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Summary 

In the past decades, government, society and industry at 

large have taken keen interest in the impact at different scales that 

exposure to chemicals has on humans and environment. Hence, in 

many countries governments have imposed regulations as per 

which it has become important to establish the potential effects of 

these chemical entities with respect to human health and 

environmental endpoints. Given the time taken by traditional tests, 

costs and large number of chemicals to be evaluated, there has been 

a rapid growth in the number of computational models that link the 

structure of chemical substances to their biological activity. 

Nanoparticles are also being used increasingly across 

different classes of consumers’ products. Since, in physiological 

context, the protein corona constitutes the interface between the 

nanoparticle and cells, it plays a fundamental role in nanoparticle-

cell association. In this line of work, the physicochemical 

properties of protein corona were used to develop a model to 

predict cell association. 

To extend the basis of knowledge that currently exists in 

Structure Activity Relationship (SAR) models for chemicals, a 

similar approach was used to develop a new model and generate 

sets of metabolic triggers which can be used together with Q(SAR) 

methods. This work presents SAR rules for prediction of 

UNIVERSITAT ROVIRA I VIRGILI 
IN SILICO MODELING OF CHEMICAL AND BIOLOGICAL INTERACTIONS AT DIFFERENT SCALES 
Padmaja Balachandran Kamath 



 

 

mutagenicity in vitro, along with metabolic triggers for prediction 

of mutagenicity in vitro and in vivo. Furthermore, the metabolic 

triggers approach can also be used to obtain a preliminary idea if a 

chemical exhibits the same or contrary mutagenic behaviour in 

vitro and in vivo. 

Lastly, this thesis focuses on the topic of drug resistance in 

bacteria, which has become a matter of global concern. With 

bacteria growing resistant to antibiotics at a faster pace than the 

discovery of new antibiotics, it is important to have information on 

the response that new bacterial proteins would have to the currently 

available antibiotics, based on their similarity with the known 

antibiotic-resistant proteins. In this work an alignment-free method 

was developed to improve the resistance profile classification of 

bacterial proteins based on their physicochemical properties. 
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Resumen 

En las últimas décadas, el gobierno, la sociedad y la 

industria en general han tomado gran interés en el impacto a 

diferentes escalas que la exposición a los productos químicos tiene 

sobre los seres humanos y el medio ambiente. Por lo tanto, en 

muchos países los gobiernos han impuesto regulaciones según las 

cuales se ha vuelto importante establecer los efectos potenciales de 

estas sustancias químicas con respecto a la salud humana y a 

criterios medio ambientales. Teniendo en cuenta el tiempo 

necesario para las pruebas tradicionales, los costes y el gran 

número de productos químicos a evaluar, se ha producido un 

rápido aumento en el número de modelos computacionales que 

relacionan la estructura de las sustancias químicas con su actividad 

biológica. 

Las nanopartículas se están utilizando cada vez más a 

través de diferentes clases de productos usados por los 

consumidores. Dado que, en un contexto fisiológico, la corona de 

las proteínas constituye la interfaz entre las nanopartículas y las 

células, ésta desempeña un papel fundamental en la asociación 

entre nanopartículas y células. En este trabajo, las propiedades 

físico-químicas de la corona de las proteínas se han utilizado para 

desarrollar un modelo para predecir la asociación celular. 
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Con el fin de ampliar la base de conocimientos que existe 

actualmente en los modelos de relación estructura-actividad (SAR) 

para productos químicos, se ha utilizado un enfoque similar para 

desarrollar un nuevo modelo y generar conjuntos de alertas 

metabólicas que puedan utilizarse junto con los métodos Q(SAR). 

Este trabajo presenta reglas SAR para la predicción de 

mutagenicidad in vitro, junto con alertas metabólicas para la 

predicción de mutagenicidad in vitro e in vivo. Además, el enfoque 

con alertas metabólicas también se puede utilizar para obtener una 

idea preliminar acerca de si un producto químico exhibe el mismo 

comportamiento mutagénico in vitro e in vivo. 

Por último, esta tesis se centra en el tema de la resistencia 

a los fármacos en las bacterias, que se ha convertido en un asunto 

de interés global. Con el aumento de la resistencia de las bacterias 

a los antibióticos a un ritmo más rápido que el descubrimiento de 

nuevos antibióticos, es importante disponer de información sobre 

la respuesta que las nuevas proteínas bacterianas tendrían sobre los 

antibióticos actualmente disponibles, en función de su similitud 

con las proteínas que sabemos resistentes a los antibióticos. En este 

trabajo se ha desarrollado un método de alineación libre para 

mejorar la clasificación en perfiles de resistencia de las proteínas 

bacterianas en base a sus propiedades físico-químicas. 
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Table 10: Kappa indices of the three approaches for the validation set. 

  

UNIVERSITAT ROVIRA I VIRGILI 
IN SILICO MODELING OF CHEMICAL AND BIOLOGICAL INTERACTIONS AT DIFFERENT SCALES 
Padmaja Balachandran Kamath 



 

 6 

 

 
  

UNIVERSITAT ROVIRA I VIRGILI 
IN SILICO MODELING OF CHEMICAL AND BIOLOGICAL INTERACTIONS AT DIFFERENT SCALES 
Padmaja Balachandran Kamath 



 

 7 

Chapter 1 Introduction 

1.1 Introduction 

Potentially pathogenic organisms and environmental 

pollutants can harm human health through a series of complex 

transport and exposure pathways. Humans are subjected to a range 

of bacterial and chemical exposures from various sources in the 

environment. Bacteria and chemicals in air, water, soil and food, 

occupational exposures and lifestyle factors, all contribute to a 

complex exposure situation in our daily life.  

Due to the complex nature of these exposures, which could 

have different possible impacts on human health and the 

environment, there is an immense concern and need to know about 

the potential effects of interactions of different chemical entities 

with biological systems. In-depth understanding of interactions 

between chemical and biological entities is a prodigious task, 

encompassing important aspects like amount and kind of exposure 

to the biological entity it is coming in contact with.  

Advances in computational approaches in Chemistry and 

Biology at large have been able to help in understanding how these 

chemical agents interact with biological systems and the potential 

effects they have on public health and environment, by elucidating 

the mechanisms and severity of these interactions.  
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This thesis focuses on the use of computational approaches, 

specifically linking the structure of the chemical or biological 

entity with its activity, to predict outcomes of these interactions 

based on biological properties as well as chemical properties. 

Models working on this concept are called Structure Activity 

Relationship (SAR) models. With the growth in the number of 

chemical entities whose biological responses need to be known, in 

different biological scenarios and for different endpoints in a short 

time, the use of SAR models has become a cost effective way and 

a basic necessity of toxicological investigations [1]. 

1.2 SAR models for Engineered 

Nanomaterials (ENM) 

Nanoparticles have distinct properties relative to bulk 

materials of the same chemical composition due to their small size. 

With the advent of materials science and nanotechnology, 

engineered nanomaterials (ENMs) with a diversity of sizes, shapes 

and compositions can now be synthesized, characterized and 

applied accordingly with their specific properties. ENMs are 

currently used in biomedicine, food, electronics, and textiles. They 

have a wide array of applications in biomedicine that include 

medical imaging, targeted drug delivery, vaccines, prosthetics, 

biosensing and other therapies [2-4]. Nanomedicine applications 

are possible mainly because nanosize facilitates the entrance of 
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ENMs to almost all systems and units of the body, including cells 

and organelles. 

Gold is one of the materials that has been used in the past 

for medicinal purposes both in its bulk state and in the form of a 

nanoparticle. Diseases such as smallpox, measles, skin ulcers and 

rheumatoid arthritis, to name just a few, have traditionally been 

treated with gold. Its biocompatibility and inertness was valued in 

traditional Chinese and Ayurvedic medicine. Gold nanoparticles 

have been investigated due to their capability to integrate into 

biological systems (i.e., biocompatibility). This is a result of the 

thermal, physical and chemical stability of gold nanoparticles. 

They have also been widely used in diagnosis, surgery and 

medicine at large as anti-inflammatory, anti-cancer and anti-

microbial agent [4-6]. 

A key challenge for the use of gold or other nanoparticles 

in medicinal applications is to understand the interactions that 

occur when nanoparticles are introduced in a biological medium 

and interact with different types of biomolecules such as proteins, 

lipids and metabolites [7]. The high reactivity and surface energy 

of ENMs enhance the interactions with the proteins present in 

biological media. As a result, nanoparticles are covered by a 

dynamic layer of proteins that form the so-called protein corona, 

which has a large impact on bioactivity [8-11]. 
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1.2.1 Protein Corona 

Proteins are essential biomolecules made up of one or more 

polypeptides and with a certain conformation based on the amino 

acids that form them. Proteins carry a net surface charge depending 

on the pH of their environment. Initially, when a nanoparticle has 

just entered in a biological environment, the most abundant 

proteins get adsorbed onto its surface. The structure and 

composition of this protein corona depends on the properties of the 

nanoparticle (e.g., size, shape, composition, surface functional 

groups, surface charges), on the nature of the biological fluid     

(e.g., blood, interstitial fluid, cell cytoplasm), as well as on the 

duration of exposure. 

The formation of the corona largely depends on the type of 

proteins that are adsorbed on the nanoparticle surface. The hard 

corona is formed by proteins that bind directly onto the surface of 

the nanoparticle, with a high affinity and larger exchange times, 

hence making this bonding irreversible. In contrast, the soft corona 

is formed by reversible bindings of proteins onto the hard corona 

as a result of weak protein-protein interactions occurring over a 

short exchange time. 
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Figure 1: Prediction of cell association based on the physicochemical 
properties of nanoparticle and protein corona 

 

As shown in Figure 1,  proteins, once adsorbed, provide 

the nanoparticle with a biological identity that is different from its 

original synthetic material identity. Biological entities 

subsequently recognize nanoparticles from their biological 

identity. 

The biological identity of ENMs determines their 

physiological response including agglomeration, cellular uptake 

circulation lifetime, signalling, kinetics, transport, accumulation 

and toxicity [12-14]. It is also known that the formation of the 

protein corona induces changes in nanoparticle properties such as 

size, shape and aggregation, and hence configuration that affects 

the mechanisms and efficiency of their cellular uptake [15,16]. 

Since the protein corona is the primary representative of the 

nanoparticle that comes in contact with the cell surface in the 

physiological environment, its composition plays a crucial role in 

the biological response. Specifically, cell association is a relevant 
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endpoint known to be involved in in vivo inflammatory responses, 

biodistribution and toxicity [17-20]. 

This thesis presents a work on nanoparticles which are 

likely to interact in real-case application scenarios with mixtures 

of proteins and biomolecules that will absorb onto their surface 

forming the so-called protein corona. Information related to the 

composition of the protein corona and net cell association was 

collected from literature for a library of surface-modified gold and 

silver nanoparticles. For each protein in the corona, sequence 

information was extracted and used to calculate physicochemical 

properties and statistical descriptors. Data cleaning and pre-

processing techniques including statistical analysis and feature 

selection methods were applied to remove highly correlated, 

redundant and non-significant features. A weighting technique was 

applied to construct specific signatures that represent the corona 

composition for each nanoparticle. Using this basic set of protein 

descriptors, a new Protein Corona Structure-Activity Relationship 

(PCSAR) model that relates net cell association with the 

physicochemical descriptors of the proteins that form the corona 

was developed and validated. 

