations, the modes around 

1580–1640 and 2700–2950 to pure Eigen-like vibrations and the bands centered 

between 3400–3600 and 3650–3720 cm−1 to a linear combination of Zundel and 
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Eigen modes. From their interpretations, we can assign the mode (F) to pure 

Eigen-like vibrations which disappear as the system is cooled down. Finally, the 

mode (C) should be related with combinations of Zundel-like and Eigen-like 

vibrations. As a general trend, we observe a tendency of LDA ices to the 

slowdown of vibrational modes associated to the proton, given the red-shifts 

obtained for bands (B), (C), and (E) as well as the absence of mode (F) at low 

temperatures. These facts are probably due to the enhancement of the water 

structure for low temperature liquid and LDA ices, together with the important 

reduction of proton delocalization, as observed by the reduction of PT rates and 

proton diffusion. 

 

4.2.2 Water confined-inside graphene slabs 

4.2.2.1  The effects of confinement on the Proton transfer dynamics 

4.2.2.1.1  Population relaxations and proton transfer rate 

 

As in our above preliminary discussion of PT in unconfined water 3D, in this section we 

will start  analyzing the nature of the proton transfer dynamics in the constrained water at 

300 K by direct inspection of the time evolution of the pivot oxygen label during 50 ps 

time intervals. The results are reported in figure 4.13. Representative slab widths (3.1, 

2.7, 2.3, 1.9, 1.5, 1.1, 0.9, and 0.7 nm) are shown and the effect of confinement on the 

frequency of proton transfer episodes can be directly observed by simply counting the 

number of transitions in the figures satisfying that the proton remained attached to a  

different water molecule for at least 0.5 ps: at d = 3.1 nm (top panel), 4  different water 

molecules host the proton 0.5 ps or more, roughly delivering a transfer time of the order 

of 0.1 ps−1. That number is about ten times smaller as we move to more compressed 

water samples. A few PT can be still seen at d = 1.1 nm and even one of them has been 

captured at 0.7 nm. We should point out that the predicted rate of transfer at ambient 

conditions in the bulk, unconstrained system is a factor 8  larger than the one inferred 

from results of NMR experiments [161,162,173], being this a well-known deficiency of 
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the semiclassical picture adopted here; moreover, the explicit incorporation of quantum 

fluctuations in the transferring proton yields a better agreement with the experiments, 

leading to rates at least twice as large as the semiclassical ones [74]. 

 

In order to improve the crude picture provided in figure 4.13 we need to use time 

correlation functions based on ANN aaplication. Results for the population relaxation of 

the pivot label are shown in figure 4.14. The presence of more than one relaxation time is 

clear from the absence of a single clear linear regime in the time interval analyzed. On 

the other hand the results for the thermodynamical states considered in this section are 

reported in table 4.3.  

 

The general trend is a dramatic slowdown of PT rates when the system is gradually 

compressed in between the hydrophobic plates, together with the corresponding increase 

of the estimated residence times , the first time interval (that of lifetime of resonant 

episodes) shows a much faster decay for the unconfined case; whereas the influence of 

hydrophobic plates is very strong and rsd  leads to slowdown of the PT. When comparing 

to other works, we observe a good overall agreement with findings from Day et al. [67], 

who obtained a value for the proton transfer rate of 0.3 ps−1 at room temperature (300 K) 

in the unconstrained case, for an EVB model slightly different from the one used in the 

present work. In a variety of confined systems, it was observed the preference of the 

proton to stay at interfaces, where free energy minima have been found [151, 158]. This 

would favor the gradual reduction of PT rates that, in the present case must be influenced 

by the fact that the pressure has considerably grown due to the increase of the density at 

short interplate distances. Probably because of this fact proton transfer rates obtained in 

the present work are significantly smaller than those obtained from ab initio simulations 

by Bankura and Chandra [66]. 
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Figure 4.13: Time evolution of pivot-oxygen labeling in different aqueous environments, 

from quasi-3D (d = 3.1 nm) to quasi-2D water states (d = 0.7 nm) (top to bottom). 
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Figure 4.14: Logarithm of the population relaxations )(tC for the pivot-oxygen label at 

different states. Unconstrained water (black circles); d = 3.1 nm (full red line); d = 2.7 nm 

(dashed green line); d = 2.3 nm (dotted blue line); d = 1.9 nm (dot-dashed orange line); d 

= 1.5 nm (brown squares); d = 1.1 nm (magenta triangles); d = 0.7 nm (cyan stars). 
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Table 4.3: Dynamical parameters for the aqueous protons at different slab widths: proton 

transfer rates
1

rsd , residence time rsd , and diffusion coefficient of the lone proton pD . 

Data for the unconstrained system at ambient conditions were obtained from section 

(4.2.1) Ref. [2] 

 

4.2.2.1.2  Diffusion coefficient of proton 

 

In simulations of excess protons inside quasi-one-dimensional environments, such as 

carbon nanotubes, it has been observed that proton diffusion is strongly affected by the 

tube radius and it can be either faster than in bulk water or slower [174]. The threshold is 

around radii of 7–8


A . At interfaces, such as in the case of water near n-decane [158], 

lateral diffusion of the proton has been observed together with a delay of the exchange of 

protons between the bulk region and the interfacial region. 

