BRINGING SOCIAL REALITY
TO MULTIAGENT AND
SERVICE ARCHITECTURES

Practical reductions for monitoring
of deontic-logic and constitutive norms

Sergio Alvarez-Napagao

Advisor: Javier Vazquez-Salceda

PhD Thesis
Universitat Politécnica de Catalunya

BRINGING SOCIAL REALITY
TO MULTIAGENT AND
SERVICE ARCHITECTURES

Practical reductions for monitoring
of deontic-logic and constitutive norms

A thesis submitted for the degree of
Doctor of Philosophy in Artificial Intelligence
at the Polytechnic University of Catalonia

Tesi presentada per obtenir el titol de
Doctor en Intel-ligéncia Artificial
per la Universitat Politécnica de Catalunya

2015

Sergio Alvarez-Napagao

Advisor: Javier Vazquez-Salceda

PhD Thesis
Universitat Politécnica de Catalunya

This work is licensed under @ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Interna-
tional (CC BY-NC-SA 4.0) (). The following is a
human-readable summary of (and not a substitute for) the license:

You are free to:

e Share — copy and redistribute the material in any medium or format

e Adapt - remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the following license terms:

e (® Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that suggests the
licensor endorses you or your use.

e @ NonCommercial - You may not use the material for commercial purposes.

e (@ ShareAlike - If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

e No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

In any case not covered by the license above, the exclusive rights of exploitation of this work are reserved
by the author (Sergio Alvarez-Napagao), whereas the institution (Universitat Politécnica de Catalunya)
holds a non-exclusive right to publicly disseminate the work.

The cover artwork: ’Evening Company’ (Yegorovich Makovsky, oil painting, dated 1874-1897) belongs to the
public domain.
Printed in Barcelona.

15 1

First edition: December 10, 2015

http://creativecommons.org/licenses/by-nc-sa/4.0/

A Esther, por estar ahi siempre.

A mis padres, a los que les debo todo y, seguramente,
hasta que lean esto no se lo habrdn acabado de creer.

institution
noun

1. asociety or organization founded for a religious, educational, social, or similar purpose:
a certificate from a professional institution.
e an organization providing residential care for people with special needs: an insti-
tution for the mentally ill.

o anestablished official organization having an important role in the life of a country,
such as a bank, church, or legislature: the institutions of democratic govern-
ment.

e a large company or other organization involved in financial trading: the interest
rate financial institutions charge one another.

2. anestablished law, practice, or custom: the institution of marriage.

e informal a well-established and familiar person, custom, or object: he soon be-
came something of a national institution.

3. the action of instituting something: a delay in the institution of proceedings.

ORIGIN late Middle English (sense 2 and sense 3): via Old French from Latin institutio(n-),
from the verb instituere (see institute). Sense 1 dates from the early 18th cent.

reality
noun

1. the state of things as they actually exist, as opposed to an idealistic or notional idea of
them: he refuses to face reality | Laura was losing touch with reality.

o [count noun | a thing that is actually experienced or seen, especially when this is
unpleasant: the harsh realities of life in a farming community.

e [count noun] a thing that exists in fact, having previously only existed in one’s
mind: we want to make the dream a reality.

o the quality of being lifelike: the reality of Marryat’s detail.
o [as modifier | relating to reality TV: a reality show.
2. the state or quality of having existence or substance: youth, when death has no real-
ity.
e PHILOSOPHY existence that is absolute, self-sufficient, or objective, and not sub-
ject to human decisions or conventions.

ORIGIN late 15th cent.: via French from medieval Latin realitas, from late Latin realis
‘relating to things’ (see REAL).

New Oxford American Dictionary 3rd edition, Oxford University Press, Inc., 2010.

I State of the art

I

3 Normative systems and governance -

II Practical reductions

5 Towards a lightweight language for norms -

6 Formalising regulative and constitutive norms -

Short contents

Short contents -
Contents -

List of Figures -

List of Tables -
Extended Abstract -
Resumen -
Acknowledgments -

Introduction -

Computation as interaction -

2 Norms -

4 The challenge -

7 Normative monitor -

ix

xi

XV
Xix
Xxi
xxiii
Xxvii

XXix

11

23

43
45
51

85

105

ix

X
IIT Wrap-up
8 From theory to practice -
9 Practical use cases -
10 Conclusions -
IV Appendices
A Proofs -
Bibliography -

Selected publications -

123
125

137

165

169
171
183

203

Short contents

Contents

Short contents ix
Contents xi
List of Figures XV
List of Tables Xix
Extended Abstract Xxi
Resumen xxiii
Acknowledgments xXxvil
Introduction XXiX
Research questions. XXX1V
Methodology and contributions o000 XXX1V
Structure of thisdocument oL, XXXV
I State of the art 1
1 Computation as interaction 3
11 Agency and agents: distributed systems 4
1.2 Agent orientation and Multi-agent systems 5

1.2.1 Speech Act Theory 5 , 1.2.2 Agent communication languages 6 ,
1.2.3 Agent communication protocols 6

1.3 Service orientationt e e e 7
1.4 Summaryofthischapter. 9
2 Norms 11
21 Typesofnorms L o oL 12
2.2 Representingnorms 14

xi

xii

II

7

Contents

2.2.1 Deontic logic 14 , 2.2.2 Production systems 18 , 2.2.3 Service-level agree-
ments 19
2.3 Summarytothischapter.

Normative systems and governance

3.1 Institutional theory applied

3.2 GOVEINANCE . . . v v ot v e e e e e e e e e e e e e e e e e e
3.2.1 A definition of SOA governance 31, 3.2.2 Institutional governance based
on agents 31, 3.2.3 Technologies for SOA governance 36

3.3 Summaryofthischapter.

Practical reductions

The challenge

4.1 Solving the drawbacks of Service-Level Agreements
4.2 Filling the gaps on normative systems
43 Ourproposal e

Towards a lightweight language for norms

5.1 A language for contract representation
5.1.1 Layers/Elements of the Contracting Language 53 , 5.1.2 Contract repre-
sentation 5§ , 5.1.3 Contracting Messages and Protocols 67 , 5.1.4 A

proposal for operational semantics 71, 5.1.5 Contributions and limitations of
our language for contracts 73

5.2 The ALIVE framework
5.2.1 The ALIVE meta-model for norms 75 , 5.2.2 From events to monitor-
ng 79

5.3 Conclusions i e e e e

Formalising regulative and constitutive norms

6.1 Constructing social reality

6.2 The different meanings of constitutiverules
6.2.1 Representing counts-as rules 88 , 6.2.2 Agent reasoning with Counts-as
rules 88 , 6.2.3 Handling of dynamic contexts 89

6.3 Dealing with norminstances

6.4 FormalSemantics. e
6.4.1 Preliminary definitions 94 , 6.4.2 Norm fulfillment and norm instance
fulfillment 97 , 6.4.3 Semantics of LTL 98 , 6.4.4 Norm lifecycle 99 ,
6.4.5 From abstract norm to norm instances 102 , 6.4.6 Limitations and im-
plications from a logic perspective 102

6.5 Conclusions e

Normative monitor

21

23
24
29

41

43

45
45
47
48

51
52

74

83

85
86
87

91
93

Contents

7.1 Normative monitor i i e e e e e

7.2 Formal reduction to production systems
7.2.1 Reduction 109

7.3 Implementations i it
7.3.1 Handling of constitutive contexts 112 , 7.3.2 Monitoring of regulative
norms 11§

7.4 Conclusions e

III Wrap-up

8 From theory to practice

8.1 Generalisingourapproach
8.2 Advancing towards SOA governance
8.2.1 Use case: organ transplant management 127 , 8.2.2 A generic SOA gover-
nance architecture based on norms 128 , 8.2.3 Mapping our architecture
to SOA governance 134
8.3 Conclusions e
9 Practical use cases
9.1 Governance of situated agents in ambient intelligence
9.1.1 Contribution: a social reminder for pills 139 , 9.1.2 Modelling the sys-
tem 141 , 9.1.3 Norm examples 142 , 9.1.4 Adequacy of the norm language to
the use case 147
9.2 Norm-constrained behaviour in fungames
9.2.1 Related Work 149 , 9.2.2 Proposal 150 , 9.2.3 Case Studies 151 ,
9.2.4 Experimental results 160 , 9.2.5 Adequacy of our operational formalisa-
tion to the use case 164
9.3 Conclusions e
10 Conclusions
101 Contributions L L o
10.2 Futurelinesofresearch
IV Appendices
A Proofs
A1 Achievementobligations.
A.1.1 Substitution for achievement obligations 172 , A.1.2 Proof of K 172 ,
A.1.3 Proof of Necessitation 172
A.2 Maintenance obligations o Lo L

A.2.1 Substitution for maintenance obligations 173 , A.2.2 Proof of K 174 ,
A.2.3 Proof of D 174 , A.2.4 Proof of Necessitation 174

xiii

105

107

111

117

123

125
126
127

134

137
138

148

Xiv Contents

A.3 Dyadic Deontic Logic 175
A.3.1 Substitution for dyadic deontic logic 176 , A.3.2 Proof of K1 176 ,
A.3.3 Proof of K2 177 , A.3.4 Proof of K3 179 , A.3.5 Proof of K4 180

Bibliography 183
Selected publications 203
Journal Papers e e e e e 203
Book Chapters e 204
Conference and Workshop Publications Related to the PhD Thesis 204

Other Conference and Workshop Publications 210

2.1
2.2

3.1

5.1
5.2
53
5-4
5.5
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5-19
5.20
5.21
5.22

6.1
6.2
6.3

6.4
6.5

List of Figures

Norm lifecycle
Norm instance lifecycle

Key components of a SOA governance system

General view of the Contracting Framework
Visual elements for the XML Schema-based diagrams
Root elements of the Contract representation
Contextualisation element in the Contract Language
Contractual definitions element in the Contract Language
Parties element in the Contract Language
Role enactment list element in the Contract Language
Representation of the world model element in the Contract Language .
Representation of the clause element in the Contract Language
Representation of the deontic statement element in the Contract Language
Representation of the What element in a clause in the Contract Language
Sideways Contract Creation Protocol Without Notary
Contract Modification/Update Protocol With Notary
ALIVE Multi-Level Architecture
Top-level elements of the organisation meta-model in ALIVE
Main components of the Normative Structure
Components of state descriptions in the ALIVE Framework
Formal model for an example constitutive norm
Formal model for an example regulativenorm
ALIVE Event meta-model
ALIVE Monitoring Architecture
Monitor genericinterface Lo L.

Context subsumption. Lo e
Context overlap.
Captionfor LOF
Norm instance lifecycle with reparation and timeout handling
Self-loop alternating automata-based norm instance lifecycle

17
17

33

55
56
57
57
58
58
59
60
61
62
62
70
71
74
75
76
78
8o
80
81
83
84

90
91
92
93

XV

xXvi

7.1
7.2
7-3
7-4
7-5
7.6
77
7.8
7-9
7.10
7.11
7.12

8.1
8.2

8.3

8.4
8.5

9.1
9.2
9.3
9-4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12

9.13
9.14
9.15
9.16
9.17

9.18

9.19

List of Figures

Inference rules for the transition relation >
Inference rules for the transition relation >
Definition of classificatory counts-asrules.
Definition of proper classificatory counts-as rules.
Context splitting. L
Example of context splitting.
Activation of counts-asrules. e
Automatic activation of Contexts. v e
Translation of base rulesto DROOLS
Rules for the trafficscenario.,
Facts for the trafficscenario
Architecture of the DROOLS implementation

Example of reductions to monitoring and planning
Actors in the OTMA system. Each medical unit is represented by an
agent (circlein figure).. o Lo oL
Layout of the architecture
An example of translation rule from p-assertion to Jess asserted fact . .
An example of violation detection ruleinjJess

Architecture of the system Lo L L L.
Smart Pill Dispenser L
Capabilities of the differentactors

Sequence diagram of a typical workflow, from prescription to dispensation

Formal model for constitutivenorm Cy
Formal model for constitutivenorm Cy
Formal model for regulativenorm Ny
Formal model for regulativenorm No
Formal model for regulativenorm N3
Formal model for regulativenorm Ny
Formal model for regulativenorm N5
ALIVE-Gaming coupling infrastructure
Games used ascasestudies L.
Q) GTAIV . ot
(b) Warcraft IIT o e e
Example Al scripts for unit upgrading: (from left to right) Warcraft IIT and
Starcraft (Blizzard), and Age of Mythology and Age of Kings (Microsoft) . . .
Social structure for generic RTS games (OperettA Tool screenshot) . . .
Interaction structure for Defend city (OperettA Tool screenshot)
Norm example applied to our case (OperettA Tool screenshot)
Warcraft III units enacting actions sent from the ALIVE platform (game

view) . .

Warcraft III units enacting actions sent from the ALIVE platform (mon-

itor view)

107
108
112
113
114
115
116
117
118
119
119
120

126

128
129
132
133

139
140
142
143
144
144
144
145
145
146
147
150

151

151

151

152
154
154
155
155

156

List of Figures xvii

9.20 ALIVE-Gaming coupling infrastructure for GTA 158

9.21 Graphical representation of the norm it is forbidden to pass under a red light
(OperettAToOl) o v i i 159

9.22 Example of translation of base rule toclara 160
9.24 Scatter plot of events samplings and time spent per sample 161
9.23 ExamplenormsinClojure. 162

5.1
5.2
53
5.4

6.1

8.1

List of Tables

Library of contract-related actions 65
Library of contract-related predicates 66
Library of contract-related actions 69
Mapping of concepts: IST-CONTRACT vs ALIVE Framework 77
Three notions of counts-as. 88

Mapping between components required by SOA governance and com-
ponents of our proposed architecture 134

Results of the experiment (in microseconds) 163

Xix

Extended Abstract

As distributed systems grow in complexity, the interactions among individuals (agents,
services) of such systems become increasingly more complex and therefore more dif-
ficult to constrain and monitor. We propose to view such systems as socio-technical
systems, in which organisational and institutional concepts, such as norms, can be ap-
plied to improve not only control on the components but also their autonomy by the
definition of soft rather than hard constraints.

Norms can be described as rules that guide the behaviour of individual agents per-
taining to groups that abide to them, either by explicit or implicit support. The study
of norms, and regulatory systems in general, in their many forms — e.g. social norms,
conventions, laws, regulations — has been of interest since the beginning of philoso-
phy, but has seen a lot of evolution during the 20oth century due to the progress in the
philosophy of language, especially concerning speech acts and deontic logic.

Although there is a myriad of definitions and related terminologies about the con-
cept of norm, and as such there are many perspectives on how to analyse their impact,
a common denominator is that norms constrain the behaviour of groups of agents in
a way that each individual agent can build, with a fair degree of confidence, expecta-
tions on how each of their counterparts will behave in the situations that the norms are
meant to cover. For example, on a road each driver expects everybody else to drive on
only one side of the road (right or left, depending on the country). Therefore, norma-
tive contexts, usually wrapped in the form of institutions, are effective mechanisms to
ensure the stability of a complex system such as an organisation, a society, or even of
electronic systems. The latter has been an object of interest in the field of Artificial In-
telligence, and it has been seen as a paradigm of coordination among electronic agents
either in multi-agent systems or in service-oriented architectures.

In order to apply norms to electronic systems, research has come up with abstrac-
tions of normative systems. In some cases these abstractions are based on regimented
systems with flexible definitions of the notion of norm, in order to include meanings
of the concept with a coarse-grained level of logic formality such as conventions. Other
approaches, on the other hand, propose the use of deontic logic for describing, from a
more theoretical perspective, norm-governed interaction environments. In both cases,
the purpose is to enable the monitoring and enforcement of norms on systems that
include - although not limited to - electronic agents. In the present dissertation we
will focus on the latter type, focusing on preserving the deontic aspect of norms.

xxi

xxii Extended Abstract

Monitoring in norm-governed systems requires making agents aware of: 1) what
their normative context is, i.e. which obligations, permissions and prohibitions are
applicable to each of them and how they are updated and triggered; and 2) what their
current normative status is, i.e. which norms are active, and in what instances they are
being fulfilled or violated, in order words, what their social — institutional — reality is.

The current challenge is on designing systems that allow computational compo-
nents to infer both the normative context and social reality in real-time, based on a
theoretical formalism that makes such inferences sound and correct from a philosophi-
cal perspective. In the scope of multi-agent systems, many are the approaches proposed
and implemented that fulfill these requirements up to this date. However, the literature
is still lacking a proposal that is suited to the current state-of-the-art in service-oriented
architectures, more focused nowadays on automatically scalable, polyglot amalgams of
lightweight services with extremely simple communication and coordination mecha-
nisms - a trend that is being called microservices.

This dissertation tackles this issue, by 1) studying what properties we can infer from
distributed systems that allow us to treat them as part of a socio-technical system, and
2) analysing which mechanisms we can provide to distributed systems so that they can
properly act as socio-technical systems. The main product of the thesis is therefore
a collection of computational elements required for formally grounded and real-time
efficient understanding and monitoring of normative contexts, more specifically:

1. An ontology of events to properly model the inputs from the external world and
convert them into brute facts or institutional events;

2. A lightweight language for norms, suitable for its use in distributed systems;

3. An especially tailored formalism for the detection of social reality, based on and
reducible to deontic logic with support for constitutive norms;

4. A reduction of such formalism to production rule systems; and

5. One or more implementations of this reduction, proven to efficiently work on
several scenarios.

This document presents the related work, the rationale and the design/implemen-
tation of each one of these elements. By combining them, we are able to present novel,
relevant work that enables the application of normative reasoning mechanisms in real-
world systems in the form of a practical reasoner. Of special relevance is the fact that
the work presented in this dissertation simplifies, while preserving formal soundness,
theoretically complex forms of reasoning. Nonetheless, the use of production systems
as the implementation-level materialisation of normative monitoring allows our work
to be applied in any language and/or platform available, either in the form of rule en-
gines, ECA rules or even if-then-else patterns.

The work presented has been tested and successfully used in a wide range of do-
mains and actual applications. The thesis also describes how our mechanisms have
been applied to practical use cases based on their integration into distributed eldercare
management and to commercial games.

Resumen

Con el incremento en la complejidad de los sistemas distribuidos, las interacciones
entre los individuos (agentes, servicios) de dichos sistemas se vuelven mds y mds com-
plejas y, por ello, mas dificiles de restringir y monitorizar. Proponemos ver a estos
sistemas como sistemas socio-técnicos, en los que conceptos organizacionales e insti-
tucionales (como las normas) pueden aplicarse para mejorar no solo el control sobre
los componentes sino también su autonomia mediante la definicién de restricciones
débiles (en vez de fuertes).

Las Normas se pueden describir como reglas que guian el comportamiento de
agentes individuales que pertenecen a grupos que las siguen, ya sea con un apoyo ex-
plicito o implicito. El estudio de las normas y de los sistemas regulatorios en general y
en sus formas diversas — normas sociales, convenciones, leyes, reglamentos— ha sido de
interés para los eruditos desde los inicios de la filosofia, pero ha sufrido una evolucién
mayor durantre el siglo 20 debido a los avances en filosofia del lenguaje, en especial los
relacionados con los actos del habla —speech acts en inglés— y formas dednticas de la
légica modal.

Aunque hay una gran variedad de definiciones y terminologia asociadas al concepto
de norma, y por ello existen varios puntos de vista sobre como analizar su impacto,
el denominador comtn es que las normas restringen el comportamiento de grupos de
agentes de forma que cada agente individual puede construir, con un buen nivel de
conflanza, expectativas sobre como cada uno de los otros actores se comportara en las
situaciones que las normas han de cubrir. Por ejemplo, en una carretera cada conductor
espera que los demds conduzcan solo en un lado de la carretera (derecha o izquierda,
dependiendo del pais).

Por lo tanto, los contextos normativos, normalmente envueltos en la forma de insti-
tuciones, constituyen mecanismos efectivos para asegurar la estabilidad de un sistema
complejo como una organizacién, una sociedad o incluso un sistema electrénico. Lo
ultimo ha sido objeto de estudio en el campo de la Inteligencia Artificial, y se ha visto
como paradigma de coordinacién entre agentes electrénicos, tanto en sistemas multia-
gentes como en arquitecturas orientadas a servicios.

Para aplicar normas en sistemas electrénicos, los investigadores han creado abstrac-
ciones de sistemas normativos. En algunos casos estas abstracciones se basan en sis-
temas regimentados con definiciones flexibles del concepto de norma para poder incluir
algunos significados del concepto con un menor nivel de granularidad formal como es el

xxiii

XXiv Resumen

caso de las convenciones. Otras aproximaciones proponen el uso de légica dedntica para
describir, desde un punto de vista mds tedrico, entornos de interaccién gobernados por
normas. En ambos casos el propdsito es el permitir la monitorizacién y la aplicacién de
las normas en sistemas que incluyen —aunque no estdn limitados a- agentes electréni-
cos. En el presente documento nos centraremos en el segundo tipo, teniendo cuidado
en mantener el aspecto dedntico de las normas.

La monitorizacién en sistemas gobernados por normas requiere el hacer a los
agentes conscientes de: 1) cual es su contexto normativo, es decir, que obligaciones
permisos y prohibiciones se aplican a cada uno de ellos y como se actualizan y activan;
y 2) cual es su estado normativo actual, esto es, que normas estan activas, y que in-
stancias estan siendo cumplidas o violadas, en definitiva, cual es su realidad social —o
institucional-.

En la actualidad el reto consiste en disefiar sistemas que permiten inferir a compo-
nentes computacionales tanto el contexto normativo como la realidad social en tiempo
real, basdndose en un formalismo tedrico que haga que dichas inferencias sean correctas
y bien fundamentadas desde el punto de vista filoséfico. En el ambito de los sistemas
multiagente existen muchas aproximaciones propuestas e implementadas que cubren
estos requisitos. Sin embargo, esta literatura aun carece de una propuesta que sea
adecuada para la tecnologia de las arquitecturas orientadas a servicios, que estan mas
centradas en amalgamas poliglotas y escalables de servicios ligeros con mecanismos
de coordinacién y comunicacién extremadamente simples, una tendencia moderna que
lleva el nombre de microservicios.

Esta tesis aborda esta problemadtica 1) estudiando que propiedades podemos inferir
de los sistemas distribuidos que nos permitan tratarlos como parte de un sistema socio-
técnico, y 2) analizando que mecanismos podemos proporcionar a los sistemas dis-
tribuidos de forma que puedan actuar de forma correcta como sistemas socio-técnicos.
El producto principal de la tesis es, por tanto, una coleccién de elementos computa-
cionales requeridos para la monitorizacién e interpretaciéon eficientes en tiempo real y
con clara base formal. En concreto:

1. Una ontologia de eventos para modelar adecuadamente las entradas del mundo
exterior y convertirlas en hechos basicos o en eventos institucionales;

2. Un lenguaje de normas ligero y sencillo, adecuado para su uso en arquitecturas
orientadas a servicios;

3. Un formalismo especialmente adaptado para la deteccién de la realidad social,
basado en y reducible a légica dedntica con soporte para normas constitutivas;

4. Una reduccidén de ese formalismo a sistemas de reglas de produccién; y

5. Una o mas implementaciones de esta reduccién, de las que se ha probado que
funcionan eficientemente en distintos escenarios.

Este documento presenta el estado del arte relacionado, la justificacién y el dis-
eno/implementacién para cada uno de esos elementos. Al combinarlos, somos capaces
de presentar trabajo novedoso y relevante que permite la aplicacién de mecanismos

XXV

de razonamiento normativo en sistemas del mundo real bajo la forma de un razon-
ador practico. De especial relevancia es el hecho de que el trabajo presentado en este
documento simplifica formas complejas y tedricas de razonamento perservando la cor-
rectitud formal. El uso de sistemas de reglas de produccién como la materializacién
a nivel de implementacién del monitoreo normativo permite que nuestro trabajo se
pueda aplicar a cualquier lenguaje o plataforma disponible, ya sea en la forma de mo-
tores de reglas, reglas ECA o incluso patrones si-entonces.

El trabajo presentado ha sido probado y usado con éxito en un amplio rango de
dominios y aplicaciones practicas. La tesis describe como nuestros mecanismos se han
aplicado a casos practicos de uso basados en su integraciéon en la gestién distribuida de
pacientes de edad avanzada o en el sector de los videojuegos comerciales.

Acknowledgments

‘Nothing’s too good for the man who shot Liberty
Valance.’

The Man Who Shot Liberty Valance
JOoHN FORD

Behind this dissertation there is a very long journey. On one hand, at some points it
has looked like it was going to be never-ending; on the other hand, it truly has been a
remarkable experience. After all, as they say, the journey is more important than the
destination — and even if this is not true, I will be happy to buy it anyway.

Actually, these might not seem the best times for devoting years and more years to
research but, nonetheless, I can hardly regret anything. I have learnt more than I would
have ever expected and I have had to fight battles that I am proud to have fought. But,
more importantly, I have met, worked with, and shared the journey with quite a lot of
amazing people who, in the end, are the ones that give true meaning to everything else.

First and foremost, I cannot express my gratitude enough to my advisor, Javier
Vazquez-Salceda. Since the moment that he trusted me for a difficult task in a research
project, he has been a constant push for me for evolving as a researcher, providing
moral support when it was needed. Above all, I really have to appreciate his patience,
his always accurate insights and his ethics.

The Knowledge Engineering and Machine Learning group (KEMLg) has been my
home for all these years. Special thanks have to go to Ulises Cortés, who has always
been a constant spur, challenging conceptions and continuously proposing fascinating
applications and side projects; and to Ramon Sangiiesa, who let me embark an ambi-
tious project while I still was an undergraduate student and taught me a lot of what
research is and what research means. I also have to thank Steve Willmott, who set the
foundations of some of the contributions of this dissertation and from whom I learnt
about the balance between research and practical applications. Also, thanks to the rest
of the seniors of the KEMLg, they where always there when their help was needed, es-
pecially Karina Gibert, Miquel Sanchez and Javier Béjar.

I have had the opportunity to work in challenging projects closely with people that
I can feel really fortunate to have worked with. Jodo, many thanks for so many conver-
sations, dinners, trips, crazy projects. I really miss them. Roberto, Luis, Ignasi, Arturo,

xxvii

xxviii Acknowledgments

thanks for being there in the good and the bad moments, and for always providing
enlightenment over so many topics. And also for the fun moments, which have been
many. Sofia, without your help in that last push, trying to make some kind of sense out
of so many whiteboards full of formulas, this dissertation would not be the same, not
even close. I learned a lot from you, and I will always appreciate having shared part of
this journey.

Also, I want to express my gratitude to the rest of people of the office. We have
shared many great moments and we have had countless challenging debates. I really
miss being there. Dario, Bea, Soraya, Jonathan, Miquel, Carlos, and all the rest, thanks
a lot. And I cannot forget about Merceé Juan, who has taken care of my administrative
status much more than I deserved.

I would like to express my gratitude for my hosts during my stay in Utrecht: Frank
Dignum, Virginia Dignum and Huib Aldewereld, you really helped me feel at home.
Every debate with you was enlightening, and thanks to the stay I could finally lay out
the foundations of this thesis.

I have also had the opportunity to travel a lot and to meet and work with brilliant
people that have been a source of constant knowledge and in many instances have
provided support for the good ideas or a challenge for the bad ones. The list would
be countless, but I want to mention my appreciation for Pablo Noriega, Julian Padget,
Michael Luck, Wamberto Vasconcelos, Fernando Koch, Nir Oren, Felipe Meneguzzi,
Simon Miles, Sanjay Modgil, Kifor Tamas and Owen Cliffe. I am sure I am missing a
lot of names, but I am getting old and my memory starts to fail.

My sanity check during these years has been filmmaking, most of which I could
make in AVED at the campus. I have to consider myself truly fortunate to have met,
worked, created, travelled and shared so many beers, meals and unforgettable experi-
ences with Javier, Carme and Jordi. I cannot be more grateful to have been given the
opportunity to help in such creative projects and to be part of such great teamwork.
Jordi, Marg, Silvia, Iban, Carlos, Jonathan, Pau, Sergi, Pilar, Montse, and so many oth-
ers: many thanks for being such great companions in this hobby that became so much
more.

I also have to deeply thank a lot of people I have not been able to see as often as I
should have during the last few years. Albert, Cris, Ramon, Miguel, kampde, Zeus, and
many others, I thank you for your patience and for the great moments we have lived
together. The same goes for Jordi, JL and Jests, with whom I made an amazing trip I
will never forget.

I am forgetting to mention a lot of people that deserved it, I am sure of that, but it
is not intentional. I hope that everybody that notices this will forgive my omissions.

SERGIO ALVAREZ-NAPAGAO
London
December 2015

Introduction

BuTcH: ‘What happened to the old bank? It was
beautiful.’

GUARD: ‘People kept robbing it.’

BuTcH: ‘Small price to pay for beauty.’

Butch Cassidy and the Sundance Kid
GEORGE Roy HiLL

In the last decades Information and Communication Technologies have reshaped not
only the way information is processed and accessed but also the way people use this
information and, more recently, the way they interact with others. From the techno-
logical point of view, technical advances such as the Internet have made computation
evolve from the single/mainframe computer (where computing is a process driven by
the computer’s CPU) into computer networks (where computing is driven by the in-
teraction between distributed computational units). From the social point of view, ICT
have transitioned from being a tool to foster productivity in a company to a mediator
in social relations, up to its current state where technical developments inspire new
forms of social interaction [Whitworth 2009].

Since the early 60’s researchers have studied the interaction between technology
systems and social systems. The term Socio-Technical System (STS), coined by Eric
Trist, Ken Bamforth and Fred Emery, was originally applied to study how the interac-
tion of people with technology may affect the overall performance of companies. But
soon the term was expanded to the study of the interaction of any type of social system
with a technological one, with a focus on the social benefit a well-structured STS may
bring. The rise and expansion of Internet in the early 9o’s has been of special interest
in socio-technical studies, especially to analyse the shift on how people use it: from the
Internet seen as a way to host information to the pervasive networking technologies
which host social interactions [Whitworth 2009]. Currently STS are a hot topic of re-
search, creating new terms such as virtual socio-technical design, socio-technical communities
and socio-technical societies.

An interesting idea coming from socio-technical studies is that, as technology be-
comes part of social life, social aspects should be taken into account in the design of
technology. This is of special relevance in current ICT technologies. In the last years
we are in the middle of a rapid increase in distributed systems based on small services —

XXixX

XXX Introduction

and APIs - that carry out tasks ranging from simple mathematical calculations to oper-
ations that have an impact on the physical world, (e.g. online shopping). Furthermore,
some technologies such as the Internet of Things (IoT) are challenging our current
definitions on the boundaries between the physical and the virtual worlds.

On top of that, Artificial Intelligence techniques in general and Multiagent Systems
(MAS) in particular may bring STS to a new level where the human-computer divide is not
absolute, and technology is not only supporting human societies but actively partici-
pating in mixed societies composed by both human and artificial entities. Under this
new vision on STS, artificial entities can be modeled as computer agents (both soft-
ware agents and embodied, physical agents such as robots). New challenges raise from
this vision, as these computer agents situated in a mixed human/artificial society must
model social goals, responsibilities and dependencies in order to properly participate
in such society [Kolp and Wautelet 2011].

How should artificial entities behave in such mixed human/artificial societies? An
example of system of the current state of the art is Watson, an IBM software capable of
answering a range of questions so wide that it has been able to win in the pop-quiz-like
contest Jeopardy, broadcasted by the US channel NBC. Although from a technological
point of view Watson is not intended as a socio-technical system but as a proof of the
effectiveness of data-processing systems, it is still a pertinent example because of its
public impact and due to its apparent capabilities to behave like a part of a human
institution (a contest).

Watson winning in this contest is particularly relevant because it played with ex-
actly the same rules that are applied to the rest of the contestants: the questions were
provided in natural language and they could belong to any topic of pop culture — sports,
literature, art, science, language, etc. Under these conditions, the game is especially
complex for a machine but Watson, nonetheless, was capable of correctly interpreting
the answers and identifying the correct context for an 88% of the questions allowing it
to win more money than its human counterparts.

On the other hand, as is also the case with any machine learning algorithm (includ-
ing the current trends in deep learning) the reasoning capabilities of such systems are
strongly biased and even determined by the inputs fed to them. Pop culture questions
can be trained by feeding magazines, books, encyclopedias and transcripts. Which is
nothing short of impressive and useful anyway, because Watson is already proving its
utility in other fields, especially in healthcare.

Aside from what they are trained for by statistically analysing such inputs, it is
obvious that there are still too many questions that Watson would not be able to answer,
especially those related with its identity as an agent. Inquiries related to conciousness
are among the most immediate examples that might come to mind, but that is still too
much of a complex topic to discuss, and there is not even a scientific consensus on a
proper definition.

But we do not need to delve so far to find other kinds of questions that would
seriously challenge Watson. For example, what is the role I have inside Jeopardy? Or: what
are the rights that I am given by being what I am? And which obligations do I have for the same?

XXX1

And outside of Jeopardy?

Watson would not be able to answer these questions because it has neither been
designed nor programmed to do so. And a sensible answer to this issue would be that
those are irrelevant questions because that is not the purpose of this computational
system. However, it is being treated as a human inside the contest: during the contest,
no human is operating it, the same rules that apply to any other contestant still apply
to it, and humans are competing against it, winning or losing real money. So, in a way,
it makes sense that we ask ourselves about the relationship between Watson and the
other people involved in Jeopardy and, by extension, it also makes sense that we ask
ourselves whether it is possible that the machine can also ask itself about the same
concerns. Because these concerns are not at all irrelevant: how would Watson act,
without being reprogrammed, if the rules changed in the middle of the game? Evidently,
it would probably fail at playing under the new set of rules. In other words, it would
have a erratic or irrational behaviour if we take into account how a human would act.

Humans, after all, and as a distinctive feature compared to the rest of the animals,
are capable of interpreting the physical reality in terms of conventions or rules far be-
yond of what exists in the physical world or whatever information is genetically or phys-
iologically coded in their mind. This is not limited to interpretation: groups of people,
and societies by extension, can create and assign (commonly understood) meanings to
objects, and derivations of combinations of such objects, that were not primarily de-
signed with that intention, as long as there is a common, accepted understanding that
such assignments of meaning are valid.

An example is the pervasive use of emoticons in the Internet. The colon (:) and
the closing bracket ()) were created as punctuation symbols, but when put together
(:)) they are, as a derived combination, commonly interpreted as a smiling face. This
interpretation is not truly original, but rather has been used in similar ways in some
media formats such as comics and cartoons. Two points can be interpreted as two eyes,
and a curve can be interpreted as a smiling mouth, and therefore the combination of
both can be interpreted as a smiling face.

This is possible because, and only because, society has, more or less progressively,
adopted such kind of interpretations as commonly accepted. (Almost) nobody would
use emoticons if there was not a common agreement on their meaning.

This has already been the topic of ongoing research on semiotics and other areas
of knowledge. Actually, the interpretation of images from abstract forms to the level
of concepts is already being tackled by neural networks and deep learning algorithms.
However, at some point in the workflow a human or group of humans is always re-
quired, directly or indirectly, in order to label the commonly accepted meaning of the
detected concepts.

One can argue at this point that such acquired meanings are sort of obvious due to
physical similarity to the reality projected by these symbols. However, there are exam-
ples that raise the complexity to limits that are unbearable at first sight. Take money as
example, in any of its forms: gold, coins, notes, cheques, fiat money, electronic money.
Is this not a much less obvious interpretation between each of these forms and what

xxxii Introduction

money really means for us?

A bank note is, physically, no less and no more, a piece of paper with some draw-
ings and some writing. However, with a bank note we are granted the possibility of
taking things from shops up to a certain value. Therefore, a bank note is interpreted
by society as granting a certain power, in other words, it is commonly accepted that it
has a meaning that is deontic in nature. Interestingly, electronic money, which is vir-
tual rather than physical, due to temporarily having no physical grounding, receives the
same treatment. In summary, society can grant deontic powers to physical or abstract
objects.

Money has its own rules, accepted by society. Once it is accepted that something
counts as money, many dispositions and rules of play come into action. One can take
something in exchange of money, lend it to other people, and so on. That is, a set of
norms apply to people that have money. With a set of norms, it can be said that there
is an institution. Even if money changes, such as the conversion from Pesetas to Euros,
or if new types of money are introduced, as electronic money in its moment, the basic
norms that apply to money tend to persist.

Society handles, and in fact is continuously founded and evolving on top of, a vast
amount of institutions: money, marriage, academia, language, and so on, and in order to
understand social reality, we need to interpret human interaction in the context of these
institutions. Institutions are social mechanisms supported by norms that constraint
the behaviour of the individuals belonging to them. Usually, these norms are created as
a means to provide welfare to these individuals. Sometimes they work as they should,
most of the times they do not, but their objective is to minimise conflicts, to reduce
uncertainty, to force some predictability and provide safety on the interactions between
people.

As small as a family or as large as a country, an institution causes relevant effects on
the individuals and even on other institutions. A person might be happy to belong to
it, or be prosperous taking profit of the opportunities it provides. On the other side, a
person might cause damage while defending it, or be a victim of its power. Institutions
are part of our everyday life, giving shape to societies and playing a main role in the
progress of humanity. In short, we are all affected by them and, at the same time, we
all try to get profit of belonging to them, even at the expense of the actual institutional
objectives. Sometimes we even try to change them.

Institutions are also the building block on top of which organizations are built. Orga-
nizations, which are social structures enabling roles to be enacted and objectives to be
followed, use the mechanisms provided by institutions in order to function correctly.
Organizations have no success guaranteed by definition, no matter how well the insti-
tutional rules of the game are designed, or how well the participants of the organization
fit its roles, or how simple or easy are the organizational objectives. Governance mech-
anisms are always desirable, as a means to audit the performance of the organization.

The process of governance involves dealing with practices and methodologies that
seek for a better control and management over the life-cycle of an organization in order
to optimise the outcomes of its participants. Usually, governance is implemented by

xXxxiii

enforcement of the organizational rules, including institutional norms and subsequent
analysis of the performance against predefined metrics. That is, if the members of the
organization can rely on the fitness of the rules to fulfil the objectives, then we can
say that they have the responsibility for these rules to be observed for both collective
and individual benefit. When rules are observed, governance brings about the stabil-
ity, predictability that makes participants trust institutional mechanisms on their own
benefit.

Enforcement and observance are, therefore, two critical processes of organizations
and, by extension, societies. It can be the case and, as said before, it is more common
than not, that norms are not really optimal from a collective or individual point of view.
But norms can be improved, and if we are to suppose that norms are set in good faith,
then consequently both enforcement and observance have to be prepared and executed.

Both concepts are, in fact, quite intertwined. There can be no observance without
enforcement, as rules that cannot be put in order, there is no way to check their compli-
ance. Moreover, there can be no enforcement without observance, as rules that cannot
be checked will not be able to guarantee trust between participants.

And now we are in disposition to close the circle that began with apparently extra-
neous topics such as interpretation and common understanding of symbol and object
meanings. In order for a rule to be observed, we need to have the proper apparatus to
understand how things that are, things that happen, and things that are produced by
participants, mean something that is relevant for a particular rule.

This dissertation, built on top of theoretical concepts related to electronic insti-
tutions, develops formal artifacts, and their reduction to software components, that
enable distributed systems, in the broad sense of the term, to understand norms and in
consequence process the physical reality in order to perceive social reality in real-time.
This is a necessary but not sufficient condition for a software component to interpret
their role in society' and, reciprocally, let others see the electronic system as a role
enactor in their society.

All these concepts that have appeared in this discourse will be properly discussed
in Part I. In the next section, we will present which are the research questions that
this document will try to tackle, and in order to do that we will base such research
questions on the theoretical background that we have just presented. In summary: we
have seen that there are social mechanisms that allow for assigning meanings to phys-
ical or virtual objects or actions that are commonly understood; that these meanings
can involve deontic notions and as such they can be the building blocks of institutions
through the establishment of norms; that groups of people can use the mechanism of-
fered by institutions to create organizations with common objectives; that governance
is a desirable feature of such organizations, involving enforcement and observance; and
that in order to have observance, we need to understand the social mechanisms that
give institutional meaning to what happens in reality.

'From now on we will use the term society to refer to a kind of socio-technical society composed by
humans and artificial entities, as described in [Kolp and Wautelet 2011]. And we will use the term socio-
technical system or STS to refer to the joint of the social and technical dimensions in such societies.

XXXV Introduction

RESEARCH QUESTIONS

As discussed in the previous section, the objective of this thesis is to provide mech-
anisms to distributed systems to enable the perception of social reality from inputs
coming from physical reality. A first concern on this respect is, therefore, to identify
what kind of electronic systems should, and which are able to, integrate such mecha-
nisms:

Research Question 1 What properties can we infer from individuals in distributed systems that
allow us to treat them as part of a socio-technical system?

An answer to this will help us categorise the elements of a distributed system. From
this, the question is:

Research Question 2 What mechanisms can we provide to distributed systems so that they can
properly act as socio-technical systems?

This last question will produce a list of formal and practical components that will
be the core of our contributions.

METHODOLOGY AND CONTRIBUTIONS

One of our main assumptions is considering a broad meaning of the term distributed
system. Our objective is to include not only intelligent agents, which are usually the
computational element used in similar research, but also service-oriented architectures
and even the current trend of microservices.

By the study of the properties of such systems with respect to agency, we choose
norms and institutions as the proper abstraction to apply. Our objective along the
document will be to create a computer-readable language based on norms to those
used by humans. This will be our first contribution, and it will allow our electronic
systems to work with a vocabulary capable of interpreting their social reality.

However, detection of social reality is not trivial due to its dependence on logic
formalisms such as deontic logics. We will propose a reduction from complex logics
to rules of production systems, reducing such complexity at the same time that we
will be able to inject those rules in as many programming languages as possible, as we
are targetting services.

The final contribution of this thesis will be a monitor capable of discovering the
social reality of an agent in a distributed system. This contribution will build upon
our previous contributions: language and formal reduction.

Our proposal is that the adoption of this kind of components to process social reality
can bring about a wide range of applications that benefit from institutional abstractions.

Structure of this document XXXV

STRUCTURE OF THIS DOCUMENT

This document is divided in three major parts.

The first one includes the theoretical grounding of the conceptual background on
top of which the rest of document is built upon, and is enclosed in Part I. Chapter 1
distinguishes between the possible implementations of distributed systems. These im-
plementations are analysed form an agency perspective in Chapter 2 and we propose
norms as an abstraction of individual constraint for distributed systems participants.
Then we analyse the use of systems based in norms for collective constraints in Chap-
ter 3.

The central part, Part II contains our contributions. These are a lightweight lan-
guage for norms for computational components (Chapter 5), operational semantics for
this language (Chapter 6), and a translation from these operational semantics to prac-
tical implementations (Chapter 7).

Finally, in Part III we wrap things up. First, we study the relationship between our
contributions and enforcement mechanisms (Chapter 8), we demonstrate a practical
use case to demonstrate our contributions based on their integration in commercial
games (Chapter 9), and we end up with general conclusions (Chapter 10).

PART I

STATE OF THE ART

CHAPTER

Computation as interaction

He’d understood then why Wintermute had chosen
the nest to represent it, but he’d felt no revulsion.
[...] Wintermute was hive mind, decision maker,
effecting change in the world outside.

Neuromancer
WILLIAM GIBSON

Nowadays, communication over the Internet is of utmost relevance, not only for
human-to-human interaction, but also between individuals and businesses. In both
cases, the use of servers that act with variable degrees of automation and autonomy
have become pervasive: banking, shopping, education, public administrations, and so
on.

Therefore, computation in many areas of interest has evolved from mere mecha-
nisms for data storage and processing and information retrieval into semi-automated
networks of computers. This new metaphor has received the name of computation as
interaction [Luck et al. 2005]. In this paradigm of computation, computing becomes a
social activity. Social in the sense that the results of such computing are the result of
a joint action between several agents — human agents or software agents. Investigating
about what an agent is and is not, and what to be an agent implies in terms of the rela-
tionship to other agents, is very important in order to explore both how social reality
can be established on top of distributed computational architectures and how gover-
nance mechanisms can be introduced in order to ensure an acceptable level of social
order.

In this chapter, we will discuss about the concept of agency, which will allow us
to understand the individual components of such social activities, and we will explore
different types of architecture that have been used to materialise this computation as
interaction paradigm as software distributed systems.

4 Chapter 1. Computation as interaction

1.1 AGENCY AND AGENTS: DISTRIBUTED SYSTEMS

What constitutes an agent? Is an agent pressupossed to have free will? Is an agent
merely any rational being? Is it desirable to control or constrain the freedom of other
agents? It is easy to see that agency is a concept that is related to many branches of
philosophy, such as moral or metaphysics, and therefore it has been the subject of much
debate since Plato and Aristotle.

In our case, we are more interested in a purely analytical definition, because our
focus is on governance systems in which we assume the existence of norms that are
not, or at least should not be, affected by moral implications. Such a definition can be
found in [Davidson 1971]: “a person is an agent of an event if and only if there is a description of
what he did that makes true a sentence that says he did it intentionally”. An agent is exercising
agency, thus, if and only if the instantiation of certain mental states and events (beliefs,
desires, intention) are able to produce the right (possibly physical) events, generally in
the form of a chain of causal relations [Davidson 2002].

If agency is related to mental states, does that mean that agency is restricted to
humans (and animals) or it can be applied to artificial systems as well? If so, can we
consider that artificial systems can have mental states? These are fairly contentious and
still open topics of discussion, but some researchers have empirically shown that agency
does not necesarily entail conciousness [Bargh et al. 2001]. Furthermore, [Dennett
1989], following an instrumentalist perspective and turning the question upside down,
argues that predictive patterns of behaviour supporting complex goals inevitably indi-
cate the existence of mental states, because such existence cannot be separated from
the existence of agency.

These arguments support the idea of artificial systems capable of agency. An exam-
ple of formalisation of this concept is the Belief-Desire-Intention (BDI) agent [Rao and
Georgeft 1995]: a non-physical system, grounded on multi-modal logic, that is capable
of storing and transforming information, motivational and deliberative states (mental
attitudes) and with the capability to act by selecting and executing appropriate actions
or procedures in order to achieve goals.

BDI agents are not the only artificial systems that have this capability of acting.
Nowadays Internet is immersed in a myriad of countless web-services and application
programming interfaces (APIs) that not only digest and provide information but also
trigger complex actions and processes that have physical implications (e.g. online shop-
ping), from simple inputs. We will assume in this dissertation, following the thesis in
[Dennett 1989], that web-services and APIs are capable of agency, at least at the same
level as BDI agents.

All agents, be them humans (animals) or artificial systems, are rarely isolated. Al-
most no agent is self-sufficient and generally agents must communicate and coordinate
among themselves in order to fulfil individual or collective objectives. This is true for
humans as well as for artificial systems, although it is important to note that artificial
systems are built in a coordinated (thus distributed) fashion, in virtually every case, to
produce information or functionality to a human end-user: computation as interaction.

1.2. Agent orientation and Multi-agent systems 5

In the following sections we will discuss several relevant abstractions of coordina-
tion structures that have been created in order to fulfil this paradigm.

1.2 AGENT ORIENTATION AND MULTI-AGENT SYSTEMS

Agent-oriented computing appeared in the early 9gos with the notion of an intelligent
agent as the proposal of a key foundation for distributed systems. An intelligent agent is,
in this context and explained briefly, an autonomous entity realised as a software com-
ponent, capable of making its own proactive decisions with no external control, as well
as capable of processing and reacting to perceptions from the environment [Wooldridge
and Jennings 1995]. Intelligent agents are also able to communicate with other agents
to share information and to coordinate join actions in order to achieve complex goals.

A group of agents that interact among themselves to manage their — goal or task —
dependencies, sometimes sharing some common objectives is called Multiagent System
(MAS).

All these attributes suggest that multi-agent systems are well-suited to solve com-
plex problems where coordination among several entities is valuable in order to find an
optimal - or near to optimal — solution with limited time and bounded computational
resources. Intelligent agents may also exhibit other useful attributes such as learning,
rationality, mobility, benevolence and veracity.

Examples of Multi-agent frameworks are (but are not limited to): JADE [Bellifem-
ine, Poggi, and Rimassa 2001], Jack [Winikoff 2005], 2-APL [Dastani 2008], Jason and
AgentSpeak [Bordini and Hiibner 2005].

Research on MAS has been mainly academic, and therefore intelligent agents have
been generally designed with strong formal groundings, i.e. multi-modal logic-based
reasoning, communication based on philosophy of language, coordination mechanisms
based on organisational theory. These attributes make MAS capable of distributing
work in an adaptive way, allowing in some cases dynamic re-organisation. Thanks to
this, MAS gained commercial success in many fields of information technology, from
computer networking to decision support systems [Luck et al. 2005].

More specifically, there are three features that are of special relevance to analyse the
benefits of MAS when building distributed systems: speech act theory, communication
languages, and interaction protocols. The following subsections briefly explain them.

1.2.1 Speech Act Theory

Speech Act Theory is the area of the philosophy of language that studies the pragmatics’
of the different types of messages that two agents can exchange [Searle 1969]. This
theory proposes that certain uses of language can create acts that have an influence in
the external world: saying does something [Austin 1975].

For example, if a person says that he promises to do something, the actual saying is
the promising. In saying, he is committing to a promise. In this context, promising is
a performative utterance, distinguished from other kinds of utterances as for example

'The study of how language is used by people in order to achieve their intentions.

6 Chapter 1. Computation as interaction

“today is raining”. As a consequence, everything that is uttered has been uttered with
the intention of satisfying a certain goal.
Every act regarding an utterance has several components:

e Locution: the meaning of the statement itself
e Illocution: the contextual function of the act (intended by the utterer)
e Perlocution: the results of the act upon the listener

Speech acts can be categorised in several types: representative (merely informative),
directives (enforcing other individual to perform an action), commisives (committing
to perform an action), expressives (expressing emotions or feelings), and declarations
(changing the state of the world) [Searle 1985].

A speech act is defined as the conjunction of a performative verb and a propositional
content. The former contains an illocutionary force [Levinson 1983], e.g. request, in-
form, promise; while the latter is the object of the illocutionary force. For example, in
the speech act “I declare you husband and wife”, the performative verb would be declare,
while the propositional content would be you be husband and wife.

Speech acts have been widely used in Multi-agent frameworks as a fundamental
piece of the design of artificial languages for agent communication.

1.2.2 Agent communication languages

The main motivation to have languages specifically tailored for agents is to allow mean-
ingful interactions between heterogeneous agents. Agents involved in a communicative
process should be able to exchange information and knowledge with the minimum risk
of misunderstanding possible.

Following Speech Act Theory, the agent communication languages (ACLs) make a
distinction between the intentional part of the message (the message container) and
the propositional content (the message body). The intentional part is usually described
by means of performatives, and each ACL defines its own set of valid performatives
and semantics, allowing receivers to interpret the illocutionary force involved in the
communicative act.

Therefore, ACLs help shaping messages in a way that not only the object of the
message is understood, but also the intentions with respect to it. Examples of ACLs
include: KIF [Genesereth and Fikes 1992], KQML [Finin et al. 1994] and FIPA-ACL
[Agents 2002a].

1.2.3 Agent communication protocols

While Speech Act Theory and ACLs give form to a more expressive means of commu-
nication among agents, agent communication protocols define the behavioural aspect
of the communication.

A set of agent communication protocols (also referred to as interaction protocols)
define acceptable sequences of messages in specific interaction contexts, e.g. a query
from agent A to agent B, or a negotiation between an arbitrary number of parties.
Protocols provide a standard for interaction by pre-defining the way interactions should
be structured and orchestrated.

1.3. Service orientation 7

An individual protocol defines, for a given message in a certain interaction context,
which messages can be sent next. This reduces the burden on both the message sender
and receiver, as for each message there are guidelines on how to respond. Because
protocols are modelled in a structural way, parties can track the status of each party
and its conversations in the interaction context. Agent communication protocols are
analogous to network protocols, with the addition of speech acts as first-order objects.

The most common set of agent communication protocols used is the FIPA-IP specifi-
cation [Agents 2003], which defines the following protocols: request, query, request_when,
contract_net, iterated_contract_net, english_auction, dutch_auction, brokering, recruiting, sub-
scribe and propose.

One of the limitations of interaction protocols such as the ones defined in the FIPA
specification is the fact that they are structural rather than based on clear semantics
[Dignum et al. 2007]. This makes it harder for agents to reason about them. Several
solutions have already been proposed in the literature [Eijk, Huget, and Dignum 2005],
but none of them has been officially adopted by FIPA.

1.3 SERVICE ORIENTATION

In the years 2000s technologies such as Web services [Booth et al. 2004] and Grid
computing [Kesselman and Foster 2004] emerged and matured, with the support of
both the research community and the industry, with a more pragmatic perspective with
respect to multi-agent systems.

These technologies are based on the concept of service-orientation [Erl 2004]: a
distributed system is comprised of units of service-oriented processing logic (the ser-
vices) which hide their internal logic from the outside world and minimize dependencies
among them. Recently some of these service-oriented technologies are converging into
a single overarching framework, called Service Oriented Architectures (SOA). Such
framework created a collection of best practices principles, the main ones agreed by
the SOA community being:

e Service reusability: logic is divided into services with the intention of promoting
reuse.

e Service contract: services adhere to a communications agreement, as defined col-
lectively by one or more service description documents.

e Service loose coupling: services maintain a relationship that minimises dependencies
and only requires that they maintain an awareess of each other.

e Service abstraction: beyond what is described in the service contract, services hide
logic from the outside world.

e Service composability: collections of services can be coordinated and assembled to
form composite services.

e Service autonomy: services have control over the logic they encapsulate.

e Service statelessness: services minimise retaining information specific to an activity.

8 Chapter 1. Computation as interaction

e Service discoverability: services are designed to be outwardly descriptive so that
they can be found and accessed via available discovery mechanisms.

Service-orientation presents an ideal vision of a world in which resources are cleanly
partitioned and consistently represented. When applied to IT architecture, service-
orientation establishes a universal model in which automation logic and even business
logic conform to this vision. This model applies equally to a task, a solution, an enter-
prise, a community, and beyond.

Analogously, a Service Oriented Architecture (SOA) represents a collection of best prac-
tices, principles and patterns in service-oriented design. The main drivers for SOA
adoption are that it links services and promotes their reuse and decoupling.

There were many service-oriented architectures, frameworks and initiatives made
available. The OASIS Service Oriented Architecture Reference Model (SOA-RM)
[MacKenzie et al. 2006] was a reference model for core Service Oriented concepts de-
veloped to guide and foster the creation of more specific, service-oriented architec-
tures. The W3C Web Services Architecture (W3C WSA) [Booth et al. 2004] identified
the functional components of a Web Service architecture and defines the relationships
among those components to effect the desired properties of the overall architecture.
The Open Gateway Service initiative [Condry, Gall, and Delisle 1999], Grid [Kessel-
man and Foster 2004] and JINI [Arnold 1999] architectures were all service-oriented
architectures, proving that SOA was widely accepted as a paradigm.

The standard technology chosen by the community for the implementation of SOA
systems based on these architectures and frameworks was the Simple Object Ac-
cess Protocol (SOAP) [Curbera et al. 2002], a specification for exposing action-based
method signatures.

Thanks to the closeness between agent-oriented and service-oriented approaches,
there was some cross-fertilization between both technologies. The SOA community
already identified some potential to integrate agent research in SOA, i.e., Paurobally et.
al proposed to adapt and to refine Multiagent Systems research community results to
facilitate the dynamic and adaptive negotiation between semantic Web Services [Pau-
robally, Tamma, and Wooldridge 2005]. Foster, Jennings and Kesselman already iden-
tified in [Foster, Jennings, and Kesselman 2004] the opportunity to have some joint
research between the Grid and Agents communities.

The approach of service-orientation for distributed computing was more pragmatic
than Multi-agent systems, mainly due to its less formal theoretical background and
the fact that it was thought more as a set of principles rather than a set of languages,
protocols and behavioural requirements. However, the large amount of architecture
specifications aforementioned failed due to their adding a large amount of complexity
in design and implementation, and the expectatives were not met [Manes 2009]. Also,
technologies that were embraced by the SOA community, such as SOAP and XML,
were quickly replaced by less complex alternatives like Representational State Transfer
(REST), which specified how to expose resources rather than actions, and JSON, and
for a few years both the acronym ‘SOA’ and the service-orientation principles have been
apparently discarded.

1.4. Summary of this chapter 9

With the growth of the REST popularity, there has been in the last years a wide
adoption of this technology in the form of Application Programming Interfaces (APIs).
The main motivation behind this - fairly rapid — switch in paradigms was [Pautasso,
Zimmermann, and Leymann 2008] the lower complexity, in the short term, of speci-
fying schema-less resources (REST) instead of actions, along with their complex types
(SOAP). Also, REST services are coreographed by the developer in a hardcoded way,
instead of being forced to follow an OASIS or W3C specification which was proven to
be a cumbersome procedure [Michlmayr et al. 2007].

At the same time that the service-orientation principles lost popularity, the REST
API community embraced the Agile principles, i.e., rapid prototyping, continuously
changing requirements, less prioritisation of processes [Bloomberg 2013]. However,
this did not stop the appearance over time of the same questions that motivated the
service-orientation principles: how to deal with effective decoupling of concerns, how
to use declarative specifications to coordinate and orchestrate services, how to deal
with state, how to achieve governance, etc.

The community has recently coined a term to refer to “service-orientation done right”
without explicity using the term SOA: Microservice Architecture. Although the term has
been used in the Internet for a while, Martin Fowler defined the term in the semi-
nal [Fowler and Lewis 2014] with an already mature definition based on the success
use cases of Amazon and Netflix. According to this article, “an application is a suite of
small services (microservices), each running in its own process and communicating with lightweight
mecanisms, often an HTTP resource API”.

We argue that both terms (Microservice Architecture and SOA) are equivalent, be-
cause the definition of service-orientation, and the frameworks and W3C-OASIS pro-
posals built around it, are two separate things, regardless of how much they have been
confused by the public. For this reason, in the rest of this document we will keep using
the term SOA, but it is important to note that we aim to encompass both the old and
the new adopted meanings with it. After all, a service as an abstract concept is still
the same, independently of whether it exposes actions or resources: it is an agent, a
means of communicating with other agents and provide information or trigger exter-
nal actions or events, and the same (conceptual) solutions apply to both concepts with
respect to governance.

1.4 SUMMARY OF THIS CHAPTER

In this chapter we have described several paradigms that are well suited to materialise
the concept of computation as interaction in the sense of computing as a social activity
resulting from the joint actions of human and/or software agents.

First of all, we have discussed the concept of agency and its suitability to describe
individuals in a distributed systems. From there, we have seen two types of systems of
such agents: 1) Multi-agent Systems, strongly founded on academic formalisms, and 2)
Service-Oriented Architectures, more industry-oriented and therefore more pragmatic.

As we will see in Chapter 2, this divergence affects how social reality can be cap-
tured and processed by each type of agent. More pragmatism means more flexibility,

10 Chapter 1. Computation as interaction

but that is not necessarily a good thing; while academic foundations already provide
concepts closer to social or institutional theories. Our aim is to combine both worlds
with computational artifacts both flexible and formally sound.

CHAPTER

Norms

OMAR: ‘I mean, I do some dirt, too, but I ain’t never
put my gun on nobody that wasn’t in the game.’
BUNK: ‘A man must have a code.’

OMAR: ‘Oh, no doubt.’

The Wire
DAvVID SIMON

Agency and normativity are two very closely related concepts, and it is often said that
there cannot exist one without the other [Korsgaard 2008]: if an agent wills an end,
it is committing oneself to realising that end, and therefore willing an end is a first-
personal normative act. Because agents are capable of assigning normative principles to
themselves, they can also accept new ends to will, which carry this normative weight.

When we have groups of agents instead of individuals, the ends of the agents make
interaction complex: different agents may will the same end or, as is often the case, the
ends of two agents may be conflictive. Human agents have been capable of translating
first-personal normativity to forms of collective normativity: what we call norms.

In literature, the concept of norms has been defined from several perspectives
[Vazquez-Salceda 2003]: as a rule or standard of behaviour shared by members of a
social group, as an authoritative rule or standard by which something is judged, ap-
proved or disapproved, as standards of right and wrong, beauty and ugliness, and truth
and falsehood, or even as a model of what should exist or be followed, or an average of
what currently does exist in some context.

What is common to each of these meanings of the concept is that they provide
some sort of guidelines in the interaction between agents. Norms are therefore the
foundational element for shaping societies of agents, from human organisations to mixed
human/artificial socio-technical systems.

In this chapter we will summarise the relevant work on norms from two different
perspectives. First of all, we will see how norms can be categorised, and in the next
section we will explore different ways in which they can be implemented.

11

12 Chapter 2. Norms

2.1 TYPES OF NORMS

There is no consensus on how to categorise norms, although it is accepted that norms,
as an abstract concept, influence the behaviour of rational agents. This influence can
depend on how the norms are promulgated, enforced, or whether the norms explicitly
relate to an end or otherwise the norm is created as an end by itself. With respect to
these issues, [Elster 1989] makes a distinction between three types of norms:

e Social norms: they are not outcome oriented and tend to be enforced by indi-
vidual feelings towards the other agents, and thus not necessarily benefit the
participants, e.g. it is customary to salute people when arriving to the office.

e Moral norms: they are consequentialist, i.e. an act is morally right if and only if
that act maximises the global good, where good is a moral concept rather than an
economic or functional optimal, e.g. you should not commit adultery.

e Legal norms: enforced by specialists out of self-interest - it is their job, e.g. it is
obliged to drive on the right lane of the road whenever possible.

Social norms (also called conventions, private norms or informal norms) are an
interesting phenomenon: because they are not outcome oriented, they are not entirely
rational from an individual perspective. They are generally unconditional, and in those
cases when they are not, they are not future-oriented (due to the lack of a goal). In
fact, in order to become social, a norm must be shared and sustained by approval and
disapproval, and therefore a social norm is an end in itself.

It might seem from this definition that social norms cannot be the foundation of a
society, but they are indeed. They allow the developing of mechanisms of reciprocity
and cooperation [Bicchieri 2006], because their acceptance gives shape to groups of
agents distinctive to others and allows collective behaviour patterns to emerge in those
gaps where the other types of norm — moral, legal — cannot reach.

Moral and legal norms share the fact that they are outcome-oriented, and therefore
following them or not requires individual rationality. The difference between both,
according to [Elster 1989], is the motivation of the enforcer: legal norms are enforced
by people who would lose their job otherwise. However, this distinction is not entirely
clear [Posner 2009] - for example, does the Bible promulgate legal or moral norms?
After all, the Catholic Church is an institution that has enforced such norms for many
years and we could argue that such enforcement involved self-interested agents in many
cases. On the other hand, moral norms require moral agents: consequentialism can
only be understood and accepted by agents that can reason about the ends from an
individual perspective. This is not the case with artificial systems (at least, for now),
because these have usually predefined or pre-programmed goals.

This very much seems clear: in both cases, enforcing norms requires the use of
language in order to communicate them due to the fact that they deal with ontological
concepts that are not necessarily physical. This is a distinction with respect to social
norms, as it is proven that they can appear merely by means of observation between
similar agents [Bicchieri 2006].

2.1. Types of norms 13

As formulated in Research Question 2, our objective is to produce computational
elements that enable individual elements in distributed systems as first-class members
of socio-technical systems. In this context, it seems fit to understand that the norms
affected by such systems are closer to what [Elster 1989] categorises as legal norms:
outcome-oriented towards an external goal, written in some kind of language and en-
forced by specialists. In order to simplify, from now on we will simply refer to this type
as norm.

Independently of this distinction of norms based on their outcome and enforce-
ment, [Searle 2009] argues, following Speech Act Theory, that norms (called rules in
this book), due to their performative value, are used by agents to effectively create social
reality, that is, socially accepted facts that are ontologically subjective (their existence
depends on the mental states of a rational agent) but epistemically objective (they are
agreed upon by a collective of agents).

As mechanisms to create this social reality, Searle identifies two types of norms
(called rules in this book):

e Constitutive rules: they declare institutional (social) facts from brute facts —
which are ontologically objective — or from other institutional facts.

e Regulative rules: they declare constraints on the behaviour of agents with respect
to their relationship with institutional facts.

A constitutive rule typically has the form:
X CountsasYin C

where X is a brute or institutional fact, Y is the institutional fact being created, and
C is a normative context. An example of constitutive rule in action is two people con-
sidered as married (institutional fact) because they were declared as such by a person
who had the power to do so. An example of regulative rule related to this institutional
fact is for example that the married couple are in the mutual obligation of declaring
taxes together (in some countries and/or regions).

In summary, regulative rules can be seen as describing ideal situations from an in-
stitutional perspective in terms of obligations, prohibitions and permissions; whereas
constitutive rules allow to construct social reality by expliciting the relationship be-
tween brute facts and institutional events. The main difference between both types of
norms is that while constitutive rules, by their very nature, are categorical, regulative
rules are conditional, in the sense that they specify every applicable condition of each
particular norm[Boella and Torre 2004].

In some works it has been proposed to consider a third kind of norm - regimented
norms [Torre et al. 2004]. These are considered hard constraints as opposed to regu-
lative and constitutive, which are soft constraints. In this context, a hard constraint
cannot be avoided, i.e. the norm is enforced by imposing a restrictive environment,
whereas soft contraints can be violated, i.e. not accepting a declaration or not fulfilling
an obligation.

14 Chapter 2. Norms

In distributed systems, regimented norms already exist in the form of implemen-
tation decisions that directly or indirectly create those contraints (by design). We are
more interested on the aspects of soft constraints, especially in distributed systems
where the internal specifications of services are usually hidden from other parties.