1.3 Mutagenicity of Chemicals 

Mutagenicity is the ability to cause permanent mutations in 

the DNA sequence.  Several years of dedicated scientific research 

on the introduction of mutations in the DNA caused by interactions 

UNIVERSITAT ROVIRA I VIRGILI 
IN SILICO MODELING OF CHEMICAL AND BIOLOGICAL INTERACTIONS AT DIFFERENT SCALES 
Padmaja Balachandran Kamath 



 

 13 

with chemicals have shown a strong connection between 

mutagenesis and carcinogenesis [21]. Hence, mutagenic 

substances are part of a class of CMR (carcinogenic, mutagenic 

and toxic for reproduction) compounds that are emphasized in the 

European regulation REACH (Registration, Evaluation, 

Authorization and restriction of Chemicals) [22] due to their 

irreversible and adverse consequences on human health. REACH 

encourages scientific innovation and has provisions that facilitate 

the use of data generated by non-testing methods, specifically of 

(Q)SAR models (also referred to as in silico tools), for ethical and 

economic reasons [23]. Results obtained by using (Q)SAR tools 

have the advantage of minimized time, cost, and number of 

animals needed for testing a substance. Hence, they can be used as 

an alternative to experimental testing or in a weight-of-evidence 

approach [24]. Additionally, REACH directives also encourage the 

use of Integrated Testing Strategies (ITS), which make use of data 

generated from test batteries to gain a comprehensive information 

basis for making decisions regarding hazard or risk. As a result, the 

work described in this part of the thesis is in line with these 

directives of REACH, using tests of existing data on mutagenicity 

in vitro to predict mutagenicity in vivo and establish a link between 

the in vitro and in vivo tests. This approach is also bolstered by the 

fact that the tiered structure for in vivo testing incorporates 

inferences from in vitro results [25].  

The most commonly used and validated in vitro test for 

mutagenicity is the Salmonella typhimurium assay (Ames test)  

[26, 27], which is primarily used in investigating mutation-
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inducing activity and for genotoxicity screening [28]. In the Ames 

test, frame-shift mutations or base-pair substitutions are detected 

by exposure of histidine-dependent strains of Salmonella 

typhimurium to the chemical to be tested. When these strains are 

exposed to a mutagen, reverse mutations restore the capability of 

the bacteria to synthesize histidine and to grow on a medium 

deficient in this amino acid [29]. Since the Ames test is a long 

established and reproducible method offering a broad basis, 

mutagenicity is one of the most modeled endpoints. In addition, 

standard protocol has made available abundance of consistent data, 

which has enabled the development of many in silico models based 

on Ames test. 

The reliability of the Ames test has also been 

acknowledged widely in the literature. Zeiger evaluated the 

predictivity of the Ames test with respect to data from rodent 

carcinogenicity from the U.S. National Toxicology Program [30]. 

According to this evaluation, predictions obtained from Ames test 

are reliable, and positive chemicals from Ames test can be 

considered as potential genotoxic carcinogens in rodents. The 

work also throws light on the capabilities of Ames test, which 

outperformed a consensus approach with other integrated tests 

such as chromosome aberration and mammalian cell mutagenicity. 

Coming to the in vivo tests, as per an assessment carried out 

by the former European Chemicals Bureau (ECB), there is an 

immense need of new test-related solutions for studying 

mutagenicity in vivo [31,32]. The micronucleus test in rodents is 

the most commonly used method to investigate the in vivo 
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mutagenic potential of chemicals following the positive result of 

in vitro Ames test for mutagenicity. Hence, development of 

(Q)SAR, read-across and grouping of chemicals could be very 

useful for this endpoint [33,34]. 

To computationally obtain binary predictions of chemicals 

as mutagens or non-mutagens, preliminary approaches comprise 

rules obtained from SAR models. These methods are based on the 

concept of discovering structural alerts (SA), e.g., molecular 

fragments that are representative of each toxicity class, based on 

the dataset of chemicals provided to them. Subsequently, for 

chemicals for which SAR models are not able to provide binary 

classifications, biology based methods, which explain the 

mutagenic or non-mutagenic behavior of chemicals with the help 

of metabolic triggers (i.e., intermediate and final products into 

which the chemical is finally broken down) can be used.  

In this thesis rules from SAR models and metabolic triggers 

were made to explain mutagenicity of chemicals in vitro and           

in vivo. Hence, a knowledge-based approach combining 

information from SAR models and metabolic fate of chemicals is 

presented. Work in this area comprises three parts, all of which are 

based on SAR rules and metabolic triggers obtained from 

metabolic fate of chemicals.  

In the first part of this work, a model was developed for 

predict in vitro mutagenicity based on Ames test. For this, 

mutagenicity of chemicals was predicted using newly generated 

SAR rules. Chemicals predicted as unknowns by SAR rules, were 
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then predicted using the complementary approach of metabolic 

triggers. The second part comprises a list of metabolic triggers, 

obtained from metabolic fate methods, which aid in the prediction 

of mutagenicity in vivo, based on rodent micronucleus assay. 

Finally, the third part presents two sets of metabolic triggers, with 

one indicating contrasting mutagenic behaviour of chemicals in 

vitro and in vivo and the second indicating non-mutagenic 

behaviour of chemicals in vitro and in vivo. 

1.4 Resistance of Bacterial Targets to 

Antibiotics  

The discovery of penicillin by Alexander Fleming, in 1928, 

added a new dimension to the world of medicine. Soon after the 

discovery of antibiotics, bacterial strains started to develop 

antibiotic resistance as a result of which the action of antibiotics 

on life-threatening infections is becoming a cause of major concern 

[35]. As per estimates, multidrug-resistant S. aureus alone causes 

more deaths per year than HIV/AIDS [36]. 
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Figure 2: Number of deaths caused by drug resistance foreseen in 2050 (figure 
adapted from http://www.bbc.com/news/health-30416844) 

 

An analysis presented by a famous British economist, Jim 

O’Neill, attributed that by 2050 death toll caused by antibiotic 

resistance, which is currently the fourth major cause of death after 

tetanus, cholera and measles, would be about 10 million         

(Figure 2).  

Extensively studied modes of action of antibiotics include 

interference with cell membrane and cell wall synthesis, inhibition 

of protein synthesis, interference with nucleic acid synthesis, or 

inhibition of metabolic pathway [37]. Bacteria develop resistance 

to these modes of action by: 

• Acquiring genes that code for enzymes that destroy the 

antibiotic prior to its action. 
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• Attaining efflux pumps that pump out the antibacterial agent 

prior to its interaction with the target. 

• Several genes from a metabolic pathway cause the cell wall to 

change or mutate porin genes, which restrict the uptake of 

antibiotics. 

Genes responsible for antibiotic resistance can be found in 

several bacterial genomes, which implies that antibiotic resistance 

is widespread [38]. In addition to being toxic, antibiotics play an 

important role in physiology of cell signaling and interaction 

between species in bacteria [39]. As a consequence, antibiotics 

render bacterial resistance even without the presence of evolved 

genes [40]. Hence, it is time to establish a direct relationship 

between antibiotics and fast evolving bacteria. This is a 

challenging task, considering a given bacterial genome it is 

difficult to predict which of the above-mentioned resistance 

mechanisms will be the first to be manifested by bacteria [41]. 

Evidences collected from biochemical and genetic studies 

of bacterial resistance have resulted in the development of in vitro 

and in silico methods for the detection of antibiotic resistance. In 

the current scenario, where development of new antibiotics has 

almost stagnated [42], and already targeted sites of bacteria are 

continuously evolving and becoming resistant to antibiotics, the 

most feasible solution is the search and analysis of new targets in 

the proteome of these bacteria [43]. Amino acid sequences and 

physicochemical properties computed from them have been widely 

used to study different aspects of proteins for varied purposes, 
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given the fact that they elucidate important information about the 

protein [44, 45]. In this work, physicochemical properties of 

known antibiotic-resistant protein sequences were used for 

understanding resistance in new bacterial proteins. 

This thesis presents a consensus model combining the 

traditionally used Basic Local Alignment Search Tool (BLAST) 

with a new alignment-free method that has been developed to 

improve the resistance profile classification of bacterial proteins 

based on their physicochemical properties. The results show 

excellent classification into the eight classes of resistance profiles 

that the bacterial proteins were categorized into. An overall 

performance similar to the one provided by BLAST was obtained 

and, in addition, the consensus model has been able to classify all 

antibiotic-resistant proteins without exceptions. 

1.5 Structure of the Thesis 

Chapter 2 explains the data sources, the data pruning approaches 

and the software used for the development of models, along with 

the metrics used for model evaluation.    

Chapter 3 presents the results and discussions for all the models 

developed in this thesis.  

Chapter 4 presents the overall conclusions of the thesis and the 

models. 
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Chapter 2 Materials and 
Methods 

2.1 Datasets  

2.1.1 Nanoparticle dataset used for PCSAR 

approach  

Nanoparticle data was extracted from the literature [1] and 

a library of 105 gold nanoparticles and 16 silver nanoparticles was 

built. Nanoparticles were labeled as anionic (57 gold and 7 silver), 

cationic (27 gold and 5 silver), or neutral (21 gold and 4 silver) 

depending on the nature of the surface ligands. The dataset also 

included as endpoint the net cell association values for A549 

human lung epithelial carcinoma cells exposed to the above 

nanoparticles. In addition to charge and net cell association, the 

dataset also listed 785 proteins, for which the names and accession 

numbers along with spectral counts were provided. 

The same records (i.e., same set of nanoparticles and 

proteins) used in a previous study [1] were retained to facilitate 
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model comparison. Briefly, nanoparticle compositions with neutral 

surface ligands were excluded since serum proteins are not 

absorbed. Accordingly, models were developed and validated 

using only those nanoparticles with anionic and cationic surface 

ligands. Two different models were developed for gold and silver 

nanoparticles, respectively. Silver nanoparticles were also used to 

test whether the model built on gold nanoparticles was suitable to 

predict cell association of nanoparticles with a different core. As 

for the proteins, only 129 out of 785 proteins in the dataset were 

quantifiable. 

2.1.2 Datasets of chemicals  

2.1.2.1 Dataset (based on Ames test) for training 

  The benchmark dataset developed by Hansen and 

colleagues was used as a training set which consists of chemicals 

represented using their canonical simplified molecular input line 

entry system (SMILES), the outcome of the Ames test (mutagen 

or non-mutagen) and the corresponding literature references [2, 3]. 

This dataset comprises data compiled from different sources 

including, Chemical Carcinogenesis Research Information [4], 

Helma et al. [5], Kazius et al. [6], Feng et al. [7], VITIC [8], and 

the GeneTox databases [9] using the Software PipelinePilot [10]. 