 

The calculation of diffusion coefficients of aqueous protons pD  in the constrained system 

considered in the present work reveals interesting changes in the previous scenarios, as it 

happens at interfaces or at high temperature and in supercritical states [137]. Results for 

the diffusion coefficients are shown in figure 4.15 and numerically reported in Table 4.3. 

Two important features should be discussed: (1) The general trend of the proton mobility 
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is a neat reduction from 0.94 


A 2/ps at the unconstrained state to lower values up to one 

order of magnitude smaller inside the graphene slab (case d = 0.7 nm). As we pointed 

before, pD at 298 K is in overall good agreement with previous works [137] and in 

excellent agreement with the experimental value  0.93


A 2/ps [142] (this may be 

fortuitous). (2) The simulation results also indicate that the reduction of pD  for 

decreasing interplate distances d is roughly linear. Here we should keep in mind that we 

set up our simulations in such a way that density is bigger at low d, so that an important 

part of the HB network has survived. Since the Grotthuss shuttling operates via HB, the 

mechanism can work in all cases, even at the quasi-two-dimensional slab at d = 0.7 nm. 

To compare with a similar system, Bankura and Chandra [66] obtained values around 0.1 



A 2/ps for a grapheme slab 1.2 nm wide, which is quite well matched by the value of 0.23 



A 2/ps reported in this work for the interplate distance of 1.1 nm. The factor two between 

these works should be due to a density effect, within the relative accuracies and 

reliabilities of the different methodologies employed. 

 

As it was observed previously in section (4.2.1), the structural characteristics of the local 

proton environment have significant influence on proton diffusion: at bulk water 

ambients the proton jumps a characteristic O-O distance, say Adoo 5.3 , every 2 ps. 

In this interval, the center of mass of a water molecule travels 

typically


A2)6( 2/1  Dl ; so l is comparable to ood  and PT operates safely through 

Grotthuss mechanism. A similar calculation performed at d = 3.1 nm gives an average 

time for PT of approximately 14 ps, whereas water diffusion is slower (


A 0.67 2/ps, 

see table 4.3), yielding 
Al 5.7 and showing that spatial displacements during the proton 

translocation are significantly bigger than those of 


A5.2* OOd (see figure 4.5), which 

makes the transfer of the proton more difficult. Even though our model EVB Hamiltonian 

is likely to predict a lower rate of proton transfer and a subestimation of the actual 

diffusion, we do believe that the differences are sufficiently large to guarantee that the 

qualitative picture captured by our simulations remains physically meaningful. 
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Figure 4.15:  Diffusion coefficients of lone proton (circles) as a function of slab width d. 

Linear fit (green line) is indicated as an aid to the eye. The red star indicates the 

corresponding value for the unconstrained system. 

 

4.2.2.1.3 Proton spectroscopy 

 

We have computed )(pS for all slab widths. The length of )(tCp has been of 0.5 ps, 

which was long enough to capture all relevant proton vibrations, but also much shorter 

than the proton residence time (always larger than 10 ps; see table 4.3). However, as a 

matter of fact, we will be able to obtain relevant modes of vibration of the hydronium 

H3O
+ complex.  We have chosen to show roughly the full frequency range, since 

although specific spectral signatures of proton vibrations are located between 1400 and 
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3000 wave numbers [75,144], some authors like Hammer et al. [8] include the range 

between 850 and 1400 as relevant for shared proton motions.Within the specific region of 

proton vibrations, three common features in the spectrum )(pS for the unconstrained 

case (bottom plot, figure 4.16, black line) are clearly observed, represented by maxima at: 

(1) 1445 cm−1, labeled as (A); (2) 2370 cm−1, labeled as (C-D); and (3) 2960 cm−1, 

labeled as (E). Further, a broad band between 600 and 1000 cm−1 (F) might be also 

related to low-frequency proton vibrations. In all computed spectra, the uncertainty in the 

frequency location of maxima is of the order of 10 cm−1, as it has been obtained from a 

series of independent simulations. When spectra from the confined proton are considered, 

some spectral shifts  have been found. So, the band (A) is red-shifted by 50–100 wave 

numbers at the widest slab widths (d = 3.1 to 1.5 nm), where as it shows a blue shift of 

around 75 wave numbers for the narrowest slab separations, namely 0.7 and 0.9 nm. In 

the case of band (C-D), all shifts are toward blue, but while for the separations between 

3.1 and 1.5 nm the absolute value is  = 30–40 cm−1, at narrow separations it becomes 

much bigger (around 200 cm−1). Finally, the band (E) reveals a neat blue shift of the 

order of 200 cm−1 for all cases. The band maxima associated with proton vibrations are in 

an overall good qualitative agreement with experimental data available. 

 

Fourier transform infrared spectra (FTIR) measurements of HCl and NaCl aqueous 

solutions at different concentrations at room temperature [144] revealed maxima 

associated with hydrated protons at 1200, 1800, and 2900 cm−1, whereas Headrick et al. 

