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Abstract

This thesis consists of three studies investigating the strategy selection
problem and the role of function learning in human decision making. Chap-
ter 1 examines how people learn which decision strategy to use when facing
multiple environments. It provides evidence that people associate different
decision strategies to different types of environments through a trial-and-
error type of process and learn to flexibly switch between the strategies as
needed. Chapter 2 aims to identify the source of inter-individual differ-
ences in strategy adoption. It suggests that such differences can be traced
back to how fast people learn the relationships between cues and the cri-
terion they are trying to infer. Finally, Chapter 3 focuses on how people
simultaneously learn functional relationships between cues and alternative
rewards and make decisions. It provides evidence for interactions between
function learning and decision processes and proposes a Bayesian optimiza-
tion framework for understanding these interactions.

Resum

Aquesta tesi consisteix en tres estudis que investiguen el problema de se-
leccié de l'estrateégia i el paper de la funcié de 'aprenentatge en la presa
de decisions humana. El capitol 1 examina com les persones aprenen qui-
na estrategia de decisio utilitzar quan s’enfronten a multiples entorns. Es
proporciona evidéncia de que les persones associen diferents estrategies de
decisio a diferents tipus d’ambients a través d’un tipus de procés d’assaig
i error i aprenenen a canviar de forma flexible entre les estrategies segons
sigui necessari. El capitol 2 té com a objectiu identificar 'origen de les dife-
réncies interindividuals en ’adopci6 d’estrategia. Es suggereix que aquestes
diferéncies es poden remuntar-se a quant rapidament les persones aprenen
les relacions entre els senyals i el criteri que estan tractant d’inferir. Final-
ment, el capitol 3 es centra en com les persones aprenen al mateix temps
les relacions funcionals entre senyals i recompenses alternatives i prenen
decisions. Es proporciona evidéncia de les interaccions entre 'aprenentat-
ge funcional i els processos de decisio i proposa un marc d’optimitzacio
bayesiana per a la comprensié d’aquestes interaccions.
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Preface

“Models are like toothbrushes —
everyone should have one, but
you would never dream of using
someone else’s”

M. J. Watkins (1984)

This popular proverb summarizes the state of the affairs in research on
human judgment and decision making. For any given decision problem one
has a multitude of models to choose from. As a fresh scholar in the field I
was struck by this fact. The decision models that researchers hold so dear,
often but not always, aim to capture decision strategies people use when
facing decision problems. My initial thought was that perhaps, there is no
single true model, instead all of them are correct — people might be using
more than one decision strategy. However, then the question becomes: how
do we choose which strategy to use?

This was the first question I decided to tackle in my studies. I discov-
ered that many other researchers pursued this question. It has been termed
the strategy selection or “deciding how to decide” problem. While Beach
and Mitchell (1978) and Christensen-Szalanski (1978) were one of the first
to tackle it, the “Adaptive decision making” book by Payne, Bettman, and
Johnson (1993) provided a more extensive treatment. It characterized a
set of strategies and made explicit the connection to properties of exter-
nal environments that decision situations emanate from. This early work
advanced a cost-benefit approach for dealing with the strategy selection
problem. According to it, people choose a strategy by trading the benefits
of applying a strategy against its costs. The benefits are related to the strat-
egy’s accuracy, while the costs are related to the time or cognitive effort
of applying the strategy. More recently, Gigerenzer and colleagues from
the Adaptive Behavior and Cognition group in Berlin developed a series of
what they call fast-and-frugal heuristics (Todd & Gigerenzer, 2000). These
heuristics are not general strategies that are meant to be applied in every
situation, but instead they are highly adapted to solving a particular prob-
lem. The authors explicitly recognized that for the fast-and-frugal heuristics
approach to work, the strategy selection problem has to be tackled — how
does one know when to use which heuristic? The strategy selection prob-
lem does not appear only in these specific approaches to decision making,
the problem is more widespread than one might think initially — it is im-
plicitly present in many other areas of cognitive psychology. For example,
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in category and function learning there is a consensus that people use both
exemplar-based and rule-based processing to learn concepts and functions
(Ashby & Maddox, 2005; Busemeyer, Byun, Delosh, & McDaniel, 1997).

In the first chapter, Not everything looks like a nail: Learning to select
appropriate decision strategies in multiple environments, co-authored with
Henrik Olsson and Maarten Speekenbrink, I take the learning approach
to solving the strategy selection problem. The focus of this approach is
the learning process by which those strategies that result in highest aver-
age rewards end up being used relatively more than other less rewarding
strategies. This reinforcement learning approach was recently developed
as an alternative to the cost-benefit one (Erev & Barron, 2005; Rieskamp
& Otto, 2006). Previous research showed that when facing decision prob-
lems coming from a single environment, people can learn to select appro-
priate strategies. However, what happens when, as is typical outside the
psychological laboratory, they face multiple environments? In the chapter
I argue that the strategy selection problem is compounded with the cat-
egory learning problem — people need to learn to select the strategy and
learn in which environment to use it. In the experiments people face in-
terleaved decision tasks, one from a linear and the other from a nonlinear
environment, with qualitatively different strategies being more appropri-
ate in each. The chapter provides evidence that people are able navigate
such scenarios, adopting appropriate strategies in each environment. The
reinforcement learning approach can account for this process — people as-
sociated different strategies to different types of environments through a
trial-and-error type of process, and learned to flexibly switch between the
strategies as needed.

Even though people generally learn to use the appropriate strategy,
there are always those that keep using less effective strategies. What is
the source of this inter-individual variability? This is the question I turn
to in the second chapter, Explaining inter-individual variability in strategy
selection: A cue weight learning approach, co-authored with Henrik Olsson
and Pantelis P. Analytis. Past research has tried to explain the adopting
of strategies like take-the-best (Gigerenzer & Goldstein, 1996) or weighted
additive (Payne et al., 1993) using intelligence scores, working memory
span or personality traits. Yet, they did not yield satisfying results. In this
chapter, I propose that the puzzle could be explained by differences in the
speed of learning. Adoption of the strategy should depend on the statistical
properties of the environment — how the cues of the alternatives are related
to the criterion they are judging. Since such properties have to be learned,
my thesis is that commonly observed differences in learning might result
in differences in strategy adoption. In mustering the evidence the exper-
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iments involved both deciding between multi-cued alternatives as well as
making predictions about alternatives’ criterion values. This allowed us to
jointly study decision making and learning the properties of the environ-
ment. Overall, the results presented in the chapter provide support for the
thesis.

In chapter two, we observed how learning the properties of the environ-
ment can be coupled with decision making. Exploring interactions between
these two processes can substantially improve our understanding of how
peoples’ knowledge of functional relationships and concepts is shaped, and
how decision making in the wild operates. Unfortunately, these two pro-
cesses have been mostly studied in isolation so far. On the one hand, re-
searchers studying multiple-cue probability learning and function learning
have investigated how people learn relationships between observed cues
and an unobserved criterion value (e.g. Busemeyer et al., 1997; Hammond
& Stewart, 2001). On the other, researchers working on reinforcement
learning have been very successful in explaining how animals and humans
learn to choose rewarding stimuli and avoid punishments (e.g. Niv, 2009;
Schultz, Dayan, & Montague, 1997). In reality, however, the samples used
to learn the functional relations are systematically skewed by making deci-
sions that lead to accumulation of rewards. For instance, we might have a
good knowledge of what makes a good restaurant but much poorer knowl-
edge of what makes a bad one. Decision processes are also biased by our
knowledge of functional relations — when weighing between alternatives,
people can draw on such knowledge to predict the value of alternatives,
even ones they have never seen before. For example, our previous expe-
riences with dining in restaurants tells us that popularity strongly predicts
the quality of the meal and we are likely to have a tendency to choose a
restaurant with more patrons for our next outing.

The last chapter of the thesis, Trials-with-fewer-errors: Feature-based
learning and exploration, co-authored with Pantelis P. Analytis, Peter Dayan
and Maarten Speekenbrink, is one of the first studies that systematically in-
vestigates the interactions between learning of the functional relations and
decision making. I consider it to be the most developed chapter in the the-
sis. It introduces a novel feature-based multi-armed bandit task to study
the interactions in more detail. In this task rewards are a noisy function
of the features, an important difference in comparison to reinforcement
learning tasks often used to study how animals and humans learn to choose
rewarding actions and evade punishments (Gershman & Daw, 2017; Gersh-
man & Niv, 2010). The chapter also puts forward a Bayesian optimization
framework for tackling such decision making problems (Shahriari, Swer-
sky, Wang, Adams, & de Freitas, 2016). The framework relies on similarity-
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based learning of functional relationships between features and rewards,
and choice rules that use uncertainty to balance exploration and exploita-
tion. Through a series of experiments it is demonstrated that people’s ex-
ploration patterns exhibits clear signs of Bayesian optimization — simultane-
ous function learning and function maximization. Several other predictions
obtained from the framework are supported as well. Overall, this chapter
makes an important contribution by jointly studying two processes — func-
tion learning and decision making, that have been studied in isolation thus
far. It charts the new territory by illustrating the interactions between them
and advancing a theoretical framework for understanding the interactions.
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Chapter 1

Not everything looks like a nail:
Learning to select appropriate
decision strategies in multiple
environments

Abstract

How do people choose which decision strategy to use? When facing single
tasks, research shows that people can learn to select appropriate strate-
gies. However, what happens when, as is typical outside the psychological
laboratory, they face multiple tasks? Participants were presented with two
interleaved decision tasks, one from a nonlinear environment, the other
from a linear environment. The environments were initially unknown and
participants had to learn their properties. Through cognitive modeling, we
examined the types of strategies adopted in both tasks. Based on out of
sample predictions, most participants adopted a cue-based strategy in the
linear environment and an exemplar-based strategy in the nonlinear envi-
ronment. A context-sensitive reinforcement learning model accounts for
this process. Thus, people associated different strategies to different types
of environments through a trial-and-error type of process, and learned to
flexibly switch between the strategies as needed. This evidence further sup-
ports the strategy selection approach to decision making which assumes
that people pick and apply strategies available to them according to task
demands.



1.1 Introduction

In the same way as a carpenter is able to choose between a hammer and a
screwdriver to deal with a nail, the adaptive toolbox approach to judgment
and decision making assumes that, when faced with a decision problem, a
decision maker is able to choose an appropriate strategy from her toolbox
of decision strategies (Gigerenzer, Todd, & the ABC Research Group, 1999;
Payne et al., 1993; Scheibehenne, Rieskamp, & Wagenmakers, 2013). En-
tertaining the possibility that the mind carries such a toolbox, the question
is then: how do we know which strategy to use in which situation? This
question has been termed the strategy selection or “deciding how to decide”
problem.

In the last two decades theoretical and empirical advances have been
made in tackling the strategy selection problem. First theoretical attempts
were cost-benefit approaches (Beach & Mitchell, 1978; Christensen-Szalanski,
1978; Lieder & Griffiths, 2015; Payne et al., 1993; Russell & Wefald, 1991).
According to this approach, people choose a strategy by trading the bene-
fits of applying a strategy against its costs. The benefits are related to the
strategy’s accuracy, while the costs are related to the time or cognitive effort
of applying the strategy. More recently, reinforcement learning approaches
appeared as an alternative to cost-benefit analysis (Erev & Barron, 2005;
Rieskamp & Otto, 2006). The focus of this approach is the learning pro-
cess by which those strategies that result in highest average rewards end
up being used relatively more than other, less rewarded strategies.

Despite these advances, there is at least one major problem not ad-
dressed theoretically or empirically. People navigate through multiple envi-
ronments — classes of situations in which a certain strategy performs better
than others. Not everything is a nail and situations differ — for example,
when deciding between wines you might be better off using the take-the-
best heuristic (Gigerenzer & Goldstein, 1996), while for choosing a cheese
you might want to use a similarity based strategy (Nosofsky & Bergert,
2007). The strategy selection approach implies that people should treat
different environments as such and adapt to each as needed. Moreover,
they must be able to recognize a certain decision situation as belonging
to an environment and flexibly shift between different strategies as they
encounter one environment or the other. The empirical evidence thus far,
however, mostly shows that people are able to select an appropriate strat-
egy in a single environment. For example, experiments in Pachur and Ols-
son (2012), Rieskamp and Otto (2006) and Karlsson, Juslin, and Olsson
(2007) employed between-subject designs where each participant faced
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only one environment.! Hence, the question if participants can adaptively
select strategies in tasks with multiple environments and decision situations
is still unanswered.

Improvements can also be made in terms of evaluating formal models
of strategy selection. Thus far empirical evaluations were based on en-
vironments where values of alternatives were linear functions of cues or
attributes and information about the function in terms of cue validities was
provided to the participants (Lieder & Griffiths, 2015; Rieskamp, 2006;
Rieskamp & Otto, 2006, but see J. Hoffmann, von Helversen, & Rieskamp,
2014, for a recent exception). Exemplar-based strategies (Nosofsky, 1984;
Nosofsky & Bergert, 2007) have not yet been included in such models.?
Given the body of evidence for exemplar-based processing and that such
strategies can also perform well in nonlinear types of environments, sup-
port for any strategy selection model is incomplete when only evaluating
it in linear environments. Moreover, explicitly providing information about
the statistical properties of the environment greatly facilitates solving the
strategy selection problem. In more realistic situations these properties
have to be discovered as well, and this important aspect of the strategy
selection problem has thus far been ignored.

Our objective is to put the strategy selection approach to judgment and
decision making to a stronger test by evaluating it in a multi-environment
setting where participants face alternating instances of two different envi-
ronments on a trial-to-trial basis. Moreover, one environment will be of a
linear, while other of a nonlinear nature — requiring of participants to adopt
qualitatively different strategies to perform well in them. Finally, the char-
acteristics of the environments will be initially unknown and participants
need to learn their properties.

We make two main contributions. First, we provide evidence that peo-
ple can learn to flexibly use appropriate decision strategies on a trial-to-trial
basis in initially unknown linear and nonlinear environments. This pro-
vides strong additional support for the strategy selection approach to deci-
sion making. Second, our contextual version of the reinforcement learning
based strategy selection model (SSL Rieskamp & Otto, 2006) accounts for
how people learn to associate different decision strategies to different en-

!There are studies that examined dynamic environments, where there is a sudden
shift in statistical properties and appropriate strategy (Broder & Schiffer, 2006; Rieskamp,
2006). However, this is a change in properties of the same environment and there was no
difference in observable features that would indicate the difference between the environ-
ments.

2In fact, Rieskamp and Otto (2006) considered it to be an alternative to their SSL
model, instead of possibly another strategy in the toolbox.
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vironments. In what follows, we first discuss the problem of strategy selec-
tion in multiple environments and examine how it fits in the landscape of
existing theories of strategy selection. We then describe the design of our
experiment, introduce the task and our qualitative predictions, and report
the results. Then we describe the formal implementation of the contextual
SSL model and assess how well it accounts for our results. We close with a
discussion of our results and a call for further theoretical development with
regards to the interaction between the categorization of environments and
strategy selection.

1.1.1 Strategy selection in multiple environments

In a reply to a précis on fast-and-frugal heuristics (Todd & Gigerenzer,
2000), an influential work outlining a decision making framework where
strategy selection has a strong role, Luce (2000) applauded the authors for
presenting a different approach to studying judgment and decision making,
and raised an issue of “how does one classify problems and decide upon
which of several fast and frugal heuristic to employ?” (p. 758). In the
same issue, Morton (2000) also noticed that classifying decision problems
is a necessary component of the approach. Morton imagined an agent hav-
ing a set of strategies and a database of previously encountered problems.
The database contains the type of problem, which strategy was applied, and
its performance. When a new problem is encountered, this database can
be used to classify the problem and then to select between the strategies.
Decision-making researchers took little notice of these early observations —
the issue of how people classify problems has not been addressed explicitly
yet.

Classifying problems does not look like a serious issue at first glance:
everybody can trivially see that choosing between cheeses is a different
situation than choosing between wines. But here is the catch: while such
perceptual features can signal that a decision problem is different from
another one, they may not be relevant at all for determining which strategy
should be used in it.

Normative research has shown that important indicators for strategy
performance are statistical properties of the environment. For example,
in environments where the value of an alternative is a weighted additive
(linear) function of cue values, features such as dispersion of cue weights or
cue inter-correlations are good predictors of strategy performance (Hogarth
& Karelaia, 2005a, 2005b, 2006a, 2006b, 2007; Martignon & Hoffrage,
2002; Martignon & Laskey, 1999). In such linear environments optimal cue
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weights can have a compensatory or non-compensatory type of dispersion.
A non-compensatory pattern is such that the cue with the greatest weight
cannot be beaten by any pattern of values for the remainder of the cues.
In a non-compensatory environment, a lexicographic strategy such as take-
the-best (TTB; Gigerenzer & Goldstein, 1996), which focuses on the most
important cues and ignores the rest, will perform well. In an environment
where the optimal cue weights have a compensatory pattern, a strategy that
integrates all the cues, such as the weighted additive rule (WADD; Payne
et al., 1993), will perform well. Higher inter-correlations between the cues
imply higher redundancy, that is, less information is obtained from knowing
the value of each additional cue. Hence, lexicographic strategies do not
lose much by ignoring most of the cues and might outperform strategies
that integrate all cues (Hogarth & Karelaia, 2005a, 2006a).3

Cue weight dispersion and cue inter-correlations are not immediately
available perceptual features. A compensatory and non-compensatory en-
vironment might be perceptually very similar. And two environments that
are perceptually very different might both be of a compensatory nature, and
thus should belong to the same category with respect to decision strategies.
When faced with an unknown environment, how do people infer the sta-
tistical properties of that environment in order to choose which decision
strategy to apply? Taking a reinforcement learning approach to strategy
selection, such inferences are not actually required. What matters is that
people can learn that certain features indicate that compensatory strategies
are likely to be successful, and other features are predictive of the success
of non-compensatory strategies. Nonetheless, strategy selection in multi-
ple environments involves non-trivial complexities of mapping the decision
situations to the space of strategies.

What are the potential solutions to this joint problem of selecting the
strategy and classifying decision situations? Lieder and Griffiths (2015)
propose a solution in the vein of the cost-benefit tradition, where one
weighs the cost of applying each strategy against its estimated accuracy,
and selecting the one that yields the best ratio. They propose using the
statistical properties discussed above as features to predict the expected re-

30ther characteristics of environments have also been studied. The link between strat-
egy effectiveness and properties like the number of observations, number of cues, and
dominance relations is currently unclear (Gigerenzer et al., 1999; Martignon & Hoffrage,
2002; Martignon & Laskey, 1999). Under time pressure people use more frugal heuris-
tic strategies like TTB (e.g. Rieskamp & Hoffrage, 2008). Cognitive effort also plays a
role. People with better episodic memory have a stronger tendency to use exemplar-based
strategies (J. Hoffmann et al., 2014), presumably because employing this strategy is less
costly for these people.



ward of applying each strategy through linear or logistic regression. Such
an approach can work well when decision makers know the properties and
relevant features of the environment well. This is the situation in which
Lieder and Griffiths (2015) evaluated their model — participants encoun-
tered compensatory and non-compensatory environments with the valid-
ity of each cue displayed. However, their model cannot be applied as
easily in situations where such environmental properties are initially un-
known. Nonlinear environments pose an even greater obstacle. While the
statistical properties of linear environments have been identified that pre-
dict whether TTB or WADD will fare better, features that predict whether
exemplar-based strategies are more appropriate, such as those related to
the nonlinearity of environments, are not yet known (Pachur & Olsson,
2012).

In this paper we take a reinforcement learning approach to solving the
dual problem of classifying decision situations and selecting the appropri-
ate strategy within a situation. In the reinforcement learning approach,
a strategy which accumulates more rewards when applied in a particular
environment will be used more often. The SSL model (Rieskamp & Otto,
2006) has previously been used to describe strategy selection in single lin-
ear compensatory or noncompensatory environments with known cue va-
lidities. To deal with multiple environments, we extend SSL by assuming
that decision makers use observable features to separate decision situa-
tions into different categories (e.g., cheeses and wines). Ignoring the latent
statistical properties, this contextual version of SSL will run two separate
reinforcement learning processes, one for each category, treating them as
potentially different environments. If cheese and wine categories are in-
deed such that different strategies should be used in them, the model will
eventually learn which strategy results in higher average reward. However,
if they were such that the same strategy should have been used in both —
for example, if both turned out to compensatory such that WADD performs
well — then the effort was duplicated. This is a slow and potentially wasteful
mechanism, but it has the advantage that the decision maker does not have
to know complex statistical features such as cue inter-correlations. This
is particularly useful when facing nonlinear environments, where we only
need to assume that the decision maker’s repertoire also contains strategies
that can handle nonlinear environments, such as exemplar-based strategies
(Nosofsky, 1984; Nosofsky & Bergert, 2007; Pachur & Olsson, 2012). In ad-
dition, we assume that the decision maker’s repertoire contains strategies
that are able to learn, or approximate, a variety of functions that relate the
cues to the value of decision alternatives. Whilst learning which strategy
to use, a decision maker simultaneously adapts individual strategies to the
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particulars of the environment. Hence, our contextual SSL. model can work
both in novel situations and in environments that decision makers know
well. With sufficient experience, the individual strategies in the repertoire
have adapted to the environment and it is clear which strategy will provide
the maximum rewards.

1.1.2 Overview

We examined whether people are able to learn to use appropriate deci-
sion strategies when faced with multiple environments, flexibly shifting
between them on a trial-by-trial basis. Participants in our experiment per-
formed a paired comparison task where the goal was to pick the alternative
with the highest criterion value. Each alternative was described by four
cues and each paired comparison belonged to one of two types of environ-
ments — a linear or a nonlinear environment. In the linear environment,
the task can be solved equally well by either a cue-based strategy that com-
bines cue values in a linear fashion or an exemplar-based strategy. In the
nonlinear environment, an exemplar-based strategy has a clear advantage
over cue-based strategies as it can approximate the nonlinear function. The
main prediction of a strategy selection approach to decision making is that
in the linear environment the participants will adopt a strategy mix where
cue-based strategies are used most often. In the nonlinear environment,
the strategy mix should be dominated by exemplar-based strategies.

As outlined in the previous section, the reinforcement learning approach
to strategy selection tackles this problem by partitioning the decision situ-
ations on the basis of perceptual information. We used two cover stories
that were easy to visually differentiate — “bugs” and “comics” — that repre-
sented either the linear or nonlinear environment. If participants cannot
adopt appropriate strategy mixes in this relatively simple situation, there
is little hope they will be able to do so when faced with less perceptually
differentiated environments.

Our analysis relies on two modeling approaches. After confirming that
participants indeed learn over time in our task we first identify which
strategy they have adopted in each environment. We accomplish this by
fitting several cue-based and exemplar-based models separately to trials
from each environment. We examine the extent to which participants have
appropriately adopted different classes of strategies in each environment
and narrow down the most representative strategies in both cue-based and
exemplar-based class. Second, using the selected representative strategies
as a strategy repertoire, we fit the contextual strategy selection learning
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model to both environments simultaneously, with the aim of explaining
how the strategy preferences develop over time. With the first modeling
exercise, besides deriving inputs for the strategy selection modeling, we
obtain evidence of strategy use that does not rely on the precise learning
mechanism we assume in the strategy selection modeling.

1.2 Method*

1.2.1 Participants

Fifty-five participants (29 women, 26 men, My = 21.4, age range: 18-40
years) took part in the experiment. Participants were recruited from the
Universitat Pompeu Fabra subject pool. They were paid a show-up fee of
three euros and an additional performance-dependent bonus (5.8 euros on
average). The experiment was run in groups of about 10 people in the BES
laboratory at Pompeu Fabra University. The experiment lasted for one hour
on average.

Six participants did not reach the required level of accuracy in the train-
ing phase and did not continue to the test phase. Two of these participants
failed to reach the required level of accuracy in the nonlinear environment,
while the other four did not perform well enough in the linear environ-
ment. These participants were excluded from the analysis completely. The
final sample consisted of 49 participants (27 women, 22 men, My = 21.6,
age range: 18-40 years).

1.2.2 Materials

On each trial in the learning and test phase, participants were presented
with a pair of stimuli and had to choose the stimulus with the higher crite-
rion value. The stimuli used were modified from Pachur and Olsson (2012)
and Olsson, Enkvist, and Juslin (2006). Fifteen unique stimuli with four
binary cues were used to construct choice pairs in both the linear and non-
linear environment. Table 1.1 shows the cue patterns of all the stimuli to-
gether with their criterion value in both environments. The criterion value
in the linear environment, y;, was a linear function of four cues, c1, c2, c3

4Software, together with exact instructions and stimuli used in the experiment, is
publicly available at the Open Science Framework website: https://osf.io/3q5if/.
Raw data from the experiment is publicly available on Figshare: http://dx.doi.org/
10.6084/m9.figshare.1585822.
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and cy4:

yr = 0.1 +0.4c1 +0.3c2 +0.2c3 — 0.1c4

An independent error term was added to both items in each pair, drawn
from Normal distribution with a mean of 0 and standard deviation of 0.15.
The noise was added to provide probabilistic feedback and further induce
the usage of a cue-based strategy (Juslin, Jones, Olsson, & Winman, 2003).
Following Olsson et al. (2006), the criterion value in the nonlinear en-
vironment, yyz, was a nonlinear function of the linear criterion values:

yni ~ 4.0508y; — 0.0367y> — 110.8225

No noise term was added in the nonlinear environment.

The environments were randomly interleaved in the training and test
phases. The purpose of the training phase was to allow participants to
learn how to solve the tasks. The training phase consisted of four blocks,
84 trials in each block — 44 trials from the linear and 40 from the nonlinear
environment — giving 336 trials in total. For the linear environment we cre-
ated 44 pairs using 10 unique stimuli — all possible combinations except for
one pair where the stimuli had identical criterion levels. For the nonlinear
environment, we used five unique stimuli and created all possible pairs, 10
in total, and repeated these 10 pairs four times. The stimuli used in the
training phase are marked as “Old” in Table 1.1. We used smaller number
of unique stimuli in the nonlinear environment to induce people further to
adopt an exemplar-based strategy (Olsson et al., 2006).

The purpose of the test phase was to more clearly assess the strategy
mix adopted in each environment and to see the extent to which partici-
pants generalized what they learned in the learning phase. For the linear
environment, we used five new unique stimuli together with old ones to
create 18 pairs. Seven pairs with old stimuli from the training phase were
repeated four times and the remaining nine pairs that included at least
one new stimulus were repeated eight times, giving 116 trials in total. For
the nonlinear environment, we selected from the pairs used in Pachur and
Olsson (2012) those that maximized the discrimination between cue-based
and exemplar based strategies. The resulting 17 pairs include eight new
stimuli, together with old ones. Three pairs with old stimuli were repeated
four times and the remaining 14 pairs with at least one new exemplar were
repeated eight times, giving 124 trials in total. In the whole test phase there
were 240 pairs. Participants did not receive feedback on their choices.

We used two different cover stories for the linear and the nonlinear task
— poisonous “bugs” and dangerous “comics”. In the bugs story participants
had to choose which bug was more poisonous, and in the comics story
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Table 1.1 Cue patterns and continuous criterion values of the 15 exemplars used
in linear and nonlinear environment in the Experiment.

ID Cues Linear env. Nonlinear env.
Cuel Cue2 Cue3 Cue4 y Role y Role
1 0 0 0 0 0.10 old 0 new
2 0 0 0 1 0.00 new 0.35 old
3 0 0 1 0 0.30 old 0.62 new
4 0 0 1 1 0.20 old 0.82 old
5 0 1 0 0 0.40 old 0.82 new
6 0 1 1 0 0.60 old - -
7 0 1 1 1 0.50 old - -
8 1 0 0 0 0.50 new 0.94 old
9 1 0 0 1 0.40 old 1 new
10 1 0 1 0 0.70 new 0.97 new
11 1 0 1 1 0.60 new 0.88 new
12 1 1 0 0 0.80 old 0.88 old
13 1 1 0 1 0.70 old 0.71 new
14 1 1 1 0 1.00 new 0.47 old
15 1 1 1 1 0.90 old 0.16 new

Note. ID = exemplar identification number; env = environment; old =
exemplar used in both training and test phase; new = new exemplar that
occurs only in the test phase; y = criterion.

they had to choose which comic figure was more dangerous. The stimuli
consisted of pictures of either bugs or comic figures, and both bugs and
comic figures varied on four binary cues. In bugs — antennae, spots on the
back, wings, and legs, were either present or absent. Similarly, in comic
figures — hair, ears, nose, and stripes on the shirt, were either present or
absent. Pictures of bugs and comics were a subset of those in J. Hoffmann
et al. (2014).

