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Abstract
This thesis is based on the publications done as a PhD student at IFAE during the periods
2012-2013 and 2015 [1–4]. These include two separate topics, Higgs phenomenology at the
LHC within the frameworks of Composite Higgs and Supersymmetry [1–3], and the improve-
ment of the Renormalized Hamiltonian Truncation Method (RHTM) [4].

The first part of this thesis was motivated by the Naturalness problem in the Standard
Model (SM), which was triggered by the discovery in 2012 of a scalar particle with a mass of
125 GeV and signal strengths compatible with the SM Higgs. The aim of these projects [1–3]
was to asses the impact of the measured mass and signal strengths on two of the best moti-
vated frameworks that tackle the Naturalness problem; Composite Higgs and Supersymmetric
extensions of the SM. This part of the thesis is organised as follows.

In Chapter 1 we give an overview to the SM its shortcomings and motivate the need to go
beyond the Standard Model (BSM). Brief introductions to Spontaneous Symmetry Breaking
(SSB) and the CCWZ [5, 6] are also included due to their importance in the understanding
of the SM and their pivotal role in the study of BSM physics .

In Chapter 2 we study the implications of the Higgs discovery for different Composite
Higgs models. This is done by using the signal strengths given by the experiments right after
the Higgs discovery in 2012, which allow to greatly constrain the parameter space of some of
these models.

Chapter 3 is focused on the study of the Higgs couplings in Composite Higgs models
based on the SOp5q{SOp4q coset. We show that the Higgs couplings to gluons and photons
are insensitive to light fermionic resonances assuming that they preserve CP . Also, we find
that at leading order in the mixings, the Higgs couplings to tops and gluons, when normalized
to the Standard Model (SM), are equal.

In Chapter 4 we study the relation between the Higgs couplings and the Higgs mass
in Supersymmetric models while finding that the measured 125 GeV Higgs and the signal
strengths can be competitive with direct searches in excluding some parts of the parameter
space in the Higgs sector. We focus on the MSSM with heavy stops, and possible extensions
that alleviate the small hierarchy problem.

The second part of this thesis was motivated by two papers by Rychkov et al. [7,8] where
they present a promising new method to solve strongly coupled systems. The method consist
in improving the already known Hamiltonian Truncation Method used to numerically solve
strongly coupled systems. The improvement comes from analytically integrating out the high
energy modes which results in a considerable improvement to the numerical result, and allows
to reduce computational power needed to solve any given system. Our work, presented in
Ch. 5, improves the method by finding the general expressions needed in the procedure to
integrating out the high energy modes, and solves some of the issues left open in [7, 8].
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Chapter 1

Introduction

1.1 The Standard Model
The Standard Model of particle physics (SM) represents our state of the art understanding
of how elementary particles interact via the electromagnetic, weak and strong forces. Its
construction is a long journey that started with the discovery of the electron and the elec-
tromagnetic force and closed the last chapter with the discovery of the Higgs in 2012. With
a huge number of experiments agreeing with the SM predictions, the SM seems to be the
theory that governs the interactions of elementary particles at least up to the center of mass
energies allowed by today’s colliders (unless there are some very weakly interacting particles
that we haven’t been able to detect yet). The standard model though, is certainly an effective
theory due to the presence of gravity which is not accounted for in its construction. At low
energies (ECM !MP , with MP the quantum gravity scale), any putative theory of quantum
gravity could in principle be written as an effective theory in powers of fields and derivatives
over MP , and with it describe the interactions between ordinary matter and gravity 1. How-
ever, this implies that when E Á MP one needs a more fundamental theory to consistently
describe particles’ interactions with gravity, making the SM an effective theory of this more
fundamental one.

Whether other new physics may appear before the Planck scale is an interesting question
which we discuss later in Sec. 1.2. First, let us make a brief review on the SM in its current
closed form as a renormalizable QFT without gravity, and from here see what shortcomings
it may have and how to modify it. The SM is built imposing that it must be invariant under
global Poincaré space-time transformations,

SO�p3, 1q �R3,1 (1.1)

and under the local gauge group

SUp3qc � SUp2qL � Up1qY . (1.2)
1This is achieved adding to the gravity action the SM Lagrangian with its global Poincaré symmetry

gauged.
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10 Chapter 1. Introduction

Fields with the appropriate charges are introduced to accommodate the 61 elementary par-
ticles (and antiparticles) observed as of today. The SM, as a renormalisable QFT introduces
fields with the Lorentz quantum numbers of the particles observed, and organises them in
different linear representations of the gauge group. Its field content is then,

SOp3, 1q SUp3q SUp2q Up1q
Qij
L �

�uijL
dijL

�
(1

2 ,0) l l
1
6

uijR (0,1
2) l - 2

3

dijR (0,1
2) l - �1

3

`iL �
�νiL
eiL

�
(1

2 ,0) - l �1
2

eiR (0,1
2) - - �1

H � �φ�
φ0

�
(1

2 ,0) - l
1
2

Ga
µ (1

2 ,1
2) Adj - -

W b
µ (1

2 ,1
2) - Adj -

Bµ (1
2 ,1

2) - - Adj

where i � 1, 2, 3 is an index for families, and j � 1, 2, 3 denote colour and the Higgs doublet H
is composed by two φ0 and φ� complex fields. The vector fields appear in the Lagrangian as
the connections associated to gauge transformations, therefore they transform in the adjoint
representation of their gauge group. The defining principles of the SM are the imposed local
symmetries and renormalizability (meaning here the absence of irrelevant interactions); the
most general Lagrangian that fulfils these properties is unique and can be written as

LSM � Lkingauge � Lkinfermions � Lkinscalars � LY ukawa � V . (1.3)

As a matter of fact, the principle is so stringent that the resulting particles, except the Higgs,
are massless unless there is spontaneous symmetry breaking. We review this in detail and
discuss each term in Eq. (1.3) individually.

Higgs potental

The potential for the scalar fields is,

V � �µ2|H|2 � λ|H|4 , (1.4)

and depends only on the modulus of H. In the SM, µ2 ¡ 0, therefore the minimum of this
potential is at |H̄| � µ{?2λ � v{?2 which signals SSB. Notice that one can always go to a
basis where

xHy �
�

0
v{?2



. (1.5)
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In this case the only unbroken generator is Q � T3�Y , and the braking is given by SUp2qL�
Up1qY Ñ Up1qQ. 2 To get rid of the NGB’s in H from hereonafter we fix the gauge in
the unitary gauge. Also, it is convenient for perturbation theory to redefine the field h as
h Ñ h � v{?2 such that xhytree � 0. With these changes H � � 0

h�v{?2

�
. Then, the kinetic

term in Eq. (1.9) is canonically normalized if h is redefined as h Ñ h{?2. After this choice
of gauge and field redefinitions H is given by

H � 1?
2

�
0

h� v



, (1.6)

where h stands for the physical Higgs boson. In this form, the potential is

V � �µ
2

2 ph� vq2 � λ

4 ph� vq4 . (1.7)

The potential V contains the self interactions of the Higgs and its mass term, which at tree
level is

mh � µ?
2
� v

?
2λ . (1.8)

Higgs kinetic term
Continuing with our analysis, the scalars’ kinetic term is,

Lkinscalars � |DµH|2 , (1.9)

with Dµ � Bµ � i g W a
µ T

a � ig1Bµ. Going to the unitary gauge Eq. (1.6), the Higgs kinetic
term is

Lkinscalars �
1
2pBµhq

2 � ph� vq2�g2 pW 2
1 �W 2

2 �W 2
3 �B2q � 2gg1W 3

µB
µ
�
. (1.10)

In this gauge, one can read from the Lagrangian the tree level mass terms for the electroweak
gauge bosons and their interactions with the Higgs. The mass matrix for the gauge bosons
pW1,W2,W3, Bq can be written as

M2
gauge �

������
g2 0 0 0
0 g2 0 0
0 0 g2 �gg1
0 0 �gg1 g2

�����
 . (1.11)

Upon diagonalizing the pW3, Bq entries,�
Zµ

γµ

�
�
�

cos θW � sin θW
sin θW cos θW

��
W 3
µ

Bµ

�
, tan θW � g1{g , (1.12)

2pi Tk) are the generators of SUp2qL, with Tk � σk{2, and σk the Pauli matrices. Y is the charge of the
Up1qY .
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we find that at tree level the following fields create mass eigenstates,

Zµ � 1?
g2 � g12

pgW 3
µ � g1Bµq with mZ � v

?
g2 � g12

2 , (1.13)

γµ � 1?
g2 � g12

pg1W 3
µ � gBµq with mγ � 0 ,

while W 1
µ , W

2
µ have masses of mW 1 � mW 2 � v g{2. As explained later in Sec. 1.3, it is useful

to work with representations of the unbroken group, which in this case is the Up1qQ. Checking
how Z and γ transform under Up1qQ one sees that they are singlets, so QZ � Qγ � 0. On the
other hand, W 1 and W 2 are not representations of Up1qQ, but we can perform the following
change of variables

W�
µ � W 1

µ 	 iW 2
µ?

2
, mW� � v

g

2 , (1.14)

making now W� covariant under Up1qQ with QW� � �e � � gg1?
g2�g12 .

Yukawa terms
We next study the Yukawa terms,

LY ukawa � Y ij
u Q̄

i
LH̃u

j
R � Y ij

d Q̄
i
LHd

j
R � Y ij

e
¯̀i
LHe

j
R � h.c. , (1.15)

where Y ij
u , Y

ij
d , Y

ij
e are arbitrary 6 � 6 Hermitian matrices, H̃ � i σ2H and the indices

i, j � 1, 2, 3 stand for the generation of fermions, i.e. tpu, dq, pc, sq, pt, bqu for quarks and
tpe, νeq, pµ, νµq, pτ, ντ qu for leptons. Going to the unitary gauge the Yukawa term is

LY ukawa � ph� vq?
2

�
Y ij
u ūiLu

j
R � Y ij

d d̄iLd
j
R � Y ij

e ēiLe
j
R � h.c.

�
, (1.16)

which contains the mass terms for the fermions and their interactions with the Higgs. Notice
that the neutrinos don’t get a mass due to not having introduced a right handed neutrino in
the original Lagrangian.3

To get the fermion masses, we must diagonalize the Yukawa matrices Y ij
u , Y

ij
d , Y

ij
e . To do

so, one uses the property that a general complex matrix can be diagonalized by a biunitary
transformation (i.e. using two different unitary matrices). Let us see how it is done. Given a
generic complex 3� 3 matrix Y , then pY Y :q is hermitian, and therefore can be diagonalised
by a unitary matrix UL,

U :
L pY Y :qUL � Y 2

D with Y 2
D �

����
y2

1 0 0
0 y2

2 0
0 0 y2

3

���
 , (1.17)

3Neutrinos seem to have mass. Introducing a right handed neutrino, neutral under all gauge interactions,
allows to introduce a Dirac mass term for the neutrinos. If lepton number is not imposed as a fundamental
symmetry of the Lagrangian, a Majorana mass term for the right-handed neutrinos is also allowed. Until
being sure of wether neutrinos have a Dirac, Majorana or both mass terms we leave them in the realm of
BSM physics. A hint of Majorana mass term would be the observation of a neutrinoless double β-decay.
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and UL is fixed up to a multiplication by a matrix F � diagtei φ1 , ei φ2 , ei φ3u because F Y 2
D F

:

� Y 2
D. Therefore pULF q also diagonalizes pY Y :q, i.e. pULF q: pY Y :q pULF q � Y 2

D. One can
now define the hermitian matrix N � UL YD U

:
L and the unitary matrix Ũ � N :Y , and use

them to write down the following relations

U :
LN UL � U :

L pY ŨqUL � U :
L pUL YD U :

LqUL � YD (1.18)

which imply that U :
L Y pŨ ULq � YD, or in other words, that UL and UR � ŨUL are two

unitary matrices that diagonalize Y ,

U :
L Y UR � YD . (1.19)

With this, we find that the Yukawa matrices Yu, Yd, Ye can be diagonalised by a change
of variables ψL Ñ ψ1L � UL ψL and ψR Ñ ψ1R � UR ψR, where UL and UR are Up3q
transformations that act on the family indices (which we have omitted for clarity). One can
ensure that YD has positive eigenvalues by making use of the F matrices, which are equivalent
to performing a Up1q transformation to each left field ψjL Ñ ei φjψjL with j � 1, 2, 3. After
this redefinition of fields, the matrices are diagonalised and the fermion masses are directly
given by their multiplication with v{?2, i.e.

mi
ψ � v

yiψ?
2
, (1.20)

where ψ � tu, d, eu, i � 1, 2, 3 and yiψ are the entries of each diagonalised matrix YuD, YdD
and YeD. Even though the redefinition performed on the fermion fields doesn’t change the
S-matrix, the Up3q or Up1q transformations on the fermions are not symmetries of our theory,
and therefore they don’t leave the Lagrangian invariant, i.e. other terms in the Lagrangian
where fermions appear can in principle be modified by these transformations. 4 Let us see it
in the following section.

Fermions’ kinetic terms
The fermions’ kinetic terms are given by,

Lkinfermions � iQ̄i
L {DQi

L � iūiR {DuiR � id̄iR {DdiR � i ¯̀iL {D`iL � iēiR {DeiR , (1.21)

with {D � {B�i g1 {BY �iδ2 g {W a
T a�iδ3 gs {Gb

λb, where iT a and iλb are the generators of SUp2qL
and SUp3qc respectively, while δ2, δ3 are 0 or 1 depending on wether the fields on which {D
acts are charged under SUp2qL and SUp3qc or not. To find the fermion interactions with
the gauge fields one has to take into account the changes of variables done to diagonalise
the Yukawa matrices. Since these are done performing a different Up3q transformation of

4At the quantum level these field redefinitions may also induce anomalous terms through the measure of
the path integral.
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the form ψL Ñ ψ1L � UL ψL and ψR Ñ ψ1R � UR ψR to each uL, uR, dL, dR, eL, eR, field,
only terms that have interactions that are diagonal in SUp2q indices will remain invariant. 5

These are the strong interactions, the Up1qY interactions and the ones with W 3
µT

3 which
don’t mix different components of the doublet. Let us focus then on the terms that contain
W 1
µT

1, W 2
µT

2, which are i Q̄i
L {DQi

L and i ¯̀i
L {D`iL. For i Q̄i

L {DQi
L we find that after the field

redefinitions to diagonalize Yu and Yd the interactions with W� are

i Q̄1i
L
{DQ1i

L � i
g?
2

�
ū 1i
L d̄

1i
L

	 �
0 {W�

{W� 0

� �
u1iL
d1iL



(1.22)

� i
g?
2
�
ū 1i
L d

1i
L
{W� � d̄

1i
L u

1i
L
{W��

� i
g?
2
�
ū iL U

: ij
uL U

jk
dL d

k
L
{W� � d̄

i

L U
: ij
dL U

jk
uL u

k
L
{W��

� i
g?
2

�
V ij
CKM ū iL d

j
L
{W� � V : ij

CKM d̄
i

L u
j
L
{W�	

,

where VCKM � U :
uLUdL is a unitary matrix which is not diagonal a priori. As any 3 � 3

unitary matrix, it can be parametrized with 3 rotation angles and 6 phases. Here one can
use the freedom still left after having diagonalized the Yu, Yd, Ye matrix to rotate each pair of
L, R quarks together (to not spoil the phases in the Yukawa matrices) with a different phase
for each flavor, i.e. one can perform a vectorial rotation by a Up1q6. With this, 5 of the 6
phases in the CKM can be removed without modifying the S-matrix. After performing these
rotations the CKM matrix can be written as,

VCKM �

����
c12c23 s12c23 s13e

i δ13

�s12c23 � c12s23s13e
i δ13 c12c23 � s12s23s13e

i δ13 s23c13

s12s23 � c12c23s13e
i δ13 �c12s23 � s12c23s13e

i δ13 c23c13

���
 (1.23)

with cxy � cospθxyq and sxy � sinpθxyq. The angles θ12, θ23, θ13 and the phase δ13 are not
predictions in the SM and have to be measured. This shows that due to the diagonalization
of the quark fields in mass eigenstates, we have now interactions mediated by the W� gauge
bosons that can mix different families of quarks with strengths proportional to the VCKM
entries. Surprisingly it is experimentally found that VCKM is almost diagonal,

|Vckm| �

����
1 λ λ3

λ 1 λ2

λ3 λ2 1

���
 , (1.24)

with λ ! 1. One could think that the term i ¯̀iL {D`iL would also have a CKM -like matrix
Ṽ � U :

eL UνL. This is not the case if the neutrinos are massless because one has always the
5Since only then the unitary matrices get contracted in a way to “cancel out” as U : ij

α U jkα � δik, where α
labels the fields that need to be redefined to diagonalize the Yukawas in Eq. (1.16), i.e. uL, uR, dL, dR, eL, eR.
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freedom to redefine the neutrino field νL Ñ ν 1L � UeLνL with the same unitary matrix UeL as
the one used to redefine eL when diagonalizing Ye, and therefore Ṽ � 1. 6

From this discussion we learn that the only term in the SM where different generations
interact is in interactions between two quarks and W� with a strength proportional to the
VCKM . Even more, it predicts that there should not be interactions between leptons of differ-
ent families at tree level, nor tree level flavour changing neutral currents. A very important
aspect to notice, is that the interactions in the CKM matrix containing a phase are not CP
invariant. Under C : ψ Ñ �iγ2ψ

� and C : W�
µ Ñ �W	

µ , while under P : ψ Ñ γ0ψ and
P : {W� Ñ {W�. Therefore under CP the term containing {W� turns into the term with {W�

and viceversa, e.g.

Lkinfermions � i
g?
2
�
V ij
CKM ū iL {W�

djL
�

(1.25)

� i
g?
2
�
V ij
CKM ū i {W� �1� γ5

2

	
dj
�

CPÑ i
g?
2
�
V ij
CKM d̄

j {W� �1� γ5

2

	
ui
�
.

For CP to be conserved we must match this term with the one in Lkinfermions containing {W�,
and therefore we should have that V ji

CKM � V : ij
CKM , or more concretely V ij

CKM � V � ij
CKM . Since

this is not the case due to the ei δ13 phase appearing in several entries, the SM has several
processes that are CP-violating (see [49]).

Gauge kinetic terms

We end our discussion by focusing on Lkingauge which is given by

Lkingauge � �1
4 B

µνBµν � 1
4 W

aµνW a
µν �

1
4 G

b µνGb
µν

� θQCD rGb µνGb
µν � θW �W aµνW a

µν � θY B̃
µνBµν , (1.26)

where we defined

Bµν � BµBν � BνBµ ,

W a
µν � DµW

a
ν �DνW

a
µ , DµW

a
ν � BµW a

ν � g εabcW b
µW

c
ν ,

Ga
µν � DµG

a
ν �DνG

a
µ , DµG

a
ν � BµGa

ν � gs f
abcGb

µG
c
ν , (1.27)

F̃ µν � εµνρσ Fρσ with F � G, W, B .

6If one modifies the SM to give masses to the neutrinos, pegging the rotation of νL to the one of eL is not
allowed and one has a CKM -like matrix for the leptons (called Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
matrix [48]) which has the same form and number of free parameters as the CKM matrix if the neutrinos
have only Dirac masses. If a Majorana mass is also added, two extra phases need to be added by multiplying
the PMNS matrix by diagp1, eiα12{2, eiα23{2).
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With these definitions we find that the terms in the first line of Eq. (1.26) yield the kinetic
terms and self interactions of the gauge bosons. To have a better picture of the interactions let
us rewrite the electroweak part in terms of fields creating mass and electric charge eigenstates,

� 1
4 F

µνFµν � 1
4 Z

µνZµν �D:µW� νDµW
�
ν �D:µW� νDνW

�
µ (1.28)

� iepF µν � cotθwZµνqW�
µ W

�
ν

� 1
2pe

2{ sin2 θwqpW�µW�
µ W

� νW�
ν �W�µW�

µ W
� νW�

ν q ,

where Dµ � Bµ � iepAµ � cotθwZµq, Fµν � BµAν � BνAµ and Zµν � BµZν � BνZµ. The terms
in Eq. (1.28) give the SM prediction for triple and quartic gauge couplings and are uniquely
fixed from the requirement of Poincare symmetry, gauge invariance and renormalizability.

Let us now discuss the terms in the second line of Eq. (1.26). The Feynman rules for
these terms give trivial zeros so they don’t contribute in perturbation theory [50]. There-
fore only non-perturbative effects due to non-trivial solutions to the classical equations of
motion may contribute to the path integral (i.e. other local minima or saddle points of the
action). Whether such configurations exist depends on the specific gauge group and bound-
ary conditions imposed. Imposing that Aµ is pure gauge at infinity (i.e. Aµ � 0 up to
gauge transformations), so the classical action is finite, one finds that only the gauge fields
for SUp2q and SUp3q have solutions to the equations of motion where Fµν , F̃µν � 0 meaning
that

³
F̃F � 0. This is not the case for the Up1q gauge field, and therefore

³
BB̃ � 0, making

θB a non-physical parameter.

One the other hand, θQCD, θW can be physical, but since they shift under certain fermion
field redefinitions they are not physical by themselves. For the case of θQCD on sees that the
rotations used to diagonalise the Yukawa matrices, i.e. ψiL Ñ U ij

L ψ
j
L, ψiR Ñ U ij

Rψ
j
R induce a

change in the measure given by»
DψDψ̄ Ñ

»
DψDψ̄ ei

³
d4x δθ

g2
s

32π2 GaµνG
aµν�... , (1.29)

where
δθ � arg

�
detpU :

Rq detpULq
	
, (1.30)

UR, UL are rotation matrices belonging to UpNq that mix one or more flavours, and the dots
appearing in Eq. (1.29) stand for other terms proportional to W̃W and B̃B that don’t shift
θQCD. Interestingly, working on the basis where the Yukawa matrices are diagonal and real,
(which as seen previously can be achieved by rotating with a Up3q up and down type quarks
independently) we have that

δθ � arg
�

detpU :
uRq detpUuLq

	
� arg

�
detpU :

dRq detpUdLq
	

(1.31)

� arg
�
detpU :

uRq detpYuDq detpUuLq
�� arg

�
detpU :

dRq detpYuDq detpUdLq
�

� arg
�

detpYuq
	
� arg

�
detpYdq

	
,
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where Yu, Yd are the original Yukawa matrices, and YuD, YdD the diagonalised ones. Therefore

θ̄ � θQCD � arg
�

detpYuq
	
� arg

�
detpYdq

	
, (1.32)

is a physical quantity since it doesn’t depend on the choice of basis for the phases of quarks
and can be found by the requirement of the quark mass matrices to be real. This quantity
appears in the calculation of the neutron electric dipole moment (de) and can be estimated
to be de � 10�15 θ̄ in units of e � cm (see for instance [51]); with bounds on this quantity given
by de À 10�25 e cm [52], the parameter θ̄ is bounded to be

θ̄ À 10�10 . (1.33)

The unexplainable smallness of this parameters, result of the sum of θQCD plus some phases
in the Yukawa matrices is called the strong CP problem.

Moving to the term with θW , let us notice that one can decompose the elements of UpNq
as UpNq � Up1q b SUpNq, and therefore

UR � eiϕRŪR , UL � eiϕLŪL , (1.34)

where ŪR, ŪL P SUpNq and they have det� 1. With this we learn that the shifts on the θ
parameters under a UpNq rotation induces a change in Eq. (1.29) with δθ

δθ � arg
�

detpŪ :
Rq detpe�iϕR 1q detpeiϕL 1q detpŪLq

	
� 2NpϕL � ϕRq , (1.35)

and therefore the angle δθ only depends on the Up1q part of the rotation. This property
is important when trying to get rid of redundant parameters like θW , because one can then
rotate the left and right components of a field by the same angle ϕ in the Up1q of a UpNq
without inducing any change in the GG̃ term, but inducing a change in the θW since only the
left-handed quarks are charged under SUp2qL. One can get rid of anything in front of WW̃

though, by performing a Up1q vector rotation to all the quarks with the same angle for all
the flavours 7. Since only the left quarks are charged under SUp2q this vectorial rotation can
be used to eliminate everything in front of WW̃ passing all the information in front of BB̃,
which as illustrated above is unphysical. Therefore making θW an unphysical parameter.

Summary of the SM

After eliminating all the redundancies, one finds that the SM Lagrangian has 19 parameters
that can’t be computed and need to be fitted from experiments. Let us present the values of
these parameters just to have an idea of what their values are at the energies were they have
been measured, see [49] for more details. These 19 parameters then can be chosen to be: 6

7To not spoil the CKM nor the phases in the Yukawa matrices
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masses for the quarks mu,md,mc,ms,mt,mb, 3 masses for the leptons me,mµ,mτ , and the
Higgs mass mh,

mu md mc ms mt mb me mµ mτ mh

GeV 0.002 0.005 1 0.1 173 4 0.0005 0.1 2 125
(1.36)

3 dimensionless gauge couplings g1, g, gs, 4 parameters coming from the CKM matrix,the
Higgs vev and the dimensionless parameter θ̄:

g1 g gs

0.36 0.65 1.2
θ12 θ23 θ13 δ13

13o 2.4o 0.2o 57o
v pGeVq

245
θ̄

¤ 10�10
(1.37)

where the gauge couplings are measured at µMS � mZ � 91 GeV, and the rest of couplings
at different scales depending on the experiment (see [49] for details).

As final remarks, it is interesting to notice that all the masses in the SM are given by a
coupling g, g1,

?
λ, yψ times the higgs vev, and therefore for couplings Op1q implies that all the

particles will have masses Opvq, i.e. the EW scale. This is true for the weak gauge bosons,
the Higgs and the top quark. On the other hand, besides the top quark, all other fermions
are much lighter than the EW scale due to the Yukawa couplings being yψ ! 1. It is also
important to notice that all the CP violating effects in the SM are due to the complex phase
in the VCKM matrix and the term θ̄ GG̃.

1.2 Is new physics around the corner?
As mentioned in the previous chapter, the SM restricted to operators of dimension d ¤ 4 is
most certainly an effective theory due to its inability to describe gravitational interactions
at arbitrary high energies. Besides this fact though, there are also experimental observations
that can’t be explained using only the the SM (with operators of d ¤ 4), and therefore require
its modification. These experimental observations are:

• Neutrinos have mass: Various experiments with solar, accelerator, atmospheric and
reactor neutrinos provide compelling results indicating that neutrinos oscillate from
one flavour state into another during flight, meaning that flavour states are non trivial
superpositions of mass eigenstates (so they must have mass). See [9, 10] and references
therein.

• Dark matter: There are various experimental observations (e.g. rotation speed of galax-
ies, model of galaxy formation, bullet cluster) and theoretical motives (the experimental
agreement with the ΛCDM model) which indicate that about 80�85% of the matter in
the universe is non luminous and non-baryonic. Furthermore there are strong constrains
which indicate that this matter must be neutral under colour and electrical charges, leav-
ing the neutrino as the only candidate in the SM. Even if massless neutrinos were not
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disfavoured by direct experiments, they are disfavoured as DM candidates by large scale
structure formation models and the Tremain-Gunn bound. On the other hand, massive
neutrinos or other neutral colour and charge particles not included in the SM like axions
or neutralinos may be possible candidates, indicating that new physics are required to
explain a large piece of the Universe’s composition. See [11, 12] and references therein.

• Matter antimatter asymmetry in the universe: The SM doesn’t provide an explanation
to account for the asymmetry of matter and antimatter if one assumes that at the
beginning of the Universe they were equal in amount.

• Cosmological inflation: The Friedmann-Robertson-Walker cosmological model of our
Universe’s expansion suffers from various initial conditions problems. For example, the
fact that causally disconnected parts of the Universe (as seen in the CMB) have the
same temperature. See [13] and references therein for details.

As of now though, these observations have not been corroborated by direct experimental
evidence (colliders/DM direct detection) pushing upwards the scale of new physics ΛNP with
every new experiment. Hence to know if we’ll be able to see this effects we have to find
compelling theoretical models beyond the SM that can accommodate these observations. In
the theoretical side, the current situation is as follows: all the experimental evidence that
requires going beyond the SM can be explained with new physics around the Planck scale
(e.g. neutrino’s mass with Seesaw mechanism and mνR � 1015 GeV, for coefficients of order
one). Also the SM doesn’t have any theoretical inconsistencies up to MP (e.g. no problems
with vacuum stability [14] or problems with anomaly cancellation that could predict new
families). This is quite different from the situation before the Higgs discovery, where the
inconsistency of an incomplete SM guaranteed the need of new physics at low energies 8

or problems with anomaly cancellation that could predict new families). Even more, the
accidental (exact or approximate) symmetries that the d ¤ 4 operators in the SM have, and
that one would expect to not be fulfilled in the full theory (so not fulfilled by d ¡ 4 operators),
haven’t yield any new discoveries, e.g. the d � 6 operator that would produce proton decay
is bounded to have ΛNP Á 1016 (for a coefficient of order one).

Given this situation, where the SM is consistent up to the Planck scale and no experimental
inconsistencies have been found in direct experiments, we may try to find new insight of any
underlying theory by trying to understand the values of the parameters of our current theory.
Historically this approach has been successful in predicting new physics. In the SM, we would
like to better understand the following:

• The Naturalness problem of the Higgs’ mass: this is in some sense an aesthetic problem
that stems from having a fundamental scalar with a mass mH , not protected by any
symmetry, that receives radiative corrections from particles with masses M " mH , and

8These predicted a discovery at the electroweak scale to unitarize the WLWL ÑWLWL scattering.
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requires in general that the fundamental parameters of the theory be precisely fine tuned
to predict such small mass if M is large.
Is Nature actually fine tuned or is there an alternative explanation? If it isn’t, should
we expect new physics around the EW scale or instead nature is realised by models that
can solve the fine-tuning problem without the need of new physics at low energies?

• Gauge coupling unification: if one extrapolates the strength of the weak, electromagnetic
and strong forces at high energies, one finds that for interactions with Center of Mass
energy of about 1013�1015 the three forces have about the same strength (crossing each
other at different points).
Is there a more fundamental theory where the three forces are unified at some high
energy scale? This could bring light into understanding the values of these forces at the
low energies where we are proving them today?

• The strong CP problem: We would like to know if there is some fundamental reason as
of why the θ̄ parameter in the SM is so small (see Eq. (1.32) and following discussion).

• CKM and Yukawa matrices: The values of the diagonalised Yukawa matrices span
several orders of magnitudes, while the CKM matrix which in principle could have any
form, is almost diagonal with a small value in the CP violating entries. Is there any
underlying reason for the particular form of the CKM matrix and the hierarchies seen
in the fermion masses?

• Number of families: Who ordered that? Why are there 3 families? Is there a funda-
mental reason that explains why there are three families both for quarks and leptons?

• Charge quantisation: Even though the hypercharges of the different particles in the SM
have no theoretical constrain to be what they are, surprisingly they all have values that
yield for each particle an electric charge that is a fraction of the electron charge. Is
there a reason for that? (e.g. Grand Unification models predict this for example).

• The Cosmological constant: The measured value of the Cosmological constant is of
order Λcosmo � 10�47 GeV4. On the other hand, if one naively estimates its value using
the SM one finds that the prediction is off by more than 10100 GeV4 orders of magnitude;
a problem similar in spirit to the Naturalness problem mentioned above. What are we
missing?

In this thesis we focus on models that tackle the Naturalness problem of the Higgs’ mass,
since many of them require the appearance of new physics at low energies which modify
some of the SM predictions, like the couplings to the Higgs boson or the appearance of new
particles around the EW scale. Given the recent discovery of the Higgs, trying to learn what
its couplings are telling us in the framework of BSM physics is a sensible thing to do. Due to
its central importance in motivating the models at study, in the next section we explain in a
bit more detail the Naturalness problem, and sketch how Composite Higgs models solve it.



1.2. Is new physics around the corner? 21

1.2.1 The Naturalness problem

The clearest example in which the Naturalness problem arises is in condensed matter systems
where the theory has a physical cutoff Λ given by the inverse of the lattice spacing of the
material. 9 In a generic QFT the mass of a scalar particle is given by m2

phys � m2
bare � δm2,

where m2
bare is the mass parameter in the Lagrangian and δm2 accounts for the radiative

corrections. Notice that in systems without a physical cutoff one must use different renormal-
isation schemes to make sense of the infinite radiative corrections, which in turn may obscure
the impact of high energy modes to the different physical values of the theory; on the other
hand, systems with a physical cutoff have finite radiative corrections which depend on the
physical cutoff Λ, which allows to explicitly see the dependence of the physical parameters like
m2
phys to the high energy behaviour of the theory. The dependence of the mass terms of any

particle to the cutoff Λ is highly dependent on the details of the theory. For a simple theory
with a generic elementary scalar 10 one finds that δm29Λ2. The Naturalness problem arises if
one finds a scalar particle with m2

phys ! Λ2, since this implies that there is a huge cancellation
between m2

bare � Λ2 and δm2 � Λ2 such that their sum is m2
phys ! Λ2. If one finds a system

with these types of cancellations taking place, one may suspect that the calculation is not
being done “properly”, in other words, that there is a more fundamental theory in which the
calculation of m2

phys yields an expression that doesn’t require such big cancelations to take
place. In principle, it could be possible to have systems where by chance one would have
these types of “unlikely” cancellations. So far though, in generic condensed matter systems,
every time one has found a fundamental scalar not protected by any symmetry or any other
external mechanism, it has been found to have a mass of order Λ. 11

In the SM, where we have by construction a fundamental scalar particle, it is then fair to
ask if this implies that there is some cutoff scale close to the Higgs’ mass where new physics
appears (as it happens with scalars in condensed matter systems). Since in the SM there
isn’t any physical cutoff akin to the lattice spacing, let us explain in a bit more detail how
the Naturalness problem arises in this case (we follow the discussion in [17]). As explained in
the previous chapter, the SM is an effective theory, so we can imagine how the Higgs mass is
computed in the underlying more fundamental theory. We assume that the Higgs mass will
be computed from the more fundamental parameters of the underlying theory, and can be
schematically written as

m2
h � pδm2

hqE Λ � pδm2
hqE¥Λ , (1.38)

where Λ represents the scale below which the SM is a good approximation to the full theory,
and we have separated the contributions to the Higgs mass between energies below and above

9In theories with a physical cutoff, the cutoff itself is a parameter of the theory like any other.
10Here elementary means that it is very insensitive to form factors for energies much smaller than the

physical cutoff Λ.
11For example, in systems with SSB one has that the mass depends on the temperature, and mpT q ! Λ

only when T is very close to the critical temperature Tc, or if one fine tunes the amount of doping in the
material.
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Λ. Notice that δm2
h can have both radiative and tree level contributions to the Higgs mass

(as it is the case in supersymmetric and GUT theories). Given that for energies below Λ the
SM is a good approximation, we can calculate low energy contributions to the Higgs. This
yields

pδm2
hqE Λ � 3

8π2v2 p4m2
t � 2m2

W �m2
Z �m2

hqΛ2 , (1.39)

meaning that pδm2qE Λ � Λ2 " m2
h; therefore, in order to have a small Higgs mass, one must

have that the low energy and high energy contributions cancel each other to a very good
precision, i.e. pδm2

hqE Λ � �pδm2
hqE¥Λ. One can estimate the cancellation needed to achieve

the observed Higgs mass as follows

∆ ¥ pδm2
hqE Λ

m2
h

� 3m2
t

2π2v2
Λ2

m2
h

�
�

Λ
450 GeV


2

, (1.40)

which can be taken as a measure of the fine-tuning of the theory. Summarising, if the SM is
valid up to very large energies, the underlying theory will have to explain why the low and
high energy contributions to the Higgs mass cancel up to a very small fraction. It is important
to notice that when constructing models beyond the SM that reduce the fine-tuning ∆, one
may find new sources of fine-tuning if gravity is not being taken into account, and therefore a
new source of fine-tuning may appear in the terms that contribute to pδm2

hqE¥Λ, since naively
these can be of order ΛPlanck " Λ. There are many ways to solve both Naturalness problems,
some predict new physics around the EW scale, and some don’t. Even though it could be
that Nature is fine-tuned, or that the underlying theory has a mechanism to explain these
cancellations without the need of lowering Λ (no new physics at the EW scale), as researchers
we should explore all avenues, so in this thesis we have studied two of the most compelling
constructions that solve both Naturalness problems and predict new physics at the EW scale.
These are Composite Higgs models, where the Higgs is a Pseudo Nambu Goldstone boson
(PNGB), and Supersymmetric models. In the next section we give a brief overview on the
motivation and general features of Composite Higgs models. Further details on Composite
Higgs and Supersymmetric models can be found in the subsequent chapters of the thesis.