[9] considered protonated water clusters in argon and reported proton vibrations in a 

hydronium ion at 2665 and water vibrations inside a Zundel dimer at 3160 cm−1, from 

photo evaporation of argon in photofragmentation mass spectroscopy. For the same 

system, Hammer et al. [8] reported bands around 1000–1150 cm−1 that were assigned to 

shared proton (Zundel dimer) vibrations. In summary, these values are in reasonably 

good qualitative agreement with the frequencies around 900, 1445, and 2960 cm−1 

reported in the present work. In addition, the band (C-D) centered around 2370 cm−1 can 

be considered in close agreement with the maxima at 2420 cm−1 reported in Ref. [9] 

associated to a hydronium symmetric stretch mode. 
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As a benchmark for the force field considered in this work, we computed the vibrational 

bands associated with the isolated Zundel dimer and Eigen complex, equivalent to gas 

phase [2] (see figure 4.16). In particular, proton vibrational modes for the Zundel dimer 

occur at different frequencies, about 1150, label (F) and 1880 cm−1, label (G) than those 

of the Eigen complex, around 1400 (A), 1750 (B), 2500 (C), 2750 (D), and 3650 cm−1 

(E). The agreement of these values with corresponding ones from experimental data is 

quite satisfactory. On the one hand, Schwartz [169] reported a frequency maximum about 

2660 cm−1 for a H9O4
+ cluster (Eigen complex) from infrared absorption spectra of 

several water clusters in gas phase, attributed by Okumura et al. [170] to a hydronium 

(H3O
+) ion stretch. On the other hand, a maximum at about 1740 cm−1 was reported from 

experimental measurements of the gas-phase infrared spectrum of the protonated water 

dimer [171] (H5O2
+). 

The reported results from computed vibrational density of states by Schmitt and Voth 

[130] for a similar potential model were of 1550 and 2860 cm−1 for the two complexes, 

which indicates again a good agreement with our results. Further, the agreement is 

reasonably good with results from Vuilleumier and Borgis [75] for a flexible SPC/E 

model, who reported stretching modes of the hydronium complex at 2000 and 2650 cm−1 

along with those obtained by Voth and coworkers [144]: these authors assigned the 

modes around 1680–1880 and 3250–3400 cm−1 to pure Zundel-like vibrations, and the 

modes around 1580–1640 and 2700–2950 to pure Eigen-like vibrations. 

Comparing the reference maxima for Zundel and Eigen moieties (top of figure 4.16) with 

the spectral profiles obtained for the condensed liquid system (bottom of figure 4.16), we 

can draw some additional clues: (1) the bands centered at 1445 and 2960 cm−1 in the 

spectrum of proton in confined water inside the graphene slab match well the maximum 

(A) for the isolated Eigen complex; (2) the band maximum at 2370 cm−1 can be related to 

the maxima (C) and (D) of the isolated Eigen; and (3) the broad band centered around 

750–1000 cm−1 in the spectral densities at the bottom of Fig.4.16 have no clear 

counterpart at the top of the same figure, although the closest band maxima is a peak at 

1100 cm−1 of the Zundel power spectrum. In summary, the dynamical exchange between 

the two species seems to remain in confinement, even in the case of quasitwo- 

dimensional structures formed by a few water layers. As an additional fact, we should 
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note that a vibrational frequency around 2400–2600 cm−1 was reported by Headrick et al. 

[9] and assigned to the asymmetric stretch motions of hydronium. Following this, the 

band labeled (C-D) in the aqueous proton spectrum might indicate the presence of a lone 

hydronium ion in the states of higher compression (0.7, 0.9 nm) as indicated by the blue 

shift of this (C-D) band as d decreases. This fact that hydronium species may replace 

Zundel cations (and/or Eigen complexes) was already observed by Habenicht et al. [175] 

in their study of the effects of hydrophobic confinement on protons from acidic systems. 

 

Figure 4.16: Vibrational densities of states Sp (ω) (in arbitrary units): proton in Zundel 

(black full line) and Eigen (red dashed line) complexes in gas phase at 298 K (top); 

confined states, from 3D water (d = 3.1 nm) to 2D water states (d = 0.7 nm) (bottom). 

Unconstrained water (black circles); d = 3.1 nm (full red line); d = 2.3 nm (dotted blue 

line); d = 1.5 nm (brown squares); d = 0.9 nm (violet diamonds); d = 0.7 nm (cyan stars). 
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4.2.2.2 The effects of temperature and confinement on the proton transfer dynamics 

4.2.2.2.1  Population relaxations and proton transfer rate 

 

Using the same fashion as before, again the most direct way to analyze dynamics' of 

proton transfer is by direct inspection of how the label of the pivot oxygen changes in 

time. We monitored pivot oxygen's label during 50 ps time intervals, as shown in figure 

4.17.  

 

 

Figure 4.17: Time evolution of pivot-oxygen labelling in different aqueous environments, 

from 100 to 600 K and for all interplate separations. 

