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Abstract

Spatial frequency reuse is a long-established approach for enhanc-
ing the capacity of wireless systems through increased spectral ef-
ficiency (bits per second per unit bandwidth). The future 5th gen-
eration of wireless systems is expected to incorporate various forms
of frequency reuse. This includes multiple-input multiple-output
(MIMO) communication enabling frequency reuse across antennas,
device-to-device (D2D)-based densification allowing spectrum reuse
across direct communication links, and full duplexing utilizing the
same spectrum for communication in the transmit and receive di-
rections.

This dissertation aims at determining the performance limits of
emerging wireless systems underpinned by dense spatial frequency
reuse and interference suppression, and to glean key system design
insights. Stochastic geometry is the toolbox invoked to conduct the
analysis, with network locations modeled as points of a Poisson pro-
cess. A new framework is developed by introducing a Gaussian fit
to the interference and variable degrees of spatial averaging, which
enable more meaningful results and compact expressions compared
to those of existing analyses.

Within this framework, we first consider MIMO spatial multiplexing
and interference alignment (IA). The former scheme utilizes all avail-
able spatial dimensions for signaling and the latter minimizes inter-
ference at the expense of knowing the instantaneous fading states
at both transmitters and receivers and of a reduction in spatial
signaling dimensions. Despite the intense work on TA and spatial
multiplexing, there is limited work aimed at understanding their
engineering tradeoff in the context of practically relevant cellular
settings such as propagation losses, fading dynamics due to user
mobility and imperfect knowledge of the fading states. We have
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X Abstract

studied this problem in depth through both system- and link-level
analyses. Even under perfect knowledge of the fading, IA is seen to
be beneficial over spatial multiplexing only in very specific and rela-
tively infrequent network situations, and IA loses all its advantages
at vehicular speeds when the fading knowledge is imperfect.

Second, we focus on ITLinQ and FlashLinQ), the two principal chan-
nelization schemes proposed to date for controlling the interference
in D2D networks. An analytical characterization of ITLinQ scheme
is provided, opening the door to optimizing its controllable param-
eters. It is shown that both channelization schemes outperform
the unchannelized baseline, with a slight edge for ITLinQ. On the
most unfavorable network geometries, ITLinQ yields multiple-fold
improvements in spectral efficiency with respect to an unchannelized
network.

Finally, we introduce full-duplex transceivers in cellular networks
and characterize the impact of increased interference on their per-
formance. It is established through analysis and complemented by
simulations on a Vodafone LTE field test network that additional
user-to-user interference only has a minor impact while base-to-base
interference would render full-duplex operation unfeasible in dense
microcellular networks without any interference management.

In summary, MIMO spatial multiplexing and D2D-based densifi-
cation are seen to play a vital role in improving wireless system
capacity while TA and full duplexing are found to be ineffective.



Resum

La reutilitzacié de la freqiiencia espacial és I'aproximacié més ac-
ceptada per tal de millorar la capacitat dels sistemes wireless mit-
jancant I'increment de eficiencia espectral (bits per segon per uni-
tat d’ample de banda). S’espera que la futura cinquena generacié
de sistemes wireless incorpori diverses formes de reutilitzacié de
freqiiencia. Aix0 inclou la comunicacié multi-input multi-output
(MIMO) que permet la reutilitzacié a través d’antenes, densifi-
caci6 dispositiu-a-dispositiu (D2D) que permet reutilitzar 1’espectre
a través denllagos de comunicacié directa, aixi com un full-diplex
emprant el mateix espectre per a la comunicacid en la transmissio i
recepcié de direccions.

Aquest treball pretén determinar els limits de rendiment dels sis-
temes wireless emergents, basats en una densa reutilitzacié de la
freqiiéncia espacial i en la supressioé d’interferéncies, aix{ com espigo-
lar coneixement clau per al disseny de sistemes d’aquest tipus. La
geometria estocastica és I’eina que s’aplicara a ’analisi que es dura
a terme, modelitzant les localitzacions dins la xarxa com a punts
d’un procés de Poisson. La introduccié d’un ajust Gaussia a la in-
terferéncia, conjuntament amb la consideracié de nivells variables
d’expectacié espacial, han permes definir un nou marc matematic
que fa possible unes expressions més compactes i uns resultats més
significatius en comparacié amb els analisis existents.

Dins d’aquest marc, en primer lloc es prenen en consideracié la mul-
tiplexacié MIMO i ’aliniament d’interferencia (IA, en les seves sigles
en angles). El primer esquema empra totes les dimensions espacials
disponibles per a la senyalitzacié i el segon minimitza la interferencia
a costa de coneixer els estats de esvaiment instantani dels transmis-
sors i receptors, i d’'una reduccié en les dimensions de senyalitzacié
espacial. Malgrat I'intens treball en I'TA i la multiplexacié espacial,
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xii Resum

s’ha prestat escassa atencié a tractar de comprendre el seu balang
denginyeria en el context d’xarxes cel-lulars de rellevancia practica,
com els de propagacié de perdues, o les dinamiques de esvaiment
degudes a la mobilitat de 'usuari i al coneixement imperfecte dels
estats de esvaiment. En aquest treball s’ha estudiat en profundi-
tat aquest problema a través d’analisis tant a nivell dels enllacos
com del sistema. Fins i tot en condicions de coneixement perfecte
del esvaiment, I'TA resulta beneficiés sobre la multiplexacié només
en situacions de xarxa molt especifiques i relativament infreqiients,
mentre que perd tots els seus avantatges a velocitats vehiculars quan
el coneixement del esvaiment és imperfecte.

En segon lloc, el treball es centra en el ITLinQ i el FlashLinQ),
els dos principals esquemes de canalitzacié proposats fins al mo-
ment per controlar la interferencia en xarxes D2D. S’ofereix una
caracteritzacio analitica de ’esquema I'TLinQ, obrint aixi la porta a
I'optimitzacio dels seus parametres controlables. Es mostra que tots
dos esquemes de canalitzacié aconsegueixen millors resultats que
I’esquema no canalitzat, amb un lleuger avantatge per al ITLinQ.
Considerant la geometria de xarxa més desfavorable, el ITLinQ pro-
dueix millores muiltiples en 'eficiencia espectral en comparacié amb
la xarxa no canalitzada.

Finalment, el treball introdueix els transreceptors full-diplex en
xarxes cel-lulars i caracteritza 'impacte de la interferéncia incre-
mentada en el seu funcionament. A través d’analisis i de simu-
lacions complementaries en una xarxa de test de Vodafone LTE,
s’estableix que la interferencia d’usuari a usuari té un impacte poc
significatiu mentre que la interferencia de base a base faria inviable
I'operacié full-duplex en xarxes microcel-lulars sense gestié de les
interferencies.

En resum, aquest tesis doctoral aporta evidencia de que el multi-
plexat MIMO i la densificacié basada en D2D juguen un paper vital
en la millora de la capacitat dels sistemes wireless mentre que el TA
i el full-duplex resulten inefectius.
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CHAPTER 1

Introduction

If you want to shine like a sun, first burn like a sun.

A. P. J. Abdul Kalam

Wireless communication has advanced swiftly over the last three
decades. During this epoch, wireless connectivity has transformed
from an expensive novelty to an indispensable commodity, just like
electricity. This transformation along with the widespread penetra-
tion of advanced devices such as smartphones and tablets, in turn, is
resulting in a faster growth of mobile data traffic. For instance, the
global mobile data traffic has increased by 74% in 2015 [1]. It has
been forecasted that the number of interconnected devices will in-
crease to 50 billion while the volume of mobile data traffic will grow
1000-fold in the near future [2]. This 1000x capacity goal exerts im-
mense pressure on the wireless network operators to improve the ca-
pacity (bits per second, b/s, of bandwidth) of the network. Besides
this, the success of social networking applications (e.g., Facebook
and Instagram) and an emerging trend of using wearables (e.g., eye
glasses and watches) are giving rise to an increasingly diverse set of
requirements, ranging from low power wide area Internet-of-Things
to extremely low latency and high reliability services [2].

Therefore, the future 5th generation (5G) wireless technology needs
to improve upon the current mobile broadband user experience by
offering extremely large bandwidth services, while simultaneously
expanding the network functionality to support considerably more
connected devices and new use case requirements [2—4]. The cur-
rent approach of cellular network design and deployment will not
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Table 1.1: Requirements of key performance metrics for 5G wireless
systems [2, 4]

| Dimension | Improvement [value, if available] |
System capacity 1000x [10 Tb/s/km?]
Cell-edge capacity 100x [100 Mb/s]
Roundtrip latency 1/30x [1ms]
Energy consumption 1/10x
Network management cost 1/5x%
Number of connected devices | 100x [2 x 10° /km?]

be able to meet the demands faced by 5G networks, because it re-
quires orders of magnitude improvement (cf. Table 1.1) over the
current technology. It should be emphasized that the requirements
in Table 1.1 need not be satisfied simultaneously and can be relaxed
in certain dimensions based on the type of application. For in-
stance, autonomous vehicles or industrial automation applications
may require ultra-low latency and ultra-high reliability with rel-
atively lower data rates compared to virtual reality applications,
where the primary requirement is on data rates.

1.1 1000x Capacity Goal: An
Information-Theoretic Vantage

The daunting requirement of 5G is to meet the ever-increasing de-
mand for wireless capacity with limited radio resources. In order
to attain some potential solutions to this physical layer problem,
we pursue information theory that establishes fundamental limits
of communication systems. The capacity (b/s) of a point-to-point
additive white Gaussian noise (AWGN) channel with signal power
P, noise variance o2 and bandwidth B equals [5]

P
Blog, (1 + 02) . (1.1)

N
This formula can be extended to the cellular case to determine the
system capacity under standard fading conditions, in terms of the
number of base stations per unit area A, and the number of spatial
signaling dimensions between the base station and user N, as

AN Blog, (1 + p) (1.2)
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where p is the expected signal-to-interference-plus-noise ratio (SINR)
at the receiving user, defined as the ratio of the intended signal
power to the unintended interference-plus-noise power. The valid-
ity of (1.2) is subject to a number of assumptions: the received in-
terference plus noise follows a Gaussian distribution, sophisticated
channel coding and decoding techniques at the transmitters and
receivers, and no fading.

We can glean the following insights from (1.2).

(a) Allocating more frequency spectrum (Hz) increases the signal
bandwidth B that in turn leads to an increase in the system
capacity.

(b) Adding more spatial dimensions to each end of the link (an-
tennas) increases the number of signal streams per user N that
allows the user capacity to be improved (consequently, the sys-
tem capacity) without additional frequency spectrum.

(¢) Deploying more base stations per unit area (base stations/km?)
allows the traffic to be evenly distributed as well as to support
more active users per unit area and Hz.

In reference to (a), a large swath of spectrum can be allocated to
each user either by aggregating several chunks of underutilized lower
frequency bands! or by unleashing the higher frequency bands rang-
ing from 10 GHz to 300 GHz. For instance, 28, 38, 71-76, 81-86 GHz
frequencies are under investigation—due to their lower atmospheric
absorption and scattering loss—with typical propagation ranges of
30 to 100 meters [7-9]. The design of cellular systems based on
these millimeter wave frequencies is more than adequately treated
elsewhere and we particularly focus on (b) and (c) in this disserta-
tion.

In reference to (b) and (c), the common underlying principle is spa-
tial frequency reuse, where the spectrum is shared among multiple
antennas or base stations, i.e., several links that may or may not
be in spatial proximity operate on the same channel (meaning time-
frequency signaling resource). However, due to the broadcast nature

!This approach has already been featured as carrier aggregation in the long-
term evolution (LTE)-advanced standard. Under typical network loading con-
ditions, it promises to provide either 2.5x user experience gain or 2x user load
gain [6].
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Figure 1.1: Interference-limited scenario in cellular systems. For
the user at the cell edge, both signal and interference powers are
comparable and results in low spectral efficiency.

of the wireless medium, spatial frequency reuse causes interference
at each receiver and creates an interference-limited scenario in cel-
lular systems (cf. Fig. 1.1). The following approaches are widely
considered to suppress interference and improve the system capac-

ity:

e Orthogonalize the transmission across resources (time or fre-
quency) so that they do not interfere with each other, or in
other words, time or frequency division multiple access. This
is not a resource-effective solution, especially, for emerging
dense wireless systems.

e Treat interference as noise (TIN), i.e., ignore interference, when
it is weak to moderate. Due to its low complexity and robust-
ness, this approach is more appealing from both theoretical
and practical perspectives. Recently, through an information-
theoretic analysis, it has been established that in some inter-
ference channel settings the TIN-based schemes are optimal
or near-optimal with respect to capacity in the context of in-
frastructureless wireless networks [10]. Paraphrasing [10], for
each transmitter-receiver pair in an interference channel, if
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Figure 1.2: Ilustration of joint transmission.

the intended signal level is at least the product of maximum
outgoing interference level from the transmitter to the unin-
tended receivers and maximum incoming interference level to
the receiver from the unintended transmitters, then the TIN
approach is optimum. For example, information-theoretic link
scheduling or, in short, ITLinQ [11] is inspired by this ap-
proach.

e A recent concept that has gained much attention is base sta-
tion cooperation, where the transmission or reception among
multiple cells is coordinated in order to minimize interference,
creating a noise-limited scenario within the cooperating re-
gion. Various forms of cooperation have been considered un-
der the name of coordinated multipoint (CoMP) transmission
or reception [12], ranging from fully-cooperated joint trans-
mission [13] to loosely-cooperated interference alignment (IA)
[14, 15].

— In joint transmission (Fig. 1.2), multiple base stations
behave as a single super base station and simultaneously
serve the same user. In addition to tight synchronization,
joint transmission involves the exchange of channel-state
information (CSI) and user data across cooperating base
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Figure 1.3: Illustration of TA.

stations. CSI represents the changes in amplitude and
phase of the channels between each pair of transmit and
receive antennas due to channel fading.

— The idea of IA (Fig. 1.3) is to align multiple interfer-
ing signals in a signal subspace with dimensions smaller
than the number of interferers and suppress the interfer-
ence at each user by means of spatial signal processing
performed locally at each base station. IA can be per-
formed along the time, frequency, or space dimensions.
However, it involves significant latency in processing in
the time dimension or massive bandwidth expansion in
the frequency dimension [16]. IA in the spatial or an-
tenna domain is more practical that can be achieved by
spatial precoding or filtering.

1.2 Key Basis of the Dissertation

This section elaborates on spatial frequency reuse and stochastic
geometry that form the basis upon which the thesis is built. Various
forms of frequency reuse for enhancing area spectral efficiency and
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the increasing role of stochastic geometry in the analysis of wireless
networks are discussed. Also, some open questions in the realm of
wireless systems engineering are highlighted.

1.2.1 Spatial Frequency Reuse for Enhanced Area
Spectral Efficiency

MIMO Transmission

A first technique is called multiple-input multiple-output (MIMO),
where multiple antennas are used at the transmitters and receivers of
wireless communication system. Various MIMO signaling schemes
have been adopted in wireless standards:

e Spatial diversity improves the link reliability, by transmitting
the same signal over independent fading links.

e Spatial multiplexing improves the link spectral efficiency (b/s
per Hz of bandwidth), by transmitting multiple independent
signal streams over independent fading links to a single user,
i.e., single-user MIMO (SU-MIMO) or to different users, i.e.,
multiuser MIMO (MU-MIMO).

However, interference from neighboring cells weakens the effective-
ness of spatial frequency reuse. Such intercell interference mainly
degrades the performance of cell-edge users (cf. Fig. 1.1) and con-
sequently the area spectral efficiency [17]. For instance, the re-
ported cell-edge spectral efficiencies in LTE are about 0.05 b/s/Hz.
Recently, base station cooperation has gained the perception of
being the best way to counter intercell interference. Among the
various cooperation schemes being considered is IA (in antenna-
domain), which has the advantage of admitting distributed imple-
mentations [18]. This is the first topic of the dissertation with the
goal of understanding the tradeoff between spatial multiplexing and
IA in cellular networks.

In toy settings where all the users can participate in the alignment
and the fading states of all the links are instantaneously and per-
fectly known by every base station and every user, IA is shown to
yield major increase in spectral efficiency. In practical cellular sys-
tems, however, there is cooperation among a limited number of users
that are inevitably exposed to interference from all the other users
in the system. A few system-level simulations reported in [19-21],
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including our previous work [22], had already indicated that the
spectral efficiency gains due to IA are marginal. To acquire better
insights and broader generality in conclusions, and in contrast with
simulations, this dissertation studies the performance of IA through
analysis and precisely characterizes how frequently IA is beneficial
in cellular networks.

In practice, through known pilot symbols, the fading states are ob-
tained at the users and conveyed to the base stations, and these
fading states are subject to estimation errors. In addition, user
mobility induces dynamics (roughly independent realizations across
symbol blocks) in the fading. As time evolves, the known fading
states become outdated, the IA solution suffers growing misalign-
ment and interference leaks through. The question then arises as
to how robust IA’s performance is under inherent physical layer is-
sues such as fading dynamics and imperfect knowledge of the fading
states. In [23], the performance of IA is gauged by accounting chan-
nel estimation errors and overhead signaling for pilots. This work
assumes that the channel remains constant over a block consisting
of multiple symbols while changing across blocks. However, this
block-fading model is not accurate when conducting the complete
link-level analysis of pilot-assisted IA and it becomes important to
resort to continuous (symbol-by-symbol) fading, which is precisely
what is invoked in our work.

Network Densification

Another big challenge faced by the wireless operators is handling the
extreme non-uniformity of cellular networks. For instance, a recent
study revealed that 90% of the data is consumed by 10% of the users
within 5% of the area [24]. Such a spatial non-uniformity of data
traffic is addressed by overlaying multiple low-cost base stations onto
macrocell networks in the areas of high user density, which results
in a heterogeneous network (or HetNet), e.g., femtocells (consumer-
deployed with a range of 100 m) and picocells (operator-deployed
with a range of 10 m). While HetNet enhances the system spectral
efficiency by multiple-fold factors in certain scenarios [6], it may not
be a scalable approach in practice due to the following constraints:

e Backhaul: Fast dedicated connections are needed to backhaul
the traffic to the core network, which increases the network
management cost [4].
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Figure 1.4: Applications of D2D communication [25].

e Excessive handoffs: A user moving through a HetNet with
vehicular velocity may experience frequent handoffs among
the various types of cells.

e Asymmetric forward and reverse links: In the forward link (or
downlink), the base stations transmit at different power levels
with a large disparity while, in the reverse link (or uplink),
the user transmission power levels are uniform. As a result,
the optimal cell association in the forward link may not be
necessarily optimal for the reverse link transmission.

e Dynamic interference: Unplanned deployment of many base
stations and large disparities in their transmit powers result
in diverse interference scenarios, which are difficult to handle.

A rising alternative technique for enhancing system capacity with-
out the need for additional infrastructure is direct communication
between users in close proximity, termed device-to-device (D2D)
commumnication. Provided there is sufficient spatial locality in the
wireless traffic, several application scenarios (cf. Fig. 1.4) are en-
visioned by the D2D connectivity including direct communication
in emergency situations, broadcasting of location-specific advertise-
ments, vehicle-to-vehicle communication in the Internet of vehicles,
and media content dissemination. Consequently, D2D-based densi-
fication is increasingly being viewed as a potential complement to
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HetNets (which densify the network by means of additional infras-
tructure) with the ensuing merits:

e Hop savings by replacing two long hops via the infrastructure
with a single hop.

e FEdgeless connectivity by integrating the users into the network
with new technologies such as multihop communication.

e Reduced network load by means of offloading the traffic, when-
ever possible.

There are overlay or underlay options, where respectively the D2D
links use separate licensed spectrum or reuse the cellular uplink.
In the dissertation we concentrate on the former, which has the
advantage of admitting implementations with fewer changes in the
standards [26-28].

Despite the remarkable system spectral efficiency exhibited by D2D
without a careful allocation of users to orthogonal resources [29],
a certain share of the users do experience strong interference and
thus see low individual spectral efficiencies. One way to address this
problem is to parse D2D transmissions into noninterfering sets to
be allocated to separate channels, a process classically termed dy-
namic channel allocation [30] and that in the D2D context herein
we shorten as channelization. This is the second topic of the dis-
sertation with the goal of quantifying the spectral efficiency ad-
vantages of channel allocation schemes in D2D communication net-
works. Specifically, we consider FlashLinQ [31] and ITLinQ [11],
which are the two most popular schemes proposed to date in the
D2D context. The former was formulated on a heuristic basis and
the latter had been proposed based on information-theoretic opti-
mality principles. In contrast with the original work [11] that relied
on simulations to establish ITLinQ’s performance, the dissertation
aims at quicker parameter optimization and broader generality via
analysis.

Simultaneous Transmission and Reception

Existing cellular systems—and the aforementioned new techniques—
are presumed to operate in half-duplex by utilizing separate sig-
naling resources for transmission and reception, because of self-
interference from its own transmit chain to receive chain. With
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staggering progress in analog and digital cancellation architectures
[32—-35], self-interference cancellation is now becoming possible. Al-
though this technology is still in its infancy and challenges need to
be addressed in relation to its form factors, it has the potential to
enable many new applications in the wireless landscape, e.g., flexible
radio frequency filtering for easier and more agile spectrum manage-
ment, wireless backhauling, adjacent channel interference suppres-
sion for better coexistence, and simultaneous transmission and re-
ception in the same channel [36-38]. The latter refers to full-duplex
wireless communication, which is the third and final topic of the
dissertation. In addition to doubling of the spectral efficiency and
reducing the end-to-end latency, full-duplex communication can of-
fer solutions to problems such as decoupling of forward and reverse
links, and spectrum sharing [39].

By pushing self-interference below the noise level, a near-doubling
of the spectral efficiency is theoretically possible for an isolated link.
However, this may not extrapolate to links embedded in a network
because of the additional interference. For instance, in the half-
duplex reverse link, each base station receives interference from the
co-channel users whereas, in the full-duplex reverse link, each base
station receives interference from the co-channel users as well as
from the co-channel base stations. The question then arises as to
whether and when full-duplex is beneficial over half-duplex. Several
preliminary studies [40-44] have already explored the potential of
full-duplex in wireless networks, by modeling the pathloss at a dis-
tance r as fr~" where 7 is the exponent while 3 is the intercept,
defined as the pathloss at a unit distance. This single-slope model
is inadequate to represent the pathloss among base stations, which
as we shall see is critical in full-duplex networks, and a multi-slope
model is much more adequate. Moreover, these studies have only
focused on the networks with single antenna at each transmitter
and receiver. These limitations in the existing work are treated in
the dissertation with the goal of studying the viability of full-duplex
communication in multi-antenna cellular networks.