The mapping of bugs or comics to the linear and nonlinear environ-
ment, and physical features (e.g., hair, ears) to the cues (cl,...,cs), was
determined at random for each participant. For instance, for one partici-
pant the first trial might correspond to linear environment represented as a
choice between bugs, where ¢; corresponded to the presence of antennae.
For another participant, the first trial might correspond to the nonlinear
environment represented as well as a choice between bugs, but ¢; corre-
sponded to the presence of wings. Trials from both environments were
randomly interleaved for each participant. Order of the trials was random-
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ized within each block in the training phase and in the whole test phase.
Position of the stimuli on the screen (left or right) was also randomized on
each trial.

To proceed to the test phase, participants had to reach 70% accuracy
in both environments in the last block of the training phase. When partic-
ipants did not satisfy this criterion, we provided them with another block
of trials and checked their accuracy again. Participants who failed to reach
the required level of accuracy after two additional training blocks were not
allowed to continue the experiment.

1.2.3 Procedure

Participants completed the experiment on desktop computers, using cus-
tom software written in Python and the PsychoPy library (Peirce, 2007). At
the beginning of the experiment, participants completed an informed con-
sent form. They then received on-screen instructions about the task and
earnings. All instructions were presented in Spanish.

To motivate participants, we told them that while the task would ini-
tially be difficult, they could improve with practice. Moreover, depending
on their performance they could earn additional money: on every trial they
could earn experimental units (EU’s) — they gained 10 EU’s for a correct
choice and lost 10 EU’s for an incorrect choice. The exchange rate was 1
euro for 500 EU’s. Participants started the experiment with zero EU’s and
they could see the running total during the training phase, but not the test
phase.

We did not provide participants with information on the exact number
of rounds in each phase, instead we told them that the experiment would
take 60 minutes on average to complete. The test phase was announced at
the beginning of the instructions but without specific details, which were
provided only at the start of the test phase. Earnings in the test phase were
computed in the same way as in the training phase.

1.3 Results

1.3.1 Behavioral analysis

We used the proportion of expected correct choices (choosing the alterna-
tive which is expected to have the highest criterion value) in a block of
trials as performance measure.
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Training phase

Figure 1.1 shows the performance in the learning phase for each environ-
ment. Participants performed substantially better than chance already in
the first block, achieving a mean accuracy of 0.76 in the linear and 0.68
in the nonlinear environment. In fact, in the linear environment, perfor-
mance was better than chance even on the very first trial. People tend to
have strong prior beliefs that cue-outcome relations are positive and linear
(Brehmer, 1974; Busemeyer et al., 1997; Olsson et al., 2006) and the lin-
ear environment is consistent with this belief; hence, initial guesses that a
bug or comic with more features present is more poisonous or dangerous
were correct on average. Overall, participants improved during the train-
ing phase, reaching a mean accuracy of 0.85 in the linear environment by
the last block. A Wilcoxon signed rank test shows a significant difference
in choice accuracy between the first and last block, My;rr = .09, Z = 989,
p < .0001. A similar result holds for the nonlinear environment, where
participants achieved 0.90 by the last block, which is significantly higher
than performance in the first block, Mg;rr = .22, Z = 1175, p < .0001.

In the last training block, performance in the nonlinear environment
reached a higher level than in the linear environment, as shown by a
Wilcoxon signed rank test on the difference in choice accuracy between
the environments, My;rr = .049, Z = 262, p = .0003. This indicates that
the linear environment was more difficult to learn than the nonlinear en-
vironment, at least with the amount of training trials in our experiment.
Although there is some evidence that people can learn nonlinear functions
better than linear ones (J. Hoffmann et al., 2014; J. A. Hoffmann, von Hel-
versen, & Rieskamp, 2013; von Helversen & Rieskamp, 2008), most studies
show the opposite (e.g. Brehmer, 1994; Busemeyer et al., 1997). In our ex-
periment, the small number of exemplars and deterministic feedback used
in the nonlinear environment evidently facilitated learning compared to the
linear environment.

Note that the results of block five and six are based on responses of a
subset of participants who completed an additional one or two blocks in the
training phase. Five participants completed two additional training blocks
due to poor performance in the linear environment, while 13 participants
completed one additional block (six of these due to poor performance in the
linear environment). In Figure 1.B.1 in Appendix 1.B we illustrate choice
accuracies separately for groups of subjects that did or did not require ad-
ditional training blocks. While slower learners took more time, by the end
of the training phase they achieved performance levels similar to the faster
learners. For this reason here and in the rest of the article we plot the re-
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Figure 1.1 Accuracy of participants’ choices in blocks of trials in the training phase
and in the test phase. Training blocks consist of 44 linear and 40 nonlinear trials.
Result for a block is a mean of individual mean accuracies across trials in a block.
Results of block five and six come from a subset of participants that took additional
one or two blocks in the training phase. Error bars represent standard errors of
group means of each block of trials. Points are displaced horizontally to make
them easy to distinguish. In addition, we display mean accuracy in the very first
trial and across the first ten trials, marked with numbers one and ten, respectively.

sults of all participants together, but point out that some results (i.e., those
in block 5 and 6) are based on a subset of participants.

Decrease in response time is another behavioral signature of learning.
The time to make a choice in both environments almost halved by the last
block in the training phase, from 4.61 to 2.85 seconds, Mgirr = 1.76, Z =
1225, p < .0001. Moreover, on average participants took more time to
make a choice in the linear environment, My;rr = .38, Z = 990, p < .0001
(Wilcoxon signed-rank test).
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Test phase

How well did the participants generalize their knowledge from the training
phase to the test phase? In the test phase participants encountered pairs
with new stimuli and they did not receive feedback on their choices. Mean
accuracy in the test phase dropped compared to the last training block: in
the linear environment it decreased from 0.85 to 0.68 and in the nonlinear
environment from 0.90 to 0.80. The difference in accuracy between non-
linear and linear environments found in the training phase persisted in the
test phase, Mgirr = .114, Z = 290, p = .001. Response times in the test
phase were very similar to those obtained in the last training block.

The decrease in performance from training to test phase was expected
as the pairs in the test phase contained many new items that participants
had not experienced before. The somewhat larger decrease in the linear en-
vironment was partly due to the slower learners. As shown in Figure 1.B.1
in Appendix 1.B, those participants who needed two additional training
blocks had particularly poor performance in the linear environment. With-
out these five subjects, the mean accuracy in the linear environment in the
test phase increases to 0.71. Interestingly, their performance in the nonlin-
ear environment did not suffer at all.

1.3.2 Identifying the strategies adopted by the partici-
pants

We used cognitive modeling to investigate which decision strategies par-
ticipants relied on in the linear and nonlinear environments. We expected
that participants would adopt an exemplar-based strategy in the nonlinear
environment and a cue-based strategy in the linear environment. While
both classes of strategies can perform well in the linear environment, we
expected the probabilistic feedback and fewer repetitions of stimuli to tip
the scale in favor of cue-based strategies.

We used several models from the literature as representatives of each
type of strategy. The cue-abstraction model (CAM, Pachur & Olsson, 2012)
and weighted additive (WADD, Bergert & Nosofsky, 2007; Payne et al.,
1993) model are representative cue-based strategies. To represent the
exemplar-based strategies we used two versions of the generalized context
model (GCM, Nosofsky & Bergert, 2007) that were specifically adapted
for pairwise comparison tasks as used here. We describe the models in
more detail in the following sections, while the estimation procedure and
overview of estimated parameters can be found in Appendix 1.A. In Ta-
ble 1.2 we list the models we set out to investigate. We examined several
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other variants of these models in an exploratory manner, their results and
parameters are presented in Appendix 1.A, however, we do not focus on
these in the main text.

We used more than one model per type of strategy as we are mainly
interested whether a certain type of strategy has been adopted. Previous
research has shown significant individual variation in which particular cue-
or exemplar model describes behavior best in an environment. For instance,
some people are better described by the WADD model and some by the
CAM in a linear environment (e.g., Pachur & Olsson, 2012). Including
several instantiations of cue- and exemplar-based models should reduce
the chance of falsely rejecting our hypotheses due to the particular choice
of model.

The weighted additive (WADD) model

The weighted additive model (Payne et al., 1993) and take-the-best heuris-
tic (Gigerenzer & Goldstein, 1996) are popular models for describing the
behavior in pairwise comparison tasks. We used the probabilistic general-
ization of these models developed by Bergert and Nosofsky (2007). In the
WADD model the probability that A will be chosen over B is given by

(Zaerawa)”
(Zacrawa)? + (Sperswp)’’

P(A; A, B) =

where y > 0 is a free response scaling parameter and w; (0 < w; < 1)
are the weights assigned to each individual cue, constrained to sum to 1.
FA and FB denote the set of discriminating cues favoring alternatives A

Table 1.2 Overview of the models representing each type of strategy.

Strategy type Model # Par.
Cue-based CAM,, 4
WADD 4
Exemplar-based ~ pGCM}, 5
JGCMY, 5

Note. # Par. = Number of free parameters in the
model; CAM, = Unconstrained cue abstraction
model; WADD = Weighted additive model; GCM
= Generalized context models.
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and B, respectively.5 Generalized take-the-best (gTTB) is a special case
with scaling factor y set to 1. Although the predictions of two models are
equivalent in that case, the implied psychological processes are different. In
the main text we present the result for WADD model since gTTB is a special
case of WADD. We report results specifically for gTTB in Appendix 1.A.

As these models are based on a linear combination of cues, they are
especially well suited for linear environments. This gives them an edge in
linear environments, but prevents them from performing well in nonlin-
ear environments. Scaling parameter y can additionally capture potential
inter-individual differences in sensitivity to differences in evidence between
alternatives.

Overall, the WADD model had four parameters — y, w1, wy and w3, while
the gTTB model had three parameters — wy, wy, and ws.

Cue-abstraction model (CAM)

The cue abstraction model (Juslin, Jones, et al., 2003; Pachur & Olsson,
2012) is another model that combines evidence in a linear way. Alterna-
tives are evaluated jointly by looking at the difference of each cue value
Acj = cja—cjg, j = 1,..,4. The importance of each cue difference is reflected
in its cue weight w; > 0. The higher the cue weights are, the more they will
influence the choice. The probability that alternative A will be chosen over
alternative B is given by

erWjACj

P(A; A B) = T owis’

Essentially, CAM is a logistic regression model without an intercept. It is
also similar to the WADD model; the main difference being that CAM trans-
forms the evidence into choice probabilities through a logistic function and
allows for more subjectivity in weights. Even though the models produce
similar predictions, empirically researchers have found differences in terms
of fit to choice behavior (Pachur & Olsson, 2012).

We tested two versions of the model. In CAM, the weights are con-
strained to lie between O and 1 and to sum to 1, i.e. 0 < w; < 1, and

°In our environments some cues have a negative effect on the criterion and the sign of
the difference between the cue values of two alternatives needs to be reversed (multiplied
by minus 1) whenever the difference is not equal to zero. For each environment we
fitted the WADD to the actual winning alternatives with all possible combinations of cue
reversals. In the linear environment the WADD with fourth cue reversed performed the
best, and in the nonlinear the WADD with second, third and fourth cue reversed was the
best. When fitting the model to each individual we reversed the cues according to these
results.
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Z;Ll w; = 1, while in CAM, they are unconstrained. The constraint pre-
vents the weights from becoming very large which can reduce overfitting
and may help the model to generalize better. Because the constraint im-
plied positive effects for all cues, we reversed the direction of some cues
using the same procedure as for WADD and gTTB. We focus on the more
general CAM, and we examined CAM_, in an exploratory manner. Results of
CAM, are reported in Appendix 1.A. CAM, had four parameters — wy, wo,
ws and wy, while CAM, had three parameters — wy, wy, and ws.

The generalized context model (GCM)

The generalized context model is a memory-based exemplar model widely
used in category learning (Nosofsky, 1986), but also for continuous judg-
ments (Juslin, Jones, et al., 2003; Speekenbrink & Shanks, 2010). GCM
assumes that previous experiences are stored as instances in memory and
when a new situation arises, a prediction is generated by combining exem-
plars stored in memory according to their similarity to the new situation.
The similarity component allows the model to mimic both linear and non-
linear functions, which is why it can perform well in both types of environ-
ment.

We used the GCM developed for pairwise comparison tasks by Nosofsky
and Bergert (2007). The model compares the probe (the current pair of al-
ternatives) to the previously encountered exemplars (pairs of alternatives)
that are kept in the memory. The model determines how similar the probe
p is to each exemplar i through an exponentially decreasing function of the
distance d(p, i) between the probe and exemplar

S(p,i) = e ME",

where 0 < 1 < 10 is a sensitivity parameter and g = 1 for the exponential,
and g = 2 for the Gaussian similarity function. The distance function is the
generalized Minkowski distance

d(p, i) = ij.zlelcpj — Cijlr]l/r

with Minkowski parameter r being either 1 or 2. ¢,; and c;; are the cue
values of probe p and exemplar i, respectively, for cue j. w;, 0 < w; < 1, are
attention weights assigned to each individual cue, constrained to sum to 1.
The more closely the cue values of the probe and the exemplar correspond
to each other, the smaller the distance between them and the greater the
similarity.
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Nosofsky and Bergert (2007) proposed two versions, depending on how
the decision situation is represented. In what we call a “paired” representa-
tion, the model assumes that winning alternatives are stored as exemplars
of a winners category, W, while losing alternatives are stored as exemplars
of a losers category, L. Similarities to the winners and losers categories for
alternative A are computed separately as

S(A, W) = Z s(A, i)

iew

and

S(AL) = ZS(A, i)

i€l
The relative evidence for alternative A is given by

~ S(A, W)Y
T S(A, W)Y +S(A L)Y

A

where 0 < y < 10 is a free scaling parameter. Finally, the probability that
alternative A is chosen is given by

Ga

The “joint” representation version of the model similarly assumes that pairs
of alternatives are stored as exemplars in winners and losers categories. If
the feedback indicates that alternative A is a correct choice, then the pair
AB is stored in the winners category as a vector where alternative B is
concatenated to alternative A, while a vector BA, where A is concatenated
to B, is stored in the losers category. The attention weights are the same
for both alternatives and in this representation they are simply duplicated
and concatenated to form a vector of the same length as pairs AB and BA.
The probability that alternative A is chosen is given by

S(AB, W)Y
S(AB, W)Y + S(AB, L)Y

P(A; A, B) =

where S(AB,W) and S(AB, L) represent similarities of the pair AB to each
exemplar in the winners and losers categories, respectively, based on the
same distance and similarity computations as paired representation.

We focused on GCM versions with Minkowski distance parameter r = 1
and exponential similarity function q = 1, which we report in the main text.
This model with the paired representation is denoted as pGCM{1 and the
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version with the joint representation as jGCM{l. Both models had a total
of five parameters: A, y, wi, wo and ws. Given the binary nature of fea-
tures in our task, Minkowski and similarity parameters should not matter
that much, but we explored both paired and joint versions with different
combinations these parameters. In one variant we also set the scaling pa-
rameter to one. Results of all models are presented in Appendix 1.A.

Best fitting models in each environment

Figure 1.2 summarizes the test set generalization results of the selected
models. Following Wagenmakers and Farrell (2004) we computed log like-
lihood (LL) weights for each of the four models in our candidate set, sepa-
rately for each environment. LL weights allow for better interpretation of
observed relative differences in model performances. Weight can be inter-
preted as the probability that a particular model is the best model, given
the data and the set of models in the comparison set. See Appendix 1.A for
more details on LL weight computation.

As can be seen in the figure, on average, CAM,, predicted participants’
choices in the linear environment best, while in the nonlinear environment
JGCMY | and pGCM} | performed about equally well, with CAM, closely trail-
ing behind. In the linear environment CAM, has the greatest probability of
being the best model among the four (0.57), being more than two times
more likely than jGCM}, (0.16) and pGCM}, (0.23). WADD fared poorly,
having only 0.04 probability of being the best model.

For the nonlinear environment the results are less clear. Evidence is
favoring jGCM;, and pGCM;,, with probabilities of 0.37 and 0.35 respec-
tively, but only with a small margin over CAM, with probability of 0.28.
The finding that CAM, performed well also in the nonlinear environment
shows that a subset of participants did not adapt well and tried to apply a
cue-based strategy in the nonlinear environment too.

Classifying individuals according to the strategy used

Average results do not tell us exactly how well adapted the participants
are. We classified participants as users of those strategies that best pre-
dicted their choices in the test phase, separately for the linear and non-
linear environment (numbers denoted with N in Figure 1.2). In the linear
environment most participants were best described by one of the cue-based
strategies. In the nonlinear environment most participants were best de-
scribed by one of the exemplar-based strategies, although the number of
participants best described by the CAM, model was also large. Thus, for
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Figure 1.2 Model performance in predicting individual choices in the test phase,
presented separately for each environment. Performance is expressed as mean
log likelihood weight across participants, computed for these four models in the
comparison set. Numbers above the bars represent number of participants whose
choices in the test phase were best predicted by each of the models. Most people
were best predicted with cue-based strategies in the linear environment, and with
exemplar-based strategies in the nonlinear environment.
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a majority of the participants, we found evidence that they were able to
adaptively switch between strategies from trial to trial, as they encountered
different environments.

In the linear environment, 19 participants were best described by one
of the exemplar-based strategies. Recall that in the linear environment
both classes of strategies can achieve good performance, while in the non-
linear environment only exemplar-based strategies can achieve good per-
formance. In the nonlinear environment there were 15 participants that
were best predicted by CAM,. These participants either did not learn to
select a more appropriate strategy for the nonlinear environment or failed
to separate decision situations into two different environments.

Overall, 12 participants used exemplar-based strategy in both environ-
ments, while 8 used cue-based strategy exclusively. 29 participants adopted
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exemplar-based strategy in one environment and cue-based in the other, 7
of which used them in unexpected fashion — exemplar strategy in the linear
and cue-based strategy in the nonlinear environment.

1.3.3 Contextual strategy selection learning

The previous analysis showed that the majority of participants successfully
adopted a cue- or exemplar-based strategy in the linear environment, and
an exemplar-based strategy in the nonlinear environment. However, that
analysis did little to inform how the associations between strategies and
environments were learned.

To describe this process in our experiment, we used a contextual version
of the reinforcement learning based SSL. model (Rieskamp & Otto, 2006).
In contrast to the original SSL, we assume that people form two categories
of situations based on perceptual features — the “bugs” and the “comics”
category. Our version of SSL then learns which strategy is more successful
separately for the “bugs” and the “comics” category. Moreover, our strate-
gies are probabilistic and the repertoire contains exemplar-based strategies
that can perform well in the nonlinear environments. We fitted the model
to the training phase for each individual, examined what strategies were
adopted and how well the choices in the test phase are predicted with the
particular strategy mix adopted in the training phase.

The model

The original SSL model (Rieskamp & Otto, 2006) assumes that people have
a repertoire of strategies they can apply to the decision problem at hand. A
crucial assumption in the model is that rewards obtained from the choices
reinforce the strategies instead of specific alternatives. The main impli-
cation of the model is that the strategy that on average leads to higher
rewards will be chosen more often.

In the contextual SSL (CSSL) we assume that the decision problem
that is encountered can be a member of one of E environments. The first
step is then to categorize the problem as belonging to one of the envi-
ronments, e € 1,...,E. We assume there is a vector of contextual features
x and that there exist a mapping, f(x), from contextual features to en-
vironment categories, e € 1,...,E. The contextual features can take any
form, for example the time available for making a decision, cue weights,
(non)compensatoriness of the cue weights, or simply perceptual features
of the alternatives. In light of our discussion in the introduction, what is
relevant is that problems are differentiated — there is no further meaning
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ascribed to any of the categories. Our experiment was designed so that
the mapping function, f(x), is particularly simple; we made it highly likely
that participants use perceptual features — bugs and comics — to partition
the problems into two categories. And as this indeed is a useful way to par-
tition the problems, they are likely to stick with it. Hence, for the purposes
of the present experiment, we assume that the model employs a simple de-
terministic function from a single contextual feature, x € {bugs, comics}, to
two environments, e € 1, 2.

In the second step, the model chooses a strategy from the repertoire
where strategy expectancies are conditional on the environment. Expectancy
is a measure of preference for a certain strategy in an environment. The
probability of choosing strategy s from repertoire S in environment e at trial

t is defined as 5le)?
_ Qi(sle
Pi(sle) = —Zf Qt(3|€)9’

where Q,(s|e) is the expectancy of strategy s in environment e at trial ¢ and
0 is a sensitivity parameter. When 6§ = 1 we obtain Luce’s (1959) choice
rule. Initial expectancies are defined by

Q1(sle) = rmaxwﬁs,

where 0 < w < 10 is an initial association parameter, r,,,, is the maximum
reward that can be obtained with a correct decision in the task (10 exper-
imental points in our case), and the f; parameter describes the initial bias
toward a certain strategy (with O < f; < 1, and }; f; = 1). In addition, if
Q:(sle) falls below some minimum level p due to negative payoffs, it is set
to p = 0.0001.

After applying the selected strategy a reward is obtained and this reward
is the basis for updating the expectancies of the strategies:

Qi(sle) = Qr-1(sle) + Li-1(sle)ri-1(sle)

where I,_1(s|e) is an indicator function, and r,_; (s|e) is the reinforcement.®
In our case reinforcement is the payoff that the strategy produces, either 10
or -10 experimental points. We implemented two types of indicator func-
tion: deterministic and proportional. The deterministic indicator function
equals 1 if the strategy s was applied, and O if it was not. How do we in-
fer that the strategy was chosen? If the strategy prediction coincides with

5The update equation looks different than the usual delta learning rule (Rescorla &
Wagner, 1972). This works equally well as in this context the absolute value of the strategy
expectancy does not matter much, only relative values play a role. This learning rule might
then obviate the need for the temperature parameter in the choice rule above.
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the participant’s choice (that is, if the probability of choosing the alterna-
tive is greater than 0.5), and if other strategies predict a different choice,
we assume that the participant has chosen that strategy. If more than one
strategy prediction coincides with the participant’s choice, we assume that
I;_1(s|le) equals the probability with which the model predicts the selection
of those strategies in a given environment, P,(s|e). In this case, the strategy
preferences do not change as ratio of expectancies will remain constant.

In the original SSL model only a deterministic indicator function was
used since the authors considered only deterministic strategies. The pro-
portional indicator function takes the probability with which each strategy
predicts the participant’s choice and produces a weight normalized by the
sum of the probabilities. This mechanism provides a more gradual strat-
egy learning process. Since this mechanism would lead to smaller relative
differences between the strategy expectancies, we used proportional indi-
cator function in combination with a sensitivity parameter 6 in the choice
rule as a free parameter. Since we do not directly observe which strategy
was employed, the proportional indicator function makes a more reason-
able choice than the deterministic ones.

We assumed there are two strategies in the repertoire — a representative
of exemplar-based strategies and a representative of cue-based strategies.
Following the results of modeling the test phase choices, we chose jGCM!,
to be the representative of exemplar-based strategies, and CAM, as rep-
resentative of cue-based strategies. Strategies also have free parameters.
This is another deviation from the original SSL model, besides partitioning
according to the observable features and proportional indicator function.
In CAM, cue weights are free parameters, and in jGCM{1 ¥, A and attention
weights are free parameters. Hence, learning occurs on multiple levels —
adapting the strategy mix at the strategy selection level, and adapting the
strategies themselves to each environment.”

Overall there were three parameters on the strategy learning level, the
initial association parameter w, initial strategy bias parameter f; and sen-
sitivity parameter 6. We varied whether a deterministic or proportional in-
dicator function was used, marked with prefix d and p respectively. When
a deterministic indicator function was used we fixed 0 to one, reducing the
number of parameters by one.

"Note however that, for the sake of simplicity, the models that we use to represent
the strategies are not learning models that adapt their parameters on a trial-by-trial basis.
Instead, for each individual we estimate the parameters of each model and environment
separately, and then use them in the CSSL model.
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Results of modeling the strategy selection learning

Modeling results in terms of projective fit in the test phase are depicted in
Figure 1.3. Details of the fitting procedure can be found in Appendix 1.A,
and estimated parameters in Table 1.A.2 in the same Appendix. We com-
pared the context sensitive CSSL model with the original SSL model (for
details, see Rieskamp & Otto, 2006) containing the same two strategies in
the repertoire and governed by the same strategy selection parameters. We
also fitted single strategies CAM, and jGCM{1 to choices from both environ-
ments, to investigate how the strategy selection models compare to simpler
explanations using single strategies.

We can see that the contextual versions of SSL fared better than the
original SSL and single strategy models. dCSSL model with deterministic
indicator function predicted participants’ choices in the test phase the best,
reaching probability of 0.26 of being the best model among the six we have
considered. pCSSLy performed worse, reaching probability of 0.17, but still
better than dSSL and pSSLy models that have probabilities 0.11 and 0.16
respectively of being best models. Interestingly, the version with the deter-
ministic indicator function had a worse performance in this case. Numbers
above the columns indicate the number of individuals best fitted with the
model. These show that 21 participants are best described by one of the
CSSL models, while 14 are best described with one of the SSL models. Al-
though CSSL models predict participants’ choices better, the advantage over
simpler SSL models does not look immediately impressive. However, the
advantage is considerable given that CSSL models are more complex, effec-
tively having twice as many parameters (when strategy-specific parameters
are taken into account) and still perform well on the held-out sample.

With respect to the single strategy models, given that choices of many
participants in the nonlinear environment were best predicted with the
CAM, model, we expected CAM,, to perform well when fitted to the whole
data. Indeed, CAM, has probability of 0.19 of being the best model, sec-
ond only to the dCSSL model, and nine participants were best predicted
with this model. jGCM{1 model performed the worst, reaching probability
of 0.11 and predicting choices of five participants the best. Overall, single
strategy models performed as well as the SSL (but not CSSL) models.

Which strategies do CSSL models adopt in each of the environments?
Figure 1.4 shows the evolution of probability of choosing the exemplar-
based strategy (as represented by the jGCM{1 model) over blocks of trials,
presented in terms of averages across the participants. As we expected, by
the end of the training phase the exemplar strategy was the preferred one
in the nonlinear environment; dCSSL and pCSSLg models ended up with
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Figure 1.3 Model performance in predicting choices in the test phase for contex-
tual strategy selection learning models (CSSL), original strategy selection learning
models (SSL), and two single strategy models — CAM,, and jGCMiyl. Performance
is expressed as mean log likelihood weight across participants, computed for these
six models in the comparison set. Numbers above the bars represent number of
participants whose choices in the test phase were best predicted by each of the
models.

probabilities of 0.73 and 0.71 of choosing the exemplar strategy. There is
very little difference between the models in terms of evolution of strategy
preferences as well. Inspecting the end-of-training strategy mixtures for
both CSSL models, most participants can be described as having a higher
probability to use the cue-based strategy in the linear environment and
the exemplar strategy in the nonlinear — 31 for dCSSL and 39 for pCSSLy
model. Fewer participants are described with mixtures that favor exemplar
strategies (12 for dCSSL and 5 for pCSSLy) or cue-based strategies (6 for
dCSSL and 4 for pCSSLy) in both environments. Only one participant was
described by the pCSSLy model as preferring the exemplar strategy in the
linear and the cue-based strategy in the nonlinear environment.

The parameters for the initial preference toward a strategy, w and S,
were shared across environments. For most participants parameter values
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indicate a weak initial preference for the cue-based strategy as both CSSL
models started with a weak initial preference for the CAM, model. In the
linear environment this preference was kept more or less constant through-
out the training phase (ending at probabilities of 0.35 for dCSSL model, and
0.39 for pCSSLy). In the nonlinear environment the change in strategy ex-
pectancies was strong and steered rapidly in favor of the exemplar strategy.
There are substantial deviations in the fifth and sixth block of the training
phase. This is due to several slower learners on which these data points are
based, that had different evolution of strategy mixtures.

The difference between the environments in which strategy is mostly
adopted is the source of improvement offered by CSSL in comparison to
the SSL and single strategy models. It results in a weak preference for the
cue-based strategy in the linear environment and strong preference for the
exemplar-based strategy in the nonlinear environment. In contrast, SSL can
learn only a single strategy mixture that works best on average over all en-
vironments and here both SSL models develop a strong preference for the
exemplar-based strategy. These differences can be seen more clearly in Fig-
ure 1.B.2 in Appendix 1.B, where model performance is shown separately
for the environments. We can see that because the CSSL models predict
choices in the linear environment much better than the SSL models, whose
performance suffers in the linear environment.

