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Abstract 
 
 
 
Phosphorus P is mainly present in wastewater as inorganic phosphates, 

and is commonly removed through chemical co-precipitation using Al(III) 

and Fe(III) salts. However, precipitation is expensive and generates waste 

that must be disposed of specific chemical (e.g., the chemical precipitation 

of crystalline forms) or physico-chemical treatment processes (e.g., ion-

exchange, sorption, and membrane-based methods) could be integrated 

to recover P as pure mineral phases or supported on low-cost inorganic 

sorbents. 

The recovery of phosphate from diluted streams by integrating a pre-

concentration step using P-selective sorbents (e.g., metal-hydrated oxide 

sorbents or metal-hydrated oxide-impregnated ion-exchange resins) to 

provide concentrated phosphate-containing effluents (e.g., from 0.1 to 2 g 

P-PO4
3-/L) has been investigated; this process is typically implemented at 

alkaline pH because of the use of alkaline solutions in the regeneration 

step (e.g., 1% NaOH). 

In this study, recovering P as hydroxyapatite (Hap) from alkaline 

phosphate concentrates (0.25 to 1 g P-PO4
3-/L) using CaCl2 solutions in 

batch reactors was evaluated. When alkaline pH values (from 8 to 11.5) 

were maintained, the Hap-precipitation efficiency was improved. At pH 

11.5, a higher P-precipitation rate was observed, but the degree of 
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crystallinity was lower. Increasing the total initial phosphate concentration 

led to the formation of Hap powders with higher degrees of crystallinity 

and crystal diameters but lower mean particle sizes. 

Subsequently, the detrimental effects of the presence of Mg (II) in 

synthetic brines on Hap precipitation were also evaluated. Two synthetic 

brines with Mg/Ca molar ratios of 2.2 and 3.3 were continuously fed to 

reach a Ca/P molar ratio of ~1.67 for promoting Hap formation. For both 

brines, the inhibition of Hap precipitation and the formation of the 

amorphous mineral phases of Ca, Mg, and Ca/Mg phosphates were 

observed at pH >9.5. Mg(II) severely inhibited phosphate precipitation, 

allowing the formation of amorphous Ca phosphate from meta-stable 

clusters via Mg(II) incorporation into Ca phosphate. In the experiments at 

pH 8, the formation of stable nanometre-sized pre-nucleation clusters 

inhibited nucleation, even in supersaturated solutions. 

 

In contrast, phosphate P(V) recovery using low-cost reactive inorganic 

materials with relatively high efficiency in terms of equilibrium and 

kinetics has been also evaluated. The integration of powdered 

inorganic adsorbent fly ashes (FAs) and zeolitic materials for the 

selective removal of phosphate generated P-containing by-products 

with fertilising properties. Fly ash (FA) samples from two different coal 

power stations with different CaO(s) contents (Los Barrios (FA-LB)) 

and (Teruel (FA-TE)) were evaluated in terms of phosphate removal 

from aqueous solutions. Under the pH conditions (6 to 9) expected for 

wastewater treatment plant (WWTP) tertiary effluents, P(V) recovery 
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	 proceeds as a combination of CaO(s) dissolution and brushite 

(CaHPO4(s)) formation on the FA particles; this process avoids the 

formation of relatively insoluble Ca phosphates, such as Hap, with 

limited fertilising properties. Removal kinetics data were well described 

as diffusion-based process and the CaO(s) dissolution was discarded 

as the rate-controlling step. A powdered zeolitic material synthesised 

from FA (NaP1-NA) and its Ca-modified form (CaP1-NA) were also 

studied as sorbent materials for the recovery of phosphate from treated 

wastewater effluents. The sorption capacities of both zeolites at the 

expected pH values for wastewater effluents (7 to 9) were slightly 

dependent on pH. The stabilities of the loaded phosphate zeolite 

samples as fertilisers were evaluated by extraction experiments, thus 

measuring their potential availabilities in soil applications. 

Finally, the P(V)-removing performance of Ca-activated powdered zeolite 

(CaP1) was evaluated by integrating the sorption step and solid-phase 

recovery using a hybrid sorption-UF system with a hollow fibre module.  

 

Resumen 
 
 
El fósforo presente en las aguas residuales, mayoritariamente en formas 

inorgánicas, es eliminado a través de co-precipitación con sales de Al (III) 

y Fe (III) sales suponiendo un coste en reactivos y la imposibilidad de 

recuperarlo. Con objeto de desarrollar procesos de recuperación de P (V) 

para cumplir con los requisitos legislativos futuros se ha evaluado la 
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integración de los procesos químicos de precipitación en reactores 

agitados o sobre adsorbentes inorgánicos selectivos a aniones fosfato.  

Una primera alternativa evaluada ha sido la recuperación de fosfato en 

forma de hidroxiapatita (Hap) utilizando concentrados alcalinos (0.2 -2 g 

P-PO4
3-/L a pH 12)  obtenidos en procesos de desorción de adsorbentes y 

resinas de intercambio y utilizando disoluciones de Ca(II). La eficiencia del 

proceso de precipitación de Hap incrementa con el incremento de pH (de 

8 a 11.5). Siendo máxima a pH 11,5 pero con una pérdida de cristalinidad. 

El incremento de la concentración inicial de fosfato favorece la formación 

de Hap con un incremento del tamaño de los cristales y de la cristalinidad. 

Se evaluaron los efectos de la presencia de magnesio (II) en los 

concentrados de cloruro de calcio en la precipitación de Hap utilizando 

dos salmueras sintéticas con relaciones molares Mg/Ca de 2.2 y 3.3. La 

presencia de Mg (II) inhibe la precipitación de Hap favoreciendo la 

formación de fases de fosfato de calcio, fosfato de magnesio y fosfato de 

calcio y magnesio en general amorfas debido a incorporación de iones 

Mg(II) a valores de pH > 9,5. A valores de pH 8 la precipitación supuso, la 

formación de clusters estables de pre-nucleación de tamaño nanométrico 

que promueven la inhibición de la nucleación, incluso en disoluciones 

sobresaturadas. 

Una segunda vía de recuperación de fosfato se basó en el uso de 

adsorbentes inorgánicos reactivos ricos en Ca(II), como cenizas volantes 

y zeolitas sintetizadas a partir de cenizas volantes, para su valorización 

directa como fuentes de fertilización de liberación controlada. Se han 

evaluado dos muestras de cenizas volantes de plantas de combustión de 



   RESUMEN 

	 	 5

carbón que se caracterizan por diferentes contenidos de CaO (s). La 

recuperación de P(V) en las condiciones esperadas de pH, en efluentes 

de tratamiento secundarios de estaciones de depuración, tiene lugar a 

través de una disolución de CaO (s) y la formación de brushita 

(CaHPO4(s)) sobre la partículas de las cenizas volantes evitando la 

formación de fosfatos de calcio más insolubles como como Hap. El 

proceso de extracción de P(V) se describe por un proceso con una 

cinética controlada por difusión de los iones fosfato en la partícula de 

adsorbente y donde la reacción de disolución de CaO (s) no es la etapa 

de control de la velocidad de recuperación de P(V). En una segunda fase 

se evaluaron una zeolita sódica sintetizada a partir de cenizas volantes 

(NaP1-NA) y su forma cálcica (CaP1-NA) comprobándose que su 

capacidad de adsorción está influenciada por el pH y mostrando máximas 

capacidades de adsorción a pH 8. El proceso va acompañado por la 

adsorción inicial de los iones fosfato y la formación de precipitados de 

brushita como en el caso de las cenizas volantes. Los ensayos de 

disponibilidad de P(V) en las muestras de cenizas volantes y de zeolitas 

utilizando ensayos de especiación y fraccionamiento indicaron que 

podrían ser utilizadas como fertilizantes de liberación controlada de P(V). 

Por último, el rendimiento del proceso de adsorción de P(V) con las 

muestras de zeolitas activadas con Ca (CAP1) se evaluó mediante la 

integración de la etapa de sorción y la recuperación de fase zeolita 

mediante el uso de un sistema de híbrido de adsorción y separación por 

membranas de ultrafiltración usando módulos de fibra hueca.
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Glossary 
	
	

ACP  Amorphous calcium phosphate 

BR  Batch Reactors 

CEC  Cation Exchange Capacity 

CEEP  Centre Européen d’Etudes sur les 

Polyphosphates  

CFA  Coal Fly ash 

Cs  saturation concentration  

Css  suspended solid concentration 

CSD  Size Crystal Distribution 

CSTR  Continuous stirred tank reactors 

DCPD  Dicalcium phosphate dehydrate 

(brushite) 

De  Effective diffusion coefficient (m2·s-1)

EPA  Environmental Protection Agency 

FAO  Food and agriculture organization 

FA-LB Fly ash Los Barrios 

FA-TE  Fly ash Teruel 

FWHM Full-width at half-maximum 

g  gram 

Hap  Hydroxyapatite 

HPDM  Homogeneous Particle Diffusion 

Model 

IAP Ion Activity Product 

IE  Inhabitant Equivalent 

IUPAC International Union of Pure and 

Applied Chemistry 

J  Permeation flux (J (L.m-2.h-1) 

JCPDS Joint Committee en Powder 

Diffraction 

KF  Mass transfer coefficient (m s-1) 

Ks   Reaction constant based on 

surface (m s-1) 

Kli  rate constant (film diffusion) 

Kso   Solubility product 

qm  Maximum sorption capacity 

(mg/g) 

Lp           Water permeability (Lm2h-1/bar) 

MAP             Struvite  

MF  Microfiltration 

NF  Nanofiltration 

NOM Natural organic matter 

OCP  Octacalcium phosphate 

P  Phosphorous 

PAZ  Powdered Calcium Activated 

Zeolites 

P(V)   Phosphate 

PZC  Point of Zero Charge 

r  average particle radius, m 

Rm   Hydrodynamic resistance 

RO  Reverse Osmosis 

Rp  Removal efficiency  

R*t  Total resistance of the membrane 

(m–1) 

S Surface area (m2 /g)  
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SEM-EDX  Scanning Electron Microscopy 

coupled with Energy Dispersive X-ray 

SOC Synthetic organic chemical 

SI  Supersaturation index 

SPM  Shell progressive model 

τ            Crystallite size 

Tg           1000 million kg 

TMP             Transmembrane pressure (kPa) 

t  Time 

TCP    Tricalcium phosphate 

TOC           Total organic carbon 

UF  Ultrafiltration 

wt-w/w Percentage by Weight (%) 

WWC  World Water Council 

WWTP Waste Water Treatment Plant 

X Fractional attainment of 

equilibrium 

Xc             Fraction of crystalline phase  

μ             Solution viscosity (Pa·s) 

ρ    Theoretical density 
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Introduction and objectives 
 
 
 
Water stress and water scarcity are critical issues in many regions 

worldwide. More than 1.1 billion people currently live without access to 

potable water, and the availability of potable water has diminished by 37% 

in the last 30 years (AGUA, 2007). Additionally, the demand for water is 

expected to increase as a result of both increasing population and the 

uncontrolled expansion of industrial and agricultural activities (Meneses 

M., 2010). If no measures are taken, two thirds of the world’s population 

will likely suffer from water stress by 2025 (WWC. World Water Council, 

2000). Furthermore, the exploitation of underground aquifers in 

developing areas where the construction of wastewater treatment plants 

(WWTPs) is not possible urgently requires new solutions and sustainable 

water-treatment technologies. 

Phosphate pollution is an increasing problem because of the growth of 

industrial activities involving phosphate manipulation and discharges from 

domestic WWTPs. P is a macronutrient constituent of most biological 

tissues and is a basic material used in agriculture and the fertiliser, 

chemical, and metal-plating industries. However, it is also a major concern 

in environmental chemistry. Throughout recent decades, the wastewater 

treatment industry has identified the discharge of nutrients, including 
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phosphates and nitrates, into waterways as posing a threat to natural 

environments because of the serious effects of eutrophication. 

The removal of P has been widely studied, and currently, two effective 

and reliable methods have been established: chemical precipitation and 

biological removal (Morse, 1993). In most chemical treatment methods, P 

is removed from sewage by precipitation with a metal salt, i.e., Fe, Al and, 

especially, Ca salts (Donnert and Salecker, 1999; House, 1999). P 

removal through biological means has been developed during the last 

twenty years and is now beginning to compete with the more conventional 

physico-chemical precipitation approach, primarily for municipal 

wastewater and animal manure treatments. Both chemical and biological 

methods both allow P to be recycled as a sustainable product for use as 

raw materials in industrial or agricultural applications (Greaves et al., 

1999; Bradford-Hartke et al., 2012). 

As a result, the recovery of P from wastewater has become a prospective 

alternative solution for both water pollution and P depletion. Indeed, the 

valorisation of P wastes could be achieved by conversion into fertiliser by-

products with agricultural applications. Advanced technologies and 

materials science research are offering very reliable solutions able to 

compete with traditional methods because of their easy application and 

high efficiency. Two different phosphate-valorisation approaches are 

evaluated in this thesis: 

1) Ca(II) desalination brines from nanofiltration (NF) and reverse osmosis 

(RO) treatments can be used for hydroxyapatite (Hap) precipitation. The 

main drawback of this desalting technology is the disposal of the rejected 
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brine, which is generally drained back into the sea. For economic reasons, 

other methods, such as dilution with seawater, are not commonly applied 

because of their extra cost (Mickley et al. 2006). Reusing these brines can 

be promising in terms of reducing the resulting environmental impact; 

giving value to by-products, such as Ca phosphate (e.g., apatite), as raw 

materials for the fertiliser industry, and creating synergies between 

industries. 

2) The removal of phosphate from wastewaters has been linked to the 

need for their direct reuse and valorisation as fertiliser. Both of these 

needs can be satisfied by using a reactive material capable of achieving 

high phosphate-removal ratios in solution and being used as a slow-

release fertiliser in soil and agricultural applications (Desmidt et al., 2015). 

Two different Ca(II)-rich Ca sorbents were considered: a) coal fly ash 

(CFA) and b) zeolites synthesised from fly ash (FA) with microporous 

structures based on alumina silicate minerals with ion-exchange 

properties (Singer et al., 2005). This thesis evaluates FA and zeolites as 

potential sorbents for phosphate recovery from aqueous solution and as 

phosphate carriers for use in synthetic fertilisers. 

1. Objectives 
 
The main objective of this thesis is to assess the viability of using Ca(II)-

rich brines, solid wastes, and by-product wastes for phosphate removal 

from aqueous streams (e.g., industrial and domestic) as Ca phosphates. 

Depending on the chemical composition and mineralogy of the Ca 

phosphate by-products, these recovered materials could be used as raw 
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materials in the fertiliser industry or, potentially, directly applied as soil 

enhancers to remediate degraded soils or as slow-release fertilisers for 

agricultural applications. 

Thus, in addition to the main objective stated above, the following specific 

objectives were also pursued: 

 Evaluating the suitability of desalination brines and domestic and 

industrial effluents as sources of Ca and phosphate ions, respectively 

for producing Ca phosphates (e.g., Hap or Ca phosphates and 

brushite). 

 Understanding the influence of interfering ions (e.g., sulfate and Mg) 

on the precipitation and crystallisation of Ca phosphates (minerals 

phases precipitated and physico-chemical properties). 

 Evaluating combustion coal FAs (CFAs) with high CaO(s) contents as 

reactive sorbents for phosphate removal from aqueous solutions: 

characterising the phosphate-removal mechanisms, identifying the 

phosphate mineral forms obtained, and determining the equilibrium 

and kinetic sorption properties (sorption isotherms and sorption 

kinetic rates). 

 Activating and modifying synthetic zeolites (NaP1) produced from 

CFAs via hydrothermal processes to imbue them with phosphate ion-

sorption capacities after conversion to Ca(II) forms. 

 Evaluating powdered Ca-activated zeolites (Ca-P1) as reactive 

sorbents for phosphate removal from aqueous solutions: 

characterising the phosphate-removal mechanisms, identifying the 

phosphate mineral forms obtained, and determining the equilibrium 
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and kinetic sorption properties (sorption isotherms and sorption 

kinetic rates). 

 Identifying the optimal conditions for phosphate removal by FA and 

Ca-activated zeolites, evaluating the influence of interfering ions 

present in the solution, and quantifying the phosphate availability from 

the phosphate-containing by-products with regard to their applications 

as slow-release fertilisers. 

 Evaluating the integration of powdered activated zeolites as reactive 

sorbents for the removal of phosphate from aqueous solutions using a 

hybrid sorption-membrane separation in an ultrafiltration pilot plant 

(PAZ-UF): determining the hydraulic performance parameters and 

phosphate-removal performance.  

2. Overview of the thesis 
 
This thesis is organised in six chapters. In the first part, the motivation, 

research aims, and thesis outline are described.  

Chapter 1 presents the state-of-the-art P cycle, the different P-recovery 

methods used in wastewater treatment, and brief descriptions of the FA 

and zeolite structures and their phosphate sorbent-related properties.  

It also introduces the Ca-phosphate crystallisation/precipitation process 

and the particular case of the Hap system. Furthermore, an overview of 

the use of membranes in water treatment, particularly ultrafiltration (UF), is 

given. 

The main experimental results are presented in Chapters 2 to 6. 
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Chapter 2 describes a study of P recovery as Hap (Ca5(PO4)3OH(s)=Hap) 

from alkaline phosphate concentrates (0.25 to 1 g P-PO4
3-/L) using CaCl2 

(6 g /L) in a batch reactor.  

In Chapter 3, which builds on Chapter 2, a deep analysis of the 

detrimental effects of Mg(II) on P recovery as Hap from alkaline phosphate 

concentrates using synthetic desalinated industrial brines as the Ca 

source in a batch reactor is provided.  

The aims of Chapters 4 and 5 is to provide an understanding of phosphate 

removal using Ca-rich FA and a powdered zeolitic material synthesised 

from FA (NaP1-NA) and its Ca-modified form (CaP1-NA) as sorbent 

materials for the recovery of inorganic phosphates from treated 

wastewater effluents. Chapter 6 covers the performance of Ca-activated 

powdered zeolite (CaP1) in removing P(V) from aqueous solutions in a 

hybrid sorption-UF system with a hollow fibre module. Finally, the last part 

is dedicated to summarising the main conclusions of the thesis and 

presenting recommendations and suggestions for future work. 



	

35

	  
 
 
 
 
 
 
 

Chapter 1  

State of the art: Integration of separation 
processes for phosphate valorisation from 

secondary wastes 

 
 
 
 

 
‘‘Life can multiply until all the phosphorus has gone and then there is an 
inexorable halt which nothing can prevent. We may be able to substitute 
nuclear power for coal, and plastics for wood, and yeast for meat, and 
friendliness for isolation - but for phosphorus there is neither substitute 
nor replacement.” 
(Isaac Asimov, 1974) 
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1. P challenges: Environmental, recovery, and recycling concerns 

P is an element required for life for which there is no substitute. Human adults 

contain approximately 0.7 kg of P in their bodies, and approximately 85% 

occurs as Ca phosphate salts in the bones and teeth (Lehninger, 1988). P is 

also present in polynucleotide structures (DNA and RNA) and membrane lipids 

and plays an essential role in photosynthesis because it is contained in 

adenosine triphosphate (ATP), a key molecule involved in energy transport 

during the metabolic functions of living beings. For these reasons, P is 

incorporated in feed (approximately 1.7 g/day, according to the FAO annual 

report) (FAO, 2004), and its presence in the soil is a key requirement in 

intensive agriculture.  

Ninety-five per cent of the P used for fertilising purposes comes from phosphate 

rock deposits, which contain approximately 33% P2O5 on average (Vaccari, 

2011), as shown in Figure 1.1. However, this is a non-renewable source of P 

that requires between 10 and 15 million years to form. Based on the annual 

consumption rate in 2011 (19 million tons per year), it is estimated that current 

phosphate rock resources will become depleted in the coming century, and this 

depletion could be exacerbated by the growing crop demands linked to the 

increasing population, which could result in an increasing demand of between 

2.7 and 4.4% annually (CEEP, 2011).  

Sustainability is an important environmental concern that is increasingly 

incorporated in corporate strategies, governmental policies, and international 

agreements, such as the Rio Summit Agenda 21 (United Nations, 1993). P is an 

important element that makes major contributions to agricultural and industrial 

development. However, its release into surface waters via agricultural runoff 

and wastewaters has led to legislation, such as the European Union Urban 
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Wastewater Directive (Commission of the European Communities. 1991), 

designed to remove P from domestic and industrial wastewaters. 

 

Figure 1.1. P sources used for agriculture 1800‒2010 (Cordell et al., 2009). 

The development of P-removal technology offers the opportunity to recycle P 

and increase the sustainability of the P cycle. However, a number of 

technologies, both established and under development, can be used to 

remove P from wastewater and that may potentially be included in 

sustainability strategies. 

P-removal strategies began to be developed in the 1950s in response to 

issues with eutrophication and the need to reduce the levels of P entering 

surface waters. Removal was initially achieved by chemical precipitation, 

which remains the leading technology today. More recently, however, 

biological P removal has become firmly established, crystallisation technology 

has been commercialised, and technologies extending chemical precipitation 

to facilitate nutrient removal have progressed beyond the pilot stage. Other 

relevant technologies are at various stages of development or have been 

investigated (Morse et al., 1998). 
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1.1. P Cycle 

P is a life-essential, non-renewable element, and the biomass potential of the 

Earth is P limited (Smil, 2000; Filippelli, 2008). Because P is often in short 

supply for optimal plant and animal growth and development, farmers use P 

fertilisers and P additives. P also has many industrial applications, including in 

household detergents. Nearly all the P used in chemical fertilisers and feeds is 

derived from phosphate-rich rocks, which are located in a few places on Earth. 

Because Europe has no significant phosphate resources, it is highly dependent 

on imported phosphate ore (Ridder et al., 2012). The current worldwide P 

reserves are estimated at 67,000 Tg P (1 Tg = 1000 million kg), and the global 

mining production in 2013 was 220 Tg P (Survey., 2014). Approximately 75% of 

the known reserves are located in Morocco (Western Sahara), which is the 

main exporter of phosphate ore. China and the USA also have significant 

reserves, but they do not sell phosphate ore on the global market, thereby 

further limiting the supply available to other countries (Schoumans et al., 2015). 

In nature, P passes through several interconnected cycles (Figure 1.2). The 

inorganic P cycle includes erosion, transport to the oceans, sedimentation, 

tectonic up lift, and phosphate alteration. The P cycle time is several million 

years, i.e., in terms of human lifetimes, phosphate transported into the oceans 

can be considered as “lost” to agricultural use. In addition to the inorganic P 

cycle, two organic cycles describe P as part of the food chain. One of occurs on 

land (soil–plants–humans/animals–organic waste–soil), and the other occurs in 

water. The cycle times of these processes range from a few weeks to one year 

(Bennett, E. & Carpenter, 2002). 

These “natural” closed cycles are interrupted when the P compounds in animal 

and human excrements are not used in fertilisation. In this case, the 
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phosphate contained in wastewater is partly transported to the oceans via 

discharge systems and partly fixed in sewage sludge, which is deposited in 

landfill sites or incinerated; in the latter case, the P contained in the ash is 

deposited in landfill sites or subterranean storage. Similar processes are 

relevant for organic fertilisers (solid and liquid manure) from intensive stock-

rearing (Cornel and Schaum, 2009). 

As a result of modern human activities and associated industrialisation, the P 

cycle has been broken, and increasing quantities of P are discharged into 

natural water bodies from land. As illustrated in Figure 1.2, phosphate rock is 

mined and used in both agricultural applications (mainly as fertiliser) and 

industrial applications. Without P-recovery techniques, P-enriched waste is 

produced by sewage treatment. According to Cornel and Schaum (Cornel and 

Schaum, 2009), on average, 11% of the incoming P load is removed with the 

primary sludge during primary settlement in WWTPs. In biological treatment 

using activated sludge, 20-30% of the incoming P load is incorporated into the 

biomass and removed with the surplus sludge, even when no specific 

biological P-removal processes are used (Parsons and Smith, 2008). The 

disposal of P into natural water bodies has a major impact on the aquatic 

ecosystem. This phenomenon, which is known as eutrophication, leads to a 

sharp decline in aquatic biodiversity the loss of potable water resources and 

contributes to the formation of oceanic dead zones. 
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Figure 1.2. Simplified diagram of the global P cycle. The flow is presented in 

units of 1012 g P year-1 (E. Solomon et al., 2010) 

 

Therefore, phosphate discharges must be limited by increasingly stringent 

regulations to protect surface waters from eutrophication. Based on the 

permitted discharge concentrations of 1 mg.L-1
 P (10,000–100,000 inhabitant 

equivalent (IE)) or 2 mg.L-1
 P (> 100,000 IE) in Europe (Council Directive 

91/271/EEC), approximately 50% most of the incoming P load must also be 

removed (Desmidt et al., 2015). Even more stringent regulations are being 

implemented in the USA, reducing the discharge limits to 0.1 mg.L-1
 P (U.S. 

Environmental Protection Agency (EPA), 2007). 

 

1.2. Established P-removal and recovery technologies in the wastewater 

cycle 

Phosphate-recovery technologies developed for industrial or municipal 

wastewater treatment can be applied at various points in the treatment 

process. In Figure 1.3, various applications of potential P-recovery processes 
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are illustrated in a model WWTP. A–C indicate the potential locations of P 

recovery from the liquid phase, i.e., the WWTP’s effluent (A), the supernatant 

liquor from side-stream treatment (B), and the sludge liquor (C). As for all 

treatment processes, the P removed with the sewage sludge is “lost”, and 

thus, the theoretical recovery potential from the liquid phase in common 

activated sludge plants is limited to 50–60% (Cornel and Schaum, 2009). The 

numbers 1‒6 indicate the potential applications of P recovery from sewage 

sludge, i.e., primary (1), excess (2), and raw sludge (3); stabilised sludge 

before and after dewatering (4 and 5); and sewage sludge ash (6). As in 

WWTPs without P removal, 90–95% of the incoming P load is contained in the 

sewage sludge, and therefore, the theoretical recovery potential for this 

process is significantly higher than that of separation processes from the 

aqueous phase (Cornel and Schaum, 2009). 

 

Figure 1.3. Different streams (1‒6) in a WWTP suitable for the installation of 

P-recovery technologies (Cornel and Schaum, 2009). 
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Recent research has shown that P recovery is especially successful in 

combination with biological P removal in side streams (supernatant liquor from 

the anaerobic reactor) or process water during sludge treatment. P can be 

recovered from wastewater, sewage sludge, and sewage sludge ash, and a 

number of full-scale techniques are already operational. Currently, most 

techniques aim to recover phosphate from dewatering reject streams. 

These techniques recover P from the wastewater by feeding the P-rich 

wastewater into a mixed precipitation/crystallisation tank or in a fluidised state. 

Ca or Mg salts and seed crystals (when needed) are added to recover 

phosphate as Ca phosphate (brushite or Hap) or Mg ammonium phosphate 

(struvite). 

P can be also recovered from sewage sludge and sewage sludge ash by a wet 

chemical or a thermal method. Currently, one wet chemical method and two 

thermal techniques are applied in full-scale processes, and several others are 

under development (Lodder, and Meulenkamp, 2011). 

If sludge is incinerated in a mono-incineration plant (Figure 1.3), a high-P 

concentrate (P ash) can be produced from waste streams (Kabbe, 2013). The 

P content in municipal sludge ash ranges between 4 and 13% (w/w). However, 

because of the low plant availability of the nutrient and the heavy metal 

contents of the ash, further treatment is needed before the ash can be fully 

utilised as a P source. Because of the lack of ash-treatment facilities and 

interim storage capacity, most of the P in the ash is not recovered as easily 

soluble mineral P. The production of fertiliser from ash via a thermochemical 

method, such as in the AshDec Process (Outotec) (Adam and Krüger, 2013), 

involves treating the ash at approximately 1000ºC to remove heavy metals and 

increase the bio-availability of the P in the ash. This process produces a Mg-
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enriched dicalcium phosphate that can be marketed as chemical fertiliser. An 

alternative is wet chemical extraction, known as the EcoPhos Process, which 

was developed in cooperation with companies with experience in treating low-

quality phosphate ore. The EcoPhos process produces phosphates suitable 

for use in animal feed. 

The Mephrec process combines thermal valorisation and P recovery in a 

single step. This technology even offers the possibility of recovering precious 

metals in addition to P. The resulting P-rich slag is suitable for fertiliser 

production and is comparable to the well-known Thomas phosphate, a by-

product of steel production (Schoumans et al., 2015) 

 

2. Towards new solutions for P recovery and valorisation in the 

wastewater cycle 

It is commonly believed that precipitation/crystallisation processes can be 

used to recover P from the liquid phase as either Ca phosphates, which are 

similar to phosphate rocks, or as Mg ammonium phosphate hexahydrate 

(struvite), which is a slow-release fertiliser. 

 

2.1. Phosphate recovery by precipitating Ca phosphates  

Most Ca orthophosphates are sparingly soluble in water, and the Ca-to-

phosphate molar ratios (Ca/P) and solubilities are important parameters used 

to distinguish between the phases (Table 1.1). Generally, lower Ca/P ratios 

correlate with relatively acidic and soluble Ca phosphate phases. The 

crystallisation of many Ca phosphates involves the formation of metastable 

precursor phases that subsequently dissolve as the precipitation reactions 

proceed. Thus, complex intermediate phases may participate in the 
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crystallisation process (V. Dorozhkin, 2012). Studies of apatite formation are 

complex because of the possible formation of several Ca phosphate phases. 

The least soluble of these phases, Hap, is preferentially formed under neutral 

or basic conditions. In more acidic solutions, other phases, such as brushite 

(DCPD) and octacalcium phosphate (OCP), are often encountered. Even 

under ideal Hap-precipitation conditions, the precipitates are generally 

nonstoichiometric, suggesting the formation of Ca-deficient apatites. Both 

DCPD and OCP have been implicated as possible precursors for apatite 

formation, which may occur by the initial precipitation of DCPD and/or OCP, 

followed by transformation to a more apatitic phase (Amjad et al., 1984). 

Ca phosphates have been synthesised using many methods (Lagno et al., 

2012), including solid-state or glass ceramic synthesis (Pramanik et al., 2007), 

mechanochemical synthesis, precipitation in a heterogeneous system 

(microemulsion, emulsion liquid membrane system, and polyol-mediated 

synthesis) (Jarudilokkul et al., 2007), sol−gel synthesis, and aqueous 

precipitation (Rodríguez-Lorenzo and Vallet-Regí, 2000). Aqueous 

precipitation represents an attractive option because it is a green synthesis 

route (Demopoulos, 2009) that is better suited for environment-related 

applications. For the aqueous precipitation of Hap, a variety of procedures and 

starting salts have been used as sources of phosphates and Ca ions. 

Paschalis et al. (Paschalis et al., 1994) precipitated nanocrystalline Hap by 

mixing (NH4)2HPO4 and Ca(NO3)2 solutions and using an NH3 solution to 

adjust the pH to 10 for 5 h. Similarly, nanocrystalline Hap was synthesised by 

Mobasherpour et al. (Mobasherpour et al., 2007) using the same reagents at 

higher concentrations and pH 11. Recently, Hap was precipitated by Gomes et 

al. (Gomes et al., 2008) by the reaction of Ca(OH)2 and H3PO4 at different 
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temperatures and pH values, which were controlled with NH3. Rodriguez-

Lorenzo and Vallet-Regi (2000) precipitated apatites with different 

stoichiometries and morphologies using Ca(NO3)2 and (NH4)2HPO4 using 

different temperatures, reaction times, and pH values. 

 

Table 1.1. Ca/P Molar Ratios, Chemical Formulas, and Solubilities of Some 

Ca Orthophosphate Minerals (Wang and Nancollas, 2008) 

Ca/P 

molar 

ratio 

Compound formula  -log(Kso) 

1.0 Brushite (DCPD) CaHPO4·2H2O 6.59 

1.0 Monetite (DCPA) CaHPO4 6.90 

1.33 Octacalcium phosphate (OCP) Ca8(HPO4)2(PO4)4 5H2O 96.6 

1.2- 2.2 Amorphous calcium phosphate 

(ACP) 

CaxHy(PO4)z nH2O, 

 n =3-4.5; 15-20% H2O 

ND 

1.5 α-tricalcium phosphate (α-TCP) α-Ca3(PO4)2 25.5 

1.5 β-tricalcium phosphate (β-TCP) β-Ca3(PO4)2 28.9 

1.67 Hydroxyapatite (Hap) Ca10(PO4)6(OH)2 116.8 

1.67 Hluorapatite (FAP) Ca10(PO4)6F2 120.0 

 

Ca phosphate precipitation is very complex, involving different metastable 

regions and depending on Ca and phosphate ion concentrations, 

supersaturation, ionic strength, temperature, ion type, pH, and reaction time 

for solid–solid transformation (Montastruc et al., 2003). Different Ca phosphate 

phases form in different pH regions. For example, dicalcium phosphate 

dihydrate (brushite) is kinetically favoured when the precipitation pH is 

maintained below 6.0 (Lagno and Demopoulos, 2005). In contrast, the 

formation of octacalcium phosphate, Ca8(HPO4)2(PO4)4·5H2O, is favoured 

when precipitation occurs at solution pH values between 6.0 and 7.0, whereas 

when the pH exceeds 7.0, Hap is the expected final phase (Graham and 
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Brown, 1996). The boundaries between each phase at pH 6.0 and 7.0, which 

are shown in Figure 1.4, are only approximate, and they help to define the 

precipitation strategy selected for to synthesise dicalcium phosphate dihydrate 

and Hap (Lagno et al., 2012). 