1.2.2 Stochastic Geometry for Wireless Network Analysis

Traditionally, wireless network design and characterization relied
on the Monte-Carlo simulations over grid networks, where the base
stations are placed in deterministic locations with hexagonal cover-
age regions. However, the incorporation of advanced concepts (cf.
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Section 1.2.1) and irregularly deployed infrastructure into wireless
network leads to a complex network with a wide range of simulation
scenarios. Investigating such a complex network through simula-
tions is a time-consuming and tedious task. Therefore, it is desirable
to have a stochastic model for the network locations that is able to
capture the key aspects of wireless network. This naturally raises
the question of which stochastic process should be chosen to model
the network locations. Fortunately, in order to address this ques-
tion, there is the powerful discipline of stochastic geometry, which
allows for models that (i) are amenable to analytical treatment,
and (77) are arguably more representative of the spatial behavior of
emerging wireless systems. Although its initial application was lim-
ited to ad-hoc network analysis [45-47], a seminal paper by Andrews
et al. [48] demonstrated the remarkable effectiveness of stochastic
modelling in the context of cellular networks as well and expanded
its horizon.

Despite the considerable effort that has been devoted to advance
stochastic geometry [49-59], some important issues have been ne-
glected with respect to the performance metrics:

e Much of the existing work postulated a block-fading model for
small-scale variations of the channel (i.e., non-ergodic setting)
and characterized the outage probability (i.e., the probability
of the event that desirable communication rate is not possible
reliably on a link). However, this metric is mainly applicable
to previous generation wireless systems that are fixed-rate and
narrowband. In fact, by means of variable modulation and
coding with rate matched to the average channel conditions,
outages due to small-scale fading are eliminated in modern
wireless systems that are adaptive and wideband. Then, the
right setting is an ergodic channel, where the fading states
also vary over a codeword but with the same moments across
the codewords. In addition, the ergodic spectral efficiency,
defined as the spectral efficiency expected over the distribution
of small-scale fading, is the most operationally relevant metric
in contemporary systems where codewords span many fading
realizations in frequency (because of the wide bandwidths),
in space (because of the multiplicity of antennas) and in time
(because of hybrid-automatic repeat request (ARQ)) [60].

e Furthermore, existing analyses mostly characterized the av-
erage network performance. This quantity can only gauge
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system-level benefits, but not the performance of users in spe-
cific situations, e.g., users on the edge of a cell.

In light of these limitations, we focus on the ergodic spectral effi-
ciency for both averaged and specific network geometries throughout
our analysis.

1.3 Contributions

We characterize the performance of wireless systems underpinned by
dense spatial frequency reuse and interference suppression. In order
to obtain more meaningful results and tractable expressions than
previous approaches in the literature, a novel interference modeling
framework has been developed with the following features:

e A Gaussian approximation for the interference distribution,
which has sound operational justifications for existing encoders
and decoders designed to combat AWGN.

e (Classification of the interference terms in two sets, respectively
corresponding to nearby and faraway transmissions. The terms
in the first set are modelled explicitly while the rest are re-
placed by their spatial average. If the classification is done
prudently, this step simplifies the analysis drastically with
hardly any loss in accuracy.

e Variable degree of spatial averaging, which allows for an eval-
uation of the performance for specific locations in addition to
the average network-wide performance.

Within this modeling framework, the contributions of the disserta-
tion are listed below.

e Derivation of compact expressions to quantify the spectral ef-
ficiency of IA in cellular networks without the need for simu-
lation.

e Characterization of the benefits of IA with respect to the SU-
MIMO baseline for both averaged and specific network geome-
tries.
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Optimization of the pilot overhead and the IA update intervals
for maximum sum spectral efficiency in a K-user MIMO inter-
ference channel as a function of the fading selectivity, signal-
to-noise ratio (SNR) and number of users. This optimization
problem at high SNR adopts a particularly tractable form.

Assessment of the robustness of pilot-assisted IA in opera-
tionally relevant time-selective continuous fading under both
frequency-division duplexing (FDD) and time-division duplex-
ing (TDD).

Derivation of the exact D2D link density under different im-
plementations of ITLinQ and the (approximated) spectral ef-
ficiency expressions in integral forms. These expressions fa-
cilitate quicker optimization of ITLinQ’s parameters so as to
maximize the system spectral efficiency for given user density
and distance distribution.

Evaluation of the ultimate performance of ITLinQ with re-
spect to other D2D channel allocation schemes such as Flash-
LinQ and quantification of their gains with respect to an un-
channelized network.

Developement of a unified stochastic geometry framework that
encompasses both the forward link and the reverse link in a
full-duplex MIMO cellular network.

Quantification of the increase in spectral efficiency due to full-
duplex communication, and identification of new needs in in-
terference management. As a complement to the analysis,
Monte-Carlo simulations on a Vodafone LTE field test net-
work are also presented.

1.4 Organization

The dissertation is organized as follows: In Chapter 2, important
mathematical results of stochastic geometry are couched in our no-
tation and tailored to our models. A novel approach to model in-
terference in large wireless networks is developed and compact ex-
pressions for the ergodic performance metrics are derived based on
this approach. Chapter 3, the results of which have been presented
in [61, 62], is devoted to studying IA in large cellular networks. An-
alytical expressions for the spectral efficiency of TA are derived in
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compact forms and the system-level benefits of IA are characterized.
Chapter 4, the results of which have been documented in [63, 64],
provides a joint analysis of pilot overhead and spectral efficiency
for pilot-assisted TA in time-selective fading channels. The link-
level performance of pilot-assisted IA is assessed as function of the
fading selectivity, SNR and number of users under both TDD and
FDD. Chapter 5, the results of which have been presented in [65-67],
focuses on channel allocation schemes for D2D-based densification.
The exact permissible D2D link density and the achievable spectral
efficiency under different I'TLinQ implementations are derived. In
particular, performance evaluation comparisons with the FlashLinQ
scheme are provided, and the gains with respect to an unchannelized
network are quantified. Chapter 6, the results of which are docu-
mented in [68, 69], presents a unified stochastic geometry framework
that encompasses both forward and reverse links in full-duplex cellu-
lar networks. The actual increase in system spectral efficiency due to
full-duplex over the standard half-duplex is characterized, and new
needs in interference management are also identified. Then, the key
outcomes of the dissertation and an outline of future research di-
rections are summarized in Chapter 7. The proofs of the Lemmas
and Propositions corresponding to Chapters 2-6 are relegated to
Appendices A-E, respectively.
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CHAPTER 2

Mathematical Preliminaries

Information is the resolution of uncertainty.

Claude Shannon

This chapter provides a mathematical interlude before analyzing the
real systems of interest and borrows some essential principles and
results from stochastic geometry [51, 70] in the context of wireless
networks. Firstly, we describe the standard wireless network in-
cluding signal and propagation models. Next, to ensure that the
dissertation is as self-contained as possible, the notion of Poisson
point process (PPP) to model network locations and the central
facts associated with PPP are summarized. Then, we present a
new interference modeling framework, which can serve as a stepping
stone towards the analysis presented in the dissertation. Finally,
within this framework, we characterize the two important perfor-
mance metrics in contemporary wireless systems: the local-average
SIR and the ergodic spectral efficiency.

2.1 System Model

Any wireless communication link can be modeled as three building
blocks, namely transmitter, channel, and receiver. The transmit-
ter processes information (such as text, voice or video) and sends
encoded data symbols to its intended receiver. Denoting by s the
data symbol at the transmitter and by y the observation at the
receiver, s may be chosen from a complex-valued finite constella-
tion such as quadrature amplitude modulation or from a Gaussian
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codebook. Throughout the dissertation, we choose complex Gaus-
sian data symbols with zero mean and unit variance entries, i.e.,
s ~ Nc(0,1), which maximize the mutual information between the
observation y and data symbol s in the absence of interference at
the receiver.

The observed signal at the receiver is subject to various large-scale
and small-scale effects over wireless channel. The large-scale fading
represents signal variations that occur on a scale spanning many
wavelengths, e.g., distance-dependent pathloss and blockage-induced
shadow fading. On the other hand, the small-scale fading represents
signal variations that occur on a scale comparable to the wavelength,
e.g., scattering-induced signal variations. These effects can be mod-
eled as follows:

e The pathloss at a distance r is modeled as Sr~" with 7 the
exponent and (3 the intercept.

e Given the prevalence of log-normal shadow fading in terrestrial
wireless systems, the shadow fading between any transmitter
and its receiver is represented by y ~ 10Ve(0,085)/10
the standard deviation.

with o4p

e Depending on the local scattering at the transmitter and the
receiver, the amplitude of small-scale fading can be modeled
as Rayleigh, Rician or can be disregarded [71]. As the trans-
mitter and receiver are in non-line-of-sight path in a majority
of cases, the fading amplitude is modeled as Rayleigh distri-
bution

2

fin(h) = he™'z (2.1)

meaning that the fading coefficients are complex Gaussian
with zero mean and unit variance, i.e., h ~ Ng(0,1), and
the fading power is exponentially distributed with unit mean

f|h|2(h) =e (2.2)

Additionally, we assume that the fading is frequency-flat, i.e.,
the signal bandwidth is well below the frequency range over
which the channel remains almost constant (called the coher-
ence bandwidth of the channel). Alternatively, if the signal
bandwidth is large compared to the channel coherence band-
width, then different frequency components of the signal fade
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differently. Such frequency-selective fading leads to intersym-
bol interference (ISI), i.e., successively transmitted symbols
interfere at the receiver, or in other words, a transmitted sym-
bol arrives at the receiver during the next symbol periods. In
single-carrier systems, ISI is countered by equalizers derived
either from channel estimates or directly from the training
data, e.g., linear equalizers such as minimum mean-square er-
ror (MMSE) and zero-forcing equalizers, non-linear equalizers
such as decision-feedback equalizer and maximum-likelihood
sequence detector. In multi-carrier systems, ISI is suppressed
by modulating data onto orthogonal subcarriers in the fre-
quency domain so that each subcarrier experiences flat fading,
e.g., orthogonal frequency division multiplexing.

With spatial reuse of spectrum in a wireless network, each receiver
also gets interference from all co-channel transmitters in addition to
its intended signal. Then, under the foregoing transmit signal and
propagation models, the observation gy at the receiver of the link
indexed by 0 can be expressed as

o = \/PxoBro hoso + > \/ Pxr By, "hisk + 20 (2.3)
k=1

whose first term is the intended signal component while the second
and third terms are the aggregate interference and thermal noise,
respectively. In turn, P is the (fixed) transmit power, r; is the
distance between the receiver and the kth transmitter, hy is the
corresponding small-scale fading, xj; accounts for shadow fading,
si is the data symbol communicated over the kth link, and zg ~
Nc(0,02). Denoting by 2{ = z{, + 2o the aggregate interference plus

noise with
oo
20 = Z \/ Pxr By "hist, (2.4)
k=1

we can rewrite (2.3) as

Yo =/ PxoB7ro Thoso + 2 - (2.5)

2.2 Poisson Point Process

By abstracting the spatial distribution of transmitters and receivers
into appropriate point processes, stochastic geometry was initially
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applied to characterize interference in wireless ad-hoc networks [45—
47] and then, over the last two decades, it has extensively been
adopted to analyze cellular systems [48, 56, 72], ultrawideband [73],
cognitive networks [57, 74], femto cells [75], and heterogeneous net-
works [52, 53]. While most previous stochastic geometry analyses
utilized PPPs to model the locations, the methodology could be
equally applied with more sophisticated spatial distributions [76—
79] that could accurately capture the tendency of users to cluster
and dependences between the spatial distributions of users and base
stations. Since the actual behaviors under strong shadow fading con-
verge to a PPP behavior and PPP-based characterizations represent
the impact of network geometry on performance metrics remarkably
well [80-82], we model the locations of base stations and users via
PPPs in the dissertation.

2.2.1 Mathematical Description

A point process can be described in terms of either random sets or
random counting measures [51].

e A point process can be viewed as a countable random set of
points in a measurable space, say the Euclidean space R?. For
instance, if we consider the point process ® = {bg,b1,...} C
R? as a set that represents the base station locations in a
cellular network, then the set {bg, b1, ...} constitutes a random
pattern of points in R? with each location by being a random
variable.

e In lieu of a random set, a random counting measure can be
used to define the point process as a collection of random
counting measures N(B) indexed by B C R?, where B is a
bounded closed set and N(B) equals the number of points
falling in 8.

These two representations admit a duality. If ® is given, then N (B)
is computed simply by counting the number of points in ®NB. Con-
versely, if N (B) for all subsets B are given, then one can reconstruct
all the points of ®.

The point process ¢ with some intensity measure v(B) is called
Poisson if it possesses the following properties:
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e The counting measure N (B) is Poisson distributed with mean
v(B).

e For any disjoint bounded sets B, Bo,...,B,, the correspond-
ing measures N(81), N(B2), ..., N(*B,) are independent.

It is common to assume that the point process is locally finite for
all bounded closed sets B C R?, i.e., N(B) < oo with probability
1, or in other words, the number of points in any bounded region is
finite. From the aforementioned random set representation, it is also
implicit to assume that the point process is simple, i.e., N({b}) €
{0,1} ¥b C R? with probability 1, or in other words, no two points
of the point process are coincident.

2.2.2 Homogeneity

Homogeneous process implies both (i) stationarity, i.e., the process
® = {by} C R? and its translated process ® + b = {b, + b} are
identically distributed Vb € R2, and (i) isotropy, i.e., ® and 6®
have the same distribution for every rotation 6 around the origin.
The transmitter or receiver locations in a wireless network are often
modeled as a homogeneous PPP ® with density A, meaning that
the number of transmitters in a unit area is Poisson distributed
with mean A, or the probability that the number of transmitters in
a given area A equals n is

(A1)

n!

P(N(A)=n)=e (2.6)
If the density A is not constant, then the process is said to be inho-
mogeneous.

2.2.3 Notion of Palm Distribution

It is useful to study the properties (or events) of a point process at
a specific location such as the average number of points in a circle
centered at bg € ® with radius R, or the conditional probability of
the distance from a specific location by € ® to its nearest neighbor
of the point process (in short, the nearest-neighbor distance) being
higher than r. While such conditional probabilities can be computed
by applying the basic probability principles in certain scenarios (cf.
[83, Example 3.2]), yet there exists a problem in general due to
P(by € ®) = 0. The concept of Palm distribution resolves this issue
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by mathematically formalizing the conditioning events. Short of a
detailed mathematical formalization (that is available in [51]), we
provide the intuitive interpretation of the Palm distribution.

Let us consider that ® has a property V (such as having no point in
By, () representing the circle centered at by with radius r), which
we represent as ® € V. The Palm distribution of ® at by is the
probability of an event V given by € @, i.e.,

Py, (V) = P(® € Vb € ®) (2.7)

which can be interpreted as the limiting value of the probability
P(® € V|N(By,(€)) > 0) as € — 0, if the limit exists. Then, we have

P(® € V,N(Bp,(€)) > 0)

P(® € V|IN(By,(€)) > 0) = 2.8
(B € VIN (B €)) > 0) = == ez -8 (2.8)
Invoking the stationarity property, we can write

Poo (V) = Py, (V). (2.9)

2.2.4 Slivnyak’s Theorem

Since the distributions of points in disjoint sets are independent for a
PPP, conditioning on the PPP having a point at by does not change
the distribution of the other points of the process. This property
is particularly useful in characterizing the co-channel interference
in cellular networks with PPP distributed base station locations,
i.e., even if the serving base station is excluded from the PPP, the
distribution of the interfering base station locations remains the
same as PPP. Mathematically, if ® is a PPP with density A, then
the Palm distribution is [51, 70]

Py, (V) =P(® € V|by € D) (2.10)
=P(DU {by} € V) (2.11)

which means that conditioning on by € ® in a PPP is the same
as adding a point at bg. This can be extended to multiple points.
Specifically, this theorem allows the receiver to be conditioned at
a fixed location and the analysis conducted on its link, which can
serve as the typical link in the network.
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2.2.5 Marked PPP

A marked PPP is a Poisson process, where “marked” means that
each point is labeled with a mark whose distribution features ad-
ditional information such as transmit power, fading or link prior-
ity [61]. The marks can be either continuous variables or indicators.

2.2.6 Distance Distributions

As the performance of the typical receiver is essentially a function of
its position relative to the transmitters, it is convenient for the anal-
ysis that we import some distance distributions related to Poisson
distributed network.

Lemma 2.1. Given a homogeneous PPP @ of intensity A with r,
representing the distance from a point to its (n 4+ 1)th neighbor, the
probability density function (PDF) of 7, is [84]

2 n+1
frn (Tn) _ (77)\? T?Ln—i-l e—wkr% (212)
n:

and the joint PDF of r, and r with 0 < n < k is [85]

o _ 2
)k n 1,,“12111—&—17, 7r)\rk.

k€

4(7\ k+1
Franrm) = G 2

—n—1)In!
(2.13)

From (2.12), the density function of the distance between a point
to its first neighbor is seen to be

fro(ro) = 2mArge ™. (2.14)

Lemma 2.2. If a,, denotes the ratio of the distances from a point
to its (n + 1)th and Nth neighbors, i.e., a, = r,/ry_1, then the
joint PDF of r,, and a,, with 0 <n < N —11is

4 )\ N 1 — 2\N—n—2 _Tr)\ri
fraa (Tna an) = (ﬂ ) ( an) raN=le R
ot (N—n—-2)In! g2N-2n-1 7
(2.15)
Marginalizing this PDF over r,, yields the PDF of a,, as
21 (N
fun(a) = D)1y )Nz (21g)

(anfZ)!n!a"
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from which the PDF of r,, conditioned on a,, can be written as

Fralan (Tnlan) = ff(()) (2.17)
o 2(7T>‘)Nr721N_1 —7r)\(1”n/an)2
R 219

where T'(N) = [~ e =1 dt is the Gamma function.

Proof: See Appendix A.1.

2.2.7 Interference Functionals

Two of the most fundamental results of stochastic geometry are
Campbell’s theorem and probability generating functional [51, 70].
The former is useful in computing the aggregate interference ex-
pected over all possible locations and the latter is useful in comput-
ing the Laplace functional of the aggregate interference. Based on
these theorems, we obtain the following interference functionals in
compact forms, which shall be useful throughout the dissertation.

Lemma 2.3. If Z = ", p . _p Br, " and 7 > 2, then the ex-
pected interference power E [Z] equals

_2mAB
=73

E [Z] (R — Ry (2.19)

For the limiting case, Ro — oo, we get

R, (2.20)

Proof: See Appendix A.2.

It is worth mentioning that the mean interference E [Z] — oo (cf.
(2.20)) when R; — 0. While this divergence can be avoided by mod-
eling the pathloss at a distance r as min(1,r~"7), for our purposes
r~" is sufficient.

Lemma 2.4. T =37, » . _p B, " and Lz(t) = E[e~*Z] repre-
sents the Laplace transform of Z, then

2T\ t t
£2(0) = o\~ 1)+ 22 (Bt (1) - 6w (1))

2 1
(2.21)
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For the limiting cases, we get

lim L£z(t) = exp <7T)\R%+27:7>\(Bt)’27f <_2 b t>> (2.22)

RQ—)OO 7’ Riqf
2 2
lim Lz(t) = exp <—m (B)7 T (1 - >> (2.23)
R1—0 n
RQ*}OO

where T'(-, ) is the lower incomplete Gamma function.

Proof: See Appendix A.3.

2.3 Revised System Model with PPP
Distributed Locations

For the analysis that follows in the remainder of this chapter, we
consider the forward link of a cellular network where base stations
are distributed according to a homogeneous PPP @, C R? with den-
sity A\p and each user is served by a single base station. Recogniz-
ing the convergence of the actual behavior of network under strong
shadow fading to a PPP-distributed network behavior [80-82], the
subsequent analysis is conducted without an explicit modeling of the
shadow fading. (The density A, depends on the type and strength
of the shadow fading as well as the actual positions of the base sta-
tions.) The analysis will be generalized to networks featuring IA,
D2D or full-duplex communication in subsequent chapters.

By Slivnyak’s Theorem, we consider a receiving user at the origin
(cf. Fig. 2.1) and focus the analysis on its link, indexed by 0. De-
note by 7 the distance between the user at the origin and the kth
base station. Without loss of generality, we index the base stations
in increasing order of 7y, i.e., ry < rp+1 Vk and the base station
corresponding to rq is the serving base station of the typical user.

Throughout the dissertation, we largely focus on interference-limited
networks with negligible thermal noise or, equivalently, P/o2 — co.
In light of the foregoing considerations, the observation yp in (2.5)
can be written as

yo =/ PB T(]_nh(]S(] + 2, (2.24)
with

Nk

2y = PBr, "his. (2.25)

B
Il

1
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/

Figure 2.1: Tesselation of a cellular network with base station loca-
tions sampled from a PPP. Base stations are indicated by o markers
and the typical user is indicated by 4+ marker.

2.4 Local-average SIR Distribution

Recalling the intended signal term in (2.24) and the aggregate inter-
ference in (2.25), the local-average signal-to-interference ratio (SIR)
at the typical user is

—n
"o

Dok Ty
The spatial distribution of the transmitter locations induces a dis-
tribution of its own for pg, i.e., a long-term distribution for the
local-average SIR, which is derived next. As the exact distribu-
tion of the local-average aggregate interference generally does not
admit a closed-form, certain approximate characterizations are pro-
posed [59, 72, 74, 86]. Here, we adapt the approach in [59]: obtain
the distribution of 1/pg exactly in the Laplace domain and then
express the Laplace numerical inverse via Euler series expansion.

Po (2.26)

Lemma 2.5. For a given intended link distance rg, the cumulative
distribution function (CDF) of pg is

1N (LY SR ED" [ Ll ()
Fpo|ro(7)~1—’72|_;<€>z Do §R{ L } (2.27)

m=0

where

A+12
_ <+127an (2.28)
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while Dy = 2 and Dy, = 1 for m > 1. The parameters A, L and M
control the accuracy, with suggested values for multiple-digit preci-
sion being A = 184, L = 11 and M = 15 [87]. For our purposes,
A =921, L =5and M = 8 yield a more-than-sufficient accu-
racy [88].

Proof: See Appendix A.4.

To solve Ly ,(r,(*) in (2.27), we effect the change of variables Ry —
9, Re — 0o and 8 — r{ in Lemma 2.4 (cf. (2.22)) to obtain

T 2 _ (=2
‘Cl/po\v"o( ) = exp <7T/\b7“0 + Tb ( Tt )" I ( 7 >> (2.29)
from which the CDF F

specializes to

polro
Fo\ro( )
p g3 & Mo (=pm TApT2 (”t)%l_“(*?%)
a2 l)% |

(2.30)

Eq. (2.29) can be unconditioned via the density function in (2.14)
to obtain

L1/ (1) / L1 o (8)Fro (0) o (231)

_ —1
- (_720 (2.32)

where (2.32) follows from evaluating the integral by virtue of [89, Eq.
3.326.2]. Consequently, the unconditional CDF F),(-) specializes to

5 (L) 3 EL )
Foo(v) =1-7v5¢ < ) R -
PO 2'— 0 € m—0 Dm [/1“!‘%1—\ <—7’L)

(2.33)

Example 2.6. Consider a network with single-antenna base sta-
tions of density A, = 7.95 base stations/km? (which amounts to an
average of one base station per circular cell of radius 200 m) and
with the pathloss exponent nn = 3.75. Shown in Fig. 2.2 is a compar-
ison of the CDFs F, |, —150(7) and Fj,(7) in (2.30) and (2.33), with
A =9.21,L=>5and M = 8, against their Monte-Carlo counterparts.
An excellent match is observed, supporting the validity of the Euler
series expansion of the inverse Laplace transform.
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Figure 2.2: CDF of forward link local-average SIR in a cellular
network with single-antenna base stations.