 

There we compared the six temperatures considered in the present study for the three 

interplate distances of 3.1, 1.5 and 0.7 nm together with corresponding results for the 
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bulk, unconstrained systems 3D. The proton hopping patterns can be regarded as a 

sequence of episodes in which the proton is attached to one particular water during short 

to long time intervals, combined with other intervals in which the proton resonates 

between two given valence bond states. The latter is usually called proton rattling, with a 

“special" (resonant) bond [75]. Isolated single spikes reveal attempts of aborted 

transitions. From figure 4.17 the frequency of proton transfer episodes is directly seen, by 

simply counting the number of transitions recorded: At T = 300 K (panels at the first 

column from the left), about 20  water molecules retain the pivot label during time 

intervals of 5.0 ps or longer, which roughly corresponds to a transfer time of 0.4 ps-1, 

this is similar to the values that we can extract at higher temperatures. However, at lower 

temperatures the number of transitions decreases dramatically and only ( 5 ) are seen at 

200 K and 2 at 100 K. When the system is placed inside the graphene slab, the number of 

PTs clearly diminishes and is virtually zero for constrained states at T < 300. At room 

temperature, PT in all cases is seen at frequencies much lower than for the unconstrained 

counterparts. So, for instance, the number of transitions for d = 3.1 nm at 600 K is around 

7 but at the d = 0.7 nm case it is only of 4-5. Here it should be pointed out that the 

predicted rate of PT at ambient conditions (order of 0.5 ps-1) is a factor 8 larger than 

values reported from NMR experiments [161,162, 173]. This is a known deficiency of the 

semi-classical model adopted here, although explicit incorporation of quantum 

fluctuations in the model of transferring proton produces a better agreement with 

experiments [74]. 

 

As we pointed before, the rough picture of PT dynamics described from figure 4.17 

cannot provide a quantitative estimation of PT rates. However, again we may improve the 

calculations in this section using time correlation functions. Our results for the population 

relaxation of the pivot label are shown in figure 4.18.  
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Figure 4.18: Logarithm of the population relaxations at different thermodynamical states 

and interplate separations. 

 

The presence of several relaxation times is clear from the shapes of the correlation 

functions, showing that at least one fast decay at short times (up to 0.5 ps) and a slow 

decay starting around 1.5 ps. On the other hand, the full results for all the 

thermodynamical states considered in this case are reported in Table 4.4. We observe a 

general trend for all cases: relaxation times of )(tC  are systematically reduced when the 

system is heated up from LDA ice states (100 and 200 K) to sub-critical high temperature 

states (500 and 600 K). This means that proton transfer rates increase and, equivalently 

residence times rsd decrease. 

The comparison between the three interplate separations reported in this present case 

indicates a clear trend of PT slowdown when the distance becomes smaller. Further, the 

numerical values obtained for the widest distance of 3.1 nm are quite similar to those 

found for the unconstrained systems (see table 4.2) and close to the values reported by 
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Bankura and Chandra [66] for a single H+ in a water monolayer. However, when 

separations are smaller (1.5 and, especially, 0.7 nm) PT rates decrease dramatically. 

When considering other simulation works, our data are in good overall agreement with 

findings from Day et al.[71], who obtained a value for the proton transfer rate of 0.3 ps-1 

at room temperature (300 K), for an EVB model slightly different of the one used in the 

present work. 

For cubic ice, it was reported [80,81] that the ratio between PT rates of liquid and ice 

phases is around 2, fact essentially attributed to the larger extent of localization of 

*)( OO pairs, which could be at the basis of the PT mechanism in ices. In order to 

further investigate the temperature dependence of PT rates, we represented log pk  versus 

T-1 in Fig.4.19 and explored the tendency to Arrhenius-like dependence and obtain the 

eventual activation energies kE  for PT.  

Hence, the dependence of the proton transfer rate with temperature is based on the same 

assumptions of equation (4.1). Then from the calculation of the slopes of the straight lines 

shown in the Arrhenius plots of Fig.4.19 we get the series of values of Ek reported in 

table 4.5. A fit to the full set has been considered (continuous lines) and, since PT rates at 

100 K seem to show a different trend, a fit to temperatures between 200 and 600 K 

(dashed lines) has also been taken. In the latter case, regression coefficients indicate a 

larger extent of Arrhenius-like behavior. Available experiments by Moon et al, [163,164], 

by Kim et al.[83] and by Luz and Meiboom [165] obtained values of the order of 10 

kJ/mol for the activation energy of PT at the surface of polycrystalline ice films (135 K), 

when the PT is mediated by hydroxyl ions and for PT in pure water, respectively, using 

methods such as reactive ion scattering and proton magnetic relaxation measurements. In 

our case, the values reported in table 4.5 are between (2 and 12 kJ/mol). When fitting the 

full set of data, activation energies are around (4 kJ/mol) for unconstrained water and 

between (2 and 5 kJ/mol) for the confined setups, with the highest activation energy 

corresponding to the strongest confinement, i.e. when the separation between graphene 

plates is the shortest. If the fit is considered only for temperatures between 200 and 600 

K, values of activation energies rise but showing the same trend described above. 
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Figure 4.19: Proton transfer rates as a function of temperature and interplate separation. 

The straight lines represent the best overall linear fits: bulk unconstrained systems (black 

line); d = 3.1 nm (red line); d = 1.5 nm (green line) and d = 0.7 nm (blue line). Dashed 

lines are best linear fits for temperatures between 200 and 600 K. 