 

 

Figure 1.4. Precipitation diagram for the synthesis of Ca phosphate phases at 

22ºC: CaHPO4.2H2O (DCPD), Ca8(HPO4)2(PO4)4.5H2O (OCP), and Ca10 

(PO4)6(OH)2 (Hap) (Lagno et al., 2012). 

 

However, in practice, the kinetics of Ca phosphate precipitation play a more 

important role than thermodynamic equilibrium considerations (Desmidt et al., 

2015). In most cases, the spontaneous precipitation of Ca phosphate does not 

occur at all or only under very high oversaturation, and the effects of some 

inhibitors account for this phenomenon. Carbonate and ammonium are the 

most important species in wastewater that contribute to its buffering capacity 

at alkaline pH values (Vanotti and Szogi, 2009). 
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2.2. Phosphate recovery as Hap 

The latest trends in P removal are focused on recovering phosphates as 

marketable fertilisers, such as Hap or struvite (MAP), via controlled 

crystallisation in specific reactors. Hap formation has been pursued and widely 

developed in crystallisation reactors, such as the DHV Crystalactor® 

(Montastruc et al., 2003), where Ca is added as Ca(OH)2. Crystallisation is a 

thermodynamic-dependent phenomenon, in which stable nucleus formation 

occurs first, followed by crystal growth. In the processes mentioned above, 

different chemicals are needed to modify the inlet ion concentrations and/or 

the pH. However, in practice, crystallisation occurs during the final stage of a 

series of reactions in which a number of relatively easily soluble Ca 

phosphates (precursors) are produced; according to Henze (1997), these 

species determine the phosphate solubility. Thus, the P-removal yields can 

decrease if other apatites are formed, as when the OH- ion is substituted by F- 

or when PO4
3- is substituted by CO3

- and Ca2+ is replaced by Na+, Fe3+, Al3+, 

Mg2+, or Zn2+. Apatite formation is not the only process that can disrupt the 

production of the desired crystalline Hap; more amorphous and soluble 

compounds can also arise: CaHPO4, Ca4H(PO4)3, and Ca3(PO4)2. These 

compounds determine the phosphate solubility if high concentration of Mg2+, 

poly-phosphate, or HCO3
- are present in the wastewater. 

Several disadvantages are associated with the implementation of precipitation 

in such a system, especially in terms of the reproducibility and product quality. 

These systems are characterised by heterogeneous spatial and temporal 

distributions of process parameters, such as temperature and concentration, 

resulting in a variable supersaturation environment (Sultana, 2010) and 

thereby affecting the final product properties. Indeed, mixing problems have 
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been encountered in stirred batch reactors. Macromixing is achieved by 

intensive stirring, but micromixing is not controlled at all. Additionally, the 

products of batch precipitation often have wide size distributions, which result 

from inhomogeneous mixing, and broad residence time distributions (Jones et 

al., 2005).  

Because of the limitations of stirred batch reactors, various systems have 

been used to achieve better control over reaction conditions. Among them, 

semi-batch configurations have been used to overcome homogeneity 

problems in the supersaturation distribution in the vessel. In this configuration, 

the precipitant is added in a controlled manner to ensure constant 

supersaturation (Demopoulos, 2009). Continuous stirred tank reactors 

(CSTRs) have also been used (J. Gomez-Morales, 2001) because they offer 

stable supersaturation because of their steady-state operation. Such systems 

usually produce fine particles with a wide size distribution. Recently, micro-

devices have been applied for the continuous-flow precipitation of Hap to solve 

the mixing problems associated with stirred tank batch reactors. Various 

configurations have been used, ranging from a simple tubular reactor, in which 

a mixing part that is generally T-shaped is sometimes included, to more 

complex systems (Yang et al., 2010) (Kandori et al., 2011). Tubular micro-

reactors are very interesting because of their relative easy use; however, 

problems with channel clogging limit their application at the industrial level 

(Jongen et al., 2003). 

 

2.3. Phosphate recovery by reactive sorbents 

Precipitation and biological treatment techniques are sensitive to seasonal and 

daily variations in temperature and changes in feed concentrations and have 
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limited capacities for achieving low phosphate concentrations. In contrast, 

sorption methods could overcome these problems (Choy et al., 2004). The 

efficacy of sorption technology depends on the choice of an appropriate 

sorbent. The screening strategies commonly used to choose sorbents are 

selectivity, capacity, reuse, local availability, compatibility, kinetics, and cost. 

Given the fact that no single sorbent can meet all the requirements, substantial 

attention been devoted to the development of several potential sorbents 

(Oguz, 2004) that may be suitable in local conditions. 

The first attempt to sequentially remove ammonium and phosphate using 

cationic and anionic resins, respectively, was the RIM-NUT® process (Liberti 

et al., 1986). The main drawbacks of this process were the lack of phosphate 

ion-selective sorbents; the resulting competition with NO3
-, HCO3

-, and SO4
2- 

ions; and the long resin-regeneration times with NaCl. Recently, the use of 

weak-base anion exchangers impregnated with hydrated ferric oxides (HFOs), 

originally developed as a possible way to reduce toxic anions, such as arsenic, 

in drinking water applications, has been proposed for the removal of 

phosphate from wastewaters. However, various factors affect the phosphate 

removal, including the phosphate concentration, dissolved organic matter, 

water hardness, and presence of competitive ions and suspended solids 

(Sarkar et al., 2011; Awual et al., 2011). Considerable attention has been paid 

to developing effective and low-cost adsorbents from natural materials for 

phosphate adsorption with agricultural reuse potential (Jellali et al., 2010; X. 

Xu et al., 2010). In particular, natural and synthetic Ca compounds have been 

recently identified as potential materials for P removal (Yin et al., 2011). 
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2.3.1. Phosphate recovery by sorption-precipitation on reactive 

sorbents: Application of Ca-rich FA 

Sorption and precipitation processes can be combined to improve total 

phosphate removal efficiency and recover P in a valuable mineral form. It is 

thus possible to take advantage of biological processes to concentrate the 

phosphate stream (enhance the ion supersaturation) and facilitate precipitation 

in a relatively soluble form (Mg or Ca phosphate instead of metallic 

phosphates). 

FA is the most abundant by-product generated during the combustion of coal 

in power plants. The International Union of Pure and Applied Chemistry 

(IUPAC) defines FA as particles of ash blown into the combustion gases 

resulting from fuel combustion. Worldwide, coal ash generation exceeds 600 

million tons of FA, and currently, a substantial portion of this material is 

deposited in landfills or dumped in the environment and is a cause for 

environmental concern. The utilisation rate varies between 3 and 57%, with 

the world average being 16% (Blissett and Rowson, 2012). The use of FA is 

attracting research and industrial attention regarding reducing its 

environmental impact and possibly generating a profit. The potential benefits 

and problems associated with the direct use of FA on land intended for 

agriculture to enhance the physical and chemical properties of the soil has 

also been studied in depth (Ahmaruzzaman, 2010).  

The main components of coal FA (CFA) are SiO2, Al2O3, Fe2O3, CaO, MgO, 

K2O, Na2O, and TiO2, with varying amounts of carbon. However, the 

composition of CFAs varies significantly, and the chemistry of these materials 

is determined by the type of coal burned (Blissett and Rowson, 2012). 

According to the American Society for Testing Materials (ASTM) (2005), ash 
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containing more than 70 wt% SiO2 + Al2O3 + Fe2O3 and being low in lime is 

defined as Class F, while those with SiO2 + Al2O3 +Fe2O3 contents between 50 

and 70 wt% and that are high in lime are defined as Class C. Briefly, high-Ca 

Class C FAs are normally produced by burning low-rank coals (lignites or sub-

bituminous coals) and have cementitious properties (self-hardening after 

reacting with water). In contrast, low-Ca Class F FAs are commonly produced 

by burning higher-rank coals (bituminous coals or anthracites) that are 

pozzolanic in nature (hardening after reacting with Ca(OH)2 and water). The 

main differences between Class F and Class C FAs are the Ca, silica, 

alumina, and Fe contents in the ash. In Class F FAs, total Ca typically ranges 

from 1 to 12% and mostly occurs as Ca hydroxide, Ca sulfate, and glassy 

components combined with silica and alumina. In contrast, Class C FAs have 

reported Ca oxide contents as high as 30–40%. Recently, Vassilev and 

Vassileva (2007) presented a new classification system based on an analysis 

of 41 European CFAs. This system groups the main bulk oxides together to 

create a four-tier classification to facilitate assessing a particular CFA for use 

in applications other than cement. 

Kuziemska first reported the use of a water extract of brown CFA as a 

coagulant for phosphate precipitation. (Kuziemska, 1980). CFA has attracted 

substantial attention as a potential material for phosphate removal because it 

is easily available and cost effective (Tsitouridou and Georgiou, 1988; Gray 

and Schwab, 1993; Ahmaruzzaman, 2010). Ugurlu and Salman (1998) 

reported a Turkish FA as an efficient adsorbent for phosphate because of its 

high concentration of calcite (34%), and the influences of temperature, 

phosphate concentration, and FA dosage on phosphate removal were 

investigated.  
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The presence of Al, Fe, Ca and Mg oxides imbues FA with suitable properties 

for phosphate removal by complexation reactions with the metal oxides or the 

precipitation of Ca/Mg-phosphates (Grubb et al., 2000; Pengthamkeerati et al., 

2008). Cheung and Venkitachalam (Cheung and Venkitachalam, 2000) 

associated the removal of phosphate by FA with high- and low-Ca contents by 

Ca phosphate precipitation and by Ca phosphate precipitation and ion 

exchange with Fe oxides, respectively. Johansson and Gustafsson 

(Johansson and Gustafsson, 2000) proposed the formation of amorphous Ca 

phosphate and/or octacalcium phosphate as the major P-removal mechanism 

and suggested the direct formation of Hap as the predominant phosphate-

removal mechanism. Although it is generally accepted that the phosphate 

removal by FA involves adsorption and/or precipitation mechanisms, the 

interaction between phosphate and Ca incompletely described (Lu et al., 

2009).  

Additionally, only limited effort has been dedicated to obtaining a solution for 

the exhausted ash, and recently, the possibility of using these materials to 

improving the soil quality of areas degraded by mining or civil construction 

infrastructure and for forestry applications has been proposed (Yao et al., 

2015). However, because of the low solubility and availability of the typically 

precipitated Ca phosphate mineral (Ca5(PO4)3OH(s), logKso=116.8) 

(Parvinzadeh Gashti et al., 2013), efforts have been made to prepare relatively 

soluble phosphate-containing minerals, such as brushite (CaHPO4.2H2O, 

logKso=6.59) (Dorozhkin, 2012)), by promoting the growth of mineral forms on 

the surface of Ca-containing sorbents with suitable properties for slow-release 

fertilisers. These sorbents include Ca silicates, such as wollasonite (Liu and 

Ding, 2002); Ca-Al layered double hydroxide (Watanabe et al., 2010; Zhou et 
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al., 2012); natural zeolites (Guaya et al., 2015); and FA (K. Xu et al., 2010). 

However, utilising powdered inorganic adsorbents in water treatment for 

selective P removal and subsequent use as slow-release fertilisers remains 

under development, and the equilibrium and kinetic performances remain to 

be characterised. 

 

2.3.2. Phosphate recovery by sorption-precipitation on reactive 

sorbents: Application of zeolites 

Zeolites are crystalline Al–silicates with group I or II elements as counter ions. 

Their structure consists of a framework of [SiO4]
4- and [AlO4]

5- tetrahedra 

linked to each other at their corners by shared oxygens atoms (Scott et al., 

2003). These tetrahedra make up a three-dimensional network, with abundant 

voids and open spaces. These voids create the various unique properties of 

zeolites, such as the adsorption of molecules in their large internal channels. 

The substitution of Si(IV) by Al(III) in the tetrahedra gives the structures a 

negative charge, resulting in high cation-exchange capacities when the open 

spaces can be accessed by cations. A representative empirical formula of an 

oxide form is provided in Eq. 1 (Jacobs et al., 2001):  

ଶܯ ௡⁄ ܱ ൉ ଶܱଷ݈ܣ ൉ ଶܱ݅ܵݕ ൉  ଶܱ            (1)ܪݓ

where M represents the counter ions, n is the counter ion valence, and y 

indicates the degree of hydration and is generally equal to or greater than 2 

because the AlO4 tetrahedra are joined only to SiO4 tetrahedra. The 

framework contains channels and interconnected voids, which are occupied by 

cations and water molecules. The cations are exchangeable and typically from 

group I or II.  
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Zeolites exhibit micro-porosity with uniform pore dimensions, ion-exchange 

properties, the ability to exhibit acidity, high thermal stability, and reversible 

hydration ability. The pores, which generally range between 3 and 10 Å in 

diameter, can allow certain molecules to pass through and reject others. This 

gives zeolites selective adsorption properties (Pfenninger, 1999). The 

chemical composition of a zeolite plays an important role in determining its 

properties. The valence of the T-atoms will affect the charge of the framework; 

for example, a pure silicate framework has a neutral charge, whereas an 

aluminosilicate framework will have a negative charge. Similarly, the 

composition affects the zeolite’s affinity for different molecules by controlling 

the material’s hydrophobicity and hydrophilicity. The guest species inside the 

channels of the zeolite are also important. In the case of a charged framework, 

these species are needed to balance the charge. The size of the cations that 

can be introduced into the zeolite structure depends on the size of the 

channels (Byrappa, K. & Yoshimura, 2001).  

The synthesis of zeolites is attracting attention as an effective use of wastes, 

such as CFA, possibly because its composition is similar to that of natural 

precursors, such as volcanic material. Zeolite synthesis conventionally 

involves hydrothermal crystallisation under alkaline conditions (Querol et al., 

2002). However, mullite and quartz in ash are inert and difficult to dissolve. 

The mechanism of zeolite synthesis consists of an alkali hydrothermal reaction 

involving three steps (see Figure 1.5): i) the dissolution of the alumina (Al2O3) 

and silica (SiO2) precursors from the FA (especially from the glass phase) in a 

strongly alkaline solution, ii) the deposition of the initial aluminosilicate gel, and 

iii) zeolite crystallisation (Elliot and Zhang, 2005; Rees et al., 2007): 
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Figure 1.5. Reaction mechanism for the batch hydrothermal conversion of FA 

to zeolite (Elliot and Zhang, 2005). 

 

In addition to the development of synthesis methods, intensive research has 

been performed to investigate the potential application of zeolites synthesised 

from FA. This material’s high Al(III)/Si(IV) ratio provides a high CEC of up to 5 

meq g-1 in some of zeolites, such as NaP1, 4A, X, KM, F, chabazite, 

herschelite, and faujasite. As a result, these zeolites have great potential for 

selective wastewater treatment (Ahmaruzzaman, 2010).  

The removal of phosphate from wastewaters has been linked to the need for 

their reuse and valorisation, which can be achieved using a reactive material 

capable of achieving high phosphate-removal ratios in solution and that can be 

used as a slow-release fertiliser in soil and agricultural applications (Desmidt 

et al., 2015). Such a process could be developed depending on the availability 

of low-cost sorbents (Boyer et al., 2011). Querol et al. (2007) demonstrated 

the economic and technical viability of synthesising NaP1-NA under mild 

hydrothermal conditions without using templates. NaP1-NA was evaluated for 

the removal of toxic metals from acid mine drainage and brines (Moreno et al., 

2001) because of its high porosity, surface area, and CEC and its unusual 
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framework flexibility (Cama et al., 2005). NaP1-NA also has a high capacity to 

adsorb ammonium and K and has been evaluated as a slow-release fertiliser; 

however, the sorption of oxyanions as phosphate is not facilitated by the 

zeolite structure (Watanabe et al., 2014). The use of mixtures of synthetic 

apatites and natural zeolites as solid media for growing plants and as a 

fertiliser has been postulated (Golden and Ming, 1999; Liu and Lal, 2014). 

However, because of the low solubility and availability of P from Hap in soils, 

efforts have been devoted to preparing relatively soluble Haps 

(Ca10(PO4)6(OH)2, Hap) or brushite (CaHPO4.2H2O) by growing crystals on the 

surface of Ca-containing minerals. These materials include Ca silicates, such 

as wollasonite (Liu and Ding, 2002); Ca-Al layered double hydroxide; and Hap 

(Watanabe et al., 2010; Zhou et al., 2012). However, little work has been done 

to prepare reactive materials to a) efficiently remove phosphate from 

wastewater effluents in the form of relatively soluble phosphates (e.g., brushite 

(logKso=6.59)) (Dorozhkin, 2012) instead of Hap (Ca5(PO4)3OH(s), 

logKso=116.8) (Parvinzadeh Gashti et al., 2013) and b) achieve suitable 

properties for use as a synthetic slow-release fertiliser. 

 

2.4. Phosphate recovery from aqueous solution by process integration: 

Sorption and membrane filtration 

Membranes act as selective barriers, allowing some constituents (e.g., fluids) 

to pass through the membrane while i) blocking the passage of other 

constituents, as in solid separation, or ii) rejecting the dissolved species to be 

removed from the fluid. The movement of material across a membrane 

requires a driving force (i.e., a potential difference across the membrane); in 

the membrane processes commonly used in water treatment applications, 
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pressure is used as the driving force. Membrane technology has evolved 

significantly in the last decades, becoming increasingly applied in water 

treatment plants (Pressdee et al., 2006). This is particularly the case for low-

pressure membrane systems (microfiltration (MF) and UF). 

Membrane processes are being evaluated for phosphate recovery using NF 

(NF90, NF90, and HL) with synthetic and real wastewaters, and removal ratios 

ranging from 70 to 90% have been reported (Mohammad et al., 2007). The P-

removal efficiency has been correlated with membrane properties, such as 

membrane charge and membrane pore radius, and membranes with smaller 

network pore sizes are more effective at rejecting ionic species. Membranes 

with larger pore sizes (such as DK5 and MPF34) resulted in lower P removal 

ratios at high concentrations of P than NF270 and NF200 membranes with 

smaller pore sizes. A highly charged membrane is better able to exclude 

coexisting ions from the membrane surface (e.g., phosphate ions), and 

decreasing the pH of the feed solutions improves the rejection ability (e.g., pH 

2 for MPF34 membranes and pH 4 for DK5, DL, and NF270) (Niewersch, 

2008). 

Applications of pressure-driven membrane processes, such as MF and UF, 

have expanded in recent years as an alternative method of developing hybrid 

sorption/filtration systems. This expansion is attributable to the fact that UF 

has been shown to be an effective physical barrier to particles and colloids 

that are larger than the UF membrane pores and, hence, are retained by size-

exclusion mechanisms, among others. Furthermore, UF provides additionally 

advantages over conventional treatments, including its small footprint, low 

energy consumption, limited chemical dosing, ability to cope with wide 

fluctuations in feed quality and deliver a permeate of relatively constant 
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quality, and relatively low scale-up risks (Lee et al., 2008). The water recovery 

in MF/UF systems is typically 85 to 97% and is a function of the backwash 

frequency and the backwash-disposal method. That is, more frequent 

backwashing typically results in lower recoveries. Membrane backwashing is 

accomplished using air, water, or a combination. Ideally, the backwash 

process restores the trans-membrane pressure (TMP) to the same value after 

each backwash. 

Limited work has been performed regarding the engineering aspects of 

validating the integration of powdered sorbents, such as zeolites, in 

continuous sorption and stream-processing using membrane filtration (e.g., 

MF, UF, or NF). The addition of a powdered adsorbent to the membrane 

filtration influent is a simple and cost-effective way to remove compounds 

[e.g., natural organic matter (NOM) and synthetic organic chemicals (SOCs)] 

that cannot be removed by the membrane itself (Matsui et al, 2001). The 

addition of powdered activated carbon (PAC) was proposed two decades ago 

and is now an accepted hybrid use of adsorbent in an UF membrane system 

(Anselme C et al., 1997) (Chang et al., 1998). The development of hybrid 

process, such as PAC/UF, combines the adsorption capacity of PAC with the 

ability of the UF membrane to retain microorganisms and particles (including 

PAC particles), thereby facilitating the removal of low-molar mass compounds 

that cannot be removed by the UF membrane itself (large pore size). PAC/UF 

is a low-pressure (<1 bar) process, and thus, it has a relatively low operating 

cost (Campinas and Rosa, 2010). By taking advantage of the benefits afforded 

by this integration, this thesis will evaluate the integration of powdered Ca-

activated zeolites (PAZ) with hollow fibre UF membranes for phosphate 

removal. 
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Using suspended adsorbent particles (e.g., PAZ) to recover target species 

(e.g., phosphate) from aqueous solution can result in rapid fouling of the 

membrane, decreased flux, and increased TMP. During the filtration phase, 

the resistance against water transport through the membrane will increase 

because of membrane fouling. Fouling that can be removed using 

backwashing alone is defined as reversible fouling. Fouling that is strongly 

adsorbed on the membrane surface or embedded within the porous structure 

of the membrane cannot be removed by backwashing and is defined as 

irreversible fouling. When the amount of irreversible fouling becomes too 

high or after a predetermined number of filtration-backwash cycles, the 

membrane must be chemically cleaned (as described schematically in Figure 

1.6). All filtration-backwash cycles and the subsequent chemical cleaning 

constitute a single chemical cleaning cycle. Ideally, chemical cleaning 

removes all irreversible fouling from the membrane. 

 

Figure 1.6. Schematic evolution of filtration cycles in a hybrid sorption-filtration 

system: reversible fouling and irreversible fouling are defined based on the 
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evolution of filtration resistance with the volume of filtered water (Wilhelmus 

Johannes Cornelis van de Ven, 2008) . 

 

Yildiz (2004) investigated the removal of phosphate by FA in a crossflow MF 

system and demonstrated that the separation of phosphate-loaded FA by 

crossflow membrane filtration was better than classical batch separation in 

terms of efficiency. However, when the phosphate concentration in the feed 

solution increased, phosphate rejection decreased because of decreased 

reactor pH and insufficient Ca ion concentration. Recently, an adsorption-UF 

process for the recovery of phosphate-loaded sorbents was investigated by 

Zelmanov and Semiat, (2014). Both the Fe oxide/hydroxide (Fe3+)-based 

agglomerated adsorbent and the pH strongly influenced the phosphate-

removal efficiency. A residual phosphate concentration of less than 0.1 mg/L 

as P, which is acceptable for wastewater pre-treatment, and at least 95–98% 

phosphate-regeneration efficiency were achieved with the proposed 

adsorbent. The phosphate-adsorption capacity of the hybrid system at a 

residual phosphate concentration of 0.1 mg/L exceeded previously reported 

values by more than one order of magnitude (Zelmanov and Semiat, 2011). 

However, limited work has been devoted to the engineering aspects of 

validating the integration of powdered sorbents, such as zeolites, in 

continuous sorption and stream processing using membrane filtration (e.g., 

MF, UF, or NF). One challenge faced by this study is the investigation of 

phosphate removal in a hybrid system using powdered activated zeolite (PAZ) 

in an agitated reactor followed by an UF system. The effects of process 

parameters, such as the initial phosphate concentration, pH, and PAZ dose 

effect, were evaluated.  
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	 In this chapter, phosphorous recovery as hydroxyapatite 

(Ca5(PO4)3OH(s)=Hap) from alkaline phosphate concentrates (0.25 to 1 g P-

PO4
3-/L) using calcium chloride (6 g /L) in a batch reactor was evaluated. 

Ca(II) solutions was continuously fed (0.1-0.3 mL/min) up to reaching a Ca/P 

ratio of ~1.67 (5/3) to promote Hap formation. Hap powders were 

characterized by structural form (using X-ray diffraction (XRD), laser light 

scattering (LS) and Fourier transform infrared spectroscopy (FTIR)); textural 

form (using Field Emission Scanning Electron Microscopy with Energy 

Dispersive System (FE-SEM/EDX) and Brunauer-Emmett-Teller (BET)) and 

thermally (using Thermogravimetric Analysis (TGA)/Differential Thermal 

Analysis (DTA)). When pH was kept constant in alkaline values (from 8 to 

11.5), Hap precipitation efficiency was improved. At pH 11.5, higher 

phosphorous precipitation rate was registered compared to that obtained for 

pH 8 and 10, but lower degree of crystallinity was observed in the Hap 

powders. The increase of the total initial phosphate concentration lead to the 

formation of Hap powders with higher degree of crystallinity and crystal 

diameter, but also lower mean particle size. As Ca(II) dosing rate increased 

Hap precipitation rate was higher, and also the mean size and degree of 

crystallinity of the prepared particles increased. 

 

1. Introduction 

Phosphorus (P) management has been recently highlighted by the United 

Nations Environment Program as one of the main emerging problems to be 

faced in the next decades. The use of phosphorous needs to become more 

efficient and its recycling more widespread, since the demand for P is 

increasing and the available phosphorous resources are scarce. For 
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instance, the excessive P content in wastewaters should be removed for 

controlling eutrophication and maintaining a sustainable environment for 

future generations. Several physical, biological and chemical processes 

include adsorption/ ion exchange, chemical precipitation/coagulation, 

crystallisation and membrane filtration/ reverse osmosis for the removal and / 

or recovery of dissolved phosphates (P(V)) in water and wastewaters have 

been investigated (Bradford-Hartke et al., 2012; Nur et al., 2014; Dhand et 

al., 2014). 

Different research efforts during the last decade, have probed that P recovery 

at low levels (e.g. 2-10 mg/L), from domestic and urban waste waters is not 

economically feasible, using conventional removal processes (coagulation, 

chemical precipitation, adsorption, ion-exchange) (Nur et al., 2014; Liu et al., 

2012; Gupta et al., 2012). However, the introduction of new processes using 

P-selective sorbents (e.g. metal oxides sorbents or  metal oxide impregnated 

ion exchange resins) will provide concentrated effluents of phosphate (e.g. 

from 0.1 to 2 g P-PO4
3-/L) typically at alkaline pH values (9 to 12) due to the 

requirements of the regeneration step using 2 to 5% NaOH solutions 

(Sengupta and Pandit, 2011). The alkaline P(V)-brines are suitable 

candidates to recover the phosphate content as (calcium, magnesium, 

ammonium)–phosphate by-products using Ca(II), Mg(II), NH4
+ brines 

generated in many industrial effluents, especially in processes using 

membrane desalination technologies or using low-cost raw materials (Katz 

and Dosoretz, 2008; Bradford-Hartke et al., 2012; Tran et al., 2014). 

In alkaline solutions, calcium phosphates (Ca-P) are highly stable minerals 

(Diaz et al., 1994) however involve the crystallisation of many metastable 

precursor phases. Amorphous calcium phosphate (ACP, Ca/P(1.5), 
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Ca3(PO4)2.nH2O), dicalcium phosphate dihydrate (DCPD, Ca/P(1), 

CaHPO4.2H2O, brushite), β-whitlockite (β-TCP, Ca/P(1.5), β-Ca3(PO4)2) and 

octacalcium phosphate (OCP, Ca/P(1.33) Ca8H2(PO4)6.5H2O). All of them 

are frequently precipitated at low pH values. Hydroxyapatite (Hap) 

(Ca/P(1.67), Ca5(PO4)3OH) is the less soluble phase, preferentially formed in 

neutral to basic solutions (Spanos and Patis, 2007; Lagno et al., 2012). Hap, 

is a compound with a variable composition existing over Ca/P molar ratios 

from 1.67 for stoichiometric up to ≈1.5 for fully calcium-deficient Hap (Wang 

and Nancollas, 2008), and sometimes even outside this range (Elliott, 1994). 

Direct precipitation of Hap has only been observed for low reactants 

concentrations, that is, slightly supersaturated or under saturated aqueous 

solutions with respect to a precursor phase (Boskey and Posner, 1974; 

Seckler, 1996). Thermodynamically, Hap is postulated to control the P(V) 

concentration in many natural and industrial aqueous streams; however, the 

remaining P(V) concentration appear to be controlled for lengthy periods by 

meta-stable phases (Diaz et al., 1994). 

Hap synthesis by a precipitation route stands out because of its simplicity, 

low cost, and easy application in industrial production (Liu et al., 2001; Castro 

et al., 2012), although other methods are also used. Different procedures and 

starting salts have been used as source of phosphate (P(V)) and Ca(II) ions. 

Boskey and Posner (1974), Lagno et al. (2012), and more recently Du et al. 

(2013) formed Hap by adding a CaCl2 solution of (pH 7.4-7.6) to a solution of 

Na2HPO4 (pH 10-11), or vice versa at 25°C for a Ca/P ratio varied between 

1.0 and 1.67.  

Koutsoukos et al. (1980) also studied the precipitation of Hap at 37°C. 

Recently, Castro et al. (2012) prepared Hap in a batch reactor by 



Chapter 2. EVALUATION OF HYDROXYAPATITE CRYSTALLISATION 

	 	 73

neutralization between a saturated Ca(OH)2 solution with orthophosphoric 

acid solution, using several mixing Ca/P molar ratios (namely, 1, 1.33 and 

1.67) at 37°C and a agitation speed of 270 rpm. 

Continuous Stirred-Tank Reactor (CSTR), Plug Flow Reactor (PFR) and 

Batch Reactors (BR) have been set up to study phosphate crystallisation. 

Some researchers have demonstrated that BR have the advantage of 

providing extreme flexibility of operation and at the same time being 

physically simple, since all the treatment operations (i.e. flow equalization, 

precipitation reactions and solids settling) take place in one single tank. 

Castro et al. (2013b) also studied the continuous flow precipitation of Hap 

performed in a meso oscillatory flow reactor at laboratory and pilot-scale at 

37°C, at a molar ratio Ca/P of 1.33.  

Phosphorous recovery is a topic of great concern nowadays and Hap 

precipitation has been reported as a suitable process to recover phosphate in 

a BR, thus, the integration of different technologies (sorption/ion exchange-

precipitation) in a waste water treatment scheme can provide an alternative 

solution for phosphorous recovery. In view of that, the main objective of this 

work was to assess the recovery of phosphate P(V) from alkaline brines by 

using Ca(II) solution to precipitate Hap under different experimental 

conditions in a BR. The alkaline brines were obtained from a P(V) 

concentration process from waste water using iron-oxide impregnated ion-

exchange resins. The Hap precipitation process was evaluated as a function 

of pH, as well as the Ca(II) dosing rate, the stirring speed and phosphate 

initial concentration. The Hap precipitates obtained under these operation 

conditions were properly characterized through the degree of crystallinity, the 

crystal diameter, the particle size distribution and the thermal analysis. 
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2. Materials and Methods 

2.1. Experimental set-up and procedures 

The precipitation of phosphate from aqueous solutions was performed in a 

two liters lab-scale batch reactor made of glass as can be seen in Figure 2.1. 

Agitation in the reactor was provided by a mechanical stirrer (IKA RW 20 and 

Heidolph RZR) and the stirring speed was ranged from 50 to 250 rpm. pH 

was monitored in-line by using a pH potentiometer (Crison pH 28). When pH 

was 0.1 units above or below the set point, strong acid (HCl 1M) or strong 

base (NaOH 1M) were dosed using a peristaltic pump (Master flex console 

drive). Experiments batch tests were carried out mixing a volume of 

NaH2PO4 solution (with an initial phosphate concentration between 0.25 to 

1.0 g P-PO4
3- /L) with a CaCl2 solution (6.0 g Ca(II)/L) added at a flow rate 

(QCa) between 0.1 and 0.3 ml/min (by means of a peristaltic pump Gilson 

Minipuls 3). The reaction time was ranged between 6 and 24 hours 

depending on the initial phosphate concentration, the flow rate and in order to 

reach at the end of the test a molar ratio Ca/P of 1.67, suitable for Hap 

precipitation. Experiments were performed at room temperature. Three 

different types of experiments were performed: i) experiments to study the 

influence of pH (at 8, 10 and 11.5) at constant initial phosphate concentration 

(1.0 g P-PO4
3-/L), calcium dosing rate (0.1 mL/min)  and stirring speed (250 

rpm); ii) experiments to study the influence of the total initial phosphate (P(V)) 

concentration (0.25, 0.375, 0.5 and 1.0 g/L) at constant pH (11.5), calcium 

dosing rate (0.1 ml/min) and the stirring speed (250 rpm), iii) experiments to 

study the influence of the stirring speed (50, 100, 150 and 250 rpm) and 

calcium dosing rate (at 0.1, 0.2 and 0.3 ml/min) at constant pH (11.5) and 

total  initial phosphate concentration (1.0 g P-PO4
3-/L). 
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Figure 2.1. Experimental set up of the batch reactor for phosphate 

precipitation with calcium including a CaCl2 dosing pump, mechanical stirrer, 

the NaOH and HCl dosing pumps and the pH controller. Solids are removed 

at the bottom part of the reactor. 

 

Batch reactor aqueous samples were taken along the experiments and 

filtered through 0.45 um filter. The total concentrations of the Ca(II) and P(V) 

were measured by Ion Chromatography using an Ionex Liquid 

Chromatography (ICS-1000). The accuracy of the measurements was higher 

than 95%.  

After the conclusion of the experiments, the precipitated solids of the batch 

reactor were filtered, washed with water several times and dried at T=60°C 

during 24h. The samples were metalized with gold and then were examined 

using a JEOL 3400 Field Emission Scanning Electron Microscopy with 

Energy Dispersive System (FE-SEM-EDX). Samples were also analyzed by 
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Fourier transform infrared spectroscopy (FTIR), in the range 4000cm-1- 

500cm-1, (JASCO, FT/IR-4100).  

 

2.1.1. Particle size analysis 

Particle size distribution of the Ca-P powder precipitates was analyzed by 

laser light scattering (LS) with a Coulter diffract particle size analyzer (LS 13 

320 Laser Diffraction Particle Size Analyzer Instrument, Beckman Coulter). 

The size crystal distribution range (CSD) detected was from 0.04 to 2000 µm. 