2.5 A Novel Interference Modeling Approach

As can be gauged from (2.25), conditioned on {ry}, % involves a
linear combination of terms involving products of Gaussian variates,
which are altogether difficult to manipulate and conduct analysis
with. Albeit certain characterizations of its exact distribution are
plausible [48, 90], in the dissertation we take an alternative path that
promises a better payoff in terms of analytical insight. The most
novel aspects of our modeling framework are summarized below with
the validating examples.

A Gaussian Approximation for the Interference Distribution

The short-term distribution of z{, is modeled as zero-mean complex
Gaussian with matched conditional variance E[|2)|?|{r\}], where the
expectation is over data and fading distributions. This step yields,

E [|l20*{ri}] = > PBr"E [hesisihil (2.34)
k=1
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= PBr,"E [hyhi] (2.35)
k=1

=> Ppr" (2.36)
k=1

where (2.34) follows from the mutual independence of {s;} while
(2.36) follows from the fact that hj is a zero-mean unit-variance
random variable.

Besides the central limit theorem, there are information-theoretic
arguments in favor of modeling the aggregate interference as com-
plex Gaussian with a power dictated by the locations of the inter-
ferers:

e If the exact distribution of the interference is either unknown
or ignored by the receiver, with a codebook and decoder de-
signed to handle Gaussian noise, then the achievable spectral
efficiency is precisely as if the interference were indeed Gaus-
sian [91]. Thus, the spectral efficiencies obtained with this
model can be interpreted as those achievable with standard
Gaussian-noise signaling and decoding.

e Gaussian noise is the worst-case additive noise in wireless net-
works with Gaussian signaling [92]. Thus, the results obtained
under our model are operationally more relevant than the
quantities computed under the non-Gaussian interference in
(2.4) and the former are always (tight) lower bounds to the
latter.

Classification of the Interference Terms

Note that E[|z)|?[{rx}] in (2.36) consists of infinite terms, which is
still unwieldy. Faced with this obstacle, we classify the interference
terms into two sets depending on whether they correspond to nearby
or faraway transmissions. Denoting by K’ the number of interferers
in the first set, the K’ terms are modeled explicitly and the rest are
replaced by their spatial average (cf. Fig. 2.3). The choice of K’
should be chosen to balance simplicity and accuracy in capturing
the performance for specific user locations. This step yields,

K’ 0o
E[IzéIQITk}%PBZr;”JrPBE@[ > r;”] (2.37)

k=1 k=K'+1
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Figure 2.3: Interference modeling illustration where the intended
link distance is rg, and the closest K’ = 3 interfering base stations
are explicitly modeled. The aggregate interference emanating from
the remaining base stations is replaced by its expectation over the
corresponding interferer locations.

K’
2 AP
= PRy g 5 P2, (2.38)
k=1
where the expectation in (2.37) is evaluated by virtue of Lemma 2.3
with Ry — rg and Ry — oo.

With the interference thus modeled and recalling the intended signal
term in (2.24), the instantaneous SIR experienced by the typical
receiver is

Pﬁ To_nE UhoSoP‘ho]

SIRy = < (2.39)
PB 3. "+ e
= po|hol? (2.40)
where the expectation is over sy ~ N (0, 1) and
—1
po = "o (2.41)

KI

2T\
Z Tkn‘{' - bTK/
k=

is the local-average SIR at the user. For a specific network realiza-
tion, i.e., given {rk}leo, the value of pg becomes determined. Since
|ho|? is exponentially distributed with unit mean, it follows from
(2.40) that the instantaneous SIR exhibits an exponential distribu-
tion with mean py and thus its conditional CDF is

FsiR|po(7) = 1 — e~ v/Po, (2.42)
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Figure 2.4: CDF of instantaneous SIR for rg = 50 m and rg = 150
m. In each case, A\, = 7.95 base stations/ka, n=375and K' =3
while rq, ro and r3 are set to their mean values.

Example 2.7. Consider A, = 7.95 base stautions/km2 and n = 3.75
as in Example 2.6. The number of interference terms explicitly mod-
eled equals K/ = 3 and 7, for k = 1,..., K’ is set to the expected
distance to the kth nearest neighboring point in a PPP with density
b [93]. This gives r, = I'(0.5 + k) /(v/7Ap['(k)). Shown in Fig. 2.4
is a comparison between Fgir|,,(7) and the numerically computed
CDF of the instantaneous SIR with z{, as in (2.25).

A satisfactory agreement is observed in every case, supporting the
validity of a complex Gaussian approximation for the interference
even if the information-theoretic arguments in support of a complex
Gaussian interference model were ignored. Similar agreement has
been observed for other values of the parameters.

As we demonstrate in the following section, the main advantage of
our modeling framework is a variable degree of spatial averaging,
which allows computing the spectral efficiency for both averaged
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and specific network geometries.

2.6 Spectral Efficiency

2.6.1 Specific Network Geometry

For a specific network geometry we recover well-known expressions
for Rayleigh fading, only with the role of noise played by the interfer-
ence [94, 95]. The ergodic spectral efficiency spawned by FSiRg|po (*)
in (2.42) is

Clm) = [ 108(1 +7) APatey () (2.43)
=el/mg <1> log, e (2.44)
o

where &,(¢) = floo t e~ <t dt is an exponential integral and pg was
given in (2.41). Through pg, the spectral efficiency depends on
ro,T1,-..,TK’, as well as on the pathloss exponent and the transmit-
ter density. The expression in (2.44) has a reduced degree of spatial
averaging that allows for a characterization of the performance of
users in specific situations, as demonstrated in the following exam-
ple.

Example 2.8. Reconsider Example 2.6 with A\, = 7.95 base sta-
tions per km?, n = 3.75, K’ = 3 and r, = I'(0.5 + k)/(v/ 7L (k))
for k = 1,...,K’. Shown in Fig. 2.5 is a comparison of C(pg)
against its simulated counterpart with z{, as in (2.25). As indicated
in Fig. 2.5, the simulated result corresponds to the exact mutual
information under the non-Gaussian interference in (2.25) for many
snapshots of the interferer locations corresponding to {r}°,, com-
puted through lengthy Monte-Carlo histograms and averaged over
many fading realizations. The match is very satisfactory, support-
ing the validity of our interference modeling approach: a complex
Gaussian approximation for the interference and averaging of weak
interference terms. Similar agreement has been observed for other
values of parameters.

2.6.2 Average Network Geometry

The link spectral efficiency C(po) can be further expected over pg in
order to characterize the average performance over all possible ge-
ometries, as in the conventional stochastic geometry analyses. The
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Figure 2.5: Ergodic spectral efficiency as function of rg for Ay =
7.95 base stations/km?, n = 3.75, K’ = 3, and {r,}/ | set to their
mean values.

Table 2.1: Average link spectral efficiency (b/s/Hz) as function of
n

] n ‘ Analytical \ Simulation (99% confidence interval) ‘

35 1.61 1.63 (£0.008)
10 2.00 2.03 (£0.0109)
15 2.39 2.45 (£0.0117)

spatially averaged forward link spectral efficiency of a cellular net-
work with Rayleigh fading is (cf. Appendix A.5)

A > logy e —n/2
C = / _ dr. 2.45
o T4y T(=2/ny)2n ") (2.45)

Example 2.9. Shown in Table 2.1 is a comparison of C' computed
via (2.45) against its simulated counterpart for n = 3.5, n = 4 and
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n = 4.5, which essentially delimit the range of pathloss exponents
encountered in terrestrial systems. Again, the simulated result cor-
responds to the exact mutual information under the non-Gaussian
interference in (2.25) averaged over many fading realizations, trans-
mitter and interference locations. The match is excellent, again
evincing the goodness of our interference modeling approach.

Altogether, our developed framework enables more meaningful re-
sults and compact expressions than those in previous works, while
preserving the necessary precision.

2.7 Chapter Summary

The signal and propagation models that will be used throughout the
dissertation have been described. Important results of stochastic
geometry in the context of wireless network analysis have been pre-
sented. A new interference modeling framework has been introduced
and the two principal metrics used to quantify the system-level per-
formance of wireless networks, namely the local-average SIR and the
ergodic spectral efficiency, have been defined. Finally, by leveraging
the framework, the ergodic spectral efficiency is characterized for
both averaged and specific geometries.



CHAPTER 3

Interference Alignment for
Cellular Networks

No model is ever a perfect fit to reality. Deductions based
on the model must be regarded with appropriate suspicion.

Solomon W. Golomb, “Mathematical Models: Uses and
Limitations”, IEEE Trans. Reliab., 1968.

This chapter generalizes the framework in Chapter 2 to incorporate
multiantenna transmission schemes such as IA, and characterizes the
system-level benefits of TA over the standard SU-MIMO in cellular
networks.

3.1 Related Work and Motivation

At the expense of instantaneous CSI at both transmitters and re-
ceivers, TA ensures that the interference from all participating users
aligns at each receiver along a certain subspace leaving the remain-
ing dimensions free of interference [14, 15]. In toy settings where all
the users can participate in the alignment and the CSI is perfect,
IA can deliver unbounded growth of the spectral efficiency with the
SNR.

The favorable IA behavior encountered in small toy settings, how-
ever, does not extrapolate to larger wireless networks. Depending
on the antenna counts, only a limited number of users can partic-
ipate in the alignment; with two antennas, for instance, at most

37
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three users can participate. This necessarily leads to the formation
of relatively small IA clusters that are inevitably exposed to inter-
ference from all other users in the system. Thus, even the subspaces
that TA protects from in-cluster interference are bound to experi-
ence out-of-cluster interference [96]. In addition, IA restricts the
spatial dimensionality of the transmit signals; in the two-antenna
three-user example, the spatial dimensionality of the signals can-
not exceed one; without IA, in contrast, a two-dimensional signal
could be transmitted applying standard SU-MIMO techniques. Al-
together then, IA can create subspaces with reduced interference in
exchange for a sacrifice in signal dimensions. Naturally, the question
arises of whether and when this tradeoff is justified in the context of
modern wireless networks. This question is precisely what motivates
the work presented in this chapter.

In contrast with some prior works on the system-level performance
of TA, which relied on simulations over grid networks [19-22], we
set out to address the matter analytically in order to attain broader
generality and more pronounced guidance in the conclusions.

In order to address the afore-posed question of whether and when
the dimensionality sacrifice entailed by IA is advantageous, we posit
SU-MIMO as a baseline for interference-oblivious techniques that
utilize all available dimensions for signalling. SU-MIMO is a con-
servative baseline in the sense that it has less stringent requirements
than TA in every respect, chiefly in terms of CSI. Then, for given an-
tenna counts and relevant propagation conditions, we seek to com-
pare the system-level spectral efficiencies achievable reliably with
TIA and with SU-MIMO. In order to keep the comparison indeed
conservative, assumptions that are highly favorable to IA are made
throughout. Specifically:

e Perfect transmit and receive CSI is assumed, with all the cor-
responding overheads neglected.

e Instantaneous availability of the optimum IA precoders is also
assumed, neglecting the iterative processes that might be re-
quired to actually compute such precoders.

e The clusters of base stations effecting IA are determined dy-
namically, with (user) locations and propagation conditions
taken into account. This improves the performance of IA rel-
ative to static clusters defined a-priori [22, 97, 98].
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e Interference-limited conditions are considered, with thermal
noise neglected. Everything else being the same, this maxi-
mizes the benefits of TA.

The analysis is conducted for the downlink, which is the link that
seems more apt to accommodate TA.

3.2 System Model

Consider a cellular network with base stations located according to a
homogeneous PPP @, ¢ R? with density A,. The user locations are
modeled by another independent PPP &, with density A,. The base
stations and users are respectively equipped with Ny transmit and
N, receive antennas, and each link carries d < N,;, = min(NVg, Ny)
signal streams. We denote by P, the fixed power transmitted by
each base station. By Slivnyak’s Theorem (cf. Section 2.2.4), we
consider a receiving user at the origin and focus the analysis on its
link, which can serve as the typical link in the network.

A set of base stations jointly performing IA are collectively referred
to as a cluster. Denote by r; the distance between the user at
the origin and the kth base station. Without loss of generality, we
index the base stations in increasing order of 7y, i.e., 7 < rg41
Vk. We consider dynamic clustering, where the K base stations
with the strongest links or, equivalently, the smallest distances,
{ro,...,7x—1}, compose the IA cluster. The first of them (k = 0)
acts as the serving base station.

In light of the foregoing considerations, the observation yo € CNr*1
at the user of the typical link can be written as

K-1 5
Yo = Z ?bﬂ . THyxy, + 2 (3.1)
k=0
where the leading term contains the in-cluster signals while
oo
Z6 = Z %,@ T];nHkin (3.2)
k=K

represents the out-of-cluster interference. In turn, 5 is the pathloss
intercept, x; € CM*1 is the signal transmitted by the kth base
station, and Hj, € CN*M is the fading matrix between the kth base
station and the user, perfectly known at both ends. The entries of
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H, are IID samples drawn from Ng(0,1). The signal transmitted
by the kth base station is @) = Vis;, where Vi, = [vg1---vpd] €
CNexd is a unitary precoder (meaning a matrix whose columns are
orthonormal) and s, € C4*! is a vector of IID complex Gaussian
symbols satisfying E[sys}] = I4. With that, the power is uniformly
allocated across the d signal streams and E[|z|?] = d. At the
receiver, the kth user applies a unitary filter Wi.

3.3 Interference Alignment

With perfect CSI and N,,;, > 2d, IA yields a d-dimensional channel
free of in-cluster interference for every link iff [99]

Ni+ N, > (K +1)d. (3.3)

The precoders Vj, ..., Vik_1 and the receive filter Wy that effect IA
satisfy

rank(WiyHyVy) =d (3.4)

WiyHLV, =0 k=#0 (3.5)

as well as similar conditions for the other K — 1 users being served
concurrently in the same cluster. After applying the filter Wy =

[wo1, ..., woq] € CN*d the receiver at the origin observes
* Pb -n * * !

where, by virtue of (3.5), there is no interference contribution from
the in-cluster base stations.

Throughout this chapter, the precoders and receive filters are ob-
tained through the Min-Leakage algorithm [18] with the overheads
associated with running this algorithm neglected.

3.4 Out-of-Cluster Interference Modeling

In contrast with previous works (cf. [98, 100-103]), the out-of-
cluster interference z{, is modeled as per the approach in Section
2.5 whose validity for IA purposes is examined later in the chapter.

As per the first step, 2 is modeled as a zero-mean complex Gaussian
random vector with matching covariance E [z{z(]. From (3.2), the
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Figure 3.1: Out-of-cluster interference modeling illustration where
the intended link distance is rg, the IA cluster size K = 3, and
the interfering base stations within the cluster are explicitly mod-
eled. The aggregate interference ‘7(2),out emanating from outside the
IA cluster is replaced by its expectation (over the corresponding
interferer locations).

conditional covariance of 2, for given interferer locations is

B (a4 )] = 120 3 v E[Hywwwi H] (3.7
k=K

S EEY)EV 6
k=K

=PB> 'y, (3.9)
k=K

where (3.7) follows from the mutual independence of {x}}7° ;- while
(3.9) follows from the fact that (HjVj) is an Ny X d matrix with
IID zero-mean unit-variance entries such that E [( Hy Vi) (HVi)*] =
d Iy,. Defining 0§ ., = Yo i 7+ We can write

E [z(’)zé* |{7’k}} = PbaaoutINr. (3.10)

Next, as per the second step (cf. Fig. 3.1), the interfering base
stations within the cluster surrounding the user of interest are ex-
plicitly modeled while the aggregate interference emanating from
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outside the IA cluster is replaced by its expected (over the inter-
ferer locations) value. Then,

UO out —

Z Bry ] (3.11)

and the potency of the stochastic modelling approach is shown in full

force by the fact that this expectation can be computed explicitly,

yielding (cf. Lemma 2.3 with Ry — rx_1, Re — 00 and A — Ap)
5 27'(')\]0[3 2—n

UO,out n— 9 Tr-1- (312)

With the out-of-cluster interference thus modeled, and recalling the
intended signal term in (3.6), the instantaneous SIR experienced by
the fth signal stream of the typical user is

BB CTE [|[W HoVosoldl? |{Hi)]
SIRg ¢ =

020 (3.13)
Pb0(2),0ut

where [-]; indicates the ¢th entry of a vector and the expectation in
the numerator is over sg, conditioned on the fading (and therefore
on the precoders and receivers). Evaluating such expectation,

BB

.
SIRg, = 42 (3.14)
PbJO,out
: 1
: (315)
where
—n
,
g = 720 (3.16)
JO,out
n—2
Tr_11m—2
= 3.17
rd 27\ (3.17)

is the local-average SIR at the user of interest.

Note that {SlRo’g}gzl are mutually dependent, through Hy, but
identically distributed and hence to characterize the marginal distri-
bution of the per-stream SIR we can drop the stream index £. Such
characterization is the object of Section 3.5, as a stepping stone
towards the evaluation of the spectral efficiency in Section 3.6. Re-
ceivers whose performance depends on the joint distribution of the
SIRs of all d streams are tackled directly in Section 3.6.
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3.5 SIR Distribution

In this section we provide three different characterizations of the
marginal per-stream SIR distribution, each accompanied by a cor-
responding interpretation. We begin with the most informative one,
and then proceed onto more marginalized forms thereof.

3.56.1 Specific Absolute Cluster Geometry

For given locations, i.e., for given rg,...,rx_1, the value of pi
becomes determined. Since vy, and wg are columns of matrices
that are unitary and independent of Hy, the effective instantaneous
gain |w87 €H01)07g|2 for any stream £ is exponentially distributed with
unit mean [18]. It follows from (3.17) that the instantaneous per-
stream SIR exhibits Rayleigh fading with local-average pg*/d and
hence its conditional CDF is

Fsipor(7) =1 — e=9/P5" (3.18)

Through pg*, the above distribution depends on the distance to the
serving base station, rg, and on the distance delimiting the TA clus-
ter, rx_1, and it can be utilized to establish the performance of
IA as a function of these two key quantities. In contrast, the loca-
tion of the other in-cluster base stations, r1,...,rKx_9, is immaterial
because, by virtue of IA, they do not contribute any interference.

3.5.2 Specific Relative Cluster Geometry

Let us now marginalize the instantaneous SIR over ro and 7rx_1
while keeping their ratio ag = ro/rx—_1 fixed. Note that 0 < ap < 1
with probability 1.

Proposition 3.1. For a given ag = ro/rx_1,

2a7d \ X
FsiRglag(7) =1 — (1 + " _02 ’7> : (3.19)

Proof: See Appendix B.1.

In contrast with (3.18), which—through p{*—depends on the base
station density Ay, the CDF in Proposition 3.1 no longer depends on
Ap- In this distribution, the geometry of the cluster is captured by
a single parameter, ag, which informs of the location of the serving
base station relative to the edge of the TA cluster and thus relative
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to the out-of-cluster interferers. Put differently, ag informs in a com-
pact fashion of where the user of interest is within the cluster: values
close to 0 map to situations where the user is in the inner part of the
cluster while values close to 1 map to situations where the user is
in the periphery thereof. As will be seen, this characterization, con-
veniently scale independent, is highly indicative of IA performance.
Additionally, as one would anticipate, ag is also tightly related to
the marginalized local-average per-stream SIR, something that can
be verified by applying (3.19) to compute

/0 Y dFsiRjao (7) = 2aTd (K —1) (3.20)
which must be interpreted with care because ag and K are not inde-
pendent: its presence in the denominator notwithstanding, a larger
K increases (3.20) because, everything else being the same, it results
in a smaller ap and such contraction is magnified by the pathloss
exponent 7 ultimately shrinking the denominator.! A proper inter-
pretation of the marginalized distribution in Proposition 3.1 is of
the utmost importance. It does not correspond to the distribution
of the SIR experience by any actual user in the system, but rather
it is a stepping stone towards the computation of other quantities
later in the chapter.

At this point, we validate Fsr,|q,(-) by contrasting it with its coun-
terpart, obtained numerically, where 2 is as in (3.2).

Example 3.2. Shown in Fig. 3.2 is a comparison of Fgiry|q,(*)
with the simulated CDF of the corresponding SIR with z{, as in
(3.2). The comparison is conducted for K = 3 and ag = 0.45, for
K =5 and a9 = 0.32, and for K = 7 and a9 = 0.25, in all cases
with n = 4.

A satisfactory agreement is observed in every case, supporting the
validity of a complex Gaussian approximation for the out-of-cluster
interference. Similar agreement has been observed for other values
of the parameters.

3.5.3 Average Cluster Geometry

As the final step in the characterization of its distribution, we can
average the instantaneous per-stream SIR over the ratio ag.

LOur formulation in this section is tailored to IA and hence it is only valid
for K > 1. A slightly different approach would be required for K = 1.
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Figure 3.2: CDF of marginalized instantaneous per-stream SIR for
IA with d = 1 and n = 4. Analytical and simulation results for
K =3 and ap = 0.45, for K =5 and a¢p = 0.32, and for K = 7 and
ag = 0.25.

Proposition 3.3. Unconditioned on ag,

K—2

L (-1)"I(K)
Foir, (7) =1 7;) n(K—-2—n)!(n+1)
2 F

2 1 2 1) —2
<K7 (n + );1+ (n+ ); dvy
n n—2

> (3.21)

where o F} (a,b;c;z) is the Gaussian hypergeometric function [104].

Proof: See Appendix B.2.

Marginalized to the point that it depends only on the cluster size
K and the number of signal streams d, the expression in Propo-
sition 3.3 is less informative than the ones earlier in this section.
In particular, it does not allow discrimination between situations
that are either favorable or adverse to IA. And, as was the case
for Proposition 3.1, it does not correspond to the distribution of
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the SIR experience by any actual user in the system, but rather
it is a stepping stone towards the computation of average quan-
tities. Moreover, its limited significance is buttressed by the fact
that, barring an exclusion zone around the serving base station, the
local-average SIR unconditioned on ag does not exist.

3.6 Spectral Efficiency

The SIR improvements brought about by TA come at the expense
of a sacrifice in the dimensionality of the transmit signal. Despite
having N; transmit and N, receive antennas, only d < N,,;, parallel
signals are conveyed and, therefore, to have a complete picture it
is essential to look at the spectral efficiency, which is where the
balance of signal dimensionality and SIR emerges. This section
is devoted to characterizations of the spectral efficiency for each
of the geometry marginalization scenarios put forth in Section 3.5.
Precisely, we characterize the ergodic spectral efficiency, which is
the most operationally relevant quantity in contemporary systems.