2.2 REPRESENTING NORMS

In the previous section we have explored the concept of norm from a theoretical point
of view, i.e. what kinds of norms we can encounter. A different topic, however, is how
to give shape to norms. In this section, we describe the most relevant ways to describe
norms in governed distributed systems’ in the chronological order in which they were
proposed.

2.2.1 Deontic logic

Although primitive cultures had no written laws, they shared morals and conventions
that were followed by the individuals. These informal norms evolved into explicit written
laws developed by subsequent cultures. Two examples of these formal norms are Roman
Law and Common Law.

Roman Law emerged after some attempts of expressing morals and conventions, e.g.
the code of Hammurabi, and is the base for the legal systems of most of the european
countries that were part of the Roman Empire, the ones that were linked to them by
monarchic marriages, as well as their colonies. In most of these countries the normative
system is hierarchical: constitution, laws, and regulations.?

Roman Law defines two kinds of constraint sets:

e Normatives or Laws: sets of norms that define WHAT can be done by WHO and
WHEN. A constitution is the highest law in a state.

e Regulations: sets of rules that expand a given normative defining HOW it may be
applied.

In legal theory, norms are always expressed in natural language. That makes them
ambiguous and hard to deal with in computational systems. To solve this gap, Mally
intended to create an exact system of pure ethics to formalize legal and normative rea-
soning. That was the first attempt at creating a Deontic Logic [Lokhorst 1999], based on
the classical propositional calculus. Von Wright [Wright 1951] presented a formalism based
on propositional calculus that was similar to a normal modal logic. Adapting Von Wright’s
proposal, the Standard System of Deontic Logic or KD was created as a modal logic with
the following axioms:

'This discards some mechanisms, such as game theory, that are more suited for theoretical or simu-
lated use cases.

*Some countries, like the United Kingdom, have their laws based on Common Law. As opposed to
Roman Law, Common Law is composed by an aggregation of past decisions, which are used as a base for
future decisions, in a case-based approach. Therefore, there is no constitution nor a layered system of
norms.

2.2. Representing norms 15

O(p — q) = (O(p) — O(q)) (KD1 or K-axiom)

O(p) — P(p) (KD2 or D-axiom)

P(p) ==0(-p) (KD3)

F(p) =~P(p) (KD4)

p,p—qbgq (KDs or Modus Ponens)
pHO(p) (KD6 or O-necessitation)

where O, P and F are modal operators for obligation, permission and prohibition.

Thus Deontic Logic allows for expressing a norm as the obligations, permissions,
and prohibitions that an entity has towards another entity. Verbs such as should or ought
can be expressed as modalities: “it should happen p" , “it ought to be p". The semantics of
the O, P and F operators define, for a normative system and in terms of possible worlds,
which situations are ideal.

In fact, Deontic Logic is not a logic of norms, but a logic of propositions stating the
existence of norms [McNamara and Prakken 1999]. However, this makes them suitable
for implementing regulative rules as defined in Section 2.1. Although there have been
recent attempts to make regulative rules concrete by the reduction to constitutive rules
[Aldewereld et al. 2010b], in general regulative norms based on deontic statements have
been the most common way to represent normative constraints in multi-agent systems.
In such systems, thus, norms are expressed as computer-readable specifications based
on deontic logics.

However, operationalisation of such norms is not straightforward. As already men-
tioned, deontic statements express the existence of norms, rather than the conse-
quences of following (or not following) them [Walter 1996]. In order to implement
agents and institutional frameworks capable of reasoning about norms, we need to
complement deontic logics with semantics defining fulfillment and violation — among
other operational normative concepts.

Standard Deontic Logic or KD [Meyer and Wieringa 1991] is expressive enough to
analyse how obligations follow each other and is useful to find possible paradoxes in
the reasoning. However, the KD system can hardly be used from a more operational
approach in order to, e.g., decide which is the next action to be performed, as it has no
operational semantics. One interesting extension of KD Deontic Logic is the Dyadic
Deontic Logic, proposed by Von Wright, which introduces conditional obligations with
expressions such as O(p|q) (“p is obligatory when condition q holds").

There are also specific logics to address temporal aspects, as the Temporal Deontic
Logic. For instance,

O(p <q)
states that “p is obligatory before condition q holds". Another option is combining deontic
operators with Dynamic Logic:

[p]O(q)

means “after p is performed it is obligatory q".
Some researchers have enhanced deontic logic by adding the action modal operators
E, G, H. Operator E comes from Kanger-Lindahl-Pérn logical theory [Kanger and

16 Chapter 2. Norms

Stenlund 1974; Lindahl 2001; P6rn 1974], and allows to express direct and successful
operations: E;A means that an agent 7 brings it about that A (i.e., agent i makes A
to happen and is directly involved in such achievement). Operators G and H were
introduced later by Santos, Jones and Carmo to model indirect actions [Santos and
Carmo 1996; Santos, Jones, and Carmo 1997]. Thus, the modal operator G allows to
express indirect but successful operations: G; A means that an agent i ensures that A (but
not necessarily is involved in such achievement). The operator H expresses attempted
(and not necessarily successful) operations: H; A means that an agent i attempts to make
it the case that A.

Examples of work on deontic logic to materialise norms are abundant and for many
different purposes, i.e., compliance [Alvarez-Napagao et al. 2011; Cardoso and Oliveira
20009; Criado et al. 2010; Garcia-Camino et al. 2006; Governatori and Rotolo 2010; Oren
et al. 2009], verification [Agotnes, Hoek, and Wooldridge 2010; Koo 2008; Lomuscio,
Qu, and Raimondi 2009; Prisacariu and Schneider 2009], or agent behaviour [Aldew-
ereld et al. 2005; Kollingbaum 2005; Lépez, Luck, and d’Inverno 2004; Meneguzzi and
Luck 2009; Panagiotidi and Vazquez-Salceda 2011]. While it is true that most of them
define semantics to interpret norms, there seems to be a disconnection between such
semantics and either 1) the deontic logics they are supposed to be based upon; or 2)
the operational level closer to the actual practical implementation. For instance, [Gov-
ernatori and Rotolo 2010] defines a norm-operationalization language that can be con-
nected with higher level abstractions, but it is not clear whether it can be translated
into generic rule-based languages. [Garcia-Camino et al. 2006] presents a rule-based
language with constraints, with an implementation on Prolog, on top of which other
higher-level languages can be formalised, but with no direct relationship to deontic log-
ics. On this line of work, approaches such as [Lépez, Luck, and d’Inverno 2004; Oren
et al. 2009] define clear operational semantics by the use of syntax loosely inspired by,
but not directly related to, deontic statements.

In [Aldewereld 2007], Aldewereld extends the ideas of [Vazquez-Salceda 2004] by
applying parts of the methodology to highly-regulated environments (environments
governed by lots of complex norms). The author formalises the implementation of
norms from an institutional point of view. He defines the abstract norm, and extends
this formalism to the norm frame needed for the representation of concrete norms.
More specifically he uses an linear-time temporal logic, based on temporal logic which
he extends with deontic operators to express the obligations, permissions and prohi-
bitions that are in the norms. He then introduces the operational constraints by which
they implement the norm frame to obtain the normative institutions. The author then
proceeds to specify (formal) methods for the implementation of norm enforcement and
the (automatic) creation of protocols (based on constraints specified by the norms).

What is somehow missing in general in the literature is a clear separation between
what an abstract norm and a particular (contextual) instantiation of the norm. This
problem was already discussed by Abrahams and Bacon in [Abrahams and Bacon 2002]:
“since propositions about norms are derived from the norms themselves, invalid or misleading in-

2.2. Representing norms 17

ferences will result if we deal merely with the propositions rather than with the identified norms3
that make those propositions true or false”. This issue is not banal, as it has implications on
the operational level: in order to properly check norm compliance, norm instantiations
have to be tracked in an individual manner, case by case.

We find useful, at this point, to stress the fact that the lifecycles of a norm, and
of a norm instance, should be differentiated because they are different in essence. The
lifecycle of a norm (see Figure 6.3) deals with its validity in the normative system, while
the lifecycle of a norm instance (see Figure 2.2) deals with the fulfillment/violation of
the particular instance.

deleted

Figure 2.1: Norm lifecycle
Y

violated

Figure 2.2: Norm instance lifecycle
Y

Abrahams and Bacon [Abrahams and Bacon 2002] solve this problem by means
of occurrences of the predicates contained in the deontic operator, but there are cases
in which this can be insufficient, e.g., when the obligation defines a deadline or its
instantiation depends on contextual information. More recently, some works have been
advancing in the direction of tackling this issue. For example, by treating instantiated
deontic statements as first-class objects of a rule-based language [Cardoso and Oliveira

3From now on, we will denote such identified norms as norm instances.

18 Chapter 2. Norms

2009; Governatori 2005]. However, as these deontic statements are already implicitly
identifying the norm instance, there is no explicit tracking. Other approaches declare
the norm only at the abstract level and the tracking of the norm instance, and implicitly
of the norm instance lifecycle, is purely done at the operational level [Alvarez-Napagao
et al. 2011; Criado et al. 2010; Modgil et al. 2015; Oren et al. 2009].

In summary, there are many approaches that tackle different parts of the formal-
ization of norm operationalization. One of the purposes of our work will be, thus, to
complement these approaches by filling the gaps that exist between the deontic state-
ments and other suitable more simpler operationalisations, with special focus on norm
instances.

Therefore, while it is true that deontic logics provide a level of expressivity that is
ideal, being somehow close to what is used in human language for norms, its com-
plexity has proven difficult to deal with in practical systems. These limitations may
impact directly or indirectly on important factors in distributed systems, esp. regard-
ing real-time performance and scalability. We keep exploring options based on simpler
formalisms in the following subsections.

2.2.2 Production systems

Event-Condition-Action (ECA) rules were first defined in the context of database man-
agement systems [McCarthy et al. 1989] and are the simplest form of rule possible.
Such rules are first-class objects of a language, with clear semantics: when an event oc-
curs, the condition of each rule is evaluated; if the condition is satisfied for a particular
rule, its action is executed. Therefore, they have the same expressivity and complexity
of a typical if-then-else branching in a programming language, but targetting a virtually
infinite stream of input events. Because of their simplicity, they have been applied in
almost every domain of practical applications.

Many libraries and frameworks implement mechanisms for efficient execution of
ECA rules systems. These are commonly referred to as rule engines or production systems.
In this thesis we will use as a reference the semantics for production systems proposed
in [Cirstea et al. 2008], summarised in the following paragraphs.

Considering a set P of predicate symbols, and an infinite set of variables X', where
a fact is a ground term, f € T (P), and WM is the working memory, a set of facts, a
production rule is denoted if p, ¢ remove r add a, or

p, c =1, q

consisting of the following components:

e A set of positive or negative patterns p = p™ U p~ where a pattern is a term
pi € T(F,X) and a negated pattern is denoted —p;. p~ is the set of all negated
patterns and p™ is the set of the remaining patterns

e A proposition ¢ whose set of free variables is a subset of the pattern variables:
Var(c) C Var(p).

2.2. Representing norms 19

e A set r of terms whose instances could be intuitively considered as intended to
be removed from the working memory when the rule is fired, » = {r; };cs,, where
Var(r) C Var(pt).

e A set a of terms whose instances could be intuitively considered as intended to
be added to the working memory when the rule is fired, a = {a;}ics,, Where
Var(a) C Var(p).

Definition 1 A set of positive patterns p™ matches to a set of facts S and a substitution o iff
Vp € pt,3t € S,0(p) = t. Similarly, a set of negative patterns p— dismatches a set of facts S
iff vV—p € p~,Vt € §,Vo,0(p) # t.

A production rule p = r,a is (o0, WM')-fireable on a working memory WM when p*
matches with WM’ and p~ dismatches with WM, where WM’ is a minimal subset of WM,
and T = o(c). 0

Definition 2 The application of a (o, W.M')-fireable rule on a working memory WM leads to
the new working memory WM" = (WM — o(r)) U o (a). O

Definition 3 A general production system PS is defined as PS = (P,WMy,R), where R is a
set of production rules over H = (P, X). O

These semantics allow us to treat production systems, which lack a high level of
expressivity, as a theoretical framework in top of which we can reduce formalisms that
involve more complex rules.

2.2.3 Service-level agreements

The concrete approaches used for enforcement in SOA are based on Service-Level
Agreements (SLA). A SLA is a formal negotiated agreement between a service provider
and his customer. When a customer orders a service from a provider, an SLA is ne-
gotiated and then a contract is drawn up. The service provider must perform a SLA
monitoring in order to verify whether the Quality of Service (QoS) parameters speci-
fied in the SLA contract are respected. The SLA monitoring involves monitoring the
performance status of the offered service and provides relevant information to the ser-
vice level management system. Then, the system management assesses the provider’s
commitments and applies penalties if those commitments were not met.

In order to define such providers’ commitments, a lot of specification work was
carried out defining several XML based languages enabled to describe the contract be-
tween the service provider, his customer and a possible third party. These languages
were defined closely to the common language allowing a common understanding of
the service provider commitments to perform a service according to agreed guarantees.
Several initiatives have been defined, and all of them are a complement to the service
description implemented by WSDL.

One of the best known is Cremona [Ludwig, Dan, and Kearney 2004], a SLA mid-
dleware complementing the basic Web Services stack. Cremona helps providers to read,
manage agreement templates, implement the agreement protocol, check availability of

20 Chapter 2. Norms

service capacity and monitor agreement states at runtime. Cremona’s communication
component handles various message types and message sequencing to form interaction
protocols through the agent knowledge bases. In spite of that, the framework seems
not to be competent on decision making based on the content of an agreement, job
scheduling and resource management. Also, the monitoring components in Cremona
do not provide support for agreement breaking. Finally, workflow handling, which is
essential when dealing with complex interactions between services, is not supported.

The Web Service Level Agreement (WSLA) [Ludwig et al. 2003] is a framework
targeted at defining and monitoring SLAs for Web Services [Keller and Ludwig 2003].
The general structure of an SLA in WSLA includes the involved parties, the SLA pa-
rameters, the metrics and algorithms to compute those parameters, the service level
objectives (SLOs) and the actions to be taken if a violation has been detected. The
WSLA Framework implementation is based on the IBM Web Services Toolkit and li-
censed as commercial software. Its main functionalities are the definition, negotiation,
deployment, monitoring, and enforcement of SLAs.

However, WSLA does not fully support multiple consumer/provider contracts, as
these are signed by only two parties. Concerning partner responsibilities, it should
be noted that defining them exclusively in terms of parameters and metrics is quite
limiting, and there is no support for the definition of actions to be fulfilled. Finally, an-
other very important issue is the lack of a generic, flexible and automatically executable
mechanism for corrective management actions.

In the case of WS-Agreement [Andrieux et al. 2005], the general structure of agree-
ments consists of the description of the context in which the agreement is established,
the service itself and the guarantee terms. The WS-Agreement specification is less fo-
cused on the description of the related activities that should be choreographed but on
the definition of the commitments and penalties.* WS-Agreement is quite often used
with the conversation definition language WSCL [Banerji et al. 2002]. The WSCL/WS-
Agreement over IBM’s ETTK is the reference (but partial) implementation of these
specifications. It is built on top of Cremona and extends it by using WS-Agreement
templates, richer message types, and XML-based interaction protocols. However, a
WS-Agreement-based framework has quite some limitations: it does not include the
specification of third parties working in the management of contracts, and no metrics
are defined in order to support flexible monitoring implementations over the Web ser-
vice choreographies.

PANDA [Bougiouklis 2008] was a project developing technology for the negotia-
tion, monitoring and evaluation of contracts in supply-chains of producers in modu-
lar distributed Enterprise Resource Planning (ERP) systems. The infrastructure com-
bined centralised Web service-based components (catalogue of partner profiles, SLA
templates storage, etc.) with distributed peer-to-peer components implemented us-
ing JADE multi-agent platform. PANDA was an attempt to connect, at a high level,
Service Level Agreements and Multi-Agent Systems, focusing on semi-automated ne-

*WS-Agreement is the only specification of those under study that includes the explicit declaration of
penalties, but they consist only of sets of actions.

2.3. Summary to this chapter 21

gotiation and offline monitoring of contracts, and including interesting features such as
matchmaking, negotiation, and Virtual Organisation (VO) evaluation. The main issue
concerning PANDA for its use in a generic contracting architecture was that its main
focus was in the domain of ERP-solutions and not domain-independent.

Many event-driven (ECAs) Web standards have been developed, with particular
emphasis on reactive RuleML languages and their SLAs-tailored variant, namely RB-
SLA (Rule-based Service Level Agreements) [Paschke 2005]. However, RBSLA does
not explicitly adopt the Web service-technology. Standard generic rule and inference
engines such as Mandarax [Dietrich 2005], based on RuleML [Boley 2006], and Prova
[Kozlenkov and Schroeder 2004] have been developed to execute and manage contracts
designed in RBSLA. Prova, in specific, supports complex reaction rule-based workflows,
rule-based complex event processing, distributed inference services, rule interchange,
rule-based decision logic and dynamic access to external data sources, web-based ser-
vices and Java APIs. Nevertheless, both frameworks have an object oriented aspect,
concentrate on the support of inference and reasoning engines, do not provide direct
support for contracting procedures between agents and operate on a declarative rather
than deontic level.

Each of these existing pieces of work provide a different perspective on contracts and
Web services, but still tackle the problem from a particular perspective such as language
(RBSLA), negotiation (Cremona) or specification of the contract content (WSLA).

2.3 SUMMARY TO THIS CHAPTER

In this chapter, we have defined norms as proper mechanisms for describing be-
havioural constraints in the interactions between agents, as agency and normativity
are intimately related concepts. Furthermore, we have identified types of norms de-
pending on whether they are social, moral or legal, on one hand, and whether they are
used to specify a vocabulary (constitutive) or to define rules based on that vocabulary
(regulative). The combination of constitutive and regulative norms effectively allows
us, by definition, to design systems that have social reality as a first-class citizen.

Additionally, we have seen several forms of norm definition, at different levels of
expressivity and originally designed to fulfill disparate objectives: 1) Deontic Logic,
very close to the expressivity of human norms, 2) Production Systems, simple rules
matching conditions to produce actions, and 3) Service-Level Agreements, in the mid-
dle of the former two with regards to complexity and expressivity, and created with
service-orientation as a target.

Because deontic logics are usually too complex to be seamlessly translated into the
implementation level of practical systems, and production systems are not expressive
enough to capture the complexity of constraints usually written by humans, service-
level agreement was at its time a fair attempt at dealing with this issue. However, as
seen in Section 1.3, SOA-related proposals were gradually abandoned in favour of more
ad hoc solutions, i.e. hardcoding orchestration and constraints in service implemen-
tation. For example, Amazon and Netflix enforce an approach based on adding the
constraints directly into the implementation of the services, making developers follow

22 Chapter 2. Norms

the contracts agreed upon by the consumer and the provider instead of delegating these
tasks to the service itself [Fowler and Lewis 2014].

This means that there is still an opportunity of providing a solution that tries to
tackle governance of distributed systems for SOA in a more flexible and adaptive way
than merely by design. However, at the same time this carries the challenge of over-
coming the problems of past attempts, which proved too complex, and delivering a
solution that is, at the same time, efficient, expressive, and easy to adopt.

CHAPTER

Normative systems and
governance

WomaN: ‘Well, how’d you become king then?’
KiNG ARTHUR: ‘The Lady of the Lake, her arm clad
in the purest shimmering samite held aloft Excalibur
from the bosom of the water, signifying by Divine
Providence that I, Arthur, was to carry Excalibur.
That is why I am your king.’

DENNISs: ‘Listen, strange women lyin’ in ponds
distributin’ swords is no basis for a system of
government. Supreme executive power derives from a
mandate from the masses, not from some farcical
aquatic ceremony.’

Monty Python and the Holy Grail
TERRY GILLIAM & TERRY JONES

Until now, we have seen what is considered as an agent and how artificial agents can
form distributed systems (Chapter 1), and how we can apply the concept of normativity
to them (Chapter 2). Norms can, therefore, be used to shape and guide the behaviour
of individuals in distributed systems — in societies. However, in order to achieve this,
there has to be a framework, conceptually apart from the mere topology of the dis-
tributed system and the implementation of the individual agents, that allows agents to
understand the norms and reason about them. In other words, agents have to share a
normative context.

In research, the systems, usually based on social abstractions that help building and
enabling such normative contexts are called Normative Systems. The main idea of Nor-
mative Systems is that the interactions among a group of (software) agents are ruled
by a set of explicit norms expressed in a computational language representation that

23

24 Chapter 3. Normative systems and governance

agents can interpret. Although some authors only see norms as inflexible restrictions
to agent behaviour, others see norms not as a negative, constraining factor but as an aid
that guides the agents’ choices and reduces the complexity of the environment, making
the behaviour of other agents more predictable.

There are two main approaches in the literature about how to design such Norma-
tive Systems. On one hand, Normative Systems can be defined in terms of institutions,
a concept that can be derived from norms at a theoretical level. Such systems are usually
heavily grounded on existing formalisms, especially from Institutional Theory, Sociol-
ogy and Deontic Logics. On the other hand, we can find more pragmatic approaches
that have been evolving from the requirements detected from practical systems, and
are grounded on sets of best practices created from the bottom (actual services) up.

In this chapter we will explore both sides of the same problem, tackled from each
perspective.

3.1 INSTITUTIONAL THEORY APPLIED

For Searle, the existence of institutional facts pressuposes the existence of institutions
and an institution (or society) is constituted by means of constitutive rules: the struc-
ture of an institution is, in fact, the logical structure of its counts-as rules [Searle 2005].
Therefore, “an institution is any system of constitutive rules of the form X counts as Y in C ”.
Once an institution is established by such rules, it serves as a structure on top of which
institutional facts (and therefore social reality) can be created.

Language is essential for the existence of institutions. For example, we can have
language without money, but not money without language. Physically, a bill is a piece
of paper. This is the only ontologically objective fact we can infer from inspecting it. In
order to enable agents to understand that the bill is, in fact, money, there must be
a medium of representation, a means to represent the fact that the bill is money. In
the case of human institution, this medium is human language (in the broad sense,
including non-verbal communication or symbolism). For example, it would be hard
to understand how two agents could play a game of chess without a proper verbal or
written representation of its (constitutive and regulative) rules.

Types of institutional facts can be simple declarations, such as declaring marriage.
However, as seen in Section 2.1, institutional facts can carry obligations in the form
of regulative rules. Thus, institutions not only create a terminology for the society,
but they also enable deontic powers [Searle 2009]: rights, duties, obligations, authori-
sations, permissions, empowerments, requirements, and certifications. Such deontic
powers allow societies to create institutional facts of utmost importance for the inter-
action between agents, e.g. private property, government, contracts, friendship, family,
money.

This gives us an account for a formal definition of institution, providing us with
a combination of constitutive and regulative rules that give shape to the interaction
between agents in terms of deontic powers. Therefore, institutions define normative
contexts.

3.1. Institutional theory applied 25

Institutions, seen as norm providers and enforcers, can be used to solve the follow-
ing issues in the context of distributed systems:

e Reduce uncertainty about other agents’ behavior inside the institution.
e Reduce misunderstanding with a common set of norms governing interactions.
o Allow agents to foresee the outcome of a certain interaction among participants.

o Simplify the decision-making process inside each agent, by reducing the number
of possible actions.

Attempts of producing theoretical frameworks that convert and extend the concept
of institution into frameworks (normative systems) have been produced by [North,
Ngrgaard, and Swedberg 1990; Richard Scott 1998, 2001], in an area of study called In-
stitutional Theory. These authors defined ways to relate institutional norms with both
agents and the environmental context of the agents, and to analyse such relationships
in terms of (mainly economical) performance.

For [Richard Scott 1998], institutions are open systems where the environment or
context has an important influence as it constraints, shapes, penetrates and renews the so-
ciety or organisation. In this scenario, problems such as consensus or limited trust
may affect the interactions of the individuals when trying to achieve coordination or
cooperation. Human societies have successfully coped with similar problems of social
order, mainly by the development of norms and conventions as specifications of (prop-
er/unproper) behaviour to be followed by individuals.

Scott [Richard Scott 2001] defines a framework to describe the interactions between
institutions and organisations. In this framework, an institution is composed by the
regulative aspects, the normative ones, and the cultural-cognitive ones. In Scott’s view,
there is a distinction to be made between norms, which are related to moral aspects and
describe regulative aspects of individual behavior, and rules, which are related to coercive
aspects and describe prescriptive, evaluative, and obligatory aspects of social life.

Moreover, for Scott, roles are conceptions of appropriate goals and activities for
particular individuals or specified social positions, creating, rather than anticipations
or predictions, prescriptions, in the form of normative expectations, of how the actors
fulfilling a role are supposed to behave. These roles are directly related to those norms
that are not applicable to all members of a society, but to selected types of actors.

On the other hand, [North, Ngrgaard, and Swedberg 1990] argues that norms are
supported by social institutions, which enforce the fulfillment of the norms by the
members of the society. Institutional theory presents two approaches of research: the
study of the dynamics of a regulatory framework, that is, how norms emerge and get
enforced; and the effects of regulatory frameworks in the dynamics of a social system,
and how the behavior of its individuals is adapted.

In this work, North studied the effect of institutions, in the sense of normative sys-
tems, on the behavior of human organisations, focusing on their performance. Accord-
ing to him, institutional constraints reduce the cost of human interactions, by ensuring
trust between parties and giving shape to their choices. When there are institutional

26 Chapter 3. Normative systems and governance

constraints, individuals are able to behave, and expect others to behave, according to
the norms.

Therefore, the creation of institutions provides trust among parties even when they
do not have much information about each other. In environments with incomplete
information, cooperative interactions can perform ineffectively unless there are insti-
tutions which provide sufficient information for all the individuals to create trust and
to control deviations.

Institutions can be classified according to how they are created and maintained,
or on the formality of its rules. On the former case, institutions can be created from
scratch and remain static or be continuously evolving. On the latter, institutions can be
informal, that is, defined by informal constraints such as social conventions and codes
of behavior, or formal, defined by formal rules. Formal rules can be political and judicial
rules, economic laws, or contracts.

In formal institutions the purpose of formal rules is to promote certain kinds of ex-
change while raising the cost of undesired kinds of exchange. Elnor Ostrom [Ostrom
1986] classifies formal rules in 6 types:

e position rules: to define a set of positions (roles) and the number of participants
allowed for each position,

e boundary rules: to state how participants are chosen to hold or leave a position,

e scope rules: to specify the set of outcomes and the external value (costs, induce-
ments) related to them,

e authority rules: to specify the set of actions assigned to a position at a certain node,

e aggregation rules: to specify decision functions for each node to map action into
intermediate or final outcomes,

e information rules: that authorize channels of communication among participants
in positions and specify the language and form in which the language will take
place (the protocol).

As norms are, in fact, the elements that characterize institutions, they do not only
serve as norms to be followed, but also serve as indication for people to recognize an
organisation as being an instance of a particular kind of institution, and then use this
knowledge to predict other norms that could be applicable.

The various attempts at translating these theoretical frameworks to the context of
distributed systems have received many names: Socio-technical Systems, Norm-governed
Systems, or Electronic Institutions. What all of them have in common is that they intend
to model of human institutions through the specification of their norms in some suit-
able formalism. The essence of an institution, through its norms and protocols can be
captured in a precise machine processable form and this key idea forms the core of the
topic of institutional modelling.

3.1.0.1 State of the art on normative frameworks

There is quite some research on theoretical approaches and methodologies to model
and design agent-based social systems. In this Section we will summarize research

3.1. Institutional theory applied 27

done on methodologies and frameworks for applying the institutional abstraction to
distributed systems.

Organisational approaches have been quite successful in applying model social or-
der to software agent societies. For example, V. Dignum et al., in OperA, ALIVE, and
OperA+ [Dignum, Weigand, and Xu 2002; Dignum et al. 2008; Jiang, Dignum, and
Tan 2012] integrated and evolved some previous work in order to present a framework
composed by three interrelated models:

e The organisational model, which decribes the structure of the organisation in terms
of roles and goal distribution among roles.

e The social model, which describes the enactment of roles by the agents, regulated
by social contracts.

e The interaction model, which describes the interactions between the agents that
populate the society in terms of interaction contracts.

In order to give guidance of the possible interactions that may occur inside the or-
ganisation, the framework defines interaction structures. These structures define patters
of interaction in a way that the social goals can be achieved. The difference between
an interaction structure and a protocol is that the latter specifies all the steps of the
process, one by one, while the former only fixes some landmarks, giving autonomy to
the agents to decide how they will achieve each landmark. Constitutive and regula-
tive norms, based on the OperettA meta-model [Aldewereld and Dignum 2010a], are
executed and monitored in parallel to detect violations without compromising agent
autonomy'.

Artikis, Pitt et. al [Artikis, Sergot, and Pitt 2009] use the concept of Norm-governed
Computational Societies to refer to a concept analogous to institutions. Organisational
specifications are computed by means of Event Calculus [Farrell et al. 2005] combined
with the action language [Sergot 2010]. As first-class objects, these specifications al-
low declaring powers, sanctions, obligations, prohibitions and permissions. However,
when dealing with services it might be desirable to specify constraints in terms of events
or states instead of actions, and this framework does not allow that.

JaCaMo [Boissier et al. 2013] is a development platform in which the paradigms
of agent orientation, organisation orientation and environment orientation are put to-
gether by joining, among others, JASON [Bordini and Hiibner 2006], with the organi-
sational framework with institutional capabilities MOISE [Hannoun et al. 2000]. The
concept of organisational artifact is used in JaCaMo to define regimented or regulative
norms that can be monitored in run-time. However, the operationalisation of norms
is coupled to the platform, and thus cannot be easily applied to services that do not
belong to it.

Magentix [Alberola et al. 2008] is a Multi-agent system with a wide range of coor-
dination capabilities: virtual organisations, BDI reasoning and argumentation. Their
definition of institution is slightly different: institutions are virtual organisations with

'In Chapter 6 we describe the mechanisms used to effectively monitor norms modelled in the OperettA
meta-model.

28 Chapter 3. Normative systems and governance

a predefined library or interaction protocols allowed. Their norm language is suitable
for regulative (not constitutive) rules, and although there are plans to integrate the
norms as purely regulative, at the moment they are only used as regimented.

The SMART agent architecture presented by d’Inverno and Luck [d’Inverno and
Luck 2004] is based on an agent specification framework developed on top of the Z
specification language [Spivey 1989]. This framework defines concepts such as objects,
agents and autonomous agents®>. This framework was extended by Lépez y Lépez, Luck
and d’Inverno [Lépez and Luck 2002; Lépez, Luck, and d’Inverno 2001] by introducing
representations of norms, which are not modelled as static constraints but as objects
that can have several states: issued, active, modified, fulfilled or violated. These norms are
related not only with the agents that should fulfill or enforce them, but also with agents
such as the one that issued the norm, the one that modified it or the ones that may be
affected by a violation of the norm. However, there is no reported implementation of
the architecture on a real use case.

ISLANDER [Esteva, Padget, and Sierra 2002; Noriega 1997; Rodriguez-Aguilar
2003], later evolved to EIDE [Esteva et al. 2008], is a proposal that treats electronic
institutions as a type of dialogical system where all the interactions inside the institution
are a composition of multiple dialogic activities, that is, message exchanges. These
interactions, called illocutions [Noriega 1997], are structured through agent group meet-
ings called scenes that follow well-defined protocols. This division of all possible in-
teractions in scenes allows for a modular design of the system. Another important
element of ISLANDER is the notion of role: each agent can be associated to one or
more roles, and these roles define the scenes the agent can enter and the protocols it
should follow. ISLANDER has been mainly used in e-commerce scenarios, and was
used to model and implement an electronic Auction house, the Fishmarket. The re-
sulting agent-mediated auction house was used, to compare different strategies of the
trading agents [Cortés and Rodriguez-Aguilar 2000; Garcia et al. 1999; Matos and Sierra
1999]. Still, ISLANDER/EIDE presents some drawbacks in its application to complex
domains such as distributed systems, due to its e-institution modelling in a low level of
abstraction, by means of constraints on behavior modelled through very precise step-
by-step communication protocols (performative structures, scenes, transitions), thus
reducing the autonomy of the agents.

InstAL [De Vos, Padget, and Satoh 2010] is a proposal for the specification of exe-
cutable institutions by means of logic programming (Answer Set Programming). First-
class elements include fluents, events, obligations, and consequence relations. The
specification of institutions in InstAL allow for constitutive rules, thus enabling the
generation of institutional events such as violation events. As the specification is in-
stantiated by the framework, the agents are virtual elements that are created by InstAL
at runtime. Also, the operationalisation is based on the same language (ASP), and
therefore there is no known way to reduce the semantics to external services in order
to externalise processes such as monitoring or enforcement.

>Agents are defined as objects with goals, while autonomous agents are defined as objects with motiva-
tions.

3.2. Governance 29

Some approaches have been designed specifically for the e-commerce and e-business
fields, such as SMACE [Cardoso and Oliveira 2000] or the Contractual Agent Societies
(CAS) [Dellarocas 2000]. In both cases the normative perspective is modelled by the
use of contracts, which enforce agents to comply with the agreements they have done.
However, these contracts only model agreements between parties, and do not cover
those permissions, prohibitions or obligations that an e-organisation may need to de-
fine in order to ensure an appropriate behavior of the society of agents.

An evolution of SMACE is ANTE [Oliveira et al. 2014], a framework that improves
over the former by adding a terminology layer, including vocabulary such as obligation,
violation, deadline, violation or fulfillment. The concept of institution is materialised
in ANTE as a collection of services available for contracting, and contracts dynamically
determine what an organisation is. However, in ANTE external entities are agentified
into the system, that is, services must be wrapped in order to participate in the envi-
ronment through the ANTE platform.

3.2 GOVERNANCE

According to the dictionary, governance can be defined as the action of conducting, influ-
encing, or regulating the policy, actions, and affairs of a state, an organisation, or a group a people.
This can be done by constituting laws, rules, standards, or principles [Simpson and
Weiner 2003]. Governance, in practice, is defined by Finkelstein [Finkelstein 1995] as
systems of rule at all levels of human activity in which the pursuit of goals through the
exercise of control has repercussions.

Rosenau and Czempiel [Rosenau and Czempiel 1992] make a distinction between
governance and government. Both refer to purposive behavior, to goal-oriented activ-
ities, and to systems of rule. But government suggests activities that are backed by
formal authority, by police owners to insure the implementation of according consti-
tuted policies, whereas governance refers to activities backed by shared goals that may
or may not derive from legal and formally prescribed responsibilities and that do not
necessarily rely on police owners to overcome defiance and attain compliance.

Governance, in other words, is a more encompassing phenomenon than govern-
ment. It embraces governmental institutions, but it also subsumes informal, non-
governmental mechanisms whereby those persons and organisations within its scope
move ahead, satisfy their needs, and fulfill their wants. Governance is a system of rule
that works only if it is accepted by the majority, whereas governments can function
even in the face of widespread opposition to their policies.

Corporate governance, for example, is the subset of governance that involves corpo-
rations. That is, the set of laws, rules, institutions, and policies which affect the way a
corporation is controlled and managed [Monks and Minow 2004]. The actors involved
in corporate governance are the shareholders, the board of directors, the management
and other stakeholders?, although in most cases it is a delegated responsibility on the
managers and the board, bounded by public legislations and regulations.

*Customers, employees, suppliers or the community at large are examples of stakeholders.

30 Chapter 3. Normative systems and governance

For Colley et al. [Colley et al. 2003], corporate governance is a concept of growing
interest, being critical nowadays in modern economies. This is due to a continuous
criticism over the years about the way corporate boards work, and the constant pressure
over the fulfillment of the responsibilities they have been elected for.

Colley et al. claim that this is the main collective problem of business as of today,
and present a template for corporate governance analysis from several perspectives:

o The legal issues: what does the law require?

e The ethics: how does the organisation defines and fulfills its obligations to its con-
stituencies or stakeholders in view of conflicting interests?

o Effectiveness: how does the board ensure that they and their management make
effective decisions in an efficient and timely manner?

o The board’s relationships: how does the board maintain effective relationships with
their constituencies, particularly shareholders and management?

e The group dynamics: how well does the board function as a group or team?

The definitions of governance and corporate governance seem to be clear and more
or less uniform. This is not the case with IT governance. However, Simonsson and
Johnson [Simonsson and Johnson 2006] analyzed over 60 articles in order to extract an
approximate shared definition:

IT Governance are the tactics and the strategy (decision-making process) made and
carried out in order to monitor, decide and understand (scope) upon the IT goals,
technologies, human resources and processes (domain) of an organisation.

In most of the organisations, every IT resource and process has some level of gover-
nance associated with it in the form of policies, rules, and controls. However, according
to Webb et al. [Webb, Pollard, and Ridley 2006], companies with a well designed IT
governance earn a higher return on their assets. In fact, it is widely accepted that it di-
rectly influences the benefits generated by organisational IT investments [Weill 2004].
However, despite being seen as an essential component in the overall corporate gover-
nance structure, IT governance is right now the weakest link in the chain [Trites 2004].

Whereas IT Governance deals with hardware and software in general terms, SOA
governance is concentrated only on the Service-Oriented Architectures subset. More-
over, SOA Governance is an emergent concept in the SOA community used for activities
related to exercising control over services [webMethods 2006]. It is a form of electronic
governance that has its focus on distributed services and composite architectures, more
concretely on SOA scenarios, which may be under the control of different ownership
domains.

One main concern about SOA is that is supposes a paradigm shift for the industry
[Ibrhaim et al. 2007]. SOA adoption is complex in the sense that, in each particular
case, the possible successful implementations are too many and the outcomes are too
unpredictable to make of it an straightforward process. On the contrary, this is a process
that needs control to some extent. This is an issue that is being currently covered by
SOA governance.

3.2. Governance 31

3.2.1 A definition of SOA governance

Initially, the concept of SOA governance was applied narrowly to the development and
use of Web services, for example, validating the conformance of a Web service with
specific standards or managing Web services in the SOA run-time environment.

SOA Governance tries to solve several issues, including:

e Fragile and delicate SOA implementations.

e Services that cannot easily be reused because they are unknown to developers or
because they were not designed with reuse in mind.

e Lack of trust and confidence in services as enterprise assets, which results in a
build it myself mentality, further compounding the lack of reuse with redundancy
and unnecessary duplication of functionality.

e Security breaches that cannot easily be traced.
e Unpredictable performance.

In summary, SOA Governance is intended to give the methodology and the tools
needed to maintain the order in SOA environments. Some periodic reports identify
how the community is doing at heading in this direction and which companies are
on the good track and what they lack [Fulton, Heffner, and D’Silva 2008; Kenney and
Plummer 2008].

SOA Governance* is an emergent concept in the SOA community used for activities
related to exercising control over services[Linthicum 2008]. It is a form of electronic
governance that has its focus on distributed services and composite architectures, more
concretely on SOA scenarios.

In the last years many companies have started to switch to Service-Oriented Archi-
tectures for flexibility reasons and to adapt to technologies and practices under contin-
uous growth and standardization. After adopting services as a kind of business asset,
SOA Governance has appeared in the form of a methodology which affects the full life
cycle of the services in terms of specification, design, implementation, deployment,
management, control, monitoring, maintenance, intercommunication, and redesign.
Its aim is to give guidelines on how to establish shared policies, processes, architecture
and policies across each layer of an organisation.

The business SOA community is already aware of the importance of successfully
defining and promoting a standard which may help the stakeholders in using SOA Gov-
ernance and acquire its benefits.

3.2.2 Institutional governance based on agents

There are three steps that define SOA Governance management [webMethods 2006].
Design-Time Governance deals with the definition and application of policies that will
govern the design and implementation of Web services in the organisation, prior to

*SOA Governance should not be confused with E-Governance. E-Governance can be defined as the use of
Information and Communication Technology as a means to improve transparency, quality and efficiency
of service delivery in the public administration.

32 Chapter 3. Normative systems and governance

their deployment in the actual business environment. During Run-Time Governance,
policies are defined and enforced in order to govern the deployment, execution, and
use of the Web services. Eventually, Web services are supposed to be redesigned and
reimplemented in order to adapt to business evolving requirements. Change-Time Gov-
ernance focuses on how the changes on the services affect the behavior of a whole SOA
environment.

There are three steps that define SOA Governance management [webMethods
2006]:

e Design-Time Governance: definition and application of policies that will govern
the definition and implementation of Web services in the organisation, prior to
their deployment in the actual business environment.

e Run-Time Governance: definition and enforcement of policies that will govern
the deployment, execution, and use of the Web services.

e Change-Time Governance: Web services are supposed to be redesigned and reim-
plemented in order to adapt to business evolving requirements. This type of gov-
ernance focuses on how the changes on the services affect the behavior of a whole
SOA environment.

The approach currently used in SOA Governance management is based on adding
additional Web services in the SOA environment. The main components are: a registry
(a central catalog for business services), a repository (a database of governance policies
and metadata), policy enforcement points (services responsible for the enactment of
the policies), a rule engine (automatic system that manages the enforcement of the
policies), and a configuration environment (user interface for the configuration and
definition of policies and governance workflows).

The company webMethods (a subsidiary of Software AG) defined in a white paper
[webMethods 2006] a basic classification of the components needed for a SOA gov-
ernance implantation, putting together methods found in the IT governance literature
and the constraints and properties of a SOA. The key components identified for a SOA
governance system are summarised in Figure 3.1 and described in the following sec-
tions.

The first requirement of SOA governance is architecture governance. Architecture
governance is necessary to ensure that SOA as architecture evolves by design and not
by accident. To the extent that it mirrors governance requirements in other areas of
IT architecture, SOA architecture governance practices can be adapted from existing
organisational architecture processes.

These include:

e Establishing organisational technology standards.

e Defining the high-level SOA architecture and topology, as well as the infrastruc-
ture capabilities that the SOA should incorporate.

e Determining the SOA platform strategy and making decisions about particular
third-party products and technologies.

3.2. Governance 33

ﬁ o i

Uiz Design Time RunTime ChangeTime
Management
Policy R
Configuration Cesigriline
Policies Governance Rules Engine
Policy
Enforcement Registry Repositary Message Transport Management System

Paints

Figure 3.1: Key components of a SOA governance system
'Y

e Specifying the management, operations, and quality-of-service characteristics of
the SOA, such as security, reliability, and availability.

e Establishing criteria for SOA project design reviews.

In addition, a key aspect of SOA architecture governance is defining a roadmap
that will guide a smooth and thoroughful evolution of the architecture over time. The
majority of organisational SOA strategies will involve overlaying and transforming the
existing systems architecture in stages, rather than a whole replacement of the current
infrastructure. Governance is needed to ensure that decisions made along the way align
in a consistent direction and maintain the coherency of the SOA architecture.

3.2.2.1 Service lifecycle governance

A fundamental point in SOA [Erl 2004] is that it involves the creation of discrete, well-
defined services that exist not only as building blocks of larger systems and applications,
but more importantly as independent entities. As opposed to previous paradigms, SOA
exposes standalone application functionality at a fine-grained level of granularity. A a
new form of governance is therefore needed: service-level lifecycle governance.

Service-level governance applies at the level of individual services and covers a wide
range of requirements and situations. A useful approach to categorise the scope of ac-
tivities associated with service-level governance is to consider the lifecycle of a service:
beginning with its design, to its use in a run-time environment, to ongoing manage-
ment and change of the service, as well as the people who have responsibilities in the
governance of these services.

Design-Time Governance. Design-time governance is primarily an IT development func-
tion that involves the application of rules for governing the definition and creation of

34 Chapter 3. Normative systems and governance

Web services. Policies might include ensuring that services are technically correct and
valid, and that they conform to relevant organisational and industry standards. Exam-
ples of this type of validation might include checking that a service is compliant with
the Web Services Interoperability (WS-I) profiles [Nezhad et al. 2006]: usage guide-
lines that ensure Web services implemented on different platforms are interoperable,
by automatically verifying service schemas, validating namespaces, and other controls.

If an organisation has a SOA governance infrastructure in place, in the form of soft-
ware that facilitates the implementation of SOA governance practices, these checks can
be invoked automatically when developers check services into a registry. In addition,
approval and notification workflows can be triggered by a governance-enabled registry
to ensure that services pass through pre-defined review and approval steps so that they
meet architectural and organisational standards for business function encapsulation,
reusability, reliability, and so on. By ensuring that these reviews are performed by ap-
propriate members of the organisation, it becomes possible to manage the quality and
coherency of the service scenario effectively.

Key issues to consider include:

e Determining the fitness of a service, where fit is a function of the functionality
that is encapsulated, the likelihood of reuse, and the importance of the service
within the overall portfolio of services.

¢ Identifying which services to build against the previously existing organisational
requirements.

e Ensuring the strategic design of services and validating that their interfaces and
implementation conform to established design patterns and other organisational
standards and practices.

e Establishing the governance standards to which different categories of services
will be held, understanding that different levels of governance will be appropriate
for different classes of services. Internal-use vs. services exposed to business
partners, for example.

Other capabilities of design-time governance include fine-grained access control
over assets in the registry, so that only authorised users are able to publish, search,
and view services. In addition, the ability to label services and classify providers and
consumers makes it possible to have some services visible to certain classes of ser-
vice consumers and not others, a feature that is particularly important for partitioning
access in a shared services model.

Run-Time Governance. Run-time governance is primarily of interest to IT operations.
Governance at run-time revolves around the definition and enforcement of policies for
controlling the deployment, utilization, and operation of deployed services. These run-
time policies typically relate to non-functional requirements such as trust enablement,
quality-of-service management, and compliance validation.

Examples of run-time governance include:

3.2. Governance 35

e Checking a service against a set of rules before it is deployed into production, for
example, to ensure that only a certain message transport or specific schemas are
used.

e Securing services so that they are accessible only to authorised consumers pos-
sessing the appropriate permissions, and that data is encrypted if required.

e Validating that services operate in compliance with prescribed organisational
standards, in effect, to confirm that a service is not just designed to be compliant,
but that its implementation is actually compliant.

A more specific case of run-time governance involves service-level monitoring and
reporting. In order for the run-time SOA infrastructure to assess whether a given ser-
vice is performing at the required level for a given consumer, in terms of response time,
throughput, and availability, it is necessary to have an explicitly defined service level
agreement between the service consumer and provider. SLAs can be expressed in terms
of service contracts between consumer-provider pairs, and they establish the reference
points for compliance monitoring and reporting by the SOA run-time environment.
By tracking the actual performance of a service and comparing it to the requirements
specified in the SLA, the system can identify non-compliant services and prompt reme-
dial actions. For example, automatically instantiating another instance of the service
to improve load-balancing or alerting IT managers.

Change-Time Governance. Change is inevitable and, at some point, services deployed
in the run-time environment will have to be changed to adapt to new requirements.
Since the majority of services will be designed once and then modified several times
over their lifetime, change-time governance, or in other words, the act of managing
services through the cycle of change, is arguably more important in the long term than
design-time governance.

Change-time governance requirements and considerations include:

e Understanding inter-service relationships and dependencies.

e Performing impact analysis to determine the implications of changing a particular
service within the run-time environment.

e Managing the redeployment of services into the existing run-time environment.

e Managing service replacement through the design, coding, testing, and deploy-
ment stages.

e Managing changes to existing policies and service level agreements.

An important aspect of change-time governance is involvement of the organisa-
tional goals. This need arises from the fact that services exist to support organisational
functions as well as the inter-organisational relationships and dependencies that are
implicit in SOA, particularly when services are exposed and invoked across organisa-
tional boundaries. Since changes are generally initiated and driven by the requirements,
users need to be participants in the governance lifecycle.

36 Chapter 3. Normative systems and governance

3.2.3 Technologies for SOA governance

If we follow the requirements structure, a SOA governance system should facilitate
service-level governance across the lifecycle from design-time to run-time to change-
time. It should allow polices to be defined and created, and provide mechanisms for
these policies to be enforced at each phase of the service lifecycle. The main compo-
nents of this system include:

o A registry, which acts as a central catalog of services.

A repository, for storing policies and other metadata related to the governance of
the services.

Policy enforcement points, which are the agents that enact the actual policy enforce-
ment and control at design-time, run-time, and change-time.

A rule engine for managing the declaration of policies and rules and automating
their enforcement.

e An environment for configuring and defining policies and for managing governance
workflows across the service lifecycle.

3.2.3.1 Registry

A registry is usually identified as one of the first requirements of SOA adoption and

registries play an important role in governance. In simple terms, a registry [Clement

2005] is a catalog or index that acts as the system of record for the services within a SOA. A

registry is not designed to store the services themselves, but indicates their location by

reference. Having a centralised catalog of services is significant from an organisational

perspective because it enables the easy discovery, reuse, and management of services.
A SOA registry typically fulfills the following functions:

e Stores service descriptions, information about their endpoints and other technical
details that a consumer requires in order to invoke the service, such as protocol
bindings and message formats.

o Allows services to be categorised and organised.

e Allows users to publish new services into the registry and to browse and search
for existing services.

e Maintains service history, allowing users to see when a service was published or
changed.

As the place where services are made known within the SOA, a registry is also a
natural management and governance point. For example, compliance requirements,
such as conformance with the WS-I Basic Profile or the use of specific namespaces and
schemas, might be imposed on services before they are allowed to be published in the
registry. Or, as services are registered or changed, the registry also has the ability to
trigger approval and change notification workflows so that people involved are alerted
to changes. As such, a robust registry is an important component of any SOA gover-
nance solution.

3.2. Governance 37

Another important factor is the interoperability of the registry with other compo-
nents of the SOA infrastructure. OASIS provides a platform-independent standard for
registry interoperability known as UDDI (Universal Description, Discovery, and Inte-
gration). UDDI [Bellwood 2001] defines a Web services-based programming interface
that allows different consumer applications, tools, and run-time systems to query the
registry, discover services, and interact as required to provide management and gov-
ernance capabilities. While it is not a pre-requisite for a SOA registry to be based on
UDD], it is the most commonly adopted standard and ensures the greatest degree of
compatibility with other products in the environment.

3.2.3.2 Repository

While the registry plays a central role in policy enforcement, the registry itself does
not provide sufficient context for the whole set of SOA governance requirements. For
example, policies, in the form of rules and restrictions that are enforced on services,
and consumer/provider service level agreements are generally not constructs that are
stored in a registry. Thus another data store, usually referred to as a repository, is
needed for storing governance-related artifacts and supporting the full complexity of
managing service metadata throughout the service life cycle. The term repository is used
in many different contexts, but in the context of SOA governance, the repository can
be thought of as a centrally-managed policy store.

Among other things, a governance repository should support the following capabil-

ities:

e An ontology for representing and storing organisational and regulatory policies
that can be translated into rules that are enforced by the SOA governance sys-
tem. It should be possible for policies and rules to be interpreted by people or
machines, and sometimes both, as appropriate.

e Audit capabilities for tracking the trail of changes and authorizations applied to
assets within the repository context.

¢ Identity management capabilities and role-based access controls to ensure that
only appropriate parties have access to policies.

e A notification system and content validation capabilities to provide additional
assurances that policies are well-formed, consistent, and properly applied.

The requirement for a logically centralised repository is particularly important for
codifying and enforcing a single official set of policies across the organisation. How-
ever, the actual repository itself may have a federated architecture for scalability and to
enable the use of the repository across different geographic regions, multiple lifecycle
instantiations, and cross-organisational boundaries.

3.2.3.3 Policy Enforcement Points

The places where policies are actually applied and enforced, the policy enforcement
points, change depending on the lifecycle stage. During design-time, the registry and

38 Chapter 3. Normative systems and governance

the repository form together the main point of enforcement’. During run-time, poli-
cies are generally enforced by the underlying message transport system that connects
service providers with consumers. Finally, during change-time, policies are typically
enforced by the IT management system.

Design-Time Enforcement: Registry and Repository. ~Since the registry/repository is the sys-
tem of record for both service interfaces as well as attributes and metadata associated
with them, it provides a logical point at which to enforce policies about the design of
these particular artifacts. Design-time policies are typically applied as artifacts, which
could include WSDL files, schema definitions, process models, and project documen-
tation. They are checked into the registry/repository.

The following features are desirable in the design-time policy enforcement point:

e Identity management: in order to establish rights and responsibility in the reg-
istry/repository it is first necessary to identify users, service consumers, and other
participants. Identity is also important for metering usage, logging for audit pur-
poses, and applying approval requirements and other governance processes on an
individual or role basis.

e Access control: coupled with identity management, the system should offer fine-
grained access configurations over all aspects of registry/repository assets. This
includes the ability to secure policies, governance processes, and classifications.

o Automated notifications and approvals: the ability to trigger events in response to
management activities in the registry/repository allows alerts, approval pro-
cesses, content validation scans, and other actions to be automated. These trig-
gers might be applied either before or after the interaction in question. For exam-
ple, a policy might be established that a design review approval is needed before
an object is created in the registry/repository.

e Content validation: content should be scanned and validated according to their
type and pre-configured compliance checks. Common validations include WSDL
validation, XML schema validation, testing for namespace violations, schema val-
idation, and other interoperability-related scans. For example, service consumers
expect interfaces to be well-formed and interoperable, so the registry/repository
should automate the process of scanning and assuring that WSDL documents are
well-formed and conformable with WS-I interoperability profiles.

e Audit trails: a fundamental capability for establishing accountability is the ability
to track interactions between participants and the registry/repository, along with
the sequence and details of those activities. This record can be used for gover-
nance enforcement after the fact and to establish usage patterns for guiding process
improvements.

SThe white paper strongly suggests that the registry and the repository are to be implemented in the
same software unit, as they should maintain a consistent view of service definitions, service versions,
consumer and user identities, and other information. See [webMethods 2006].

3.2. Governance 39

Run-Time Enforcement: Message Transport. Run-time policy enforcement relies on a SOA
infrastructure that is able to exercise policy enforcement in a way that is transpar-
ent to, and independent of, the service providers and consumers. This is achieved
through an agent or intermediary that resides between provider and consumer and a
registry/repository that addresses both the needs of run-time service discovery as well
as policy enforcement.

The intermediary interacts with the registry/repository to find services and their
run-time policies and enforces the policies during the execution of the service. In a
SOA, the run-time system is typically a message transport or mediation layer [Schmidt
et al. 2005]. The message transport brokers transactions between service provider and
service consumer and frequently offers additional functions such as data transforma-
tion, message queuing, reliable messaging, and other operational capabilities.

Without SOA, the ability to control and manage applications in this manner is re-
stricted both by the scope and the capabilities of the underlying platform. When dif-
ferent applications are integrated, it is generally infeasible to apply a common policy
context to the integrated result. A typical challenge is enforcing access security when
two applications with different user communities are integrated. With the intermedia-
tion provided by the message transport, it becomes possible for a distributed network
of services to share a common policy-managed context.

Since run-time policies are typically applied to messages that flow across the mes-
sage transport system, the types and level of sophistication of run-time policies that
can be defined and enforced depend on the capabilities of the underlying intermediary.
Desirable areas of policy configuration include the following:

o Consumer identification and security: identifying consumer applications to prevent
unauthorised access to services; configuring the security of services at run-time
and enforcing policies such as encryption, digital signatures, and logging for trac-
ing and tracking.

e Routing rules: configuring run-time routing rules to address performance, version
management, and other operational requirements. Variations include content-
based routing, version-based routing, and preferential quality-of-service routing.

e Transformation rules: translating between different message transports and tech-
nology protocols to facilitate application connectivity, or transforming data be-
tween consumer and provider.

o Service Level Agreement (SLA) management: policies for managing performance and
availability to match the requirements of an SLA, for example, routing a request
to a backup service in the event of a failure of the primary service provider, or
balancing the request load across additional back-end service to improve perfor-
mance.

e Logging, monitoring, and alerting: collecting service-level data and establishing rules
based on aggregate counters for response time, throughput, errors, and other
transaction data so that alerts can be generated when there are violations to pre-
defined SLAs.

40 Chapter 3. Normative systems and governance

Finally, while the intermediary and registry/repository are logically decoupled, a
dependency exists to the extent that the intermediary has to understand and interpret
the policies defined in the registry/repository. As such, it is advantageous to have a
message transport system and registry/repository that are interoperable out of the box.
Otherwise, this is an integration issue that the implementer has to address.

Change-Time Enforcement: IT Management System. Change-time enforcement relies to a
greater extent on IT change management practices and procedures than on enforced
control points. Unlike previous software paradigms where an application package en-
ters a support or maintenance phase once put into production, SOA involves a dynamic
network of interdependent services that are in an ongoing state of adaptation and op-
timization. Since services, transactions, and SOA events of interest can be monitored
by the IT management system, it is a logical source of run-time information that can
be fed back into the registry/repository to facilitate the orderly evolution of the SOA
environment.
This information might include:

e SLA-related metrics, such as the average response time, availability, or through-
put of a specific service.

e Process-related metrics in the form of Key Performance Indicators (KPIs), which
associate services with user-defined business process metrics (e.g., average order
amount).

e Activity monitoring, alerting, and notification events related to business-level ex-
ceptions.

Information such as this can be used to optimise service delivery during the change-
time cycle by guiding adjustments in policies, service levels, or in the services them-
selves. Changes to services will require the change-time governance practices described
earlier to be put into effect, for example, performing an impact analysis to assess the
implications of changing a service and dealing with the resulting version management
issues.

As with integration between the message transport and the registry/repository, it is
beneficial to have out-the-box linkages between the registry/repository and the man-
agement system so that data flows seamlessly between the two without the need for
additional integration.

3.2.3.4 Governance rules engine

A rules engine is not strictly a requirement of a SOA governance system, but incor-
porating rules engine technology within the registry/repository enables a significant
degree of flexibility and automation, while reducing the reliance on humans to per-
form mechanical governance tasks.

Rules are typically associated with events, while the rules engine handles the firing
and chaining of rules. The rules engine could automate the process of setting and reset-
ting access control switches at lifecycle milestones such as when a service is promoted

3.3. Summary of this chapter 41

from development into testing or production. A rules engine also provides the basis
for creating complex policies based on reusable templates.

In addition to automating governance tasks, the rules engine can also help to deal
with policy federation [Menzel et al. 2007], or the ability to allow multiple policy au-
thors and authorities. This is an important use case for SOA adoption where governance
policies might not be authored and controlled by a single department or organisation.
A more robust model, which is the basis for policy federation, is to enable both cen-
tralised as well as distributed policy creation. Policy federation requires the establish-
ment of guidelines and rules for reconciling policies that come into conflict, and the
rules engine assists in the execution of these rules.

3.2.3.5 Lifecycle Management

The final key ingredient of a SOA governance system is the user environment that
presents the human interface to the registry/repository and which incorporates the
governance lifecycle processes and workflows. Typically, the process workflow includes
the following steps:

Publishing of a service by an authorised provider.

Discovery of a service by a potential consumer.

Requesting use of the service by the consumer.

Agreeing on the terms of delivery of the service.

Authorizing the consumer.

Provisioning of the service.
e Monitoring of the service delivery.

Related to each of these steps, organisations might define approval and notification
workflows, exception alerts, and a variety of other process steps.

3.3 SUMMARY OF THIS CHAPTER

In this chapter, we have seen how the problem of the need for control in distributed has
been tackled from two different research perspectives. The first one, taking theoretical
frameworks from Economics (Institutional Theory) and Philosophy as foundations, in
order to provide logically sound and formally comparable solutions. The second one,
created as sets of requirements in a pragmatic way from actual experience.

An immediate conclusion we can extract is that they are two completely different
abstractions, but that if we are to combine high-level coordination mechanisms and
distributed systems there are compromises to be made. Our contribution will be to
leverage both points of view by applying the institutional abstraction to practical sys-
tems in a way that can be reduced to governance architectures.

To do so, we will need a proper language to specify norms, based on the proposals
studied in Chapter 2, to allow individuals in distributed systems to understand, rea-
son about, and communicate about high-level constraints. We will also need to create

42 Chapter 3. Normative systems and governance

transformations of such language to operational semantics that reduce the complexity
of their interpretation. Finally, we will need to make this reduction computable.

PART I1I

PRACTICAL REDUCTIONS

CHAPTER

The challenge

The bottom line is that simplicity is a choice. It’s
your fault if you don’t have a simple system.

Simple Made Easy
RicH HicKEY

As seen in previous chapters, monitoring is one of the important points of abstraction
for e-institutions to be deployed and integrated in SOA. Monitoring, in its traditional
meaning in Software Engineering, refers to the provision of information, usually by
sensors, about the system’s environment, in order to take actions depending on the
result of some processing done to this information [Sommerville 2006]. In other words,
monitoring is based on the logging, keeping, and interpretation of messages sent by
components of the software system.

There are many monitoring mechanisms available in most of the service deployment
platforms which cover this need. However, with the growth in the complexity of the
platforms based on interacting computational components, it has been shown that this
definition of monitoring is not enough to deal with common problems in distributed
scenarios [Groth, Luck, and Moreau 2004; Matyska et al. 2007].

That is also the case of e-institutions, where the simple logging of messages, not
explicitly linked to each other, is not enough. A norm enforcement mechanism needs
more information about the distributed scenario, e.g. the actual relationship between
interactions, which occur at different points in time and thus are apparently not related
to each other, but are in fact parts of a complex transaction.

4.1 SOLVING THE DRAWBACKS OF SERVICE-LEVEL AGREEMENTS

We have pointed out in Section 2.2.3 the flaws that the Service-Level Agreements (SLA)
in SOA initiatives have, especially related to the lack of expressiveness allowed: in
general, the available SLA approaches focus on monitoring simple metrics rather than

45

46 Chapter 4. The challenge

enabling high levels of expressitivity. Although in some cases there is the possibility
of adding declarative abstractions in the form of simple rules, there is still a lack of
solutions that offer the declaration of constraints via modal or deontic expressions.

With the increasing growth in the complexity of tasks and responsibilities of dis-
tributed systems as seen in Chapter 1 and especially in Section 1.3, specifying interaction
contraints is also progressively more difficult to manage. Additionally, these constraints
are (still) a product of stakeholders — designers, developers, users —, rather than being
produced automatically by computers. The numerous attempts, as summarised in Sec-
tion 2.2.3, to raise expressivity and therefore cope with this complexity are proof that
there is a need to bring the design of such constraints closer to the way humans think
of, write and understand norms. This is not possible to accomplish with simple rules
[Grangard et al. 2001].

The drawbacks described have been the ones especially relevant for introducing an
e-institution-based norm enforcement mechanism in SOA. However, the concept of
SLA, if properly implemented, would be attractive for our purpose. As we noted in
Section 3.1, institutions are created by specifying a set of norms that the members of the
organization should fulfill. Therefore, in principle we should be able to build institu-
tions by using something more generic than SLA. In fact, SLAs are just specifications
of contracts, however somewhat limited as we have seen.

In our previous work, one notable attempt to fill this gap was by using Provenance
architectures! [Vazquez-Salceda and Alvarez-Napagao 2009], which in the context of IT
allow capturing causal relationships between events produced by actors of distributed
systems, with annotated semantics, while providing a framework for reasoning about
complex distributed processes as a structured graph. Therefore, rather than focusing
on storing interactions and message exchanges in a free format, using provenance al-
lowed us to not only store internal states of actors but also the relationship between
these interactions, and the temporal or causal relationship between states with interac-
tions or other states. Provenance handling effectively enables interpretable monitoring
of loosely-coupled distributed complex processes, and we took advantage of this in or-
der to build a real-time verification system for compliance of complex rules translated
from regulations and protocols. However, provenance-based systems require both a
deep knowledge of the domain and the use of an event model tighly coupled to the
Open Provenance Specification [Moreau et al. 2008]. In this thesis we focus on achiev-
ing the same level of compliance checking and expressivity whilst achieving greater
flexibility, and as analysed in the state of the art (see Section 3.1), normative systems
are a candidate to provide both.

In open societies, where heterogeneous agents are self-governed autonomous enti-
ties pursuing their own goals, it is a challenge to provide mechanisms to ensure that
the system as a whole behaves as expected without undermining agents’ autonomy. An
approach widely explored in literature is to add a social layer describing and governing

'Provenance architectures allow storing and querying provenance, where the provenance of a data
item is represented in a computer system by a set of assertions made by the actors involved in the process
that created it.

4.2. Filling the gaps on normative systems 47

the actors’ expected behaviour in order to produce desirable — and avoid undesirable —
situations. In such models, goals and interactions are usually not specified in terms of
the mental states of individual agents, but in terms of social or organisational concepts
such as roles — function, position —, groups — communities —, norms — regulations, poli-
cies — and communication protocols - including ontologies. In these cases, agents are
seen as actors that perform the role(s) described by the social/organisational design.
In short, Normative Systems are a socially-inspired approach for the governance of dis-
tributed, agent-oriented systems, where the expected behaviour of agents is described
by means of an explicit specification of norms.

As such, there are many works (see Section Section 3.1) in literature that explore
the use of normative specifications to define the acceptable behaviour of a set of agents
- including services - in a given environment. Norms such as regulative rules pro-
vide a way to introduce flexibility in the specification of desired actor behaviour in a
shared context, as they typically specify the boundaries of what is acceptable, but not
how exactly to behave. However, regulative rules do not entail any value of truth but
instead express the mere existence of a norm. Norms have indeed been studied from
multiple perspectives, but while formalizations tend to be disconnected from possible
implementations due to the lack of differentiation between abstract norm and norm in-
stantiation, on the other hand implementations tend to be weak groundings of deontic
logics, tightly coupled to one particular implementation domain. In this dissertation,
we build upon previous work to fill these gaps by reducing from deontic statements
to structural operational semantics, with intermediate steps in linear temporal logics.
Finally we hint at the feasibility of the translation of these semantics to actual imple-
mentation languages in different domains.