The particle size expressed as both volume and number distributions, allows 

to detect the presence of aggregates and also to assess the size of the 

majority of the particles, respectively. Particles were analyzed as obtained 

directly from the batch reactor without any thermal treatment and 

granulometric separation. 

 

2.1.2. Thermogravimetric Analysis (TGA) and Differential Thermal 

Analysis (DTA) 

Thermogravimetric analyses were carried out in a Mettler TGA/SDTA 851e 

thermo balance. Dried samples with an approximate mass of 8 mg were 

degraded between 30 and 800 °C at a heating rate of 10 °C/min in N2 (100 

cm3/min measured in normal conditions) atmosphere. The precision of 

reported temperatures was estimated to be ±2 °C.  

 

2.1.3. BET analysis 

The specific surface area (SBET) of the powders was measured using 

multipoint Brunauer-Emmett-Teller (BET) method at low temperature using 

Micrometrics Flow Sorb II 2300. The equivalent particle diameter (dBET) was 
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calculated from the measured surface area (SBET) values by using Eq. 1 

(Ghosh et al., 2011). 

dBET = 
଺

ఘௌಳಶ೅
           (1) 

where ߩ is the theoretical density of Hap (3.167 g/cm3). 

 

2.1.4. X-ray diffraction (XRD) analysis 

The phase purity and crystallinity of the Hap powder were analyzed by X-ray 

diffraction with λ CuKα radiation (λ= 1.54056 Å)) at a scanning rate time of 

19.2 and 57.6 s, steep angle of 0.015° and 2θ	in range of 4-60°. The average 

crystallite size long c-direction of Hap powder was calculated from (002) 

reflection in XRD pattern, using Sherrer’s equation (Eq. 2) (Pham et al., 

2013): 

߬ ൌ
௄ఒ

ఉ ୡ୭ୱఏ
          (2) 

where τ (nm) is crystallite size, K is the shape factor (K = 0.9), λ is the 

wavelength of the X-ray (λ = 0,15406 nm for CuKα radiation), β is the full 

width at half- maximum (FWHM) (rad) of the peak along (002) direction and θ 

is the Bragg’s diffraction angle. 

The crystallinity degree (Xc) was determined using Eq. 3: 

ܺܿ ൌ 		 ሺ0.24 ⁄ߚ ሻଷ. 100%         (3) 

The solids in powder form were identified by standard Joint Committee en 

Powder Diffraction Standards (JCPDS) file and it was matched with Powder 

Diffraction File (PDF) no. 00-009-0432 for Hap. 
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2.2. Hap precipitation: definition of the experimental conditions 

Precipitation processes were designed using the HYDRA-Medusa code 

(Puidomènech, 2001). Measured P(V) and Ca(II) concentrations were 

compared when necessary with those predicted by using HYDRA-MEDUSA 

code. The effect of ionic strength on single salt solubility and formation of 

pure precipitates was taken into account in the calculations. Aqueous species 

and mineral phases of the CaCl2-NaH2PO4-H2O system considered on the 

calculations are detailed in Table 2.1. 

 

Table 2.1. Formation constants K (in log value) of the main aqueous and 

mineral phases involved in the system CaCl2-NaH2PO4-H2O from the 

HYDRA-Medusa database (Puigdomènech, 2001). 

Species/solid formation reaction  log K 
ାܪ2 ൅ ܲ ସܱ

ଷି ൅ ଶାܽܥ ↔ ଶܲܪܽܥ ସܱ
ା 

ାܪ ൅ ܲ ସܱ
ଷି ൅ ଶାܽܥ ↔ ଶܲܪܽܥ ସܱ 

	ଶܱܪ ൅ ଶାܽܥ ↔ ାܪܱܽܥ ൅  ାܪ
ܲ ସܱ

ଷି ൅ ଶାܽܥ ↔ ܲܽܥ ସܱ
ି 

ାܪ2 ൅ ܲ ସܱ
ଷି ↔ ଶܲܪ ସܱ

ି 
ାܪ3 ൅ ܲ ସܱ

ଷି 	↔ ଷܲܪ	 ସܱ 
ାܪ ൅ ܲ ସܱ

ଷି ↔ ܲܪ	 ସܱ
ଶି 

ାܪ4 ൅	2ܲ ସܱ
ଷି ൅ ଶାܽܥ ↔ ଶܲܪሺܽܥ	 ସܱሻଶ 

ଶܱܪ2 ൅ ଶାܽܥ	 ↔ ሻଶܪሺܱ	ܽܥ ൅  ାܪ2	
2ܲ ସܱ

ଷି ൅ ଶାܽܥ3 ↔ ଷሺܲܽܥ	 ସܱሻଶ 
ାܪ ൅ 3ܲ ସܱ

ଷି ൅ ଶାܽܥ4 ሺܲܪସܽܥ	↔ ସܱሻଷ 
3ܲ ସܱ

ଷି ൅ ଶାܽܥ4 ൅	ܪଶܱ ହሺܲܽܥ	↔ ସܱሻଷܱܪ ൅  ାܪ
ାܪ ൅ ܲ ସܱ

ଷି ൅ ଶାܽܥ ܲܪܽܥ	↔ ସܱ.  ଶܱܪ2
ଶାܽܥ ൅	ܪଶܱ ↔ ܱܽܥ ൅  ାܪ2

21.0 
15.1 
-12.8 
6.5 

19.6 
21.7 
12.4 
39.1 
-22.8 
28.9 
46.9 
40.5 
19.0 
-32.8 

 

Ca(II) and phosphate ions could forms different Ca-P mineral phases 

(e.g.Ca(H2PO4), Ca3(PO4)2 (s), Ca4H(PO4)3 (s), Ca5(PO4)3OH (s), 

CaHPO4.2H2O (s) depending of the aqueous phase composition and the 

concentrations of the specie involved. The species distribution diagram as a 

function of pH simulating the conditions of the precipitation assays in three 

scenarios are shown in Figure 2.2 a, b and c, respectively: a) excess of P(V) 
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over Ca(II) (molar ratio of 200) simulating the initial step of the precipitation 

assays; b) an slightly excess of P(V) over Ca(II) (molar ratio of 10) simulating 

the conditions approaching to the stoichiometric molar ratio, and c) an excess 

of Ca(II) over P(V) (molar ratio 0.5) simulating the final steps of the 

precipitation trials. As it can be seen the pH and the levels of concentration of 

both calcium and phosphate, are influencing the aqueous chemistry and then 

the precipitation of Ca-P minerals. For a mixture of 10 mmol/L of PO4
3- with 

50 µmol/L of Ca2+ (Figure 2.2a) the excess of PO4
3- and H2PO4

- ions 

promotes the formation of complexes as CaPO4
- and CaH2PO4 and it is 

expected the partial precipitation of Ca3(PO4)2(s) above pH 8. The increase 

of pH above pH 10 favors the formation of the complex CaPO4
- in solution.  

The reduction of the excess of P(V) to Ca(II) for 10 mmol/L of PO4
3- and 1 

mmol/L of Ca(II), (Figure 2.2b) and 20 mmol/L of Ca(II) (Figure 2.2c), is 

traduced in the precipitation of (Ca5(PO4)3OH(s)) from pH values above 6 for 

a Ca/P ratio of 1.67 and above 5 for solutions with an excess of Ca(II). This is 

also accompanied by a reduction the CaH2PO4
+ and CaHPO4 molar 

fractions.  

 

a	
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Figure 2.2. Species distribution diagram for the system CaCl2-NaH2PO4-H2O 

using the HYDRA-Medusa data base (Puigdomènech, 2001) under different 

P(V)/Ca(II) molar ratios: a) excess of P(V) over Ca(II) (molar ratio of 200), b) 

slightly excess of P(V) over Ca(II) (molar ratio of 10) and c) excess of Ca(II) 

over P(V) (molar ratio 0.5) for a total ionic strength of 0.5 mol/L. 

 

3. Results and Discussion 

3.1. Effect of pH in Hap precipitation 

The influence of the pH in the precipitation of P(V) along the experiment for 

two experiments one at constant pH at 11.5 and other with an initial pH 

b	

c	
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solution at 10.5 (variable pH) as well as the evolution of calcium 

concentration along the experiment is shown in Figures 2.3a and b.  

The evolution of pH along the experiment, shown in Figure 2.3c, follows three 

differentiate stages. After the initial additions of calcium (up to 0.5 mmol/L 

Ca(II)) the pH of solution is kept constant between 10.5 to 10.7 taking benefit 

of the buffer capacity of the initial solution  

(HPO4
2-/H2PO4). The evolution of the total P(V) concentration shows an 

strong reduction (30% of the initial concentration) as a function of the addition 

of Ca(II) (3.6 mmol/L) and then it is stabilized around after 240 min, 

corresponding to the addition of 5.4 mmol/l of Ca(II). 

As it is shown in Figure 2a the predominant P(V) species in solution between 

pH 10 and 12 is CaPO4
-. Under this conditions it has been postulated a shift 

on the surface charge of the mineral leading to the precipitation of 

amorphous calcium phosphate (Han et al., 2013), Ca3(PO4)2 or β-whitlockite 

(β-Ca3(PO4)2) (Nriagu and Moore, 1984) as it is described by Eq. 4. 

ܲܽܥ	3 ସܱ
ି ൅ ାܪ 	→ ଷሺܲܽܥ ସܱ	ሻଶ	ሺ௦ሻ ൅ ܲܪ	 ସܱ

ଶି     (4) 

Although potentially such phase can be formed it was not detected at the end 

of the precipitation test and only Hap, was detected by XRD analysis. 

The addition of Ca(II) is traduced into slightly decrease of P(V) concentration 

as it is observed in Figure 2.2b, and an increase of the total Ca(II) 

concentration in solution as can be seen in Figure 2.3a. Subsequently the pH 

decreased with a S-shape form due to the reduction of the HPO4
2- 

concentration by formation of Hap (Figure 2.3c). After this abroad change the 

pH of the solution diminished slowly as it is reached the H2PO4
-/HPO4

2- buffer 

(pKa2 = 7.2). During this second stage, pH decreased from 10 to 7.4 and 
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phosphate ions P(V) were present in solution mainly as CaHPO4 (see Figure 

2.2a) and the precipitation of Ca-P could be described by reaction Eq. 5. 

ܲܪܽܥ5 ସܱ	ሺ௔௤ሻ ൅	ܪଶܱ	 ↔ ହሺܲܽܥ ସܱሻଷሺܱܪሻሺ௦ሻ ൅ ܲܪ	2	 ସܱ
ଶି ൅	4ܪା   (5)  

  

Figure 2.3. Evolution of a) phosphate and b) calcium concentration with time 

in Hap precipitation tests at constant pH (11.5) and variable pH; c) phosphate 

recovery and pH evolution in variable pH experiment in the batch reactor. 

c

b

a
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The addition of Ca(II) is traduced in a small decrease of pH during the last 

stage indicating the growing of formed Hap. Although an excess of Ca(II) was 

added the removal of phosphate from solution only reached a 50%. 

On the other hand, in the experiment with constant pH (11.5 ± 0.1) the 

phosphate profile shows a continuous decrease with the addition of Ca(II) 

reaching a removal of phosphate higher than 96% (± 2%) (Figure 2.3a). At 

the end of the experiment the precipitated solid was identified as Hap as 

described latter. The levels of total Ca(II) concentration in solution were 

below of 20 mmol/L. These values were two orders of magnitude higher than 

those predicted assuming that the system was equilibrated with Hap, which 

indicates that the system did not reach equilibrium.  

The evolution of phosphate P(V) concentration and recovery as a function of 

calcium concentration at constant pH values (8, 10 and 11.5) are shown in 

Figure 2.4. 

It can be seen (Figure 2.4b) that precipitation/crystallisation of Hap can be 

divided in three well-defined stages for experiments at constant pH of 10 and 

11.5 and just two stages for pH 8. In the stage 1 (stage 1), induction period, 

early nucleation took place and a reduced amount of phosphate was 

removed during the first 30 min (0.36 mmol Ca(II)/L).  

The maximum P(V) removal ratios were observed for pH 10 and 11.5 (11 and 

6 %, respectively). This initial step in alkaline pH conditions has been 

described by reaction Eq. 6 (Skoog, 1976; Castro et al., 2012; Han et al., 

2013): 

ଶାܽܥ3 ൅ ܲܪ2	 ସܱ
ଶି 	↔ ଷሺܲܽܥ ସܱ	ሻଶ	ሺ௦ሻ ൅  ା     (6)ܪ2
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Figure 2.4. a) The recovery and phosphate evolution profile and as a function 

of calcium concentration at constant pH values of 8, 10 and 11.5 and b) detail 

of three crystallisation stages in the batch reactor. 

 

Han et al. (2013) identified at pH 10, the precipitation of an amorphous 

calcium phosphate (ACP) phase at the initial reaction time and then it 

crystallized into Hap after 2h of reaction. In the second stage (stage 2), the 

homogenous nucleation of Hap occurred (from 30 to 180 min equivalent to 

1.8 mmol Ca(II)/L). During the nucleation stage, the total concentration of 

Ca(II) remained constant to 0.80 ± 0.2 mmol Ca (II)/L and the P(V) removal 

a	

b	
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increased from 2 to 10% for pH 10 and from 5 to 20% for pH 11.5 (Figure 

2.4). In the final stage (stage 3), further homogeneous nucleation bulk 

precipitation of Hap was observed, until reaching a final P(V) removal 

efficiency of 81% and 95%, for pH 10 and 11.5, respectively. Analysis at the 

end of the experiment of solid samples by XRD analysis determined the 

presence of Hap. Values of Ca(II) concentration measured along the 

experiments were higher than those predicting equilibrium with the formation 

of Hap, indicating  a kinetic control, however at the end of the experiment 

under excess of Ca(II) the measured and calculated values were in 

agreement. 

At pH 8, the two stages observed were the precipitation of Hap, with a 

phosphate removal ratio up to 20%, followed by a homogeneous nucleation 

stage of Hap with a phosphate removal ratio up to 78%. This is in agreement 

with results reported in literature at pH 7.5 in which Hap phase was directly 

observed immediately the reaction was started (Skoog, 1976). 

 

3.2. Influence of initial P(V) concentration 

The evolution of total P(V) concentration phosphate profiles for experiments 

carried out at constant pH (11.5±0.2) for initial phosphate concentrations of 

0.25, 0.375, 0.5 and 1.0 g P-PO4
3- /L are shown in Figure 2.5. The total P(V) 

concentration decreased with the addition of Ca(II) reaching a final 

concentration below 0.2 mg P-PO4
3- /L (limit of quantification for (P(V)) in this 

study), which stands for more than 65 % of P(V) removal as Hap as it was 

determined by XRD analysis. Total Ca(II) concentrations in solutions were 

below the limit of quantification, for the lower P(V) concentrations and below 

1 mmol/L for the concentrated experiment (1.0 g/L), indicating a total 
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phosphate removal (>99%) as a Hap with a Ca/P ratio of 1.67, 

approximately. 

  

Figure 2.5. Influence of the initial phosphate concentration onto the Hap 

precipitation at pH 11.5 as a function of total calcium concentration in the 

batch reactor for a) Phosphate concentration and b) calcium concentration. 

 

The kinetics of precipitation of Hap is important in explaining the 

oversaturation of aqueous phase with respect to initial phosphate and 

calcium concentration. Consequently, several empirical equations have been 

used to describe the kinetics of Hap based on driving forces calculated from 

disequilibrium (Koutsoukos and .Amjad, 1980; Moreno and Varughese, 

1981). Inskeep and Silvetooh (1988) determined the rate reaction order with 
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respect to solution or surface area and determined that the rate of Hap at pH 

7.4 to 8.4 could be expressed by Eq. 7 as follow:  

ܴ ൌ .	௙ܭ 	ሺCaଶାሻ. 	ሺPOସଷିሻS	ሾCaଶାሿሾPOସଷିሿ        (7) 

where R is the rate of Hap precipitation (mol Hap/ L·s), kf is the rate constant 

(L2 /mol·m2·s), γ (Ca2+) and, γ (PO4
3-) are the divalent and trivalent ion activity 

coefficients, respectively, S is the surface area (m2 /g), and [Ca+2] and [PO4
3-] 

are the molar concentrations of Ca(II) and P(V) (mol/L). 

As it could be seen in Figure 2.5, for each experiment at a given 

concentration, the Ca(II) concentration was below 0.05 mmol/L (the detection 

limit in this study) for 0.25 and 0.375 g P- PO4
-3/L; 0.15 mmol/L for 0.5 g P-

PO4
3-/L and 0.7 mmol/L for 1.0 g P-PO4

3-/L. Additionally the surface area of 

the precipitated Hap, in each experiment, ranged from 67 g/m2 up to 90 g/m2 

as the initial concentration increases. Then, assuming that for each 

experiment at a given concentration the values of kF, (Ca2+), (PO4
3-), S and 

[Ca2+] are constant, the precipitation rate equation could be simplified to Eq. 

8:  

ܴ ൌ 	െ ଵ

ଷ
ቀ
ௗൣ௉ைర			

యష൧

ௗ௧
ቁ ൌ 	݇௙. 	ሺCaଶାሻ. 	ሺPOସଷିሻS	ሾCaଶାሿሾPOସଷିሿ ൌ 	 k′୤ሾPOସଷିሿ	  (8) 

and integrating Eq. 8 between a given t, with [P(V)] and time t=0 for [P(V)]0 it 

could be obtained: 

݈݊	 ሾ௉ைర
యషሿ

ሾ௉ைర
యషሿబ

ൌ െ݇′௙(9)          ݐ 

where t is time (s), and 	k′୤ ൌ 	 ݇௙. 	ሺCaଶାሻ. 	ሺPOସଷିሻS	ሾCaଶାሿ 

The evolution of the ݈݊	 ሾ௉ைర
యషሿ

ሾ௉ைర
యషሿబ

 as a function of time (Figure 2.6) follows a 

linear dependence for each [P(V)] concentration. The slopes of these 

functions were used to calculate the precipitation rate constants k′୤ at pH 

11.5 (Table 2.2). The decrease of P(V) concentration from 1.0 to 0.25 P-
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PO4
3- g/L is traduced in an increase of the k′୤ constant up to 2.5 times. It 

indicates that the rate of Hap precipitation follows the proposed first order 

rate with respect to Ca2+, PO4
3-, and surface area (Inskeep and Silvertooth, 

1988; Liu et al., 2001). 

Table 2.2. Initial experimental condition and linear regression parameters of 

ln[P(V)/P(V)0] as a function of time. 

P(V)i 

(g/L; mol/L) 

[Ca2+]  

(Hydra-Medusa)  

(mol /L) 

Slope rate 

ln P(V)-ln P(V)0 = 

f(t) 

R2 

1.0; 0.0105 

0.5; 0.0052 

0.375; 0.0039 

0.250; 0.0026 

0.839 

0.894 

0.908 

0.922 

k’f = 0.0014 

k’f  = 0.0016 

k’f  = 0.0031 

k’f  = 0.0041 

0.98 

0.84 

0.96 

0.98 

 

 

Figure 2.6. Evolution of the ln[P(V)/(P(V)0] as a function of time for the 

precipitation experiments at constant pH (11.5) for phosphate initial 

concentrations between 0.25 up to 1 g/L using a batch reactor. 

3.3. Influence of stirring and Ca(II) addition rate 

Phosphate precipitation experiments under different stirring speeds in the 

range 50 rpm up to 250 rpm were carried out. The phosphate concentration 
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evolution did not show any significant influence on the P(V) recovery ratio as 

it can be seen in Figure 2.7a, and indicating the absence of mass transfer 

phenomena limitations. The percentage of P(V) recovery was always above 

95± 3 %. 

On the other hand, the increase of Ca(II) dosing addition up to 0.3 mL/min, 

was traduced in the increase of the phosphate removal ratio above 99% 

(Figure 2.7b) and the phosphate precipitation rate was slightly higher than for 

lower dossing ratios as was described previously by Xie et al. (2014).  

  

Figure 2.7. Influence of a) stirring speed and b) Ca(II) addition rate on 

phosphate concentration evolution as function of time during phosphate 

precipitation in a batch reactor. 
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3.4. Precipitate Characterization 

The nature of the solids and crystals formed were characterized by XRD 

(diffraction patterns are shown in Figure 2.8 and summarized in Tables 2.3 

and 4). A single phase Hap powder is shown in Figure 2.8, according to the 

reference Hap (see Table 2.3), was obtained in the different experiments 

(e.g. constant and variable pH and also at different initial phosphate 

concentration). 

 

 

Figure 2.8. XRD analysis of the samples obtained in phosphate precipitation 

experiments for a) precipitation tests at constant and variable pH and b) 

precipitation tests under different initial phosphate concentration. 

 

b	

a	
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The strongest peak intensity of the Hap samples at 2θ = 31.87° was of the 

(211) crystal plan and the other peak at 2θ =25.87° corresponds to the (002) 

crystal plane. Besides, the other characteristic peaks with less intensity were 

of the (112) and (300) crystal plane. 

It is important to point out that 211 and 002 reflection intensities showed an 

increased trend by increasing solution phosphate concentration as is shown 

in Figure 2.8, which indicates that maturation in Hap crystallinity took place 

with time.  

In fact, the degree of crystallinity or the fraction of the crystalline phase Xc for 

the hydroxyapatites obtained through different initial phosphate concentration 

can be evaluated by using equation 3. 

 

Table 2.3. The full-width at half-maximum (FWHM) and Miller Index (hkl) 

determined from XRD analysis for HAPs samples. 

Test 
number 

FWHM002 

 
hkl (002) 

 (°) ߠ2
 

 
hkl (211) 

 (°) ߠ2
 

 
hkl (112)

 (°) ߠ2
 

 
hkl (202)

 (°) ߠ2
 

 
hkl (310) 

 (°) ߠ2
 

 
hkl (222) 

 (°) ߠ2
 

1 0.329 26.14 31.86 32.38 34.21 40.06 46.9 

2 0.370 26.18 31.87 32.39 34.21 40.06 46.87 

3 0 .268 26.13 31.87 32.19 34.16 39.80 47.11 

4 0.272 25.89 31.87 32.06 33.94 39.71 46.73 

5 0.383 26.13 31.86 32.25 33.84 39.89 46.98 

6 0.586 26.10 31.87 32.20 - 39.66 46.95 

7 0.667 26.25 31.87 32.43 34.15 38.95 45.77 

8 0.255 25.87 31.85 32.20 34.31 39.93 46.90 

9 0.401 26.14 30.66 - 34.15 39.61 47.00 

10 0.340 25.98 31.92 32.10 33.87 39.70 46.81 

11 0.302 25.80 31.86 32.17 - 39.72 46.87 

Hap* 

Relative 

intensities 

2θ (°) 

40 

(25.87) 

100 

(31.87) 

60 

(32.19) 

25 

(34.04) 

20 

(39.81) 

30 

(46.71) 

*(Hap reference); Powder diffraction File 00-009-0432  
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	 Table 2.4. Physicochemical characterizations of Hap precipitation under different experimentations conditions: XRD patterns, particle 

size (LS), S (BET) 

Experimental conditions XRD LS BET 

Test 

number 

pH 

control 

pH P (V) 

 

Ca2+ (QCa) 

addition  

Stirring 

speed 

P(V) removal 

efficiency 

 

*FWHM002 

Crystal 

diameter(εhkl) 

Degree of 

crystallinity (Xc) 

Particle size, 

d50 (in volume ) 

Particle size, 

d50 (in number) 

 

SBET 

 

dBET 

- - - g/L mL/min rpm % - nm % µm µm m2/g nm 

1 No 11→5.5 1 0.1 250 50 0.329 24.8 38.6 56.5 0.11 59.9 31.6 

2 Yes 11.5 1 
0.1 250 

95 0.370 22.0 27.2 8.7 0.09 88.3 21.5 

3 
Yes 

8 1 
0.1 250 

96 0.268 30.4 71.3 69.5 0.08 34.5 31.6 

4 
Yes 

10 1 
0.1 250 

93 0.272 29.9 69.2 6.1 0.11 67.7 28.0 

5 
Yes 

11.5 0.5 
0.1 250 

>99 0.383 21.3 24.5 429.3 0.09 90.3 21.0 

6 
Yes 11.5 

0.375 
0.1 

250 99 0.586 12.2 6.9 21.3 0.33 73.2 25.9 

7 
Yes 11.5 

0.25 
0.1 

250 84 0.667  13.9 4.7 86.5 0.49 66.7 28.4 

8 
Yes 11.5 

1 
0.1 

150 85.2 0.255 31.9 83.1 729.9 0.35 93.2 20.3 

9 
Yes 11.5 1 0.1 

50-75 91.3 0.401 20.3 21.3 23.9 0.09 91.8 20.6 

10 
Yes 11.5 1 

0.2 250 99 0.340 23.9 35.0 8.3 0.09 53.6 35.3 

11 
Yes 11.5 1 

0.3 250 >99 0.302 27.0 50.2 587.0 0.43 92.9 20.4 

*The full-width at half-maximum (FWHM)
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	 Main functional groups of the different powder Hap samples were confirmed 

by FTIR analysis (Figure 2.9). It was detected the presence of characteristic 

bands around 600 cm-1 corresponding to ν4 (OPO, PO4
3-) bending mode. 

Also the 960 cm-1 band was assigned to ν1 (PO) symmetric stretching and a 

band in the range 1100-1000 cm-1 was assigned to ν3 (PO, PO4
3-) 

antisymmetric stretching mode. The small band around 875 cm -1 can be 

attributed to the vibrational frequencies of carbonate ions or HPO4
2- group 

(Koutsopoulos, 2002).  

 

 
Figure 2.9. FTIR analyses of the samples obtained in phosphate precipitation 

for a) precipitation tests at constant and variable pH and b) precipitation tests 

under different initial phosphate concentration. 

 

Furthermore, the carbonate peaks in the range 1400-1500 and 868 cm-1, 

corresponding to the asymmetric stretching (ν3 mode) and out of plane 

bending (ν2 mode) vibrations, respectively (Sporysh et al., 2010; Paz et al., 

2012; Castro et al., 2013a) were identified. Presence of these bands is 

characteristic of a carbonate Hap of B-type, where the carbonate ions occupy 

the phosphate ions sites. The formation of carbonate could be due to the 

adsorption of atmospheric CO2 during the ripening time, due to the highly 
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alkaline conditions in the solution (Müller et al., 2007; Paz, et al., 2012; 

Castro et al., 2013a). 

 

3.5. Characterization of the degree of crystallinity, crystal diameter and 

particle size distribution  

The Hap crystal diameters (calculated by Eq. 2) showed that the powders 

prepared are mostly constituted by nanoparticles as it is summarized in Table 

2.4 and Figures 2.10. The crystal diameter increased with decreasing the pH 

of the crystallisation process, namely from 22 nm (pH 11.5) to around 30 nm 

(pH 8). Moreover, the crystal diameter and the degree of crystallinity were 

similar for pH values of 10 and 8 and presented the lower values. The 

experiment at variable pH reported similar nanometric powder sizes and 

crystallinity than those obtained for constant pH at 11.5. 

Also, the stirring speed affected the degree of crystallinity, with, 83% at 150 

rpm, and ranged between and around 20 to 27 % for 75 and 250 rpm. The 

increase of the Ca(II) dosing flow-rate (from 0.1 to 0.3 ml/min) revealed an 

slight increase of both crystal size and crystallinity degree (from 22 to 27 nm, 

and from 27% to 50 %, respectively).  

For experiments under different phosphate concentrations, the highest 

degree of crystallinity (27%) and crystal diameter (22 nm) were obtained 

when the maximum initial P(V) concentration was used (1.0 g P- PO4
3-/L). 

These findings can be explained by the process of particle formation, 

inducing, nucleation, growth and aggregation. 
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Figure 2.10. Particle size distribution in a) volume and b) number of Hap 

obtained from phosphate precipitation test at constant and variable pH and c) 

volume and d) number of Hap obtained from phosphate precipitation test at 

different initial phosphate concentration. 

 

Additionally, and according to Figure 2.10, the granulometric analysis of 

precipitated particles in volume of particles (Figure 2.10a) revealed the 

formation of aggregates with an average equivalent diameter around 57 μm 

for variable pH and from 8.8 to 70 μm for constant pH (11.5 to 8). From the 

particle size laser analysis in number (Figure 2.10b), the crystals obtained 

with Hap precipitation with not constant pH ranged in size from 0.063 to 

0.405 μm and have a mean equivalent diameter of 0.112 μm, presenting a 

narrow size distribution curve, similar to those obtained with constant pH 

(0.107 μm). From the particle size distribution in number of particles, it is 

observed that powders prepared were mostly constituted by nanoparticles. 

This enormous decrease variation of the average diameter in the aggregates 

and the constant crystal mean size (d50) with an increase at constant pH, it is 

attributed to some degree of heterogeneous nucleation as well as to an 

aggregation process in the nanometric scale. This aggregation process 

reduces the number of small crystals (Gomez-Morales et al., 2001). 

Results also show that the mean size and the aggregation degree of the 

precipitated particles increased with increasing of the calcium flowrate 

dosing. As stated in Table 4, Hap particles with a mean size (d50) of 89 nm 

were obtained at calcium flowrates of 0.1 and 0.2 ml/min. For 0.3 ml/min, d50 

was 431 nm and in large aggregates of about 587 µm. 
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Therefore, it was observed that as the Ca(II) dosing flow-rate was higher, the 

aggregation phenomenon was more pronounced. Xie et al. (2014) described 

this behaviour and observed that when Ca(II) is added rapidly, the high local 

super-saturation will affect the dehydratation process and it will influence ions 

association and the nucleation behavior. On the other hand, the increased 

d50 number through the increase of the flowrate contributes to a distribution 

of supersaturation in the reaction environment, thereby leading to uniform 

distribution of the driving force for the nucleation and growth processes and 

give rise to a narrow size distribution (Yang et al., 2010). 

The influence of the initial phosphate concentration on the mean particle size 

of Hap nanoparticles is shown in Figure 2.10(c-d). The results indicate that 

the mean particle size (d50) decreased with the increase of the initial P(V) 

concentration. The decrease of particle size was 494, 332, 92 and 89 nm for 

0.25, 0.375, 0.5 and 1.0 g P- PO4
3-/L, respectively. Therefore, for initial P(V) 

concentrations above 0.5 g P- PO4
3-/L, Hap particles with size around 90 nm 

were obtained. This it is attributed to the fact that the increase of initial P(V) 

concentration led to a high supersaturation level, which made nucleation and 

growth very fast, thereby resulting in the generation of small particles as 

described previously (Kucher et al., 2006; Yang et al., 2010). However, a 

large amount of Hap primary nuclei were spontaneously formed when the 

concentration reached a rather high value. In this case, the aggregation of 

Hap primary nuclei was greatly intensified during the reaction, causing the 

poly-dispersity of Hap nanoparticles as described by Yang et al. (2010). 

From large scale application point of view, the settling velocity was 

accounted by using the Stokes law. This law describes the dependency of 
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unhindered terminal particle settling velocities on the basis of their diameters 

and densities under laminar flow condition. 

If Hap is stimulated to precipitate, the crystal formed must reach a certain 

minimum size to enable them to acquire enough downward velocity to 

naturally settle to the base of a typical clarifier tank for collection. Thus, 

according to the Stokes law for particle settling, the average settling was 

determined to be 0.005 m/s, this value was constant for experiments at 

different stirring speed and also for those at initial phosphate concentration 

above 500 mg P-PO4
3-/L. 

In addition, Table 2.4 reports the specific surface area (SBET) estimated from 

the specific area (dBET) methodology. An increase in specific surface area of 

Hap was observed as pH was increased from 8 to 11.5. Moreover, at 

constant pH of 11.5, SBET increased with increasing initial P(V) concentration. 

Thus, the increase of surface area represents an increase of the powder 

reactivity for crystal growth. 

The specific surface area obtained for experiment at variable pH (initial pH of 

11.5) was in the range of 60 m2/g, but with at constant pH (initial pH =11.5) 

was incremented to 90 m2/g. The stirring speed and calcium dosing rate (at 

pH 11.5) did not significantly affect the specific surface area. 

The EDX analysis indicated that the samples were predominantly composed 

of Ca, P and O, the major elements of Hap powders. The SEM/EDX 

micrographs of the powders obtained from various initial phosphate 

concentrations, at variable or constant pH are shown in Figure 2.11. The 

powders consisted of rod like shape and plate-shaped nanometric sized 

particles. As it can be seen from the particles morphology, there is a 



Chapter 2. EVALUATION OF HYDROXYAPATITE CRYSTALLISATION 

	 	 99

distribution of small particles and large agglomerates (consisting of fine cold 

welded particles). 

 

 

Figure 2.11. FE-SEM of Hap samples obtained from phosphate precipitation 

at constant pH and different initial phosphate concentration a) 0.5 g P-PO4
3-

/L, b) 1.0 g P-PO4
3-/L and c) at 1.0 g P-PO4

3-/L and variable pH and d) EDX 

analysis of samples at 1.0 g P-PO4
3-/L and constant pH. 

 

A higher tendency to form aggregates was observed with higher initial 

phosphate concentration and at constant pH (Figure 2.11b). More nearly 

monodisperse plate shaped with a length of about 1µm-100 nm was found 

for initial phosphate concentration above 0.5 g P- PO4
3-/L. This is in 

accordance with the results reported by Dirksen and Ring (1991) who 

described the appearance of different growth morphologies with the 

existence of concentration gradients at the crystal surface, which lead to 

growth instabilities and the formation of dendrites (Figure 2.11a and b).  

a b

c d 
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Besides, the powders obtained in batch tests with variable and constant pH 

(at initial phosphate concentration of 1.0 g P- PO4
3-/L) showed a morphology 

of plate-shaped or rod-shaped (Figure 2.11b-c) with a size around 100 nm. 