3.6.1 Specific Absolute Cluster Geometry

For a specific absolute cluster geometry we recover well-known ex-
pressions for Rayleigh fading [94, 95], only with the role of noise
played by the out-of-cluster interference. For d = 1, the ergodic
spectral efficiency spawned by Fgg, p(I)A(‘) in (3.18) is

Cabs(pBA) = /0 10g2(1 + '}/) dFSlRO‘,Og)A (’)/) (322)
1

= el/p%)Agl <pIA) 10g2 e (323)
0

where pi* was given in (3.17). Through pi*, the spectral efficiency
depends on rg and rg_1, as well as on the large-scale propagation
parameters and the base station density.

For d > 1, (3.23) generalizes differently depending on whether the
receiver applies separate per-stream decoding or joint decoding of
the d streams. With separate per-stream decoding,

1A

Cabs(p%)A) —d ed/péAgl <pd> 10g2 e (324)
0
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while, recalling (3.6) and (3.16), under joint decoding

IA

O (o) = E[logQ det <I+ pé)WJHO‘/O‘/E)*HSWO> IPBA] (3.25)

with expectation over the distribution of the effective fading compo-
nent WiHyV;, € C9%d. Given the unitary nature of V and Wy and
their independence from Hj, we have that Wy HyVj has IID entries
drawn from N (0,1). It follows that the right-hand-side of (3.25)
is nothing but the ergodic spectral efficiency of a d x d Rayleigh-
faded MIMO channel with IID entries and average signal-to-noise
pi*, under uniform power allocation, and thus

(0l = G () (3.26)
where the function [105]

m—1 7 2j . .
B N 21— 23
i om0 S 3 (%)

i=0 j=0 ¢=0
(272N — 2N\ (=1 (2)! (Vo = N + 0)!
2j — ¢ 22 510 (N — N + 5)!
Nmax_ min+£
N,
() “
q=0 g

with N,.. = max(Ng, N;) returns the ergodic capacity of a N, x Ny
Rayleigh-faded MIMO channel with IID entries and average signal-
to-noise p.

3.6.2 Specific Relative Cluster Geometry

The spectral efficiency expressions in (3.24) and (3.26) depend,
through pg*, on both 9 and rx_1 and they are thus fully general—
in fact unnecessarily general for the purpose of assessing the benefits
of TA. For that purpose, specifying the ratio ag is largely sufficient,
as that allows marginalizing out the network dimensions while re-
taining the discrimination of relative in-cluster positions. Hence,
we next seek a leaner characterization in the form of the average
spectral efficiency over all possible cluster geometries that share a
given ay.

For arbitrary d under separate per-stream decoding, the marginal-
ized ergodic spectral efficiency is

O™ (ag) = dE |E [logy(1 + SIRg) | 2] | -2 :ao] (3.28)

TK—1
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Figure 3.3: Marginalized ergodic spectral efficiency of IA as function
of ag for K =5,d=1and n=4.

—dE [1og2(1 +SIRy) | 22 = ag (3.29)
— /0 logy(1 + ) dPsiro(aq (7) (3.30)

and it is at this point that the conditional distribution Fgirq,(7)
derived in Proposition 3.1 comes handy. Applying it to (3.30), the
following result is obtained.

Proposition 3.4. For a given ag under separate per-stream decod-
ing,

__dlogye

Crel (Cl())

2d a

o <1,K;K 11— a0> . (3.31)
n—2

Proof: See Appendix B.3.

Example 3.5. Shown in Fig. 3.3 is a comparison, for K =5,d =1
and n = 4, of C™'(ag) against its simulated counterpart with zj
as in (3.2). The simulated result corresponds to the exact mutual
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information under the non-Gaussian interference in (3.2), computed
through lengthy Monte-Carlo histograms and averaged over many
fading realizations and out-of-cluster interference locations.

In turn, for d > 1 under joint decoding,

C"(ao) = E [CH3"° (0}) | 7225 = ao (3.32)

TK-1

where the expectation is over rg and rx _1, conditioned on ro/rgx_1 =
ap. The right-hand side of (3.32) admits a closed form, given next.

Proposition 3.6. For d > 1 and a given ag, under joint decoding,

C™!(ag) = logy(e) 3 i: i (Q;l)fj <2i ) Qj) (2]> (25 )

i i
1=0 j=0 ¢=0 J J

¢
1 2d a!

. Fl1,K; K+1;1— 0.
Tnz()m+K2 1<7 ym+ K+ 1 77_2>

(3.33)

Proof: See Appendix B.4.

3.6.3 Average Cluster Geometry

The spectral efficiencies in the previous section can be further ex-
pected over ag in order to characterize the average performance over
all possible geometries. As was argued when the corresponding ex-
ercise was conducted for the SIR, this removes information on which
the benefits of TA hinge, and hence what can be determined there-
after is only the average benefit of utilizing IA indiscriminately for
all cluster geometries. At the same time, this computation evidences
yet again the analytical muscle of stochastic geometry, yielding in
compact form what in a deterministic model could only be attained
through lengthy Monte-Carlo simulations.

For arbitrary d under separate per-stream decoding,

C=d /Ooo logy (1 + ) dFsir, () (3.34)

where the unconditional SIR distribution Fsr,(-) is given in (3.21).
Remarkably, in that case the above expectation can be expressed
by means of the Meijer-G function [89]

a17-~-7an7an+1a---7ap
Gy | = 3.35
P < b17~~-7bmabm+17-~-7bq) ( )
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which is readily available in software packages such as Mathematica
or MATLAB.

Proposition 3.7. Under separate per-stream decoding,

n(n—2) K—2-n)
2(n+1)
od | —1,—K, 2D
Gl [ —— d (3.36)
33\ n—2|_1 1 _nt2n+l)
b ) 77
which, for n = 4, simplifies to
- dlogge o4 0,%,0,1—K
C’:WGZL4 d 0.0 12K 2-K |- (3.37)
yYy T 9y T 9

Proof: See Appendix B.5.
For d > 1 under joint decoding, C' = E[C§'d" (pp")] with expectation
over rog and rg_1, which pg* is a function of.

Proposition 3.8. Under joint decoding,
d—1 &+ 2j ¢ . . . .
~ 2logye (=1)° (20 —25\ (27 (2]
= n Z Z Z 22i—¢ 7 —j j /
i=0 j=0 (=0

01/ 2d PR (—n

= n—2 !

mn+2(n+1)
_(m+1)7_<m+K>7_ n

_ _ 1. _n(m+1)+2(n+1)
(m+1), -1, :

G2’3 2d

3,3 n_2

(3.38)

Proof: See Appendix B.6.

3.7 System-level Benefits of IA

Having derived expressions for the ergodic spectral efficiency of IA,
we can now put these expressions to work with the objective of
ascertaining the system-level benefits of IA with respect to the SU-
MIMO baseline.
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3.7.1 SU-MIMO Baseline

As in TA, we consider a uniform power allocation for SU-MIMO,
under which the ergodic spectral efficiency for a given absolute clus-
ter geometry equals CY™ (pg™) where the local-average SIR ac-
counting for in-cluster and out-of-cluster interference, both present
in SU-MIMO, is

—n

MIMO "o
PO = (3.39)
1 T+ 03
1
= (3.40)

K—1 (ag\" 1
S (3)

where ay, = ri/rK_1.

The average spectral efficiency over all geometries sharing some com-
mon ag, . ..,ax—1 equals

MIMO MIMO Tk _
[c MO (pHNO) | 1 = (3.41)
with expectation over ro, ..., rg_1, which pf™® is function of, con-

ditioned on ry/rx_1 = ay for k=0,...,K —1.

Averaged over all cluster geometries, the SU-MIMO spectral effi-
ciency is

E [CRom (0™ )] (3.42)

with unconditional expectation over rq,...,rg_1.

3.7.2 Benefits for Specific Cluster Geometries

We begin by establishing the benefits of IA for specific geometries,
in order to identify the range of situations in which IA outperforms
the SU-MIMO baseline. For this purpose, and in order to make
assessments that do not rest on the absolute scale of the network,
we apply the expressions derived for relative cluster geometries. We
begin by equating

TK—-1

CUo) = B[O oy =] (349)

and, utilizing the expressions derived for C**'(-), pg*, CNy, (+) and
po™© | numerically determine the values for ag, . .., ax—; that define
the boundary between the sets of geometries where TA and SU-

MIMO are each superior.
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Figure 3.4: TA (with K = 3 and d = 1) v. SU-MIMO (with Ny =
N, =2) for n = 3.5 and n = 4.

Example 3.9. Let K = 3 and d = 1, which can be supported
with Ny = N, = 2. Shown in Fig. 3.4 are the pairs (ag,a1) where
TA and SU-MIMO are each superior for n = 3.5 and n = 4, which
essentially delimit the range of pathloss exponents encountered in
terrestrial systems. TA outperforms SU-MIMO in 20.5% and 26.7%
of situations for n = 3.5 and n = 4, respectively.

Concentrating on nn = 4, a more detailed snapshot of the comparison
in Example 3.9 is offered in Fig. 3.5 where a contour plot of the
relative improvement of IA over SU-MIMO is given. Notice that
relatively important gains (say a doubling of the spectral efficiency)
are attained in only a very small subset of geometries, specifically
when ag is relatively small (weak out-of-cluster interference) and a;
is similar to ag (strong in-cluster interference); only then does the
removal of in-cluster interference compensate the sacrifice of signal
dimensions.
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Figure 3.5: Spectral efficiency gain of IA (with K = 3 and d = 1)
over SU-MIMO (with Ny = N, = 2), for n = 4.

To broaden the scope of the foregoing comparison, we next consider
higher values of d and K along with the correspondingly higher
values of Vy and N;.

Example 3.10 (Maintain K, increase d). Relative to Example 3.9
with n =4, for Ny = N; = 4 and d = 2 (with K = 3) the subset of
geometries where IA outperforms SU-MIMO shrinks to 24.6% with
joint decoding and to 15.3% with separate decoding.

Example 3.11 (Maintain d, increase K). Relative to Example 3.9
with n =4, for Ny =2, N, = 3 and K = 4 (with d = 1) the subset
of geometries where TA outperforms SU-MIMO shrinks to 19.4%.

Short of an exhaustive comparison for all combinations of d and
K (and the corresponding Ny and NV;), the above strongly suggest
that IA can outperform the baseline in at most about a quarter of
network geometries, often less.
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Table 3.1: Spatially averaged spectral efficiencies of IA and SU-
MIMO for various cluster configurations

IA SU-MIMO
Configuration \ (b/s/Hz) || Configuration \ (b/s/Hz)
K=3d=1 3.03 N =N, =2 3.89
K=3d=2 5.84 N, =N, =4 7.70
K=5d=1 3.66 Ny =N,=3 5.76
K=5d=2 7.06 Ny =N,=6 11.39
K=7,d=1 4.08 Ny =N,=4 7.70
K=7d=2 7.87 Ny =N, =38 15.08

Since the potential network geometries are not equally likely, a judg-
ment based on average spectral efficiencies requires a further step.

3.7.3 Average Benefits

The small share of geometries in which A outperforms the SU-
MIMO baseline strongly suggests that, barring the possibility that
those geometries occur very frequently, a blanket utilization of TA
shall not improve the spatial averaged spectral efficiency over all
geometries. To quantify this precisely, we can invoke the expressions

derived for average cluster geometries. Shown in Table 3.1 we have

MIMO MH\/IO)

a comparison of C'™* and E [C New, (PO } for several values of K

and d, and corresponding values of Ny and Ny, with n = 4. In
every case, the average spectral efficiency of TA is inferior to that of
SU-MIMO.

Although a blanket utilization of A is not beneficial, there are situ-
ations (cf. Fig. 3.5) in which it is indeed advantageous. This points
to a switched scheme that resorts to IA or SU-MIMO, whichever
is best, depending on the geometry. From the joint distribution of
aog,--.,0K_1, the average gain of such a switched scheme can be
quantified.

Example 3.12. For K = 3, the average gain of a switched scheme
relative to standalone SU-MIMO is 3.4% for d = 1 and 2.9% for
d=2.
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3.8 Conclusions and Contributions

Leveraging the analytical potency of stochastic geometry and armed
with a new modeling approach for out-of-cluster interference, we
have derived analytical expressions for the ergodic spectral efficiency
of TA. From these expressions, we observe that a universal utilization
of IA in cellular networks would be ill-advised. TA can help in cer-
tain sets of base station and user locations—namely those resulting
in strong in-cluster and weak out-of-cluster interference—and for
users encountering such geometries the benefits can be substantial.
However, these geometries are relatively infrequent and the ensuing
improvements in terms of average spectral efficiency for the system
are rather minute. The above observations have been made under
assumptions highly favorable to IA and with a conservative baseline
that does not even fully exploit the available CSI. With the degree
of CSI required for TA, a superior MU-MIMO baseline could be im-
plemented. Overheads associated with precoder computation [23]
have also been disregarded, which is the focus of the next chapter.

Non-unitary precoders and MMSE receivers would improve upon
pure IA, but mostly in geometries where baseline schemes are al-
ready preferable.






CHAPTER 4

Pilot-Assisted Interference
Alignment

The formulation of the problem is often more essential than
its solution, which may be merely a matter of mathematical
or experimental skill.

Albert Einstein

The objective of this chapter is to assess the robustness of IA in
operationally relevant continuous fading. To conduct the analysis,
we consider an isolated K-user interference channel setting, which
is a favorable model for A operation. We note that this interfer-
ence channel can be representative of realistic cellular networks only
within a certain SNR range (cf. Chapter 3), for instance, network
geometries corresponding to strong in-cluster and weak (or negligi-
ble) out-of-cluster interference.

4.1 Related Work and Motivation

With instantaneous and perfect CSI at transmitters and receivers,
TA maximizes the number of interference-free signaling dimensions,
i.e., the number of degrees of freedom (DoF) in a K-user interfer-
ence channel [16]. Although recent results indicate that the instan-
taneous nature of the CSI may be dispensed with [106], the need for
the CSI to be perfect seems unavoidable for the alignment to yield
the corresponding number of DoF. This motivates the interest in
assessing how IA might perform in the face of some inevitable CSI

57
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imperfections. Broadly speaking, the issue of imperfect CSI involves
three intertwined aspects:

(1) Fundamentally, it cannot be decoupled from the reality of fad-
ing selectivity. If the fading were not selective, the CSI could
be arbitrarily precise; it is the selectivity that curbs the num-
ber of observations of each fading realization making it impos-
sible to gather perfect CSI.

(2) An arguably less fundamental, but, in practice, equally rele-
vant matter is the utilization of pilot symbols to obtain the
CSI at the receivers. Pilots imply overhead.

(3) Finally, there is the issue of rendering the CSI gathered at
the receivers available also to the transmitters; this is simpler
with TDD or with full-duplex, because of fading reciprocity,
and more challenging with FDD, where explicit feedback is
unavoidable.

Some studies on the performance of TA with imperfect CSI have
been put forth recently. In reference to (1) above, [107] bounded,
by both above and below, the sum spectral efficiency achievable
by IA in the face of noisy CSI. The impact of imperfect CSI and
antenna correlation were jointly quantified in [108], where an ap-
proximate closed-form expression for the corresponding SINR was
derived. Also, [109] presented simulation results suggesting that IA
may be very fragile when (1) is accounted for; however, these results
were for unoptimized IA and disregarded pilot overhead.

In reference to (2), parameters such as the number of pilot symbols
and their power were optimized to maximize a mutual information
lower bound in [110], for the case of single-user MIMO. Pilot-assisted
transmission has subsequently been considered for IA, e.g., in [111],
which studied the impact of pilot overhead in terms of DoF, and
in [112], where it was argued that an unrestrained number of cooper-
ating base stations can actually be detrimental because of excessive
overhead.

Finally, in reference to (3), a variety of techniques have been pro-
posed for CSI feedback in FDD systems [113-116]. The authors
in [113] considered digital (quantized) feedback for single-antenna
interference channels with Grassmannian codebooks utilized to quan-
tize the channel coefficients. The results were subsequently extended
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to MIMO interference channels in [114]. It was shown in [113, 114]
that the number of DoF can be preserved in the face of quantized
feedback as long as the number of feedback bits scales with the SNR,
a result that directly extends to interference channels the original
findings of [117]. In [115], a novel CSI feedback scheme was proposed
by exploiting the structure of the TA equations and the Grassman-
nian representation of the CSI; the authors showed that this scheme
can achieve better spectral efficiency compared to a naive approach
(which simply quantizes the channel matrices independently) for a
given number of feedback bits, but still requires that such number
scales with the SNR in order to preserve the DoF. As an attractive
alternative to digital feedback, analog feedback! has been shown
to sustain the number of DoF achieved by IA [116]. However, all
the digital feedback analyses in [113-115] and the analog feedback
analysis in [116] assumed perfect CSI at the receivers.

This chapter jointly tackles (1)—(3) with the goal of studying the
robustness of TA with pilot and IA configurations optimized as a
function of the fading selectivity, SNR, number of users, and other
parameters of interest under both TDD and FDD. Additional re-
lated works include [118-120], which study (1)—(3) for the single-
user and the broadcast channels. Particularly relevant is [23], which
studies (1)—(3) for IA with block fading.

Like [23], most of the aforementioned references invoke block-fading
structures, and once (1)—(3) are jointly considered and IA is to be
optimized for minimum pilot and feedback overhead, it becomes
important to resort to continuous fading [121-123]. With this finer
model of the fading selectivity in place, the steps that must be
considered for a complete analysis of the IA operation are:

e Periodic transmission of forward pilots to allow for CSI gath-
ering at the receivers. The pilot symbols made available for
this task are referred to as common pilots.

e Computation of the receive filters on the basis of the foregoing
CSL

'In analog feedback, the estimated CSI at the receiver is represented as con-
tinuous values and conveyed to the transmitter without modulation and coding.
Then, the transmitter can recover the CSI from its observation (without demod-
ulation and channel decoding), which may be different from the information at
the receiver due to additive channel noise. However, in digital feedback, trans-
mitter could recover the same information as receiver learned if it passes channel
decoding.
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e CSI feedback, in the case of FDD, or exploitation of fad-
ing reciprocity, in the case of TDD with carefully calibrated
transceivers, to convey the CSI to the transmitters. In the
FDD case, analog feedback is our choice and the coherent
detection of the feedback entails a further process of reverse
channel estimation [23].

e Computation of the transmit precoders on the basis of the CSI
acquired by the transmitters.

e Transmission through the precoders of additional pilots, named
dedicated pilots, in order to enable estimation of the precoded
channel matrices at the receivers.? This, in turn, enables co-
herent detection of the subsequent payload data.

e Finally, transmission of such payload data.

All of the above steps, and the ensuing overheads, are considered
here, under continuous fading. The utilization of a continuous fad-
ing model releases the choice of the interval between IA updates,
which in block fading is implicitly given by the size of the fading
blocks whereas in our work it becomes a free parameter as it is in an
actual system. We formulate the optimization of pilot and feedback
overheads, and of the IA update interval, to maximize the effective
sum spectral efficiency for arbitrary SNRs. This general formula-
tion is followed by a simplified version thereof that is tailored to
the high-SNR regime, where TA is mostly of interest. The impact of
asymmetric SNRs in the forward and reverse links is also explored
and, to gauge the extent to which the IA performance degrades be-
cause of the various overheads, pilot-assisted time-division multiple
access (TDMA) is invoked as a baseline throughout the chapter.

As mentioned in the previous chapter, IA precoders can be designed
using the iterative algorithms that optimize the precoders and the
receive filters to minimize the leakage interference by alternating
between the forward and the reverse links. These algorithms can be
either centralized or distributed.

e In centralized TA, all the base stations share their CSI. A cen-
tral entity gathers the global CSI of all the forward and reverse

2 Alternatively, the dedicated pilots could be suppressed in favor of coded
messages directly conveying the precoders to the receivers, but this approach
would be somewhat more susceptible to fading selectivity and might incur larger
overheads.
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links and computes the precoders. With global CSI available
at that common point, iterations can be performed off-line at
the central entity eliminating the need for over-the-air signal-
ing.

e In distributed TA, there is no CSI sharing among the base sta-
tions and each transmitter locally computes its own precoder.
The iterations must take place over the air, incurring further
signaling overhead.

This work considers the centralized version, which is the most fa-
vorable one for TA.

4.2 System Model

We consider the standard interference channel setting with K trans-
mitter and receiver pairs. Transmitters and receivers are equipped
with N; and N, antennas, respectively, and each transmitter-receiver
link conveys d < N,,, signal streams. The observed vector y; €
CN X1 at receiver k is

* /P
Y=Y 4/ g HeiTi + 2k (4.1)
j=1

where x; € CN>x1 is the signal from transmitter j while H,,; €
CNr*Nt ig the channel matrix from transmitter j to receiver k and P
is the transmit power. The noise at receiver k is z; ~ N¢(0,021y,)
where o2 is the noise variance. The entries of H, k,; are 11D, drawn
from Ng(0,1). The signal at transmitter k is @ = Vi where
Vi. = [Vg1, - -, V4] € CNeXd s the unitary precoding matrix at the
kth transmitter and s, = [sg 1, Sk2, - -, sk7d}T € C9%1 is the complex
data symbol vector satisfying E[sys}] = I4. While the data symbols
could be chosen from any distribution, we focus on Gaussian code-
books, which maximize the mutual information between x; and y
with perfect IA. Power is uniformly allocated across streams, which
is asymptotically optimal at high SNR. At receiver k, the vector yy
is filtered by a unitary matrix Wy, = (w1, w2, ..., Wkd) € CNrxd,

The SINR of the fth signal stream at receiver k is given by

P| * 2
- |Ww Hkk”kf’
]CZ b b
SINR, = +—F

iy +U§Hwk,éH§
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where
d P K d P
Tie=) [k vkl + > ke e goml®. (4.3)
m=1, j=1,m=1
ml £k

4.3 Interference Alighment

Recall from Section 3.3 that, IA with d DoF per user is achieved if
and only if the precoding and receiving filters of user k simultane-
ously satisfy

WiH, V=0 V) #k (14)
rank(W; Hy, Vi) =d vk (4.5)

where (4.4) are zero-forcing conditions on the interference while (4.5)
guarantees the required dimensionality for the desired signal space.
For a given d, a different number of antennas is required for IA to
be feasible with each K (cf. (3.3)).

4.3.1 Perfect CSI

With perfect CSI provided as side information, IA results in a d-
dimensional interference-free channel for every intended link. Then,
the SINR of the ¢th stream at receiver k is

P *
SlNRk,g = E"wk’er’k’vk’gP (46)
N

where P/(do?) represents the average per-stream SNR. Since Vj
and W), are unitary and independent of Hy, j, the effective channels
wj, ,Hy, jvp ¢ are complex Gaussian with unit variance. The average
sum spectral efficiency is then [94, 95]

B p K d P
Csum <W> Z Z]E |:10g2 (1 + W|wz7gﬂk7kvk,( 2>:| (47)
N k=1 (=1 a

d 2
= Kdedov/Pg (;N) log, e. (4.8)

4.3.2 Imperfect CSI

With precoders and receive filters computed on the basis of esti-
mated rather than actual fading coefficients, the signals become



4.3. Interference Alignment 63

Hk,j

| Ty,

1. Transmitters send common pilots
Receivers estimate forward channels

T
A Hj'k
H;, < ‘
2. Receivers send common pilots
Transmitters estimate reverse channels

N H,
;< N

3. Receivers feed back forward channel
estimates

=

Hy

4. Transmitters send dedicated pilots
Receivers learn precoded channels

Ak,k = Hk,kok

Figure 4.1: CSI transfer with FDD in a K-user MIMO interference
channel. Notation: H li, ; represents the estimate of forward channel
Hj, ; at receiver k; H]r 1 represents the reverse channel from receiver
k to transmitter j and ﬁ;k is its estimate at transmitter j; H k.j
denotes the estimate of Hy ; available at transmitter k; ‘A/; is the
IA precoder at transmitter j; Ay denotes the precoded channel
matrix from transmitter k to receiver k and Akk is its estimate at
receiver k.

misaligned and interference leaks through. Figure 4.1 depicts the
scheme considered in this chapter for CSI acquisition and transfer.