4.2 FILLING THE GAPS ON NORMATIVE SYSTEMS

There is a lot of work on normative systems’ formalization (mainly focused in Deontic-
like formalisms [Wright 1951]) which is declarative in nature, focused on the expressive-
ness of the norms [Dignum et al. 2004], the definition of formal semantics [Aldewereld
et al. 2005; Boella and Torre 2004; Garcia-Camino et al. 2006; Oren et al. 2009] and the
verification of consistency of a given set [Governatori and Rotolo 2010; Lomuscio, Qu,
and Raimondi 2009].

There are some works that focus on norm compliance and norm monitoring
[Agotnes, Hoek, and Wooldridge 2010; Alvarez-Napagao et al. 2011; Criado et al. 2010;
Garcia-Camino et al. 2006; Governatori and Rotolo 2010; Oren et al. 2009] with varying
degrees of covered abstraction level and allowed flexibility. Also there is some work on
how agents might take norms into account when reasoning [Aldewereld et al. 2005;
Kollingbaum 2005; Lépez, Luck, and d’Inverno 2004; Meneguzzi and Luck 2009; Pana-
giotidi and Vazquez-Salceda 2011], but few practical implementations exist that cover
the full BDI cycle, as many approaches do not include the means-ends reasoning step (that
is, dedicing HOW to achieve WHAT the agent is aiming for).

48 Chapter 4. The challenge

Most of these approaches focus on regulative norms rather than on substantive
norms, and lack a proper implementation of the ontological connection between brute
events and institutional facts.

Therefore, it is not uncommon in some scenarios, i.e., when building a norm-aware
multi-agent system, to implement normative reasoning from several points of view at
the same time. For instance, in a system with institutional-level norm enforcement,
there is normative reasoning at — a minimum of — two levels: the institutional compli-
ance and the individual agent reasoning. In such scenarios, the following are relevant
issues that should be taken into consideration:

1. There is a need to formally connect the deontic aspects of norms with their oper-
ationalisation, preserving the former.

2. From a practical point of view, abstract norms have to be distinguished from their
actual instantiations. For each abstract norm, many instantiatons may happen
during the norm’s lifetime.

3. Ideally, the operational semantics should be formalised in a way that ensures flex-
ibility in their translation to actual implementations while ensuring unambigu-
ous interpretations of the norms. For instance, the semantics used by a society
compliance mechanism, and the semantics integrated in the reasoning cycle of its
individual agents, must be aligned to avoid, e.g., the agent norm reasoning mech-
anism stating that no norm has been violated while the compliance mechanism
states that the agent has violated some norm instance.

Some works in the literature present solutions that tackle these issues separately
(e.g. recent works such as [Meneguzzi et al. 2015] tackle 1. and 2.), but it is hard to find
a proposal that manages to fill the gap left by these three issues at the same time. In
this document, we present a proposal that combines ideas from many pieces of work,
coming from different formalizations while using [Oren et al. 2009] semantics as a
foundation, in order to achieve a deontic-based norm definition with a direct reduc-
tion to temporal logics which, in turn, can be translated into rule-based operational
semantics.

4.3 OUR PROPOSAL

We present a computable language, a formalism for the monitoring of both regula-
tive (deontic) and substantive (constitutive) norms based on Structural Operational
Semantics, its reduction to Production Systems semantics and our current implemen-
tation compliant to these semantics.

To ensure that the formalism used by the normative monitor is also compatible
with an agents’ practical reasoning, the work presented in this document is built upon
the combination of work previously done separately in [Alvarez-Napagao et al. 2013;
Panagiotidi and Vazquez-Salceda 2011] to have a unified normative framework with
two different implementation perspectives: planning and monitoring.

4.3. Our proposal 49

The rest of this Part II contains the materialisation of this proposal. In Chapter s,
we present our language of norms for services and agents. We then present the oper-
ational semantics for this language in Chapter 6, and finally we present our normative
monitor, along with the reduction to production systems and a implementation of it,
in Chapter 7.

CHAPTER

Towards a lightweight
language for norms

‘Mind you, I don’t object to foreigners speaking a
foreign language. I just wish they’d all speak the
same foreign language.’

Avanti!
BiLLy WILDER

As mentioned in Section 2.1, in order to interpret part of their social reality, agents in a
socio-technical system need ways to be able to track the status of all the social norms
that may apply to them and to the behaviours of other actors that may affect them
(directly or indirectly). From a computational perspective, the first foundational ele-
ment needed for an effective and efficient monitoring of high-level norms in distributed
systems — both agent-oriented and service-oriented systems — is a proper language to
describe such norms in a declarative way. The following is a summary of the require-
ments that such a language such have:

e The language should be compact and lightweight. Norms expressed in the lan-
guage should have the minimum number of elements possible, as they are going
to affect the size of the payload in the communications inside a distributed sys-
tem.

e The language should have a formal grounding, linked to the literature on the
topic of normativity. The research on this field has implications on a broad range
of areas of knowledge: logics, philosophy, sociology, economics. A language that
tackles directly the concept of norm should allow any derived work to be put into
context from a formal perspective in order to be used or applied by the related
areas of knowledge.

51

52 Chapter 5. Towards a lightweight language for norms

e The language should incorporate not only the concept of regulative norm but also
the concept of constitutive rules (counts-as rules, see Section 2.1). Not only the
behavioural constraints themselves are relevant, but also the ontological trans-
formation rules from brute facts to institutional events.

e The language should enable dealing with meta-concepts from the domain of nor-
mative contexts, e.g. norm, obligation, prohibition, etc. This would enable rea-
soning at the level of the norms, beyond the domain and the predicates used in
the constraints themselves.

e The language should allow for an efficient operationalisation. That is, any derived
execution framework for the detection of normative states based on the language
should be computable in efficient time/space.

Some SLA languages deal with the first requirement, but in general none of the
other requirements are tackled by them. In this Chapter we present a language that
fulfills these requirements. In order to do so, we take an incremental approach, showing
a first language we built especifically for contracts in SOA without proper counts-as
rules, trying to tackle directly the issues of SLAs; and the extensions done afterwards
for adding constitutive rules and generalising the approach for distributed systems in
general and multi-agent systems in particular.

5.1 A LANGUAGE FOR CONTRACT REPRESENTATION

A contract [Simpson and Weiner 2003] is a written or spoken agreement that is in-
tended to be enforceable. This agreement contains a set of clauses to be enforced. Each
clause can be seen as a norm, so at the moment that it is signed by the parties, there is
an institution created. This approach has already been explored by Dellarocas with the
concept of Contractual Agent Societies [Dellarocas 2000].

We can then informally define a contractual electronic institution as an electronic insti-
tution which has been created at the time when an electronic contract has been signed
by its parties. The members of the institution are these parties, and the norms to be
enforced by the institution are the clauses of the contract.

In order to have a norm monitoring mechanism in SOA based on contractual elec-
tronic institutions, we will need a formalism to model contextual norms, in the form of
electronic contracts, that avoids the problems SLA formalisms suffer from in this sub-
ject. Also, we will need a framework that allows for services that can create, manage,
and enforce contracts, that is, for the creation of contractual electronic institutions.

Our research done in this field took place in these two directions, in the scope of
the IST-CONTRACT project!, where we propose a move to a more flexible contracting
mechanism for Service Oriented Systems based on the following three main elements:

'The IST-CONTRACT Project was a project (FP6-034418) funded under the 6th Framework Pro-
gramme of the European Commission. The Contracting Language presented in Section 5.1 was developed
during the project lifetime.

5.1. A language for contract representation 53

e The introduction of intentional semantics within the communication between ser-
vices (based on the use of performatives such as request, inform, or commit).
This is important as it re-enforces the link of actual and intended behavior.

e The creation of a contracting language able not only to express a set of intended
behaviors on which parties agree but also to define the way that contracts and
contract-related events are negotiated and communicated.

e The creation of higher-level behavioral control mechanisms, centered not on the track-
ing of a limited set of metric values but on the monitoring of higher-level objects
such as commitments, obligations and violations which can be extracted from the
communication semantics.

The combination of these three elements makes it possible to monitor the behavior
of a set of actors by keeping track of the fulfillment of the agreements between them.

This section presents the definition of a contracting language which can be used not
only to specify agreed behavior in service-oriented architectures but also for agent-
mediated systems. The language is based on deontic notions such as obligations, per-
missions and prohibitions. The language not only covers the contract document itself
but several layers of communication, including the messages and the protocols for con-
tract handling.

In Section 5.1.1 we describe the conceptual layers of our contracting language. Sec-
tion 5.1.2 analyses the important elements of the contract representation model. Sec-
tion 5.1.3 explains how messaging and communication are achieved between the con-
tracting parties.

As an example, we will adopt one of the use cases produced during the IST-
CONTRACT, consisting in a web-service system enabling agreements between several
parties (insurance companies, repair companies, and a third kind of party called Damage
Secure which acts as a broker between the former) in a car insurance scenario. In this
scenario, insurance companies file repair requests and Damage Secure, as an intermedi-
ary, is responsible for finding the best possible repair company for the job2.

5.1.1 Layers/Elements of the Contracting Language

This contracting language® aims to define the way agents can exchange information
during contract establishment, contract execution and contract termination. During
these phases, agents may exchange not only information about the contracts them-
selves, but also about any related event, predicate or action that may be related to such
contracts. Therefore it needs to define the communication structures required to flexi-
bly exchange information about parties, processes, world states, ontological definitions
and so on.

*For a more detailed description of this use case, see [Panagiotidi et al. 2008].

3My contribution to the work presented in this section was twofold: leading the analysis of the state
of the art on existing contracting languages, identifying the required layers and elements, and a strong
and continuous involvement in the design process of the contracting layers. These contributions were
made along with Sofia Panagiotidi, Roberto Confalonieri, Javier Vazquez-Salceda and Steven Willmott.

54

Chapter 5. Towards a lightweight language for norms

The contracting language separates concerns between different layers of communi-
cation:

1.

The Domain Ontology Layer, containing the domain ontology: terms, predicates and
actions (e.g. car, workshop, repair), to unify definitions used between parties and
avoid ambiguity or misunderstanding.

. The Contract Layer, defining constraints in the form of clauses: deontic statements

about the parties’ obligations, permissions and prohibitions. The basic elements
of such statements are any predicate or action defined in the Domain Ontology
(e.g. the workshop is obliged to repair the car in 2 days).

. The Message Content Layer, defining what can be contained inside messages com-

municated between parties. This includes meta-predicates at a normative level,
such as statements about contracts (e.g. active/inactive, fulfilled, complete/incom-
plete), actions about contracts (e.g accept, sign, cancel a contract), as well as state-
ments and actions about concepts from the Domain Ontology.

. The Message Layer, describing how agents can model their performative attitudes

towards the contents of the messages (e.g. an agent proposes to sign contract Ci,
or an agent requests cancellation of a contract C2). Taking Speech Act Theory as
a basis, these attitudes are expressed by means of a standard set of pre-defined
performatives which (similarly to FIPA ACL[Agents 2002a]) are included as part
of the message envelope.

. The Interaction Protocol Layer, allowing sequences of messages between agents to be

specified by means of contracting protocols. These protocols structure interaction
by defining sets of acceptable sequences of messages which would fulfil the goal
state of the protocol (e.g. agreeing on contract termination).

. The Context Layer, representing the interaction context where contractual parties

will carry out the obligations, permissions and prohibitions agreed in the contract.

Apart from these horizontal layers, there is a vertical dimension that appears at all
layers: the ontological dimension. This dimension defines all terms that are needed for
each layer. In this approach there are basically two types of ontologies:

e Domain ontologies are central elements in the framework, as they semantically con-

nect references to the same entities and objects made at different layers. These
ontologies also ensure that the same definition for actions and predicates is con-
sistently used, avoiding interpretation errors. This last aspect is specially relevant
in contracts, as all parties should have the same understanding about the agreed
terms in the contract. These define the terms, actions, predicates and relation-
ships needed for communication in a given domain. For instance, in the case of a
car insurance application, there will be one or several ontologies defining:

- terms such as car, insurance, damage;
— actions such as repair; and
- predicates such as repaired.

s5.1. A language for contract representation 55

Domain - % Q\Jﬁ !
Ontology
vicssapENcontenIsayer

Contract Layer

IDomain Ontology [Layer

Figure 5.1: General view of the Contracting Framework
Y

e The Contractual Ontology: an ontology that predefines all the terms, predicates and
actions that are used by the framework, independently of the application domain.
This ontology defines:

— terms such as contract, party, obligation, action, commitment or violation;
— actions such as creating a contract, committing to a contract; and
- predicates such as fulfilled or cancelled.

5.1.2 Contract representation

The Contract Data Model is an XML based representation suitable to represent both
fully defined contracts or contract templates (partially defined contracts)*. It is com-
posed by a name, starting and ending dates and three main parts: contextualization,
definitions and clauses. Figure 5.3 depicts this structure, following the WC3 standard
XML Schema Definition. A summary of the semantics of the visual elements used in
the diagrams can be found at Figure s5.2.

The name of a contract has to be unique inside the context it is being declared
in (a contract is uniquely identified by a combination of the context namespace and
the contract name). The starting and ending dates of the contract express the valid
time period of the contract. Ending date is optional (contracts without end date are

*My contribution to the work presented in this section was twofold: leading the research work on
the state of the art the language was built upon and a strong and continuous involvement in the design
process of the contracting language. These contributions were made along with Sofia Panagiotidi, Roberto
Confalonieri, Javier Vizquez-Salceda, Steven Willmott and Sandra Ortega-Martorell.

56 Chapter 5. Towards a lightweight language for norms

Icon Concept
{““““”"“"]® Dependency (another element)
Type istWorldModel
@| Root of the element
© @ attributes List of attributes
/-
O_ Sequence of elements (e.g. children)
L-
('_
@_ Enumeration (exclusive choice)
—
© [] IstAgent Imported namespace
o 1, formula—ruiebase.contemm Imported XML Schema
1% Cardinality

Figure 5.2: Visual elements for the XML Schema-based diagrams
»

allowed by leaving the ending date blank). The rest of the elements are described in
the following sections.

The contract can be contextualised by defining (see Figure 5.4): 1) a list of references
to parent contracts, the interaction contexts of which will be the parents of the context
created for this contract; and/or 2) a reference to the contract template, if there is any.

5.1.2.1 Definitions

The definitions part defines the parties of the contract, the roles they play, some optional
grouping of roles and the model of the domain (see Figure 5.5).

5.1. A language for contract representation 57

© attributes

ContractName

StartingDate
{ Type xs:dateTime

EndingDate

Type xs:dateTime @
| [] Contract IE}
Contextualization
Type ist Cuntexrualizarion}

Definitions
Type ist:Definitions

Clauses
Type ist:.ClauseList

Figure 5.3: Root elements of the Contract representation
Y

ParentContracts
Type ist:ContractList

(e o—@)o

ContractTemplate
Type ist:ContractTemplate

Figure s5.4: Contextualisation element in the Contract Language
n

§.1.2.2 Parties

The contract parties are the list of agents involved in the contract, that is, the set of agents
assigned to fulfil one or more clauses of the contract. In the contracting language, the
contract parties element has for each agent its name, a reference to this agent and
optionally a text description about this agent (see Figure 5.6).

Following is an excerpt of the contract document that models the parties:

58 Chapter 5. Towards a lightweight language for norms

WorldModel ®
Type istWorldModel
ContractParties ®
Type ist:ContractParties
ThirdParties ®
Type ist:ThirdParties

RoleEnactmentList ®
Type ist:RoleEnactmentList

Grouplist

(o Jo—@o

Type ist:GrouplList
ContractualOntology ®
Type ist:ContractualOntology

Figure s5.5: Contractual definitions element in the Contract
Language
=Y

@ [] istAgent

&) atiributes

AgentName
@
Type xsstring

" Agent
[} ContractParties G) LS © AgentReference
Type ist:Agent

Type xs:anyUR|

WiDLLocation
(@)o _ e
Type istWSDLLocation

AgentDescription
Type xs:string

Figure 5.6: Parties element in the Contract Language
=Y

<ContractParties>

<Agent AgentName="Feel Safe">
<AgentReference>feelsafe.com:8080/FS</AgentReference>
<AgentDescription>Car Insurances</AgentDescription>
</Agent>

<Agent AgentName="Damage Secure">
< AgentReference>damsec.org:8080/DS</AgentReference>
<AgentDescription>Service Broker</AgentDescription>
</Agent>

<Agent AgentName="Fast Fix">
<AgentReference>fastfix.com:8080/BR</AgentReference>
<AgentDescription>Bob’s Garage</AgentDescription>
</Agent>

</ContractParties>

5.1. A language for contract representation 59

5.1.2.3 Role Enactment List

The role enactment list element is used to assign roles to the agents (parties). The defini-
tion of roles is not common in existing contracting languages (such as WS-Agreement
or WSLA), which tend to use directly some kind of agent identifier to assign respon-
sibilities. In our approach roles are a very powerful mechanism that decouples the
definition of responsibilities from the specific agents that will have to fulfill them. This
decouplement allows to create contract templates which fully specify, e.g., the obliga-
tions of a repair company or a insurance company in an archetypical repair scenario
without specifying the exact agents enacting the roles. Such contract template can be
then instantiated several times by only specifying each time the exact parties and the
role-enactment relations. Figure 5.7 shows the structure of a Role-enactment list.

@ [] istRoleEnactmentElement

(S attributes

AgentRef I@
RoleEnactmentElement Type xsstrin
| RoleEnactmentList O@—[]O yp 9

Type istRoleEnactmentElement
RoleName
:9
Type xs:string

Figure 5.7: Role enactment list element in the Contract Language
Y

For example:

<RoleEnactmentList>
<RoleEnactmentElement
AgentName="Feel Safe” RoleName="Insurance Company"/>
<RoleEnactmentElement
AgentName="Damage Secure” RoleName="Broker"/>
<RoleEnactmentElement
AgentName="Fast Fix" RoleName="Repair Company" />
</RoleEnactmentList>

§.1.2.4 World Model

Within the contracting language, it must be ensured that all parties have a shared un-
derstanding of the elements in the world that they will refer to in their interactions and
also of the characteristics of the world itself. A representation of the different elements
composing the knowledge about the domain is depicted in Figure 5.8.

§.1.2.5 Contextualisation

In the contracting language, contexts are implicitly created when a contract becomes
active. They will obtain elements from the contract, such as the world model, the do-
main ontology, the descriptions of possible actions and processes within the domain

60 Chapter 5. Towards a lightweight language for norms

SystemClock ®
Type xs:anyUR|
DomainOntology

Type ist:DomainOntology

© [| istMariableList

WarlableList 1. Wariable
Type ist:VariableList Type istVariable

ObserverPredicatelist

[o—@)o

Type ist:ObserverPredicatelist

ActionDescriptors
Type istActionDescriptors

KnowledgeBase
Type istKnowledgeBase

PolicyManagement

Type ist:PolicyManagement

Figure 5.8: Representation of the world model element in the
Contract Language
Y

and the set of regulations to be applied within the organization being represented.
Moreover, the context of a contract, called interaction context, may be as well contained
inside another interaction context and therefore inherit all its knowledge representa-
tion elements and be constrained by its regulations. In this case, the Contextualization
part of the contract has to specify which is the parent contract. If a contract is an instance
of a contract template, this is also specified in this part.

This concept of interaction context is equivalent to the Context defined in HARMO-
NIA[Vazquez-Salceda 2004].

5.1.2.6 Clauses

Clauses express agreements between parties in the form of deontic statements. In
order to express the clauses we have adopted a variation of the representation defined
in [Aldewereld 2007], which is based on a dyadic deontic logic including conditional
and temporal aspects.

It is important to note here that, although the name given here is clause, which
is typically used in the definition of a contract document, we are in fact representing
norms in a norm condition expression language [Vazquez-Salceda, Aldewereld, and Dignum
2004].

A clause (Figure s5.9) is structured in two parts: the conditions and the deontic
statement. There are three conditions, which have the form of boolean expressions,
that have to be evaluated at different stages of the clause life cycle.

5.1. A language for contract representation 61

e Activating (or triggering) Condition: when this condition holds true, the clause is
considered to be activated. This condition can also be referred to as precondi-
tion. If the boolean expression of this condition includes a violated() predicate,
the clause is considered to be a violation handler (a clause specifying the deontic
consequences of violating another clause).

e Exploration (or maintainance) Condition: this is the invariant of the deontic state-
ment execution, which means that when the clause is active and the statement is
being enforced, the exploration condition has to hold always true. If this does not
happen, a violated() predicate will be raised. This condition can include tempo-
ral operators before() and after() with allow to express temporal constraints and
deadlines.

o End (or achievement) Condition: the clause is considered to be inactive and success-
fully fulfilled if and only if the exploration condition has always held true and the
end condition holds true.

© attributes

ClauselD
ActivatingCondition ®
o Type ist:Condition
ExpirationCondition ®
Type ist:.Condition
MaintenanceCondition ®
Type ist:Condition

DeonticStatement
Type ist:DeonticStatement

(@)

Figure 5.9: Representation of the clause element in the Contract
Language
a

The DeonticStatement is the central element of the clause. There are three main fields
in its structure: the deontic modality, the roles involved and the object of the norm (see
Figure 5.10):

e Modality: this field indicates the deontic modality of the statement, which can be

either Obligation, Prohibition, or Permission.

e Who: contains the set of roles and groups of roles that will have to fulfil the
statement.

e What: this represents the object of the norm (see Figure 5.11). This object can be
an action or a state. If it is an action, this action will have to be executed in order

62 Chapter 5. Towards a lightweight language for norms

@ [] istModality

OBLICATION
Type ist:What

Type xs:string

Figure 5.10: Representation of the deontic statement element in
the Contract Language
E'Y

to fulfil the norm. Otherwise, if it is a state, the responsible actor(s), defined in
the Who attribute, will have to ensure that this state is accomplished as long as
the exploration condition holds true.

© [folformula-rulebase type

® attributes

& 3a formula-rulebase.content

Atom
Type Atom.type

T Jo—@o—(om :
- Type folformula-rulebase.type

Figure 5.11: Representation of the What element in a clause in the
Contract Language
EY

If the Modality is Obligation, the parties responsible will have to execute/ensure
the object of the norm in order to fulfil the clause. If it is a Prohibition, the parties will
have to avoid executing/ensuring the object, and if it is a Permission, the parties are
informed that they can execute/ensure it.

Clauses can be used in two ways:

5.1. A language for contract representation 63

e as standard clauses: the ones that define what ought/ought not to be done. For
instance, a clause stating that a buyer should pay for a given item within some
time period.

e as violation handling clauses: the ones defining what to do if standard clauses are
violated) (i.e. The exploration condition does not hold).

An example of a standard clause could be, if we suppose a car insurance scenario:
“The repair company is obliged to notify the insurance company before April 10 if the
report of the repair is ready”. Such clause, which in dyadic deontic logic would be
formalised as:

exists(Repair Report(car)) —
O RepairCompany (sendRepairCompleted(car, DamageSecure, RepairCompany)
< April_10)

And can be expressed in our language as follows:

<Clause ClauseID="NotifyRepairCompleted">
<ActivatingCondition>
<BooleanExpression>
exists(RepairReport, isRepaired(car12f3pw, R1))
</BooleanExpression>
</ActivatingCondition>
<EndCondition>
<BooleanExpression>
isSentRepairCompleted(car12f3pw, RepairReport, "Damage Secure”, R1)
</BooleanExpression>
</EndCondition>
<ExplorationCondition>
<BooleanExpression>
Before(2008-04-10T15:30:30+01:00)
</BooleanExpression>
</ExplorationCondition>
<DeonticStatement>
<Modality>
<OBLIGATION/>
</Modality>
<Who>
<One id="R1" enacting="Repair Company"/>
</Who>
<What>
<ActionExpression>
sendRepairCompleted(cari12f3pw,
RepairReport, "Damage Secure”, R1)
</ActionExpression>
</What>
</DeonticStatement>
</Clause>

This clause only activates when a report stating that the car is repaired exists, and
deactivates once the report is sent. The ExplorationCondition specifies in this case that

64 Chapter 5. Towards a lightweight language for norms

the obligation should be met before a given deadline. The DeonticStatement specifies
that this is an obligation related to one agent, R1,> enacting the Repair Company role,
and it consists of one action (sending the repair report).

5.1.2.7 Contractual Ontology (IST-Contract)

As mentioned in Section 5.1.1, the Contractual Ontology is the ontology that predefines
all the terms, predicates and actions that are used by the framework, independently of
the application domain. The purpose of this is for a generic, non-application dependent
information to exist within the framework and be shared amongst the agents.

This ontology defines objects which represent primal entities existing within the
framework, actions committed by an actor and predicates which declare states and
conditions of the system.

Some of the primal concepts that exist in the contractual ontology are:

e Contract: an agreement between several parties

Obligation: an obligation corresponding to an agent

Party: a person, agent or entity

Action: an action taken by one of the parties

Predicate: a logical predicate with zero or more arguments which is true or false

List: the classical notion of list

e Penalty: the penalty that one party receives in case of a violation of an obligation

Table 5.1 and Table 5.2 show the pre-defined actions and predicates created to express
statements about contracts are shown. Attributes represent both inputs and outputs.
Wherever a predicate appears in the precondition and does not in the postcondition, it
is assumed that it remains the same after the action is completed.

5.1.2.8 Domain Ontology

Domain ontologies are important elements in our framework, as they semantically con-
nect references to the same entities and objects made at different layers (e.g. a message
referring to a car and a contract referring to the same car). These ontologies also ensure
that the same definition for actions and predicates is consistently used, avoiding inter-
pretation errors. This last aspect is especially relevant in contracts, as all parties should
have the same understanding about the agreed terms in the contract. For instance, if
the contract establishes the obligation of a given repair company to fix the client’s car
windshield, both the repair company and the client should have the same definition for
the concept “windshield” and the action “to fix” when applied to windshields.

STt is important to note here that we show a version of the clause that is valid for both contract
templates and contracts, where R1 is a variable which value is set by unification in the activating condition
(i.e. the Repair Company that created the Repair Report). If one is not interested to reuse this clause in
several contracts, R1 could be directly substituted here by the specific Repair Company.

5.1. A language for contract representation

65

committed(B, C)

action attributes precond. postcond.
commit P: Instance of Party C is valid committed (B, C)
C: Instance of Contract initiated (C)
V O Instance of Obligation
in C: obliged (B, C, O)
happened (B, commit(P, C))
end P: Instance of Party exists(C) happened (terminate (B, C))
C: Instance of Contract initiated (C) - initiated (C)
active(C) — — active(C)
terminated (C)
withdraw P: Instance of Party exists(C) — committed (P, C)
C: Instance of Contract initiated (C) - initiated (C)

NC: Instance of Contract (new version)

request_cancel | P:Instance of Party exists(C) happened (request_cancel(B C))
C: Instance of Contract initiated (C)
create P: Instance of Party —(exists(C)) exists(C)
C: Instance of Contract happened (P, create(B, C))
cancel P: Instance of Party exists(C) active(C) — — active(C)
C: Instance of Contract initiated (C) — initiated (C)
happened (cancel (B, C))
cancelled (C)
terminated (C)
V PT : committed (PT, C)
— committed (PT, C)
get-contract P: Instance of Party exists(C) happened (get-contract (P, C))
update P: Instance of Party exists(OC) exists(NC)
PT Instance of Party OC is valid initiated(OC) — (initiated (NC)
C: Instance of Contract (old version) NC is valid A= initiated (OC))

active(OC) — (active(NC)
V PT : committed(PT, OC)
committed (PT, NC)
¥V PT : committed(PT, OC)
— committed (PT, OC)
happened (update(B, OC, NC))

Table s5.1: Library of contract-related actions

b 8

66 Chapter 5. Towards a lightweight language for norms

predicate description attributes(terms)
happened(A) An action happened at some point in the past A: Instance of Action
before(T) The current time is before some time T Instance of Time
after(T) The current time is after some time T Instance of Time
committed (P, C) A party is committed to a contract P: Instance of Party

C: Instance of Contract

all-committed(LP, C) | All parties have committed to a contract LP: List of Instances of Party

C: Instance of Contract

violated(P, C, LO) A party has violated obligations of a contract P: Instance of Party
C: Instance of Contract

LO: Instances of Obligations

obliged(P, C, O) A party is bound to an obligation within a contract P: Instance of Party
C: Instance of Contract

O: Instance of Obligation

ended(C, T) A contract has been ended due to a violation C: Instance of Contract

T Instance of Time

initiated (C) A contract has been signed C: Instance of Contract
active(C) A contract is taking action and has not yet terminated | C: Instance of Contract
cancelled(C) A contract has been cancelled C: Instance of Contract

fulfilled (P, C, O) A party has fulfilled an obligation within a contract P: Instance of Party
C: Instance of Contract

O: Instance of Obligation

Table 5.2: Library of contract-related predicates
Y

As mentioned in Section 5.1.1, there are at least two levels of domain ontologies in
the CONTRACT Communication Model: contract ontologies and context ontologies.
More levels may appear if super-contexts of a given context are defined which include
ontological extensions, or if sub-contracts in the scope of a given contract are defined
which include additional concepts.

Context ontologies define all shared definitions by actors interacting in the domain.
These ontologies will be mostly classes, without instances. Instances will only be in-
cluded in the context ontologies if they are to be re-used in more than one contract
and if the number is not too big and stable during the contract lifetime, e.g. the names
for the known insurance companies could be added to the ontology, as they are quite
stable through time and rarely appear or dissappear.

Although the context ontologies are not part of the data model, there are some
requirements that they should fulfil. For instance, they should define all predicates
and actions (with their parameters), roles and terms which appear in the rest of the
context definition.

Contract ontologies are extensions of a given context ontology (or an overarching
contract) which inherit, refine and/or extend the terms needed for that particular con-

5.1. A language for contract representation 67

tract in a given domain. These ontologies also define instances of existing ontological
classes, when enumeration of all instances is not advisable at the context ontology. In
those cases where all needed classes and instances are already defined in a context on-
tology, then no extension should be defined and the contract ontology and the context
ontology are the same.

The model thus depends on the capability to extend existing ontologies with ad-
ditional concepts and relations. The extended ontology should contain not only the
added terms, but also inherit all definitions from the extended ontology.

Domain ontologies are explicitly used in several parts of our model. Communi-
cation messages include an explicit reference to the ontology needed to interpret the
content of the message (Section 5.1.3.1). Contracts also include, in their World Model
part, a reference to a domain ontology.

If no additional ontology is defined, then the ontology used is the context ontology
(Section 5.1.2).

In general, all elements and concepts used in the message content, in contracts and
definitions of context should correspond to classes and/or instances which should exist
in some ontology.

5.1.3 Contracting Messages and Protocols

In order to increase the expressivity of the communication between services to intro-
duce some intentional stance, the contracting language also defines a set of performa-
tives to be used by the parties. We have extended FIPA ACL [Agents 2002b] perfor-
mative set in a way that can be used not only by web services but also by agents. To
properly use those performatives, our contracting language also specifies the message
structure, a content language and a set of contracting protocols®.

§.1.3.1 Message Structure

FIPA [Agents 2000] provides both a message format and a message-handling protocol
to support run-time knowledge sharing among agents. It can be thought of as consist-
ing of three layers: a protocol (performative) layer, a content layer, and an ontology
layer. The domain-independent performatives in protocol layer, such as inform, pro-
pose, accept-proposal and agree, describe the communication actions between agents.
FIPA-SL defines the syntax and semantics for the expression of communication content.

Our proposed message structure is an XML variation of FIPA’s message structure
[Agents 2002b], where the message body contains the usual FIPA proposed attributes,
i.e. sender, receiver, performative, language, content, etc.

5.1.3.2 Message Content

The content of the communication message describes what the purpose of the commu-
nication is and expresses knowledge existing in the level of the world representation.

®My contribution to the work presented in this section was twofold: leading the research work on
the state of the art that was used as our foundations and the design of 7 of the 14 interaction protocols.
These contributions were made along with Sofia Panagiotidi, Roberto Confalonieri, Michal Jakob, Javier
Vazquez-Salceda and Steven Willmott.

68 Chapter 5. Towards a lightweight language for norms

That is, the ontology and its elements are used to support the interpretation of the
message content by the receiving agent and they can be found in 5.1.2.7 and 5.1.2.8 as
part of the context ontology.

One important feature of the contracting language is that contracts can be part of
the content of a message. This is possible due to this concept being defined in the
contractual ontology, which will be a basic domain framework for the communication,
and provides a flexible way to express knowledge related to specific contracts.

The language used to express the content of the messages between the actors is
based on a subset of FIPA-SL [Agents 2000]. FIPA-SL is more complete than other logic
languages, such as Prolog, when focusing on content-oriented agent communication,
and at the same time it is more complete than other semantic languages, as KIF [Finin
et al. 1994], allowing for better constructs with better semantics and lower complexity.

A subset of FIPA-SL, namely FIPA-SL2, adapted to an RDF representation’, has
been chosen as a basis for the content language. The reason for this is that it remains
an adequately expressive set as it allows first order predicate, modal logic operators,
quantifiers (forall, exists) and reference operators (iota, any, all), which are needed in
order to give the expressivity needed for flexible contract-related communication.

5.1.3.3 Performatives

The full set of FIPA-ACL [Agents 2002b] performatives is adopted (e.g. query, inform,
etc.). However, FIPA standards do not include cases in which an agent desires to pro-
pose an action to be performed by more than one agent (e.g. to propose that many
agents commit on a contract). For this reason, FIPA-ACL alone is not sufficient, as its
speech acts cannot be used to form, maintain and dissolve joint intention (mainly to
commit) in order to support advanced social activity (i.e., teamwork).

We have extended FIPA-ACL performatives with extra performatives based on joint
intention theory [Tuomela 1996]:

e suggest: The action of submitting a suggestion for the sender and the receiver
agents to perform a certain action.
<i, suggest (j, <i, act>, <j, act>)>
where i is the sender and j is the receiver.

e consent-suggestion: The action of showing consent to a suggestion for the
sender and the receiver agents to perform a certain action.
<i, consent-suggestion (j, <i, act>, <j, act>)>
Agent i informs j that, it consents for agent i and agent j to perform action act
giving the conditions on the agreement.

o dismiss-suggestion: The action of dismissing a suggestion for the sender and
the receiver agents to perform a certain action.
<i, dismiss-suggestion (j, <i, act>, <j, act>,) >
Agent i informs j that, because of proposition v, i does not have the intention for
i and j to perform action act.

’RDF has been chosen here instead of XML because it is easier to integrate with semantic represen-
tations such as OWL.

5.1. A language for contract representation 69

action protocol(s)

end Contract Fulfilment Protocol With Notary

request_cancel | Contract Violation Protocol Without Manager

Contract Violation Protocol With Manager

create Simple Contract Creation Protocol With Notary
Simple Contract Creation Protocol Without Notary
Sideways Contract Creation Protocol With Notary
Sideways Contract Creation Protocol Without Notary
Simple Negotiation Creation Protocol With Notary
All Parties Agree Creation Protocol Without Notary
All Parties Agree Creation Protocol With Notary

cancel Contract Cancelling by Agreement Protocol Without Notary

Contract Cancelling by Agreement Protocol With Notary

update Contract Modification/Update Protocol With Notary

Table 5.3: Library of contract-related actions
Y

5.1.3.4 Protocols

Contract execution requires agent behaviors which should be well defined and de-
signed, in order for the contract lifecycle to be successfully executed. These include
the phases of Contract Creation, Contract Fulfilment, Contract Modification and Update, Con-
tract Violation, Contract Cancelling By Agreement and more. Such a communication can
be achieved through communication protocols which define a significant part of every
agent’s expected behavior.

The IST-CONTRACT project contributed a library of protocols which allow agents
to communicate whenever one of the phases is taking place are defined. In some cases,
more than one protocol is provided, since there can be more than one way in which a
stage can successfully take place (i.e. when a contract is being created, there might or
might not be a negotiation phase involved) and the users should be able to pick the
most appropriate for the case.

In Table 5.3 we show the correspondence between the protocols and the contract-
related actions listed in Table 5.1.

As an example of how these protocols work, Figure 5.12 and Figure 5.13 depict ex-
amples of protocols expressing, respectively, the creation of a contract between two
agents without an intermediary and the modification of a contract with the presence of
a notary.

The Sideways Contract Creation Protocol Without Notary consists of several inter-
actions between two contract parties (Initiator and Participant):

1. The Initiator sends to the Participant a SUGGEST message, communicating the

70 Chapter 5. Towards a lightweight language for norms

Initiator Participant

’-l-‘ suggest

dismiss-suggestion

—
r

suggest

P

iggestion

conseni-suggestion

informi{committed)

Figure 5.12: Sideways Contract Creation Protocol Without
Notary
Y

Participant a proposal of the terms of the contract for his part
2. The Participant replies:
a) with a DISMISS-SUGGEST message if the former does not accept the terms
of the contract part proposed or,
b) with a SUGGEST message of his part of the contract terms filled

3. The Initiator replies:

a) with a DISMISS-SUGGESTION message if the former does not accept the
proposed contract terms and the protocol finishes with no agreement and
with no contract creation

b) with a CONSENT-SUGGESTION message if the former agrees on the terms
of the new
The Contract Modification/Update Protocol With Notary consists of the following
interactions between two contract parties (Initiator and Participant) and the notary:
1. The Initiator sends to the Participant a SUGGEST message, communicating the
Participant a proposal of the terms of the modified/updated contract for his part
2. The Participant replies:

a) with a DISMISS-SUGGEST message if the former does not accept the mod-
ified/updated terms of the contract and the protocol finishes with no agree-
ment and with no contract modification/update, or,

b) with a CONSENT-SUGGESTION message if the former agrees on the terms
of the modified/updated contract

5.1. A language for contract representation 71

Initiator Participant Notary

..

propose

reject-proposal

A

accept-proposal inform (commit)

inform (commit)

h J

inform (all-signed)

inform (all-signed)

J

Figure 5.13: Contract Modification/Update Protocol With Notary
a

3. Initiator and Participant both send a INFORM message to the notary informing
him they have committed to the modified/updated contract

4. the notary replies to the Initiator and Participant with an INFORM message, con-
firming the mutual agreement of the modified/updated contract

5.1.4 A proposal for operational semantics

This section introduces a summary of the first proposal for operational semantics based
on the language described in Section s5.18. It is important to note that this is not a con-
tribution made by us but by other members of the IST-CONTRACT, and it is included
in this section as it is relevant enough to at least give some insight on it because it will
be relevant to follow how the language evolved and what is different on the operational
semantics we will introduce in Chapter 6. Therefore, these semantics are only briefly
described in the section, while their full motivation and formalisation can be found at
[Oren et al. 2009].

The semantics presented here operationalise norms by tracking the status of each of
them in terms of their lifecycle: norms are abstract until they are instantiated, and each
instantiated norm can be in one of four states: simply instantiated, expired, holding
true, or holding false.

Assuming the existence of a theory I' allowing for the interpretation of the status
of norms, that includes a normative environment theory I'y gy,

8The work presented in this section was carried mainly by Sofia Panagiotidi, Nir Oren, Sanjay Modgil,
Javier Vazquez-Salceda and Michael Luck. However, I had a minor contribution on it as I attended and
participated in the process of formalisation of the semantics as part of my IST-CONTRACT duties.

72 Chapter 5. Towards a lightweight language for norms

Definition 4 An abstract norm is a tuple of the form
(Modality, ActivatingCondition, ExplorationCondition,
EndCondition, W ho)
where all the elements of the tuple correspond to the concepts described in Section 5.1.2.6 O

ActivatingCondition corresponds to a wff ¢ac which, when entailed by I', must
be entailed as the fully grounded ¢/, in order that the abstract norm can be instan-
tiated and thus become active. We call this substitution of variables S such that

ac = S(Pac)-

Definition 5 An abstract norm is instantiated by T', obtaining an instantiated norm:
(Modality, ActivatingCondition’, ExplorationCondition’,

EndCondition’, Who')

where:

e I' F ActivatingCondition’, where ActivatingCondition' is fully grounded such that
ActivatingCondition’ = S(ActivatingCondition)
e EzxplorationCondition’ = S(NormCondition)
e EndCondition’ = S(EndCondition)
e Who' = {X|I' U {ActivatingCondition’} U {S(Who)} + X}
g

At this point, we can define a series of predicates that will allow us tracking the
normative state of the instantiations:

Definition 6 Given an instantiated norm in such that
in = (Modality, ActivatingCondition, ExplorationCondition, EndCondition, W ho)
Then, for N € ExplorationCondition, EndCondition:
't N’ — holds(in, N) = true
where N’ is entailed with all variables in N grounded; otherwise holds(in, N) evaluates to
false. O

The formal definition of normative state identifies those instantiated norms whose
exploration condition evaluates to true, those whose exploration condition evaluates
to false, and those whose end condition evaluates to true:

Definition 7 Given a set of instantiated norms I N S, anormative state N S is a tuple of the form:
(NSTrue, NSFalse, NSFExpires)
where:

o NSTrue = {in € INS|holds(in, ExplorationCondition) = true}
o NSFalse = {in € INS|holds(in, ExplorationCondition) = false}
e NSEzpires = {in € INST|holds(in, EndCondition) = true}

5.1. A language for contract representation 73

Temporality is reflected in these semantics by assigning an initial normative state
N Sp and virtually infinite normative states N.S; where i > 0. With these definitions
as a starting point, the operational semantics define a series of predicates that allow to
detect normative state changes for a given instantiated norm. For example:

Definition 8 I' - instantiated([NS;],in) iff
inst_norms(NS;) A (in & inst_norms(NS;_1) Vin & NSExpires;_.
We define by default T t/ instantiated([NSy],in). O

The rest of predicates can be extracted from (NSTrue, NSFalse, NSFExpires) in
a similar manner, by tracking changes between two normative states N.S; and N.S; .
These predicates include active(), expires(), violated() or fulfilled().

These operational semantics provide a correct formal grounding of the language
presented in Section 5.1. However, they are lacking some features needed for practical
reasoning in monitoring (as well as in enforcement and individual normative planning).
For example, there is no explicit normative life-cycle for norms and norm instances de-
fined, and the one that is implicit (for norms and norm instances at the same level) is
not exhaustive nor flexible enough. Also, the operationalisation is descriptive rather
than transition based, and this is a problem for the translation into an algorithmi-
cal solution. We will address these issues in the formal semantics we will present in
Chapter 6.

5.1.5 Contributions and limitations of our language for contracts

In the previous subsections we have described a language for contracts, its layers and
its operational semantics. This language had a grounding in XML and was used suc-
cessfully in several use cases, targetting real-world applications based on web-services:
car insurance, security certification and aerospace aftermarket[Jakob et al. 2008].

The language was expressive enough to describe, with a high level of detail, con-
tracts based on human interactions, thanks to the capability of defining clauses with
deontic expressions. Also, its formal grounding allowed to build a monitor based on
augmented transition networks[Faci et al. 2008], as well as a model checker to infer
properties such as safety and liveness of specific contracts[Lomuscio, Qu, and Raimondi
2009].

We provided relevant contribution with respect to the behavioural aspects of agents
under agreements (performative extensions, interaction protocols). Such elements
were implemented as agents enacting roles such as Trusted Observer or Administrative
Parties.

However, there are still a few elements that we need in order to achieve proper
governance in SOA from a monitoring perspective. First of all, the language should be
generalised in order to isolate the normative layer (that is, the deontic part) to achieve
a more lightweight language and more compatible with different domains. In fact, sep-
arating a language in as many layers as described is ideal in completely closed systems
such as the ones demonstrated in the lifetime of the IST-CONTRACT project, but this
is not the usual scenario in SOA.

74 Chapter 5. Towards a lightweight language for norms

Furthermore, our contract language is still lacking the capability of describing con-
stitutive rules. We will see in the next section how we advanced in order to tackle
these shortcomings by achieving a more compact language with added expressitivity
features.

5.2 THE ALIVE FRAMEWORK

The goal of the ALIVE Project® was to merge the state-of-the-art in organisational
and normative modelling with the latest developments in service-oriented comput-
ing, using model-driver software engineering as the main tool[Alvarez-Napagao et al.
2009]. Meta-models for several levels (Service, Coordination and Organisation, see
Figure 5.14), were built with a special focus on formal grounding and automatically
transformed into a set of tools aimed at developers and stakeholders by means of meta-
model transformations.

Off-line architecture On-line architecture
OperettA
Tool
Or isati Organisafional
Level (model

G Global Monitor

__________ Editor —octh T |t o
Ontology 3

oordinatio avent

.oordination
o s 5 Event Bus m
—

Somain Action | AgS_ 2 l notify event
Coordination | 3 Moces s @mm ,
coordinate st
¢ T e emt
,
______________ Monitor Tool £33

Al events.

Service
Level

7 o)

register
Matchmaker register @7 @

:’ adapted tool or - new tool or meta-model
component component repository

Figure 5.14: ALIVE Multi-Level Architecture
Ty

This separation of abstraction layers allows the developer to specify, in a separate
way and for a set of particular processes, how can things be done at the lower level of

°The ALIVE Project was a project (FP7-215890) funded by the European Commission within its 7th
Framework Programme for RTD. The work presented in Section 5.2 was developed during the lifetime of
the project.

5.2. The ALIVE framework 75

services (Service Level), what high level goals can be achieved by a rational agent or
a group of agents through joint actions (Coordination Level), and why should certain
goals and norms be followed or taken into consideration (Organisational Level). The
ALIVE Framework was designed to allow designing an organisation by mapping levels
into existing software components (web-services or agents) in a bottom-up fashion, or
by automatically deploying web-services or agents according to a fresh organisational
specification, a top-down approach.

5.2.1 The ALIVE meta-model for norms

Due to the requirements of the project, we had to take into account multiple layers of
abstraction in order to build the foundations of the conceptual framework of ALIVE'®.
For a deep understanding of the internals of each layer, please refer to [Aldewereld and
Dignum 2010b; Aldewereld et al. 2010a; Alvarez-Napagao et al. 2009; Lam et al. 2009].
The meta-modelling approach, in which there are no true root elements such as e.g.
in XML, allows for a effective decoupling of levels and even among layers of the same
level. Therefore, we can isolate the relevant part for the purpose of this chapter: the
Normative Structure, which is one of the parts of the Organisation Meta-model (see
Figure 5.15) 1.

£ OperAModel#]
(from opera)
% Name : EString
om
1.1
EES L1 Hom 55 EES
5 1.1
E NS 1.1 s ECs

ns

Figure 5.15: Top-level elements of the organisation meta-model in
ALIVE
a

My contribution to the work presented in this section was twofold: a continuous involvement in the
design of the Organisational Structure in general terms, esp. in the design of the Normative Structure
by merging concepts from the IST-CONTRACT language with other approaches, and the design and the
implementation of the operationalisation of several core concepts. These contributions were made along
with Huib Aldewereld, Frank Dignum, Virginia Dignum and Javier Vizquez-Salceda.

“The other parts are: 1) the Social Structure, which contains roles and relationships between roles, 2)
the Interaction Structure, which specifies scenes and transitions between scenes, and 3) the Communica-
tive Structure, which contains domain ontologies used accross the Organisation Meta-model and the rest
of layers.

76 Chapter 5. Towards a lightweight language for norms

The meta-model for the Normative Structure (NS), therefore, specifies the norms
applied within the rest of the ALIVE Framework, including live components such as
coordination-level agents or service-level services. The components of the NS can be
seen at Figure 5.16.

H
i
-
=
=
E-R - &
Sz 2 =
HEER: - 2
SEEZ
g4 = 2
FIEEE- 5
HERR g
I8 Ed H
HER - i
R 2
= =
= 5 £ -
£ 2 2 & -
- LRSI 3
& 2 =
JEZ2 £ 2
g|2 < 22 3
3 .
m 0o 0 g 5
g 8
c a
] 5
£ Fi
5
£ g2
ElE
3
El=
e
= n'n
* g ~
| £ - (]
2
&
o
%
w £
£
e g
3
3
=2 =
i 5
o -
2 E £
E [
H o
o c
s B
g -
g 1
8 -
5
£
- ™
v |
= - 2
[iny] 3
v E -
2
§a
g ~
alE 5
8 [
2 i
g2 g
2 &
= & g
2 il =
T [ani]
=
H
E -
2]
= 'z
E 3
£ 2
s
g s
E] 2
= <
a |
£
- (a1 g 3
E g o
I3 [ani]
g
£
]
g
ﬁ
i
E
S
H
o
=
- £
) =
R
ER]
S |z &
s |£ 5
s 2
o0

Figure 5.16: Main components of the Normative Structure
a

5.2. The ALIVE framework 77

IST-CONTRACT element | ALIVE element
Clause Norm
ClauselD normID
EndCondition deactivationCondition
ExplorationCondition maintenanceCondition

Table 5.4: Mapping of concepts: IST-CONTRACT vs ALIVE
Framework
Y

The first component that stands out with respect to the IST-CONTRACT language
is the CountsAs element, aggregated by NS as constitutiveRules. This is an addition over
previous proposals and contains the constitutive definitions of the normative context.
Each counts-as rule contains an abstract fact and a context that trigger the counts-as
rule, and the definition of a concrete fact that will hold if and only if the rule is triggered.

The second element that can be aggregated under the label norms by the NS is Norm:
a mapping of the Clause model presented in Section 5.1 with some variations. The most
relevant of these variations is the disappearance of an explicit concept representing the
deontic modality of the norm. This change was motivated by the fact that our lan-
guage, thanks to the different (activating, maintenance, expiration) conditions, already
allowed us to model obligations, prohibitions and permissions implicitly. This is elab-
orated further in Chapter 6 and Appendix A.

The correspondence between IST-CONTRACT clauses and ALIVE norms follow the
pattern in Table 5.4, so the abstract norm tuple of Section 5.1.4 would look like:

(Modality, ActivationCondition, M aintenanceCondition,
DeactivationCondition, W ho)

Additionally, there are two relevant new elements: a repairCondition, used to specify
repairing actions or sanctions that are supposed to bring a norm instance from a violated
back to a “normal” state; and a timeout, that specifies an amount of time ¢ such that if a
norm instance has been violated for a period of time ¢, the instance is considered failed.
The motivation for these two additions will be analysed extensively in Section 6.4, but
as a summary we can say at this point that they allow a considerable improvement on
the life-cycle of the IST-CONTRACT operational semantics.

From a structural point of view, an element of the model that is of great importance
is PartialStateDescription (see Figure 5.17). This allows implementing count-as rule con-
ditions, as well as the conditions that form part of each norm, in either propositional,
first-order, or computational tree logic. A special kind of partial state description is
the landmark, which indicate ideal intermediate states that can be used as a guidance
in order to fulfill organisational goals. In ALIVE, landmarks may be used to model rel-

78 Chapter 5. Towards a lightweight language for norms

evant/critical states of the system interaction, and can be mapped to norms governing

such interactions.

[Constant H ontology H Atom
= name : EString = ontologylD : EString = predicate : EString
classes
1.1 concept
concept .
L 1.1
H Concept [PathNegation [PathConjunctior

= concept : EString
= URI : EString
o type : ConceptType

arguments

B Function

= name : EString

arguments

H Term

H conditianal

[Megation H Ceonju

stateFormula
leftSt:

[PathDisjunctior [Pathimpli

laftPathFormula

1.1
rightPathFormula

teftPathf

pathFormula

H Countsas

condition

context

0.1
[Context

rightPathFormula

[DeonticStatement

= modality : none

ahstractFact wh

= Mame : EString

H Actions

action

Figure 5.17: Components of state descriptions in the ALIVE

Framework
e

H AtomicAction

O statement : EString

actions acti

2.2

| ActionDescriptior

5.2. The ALIVE framework 79

sgation H Conjunctior H Disjunctior H implication @ ConceptType E ForallPaths [ExistsPath
— Class
= Property
= Individua
rightStateFormula consequentstateFormul:
stateFormula 1
leftStateForminla leftStiteFormula
antecedentStateFormula
1.1 rightStateFormiuia
. |
tior [Pathimplication H stateFormula H Mext H sometime H Always
1111
1.1
1.1 pathFormula pathFormula pathFormula
rightPathFormula antecadentPathFormula pathFormula,
pathFormula
leftPathFormula 1.1
1.1
‘tonsequentPathFormul: 1.1 1.1
rightPathFormula 1.1 1.1
H DeanticStatement H right [PathFarmula
= modality : none = Mame : EString
.1
p e v g R
L1 frampathFormula
Expr untilPathFarmula
1.1
abstractFact what | PartialStateDescriptiof H variable
= ID : EString = name : EString H until
1.1 L.}
1.1 1.1
formula .
variable
[FirstOrderQuantifia
g AtomicAction H sequenca
= statement : EString
g Exists g Foral
s actions
2.2

[ActionDescriptiof

Figures 5.18 and 5.19 contain examples of a constitutive rule and a regulative norm
that be modelled by using the proposed norm language in the ALIVE meta-model. For
further and more elaborated examples of norms and other institutional abstractions
modelled using ALIVE, see Section 9.1.3 and Section 9.2.3.1.

5.2.2 From events to monitoring

From the global architecture diagram (see Figure 5.14), there were several components
and subcomponents directly involved in the monitoring process: the Global Monitor
(organisational perspective) and the Local Monitor (individual agent perspective), both
receiving brute facts from the Event Bus that acted as a broker for all the events generated
both externally and internally'2.

My contribution to the work presented in this section was the design and implementation of the event
meta-model and the monitoring subsystems, being the coordinator of these tasks in the context of the
ALIVE project. These contributions were made along with Huib Aldewereld and Javier Vazquez-Salceda.

80 Chapter 5. Towards a lightweight language for norms

Counts-as rule C: In a particular context where there is a certain power to marry
people, two people are considered as married if they were declared (speech act) as
such by a person who had that power.

Context C' hasPower(A, declared(A, married(z,y))
Antecedent C declared(A, married(B, C))
Consequent C' married(B,C)

Figure 5.18: Formal model for an example constitutive norm
EY

Norm N: The repair company is obliged to notify the insurance company before
April 10 if the report of the repair is ready. Otherwise, the insurance company has
to report this violation to the repair company before one month after April 10.

Activation Condition N exists(Repair Report(car))
Expiration Condition N sendRepairCompleted(car, DamageSecure, RepairCompany)
Maintenance Condition N actualTime(t) Nt < April;0
Repair Condition N reportViolation(RepairCompany, DamageSecure)
Timeout N actualTime(t) ANt > May,0

Figure 5.19: Formal model for an example regulative norm
ES

The key element upon which all these components were built was the Event part of
the ALIVE meta-model. Our definition of event (there seems to be a lack of agreement
on a common definition) was any happening of relevance that occurs within the observable
boundaries of the system, where:

o A happening is a computable item: a change of state, or a fact related to a resource
or an action;

e Relevance means that a specific item should be taken into consideration for a
proper fulfilment of goals, objectives, or normative compliance; and

e The Observable boundaries of a system is the total set of items that can be “seen”,
limited by the technical and/or physical capabilities of the actors of the system.

Events should ideally be described by means of an ontology, in order to be under-
standable by the actors processing them. In ALIVE, being a layered architecture, events
represented facts at different levels of abstraction (organisation, agent, service, exter-
nal).

However, it was our objective to design the monitoring architecture in such a way
that events were seen as abstract objects. For this reason, events were considered as
abstract objects, independent of the information they carry. It was the responsibility

5.2. The ALIVE framework 81

of the actor processing an event to interpret the contents and the context of those
contents.

5.2.2.1 Event meta-model

The ALIVE Event meta-model is shown in Figure 5.20. This meta-model contains all
the elements necessary to model an event in the most possible general meaning of the
concept, while representing additional attributes that may help not only understand the
fact, but also unequivocally identify it and place the event in both time and location.

v platform:/resource/Monitoring/model/Event.ecore
v # Event
¥ H Event
5* localKey : Key
5* asserter : Actor
5* content : Fact
St encoding : Encoding
T pointOfview : PointOfView
T timestamp : EDate
=* language : Language
¥ B Key-> EObject
S id : EString
¥ | Actor -> EObject
< url : EString
Fact -> EObject
Encoding -> EObject
PointOfView -> EObject
¥ £ Ontology -> Language
T url : EString
ActorView -> PointOfView
ObserverView -> PointOfView
v ProxyView -> PointOfView
5* transmitter : Actor
Agent -> Actor
Service -> Actor
Language -> EObject

i PlainText -> Encoding

Figure 5.20: ALIVE Event meta-model
a

The main element, Event, represents the concept of event itself. It includes the
following attributes:

e The content, which is the central attribute, and can be any kind of object.

e The encoding, which defines how the content is represented, e.g. as a plain text
string, as an encrypted string (and thus defining as well how to decrypt it), or as

82 Chapter 5. Towards a lightweight language for norms

an XML object (and thus defining which is the XSD it is defined upon).

e The language, defining how to interpret the encoded content. In most cases the
language is an ontology.

e The asserter, that is, the actor that stated the content of the event, e.g. an agent,
a service, or an architectural component.

e The local key, which is a unique key created by the asserter. The combination of
the asserter plus the local key has to be unique in the system.

e The point of view of the asserter with respect to the asserted fact. This attribute
should describe how the asserter got conscience of the fact. In most cases, this
point of view is one of the following: the asserter was the direct responsible of the
happening, the asserter observed the happening, or the asserter acts as a proxy
or re-transmitter of a third party responsible for the fact.

e The timestamp identifying the exact point in time in which the asserter became
aware of the fact.

§.2.2.2 Monitoring

Regardless of whether a monitor is a local monitor or a global monitor, there are com-
mon properties that it has to implement.

First of all, a monitor may execute a set of rules to trigger events, e.g. send a notifi-
cation of the reception of a certain event. These rules define the behaviour of a specific
instance of a monitor. Our implementation was based on a rule engine — Drools — to
manage and execute these rules.

The definition of these rules was based on facts to be matched, and thus a set of
rules implicitly defined a set of facts to be kept under surveillance. Each monitor was
then responsible for extracting this set of relevant facts and for subscribing them to the
Event Bus.

Although a monitor may be configured to communicate directly with actors or com-
ponents, monitors are also possible providers of events. Therefore, every monitor in
the system was connected to the Event Bus.

Finally, every monitor uses one or more interface to communicate with actors and
with external or internal components. Considering that a monitor is not only a receiver
but also a sender of events, these interfaces have to work in both ways. We solved this
by defining a subscribe mechanism for each interface — push rather than pull.

Figure 5.21 presents the generic monitor architecture, taking into account the con-
straint specified in the previous paragraphs. Regardless of the specific implementation
details for each type of interface, we defined a generic API to be exposed for every actor
or component that interacted with a monitor (see Figure 5.22).

e initialize and updateRules are methods to be called by the component responsible
for creating and configuring the monitor instance. These two methods will define
the active set of rules and thus determining the behaviour of the monitor.

§.3. Conclusions

Event Bus

N

provige event

publish/subscribe

/

reCeive event

/

Interface

F }—

Relevant
Facts

subscnibe

i

E4

subscribe

maintain

Rule
configure behaviour

add to kb

Engine
i

¥
| Interface Interface Interface }_

7
/'

provide event f
/
7 ll;
subscribe
; |,'
A
,)’J send event
F
d {

RN

\._ L

I \ \
f \ L.
[\ 3 "
\ \ send event
provide event \ \ N
\ \
/ ! \ \ subscr b&
subscribe |
[\ NN
b provide event \\
/ send event . \
v \]

Actor/Componant

Actor/Component

Actor/Companent

Figure 5.21: ALIVE Monitoring Architecture
By

83

Rules

e subscribe is a method public to any component willing to receive certain notifica-
tions from the monitor, by specifying a list of facts and an endpoint. This endpoint
will be used by the monitor to asynchronously send the subscribed events back.
The specific way of handling these notifications will depend on the implementa-
tion of the interface. This method returns a session representing the subscription.

e sendEvent can be used by a component to notify an event to the monitor.

o cancelSubscription can be used by a component to remove the correspondent sub-
scription and therefore indicating the wish to stop receiving notifications.

5.3 CONCLUSIONS

In this chapter we have presented a language for declaring norms, focusing on its ad-
equacy for enabling governance capabilities in distributed systems, namely both SOA
and multi-agent systems. We have done it incrementally, showing in the first place how
we designed a language specifically tailored for compositions of web-services that are
capable of communicating in the same domain and using the same behaviour proto-
cols. This first version of the language allows a high level of expressivity with respect

84 Chapter 5. Towards a lightweight language for norms

IMonitor

initialize(listOfRules : Rule(]) : RuleUpdateResponse
updateRules(listOfRules : Rule]]) : RuleUpdateResponse
subscribe{endpoint : Endpoint, listOfFacts : Factf]) : Session
sendEvent(event : Event) : SendEventResponse
cancelSubscription(session : Session) : CancelResponse

i :
! Rule Fact Event i
! |when : LogicFormula fact : LogicFormula fact : Fact -
i [then : Action [-] I
1 L
: |
i Endpoint Response Session !
1 |ur:String bSuccess : Boolean id : Siring !
; :
! i
; :
! i
i :
: | :
' RuleUpdateResponse CancelResponse SendEventResponse :
i :
: e

Figure 5.22: Monitor generic interface
»

to regulative norms, by the use of deontic expressions. We have shown how such a
language can be formally grounded.

Later in the chapter, we have presented an evolution of the pure normative part of
the language in the form of a meta-model, adding constitutive rules to the language
and abstracting the language from specific domains and agent behaviours.

The language in the latter form can be considered as lightweight enough for its
use in different kinds of distributed systems, and therefore it is already suitable for
describing norms. However, we still need to define a operationalisation more fitting for
practical reasoning in real-time, and such operationalisation should include a formal
grounding for the constitutive part. We have presented the monitoring architecture
from an infrastructural perspective, but we have saved the details on the formalisation
of the operationalisation for the following chapters: in Section 6.3 we will deal with the
latter issue before concentrating on the full operational semantics in Section 6.4 and
their implementation in Chapter 7.

CHAPTER

Formalising regulative and
constitutive norms

‘Take nothing on its looks; take everything on
evidence. There’s no better rule.’

Great Expectations
CHARLES DICKENS

Until recently, most of the work on normative environments works with norm specifi-
cations that are static and stable, and which will not change over time. Although this
may be good enough from the social (institutional) perspective, it is not appropriate
from the agent perspective. During their lifetime, agents may enter and leave several
interaction contexts, each with its own normative framework. Furthermore they may
be operating in contexts where more than one normative specification applies. So we
need mechanisms where normative specifications can be added to the agents’ knowl-
edge base at run-time and be practically used in their reasoning, both to be able to
interpret institutional facts from brute ones (by using constitutive norms to, e.g. de-
cide if killing a person counts as murder in the current context) and to decide what ought
to be done (by using regulative norms to, e.g. prosecute the murderer). Our proposal
is to use production systems to build a norm monitoring mechanism that can be used
both by agents to perceive the current normative state of their environment, and for
these environments to detect norm violations and enforce sanctions. Our basic idea is
that an agent can configure, at a practical level, the production system at run-time by
adding abstract organisational specifications and sets of counts-as rules.

In our approach, the detection of normative states is a passive procedure consist-
ing in monitoring past events and checking them against a set of active norms. This
type of reasoning is already covered by the declarative aspect of production systems, so
no additional implementation in an imperative language is needed. Using a forward-

85

86 Chapter 6. Formalising regulative and constitutive norms

chaining rule engine, events will automatically trigger the normative state - based on
the operational semantics - without requiring a design on how to do it.

Having 1) a direct syntactic translation from norms to rules and 2) a logic imple-
mented in an engine consistent with the process we want to accomplish, allows us to
decouple normative state monitoring from the rest of the agent reasoning, and thanks
to this decoupling we can develop a norm monitor that can be used both by agents in
the system to keep track of their normative situation, and by the institution to enforce
norms. The initial set of rules we have defined is the same for each type of agent and
each type of organisation, and the agent will be able to transparently query the current
normative state at any moment and reason upon it. Also this decoupling helps building
third party/facilitator agents capable of observing, monitoring and reporting normative
state change or even enforcing behaviour in the organisation.

In this chapter we present a formalism for the monitoring of both regulative (deon-
tic) and substantive (constitutive) norms based on a reduction from deontic logics to
Linear Temporal Logic. More concretely, in Section 6.1 we propose an operationalisation
of constitutive rules, Section 6.3 introduce a solution for dealing with norm instances,
and Section 6.4 shows our operational semantics for regulative rules.

6.1 CONSTRUCTING SOCIAL REALITY

As already discussed in Section 1.3, there is a trend in service-oriented architectures to
use coordination mechanisms in a purely hardcoded way. On the other hand, in many
attempts of properly implementing regulated complex systems, organisational spec-
ifications are generally too abstracted from actual practice [Aldewereld et al. 20103;
Dignum and Vazquez-Salceda 2005; Dignum 2004]. This creates a distinct gap be-
tween the ontology of the organisation (containing abstract concepts such as “means
of transport") and the ontology of the implementation (containing concrete concepts
such as “trucks"; often domain and/or implementation dependent).

Therefore, there is a conflict in the way regulation is handled by the different per-
spectives. Normative abstractions bring increased stability over time and, thanks to
effective separation of concerns, higher flexibility. However, because norms are usually
seen as too abstract, it is difficult to relate abstract concepts of the design level to con-
crete actions and events of the implementation level. In this section we will show how
to use constitutive (counts-as) rules, as defined in Section 2.1, to help bring closer both
levels of abstraction.