1.4 Discussion

We presented an experiment where participants were asked to solve two
interleaved choice tasks. In one task (the linear environment), a cue-based
strategy was more appropriate while in the other (the nonlinear environ-
ment), an exemplar-based strategy was more appropriate. During the train-
ing phase, participants learned to solve the tasks well. Their choices in the
test phase, where they also encountered previously unseen alternatives,
were critical for our modeling approach. In our first modeling analysis,
using an out-of-sample prediction criterion, we found that on average the
cue-based CAM, model predicted participants’ choices in the linear environ-
ment best, while the exemplar-based jGCM{1 predicted choices best in the
nonlinear environment. This modeling evidence does not rely on assump-
tions of how strategy preferences are learned. Thus, our results show that
majority of the participants in our experiment have appropriately adopted a
cue-based strategy in the linear environment and an exemplar-based strat-
egy in the nonlinear environment, and were able to flexibly shift between
them as they encountered a decision problem from one environment to
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Figure 1.4 Strategies adopted by CSSL models over time in each environment in
the training phase, expressed in probabilities of choosing the exemplar strategy,
jGCMiyl. Probability that the CAM, model is selected is one minus probability of
choosing the exemplar strategy. Test phase strategy mixture is simply the mixture
from the last trial in the training phase. Points are averages across participants,
where for each participant an average across the block was taken. Results of block
five and six come from a subset of participants that took additional one or two
blocks in the training phase.

another. However, a substantial number of participants appeared to use
a cue-based strategy (CAM,) in the nonlinear environment. These par-
ticipants either failed to separate the two environments and adopted the

29



same strategy in both, or they simply failed to adapt adequately to the
nonlinear environment (Brehmer, 1974; Busemeyer et al., 1997; Olsson
et al., 2006). We favor the latter explanation. Stoji¢, Olsson, and Ana-
lytis (2016) find that differences in speed of learning could account for the
inter-individual variation in strategy adoption within conditions. Hence,
we believe these participants were slow learners who would have adopted
an exemplar-based strategy given sufficient experience.

We found that participants’ choice accuracy in both environments de-
creased substantially from training to test phase. This drop was not ex-
pected in the linear environment. One of the advantages of cue-based
strategies over exemplar-based strategies is their ability to accurately ex-
trapolate outside the range of experienced exemplars (Busemeyer et al.,
1997). If participants truly used a cue-based strategy in the linear envi-
ronment they should have no difficulty generalizing their knowledge to the
new items in the test phase. However, there were important differences in
difficulty between the environments, so this makes the comparison harder.
Moreover, cue-based strategies can be poor at extrapolation as well, de-
pending on the specifics of the learning process (McDaniel & Busemeyer,
2005) and if the weights have not been learned sufficiently well.

In our second modeling analysis we have fitted a contextual version of
the strategy selection learning (CSSL) model, with CAM,, and jGCM{ , inthe
strategy repertoire, representing cue-based and exemplar-based strategies.
The model implements a trial-and-error mechanism by which participants
learn over time to associate environments to the strategy which works best
within it. The CSSL model predicted the behavior of the participants bet-
ter than simpler explanations in the form of the original SSL and single
strategy models. The evolution of strategy expectancies in the CSSL was
consistent with our earlier findings identifying which strategy was used in
each environment. Our CSSL model shows an initial preference for a cue-
based strategy, as also found in previous studies (Rieskamp & Otto, 2006).
In the linear environment this preference is maintained, while in the non-
linear environment it changes substantially throughout the training phase
in favor of an exemplar-based strategy.

In this modeling analysis, many of the participants best fitted with SSL
or single strategy models were also the ones that incorrectly used a cue-
based strategy in the nonlinear environment, as shown in the first modeling
analysis. However, there are inconsistent classifications as well, e.g., partic-
ipants classified as adaptive on the basis of the first modeling exercise that
were not best predicted by a CSSL model in the second modeling analysis.
Such differences are most likely due to using only CAM, and jGCM’ll1 in
CSSL’s strategy repertoire. This was necessary for practical reasons, but it
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resulted in forcing these two strategies on all participants, while in the first
modeling analysis participants were fitted with several models from both
cue- and exemplar-based class. Some differences were also expected since
the two modeling approaches differ substantially.

In several previous studies it was shown that people adopt different
strategies in different environments (e.g., Karlsson et al., 2007; Pachur &
Olsson, 2012). Crucially, however, their experiments employed between-
subject designs such that single participants were not exposed to multiple
environments. Consequently, they were concerned less with the mecha-
nisms through which strategies are adopted, focusing instead on identifying
the dominant strategy adopted by participants. (J. Hoffmann et al., 2014)
is one of the rare studies that used a within-subject design. In their ex-
periments participants performed a multiple cue probability learning task
belonging to a linear environment or multiplicative environment, although
participants were exposed to them in separate blocks. They found that par-
ticipants’ responses in the linear environment were best described with a
linear regression model, while responses in the multiplicative environment
were best described with an exemplar model. However, they investigated
the role of episodic memory in strategy adoption and did not examine the
influence of environment classification on strategy selection, or attempt to
model the mechanism behind adopting the strategies in multiple environ-
ments.

Lieder and Griffiths (2015) also used a within-subject design, aiming to
shed more light on the strategy selection mechanism. Based on their re-
sults they concluded that their feature-based cost-benefit model described
participants’ behavior better than the reinforcement learning approach of
the SSL model (Rieskamp & Otto, 2006). In their experiments they used
two similar environments — compensatory and noncompensatory, both of
which are linear. Moreover, they have presented cue validities to the par-
ticipants that made it easy to estimate the accuracy of each strategy. On
the other hand, our study favors the reinforcement learning approach as it
can deal with much more complex situations, where the importance of fea-
tures to classify environments still has to be learned. A cost-benefit based
strategy selection approach such as the model proposed by Lieder and Grif-
fiths (2015) would find it difficult to explain how people solve the strategy
selection problem in this setting.

In contrast to the cost-benefit model developed by Lieder and Griffiths
(2015), the CSSL model does not require predetermined features to classify
environments. For example, the CSSL model does not need to know the
statistical properties of the environment to classify it as one in which an
exemplar strategy would work best. All that is needed is that decision
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situations are separated into different categories, which strategy works best
in that category can be learned. In our experiment we used a very clear
visual feature that participants could use to partition the situations into
two groups — one situation was always represented as deciding between
“bugs”, and the other between “comic” figures. One could argue that we
have made the partitioning task too easy and the task lost much on its
external validity. The present study can be thought of as a proof of principle
— if participants had difficulty with associating different strategies to two
easily distinguishable environments, there would be little hope that they
would be able to do it in more complex realistic scenarios. In future work,
we aim to test the model in situations where the features distinguishing
environments are more subtle.

Another concern relates to the scalability of the reinforcement learning
approach to such situations. When there are many potential features to dis-
tinguish between environments, there is a danger of identifying too many
categories. Such over-categorization is wasteful as it reduces the amount of
experience with each category, so that learning which strategy works best
for that category is difficult. A direction we aim to explore in the future
is to combine reinforcement learning with a similarity-based mechanism
to generalize over categories. For example, if one learns to prefer a cer-
tain strategy when deciding between apples, then based on some similarity
measure you might start with a similar strategy when deciding between
oranges, but perhaps not when deciding between televisions.

Finally, it is important to note that the issue of categorizing environ-
ments extends to any “cognitive toolbox” theory that assumes the exis-
tence of a repertoire of mechanisms that can be selected. Such theories
are gaining in popularity and can be found in many areas in psychology,
from developmental psychology to categorization (for a recent overview,
see f Scheibehenne et al., 2013). Dual system theory can also be seen as a
toolbox type of theory (e.g. Kahneman, 2011; Shiffrin & Schneider, 1977),
where there are two tools in the toolbox — System 1 and System 2 — and
the question is how you choose which one to apply when facing multitudes
of problems. The problem of categorizing environments is intimately con-
nected to the strategy selection problem, and as we argued above, solving
it requires more than a straightforward extension of strategy selection in
a single environment. Without successfully addressing both categorization
and strategy selection, the toolbox approaches to cognition will be found
lacking.
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Appendix

1.A Parameter Estimation and Model Selection

1.A.1 Identifying the strategies adopted by the partici-
pants

All choice models were fitted to each individual participant’s choices in the
last two blocks in the training phase, separately for trials in the linear envi-
ronment and nonlinear environment. Parameters were found by minimiz-
ing the log likelihood of the data given the choice probabilities predicted
by the model. The likelihood of the data set, L, of model i is given by

T
L(data|M') = ]_[p(M;' =C) (1.1
t=1

where T is total number of trials being modeled, and P(M; = C;) is probabil-
ity of model making the same choice as participant made in trial . Number
of trials was 88 for the linear and 80 for the nonlinear environment. Op-
timization was done on the log transformed likelihood, —In(L(data|M')),
using the Nelder-Mead simplex algorithm implemented in the optim func-
tion in R (R Core Team, 2015).

For model selection we used a version of generalization criterion (Buse-
meyer & Wang, 2000) — for each model we used parameters estimated on
the training data from one environment and predicted choices in the test
phase of the same environment that were designed to discriminate better
between the CAM and GCM models. As a measure of model performance
we used log transformed likelihood, while for model comparison we used
log likelihood weights (LL weights), following Wagenmakers and Farrell
(2004). Similar to AIC or BIC weights, LL weights is a simple transforma-
tion of raw log likelihood scores that can be directly interpreted as condi-
tional probabilities for each model. From the differences in log likelihoods
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we obtain an estimate of the relative likelihood L of the model i by

L(M;|data) « exp{In(L(data|M")) — In(L(data|M™"))} (1.2)

where L(data|M™") is the likelihood of the model in our comparison set
with the minimum likelihood, i.e. the best model. Then we normalize the
relative model likelihoods to obtain the LL weights

L(M;|data)
le L(My|data)

wi(LL) = (1.3)

where K is the number of models in the comparison set. This makes the
weights dependent on models that are being compared, stressing the rela-
tive aspect of the model comparison. We have always compared four mod-
els - CAM,, WADD, pGCM}, and jGCM?}, that we set out to investigate as
primary models, even though we did fit more than these four. Importantly,
LL weights allow for better interpretation of observed differences in model
performances. Weight w; can be interpreted as the probability that M; is the
best model, given the data and the set of models in the comparison set.

1.A.2 Contextual strategy selection learning

The fitting procedure is the same as in identifying the strategy used by
participants in the linear and nonlinear environment, however the models
were fitted to all blocks in the training phase and both environments jointly.
When estimating parameters for strategy selection models, SSL and CSSL,
we fixed the strategy parameters — for SSL models to the ones estimated for
single strategies (CAM, and jGCM{1 fitted to both environments), and for
CSSL models the parameters estimated according to the procedure from the
previous section. This was implemented on individual level. Model com-
parison followed the procedure described in the previous section, but here
six models comprised the comparison set — CAM,, jGCM{l, dSSL, pSSLy,
dCSSL and pCSSLy.

34



‘s1o1ouwrered uonULlIe I8 IS S[EpoW Jy DO 10] ‘s1aouwrered 1YSop = P~Im (s1o1owered Jo IqUINN = # USWUOIIAUD Jo odA], =
TAUY {[[9M Se pasn sem Jjowered Surfeds oyleym sajouap A xyns 1duosiadns Gejourered uonouNy ALIB[IWIS S9IOUIP PUOIIS I SIYM Iiourered adURISIP D{SMONUIA
sa10uap xyjns paydLdsqns ul Jequinu 1siy Apeandadsar uonejuasaidar jurof pue paired ajouap [ pue d xgaid ‘Opow 1Xa1U0D pazI[eldlian = JWDO ‘[opoul 1s3q-9Y)
-oe) pazierauad = g [.[6 [opouwr 2ANIppe PAIYSIoM = TV M [opOW UONDBIISGE 2Nd PAUurensuo) = Wy {[9poul UONDBISe 9ND PAUIBIISUOIUN = WD "9I0N

(€1°0) 90°0 (S€°0) ST0 (¢¥°0) S0 (€2°0) €T°0 &S'L) syor (e¥°L)esel (201) 2IT S M:G@@

(91°0) T°0 (81°0) 1¥°0 (92°0) €2°0 (61°0) 9T1°0 Or'9)96ct (99 ceor (00D kI S m:\oom

#1°0) IT°0 (62°0) ¥€0 (s€0) L€0 (12°0) 81°0 (s’ svo1  (IT'L)80TT  (TL9IT  §  (WOOd

(61°0) 92°0 (sT°0) €0 (ST°0) ¥€0 (8T°0) T'0 (8%°0) £L8'61 - (02) 18 ¥ Uwood

(1Z°0) ¥1°0 (1€°0) 12°0 (8€°0) 2¥'0 (€€°0) ¢T0 (9L 6ccTt  (88L)6T°L (€L ¥8T S M:Go.\

(z'0) 61°0 (81°0) 1€°0 (€2°0) 2€0 (2'0) 810 (89 eT'sT (5499  (b0€) 6E€CT S ;200.\

(€2°0) TT0 (#2°0) ST°0 (1€°0) L€O (¢c'0)91°0 Uy LLet 914199 (S8T) IS8T S NOOf

(ST°0) 0O (12°0) €1°0 (IT1°0) 120 (LZ'0) 9°0 - - (cTe) 00S € 1g9.L1b

(L1°0) 60°0 (€T0) 10 (T0)c10 (8€°0) S9°0 - 0 (099)8es ¥ 1aavm

(80°0) 200 (€2°0) ST'0 (I1°0) LO'O (82°0) 920 - - (6) €L € WVO

(L1°€) T6°C- (££°0) s€0-  (E1'6) T6'OT- (ce8) Te'6 - - UrD) SLT  + "WVO  IeauluoN

(62°0) L1°0 (1€°0) €2°0 (62°0) 81°0 (8€°0) ¢t'0 (65°£)9LTT  (90°L) 94701 (9¢) LL S M:CQN

(61°0) 8T°0 (sT°0) LT0 (¢20) ¥T0 (c'0) zeo (8591 (L8'9) 9F'1T L) 14 S 3:6@&

(92°0) 61°0 (82°0) +2°0 (#2°0) 81°0 (€0) 6€°0 W 1sv1t  (LoL) Lot L) ¢L s  Wood

(IT0) 10 (¢1°0) ST'0 #1°0) €€°0 (I1°0) 2€0 (0) oz - (AR ¥ 1wood

(sT'0) €10 (9€°0) L£O (82°0) €20 (€0) LT0 (86'L) 164  (TT8) S1'CI (€2) 0L S M:Co.\

(61°0) 9T°0 (62°0) 9€°0 (¢20) ST0 (£L1°0) €20 (62'8) 196 (10'8) 6901 (€D 1L S méuo.\

(LT'0) 6T°0 (ce0) LEO (€2°0) ¢T0 (12°0) 2T0 (€8°4) 862 (1T8)9T'II (82) 69 S NOOf

(€0°0) T¢0'0 (60°0) 80°0 (9€°0) L¥'0 (#€°0) €¥°0 - - (ssv) zes € gILIb

(€0°0) ¢0'0 (60°0) 90°0 #°0) 8%°0 (8€°0) ++°0 - oo FSst) 0es  + aavm
o (90°0) 200 (S€°0) S0 (9€°0) €¥°0 - - 6) 2L € WVO

(€5'9) €01 614D Y9Y  (26'ED) IT°Z  (8€°SS) 88°CL - - (s6) 18 ¥ "IWVO Teaur]
m €m m m Y A (7)bo1— # [9POIN TIAUH

"99111 950 Aq pauIeISu0d Sem Y1Inoj oY) ‘sialowered 991f o1om sialowered 1y3rom
92113 A[uo "Wy 1dadxs s[apoul [[e 104 ‘I1919wered yoes 10J Sisayiuaied Ul SUOIIRIASD pIepURIS pUR sueswW 110dax ap) “(7)bo]—
‘pooyrayI] pauLiojsueIl 30] aAne3aU 1Y) Aq pajedipul se aseyd 1S9) Y1 Ul sadueuLIojad I9Y1 YIIM I911930] JUSWUOIIAUD
yoes ur syuedpnred syl Aq paydope sar3aenls 9yl SUIAJIUSPI UI S[PPOW I0J S9IBWNSS Iajoweled jo Arewwing [°y°T 9[qeL

35



Table 1.A.2 Summary of parameter estimates for strategy selection models. We report means and standard deviations in
parenthesis for each parameter. SSL models used strategy parameters for CAM, and \QQST for which means are reported
in the first two rows of this table, while CSSL models used environment-specific parameters for which means are reported in
Table 1.A.1. For jJGCM], only three weight parameters were free parameters, the fourth was constrained by those three.

Model # w p % Y A w1 wy w3 wyg
CAM, 4 - - - - - 1.79 (0.67) 0.34 (0.61) -0.03 (0.5) 0.28 (0.6) O
\.QOEW\H 5 - - - 2.3 (0.96) 5.78 (2.26) 0.3 (0.17) 0.29 (0.15) 0.21 (0.14) 0.19 (0.09) ™
dSSL 2 5.45(3.76) 0.83(0.22) - - - - - - _
pSSLy 3 7.86 (3) 0.91 (0.11) 3.16 (3.05) - - - _ _ _
dCSSL 2  6.44(3.42) 0.41 (0.21) - - - - - - _

3

pCSSLg 7.31 (3.12) 0.56 (0.28)  6.01 (14.58) - - - - - -

Note. CAM,, = Unconstrained cue abstraction model; &‘OOEW = Generalized context model with joint representation, Minkowski and similarity parameters equal to
1 and free scaling parameter; SSL = Context-free strategy selection learning model, prefix d and p denote deterministic and proportional update, while the suffix 6
denotes additional free scaling parameter; CSSL = Contextual strategy selection learning model, prefix d and p denote deterministic and proportional update, while
the suffix 6 denotes additional free scaling parameter; # = Number of parameters; wi_4 = Weight or attention parameters.




1.B Additional results
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Figure 1.B.1 Choice accuracy in blocks in the training and the test phase. Partic-
ipants that took additional one or two blocks in the training phase are illustrated
separately, they are marked as slow or medium speed of reaching the accuracy
level.
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Figure 1.B.2 Model performance in predicting choices in the test phase for contex-
tual strategy selection learning models (CSSL), original strategy selection learning
models (SSL), and two single strategy models — CAM,, and jGCM{l, computed
separately for trials in the linear and nonlinear environment. Performance is ex-
pressed as mean log likelihood weight across participants, computed for these six
models in the comparison set. Numbers above the bars represent number of partic-
ipants whose choices in the test phase were best predicted by each of the models.
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Chapter 2

Explaining inter-individual
variability in strategy selection:
A cue weight learning approach

Abstract

Do people integrate all the information at hand when they make choices or
do they employ heuristics that ignore some of it? Recent research indicates
that people’s behavior should and does depend on the statistical properties
of the environments within which cognition operates. However, in a single
environment there are always decision makers who rely on less effective
strategies. The source of this inter-individual variation has not been iden-
tified yet. In this article we postulate that it can be largely explained by
differences in the speed of learning. We designed an experiment where
participants first made choices between three multi-cue alternatives and
received feedback about their quality. In a second stage, they predicted the
quality of alternatives without receiving feedback. The quality was a lin-
ear combination of cue weights and cue values. To employ heuristics the
participants had to learn at least weight directions and ranks, while for the
integrative strategy they needed to learn the cue weights. We find that par-
ticipants who showed evidence of learning cue weights rather than the or-
dering performed well in the estimation task that followed decisions, with
cue weight knowledge being strongly related to decision performance. Fur-
ther, we find that differences in how fast participants learn the cue weights
explain the variability in regards to what strategy they adopted within an
environment.
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2.1 Introduction

Consider the following problem: you want to decide which hotel to book
for your next vacation and you have access to information such as the fa-
cilities of the hotel, average reviews, cleanliness etc. To make an educated
choice you could weight and add all the information at hand for each al-
ternative and then choose the one that achieved the highest score. This
is a weighted additive strategy (WADD; Payne et al., 1993). Alternatively,
you could compare the hotels according to the most important cue and
choose the one with the largest cue value. If some alternatives are tied
on the first cue, you could move to the next cue in the ranking until you
reach a decisive cue and stop your search. This corresponds to a heuristic
strategy called take-the-best (TTB; Gigerenzer & Goldstein, 1996). On av-
erage take-the-best would ignore most of the information, as your decision
would often be based on a single cue. Researchers have investigated theo-
retically the conditions under which it is well-advised to rely on integrative
strategies such as WADD or heuristic strategies like TTB (e.g., Hogarth &
Karelaia, 2005a, 2007; Martignon & Hoffrage, 2002). Empirically, however,
there is a large inter-individual heterogeneity and substantial proportion of
people still seem to use an inferior strategy (Broder, 2003; Pachur & Olsson,
2012; Rieskamp & Otto, 2006).

Strategy performance primarily depends on the statistical properties of
the relationship between cues and alternative quality. TTB fares well in
comparison to WADD when the most informative cues are much more valu-
able than the less informative ones (Hogarth & Karelaia, 2007), or when
the cue inter-correlations are high (Hogarth & Karelaia, 2005a). In envi-
ronments with binary cue values, when the weights of the cues with higher
weight rankings are larger or equal to the sum of weights of the cues with
lower rankings, TTB cannot be outperformed by WADD. When this prop-
erty does not hold, a WADD model with well-calibrated weights is expected
to outperform TTB. The former environments are called non-compensatory
and the latter compensatory (Martignon & Hoffrage, 2002).

Several experiments have demonstrated that over time most people con-
verge to the best performing strategy. For example, people tend to adopt
TTB in non-compensatory environments and WADD in compensatory envi-
ronments (Broder, 2003; Rieskamp & Otto, 2006). Similarly, in non-linear
environments, when none of the aforementioned two strategies performs
well, many people employ memory-based exemplar strategies (Pachur &
Olsson, 2012). Further, people prefer heuristic strategies over integrative
strategies when they are under time pressure or when the cost of learning
cue values is high (Rieskamp & Hoffrage, 2008).
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Within a single environment, however, there is always a substantial por-
tion of participants that use inferior strategies. For example, in a non-
compensatory environment there are always participants that continue us-
ing WADD, or TTB in the compensatory environment. The source of this
inter-individual variation has not been identified yet, although it is widely
reported (e.g., Brehmer, 1994; Bréder, 2003; Einhorn, 1970; Rieskamp &
Otto, 2006). Broder (2012) provides a summary of existing research on
inter-individual differences in adoption of TTB and WADD strategies. The
only variable that shows some correlation is the intelligence score. TTB
users in the non-compensatory environment tend to score higher on an in-
telligence test than WADD users, although the effect is rather small. None
of the personality measures, such as the “Big Five”, show a substantial cor-
relation with strategy adoption. Similarly, motivational variables, cognitive
styles, working memory capacity, and working memory load do not seem
to influence adoption of TTB or WADD. Hence, the variation within an en-
vironment remains largely unexplained.

In this article we propose a solution to this puzzle. Strategies like TTB
and WADD rely on cue weights. While in some experiments participants
are given the cue validity weights directly (e.g., Rieskamp & Otto, 2006),
in most of them participants have to learn the weights (e.g., Bergert &
Nosofsky, 2007; Bréder, 2003). Hence, besides figuring out which strat-
egy to use, they also need to learn the statistical properties that are input
to the strategies. Importantly, strategies differ with respect to the amount
of knowledge they require about the validity weights. While WADD re-
quires exact quantitative estimates, TTB only requires the ranking and
directions. Under reasonable theoretical assumptions, heuristic strategies
like TTB are largely insensitive to the gap between estimated and objective
validity weights, while performance of WADD is heavily affected (Hogarth
& Karelaia, 2007; Katsikopoulos, Schooler, & Hertwig, 2010). As a result,
in many environments people can leverage WADD’s improved performance
only after some learning has occurred, and the estimated weights are rel-
atively close to the objective ones. When coupled with usual individual
differences in speed of learning, this explanation can address the observed
variability in strategy selection. For example, in an environment favoring
WADD, this leads to the prediction that slower learners will stick longer to
the TTB heuristic, while faster learners will have more precise knowledge
about the cue validity weights and will adopt WADD in greater numbers.

Our article suggests a novel approach in the study of decision mak-
ing strategy by examining decision processes and cue weight learning in
tandem. In our experiment, participants complete two tasks, a decision
making and an estimation task. By adding an estimation task where par-
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ticipants make predictions about values of alternatives we can model their
cue weight learning and infer the evolution of their knowledge about cue
weights. Thus, we can identify the role of cue weight learning in strategy
selection and test the predictions made above.

2.2 Method!

2.2.1 Participants

Seventy-eight participants (49 women, 29 men, M,, = 21.8, age range:
17-54 years), recruited from the Universitat Pompeu Fabra subject pool,
took part in the study. They were paid a show-up fee of five euros and a
performance dependent bonus of 6.8 euros on average. The experiment
lasted 43 minutes on average.

2.2.2 Stimuli and procedure

The experiment consisted of two tasks: the participants first completed a
decision making task and then an estimation task. In the decision task
they repeatedly faced three alternatives, each described by the same four
cues (Figure 2.1, left). The task was presented as a cheese game. Each
alternative represented a cheese, the cues were “Lactic”, “Acetic”, “Casein”
and “Texture”, while the alternative values represented enjoyment units
(EU).

The criterion value, Y, of each alternative was a noisy linear combina-
tion of cue values and cue validity weights

4
Y = invi+e,
i=1

with weights v; fixed at 4,-3,2 and -1. These cue validity weights strongly
favor WADD over TTB. Cue values were sampled from uniform distribution
U(10,90). A normally distributed error term, e ~ N(0,30), was added
to each alternative. We created 480 unique alternatives in this manner
and allocated them randomly across 160 trials, three alternatives per trial.
Cue inter-correlations were zero on average. The stimuli were drawn only
once and all participants received the same stimuli. The earnings were

!The raw data is publicly available on Figshare: http://dx.doi.org/10.6084/m9
.figshare.1609680.
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Part 1 Total balance: Part 2
Round: 1 Cheese Cheese Cheese 5023 EUs Round: 1

A B ©

Lactic 24 46 Lactic 0

Casein 66 35 Casein 100

Texture 17 Texture 5

Acetic 37 Acetic 5

Figure 2.1 Screenshots of the tasks from the experiment. Left panel shows how the
decision task appeared to the participants, while right panel shows the estimation
task.

determined by the criterion value Y of the chosen alternative, which was
also shown as feedback in each trial.

After every 40 trials in the decision task participants answered questions
that probed their knowledge about the cue weights. Following Speeken-
brink and Shanks (2010), we asked them to rate the strength of the relation
between each cue and the value of the cheese on a scale from -10 (highly
negative) to 10 (highly positive). Questions for all four cues were shown
on the same screen, in the same order that was used to present the stimuli.

In the estimation task participants received a single alternative in each
trial and their task was to predict the criterion value (Figure 2.1, right). No
feedback was provided. We incentivized truthful reporting by computing
the payoff as a function of a difference between the prediction P and the
criterion value, 200 — |P - Y|.

The stimuli for the estimation task were generated with the same cue
validity weights as in the decision task. We generated 20 alternatives for
interpolation trials by drawing cue values from the same range as in the
decision task, U(10,90), and multiplying them with weights. We gener-
ated extrapolation trials in an analogous way by drawing cue values from
two intervals at the extreme ends, U(0,10) and U(90, 100) that have not
been experienced during the decision task. After a single draw was made,
trials were randomly ordered and all participants received the same set of
stimuli.

In the decision task the participants were informed about the cues and
the range of values they could take, and that they could use this informa-
tion in making their choices. They were not told about the functional rela-
tionship between cue values and value of the cheese, nor that the weights
differ for different cues. It was stressed that in each trial they would get
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three new cheeses that differ in their cue values. The estimation task was
announced at the beginning in the instructions, but without specifying de-
tails.

We told participants that it takes 60 minutes on average to complete the
experiment. Each participant was presented with a unique random order
of alternatives and cues. The four cue labels were also randomly attached
to underlying cues separately for each participant.

2.3 Behavioral results

2.3.1 Choices in the decision task

Participants’ performance, measured as percentage of correct choices per
block, improved over time (Figure 2.2). Choice accuracy is much higher
than the random level of 0.33 already in the first five trials (marked with
number five in the figure), with 46% accuracy. People have a strong prior
for positive linear relationships (Brehmer, 1994), which matches well the
function that we used to construct the stimuli. Participants achieved a mean
accuracy of 0.48 in the first block and by the end of the training phase they
were close to choosing correctly the alternative with the highest criterion
value two out of three times, 0.63. Although mean choice accuracy is sim-
ilar to the accuracy achieved by TTB with ideal knowledge, 0.59 on aver-
age, the variance in individual choice accuracy curves is quite large. The
shaded region around the mean performance indicates the range of accu-
racies, from 10" to 90" percentile. Hence, there are many individuals with
accuracies far above what could be achieved with TTB.

Insight questions provide us with a first indication of how well partici-
pants have learned the cue validity weights. Previous research using such
questions has shown that people have good insight into what they have
learned (Speekenbrink & Shanks, 2010). Figure 2.3 shows mean ratings
for all four cues. Participants got the relative ordering and directions right
on average already after 40 trials and it got clearer as the training pro-
gressed. They learned that the second cue has a larger weight (although
negative) than the third cue only at the end, and failed to detect that the
fourth cue had a small negative weight. This is not surprising as nega-
tive linear relationships are more difficult to learn than positive linear ones
(Brehmer, 1994). Although insight questions use an arbitrary scale and it is
difficult to identify exact cue weights that participants have acquired, they
do suggest that people learn more than ordering and directions. This is
supported by changes in ratings over the course of the decision task, even
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Figure 2.2 There is a clear learning effect in the decision making task. Figure
shows increase in mean accuracy of participants’ choices over blocks of trials. In
addition, we displayed mean accuracy in the first five trials, marked with number
five. Result for each block is a mean of individual means across 32 trials, and
error bars represent standard errors of group means in each block. Shaded region
around the curve indicating the mean accuracy is the range from 10" to 90"
percentile of accuracy in each block. We also illustrated the performance of TTB
and WADD model with perfect knowledge about the environment structure.

though the ordering and directions were mostly established already after
first time participants answered the insight questions.