The dataset was preprocessed to remove duplicates (with the same 

CAS (Chemical Abstracts Service) number, structure and 

experimental values), salts, mixtures and ambiguous compounds. 
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After these steps, the number of chemicals retained was 6065 

which comprised 3305 (54%) of mutagens and 2760 (46%) of non-

mutagens [11]. Furthermore, to ensure the quality of data, the 

outcome of the Ames test was generated using OECD QSAR 

Toolbox 3.1.0.21 and Leadscope software to retain only those 

chemicals that had the same outcome for Ames test in all the three 

sources, namely Hansen dataset, OECD QSAR Toolbox 3.1.0.21 

and Leadscope [12]. 

Table 1: Number of chemicals in each dataset used for studying in vitro and in 
vivo mutagenicity 

Dataset Mutagen Non-mutagen 
In vitro Ames training set 557 494 
In vitro Ames external validation set 42 595 
In vivo rodent micronucleus assay 
dataset (also have responses for in 
vitro Ames test) 

202 195 

 

Since the Ames test uses prokaryotic cells that are different 

from mammalian cells in terms of uptake, metabolism, 

chromosome structure and DNA repair processes, an exogenous 

metabolic activation system (i.e., supplemented                                

post-mitochondrial fraction (S9)) is commonly used [2].  For the 

purpose of analysing the mutagenicity caused by S9 activation, 

studies with information about the response of the bacterial strains 

to chemicals before and after S9 activation were selected. To take 

into account this S9 activation, only chemicals for which studies 

on the same strain were carried out before and after S9 activation 

were used. Chemicals that had shown transformation from         

non-mutagen to mutagen on the same strain for at least one strain 

UNIVERSITAT ROVIRA I VIRGILI 
IN SILICO MODELING OF CHEMICAL AND BIOLOGICAL INTERACTIONS AT DIFFERENT SCALES 
Padmaja Balachandran Kamath 



 

 28 

in the same study were categorized as mutagens. On the other hand, 

chemicals that were found to be non-mutagenic for all strains with 

and without S9 metabolic activation in the same study were 

categorized as non-mutagens. Once these steps were completed, 

1051 chemicals were retained comprising of 557 (53%) mutagenic 

and 494 (47%) non-mutagenic chemicals, as shown in Table 1. 

2.1.2.2 Dataset (based on Ames test) for 

validation 

Data were taken from ECHA CHEM database [13], which 

comprised 27144 studies on a total of 2975 unique CAS. Data 

corresponding to the ECHA CHEM database were retrieved from 

the graphical user interface of the OECD QSAR Toolbox 3.1.0.21 

[12]. The database includes chemical substances manufactured or 

imported in Europe and the information about these is obtained 

from the registration dossiers, submitted by companies to ECHA 

in the framework of the European REACH regulation [14]. 

Pruning criteria were applied to discard information that was not 

relevant to the study. Firstly, studies which had a Klimisch’s code 

of 1 and 2 (i.e., reliable studies) were only considered [15]. Further, 

data obtained by applying OECD (Organisation for Economic    

Co-operation and Development) guideline 471, which corresponds 

to the bacterial reverse mutation test, were retained [3]. Studies 

based on multi constituent substances from inorganic origin were 

discarded to keep only mono constitutent substances the origin of 
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which was known to be organic. In addition, 221 chemicals, which 

were already present in the training set, were also excluded. 

In the end, as shown in Table 1, after applying all the above 

data pruning criteria only 637 unique chemicals were retained to 

have a highly imbalanced dataset with 42 (7%) mutagenic 

chemicals and 595 (93%) non-mutagenic chemicals. 

2.1.2.3 Dataset with chemicals evaluated for 

rodent micronucleus assay and Ames test 

This dataset includes chemicals that have been tested 

following the mammalian erythrocyte micronucleus test in the 

OECD 474 guideline [16]. The dataset integrates data from the 

following three data sources, which are present in the OECD 

QSAR Toolbox 3.1.0.21: 

1) Micronucleus ISSMIC from the Istituto Superiore di Sanitа, 

Rome, Italy, and Federal Office of Public Health, Switzerland, 

which comprises information on 564 chemicals. 

2) Micronucleus Oasis from the Laboratory of Mathematical 

Chemistry, Bourgas, Bulgaria, which comprises information 

on 557 chemicals. 

3) Toxicity Japan MHLW from the Donators Ministry of Health, 

Labour and Welfare, Japan, which comprises information on 

252 chemicals. 
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Figure 3: In vivo rodent micronucleus dataset with responses for in vitro Ames 
test 

 

The initial set of chemicals from all the above datasets were 

put together and their CAS numbers and SMILES were checked to 

remove chemicals for which studies showed contradictory results. 

Finally, as shown in Table 1, this dataset comprises  397 

chemicals, 202 (51%) were mutagenic and 195 (49%) chemicals 

were non-mutagenic in vivo. These chemicals were then compiled 

to have results for both in vivo mutagenicity as per OECD 474 

guideline and in vitro mutagenicity as per OECD 471 guideline 

from the ISSCAN v3a database [17].  

108

72

94

123

In	vivo	rodent	micronucleus	dataset	
with	responses	for	in	vitro	Ames	test

In	vitro	&	in	vivo	mutagen

In	vitro	mutagen	&	in	vivo	
non-mutagen

In	vitro	non-mutagen	&	in	
vivo	mutagen

In	vitro	&	in	vivo	non-
mutagen

UNIVERSITAT ROVIRA I VIRGILI 
IN SILICO MODELING OF CHEMICAL AND BIOLOGICAL INTERACTIONS AT DIFFERENT SCALES 
Padmaja Balachandran Kamath 



 

 31 

Figure 3 explains the number of chemicals for which in 

vitro Ames test and in vivo test rodent micronucleus assay give the 

same and opposite mutagenic responses. Of the total number of 

chemicals, 94 (24%) mutagenic in vivo and non-mutagenic in vitro 

chemicals, and 72 (18%)        non-mutagenic in vivo and mutagenic 

in vitro chemicals were further used to generate metabolic triggers 

to identify similar and contradictory mutagenic response of 

chemicals. 

2.1.3 Dataset with resistance profiles for antibiotics 

Data on known antibiotic-resistant genes were retrieved 

from the Antibiotic Resistance Database (ARDB) [18], which is a 

rich source that includes information about antibiotic-resistant 

genes and their corresponding resistance profiles. The resistance 

profile of a given gene is defined by the set of antibiotics to which 

the gene is resistant. ARDB encompasses information on 13293 

genes belonging to 3369 different species and showing 377 types 

of resistance profile for 257 antibiotics. The protein products of 

these antibiotic-resistant genes are also given along with 

information on their resistance profile. The relationships between 

protein sequences and antibiotics in the database are given in the 

form of resistance types. In the current work, protein names 

corresponding to each antibiotic-resistant gene together with the 

corresponding resistance type were collected from ARDB. For 

each protein sequence, data were retrieved from the National 

Center for Biotechnology Information (NCBI) Batch Entrez 

UNIVERSITAT ROVIRA I VIRGILI 
IN SILICO MODELING OF CHEMICAL AND BIOLOGICAL INTERACTIONS AT DIFFERENT SCALES 
Padmaja Balachandran Kamath 



 

 32 

service (http://www.ncbi.nlm.nih.gov/sites/batchentrez).           

1315 similar/homologous sequences were removed using CD-HIT 

with a 90% sequence identity threshold to avoid undesirable              

biases [19, 20]. 

 

 

Figure 4: Distribution of protein sequences across classes in the dataset for 
studying antibiotic resistance in bacteria 

 

Each one of the 3263 observations in the dataset was 

associated with a specific type of resistance. Finally, resistance 

types were categorized into one of eight classes, depending on the 

number and type of antibiotics included in the resistance profile.  
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Depending on the mode of action of the antibiotics that 

made up the resistance type, each observation was assigned one of 

the following four labels: 

• Inhibition of Protein Synthesis (IPS) 

• Interference with Cell Wall synthesis and disruption of 

Bacterial Membrane structure (CWBM) 

• Inhibition of Metabolic Pathway (IMP) 

• Interference with Nucleic Acid Synthesis (INAS) 

Furthermore, resistance profiles containing a single class of 

antibiotics were labelled as S (single) and the others were labelled 

as M (multiple). Combining these two labels with the above modes 

of action, a total of eight different classes were obtained. The 

distribution of antibiotic-resistant protein sequences in each class 

is shown in Figure 4. As it can be observed, the dataset is highly 

imbalanced in terms of the number of records in each class, being 

CWBM-S the majority class with 863 antibiotic-resistant proteins, 

while the class INAS-M is the smallest one containing only             

26 proteins. 

2.2 Software 

2.2.1 R computing environment 

 R is a programming language and environment for 

statistical computing and graphics. Lot of statistical and graphical 

techniques are incorporated in R such as linear and nonlinear 
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modelling, classical statistical tests, time-series analysis, 

classification, clustering, etc., which have made it widely used 

software for data analysis and modelling [21]. 

2.2.2 MultiDendrograms 

MultiDendrograms is an easy to use and powerful program 

which is used for hierarchical clustering of data. With distances 

computed from similarity matrix as a starting point, a dendrogram 

is generated using the most common agglomerative hierarchical 

clustering algorithms, allowing many of the graphical 

representation parameters to be tuned. In addition, the results may 

be easily exported to file [22, 23]. 

2.2.3 SARpy 

SARpy (SAR in python) is a tool that identifies the most 

informative fragments from the chemical substances in a given 

dataset [24]. The software facilitates the generation of rules from 

the data without needing a priori knowledge. The algorithm 

generates a set of substructures of arbitrary complexity, from 

which the ones that result in a better prediction performance in the 

training set are automatically chosen as SAs. SARpy is available 

either through a standalone interface or via the VEGA web-based 

platform (http://home.deib.polimi.it/gini/SARpy.htm). 

The basic information used by SARpy for rule generation 

is the molecular structure, which is converted into SMILES 
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disregarding chirality information. The resulting rule-based model 

tags each compound either as mutagen when one or more SAs 

appear in the molecular structure, or as a non-mutagen if no SAs 

are present, because SAs are characteristic of mutagens. Prediction 

uncertainty is not provided by the model but it can be easily 

deduced from the likelihood ratio of each SA present in a given 

chemical [25]. 

2.2.4 Chemical Reactivity and Fate Tool (CRAFT) 

The CRAFT software suite was used to generate reactions 

for the fate of chemicals. CRAFT is used in areas such as product 

safety, hazard and risk assessment, and toxicology to interactively 

evaluate the reactivity, persistence, biodegradability and fate 

profiles of chemicals in the environment [26]. The software 

provides the metabolic pathways of chemicals by evaluating their 

reactivity and fate, along with their conceivable products based on 

different conditions and organisms. In addition, each step of the 

metabolic pathway is ranked according to its likelihood. Metabolic 

reactions were generated using CRAFT Explorer, which includes 

the UM-BBD likelihood model and the Ester hydrolysis sample 

model. The UM-BBD likelihood model is an implementation of 

the biotransformation rules provided in the University of 

Minnesota Biocatalysis/Biodegradation Database [27]. Most of the 

biotransformation rules are taken from the above database and are 

implemented with their exact likelihood. On the other hand, the 
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Ester hydrolysis sample model comprises only one reaction rule in 

order to demonstrate (Q)SAR based reactivity model usage [28]. 