1.2.2 Composite Higgs as a solution
At low energies, we know that QCD, a theory of quarks and gluons, creates bound states
with different spins, in particular spin zero; nonetheless, the scalars in the low energy effective
theory don’t have Naturalness problem in the sense of the previous section, nor does QCD
have a Naturalness problem with respect to the Planck scale. For example, the mass of a
generic resonance like K�

0 p1430q has two contributions δm2
h � pδm2

hqE Λ � pδm2
hqE¥Λ where

here Λ � 1 GeV is the QCD confinement scale. In the low energy effective theory pδm2
hqE Λ

is estimated to be of order Λ2. The interesting thing for composite particles is that we expect
the contribution of pδm2

hqE¥Λ to be very small due to having form factors that go to zero at
energies above the confinement scale Λ (which makes any composite particle insensitive to
physics above Λ). Following this line of reasoning yields a “naive” prediction for the scalar



1.2. Is new physics around the corner? 23

resonance’s mass to be of order Λ. This is exactly what we see for scalar resonances in QCD
(e.g. mK�

0 p1430q � 1 GeV), and therefore we don’t have a Naturalness problem. If we had
found that the mass of these resonances was much smaller than Λ we would try to find the
reason behind it.

Regarding the Naturalness problem with the Planck scale, since QCD is a theory with
only quarks and gluons, these are protected by the chiral and gauge symmetries and therefore
don’t have a Naturalness problem. 12

Since the only scalars that we have seen in Nature are composite, and since they can avoid
the Naturalness problem, it is compelling to think that the Higgs is not an elementary particle
that has a Naturalness problem, but instead a Composite particle that behaves similarly to
the ones we have already seen. The challenge of Composite Higgs models is to build viable
phenomenologically models that agree with the plethora of data in agreement with the SM.
Some of the most relevant for model building are electroweak precision tests, and not having
seen any evidence of a strong sector (no resonances found close to the Higgs), indicate that new
physics may be well above the Higgs mass. For this reason, within models where the Higgs is
Composite, those where it is a PNGB of some strong sector have gained attention, since they
can naturally explain this apparent separation of scales. This phenomenon is already realised
in nature, e.g. the pions (which can be thought of PNGB’s of SUp2qL�SUp2qR Ñ SUp2qL�R)
are much lighter than the other resonances. Their lightness with respect to the confinement
scale Λ is explained by the protection they have from the shift symmetry that the theory
would have if they were exact Nambu Goldstone Bosons.

Therefore, composite Higgs models rely on the idea that the Higgs be a composite par-
ticle and that, moreover, the whole Higgs doublet is a (Pseudo) NGB of a global symmetry
spontaneously broken by strong dynamics. In the following sections we shall describe the
details of SSB and the PNGB interactions at small energies; here we will briefly summa-
rize the main generic ingredients that characterize composite Higgs models (CH), while more
model-dependent aspect will be discussed in the dedicated chapters throughout the thesis.

CH models are characterized by a sector with strong dynamics which, similarly to QCD,
confines at a scale Λ � TeV. In addition, this sector is associated with a global symmetry
(the analog of SUp2qL � SUp2qR for pions) and this is spontaneously broken to a subgroup,
in such a way that a number of naturally massless degrees of freedom are delivered according
to Goldstone theorem [21]; these are the NGB’s, and as we explain in the Sec. 1.3, they
parametrize the coset space G{H if there is a SSB of G Ñ H. In CH models then, in

12We say that a mass term is protected by a symmetry if setting it to zero make the theory gain a new
symmetry. For example, if one sets to zero the mass term of a fermion, the theory gains a new symmetry
(chiral symmetry) given by the transformation ψL Ñ eiθψL and ψR Ñ e�iθψR (with ψ � ψL � ψR). This
implies that any radiative correction to the fermion mass must be proportional to the mass term since when
the symmetry is restored any radiative correction has to go to zero (since any contribution to the mass would
violate the chiral symmetry). Using dimensional analysis one finds that the radiative corrections can only
depend on the cutoff ΛPlanck through logarithms (making them much less sensitive to it) thus avoiding the
need for big cancellations.
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order to have the complete Higgs doublet as PNGB’s, the coset will need to contain at least
4 degrees of freedom (d.o.f.); additional phenomenological requirements (in particular the
presence of custodial symmetry SOp4q in order to ovoid large strong-sector contributions to
the T -parameter) limit the possibility to just a few. The minimal possibility follows the
SOp5q{SOp4q symmetry breaking pattern [27, 55] and reproduces just the necessary degrees
of freedom for the Higgs, but more extended coset solutions have also been discussed in the
literature.

This strong sector represents the core of CH models, but in order for this scenarios to be
realistic, it must include fermions and gauge boson interactions at small energies. Generically
these are assumed to be elementary, but coupled to the strong sector through mixings to
strong sector resonances. These mixings necessarily break the global symmetry (SOp5q for the
minimal model) and therefore introduce departures from the Higgs as a NGB. In particular,
the Lagrangian describing this system will include a strong sector part Lstrong (this will be
carefully described in the following sections), an elementary part Lelem (this corresponds to
the SM kinetic Lagrangian discussed above) and the linear mixing Lmix of the form (for
fermions)

Lmix � yI,αψelemα OcompoI , (1.41)

where ψelemα is an elementary fermion with SM indices α while OcompoI is instead a composite
field operator from the strong sector with index I belonging to, e.g. SOp5q.13 Eq. (1.41)
makes it clear that the coupling between the elementary and composite sector yI,α explicitly
breaks the SOp5q symmetry. It is assumed in CH models that this represents the only
source of breaking for this symmetry, so that the explicit contributions to the Higgs potential
(departures from the V � 0 NGB limit) will be proportional to powers of y and will be in
particular sensitive to the top quark interaction with the strong sector (similarly the gauge
coupling g also breaks the symmetry, but the effects it induces are subdominant with respect
to the ones involving the top quark Yukawa). An explicit construction of the effective potential
will be presented in Sec. 3 , while in the next section we provide the tools to describe and
construct Lstrong.

1.3 Spontaneous Symmetry Breaking and the CCWZ

In this chapter, we do a brief review of SSB and the CCWZ construction [5, 6], which are
both of key importance when studying the phenomenology of Composite Higgs models. We
start by defining SSB and studying the general properties of theories that present it; then
we proceed to explain the CCWZ formalism and why it is useful when constructing effective
theories where there is SSB.

13The linear mixing of Eq. (1.41) is referred to as Partial compositeness; other possibilities, in which
composite operators interact with SM bilinears have also been proposed in the literature but are disfavored
phenomenologically (see however the recent [18]).
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Global transformation

A theory is symmetric under the transformation |i y Ñ |j y � ĝ |i y if

| xi |i1 y | � | xi| ĝ:ĝ |i1 y | , (1.42)

for any two states |i y , |i1 y. If the vacuum state of the theory is not invariant under the
symmetry transformation

ĝ |Ω y � |Ω1 y � |Ω y , (1.43)

we say that the symmetry is spontaneously broken (even though the symmetry is still fulfilled
like in Eq. (1.42)). 14, Wether the vacuum is invariant or not under the symmetry has some
general repercussions on the spectrum of the theory. Since in most cases we deal with SSB of
compact Lie Groups, we restrict our discussion to the general features of SSB under those. We
start studying the case of global symmetry group G, which being a Lie Group has a quantum
representation given by

ĝpαq � eiαaQ̂a , (1.44)

where Q̂a are the generators of the group and αa a set of continuous real parameters defining
the element of the group.

To learn about the spectrum of the theory we can look at the states created by operators
φ̂ipxq (which create 1-particle states that can be elementary or composite),

|i y � |ipxq y � φ̂ipxq |Ω y . (1.45)

Let’s start by the case where the vacuum is invariant under the symmetry transformation,

ĝpαq |Ω y � |Ω y . (1.46)

The point here is that if the Lagrangian depends on operators that transform as linear irre-
ducible representations Dijpαq of G, i.e.

ĝpαq φ̂ipxq ĝpαq: � Dijpαq φ̂jpxq , (1.47)

(an assumption that we will make throughout this chapter), then the states |i y created by
any φ̂ipxq have all the same mass. This is seen by first showing that the states |i y transform
in the same linear representation Dijpαq as the operators φ̂ipxq,

ĝpαq |i y � ĝpαq φ̂ipxq |Ω y � ĝpαq φ̂ipxqĝpαq: ĝpαq |Ω y � ĝpαq φ̂ipxqĝpαq: |Ω y . (1.48)

Then, using Eq. (1.47) we get
ĝpαq |i y � Dijpαq |j y , (1.49)

14In all this discussion we have assumed that the vacuum state of the theory can’t be a superposition of
the lowest energy states of the theory. This is valid when the volume of the space is infinite.
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and in particular since we can write |i y � φ̂ipxq |Ω y as a linear superposition of P̂ µ eigenstates
|pµ, i y, all with the same mass, each of these will transform under ĝpαq with Dijpαq. Using
that rĤ, Q̂as � 0, and focusing on the states with ~p � 0 for simplify, we find that¸

j

Dijpαqmj |mj, j y � Ĥ
¸
j

Dijpαq |mj, j y � Ĥ pĝpαq |mi, i yq (1.50)

� ĝpαq Ĥ |mi, i y � mi

¸
j

Dijpαq |mj, j y ,

so mj � mi and therefore all the physical states created by any φ̂i in a given multiplet of
G will all have the same mass. Having a clear connection between how the fields and states
transform simplifies the way of thinking about theories (e.g. all three quark fields in the
triplet of SUp3qc create states with equal masses). This way in which physical states and
fields transform linearly under a symmetry is known as the Wigner-Weyl realization and is
the general way of writing Lagrangians when we don’t have SSB.

When the vacuum state is not invariant ĝpαq |Ω y � |α y � |Ω y things are a bit different.
We see that the last equality in Eq. (1.48) is not fulfilled, and it seems to indicate that states
transform very differently from the fields when these transform linearly under G. From here
there doesn’t seem to be an easy way to infer wether the masses of the states created by
fields in a multiplet of G are all equal or not. Nontheless one can still learn some things by
separating the transformations of G between those that leave the vacuum invariant and those
that don’t

ĥpαq |Ω y � |Ω y with ĥpαq � eiαaŶa (1.51)
ĝ�pαq |Ω y � |α y � |Ω y with ĝ�pαq � eiαaX̂a ,

where we defined Ŷ , X̂ to be the unbroken and broken generators respectively. The elements
ĥpαq form a subgroup H � G and since ĥpαq |Ω y � |Ω y we can follow the logic of Eqs. (1.46)-
(1.48) to see that the states |i y � φ̂ipxq |Ω y transform in the same linear representation under
H as the fields φi,

ĥpαq φ̂ipxq ĥpαq: � Dhijpαq φ̂jpxq ñ ĥpαq |i y � Dhijpαq |j y . (1.52)

If Dh
ijpαq is irreducible, following the same reasoning as in Eq. (1.50), we see that all the

states |i y must have the same mass. For the case where Dh
ijpαq is reducible we have that,

ĥpαq p|i y ` |i1 yq �
�
ĥ1pαq 0

0 ĥ2pαq

��
|i y
|i1 y

�
� Dh1

ij pαq |j y `Dh2
i1j1pαq |j1 y , (1.53)

and only states in the same irreducible representation of H will have the same mass. 15

Therefore, when working with theories with SSB it can be useful to separate the irreducible
15Each irrep will have an analog of Eqs. 1.50 with possible different mi and mi1 .
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representations of G in irreducible representations of H (especially when we don’t have knowl-
edge of the full theory, like in low energy QCD or Composite Higgs models).

Another key aspect of SSB (for global symmetries) is that n � dimpGq�dimpHq massless
spin � 0 particles appear in the spectrum of the theory. This can be seen by finding the
number of poles at p2 � 0 in the connected 2-point function ∆px, yq � ³ d4pDppq e�ippx�yq �
xφpxqφpyqyJ�0

conn, or by finding the zero eigenvalues of its inverse,

∆0px, yq�1
ij � δΓpφ̄q

δφiδφj

����
Bφµ�0

, (1.54)

where the zero above ∆0px, yq�1 denotes that Bφµ � 0 (i.e. ∆0px, yq � ³
d4pDp0q e�ippx�yq),

and Γpφ̄q � Γpφq|φ�φ̄ is the 1-PI effective action evaluated at J � 0, so it fulfills that

δΓpφq
δφpxq

����
φ�φ̄

� 0 for φ̄ � xΩ|φ̂pxq|Ω yJ�0
conn . (1.55)

Since we want to evaluate Γpφq at Bφµ � 0 we work with the effective potential

Veff pφq � �Γpφq
V
��
Bφµ�0 where V �

»
d4x . (1.56)

We focus here on the case where the symmetry transformation is linearly realized. In this case,
the Slavnov-Taylor relations, tell us that if the Lagrangian in the path integral is invariant
under some linear symmetry transformation, φ Ñ φ � δφ, the effective action will also be
invariant under the same transformation φc Ñ φc � δφc. Hence, the effective action satisfies

δVeff pφq
δφi

pδφqi � 0 � δVeff pφq
δφi

Qa
ij φj (for any φ) , (1.57)

where Qa
ij is any of the conserved Noether charges (in the classical Lagrangian of ZrJs).

Deriving this expression with respect to φi and evaluating it at φpxq � φ̄ we get

δ2Veff pφ̄ q
δφlδφi

Qa
ij φ̄j � 0 � 1

V
∆0px, yq�1

li Q
a
ij φ̄j . (1.58)

This equation is non-trivial only if φ̄ � 0. For a linearly realised symmetry this is equivalent
to say that there is SSB. Performing this transformation on the operator φ̂ we get,

φ̄ipxq � xΩ|φ̂ipxq |Ω y Ñ xΩ|ĝpαqφ̂ipxq ĝ:pαq |Ω y � xΩ1|φ̂ipxq |Ω1 y (1.59)
� Dijpαq xΩ|φ̂jpxq |Ω y � Dij φ̄j .

From the Slavnov-Taylor relations, we know that φ̄i transforms with the same linear repre-
sentation Dij as φ̂. Then, if φ̂ is not a singlet under the symmetry transformation, neither is
φ̄. This implies that Dij φ̄j � φ̄i when φ̄i � 0. In this case, we find that

xΩ|φ̂ipxq |Ω y � φ̄i � Dijφ̄j � xΩ1|φ̂ipxq |Ω1 y ñ |Ω y � ĝ: |Ω y � |Ω1 y , (1.60)
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which signals SSB as defined in Eq. (1.43). In the case where there is SSB, we find that
taking Eq. (1.58) with Qij equal to the unbroken generators is trivially zero since Y a

ij φ̄j �
Y a
ij xΩ|φ̂ |Ω y 9 xΩ|Ŷ φ̂ Ŷ |Ω yij � 0 so no constrains are imposed on ∆0px, yq�1

ij . On the other
hand if we take the broken generators where Xa

ij φ̄j � 0 we have that

∆0px, yq�1
li X

a
ij φ̄j � 0 , (1.61)

and then the sum Xa
ij φ̄j is an eigenvector of ∆0px, yq�1

li with eigenvalue zero. This means
that the propagator Dppq appearing in ∆0px, yq � ³ d4pD�1p0q e�ippx�yq has a pole at p2 � 0
for each broken generator Xa, and therefore there are dimpGq � dimpHq massless particles in
the theory. If we want to work in a theory where the Poincare symmetry is not spontaneously
broken φ̄ must be a singlet under Poincaré (see Eq. (1.60)), thus the only operators φ̂ that
can have a vacuum expectation value different than zero must be scalars. We find then that if
Poincaré is not broken, SSB implies that the spectrum of the theory will have n � dimpGq �
dimpHq massless spin � 0 particles, which are the Nambu-Goldstone bosons (NGB’s). This
result is nice because it shows that NGB’s are massless even when taking all the quantum
corrections into account.

An important property of NBGs is that they always couple through derivatives. This can
be easily shown in the case where a field φi has a vacuum expectation value different than
zero. Here on can perform the following change of variables

φipxq � ϕijpxqφ1jpxq , (1.62)

which puts all de NGB’s degrees of freedom into ϕijpxq and leaves φ1jpxq without any of them.
This is seen by noting that ϕijpxq is orthogonal to the vacuum expectation value of φi (like the
linear combinations of fields that are eigenvectors of p∆0q�1 with eigenvalue zero, see [47]).
Now, one can show show that ϕpxq is a local linear representation of a G which can span all
the possible transformations that get φ1jpxq rid of the NGB with just the representatives of G
belonging to the coset G{H. Since any element of G can be written in some neighbourhood
of the identity as,

g � eα
apxqXa

eu
apxqY a . (1.63)

It is convenient to standardise the form of ϕij as an element of G{H and write it as

ei α
apxqXa

. (1.64)

One can check that the transformation in Eq. (1.62) is just a change of variables which modifies
the form of the Lagrangian Lpφq � L1pφ1q but doesn’t change the S-matrix, since its Jacobian
is equal to one when φpxq � φ̄ (see [5,6]). On the other hand, when αapxq is constant we have
that the form of the Lagrangian doesn’t change Lpφq � L1pφ1q (since L is invariant under
global G). For this to happen we must have that the fields ϕpxq appear in each term of L1
with at least one derivative, so any term containing the fields αapxq must also contain at least
one derivative. A consistency check to ensure that αapxq contain the Goldstone degrees of
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freedom is by noticing that there their number a is equal to the number of broken generators
and that they are massless, since they only appear in terms with derivatives.

Another way to connect the αapxqX̂a fields with the Goldstone bosons is by noticing from
Eq. (1.51) that when αapxq are constant, αaX̂a act as creation operators on the vacuum, i.e.

αaX̂a |Ω y � |αa y � 0 for each fixed a , (1.65)

creating states with the same energy as the vacuum,

Ĥ |αa y � Ĥαa X̂a |Ω y � αa X̂aĤ |Ω y � E0 |αa y , (1.66)

where E0 is the vacuum energy defined as Ĥ |Ω y � E0 |Ω y, and we used that rH,Xas � 0.
These states |αa y are therefore massless and describe a particle with ~pÑ 0.

Local transformation

Now we turn to SSB when we have a local symmetry. Most of the statements presented
for the global case are the same, with the only difference that now if G is local one doesn’t
expect to have massless states in the theory. A simple way to see it is by performing the
change of variables in Eq. (1.62) (recall that this transformation makes the field φ1pxq not
contain any NGB). As previously pointed out, ϕpxq is an element of the local symmetry
group G, therefore this change of variables is in effect just a local symmetry transformation
and therefore L1pφ1q � Lpφq. Since we know that after the transformation the scalar multiplet
getting a vacuum expectation value φ1pxq doesn’t contain any NGB’s one can naively say that
there aren’t any massless degrees of theory in the theory. The choice of φ1pxq such that it
doesn’t contain NGB’s is just a choice of gauge. 16 Another way to see that there aren’t any
massless NGB’s is by fixing the gauge with a general Rξ gauge. In perturbation theory one
can see that the masses of the would be NGB’s are not zero and depend on the ξ parameter,
meaning that they are not a meaningful physical quantity in our theory. Moreover one sees
that in computations of e.g. scattering processes, the combination of the propagator of these
NGB with the gauge bosons associated with the broken symmetries leads to a gauge invariant
propagator which is equivalent to the one corresponding to massive particles transforming as
vectors under Lorentz, with the NGB providing the term corresponding to the helicity zero
(longitudinal) component. 17Combining these degrees of freedom therefore we have massive
vector bosons. In concrete examples one can see that their masses are proportional to the
coupling related to the broken symmetries and the vev that breaks it. For example for a
theory with a scalar field and a SUpNq local symmetry the kinetic term is given by

Lkin � 1
2 |Dµφipxq|2 � 1

2
� Bµφipxq � ig Qa

ij A
apxqµ φjpxq

�2
, (1.67)

16This choice is called unitary gauge and in the Rξ gauge is given by ξ Ñ8.
17For a simple example see Peskin chapter 21.1.
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given that φpxq acquires a vev, we can state that we are in the unitary gauge which means
that φpxq doesn’t contain any would be NGB’s. The masses of the gauge bosons at tree level
can be found by looking at the quadratic terms of Veff evaluated at its minimum,

δ2V tree
eff pvq

δAaµ δA
b µ

� 1
2 g

2 pQa
ij φ̄j Q

b
ik φ̄kqAapxqµAb µpxq . (1.68)

Recalling that when Q � T we have that T aij φ̄j � 0, only those terms with broken generators
will be different than zero. One can see [47] that the number of gauge bosons acquiring a
mass are given by the number of broken generators Xa, and that their their squared masses
are proportional to g2 and some combination of φ̄iφ̄j. This effect where massless goldstone
bosons acquire a mass due to SSB of a local symmetry, is called the Higgs mechanism.

The CCWZ
The CCWZ is a general method to build effective low energy Lagrangians for theories that
have SSB of G Ñ H where G is a (compact, connected, semisimple) Lie Group and H is a
continuous subgroup of G. The method has two parts, one where the general framework and
some theorems are demonstrated, and another one where the method to build Lagrangians
(where G is non linearly realised) is presented.

Framework

The CCWZ interprets the fields appearing in the Lagrangian of the path integral as coordi-
nates φ � pφ1, ..., φnq of some manifold M . The coordinates pφ1, ...φnq may represent the com-
ponents of fields each having different transformation properties underG, e.g. φ � p~ξ, ~ψ, ~σ, ...q.
There are three main assumptions in the CCWZ, the first one is that if there is SSB GÑ H

there is a point
φ0 � p0, 0, 0...q , (1.69)

called the origin, which is invariant under the action of h P H. The second assumption is that
the coordinates φ are in some neighbourhood of φ0 (so they can be Taylor expanded). The
third one is that only transformations of G near the identity are studied (hence excluding
“large” transformations); since G is a connected Lie Group its local properties can be studied
near the identity, and its elements written as

g � ei α
aXa

ei u
a Y a , (1.70)

with X, Y the broken and unbroken generators respectively. As shown in Eq. (1.64) the
elements of G{H are given by U � ei α

aXa , while the elements of H are given by h � ei u
a Y a .

Three theorems provide the CCWZ with its generality and usefulness. First, the S-matrix
of a Lagrangian Lpφ, Bµφq is invariant under the change of variables φ Ñ φ1 � φF pφq if the
origin φ0 is unchanged by this transformation (i.e. the Jacobian is one at φ0); notice that
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this is ensured by Eq. (1.69). Second, if the point φ0 is invariant under H, there exist some
coordinates φ1 � pφ11, ..., φ1nq that transform linearly under h P H (in some neighbourhood of
φ0). Third, all sets of coordinates tφ, φ1, ...u that transform non-linearly under G but linearly
under H � G produce the same S-matrix. Thanks to these theorems, one can choose the
most convenient set of coordinates to get the S-matrix, as long as they have the origin at
φ0 � p0, 0, 0...q and transform linearly under H.

Choice of coordinates

A convenient set of coordinates to build invariants under G is given by φ � p~ξ, ~ψq. Define the
submanifold N �M given by all the points result of applying transformations of the coset
U � eiξ

aXa on the origin, φ0 � p~0,~0q UÑ p~ξ,~0q. All the points in N are then characterised by
~ξ, making these a suitable set of coordinates for N . Define the rest of coordinates on M as
ψi � DpU�1qij Ψj, where Ψ transforms linearly under G, and D is a linear representation of
elements in G{H.

~ξ, ~ψ transformation properties

Let us check that φ � p~ξ, ~ψq transform non-linearly under G and linearly under H as required
for them to be a good choice of coordinates. The transformation properties of ξ and ψ are
derived from the transformation of U gÑ U 1. Since U P G{H � G, then gU � g1 P G so
g U � g1 � eiξ

1XeiuY � U 1 h, which yields

U
gÑ U 1 � g Uh�1 . (1.71)

From this transformation is readily seen that the coordinates φ � p~ξ, ~ψq transform non-linearly
under G and linearly under H. First, ψ always transforms with an element of H, i.e.

ψ � DpU�1qΨ gÑ ψ1 � DphU�1g�1qDpgqΨ � DphqDpU�1qΨ � Dphqψ , (1.72)

so it transforms non-linearly with g P G, and linearly with g P H. If Dphq is a reducible
representation, then one can do the same exercise for each. Notice that one can always rewrite
an irreducible representation as tensors with each index transforming under the fundamental.
Then, if U transforms with g and h in the fundamental of G, one has for example,

ψi � U�1
ij Ψj

gÝÑ ψ1i � hiα ψα , (1.73)
ψij � U�1

ij U�1
i1j1Ψjj1

gÝÑ ψ1ij � hiα hjβ ψαβ .

Next, to see that ξ transform non-linearly with G one can check how U transforms under
gc � eiαX P G{H � G. Then, U gcÑ U 1 � gcUh

�1 yields

ξa Ñ ξ1a � ξa � αa �Opα ξ2q , (1.74)

which is non-linear. Instead when g � h P H we have that

hU � hUh�1h � U 1h ñ U
hÑ U 1 � hUh�1 � heiξXh�1 � eiξhXh

�1
. (1.75)
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Using that rY a, X âs � ifaâ
b̂
X b̂, and h � eiuY one finds that for u small

X â hÑ X 1â � pX â � iuapfaqâb̂X b̂q , (1.76)

and therefore ξaXa hÑ ξaX 1a � ξa eiu
bfb

ab Xb � D̂phqabXb, so one can equivalently write that
Xa doesn’t transform with G but instead

ξa Ñ ξ1a � Dphqab ξa �
�
Dphqba

�T
ξa , (1.77)

which is a linear representation of h P H.

Building the Lagrangian

To build a low energy Lagrangian first want to find all possible G-invariants made out of ξ
and ψ. The invariants containing only ξ can be obtained by combining the coefficients of the
Maurer-Cartan form ω � U�1BµU . The Maurer-Cartan is a 1-form that maps the tangent
space of any element in G into the algebra of G, and is used in the study of homogeneous
subspaces to find G-invariants made out of the coordinates of G{H. For U � eiξX P G{H,

ω � e�iξXBµeiξX � daµX
a � ebµY

b , (1.78)

and the coefficients daµ and ebµ can be computed explicitly by taylor-expanding U ,

daµ � Bµξa � � � � , eAµ � � i4f
Aab ξa

ØBµ ξb � � � � . (1.79)

Using that U gÝÑ g U hx we find how dµ � daµX
a and ebµ � ebµ Y

b transform:

U�1BµU gÝÑ U 1�1BµU 1 � d1µ � e1µ � hx U
�1BµpU h�1

x q (1.80)
� hx dµ h

�1
x � hx eµ h

�1
x � hx pBµ h�1

x q ,

so
dµ

gÝÑ hx dµ h
�1
x , eµ

gÝÑ e1µ � hx eµ h
�1
x � hxpBµh�1

x q . (1.81)

Since eµ transforms like a connection, one can use it to build a covariant derivative, Dµ �
pBµ � eµq, for anything transforming with hx under G. The claim of the CCWZ is that using
dµ and Dµ allows to build all invariants under G containing only the ξ fields. The fact that
dµ and eµ only contain derivatives of ξ makes it impossible to build any mass term for ξ.
Together with the fact that it parametrises the G{H, we can identify them as the NGB’s
fields. At low energies the Lagrangian describing the NGB’s is given by Leff � Lpdµ, Dµq,
with the terms having less derivatives dominating. The leading contribution is given by the
first term in

L � f 2 Tr
�
d:µ d

µ
� � da :µ db µ TrrXaXbs � da :µ daµ , (1.82)
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which contains two derivatives and is the kinetic term for the NGB’s. 18,19

One can add the rest of fields ψ to Leff by building the usual invariants under local H
and using the covariant derivatives Dµψ.

Local symmetries

If instead of having a global G transformation we have a local one we notice that all the
derivations done for the global case hold as well in the local one if we just replace the derivative
for the covariant one, Bµ Ñ pBµ � igAµq. Then, φ � U :Φ is not affected, and now the objects
dµ and eµ are replaced by d̄µ and ēµ derived from

U :pBµ � igAµqU � d̄aµX
a � ēaµ Y

a . (1.84)

where now d̄µ and ēµ will depend on both ξ and Aµ. The explicit expressions are given by

d̄iµ �
?

2
f
DµΠi � . . . , ēaµ � �gAaµ � . . . . (1.85)

For more details on how to construct all possible invariants in the case of having local sym-
metries, and how to avoid including redundant terms, see [17].

18For it to be canonically normalized we have to redefine the fields π Ñ ?
2π{f .

19The term TrrDµd
µs could seem to also contain two derivatives but it is trivially zero

TrrDµd
µs � BµdaµTrrXas � ebµd

aµTrrY aXbs � 0 , (1.83)

since TrrXas � 0 because the generators are traceless, and TrrY aXbs � 0 since the two generators are never
equal for any a, b.
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Chapter 2

Higgs discovery, first reaction to the
data

2.1 Introduction

A particle consistent with the SM Higgs boson has been discovered: 5σ deviations have been
observed both by CMS [53] and ATLAS [54], in the combination of γγ and ZZ channels.
Whether this is the beginning or the end of an era of investigation of natural realizations of
the electroweak scale, it is not yet clear.

In this note we perform a global analysis of how compatible this excesses are with the SM
expectation of a Higgs boson at mh � 125 GeV, using the most recent data from ATLAS,
CMS and Tevatron. It is then interesting to analyze different natural theories beyond the
standard model (SM), to see whether they would be preferred or disfavored by the present
trend of data, and to understand towards which direction the parameter space of such theories
is more likely to shrink. We first turn our attention to a large variety of composite Higgs
models [55], highlighting which features in these models tend to improve/worsen the fit to
the data. In section 2.4, we begin with the minimal composite Higgs models (MCHMs), with
coset structure SO(5)/SO(4), but with generic structures of fermion couplings to the strong
sector (and hence to the Higgs boson) [55–57].

Larger coset structures can have a different phenomenology. For instance the coset struc-
ture SOp6q{SOp4q � SOp2q delivers an effective two Higgs doublets model (THDM) at low
energy [119]. We compare the predictions of this composite version of the THDM with that
of the MSSM in section 2.5.

Finally we also study the possibility of the Higgs mixing with other scalars, which raises
the question of whether it will be possible at the LHC to understand if the particle we observe
is really the one whose VEV gives mass to the gauge bosons; we try to answer this question by
singling out the exclusive channels (the ones with vector boson fusion (VBF) and associated
production cuts) that carry mostly this information.

Global fits of Higgs data in the context of composite Higgs models, but limited to the

35
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MCHM4 [55] and MCHM5 [56] models, have already appeared in Refs. [60–64].

2.2 The Data
We assume the existence of a unique Higgs-like state with couplings to the SM-gauge bosons
and fermions

ct � yt
ySMt

, cb � yb
ySMb

, cτ � yt
ySMτ

, a � ghV V
gSMhV V

, (2.1)

where we use the SM couplings as reference values and assume ghV V � ghWW � ghZZ . We
take that the probability density functions (PDFs) provided by the experiments can be ap-
proximated by Gaussian distributions, and we use the theoretical prediction for the ratio [62],

µi �
°
p σppa, ct, cb, cτ qζ ip°

p σ
SM
p ζ ip

BRipa, ct, cb, cτ q
BRSM

i

, (2.2)

for each channel i with production crossections σp and cut efficiencies ζ ip (which we take
to be independent from the parameters a and ct,b,τ ; the values of ζ ip are discussed in the
Appendix). We sum theoretical [65] and experimental errors in quadrature (both errors are
first symmetrized by average in quadrature and when negative error bars are not provided by
the experimental collaborations, we have assumed symmetric distributions around the mean
value). We summarize the data used in table 4.1.1

ATLAS finds that the peak of the combined signal strength’s best fit is at mh � 126.5
GeV, which is within experimental error from mh � 125.3 GeV, where the peak of CMS
occurs, so one can assume them to belong to the same resonance. We perform the statistical
analysis taking the values at mh � 125 GeV for CMS and Tevatron and mh � 126.5 GeV
for ATLAS. For comparison we also study the case where mh � 125 GeV is assumed for all
experiments, this appears in the plots as dashed lines.