In this section, we will use an example from one of the ALIVE Project use cases.
In Netherlands, there is a nation-wide set of procedures for crisis management exists
called GRIP (Gecoordineerde Regionale Incidentbestrijdings Procedure, Coordinated Regional
Incident-Management Procedure). These procedures define the appropriate response
to a crisis in terms of the required coordination, control, and flow of information based
on the severity of the disaster. There are 4 levels, where GRIP-1 is the lowest, e.g., a
large car accident or a small local fire, and GR1P-4 is the highest, e.g., a terrorist attack
or large-scale flooding. These kinds of contexts require the ability to reason about
different links between the abstract organisational concepts and concrete concepts used

6.2. The different meanings of constitutive rules 87

in practice (e.g., would scaling from one GRIP level to another provide additional means
to solve the crisis).

6.2 THE DIFFERENT MEANINGS OF CONSTITUTIVE RULES

In Section 2.1 and Section 3.1 we already discussed that in [Searle 2009] counts-as
rules are the foundation of institutions, and thus can effectively constitute social reality.
Counts-as rules add institutional meanings to brute (ontologically objective) facts.The
use of counts-as rules as a means to link abstract with concrete concepts in MAS has
already been explored [Aldewereld 2007; Grossi 2007; Grossi et al. 2006]. An special
case of proposal is [Jones and Sergot 1996], in which counts-as rules can be seen as
subsumption relations:

“There are usually constraints within any institution according to which certain states of affairs
of a given type count as, or are to be classified as, states of affairs of another type.” [Jones
and Sergot 1996]

This is one of several meanings associated to counts-as rules: the classificatory view
[Grossi, Meyer, and Dignum 2008].

One problem of counts-as rules seen as classificatory rules applied to distributed
systems is that counts-as rules allow agents to reason about the links between abstract
and concrete concepts (the ~; and ~, parts of the rule, respectively) based in a certain
context (the C part of the rule), but if the meaning of such concepts or the contexts
themselves change over time there are scenarios where problems may arise, such as
our crisis management use case.

For example, the fact that an army truck counts-as a means of public transport is not
always true, but only in the context of a large scale evacuation being carried out. In fact,
it can be one of the counts-as rules that defines what a large scale evacuation is, e.g. the
fact that army trucks are being used means that the evacuation must be a large-scale
evacuation.

In this example we can see the other faces of counts-as rules: the face of a counts-
as rule declaring something being constituted, on one hand, and the face of some event
constituting a context [Grossi, Meyer, and Dignum 2008].

Scenarios such as crisis management, in which roles play an important part, counts-
as rules are very important. They allow to effectively separate the high-level specifica-
tion, e.g. organisational structure and regulative rules, while allowing particular low-
level details to be constantly changing. For example, agents should know that army
trucks are not available as means of transport when a burst water pipe floods a street,
but are available when the context becomes that of a large scale evacuation after a dam
has been breached.

We argue then that a system using counts-as rules should take into account not only
the classificatory interpretation, but all of them. In order to do that we will treat consti-
tutive contexts as first-class objects of our design, and use set relations to implement
the dynamics of the counts-as various aspects.

88 Chapter 6. Formalising regulative and constitutive norms

6.2.1 Representing counts-as rules

As mentioned in Chapter s there is a need to explicitly represent the relations between
the abstract and concrete concepts which can be used by agents in their reasoning.
Moreover, since these relations between concepts are dependent on the context in
which that relation is evaluated, the definition of the context of those relations needs
to be explicit as well. This can be done with counts-as statements, which have three
different readings, summarised in Table 6.1 [Grossi, Meyer, and Dignum 2006].

“It is always the case that large scale
fires count as happenings with severe conse- | Classificatory
quences to the general safety"

“In normative system I" large scale fires count
as disasters"

“In normative system I', happenings with se-
vere consequences to the general safety count | Constitutive
as disasters"

Proper Classificatory

Table 6.1: Three notions of counts-as.
Y

In this table, based on our use case, we can find three counts-as statements which
provide different semantics. The first statement is a universal classification, whereas
the second statement defines a contextual classification. The third statement provides
a meaning that is not found in the other two: there is social reality being constituted,
because the rule is defining a context in which this counts-as rule will hold.

Counts-as has the ability to change the world, not in the sense that it affects on-
tological objectivity — physical reality; it makes no sense to express that “children of
the age of 2 counts-as writers”, since 2-year old children are physically unable to write.
Stating it does not make them able to. Instead, counts-as adds institutional seman-
tics to ontologically objective facts. Counts-as rules does not change what people can
or cannot do physically, but it does change what people are allowed or entitled to do
institutionally.

6.2.2 Agent reasoning with Counts-as rules

In complex scenarios such as in crisis management, the meaning of the concrete events
may vary from context to context. In the GrRIp-1level - e.g. a car crash — the meaning of
the institutional fact sufficient coordination means something different than in a GR1P-3
level situations — e.g. a flooding. While in the GR1p-1 level people can verbally com-
municate to coordinate the efforts of the different parties involved — police, medics,
firemen — counts as sufficient coordination, in more pressing situations a larger coordina-
tion structure is required. The manner in which the coordination is managed differs
between these scenarios: whereas in the car crash the orders can be done verbally be-

6.2. The different meanings of constitutive rules 89

tween parties, coordinating in a large scale flooding requires some form of recordable
communication channel.

Therefore, it is clear that the existence of consitutive rules affect the way agents
behave. Consider, for example, the following norm: Crisis handlers need to inform their
superiors through adequate measures. This norm is abstract in its description that crisis
handlers - e.g., police officers or firefighters — need to use the appropriate channels to
inform their supervisor. In a simple scenario, like the car accident mentioned earlier,
a simple verbal ok to the coordinator on site will suffice. However, in more complex
situations, it might be required to keep a log of all communication between the parties
involved and a more complex action, e.g. acknowledging orders from your superior via
a PDA might be required.

In the GRrR1P-1level, agents can choose between informing their superiors via a verbal
acknowledgement or using their PDA to acknowledge the orders given. Either of these
events can be classified as doing an in form action. Subsequently, it can be derived that
doing an in form action makes the agent fulfill the norm. In the GR1P-4 scenario, how-
ever, this is not the case. While a verbal ok to your superior still counts-as an in form,
the norm specifies that all communication should be traceable, which the verbal inform
is not. The normative counts-as relation between the actions and whether the norms
are fulfilled has changed in this scenario, and the agents should adapt accordingly.

Note that the classifications on the lower level (between events and actions) can
also dynamically change in a domain. While in our current example the verbal ok does
not count as a traceable inform, there are contexts where that event would count as
that kind of action, e.g., when the verbal communication is overheard by a trustable
third-party.

In short, the links between the abstract and concrete parts of counts-as rules explicit
allow the agents to reason about different contexts and changing contexts. By changing
contexts, the normative (deontic) status of the agents changes. This enables expanding
the reasoning of the agents by allowing them to find other means to reach their goals.
Having an explicit representation of such links not only helps bringing together the
levels of abstraction, but also give entity and meaning to the different context and allow
reasoning about the dynamics of pertaining to certain contexts.

In our crisis management scenario, an agent might change the context from being
a local incident to a regional disaster by starting to communicate through a central
control unit. This choice of communication implicitly involves other parties in the
disaster which might constitute different counts-as rules and possibly different norms.

6.2.3 Handling of dynamic contexts

We have seen in this chapter that the constitutive counts-as rules define the social con-
text in which the counts-as holds. Generating a static representation triggering rules
for the dynamics of contexts from constitutive specification, taking into account the do-
main of the variables being involved, could prove unbearable at a computational level.
For example, in the case where an agent wants to decide whether a scale-up from GRIP-
2 to GRIP-3 is required. To deal with this inefficiency at runtime, we consider contexts

90 Chapter 6. Formalising regulative and constitutive norms

Figure 6.1: Context subsumption.
a

to only have their unique counts-as rules (the rules that are not part of any other con-
text). But this requires a proper handling of the occurrence of context subsumptions,
i.e. context A being sub-context of context B; and context overlap, i.e. a non-empty
intersection between the scopes of context A and B.

Any domain contains a number of social contexts defined by constitutive counts-as
rules as mentioned above. These constitutive counts-as rules define the classifications
that only hold for that context. Global classifications are considered to be part of the
universal context, which subsumes each defined social context (i.e., all defined contexts
are a sub-context of the universal context).

To deal with subsumed contexts and to allow for quick reasoning about what makes
contexts unique, we limit the counts-as rules in a context to only those rules which are
not contained in any of its parent-contexts. Then, by using context inheritance relations
we specify that all the counts-as rules that hold in a context are those contained in
its specification and any contained in the specification of its parents. Figure 6.1 shows
the subsumption of context Cy by context C}; for instance, the social context of the
GRIP procedures (C2) being a sub-context of the social context of crisis management
organisations (C7). This basically means that the worlds in the context of GRIP are a
‘refinement’ of the worlds in the context of crisis management organisation; that is to
say, these worlds adhere to both the classifications made by the parent context as well
as to the classifications specified by the specific GRIP scenarios. Therefore, in a world
in the social context of crisis management organisation, all counts-as rules of Cy/ apply,
but in worlds in the social context of GRIP apply both the counts-as rules from C/ and
Cy. It is then easy to see that what makes the GRIP context different from the global
context by looking at just the rules specified in C}.

6.3. Dealing with norm instances 91

Figure 6.2: Context overlap.
Y

Similarly, we can deal with overlapping contexts. Take, for example, the different
GRIP-levels; each are a specification of the crisis management situation at a different
level of severity, but they all contain elements that remain the same between them;
e.g., ambulances counts-as means of evacuation in both Grip-2 and GRIP-3. There
are, however, distinctions between the separate levels as well; e.g., army trucks count-
as means of evacuation only in GRIP-3, not in GRIP-2. In Figure 6.2 it is visualised
how contextual descriptions for C; and C5 are split: a) a new shared, parent context
(shown as Cig2 in the figure) that contains all counts-as rules that are shared between
contexts Cy and C5, b) two distinct sub-contexts (shown as Cy/ and Cy in the figure)
which contain the counts-as rules that make each original context distinct.

By this split it now becomes fairly easy to determine the differences between con-
texts C7 and Cy: one looks at the specific rules for each in Cy/ and Cy, respectively.
Similarly, it is easy to determine the similarities between contexts C; and Cs by look-
ing at their shared parent-context Cg.

Using this manner of reasoning with context overlap and context subsumption, we
implemented the aspects of counts-as which are described in Section 6.2. However,
we first look at how to implement norms with a production system in general in Sec-
tion 7.3.1.

6.3 DEALING WITH NORM INSTANCES

A relevant issue already discussed in Section 2.1 that is somehow missing in general in
the literature is a clear separation between an abstract norm and a particular (contex-
tual) instantiation of the norm. This problem was already discussed by Abrahams and
Bacon in [Abrahams and Bacon 2002]: “since propositions about norms are derived from the
norms themselves, invalid or misleading inferences will result if we deal merely with the propositions

92 Chapter 6. Formalising regulative and constitutive norms

rather than with the identified norms’ that make those propositions true or false”. This issue is
not banal, as it has implications on the operational level: in order to properly check
norm compliance, norm instantiations have to be tracked in an individual manner, case
by case.

> deleted

Figure 6.3: Norm lifecycle
EY

We find useful, at this point, to stress the fact that the lifecycles of a norm, and of
a norm instance, should be differentiated because they are different in essence. The
lifecycle of a norm (see Figure 6.3) deals with its validity in the normative system: a
norm is in force when it can be fully activated, monitored, and enforced; in transition
when it is being removed and cannot be activated anymore, but the effects of past
activations have to be tracked until their end; and deleted when the history of the norm
is to be kept but it can have no further effect on the normative system. Therefore, such
lifecycle is related to the concepts of promulgation, abrogation and derogation, out of
the scope of this thesis®. On the other hand, the lifecycle of a norm instance deals with
the fulfilment/violation of each particular instance.

The concept of norm instance lifecycle has been treated by different authors, e.g.
[Abrahams and Bacon 2002; Cardoso and Oliveira 2010; Fornara and Colombetti 20009;
Oren et al. 2009], but with no real consensus. Taking those interesting elements that
would allow the management of norms with the concepts of activation, maintenance,
fulfilment and reparation, a suitable norm lifecycle would be similar to the one based on
the automaton depicted in Figure 6.4. A norm instance gets activated due to a certain
activating condition and starts in an (A)ctive state, but if at some point a certain main-
tenance condition is not fulfilled, the norm instance gets into a (V)iolation state. If the
norm instance is (A)ctive and a certain discharge condition is achieved, the norm gets
(D)ischarged*. Usually reparations are not treated explicitly, but in our proposal we add
the concept for completeness. If a norm instance is (V)iolated, fulfilling a reparation
condition can bring it back to the (A)ctive state, but if the discharge condition occurs

'From now on, we will denote such identified norms as norm instances.

*This diagram, as well as ones that will appear later in the chapter, follows the standard notation of
the state diagrams, where the arrow pointing from anywhere indicates an initial state and a double circle
indicates a final state.

3Promulgation, abrogation and derogation of norms in a normative monitor are the main research
issue that is tackled by Ignasi Gémez-Sebastia in his PhD thesis, which will be presented in January 2016.
In the meantime the interested reader can check [Goémez-Sebastia and Alvarez-Napagao 2012].

*Note here that we assume the discharge condition to eventually happen.

6.4. Formal Semantics 93

while violated, only by fulfilling the same reparation condition (VD state) can the norm
instance be (D)ischarged. It might be the case that a (V)iolated norm instance never
gets repaired, so for safety we use a timeout condition® to make sure the norm instance
is not alive forever and thus mark those permanent violations as (F)ailures.

S
-

Figure 6.4: Norm instance lifecycle with reparation and timeout
handling

. 8

Once there is a norm life-cycle the question to answer is how to deal with it from an
operational perspective. Abrahams and Bacon [Abrahams and Bacon 2002] solve this
problem by means of occurrences of the predicates contained in the deontic operator,
but there are cases in which this can be insufficient, e.g., when the obligation defines a
deadline or its instantiation depends on contextual information. More recently, some
works have been advancing in the direction of tackling this issue. For example, by
treating instantiated deontic statements as first-class objects of a rule-based language
[Cardoso and Oliveira 2009; Governatori 2005]. However, as these deontic statements
are already implicitly identifying the norm instance, there is no explicit tracking of
which elements of the domain are involved in fulfilling or violating. Other approaches
declare the norm only at the abstract level and the tracking of the norm instance, and
implicitly of the norm instance lifecycle, is purely done at the operational level [Alvarez-
Napagao et al. 2011; Criado et al. 2010; Oren et al. 2009].

6.4 FORMAL SEMANTICS

In this section we define the semantics of institutions as the environment specifying
the regulative and constitutive norms and then discuss the formal semantics of our
regulative framework. The results of this formalisation will then be used in Chapter 7 to
describe the details of how an institution evolves over time based on incoming events,
and how this impacts the monitoring process.

Through the rest of this chapter, we will use as an example the following simplified
traffic scenario:

SThe timeout condition is evaluated as starting at the point of time of violation.

94 Chapter 6. Formalising regulative and constitutive norms

1. A person driving on a street is not allowed to break a traffic convention.
2. In case (1) is violated, the driver must pay a fine.

3. In a city, to exceed sokmh counts as breaking a traffic convention.

6.4.1 Preliminary definitions

In this section, we present a proposal for a deontic logic for support for norm instanti-
ation via obligations parametrised by five states (conditions).

For the purpose of this formalization, we assume the use of a predicate based propo-
sitional logic language £ with predicates and constants taken from an ontology O, and
the logical connectives {—, vV, A}. The set of all possible well-formed formulas of L is
denoted as wf f(Lp) and we assume that each formula from wf f(Lo) is normalised in
Disjunctive Normal Form (DNF). Formulas in wf f(Lp) can be partially grounded, if
they use at least one free variable, or fully grounded if they use no free variables, i.e.
only predicates and constants.

In this chapter we intensively use the concept of variable substitution. We de-
fine a substitution instance © = {x; «+ t1,z9 « to,...,x; < t;} as the substitution
of the terms t;,ts,...,t; for variables xi,xz9,...,x; in a formula f € wff(Lp). Thus,
O(f(z1, 72, ...,7;)) = f(t1,t2,....t;). We will denote as 9, r¢(c,,),s) the set of all possi-
ble substitution instances containing the variables in wf f(Lo) and the terms in S.

We denote the set of roles in a normative system as the set of constants R, where
R C O, and the set of participants as P, where each participant enacts at least one role
according to the ontology O.

As our aim is to build a normative monitoring mechanism that can work at real time,
special care has been made to choose a norm language which, without loss of expre-
siveness, has operational semantics that can then be mapped into production systems.
Based in our previous work and experience, our definition of norm in an extension of
the abstract norm defined in the formalisation in Section 5.1.4 taking into account the
ALIVE extensions of repair and timeout presented in Section §.2.1:

Definition 9 (Norm) We define a norm n as a tuple n = {(a, f2, fM, fP fE timeout),
where:

e « is the agent obliged to comply with the norm,
o f\is the activating condition of the norm,

o M is the maintenance condition of the norm,

fD is the deactivation condition of the norm,

fE s the repair condition of the norm,

timeout is a fully-grounded formula that represents the upper-bound waiting condition for
the reparation of a violation, taken into account of only after a violation and not before, and

S MR R timeout € L.

|

6.4. Formal Semantics 95

In order to create an optimal norm monitor it is important to know which norms
are active at each point in time, as only those are the ones that have to be traced (in-
active norms can be discarded from the monitoring process until they become active
again). The activation condition f specifies when a norm becomes active. It is also the
main element in the norm instantiation process: when the conditions in the activating
condition hold, the variables are instantiated, creating a new norm instance®. The deac-
tivating condition fP defines when the norm becomes inactive. The maintenance condition
M defines the conditions that, when no longer hold, lead to a violation of the norm.
Finally, the repair condition fF specifies when a norm instance stops being violated, as
long as the timeout condition is not activated while the violation holds.

An example of a norm for the traffic scenario ("A person driving on a street is not allowed
to break a traffic convention") would be formalised as follows:

nl = (Ag,
{enacts_role(Ag, Driver) A driving(Ag)},
{=crossed-red(Ag, L)},
{~driving(Ag)},
{fine-paid(100)},
time(500))

The activating condition states that each time an event appears where an individual
enacting the Driver role drives (driving), then a new instance of the norm becomes
active; the maintenance condition states that the norm will not be violated while no
traffic convention is violated; this norm has no deadline, it is to apply at all times an
individual is driving; the norm instance deactivates when the individual stops driving’;
the target of this norm is that we want drivers not breaking traffic conventions; finally
the subject of the norm is someone enacting the Driver role.

It is important to note here that, although our norm representation does not ex-
plicitly include deontic operators, the combination of the activation, deactivation and
maintenance conditions is as expressive as conditional deontic statements with dead-
lines as the ones in [Dignum et al. 2004]. It is also able to express unconditional norms
and maintenance obligations (i.e. the obligation to keep some conditions holding for a
period of time). To show that our representation can be mapped to conditional deon-
tic representations, let us express the semantics of the norm in definition in terms of
conditional deontic statements.

Definition 10 (Deontic interpretation) The deontic interpretation of a norm n, is:

Of}fgtimeout([a stit : fé\/l] j an | frj?)

®One main differentiating aspect of our formalisation is that we include variables in the norm repre-
sentation and we can handle multiple instantiations of the same norm and track them separately.

7Although the norm is to apply at all times an individual is driving, it is better to deactivate the norm
each time the individual stops driving, instead to keep it active, to minimise the number of norm instances
the monitor needs to keep track at all times.

96 Chapter 6. Formalising regulative and constitutive norms

|

The syntax of the operator proposed is similar to the obligation operator from other
deontic logics, such as dyadic deontic logic and semantics of deadlines, but with im-
portant differences. While the < used for f* < timeout corresponds to the deadline
semantics found e.g. in [Dignum et al. 2004] or [Governatori et al. 2007] (if timeout
occurs, there is a permanent violation), the < used in [« stit : fM] < fP should rather
be read as “[a stit : fM] should hold at all times at least until f”. Also, the conditional
notation | used in dyadic deontic logic, which not always has clear semantics in terms
of temporality, in the case of the operator proposed O(A|B) should be read as “start-
ing the moment B happens, A should happen” rather than simply “given B, A should
happen”s.

Therefore, the expression shown in Definition 10 is informally read as: if at some point
£ holds, agent o is obliged to see to it that fM is maintained until, at least, {2 holds; otherwise,
avis obliged to see to it that fF before timeout. Note that in this informal reading we are not
dealing with norm instances yet. How we address this issue, along with the semantics
of this obligation operator, will be explained in Section 6.4.2. Following the example:

O fine-paid(100)<time(500) ([Ag stit : mcrossed-red(Ag, L)] X ~driving(Ag) | driving(Ag))

informally read as: if at some point Ag is driving, Ag is obliged to see to it that no red light is
crossed until, at least, Ag is not driving anymore; otherwise, Ag has to pay a fine of 100 before the
time is s00. The semantics of this operator are presented in the rest of this section.

We define the state of the world s; at a specific point of time ¢ as the set of predicates
holding at that specific moment, where s; C O, and we will denote S as the set of
all possible states of the world, where S = P(0). We will call expansion F(s) of a
state of the world s as the minimal subset of wf f(Lo) that uses the predicates in s in
combination of the logical connectives {—, vV, A}.

One common problem for the monitoring of normative states is the need for an
interpretation of brute events as institutional facts, also called constitution of social
reality[Grossi 2007]. The use of counts-as rules helps solving this problem. Counts-as
rules are multi-modal statements of the form [c](y1 — 72), read as “in context ¢, 1
counts-as v2”. In this thesis, we will consider a context as a set of predicates, that is, as
a possible subset of a state of the world:

Definition 11 (Counts-as rule) A counts-as rule is a tuple ¢ = (1,72,), where 1,72 €
wff(Lo),and s C O. |

A set of counts-as rules is denoted as C. Although the definition of counts-as in
[Grossi 2007] assumes that both ; and ~92 can be any possible formula, in our frame-
work we limit 72 to a conjunction of predicates for practical purposes.

®In some works in the literature, this is interpreted as “given B and as long as B happens, A should
happen”, while in other works it is interpreted in a closer way to our reading

6.4. Formal Semantics 97

Definition 12 (Institution) Following the definitions above, we define an institution as a tu-

ple of norms, roles, participants, counts-as rules, and an ontology:
I=(N,R,P,C,0) O

An example of I for the traffic scenario would be formalised as follows:

:={(Ag, {enacts_role(Ag, Driver) A driving(Ag)}, {—crossed-red(Ag, L)},
{=driving(Ag)}, { fine-paid(100)}, time(500))}

:={Driver}, P :={Person, }

:={(exceeds(D,50),traf fic_violation(D),is_in_city(D))}

:={role, enacts_role,driving,is_in_city,
exceeds,traf fic_violation, paid_fine,
Persony, role(Driver), enacts(Persony, Driver)}

ca=m =Z

6.4.2 Norm fulfillment and norm instance fulfillment
If we have to take into account the following issues®:

1. deontic statements do not express a norm, but rather the existence of a norm
[Walter 1996]; and

2. in order to check the compliance of a norm, its particular instances must be
tracked [Abrahams and Bacon 2002],

then we need to define the compliance of a norm based on the fulfillment of each of its
instantiations. That is, a norm has been complied up to a certain time ¢ if, and only if,
each one of the instantiations triggered in times ¢; < ¢t have not been violated, where
violated means that there has been —f before £ ever happening.

In order to work with instances, we define a norm instantiation. A norm is defined in
an abstract manner, affecting all possible participants enacting a given role. Whenever
a norm is active, we will say that there is a norm instance n? for a particular norm n and
a substitution instance 6.

Definition 13 (Norm instance) Given a norm n and a substitution set 6, we define a norm
instance n? as:
n? = (a, 0(f), 0(fM),0(fP), 0(fF), timeout), where:
o O(f2)is fully grounded, and
O(fM), 0(fP), 6(fF) may be fully or partially grounded.
O

The reason that 0(fM), 0(fP), 0(f) may be partially grounded is that the sub-
stitution instance that instantiates the norm - that is, # such that 6(f2) holds - is
considered in our model to be the sufficient and necessary set of substitutions needed
to fully ground f/'. It can be the case that the set of variables used in f, fE and/or
[P is larger than the arity of . Let us suppose, for example, that the norm should be

9We have discussed these issues in more detail in Section 6.3.

98 Chapter 6. Formalising regulative and constitutive norms

instantiated at all times while it is in force, regardless of any contextual condition: in
that case, f! = T. Therefore, we have to assume that a substitution instance ¢’ for f,
fEor fP should fulfill: 6 C ¢'.

6.4.3 Semantics of LTL

In Chapter 4, we motivated the need for a formalisation allowing for grounding in both
monitoring and planning contexts to allow both institutional and individual reasoning
towards norms, in a way that the products of both kinds of reasoning are coherent and
consistent between themselves at a formal (deontic) level.

While in Section 2.2 we saw that monitoring (verification of compliance) is usually
formalised in different ways at distinct levels of complexity, the state of the art in plan-
ning is fairly more restricted. Popular high-level formalisms such as STRIPS, SOAR or
HTN [Nau et al. 2003; Newell, Rosenbloom, and Laird 1987; Nilsson and Fikes 1970]
are not expressive enough to deal with complex constraints mandatory for practical
deontic reasoning such as temporal predicates. PDDL solves this issue [Fox and Long
2009; Gerevini and Long 2005] by explicitly adding the Linear Temporal Logic (LTL)
operators.

In the field of research, PDDL is the most common language used in both formal-
isations and implementations, being the reference for benchmarks [Coles et al. 2012],
and the capability of using temporal operators will prove decisive in order to build our
formalisation. However, as we will see in Section 6.4.4, using LTL imposes some hard
constraints. Unfortunately, there are no practical planners using temporal logics more
complex than LTL such as CTL*, so these are constraints we will have to deal with. This
is an approach also taken in related proposals in the context of socio-technical systems
[Aldewereld, Dignum, and Meyer 2007; Riemsdijk et al. 2015].

In this section, we briefly present the main concepts of LTL needed to build our
formalisation upon. LTL is built up from a finite set of propositional variables AP, the
logical operators — and V, and the temporal modal operators X and U. Formally, the set
of LTL formulas over AP is inductively defined as follows:

e if p € AP then p is a LTL formula;
e if ¢ and ¢ are LTL formulas then —), ¢ V 9, X1) and ¢Uv) are LTL formulas.

X is read as next and U is read as until. Sometimes, N is also used in place of
X. Other than these fundamental operators, there are additional logical and temporal
operators defined in terms of the fundamental operators to write LTL formulas suc-
cinctly. The additional logical operators, which can be derived by the primitive ones,
are A\, —, <>, true, and false. Following are the additional temporal operators.

e G for always (globally)
e F for eventually (in the future)
e R for release

e W for weakly until

6.4. Formal Semantics 99

An LTL model M = (S, R, w) consists of a non empty set S of states, an accessibility
relation # and an interpretation function 7 for propositional atoms. A full path ¢ in
M is a sequence o = sp, s1, S2, . .. such that for every i > 0, s; is an element of S and
siRs;11, and if o is finite with s,, its final state, then there is no state s, 1 in S such
that s, Rs,+1. We say that the full path o starts at s if and only if sy = s. We denote the
state s; of a full path o = s, s1, s2,... in M by o;. Validity M, s = ¢, of an LTL formula
¢ in a world state s of a model M = (S, R, 7) is defined as:

e M,sl=p & semn(p)
o M,sk=—¢ < not M,s = ¢

e M,sEopVY)y < MskEoorM,sEY
o Myo,sEXd & Moo

e M 0,5 = ¢Uy < In > 0such that
(1) M, o0, =9 and
(2) Viwith 0 <i < nitholds that M,c; = ¢

Validity on an LTL model M is defined as validity in all states of the model. If ¢ is
valid on an LTL model M we say that M is a model for ¢. General validity of a formula ¢
is defined as validity on all LDL models. The logic LTL is the set of all general validities
of L1 over the class of LTL models.

The additional temporal operators R, F, and G are defined as follows:

* ¢RYp=~(=¢ U)
e Foy=true U
e Gy =falseRyY=—-F

6.4.4 Norm lifecycle

Although LTL as a formalism is suitable enough in terms of complexity for reductions
to monitoring and planning scenarios, and therefore for practical reasoning from an
institutional or individual perspective, there are intrinsic constraints that limit the ex-
pressiveness of the framework.

More concretely, the norm instance lifecycle proposed in Figure 6.4 cannot be ex-
pressed in LTL. As proved in [Tauriainen 2006], in order to reduce an automata to an
LTL expression — and vice versa —, such automata has to be free of loops that involve
more than one state, i.e. only cycles that start and finish in the same state and involve
no second state are allowed.

This is an important constraint that prevents our model to have a loop between
the (A)ctive and the (V)iolated states. In other words, if we want to use LTL, the
lifecycle cannot have cycles that allow to go backwards. Therefore, for the purpose of
our formalisation, we propose to adopt the more straightforward lifecycle shown in
Figure 6.5.

The main difference with respect to the automata in Figure 6.4 is the handling of
violations. As there is no way back to an (A)ctive state anymore, from a (V)iolation

100 Chapter 6. Formalising regulative and constitutive norms

M timeout

I

_r.'\—-, rH

Figure 6.5: Self-loop alternating automata-based norm instance
lifecycle
=Y

state there are only two options: either to repair the norm instance and subsequently
(D)eactivate it, or mark it as a (F)ailure if it has not been dealt with for a given amount
of time. From an operational perspective, this issue can be worked around by allowing
the norm-aware system to create more instances of the same norm if an instance is
violated before a deactivation.

For an obligation to have a deontic effect, it is required that the activating condi-
tion actually happens at some future point. Additionally, either of the following three
conditions should happen:

e The activating condition never occurs so the norm never gets activated.

e Always, between the activating and deactivation condition, the maintenance

holds (reached “deactivated” state).

e Maintenance condition holds up to a point where it becomes false and then a

violation is permanently raised. In addition, the repair condition occurs later
(reached “deactivated” state) before timeout is reached.

In this way we approach most closely that the maintenance of 6(f}) causes the
—wiol(n?). Thus, the deontic effect of an obligation can be described by the causal
effect between the maintenance condition and a violation in Definition 14.

In order to give meaning to the fulfilment of a norm instance, we define a specific
operator O with similar syntax to the abstract norm operator O. Let M = {S, R, 6}
be an LTL model (using a predicate set £ for the formation of LTL formulas and with
6 as described in Section 6.4.1), T =< sq, 51, 82,... > a full path in M, and wviol(n?)
a predicate belonging to £ representing the violation of a norm instance n’, we can
establish the semantic relationship between the lifecycle of a norm instance and the
fulfilment/violation of a norm as:

6.4. Formal Semantics 101

Definition 14 (Causal semantics for the operator O)

M,m):Oé‘(ff)gtimeout([a stit H(ffiw)] = e(an) | a(f;?))
=def
M, 7 EG(—0

(¥ (0
F(6(f
[6'(

29 A —wiol(n?))v

Y A0 0/ (0(F3)YUF0" 0" (0(fP))]) A Gwiol(n?))V

) A [=wiol (n®)YU30 - =0 (0(fY)]A

(FMNU (=0 (0(fM)) A Guiol(n)A (—timeout U3 «9”(9(f,§))))])

—~

0

a

The first line of the temporal formula says that the activating condition actually
never happens and no violation is raised throughout the executional path. This case
does not cause any change in the state of the system. The second line says that there
exists some substitution for the activating condition in the future, and that always until
a substitution raises an instance of the deactivation condition, the maintenance con-
dition holds for all substitutions. No violation is raised throughout the executional
path. This case terminates the norm in a state of deactivation (D). The rest of the lines
in the formula imply that there exists some substitution for the activating condition in
the future, and that at some later point a substitution makes the maintenance condi-
tion not hold, thus raising a violation (which remains thereafter). In addition, another
substitution makes the repair condition happen at some future after the violation has
occurred but before timeout occurs. The norm terminates in a state of deactivation (D).

The failed state (F), in which the timeout has occurred without the norm having
realised the repair condition after a violation, is not described in the formula, since it
is an “unwanted” state and should be avoided.

The lifecycle defined in Figure 6.5 can be seen as an transition automaton. Transition
properties that define how the norm changes its status while events (world changes
that modify the predicates’ truthness) are occurring can be easily extracted. We are
interested in directly representing these transitions as it is useful when dealing with
monitoring of norms’ status (see Chapter 7). The four states active (A), viol (V), deacti-
vated (D), failed (F) are described in Definition 15:

Definition 15 (Norm lifecycle predicates)
M, 7 = Xactive(n®) iff M, 7 = (XO0(f2) V active(n?)) A X 0" : 0/ (0(fP))
M, 7t = Xviol(n?) iff M, 7 |= active(n®) A X A0": 0/ (0(fM))

M, = Xdeactivated(n?) iff
(M, 7 = active(n®) AX30": 0/ (0(fP))) v (M, 7 |= viol(n?) A X360 : 0'(0(£])))

M, s |= X failed(n®) iff M, s |= viol(n?) A Xtimeout

102 Chapter 6. Formalising regulative and constitutive norms

|

The first says that the norm remains in active status until there is no instance of
deactivation condition occurring. The second says that the norm moves from the active
to the viol state if there is no instance of the maintenance condition. The third says
that the norm moves from the active to the deactivated state if there is an instance of the
deactivation condition occurring and that the norm moves from the viol to the deactivated
state if there is an instance of the repair condition occurring. The last says that the norm
moves from the viol to the failed state if timeout occurs.

6.4.5 From abstract norm to norm instances

Now we have the apparatus needed to connect the fulfilment of an abstract norm and
the fulfilment of its instances, and give semantic meaning to the operator proposed in
Definition 10:

Definition 16 (Fulfilment of a norm based on the fulfilment of its instances)

M77T):Offfgtimeout([a stit : féw] = an | fr?) =def
30: M, = F(O(f:) © M, 7 = Og) <timeont ([stit : 0(f31)] 2 0(F7) | 0(f;1))

|

Informally: the abstract norm is fulfilled if, and only if, for each possible instantiation of f
through time, the obligations of the norm instances activated by f:* are fulfilled.

6.4.6 Limitations and implications from a logic perspective

The formal semantics shown in this section are focused on binding deontic logics to
our norms language for distributed systems. Special care has been taken on providing
the capability of explicitly dealing with norm instances, and Standard Deontic Logics
were not suited for that, and that is the reason of the apparent added complexity on
the formalisation.

However, in order to claim that our formalisation is deontic in nature, we need a re-
duction from our semantics to deontic logics. This reduction is provided in the form of
proofs in Appendix A. The conclusions we can get from this reduction is that for main-
tenance obligations, the translation to Standard Deontic Logics is complete. However,
this is not the case for achievement obligations, in which the D axiom (the obligation of
an action/state entails the non-obligation of the negation of such action/state) cannot
be proven. This is an issue related to what the negation of an achievement really means
from a semantic perspective. As discussed in Section A.1, while this is a problem from
a formal perspective, in practice it should not affect the outcome.

On the other hand, the reduction to Dyadic Deontic Logic is complete, except for
an open issue with the axiom K2 for which some debate is possible. For more details,
we start such discussion in Section A.3.

6.5. Conclusions 103

Another limitation is the norm instance lifecycle we use for the formalisation and
described in Section 6.3. This model is clearly inferior to the one presented in Sec-
tion 2.2.1 in terms of flexibility. The motivation of this decision was based on pragma-
tism: these formal semantics were built with both monitoring and planning as targets.
In order to be able to reduce the semantics to planning problems, LTL was the right
logic to do so.

Therefore, this is a drawback to be taken into account when analysing the semantics
of our norms. However, we consider that the results, from a practical perspective —
being able to target PDDL opens up much of the research on automated planning for
our framework — outweight this limitation.

Finally, another important issue to note is the fact that, in order to build the for-
malisation for our norm instance lifecycle, we have used a combination of LTL and
first-order logic (FOL)'°. This has been necessary due to the need for reasoning at the
first-order level both about path states (e.g. a norm is never activated if there does
not exist a state in which its activating condition holds true), and about substitution
instances in order to enable the distinction between norms and norm instances (e.g.
an activating condition may hold for a particular agent, but that does not mean that a
norm instance has to be created to the rest of the agents of the system).

The use of first-order logic operators apparently rises the complexity of our for-
malism, as 1) (most, if not all) deontic logics are, in origin, merely based on modal
logics with propositional content; and 2) first-order logic is not decidable. Regarding
1), we have tried to stay as close to deontic logics as possible with regards to the con-
tent or object of the norm by constraining the scope of its conditions to a propositional
logic-based language (as explicitly stated in 6.4.1). With respect to 2), it is important
to reiterate our intent on achieving a practical operationalisation and, therefore, decid-
ability is not a concern as long as we can reduce our formalism, in a sound way, to a
language close to the operational (and implementation) level. This will be the focus of
Chapter 7.

6.5 CONCLUSIONS

In this chapter we have seen two separate formalisations: one for constitutive rules and
the other for regulative rules. The rationale behind this separation is that both types of
rules (norms) are totally different in nature: the nature of counts-as rules is ontological
[Grossi 2007] while regulative rules are of deontic nature, with added complexity if we
are to properly include norm instances.

The combination of both kinds of rules — constitutive, regulative — effectively gives
us a formal framework to interpret and understand social reality in the sense of [Searle
2009]. In the next chapter, we will see how both formalisations can be reduced in a
practical way into a normative monitor, in order to be used in simple computational

'°A more exhaustive formalisation of the logic encompassing both, FO-LTL, can be found at [Kroger
and Merz 2008].

104 Chapter 6. Formalising regulative and constitutive norms

components by using production systems as the implementation framework. There-
fore, this will enable the implementation of actual components - including but not
excluding both institutional (e.g. manager or police) and individual agents — capable
of transforming external events into social reality.

CHAPTER

Normative monitor

‘Never ask an Al system what to do. Ask it to tell you
the consequences of the different things you might
do.’

The Robot and the Baby
JouN McCARTHY

In the previous chapter we have presented our formalisation for the inference of so-
cial reality (constitutive and regulative norms), one which includes norm instantiation
explicitly in its formal semantics. In this chapter we will present a reduction of those
semantics into production systems, and show how this reduction is implemented in a
rule engine such as DrRoOOLS.

7.1 NORMATIVE MONITOR

From the definitions introduced in Section 6.4.1, a Normative Monitor will be composed
of the institutional specification, including norms, the current state of the world, and
the current normative state.

In order to achieve an initial set rules, we need to establish a grounding for our
formalism. First of all, we will define the lifecycle of a norm instance according to
the LTL formalisations of the previous chapter. We will show how to transform the
paths into transition rules, translating the principles of change in normative states
into transition rules, effectively reducing our formalisation to a rule-based operational
semantics.

In order to track the normative state of an institution at any given point of time, we
assume the existence of a knowledge base, in which we will define four sets represent-
ing each of the lifecycle states: an active set AS, a violated set V'S, a deactivated set
DS, and a failed set F'S, each of them containing norm instances in the form of tuples:

{<nl~, 9j>, <ni/, 9j/>, veuy <ni//, 9j//>}.

105

106 Chapter 7. Normative monitor

Definition 17 (Normative Monitor) A Normative Monitor My for a set of norms N is a
tuple
My = (N,AS,VS,DS, FS,S), where:

e sis the current state of the world, which corresponds to the current path state.
N is the set of norms,

neN, (n,0) € AS & M, s = active(n?)

n€ N, (n,0) € VS & M, s = viol(n?)

n € N, (n,0) € DS < M, s = deactivated(n?)

neN, (n,0) € FS & M, s |= failed(n?)

)

|

We denote I'j/, as the set of all possible configurations of a Normative Monitor
Mpy.

Definition 18 (Regulative transition rules) The Transition System 7'Sy,, for a Norma-
tive Monitor My is defined by T'Spry = (T a1y,) where
e > is a transition relation such that > C I'psy x T'azy
O

The inference rules for the transition relation > are described in Figure 7.1,
where s; stands for the current state and as, vs,ds, fs correspond to instances of the
AS, VS, DS, FS sets of the Normative Monitor tuple.

However, the definition above does not take into account the dynamic aspects of
incoming events affecting the state of the world through time. To extend our model
we will assume that there is a continuous, sequential stream of events received by the
monitor:

Definition 19 (Event) An event e is a tuple e = («, p), where
e o€ P! and

e p € Sandis fully grounded.
g

We define E as the set of all possible events, E = P(P x S). Additionally, we can
also add at this point the semantics for dynamic tracking counts-as rules activation and
detection as defined in Section 6.2.1:

Definition 20 (Regulative and constitutive transition rules) The Labelled Transi-
tion System for a Normative Monitor M with constitutive and input capabilities is defined
by (T, E,>) where

o F isthe set of all possible events e = («, p)

'av is considered to be the asserter of the event. Although we are not going to use this element in this
document, its use may be of importance when extending or updating this model.

7.2. Formal reduction to production systems 107

Norm instance activated:

O(fa)V (n,0) €as —0(fr)

My > (N,asU{(n,0)},vs,ds, fs,sit1) (7.1)
Norm instance violated:
(n.0) € as ~0(5) 0
Mn & (N, as — {(n,0)},vs U{(n, 6)},ds, f5, 5 11) ’
Norm instance deactivated by fulfilment:
(n,0) €as__ 0(f2) (7:3)
MND<N,a8*{(n,9>},’l)s7dsu{(n,9>},f8781‘+1> .
Norm instance deactivated by reparation:
(n,0) €vs _ 0(fa) (.0)
MND<N7a57v’57{<n79>}adsu{<n7€>}af575i+1> ’
Norm instance failed:
(n,0) € vs timeout (7.5)

My > (N,as,vs — {{n,0)},ds, fsU{(n,0)}, sit1)

For all cases, n € N An = (a, fi, fM, f2, fE timeout) A @ C s, is also part of the transition condition.

Figure 7.1: Inference rules for the transition relation >
n

e > is g transition relation such that> CT' x E x T
Od

The inference rules for the transition relation > are depicted in Figure 7.2. It is
important to note that this set of transition rules are totally expanded from the defini-
tions, in order to make the grounding to production systems in the next section more
obvious. For the same reason, in this case we have assigned labels to each transition
in an explicative way: ni for norm instantiation, nv for norm instance violation, and so
on.

7.2 FORMAL REDUCTION TO PRODUCTION SYSTEMS

In our approach, practical normative reasoning is based on a production system with
an initial set of rules implementing the operational semantics described in Chapter 6.
Production systems are composed of a set of rules, a working memory, and a rule in-
terpreter or engine [Davis and King 1975]. Rules are simple conditional statements,
usually of the form IF a THEN b, where a is usually called left-hand side (LHS) and b is
usually called right-hand side (RHS). Our basic idea is that an agent can configure the
production system by adding abstract organisational specifications and sets of counts-
as rules.

108 Chapter 7. Normative monitor

Event processed:

€i = <a,p> (7 6)
({(i,s,as,vs,ds, fs),€:),ei11) e ({i,s U{p},as,vs,ds, fs), eit1) ’
Counts-as rule activation:
El@vaf S F(S)73<’7177258i> S 07 Si g s A 9(71) = f/\@(’YZ) ¢ S (7 7)
<<<N7 R7 Pa Ca O>a S, as, vs, dS, f8>, 6> DCG <<<N7 Ra P7 Cv O>v sU {6(72)}3 as,vs, dS, fS), 6> '
Counts-as rule deactivation:
30,3f € F(s), 3 m1,72:81) €C,8i L sAO(1) = fFAO(12) €5 (7.8)
<<<N7 Ra P7 C? O),s,as,vs,ds,fs),e) ‘>Cﬂ <<<N7 Ra P7 C? O>7S - {@(72)},as,vs,ds,fs>,e> '
Norm instantiation:
In = (o, f2, M, P FR timeout) € N A—=3n' € N,©) ¢ is A30,3f" € F(s), f = O(f) (7.0)
<<<N7 R7 P7 C7 O>7 87 as? /US’ d87 fs>’ 6) Dnl <<<N7 R’ P? C? O>7 87 as U {<n’ @>}7 US’ ds’ fs>7 e> 7'9
Norm instance violated:
In = (o, f21, M FP) £ timeout) € N A (n,0) € as A (n,©) ¢ vsA
—(30,3f € F(s), f'=O0(fM)nO CO) (7.10)

{{{N,R, P,C,0), s,as,vs,ds, fs),e) >nv ({{N, R, P,C,0), s,as — {{n,0")},
vs U {(n,©")},ds, fs),e)

Norm instance deactivated by fulfilment:

In = (o, f2, M, fP FEB timeout) € N A (n,0') € as A30,3f € F(s), f = 0(fPYne ce
({{N,R, P,C,0),s,as,vs,ds, fs),e) >ns ({({N,R, P,C,0),s,as — {(n,0") },vs,ds U (n, fs,0")), e)
(7.11)

Norm instance deactivated by reparation:

In = (o, £, M, FP) FE timeout) € N A (n,0) e vs N3O, 3f € F(s), f =0 (ffyne’ CO
<<<N7 R: P7 07 O),s,as,vs,ds,fs),e) Bar <<<N7 R7 P7 07 O>,S,GS,US - {<’I’L,@>},d5 U {<TL, @>}7f5>7€>
(7.12)

Norm instance failed:
_ A M 4D 4R .
In={a, fi, fa' [, [n,timeout) € N A (n,0) € vs A (n,0O) & fs A timeout

(({N, R, P,C,0),s,as,vs,ds, fs),e) >ns (((N, R, P,C,0),s,as,vs — {(n,0)},ds, fsU{(n,0)}),e)
(7.13)

Figure 7.2: Inference rules for the transition relation >
By

The implementation of rule-based norm operationalisation has already been ex-
plored in previous research [Garcia-Camino, Noriega, and Rodriguez-Aguilar 200s;
Paschke, Dietrich, and Kuhla 2005; Vazquez-Salceda and Alvarez-Napagao 2009], but
these proposals are either not yet implemented in a real system or not using a high
enough level of norm abstraction. Some recent approaches [Garcia-Camino et al. 2009]
define specific norm-oriented programming languages that treat norms as rules of a
production system. However, such an approach requires for an special production sys-
tem.

7.2. Formal reduction to production systems 109

We solve this issue by combining the normative language presented in Section 5.1
with a reduction to a representation with clear operational semantics based on the
framework in Section 6.4. This framework uses logic conditions that determine the
state of a norm (active, fulfilled, violated). These conditions can be expressed in first-
order logic and can be directly translated into LHS parts of rules, with no special adapta-
tion needed. The implementation of the operational semantics in a production system
to get a practical normative reasoner is thus straightforward. This allows agents for dy-
namically changing its organisational context at any moment, by feeding the production
system with a new abstract organisational specification.

7.2.1 Reduction

In order to formalise our Normative Monitor as a production system, we will need
to define several predicates to bind norms to their conditions: activation, maintenance,
deactivation, and to represent normative state over norm instances: violated, instantiated,
failure, and fulfilled. We will also use a predicate for the arrival of events: event. For the
handling of the DNF clauses, we will use the predicates holds and has_clause.

Definition 21 (Production system predicates) The set of predicates for our production sys-
tem, for an institution I = (N, R, P, C, O), is:

Pr := O U {activated, maintained, deactivated,
violated, instantiated, ful filled, event, timeout, failed,
holds, has_clause, countsas}

g

The initial working memory W.M, should include the institutional specification
in the form of the formulas included in the counts-as rules and the norms in order
to represent the possible instantiations of the predicate holds, through the use of the
predicate has_clause.

First of all, we need to have the bindings between the norms and their formulas

available in the working memory. For each norm n = (a, f2, fM, P fE timeout),
these bindings will be:

WM,, := {activation(n, f2), maintenance(n, fM),
deactivation(n, fP), timeout(n, timeout)}

As we assume the formulas from wf f(Lo) to be in DNF form:

Definition 22 (DNF clause holding true) We can interpret a formula as a set of conjunctive
clauses f = {f1, fa, ..., [z}, of which only one of these clauses f; holding true is necessary for f
holding true as well:

r .= has_clause(f, ') A holds(f',0) = 0, {holds(f,©)} 0

110 Chapter 7. Normative monitor

For example, if f = (p1(z) Ap2(y) A ... Api(2)) V... V (g1 (w) Aga(z) A ... Agj(y)), then
the initial facts to be in WM will be:

WMo := Upephas_clause(f, f') = {has_clause(f, f1), ..., has_clause(f, f2)}

Also, we have to include the set of repair norms by the use of the predicate repair,
and the counts-as definitions by the use of the predicate countsas.

Definition 23 (Initial working memory) The initial working memory W.M for an insti-
tution I = (N, R, P,C,O) is:
WMy = UreN, repair(n,n’) U

n~—~n

Un=(a,f2,£M £ £ timeoutye N WMn UWM pa UWM i UWMp) U
Uc:(w,72,3)60({Count8a3(717 Y2, 3)} U WM% U WMS)

|

The rule for the detection of a holding formula is defined as r’}c = [f] =
0, {holds(f,o)}, where we denote as [f] the propositional content of a formula f €
wf f(Lo) which only uses predicates from O and the logical connectives — and A, and
o as the substitution set of the activation of the rule. Following the previous example:

r}‘f =pi(z) Ap2(y) A ... Api(z) = 0, {holds(f1,{x,y,z})}

i = qu(w) A ga(x) Ao A giy) = 0, {holds(fz, {w, 2, y})}

Similarly as in Definition 23:

Definition 24 (Institutional reality) The set of rules R for detection of holding formulas
for an institution I = (N, R, P, C, O) is:

R = Un—(a.sp 2059 g2 timeoutyeny Ure .12,y 75) UUemn aspec(Ureq, 75) O

n

By using the predicate holds as defined above, we can translate the inference rules
described at the beginning of this chapter. Please note that the rules are of the form
p,c¢ = r,a as shown in Section 2.2.2. However, as we only need the ¢ part to create
a constraint proposition in the rules for norm instance violation and fulfillment, c is
omitted except for these two particular cases.

Definition 25 (Translated rules for the transition relation?)
Rule for event processing (7.6):
r¢ = event(a,p) = 0,{[p]}
Rule for counts-as rule activation (7.7):
7 = countsas(yi, vz, ¢) A holds(y1,©) A holds(c,®") A —holds(vz, ©)
= 0.{0([721)}
Rule for counts-as rule deactivation (7.8):
red = countsas(y1, 72, c) A holds(y1,©) A =holds(c, ") A holds(vz, ©)
= {0([721)},0

Rule for norm instantiation (7.9):

*See Figure 7.1.

7.3. Implementations 111

™ = activation(n, f) A holds(f,©) A ~instantiated(n,©) A —repair(n’,n)

= 0, {instantiated(n,©)}

Rule for norm instance violation (7.10):

r™ = instantiated(n, ®) A maintenance(n, f) A —holds(f,©®") A repair(n,n’),
ve',e' C O

= {instantiated(n, ©)}, {violated(n, ©), instantiated(n’, ©)}

Rule for norm instance fulfillment (7.11):

r" = deactivation(n, f) A instantiated(n, ©) A subseteq(©’,0) A holds(f,©’),
0 Coe

= {instantiated(n,©)}, { ful filled(n,©)}

Rule for norm instance violation repaired (7.12):

™" = wviolated(n, ©) A repair(n,n’)

= {fulfilled(n,®)}, {violated(n,®)}

Rule for norm instance violation failed (7.13):

™" = violated(n, ©) A timeout(n)

= {failed(n,©)}, {violated(n,O)} O

Definition 26 (Set of institutional rules) Following Definitions 22, 24 and 25, the set of
rules for an institution I = (N, R, P, C, O) are:
RI = R?C U {,,qh’ ,re’ Tca7 TCd, ,rnz’ Tnv’ rnd’ ,,m,r’ T,nf} 0

Definition 27 (Institutional production system) The production system PS; for an in-
stitution I will be, from Definitions 21, 23 and 26:
PS[= <P[,WM[,R[> O

7.3 IMPLEMENTATIONS

There are several production system implementations available, some of them widely
used by the industry, such as JEss, DROOLS, SOAR or PROVA. In most of these systems
rules are syntactically and semantically similar, so switching from one to the other
would be quite simple. As production systems dynamically compile rules to efficient
structures, they can be used as well to validate and verify the consistency of the norms.

A prototype of our normative reasoner has been implemented as a DRoOOLS pro-
gram. DROOLS is an open-source Object-Oriented rule engine for declarative reasoning
in Java [JBoss Drools Business Rules, http://www.jboss.org/drools], supported by the JBoss
Community. Its rule engine is an implementation of the forward chaining inference
Rete algorithm. Concepts are imported from standardised Description Logic owL-DL
ontologies into Java objects [Zimmermann 2009]. The use of Java objects inside the
rule engine allows for an easier communication of concepts with the agent reasoning,
the core of which is also implemented in Java.

In DrROOLS we can represent facts by adding them to the knowledge base as objects
of the Predicate class. Predicates are dynamically imported from standardised Descrip-
tion Logic owL-DL ontologies into Java objects using the OWL2Java tool[Zimmermann
2009], as subclasses of a specifically designed Predicate class. The following shows an

112 Chapter 7. Normative monitor

example of the insertion of Mayor(a) into the knowledge base to express that a (rep-
resented as object obj3 of the domain) is in fact a mayor.

Object obj3 = new Object();

ksession.insert(obj3);

ksession.insert(new Mayor(obj3));

In DrROOLS we can represent facts by adding them to the knowledge base as objects
of the class Predicate. The following shows an example of the insertion of Mayor(a)
into the knowledge base to express that a (represented as object a of the domain) is in
fact a mayor.

ksession.insert(new Mayor(a));

The Predicate class is designed specifically for our implementation and is the super-
class of every predicate in the system. We use this abstraction as a basis to reason about
norms with DROOLS.

7.3.1 Handling of constitutive contexts

We implement the concept of Context as a subclass of Predicate, asserting its instances
into the knowledge base:

ksession.insert(Context.CAR_CRASH);

ksession.insert(Context.FLOODING);

ksession.insert(Context.UNIVERSAL);

Defining contexts as concepts in the knowledge base allows us to also refer to them
explicitly and reason about them. This is an important advantage over implementations
where contexts are mere labels on the counts-as relations between concepts.

In order to define the proper classificatory counts-as in a specific context, the pred-
icate ClassificatoryCountsAs is introduced. This predicate allows for the expression of
classificatory relations between classes with respect to a context.

ksession.insert(

new CountsAs(
VerbalOK.class,
Inform.class));

new CountsAs(
PdaOK.class,
Inform.class));

new CountsAs(
PdaOK.class,
TraceableInform.class));

Figure 7.3: Definition of classificatory counts-as rules.
Y

The expressions of Figure 7.3 show two examples of the classificatory counts-as,
where the statements respectively describe that, in the universal context, a verbal OK
counts-as an inform, and a PDA OK counts as both an inform and a traceable inform.

7.3. Implementations 113

Figure 7.4, on the other side, shows the proper classificatory counts-as for the ex-
ample. In this case, and following the example of crisis management presented in Sec-
tion 6.1, each counts-as refers to different contexts: an inform counts-as a proper inform
in a car crash scenario, but in a flooding scenario a traceable inform counts-as a proper
inform.

ksession.insert(

new ClassificatoryCountsAs(
Inform.class,
ProperInform.class,
Context.CAR_CRASH));

new ClassificatoryCountsAs(
TraceableInform.class,
ProperInform.class,
Context.FLOODING));

Figure 7.4: Definition of proper classificatory counts-as rules.
Y

To implement the uniqueness criterium specified in Section 6.2.3, which allows for
more efficient runtime use of the counts-as rules, we implemented translation into
DrooLs rules to create internal parallel sets of contexts (based on the intuitions ex-
pressed in figures 6.1 and 6.2 in Section 6.2.3). The first rule of Figure 7.5 shows how
this splitting is done, while the second rule of Figure 7.5 gives an example of how one
can identify in which (original) context a counts-as rule was formulated.

Figure 7.6 then shows an example of the context splitting. From three counts-as
rules, of which two of them are the same for two different contexts, the result will be
two contexts.

The first rule of the example expresses that ambulances count as a means of evac-
uation in the context of GRIP-2; the second expresses that ambulances also count as a
means of evacuation in the context of GR1P-3; the third rule expresses that in the con-
text of GRIP-3 army trucks also count as a means of evacuation. After the splitting of
contexts GRIP-2 and GRIP-3 containing just these three rules we end up with two con-
texts, namely the context which contains the rules that are present in both GrR1P-2 and
GRIP-3 (ambulances count as means of evacuation), and the context which gives the
refinement of being in context GRIP-3, namely that army trucks also count as means of
evacuation. The result being the GRIP2GRIP3 context containing the rule about ambu-
lances being evacuation means (now unique, as there is no need to specify it twice) and
the GRIP3 context containing only the rule specifying that army trucks are evacuation
means. As explained in Section 6.2.3, this split allows for an easy and efficient means

114 Chapter 7. Normative monitor

rule "creation of running contexts”
when
ClassificatoryCountsAs(a : c1, b : c2)
and
lc : TreeSet() from collect(
ClassificatoryCountsAs(cl == a, c2 == b))
then
RunningContext rc;
rc = new RunningContext(lc);
insertLogical(rc);
end

rule "identify running contexts”

when
cca : ClassificatoryCountsAs(c : context)
and
rc : RunningContext(countsas contains cca)
then
insertLogical(

new RunningContextIdentifier(rc, c));
end

Figure 7.5: Context splitting.
EY

to check the similarities and differences between the contexts GRIP-2 and GRIP-33.

The internal effect of a context activation is the activation of all its shared contexts
(see Figure 7.7). With the contexts active, their counts-as rules will be instantiated as
active counts-as rules in the rule engine. The counts-as rules are fired whenever there
is a matching predicate. The effect of a fired counts-as rule is that for each instance
of the first predicate of the rule, a new instance of the second predicate of the rule is
created.

Closure is provided in the monitor by automatically detecting which context should
be active based on the active counts-as rules. Figure 7.8 shows the rules implemented
for this purpose. The first rule detects if all the proper classificatory counts-as rules
for a certain shared context are instantiated, in which case that shared context will be
activated automatically. The second rule checks if all the shared contexts that belong
to a user defined context are active, in which case the context will be activated.

By using these rules we can identify the concept of a context (like GRIP-2) with
the counts-as rules related to that context. Having this constitutive relation between a
context and the counts-as rules available we can now also handle the following scenario
of the crisis management.

3Note that in this example GRIP-3 ended up as a subcontext of GR1P-2 because of the limited scope
of the example. In reality, there are other differences between these contexts which would show that they
instead overlap.

7.3. Implementations 115

ksession.insert(
new ClassificatoryCountsAs(
Ambulance.class,
MeansOfEvacuation.class,
Context.GRIP2));
ksession.insert(
new ClassificatoryCountsAs(
Ambulance.class,
MeansOfEvacuation.class,
Context.GRIP3));
ksession.insert(
new ClassificatoryCountsAs(
ArmyTruck.class,
MeansOfEvacuation.class,
Context.GRIP3));

(after kession.fireAllRules())

[GRIP2GRIP3, GRIP3]

Figure 7.6: Example of context splitting.
Y

Suppose the hospital has to be evacuated due to a flooding. There are not enough
ambulances available to evacuate all people in time. The commander (chief medic at the
location) checks to see what can be done. He can use (special) army trucks. However,
army trucks do not (in general) count-as ambulances. The commander can check (with
the DrRooLs implementation) that army trucks count-as ambulances in the context of
GRIP-3. (They are part of constituting GRIP-3). So, the commander decides to move
to the context of GRIP-3. Now he has to check what other rules constitute GRIP-3.
One of them states that in GRIP-3 the mayor counts-as commander. This means that
the commander has to transfer his command to the mayor. Moreover, in a flooding
scenario, as stated previously, only a traceable inform counts-as an appropiate inform.
That means that all agents should be aware of the new context and act accordingly,
being forced to adapt to a traceable informing mechanism if they were not using it.

The scenario shows that we need the context as an explicit concept and also we
need the constitutive aspect of the counts-as rules that define the context in order
for the commander to be able to define a switch to another context (GRIP level) and
realizing the consequences of this switch. The DrRooOLs implementation presented
above enables us to do this.

7.3.2 Monitoring of regulative norms

DRrooOLs programs can be initialised with a rule definition file. However, its working
memory and rule base can be modified at run-time by the Java process that is running
the rule engine. We take advantage of this by keeping a fixed base, which is a file with

116 Chapter 7. Normative monitor

rule "activate running contexts”
when
ContextActive(c : context)
and
RunningContextIdentifier(
rc : runningContext, context == c¢)
then
insertLogical (new RunningContextActive(rc));
end

rule "classificatory counts-as”
when
rc : RunningContextActive(
ca : ClassificatoryCountsAs(
yl : cl, y2 : c2))

and
obj : Predicate(class == y1)
then
insertLogical (new CountsAs(yl, y2));
end

rule "counts-as”

when
c : CountsAs(yl : c1, y2 : c2)
and
obj : Predicate(class == y1)
then

Predicate instance;

instance = (Predicate)(
((Class)y2).newlInstance());
instance.setObject(obj.getObject());
insertlLogical (instance);
end

Figure 7.7: Activation of counts-as rules.
a

fixed contents implementing the rules from Definition 22 and 25, which are independent
of the institution, and having a parser for institutional definitions that will feed the
rules from Definition 24, which are dependent on the institution (see Figure 7.12).
The institutional definitions we currently use are based on an extension of the XML
language presented in Section §.2.1.

The base rules (see Definitions 22 and 25) have been quite straightforward and the
translation is almost literal. The contents of the reusable DrRooLs file is shown in
Figure 7.9. The last rule of the Figure is the declarative implementation of the predicate
SubsetEQ to represent the comparison of substitutions instances © C ©', needed for
the cases of norm instance violation and fulfillment. In our implementation in Drools,
substitution instances are implemented as Set<Value> objects, where Value is a tuple

7.4. Conclusions 117

rule "activate running context”

when
rc : RunningContext(cal : countsas)
and
forall(
ca : ClassificatoryCountsAs(a : cl1, b : c2)
from cal
CountsAs(cl == a, c2 == b))
then

insertlLogical (new RunningContextActive(rc));
end

rule "activate context by its running contexts”
when

c : Context()

and

forall(
RunningContextIdentifier(
rc : runningContext, context == c)

RunningContextActive(runningContext == rc)

)
then
insertLogical (new ContextActive(c));
end

Figure 7.8: Automatic activation of contexts.
n

(String, Object).

The rest of the rules (see Definitions 24) are automatically generated from the insti-
tutional specifications and inserted into the DROOLS rule engine. An example of two
generated rules for the traffic scenario is shown in Figure 7.10.

The initial working memory is also automatically generated by inserting objects
(facts) into the DrooLs knowledge base following Definition 23. An example for the
traffic scenario is also shown in Figure 7.11. Please note that this is not an output of
the parser, but a representation of what it would execute at run-time. The resulting
architecture is depicted in Figure 7.12.

7.4 CONCLUSIONS

In this chapter we have shown a concrete implementation of abstract norms that can
be used by agents to reason about social reality. One of the key issues of connecting
norms to concrete actions to be taken is that we need (at least) two uses of the counts-
as relation. One to connect brute facts (or events) to institutional states and actions.

118 Chapter 7. Normative monitor
rule "holds”
when
HasClause(f : formula, f2 clause)
Holds(formula == f2, theta substitution) " . . .
rule "norm instance violation
then when
i tLogical Holds(f, thet ;
insertlogical (new Holds(f, eta)); ni : Instantiated(n : norm, theta : substitution)
end .
Maintenance(norm == n, f : formula)
rule "event processed” not (SubsetEQ(theta2 subset, superset == theta)
when P and Holds(formula == f, substitution == theta2))
R i == 2 irN
Event(a asserter, p : content) thespalr(norm . N repairNorm)
then .
insertLogical(p); retract(ni);
end g PJ; insert(new Violated(n, theta));
insert(new Instantiated(n2, theta));
rule "counts-as activation” end
h . .
when rule "norm instance fulfillment”
CountsAs(gl : gammal, g2 : gamma2, s context) when
Holds(formula == g1, theta substitution) . .
. . Deactivation(n norm, f : formula)
Holds(formula == s, theta2 : substitution)
not Holds(formula == g2, substitution == theta) ni : Instantiated(norm == n, theta : substitution)
then g, SubsetEQ(theta2 subset, superset == theta)
Holds(formula == f, substitution == theta2)
Formula f;
then
. retract(ni);
f = g2. h ; . ’ .
. g2 substitute(theta); insert(new Fulfilled(n, theta));
insert(f);
end
end

rule "counts-as deactivation”

when
CountsAs(gl : gammal, g2 : gamma2, s : context)
Holds(formula == g1, theta substitution)
not Holds(formula == s, theta2 substitution)

Holds(formula == g2, substitution == theta)

rule "norm instance violation repaired”

when
ni : Violated(n norm, theta substitution)
Repair(norm == n, n2 : repairNorm)

Fulfilled(norm == n2, substitution == theta)
then

. retra ni);
f : Formula(content == g2, grounding == theta) endet ct(ni)
then
r);
etract(f); rule "subseteq”
end
when
rule "norm instantiation” Holds(f : formula, theta : substitution)
Holds(f2 formula, theta2 substitution)
when eval(theta.containsAll(theta2))
Activation(n norm, f : formula) ’
Holds(formula == theta substitution) then
R o i Logical SubsetEQ(theta2, theta));
not Instantiated(norm == n, substitution == theta) en;nsert ogical(new SubsetEQ(theta eta))
not Repair(n2 : norm, repairNorm == n)
then
insert(new Instantiated(n, theta));
end

Figure 7.9: Translation of base rules to Drools

I 9

7.4. Conclusions

rule "N1_activation_1"

when
n : Norm(id == "N1")
Activation(norm == n, f : formula)
Enacts(X : p@, p1 == "Driver")
IsDriving(p@ == X)

then

Set<Value> theta = new Set<Value>();

theta.add(new Value("X", X));

insert(new Holds(f.getClause(@), theta));
end

rule "C1_1"
when
c : CountsAs(gl : gammal)
Exceeds(D : p@, 50 : p1)
then
Set<Value> theta = new Set<Value>();
theta.add(new Value("D", D));
insert(new Holds(gl.getClause(@), theta));
end

Figure 7.10: Rules for the traffic scenario
Y

ksession.insert(norml);
ksession.insert(norm2);

ksession.insert(new Repair(norml, norm2));
ksession.insert(new Activation(norml, fnla));
ksession.insert(new Maintenance(norml, fnim));

ksession.insert(new Deactivation(norml, fnid));

ksession.insert(new HasClause(fnla, fnlal));
ksession.insert(new HasClause(fnim, fniml1));
ksession.insert(new HasClause(fnid, fn1d1));
/* ...same for norm2... */

ksession.insert(new CountsAs(clgl, clg2, cl1s));

ksession.insert(new HasClause(clgl, clgll1));
ksession.insert(new HasClause(clg2, c1g21));
ksession.insert(new HasClause(cls, cls1));

Figure 7.11: Facts for the traffic scenario
=

119

120 Chapter 7. Normative monitor

Rule
KB Engine
Parser Monitor (Drools)
Agent (Java)
Institutional
Specification
(XML BaseRules.drl

Figure 7.12: Architecture of the Drools implementation
EY

The second one to connect these institutional facts and actions to their normative in-
terpretation.