2.2.5 istChemFeat 

Functional groups and atom centred fragments were 

computed using the software istChemFeat, which is a JAVA 

application based on the VEGA core libraries developed under the 

EU funded project ANTARES (http://www.antareslife.eu) by 

Kode s.r.l. (http://kode-solutions.net). Using this software, the 

chemical space of the datasets as well as the metabolic triggers that 

were generated using CRAFT were analysed. 

2.2.6 Emboss-pepstats 

The implementation of pepstats in Emboss, available at 

(http://emboss.bioinformatics.nl/cgi-bin/emboss/pepstats), was 

used. pepstats is a program that computes properties of proteins, 

and it was used to obtain a set of features that describe the protein 

sequences corresponding to the antibiotic-resistant genes. Typical 

output of pepstats consists of values for peptide properties such as 

molecular weight, charge, isoelectric point, probability of 

expression in inclusion bodies, and A280 molar extinction 

coefficient. The counts of each of the 20 amino acids are 

represented as numbers, molar percentage and DayhoffStat. 

DayhoffStat corresponds to the molar percentage of the respective 

amino acids divided by their Dayhoff Statistic. In addition, each 

amino acid is counted, depending on its nature, into tiny, small, 
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aliphatic, aromatic, non-polar, polar, charged, basic, and acidic, 

which are represented in terms numbers and molar percent [29]. 

2.2.7 Rapidminer 

RapidMiner is a data mining and machine learning 

software that facilitates visualization, predictive analytics and 

statistical modelling, evaluation and deployment [30]. 

2.2.8 Waikato Environment for Knowledge 

Analysis(WEKA) 

Weka machine learning is a workbench that provides an 

environment for automatic classification, regression, clustering 

and feature selection in common data mining problems. It 

comprises of a graphical interface to a wide number of machine 

learning algorithms and data pre-processing methods that can be 

used for data exploration and the experimental comparison of 

different machine learning techniques on the same problem. Weka 

can process data given in the form of a single relational table. Its 

main objectives are to assist users in extracting useful information 

from data and to enable them to easily identify a suitable algorithm 

for generating an accurate predictive model from it [31]. 

2.2.9 BioEdit 

BioEdit is a biological sequence alignment editor written 

only for Windows.  It has multiple document interface with       
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user-friendly features that make alignment and manipulation of 

sequences easy. With different sequence manipulation and analysis 

options available along with links to external analysis programs, 

sequence manipulation is absolutely easy [32]. 

2.3 Feature generation, selection and model 

development  

2.3.1 For PCSAR model 

Information about the 129 quantifiable proteins that form 

the corona was recorded in the form of spectral counts, which were 

then converted to relative abundance (RA) using the following 

equation: 

𝑅𝐴(𝑛, 𝑝) 	= 	 *+,(-,+)
*+,(-,.)/01

23/
 (1) 

where RA(n, p) is the relative abundance of protein p in the 

nanoparticle formulation n, and SpC(n, p) corresponds to the 

number of spectral counts recorded for a nanoparticle formulation 

n and protein p, respectively. The sum of the relative abundances 

for all proteins over a given nanoparticle formulation is 1. Relative 

abundances of the proteins were used in a previous study [1] to 

define a quantitative RA-based fingerprint for each nanoparticle 

formulation. 
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 The approach in this thesis develops a new type of protein 

corona fingerprint that is based on physicochemical properties. 

Protein properties were computed using the EMBOSS Pepstats 

program from their amino acid sequences. The final descriptors 

were computed averaging the physicochemical properties of the 

proteins weighted by the relative abundance of the corresponding 

protein:  

𝐴𝑃(𝑛, 𝑑) 	= 𝑅𝐴 𝑛, 𝑝 ×	𝑃𝑒𝑝𝑠𝑡𝑎𝑡𝑠 𝑝, 𝑑 			;<=
+>;  (2) 

where AP(n, d) is the averaged value of a physicochemical 

descriptor d for a nanoparticle formulation n, and Pepstats(p, d) is 

the value of a physicochemical descriptor d for protein p. Averaged 

physicochemical descriptor (AP) were normalized by using a         

z-score transformation (i.e., subtracting the mean value and 

dividing by the standard deviation of descriptor values). Finally, 

the normalized physicochemical descriptors were used to form a 

new AP-based fingerprint (i.e., vector of averaged descriptor 

values), independent of the specific protein composition of the 

biological media. 

To assess whether the two different fingerprints for 

nanoparticles carried essentially the same information, hierarchical 

clustering of nanoparticles was performed using the 

MultiDendrograms software. The partitions (i.e., clusters) obtained 

from the two alternative fingerprints were compared. The distance 

between each pair of nanoparticles, dij, was computed from 

Pearson correlation coefficient, rij, using the metric: 
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𝑑?@ = 1 − 𝑟?@ (3) 

PCSAR based on multilinear regression were developed to 

predict net cell association. The selection of the best set of features 

(i.e., averaged protein descriptors) for the PCSAR was based on 

the adjusted correlation coefficient, which measures if the addition 

of a new descriptor increases the explanatory power of the 

resulting model. 

2.3.2 For chemicals evaluated with Ames test and 

Rodent micronucleus test 

The data processing workflow used to develop the in vitro 

mutagenicity model is based on the use of the rules generated by 

SARpy. Chemicals were evaluated against the ruleset and tagged 

as mutagenic, non-mutagenic or unknown.  Metabolic pathways 

were subsequently generated using CRAFT for those chemicals 

identified as unknown by SARpy rules. Reactions were generated 

in the same way as in the case of metabolic triggers, i.e. using a 

likelihood threshold of 0.61 which is value that includes only likely 

and very likely reactions. All possible reaction steps under aerobic 

and biotic conditions were computed.  

From the resulting reactions, a set of unique metabolic 

triggers was generated by enumerating the occurrence of each 

metabolic trigger in the metabolic pathways of mutagenic and non-

mutagenic chemicals. Parent compounds, intermediates and 

products of chemicals which were labeled unknown by SARpy 
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were then compared to the metabolic triggers. Based on the 

presence of these metabolic alerts as parent compounds, 

intermediates or products, the parent compounds were classified as 

mutagenic or non-mutagenic. 

2.3.3 For drug resistance model 

pepstats was used to generate protein descriptors which 

were subsequently the features of the models. In order to partition 

the data into training and validation sets, the most representative 

bacterial proteins were used to evaluate the classifier, while the 

remaining observations were kept for training it. To this end, the 

original dataset of 3263 proteins was partitioned into validation 

and training sets using the RapidMiner implementation of Kennard 

and Stone’s algorithm [33]. The construction of the validation set 

is incremental and starts by incorporating the most dissimilar 

proteins. Further, for the next candidate proteins, the distance with 

the nearest protein that has already been selected is calculated, and 

the protein at the largest distance among the small distances is 

chosen. The result of this exercise was a validation set that 

consisted of 654 representative proteins chosen from the original 

dataset of 3263 proteins. The remaining 2609 proteins were used 

for training. 

In a subsequent preprocessing step, aimed to select the 

most representative physicochemical properties, the data values in 

the training set were standardized by using a z-score 

transformation (i.e., subtracting the mean and dividing by the 
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standard deviation). Normalized features were then ranked using 

WEKA, which has been used widely for different classification 

problems [31, 34-36]. For ranking of our normalized features we 

used the Infogain method, which ranks features in terms of the 

amount of information they contribute towards correct 

classification. For every particular feature, Infogain measures the 

amount of information this feature gives to the prediction of classes 

and the reduction in entropy (uncertainty associated with a random 

feature). This feature selection method has been extensively used 

for classification problems in biology [37-38]. 

Once the representative proteins were selected to be part of 

the validation set, five different data partitions for training were 

randomly generated to avoid bias in the selection of the features 

due to the structure of the training set. For all five training sets, 

different classification models were incrementally developed by 

adding a new feature at a time, following the decreasing order of 

significance given by Infogain. This wrapper approach [39] has the 

purpose of evaluating the performance of a classifier with different 

subsets of features to identify the most suitable subset. 

An alignment-free classifier using the K* algorithm [40] to 

discriminate between eight different resistance profiles was 

developed. The algorithm is an instance-based classifier that 

associates a given bacterial protein with the resistance type of the 

most similar protein in a training set, and the similarity is based on 

an entropy distance function. 
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Finally, the five classifiers were tested on the same 

validation set and the responses of these classifiers on the 

validation set were used to compute a consensus classifier, which 

assigned a class to every observation in the validation set based on 

the majority response of the five classifiers. 

BLAST [41] is the most common approach for identifying 

sequence-based homologies. However, alignment-based methods 

require the a priori definition of a minimum similarity threshold to 

recognize homologous sequences. As a result, protein sequences 

with similarity values below the threshold cannot be classified. In 

the current work, a local BLAST implementation from BioEdit 

was used to develop a baseline resistance profile classifier. 

Homologous sequences were identified with a similarity threshold 

of 0.001 [42, 43]. Accordingly, bacterial protein sequences were 

assigned to the resistance profile of the most similar bacterial 

protein identified by BLAST based on the best bit-score                 

and E-value. 

2.4 Performance evaluation of models  

2.4.1 For PCSAR model 

The PCSAR was subsequently validated using the R 

statistical programming framework via the following methods: 

• Bootstrapping cross-validation with 1000 bootstrap samples, 

using the 0.632 method [44]. This approach corrects 
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performance estimates by taking into account the probabilities 

for each observation to be included in the training and test sets. 

The correction is based on a weighted average of the re-

substitution and bootstrap error estimates. 

• Leave-one-out (LOO) cross-validation, where the model is 

iteratively trained on all observations except one that is used 

for testing.  

• Leave-many-out (LMO) cross-validation, where the dataset 

was randomly partitioned into two parts, 75% of observations 

for training and 25% for testing. This partitioning and 

subsequent training and testing was repeated 100 times. 

• 10-fold cross-validation repeated 10 times. 

In all the above validation methods, the number of 

repetitions was optimized to ensure stable performance metrics. 

2.4.2 For model based on Ames test 

Prediction results were evaluated using traditional Cooper 

statistics, following the QSAR characterization guidance 

developed by the Joint Research Centre [45, 46]. Accordingly, 

accuracy, sensitivity and specificity are defined as: 

Accuracy = JKLJM
JKLNMLJMLNK

 (4) 

Sensitivity = JK
JKLNM

	 (5)	

Specificity = JM
JMLNK

	 (6)	
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where TP, TN, FN and FP represent the number of true positives, 

true negatives, false negatives and false positives, respectively. In 

the current analysis, mutagenic compounds form the positive class. 

Accordingly, true positive instances refer to mutagenic chemicals 

predicted mutagenic and true negative instances refer to non-

mutagenic chemicals predicted non-mutagenic, whereas false 

negative instances refer to mutagenic chemicals predicted as non-

mutagenic and false positive instances refer to non-mutagenic 

chemicals predicted as mutagenic. It is important to note that, for 

regulatory purposes, sensitivity is more important than specificity 

since it is crucial not to consider as safe a toxic chemical. 