Let us denote by H k,; an imperfect estimate of H}, ; at transmitter
k and by INIM =H ;- ﬁk,j its estimation error. The IA precoders
and receivers obtained on the basis of channel estimates are Vk
and Wk, for k =1,...,K. At receiver k, the fth signal stream is
extracted by Wy yielding

K

. P - .

Wy, Y = Z \/ ng,er,jV}‘Sj + Wy, g2 (4.9)
i=1
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Wy g (Hk,j + Hk,j) Visj + Wi,z
1

P . .
=1/ Ewk,sz,kUk,Zskz,K
K 4 [p
+Y ) ,/Ewk7gﬂk7jﬁj,msj,m + W, 2k (4.10)
j=1m=1

where (4.10) follows from the fact that the IA solution computed on
the basis of channel estimates satisfies wj, ZPAIkJﬁj’m =0,Y(k,0) #
(j,m). If the decoders regard the channel estimates as the ac-
tual channel coefficients, as is customary, then the estimation er-
ror terms in (4.10) simply play the role of additional Gaussian
noise [124]. In turn, Vi and W}, are unitary and independent
of Hkk and Hk],Vk: J. However, the terms wj ng kOk ¢Sk, and

.
Il

I
M=
N

wk,ZHka%ms],m are in general dependent when (k,¢) = (4, m). By
invoking MMSE estimation, I:Ik,j and ﬂk’j become uncorrelated
and, given their Gaussian nature, mutually independent; this ren-
ders the aforementioned terms also independent for (k, ) = (j,m).
The entries of Hy, j are IID Ng(0, qu) whereas the entries of H, k.j
are Ng(0,1 — 0%,).

Then, the average sum spectral efficiency is®

Llavy , Hy oy, 0|2

K d
Cm =3 ""E |log, [ 1+

K d -
R+ Y E %\wzeﬂk,jﬁj,mv]
j=1m=1 ’
(4.11)

with the outer expectation taken over the direct fading channels,
H k,k- We note that this is the spectral efficiency achieved with sep-
arate decoding of each same-link stream; for d > 1, joint decoding
of all same-link streams would be required for optimality [107]. For
d =1, as in all the examples in this chapter, this becomes immate-
rial.

3The spectral efficiency in (4.11) corresponds to decoders that, as mentioned
earlier, regard the channel estimates as the actual channel coefficients, in which
case the nearest-neighbor decoding rule applies. For decoders exploiting the joint
distribution of the channel estimates and the corresponding estimation errors,
(4.11) represents a lower bound to the achievable spectral efficiency [125]. The
difference between these two quantities tends to be minute [126].
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The precoder Vk and the receive filter Wk are designed such that
Wi H, ;V; = 0 for j # k based on the channel estimates Hj, ;
available at transmitter k. The mismatch error variance

E [\w;éﬂmﬁjvm\?]

for j # k is proportional to the channel estimation error variance,
qu. For its part, the desired signal estimation error variance
N TP
E [!wZ,er,kvk,el }

depends only on the dedicated pilots, i.e., it is proportional to the
precoded channel estimation error variance denoted by crii (cf. Fig.
4.1). Defining the effective average SINR as
P(1 —o%
Pt = ( A)Q - (4.12)
2 _
ox + P ((K Doy + O‘A)

the expression in (4.11) can be more compactly rewritten as
) o K d
Ceum <> - ZZE [logQ < + —]h 12>] (4.13)
=1¢=1

where h§" = w} ,H}, 0y is complex Gaussian and thus

~Ysum pEH off d
c <d> — Kd log,(e)ed/"" €, (peﬁ) (4.14)

4.3.3 Time Selectivity

Next, to tie the analysis in the previous section with the dynamics
of the fading, consider a discrete-time stationary fading process h[n]
governed by a given Doppler spectrum or, equivalently, by the corre-
sponding time-domain correlation function €[m] = E[h[n]h*[n+m]].
This model applies to every entry of each of the channel matrices.

Fading selectivity implies that the IA solution computed at a given
instant suffers growing misalignment as time evolves. Precisely, if
the TA solution is computed at time 0 on the basis of current channel
estimates, at time n the signal extracted for stream £ at receiver k
will be

Wy, Yr[n Z \/>wk£ [n]Hj;[0] + /1 - 6[”]2‘I’k,j) Vis;
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+ W]z (4.15)

where Hj, ;[0] is the channel at time 0 and ¥y, ;, whose entries are
Nc(0,1) and independent of Hj, ;[0], is the innovation between times
0 and n. Except where essential, time indices are dropped hence-
forth for the sake of notational compactness. Leveraging the deriva-
tions in Section 4.3.2, (4.15) can be rewritten as

wuyk—zv wu Hk,J+HkJ)+V1_€ ‘I'lw)vsj

+ 'lUk;’ng (416)

/ P Ak T ~ Ak
= e[n] Ewk’eﬂk’kvk7£$k’[ + wk’ZZk

+ZZ‘I wk[ de‘i_\/l_f q’kg)'v‘]mSkm
j=1m=1
(4.17)

where (4.17) follows from the fact that w;ygﬁk,j@m = 0,V(k,0) #

(j,m). In turn, the average sum mutual information at time n is

K d
I =>"%"E|log, <1+

k=1 =1
6[”]2§|wz,gﬁk,k'{’k,€‘2

K d
2HY L E [ Blag (el Hiy + /1= en2 W 5)o5,m]2]
j=1m=
(4.18)

given by (4.18) in the next page with outer expectation over the
direct fading channels.* The effective average SINR at time n is

Pen)?(1 - a?&)

P P (R (6~ )y~ K +03))

(4.19)

4We resist referring to (4.18) as a spectral efficiency because it is only the
average sum mutual information at a given lag n relative to the time of compu-
tation of the IA solution. It is only once codewords are allowed to span many
symbols at every lag that the operational significance of the average sum spectral
efficiency is acquired, and this is deferred to later in the chapter.
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Figure 4.2: Pilot overhead model.

which follows from the uncorrelatedness of Wy, ; and H, k- Thus,
the average sum mutual information in (4.18) can be rewritten as

. S P[]
) =0 jE[logg <1+ g |hz“|2>} (4.20)
k=1 /=1
. d
— Kdl d/pf[n] . 4.21
d Og2(€)€ 51 peg[n] ( )

Note that p°*[n] and I*"™[n] are decreasing functions of n, as one
would expect. Furthermore, by setting €[n] = 1 in (4.19) and (4.21),
we recover (4.12) and (4.14) as derived for nonselective fading.

4.4 Pilot Overhead Model

44.1 FDD

With FDD, the forward and reverse links occupy distinct frequency
bands separated by far more than the fading coherence bandwidth.
Thus, the forward and reverse links are statistically independent
and explicit CSI feedback is required.

Figure 4.2 shows the pilot overhead model adopted in this chapter.
The IA solution is recomputed every N, symbols, of which N, N,,,
Ny, and N4 are respectively reserved for forward common pilots,
reverse common pilots, CSI feedback, and forward dedicated pilots;
the rest of the symbols are available for payload data. The total
overhead is hence N, = N, + N,, + Ng, + N,4. We make the very
mild assumption that the fading remains constant over the pilot
intervals® and consider equal power allocation for pilot and data
symbols.

5The mildness of this assumption was validated by bounding the gap between
the results with and without fading fluctuations within the pilot intervals; this
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Forward Common Pilots

Each transmitter k£ broadcasts an orthogonal pilot sequence matrix
®,., such that @kq)f = 0y ;In,, spanning N,; > K N; symbols [127].
Each receiver estimates the channel matrices corresponding to each
of the K transmitters. The observation at receiver k is

Yi— prP

Z H, ;®; + Z (4.22)
7j=1

where Z;, € CN~*Not ig a matrix of noise terms. We indicate the
MMSE estimate of the forward channel Hy ; by H, li j while denot-

ing the corresponding estimation error matrix by I~{/,f€ j Given the
observation Yy,

prP
o5+ Nt
where the entries of H 3 ; are
Npe P/Ny
N(C (07 O_I%I_,’_prfP/Nt) (424)

while the entries of H ,fc ; are IID and
0.2
Ne (0, i)

Reverse Common Pilots

Here, the roles of transmitters and receivers are interchanged and
the receivers transmit orthogonal pilot sequences over N, > KN,
symbols. Denote the reverse channel matrix between transmitter k
and receiver j as Hj kgt The corresponding channel estimate is H !
with entries that distributed according to

Ne (0, W) (4.25)

0% +Npe P/N;

while the error matrix is H/,rC with entries conforming to

R
Nc (0, 0—12\]+Npr15/Nr> (4.26)

where P is the reverse link power.

gap was found to be very small, at most of a few percentage points (favoring
TA) in terms of average spectral efficiency.
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Analog CSI feedback

The forward channel estimates are transmitted via the reverse link
by each receiver using unquantized quadrature-amplitude modula-
tion over Ny, symbols. Each receiver k sends its N, x K Ny concate-
nated channel feedback matrix [ﬁ TR H i x| by post-multiplying
it by a KNy X N unitary Spreadiﬁg matrix 7®k such that ©,07 =
Ok,jIrkN,. The spreading matrices from different receivers must be
orthogonal to enable interference-free estimation, which imposes the
constraint Ny, > K2N;. From receiver k, the transmitted channel
feedback matrix can be written as [116, 128§]

Nfb-lS N, P/Ny -1 )
X = ) H,,. .. H©; (427
k \/KNtNr <U%+prP/Nt> [ ks k,K] Eo( )

such that E[tr(X,X})] = NwP. The approach in [23] can be fol-
lowed to derive the error due to forward channel estimation, reverse
channel estimation, and analog CSI feedback. The concatenated
matrix of received feedback symbols by all the transmitters is

v _ | NaP N,P/N, \!
KNN; \ 0% + N, P/N,
k| Hia

S| | [AL e H ez (4.28)
M= ¢

where Z € CKENexNw ig the noise matrix. The channels Hj, ;, esti-
mated and fed back by receiver k Vj, are re-estimated at transmitter
k by post-multiplying Y by ©;. Borrowing the derivations in [23,
Section IV], which are summarized for the sake of completeness in
Appendix C.1, the final expression for the variance of the channel
estimation error is

2 2
9 N; 0§ T1ON

 _ 4.29
B~ NPT KN-N)P (4.29)

where

_ N2P  KN,N,P
NP NP

T1 (4.30)

We note that the channel estimates H k,; available at the transmit-
ters are no longer complex Gaussian due to the fading introduced
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by the feedback channel. However, H k,j can be approximated as
complex Gaussian with variance 1 — 01251. This was verified in [23],
where it was shown that the effect of this approximation is rather
negligible.

It is important to realize that the concatenated K N; x N matrix
Y in (4.28) can be constructed only if the transmitters share their
locally observed rows; then, the computation of the IA precoders
can be centralized as described in Section 4.1. This is in princi-
ple feasible in the downlink, where the transmitters are embodied
by base stations connected through the backhaul, and such is the
focus of our analysis. In the uplink, or in downlink settings where
CSI sharing could not be implemented, one would have to resort
to less desirable alternatives. The first such alternative would be
distributed IA with over-the-air iterations, which would incur ad-
ditional signaling overhead. The second alternative would be the
closed-form computation of the precoders based on estimates of all
the forward channels obtained from observing the Ny x N, feedback
matrix locally. However, this second alternative would only be fea-
sible for those configurations for which precoder closed forms are
indeed available. Moreover, since in this approach every transmit-
ter would observe the feedback matrix through a different reverse
fading channel, each transmitter would have a differently perturbed
estimate of the forward channels; this would cause an additional
(small) performance loss [116].

Forward Dedicated Pilots

The precoder matrix Vj, at transmitter k, computed using the esti-
mates H k;VJ # k, is unknown at receiver k. An additional round
of dedicated pilots is required once the transmitters have computed
their precoders in order to enable each receiver k to learn the pre-
coded channels. Precisely, each transmitter k& transmits orthogonal
pilots along its precoder Vi, € CNvXd gyer N,q4 > Kd symbols. The
observed signal at receiver k is then

N, P&
Y, =4/ ;d ZHWVij—I—Zk (4.31)
j=1

where €2; is the dedicated pilot sequence matrix at transmitter j.

Each receiver k estimates its desired precoded channel Ay, = Hy
Vi.. Since Vj, is unitary and independent of Hj ;, it follows that
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Ay 1, is complex Gaussian. The MMSE estimate of Ay is then

NyaP
. d
A=V 9 v (4.32)
o+ Lpddp

and the corresponding error Ay, = Ay j,— Ay is complex Gaussian
with variance

2

2 Ox
. — 4.
AT G241 N, P/d (4.33)
do?
=X 4.34
do2 + N,,P (4.34)

wheras Ay, is complex Gaussian with variance 1 — 0124.

Plugging (4.29) and (4.34) into (4.19), the effective average SINR
in (4.19) specializes into

e[n)? P 1— dod
012\1 daIQ\IJerdP

(NrQJi KNtNEP)
1+ KP +€[TL]2 (K—1)N¢ NprP Ng, P

_KP , __dP
% Nps (KN¢—Ny)/(K—1) o doZ+Npa P
(4.35)

which is a function of: the forward link common pilot overhead N,
the reverse link common pilot overhead N,,, the feedback overhead
Ny, the dedicated pilot overhead N4, the average SNR per stream
P/(do2), the ratio of reverse and forward link powers P/P, the
DoF per user d, the time-domain fading correlation €[-], the number
of users K, the number of transmit antennas V;.

44.2 TDD

With TDD, the same frequency band is shared by the forward and
reverse links and thus the corresponding over-the-air channels are
transposed versions of each other. Then, with careful calibration,
the analog CSI feedback phase is not required. Recall that the re-
verse channel from receiver k to transmitter j is H; =H ,’; j where
H;, ; is the forward channel from transmitter j to receiver k. Fur-
ther recalling the reverse channel estimate and the corresponding
error matrix as IA{;C’ ; and H k,j» With entries distributed according
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0 (4.25) and (4.26), respectively, transmitter k computes its for-
Ward channel estimate Hj, ,j as simply the transpose of H ik and the
variance of the channel estimation error is

2

2 ON
1
- (4.37)
Npr P
L+ R

Utilizing (4.34) and (4.37) in (4.19), the effective average SINR can
be derived for TDD as

e[n}j P (1 o 2d ‘712\1 )
eff[ oxN do+NpaP

2p do? (K—1)Nyo?2 '
14 K2 PP (g N N
+ 012\1 + 012\1 + d012\I+diP + NrUI%IJerrP

(4.38)

4.5 Optimum Pilot Overhead and IA Update
Interval

45.1 FDD

The effective average sum mutual information is the solution to

p Nal
max R jsum n 439
Npe,Npr, Ny, Npd . Ng Nd ngl [ ] ( )
subject to

prZKNt (440)

Now 2 KN (4.41)

No, > KN, (4.42)

Noa 2 Kd (4.43)

with I*[.] given in (4.21) and p**[-] given in (4.35). The optimum
value of a given variable is henceforth indicated with a superscript
(-)*, e.g., NJ;. With coding spanning enough update intervals, (4.39)
signifies the achievable average sum spectral efficiency.
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Table 4.1: Minimum pilot overhead expressions for IA-FDD and
IA-TDD

] | IA-FDD IA-TDD
Ny || KN KNy
N, || KN KN,
Ny, || KNy —
N, || Kd Kd
N, || K(K+1)N; + N, +d) | K(Ny + N; +d)

Optimization of N, with Fixed Overhead

Increasing N,¢, N,,, Ny, and N,, improves the CSI accuracy yielding

a higher effective SINR at the expense of a higher overhead. While

the improvement in spectral efficiency associated with the SINR is

ultimately logarithmic, the decrease associated with the overhead is

always linear. Thus, at sufficiently high SNR the optimum overhead
*

is bound to take the minimum value corresponding to N, = KN,

Ny = KNy, Nj = K2Ny, N>, = Kdand N} = K((K+1)Ny+ N, +
d). Utilizing these values, which for the reader’s convenience are
summarized in Table 4.1, the corresponding effective average SINR

becomes

e[n]?P2K
o 0% (03 +KP)
pn] = |+ KP 2 (1 1;I(j?fl\l—l)Nr KP o2
T T elnl® (1 + sren—hrm, — 0% Kol+K2P

and the optimization in (4.39) simplifies to maxy, f(Ny) with
1 NdiS_
Ny) = — I n). 4.45
FV) = 3 ] (1.45)

n=1

We are thus faced with an integer problem. With a continuous
relaxation thereof, the argument of the optimization becomes
1

Na=Nj _
Vo) = 3 /1 [n] dn (4.46)

with derivative
. 1

FNL) =~ f () + ;dfsumwd SNY (447)
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It can be easily yeriﬁed that f(.) has a unique stationary point
and that, since I**™[n] is a decreasing function of n, the second
derivative at this point is negative [122, Appendix II]. Thus, its
global maximum can be found by solving

! f(Ny) + ! ™[Ny —N=0 (4.48)

Nd d Nd d p —_— . .
This leads to the condition f(N,) = I[N, — N*] or, more explic-
itly, to the fixed-point equation

. Na—N}
o > I[n] = I[Ny — N7, (4.49)

n=1

where, with all the overheads at their respective minima, N =
K((K + 1)Ny + Ny + d). Given the continuous relaxation used to
reach (4.49), it is necessary to test the two nearest integer neighbors
to its real-valued solution for N, in order to identify N7.

High-SNR Optimization

For certain time-domain correlation functions, solving (4.49) is nu-
merically challenging because I**"[] in (4.21) contains an exponen-
tial integral. At high SNR, however, an alternative to (4.21) can be
obtained by expanding (4.20) into [129]

I"™[n] = Kd <1og2 (pz[”]> - Eoo[n]> +0(1) (4.50)

where Lo = E [log, (|R§%|?)]. Since hi" is complex Gaussian with
unit variance, |h%|? is exponentially distributed with mean one and
with Lo = Yemlogy e where vy = 0.5772 is the Euler-Mascheroni
constant. Plugging the above expansion into (4.49), we obtain the
far simpler fixed-point equation

*_ N*

eff N* — N* d p off
N*log, (P[ddp]> ~ Y log, (p d[n}> — N¥Loo +0(1)

n=1
(4.51)
where, recall, N = K((K + 1)Ny + N, +d). From (4.51), N}
can be found conveniently down to the o(1) term—which vanishes
with growing SNR. Again, the two closest integer neighbors to the
solution should be tested to overcome the effects of the continuous
relaxation.
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452 TDD

The problem formulation for TDD is similar to the one for FDD

except for the absence of the analog CSI feedback stage. Then, the

effective average sum spectral efficiency is optimized over N, N,,,
N,q and N4 with N, > KN;, N,, > KN, and N,y > Kd.

Optimization of N, with Fixed Overheads

Leveraging the approach in Section 4.5.1, the minimum overhead
in TDD is N} = K(N; 4+ N; +d) while the corresponding effective
average SINR in (4.38) reduces to

e[n)?P?K
0% (02
P [n] = NN TEP) - —~ - (452)
e[n] P N oy (K—l)o’N
L+ 50+ <4 < K+UI2\I+KP+012\I+K]5>

With the overhead at its minimum value, the optimum update in-
terval Ny at an arbitrary SNR can be computed as the solution
of (4.49) while the corresponding high-SNR optimization solution
can be found by solving (4.51). Once more, in both cases, the two
closest integer neighbors to the real-valued solution should be tested.

4.6 Numerical Results

In order to generate some numerical results, we invoke the standard
Clarke-Jakes correlation function €[n] = Jy(2mvynT.) where T, is the
symbol period, vy is the maximum Doppler shift (in Hz) and Jy(+) is
the zeroth-order Bessel function of the first kind. However, because
of the oscillatory nature of Jy(-), such €[n] is not a monotonically
decreasing function of n and thus it does not strictly satisfy the
conditions of our analysis. By replacing Jy(-) by its expansion

22 7

Jo(z)=1— —+ — 4.53

() =1- 2+ = +olz") (453)
we obtain a monotonically decreasing correlation function that mim-
ics very precisely the Clarke-Jakes behavior in the range of interest,

for all reasonable values of the parameters’ space.

The degradation associated with time selectivity is bound to subside
as T, shrinks, but, if B, denotes the coherence bandwidth, 7, cannot
fall below (roughly) 1/B. since otherwise the flat-fading condition
in the formulation would be violated. For our results, we chose
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Figure 4.3: Optimum overhead fraction v. P/o? for IA with K = 3,
d=1, Ny =N, =2, vy, =10 Hz and T, = 5.5 us.

a very favorable value for IA and set 7, = 1/B. with B, = 180
kHz; this corresponds to one LTE signaling resource block [130].
Then, T, = 5.5 us. Furthermore, for the examples that follow, unless
otherwise stated, K =3, Ny = Ny, =2,d =1 and P=r.

Figure 4.3 shows, as function of the SNR, the optimal pilot over-
head fraction, NY/NJ, obtained by solving (4.39) numerically for
both FDD and TDD. The maximum Doppler shift is v, = 10 Hz,
which corresponds to a pedestrian velocity of 5 Km/h at a carrier
frequency of 2 GHz. The lack of smoothness in the curves is a
direct consequence of the integer nature of the problem. The opti-
mum overhead is higher with FDD due to the need for explicit CSI
feedback, as one would expect.

For a different perspective, Fig. 4.4 presents the optimal pilot over-
head fraction, Ny/N7, as function of 1. As one would again ex-
pect, NJ declines as vy increases, and the overhead fraction wors-
ens. Less foreseeable, and thus a much more interesting insight, is
the dependence of the overhead fraction on the SNR: in contrast
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Figure 4.4: Optimum overhead fraction v. maximum Doppler shift
at P/o2 =20 dB and P/o2 = 30 dB with K =3,d =1, Ny = N, =
2 and T, = 5.5 us.

with single-user MIMO, where the overhead fraction shrinks with a
growing SNR [123], in IA it increases, the reason being that with less
noise the performance becomes more sensitive to Doppler-induced
precoder deviations and this sensitivity triggers more frequent pre-
coder updates, i.e., it also reduces IV}

Figure 4.5 compares the optimal pilot overhead fraction obtained by
solving (4.39) numerically against the solution K ((K+2)N;+d)/Nx¥
where N7 is derived from (4.49), and further against the solution
provided by (4.51). The maximum Doppler shift is fi, = 10 Hz. As
anticipated, all the results agree at high SNR, once N has reached
its minimum value. The sustained increase of the overhead with the
SNR is explained by the rising sensitivity to time selectivity: the
channel estimation becomes more precise with the SNR, rendering
the misalignment caused by selectivity proportionally more acute;
this induces more frequent IA updates, i.e., a smaller N}.