We have also shown that the context of the norms and the counts-as relation is im-
portant in the type of applications that we are using this framework for. Thus we cannot
suffice with a pure classificatory implementation of the counts-as relation, which would
be straightforward. Instead we have to use an implementation that takes the context of
the norms and the counts-as relation into account. One of the consequences of using
this proper classificatory version of the counts-as relation is that it is no longer tran-
sitive. We have to check whether contexts change between the rules in order to know
whether they can be combined.

We have shown how the above requirements have been met by the implementation
in DrooLs. In DRooLs we can explicitly connect the context to the counts-as rules and
use it as a constraint on its use. Agents can make use of the DROOLS engine to reason
on what specific course of action they should pursue in order to comply to the norms
that are imposed by the context they are in. However, they can do more than just that.
They can also reason about the consequences of changing the context. In the example,
the commander has to the ability to change the context by informing the mayor about
the disaster. Of course this action of the commander itself can be regulated by norms
that state that the mayor can only be involved if the disaster gets too big (according to
some criteria).

The resulting semantic framework presented in Part II directly tackles at the same

7.4. Conclusions 121

time three important problems related to the practical materialization of norm-aware
systems: straightforward connection between the deontic level and the operational se-
mantics, the formalization of explicit norm instances, and the unambiguity of semantic
interpretation across implementation domains. We have done so by building, upon
diverse previous work, a conection between deontic statements and temporal logics,
and between temporal logics to fluents and transition rules. Previous work also shows
[Alvarez-Napagao et al. 2011; Panagiotidi and Vazquez-Salceda 2011] that from the latter
representations the translation to the implementation level is also clear.

The implementation of rule-based norm operationalisation has already been ex-
plored in previous research. Some approaches [Paschke, Dietrich, and Kuhla 2005;
Strano, Molina-Jimenez, and Shrivastava 2008] directly define the operationalisation
of the norms as rules of a specific language, not allowing enough abstraction to de-
fine norms at a high level to be operationalised in different rule engine specifica-
tions. [Garcia-Camino, Noriega, and Rodriguez-Aguilar 2005] introduces a translation
scheme, but it is bound to Jess by using specific constructs of this language and it does
not support constitutive norms. Other approaches like [Garcia-Camino et al. 2009]
define rule-based languages with expressive constructs to model norms, but they are
bound to a proper interpreter and have no grounding on a general production system,
requiring the use of an intentionally crafted or modified rule engine. For example, in
[Governatori 2005; Hiibner, Boissier, and Bordini 2009], obligations, permissions and
prohibitions are asserted as facts by the execution of the rules, but the actual monitor-
ing is out of the base rule engine used.

[Tinnemeier, Dastani, and Meyer 2009] introduces a language for defining an or-
ganisation in terms of roles, norms, and sanctions. This language is presented along
with an operational semantics based on transition rules, thus making its adoption by a
general production system straightforward. Although a combination of counts-as rules
and sanctions is used in this language, it is not expressive enough to support regulative
norms with conditional deontic statements.

We solve these issues by combining a lightweight, expressive normative language
(see Section s5.1) with a reduction to a representation with clear operational semantics
for deontic norms and the use of counts-as rules for constitutive norms (see Chap-
ter 6). The formalism presented in this thesis uses logic conditions that determine
the state of a norm (active, fulfilled, violated). These conditions can be expressed in
propositional logic at the moment and can be directly translated into LHS parts of rules,
with no special adaptation needed. The implementation of the operational semantics
in a production system to get a practical normative reasoner is thus straightforward.
This allows agents for dynamically changing its institutional context at any moment,
by feeding the production system with a new abstract institutional specification.

Our intention is not to design a general purpose reasoner for normative agents, but
a practical reasoner for detecting event-driven normative states. This practical reasoner
can then be used as a component not only by normative agents, but also by monitors
or managers. Normative agents should deal with issues such as planning and future
possibilities, but monitors are focused on past events. For such a practical reasoner,

122 Chapter 7. Normative monitor

the expressivity of actions languages like C'+ is not needed, and a simple yet efficient
solution is to use production systems, as opposed to approaches more directly related to
offline verification or model checking, such as [Kyas, Prisacariu, and Schneider 2008].

Mere syntactical translations are usually misleading in the sense that rule language
specific constructs are commonly used, constraining reusability [Garcia-Camino, Nor-
iega, and Rodriguez-Aguilar 2005; Governatori 2005; Paschke, Dietrich, and Kuhla
2005]. However, as we have presented in this chapter a reduction to a general version
of production system semantics, any rule engine could fit our purposes. This effectively
allows our grounding to be applied to a wide range of languages and deployment plat-
forms through libraries that can compile definitions in our norm language into simple
rules in a very efficient way. As opposed to [Governatori 2005; Hiibner, Boissier, and
Bordini 2009], our reduction ensures that the whole monitoring process is carried out
entirely by a general production system, thus effectively decoupling normative state
detection and agent reasoning.

DRoOOLS is an open-source powerful suite supported by JBoss, the community, and
the industry, and at the same time it is lightweight enough while including key features
that we are or will be using in future work. As an advantage over other alternatives,
it includes features relevant to our topic, e.g. event processing, workflow integration.
Its OO approach makes it easy to be integrated with imperative code (Java), and OWL-
DL native support is expected in a short time. The monitoring system is available at

under a GPL license.

http://sf.net/projects/ict-alive

PART III

WRAP-UP

CHAPTER

From theory to practice

But once a law has been swiftly made, it has a
constant and lasting force and needs to be enforced
all the time, or at least there must always be someone
on duty to enforce it when there is need for that. So
there must be a power that -— unlike the legislature
-— is always in existence, a power that will see to the
enforcement of the laws that have been made and not
repealed. That is how the legislative and executive
powers come to be separated in many
commonwealths.

John Locke
SECOND TREATISE OF GOVERNMENT

Along the whole Part II, we have explored several computational elements: a language
for norms, its operational semantics, and a reduction to production systems translat-
able to rule engines. These elements are specially tailored for enabling the monitoring
of social reality in distributed systems, in a broad sense of distributed systems: multi-
agent systems and service-oriented architectures.

All these elements have roots on formalisms while being targetted at practical sys-
tems. An example of that is the fact that at the end of Chapter 7 we present implemen-
tations that ground our work. Because this grounding is done on rules of a production
system, they can be applied to a very wide range of programming languages and there-
fore are suitable for integration not only in agents but in services.

However, does this mean that we can automatically achieve an adequate level of
social order (see Section 3.2)? What about enforcement? In this chapter we try to
tackle these issues by showing: 1) hints on how our formalism for monitoring can be
generalised to other normative-related tasks, and 2) a proposal for an architecture for
SOA governance that fits our computational elements.

125

126 Chapter 8. From theory to practice

8.1 GENERALISING OUR APPROACH

The focus of this thesis is on monitoring of norms, and this work was first published in
[Alvarez-Napagao et al. 2011]. However, this operationalisation evolved after merging
this work with that of Panagiotidi et. al [Panagiotidi and Vazquez-Salceda 2011] about
planning in norm-aware rational agents. As a result of this joint work, the operational
semantics were generalised in a way that allowed, in the first place, to maintain the
same reduction to production systems, and in the second place and no less importantly,
to enable a new reduction to fluent-based semantics, and the subsequent translation
to implementations in PDDL. An example can be seen in Figure 8.1.

PDDL problem

Control-based
PDDL domain

rule "norm instantiation"
when
Activation(n : norm, f : formula)
Holds(formula == f, theta : substitution)
not Instantiated(norm == n, substitution == theta)
not Repair(n2 : norm, repairNorm == n)
then
insert(new Instantiated(n, theta));
end

1.0000: (drive john bmw marketroad)
2.0000: (cross-light john light2456)

3.0000: (park john bmw)
Planner

Plan

—

(set-tl-control

BaseRules.drl

Rule
Engine
(Drools) KB
-

Monitor

PDDL domain

Parser 1

rule "N1_activation_1"

when
n:Norm(id == "N1")
Activation(norm == n, f : formula)
Enacts(X : p0, p1 == "Driver")
IsDriving(p0 == X)

then
Set<Value> theta = new Set<Value>();
theta.add(new Value("X", X));
insert(new Holds(f.getClause(0), theta));

end

Norms

n =<Ag,
{driving(Ag)},
{~crossed-red(Ag,L)},
{~driving(Ag)},
{fine-paid(100)},
time(500)>

Normative MonitoJ LNormative Planner

(or
(always (not (exists (?X) (driving ?X))))
(eventually
(and
(exists (?X) (driving ?X))
(until (forall (?Y) (not (crossed-red ?X ?Y)))
(not (driving ?X)))
)
)
(eventually
(and
(exists (?X) (driving ?X))
(until (forall (?Y) (not (crossed-red ?X ?Y)))
(and
(exists (?Y) (crossed-red ?X ?Y))
: (until (not (time 500)) (fine-paid 100))
M)

Figure 8.1: Example of reductions to monitoring and planning

i 9

Because both reductions have the same formal grounding (see Section 6.4), the
semantics of monitoring are equivalent to the semantics of planning. Additionally,
because the operational semantics have valid reductions to deontic logic (see Ap-
pendix A), we can consider that this generalisation is valid from a formal perspective.

This is a novel contribution that results from our work, allowing us to:

1. Have a more compact semantics for both (planning and monitoring) domains,

2. have the capability to ensure that the same semantics are understood between
both domains (i.e., that the agents’ norm interpretation is aligned with the com-
pliance mechanism one), and

8.2. Advancing towards SOA governance 127

3. be able to express norms in deontic terms at a high level and translate them au-
tomatically to both PDDL and production systems.

Solving the planning problem is not related to enforcement but to practical reason-
ing of norm-aware agents. However, both problems solved by our reductions — moni-
toring and planning — cover much of the complexity that real-time systems commonly
need. Therefore, we propose that it is possible to apply our operational semantics to
the field of enforcement, either by applying combinations of monitoring and planning
at the institutional or administrative level, or by creating new reductions to solve rule-
style or state-space search-based enforcement techniques.

8.2 ADVANCING TOWARDS SOA GOVERNANCE

In this section we introduce our proposal for a generic SOA governance architecture
based on norms. Although the current version is mainly designed for service-oriented
architectures, it can be easily adapted to be used also by agents in an agent platform.
The global picture of this architecture is shown in Figure 8.3.

8.2.1 Use case: organ transplant management

As an example, we will use an organ transplant distributed management application,
a result of the EU-Provenance project!. The Organ Transplant Management Applica-
tion (OTMA) is an Agent-Mediated Electronic Institution for the distribution of organs
and tissues for transplantation purposes. It extends CARREL [Vazquez-Salceda et al.
2003], the aim of which was to help speeding up the allocation process of solid organs
for transplantation to improve graft survival rates. As opposed to CARREL, OTMA
uses standard web service technology and is able to interact with provenance stores in
order to keep track of the distributed execution of the allocation process for auditing
purposes.

Figure 8.2 summarises the different administrative domains (solid boxes) and units
(dashed boxes) that are modeled in the OTMA system: the Organ Transplant Authority
(OTA), a store of Electronic Healthcare Records (EHCR), and the management systems
for the OTA recipient waiting lists (WL). Each of these interact with each other through
agents (circles in the figure) that exchange information and requests through messages.
In a transplant management scenario, one or more hospital units may be involved:
the hospital transplant unit, one or several units that provide laboratory tests and the
EHCR subsystem which manages the health care records for each institution. The
diagram also shows some of the data stores that are involved: apart from the patient
records, these include stores for the transplant units and the WL. Hospitals that are the
origin of a donation also keep records of the donations performed, while hospitals that
are recipients of the donation may include such information in the recipient’s patient
record. The OTA has also its own records of each donation, stored case by case.

'EU-Provenance was a STREP project (511085) funded by the 6th Framework Programme of the Euro-
pean Commission.

128 Chapter 8. From theory to practice

OTA

Hospital A (donor side)

Transplant Unit,

Lab_1 i| Lab_2

Lab_3

e M

Figure 8.2: Actors in the OTMA system. Each medical unit is
represented by an agent (circle in figure).
=Y

8.2.2 A generic SOA governance architecture based on norms

The examples shown in the form of rules are based on the Jess rule engine. The Jess
language was the first target for the reductions of our normative monitor.

When application agents enter for the first time in the institution, they can access
the norms and the ontological definitions in the context manager module. Agents log
the relevant events by creating them and sending them to the observer agent, which
is the one that keeps the event store that acts as a log for all the reported events and
annotates the causal relationships between events (their provenance). The observer
agent sends some of those reported events to one or more Enforcement agents (each
of those should have previously registered the list of events they need to be notified
of, according to the norms each of them has to enforce). Each enforcement agent com-
bining the reported events with the norms that such agent is responsible to enforce.
If a violation is detected, then the enforcement agent should see to it that the repair
condition is met, as specified in the norms.

The following sections describe in detail each of the actors in our proposed archi-
tecture, focusing on their main roles and components.

8.2. Advancing towards SOA governance 129

Agent ‘

‘ Agent ‘ ‘ Agent Context Manager

. ' . <——— definitions — 3
assertion assertion assertion norms
plug-in plug-in plug-in Ontology
Norm
Repaository
event event event
&’ / Enforcement
Engine
register |
Event Event Bus l ot
Store event — | violation
Translator event
Observer Agent

Normative
Monitor

ruleengine =
facts

Enforcement Agent

Figure 8.3: Layout of the architecture
n

8.2.2.1 Context Manager

In the approach taken for the architecture, every institution defines a normative context.
This context gathers all the elements needed for understandability and interoperation
between the agents belonging to a specific institution. The Context Manager is a reg-
istry responsible for the management of these elements and for providing to the agents
any information related to the normative context.

An instance of this registry will represent a specific normative context, and will
contain:

e a specific vocabulary defining the meaning of the terms used in the interactions
between the agents of the institution,

e shared descriptions about resources, processes and/or actions in the domain, and
e the norms that may affect the interactions between parties bound to the context.

To fulfill its responsibilities, the Context Manager has three main components, ex-
plained in the next subsections.

Ontology. The Ontology is a repository which stores definitions of terms, as well as
references to definitions, for the data models of the context. This ontology should de-
fine, for a given domain, terms such as objects and entities (e.g. patient, doctor, organ,
kidney), predicates (e.g. compatible(organ, recipient)) and actions (e.g. assign(organ,

130 Chapter 8. From theory to practice

recipient)). In our architecture the ontology plays an important role as it should fix the
interpretation for all terms that appear in the norms to be enforced.

Norm Repository. This module is responsible for storing and managing the norms of
the institution. Each norm complies with the language described in Section 5.2.

8.2.2.2 Application Agent

The Application Agents are those agents that interact within each other inside the insti-
tution and its context. They have the same generic role as any element of a distributed
system — services or intelligent agents — and they do not necessarily have an active role
in norm enforcement, but they should report all relevant events to the observer agent.
These events will be used by the enforcement agents to enforce the norms applying to
the application agents’ behavior.

Before an Application Agent can start its activity within the institution, it has to
retrieve the definitions and norms of the context from the Context Manager. We make
no assumption about the internal architecture of the agent and how this knowledge can
be incorporated in the agent reasoning cycle, if it has any. We also make no assumption
about the exact technological platform in which it is implemented: it can be either
a Web service, a Grid service or even a FIPA-compliant agent with a service wrapper
that allows the agent to interact with the other actors in the architecture. Our only
assumption is that the agent’s internal reasoning cycle has been modified to be able to
report meaningful events (through the Assertion Plug-in).

Assertion Plug-in. This component is a middleware plug-in which manages the interac-
tion between the application agents and the Event Store, ensuring a safe, reliable, and
accurate recording of the events generated by the agents execution.

To avoid that the generation of events stops the execution of the agent or that some
events get lost due to temporary unavailability communication problems between the
Application Agent and the Observer Agent, the plug-in uses an event queue (such as
RabbitMQ?), which allows the event submission to be completely asynchronous and
loosely coupled to the core of the agent, avoiding critically blocks in its execution.

8.2.2.3 Observer Agent

An Observer Agent has the responsibility to safely register and maintain the environ-
mental events and state changes of the institution. The information gathered is then
used in the norm enforcement, by providing selected pieces of information to the in-
terested Enforcement Agents.

The gathering and the selection are critical processes. Some possible errors which
depend on the Observer Agent and could compromise norm enforcement can take
place, for example, if the events logged are not complete or reliable enough, or if the
information provided to the Enforcement Agents does not match with their needs or
arrives too late.

2

https://www.rabbitmq.com

8.2. Advancing towards SOA governance 131

The gathering is handled by the Event Store which, along with the Assertion Plug-
in, offers the proper recording functionalities. The Monitor acts as a link between this
repository and the Enforcement Agents, offering registering and notification mecha-
nisms. Both Observer Agent components are described in the subsections below.

Event Bus. The Event Store works only in a push way. The Enforcement Agents prefer-
ably need a real-time accurate representation of the institution, so the Observer Agent,
as an actor, should behave in a pull way. That is why we have implemented the Event
Bus as a component layered on top of the Event Store. This component will keep an
accurate real-time representation of the events being recorded in the Event Store.

Of course, this job should be handled efficiently, not only in time, but also in space,
only keeping pointers to the events that are for some interest for the other agents. A
registry is therefore incorporated to the Event Bus, to which the Enforcement Agents
subscribe with a list of mapped event templates. While continuously reconstructing
the real-time picture of the institution, the Event Bus will just query those events which
match with the patterns of the Enforcement Agents registered. As soon as an event
has appeared in the Event Store that matches a registration pattern of an Enforcement
Agent, this event is sent to the registrant.

Event Store. The Event Store is usually an independent service, but we consider it as
part of the Observer Agent, as these will be the only actors of the institution which
will make use of them. As a repository of raw events, it will only receive one kind of
input, provided by the Assertion Plug-ins of the Application Agents. As well, it will
only generate one kind of output, in this case the result of the queries made by the
Event Bus, as sets of events.

Enforcement Agent. The Enforcement Agents are responsible for the fulfillment of a
subset of the norms of the context in the institution. This requires them to have a
complete knowledge of the context, by retrieving the descriptions and the norms from
the Context Manager, as well as a complete knowledge of all the events in the system
related to the norms they have to enforce. Enforcement is then guaranteed by a) firstly
detecting the violations, and then b) applying the corresponding sanctions.

In order to generate the knowledge about the events, these agents take profit of
the Observer Agent by registering the templates for the events they are supposed to
look after. Once registered, they will be properly notified in the form of event. There-
fore, there is no need of a direct communication between an Enforcement Agent and the
Application Agents. The Translator converts these events into a format understandable
by the Enforcement Agent. Another component is needed for detecting the violations.
In our case we are using our Normative Monitor (see Chapter 7), which matches the
events, in the form of facts of the monitor rule engine, and the norms, in the forms
of production rules. The Enforcement Engine is responsible for registering to the Ob-
server Agents and applying sanctions. A further explanation of how this component
works is also included below.

132 Chapter 8. From theory to practice

Translator. The Observer Agent sends events to the Enforcement Agent when they are
of any interest. However, the Normative Monitor is an instance of a rule engine. The
Translator is a simple component which parses these events and generates facts of such
rule engine.

(defrule OTM-RULES-MODULE: :assertconfirmassignment
(MAIN::Element (LocalName "opencontent™)
(ElementID ?content))
(MAIN: :Element (LocalName "timestamp”)(Text ?timestamp)
(ParentID ?content))
(MAIN: :Element (LocalName "confirmassignment")
(ElementID ?confirmassignment)(ParentID ?content))
(MAIN: :Element (LocalName "organ")(Text ?organ)
(ParentID ?confirmassignment))
(MAIN: :Element (LocalName "pid")(Text ?pid)
(ParentID ?confirmassignment))
(not (OTM-RULES-MODULE: :confirmassignment
(ElementID ?confirmassignment)(timestamp ?timestamp)
(organ ?organ) (pid ?pid)))
=>
(assert (OTM-RULES-MODULE: :confirmassignment
(ElementID ?confirmassignment) (timestamp ?timestamp)
(organ ?organ) (pid ?pid))))

Figure 8.4: An example of translation rule from p-assertion to
Jess asserted fact
=Y

The Translator obtains the translation rules from the Context Manager. In Figure 8.4
we show one example of a rule that obtains a rule engine assertion of an organ assign-
ment, taking an organ assignment event as input. This rule parses the formatted event,
keeping only the relevant data for the system and generating an asserted fact, which
will be added to the rule engine. In this case, the rule is involved in the moment that
the doctor of a hospital accepts the organ offer and therefore confirms the assignment
proposed by the OTA. According to the medical protocol being followed, the relevant
pieces of data in this step are the exact moment of the assignment, the recipient patient
identifier, and the organ. They are retrieved from the event and written in a rule engine
fact.

When an agent records an event indicating the confirmation of an assignment, it
includes content compliant with the OTMA schema. On the left side, this rule matches
one by one the elements contained inside the opencontent element: the exact moment of
the action, the name of the event (confirmAssignment), and inside the confirmAssignment
element, the organ being proposed for reception and the ID of the recipient. After the
matching, the left side of the rule checks that there was no assertion made yet for the
same event. On the right side, the rule asserts the event confirmAssignment into the base
of facts.

We have implemented an automatic translator of rules, capable of parsing an schema
and generating one rule per each kind of event.

8.2. Advancing towards SOA governance 133

Normative Monitor. Once the Enforcement Engine has received the norms from the
Context Manager, it creates a set of rule engine rules out of them and sends them to
the Normative Monitor. This component is, in fact, an instance of a rule engine which
will execute these rules with the facts provided by the Translator. Whenever a violation
is detected, the Enforcement Engine is conveniently informed.

Enforcement Engine. The Enforcement Engine is the component of the Enforcement
Agent that takes decisions and plans actions whenever a violation is raised. In order to
interact with the Normative Monitor, this component needs to provide the rule engine
with rules for each norm.

For instance, let us see how norm N37: “The Organ Transplant Authority is obliged to
ensure the compatibility of the organ with the recipient patient before doing the assignment of the
organ to that patient” is handled. A violation has to be raised whenever, in the confir-
mation of an assignment, this assignment has been made before having checked for
compatibility. This might happen when the assignment is done but the compatibility
is never ensured. But also when both things are done, but in the wrong order. This
second case is the one modelled in Figure 8.5. The rule shown in the figure takes as in-
put two facts: the fact generated (using the translation rule shown in Figure 8.4) when
the hospital confirmed the assignment of the offered organ to the doctor, and the fact
generated when the organ was tested for compatibility. The third condition of the rule,
(< t2 t1), will become true if the assignment has been done before the compatibility
test. Whenever the rule gets executed, a violation fact for the norm N37 will be added
to the rule engine and the Enforcement Agent will, at some point, take measures to
repair the violation.

(defrule OTM-RULES-MODULE: :eventOTM_N37_2

(OTM-RULES-MODULE : : ensure_compatibility (organ ?organ)
(recipientID ?recipientID)(timestamp ?t1))

(OTM-RULES-MODULE: :assign (organ ?organ)
(recipientID ?recipientID)(timestamp ?t2))

(< t2 t1)

=>

(assert (OTM-RULES-MODULE::violation (norm OTM_N37)
(organ ?organ)(recipientID ?recipientID)))

Figure 8.5: An example of violation detection rule in Jess
Y

The Enforcement Agent will act accordingly to the type of measures needed. If the
sanction or the repair measures require that a specific Application Agent executes a
certain action, that agent will be informed of that. On the other hand, the sanction or
the repair measures that involve the institution as itself will be carried into effect by
the Enforcement Agent.

When an Enforcement Agent is initiated, the ontological definitions and the norms
of the context are stored in its Enforcement Engine. This component is also the re-

134 Chapter 8. From theory to practice

sponsible for registering to the Event Bus.
Therefore, for norm N37 all the measures should be executed by the Enforcement
Agents, as they are all institutional.

8.2.3 Mapping our architecture to SOA governance

The rationale behind the design of this architecture is a combination between the ele-
ments that we have available from Part II and the architectural requirements for SOA
governance summarised in Section 3.2.2. As a result of this, there are many of the com-
ponents belonging to these requirements that can be identified as components of our
architecture (see Table 8.1).

All the components are mapped one to one, e.g. the Normative Monitor is a perfect
match with respect to the Rule Engine required in SOA governance. There is but one
exception: the Registry. This component is too coupled with the actual underlying
implementation of the individuals in the distributed system. This is usually already
provided by the corresponding architecture, such as the Directory Facilitator in FIPA-
compliant implementations.

SOA governance component | Proposed mapped component
Registry -
Service Agent
Repository Context Manager
Policy enforcement points Enforcement Engine
Rule engine Normative Monitor
Environment Enforcement Agent

Table 8.1: Mapping between components required by SOA
governance and components of our proposed architecture
=Y

At this point, our proposed architecture allows us to manage the Design-Time and
Run-Time aspects of SOA governance. Change-Time governance requires an extension
of our normative monitor to support dynamic promulgation and abrogation of norms,
something that is already being researched by [Gémez-Sebastia and Alvarez-Napagao
2012].

8.3 CONCLUSIONS

This chapter has been dedicated to giving some insight on how to tackle some open is-
sues that arise from trying to analyse the impact of the contributions presented in Part II
in real-world scenarios: how to use our monitoring mechanism in systems that also
need to cope with enforcement and, from a more general perspective, how to design an
architecture based on our monitoring mechanism to achieve governance in distributed
systems.

8.3. Conclusions 135

With respect to the former issue, we propose that the operational formalisation
presented in Chapter 6 is highly likely to be grounded successfully in other implemen-
tation domains, including enforcement. The rationale behind this is that our formal-
ism is generic in the sense that it includes enough formal elements to be reduced to
both ECA rules (monitoring with production systems) and state-based search (plan-
ning with PDDL), covering a wide range of expressiveness and complexity.

The second development of this chapter is a proposal for a SOA governance archi-
tecture that fulfills the industrial standards. An exhaustive analysis of the necessary
components is included in this architecture, identifying data flows and repositories as
well as computational elements that represent different roles in a governance system.
This separation of concerns may prove useful not only as a guide of implementation
and deployment but also as a starting point from which to make decisions regarding
distribution and scalability, esp. in service-oriented architectures.

CHAPTER

Practical use cases

“Ma allora come possiamo fidarci della sapienza
antica, di cui voi ricercate sempre la traccia, se essa ci
é trasmessa da libri mendaci che la hanno
interpretata con tanta licenza?”

“I libri non sono fatti per crederci, ma per essere
sottoposti a indagine. Di fronte a un libro non
dobbiamo chiederci cosa dica ma cosa vuole dire.”!

Il nome della rosa
UMBERTO ECoO

This chapter presents two of many applications in which our proposed language
and monitor have been applied. The use cases chosen are: 1) the application of an
organisational- and normative-centric approach for the design of distributed systems
for eldercare management and 2) the integration of these computational elements to
commercial games, more concretely as part of the reasoning of agents plugged into the
games — the result of this integration was part of the use case demos shown at the end
of the ALIVE Project (see Section 5.2).

The aim of the first use case is twofold: on one hand to show that the proposed norm
language is expressive enough to model a complex, multi-party healthcare scenario; on
the other hand to show how a norm based model provides a flexible and richer way to
model and govern complex distributed processes. The aim of the second use case is to
show the performance of the grounding of our operational framework grounded on an
actual implementation under stress conditions.

*‘But then how can we trust ancient wisdom, whose traces you are always seeking, if it is handed down by lying books
that have interpreted it with such license?’/‘Books are not made to be believed, but to be subjected to inquiry. When we
consider a book, we mustn’t ask ourselves what it says but what it means.’

137

138 Chapter 9. Practical use cases

9.1 GOVERNANCE OF SITUATED AGENTS IN AMBIENT INTELLIGENCE

Eldercare management is progressively becoming a great concern due to the estimated
growth in proportion of older population [Economic Social Affairs 2012], added to the
fact that elder support is especially expensive [Economic Social Affairs 2004]. One
of the most important common factors of eldercare management is that, for obvious
reasons, most of it has to be done in a distributed fashion, away from healthcare insti-
tutions and typically at the patients’ homes.

This distributed approach to daily care requires that elders be capable of au-
tonomously taking several different medications at different time intervals over ex-
tended periods of time. This can easily lead to forgetfulness or confusion when follow-
ing the prescribed treatment, specially when the patient is suffering multiple patholo-
gies that require complex combinations of drugs. This gets worsened when elders suffer
a cognitive impairment. Medication compliance is a critical component in the success
of any medical treatment.

Assistive Technologies (AT) ! have been recently providing successful solutions that
help alleviate this problem. One of the main forms of application of AT consists in
the interaction between several roles, such as patients, caretakers, relatives, health
professionals, and last but not least, electronic devices — interfaces, sensors or actuators
—, effectively taking the shape of distributed (agent) systems.

Such distributed nature has an organisational nature, as each role implies different
objectives and available actions that affect the environment. Our use case is a contribu-
tion to the state of the art of this type of AT the CoaaLAs project (COmpanion for Am-
bient Assisted Living on ALIVE-Share-it platforms) [Gémez-Sebastia, Garcia-Gasulla,
and Alvarez-Napagao 2011], a framework for multi-agent systems that combines organi-
sational and normative theories with Ambient Assisted Living (AAL) technologies. The
project aims to create a society of organisational aware devices (typically sensors and
actuators) that are able to adapt to a wide range of AAL situations.

CoaaLas models the device network around the user as a society, including the
set of behavioural patterns the devices are expected to follow. CoaaLAs effectively
supports smart assistive tools that integrate human actors with the surrounding de-
vices, contributing to the state-of-the-art in semi-autonomous and intelligent devices
for elder people by allowing the devices to be both social- and norm-aware.

A summary of the architectural components surrounding CoAALAs is depicted in
Figure 9.1 [Gémez-Sebastia et al. 2015]:

e The Social Network is a layer that coordinates communication between users and
between users and the rest of the software components, managing connections
and relationships.

e The Intelligent Layer gathers and processed information from the rest of the mod-
ules and devices, generating relevant knowledge and enacting the services of the
platform, i.e. monitoring, detection of patterns, generation of patient history,

'Assistive Technologies is an area of application of the state of the art in Artificial Intelligence focused
on supporting and improving care activities in the context of elders or impeded patients.

9.1. Governance of situated agents in ambient intelligence 139

etc. This layer, as reflected in Figure 9.1, is based on the ALIVE platform (see
Figure 5.14) and will be the focus of the rest of this section.

e The Middleware Layer acts as a bridge between physical interfaces, as well as ex-
ternal systems such as healthcare information systems, and the Intelligent Layer.

e Physical Interfaces can be sensors and actuators such as a Smart Pill Dispenser, or
user visual interfaces such as user applications, e.g. web browser or mobile app.

‘ End User ‘ ‘ Caregivers ‘ ‘ Clinician ‘ ‘ Pharmacist ‘

‘ Social Network

I |
l |
l |
l |
I |
l |
I —— |
‘ Intelligent Layer ‘ : - - Il
N O - |
) AN [TS e I
AT Middleware AN : Lo e . }
N /< A | 1
. ! -) T, i
N = A M RN
Interface ‘ ‘ Interface ‘ ‘ Interface \. AN = |
W EES < |
\L___EA_E' _____ = ___ ‘
Smart Pill Dispenser ‘ ‘ User App ‘

Pharmacy System Healthcare System 3

Figure 9.1: Architecture of the system
Y

9.1.1 Contribution: a social reminder for pills

In practice, CoaaLas allows to integrate a wide range of sensors and actuators in a
domotic setting, in order to transparently assist the user in their daily activities, while
keeping all the participants of the healthcare workflow involved. CoaaLAs focuses
on scenarios where the elder user, physically or cognitively impaired, has to comply
with the medication prescribed by a doctor. Such scenarios can get especially complex
due to a high and uncountable number of potentially probable circumstances, e.g., the
combination of several treatments that impose a temporal order on the doses, lack
of user’s discipline on taking the medicines during the correct interval, delays on the
delivery of the medicines, lack of communication between the user and the doctor, and
SO on.

In such scenarios, the primary goal of our approach is to provide enough support
to enable a change in the users’ (including elders, doctors, health professionals among
other stakeholders) non-compliant behaviors by engaging them in the drug intake task.

140 Chapter 9. Practical use cases

The first design and implementation of such a sensor/actuator in the context of
CoaALAs is the social electronic reminder for pills (see Figure 9.2) [GOmez-Sebastia
et al. 2012], which tackles the supply of the required stock of medicines to users with
difficulties to leave their house, while supervising that they follow the medical treat-
ments prescribed by their doctors, not missing any dose due to forgetfulness or taking
the medicines at the wrong time due to confusion. A summary of the related state-of-
the-art on similar devices can be found at [Gémez-Sebastia et al. 2013].

Figure 9.2: Smart Pill Dispenser
a

This device supports the elderly or disabled people to manage their daily doses of
medication while presenting the following three properties:

o Social awareness: The device is connected with other assistive devices and with rel-
evant actors (such as doctors, caretakers and other health professionals, relatives,
etc) for helping the elder take his daily doses of medication.

e Autonomy: The device can react to changes in the physical or social environment
without requiring human intervention. Furthermore, it should be able to react
to simple changes in the scenario autonomously (e.g., a change in the scenario
implies the pill dispenser is not filled by the patient any more, but by a care
giver).

9.1. Governance of situated agents in ambient intelligence 141

o Normative awareness: The device performs its task while following a set of specified
behavioural patterns. However, due to its autonomy, the device has the option of
breaking the patterns, provided it considers it will be in the benefit of the society
(e.g., if an incoming stock break is detected).

In particular, the three research questions addressed in this use case are:

1. Can a social-norm aware pill dispenser help elders adhere to their medication
prescription? (i.e. daily take all the doses)

2. Can a social-norm aware pill dispenser help elders adhere to their medication
regime? (i.e. daily take all the doses at the prescribed time and with the correct
order)

3. Can a social-norm aware pill dispenser help the other users involved in the treat-
ment workflow take care of unexpected events?

9.1.2 Modelling the system

CoaaLas builds on the results of two European funded projects: EU-ALIVE (see Sec-
tion 5.2) and EU-Share-it [Annichiarico and Cortés 2010] and provides a multi-agent
platform able to integrate software agents embedded in the AAL devices and human
actors. This allows for making AAL devices intelligent enough to organise, reorganise
and interact with other actors. The agents embedded in the devices have an awareness
of their social role in the system — their commitments and responsibilities — and are
capable of taking over other roles if there are unexpected events or failures. Therefore,
CoAALAS creates a society of physically organisational-aware devices able to adapt to
a wide range of AAL situations that could have an impact on the user’s well-being.

As seen in Section 5.2, the ALIVE framework presents normative structures that al-
low for easily expressing both expected behavioural patterns and the actions to be taken
when the actors involved in the scenario do not comply with these patterns. Substan-
tive and constitutive norms allow the system to be flexible, by giving actors (human or
computer-controlled) the choice to cause a violation if this decision is beneficial from
an individual or collective perspective. For a full set of norms specifying the expected
behaviour of the elements of the CoAALAS system, including but not limited to the
pill dispenser, see [GOémez-Sebastia 2016]. A set of selected norms is summarised in
Section 9.1.3.

Apart from the normative (organisational) level, ALIVE also provides coordination
structures (basically a repository of coordination plans automatically generated from
the elements in the Organisational level) that provide actors’ patterns of interaction,
effectively allowing the system to move between relevant states (e.g., the pill dispenser
needs to be refilled, the pill dispenser has been refilled, etc.). The coordination struc-
tures are formed by tasks containing both pre and post conditions (i.e., the state of the
world before and after the task has been executed respectively) and the permissions
required for executing the tasks (associated to the different roles in the scenario). A
set of organisational-aware intelligent agents select a role according to their capabilities
and start enacting the plans associated to that role as requested.

142 Chapter 9. Practical use cases

Change
dose
schedule
Notify dose)
missed —C Notify dose
Notify ——C Provide dose
prescribe} Medical
Notify Dispenser —(Dose taken
low stock.
Notify Stock
no stock < Report
Acknowledge :
Notifcation —— AssignTreatment
Anomaly Caretaker Doctor
Report) ——_ ScheduleVisit
Grant Generate C MakeProposal
Pick-up — ——(_ Delivery Pharmacy
Permission Map { Authenticate
G Health Sanction Ack led
rant Inssurance |—(and cknowledge
Delivery —{ Company Repair User Notifcation
Permission : Call for —C Calendar
proposals
Authenticate)—
il ~ » Lock H— I Authenticate
dispenser Logistics Unlock Door Notify
. nlock)—
Notify : —C Authentication
Delay e Failure

Figure 9.3: Capabilities of the different actors
2

Finally, ALIVE also includes a service level that maps actions in the environment
to abstract tasks. Non-organizational aware agents in the system register their capa-
bilities (e.g., tasks they can perform) via a white pages system and are coordinated by
the organizational aware agents to execute the tasks required for enacting the different
plans. Figure 9.3 provides an example of actors’ capabilities in a scenario that includes
an intelligent pill dispenser.

9.1.3 Norm examples

CoaALAs, at a conceptual level, defines a set of protocols that describe how the differ-
ent agents of the system are expected to interact with each other. An example of such
protocols is depicted in Figure 9.4, describing a full typical workflow from the patient’s
visit to the doctor to the dispensation of the doses.

Such a workflow, in the context of CoAALAsS, is implemented with regulative norms
in the modelling phase and complemented in runtime with the use of constitutive
norms, e.g. John counts as a Doctor or bacon counts as a toxic substance (see Figures 9.5 and
9.6). The set of norms defined by CoaAaLAs is rather exhaustive, but in this section we
show a subset of them, specifically selected to demonstrate the expressiveness of our

9.1. Governance of situated agents in ambient intelligence 143

Heal
User Doctor Inssurance Pharmacy Logistics Door Caretaker
| _Visit_ | Assign Call
| Treatment | | For
| Proposals_
Proposals_
L Accept
| 4 Reject
Grant
Pick-up
Permission
— — — =
Grant
Pick-up
Permission
[]
Grant
Deliver
Permission
—_—— T —— -
Grant
Deliver
Permission
== =r=ep == =1 — — — =
Delivery
Map
———— —_——
Aulhgnli_cate
Ok |
ko
- — =
Authenticate
= —— —
=2 g
| Notify
[KO_ | Auth.
| Fail
=, |_- -
Medical
| _ __Amn__ _
Provide dose and send reminder
-+——— =] —_———] —_———— ———— —————————
Update Stock
le— — — — _ Lowmedicationstock
e — — _ _ _ _ _Prescribingtreatment _

Figure 9.4: Sequence diagram of a typical workflow, from
prescription to dispensation
a

formalism presented in Chapter 5.

Norm 1 (see Figure 9.7) shows a typical achievement obligation, in which there are
special? conditions for the activation, maintenance and expiration of the norm, as well
as a repair action — checked against the repair condition — that has to be fulfilled if the
norm is violated.

*Special in the sense that they are not trivial, i.e. they are not simply true or false.

144 Chapter 9. Practical use cases

Counts-as rule C: In the context of full cognitive capabilities of the patient A;,
with D; being qualified to act as a doctor for at least a certain pathology p, if A;
has given D; explicit authorisation for treating him/her for that pathology p, then
D; counts-as a doctor of A;.

Context C requiresTreatment(A;, p) A isQualifiedDoctor(D;, p) A capable(A;)
Antecedent Cy authorises(A;, D;)
Consequent Cy isDoctorOf(D;, A;)

Figure 9.5: Formal model for constitutive norm Cy
=Y

Counts-as rule Cy: In all instances, if a substance S; has been declared as harmful
by the Competent Authority, then \S; counts-as a toxic substance.

Context C T
Antecedent C2 | of ficial Statement(S;, consideredHarm ful)
Consequent Co toxicSubstance(S;)

Figure 9.6: Formal model for constitutive norm Cy
ES

Norm Ny: Pharmacist ¢; € @ is obliged to identify patient A; € A and take his
prescription Ry, € R before delivering the medication M; € M to the patient.
Otherwise, Competent Authority C' sends a warning to pharmacist ¢, for
violating the protocol specified.

Activation Condition N hasPrescription(Ry, Aj) N isForMedication(Ry, M;)
Expiration Condition Ny hasDelivered(My, ¢;i, Aj)
Maintenance Condition Ny —hasPrescription(¢;, Ry,) V isIdentifiedBy(A;, ¢;)
Repair Condition Ny warningSent(C, ¢;)
Timeout N1 1

Figure 9.7: Formal model for regulative norm Ny
a

In Norm 1, A; is going to the pharmacy to pick up some medicines in order to
refill his medical dispenser. e-Prescription systems are not available in the area where
Aj; lives right now, and some of the medicines are dangerous and therefore can only be
dispensed with the corresponding medical prescription Ry. According to the protocols,
the pharmacist ¢; has the obligation to retrieve the prescription and verify A;’s identity

9.1. Governance of situated agents in ambient intelligence 145

Norm Ny: Patient A; € A has the obligation to follow the prescribed treatment
T;j € T since the date it starts until the date it finishes. T} counts-as patient’s
treatment in the context of a patient A; a treatment starting date 7, € T and
treatment finishing date 7; € T. Otherwise, Competent Authority C' sends a

warning to patient ¢, for violating the protocol specified.

Activation Condition No isPrescribed(Aq, Tj, i, 1) A counts_as(Ty, Tjr, Ai, T, 1) A actualTime(ry)
Expiration Condition No actualTime(T;)
Maintenance Condition No followsTreatment(A;, T;)
Repair Condition No warningSent(C, A;)
Timeout No 1

Figure 9.8: Formal model for regulative norm Ny
Y

before delivering the medicines.

Norm 2 (see Figure 9.8) represents a maintenance condition: A; has the obligation
to follow the prescribed treatment for its duration. The smart pill dispenser allows
to observe medical prescription adherences. The difference between an achievement
obligation and a maintenance obligation in our framework is that in the former case
the objective — the state they have to see to it that it is successfully achieved — of the
agents is to reach the expiration condition without breaking the maintenance condi-
tion; while in the latter case the main goal is to fulfill the maintenance obligation until
(if it happens, but it is not prioritary) the expiration condition holds. This difference,
which might seem superficial prima facie, is in fact very important and carries important
implications with it from a logic perspective [Governatori and Rotolo 2010]. For fur-
ther discussion on the differences between dealing with maintenance obligations and
dealing with achievement obligations in our framework, see Appendix A.

Norm N3: Doctor D; € D is prohibited from accessing a medical record p; € R if it
belongs to a patient A; € A not assigned to him. Otherwise, Competent
Authority C sends a warning to the doctor D, for violating the protocol specified.

Activation Condition N3 —isDoctorO f(D;, Ax)
Expiration Condition N3 isMedical RecordO f(pj, Ay) NisDoctorO f(D;, Ay)
Maintenance Condition N3 —AccessMedical Record(D;, p;)
Repair Condition N3 warningSent(C, D;)
Timeout N3 1

Figure 9.9: Formal model for regulative norm N3
Y

146 Chapter 9. Practical use cases

Norm 3 (see Figure 9.9) is a special case of maintenance obligation that actually
expresses a prohibition 3. Doctors are prohibited from accessing the medical records
of patients they do not have assigned. If the doctor accesses such medical records, he
will be sanctioned with an official warning from the competent authority. Therefore
prohibitions are modelled as negated states of the world to be maintained while the
norm is active. Also, please notice that the norm activates (e.g. prohibition starts to
hold) when the D; is not assigned to Ay, and deactivates (e.g. prohibition does not
hold anymore) with the assignment of D; to A.

Norm Ny4: Doctor D; € D assigns a new treatment 7; € 7 to patient A € A with a
former treatment assigned 7; € 7. The new treatment is applied for a time period
between 7,,, € T and 7,, € T whereas the old treatment comprises the period
between 7, € T and 7, € T. The constitutive norm that maps patient’s treatment
(Ty) is updated (dropping the old norm and adding a new one) effectively
updating the commitments specified in Norm N;.

Activation Condition Ny assignTreatment(D;, A, Tj, Tm, Tn)

Expiration Condition Ny hasTreatment(Ay, Tq, Tm, Tn)A

—counts_as(Tq, Ty, Ak, To, Tp) A
counts_as(Ty, Tj, Ak, Tm, Tn)

Maintenance Condition Ny T
Repair Condition Ny T
Timeout Ny 1

Figure 9.10: Formal model for regulative norm N,
EY

Norm 4 (see Figure 9.10) is a special case of achievement obligation with a trivial
maintenance condition: the norm cannot be violated. In this case, the norm has been
defined in order to automatically trigger a change in the normative state: Aj; with dia-
betes visits D; after a stomach operation. D; prescribes a low-fiber diet, to be included
in the actual Ay’s prescription including medicines, exercise and a sugar free diet. Just
like in S; patient has the obligation to follow the treatment with the same type of sanc-
tion to be applied if A, does not abide. Notice how constitutive norms allow for updating
the treatment (the institutional reality of the patient has changed) while the regulative
norm N1, without needing to be replaced or modified, still applies to the new scenario.

Norm s (see Figure 9.11) is a maintenance obligation actually representing a prohi-
bition that can expire due to different reasons — hence the disjunction in the expiration
condition — and also has a timeout set to fulfill the repair condition, which in this case
represents a sanction directed to an individual (the patient) rather than an institutional

3As already seen in Chapter 6, our formalism does not explicitly include modalities. However, prohi-
bitions and permissions can be expressed, with some limitations, by using the axioms of deontic logics.
For further explanation, see Appendix A.

9.1. Governance of situated agents in ambient intelligence 147

Norm Ns: Patient A; € A has the prohibition to consume substances S; € S that
are institutionally considered toxic substances. Otherwise, the patient is required
to contact their doctor immediately (before one hour later).

Activation Condition N5 isPatient(A;) A toxzicSubstance(S;) AisDoctorO f(D;, A;)
Expiration Condition N —isPatient(A;) V —toxicSubstance(S;)
Maintenance Condition N5 —consumed(A;, Sj,t)
Repair Condition Ny contact(A;, D;)
Timeout N5 actualTime(t + 3600)

Figure 9.11: Formal model for regulative norm N
Y

repair action. A; is elder and suffers from weak liver and is prohibited from consum-
ing toxic substances, such as alcohol and tobacco. If the A; takes them, considering
the high risk of the behaviour, the event is logged in A;’s medical record, and will be
presented to A;’s doctor during their next appointment. Please notice that the institu-
tional definition of toxic substance can evolve through time via counts-as rule activations
and deactivations, but thanks to the abstraction level provided by constitutive norms
this prohibition will remain the same.

9.1.4 Adequacy of the norm language to the use case

In Section 2.2.3 we discussed about the limitations of the Service-Level Agreement lan-
guages proposed for the governance of service-oriented architectures due to their strong
focus on defining constraints via simple rules or workflows. From a designer’s point of
view, such definitions (such as the one in Figure 9.4) can be either simple but rigid or
exhaustive but too complex. For example, it is hard to define a maintenance obligation
in a workflow when the expiration condition can potentially never happen.

The norm examples show a comprehensive set of different choices at the expresive-
ness level that our norm language allows that are not trivially transformable to rule- or
workflow-based systems, or to distributed systems constrained by regimented norms:

e Maintenance and achievement obligations.

Prohibitions as well as obligations.

The possibility of defining an obligation as a trigger, effectively defining norm-
driven regimentation.

¢ Institutional repair actions and agent-specific sanctions.
e Counts-as rules used to simplify the set of regulative norms.
e Timeout conditions allowing marking violations as failures.

Therefore, thanks to our approach, CoAALAS supports expressing and introducing
responsibilities at a high level with considerably less modification at the lower levels
(e.g., reprogramming the agents in the different smart devices) because changes at

148 Chapter 9. Practical use cases

higher levels automatically trigger changes at the lower levels. Additionally, using our
language for norms allows for monitoring the different actions performed by the set
of actors in order to fulfil the AAL (Ambient Assisted Living) tasks without having to
define new regulations for each new device added to the platform. Deviations from
the expected patterns of behaviour can be detected by directly querying the normative
states, and repair actions can be read by a computer to enact enforcement. In summary,
CoaaLas provides support for dealing with unexpected events (e.g., sending a doctor,
or an urgent shipment of medications to the patient when the pill dispenser device runs
out of pills).

AT (Assistive Technologies) are applied to support people in their daily life. Most
approaches focus solely on the direct interaction between users and the assistive tool.
Approaches such as norm-based design have the potential to provide innovative mech-
anisms and methods capable of taking into account more complex interactions. For
instance, the important role that third parties may have in user activities, and explicitly
reflect the social constraints that apply in the relationship between device and patient.
With CoaaLAs, smart devices are capable of reacting to deviations from the expected
patterns of behaviour, effectively adapting to a wide range of AAL situations that could
have an impact on the well-being of the user.

9.2 NORM-CONSTRAINED BEHAVIOUR IN FUN GAMES

Artificial Intelligence (AI) in commercial games provides the means to enhance the two-
way communication with the human player by delivering the illusion of “intelligence”
in the non-player characters’ (NPCs) behavior [Millington and Funge 2009]. Although
some specific types of Al algorithms, such as pathfinding or collision detection, have
evolved to a mature state, the implementation of behavioral or strategical reasoning is,
in most of the cases, still far from aligned with academic Al

The current issues of commercial games Al are related to high-level concepts of
gaming such as realistic virtual actors, automatic content and storyline generation, dy-
namic learning, or social behavior. Tackling these issues could represent a qualitative
improvement on gaming experience from the player perspective and academic research
on Al has good opportunities to provide solutions to these challenges[Charles 2003;
Nareyek 2007].

Usually, Al in games encompasses a subset of academic Al techniques that imple-
ment ad hoc solutions in three groups[Millington and Funge 2009]:

i Movement mechanisms, providing the decision process to control NPC’s motion,
e.g. optimised real-time versions of A* algorithms.

ii Behaviour control used to control NPCs’ actions.
iii Strategy techniques used to co-ordinate groups of NPCs.

Whilst algorithms in (i) have evolved to mature state-of-the-art, solutions com-
monly used in commercial games for (ii) and (iii) are far from aligned with academic
Al and are based on simplistic, rule-, automata- or case-based methods optimised for

9.2. Norm-constrained behaviour in fun games 149

performance. These domain-dependent approaches present the following limitations
in most of the cases:

e Blind specifications: the NPCs are programmed on how to act in reaction to envi-
ronmental and/or other players conditions, but not why to act in a given manner;
hence, the actions are purposefuless and, in most cases, not “natural” from the
human player’s perception.

e Lack of flexibility and adaptiveness: the rule-based actions are limited and re-
active to external conditions, not beeing able to evolve, and providing reduced
pro-activeness.

e Strange behaviour: the behaviour of the NPCs do no reflect the aspects of socia-
bility and “participating in a whole”, leading to unnatural actions from the human
player’s perception.

e Predictable behaviour: NPCs’ tactics are easily discoverable by the human player
and, after some time, predictable, leading to negative perception.

e Low reusability, as the solutions are commonly tailored to specific scenario do-
mains and, therefore, not re-usable through different games even if they belong
to the same genre.

Our hypothesis is that it is possible to create elaborate solutions for the issues of
both individual behavior control and collective strategy techniques by integrating mod-
els based on organisational and institutional theories to control NPCs’ behavior. This
theory contributes to the systematic study of how actors behave within organisations.
Hence, the actors in a game are described as an organisation which behavior is based
on specific roles, norms, dependencies, and capabilities.

9.2.1 Related Work

There are already examples showing that higher levels of abstraction can be success-
fully used in commercial games’ Al. Actually, some recent important commercial games
such as FE.A.R[Orkin 2006] or Fallout 3, have started to apply more complex cognitive
patterns by using GOAP (Goal-Oriented Action Planning), a simplified and optimized
version of STRIPS that allows for real-time planning of actions with pre- and post-
conditions, even outperforming Finite State Machine-based algorithms in some scenar-
ios[Long 2007]. Thus, these games execute complex symbolic reasoning not only about
how to execute certain actions, but also about what to execute at each moment. We be-
lieve that, by using an even higher level of abstraction in order to reason also about
why actions have to be performed, methods such as GOAP can be complemented and
improved.

Adaptiveness in games has been already explored in academic Al research. How-
ever, existing approaches are either focused on individual reasoning[Leite and Soares
2006; Newell, Rosenbloom, and Laird 1987], or do not take into account high-level def-
initions that would allow for reasoning why to make a particular decision on a specific
context[Spronck, Ponsen, and Sprinkhuizen-Kuyper 2006]. These approaches can get

150 Chapter 9. Practical use cases

advantage of ALIVE by extending individual agents’ reasoning cycle with organisational
awareness.

In fact, organisational frameworks such as OperA[Dignum 2004] are already being
explored for their use in serious games. In [Dignum 2008], organisational specifications
are used to create a distributed intelligent task selection system that adapts to the player
skill level and to model the storyline. With our work we intend to advance on this line
of work by generalizing the use of organisational models for fun games, more focused
on the realism of gaming experience, rather than on user modeling and learning.

The current issues of commercial games Al introduced in the introduction of this
chapter are related to high-level concepts of gaming such as realistic virtual actors, au-
tomatic content and storyline generation, dynamic learning, or social behaviour. Tack-
ling these issues could represent a qualitative improvement on gaming experience from
the player perspective and academic research on Al has good opportunities to provide
solutions to these challenges[Charles 2003; Nareyek 2007].

9.2.2 Proposal

ALIVE Environment :
P s/
Request = Event Log
Service for task diny [l
e coordinate |
- Matchmaker) Y _
Ag . . - invoke
Global Monitoring
S ’
Organisation [l
Ontology -]

N

Game Enactors API K
Statistic Report on
Organisation Performance

Game Engine

\ .;(Jﬁi;.\ ®
= Ve

N

Non-Player Characters

Services Coentrol
Actors' Behaviour in
Game Environment

Figure 9.12: ALIVE-Gaming coupling infrastructure
Y

9.2. Norm-constrained behaviour in fun games 151

Our argument is to create elaborate solutions for the issues of (ii) behaviour con-
trol and (iii) strategy techniques by integrating the ALIVE framework to serious and
fun games. This approach will provide extended flexibility to the elements that imply
intelligent behaviour, e.g. actors and characters, teams of individuals, and narrative
storylines. In addition, it will provide metrics that can be applied to evaluate the or-
ganisational behaviour using the games’ environments as simulation scenarios. Hence,
it would be possible to compare, learn, and improve NPC’s behaviour with an approach
based on organisation theoretical solutions for Game Al. This would contribute to over-
all flexibility and adaptiveness.

Figure 9.12 depicts the proposed architecture, which provides:

1. A practical solution to couple agents to the Game Engine, by defining the Game
Enactor programming interface.

2. A tool to describe the Organisation Ontology, which contains a representation of
agent structures.

3. The elements to describe game actors’ behaviour via social structures based on
norms, roles and their enactment, promoting the balance between autonomy and
story direction.

We propose that this solution is applicable to both fun games and serious games. For
the former, we foresee our solution helping to improve the games’ actors’ functioning
with more flexibility and promoting natural behaviour. For the latter, the model re-
flects the socio-environmental behaviour of human societies, providing the basis for
games and simulations that can be used in the emerging field of Computational Social
Sciences. Next, we present a number of case studies in the applicability field.

9.2.3 Case Studies

(a) GTAIV (b) Warcraft III

Figure 9.13: Games used as case studies
Y

152 Chapter 9. Practical use cases

We tested the solution in different games in order to validate our proposal, as de-
picted in Figure 9.13. Our intention was to analyse the advantage in terms of real-
ism, flexibility and adaptability. Moreover, our application to simulation environments
provides us with results useful for organisational research. In the case of commercial
games, it requires access to the internal game control structures. We selected two rep-
resentative examples for our case studies, considering the complexity and validity of
achieved results:

o Warcraft III, from Blizzard.
o Grand Theft Auto IV, from Rockstar Games.

The working prototype of the Warcraft III connection was shown as one of the extra
technology validation use cases at the end of the ALIVE Project.

9.2.3.1 Real-time strategy games

For many years, computer wargames have been designed as turn-based games. Real-
time Strategy (RTS) games are an evolution of turn-based wargames, in which the
player has to command a team of virtual individuals with diverse capabilities to achieve
a common objective, commonly to defeat the teams of the human- or computer-
controlled rivals. Other (sub)objectives include the capture and micro-management
of resources, technological evolution, and so on. RTS games are interesting for our
purpose in the sense that the concepts they deal with can be directly mapped to the
ALIVE domain, i.e. organisational structure, roles, role hierarchy, objectives, and co-
ordination.
From the Al development point of view, RTS games present two common issues:
1. Computer-controlled opponents become rapidly predictable and easily defeatable
by using simple yet optimal strategies. NPC adaptation is rarely seen.
2. Although - at a high level of abstraction — the concepts and strategies of a RTS
games are common to all of them, it is difficult to find Al solutions that can be
reused, even between games from the same companies (see Figure 9.14).

function UpgradeEx takes nothing wait_build 2 forge rule getNextGathererUpgrade { (defrule (goal 16 0)
local unit u = GetTriggerUnit() upgrade 1 p_ground_weapon 70 int upID=kbGetCheapestUpgrade(tID); (can-research ri)
local integer id = GetUnitTypeId(u) |upgrade 1 p_plasma_shield 70 int pID=aiPlanCreate(id, planProg); |=>
call DisableTrigger(trg_upgrade) wait 2700 aiPlanSetVariableInt(pID, upID); (release-escrow wood)
call IssueImmediateOrderById(u, up) [wait_build 1 cybernetics_core | aiPlanSetDesiredPriority(pID, 25); (release-escrow food)

endfunction upgrade 1 p_armor 70 aiPlanSetEscrowID(pID, cEscrowID); (release-escrow gold)

upgrade 2 p_plasma_shield 70 aiPlanSetActive(pID); (release-escrow stone)
wait 3600 } (research ri))

Figure 9.14: Example Al scripts for unit upgrading: (from left
to right) Warcraft III and Starcraft (Blizzard), and Age of
Mythology and Age of Kings (Microsoft)

E'Y

For these two issues, this is an scenario that could very well benefit from the adapt-
ability offered by the ALIVE infrastructure and serve as a useful proof-of-concept. RTS

9.2. Norm-constrained behaviour in fun games 153

games are also interesting for our purpose in the sense that the concepts they deal with
can be directly mapped to the ALIVE domain, i.e., organisational structure, roles, role
hierarchy, objectives, and coordination. We aim to produce computer opponents capa-
ble of adapting to unpredictable scenarios by dynamically improving at the organisation
and coordination layers. Moreover, this type of game would provide us a clear visual
interface to execute simulations of organisations in real-time.

Modeling. We modeled the organisational specification of an abstract RTS game (see
Figure 9.15 and Figure 9.16). This specification identifies the set of stakeholders, the
goals of each of them, landmarks and scenes related to those goals, and the normative
structure of the system. The set of stakeholders includes commander, medic, explorer,
worker, attacker, or defender. These are directly mapped to roles.

The normative structure included the following norms:

e Soldier units count as defenders.

e Soldier units count as attackers.

e Peasant units count as resource gatherers.

¢ In the case of the presence of enemies in the base, peasants count as defenders.

e It is forbidden to create military units until there are enough workers to support
them (see Figure 9.17).

e All defenders are obliged to attack enemies that are in the base.
e All atackers are obliged to attack any enemy seen in the map.
e Peasants are obliged to gather resources whenever they are idle.

e The amount of a type of resource stashed cannot be larger than twice the amount
of another type of resource.

One of the main benefits of applying institutional structures to this type of game
is that these high-level specifications can be reused through different RTS implemen-
tations, solving the issue of different types of NPCs enacting very similar roles across
different games.

For each role, its goals were identified, as well as the hierarchical relationships among
the set of roles. Figure 9.15 shows the roles (nodes) and the hierarchical relations be-
tween them (edges) in a graph-like representation. For instance, in order to fulfill
the objective Produce_new_worker, the objective Gather_Gold has to be taken care of. As
Produce_new_worker is pursued by the role Unit_producer, and Gather_Gold by the role
Gold_Gatherer, a relationship between the roles Unit_producer and Gold_Gatherer is cre-
ated, because the first role is dependent on the second one for the fulfillment of its
objective. For each objective, a state description is modeled, representing the state of the
world where the objective has been fulfilled.

To define how each of these goals must be accomplished, landmarks are defined: for
each objective, a set of ordered landmarks which must hold true in order to achieve

154 Chapter 9. Practical use cases

Commander
«ln»
Medic Explorer
«In» «ln»
Worker Defender Attacker
«lnx» «ln» «lnx»
Resource_Gatherer
«In» Defense_Forces Attacking_Forces
«lnx» «lnx»
Infrastructure_Builder Defense_Support Attacking_Support
«lny» «lnx» «ln»

Figure 9.15: Social structure for generic RTS games (OperettA
Tool screenshot)
EY

Produce_army_units

Bring_troops

. ’ Enemy_spotted . Inform_commander . Evaluate_impact ’ , .

Place_units

Hide_workers

Figure 9.16: Interaction structure for Defend city (OperettA
Tool screenshot)
2

a certain goal defines a scene. For each scene, an instance of its execution in the ac-
tual environment entails a certain state of one or more objectives. Figure 9.16 shows an
example of scenes (nodes) with the transitions between them (edges) in a graph-like
representation. For instance, when the objective Gather_wood is fulfilled, the landmark
Wood_Gathered is reached. Role Wood_Gatherer is involved as the landmark player be-
cause it has the objective Gather_wood assigned.

The last element to be defined on the organisation level is the set of norms. Norms
are defined by the activation, maintenance and expiration conditions defined in Chapter s,
modeled as partial state descriptions. Figure 9.17 shows an example of a norm modeled
for the use case: it is forbidden to produce a soldier unless 5 workers are already available.

9.2. Norm-constrained behaviour in fun games 155

Property Value
Activation Condition 4 Conjunction numberOfWorkers(N) * lessThan(N, 5)
Deadline
Expiration Condition 4 Negation ~(numberOfWorkers(N) * lessThan(N, 5))
Maintenance Condition 4 Negation ~Produce_New_Soldier
Norm ID b= NCWO

Figure 9.17: Norm example applied to our case (OperettA Tool
screenshot)

Enacting plat Gathery

Figure 9.18: Warcraft I1I units enacting actions sent from the
ALIVE platform (game view)
a

Implementation. We designed an intelligent agent that is connected to the Warcraft II1
game through a Game Enactor, allowing for bidirectional communication via sockets.
The agent is organisational-aware by reading and integrating the ALIVE organisational
and coordination models into its reasoning cycle.

The low-level events are obtained through the Game Enactor, and our normative
monitor environment provides mechanisms for the interpretation of these event, pro-
viding organisational meaning. Thus, the agent is capable of perceiving the “state of the
world”, reacting to events happening in the game at runtime, e.g. a unit being created,

156 Chapter 9. Practical use cases

= Monitoring - Eclipse Platform [S|E] &= |
File Edit Navigate Search Project ALVE Run CVS Window Help
@ Event Bus Locations 32 = 0@ netstictalive runtime.event.impl.Eventimpl @1b3409f (timestamp: Tue May 25 18:37:42 CEST 2010) 52 i i =0
= a
EALEX © Constant © Atom srauments [@ Constant
5 Event Buses smREe| o predicate = Unit ez = 1018308
5 Event Logs o iD = Unit(1043808, Peasant)
[alivelsi.upc.edu (connected) %
|® Message|
3
© SendAct]
ksl
K
|© Content
fy
2 &
g
[® ObserverView]y . | © Event Liocg <]
= Simestomp = Tue May 25 183743 CESTA010 |2 id = 12748054621870023474082524328408
© Actor
o url = hitp//we3server.com
o name = WC3Server B
‘ m D
[£: Problems | @ Event List &3 ¥ =0
Search:
Local key Asserter Content : Point of View -
[212748054962085008487875212702266 [WC3Server@httpy//wc3server.com [%] SendActimpl [Z ObserverViewlmpl
[2112748054621820023474092524328408 | [&] WC3Server@httpy//wedserver.com [#] SendActimpl [&] Observerviewlmpl
[2]12748054837366806200027820125822 [Monitor@http://beholdereye [%] NorminstanceViolatedimpl [3 ObserverViewlmpl -
« i D
o° @&

Figure 9.19: Warcraft III units enacting actions sent from the
ALIVE platform (monitor view)
Y

or a soldier spotting an enemy, and of reasoning about which actions should be taken
in the game, taking into account the current state of the world and the organisational
constraints (e.g. objectives and normative constraints). Also, an agent may (or may
not, depending on the individual utility) decide to discard a particular action if a norm
is forbidding to enact it given the current state of the world.