 

In summary, confinement does not alter significantly the energy barrier for activation of 

PT calculated for the free unconstrained liquid, with the exception of d = 0.7 nm, where 

PT becomes a process requiring energy much bigger than at interplate distances of 3.1 

and 1.5 nm. This suggests that the slowdown of PT at low temperatures and severe 

confinement is mainly due to the lack of thermal energy and to the high degree of 
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localization of the proton. In this way, the relationship between the likeliness of PT and 

the oxygen-oxygen distances of solvating water molecules was proposed some time ago 

by Marx [26]. The main idea was that at short distances, say for the Zundel dimer, there 

is a minimum in the external potential of the proton when located along the O-O axis at 

equal distances of the two oxygens. Conversely, when the proton is closer to one of them 

the potential shows a maximum. However, Marx suggested that the correct picture should 

consider a two dimensional proton external potential depending of two variables: OOR   

and the proton displacements coordinate pr .  

 

 

Table 4.4: Dynamical parameters for the aqueous H+ at different thermodynamic states: 

proton transfer rates kp in ps-1, residence time of proton rsd  in ps and diffusion coefficient 

of the lone proton Dp+ in 


A 2/ps. d is the interplate distance in nm and T is the 

temperature in K. The estimated errors in all values are within the precision of the last 

significant figure. 
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Table 4.5: Activation energies (Ek, in kJ/mol) for the aqueous H+ at different interpolate 

separations d (in nm): PT stands for proton transfer activation energy and D for proton 

diffusion activation energy. "Full" corresponds to the fit of all inverse temperatures in 

figures 4.19 and 4.21 (continuous lines) whereas "5-point" stands for the fit for inverse 

temperatures between 0.0017 and 0.005 in figures 4.19 and 4.21 (dashed lines).The 

estimated errors in all values are within the precision of the last significant figure. 

4.2.2.2.2 Diffusion coefficient of proton  

 

In the present case, as it was considered in section (4.2.2.1) the systems under study 

allow some mobility of the proton species along the Z-direction so that we kept the factor 

6

1
in the formulas of  equation (3.19) instead of the factor

4

1
considered in pure 2D 

simulations. Therefore, the mean square displacements of the proton are shown in figure 

4.20 and the corresponding diffusion coefficients are reported in table 4.4. In general, the 

values of pD  reported here are of the same order of magnitude as those from Ref [66] for 

a single water layer inside graphene plates. From mean square displacements two general 

trends are observed: (1) at the widest graphene-graphene separation of d = 3.1 nm, proton 

diffusion is significantly larger than at the shortest d (note that the same scale has been 

adopted for all cases); (2) within each d diffusion decreases monotonically with 

temperature. So the general fact is that proton mobility is limited by confinement and 

enhanced by temperature. When numbers are considered, our first observation concerns 
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the reliability of the model and methods considered here: we get a value of pD  = 

0.94


A 2/ps for the reference setup of room temperature for the unconstrained system, in 

excellent agreement with the experimental value reported above.This value remains 

unaltered for d = 3.1 nm but decreases roughly by a factor 4 in the cases of d = 1.5 and 

0.7 nm. When we cool down the system and reach the range of LDA states (100 and 200 

K), obviously pD  decreases drastically down, up to values of one (d = 1.5 nm) to two (d 

= 0.7 nm) orders of magnitude smaller. Here we deal with qualitative changes already 

observed experimentally in hexagonal ice networks [148], where the proton turns down 

from a highly mobile solute at ambient conditions into a much slower particle at lower 

temperatures.  

 

As it has been pointed out, transport properties of the proton are similar to those of a 

small cation such as Li+, whose diffusion coefficient is about 0.1


A 2/ps at 298 K [137]. In 

the range of high temperatures (400 to 600 K), the behavior tends to remain more stable, 

with changes up to a factor 3 in the most extremal case (again for d = 0.7 nm) where 

diffusion rises from 0.27 at 300 K to 0.93 


A 2/ps at 600 K. So we obtain a more important 

influence of temperature over confinement in the proton diffusion. 

 

In the same fashion as for PT rates, we can consider proton diffusion as an activated 

process (see figure 4.21) and evaluate linear fits of 

pDln  as a function of T-1, including 

or excluding the case of 100 K, which turns out again to be the most controversial (see 

table 4.5). In this case the overall fits (continuous lines) render activation energies 

slightly smaller than those from fits up to 200 K (dashed lines). However, the values are 

always in the range 2.5 to 6 kJ/mol. These values are in general very far from 

experimental findings reporting activation energies of water self-diffusion, between 14 

and 70 kJ/mol for water at ice surfaces and in bulk, respectively [164] we observed that 

the Arrhenius-like behavior is more marked for the cases excluding the 100 K set.  
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Figure 4.20: Mean square displacements of proton species at different interplate 

separations (left to right): d = 3.1; 1.5 and 0.7 nm as a function of temperature. 
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Figure 4.21: Diffusion coefficients of the excess proton as a function of inverse 

temperature for variable interplate distances. Straight lines represent the best overall 

linear fits, whereas dashed lines account for fits between 200 and 600 K. 