Taking the ATLAS data at 126.5(125) GeV we obtain for the SM

χ2
SM � 26.36p23.9q, (2.3)

which for N � 33 independent channels corresponds to χ2{N � 0.8p0.7q. For the parameters
mentioned above, in the case with c � ct � cb � cτ , the best fit (χ2=19.4(19.9) which, for 33
channels and 2 variables, N � 33� 2 � 31 corresponds to χ2{N � 0.6) occurs in

c � �0.69p�0.61q, a � 0.86p0.83q, (2.4)

while another local probability maximum (χ2= 22.7(20.7), χ2{N � 0.7) occurs for positive c
at

c � 0.69p0.68q, a � 1.02p0.98q. (2.5)
1When data has been provided only in the combination of the 7 TeV and 8 TeV runs, we extract the

information about the 8 TeV run assuming that the PDFs corresponding to the combined data can be written
as the product of uncorrelated PDFs i.e. PDF7�8=PDF7PDF8.
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In fig. 2.1 we show the 68%,95% and 99% C.L. contours for the parameters a and c

from a global fit of data from ATLAS and CMS. C.L. regions are found by finding the
isocontour of P px, yq � const such that

³
dx dy P px, yqπpx, yq � 0.99, 0.95, 0.68, where x, y

are any of the parameters a, ct, cb, cτ shown in the specific plot, πpx, yq is a flat prior and
P px, yq �±i PDFipx, yq (product over all the channels where PDFs are given).
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Figure 2.1: In green, yellow and gray, the 68%,95%,99% C.L. contours for the parameters a and c with
the most recent data (table 4.1). Upper plot: ATLAS with data taken at mh � 126.5 GeV (dashed contours
correspond to data taken at mh � 125GeV). Lower plot:CMS with data taken at mh � 125GeV. A flat prior
a P r0, 3s, c P r�3, 3s is used.

2.3 Composite Higgs Models

As shown above, the best fits occur for modified couplings of the Higgs boson to the SM
fermions and gauge bosons. This is a typical features of Composite Higgs models [71]: for in-
stance, due to the Pseudo Nambu-Goldstone boson (PNGB) nature of the Higgs, the couplings
between h and the W,Z gauge bosons are modified as

a �
a

1� ξ, (2.6)

where ξ � v2{f 2, f being the analogue of the pion decay constant and v � 246 GeV is the
vacuum expectation value (VEV) of the Higgs field. Interestingly, on the one hand ξ ! 1
from constraints coming from electroweak precision data (EWPD); on the other hand ξ is a
measure of fine-tuning in these models2 and is expected to be sizable.

2 The loop-induced potential for the PNGB’s is a function of sin v{f and, without any fine-tuned cancel-
lation, would naturally induce v � f or v � 0.
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2.4 SO(5)/SO(4) and different fermion couplings
While the strong sector alone is SO(5) symmetric, the couplings of elementary fermions to
the strong sector break this symmetry, since the SM fermions do not fill complete SO(5)
multiplets. We can parametrize these couplings as spurions which transform both under the
SM-gauge group and under some representation r of SO(5) (the well known minimal models
MCHM4 [55] and MCHM5 [56] correspond to r � 4 and r � 5, respectively). Depending on
the size of r, the coupling of h to fermions f might deviate from the SM as [57]:

cf � 1� 2m� p1� 2m� nqξ?
1� ξ

, (2.7)

where m,n are positive integers which depend on r. The specific cases with m � n � 0
or m � 0, n � 1 correspond to the MCHM4 (with c � ?

1� ξ) and MCHM5 (with c �
p1 � 2ξq{?1� ξ), where all fermions share the same coupling structure. Models with m � 0
have deviations w.r.t. the SM of order unity (in the direction c ¡ 1), even in the limit ξ Ñ 0
and we shall not consider them any further.

In the specific case with c � ct � cb � cτ , the effects of Eq. (2.6) and Eq. (2.7) can be
well described in the pa, cq plane. We compare this theoretical expectation, for m � 0 and
n � 0, ..., 5, with the best fit from the combined results of ATLAS (at mh � 126.5 GeV) and
CMS (mh � 125 GeV), for the parameters (a, c) in fig. 2.2 (the dashed contours show the
same fit taking the ATLAS data at mh � 125 GeV). We assume that no states, beside the
SM ones, contribute via loop-effects to the hgg and hγγ vertices.
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Figure 2.2: Global fit for the parameters a and c, obtained combining CMS and Tevatron for mh � 125 GeV
and ATLAS for mh � 126.5 (dashed circles use ATLAS at mh � 125 GeV); colors and priors as in fig. 1.
The lines denote predictions of a generic MCHM; different curves correspond to different values of n � 0, ..., 5
in Eq. (2.7) (m � 0), going downwards (n � 0, 1 correspond to the MCHM4 and MCHM5). The red part of
the curves is for 0   ξ   0.25 and the blue dashed for 0.25   ξ   1.



2.5. SOp6q{SOp4q � SOp2q and natural two Higgs doublets models 39

Interestingly, representations leading to large n Á 4 can fit well the data also in the region
with c   0, where the rate h Ñ γγ is enhanced, due to a positive interference between W

and t loops in the hγγ vertex (the fact that it is possible to have order 1 changes in this
coupling, from modification of order Opv2{f 2q ! 1 is due to the large n Á 4 enhancement).
To our knowledge, explicit models of this type do not exist yet in the literature (n � 4 would
appear in models where the spurions connecting SM fields and the strong sector transform as
an irreducible representation r P 5b 5b 5b 5 of SO(5)) and it would be interesting to see if
realistic models can be built.

As a final example, we consider the possibility of coupling top and down-type (b and τ)
fermions in different ways to the strong sector (models of this type have been proposed, for
instance, in refs. [72, 119]). We show examples of this as dots in the ct, |cb| plane in fig. 2.3
with ct �

?
1� ξ and cb � cτ � p1 � 2ξq{?1� ξ (black dot) and with ct � p1 � 2ξq{?1� ξ

and cb � cτ �
?

1� ξ (gray dot). Fig. 2.3 shows slices of constant a: for this reason these
models, which map into a curve in the 3D pa, cb, ctq-space, appear as dots in the figure. The
asymmetric couplings do not improve the fit to the data, which shows a preference for the
region cb � ct.

2.5 SOp6q{SOp4q�SOp2q and natural two Higgs doublets
models

The SOp6q{SOp4q�SOp2q coset delivers at low energy 8 PNGB’s that can be identified with
an effective THDM [119]. Large contributions to the T̂ -parameter can be avoided thanks to
the symmetry C2 : pH1, H2q Ñ pH1,�H2q, which also allows us to differentiate three cases:

i) If C2 is exact, the model is a Type I THDM. The second doublet is heavy and in-
ert [81] and there is no mixing between the CP-even states; this model resembles the
SO(5)/SO(4) models of section 2.4.3

ii) If C2 is spontaneously broken, an effective Type II THDM is realized at low energy, but
only at the price of large fine-tuning (both Higgs VEVs have to be tuned much smaller
than f). The couplings of a Type II THDM are [82]

yTHDMt

yt
� cosα

sin β ,
yTHDMb

yb
� � sinα

cos β , (2.8)

where tan β � v1{v2 is the ratio between VEVs, and α is the mixing angle (the analog
of Eq. (??) but for two doublets); the coupling of the lightest Higgs to the vectors is
reduced, in comparison with the case of only one Higgs doublet, by sinpβ � αq. On top
of mixing, also higher dimension operators reduce the couplings between h and the SM

3A similar h0 phenomenology is realized in the almost inert model of Ref. [119], where the C2 symmetry
is unbroken by the top-quark couplings and is broken only by the smaller Yukawas.
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vectors and fermions f (as in all composite Higgs models) and for small ξ we obtain

a � p1� ξ{2q sinpβ � αq,
ct � p1� ξ{2qcosα

sin β , (2.9)

cb,τ � �p1� ξ{2q sinα
cos β .

We compare this model with the tree-level MSSM4 in fig. 2.3 in the (ct, cb)-plane with
cb � cτ and for different slices of a � 0.8, 0.9 (see ref. [145] for an approach with a

marginalized). The black line shows the prediction for the MSSM varying β (α is fixed
by the slice choice a � 0.8, 0.9); the thin part of the line is unaccessible to the tree-level
MSSM due to the peculiar relation between the quartic couplings in the potential [82].
The composite THDM is drawn in red.

iii) If C2 is explicitly broken, then a small VEV xH2y � 0, leading to tan β � ξ�1, and a
small mixing tanα À ξ is generated [119]. In this case a Type III THDM originates, in
which both H1 and H2 couple to each SM fermion f ,

yf?
2
f̄fpH1 � afH2q � yf?

2
f̄fpcosα � af sinαqh0

1 � � � � , (2.10)

where we have retained only the interactions of the lightest CP-even state h0
1, and where

yf � p1 � ξ{2qySMf , as discussed above. For FCNC to be suppressed, the Yukawas for
H1,2 must be aligned [82]. In fig. 2.3, red dashed line, we show the situation with
at � ab,τ � 1, varying �ξ À α À ξ.

4Notice that if some superpartners (such as staus [85] or other states [87, 144]) are light, the rate hÑ γγ

can be enhanced and the MSSM fit might change considerably; other loop-effects that contribute to the Higgs
quartic, can also change this prediction [145].
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Figure 2.3: C.L. contours (colors as fig. 1) in the (ct,|cb|)-plane for cb � cτ and fixed values of a=0.8, 0.9
(upper and lower plot respectively). The black line corresponds to the couplings of the elementary (composite)
THDM Eq. (2.8), once fixed a=0.8, 0.9; the thick part is accessible to the tree-level MSSM. Red lines are for
the composite THDM Type II (solid) and Type III (red dashed, varying �ξ À α À ξ). Shown are also two
points (black and gray) corresponding to the SO(5)/SO(4) coset, with ct �

?
1� ξ and cb � p1� 2ξq{?1� ξ

and vice versa; the red point is the MCHM5 for comparison. A flat prior ct P r�4, 4s and cb P r0, 4s is used.

As shown in fig. 2.3, the preferred region is along the direction ct � �cb � �cτ or, with
less significance, along ct � cb � cτ . Despite the different possibilities realized in composite
THDMs, none touches the first preferred region, and the models that are preferred by the
data are those closer to the line ct � cτ � cb � c, which are more similar, in terms of h
phenomenology, to the MCHM with SOp5q{SOp4q.

2.6 Higgs impostors?
Independently from the composite Higgs realization, it could be that h can mix with other
states that do not necessarily participate in the breaking of the electroweak symmetry (an
analog example is the two Higgs doublet model just discussed). This raises the question of
whether the state observed at the LHC is or is not the one whose VEV generates mW and
mZ . This can be done by measuring the parameter a independently: while the Higgs field
can have trilinear renormalizable couplings to WW and a � 1, impostors will have to couple
to WW via loops (also the dilaton would couple to matter as m{f and could reproduce the
observed excesses [64, 78]; it is however unlikely that, if f � v, there would have not been
other observable deviations from the SM [79]). Therefore a   1 might imply that the state
we observe is not the Higgs, or that it is a Higgs that mixes with another state.

One possibility to answer this question, is to marginalize over all parameters except a.
Since we don’t know whether some of the Higgs couplings have large deviations from the SM
values, another possibility is to isolate some channels that are mostly sensible to a and are
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sensible to the least number of other parameters. In particular we choose the exclusive VBF
channels pp Ñ hjj Ñ WWjj measured by CMS [181], which scales roughly as � a4{c2

b and
the exclusive associated production ppÑ V hÑ V b̄b measured both at Tevatron [188], CMS
and ATLAS, which scales roughly as � a2. These channels are mostly insensitive to ct and
cτ and allow a study of a with cb as the only other parameter. Fig. 2.4 shows that, unless
cb ! 1, values close to a � 1 are preferred by data (we have checked that the influence of the
other parameters is negligible).
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Figure 2.4: Preferred regions in the plane pa, cbq using only the exclusive channels with associated production
(CMS and Tevatron) and VBF cuts (CMS). Colors as in fig. 1. A flat prior is assumed for a P r0, 3s and
cb P r0, 3s (this choice for the upper limit in cb leads to the most conservative conclusions).

2.7 Conclusions
Using global fits with the most recent data provided by ATLAS, CMS and Tevatron, we have
analyzed the parameter space given by couplings of the Higgs to top and bottom quarks, taus
and vector bosons. We have shown that the hypothesis of a SM Higgs with mh � 125 GeV
agrees well with the data.

We have then studied different models, in particular in the context of composite Higgs,
to see what features could improve/worsen the situation of these scenarios when more data
is available. In particular, we have shown that, depending on the coupling structure of
elementary fermions to the strong sector, the couplings of h to the SM fields can change
considerably w.r.t. the SM case. Some composite models, such as the MCHM4, seem to
point towards the disfavored direction. Other models, however, follow better the trend of
data: the MCHM5, for instance, reduces the couplings of h to fermions, c, more than the
one to vectors, a, and for small ξ crosses the best fit region with c ¡ 0. Models with n Á 4
in Eq. (2.7) have an even better trend, as the best fit region with ct   0 lies within their
parameter space even for f Á 500 GeV. Different couplings of top and bottom quarks to the
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Figure 2.5: Comparison between data analyses based on Bayesian interval (as used throughout this work)
and isocontours of constant χ2 � χ2

min � 2.3, 5.99, 9.21 (the dashed ones).

strong sector, on the other hand do not seems to ameliorate much the fit, although more
drastic possibilities could be considered, that reproduce the preferred region ct � �cb � �cτ ,
shown in fig. 2.3.

We have also studied larger coset structures such as SOp6q{SOp4q�SOp2q which, in some
cases reduce to a composite model with an inert doublet (Type I THDM) and the light Higgs
phenomenology is not much affected, thus resembling to the SO(5)/SO(4) coset. If more fine-
tuning is allowed, a version of a Type II THDM is possible; compared with the MSSM this
has the advantage of having less constrained quartics, which allows the model to have both
cb ¡ 1 and cb   1, thus covering a larger region of parameter space [145]. Despite this, present
data show a mild preference for the composite THDM only for sizable deviations from a � 1
(upper plot of fig. 2.3). If FCNC can be kept under control, a version of Type III THDM is
also possible. In this case the couplings of the second Higgs doublet to fermions enter as new
parameters in the theory; despite this freedom, the greatest overlap with the best fit regions
occur along ct � cb,τ which is the region also touched by the minimal model. In summary, the
composite THDM provides its best fit to the data when the parameter space is such that its
phenomenology resembles much that of the minimal composite Higgs model SOp5q{SOp4q.

Finally, we studied if the found Higgs particle is responsible for giving mass to the W
boson. We find that with the data at hand, for values of cb Á 1, the region where the Higgs
is fully responsible for the W mass is favoured, making it consistent with the SM prediction.

Note: While this work was in preparation, refs. [80, 88, 89] appeared, also discussing
deviations of Higgs couplings from its SM values.

2.8 Appendix
Bayesian interval versus χ2 analyses
In fig. 2.5 we compare the effects of using analyses based on χ2 (where the point χ2

min is
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first found and then the 68%,95%,99%C.L. intervals are found as isocontours with, in the
case two fitting parameters, χ2 � χ2

min � 2.3, 5.99, 9.21), versus analyses that use Bayesian
intervals [90] (as done throughout this work). If µ is just a parameter and not a function
depending on a, ct, cb, cτ , the methods do not differ; however, when µ � µpa, ct, cb, cτ q is a
function of the parameters a, ct,b,τ as in Eq. (4.52), then the probability density function is
no longer Gaussian in a, ct,b,τ and the two methods differ. As shown in fig. 2.5, however, the
small differences do not alter the qualitative conclusions.
Cut efficiencies ζ ip
The production cross-section for channel i receives contributions from gluon fusion (G), vec-
tor boson fusion (VBF) associated production with a vector boson (A) and associated tt̄

production (tth), °
p σpζ

i
p°

p σ
SM
p ζ ip

� c2
t pσGζiG�σtthζitthq�a2pσV BF ζiV BF�σAζiAq

σGζ
i
G�σV BF ζiV BF�σAζiA�σtthζitth

,

where the cut efficiencies ζ ip for each production mode p corresponding to channel i from ta-
ble 4.1 are as follows: when only G, VBF or A is indicated, we have assumed no contamination
from other production channels; inclusive channels correspond to ζ iG � ζ iV BF � ζ iA � ζ itth � 1;
other channels, denoted γγX in table 4.1, are reported below, where the numbers in brackets
denote efficiencies at 8 TeV, the others at 7 TeV [179],

i ζ iG ζ iV BF ζ iA ζ itth

γγ0 0.28(0.45) 1(1) 1.52(1.91) 2.33(4)
γγ1 1.16(1.2) 1(1) 1.36(1.4) 0(0)
γγ2 1.82(1.84) 1(1) 1.36(1.4) 0(0)
γγ3 1.82(1.84) 1(1) 1.36(1.4) 0(0)
γγjj 0.029 1 0.01 0

γγjj (T) (0.024) (1) (0) (0)
γγjj(L) (0.094) (1) (0.063) (0)

and the overall normalization in each line factorizes.
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Table 2.1: CMS, ATLAS and Tevatron data for the most sensitive channels. The cuts are
classified as inclusive (I), associated production (A), vector boson fusion (VBF) or else (γγX),
see Appendix. µ̂1.96,7,8 denote the best fits for the 1.96 TeV Tevatron, and the 7,8,7+8 TeV
LHC data.

CMS Cuts µ̂7 µ̂8 µ̂7�8

γγ0 [179] γγX 3.1�1.9
�1.8 1.5�1.3

�1.3 -

γγ1 [179] γγX 0.6�1.0
�0.9 1.5�1.1

�1.1 -

γγ2 [179] γγX 0.7�1.2
�1.2 1.0�1.2

�1.2 -

γγ3 [179] γγX 1.5�1.6
�1.6 3.8�1.8

�1.8 -

γγjj [179] γγX 4.2�2
�2

L : �0.6�2.0
�2.0

T : 1.3�1.6
�1.6

-

ττ [53, 181] I 0.6�1.1
�1.3 - �0.2�0.7

�0.7

bb [53, 181] A 1.2�2.1
�1.9 - 0.1�0.8

�0.7

WW0j [53] G 0.1�0.6
�0.6 1.3�0.8

�0.6 -
WW1j [53] G 1.7�1.2

�1.0 0.0�0.8
�0.8 -

WW2j [53] VBF 0.0�1.3
�1.3 1.3�1.7

�1.3 -
ZZ [53, 181] I 0.6�1.0

�0.6 - 0.7�0.5
�0.4

ATLAS
125 GeV

Cuts µ̂7 µ̂8 µ̂7�8

γγ [138,182] I 1.6�0.8
�0.7 0.9�0.5

�0.7 -
ττ [138] I 0.2�1.7

�1.8 - -
bb [138] A 0.5�2.1

�2.0 - -
WW [138] I 0.6�0.7

�0.7 - -
ZZ [54, 138] I 1.4�1.3

�0.8 - 1.3�0.6
�0.6

CDF/D0 Cuts µ̂1.96 - -
γγ [188] I 3.6�3.0

�2.5 - -
bb [188] A 2.0�0.7

�0.6 - -
WW [188] I 0.3�1.2

�0.3 - -

ATLAS
126.5 GeV

Cuts µ̂7 µ̂8 µ̂7�8

γγ [138,182] I 2.0�0.8
�0.7 1.7�0.7

�0.6 -
ττ [138] I 0.3�1.7

�1.8 - -
bb [138] A 0.5�2.2

�2.2 - -
WW [138] I 0.5�0.6

�0.6 - -
ZZ [54, 138] I 1.1�1.0

�0.7 - 1.0�0.6
�0.5
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Chapter 3

Higgs Couplings in Composite Models

3.1 Introduction
Models in which the Higgs boson arises as a composite resonance from a strongly coupled
sector can provide a natural explanation of the small value of the electroweak (EW) scale.
If in addition the Higgs is a pseudo-Nambu-Goldstone Boson (pNGB) associated to a spon-
taneously broken global symmetry, then the small value observed for its mass, compared to
the mass of the other yet unobserved resonances, can be naturally explained. The minimal
realization of this idea, known as Minimal Composite Higgs Model (MCHM), is based on the
coset structure SOp5q{SOp4q [91, 92].

The most promising signatures of these models are provided by the fermionic resonances,
which are tightly connected to the EW scale because they are responsible for cutting off
divergent contributions to the Higgs potential [93–98]. The bounds on heavy vector-like
quarks from LHC direct searches are approaching the TeV [99, 100]. These resonances are
also expected to modify the couplings of the Higgs to Standard Model (SM) particles and
in particular the loop-induced couplings to gluons and photons. Information extracted from
experimental analyses of Higgs couplings [101, 102] can usefully complement the one coming
from direct searches in constraining the natural parameter space of these models [103, 104].
Generically, the pNGB nature of the Higgs implies that the resonance contributions to the
loop induced couplings, related to operators of the form H:HFµνF µν that explicitly break
the shift symmetry, are suppressed by powers of gSM{gρ, where gρ is a characteristic strong
coupling [105, 106]. The question then is whether or not this suppression disappears in the
limit in which some of the resonances Ψ are lighter than the others, gΨ ! gρ. Surprisingly, this
is not the case for a broad class of composite Higgs models, where light fermionic resonances
do not contribute to the hgg and hγγ couplings as the consequence of an exact cancellation
between corrections to the htt̄ coupling and loops of resonances [107–109]. In a two-site
realization of the MCHM, this cancellation was shown to hold when only one Left-Right (LR)
SOp4q invariant is present [109]. In this paper we show that in the MCHM the cancellation,
and therefore the insensitivity to light resonances, follows automatically from the pNGB
nature of the Higgs and the assumption of partial compositeness, while it is independent of the
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number of LR SOp4q invariants and of the particular realization of the elementary-composite
couplings. Moreover, we find that under the further assumption of CP conservation, derivative
interactions of the Higgs to the resonances do not contribute to the hgg and hγγ couplings.
We show that the htt̄ and hgg couplings are both fixed uniquely by the top mass, and coincide
for small elementary/composite mixings. We also discuss how, in models where more than
one LR SOp4q invariant is present, these couplings are sensitive to the details of the UV
physics [109], even in the case where all resonances are heavy and possibly out of the direct
reach of the LHC.

This chapter is organized as follows. In Section 3.2 we present the general approach to
the Higgs couplings in composite models based on the Callan-Coleman-Wess-Zumino (CCWZ)
construction [5,6]. In Section 3.3 we describe an explicit realization based on a two-site version
of the MCHM14 [96–98] where the general features discussed in Section 3.2 are exemplified. We
also comment on an alternative approach based on the Weinberg Sum Rules (WSR) [95,96].
Finally, in 3.4 we draw our conclusions. Appendices 3.5 and 3.6 contain a summary of our
notations and details on our fit to Higgs data, respectively.

3.2 General Composite Higgs Models
The scalar sector of minimal pNGB Higgs models, based on the SOp5q{SOp4q coset structure1,
is described by the Goldstone matrix

UpΠq � exp
�
i

?
2ΠiT i

f



. (3.1)

where T i are the broken generators, Πi the Goldstone bosons and f the corresponding decay
constant (see Sec. 3.5 for the notation).

We assume that the SM fermions obtain their masses through partial compositeness [110],
by mixing with operators of the strong sector O I,...,J , with capital letters I, J denoting SOp5q
indices. This mixing is conveniently described by formally promoting the elementary fermions
to full representations of the SOp5q group, the embeddings. The embeddings for the SUp2qL
doublet qL and for the singlet qR are denoted by QI,��� ,JL , QI,��� ,JR , respectively. Then the
Lagrangian for partial compositeness takes the form

QI���JL,ROI���J . (3.2)

At low energy, in the broken phase, this implies mixing terms between elementary fermions
and resonances of the strong sector Ψr, which, up to small splittings proportional to the EW
symmetry breaking vev, can be taken as full multiplets r of the unbroken SOp4q. A convenient
way to write these low-energy interactions, while keeping track of the underlying SOp5q
symmetry, exploits the transformation properties of the Goldstone matrix U Ñ g U ĥpg,Πq�1

1An extra unbroken Up1qX is always understood in the coset structure, in order to reproduce the correct
hypercharge of the SM fermions. Our normalization is such that Y � T 3

R �X.
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with g P SOp5q, ĥ P SOp4q [5, 6]. In fact, the Goldstone matrix U can be used to ‘convert’
irreducible representations of SOp5q into reducible representations of SOp4q. Then one can
write interactions between the embeddings, transforming under SOp5q, and the resonances in
representations of SOp4q:

Lmix �
�
FL
r Q

I���J
L UIi...UJjΨi���j

r � � � �
�FL

1 Q
I���J
L UI5...UJ5Ψ1 � h.c

	
� pLÑ Rq ,

(3.3)

where the dots stand for couplings with resonances in other SOp4q representations. The
simplest example of Eq. (3.3) is the MCHM5 [92]: in this case Eq. (3.2) implies the existence
of resonances in a 5 � 4 ` 1 of SOp4q , and Eq. (3.3) reads FL

4 Q
I

LUIiΨi
4 � FL

1 Q
I

LUI5Ψ1 �
h.c.� pLÑ Rq.

We further assume that some of the fermionic resonances are lighter than the typical
scale of the other resonances. This assumption is motivated by the tension between the
necessary scale of bosonic resonances which, to account for the smallness of the S parameter,
are expected to be in the multi-TeV range, and the need for light fermionic resonances as
necessary to reproduce the smallness of the observed Higgs mass [93–98]. In this limit we
can keep some of the resonances in our effective description, while decoupling the heavy ones.
The Lagrangian describing this setup contains, in addition to Eq. (3.3), a part describing
the strong sector alone, which can be written, again, with the SOp5q symmetry non-linearly
realized [5, 6],

Lstrong � pkin. term for Ψrq �MrΨrΨr � � � �
�icL Ψ i���jk

rL γµdkµΨi���j
r1L � � � � � h.c.� pLÑ Rq,

(3.4)

where at leading order in the chiral expansion and in the unitary gauge d kµ � p?2{fqδµh δk4

(see Appendix 3.5 for details) and the dots stand for different representations. We have
denoted by r and r1 two representations that differ by one SOp4q index, in order to allow for
the first term in parentheses. In the example of the MCHM5, the second line of Eq. (3.4)
reads icL Ψ k

4Lγ
µdkµΨ1L � h.c.� pLÑ Rq.

Notice that a number nr ¡ 1 of copies of each SOp4q multiplet could be present in the
low-energy theory. In this case, mass mixing terms between the Ψpiq

r , (i � 1, . . . , nr) are
allowed by the global symmetry. However, these mass mixings can always be eliminated with
a suitable field redefinition, so the masses in the strong sector can be taken diagonal without
loss of generality. In Eq. (3.4) we have neglected higher derivative interactions: beside being
suppressed by the strong sector scale, these interactions do not affect the couplings of a single
Higgs with a pair of gauge bosons.

The terms in the second line of Eq. (3.4) couple h with two resonances and can potentially
give sizeable corrections to the hgg coupling. However, as we now show, if a further assumption
is made on the theory, namely CP conservation, then the contribution to the hgg coupling of
these operators exactly vanishes. Indeed, if the coefficient cL is real then the Higgs derivative
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interactions contained in Eq. (3.4) can be written as

i
?

2cL
Bµh
f

�
Ψ i...j4
rL γµΨi...j

r1L �Ψ i...j

r1L γ
µΨ i...j4

rL

	
. (3.5)

The interactions in Eq. (3.5) are manifestly antisymmetric2 in the fermion fields (notice
that because dµ transforms as a 4 of SOp4q, Eq. (3.4) does not generate Higgs derivative
interactions that are bilinear in the same fermion field). Equation (3.5) is written in the
gauge eigenstate basis for fermions. Now, if the parameters that appear in the fermion
mass matrix, namely the masses Mr and the linear mixings FL,R

r , are also real, then the
unitary transformations that diagonalize the mass Lagrangian are orthogonal, and the Higgs
derivative couplings are antisymmetric in the mass eigenstate basis as well. Because the gluon
only has diagonal couplings, however, vertices involving the Higgs and two distinct fermions
do not contribute to the triangle one-loop diagrams for hgg. Thus we conclude that under the
hypothesis that the Lagrangian preserves a CP symmetry, the operators in Eq. (3.4) do not
contribute to single Higgs production.3 Alternatively, if CP is not preserved a contribution
to the hgg coupling generically arises, proportional to GA

µν
rGµν A . A completely analogous

argument holds for the hγγ coupling.

As an example, let us consider the top sector of the MCHM5. Assuming that all the
parameters in Eq. (3.4) are real but allowing for complex linear mixings in Eq. (3.3), the Higgs
derivative interactions that contribute to the hgg coupling, obtained transforming Eq. (3.5)
into the mass eigenstate basis, read

cL
δµh

f

4̧

a� 1
kaL ψ

a

Lγ
µψaL , (3.6)

where ψa are the mass eigenstate fermions (that is, the physical top quark and its partners)
and the leading contributions to the coefficients kaL scale as

ImpFL,R �
4 FL,R

1 q
M1M4

a
ξ . (3.7)

For simplicity, since in this paper we focus on the top sector, from here on we assume that all
the parameters in the Lagrangian can be made real by redefining the fermion fields. Under
this assumption, therefore, we conclude that the terms in Eq. (3.4) have no impact on the
couplings between the Higgs and massless gauge bosons. Of course, when all the SM fermions
are included, a source of CP violation must be present to reproduce the Cabibbo-Kobayashi-
Maskawa phase. In this case the strong constraints on CP -odd observables from flavor physics
[112–115] should be taken into account.

2In the argument that follows we neglect, without loss of generality, the phases that appear in the definitions
of the composite multiplets (see for example Eq. (3.51)).

3The situation is different in the double Higgs production process, gg Ñ hh , because couplings of the
Higgs to two distinct fermions can enter in box diagrams [111].
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From the above discussion we conclude that the hgg coupling is determined by Higgs
interactions at zero momentum. In this limit, the coupling of the Higgs to gluons mediated
by loops of a particle with mass M " mh can be derived from the contribution of the
heavy particle to the QCD β function, by means of the Higgs low-energy theorem [116,117].
Therefore, neglecting the contribution of the light SM fermions we simply have (for each SM
particle x we define cx � ghxx{gSM

hxx)

cg�v2
� B
Bh log detM:

tMtphq �
¸
i

B
Bh logM2

f,iphq
�
xhy
, (3.8)

whereMtphq is the mass matrix in the top sector, and we have also included the contribution
from the partners of the light SM fermions, with squared masses M2

f,iphq. Fermions with
‘exotic’ electric charges (such as for example Qel � 5{3 or 8{3, which are present in composite
Higgs models) do not contribute to the hgg coupling, because since they do not mix with
the elementary fermions, they do not feel any explicit breaking of the SOp5q symmetry; as
a consequence, loops involving only the exotic states cannot generate any effects that break
the shift symmetry, including a hGA

µνG
µν A coupling.

Let us focus on the contribution arising from the top sector.4 Assuming the presence of
n top partners in the theory, the mass Lagrangian in the top sector can be written in full
generality as

�
�
t̄L CL

	
Mtphq

����
tR

CR

���
� h.c. (3.9)

with

Mtphq �

��� 0 FT
Lphq

FRphq Mc

��
 , (3.10)

where C is a n-dimensional vector collecting all the top partners, and FL,Rphq are n-dimensional
vectors containing the elementary-composite mixing terms. Since, by assumption, the only
breaking of the global symmetry under which the Higgs shifts is contained in the mixings
with elementary states, the strong sector alone can only generate derivative interactions of
h and the n � n mass matrix in the composite sector Mc is independent of the Higgs field.
Thus the structure in Eq. (3.9) follows from the assumption of partial compositeness. From
the properties of block matrices we find

detMtphq � m0
t phq � det Mc , (3.11)

4The partners of a light SM fermion f give a contribution to cg � 1 that scales like � ε2f L,R ξ , where
εf L,R measure the degree of compositeness of fL,R, and is thus competitive with the � ξ contribution of the
top sector only in the limit of full compositeness for one of the chiralities of f [109, 118]. Therefore, for a
generic point in parameter space, the contribution of the partners of the light SM fermions is expected to be
subleading. See for example Eq. (3.35) in the following.
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which implies that the contribution to the hgg coupling from the top sector is

cptqg � v

� B
Bh logm0

t phq
�
xhy
. (3.12)

Here m0
t phq � �FT

LphqM�1
c FRphq is the top mass at quadratic order in the mixings FL,R

r ,
which can be readily obtained from Eq. (3.9) by integrating out the composite states:

Leff � �m0
t phqt̄LtR � h.c.� iZtLphqt̄L {BtL � iZtRphqt̄R {BtR , (3.13)

where we have also included the renormalizations to the wavefunctions of tL,R . From Eq. (3.13)
we derive the coupling of the Higgs to the top

ct � v

� B
Bh logmtphq

�
xhy
, mtphq � m0

t phqa
ZtLphqZtRphq

. (3.14)

In the limit where the breaking of the global symmetry is small, ε2L,R � pFL,R
r {MΨq2 ! 1

(where MΨ generically denotes the composite masses), one finds ZtL,Rphq � 1� ε2L,RfL,Rphq ,
where fL,Rphq are periodic functions of h , and we neglected terms of higher order in ε2L,R .
Thus the top contribution to the hgg amplitude, Eq. (3.12), is tightly correlated with the
htt̄ coupling in Eq. (3.14), and the two can differ sizably only if εL,R � 1 , that is if one
of the chiralities of the top is mostly composite. Furthermore and importantly, while the
htt̄ coupling receives corrections at all orders in ε2L,R , from Eq. (3.12) we read that the hgg
coupling is formally of zeroth-order in this expansion. This implies that the terms of higher
order in ε2L,R in the top loop contribution to the hgg amplitude are exactly canceled by those
coming from loops of resonances. This cancellation was found to take place in several models
where the Higgs is a pseudo-Goldstone boson [107–109], and implies that the presence of light
fermionic resonances would not affect the production rate of the Higgs via gluon fusion, nor
its decay width into photons. Our analysis shows that, in the context of pNGB Higgs models,
this result follows automatically from the assumption of partial compositeness, and is not
dependent on the choice of the embedding for the elementary fermions nor on the specific
realization of the model. Indeed, our analysis was performed by applying the general CCWZ
approach.