In order to get a more reliable metric, the above 

performance measures were complemented with the Matthews’ 

correlation coefficient (MCC). The MCC metric is well suited for 

skewed (i.e., imbalanced) datasets used for binary classifications 

[47]. The MCC is computed as follows: 

MCC = JK×JM\NK×NM
JKLNK × JKLNM × JMLNK × JMLNM

													(7)	

Possible values of MCC are in the range of -1 to +1, where 

+1 indicates perfect prediction, 0 indicates a random prediction, 

and -1 indicates total disagreement between predicted and real 

values. 
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2.4.3 For drug resistance model 

The model to predict the drug resistance of protein targets 

was evaluated using the following metrics: 

• Given the data imbalance (see Figure 4), the κ index [48] was 

used to assess the performance of the classifiers. The κ index 

takes into consideration the chance agreement of the 

observation, rather than weighing classes, based on the 

number of observations they have [49]. This index varies from 

0 (no agreement at all) to 1 (complete agreement). 

• Precision (P), this is the fraction of antibiotic-resistant 

proteins belonging to a given class, which are predicted into 

the same class, and all antibiotic-resistant proteins belonging 

to the given class. 

• Recall (R), this is the fraction of antibiotic-resistant proteins 

belonging to a given class, which are predicted into the same 

class, and all the antibiotic-resistant proteins predicted into the 

given class and other classes. 

• F-measure, which measures the goodness of a classifier in the 

presence of rare classes: 

𝐹 −measure	 = 	 <K`
KL`

	 (8)	

For PCSAR and drug resistance models Y-randomization 

was performed, which consists in the assessment of the 

performance of the corresponding model, built on randomized 
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or permuted data. This is used to discard the effect of chance 

correlations in predictions made by the model. 
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Chapter 3 Results and 
Discussions  

3.1 PCSAR approach 

In this section the results of the PCSAR approach are 

presented, wherein the fingerprints obtained from the literature 

AP-based Fingerprints and the fingerprints generated using RA-

based Fingerprints were compared. To summarize the approach in 

a nutshell, information related to the composition of the protein 

corona and net cell association was collected from literature for a 

library of surface-modified gold and silver nanoparticles. For each 

protein in the corona, sequence information was extracted and used 

to calculate physicochemical properties and statistical descriptors. 

Data cleaning and preprocessing techniques including statistical 

analysis and feature selection methods were applied to remove 

highly correlated, redundant and non-significant features. A 

weighting technique was applied to construct specific signatures 

that represent the corona composition for each nanoparticle. Using 

this basic set of protein descriptors, a new PCSAR that relates net 
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cell association with the physicochemical descriptors of the 

proteins that form the corona was developed and validated. 

3.1.1 Comparison of fingerprint-based partitions 

To understand the similarity between the clusters obtained 

from the two descriptions of nanoparticles, a partition of ten 

clusters obtained from the RA-based fingerprints was compared 

with a partition of seven clusters generated from the AP-based 

fingerprints. 
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Figure 5: Hierarchical clusterings obtained from two different descriptions of nanoparticles, i.e., in terms 
of proteins relative abundance (left); and in terms of physicochemical descriptors of the protein corona 
(right). The dendrograms were computed using the MultiDendrograms software and they were cut at 
heights (i.e., similarity level) where the correspondence between the two partitions obtained is maximized. 
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Table 2: Contingency table comparing ten clusters obtained from fingerprints 
based on proteins relative abundance, and seven clusters obtained from 
fingerprints based on physicochemical descriptors of the protein corona. 

 
Averaged Physicochemical Descriptors  

(AP-Based Fingerprints) 

D1 D2 D3 D4 D5 D6 D7 

Proteins 
Relative 

Abundance 

(RA-Based 
Fingerprints) 

P1 2 0 0 0 0 14 0 

P2 0 0 0 15 0 0 0 

P3 0 0 0 0 0 1 0 

P4 0 12 0 0 0 0 0 

P5 0 0 0 0 15 0 0 

P6 0 0 2 0 0 0 0 

P7 0 0 0 2 1 0 0 

P8 0 0 0 0 0 1 11 

P9 0 0 0 0 0 2 0 

P10 0 0 6 0 0 0 0 

 

Figure 5 shows the two dendrograms obtained using the 

unweighted average method of hierarchical clustering. The 

resulting contingency table is given in Table 2. In most of the 

partitions there is a neat overlap between the clusters obtained from 

the two fingerprints. For example, the nanoparticles in cluster P4 

are exactly the same as those in cluster D2 (P4 = D2). Also, cluster 

D3 matches exactly with the union of clusters P6 and P10              

(D3 = P6 ∪ P10). Significant overlaps are found between clusters 

P1 and D6, and between the following pairs of clusters, where one 
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cluster strictly contains the other: P2 ⊂ D4, P5 ⊂ D5, and P8 ⊃ 

D7. The normalized mutual information index for the two 

partitions was 0.88, confirming that RA-based fingerprints and 

AP-based fingerprints convey similar information up to a large 

extent. 

The model for gold nanoparticles is a multilinear regression 

model is based on fingerprints developed from the relative 

abundance and physiochemical properties of the proteins that form 

the corona. This model obtained using the adjusted correlation 

coefficient for feature selection, retained only 7 out of the 35 initial 

averaged physicochemical properties: 

log2(net cell association)  = 
− 4.56 
+ 4.92 × probability of expression in inclusion bodies 
+ 1.32 × tiny amino acids percentage 
+ 1.04 × basic amino acids percentage 
+ 0.93 × aspartic acid DayhoffStat 
− 0.86 × molecular weight 
− 1.24 × polar amino acids percentage 
− 3.80 × acidic amino acids percentage (1) 

 
 

The normalized AP-fingerprints were used to develop the 

model in Eq. 1.  
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Table 3: Comparison of the performance of the two net cell association 
predictive models. Squared correlation coefficient values are given for the entire 
dataset, leave-one-out (LOO), and leave-many-out (LMO25%) cross-
validations. 

Model No. of 
parameters R2 R2

LOO R2
LMO 25% 

RA-based 
fingerprint 64 0.93 0.81 0.61 ± 0.18 

AD-based 
fingerprint 7 0.80 0.76 0.72 ± 0.11 

 

Table 3 compares the performance of this model (Eq. 1) 

with the previously reported model [1] developed from RA-based 

fingerprints. Although the performance of the model based on    

RA-based fingerprints is very high for the entire dataset (R2 =0.93), 

it can be observed that there is a significant variability in the LOO 

and LMO cross validations. Specifically, a substantial decay is 

observed in the LOO cross-validation, where the squared 

correlation coefficient (R2 LOO) drops to 0.81. A similar decrease 

in performance is observed in the LMO cross-validation, where the 

value of R2 LMO 25% decreases until 0.61. In contrast, the current 

model (Eq. 1) developed from AP-based fingerprints shows a more 

consistent performance with R2 values of 0.80, 0.76 and 0.72 for 

the entire dataset, the LOO and the LMO 25% cross-validations, 

respectively. Literature suggests that models with R2 > 0.70 for 

LOO cross-validation can be considered to be acceptable [2]. The 

number of 7 parameters of the present model is ten-fold lower than 

the number of 64 parameters needed for the model based on        
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RA-based fingerprints. OECD guidelines for QSAR development 

and validation suggest that simple relationships are preferred to 

more complex ones since they are easier to construct, interpret and 

use. 

Additionally, for bootstrap cross-validation tests, the new 

PCSAR model did not show a significant decay in performance. 

The results of the 0.632 bootstrapping were well in agreement, 

with a R2 value of 0.77 ± 0.07 after 1000 bootstrap samples. A 

similar R2 value of 0.77 ± 0.14 was obtained with a 10-fold      

cross-validation repeated 10 times. 

 

Figure 6: Predicted versus experimental log2(net cell association) values for 84 
gold nanoparticles. The 95% confidence interval, centred in the dotted line, is 
shown for visual reference. 
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Finally, to discard chance correlations, the values of the net 

cell association were changed randomly and a new model was 

constructed using the randomized data. The R2 for Y randomized 

PCSAR dropped to 0.16, indicating that predicted values were not 

obtained by chance. Figure 6 shows the predicted versus 

experimental net cell association values for the set of 84 gold 

nanoparticles. As it can be observed, all predictions except two fall 

inside the 95% confidence interval. 

3.1.2 Validation of the approach with silver 

nanoparticles 

Silver nanoparticles were also considered to check the 

applicability of the AP-based fingerprint for PCSAR development. 

The subset of silver ENMs in the original dataset was formed by 

12 nanoparticles, with anionic and cationic surface ligand 

formulations. The primary observations were consistent with those 

previously reported in the literature [1], where the model 

developed for gold nanoparticles could not accurately predict 

nanoparticles with a different core (i.e., silver). 
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Following the same approach used for gold nanoparticles, 

a separate multilinear regression model was developed for silver 

nanoparticles: 

log2(net cell association) =  
− 2.17 
+ 21.8 × glutamine DayhoffStat 
+ 11.6 × A280 molar extinction coefficient 
+ 11.4 × isoleucine DayhoffStat 
− 3.42 × tyrosine DayhoffStat 
− 7.40 × acidic amino acids percentage 
− 7.71 × basic amino acids percentage 
− 26.0 × aliphatic amino acids percentage (2) 

 

The normalized AP-fingerprints were used to develop the 

model in Eq. 2. The performance of the PCSAR model for silver 

(Eq. 2) in terms of R2 for the entire dataset is 0.96. A complete 

cross-validation analysis was also conducted for the above model. 

The LOO cross-validation yields a similar value for R2 of 0.96. The 

10-fold cross-validation, which was repeated 10 times, had a R2 of 

0.98 ± 0.05. Similarly, the LMO cross-validation, which was 

repeated 10 times, had a lower R2 value of 0.71 ± 0.39 with a 

significant variability. The 0.632 bootstrap corrections yield a R2 

of 0.78 ± 0.36. These results are explained by the fact that the 

number of observations in the dataset is very limited (i.e., only 12 

nanoparticles) and the number of features included in the model 

given in Eq. 2 is relatively high (i.e., 7 physicochemical 

properties). 
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Figure 7: Predicted versus experimental log2(net cell association) values for 12 
silver nanoparticles. The 95% confidence interval, centered in the dotted line, 
is shown for visual reference. 

 

The model perfectly fits, in general terms, the small dataset 

of silver nanoparticles.  However, when it is tested stringently, it 

tends to have a R2 value that is in the same order as that of the 

model for gold nanoparticles, although the variability of the 

estimate is very high. Figure 7 depicts predicted versus 

experimental net cell association values for silver nanoparticles. 

As it can be observed, all predictions fall inside the 95% 

confidence interval 
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3.1.3 Biological interpretation of the predictive 

model for gold nanoparticles 

The role of the protein corona features in the downstream 

processing of the nanoparticle-protein corona (NP-PC) complex 

system has been extensively studied. The types of proteins that 

bound onto the surface of the nanoparticle depend largely on the 

type of ligand associated with the nanoparticle [3]. The formation 

of protein corona affects the cellular uptake of the nanoparticle, 

trafficking and in vivo biodistribution of nanoparticles [4]. 