4.2.2.2.3 Proton spectroscopy 

 

We have computed )(pS for a variety of thermodynamic states considered along the 

present case. For the sake of clarity, not all states have been included in figure 4.22, only 

those showing significant features. All )(tCp  have been computed up to 0.5 ps, time long 

enough to capture all relevant proton vibrations and safely shorter than the proton 

residence time (see table 4.4), in order to make sure that the proton is attached to a given 
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pivot oxygen during the whole period of calculation of )(tCp . As the general fact, we will 

report the relevant modes of vibration of the proton inside a hydronium H3O
+ complex, 

either being part of a Zunder or an Eigen species. As usual, we included in our results a 

comparison to the corresponding )(pS  obtained from supplementary simulations from 

the sections above [2] of an isolated Zundel dimer (H5O2)
+ and of an Eigen complex 

(H9O4)
+ i.e. in the gas phase at 298 K. These reference spectra are very helpful to 

interpretate the existence of those distinctive species at the different states. 

 

Figure 4.22: Vibrational densities of states )(pS  (in arbitrary units): d = 3.1; 1.5 and 0.7 

nm. Proton spectra of Zundel and Eigen complexes in gas phase at 298 K have been also 

included. 
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A general common feature observed in the spectra of the excess proton in all cases is the 

series of maxima between 300 and 4000 cm-1. These maxima are structured into two 

separated ranges: one between 500 and 2000 wave numbers and another between 2000 

and 4000 wave numbers. Since the proton is attached to one, two or three water groups, 

the frequency band and maxima will account for individual (proton) and collective 

vibrational modes, associated to hydronium, Zundel-like or Eigen-like vibrations. As the 

interpolate distance becomes smaller, the number of relevant maxima tend to increase. In 

the case of d = 0.7 nm the number of maxima is significantly larger than at lower d and 

this might indicate that size effects due to the reduced space along Z-axis have been 

somehow captured. 

Assuming that the bands located below 1000 cm-1 are typical of librational modes in 

water [167,168] and not characteristic of proton vibrations, we will focus our analysis on 

the maxima located (for the gas phase) around (see top of figure 4.22): (1) 1200, 1900 

and 3500 cm-1 (Zundel dimer); (2) 1450, 2750 and 3600 cm-1 (Eigen complex). First of 

all we should point out that our method is able to locate band maxima but it cannot 

reproduce heights and widths of such bands. To do so we would need to rely on a full 

quantum simulation. As a general fact, locations of maxima associated to proton 

vibrations are in overall good qualitative agreement with experimental data. Firstly, 

Kobayashi et al. [81] measured the frequency of the proton stretch in cubic ice around 

2600 cm-1. The value reported in the present work is of about 2400 cm-1 (clearly seen at 

200 K for the case of d = 0.7 nm) i.e. only 8% smaller. This may be attributed to the fact 

that the proton structure in cubic ice presents a larger degree of directionality than in the 

LDA states considered here. 

This would favor faster vibrational modes. Secondly, FTIR measurements of HCl and 

NaCl aqueous solutions at 300 K [144] reported relevant maxima associated with 

hydrated protons around 1200, 1800 and 2900 cm-1. Further, Headrick et al.[9] reported 

proton vibrations at 3160 cm-1 for a Zundel dimer from photoevaporation of argon in 

photofragmentation mass spectroscopy, which is also in reasonable good qualitative 

agreement with the maxima reported here. Schwartz [169] also reported the finding of a 

frequency maximum about 2660 cm-1 for a H9O
+4 cluster (Eigen complex) from infrared 
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absorption spectra of several water clusters in gas phase. Such frequency has been 

attributed[170] to an H-bonded H3O
+ stretch. 

The comparison of our findings with those from other simulation works indicates again a 

good overall agreement. We obtained maxima centered at 1500, 2400 and 3200 cm-1 and 

the results from Vuilleumier and Borgis [75] (also for a exible SPC/E model) reported 

stretching modes of the hydronium complex at 2000 and 2650 cm-1, whereas Voth and 

coworkers [144] assigned modes around 1680-1880 and 3250-3400 cm-1 to vibrations of 

Zundel dimers and modes around 1580-1640 and 2700-2950 to vibrations of the Eigen 

complex. Finally, bands around 3400-3600 and 3650-3720 cm-1 were associated to a 

linear combination of Zundel and Eigen modes. The reported results from computed 

vibrational density of states by Schmitt and Voth [130] for a different potential model 

were of 1550 and 2860 cm-1 for the two complexes. 