The Game Enactor allows agents to enact actions in the game (see Figure 9.18 and
Figure 9.19). Once the reasoning process has decided which are the next actions to be
performed, agents are able to communicate with the game, making the unit responsi-
ble of each action to enact it according to the role and plan structures defined in the
organisational specification.

Currently, agents are implemented in Java on top of the AgentScape multi-agent plat-
form. These agents are organisational aware, and are capable of planning and enacting
plans based on ALIVE models. The planning process can be adjusted by an internal
configuration module called Plan Rules.

This Java service is used by the ALIVE framework. With this implementation,
agents are able to:

e Perceive the “state of the world”, reacting to events happening in the game at
runtime, e.g. a unit being created, or a soldier spotting an enemy.

e Reason about which actions should be taken in the game taking into account the

9.2. Norm-constrained behaviour in fun games 157

current state of the world.

e Include the ALIVE specification in their reasoning. Agents will take into account
the organisational structure: roles, plans and norms, defined in the ALIVE model,
and proactively decide at each moment which actions to enact in order to accom-
plish the organisational objectives. The agents may also decide to discard some
actions to be enacted if an organisational norm is forbidding to enact them given
the current state of the world.

e Enact actions in the game (see Figure 9.18). Once the reasoning process has de-
cided which are the next actions to be performed, agents are able to communicate
with the game, making the unit responsible of each action to enact it according
to the role and plan structures defined in the organisational specification.

This is the scenario that could best benefit from the adaptability offered by the
ALIVE infrastructure. A common issue of RTS games is that after some amount of time
spent on it, computer opponents are predictable and easily defeatable by using simple
yet optimal strategies. We aim to produce computer opponents capable of adapting to
unpredictable scenarios by dynamically improving at the organisation and coordination
layers. Moreover, this type of game would provide us a clear visual interface to execute
simulations of organisations in real-time.

9.2.3.2 Sandbox game: GTA IV

First we will test our environment on sandbox games, also known as free-roaming
games. In these kind of games, players are given a large amount of freedom, with
non-linear storylines and different paths to completion. For example, the Grand Theft
Auto (GTA) series allows the player to wander around a whole city and interact with
hundreds of NPCs and objects.

In free roaming games such as GTA, most of the interactions with characters are
scripted, giving the player a feeling of repetitiveness after a few hours of play. On
the other hand, the higher-than-normal freedom given to the player also provides less
realism.

Our objective was to define a high level social structure, simulated by the ALIVE
coordination layer, with dynamic adaptation of interaction patterns, using GTA as the
graphic interface of such a social environment. For example, in GTA the player is almost
free to behave in a violent way while driving a car. Passing red lights, driving in the
wrong direction, and running over people are actions that have no consequences in the
vast majority of cases. We implemented a prototype by designing, at the organisational
level, traffic norms and roles defining authority figures, i.e. police (see Figure 9.21).
Police agents plan and reason about the sanctions to apply when detecting a traffic norm
violation, which can consist on imposing a fine or initiating a car chase, depending on
the gravity of such violation.

For the GTA connection with ALIVE we used GTA ScriptHook, an open-source tool
which allowed us to capture all possible events and execute all possible actions in the

158

Chapter 9. Practical use cases

ALIVE Infrastructure

ALIVE Monitor

/
TrafficViolation()

RanLight() ChasePlayer()

[Event Bus

/ ChasePlayer()
Rannght(/

Java GTA
Annotated
Service

/ set_wanted_level(4)

time_since_ran_light = 320ms
time_since_drive_wrong = -1

GTA IV
ScriptHook

GTAIV

Figure 9.20: ALIVE-Gaming coupling infrastructure for GTA
a

game running environment, including the control of NPCs’ behaviour. The following
is a typical flow of information on our system (see Figure 9.20):

1.

2.

3.

An event, i.e. running past a red traffic light, happens on the game.
GTA ScriptHook captures the event and provides it to the Java GTA Annotated Service.

The service interprets the game event as a low-level event and puts it on the Event
Bus.

. The ALIVE Monitor captures the event from the Event Bus and infers its high-level

interpretation.

. This interpretation triggers the generation of a new event ChasePlayer that is reg-

istered in the Event Bus.

. The Java GTA Annotated Service captures the ChasePlayer event from the Event Bus

and, via ScriptHook, modifies the game.

9.2. Norm-constrained behaviour in fun games 159

© Role
o name = Driver

[C] Norm
o normiD = Traffic_Morm_1

suou

o -
5 1CV' raleType gﬁ
§ (C] RoIeDleonﬂcStatememi Concept
% g maodality = F st o type = Class
2 o uRl = null
% €] Conjunction o concept = Driver
5 e iD = LightOfStreetiL, 5} A (~PassLight(D, L} SUBE
" 2Mulas © Atom
= o predicate = PassLight
© Negation 3 o iD = PassLight(D, L)
o iD= ~DrivesStreet(D, 5 = & e
:
= © Atom 2 c;?"“ 33
E o predicate = LightOfStreet @" ,.,g %
3 5 iD = LightOfstreet(L, 5) = Negation _| ["
= o iD = ~PassLight(D, L}
© Atom

o predicate = DrivesStreef

o D = Drives5treetiD, 5)
T

<
)
N
¥y =
[c] Conjunction
o iD = EnactsRole(D) # DrivesStreetiD, 5) © variable| |© variable
w g name =Y | @ name = |
[=
=
bl
)
3
c
¥ r
© atom 5 1
o predicate = EnactsRol arguments - Variable

o name = O

o iD = EnactsRole(D)

Figure 9.21: Graphical representation of the norm it is
forbidden to pass under a red light (OperettA Tool)
2

7. This will effectively make something happen on the game, i.e. player being chased
by police forces, as a response of having run a traffic light.

As we have already seen in Section 5.2, norms modelled using the ALIVE tools are
not regimented but substantive, which means that the player —as well as any NPC- can
decide not to fulfill them. Thus, a player can decide to break traffic rules if the police is
not around or at line of sight, or if the player has no concerns about the possible sanc-
tions enforced by the NPCs. This is a simple example, but more complex examples can
be designed to create obstacles or motivations for the player, by reasoning at runtime
about the social-environmental context in the game at a certain point of time.

Our intention was to design a full set of organisational constraints, i.e. norms, indi-
vidual objectives and roles, in order to define high-level social structures in the game,
therefore improving realism through sensible and adaptive interactions with NPCs.

160 Chapter 9. Practical use cases

The working prototype of this scenario consisted on a type of agent that represented
all policeman generated by the game, and which received inputs from the system based
on limited observability (the behaviour of the player was not tracked if the player was
too far and/or not in the line of sight). There were no counts-as rules in this case, and
norms dedicated to traffic rules not being observed by the original game engine:

o It is forbidden to pass through a red light.
e It is forbidden to surpass 110 miles per hour.
e It is forbidden to crash against a car.

This scenario, in terms of visible benefits for demonstration, was more limited than
the one based on RTS. However, with proper constitutive rules and a more varied set
of regulative rules, this type of scenario is potentially very interesting for organisation-
al/institutional simulation purposes. Currently, we have abandoned GTA IV as engine
and we are adapting this scenario to the World of Warcraft game, as it provides extra
challenges to tackle such as having huge amounts of events per second to be processed
by the normative monitor.

9.2.4 Experimental results

In order to check the validity of our normative monitor from an efficiency point of view,
we analysed traces of data coming from an open-source server of World of Warcraft*.
Our modification of the game allows us to use norms from a Real-Time Strategy Game
domain into a sandbox-like multiplayer game such as World of Warcraft. This modification
was made with the objective of exploring emergent narrative with social/institutional
components (for more information, see [Alvarez-Napagao et al. 2012]).

(eval ’(defrule norm-instance-fulfillment
"norm_instance_fulfillment”
[wire.preds.Expiration (= ?n norm) (= ?f formula)]
[?ni <- wire.preds.Instantiated (= ?n norm) (= ?theta substitution)]
[wire.preds.SubsetEQ (= ?theta2 subset) (= ?theta superset)]
[wire.preds.Holds (= ?f formula) (= ?theta2 substitution)]
=>
(do
(retract! 7ni)
(insert-unconditional! (->Fulfilled ?n ?theta)))))

Figure 9.22: Example of translation of base rule to clara
=Y

For these experimental results, we use an advanced version of the Game Enactor that
uses clara® as a rule engine. clara is a rule engine very similar to DROOLS in syntax and

#The implementation of this server is TrinityCore and our especially tailored version can be found at

5

https://github.com/kemlg/trinitycore-conciens
https://github.com/rbrush/clara-rules

9.2. Norm-constrained behaviour in fun games 161

design concept and is written from scratch in Clojure. The success in grounding our
formalisation to clara can also be seen as additional empiric proof of the flexibility given
by using production systems as the base implementation semantics. Figure 9.22 shows
an example of base rule written in clara and can be directly compared to the rule "norm
instance fulfillment" listed in Figure 7.9.

Figure 9.23 contains an example Clojure structure representing some example
norms mentioned in Section 9.2.3.1. This structure is created automatically from OperA
models and is transformed into rules following the procedure described in Section 7.3.2.

Our modified World of Warcraft server captures every internal event related to a
change in the physical environment of the game and sends them in JSON format to
the Game Enactor, which fires the clara rule engine instance after every event, in order.
For experimentation purposes, we inject 450 autonomous bots that act as regular play-
ers and carrying out random actions, such as buying, gathering resources, or killing.

Figure 9.24 shows the relationship between number of events generated and time
taken by the game to generate them, out of 522 samples parametrised by random event
amounts. As can be seen from the chart, if outliers are ignored, the speed of the gen-
eration of events is fairly consistent. From the linear regression obtained from this
data we can infer that the speed of generation is of approximately 14.4179436900546
events per millisecond (14417.94 events per second). This means that in an average
case the ideal processing speed of our rule engine for this game should be around 69.36
microseconds/event.

Time (milliseconds)

Figure 9.24: Scatter plot of events samplings and time spent per
sample
=Y

While this speed is not particularly high — systems such as Kafka or RabbitMQ are

162 Chapter 9. Practical use cases

{:norms [{:norm-id "nCWe",

:conditions
{:expiration {:type "disjunction”,
:formulae
[{:type "conjunction”,
:formulae

[{:type "negation”,
:formula {:type "predicate”,
:name "NumberOfWorkers",
:arguments [{:type "variable”, :name "x78"}1}}1}
{:type "conjunction”,
:formulae
[{:type "negation”,
:formula
{:type "predicate”,
:name "lessThan”,
:arguments [{:type "variable"”, :name "x78"}
{:type "constant”, :value "5"3}13}}1}13},
ractivation
{:type "disjunction”,
:formulae
[{:type "conjunction”,
:formulae
[{:type "predicate”,
:name "NumberOfWorkers",
:arguments [{:type "variable”, :name "x78"3}1}
{:type "predicate”,
:name "lessThan",
:arguments [{:type "variable”, :name "x78"}
{:type "constant”, :value "5"3}1}1}13},
:maintenance
{:type "disjunction”,
:formulae
[{:type "conjunction”,
:formulae [{:type "negation”,
:formula
{:type "predicate”,
:name "Produce_New_Soldier”,
rarguments [13}3}131333],
:cas-rules [{:context "Universal”,
:concrete-fact
{:type "disjunction”,
:formulae [{:type "conjunction”,
:formulae
[{:type "predicate”,
:name "Unit",
:arguments
[{:type "variable”, :name "x85"}
{:type "constant”, :value "Peasant”}]}]1}1},
:abstract-fact
{:type "disjunction”,
:formulae [{:type "conjunction”,
:formulae
[{:type "predicate”,
:name "Worker",
:arguments [{:type "variable”, :name "x85"3}13}13}1}}1}

Figure 9.23: Example norms in Clojure
Y

9.2. Norm-constrained behaviour in fun games 163

1norm | 10 norms | 100 NOrms | 1000 NOrms
Simple formulae 1.859195 | 5.653881 79.379386 | 177.226990
Complex formulae 2.526412 | 15.937769 | 98.955428 | 193.541208
| Deficit (events/microsecond) | - | - | 10.02 | 107.87

Table 9.1: Results of the experiment (in microseconds)
Y

designed to cope with one order of magnitude higher - it is still decent for testing a
system with a complex business logic such as the monitoring of norms — as opposed to
more simple business logics such as message brokering or log storage. The design of
our experiment is:

e Several amounts of norms: 1/ 10 / 100 / 1000.

¢ Different norm complexity: no disjunction in the formulas / each formula con-
tains 3 clauses.

We run a benchmark for each cartesian product of both parameters, each benchmark
consisting in bootstraping the rule engine and executing 60 tests of soooo events each,
while connected to the live output stream of the game. The results of this testing
set are summarised in Table 9.1, each cell of the first two rows containing the average
execution time per cycle — insert event into the rule engine + fire the rule engine + store
the normative state — in each scenario. The third row contains the trailing number of
events per microseconds that our rule engine is not able to pick up.

One of the most immediate conclusions we can take from our experiment is that
if we add norms - regardless of the complexity of their formulas — we will eventually
reach a point where the rule engine is slower than the data gathering speed. This is
similar to the results of other more complete benchmarks such as [Xiao and Zhong
2010]. This is due to the complexity of the RETE algorithm [Albert and Fages 1988]:
O(log(P)) in the best case and O(P - W) in the average case, where P is the number
of rules and W is the number of facts. This confirms that rules are the dominant input
parameter when measuring complexity — input (brute) facts are only interesting for us
in order to generate institutional facts, so we can discard them if necessary.

Therefore, there is an opportunity to find ways to reduce the inherent complexity
when having larger sets of norms. This is already being explored by applying hori-
zontal distribution of the norm condition clauses, and [Gémez-Sebastia 2016; Gémez-
Sebastia, Alvarez-Napagao, and Vazquez-Salceda 2011] are a direct result of this line of
work.

On the other hand, the conditions of the experiment are close to a stress test. In
most commercial games, events that can be retrieved via scripting, software develop-
ment kits or APIs are heavily pre-filtered and it is extremely rare to find a case in which
we need to process so many events per second. Actually, in the worst case scenario from

164 Chapter 9. Practical use cases

the ones summarised in Table 9.1 (1000 complex norms), our monitor can process more
than sooo events per second, which is more than enough for most cases.

9.2.5 Adequacy of our operational formalisation to the use case

We suggest that the combination of our norm language and its grounded operationalisa-
tion contribute to Game Al solutions by providing an adaptive, extensible, flexible and
efficient solution for norm monitoring to the game development industry. The main
advantage of this approach is that, through norm-based design, developers can specify
NPCs’ behavior in terms of why they should do something, not only what and how to do
it: actors in a game are described as an organisation whose behavior is based on specific
roles, norms, dependencies, and capabilities. Our solution provides a methodology and
tools for developers to model gaming scenarios using social structures.

The use of high-level norms specifically contributes to the Game Al issues of be-
havior control and strategy techniques, by providing:

e open specifications where NPCs are programmed in terms of why they must act
in a certain way;

¢ enhanced flexibility and adaptiveness by describing NPC’s behavior based on or-
ganisational terms;

e more natural behavior as NPCs may act autonomously, respecting environmental
conditions and organisational objectives that will be perceived as natural; and

e improved reusability, as the proposed solution is generic and can be attached
to a variety of commercial games through a common interface and customised
organisational models.

9.3 CONCLUSIONS

In this chapter we have seen two use cases that help illustrate how our contributions
presented in Part II can be applied in real-world scenarios.

First of all, we have explored CoaALAs, a distributed Assistive Technology platform
that allows specifying the relationship between doctors, patients, caregivers and so on
as well as the constraints that affect such relationships in a flexible and adaptive way.
In this scenario we have focused on demonstrating the expressiveness of our norm
language.

Second, we have presented a monitor for fun and serious games with the objective
of being able to model organisational and social relationships between non-player con-
trolled characters, and between these and human players. We have used this use case
to discuss the efficiency of the grounding of our operational formalisation.

CHAPTER

Conclusions

Ces paysages d’eau et de reflets sont devenus une
obsession. C’est au-dela de mes forces de vieillard, et
je veux cependant arriver a rendre ce que je ressens.
Jen ai détruit... J’en recommence... etj’espere que
de temps de choses il restera quelque chose.!

CLAUDE MONET

This dissertation has tackled an issue that will probably become of great importance in
the next few years due to the consolidation of distributed systems as the foundation
of computation of interaction. As the number of such systems and their complexity grow,
there is a challenge in trying to coordinate them in a way that does not compromise their
internal implementation in the form of hardcoded constraints. Agents and services, in
this paradigm, are to be seen as members of socio-technical systems with mixed human
and artificial entities interacting together, or even as members of institutions that can
emulate the human ones with the use of high-level behavioural constraints.

In Part I, we have answered Research Question 1 — What properties can we infer from
individuals in distributed systems that allow us to treat them as part of a socio-technical system? —
by exploring in more detail the concepts related with this challenge.

First of all, we analysed computation as interaction in Chapter 1, identifying the individ-
ual elements of distributed systems, intelligent agents and services, as agents: capable
of agency and therefore susceptible of being coordinated using mechanisms analogous
to those already existing in human organisations.

In Chapter 2, we explore one of such mechanisms: normativity. We stress the im-
portance of having both constitutive and regulative norms, because that allows us to
have proper institutions as our social abstraction for distributed systems. Also, in this

'These landscapes of water and reflections have become my obsession. They are far beyond my old man power and,
in spite of everything, I want to succeed in rendering what I feel. I have destroyed...I start over again...And I hope
something will eventually remain.

166 Chapter 10. Conclusions

chapter we summarise several ways to implement norms in a computable way: De-
ontic Logic, Event-Condition-Action (ECA) rules and Service-Level Agreements. They
have different levels of complexity and directly proportional expressivity capabilities,
and therefore we conclude that the perfect scenario would be to be able to reduce a
language with high expressivity to a formalism with the least possible computational
complexity.

We then explore in Chapter 3 the systems that use the abstraction of norm in two
manners: as institutions, grounded in theoretical research, and as SOA governance,
created with pragmatism as rationale.

Summarising our study of the state of the art, we detect the need to have a language
allowing the highest possible expressivity, a combination of deontic logics and counts-
as rules, and a proper reduction to production systems, which are based on ECA rules.
This is the focus, as well as the result, of our work presented in Part II and Part III.

10.1 CONTRIBUTIONS

Our Research Question 2 — What mechanisms can we provide to distributed systems
so that they can properly act as socio-technical systems? — is tackled in Part II. Taking
into account the related work already present in the literature, our answer is based
on filling the gaps described in Chapter 4 by taking a pragmatic approach based on
real-world applications’ requirements.

Our first contribution in this direction, presented in Chapter s, is a language of
norms with support for constitutive rules, tailored for distributed systems. This
language has roots in several theories, such as deontic logics and speech acts, while
still being translatable to computer-based languages (XML, XMI, Lisp). Along with the
language, we presented several layers of communication and interaction protocols that
can be used — but not mandatorily — by agents in distributed systems. This language
was created for its use especially in service-oriented architectures. In future work,
this language could be improved by adding some missing deontic-related terms to the
vocabulary and thus to the operationalisation, such as power.

In Chapter 6 we present our second contribution: operational semantics covering
both constitutive and regulative norms, with a grounding on deontic logics. An
important contribution with respect to existing proposals is that norm instances are not
only being tracked — they are not even tracked in many proposals — but they become
first-class objects in our model. This allows agents to reason not only about the norm
itself but also about the variables that triggered a particular norm instance. We also
present two separate lifecycles for norms and for norm instances, a distinction that is
usually confused in the literature when they are concepts that reside in different levels
of abstraction.

An important thing to note is that we provide, in Appendix A, reductions from
our operational semantics to several flavours of deontic logic. This is especially
relevant if we take into account that we are augmenting our formalism to be able to
cope with norm instances, which are not a part of Standard Deontic Logics.

10.2. Future lines of research 167

However, our operational semantics can still be largely improved. On one hand, the
objects of the norm conditions are right now formalised in propositional logic. Other
options, such as first-order logic — which are available in many rule engines — or LTL
should be explored. Also, our norm instance lifecycle, which is adequate for most uses,
is rather limiting due to having its roots in LTL. Other logic frameworks should be
tested in this respect, such as CTL or CTL*.

Finally, in Chapter 7 we present our normative monitor, based on a reduction
of our operational semantics to production systems. Having all our operational
semantics reduced, at the implementation level, to simple rules executable in any rule
engine provides our normative monitor with the capability of being used in virtually any
computation environment. This tackles directly our objectives of 1) enabling the use of
norms in a wide range of distributed system types, including services (and microser-
vices); and 2) effectively decoupling agent reasoning from the detection of normative
states and thus providing social reality in real-time scenarios.

Another relevant novel outcome, shown in Section 8.1, is that our operational se-
mantics are not only reducible to production systems but also to planning languages.
This effectively means that an agent planning its behaviour based on a normative con-
text and executing it successfully will produce a social reality that will be exactly the
same as the social reality detected by an agent using the normative monitor.

As with the rest of the contributions, there are important upgrades that can be made
to our normative monitor. The most obvious one is giving it semantics for dynamic
change of normative context. Because the underlying technology used is production
systems, this is entirely possible and is already being explored in [Gémez-Sebastia and
Alvarez-Napagao 2012].

Additionally, in Part III we have explored ways to make our contributions usable
not only from a monitoring but also from an enforcement perspective, and we have
presented practical examples that show the applicability of our contribution in real-
world scenarios. In fact, we have presented an architecture for norm enforcement
based on our operationalisation and implementation to fulfill the requirements
of a SOA governance system.

Opverall, our contributions represent a self-contained package of computational ele-
ments for the monitoring of social state that can be used in distributed systems without
much effort and with a reduced time complexity. Therefore, the field of socio-technical
systems can benefit from the language and the normative monitor by enabling the in-
corporation, to such systems, of software components with very low implementation
complexity, such as agents, services, microservices, embedded systems, and so on, and
what is more important, also by combining them all at the same time.

10.2 FUTURE LINES OF RESEARCH

The results presented in this document are the result of a continuously evolving body
of work in many different contexts and with different objectives (EU-Provenance, IST-
CONTRACT, ALIVE being the main ones, but with many side projects involved as
well). At the same time, our focus has always been to try being as strict as possible

168

Chapter 10. Conclusions

from a formal perspective. Both aspects of our work have always been at conflict, and
as such there are many improvements and lines of derived work that we propose:

Convert the monitor into a cloud component capable of automatically distributing
computational resources on split normative contexts, as well as implementing the
capability of having dynamic normative contexts. This line of work has already
been started by [Gémez-Sebastia and Alvarez-Napagao 2012; Gémez-Sebastia,
Alvarez-Napagao, and Vazquez-Salceda 2011].

Incorporate, at a formal level or implementation level or both, other social ab-
stractions similar to norms but with different semantics, such as commitments
or landmarks.

Improve the norm lifecycle proposed in Section 6.4.2 with a formalism different
from LTL that allows us to specify loops.

Identify enforcement mechanisms and generalise, at a formal level, our opera-
tional semantics to allow reductions to them.

Integrate our monitor not only on SOA governance architectures but also on
any of the technologies currently adopted by microservices architectures, such
as Event Sourcing or CQRS [Betts et al. 2013].

Extend our use cases in domains with not so apparent needs for institutional ab-
stractions, such as mobility or Internet of Things. Early encouraging attempts
have already been made [Gdémez-Sebastia, Alvarez-Napagao, and Vazquez-
Salceda 2013; Gémez-Sebastia, Garcia-Gasulla, and Alvarez-Napagao 2011].

PART IV

APPENDICES

APPENDIX A -

Proofs

This appendix provides the proofs for the deontic logic reductions of our normative
framework described in Section 6.4. The purpose of these proofs is to demonstrate
that our norm representation (a set of first-order logic formulas) can represent both
deontic statements in Standard Deontic Logic and in Dyadic Logic.

A.1 ACHIEVEMENT OBLIGATIONS

In our framework, achievement obligations (typically, O(A) where A is a state to be
eventually achieved once in the future) are characterised by leaving the discharge con-
dition as the unique free parameter:

<7T7 i 0> ': Oeff’gtimeout(Ea[eT] = anD | QT) iff <7T7i7 0> ': 3j >4, 0" : <7T7j7 60”>): frlt)

Proof of this equality is given in Section A.1.1. In the case of achievement obligations,
axioms K (section A.1.2) and Necessitation (section A.1.3) can be proven.

A relevant issue of achievement obligations in our framework is that axiom D is not
fulfilled. The reason is that the negation of the reduction is simply —f2, that is, that the
state to be achieved is the complementary state of the original achievement obligation.
The main implication of this is that, in our framework, when dealing with achievement
obligations as commonly treated in SDL, we cannot ensure that O(A) and O(—A) are
incompatible. While from a theoretical perspective this might seem a problem, from
a practical point of view trying to ensure this property above others might be an even
bigger problem: if the only thing we care about is to achieve two goal states and we do
not care about maintenance, then it is not really a drawback if both obligations can be
achieved at different points of time.

For simplification purposes in the subsequent proofs, we will assume that:

O(f??) = O9f}f§timeout(Ea[0T] = efé) ’ GT)

171

172 Appendix A. Proofs

A.1.1 Substitution for achievement obligations

(m,1,6) |:Oaf,§§timeout(Ea[9frJLM] =<0fY 105

iff (7,1,0) FG(=f;)V
AU A v 0 FUBe 0 £ [
SFAU(FA N[00 FTU (-0 YA (302 F<timeonst0' £17))])]
iff (7,1, 0) EG(~T)V
STU(T A 0 TU0" 0" D)) |v
STU(TA[B0 0 TUOTA 30" : F<timeount0' L
iff (x,4,0) EG(L)V
F(E0": 0" fD)|v
30 0'TU(LA [1])]
iff (,4,0) =[F(30" : 0" D)
i pefatg 3 >4,0": (m,i,0'0) = [P

The intuition behind this result is that in an achievement obligation, the only thing
that matters is that the goal state is eventually achieved. In a norm of this kind the
activating condition plays no role, as the obligation stands from the moment it is an-
nounced. There is also no maintenance to be done, as achieving the goal state does not
depend on the previous states to the actual achievement.

A.a.2 Proof of K
Axiom K states that O(A — B) — (O(A) — O(B)).

(m,i,0) = O(A — B)

iff 3j > 4,0 : (n,5,0'0) = (A— B)

iff 3j > 4,0 : (7, 5,0'0) = (-AV B)

iff3j > 4,0 : (n,5,0'0) = -~AvV B

iff 3j > 0,0 : ((m,5,0'0) = —AV (r,j,00") = B)

iff3j > 4,0 : ((,4,00) = -A) Vv {(r,j,00") E B)

iff 3j > 0,0 : ((m,4,0'0) = AV (m,5,0'0") = B)

iff(EIj > 4,0 (7, 3,00 AV (T >4,0 : (7, j,00) = B)

ff(3j >i,0 : (m,j,00) AV (3j>14,0 :(x,j,00) = B)
iff (m,i,0) = -~O(A) v O(B)
iff (m,i,0) = O(A) — O(B)

Thus, in our framework, O(A — B) = O(A) — O(B), so K is fulfilled.

A.1.3 Proof of Necessitation

Necessitation states that = a — (7,4,0) = O(«): if something is a tautology, then it
is obliged for it to happen.

A.2. Maintenance obligations 173

E o

= v, i, 0 (7, 0) Ea
S VL0 (7,0 E
=Vi', 30" (m,i,0") £ «
=35 >4,0 :(mj,0) Fa
iff (m,i,0) = O(w)

A.2 MAINTENANCE OBLIGATIONS

Maintenance obligations are seen in the literature in a very similar form to achievement
obligations: O(A), but in this case A is a state to be permanently maintained. In order
to represent this in our framework, the maintenance condition has to be the unique
free parameter:

<7T,’i,9>): Oﬁfﬁgtimeout(EOt[ef%} = anD ‘ Qf;?) iff <7T,7;,9> ': Vo' : G(elfrjbw>

Proof of this equality is given in Section A.2.1. Interestingly, axioms K (sec-
tion A.2.2), D (section A.2.3) and Necessitation (section A.2.4) can be proven. There-
fore, maintenance obligations in our framework are equivalent to maintenance obliga-
tions in SDL.

For simplification purposes in the subsequent proofs, we will assume that:

O(fa") = Ogrctimeont (Bal0f'] 2 0£7 | 0£:1)
A.2.1 Substitution for maintenance obligations
<7r,i,0>):Oeffgtimeout(Ea[efé\/[] = ean | Hf;?)

iff (m,1,0) = G(=f;)V

SFU (AN V0 0 F U0 07 P |V

1RO (FANBO 0 FMU(0 M A B0 < Fctimeont 0 15))])]
iff (r,7,0) = G(=T)V

STU(T A0 0 fAUT0" : 0"0c])|V

STU(T A3 0 FMU (0 FYA 30" 2 Ftimeont0'1])])|
iff (m,i,0) =G(L)V
(Vo' 0/ f1U30" < 0"00] |V
(20 0 £ TU (=0 FM A 1)]]
iff (r,1,0) = :vef L0 FMUZ” e”oo]
iff (r,1,0) = :\79' : G(@’f%]
iffvj >i,0 : (r4,00) fM

174 Appendix A. Proofs

The intuition behind this result is that in a maintenance obligation, the only thing
that matters is that the state is maintained until the end of time. In a norm of this kind
the activating condition plays no role, as the obligation stands from the moment it is
announced. There is also no discharge to be considered.

A.2.2 Proof of K
Axiom K states that O(A — B) — (O(A) — O(B)).

(m,i,0) = [O(A — B) AN O(A)]

iff (,1,0) = [V8' : G(0'(A — B))] A [V : G(0/A)]
iff (,i,0) = [V0' : G(¢'(A — B)) NG(0'A)]

iff (r,i,0) = [V’ : G(§(A — BAA)]

iff (m,i,0) = [V0' : G(0'(B)]

iff (m,i,0) = O(B)

The result is identical to the case of achievement obligations: O(A — B) = O(4) —
O(B), so K is fulfilled.

A.2.3 Proof of D
Axiom D states that O(A4) — -O(—-A4).

(m,1,0) = O(A)
iff (m,i,0) = V0 : G(0'A)
=(m,i,0) =30 : G(6'A)
iG(A)%ﬁg(ﬁA)@T, 7, 0> l: 36" : —|G(—|9/A)
iff (,1,0) = -8 : G(=6'A)
iff (7,i,0) = —V0' : G(0'-A)
iff (7,4, 0) = [ve' : G(Q’ﬁA)}
i (7.1.0) |- ~O(~A)

717

In achievement obligations, D cannot be proven, but this is not the case with main-
tenance obligations. This result is reasonable: because maintenance obligations require
that states are fulfilled at all points of time, two obligations with complementary main-
tenance states are incompatible.

A.2.4 Proof of Necessitation

Necessitation states that = a — (7,4,0) = O(«): if something is a tautology, then it
is obliged for it to happen.

Ea
e <7T,z,0’> Ea
e VI,0 (i) E

A.3. Dyadic Deontic Logic 175

=>Vi',0 (7, 0) Ea
=Vj>14,0 (7 j,0) Fa
iff (7,4, 0) = O(a)

A.3 Dyabic DEoNTIC LOGIC

Dyadic Deontic Logic (DDL) [Prakken and Sergot 1997] is an extension of SDL that
allows to model conditional obligations, in which the common form is O(A| B), read
as: “given that B, it is obliged that A”, or otherwise, “in the context defined by the
event B, it is obliged that A”. It is not clear in the literature whether B triggers the
context or is required at all times to maintain the context [Prakken and Sergot 1996],
but it is of little importance in our case to define the reduction.

In the first case:

o f41=R
o fM=4
. 1P =G
o fR=1

And the reduction is (shown in A.3.1):

WjZi%m$9H:ﬁBij2i%m$0M:BAVj2LH:@Jﬁ@H:A}
AVi < k < j, (. k,0) = -B

In the second case:

o fA=B

o fM=(AAB)
o fP=-B

o fi=1

The reduction formula is not explored in this Section but is trivially achieved in an
identical fashion:

[Vj >i:(m j,0) = ~BV

(3j>i:(mj,0) =BATk: [Vk>j >0 : (m j,00) = (AAB)ATO : (m,k,0'0) |= ﬁB]}
AVi < k < j,(m,k,0) = ~B

In this annex we focus on the first case, but it is trivially provable that the axioms
are equally valid on both systems. There exist several of such axiom systems that apply
to DDL, but here we choose the K1-K4 of [Hilpinen 1971] and we prove K1, K3 and
K4 in section A.3.2, A.3.4 and A.3.5.

Axiom K2, which is =(O(A|B) A O(—A|B)), cannot be reduced to T in our frame-
work, but to F(B), as seen in section A.3.3. This result, far from discouraging, is actu-
ally intuitive. If the condition never happens, can it be stated that it is not valid that

176 Appendix A. Proofs

-O(A|B) and O(A|B) coexist? If we take as an example the extreme case: B = 1, is
it really a contradiction? For us, it is not: complementary maintenance conditions are
only inconsistent if it is a fact that the activating condition is eventually going to hold.

A.3.1 Substitution for dyadic deontic logic

<7T77’70> ':OOfR<tzmeout(Oé[eféw] = efé) ’ ef;?)
iff (m,4,0) EG (= fA)Vv

AU (5N 0 0200305007 |y

- f;;‘U(AN 0 LU0 TN 30 F<timeont?d' [1])])]
iff (7,1,0) =G (= fA)V

- fg‘U(FAN[0 0 MU 0" G(v0" - 0 F))]) |V

AU (FA NP0 0 AU (0 LA (307 Fctimeont”0' 1)))|
iff (m,1,0) =G (—~f2) v [fAU(fA AN G(VO' - H’fM))]

iff (m,,0) E(~FAUG (=) V [0 (f A G(v0' 010)|

iff (7,i,6) Fﬁf;j‘U[G(ﬂ) (fAnGe o pn)]

iff 35 > 2 (m,5,0) = |GV (£ A G0 0 FM) | AVi <k < (k. 0) | = £
iff[ajzz.@r,], >):Gﬁf;f‘)\/5|j2i:<7r,j,0>):(ff/\G(VG’:H’f,{”))}/\Vi§k<j,<7r,k,9>):ﬁj
iff (Vi >i:35>i:(r,j,0) = ~fAv

(3j§i:<7r,j,0> |:f;f‘/\5|j2i:<7r,j,0>|:G(V0’:0’f,{‘4)]/\Vi§k<j,<7r,k,9>):ﬂf7f‘

(V) 2 0:(m,0) = StV (35 20 (m,0) b AV 20 (m,j0) | (V0 0 1))

NVi < k < g, (m, k,0) = i

(V) > (g 0) =StV (3 2 (m,0) AV 200 (r,,00) | S

AVi <k < j {7 k,0) = ~f

The resulting formula can be informally read as: “either the norm is never activated
or else it is activated at some point for the first time and the maintenance condition is
always fulfilled from that moment on”.

A.3.2 Proof of K1

Axiom K1 states that O(A vV —A|B), that is, that whichever the activating condition
is, an obligation which contains both a maintenance condition and its complementary
formula is a tautology.

(m,i,0) = O(AV —A|B)

iff [vg‘ > i (mj,0) = BV (3 >i: (m4,0) = BAYj > i,0 : (n,5,00) =
(AV=A)| AV <k < j,(mk,0) F B

iﬂf[vg' 2i:<7r,j,9>):ﬂB\/(EjZi:<7r,j,0>|:B/\Vj2i,9’:<7r,j,0’0>):T)}/\Vz'g

A.3. Dyadic Deontic Logic 177

k< j,(m k,0) =B
iﬁf[\ﬁ >i:(mj,0) = —-BV (3] >i:(rj0)):BAT)} AVi <k < j,(m k,0) = —B

At this point we are left with two cases: the obligation gets activated or not. In
both cases, the formula is a tautology:

If G(—B):

Vi >i:(m,5,0) =BV (3j>i:(m,j,0) = BAT)| AVi <k <j(mk0) B
iH[T\/(LAT)} AT
i T

If F(B):

[Vj >t (mj,0) =-BV (3 >i:(rj0)):BAT)} AVi < k < j,(m k,0) = ~B

iﬁf[v]' > i (m j,0)):ﬁB\/(J_/\T)}/\T
i T

A.3.3 Proof of K2

Axiom K2 states that =(O(A|B) A O(—A|B)), that is, that it cannot be the case that we
have two obligations with the same activating condition and complementary mainte-
nance obligations. This can be seen as the D axiom of SDL with B = T.

(m,i,0) = =(O(A|B) N O(-A|B))
if’f—i([V‘j > :(myj,0) =BV (3 >i:(mj0) EBAVY]>i6 :(r3j00)
A)} AVi <k < j,(m,k,0) gw)

VAN
([Vj >i:(m,,0) =BV (3j>i:(r j,0) = BAYj>i 0 (x j6006)):ﬁA)} AVi <

k:<j,<7r,k,9>#ﬁB>1
iff—({Vj >q:(mj,0) = -BV@3j>i:(mjl)E BAY] >0 :(mj00) =

A)| AV <k <, (m, k. 0) #ﬁB>
vV
ﬁ<[Vj >i:(m,§,0) = ~BV(3j >i:(r j,0) = BAVj >i,0 : (r,j,00) = ﬁA)] AVi <

178 Appendix A. Proofs

k< j,(m k,6) = ﬂB>
iff <—|[Vj >i:(mj,0) = -BV(@3j>i:(mj0) = BAY] >0 :(mj00) =

A)} Vi <k < g, (mk,0) = ﬂB>

V

<ﬁ[w > i (m4,0) | -BV (3 >i:(mj0) = BAYj > i0 : (m,j,00)
—|A)}\/—|W§k:<j, <7r,k,9>):ﬁ3>

iff ([ﬁw > i (mj,0) = ~BA—(3j >i:(mj,0) = BAY >i,60 : (rj00) =

A)| V3 <k < g, (m,k,0) #B)

v

<{ﬁVj > i (mj,0) = ~BA=(3j >i: (m4,0) E BAY] > i,0 : (m,j,00) =
ﬁA)}v3i§k<j,<7r,k,9>):B>

iff ([aj > i (mj,0) = BA(~3j >i: (r,j,0) £ BV >i6 :(rj00)

A)| V3 <k < j (x,k,0) |:B>
V
([aj > i1 (m,,0) | BA(=3j > i (m,,0) | BV=Yj 20,0 (m,5,0'0) |- =A)| v3i <

k:<j,<7r,k:,9>):B>
iff ([3] >i:(mj,0) F BANj >i:(mj0) = -BV3Ij>ib0: (rj00)

ﬁA)} V3i <k <j(mk6)):B)
v
<[3j > i (m,j,0) = BA>i:(mj,0) =-~BV3j>ib:(r;j00) }:A)} V3i<

A.3. Dyadic Deontic Logic 179

k<j,<7r,k,9>PB>
iff 3i < k < j,(m,k,0) = BV K[aj >i:(mj,0) =BANj>i:(rj0)E-BvIj>
00 : (m,5,00) = ﬂA)D v ([aj >i:(mj,0) = BA(Yj >i: (mj6) =-BV3I>

00" (7,5,00) = A)])]

v

iff 3 <k <j,(mk0) = BV3Ij 2i:<7r,j,9>):B/\“(iji:<7r,j,9>):—\B\/Elj

i 0 (m,§,0'0) = ﬁA)} v [(Vj >i:(mj,0) =-BV3j>i0:(rj00) A)H

iff 3 <k<j(mk0)=EBV(3j >i:(mj0)=BAYj>i:(mj,0)FE-B)
if F(B)Vv L
it F(B)
As seen earlier, it can be discussed whether this is a valid result.
A.3.4 Proof of K3

Axiom K3 states that O(A A A’'|B) = (O(A|B) A O(A’|B)): DDL is closed under
conjunction of the maintenance condition.

(r,i,0) = O(A A A'|B)

iff [Vj > i (mj,0) = =BV (3 >i: (r,j,0) BAY > i,0 : (1,500) =
(AN A AV <k < j, (m,k,0) = ~B

iff [Vj > i (m§,0) =BV (3] >i:(mj,0) = BAVj>i,0 : (mj00) = ANV >
00" (m,5,00) = A')] AVi <k < j(m k,60) =B

i |V > (5,0):ﬁB\/[(Hj >i:(m,j,0) = BAYj > 1,0 : (r,5,00) = A)A(3j >

i:(m,5,0) E BAYj > 0,0 (m,5,00) = A)|| AVi <k < j,(m,k,0) = ~B

iff “Vj >4 :(mj0) E -BA@Ej >i:(mj0)E BAV] >0 : (mj00) =
A)} A [Vj >0 (mj,0) = -BA(3 >i:(mj0) = BAY >0 : (rj00) =

AN | AV <k < j (7, k,0) = —B

180 Appendix A. Proofs

ift

[Vj >i:(mj,0) E-BA@j>i:(mj,0) = BAYj >0 :(r j00) FA)} AVi <

/c<j,<7r,k,0>#ﬁB]/\

[Vj >i:(m,§,0) = ~BA@j>i:(rj.0)=BAYj>i0:

(m,5,0'0) = A)| AVi <k < j, (7, k,0) = -B
iff (7,4,0) = O(A|B) A (m,i,0) = O(A|B)

This is a straightforward proof that is trivially achieved by the properties of FO-LTL.

A.3.5 Proof of K4
Axiom K4 states that O(A|BV B’) = (O(A|B) NO(A|B’)), that is, DDL is closed under

disjunction of the activating condition.

(m,i,0) = O(AN A'|B)

iﬂf[v]' >i:(mj,0) E~(BVB)V(3j>i:(r j,0) = (BVB)AYj >i,0 : (r,j600) =
A)] AVi <k < (7 k,60) =~(BVB)

iff [¥j > (m,5,0) F ("BA=B)V (@ >i: (r50) F (BVB)AY > i,0
(m,5,00) | A)| AVi <k < j, (m,k,0) | (<B A=B)

iff [(Vj >i:(mj,0) F~BAVj >i:(mj,0)E-B)VI[3j=i:(rj0)FBVIj=
i (m,4,0) = B AV > 4,0 (m,j,0'0) |:A)} A(Vi <k < j{mk0) = -BAVi<k<

J, (7, k,0) = ~B’)

ff (V) > (m,5,0) E~BAYj >i:(m,j,0) = ~B) VI3 >i:(rj,0) = BAVY) >
i,@’:(ﬂ,j,9’0>):A)\/(Eljzz':<7r,j,¢9>)zB’/\VjEi,&’:(w,j,@’H}):A)]}/\(ng<
3. (m, k,0) = B AYi <k <j,(mk,0) = -B)

iff [(Vj >0 (m,5,0) =BV (3j > i (m,j,0) | BAVG > 0,0/ (r,5,0'0) = A)V (3j >
i (0, 0) | BAYG > 0,0 (7,5,00) E A)A (Y =i (m5,0) =B V(3 >
i:(mj,0) = BAY) > 4,0 : (7, j,00) = AV (3j>i:(mj0) = B AYj>i6:
(m,5,00) |)| A (¥ <k < j, (m,k,0) E ~BAYi <k < j,(m,k,0) | =B

in[(Vj >i:(m,§,0) = ~BVYj>i,0:(r,§00)=AV(3j>i:(rj,0) =B AVj>
i,@’:(w,j,&’QHzA))/\(Vj >i:(m,j,0) =BV (3j>i:(rj0)=BAVj>i0:
(m,5,0'0) = A) VY] >i,0 : (x,],0'0)):A)} AV <k < (mk0) = -BAVi<k<
Jy(m, k. 0) = =B)

iff[(w >i: (7, j,0) = ~BVYj >0 :(rj00)):A)/\(Vj > i (m j,0) = ~B'V

A.3. Dyadic Deontic Logic 181

Vi >0 : (m,j,00)):A)} A (Vi <k < j{mk,0) = ~BAVi <k < j,(m k,0) £ -B)
iﬁf[(Vj > it (m,j,0) = ~BVYj >0 (m,j00) A)A(w <k <j(mk0) —|B}/\
[(Vj >i:(m j,0) =B VVj>i6:(rj00)):A) AV < k< j, (7 k,0) = ﬁB’)}
iff (r,1,0) = O(A| B) A (r,i,0) = O(A| B')

Similarly to what happens with the previous axiom, this is also a trivial result based
on the properties of FO-LTL.

Bibliography

Abrahams, Alan S and Bacon, Jean M (2002). “The life and times of identified, situated,
and conflicting norms”. In: Sixth International Workshop on Deontic Logic in Computer
Science (DEON), pp. 3—20.

Agents, Foundation for Intelligent Physical (2000). “FIPA SL Content Language Spec-
ification”. In: Foundation for Intelligent Physical Agents. URL: http : //standards .
computer.org/fipa/specs/fipa@0008/XCAQBA8F . html.

— (2002a). “Fipa ACL Message Structure Specification”. In: Foundation for Intelli-
gent Physical Agents, Geneva, Switzerland. URL: http : //www . nchi . nlm . nih . gov/
entrez/query . fcgi ?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=
11355975404632573812related:dIcyx3aHmJ0].

— (2002b). “FIPA ACL Message Structure Specification”. In: Foundation for Intelli-
gent Physical Agents. URL: http://standards . computer.org/fipa/specs/fipad0061/
XC00061D. html.

— (2003). “FIPA Interaction Protocol Library Specification”. In: pp. 1-25.

Agotnes, Thomas; Hoek, Wiebe van der and Wooldridge, Michael (2010). “Robust nor-
mative systems and a logic of norm compliance”. English. In: Logic Journal of IGPL
18.1, pp. 4—30. DOI: 10.1093/jigpal/jzp070. URL: http://jigpal.oxfordjournals.
org/cgi/doi/10.1093/jigpal/jzp07e.

Alberola, Juan M.; Such, José M.; Espinosa, Agustin; Botti, Vicente and Garcia-Fornés,
Ana (2008). Magentix: a multiagent platform integrated in Linux. Bath, UK: Proceedings
of the Sixth European Workshop on Multi-Agent Systems (EUMAS-2008). URL:
http://scholar.google. com/scholar?q=related: ttStxEmuGScJ: scholar. google.
com/&hl=en&num=20&as_sdt=0, 5.

Albert, Luc and Fages, Francois (1988). “Average Case Complexity Analysis of the Rete
Multi-Pattern Match Algorithm”. English. In: ICALP 317.Chapter 2, pp. 18-37. DOI:
10.1007/3-540-19488-6_104. URL: http://dx.doi.org/10.1007/3-540-19488-6_104.

Aldewereld, Huib (2007). “Autonomy vs. Conformity: An Institutional Perspective on
Norms and Protocols”. In: PhD Thesis, Utrecht University. URL: http : //www . nchi .
nlm.nih.gov/entrez/query. fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&
list uids=1422272135052886312.

Aldewereld, Huib; Dignum, Frank and Meyer, John-Jules Ch (2007). “Designing pro-
tocols for agent institutions”. English. In: Proceedings of the 6th international joint con-
ference on Autonomous agents and multiagent systems 66.4, pp. 1173-1179. URL: http://

183

http://standards.computer.org/fipa/specs/fipa00008/XC00008F.html
http://standards.computer.org/fipa/specs/fipa00008/XC00008F.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=11355975404632573812related:dIcyx3aHmJ0J
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=11355975404632573812related:dIcyx3aHmJ0J
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=11355975404632573812related:dIcyx3aHmJ0J
http://standards.computer.org/fipa/specs/fipa00061/XC00061D.html
http://standards.computer.org/fipa/specs/fipa00061/XC00061D.html
http://dx.doi.org/10.1093/jigpal/jzp070
http://jigpal.oxfordjournals.org/cgi/doi/10.1093/jigpal/jzp070
http://jigpal.oxfordjournals.org/cgi/doi/10.1093/jigpal/jzp070
http://scholar.google.com/scholar?q=related:ttStxEmuGScJ:scholar.google.com/&hl=en&num=20&as_sdt=0,5
http://scholar.google.com/scholar?q=related:ttStxEmuGScJ:scholar.google.com/&hl=en&num=20&as_sdt=0,5
http://dx.doi.org/10.1007/3-540-19488-6_104
http://dx.doi.org/10.1007/3-540-19488-6_104
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=1422272135052886312
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=1422272135052886312
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=1422272135052886312
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=7636791128828226120related:SCqp-RFV-2kJ
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=7636791128828226120related:SCqp-RFV-2kJ
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=7636791128828226120related:SCqp-RFV-2kJ

184 Bibliography

www . ncbi . nlm. nih . gov/entrez/query . fcgi ? db=pubmed & cmd=Retrieve &dopt =
AbstractPlus&list_uids=7636791128828226120related:SCgp-RFV-2kJ.

Aldewereld, Huib and Dignum, Virginia (2010a). “OperettA: Organization-Oriented
Development Environment”. English. In: Languages, Methodologies, and Development
Tools for Multi-Agent Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 1-
18. ISBN: 978-3-642-22722-6. DOI: 10 . 1007/978~-3-642-22723-3_1. URL: http://
link.springer.com/10.1007/978-3-642-22723-3_1.

— (2010b). “OperettA: organization-oriented development environment”. In:
LADS’10: Proceedings of the Third international conference on Languages, methodologies, and
development tools for multi-agent systems. Springer-Verlag. URL: http://dl . acm.org/
citation.cfm?1d=2032683.2032684&col11=DL&d1=GUIDE&CFID=546795349&CFTOKEN=
44049066.

Aldewereld, Huib; Grossi, Davide; Vazquez-Salceda, Javier and Dignum, Frank (2005).
“Designing Normative Behaviour by the Use of Landmarks”. In: Proceedings of
AAMAS-o5 International Workshop on Agents, Norms and Institutions for Regulated Multia-
gent Systems. URL: http://www.cs.uu.nl/~huib/downloads/anirem@5-1andmarks.PDF.

Aldewereld, Huib; Padget, Julian; Vasconcelos, Wamberto; Vazquez-Salceda, Javier;
Sergeant, Paul and Staikopoulos, Athanasios (2010a). “Adaptable, Organization-
Aware, Service-Oriented Computing”. In: Intelligent Systems 25.4, pp. 80-84. DOI:
10 .1109/MIS . 2010 . 93. URL: http : //ieeexplore . ieee . org/xpls/abs_all . jsp?
arnumber=5552590.

Aldewereld, Huib; Alvarez-Napagao, Sergio; Dignum, Frank and Vazquez-Salceda,
Javier (2010b). “Making norms concrete”. In: AAMAS ’10: Proceedings of the gth Inter-
national Conference on Autonomous Agents and Multiagent Systems Proceedings of the gth
International Conference on Autonomous Agents and Multiagent Systems, pp. 807-
814. URL: http://dl.acm.org/citation.cfm?id=1838206.1838314.

Alvarez-Napagao, Sergio; Cliffe, Owen; Vazquez-Salceda, Javier and Padget, Julian
(2009). “Norms, organisations and semantic web services: The ALIVE approach”.
English. In: Coordination, Organization, Institutions and Norms in Agent Sys-
tems & On-line Communities (COIN@MALLOW’009), Proceedings of the Second
Multi-Agent Logics, Languages, and Organisations Federated Workshops, Volume
494, pp. 1-2. ISSN: 1613-0073. URL: http://upcommons.upc.edu//handle/2117/14283.

Alvarez-Napagao, Sergio; Aldewereld, Huib; Vazquez-Salceda, Javier and Dignum,
Frank (2011). “Normative Monitoring: Semantics and Implementation”. English.
In: Coordination, Organizations, Institutions, and Norms in Agent Systems VI. Berlin, Hei-
delberg: Springer Berlin Heidelberg, pp. 321-336. 1SBN: 978-3-642-21267-3. DOI: 10.
1007/978-3-642-21268-0_18. URL: http://link.springer.com/10.1007/978-3-642-
21268-0_18.

Alvarez-Napagao, Sergio; Gémez-Sebastia, Ignasi; Panagiotidi, Sofia; Tejeda-Gémez,
Arturo; Oliva-Felipe, Luis and Véazquez-Salceda, Javier (2012). “Socially-Aware
Emergent Narrative”. English. In: Lecture Notes in Computer Science. Ed. by Martin
Beer; Cyril Brom; Frank Dignum and Von-Wun Soo. Berlin, Heidelberg: Springer

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=7636791128828226120related:SCqp-RFV-2kJ
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=7636791128828226120related:SCqp-RFV-2kJ
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=7636791128828226120related:SCqp-RFV-2kJ
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=7636791128828226120related:SCqp-RFV-2kJ
http://dx.doi.org/10.1007/978-3-642-22723-3_1
http://link.springer.com/10.1007/978-3-642-22723-3_1
http://link.springer.com/10.1007/978-3-642-22723-3_1
http://dl.acm.org/citation.cfm?id=2032683.2032684&coll=DL&dl=GUIDE&CFID=546795349&CFTOKEN=44049066
http://dl.acm.org/citation.cfm?id=2032683.2032684&coll=DL&dl=GUIDE&CFID=546795349&CFTOKEN=44049066
http://dl.acm.org/citation.cfm?id=2032683.2032684&coll=DL&dl=GUIDE&CFID=546795349&CFTOKEN=44049066
http://www.cs.uu.nl/~huib/downloads/anirem05-landmarks.PDF
http://dx.doi.org/10.1109/MIS.2010.93
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5552590
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5552590
http://dl.acm.org/citation.cfm?id=1838206.1838314
http://upcommons.upc.edu//handle/2117/14283
http://dx.doi.org/10.1007/978-3-642-21268-0_18
http://dx.doi.org/10.1007/978-3-642-21268-0_18
http://link.springer.com/10.1007/978-3-642-21268-0_18
http://link.springer.com/10.1007/978-3-642-21268-0_18

Bibliography 185

Berlin Heidelberg, pp. 139-150. ISBN: 978-3-642-32325-6. DOI: 10.1007/978-3-642~
32326-3.9. URL: http://www.1si.upc.edu/~igomez/Papers/AEGS_2011.pdf.

Andrieux, Alain; Czajkowski, Karl; Dan, Asit; Keahey, Kate; Ludwig, Heiko; Nakata,
Toshiyuki; Pruyne, Jim; Rofrano, John; Tuecke, Steve and Xu, Ming (2005). “Web
Services Agreement Specification (WS-Agreement) Version 2005/09”. In: Global
Grid Forum. URL: http://xml.coverpages.org/WS-Agreement-13652.pdf.

Annichiarico, Roberta and Cortés, Ulises (2010). “To Share or Not to Share SHARE-it:
Lessons Learnt”. In: eHealth, pp. 295-302.

Arnold, Ken (1999). “The Jini architecture: dynamic services in a flexible network”.
In: 36th Annual Conference on Design Automation (DAC’99), pp. 157-162. DOI: 10.1109/
DAC.1999.168. URL: http://doi.ieeecomputersociety.org/10.1109/DAC.1999.168.

Artikis, Alexander; Sergot, Marek and Pitt, Jeremy (2009). “Specifying norm-governed
computational societies”. English. In: ACM Transactions on Computational Logic
(TOCL) 10.1, pp. 1-42. DOI: 10.1145/1459010.1459011. URL: http://portal . acm.org/
citation.cfm?doid=1459010.1459011.

Austin, John Langshaw (1975). How to Do Things with Words. English. Harvard University
Press. ISBN: 9780674411524. URL: http://scholar.google.com/scholar?g=related:
QLOsbUP71TQJ : scholar . google . com/&hl=en&num=30&as_sdt=0, 5&as_ylo=1962&
as_yhi=1962.

Banerji, Arindam; Bartolini, Claudio; Beringer, Dorothea; Chopella, Venkatesh; Govin-
darajan, Kannan; Karp, Alan; Kuno, Harumi; Lemon, Mike; Pogossiants, Gregory;
Sharma, Shamik and Williams, Scott (2002). “Web Services Conversation Lan-
guage (WSCL) 1.0”. In: W3C Note. URL: http://www.w3.org/TR/2002/NOTE-wscl10~-
20020314,

Bargh, John A; Gollwitzer, Peter M; Lee-Chai, Annette; Barndollar, Kimberly and
Trotschel, Roman (2001). “The automated will: Nonconscious activation and pur-
suit of behavioral goals.” English. In: Journal of Personality and Social Psychology 81.6,
pp- 1014-1027. DOI: 10.1037/0022-3514.81.6.1014. URL: http://psycnet.apa.org/
journals/psp/81/6/1014.html.

Bellifemine, Fabio; Poggi, Agostino and Rimassa, Giovanni (2001). “Developing multi-
agent systems with JADE”. In: INTELLIGENT AGENTS VII AGENT THEORIES AR-
CHITECTURES AND LANGUAGES. URL: http : //www . springerlink . com/index/
TRLAKJUC8243RTME . pdf.

Bellwood, Thomas A (2001). “UDDI-A Foundation for Web Services”. In: Proceedings
of XML Conference & Exposition. Orlando. URL: http://www.idealliance.org/papers/
xm12001/papers/pdf/03-02-03.pdf.

Betts, Dominic; Dominguez, Julian; Melnik, Grigori; Simonazzi, Fernando and Subra-
manian, Mani (2013). Exploring CQRS and Event Sourcing: A journey into high scalability,
availability, and maintainability with Windows Azure. Microsoft patterns & practices.
ISBN: 1621140164. URL: http://dl.acm.org/citation.cfm?id=2509680.

Bicchieri, Cristina (2006). The Grammar of Society. English. The Nature and Dynamics
of Social Norms. Cambridge University Press. ISBN: 9780521573726. URL: http://

http://dx.doi.org/10.1007/978-3-642-32326-3_9
http://dx.doi.org/10.1007/978-3-642-32326-3_9
http://www.lsi.upc.edu/~igomez/Papers/AEGS_2011.pdf
http://xml.coverpages.org/WS-Agreement-13652.pdf
http://dx.doi.org/10.1109/DAC.1999.168
http://dx.doi.org/10.1109/DAC.1999.168
http://doi.ieeecomputersociety.org/10.1109/DAC.1999.168
http://dx.doi.org/10.1145/1459010.1459011
http://portal.acm.org/citation.cfm?doid=1459010.1459011
http://portal.acm.org/citation.cfm?doid=1459010.1459011
http://scholar.google.com/scholar?q=related:QL0sbUP7lTQJ:scholar.google.com/&hl=en&num=30&as_sdt=0,5&as_ylo=1962&as_yhi=1962
http://scholar.google.com/scholar?q=related:QL0sbUP7lTQJ:scholar.google.com/&hl=en&num=30&as_sdt=0,5&as_ylo=1962&as_yhi=1962
http://scholar.google.com/scholar?q=related:QL0sbUP7lTQJ:scholar.google.com/&hl=en&num=30&as_sdt=0,5&as_ylo=1962&as_yhi=1962
http://www.w3.org/TR/2002/NOTE-wscl10-20020314
http://www.w3.org/TR/2002/NOTE-wscl10-20020314
http://dx.doi.org/10.1037/0022-3514.81.6.1014
http://psycnet.apa.org/journals/psp/81/6/1014.html
http://psycnet.apa.org/journals/psp/81/6/1014.html
http://www.springerlink.com/index/1RLAKJUC8243RTME.pdf
http://www.springerlink.com/index/1RLAKJUC8243RTME.pdf
http://www.idealliance.org/papers/xml2001/papers/pdf/03-02-03.pdf
http://www.idealliance.org/papers/xml2001/papers/pdf/03-02-03.pdf
http://dl.acm.org/citation.cfm?id=2509680
http://books.google.com/books?hl=en&lr=&id=4N1FDIZvcI8C&oi=fnd&pg=PR9&dq=cristina+bicchieri&ots=TddVWPnHRr&sig=c9jK3vUppXfdYI9gUrP-kyeeh70
http://books.google.com/books?hl=en&lr=&id=4N1FDIZvcI8C&oi=fnd&pg=PR9&dq=cristina+bicchieri&ots=TddVWPnHRr&sig=c9jK3vUppXfdYI9gUrP-kyeeh70
http://books.google.com/books?hl=en&lr=&id=4N1FDIZvcI8C&oi=fnd&pg=PR9&dq=cristina+bicchieri&ots=TddVWPnHRr&sig=c9jK3vUppXfdYI9gUrP-kyeeh70

186 Bibliography

books . google . com/books ?hl=en&1r=&id=4N1FDIZvcI8C&o0i=fnd&pg=PRI&dqg=
cristinatbicchieri&ots=TddVWPnHRr&sig=c9jK3vUppXfdYI9gUrP-kyeeh70.

Bloomberg, Jason (2013). The Agile Architecture Revolution. John Wiley & Sons. URL:
https : //books . google . co . uk/books/about/The_Agile_Architecture_Revolution.
html?id=Y4JkFk61x0cC.

Boella, Guido and Torre, Leendert van der (2004). “Regulative and constitutive norms
in normative multiagent systems”. In: Procs. of KR’04, pp. 255—265. URL: http: //
www.aaai.org/Papers/KR/2004/KR04-028 . pdf.

Boissier, Olivier; Bordini, Rafael H; Hiibner, Jomi F; Ricci, Alessandro and Santi, Andrea
(2013). “Multi-agent oriented programming with JaCaMo”. English. In: Science of
Computer Programming 78.6, pp. 747—761. DOI: 10.1016/j.scico.2011.10.004. URL:
http://linkinghub.elsevier.com/retrieve/pii/S016764231100181X.

Boley, Harold (2006). “The RuleML Family of Web Rule Languages”. In: LECTURE
NOTES IN COMPUTER SCIENCE. URL: http : //www . springerlink . com/index/
18ng4244p72163j51 . pdf.

Booth, David; Haas, Hugo; McCabe, Francis; Newcomer, Eric; Champion, Michael; Fer-
ris, Christopher and Orchard, David (2004). “Web Services Architecture”. In: URL:
http://www.w3.org/TR/ws-arch/wsa.pdf.

Bordini, Rafael H and Hiibner, Jomi F (2005). “BDI Agent Programming in AgentS-
peak Using Jason”. English. In: Computational Logic in Multi-Agent Systems. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 143-164. ISBN: 978-3-540-33996-0. DOI:
10.1007/11750734_9. URL: http://link.springer.com/10.1007/11750734_9.

— (2006). “BDI agent programming in AgentSpeak using Jason”. In: Computational logic
in multi-agent systems. URL: http://www.springerlink.com/index/r3012556113675k3.
pdf.

Bougiouklis, Kostas (2008). “PANDA: Collaborative Process Automation Support using
Service Level Agreements and Intelligent dynamic Agents in SME clusters”. In: p. 6.

Cardoso, Henrique and Oliveira, Eugenio (2010). “Directed Deadline Obligations in
Agent-Based Business Contracts”. In: COIN V. Ed. by Julian et al Padget. Springer
Berlin / Heidelberg, pp. 225-240. ISBN: 978-3-642-14961-0. URL: http : //www .
worldcat . org/title/coordination - organizations - institutions - and - norms -
in-agent-systems-v-coin-2009-international -workshops-coinaamas- 2009 -
budapest - hungary - may - 2009 - coinijcai - 2009 - pasadena - usa - july - 2009 -
coinmallow-2009-turin-italy-september-2009-revised-selected-papers/oclc/
668095878.

Cardoso, Henrique Lopes and Oliveira, Eugenio (2000). “Using and Evaluating Adap-
tive Agents for Electronic Commerce Negotiation”. In: Proceedings of the International
Joint Conference. URL: http://portal.acm.org/citation.cfm?id=645852.669324.