The biological interpretation of the different model 

parameters in Eq. 1 can be summarized as follows: 

• The probability of expression in inclusion bodies can be 

interpreted as a measure of the solubility potential [5]. Protein 

and peptide solubility controls the concentration of proteins in 

solution, which in turn increases protein adsorption. 

• The so-called tiny amino acids include alanine, cysteine, 

glycine, serine and threonine. This parameter plays an 

important role in the model since cellular uptake is related to 

size and factors that depend on the selective permeability of the 

cell membrane. According to the model, the presence of a high 

percentage of tiny amino acids increases the net cell 

association. 

• Basic amino acids, which include the positively charged amino 

acids (namely histidine, lysine and arginine), play an important 

role in the electrostatic interactions of the nanoparticle with the 
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protein corona [6]. Positively charged proteins will be attracted 

to a negatively charged membrane by nonspecific electrostatic 

interactions. 

• Molecular weight is a fundamental parameter for most 

interactions in biology. In particular, molecular weight is 

related to the size of the protein. A protein corona formed by 

large proteins will have a lower net cell association potential. 

• Polar amino acids are usually found at the surface of proteins. 

Some proteins destined for the membrane contain groups of 

nonpolar amino acid side chains that create a water-shunning 

(hydrophobic) region on their surface [7]. Accordingly, the 

percentage of polar amino acids in the corona contributes to 

decrease net cell association.  

• Acidic amino acids (i.e., negatively charged amino acids, and 

aspartic and glutamic acid) are known to play a vital role in the 

electrostatic interactions between nanoparticles and their 

protein corona [8, 9], as well as in the interaction with cell 

membranes. The presence of acidic amino acids contributes, 

via electrostatic repulsion, to decrease the cell association to 

negatively charged membranes. 
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3.2 Mutagenicity of chemicals 

3.2.1 In vitro model based on Ames dataset 

For the in vitro Ames test training dataset, comprising 557 

mutagenic chemicals and 494 non-mutagenic chemicals, the 

chemical space was analysed in terms of the abundance of 

functional groups of the chemicals in the dataset using 

istChemFeat. The most abundant functional groups in the dataset 

were acceptor atoms for H-bonds (N, O, F), aromatic C(sp2), 

unsubstituted benzene C(sp2), substituted benzene C(sp2), 

terminal primary C(sp3), donor atoms for H-bonds (N and O), total 

secondary C(sp3), non-aromatic conjugated C(sp2), hydroxyl 

groups, and donor atoms for H-bonds (N and O). 

Further, metabolites of these 557 mutagenic chemicals and 

494 non-mutagenic chemicals were generated by CRAFT, and 

compiled along with their parent compounds into a list comprising 

10380 records. The number of times that each metabolite occurred 

in the reactions was also recorded. In specific, for each metabolite, 

its occurrence in the metabolic pathways of both mutagenic and 

non-mutagenic chemicals was counted. 

Further these 10380 metabolites were sorted as per their 

frequency of occurrence in each type of metabolic pathway         

(i.e., mutagenic or non-mutagenic). A total of 1769 (17%) 

metabolites were found to be occurring more than two times in the 

metabolic pathways of mutagenic chemicals and completely 
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absent in the metabolic pathways of non-mutagenic chemicals. 

Similarly, there were 443 (4%) metabolites present more than two 

times in the metabolic pathways of non-mutagenic chemicals and 

they were lacking in the metabolic pathways of mutagenic 

chemicals. These subsets of 1769 (17%) and 443 (4%) metabolites 

were labelled as metabolic triggers for mutagenic and non-

mutagenic chemicals, respectively. 

The identified metabolic triggers were used to predict the 

mutagenicity of chemicals that were predicted as unknowns by 

SARpy. Using the in vitro Ames training dataset, which comprised 

1051 chemicals, SARpy only accepted 1004 (96%) chemicals, 

based on which it generated a set of 35 mutagenic and 33 non-

mutagenic rules. For 553 mutagenic chemicals, the classifier based 

on SARpy rules classified 456 (82.46%) as mutagenic,                       

75 (13.56%) as non-mutagenic, and 22 (3.98%) as unknowns. For 

451 non-mutagenic chemicals, 345 (76.50%) were classified as 

non-mutagenic, 32 (7.10%) as mutagenic, and 74 (16.41%) as 

unknowns. The metabolic pathways for the set of 96 (10% of the 

dataset) chemicals labelled as unknowns by SARpy were 

generated using CRAFT and the occurrence of the metabolic 

triggers was checked. Based on the use of the identified 

metabolites, the metabolic triggers approach was able to correctly 

predict additional 45 chemicals (5% of the dataset), of which six 

were mutagenic and 39 were non-mutagenic chemicals, therefore 

slightly increasing the accuracy and significantly bringing down 

the percentage of unknowns from 9.56% to 5.08%. For the 
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remaining 51 unknown chemicals (5% of the dataset), of which 16 

were mutagenic and 35 were non-mutagenic, concrete evidence in 

the form of metabolic triggers was not obtained from CRAFT. 

 

 

Figure 8: Results of prediction of in vitro mutagenic and non-mutagenic 
chemicals, using SARpy and SARpy + metabolic triggers approach. 

 

Figure 8 provides a comparison of the performances of the 

two approaches. It should be noted that the SARpy + metabolic 

triggers approach was able to predict correctly 846 out of 953 total 

predictions that were made in the training set, obtaining an 

accuracy of 89%. SARpy provides processed results that are easy 

to interpret. However, the results from CRAFT are in the form of 

reactions whose reactants and products must be compared with the 

list of metabolic triggers. For example, the experimental non-
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mutagenic chemical CN(C)C1=CC=CC=C1 has a very likely 

product, CNC1=CC=CC=C1, which could further have two 

products, CNC1=CC(O)C(O)C=C1 or NC1=CC=CC=C1, before 

the reaction comes to an end. In this case, the parent compound 

itself and all the metabolites are metabolic triggers for in vitro non-

mutagenic chemicals. In the case of mutagenic chemicals, a 

chemical was considered to be mutagenic if one of the subsequent 

metabolites matched with the metabolic triggers. For example, the 

experimental mutagenic chemical BrCCBr has a likely product of 

OCCBr. Subsequently, OCCBr will likely have BrCC=O. This 

chain of reactions has a likely occurrence, and OCCBr is a 

metabolic trigger for an in vitro mutagenic chemical. Hence, the 

parent compound BrCCBr was predicted as mutagenic, since the 

likely reaction it will go through will produce a mutagenic 

metabolite. In this way, taking into account metabolic triggers and 

likelihoods of the reactions, the mutagenicity of chemicals was 

predicted based on the parent compound itself or based on the 

subsequent metabolites.  

The same approach was further tested on the in vitro Ames 

test external validation set. Before testing, the chemical space of 

this dataset was analyzed using istChemFeat, to understand its 

similarity in terms of functional groups with the in vitro Ames test 

training set. Six out of the ten most abundant functional groups of 

this dataset are also in the list of the ten most abundant functional 

groups of the in vitro Ames test training set, hence emphasizing 

the fairly good similarity between the two datasets. These comprise 
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acceptor atoms for H-bonds (N, O, F), terminal primary C(sp3), 

total secondary C(sp3), aromatic C(sp2), hydroxyl groups and non-

aromatic conjugated C(sp2). Other abundant functional groups, 

absent in the in vitro Ames test training set, were donor atoms for 

H-bonds (N and O), substituted benzene C(sp2), unsubstituted 

benzene C(sp2) (multiple occurrences), and total tertiary C(sp3). 

Owing to the imbalance in this dataset, wherein the 

percentage of mutagenic chemicals was very small and a bit 

different in terms of the abundant functional groups, a new set of 

rules was generated for the validation dataset using SARpy, and 

then the metabolic triggers of unknowns from SARpy were 

compared with the metabolic triggers generated from the original 

training dataset. The newly generated set of SARpy rules included 

a total of 38 rules, of which 7 correspond to mutagenic chemicals 

and the remaining 31 were for non-mutagenic substances. The 

structure of the new set of rules was in line with the imbalanced 

composition of the validation dataset (i.e., a small number of 

mutagenic chemicals and a large number of non-mutagenic 

chemicals). 

Using the above 38 rules for the 42 (7% of the dataset) 

mutagenic chemicals, the SARpy system classified 22 of them 

(52.38%) as mutagenic, 12 (28.57%) as non-mutagenic, and 8 

(19.05%) as unknowns. For the 595 non-mutagenic chemicals 

(93% of the dataset), 377 (63.36%) were classified as non-

mutagenic, 124 (20.84%) as mutagenic, and 94 (15.80%) as 

unknowns. Metabolic pathways for the unknown chemicals were 
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generated using CRAFT and the intermediate reaction products 

were compared with the metabolic triggers identified during the 

analysis of the training dataset. Using metabolic triggers, the 

approach could predict additionally 16 chemicals (2.51%):                

1 mutagenic and 15 non-mutagenic. A summary of the results is 

shown in Figure 8. Hence, out of 551 predictions made by the 

SARpy + metabolic triggers approach, 415 predictions were 

correct, obtaining an accuracy of 75%. Due to the low numbers of 

true positives and false positives, a drop in the Matthews 

correlation coefficient has been observed, which was only 0.23. 

3.2.2 Metabolic triggers to predict in vivo 

mutagenicity based on rodent micronucleus assay 

As for the in vitro datasets, an analysis of the chemical 

space was also performed for this dataset in terms of abundance of 

functional groups. The most abundant functional groups in this 

dataset were acceptor atoms for H-bonds (N, O, F), aromatic 

C(sp2), unsubstituted benzene C(sp2), terminal primary C(sp3), 

substituted benzene C(sp2), donor atoms for H-bonds (N and O), 

total secondary C(sp3), non-aromatic conjugated C(sp2), and 

hydroxyl groups. In particular, functional groups acceptor atoms 

for H-bonds (N, O, F) and non-aromatic conjugated C(sp2), both 

of which have multiple occurrences in the same chemicals, are 

unique to this dataset and are not present in the two in vitro 

datasets. 
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This dataset contained chemicals that have been tested in 

vivo in rodents using the micronucleus assay, which is one of the 

tests most widely used for confirmation of mutagenicity. Using 

CRAFT, a list of 2144 metabolites was obtained using the 

approach described previously. Further, only the metabolites 

which had a count of two or more for the class they belong to and 

zero counts for the other class were retained and labelled as 

metabolic trigger for their corresponding class. A final list of        

326 (15% of total) metabolic triggers for mutagenic chemicals and 

276 (13% of total) metabolic triggers for non-mutagenic 

chemicals, respectively, was obtained using this approach. 

3.2.3 Comparison between in vitro and in vivo 

The dataset used to analyse chemicals for in vivo 

mutagenicity included information about the bioactivity of 

chemicals in the Ames test in addition to the micronucleus assay 

in rodents. The comparative analysis of this information is critical 

to establish a link between the in vitro and in vivo mutagenic 

responses. As explained previously in Chapter 2, a preliminary 

analysis of the mutagenicity data revealed that 72 (15%) chemicals 

were mutagenic in vitro and non-mutagenic in vivo. Similarly,       

94 (19%) chemicals were mutagenic in vivo and non-mutagenic in 

vitro. The criteria used above to identify a metabolite as a 

metabolic trigger was applied to the combination of in vitro/in vivo 

data. The analysis resulted in 12 metabolic triggers for the class 

mutagenic in vitro and non-mutagenic in vivo, and 13 metabolic 
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triggers for the class mutagenic in vivo and non-mutagenic in vitro. 