Powders presented a certain degree of aggregation, which can be justified by 

the amorphous nature of the particles (degree of crystallinity around 27 and 

39 % for constant and variable pH, respectively (Table 2.4)). 

 

3.6. Thermal characterization 

In the thermogram analysis, Hap crystals were characterized by a continuous 

mass loss throughout the increase of temperature. Hap crystals with low 

degree of crystallinity (Test number 2) reported three thermal transitions of 

mass loss in the temperature region (Figure 2.12). The first one is of 8% at 

560° C ൒ T ൒Troom corresponding from physic-sorbed and surface absorbed 

water molecule. The second mass loss of 2.5% (between 560 and 830 °C) 

can be attributed firstly to the loss of water present in the lattice structure (the 

so-called strongly related intra-crystalline water) and secondly to the 

decomposition of phosphate ions (300-500 °C) (Dhand et al., 2014) and 

corresponding to the early stages of crystallisation. The third mass loss 

occurs at temperatures higher than 830 °C, in which Hap will dehydrate 

partially to form the oxy-hydroxyapatite according to Eq. 10 (Bernache-

assollant et al., 2003): 

ଵ଴ሺܲܽܥ ସܱሻ଺ܱܪଶ	ሺ௦ሻ → ଵ଴ሺܲܽܥ ସܱሻ଺ܱܪଶିଶ௫ܱ௫	ሺ௦ሻ ൅ 	ଶܪݔ	 ሺܱ௚ሻ              (10) 

The thermogram obtained for Hap samples with high degree Hap crystallinity 

(Test number 8) presented just two thermal transitions in the temperature 

region. The first one, from room temperature to 830 °C, corresponds to a 

weight loss of about 12%. This weight loss could be associated to the 
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formation of Hap in advanced crystallisation stages and it can be attributed to 

the phase transitions within hydroxyapatite crystals as was previously 

reported by Piccirillo et al. (2013). A further thermal process for temperature 

up to 830 °C, corresponding to a negligible weight loss is assumed to be the 

result of gradual dehydroxylation of Hap powder by reaction 10. 

 

Figure 2.12. Thermogravimetric Analysis (TGA) and Differential Thermal 

Analysis (DTA) of Hap synthesized at different agitation speed reactor for a) 

experiment 2 (low degree of crystallinity) and b) experiment 8 (high degree of 

crystallinity). 
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4. Conclusions 

 

In this study Hap powders, mostly constituted by nanoparticles, were 

obtained in a batch reactor from the treatment of concentrated alkaline P(V) 

effluents obtained in the regeneration of ion-exchange resins using a Ca(II) 

solution. 

Three stages were identified in the precipitation of phosphate as Hap for pH 

values ranging from 8 to 11.5: a) induction period, with a small decrease in 

phosphate concentration, b) homogeneous nucleation, with maintaining or 

even a little increase of phosphate concentration and c) further 

homogeneous nucleation, with a constant decrease of phosphate. 

A constant pH of 11.5 favored a higher precipitation rate of phosphate to form 

Hap when compared with rate obtained for pH 8, 10 and also at variable pH. 

However, the degree of crystallinity was higher for lower pH values assessed 

in this study (namely, 8 and 10).  

Higher initial P(V) concentration lead to the formation of Hap precipitate 

powders with higher degree of crystallinity and crystal diameter, but also 

lower mean particle size. 

As Ca(II) dosing rate increased, phosphate precipitation rate was higher, also 

the mean size and degree of crystallinity of the prepared particles were 

increased. Furthermore, the stirring speed (between 50 and 250 rpm) not 

reported any significate effect on the phosphate precipitation rate. 
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The influence of Mg(II) on phosphorous recovery as hydroxyapatite (Hap) from 

alkaline phosphate concentrates using desalinated industrial brines as the 

calcium source in a batch reactor was evaluated. Two synthetic brines with 

Mg/Ca molar ratios of 2.2 and 3.3 were continuously fed to reach a Ca/P molar 

ratio of ~1.67 to promote Hap formation under different constant pH values (8, 

9.5, 10.5, 11.5 and 12). For both brines, inhibition of Hap precipitation and 

formation of the amorphous mineral phases of Ca-, Mg- and Ca/Mg-

phosphates were observed at pH >9.5. Mg(II) severely inhibited phosphate 

precipitation, allowing the formation of amorphous calcium phosphate from 

meta-stable clusters due to Mg(II) incorporation into Ca-phosphate. For the 

Mg/Ca (3.3) brine, a more soluble Mg-phosphate mineral (cattiite) was formed 

at pH 11.5. Thermal treatment of the amorphous solids to increase crystallinity 

confirmed the presence of Hap and chlorapatite as Ca-phosphate, stanfieldite 

as Ca-Mg-phosphate and farringtonite as Mg-phosphate. In the experiments at 

pH 8, the formation of stable nanometre-sized pre-nucleation clusters 

promoted nucleation inhibition, even in supersaturated solutions, and no solids 

were recovered after filtration. Although sulfate was involved in some of the 

precipitation reactions, its role in the inhibition of Hap formation is not clearly 

elucidated. 

 

1. Introduction 

Phosphorus (P) is a non-renewable resource, non-substitutable for 

agriculture and food production and directly linked to global food security, as 

well as being important in other industrial and technical uses. At the same 

time, P losses are the principal contributor to eutrophication of surface 

waters, globally the P footprint of human diets continues to increase and the 
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world mineral phosphate reserves decrease and there is a debate about their 

extent and extractability and about their geographical concentration. 

Improving the efficiency of P processing and use, in industry, agriculture, 

livestock production, food processing, and developing P reuse or recovery-

recycling can reduce costs, contribute to reducing nutrient pollution, and 

create jobs in the frame of circular economy (Circular Economy Strategy, 

2014). 

Phosphate is typically present at low concentrations in urban wastewaters 

(from 10 to 30 mg P-PO4
3-/L) and in industrial wastewaters, such as 

detergent manufacturing, food processing or metal-coating processes (50 to 

150 mg P-PO4
3-/L) (Barca et al., 2012; Li and Brett, 2012; Mezenner and 

Bensmaili, 2009). The removal of phosphate from water bodies is important 

because it causes eutrophication, which has a harmful effect on aquatic life, 

resulting in a reduction in biodiversity. On the other hand, the recovery of 

phosphate from P-containing wastewater is essential for developing an 

alternative P source to overcome the global challenge of its scarcity (Nur et 

al., 2014). However, one of the disadvantages that complicate phosphate 

recovery is the low concentration of phosphate in the target effluents.  

Many different processes have been proposed for pre-concentration of 

phosphate, such as adsorption, ion exchange and biological treatment 

(Kodera et al., 2013; Liu et al., 2012; Sengupta and Pandit, 2011). The 

introduction of new P-selective sorbents (e.g., hydrated metal oxide based 

sorbents) would generate alkaline phosphate concentrates due to the 

requirements of the sorbent regeneration with NaOH solutions (Sengupta 

and Pandit, 2011).  
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Chemical P recovery using Ca(II) and Mg/NH4 salts to precipitate or 

crystallize phosphate as NH4-Mg or Ca salts are the primary solutions 

postulated (Tran et al., 2014). To address this objective, the use of industrial 

wastes as alternative Ca(II) sources for Ca-phosphate precipitation has been 

suggested. Ca-phosphates can be recovered by crystallisation of Hap in 

appropriate reactors via pH and chemical dosing control, as reported 

previously (Elisabeth V. Munch and Keith Barr, 2001; Castro et al., 2013a; 

Hermassi et al., 2015). Recently, the use of seawater reverse osmosis and 

nanofiltration brines for the recovery of economically valuable constituents 

(Kim, 2011) or specifically as an inexpensive Mg(II) and Ca(II) source, and 

for struvite recovery from anaerobic digesters in municipal wastewater 

treatment plants was suggested (Telzhensky et al., 2011; Lahav et al., 2013).  

The significant Ca(II) concentration present in seawater brines (up to 0.4 g 

Ca/L) may enhance the precipitation of Ca-phosphate minerals (e.g., 

Ca3(PO4)2 and Ca5(PO4)3(OH), among others). However, the influence of 

high concentrations of Mg(II) up to 1 g Mg(II)/L is unknown. Salami et al. 

(Salimi et al., 1985) reported no detectable effect of Mg(II) ions on the growth 

of dicalcium phosphate dihydrate, but they did report that the Mg(II) ions 

appreciably decelerated the rate of octacalcium phosphate growth, most 

likely by adsorption at active growth. More recently, Cao and Harris (Cao and 

Harris, 2008) studied the interactive effects of CO3
2- and Mg(II) ions on Ca-

phosphate precipitation under conditions simulating dairy manure-amended 

soil leachate and phosphate recovery from manure wastewater. The 

inhibition effects of Mg(II) and the synergistic effect of both of the ions on Hap 

crystallinity and the precipitation rate promoted the formation of amorphous 

Ca-phosphate (ACP), presumably due to Mg(II) incorporation into the crystal 
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structure. However, the presence of Mg(II) or SO4
2- ions in the case of using 

industrial desalinated brines at concentrations higher than the calcium ions 

has not been studied. Moreover, few studies in literature are devoted to study 

the potential precipitation of Ca-Mg-phosphate minerals and the mechanism 

involved. 

It should be mentioned the work done by Golubev et al. (Golubev et al., 

1999, 2001) who postulated the formation of ((Ca, Mg)4H(PO4)3.xH2O) in the 

precipitation of phosphate with sea water and more recently Muster et al. 

(Muster et al., 2013) who postulated theoretically the formation of potential 

Ca-Mg phases. 

Therefore, the goal of this study is to evaluate the potential inhibition of Mg(II) 

on hydroxyapatite (Hap) precipitation during the valorisation of concentrated 

phosphate effluents when using synthetic industrial desalinated brines as the 

calcium source. Two brines with different Mg/Ca molar ratios of (2.2) and 

(3.3) were used. The precipitation/crystallisation of Ca- and/or Mg-phosphate 

processes at different constant pH values were evaluated in a batch reactor 

and the precipitate properties were also studied. The variation of the Ca- and 

Mg-phosphate nucleation profiles was used to elucidate the formation 

mechanism of Hap or Mg-phosphates with high Mg(II) concentration brine. 

 

2. Materials and Methods 

2.1. Experimental set-up and procedures 

The precipitation of phosphate (P(V)) was performed in a 2 L glass batch 

reactor at constant pH values (8, 9.5, 10.5, 11.5 and 12), following the 

conditions defined in a previously study (chapter 2). These alkaline pH values 

were selected based on the thermodynamic prediction for the precipitation of 
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Ca and Mg phosphates. Stirring at 250 rpm was achieved using a 

mechanical stirrer (IKA RW 20). The pH was monitored on-line using a pH 

potentiometer (Crison pH 28), when the pH was 0.1 units above or below the 

set point, 1 M HCl or 1 M NaOH was dosed using a peristaltic pump.  

Batch experiments were performed by mixing a 1.0 g P-PO4
3-/L solution with 

Mg/Ca brine. NaH2PO4 was used to prepare the phosphate solutions. 

Composition was fixed according to the expected conditions of the elution of 

ion exchange resins on the recovery of phosphate from treated waste water 

effluents.  

Two synthetic solutions with different Mg/Ca molar ratios (2.2 and 3.3) were 

prepared by mixing given amounts of NaCl, CaCl2.2H2O, Na2SO4 and 

MgCl2.6H2O. The compositions of both of the brines are summarized in Table 

3.1. The presence of antiscalants typically present on desalination brines 

(e.g. 1-2 mg/L) and the temperature were not included in the experimental 

design. 

Brine solution was added at a flow rate of 0.3 mL/min (using a Gilson 

Minipuls 3 peristaltic pump) to reach a Ca/Pa molar ratio of 1.67 suitable for 

Hap precipitation. Experiments were performed at room temperature (22±2 

°C) in duplicate. 

 

Table 3.1. Composition of industrial desalinated brines used in this study. 

 Ca 

(g Ca(II)/L) 

Na 

g Na(I)/L 

Cl 

g Cl-/L 

SO4
2- 

g SO4
2-/L 

Mga 

g Mg(II)/L 

pH0 

Mg/Ca (2.2) brine 0.23 23.5 34.2 3.4 0.30 8.8 

Mg/Ca (3.3) brine 0.41 18.9 16.4 20.1 0.85 8.9 

a The Mg content is low because Mg(II) was recovered as Mg(OH)2 
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Batch reactor aqueous samples were obtained during the experiments and 

then filtered through a 0.22-µm filter. The total concentrations of ions were 

determined by ion chromatography using an Ionex Liquid Chromatograph 

(ICS-1000). The accuracy of the measurements was higher than 95%. At the 

end of the experiments, the solid phase was removed from the reactor by 

filtration, washed with deionised water several times and dried at 60°C for 24 

h. 

 

2.2. Particle analysis 

The solid phase particle size distribution was analysed by LS with a Coulter 

diffraction particle size analyser (LS 13 320 Laser Diffraction Particle Size 

Analyser Instrument, Beckman Coulter). The crystal size distribution range 

(CSD) varied from 0.04 to 2000 µm. Particles were analysed as obtained 

directly from the batch reactor without any thermal treatment or particle size 

separation. 

The phase purity and crystallinity of powder were analysed by X-ray 

diffraction with λ CuKα radiation (λ= 1.54056 Å) at a scanning rate of 19.2 

and 57.6 s, a steep angle of 0.015° and 2θ over range of 4 to 60°. The solids 

in powder form were identified by the Joint Committee Powder Diffraction 

Standards (JCPDS) file and were compared with the Powder Diffraction File 

(PDF) no. 00-009-0432 for Hap (Ca10(PO4)6(OH)2), 00-011-0231 for 

stanfieldite (Ca4Mg5(PO4)6), 00-025-1373 for farringtonite (Mg3(PO4)2) and 

00-001-1011 for chlorapatite (Ca10Cl2(PO4)6) (International center of 

diffraction data, 2003).  

To elucidate the potential inhibition mechanism, a portion of the amorphous 

phases was heated at 1050°C for 4 h and cooled at room temperature to 
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enhance the crystallinity of the precipitated phases. It cannot been discarded 

that the thermal treatment promotes additionally to an increase of crystallinity 

a change on the crystal structure or the chemical composition. However, the 

information provided after this treatment is valued as it is improving the 

mechanisms discussion (Suchanek et al., 2004). 

 

2.3. Prediction of phosphate precipitation processes 

Phosphate precipitation processes using Mg/Ca brines were studied using 

the HYDRA-Medusa (Puidomènech, 2001) and the Visual Minteq codes 

(Gray-Munro and Strong, 2013). The measured P(V), Mg(II), Ca(II), SO4
2-, 

and Cl- concentrations were compared when required to those estimated 

using both of the codes. Although conditions in the precipitation tests could 

be far away from the equilibrium, measured and predicted values were used 

to identify the potential reactions and mechanism involved, especially when 

the solids formed were not appropriately characterized. 

The expected total phosphate concentration in solution at a given time 

([P(V)]t (mol/L)) was calculated using the mass balance given in Equation 1 

and considering the initial phosphate concentration [P(V)]0 (mol/L), the total 

metal concentration added at time t ([Mad]t (mol/L)) and the total measured 

metal concentration at time t ([M]t(mol/L), as follows:	

ሾܲሺܸሻሿ௧ ൌ ሾܲሺܸሻሿ଴ െ ሾܲሺܸሻሿ௖௢௡௦௨௠௘ௗ	ሺ௧ሻ ൌ
௏೟

ሺ௏బା௏೟ሻ
ൈ ሺሾܲሺܸሻሿ଴ െ ሺሾܯ௔ௗሿ௧ െ ሾܯሿ௧ሻ ൈ

௤

௥
ሻ  (1) 

where M represents Ca(II) or Mg(II), q and r are the stoichiometric 

coefficients of the mineral phosphate phase (Mr(PO4)q(s)), V0 (L) is the initial 

volume of P(V) in the reactor, and Vt (L) is the volume of solution in the 

reactor at time t.  
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The supersaturation index (SI) was calculated by Visual Minteq and using 

Equation 2, as follows:  

ܫܵ	 ൌ log	ሺூ஺௉
௄ೞ೚
ሻ           (2) 

where IAP is the ion activity product, and Kso is the solubility constant. 

Equilibrium solubility data for Ca-Mg-phosphates were critically reviewed 

from the HYDRA and PHREEQ C databases, and the selected values are 

shown in Table 3.2. 

 

Table 3.2. Crystalline phase identified in Mg-Ca-PO4 mixtures 

Compound Formula log Kso 

Hydroxyapatite (Hap) 
Brushite 
Octacalcium phosphate (OCP) 
Tricalcium phosphate (TCP) 
Monotite 
Chloroapatite 
Newberyite 
Cattiite 
Bobierrite 
Farringtonite 
Stanfieldite 
Brucite 
Collinsite 

Ca5(PO4)3OH 
CaHPO4.2H2O 
Ca4H(PO4)3.3H2O 
Ca3(PO4)2 
CaHPO4 
Ca5(PO4)3Cl 
MgHPO4.3H2O 
Mg3(PO4)2 22H2O 
Mg3(PO4)2.8H2O 
Mg3(PO4)2 
Ca4Mg5(PO4)6 

Mg(OH)2 

Ca2Mg(PO4).2H2O 

-57,8 
-19.0 
-48.0 
-28.9 
-19.3 
-46.9 
-5.8 

-23.1 
-25.2 
-23.3 
n.a. 

-11.2 
n.a. 

n.a.: Not available 

 

2.4. Fundamental precipitation inhibition effects on nucleation growth 

kinetics 

Lamer and Dinegar (LaMer.V. K. and Dinegar.R. H., 1950) described the 

formation of colloidal nanocrystals in a solution phase through a crystal 

nucleation process involving the following three steps: i) ions start to 

aggregate into nuclei via self-nucleation as the monomer concentration 

increases in the solution to supersaturation levels, ii) monomers continuously 
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aggregate on the pre-existing nuclei or seed, which leads to a gradual 

decrease in the monomer concentration, and iii) nuclei grow into nanocrystals 

of increasingly larger sizes until reaching an equilibrium state.  

The nucleation and growth steps are two relatively separated processes, and 

the formation of nuclei occurs only at a reactant concentration substantially 

higher than the saturation concentration (Cs); otherwise, growth of the 

existing nuclei dominates. The subsequent growth steps will strongly govern 

the final morphology of the nanocrystals (Destrée et al., 2006; Viswanatha 

and Sarma, 2007) and (Sarode et al., 2014). 

The free energy change required for the formation of nuclei (∆G) is 

determined by the free energy change for the phase transformation (∆Gv) 

and the free energy change for the formation of a solid surface (∆Gs) (Sun, 

2013). Then, the driving force (∆µ) required for Hap (Ca5(PO4)3OH(s)) 

crystallisation is defined by Eq. 3, as follows (Zettlemoyer, 1969): 

ߤ∆ ൌ ሺ1	݈݊ܶܭ ൅ ሻߪ ൌ ݈݊ܶܭ
ሾ௔൫஼௔మశ൯ሿఱሾ௔ሺ௉ைర

యషሻሿయሾ௔ሺைுషሻሿ

௄ೞ೚ሺு௔௣ሻ
     (3) 

where K is the Boltzmann constant, T (K) is the absolute temperature, Kso is 

the solubility product, ܽ is the activity of species i, and σ is the relative 

solution supersaturation index. 

At a given ∆µ, natural nucleation is a kinetically controlled process in which 

the Hap nuclei overcome a homogeneous nucleation barrier (∆Ghomo*) 

(Zettlemoyer, 1969) that could be estimated by Eq. 4, as follows: 

௛௢௠௢ܩ∆ 
∗ ൌ

ଵ଺గఊ೎೑
య Ωమ

ଷሾ୏் ୪୬ሺଵାఙሻሿ
         (4) 

where cf is the specific interfacial free energy between the crystals and the 

mother phase, and Ω is the volume of the growth units.  
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The nucleation induction time (ts and (Jiang et al., 2005) at different 

supersaturation levels could be used to characterize the kinetics of 

nucleation and could be calculated by Equation 5, as follows: 

௦ݐ݈݊	 ൌ
௞೙௙ሺ௠ሻ

ሾ୪୬ሺଵାఙሻሿమ
െ ݈݊൫ܸܴ௦ଶ ଴ܰ	݂"ሺ݉ሻሾ݂ሺ݉ሻሿଵ/ଶܤ൯      (5) 

where Rs is the crystal radius, N0 is the mineral density, B is the kinetic 

constant, V is the solution volume, and m is a factor that depends on the 

interaction and interfacial structural match between the crystalline phase and 

substrate; it is expressed as a function of the interfacial free energy 

difference among the different phases, as shown in Eq. 6 as follows (Jiang 

and Liu, 2004): 

	݉ ൌ
ೞ೑షೞ೎
೎೑

				ሺെ1 ൏ ݉ ൏ 1ሻ         (6) 

where sf, sc, and cf correspond to the interfacial tension between substrate 

and fluid, crystal and substrate, and crystal and fluid, respectively. 

Furthermore, f(m) is the interfacial correlation factor describing the reduction 

of the nucleation barrier ∆G*homo due to the occurrence of the substrate and 

is defined by Eq. 7; f”(m) is the pre-exponential term describing the ratio 

between the average effective collision in the presence and absence of 

substrate and is defined by Equation 8. Finally, kn is the nucleation constant, 

which remains constant under a given condition m, and is defined by Eq. 9. 

 ݂ሺ݉ሻ ൌ ଵ

ସ
ሺ2 െ 3݉ ൅݉ଷሻ      (7) 

	݂′′ሺ݉ሻ ൌ ଵ

ଶ
ሺ1 െ ݉ሻ     (8) 

k୬ ൌ
ଵ଺஠ஓౙ౜

య Ωమ

ଷሺ୏୘ሻయ
     (9) 

For a crystalline phase m, f(m) takes only those values corresponding to 

some crystallographically preferred orientations; then, it is possible according 
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to Eq. 5, to obtain a set of intercepting straight lines by plotting ln ts versus 

1/[ln (1+σ)]2. These lines with different slopes knf(m) in the different regimes 

indicate that nucleation is governed by a sequence of progressive 

heterogeneous processes, as described by Lamer and Dinegar (1950) 

(LaMer.V. K. and Dinegar.R. H., 1950). 

 

3. Results and Discussion  

3.1. Influence of pH on the phosphate recovery with Ca/Mg brines 

Precipitation of Hap with Mg/Ca (2.2) and Mg/Ca (3.3) brines was studied as 

a function of pH (8, 9.5, 10.5, 11.5 and 12). The change of total phosphate 

concentration and recovery (%) as a function of reaction time is shown in 

Figure 3.1 in which the dotted lines represent the expected total phosphate 

concentration if any precipitation reaction was involved. Phosphate recovery 

efficiency in the richest Mg brine (Mg/Ca 3.3) (Figure 3.1c and d) is larger at 

pH up to 10.5. Higher recoveries were measured in only 18 hours, while for 

the Mg/Ca (2.2) brine were observed after 34 hours (Figure 3.1a and b). A 

similar trend was reported by Su et al. (Su et al., 2014) when precipitating 

phosphate with magnesium chloride solutions (Mg/P (2.1)) in alkaline media 

(pH 10-12) in a fluidized bed reactor. 

The lowest phosphate recoveries (20%) were reported at pH 8 for Mg/Ca 

(2.2) brine and at pH 8 and 9.5 for Mg/Ca (3.3) brine. For both of the brines 

(at lower pH) at the end of the experiment after filtration, the solutions 

presented turbidity, and no precipitate was recovered on the 0.22-µm filter. 

This result was associated with the inhibition of the nucleation process and 

the formation of clusters of the nanometre size, as discussed in Section 3.3. 
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Figure 3.1. Effect of pH on a) the P(V) concentration variation and b) the P(V) 

recovery by precipitation using the Mg/Ca (2.2) brine, c) the P(V) 

concentration variation and d) the P(V) recovery by precipitation using the 

Mg/Ca (3.3) brine (dotted line represents the expected P(V) concentration if 

any precipitation). 

 

The increase of phosphate recovery efficiency with increasing pH is 

explained by the change of P(V) speciation. At pH 8, 45% of P(V) is present 

in solution as HPO4
2-, and less than 4% is present as PO4

3- for the initial 

additions of brine with 12-8 mmol/L P(V) concentrations. However, at pH 

11.5, 41% of P(V) is present as PO4
3- and 20% as HPO4

2-, and a higher SI is 

achieved.  

0

2

4

6

8

10

12

0 500 1000 1500 2000

P(
V)

 (m
m

ol
/L

)

Time (min)

pH 8
pH 9.5
pH 10.5
pH 11.5
pH 12
P(V) Predicted

0

20

40

60

80

100

0 500 1000 1500 2000

P(
V)

 R
ec

ov
er

y 
(%

)

Time (min)

pH 8
pH 9.5
pH 10.5
pH 11.5
pH 12

0

2

4

6

8

10

12

0 200 400 600 800 1000 1200

P(
V)

 (m
m

ol
/L

)

Time (min)

pH 8
pH 9.5
pH 10.5
pH 11.5
pH 12
P(V) Predicted

0

20

40

60

80

100

0 200 400 600 800 1000 1200

P(
V)

 R
ec

ov
er

y 
(%

)

Time (min)

pH 8
pH 9.5
pH 10.5
pH 11.5
pH 12

c

b	

a	

d



Chapter 3. DETRIMENTAL EFFECTS OF MG (II) 

	 	 119

As demonstrated by Gunawan et al. (Gunawan.E.K, Warmadewanthi, 2010), 

the degree of supersaturation and the type of precipitates formed depend on 

the pH. A higher pH leads to higher SI and accelerates the precipitation 

reaction as well as increasing its efficiency. 

 

3.2. Influence of brine composition on Hap formation and precipitation 

inhibition  

3.2.1. Recovery of phosphate by Mg/Ca (2.2) brines 

The change of the Mg(II), Ca(II), SO4
2- and Cl- contents as a function of 

precipitation reaction time is plotted in Figure 3.2 in which the solid lines 

represent the total ion concentration added to the reactor throughout the 

experiment, which is the concentration expected to be measured for a 

species not involved in any precipitation or solid formation reaction. 

As can be seen in Figure 3.2, Mg(II) concentration is reduced to less than 0.2 

mmol/L, independent of the pH value, while the Ca(II) concentrations are 

maintained below 1 mmol/L, with the exception of pH 8, where values are 

equal to the total added Ca(II) concentration. In the case of SO4
2-, the 

measured concentrations agree with the total added concentration, except for 

the experiment at pH 8 with values below 10%. For Cl-, the measured 

concentrations showed a reduction from 700 to 400 mmol/L. This behaviour 

confirms that these ions (Mg(II), Ca(II) and Cl-) are involved in the 

precipitation reactions. 

The variation of the SI of the expected mineral phases along the reaction 

time, such as Hap, tricalcium phosphate (TCP), octacalcium phosphate 

(OCP), monotite and brushite for Ca(II) as well as Mg(OH)2 and 

Mg3(PO4)2(s) for Mg(II) is shown in Figure 3.3 for pH 11.5 and 8. At higher 
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pH values (9.5 and 11.5), the precipitation of Ca-phosphates is favoured (up 

to 90% of P(V) recovery at pH 11.5, as shown in Figure 3.1). 

 
Figure 3.2. Variation concentration of major components (Mg(II), Ca(II), SO4

2- 

and Cl-) in experiments under different pH conditions using the Mg/Ca (2.2) 

brine (solid lines are the total ion concentration added throughout the 

precipitation experiment). 

 

The SI of the Ca-phosphate mineral phases were close to zero for brushite 

and monotite, close to 4 for TCP and OCP, and close to 18 for Hap (Figure 

3.3a). Therefore, nucleation of Hap, the most stable phase among the Ca-

phosphates, is expected to occur instantaneously (Edzwald.J, 2010). 

Typically, supersaturation of Hap is achieved by a simple increase in pH 

(Jones, 2001), and then it follows a three-stage process in which the initially 

formed amorphous ACP may be redissolved and form Hap nuclei followed by 
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formation of hydroxyapatite (Boskey A.L. and Posner A.S., 1973; Meyer, 

1983; Sugiura et al., 2011). 

 

Figure 3.3. Saturation index (SI) for several minerals in the reactor for brine 

(Mg/Ca=2.2) at a) pH 11.5 for Ca-phosphate minerals, b) pH 8 for Ca-

phosphate minerals and c) pH 8 and 11.5 for Mg-phosphate minerals. 
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XRD analysis of the precipitates collected in both of the experiments at pH 

9.5 and 11.5 reveals that the formed Ca-phosphates were amorphous, as 

shown by a broad peak between 23° and 35° (2θ) (Figure 3.4a). These 

patterns are typical of ACP (Alvarez et al., 2004), indicating that Mg(II) 

promoted the formation of the relatively unstable ACP, in the form of ACP-

adsorbed Mg(II), and then hindered the expected Hap formation according to 

the saturation indexes (Cao et al., 2007; Ding et al., 2014).  

 

Figure 3.4. XRD spectra of the particles obtained in the stirred batch reactor 

with Mg/Ca (2.2) brine a) ACP at pH 9.5 and 11.5 and b) Crystal solid at 

different pH values after thermal treatment. 

 

Yang et al. (Yang et al., 2011a) reported that Mg(II) ions reduce the 

nucleation rate of Hap in Ca-phosphate supersaturated solutions by 

stabilizing the gel-like ACP phase and increasing the induction and 

transformation time. Ding et al. (Ding et al., 2014) described that Mg(II) ion 

adsorption onto ACP is more effective than the phase incorporation at 

inhibiting phase transformation from ACP to Hap. Additionally, at these pH 

values, sulfate was not involved in the formation of solid phases (measured 

values agree with the total added concentration), and it is present in solution 

primarily as complexed species (e.g., MgSO4(aq) and CaSO4(aq)), avoiding the 
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precipitation or re-dissolution of potential Ca-phosphate precipitates (Liu et 

al., 2012).  

The SEM–EDX analysis of the amorphous solids confirmed the major 

presence of precipitates containing Ca–P–O and to a minor extent, Mg(II) 

and Cl-. Considering that the Mg(II) and Ca(II) removal ratios for both of the 

pH values were higher than 90%, the solubility data of different Ca/Mg-

phosphate mineral phases (Mg3(PO4)2(s), Ca5OH(PO4)3(s)) were used to 

predict the expected P(V) concentration throughout the experiment at each 

given pH. For both of the pH values Figures 3.5b and c), the measured P(V) 

concentrations were better predicted when assuming the formation of Mg-

phosphate minerals than when assuming the formation of Ca-phosphate 

minerals. 

The XRD analysis of the amorphous precipitate at pH 9.5, after treatment at 

1050°C to increase its crystallinity, identified the presence of a Ca-phosphate 

mineral (Hap (Ca5OH(PO4)3(s)), a Ca-Mg-phosphate mineral (stanfieldite 

(Ca4Mg5(PO4)6)) and a Mg-phosphate mineral (farringtonite Mg3(PO4)2) 

(Figure 3.4b). In the case of the amorphous precipitate at pH 11.5, in addition 

to the presence of Hap and stanfieldite, a Ca-phosphate-chloride mineral 

(chlorapatite (Ca5Cl(PO4)3(s)) was detected (Figure 3.4b). Therefore, the 

consumption of chloride in the precipitation reactions was confirmed (Figure 

3.2), and it was also identified by EDX analysis, as described in Table 3.3. 

In the experiment at pH 8 because Ca(II) was not consumed, and Mg(II) was 

completely consumed, the P(V) recovery (up to 20%) should be associated 

with the formation of Mg-phosphate or magnesium hydroxide. The SI 

indicates that the solution is not supersaturated in Mg(OH)2(s) (Figure 3.3c); 

thus, the recovery of P(V) should be associated with the formation of Mg-
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phosphate and, potentially, with the formation of minerals containing sulfate 

because the measured values are lower than the total added concentration. 

A comparison of the measured and expected P(V) concentration provides a 

good prediction of the measured P(V) concentration profile considering the 

formation of Mg-phosphate, as shown in Figure 3.5a. 

 

Table 3.3. SEM-EDX analysis of precipitates recovered from batch reactors 

using Mg/Ca (2.2) and Mg/Ca (3.3) brines at pH values of 9.5 and 11.5. 

        Elements 
 
Experiments 

O Mg P S Cl Ca 

Mg/Ca 2.2 at pH 9.5 56.0 4.9 16.1 0.4 2.2 20.4 

Mg/Ca 3.3 at pH 9.5 52.8 7.9 13.8 0.7 13.3 11.5 

Mg/Ca 2.2 at pH 11.5 55.1 11.1 15.6 0.7 6.9 10.6 

Mg/Ca 3.3 at pH 11.5 64.8 15.1 15.1 0.5 0.5 4.0 

 
All of the results in weight %, processing option; All of the elements analysed 

(normalised) 

 

Although solutions were supersaturated in Hap, OCP, TCP, brushite and 

monotite (Figure 3.3b), the observed Ca-phosphate mineral inhibition could 

be due to the formation of CaSO4 as a precursor because sulfate is present 

at a substantially higher concentration than phosphate or due to the inhibition 

of Mg(II) ions. At the end of the experiment, no solid was recovered after 

solution filtration because the size of the precipitate is expected to be of 

nanometre size (ca. below 1 nm); thus, it was not possible to confirm its 

chemical or mineral composition or the potential inhibition effect of sulfate 

ions. 
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Figure 3.5. Variation of experimental and predicted P (V) concentrations 

assuming the formation of the Ca- and/or Mg-phosphate mineral phase at 

different pH values using Mg/Ca (2.2) brine at: a) pH 8, b) pH 9.5 and c) pH 

11.5. 
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3.2.2. Recovery of phosphate by Mg/Ca (3.3) brines 

The change of the major ion concentration as a function of reaction time at 

different pH values is plotted in Figure 3.6. Mg(II) concentration was reduced 

from 15 mmol/L to less than 5 mmol/L at the end of the experiments at pH 

9.5 and 11.5. The Ca(II) concentration was reduced to values of 1 mmol/L for 

the experiment at pH 9.5, while for the test at pH 8 and 11.5, the measured 

values approached the total added Ca(II) concentration (4 mmol/L), indicating 

that Ca(II) did not participate in any precipitation reaction. Sulfate 

concentration was reduced from 80 mmol/L to 60 mmol/L at the end of the 

experiments, indicating that sulfate was involved in the precipitation 

reactions. The measured chloride concentrations approached the total added 

concentration, indicating that it was not involved in any precipitation reaction, 

contrary to the observed behaviour for Mg/Ca (2.2) brine. 
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Figure 3.6. Variation of major components (Mg(II), Ca(II), SO4
2- and Cl-) in 

the batch experiments under different pH conditions using the Mg/Ca (3.3) 

brine (solid lines are the total ion concentration added along the precipitation 

experiment). 