2.3.2 Predictions in the estimation task

We can also assess knowledge about cue validity weights by examining the
performance in the estimation task. We computed mean absolute deviation
(MAD) and correlation between participants’ predictions and criterion val-
ues as a measure of performance. Results are shown in Figure 2.4B. Mean
MAD across participants is 120 (SD = 30.8), which means that on aver-
age predictions were 120 EU’s away from criterion values. Mean (median)
Spearman correlation is 0.63 (0.70; SD = 0.24). The participants are do-
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Figure 2.3 Participants have insight into their own learning of cue validity weights
— they learned the ranking of cues and cue directions to a large extent. Points at
trials 40, 80, 120 and 160 in the decision task are mean ratings. To allow for easier
discrimination, ratings have been slightly displaced horizontally and connected by
lines. Error bars represent standard errors of means across participants.

ing a good job in predicting criterion values of test items, but as expected,
inter-individual variation in learning is substantial, with MAD ranging from
51 to 189. While most people are doing quite well, having very high corre-
lations and low MAD’s, some people do very poorly.

How would a decision maker that only learned the ranking of cues fare
in the estimation task? Such a decision maker could take a mean of the
criterion values experienced in the decision task and use it as a fixed pre-
diction for all items in the estimation task. This is our baseline prediction
performance. The MAD between baseline predictions and criterion values
was 172, much larger than for observed MAD.

We get more complete insight by examining mean predictions across
participants for each of the 40 items in the estimation task. Figure 2.4B
shows that in the range of item values from about zero to 200, mean pre-
dictions correspond very closely to the criterion values. More deviations
occur for more extreme values, with somewhat poorer predictions for ex-
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trapolation items than interpolation items. Importantly, predictions corre-
spond much better to criterion values than baseline predictions. Thus, most
participants do acquire more precise knowledge about cue validity weights,
rather than only the ordering and directions.

2.3.3 Relation between decisions and predictions

We examine the relationship between individual performances in the two
tasks to obtain model-free evidence that cue weight learning plays an im-
portant role in strategy selection. We find a strong relationship between
choice accuracy in the decision task and MAD in the estimation task, as
indicated by a Spearman correlation of —0.78 (Figure 2.5). This suggests
that participants with good prediction performance know the cue weights
well, which allowed them to employ WADD and achieve good decision per-
formance. Surprisingly, many participants who had poor prediction perfor-
mance also had decision performance far below 0.59 which is possible to
achieve with very little knowledge for TTB in this environment. They ei-
ther relied on WADD in spite of their poor knowledge or those participants
simply paid less attention and performed close to random in both tasks.

2.4 Modeling

Next we turn to identifying the strategies used by each participant in the
decision task. We first describe the cue weight learning model that will
produce trial-by-trial predictions of participants’ knowledge of cue weights.
These weights will in turn be used in fitting TTB and WADD models to
participants choice data. Finally, we will examine whether participants that
were best fitted by TTB have less developed knowledge of cue weights than
those best fitted by WADD, as predicted.

2.4.1 Modeling the cue weight learning

We used a least mean squares model to model the cue weight learning
process (Gluck & Bower, 1988). The LMS model predicts the criterion
value of an alternative on trial ¢ as

4
P, = in,tui,t,
i=1
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Figure 2.4 Participants make good predictions in the estimation task. (A) Predic-
tion performance for each participant on two measures — mean absolute deviation
(MAD) and correlation between predictions and criterion values. A single point is
a result for one individual, while dashed lines are means across participants. Ver-
tical line is the mean absolute deviation between baseline predictions (see text)
and criterion values. (B) Mean predictions for each of the 40 items (20 extrapo-
lation and 20 interpolation) in the estimation task. Diagonal black line represents
the criterion value of the items. The farther the predictions are from this line the
worse the predictions. Gray horizontal line is the baseline prediction — mean value
of the items experienced in the decision task. We also denoted mean predictions
based on the Least mean squares network model (LMS,) fitted to each participant.
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Figure 2.5 Performance in the estimation task and the decision task is highly cor-
related. Performance in the estimation task is expressed in terms of mean absolute
deviation (MAD) between predictions and criterion values, where lower numbers
indicate better performance. For performance in the decision task we used pro-
portion of correct choices in the last two blocks. In the upper right corner we have
shown Spearman correlation between these two variables.

where u;, are cue utilization weights and x;, are cue values of cue i in each
trial ¢. Utilization weights are updated in every trial through the delta rule,
based on a prediction error defined as the difference between the predicted
criterion value, P; and the true criterion value, Y;, that a participant receives
as a feedback in the decision task

N
Ui+l = Uiy + tT,(Yt — Py)xiz,

where 0 < < 1 is a learning rate parameter shared by all four cues and
y > 0is adecay parameter. We initialized the weightstou;o =0, i=1,...,N.
Note that the cue weight learning process is based only on the alternative
for which participants receive feedback, the rest is ignored by the LMS
model.

We fitted two different versions of LMS model. LMS; where both
and y are free parameters and LMS where y is set to 0. Parameters were
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initialized at the beginning of the decision task and in each trial cue values
and criterion of the chosen alternative were used to update the weights.
The weights from the last trial were used to make model based predictions
in the estimation task. To estimate the model parameters we minimized
the mean squared error between the participant’s and model’s predictions.
The LMS model was fitted separately from the choice models.

2.4.2 Modeling the choices
Random Choice Model

We used a random choice model (RCM) as a baseline. RCM predicts the
same probability, .33, for each alternative.

WADD Model

Our version of WADD linearly combines the cue utilization weights learned
by the LMS model with cue values to produce predicted value of each al-

ternative k in trial ¢
4
k k
Ry = Z X Uit
i=1

where u;,; are cue utilization weights learned by the LMS model based on
trials 1 : t — 1. WADD then deterministically decides by maximizing among
the alternatives. To fit WADD to data we assume an additional “tremble”
error. If a strategy produces a probability that alternative k is chosen, P(C =
k), then the probability of choosing k after taking into account the tremble
error, ¢, is given by

€

P(Ci=kje)=(1-e)xP(C; =)+ 3

TTB Model

Our version of TTB uses the cue weight information from the LMS model,
u;y, to order the absolute value of the weights from the largest weight to
the lowest, producing a ranking r;. The ranking is done on absolute val-
ues because a strong negative weight is as predictive as a strong positive
weight. TTB then chooses an alternative with the largest cue value of the
most predictive cue according to ranking r;. If values of the first cue ac-
cording to the ranking are the same for all alternatives?, TTB inspects the

2Ties are rare in environments with continuous cue values, making this version of TTB
quasi-equivalent to a single-variable strategy, which uses only the most important cue.
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Table 2.1 Mean Bayesian Information Criterion (BIC) scores of models (standard
deviation in the parenthesis), number of participants best fitted the model and
mean parameter values.

Model # BIC N n 14 €
LMS 1 368 (25) 39 2e-5 - -
LMS, 2 366 (24) 39 2e-4 .61 -

WADD 1 283 (40) 56 - - .62
TTB 1 302 (40) 11 - - .74
RCM 0 355 (2) 11 - - -

Note. # = Number of parameters in the model; N = number of participants best
fitted by the model; LMS and LMS; = Least mean squares network model, with
constant learning rate and decaying learning rate respectively; WADD = Weighted
additive model; TTB = Take-the-best model; RCM = Random choice model; n =
learning rate in the LMS model; y = decay rate in the LMS model; ¢ = tremble
error.

second cue and so on, until it finds a cue that discriminates between the
alternatives. If no cue discriminates, a choice is made at random. If the
deciding cue had a negative weight according to the u;, cue values of all
three alternatives were multiplied with —1, to maintain the correctness of
the rule of choosing the alternative with larger cue value. Same as in the
WADD model, we add a “tremble” error term to arrive at the final choice
probability, P(C; = k;¢€).

2.5 Modeling results

Table 2.1 shows the mean Bayesian Information Criterion (BIC) score across
participants for LMS models and choice models. Both LMS and LMS; fit the
predictions equally well, both in terms of mean BIC (368 and 366) and
number of participants best fitted (39 for both). However, LMS; fits results
better in a qualitative sense. It emulates better the insight questions re-
sults where most people acquire ordering and directions very fast. Hence,
we used weights from LMS,; in the choice models. Moreover, LMS; based
predictions for estimation task items correspond closely to participants’ pre-
dictions (Figure 2.4B).

In terms of choice models, as expected, WADD has better mean BIC
score (283) than TTB (302). Similarly, most participants were best fitted
by WADD (56), followed by TTB (11) and RCM (11). As has been widely
observed in previous studies, although it pays better to adopt WADD, and
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indeed most people do so, there is substantial inter-individual variabil-
ity. There are substantial differences between the three groups. As expected,
WADD users reached the highest accuracy, they were choosing the best al-
ternative on average in 0.63 proportion of trials. TTB users performed
worse, having a choice accuracy of 0.55. Although RCM users were the
worst, reaching mean accuracy of 0.42, their performance is somewhat
higher than the random level and they do exhibit some learning by the end
of the training phase.

Next we examine our prediction that participants best fitted with TTB
are those that learn slower and did not manage to arrive at sufficiently
good utilization weights to switch to WADD. We plot the evolution of uti-
lization weights estimated with the LMS; model, separately for participants
best fitted with each model (Figure 2.6). We see that WADD users have a
well developed knowledge of all four cues, while TTB users have less de-
veloped knowledge. Notably, TTB users have very good estimates for the
most important cue and do not distinguish that well between the other
three cues. Their adoption of the TTB strategy is well justified by their sub-
jective knowledge of the cue weights. RCM users’ knowledge is very poor,
capturing unmotivated or inattentive participants.

We can also examine estimated learning rate parameters of the LMS,
model. Learning rates are higher for WADD users than TTB users, and
lowest for RCM users (Figure 2.7). Median learning rate for WADD users
was 0.00015, while for TTB users it was lower for an order of magnitude,
0.000027. Median decay rates are correspondingly higher for the WADD
users, 0.69, than for the TTB users, 0.54. Performance of TTB users in the
estimation task (Myap = 133) was expectedly worse than that of WADD
users (Myap = 112), but importantly, substantially better than of RCM
users (Myap = 155) or baseline (Myap = 172). Similar differences can be
seen in the insight questions results, with knowledge of TTB users evolving
over time. This suggest that even a TTB user learns more than just the
ordering and the direction of cues.

Finally, we conducted a logistic regression with mean absolute differ-
ence between LMS obtained utilization weights in the last block and ob-
jective weight as a predictor of strategy use. We obtained a negative co-
efficient, as predicted, at a value of —1.466 (95% CI[-2.743,-0.367]),
p = 0.0139 (WADD users were coded as 1 and TTB users as 0, while RCM
users were not included). In odds ratio terms, for one unit increase in
mean difference, the odds of using WADD decrease by 76%. Odds of us-
ing WADD for the perfect knowledge (zero difference) is very high, 50.85,
which amounts to a probability of 0.975. Although this outcome was al-
ready suggested by behavioral results illustrated in Figure 2.5, this analysis
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Figure 2.6 Participants best fitted by the weighted additive (WADD) model are
learning cue validity weights much faster than participants best fitted by the take-
the-best (TTB) model or the random choice model (RCM). In the figure we show
evolution of cue utilization weights in the decision task according to the least mean
squares network model (LMS,) fitted to each participant. Weights are median cue
weight across participants for each trial, smoothed with a moving average of ten
trials. The objective weights used to construct the stimuli in the task were: v; = 4,
Vo = —3, U3 = 2 and V4 = -1.

establishes the link between the knowledge of cue weights and strategy se-
lection more clearly, in a model based manner. Since WADD users achieve
greater decision performance, it explains the large correlation between es-
timation and decision performance seen in Figure 2.5.
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Figure 2.7 Estimated learning n and decay rate y parameters for the Least mean
squares network model with decaying learning rates (LMS,;). Learning and decay
rates for the weighted additive (WADD) model are on average higher than for the
participants best fitted by the take-the-best (TTB) model.

2.6 Discussion & Conclusion

In our experiment participants differed in how fast they acquired knowl-
edge of cue weights, and we predicted this heterogeneity to be responsible
for the variability in strategy selection. Our results showed support for our
predictions — WADD users had better developed knowledge of cue weights
than TTB users and the performance in the estimation task is consistent
with the strategy adoption. Our learning rate account suggests that, given
time, TTB users would learn the weights sufficiently well and switch to the
better performing WADD strategy.

Where do the inter-individual differences in learning rates come from
in the first place? These differences might be akin to traits like intelligence
or personality factors investigated by Broder (2012). This would require
the learning rates to be stable across time and tasks within people. To our
knowledge, there is no study that examines the stability of learning rates
and is difficult to generalize beyond our task.
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In our study we set out to test a specific hypothesis and to inform the de-
bate on whether people are better described by the WADD or TTB model.
We have to note that the models do not perform particularly well in our
task. This can be witnessed in the high values of the ¢ parameter in Ta-
ble 2.1, meaning that models on average predict the choices of the par-
ticipants half of the time. Given our modest goals we did not try to look
for models that would explain behavior even better. Our results, however,
indicate that we should look for such models within the probabilistic rather
than deterministic class of models (Bergert & Nosofsky, 2007).

Our results could be also explained if some participants first adopted
TTB and as a consequence learned cue weights differently. With our cur-
rent experimental design we cannot, unfortunately, determine the direction
of the causal arrow. However, our evidence indicates that TTB users acquire
more than ordinal information about cue weights and that this knowledge
becomes more precise over time. This suggests that, if such interdepen-
dence exists, at most it slows down the learning. This evidence comes
from three sources - the insight questions, the estimation task and the joint
modeling of cue weight learning and decision making. The continuous
evolution of our participants’ knowledge of cue weights goes against the
frugality and robustness justifications of TTB. The argument against using
cue weights hinges on their vulnerability to overfitting — relying on ordinal
information instead leads to better generalization. From our perspective,
TTB and other heuristic strategies are used either due to cognitive limita-
tions or when the structure of the environment is known better and these
strategies are the rational thing to do (also see Davis-Stober, 2011; Davis-
Stober, Dana, & Budescu, 2010).

In this decision-making paradigm, our evidence suggests that learning
the properties of the environment is predominant, and strategy selection is
influenced by it. Different decision making tasks, however, may lead to dis-
tinct linkages between cue weight learning and decision making processes.
Exploring the nature of these interactions opens an exciting direction for
future research (see Stoji¢, Olsson, & Speekenbrink, 2016; Stoji¢, Analytis,
& Speekenbrink, 2015).
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Chapter 3

Trials-with-fewer-errors:
Feature-based learning and
exploration

Abstract

Reinforcement learning algorithms have provided much insight into human
and animal learning and decision making. However, the traditional algo-
rithms perform poorly when faced with real world situations characterized
by multi-featured alternatives and contextual cues. In this paper, we pro-
pose a Bayesian optimization framework for tackling such decision mak-
ing problems. The framework relies on similarity-based learning of func-
tional relationships between features and rewards, and choice rules that
use uncertainty to balance exploration and exploitation. To test this new
approach, we designed a series of novel multi-armed bandit experiments
where alternative rewards are noisy functions of two features. We evaluate
human behavior in these problems and compare it to solutions prescribed
by the Bayesian models. We find that people’s exploration is guided by
both their prior expectations and learning about the function in the task.
However, there are notable inter-individual differences and a sizeable pro-
portion of participants ignores the feature information and relies on mean
rewards only. More importantly, we show that people’s exploration patterns
show clear signs of Bayesian optimization — simultaneous function learning
and function maximization. Even though most people do not perform as
well as the models, they do allocate a portion of choices to learning the
function and take uncertainty about their knowledge into account when
choosing. However, paying attention to context can impede performance if
prior expectations about reward functions do not correspond to the actual
function encountered in the environment. We illustrate the fertility of the
paradigm and highlight several exciting lines of future research.
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3.1 Introduction

Real-world decision situations are characterized by informative features —
we check the number of patrons in a restaurant and ratings at online web-
sites, while job candidates display their resumes filled with credentials. By
making decisions, agents not only reap rewards or avoid punishments, they
collect observations from which they learn the relations between features
and outcomes. The arrow points to other direction as well — when weigh-
ing between alternatives, organisms can draw on their knowledge about
relations and predict the value of alternatives, whether restaurants or job-
market candidates.

Cognitive scientists have followed a divide-and-conquer strategy in study-
ing this problem, isolating the process of learning the functional relation-
ships, and the process of learning about rewarding courses of action. How-
ever, to understand decision making in the wild, we should not ignore the
evident interactions between function learning and decision making. We
propose a theoretical framework to capture these interactions and evaluate
it in a series of experiments with human subjects.

The first process — learning to choose rewarding alternatives — has been
studied in detail under the umbrella of reinforcement learning (RL). RL
provides a normative framework that describes how agents learn to predict
and acquire rewards through trial-and-error. Originating in early studies
on the “Law of Effect” and conditioning (Rescorla & Wagner, 1972; Thur-
stone, 1927), modern RL is one of the success stories of psychology and
neuroscience. Rescorla-Wagner and Temporal Difference learning models
(Rescorla & Wagner, 1972; Sutton & Barto, 1998) have fostered a major
breakthrough in understanding how animals and humans learn to make
choices over time to reap rewards and avoid punishments. These models
provide good descriptions both at the behavioral (e.g. Barron & Erev, 2003;
Denrell, 2007; Denrell & Le Mens, 2007; Erev & Barron, 2005) and the neu-
ral levels — for example, they predict patterns of dopaminergic activity (e.g.
Houk, Adams, & Barto, 1995; Niv, 2009; Schultz et al., 1997). Moreover,
this research explicitly takes into account the fact that the decision maker
receives feedback only on chosen alternatives, formalizing it in an elegant
way as the exploration-exploitation trade-off.!

Despite these impressive advances it is still unclear how to make the in-

IWe can choose alternatives that maximize the rewards according to our experiences
so far (exploiting) or we can choose new ones that we know little about to learn whether
they are better or worse than the known alternatives (exploring). Performing well requires
a fine balance between exploration and exploitation, i.e. between acquiring information
and reaping rewards (Sutton & Barto, 1998; Tversky & Edwards, 1966).
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sights of RL research relevant for the kind of real world problems described
at the start of this introduction. The vast majority of RL studies have used
toy problems with only a few alternatives, where people can assess the
value of actions only from sequences of rewards. In real-world situations
with numerous features and contexts, the same situation might never oc-
cur twice. RL models fare poorly when faced with such scenarios (Dayan
& Niv, 2008; Gershman & Daw, 2017; Gershman & Niv, 2010; Gershman,
Pesaran, & Daw, 2009), they need thousands of trials to learn while ani-
mals or humans need only few. These models fail to exploit the structure of
the task — the relations between features and rewards. Many such features
(e.g., a restaurant’s popularity or TripAdvisor rating) are useful predictors
of rewards (e.g., the enjoyment of eating a meal at a restaurant). Imbuing
the RL models with the ability to explicitly learn the function relating fea-
tures to rewards would allow them to learn in fewer trials, making fewer
errors, and tackle real-world problems more efficiently.

Research on the second process, learning the relations between some
observable features or cues and an unobserved outcome or criterion, has
a long history in cognitive psychology. In research on multiple-cue learn-
ing, originating in early work by Egon Brunswik and his lens model of hu-
man judgments (Hammond & Stewart, 2001), researchers relied on a linear
framework that defines both judgments and criterion being judged as func-
tions of cues in the environment (e.g., Hammond, Hursch, and Todd 1964
and Hammond 1955, but see for heuristic approach Todd and Gigerenzer
2000 and work that connects it to the lens model, Hogarth and Karelaia
2005b). The criterion being judged was usually continuous and judgment
accuracy largely depends on how well people learn the function. In con-
trast, category learning focused on studying how people learn to map cues
to discrete criterion — categories and concepts. In doing so, researchers
developed a new class of nonparametric models — exemplar-based models
(Medin & Schaffer, 1978; Nosofsky, 1984, 1986), that successfully explain
a wide range of empirical phenomena. More recently, researchers brought
together these two streams by modeling judgments of continuous criterion
with exemplar-based and connectionist models (Busemeyer et al., 1997;
DeLosh, Busemeyer, & McDaniel, 1997; Juslin, Olsson, & Olsson, 2003;
Kalish, Lewandowsky, & Kruschke, 2004; McDaniel & Busemeyer, 2005;
Speekenbrink & Shanks, 2010), coining this field as function learning (but
see also early work by Estes, 1960, 1976).

Even though the pioneers of the cognitive revolution already noted that
we are actively influencing our observations and concluded it surely plays
an important role in category and concept formation (Bruner, Goodnow, &
Austin, 1956), studies in these lines of research tend to treat learners as
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a passive observers, without any control over their learning environment.
There are few notable exceptions. Einhorn and Hogarth (1978) noted that
decision makers receive feedback only on chosen courses of actions, and at-
tributed the overconfidence bias to the skewed sample of collected experi-
ences this entails. More recently, Markant and Gureckis (2014) studied the
benefits of actively selecting observations for category learning and found
that active learners are learning faster (see also Kruschke, 2008; Nelson,
2005; Nelson, McKenzie, Cottrell, & Sejnowski, 2010). People also make
decisions to learn the causal structure of the world (Bramley, Lagnado, &
Speekenbrink, 2015; Steyvers, Tenenbaum, Wagenmakers, & Blum, 2003),
again affecting the efficiency of learning. Traditional function and cate-
gory learning research might thus provide an incomplete picture of how
agents acquire real world knowledge of concepts that is unaffected by re-
ward landscapes that skew observations.

3.2 Goals and Scope

In the current work we argue that to make further advances in under-
standing decision making processes in the wild, we need to examine both
function learning and reinforcement learning processes jointly. Our goal is
twofold: (1) provide a theoretical framework which can be used to under-
stand how these two processes interact provide functional knowledge and
enhance choice performance; and (2) examine people’s behavior in tasks
where people can engage in both function learning and decision making,
comparing them with theoretical prescriptions. The scope of the frame-
work concerns situations where decision makers repeatedly face a choice
between a number of uncertain alternatives (e.g., choosing between restau-
rants) with the goal of maximizing the total accumulated reward. We focus
our attention on situations with alternative specific features that can inform
expectations about the value of an alternative (e.g., number of patrons) and
to situations where one immediately obtains feedback.

We use a Bayesian optimization framework where we rely on a Bayesian
nonparametric approach to model function learning. This similarity-based
model gives us not only an estimate of a function (i.e. expected reward
for each alternative in a choice set), but also the uncertainty about this es-
timate. This allows us to model the decision making process using choice
rules where both the expected reward and informational value of each al-
ternative can be taken into account. We contrast this model with a Bayesian
model that ignores the feature information altogether and learns about
mean rewards of the alternatives in an optimal manner.
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There are several key predictions stemming from the Bayesian optimiza-
tion framework. The main one is that the choice allocations of agents that
simultaneously learn the function and make decisions will be systemati-
cally biased — they will steer away from exploring alternatives for which
the learned function predicts low rewards and allocate them to high re-
warding regions instead. As soon as you learn that restaurants where you
see no patrons are unlikely to result in a rewarding meal you will generalize
and rarely visit such restaurants. In contrast, learning strategies that ignore
the features such as mean-tracking would explore the choice set more uni-
formly. You would be more likely to visit the restaurant without patrons
if you have not paid attention to feature information. Other predictions
include, for example, poorer knowledge of the low rewarding regions of
the function, and prior beliefs about the likely function sometimes lead-
ing decision makers to lock themselves into a certain region and forming
incorrect beliefs about the function.

We evaluated these predictions in three sets of experiments with over
1000 participants. Participants completed a novel feature-based multi-
armed bandit (FMAB) task where rewards were a noisy function of two
continuous feature values as well as a generalization task that verified their
functional knowledge. We compared their exploration behavior to predic-
tions derived from our Bayesian models, as well as to a control group of
participants that completed exactly the same task but without access to the
feature information (i.e. a standard multi-armed bandit task). The exper-
iments differed in terms of the function governing the rewards, the time
horizon, and the nature of the experienced uncertainty.

This article is organized as follows. We begin by formalizing the de-
cision situation we are interested in as a FMAB problem and defining the
scope in more detail. Next we describe the Bayesian models that tackle
the FMAB problem either through learning the function or tracking the
mean rewards. Then we report results of the experiments examining the
human behavior in FMAB problems and compare this to predictions from
the Bayesian models. Finally, we discuss future directions and applications.

3.3 Feature-based Multi-Armed Bandit Task

The task faced by agents that learn functions simultaneously with deciding
on the course of action that will bring them maximum amount of rewards
can be neatly formalized within the contextual multi-armed bandit (CMAB)
framework (e.g. Auer, 2002; Langford & Zhang, 2008; Li, Chu, Langford,
& Schapire, 2010). This framework can capture special cases in which
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the outcomes of different alternatives are influenced by a shared context
(SMAB), cases where the alternatives share common features with specific
feature values (FMAB) or a combination of both (CMAB).2

In the present work we will restrict our attention to the version where
the alternatives share common features (FMAB). This version of the prob-
lem has received less theoretical attention so far, yet it relates to almost
all real-world decision making problems. In each trial t = 1,...,T an agent
faces a choice between K alternatives, where each alternative k has J con-
tinuous valued features, described with a vector x; = (x14,...,x7k). Fig-
ure 3.1 shows how the task appeared to our participants in the experi-
ments. They observed 20 alternatives, each characterized by two features
— length of horizontal and vertical line. In our restaurant example these
features could correspond to restaurant popularity and cleanliness, for in-
stance. Choosing alternative k on trial ¢ will yield a reward R;. Notably, the
reward is only revealed for the chosen alternatives. The agent’s task is to
maximize the sum of rewards accumulated over time, "_, R'. The rewards
are derived from a noisy function of its feature values

R, = f(xk) + €,

where ¢, is the alternative and trial specific error term. The function f(-)
holds for every alternative, but is initially unknown to the agent, who can
only learn about the function by choosing alternatives and observing the
corresponding rewards. In our task agents face the same set of K alterna-
tives in each trial ¢, however, choosing the same alternative is unlikely to
give the same reward due to the error term. Even with perfect knowledge
of the function, reward of an alternative cannot be completely predicted.®

We postpone the formal treatment of how one should learn and make
decisions in this task and first provide some intuition about two qualita-
tively different approaches. One strategy available to the agent is to learn
the initially unknown function f from rewards she receives after choos-
ing an alternative with particular features. Then she could use the learned
function to predict the rewards of available alternatives and choose the one
that is most promising (Auer, 2002; Shahriari et al., 2016; Srinivas, Krause,

2Most of the literature comes from machine learning. There are other terms in usage
— associative bandits, bandits with side information or coavriates, bandits with expert
advice or bandits with similarity information. Sometimes there are subtle, but important
differences between them.

3Stochasticity makes the task akin to gambling, which is where the term “multi-armed
bandit” comes from. One can imagine a set of K slot machines in a casino. One would try
to discover the slot machine that has the highest probability of resulting in a win and pull
its arm as many times as possible to maximize earnings.
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Kakade, & Seeger, 2009). Facing the problem of choosing a restaurant for
dinner, one would examine the features of restaurants in the area and use
the functional knowledge to choose the one with the best predicted dining
outcome. In the restricted version we study here, where the features of
the alternatives are constant over time, the FMAB task is in fact identical
to a standard stationary MAB task for agents who ignore the feature infor-
mation. This gives a second, qualitatively different, strategy agents could
use to perform well in the task. They could use a trial-and-error strategy
and track rewards associated to alternatives only, Ry, learning over time
which alternative has the highest expected reward, E[R;] (Steyvers, Lee,
& Wagenmakers, 2009; Sutton & Barto, 1998). If you would visit all the
restaurants in the neighborhood enough times, you would not need to in-
spect the features and instead can solely rely on your acquired restaurant
expertise.

A key missing ingredient is the decision strategy — having estimated the
rewards of available alternatives, how should an agent choose which alter-
native to sample next? Choosing only the alternatives the agent deems to
be the best at the moment is not a wise strategy. There might be a better
alternative out there and the agent should take into account how reliable
her knowledge is — she should carefully balance between exploiting her
current knowledge, reaping the rewards, and exploring the alternatives in
the lookout for better ones. Importantly, in the FMAB task this exploration-
exploitation trade-off has a different flavor for the learner that pays at-
tention to feature information — exploring now means learning about the
function, not only about mean reward of a particular alternative.