Reasons for opposite in vitro and in vivo responses could be 

differences in the test (duration, quantity of exposure and so on) 

and dynamics of the metabolic machinery used by bacteria relative 

to higher order animals. 

In addition to understanding the contradictory behaviour of 

chemicals in vitro and in vivo, the identification of chemicals 

which are non-mutagenic in both assays may facilitate the 

development of new in silico systems that can contribute to 

reducing the experimental efforts needed for mutagenicity 

screening. Hence, a list of 26 metabolic triggers that uniquely 

belong to chemicals which are non-mutagenic after S9 activation 

in the Ames test as well as in the rodent micronucleus assay were 

generated from the 123 chemicals that were non-mutagenic both   

in vitro and in vivo. 

3.2.4 Analysis and validation of metabolic triggers 

Further, a deepened analysis of metabolic triggers was 

performed wherein presence of features (i.e., chemical 

substructures) that contribute to distinguishing between in vitro 

and in vivo mutagenicity were looked for. To this end, relevant 

chemical features (i.e., functional groups and atom-centred 

fragments) were first identified using the software istChemFeat. 

These features have been searched separately in the three sets of 

metabolites selected: in vitro mutagens, in vitro non-mutagens and 

in vivo mutagens. The chemical groups that uniquely characterize 
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each class of metabolites were identified by comparing the 

different outputs that istChemFeat generated for each set of 

triggers. 

Table 4: Groups belonging uniquely to the class of metabolites in vitro 
mutagenic. istChemFeat distinguishes between aromatic and aliphatic form of 
groups and it shows whether a specific group is present one or more times in 
the metabolites (single or multiple occurrences). 

Group Total 
matches 

R--CX..X (single occurrence) 31 
Nitro groups (aliphatic) (single occurrence) 29 
Hydroxylamines (aliphatic) (single occurrence) 21 
Isothiazoles (single occurrence) 14 
X--CH--X (single occurrence) 14 
Isocyanates (aromatic ) 11 
Al2-NH (multiple occurrences) 11 

 

For example, specific fragments like nitro group or 

Isocyanates (aromatic) have been recognized only in metabolites 

generated from chemicals that are mutagenic in vitro. Table 4 

summarizes the chemical groups that were found the most in 

metabolites. In particular, for istChemFeat X–CH—X, R–CX..X, 

Al2-NH are atom-centred fragments, where R represents any group 

linked through carbon, X any electronegative atom (O, N, S, P, Se, 

halogens) and Al represents an aliphatic group (in this case two 

aliphatic groups). It should be noted that istChemFeat has also 

recognized several functional groups that are typically known in 

the literature for being associated to mutagenicity (i.e., SAs) like 

ketones (aromatic) (e.g., SA12_Ames in Benigni Bossa rules) or 

nitro groups (aromatic) (e.g., SA27_Ames of Benigni Bossa rules). 

UNIVERSITAT ROVIRA I VIRGILI 
IN SILICO MODELING OF CHEMICAL AND BIOLOGICAL INTERACTIONS AT DIFFERENT SCALES 
Padmaja Balachandran Kamath 



 

 74 

However, these groups have not been included in Table 4  because 

they are not specific to in vitro mutagenic compounds [10]. 

Table 5: Results of istChemFeat with groups having highest counts uniquely in 
the class of in vitro non-mutagenic. 

Group Total 
matches 

Total quaternary C(sp3) (multiple occurrences) 23 

CR4 (multiple occurences) 23 

Ring quaternary C(sp3) (multiple occurrences) 20 
Oxetanes (single occurrence) 15 
N+ (positively charged) (single occurrence) 9 
Imides (-thio) (multiple occurrences) 8 
Urea (-thio) derivatives (multiple occurrences) 7 
Carboxylic acids (aromatic) (multiple occurrences) 5 

 

Similarly, the analysis of the metabolites specific to the in 

vitro non-mutagenic chemicals identified several groups that are 

not present in the other two-bioactivity classes. Table 5 

summarizes the functional groups that appear more frequently. 

Table 6: Functional groups specific to in vivo mutagenic. 

Group Total 
matches 

Primary amides (aromatic) (single occurrence) 2 
Imines (aliphatic) (multiple occurrences) 4 
Pyrroles (multiple occurrences) 3 

 

The in vivo mutagenic chemicals, as shown in Table 6, 
have only three groups corresponding to the metabolites that are 

specific for chemicals that belong to this bioactivity class and were 

not present in the other two classes(in vitro mutagenic and in vitro 
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non-mutagenic). The frequency of occurrence of these groups is 

very low (i.e., have been found only in very few compounds). 

Table 7: Functional groups of mutagenic chemicals both in vitro and in vivo 
tests. 

Group Total 
matches 

Total             
in vitro 
positive 

%                
in vitro 
positive 

Total               
in vivo 

positive 

%                
in vivo 

positive 
Secondary amines 
(aliphatic) (multiple 
occurrences) 

13 11 85 2 15 

Br attached to C1(sp3) 
(multiple occurrences) 5 4 80 1 20 

Imines (aliphatic) 
(single occurrence) 5 3 60 2 40 

R=CRX (single 
occurrence) 5 3 60 2 40 

Guanidine derivatives 
(single occurrence) 11 4 36 7 64 

(C-020)=CX2 (single 
occurrence) 6 2 33 4 67 

 

Coincidences in the functional group counts and atom-

centred fragments that are representative of both in vitro and in 

vivo mutagenicity are summarized in Table 7. Similarly, groups 

and atom-centred fragments that are characteristic of both in vitro 

non-mutagenic and in vivo mutagenic were considered as false 

negative alerts. Examples of these false negative alerts are 

sulfonamides (thio-/dithio-) (single occurrence), pyridines 

(multiple occurrences), urea (-thio) derivatives (single 

occurrence), 1-3-5-Triazines (single occurrence) and tertiary 

amides (aromatic) (single occurrence). 

In order to check the validity of metabolic triggers, they 

were also compared to the SAs available in literature. In vitro 
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mutagenic metabolic triggers were compared to Toxtree SAs [9]. 

A total of 997 in vitro mutagenic triggers had the final prediction 

as mutagens. Assessments within VEGA comprise of the 

prediction along with their reliability, which could “experimental 

value” or “good reliability” or “moderate reliability” or “low 

reliability”, with “experimental value” being the most reliable and 

“low reliability” being the least. Of these triggers, the assessment 

for 40 was of experimental value, 268 had good reliability and 689 

had low reliability. Overall, the similarity index, calculated based 

on the molecules’ fingerprint and structural aspects (count of 

atoms, rings and relevant fragments), was between 0.7–1, hence 

sufficient to bolster the validity of the in vitro metabolic triggers. 

To check the validity of the in vivo mutagenic metabolic 

triggers, they were compared with the SAs of the in vivo 

micronucleus assay in rodents [9], wherein 317 metabolic triggers 

had between 1–4 mutagenic SAs for the micronucleus assay    

(Class I) similar to them. 

3.3 In silico classification of bacterial 

proteins into antibiotic-resistance profiles 

In this work an alignment free classifier which 

complemented alignment based BLAST was generated. 
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Table 8: Confusion matrix of the combined classifiers and cumulative confusion 
matrix of the 5 classifiers on the validation set, which had 654 observations. 
Predicted classes are given in columns and real ones are in rows, following the 
same order. 

IPS CWBM IMP INAS 
S M S M S M S M 

BLAST 
132 0 0 0 0 0 0 0 

3 124 0 1 0 0 0 0 
0 0 179 1 0 0 0 0 
0 0 0 114 0 0 0 0 
0 0 0 0 11 0 0 0 
0 0 1 1 0 53 0 0 
0 0 0 0 0 0 21 0 
0 0 0 0 0 0 0 4 

Consensus classifier 
120 7 5 4 1 0 0 1 

4 117 1 2 2 0 2 0 
0 4 167 7 0 0 3 0 
1 0 4 110 0 0 1 0 
0 0 0 0 11 0 0 0 
0 1 1 2 0 51 0 0 
2 0 0 0 0 0 19 0 
0 0 0 0 0 0 0 4 

Combined approach 
135 0 1 2 0 0 0 0 

3 124 0 1 0 0 0 0 
0 0 180 1 0 0 0 0 
0 0 0 116 0 0 0 0 
0 0 0 0 11 0 0 0 
0 0 1 1 0 53 0 0 
0 0 0 0 0 0 21 0 
0 0 0 0 0 0 0 4 

 

 Table 8 showcases in terms of a confusion matrix, the 

class wise performance of all three methods, namely, alignment 

based BLAST, the alignment free consensus classifier and the 

combined approach. 
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3.3.1.1 Classification using BLAST 

The capability of BLAST to classify antibiotic-resistant 

proteins into the eight classes was analysed, based on homology 

search, using the amino acid sequences of these antibiotic-resistant 

proteins. Each one of the 654 antibiotic-resistant proteins in the 

validation set was searched for sequence similarity against the 

entire training set. Using a non-so-stringent E-value threshold of 

10-10, BLAST was able to classify 645 out of 654 proteins in the 

validation set, showing that it cannot classify all the antibiotic-

resistant proteins. Although the number of instances correctly 

classified by BLAST and shown in Table 8 is impressive, its major 

drawback is its inability to find some hits. Another pitfall of 

BLAST was the quality of alignment: even though some 

predictions were correct, their bit score was found to be less than 

100, which is usually considered a threshold for quality 

alignments. In addition to these problems, there were antibiotic-

resistant proteins in the validation set for which their most similar 

antibiotic-resistant proteins in the training set belonged to more 

than one class. These drawbacks hence signify that BLAST cannot 

be used as a sole method for classifying antibiotic-resistant 

proteins, and there is a strong need for an alignment-free method 

to complement BLAST in classifying unknown antibiotic-resistant 

proteins rendered by BLAST. 
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3.3.1.2 Classification using the alignment-free 

method 

3.3.1.2.1 Feature selection 

A total of 33 features from the pepstats program were used 

as the initial set of features according to the information they 

provided. The features comprised of simple yet important protein 

properties, namely: molecular weight, charge, isoelectric point, 

A280 molar extinction coefficient, probability of expression in 

inclusion bodies, Dayhoff Stat for each amino acid, and molar 

percent for each physicochemical class of amino acid (tiny, small, 

aliphatic, aromatic, non-polar, polar, charged, basic, and acidic).  

Table 9: Order of attributes obtained from the Infogain Ranker method of 
WEKA. Value of information gain measures the amount of information gained, 
in terms of class separation, when a new attribute is added. 