 

XRD analysis revealed that the solid product collected at pH 9.5 was 

amorphous, while at pH 11.5, cattiite (Mg3 (PO4)2.22H2O) was detected 

(Figure 3.7). These results confirm the profiles of Ca(II) and Mg(II) shown in 

Figure 3.6 in which the Ca(II) concentration was not reduced as the 

experiment progressed, as revealed when it was identified by EDX analysis, 

as summarized in Table 3.3. 

 
Figure 3.7. XRD spectra of the particles produced in the stirred batch reactor 

with Mg/Ca (3.3) brine at a) pH 11.5 and 9.5 and b) pH 9.5 amorphous solid 

and c) pH 9.5 after thermal treatment of amorphous precipitates. 
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At pH 11.5, the solution is supersaturated in Hap; however, the higher initial 

magnesium concentration inhibited its precipitation, and cattiite was found 

(logKso= 23.1) (Taylor et al., 1963) as shown in Figure 3.7a. Note that cattiite 

was formed in the presence of a high Mg(II) concentration instead of the less-

soluble solid Hap (logKso= 57.8) due to the effect of Mg(II) ions on the field 

stability of the solids, promoting the precipitation of more soluble solids 

(Jenkins and Ferguson, 1971; Cusick et al., 2014). The measured P(V) 

concentrations were well predicted assuming the formation of cattiite, as 

shown in Figure 3.8. 

The amorphous precipitate at pH 9.5 shows a broad peak between 23° and 

35° (2θ) (Figure 3.7b) of ACP. The SEM–EDX examination of the amorphous 

sample detected the presence of Ca-Mg–P–O solids and the minor presence 

of S. The XRD analysis of the treated sample at 1050°C identified the 

presence of stanfieldite (Ca4Mg5(PO4)6)) (Figure 3.7c), thus confirming the 

consumption of Mg(II) and Ca(II), as described in Figure 3.6. The higher 

Mg(II) concentration inhibits the Hap precipitation, favouring the formation of 

mixed Ca-Mg-phosphates, such as stanfieldite (Ca4Mg5 (PO4)6), as detected 

by XRD. Mg(II) stabilizes ACP, which is the precursor phase during Hap 

formation from highly supersaturated solutions (Yang et al., 2011). It was 

also described that Mg(II) could be included in the precipitated solid and 

could modify the solids by its smaller size and greater tendency to bond 

covalently (John and Mccarty, 1969). Lahav et al. (Lahav et al., 2013) 

postulated that the complexation of Ca(II) ions in the precipitation of P(V) 

using seawater desalination brines reduces their free concentrations, thus 

reducing their precipitation potential and reducing the purity of the Ca-

phosphates. 
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Figure 3.8. Variation of experimental and predicted P (V) concentrations 

assuming the formation of the Ca- and/or Mg-phosphate mineral phase at 

different pH values using Mg/Ca (3.3) brine at: a) pH 8, b) pH 9.5 and c) pH 

11.5. 
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The analysis of solids by SEM-EDX detected the presence of S and Cl, 

indicating their presence in the precipitates obtained at basic pH; however, 

XRD analysis did not detect any crystalline form. 

For the experiment at pH 8, Ca(II) and Mg(II) were partially removed 

(approximately 10%) with a phosphate recovery of up to 20%. 

The SI analysis indicated that the solution is not supersaturated in 

Mg(OH)2(s), and the removal of P(V) should be associated with the formation 

of Ca-Mg-phosphates and, potentially, with minerals containing sulfate, 

because the measured values were lower than the total added concentration. 

A good prediction of the measured concentrations was obtained when 

considering the formation of Mg- and Ca-phosphates, as shown in Figure 

3.8a. Although solutions were also supersaturated in OCP, TCP, brushite 

and monotite, the observed inhibition could be either due to Mg(II) ions or the 

formation of CaSO4aq of MgSO4aq species because sulfate is present at a 

substantially higher concentration than phosphate. As previously described 

for the Mg/Ca (2.2) brine, after solution filtration, no solids were recovered 

due to the nanometre size of the formed clusters, and it was not possible to 

confirm its chemical or mineral composition or the potential inhibition effect of 

sulfate ions.  

 

3.3. Evaluation of precipitation inhibition: Effects on nucleation growth 

kinetics 

According to the XRD results, it was observed that nucleation of Hap begins 

with the formation of the ACP precursor during the early induction steps, and 

after a relatively long induction period, it proceeds to the appearance of 

nuclei. However, in the presence of Mg(II), the formation of Mg-phosphate 
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ion-pairs reduces the P(V) species activity, thereby reducing the relative 

supersaturation and prolonging the induction period (Yang et al., 2011). 

Figure 3.1 shows that the change of the P(V) concentration and recovery rate 

for pH values between 9.5 and 12 for Mg/Ca (2.2) brine and between 10.5 

and 12 for Mg/Ca (3.3) brine is different than for the experiments at pH 8 for 

Mg/Ca (2.2) brine and at pH 8 and 9.5 for Mg/Ca (3.3) brine. 

The presence of meta-stable pre-nucleation clusters (PNCs) decreases the 

energetic barrier, thereby facilitating nucleation (pH 9.5 and 11.5), while at 

pH = 8, stable clusters are considered to increase the barrier, thus inhibiting 

nucleation (Gebauer et al., 2011 and 2014). 

Phosphate precipitation can be evaluated considering the variation of the SI 

at pH 8, 9.5 and 11.5 (Figure 3.9) and by using the LaMer model (Eqs 3 to 9, 

section 2.4) describing the crystallisation processes as three well-defined 

stages. At pH 11.5, there was an initial stage in which no precipitation 

occurred; in the second stage in which the SI reached values from 17 to 18.5, 

homogenous nucleation occurred; and the third stage is completed with the 

aggregation of small particles of the homogeneously nucleated material and 

their heterogeneous deposition (Lagno and Demopoulos, 2005). For the 

experiment at pH 9.5 from the initial additions, a supersaturation condition 

was observed (SI>18.5), and then the homogenous nucleation and final 

aggregation stages followed the trend defined at pH 11.5. The observed 

behaviour for the experiment at pH 8 (no solid was recovered) is associated 

with the formation of stable clusters, increasing the energetic barrier, 

hindering nucleation and achieving heterogeneous nucleation. The longer 

induction time for nucleation as the Mg(II) ions extend the induction and 

transformation time (Yang et al., 2011a; Ding et al., 2014;) promotes the 
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formation of nanometre-sized nuclei (Posner’s clusters of 0.7 to 1.0 nm 

(Onuma and Ito, 1998)). These nanometre-sized crystals could not be 

recovered by the 0.22-µm filter. 

 

Figure 3.9. Supersaturation index (SI) for Ca/Mg (2.2) brine with respect to 

Hap at different pH values (8, 9.5 and 11.5) as a function of precipitation time 

in the batch reactor. 

 

To evaluate the influence of the pH and the supersaturation on the Hap 

nucleation kinetics, the plot of ln(ts) versus 1/[ln(1+σ)]2 was constructed for 

experiments with Mg/Ca (2.2) brine at pH 8 and 9.5, as shown in Figure 3.10. 
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Figure 3.10. Evaluation of the nucleation kinetics using the dependence of 

ln(ts) versus 1/[ln (1+σ)]2 (Jiang et al., 2005) for Hap nucleation with Mg/Ca 

(2.2) brine at different pH values (8 and 9.5). 

 

According to Eq. 5 the charge in the crystalline phase structures can be 

analysed for a given system (kn and B are constant) in terms of the variation 

of the slope (knf(m)). As shown in Figure 3.10, the depicted functions can in a 

first approach, be fitted by two intersecting straight lines with two slopes, 

which divide the supersaturation space into two regimes. 

For both of the pH values (8 and 9.5), the function has a positive slope 

(regime 2) reaching a transition point (indicated by a vertical dotted line) 

followed by a plateau (regime 1) with a decrease of the slope. When 

comparing both of the experiments, a case of nucleation inhibition was 

identified at pH 8, as was postulated by Jian et al. (Jiang et al., 2005) who 

determined the inhibition effect by the increase in the slope and the decrease 

of the intercept. On the other hand, for the experiment at pH 9.5, a case of 

nucleation promotion was identified, with a factor of (knf(m2)= 243), referring 

to regime 2, which was much lower than that reported at pH =8 

(knf(m2)=760). This result indicates that at pH 8, it is possible to reduce the 

nucleation barrier by improving the interfacial structure correlation (Gebauer 

et al., 2014; Jiang et al., 2005; Lagno and Demopoulos, 2005; Onuma and 

Ito, 1998). Similar results were obtained for the Mg/Ca (3.3) brines. 

The particle size distribution in terms of volume and the number of particles 

for both of the Mg/Ca brines at pH 11.5 is shown in Figure 3.11. The number 

of particles with a mean size (d50) increases with the Mg(II) concentration 

from 310 nm to 1400 nm for the Mg/Ca (2.2) and Mg/Ca (3.3) brines, 
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respectively. The precipitate particle size analysis in terms of volume 

revealed the formation of aggregates with an average equivalent diameter of 

approximately 113 µm and 62 µm for the Mg/Ca (2.2) and Mg/Ca (3.3) 

brines, respectively. The initially formed particles are smaller, thus having a 

higher tendency to aggregate due to their amorphous state and small size 

(Castro et al., 2013b).  

 

 

Figure 3.11. Particle size distribution in a) number and b) volume of particles 

obtained from the phosphate precipitation test at a constant pH of 11.5 for 

Ca/Mg (2.2) and Ca/Mg (3.3) brines. 

 

Excess Mg(II) negatively affects the final powder crystal sizes because it 

causes a higher supersaturation, consequently increasing the nuclei 

population density, which suggests a higher nucleation rate. Therefore, 

a	

b	
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crystals reach larger sizes, as described by (Hutnik et al., 2013) for Hap 

crystallisation in the presence of excess of Mg(II) ions. The obtained 

precipitates consist of a population of nanometre-sized primary particles and 

a population of micrometre-sized aggregates. The aggregates most likely 

result from the aggregation of primary nanoparticles because small particles 

have a high surface area-to-volume ratio, resulting in a high surface tension, 

which tends to diminish by adhering to other particles. (Luque de Castro and 

Priego-Capote, 2007). 

 

4. Conclusions 

In this study, the influence of Mg(II) ions on phosphate recovery by Hap 

precipitation from basic solutions with desalinated industrial brines containing 

mixtures of Ca and Mg was confirmed. 

For both of the Mg/Ca (2.2 and 3.3) brines at higher pH values (9.5 and 

11.5), the precipitation inhibition of Hap was observed, and although 

solutions were supersaturated, the process proceeded with the formation of 

typically amorphous mineral phases (e.g. Ca, Mg, and Ca-Mg-phosphates). 

The presence of meta-stable clusters decreases the energetic barrier, 

thereby facilitating nucleation (pH 9.5 and 11.5). In the case of experiments 

at pH = 8, formation of stable clusters increased the barrier, thus promoting 

nucleation inhibition, and in this case, nanocrystals were formed, and solids 

were not recovered after filtration with a 0.22 μm filter.  

The presence of pre-nucleation clusters in under-and super-saturated 

solutions and their participation in the phase separation process were 

proposed. Mg(II) severely inhibited precipitate crystallinity and the 

precipitation rate, allowing formation of ACP. This result is presumably due to 
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Mg(II) incorporation into the Ca(II)-phosphate structure to form a Mg(II)-

substituted structure that crystallized to stanfieldite Ca4Mg5(PO4)6 upon 

thermal treatment to increase crystallinity. According to literature, this mineral 

has not been postulated previously in the precipitation of phosphate solutions 

with Mg/Ca brines. The surface adsorption of Mg(II) (rather than the 

incorporated Mg(II)) played a critical role in regulating the transformation rate 

of ACP to Hap. Mg(II) altered the stability of the mineral phases, and the 

more soluble solids were precipitated (e.g., Mg3 (PO4)2.22H2O) at pH 11.5. 

Sulfate ions have a high capacity to form complexes with Ca(II) and Mg(II), 

and participated in the precipitation reactions. However, although sulfur was 

detected by EDX, no mineral containing sulfate was identified by XRD. 

The use of industrial desalinated brines containing mixtures of Cd and Mg 

could be a suitable source for the recovery of phosphate in the form of mixed 

Ca-Mg phosphates suitable for the chemical industries producing fertilizers. 
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Fly Ash as a reactive sorbent for phosphate 
removal from treated wastewater as a 

potential slow-release fertiliser 
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There is increasing interest in recovering phosphate (P(V)) from secondary 

sources, such as streams in WWTPs, for potential use as fertilisers, reducing 

the environmental impacts of excess P(V) on receiving waters and providing 

alternative P(V) sources. The goal of this work was to provide an 

understanding of phosphate removal by FA from coal power plants. 

Phosphate removal using Ca-rich FA was evaluated in terms of (a) sorption 

equilibrium, (b) sorption kinetics under the expected pH values and P(V) 

concentrations in wastewater effluents, and (c) P(V) availability of the FAs in 

agricultural applications. Batch experiments were conducted using synthetic 

P(V) solutions with various compositions to determine the processes of its 

removal from aqueous solutions and its removal rates. At the pH values (6 to 

9) expected for wastewater effluents, P(V) removal proceeds as a 

combination of CaO(s) dissolution and brushite (CaHPO4(s)) formation on the 

FA particles; this process avoids the formation of relatively insoluble Ca 

phosphates, such as, Hap with limited fertilising properties. High P-loadings 

were achieved (up to 50 mgP-PO4/g FA (5% P(V) by weight)) at a pH of 8. 

The removal kinetics data were well described as a diffusion-based process 

of phosphate ions (H2PO4
- and HPO4

2-) on FA particles, and the CaO(s) 

dissolution process was discarded as the rate-controlling step. The P(V) 

availability from loaded samples was determined via an agronomical test with 

NaHCO3 solutions with P(V) release ratios of 10 to 30 mgP-PO4/g in FA, 

confirming the appropriateness of this material as a fertiliser, even in 

calcareous soils. 
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1. Introduction 

Increasing energy demands worldwide have led to increased utilisation of 

coal and, thus, the production of large quantities of FA as a waste product 

(Hui and Chao, 2006; Yan et al., 2007; Pengthamkeerati et al., 2008). In 

2011, coal-fired generation accounted for 29.9% of the world’s electricity 

supply, and its share is anticipated to reach 46% by 2030. Sustained prices 

for oil and natural gas make coal-fired generation relatively economically 

attractive, particularly in nations with rich coal resources, such as China, the 

USA, and India (Lior, 2010; Yao et al., 2015). Recycling CFA can be a good 

alternative disposal method and could provide significant economic and 

environmental benefits. The global average FA utilisation ratio is estimated to 

be nearly 25% (Bhattacharjee and Kandpal, 2002; Wang et al., 2008). Most 

FA is alkaline, and its surface is negatively charged at high pH values; thus, it 

could be used to remove metal ions from solutions by precipitation (Penilla et 

al., 2006) or adsorption in water and wastewater treatment (Pengthamkeerati 

et al., 2008; Penilla et al., 2006; Wu et al., 2006). Furthermore, it contains a 

certain amount of unburnt carbon, which has a high adsorption capacity for 

organic compounds (Yao et al., 2015). 

P is an important element in industry and agriculture and is frequently 

present in domestic, industrial, and farming wastewaters. In the last decades, 

phosphate has been considered an environmental concern because of its 

role in the eutrophication of water bodies (de-Bashan and Bashan, 2004; Ma 

and Zhu, 2006). Currently, it is becoming increasingly economically 

concerning because its natural deposits are diminishing because of the 

continuous growth of the world population. Domestic, industrial, and farming 

wastewaters and sludge containing P (less than 1% by weight) are 
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considered secondary P sources that should be mined (Lu et al., 2009). In 

the European Union, P has been included in the list of priority elements, and 

new technological methods to recover P from secondary sources are being 

promoted. Most such methods have focused on the recovery of P from solid 

wastes (e.g., incineration ashes), whereas for the recovery of P from liquid 

wastes, most methods have focused on the recovery of MAP (struvite) from 

concentrated streams. 

Few efforts have been devoted to P recovery from diluted streams, although 

various techniques for phosphate removal are available (Zelmanov and 

Semiat, 2014). Because chemical precipitation and coagulation processes 

are not cost effective and because polymeric ion exchangers are not 

applicable because of the presence of dissolved and particulate organic 

matter, phosphate-removal/recovery solutions have focused on the use of 

low-cost inorganic materials with high pollutant-removal efficiencies in terms 

of equilibrium and kinetics. CFA has attracted substantial attention as a 

potential material for phosphate removal because it is easily available and 

cost effective (Tsitouridou and Georgiou, 1988; Gray and Schwab, 1993; 

Ahmaruzzaman, 2010). The presence of Al, Fe, Ca, and Mg oxides imbues 

FA with suitable properties for phosphate removal by complexation reactions 

with the metal oxides or the precipitation of Ca/Mg phosphates (Grubb et al., 

2000; Pengthamkeerati et al., 2008). Cheung and Venkitachalam (Cheung 

and Venkitachalam, 2000) associated the removal of phosphate by FA 

containing high- and low-Ca contents with Ca phosphate precipitation. 

Johansson and Gustafsson (Johansson and Gustafsson, 2000) proposed the 

formation of amorphous Ca phosphate and/or octacalcium phosphate as the 

major P-removal mechanism and suggested the direct formation of Hap as 
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the predominant phosphate-removal mechanism. Although it is generally 

accepted that phosphate removal by FA involves adsorption and/or 

precipitation mechanisms, the interaction between phosphate and Ca 

remains incompletely described (Lu et al., 2009).  

Additionally, little work has been done to obtain a solution for the exhausted 

ash, and recently, the possibility of using these materials to improve the soil 

quality of areas degraded by mining or civil construction infrastructure or for 

forestry applications has been proposed (Yao et al., 2015). However, 

because of the low solubility and availability of the Ca phosphate mineral that 

is typically precipitated (Ca5(PO4)3OH(s), logKso=116.8) (Parvinzadeh Gashti 

et al., 2013), efforts have been made to prepare relatively soluble phosphate-

containing minerals, such as brushite (CaHPO4.2H2O, logKso=6.59) 

(Dorozhkin, 2012)), by promoting the growth of mineral forms on the surface 

of Ca-containing sorbents with properties suitable for slow-release fertilisers. 

These materials include Ca silicates, such as wollasonite (Liu and Ding, 

2002); Ca-Al layered double hydroxide (Watanabe et al., 2010; Zhou et al., 

2012); natural zeolites (Guaya et al., 2015); and FA (Xu et al., 2010). 

However, the utilisation of powdered inorganic adsorbents in water treatment 

processes for selective P removal and, subsequently, as slow-release 

fertilisers remains under development, and the equilibrium and kinetic 

performances remain to be characterised. 

In this study, two different types of FA from two different coal power stations 

with different CaO(s) contents (Los Barrios (FA-LB (2.8% w)) and Teruel (FA-

TE (4.8% w))) were evaluated as adsorbents for phosphate recovery from 

aqueous solution. The equilibrium and kinetic performances for phosphate 

sorption were studied and characterised by varying the experimental 
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conditions, such as the solution pH and initial phosphate concentration. The 

phosphate-sorption mechanisms were evaluated using a speciation method. 

Although the phosphate-removal mechanism is complex, the results are 

presented in terms of equilibrium isotherms and kinetic diffusion parameters.  

 

2. Materials and methods  

2.1. Batch equilibrium experiments of FA dissolution 

FA samples (0.2 g) from Teruel (FA-TE) (Andorra Coal Power Plant, Power 

company ENDESA, Spain)and Los Barrios (FA-LB) (Los Barrios Coal Power 

Plant, Power company SE, Spain) were mechanically mixed in special 

polyethylene stoppered tubes with demineralised water (10 mL) at different 

initial pH values (6‒9) and room temperature (21±1°C) until equilibrium was 

achieved (24 h). The influence of the initial pH on FA dissolution was 

evaluated by varying the initial pH with 0.1-mol/L HCl or NaOH solution. After 

phase separation with a 0.2-µm syringe filter, the equilibrium pH was 

measured using a pH electrode (Crison GLP22); the total Ca, Na, Mg, and K 

concentrations were measured by ion chromatography; and the total Si, Al, 

Fe, P, and Ti concentrations were determined by inductively coupled plasma 

mass spectrometry (ICP-MS) or atomic emission spectrophotometry (ICP-

AES) (X-Series II, Thermo Fisher SCIENTIFIC). 

 

2.2. Batch equilibrium experiments of phosphate removal 

Phosphate solutions were prepared by dissolving a weighed amount of 

Na2HPO4.2H2O in water obtained from a Milli-Q-Academic-A10 apparatus 

(Millipore Co. France). FAs from Teruel (FA-TE) and Los Barrios (FA-LB) (0.2 

g) were mechanically mixed in special polyethylene stoppered tubes with an 
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aqueous phosphate solution (10 mL) at different initial P(V) concentrations 

(100–16000 mgP-PO4/L) at room temperature (21±1 ºC) until equilibrium was 

achieved (24 h). The influence of pH on the phosphate sorption was 

evaluated by varying the initial pH with 0.1-mol/L HCl or NaOH solution. After 

phase separation with a 0.2-µm syringe filter, the equilibrium pH was 

measured using a pH electrode (Crison GLP22), and the total phosphate 

concentration was measured by ion chromatography (Thermo Scientific 

Dionex ICS-1100) or visible absorption spectrophotometry (UVmini-1240). 

The P(V) equilibrium sorption capacity was determined using Eq. 1. 

௘ݍ ൌ
ሺ஼బି஼೐ሻ	௩

௠ೞ
           (1) 

where C0 (mg/L) and Ce (mgP-PO4/L) represent the initial and equilibrium 

total P(V) concentrations, respectively; v (L) is the aqueous solution volume; 

and ms (g) is the mass of the FA sample. 

2.3. Batch kinetic experiments of phosphate removal 

Batch kinetic experiments were performed by adding 0.2 g of FA to solutions 

containing 100 and 500 mgP-PO4/L. The tubes were mechanically shaken at 

200 rpm and room temperature (21±1°C), and samples were withdrawn 

sequentially at specified times. All tests were performed in triplicate, and the 

average values are reported.  

The samples were centrifuged for 10 min and filtered with cellulose nitrate 

membrane filters (45 μm). The total phosphate concentration and pH of the 

initial and remaining aqueous solutions were measured using 

spectrophotometric colourimetry (Kitson, R.E; Mellon, 1944).  
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2.4. Speciation of phosphate-loaded FA samples. 

The speciation of the adsorbed P in both FA samples (FA-TE and FA-LB) 

was achieved using a modified four-step sequential extraction methodology 

(Ann et al., 2000; Hedley and Stewart, 1982; Moharami and Jalali, 2014). 

First, 30-mL aliquots of 1000 mg P-PO4
3-/L at pH 7 were equilibrated with 

pre-weighed tubes containing 3 g of FA. After shaking for 24 h at room 

temperature, the suspensions were centrifuged, and the FA powders were 

dried at 50‒60°C. The adsorbed phosphate was sequentially extracted using 

1-g samples and 50 mL of the extraction solutions described in Table 4.1. 

The samples were mechanically shaken at 21±1°C. After equilibrium was 

achieved (24 h), the samples were centrifuged, and the phosphate content of 

the liquid phase was analysed. 

Table 4.1. Chemical extraction scheme for P speciation of loaded FA 

samples. 

Extraction solutions Speciation 

name 

P Speciation Step 

40-mL 2 M KCl for 2h 

40-mL 0.1 M NaOH for 17h 

40-mL 0.5 M HCl for 24h 

40-ml 10 M HNO3/10M HClO4 (5/2) 

KCl-P 

NaOH-P 

HCl-P 

Res-P 

Soluble and exchangeable P 

Fe- and Al-bound P 

Ca-bound P 

Residual P 

1 

2 

3 

4 

 

2.5. Phosphate availability from loaded FA samples using bicarbonate 

solutions 

Samples (0.5 g) of loaded FAs (contents ranging from 11 to 108 mmol/L) 

were mixed with 20 mL of 0.5-M NaHCO3 (pH=8.3) in 50-mL plastic bottles. 

The bottles were mechanically shaken at 21±1°C for 24 h at a constant 

agitation speed of 200 rpm. After phase separation with a 0.45-µm syringe 

filter, the equilibrium pH was measured using a pH electrode (Crison GLP22), 
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and total phosphate concentration was measured using spectrophotometric 

colourimetry. 

 

2.6. Physicochemical characterisation of FA samples 

The major, minor, and trace element concentrations of the FA powders were 

determined. The samples were acid-digested via a special two-step digestion 

method to analyse the trace elements in coal and combustion wastes by 

Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Inductively 

Coupled Plasma Atomic Emission Spectrometry (ICP-AES) (Querol et al., 

1997). 

After the sorption and desorption experiments, the FA samples were washed 

with water to remove the interstitial water and then oven-dried at 60°C for 

structural and textural analysis. The mineralogical composition was analysed 

by a Bruker D8 A25 Advance X-Ray Diffractometer θ-θ with CuKα1 radiation, 

Bragg-Brentano geometry, and a linear LynxEyeXE detector. The 

diffractograms were obtained from 4º to 60º of 2θ with a step size of 0.015º 

and a counting time of 0.1 s as the sample was rotated. The solids in powder 

form were identified according to standard Joint Committee on Powder 

Diffraction Standards (JCPDS) file and were matched with Powder Diffraction 

Files (PDFs) no. 009-0077 for brushite, 046-1045 for quartz, 015-0776 for 

mullite, 033-0664 for hematite, and 039-1346 for maghemite. The 

morphology of the samples was examined using field emission scanning 

electron microscopy with an energy dispersive system (FE-SEM-EDS, JEOL 

3400) after prior metallisation with gold. 

The FA point of zero charge (PZC) was determined by acid-based 

potentiometric titrations using the common intersection point method 
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(Skartsila and Spanos, 2007; Liu et al., 2013; Zebardast et al., 2014). First, 

0.1 g of FA was equilibrated with 25 mL of KNO3 solution at various ionic 

strengths (0.01, 0.05, 0.1, and 0.5 M) for 24 h at 200 rpm and 21±1°C. After 

equilibrium was achieved, a given volume of 0.1-M KOH solution was added 

to the suspension to increase the pH value over 10. The suspension was 

then titrated with 0.05-M HNO3 to pH≈3 using an automatic titrator (Mettler 

Toledo). The net surface charge was correlated with the PZC by considering 

the adsorbed amounts of H+ and OH- ions along the titration assay: the 

titration curves obtained at different ionic strengths intersect at pH=pHPZC. 

The surface charge was calculated according to Eq. 2 (Martinez et al., 2008). 

ܾ ൌ ௕ܥ	 െ ௔ܥ ൅ ሾܪାሿ െ ሾܱିܪሿ       (2) 

where b (mol/g) is the net amount of hydroxide ions consumed; Cb and Ca 

(mol/L) are the base and acid concentrations, respectively; and [H+] and 

[OH−] denote the proton and hydroxide concentrations, respectively, 

calculated from the measured pH for a given mass of FA (g) and a given 

volume of solution (L). All measurements were performed in triplicate, and 

the average values are reported. 

 

2.7. Sorption models 

Equilibrium models: The Langmuir (Eq. 3) and Freundlich (Eq. 4) isotherms 

were used to describe the equilibrium data: 

஼೐
௤೐
ൌ 	 ଵ

௄೗௤೘
൅ ஼೐

௤೘
    (3) 

log ௘ݍ ൌ 	 logܭ௙ ൅	
ଵ

௡
log  ௘    (4)ܥ

where Ce (mg P-PO4/L) and qe (mg/g) are the equilibrium total P(V) 

concentrations in the aqueous and FA phases, respectively; qm (mg P-PO4/g) 

is the maximum sorption capacity; KL (L/mg) is the Langmuir sorption 
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equilibrium constant; n is a constant indicating the Freundlich isotherm 

curvature; and Kf ((mg/g)/(mg/L)n) is the Freundlich equilibrium constant. The 

adjustable parameters—qm and KL or KF and 1/n—were obtained by fitting 

the experimental data (qe and Ce) to Eqs. 3 and 4 using nonlinear least 

squares regression (Excel version 2010). 

Kinetic equilibrium models: The homogeneous particle diffusion (HPDM) 

and shell progressive (SPM) models were used to describe the kinetic data 

(L. Liberti, R. Passino, in : J.A. Marinsky, 1977). Both models assume that 

the extraction mechanism involves the diffusion of phosphate ions (H2PO4
- 

and HPO4
2-) from solution into the FA phase through a number of possible 

pathways: diffusion across the liquid film surrounding the FA particle, transfer 

across the solution/particle interface, diffusion into the bulk of the FA particle, 

and possible interactions with reactive groups on the FA surface. 

Homogeneous Particle Diffusion Model (HPDM): This model describes the 

adsorption of the phosphate ions via diffusion in a quasi-homogeneous 

medium according to Fick’s law equation with two rate-control scenarios:  

- If the particle diffusion rate controls the P(V) sorption on spherical FA 

particles:  

െ lnሺ1 െ ܺଶ ሺݐሻሻ ൌ ܤ		where  ݐܤ2 ൌ గమ஽೐
௥మ

.     (5) 

- If liquid film diffusion controls the rate of P(V) sorption: 

െ ln൫1 െ ܺሺݐሻ൯ ൌ ௟௜ܭ ௟௜ܭ where  ݐ ൌ 	
ଷ஽೐஼

௥஼ೝ
      (6) 

The X(t) values can be calculated using Eq. 7:  

ܺሺݐሻ ൌ 	 ௤೟
௤೐

           (7) 

where X(t) is the phosphate fractional attainment of equilibrium at time t; qt 

and qe are the phosphate loadings on the FA phase at time t and when 
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equilibrium is attained (mg g-1), respectively; C is the total concentration of 

sorbing species; Cr is the total concentration of sorbing in the sorbent phase; 

Kli is the rate constant for film diffusion (infinite solution volume condition); De 

is the effective diffusion coefficient of phosphate ions in the FA phase (m2s-1); 

and r the radius of the FA particle, which is assumed to be spherical (m). 

Shell progressive model (SPM): This model describes the sorption process 

in terms of a concentration profile of the solution containing phosphate ions 

advancing into a partially sorbed saturated spherical FA particle (“Shell 

Progressive”) and is applicable when the sorbent porosity is low (e.g., FA) 

(G. Schmuckler, S. Golstein, in: J.A. Marinsky, 1977). The relationships 

between the degree of sorption and time are given by Eqs. 7‒9:  

- If sorption is controlled by the fluid film: 

ܺሺݐሻ ൌ 	 ଷ஼ಲ೚௄ಷ
௔ೞ஼ೞ೚

 (8)          ݐ	

- If sorption is controlled by diffusion though the sorption layer: 

ቂ3 െ 3ሺ1 െ ܺሺݐሻሻ
మ
య െ 2ܺሺݐሻቃ ൌ 	 ଺஽೐஼ಲ೚

௔ೞ
మ஼ೞ೚

 (9)       ݐ	

- If sorption is controlled by the chemical reaction: 

ൣ1 െ ሺ1 െ ܺሺݐሻሻଵ/ଷ൧ ൌ 	 ௄ೞ஼ಲ೚
௥

 (10)                ݐ	

where as is the stoichiometric coefficient, CAo is the concentration of sorbing 

species A in the bulk solution, Cso is the concentration of sorbing species at 

the bead’s uncreated core, KF is the mass-transfer coefficient of species A 

through the liquid film (m s-1), and Ks is the reaction constant based on the 

surface (m s-1). 

All experimental data were treated graphically and compared to all fractional 

attainment of equilibrium functions (F(X) = f (t)) defined previously for both 

HPDM (Eqs. 5‒6) and SPM (Eqs. 8‒10). 
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2.8. Prediction of phosphate-precipitation processes 

Phosphate precipitation processes were studied using the HYDRA-Medusa 

(Puidomènech, 2001) and Visual Minteq codes (Gray-Munro and Strong, 

2013). When necessary, the measured P(V), Ca(II) concentration, and pH 

were compared to those estimated using both codes. The supersaturation 

index (SI) was calculated using Visual Minteq and Eq. 11, as follows:  

ܫܵ	 ൌ log	ሺூ஺௉
௄ೞ೚
ሻ                   (11) 

where IAP is the ion activity product, and Kso is the solubility constant. 

Equilibrium solubility data for Ca phosphates from the HYDRA and PHREEQ 

C databases were critically reviewed. 