Let us now inspect more closely the structure of the hgg coupling. According to Eq. (3.12),
its expression is determined by the LR SOp4q invariants that can be built out of the embed-
dings QL,R and that contribute to the top mass m0

t . The latter has the form

m0
t phq �

Ņ

n�1

�¸
r

cpnqr yr

�
� I

pnq
LR

�
h

f



, (3.15)

where IpnqLR indicates the N ¥ 1 SOp4q invariants. The coefficient of each invariant is given by
a linear combination of the quantities

yr �
nŗ

i�1

FL
rpiqF

R
rpiq

Mrpiq
, (3.16)



3.2. General Composite Higgs Models 53

with coefficients cpnqr . This was expected, since yr is simply the leading contribution of the
r-plets to the top Yukawa coupling. From Eq. (3.15) we readily obtain

cptqg � 1�∆ptq
g pyr{yr1q ξ �Opξ2q , (3.17)

where ∆ptq
g is a function with values of Op1q and yr{yr1 schematically denotes all the different

ratios of yr that can be built in the chosen model. While this is indeed the most general
form of the hgg coupling, its expression further simplifies if only one LR invariant can be
built out of the embeddings QL,R, i.e. if N � 1 in Eq. (3.15). In this case, when taking
B logm0

t {Bh in Eq. (3.12), the dependence on the yr drops and the hgg coupling turns out to
be a simple ‘trigonometric’ rescaling of the SM expression. In other words, if N � 1 then
∆ptq
g � constant in Eq. (3.17). This was already noticed in Ref. [109], where a two-site setup

was considered. For example, in the popular MCHM5 and MCHM10 [92] there is only one
LR invariant: 5

5L,R : UIipQ̂:
tLqIpQ̂tRqJUJi �

1
2
?

2
s2h ,

10L,R : UIipQ̂:
tLqIJpQ̂tRqJKUKi � �1

8 s2h (3.18)

where snh � sinpnh{fq and we defined QL � tLQ̂tL � bLQ̂bL and QR � tRQ̂tR . In both cases
I
p1q
LR � s2h, leading to

5L,R , 10L,R : cptqg � 1� 2ξ?
1� ξ

ñ ∆ptq
g � 3

2 . (3.19)

On the other hand, two independent LR invariants are present for example in MCHM14 :

UI5pQ̂:
tLqIJUJ5UK5pQ̂tRqKLUL5 � 1

16
?

5p� 6 s2h � 5 s4hq,
UIipQ̂:

tLqIJUJjUKipQ̂tRqKLULj � 1
16
?

5p 6 s2h � 5 s4hq .
(3.20)

It follows that the dependence on the yr does not drop out of the hgg coupling, which takes
the general form in Eq. (3.17). By explicit computation we find

14L,R : ∆ptq
g � 11

2

�1� 64
55
y1
y4
� 6

11
y9
y4

1� 8
5
y1
y4



. (3.21)

Contrarily to the models with only one invariant, where a single universal function of ξ appears
(see for example Eq. (3.19)), when N ¡ 1 a continuum of possible couplings to photons and
gluons is allowed by the symmetry structure. Furthermore, while the ‘trigonometric’ rescaling
of models with a single invariant always suppresses the Higgs production rate, in models with

5Naively, in each of the products 5L�5R and 10L�10R two SOp4q invariants appear. However, whenever
qL and tR are embedded in the same SOp5q representation r, one invariant does not depend on the Higgs
and can be written as QLQR, which vanishes when the embeddings are set to their physical values. Thus the
number of invariants is lowered by one unit [119].
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QL zQR 1 5 10 14

5 1{2 3{2 1{2 5
2

1� 24
25
y1
y4

1� 4
5
y1
y4

10
�

1{2 3{2 3{2

14 3{2 9
2

1� 10
9
y1
y4

1� 2y1
y4

3{2 11
2

1� 64
55
y1
y4
� 6

11
y9
y4

1� 8
5
y1
y4

Table 3.1: Summary table showing the value of ∆ptq
g , defined by Eq. (3.17), for different

choices of the embeddings of elementary fermions. The yr were defined in Eq. (3.16). The
points at which ∆ptq

g formally diverges (for example, y4 � 8y1{5 for 14L� 14R) correspond to
the nonviable situation where m0

t9s3
hch and thus ct Ñ 3 for ξ Ñ 0 , i.e. the SM top Yukawa

is not recovered in the limit ξ Ñ 0 . In the case QL � 10, QR � 1, there is no invariant that
can generate the top mass.

more than one invariant ∆ptq
g can take both signs depending on the values of the ratios yr{yr1 ,

thus an enhancement of the rate is in principle also possible. However, notice that from
Eq. (3.21), taking the limit where one 1 p4q is much lighter than all the other resonances,6 we
find ∆ptq

g � 4 p∆ptq
g � 11{2q : in both cases the rate is actually strongly suppressed, suggesting

that in most of the parameter space of the MCHM14 we should expect cptqg   1 .7 This will
be confirmed by the detailed analysis contained in Section 3.3. In Table 3.1 we report the
values of ∆ptq

g for the lowest-dimensional embeddings compatible with the custodial symmetry
that protects the Z-b-b̄ coupling [120]. Notice that the results in the column corresponding
to QR � 1 hold even if the tR is assumed to be a fully composite chiral state, rather than
an elementary field mixed with a strong sector operator. In fact, if tR is fully composite
the structure of the mass matrix differs from that in Eq. (3.10), but Eq. (3.12) still holds.
Therefore, independently of whether tR is a partially or fully composite singlet of SOp5q, the
hgg coupling is determined by the SOp4q invariants that can be built out of QL and the
Goldstone matrix, and are linear in the former.

As first pointed out in Ref. [109], in models which feature more than one LR invariant,
such as MCHM14, the Higgs production rate is sensitive to the resonance spectrum, implying
that the analysis of Higgs couplings can usefully complement the information coming from
direct searches for heavy fermions. We note that because of the dependence on the ratios
yr{yr1 , the Higgs coupling to gluons is insensitive to the absolute scale of the resonances.
Therefore one can envisage a finely-tuned scenario where all the top partners are relatively
heavy and thus out of the direct reach of the LHC [97], but the imprint they leave on Higgs

6When one 9 is much lighter than the other resonances one finds m0
t phq9s3

hch and therefore cptqg � 3�5ξ{2 .
Similarly, the htt̄ coupling is equal to 3 times its SM value in the limit ξ Ñ 0 . Thus we do not regard this
possibility as viable.

7We expect the typical value of ∆ptq
g to increase with the dimension of the SOp5q representation. Therefore,

for large enough representations negative values of cptqg might be possible.
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rates still carries some information about UV physics. In this ‘split’ version of the composite
Higgs setup, the Higgs couplings would be the primary source of information about the strong
sector.

It is important to observe that when the light generations are included in the theory, the
presence of multiple SOp4q invariants in the LR sector gives rise to Higgs-mediated FCNC at
tree level [119, 121]. These flavor-changing Higgs couplings are suppressed only by ξ , which
is generically not enough to comply with bounds from flavor physics, such as Kaon mixing.
This issue is relaxed if the underlying flavour structure realizes Minimal Flavor Violation
(MFV) [113]. This would imply in particular a sizable degree of compositeness for one of the
chiralities (either left or right) of all SM fermions, making the contribution of the partners of
light quarks to the hgg and hγγ couplings potentially sizable [118].

3.3 An explicit construction: MCHM14

In this section we describe in detail one explicit model where the Higgs couplings to gluons
and photons can take a continuum of values depending on the spectrum of resonances, as
in Eq. (3.17). As we discussed, this happens when the top mass arises from at least two
independent SOp4q invariants. Here we focus on the realization of the MCHM where both qL
and tR are embedded into a 14 with X charge equal to 2{3:

QL � 1
2

���������

ibL

bL

itL

�tL
ibL bL itL �tL

��������

,

QR � 1
2
?

5
tR diag p�1,�1,�1,�1, 4q .

(3.22)

We recall that 14 � 9 ` 4 ` 1 under SOp4q. Including for simplicity only one copy of each
composite multiplet Ψ9,4,1 , the Lagrangian for the top sector can be written in the form

Lt � iqL {DqL � itR {DtR � iΨ1 {DΨ1

� iΨ4p {D � i{eqΨ4 � iTrrΨ9p {DΨ9 � ir{e,Ψ9sqs
�M1 Ψ1Ψ1 �M4 Ψ4Ψ4 �M9TrrΨ9Ψ9s
�
�
FL

9 TrrpUT QLUqΨ9Rs � FR
9 TrrΨ9LpUTQRUqs

�
?

2FL
4 pUTQLUq5ipΨ4Rqi �

?
2FR

4 pΨ4LqipUTQRUqi5
�
?

5
2 FL

1 pUT QLUq55 Ψ1R �
?

5
2 FR

1 Ψ1L pUTQRUq55

� h.c.
	
, (3.23)
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where DµΨr � pBµ� ig1XBµ� igsGµqΨr . Notice that we adopted here a different normaliza-
tion of the mixing terms with respect to Eq. (3.3). In Eq. (3.23) we have neglected derivative
interactions:8 these do not contribute to the potential nor affect the Higgs couplings (as dis-
cussed in the previous section), as long as all the parameters of the Lagrangian are real. In
what follows we take the composite masses M1,4,9 and linear mixings FL,R

r real.
Integrating out the heavy fermions in the Lagrangian (3.23), one obtains

Lteff � bL {pΠbLppqbL � tL {pΠtLppqtL � tR {pΠtRppqtR
�tLtR ΠtLtRppq � h.c. ,

(3.24)

where the momentum-dependent form factors are

ΠbL � ΠbL
0 � 1

2c
2
hΠ

bL
2 ,

ΠtL � ΠtL
0 � 1

4p1� c2
hqΠtL

2 � s2
hc

2
hΠ

tL
4 ,

ΠtR � ΠtR
0 �

�
4
5 �

3
4s

2
h



ΠtR

2 � 1
20
�
4� 5s2

h

�2 ΠtR
4 ,

ΠtLtR � 3
4
?

5
M1shch � 1

2
?

5
M2shch

�
4� 5s2

h

�
,

(3.25)

with sh � sin h{f , ch � cosh{f and

ΠbL,tL,tR
0 � 1� |FL,R

9 |2
p2 �M2

9
,

ΠbL,tL,tR
2 � 2 |F

L,R
4 |2

p2 �M2
4
� 2 |F

L,R
9 |2

p2 �M2
9
,

ΠtL,R
4 � 5

4
|FL,R

1 |2
p2 �M2

1
� 2 |F

L,R
4 |2

p2 �M2
4
� 3

4
|FL,R

9 |2
p2 �M2

9
,

M1 � 2
�
FL�

4 FR
4 M4

p2 �M2
4
� FL�

9 FR
9 M9

p2 �M2
9



,

M2 �
�

5FL�
1 FR

1 M1

4pp2 �M2
1 q
� 2FL�

4 FR
4 M4

p2 �M2
4

� 3FL�
9 FR

9 M9

4pp2 �M2
9 q


.

(3.26)

Integrating the path integral corresponding to the effective Lagrangian (3.24) over the
fermionic degrees of freedom, we can write the effective Coleman-Weinberg potential as

Vf phq � �2Nc

»
d4p

p2πq4
�

log ΠbL � log
�
p2ΠtLΠtR � |ΠtLtR |2

	�
, (3.27)

where p is the Euclidean momentum and Nc � 3 is the number of colors.
8Derivative interactions can have a strong impact on the collider phenomenology of top partners [122,123]

as well as on EWPT [124].
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It is often convenient to expand the Higgs potential Vf phq in powers of ε � F {MΨ , where
F is a generic dimensionful linear mixing and MΨ is some linear combination of the masses of
the resonances. This expansion, however, breaks down for large compositeness, ε � 1 , which
might be relevant for the top quark. Thus a more robust choice is to expand the potential
in powers of s2

h. Upon EWSB one has s2
xhy � ξ and since ξ ! 1 is required by EWPT, the

expansion remains reliable even for ε � 1. This expansion leads to

Vf phq � as2
h � bs4

h . (3.28)

From the potential of Eq. (3.28) we extract the values of the Higgs mass and vev

v2

f 2 � � a

2b , m2
h �

�B2V

Bh2



xhy

� 8b
f 2 ξp1� ξq . (3.29)

It is important to note that the Higgs potential is quadratically divergent, unless the form-
factors in Eq. (3.3) fall off sufficiently fast at large Euclidean momenta. In what follows we
propose two simple constructions where this is the case and the degree of divergence of the
potential is reduced.

3.3.1 Two-Site Model
One possibility to increase the calculability of the potential is to consider a two-site construc-
tion [125] (see also Ref. [126]). There, an unbroken SOp5q global symmetry forces the relations
FL

1 � FL
9 � �FL

4 � FL and FR
1 � FR

9 � �FR
4 � �FR , and the quadratic divergences cancel.

In this limit, the elementary/composite mixing terms in Eq. (3.23) can be written as

� FLTrrQLUTΨRU s � FRTrrΨLUQRUT s � h.c., (3.30)

where Ψ is a complete 142{3 of composite fermions, see Eq. (3.50). In the two-site construction,
both a and b are logarithmically divergent. We recall that we are expanding the potential in
powers of s2

h.9 One more layer of resonances, corresponding to a three-site model, would be
necessary to make the potential finite and therefore fully calculable. Instead, for illustrative
purposes we regulate the potential by a cut-off Λ . This simple procedure allows us to estimate
the value of the parameters in the potential and make qualitative predictions on the Higgs
couplings and the corresponding spectrum of the resonances. The cut-off can be seen as
roughly representing the mass scale of the third site (i.e. of the second layer of resonances),
but it is important to keep in mind that in our approach the logarithmic divergence also
encodes finite terms, which can only be computed in a complete setup. For example, in a
5-dimensional realization of the model we can expect Λ � M

p2q
KK � 2M p1q

KK , where the KK
modes are numbered with 1, 2, . . .. Since M p1q

KK is constrained from the S parameter to be
heavier than 2

3 TeV (the precise bound depending on the value of the T parameter), we expect
the cut-off scale Λ to lie roughly between 5 and 10 TeV.

9Notice that within this expansion one contribution to b in Eq. (3.28) is infrared divergent. We regulate
this divergence with the top mass.
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In order to perform a numerical study of the Higgs potential we fix f � 800 GeV,
mt pµ � 1 TeVq � 152 GeV and v � 246 GeV and scan over the region of parameters10

M1, M4 P r�8, 8s TeV ,

M9 P r0, 8s TeV ,

Λ P rmaxp|M1|, |M4|,M9q, 10s TeV ,

FL P r0.1, 6sf .

(3.31)

Notice that we do not scan over FR, which is determined by the requirement that mt takes
its experimental value. We require

ξ P r0.95, 1.05s v2{f 2 ,

mh   160 GeV ,

Λ ¡ maxpMT̃ ,MQ,Mψq ,
minpMT̃ ,MX ,Mψq ¡ 500 GeV .

(3.32)

The broad range of mh that we consider is motivated by the need of a sufficient statistics,
but we expect that restricting the scan close to the measured value mh � 125 GeV would not
qualitatively change our results. The masses that appear in Eq. (3.32) are given by

MT̃ �
a
M2

1 � F 2
R , Mψ � |M9| ,

MX � |M4| , MQ �
a
M2

4 � F 2
L . (3.33)

Neglecting EWSB effects, MT̃ is the physical mass of the 1, whereas Mψ is the mass of the
degenerate 9 , which contains ψ , an SUp2qL triplet with Y � 5{3 whose top component ψ8{3
has electric charge 8{3 (see Table 3.2). On the other hand, the 4 is split into two SUp2qL
doublets: X with Y � 7{6 and mass MX , containing in particular X5{3 , a state with electric
charge equal to 5{3 , and Q with Y � 1{6, which mixes with the elementary qL and thus has
mass MQ . As a preliminary estimate of the bounds from direct searches for vector-like quarks
at the LHC, in our scan we require that all resonances are heavier than 500 GeV, see the last
line of Eq. (3.32). The actual LHC constraints obtained from 8 TeV data are however stronger:
the mass of the X doublet is bounded to MX ¡ 770 GeV by a dedicated CMS search for the
X5{3 [99], whereas a CMS search for the singlet T̃ gives the bound MT̃ Á 700 GeV [100]. The
constraint on the ψ8{3 and thus on the 9 is even stronger, Mψ ¡ 1 TeV [98,123].

The spectrum of fermionic resonances as obtained from the scan is shown in Fig. 3.1,
together with the most up-to-date LHC constraints. The figure shows the values of pMX ,Mψq
for the points that satisfy all the requirements in Eq. (3.32), with a color code dependent on
the mass of the singlet. The preferred spectrum is MX �Mψ  MT̃ , corresponding to the red
points. Notice that in most of the viable parameter space the splitting between MX and Mψ

10Notice that we assume M9 ¡ 0. Provided M1,M4 can have both signs, the sign of M9 can always be fixed
without loss of generality.
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Figure 3.1: Left panel: distribution of the physical masses (neglecting EWSB corrections) of
the X doublet and of the degenerate 9. The current bounds from LHC direct searches are also
displayed (there are no points ruled out only by the bound on the singlet T̃ ). The coloring of
the points depends on the physical mass of the singlet. The points marked by a star are the
ones for which the Higgs couplings cg and cγ are within the 95% CL region of the fit to Higgs
data, see Fig. 3.3. Right panel: Higgs coupling to gluons cg versus the Higgs coupling to the
top quark ct. Light gray points are excluded by LHC direct searches, while black points are
currently allowed. The dashed line corresponds to the relation cg � ct , which holds for small
mixings, ε2 ! 1 . The meaning of the star shape for the points is the same as in the left panel.

is rather mild. This can be traced back to the expression the form factors in Eq. (3.3) take in
the two-site model: recalling that MX,ψ � |M4,9| , we see that for MX �Mψ the form factors
ΠbL,tL,tR

2 exactly vanish. Thus for MX � Mψ the overall size of the potential is suppressed,
and a light Higgs is more likely obtained. In fact, in MCHM14 two distinct invariants appear
in the Opε2q potential. This implies that only a tuning of order ξ is necessary to obtain a
realistic EWSB, as opposed for example to MCHM5, where the tuning scales like ε2ξ . On
the other hand, the potential in MCHM14 is generically too large and yields a too heavy
Higgs, unless some additional suppression mechanism is in play [96–98]. From our study of
the two-site realization, we identify three main mechanisms that help in reducing the size of
the Higgs mass. The first one is the already mentioned relation MX � Mψ . The second can
be read from the expression of the Higgs mass at Opε2q:

m2
h �

2Nc

π2f 2 ξ

»
dp p3

�
ΠtL

4 � 5
4ΠtR

4



� 2Nc

π2f 2 ξ

�
|FL|2 � 5

4 |FR|
2


M2

Ψ , (3.34)

where MΨ parameterizes the overall scale of the resonances. Thus for |FL| �
?

5 |FR|{2 the
leading contribution to the Higgs mass is suppressed. This relation is mildly satisfied in most
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of the viable parameter space. The last possibility is, of course, to lower the overall scale of
the resonances MΨ. A combination of all three mechanisms is in play in our scan. The first
two lead to extra tuning in addition to the one required for the Higgs vev. This extra tuning
cannot be quantified from the scan, since we restrict ourselves to small regions around the
realistic Higgs vev and mass. Nevertheless, as shown in Fig. 3.2, the relations MX �Mψ and
|FL| �

?
5 |FR|{2 are satisfied in a very mild sense, therefore we do not expect the consequent

increase of the tuning to be dramatic.
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Figure 3.2: Distributions quantifying the tuning between MX � |M4| and Mψ � |M9| (left
panel), and between |FL| and

?
5|FR|{2 (right panel), as obtained from the numerical scan.

The right panel of Fig. 3.1 shows the correlation between the Higgs coupling to gluons cg
and the Higgs coupling to the top quark ct. The former is computed from Eq. (3.8) and reads
at first order in ξ

cg � 1�∆ptq
g ξ �

�
M2

4
M2

9
� 1



sin2 φL ξ , (3.35)

where
∆ptq
g � 11

2
1� 8

11
M4
M1

� 3
11
M4
M9

1� M4
M1

(3.36)

encodes the contribution of the top sector, whereas the last term is the contribution of the
heavy b-like states. The angle φL � arctanpFL{M4q measures the degree of compositeness of
qL. Notice that ∆ptq

g only depends on ratios of the masses of the composite multiplets. The
coupling of the Higgs to the top is obtained instead from Eq. (3.14) with the identifications

m0
t � �ΠtLtRpp � 0q , ZtL,R � ΠtL,Rpp � 0q . (3.37)

As discussed in the general analysis of Sec. 3.2, the hgg and htt̄ couplings are tightly correlated,
and significant deviations from the equality cg � ct can occur only for large values of the
mixing parameters ε. This is clearly visible in the right panel of Fig. 3.1: sizeable deviations
from cg � ct take place only for points that have already been excluded by direct searches at
the LHC, displayed in light gray. For these points at least one of the masses |Mr| is small,
which typically implies that one of the mixings is large. For example, a small |M4| leads to



3.3. An explicit construction: MCHM14 61

large compositeness of tL. In addition, we find that the corrections due to the wavefunction
renormalization of the top are almost always negative, yielding ct À cg .

In Fig. 3.3 we compare the Higgs couplings pcγ, cgq obtained from the scan (considering
only points not excluded by LHC direct searches) to the region preferred by a fit to current
Higgs data. If only the contribution of fermions with electric charge Qt � 2{3 is considered,
the points lie on the line

cg �
�

1� 7AV pτW q
4Q2

t



cγ � 7AV pτW q

4Q2
t

cW , (3.38)

where τW � m2
h{p4m2

W q and AV pτW q � 1.19 parameterizes the W loop [104], while cW �?
1� ξ is the rescaling of the hWW coupling in the MCHM. The loops of heavy b-like fermions

generate only small deviations from this expectation.11 Although a continuum of couplings
is possible, Fig. 3.3 shows that there is a clear preference for cg ! 1 , and as a consequence
cγ ¡ 1 . Because we did not include the bR in our simple model, we cannot describe the
hbb̄ coupling, which plays an important role in the fit to data. Taking a model independent
approach we remain agnostic on the sector that gives mass to the bottom quark, ignore the
b contribution to the hgg and hγγ couplings and marginalize over the hbb̄ coupling in the fit
to Higgs data, see Appendix 3.6 for details.

3.3.2 Weinberg Sum Rules
Another possibility to obtain a finite Higgs potential, is to impose high-energy conditions on
the form-factors ΠtL,R

2 and ΠtL,R
4 of Eq. (3.3),

lim
p2Ñ8

ΠtL,R
2,4 ppq � 0 ,

lim
p2Ñ8

p2ΠtL,R
2,4 ppq � 0 ,

lim
p2Ñ8

p4ΠtL,R
2,4 ppq � 0 ,

(3.39)

such that they fall-off rapidly at high momenta and the potential Eq. (3.28) is convergent [95,
96]. The QCD analog of the conditions (3.39) are known as Weinberg Sum Rules (WSR) [127].
Notice that in this approach we are expanding the potential in powers of ε2. Considering three
resonance multiplets, as in Eq. (3.23), the conditions (3.39) cannot be satisfied simultaneously,
but we can at least require that the Higgs mass be finite [96]. This can be done by imposing the
conditions (3.39) only for ΠtL,R

4 which, as shown in Eq. (3.34), control the Higgs mass. Then,
the WSR translate into relations between the couplings F 1,4,9

L,R and the model is completely
determined by the resonance masses and one combination of the couplings, which we chose
to be F 1

L (another combination, F 1
R can be fixed by the top mass, mt � xshchyF 1

LF
1
R{MΨ).

The general arguments given in section 3.2 of course apply and in particular the coupling

11Subleading corrections also arise due to the slightly different value of ξ for each point.



62 Chapter 3. Higgs Couplings in Composite Models

++

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

ø
øøøøøø
ø

ø

ø

ø

øø
øø

ø
ø

ø
ø

ø
øø
ø

ø
ø
ø

ø
ø
ø
ø

øø
øø

ø

ø
øøø
øøøøøø
øø
ø

ø

ø
ø

ø

øø
ø
ø
øø

øø
ø
ø
ø
ø
ø

ø

ø

ø

øø
ø
øø

ø
ø
ø

ø

ø

ø
øø
øø
ø

ø

ø

ø
ø

ø

ø

ø
øø
øø

ø

ø

ø

ø
ø

0.6 0.8 1.0 1.2 1.4 1.6

0.2

0.4

0.6

0.8

1.0

1.2

1.4

c
Γ

cg

Figure 3.3: Distribution of the couplings pcγ, cgq as obtained from the scan, compared to the
region preferred by a fit to current Higgs data. Only points not excluded by LHC searches
for heavy vector-like quarks are displayed. The dashed line corresponds to the prediction
of Eq. (3.38). The green, yellow and gray regions correspond to the 68.27, 95 and 99% CL,
respectively. As in Fig. 3.1, the points marked by a star are those that fall within the 95%
CL region of the fit. Details on the fit can be found in Appendix 3.6.

to gluons is independent of the mixing parameter F 1
L. We find

cptqg � 1�
�

4� M3
1

M3
9

40M4

�
1� M2

4
M2

1

	
� 15M9

�
1� M2

9
M2

1

	
16M4

�
1� M2

4
M2

9

	
� 10M1

�
1� M2

1
M2

9

	�ξ , (3.40)

which reproduces the limits discussed below Eq. (3.21). Moreover, when any two resonances
become degenerate, this expression simplifies to cptqg � 1�3ξ{2 , so that cptqg   1 holds in most
of the parameter space. The coupling to tops ct differs from cg by terms proportional to
ε2L,R � pF 1

L,R{MΨq2 which can in principle become sizable. Indeed, while the product F 1
LF

1
R is

fixed by mt, the Higgs mass is sensitive to another combination of the mixings,12

m2
h �

5Nc

4π2f 2 ξ

�
|F 1
L|2 �

5
4 |F

1
R|2


�
�
M2

1 log
�
M2

1
M2

9



� M2

4 pM2
9 �M2

1 q
M2

9 �M2
4

log
�
M2

9
M2

4


�
.

This expression highlights how the Higgs mass can become small in this model; similarly to
what discussed for the two-site construction, mh can be small if either i) the overall scale of
the resonances MΨ is small or ii) there is a tuning |F 1

L| �
?

5 |F 1
R|{2 or iii) a tuning between

the masses M1 � M4 or M1 � M9. In the tuned cases ii) and iii) it is easy to see that the
Higgs mass does not constrain the size of the Opε2L,Rq corrections to ct, and we can have a
situation where cg and ct differ sizably. In the more natural case i), on the other hand, the
Opε2L,Rq corrections are typically small and cg � ct holds.

12Gluon partner contributions can modify this expression [128].
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3.4 Conclusions

In composite Higgs models, the paradigm of partial compositeness implies that a number of
colored fermionic resonances couple strongly to the Higgs sector. Moreover, some of these
resonances need to be relatively light to naturally reproduce the observed Higgs mass. Thus
one naively expects that these states contribute sizably to the radiative hgg and hγγ couplings.
However, it is well known that in some minimal models this is not the case and light fermionic
resonances do not contribute to the hgg and hγγ couplings, due to an exact cancellation
between corrections to the htt̄ coupling and loops of resonances. Indeed the hgg coupling is
the leading term of the htt̄ one in an ε2 ! 1 expansion.

In this paper we have shown that these are general features of the MCHM, following only
from the Goldstone symmetry and from partial compositeness. Furthermore we found that
under the assumption of CP invariance the radiative Higgs couplings are insensitive to deriva-
tive interactions of the Higgs with resonances.13 Of particular interest for this generalization,
are models where the top mass arises from more than one SOp4q invariant. Such models,
although disfavoured by the smallness of the Higgs mass, are particularly well-motivated by
naturalness arguments.14 In this case, naively, the presence of multiple operators can spoil
the delicate cancellation that takes place in the simplest models. However, we found that
this is not the case and the loop-induced Higgs couplings are insensitive to light fermionic
resonances.

In the simplest models the hgg coupling is reduced with respect to the SM value by a
simple trigonometric factor (e.g. cosp2xhy{fq{ cospxhy{fq in the MCHM5,10). On the contrary,
in models with two or more invariants this coupling depends on the masses of the resonances
and on their mixings with elementary fermions. In particular, it can become larger than the
SM value and, for very special combinations of the parameters, it can differ from the SM
value also in limit v{f Ñ 0. Furthermore the coupling is insensitive to the overall scale of the
resonances and only depends on ratios of their masses. Therefore one can imagine a situation
where all the resonances are rather heavy and thus no signals show up in direct searches, but
deviations are observed in the precision measurement of the Higgs couplings.

As an example, we have studied in detail a prototype model where both qL and tR are
embedded in a 14 of SOp5q. We have built a two-site realization that enables the dominant
part of the potential to be estimated, and used it to find a relation between the Higgs mass and
vev, and the masses of the lightest resonances of the strong sector. In this simplified model,
we have verified that Opεq effects are small in the region of phenomenological interest. This
confirms the tight connection between the htt̄ and the hgg couplings. Moreover we find that
these couplings are typically suppressed, leading also to a slight increase of the hγγ coupling.

13In models based on larger cosets the results of this paper would be modified, due to the presence of
additional scalars that can mix with the Higgs [119,129,130].

14More precisely, naturalness arguments prefer models in which more than one Left-Left (LL) or Right-
Right (RR) invariant can be built, independently of the number of LR invariants. Nevertheless, the simplest
models with more than one LR invariant, also feature more than one LL/RR invariants.
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Similar qualitative conclusions have also been obtained by applying the WSR approach. The
future direct measurement of the htt̄ coupling will provide a further test of these results.

3.5 Appendix: Notations

3.5.1 Sigma model
The generators of the fundamental representation of SOp5q read

T aL,RIJ � � i

2

�
1
2ε

abcpδ bI δ cJ � δ bJδ
c
I q � pδ aI δ 4

J � δ aJ δ
4
I q
�
,

T iIJ � � i?
2
pδ iI δ 5

J � δ iJδ
5
I q , (3.41)

where I, J � 1, . . . , 5, i � 1, . . . , 4, a � 1, 2, 3. T aL,R are the generators of the unbroken
SOp4q � SUp2qL� SUp2qR, whereas T i are the generators of SOp5q{SOp4q. We will also use
the equivalent notation T a , a � 1, . . . , 6 for the unbroken generators. The Goldstone bosons
appear through the matrix UpΠq defined by

UpΠq � exp
�
i

?
2ΠiT i

f



. (3.42)

Notice that UpΠq is an orthogonal matrix transforming as

UpΠq Ñ g UpΠq ĥpg,Πq�1, g P SOp5q, ĥ P SOp4q . (3.43)

The quantities dµ and eµ are defined as the projections of the object �UT pAµ � iBµqU onto
the broken and unbroken generators respectively, such that dµ transforms linearly as a 4-plet,
while eµ shifts under the unbroken SOp4q. At lowest order in the chiral expansion, we have

diµ �
?

2
f
∇µΠi � . . . , eaµ � �gAaµ � . . . (3.44)

with ∇µΠi � BµΠi � iAaµpT aqij Πj . Aaµ contains the vector fields associated to the gauged
generators T aL and T 3

R in the unbroken SOp4q. See for example Ref. [122] for the complete
expressions. At the two-derivative level the Goldstone Lagrangian reads

L � f 2

4 d
i
µd

i µ . (3.45)

In the unitary gauge where Π1 � Π2 � Π3 � 0 and Π4 � h, we have simply

U �

�������
I3

ch sh

�sh ch

������
 , (3.46)
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where we defined sh � sinph{fq and ch � cosph{fq. The two-derivative Lagrangian (3.45) can
now be written as

L � 1
2BµhB

µh� g2f 2

4 s2
h

�
W�
µ W

�µ � 1
2 cos2 θw

ZµZ
µ

�
, (3.47)

which fixes, once we identify the W mass,

ξ � v2

f 2 � sin2 xhy
f
. (3.48)

3.5.2 Fermion representations

12{3 TL3 TR3 Y Q

T̃ 0 0 2
3

2
3

42{3 TL3 TR3 Y Q

T �1
2 �1

2
1
6

2
3

B �1
2 �1

2
1
6 �1

3

X5{3 �1
2 �1

2
7
6

5
3

X2{3 �1
2 �1

2
7
6

2
3

62{3 TL3 TR3 Y Q

χ1 �1 0 2
3

5
3

T1 0 0 2
3

2
3

B1 �1 0 2
3 �1

3

χ2 0 �1 5
3

5
3

T2 0 0 2
3

2
3

B2 0 �1 �1
3 �1

3

92{3 TL3 TR3 Y Q

ψ8{3 �1 �1 5
3

8
3

χ3 0 �1 5
3

5
3

T3 �1 �1 5
3

2
3

χ4 �1 0 2
3

5
3

T4 0 0 2
3

2
3

B3 �1 0 2
3 �1

3

T5 �1 �1 �1
3

2
3

B4 0 �1 �1
3 �1

3

ψ�4{3 �1 �1 �1
3 �4

3

Table 3.2: Electroweak quantum numbers of the fermion fields in the 12{3, 42{3, 62{3, 92{3
representations of SOp4q � Up1qX . In red, blue and fuchsia we indicate the states with the
SM quantum numbers of the qL, tR and bR.
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We report here for convenience the decomposition of the SOp5q representations used in
this paper in terms of SOp4q multiplets. We have

Ψ5 �

���� Ψ4

Ψ1

���
 , Ψ10 �

���� Ψ6 Ψ4{
?

2

�ΨT
4 {
?

2 0

���
 (3.49)

and

Ψ14 �

���� Ψ9 �Ψ1I4{p2
?

5q Ψ4{
?

2

�ΨT
4 {
?

2 2Ψ1{
?

5

���
 , (3.50)

where Ψr are SOp4q multiplets. For the case X � 2{3, the singlet and 4-plet can be written
as

Ψ1 2
3
� T̃ , Ψ4 2

3
� 1?

2

������
iB � iX5{3

B �X5{3

iT �X2{3

iX2{3 � T

�����
 , (3.51)

while for the antisymmetric tensor we have

Ψ6 2
3
� 1

2

������
0 T �

12 ipB�12 � X�
12q B�12 � X�

12

0 B�12 � X�
12 ip�B�12 � X�

12q
0 �iT �

12

0

�����
 , (3.52)

with T �
12 � T1 � T2 , B�12 � pB1 � B2q{

?
2 and χ�12 � pχ1 � χ2q{

?
2 , and for the symmetric

traceless tensor

Ψ9 2
3
� 1

2

�
������

P� � T4 iP� B�34 � X�
34 �iB�34 � iX�

34

�P� � T4 �iB�34 � iX�
34 �B�34 � X�

34

T4 � T �35 iT �35

T4 � T �35

�
�����

, (3.53)

where P� � ψ8{3 � iψ�4{3 , B�34 � pB3 � iB4q{
?