A simple way to interpretate the spectral densities of states in figure 4.22 is by means of 

the help of the signatures obtained from the simulation of a Zundel dimer and an Eigen 

complex in gas-like ambients. The agreement of the maxima with available experimental 

data has been previously established (see section (4.2.1.3) and references therein). In the 

present case, the interpretation of proton vibrations through the influence of both 

confinement and temperature and the relationship with the existence of Zundel and Eigen 

complexes can be summarized as follows: 

 

1. At the reference state of 300 K, the main bands of the spectra are located around 

1500 (A), 2400 (B) and 3250 cm-1 (C). No significant changes are observed as the 

interplate distance d moves from 3.1 to 0.7 nm. From experimental measurements 

of spectral signatures of water clusters [8] it is known that the band centered at 

1600 wave numbers may be attributed to the existence of the solvated Zundel 

complex; the band at 2600 cm-1 is clearly due to the Eigen cation, whereas the 

maximum around 3200-3300 cm-1 is the signature of the OH stretch for the proton 

when shared by two waters (Zundel structure). At condensed phases as those 

analyzed here, we can expect that all frequencies suffer a red shift towards lower 

values, in the same fashion as it happens to hydrogen vibrations in neat non-

protonated water (see for instance Ref. [146]. The effect of confinement becomes 
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important only when the interplate distance is of (or below) 1.5 nm. In such cases, 

changes in the spectral bands are observed, with a tendency of bands (A) and (B) 

to blue-shift by some 100-200 wave numbers and to red-shift by 100 wave 

numbers by band (C). 

2. The effect of the temperature seems to be not important at the widest interpolate 

separation (d = 3.1 nm) but it has some influence at d = 1.5 nm and it definitely 

affects the spectral bands when d = 0.7 nm. In such a case, LDA ice (200 K) 

shows a red shift of the signature band at 2400 cm-1, whereas at temperatures of 

400 and 500 K, the tendency is reversed and the shift tends to be towards higher 

values. 

3. About Zundel-like bands, the lowest frequency one located at 1880 cm-1 in gas 

phase is absent in the liquid and LDA ice spectra, whereas the band at higher 

frequency around 3500 cm-1 appears at low frequencies in all cases. It shows a 

tendency to split, very marked for d = 0.7 nm, indicating the existence of Zundel 

dimers or, equivalently, the breaking of Eigen groups at the strongest 

confinement. 

 

4.3 Summary and Conclusions 

 

In the present chapter a thorough analysis of the structure and dynamics of an excess 

proton in liquid water and LDA ices has been reported based in two aqueous systems of 

water: (unconstrained and confined inside graphene slabs). We started with the 

investigations related to unconstrained water, which is a first step into the study of PT in 

two-dimensional systems. The system was set by tuning the water layers from full three-

dimensional states to states at short interplate distances (0.7 nm wide) where water 

structure can be regarded as quasi-two-dimensional. The chapter reported the analyses of 

microscopic characteristics of an aqueous PT by employing the MD simulations together 

with a multidimensional empirical valence bond procedure, in order to construct a 

suitable Hamiltonian for the semi-classical system; formed by a quantum particle (the 

lone proton) embedded in a sea of classical flexible TIP3P waters. The artificial neural 
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network approach along with statistical methods is then successfully employed to work as 

supplementary computational tool to simplify modeling as well as analyzing the PT 

properties we are interested in.  PT properties were shown in this chapter based on 

different chart patterns extracted by our new developed and tested ANN application as it 

has been fully defined in chapter 3. Afterwards, the proposed tool has simply enable the 

technical analysis of several important chemical properties, by means of the EVB 

simulation output graphical data, having the aim of enhancing the performance and 

efficiency for systems of large amounts of molecules. These properties are: the proton 

transfer rate, the hydronium-water local density field and the diffusion coefficient of 

proton, in addition to the spectra of proton vibration, directly related with the existence 

Zundel and Eigen complex. 

The analysis of the local structure of the hydrated proton revealed the enhancement of the 

local structure of the proton in LDA ices. At the lowest temperature considered in the 

present study (100 K), the environment of the proton typical of ambient conditions, 

consisting of a mixture of Zundel and Eigen-like structures has evolved to a network of 

water clusters mainly formed by Zundel and Eigen-like complexes whit enhanced 

directionality, as it can be inferred from our spectroscopical data. However, such extent 

of alignment between the proton and its surrounding oxygens would be less important 

that in the case of cubic ice Ic [80, 81]. The proton in ice-like environments remains 

trapped to an hydronium complex for long time intervals, given an averaged transfer time 

of about 50 ps, whereas at 298 K, the mean time for a proton transfer is of the order of 2 

ps. However, as it has been indicated in some recent experimental findings [82, 83] PTs 

still occur. The activation energy for PT has been estimated to be 3.2 kJ/mol in 

reasonable overall agreement with experiments [163,164], which reported a value of 10 

kJ/mol for proton transfer in surface ices. Diffusion of the proton tends to decrease when 

the system is cooled down, changing from 0.94 


A 2/ps at 298 K up to a factor 6 smaller 

than at 100 K. Being diffusion also an activated process, we found that activation energy 

barriers for diffusion are lower than those of PT roughly by a factor 2. 