 

3. Results and discussion 

3.1. Characterisation of the Teruel and Los Barrios FAs 

SEM analysis revealed spherical particles containing smaller encapsulated 

particles. Five different types of particles in terms of size and porous texture 

were identified: (i) spherical filled particles—Plerospheres—in the particle 

size range below 10 µm; (ii) large, irregular silicate masses exhibiting 

spherical pitting; (iii) hollow spherical particles—Cenospheres—containing 

small encapsulated particles; (iv) elongated blades and hollow spherical 

particles with interior voids; and (v) agglomerates of small spherical particles 

forming large non-spherical particles (Figure 4.1b). The chemical 

compositions of both FA samples (Table 4.2) primarily consist of Al2O3 and 

SiO2, which account for 73% and 83% of the FA-TE and FA-LB samples, 

respectively. FA-TE had higher contents of Fe2O3 (18.9%) and CaO (4.2%) 

than FA-LB (with 7.4% and 2.3%, respectively). The X-ray diffraction (XRD) 

patterns of FA-TE and FA-LB are shown in Figure 4.1a. Hematite and 
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maghemite (Fe2O3), mullite (Al2Si2O13), and quartz (SiO2) were the main 

phases identified in both FA samples. 

 

 

Figure 4.1. a) XRD patterns of both FA samples (FA-TE and FA-LB) and b) 

SEM micrographs of FA-TE and FA-LB. 

 

Table 4.2. The average chemical compositions of FA-TE and FA-LB. 

 SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O P2O5 SO3 

FA- TE (% wt) 45.10 28.10 18.90 4.20 1.14 0.18 1.45 0.21 0.83 

FA- LB (% wt) 61.20 21.10 7.40 2.25 2.26 1.15 2.42 1.60 0.68 

 

The acid-base characterisation revealed pHPZC values of 4.9±0.5 for FA-TE 

and 5.1±0.5 for FA-LB (Figure 4.2) The electrophoretic mobility (pHZPC value 

of approximately 4.9‒5.1) is close to the theoretically predicted value and is 

reported in Table 4.3 (Schwarz et al., 1984) based on the percentages of 

silica and alumina in the FA. 

10 20 30 40 50 60

2 Theta (Deg.)

 1/ Fly ash Los Barrios (FA-LB) 
 2/ Fly ash Teruel (FA-TE)
 Mullite (Al

6
Si

2
O

13
)

 Quartz (SiO
2
)

 Hematite (Fe
2
O

3
)

 Maghemite-C (Fe
2
O

3
)

1/

2/

a	

b



Chapter 4. FLY ASH AS REACTIVE SORBENT-FERTILIZER 

155	

 

Figure 4.2. FA potentiometric titration curves at 0.01-, 0.05-, 0.1-, and 0.5-M 

KNO3 for a) FA-TE and b) FA-LB. 

 

The deviation between the theoretical and experimental data is ascribed to 

the presence of other oxides in the FA samples (e.g., MgO and CaO). The 

determined pHPZC values are in good agreement with those reported for α-

Al(OH)3(s) (pHPZC 5.0) and Fe(OH)3 (pHPZC from 5 to 7) (Malarvizhi et al., 

2013). Indeed, Chen et al. and Zhang et al. (Reed et al., 2000; Chen et al., 

2006; Zhang et al., 2007) reported that Fe and Al surface groups at pH 

values below the pHPCZ have anion-sorption capacities. 
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Table 4.3. Comparison of the pHzpc values of selected FA-based materials. 

Material Mineral composition(wt%) pHZPC References 

 

FA-TE 

FA-LB 

FA 

FA 

High CaFA 

SiO2 

45.1 

61.2 

43.7 

45.3 

31.3 

Al2O3 

28.1 

21.1 

15.7 

26.2 

17.8 

Fe2O3 

18.9 

7.4 

6.4 

7.6 

7.1 

CaO 

4.2 

2.2 

9.8 

10.1 

31.9 

MgO 

1.2 

2.2 

0.9 

6.5 

6.3 

 

4.9 

5.1 

7.7 

9 

10.3 

 

This study 

This study 

(Banerjee et al., 2014) 

(Wawrzkiewicz et al., 2015) 

(Vordonis et al., 1988) 

 

 

Silica/alumina 

(%) 

100 

90 

75 

34 

10 

- 

10 

25 

66 

90 

 

 

- 

 

 

- 

 

 

- 

4.1 

4.4 

4.9 

5.9 

6.7 

 

 

(Schwarz et al., 1984) 

 

FA-dissolution experiments at initial pH values between 6 to 9 revealed a 

Ca(II) concentration in solution of 2 to 3.5 mmol Ca/L, while the values of K, 

Mg and Na were an order of magnitude lower, ranging from 0.01 mmol/L to 

0.4 mmol/L, as shown in Figure 4.3. 

The substantial concentration of Ca(II) in solution can be explained by the 

dissolution of CaO(s) particles present on the FA, as described by Eq. 12: 

CaOሺsሻ ൅ 			ଶOܪ ↔ 			 CaሺOHሻଶሺsሻ ↔ 			 Caଶା 	൅ 2OHି		                       (12) 

The measured Ca(II) value decreases as pH increases, as expected based 

on the CaO(s) dissolution reaction, and the values are slightly higher for FA-

TE, which has a higher Ca content (4.2% CaO). Although mineral phases 

containing Ca were detected in both FAs, Ca is expected to be present as Ca 

oxide minerals (e.g., portlandite) (Hooton et al., 1999). The measured 

concentrations of other major components of FA, such as Al, Fe, Si, and Ti, 

were below 0.01 mmol/L. These values are in accordance with the solubility 

data of the main mineral phase identified by XRD in both FA samples: quartz 

(SiO2), Mullite (Al6Si2O12) and hematite (Fe2O3) (Figure 4.1a). 
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Figure 4.3. Molar Ca, Mg, Na, and K concentrations (in logarithm form) as 

functions of the equilibrium pH in the FA-dissolution experiments (0.2 g of FA 

and 10 mL of demineralised water) for both FA samples: a) FA-TE and b) FA-

LB. 

 

3.2. Phosphate sorption capacities of FA-TE and FA-LB: Effects of pH 

and P(V) concentration 

P(V) sorption isotherms for both FA samples revealed a dependence on the 

pH (Figure 4.4), and the equilibrium data was well described by the Langmuir 

isotherm (Table 4.4). 
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Figure 4.4. Phosphate sorption isotherms at different pH values and 

predicted by the Langmuir model for a) FA-TE and b) FA-LB (dots: 

experimental data; line: predicted values). 

 

Table 4.4. Langmuir and Freundlich isotherm parameters for FA-TE and FA-

LB at different pH values. 

Adsorbent 

 

Models 

FA-TE FA-LB 

pH 7 pH 8 pH 9 pH 7 pH 8 pH 9 

 

Langmuir 

isotherm 

qm 

KL 

R2 

38.8±3.4 

0.0005 

0.98 

59.5±4.3

0.0005 

0.99 

56.2±3.8

0.0003 

0.99 

23.7±2.3

0.0019 

0.99 

54.1± 3.7 

0.0006 

0.97 

19.1±1.7 

0.0015 

0.99 

 

Freundlich 

isotherm 

Kf 

n 

R2 

4.87 

5.24 

0.91 

1.35 

2.6 

0.95 

2.85 

3.32 

0.89 

2.35 

4.09 

0.85 

1.80 

2.98 

0.92 

3.78 

6.52 

0.81 
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The maximum P(V)-sorption capacities (qm) were 38.8±3.4 and 19.1±1.7 

mgP/g for FA-TE and FA-LB, respectively, when the pH value exceeded 7. At 

pH 8, the maximum uptakes were 59.5±4.3 and 54.1±3.7 mgP/g for FA-TE 

and FA-LB, respectively. The P(V)-sorption capacities measured here are 

higher than those reported by Chen et al., (2006) (5.5 to 42.6 mg P-PO4/g) 

with CaO contents from 2.08 to 20.37% in FA samples. 

 

3.3. P(V)-sorption mechanism on FA 

Given that H2PO4
- and HPO4

2- are the predominant species of P(V) at pH 

values between 7 and 9, two main sorption mechanisms can be postulated: 

a) Surface complexation with AlOH and FeOH functional groups of Al and 

Fe oxides through the following reactions: 

Labile complexes with MOH2
+: 

MOH2
++H2PO4

-/HPO4
2- MOH2

+H2PO4
-/HPO4

2-             (13) 

Inner-sphere complexes with MOH: 

 MOH+H2PO4
-/HPO4

2- MH2PO4
-/HPO4

2-+OH              (14) 

where M represents Al or Fe. 

b) Formation of Ca phosphate minerals with Ca(II) ions present on the FA 

samples as CaO(s):  

HPO4
-/HPO4

2-+CaO(s) = Ca phosphates (CaHPO4(s) or Ca5(OH)(PO4)3 (s)) 

                    (15)  

XRD analysis of FA samples after the sorption experiments revealed the 

presence of brushite (CaHPO4(s)) at pH 7 and 8; the presence of Ca 

phosphate minerals was only not detected at pH 9, as can be seen in Figure 

4.5. This could be because of the formation of undetectable nanocrystals or 

amorphous structures because the removal rate at pH 9 is faster than those 
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at pH 7 and 8, as indicates by the kinetic analysis (see section 4). Generally, 

precipitation processes with fast kinetics produce less-crystalline solids. In 

addition to hematite and/or maghemite, mullite and quartz were detected in 

all samples. 

 
Figure 4.5. XRD analysis of FA samples after phosphate sorption at different 

pH values and phosphate concentrations: FA-TE (a,b) and FA-LB (c,d). 

 

The P-speciation analysis of loaded samples shown in Figure 4.6 indicates 

that the loosely bound P fraction (KCl speciation fraction) associated with the 

labile complexes (Eq. 13) accounted for 18% in FA-TE and 4% in FA-LB. The 

Ca+Mg-speciation (HCl-P speciation fraction) associated with Ca phosphate 

forms (Eq. 15) accounted for 81% in FA-TE and 95% in FA-LB. The NaOH–P 

fraction associated with P(V) bound to the hydrated metal oxides (Eq. 14) 
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exhibited a residual contribution of less than 1%, while the residual P 

speciation represents less than 0.9%. 

 

Figure 4.6. Phosphate speciation of FA-TE and FA-LB with initial amounts of 

phosphate in equilibrium (qe=7.5±0.5 mg/g). 

 

The formation of Ca phosphates (e.g., brushite and Hap) is 

thermodynamically favoured under the studied conditions, as shown in Figure 

4.7; Hap is a more stable phase than brushite, which is considered its 

precursor phase. However, as the reaction proceeds on the microporous FA 

structure under the controlled Ca(II) ion release provided by CaO(s) 

dissolution, which avoids oversaturation, and brushite is formed and then 

stabilised, stopping the conversion to Hap. Thus, the main P(V) sorption 

process can be postulated according to Eqs. 16‒17: 

Ca(OH)2(s)+ HPO4
2-          CaHPO4(s) +2OH-  log K=32.2(25°C)   (16) 

Ca(OH)2(s)+ H2PO4
-          CaHPO4(s) + H2O +OH- log K=22.2(25°C)    (17) 

The removal of P(V) by brushite is accompanied by a release of 1 to 2 mole 

of OH- ions per mole of P(V), which increases the pH, as observed in the 
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behaviour is in agreement with the formation of brushite. The logarithmic 

solubility of brushite and the P(V) sorption capacity as a function of pH are 

plotted in Figure 4.8. The minimum solubility, which corresponds to the 

highest brushite stability, is found at pH 8, where the maximum sorption 

capacities were also observed. Increasing or decreasing the pH increased 

the brushite solubility and accordingly decreased the P(V)-sorption capacity. 

 

Figure 4.7. Species distribution diagram and solubility as a function of pH for 

the Ca and phosphate system using the HYDRA-Medusa database 

(Puigdomènech, 2001) for both phases: (a-b) CaHPO4.2H2O (brushite) and 

(c-d) Ca5(PO4)3OH (Hap). The box indicates the pH range evaluated 

(maximum and minimum values). 

2 4 6 8 10 12 14
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

ti
on

pH

Ca2+

CaH2PO4
+

CaPO4


Ca(OH)2(c)

CaHPO4.2H2O(s)

2 4 6 8 10 12 14
-5

-4

-3

-2

-1

0

1

Lo
g 

S
ol

ub
l.

pH

PO4
3

Ca2+

O

2 4 6 8 10 12 14
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

ti
on

pH

Ca2+

CaH2PO4
+

Ca5(PO4)3OH(c)

2 4 6 8 10 12 14
-7

-5

-3

-1

1

Lo
g 

S
ol

ub
l.

pH

PO4
3

Ca2+

a	 b

c	 d



Chapter 4. FLY ASH AS REACTIVE SORBENT-FERTILIZER 

163	

  

Figure 4.8. The experimental P(V)-sorption capacities at different pH values 

and the estimated brushite solubility curves for a) FA-TE and b) FA-LB. 

 

4. Phosphate sorption kinetics 
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Figure 4.9. Variations of the P(V)/P(V)0 ratio and pH as a function of time for 

initial concentrations of 100 mg/L (7a) and 500 mg/L (7b) at an initial pH of 8 

and c) variation of the Ca(II) concentration as a function of contact time for 

initial P(V) concentrations of 100 and 500 mg/L at an initial pH of 8 (sorbent 

dose: 0.2 g/10 mL). 
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The sorption process can be divided into two steps: a first, faster step and a 

second, slower one. Initially, phosphate rapidly reached the boundary layer to 

interact with dissolved Ca(II) ions from the CaO(s) grains, and then, it slowly 

diffused from the boundary layer film onto the FA particle. At that time, P(V) 

removal was coupled with CaO(s) dissolution, which supplied the reactant 

needed to facilitate brushite formation. 

The evolution of Ca(II) for both FA samples in the kinetic experiments with 

100 and 500 mgP-PO4/L (Figure 4.9c) revealed that the total Ca(II) 

concentration follows a profile very similar to that of the total P(V) 

concentration (Figure 4.9a). The total Ca(II) and P(V) concentration and the 

measured pH were used to determine the saturation indexes for brushite and 

Hap. The saturation index values (Figure 4.10) indicated that the system was 

oversaturated by Hap; however, as discussed previously, its precursor, 

brushite, was the only mineral phase identified by XRD analysis in this study. 

The influence of the initial pH on the kinetics of both FA samples with 100-

mgP/L phosphate solutions is shown in Figure 4.11.  

The P(V)/P(V)0 ratio profiles with time for both FA samples (Figure 4.11a-b) 

are strongly affected by pH, especially that of FA-LB. As the extraction 

reaction proceeds, the pH increases, as described by Eqs. 16‒17 and shown 

in Figure 4.11b-d. Experiments at pH values of 7‒8 exhibited greater 

increases (∆pH>0.5 units) than that at pH 9 because of their lower buffer 

capacities (∆pH<0.5 units). For FA-LB, most of the phosphate removal was 

achieved in the first 120 min: 40% at pH 7 to 80% at pH 9. In contrast, FA-TE 

exhibited a lower sorption rate, and longer contact times (more than 1000 

minutes) were therefore required to reach equilibrium values. These 

differences are related the compositions of the FA samples, including the 
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SiO2 and Al2O3 contents and especially that of mullite, which can be adjusted 

to improve the material’s hydrophilic properties. 

 

Figure 4.10 Supersaturation index (SI) of Ca –P(V) with respect to Hap and 

brushite as a function of the time (FA-TE example with P(V) solutions 

containing 100 and 500 mgP-PO4/L at an initial pH value of 8) 

 

Figure 4.11. Variation in the P(V)/P(V)0 ratios of FA-TE (a) and FA-LB (c) and 

pH as a function of contact time for an initial concentration of 100 mg P-PO4
3-

/L (sorbent dose: 0.2 g/10 mL) of FA-TE (b) and FA-LB (d). 

0

0.2

0.4

0.6

0.8

1

0 250 500 750 1000 1250 1500

P(
V)

/P
(V

) 0

Time (min)

FA-TE pH 7 FA-TE pH 8 FA-TE pH 9

0

0.2

0.4

0.6

0.8

1

0 250 500 750 1000 1250 1500

P(
V)

/P
(V

) 0

Time (min)

FA-LB pH 7 FA-LB pH 8 FA-LB pH 9

7.0

7.5

8.0

8.5

9.0

9.5

10.0

0 250 500 750 1000 1250 1500

pH
 

Time (min)

pH= 7 pH= 8 pH= 9

7.0

7.5

8.0

8.5

9.0

9.5

10.0

0 250 500 750 1000 1250 1500

pH
 

Time (min)

pH= 7 pH= 8 pH= 9

a b

dc



Chapter 4. FLY ASH AS REACTIVE SORBENT-FERTILIZER 

167	

4.1. Sorption kinetic modelling results  

The results of the kinetic modelling of phosphate sorption onto FA are shown 

in Figure 4.12 Kinetic data fitting results in Eqs. 5‒6 using the HPDM and 

Eqs. 8‒10 using the SPM, as summarised in Table 4.5. The linear correlation 

coefficients indicate that film diffusion can be discarded as the sorption-

controlling step because the fit did not exhibit the expected linear 

dependence. Both models fit the data satisfactorily for the entire time range 

of FA-phase diffusion. The predicted curves obtained using both models for 

FA-LB and FA-TE at different initial pH values are shown in Figure 4.12a-b. 

FA-TE and FA-LB showed better agreement between the predicted and 

experimental data at pH 7 and 8 than at pH 9. Taking into account the fact 

that the pH changes as a consequence of the sorption process in the kinetic 

experiments (Figure 4.11b and d), the H2PO4
-/HPO4

2- ratio (%) is 12/88 at pH 

8.2 and 1/99 at pH 9.5; therefore, the effective diffusion coefficient can be 

considered to account for HPO4
2-. 

Table 4.5. Linear regressions of phosphate sorption onto FA samples 

modelled using HPDM and SPM with an initial concentration of 100 mgP-

PO4
3-/L at different initial pH conditions. 

 HPDM SPM 

-ln (1-X2) -ln (1-X) X [3-3(1-X)
2/3

-2X] [1-(1-X)1/3] 

pHt,m R2 De R2 D R2 KF R2 De R2 ks 

 

FA-TE 

 

(8.0)
*
 

(8.3)
*
 

(9.2)
*
 

0.99    3.3 10-15 

0.98    6.7 10-16 

0.98    8.1 10-16 

0.94     1.1 10-9 

0.91     2.2 10-10 

0.96     2.3 10-10 

0.78     2.9 10-10 

0.90     7.6 10-11 

0.89     5.5 10-11 

0.99    3.6 10-15 

0.98    7.6 10-16 

0.98    1.2 10-15 

0.93     7.1 10 -12 

0.93     1.3 10-12 

0.95      2.310-12 

 

FA-LB 

 

(8.2)
*
 

(8.5)
*
 

(9.3)
*
 

0.99    8.6 10-16 

0.97    5.0 10-15 

0.99    3.7 10-15 

0.95     2.7 10-10 

0.87     4.8 10-10 

0.92     4.1 10-10 

0.88     1.5 10-10 

0.74     5.9 10-11 

0.85     7.3 10-11 

0.99    1.3 10-15 

0.97     6.4 10-15 

0.97     5.1 10-15 

0.97      2.3 10 -12 

0.89      2.1 10-12 

0.91      1.9 10-12 

 
* Values in brackets are the pH along the kinetic test with time t and specific 

point m. 
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Figure 4.12. (a )The predicted curves obtained by linear regression analysis of HPDM and SPM for FA-LB with an initial phosphate 

concentration of 100 mg/L and different pH values (7, 8, and 9). 
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Figure 4.12. (b) The predicted curves obtained by linear regression analysis of HPDM and SPM for FA-Teruel with an initial phosphate 

concentration of 100 mg/L and different pH values (7, 8, and 9).
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5. Evaluation of phosphate availability from loaded FA  

Olsen et al. (Olsen, S.R. ; Cole, C.V; Watanabe, F.S; Dean, 1954) suggested 

bicarbonate extraction as a suitable method for predicting the plant 

availability of phosphate in calcareous soils where the main role of NaHCO3 

in phosphate extraction is decreasing the Ca2+ activity by forming CaCO3. 

The phosphate-availability data in 0.5-M NaHCO3 are plotted in Figure 4.13 

as the extracted amount of phosphate per mass of FA (mgP-PO4/g FA). For 

both FA samples, ratios from 8 to 30 mgP-PO4/g FA were obtained. Partial 

extraction of 20 to 70% was reported in a single-extraction trial for both FA 

samples. 

 

Figure 4.13. Phosphate extraction using NaHCO3 (0.2 mol/L) from loaded FA 

samples: (a) FA-TE and (b) FA-LB. 

 

These results are in good agreement with the speciation results reported in 

Figure 4.6. In the presence of excess bicarbonate ions, the labile phosphate 

fraction (P-KCl) will be displaced by bicarbonate ions, and partial brushite 

dissolution will be achieved according to Eq. 18: 

CaHPO4(s) + HCO3
-          CaCO3(s) + H2PO4

-  log K=-1.3 (25ºC)   (18) 
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The sorbed P(V) on FA samples has been demonstrated to dissolve in 

solutions containing moderate to high bicarbonate concentrations similar to 

those expected in basic soils characterised by a high content of calcareous 

rocks (e.g., limestone) and where other Ca phosphate minerals, such as 

Hap, are very insoluble with limited plant availability. 

 

6. Conclusions  

The P(V)-removal results in the expected pH range (6 to 9) of wastewater 

effluents indicated that sorption proceeds via a diffusion-controlled process 

involving phosphate ions within the FA particles coupled with CaO(s) 

dissolution from FA, which provides the Ca(II) ions required for brushite 

(CaHPO4(s)) formation at the FA surface. This process is important because 

it avoids the formation of relatively insoluble Ca phosphates, such as Hap, 

which have more limited fertilising properties. P(V) availability from loaded 

FAs was determined using NaHCO3 solutions and revealed P(V)-release 

ratios of 10 to 30 gP-PO4/g FA. In addition, phosphate removal is highly 

efficient, as indicated by the rapid removal and high P loadings obtained (up 

to 50 mgP-PO4/g FA (5% P(V) by weight) at pH 8.  

The use of phosphate-containing mineral-based sorbents as soil 

amendments may be advantageous when other agronomic benefits are 

expected, such as the provision of other plant nutrients or the enhancement 

of the soil moisture-holding capacity. 

Future research should be performed to scale this process up from the 

laboratory scale to pilot- and full-scale systems integrating sorption and UF 

membrane filtration and to evaluate other types of powdered Ca-rich 

inorganic sorbents for phosphate removal and direct use as fertiliser. 
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A powdered zeolitic material synthesised from FA (NaP1-NA) and its Ca-

modified form (CaP1-NA) were studied as sorbent materials for the recovery 

of phosphate from treated wastewater effluents. Phosphate-sorption 

equilibrium experiments were performed by varying the experimental 

conditions, including the solution pH, phosphate concentration, and the 

presence of competing ions. The maximum phosphate-sorption capacities 

were 57±5 and 203±11 mgP-PO4/g for NaP1-NA and CaP1-NA, respectively. 

The sorption capacities of both zeolites in the pH range expected for 

wastewater effluents (pH from 7 to 9) were slightly dependent on pH, 

exhibiting maxima at pH 8. Phosphate removal proceeds through two main 

mechanisms: a) surface complexation with AlOH and FeOH groups of the 

zeolitic structure or unreacted minerals from the FA, and b) the formation of 

Ca phosphate phases, mainly brushite, with Ca(II) ions from the CaO present 

on the FA or occupying the charged sites of the zeolite. The removal 

mechanisms were confirmed by XRD analyses and P speciation. Finally, the 

stabilities of the phosphate-loaded zeolite samples as fertilisers were 

evaluated by extraction experiments to determine their potential availabilities 

in soil applications. 

 

1. Introduction 

Increasing energy demands worldwide have led to increased utilisation of 

coal and the production of large quantities of FA as a waste product. The 

global production of FA in 2010 exceeded 750 million tons/year, with 38 

million tons produced in Europe alone (Blissett and Rowson, 2012; Yao et al., 

2015). FA is enriched with SiO2 and Al2O3, and thus, it can be transformed by 
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chemical treatment into zeolite-like crystalline materials. The synthesis of 

zeolites is attracting attention as an effective use for CFA, possibly because 

of its similar composition to the volcanic material that serves as the precursor 

of natural zeolites.  

Zeolites are microporous aluminosilicate minerals that could be used as ion 

exchangers in domestic and industrial water purification and softening 

applications (Singer et al., 2005). The substitution of Si by Al atoms in the 

crystal framework leads to extra negative charges that must be balanced by 

surrounding counter ions (such as Na+, K+, Ca2+, and Mg2+); these counter 

ions can be easily exchanged for other surrounding cations in contact with 

aqueous solutions. Therefore, several studies on the use of zeolites for the 

removal of hazardous cations (Xie et al., 2013; Yang et al., 2014) and anions 

and organic compounds with modified zeolites (Zhou et al., 2014) have been 

reported. By applying several synthesis methods, different families of zeolites 

have been synthesised from FA (Querol et al., 2002; Ansari et al., 2014; 

Zhou et al., 2014); however, few have been successfully converted into pure-

phase zeolites (Hollman et al., 1999; N Moreno et al., 2001). 

The removal of phosphate from wastewaters has been linked to the need for 

their reuse and valorisation, both of which could be achieved using a reactive 

material capable of achieving high phosphate-removal ratios in solution and 

suitable for use as a slow-release fertiliser in soil and agricultural applications 

(Desmidt et al., 2013). This process could be developed if low-cost sorbents 

are available (Boyer et al., 2011). Querol et al. (2007) demonstrated the 

economic and technical viability of synthesising NaP1-NA under mild 

hydrothermal conditions without using templates. NaP1-NA was evaluated for 

the removal of toxic metals from acid mine drainage and brines (N Moreno et 
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al., 2001) because of its unique ion-exchange and water-sorption properties, 

which are attributable to its high porosity, surface area, and CEC and its 

unusual framework flexibility (Cama et al., 2005). NaP1-NA also has a high 

capacity to adsorb ammonium and K, and it has been evaluated as a slow-

release fertiliser; however, the sorption of oxyanions as phosphate is not 

favoured by the zeolite structure (Watanabe et al., 2014). The use of 

mixtures of synthetic apatites and natural zeolites as solid media for growing 

plants and as a fertiliser has been postulated (Golden and Ming, 1999; Liu 

and Lal, 2014). However, because of the low solubility and availability of P 

from Hap in soils, efforts have been directed towards the preparation of 

relatively soluble Hap (Ca10(PO4)6(OH)2) and brushite (CaHPO4.2H2O) by 

growing crystals on the surface of Ca-containing minerals. These materials 

include Ca silicates, such as wollasonite (Liu and Ding, 2002); Ca-Al layered 

double hydroxide; and Hap (Watanabe et al., 2010; Zhou et al., 2012). 

However, little work has been done to prepare a reactive material to a) 

efficiently remove phosphate from wastewater effluents in the form of 

relatively soluble phosphates (e.g., brushite (logKso=6.59)) (Dorozhkin, 2012) 

compared to Hap (Ca5(PO4)3OH(s), logKso=116.8) (Parvinzadeh Gashti et al., 

2013) and b) to achieve suitable properties for use as a synthetic slow-

release fertiliser. 

In this study, both the Na+-zeolite (NaP1-NA), synthesised from CFA, and its 

Ca-modified form (CaP1-NA) were evaluated as sorbents for phosphate 

recovery from aqueous solution. The phosphate-sorption performance was 

studied by varying the experimental conditions, such as the solution pH, 

coexisting ions, and initial phosphate concentration. The results are 

presented in terms of equilibrium isotherms in non-competitive and 
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competitive experiments with other common anions present in wastewater 

effluents. Furthermore, the phosphate-sorption removal mechanisms were 

evaluated using a speciation methodology. Finally, the stability of the 

phosphate-loaded zeolite samples was evaluated by extraction experiments 

using bicarbonate solutions to determine their potential availability in soil 

applications. 

 

2. Materials and methods  

2.1. Synthesis of NaP1-NA and CaP1-NA 

Na+-zeolite (NaP1-NA) was synthesised from Narcea CFA with 3-mol/L 

NaOH at 125°C for 8 h using a hydrothermal method, as described 

elsewhere (Querol et al., 2007). Ca-zeolite (Ca2+-zeolite CaP1-NA) was 

prepared by a cation-exchange process. First, 250 g of NaP1-NA was 

immersed in 1000 mL of a 0.5-mol/L CaCl2 solution for 1 h at room 

temperature, which was then filtered through a 0.2-µm membrane filter and 

rinsed with distilled water to remove the CaCl2 solution (Watanabe et al., 

2014). The cation-exchange and washing cycle was repeated five times. The 

sample obtained was dried for 72 h at 50‒60°C. 

 

2.2. Phosphate-removal equilibrium experiments 

Phosphate test solutions were prepared by dissolving a weighed amount of 

Na2HPO4.2H2O in water obtained from a Milli-Q-Academic-A10 apparatus 

(Millipore Co. France). Batch experiments were performed at room 

temperature (21±1ºC). Samples of zeolites (0.2 g) were mechanically mixed 

in special polyethylene stoppered tubes with an aqueous phosphate solution 

(12 mL) at different initial concentrations of P(V) (100–16,000 mg L-1) until 
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equilibrium was achieved (24 h). The influence of pH on the phosphate 

sorption was evaluated by using 0.1-mol/L HCl or NaOH solution to adjust 

the initial pH. After phase separation with a 0.2-µm syringe filter, the 

equilibrium pH was measured using a pH electrode (Crison GLP22), and the 

total phosphate concentration was measured using spectrophotometric 

colourimetry (Kitson, R.E; Mellon, 1944). The P(V) equilibrium sorption 

capacity determined using Eq. 1. 

௘ݍ ൌ ሺܥ଴ െ ௘ሻܥ
௩

௠ೞ
          (1) 

where C0 (mg/L) and Ce (mg/L) represent the initial and equilibrium total P(V) 

concentrations, respectively; v (L) is the aqueous solution volume; and ms (g) 

is the mass of zeolite. 

 

2.3. Phosphate-removal equilibrium experiments in the presence of 

competing ions 

The effect of common coexisting ions in wastewater, such as chloride, 

sulfate, nitrate, and bicarbonate, on the sorption of phosphate was 

investigated by adding 300 mg HCO3
-/L, 300 mg Cl-/L, 250 SO4

2-/L, and 50 

mg NO3
-/L to 100-15,000 mg P-PO4

3-/L. A given mass of CaP1-NA (0.2 g) 

was added, and the solution was agitated at 400 rpm for 24 h at 21±2°C. 

After filtration with a 0.2-µm membrane filter, the residual phosphate 

concentration was analysed using spectrophotometric colourimetry. The 

typical values of the effluent streams from secondary and tertiary treatments 

at the El Prat wastewater treatment plant WWTP (Barcelona, Spain) were 

used to determine the feed composition. 
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2.4. Speciation of phosphate-loaded zeolite samples using a sequential 

extraction protocol 

The speciation of P adsorbed in loaded zeolites (NaP1-NA and CaP1-NA) 

was achieved using a modified four-step sequential extraction (M.J.Hedley 

and J.W. B Stewart, 1982; Ann et al., 2000; Moharami and Jalali, 2014). 

First, 30-mL aliquots of 1000 mg P-PO4
3-/L at pH 7 were equilibrated with 

pre-weighed tubes containing 3 g of each type of zeolite: NaP1-NA and 

CaP1-NA. After shaking for 24 h at room temperature, the suspensions were 

centrifuged, and the powders were collected and dried in an oven at 50‒

60°C. The adsorbed phosphate was sequentially extracted. One gram of 

each sample was weighed into a 50-mL centrifuge tube and then treated as 

described in Table 5.1. 

Table 5.1. Chemical extraction scheme for the phosphate speciation of 

loaded zeolites. 

Reagent conditions Speciation 

name 

Speciation 

(associated P(V) forms) 

Step 

40-mL 2 M KCl for 2h 

40-mL 0.1 M NaOH for 17h 

40-mL 0.5 M HCl for 24h 

40 ml 8 M HNO3/5 M HClO4 

KCl-P 

NaOH-P 

HCl-P 

Res-P 

Soluble and exchangeable P 

Fe- and Al-bound P 

Ca-bound P 

Residual P 

1 

2 

3 

4 

 

2.5. Desorption of phosphate from loaded zeolites samples using 

bicarbonate solutions 

First, 0.5-g samples of phosphate-loaded zeolites (NaP1-NA and CaP1-NA) 

with phosphate contents ranging from 11 to 173 mmol/L were mixed with 20-

mL solutions containing a mixture of NaHCO3 (0.1 M) and Na2CO3 (0.1 M) in 

50-mL plastic bottles. The bottles were mechanically shaken (Heidolph) at 

21±1°C for 24 h at a constant agitation speed of 200 rpm. At the end of the 
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experiment, the samples were withdrawn from the test bottles and filtered 

through a 0.45-µm membrane filter; the residual phosphate concentration 

was analysed using spectrophotometric colourimetry. 

 

2.6. Physicochemical characterisation of zeolites 

At the end of the sorption and desorption experiments, the zeolite samples 

were washed with water to remove the interstitial water and then oven-dried 

at 60°C for structural and textural analysis. The mineralogical composition 

was analysed by a Bruker D8 A25 Advance X-Ray Diffractometer θ-θ with 

CuKα1 radiation, Bragg-Brentano geometry, and a linear LynxEyeXE 

detector. The diffractograms were obtained from 4º to 60º of 2θ with a step 

size of 0.015º and a counting time of 0.1 s as the sample rotated. The solids 

in powder form were identified by standard JCPDS files and were matched 

with PDFs no. 009-0077 (brushite), no. 039-1374 (garronite), 039-0219 

(NaP1), 046-1045 (quartz), and 015-0776 (Mullite). 

The samples’ morphologies were examined by FE-SEM-EDS with prior gold 

metallisation.  