Allowing for two qualitatively different ways to tackle the task was pur-
poseful. Where the function learning approach really excels compared to
the mean reward strategy is when the number of alternatives becomes too
large to try them all, when choice sets change and novel alternatives en-
ter often, or when exploring is very costly. In other words, whenever the
benefit of generalization is substantial one should use the function learn-
ing approach instead of tracking the means. We believe the benefits of
generalizing knowledge to new situations are large enough to make the
function learning approach a default one. Still, some real-world decision
situations might be easily dealt with by learning the mean rewards only,
so decision makers might be better off not engaging into costly function
learning. Hence, people might have both strategies in their repertoire and
we were interested in examining inter-individual differences in strategy
adoption, as well as what factors might drive the selection. This creates an
additional strategy selection problem (Payne et al., 1993; Rieskamp & Otto,
2006) — how do people decide which decision strategy to use (for recent
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Figure 3.1 Screenshot of the FMAB task from the experiment. Alternatives were
presented as simple red boxes with horizontal and vertical yellow lines of varying
lengths representing features, and were kept the same throughout all the trials.
Participants faced 20 alternatives to allow for large enough sample of observations
to learn the function between the length of lines and rewards. Alternatives in
the MAB task were presented as simple red boxes without features, however, the
rewards were determined with the same reward function as in the FMAB task. In
all experiments bandit tasks looked exactly the same, only the underlying function
determining the rewards and time horizon was varied.

developments, see Lieder & Griffiths, 2015; Stoji¢ et al., 2016). However,
addressing this problem is beyond the scope of the present article, and our
intention here is to determine the extent of differences in strategy adoption.

Besides our previous work on the FMAB task (Stoji¢ et al., 2015), there
are other studies using related tasks. Niv et al. (2015) examined how peo-
ple learn what cues to attend to in a task where participants faced three
discrete features and they needed to figure out which feature values were
predictive of the rewards. The alternatives were also changing from trial
to trial, forcing participants to learn the function to perform well, while
in our case participants could perform reasonably well by learning mean
rewards only. More work has focused on situations with shared contextual
cues (i.e. SMAB special case of CMAB). There is an exciting research by
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(Schulz, Konstantinidis, & Speekenbrink, 2015, 2016) tackling the SMAB
version with a similar set of models. There are several studies with the
standard MAB problem where participants are modeled as if tracking the
reward distribution of the whole choice set, which can be seen as a single
contextual cue, as in the SMAB problem. For example, Gershman and Niv
(2015) used such a model to explain conflicting evidence about treating
novel alternatives, while Palminteri, Khamassi, Joffily, and Coricelli (2015)
used it to explain punishment avoidance. This is supported by neural evi-
dence; Kolling et al. (2016) find evidence that the dorsal anterior cingulate
cortex keeps track of mean reward of the choice set (see also Shenhav, Co-
hen, & Botvinick, 2016). Finally, there is previous work by Redish, Jensen,
Johnson, and Kurth-Nelson (2007) and Gershman, Blei, and Niv (2010) on
explaining the long-standing puzzle about extinction, based on the related
idea that animals infer latent causes instead of rewards (Gershman, 2016;
Reverdy, Srivastava, & Leonard, 2014, see also).

In the following sections we provide a normative treatment of the FMAB
problem. We describe two Bayesian models, one that tackles the problem
by learning the function f, and one that ignores the feature information
altogether and learns expected rewards instead, E[R].

3.4 Function Learning Approach

Numerous every-day situations could be seen as contextual-multi armed
bandit problems. Yet most models for tackling such problems have been ad-
vanced by the machine learning community. These recent modeling devel-
opments have been spurred by practical problems faced by artificial agents
on the Internet, such as news or product recommendation, or serving ads
to website users (e.g. Li et al., 2010).* An early algorithm developed by
Auer (2002), LinUCB, uses a linear model to approximate the function and
an optimistic heuristic called Upper Confidence Bound (UCB) to balance
exploration and exploitation (see, for an application Chapelle & Li, 2011;
Li et al., 2010). It is one of the few algorithms that comes with theoretical
guarantees in the CMAB problem — it has a known upper-bound on regret®

“For example, news websites provide articles with certain features (e.g., article topic or
length) and they have users for which they record various features (e.g., previous history
or topic most often read). Importantly, the articles are constantly changing, i.e. novel
alternatives are entering the choice set, and websites would like to keep the user interested
by offering articles that he is likely to explore further.

°In theoretical analysis of (contextual) multi-armed bandit problems cumulative regret
is usually used a measure for comparing the models. Regret is the difference in rewards
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when the function relating observed features and rewards is linear. For
more general nonlinear functions there are very few theoretical guarantees
(but see Srinivas et al., 2009), however practitioners have been able to go
quite far by approximating them with deep neural networks (Mnih et al.,
2015).

We opted for a Bayesian treatment — we use a full Bayesian model for
learning functions, searching for its maximum (i.e. the point with the high-
est rewards); an approach called Bayesian optimization (for a recent re-
view, see Shahriari et al., 2016). Algorithm 1 shows a generic procedure
of how the function learning model M and decision strategy = interact in
Bayesian optimization. In the FMAB task the goal is to find the alternative
X, that maximizes the unknown function f and allocate remaining trials to
it. This can be expressed as:

x?" = argmax f(xy).
keK

We have a sequential model-based approach to tackling the FMAB prob-
lem; we start with a prior belief over possible reward functions and with no
observations at t = 0, Dg. As new alternatives are chosen and their rewards
observed, we update our sample of observations, O, and update the prior
beliefs of our model M. The Bayesian posterior yields the likely reward
function we seek to maximize. With decision strategy = we choose the next
alternative to evaluate. An important advantage of using a Bayesian func-
tion learning model is that the decision strategy can be sophisticated and
rely on the posterior distribution around the estimated function to guide ex-
ploration. Intuitively, with strategies that take uncertainty about the func-
tion into account, we choose alternatives that look promising in terms of
expected rewards in light of the available information about the reward
function. This reduces the number of observations needed to get to the
best alternative and decreases the chance of getting stuck at local maxima.
Next we describe how we instantiate the function learning model M and
decision strategy .

3.4.1 Gaussian Process Regression

We use Gaussian Process (GP) regression (Rasmussen & Williams, 2006)
as a function learning model, and the UCB decision strategy for balanc-
ing exploration and exploitation (Auer, 2002; Kaelbling, 1994), in what is

obtained by an alternative and the reward one could have been obtained if the best alter-
native was chosen.
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Algorithm 1 Bayesian Optimization

Require: Model M° with prior beliefs over possible functions; decision
strategy 7; D° = {0}
1: fort=1,...,T do
2: Choose alternative,

t+1 _ . t
X, = argmaxz(X;; M)

keK

3:  Observe reward, Rt = f(xi*) +ef*!

4:  Update sample, D'*! = {D!, (xI*1 Ri*1)}

5: Update prior beliefs over functions in M!*!
6: end for

commonly called the GP-UCB model (Shahriari et al., 2016; Srinivas et al.,
2009). The first component, GP is a Bayesian nonparametric model that
can learn very complex functions, adapting itself to the data at hand (Ras-
mussen & Williams, 2006).6 G is fully specified by a mean function, m(x),
and covariance function, k(x, x’) (also called kernel):

m(x) = E[f(x)]
k(x,x") = E[(f (%) - m(x))(f (x) - m(x'))]

commonly written as f(x) ~ GP (m(x), k(x,x’)). We define the prior distri-
bution over possible reward functions by specifying the mean and covari-
ance function. The mean function is often set to zero, m(x) = 0. As we will
see in the experiments, one could imbue G# with initial bias for say posi-
tive linear functions, by setting m(x) = c¢x with some positive slope, ¢ > 0.
More important is the kernel k(-), which determines expected characteris-
tics of functions like smoothness and linearity. The radial basis kernel (also
called Gaussian, or squared exponential kernel) is a popular choice and we
use it here as well

/ 1 ’
k(x,x') = a]% exp(zlx -X'?).

From its definition, one can see that the kernel computes the similar-
ity between two observations, i.e. alternatives. For the radial basis kernel

®Technically, GP is a stochastic process where any finite number of random variables
also have a joint Gaussian distribution. Because of its neat marginalization properties due
to Gaussian assumptions, usual problems with integration in Bayesian models are avoided
and we get a computationally tractable Bayesian nonparametric model.
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we see that the covariance is close to maximum for alternatives that have

almost the same feature values, and it decreases as their distance in the
feature space increases.” Note that radial basis kernel has two parameters
— the signal variance parameter, 0}% and the length-scale parameter, [. In-
creasing the length-scale results in greater similarity between more distant
alternatives, effectively inducing wider generalization. The signal variance
captures the scaling from feature space to rewards. With the kernel in
place we defined a prior distribution over possible reward functions, p(f).
In particular, expected mean rewards of our functions are set to zero and
the radial basis kernel assumes very smooth functions. Draws from this
prior can be seen for a one-dimensional case in Figure 3.2A. No alterna-
tives have been chosen — our sample (or memory) is empty D° = {0}, and
any reward function within prior uncertainty is possible (the shaded area
denotes two standard deviations from the mean).

After selecting an alternative k, it becomes part of the agent’s memory
together with its features and observed reward, D'*! = {D?, (x'*1, R*1)}.
Observed features and associated rewards constrain the space of consistent
functions. This is evident in the reduction in uncertainty around observed
alternatives in the first panel in Figure 3.2B. Note that uncertainty is re-
duced for nearby alternatives as well, proportionally to their similarity as
judged by the kernel. This is the generalization aspect of the model, and
if a new alternative would enter the choice set in the vicinity, G would
be able to make a good prediction how rewarding it would be. The more
observations we have in the memory, the more constrained the space of
possible functions and smaller the uncertainty about it, and consequently
our predictions improve (see bottom panel in Figure 3.2B). Formally, the
new prediction R for a single alternative (suppressing k and t), x*, is ob-
tained from predictive distribution of the GP,

p(RIX", f(X),X) = N(R|A, B)

where X is a matrix with features of previously observed alternatives from
D. Ais a posterior mean estimate, defined as

A=mx") +KkKT(K + 2R - m(X))
and B is the posterior variance estimate

B= (K" +02) -kT(K + a2I)"Kk*

"There are numerous choices of kernel function. Matern or Ornstein-Uhlenbeck do not
give functions as smooth as the radial basis kernel, while a linear kernel renders the GP
equivalent to Bayesian linear regression. Combinations of kernels are possible as well. For
more details see Rasmussen and Williams (2006).
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with k* = k(x*, X) a vector where each element is the similarity between
the alternative we are predicting and the alternative in memory, according
to the covariance function, k(). Since in the FMAB task rewards are noisy
functions of features, R = f(x) + €, € ~ N(0,52), we allow for another
parameter, the noise variance sigma?, which is added to the kernel for the
diagonal terms only. K = K(X,X’) is a matrix with pairwise similarities
between alternatives in the memory, while K** = K(x*,x*) is a scalar as we
are predicting a single alternative — it gives a perfect similarity and hence
only variance around it remains, o?2.

We chose a Gaussian process model for two reasons. First, it is a pow-
erful way of approximating functions® and we obtain a full posterior dis-
tribution in a tractable manner. These are very desirable properties for a
rational model — the former means that model can easily learn nonlinear
functions, while the latter means that decision strategies can exploit poste-
rior uncertainty to make improve their choices.

Second, our choice was guided by current evidence on human func-
tion learning. Exemplar models are among the most successful approaches
developed for explaining how people learn relations between features of
objects and a continuous or discrete criterion. The Generalized Context
Model (Medin & Schaffer, 1978; Nosofsky, 1986, GCM) and ALCOVE (Kr-
uschke, 1992), two prominent models in this family, also rely on kernels
to account for possible non-linearities in the mapping from features to cri-
terion values. Similar to a Gaussian process model, exemplar models are
also memory-based, they store (all) observations in the memory and when
a new observation comes, its value (reward or category) is predicted based
on its similarity to the items stored in memory. A second influential class
of models are called rule-based models (e.g. Brehmer, 1994; Koh & Meyer,
1991). A prime example is the rule that combines features linearly, but
other parametric functions have been considered as well. There has been a
long-standing debate in the category and function learning literature which
class describes people’s behavior best (Ashby & Maddox, 2011; McDaniel
& Busemeyer, 2005), but it turns out that both can be unified in the Gaus-
sian process framework Lucas, Griffiths, Williams, and Kalish (2015). A
rule-based linear model can be instantiated as a G with a linear kernel,
while a version of the GCM can be expressed as a G# with a radial basis
kernel. This is recent development though and empirical evidence is not
yet in whether they are better models than established ones like GCM or

8There is an interesting relation between the Gaussian process and neural network
models that are used as function approximators (Mnih et al., 2015). Neal (1996) has
shown that a neural network with infinitely many hidden units and Gaussian priors on the
weights is equivalent to a Gaussian process model.
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ALCOVE (but see Schulz, Tenenbaum, Duvenaud, Speekenbrink, & Gersh-
man, 2016; A. G. Wilson, Dann, Lucas, & Xing, 2015). One contribution of
the present work is to provide additional evidence on the matter.

3.4.2 Upper Confidence Bound strategy

The second component of the GP-UCB model is a decision strategy, UCB
(Auer, 2002; Kaelbling, 1994). It is defined as

arg max Ry + a/ug
keK

where R, and vy are the mean and variance of the posterior predictive dis-
tribution of rewards for option k, and « is a free parameter that determines
how much an agent relies on uncertainty of the function in comparison to
the mean rewards.The second term can be interpreted as the confidence
bound (as in statistics, if « is set to the 0.95 percentile of a Normally dis-
tributed variable), which is where the name comes from. For positive « its
highest value is located where the uncertainty in the G model is large (ex-
ploration) and where the mean predicted rewards are high (exploitation).
UCB then selects the alternative with the maximum.

Selecting the Bayes optimal sequence of choices is typically computa-
tionally intractable, such solutions are available only for very limited sce-
narios (for example, Gittins indices are available in the Bernoulli MAB set-
ting, via dynamic programming, Whittle, 1980). This has lead to introduc-
tion of myopic strategies, such as UCB or Thompson sampling (Chapelle
& Li, 2011; Thompson, 1933), that approximate the optimal solution at a
fraction of the cost. These strategies are usually compared on a frequentist
measure of cumulative regret. For GP-UCB there is a theoretical guaran-
tee that it achieves relatively small regret for certain classes of nonlinear
functions (Srinivas et al., 2009). There are better approximations of the
Bayes optimal choice allocation. One is Bayes-adaptive Monte Carlo Plan-
ning (BAMCP) strategy that explicitly takes the horizon information into
account (Guez, Silver, & Dayan, 2012, 2014), unlike the myopic UCB that
is blind to it. As the final trials of the task draw to end an agent should
switch more to exploiting the knowledge it acquired that far. UCB can look
as if it is choosing in this manner, but this is only when uncertainty is re-
duced over time in the G#. Computational cost for implementing BAMCP
is still quite high — for version of the CMAB problem we presently focus on
we do not lose much by using a UCB instead of BAMCP decision strategy,
while saving a lot of computation.
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Figure 3.2 Illustrating the GP-UCB model with a single feature function. (A) The
G®P prior set by the mean and kernel function reward functions is not constrained
and many forms are possible. Gray lines are random draws from the prior, the
black line is the mean reward, and the shaded region shows two standard devia-
tions from the mean. (B) Trial 1 shows reduction in uncertainty around the first
chosen alternative (“4” symbol, available alternatives are marked on x-axis), but
also for neighboring points. The black line is the true reward function, while the
dashed line is one estimated by G#. The dark gray area are values assigned by
UCB to points in the feature space — it chooses the rightmost (“0” symbol). After
trial two it discovered a high rewarding region and allocates remaining choices in
this region. The reward function: R = -1 + 3x + ¢, € ~ N(0,.15). The GP-UCB
parameters: o}% =1,02=.151=.5and a = 2.
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Empirical evidence from standard MAB and RL tasks regarding heuristic
strategies that take into account uncertainty is mixed, with early evidence
pointing toward a simple strategy that relies on mean rewards only (Daw,
O’Doherty, Dayan, Seymour, & Dolan, 2006). The most popular strategy
in this class is the softmax rule, P(C = k) « exp(ARy), (Luce, 1959; Sutton
& Barto, 1998), a probabilistic decision strategy that chooses alternatives
roughly proportionally to their mean rewards. The probabilistic component
can be interpreted as decision noise driving exploration. Recent studies
have found evidence for information seeking strategies based on uncer-
tainty (Speekenbrink & Konstantinidis, 2014; R. C. Wilson, Geana, White,
Ludvig, & Cohen, 2014). The mixed results may be due to the experimen-
tal tasks, where differences in choices between these two different classes
are small. In contrast, in the FMAB task uncertainty can play a larger role
- sampling a more informative alternative, as indicated by the uncertainty
around it, can be highly beneficial as knowledge generalizes to other alter-
natives. Hence, strategies like UCB might also prove to be a good model of
human behavior as well.

In Figure 3.2 we illustrate UCB choices in a single-feature example in
more detail. In 3.2A, while no alternative is chosen, the prior does not
discriminate between the alternatives — their predicted mean rewards and
uncertainties are exactly the same, so UCB will make a choice at random.
In 3.2B one observation is in and both predicted means and posterior vari-
ances change. If mean rewards and uncertainty is equally weighted, the
overall value will roughly follow the upper edge of the posterior (lightly
shaded area) — the true valuation of all possible alternatives (rescaled to
0,1 range) is given by the dark gray area. Given that the posterior distri-
bution of the GP changes trial-by-trial, how UCB balances exploration and
exploitation will change dynamically as well. After the uncertainty in the
region for which the G# predicts the highest rewards has shrunken and un-
certainty in other parts of the function cannot compensate for those high
rewards, UCB will stay in the same region in the remaining trials, switching
to pure exploitation.

One of the important predictions of the GP-UCB model, and Bayesian
optimization in general, is that when a function is simultaneously learned
and optimized, what looks like a low rewarding region is quickly aban-
doned and exploration moves to alternatives that promise higher rewards.
This is a specific pattern we will be looking for when examining people’s
behavior in the experiments. One consequence of this pattern, when cou-
pled with local learning kernels like the radial basis, is that uncertainty
about the function is relatively high in regions with few observations. The
estimated reward function could be even quite wrong in those regions, in-
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dicating that even rationally some ignorance is warranted when pursuing
rewarding outcomes. As a result, when new alternatives enter the choice
set, predicted rewards will be highly uncertain if they have features corre-
sponding to a low rewarding region, and errors will be likely.

3.4.3 Mean Tracking Approach

As stressed previously, one can also tackle the FMAB task by ignoring the
feature information and simply learning the mean rewards of the alterna-
tives. We define here a Bayesian Mean Tracking (BMT) model that learns
mean rewards, R, through Bayesian updating (Gershman, 2015). The de-
cision strategy that uses the estimated mean rewards stays the same — the
UCB strategy. The BMT model is obtained with a simple modification of the
kernel in the G model

0 x=#X
k(X’ X/) = { 2
9
This kernel gives positive similarity only for exactly the same alterna-

tive, scaled by the free parameter 0'12” no similarity otherwise. We also
2

include the noise variance parameter, o;. With such a kernel we have
Bayesian updates only for the alternative that is sampled and there is no
generalization to other alternatives in the choice set.

This model can be viewed as a Bayesian version of the delta-rule or
Rescorla-Wagner model (Rescorla & Wagner, 1972). It learns more effi-
ciently than these models, as it takes into account the uncertainty of each
alternative when updating the values. In other words, it has an alterna-
tive specific dynamic learning rate, while the Rescorla-Wagner model has
constant learning rate for all alternatives. In spite of this boost in learning
speed, BMT-UCB is warranted to be slower than GP-UCB. This is because
BMT-UCB treats each alternative independently and cannot generalize, it
needs to sample alternatives at least once to estimate their mean reward.
In contrast, after trying a few alternatives, GP-UCB can already eliminate a
subset of similar alternatives that are also likely to yield low reward. The
difference in our experiments will be moderate — since we have only a rela-
tively small number of alternatives, and BMT-UCB can also quickly identify
the most promising ones. In CMAB problems with either a larger number of
alternatives or where new alternatives ones are encountered often, GP-UCB
would outperform BMT-UCB by a much larger margin.

The differences between the models will be the most obvious in the
beginning of the experiment, where most transfer of learning will occur in

otherwise
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GP-UCB - this will be reflected in quicker avoidance of alternatives with
features associated with low rewards in these early trials, while the BMT-
UCB model would explore uniformly across the choice set, including these
low rewarding alternatives. For this reason we will focus on analyzing
exploration patterns of participants in early trials of the FMAB task.

3.5 Summary

Optimal solutions for the CMAB problem are not available. We relied on
a Bayesian nonparametric modeling approach coupled with sophisticated
heuristics to arrive at a good approximation to the optimal solution. Our
theoretical analyses have shown there are two qualitatively different ways
of tackling our FMAB task — one based on learning the function between
features and observed rewards (GP-UCB), and another based on tracking
the mean rewards of alternatives, ignoring the features altogether (BMT-
UCB). These are not only close to optimal solutions of the FMAB problem,
they stand a good chance of being good models of people’s behavior in the
task.

The BMT-UCB model serves as a reference frame against which to com-
pare performance and exploration patterns of the approach we are primar-
ily interested in — the function learning approach as embodied by GP-UCB.
We illustrated exploration patterns of agents guided by function learning
that we will be looking for in the experiments. Allowing for such quali-
tatively different ways of solving the task was intentional, as we are in-
terested in strategies people choose to tackle the task. Nevertheless, our
prediction is that the majority of participants will use the former — realis-
tic decision scenarios will often rely on generalization of knowledge and
function learning is a reasonable default. In the following experiment our
goal was to detect whether people’s choices and exploration patterns were
guided by feature information and function learning. Since it might be
difficult to detect whether people simultaneously learn and optimize the
function based on choices in the FMAB task only, we relied on two mech-
anisms to facilitate the detection: (1) a control group that had a standard
MAB task where we can be sure their exploration patterns were not due
to function learning, and (2) an additional functional knowledge task after
the FMAB task to asses the extent of knowledge about the function.
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3.6 Experiment 1A and 1B: Influence of feature
information on learning and exploration

In Experiments 1A and 1B we examined whether people simultaneously
learn the function and search for its maximum. In addition, we investigated
whether there are inter-individual differences in the approach people use
to deal with the FMAB task — function learning or mean tracking.

Both studies followed the same between-subject experimental design.
One group is randomly allocated to a MAB task where feature values were
not visually displayed, while the other group is allocated to a FMAB task
where feature values were visible (see Figure 3.1). Importantly, rewards in
both conditions were determined by the same function — a positive linear
combination of two features. It has been established that people can readily
learn such functional forms (Brehmer, 1974; Busemeyer et al., 1997). We
intentionally kept the first experiment easy; if people could not handle the
simplest versions of the task, there would be little hope for more complex
scenarios.

Participants in the FMAB condition completed an additional functional
knowledge task, where we examined the extent to which they had learned
the function and could use the acquired knowledge to make better choices
when facing alternatives they have not seen during the FMAB task. Our
rational analysis shows that both models that rely on function learning
(GP-UCB) and those that ignore it (BMT-UCB) have similar performance on
the stimuli for the bandit task; where they differ is extrapolation to new
stimuli. Hence, generalization is a true test of how much participants have
relied on function learning in coping with the FMAB task (DeLosh et al.,
1997).

We expected that a large majority of participants would use the function
learning approach. Following the GP-UCB model, their exploration patterns
should be heavily skewed due to feature information — people should allo-
cate disproportionally more choices to alternatives with promising feature
values. This should be most evident in early trials, when people learn and
explore the most. Moreover, the effect should be enhanced as people usu-
ally have a strong prior for positive linear relationships (Brehmer, 1974;
Busemeyer et al., 1997). We also expected some inter-individual differ-
ences. Given that our FMAB task had only a limited number of alternatives,
it could be solved almost equally well by ignoring the feature information
and paying attention only to the mean rewards of each alternative, as in the
classical MAB task. We expected some people to take this strategy instead.

The two studies are nearly identical. The first was conducted on larger
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number of participants recruited via Amazon’s Mechanical Turk online la-
bor market(AMT, https://www.mturk.com), while the second study was a
lab replication, to verify the quality of Mechanical Turk data.

3.6.1 Method®
Participants

In total, 261 participants took part in Experiment 1A and 1B. The num-
ber of participants and their socio-demographic characteristics for all stud-
ies in the paper are given in Table 3.1, along with several other useful
details. Participants were recruited either via Amazon’s Mechanical Turk
(AMT, http:\mturk.com, in Experiment 1A) or from the Universitat Pom-
peu Fabra subject pool (Experiment 1B). Data of a number of participants
did not pass the quality checks and were excluded from the analysis. Our
procedures for ensuring data quality are described in more detail in Ap-
pendix 3.A. Participants received a fixed minimal payment plus a perfor-
mance dependent bonus.

Bandit task

The task comprised of 100 trials. On each trial, participants saw the same
20 alternatives and were called to choose one of them. After making a
choice k in trial ¢, they were informed of the reward R; associated with
their choice. For each arm k = 1, ..., 20, the reward on trial t was computed
according to the following equation:

R]L; = Wi1X1k T W2X2k + GIZ.

The two feature values, x1 and x, of each alternative k were drawn
from a uniform distribution U(0.1,0.9), for each participant at the begin-
ning of the task. Weights for all participants were set to w; = 2 and wp = 1
in Experiment 1A and to w; = 20 and wp = 10 in Experiment 1B. The error
term, e!, was drawn randomly and independently for each arm from a nor-
mal distribution, N(0,0.0625) in Experiment 1A, and N (0, 6.25) in Experi-
ment 1B.'0 Note that the feature values stayed the same throughout all 100

Software, exact instructions and stimuli used in all the experiments, are publicly avail-
able at the Open Science Framework website: https://osf.io/fmn45.

10We determined the exact size of the error term by examining the results of the pilot
study reported in Stoji¢ et al. (2015). In the pilot we used the same weights as in Experi-
ment 1A, but the variance was set to one. As a result learning was hard, and participants
exhibited noisy behavior that was difficult to model. We decreased the error variance
substantially to boost learning.
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Figure 3.3 Alternatives in the functional knowledge task were designed to exam-
ine whether participants learned the function. Features were always visible and re-
wards were governed by the same function as in the bandit task. Participants with
some knowledge about the function should be able achieve better-than-chance
performance.

trials, while payoffs were changing from trial to trial due to the error term.
The only difference between the conditions was that the feature values,
x1, and xgx, were visually displayed in the contextual version (FMAB-pl
condition) but not in the classic one (MAB-pl condition), as illustrated in
Figure 3.1. Participants were randomly assigned to the conditions.

Functional knowledge task

In the final phase, participants faced a functional knowledge (FK) task
aimed at examining whether they had acquired knowledge about the func-
tion governing the rewards during the bandit task. Only participants in
the FMAB condition continued to this choice task, which consisted of 70
trials where in each trial the participants saw three new alternatives. The
structure of the task was very similar to the bandit task — the rewards were
determined by the same function, and visually they looked the same (Fig-
ure 3.3). To encourage participants to use their acquired knowledge, we
removed the opportunity to learn further — we did not provide them feed-
back about the outcome of their choices. The problem was thus reduced
to a multi-attribute choice task, as there was no longer an exploration—
exploitation trade-off and participants had to generalize their knowledge
to new decision situations. Finally, there were five types of items in the
FK task, four of them differing in terms of difficulty and one identifying
whether participants had learned that one feature had a larger weight. The
sampling procedure and item types are described in more detail in Ap-
pendix 3.B.
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Procedurel!!

Participants completed the experiment either in a browser via AMT (Exper-
iment 1A) or on desktop computers in the lab at Universitat Pompeu Fabra
(Experiment 1B). We have used a custom software written in Javascript,
with the help of jsPsych and Psiturk library (Gureckis et al., 2015; Leeuw,
2015).

We first presented participants with consent form. Only those that ac-
cepted it could start the experiment. Then participants completed a brief
socio-demographic questionnaire and read instructions about the tasks in
the experiment. Instructions explained that they would be presented with a
decision making task where they would make choices between 20 alterna-
tives for many trials. We explained in detail that for each choice they would
receive experimental points that would at the end be converted to money,
with an advertised exchange rate. The goal of the game was to win as many
experimental points as possible. We also informed them that they would
see the same alternatives in every round, but that the rewards associated
with each alternative might vary from round to round. Finally, before they
started with the bandit task, we asked several questions about the infor-
mation presented in the instructions in order to check how much attention
they paid to the instructions (for more details on attention questions, see
Appendix 3.A).