Turning our attention now to the effective sum spectral efficiency,



78 Pilot-Assisted Interference Alignment

0.2
0.18F
S 016 N
= Joint optimization
S 0.14 of N, and Ny
R 0.12f
Q .
s o1
e 0.08F
S High-SNR
£ 0.061- I optimization
j=3 o
O 0.04
Optimization
0.02} of Ny with fixed N,
OIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
0 5 10 15 20 25 30 35

Average SNR (dB)

Figure 4.5: Optimum overhead fraction v. P/o2 for IA-FDD with
K=3,d=1, Ny= N, =2, vy =10 Hz and T, = 5.5 us.

it is shown in Fig. 4.6 as function of the SNR for v = 10 Hz and
vu = 200 Hz, respectively corresponding to pedestrian and vehicular
velocities at 2 GHz. Specifically, FDD is considered in these results.

Figure 4.7 compares the effective sum spectral efficiencies of TA-
FDD, TA-TDD and TDMA as function of SNR in a pedestrian sce-
nario. Here, settings with K = 3 and K = 5 users are contrasted.
In both cases, IA-FDD and IA-TDD are seen to outperform TDMA,
although with FDD the improvement is minor. In vehicular scenar-
ios, the IA advantage vanishes entirely regardless of whether TDD
or FDD is employed, confirming the widespread conjecture that TA
is not applicable to these scenarios. For example, with K = 3 and
P/o? = 20 dB, we have observed that the IA-FDD advantage van-
ishes beyond v, = 100 Hz while the TA-TDD advantage vanishes
beyond vy = 200 Hz. In the remainder we therefore focus exclu-
sively on pedestrian settings.

After having exemplified the IA performance with typical cooper-
ation sizes of K = 3 and K = b, it is reasonable to wonder the
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Figure 4.6: Effective sum spectral efficiency v. P/o2 for IA-FDD at
vy = 10 Hz and v, = 200 Hz with K =3,d =1, Ny = N, = 2, and
T, = 5.5 us.

extent to which the observations made for these values are general.
Short of repeating the examples for all possible values of K, the
best way to address this question is by assessing the optimum value
of K as a function of the parameters of interest, chiefly the SNR.
The result of this assessment is precisely what Fig. 4.8 presents: the
best possible value of K as function of SNR in a pedestrian scenario
(fm = 10 Hz). The numbers of antennas are chosen to satisfy the IA
feasibility condition in (3.3) for d = 1. As can be seen, K declines
progressively and, at 30 dB, it equals the value of K = 5 utilized in
some of the earlier examples.

Finally, we explore the impact of asymmetric forward and reverse
channel strengths. Both IA-FDD and IA-TDD are considered, with
a forward link average SNR of 30 dB. Figure 4.9 shows the variation
of the optimum overhead fraction with respect to P/ P. Figure 4.10
quantifies the effective sum spectral efficiency as a function of P/ P
and compares it against the TDMA spectral efficiency at the same
SNR. As the reverse link weakens with respect to the forward link,
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Figure 4.7: Effective sum spectral efficiency v. P/o2 for IA and
TDMA with K =3 and K =5, vy = 10 Hz and T, = 5.5 us.

the performance of TA progressively degrades while that of TDMA
remains unaffected. Hence, IA becomes unappealing in the presence
of a sufficiently weak reverse link.

4.7 Conclusions and Contributions

The optimum pilot overhead and IA update interval in a K-user
MIMO interference channel have been obtained as solutions to an
optimization, which at high SNR adopts a particularly tractable
form. This solution, in turn, allows for a straight computation of the
spectral efficiency achievable by IA in time-selective fading channels.
Variations of the formulation for both FDD and TDD have been
provided.

A number of numerical examples have been presented, correspond-
ing to typical operating conditions in terms of SNR, fading coher-
ence, and numbers of antennas. Through these examples, it has
been observed that, with fading selectivity and pilot-assisted chan-
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Figure 4.8: Optimal number of TA users (corresponding to maximum
effective sum spectral efficiency) v. P/o2 for IA-FDD and IA-TDD
with d =1, vy = 10 Hz and T, = 5.5 us.

nel estimation explicitly incorporated, IA loses all its advantage
over TDMA at vehicular speeds, but remains somewhat superior at
pedestrian speeds. The improvement is minor in the case of FDD,
and more significant in the case of TDD.

Tempered by the observations made in Chapter 3, chiefly that the in-
sights obtained from the K-user interference channel apply to large
wireless networks only within a certain SNR range, IA is seen to
retain the potential to play some role in the management of in-
terference in pedestrian-oriented TDD wireless systems; that role,
however, might be largely circumscribed to cell-edge users for which
the interference channel is a reasonable model. In FDD and/or
vehicular-oriented systems, conversely, the various overheads nullify
the gains that IA would provide over TDMA if perfect CSI were
available at no cost.

To be sure, maximum-SINR solutions would perform somewhat bet-
ter than IA at intermediate SNR levels, but hardly in the high-SNR
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regime where intercell interference becomes the dominating impair-
ment.

We also note that techniques that can be leveraged to improve pilot-
assisted communication in single-user communication, e.g., channel
interpolation or data-aided channel tracking [126], cannot be di-
rectly applied in TA because the precoders and receive filters must be
jointly computed. If, for instance, the precoders were to be modified
at any intermediate point within the update intervals, new dedicated
pilots would have to be transmitted to enable proper retuning of
the receivers; this would increase the overheads even further. What
could be done, respecting the regular IA update approach followed
in this chapter and avoiding a further increase in the overheads, is
to compute the precoders and receivers by considering not only the
set of pilot observations preceding the current update interval, but
also older ones. We have explored this possibility and observed that,
because of the fading decorrelation across multiple update intervals,
the corresponding improvements in spectral efficiency are minute.
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Finally, we hasten to emphasize that the performance of TA would
further degrade should a distributed implementation be necessary,
as this would entail a substantial number of over-the-air iterations
(each involving forward and reverse pilot transmissions) within ev-
ery update interval. The range of operational conditions where TA
may be enticing would then be squeezed down very substantially
and it might be the case that IA no longer retains any potential to
play a role in wireless interference management.






CHAPTER 5

Channelization Schemes for
Overlaid D2D Networks

If you can imagine it, you can achieve it.
If you can dream it, you can become it.

William Arthur Ward

Device-to-device (D2D) communication is currently being touted as
a potential ingredient of 5G wireless networks [3, 4] and allows for
serving local wireless traffic bypassing the system’s infrastructure.
Having established in the previous two chapters that the role of
IA is limited in improving the cellular system capacity, this chap-
ter quantifies the gains in spectral efficiency due to channelization
schemes in the context of D2D networks overlaid onto separate li-
censed spectrum.

5.1 Related Work and Motivation

The incorporation of D2D communication into infrastructure-based
wireless networks promises major performance advantages provided
there is sufficient locality in the traffic [3, 4, 27, 131-134]. Both
academia and industry have conducted studies on D2D to sup-
port applications such as multicasting [135, 136], content distribu-
tion [137, 138], cellular offloading [139], machine-to-machine com-
munication [140, 141] or proximity-aware internetworking [134, 142,
143]. Initially, most such works had relied on simulations. Recogniz-
ing the random network topology and behavior of D2D users, more

85
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recent works [29, 144-146] have applied stochastic geometry tools in
order to study D2D communication by modeling the user locations
via PPP distributions. Much of this prior work has concentrated
on underlay communication, where D2D transmissions reuse the
existing uplink spectrum. Specifically, [144] and [145] proposed var-
ious resource allocation strategies to efficiently partition time and
spectrum between cellular and D2D users, while [146] and [29] tack-
led the excessive interference from D2D users to cellular users by
means of power control schemes and exclusion regions, respectively.
However, substantial changes in the standards are required to ac-
commodate underlay D2D and, as a result, there is growing interest
in infrastructure-assisted overlay alternatives [26-28].

In overlay mode, a swath of the spectrum is reserved for D2D traf-
fic, which is thereby segregated from both forward link and reverse
link. On this dedicated spectrum, users in close proximity can es-
tablish direct communication, replacing two long hops via the in-
frastructure with a single (and typically shorter) hop. Such direct
communication can improve the power efficiency [147], the end-to-
end latency [139], and especially the spectral efficiency, all thanks to
the reduced range and denser spectral reuse [29]. However, without
a careful allocation of D2D link to orthogonal channels (i.e., chan-
nelization), a significant share of the links may experience strong
interference from other unintended D2D transmissions that happen
to originate nearby. Furthermore, as the density increases, this in-
terference could progressively clog the network.

By leveraging stochastic geometry tools, channelization schemes
have been studied in the context of wireless ad-hoc networks, where
fixed infrastructure is absent [148-153], and cognitive networks [57,
154]. This prior work had focused either on improving transmission
capacity [57, 148-151, 154], defined as the maximum permissible
density of simultaneous transmissions that satisfies a target receiver
SINR with a specified outage probability, or else on analyzing inter-
ference statistics [57, 152, 153]. With the growing interest in overlaid
D2D, new channel allocation schemes are being discussed that can
befit networks with an infrastructure-supported control plane and
the ensuing ability to synchronize transmissions, discover neighbors,
and disseminate side information.

A first such a scheme, termed FlashLin(Q, was formulated in [31, 155]
and experimentally demonstrated. A subsequent scheme, referred
to as ITLinQ, was proposed in [11] and evaluated by means of
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Monte-Carlo simulations. This latter scheme is enticing because it
is underpinned by information-theoretic optimality notions, which
potentially makes it (i) more suitable to analysis, with the ensuing
broader generality and with the possibility of optimizing controllable
parameters, and (i7) more apt to provide insight and understanding
on the mechanisms exercised to manage interference.

5.2 Contributions and Outcomes

These arguments motivate the analysis of ITLinQ that we present
here, with the following contributions:

e We derive the exact density of D2D links allowed under differ-
ent ITLinQ implementations for both fixed and randomized
intended link distances. In most previous analyses of channel-
ization in ad hoc networks [57, 150, 153], every link had the
same distance.

e By means of the link density expressions, the spatially aver-
aged link spectral efficiency (i.e., b/s/Hz per link) and area
spectral efficiency (i.e., b/s/Hz per unit area) are approxi-
mated in integral forms. Numerical results confirm the accu-
racy of these approximations.

e Based on the area spectral efficiency expressions, the ITLinQ
parameters are tuned as function of the user density and link
distance distribution.

e With the parameters optimized, the performance of ITLinQ is
evaluated and compared with that of FlashLinQ, which we also
optimize for this comparison. Both ITLinQ and FlashLinQ
are shown to yield substantial improvements with respect to
an unchannelized baseline, with a slight edge for ITLinQ over
FlasLinQ.

Above all, the analysis in this work sheds light on the mechanisms
that ITLinQ utilizes to shield users from excessive interference while
attempting to pack as many concurrent D2D transmissions per unit
area as possible. Synchronized through the infrastructure, I'TLinQ
can have dedicated periods for control signaling and data transfer
and can offer a more efficient channel allocation than their asyn-
chronous ad hoc counterparts [31]. Specifically, CSMA/CA (carrier
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sense multiple access/collision avoidance) with RTS/CTS (request
to send/clear to send) schemes sacrifice spatial reuse and excessively
protect each transmission from interference in order to prevent hid-
den terminal problems.

5.3 System Model

5.3.1 User Spatial Distribution

We consider the Poisson bipolar model [156] where D2D transmit-
ters are spatially distributed according to a marked homogeneous
PPP

d = {(by, O, mp, ex)} C R2 x [0,27) x [0,1] x {0,1}

where:

e & = {b} C R? is the uniform PPP with intensity A, repre-
senting the locations of all existing transmitters with b the
location of the kth-link transmitter.

e 0 denotes the IID orientation angle, uniformly distributed in
[0, 27), between the transmitter at by and its intended receiver.

e my is an IID random mark associated with the kth link, uni-
formly distributed in [0, 1], which may represent the time stamp
or the priority of the kth link.

e ¢ € {0,1} is a retaining indicator that indicates whether the
kth link is allowed on a given channel.

Denoting by 7y, », the distance between the kth-link transmitter
and its intended receiver, the location of such receiver is

wp = bi + [Ty by, €OS Ok, Ty b, SID Hk}T. (5.1)

In the absence of empirical data on how r,, ;, is distributed, vari-
ous canonical distributions have been entertained in the literature:
Rayleigh distributions [144, 157, 158], inverse functions of the link
density [11, 29], or uniform distributions within a circle centered on
the transmitter [159]. In this work, we consider the flexible discrete
marginal distribution (IID across links)

Tugby = dn  With probability p, (5.2)
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and with Zivzl pn = 1. By choosing N and the appropriate values
for di,...,dny and p1,...,pn, wWe can reproduce as approximately
as desired the behavior of any of the aforementioned continuous
distributions. We hasten to emphasize that each link’s distance is
independent of the rest, with their distributions IID.

5.3.2 Signal Model

Denoting by P, the (fixed) signal powers of user devices, the receiver
at the origin observes

o0
Yo =/ PuBuri s hugboSo + > A PaButis €k g by Sk + Z0-
k=1
(5.3)

We can further rewrite (5.3) as

Yo = 4 | P.B, T;(:ZO huo,bo Sg + 2’6/ (54)

whose first term is the intended signal while the second term is the
aggregate interference plus noise

[e.e]
= Z  PoBatuos, €k Pug by 81 + 20 (5.5)
k=1

where the summation spans the co-channel transmitters in ® \ {bg}
while zg denotes the AWGN. In turn, 7, > 2 is the pathloss exponent
of D2D link, §, is the pathloss intercept of D2D link, r,, 3, is the
distance between ug and b, (i.e., from the transmitter at by to the
receiver at ug), hy, b, denotes the corresponding fading, and sy, is the
data symbol communicated over the kth link. The fading coefficients
are IID complex Gaussian with zero mean and unit variance, i.e.,
hugp, ~ Nc(0,1). Likewise, sy ~ Ng(0,1) and 29 ~ Ng(0,02)
where 02 = FyNyB is the noise variance with Fy the noise figure,
Ny the noise power spectral density and B the bandwidth.

The local-average SNR at the Oth-link receiver is
PUIBU —Mu

0—1% ug,bo

SNR =

(5.6)

Shadow fading, not considered here, could possibly be incorporated
by adopting the approach in [160]. Since it can be seen as a dis-
tortion of the spatial geometry, shadow fading would render any
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circular region amorphous and modify the quantitative results, yet
we would expect it not to alter the intuition and the qualitative as-
sessments. This is indeed what has been observed in other stochastic
geometry analyses, e.g., in [80-82].

5.4 ITLinQ Analysis

5.4.1 Description

ITLinQ is grounded on a certain information-theoretic optimality
notion: it selects, for allocation to each channel, a subset of links
whose mutual interference can be treated as noise while still achiev-
ing the capacity region of that subset to within a constant gap [11].
That amounts to assigning the Oth link to a channel if and only
if its transmitter and receiver satisfy the necessary and sufficient
condition'

SNR > r?%dNjok max INRY (5.7)

where IN bnk is the incoming local-average INR (interference-to-
noise ratio) from link %k to link 0, i.e., the INR from the kth-link
transmitter to the Oth-link receiver, given by

P -
uﬁu ’," T]u

0'1%1 ug,by,

INRJ, = (5.8)

while INR%t is the outgoing local-average INR to link ¢ from link 0,
i.e., the INR from the Oth-link transmitter to the ith-link receiver

INROUt = PuBu =
1,0 o2 ug,bo "

(5.9)

To implement (5.7), a centralized controller having local-average
channel knowledge of all the links would be required. To relax this
requirement, a distributed version of ITLinQ was proposed in [11,
Section III] where each transceiver can check its own condition lo-
cally with respect to already retained links, in a sequential fashion.
This distributed version of ITLinQ relies only on two sufficient con-
ditions, derived from (5.7), which expressed for the Oth link amount

!The condition (5.7) is called as TIN-optimality condition and the set of
transmitters satisfying (5.7) is called as an information-theoretic independent
set.
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to
NRY/? > INRD 1
S = r}g%‘ 0,k (5.10)
SNRY/2 > max INRY! (5.11)

where (5.10) must be satisfied at the receiver of link 0 while (5.11)
must be satisfied at the corresponding transmitter. Because dis-
tributed ITLinQ is based on sufficient but not necessary conditions,
it is overly conservative and hence it experiences a certain loss rela-
tive to centralized ITLinQ. This loss can be eliminated almost com-
pletely by heuristically modifying the sufficient conditions in (5.10)
and (5.11) into [11]

MSNR¥ > INR{,,  Vk #0 (5.12)
MSNR* > INRYG" Vi #0 (5.13)

where M and p are positive parameters.

Two slightly different distributed forms of ITLinQ are considered
here, inspired by the Matérn hard-core processes of type I and type
IT that are widely utilized to analyze CSMA [152, 153].

e ITLinQ type I, whereby the conditions are applied to all ex-
isting links simultaneously rather than in a sequential fash-
ion. The Oth link is allowed in a channel if and only if condi-
tions (5.12) and (5.13) are satisfied with respect to all ex-
isting transmitters or receivers. If not allowed in a given
channel, then the Oth link is served on another channel and
thus we can regard the analysis herein as corresponding to
the channel where this link is served. On such channel, the
network that results with type I channelization is indicated
by U1 = {(b,0) : (bg,0k,ex) € ® and e = 1} while the
process of co—channelA transmitter locations is represented by
Wy = {bg : (bk, k) € W1}

e ITLinQ type II, whereby the sequentiality in the application
of the conditions is replaced by a prioritization embodied by
the marks my. Rather than against all links, the conditions
are verified against lower-priority links, i.e., the links are prior-
itized by the network and the Oth link is allowed in a channel
if and only if conditions (5.12) and (5.13) are satisfied with
respect to the subset of transmitters or receivers with lower
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mark, i,k € {n : m, < mp}. On the channel serving the Oth
link, the network that results with type II channelization is
indicated by \i/H = {(bk,ak) : (bk,ek,mk,ek) € ® and e = 1}
while the process of co-channel transmitter locations is repre-
sented by Uy = {bk : (bk, Gk) S \i/H}.

5.4.2 Geometric Interpretation

Plugging into the condition in (5.12) the definitions of SNR and
INRp', given in (5.6) and (5.8), respectively, we obtain

o Tt (PBY )
7"uo,b;C [t Ml/nu O'I% (51 )

leading to the equivalent condition

Fuo, > R (5.15)
with
rH Pﬁ 1—p
_ 'U,Q,b() uMu M
= T ( > ) . (5.16)

Thus, ITLinQ surrounds the receivers with exclusion regions of ra-
dius R where either no transmitter whatsoever is present (type I)
or no lower-priority transmitters are present (type II). Likewise, by
plugging (5.6) and (5.9) into (5.13), it can be verified that ITLinQ
surrounds the transmitters with exclusion regions of radius R where
either no receiver is present (type I) or no lower-priority receivers
are present (type II). From (5.16), it can be seen that ITLinQ’s
exclusion radius needs to be optimized according to the transmit
SNR, P,/o2.

These exclusion regions, illustrated in Fig. 5.1, curb interference
from all other links (type I) or from lower-priority links (type II) and
ensure that conditions (5.12) and (5.13) are satisfied as far as those
links are concerned. As seen in Fig. 5.2, type II is less conservative
than type I and allows for a tighter packing of co-channel links by
means of link prioritization.

Note how letting M — oo in (5.16) immediately yields R = 0, which
corresponds to an unchannelized network where all links are active.
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my<m; < my<mjy

(b) Type II

Figure 5.1: Geometric interpretation of ITLinQ. A network with the
same d for all links and with the link priority order mg < m1 < mg <
mg3 is considered. The interfering link distances satisfy 7,5, > R
and 1y, > Rfork,j € {1,2,3}, as well as p, 4, < Rand rp; 0, <R.
Type I: link 0 satisfies the ITLinQ conditions while links 1, 2 and
3 violate them; thus, only link 0 is allowed. Type II: link 0 is the
lowest priority link and it is allowed independently of the ITLinQ
conditions; link 1 is allowed to coexist as it satisfies the ITLinQ
conditions against link 0; links 2 and 3 are not allowed to coexist as
they both violate the ITLinQ conditions against link 1.
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(b) Type IT

Figure 5.2: Channelized network realization under ITLinQ. Trans-
mitters and receivers are indicated by o and +, respectively. Links
allowed to coexist on the channel of interest are connected by solid
lines while other links are not connected. Solid and dashed circles
represent the exclusion regions around transmitters and receivers,
respectively. In this example, and only for illustrative purposes, ev-
ery link has the same distance and hence all exclusion regions are
equally sized.
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5.4.3 Co-Channel Link Density

The first and pivotal result we present characterizes the density of
links that end up coexisting on a given channel when ITLinQ is
applied.

Lemma 5.1. If the link distance is distributed according to (5.2),
then the co-channel link densities of ITLinQ types I and II equal

N
Aug = Y pp Ay e AnARndd) (5.17)
n=1
N
_ Pn —AuA(Rn,dyp)
Ay, = —(1- ¢ 5.18
Wit ; A(erdf) < € ) ( )

where R;, is the exclusion region radius corresponding to 7y, 5, = dp
in (5.16) while

N
A(Rn, dg) = WR%L + Zpg/(l —P (Uz g Bbo(Rn)’biyrui,bi = dg)) dbl

(=1
(5.19)
with integration over By, (R, + d¢) \ By, (R,) and with
P(ui ¢ Bbo(Rn)|bia Tus by = dﬁ) =
L(Rn < dy) 0 < 7p0p < |Rn — dy
. b0+d%7Rn
arccos ZTbi’bO . (5‘20)
1- T ’Rn_dd <7ﬂb¢,b0 SRn"i_dZ
1 Thibo > Rn +de

the probability that the receiver of the ith link is not in By, (Ry),
conditioned on the location of the ith-link transmitter b;.

Proof: See Appendix D.1.

Example 5.2. Let A\, = 11.54 links/km?, which amounts to an
average of 10 D2D users per circular cell of radius 525 m, with
a pathloss exponent 1, = 4.5. Further let P,3,/02 = 117 dB,
corresponding for instance to P,3, = 15 dBm and o2 = —102 dBm
(i.e., Fx =5dB, Ny = —174 dBm/Hz and B = 5 MHz). In one case,
every link has a distance of d = 40 m whereas, in another case, the
link distances equiprobably take the values dy = 20 m, dy = 40 m
and d3 = 60 m. Shown in Table 5.1 are the co-channel link densities
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Table 5.1: Co-channel link density (links/km?)