The PZC values of NaP1-NA and CaP1-NA were determined, and the 

common intersection point (CIP) method was applied to the potentiometric 

titration curves obtained at four ionic strengths (Skartsila and Spanos, 2007; 

Liu et al., 2013; Zebardast et al., 2014). First, 0.1 g of zeolite was equilibrated 

with 25 mL of solutions with different ionic strengths (0.01-, 0.05-, 0.1-, and 

0.5-M KNO3) for 24 h at 200 rpm and 21±1°C. Following equilibration, a small 

quantity of 0.1-M KOH was added to the suspension to increase the pH 

beyond 10 (pHin). The suspension was then titrated with 0.0454-M HNO3 to 

pH≈3 using an automatic titrator (Mettler Toledo). The net surface charge 
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was correlated with the PZC determined from the titration data for the 

adsorbed amounts of [H+] and [OH-] ions.  

Therefore, the titration curves of different ionic strength intersect at 

pH=pHPZC. The surface charge was calculated according to Eq. 2 (Martinez 

et al., 2008). 

ܾ ൌ ௕ܥ	 െ ௔ܥ ൅ ሾܪାሿ െ ሾܱିܪሿ       (2) 

where b (mol/g) is the net amount of hydroxide ions consumed; Cb and Ca 

(mol/L) are the base and acid concentrations, respectively; and [H+] and 

[OH−] denote the proton and hydroxide concentrations, respectively, 

calculated from the measured pH for a given mass of zeolite (g) and a given 

volume of solution (L). All measurements were performed in triplicate, and 

the average values are reported. 

 

3. Results and discussion 

3.1. Characterisation of the CaP1-NA-modified zeolites 

The conversion of FA into zeolitic materials through the batch hydrothermal 

synthesis process involves three stages: i) the dissolution of Al and Si from 

FA, ii) the deposition of aluminosilicate gel on the FA surface, and iii) the 

crystallisation of zeolite from aluminosilicate gel (Murayama et al., 2002). The 

three Al- and Si-containing phases of the FA are i) amorphous 

aluminosilicate glass, ii) quartz, and iii) mullite. Aluminosilicate glass is the 

largest component and is the most unstable in the hydrothermal environment, 

and therefore, it exhibits the highest rate of dissolution (C. Poole, 2000; 

Querol et al., 2001) makes the largest contribution to the produced zeolites. 

The XRD patterns of the Na zeolite (NaP1-NA) and the synthesised Ca 

zeolite (CaP1-NA) are shown in Figure 5.1a. NaP1 (Na6(Al6Si10O32)·12H2O), 
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mullite (Al2Si2O13), and a trace of quartz (SiO2) were the main phases 

identified in NaP1-NA. The XRD patterns of CaP1-NA indicated the presence 

of mullite, quartz, calcite (CaCO3), and garronite (NaCa2.5(Si10Al6)O32·14H2O) 

as the predominant phases. The SEM observation (Figure 5.1b) showed that 

NaP1-NA and CaP1-NA coat the FA. As shown in Figure 5.1b, the coating of 

NaP1-NA is not complete, as reported by Cama et al. (Cama et al., 2005). 

 

Figure 5.1. (a) XRD patterns of NaP1-NA and its Ca-modified zeolite CaP1-

NA and (b) SEM images of NaP1-NA and CaP1-NA. 

  

The chemical compositions of both zeolitic materials are listed in Table 5.2 

and indicate that NaP1-NA and CaP1-NA contained mainly Al2O3 and SiO2, 
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which accounted for a total of 74%. The synthesis of CaP1-NA considerably 

increased the Ca2+ content (from 1.4 to 7.4% (82.5 mg/g)). Accordingly, the 

Na content decreased significantly (from 7.6 to less than 1%) because of 

treatment with CaCl2 and the partial exchange of Na and Ca ions in the 

zeolite structure. 

Table 5.2. Average chemical compositions of the zeolitic adsorbents NaP1-

NA and CaP1-NA obtained via FSEM-EDX and the specific surface area 

(SBET). 

 C O Na Mg Al Si K Ca P Fe SBET 

(m2 g-1) 

NaP1-NA (%) 11.6 50.6 7.6 0.5 8.1 15.1 1.9 1.4 0.4 2.9 6.3 

CaP1-NA (%) 12.5 51.3 1.0 0.6 8.1 14.6 1.7 7.4 0.4 2.6 13.6 

 

The acid-base characterisation revealed pHPZC values of 6.1±0.2 for CaP1-

NA and 5.4±0.2 for NaP1-NA (Figure 5.2), which are in agreement with 

values reported for natural zeolites (clinoptilolite) (5.2±0.2) (Guaya et al., 

2015). The increased pHPZC of CaP1-NA suggests a decrease in the acidity 

of the metal-hydroxide groups (MOH) of the zeolite structure after 

modification with Ca salts resulting from complexation with Ca(II) ions. The 

determined pHPZC value is in agreement with values reported for α-Al(OH)3(s) 

(pHPZC=5.0) and Fe(OH)3 (pHPZC=5‒7). Indeed, some studies (Reed et al., 

2000; Chen et al., 2006; Zhang et al., 2007) have reported that Fe- and Al-

based surface groups on zeolites become positively charged and that their 

anion-sorption capacity (e.g., H2PO4
-/HPO4

2-) via ligand exchange increase 

because of chemical interactions and electrostatic forces. The latter give rise 

to Columbic attraction or repulsion between binding sites and sorbing ions 

(Onyango et al., 2007). 
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Figure 5.2. Potentiometric titration curves obtained at 0.01-, 0.05-, 0.1-, and 

0.5-M KNO3 for a) CaP1-NA and b) NaP1-NA. 

 

3.2. P(V)-sorption capacities of CaP1-NA and NaP1-NA: Dependence 

on pH and P(V) concentration 

The effects of the initial P(V) concentration on phosphate sorption and the 

equilibrium pH for both zeolites are shown in Figure 5.3a. The P(V)-sorption 

capacity increased as the initial P(V) concentration increased. Additionally, 

the equilibrium pH exceeds the initial pH (8), reaching values as high as 9.5 

for CaP1-NA and 9 for NaP1-NA, at lower initial P(V) concentrations (up to 

20 mmol/L) and then decreases back to the initial value for NaP1-NA and 7.5 

for CaP1-NA.  
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Figure 5.3. (a) Evolution of the equilibrium pH as a function of the initial 

phosphate concentration (initial pH 8) for CaP1-NA and NaP1-NA and (b-c) 

the uptake concentration and the percentage of removal as a function of the 

equilibrium-adsorbed concentration. 

 

Moreover, the shape of the phosphate-sorption isotherm indicates that CaP1-

NA has a higher affinity for phosphate than NaP1-NA, as shown by the 

7

7.5

8

8.5

9

9.5

10

0 30 60 90 120 150 180

Eq
ui

lib
riu

m
 p

H
 

Initial Phosphate concentration (mmol/L) 

NaP1-NA

CaP1-NA

0

50

100

150

200

250

0 30 60 90 120 150 180

q e
(m

g/
g)

Initial Phosphate concentration (mmol/L) 

NaP1-NA

CaP1-NA

0

20

40

60

80

100

120

0 30 60 90 120 150
Initial Phosphate concentration (mmol/L)

CaP1-NA

NaP1-NA

Ph
os

ph
at

e 
R

em
ov

al
 (%

)

b

a

c



Chapter 5. PAZ&FERTILIZER 

	 190
		

higher slope of the isotherm. This high affinity results in the nearly 

quantitative removal of phosphate by CaP1-NA (98%) at low residual 

phosphate concentrations in solution. In contrast, for NaP1-NA, the removal 

ratios achieved were below 25%. As the initial phosphate concentration was 

increased, the sorption capacities of the zeolites increased, reaching maxima 

of 207 mg/g and 50 mg/g for CaP1-NA and NaP1-NA, respectively (Figure 

5.3b-c). 

According to the removal patterns exhibited by NaP1-NA and CaP1-NA 

zeolitic materials, the sorption of P(V) ions, mainly H2PO4
- and HPO4

2-, that 

occurs in the expected pH range (7 to 9) may follow two postulated 

mechanisms: 

a) Surface complexation with AlOH and FeOH functional groups originally 

present as Al and Fe oxides or in the zeolitic structure via two main 

reactions: 

a1) Labile complexes with MOH2
+ surface groups 

MOH2
++H2PO4

-/HPO4
2- MOH2

+H2PO4
-/HPO4

2-    (3) 

a2) Inner-sphere complexes with MOH surface groups 

MOH+H2PO4
-/HPO4

2- MH2PO4
-/HPO4

2-+OH-    (4) 

where M represents Al or Fe. 

b) Formation of Ca phosphate minerals with Ca(II) ions present on the 

zeolite through two main reactions:  

b1) Ca phosphate minerals with Ca(II) present on the zeolitic material as 

CaO(s) and CaCO3(s): 

H2PO4
-/HPO4

2-+CaO(s) = Ca phosphates (CaHPO4 or Ca5(OH)(PO4)3(s))  (5) 
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Both mineral phases can be formed in the expected pH range, as shown in 

Figure 5.4. 

b2) Formation of Ca phosphate minerals with Ca(II) ions occupying the 

ion-exchange groups of the zeolitic structure 

(ZO-)2Ca2++H2PO4
-+2Na+ 2(ZO-Na+) +CaHPO4(s) +H+    (6) 

5(ZO-)2Ca2++3H2PO4
-+10Na+ 10(ZO-Na+) + Ca5(OH)(PO4)3 (s))+7H+  (7) 

where ZO- represents the anionic groups of the zeolite structure. 

The P(V) sorption that occurs via the formation of surface complexes (Eqs. 

3‒4) is consistent with the observed results at low phosphate concentrations 

(Figure 5.3b), which involved the removal of H2PO4
- (Eq. 3) and the formation 

of inner-sphere complexes (Eq. 4).  

For high initial P(V) concentrations (50‒200 mmol/L), the most favoured 

reaction is the formation of Ca phosphates (e.g., brushite or Hap) (Eqs. 6‒7) 

with the release of H+ ions and the resulting decrease in the pH to 7.5 for 

CaP1-NA. For NaP1-NA, the lower Ca(II) content results in a lower sorption 

capacity, and thus, the recovery of P(V) ions should be conceived of as a 

combination of Eqs. 3‒6.  

XRD analysis of the samples after the sorption experiments revealed the 

presence of brushite in most of the analysed CaP1-NA samples, while for 

NaPa1-NA, the presence of Ca phosphate minerals was not observed. This 

could be attributable to the contents of these minerals on the samples being 

below the limit of detection or the formation of the minerals within the small 

channels of the zeolite as undetectable nanocrystals. 
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Figure 5.4. Species distribution diagrams and solubilities as a function of pH 

for the Ca and phosphate system using the HYDRA-Medusa database 

(Puigdomènech, 2001) for both phases: (a-b) CaHPO4.2H2O (brushite) and 

(c-d) Ca5(PO4)3OH (Hap). The box indicates the pH range evaluated 

(maximum and minimum values). 

  

The formation of Ca phosphates (brushite and Hap) is thermodynamically 

favoured in the expected pH range, as shown in Figure 5.4. Hap is more 

stable than brushite, which is considered its precursor phase. However, as 

the reaction proceeds on the microporous zeolite structure, brushite is 

formed and then stabilised, thereby stopping the conversion to Hap. 

The phosphate-sorption isotherms of CaP1-NA and NaP1-NA at different pH 

values (7, 8, and 9) are shown in Figure 5.5. The P(V)-loading capacity of 

CaP1-NA is higher than that of NaP1-NA; e.g., 203±11 mg/g compared with 
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57±5 mg/g at pH 8. The larger sorption capacity of CaP1-NA is associated 

with its Ca content and high availability for reaction, mainly at the ion-

exchange sites, while the lower sorption capacity of NaP1-NA is related to 

unreacted Ca in the form of CaO. It should be mentioned that the initial SBET 

increased during zeolite modification from 6.3 to 13.6 m2/g. Thus, the higher 

Ca content and larger surface area enhance the phosphate sorption, as 

previously reported (Ji et al., 2014). The surface charge properties of the 

active sites (Fe and Al sites) of both zeolites were 8% Al and 2.5% Fe (Table 

5.2). The larger amount of Al in NaP1-NA plays an important role in 

phosphate removal at neutral pH, and the magnitude of the Columbic 

attractive force decreases as the active sites become neutral. 

The sorption isotherm data were fitted using Langmuir (Eq. 7) and Freundlich 

isotherm models (Eq. 8): 

஼೐
௤೐
ൌ 	 ଵ

௄೗௤೘
൅ ஼೐

௤೘
    (7) 

log ௘ݍ ൌ 	 logܭ௙ ൅	
ଵ

௡
log  ௘    (8)ܥ

where Ce (mg/L) and qe (mg/g) are the equilibrium total P(V) concentrations 

in the aqueous and solid phases, respectively; qm (mg/g) is the maximum 

sorption capacity; KL (L/mg) is the Langmuir sorption equilibrium constant; n 

is a constant indicating the Freundlich isotherm curvature; and Kf 

((mg/g)/(mg/L)n) is the Freundlich equilibrium constant. The sorption 

parameters and regression coefficients (R2) obtained from the linear 

regression of Eqs. 7 and 8 are listed in Table 5.3. 

The experimental and predicted sorption isotherm data by the Langmuir 

model at different pH values for the CaP1-NA and NaP1-NA zeolites are 

shown in Figure 5.5. 
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Figure 5.5. Phosphate-sorption isotherms at different pHs and uptakes 

predicted by the Langmuir (left) and Freundlich (right) isotherms for (a,b) 

CaP1-NA and (c,d) NaP1-NA modified zeolitic material (dots: experimental 

data; line: predicted values). 

 

The P(V)-removal data for CaP1-NA were well described by the Langmuir 

isotherm, while for NaP1-NA, the Freundlich isotherm was more suitable. 

This behaviour was explained by Pengthamkeerati et al. (2008), who 

reported that the phosphate-adsorption processes of zeolite derived from FA 

using different treatment methods can be described using different isotherm 

models. The Langmuir isotherm is more suitable for the adsorption pattern of 

phosphate on the alkaline-treated and Ca-rich zeolite CaP1-NA. 
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as a result, this model is suitable for the phosphate-adsorption pattern of 

NaP1-NA. 

 

Table 5.3. Langmuir and Freundlich isotherm parameters for CaP1-NA and 

NaP1-NA at different pH values. 

Adsorbent 
Models 

CaP1-NA NaP1-NA 

pH 7 pH 8 pH 9 pH 7 pH 8 pH 9 

 
Langmuir 
equation 

qm 

KL 

R2 

192  
0,004 
0,96 

203.6 
0.004 
0.99 

153 
0.006 
0.96 

55.9 
0.0006 

0.82 

57.3  
0.00035 

0.90 

43.3 
0.0004 

0.91 

 
Freundlich 
equation 

Kf 
n 
R2 

1.45 
1.36 
0.94 

8.8 
2.7 

0.88 

17.6 
2.9 

0.93 

2.23 
3.01 
0.88 

4.21 
3.80 
0.98 

0.81 
2.48 
0.98 

 
 

The XRD patterns of phosphate-loaded CaP1-NA samples with initial P(V) 

concentrations ranging from 8 to 15 g/L at pH values of 7, 8, and 9 are shown 

in Figure 5.6. These patterns revealed the formation of Ca phosphate in the 

form of brushite (CaPO3(OH).2H2O(s)) as the major phase at pH 7 and 8 and 

as a minor phase at pH 9. Similar P(V)-removal and brushite-formation 

results were reported by Pengthamkeerati et al. (2008) with Ca-zeolites and 

by other researchers (Lu et al., 2009; Xu et al., 2010) with FA.  

The formation of brushite instead of Hap is associated with the prevalence of 

kinetic control. In fact, the reactive crystallisation of brushite has been 

described to occur (Ferreira et al., 2003; Oliveira et al., 2007) through five 

successive stages:  

(i) spontaneous Hap precipitation, (ii) complete dissolution of Ca and Hap 

growth, (iii) initial appearance of brushite nuclei, (iv) coexistence of Hap and 
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brushite, and (v) transformation of Hap into brushite and subsequent brushite 

growth. 

 

 
 
 
Figure 5.6. XRD patterns after phosphate sorption by modified CaP1-NA 

zeolitic material and brushite formation at different pH values. 
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The transformation of Hap into brushite would not be expected because Hap 

is the most thermodynamically stable species. Nevertheless, under the 

experimental conditions, Hap appears to be in a low-crystallinity state and in 

metastable equilibrium with brushite, whose faster crystal growth drives the 

transformation.  

Both zeolites exhibit maximum sorption capacities at pH 8, which slightly 

decrease as the pH increases to 9 or decreases to 7. This pH-dependent 

sorption behaviour is in agreement with the brushite formation observed in 

most of the samples analysed by XRD (Figure 5.6). The logarithmic solubility 

dependence of brushite and the P(V)-loading capacity as a function of pH are 

plotted in Figure 5.7. The minimum solubility corresponding the highest 

brushite stability occurs at pH 8 (maximum loading capacity) and decreases 

slightly as the pH is decreased to pH 7 or increased to 9. 

  

Figure 5.7. The experimental P(V)-sorption capacities at different pH values 

and the estimated curves of brushite solubility for the CaP1-NA isotherm. 
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involvement of the CaO(s) present on the zeolite in brushite formation and 

the acid-base properties of the AlOH and FeOH surface groups, which 

exhibit pHpcz of approximately 6 for hydrated Al oxides (Simsek et al., 2013) 

and 7 for hydrated Fe oxides. As a result, at basic pH values exceeding the 

pHpcz, the formation of labile complexes will be negligible. Additionally, in 

alkaline conditions, the formation of inner-sphere complexes is not favoured, 

and thus, the removal ratio decreases. 

The phosphate-sorption capacities of zeolites and FA as reactive materials 

for phosphate removal are compared in Table 5.4, which shows that the 

phosphate-sorption capacities of CaP1-NA exceed previously reported 

values. 

 

Table 5.4. Comparison of the phosphate-sorption capacities of various 

zeolite- and FA-based materials. 

Material qm (mg/g) pH Reference 

Zeolite NaP1-NA 

Calcium modified Zeolite NaP1-NA (CaP1-NA) 

Zeolite/Lanthanum hydroxide (La-ZFA) 

Zeolite/hydrate iron oxide (ZFA/Fe2O3) 

Zeolite synthesized from fly ash (alkaline fusion) 

NaOH treated fly ash (TFA-NaOH)  

Calcium modified Zeolite NaP1/hydroxyapatite  

Fly ashes from three coal-burning power plants 

Synthesis zeolite –Ca 

Natural zeolite (Clinoptilolite) 

57.33 

203.6 

71.94 

18.2 

132, 157 

57.14 

24.1 

90, 108 

30.46 

13.8 

8 

8 

>9.24 

6.6 

7 

8-12 

9 

11, 12 

6.78 

n.a 

This study 

This study 

(Jie Xie et al., 2014) 

(J Xie et al., 2014) 

(Zhang et al., 2011) 

(Pengthamkeerati et al., 2008) 

(Watanabe et al., 2014) 

(Lu et al., 2009) 

(Wu et al., 2006) 

(Chmielewská et al., 2013) 

n.a = not available  
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3.3. P speciation of the phosphate in loaded CaP1-NA/NaP1-NA 

The speciation results of CaP1-NA and NaP1-NA zeolitic materials are 

shown in Figure 5.8. The easily exchangeable speciation (KCl-P) associated 

with exchange reactions as defined by Eq. 3 accounts for up to 20% for 

NaP1-NA and less than 10% for CaP1-NA. The dissolved species obtained 

using NaOH solutions (NaOH-P) reveal that the P bound to the hydrated 

metal oxides (the inner-sphere and labile complexes described by Eqs. 3‒4) 

makes only a small contribution for NaP1-NA (less than 5%) and no 

contribution for CaP1-NA. In NaOH solutions, the MOH2+ and MOH groups 

are deprotonated, and the excess OH ions disrupt the MH2PO4
-/HPO4

2-

complexes. The HCl-P speciation (Meis et al., 2012; Wang et al., 2012) 

associated with Ca phosphate mineral phases (brushite and Hap) accounts 

for up to 80% for NaP1-NA and more than 90% for CaP1-NA. The species 

produced by the residual speciation contributed less than 1% for both 

zeolites. 

 

 

Figure 5.8. Phosphate speciation of NaP1-NA and CaP1-NA with an initial 

equilibrium concentration of phosphate (qe=12±1 mg/g). 
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3.4. Effect of competing ions on phosphate sorption 

Coexisting ions, such as chloride, sulfate, nitrate, and carbonate, that are 

generally present in treated wastewater do not interfere with phosphate 

uptake through competitive sorption, as shown in Figure 5.9. Differences 

between the samples containing individual species, mixtures of species, and 

no coexisting ions are not statistically significant. Given that the main 

phosphate-removal mechanism is based on the formation of insoluble Ca-P 

minerals and weak complexes with MOH surface groups, none of the 

evaluated anions could form insoluble forms with Ca anions, and their 

complexation with Fe and Al oxides was also less favoured than that with 

P(V) anions.  

 

 

Figure 5.9. Effect of coexisting anions on phosphate recovery at different 

initial phosphate concentrations with individual and mixtures of anions (Cl-

=300 mg/L, SO4
2-=250 mg/L, NO3

-=50 mg/L, and HCO3
-=300 mg/L). 

According to Zhang et al. (2009), this can be attributed to the specific 
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sorption of phosphate on the adsorbent because the phosphate ions 

adsorbed on the strongly specific sites were rarely exchangeable, even in 

solutions containing excessive amounts of coexisting ions. This suggests that 

CaP1-NA has high sorption selectivity for phosphate anions and great 

potential for use in treated wastewater expected to contain high 

concentrations of theses anions. 

 

3.5. Desorption of phosphate from loaded zeolite samples  

The phosphate desorption achieved using 0.1 mol/L NaHCO3/Na2CO3 

solutions increased as the amount of phosphate on the zeolitic material 

decreased (Figure 5.10a-b). Partial desorption (30 to 70%) was reported for 

CaP1-NA, whereas values of 10 to 70% were observed for NaP1-NA in a 

single-extraction trial. These results are in agreement with the speciation 

results obtained in using excess bicarbonate ions. 

Indeed, during labile speciation (P-KCl), phosphate anions will be displaced 

by bicarbonate ions, and partial brushite dissolution will be achieved, as 

indicated in Figure 5.7, which shows that increasing the pH increases the 

solubility of brushite by up to an order of magnitude. It can be concluded that 

P(V) sorption on CaP1-NA is relatively irreversible and that the bonding 

between the actives sites and the adsorbed phosphate is quite strong. 
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Figure 5.10. Phosphate desorption using a mixture of NaHCO3 (0.1 M) and 

Na2CO3 (0.1 M) from loaded (a) CaP1-NA and (b) NaP1-NA. 

 

4. Conclusions  

NaP1-NA zeolitic material synthesised from Narcea FA and its Ca-modified 

form (CaP1-NA) are capable of high phosphate sorption in neutral to slightly 

basic conditions. The maximum phosphate-sorption capacities determined at 

pH 8 were 65±7 and 203±11 mgP-PO4/g zeolite for NaP1-NA and CaP1-NA, 
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respectively. The sorption capacity in the expected pH range of wastewater 

effluents (e.g., from 7 to 9) was slightly dependent on the pH and was 

maximised at pH 8 for CaP1-NA and pH 9 for NaP1-NA.  

Phosphate removal by NaP1-NA occurred via a surface complexation 

mechanism involving the AlOH and FeOH surface groups of the unreacted 

Fe and Al oxides originally present on the FA or the potential formation of Ca 

phosphate phases using the original CaO present on the FA. In contrast, for 

CaP1-NA, the main removal mechanism included the formation of a Ca 

phosphate, brushite, as confirmed by XRD analyses. Thus, the higher 

solubility of brushite compared with that of Hap makes this zeolitic material 

promising as a novel slow-release inorganic zeolite/CaP1-NA/brushite 

fertiliser.  
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The performance of CaP1 as a Ca-activated powdered activated zeolite 

(PAZ) in recovering phosphate P(V) from aqueous solutions was evaluated 

using a hybrid sorption-membrane ultrafiltration (UF) system with a hollow 

fibre module. The objective of this study was to explore the influence of 

process parameters such as initial P(V) concentration, pH and PAZ dose on 

P(V) recovery from a tertiary treatment effluent. The hydrodynamic 

parameters of the UF operation were also evaluated as a function of the PAZ 

dose. The P(V) sorption capacity of PAZ decreased by increasing the PAZ 

dose in the system from 12±2 to 7.5±2% for a doses of 2 and 2.5 gPAZ/L 

respectively with 25 mg P-PO4/L solutions at pH 8. Comparing both doses 

performance, longer filtration cycle times and a permeability reduction were 

measured for the low dose (2 gPAZ/L) due to the higher time required for the 

formation of the PAZ cake layers onto the membrane surface. 

The P(V) recovery profiles as a function of the initial P(V) concentrations, at 

pH 8 and 2.5 gPAZ/L, showed that the P(V) sorption capacity of PAZ 

increased by increasing the P(V) concentration, in fact, the sorbent was not 

saturated and recoveries were 6±2% (for 10 mg P-PO4/L), 11±2% (for 25 mg 

P-PO4/L), and 20±3% (for 100 mg P-PO4/L). The increase of the pH of the 

feed solution from 8 to 9 for the initial P(V) concentration 10 mg P-PO4/L 

increased the P(V) recovery percentage up to 70±4% due to combined 

kinetic mechanisms. Analysing loaded samples according to a fractionation 

protocol and XRD analysis confirmed that the phosphate-sorption process 

involves the formation of Ca phosphates (mainly brushite and Hap). 
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1. Introduction 

The recovery and reuse of phosphates from industrial and domestic wastes 

has been identified as important topic to slow the continuous reduction of 

global phosphate rock reserves. Because economically exploitable 

phosphate rock is limited to only a few countries, food security in countries 

with limited or no domestic phosphate rock reserves is potentially vulnerable. 

This situation has forced the European Union to include phosphate rock as a 

critical element (Schröder et al., 2010; European Commission, 2014), 

creating a series of programmes and initiatives to reduce consumption and 

use alternative resources. 

Phosphorus P is typically found in domestic and industrial streams in anionic 

forms at typically low levels (10-150 mgP/L) compared with the total carbon 

content (Ashekuzzaman and Jiang, 2014). 

Physicochemical treatment and biological nutrient removal are the two most 

commonly used techniques for removal P(V) from municipal and industrial 

wastewater. The coagulation–sedimentation method, which removes P(V) as 

slightly soluble phosphorous salts by adding a coagulant (such as FeCl2, 

FeSO4 or Al2 (SO4)3), is a common physicochemical treatment method, and 

its usage depends on the economy and efficiency of the process. However, 

the cost and sludge treatment make this method an unattractive option for 

wastewater recovery pathway (de-Bashan and Bashan, 2004; Zelmanov and 

Semiat, 2014). In recent years, a new approach has been evaluated that 

relies on the use of inorganic species-based adsorbents (e.g., minerals, 

clays, FA, and zeolites) suitable for direct use as a fertiliser or soil 

conditioner. Indeed, such P-loaded adsorbents, which can contain 5 to 10% 

P(w/w), may be suitable as secondary P sources for the production of high-
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purity fertilisers by fertiliser companies (Bartzokas, 2001; Schoumans et al., 

2015; Lalley et al., 2016). The most relevant sorbent properties for phosphate 

recovery from solution are as follows: a) high phosphate-sorption capacity 

and selectivity, b) fast kinetics from solution, c) low sorption capacity for 

dissolved organic matter, and d) high stability and resistance to reactor 

agitation, or column operation involving granular materials. Additionally, a set 

of properties are required for the materials to under subsequent valorisation: 

e) high soil and plant availability, f) slow release ratios, and g) limited release 

of potentially harmful components sorbed from the treated waters or originally 

present on the sorbent. 

Recently, Na+-zeolite (NaP1-NA) synthesised from coal fly ash (CFA) and its 

Ca-modified form (CaP1) were evaluated for the recovery of phosphate from 

aqueous solution. The sorption of phosphate ions (mainly H2PO4
-/HPO4

2-) in 

the conditions expected for most industrial and domestic effluents (pH values 

of 6‒9) was postulated to proceed via a combined mechanisms including 

surface complexation with the MOH groups from the zeolitic structure and 

precipitation of Ca-phosphate with Ca(II) ions present on the zeolite. At low 

P(V) concentrations (< 50 mg P-PO4/L) the dominant mechanism involves 

surface complexation reactions, whereas at relatively high P(V) 

concentrations (> 100 mg P-PO4/L), the formation of Ca-phosphate, mainly 

brushite (CaHPO4(s)), is favoured. 

Application of pressure-driven membrane processes as microfiltration (MF) 

and ultrafiltration (UF) has expanded in recent years as an alternative 

technology for developing hybrid systems of sorption/filtration (Dong et al., 

2014; Wang et al., 2016). UF has proved to be an effective physical barrier to 
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particles and colloids larger than the UF membrane pores, which are retained 

by size-exclusion mechanisms. Furthermore, UF provides extra advantages 

over conventional treatments such as small footprint, low energy 

consumption, limited chemical dosing, capability of coping with wide 

fluctuations in feed quality and delivering permeate of relatively constant 

quality, and reduced scale-up risks (Lee et al., 2008). Water recovery for 

MF/UF systems is typically 85 to 97% and is a function of the backwash (BW) 

strength and the method of BW disposal (Ferrer et al. 2015). 

Scarce studies have been reported on the integration of sorption on powder 

sorbents (e.g. powder zeolites) and membrane filtration (e.g. MF, or UF). 

Yildiz (2004) investigated the effects of pH and Ca(II) concentration on the 

removal of phosphate by FA in a crossflow MF and demonstrated that 

membrane MF was more efficient than classical batch separation. More 

recently, an adsorption-UF process for phosphate recovery using a hydrated 

ferric oxide (HFO)-based agglomerated sorbent was studied by Zelmanov 

and Semiat, (2014). A residual P(V) concentration lower than 0.1 mgP/L was 

reported in a dead-end configuration. Hybrid membrane (UF)-sorption 

systems can be operated in several configurations, (e.g. dead-end flow or 

cross-flow modes..) (Hui et al., 2014; Vincent Vela et al., 2009), however, it is 

necessary to assess the performance of the system by determining the 

capacity to recover P(V) and the maxim amount of P(V) recovered under the 

more realistic conditions or those commonly used in WWTP, for instance by 

pumping continuously the feeding solution to stirring reactor. In view of this 

knowledge gap it is necessary to evaluate the feasibility in terms of operation 

parameters of these hybrid systems. The goal of this study was to investigate 

P(V) adsorption using powdered Ca-activated zeolite (CaP1) and a 
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membrane separation step using a hollow fibre UF crossflow configuration. 

The influence of process parameters, such as the initial P(V) concentration, 

pH and PAZ dose on P(V) recovery from a tertiary treatment effluent were 

evaluated. Furthermore, the specific cake resistances were calculated and its 

effects on the permeate flux was also discussed. 

 

2. Materials and methods  

2.1. Materials 

Powdered Ca-activated PAZ (CaP1-NA) 

Na+-zeolite (NaP1-NA) synthesised from Narcea CFA with 3-mol/L NaOH 

solution at 125°C for 8 h was used as a precursor in a hydrothermal method, 

as described elsewhere (Querol et al., 2007). Ca (CaP1-NA) PAZ was 

prepared by a cation-exchange process. First, 250 g of NaP1-NA was 

immersed in 1000 mL of a 0.5-mol/L CaCl2 solution for 1 h at room 

temperature, and the mixture was then filtered with a 0.2-µm membrane filter 

and rinsed with distilled water to remove the CaCl2 solution. The cation-

exchange and washing cycle was repeated five times. Samples obtained 

were dried for 72 h at 50‒60°C as described elsewhere (chapter 5). 

 

P(V)-containing model feed solution composition 

Aqueous P(V) solutions were prepared by dissolving known amounts of 

Na2HPO4 in water containing common competing ions present in tertiary 

wastewater treatment effluents. The background ion concentrations were 

fixed by using the average annual composition of the tertiary stream from a 

wastewater treatment (WWT) facility (El Prat, Barcelona, Spain) as a 
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reference. The anion solution composition was as follows: chloride (320 

mg/L), bicarbonate (280 mg/L), sulfate (240 mg/L) and nitrate (30 mg/L) 

(prepared from the corresponding Na salts). The cation solution composition 

was as follows: Na (300 mg/L), Ca (80 mg/L), Mg (20 mg/L) and K (34 mg/L) 

(prepared from the corresponding chloride salts). As tap water was used to 

prepare the test solutions a 5±2 mg TOC/L was measured. 

 

2.2. Experimental methodology 

Membrane UF-powder activated zeolite (UF-PAZ) hybrid system 

The UF-PAZ consisted of a clear acrylic cylinder reactor with a volume of 60 

L combined with a crossflow UF module consisting of 100 hollow fibres with a 

molecular weight cut-off of>100000 Da. The membrane fibres consisted of a 

hydrophilic polyethersulfone blend of polyvinylpyrrolidone and 

polyethersulfone and had an inner diameter of 0.8 mm and a length of 1.0 m, 

corresponding to a surface area of 0.251 m2. The module was mounted in a 

frame also equipped with a positive displacement peristaltic pump 

(Masterflex® 77411-00 model, I/P® 26), pressure stabiliser, pressure sensor, 

valves, tubing, and the mixing reactor. The experimental set-up is illustrated 

in Figure 6.1. 
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Figure 6.1. Schematic of the hybrid membrane UF-sorption system including 

an ultrafiltration hollow fibre module, the feed P(V) stream (S); stirred tank 

reactor (STR); the stream leaving the tank (T); the concentrate (C) and the 

permeate (P) streams from the membrane module with a flow-rate of 

Q(m3/s).The dashed line represents the control surface used for P(V) mass 

balance .  