Attribute Dataset 
1 

Dataset 
2 

Dataset 
3 

Dataset 
4 

Dataset 
5 

Trp DayhoffStat 1.081 1.043 1.141 1.092 1.081 
Molecular weight 1.078 1.054 1.045 1.074 1.078 

Cys DayhoffStat 0.912 0.902 0.844 0.935 0.912 
His DayhoffStat 0.828 0.772 0.863 0.718 0.828 
Tyr DayhoffStat 0.807 0.828 0.807 0.846 0.807 
A280 Molar Extinction 
Coefficient 0.748 0.743 0.726 0.867 0.748 

Lys DayhoffStat 0.73 0.741 0.746 0.716 0.73 

Aliphatic mole 0.716 0.758 0.714 0.704 0.716 
Phe DayhoffStat 0.704 0.835 0.658 0.81 0.704 
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All these features were sorted by the value of information 

gain obtained from Infogain feature selection method, which 

assigns values to features based on their contribution to reduction 

in entropy, as summarized in Table 9. With this input, different 

classifiers were constructed incrementally, with one ranked feature 

added at a time to the classifier. 

 

Figure 9: Performance of all the training sets, partitioned using Kennard & 
Stone sampling, on classification of instances in increasing order of ranked 
attributes. The x-axis corresponds to the number of attributes and the y-axis 
corresponds to the κ index. 
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As shown in Figure 9, it was observed that the κ index kept 

increasing until the addition of the ninth ranked feature. Further on, 

when the next five ranked features were added, the index showed 

stagnation. Therefore, the addition of new features was stopped 

and the first nine ranked features were used for the final 

classification models, since the addition of more features did not 

make any significant improvement in the performance of the 

classifiers. 

The attributes selected in the five datasets, in decreasing 

order of average value of information gain (Table 9), are: Trp 

DayhoffStat, molecular weight, Cys DayhoffStat, A280 molar 

extinction coefficient, and His DayhoffStat. From a biological 

point of view, it can be concluded that our results are in line with 

results of antibiotic resistance already published in literature: 

• Tryptophan (given by the feature “Trp DayhoffStat”) is an 

important amino acid in terms of antibiotic resistance in 

bacteria, because highly resistant bacteria show increased 

production of Indole from Tryptophan, with the help of 

tryptophanase, which is known to have a role to play in 

imparting resistance to bacteria [10]. 

• Ranking of molecular weight as the second attribute is an 

expected result considering that it is a central value for any 

macromolecule, providing basic information about it. 

• Molar extinction coefficient at an absorbance above 275nm is 

a measure of side chains of tryptophan, tyrosine and cystine, 

also known as chromophores [11]. Note that cystine, which is 
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a contributor to A280 molar extinction coefficient, also 

appears as a highly ranked attribute, as shown in Table 9. 

Table 10: Kappa indices of the three approaches for the validation set. 

Approach κ index 
BLAST 0.99 
Consensus 0.91 
Combined 0.98 

 

3.3.1.2.2 Validation 

The five alignment-free classifiers were validated using the 

validation sets, and the majority response of these classifiers for 

each protein was the result of the consensus classifier. As shown 

in Table 10, a κ index of 0.91 was obtained for the consensus 

classifier. 
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Figure 10: Evaluation based on precision, recall and F-measure metrics, for 
the three approaches and on the same validation set. 
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Precision, recall and F-measure have been represented in 

Figure 10d for the consensus classifier. 

. The precision value for IMP-M, and the recall value for 

IMP-S and INAS-M was 1, whereas the highest F-measure value 

was obtained for IMP-M, which was 0.96. 

The relationship between the eight resistance profiles and 

the selected features was concretized when the class labels of 

antibiotic-resistant proteins were randomly changed with the 

purpose of performing Y-randomization. The statistical 

significance of the above mentioned relationship in the alignment-

free classifier was demonstrated constructing a new classifier 

based on these randomly changed class labels of the resistance 

profiles. The classifier constructed on the permuted class labels 

showed a significant drop in the κ index which was now equal to 

0.31, hence asserting that our classifier was statistically significant 

and the results obtained for the five incrementally constructed 

classifiers were not obtained by chance. 

3.3.1.3 Combined approach 

The alignment-free classifier was constructed as a 

complementary model to BLAST, making together a combined 

approach with the aim of classifying antibiotic-resistant proteins 

that BLAST is unable to classify. Initially, BLAST was applied to 

obtain the resistance profile of each query protein in the validation 

set. For the cases where there were no hits, or hits had a bit score 
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lower than 100, or the query protein was associated with more than 

one resistance profile, the prediction given by the alignment-free 

classifier was considered. 

From the confusion matrix given in Table 8, it can be 

observed that the combined approach gives a fair tradeoff, with a 

high efficiency similar to that of BLAST and complete prediction 

coverage. Hence, with the combined approach predictions for all 

654 antibiotic-resistant proteins in the validation set were obtained 

and the quality of predictions obtained with BLAST was also 

retained, since the total number of misclassified instances was only 

10. As shown in Table 10, the combined approach has a κ index of 

0.98. This result justifies the quality of the combined approach, 

especially taking into account that it allows the classification of all 

antibiotic-resistant proteins without exceptions. In terms of the 

other metrics, the values obtained by the combined approach are 

close to the ones obtained by BLAST, as it can be seen in        

Figure 10. 
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Chapter 4 Conclusions 

This thesis puts forth three non-testing approaches to 

evaluate emerging chemicals by deducing information available on 

chemical entities which have been already tested using laboratory 

tests. Three in silico approaches described in this thesis can be used 

for: 

1. assessing cellular interactions of nanoparticles that determine 

their further course in vivo, taking into account 

physicochemical properties of both nanoparticles and protein 

corona; 

2. analysing toxicity of chemicals in the context of different in 

vitro and in vivo tests, based on SAR rules and taking into 

account the intermediates and products of these chemicals; 

3. exploring the know-how of drug resistance profiles in bacteria 

by taking into account physicochemical properties of drug 

targets. 
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4.1 Predicting cell association of surface-

modified nanoparticles using Protein Corona 

Structure-Activity Relationships (PCSAR) 

This work presents a comprehensive framework for the 

prediction of net cell association of the NP-PC complex based on 

combined information derived from relative abundance and 

physicochemical properties of the protein corona. The use of 

protein corona features to predict a biological endpoint provides an 

alternative and effective approach for developing structure-activity 

relationships for nanoparticles. In this regard, Protein Corona 

Structure–Activity Relationships (PCSAR) can be used to link the 

composition and properties of the corona with nanoparticle’s 

bioactivity profile. 

The proposed model uses fingerprints based on 

physicochemical descriptors of the proteins attached to the 

nanoparticle. Selected descriptors are simple and can be easily 

computed with low computational cost for any protein. The 

advantage of the current model, relative to existing models 

developed from fingerprints and based on protein abundance, is 

that is not restricted to datasets or serums that contain exactly the 

same proteins as those used for training the model. In addition, the 

combination of using physicochemical descriptors weighted by 

relative abundance results in more general models with a larger 

applicability domain. Models can be used to predict cell 
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association of nanoparticles with protein coronas containing 

proteins different than those used for training the model. The only 

information needed by the model is the spectral counts and the 

primary sequence of the protein. This is a key issue, especially 

taking into account that the composition of the hard corona, which 

was once considered to be stable, has been recently found to be 

evolving with the migration of nanoparticles across different 

biological fluids [1, 2]. Accordingly, models of cell association 

must be able to predict cell interactions with a great variety of 

proteins in order to take into account the dynamic behavior of the 

corona. 

The two fingerprint techniques have been compared by 

calculating the normalized mutual information index between the 

partitions obtained after clustering the nanoparticles represented in 

terms of each fingerprint. Clustering results indicate that the 

information conveyed by both fingerprints is essentially the same. 

In addition, the modelling approach proposed here for gold and 

silver nanoparticles outperforms models based only on relative 

abundances in terms of applicability, size and stability. Models 

based on physicochemical descriptors can be applied to a larger set 

of proteins, as long as the primary sequence and the spectral counts 

for proteins of the corona are available. Whereas, models based 

exclusively on relative abundances will only work for proteins 

specified within the training set. The models developed for gold 

and silver nanoparticles use very few and easy to obtain 
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physicochemical descriptors, and their performances are stable 

under different validation conditions. 

The low performance obtained when applying the model 

developed from gold nanoparticles to predict cell association of 

silver nanoparticles indicates that the nanoparticle core is a key 

factor that determines the structure and composition of the protein 

corona. These results are in line with previous work [3], which 

concluded that a model to predict cell association for gold 

nanoparticles is not suitable to predict cell association for silver 

nanoparticles. Nevertheless, the results obtained with the model 

developed for silver nanoparticles demonstrate that the current 

modelling approach can be successfully applied to develop 

individual models for nanoparticles with different cores. 

From the point of view of the protein corona, the models 

developed here are able to explain the biological relevance of each 

amino acid in the protein corona with respect to cell association. A 

lot has been written about the importance of protein corona and its 

influence on the nanoparticle–cell interactions, but there is limited 

literature on the contribution of individual amino acids to the 

interaction between cell entities and the NP-PC complex. 

With the advent of varied research on different 

nanoparticles, it would be interesting to take the PCSAR predictive 

model introduced here and extend it further to nanoparticles with 

different cores as well as to other bioactivity endpoints. 
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4.2 In silico exploratory study using 

structure-activity relationship models and 

metabolic information  

The approach consisting in the determination of 

mutagenicity by taking into account the presence of specific 

metabolic triggers contributes to predicting mutagenicity for a 

higher number of chemicals, in comparison with only SAR 

approaches. In addition, the major advantage of this method is that 

it takes into account the possibility of not only the chemical but 

also the metabolites it generates to be mutagenic. 

This approach could also be considered as a component of 

read-across approaches for chemicals whose mutagenic potential 

is not known; based on metabolites and reaction by-products, such 

chemicals would have metabolic triggers or data highly similar to 

metabolic triggers. 

Also, the application of the present methodology results in 

detailed information of the metabolic pathway of a chemical along 

with the mutagenic and/or non-mutagenic intermediates that this 

chemical will produce, which provides insights into the 

mechanisms of mutagenicity. 
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The information obtained by the identification and analysis 

of bioactivity and metabolic triggers has helped to establish links 

across various experimental tests (e.g., Ames test and rodent 

micronucleus test). Using this method it is also possible to predict 

the in vivo mutagenicity of a chemical based on its in vitro 

mutagenicity information. The predictions thus obtained would be 

very reliable given that the identified metabolic triggers are 

generated from the reactions that are likely or very likely to occur. 

Future research, with more widely studied chemicals, will result in 

the identification of more metabolic triggers and will contribute to 

form more links across various mutagenicity assays in a similar 

fashion. 

The most immediate application of the current approach 

could be its incorporation within the ToxRead software, which 

currently provides a reproducible read-across evaluation by 

identifying similar chemicals via the use of SAs and common 

relevant features [4]. The addition of information regarding 

metabolic pathways would give these evaluations a new dimension 

by providing a method to identify common metabolic triggers. 

4.3 In silico classification of bacterial 

proteins into antibiotic resistance profiles 

Considering the current scenario where the development of 

new antibiotics has almost stagnated, the option of exploring new 

bacterial proteins seems to be the most feasible approach. The 
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proposed approach which makes use of both alignment based 

BLAST and alignment free consensus classifier promises to be a 

useful tool to predict the antibiotic resistant profile of bacterial 

proteins.  
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