After reading the instructions and completing the questionnaires, par-
ticipants started the bandit task. On each trial, alternatives were presented
in the form of simple square-shaped buttons (see Figure 3.1) and they had
as much time as they needed to select an alternative via a mouse click. The
number of points won or lost was then displayed immediately below the
alternative until they pressed the ENTER key, which would display the next
trial. Throughout the task, a counter displayed the total points received
thus far, the number of the current trial, and the total number of trials in
the phase. Buttons in the MAB condition were empty, while in the FMAB
condition feature values were displayed on each button in the form of one
horizontal and one vertical line, both starting from the lower left corner of
the square (see Figure 3.1). We randomized whether a certain feature was
represented as a vertical or an horizontal line across participants. Since fea-
tures and error terms for each participant were drawn randomly, rewards,
alternatives and positions on the screen were effectively randomized as
well. After participants in the MAB condition made their 100 choices, we
informed them about their total earnings, asked a few optional questions

HReaders can try out one of the early experiments reported in Stoji¢ et al. (2015) at the
following URL: http://experimentnext.com/CMABvsMABexp1l.
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about their experience with the experiment and thanked them for their
time.

Participants in the FMAB condition continued to the FK task. We an-
nounced the task in the instructions at the beginning in this condition, but
without specifying details. After finishing the FMAB task, they read the in-
structions for the FK task. We told them they would face new alternatives
in every trial, but would not see any feedback and would no longer see
the running total. We also informed them that their payoff would still be
affected by their choices. After they completed the task they went through
the same procedure as MAB participants.

Information that we recorded for each participant was basic demo-
graphic data — age, gender and type of studies, answers to attention ques-
tions, stimuli characteristics, choices and response times in both bandit and
functional knowledge task.

3.6.2 Results and Discussion!?
Performance in the bandit task

The Bayesian models set the benchmark performance in the bandit task,
shown in Figure 3.4A (see Appendix 3.D for details on parameter values of
the models and estimation procedure). We use rank of the chosen alterna-
tive as a measure of performance rather than expected reward, as stimuli
were drawn randomly for each participant and expected reward would pro-
vide a noisier measure. The models achieve large improvements already in
the first block of trials. The function learning based model (GP-UCB model)
performs better than the model that ignores the feature information and
tracks only the mean rewards (BMT-UCB). The GP-UCB model manages to
find the best alternative in the choice set very quickly, achieving an overall
mean rank of 1.3, while the BMT-UCB model achieves performance very
close to the GP-UCB model (M, ,x = 2.3). Such a small difference was ex-
pected given the small number of alternatives in our task. The advantage
of function learning increases with the number of alternatives and when
knowledge has to be generalized to new alternatives entering the choice
set. As expected, the differences between the models were the largest at

12The code we used for analyzing the data and modeling is publicly available at the same
website as the software used for conducting the experiments: https://osf.io/fmn45.
The raw data from all experiments are publicly available on Figshare data repository:
http://dx.doi.org/10.6084/m9.figshare.3189748. The code is written in R program-
ming language (R Core Team, 2015), in a way that with minimal effort one could repro-
duce the results of the analysis and produce all the figures presented in the article.
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the beginning of the task and this is where we will focus our exploration
analysis.

Bayesian models set a high bar and although we expected participants
to improve substantially over time, their learning was unlikely to be as
fast as that of Bayesian models. Indeed, Figure 3.4B shows that both MAB
and FMAB participants were performing better than chance (rank of 10.5)
and improved substantially over time, as validated by one-tailed Wilcoxon
signed rank tests. For the MAB condition it shows a significant difference in
mean choice rank between the first (M = 9.30) and last block (M = 3.83),
Z = 4080, p < 2.2E —16. Similarly, the difference (M = 8.15 and M = 3.96)
is significant for FMAB condition, Z = 4496, p = 1.1E — 15. This indicates
that participants understood and were engaged in the task. However, hu-
man performance was not as good as that of Bayesian models. By the end
of the bandit task, on average humans managed to identify alternatives
that were in the top 20%, but rarely the best. Note that parameters of the
Bayesian models were fitted to the stimuli, while participants did not en-
ter the experiment with their “parameters” all set for the task they would
encounter, thus, the difference is somewhat exaggerated.

Except for the first block, there is seemingly little difference in choice
performance between the conditions. Even though BMT models achieve
similar performance to GP models, people as a rule learn slower than statis-
tical models and we expected that feature information would substantially
benefit learners in the FMAB condition, so the small differences between
conditions surprised us initially. Even though we envisaged that some par-
ticipants in the FMAB condition would ignore the feature information and
opt for a mean reward tracking strategy, the proportion turned out to be
quite large. We used the performance on the FK task to distinguish between
these two types. Figure 3.4C shows the results of performing a K-means
clustering on mean choice ranks from the FK task. We find a large group
of people that seem to have very little knowledge about the function, mak-
ing choices almost randomly (“Mean trackers” group, N = 43, with mean
rank performance of M = 1.94, SD = 0.28), and another large group that
possesses accurate function knowledge, choosing the alternative with high-
est function value (i.e. largest reward, based on the reward function used
in the bandit task) most of the time (“Function learners” group, N = 53,
M =1.17,SD = 0.17). Figure 3.4D illustrates choice performance of FMAB
participants, once these inter-individual differences in tendency to rely on
function learning are taken into account. We see that performance of Func-
tion learners is much better than that of Mean trackers, with Mean tracker
performance resembling closely that of MAB participants (see Figure 3.4B).
Function learners achieve an overall mean rank of M = 4.59 (SD = 1.95),
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Figure 3.4 Choice performance of Bayesian models and participants in Experiment
1A. (A) The performance of Bayesian models in the FMAB task — mean accuracy
of models’ choices (the lower the rank the better) increases across trials (grouped
in five blocks of 20 trials). Function learning based model (GP-UCB) achieves the
best performance, but Bayesian mean tracker model is very close (BMT-UCB). (B)
Participants learn to make good choices in both MAB and FMAB task — partici-
pants’ mean accuracy increases over time, but does not reach the level of Bayesian
models. There is also seemingly little effect of feature information. (C) How-
ever, according to the performance in the FK task there are strong inter-individual
differences in how well the participants have learned the function in the FMAB
condition. We find a cluster of people that do seem to learn the function (Function
learners) and a cluster that does not exhibit almost any knowledge about the func-
tion (Mean trackers). (D) Once these inter-individual differences are taken into
account, we see that Function learners perform much better than the MAB group,
while Mean trackers perform similar to the MAB group.

while Mean trackers reach M = 7.00 (SD = 2.84), a significant difference as
indicated by a two-tailed Wilcoxon rank-sum test, Z = 1700, p = 3.6E — 05.

A potential caveat with the clustering analysis is that the Mean tracker
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group might also include unmotivated participants that performed poorly
in both tasks. Indeed, there appear to be such participants, although not
many - six participants in the Mean tracker and one in the Function learner
group have mean rank above 10 in fifth block. This is not a major issue,
however: as shown in Figure 3.4D, even with these participants the Mean
tracker group still improves greatly over time, and without them, the differ-
ence between Mean trackers (M = 6.32, SD = 2.41) and Function learners
(M = 4.50, SD = 1.87) is still very large, Z = 1376, p = .0005 (two-tailed
Wilcoxon rank-sum test).

Exploration

To tackle our main question more directly — whether people’s behavior ex-
hibits the patterns of simultaneously learning the function and searching
for its maximum — we examined allocation of participants’ choices with re-
spect to feature values (Figure 3.5). We focus on the first 10 trials where
people learn and explore the most and our models show the largest differ-
ences. We predicted that people’s exploration patterns in the FMAB condi-
tion would be skewed toward alternatives whose feature values place them
in high rewarding regions. This is predicted by our GP-UCB model, as il-
lustrated in Figure 3.5A. The BMT-UCB model has no way of generalizing
knowledge from one alternative to the other, so in the beginning it tends
to allocate choices uniformly over all alternatives. There is a slightly larger
proportion of choices in the high reward region (upper right area), owing
to the BMT-UCB model learning optimally. It adjusts the learning rate with
the posterior estimates of rewards, and uses the posterior in balancing ex-
ploration and exploitation. The GP-UCB exploits the feature information
to learn the function between feature values and rewards, and as a result
generalizes from one alternative to all others in the choice set. It starts
with no biases and an expectation of zero rewards. With a single alterna-
tive tried out, it learns to avoid those with similar features if the reward
was negative. With two to three alternatives it already identifies a high re-
warding region in the case of simple functions like in this experiment. This
leads to very small proportions of choices allocated to low reward regions
in the feature space, and results in significant differences in performances
of the models in the beginning, as illustrated in Figure 3.4A. On average,
the GP-UCB model tried out 3.6 alternatives, while the BMT-UCB tried out
8.9 alternatives. If we were to look at the last trials, the allocations be-
tween the models differ very little, both BMT and GP models identify the
good alternatives by that time.

Figure 3.5B depicts participants’ allocation of choices in feature space
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Figure 3.5 Exploration patterns of Bayesian models and participants in the bandit
tasks in Experiment 1A. (A) Proportion of all choices in the first 10 trials allocated
by models to alternatives with feature values falling into one of the four bins in-
dicated on x-axis for Feature 1 (w; = 2) and y-axis for Feature 2 (wo = 1). The
GP-UCB identifies the high rewarding region more quickly than the BMT-UCB. GP-
MV makes choices to learn the function as well as possible. (B) Participants in the
FMAB condition started allocating a larger proportion of choices to high reward-
ing region quickly, while in the MAB condition they are exploring very uniformly.
(C) Cluster of FMAB participants that has poor knowledge of the function (mean
trackers) explores the same as MAB group, while cluster with good knowledge

(function learners) explores similar to the GP-UCB model.
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in the first 10 trials, separately for the MAB and FMAB condition. Choices
of MAB participants are close to uniformly distributed over the alterna-
tives. In comparison with the BMT-UCB, people learn more slowly and did
not discover the good alternatives in the first 10 trials. By the end of the
bandit task, however, they do narrow down to good alternatives and their
allocations are highly concentrated in the high rewarding region (see Fig-
ure 3.C.1 in Appendix 3.C). Choice allocation of the FMAB group differs
strongly from that of the MAB group in the first trials of the task. They
start avoiding the alternatives with features associated with low rewards
(lower left region) and choose more frequently those in high rewards (up-
per right region), as determined by the reward function. We validated
the observed differences with a permutation-based statistical test, which
showed a significant difference between the two distributions, Dy = .131,
95%CI = [.114,.175],p < 1E- 07.13 As the permutation test is silent on di-
rection of the difference, we computed the average number of choices (out
of 10) allocated to alternatives with both feature values between 0.5 and
0.9 and conducted a one-tailed Wilcoxon rank-sum test. The test shows
that the FMAB-pl group allocated on average 3.67 (SD = 2.43) choices
to the upper right region, significantly more than MAB-pl group (2.91,
SD = 1.92), Z = 5032, p = .025. Finally, according to our modeling
analysis, the MAB-pl group should have tried more alternatives than the
FMAB-pl group. This is not the case, MAB-pl group sampled on average
16.54 (SD = 4.07) alternatives (out of 20), very similar to FMAB-pl group
(16.12, SD = 4.01), Z = 4601, p = .217. The observed difference is akin to
the difference in exploration between the GP-UCB and the BMT-UCB model,
although the distributions are not nearly as skewed as for Bayesian models
(note the different scales for each figure.

Figure 3.5C breaks down the FMAB condition on allocations of Mean
trackers and Function learners. The exploration pattern of Mean trackers
strongly resembles that of the MAB group. If we repeat the tests reported
above, comparing Function learners with the MAB group instead, we get
larger differences in expected directions. Moreover, a test of difference in
number of alternatives tried is now significant as well — the MAB-pl group
sampled on average 16.54 (SD = 4.07) alternatives (out of 20), more than
Function learners (15.25, SD = 4.31), Z = 2800, p = .0389.

13We compute the Hellinger distance (Dy) between two discrete distributions and then
randomly permuted the labels a million times to get an empirical null distribution of no
difference between them. The disadvantage of this procedure is that it also breaks spatial
patterns, treating each bin in the distribution as being independent of the others. The
confidence interval of the distance between the distributions is computed with bootstrap
procedure.
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Observed choice patterns do not correspond to behavior one would ex-
pect of agents that are solely concerned with learning the function. Allocat-
ing choices to learn the function as well as possible (i.e. active learning) is
illustrated by the GP-MV model with Maximum Variance (MV) choice rule
(Figure 3.5A). This rule ignores the estimated mean rewards and chooses
the alternatives with largest uncertainty, notably in the corners of the fea-
ture space. It effectively shows the pattern of choices people might make
if they were only after learning the function, and not trying to maximize
the rewards in the same time. We can clearly see that neither the FMAB
group nor Function learners allocate choices symmetrically to all corners
or edges. Instead, their allocation seems to be guided by both learning the
function and exploiting it.

Generalization performance in the FK task

Figure 3.6 shows the performance of BMT-UCB and GP-UCB model in the
FK task. The BMT-UCB cannot generalize to new alternatives and can make
choices only randomly. The GP-UCB model is however very good at extrap-
olating to new decision situations, but indicatively, it is not predicting per-
fectly — in about 10% of trials it makes an incorrect choice. Mean trackers
and function learners exhibit similar mean rank performance (Figure 3.4C).

FMAB-pl, GP-UCB

Proportion of choices
92}

Choice ranks

Figure 3.6 The GP-UCB model is able to generalize and performs very well on
the FK task on stimuli from Experiment 1A, after learning during the bandit task.
While the BMT-UCB model performs only slightly worse than GP-UCB in the bandit
task, it cannot generalize what it has learned to the FK task and its performance
here is at chance level.

Similarities are even more striking when looking at FK task performance
broken down into item types (Figure 3.C.2). Both GP-UCB and Function
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learners err in difficult and weight comparison items. Even though in
GP-UCB predictions we kept using the parameters estimated for the ban-
dit task, including the positive uncertainty parameter « in the UCB choice
rule, its errors are not due to exploration tendencies. Even if we set this
parameter to zero, we still get essentially the same results. Imperfect gen-
eralization is a result of imperfect knowledge of the function — the GP-UCB
model still has a large uncertainty in regions it did not experience, and can
misrepresent the function in those regions. The choice sets in the FK task
include alternatives from such regions and the model then ends up making
mistakes. This result is also suggestive about the type of function learning
people do — namely, that people’s functional knowledge is based on local,
rather than global knowledge (Busemeyer et al., 1997).

Results of Experiment 1B

The results on AMT sample in Experiment 1A were replicated on the more
homogeneous, student sample in a lab experiment in Experiment 1B (see
Figure 3.C.3 for results). The results are qualitatively the same, but trends
and differences are greater, most likely reflecting greater motivation of lab
participants. Lab participants were on average more attentive than the
AMT sample, as judged by attention questionnaire answers, 3.5 correct an-
swers out of 4 in comparison to an average of 3 for the AMT sample. This
seems reflected in more participants in the FMAB condition engaging in
function learning, and a larger proportion of participants is classified as
belonging to Function learner group (73% in comparison to 55% in Ex-
periment 1A). Overall, differences in raw choice performance between the
FMAB and MAB condition are greater than in the AMT sample (panel A
in Figure 3.C.3), and the difference in exploration patterns is correspond-
ingly stronger (Dy = .231, 95%CI = [.203,.302]) than in the AMT sam-
ple (Dy = .131, 95%CI = [.114,.175]). In Experiment 1B, the FMAB
group tried significantly fewer alternatives, 13.70 (SD = 5.03) than the
MAB group, 16.58 (SD = 3.49), Z = 913, p = .012 (one-tailed Wilcoxon
rank-sum test), which was not the case in the AMT sample.
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3.7 Experiment 2A and AB: Are People Func-
tion Learners and the Hidden Dangers of
Function Learning

It has been consistently shown that people learning functional mappings
tend to place strong priors on positive linear relationships between the cue
values and the to-be-predicted criterion value (Brehmer, 1974; Busemeyer
et al., 1997; DeLosh et al., 1997; Kalish et al., 2004; Lucas et al., 2015;
McDaniel & Busemeyer, 2005). Hence, it is likely that participants’ priors
corresponded exactly to the structure they encountered in the bandit task of
Experiment 1. One could argue then that there was little function learning
necessary, and the advantage of function learners might largely stem from
them being able to use the prior knowledge that they brought into the
experiment.

In Experiment 2A, we address these possible limitations by using a
mixed linear reward function which is less likely to correspond to peo-
ple’s priors. By studying how people learn other functional forms we also
validate our framework further. In this reward function one feature is posi-
tively correlated with rewards and one negatively, which would cause those
Function learners with positive linear priors to allocate choices to lower
value alternatives initially. Observing a shift in choice allocation from re-
gions in the feature space indicated by the prior toward regions indicated
by the mixed linear function would provide clearer evidence that people
indeed engage in function learning. Simultaneously, this would be evi-
dence of feature information working against the sophisticated learner that
tries to learn the function. Priors can obviously speed up learning substan-
tially, but if the structure of the environment does not correspond to the
priors, feature information can impede the function learners in comparison
to learners that ignore it.

If people use their knowledge of the function or priors to guide ex-
ploration, we should be able to identify cases in which their priors may
lead them astray. Experiment 2B was designed to investigate such a sce-
nario. To this end, we introduced a U-shaped quadratic mapping from
feature-values to utility. We studied whether people acquire incorrect be-
liefs about relationships between features and rewards due to interactions
between function learning and decision processes. The Bayesian optimiza-
tion framework allows for this possibility — due to simultaneous function
learning and function optimization, what are thought to be less reward-
ing regions of the function space are known less well. Depending on the
prior and the properties of the actual reward function, one could end ex-
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periencing only alternatives from a part of the function space. Such sys-
tematic bias in the sample can significantly affect the accuracy of beliefs
about the structure of the world — the true function underling the rewards.
For the quadratic function, we predicted that most people would end the
task believing incorrectly that the rewards are a positive linear function of
the features, and a smaller portion believing the function is negative lin-
ear; the tip being balanced in favor of positive one due to peoples’ priors.
This is related to the “hot-stove” effect and adaptive sampling ideas in fea-
tureless multi-armed bandit problems (Denrell, 2007; Denrell & Le Mens,
2007; Denrell & March, 2001). With the quadratic function and specially
designed FK task items we aimed to detect such locked-in effects where
people end up with incorrect beliefs about the world and reinforcing them
with subsequent choices.

3.7.1 Method
Participants and experimental design

In total, 190 people (79 females), in the age range from 18 to 69 (M = 36.4,
SD = 11.7) participated in Experiment 2A. In Experiment 2B, 186 people
(97 females), in the age range from 20 to 74 (M = 35.9, SD = 11.0)
participated. We recruited participants through AMT and we checked the
data quality following the procedures described in Appendix 3.A. As in Ex-
periment 1, participants received a fixed show-up fee plus a performance-
dependent bonus.

The core structure and visual design of the experiment was the same as
in Experiment 1. We varied whether feature information was visible or not
(FMAB vs. MAB task), In experiment 2A the function determining the re-
wards was a mixed linear while in experiment 2B it was a quadratic (identi-
fied by suffix “ml” and “q” in the condition name, respectively). Adding the
two versions of Experiment 2 together, this yielded a 2 x 2 between-subject
design and four experimental conditions: FMAB-ml, MAB-ml, FMAB-q and
MAB-q.

Stimuli and Procedure

The bandit task in this experiment differed in the underlying function that
generated the rewards. In the conditions of Experiment 2A we used a
mixed linear function, where one weight was positive, and the other nega-
tive, w1 = 40 and wy = —30, and the error term was drawn from N (0, 6.25).
Feature values were sampled from a uniform distribution, U(0.1,0.9). In
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the conditions of Experiment 2B, we used a nonlinear function — rewards
were determined by a U-shaped quadratic function:

Rl =1+ 60(x1x — 0.02) + 60(x2x — 0.02)% + 30x7 kx2x + €.

The error term was the same as in the mixed linear function conditions,
N(0,6.25), while the feature values were sampled from a uniform interval
U(-0.4,0.4), to get the U-shaped form.

The FK task items for mixed linear conditions were constructed same
as in Experiment 1, with modified feature value ranges to account for the
differences in functional form. In the quadratic conditions we had different
item types, designed to detect participants’ beliefs about the form of the
function — whether they thought that it was positive linear, negative linear
or U-shaped. More details about the design of the items in the task can be
found in Appendix 3.B.

We followed exactly the same procedure as described in Experiment 1.
Since the nature of the objective function governing the stimuli was never
displayed, we were able to use the same instructions. We also recorded the
same type of information for each participant.

3.7.2 Results and Discussion
Experiment 2A: Priors alone cannot explain the results

Figure 3.7 illustrates allocation of choices by the Bayesian models in the
FMAB-ml condition of Experiment 2A. The version of the models we have
used thus far does not incorporate any bias that would correspond to the
positive linear expectations often found in experiments with humans. The
leftmost and middle panel in the figure show that both the mean track-
ing model (BMT-UCB) and function learning based model (GP-UCB) have
little difficulty identifying the good alternatives. Gaussian processes are
very flexible however, and we do not necessarily need to use a zero mean
function — we can easily make it a positive linear function of the features,
which would correspond to the priors that can be inferred from human ex-
periments. The rightmost panel illustrates choice allocation by the GP1-UCB
model where we added a strong bias toward positive linear relationships.
We see that in the indicative early trials it does allocate many choices to
the upper right quadrant. This particular model is very fast in unlearning
such a prior; the UCB choice rule, due to its usage of uncertainty, quickly
starts trying out alternatives from other corners of the feature space and
finds better alternatives. These patterns, however, vary with the exact pa-
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rameter values and choice rules used. Clearly, the BMT-UCB model cannot
have such systemic bias, as it ignores the features altogether.
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Figure 3.7 Exploration patterns of Bayesian models in Experiment 2A. The models
were fitted to the same stimuli seen by the participants and then for each partic-
ipant we simulated choices 33 times. Here we show the proportion of choices in
the first 10 trials allocated to alternatives with feature values falling into one of
the four bins indicated on the x-axis for Feature 1 (w; = 40) and the y-axis for Fea-
ture 2 (wy = —30). Leftmost, BMT-UCB cannot have any bias based on features, it
quickly identifies the high rewarding alternatives. In the middle, GP-UCB has no
initial bias (assumes zero mean reward) and as expected, it is even faster in detect-
ing the good alternatives. Rightmost, if we add positive linear mean function to
the GP model, akin to assumed people’s prior, we see divided allocation between
upper and lower right corners. Not shown here, all three models concentrate their
choices in the last 10 trials appropriately to higher rewarding, lower right region.

Participants’ choice performance is better than chance (rank of 10.5)
and improves substantially over time (Figure 3.C.4A), similar to Experi-
ment 1, and people’s performance is not as good as that of the Bayesian
models. For the MAB-ml condition it shows a significant difference in
mean choice rank between the first (M = 8.25, SD = 2.47) and last block
(M = 2.94, SD = 2.51), Z = 3734, p = 5.5E — 15. Similarly, the differ-
ence between the first block performance (M = 7.61, SD = 2.49) and the
last block (M = 2.97, SD = 2.55) is significant for FMAB-ml condition,
7 =5132, p < 2.2E - 16.

Figure 3.8 illustrates participants’ choice allocations in the first 10 and
last 10 trials of the bandit task where rewards are governed by a mixed lin-
ear function. Firstly, participants in the FMAB condition indeed show clear
signs of expecting a positive linear function. Many participants allocated
a large proportion of their choices in the first 10 trials to alternatives with
high feature values (Figure 3.8A). This further strengthens the belief that
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this allocation was guided by feature information. In contrast, the MAB
participants successfully avoided choosing alternatives from this region, as
predicted by the BMT-UCB model. The Hellinger distance between the two
distributions is .10, 95%CI = [.094,.153], significantly different from 0
based on a permutation test, p = .0002. Direction was further validated
with a one-tailed Wilcoxon rank-sum test. FMAB participants allocated on
average 3.59 (SD = 2.75) choices (out of 10) to alternatives with both fea-
ture values between 0.5 and 0.9, significantly more than MAB participants
(2.56, SD = 2.03), Z = 5387, p = .008. Secondly, FMAB participants with
positive linear priors updated their beliefs and by the end of the task shifted
their choices to the high rewarding alternatives defined by the true func-
tion in the environment (Figure 3.8B). This offers evidence that people do
learn the function and do not simply use their prior knowledge. However,
allocation of choices changes more gradually than predicted by the optimal
GP-UCB model. This is likely due to a lower learning rate, or potentially
using choice rules that do not use uncertainty, such as softmax (Luce, 1959;
Sutton & Barto, 1998). Finally, according to the predictions, the MAB group
sampled more alternatives on average, 14.86 (SD = 5.05), than the FMAB
group, 13.53 (SD = 5.09), as supported by a one-tailed Wilcoxon rank-sum
test, Z = 5210.5, p = .027.

The behavior of FMAB-ml participants is more nuanced however, as
revealed by dividing the participants into clusters as in Experiment 1 (Fig-
ure 3.C.5). We find a small cluster (N = 23) with very good knowledge
of the reward function (“Fast learners”), as indicated by their FK task re-
sults (M = 1.23, SD = .17), who showed very little evidence of an initial
bias towards a positive linear function. A much larger cluster (N = 79)
seems to have poor knowledge of the true underlying function (M = 2.02,
SD = .19). However, they do not seem to have adopted the mean tracking
strategy. This is the group of participants that exhibited a strong positive
linear bias, and compared to the choice allocation of MAB participants, they
are clearly guided by the feature information (this is why we refer to them
as “Slow learners”). Figure 3.C.5B shows that they discover the good region
by the end of the task, as if they engaged in function learning and updated
their knowledge of the function; however, according to the FK task, they
do not seem to learned the true function adequately. Perhaps their prior
beliefs were extremely strong and they choose accordingly in the FK task.
Since our test items were designed to detect how well one knows the mixed
linear function, it does a poor job of detecting other types of knowledge of
the function. Another possibility is that this group used their prior at the
beginning, but from then onwards used a mean tracking strategy to detect
high rewarding alternatives — a mixture of the strategies we have consid-
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Figure 3.8 Exploration patterns of participants in Experiment 2A in the first 10
trials of the bandit tasks and the last 10 trials. (A) Proportion of all choices in
first 10 trials allocated to alternatives with feature values falling into one of the
four bins indicated on x-axis for Feature 1 (w; = 40) and y-axis for Feature 2
(wg = —=30). Participants in the FMAB condition allocate many choices to the
upper right quadrant, consistent with our assumption that people have expected
positive linear relationships a priori. In contrast, participants in the MAB condition
are quicker in identifying the high rewarding alternatives. (B) Analogous to the
previous panel, but now showing allocation of choices for the last 10 trials in
the bandit task. Participants in the FMAB condition now shifted their choices to
the alternatives with feature values that lead to higher rewards, positioned in the
lower right corner, where feature 2 has low values.

ered thus far. This points out that although the FK task is a useful tool
for studying inter-individual differences it cannot easily discriminate what
strategy people rely on — mean tracking or function learning. Nevertheless,
it seems clear that there is large difference in the extent to which people
are affected by a mismatch between the priors and the actual function gov-
erning the encountered environment.
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The difference in choice allocations between MAB and FMAB partici-
pants in the first 10 trials is also evidence that feature information might
not always be beneficial. Misaligned priors can guide people astray and
deprive them of the benefits of function learning. In this case there is little
difference in choice performance between the conditions. FMAB partici-
pants achieve mean rank across all 100 trials of 4.58 (SD = 2.32), while
MAB participants reach 4.98 (SD = 2.35), and we cannot reject the null
hypothesis of no difference (Z = 3918, p = .1315, two-tailed Wilcoxon
rank-sum test).

Experiment 2B: Locked-in effect

Even though the quadratic reward function was more complex from the
function learning perspective, participants’ choices improved over time with
a similar rate as in the other experiments (see Figure 3.C.4B). Over all 100
trials, there is no significant difference in choice performance, FMAB-q par-
ticipants achieve mean rank of 5.28 (SD = 2.73), while MAB-q participants
reach 5.57 (SD = 2.89), Z = 4063, p = .5453, according to two-tailed
Wilcoxon rank-sum test. However, in terms of exploration the differences
are substantial. First, there is a difference in terms of number of alter-
natives tried. The MAB-q group sampled more alternatives on average,
17.08 (SD = 3.46), than the FMAB-q group, 15.29 (SD = 4.83), as shown
by one-tailed Wilcoxon rank-sum test, Z = 5130.5, p = .0093. Second,
the Hellinger distance between choice allocations of MAB-q and FMAB-q
groups in the first 10 trials amounts to Dy = .098 (95%CI = [.087,0.146]),
significant according to the permutation test, p = .0025. The FMAB-q group
allocated substantially more choices (out of 10) to alternatives with high
feature values (M = 3.07, SD = 2.49) with both feature values between
0.5 and 0.9, than MAB participants (M = 2.36, SD = 1.78), Z = 4897.5,
p = .044 (one-tailed Wilcoxon rank-sum test).