2 , χ�34 � pχ4 � iχ3q{
?

2 and T �
35 � T3 � T5 .

The decomposition of the SOp4q multiplets in terms of fermions with definite electroweak
quantum numbers is given in Table 3.2.

3.6 Appendix: Details of the experimental fit
The best option to compare these models with experiments, as we do in Fig. 3.3, is to present
the data as extracted assuming modified couplings between the Higgs and the SM states.
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In composite Higgs models the Higgs couplings to V � W,Z are shifted by δcV � �ξ{2,
which we fix in our analysis assuming f � 800 GeV, and hence ξ � 0.1. Higgs couplings to
bottom quarks, on the other hand can vary considerably in general models (they can have
a parametric form similar to ht̄t couplings, approximately corresponding to Eq. (3.19) or
Eq. (3.21)) but typically are smaller than one (in units of the SM coupling). For this reason
we parametrize our theoretical ignorance by marginalizing over the hb̄b coupling in the region
cb P r0.5, 1s. Fig. 3.3 is then obtained by letting the effective hgg and hγγ couplings vary (the
ht̄t coupling, independently from its contribution to hgg and hγγ, is not yet measured with
enough accuracy to change this picture considerably).

The statistical analysis is performed using the latest signal strenght data given by the
Tevatron experiments and by ATLAS and CMS at Moriond 2013 and soon after; a summary
of the signal strengths in the individual channels can be found in Refs. [103,104]. The signal
strengths are assumed to follow a Gaussian distribution and we fit the data by minimizing a
χ2 as described in detail in Chapter 2 of this thesis and in Ref. [1]. We sum statistical and
theoretical errors in quadrature and neglect possible correlation effects, which we find to be
a reasonable approximation.
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Chapter 4

Higgs mass and couplings in SUSY

4.1 Motivation
The quest for SUSY has taken an unexpected turn with the Higgs discovery at 125 GeV [131].
Indeed, it is well known that the supersymmetric contribution to the Higgs mass is at most
pmtree

h q2 À m2
Z , implying that a large portion of the Higgs mass ∆m2

h Á 862 GeV2 must
originate from symmetry breaking effects. Within the MSSM, for large stop masses, top/stop
loops provide this necessary contribution, but only at the expense of naturalness, as the large
loop effects needed to increase the Higgs mass also destabilize the EW scale. Experiments are
therefore telling us that, if SUSY exists, it is either tuned, or it doesn’t fulfill Occam’s principle
and that more complicated models, with additional contributions to the Higgs quartic, have
to be considered.

Still, a common feature of most SUSY models1, is the Higgs sector, containing at least
a particular version of a two Higgs doublets model (2HDM). Mixings in this extended Higgs
sector, lead to modified tree-level couplings between the lightest CP-even Higgs and the SM
gauge bosons and fermions, and provides a distinctive signature of SUSY, complementary to
direct searches. While the latter remain the most favorable strategy for SUSY searches (in
particular in the most natural SUSY realizations, where states associated with the stabiliza-
tion of the electroweak (EW) scale are expected to be light), modified couplings could be
the strongest evidence for SUSY in particular regions of parameter space, such as those with
compressed spectra.

Interestingly, in 2HDMs, a correlation exists between the Higgs mass and its tree-level
couplings to SM fields. Indeed, any contribution to the Higgs quartic potential, necessary in
SUSY models to increase the Higgs mass from its tree-level value up to the observed value of
approximately 125 GeV, also changes the relation between mass and hypercharge eigenstates
and modifies the couplings of the lightest CP-even Higgs. In this article we investigate this
correlation in detail, showing how different models that accommodate the observed Higgs

1An exception is the model of Ref. [132] where the Higgs is the neutrino superpartner and there are no extra
Higgs doublets. Ref. [133] also proposes a model with one doublet only while in Refs. [134, 135] additional
doublets have been studied.

69
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mass also modify their Higgs couplings. We then confront these expectations with the most
recent LHC data [138]- [142], which we use to extract limits on the parameter space of such
theories (in particular on mA and tan β).

We first show, with a simple and intuitive analytical approximation, how Higgs mass and
couplings are correlated in SUSY models (or 2HDMs in general) (section 4.2). Then we study,
in turn, the MSSM with heavy stops (section 4.3), the MSSM with extra non-decoupling D-
terms (section 4.4), and the F-term contributions of NMSSM-like models (section 4.5), where
we also discuss a general class of models beyond the MSSM (BMSSM). In section 4.6 we
comment on how these conclusions are modified in the presence of sizable loop-effects due to
light SUSY partners and we leave for Appendix 4.8 the details related to our global fits and
for Appendix 4.9 a summary of the formulas used in our plots.

4.2 The Higgs Mass/Couplings Connection
Supersymmetry requires the existence of two Higgs doublets, H1,2 giving mass to leptons and
down-type/up-type quarks. Limiting our discussion to the third family fermions, which have
the strongest couplings to the Higgs sector, we consider

L � �YbH1q̄b� YtH2q̄t� YτH1l̄τ . (4.1)

Only a linear combination of H1 and H2 obtains a vacuum expectation value (vev) v �
174 GeV; its couplings to SM fermions and vectors equal those of a SM Higgs. Any quartic
contribution to the scalar potential for H1 and H2 introduces, in general, a misalignment
between this linear combination and the mass eigenstates: this misalignment is responsible
for a modification in the Higgs couplings. The best way to see this is in the basis h,H, where
only one state (h) has a vev. The angle β denotes the angle between these states and the
neutral CP-even components of the gauge eigenstates H1, H2:

h0
1 � cos βh� sin βH (4.2)
h0

2 � sin βh� cos βH.

In this basis, the couplings Eq. (4.1) of h and H to fermions are,

� cos βYbph� tan βHqb̄b, � sin βYtph� cot βHqt̄t, (4.3)

where couplings to charged leptons have the same form as for down-type quarks. Now,
consider a general contribution to the quartic of the Higgs potential written in terms of h,H,

∆V pH1, H2q � �δλh4 � δh3H � δ2h
2H2 � δ3hH

3 � δ4H
4, (4.4)

where the δ’s are given dimensionless couplings. The first term contributes to the lightest
CP-even Higgs mass as

∆m2
h � 16δλv2; (4.5)
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in order to account for the observed value m2
h � 125 GeV,

∆m2
h � mobs 2

h �m2
Zpcos 2βq2 Á p86 GeVq2 (4.6)

is needed. Interestingly, the same physics that is responsible for δλ, also generates a mixing
between h and H, via the term δh3H, that leads to a modification of the Higgs couplings, as
illustrated in Fig. 4.1. We can quantify these modifications, in the limit where H is heavy,

f

f̄

〈h〉〈h〉

h
H

Figure 4.1: The mixing between h and H, induced by the quartic interaction δh3H, modifies
the couplings of h to the fermions w.r.t to its SM value.

by integrating out the heaviest eigenstate from the relevant part of the Lagrangian

L � �δh3H �
¸

f�t,b,τ
Y H
f f̄fH � m2

H

2 H2, (4.7)

where Y H
f , the coupling of H to fermion f � t, b, τ , can be read from Eq. (4.3). For large

mH we can solve the equations of motion of H, giving H � δh3Y H
f f̄f{m2

H , and obtain the
effective interaction

Leff � δ
¸

f�t,b,τ
Y H
f hf̄f

h2

m2
H

. (4.8)

Now, notice that the equations of motion for H imply a small vev xHy � 2
?

2δpv3{m2
Hq, so

that the expression for the fermion mass is modified accordingly and we can write the coupling
of the physical Higgs h̃ � h�?

2 v, normalized with its SM value ySMf � mf{v, as

cf � yf
mf{v �

Y h
f � 6Y H

f δ
v2

m2
H

Y h
f � 2Y H

f δ
v2

m2
H

� 1� 4δ
Y H
f

Y h
f

v2

m2
H

. (4.9)

Using Eq. (4.3) to read Y h,H
f , we finally obtain

cb,τ � 1� 4 tan βδ v2

m2
H
,

ct � 1� 4 cot βδ v2

m2
H
. (4.10)

This simple, yet important, expression summarizes the goal of this work: any new physics that
is responsible for the large Higgs mass Eq. (4.5) also affects the Higgs couplings to fermions.
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This approximate formula allows us to understand qualitatively how this connection works
and predicts whether a given contribution to the Higgs mass results in an increase or decrease
of the couplings to tops and bottoms/taus (similar methods have been used in Refs. [143–145]
to study Higgs couplings modifications). Nevertheless, notice that in our plots we always use
the exact expressions listed in Appendix 4.9, rather than Eq. (4.10).

Deviations in the Higgs couplings to vectors can be studied in a similar way, giving

cV � 1�O
�
δ2 v

4

m4
H



(4.11)

which is generally suppressed w.r.t. deviations in the couplings to fermions (we have checked
that in the region preferred by data this statement holds at better then the 2 % level and
deviations in cV can be ignored).

In principle, complete analyses of Higgs couplings in a SUSY context should take into
account possible modifications of the tree-level couplings to up-type quarks, to down-type
quarks (and leptons) and to vectors; at the loop level extra contributions from light SUSY
partners to the couplings to gluons and photons could be present, and in total generality also
the possibility of an invisible decay width should be considered (see Ref. [132] for a motivated
scenario were the Higgs can decay invisibly in a SUSY context): a total of six parameters
(see Refs. [146, 147] for a list of recent analyses of this type). Nevertheless, ignoring the last
possibility, Eq. (4.11) tells us that in the simplest SUSY models, couplings to vectors are
not expected to deviate much from the SM ones (this is not true when the Higgs sector is
extended to include extra states in different SUp2qL representations that can mix with the
Higgs, as we shall discuss in section 4.5.1). Furthermore, the null results of direct SUSY
searches suggest that SUSY partners should have masses of a few hundreds GeV and that
their loop contributions to the effective hgg and hγγ couplings might be small (we comment
about this in section 4.6). For these reasons, in what follows, we orient our analysis mostly to
the Higgs couplings to tops and to bottoms/taus and compare theoretical expectations with
data through an intuitive simplified scenario where only ct,cb are free to vary, and all other
couplings are fixed to their SM values.

4.3 The Minimal Supersymmetric Standard Model
The technique of the previous section can be applied also to the tree-level contribution of the
Minimal Supersymmetric Standard Model (MSSM)2. The only contribution to the quartic
potential comes from the D-term which, for the SUp2qL � Up1qY MSSM gauge group, reads

∆VMSSM � g2 � g1 2

8
�|H0

1 |2 � |H0
2 |2
�2 � g2 � g1 2

32
�pc2

β � s2
βq2h4 � 8pc2

β � s2
βqsβcβh3H � � � � �

(4.12)
2In this case, h and H can be thought of as the eigenstate of the mass matrix before electroweak symmetry

breaking.
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with cβ � cos β and sβ � sin β and in what follows we shall also use tβ � tan β. This defines

δλ � m2
Z

16v2 pc2
β � s2

βq2, (4.13)

δ � m2
Z

2v2 sβcβpc2
β � s2

βq. (4.14)

From Eq. (4.10), this gives

cb � 1� m2
Z

2m2
H

sin 4β tan β (4.15)

ct � 1� m2
Z

2m2
H

sin 4β cot β. (4.16)

which coincides with the usual decoupling limit of the MSSM [148] with the identification
mH � mA (which is accurate for mA,H " mZ or in the large tan β limit), and we will use in
what follows in the comparison between exact and approximate results. At the same time,
Eq. (4.13) provides the well known contribution to the Higgs mass m2

h � m2
Z cos2 2β; this

tree-level result is modified by loop effects, in particular from top quarks/squarks, which we
consider in what follows.

4.3.1 Top Squarks with no mixing

We begin with the case of top squarks with no mixing (realized in popular SUSY breaking
mechanisms such as gauge mediation and gaugino mediation where a small trilinear coupling is
expected [149]). The dominant loop contribution to the scalar effective potential is [148,150],

∆Vstop � λ2

2 |H2|4 , (4.17)

where,

λ2 � 3y4
t

8π2 logrmt̃1mt̃2{M2
t s (4.18)

(a more accurate expression can be found in Appendix 4.9). After rotating into the basis of
Eq. (4.2) one identifies

δλ � s4
β

λ2

8 (4.19)

δ � �4s3
βcβ

λ2

8 . (4.20)

From Eq. (4.18) and from Eq. (4.19) it follows that, in order to obtain a Higgs mass compatible
with experiment, multi-TeV stop masses are required. Such heavy stops also destabilize the
EW scale through loop effects and push the MSSM into fine-tuning territory [151]. Ignoring
for a moment this tension, we can assume these loop contributions to be uniquely responsible
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Figure 4.2: Theoretical expectation for Higgs couplings deviations for the MSSM with heavy
stops and no mixing, taking mh � 125 GeV, showing contours of constant mA (solid blue) and
tan β (dashed), obtained from the exact expressions of Eqs. (4.68,4.69) of Appendix 4.9. Also
shown are the 68% (green), 95%(yellow) and 99%(grey) C.L. regions obtained by a global fit of
the most recent LHC Higgs data, as explained in Appendix 4.8, neglecting loop contributions
to the hgg and hγγ couplings. The dashed red lines show the approximate results of Eq. (4.21)
for mH � 300, 500 GeV.

for the large value of the Higgs mass, and write the deviations of cb,t induced by loop effects
Eq. (4.20) together with the ones from the tree-level potential Eq. (4.14), as

cb � 1� m2
h �m2

Z cos 2β
m2
H

,

ct � 1� pcot βq2m
2
h �m2

Z cos 2β
m2
H

. (4.21)

This shows that, in the MSSM with no stops mixing and for tan β ¡ 1, the deviations in
cb (ct) are always positive (negative), as already observed in Ref. [145]. For large tan β the
deviations in ct are suppressed, while

pcb � 1q �
�

154 GeV
mH


2

. (4.22)

We can compare these results with the exact ones of Fig. 4.2, which shows the intuitive
pcb, ctq-plane mentioned above, and compares these theoretical expectations with the most
recent data [138]- [142], using the methods described in Appendix 4.8. We assume a heavy
sparticle spectrum, that does not affect the Higgs couplings to gluons and photons, other
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Figure 4.3: Exclusion plot in the mA, tan β plane for the MSSM with heavy stops (red), for
models with additional non-decoupling D-terms (blue) and F-terms (green); regions to the left
of the lines are excluded. The shaded region corresponds to bounds from direct searches [189].
Left: present data; right: longterm projection based on [169] assuming no deviations from
the SM, shaded region from Ref. [170] (the dashed part of the line corresponds to a region
where λS is bigger than 2 and non reaches the non-perturbative regime below approximately
10 TeV [151, 153]).

than through Eq. (4.21) (this is motivated by the fact that in this example, we are assuming
multi-TeV stops). Masses mH À 250 GeV can be excluded, almost independently of tan β,
as suggested already by Eq. (4.22) for a sensitivity to the hb̄b coupling of about 50%. In
Fig. 4.3 we also show the CMS bounds on the traditional MSSM mA, tan β plane (for a recent
analysis see Ref. [152]) from direct searches of the heavy Higgs decaying into τ pairs, as
performed by CMS [189]. As can be appreciated, analyses of the light Higgs couplings offer
a complementary search strategy in the intermediate tan β region.

4.3.2 Top Squarks with mixing
In the presence of sizable A-terms, L and R top squarks can mix, inducing additional contri-
butions to the Higgs effective potential [150,155],

∆V mix � λ2

2 |H2|4 � pλ5

2 |H1H2|2 � λ7|H2|2H1H2 � c.cq, (4.23)

where the values of λ2, λ5 and λ7 depend in particular on the parameter µ and the trilinear
At and their expression, at the one loop level, can be found in Appendix 4.9. In the point of
‘maximal mixing’, when the trilinear term is |At�µ cot β| � ?

6mt̃ (where mt̃ is the geometric
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mean of the lightest stop masses), the contribution to the Higgs mass proportional to λ2 is
maximized, while λ7 � 0. Recasting the potential in the h,H basis gives,

δλ � s4
β

�
λ2

8 � λ5

4 t2β
� λ7

2 tβ



, (4.24)

δ � s3
βcβ

��λ2

2 � λ5

2

�
1� 1

t2β



� λ7

2
t2β � 3b
t2β � 1

�
 , (4.25)

where it can be seen that for large tan β (which is necessary in the MSSM to maximize the
tree-level mass), the dominant contribution to the Higgs mass still comes from the first term
λ2, similarly to the case with no mixing discussed in the previous paragraph. As mentioned
above, this term is maximized by large mixing, with drastic effects and the stop mass can be
as low as 550 GeV in this case. Nevertheless, a fine-tuning at the percent level persists due
to the fact that large At terms also contribute to the Higgs mass-parameter [151].

Unfortunately, for a generic choice of µ and At, the multitude of parameters introduced
by mixing weakens the Higgs mass/coupling connection as shown by Eq. (4.25) where sizable
λ5,7 can affect the Higgs couplings without contributing to the Higgs mass. We show this
effect in Fig. 4.4 where we consider small deviations from maximal mixing: departures from
λ7 � λMaxMix

7 � 0 are enhanced at large tan β Á 20 and the contribution to δ and to our
predictions can be seizable. Nevertheless such large values of tan β are already in tension with
rare B processes, such as Bs Ñ µ�µ� [156], and with direct searches for H{A Ñ τ̄ τ [189],
so that we do not expect our results to change significantly in the intermediate tan β region,
where our bounds are more competitive, see Fig. 4.3.

4.4 Extra D-Terms
As discussed above, a 125 GeV Higgs in the MSSM is generally associated with fine-tuning.
This suggests that the principle of SUSY, if realized at low energy in a natural way, extends
beyond the MSSM, with new tree-level effects contributing to the Higgs quartic. The first
possibility is to envisage additional gauge symmetries that contribute to the Higgs quartic,
similarly to the MSSM gauge group [149,153,157]. In this section we study the example of an
additional abelian gauge group under which H1 and H2 have opposite charges (as compatible
with the µ-term). Then, the extra contribution to the Higgs sector quartic3

∆V � κ
�|H0

1 |2 � |H0
2 |2
�2 (4.26)

where,

κ � g2
X

8p1� M2
Z1

2m2
φ
q
. (4.27)

3The form of the potential in Eq. (4.26) holds also for the non-abelian extension considered in Refs [153,157].
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Figure 4.4: Same as Fig.4.2, but for near maximal mixing and, again, we adjust ?mt̃1mt̃2 P
r550, 2000s GeV in order to obtain the observed Higgs mass. We take xt �

?
6 � 0.1 for

the blue/red curve in order to show the influence, for large tan β, of small deviations from
maximal mixing; µ � 400 GeV.

Here mφ is the soft SUSY breaking mass of the MSSM singlets that breaks the U(1)X group
(with gauge coupling gX) and MZ1 the SUSY-preserving mass of the gauge boson. Eq. (4.27)
shows that, in the limit MZ1 " mφ, the Z 1 can be supersymmetrically integrated out and the
D-term contribution of the U(1)X group decouples: non-decoupling D-terms require a large
soft mass mφ �MZ1 and result in an effective hard breaking in the Higgs sector.

The contributions to δλ and δ are similar to Eqs. (4.13,4.14), with the substitution
m2
Z{v2 Ñ 4κ. In the absence of other effects that affect the Higgs mass (we assume the

loop effects of Eqs. (4.20,4.24) to be subdominant), we can fix κ in order to obtain the ob-
served Higgs mass 4, we can then write

cb � 1� 2m
2
h

m2
H

t2β
t2β � 1 (4.28)

ct � 1� 2m
2
h

m2
H

1
t2β � 1 . (4.29)

meaning that, for tan β ¡ 1, positive (negative) deviations are expected in cb (ct). For
large tan β the modifications in ct vanish, as usual, while those on cb asymptote to cb � 1 �
p176 GeV{mHq2. This is shown, using the exact expressions from Appendix 4.9, in Fig. 4.5.

4Notice that as tan β Ñ 1, all contributions to the Higgs mass from D-terms vanish; hence these expressions
have to be trusted only away from this singular point: in Fig. 4.5 we show curves of constant gX (in the limit
of large mφ "MZ1) to show that in the region of interest the parameters are under control.
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Figure 4.5: Higgs couplings deviations in the MSSM with additional non-decoupling D-terms
to raise the Higgs mass to 125 GeV (on top of the effect of light stops mt̃ � 500 GeV). The
global fit (Colors as in Fig. 4.2) includes the effect of a 500 GeV stop (to be compared with
Fig. 4.2 where the effects of stops on the fit are vanishingly small).

Differently from Fig. 4.2, the global fit of Fig. 4.5 includes the effect of a light stop at 500 GeV
(as opposed to the previous section, where heavy stops were necessary to increase the Higgs
mass, here this is taken care by the additional D-terms, and the stops can be naturally light,
see also Section 4.6). Masses mH À 300 GeV can already be excluded, with better results in
the small tan β region (see also Fig. 4.3).

In principle we could relax the assumption that H1 and H2 carry equal and opposite Up1qX
charges. In this case, however, additional structure is needed in order to generate a µ-term.
For example an extra SM singlet, charged under Up1qX can generate this term by aquiring a
non-vanishing vev. This extension, however, implies additional contributions to the quartic
potential from F-terms which, as we comment in the next-section, are expected to dominate.

4.5 F-Terms, the NMSSM and the BMSSM
It is tempting to parametrize these new effects using an effective field theory approach with an
expansion in powers of the scale of physics beyond the MSSM (in the example of the previous
section, this would be the mass of the new gauge bosons MZ1). The most general such
parametrization, however, lacks any predictive power (peculiar directions in parameter space
can be found where an increase in the Higgs quartic coupling doesn’t imply modifications of
the couplings [158]). Nevertheless, as shown in Ref. [159], the leading order effects in such an
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expansion have a very specific form5:

L5 �
»
d2θ

�
λ1

M
pH1H2q2 � Z λ2

M
pH1H2q2



(4.30)

where Z � θ2mSUSY is a dimensionless spurion that parametrizes SUSY breaking. This leads
to additional contributions to the scalar potential,

∆V5 � 2ε1H1H2pH:
1H1 �H:

2H2q � ε2pH1H2q2 � c.c (4.31)

with ε1 � λ1µ
�{M and ε2 � �λ2mSUSY {M . We obtain

δλ � ε1
4 sin 2β � ε2

16 sin2 2β

δ � �ε12 cos 2β � ε2
8 sin 4β. (4.32)

By construction β P r0, π{2s and for the first term to contribute positively to the Higgs mass,
a positive ε1 is necessary, implying an enhancement of cb and a decrease in ct, similarly to the
case studied in the previous section. The term proportional to ε2, on the other hand, reduces
for tan β ¡ 1 the hb̄b coupling while increasing the coupling to top quarks, oppositely to the
effects of D-terms. This is an interesting case that corresponds to the non-decoupling F-term
contribution of an extra singlet, interacting with the Higgs sector via the superpotential term
W � λSSH1H2, as in the NMSSM. Indeed, in the limit where the mass of the singlet is large,
its contribution is given by the second term of Eq. (4.30), where M � MS (mSUSY � mS)
is the supersymmetric (SUSY breaking) mass of the singlet, and λ2 � λ2

S (notice that the
singlet also gives a generally subdominant contribution to the first term of Eq. (4.30) with
ε1 � �µ�λ2

S{p2MSq, which we ignore for the time being).
If the largeness of the Higgs mass is due to a combination of the MSSM D-terms effects of

Eq. (4.12) and the present contribution from F-terms due to the singlet (i.e. with negligible
contributions from loop-effects), then the Higgs couplings to fermions are modified as

cb � 1� t2β � 1
2

m2
h �m2

Z

m2
H

(4.33)

ct � 1� t2β � 1
2t2β

m2
h �m2

Z

m2
H

, (4.34)

which, for large tan β, gives deviations in the ht̄t coupling of order ∆ct � p60 GeV{mHq2,
and in the couplings to bottom quarks ∆cb � t2βp60 GeV{mHq2. We show the exact coupling
deviations in Fig. 4.6 (we assume, again, the presence of 500 GeV stops, see section 4.6) where
we also emphasize curves of constant λS: values below λS À 0.7 are perturbative up to the
GUT scale, while for values 0.7 À λS À 2 the non-perturbative regime is reached above a
scale of 10 TeV [151, 160]. The bounds on mH that can be extracted from this analysis are
very much dependent on tan β, as can be seen in Fig. 4.3.

5For large tan β interactions at higher order in the expansion could be enhanced and dominate.
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Figure 4.6: Coupling deviations in the NMSSM assuming a Higgs mass of 125 GeV in the
limit where the singlet is heavy and it doesn’t mix with the Higgs, but its contributions do not
decouple. Global fit as in Fig. 4.5.

While the approach of Eq. (4.30) encompasses large classes of models, its applicability
is limited to cases with widely separated scales, such as the NMSSM where the singlet has
both a large SUSY preserving and SUSY breaking mass 6. In the opposite case, however, its
interactions with the Higgs sector can induce mixings with the lightest CP-even Higgs and
the analysis changes completely, as we now discuss.

4.5.1 Doublet-singlet mixing

When the singlet is not much heavier than the EW scale, the above analysis ceases to be valid;
moreover singlet-Higgs mixing can affect our discussion of section 4.2 (see also Ref. [161] for
other LHC bounds on this possibility). Indeed, in this case, the potential Eq. (4.4) includes in
particular the term ∆V pH1, H2, Sq � δSsh

2{2. Once h gets a vev, this term leads to a mixing
between h and S so that h becomes a linear combination of the three gauge eigenstates:

6 Triplets with hypercharge Y �1 and superpotential W � λTTH2H2�λT̄ T̄H1H1 have also been considered
in the literature: in the non-decoupling limit, their contribution to the potential is

∆V � |λT |2H4
2 � |λT̄ |2H4

1 (4.35)

and

δλ � |λT̄ |2
4 c4β �

|λT |2
4 s4

β , δ � |λT̄ |2c3βsβ � |λT |2s3
βcβ . (4.36)

For large tan β only the H4
2 term is important and the results coincide with those of section Ê4.3.1.
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Figure 4.7: Feynman diagrams illustrating modifications in the couplings between the Higgs
and the fermions (or vectors) due to mixings with the singlet S.

Eq. (4.2) now must include

h � cos θpsin βh0
2 � cos βh0

1q � sin θs. (4.37)

The mixing θ can be estimated by using the techniques of section 4.2: the term pδS{2qh2s

corrects the h-propagator when s is integrated out and two of the h legs are replaced by vevs,
as illustrated in the first diagram of Fig.4.7. This correction, beside modifying the quartic
structure δ and δλ as discussed so far, it also universally affects all h couplings by shifting the
kinetic term to

Leff � p1� 2δ
2
S v

2

m4
S

q12BµhB
µh . (4.38)

Indeed, making this kinetic term canonical leads to a universal suppression of all h couplings
by the factor

cos θ � 1� δ2
Sv

2

m4
S

, (4.39)

where θ is defined by Eq. (4.37) and the coupling of Eqs. (4.10, 4.11) become,

cb � 1� 4 tan βδ v
2

m2
H

� δ2
Sv

2

m4
S

(4.40)

ct � 1� 4 cotβδ v
2

m2
H

� δ2
Sv

2

m4
S

(4.41)

cV � 1� δ2
Sv

2

m4
S

. (4.42)

Notice that in this case, if the singlet is light or if its couplings to the Higgs sector are large,
sizable modifications of the hZZ and hWW vertices can be produced. In principle, it is
still possible to exploit the Higgs mass/coupling connection to fix δ and then a simultaneous
measurement of cV and cb,t would allow to extract information about mH and about the
mixing with the singlet. In practice, however, models of this type introduce many new
contributions to the Higgs quartic potential and the Higgs mass/coupling connection looses
most of its predictive power. We show this in the example of the NMSSM [162], where the
superpotential W � λSH1H2 � κS3{3 generates the following relevant terms in the potential
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(which add to the usual MSSM D-terms Eq. (4.12)),

∆VNMSSMpH1, H2, Sq � m2
SS

2�λ2 �|H1H2|2 � S2|H1|2 � S2|H2|2
��pλAλSH1H2�λκH1H2S

�2�h.c.q
(4.43)

where we assume real coefficients for simplicity (mS, Aλ are soft SUSY breaking terms [162]).
After the singlet obtains a vev xSy � vS, we can integrate out its real part, with mass mS,
and obtain the effective quartic potential

∆V eff
NMSSMpH1, H2q � λ2|H1H2|2� µ2

1
m2
S

RepH1H2q2� µ2
2

4m2
S

p|H1|2�|H2|2q2�µ1µ2

m2
S

RepH1H2qp|H1|2�|H2|2q,
(4.44)

(where we have neglected higher order terms in the couplings) and the mixing term

δS � pµ2 � µ1 sin 2βq?
2

, (4.45)

with µ1 � λAλ � 2λκ vS, and µ2 � 2λ2vS. In this procedure, also contributions from the
second diagram of Fig. 4.7 are taken into account. As usual the quartic potential can be
written in terms of h,H and we find,

δλ � λ2

16 sin2 2β � 1
8
δ2
S

m2
S

(4.46)

δ � �λ
2

8 sin 4β � µ1δS
m2
S

cos 2β
2
?

2
(4.47)

As it could have been foreseen, the multitude of parameters that characterize this model
breaks the connection between δ and δλ and it becomes possible to raise the Higgs mass
independently of a modification of its couplings. Even for small mH a conspiracy between
the MSSM D-term and these additional F-terms could allow for a large Higgs mass without
any observable effect in the Higgs couplings (a similar example in the context of D-terms is
discussed in Ref. [158]).

Nevertheless, perturbativity up to the GUT scale (up to 10 TeV) limits the size of λ À
0.7p2q and the necessity of a positive contribution to the Higgs mass from Eq. (4.46), imposes
an upper bound on the negative contribution proportional to δ2

S{m2
S, as we show in the left

panel of Fig. 4.8. Since the latter governs the coupling modification due to mixing through
Eqs. (4.40-4.42), we see that in the perturbative NMSSM only small deviations are expected
due to mixing, ∆cV À 5% for mS Á v. Deviations in the couplings cb,t are still proportional
to the parameter δ which, as mentioned above, is now independent of the Higgs mass and
would allow only to constrain the ratio µ1{mH , which is not particularly interesting.

In λSUSY [163], on the other hand, deviations can easily be of order unity. In particular,
if δ in Eq. (4.47) is positive (notice that for tan β ¡ 1, both sin 4β and cos 2β are negative)
we have ct Á cV ¡ cb, which enhances the rate of both h Ñ γγ and h Ñ V V . Notice that
if we consider only deviations in the tree-level couplings, an enhancement of h Ñ γγ only,
would require cV Á ct Á cb, a region which is not touched by this model.
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S as a function of tan β requiring perturbativity of the
coupling λS up to the GUT scale (λS À 0.7) or only up to 10 TeV (λS À 2), as in λSUSY; the
contribution of a 500 GeV stop is also included. The parameter δ2
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S enters the modifications

of couplings to fermions and gauge bosons Eqs. (4.40-4.42) via the combination δ2
Sv

2{m4
S.

4.6 Light SUSY Partners

So far we have studied modifications of the direct couplings between Higgs and fermions,
restricting our attention to the 2HDM structure of the Higgs sector. When comparing with
data, however, the presence of light sparticles can introduce additional nuisances, as they
contribute via loop-effects to the hgg and hγγ effective vertices. Naturalness suggests that
only the partners of third family fermions be light (other bounds on natural SUSY have
been studied in Refs. [164–166]); these have also the strongest couplings to the Higgs sector
and have potentially a bigger impact than other sparticles. While staus and sbottoms have
a negligible effect, light stops can change the analysis considerably [144]. We show this in
Fig. 4.9, where we compare 99%C.L. contours, assuming that a stop has been found, with
mass mt̃ � 160, 500 GeV (dotted, dashed), with the contours without taking this effect into
account (solid)7. Since ct itself affects Higgs physics mostly through a modification of the
Higgs-gluon effective vertex8, the leading effect of light stops, which themselves affect the hgg

7Recall that in our plots of the MSSM Figs. 4.2-4.4, since heavy stops are needed to increase the Higgs mass,
we have assumed heavy stops in the fit too, with no seizable loop contributions to hgg and hγγ; in Figs. 4.5-
4.8, on the other hand, where a natural spectrum is allowed thanks to the D-term/F-term contributions to
the Higgs mass, we assumed mt̃ � 500 GeV.

8ct enters also directly through a contribution of a few percent of the t̄th associated production channel to
the total production crossection and through the exclusive ppÑ ht̄tÑ b̄bt̄t channel, which is however badly
measured at present.
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Figure 4.9: 99% C.L. contours from a global fit to the parameters cb and ct, taking into account
the loop effects due to a stop quark with mt̃ � 160, 500, GeV (dot-dashed,dashed); in the solid
line this effect is not taken into account, while in the colored contours stops (color coding
as in Fig. 4.2) are treated as a nuisance and their contribution is marginalized assuming
mt̃ ¡ 160 GeV.

effective coupling, results in a shift along the direction of ct. As it can be seen, stops heavier
than about 500 GeV have negligible influence on the fit. Nevertheless, in Fig. 4.9 we also
show the global fit treating the stop contribution as nuisance and marginalizing over it: this
is useful to take into account the possibility that a very light stop lies in a region inaccessible
to direct searches.

The mass of charginos is also directly related to the EW scale if the chargino is mostly
Higgsino: then , In principle light charginos introduce an additional unknown through their
contribution to the hγγ coupling. However, for this to have any impact, small tan β À 5 [144],
very light charginos mχ� ! 250 GeV [167] and large wino-chargino mixing (which is typically
suppressed by inverse powers of the wino mass m2

W {M2
2 [168] ) are necessary. We consider

this a peculiar, rather than representative, point in parameter space and we assume these
effects to be small in our analysis.