— (2009). “A Context-Based Institutional Normative Environment”. In: Coordination,
Organizations, Institutions and Norms in Agent Systems IV. Berlin, Heidelberg: Springer
Berlin Heidelberg, pp. 140-155. ISBN: 978-3-642-00442-1. DOI: 10.1007/978-3-642~
00443-8_10. URL: http://www.springerlink.com/index/@1P737668774024M.pdf.

http://books.google.com/books?hl=en&lr=&id=4N1FDIZvcI8C&oi=fnd&pg=PR9&dq=cristina+bicchieri&ots=TddVWPnHRr&sig=c9jK3vUppXfdYI9gUrP-kyeeh70
http://books.google.com/books?hl=en&lr=&id=4N1FDIZvcI8C&oi=fnd&pg=PR9&dq=cristina+bicchieri&ots=TddVWPnHRr&sig=c9jK3vUppXfdYI9gUrP-kyeeh70
http://books.google.com/books?hl=en&lr=&id=4N1FDIZvcI8C&oi=fnd&pg=PR9&dq=cristina+bicchieri&ots=TddVWPnHRr&sig=c9jK3vUppXfdYI9gUrP-kyeeh70
http://books.google.com/books?hl=en&lr=&id=4N1FDIZvcI8C&oi=fnd&pg=PR9&dq=cristina+bicchieri&ots=TddVWPnHRr&sig=c9jK3vUppXfdYI9gUrP-kyeeh70
https://books.google.co.uk/books/about/The_Agile_Architecture_Revolution.html?id=Y4JkFk6lxOcC
https://books.google.co.uk/books/about/The_Agile_Architecture_Revolution.html?id=Y4JkFk6lxOcC
http://www.aaai.org/Papers/KR/2004/KR04-028.pdf
http://www.aaai.org/Papers/KR/2004/KR04-028.pdf
http://dx.doi.org/10.1016/j.scico.2011.10.004
http://linkinghub.elsevier.com/retrieve/pii/S016764231100181X
http://www.springerlink.com/index/18ng4244p7216j51.pdf
http://www.springerlink.com/index/18ng4244p7216j51.pdf
http://www.w3.org/TR/ws-arch/wsa.pdf
http://dx.doi.org/10.1007/11750734_9
http://link.springer.com/10.1007/11750734_9
http://www.springerlink.com/index/r3012556l13675k3.pdf
http://www.springerlink.com/index/r3012556l13675k3.pdf
http://www.worldcat.org/title/coordination-organizations-institutions-and-norms-in-agent-systems-v-coin-2009-international-workshops-coinaamas-2009-budapest-hungary-may-2009-coinijcai-2009-pasadena-usa-july-2009-coinmallow-2009-turin-italy-september-2009-revised-selected-papers/oclc/668095878
http://www.worldcat.org/title/coordination-organizations-institutions-and-norms-in-agent-systems-v-coin-2009-international-workshops-coinaamas-2009-budapest-hungary-may-2009-coinijcai-2009-pasadena-usa-july-2009-coinmallow-2009-turin-italy-september-2009-revised-selected-papers/oclc/668095878
http://www.worldcat.org/title/coordination-organizations-institutions-and-norms-in-agent-systems-v-coin-2009-international-workshops-coinaamas-2009-budapest-hungary-may-2009-coinijcai-2009-pasadena-usa-july-2009-coinmallow-2009-turin-italy-september-2009-revised-selected-papers/oclc/668095878
http://www.worldcat.org/title/coordination-organizations-institutions-and-norms-in-agent-systems-v-coin-2009-international-workshops-coinaamas-2009-budapest-hungary-may-2009-coinijcai-2009-pasadena-usa-july-2009-coinmallow-2009-turin-italy-september-2009-revised-selected-papers/oclc/668095878
http://www.worldcat.org/title/coordination-organizations-institutions-and-norms-in-agent-systems-v-coin-2009-international-workshops-coinaamas-2009-budapest-hungary-may-2009-coinijcai-2009-pasadena-usa-july-2009-coinmallow-2009-turin-italy-september-2009-revised-selected-papers/oclc/668095878
http://www.worldcat.org/title/coordination-organizations-institutions-and-norms-in-agent-systems-v-coin-2009-international-workshops-coinaamas-2009-budapest-hungary-may-2009-coinijcai-2009-pasadena-usa-july-2009-coinmallow-2009-turin-italy-september-2009-revised-selected-papers/oclc/668095878
http://portal.acm.org/citation.cfm?id=645852.669324
http://dx.doi.org/10.1007/978-3-642-00443-8_10
http://dx.doi.org/10.1007/978-3-642-00443-8_10
http://www.springerlink.com/index/01P737668774024M.pdf

Bibliography 187

Charles, Darryl (2003). “Enhancing gameplay: Challenges for artificial in-
telligence in digital games”. In: Proceedings of the i1st World Conference on
Digital Games Research Conference. Utrecht, The Netherlands, p. 10. URL:
http : //www . researchgate . net/profile/Darryl_Charles/publication/
221217607 Enhancing_gameplay_challenges_for_articifical _intelligence_in_digital_games/
links/02e7e52af5b85d1b15000000 . pdf.

Cirstea, Horatiu; Kirchner, Claude; Moossen, Michael and Moreau, Pierre-Etiene
(2008). “Production Systems and Rete Algorithm Formalisation”. In: techreport
ILOG, INRIA Lorraine, INRIA Rocquencourt.

Clement, Luc (2005). “Risks of Running SOA without Registry”. In: Loosely Coupled.
URL: http://www. trainingbyroi.com/Java%20Info/SOAwithoutRegistryRisky.pdf.

Coles, Amanda; Coles, Andrew; Olaya, Angel Garcia; Jiménez, Sergio; Lépez, Carlos
Linares; Sanner, Scott and Yoon, Sungwook (2012). “A Survey of the Seventh In-
ternational Planning Competition”. English. In: AI Magazine 33.1, pp. 83-88. DOI:
10.1609/aimag.v331i1.2392. URL: http://www.aaai.org/ojs/index.php/aimagazine/
article/view/2392.

Colley, John L; Doyle, Jacqueline L; Stettinius, Wallace and Logan, George (2003). “Cor-
porate Governance”. In: McGraw-Hill Professional. URL: http://books . google . com/
books?hl=en&lr=&ie=UTF-8&id=WnK201GVvEt0C&oi=fnd&pg=PP18&dqg=corporate+
governance+concepts+colley&ots=MccldmPn22&sig=riStkpBRFo_TJPjrDHsIEBojrj8.

Community, JBoss. JBoss Drools Business Rules, http://www.jboss.org/drools. URL: http://
www . jboss.org/drools/.

Condry, M; Gall, U and Delisle, P (1999). “Open Service Gateway architecture
overview”. In: Industrial Electronics Society 2, pp. 735-742. DOI: 10.1109/IECON.1999.
816492. URL: http://ieeexplore.ieee.org/lpdocs/epic@3/wrapper.htm?arnumber=
816492.

Cortés, Ulises and Rodriguez-Aguilar, Juan Antonio (2000). “Trading agents in auction-
based tournaments”. In: Special issue on Intelligent Agents, INFORMATIQUE 1/2000:39-
§0. URL: http://www.1lsi.upc.edu/~ia/agentes/a@@1Rodriguez. pdf.

Criado, Natalia; Argente, Estefania; Noriega, Pablo and Botti, Vicente (2010). “Towards
a Normative BDI Architecture for Norm Compliance”. In: COIN@ MALLOW2o1o0,
pp. 1-16. URL: http: //ai - lab - webserver . aegean . gr/coin@mallow2010/COIN@
MALLOW_pre-proceedings. pdf#page=9.

Curbera, F; Duftler, M; Khalaf, R; Nagy, W; Mukhi, N and Weerawarana, S (2002).
“Unraveling the Web services web: an introduction to SOAP, WSDL, and UDDI”.
English. In: IEEE Internet Computing 6.2, pp. 86—93. DOI: 10.1109/4236.991449. URL:
http://ieeexplore.ieee.org/lpdocs/epic@3/wrapper.htm?arnumber=991449,

Dastani, Mehdi (2008). “2APL: a practical agent programming language”. English. In:
Autonomous Agents and Multi-Agent Systems 16.3, pp. 214—248. DOI: 10.1007/s10458~
008-9036-y. URL: http://link.springer.com/10.1007/s10458-008-9036-y.

Davidson, Donald (1971). Agency. Essays on actions and events. URL: http://scholar.
google.com/scholar?g=related:@cLdkXttDiYJ:scholar.google.com/&hl=en&num=
20&as_sdt=0, 5&as_ylo=19718&as_yhi=1971.

http://www.researchgate.net/profile/Darryl_Charles/publication/221217607_Enhancing_gameplay_challenges_for_articifical_intelligence_in_digital_games/links/02e7e52af5b85d1b15000000.pdf
http://www.researchgate.net/profile/Darryl_Charles/publication/221217607_Enhancing_gameplay_challenges_for_articifical_intelligence_in_digital_games/links/02e7e52af5b85d1b15000000.pdf
http://www.researchgate.net/profile/Darryl_Charles/publication/221217607_Enhancing_gameplay_challenges_for_articifical_intelligence_in_digital_games/links/02e7e52af5b85d1b15000000.pdf
http://www.trainingbyroi.com/Java%20Info/SOAwithoutRegistryRisky.pdf
http://dx.doi.org/10.1609/aimag.v33i1.2392
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2392
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2392
http://books.google.com/books?hl=en&lr=&ie=UTF-8&id=WnK2o1GvEt0C&oi=fnd&pg=PP18&dq=corporate+governance+concepts+colley&ots=MccldmPn22&sig=riStkpBRFo_TJPjrDHsIEBojrj8
http://books.google.com/books?hl=en&lr=&ie=UTF-8&id=WnK2o1GvEt0C&oi=fnd&pg=PP18&dq=corporate+governance+concepts+colley&ots=MccldmPn22&sig=riStkpBRFo_TJPjrDHsIEBojrj8
http://books.google.com/books?hl=en&lr=&ie=UTF-8&id=WnK2o1GvEt0C&oi=fnd&pg=PP18&dq=corporate+governance+concepts+colley&ots=MccldmPn22&sig=riStkpBRFo_TJPjrDHsIEBojrj8
http://www.jboss.org/drools/
http://www.jboss.org/drools/
http://dx.doi.org/10.1109/IECON.1999.816492
http://dx.doi.org/10.1109/IECON.1999.816492
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=816492
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=816492
http://www.lsi.upc.edu/~ia/agentes/a001Rodriguez.pdf
http://ai-lab-webserver.aegean.gr/coin@mallow2010/COIN@MALLOW_pre-proceedings.pdf#page=9
http://ai-lab-webserver.aegean.gr/coin@mallow2010/COIN@MALLOW_pre-proceedings.pdf#page=9
http://dx.doi.org/10.1109/4236.991449
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=991449
http://dx.doi.org/10.1007/s10458-008-9036-y
http://dx.doi.org/10.1007/s10458-008-9036-y
http://link.springer.com/10.1007/s10458-008-9036-y
http://scholar.google.com/scholar?q=related:0cLdkXttDiYJ:scholar.google.com/&hl=en&num=20&as_sdt=0,5&as_ylo=1971&as_yhi=1971
http://scholar.google.com/scholar?q=related:0cLdkXttDiYJ:scholar.google.com/&hl=en&num=20&as_sdt=0,5&as_ylo=1971&as_yhi=1971
http://scholar.google.com/scholar?q=related:0cLdkXttDiYJ:scholar.google.com/&hl=en&num=20&as_sdt=0,5&as_ylo=1971&as_yhi=1971

188 Bibliography

Davidson, Donald (2002). “Mental Events”. In: Contemporary Materialism. Ed. by Paul K
Moser and J D Trout. Contemporary materialism: a reader. URL: https: //books .
google.co.uk/books/about/Contemporary_Materialism.html?id=StyJAgAAQBAJ.

Davis, Randall and King, Jonathan (1975). “An overview of production systems”. In:
techreport. URL: http : //www . dtic . mil/cgi - bin/GetTRDoc ? Location = U2 & doc =
GetTRDoc. pdf&AD=ADAQ19702.

De Vos, Marina; Padget, Julian and Satoh, Ken (2010). “Legal Modelling and Reasoning
Using Institutions”. English. In: New Frontiers in Artificial Intelligence. Berlin, Heidel-
berg: Springer Berlin Heidelberg, pp. 129-140. 1SBN: 978-3-642-25654-7. DOIL: 10 .
1007/978-3-642-25655-4_12. URL: http://link.springer.com/10.1007/978-3-642-
25655-4_12.

Dellarocas, Chrysanthos (2000). “Contractual Agent Societies: Negotiated shared con-
text and social control in open multi-agent systems”. In: Social Order in Multiagent
Systems, Springer, ISBN 0792374509. URL: http://ccs.mit.edu/dell/aa2000/paperi3.
pdf.

Dennett, Daniel Clement (1989). The Intentional Stance. URL: https://books.google. co.
uk/books/about/The_Intentional_Stance.html?id=Qbvkja-J9iQC.

Dietrich, Jens (2005). “The Mandarax Manual”. In: Available at: http://fisheye.cenqua.com.
URL: http://fisheye. cenqua.com/viewrep/~raw, r=1.8/mandarax/mandarax/docs/
manual . pdf.

Dignum, Frank (2008). “On-line Adapting Games using Agent Organizations”. In: IEEE
Symposium on Computational Intelligence and Games (CIG’08), pp. 243-250. DOI: 978~ 1~
4244 -2974-5/08. URL: http://www . ncbi.nlm.nih. gov/entrez/query . fcgi?db=
pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=related:60qiVyAd9d4J.

Dignum, Frank and Vazquez-Salceda, Javier (2005). “Omni: Introducing social struc-
ture, norms and ontologies into agent organizations”. In: Programming Multi-Agent
Systems 3346.Chapter 10, pp. 181-198. DOI: 10.1007/978-3-540-32260-3_10. URL:
http://1link.springer.com/10.1007/978-3-540-32260-3_10.

Dignum, Frank; Broersen, Jan; Dignum, Virginia and Meyer, John-Jules Ch (2004).
“Meeting the Deadline: Why, When and How”. In: Formal Approaches to Agent-Based
Systems. Ed. by James L Rash; Walter F Truszkowski and Christopher A Rouft. Berlin
Heidelberg: Springer, pp. 30—40.

Dignum, Frank; Dignum, Virginia; Thangarajah, John; Padgham, Lin and Winikoff,
Michael (2007). “Open Agent Systems ???” English. In: Agent-Oriented Software En-
gineering VIII. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 73-87. ISBN: 978-3-
540-79487-5. DOI: 10.1007/978-3-540-79488-2 6. URL: http://link.springer.com/
10.1007/978-3-540-79488-2_6.

Dignum, Virginia (2004). “A Model for Organizational Interaction: Based on Agents,
Founded in Logic”. In: PhD Thesis, Utrecht University 1, pp. 1-284. URL: http://igitur-
archive.library.uu.nl/dissertations/2003-1218-115420/UUindex.html.

Dignum, Virginia; Weigand, Hans and Xu, L (2002). “Agent Societies: Towards
Frameworks-Based Design”. In: LECTURE NOTES IN COMPUTER SCIENCE. URL:
http://www.springerlink.com/index/427GFVOD6KJ4Q0LE . pdf.

https://books.google.co.uk/books/about/Contemporary_Materialism.html?id=StyJAgAAQBAJ
https://books.google.co.uk/books/about/Contemporary_Materialism.html?id=StyJAgAAQBAJ
http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA019702
http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA019702
http://dx.doi.org/10.1007/978-3-642-25655-4_12
http://dx.doi.org/10.1007/978-3-642-25655-4_12
http://link.springer.com/10.1007/978-3-642-25655-4_12
http://link.springer.com/10.1007/978-3-642-25655-4_12
http://ccs.mit.edu/dell/aa2000/paper13.pdf
http://ccs.mit.edu/dell/aa2000/paper13.pdf
https://books.google.co.uk/books/about/The_Intentional_Stance.html?id=Qbvkja-J9iQC
https://books.google.co.uk/books/about/The_Intentional_Stance.html?id=Qbvkja-J9iQC
http://fisheye.cenqua.com/viewrep/~raw,r=1.8/mandarax/mandarax/docs/manual.pdf
http://fisheye.cenqua.com/viewrep/~raw,r=1.8/mandarax/mandarax/docs/manual.pdf
http://dx.doi.org/978-1-4244-2974-5/08
http://dx.doi.org/978-1-4244-2974-5/08
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=related:6oqiVyAd9d4J
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=related:6oqiVyAd9d4J
http://dx.doi.org/10.1007/978-3-540-32260-3_10
http://link.springer.com/10.1007/978-3-540-32260-3_10
http://dx.doi.org/10.1007/978-3-540-79488-2_6
http://link.springer.com/10.1007/978-3-540-79488-2_6
http://link.springer.com/10.1007/978-3-540-79488-2_6
http://igitur-archive.library.uu.nl/dissertations/2003-1218-115420/UUindex.html
http://igitur-archive.library.uu.nl/dissertations/2003-1218-115420/UUindex.html
http://www.springerlink.com/index/427GFV0D6KJ400LE.pdf

Bibliography 189

Dignum, Virginia; Meyer, John-Jules Ch; Weigand, Hans and Dignum, Frank (2008).
“An Organization-oriented Model for Agent Societies”. In: Proceedings of International
Workshop on Regulated Agent-Based Social Systems: Theories and Applications (RASTA’02),
at AAMAS, Bologna, Italy, p. 20.

d’Inverno, Mark and Luck, Michael (2004). “Understanding Agent Systems”. In:
Springer. URL: http : //books . google . com/books ?hl=en&1lr=8&ie=UTF-8&id=
GQcXCWErPZoC&oi=fnd&pg=PR3&dg=Understanding+Agent+Systems&ots=DhQq2uKyEz&
sig=PFv6WeeUU5tc2FrOCzCOv_OvTjI.

Economic Social Affairs, Population Division UN Department of (2004). World popu-
lation to 2300. Tech. rep. URL: http://www.un.org/esa/population/publications/
longrange2/WorldPop2300final. pdf.

— (2012). Population ageing and development: Ten years after Madrid. Tech. rep. 2012/4. URL:
http://www.un.org/esa/population/publications/popfacts/popfacts_2012-4.pdf.

Eijk, Rogier M van; Huget, Marc-Philippe and Dignum, Frank (2005). Agent Communi-
cation: International Workshop on Agent Communication. Springer. URL: https://books.
google.es/books/about/Agent_Communication.html?hl=es&id=g-kFCAAAQBAJ.

Elster, J (1989). “Social Norms and Economic Theory”. In: The Journal of Economic Per-
spectives 3.4, pp. 99-117. DOI: 10.2307/1942912. URL: http://www. jstor.org/stable/
1942912.

Erl, Thomas (2004). “Service-oriented architecture”. In: Prentice Hall. URL: http://www.
serviceoriented.ws/Erl1_SOABook1_Ch@7-2.pdf.

Esteva, M; Rodriguez-Aguilar, J A; Arcos,] LL; Sierra, C; Noriega, Pablo; Rosell, B and
Cruz, D de la (2008). “Electronic institutions development environment”. In: AA-
MAS 08 Proceedings of the 7th international joint conference on Autonomous agents and mul-
tiagent systems: demo papers, pp. 1657-1658. URL: http://dl.acm.org/citation.cfm?
id=1402744.1402751.

Esteva, Marc; Padget, Julian and Sierra, Carles (2002). “Formalizing a language for in-
stitutions and norms”. In: Intelligent Agents VIII. URL: http://www.springerlink.com/
index/edwdx9um@dpxbh8j.pdf.

Faci, N; Modgil, S; Oren, N; Meneguzzi, Felipe and Miles, S (2008). “Towards a monitor-
ing framework for agent-based contract systems”. In: Cooperative Information Agents
XII 5180.Chapter 23, pp. 292—305. DOI: 10.1007/978-3-540-85834-8_23. URL: http:
//link.springer.com/10.1007/978-3-540-85834-8_23.

Farrell, Andrew D H; Sergot, Marek J; Sallé, Mathias and Bartolini, Claudio (2005).
“Using the Event Calculus for Tracking the Normative State of Contracts”. En-
glish. In: International Journal of Cooperative Information Systems 14.02n03, pp. 99—
129. DOI: 10 . 1142/S0218843005001110. URL: http : //www . hpl . hp . com/personal/
Claudio Bartolini/download/IJCIS_Farrell Sergot.pdf.

Finin, Tim; Fritzson, R; McKay, D and McEntire, R (1994). “KQML as an agent com-
munication language”. In: Proceedings of the Third International Conference on Informa-
tion and Knowledge Management (CIKM’94), ACM Press. URL: http://portal .acm.org/
citation.cfm?id=191246.191322.

http://books.google.com/books?hl=en&lr=&ie=UTF-8&id=GQcXCWErPZoC&oi=fnd&pg=PR3&dq=Understanding+Agent+Systems&ots=DhQq2uKyEz&sig=PFv6WeeUU5tc2FrOCzCOv_OvTjI
http://books.google.com/books?hl=en&lr=&ie=UTF-8&id=GQcXCWErPZoC&oi=fnd&pg=PR3&dq=Understanding+Agent+Systems&ots=DhQq2uKyEz&sig=PFv6WeeUU5tc2FrOCzCOv_OvTjI
http://books.google.com/books?hl=en&lr=&ie=UTF-8&id=GQcXCWErPZoC&oi=fnd&pg=PR3&dq=Understanding+Agent+Systems&ots=DhQq2uKyEz&sig=PFv6WeeUU5tc2FrOCzCOv_OvTjI
http://www.un.org/esa/population/publications/longrange2/WorldPop2300final.pdf
http://www.un.org/esa/population/publications/longrange2/WorldPop2300final.pdf
http://www.un.org/esa/population/publications/popfacts/popfacts_2012-4.pdf
https://books.google.es/books/about/Agent_Communication.html?hl=es&id=g-kFCAAAQBAJ
https://books.google.es/books/about/Agent_Communication.html?hl=es&id=g-kFCAAAQBAJ
http://dx.doi.org/10.2307/1942912
http://www.jstor.org/stable/1942912
http://www.jstor.org/stable/1942912
http://www.serviceoriented.ws/Erl_SOABook1_Ch07-2.pdf
http://www.serviceoriented.ws/Erl_SOABook1_Ch07-2.pdf
http://dl.acm.org/citation.cfm?id=1402744.1402751
http://dl.acm.org/citation.cfm?id=1402744.1402751
http://www.springerlink.com/index/edw0x9um0dpxbh8j.pdf
http://www.springerlink.com/index/edw0x9um0dpxbh8j.pdf
http://dx.doi.org/10.1007/978-3-540-85834-8_23
http://link.springer.com/10.1007/978-3-540-85834-8_23
http://link.springer.com/10.1007/978-3-540-85834-8_23
http://dx.doi.org/10.1142/S0218843005001110
http://www.hpl.hp.com/personal/Claudio_Bartolini/download/IJCIS_Farrell_Sergot.pdf
http://www.hpl.hp.com/personal/Claudio_Bartolini/download/IJCIS_Farrell_Sergot.pdf
http://portal.acm.org/citation.cfm?id=191246.191322
http://portal.acm.org/citation.cfm?id=191246.191322

190 Bibliography

Finkelstein, Lawrence S (1995). “What Is Global Governance”. In: Global Governance.
URL: http://www. agropolis. fr/formation/dd/nov@4/what_is_global_governance.
pdf.

Fornara, Nicoletta and Colombetti, Marco (2009). “Specifying and Enforcing Norms
in Artificial Institutions”. In: In M. Baldoni et al. (Eds.): DALT 2008, LNAI 5397,
Springer-Verlag Berlin Heidelberg, pp. 1-17. URL: http : //www . ncbi . nlm . nih . gov/
entrez/query . fcgi ?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=
14954202287096801360related:UCi91b__h88J.

Foster, Ian; Jennings, Nicholas R and Kesselman, Carl (2004). “Brain meets brawn:
why grid and agents need each other”. In: 3rd International Conference on Autonomous
Agents and Multi-Agent Systems. URL: http://ieeexplore . ieee . org/xpls/abs all .
jsp?arnumber=1373456.

Fowler, M and Lewis,] (2014). Microservices. ThoughtWorks. URL: http : /scholar .
google . com/scholar?q=related: FC2s8-5Y570J : scholar . google . com/&hl=en&
num=20&as_sdt=0, 5.

Fox, Maria and Long, Derek (2009). “PDDL 2.1 : An Extension to PDDL for Expressing
Temporal Planning Domains”. In: University of Durham, UK, pp. 1-48.

Fulton, Larry; Heffner, Randy and D’Silva, David (2008). “The Forrester Wave: SOA
Service Life-Cycle Management, Q1 2008”. In: Forrester Research.

Garcia, Pere; Giménez, Eduard; Godo, Lluis and Rodriguez-Aguilar, Juan Antonio
(1999). “Bidding Strategies for Trading Agents in Auction-Based Tournaments”. In:
AMET-98, Lecture Notes in Computer Science, LNAI 1571, pp. 151-165. URL: http://www .
springerlink.com/index/XH6RAL3LX37JRCH4 . pdf.

Garcia-Camino, A; Rodriguez-Aguilar, J; Sierra, Carles and Vasconcelos, Wamberto
(2006). “A rule-based approach to norm-oriented programming of electronic insti-
tutions”. English. In: ACM SIGecom Exchanges 5.5, pp. 33—40. DOI: 10.1145/1124566.
1124571. URL: http://portal.acm.org/citation.cfm?doid=1124566.1124571.

Garcia-Camino, Andrés; Noriega, Pablo and Rodriguez-Aguilar, Juan Antonio (2005).
“Implementing norms in electronic institutions”. In: Proceedings of the fourth interna-
tional joint conference on Autonomous agents and multiagent systems Utrecht, Netherlands,
pp- 667-673. URL: http://portal.acm.org/citation.cfm?1d=1082473.1082575.

Garcia-Camino, Andrés; Rodriguez-Aguilar, Juan A; Sierra, Carles and Vasconcelos,
Wamberto (2009). “Constraint rule-based programming of norms for electronic in-
stitutions”. In: Autonomous Agents and Multi-Agent Systems (Springer US) 18.1, pp. 186—
217. URL: http://www.springerlink.com/index/3H4104073465N082 . pdf.

Genesereth, M and Fikes, Richard (1992). “Knowledge interchange format (KIF), ver-
sion 3.0 reference manual”. In: Tech. Rep. KSL-92-86.

Gerevini, Alfonso and Long, Derek (2005). Plan constraints and preferences in PDDL3:
The Language of the Fifth International Planning Competition. Tech. rep. URL: http: //
www . ncbi . nlm.nih. gov/entrez/query . fcgi ?db=pubmed&cmd=Retrieve &dopt=
AbstractPlus&list uids=15869234077132803629related:LU4GeVDYOtwJ.

Goémez-Sebastia, Ignasi (2016). “NoMoDEI: A framework for Norm Monitoring on Dy-
namic Electronic Institutions”. PhD thesis. Barcelona, Spain (January 2016).

http://www.agropolis.fr/formation/dd/nov04/what_is_global_governance.pdf
http://www.agropolis.fr/formation/dd/nov04/what_is_global_governance.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=14954202287096801360related:UCi91b__h88J
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=14954202287096801360related:UCi91b__h88J
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=14954202287096801360related:UCi91b__h88J
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1373456
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1373456
http://scholar.google.com/scholar?q=related:FC2s8-5Y57oJ:scholar.google.com/&hl=en&num=20&as_sdt=0,5
http://scholar.google.com/scholar?q=related:FC2s8-5Y57oJ:scholar.google.com/&hl=en&num=20&as_sdt=0,5
http://scholar.google.com/scholar?q=related:FC2s8-5Y57oJ:scholar.google.com/&hl=en&num=20&as_sdt=0,5
http://www.springerlink.com/index/XH6RAL3LX37JRCH4.pdf
http://www.springerlink.com/index/XH6RAL3LX37JRCH4.pdf
http://dx.doi.org/10.1145/1124566.1124571
http://dx.doi.org/10.1145/1124566.1124571
http://portal.acm.org/citation.cfm?doid=1124566.1124571
http://portal.acm.org/citation.cfm?id=1082473.1082575
http://www.springerlink.com/index/3H4104073465N082.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=15869234077132803629related:LU4GeVDYOtwJ
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=15869234077132803629related:LU4GeVDYOtwJ
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=15869234077132803629related:LU4GeVDYOtwJ

Bibliography 191

Goémez-Sebastia, Ignasi and Alvarez-Napagao, Sergio (2012). “Towards Runtime Sup-
port for Norm Change from a Monitoring Perspective”. In: Proceedings of the First
International Conference on Agreement Technologies, Volume 918. URL: http : //
vi.ikt.ui.sav.sk/@api/deki/files/2119/=example.pdf.

Goémez-Sebastia, Ignasi; Alvarez-Napagao, Sergio and Vazquez-Salceda, Javier (2011).
“A Distributed Norm Compliance Model”. In: Frontiers in Artificial Intelligence and Ap-
plications Volume 232: Artificial Intelligence Research and Development, pp. 110—-
119. DOI: 10.3233/978-1-60750-842-7-110. URL: http://ebooks . iospress.nl/
publication/6573.

— (2013). “Towards Heuristic Based Mobility Policy Optimisation”. In: Frontiers in Ar-
tificial Intelligence and Applications Volume 256: Artificial Intelligence Research and
Development, pp. 297-300. DOI: 10.3233/978-1-61499-320-9-297. URL: http://
ebooks.iospress.nl/publication/35263.

Goémez-Sebastia, Ignasi; Garcia-Gasulla, Dario and Alvarez-Napagao, Sergio (2011).
“Society of situated agents for adaptable eldercare”. In: ERCIM News 87, pp. 23-24-.
URL: http://ercim-news.ercim.eu/en87/special/a-society-of-situated-agents-
for-adaptable-eldercare.

Goémez-Sebastia, Ignasi; Garcia-Gasulla, Dario; Alvarez-Napagao, Sergio; Vazquez-
Salceda, Javier and Cortés, Ulises (2012). “Towards an implementation of a so-
cial electronic reminder for pills”. In: VII Workshop on Agents Applied inHealth Care,
AHC@AAMAS2012. Valencia, Spain. URL: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.466.1786&rep=rep1&type=pdf#page=63.

Goémez-Sebastia, Ignasi; Alvarez-Napagao, Sergio; Garcia-Gasulla, Dario and Cortés,
Ulises (2013). “Situated agents and humans in social interaction for elderly health-
care: the case of COAALAS ”. In: 14th Conference on Artificial Intelligence in Medicine
Proceedings of the VIII Workshop on Agents Applied in Health Care (A2HC2013),
pp. 105-119. URL: http : //upcommons . upc . edu/e - prints/bitstream/2117/23299/
1/Situated % 20agents % 20and % 20humans % 20in % 20social % 20interaction % 20for %
20elderly%20healthcare: The%20case%200f%20COAALAS. pdf.

Gémez-Sebastia, Ignasi; Moreno, Jonathan; Alvarez-Napagao, Sergio; Garcia-Gasulla,
Dario; Barrué, Cristian and Cortés, Ulises (2015). “Situated agents and humans in
social interaction for elderly healthcare: From Coaalas to AVICENA”. In: Journal of
Medical Systems Special Issue 2015: Agent-Empowered HealthCare Systems, pp. 1—20.

Governatori, Guido (2005). “Representing business contracts in RuleML”. In:
International Journal of Cooperative Information Systems 14.2-3, pp. 181-216. DOI:
WorldScientificPublishingCompany. URL: http : //espace . library . uqg. edu. au/
eserv.php?pid=UQ:9617&dsID=coala.pdf.

Governatori, Guido and Rotolo, Antonino (2010). “Norm compliance in business pro-
cess modeling”. In: Semantic Web Rules, pp. 194—209. URL: http://www.springerlink.
com/index/R182X5732MX0661V. pdf.

Governatori, Guido; Hulstijn, Joris; Riveret, Régis and Rotolo, Antonino (2007). “Char-
acterising deadlines in temporal modal defeasible logic”. In: AI 2007: Advances

http://vi.ikt.ui.sav.sk/@api/deki/files/2119/=example.pdf
http://vi.ikt.ui.sav.sk/@api/deki/files/2119/=example.pdf
http://dx.doi.org/10.3233/978-1-60750-842-7-110
http://ebooks.iospress.nl/publication/6573
http://ebooks.iospress.nl/publication/6573
http://dx.doi.org/10.3233/978-1-61499-320-9-297
http://ebooks.iospress.nl/publication/35263
http://ebooks.iospress.nl/publication/35263
http://ercim-news.ercim.eu/en87/special/a-society-of-situated-agents-for-adaptable-eldercare
http://ercim-news.ercim.eu/en87/special/a-society-of-situated-agents-for-adaptable-eldercare
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.466.1786&rep=rep1&type=pdf#page=63
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.466.1786&rep=rep1&type=pdf#page=63
http://upcommons.upc.edu/e-prints/bitstream/2117/23299/1/Situated%20agents%20and%20humans%20in%20social%20interaction%20for%20elderly%20healthcare:The%20case%20of%20COAALAS.pdf
http://upcommons.upc.edu/e-prints/bitstream/2117/23299/1/Situated%20agents%20and%20humans%20in%20social%20interaction%20for%20elderly%20healthcare:The%20case%20of%20COAALAS.pdf
http://upcommons.upc.edu/e-prints/bitstream/2117/23299/1/Situated%20agents%20and%20humans%20in%20social%20interaction%20for%20elderly%20healthcare:The%20case%20of%20COAALAS.pdf
http://dx.doi.org/World Scientific Publishing Company
http://espace.library.uq.edu.au/eserv.php?pid=UQ:9617&dsID=coala.pdf
http://espace.library.uq.edu.au/eserv.php?pid=UQ:9617&dsID=coala.pdf
http://www.springerlink.com/index/R182X5732MX0661V.pdf
http://www.springerlink.com/index/R182X5732MX0661V.pdf

192 Bibliography

in Artificial Intelligence, pp. 486—496. URL: http : //www . springerlink . com/index/
v6215747633972w0 . pdf.

Grangard, Anders; Eisenberg, Brian; Nickull, Duane; Barham, Colin; Boseman, Al; Bar-
ret, Christian; Brooks, Dick; Casanave, Cory; Cunningham, Robert; Ferris, Christo-
pher; Kacandes, Peter and Ketels, Kris (2001). “ebXML Technical Architecture Speci-
fication”. In: ebxml.org. URL: http://www.ebxml . org/project teams/technical arch/
private/index_files/ebXML_TA_v@.9.doc.

Grossi, Davide (2007). “Designing invisible handcuffs: Formal investigations in institu-
tions and organizations for multi-agent systems”. PhD thesis. Universiteit Utrecht.
ISBN: 978-90-393-4619-8. URL: http://www.ncbhi.nlm.nih.gov/entrez/query.fcgi?
db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=13868003175764777892.

Grossi, Davide; Meyer, John-Jules Ch and Dignum, Frank (2006). “Counts-as: Classi-
fication or constitution? an answer using modal logic”. In: DEON 2006, LNAI 40438,
pPp- 115-130. URL: http://www.springerlink.com/index/0306j05g58797w@1 . pdf.

— (2008). “The many faces of counts-as: A formal analysis of constitutive rules”.
In: Journal of Applied Logic. URL: http://linkinghub.elsevier.com/retrieve/pii/
S1570868307000559.

Grossi, Davide; Aldewereld, Huib; Vazquez-Salceda, Javier and Dignum, Frank (2006).
“Ontological aspects of the implementation of norms in agent-based electronic in-
stitutions”. English. In: Computational and Mathematical Organization Theory 12.2-3,
pPp- 251—275. DOI: 10.1007/s10588-006-9546-6. URL: http://www.springerlink.com/
index/10.1007/s10588-006-9546-6.

Groth, Paul; Luck, Michael and Moreau, Luc (2004). “Formalising a protocol for record-
ing provenance in grids”. In: Proc. of the UK OST e-Science second All Hands Meet-
ing. URL: http://twiki . gridprovenance . org/pub/PASOA/PublicationStore/PReP -
AHMO4 . pdf.

Hannoun, Mahdji; Boissier, Olivier; Sichman, Jaime S and Sayettat, Claudette (2000).
“MOISE: An Organizational Model for Multi-agent Systems”. English. In: Advances
in Artificial Intelligence. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 156-165.
ISBN: 978-3-540-41276-2. DOI: 10 . 1007/3 - 540 - 44399 -1_17. URL: http://link.
springer.com/10.1007/3-540-44399-1_17.

Hilpinen, Risto (1971). “Deontic Logic: Introductory and Systematic Readings”. In:
p. 184. URL: http://books.google.es/books?id=11DXAAAAMAATJ.

Hiibner, Jomi F; Boissier, Olivier and Bordini, Rafael H (2009). “Normative pro-
gramming for organisation management infrastructures”. In: Workshop on Coor-
dination, Organization, Institutions and Norms in Agent Systems in Online Communities
(COIN@MALLOW 2009).

Ibrhaim, Mamdouh; Holley, Kerrie; Josuttis, Nicolai M; Michelson, Brenda; Thomas,
Dave and deVadoss, John (2007). “The future of SOA: what worked, what didn’t, and
where is it going from here?” In: OOPSLA ’oy7: Companion to the 22nd ACM SIGPLAN
conference on Object oriented programming systems and applications companion. URL: http:
//portal.acm.org/citation.cfm?id=1297846.1297975.

http://www.springerlink.com/index/v6215747633972w0.pdf
http://www.springerlink.com/index/v6215747633972w0.pdf
http://www.ebxml.org/project_teams/technical_arch/private/index_files/ebXML_TA_v0.9.doc
http://www.ebxml.org/project_teams/technical_arch/private/index_files/ebXML_TA_v0.9.doc
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=13868003175764777892
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=13868003175764777892
http://www.springerlink.com/index/0306j05g58797w01.pdf
http://linkinghub.elsevier.com/retrieve/pii/S1570868307000559
http://linkinghub.elsevier.com/retrieve/pii/S1570868307000559
http://dx.doi.org/10.1007/s10588-006-9546-6
http://www.springerlink.com/index/10.1007/s10588-006-9546-6
http://www.springerlink.com/index/10.1007/s10588-006-9546-6
http://twiki.gridprovenance.org/pub/PASOA/PublicationStore/PReP-AHM04.pdf
http://twiki.gridprovenance.org/pub/PASOA/PublicationStore/PReP-AHM04.pdf
http://dx.doi.org/10.1007/3-540-44399-1_17
http://link.springer.com/10.1007/3-540-44399-1_17
http://link.springer.com/10.1007/3-540-44399-1_17
http://books.google.es/books?id=liDXAAAAMAAJ
http://portal.acm.org/citation.cfm?id=1297846.1297975
http://portal.acm.org/citation.cfm?id=1297846.1297975

Bibliography 193

Jakob, Michal; Péchoucek, Michal; Miles, Simon; Luck, Michael; Oren, Nir; Kolling-
baum, Martin; Vazquez-Salceda, Javier; Storms, Patrick; Chabera, Jiri; Holt, Camden
and Dehn, Martin (2008). “Case studies for contract-based systems”. In: AAMAS
’08: Proceedings of the 7th international joint conference on Autonomous agents and multia-
gent systems: industrial track. International Foundation for Autonomous Agents and
Multiagent Systems, pp. §55-62. URL: http://dl.acm.org/citation.cfm?id=1402795.
1402806.

Jiang, Jie; Dignum, Virginia and Tan, Yao-Hua (2012). “An Agent-Based Inter-
organizational Collaboration Framework: OperA+”. English. In: Coordination, Or-
ganizations, Institutions, and Norms in Agent System VII. Berlin, Heidelberg: Springer
Berlin Heidelberg, pp. 58—74. ISBN: 978-3-642-35544-8. DOI: 10.1007/978-3-642~
35545-5_4. URL: http://link.springer.com/10.1007/978-3-642-35545-5_4.

Jones, Andrew J I and Sergot, Marek J (1996). “A Formal Characterisation of Institution-
alised Power”. In: Logic Journal of IGPL. URL: http://jigpal . oxfordjournals.org/
cgi/content/abstract/4/3/427.

Kanger, Stig and Stenlund, Soren (1974). “Logical Theory and Semantic Analysis: Essays
Dedicated to Stig Kanger on His Fiftieth Birthday”. In: Springer, ISBN 9027704384.
URL: http://books . google.com/books?hl=en&lr=&ie=UTF-8&id=42IaYn5exX0C&
0i=fnd&pg=PA1&dg=porn+logical +theory&ots=-bKG9erlgR&sig=5KfKuBopiKdG-
Stmtkh3p7 JHhwE.

Keller, Alexander and Ludwig, Heiko (2003). “The WSLA Framework: Specifying and
Monitoring Service Level Agreements for Web Services”. In: Journal of Network and
Systems Management. URL: http://www.springerlink.com/index/M111304202683828.
pdf.

Kenney, L Frank and Plummer, Daryl C (2008). “Magic Quadrant for Integrated SOA
Governance Technology Sets, 2007”. In: Gartner RAS Core Research Note Goo153858,
p- 16.

Kesselman, Carl and Foster, Ian (2004). “The Grid: Blueprint for a New Computing
Infrastructure”. In: Morgan Kaufmann. URL: http://books.google.com/books?hl=en&
1r=8ie=UTF-8&id=8-0BofIhoU0C&0i=fnd&pg=PR7&dg=the+grid:+blueprint&ots=
mrWkwB2VUp&sig=VULGDP3QNjw2AnWTcpzkpt6zOvc.

Kollingbaum, Martin (2005). “Norm-governed Practical Reasoning Agents”. In: Ph.D.
Dissertation.

Kolp, Manuel and Wautelet, Yves (2011). “A Social Framework for Software Architec-
tural Design”. In: Handbook of Research on Socio-Technical Design and Social Networking
Systems. Ed. by Brian Whitworth, p. 1034. URL: https://books.google.co.uk/books/
about/Handbook_of _Research_on_Socio_Technical.html?id=JsCPblyKEoIC.

Koo, Jarok (2008). “A Study on the Model Checking for Deontic Logic”. In: Conver-
gence and Hybrid Information Technology, 2008. ICCIT ’08. Third International Conference
on. IEEE, pp. 832-835. ISBN: 978-0-7695-3407-7. DOIL: 10.1109/ICCIT.2008.240. URL:
http://ieeexplore. ieee. org/xpl/articleDetails. jsp? tp=&arnumber=4682348&
contentType=Conference +Publications &matchBoolean% 3Dtrue % 26rowsPerPage %

http://dl.acm.org/citation.cfm?id=1402795.1402806
http://dl.acm.org/citation.cfm?id=1402795.1402806
http://dx.doi.org/10.1007/978-3-642-35545-5_4
http://dx.doi.org/10.1007/978-3-642-35545-5_4
http://link.springer.com/10.1007/978-3-642-35545-5_4
http://jigpal.oxfordjournals.org/cgi/content/abstract/4/3/427
http://jigpal.oxfordjournals.org/cgi/content/abstract/4/3/427
http://books.google.com/books?hl=en&lr=&ie=UTF-8&id=42IaYn5exX0C&oi=fnd&pg=PA1&dq=porn+logical+theory&ots=-bKG9erlqR&sig=5KfKuBopiKdG-Stmtkh3p7JHhwE
http://books.google.com/books?hl=en&lr=&ie=UTF-8&id=42IaYn5exX0C&oi=fnd&pg=PA1&dq=porn+logical+theory&ots=-bKG9erlqR&sig=5KfKuBopiKdG-Stmtkh3p7JHhwE
http://books.google.com/books?hl=en&lr=&ie=UTF-8&id=42IaYn5exX0C&oi=fnd&pg=PA1&dq=porn+logical+theory&ots=-bKG9erlqR&sig=5KfKuBopiKdG-Stmtkh3p7JHhwE
http://www.springerlink.com/index/M111304202683828.pdf
http://www.springerlink.com/index/M111304202683828.pdf
http://books.google.com/books?hl=en&lr=&ie=UTF-8&id=8-0BofIhoU0C&oi=fnd&pg=PR7&dq=the+grid:+blueprint&ots=mrWkwB2VUp&sig=VULGDP3QNjw2AnWTcpzkpt6zOvc
http://books.google.com/books?hl=en&lr=&ie=UTF-8&id=8-0BofIhoU0C&oi=fnd&pg=PR7&dq=the+grid:+blueprint&ots=mrWkwB2VUp&sig=VULGDP3QNjw2AnWTcpzkpt6zOvc
http://books.google.com/books?hl=en&lr=&ie=UTF-8&id=8-0BofIhoU0C&oi=fnd&pg=PR7&dq=the+grid:+blueprint&ots=mrWkwB2VUp&sig=VULGDP3QNjw2AnWTcpzkpt6zOvc
https://books.google.co.uk/books/about/Handbook_of_Research_on_Socio_Technical.html?id=JsCPblyKEoIC
https://books.google.co.uk/books/about/Handbook_of_Research_on_Socio_Technical.html?id=JsCPblyKEoIC
http://dx.doi.org/10.1109/ICCIT.2008.240
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4682348&contentType=Conference+Publications&matchBoolean%3Dtrue%26rowsPerPage%3D30%26searchField%3DSearch_All%26queryText%3D%28deontic+AND+%22model+checking%22%29
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4682348&contentType=Conference+Publications&matchBoolean%3Dtrue%26rowsPerPage%3D30%26searchField%3DSearch_All%26queryText%3D%28deontic+AND+%22model+checking%22%29
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4682348&contentType=Conference+Publications&matchBoolean%3Dtrue%26rowsPerPage%3D30%26searchField%3DSearch_All%26queryText%3D%28deontic+AND+%22model+checking%22%29
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4682348&contentType=Conference+Publications&matchBoolean%3Dtrue%26rowsPerPage%3D30%26searchField%3DSearch_All%26queryText%3D%28deontic+AND+%22model+checking%22%29

194 Bibliography

3D30%26searchField%3DSearch_All%26queryText%3D%28deontic+AND+%22model +
checking%22%29.

Korsgaard, Christine M (2008). The Constitution of Agency. English. Essays on Practi-
cal Reason and Moral Psychology. Oxford University Press. ISBN: 0191564591. URL:
http://books. google. es/books?id=wvR7KMLsY6kC&printsec=frontcover&dg=the+
constitutiontof+agency&hl=&cd=1&source=ghs_api.

Kozlenkov, Alexander and Schroeder, Michael (2004). “PROVA: Rule-Based Java-
Scripting for a Bioinformatics Semantic Web”. In: Data Integration in the Life Sci-
ences, Lecture Notes in Computer Science, Springer Berlin/Heidelberg, ISBN 978-3-540-
21300-0 2994/2004, Pp. 17-30. URL: http : //www . springerlink . com/index/
W7QCYMQBPVQUA181 . pdf.

Kroger, Fred and Merz, Stephan (2008). “First-Order Linear Temporal Logic”. English.
In: Temporal Logic and State Systems. Berlin, Heidelberg: Springer Berlin Heidelberg,
Pp- 153-179. ISBN: 978-3-540-67401-6. DOI: 10.1007/978-3-540-68635-4.5. URL:
http://link.springer.com/10.1007/978-3-540-68635-4_5.

Kyas, Marcel; Prisacariu, Cristian and Schneider, Gerardo (2008). “Run-time monitor-
ing of electronic contracts”. In: Springer Berlin / Heidelberg Proceedings of 6th Interna-
tional Symposium on Automated Technology for Verification and Analysis, Lecture
Notes in Computer Science 5311, pp. 397—407. URL: http://www.springerlink.com/
index/e5362773r8637tng. pdf.

Lam, Joey S C; Vasconcelos, Wamberto; Guerin, Frank; Corsar, David; Chorley, Alison
H.; Norman, T J; Vazquez-Salceda, Javier; Panagiotidi, Sofia; Confalonieri, Roberto;
Gomez-Sebastia, Ignasi; Hidalgo, Soraya; Alvarez-Napagao, Sergio; Nieves, Juan
Carlos; Palau Roig, Manel; Ceccaroni, Luigi; Aldewereld, Huib; Dignum, Frank;
Penserini, Luigi; Padget, Julian; Vos, Marina de; Andreou, D; Cliffe, Owen;
Staikopoulos, Athanasios; Popescu, R; Clarke, S; Sergeant, P; Reed, C; Quillinan,
Thomas and Nieuwenhuis, K (2009). “ALIVE: A Framework for Flexible and Adap-
tive Service Coordination”. In: Agents for Educational Games and Simulations. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 236-239. 1SBN: 978-3-642-10202-8. DOI:
10.1007/978-3-642-10203-5_21. URL: http://link.springer.com/10.1007/978-3-
642-10203-5_21.

Leite, Joao and Soares, Luis (2006). “Evolving characters in role play-
ing games”. In: Cybernetics and Systems, Proceedings of the th Euro-
pean Meeting on Cybernetics and Systems Research EMCSR 2, pp. 515—
520. URL: http : //www . researchgate . net/profile/Joao_Leite4/
publication/228881113_Evolving characters_in_role_playing_games/links/
0@deec52bcc5ab0fb7c000000 . pdf.

Levinson, Stephen C (1983). Pragmatics (Cambridge Textbooks in Linguistics). Cambridge
University Press. DOI: 10.1234/12345678. URL: http://www.citeulike.org/group/
2314/article/513907.

Lindahl, Lars (2001). “Stig Kanger’s Theory of Rights”. In: Collected Papers of Stig Kanger
with Essays on His Life and Work, Springer, ISBN: 1402001118. URL: http://books . google.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4682348&contentType=Conference+Publications&matchBoolean%3Dtrue%26rowsPerPage%3D30%26searchField%3DSearch_All%26queryText%3D%28deontic+AND+%22model+checking%22%29
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4682348&contentType=Conference+Publications&matchBoolean%3Dtrue%26rowsPerPage%3D30%26searchField%3DSearch_All%26queryText%3D%28deontic+AND+%22model+checking%22%29
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4682348&contentType=Conference+Publications&matchBoolean%3Dtrue%26rowsPerPage%3D30%26searchField%3DSearch_All%26queryText%3D%28deontic+AND+%22model+checking%22%29
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4682348&contentType=Conference+Publications&matchBoolean%3Dtrue%26rowsPerPage%3D30%26searchField%3DSearch_All%26queryText%3D%28deontic+AND+%22model+checking%22%29
http://books.google.es/books?id=wvR7KMLsY6kC&printsec=frontcover&dq=the+constitution+of+agency&hl=&cd=1&source=gbs_api
http://books.google.es/books?id=wvR7KMLsY6kC&printsec=frontcover&dq=the+constitution+of+agency&hl=&cd=1&source=gbs_api
http://www.springerlink.com/index/W7QCYMQBPV0UA181.pdf
http://www.springerlink.com/index/W7QCYMQBPV0UA181.pdf
http://dx.doi.org/10.1007/978-3-540-68635-4_5
http://link.springer.com/10.1007/978-3-540-68635-4_5
http://www.springerlink.com/index/e5362773r8637tng.pdf
http://www.springerlink.com/index/e5362773r8637tng.pdf
http://dx.doi.org/10.1007/978-3-642-10203-5_21
http://link.springer.com/10.1007/978-3-642-10203-5_21
http://link.springer.com/10.1007/978-3-642-10203-5_21
http://www.researchgate.net/profile/Joao_Leite4/publication/228881113_Evolving_characters_in_role_playing_games/links/0deec52bcc5ab0fb7c000000.pdf
http://www.researchgate.net/profile/Joao_Leite4/publication/228881113_Evolving_characters_in_role_playing_games/links/0deec52bcc5ab0fb7c000000.pdf
http://www.researchgate.net/profile/Joao_Leite4/publication/228881113_Evolving_characters_in_role_playing_games/links/0deec52bcc5ab0fb7c000000.pdf
http://dx.doi.org/10.1234/12345678
http://www.citeulike.org/group/2314/article/513907
http://www.citeulike.org/group/2314/article/513907
http://books.google.com/books?hl=en&lr=&ie=UTF-8&id=U4w4BQy5-nIC&oi=fnd&pg=PA151&dq=porn+logical+theory&ots=LhpLS2KiAo&sig=mW_YkFOFxQTG8kA6_QDzkAjo1rs
http://books.google.com/books?hl=en&lr=&ie=UTF-8&id=U4w4BQy5-nIC&oi=fnd&pg=PA151&dq=porn+logical+theory&ots=LhpLS2KiAo&sig=mW_YkFOFxQTG8kA6_QDzkAjo1rs
http://books.google.com/books?hl=en&lr=&ie=UTF-8&id=U4w4BQy5-nIC&oi=fnd&pg=PA151&dq=porn+logical+theory&ots=LhpLS2KiAo&sig=mW_YkFOFxQTG8kA6_QDzkAjo1rs

Bibliography 195

com/books?hl=en&lr=&ie=UTF-8&i1d=U4w4BQy5-nIC&oi=fnd&pg=PA151&dg=porn+
logical+theory&ots=LhpLS2KiAo&sig=mW_YkFOFxQTG8kA6_QDzkAjolrs.

Linthicum, David (2008). “Defining SOA Governance”. In: InfoWorld, p. 3.

Lokhorst, Gert-Jan C (1999). “Ernst Mally’s Deontik (1926)”. In: Notre Dame Journal
of Formal Logic 40.2, pp. 273—282. URL: http : //www . projecteuclid . org/Dienst/
Repository/1.0/Disseminate/euclid.ndjf1/1038949542/body/pdfview.

Lomuscio, Alessio; Qu, Hongyang and Raimondi, Franco (2009). MCMAS: A Model
Checker for the Verification of Multi-Agent Systems. Ed. by David Hutchison; Takeo
Kanade; Josef Kittler; Jon M Kleinberg; Friedemann Mattern; John C Mitchell; Moni
Naor; Oscar Nierstrasz; C Pandu Rangan; Bernhard Steffen; Madhu Sudan; Demetri
Terzopoulos; Doug Tygar; Moshe Y Vardi; Gerhard Weikum; Ahmed Bouajjani and
Oded Maler. Springer Berlin Heidelberg. Vol. 5643. Lecture Notes in Computer Sci-
ence. Berlin, Heidelberg: Springer Berlin Heidelberg. 1SBN: 978-3-642-02657-7. DOI:
10.1007/978-3-642-02658-4_55. URL: http://www. springerlink.com/index/10.
1007/978-3-642-02658-4_55.

Long, Edmund (2007). “Enhanced NPC behaviour using goal oriented action planning”.
In: PhD Thesis, University of Abertay-Dundee. URL: http://citeseerx . ist.psu.edu/
viewdoc/download?doi=10.1.1.131.8964&rep=repl&type=pdf.

Lépez, Fabiola Lépez y and Luck, Michael (2002). “Towards a Model of the Dynam-
ics of Normative Multi-Agent Systems”. In: Proceedings of the Int. Workshop on Reg-
ulated Agent-Based Social Systems. URL: http : //www . dcs . kel . ac . uk/staff/mml/
publications/assets/rasta02.pdf.

Lépez, Fabiola Lépez y; Luck, Michael and d’Inverno, Mark (2001). “A frame-
work for norm-based inter-agent dependence”. In: Proceedings of The Third Mexi-
can International Conference on Computer Science, pp. 31-40. URL: http: //citeseer .
comp . nus . edu . sg/cache/papers/cs/23409/http : zSzzSzwww . ecs . soton . ac .
ukzSz~mmlzSzpaperszSzenc@1.pdf/lopez@1framework. pdf.

— (2004). “Normative agent reasoning in dynamic societies”. In: Joint Conference
on Autonomous Agents and ... URL: http : /www . nchi . nlm . nih . gov/entrez/
query . fcgi ? db = pubmed & cmd = Retrieve & dopt = AbstractPlus & list_uids =
16915294091999465116related:nE7kCFsyv-07J.

Luck, Michael; McBurney, Peter; Shehory, Onn and Willmott, Steven (2005). Agent Tech-
nology Roadmap: A roadmap for Agent Based Computing. AgentLink Community. URL:
http://scholar.google.com/scholar?q=related:wuskFMioXKEJ : scholar . google.
com/&hl=en&num=208&as_sdt=0, 5.

Ludwig, Heiko; Dan, Asit and Kearney, Robert (2004). “Cremona: an architecture and
library for creation and monitoring of WS-agreements”. In: Proceedings of the 2nd
international conference on Service oriented computing, New York, NY, USA, ISBN:1-58113-
871-7, pp. 65—74. URL: http://portal.acm.org/citation.cfm?id=1035178.

Ludwig, Heiko; Keller, Alexander; Dan, Asit; King, Richard P and Franck, Richard
(2003). “Web Service Level Agreement (WSLA) Language Specification”. In: IBM
Corporation. URL: http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf.

http://books.google.com/books?hl=en&lr=&ie=UTF-8&id=U4w4BQy5-nIC&oi=fnd&pg=PA151&dq=porn+logical+theory&ots=LhpLS2KiAo&sig=mW_YkFOFxQTG8kA6_QDzkAjo1rs
http://books.google.com/books?hl=en&lr=&ie=UTF-8&id=U4w4BQy5-nIC&oi=fnd&pg=PA151&dq=porn+logical+theory&ots=LhpLS2KiAo&sig=mW_YkFOFxQTG8kA6_QDzkAjo1rs
http://books.google.com/books?hl=en&lr=&ie=UTF-8&id=U4w4BQy5-nIC&oi=fnd&pg=PA151&dq=porn+logical+theory&ots=LhpLS2KiAo&sig=mW_YkFOFxQTG8kA6_QDzkAjo1rs
http://books.google.com/books?hl=en&lr=&ie=UTF-8&id=U4w4BQy5-nIC&oi=fnd&pg=PA151&dq=porn+logical+theory&ots=LhpLS2KiAo&sig=mW_YkFOFxQTG8kA6_QDzkAjo1rs
http://www.projecteuclid.org/Dienst/Repository/1.0/Disseminate/euclid.ndjfl/1038949542/body/pdfview
http://www.projecteuclid.org/Dienst/Repository/1.0/Disseminate/euclid.ndjfl/1038949542/body/pdfview
http://dx.doi.org/10.1007/978-3-642-02658-4_55
http://www.springerlink.com/index/10.1007/978-3-642-02658-4_55
http://www.springerlink.com/index/10.1007/978-3-642-02658-4_55
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.131.8964&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.131.8964&rep=rep1&type=pdf
http://www.dcs.kcl.ac.uk/staff/mml/publications/assets/rasta02.pdf
http://www.dcs.kcl.ac.uk/staff/mml/publications/assets/rasta02.pdf
http://citeseer.comp.nus.edu.sg/cache/papers/cs/23409/http:zSzzSzwww.ecs.soton.ac.ukzSz~mmlzSzpaperszSzenc01.pdf/lopez01framework.pdf
http://citeseer.comp.nus.edu.sg/cache/papers/cs/23409/http:zSzzSzwww.ecs.soton.ac.ukzSz~mmlzSzpaperszSzenc01.pdf/lopez01framework.pdf
http://citeseer.comp.nus.edu.sg/cache/papers/cs/23409/http:zSzzSzwww.ecs.soton.ac.ukzSz~mmlzSzpaperszSzenc01.pdf/lopez01framework.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=16915294091999465116related:nE7kCFsyv-oJ
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=16915294091999465116related:nE7kCFsyv-oJ
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=16915294091999465116related:nE7kCFsyv-oJ
http://scholar.google.com/scholar?q=related:wuskFMioXKEJ:scholar.google.com/&hl=en&num=20&as_sdt=0,5
http://scholar.google.com/scholar?q=related:wuskFMioXKEJ:scholar.google.com/&hl=en&num=20&as_sdt=0,5
http://portal.acm.org/citation.cfm?id=1035178
http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf

196 Bibliography

MacKenzie, C Matthew; Laskey, Ken; McCabe, Francis; Brown, Peter F and Metz, Re-
bekah (2006). “Reference Model for Service Oriented Architecture 1.0”. In: OASIS
Committee Specification 1, p. 31.

Manes, A T (2009). Manes: SOA is dead; long live services. Blogbeitrag [05.01. 2009]. URL:
http://scholar.google.com/scholar?q=related: GF23I5ycGKIJ: scholar.google.
com/&hl=en&num=20&as_sdt=0, 5.

Matos, Noyda and Sierra, Carles (1999). “Evolutionary Computing and Negotiat-
ing Agents”. In: AMET-98, LNAI 1571, Lectures Notes on Computer Science, Springer-
Verlag Berlin Heidelberg, pp. 126-150. URL: http : //www . springerlink . com/index/
28CWJV6YKCEMIB2L . pdf.

Matyska, Ludek; Krenek, Ales; Ruda, Miroslav; Sitera, Jiri; Kouril, Daniel; Vocu, Michal;
Pospisil, Jan; Mulac, Milos and Salvet, Zdenek (2007). “Job Tracking on a Grid—the
Logging and Bookkeeping and Job Provenance Services”. In: CESNET technical re-
port number 9/2007. URL: http://www. cesnet . cz/doc/techzpravy/2007/grid- job-
tracking/grid-job-tracking.ps.gz.

McCarthy, Dennis; Dayal, Umeshwar; McCarthy, Dennis and Dayal, Umeshwar (1989).
The architecture of an active database management system. English. Vol. 18. ACM. 1SBN:
0-89791-317-5. DOI: 10.1145/66926.66946. URL: http://portal . acm.org/citation.
cfm?doid=66926.66946.

McNamara, Paul and Prakken, Henry (1999). “Norms, Logics and Information Sys-
tems: New Studies in Deontic Logic and Computer Science”. In: IOS Press. URL:
http : //books . google . com/books ?hl=en&1lr=&ie=UTF - 8 & id =Efz2tm2BwkIC &
0i=fnd&pg=PR7 &dg=P . +McNamara + and +H . +Prakken & ots = xp9XGh5t3g & sig =
0XM_eFURiAu5hjdKPCnECNzEAOw.

Meneguzzi, Felipe and Luck, Michael (2009). Norm-based behaviour modification in BDI
agents. AAMAS ’09. Richland, SC: International Foundation for Autonomous Agents
and Multiagent Systems. ISBN: 978-0-9817381-6-1. URL: http : /dl . acm . org/
citation.cfm?id=1558013.1558037.

Meneguzzi, Felipe; Rodrigues, Odinaldo; Oren, Nir; Vasconcelos, Wamberto and
Luck, Michael (2015). “BDI reasoning with normative considerations”. English.
In: Engineering Applications of Artificial Intelligence 43, pp. 127-146. DOI: 10.1016/7 .
engappai . 2015.04 . 011. URL: http://linkinghub . elsevier . com/retrieve/pii/
S0952197615000925.

Menzel, Michael; Thomas, Ivonne; Wolter, Christian and Meinel, Christoph (2007).
“SOA Security-Secure Cross-Organizational Service Composition”. In: Proceedings
of the Stuttgarter Softwaretechnik Forum (SSF), Fraunhofer IRB-Verlag, Stuttgart, Ger-
many, ISBN: 978-3-8167-7493-8, pp. 41-53. URL: http://www . hpi.uni-potsdam.de/
fileadmin/hpi/FG_ITS/papers/Menzel _SSF2007.pdf.

Meyer, John-Jules Ch and Wieringa, R (1991). “Deontic Logic in Computer Science:
Normative System Specification”. In: Procs. of MAAMAW’01. URL: http://www.di.
unito.it/~guido/violator/2004-old/Lpar/yourwish.bib.gz.

Michlmayr, Anton; Rosenberg, Florian; Platzer, Christian; Treiber, Martin and Dust-
dar, Schahram (2007). “Towards recovering the broken SOA triangle: a software

http://scholar.google.com/scholar?q=related:GF23I5ycGKIJ:scholar.google.com/&hl=en&num=20&as_sdt=0,5
http://scholar.google.com/scholar?q=related:GF23I5ycGKIJ:scholar.google.com/&hl=en&num=20&as_sdt=0,5
http://www.springerlink.com/index/28CWJV6YKCEMJB2L.pdf
http://www.springerlink.com/index/28CWJV6YKCEMJB2L.pdf
http://www.cesnet.cz/doc/techzpravy/2007/grid-job-tracking/grid-job-tracking.ps.gz
http://www.cesnet.cz/doc/techzpravy/2007/grid-job-tracking/grid-job-tracking.ps.gz
http://dx.doi.org/10.1145/66926.66946
http://portal.acm.org/citation.cfm?doid=66926.66946
http://portal.acm.org/citation.cfm?doid=66926.66946
http://books.google.com/books?hl=en&lr=&ie=UTF-8&id=Efz2tm2BwkIC&oi=fnd&pg=PR7&dq=P.+McNamara+and+H.+Prakken&ots=xp9XGh5t3g&sig=oXM_eFURiAu5hjdKPCnECNzEAOw
http://books.google.com/books?hl=en&lr=&ie=UTF-8&id=Efz2tm2BwkIC&oi=fnd&pg=PR7&dq=P.+McNamara+and+H.+Prakken&ots=xp9XGh5t3g&sig=oXM_eFURiAu5hjdKPCnECNzEAOw
http://books.google.com/books?hl=en&lr=&ie=UTF-8&id=Efz2tm2BwkIC&oi=fnd&pg=PR7&dq=P.+McNamara+and+H.+Prakken&ots=xp9XGh5t3g&sig=oXM_eFURiAu5hjdKPCnECNzEAOw
http://dl.acm.org/citation.cfm?id=1558013.1558037
http://dl.acm.org/citation.cfm?id=1558013.1558037
http://dx.doi.org/10.1016/j.engappai.2015.04.011
http://dx.doi.org/10.1016/j.engappai.2015.04.011
http://linkinghub.elsevier.com/retrieve/pii/S0952197615000925
http://linkinghub.elsevier.com/retrieve/pii/S0952197615000925
http://www.hpi.uni-potsdam.de/fileadmin/hpi/FG_ITS/papers/Menzel_SSF2007.pdf
http://www.hpi.uni-potsdam.de/fileadmin/hpi/FG_ITS/papers/Menzel_SSF2007.pdf
http://www.di.unito.it/~guido/violator/2004-old/Lpar/yourwish.bib.gz
http://www.di.unito.it/~guido/violator/2004-old/Lpar/yourwish.bib.gz

Bibliography 197

engineering perspective”. In: 2nd international workshop on Service oriented software en-
gineering: in conjunction with the 6th ESEC/FSE joint meeting. New York, New York, USA:
ACM, pp. 22—28. ISBN: 978-1-§9593-723-0. DOI: 10 . 1145/1294928 . 1294934, URL:
http://portal.acm.org/citation.cfm?doid=1294928.1294934.

Millington, Ian and Funge, John (2009). “Artificial Intelligence for Games”. In: Morgan
Kaufmann. URL: http://www.ncbi.nlm.nih. gov/entrez/query . fcgi?db=pubmed&
cmd =Retrieve & dopt =AbstractPlus & list_uids =10499474543559257567related :
3yObAXigtZE].

Modgil, Sanjay; Oren, Nir; Faci, Noura; Meneguzzi, Felipe; Miles, Simon and Luck,
Michael (2015). “Monitoring compliance with E-contracts and norms”. English. In:
Artificial Intelligence and Law 23.2, pp. 161-196. DOI: 10 . 1007/s10506-015-9167 - 9.
URL: http://link.springer.com/article/10.1007/s10506-015-9167-9/fulltext.
html.

Monks, Robert A G and Minow, Nell (2004). “Corporate Governance”. In: Blackwell
Publishing. URL: http : //books . google . com/books ?hl=en&lr=&ie=UTF-8&id=
RGMHAVPhmRwWC & 0i = fnd & pg =PR15 & dq=corporate + governance +definition&ots =
h6zYgP8f5D&sig=KulLgwbez0b0jDfq2etZQXgha77JY.