The purpose of the quadratic reward function conditions was to illus-
trate how strong interactions between function learning and decision mak-
ing processes can be, sometimes leading people to lock themselves into
incorrect beliefs about the world. The reward function in the MAB-q and
FMAB-q conditions is bowl-shaped, with high rewards toward the corners
of the feature space where feature values are either very high or very low.
Largest rewards were located where feature values are the lowest, and
slightly smaller for alternatives with high values for both features. The
quadratic function had steep slopes, such that small differences in feature
values towards the middle of the feature space would decrease rewards
sharply toward zero. With such a reward function, we predicted that peo-
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ple that start sampling in one part of the feature space are likely to stay
there, exploring only the local neighborhood. This could happen simply
through a random first choice in a certain part of the feature space, or
through prior beliefs about functional relationships. In either case, the re-
sult would be a tendency to remain in one corner of the feature space,
potentially believing that the function is either positive or negative linear.

We designed special item types in the FK task for the quadratic reward
function condition, with the aim of detecting whether people believe the
functional relationship is positive linear, negative linear, or whether they
realized it is a U-shaped quadratic function. For instance, in the “Min Lo-
cal” item type, there is a dominating and middle alternative that have large
feature values, while the dominated alternative is in the middle of the in-
terval. A person with negative linear beliefs would choose mostly the least
rewarding dominated alternative, while someone with a positive linear be-
lief would mostly choose exactly the opposite, the dominating alternative.
Similarly, patterns of choices should differ for other item types depending
on the beliefs. We computed distances between mean choice on each item
type and choices a person with highly certain positive, negative or quadratic
function beliefs would make, and classified people as having those beliefs
to which the distance was the smallest. Item types and classification is
explained in more detail in Appendix 3.B, while an overview of choices
in the FK task, broken down into item types and beliefs, can be found
in Figure 3.C.6B. As expected, positive linear beliefs are more widespread
(N = 69) than negative ones (N = 32). There is only one person classified
as believing the reward function is quadratic.!* Choice patterns are also
somewhat clearer for the positive belief group. Although people did not
learn the true underlying function, the fact that they exhibit these complex
choice patterns demonstrates that they nevertheless engaged in function
learning during the bandit task.

Figure 3.9 shows the allocation of choices over all 100 trials for the
FMAB-q condition, broken down according to the type of belief partici-
pants had, as indicated by a classification based on the FK task perfor-
mance. The left panel shows that participants who believe that the reward
function is positive linear (“Positive”, N = 69) allocate a large propor-
tion of choices to alternatives with high feature values. The right panel
shows an analogous result for participants with negative reward function
beliefs (“Negative”, N = 32), who choose predominantly those alterna-

14We do not show choices for the quadratic participant due to a single datum. Our
FK task can only serve as a rough measure of people’s beliefs, the number of people that
detected the quadratic relationship is probably larger.
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tives with low feature values. Some people did try out alternatives from
other corners, where other high rewarding alternatives were positioned,
but seemingly not enough to develop an accurate representation of the re-
ward function. These choice patterns are consistent with our prediction of
a strong interaction between between beliefs about the functional relation-
ship and how the alternatives that people choose are positioned in feature
space. We validated these observations with statistical tests on number of
choices allocated to upper right and lower left parts of the feature space
between Positive and Negative believers. The Positive group allocated sub-
stantially more choices (out of 100) to alternatives with high feature val-
ues (M = 44.3, SD = 37.5) with both feature values between 0.5 and 0.9,
than Negative believers (M = 18.9, SD = 18.0), Z = 1462.5, p = .0044
(one-tailed Wilcoxon rank-sum test). The pattern is opposite of course for
allocation to alternatives with feature values between 0.1 and 0.5. Nega-
tive believers allocated more choices in this region (M = 51.7, SD = 30.2),
than Positive believers (M = 24.7, SD = 29.8), Z = 1630, p = 6.1E -5
(one-tailed Wilcoxon rank-sum test).
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Figure 3.9 Allocation of choices in the feature space by participants in the FMAB
condition in Experiment 2B broken down according to the type of beliefs partic-
ipants as determined from FK task performance. Participants classified as having
positive linear function beliefs (“Positive”) spent most of the 100 trials choosing
alternatives with relatively high feature values. Participants with negative linear
function beliefs (“Negative”) spent most time in the lower left quadrant, sam-
pling alternatives with relatively low feature values. Most of the time they did not
venture to the opposite corner, hence having little opportunity to realize that the
function is actually nonlinear.

It is important to note that the locked-in phenomenon is not neces-
sarily the result of irrational behavior, but a consequence of simultaneous
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function learning and function optimization; what are thought to be less
rewarding regions of the function space are known less well because ex-
ploration of these regions is thought too costly in terms of missing out on
good rewards. If the function is steep in those parts of the function, as was
the case in our quadratic function, one might severely mis-estimate the re-
ward function, and miss out on substantial rewards. The Bayesian models
develop similar blind spots, albeit less pronounced. In Figure 3.C.6A we
illustrated performance of the G# model with two very different choice
rules — Maximum Variance (MV) and UCB. The MV chooses alternatives to
reduce the uncertainty around the estimated function as much as possible,
i.e. it tries to learn the function as best as it can. The figure shows it suc-
ceeds in this endeavor, having almost perfect scores in the FK task. Using
our belief classification scheme, all simulated participants would be classi-
fied as having quadratic beliefs. The price this rule pays for such knowledge
is a low amount of cumulative rewards collected.!®> The MV performance
provides a stark contrast to the UCB choice rule. The UCB rule tries to bal-
ance exploration and exploitation by taking into account both the mean and
variance of predicted rewards. Once it arrives in a high rewarding region
from an initial point partly determined by random choice, it stays there.
This happens because of the steep slope of the quadratic function, such
that uncertainty in other corners can not offset the high expected rewards
in the currently favored one. This is validated by analyzing its choices in
the FK task. We classified its choices into the three belief types and found it
dominantly adopts negative linear beliefs (N = 63), then positive (N = 32)
and in only few cases it learns the true nature of the function (N = 6).
Overall, it is slightly better in detecting the global maximum, but in terms
of knowledge about the world it remains as knowledgeable as humans.®

15As it happens, our quadratic function had largest rewards in the corners of the feature
space, which coincidentally is where most of the uncertainty is as well for the GP model.
By spending lot of trials in these regions MV rule actually gained large amount of rewards
as well. This is usually not the case however; in positive and mixed linear environment its
choice performance was close to random (see mean ranks of the models in Appendix 3.D).

16We can tip the balance toward positive linear beliefs by implementing a small bias
into the mean function of the GP model, with positive slopes on features. With such
modification, the GP1-UCB model dominantly ends up having positive linear beliefs.
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3.8 Experiment 3: Different Flavors of Explo-
ration and Factors Affecting Exploration

When people explore in the FMAB task, do they explore new alternatives
at random, or are they more sophisticated about it, choosing those alterna-
tives that are more informative about learning the function? The first goal
of this experiment was to examine this question in detail.

This question can be mapped to type of decision strategy — UCB explo-
ration is skewed toward the more informative alternatives, that is, those
that would lead to more information about the underlying reward func-
tion,'” in contrast to simpler rules like Softmax (SM, Luce, 1959; Sutton
& Barto, 1998) that are a probabilistic function of mean rewards only. In
the classical MAB problems most studies found support for simple decision
noise, embodied in the SM rule (e.g. Daw et al. 2006; but see Speekenbrink
and Konstantinidis 2015). These findings are disappointing, considering
that rationally, uncertainty should play a prominent role in exploration (as
in Gittins indices, Whittle, 1980). However, in the FMAB problem infor-
mation seeking is more valuable as knowledge obtained about the function
generalizes to other alternatives as well. Hence, we expected that people
are likely to be driven by uncertainty when exploring in the FMAB prob-
lems.

In examining this question, studies thus far relied mostly on modeling
evidence (e.g., Daw et al., 2006, but see R. C. Wilson et al., 2014). Our
approach was to obtain more direct behavioral evidence. One factor in the
experiment determined whether participants do or do not have knowledge
of the function before the FMAB task starts (fFMAB conditions and FMAB
conditions, respectively). In the beginning of the experiment, we intro-
duced a function learning task, inspired by the literature on multiple cue
probability learning (Brehmer, 1974; Busemeyer et al., 1997; Hammond,
1955; Speekenbrink & Shanks, 2010). The participants encountered one
alternative at a time, and had to predict its true value. In the bandit part of
the study, we added alternative-specific intercept terms to the reward func-
tions. In other words, the function learned did not completely determine
the rewards and once these participants got to the FMAB task, they still had

17In the machine learning community, an approach where agents take an active role in
deciding which samples to obtain is called “active learning” (e.g. Cohn, Atlas, & Ladner,
1994); see also a recent study by Markant, Settles, and Gureckis (2015) for an application
in category learning. However, this term is usually used in the context where an agent
would be interested in maximally informative alternatives, while in reinforcement learning
the problem differs as an agent is also interested in obtaining high rewards.
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an incentive to explore, but importantly, not in order to learn the function,
but to learn the alternative-specific intercepts instead.'® In the FMAB task
they would largely know the function already - their exploration should
be constrained to a high rewarding region and be driven mostly by mean
estimated rewards and decision noise. In contrast, exploration of the par-
ticipants that complete the FMAB task without going through the function
learning task should be more guided by uncertainty about the function. As
a result, FMAB participants will in general explore more — try more alter-
natives, and more specifically allocate more choices to alternatives from
lower rewarding regions in order to learn the function better.

Our second goal was to examine some of the factors affecting how much
people explore in the FMAB problem, and consequently how well they learn
the function. If we would like to improve people’s choice performance, it
would be beneficial to understand how they react to factors that theoreti-
cally should affect the level of exploration. To this end, we examined two
questions: how does the amount of uncertainty about the function and
horizon length influence behavior. In the first, the larger the experienced
uncertainty the more exploration there should be. For example, nonlinear
functions are more difficult and require more samples to learn (Brehmer,
1974). People should be more uncertain about the function when fac-
ing such relatively difficult situations. Hence, another factor we varied
in the experiment was the type of function, participants faced using either
a positive linear or a quadratic reward function (FMAB-pl, fFMAB-pl, and
FMAB-q, fFMAB-q conditions). Our prediction here was that the partici-
pants learning about the quadratic function would still be largely guided
by uncertainty, even after the function learning task. Thus, the difference
in exploration patterns in the beginning trials of the bandit task between
the FMAB-q and fFMAB-q condition will be much smaller than between the
FMAB-pl and fFMAB-pl.

The other factor we examined is horizon length. The UCB choice rule
is boundedly rational in the sense that it does not use information about
the horizon, that is, the number of trials left till the end of the bandit task.
A Bayes optimal policy, such as based on Gittins indices in the Bernoulli
MAB problem (Whittle, 1980), would dynamically decrease the tendency
to explore and exploit more as the end of the game draws near. In most

1850 far we have assumed that the function completely determines the rewards, even if
probabilistically; the experienced uncertainty is then observational noise. In Experiment
3 part of the error term is also due to unobserved systematic factors (i.e. the intercepts).
In real-life problems decision-makers tend to face both forms of uncertainty. Note that if
all the uncertainty was due to the random intercepts the problem would almost reduce to
an ordered search problem (Analytis, Kothiyal, & Katsikopoulos, 2014; Weitzman, 1979).

103



cases, computing optimal policies is an intractable problem, and in practice
heuristic rules like UCB are commonly used instead (but see Guez et al.,
2012, 2014, for approximations that do take the horizon into account).
In all our experiments participants could see the number of trials left in
the bandit task and could use that information in balancing exploration
and exploitation. A recent study by R. C. Wilson et al. (2014) showed
that humans are sensitive to information about the horizon and change
their exploration in the direction prescribed by the optimal models. This
was done in the classic MAB task and we were interested whether people
exhibit such a close to optimal reaction to horizon information in the more
complex FMAB setting. This made the final factor we manipulated in the
experiment, either a 30-trial (fFMAB-pls and fFMAB-gs) or 100-trial FMAB
task (fFMAB-pl and fFMAB-q). Our main prediction was that in comparison
to the first 30 trials of the 100-trial-long horizon conditions, participants in
the 30-trial-long conditions will try out fewer alternatives and concentrate
their search more in the regions they believe are highly rewarding.

3.8.1 Method
Participants and experimental design

In total, 431 participants (207 females), in the age range from 18 to 74
(M =34.9, SD = 11.2), took part in Experiment 3 (see Table 3.1 for more
details). Participants were recruited through AMT and data quality was
checked following the procedures described in Appendix 3.A. Participants
received a fixed minimal payment plus a performance dependent bonus.

In this experiment, participants in all conditions completed the FMAB
task. The main factor that we varied was whether participants first com-
pleted a function learning (FL) task (FL task vs. no FL task, identified
by prefix “f” or no prefix in the condition name, respectively). We var-
ied the type of reward function determining the rewards (positive linear
vs. quadratic, identified by suffix “pl” and “q” in the condition name, re-
spectively), and we partially varied the number of trials in the FMAB task
(30 trials vs. 100 trials, implemented only for conditions with FL task,
identified by additional suffix “s” or no suffix in the condition name, re-
spectively), yielding the total of six between-subject conditions: FMAB-pl,
fFMAB-pl, fFMAB-pls, FMAB-q, fFMAB-q, fFMAB-gs.
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Stimuli

In four of the conditions participants first completed the FL task where they
could learn the function more directly, by predicting the reward of a sin-
gle alternative instead of choosing between several of them. Participants
completed 100 trials where in each trial we presented them with an alter-
native, looking exactly the same as in the bandit tasks (see Figure 3.10).
We asked them to make a prediction about the amount of reward they
would get from the presented item and after they made a prediction we
gave them the information about the actual reward. The rewards were
governed by the functions described in previous experiment, with a few
small changes. In conditions with the positive linear function, fFMAB-pl
and fFMAB-pls, the parameters of the function were the same as in Ex-
periment 1B, while in conditions with the quadratic function, fFMAB-q and
fFMAB-gs, the parameters of the function were the same as in the quadratic
conditions in Experiment 2. However, in this experiment we added an
alternative-specific intercept terms to both functions drawn from a Normal
distribution, pr ~ N(0,9). The variance of the usual error term was re-
duced to 4: ¢, ~ N(0,4), to compensate for the additional noise due to
the random intercept term. The intercept term was included to provide an
incentive for exploration in the contextual bandit task, even if they know
the observable part of the function perfectly. In each trial participants en-
countered a new alternative, with feature values, intercept and error values
drawn randomly from their respective distributions. Since they saw the al-
ternatives only once, they could not know how much of the experienced
error could be attributed to the intercept. However, once they would come
to bandit task and sample the same alternative multiple times they could
quickly realize that part of the variance is systematic.

Stimuli in the FMAB tasks were constructed in the same manner as
in previous experiments, with the difference that the rewards were deter-
mined with functions described above in the FL task, with an additional
intercept term. Note that in the bandit task alternatives stay the same in
every trial, so that the alternative-specific intercept term was drawn once
at the beginning of the task and remained the same throughout.

We constructed items in the functional knowledge task items in the
same way as in previous experiments, but using the functions specific to
this experiment. Alternative-specific intercepts were left out when gener-
ating stimuli for the FK task. More details about the design of the items is
available in Appendix 3.B.
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Total number of rounds: 100 Running total: -7.7

Current round: 1

Estimate:

7.3

Enter your estimate of the object value and then CLICK on a square to submit your estimate.
You will receive information about its true value after that.
Press C key to continue to the next round.

Figure 3.10 In the function learning (FL) task participants predicted the amount
of reward a single item would yield and got information about it after they made
a prediction. We incentivized them to make as good predictions as possible, and
consequently learn the function, by making their payoff dependent on their accu-
racy.

Procedure

The procedure in this experiment was slightly different for conditions that
had the FL task before the FMAB and FK tasks. We instructed participants
in these conditions, after they accepted the consent form and completed
the sociodemographic questionnaire, that they would be presented with
a single object and their task was to predict the value of the object. We
explained that their payoff in the experiment would depend on their ac-
curacy in this task: ten experimental points minus the absolute difference
between their prediction and actual value. We illustrated the formula in
several examples. The goal of the task was to win as many experimental
points as possible, which would later be converted to money according to
the advertised exchange rate. We told them that they would complete two
other tasks afterwards, without specifying the details. Instructions for other
tasks were kept the same as in previous experiments. In this experiment,
we additionally collected information about participants’ predicted values
and time they took to make a prediction in each trial.

3.8.2 Results and Discussion

As in the previous experiments, participants’ choice performance is bet-
ter than chance (rank of 10.5) from the outset and improves substantially
over time (Figure 3.C.7). In this experiment we were interested in dif-
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ferences in choice allocation in the first 10 trials between conditions with
and without function learning pre-training. Our prediction was that peo-
ple will use uncertainty when learning the function in the FMAB task and
we should observe a difference in exploration patterns between people
who know the function well and those who only began learning it. Fig-
ure 3.11A shows that the difference between conditions with the positive
linear reward function is sizable. Participants that already learned about
the function through the FL task allocate more choices to alternatives with
feature values associated with high rewards (upper right region).!® Hence,
people in the FMAB-pl condition allocate more early choices to alterna-
tives with low feature values in an attempt to learn the function better.
We validated the observed differences with a permutation-based statistical
test, which showed a significant difference between the two distributions,
Dy = .185, 95%CI = [.164,.232], p < 1E — 07. Moreover, a one-tailed
Wilcoxon rank-sum test shows that the fEMAB-pl group allocated on aver-
age 6.07 (SD = 3.24) choices (out of 10) to alternatives with both feature
values between 0.5 and 0.9, significantly more than FMAB-pl group (4.34,
SD = 2.54), Z = 4278, p = .0001. Finally, FMAB-pl group should have
tried more alternatives altogether than the fFMAB-pl group. This is also
the case: FMAB-pl group tried on average 14.06 (SD = 5.00) alternatives
(out of 20), significantly more than fFMAB-pl group (9.97, SD = 5.87),
Z = 4448, p = 9.3E - 06.

Interestingly, in the fFMAB-pl condition there is a small spike in choos-
ing the alternatives with lowest feature values (lower left corner). An op-
timal test if one entertains a hypothesis that the function is linear is to try
alternatives from all four corners. Potentially, participants wanted to verify
that it is still the same function as in the FL task, despite being instructed
so.

A quadratic function is more difficult to learn than a positive linear
function (Brehmer, 1974; Busemeyer et al., 1997). As a consequence, par-
ticipants in the fFMAB-q condition should have larger uncertainty about
the function after the FL task than those in the fFMAB-pl condition. The
fFMAB-q group had more difficulties learning the function in the FL task,
their mean MAD between predictions and observed rewards in the last
20 trials was 6.41 (SD = 1.54), significantly larger than for the fFMAB-

19fFMAB-pl participants perform reasonably well in the FL task. Most of the learning
occurs in the first 20 trials where mean absolute deviation between their predictions and
observed values was 6.38 (SD = 1.80) and this decreases further to 5.54 (SD = 1.43) in
the last 20 trials (Z = 1847, p = .0002, one-tailed Wilcoxon signed-rank test). The mean
correlation also increased from 0.44 to 0.54. Given that the total standard deviation of
the error term in the task was equal to 5, this is a good performance.
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Figure 3.11 Differences in the exploration patterns in Experiment 3 between par-
ticipants that completed a function learning task before the FMAB task (fFMAB
conditions) and those that went directly to the FMAB task (FMAB conditions). (A)
Proportion of all choices in the first 10 trials allocated by participants in FMAB-pl
and fFMAB-pl conditions to alternatives with feature values falling into one of the
four bins indicated on x-axis for Feature 1 and y-axis for Feature 2. Participants
with function learning pretraining (fFMAB-pl) allocate many more choices to the
alternatives in the high rewarding region (upper right corner). Their exploration
should be mostly guided by decision noise, while FMAB-pl participants should be
still driven with uncertainty. The difference is evidence that uncertainty plays an
important role in function learning. (B) Analogous to the previous panel, but now
showing difference in choice allocations between participants in conditions with
quadratic reward function (FMAB-q and fFMAB-q). The difference is smaller now,
showing evidence for uncertainty about function affecting people’s tendency to
explore.

pl group, Z = 3276, p = .0003 (two-tailed Wilcoxon rank-sum test). Given
the equal horizon in the FMAB task, participants facing the quadratic re-
ward function should therefore be more exploratory. Hence, the differ-
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ence in exploration in the first 10 trials of the FMAB task between FMAB-q
and fFMAB-q should be smaller than the difference between FMAB-pl and
fFMAB-pl (see Figure 3.11B). Although there is a difference in Hellinger
distances between distributions of choices, .151 and .185, respectively, the
confidence interval of the difference, .034, is quite broad, CI = [-.016, .08]
(two-tailed 95-percentile bootstrap), indicating that the observed differ-
ence is not significant. This goes to some extent against the results from our
previous analysis, that people would use uncertainty in their exploration.
However, this result also depends on few other assumptions — differences
in how well the functions are learned, as well as exact functional forms. A
clearer test would involve using the same function but with smaller number
of trials in the FL task, and this investigation is left for future studies.

Even though UCB choice rule is sophisticated - it takes into account the
uncertainty about the function as well as its mean, it does not take into ac-
count the information about the horizon. Do we have evidence that people
behave more optimally than what our suboptimal UCB-based framework
would suggest? In the final analysis we examine the differences in explo-
ration patterns between pretraining conditions where participants contin-
ued to our standard 100-trial FMAB task and conditions where they com-
pleted a shorter 30-trial long FMAB task. Keep in mind that participants
always had the information about the remaining number of trials available
on the screen.

Figure 3.12 illustrates choice allocations in feature space for the rele-
vant conditions.?? Shorter horizons in fEMAB-pls and fFMAB-gs conditions
should have led to more exploitation of functional knowledge, but the fig-
ure shows this is not the case. In the conditions with a positive linear
reward function (Figure 3.12A), the distance between choice allocations is
significant according to our permutation test, Dy = .072, CI = [.064,.106],
p = .0008. However, the difference goes in the opposite direction from
our prediction: the group with the shorter horizon (fFMAB-pls) is more
exploratory than the group with the longer horizon. There was also no sig-
nificant difference in choice allocations to high rewarding alternatives with
feature values from 0.5 to 0.9, Z = 1872, p = 0.668 (one-tailed Wilcoxon
rank-sum test). For the quadratic reward function conditions we find that
the difference is not significant, Dy = .101, CI = [.091,.163], p = .0537.
Moreover, differences in exploration tendency should be reflected in the
number of alternatives tried in the first 30 trials. Consistent with our re-

20In this analysis we look at all 30 trials instead of first 10 trials as elsewhere in the
article. Since our prediction was that participants in the short horizon conditions will
start exploiting much more quickly than in the long horizon conditions, it is reasonable to
examine the final trials of the short conditions as well.
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sults above, in the linear conditions the number of alternatives tried in
the longer horizon (8.61, SD = 5.19) is not significantly greater than that
in the condition with the shorter horizon (9.87, SD = 4.55), Z = 1595,
p = 0.964 (one-tailed Wilcoxon rank-sum test). We get the same result
for the quadratic conditions: participants do not try significantly more al-
ternatives in the longer horizon (10.68, SD = 5.80) than in the shorter
horizon (11.00, SD = 5.70), Z = 1847, p = 0.664 (one-tailed Wilcoxon
rank-sum test). If anything, in shorter horizons participants try slightly
more alternatives on average. Finally, we can examine the differences in
mean choice ranks. In short horizons there might not be enough time to
explore the intercepts and relying too much on functional knowledge from
the FL task would lead to some loss in choice performance. We can see
from Figure 3.C.7 that the choice performance of the fFMAB-pls group mir-
rors that of the fFMAB-pl group, with a mean rank of 5.41 (SD = 2.85)
and 4.97 (SD = 3.07) in the first 30 trials, respectively. The difference is
not significant, Z = 1753, p = 0.309 (two-tailed Wilcoxon rank-sum test).
In the quadratic conditions, the fFMAB-gs group performed worse than the
fFMAB-q in the last two blocks, but overall same result holds. Although
mean rank achieved by the fFMAB-gs group was slightly worse (M = 6.74,
SD = 3.14), than that of the fFMAB-q group (M = 5.86, SD = 2.85), the
difference is not significant, Z = 1626, p = 0.129 (two-tailed Wilcoxon
rank-sum test). In summary, even though some studies find evidence that
people appropriately change their exploration strategy in response to hori-
zon in classical MAB tasks (R. C. Wilson et al., 2014), in our FMAB tasks
we find very little evidence that people take into account such informa-
tion. This suggests that heuristic choice strategies like UCB provide a good
enough description of participants’ behavior.

3.9 General Discussion

Human learning of functional relations and learning to choose rewarding
actions have been studied in isolation thus far. We argued that in many
situations these two learning processes interact and that it is thus impor-
tant to study how people simultaneously learn reward functions and make
decisions. This natural extension of previous research on reinforcement
learning and function learning is relevant for both theoretical and practical
reasons. Theoretically, time and tried reinforcement learning models, such
as Temporal Difference learning models (Sutton, 1988; Sutton & Barto,
1998), cannot explain how humans and animals learn in situations charac-
terized by realistic high-dimensional stimuli. And practically, it is difficult
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Figure 3.12 Differences in exploration patterns in Experiment 3 between partic-
ipants that completed a function learning task (fFMAB conditions) and either a
short horizon FMAB task (30 trials) or a long horizon FMAB task (100 trials). (A)
Proportion of all choices allocated by participants in fFMAB-pls (short horizon)
and fFMAB-pl (long horizon) conditions to alternatives with feature values falling
into one of the four bins indicated on x-axis for Feature 1 and y-axis for Feature 2.
Participants that did a short horizon version explore the choice set in first 30 trials
in a similar way as a long horizon group, suggesting that information about the
horizon did not affect their choice strategy. (B) Analogous to the previous panel,
but now showing difference in choice allocations between participants in condi-
tions with quadratic reward function (fFMAB-gs and fFMAB-q). As for the positive
linear function, the exploration patterns of both groups are very similar.

to generalize findings from these two separate strands of literature to real-
life knowledge of concepts and decision making.

We formalized the problem of simultaneous learning of reward func-
tions and decision making as a contextual multi-armed bandit problem
(Auer, 2002). In particular, we focused on a version with alternative-
specific features only — the feature-based multi-armed bandit task. We
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proposed Bayesian optimization (Shahriari et al., 2016) as a framework
for understanding the interaction between function learning and decision
making processes. We showed that our FMAB task can be solved in two
ways — by learning the function, or ignoring the features and learning mean
rewards instead. The key prediction is that, in comparison to mean track-
ers, function learners should benefit substantially in the early stages of the
task, as they can generalize their initial knowledge to other alternatives
in the choice set and avoid trying poor alternatives. The goal of maxi-
mizing rewards will lead to biased sampling of relatively high rewarding
alternatives, which can result in biased functional knowledge. Finally, we
predicted that uncertainty will play an important role in function learners’
exploration of the alternatives.

In a series of experiments we found broad support for a number of novel
predictions. We find evidence that: (1) people’s exploration is guided by
features and the functions they learn, (2) there are strong inter-individual
differences, some people take the function learning approach, others ignore
the features and learn only mean rewards, (3) paying attention to context
can hurt if prior expectations about the reward functions do not correspond
to the actual functions encountered in the environment, which can result in
a locked-in effect and maintenance of incorrect beliefs, (4) people explore
alternatives specifically to learn the function better, suggesting that they
wisely use uncertainty about the function when deciding how to explore the
available alternatives, and (5) time horizon does not affect people’s choices,
suggesting that heuristic decision strategies that incorporate uncertainty in
a myopic way might describe the behavior sufficiently well.

3.9.1 Implications

We take the opportunity to illustrate the fertility of the research program
that we have proposed in this work. We highlight several exciting lines of
future research, as well as implications for several psychological phenom-
ena.

An obvious line of inquiry is examining transfer of knowledge within a
function. The advantage of decision strategies powered by function learn-
ing is their ability to generalize. Hence, they shine when novel alternatives
enter the choice set (e.g., a new restaurant opens in the neighborhood).
Novel alternatives here are of the same kind, determined by the same func-
tion (hence within). Generalization per se is not of primary interest here,
we know already that people are able to do that from function learning
literature (Busemeyer et al., 1997; DeLosh et al., 1997; Kalish et al., 2004;
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McDaniel & Busemeyer, 2005; Speekenbrink & Shanks, 2010). Examining
people’s behavior toward novel alternatives would be a test of the frame-
work and that people indeed do learn the functions while choosing. In
some sense our FK task was exactly that. These items were designed with a
different goal in mind, but more importantly, situations where novel alter-
natives enter the bandit task instead would be more interesting for model
evaluation (for related research using the standard MAB paradigm, see Le
Mens, Kareev, & Avrahami, 2016). Features of novel items can be designed
so that the predicted probability of choosing them differs starkly between
function learners and mean trackers. A mean tracker which also tracks the
general mean of a set of alternatives, as used by Gershman and Niv (2015)
to explain neophilia and neophobia, would also give differing predictions.
The Bayesian optimization framework also predicts larger uncertainty in
the feature space where rewards are relatively low. Hence, another test
of the framework would involve designing novel alternatives dynamically
based on people’s experience in the bandit task and compare predictions
of such alternatives with those coming from part of the feature space with
high rewards.