4.7 Conclusions and Outlook
In the MSSM, the tree-level Higgs mass is too small to account for the observed value of
� 125 GeV. We have shown, using a simple analytical method based on an expansion in
inverse powers of the heavy Higgs mass, how the physics that contributes to increase the
light Higgs mass, also modifies the couplings of the lightest CP-even Higgs with fermions and
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gauge bosons. In the simplest examples (MSSM with no mixing between top squarks, MSSM
with extra non-decoupling D-terms/F-terms) this connection provides distinctive predictions
for the Higgs couplings, which allow us to extract bounds on the parameters mA and tan β,
competitive with bounds from direct searches [189]. Deviations in the couplings hZZ and
hWW are expected to be small in 2HDMs and we could use the intuitive cb, ct plane to show
our results. In this way we could extract bounds on the heavy Higgs mass mH , depending on
the model and on the size of tan β, as we summarized in Fig. 4.3.

Models that include extra gauge singlets that mix with the Higgs sector, can in principle
be studied in a similar way. In the most popular realizations, such as the NMSSM, however,
the large number of parameters of the model weakens the Higgs mass/coupling connection and
predictability is compromised. Yet, theoretical consistency of the model, based for instance
on the requirement of perturbativity, can strongly constrain the size of the expected effects.

As long as the uncertainty in measuring Higgs couplings is dominated by statistical errors,
more data will lead to better measurments. In the long term, with an integrated luminosity
� 300fb�1, the sensitivity to the Higgs couplings to bottom/top quarks is expected to reach
15% [169, 170] and, as we show in the right panel of Fig. 4.3, some deviations from the SM
are expected if mH,A À 400 GeV. At the same time, direct searches would have probed a
much larger region of parameter space, but the bounds from Higgs couplings will remain
competitive in the intermediate tan β region (better results can be achieved by considering
ratios of couplings [171]).

Let us conclude with a comment regarding bounds from flavour physics. The cross-section
for Bs Ñ µ�µ� processes is proportional to tan6 β and therefore this measurement practically
excludes the region tan β Á 30 (depending on other parameters of the model [156]) while
it has a relatively small impact for intermediate and small tan β; in this regime the bounds
discussed in this paper can be considered complementary. Constraints from b Ñ sγ can be
more important [176], but a fair comparison is difficult, as the amplitude for this process
depends as much on the details of the sparticle sector as it depends on the parameters of the
Higgs sector, which we consider here (in regions where the former are small, bounds on Type
II 2HDMs exclude mH� À 300 GeV, independently of tan β Ê [178]). In any case, while the
b Ñ sγ bounds are competitive with the Higgs coupling bounds at present9, the latter are
expected to become stronger as the integrated luminosity increases.

9An interesting contribution to b Ñ sγ, which we have neglected throughout this work, comes from
loop-effects involving squark-charginos or sbottom-gluino, which do not decouple when the mass of the super-
partners is large and induce a coupling of H2 to down-type quarks, ybpH0

1 bb̄� εbH
0
2 bb̄q that can be enhanced

at large tan β (which is interesting for the MSSM and for the D-term case of section 4.4). This can strengthen
(weaken) the bounds from b Ñ sγ for negative (positive) εb [175]. At the same time, however, it can affect
the hbb coupling [144],

∆cb � �εb tan β m
2
h

m2
H

, (4.48)

which, for the MSSM or for the D-terms of Eq. (4.28), goes also towards strengthening (weakening) our
bounds. Thus in the MSSM (also with additional D-terms) stronger constraints from Higgs coupling data are
correlated with stronger bÑ sγ constraints and vice-versa [177].
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Note Added: While this work was being finalized (see [173]), Ref. [174] appeared, which also
considers modifications of Higgs couplings in SUSY models with additional, non-decouplings
F-terms or D-terms.

4.8 Appendix I: Details of experimental fit
To perform the statistical analysis of the data we take the following reescaled couplings of
the higgs to the SM particles

ct � yt
ySMt

, cb � cτ � yb
ySMb

, cV � ghV V
gSMhV V

, (4.49)

but fixing cV � 1 the reason of which is explained before in the text.
We also take into account the stop loop effects which appear in the gg Ñ h, h Ñ γγ,

h Ñ gg production and decay modes. The main contributions to these effects [185–187] are
given by the following expressions:

σpgg Ñ hq
σpgg Ñ hqSM � ΓphÑ ggq

ΓphÑ ggqSM �
����Aggt � Agg

t̃1
� Agg

t̃2

Aggt,SM

����2 (4.50)

� c2
t

����1� m2
t

4mt̃1

� m2
t

4mt̃2

� m2
tX

2
t

4mt̃1mt̃2

����2 (4.51)

ΓphÑ γγq
ΓphÑ γγqSM �

����Aγγw � Aγγt � Aγγ
t̃1
� Aγγ

t̃2

Aγγw,SM � Aγγt,SM

����2 (4.52)

�
����1.28 a� 0.28 ct

�
m2
t

4mt̃1

� m2
t

4mt̃2

� m2
tX

2
t

4mt̃1mt̃2


����2 (4.53)

The statistical analysis is performed using the latest signal strenght data given by Tevatron
and ATLAS, and the one given by CMS at ICHEP. We didn’t take the latest CMS data due
to the fact that only a combination of 7 and 8 TeV is given in the signal strenghts at a higgs
mass different than the one of ICHEP which doesn’t allow us to extract them separatedly 10.

The signal strengths are assumed to follow a Gaussian distribution and we fit the data by
minimizing a χ2 with the theoretical prediction for the signal strenght:

µi �
°
p σppa, ct, cb, cτ qζ ip°

p σ
SM
p ζ ip

BRipa, ct, cb, cτ q
BRSM

i

, (4.54)

In the few cases where the given signal strenght errors are not symmetric we symmetrize
them in quadrature. Statistical and theoretical errors are summed in quadrature without
taking into account possible correlations, this approach is reasonable since at the moment
the effect of this correlations is still small and can be neglected. In the other hand when

10An alternative approach can be found in [147]
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comparing our fits using ICHEP data for both CMS and ATLAS we find an agreement of
better than %10 between our figure and the one provided by them (we find this agreement to
become better depending on the assumed cuts in the channels where they are not completely
specified).

The data used can be found in table 4.1 where all the channels taken into account are
specified. In this table we see that for each channel a particular set of cuts is defined. These
refer to the values of ζ ip found in equation 4.54 which are the cuts for each higgs production
mode: gluon fusion (G), vector boson fusion (VBF), associated production with a vector
boson (A) and associated tt̄ (tth). Expanded this can be seen as:

°
p σpζ

i
p°

p σ
SM
p ζ ip

� c2
t pσGζiG�σttHζittHq�a2pσV BF ζiV BF�σWHζ

i
WH�σZHζiZHq

σGζ
i
G�σV BF ζiV BF�σWHζ

i
WH�σZHζiZH�σttHζittH

,

where the cut efficiencies ζ ip for each production mode p corresponding to each channel i are
reported below in table 4.2.

4.9 Appendix II: Details of the exact theory computa-
tion

The most general two Higgs doublet model (2HDM) potential for the neutral components of
the doublet is,

∆V � m2
1H

2
1 �m2

2H
2
2 � pm2

12H1H2 � c.c.q � λ1

2 |H1|4 � λ2

2 |H2|4 � λ3|H1|2|H2|2 � λ4pH1H2q:pH1H2q

� pλ5

2 |H1H2|2 � λ6|H1|2H1H2 � λ7|H2|2H1H2 � c.cq (4.55)

We have used the convention of Ref. Ê [150, 155]. We can rewrite this potential in the h-H
basis to obtain,

δ � λ1

2 c
3
βsβ �

λ2

2 s
3
βcβ �

1
2pλ3 � λ4 � λ5qsβcβps2

β � c2
βq �

λ6

2 pc
2
βps2

β � c2
βq � 2s2

βc
2
βq �

λ7

2 ps
2
βps2

β � c2
βq � 2s2

βc
2
βq

δλ � λ1

8 c
4
β �

λ2

8 s
4
β �

1
4pλ3 � λ4 � λ5qs2

βc
2
β �

λ6

2 pc
3
βsβq �

λ7

2 ps
3
βcβq (4.56)

We will now give the values of λ1-λ5 in the different models we have considered. In the MSSM
we have,

λ1 � m2
Z

2v2 λ2 � m2
Z

2v2 λ3 � �m
2
Z

2v2 (4.57)
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Table 4.1: CMS, ATLAS and Tevatron data for the most sensitive channels. The cuts are
classified as inclusive (I), associated production (A), vector boson fusion (VBF) or else (γγX),
see Appendix for details. µ̂1.96,7,8 denote the best fits for the 1.96 TeV Tevatron, and the 7,8
TeV LHC data.

CMS
125 GeV

Cuts µ̂7 µ̂8

γγ0 [179] γγX 3.1�1.9
�1.8 1.5�1.3

�1.3

γγ1 [179] γγX 0.6�1.0
�0.9 1.5�1.1

�1.1

γγ2 [179] γγX 0.7�1.2
�1.2 1.0�1.2

�1.2

γγ3 [179] γγX 1.5�1.6
�1.6 3.8�1.8

�1.8

γγjj [179] γγX 4.2�2
�2

L : �0.6�2.0
�2.0

T : 1.3�1.6
�1.6

ττ0{1j [180] I 1.0�1.5
�1.4 2.1�1.5

�1.6

ττV BF [180] VBF �1.8�1.4
�1.2 �1.8�1.4

�1.3

ττV H [180] A 0.6�4.2
�3.1 -

bbV H [180] A 0.6�1.3
�1.2 0.4�1.2

�0.9

bbttH [180] ttH �0.8�2.1
�1.8 -

WW0j [131] I 0.1�0.6
�0.6 1.3�0.8

�0.6

WW1j [131] I 1.7�1.2
�1.0 0.0�0.8

�0.8

WW2j [131] VBF 0.0�1.3
�1.3 1.3�1.7

�1.3

ZZ [180] I 0.6�0.8
�0.5 0.8�0.7

�0.5

CDF/D0
125 GeV

Cuts µ̂1.96 -

γγ [188] I 3.6�3.0
�2.5 -

bb [188] A 2.0�0.7
�0.6 -

WW [188] I 0.3�1.2
�0.3 -

ATLAS
126.5 GeV

Cuts µ̂7 µ̂8

γγUnCeLPTt [141,142] γγX 0.5�1.4
�1.4 1.0�0.9

�0.9

γγUnCeHPTt [141,142] γγX 0.2�2.0
�1.9 0.3�1.7

�1.7

γγUnReLPTt [141,142] γγX 2.5�1.7
�1.7 2.9�1.2

�1.2

γγUnReHPTt [141,142] γγX 10.4�3.7
�3.7 1.8�1.4

�1.4

γγCoCeLPTt [141,142] γγX 6.1�2.7
�2.7 1.5�1.3

�1.3

γγCoCeHPTt [141,142] γγX �4.4�1.8
�1.8 1.0�1.6

�1.6

γγCoReLPTt [141,142] γγX 2.7�2.0
�2.0 2.3�1.2

�1.2

γγCoReHPTt [141,142] γγX �1.6�2.9
�2.9 0.5�1.6

�1.6

γγCoTr [141,142] γγX 0.3�3.6
�3.6 2.0�2.2

�2.2

γγ2j [141,142] γγX 2.7�1.9
�1.9

L : 3.6�2.1
�2.1

H : 2.0�1.1
�1.1

γγLepTag [142] γγX - 1.2�2.4
�2.4

ττ [138,140] I 0.3�1.7
�1.8 0.73�0.71

�0.71�
bb [137,138] A �2.7�1.6

�1.6 1.0�1.4
�1.4

WW [138,140] I 0.5�0.6
�0.6 1.4�0.5

�0.6

ZZ [131,138] I 1.1�1.0
�0.7 0.9�0.7

�0.7

At the one loop level we get the following additional contributions to the effective potential
from top squark loops,

∆λ2 � y4
t

32π2 p6p2� c21lsqls � p1� c21lsqxtaty4
t p12� xtatqq

∆λ5 � � y4
t

32π2 p1� c11lsqpµ̃q2x2
ty

4
t

∆λ7 � �µ̃ y4
t

32π2xtp6� xtatqp1� c31lsq
(4.58)
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Table 4.2: Cut efficiencies for production modes [141, 142, 179] of the channels of table 4.1.
Numbers in brackets give the efficiencies at 8 TeV, the others at 7 TeV and the overall
normalization in each line factorizes.

i ζ iG ζ iV BF ζ iWH ζ iZH ζ ittH

γγ0 0.28(0.45) 1(1) 1.52(1.91) 1.52(1.91) 2.37(4.00)
γγ1 1.16(1.17) 1(1) 1.36(1.43) 1.36(1.43) 2.24(2.00)
γγ2 1.80(1.84) 1(1) 1.36(1.07) 1.36(1.07) 0(0)
γγ3 1.80(1.84) 1(1) 1.36(1.43) 1.36(1.43) 0(0)
γγjj 0.029 1 0.019 0.019 0

γγjj (T) (0.024) (1) (0) (0) (0)
γγjj(L) (0.094) (1) (0.064) (0.064) (0)

γγUnCeLPTt 1.85 (1.78) 1 (1) 0.97 (0.77) 0.99 (0.87) 0.74 (0.58)
γγUnCeHPTt 0.34 (0.41) 1 (1) 1.36 (0.59) 1.44 (0.77) 2.27 (1.37)
γγUnReLPTt 1.90 (1.79) 1 (1) 1.11 (0.93) 1.12 (1.06) 0.76 (0.58)
γγUnReHPTt 0.32 (0.41) 1 (1) 1.45 (0.69) 1.50 (0.89) 1.66 (0.97)
γγCoCeLPTt 1.85 (1.78) 1 (1) 1.03 (0.77) 0.99 (0.87) 0.74 (0.58)
γγCoCeHPTt 0.35 (0.43) 1 (1) 1.41 (0.65) 1.48 (0.78) 2.43 (1.44)
γγCoReLPTt 1.95 (1.83) 1 (1) 1.14 (0.95) 1.15 (1.09) 0.78 (0.60)
γγCoReHPTt 0.33 (0.40) 1 (1) 1.49 (0.75) 1.46 (0.91) 1.67 (1.05)
γγCoTr 1.37 (1.30) 1 (1) 1.37 (0.95) 1.30 (1.09) 0.86 (0.66)
γγ2j 0.02 1 0.01 0.01 0.02

γγ2j (H) (0.037) (1) (0.010) (0.012) (0.018)
γγ2j (L) (0.95) (1) (9.3) (9.6) (3.8)
γγLepTag (0.65) (1) (359.4) (160.2) (551.4)

I 1 1 1 1 1
A 0 0 1 1 0

VBF 0.029 1 0.019 0.019 0
ttH 0 0 0 0 1

Here,
ls � logrM2

s {m2
t s, yt � mtpmtq{pv sin βq,

xt � pAt � µ cot βq{Ms, µ̃ � µ{Ms, Êat � At{Ms

c11 � 1
32π2 p12y2

t � 32g2
3pmtqq

c21 � 1
32π2 p6y2

t � 32g2
3pmtqq

c31 � � 1
32π2 p9y2

t � 32g2
3pmtqq (4.59)
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For the BMSSM we get,

∆λ5 � 2ε1 ∆λ6 � 2ε2 ∆λ7 � 2ε2 (4.60)

For the D-term extension we get,

∆λ1 � 2κ ∆λ2 � 2κ ∆λ3 � �2κ (4.61)

Finally for the NMSSM with no doublet singlet mixing we get,

∆λ4 � |λS|2 (4.62)

The case of NMSSM with doublet singlet mixing has been dealt with in great detail in
Sec. Ê4.5.1. For F-terms from triplets we get,

∆λ1 � 2|λT |2 ∆λ2 � 2|λT̄ |2 (4.63)

We can now write the mass matrix elements of the CP-even sector in terms of these couplings,

M12 � 2v2rpλ3 � λ4qsβcβ � λ6c
2
β � λ7s

2
βs �m2

Aσcβ (4.64)
M12 � 2v2rλ1c

2
β � 2λ6cβsβ � λ5s

2
βs �m2

Aσ
2 (4.65)

M22 � 2v2rλ2s
2
β � 2λ7cβsβ � λ5c

2
βs �m2

Ac
2
β (4.66)

where we have used [155],

m2
12 � σcβpm2

A � 2λ5v
2 � λ6t

�1
β v2 � λ7tβv

2q. (4.67)

Once we know the CP-even matrix elements we can easily find the exact coupling deviations.
First we demand that the light Higgs mass,

m2
h �

1
2

�
M11 �M22 �

a
pM22 �M11q2 � 4M2

12

	
(4.68)

is equal to 125 GeV by choosing an appropriate value of the stop mass in the MSSM, an
appropriate value of gX for the D-term extension and an appropriate value of λ for the
NMSSM. Now we can compute cb � � sinα{ cos β and ct � cosα{ sin β, where α is extracted
from

tan 2α � 2M12

M11 �M22
. (4.69)



Chapter 5

The Renormalized Hamiltonian
Truncation Method

5.1 Introduction and review
An outstanding problem in theoretical physics is to solve strongly coupled Quantum Field
Theories (QFT). When they are not amenable to analytic calculations one can resort to
numerical approaches. The two most used numerical approaches are lattice simulations and
direct diagonalization of truncated Hamiltonians. In this paper we further develop the Hamil-
tonian truncation method recently presented in Ref. [7,8,190], that renormalizes the truncated
Hamiltonian HT to improve the numerical accuracy.

The Hamiltonian truncation method consists in truncating the Hamiltonian H into a large
finite matrix pHT qij and then diagonalizing it numerically. There is a systematic error with
this approach that vanishes as the size of the truncated Hamiltonian HT is increased. There
are different versions of the Hamiltonian truncation method that mainly differ on the frame
of quantization and the choice of basis in which H is truncated. Two broad categories within
the Hamiltonian truncation methods are the Truncated Conformal Space Approach [191] and
Discrete Light Cone Quantization [192]. A less traveled route consists in using the Fock-Space
basis to truncate the Hamiltonian [7,190,193–197]. Lately there have been many advances in
the Hamiltonian Truncation methods, see for instance [8, 198–204].

We review the truncated Hamiltonian approach following the discussion of Ref. [7,8]. The
problem we are interested in is finding the spectrum of a strongly coupled QFT. Therefore
we want to solve the eigenvalue equation

H| E y � E | E y , (5.1)

where H � H0 � V , H0 is a solvable Hamiltonian or the free Hamiltonian and V is the
potential. H0 is diagonalized by the states H0|En y � En|En y. Suppose we are interested in
studying the lowest energy states of the theory. One way to do it is separating the Hilbert
space H into H � Hl `Hh, where Hl is of finite dimension and it is spanned by the states

91
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|En y with En ¤ ET . Then, the Hilbert space Hh is an infinite-dimensional Hilbert space
containing the rest of the states En ¡ ET . The states are projected as Pl|x y � | xl y P Hl and
pI� Plq|x y � Ph|x y � | xh y P Hh. Then, the eigenvalue problem can be replaced by

Heff pEq| El y � E | El y , (5.2)

where Heff � HT �∆HpEq, the truncated Hamiltonian is HT � PlHPl and

∆HpEq � Vlh
1

E �H0hh � Vhh
Vhl , (5.3)

with Oij � PiOPj for i, j P th, lu. To derive Eq. (5.2), project Eq. (5.1) into the two equations

Hll| El y �Hlh| Eh y � E | El y , Hhl| El y �Hhh| Eh y � E | Eh y , (5.4)

and then substitute | Eh y � pE �Hhhq�1 Hhl| El y from the second equation in (5.4) into the
first.

Notice that Eq. (5.2) is an exact equation and that a complete knowledge of ∆HpEq
would render the original eigenvalue problem of Eq. (5.1) solvable by an easy numerical
diagonalization. In the limit where ET Ñ 8 the corrections ∆H to HT can be neglected, but
it is computationally very costly to increase the size of HT and then diagonalize it. Therefore
it is interesting to calculate ∆H to improve the numerical accuracy for a given ET . A first
step to compute ∆H is to perform an expansion of Eq. (5.2) in powers of VhhpE �H0q�1,

∆HpE , ET q �
8̧

n�0
∆HnpE , ET q , where ∆HnpE , ET q � Vlh

1
E � Ehh

�
Vhh

1
E � Ehh


n
Vhl ,

where the matrix elements of ∆Hn are given by

∆HnpEqrs �
¸

j1,��� ,jn�1:Eji¡ET
Vrj1

1
E � Ej1

Vj1j2
1

E � Ej2
Vj2j3 � � �Vjn�2jn�1

1
E � Ejn�1

Vjn�1s ,(5.5)

in the H0 eigenbasis and the sums run over all labels j1, . . . , jn�1 of states belonging to Hh

with r, s denoting the matrix elements (corresponding to eigenstates of H0 with Es, Er ¤ ET
eigenvalues). Naively the truncation of the series in Eq. (5.5) is justified for Vhh{H0hh   1
which for large enough ET and E ! ET is fulfilled, and allows to go to strong coupling. This
is discussed in detail in Sec. 5.5.3. The operator ∆H depends on the exact eigenvalue and
in practice the way Eq. (5.2) is solved is by diagonalizing iteratively Heff pE�q starting with
an initial seed E�. It is convenient to take E� close to the exact eigenvalue E , a simple and
effective choice is to take the eigenvalue obtained from diagonalizing HT .

In Ref. [7] the φ4 theory in two dimensions was studied at strong coupling using the
Hamiltonian truncation method just presented in the Fock basis. There, the leading terms of
∆H2 doing a local expansion were computed and shown to improve the results with respect
to the ones found by only diagonalizing HT . The main result of our work is to explain a way
to calculate the exact corrections to ∆H at any order ∆Hn. As an example we calculate the
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∆H2 correction and some of the ∆H3 terms for the φ4 theory in two dimensions and present
various approximation schemes for a faster numerical implementation. This can be seen as
an extension of the method presented in Ref. [7] which we believe to be very promising.

The paper is organized as follows. In Sec. 5.2 we introduce a general formula to compute
∆HnpE , ET q at any order n. Then we apply the method to the φ2 and φ4 scalar field theories
in d � 2 space-time dimensions which we first define in Sec. 5.3. The method is tested in
Sec. 5.4 by studying the spectrum of the solvable φ2 perturbation with the calculation of
∆H2 and ∆H3. Other numerical tests are also performed in this section. Next, in Sec. 5.5
we give the ∆H2 correction for the φ4 theory, and discuss the ∆H3 calculation with some
examples. There we also discuss the convergence of the ∆Hn expansion and compute the
lowest energy levels of the theory at strong coupling. In Sec. 5.6, we conclude and outline
future directions of the method that are left open. In Appendix 5.6 we introduce a simple
diagrammatic representation to compute ∆Hn. Lengthy derivations and results are relegated
to the Appendices 5.6 and 5.6. All the numerical calculations for this work have been done
with Mathematica.

5.2 Calculation of ∆H at any order
In this section we present one of the main results of this paper which is the derivation of the
nth-order correction ∆Hn of Eq. (5.5) to the Truncated Hamiltonian. We start by defining
the operator

∆ pHpEq � 8̧

n�2
∆ pHnpEq , where ∆ pHnpEq �

�
V

1
E �H0


n�1

V (5.6)

which in the H0 eigenbasis is given by

∆ pHnpEqrs �
8̧

j1, ..., jn�1�1
Vrj1

1
E � Ej1

Vj1j2
1

E � Ej2
Vj2j3 � � �Vjn�2jn�1

1
E � Ejn�1

Vjn�1s , (5.7)

where the indices j1, j2, . . . , jn�1 run over the states of the full Hilbert space H. Notice that
the only difference between ∆Hn and ∆ pHn is that the later receives contributions from all the
eigenstates of H0 while ∆Hn only from those with Ej energies Ej ¡ ET . This translates into
the fact that each term in ∆HnpEq has all the poles located at E ¡ ET as seen in Eq. (5.5).

From here the derivation of ∆Hn follows from the observation that Eq. (5.7) can be
rewritten as the improper Fourier transform of the product of potentials restricted to positive
times

∆ pHnpEqrs � lim
εÑ0

p�iqn�1
» 8

0
dt1 � � � dtn�1 e

ipE�Er�iεqpt1����tn�1q T tV pT1q � � �V pTnqurs , (5.8)

where Tk �
°i�n�k
i�1 ti, V ptq � eiH0tV e�iH0t and T denotes the time ordering operation 1.

1This can be seen by introducing the indentity I � °
n |En y xEn | between each pair of V ’s in Eq. (5.8)

and integrating over all times t1, . . . tn. Also notice that the time ordering operation is trivial because the V
operators are time ordered in all the integration domain. The limεÑ0 is taken at the end of the calculation.
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Then, our method consists in applying the Wick theorem to Eq. (5.8) to calculate ∆ pHn and
obtaining ∆Hn by keeping only the terms of ∆ pHn corresponding to states with Ej ¡ ET , i.e.
by keeping only the terms of ∆ pHn which have all poles above ET . 2 In the following sections
we show how to carry this procedure for the cases of the φ2 perturbation and φ4 theory.

5.3 Scalar theories
We study scalar theories in two space-time dimensions defined by the Minkowskian action
S � S0 � SI where

S0 � 1
2

» 8

�8
dt

» L
0
dx : pBφq2 �m2φ2 : , (5.9)

SI � �
» 8

�8
dt V pφq � �gα

» 8

�8
dt

» L
0
dx : φα : . (5.10)

For simplicity we consider the cases where α � 2, 4 and m2 ¡ 0. The symbol : : stands for
normal ordering which for S0 means that we set the vacuum energy to zero; while the inter-
action term is normal ordered with respect to S0, which in perturbation theory is equivalent
to renormalize to zero the UV divergences from closed loops with propagators starting and
ending on the same vertex.

To study these theories using the Hamiltonian truncation method we begin by defining
them on the cylinder R � S1 where the circle corresponds to the space direction which we
take to have a length Lm " 1, and R is the time. We impose periodic boundary conditions
φpt, xq � φpt, x � nLq for n P Z on S1. The compact space direction makes the spectrum of
the free theory discrete and regularizes the infra-red (IR) divergences.

In canonical quantization the scalar operators can be expanded in terms of creation and
annihilation operators as

φpxq �
¸
k

1?
2Lωk

�
ake

ikx � a:ke
�ikx

	
, (5.11)

where ωk �
?
m2 � k2, k � 2πn

L
with n P Z and the creation and anihilation operators satisfy

the commutation relations

rak, a:k1s � δkk1 , rak, ak1s � 0 . (5.12)

The Hamiltonian then reads H � H0 � V , where

H0 �
¸
k

ωk a
:
kak (5.13)

2This procedure can be formalized as follows. The first correction can be written as
∆H2pEq � ³

C
dz
2πi

∆xH2pzq
E�z , where C is any path than encircles only all the poles above ET . For

∆H3pEq � ³
C
dz
2πi

1
E�z

³
C
dz1

2πi
1

E�z1
∆ pH3pz1, zq where we have generalized the operator ∆ pH3pz, z1qrs �

� limεÑ0
³8
0 dt1dt2 e

ipz�Er�iεqt1eipz
1�Er�iεqt2 T tV pT1qV pT2qV pT3qurs. The generalization to the nth cor-

rection is straightforward.
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and the potentials for a φ2 and a φ4 interaction are given by

V � g2
¸
k1k2

L δk1�k2,0a
2Lωk1

a
2Lωk2

�
ak1ak2 � a:�k1ak2

	
� h.c. , (5.14)

and

V � g
¸

k1,k2,k3,k4

L δ°4
i�1 ki,0±4

i�1
a

2Lωki

�
ak1ak2ak3ak4 � 4a:�k1ak2ak3ak4 � 3a:�k1a

:
�k2ak3ak4

	
� h.c. ,

(5.15)
respectivley, where g � g4 and δk1�k2,0, δ°4

i�1 ki,0
stand for Kronecker deltas.

We implement the Hamiltonian truncation using the basis of H0 eigenstates

|Ei y �
a:nNkN?
nN !

� � � a
:n2
k2?
n2!

a:n1
k1?
n1!

| 0 y . (5.16)

which satisfy I � °i |Ei y xEi |, where Ei �
°N
s�1 ns

a
k2
s �m2 and H0| 0 y � 0 . The Hilbert

space is divided into H � Hl `Hh with Hl spanned by the states |Er y such that Ei ¤ ET
while Hh is spanned by the rest of the basis. Then, the truncated Hamiltonian is

pHT qrs � xEr |H|Es y , for Ei ¤ ET . (5.17)

In this basis, the operator ∆H is given by

∆HpEqrs �
¸
j, j1

Vrj

� 1
E �H0 � V

	
jj1
Vj1s (5.18)

where the labels r, s denote entries with Er, Es ¤ ET and the sum over j, j1 runs over all
states with Ej, Ej1 ¡ ET .

The HamiltonianH can be diagonalized by sectors with given quantum numbers associated
with operators that commute with H. These are the total momentum P , the spatial parity
P : x Ñ �x and the field parity Z2 : φpxq Ñ �φpxq, which act on the H0-eigenstates as

P |Ei y �
°
s nsks|Ei y, P

±N
i�1

a
:ni
ki?
ni!
| 0 y � ±N

i�1
a
:ni
�ki?
ni!
| 0 y and Z2|Ei y � p�1q°s ns |Ei y. We

work in the orthonormal basis of eigenstates of H0, P , P and Z2 given by

| rEi y � β � p|Ei y � P |Ei yq , (5.19)

where β � 1{2, 1{?2 for P |Ei y � |Ei y and P |Ej y � |Ej y, respectively. As done in
Ref. [7], in the whole paper we focus on the sub-sector with total momentum P | rEi y � 0,
spatial parity P | rEi y � �| rEi y and diagonalize separately the Z2 � � sectors. 3 In this paper
we do not investigate the dependence of the spectrum as a function of the length L of the
compact dimension which we leave for future work, and always consider it to be finite. 4 All
the numerical calculations are done for m � 1 and L � 10.

3 For the V � ³
dt : φ2 : theory, the matrix element xEi |V |Ej y � 0 with P|Ei y � |Ei y and P|Ej y � |Ej y.

Therefore, one can diagonalize the P|Ei y � |Ei y and P|Ei y � |Ei y sectors separately.
4To match the L Ñ 8 spectrum one has to take into account the Casimir energy difference between the

LÑ8 and the finite L theory and inspect how various states converge as L is increased. See Refs. [205,206]
and Ref. [7] for a thorough study of the L dependence.
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5.4 Case study φ2 perturbation
In this section we apply the method introduced in Sec. 5.2 to the scalar theory H � H0 � V

with a potential

V � g2

» L
0
dt : φ2 : (5.20)

This is a simple theory that allows to illustrate various aspects of the calculation of ∆ pH
in Eq. (5.8) and its relation to ∆H. Also since the theory is solvable we can compare our
procedure with the exact results. The theory is solved by using the eigenstates of H, given
by

| Ei y �
b:nNkN?
nN !

� � � b
:n2
k2?
n2!

b:n1
k1?
n1!

|Ω y , (5.21)

where |Ω y � | E0 y is the vacuum of the theory and b:/b are the creation/annihilation operators
so that

H �
¸
k

b:kbkΩk � E0 , (5.22)

with Ωk �
a
ω2
k � 2g2. Then, one can relate the operators b:{b to the a:{a in H0 (given in

Eq. (5.13) and Eq. (5.14)) by the Bogolyubov transformation bk � sinhαk a:�k � coshαk ak
provided that Ωk sinh 2αk � ω�1

k g2, Ωk cosh 2αk � ωk � g2{ωk. Then, since x0 |H| 0 y � 0 we
have that [7]:

E0pg2q � 1
2
¸
k

�b
ω2
k � 2g2�ωk� g2

ωk

� � L pm2 � 2g2q
8π

�
log
� m2

m2 � 2g2

	
� 2g2

m2 � 2g2

�
, (5.23)

where the sum can be done by means of the Abel-Plana formula, which is the exact vacuum
energy of the theory.

A brief summary of the rest of this section is the following. In Sec. 5.4.1 and Sec. 5.4.2
we calculate the 2 and 3-point corrections to the operator ∆H. In Sec. 5.4.3 we perform
a numerical test to check that our expressions for ∆H are correct. Then, in Sec. 5.4.4 we
discuss the numerical results and the convergence of the expansion ∆HpEiq �

°
n ∆HnpEiq

by comparing with the exact spectrum Ei.

5.4.1 Two-point correction
Following the steps explained in Sec. 5.2 we begin the calculation of the two-point correction
by first computing ∆ pH2. From Eq. (5.8) we have that

∆ pH2pEqrs �
¸
j

Vrj
1

E � Ej
Vjs � lim

εÑ0
�i
» 8

0
dt eipE�Er�iεqtT tV ptqV p0qurs . (5.24)

Then, applying the Wick theorem to Eq. (5.24) we find

lim
εÑ0

�ig2
2

» 8

0
dt eipE�Er�iεqt

» L{2
�L{2

dxdz
2̧

m�0
s2�mD2�m

F pz, tq : φmpx� z, tqφmpx, 0q :rs , (5.25)
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where sp �
�2
p

�2
p! are the symmetry factors and DF pz, tq is the Feynman propagator with

discretized momenta. Henceforth we label the terms m � 0, 1, 2 by ∆ pHφ2m

2 so that ∆ pH2 �
∆ pH1

2 �∆ pHφ2

2 �∆ pHφ4

2 and similarly for ∆H2; the labels only inform about the total number
of fields in each term which do not need to be local. Due to the time integration domain, it
is convenient to use half Feynman propagator

DLpz, tq � DF pz, tqθptq � 1
2L

n�8̧

n��8

1
ωk
e�iωktei

2πnz
L θptq , (5.26)

the momentum of the propagator is discretised due to the finite extent of the space. Next,
we proceed to calculate the operators in Eq. (5.25), starting with the detailed calculation of
the coefficient of the identity operator ∆ pH1

2 :

∆ pH1
2 pEqrs � lim

εÑ0
�is2g

2
2

» 8

0
dt

» L{2
�L{2

dz eipE�Er�iεqt1D2
Lpt, zq1rs , (5.27)

where 1rs � δrs
³L{2
�L{2 dz has dimensions of rEs�1. Then, upon inserting the propagator of

Eq. (5.26) and performing the space-time integrals we find

∆ pH1
2 pEqrs �

s2g
2
2

4L
¸
k

1
ω2
k

1
E � Er � 2ωk

1rs . (5.28)

The operator in Eq. (5.28) has poles from all possible intermediate states and, as explained
in Sec. 5.2, the operator ∆H1

2 pEq is found by keeping only those terms with poles located at
Er � 2ωk ¡ ET , therefore

∆H1
2 pEqrs � s2g

2
2

L

¸
k:Er�2ωk¡ET

1
4ω2

k

1
E � Er � 2ωk

1rs . (5.29)

The calculations of ∆Hφ2

2 is similar to the one for Eq. (5.29), we start by computing

∆ pHφ2

2 pEqrs � lim
εÑ0

�is1g
2
2

» 8

0
dt

» L{2
�L{2

dxdz eipE�Er�iεqt1DLpz, tq : φpx� z, tqφpx, 0q :rs , (5.30)

where we expand : φpx�z, tqφpx, 0q : in modes, as in Eq. (5.11), and do the simple space-time
integrals. For the full expressions of ∆ pHφ2

2 see Appendix 5.6. Then, keeping only the terms
with poles at E ¡ ET we get

∆Hφ2

2 pEqrs � s1g
2
2

¸
q: 2ωq�Er¡ET

1
4ω2

q

1
E � Er � 2ωq

pa:qaqqrs . (5.31)

The operator ∆Hφ4

2 is obtained in a similar way,

∆Hφ4

2 pEqrs � s0g
2
2

¸
q1,q2: 2ωq2�Er¡ET

1
4ωq2ωq1

1
E � Er � 2ωq2

�
a:q1a

:
�q1aq2a�q2

�
rs
. (5.32)
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In Appendix 5.6 we give a simple way to derive these expressions from diagrams, and for
the full expressions of ∆ pHφ2

2 and ∆ pHφ4

2 see Appendix 5.6. Notice that the values of q1, q2

and q appearing in the sums of Eq. (5.31) and Eq. (5.32) can take only the momenta of the
states |Es y P Hl on which a and a: act, and therefore are bounded. On the other hand, the
values of the k’s in Eq. (5.29) go all the way to infinity. Also, even though the operators in
Eq. (5.31) and Eq. (5.32) may seem not hermitian due to the Er appearing in the expressions,
one can see that the operator p∆Hφ2

2 qrs is diagonal and therefore Er � Es, while ∆Hφ4

2 is not
diagonal, but one can check that Er � 2ωq2 � Es � 2ωq1 , making it hermitian as well.