Fixed link distance | Random link distance
(M7 :U*> /\‘I’I ‘ )“I/H /\‘1’1 ‘ )“I’H
(10,0.5) | 8.61 10.00 8.69 10.04
(10,0.7) | 10.09 10.80 10.13 10.82
(10,0.9) | 10.88 11.21 10.86 11.20

of ITLinQ type I and type II computed via (5.17) and (5.18) for
M =10 with g = 0.5,0.7,0.9. As pu increases, R shrinks and hence
the link density increases.

5.4.4 Interference Modeling

Invoking the interference modelling approach in Section 2.5, we
have:

1. The short-term (local) distribution of z is modeled as zero-
mean complex Gaussian with matched conditional variance
E [|262[{ruo,bx- €k }], Where the expectation is over the data
and fading distributions.

2. The interfering transmitters within an averaging circle sur-
rounding the receiver of interest are explicitly modeled while
the aggregate interference emanating from outside this circle is
replaced by its expected (over the interferer locations) value.
With an averaging circle radius R = /K/(m\,), the aver-
age number of interferer transmitters explicitly modeled is K
(cf. Fig. 5.3). As described in [29], the choice of K should
be chosen to balance simplicity and accuracy in capturing the
performance for specific user locations.

Recalling the definition in (5.5), the conditional variance o3 (i.e., the
power of zj for given interference locations {ry,s,} and retaining
indicators {ey}) is

K oo
O-g - Z P“’Bu €k 'I”';(:Z‘I;k + Z Puﬁu €k T;()T?zk + 0'1%] (521)
k=1

k=K+1
h Vv
2 2
aniﬂ UO,out
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2 ~ 12
UO,out ~ UO,out

N e
. ~o —_
Receiver exctusion

region of radius R

Averaging
circle

Figure 5.3: Interference modeling illustration where the intended
link distance is d, the receiver exclusion region radius is R, and
K =5 interferer transmitters with retaining indicators {ex}3_, =
{0,1,1,0,1} are explicitly modeled. The aggregate interference
a&out emanating from outside the averaging circle of radius R is
replaced by its expectation (over the corresponding interferer loca-
tions).

where, applying the second point in our interference modelling ap-
proach, U(%,in corresponds to the K transmitters in ® N B, (R) while
03 out, cOrTesponds to the transmitters in @ \ By, (R) plus noise.

Computing the expectation of O'g’out over the locations of the in-
terfering transmitters in that term is not straightforward because
ITLinQ introduces dependencies (specifically, repulsions) across the
locations of co-channel transmitters. These dependencies are quan-
tified by the pair correlation function, defined as follows: denoting
by Au(+) the intensity function and by o) (b;, by,) the second moment
density of point process V¥, i.e., the joint probability that there will
be points of ¥ at two specified locations b; and by, then the pair
correlation function is 0 (b;, bi) /Au(bs) Aa(bi). If W is uniform (e.g.,
PPP) then the pair correlation equals 1; if ¥ is repulsive (resp. clus-
tered) then the pair correlation function is below 1 (resp. above 1).
From the typical-link viewpoint, the locations of co-channel trans-
mitters can be distinguished based on their pair correlations with the
typical transmitter. The statistical properties of the Matérn process
class, which is similar to ours, have been investigated in [152, 161]
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and it has been shown that, when the separation between any two
transmitters is at least R, the locations of co-channel transmitters
within 2 R are correlated while those of co-channel transmitters be-
yond 2 R behave like a PPP. Applying this insight, we can borrow a
modeling assumption introduced in [149] and whose validity for our
purposes is examined later in the chapter.

Assumption 1: The locations of co-channel transmitters outside
the receiver’s exclusion region B, (R) belong to a homogeneous PPP
with scaled-down densities Ay, and Ay, for type I and type II,
respectively.

Under Assumption 1, the locations of all interferers are modeled as
PPP. Recalling that K dominant interferer locations are explicitly
modeled, the expectation of O’%’Out over this PPP gives

UOout_E[ Z Pu/BuekrrUO Tk +UI%I (522)
k=K+1

2 A\w P, B,

L) + o3 (5.23)

= = 2Rm?

where (5.23) follows from Assumption 1 and Lemma 2.3 (cf. (2.20)
with Ry — R, n — n, and A — Ay).

With the interference thus approximated, and recalling the intended
signal term in (5.4), the instantaneous SINR is itself approximated
by

Puﬁu T;OTZZO E[|hu0,b080|2 | huOvbO]

SINRy =~ 5 = (5.24)
UO,in + UO,out
= PO ‘h’u07b0|2 (5'25)
where
uﬂu u b
po = > gm\ppuﬁu (5.26)

i1 P €k Ty, T T + 0%
is the (approximate) local-average SINR at the receiver.

5.4.5 SINR Distribution

For a specific channelized network realization, i.e., given {ry, 4, ,ex},
k =1,...,K, the value of py becomes determined. Since |hy p,|*
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Figure 5.4: CDF of instantaneous SINR with fixed link distance
d =40 m.

is exponentially distributed with unit mean, it follows from (5.25)
that the SINR exhibits an exponential distribution with mean po
and thus its conditional CDF is

FSiNRg|po (V) = 1 — e~V/ro, (5.27)

Example 5.3. Reconsider Example 5.2 with the same distance
d = 40 m for each link. The number of explicitly modelled in-
terferers is set to K = 5 and, to render the system as typical as
possible, 7,5, for k = 1,..., K is set to the expected distance to
the kth nearest neighboring point in a PPP with density A [93].
This gives ry,p, = I'(0.5+ k)/(v/7AL'(k)). Shown in Fig. 5.4 are
the SINR distributions for ITLinQ types I and II obtained analyt-
ically under Assumption 1 (Egs. (5.26) and (5.27)) alongside the
simulated distributions with z{ as per (5.5), i.e., without any ap-
proximations. In the simulations, the locations of interferers outside
the averaging circle no longer conform to a PPP, as the interferers
within the exclusion regions are deactivated.
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A satisfactory agreement is observed for both ITLinQ types, sup-
porting the validity of our interference modeling approach. Similar
agreement is observed for other values of the parameters.

5.4.6 Spectral Efficiency

Having validated our interference modeling approach in the previ-
ous subsection, we now turn our attention to the ergodic spectral
efficiency.

Specific Network Geometry

For a specific network realization, i.e., for a given pg, the ergodic
spectral efficiency of the Oth link is

Clpo) = /0 " logs (11 1) d gy (1) (5.28)

= el/rog; <1> log, e. (5.29)
Po

Average Network Geometry

Next, we average the link spectral efficiency C(-) over all possible
network realizations, obtaining the central result in the chapter.

Proposition 5.4. For transmitter density Ay, the link distance dis-
tribution in (5.2) and parameters M and p, the spatially averaged
link spectral efficiency (b/s/Hz per link) of ITLinQ equals

N ] 2
. log, e { v ol )
C(Ag, M, pn) = E expq — + mAgR
(P 2 nzlqn/o v+1 P d,™ P, vin

YAy 2 of 2 [dy\™
+ = %fudir(—,fy<> >}dw (5.30)
u M Rn

where ¢, is the fraction of co-channel links with distance d,, and Ay
depends on Ay, M and p as per (5.17) for type I and (5.18) for type
II.

Proof: See Appendix D.2.

Example 5.5. Shown in Fig. 5.5 is a comparison of C(\y, M, i) as
given in Proposition 5.4 against its simulated counterpart for A, =
11.54 links/km?, n, = 4.5 and P,B3,/02 = 117 dB. Every link has
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Figure 5.5: Average link spectral efficiency of ITLinQ type II as
function of d for A, = 11.54 links/km?, ;= 0.7 and M = 10.

the same intended distance d. The channelization is ITLinQ type
IT with M = 10 and g = 0.7. The simulated result corresponds to
the exact mutual information under the non-Gaussian interference
in (5.5), computed through Monte-Carlo histograms and averaged
over many fading realizations and interference locations. The match
is excellent, again evincing the goodness of our interference modeling
approach. Additionally, as anticipated earlier, the results of our
analysis are slightly below the mutual information computed under
the non-Gaussian interference in (5.5).

From Proposition 5.4, we can obtain the spatially averaged area
spectral efficiency (b/s/Hz per unit area) by scaling the spatially
averaged link spectral efficiency C(\y, M, i) by the co-channel link
density Ay. This gives

é(Auan /J) = )“I’ C(AuvMa M) (531)

from which the average benefits of channelization over all possible
network geometries can be gauged. Moreover, the parameters M
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Figure 5.6: Average area spectral efficiency v. A, for optimized
ITLinQ with d = 20 m and d = 40 m, and with n, = 4.5 and
P,3./c% =117 dB.

and p can be tuned as function of the user density and link dis-
tance distribution in order to maximize the average area spectral
efficiency, i.e., to obtain

C*(M) = Mgl()?lwa()\u,M, ). (5.32)

Example 5.6. Shown in Fig. 5.6 is the average area spectral effi-
ciencies of ITLinQ type I and type II obtained by numerically solv-
ing (5.32) with link distances fixed at either d = 20 m or d = 40 m.
Type II is seen to be uniformly superior, with a performance advan-
tage that increases with the user density, and hence we concentrate
on this type henceforth. The limiting (A, — o0) area spectral effi-
ciency of ITLinQ type II is presented in Fig. 5.7 as function of the
link distance d, fixed for all users.

We observe that, for any fixed intended link distance, the co-channel
link density Ay, increases with growing A, and eventually saturates.
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Figure 5.7: Average area spectral efficiency v. d for optimized
ITLinQ type II with A\, — oo, 1, = 4.5 and P,3,/02 = 117 dB.

This, in turn, leads to saturation in the average area spectral effi-
ciency.

5.5 Baseline Schemes

5.5.1 Baseline 1: Unchannelization

From Proposition 5.4, by taking lim;_soo C'(Au, M, 1) (equivalently,
R, = 0), we can recover the spatially averaged link spectral effi-
ciency for an unchannelized network (i.e., a network where all links
are co-channel). This baseline,

> logy €
C(Ay, 00,
u 1) an/[) T+ 1

2 g 9
-exp( Ix C; ’7+7T)\’}”7ud F<1—>>d7 (5.33)

shall be useful to establish the gains of ITLinQ.
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5.5.2 Baseline 2: FlashLinQ

In addition to the baseline of a network with no channelization, a
second interesting baseline for ITLinQ is FlashLinQ. In this sec-
tion we briefly review how FlashLinQ operates, couching it in our
notation and molding it to our models.

Description

In contrast with I'TLinQ, whose channel allocation conditions are
grounded in an information-theoretic optimality notion and then
heuristically refined, FlashLinQ’s channelization policy was formu-
lated on a heuristic basis from the onset.

For the sake of consistency, and to ensure a fair comparison later,
we consider a type II embodiment of FlashLinQ for which the Oth
link is allowed in a channel if and only if two distinct conditions are
satisfied with respect to links with a lower mark. The first condition
is

SNR .
W 2 Yrx € {n My, < mo} (534)
4,0

which ensures that the outgoing interference caused by the Oth-link
transmitter to any lower-mark receiver is within a specified limit
determined by the threshold ~rx; if (5.34) is not satisfied, then the
Oth-link transmitter must yield, meaning that it must refrain from
transmitting and thus the link must be allocated to another channel.
In turn, the second condition is

Z?::Réfk > x k€ {n:my, <mp} (5.35)
k

where vgx is an additional threshold; if (5.35) is not satisfied, then
the Oth-link receiver must yield, meaning again that the link must
be allocated to another channel. It is worth to emphasize that
the second condition is slightly restricted, expressed in terms of
sum interference rather than individual interference, yielding a slight
disadvantage to FlashLinQ in terms of performance.

An step-by-step description of FlashLinQ type II is given in Algo-
rithm 1, under the hypothesis that the priority of the Oth link is the
lowest.
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Algorithm 1 FlashLinQ Type IT Algorithm Summary
1. Set eg =1, e, =0, € =0 and € = 0 Vn # 0, where €} and
e are temporary variables that indicate whether the
FlashLinQ conditions are satisfied at the nth-link
transmitter and receiver, respectively.

2. For every i € {n : m;, < my}, set e = 1 if the condition
in (5.34) is satisfied.

3. For every k € {n : m, < myp}, set € =1 if the condition
in (5.35) is satisfied.

— .t
4. For every n # 0, compute e,, = €Xe.

Geometric Interpretation

Paraphrasing [31], the condition in (5.34) intends for the Oth link not
to cause too much interference to other lower-mark links assigned
to the channel under consideration. However, no specific SIR can
be guaranteed for those other links as the condition limits the in-
terference contribution of the Oth link without regard to how much
other interference is present. Plugging into (5.34) the definitions of
SNR and INR%lt given in (5.6) and (5.9), respectively, we obtain for
the ith lower-mark interfered link the equivalent condition

1/1u
Tugbo = Tuo,bo VTQ? (5.36)

whose enforcement amounts to forming around the transmitter a
circular exclusion region that is free of any lower-mark receiver and
whose radius is

Tug.bo 7%{!7“. (5.37)

Contrasting this definition with ITLinQ’s exclusion radius R (cf.
Eq. 5.16), we observe that the two coincide if 4 = 1 and M =
1/yrx. Furthermore, FlashLinQ’s exclusion radius is—in contrast
to ITLinQ’s—insensitive to the transmit SNR, P,/o2, and hence
FlashLinQ yields robust performance with given thresholds irrespec-
tive of the transmit SNRs.

Given that the first FlashLinQ condition by itself cannot prevent
possible situations of excessive interference, it is reinforced by the
second condition meant to help achieve, again paraphrasing [31], a
reasonable SIR for the Oth link. Once more though, no specific value
can be guaranteed for the SIR because the second condition too



106 Channelization Schemes for Overlaid D2D Networks

involves only links with lower marks; the interference from higher-
mark links may push the SIR below vgx and, with some small prob-
ability, below even lower values. Furthermore, because the second
condition involves not the interference from a specific link but a
sum thereof, geometrically it amounts to forming an exclusion re-
gion that—even in the absence of shadow fading—is not circular;
this renders FlashLinQ’s analysis rather unwieldy.

Average Area Efficiency

In the original formulation of FlashLin(Q), fixed values were employed
for yrx and ygx with the further restriction that yrx = yrx. Then,
in [162], this restriction was lifted and the performance of FlashLinQ
was numerically computed for varying threshold values to find that:

e The average area spectral efficiency decreases with growing
Yrx-

e The average area spectral efficiency increases with growing
Yrx for lower values of yzx and then gradually decreases with
growing yrx for higher values of yrx.

5.6 Performance Evaluation of ITLinQ

With the theoretical framework established in Section 5.4, we now
proceed to evaluate the performance of optimized ITLinQ type II,
and contrast it with the unchannelized baseline and with FlashLinQ.

Example 5.7. Fig. 5.8 shows, as function of A\, the average area
spectral efficiency of optimized ITLinQ when every link has an in-
tended distance d = 40 m. Both analytical and simulation results
are provided. As baselines, analytical and simulation results for an
unchannelized network, as well as simulation results for FlashLinQ.

Example 5.8. Fig. 5.9 shows, as function of A\, the average area
spectral efficiency of optimized ITLin(Q when the link distances
equiprobably take the values d; = 20 m, do = 40 m and ds = 60 m.
Again, as baselines we include analytical and simulation results for
an unchannelized network as well as simulation results for Flash-
LinQ.

From the foregoing examples, we can draw the following observa-
tions:
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Figure 5.8: Average area spectral efficiency v. A, for optimized
ITLinQ with d = 40, n, = 4.5 and P,3,/0% = 117 dB. Also shown
are the corresponding spectral efficiencies for FlashLinQ and for an
unchannelized network.

e Despite the PPP approximation in Assumption 1, the analyti-
cal expressions derived for ITLinQ are very accurate—slightly
conservative for the reasons exposed in Section 5.4.4—and of-
fer an efficient alternative to simulations. Indeed, the genera-
tion of each optimized simulation point in Examples 5.7 and
5.8 is an extremely time-consuming process.

e Both ITLinQ and FlashLinQ yield a significant improvement
(on the order of 20-30% according to the foregoing examples)
in average area spectral efficiency relative to the unchannelized
baseline.

e ITLinQ has a slight edge over FlashLinQ, which despite its
fully heuristic nature performs remarkably well if its thresh-
olds are properly optimized.

Our observations have been verified to hold qualitatively for other
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Figure 5.9: Average area spectral efficiency v. A, for optimized
ITLinQ with randomized link distances (equiprobably: d; = 20 m,
ds = 40 m and dy = 60 m) and with 5, = 4.5 and P,3, /02 = 117 dB.
Also shown are the corresponding spectral efficiencies for FlashLinQ
and for an unchannelized network.

link distance distributions, for pathloss exponents ranging between
n, = 3 and n, = 4.5, for dual-slope pathloss functions [163], and
even with shadow fading incorporated.

While ITLinQ’s improvement in average area spectral efficiency with
respect to an unchannelized network is on the range of 20-30%,
much more sizable gains are observed by users suffering from above-
average interference. We next illustrate this potential in a typical
situation where strong interference arises.

Example 5.9. Consider )\, = 23.09 links/km?, which amounts to
an average of 20 D2D users per cell of radius 525 m, with the same
distance d = 40 m for each link. As in earlier examples, n, = 4.5
and % = 117 dB. The parameters of ITLinQ are set to maximize
the avgrage area spectral efficiency, i.e., M = 10 and pu = 0.5,
corresponding to an exclusion radius of R = 75.6 m. Shown in
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Figure 5.10: CDF of area spectral efficiency with intended link dis-
tances d = 40 m.

Fig. 5.10 are the distributions of area spectral efficiency for ITLinQ
and for unchannelized network. I'TLinQ exhibits a hefty advantage
in the lower tail of the distribution, specifically a seven-fold gain
in terms of the area spectral efficiency achieved by the worst 10%
of network geometries. (The gain shrinks progressively as higher
portions of the CDF are considered and, for the most favorable
network geometries, ITLinQ is altogether unnecessary.)

5.7 Chapter Summary

The availability of multiple channels in D2D networks offers the
possibility of parsing the available links onto various sets in such a
way that excessive interference is avoided. ITLinQ and FlashLinQ
operate by enforcing—through various parameters and thresholds—
exclusion regions around transmitters and receivers. Both are effec-
tive, with a slight edge for ITLinQ. With respect to an unchan-
nelized network, the gains in area spectral efficiency range between
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20-30% on average and multiple-fold improvement factors on the
most unfavorable network geometries.



CHAPTER 6

Full-duplex MIMO in
Cellular Networks

Vision is the art of seeing what is invisible to others.

Jonathan Swift

The goal of this chapter is to examine full-duplex wireless commu-
nication, which allows simultaneous transmission and reception on
each time-frequency channel. In addition to potentially doubling
the spectral efficiency and reducing the end-to-end latency, such
bidirectional communication can offer solutions to problems such
as hidden terminals, decoupling of forward and reverse links, and
spectrum sharing [39]. Besides cellular access, the potential appli-
cations of full duplexing include wireless backhauling for microcells
and relaying in cooperative networks [36-38].

6.1 Related Work and Motivation

Previously unfeasible because of self-interference, full duplexing is
now becoming possible thanks to advanced combinations of analog
and digital techniques [32-35]. Among the various self-interference
cancellation architectures being proposed stands the one in [35],
which has the advantage of providing the highest isolation (up to 110
dB) between the transmit and receive chains for a single antenna.
Given the prevalence of multiantenna transmitters and receivers in
contemporary wireless systems, it is desirable to further have full-
duplex architectures featuring MIMO, and indeed a MIMO full-

111
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duplex platform has already been prototyped [164]. By pushing the
self-interference below the noise level, it is possible to achieve a near-
doubling of spectral efficiency for an isolated link. However, this
may not extrapolate to wireless networks where every transmitter
in the system interferes with every receiver. The question then arises
as to whether, and by how much, full-duplex is beneficial over the
standard half-duplex, and this question is precisely what motivates
the chapter.

Initial studies of this issue are presented in [40-44], where the av-
erage performance of full-duplex schemes has been characterized in
wireless ad-hoc networks [40, 41], cellular networks [42, 43], and
heterogeneous networks [44]. Stochastic geometry is the toolbox
invoked in all these studies, which allows for models that are both
amenable to analysis and highly representative of the heterogeneous
structure of emerging wireless networks.

6.2 Contributions and Qutcomes

In our work, we seek to further advance the understanding of the
matter by incorporating aspects that were missing in those pio-
neering studies and that turn out to have a major impact on the
conclusions. A first such aspect relates to the pathloss exponent.
Prior works [43] model the pathloss at a distance r as Sr~"; this
single-slope model is inadequate to represent the pathloss among
base stations, which as we shall see is critical in full-duplex net-
works, and a multi-slope model is much more adequate. A second
aspect that is ignored in prior works, because of the complexity
that it brings into the analysis, is MIMO. In addition, most pre-
vious stochastic geometry analyses characterize network coverage
or outage on the basis of the instantaneous SIR. Nowadays, how-
ever, ergodic performance metrics obtained by expecting over the
small-scale fading are operationally much more relevant (cf. Section
1.2.2). Tt is therefore more meaningful to focus on the local-average
SIR and the ergodic spectral efficiency. This altogether motivates
the analysis of full-duplex wireless networks that we present here,
with the following contributions:

e We provide a unified stochastic geometry framework that en-
compasses both forward link and reverse link in full-duplex
cellular networks, with each base station serving multiple users
on each time-frequency channel.
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e By leveraging the analytical potency of stochastic geometry,
we derive expressions for the system-wide distributions of local-
average SIR and for the ergodic spectral efficiencies. We also
obtain the spatially averaged spectral efficiencies in integral
forms, which serve to gauge the system-level benefits. And, to
complement the analysis, we conduct Monte-Carlo simulations
on a Vodafone LTE field test network.

e We establish that, without serious additional interference man-
agement, full-duplex macrocells are not viable because of the
strong interference among macro base stations.

e We show that, in microcells, full-duplex can yield close to the
expected doubling in spectral efficiency in the forward link. In
the reverse link, and in absence of additional interference man-
agement, the base stations must be deployed with a certain
minimum spacing in order to reap the benefits of full-duplex.
This minimum spacing is considerable, and thus full-duplex is
regretfully seen to be rather incompatible with densification.

The above observations have been made under the premise of bal-
anced traffic demands in both forward link and reverse link, which
is a reasonable assumption because of the increasing popularity of
video uploading to social networking sites and recent growth in on-
line storage services.

6.3 Network Model

We consider an interference-limited cellular network with both base
stations and users supporting bidirectional communication, and con-
duct the analysis separately for forward link and reverse link. Each
base station has N antennas and communicates independent signal
streams to IV single-antenna users. Each receiver has an estimate
of the fading of its intended link(s), both in the forward link and
in the reverse link. Advantageously in full-duplex, because of chan-
nel reciprocity each base station can further utilize its reverse link
fading estimates to serve its user(s) in the reverse link. Since the
penalty caused by the application of pilot-assisted fading estimates
in lieu of perfect estimates has been shown to be marginal [165], we
assume the fading estimates to be perfect. An explicit account of
the pilot overhead incurred to gather these estimates would equally
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affect half- and full-duplex systems, not having any bearing on the
benefits of the latter over the former.