A more general question is how people transfer their knowledge be-
tween one context (e.g., Italian restaurants) and another (e.g., Japanese
restaurants). That is, how do people generalize from one function to an-
other? Benefits of generalization can extend beyond extrapolating within
the same decision situation. Rather than learning the function from scratch,
an agent facing a new decision situation could benefit from transferring her
experience with similar situations, effectively generalizing from one func-
tion to another. Such more general transfer of learning cannot be captured
by the current framework and this is an exciting venue for further theoret-
ical work. One way to formalize this idea is to implement an analogical
similarity measure in the space of functions (see, for example, Gentner,
1983; Gentner & Markman, 1997). Psychologically, the implication of this
proposition is that there is no true novelty — there is no truly new decision
situation, we can always reuse our experience in similar situations.

Following this it is easy to see that a lot can be said about preference
learning. This research proposes that the basic unit of preferences are func-
tions, i.e. knowledge of the functions drive our preferences. How well the
reward functions are learned depends on one’s collection of experiences.
These experiences are biased by the reward landscapes, priors, and the
initial alternatives tried. Such factors could easily result in heterogeneous
preferences in a population of decision makers. Consider our quadratic
function from Experiment 2B. The reward function of certain products
could have such a nonlinear form. As shown in the experiment, due to pri-
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ors or random samples at the beginning, one might end up knowing only
one part of the space and having very poor estimates for the other part
(see, for related explanations based on standard MAB paradigm, Denrell,
2005; Denrell & Le Mens, 2007; Fiedler & Juslin, 2006; Le Mens & Denrell,
2011). This could account for polarization of preferences, at least partly —
for example, one group of consumers favoring soft cheeses, and the other
hard cheeses. Another prediction of the framework would be that breadth
of choice has a beneficial influence — the more choice there is the larger the
chances that our sample of experiences is larger and the reward function
estimated better. Large product categories would then help people navi-
gate to the best alternatives, potentially leading to more unequal market
shares of the products. Our framework could give a novel perspective on
the currently mixed evidence for choice-overload effects (see for a recent
meta-analysis Scheibehenne, Greifeneder, & Todd, 2010). Our dynamic,
function driven take on preferences would be somewhat controversial. For
example, it goes against a firm tenet in economics, whereby preferences are
fixed (Mas-Colell, Whinston, & Green, 1995). Since choices rely on an in-
ference process, where people infer rewards from features and context, our
proposition also confronts some findings that maintain that “preferences
need no inferences” (Zajonc, 1980).

In optimal solutions to standard MAB problems, such as Gittins indices
(Whittle, 1980), uncertainty plays a key role in exploration of the choice
set and identifying the optimal choice as fast possible. Disappointingly, re-
search thus far has found little support for it (e.g., Daw et al. 2006, but see
Speekenbrink and Konstantinidis 2015). Even though in contextual bandit
tasks the role of uncertainty in exploration is far greater due to the gen-
eralization effect, this does not necessarily mean that exploration should
be completely driven by uncertainty. There are also clear-cut benefits in
exploring at random. Such exploration is guaranteed to lead to unbiased
samples of experience, as it decouples the choice process from knowledge
about the world. Further, randomly acquired samples stand a better chance
of detecting changes in the underlying reward functions and, as a result,
they reduce the chance of a locked-in effect. R. C. Wilson et al. (2014)
recently provided convincing evidence that people use both types of explo-
ration, depending on the task demands. However, there is a lot of scope for
further research in this direction, especially in contextual bandit problems.

In line with previous work on learning and decision making Stoji¢, Ols-
son, and Analytis (2016), we have found strong inter-individual differences
in how people tackle the FMAB task — they seem to either take a function
learning or mean tracking approach. Clearly, we need a better understand-
ing of the factors behind these choices. Such a research line could help us
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to improve people’s choices. For example, if the decision problem involves
a lot of generalization, people equipped with function knowledge would be
able to perform well even when confronted with new decision situations.
Finding ways to incite people to engage more into function learning might
have large practical impact. At the moment it is unclear whether these two
approaches are really independent or people use both of them jointly. In the
latter, the tendency to use function learning could be potentially formalized
in a model and captured with a parameter, similar to the tendency to use
model-based vs. model-free strategies as proposed by Daw, Gershman, Sey-
mour, Dayan, and Dolan (2011). This would be an important direction of
further theoretical development. There is also scope for investigating how
to improve people’s function learning, even if they are already using such
an approach. For example, by using smarter decision strategies that take
the uncertainty into account or information about the horizon. We started
this line of research in Experiment 3 by manipulating the horizon, while
examining other factors is left for future studies.

3.9.2 Limitations

In the present research we focused on the FMAB problem, a constrained
version of the general CMAB problem. We could easily extend our paradigm
to include shared context cues, for example by varying the color of the but-
tons from trial to trial (e.g., how hungry you are or what is the weather
like). Would people be able to cope with learning the function in such
complex CMAB scenarios? Or would they give up and fall back to a mean
tracking strategy? Schulz, Konstantinidis, and Speekenbrink (2016) tack-
led the SMAB problem, a version of the CMAB with shared context only.
Using similar G models, they found evidence that people also learn the
reward functions, even several of them simultaneously. There is hope then
that people would be able to cope with tasks including both alternative-
specific features and shared context. Such a task with greater external
validity was unfortunately beyond our scope and we leave it for future re-
search.

Even though the FMAB task (and CMAB more generally) captures re-
alistic decision situations fairly well, it is missing some important charac-
teristics of more general RL problems. In our FMAB task, agents receive
feedback on their decisions immediately. This is a relevant simplification
as it precludes long-term consequences of actions, that is, the credit assign-
ment problem is eliminated (Barto, Sutton, & Anderson, 1983; Sutton &
Barto, 1998). Delayed feedback is an important aspect of realistic decision
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situations; consider choosing a career path or a major at university — many
intermittent choices will be made before the outcome is known. This is a

difficult problem, especially when combined with function learning, requir-
ing further theoretical work. There are several directions which could be
pursued. One is to use more appropriate decision strategies, such as the
recently developed BAMCP (Guez et al., 2012, 2014), that can deal with
delayed feedback. Another would be to draw on recent work on adapt-
ing Kalman filters to temporal difference learning (Geist & Pietquin, 2010;
Gershman, 2015).2!

So far the empirical results are inconclusive on whether the GP frame-
work should be understood only as a rational benchmark, poised at Marr’s
computational level (Marr, 1982), or whether it can be seen as an algo-
rithmic process model of how people tackle the task (Lucas et al., 2015;
Schulz, Tenenbaum, et al., 2016). One could postulate delta-learning on
the feature level (Gluck & Bower, 1988; Niv et al., 2015) for learning linear
functions, or an exemplar-based model for dealing with nonlinear func-
tions (Nosofsky, 1984). An important drawback of these models is that
they give only point estimates, not the posterior distributions needed for
uncertainty-based exploration. Incorporating uncertainty in such models is
an important venue for future theoretical development.

In our experiments so far we have assumed that the alternatives are
characterized by two informative features. In real life problems, the poten-
tial number of useful features is much larger and people have to discover
which are the most useful ones (Klayman, 1988; Niv et al., 2015, e.g.). A
few good cues could already improve the performance of decision makers
by a large margin, as opposed to random exploration. In fact, in some cases
simple models relying on one or a few cues could even outperform more
complex models integrating all of the available information (Davis-Stober,
2011; Hogarth & Karelaia, 2005a; Todd & Gigerenzer, 2000). There is
sufficient evidence that people learn to integrate the informative features
and ignore those that do not lead to improvements in choice or estimation
(Rieskamp, 2008). Our experiments have not dealt yet with problems of
cue selection, but this can be done readily in the future. GP models can
nicely deal with feature selection issues using automatic relevance deter-
mination (ARD) techniques.

21In the Artificial Intelligence community this more general version of the problem has
been tackled with some success. Researchers at Google Deepmind developed an algo-
rithm combining deep neural networks (LeCun, Bengio, & Hinton, 2015) and Q-learning
(C. J. C. H. Watkins & Dayan, 1992) that achieves human-level performance on Atari video
games, receiving only raw video feed and game scores (Mnih et al., 2015).
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3.9.3 Concluding Remarks

Most real life problems require a combination of our cognitive capacities to
be dealt with appropriately. Yet, experimental paradigms and theories often
ignore interactions between cognitive processes and focus on single pro-
cesses instead. Function learning and reinforcement learning are a prime
example: although in real life they are used in tandem, they have been
studied independently so far and the rich space of interactions between
them remains largely unexplored. In this paper we advanced a new exper-
imental paradigm that allows us to study their interactions and developed
a new conceptual framework to understand how they operate. In the fu-
ture, our methodology will allow us to tackle a number of psychological
problems, such as preference learning and the transfer of learning between
situations, that have not yet been addressed adequately.
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Appendix

3.A Ensuring data quality

Most of the participants in our studies were recruited through Amazon’s
Mechanical Turk (AMT, http:\mturk.com). Many classical tasks from ex-
perimental psychology were successfully replicated with participants drawn
from the AMT pool (Crump, McDonnell, & Gureckis, 2013), who conducted
the experiments on their browsers. Using AMT comes with many advan-
tages — from low cost and collection speed to more heterogeneous partic-
ipants that are more representative of the population at large (Paolacci &
Chandler, 2014; Paolacci, Chandler, & Ipeirotis, 2010; Stewart et al., 2015).
The downside is that motivation of such unsupervised participants is lower
and they seem to be less attentive. However, this issue is alleviated by in-
cluding “catch trials” that can be used to identify less attentive subjects and
exclude them from the analysis (Paolacci et al., 2010). All the procedures
for ensuring the data quality described below were used for the study with
lab participants as well (Experiment 1B). Overall, 79 out of 1068 partici-
pants (or 7.4%) was excluded.

Our “catch trials” consisted of four simple attention question that par-
ticipants had to answer after they finished with reading the instructions.
The questions checked whether they can recall basic information from the
instructions. Questions in all studies were: “What is the shape of the op-
tion buttons?”, “From how many options you can choose from?”, “What is
the fixed payment in US dollars you will receive regardless of your perfor-
mance in the experiment?” and “How many experimental points (EP) will
be exchanged for a dollar?”. Participants were allowed to continue regard-
less of their answers. We analyzed how the number of correctly answered
attention questions relates to performance in the experiment on the data
from the pilot study reported in Stoji¢ et al. (2015). Performance in FMAB
and MAB task improves as a function of correctly answered questions, go-
ing from mean rank of 9.48 for those with zero correct answers to 7.87
for the group that answered all four questions correctly. The same pattern
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holds for test choices. This indicates that questions indeed capture partici-
pants motivation or attention. Overall, performance is relatively similar for
participants that answered two or more questions correctly, while it is sig-
nificantly worse for those that answered fewer questions correctly. For this
reason we decided to exclude all the participants with zero or one attention
question correctly answered from the analysis in studies reported here. We
also compared the distributions of attention question answers between the
AMT participants in Experiment 1A and lab participants in Experiment 1B.
Although AMT participants do answer fewer questions correctly than lab
ones (Wilcoxon rank sum test, Z = 5408, p < .0001, M = 3.02 (SD = 0.93)
and M = 3.51 (SD = 0.66), respectively), in absolute terms mean accuracy
is still high, which gives us confidence in the data acquired over AMT.

In addition to these attention questions, we used AMT’s Qualification
system to screen out members that have a poor history of providing good
quality work (Chandler, Mueller, & Paolacci, 2014). Participants were re-
quired to be based in the United States and have an approval rate of 95%
or above. This means that in at least 95% of cases they were paid for the
work they had done—a rough measure of the quality of the work done on
AMT.

Another criterion we used for ensuring the quality was to exclude the
participants that chose the same alternative throughout the CMAB or MAB
task. Given the large number of alternatives in our tasks, this is unlikely
to be a decision strategy, and more likely to be indication of either lack
of motivation or lack of understanding the task. Such participants usually
had extremely low experiment duration as well. There were in total 10
such participants across all experiments.

3.B Details on stimuli in the functional knowl-
edge task

3.B.1 Items in the linear environments

In Experiment 1A and 1B we used positive linear function for constructing
stimuli in the bandit task. In the FK task participants faced 70 trials where
in each trial they had to choose between three alternatives they have not
seen before. Hence, to perform well in the task they should have some
knowledge about the functional relationship between the feature values
and rewards. Choice triplets always consisted of a dominating, a middle,
and a dominated alternative. Feature values were drawn randomly from
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specifically designed uniform distribution intervals. Since participants were
not receiving feedback in this task, the error term contribution was not
added to the reward calculation. Finally, only participants in the contextual
conditions completed this task.

There were five types of items in Experiment 1A and 1B. Two of them
were easy and difficult interpolation triplets (15 easy and 25 difficult items),
where feature values were never drawn from outside of U(0.1, 0.9) interval,
which participants experienced in the bandit task. Two other types were
easy and difficult extrapolation triplets (10 easy and 10 difficult items),
where feature values were exclusively drawn from regions that participants
did not see in the bandit task, U(0,0.1) and U(0.9,1). Denoting dominat-
ing, middle and dominated alternative as x, y and z, respectively, sampling
procedure was the following. We always drew first the feature values for
the dominating alternative. For easy interpolation case, x; ~ U(0.4,0.8)
and xp ~ U(0.4,0.8) and for difficult interpolation case, x; ~ U(0.4,0.8)
and x2 ~ U(0.3,0.9). Once these feature values were known, exact interval
for sampling feature values of the middle alternative was set. For example,
for easy interpolation case y; ~ U(0.3,x7 —0.05) and y3 ~ U(0.3,x3 — 0.05).
Distinction between easy and difficult items was that lower boundary of
the interval was also dependent on feature values of x and was made
smaller, effectively making feature values of the middle alternative more
similar to the dominating alternative, and their rewards being very close
to each other. Construction of extrapolation trials followed the same logic,
while drawing only from U(0,0.1) and U(0.9, 1). Special fifth type of items,
weight comparison type (10 items), was intended to detect whether par-
ticipants learned that one feature had a larger weight than the other. Here
a trial consisted of one alternative that had a large value on a feature
with higher weight and a small value on the other feature, one alterna-
tive with the opposite pattern, and one alternative that was clearly dom-
inated. Hence, feature values for dominating alternative were sampled
from U(0.7,0.8) and U(0.2,0.3), for the middle one from U(0.2,0.3) and
U(0.7,0.8) and for dominated alternative from U(0.2,0.3) and U(0.2,0.3)

Task items for mixed linear FMAB condition in Experiment 2 are very
similar to those in Experiment 1A and 1B. Analysis of the FK task results
from previous experiments showed that there is no difference in perfor-
mance between interpolation and extrapolation type pf items. For this rea-
son we did not distinguish between interpolation and extrapolation any-
more and sampled feature values from the whole interval U(0, 1). Hence,
in this condition FK task consisted of three item types, 20 easy, 30 difficult
and 20 weight comparison items. The sampling procedure was analogous
to the one described for previous experiments. For easy and difficult items
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we first sample feature values for dominating alternatives (x; ~ U(0.5,1)
and x3 ~ U(0,0.5)), and then the intervals for the middle alternative are
modified depending on the sampled value for the dominating alternative,
and similarly for the dominated alternative, depending on the feature val-
ues of the middle alternative. Same as before, for difficult items distances
between the intervals from which we sampled feature values were very
small. For weight comparison items, feature values for dominating alter-
native were sampled from U(0.7,0.8) and U(0.25,0.35), for the middle
one from U(0.7,0.8) and U(0.7,0.8) and for dominated alternative from
U(0.25,0.35) and U(0.4,0.5)

In three experimental conditions in Experiment 3 (FMAB-pl, fFMAB-pl
and fFMAB-pls) we used the positive linear function from Experiment 1B.
However, in the design of the FK task items, we discarded the distinction
between interpolation and extrapolation and we sampled feature values
from the whole interval U(0, 1).

3.B.2 Items in the nonlinear environments

In Experiment 2 and 3 we had experimental conditions where rewards
were determined by U-shaped quadratic function (FMAB-q, MAB-q, FMAB-
q, fFMAB-q, fFMAB-gs). One of the hypotheses in these conditions was that
participants might not discover the true nature of the function — they might
not sample observations from certain part of the feature space and end up
believing that the function is either positive or negative linear. Hence, we
designed items that would allow us to detect whether participants believe
that the function is positive linear, negative linear or quadratic.

There were six item types in total. First two types, “Max” and “Max
Decoy” were aimed at detecting whether participants know where the true
global maximum is (15 items each). In “Max” the dominating alternative
was a global maximum (very low feature values), while the middle was
a local maximum (very large feature values) and the dominated alterna-
tive was closer to the dominating one in terms of feature values. Partici-
pants with negative linear or nonlinear knowledge would mostly choose the
highest ranking alternative, while those with positive linear beliefs would
mostly choose the second ranking alternative. In “Max Decoy” the domi-
nated alternative was closer to the middle alternative (local maximum) in
feature values, potentially making it more attractive. Thus, this triplet can
be considered to be a “decoy” test.

With next two types, “Min Local” and “Min Global”, we aimed to detect
whether participants realized the minimum is in the middle of the interval
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and the relationship is nonlinear (10 items each). In “Min Local” domi-
nating and middle alternative have large feature values, while dominated
alternative is in the middle of the interval. “Min Global” type is similar, but
now dominating and middle alternative have small feature values, closer
to global maximum. If people realized it is a quadratic relationship, they
would rightly choose dominating alternatives with small or large feature
values in “Min Global” and “Min Local” and avoid ones with features from
the middle of the interval. We can detect positive or negative linear believ-
ers as well. With negative linear beliefs, participant would choose mostly
the dominated alternative in “Min Local” and dominating in “Min Global”,
while with positive linear beliefs pattern of choices would be exactly the
opposite.

Final two types, “Slope Global” and “Slope Local”, had similar purposes
as Min types (10 items each). In “Slope Global” dominating alternative had
small feature values (global maximum), middle had large values, while
dominated alternative was sampled from the middle of the interval. In
“Slope Local” feature values of dominating and middle alternative were
switched. Participant with quadratic function in mind would tend to choose
dominating arms in both “Slope Global” and “Slope Local”. Participant with
negative linear beliefs would choose the dominating and the dominated al-
ternative in “Slope Global”, and the middle and dominated in “Slope Local”.
For positive linear believers patterns would exchange — they would choose
the dominating and the dominated alternative in “Slope Local”, and the
middle and dominated in “Slope Global”.

Overall, a person with perfect knowledge of the function would choose
the dominating alternative in each item type, but as explained above, there
are specific patterns of answers that are indicative of linear or negative lin-
ear function beliefs. To facilitate the analysis we classified participants into
one of the tree types of beliefs — “Positive”, “Negative” and “Quadratic”. We
computed distances between mean choice on each item type and choices
a person with perfect knowledge of positive, negative or quadratic func-
tion would make, and classified people as having those beliefs to which the
distance was the smallest. Finally, we down-weighted the importance of
“Max” and “Max decoy” item type choices in the similarity index (10% of
the import of other item types), as choice sets were drawn randomly for
each participant, in some choice sets the highest rewarding alternative was
one with large feature values. Hence, even if people knew that the gen-
eral shape of the function was quadratic, they would not necessarily detect
global vs. local maximum due to properties of their choice set.
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3.C Additional Results
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Figure 3.C.1 Exploration patterns of participants in all 100 trials of the bandit
tasks in Experiment 1A. (A) By the end of the task allocations of choices of partici-
pants in both MAB and FMAB conditions converge — they concentrate their choices
in high rewarding region of the feature space, as indicated by feature values dis-
played on x-axis for Feature 1 (w; = 2) and y-axis for Feature 2 (wp = 1). (B)
Similarly, allocations of choices of two clusters of FMAB participants also become
very similar by the end of the bandit task.
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Figure 3.C.2 Performance of GP-UCB model and participants in Experiment 1A on
FK task, broken across item types. (A) GP-UCB is able to generalize and performs
very well, although for difficult and weight comparison items it errs sometimes.
Not shown here, performance of the BMT-UCB model would equal to random
choice, in contrast. (B) Performance of two clusters of participants from FMAB-pl
condition — mean trackers and function learners, is very similar to BMT-UCB and
GP-UCB models, respectively. On average, mean trackers make choices that are
close to random, while function learners exhibit the same pattern as GP-UCB, very
good performance with some errors on difficult weight comparison items.
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Figure 3.C.3 Behavioral results of participants in the bandit task in Experiment
1B. (A) Mean accuracy of choices (the lower the better) increased across trials
(grouped in five blocks of 20 trials). (B) Similar to Experiment 1A, participants
that learn the function (according to the FK task) are doing much better than
MAB participants and FMAB participants that ignored the feature information.
(C) Exploration patterns of participants in the first 10 trials of the bandit tasks
reveal that participants in the FMAB condition start allocating the choices to the
high rewarding region much faster than MAB participants. (D) Cluster that does
not exhibit functional knowledge explores similar to MAB participants.
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Figure 3.C.4 Choice performance of participants in Experiment 2 expressed as
mean choice ranks (the lower the rank the better) as a function of trials in the
bandit task (grouped in five blocks of 20 trials). (A) Participants in the condition
with mixed linear reward function learn to make good choices in both MAB-ml
and FMAB-ml task — their mean rank increases substantially over time, and FMAB
participant are performing slightly, but consistently better than MAB participants.
(B) Analogous to the previous panel, but now showing performance for conditions
with quadratic reward function, with essentially the same results.
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Figure 3.C.5 Exploration patterns of two clusters of participants in the FMAB-ml
condition in Experiment 2 in the first 10 trials of the bandit tasks and the last 10
trials. Clusters were determined with K-means method on mean choice ranks from
the FK task for each participant. (A) Proportion of all choices in first 10 trials
allocated by clusters of participants to alternatives with feature values falling into
one of the four bins indicated on x-axis for Feature 1 (w; = 40) and y-axis for
Feature 2 (wo = —30). One group — “Slow learners”, that has poor FK task perfor-
mance, allocates particularly large portion of choices to the upper right corner, as
if guided by a prior on expecting positive linear relationships. The other group,
“Fast learners” has very good knowledge about the function according to the FK
task, but quickly unlearns their prior, if the group had it at all. (B) Analogous to
the previous panel, but now showing allocation of choices for the last 10 trials in
the FMAB task. Both clusters shifted their choices to the alternatives with feature
values that lead to higher rewards, positioned in the lower right corner, where
second feature has low values.
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Figure 3.C.6 Performance of Bayesian models and participants in FMAB-q condi-
tion in Experiment 2 on FK task. (A) In the left panel, FK task performance of the
GP-MV model that chooses the alternatives with highest uncertainty. It learns the
function and performs extremely well on the task, choosing the dominating alter-
native most of the time on all item types. The GP-UCB model performs poorly, as it
focuses on high rewarding part of the function and does not learn the other parts
well, ending up with either positive or negative functional knowledge. (B) Perfor-
mance in the FK task decomposes on two groups of participants — one with positive
linear and one with negative linear beliefs, according to their pattern of choices
in the task. Positive group is bigger (N = 69) than the negative (N = 32), most
likely due to priors, and has clearer results. Quadratic group is not shown due to
small sample size (N = 1). Pattern of allocations on all six items is according to

predictions (see Appendix 3.B).
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Figure 3.C.7 Choice performance of participants in Experiment 3 expressed as
mean choice ranks (the lower the rank the better) as a function of trials in the
bandit task (grouped in 10 blocks of 10 trials). (A) Participants in the condition
with positive linear reward function learn to make good choices in all three con-
ditions — their mean rank increases substantially over time. Notably, conditions
with function learning pretraining perform significantly better, knowing the func-
tion better pays off. However, there (B) Analogous to the previous panel, but now
showing performance for conditions with quadratic reward function, with qualita-
tively the same results. As expected, quadratic function is more difficult to learn
and advantage of function learning pretraining is smaller.
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3.D Bayesian Models Performance and Param-
eter Overview

To arrive at benchmark performance for participants in each experiment we
took stimuli that was generated for each participant and fitted our Bayesian
models to the stimuli. The parameters of the models were estimated by
using the mean rank of chosen alternatives in the bandit task as model per-
formance measure. Since the model choices for each set of parameters are
stochastic, we simulated the model for each set 20 times and took a mean
of the resulting mean rank of chosen alternatives. Optimization was done
using the Nelder-Mead simplex algorithm implemented in the optim func-
tion in R (R Core Team, 2015). We used a multi-start procedure where we
first generated 30 sets of parameters, uniformly dispersed in the parameter
space, and chose two best sets as initial points in the Nelder-Mead simplex
algorithm.
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Table 3.D.1 Overview of performance and estimated parameters of the models on the same stimuli that participants have
had in the experiments. Performance of the model is expressed as mean rank of the chosen alternative throughout the
bandit task. For performance and each parameter we display the mean value across all subject-specific stimuli, together with
standard deviation in parenthesis.

Experiment Condition Model Rank on of 1 a
Exp 1A FMAB-pl BMT-UCB 1.87 (0.26) 0.3 (0.23) 1.26 (0.28) - 2.21 (0.39)
GP-MV 9.81 (0.73) 0.59 (0.45) 0.87 (0.62) 1.72 (3.59) -
GP-UCB 1.28 (0.15) 0.26 (0.2) 1.4 (0.43) 1.34 (0.44) 1.9 (0.65)
Exp 1B FMAB-pl BMT-UCB 2.21 (0.6) 2.54 (1.5) 8.05 (2.02) - 5.35 (2.66)
GP-MV 9.87 (0.67) 0.6 (0.39) 0.95 (0.53) 0.94 (1.18) -
GP-UCB 1.38 (0.24) 0.09 (0.03) 1.74 (0.44) 1.69 (0.22) 1.98 (0.97)
Exp 2A FMAB-ml BMT-UCB 3.59 (0.82) 0.3 (0.28) 1.73 (0.81) - 2.28 (1)
GP-MV 9.63 (0.88) 0.69 (0.44) 0.88 (0.68) 2.98 (17.74) -
GP-UCB 1.57 (0.48) 0.24 (0.18) 1.88 (0.37) 0.98 (0.5) 2.04 (0.8)
Exp 2B FMAB-q BMT-UCB 3.94 (1.7) 0.2 (0.22) 2.28 (1.18) - 2.98 (1.3) w
GP-MV 2.79 (1.12) 1.16 (0.76) 0.24 (0.3) 6.2 (17.85) - —
GP-UCB 2.01 (0.43) 0.2 (0.18) 1.58 (0.38) 1.47 (0.48) 2.17 (0.96)
Exp 3 FCMAB-pl BMT-UCB 2.35 (0.63) 2.1 (0.53) 6.92 (1.73) - 4.72 (1.05)
GP-UCB 1.4 (0.53) 1.26 (0.7) 6.65 (2.9) 3.04 (2.5) 6.99 (2.31)
fFCMAB-pl BMT-UCB 2.5 (0.91) 1.94 (0.9) 7.87 (1.03) - 4.25 (1.77)
GP-UCB 1.26 (0.77) 1.58 (0.3) 4.88 (0.99) 4.77 (1.34) 4.98 (1.03)
FCMAB-q BMT-UCB 1.98 (0.64) 1.38 (0.75) 4.92 (2.24) - 5.44 (2.89)
GP-UCB 1.37 (0.45) 2.06 (1) 6.61 (2.27) 4.96 (3.68) 7.34 (1.99)
fFCMAB-q BMT-UCB 2.36 (0.71) 1.75 (0.67) 4.06 (2.43) - 6.86 (3.07)
GP-UCB 1.12 (0.36) 1.41 (0.56) 6.06 (1.43) 3.33 (2.1) 5.83 (1.84)
fFCMAB-pls BMT-UCB 3.5 (0.74) 1.67 (0.78) 6.83 (1.4) - 3.99 (1.1)
GP-UCB 1.04 (0.27) 1.62 (0.64) 5.25 (0.95) 4.59 (1.86) 5.12 (1.63)
fFCMAB-gs BMT-UCB 2.92 (0.43) 1.16 (0.57) 4.71 (2.28) - 4.95 (2.41)
GP-UCB 1.18 (0.36) 1.32 (0.53) 6.44 (1.65) 2.98 (2.09) 5.7 (1.5)

Note. FMAB = Feature-based multi-armed bandit task, suffix denotes the function determining the reward, with pl = positive linear function, ml = mixed linear
function, q = quadratic function; BMT = Bayesian Mean Tracker model for learning the average rewards; GP = Gaussian Process function learning model; MV =
Maximum Variance choice rule; UCB = Upper Confidence Bound choice rule.
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