Moreau, Luc; Freire, Juliana; Futrelle, Joe; McGrath, Robert E; Myers, Jim and Paulson,
Patrick (2008). “The Open Provenance Model: An Overview”. English. In: Provenance
and Annotation of Data and Processes. Berlin, Heidelberg: Springer Berlin Heidelberg,
PP- 323—326. ISBN: 978-3-540-89964-8. DOI: 10.1007/978-3-540-89965-5_31. URL:
http://link.springer.com/10.1007/978-3-540-89965-5_31.

Nareyek, Alexander (2007). “Game Al Is Dead. Long Live Game AI!” English. In:
Intelligent Systems 66.4, pp. 1338-1343. URL: http : //www . ncbi . nlm . nih . gov/
entrez/query . fcgi ?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list uids=
6804820867560721766related: Zkdfi4alb147J.

Nau, Dana; Au, Tsz-Chiu; llghami, Okhtay; Kuter, Ugur; Murdock,] William; Wu, Dan
and Yaman, Fusun (2003). “SHOP2: An HTN planning system”. In: Journal of Arti-
ficial Intelligence Research 20, pp. 379—404. URL: https://www.aaai.org/Papers/JAIR/
Vol20/JAIR-2013. pdf.

Newell, Allen; Rosenbloom, Paul S. and Laird, John E (1987). “SOAR: An architecture
for general intelligence”. English. In: Carnegie-Mellon University Technical Report 66.4,
pp- 1281-1286. URL: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&
cmd =Retrieve & dopt = AbstractPlus & 1ist_uids =15352123283218065173related :
FWc3fMmyDdUJ.

Nezhad, Hamid R Motahari; Benatallah, Boualem; Casati, Fabio and Toumani, Farouk
(2006). “Web Services Interoperability Specifications”. In: Computer, IEEE Computer
Society, Los Alamitos, CA, USA, ISSN: 0018-9162 39.5, pp. 24-32. URL: http: //doi .
ieeecomputersociety.org/10.1109/MC.2006.181.

Nilsson, Nils J and Fikes, Richard E (1970). “STRIPS: A New Approach to the Applica-
tion of Theorem Proving to Problem Solving”. In: Storming Media LLC. URL: http:
//www . ncbi . nlm.nih. gov/entrez/query . fcgi?db=pubmed&cmd=Retrieve&dopt=
AbstractPlus&list_uids=18338894177823518748related:HHCmUhfXgP4].

http://dx.doi.org/10.1145/1294928.1294934
http://portal.acm.org/citation.cfm?doid=1294928.1294934
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=10499474543559257567related:3y0bAXigtZEJ
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=10499474543559257567related:3y0bAXigtZEJ
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=10499474543559257567related:3y0bAXigtZEJ
http://dx.doi.org/10.1007/s10506-015-9167-9
http://link.springer.com/article/10.1007/s10506-015-9167-9/fulltext.html
http://link.springer.com/article/10.1007/s10506-015-9167-9/fulltext.html
http://books.google.com/books?hl=en&lr=&ie=UTF-8&id=RGmHAVPhmRwC&oi=fnd&pg=PR15&dq=corporate+governance+definition&ots=h6zYqP8f5D&sig=KuLgwbezObOjDfq2etZQXgha7JY
http://books.google.com/books?hl=en&lr=&ie=UTF-8&id=RGmHAVPhmRwC&oi=fnd&pg=PR15&dq=corporate+governance+definition&ots=h6zYqP8f5D&sig=KuLgwbezObOjDfq2etZQXgha7JY
http://books.google.com/books?hl=en&lr=&ie=UTF-8&id=RGmHAVPhmRwC&oi=fnd&pg=PR15&dq=corporate+governance+definition&ots=h6zYqP8f5D&sig=KuLgwbezObOjDfq2etZQXgha7JY
http://dx.doi.org/10.1007/978-3-540-89965-5_31
http://link.springer.com/10.1007/978-3-540-89965-5_31
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=6804820867560721766related:Zk0fi4aUb14J
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=6804820867560721766related:Zk0fi4aUb14J
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=6804820867560721766related:Zk0fi4aUb14J
https://www.aaai.org/Papers/JAIR/Vol20/JAIR-2013.pdf
https://www.aaai.org/Papers/JAIR/Vol20/JAIR-2013.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=15352123283218065173related:FWc3fMmyDdUJ
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=15352123283218065173related:FWc3fMmyDdUJ
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=15352123283218065173related:FWc3fMmyDdUJ
http://doi.ieeecomputersociety.org/10.1109/MC.2006.181
http://doi.ieeecomputersociety.org/10.1109/MC.2006.181
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=18338894177823518748related:HHCmUhfXgP4J
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=18338894177823518748related:HHCmUhfXgP4J
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=18338894177823518748related:HHCmUhfXgP4J

198 Bibliography

Noriega, Pablo (1997). “Agent-Mediated Auctions: The Fishmarket Metaphor”. In: IIIA
Phd Monography 8.

North, Douglass C; Ngrgaard, Asbjorn Sonne and Swedberg, Richard (1990). “Insti-
tutions, Institutional Change and Economic Performance”. In: Cambridge Univer-
sity Press. URL: http : //books . google . com/books ?hl=en&1lr=8&ie=UTF-8&id=
oFnWbTqgNPYC & 0i=fnd& pg=PR6&dq=1Institutions, +Instutional + Change +and+
Econonomic+Performance&ots=sWkpP8Jq05&sig=3tXS3C70vyVIHmf7U2KDNGBcgKw.

Oliveira, Eunice; Cardoso, Henrique; Urbano, Joana and Rocha, Ana Paula (2014). Trust-
worthy agents for B2B operations under Normative environment. English. IEEE. 1SBN: 978-
1-4799-5457-5. DOI: 10.1109/ICSAL . 2014 .7009295. URL: http://ieeexplore. ieee.
org/lpdocs/epic@3/wrapper.htm?arnumber=7009295.

Oren, Nir; Panagiotidi, Sofia; Vazquez-Salceda, Javier; Modgil, Sanjay; Luck, Michael
and Miles, Simon (2009). “Towards a formalisation of electronic contracting en-
vironments”. In: LNAI 5428, pp. 156-171. URL: http : //www . ncbi . nlm.nih . gov/
entrez/query . fcgi ?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=
2600664954751297477related: xSFCV_9gFyQJ.

Orkin, Jeff (2006). “Three states and a plan: the Al of FEAR”. In: Proc. of the 2006 Game
Developers Conference. URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.92.8551&rep=repl1&type=pdf.

Ostrom, Elinor (1986). “An agenda for the study of institutions”. In: Public Choice. URL:
http://www.springerlink.com/index/T67314712U831845.pdf.

Panagiotidi, Sofia and Vazquez-Salceda, Javier (2011). “Norm-Aware Planning: Seman-
tics and Implementation”. In: 2011 IEEE/WIC/ACM International Joint Conferences on
Web Intelligence (WI) and Intelligent Agent Technologies (IAT). IEEE, pp. 33-36. ISBN: 978-
1-4577-1373-6. DOI: 10.1109/WI-TIAT.2011.249. URL: http://ieeexplore.ieee.org/
lpdocs/epic@3/wrapper.htm?arnumber=6040698.

Panagiotidi, Sofia; Vazquez-Salceda, Javier; Alvarez-Napagao, Sergio; Ortega-Martorell,
Sandra; Willmott, Steven; Confalonieri, Roberto and Storms, Patrick (2008). “Intel-
ligent Contracting Agents Language”. In: Volume 4: Proceedings of the AISB 2008
Symposium on Behaviour Regulation in Multi-agent Systems.Aberdeen, Scotland,
Pp- 49-55. URL: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=
Retrieve&dopt=AbstractPlus&list_uids=related:GdxvHmx7_0UJ:scholar.google.
com/.

Paschke, Adrian (2005). “RBSLA A declarative Rule-based Service Level Agreement
Language based on RuleML”. In: Computational Intelligence for Modelling. URL: http:
//ieeexplore.ieee.org/xpls/abs_all. jsp?arnumber=1631486.

Paschke, Adrian; Dietrich, Jens and Kuhla, Karsten (2005). “A Logic Based SLA Man-
agement Framework”. In: Proceedings of the 4th Semantic Web Conference (ISWC 2005)
Galway, Ireland, pp. 68-83. URL: http: //ibis . in . tum. de/staff/paschke/docs/
ISWCO@5_Paschke_final.pdf.

Paurobally, Shamimabi; Tamma, Valentina and Wooldridge, Michael (2005). “Coopera-
tion and Agreement between Semantic Web Services”. In: W3C Workshop on Frame-

http://books.google.com/books?hl=en&lr=&ie=UTF-8&id=oFnWbTqgNPYC&oi=fnd&pg=PR6&dq=Institutions,+Instutional+Change+and+Econonomic+Performance&ots=sWkpP8JqO5&sig=3tXS3C7OvyV9Hmf7U2KDNGBcqKw
http://books.google.com/books?hl=en&lr=&ie=UTF-8&id=oFnWbTqgNPYC&oi=fnd&pg=PR6&dq=Institutions,+Instutional+Change+and+Econonomic+Performance&ots=sWkpP8JqO5&sig=3tXS3C7OvyV9Hmf7U2KDNGBcqKw
http://books.google.com/books?hl=en&lr=&ie=UTF-8&id=oFnWbTqgNPYC&oi=fnd&pg=PR6&dq=Institutions,+Instutional+Change+and+Econonomic+Performance&ots=sWkpP8JqO5&sig=3tXS3C7OvyV9Hmf7U2KDNGBcqKw
http://dx.doi.org/10.1109/ICSAI.2014.7009295
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7009295
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7009295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=2600664954751297477related:xSfCV_9qFyQJ
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=2600664954751297477related:xSfCV_9qFyQJ
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=2600664954751297477related:xSfCV_9qFyQJ
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.8551&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.8551&rep=rep1&type=pdf
http://www.springerlink.com/index/T67314712U831845.pdf
http://dx.doi.org/10.1109/WI-IAT.2011.249
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6040698
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6040698
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=related:GdxvHmx7_OUJ:scholar.google.com/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=related:GdxvHmx7_OUJ:scholar.google.com/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=related:GdxvHmx7_OUJ:scholar.google.com/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1631486
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1631486
http://ibis.in.tum.de/staff/paschke/docs/ISWC05_Paschke_final.pdf
http://ibis.in.tum.de/staff/paschke/docs/ISWC05_Paschke_final.pdf

Bibliography 199

works for Semantics in Web Services. URL: http://www.csc.liv.ac.uk/~valli/Papers/
swsv2.pdf.

Pautasso, Cesare; Zimmermann, Olaf and Leymann, Frank (2008). “Restful web ser-
vices vs. big’ web services: making the right architectural decision”. In: Proceeding of
the 17th international conference. New York, New York, USA: ACM, pp. 805-814. ISBN:
978-1-60558-085-2. DOI: 10.1145/1367497 .1367606. URL: http://portal .acm.org/
citation.cfm?doid=1367497.1367606.

Porn, Ingmar (1974). “Some Basic Concepts of Action”. In: Logical Theory and Se-
mantic Analysis: Essays Dedicated to Stig Kanger on His Fiftieth Birthday, Springer, ISBN:
9027704384. URL: http://books . google . com/books ?hl=en&lr=&ie=UTF-8&id=
42IaYn5exX0C&oi=fnd&pg=PT107&dg=porn+logical+theory&ots=-bKG9erlgR&sig=
0QAS9sKP4Gt4rzFAuvktrY_c1Kk.

Posner, Richard A (2009). The Problematics of Moral and Legal Theory. Har-
vard University Press. URL: https : //books . google . co . uk/books/about/
The_Problematics_of Moral_and_Legal Theo.html?id=E40yzn1oWtsC.

Prakken, Henry and Sergot, Marek (1996). “Contrary-to-duty obligations”. English. In:
Studia Logica 57.1, pp. 91-115. DOI: 10.1007/BF00370671. URL: http://link.springer.
com/10.1007/BF00370671.

— (1997). “Dyadic Deontic Logic and Contrary-to-Duty Obligations”. English. In: De-
feasible Deontic Logic. Dordrecht: Springer Netherlands, pp. 223—262. ISBN: 978-94-
015-8851-5. DOI: 10.1007/978-94-015-8851-5_10. URL: http://www.springerlink.
com/index/10.1007/978-94-015-8851-5_10.

Prisacariu, Cristian and Schneider, Gerardo (2009). “Abstract specification of legal con-
tracts”. In: ICAIL ’09: Proceedings of the 12th International Conference on Artificial Intelli-
gence and Law. New York, New York, USA: ACM Request Permissions, pp. 218-219.
ISBN: 9781605585970. DOI: 10.1145/1568234.1568262. URL: http://portal.acm.org/
citation.cfm?id=1568234.1568262&c0l1=DL&d1=ACM&CFID=93104618&CFTOKEN=
96925591.

Rao, Anand S and Georgeff, Michael P (1995). “BDI Agents: From Theory to Practice”.
In: Proceedings of the First International Conference on Multiagent Systems, pp. 312-319.
URL: http://www.aaai.org/Papers/ICMAS/1995/ICMAS95-042 . pdf.

Richard Scott, W (1998). “Organizations: Rational, Natural, and Open Systems”. In:
Prentice Hall, p. 416. URL: http : //books . google . com/books ? id = 8XFGHQAACAAT &
printsec=frontcover.

— (2001). “Institutions and Organizations”. In: Foundations for Organizational Science,
p. 255. URL: http : //www . ncbi . nlm. nih . gov/entrez/query . fcgi ? db = pubmed &
cmd = Retrieve & dopt = AbstractPlus & list_uids = 6165349868156549022related :
nvd4Jwg5j1UJ.

Riemsdijk, M Birna van; Dennis, Louise; Fisher, Michael and Hindriks, Koen V (2015).
A Semantic Framework for Socially Adaptive Agents: Towards strong norm compliance. Inter-
national Foundation for Autonomous Agents and Multiagent Systems. 1SBN: 978-1-
4503-3413-6. URL: http://dl.acm.org/citation.cfm?id=2772879.2772935.

http://www.csc.liv.ac.uk/~valli/Papers/swsv2.pdf
http://www.csc.liv.ac.uk/~valli/Papers/swsv2.pdf
http://dx.doi.org/10.1145/1367497.1367606
http://portal.acm.org/citation.cfm?doid=1367497.1367606
http://portal.acm.org/citation.cfm?doid=1367497.1367606
http://books.google.com/books?hl=en&lr=&ie=UTF-8&id=42IaYn5exX0C&oi=fnd&pg=PT107&dq=porn+logical+theory&ots=-bKG9erlqR&sig=OQAS9sKP4Gt4rzFAuvktrY_c1Kk
http://books.google.com/books?hl=en&lr=&ie=UTF-8&id=42IaYn5exX0C&oi=fnd&pg=PT107&dq=porn+logical+theory&ots=-bKG9erlqR&sig=OQAS9sKP4Gt4rzFAuvktrY_c1Kk
http://books.google.com/books?hl=en&lr=&ie=UTF-8&id=42IaYn5exX0C&oi=fnd&pg=PT107&dq=porn+logical+theory&ots=-bKG9erlqR&sig=OQAS9sKP4Gt4rzFAuvktrY_c1Kk
https://books.google.co.uk/books/about/The_Problematics_of_Moral_and_Legal_Theo.html?id=E4Oyzn1oWtsC
https://books.google.co.uk/books/about/The_Problematics_of_Moral_and_Legal_Theo.html?id=E4Oyzn1oWtsC
http://dx.doi.org/10.1007/BF00370671
http://link.springer.com/10.1007/BF00370671
http://link.springer.com/10.1007/BF00370671
http://dx.doi.org/10.1007/978-94-015-8851-5_10
http://www.springerlink.com/index/10.1007/978-94-015-8851-5_10
http://www.springerlink.com/index/10.1007/978-94-015-8851-5_10
http://dx.doi.org/10.1145/1568234.1568262
http://portal.acm.org/citation.cfm?id=1568234.1568262&coll=DL&dl=ACM&CFID=93104618&CFTOKEN=96925591
http://portal.acm.org/citation.cfm?id=1568234.1568262&coll=DL&dl=ACM&CFID=93104618&CFTOKEN=96925591
http://portal.acm.org/citation.cfm?id=1568234.1568262&coll=DL&dl=ACM&CFID=93104618&CFTOKEN=96925591
http://www.aaai.org/Papers/ICMAS/1995/ICMAS95-042.pdf
http://books.google.com/books?id=8XfGHQAACAAJ&printsec=frontcover
http://books.google.com/books?id=8XfGHQAACAAJ&printsec=frontcover
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=6165349868156549022related:nvd4Jwq5j1UJ
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=6165349868156549022related:nvd4Jwq5j1UJ
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=6165349868156549022related:nvd4Jwq5j1UJ
http://dl.acm.org/citation.cfm?id=2772879.2772935

200 Bibliography

Rodriguez-Aguilar, Juan Antonio (2003). “On the Design and Construction of Agent-
mediated Institutions”. In: PhD Thesis. URL: http : //www . tdr . cesca . es/TDX -
1202103-150907/index_cs.html.

Rosenau, James N and Czempiel, Ernst Otto (1992). “Governance Without Govern-
ment: Order and Change in World Politics”. In: Cambridge University Press. URL: http:
//books . google . com/books?hl=en&lr=&ie=UTF-8&id=1exwc-iBDs4C&oi=fnd&pg=
PR9&dg=governance&ots=wL1GCUY8ay&sig=5RuVo2GBhPM-ypc8Ykk3rokzxfo.

Santos, Filipe and Carmo, José (1996). “Indirect Action, Influence and Responsibility”.
In: In Deontic Logic, Agency and Normative Systems, M. Brown and J. Carmo (eds), Springer,
Pp- 194—215. URL: http://iscte.pt/~fas/deon96.pdf.

Santos, Filipe A A; Jones, Andrew] I and Carmo, José (1997). “Action concepts for
describing organised interaction”. In: System Sciences. URL: http://ieeexplore.ieece.
org/xpls/abs_all. jsp?arnumber=663195.

Schmidt, Marc-Thomas; Hutchison, Beth; Lambros, Peter and Phippen, Rob (2005).
“The Enterprise Service Bus: Making service-oriented architecture real”. In: IBM
Systems Journal. URL: https://www.research.ibm.com/journal/sj/444/schmidt. html.

Searle, John R (1969). “Speech acts: An essay in the philosophy of language”. In:
books.google.com. URL: http : //books . google . com/books ? hl =en & 1r = &id =
t3_WhfknvFOC&oi=fnd&pg=PA3&dg=searle+speech+acts&ots=0QiWINO9IT2&sig=
N1cNaRbkb1fFIQbY3RIVpXEX-z@.

— (1985). Expression and Meaning. Studies in the Theory of Speech Acts. Cam-
bridge University Press. URL: https : //books . google . co . uk/books/about/
Expression_and_Meaning.html?id=dhf27-nv7pkC.

— (2005). “What is an institution?” In: Journal of Institutional Economics 1.1, pp. 1-22.
DOI: 10.1017/S1744137405000020. URL: http://scholar . google . com/scholar?q=
related:88MB1bBwPioJ:scholar.google.com/&hl=en&num=30&as_sdt=0, 5.

— (2009). Making the Social World: The Structure of Human Civilization. Ox-
ford University Press. URL: https : //books . google . co . uk/books/about/
Making_the_Social World_The_Structure_of.html?id=kz6R0eDZ50EC.

Sergot, Marek (2010). “(C+) ++ : An action language for modelling norms and insti-
tutions”. In: pp. 1-88.

Simonsson, Marten and Johnson, Pontus (2006). “Defining IT Governance-A Consoli-
dation of Literature”. In: Proceedings of the 18th Conference on Advanced Information Sys-
tems Engineering Engineering. URL: http://www.ics.kth.se/Publikationer/Working%
20Papers/EARP-WP-2005-MS-04 . pdf.

Simpson, John and Weiner, Edmund (2003). “Oxford English Dictionary”. In: Oxford
University Press. URL: http://www.oup.co.uk/highlights/bestsellers/.

Sommerville, I (2006). “Software Engineering”. In: Pearson Education, ISBN: 0321313798.
URL: http://books. google.com/books?hl=en&lr=&ie=UTF-8&1d=B7idKfLOH64C&0i=
fnd&pg=PR5&dq=software+monitoring&ots=X1tVZIUbFP&sig=GYSRecEOrEmES651J-
JMvkf4eDs.

Spivey,] M (1989). “The Z notation”. In: Prentice Hall International (UK). URL: http://
www.rose-hulman.edu/class/se/csse373/current/Resources/zrm.pdf.

http://www.tdr.cesca.es/TDX-1202103-150907/index_cs.html
http://www.tdr.cesca.es/TDX-1202103-150907/index_cs.html
http://books.google.com/books?hl=en&lr=&ie=UTF-8&id=lexwc-iBDs4C&oi=fnd&pg=PR9&dq=governance&ots=wLlGCUY8ay&sig=5RuVo2GBhPM-ypc8Ykk3r0kzxfo
http://books.google.com/books?hl=en&lr=&ie=UTF-8&id=lexwc-iBDs4C&oi=fnd&pg=PR9&dq=governance&ots=wLlGCUY8ay&sig=5RuVo2GBhPM-ypc8Ykk3r0kzxfo
http://books.google.com/books?hl=en&lr=&ie=UTF-8&id=lexwc-iBDs4C&oi=fnd&pg=PR9&dq=governance&ots=wLlGCUY8ay&sig=5RuVo2GBhPM-ypc8Ykk3r0kzxfo
http://iscte.pt/~fas/deon96.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=663195
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=663195
https://www.research.ibm.com/journal/sj/444/schmidt.html
http://books.google.com/books?hl=en&lr=&id=t3_WhfknvF0C&oi=fnd&pg=PA3&dq=searle+speech+acts&ots=0QiW9NO9T2&sig=NlcNaRbkblfFIQbY3RJVpXEX-z0
http://books.google.com/books?hl=en&lr=&id=t3_WhfknvF0C&oi=fnd&pg=PA3&dq=searle+speech+acts&ots=0QiW9NO9T2&sig=NlcNaRbkblfFIQbY3RJVpXEX-z0
http://books.google.com/books?hl=en&lr=&id=t3_WhfknvF0C&oi=fnd&pg=PA3&dq=searle+speech+acts&ots=0QiW9NO9T2&sig=NlcNaRbkblfFIQbY3RJVpXEX-z0
https://books.google.co.uk/books/about/Expression_and_Meaning.html?id=dhf27-nv7pkC
https://books.google.co.uk/books/about/Expression_and_Meaning.html?id=dhf27-nv7pkC
http://dx.doi.org/10.1017/S1744137405000020
http://scholar.google.com/scholar?q=related:88MB1bBwPioJ:scholar.google.com/&hl=en&num=30&as_sdt=0,5
http://scholar.google.com/scholar?q=related:88MB1bBwPioJ:scholar.google.com/&hl=en&num=30&as_sdt=0,5
https://books.google.co.uk/books/about/Making_the_Social_World_The_Structure_of.html?id=kz6R0eDZ5OEC
https://books.google.co.uk/books/about/Making_the_Social_World_The_Structure_of.html?id=kz6R0eDZ5OEC
http://www.ics.kth.se/Publikationer/Working%20Papers/EARP-WP-2005-MS-04.pdf
http://www.ics.kth.se/Publikationer/Working%20Papers/EARP-WP-2005-MS-04.pdf
http://www.oup.co.uk/highlights/bestsellers/
http://books.google.com/books?hl=en&lr=&ie=UTF-8&id=B7idKfL0H64C&oi=fnd&pg=PR5&dq=software+monitoring&ots=X1tVZIUbFP&sig=GYSRecEOrEmES65lJ-JMvkf4eDs
http://books.google.com/books?hl=en&lr=&ie=UTF-8&id=B7idKfL0H64C&oi=fnd&pg=PR5&dq=software+monitoring&ots=X1tVZIUbFP&sig=GYSRecEOrEmES65lJ-JMvkf4eDs
http://books.google.com/books?hl=en&lr=&ie=UTF-8&id=B7idKfL0H64C&oi=fnd&pg=PR5&dq=software+monitoring&ots=X1tVZIUbFP&sig=GYSRecEOrEmES65lJ-JMvkf4eDs
http://www.rose-hulman.edu/class/se/csse373/current/Resources/zrm.pdf
http://www.rose-hulman.edu/class/se/csse373/current/Resources/zrm.pdf

Bibliography 201

Spronck, P; Ponsen, M and Sprinkhuizen-Kuyper, I (2006). “Adaptive game Al with
dynamic scripting”. English. In: Machine Learning 66.4, pp. 1338-1343. URL: http://
www . ncbi . nlm. nih. gov/entrez/query . fcgi ? db=pubmed&cmd=Retrieve &dopt =
AbstractPlus&list uids=17315633243202551546related: -n4ISrF8TfAJ.

Strano, Massimo; Molina-Jimenez, Carlos and Shrivastava, Santosh (2008). “A rule-
based notation to specify executable electronic contracts”. In: Springer Berlin / Hei-
delberg Proceedings of the International Symposium on Rule Representation, Inter-
change and Reasoning on the Web (RuleML2008), Lecture Notes in Computer Sci-
ence 5321, pp. 81-88. URL: http://www.springerlink.com/index/f27454xuw6665678.
pdf.

Tauriainen, Heikki (2006). “Automata and Linear Temporal Logic: Translations with
Transition-based Acceptance”. PhD thesis. Helsinki University of Technology.

Tinnemeier, Nick; Dastani, Mehdi and Meyer, John-Jules Ch (2009). “Roles and norms
for programming agent organizations”. In: Proc. of 8th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2009) 1.Budapest, Hungary, pp. 121-128.

Torre, L van der; Hulstijn, J; Dastani, Mehdi and Broersen, Jan (2004). “Specifying
Multiagent Organizations”. In: Deontic Logic in Computer Science. URL: http : //www .
springerlink.com/index/v5fmwkyc9bufhéec.pdf.

Trites, Gerald (2004). “Director responsibility for IT governance”. In: International
Journal of Accounting Information Systems. URL: http: //linkinghub . elsevier . com/
retrieve/pii/S1467089504000089.

Tuomela, Raimo (1996). “Philosophy and distributed artificial intelligence: the case of
joint intention”. In: John Wiley Sixth-Generation Computer Technology Series. URL: http:
//portal.acm.org/citation.cfm?id=239297.239334.

Vazquez-Salceda, Javier (2003). “The role of Norms and Electronic Institutions in
Multi-Agent Systems applied to complex domains. The HARMONIA framework”.
In: p. 242.

— (2004). “The Role of Norms and Electronic Institutions in Multi-Agent Systems:
The HARMONIA Framework.” In: PhD Thesis, Universitat Politécnica de Catalunya.
Vazquez-Salceda, Javier; Aldewereld, Huib and Dignum, Frank (2004). “Implementing
Norms in Multiagent Systems”. In: G. Lindemann et al. (Eds.): MATES 2004, LNAI 3187,
Lecture Notes in Computer Science, Springer-Verlag Berlin Heidelberg, pp. 313—327. URL:

http://www.springerlink.com/index/@6WJIEY8X72V91H57 . pdf.

Vazquez-Salceda, Javier and Alvarez-Napagao, Sergio (2009). “Using SOA Provenance
to Implement Norm Enforcement in e-Institutions”. English. In: Coordination, Orga-
nizations, Institutions and Norms in Agent Systems IV. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 188—203. ISBN: 978-3-642-00442-1. DOI: 10.1007/978-3-642-00443~
8_13. URL: http://www.springerlink.com/index/j37549365404x865. pdf.

Vazquez-Salceda, Javier; Cortés, Ulises; Padget, Julian; Lopez-Navidad, Antonio and
Caballero, F (2003). “The organ allocation process: a natural extension of the Car-
rel Agent-Mediated Electronic Institution”. In: AI Communications. URL: http : //
iospress.metapress.com/index/JGONV8L96LORRLEQ. pdf.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=17315633243202551546related:-n4ISrF8TfAJ
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=17315633243202551546related:-n4ISrF8TfAJ
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=17315633243202551546related:-n4ISrF8TfAJ
http://www.springerlink.com/index/f27454xuw6665678.pdf
http://www.springerlink.com/index/f27454xuw6665678.pdf
http://www.springerlink.com/index/v5fmwkyc9bufh6ec.pdf
http://www.springerlink.com/index/v5fmwkyc9bufh6ec.pdf
http://linkinghub.elsevier.com/retrieve/pii/S1467089504000089
http://linkinghub.elsevier.com/retrieve/pii/S1467089504000089
http://portal.acm.org/citation.cfm?id=239297.239334
http://portal.acm.org/citation.cfm?id=239297.239334
http://www.springerlink.com/index/06WJEY8X72V91H57.pdf
http://dx.doi.org/10.1007/978-3-642-00443-8_13
http://dx.doi.org/10.1007/978-3-642-00443-8_13
http://www.springerlink.com/index/j37549365404x865.pdf
http://iospress.metapress.com/index/JG0NV8L96L0RRLEQ.pdf
http://iospress.metapress.com/index/JG0NV8L96L0RRLEQ.pdf

202 Bibliography

Walter, Robert (1996). “Jorgensen’s dilemma and how to face it”. English. In: Ratio
Juris 9.2, pp- 168-171. DOI: 10. 1111/3.1467-9337.1996.th00234 . x. URL: http://
onlinelibrary.wiley.com/doi/10.1111/j.1467-9337.1996.tbh00234.x/abstract.

Webb, Phyl; Pollard, Carol and Ridley, Gail (2006). “Attempting to Define IT Gover-
nance: Wisdom or Folly?” In: Hawaii International Conference on System Sciences. URL:
http://doi.ieeecomputersociety.org/10.1109/HICSS. 2006.68.

webMethods (2006). “SOA Governance: Enabling Sustainable Success with SOA”.
In: webMethods, Inc. URL: http : //wwwl . webmethods . com/PDF/whitepapers/
SOA_Governance. pdf.

Weill, Peter (2004). “Don’t Just Lead, Govern: How Top-Performing Firms Govern
IT”. In: MIS Quarterly Executive. URL: http://web.mit. edu/cisr/working%20papers/
cisrwp341.pdf.

Whitworth, Brian (2009). “The Social Requirements of Technical Systems”. In: Hand-
book of Research on Socio-Technical Design and Social Networking Systems. Ed. by Brian
Whitworth. IGI Global. URL: https : //books . google . co . uk/books/about/
Handbook_of _Research_on_Socio_Technical.html?id=JsCPblyKEoIC.

Winikoff, Michael (2005). “Jack™ Intelligent Agents: An Industrial Strength Platform”.
English. In: Multi-Agent Programming. Boston, MA: Springer US, pp. 175-193. ISBN:
978-0-387-24568-3. DOI: 10.1007/0-387-26350-0 7. URL: http://link.springer.
com/10.1007/0-387-26350-0_7.

Wooldridge, Michael and Jennings, Nicholas R (1995). “Intelligent Agents: Theory and
Practice”. English. In: Knowledge engineering review 66.4, pp. 1424-1431. URL: http:
//www . ncbi . nlm.nih. gov/entrez/query . fcgi?db=pubmed&cmd=Retrieve &dopt=
AbstractPlus&list_uids=7316328098967361322related:Kpcod6TRiGU].

Wright, G. H. von (1951). “Deontic logic”. In: Mind, New Series 60.237, pp. 1-15. DOI:
10.2307/2251395. URL: http://www. jstor.org/stable/2251395.

Xiao, Ding and Zhong, Xiaoan (2010). “Improving Rete algorithm to enhance perfor-
mance of rule engine systems”. English. In: 2010 International Conference on Computer
Design and Applications (ICCDA 2010) 3, pp. V3-572-V3-575. DOI: 10 . 1109/ICCDA .
2010 .5541368. URL: http://ieeexplore . ieee. org/lpdocs/epic@3/wrapper . htm?
arnumber=5541368.

Zimmermann, Michael (2009). “OWL2Java”. In: URL: http: //www . incunabulum . de/
projects/it/owl2java.

http://dx.doi.org/10.1111/j.1467-9337.1996.tb00234.x
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9337.1996.tb00234.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9337.1996.tb00234.x/abstract
http://doi.ieeecomputersociety.org/10.1109/HICSS.2006.68
http://www1.webmethods.com/PDF/whitepapers/SOA_Governance.pdf
http://www1.webmethods.com/PDF/whitepapers/SOA_Governance.pdf
http://web.mit.edu/cisr/working%20papers/cisrwp341.pdf
http://web.mit.edu/cisr/working%20papers/cisrwp341.pdf
https://books.google.co.uk/books/about/Handbook_of_Research_on_Socio_Technical.html?id=JsCPblyKEoIC
https://books.google.co.uk/books/about/Handbook_of_Research_on_Socio_Technical.html?id=JsCPblyKEoIC
http://dx.doi.org/10.1007/0-387-26350-0_7
http://link.springer.com/10.1007/0-387-26350-0_7
http://link.springer.com/10.1007/0-387-26350-0_7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=7316328098967361322related:Kpcod6TRiGUJ
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=7316328098967361322related:Kpcod6TRiGUJ
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=7316328098967361322related:Kpcod6TRiGUJ
http://dx.doi.org/10.2307/2251395
http://www.jstor.org/stable/2251395
http://dx.doi.org/10.1109/ICCDA.2010.5541368
http://dx.doi.org/10.1109/ICCDA.2010.5541368
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5541368
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5541368
http://www.incunabulum.de/projects/it/owl2java
http://www.incunabulum.de/projects/it/owl2java

Selected publications

JOURNAL PAPERS

Goémez-Sebastia, Ignasi; Garcia-Gasulla, Dario and Alvarez-Napagao, Sergio (2011).
“Society of situated agents for adaptable eldercare”. In: ERCIM News 87, pp. 23-24-.
URL:

This article describes a use case in which normative and organisational structures are used to
implement an adaptive platform for eldercare management integrating humans, sensors and
actuators. I participated in the definition of the conceptual framework and in the modelling of
the normative structures. [This work is a consequence and application of the work presented in
Chapters s, 6 and 7, and will be used as a use case in Chapter g in the final document.]

Goémez-Sebastia, Ignasi; Moreno, Jonathan; Alvarez-Napagao, Sergio; Garcia-Gasulla,
Dario; Barrué, Cristian and Cortés, Ulises (2015). “Situated agents and humans in
social interaction for elderly healthcare: From Coaalas to AVICENA”. In: Journal of
Medical Systems Special Issue 2015: Agent-Empowered HealthCare Systems, pp. 1-20.

This paper presents a proof of concept describing a social network for materialising complex
relationships in eldercare contexts. This work partly builds upon previous work done in norma-
tive structures for eldercare management, and therefore my contribution is the participation on
the design and modelling of the normative structures underlying the social network. [This work
is a consequence and application of the work presented in Chapters s, 6 and 7, and is used as a
use case in Chapter 9.]

Kifor, Tamds; Varga, Laszlo Zs; Vazquez-Salceda, Javier; Alvarez-Napagao, Sergio;
Willmott, Steven; Miles, Simon and Moreau, Luc (2006). “Provenance in Agent-
Mediated Healthcare Systems”. In: IEEE Intelligent Systems 21.6, pp. 38—46. DOI:

. URL:

This paper explains in detail how provenance mechanisms were applied in the context of organ
transplant management in order to automatically verify the compliance of regulations and
protocols, while preserving the privacy of the parties involved. In this work, I designed and
implemented several components used for the use case: the agent platform along with the com-

203

http://ercim-news.ercim.eu/en87/special/a-society-of-situated-agents-for-adaptable-eldercare
http://ercim-news.ercim.eu/en87/special/a-society-of-situated-agents-for-adaptable-eldercare
http://dx.doi.org/10.1109/MIS.2006.119
http://dx.doi.org/10.1109/MIS.2006.119
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4042534
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4042534

204 Selected publications

munication and the event models. Also, I was responsible for translating the regulations and
protocols to rules to be fed to the compliance verification rule engine. [This work is used as a
part of the motivation in Section 4.1, and is the basis of the architecture presented in Section
8.2.]

Book CHAPTERS

Vazquez-Salceda, Javier; Alvarez-Napagao, Sergio; Kifor, Tamas; Varga, Laszlo Zs;
Miles, Simon; Moreau, Luc and Willmott, Steven (2007). “EU PROVENANCE
Project: An Open Provenance Architecture for Distributed Applications”. In: R. An-
nicchiarico, U. Cortés, C. Urdiales (eds.) Agent Technology and E-Health. Whitestein Series in
Software Agent Technologies and Autonomic Computing. Birkhduser Verlag AG, Switzerland,
ISBN: 978-3-7643-8546-0, PP. 55-64.

This book chapter describes Provenance as a valid mechanism for causal-historical documenta-
tion and regulation verification of complex distributed processes, presenting a use case based
on organ transplant management as a use case. My contribution was in the transformation
of real-world concepts into agents in an agent platform, and in the translation of relevant
events, regulations and protocols into provenance concepts and rules that were key in proving
the concept. [This work is used as a part of the motivation in Section 4.1, and is the basis of the
architecture presented in Section 8.2.]

CONFERENCE AND WORKSHOP PUBLICATIONS RELATED TO THE PHD THESIS

Aldewereld, Huib; Alvarez-Napagao, Sergio; Dignum, Frank and Vazquez-Salceda,
Javier (2009). “Engineering Social Reality with Inheritance Relations”. English. In:
Lecture Notes in Computer Science. Ed. by David Hutchison; Takeo Kanade; Josef Kittler;
Jon M Kleinberg; Friedemann Mattern; John C Mitchell; Moni Naor; Oscar Nier-
strasz; C Pandu Rangan; Bernhard Steffen; Madhu Sudan; Demetri Terzopoulos;
Doug Tygar; Moshe Y Vardi; Gerhard Weikum; Alessandro Acquisti; Sean W Smith
and Ahmad-Reza Sadeghi. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 116—
131. ISBN: 978-3-642-10202-8. DOI: . URL:

This paper presents a study on the several aspects of counts-as rules and how they can be trans-
lated into valid formalisms by the use of inheritance relations. My contribution consisted in
the grounding of inheritance relations into logically-sound and efficient production systems, the
implementation of the use case, as well as in participating in the formalisation of inheritance
relations. [This work is the basis of Sections 6.1, 6.2 and 7.3.]

http://dx.doi.org/10.1007/978-3-642-10203-5_11
http://link.springer.com/10.1007/978-3-642-10203-5_11
http://link.springer.com/10.1007/978-3-642-10203-5_11

Conference and Workshop Publications Related to the PhD Thesis 205

— (2010). “Making norms concrete”. In: AAMAS ’10: Proceedings of the gth International
Conference on Autonomous Agents and Multiagent Systems Proceedings of the gth Inter-
national Conference on Autonomous Agents and Multiagent Systems, pp. 807-814.
URL:

This paper builds upon our own previous research on the various aspects of counts-as rules to
propose a formalism for the materialisation of norms using inheritance relations and the ground-
ing of deontics on counts-as rules. My contribution was the formalisation of such grounding on
production systems’ semantics, providing a logically-sound design and an example implementa-
tion operationalising such semantics along with a use case. [This work is the basis of Sections
6.1, 6.2 and 7.3.]

Alvarez-Napagao, Sergio and Vazquez-Salceda, Javier (2008). “Using Provenance to
implement a Norm Enforcement Mechanism for Agent-Mediated Healthcare Sys-
tems”. In: Proceedings of the Fifth Workshop on Agents Applied in Health Care at AA-
MAS’08, Estoril, Portugal, p. 8.

This paper presents the results of the design and implementation of a norm-enforcement ar-
chitecture based on the transformation of events, regulations and protocols into provenance
assertions and production systems. My contribution was the design of the architecture and
the implementation of all the components, including the formal translations from concepts to
assertions and rules. [This work is used as a part of the motivation in Section 4.1, and is the
basis of the architecture presented in Section 8.2.]

Alvarez-Napagao, Sergio; Vazquez-Salceda, Javier; Kifor, Tamds; Varga, Laszlo Zs and
Willmott, Steven (2006). “Applying provenance in distributed organ transplant
management”. In: International Provenance and Annotation workshop (IPAW 2006), 3-5
May 2006, Chicago, USA, ISBN 978-3-§40-46302-3. URL:

This paper explains in detail how provenance mechanisms were applied in the context of organ
transplant management in order to automatically verify the compliance of regulations and
protocols, while preserving the privacy of the parties involved. In this work, I designed and
implemented several components used for the use case: the agent platform along with the com-
munication and the event models. Also, I was responsible for translating the regulations and
protocols to rules to be fed to the compliance verification rule engine. [This work is used as a
part of the motivation in Section 4.1, and is the basis of the architecture presented in Section
8.2.]

Alvarez-Napagao, Sergio; Cliffe, Owen; Vazquez-Salceda, Javier and Padget, Julian
(2009). “Norms, organisations and semantic web services: The ALIVE approach”.
English. In: Coordination, Organization, Institutions and Norms in Agent Sys-
tems & On-line Communities (COIN@MALLOW’009), Proceedings of the Second
Multi-Agent Logics, Languages, and Organisations Federated Workshops, Volume
494, pp. 1-2. ISSN: 1613-0073. URL:

http://dl.acm.org/citation.cfm?id=1838206.1838314
http://twiki.grimoires.org/pub/Provenance/ProjectPublications/IPAW-OTM-EHCR.pdf
http://twiki.grimoires.org/pub/Provenance/ProjectPublications/IPAW-OTM-EHCR.pdf
http://upcommons.upc.edu//handle/2117/14283

206 Selected publications

This paper summarises how the ALIVE approach for the management of distributed systems
fits the Service-Orientation model. My contribution in this work was the participation on the
normative and the organisational part of the meta-model specification, along with the imple-
mentation of the event-management and monitoring. components. [This work describes some
of the contributions presented in Section 5.2.]

Alvarez-Napagao, Sergio; Koch, Fernando; Gdémez-Sebastia, Ignasi and Vazquez-
Salceda, Javier (2011). “Making Games ALIVE: An Organisational Approach”. En-
glish. In: Agents for Games and Simulations II. Berlin, Heidelberg: Springer Berlin Hei-
delberg, pp. 179-191. ISBN: 978-3-642-18180-1. DOI:

URL:

This paper presents a proposal for the use of organisational structures to model concepts common
to three types of fun games, in order to provide social concepts and a higher level of adaptivity in
video-games. My contribution was the conceptual framework of the work, the state of the art,
the architecture of the proposal and the implementation of the proofs of concept. [This work is
an application of the contributions presented in Chapters s, 6 and 7 and is the basis of the use
case in Chapter 9.]

Alvarez-Napagao, Sergio; Gomez-Sebastia, Ignasi; Panagiotidi, Sofia; Tejeda-Gémez,
Arturo; Oliva-Felipe, Luis and Véazquez-Salceda, Javier (2012). “Socially-Aware
Emergent Narrative”. English. In: Lecture Notes in Computer Science. Ed. by Martin
Beer; Cyril Brom; Frank Dignum and Von-Wun Soo. Berlin, Heidelberg: Springer
Berlin Heidelberg, pp. 139-150. ISBN: 978-3-642-32325-6. DOI:

. URL:

This paper presents a framework for integrating social and normative structures into gaming
emergent narrative engines, including a use case with organisational models and an architec-
ture. My contribution was the state of the art, the conceptual framework of the work, and the
design and implementation of the architecture. [This work is an application of the contributions
presented in Chapters s, 6 and 7 and is directly related to the use case in Chapter 9.]

Confalonieri, Roberto; Alvarez-Napagao, Sergio; Panagiotidi, Sofia; Vizquez-Salceda,
Javier and Willmott, Steven (2008). “A Middleware Architecture for Building
Contract-Aware Agent-Based Services”. English. In: Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 1-14. I1SBN: 978-3-540-79967-2.
DOI: . URL:

This paper presents a middleware for integrating high-level specifications of contracts in
Service-Oriented Architectures, by the use of underlying intelligent contract-aware agents.
My contribution in this work consisted in the participation in the definition of the contracting
language and the ontological layers, as well as the creation of a few contract-based interaction
protocols. [This work builds upon the contributions presented in Section §5.1.]

http://dx.doi.org/10.1007/978-3-642-18181-8_13
http://link.springer.com/10.1007/978-3-642-18181-8_13
http://dx.doi.org/10.1007/978-3-642-32326-3_9
http://dx.doi.org/10.1007/978-3-642-32326-3_9
http://www.lsi.upc.edu/~igomez/Papers/AEGS_2011.pdf
http://dx.doi.org/10.1007/978-3-540-79968-9_1
http://www.springerlink.com/index/m84n55h118j86178.pdf
http://www.springerlink.com/index/m84n55h118j86178.pdf

Conference and Workshop Publications Related to the PhD Thesis 207

Goémez-Sebastia, Ignasi and Alvarez-Napagao, Sergio (2012). “Towards Runtime Sup-
port for Norm Change from a Monitoring Perspective”. In: Proceedings of the First
International Conference on Agreement Technologies, Volume 918. URL:

This paper analyses the different aspects of norm dynamics and proposes a formal framework
for dealing with each aspect at run-time. My contribution was the participation in the state
of the art, the formalisation of the static aspect of norms, and also the participation in the
conceptual formalisation of the operationalisation of the dynamic aspects. [This work builds
upon the contributions presented in Chapters § and 6.]

Goémez-Sebastia, Ignasi; Alvarez-Napagao, Sergio and Vazquez-Salceda, Javier (2011).
“A Distributed Norm Compliance Model”. In: Frontiers in Artificial Intelligence and Ap-
plications Volume 232: Artificial Intelligence Research and Development, pp. 110—-
119. DOI: . URL:

This paper presents an algorithm for the distribution of norm monitoring tasks, based on the re-
lationships between norms between themselves and norms and events and grounded on Strongly
Connected Components. My main contribution to this work was the formalism for norms, its
operational semantics. Also, the definition of norm dependency was a product of joint work
with the other authors, especially contributing on the formalisation tasks. [This work builds
upon the contributions presented in Chapters § and 6.]

Goémez-Sebastia, Ignasi; Alvarez-Napagao, Sergio; Garcia-Gasulla, Dario and Cortés,
Ulises (2013). “Situated agents and humans in social interaction for elderly health-
care: the case of COAALAS ”. In: 14th Conference on Artificial Intelligence in Medicine
Proceedings of the VIII Workshop on Agents Applied in Health Care (A2HC2013),
pp. 105-119. URL:

This paper presents a proposal for an organisational framework for eldercare contexts involving
patients, doctors, pharmacy providers along with sensors and actuators, with the objective of
providing an adaptive fail-safe mechanism for improving eldercare management. My involve-
ment in this work focused on the definition of the conceptual framework and the creation of the
social, organisational and normative models, and on the grounding to the ALIVE meta-model.
[This work is a consequence and application of the work presented in Chapters s, 6 and 7, and
is used as a use case in Chapter 9.]

Kifor, Tamas; Varga, Laszlo Zs; Alvarez-Napagao, Sergio; Vazquez-Salceda, Javier and
Willmott, Steven (2006). “Privacy Issues of Provenance in Electronic Healthcare
Record Systems”. In: First International Workshop on Privacy and Security in Agent-
based Collaborative Environments (PSACE2006), Hakodate, Japan. URL:

http://vi.ikt.ui.sav.sk/@api/deki/files/2119/=example.pdf
http://vi.ikt.ui.sav.sk/@api/deki/files/2119/=example.pdf
http://dx.doi.org/10.3233/978-1-60750-842-7-110
http://ebooks.iospress.nl/publication/6573
http://ebooks.iospress.nl/publication/6573
http://upcommons.upc.edu/e-prints/bitstream/2117/23299/1/Situated%20agents%20and%20humans%20in%20social%20interaction%20for%20elderly%20healthcare:The%20case%20of%20COAALAS.pdf
http://upcommons.upc.edu/e-prints/bitstream/2117/23299/1/Situated%20agents%20and%20humans%20in%20social%20interaction%20for%20elderly%20healthcare:The%20case%20of%20COAALAS.pdf
http://upcommons.upc.edu/e-prints/bitstream/2117/23299/1/Situated%20agents%20and%20humans%20in%20social%20interaction%20for%20elderly%20healthcare:The%20case%20of%20COAALAS.pdf
http://twiki.gridprovenance.org/pub/Provenance/ProjectPublications/EHCR-Prov-Privacy.pdf
http://twiki.gridprovenance.org/pub/Provenance/ProjectPublications/EHCR-Prov-Privacy.pdf
http://twiki.gridprovenance.org/pub/Provenance/ProjectPublications/EHCR-Prov-Privacy.pdf

208 Selected publications

This paper enumerates the privacy issues in documenting the provenance of events in the context
of healthcare processes, and the possible solutions for such issues. My participation in this
work was focused on implementing the underlying agent platform of the organ transplant
management use case used as an artifact in the paper analysis, along with the design and imple-
mentation of the translation of events, regulations and protocols to provenance assertions and
productions systems. [This work is used as a part of the motivation in Section 4.1, and is the
basis of the architecture presented in Section 8.2.]

Lam, Joey S C; Vasconcelos, Wamberto; Guerin, Frank; Corsar, David; Chorley, Alison
H.; Norman, T J; Vazquez-Salceda, Javier; Panagiotidi, Sofia; Confalonieri, Roberto;
Gomez-Sebastia, Ignasi; Hidalgo, Soraya; Alvarez-Napagao, Sergio; Nieves, Juan
Carlos; Palau Roig, Manel; Ceccaroni, Luigi; Aldewereld, Huib; Dignum, Frank;
Penserini, Luigi; Padget, Julian; Vos, Marina de; Andreou, D; Cliffe, Owen;
Staikopoulos, Athanasios; Popescu, R; Clarke, S; Sergeant, P; Reed, C; Quillinan,
Thomas and Nieuwenhuis, K (2009). “ALIVE: A Framework for Flexible and Adap-
tive Service Coordination”. In: Agents for Educational Games and Simulations. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 236-239. ISBN: 978-3-642-10202-8. DOI:

. URL:

This article reports the main advancements made during the ALIVE project. My contribution
in this work was the participation on the normative and the organisational part of the meta-
model specification, along with the implementation of the event-management and monitoring
sub-systems. [This work is summarised in Sections 5.2, 6.1 and 6.2 and Chapter 7.]

Modgil, Sanjay; Oren, Nir; Faci, Noura; Meneguzzi, Felipe; Miles, Simon and Luck,
Michael (2014). “Monitoring compliance with E-contracts and norms”. English. In:
Artificial Intelligence and Law 23.2, pp. 161-196. DOI:

URL:

This paper presents the benefits of using functional programming models in the context of the
SUPERHUB project, which included the monitoring of high-level mobility policies. My contri-
bution in this work was the participation in both 1) the design and implementation of the event
modelling and disruptive event detection mechanism, and 2) the design of the mobility policy
modelling and monitoring algorithm. [This work is an adaptation in the smart cities context of
the contributions presented in Chapters 4, 5 and 6.]

Oliva-Felipe, Luis; Alvarez-Napagao, Sergio and Vazquez-Salceda, Javier (2012). “To-
wards a framework for the analysis of provenance-aware norms in complex net-
works ”. In: Proceedings of the First International Conference on Agreement Tech-
nologies, Volume 918. URL:

http://twiki.gridprovenance.org/pub/Provenance/ProjectPublications/EHCR-Prov-Privacy.pdf
http://twiki.gridprovenance.org/pub/Provenance/ProjectPublications/EHCR-Prov-Privacy.pdf
http://twiki.gridprovenance.org/pub/Provenance/ProjectPublications/EHCR-Prov-Privacy.pdf
http://twiki.gridprovenance.org/pub/Provenance/ProjectPublications/EHCR-Prov-Privacy.pdf
http://dx.doi.org/10.1007/978-3-642-10203-5_21
http://link.springer.com/10.1007/978-3-642-10203-5_21
http://link.springer.com/10.1007/978-3-642-10203-5_21
http://dx.doi.org/10.1007/s10506-015-9167-9
http://link.springer.com/10.1007/s10506-015-9167-9
http://scholar.google.com/scholar?q=related:0i7FcKi2f10J:scholar.google.com/&hl=en&num=20&as_sdt=0,5
http://scholar.google.com/scholar?q=related:0i7FcKi2f10J:scholar.google.com/&hl=en&num=20&as_sdt=0,5

Conference and Workshop Publications Related to the PhD Thesis 209

This paper presents a proposal for combining norms and provenance concepts in order to mon-
itor and analyse the impact of policies on tragedy-of-the-commons scenarios. My contribution
was the involvement on the state of the art and on the definition of the conceptual framework.
[This work is a position paper that is being developed as another PhD thesis and builds upon
contributions presented in Chapters 7 and 8.]

Panagiotidi, Sofia; Alvarez-Napagao, Sergio and Vazquez-Salceda, Javier (2013). “To-
wards the Norm-Aware Agent: Bridging the Gap Between Deontic Specifications
and Practical Mechanisms for Norm Monitoring and Norm-Aware Planning”. En-
glish. In: Coordination, Organizations, Institutions, and Norms in Agent Systems VIII. Ed.
by Tina Balke; Frank Dignum; M Birna van Riemsdijk and Amit K Chopra. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 346—363. ISBN: 978-3-642-37755-6. DOI:

. URL:

This paper presents a summary of some key contributions of this thesis: a solution for the
fundamental distinction between norms and norm instances, and a generalisation of the for-
malisation and the operational semantics of norms based on my previous work. My contribution
was multiple: the comparative state of the art w.r.t. compliance and verification, the explicit
definition of the two layers of norm lifecycles (norm/norm instances), the formalisation of
the operator and the monitoring-specific grounding of the operational semantics. The rest of
the paper was a product of joint, continuous work with the rest of the authors. [This work is
detailed in Chapters 6 and 7.]

Panagiotidi, Sofia; Vazquez-Salceda, Javier; Alvarez-Napagao, Sergio; Ortega-Martorell,
Sandra; Willmott, Steven; Confalonieri, Roberto and Storms, Patrick (2008). “Intel-
ligent Contracting Agents Language”. In: Volume 4: Proceedings of the AISB 2008
Symposium on Behaviour Regulation in Multi-agent Systems.Aberdeen, Scotland,
PP- 49-55. URL:

This paper reports the final version of the contracting language, ontological layers and commu-
nicative artifacts defined in the CONTRACT project. My contribution here focused on the state
of the art that led to the conceptual framework and in the definition and implementation of the
contracting language. Additionally, I also contributed to the communicative part by designing
some of the contract-based interaction protocols. [This work is the basis of Section §.1.]

Vazquez-Salceda, Javier and Alvarez-Napagao, Sergio (2009). “Using SOA Provenance
to Implement Norm Enforcement in e-Institutions”. English. In: Coordination, Orga-
nizations, Institutions and Norms in Agent Systems IV. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 188—203. ISBN: 978-3-642-00442-1. DOI:

. URL:

http://dx.doi.org/10.1007/978-3-319-07314-9_19
http://www.staff.science.uu.nl/~dignu101/coin2013/papers/20130207.pdf
http://www.staff.science.uu.nl/~dignu101/coin2013/papers/20130207.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=related:GdxvHmx7_OUJ:scholar.google.com/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=related:GdxvHmx7_OUJ:scholar.google.com/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=related:GdxvHmx7_OUJ:scholar.google.com/
http://dx.doi.org/10.1007/978-3-642-00443-8_13
http://dx.doi.org/10.1007/978-3-642-00443-8_13
http://www.springerlink.com/index/j37549365404x865.pdf

210 Selected publications

This paper introduces a provenance-based norm-enforcement mechanism as an adequate frame-
work for the monitoring of Service-Oriented Architectures. My contribution was the SOA
governance part of the state of the art, and the design and implementation of the norm-
enforcement architecture, including the formal translation between high-level concepts (events,
regulations, protocols) into provenance assertions and production systems. [This work is used as
a part of the motivation in Section 4.1, and is the basis of the architecture presented in Section
8.2.]

Vazquez-Salceda, Javier; Confalonieri, Roberto; Gémez-Sebastia, Ignasi; Storms,
Patrick; Kuijpers, SP Nick and Alvarez-Napagao, Sergio (2009). “Modelling
contractually-bounded interactions in the car insurance domain”. In: Proceedings of
the First International ICST Conference on Digital Business (DIGIBIZ 2009). London.

This paper presents a use case showcasing a middleware for integrating high-level specifica-
tions of contracts in Service-Oriented Architectures resulting from the CONTRACT project.
My contribution in this work consisted in the participation in the materialisation of real-
world concepts into elements of the CONTRACT language, as well as the creation of relevant
interaction protocols. [This work is an application of the contributions presented in Section 5.1.]

Vazquez-Salceda, Javier; Alvarez-Napagao, Sergio; Tejeda-Gémez, Arturo; Oliva-Felipe,
Luis; Garcia-Gasulla, Dario; Gémez-Sebastia, Ignasi and Codina, Victor (2014).
“Making Smart Cities Smarter - Using Artificial Intelligence Techniques for Smarter
Mobility”. In: SMARTGREENS 2014 Proceedings of the 3rd International Conference
on Smart Grids and Green IT Systems, pp. 5-13. DOI:

URL:

This paper presents some advances over the state of the art in smart-city management resulting
from the SUPERHUB project, which included the monitoring of high-level mobility policies.
My contribution in this work was the participation in both 1) the design and implementation of
the event modelling and disruptive event detection mechanism, and 2) the design of the mobility
policy modelling and monitoring algorithm. [This work is an adaptation in the smart cities
context of the contributions presented in Chapters 4, 5 and 6.]

OTHER CONFERENCE AND WORKSHOP PUBLICATIONS

Alvarez-Napagao, Sergio; Gémez-Sebastia, Ignasi; Vazquez-Salceda, Javier and Koch,
Fernando (2012). “cOncienS: Organizational Awareness in Real-Time Strategy
Games”. In: Frontiers in Artificial Intelligence and Applications Volume 220: Artificial
Intelligence Research and Development, pp. 69—-78. DOI:

. URL:

This paper presents a proposal for the use of organisational structures to model concepts common
to real-time strategy games, in order to provide social concepts and a higher level of adaptivity
in this game genre. My contribution was the conceptual framework of the work, the state of

http://dx.doi.org/10.5220/0004734600050013
http://dblp2.uni-trier.de/db/conf/smartgreens/smartgreens2014
http://dx.doi.org/10.3233/978-1-60750-643-0-69
http://dx.doi.org/10.3233/978-1-60750-643-0-69
http://ebooks.iospress.nl/publication/6176

Other Conference and Workshop Publications 211

the art, the architecture of the proposal and the implementation of the concept in a real game
(Warcraft IIT). [This work is a consequence and application of the contributions presented in
Chapters 5, 6 and 7 and is used as a use case in Chapter 9.]

Goémez-Sebastia, Ignasi; Alvarez-Napagao, Sergio and Vazquez-Salceda, Javier (2013).
“Towards Heuristic Based Mobility Policy Optimisation”. In: Frontiers in Artificial In-
telligence and Applications Volume 256: Artificial Intelligence Research and Develop-
ment, pp. 297-300. DOI: . URL:

This paper presents a framework for the monitoring and quantitative evaluation of high-level
mobility policies. My contribution consisted in the participation on the definition of the for-
malisation of the normative language used to implement the policies and the formalisation
of the evaluation algorithm. [This work is an adaptation in the smart cities context of the
contributions presented in Chapters s, 6 and 7.]

Goémez-Sebastia, Ignasi; Garcia-Gasulla, Dario; Alvarez-Napagao, Sergio; Vazquez-
Salceda, Javier and Cortés, Ulises (2012). “Towards an implementation of a so-
cial electronic reminder for pills”. In: VII Workshop on Agents Applied inHealth Care,
AHC@AAMAS2o012. Valencia, Spain. URL:

This paper presents the results of a practical use case in which a social reminder for pills was
integrated in an organisational framework for eldercare management. My contribution to this
work consisted in participating on the modelling and design of the organisational and norma-
tive structures and their grounding to the ALIVE meta-model. [This work is a consequence and
application of the work presented in Chapters 5, 6 and 7, and is used as a use case in Chapter

9.]

Moreno, Jonathan; Cortés, Ulises; Garcia-Gasulla, Dario; Gémez-Sebastia, Ignasi and
Alvarez-Napagao, Sergio (2013). “Applying COAALAS to SPiDer”. In: Frontiers in
Artificial Intelligence and Applications Volume 256: Artificial Intelligence Research and
Development, pp. 326-335. DOI: . URL:

This paper presents the use of an organisational framework for its integration with a real system

for eldercare treatment management. My involvement in this work focused on the definition of
the conceptual framework and the creation of the social, organisational and normative models,
and on the grounding to the ALIVE meta-model. [This work is a consequence and application
of the work presented in Chapters s, 6 and 7, and is used as a use case in Chapter 9.]

http://dx.doi.org/10.3233/978-1-61499-320-9-297
http://ebooks.iospress.nl/publication/35263
http://ebooks.iospress.nl/publication/35263
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.466.1786&rep=rep1&type=pdf#page=63
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.466.1786&rep=rep1&type=pdf#page=63
http://dx.doi.org/10.3233/978-1-61499-320-9-326
http://ebooks.iospress.nl/volumearticle/35269
http://ebooks.iospress.nl/volumearticle/35269

Miscellania
This PhD thesis was typeset using the LaTeX typesetting
system created by Leslie Lamport and the memoir class,
maintained by Peter R. Wilson and Lars Madsen, with
MacVim, the LaTeX-BoX plugin and latexmk as the main
tools. The body text is set at 11pt on a 33pc measure
with the following fonts: Athelas (serif), Iowan Old Style
(roman) and Inconsolata (typewriter). This document
was compiled at December 10, 2015 at 1:43 pm.

	Short contents
	Contents
	List of Figures
	List of Tables
	Extended Abstract
	Resumen
	Acknowledgments
	Introduction
	Research questions
	Methodology and contributions
	Structure of this document

	I State of the art
	1 Computation as interaction
	1.1 Agency and agents: distributed systems
	1.2 Agent orientation and Multi-agent systems
	1.2.1 Speech Act Theory
	1.2.2 Agent communication languages
	1.2.3 Agent communication protocols

	1.3 Service orientation
	1.4 Summary of this chapter

	2 Norms
	2.1 Types of norms
	2.2 Representing norms
	2.2.1 Deontic logic
	2.2.2 Production systems
	2.2.3 Service-level agreements

	2.3 Summary to this chapter

	3 Normative systems and governance
	3.1 Institutional theory applied
	3.2 Governance
	3.2.1 A definition of SOA governance
	3.2.2 Institutional governance based on agents
	3.2.3 Technologies for SOA governance

	3.3 Summary of this chapter

	II Practical reductions
	4 The challenge
	4.1 Solving the drawbacks of Service-Level Agreements
	4.2 Filling the gaps on normative systems
	4.3 Our proposal

	5 Towards a lightweight language for norms
	5.1 A language for contract representation
	5.1.1 Layers/Elements of the Contracting Language
	5.1.2 Contract representation
	5.1.3 Contracting Messages and Protocols
	5.1.4 A proposal for operational semantics
	5.1.5 Contributions and limitations of our language for contracts

	5.2 The ALIVE framework
	5.2.1 The ALIVE meta-model for norms
	5.2.2 From events to monitoring

	5.3 Conclusions

	6 Formalising regulative and constitutive norms
	6.1 Constructing social reality
	6.2 The different meanings of constitutive rules
	6.2.1 Representing counts-as rules
	6.2.2 Agent reasoning with Counts-as rules
	6.2.3 Handling of dynamic contexts

	6.3 Dealing with norm instances
	6.4 Formal Semantics
	6.4.1 Preliminary definitions
	6.4.2 Norm fulfillment and norm instance fulfillment
	6.4.3 Semantics of LTL
	6.4.4 Norm lifecycle
	6.4.5 From abstract norm to norm instances
	6.4.6 Limitations and implications from a logic perspective

	6.5 Conclusions

	7 Normative monitor
	7.1 Normative monitor
	7.2 Formal reduction to production systems
	7.2.1 Reduction

	7.3 Implementations
	7.3.1 Handling of constitutive contexts
	7.3.2 Monitoring of regulative norms

	7.4 Conclusions

	III Wrap-up
	8 From theory to practice
	8.1 Generalising our approach
	8.2 Advancing towards SOA governance
	8.2.1 Use case: organ transplant management
	8.2.2 A generic SOA governance architecture based on norms
	8.2.3 Mapping our architecture to SOA governance

	8.3 Conclusions

	9 Practical use cases
	9.1 Governance of situated agents in ambient intelligence
	9.1.1 Contribution: a social reminder for pills
	9.1.2 Modelling the system
	9.1.3 Norm examples
	9.1.4 Adequacy of the norm language to the use case

	9.2 Norm-constrained behaviour in fun games
	9.2.1 Related Work
	9.2.2 Proposal
	9.2.3 Case Studies
	9.2.4 Experimental results
	9.2.5 Adequacy of our operational formalisation to the use case

	9.3 Conclusions

	10 Conclusions
	10.1 Contributions
	10.2 Future lines of research

	IV Appendices
	A Proofs
	A.1 Achievement obligations
	A.1.1 Substitution for achievement obligations
	A.1.2 Proof of K
	A.1.3 Proof of Necessitation

	A.2 Maintenance obligations
	A.2.1 Substitution for maintenance obligations
	A.2.2 Proof of K
	A.2.3 Proof of D
	A.2.4 Proof of Necessitation

	A.3 Dyadic Deontic Logic
	A.3.1 Substitution for dyadic deontic logic
	A.3.2 Proof of K1
	A.3.3 Proof of K2
	A.3.4 Proof of K3
	A.3.5 Proof of K4

	Bibliography
	Selected publications
	Journal Papers
	Book Chapters
	Conference and Workshop Publications Related to the PhD Thesis
	Other Conference and Workshop Publications