We end this section by noticing that the operator of Eq. (5.29) can be rewritten as

p∆H1
2 qrs �

» 8

ET

dE

E � E

s2g
2
2

L

8̧

k��8

δpE � Er � 2ωkq
p2ωkq2 1rs � s2g

2
2

» 8

ET

dE

2π
Φ2pE � Erq
E � E

1rs ,

(5.33)
where Φ2 is the two-particle phase space with discretized momenta,

Φ2pE � Erq �
¸
k1,k2

L δk1�k2, 0

p2Lωk1q p2Lωk2q
2π δpE � Er � ωk1 � ωk2q , (5.34)

where from Eq. (5.33) one has that E � Er ¡ 2m. 5 Eq. (5.33) can be evaluated by means
of the Abel-Plana formula, which for LET " 1 is well approximated by its continuum limit 6.
The continuum two-body phase space is given by

Φ2pEq �
» 8

�8

d2p1

p2πq2 2ωp1

d2p2

p2πq2 2ωp2

p2πq2 δp2qpP µ � p1 � p2q � 1
E
?
E2 � 4m2 , (5.35)

where P µ � pE, 0q and E ¡ 2m. Therefore (for LET " 1) we find

∆H1
2 pEqrs � s2g

2
2

» 8

ET

dE

2π
1

E � E

1
E � Er

1apE � Erq2 � 4m2
θpE � Er � 2mq1rs . (5.36)

This result is useful for numerical implementation since Eq. (5.36) can be integrated in terms
of logarithmic functions. Finally, we notice that upon expanding the function s2{p2πqΦ2pEq
around m{E � 0 we find agreement with Ref. [7] that computed it by other means (there
called µ220pEq � 1{pπE2q).

5.4.2 Three-point correction
The calculation of the three-point correction ∆H3 also starts from the expression in Eq. (5.8)

∆ pH3pEqrs � � lim
εÑ0

» 8

0
dt1dt2 e

ipE�Er�iεqpt1�t2qT tV pT1qV pT2qV pT3qurs , (5.37)

5The lower limit in Eq. (5.33) should be taken slightly above ET to reproduce the lower limit q : 2ωq�Er ¡
ET in the sum of Eq. (5.28).

6The difference between the continuum limit and discrete result ranges from Opg2L�1E�3
T q to

Opg2L�1E�1
T m�2q depending on the matrix entry.
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where Tk �
°3�k
n�1 tn. Next we apply the Wick theorem and find that the time ordered product

T tV pT1qV pT2qV pT3qu is given by

g3
2

» L{2
�L{2

dx1dx2dz
2̧

m,n,v�0
smnv2 Dm

F px1, t1qDn
F px2, t2qDv

F px1�x2, t1� t2q : φ2�n�m
X1,T1 φ2�n�v

X2,T2 φ
2�v�m
X3,T3 :

(5.38)
where we have introduced the notation Xk � z � °3�k

n�1 xn and φx,t � φpx, tq; while the
symmetry factor is given by

smnvp � p!3
pp�m� nq!pp�m� vq!pp� n� vq!m!n!v! . (5.39)

We use the same notation as in the previous section ∆ pH3 � ∆ pH1
3 �∆ pHφ2

3 �∆ pHφ4

3 �∆ pHφ6

3 ,
and similarly for ∆H3. Then, upon performing the space-time integrals in Eq. (5.38) and
only keeping the terms with all the poles above ET we find ∆H3. Then, for the term ∆H1

3
we get

∆H1
3 pEqrs � s111

2 g3
2

1
L

¸
k:Ers�2ωk¡ET

1
p2ωkq3

1
pE � Er � 2ωkq2

1rs . (5.40)

The expressions for ∆Hφ2

3 , ∆Hφ4

3 and ∆Hφ6

3 are lengthy but straightforward to obtain and
are relegated to Appendix 5.6.

As done in the previous section, Eq. (5.40) can be written as

∆H1
3 pEqrs � s111

2 g3
2

» 8

ET

dE

pE � Eq2
1
L

¸
k

1
p2ωkq3 δpE � Er � 2ωkq1rs , (5.41)

which for L�1ET " 1 is well approximated by its continuum limit

∆H1
3 pEqrs � s111

2
g3

2
2π

» 8

ET

dE

pE � Eq2
1

pE � Erq2
1apE � Erq2 � 4m2

1rs , (5.42)

and can be integrated in terms of logarithmic functions. This is useful for a fast numerical
implementation.

5.4.3 A numerical test

We perform a numerical check to test our prescription to select the poles of ∆ pHnpEq to get
∆Hn, i.e. that we can select the desired intermediate states of H0 by looking at the poles of
the terms of ∆ pHn. The check consists in computing ∆ pH2 as explained, and then selecting
only the terms with all poles at E ¤ ET . We refer to the expression as ∆H ll

n to differentiate
it with ∆Hn that only receives corrections from terms with poles at E ¡ ET . ∆H ll

2 is then
compared with the matrix elements of V PlpE �H0q�1PlV , finding an exact agreement. The
same is done for ∆ pH3pEq by comparing it against V PlpE�H0q�1V pE�H0q�1PlV . This check
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Figure 5.1: Comparison of both sides of Eqs. (5.43) and (5.44).

has been done for all the matrices used in the present work, both for φ2 and φ4. For brevity
we only show the check for two matrix entries of the φ2 theory. These are

x6k�0 |V Pl 1
E �H0

PlV | 6k�0 y �
¸

k: 2ωk�6m ET

g2
2

2ω2
k

1
E � 6m� 2ωk

� 3 g2
2

2m2

�
5

E � 4m � 24
E � 6m � 9

E � 8m



, (5.43)

x0 |V Pl 1
E �H0

V
1

E �H0
PlV | 0 y � g3

2

¸
k: 2ωk ET

1
ω3
k

1
pE � 2ωkq2 . (5.44)

In Fig. 5.1 we compare both sides of equations Eq. (5.43) and (5.44). The red curves corre-
spond to the right hand side of Eqs. (5.43)-(5.44), which are our analytical results, and the
blue dots are given by the product of the matrices in the left hand side of the equations. In
the left plot, done for x6k�0 |∆H ll

2 | 6k�0 y, the first pole arises at the four-particle threshold
and subsequent poles appear for higher excited states. Instead, the first pole in the right plot,
done for x0 |∆H ll

3 | 0 y, occurs at E � 2m. Notice that in both figures there are no poles for
E ¡ ET .

5.4.4 Spectrum and convergence

We perform a numerical study of the convergence of the energy levels as a function of the
truncation energy ET and their convergence as higher order corrections ∆Hn are calculated
for a fixed ET . We use the formulas in Eqs. (5.29)-(5.32), (5.40) and (5.6.112)-(5.6.115) to
numerically compute ∆H2 and ∆H3. 7

7 The sums over k in Eqs. (5.29)-(5.32), (5.40) and (5.6.112)-(5.6.115) have been done with a cutoff k � 250.
We have checked that increasing the cutoff has little impact on the results and find agreement with analytic
formulas like Eq. (5.33).
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Figure 5.2: Left: comparison of the exact vacuum energy with the numerical result as a
function of the coupling constant g2 (for V � g2

³
dxφ2). Right: left plot with the y-axis

zoomed in a factor �20.

We begin by comparing the vacuum eigenstate E i0 obtained by numerically diagonalizing
HT �

°N
n�2 ∆Hn (for N � 2 and 3) with the exact vacuum energy E0. In Fig. 5.2 we show

a plot of ∆i
0 � E i0 � E0 as a function of the coupling constant g2. The plot is done for a

truncation energy of ET � 12 and L � 10 (recall that we work in m � 1 units). For an
easier comparison with previous work, these plots have been done with the same choice of
parameters and normalizations as in Fig. 2 of Ref. [7]. The gray curve in Fig. 5.2 is obtained
by numerically diagonalizing HT , whose lowest eigenvalue is ET

0 . The blue curve is obtained
by diagonalizing the renormalized hamiltonian HT � ∆H2pET

0 q, whose lowest eigenvalue is
EV V0 . Lastly, the green curve is obtained by diagonalizing HT �∆H2pEV V0 q �∆H3pEV V0 q (we
find little difference in evaluating the latter operator in ETrunc

0 instead of EV V0 ). The right plot
of Fig. 5.2 is a zoomed in version of the left plot in order to resolve the difference between
the ∆V V

0 and ∆V V V
0 curves.

The right plot shows that overall ∆V V V
0 performs better than ∆V V

0 , this indicates that
the truncation of the series expansion ∆H � °8

n�2 ∆Hn at n � 3 is perturbative in the
studied range. The effect is more pronounced for the highest couplings g2 � r0.6, 0.8s. As
a benchmark value E0pg2 � 0.8q � �0.351864, see Eq. (5.23). Therefore the relative error
at g2 � 0.8 is 2%, 0.01% and 0.002% for the Truncated, the V V and the V V V corrections,
respectively.

Next, we check the convergence of the energy levels as a function of the truncation energy
ET . In Fig. 5.3, in the left plot we show ∆i

0 � E i0 � E0 as a function of the truncation
energy ET , for i �Trunc, V V and V V V . Both the ∆V V

0 and ∆V V V
0 curves give better results

than ∆Trunc
0 for the whole range. Also, the curves ∆V V

0 and ∆V V V
0 have a better convergence

behavior and, when converged, they are closer to zero than ∆Trunc
0 . The right plot is a zoomed

in version to resolve the difference between ∆V V
0 and ∆V V V

0 . The plot shows that for ET À 15
the curve ∆V V

0 gives better results than ∆V V V
0 while for larger ET the behavior is reversed.

This indicates that for ET À 15 (and g2 � 1.8) the truncation of the series ∆H � °8
n�2 ∆Hn

is not a good approximation, and adding more terms will not improve the accuracy. However,
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Figure 5.3: Left: comparison of the exact vacuum energy with the numerical result as a
function of the truncation energy ET . Right: left plot zoomed in.

as ET is increased it pays off to introduce higher order corrections to get a better result. This
is because ∆V V V

0 has a faster converge rate than ∆V V
0 to the real eigenvalue. The value is

E0pg2 � 1.8q � �1.360719, see Eq. (5.23). Therefore the relative error at ET � 20 is 1%,
0.04% and 0.009% for the Truncated, the V V and the V V V corrections, respectively.
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Figure 5.4: Left: comparison of the exact energy difference E1�E0 with respect the numerical
result as a function of the truncation energy ET . Right: left plot zoomed in. On both plots
we have taken the absolute value of the curve corresponding to the V V corrections, in blue.

In Fig. 5.4 we repeat the plots of Fig. 5.3 for the first Z2-even excited state but taking
the absolute value of the ∆V V

1 curve for clarity. The plots show a similar convergence rate
for the three ∆i

1 curves. However, there is a similar pattern compared to Fig. 5.3: for
ET À 15 introducing higher order corrections of the series ∆H � °8

n�2 ∆Hn gives worse
results, while for larger values of ET adding higher ∆Hn corrections improves them. The
value is E1pg2 � 1.8q � 0.784042, hence the relative error at ET � 20 is 0.8%, 0.3% and 0.17%
for the Truncated, the V V and the V V V corrections, respectively.
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5.5 The φ4 theory

Next we apply the method presented in previous sections to the φ4 theory. We start by deriv-
ing the exact expressions for ∆H2 in detail, then we perform various useful approximations
for a faster numerical implementation and discuss general aspects of the method. We also
discuss the pertubativity of the ∆Hn expansion and compute the spectrum of the theory at
different couplings while studying its behaviour in ET and g using the results of ∆H2. We
end the section with some comments on future work and a discussion of the calculation of
∆H3.

5.5.1 Two-point correction

Again, we follow Sec. 5.2 to derive ∆H by first computing ∆ pH. From Eq. (5.8) we have

∆ pH2pEqrs �
¸
j

Vrj
1

E � Ej
Vjs � lim

εÑ0
�i
» 8

0
dt eipE�Er�iεqtT tV ptqV p0qurs . (5.45)

It is convenient to re-write the two-point correction in the following equivalent form

∆ pH2pEqrs �
¸
j

Vrj
1

E � Ej
Vjs � lim

εÑ0
�i
» 8

0
dt eipE�Ers�iεqtT tV pt{2qV p�t{2qurs , (5.46)

where Ers � pEr � Esq{2. Applying the Wick theorem we find

�ig2
» 8

0
dt eipE�Ers�iεqt

» L{2
�L{2

dxdz
4̧

m�0
s4�mD4�m

F pz, tq : φmpx�z, t{2qφmpx,�t{2q :rs , (5.47)

where sp �
�4
p

�2
p! are the symmetry factors. By integrating Eq. (5.47) and keeping only the

contributions from high energy intermediate states Ej ¡ ET we obtain the exact expression
for ∆H2. We use the shorthand notation ∆H2 � ∆H1

2 �∆Hφ2

2 �∆Hφ4

2 �∆Hφ6

2 �∆Hφ8

2 for
m � 0, 1, 2, 3, 4, and similarly for ∆ pH2. For ∆H1

2 , ∆Hφ2

2 we obtain:

∆H1
2 pE , ET q � s4g

2

24L2

¸
k1k2k3k4

1
ωk1ωk2ωk3ωk4

F0pk1, k2, k3, k4, E , ET q , (5.48)

∆Hφ2

2 pE , ET q � s3g
2

24L2

¸
k1,k2,k3

¸
q1,q2

1
ωk1ωk2ωk3

1?
ωq1ωq2

F2pk1, k2, k3, q1, q2, E , ET q , (5.49)

where F0pk1, k2, k3, k4, E , ET q is given by

F0 rs � δΣ4
i�1ki,0

θpωk1 � ωk2 � ωk3 � ωk4 � Ers � ET q
E � ωk1 � ωk2 � ωk3 � ωk4 � Ers

1rs , (5.50)
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and the operator F2pk1, k2, k3, q1, q2, E , ET q is given by

F2 rs � δk1�k2�k3,q1 δq1,�q2

θpErs � ωk1 � ωk2 � ωk3 � ET q
E � Ers � ωk1 � ωk2 � ωk3

paq1aq2qrs

� δk1�k2�k3,q1 δq1,�q2

θpErs � ωk1 � ωk2 � ωk3 � ET q
E � Ers � ωk1 � ωk2 � ωk3

pa:q1a
:
q2qrs

� δk1�k2�k3,q2 δq1,q2

θpErs � ωk1 � ωk2 � ωk3 � ωq � ET q
E � Ers � ωk1 � ωk2 � ωk3 � ωq

pa:q1aq2qrs

� δk1�k2�k3,q2 δq1,q2

θpErs � ωk1 � ωk2 � ωk3 � ωq � ET q
E � Ers � ωk1 � ωk2 � ωk3 � ωq

pa:q1aq2qrs . (5.51)

In Eqs. (5.48)-(5.49), all qi’s are bounded from above (qi ¤ qmax) because they correspond
to the momenta of creation/annihilation operators that act on the light states (i.e. states
in Hl). Instead the ki � 2πni{L run over all possible values ni P Z. Similar expressions for
∆Hφ4

2 , ∆Hφ6

2 , ∆Hφ8

2 are given in Appendix 5.6. As mentioned before, a simple way to derive
these expressions from diagrams is given in Appendix 5.6. We have performed the same kind
of numerical checks done in Sec. 5.4.3 for all the operators ∆ pH2 in the φ4 theory.

Approximations

The exact expressions for ∆H2 are computationally demanding. Here we present different
approximations that speed up the calculations and simplify their analytic structure. These
basically consist in approximating the contribution from the highest energy states to ∆H in
terms of a local expansion (as normally done in Effective Field Theory calculations), while
keeping the contributions from lower energy states in their original non-local form. This is
achieved by defining an energy EL and then by separating ∆H2 into two parts, ∆H2� where
we only sum over intermediate states with Ej ¥ EL and ∆H2� where we sum over those with
ET   Ej   EL.

∆H2�pE , ELqrs � ∆H2pE , ELqrs, , (5.52)

∆H2�pE , ET , ELqrs � ∆H2pE , ET qrs �∆H2pE , ELqrs . (5.53)

We choose EL " ET so that ∆H2� is well approximated by local operators 8. As an example
we show how to implement this procedure for the contribution of ∆Hφ2

2 given in Eq. (5.49)
and Eq. (5.51). We start by examining the term ∆Hφ2

2�pE , ELq � ∆Hφ2

2 pE , ELq, which is
obtained by replacing ET by EL in Eq. (5.51). In this case

°
i ωki Á EL " ET Á ωq, Ers, and

then it can be well approximated by

∆Hφ2

2� � c2 V2 (5.54)

8In the cases where we are only interested in having a good approximation for the lower energy entries r, s
of the matrix, then EL can be taken to be similar to ET .
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with
c2pE , ELq � s3g

2

p2Lq3
¸

k1,k2,k3

L δk1�k2�k3,0

ωk1ωk2ωk3

θpωk1 � ωk2 � ωk3 � ELq
E � ωk1 � ωk2 � ωk3

, (5.55)

and V2 �
³L
0 dx φ

2pxq which has dimensions of rEs�1. The approximation in Eq. (5.54) receives
corrections of at most OpET {ELq. The expansion of ∆Hφ2

2� in terms of local operators can be
obtained by expanding the term ∆ pHφ2

2 in Eq. (5.47) around t, z � 0

∆ pHφ2

2 pEqrs � �ig2s2

» 8

0
dt eipE�Ers�iεqt

» L{2
�L{2

dzD2
F pz, tq

» L{2
�L{2

dx
�
: φ2px, 0q :rs �Opt2, z2q � ,

(5.56)
and, after integrating, keeping only the contributions from those states that produce poles
at E ¡ EL, when Ers is neglected. On the other hand ∆Hφ2

2�pE , ET , ELq � ∆Hφ2

2 pE , ET q �
∆Hφ2

2 pE , ELq is given by the same expressions as in Eq. (5.49) and Eq. (5.51) but now the
sums to perform are much smaller since the momenta of the intermediate states are restricted
between ET and EL.

The same exercise done for ∆Hφ2

2� can be done for ∆H1
2� and ∆Hφ4

2� and one has that in
the limit EL " ET

∆H1
2� � c0 1 , ∆Hφ2

2� � c2 V2 , ∆Hφ4

2� � c4 V4 , (5.57)

where Vα �
³L
0 dx φ

αpxq and has dimensions of rEs�1,

c0pE , ELq � s4g
2

p2Lq4
¸

k1,k2,k3,k4

L δk1�k2�k3�k4,0

ωk1ωk2ωk3ωk4

θpωk1 � ωk2 � ωk3 � ωk4 � ELq
E � ωk1 � ωk2 � ωk3 � ωk4

, (5.58)

c4pE , ELq � s2g
2

p2Lq2
¸
k1,k2

L δk1�k2,0

ωk1ωk2

θpωk1 � ωk2 � ELq
E � ωk1 � ωk2

, (5.59)

and c2 is given in Eq. (5.55). On the other hand the operators ∆Hφ6

2 and ∆Hφ8

2 are of the
tree-level and disconnected type because they involve one and zero propagators respectively,
see Eq. (5.47). Therefore the operators ∆Hφ6

2� and ∆Hφ8

2� are not well approximated by a
local expansion, and we do not approximate them. For EL sufficiently big though, ∆Hφ6

2� �
∆Hφ8

2� � 0 and all the contribution to ∆Hφ6

2 , ∆Hφ8

2 comes from ∆Hφ6

2�, ∆Hφ8

2�, as can be
explicitly seen from Eqs. (5.6.125)-(5.6.126). Notice that these operators only contribute to
the entries of ∆Hrs with high values for Er, Es. Again, the coefficients of the local operators
in Eq. (5.57) can be obtained by expanding ∆ pH2 in Eq. (5.47) around t, z � 0

∆ pH2pEqrs � �ig2
» 8

0
dt eipE�Ers�iεqt

» L{2
�L{2

dxdz
4̧

m�0
s4�mD4�m

F pz, tq : φ2mpx, 0q :rs �Opt, zq2 ,
(5.60)

and, after integrating, keeping only the contributions from those states that produce poles
at E ¡ EL, when Ers is neglected. The evaluation of the coefficients in Eq. (5.57) can still
be hard to evaluate numerically. In the next section we explain an alternative and simpler
derivation of the coefficients c2m and further approximations to evaluate them.
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5.5.2 Local expansion and the phase-space functions

From the first term in the local expansion of Eq. (5.60) the coefficients of the local operators
are given by:

ĉ2npEq � �ig2s4�n

» 8

0
dteipE�iεqt

» 8

�8
dxD4�n

F px, tq , (5.61)

where s4�n is the symmetry factor and, as explained above, the common Ers-shift on the
eigenvalue E is neglected. 9 Next, applying the Kramers-Kronig dispersion relation to cnpEq
in Eq. (5.61)

ĉ2npEq � �
» 8

�8

dE

π

1
E � E � iε

Im ĉ2npEq . (5.62)

Next, we compute Im ĉ2n. First we do the space integral which, up to g2s4�n, yields

Im� i
¸
k1s

L δ°
i ki, 0±

i 2Lωki

» 8

0
dteipE�

°
i ωki�iεqt � �1

2
¸
k1s

L δ°
i ki, 0±

i 2Lωki
2πδ

�
E �

¸
i

ωki

	
, (5.63)

where we have used DF pt, xqθptq � Dpt, xqθptq with Dpt, xq � °kp2Lωkq�1eikx�iωkt. Therefore
we find 10,

ĉ2npEq � g2s4�n
2π

» 8

�8

dE

E � E � iε
Φ4�npEq (5.64)

where ΦmpEq is the m-particle phase space

ΦmpEq �
¸

k1,k2,...,km

L δ°m
i�1 ki, 0±m

i�1 2Lωki
2πδ

�
E �

m̧

i�1
ωki

	
. (5.65)

Finally, the coefficients in Eq. (5.57) are obtained by including only the contributions from
poles located at E ¥ EL

c0pEq � s4 g
2
» 8

EL

dE

2π
1

E � E
Φ4pEq , (5.66)

c2pEq � s3 g
2
» 8

EL

dE

2π
1

E � E
Φ3pEq , (5.67)

c4pEq � s2 g
2
» 8

EL

dE

2π
1

E � E
Φ2pEq . (5.68)

It would be interesting to see if in general, higher ∆Hn� corrections can also be written in
terms of phase space functions. In the rest of the section we explain useful approximations
to evaluate Eqs. (5.66)-(5.68).

9The derivation of the coefficients ĉ2npEq in Eq. (5.61) applies to any φα theory.
10Eq. (5.64) can also be derived from the optical theorem, with careful treatment of the symmetry factors.
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Continuum and high energy limit of the phase space

We start by approximating the phase space by its continuum limit. 11 Recall that in the
continuum limit the relativistic phase-space for n-particles is given by

ΦnpEq �
» n¹

i�1

dk1
i

p2πq 2ωki
p2πq2δp2qpP µ �

ņ

i�1
kµi q , (5.69)

where P µ � pE, 0q and kµi � pωki , kiq. Then, for the 2-body phase space one has

Φ2pEq � 1
E
?
E2 � 4m2 . (5.70)

Next, solving for the Dirac delta’s in Eq. (5.69), the 3-body phase-space is given by

Φ3pEq � 1
2π

» pE�mq2

4m2

ds23b
s23
�
s23 � rE �ms2� �s23 � rE �ms2� ps23 � 4m2q

, (5.71)

with E ¥ 3m. This integral can be solved by standard Elliptic integral transformations and
we obtain,

Φ3pEq � g2

π

1
pE �mq

1apE �mq2 � 4m2
K pαq , (5.72)

where α � 1� 16Em3

pE�mq3pE�3mq and Kpαq � ³π{20
dϕ?

1�α sin2pϕq is an elliptic integral.

In general though, finding the exact phase space functions ΦnpEq is difficult but can be
simplified in the limit E " m. In our case, this limit is justified because the phase space
functions are evaluated for E ¥ EL " m. Notice that to take the high energy limit of
ΦnpEq one can not expand the integrand of Eq. (5.69) because, after solving for the Dirac
delta’s constraints, it is of Op1q at the integral limits, see for instance the elliptic integral in
Eq. (5.71). Instead, we use the following relation for the phase space

Inpτq �
» 8

�8
dxDn

Epx, τq �
1

2π

» 8

0
dE e�EτΦnpEq (5.73)

where DEpx, τq is the euclidean propagator and ΦnpEq is only non vanishing for E ¥ nm.
The Euclidean propagator in d � 2 is given by the special Bessel function of second kind
K0pmρq with ρ � ?

x2 � τ 2 and Inpτq �
³8
�8 dxK

n
0 pmρqp2πq�n. At this point we can use a

clever trick done in Ref. [7] to find the leading terms of the inverse Laplace transform of Inpτq
in the limit E Ñ 8. Since the phase space ΦnpEq is the inverse Laplace transform of Inpτq,
the leading parts of ΦnpEq as E Ñ 8 come from the non-analytic parts of Inpτq as τ Ñ 0.
To find the non-analytics parts of Inpτq first one notices that

K0pmρq �
$&% � log

�
eγmρ

2

� r1�Opm2ρ2qs , ρ ! 1{mb
π

2mρ e
�mρ r1�Opm�1ρ�1qs , ρ " 1{m

(5.74)

11This is a good approximation for Lm " 1 and we have checked it explicitly in our numerical study.
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where γ is the Euler constant. Then, the contributions to Inpτq �
³8
�8 dxK

n
0 pmρqp2πq�n when

τ Ñ 0 are dominated by the region where ρ ! 1{m and the integrand can be approximated
by K0pmρq � � log

�
eγmρ

2

�
. 12 This approximation introduces spurious IR divergences in the

region of integration ρ " 1{m where the approximation of the integrand is not valid. These
divergences can be regulated with a cutoff Λ or, equivalently, one can take derivatives with
respect to the external coordinate τ to regulate the integral Inpτq. 13 Hence, approximating
K0pmρq � � log

�
eγmρ

2

�
and integrating over x one can find the non-analytic terms of BτInpτq

as τ Ñ 0. For instance, for n � 4

BτI4pτq � 1
4π3 logpmτeγq

�
logpmτq logpmτe2γq � γ2 � π2

4

�
� const.�Opτq , (5.75)

where the constant does not depend on τ . Lastly from Eq. (5.73), BτInpτq is related to the
phase space ΦnpEq by the Laplace transform,» 8

0
dEr�EΦnpEqs e�τE � 2π BτInpτq (5.76)

so that for n � 4 one has

Φ4pEq � 3
2π2

1
E2

�
log2 pE{mq � π2{12

��O �m2{E4� . (5.77)

Therefore using Eq. (5.77) and expanding Eqs. (5.70), (5.72) at large E,

c0pEq � s4 g
2
» 8

EL

dE

2π
1

E � E

3
2π2

1
E2

�
log2 pE{mq � π2{12

�
, (5.78)

c2pEq � s3 g
2
» 8

EL

dE

2π
1

E � E

3
2π

1
E2 logpE{mq , (5.79)

c4pEq � s2 g
2
» 8

EL

dE

2π
1

E � E

1
E2 , (5.80)

where the error made in the approximations is of the order O pm2{E2
Lq. We end this section

by noticing that the leading terms of the phase space functions Φ2pEq and Φ3pEq in the
large E expansion agree with the corresponding result of Ref. [7] (there called µ444pEq �
s2Φ2pEq{p2πq, µ442pEq � s3Φ3pEq{p2πq). The local approximation in Eqs. (5.78)-(5.80) can
be refined by taking into account the Ers shift, see Ref. [7].

12This method is like the method of regions which is used to get the leading terms of multi-loop Feynman
diagrams in certain kinematical limits or mass hierarchies.

13This is similar to the fact that the UV divergences of multi-loop Feynman diagrams are polynomial in
the external momenta because taking enough derivatives with respect to the external momenta the integrals
are UV finite.
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5.5.3 Spectrum and convergence
Before starting with the numerical results we first discuss the series ∆H � °

n�2 ∆Hn in
more detail. The truncation of the ∆H series in powers of pVhh{H0hhqn is only justified for
Vhh{H0hh   1. Notice that even for weak coupling g ! 1 the series does not seem to converge.
Let us consider a particular matrix entry

xEr |∆Hn|Es y �
¸

j1,...,jn�1

Vrj1 � � �Vji�1ji

1
E � Eji

� � � 1
E � Ejn�1

Vjn�1s , (5.81)

where all the terms in the sums have a definite sign depending on whether n is even or odd.
For instance, consider a contribution to Eq. (5.81) from states of high occupation number but
low momentum like

Vji�1ji

1
E � Eji

Ñ xNkN�k |V |NkN�k y
E � 2Nωk

� 6g
4Lω2

k

p2NpN � 1q � 4N2q
E � 2Nωk

, (5.82)

where |NkN�k y is a Fock state with N particles of momentum k and �k that satisfy
2Nωk ¡ ET . The term of Eq. (5.82) gives a non-perturbative contribution even for small
g for high enough N and becomes worse for smaller momentum |k|. Thus the series
p∆Hqrs �

°p∆Hnqrs seems to be non-convergent but we will assume that (when the ex-
pansion parameter is small) the first terms of the series are a good approximation to p∆Hqrs.
Notice that the appearance of the non-perturbative contributions (like in Eq. (5.82)) can be
worse for those matrix entries p∆Hqrs with energies Er,s closer to ET because the intermediate
states in Vjj1 can have lower momentum and high occupation number for a given ∆Hn.

For the first terms of the expansion pVhh{Ehqn, a naive estimate of the dimensionless
expansion parameter is αrs � g{ET � 1{pLµ2

rsq where the g and L can be read off from the
potential; the E�1

T arises because the sums in Eq. (5.81) are dominated by the first terms,
starting at 1{ET (for E    ET ); and by direct inspection of the potential m{N À µrs À ET
where N is a possibly large occupation number, depending on the matrix entry.

It can happen that entries with energies Er, Es close to ET do not have a perturbative
p∆Hqrs �

°p∆Hnqrs expansion and even including the first terms of the series is a worse
approximation than setting p∆Hqrs Ñ 0; these entries can induce big errors on the computed
eigenvalues. Since the eigenvalues we are interested in computing are mostly affected by the
lower Er,s-energy matrix entries we will neglect the renormalization of the higher Er,s energy
entries where the series p∆Hqrs �

°p∆Hnqrs is not perturbative. One way to select those
entries would be to keep only those that satisfy αrs � p∆H3qrs{p∆H2qrs   1. However, this
can be computationally expensive and instead we take a more pragmatic approach and only
renormalize those matrix entries pHT qrs with either Er or Es below some conservative cutoff
EW , below which the series is perturbative.

Up until this point the discussion has been done for g ! 1. However, for those matrix en-
tries where αrs is a perturbative expansion parameter one can increase g to strong coupling 14

14In the φ4 theory the strong coupling can be estimated to be g Á 1, see Eqs. (5.83) and (5.84).
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Figure 5.5: Left: The vacuum energy E i0 as a function of the truncation energy ET for a
coupling of g � 0.1. Right: Energy difference between the first Z2-odd excited state and
the vacuum energy E i0 as a function of the truncation energy for g � 0.1. In both plots,
the dotted curves are computed with the truncated Hamiltonian while the solid and dashed
curves are computed with the renormalized hamiltonian at order V V . Dashed and dotted lines
correspond to the cutoffs EW � ET {2 and EW � ET {5. We have overlaid two dashed black
lines corresponding to the calculation in perturbation theory, see. Eqs. (5.83) and (5.84).

by increasing ET at the same time. Increasing ET means enlarging the size of HT and ∆H, and
it can happen that the new matrix entries do not have a perturbative p∆Hqrs �

°p∆Hnqrs
expansion. As explained above, in those cases we set p∆Hqrs to zero. 15

Numerical results

In the rest of the section we perform a numerical study of the spectrum of the φ4 theory.
First we summarize the concrete implementation of the method. We find the spectrum of H
by diagonalizing Heff � HT �∆H2pET q where ET is the eigenvalue of HT . 16 As explained in
Sec. 5.5.1, to calculate ∆H2 we separate it in ∆H2� and ∆H2� defined in Eqs. (5.52)-(5.53)
and take EL � 3ET . 17. We found little differences when iterating the diagonalization with
E . We also find that increasing EL does not have a significant effect on the result. For
∆H2�pE , ET , ELq we use the expressions in Eqs. (5.6.122)-(5.6.126) and for ∆H2�pE , ELq we
use the ones in Eqs. (5.78)-(5.80). We do a conservative estimate of the expansion parameter
αrs and set to zero p∆H2qrs for all those entries that are not perturbative.