 

On the other hand, in terms of our results of the investigation of the effects of 

confinement on the local structure and dynamics of the hydrated proton confined inside 
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graphene slabs, our findings have revealed the enhancement of the local structure of the 

proton in the narrowest pores. At the quasi two-dimensional water states represented by 

slab’s widths of d = 0.7 and 0.9 nm, the environment of the proton typical of ambient 

conditions, consisting of a mixture of Zundel and Eigen-like structures has evolved to a 

network of quasi 2D water molecules, still including Zundel and Eigen complexes but 

allowing the breaking of these structures in favor of a lighter species, the hydronium ion, 

as revealed by the existence of suitable frequency shifts toward higher values, as it can be 

inferred from available spectroscopical data. So, the proton in 2D water would remain 

trapped to an hydronium complex for quite long time intervals, given the averaged 

transfer time of more than 200 ps, whereas at unconstrained conditions the mean time for 

a proton transfer is of the order of 1–2 ps. This indicates that PT still occur, but at much 

shorter rates of the order of 10−3 ps−1. Diffusion of the proton tends to decrease 

moderately when the system is compressed, changing from 0.94 °A2/ps in unconstrained 

bulk water up to a factor 4.5 times smaller at quasi-two-dimensional water, i.e., for d = 

0.7 and 0.9 nm. Our results for diffusion coefficients agree well with those of Bankura 

and Chandra [66], although proton transfer rates reported in this work are significantly 

smaller than those from the same authors, probably due to the higher water density 

considered here. 

Conversely, when the system is heated up, diffusion increases about a factor 3 (at 600 K). 

In constrained geometries, diffusion is strongly reduced at low temperatures, becoming 

one order of magnitude smaller than for the bulk counterparts. When we move to high 

temperature environments, diffusion increases in a smaller scale reaching values 

comparable to those of the corresponding unconstrained states. This would suggest that 

confinement and temperature are factors both affecting transport properties of the proton, 

but playing opposite roles. We have pointed out that the role of the Grotthuss mechanism 

should become less important at low temperatures. This was easily estimated using 

random walk arguments.  
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4.4 Future studies  

As shown in this thesis confining environments with characteristic lengths at the 

nanometer scale were able to significantly change the equilibrium properties and 

dynamics associated with any reactive process in solution when studying the PT in water. 

In this regard, based on our results of investigating PT in pure water it will be interesting 

to analyze the structural properties and dynamics of solvation of an excess proton located 

in a nother aqueous environment, such as strong acids and ionic solutions confined in 

different geometries (varying from hydrophobic to hydrophilic nature). Among these a 

natural extension of this then would be to consider a basic model of non-hydrophobic 

silica plates kept at variable distances. Another extension would be to perform the 

selective functionalization of the walls by means of hydrophilic OH groups and study 

their possible effects on the solvation of protons. The future projects will essentially deal 

with the comparison of performance of semi-classical molecular dynamics and Car-

Parrinello simulations, which incorporate an explicit treatment of quantum fluctuations. 

The ANN application could be used also to facilitate the work and to enable predicting 

and to overcome the obstacles of theoretical simulations.   

Functionalization with other groups (type trimethylsilyl O-Si(CH3)3) possibly will 

incorporate interesting modifications in the topological disorder through modulated 

proton solvation. More specifically, we refer here to the related introduction of new 

characteristic lengths of a magnitude comparable to the size of the functional group 

(about 0.5 to 0.7 nm). In this regard, we expect important retarding effects on the 

dynamics of water in intimate contact with the groups in question. An important aspect in 

this context will elucidate whether protons remain in the aqueous phase or migrate to the 

vicinity of these groups. Given the latter possibility, certainly it would exist non-trivial 

modifications in the structure and dynamics of proton solvation and it would open the 

door to the confirmation of the existence of pH gradients in nanometer-scale cavities. 

 The addition of ionic species will let us gain valuable information about the influence of 

salts on the structure, rates and dynamics of proton transfer, allowing us to analyze the 

interplay between electrolyte specific effects and the effects due to confinement. 

Needless to say those aqueous electrolyte systems in constrained geometries play a role 
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of central importance in a variety of processes such as corrosion, catalysis of metals or 

solar energy conversion, among others. 

 As regarding to simulation of acid dissociation in water at interfaces it will be most 

challenging, due to the characteristics of such processes, involving breaking of chemical 

bonds. For instance, when dissociation at aqueous surfaces of sulfuric and nitric acids is 

given, proton transfer reactions are important in various atmospheric chemistry contexts. 

Two of many examples of their atmospheric relevance are sulfate aerosol surfaces acting 

as heterogeneous reaction sites for reactions related to ozone depletion in the mid-latitude 

stratosphere, and the uptake of gas phase nitric acid by ice aerosols in the upper 

troposphere, again related to ozone depletion. Despite the fact that these acids are usually 

regarded as strong and readily dissociate in the more familiar room temperature, it is 

found that particularly nitric acid can remain molecular at an aqueous surface under a 

wide range of atmospherically relevant conditions [176]. 

About Car-Parrinello simulations, we can mention: (1) the accuracy of the functionals of 

density which lie at the core of the method is limited, since such functionals include a 

series of approximations being far from exact and (2) the computational cost is extremely 

high. We believe that using the two methodologies in a complementary way we can get 

profit from the advantages of both methods and minimize the shortcomings. 

The reason of suggesting the use of Car-Parrinello technique in future studies is because 

of the need of achieving a high degree of accuracy in the treatment of hydrogens which 

the particle is showing a higher degree of quantum nature. So, at the most primary level, 

it will have lots of shared characteristics with those of the proton. For that reason, both 

the proton and hydrogens in water have to be described with high accuracy at the 

quantum level.  
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