 

P(V)-removal experiments were conducted as follows: 40 L of influent 

phosphate solutions (10, 25, and 100 mgP-PO4/L) and specified amounts of 

PAZ (80 and 100 g) were added to the (STR). The reactor was agitated by a 

mechanical stirrer (IKA RW 20), and the stirring speed was fixed. The mixture 

was agitated in the tank for 30 min at 400 rpm for P(V) sorption process to 

take place and was then fed to the UF system. The water was pumped 

through the membrane fibres at a constant flow rate of 1.2 L/min. A 

phosphate containing solution was pumped continuously from the feed tank 

to the reactor to compensate the volume of solution leaving the system 

through the permeate stream. Pressure transducer sensors were located at 

the inlet and outlet of the membrane module. The resulting PAZ slurry was 



  Chapter 6. Hybrid System UF-PAZ  

217 

fed to the STR. A filtration cycle interval of 0.3±0.05 to 0.85±0.05 bar of 

transmembrane pressure (TMP) was used and the membrane backwashed 

was performed by using permeated water, when the TMP reached 0.85±0.05 

bar and thus restore the initial permeability of the membrane. The 

backwashing procedure also involved a crossflow flush of the membrane 

surface in both directions to scour the PAZ layer from inside the hollow fibres 

and an outside-in flow to remove PAZ and other particles accumulated on the 

inside surface of the membrane. The experiments were performed under 

constant pH monitored by an in-line pH potentiometer (Crison pH 28). When 

the pH was 0.1 units above or below the set point, strong acid (1-mol/L HCl) 

or strong base (1-mol/L NaOH) was added using a peristaltic pump (Master 

Flex console drive). Chemical cleaning was carried out using an oxidant 

solution (0.01-mol/L NaClO), an acidic solution (0.01-mol/L HCl), and a basic 

solution (0.01-mol/L NaOH) to prevent biological growth and mineral scaling 

on the surface of the membrane at the end of each experiment. 

 

2.3. Speciation of P(V) sorbed onto PAZ 

The speciation of phosphate on the loaded PAZ was performed according to 

a modified four-step sequential extraction methodology (Moharami and Jalali, 

2014). The sorbed phosphate was sequentially extracted using 1-g samples 

and 50 mL of the extraction solutions summarised in Table 6.1. The samples 

were mechanically shaken at 21±1°C. After equilibrium was achieved (24 h), 

the samples were centrifuged, and the phosphate content of the liquid phase 

was analysed. At the end of each sorption-filtration and subsequent 

extraction tests the suspensions were centrifuged and the PAZ samples were 

dried at 50-60°C. 
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Table 6.1. Chemical extraction scheme for phosphate speciation of loaded 

PAZ samples. 

Extraction solutions Speciation 

name 

Phosphate Speciation Step 

40-mL 2 M KCl for 2h 

40-mL 0.1 M NaOH for 17h 

40-mL 0.5 M HCl for 24h 

KCl-P 

NaOH-P 

HCl-P 

Soluble and exchangeable 

Fe- and Al-bound 

Ca-bound 

1 

2 

3 

 

2.4. Analytical methods 

The P(V) concentration was determined using the vanadomolybdophosphoric 

acid colourimetric method (4500-P C) in a Shimadzu UVmini-1240 UV-vis 

spectrophotometer. Ions were determined using a Thermo Scientific Ionic 

Chromatograph (Dionex ICS-1100 and ICS-1000). After completing the 

sorption-filtration experiments, loaded PAZ samples were examined by 

FSEM-EDX, and mineral phases were identified by XRD and characterised 

by FTIR. 

The suspended solid concentration (CSS) (kg/m3) in the feed tank solution 

was determined as described elsewhere (Spellman, 2009). 

 

2.5. Evaluation of the sorption-filtration system performance: P(V) 

mass balance analysis 

The sorbed amount of P(V) was calculated from the mass balance on the 

hybrid system schematically described in Figure 6.1. At time zero, the STR is 

filled with a 40 L of a P(V) solution with the same concentration as the feed 

stream (C0). The P(V) mass balance in the system is properly described. 

The mass of P(V) sorbed onto the PAZ—m(PO4)PAZ (mgP-PO4-PAZ/L)—can 

be calculated using Eq. 1: 
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mሺPOସሻ௉஺௓ ൌ 	mሺPOସሻ଴ ൅ mሺPOସሻୗ െ mሺPOସሻ௉ െ mሺPOସሻ்    (1) 

m (PO4)0(mg) is the initial mass of P(V) introduced to the STR of 40 L at time 

zero calculated by Eq. 2  

mሺPOସሻ଴ ൌ V ∗ C଴		          (2) 

where: m(PO4)S (mg) is the mass of P(V) fed to the reactor for a given 

filtration interval (Δt ൌ t୨ െ  ௜ሻ calculated by Eq. 3ݐ

mሺPOସሻ௦ ൌ Qௌሺtሻ ∗ Δt ∗
େ౏ሺ౟ሻାେ౏ሺౠሻ

ଶ
		        (3) 

m(PO4)P (mg) is the mass of P(V) leaving the system through the permeate 

stream (P) for a given filtration interval according to Eq. 4: 

mሺPOସሻ௣ ൌ 	Q௉ሺݐሻ ∗ Δt ∗
େ౦ሺ౟ሻାେౌሺౠሻ

ଶ
       .(4) 

m(PO4)T (mg) is the mass of P(V) at the STR for a given filtration interval 

according to Eq. 5: 

mሺPOସሻ୘ ൌ V୘ ∗
େ౐ሺ౟ሻାେ౐ሺౠሻ

ଶ
        .(5) 

where Ci and Cj (mgP-PO4/L) are the P(V) concentrations in a given stream 

of reactor volume at times i and j respectively.  

The performance of the hybrid membrane UF-sorption system was evaluated 

by estimating the bfollowing: 

i) P(V) sorption on PAZ(t), QPO4t (mgP-PO4/g PAZ) according to Eq. 6: 

ܳ௉ைସሺ௧ሻ ൌ
୫୥ሺ୔୓రሻ

୥ሺ୔୅୞ሻ
ൌ ୫ሺ୔୓రሻౌఽౖ

୚౪∗୥౰౛౥ౢ౟౪౛
        (6) 

ii) P(V) removal efficiency (RP – PO4 (%)) according to Eq. 7:  

ܴ௉ െ ܲ ସܱሺ%ሻ ൌ ቀ1 െ
஼೛ሺ௧ሻ

஼ೞሺ௧ሻ
ቁ ൈ 100        .(7) 

where Cs(t) and Cp(t) are P(V) concentrations in the feed and permeate 

streams, respectively, at a given time t. 
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2.6. Membrane filtration performance 

The performance of the UF unit was characterised by two parameters: 

permeation flux and cake resistance. The permeation flux (J (L.m-2.h-1)) can 

be calculated using Eq 8: 

ܬ ൌ 	 ௏೘
஺∆௧

ൌ ሺ்ெ௉ሻ

ோ೟ఓ
           (8) 

where Vm (L) is the volume of permeate, A (m2) is the membrane module 

area and ∆t (h) is the permeation time. ∆P is the TMP (bar), μ is the solution 

viscosity (Pa·s) (at to 20ºC) and Rt is the total resistance of the membrane 

(m–1). Intrinsic water permeability (Lm2h-1/bar) is determined according to 

Eq.9: 

 (Lp ൌ 	 ୎

ሺ୘୑୔ሻ
)           (9) 

According to Darcy’s law, decreasing J with constant ∆P during membrane 

filtration (or, equivalently, increasing ∆P with constant J) indicates membrane 

fouling. The total resistance (Rt) can be described by the resistance-in-series 

model (Lee et al., 2008; Remize et al., 2010; Peldszus et al., 2011). The 

specific cake resistance (α) represents the hydrodynamic resistance to the 

flow caused by the PAZ layer generated as the filtration cycles continue and 

is the only factor determining the permeate flux when the rest of the system 

parameters (i.e., membrane type, membrane surface area, and crossflow 

velocity) are fixed. The dependence of α on system properties, such as the 

feed solution, membrane pore size, applied ∆P, and crossflow velocity, is 

described by Eq. 10 (Keskinler, 1997; Yildiz, 2004). 

௧

௏
ൌ 	 ఓோ೟

ሺ்ெ௉ሻ
൅ ఓఈ஼ೄೄ௏

ଶሺ்ெ௉ሻ
                   (10) 

where V (L/m2) is the permeate volume per unit filtration area and µ the 
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viscosity of permeate (Pa s). Thus, varying the t/V function versus V should 

yield a straight line with a slope (
ఓఈ஼ೄೄ
ଶሺ்ெ௉ሻ

ሻ.  

Thus, α value can be estimated from the slope and considering that other 

terms in Eq. 10 are known for given set of experimental conditions. This (α) 

method determination was well described elsewhere.by Teoh et al., (2006). 

 

2.7. Prediction of P(V) precipitation processes 

P(V) precipitation and the corresponding saturation index (SI) were studied 

using the HYDRA-MEDUSA (Puidomènech, 2001) and Visual Minteq codes 

(Gray-Munro and Strong, 2013). The equilibrium solubility data for Ca and 

Mg-P(V)s from the HYDRA and PHREEQ C databases were critically 

reviewed. 

 

3. Results and discussion 

3.1. Membrane hydraulic performance 

The evolution of the TMP as the sorption-filtration experiments progressed is 

shown in Figure 6.2. The TMP values increased with time from initial values 

of approximately 0.3 and 0.38 bar for 2 and 2.5 gPAZ/L, respectively, to a 

threshold value of 0.8 bar when the filtration cycle was considered finished 

and a cleaning protocol applied (BW clean-up). Comparing the two PAZ 

doses, longer filtration cycles (up to 135 min) were measured for the low 

dose than for 2.5 gPAZ/L (70 min).It seems that more dose promote a fast 

particles accumulation on the membrane surface instead of being 

accumulated on membrane pores causing a fast cake formation. After the 

cleaning procedure (BW) the initial membrane permeability was recovered 

(180‒190 Lm-2h-1bar-1). 
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Figure 6.2. Variation of transmembrane membrane pressure (TMP) with 

time/filtration volume (m3/m2) for 2.0 and 2.5 gPAZ/L. 

 

The reduction in the permeability can be explained by the formation of a PAZ 

cake on the membrane surface (Campinas and Rosa, 2010). The higher 

recoveries in terms of water permeability between cycles, confirmed the high 

reversibility of the membrane PAZ-cake. For both doses similar recoveries on 

water permeability were measured, indicating that the increase of dose 

provided an increase of the PAZ-cake, as the filtration cycles were reduced, 

however BW procedure efficiently recovered water filtration membrane 

properties. 

The higher recoveries in terms of water permeability between cycles, which 

led to a total loss of permeate flux (near 3‒7%) from the beginning of cycle 1 

to the end of cycle 3 (2 g/L) or 5 (2.5 g/L), support the high reversibility of the 

membrane fouling.  

These results are consistent with those of Laîné et al. (1991), who applied a 
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of dissolved organic matter in drinking water potabilisation, and also with 

those of Yildiz (2004) using Ca rich fly ash in a cross flow microfiltration. 

 

3.2. Effect of PAZ dosage on P(V) recovery: Evaluation of the 

membrane resistance 

The effect of the PAZ dose on membrane fouling during filtration cycles was 

studied by evaluating the membrane resistance. The variation in t/V versus V 

is follows a linear relationship as described by Eq. 10. The linear regression 

analysis for both doses has a regression coefficient of 0.9 (Figure 6.3a) and 

the specific cake resistance (α) was determined from the slopes of the t/V-V 

plots. 

The α values increased with filtration time to as high as 1x1011, (Figure 6.3b) 

with slightly similar profiles for both PAZ doses and the various filtration 

cycles. Zeolite particles with sizes exceeding those of the membrane pores 

(20 nm) tended to accumulate on the membrane surface instead of being 

accumulated on membrane pores and then causing cake formation. The 

specific cake resistance values for 2.5 gPAZ/L were slightly lower than those 

for 2.0 gPAZ/L. 
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Figure 6.3. a) Variation of t/V with V at various PAZ dosage , b) The effect of 

PAZ dose on the specific cake resistance (α) during filtration cycle (2 gPAZ /L; 

2.5gPAZ/L and P(V) = 25 mg/L). 
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remained fairly constant during filtration cycle for the three evaluated 

concentrations, returning values of 6±2%, 11±2% and 20±3% for 10, 25 and 

100 mg P-PO4/L respectively. 

  

Figure 6.4 a) Effect of the initial P(V) concentration (10, 25 and 100 mgP/L) 

on the P(V) recovery percentage and b) (qt) (sorption capacity) profile during 

filtration cycle with 2.5 gPAZ/L. 

 

The P(V)-loading values (qt) during filtration cycle (Figure 6.4b), increased 

over time, and at the end of the experiment, the Ca zeolite was not saturated 

at any of the tested P(V) concentrations. The sorption of P(V) ions (mainly 
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H2PO4
-/HPO4

2-) was postulated to proceed via a combined mechanisms 

(Eqs. 11-14): 

a) Surface complexation with the MOH groups from the zeolitic structure 

(where M represents Al or Fe): 

 MOH2
++ HPO4

2- MOH2
+HPO4

2-                (11) 

 MOH+HPO4
2- MHPO4

-+OH-                (12) 

b) Formation of Ca-phosphate with Ca(II) ions occupying the ion exchange 

groups (ZO-) of the zeolitic structure 

(ZO-)2Ca2++HPO4
-2+2N+ 2(ZO-N+) +CaHPO4(s)   where N: Na, K      (13) 

(ZO-)2Ca2++HPO4
--2+M2+ (ZO-)2M

2++CaHPO4(s)   where M: Mg          (14) 

The concentration ratios of P(V) in the STR effluent and the feed stream 

(C(PO4)T/C(PO4)S) were below 1 during filtration cycle (Figure 6.5a). 

Additionally, the Ca and Na concentration decreased with (C(Ca)T/C(Ca)S) 

and (C(Na)T/C(Na)S) to values below 1 (Figure 6.5b), while the Mg(II) 

concentration ratios were generally slightly lower than 1 (Figure 6.5c-d). As 

indicated by equations 13 and 14, the negative groups of the zeolite structure 

must be neutralised after the consumption of Ca(II) during brushite formation. 

XRD analysis of the loaded zeolite samples after sorption-filtration tests at 

initial P(V) concentrations (10, 25 and 100 mgP/L) revealed the presence of 

the Ca phosphate-containing mineral brushite (Figure 6.6). At low P(V) 

concentrations (10 mg P-PO4/L) the dominant mechanism is the initial 

formation of surface complexation reactions, whereas at high P(V) 

concentrations (100 mg P-PO4/L) the formation of brushite (CaHPO4(s)), is 

favoured. As described by Eq. 13, for a given dose of zeolite, the increase of 

the initial P(V) concentration favours the formation of brushite and 
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accordingly the decrease of P(V) concentration in solution. Then reduction of 

Ca(II) in solution is associated to the formation of brushite, while the 

reduction of Na(I) and Mg(II) is associated to the ion-exchange reactions with 

Ca(II) described by Eq. 13 and Eq. 14.  

These results are in agreement with previously reported findings (Yildiz, 

2004) for a FA-MF/UF hybrid system in which increasing the FA dose from 

0.1 to 1 g FA /L considerably increased the P(V) recovery because of the 

increase in the Ca(II) concentration associated with the FA (26% CaO 

weight). 

 
Figure 6.5. Variation in the CT/CS ratios of a) P(V), b) Ca(II), c) Mg(II) and d) 

Na(I) during filtration cycle at various initial P(V) concentrations (10, 25 and 

100 mgP/L) with a PAZ dose of 2.5 gPAZ/L. 
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Figure 6.6. XRD example of PAZ samples after P(V) sorption’s at pH 8, for 

an initial P(V) concentration100 mgP-PO4/L. 

 

3.3.2. Effect of PAZ dose on P(V) removal 

The phosphate-removal efficiency (Rp-P(V)(t)) profiles variations at different 

PAZ doses for a 25 mgP/L solution at an initial pH of 8, (Figure 6.7), an 

exhibit constant values of 12±2 and 7.5±2% for the two different PAZ doses 2 

and 2.5 gPAZ/L respectively during filtration cycle. This is accompanied by a 

continuous increase of the PAZ sorption capacity (q(t)) up to maximum 

values of 6.1±0.5 and 5.7±0.3mgP-PO4/g (after 10 h of filtration cycles for 2 

gPAZ/L and 36 h for 2.5 gPAZ/L). The variation in the concentration ratios in the 

tank and the feed stream (P(V), Ca and Mg) are shown in Figure 6.8.  

The concentration ratios profiles (CT/CS) for P(V), Ca(II) and Na(I) remained 

below 1 during filtration cycles (Figure 6.8a,b-d) while the Mg(II) 

concentration ratios were generally slightly lower than 1 (Figure 6.8c) for 2.5 

gPAZ/L, in contrast for 2.0 gPAZ/L the ratio increases from its initial values of 
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below 1 to slightly higher than 1. The values lower than 1 indicate the 

exchange of Na(I) and Mg(II) with Ca(II) ions that promotes the precipitation 

of Ca-phosphate as described by equations 13-14. XRD analysis of the 

samples at the end of the filtration cycles revealed the presence of the Ca-

phosphate mineral phase brushite on the loaded zeolite samples (Figure 

6.6). 

  

Figure 6.7. Effect of PAZ dose on the P(V) recovery percentage (Rp) and on 

the P(V) sorption capacity (q(t) according to the mass balance (P(V) = 25 

mg/L, a) 2 gPAZ /L and b) 2.5gPAZ/L). 
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Figure 6.8. a‒d) Variation in the CT/CS ratios of P(V), Ca(II), Mg(II), and Na(I) 

during filtration cycle at an initial P(V) concentration of 10 mg/L and PAZ 

doses of 2 and 2.5 gPAZ/L. 

 

3.3.3. Improvement of P(V) removal by control pH 

The influence of pH on P(V) removal by PAZ at an initial P(V) concentration 

of 10 mg P-PO4/L with a PAZ dose of 2.5 gPAZ/L was evaluated in two 

contexts: i) at an initial pH of 8.0±0.2 controlled by the bicarbonate content of 

the aqueous solution, and ii) at a fixed pH of 9.0±0.2 achieved using a pH-

control set-up. The influence of pH on the P(V) sorption capacity (qt) and 

efficiency (Rp-P(V) (%)) for a solution of 10 mgP-PO4/L is shown in Figure 

0.20

0.40

0.60

0.80

1.00

1.20

0 100 200 300 400 500 600

C
(P

O
4)

T/C
(P

O
4) S

Time (min)

2.0 gPAZ/L 2.5 gPAZ/L
0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 100 200 300 400 500 600

C
(C

a)
T/C

(C
a)

S

Time (min)

2.0 pPAZ/L 2.5 gPAZ/L

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 100 200 300 400 500 600

C
(N

a)
T/C

(N
a)

S

Time (min)

2.0 gPAZ/L 2.5 gPAZ/L
0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 100 200 300 400 500 600

C
(M

g)
T/C

(M
g)

S

Time (min)

2.0 gPAZ/L 2.5 gPAZ/L

d

ba

c



  Chapter 6. Hybrid System UF-PAZ  

231 

6.9a. 

 

 

 
Figure 6.9. a) Sorption capacity (qt) profile and P(V) recovery (Rp) percentage 

as a function of filtration time with different initial pH values (8 and 9) by PAZ 

(2.5 gPAZ/L) at an initial P(V) concentration of 10 mg P-PO4/L and b) XRD of 

loaded PAZ samples after phosphate sorption at pH 9. A thermal treatment at 

1050 °C was necessary due to the low crystallinity of the sample. 

The P(V) sorption capacity reached a 1.6±0.3 mgP(V)/gPAZ (corresponding to 
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efficiency) at pH 8 and pH 9, respectively after 20 h of filtration. During this 

time period the removal efficiency remained constant for both pH values. 

The concentration ratio (CT/CS) profiles for P(V), Ca(II) and Mg(II) as a 

function of filtration time are shown in Figure 6.10. 

The concentration ratio profiles of Ca(II) and P(V) were around 0.5 at pH 9 

indicating that a net consumption of Ca(II) is required to accomplish the P(V) 

removal ratios measured  inside the zeolite structure and in the solution. A 

similar trends were also observed in the Mg(II) profiles suggesting that the 

consumption of Ca(II) to remove P(V) is accompanied by the substitution of 

the Mg(II) ions on the zeolite by Ca(II), as described by Eq. 14, and, a 

subsequent reduction in the concentration of the reactors stream. 

XRD analysis of PAZ samples collected at the end of the sorption-filtration 

experiment revealed the presence of brushite at pH 8 (Figure 6.6). However, 

no Ca-phosphate mineral phase was detected at pH 9. 

 FSEM-EDX analysis Figure 6.11 identified the presence of amorphous 

particles containing P, Ca and O on the loaded PAZ samples evaluated at pH 

9. Based on the analysis of the saturation index Figure 6.12, the most 

reasonable hypothesis is the formation of amorphous Ca-phosphate minerals 

(hydroxyapatite (Hap) or brushite (Dicalcium phosphate Dihydrate)) that 

cannot be detected by XRD.  

The loaded PAZ sample evaluated at pH 9 was treated at 1050°C to increase 

its crystallinity, and the presence of (Hap (Ca5OH(PO4)3(s)) was detected as 

is shown in Figure 6.9b. 
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Figure 6.10. Variation in the CT/CS ratios of P(V), Ca(II), Mg(II) and Na(I) 

during filtration cycle at an initial P(V) concentrations of 10 mg/L and a PAZ 

dose of 2.5 gPAZ/L at pH 8 and 9. 
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Figure 6.11. FE-SEM of Ca–phosphate with respect to Hap at pH 9 as a 

function of the precipitation time in the STR 

 

 

Figure 6.12. SI of Ca –P(V) with respect to Hap at pH 9 as a function of the 

precipitation time in the STR 
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symmetric (V1) vibrational peak at 960 cm-1 (pH 9), which is assigned to the 

ν1 vibration of PO4
3-, and a vibrational mode at 630 cm-1 that corresponds to 

OH (Xie et al., 2001; Štulajterová and Medvecký, 2008). 

 

Figure 6.13. FTIR spectra of the powdered UF-PAZ after P(V) recovery at pH 

8, 9 and 25°C. 

 

3.4. Evaluation of the P(V) speciation of loaded zeolite samples 

PAZ samples were collected after sorption-filtration experiments to identify 
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Additionally, the labile forms (KCl-P) associated with the formation of labile 

complexes with the Al and Fe metal oxides contributed 5‒10%. 

Values determined from the speciation analysis (qt(speciation)) were similar to 

those calculated according to the phosphate mass balance [qt(end), (qt-P(V) 

(mgP(V)/g(PAZ))], differing by less than 15%. 

Table 6.2. Comparison of the total P(V) sorption capacities (qtend) and total 

P(V) contents determined using a sequential speciation protocol (qtspeciation). 

Experimental Conditions  q-P-Speciation (mg/g)  XRD 

Exp pH P(V)(m

g/L) 

gPAZ/L  qtend KCl-P NaOH-P HCl-P qt(speciation)  

1 

2 

3 

4 

5 

8±0.3 

8±0.3 

8±0.3 

8±0.3 

9±0.2 

25 

25 

100 

10 

10 

2 

2.5 

2.5 

2.5 

2.5 

6.6 

5.9 

47.2 

1.8 

14.6 

0.39 

0.47 

0.28 

0.20 

0.25 

0.05 

0.08 

0.31 

0.07 

0.02 

5.1 

6.2 

41.0 

2.1 

15.0 

5.6±0.4 

6.7±0.3 

41.5±0.8 

2.4±0.2 

15.3±0.6 

Brushite 

Brushite 

Brushite 

Brushite 

N.D1, Hap2 

1N.D.: No Ca-phosphate phases detected; 2Hap detected after being treated at 1050ºC 

 

4. Conclusions  

In the light of the results obtained in this work, the following conclusions can 

be drawn: 

The recovery of the P(V) using the PAZ-UF hybrid sorption-filtration process 

was not subjected to irreversible fouling. A fast membrane fouling and a less 

filtration time was observed for higher dose 2.5 gPAZ/L compared with 2 

gPAZ/L where the irreversible fouling was never completely, mainly 

determined by the cake layer on the surface of the membrane. Resulting a 

specific cake resistance values for 2.5 gPAZ/L slightly lower than those for 2.0 

gPAZ/L. According to the PAZ doses experiments not significantly differences 
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on the membrane performance were observed.  

The P(V) removal capacity remained constant during filtration cycles and 

removal efficiency increased as the initial P(V) concentration increases. The 

P(V) removal capacity is substantially improved by increasing the pH to 9, 

because the combined sorption mechanisms. 

The mechanism of P(V) removal by the hybrid membrane UF-sorption 

system involves the formation of Ca-phosphate precipitate. XRD confirmed 

the precipitation of P(V) by Ca as brushite at pH 8 and Hap at pH 9 after 

treatment of the sample to 1050ºC. Also, the P-speciation confirms that for all 

cases the fraction HCl-P (associated with the presence of Ca-phosphate 

mineral forms.  

Thus in brief, the hybrid sorption-UF configuration allow to evaluate the 

potential application of a sorption-filtration system as pre-treatment step of 

water reuse schemes in conventional WWTPs incorporating pressure driven 

membrane technologies. 
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Conclusions and future work 
 
 
 
In this chapter the specific aims of this study are reviewed to present an 

overview of the major findings. Recommendations for further work are also 

given. 

1. Summary of results 
 
Various studies in the last decade have demonstrated that P recovery at low 

levels (e.g., 2‒10 mg/L) from urban wastewaters is not economically feasible 

using conventional removal processes (coagulation, chemical precipitation, 

adsorption, and ion exchange). However, newly introduced processes using 

P-selective sorbents (e.g., metal oxide sorbents or metal oxide-impregnated 

ion-exchange resins) can provide concentrated phosphate effluents (e.g., 0.1 

to 2 g P-PO4
3-/L) typically at alkaline pH values (9 to 12) because the 

regeneration step requires the addition of 2 to 5% NaOH. 

The main goal of this thesis was to recover and valorise low- and high-

concentration phosphate effluents as P carriers to assess their technological 

feasibility and the final powder characteristics after being subjected to various 

experiments conditions. The conclusions of this investigation are summarised 

in the following sections: 
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1.1. Phosphate valorisation using a batch reactor 

a) The precipitation of phosphate using batch reactors for the valorisation of 

alkaline phosphate concentrates from WWTP using CaCl2 brines indicated 

the following:  

i) Precipitation under alkaline conditions (pH 8, 10, and 11.5) proceeds via 

three well-defined steps at pH 10 and 11.5 and two steps at pH 8. In the first 

stage, the induction period, early nucleation occurred, and a small amount of 

phosphate was removed. At pH 10, the precipitation of an amorphous Ca 

phosphate (ACP) phase occurred at the initial reaction time, and this material 

then crystallised into Hap. In the second stage, Hap underwent homogenous 

nucleation. During the nucleation stage, the total concentration of Ca(II) 

remained constant, and the P(V) removal increased at pH 10 and 11.5. In the 

final stage, further homogeneous nucleation precipitation of bulk Hap was 

observed until final P(V)-removal efficiencies of 81% and 95% were reached 

at pH 10 and 11.5, respectively. Analysing the samples confirmed the 

presence of Hap. At pH 8, when the Hap phase was directly observed, the 

reaction started immediately; the two observed stages were the precipitation 

of Hap, followed by a homogeneous Hap-nucleation stage with a phosphate 

removal ratio of up to 80%.  

ii) Precipitation of concentrated phosphate effluents (from 0.25 to 1.0 g/L) at 

constant pH (11.5) achieved quantitative phosphate removal (>99%) as Hap 

with a Ca/P ratio of approximately 1.67. The rate of Hap precipitation 

followed a first-order rate law with respect to Ca2+, PO4
3-, and surface area. 

iii) The main effect of increasing the initial P(V) concentration was the 

formation of Hap precipitate powders with higher degrees of crystallinity and 
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crystal diameters and lower mean particle sizes. Increasing the stirring speed 

and the Ca(II)-dosing rate increased the phosphate-precipitation rate, thereby 

increasing the mean size and degree of crystallinity of the prepared particles. 

At lower stirring speeds (between 50 and 250 rpm), no significant effect on 

the phosphate-precipitation rate was observed. 

b) The precipitation of phosphate from alkaline concentrates in the presence 

of inhibiting agents typically found in industrial desalinated brines used as Ca 

sources (Mg/Ca molar ratios (2.2 and 3.3)) confirmed the following: 

i) For both brines, inhibited Hap precipitation and formation of the amorphous 

mineral phases of Ca, Mg, and Ca/Mg phosphates were observed at pH 

>9.5. Mg(II) severely inhibited phosphate precipitation, allowing the formation 

of amorphous Ca phosphate from meta-stable clusters through the 

incorporation of Mg(II) into the Ca phosphate. Mg(II) also substantially 

decreased the precipitate crystallinity and the precipitation rate, allowing the 

formation of ACP. Thermal treatment of the amorphous solids to increase 

their crystallinity confirmed the presence of Hap and chlorapatite (Ca 

phosphate), stanfieldite (Ca/Mg phosphate), and farringtonite (Mg 

phosphate). The surface adsorption of Mg(II) played a critical role in 

regulating the transformation rate of ACP to Hap. Mg(II) altered the stability 

of the mineral phases, and more soluble solids were precipitated (e.g., Mg3 

(PO4)2.22H2O) at pH 11.5. 

ii) For experiments at pH 8, the formation of stable clusters increased the 

reaction barrier, thereby inhibiting nucleation. 

iii) Industrial desalinated brines containing mixtures of Ca and Mg could 

constitute a suitable source for phosphate recovery in the form of mixed 

Ca/Mg phosphates that could be used by the chemical industry to produce 
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fertilisers because of their significant advantages in terms of process, costs, 

and wasted materials. 

 

1.2. Phosphate removal/recovery by low-cost materials (FA and 

zeolites) 

Phosphate removal/recovery solutions have been developed to use low-cost 

inorganic materials with high pollutant-removal efficiencies in terms of 

equilibrium and kinetics. 

a) Two types of FA from two coal power stations with different CaO(s) 

contents (Los Barrios (FA-LB (2.8% w)) and Teruel (FA-TE (4.8% w))) were 

evaluated for the recovery of phosphate from aqueous solution. Phosphate 

removal using these materials was found to be highly efficient, as indicated 

by the rapid removal rates and high P loadings at pH 8.  

Sorption proceeds via a diffusion-controlled process of phosphate ions inside 

FA particles coupled with CaO(s) dissolution and brushite (CaHPO4(s)) 

formation on the FA particles; this process avoids the formation of relatively 

insoluble Ca phosphates, such as Hap, with limited fertilising properties.  

b) The Na+-zeolite (NaP1-NA) synthesised from CFA and its Ca-modified 

form (CaP1-NA) were evaluated for the recovery of phosphate from aqueous 

solution. The sorption capacities of both zeolites in the pH range expected for 

wastewater effluents (7 to 9) was slightly dependent on the pH, exhibiting 

maxima pH 8. Phosphate removal by NaP1-NA occurred via a surface 

complexation mechanism involving the AlOH and FeOH surface groups of 

the unreacted Fe and Al oxides originally present on the FA or the potential 

formation of Ca phosphate phases with the original CaO present on the FA. 
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In contrast, for CaP1-NA, the main removal mechanism consisted of the 

formation of a Ca phosphate, brushite, as confirmed by XRD. Thus, the 

higher solubility of brushite compared with that of Hap indicates that this 

zeolitic material has great potential for use in a novel slow-release inorganic 

zeolite CaP1-NA/brushite fertiliser.  

Based on the aforementioned results, CaP1-NA was evaluated as a 

powdered activated zeolite, and the adsorption of phosphate onto (PAZ) 

adsorbents under more realistic conditions in a sorption reactor followed by a 

UF system. Comparing PAZ doses of 2 gPAZ/L and 2.5 gPAZ/L revealed that 

the membrane fouling was mainly reversible and determined by the cake 

layer on the surface of the membrane. 

The phosphate-removal capacity is significantly affected by the pH, initial 

concentration, and phosphate level in the permeate stream. 

The desorption tests confirmed that the higher solubility of brushite compared 

with that of Hap indicates that this zeolitic material has great potential for use 

in a novel slow-release inorganic zeolite PAZ/brushite fertiliser. 

Finally, although batch reactors and the mineral materials FA and zeolite 

have not been applied in full-scale production units, they may contribute to 

the development of a cost-effective platform for the production of by-

products, such as Hap, using industrial or domestic brine and a Ca source or 

as fertilisers consisting of supported FA or zeolitic materials. 

 

2. Future work 
 
A variety of questions can be asked based on the results of this thesis and 

pursued in the future. Here, we list the most interesting ones. 
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 This thesis provides a good basis for the validation steps using real 

industrial brines to obtain more information about the characteristics of 

the recovered Hap particles and testing the effects of various operating 

conditions on the particle sizes and size distributions obtained using 

different reactors.  

 It would also be interesting to evaluate the influence of Mg(II) and sulfate 

on phosphate-recovery mechanism in high-salinity brines (NF and RO). 

 The simultaneous recovery of ammonium and phosphate from 

wastewater in batch reactors or with new zeolite forms involving K (KP1) 

or Mg (MgP1) could be investigated. 

 Work could be done to achieve higher purities after the precipitation and 

crystallisation processes to improve the valorisation of the produced 

fertiliser. 

 The proposed treatment systems could be evaluated and the needs for 

further purification determined. 
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