First we study the lowest eigenvalues of H at weak coupling, where we can compare with
standard perturbation theory. The perturbative corrections to the vacuum and the mass are

15For the φ2 perturbation studied in Sec. 5.4 we find that the error in the computed eigenvalues can be
decreased by increasing ET even without introducing EW . For the φ4 we find that EW must be introduced.

16The dimension of the Hilbert space Hll for ET � 10, 12, 14, 16 and 18 is 117(108), 309(305), 827(816),
2160(2084) and 5376(5238) for the Z2-even(odd) sectors, respectively.

17 The choice EL � 3ET is done so that the local expansion is a good approximation for intermediate states
with Ej ¥ EL. Also, for this EL one has that ∆Hφ6

2� � ∆Hφ8

2� � 0.
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given by [7]:

Λ{m2 � �21ξp3q
16π3 ḡ2 � 0.04164p85q ḡ3 � . . . , (5.83)

m2
ph � m2�1� 3

2 ḡ
2 � 2.86460p20q ḡ3 � � � � � , (5.84)

where ḡ � g{m and mph is the physical mass. In Fig. 5.5 we show the result for the vacuum
energy and mph. As explained before, only those entries with Er,s energies below a cutoff EW
are renormalized. We do the plot for different values of EW � ET {2, ET {5 and we find that
the vacuum energy and the physical mass do not depend much on this cutoff. For the left
plot the difference between EW � ET {2 and EW � ET {5 is inappreciable. 18 We find that
the spectrum is much flatter as a function of ET for renormalized eigenvalues than the ones
computed with HT . Since the exact spectrum is independent of the truncation energy ET ,
a flatter curve in ET indicates a closer value to exact energy levels. However, it could still
happen that adding ∆H3 corrections shifted the spectrum by a small amount, as it happens
for the φ2 perturbation seen in Figs. 5.3 and 5.4 for the range 16 À ET ¤ 20. In the plots
we have superimposed constant dashed black lines that are obtained from the perturbative
calculations in Eq. (5.83) and Eq. (5.84). We find that the eigenvalues computed with ∆H2

are much closer to the perturbative calculation than the ones done with HT . The difference
between the perturbative result and the one from EV V is of Op10�4q and can be attributed to
higher order corrections in the perturbative expansion. Another source of uncertainty comes
from higher order ∆Hn corrections not included.

In Fig. 5.6 we show plots with different energy levels as a function of the truncation energy
ET for g � 1, 2, 3. To compare with previous work, these plots have been done with the same
choice of parameters and normalizations as in Figs. (9)-(10) of Ref. [7]. In all the plots the
dotted lines are computed using the truncated Hamiltonian while the solid and dashed lines
are computed using ∆H2 with EW � ET {2 and EW � ET {3, respectively. The diamonds and
the circles correspond to states in the Z2-even and Z2-odd sectors of the theory. We find that
in all the plots, for high enough values of ET , the solid lines for the ∆H2 are flatter than the
truncated ones. The difference between the dotted and dashed lines is bigger for the plot for
g � 3 than the one for g � 1. This can be understood because one expects more overlap from
higher H0 excited states with the vacuum for higher coupling. The difference between the solid
and dashed lines becomes smaller as ET is increased. This can be understood because as ET is
increased bigger parts of pHT qrs are being renormalized, and eventually the difference between
using EW � ET {2 and ET {3 becomes negligible. An intrinsic error of our calculation of the
eigenvalues is the difference between the values obtained for different choices of EW . This
error could be reduced with a more careful estimate of the expansion parameter αr,s, which
would be very interesting for the future development of the method. In fact, it seems that

18In fact, for this case we have checked that setting EW � ET gives a result on top of the lines of EW � ET {2.
This is because at weak coupling there is not much overlap between the lowest lying eigenstates of H and the
high H0 eigenstates.
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Figure 5.6: Left: The vacuum energy E i0 as a function of ET for g � 1, 2 and 3 in descending
order. Right: Energy difference between the first excited states and the vacuum energy as
a function of the coupling ET for g � 1, 2 and 3. In all the plots of the figure the blue
curves correspond to the Z2-even sector while the red ones to the Z2-odd. The dotted curves
are computed with the truncated Hamiltonian, while the solid and dashed lines are computed
adding ∆H2 with cutoffs EW � ET {2 and EW � ET {3.
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Figure 5.7: Left: The vacuum energy E0 as a function of the coupling g. Right: Energy
difference between the first excited states and the vacuum energy as a function of the coupling
constant g. In all the plots of the figure the blue curves correspond to the Z2-even sector while
the red ones to the Z2-odd. The dotted curves are computed with the truncated Hamiltonian
for a truncation energy ET � 18, while the solid and dashed lines are computed adding ∆H2

with cutoffs EW � ET {2 and EW � ET {3.

for ET À 12p14q for g � 2p3q the cutoff EW is too high (and might include non-perturbative
corrections like the one in Eq. (5.82)) as the eigenvalues deviate a lot from the computation
done with HT . Another small source of uncertainty in our calculation comes from not having
included higher order ∆Hn corrections; in the next section we explain the calculation of ∆H3.

In Fig. 5.7 we show two plots of the vacuum and first excited states as a function of the
coupling constant g for ET � 18 (cf. Fig. 4 of Ref. [7]). There is an intrinsic uncertainty in our
procedure in the choice of EW , and as we discussed above it could be lowered by increasing
the size of the truncation ET or ideally by refining the determination of EW . Notice that
the renormalization of the truncated Hamiltonian matters as the solid lines have a significant
difference with respect to the truncated (as seen in Fig. 5.6 the solid lines show a better
convergence as a function of ET ). For g Á 3.5 the first Z2-odd excited state seems to become
degenerate with the vacuum which is a signal of the spontaneous breaking of the Z2 symmetry.
This plot can be used to determine the critical coupling, see Ref. [7].

5.5.4 Three point correction and further comments

As explained in the previous section we have performed the numerical study of the φ4 theory
without taking into account the three point correction ∆H3. This would be an interesting
point for the future and therefore we give a small preview of the type of expressions one
obtains when computing the three point correction. As done throughout the paper, to get
the expression for ∆H3 we start by first computing

∆ pH3pEqrs � � lim
εÑ0

» 8

0
dt1dt2 e

ipE�Er�iεqpt1�t2qT tV pT1qV pT2qV pT3qurs , (5.85)
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where Tk �
°3�k
n�1 tn. Then we find ∆H3 by keeping only those terms that have all poles at

E ¡ ET . Then, we see that the three point correction can be split into

∆H3 � ∆H1
3 �∆Hφ2

3 �∆Hφ4

3 �∆Hφ6

3 �∆Hφ8

3 �∆Hφ10

3 �∆Hφ12

3 , (5.86)

where the subindices denote the number of fields in each term. The correction ∆H1
3 is given

by

∆H1
3 pEq �

s222 g
3

p2Lq6
¸

ki,pi,li

L2δl1�l2�k1�k2,0
p1�p2�k1�k2,0

ωk1ωk2ωp1ωp2ωl1ωl2

θpΣ2
i�1rωpi � ωkis � ET q
E � Σ2

i�1rωpi � ωkis
θpΣ2

i�1rωli � ωkis � ET q
E � Σ2

i�1rωli � ωkis
.

(5.87)
where the symmetry factor is defined in Eq. (5.39). The rest of the terms ∆Hφ2

3 , � � � , ∆Hφ12

3
can be computed in a similar fashion as explained in previous sections, but we do not present
them here since we did not include them in the numerical analysis.

Another interesting thing to study in the future is the local expansion of ∆H3 and higher
orders in ∆Hn. Here we present some of the terms for the ∆H3 case. As done for ∆H2, when
the local expansion applies the calculation is simplified. We use the diagrammatic represen-
tation explained in Appendix 5.6 for the expressions at Opt0, z0q of the local renormalization.
As an example the leading local coefficients that renormalize the operators V2, V4 and V6 are

∆Hφ2

3� �
�

� � � � � � �
	
V2 (5.88)

where for example,

� s131 g
3

p2Lq5
¸
k,l,pi

L2δl�k,0p1�p2�p3�k,0
ωkωp1ωp2ωp3

θpωl � ωk � ELq
E � ωl � ωk

θpωk � Σ3
i�1ωpi � ELq

E � ωk � Σ3
i�1pi

. (5.89)

For the renormalization of the quartic we get

∆Hφ4

3� �
�

� � � � � �
	
V4 (5.90)

where for example,

� s220 g
3

p2Lq4
¸

l1l2p1p2

L2δp1�p2,0
l1�l2,0

ωl1ωl2ωp1ωp2

θpωl1 � ωl2 � ELq
E � ωl1 � ωl2

θpωp1 � ωp2 � ELq
E � ωp1 � ωp2

.(5.91)

For V6

∆Hφ6

3� � p � � � � qV6 (5.92)

where

� s111 g
3

p2Lq3
¸
k

L2

mω2
k

�
1

E � 2ωk


2

θp2ωk � ELq . (5.93)
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As final remark, notice that the expression in Eq. (5.91) is the square of the coefficient of
V4 (in ∆Hφ4

2�) up to a numerical factor (see Eq. (5.59))� 	2
� 6g . (5.94)

It would be very interesting to investigate whether certain classes of diagrams in the ∆H� �°
n ∆Hn� expansion can be resumed. This would reduce the error in the computed spectrum

and its dependence on the arbitrary truncation energy ET . For instance, it could be that the
resummation comes only from the leading pieces of the different diagrams. 19

5.5.5 Summary of the method and comparison with Ref. [7]
In this section we summarize our approach to the renormalized Hamiltonian truncation
method and briefly comment on the main differences with Ref. [7].

The aim of the renormalized Hamiltonian truncation method is to find the lowest eigen-
values E of H. This is done by diagonalizing Heff � HT � ∆H, where HT is the truncated
Hamiltonian and ∆H encodes the contributions from the H0 eigenstates with E ¡ ET . Com-
puting ∆H is difficult but the problem is simplified if one expands ∆H in powers of Vhh{Hhh.
One expects that the first terms of the series ∆H � °n ∆Hn are a good approximation to ∆H
if the expansion parameter is small. These terms can be computed as explained in Sec. 5.2,
by first finding ∆ pHn and keeping only the contributions from the states with E ¡ ET . Then,
we notice that for some entries with Er, Es close to ET , the series p∆Hqrs �

°
np∆Hnqrs is

not perturbative (for the chosen parameters g, ET ). We deal with this problem by setting to
zero all those entries with Er or Es ¡ EW where EW is chosen appropriately, see Sec. 5.5.3.

In order to speed up the numerics and gain analytic insight, we perform several approx-
imations to the exact expression of ∆H2. First we introduce a scale EL so that ∆H2 �
∆H2� � ∆H2� where ∆H2� only receives contributions of the states with E ¥ EL while
∆H2� only receives contributions of states with ET   E   EL. The scale EL is chosen such
that ∆H2� can be well approximated by the first terms of a local expansion. In our case, we
only keep the leading terms ∆H2� �

°n�2
n�0 c2n

³
dx φ2npx, tq and we find that the coefficients ci

can be written in terms of phase space functions. Lastly, the coefficients ci are approximated
by taking the continuum limit and then expanding them in powers of m{EL. On the other
hand ∆H2� is kept exact because its numerical implementation is less costly and it does not
admit an approximation by truncating a local expansion. The whole procedure has been
described in Sec. 5.5 and used to do the plots of Sec. 5.5.3.

Comparison with Ref. [7]

Refs. [7,8] introduced a renormalized Hamiltonian truncation method by diagonalizing Heff �
HT � ∆H and expanding ∆H in a series. As explained, we have used this as our starting

19This is the case in standard perturbation theory. For example the Renormalization Group Equations in
d � 4 resum the leading logs coming from different diagrams.
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point. In Ref. [7] though an approximation to ∆H2 is calculated using a different approach
than in this paper. To get ∆H2, Ref. [7] starts by defining the following operator MpEq

MpEqrs dE �
¸

Ej¤E¤Ej�dE
VrjVjs such that ∆H2 �

» 8

ET

dE
MpEq
E � E

, (5.95)

and then noticing that MpEq is related to the matrix element

Cpτqrs � xr |V pτ{2qV p�τ{2q| s y �
» 8

0
dE e�rE�pEr�Esq{2sτ MpEqrs (5.96)

by a Laplace transform. In Ref. [7], the E Ñ 8 behavior of MpEq is found by doing the
inverse Laplace transform of the non-analytic parts of Cpτq in the limit τ Ñ 0. This is done
in the continuum limit, which is a good approximation. The obtained result for MpEq in this
limit is taken to compute ∆H2. Ref. [7] differentiates two renormalization procedures, one
where the term (Er�Esq{2 in Eq. (5.96) is approximated to zero (called local), and one where
it is taken into account (called sub-leading). In the later case MpEq is given by MpE �Ersq,
and therefore for entries with Ers � ET taking the limit E � Ers " m is not justified when
E � ET . The way in which this problem is dealt with is by neglecting all the contributions
of MpE � Ersq for E ¤ Ers � 5m; in other words, a θpE � Ers � 5mq is multiplied to the
integrand in Eq. (5.95). 20

With this, we can already find the main differences between the two approaches. In our
case we calculate the exact expression of ∆H2 which, if needed, can be approximated. Instead,
Ref. [7] finds the contributions of ∆H2 that are leading in the limit where E Ñ 8 (which
neglects the tree and disconnected contributions). From our approach we can recover the local
result of Ref. [7] if we set EL � EW � ET , neglect the tree and disconnected contributions,
take the continuum limit, perform a local expansion to ∆H2�, and make an expansion in
m{E ! 1. The choice EL � ET implies ∆H2 � ∆H2� and ∆H2� � 0, while EW � ET means
that no entries p∆H2qrs are set to zero. In a similar way we can recover the sub-leading
result taking into account the Ers terms, while introducing by hand a θpE�Ers� 5mq in the
integrals of the coefficients.

Even though the two approaches are quite different, our method and their sub-leading
renormalization can still give similar results due to the following. For large enough ET , the
low entries of p∆H2qrs only receive contributions from loop-generated operators 21, and can
be well approximated by a local (up to the Ers dependence) expansion even if EL � ET . On
the other hand, for high energy entries of p∆H2qrs the tree and disconnected operators are
non-zero, and none of the operators can be approximated by a truncated local expansion if
EL � ET . However, in many cases these high energy entries become non perturbative and we
set them to zero when Er or Es ¡ EW . Therefore we find that if EW is used, it can be a good
approximation for large enough ET to neglect the tree and disconnected terms all together

20They find that MpEq starts to be well approximated by the first terms in the m{E expansion when
E ¥ 5m.

21This can be easily seen from the exact calculations or using the diagrams in Appendix 5.6.
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and set EL � ET while performing a local expansion. With this we connect with Ref. [7]
where the scale EW is not used to get rid of the non-perturbative contributions. Instead the
tree and disconnected terms are neglected, all the entries of p∆H2qrs are approximated by
the loop-generated local (up to Ers) operators only and the θpE � Ers � 5mq is introduced
in Eq. (5.95). As explained, neglecting the tree and disconnected terms is justified, while the
introduction of θpE�Ers�5mq and truncating the local expansion in practice largely reduce
the values of the high energy entries with respect to the exact result. All of these effectively
act as our scale EW . Therefore we see that in many cases our approach and the one in Ref. [7]
can give similar results.

Even though the numerical results are similar, our approach introduces new tools and
insights that we think improve the renormalized Hamiltonian truncation method and can
help to develop it further.

5.6 Conclusion and outlook

In this paper we have developed further the Hamiltonian truncation method. In particular
we have explained a way to compute the corrections to the truncated Hamiltonian at any
order in the large ET expansion of ∆H � °

n ∆Hn. We have applied these ideas to scalar
field theory in two dimensions and studied the spectrum of the theory as a function of the
truncation energy and the coupling constant.

There are various open directions that are very interesting and deserve further investiga-
tion. Firstly, it would be a great improvement to the method to find a more precise estimate
of the expansion parameter of the series. This estimate should be easy to implement numer-
ically and lead to a precise definition of the cutoff EW . In this work we have been pragmatic
in this respect, and investigated the behaviour of the spectrum as this cutoff is modified. It
might be that only removing the contribution of certain type of matrix elements (like the ones
corresponding to high occupation number and zero momentum) the series is greatly improved.

We have not pushed the numerical aspects of the method very far and all the computations
have been done with Mathematica. With more efficient programming languages it would be
interesting to further study and check that as the truncation energy ET is increased the
uncertainty in the precise choice of EW is reduced.

Another point that should be addressed is the dependence of the spectrum on L as higher
∆Hn corrections are added; also it could be relevant to inspect if there are diagrams that
dominate for large Lm " 1.

Another very interesting path to develop further is to apply renormalization group tech-
niques to resum the fixed order calculations of ∆H. Since the exact eigenvalues do not depend
on the truncation energy ET , it may be possible resum the calculation of ∆Hn. Our analytic
expressions for the ∆Hn corrections permit a precise study of the possible resummation of
the leading corrections at each order in the perturbation theory of the large ET expansion.
One could start by studying the resummation of the leading local corrections, and for that
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the phase space formulation that we have introduced is useful as there are simple recursion
relations for the differential phase space.

Another fascinating avenue to pursue is the applicability of the method to other theories
with higher spin fields and to increase the number of dimensions. In this regard, we notice that
the derivation of Eqs. (5.66)-(5.68) seems to be formally valid in any space-time dimension
d. Recall that the ci’s are the coefficients of the local operators added to HT to take into
account the effect of the highest energetic H0 eigenstates not included in the light Hilbert
space Hl. As d is increased beyond d � 2 the UV divergencies appear due to the increasingly
rapid growth of the phase space functions ΦipEq. One can then regulate the ci coefficients
with a cutoff Λ. For instance, consider the coefficient c4 of the φ4 operator

cΛ
4 pEq � s2 g

2
0

» Λ

EL

dE

2π
1

E � E
Φ2pEq , (5.97)

in d � 4. Then, requiring that the energy levels are independent of the regulator one finds
the following β-function

βpgq � �ΛBc
Λ
4

BΛ �Opg3q � s2g
2

2π Φ2pΛq �Opg3, Eq , (5.98)

where the E corrections can be neglected in the limit of large Λ " E . Redefining g � λ{4! one
recovers the known result for the λφ4 theory βpλq � 3

16π2λ
2�Opλ3q , where we have neglected

the mass corrections that for Λ " m decouple as Φ2pΛq � 1{p8πq�Opm2{Λ2q. A possible way
to make contact between the calculation in the renormalized Hamiltonian method and the
standard calculation of the beta function is by noticing that the coefficient of the divergent
part of the amplitude is proportional to the coefficient of its finite imaginary part which in
turn (by the optical theorem) is proportional to the two-particle phase space. It would be very
interesting to further study RG flows from the perspective of the renormalized Hamiltonian
truncation method approach.

We think that the Hamiltonian truncation method is a very promising approach to study
strong dynamics, and that there are still open important questions to be addressed.

Appendix A: Diagramatic representation

There is a simple and powerful diagrammatic representation that permits to easily find the
expression for ∆Hn. This can be used to either compute the full operator ∆Hn or the leading
Opt0, z0q coefficients in the local expansion of ∆Hn� defined in Sec. 5.4. This representation
is valid for any φα theory, but here we give examples only for the φ4 case for concreteness.
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Local coefficients

Imagine that we want to find the local coefficients Opt0, z0q for ∆Hφ2

3�. To find them one puts
3 vertices ordered horizontally 22 and draws all possible diagrams that have only 2 external
lines, four lines meeting at each vertex and don’t have any lines starting and ending at the
same vertex. Next, we assign a momentum for each internal line and draw a vertical line
between every pair of vertices. One such diagrams is

k5

k1

k2

k3

k4 . (5.6.99)

The expression corresponding to a given diagram with n vertices and N propagators is given
by

sgn
¸
k1s

1±N
i�1p2Lωkiq

n�1¹
p�1

L δp
θ
�°

kjPtspu ωkj � EL
�

E �°kjPtspu ωkj
, (5.6.100)

where kj � 2πnj{L with nj P Z. Each of the n � 1 sets of momenta tspu consist in the
momenta of the internal lines that are cut by each vertical line. In (5.6.99) these would
be s1 � tk1, k2, k5u and s2 � tk3, k4, k5u. The symbol δp stands for a Kronecker delta that
imposes that the total momentum crossing a cut is zero; s is a symmetry factor that counts
all the ways that the lines of the vertices can be connected to form the diagram. Applying
this recipe to the diagram in (5.6.99) one has

k5

k1

k2

k3

k4 � s221
4 g3

¸
k1s

L2δk3�k4�k5,0
k1�k2�k5,0±5
i�1p2Lωkiq

θpωk1 � ωk2 � ωk5 � ELq
E � ωk1 � ωk2 � ωk5

θpωk3 � ωk4 � ωk5 � ELq
E � ωk3 � ωk4 � ωk5

.

(5.6.101)
where the symmetry factor smnvp is given in Eq. (5.39). Another example of a contribution to ∆Hφ2

3�
would be

� s212
4 g3

¸
k1s

L2δk1�k2�k3�k4,0
k3�k4�k5,0±5
i�1p2Lωkiq

θpΣ5
s�1ωks � ELq

E � ωk1 � ωk2 � ωk3 � ωk4

θpΣ4
s�1ωks � ELq

E � ωk3 � ωk4 � ωk5

.

(5.6.102)
Notice that the ordering of the vertices matters since the diagrams of (5.6.101) and (5.6.102)

have the same topology but give different results.
With this prescription one easily recovers Eqs. (5.55), (5.57), and (5.59) corresponding to

the ∆H2� coefficients in the φ4 theory

c0 � , c2 � , c4 � . (5.6.103)

22The vertices are ordered in a line because the V pTsq’s in Eq. (5.8) are time-ordered in the whole integration
domain. This is in contrast with the standard Feynman diagrams in the calculation of an n-point function,
where each space-time integral is over the whole real domain.
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Notice that to include the contributions Ers mentioned at the end of Sec. 5.5.2 the same
diagrammatic representation applies but one must then substitute E Ñ E�Ers in Eq. (5.6.100)
making the coefficients depend on the matrix entry.

Exact ∆Hn opertors

A similar diagrammatic representation can be used to calculate the exact ∆ pHn operator from
which one can easily get ∆Hn. The prescription to follow is very similar to the one for the
local case, where one starts drawing the same diagrams and putting vertical lines between
every pair of vertices. The only difference is that now one extends the external lines to left
and right in all possible combinations for each diagram drawn and also assigns a momentum
to the external lines. For the diagram in (5.6.99) this means

k5

k1

k2

k3

k4
q1q2

k5

k1

k2

k3

k4

q1

q2

k5

k1

k2

k3

k4

q1

q2

k5

k1

k2

k3

k4

q1

q2

. (5.6.104)

Now, the operator corresponding to a given diagram with n vertices, N propagators, A
external lines starting left and B external lines starting right is

κsgn
¸
k1s,q1s

1±N
i�1p2Lωkiq

n�1¹
p�1

θ
�
ωrs �

°
QjPtspu ωQj � EL

�
E � ωrs �

°
QjPtspu ωQj

n¹
α�1

Lδα

A�B¹
r�A�1

a:qra
2Lωqr

A¹
l�1

aqla
2Lωql

,

(5.6.105)
where the sums over k1s, q1s sum over all possible momenta for a given ki, qi. Then, each
of the n � 1 sets of momenta tspu consists in the momenta of the lines that are cut by each
vertical line. For the first diagram from the left in (5.6.105) these would be s1 � tk1, k2, k5u
and s2 � tk3, k4, k5u, and for the second one s1 � tq1, k1, k2, k5u and s2 � tq1, k3, k4, k5u. The
symbol δα stands for a Kronecker delta that imposes momentum conservation at each vertex
α. The symbol ωrs depends on the energy of the states xEr |, |Es y on which a and a: act
i.e. it is different for each entry

�
a:�qraql

�
rs

, and is given by wrs � Ers � 1
2
°A�B
i�1 ωqi where

Ers � pEr � Esq{2. As before s is a symmetry factor that counts all the ways that the lines
of the vertices can be connected to form the diagram. Lastly κ counts all the equivalent ways
that the external lines coming out from the same vertex can be ordered left and right, for
the diagrams in (5.6.105) is is always one, since there is only one external line per vertex.
Applying this recipe to the first and second diagrams in (5.6.105) one has

k5

k1

k2

k3

k4
q1q2 � s221

4 g3
¸

k1,��� ,k5

¸
q1,q2

L2δk3�k4�k5,q2
k1�k2�k5,q1±5
i�1p2Lωkiq

θpωrs � ωk1 � ωk2 � ωk5 � ELq
E � ωrs � ωk1 � ωk2 � ωk5

θpωrs � ωk3 � ωk4 � ωk5 � ELq
E � ωrs � ωk3 � ωk4 � ωk5

Lδk3�k4,k1�k2

a:q1aq2

2L?ωq1ωq2
, (5.6.106)



5.6. Conclusion and outlook 121

k5

k1

k2

k3

k4

q1

q2 � s221
4 g3

¸
k1,��� ,k5

¸
q1,q2

L2δk3�k4�k5�q1,0
k1�k2�k5�q1,0±5
i�1p2Lωkiq

θpωrs � ωk1 � ωk2 � ωk5 � ωq1 � ELq
E � ωrs � ωk1 � ωk2 � ωk5 � ωq1

θpωrs � ωk3 � ωk4 � ωk5 � ωq1 � ELq
E � ωrs � ωk3 � ωk4 � ωk5 � ωq1

Lδq1�q2,0
a:�q1aq2

2L?ωq1ωq2
, (5.6.107)

where ωrs � Ers � pωq1 � ωq2q{2 and the symmetry factor smnvp is given in Eq. (5.39).

With this set of rules one can easily get the expression for ∆ pH2 and ∆ pH3 for the φ2 and
φ4 theories. Then one finds ∆H2 and ∆H3 by keeping only the contributions with all poles
E ¡ ET .

Appendix B: ∆H for the φ2 perturbation

Two-point correction

In this section we give the full expressions of the ∆ pH2 corrections for the scalar theory with
potential V � g2

³
dxφ2. Recall that the symmetry factor is given by sp �

�2
p

�2
p!. We will use

the prescription Ers � pEr � Esq{2 where Er and Es are H0 eigenvalues.

∆ pH1
2 pEqrs � g2

2s2
1
22

¸
k

1
ω2
k

1
E � Ers � 2ωk

δrs (5.6.108)

∆ pHφ2

2 pEqrs � g2
2s1

1
22

¸
q

1
ω2
q

��
aqa�q

1
E � Ers � ωq

� h.c.



� a:qaq

�
1

E � Ers � 2ωq
� 1
E � Ers


�
(5.6.109)

∆ pHφ4

2 pEqrs � g2
2s0

1
22

¸
q1,q2

1
ωq1ωq2

�
aq1aq2a�q1a�q2

1
E � Ers � ωq1 � ωq2

� h.c.

� 2 a:q1aq1aq2a�q2

�
1

E � Ers � ωq2

� 1
E � Ers � ωq2



� h.c.

� a:q1a
:
�q1aq2a�q2

�
1

E � Ers � ωq1 � ωq2

� 1
E � Ers � ωq1 � ωq2



� 4 a:q1a

:
q2aq1aq2

1
E � Ers

�
. (5.6.110)
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Three-point correction
In this section we give the full expressions of the ∆H3 corrections for the scalar theory with
potential V � g2

³
dxφ2. Recall that the symmetry factor is given by

smnvp � p!3
pp�m� nq!pp�m� vq!pp� n� vq!m!n!v! . (5.6.111)

We use the notation ∆H3 � ∆H1
3 �∆Hφ2

3 �∆Hφ4

3 �∆Hφ6

3 , where

∆H1
3 pEqrs � g3

2s
111
2

23

¸
k

1
ωk1ωk2ωk3

G0pk1, k2, k3, ET q , (5.6.112)

∆Hφ2

3 pEqrs � g3
2

23

¸
k,q

1
ωk1ωk2

1?
ωq1ωq2

�
s200

2 G2,1pk1, k2, q1, q2, ET q

�s110
2 G2,2pk1, k2, q1, q2, ET q

�
, (5.6.113)

∆Hφ4

3 pEqrs � g3
2s

100
2

23

¸
k,q

1
ωk

1?
ωq1 � � �ωq4

G4pk, q1, . . . , q4q , (5.6.114)

∆Hφ6

3 pEqrs � g3
2s

000
2

23

¸
q

1?
ωq1 � � �ωq6

G6pq1, . . . , q6q , (5.6.115)

where

G0 � δk1�k2,0δk1�k3,0 rf0s12rf0s13 , (5.6.116)

G2,1 � aq1aq2 δ0δk1�k2,0 rf2s12
12rf2s12 � h.c.� 2a:q1aq2 δ1δk1�k2,0 rf2s12

1 rf2s12
2 , (5.6.117)

G2,2 � a:q1aq2 δ1δk1�q1,0δk1�k2,0
�rf2s112rf2s12

1 � rf2s112rf2s12
2 � rf2s112rf2s212

�
, (5.6.118)

G4 � a:q1aq2aq3aq4 δ1δk�q1,0δq3�q4,0rf4s11234rf4s112 � h.c.
� 2a:q1a

:
q2aq3aq4 δ2δq1�q3,0δk�q2,0rf4s1124rf4s1234

� a:q1a
:
q2aq3aq4 δ2

�
δq1�q2,0δk�q4,0rf4s1234rf4s1124 � δq3�q4,0δk�q1,0rf4s1234rf4s1124

�
,(5.6.119)

G6 � a:q1a
:
q2aq3aq4aq5aq6 δ2δq1�q2,0δq3�q4,0rf6s123456rf6s1234 � h.c.

� 2a:q1a
:
q2a

:
q3aq4aq5aq6 δ3δq1�q2,0δq5�q6,0rf6s12356rf6s12456 . (5.6.120)

We have defined wprs � Ers� 1
2
°p
i�1 ωqi , δd � δΣdi�1qi,Σ

p
j�d�1qj

(the Kronecker delta that imposes
momentum conservation to the creation/annihilation operators) and

rfpsKQ � θpωprs � ΣiPtQuωqi � ΣiPtKuωki � ET q
E � ωprs �°iPtQu ωqi �

°
iPtKu ωki

. (5.6.121)

Appendix C: ∆H for the φ4 theory
In this appendix we give the exact two-point correction and the first terms in the local
expansion of the three-point correction. Getting the exact three-point correction would be
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straightforward.

Two-point correction

In this appendix we give the full expressions of the ∆H2 for the φ4 theory. Using the notation
∆H2 �

°8
n�0 ∆Hφn

2 we have

∆H1
2 pE , ET q � s4g

2

24L2

¸
k1k2k3k4

1
ωk1ωk2ωk3ωk4

F0pk1, k2, k3, k4, ET q , (5.6.122)

∆Hφ2

2 pE , ET q � s3g
2

24L2

¸
k1,k2,k3

¸
q1,q2

1
ωk1ωk2ωk3

1?
ωq1ωq2

F2pk1, k2, k3, q1, q2, ET q , (5.6.123)

∆Hφ4

2 pE , ET q � s2g
2

24L2

¸
k1,k2

¸
q1,q2,q3,q4

1
ωk1ωk2

1?
ωq1 � � �ωq4

F4pk1, k2, q1, . . . , q4, ET q ,(5.6.124)

∆Hφ6

2 pE , ET q � s1g
2

24L2

¸
k

¸
q1,...,q6

1
ωk

1?
ωq1 . . . ωq6

F6pk, q1, q2, . . . , q6, ET q , (5.6.125)

∆Hφ8

2 pE , ET q � s0g
2

24L2

¸
q1,...,q8

1?
ωq1 � � �ωq8

F8pq1, q2, . . . , q8, ET q (5.6.126)

The Fi functions are given by

F0 � δk1�k2�k3�k4,0 rf0s1234 (5.6.127)

F2 � a:q1aq2 δ1 δk1�k2�k3,q1

� rf2s123 � rf2s123
12
�� aq1aq2 δ0 δk1�k2�k3,q1 rf2s123

2 � h.c. (5.6.128)

F4 � aq1aq2aq3aq4 δ0 δk1�k2,q1�q2rf4s12
34 � h.c.

� 2a:q1aq2aq3aq4 δ1
�
δk1�k2,q1�q2rf4s12

2 � δk1�k2,�q1�q2rf4s12
134
�� h.c.

� a:q1a
:
q2aq3aq4 δ2

�
δk1�k2,q1�q2 rf4s12 � δk1�k2,�q1�q2rf4s12

1234 � 4 δk1�k2,q1�q3rf4s12
14
�
(5.6.129)

F6 � a:q1aq2aq3aq4aq5aq6 δ1 δk,q2�q3�q1 3 rf6s11456 � h.c.

� a:q1a
:
q2aq3aq4aq5aq6 δ2

�
9 δk,q3�q4�q1rf6s1156 � 3 δk,q3�q1�q2rf6s112456

� � h.c. (5.6.130)

� a:q1a
:
q2a

:
q3aq4aq5aq6 δ3

�
9 δk,q4�q5�q1rf6s116 � 9δk,�q4�q5�q1rf6s12345 � δk�q1�q2�q3,0rf6s1123456

�
F8 � a:q1a

:
q2aq3aq4aq5aq6aq7aq8 δ2 6δq1�q2�q3�q4,0rf8s125678 � h.c.

� a:q1a
:
q2a

:
q3aq4aq5aq6aq7aq8 δ3

�
24δq1�q2�q4�q5rf8s12678 � 4δq1�q2�q3�q4rf8s1235678

�� h.c.

� a:q1a
:
q2a

:
q3a

:
q4aq5aq6aq7aq8 δ4

�
16δq1�q5�q6�q7,0 prf8s18 � rf8s234567q

� 36δq1�q2�q5�q6,0rf8s1278 � δq1�q2�q3�q4,0rf8s12345678
�
. (5.6.131)
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We have defined wprs � Ers� 1
2
°p
i�1 ωqi , δd � δΣdi�1qi,Σ

p
j�d�1qj

(the Kronecker delta that imposes
momentum conservation to the creation/annihilation operators) and

rfpsKQ � θpωprs � ΣiPtQuωqi � ΣiPtKuωki � ET q
E � ωprs �°iPtQu ωqi �

°
iPtKu ωki

. (5.6.132)
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