6.3.1 Forward Link

In the forward link, the receiver under consideration is a user and
the transmitter is the closest base station. The base station lo-
cations {b;} are modeled by a homogeneous PPP, ®, C R2, with
density Ap. If the users are associated with their closest base sta-
tions, then the user locations are dependent on their serving base
station locations and violate the PPP condition from the typical-
user viewpoint. Faced with this obstacle, we borrow a modeling
assumption that is shown to be tight in [166] and whose validity for
our purposes is examined later in the paper: the user locations {u;}
belong to another independent homogeneous PPP ®,, with matched
density, i.e., Ay = N Ap.

6.3.2 Reverse Link

In the reverse link, the receiver under consideration is a base station
and the intended transmitters are the N closest users. Borrowing
techniques from [167, 168], the analysis could be extended to in-
corporate reverse link power control and relax the constraint that
the intended transmitters be the closest users. While quantitatively
very interesting, this extension is not expected to modify the qual-
itative conclusions because the performance of full-duplex in the
reverse link is mainly limited by the strong interference from the
base stations.

The aforementioned model can be viewed as a full-duplex network
(cf. Fig. 6.1), where each base station simultaneously communicates
with the strongest N users in both forward link and reverse link,
yet the user distribution is equally favorable for both half-duplex
and full-duplex.

To facilitate the readability of the equations, we place — and <
markers atop the forward link and reverse link variables, respec-
tively.

6.4 Signal and Propagation Models

User antennas are unit-gain while base station antennas have a gain
G,. We denote by P, and P, the transmit powers of base stations
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(b) Reverse link

Figure 6.1: Full-duplex cellular network realization. In the forward
link, the receiver under consideration is a user (located at ug) and
the transmitter is the closest base station (located at bp) while, in
the reverse link, the receiver under consideration is a base station
and the intended transmitter is the closest user. Base station and
user locations are indicated by o and 4 markers, respectively. In
this example, for illustrative purposes, \p = Ay.
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and users, respectively.

6.4.1 Forward Link

By Slivnyak’s Theorem [51], we consider a receiving user at the
origin and focus the analysis on its link, indexed by 0. This link,
whose user and serving base station are respectively located at ug
(the origin) and by, serves as the typical link in the network (cf.
Fig. 6.1a). The user at the origin observes

. s - s _
yo = ﬁbiB ruvabOth’uO %OSbO + Zé (61)

whose first term is the signal from its serving base station while the
second term is the aggregate interference

o9 2 [eS)

>l b -n * —Mu

20 = E “ WGbﬁ ruo,bkhbmuo%ksbk + Z \/ Pu/Bu ruo,uj' huo,Ujsu]'
k=1 j=1

(6.2)

where the first summation spans the interference from other base
stations, ®p, \ {bp}, and the second summation spans the interfer-
ence from other users, ®, \ {up}. In turn, 5 and 3, are respectively
the pathloss intercepts of base-to-user and user-to-user links, n and
n, are the corresponding pathloss exponents, 7, is the distance
from by to ug, Ry, € CN*1 ig the fading vector from by to ug and
huo,uj € C is the fading coefficient from u; to ug. The entries of
R, o and hyg y; are IID samples drawn from N¢(0, 1). Meanwhile,
Vi, € CV*N is the precoder used by the base station at by to trans-
mit its data symbol vector s, € CN*! while sy; € C is the data
symbol transmitted by the user at u;. The entries of s,, and s, are
IID complex Gaussian such that E|s,,|*] = 1 and E[sy,s; | = In.
Power allocation is uniform across the N signal streams, which gives
E[[| Vo s1ol13] = N.

Without loss of generality, base station and user locations are in-
dexed in order of increasing distance, i.e., ryyp, < Tugb,,, and
Tugu; < Tugujir while the base station at by serves the users at
{un}ffgol Under these premises, the data symbol and precoder at
by can be respectively written as Vi, = [Vyg by - > Vuy_1,bo) and
Sby = [Sugbos- - > Sun_1.bo) L With sy,p, the data symbol intended
for the user at up and w,, 4, the corresponding precoder. With
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perfect CSI at the base station, the precoder v, p, is designed ac-
cording to the zero-forcing strategy in order to prevent interfer-
ence [169]. Mathematically, zero-forcing means hj , vy, p, = 0 for
n=1,...,N —1, which plugged into (6.1) gives

. | P, - .
7o = FbiB ruO7bOhZO7uovuO7bosuO7bo + 2. (6.3)

6.4.2 Reverse Link

As mentioned earlier, we adopt a two-slope model for the base-to-
base pathloss [170]. Denoting by R. = 4h%/A the critical distance
with hy, the base station antenna height and A the wavelength, the
base-to-base pathloss for a given distance 7y, 4, is then
{ﬁbrb_()?é’k Tho by, < Re (6.4)

BTy Thoby > Re

where 7, and 3, are, respectively, the pathloss exponent and inter-
cept of base-to-base links satisfying ry, 5, < R. while ng and 3y are
the pathloss exponent and intercept of base-to-base links satisfying
Thoby > L. To analyze the reverse link, we shift the origin to the
base station of interest, which observes (cf. Fig. 6.1b)

N-1
Yo = Z \/mhbo,unsun + 2§ (6.5)
n=0

N-1

whose first term is the signals from its intended users at {u,},

while the second term is the aggregate interference

(o]
P,
pay — b _
zZo= Z P.G,pB Tbo?uj Py su; + Z ﬁGgﬂb Tbo7ngbo,bk Vi, Sb,
Jj=N

kel

P, -
+> WbGﬁﬁB "o Hy b, Vi, St, (6.6)
kgk

where the first summation spans the interference from other users,
D, \ {un nN:—017 and the second and third summations span the inter-
ference from other base stations, ®,\{bg}. In (6.6), K = {k : 13,5, <
R.} while Hy,, € CV*N s the fading matrix linking the base sta-
tion at by with the base station at by. The base-to-base fading can

be modeled as Rayleigh, Rician or disregarded altogether [71]. As
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fading is seldom significant in base-to-base links, in this chapter we
set Hy,p, = In [171].

The base station at by applies Wy, = [Wpg ug» - - - s Whouy_ 1] € CNxN

to process its received signal y,, where wy, ., is the zero-forcing
filter corresponding to the signal from the user at u,. At its output,
W, 4, Sives

* ~ -n * * <!
wavunyO - P“Gbﬁ Tbo,un wbo,unhbo,un Sun + wb07unz0' (67)

6.5 Interference Modeling

Leveraging the approach in Section 2.5, the local-average distribu-
tions of co-channel interference terms Zj and £{ (cf. (6.2) and (6.6))
are modeled as zero-mean complex Gaussian with matched condi-
tional covariances E[|Z0|?[{7ug by > Tuo,u; }] and E[Z626* {7, Too,01
respectively, where the expectations are over the data and fading

distributions.

In the forward link, recalling (6.2), the conditional covariance of Zj
for given interferer locations is

E [5650/* | {Tuo,bk ) TUOvuj }]
Pbiﬁ

. * *
E h’bk,’u,o ‘/bk Sbk sbk ‘/bk; hbk 7u0:|

uo by

+ Puﬁu Z ruo ,Uj |: uo,uj SUj S'Zj h;_kt,o,uj'] (68)

PG PGB . .
g Z UonbkE hbk,uo‘/bk) (hbk,uowk)]

o0

+PB.S i E [huo’uj h;jo’u]} (6.9)
jfl
= B,G,f Z rod, + P.B, Z Tl (6.10)

7j=1

where (6.8) follows from the mutual independence of {s, }7°, and
{54,352, while the first term in (6.10) follows from the fact that
th uo Voi 18 @ 1 X N matrix with IID zero-mean unit-variance entries

such that E[|h; Vi, [] = N [165].
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Shifting to the reverse link and recalling (6.6), the conditional co-
variance of Z{ for given interferer locations equals

0.)
E [2626*‘{Tb0,uj7rb07bk}] = PR.G.p Z Tb_onu [h’bomgsugs hbo, }

P B — * *
bGPy Z bonbk]E %ksbksbk‘/bk]
kek
P 6 - *
b, MB Z b()nl;?;cE Vl',kskaZle',k]
kgKC
(6.11)
oo
= PGB Y i E (B i
j=N
FRGI Y Iy
kek
+ PngﬁB Z Tbo kaN (612)
keK
- [ras Y, ret (5 T
j=N kel
)|
kg
(6.13)

6.6 SIR Distributions

6.6.1 Forward Link

From (6.3) and (6.10), the instantaneous SIR experienced by the
typical user in the forward link is

PG - * N-1
ST% b]\[bﬁruon,boIE [‘hbo,wv“mbosuoibo‘zl{hbov“j Jj=0 ] (6.14)
0 — - .
Uzdw{rw),bkv Tug,u; }]
P,GnB
bNb ruo bg’hbo UQUUO:bO‘ (615)

PbiB Zk=1 uo,bk + P‘Jﬂu Z] 1 Tuon;:]
= ﬁo’hZO,uOvuo,bo‘z (616)



120 Full-duplex MIMO in Cellular Networks

where the expectation in the numerator of (6.14) is over s, 4,, con-
ditioned on the known fading (and therefore on the precoders), while
-
r
- u0,bo
PO = . — (617)
N E;il TUO'IZU/]' + w‘lN 22021 Tuo'erk

is the local-average SIR at the typical user in the forward link with

P.B.
w, = .
Pbiﬁ
Since the vy, is independent of hy, ,, in zero-forcing precod-
ing, the precoded channel hy , vyyp, ~ Nc(0,1) and the power
2 is exponentially distributed with unit mean [165].

(6.18)

*
|hb0,u0 UUOJ’O

Local-Average SIR Distribution

The long-term distribution of the local-average SIR pp is derived
next by utilizing Lemma 2.5.

Proposition 6.1. For some given r,, 3, = 19, the CDF of pj is

AL M--¢
ez L (=1)m
Fam® =125 X () X5
=0 m=0 m
2
1 2 Aprd (Ne)n - (=2
SR Zexp | TALTE + wp <,NL>
L n n
2 2
—7NXp (rdNw, ¢t)m T <1 - >> } (6.19)
UM
where
. <A+12277m>7 (6.20)

while Dy = 2 and Dy, = 1 for m > 1. The parameters A, L and M
control the accuracy, and the typical values are A = 9.21, L = 5 and
M =8.

Proof: See Appendix E.1.

Eq. (6.19) can be unconditioned via the density function in (2.14)
(with n = 0 and A = \y,) to obtain the unconditional CDF of local-
average SIR,

F(y) = / " Eoo () fro (o) dro. (6.21)
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Table 6.1: Microcell network settings [171, Scenario 2]

’ Parameter \ Value H Parameter \ Value ‘
P, 24 dBm n 3.75
P, 23 dBm Moy B 2,4
G, 5 dBi Nu 4
I5; —32.9dB hy, 4 m
By —38.45 dB A 0.15 m
Or —49.36 dB R. 427 m
By —55.78 dB Ab 7.95 base stautions/krn2
1 Conditional 50008000000000098888
0.g9HLink range = 150 i
0.8
0.7F
0.6
< os}
1€
0.4
0.3
0.2 — Analytical
0.1 o Simulation

10 -5 5 10

7 (dB)

15 20 25 30

Figure 6.2: CDF of forward link local-average SIR in a full-duplex
microcellular network with single-antenna base stations.

Example 6.2. Consider a network with single-antenna base sta-
tions of density A, = 7.95base Stations/ka, which amounts to
an average of one base station per circular cell of radius 200 m,
and with typical values for the powers and the pathloss exponents
(cf. Table 6.1). Shown in Fig. 6.2 is a comparison of the CDFs
Fgyiro=150(7) and Fjz, () in (6.19) and (6.21), with A =9.21, L =5
and M = 8, against their Monte-Carlo counterparts. An excellent
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match is observed, supporting the validity of the Euler series expan-
sion of the inverse Laplace transform and the PPP assumption for
the interfering user locations.

Instantaneous SIR Distribution

Given {7y 5, } and {7y, 4, }, the value of g in (6.17) becomes deter-
mined. It follows from (6.16) that the forward link SIR exhibits an
exponential distribution with local-average py and hence its condi-
tional CDF is

FggomM =1- e™/Po, (6.22)

6.6.2 Reverse Link

Recalling (6.7), we can express the instantaneous SIR at the receiv-
ing base station corresponding to the reverse link signal stream from
Uy, as

— N—
% PuGb/B rbo?unE [‘wZo,unhbmunsun|2‘{hbo7un }n:l)l}
0,n — - <
n w?;o,unE [Zézé*‘{'r‘bo’uj , T.b(hbk}] Wy un,

= ‘p_[),n‘wz)k(),un hbo,un ‘2 (624)

(6.23)

where the expectation in (6.23) is over s,,, conditioned on the
known fading (and therefore on the receive filters), while

—-n
rbOyun

oo N —"b —"B
25— Tho,u; T o 2okek Moo, T T8 ki oo b

Pon = (6.25)

is the reverse link local-average SIR at the typical base station cor-
responding to the signal stream from u,, with

_ -PI)Gb 6b

and
P.G
wy = lebﬁﬁB. (6.27)

Local-Average SIR Distribution

Noting that base stations cannot be arbitrarily close in actual de-
ployments, we introduce a parameter 0 < x < 1 such that ry,;, >
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kR.. We derive the CDF of p, in terms of s, thereby parameter-
izing the distribution by the guaranteed distance to the strongest
interfering base station.

Proposition 6.3. For given 74 4, = Tn, Thy,uy_; = 'N—1 and a, =
Tbg, - -1
0=n— the CDF of py,, is

Tbo,upn_1
Fﬁ()’n\rn,an (7)
AL M+-¢ 9
ez L (=1)m 1 T 9132
~1—v 5T Z (E) D %{L exp <7r]\7)\ba’:21 + TALK“RE
(=0 m=0
2 2
n QWN)\bT%L" P <—2,a2 L) n 21 (TZWB L)’IB 7 (—27 ’I”ang L>
n n B ns R
27\ R2 rh 9 ry
20 (B _n — K2E _m
+ 77b ( n%z (R?b Wy L K m%:z (/{Rc)nb Wy L

(6.28)

where ¢, D,,,, A, L and M are as in Proposition 6.1.

Proof: See Appendix E.2.

The unconditional CDF of local-average SIR Fj, () can be com-
puted as

1 o)
Fﬁom (’7) = /0 /0 F’ﬁoyn|rn,an (/Y)f'f’n,an (rm an) dry, day,. (6'29)

where f;, 4, (-,-) is the joint PDF of 7, and a, corresponding to
A = Ny in (2.15) and, recall, the first integration variable a, (0 <
n < N —1) is the ratio of the distances from a point to its (n+ 1)th
and Nth neighbors, with 0 < a,, < 1.

Instantaneous SIR Distribution

Given {7y, 4, } and {ry,p, }, the value of py,, in (6.25) becomes de-
termined and it follows from (6.24) that

Figgy i, () =1 e /Pon, (6.30)

LOne can derive the CDF directly in terms of r,, and ry_; instead of r,, and
an, but the latter option yields a somewhat more compact expression.
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6.7 Spectral Efficiency

6.7.1 Forward Link
Specific Network Geometry

For given py, the forward link ergodic spectral efficiency (condi-
tioned on 74, = 70) is [172, 173]

Cllro) = [ oma1+7)dFgg s, () (631
= 1
= e!/Polro <#> log, e. (6.32)
Polro
and its CDF equals
B, 1
Fx(c :]P’[el/pomE <_, >10 e<g] . 6.33
C( ) 1 PO‘TO g2 ( )
Invoking [174]
.82
e’E1(v)logy e ~ 1.4log, <1 + 08> (6.34)
v
we can approximate (6.33) as
et — 1
Egpy () = Firo | —552 | (6.35)

which is validated in Example 6.4. Similarly, by leveraging the un-
conditional local-average SIR gy, we can compute the corresponding
ergodic link spectral efficiency as

= ~ 1
C(po) = /P Ey <ﬂ> log, e (6.36)
Po
and its CDF as
etd — 1

Example 6.4. For the same setting of Example 6.2, the approxi-
mate CDF's Fé|r0=150(§) and Fi5(s) are contrasted in Fig. 6.3, against
their Monte-Carlo counterparts. Very good agreements are ob-

served.
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Figure 6.3: CDF of forward link ergodic spectral efficiency in a full-
duplex microcellular network with single-antenna base stations.

Average Network Geometry

Next, we average the link spectral efficiency over all possible geome-
tries.

Proposition 6.5. The average link spectral efficiency in the full-
duplex cellular network model of Section 5.3 is

= ] & 27 A 2 2
C’:/ 0g2€/ 27r)\bexp< T br%(N*y)iF(,Nv)
o Y+1Jrso U n

2 2
— 7Ny (1IN w, y)m T <1 _ >) ro dro dy

Proof: See Appendix E.3.
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Corollary 6.6. For n, = n, Proposition 6.5 reduces to
G- * logsy € 1 dv.
+1 2 2 2 2r(_2
0 VHINN @, )T (1-2) - 2(Ny)o T (-2, V)
(6.39)

The users served by the base station at by are located at {un}f:[:_[)l
and their individual ergodic link spectral efficiencies are identically
distributed. Thus, the aggregate average Spectl;al efficiency of the
users served by the base station at by equals NC.

Example 6.7. For the system parameters in Table 6.1 and N =
1, the average spectral efficiency C, computed via (6.39), is 1.78
b/s/Hz while its simulated counterpart is 1.82 b/s/Hz. The simu-
lated result corresponds to the exact mutual information under the
non-Gaussian interference in (6.2), evaluated through Monte-Carlo
histograms and averaged over many fading realizations and interfer-
ence locations. The match is excellent, supporting our interference
modeling approach.

6.7.2 Reverse Link
Specific Network Geometry

Proceeding as in the forward link, the reverse link ergodic spectral
efficiencies of the typical base station (corresponding to the signal
stream from w,) for given py ,, and py , |y, ay, are

- i 1
Clpo.p) = e/Pon By <h> logy e (6.40)
’ pO,n

- N 1
C(py |, an) = e/Ponlrnan E <h> log, e 6.41
(Po,n| ns Qn,) 1 Po,n‘rnvan g2 ( )

with CDFs

etd — 1
Fe(s) = F, , ( 082 ) (6.42)

eti — 1
Etr,0 () = Epy lrnsan (0_82> : (6.43)
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Average of all Network Geometries

Proposition 6.8. The average per-base-station spectral efficiency
in the reverse link is

N-1 .x 1 00 2
A log, e / / < r 2 p2
C= g / exp | TNAp— + T,k R2
=Jo v+1Jo Jo az,

2
2rN 2y — (=2
= ;anr<n’a%>

27\, R2 ry 9 ry
2T (B n — k’E _ '
B ((R“”) A AN

2
27\ (Tl Y)™® = (=2 1)

+ b( ; B'Y) I (77>R77]3WB 'Y>> frn,an(rn,(ln) dr, da,, dy
B B c

(6.44)

where fy 4. (Tn, an) is the joint PDF of r,, and a, corresponding to
A= Ny in (2.15).
Proof: See Appendix E.4.

For the last term in the summation (i.e., n = N — 1), a,, = 1 while
fro.an () reduces to fr_,(-), the PDF of ry_; corresponding to
n =N —1and A = N)p in (2.12), and the inner double integral
reduces to a single integral.

For the single-antenna case, plugging N = 1 in (6.44) we obtain the
more compact expression

2
< ] o0 2N 2y — [ 2
C:/ Og2€/ 2T ApTo eXp 7r/\b/£2R?+7TbW]F(—,’y)
o 7Yt1Jo Ui

27\, R2 Ta @ Y i w7y
c E 0 . 2E 0
T ( et ( RE ) T (kR

2
27y, (] B _ 2 7/
+= b (7o @5 7) " F(—,TOWBFY)) drodry. (6.45)
Uj:! B

The derived expressions are not simple enough to provide immediate
insight, but they are general and easy-to-evaluate using software
packages guch as Mathematica and MATLAB. For given system
settings, C andC can be solved for either instantaneously or within
seconds (depending on whether N = 1 or N > 1); this is orders
of magnitude faster than a Monte-Carlo computation of the exact
mutual information under non-Gaussian interference.
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6.8 Performance of Full-Duplex
Communication

6.8.1 Half-Duplex Baseline

Unlike full-duplex, half-duplex transmission utilizes separate time-
frequency signaling channels for the forward and reverse links. There-
fore, the half-duplex spectral efficiency must be scaled by 1/2 for a
fair comparison with respect to full-duplex. The half-duplex coun-
terparts to (6.36), (6.21) and (6.38) are then

3 () :% im G () (6.46)
ou—0
. e — 1
Fam ()~ lim F | =555 ) (647)
—HD 1 . =
c = 5w1111130 C. (6.48)

where w, — 0 turns off the forward link user transmissions. Plug-
ging C(-) into (6.48) and evaluating the integral by virtue of [89,
—HD

—H

Eq. 3.326.2], C' reduces to

s 1[0 1
& _ - / L dy. (6.49)
0 2Ny (y+ )T (-2, N7)

Similarly, from Egs. (6.40), (6.29) and (6.44), we can recover for
half-duplex

(ﬁ[),n) =5 lim é(ﬁo,n) (650)

. eor — 1
FéHD (§) 7 hmo Fﬁo,n (()82) (651)
C == limC. (6.52)

where w, — 0 and wg — 0 turn off the reverse link base station
transmissions. Inserting N = 1 and C into (6.52) and then eval-
<HD

uating the integrals by virtue of [89, Eq. 3.326.2],C' is seen to
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Table 6.2: Macrocell network settings [171, Scenario §]

’ Parameter \ Value H Parameter \ Value ‘
P, 46 dBm n 3.75
P, 23 dBm s 2
G, 15 dBi N 4
I5; —-15.3dB M 4
By —38.45 dB hy, 20 m
o 1.0439 dB A 0.15 m
B —55.78 dB R, 10667 m
equal
o = % / o d. (6.53)
0 2yu(y+1)T (—%,’y)

6.8.2 Performance Evaluation

Armed with the full-duplex expressions derived in Sections 6.6-6.7,
and with the half-duplex baselines we just obtained, we can proceed
to evaluate the performance advantage that full-duplex can brings
about.

Example 6.9. Consider a macrocellular network with typical val-
ues for the powers and the pathloss exponents (cf. Table 6.2).
Single-antenna base stations with densities 1.27 base stations/km?
and 0.56 base stations/km2 are considered, respectively amounting
to an average of one base station per circular cell of radii 500 m and
750 m. The intended link distance is 7y, ,, = 100 m while x = 0.1
(equivalently, ry,p, > 1066.7 m). Fig. 6.4 shows, parameterized by
Ap, the CDF of p, obtained by applying (6.28). The overwhelming
interference among macro base stations—due to the low base-to-
base pathloss for distances below R.—yields SIRs that are simply
too low for viable full-duplex operation. Through simulations, we
have observed this observation to hold with sectorized antennas at
the base stations [68].

Having exemplified how full-duplex is not feasible in macrocell re-
verse links, at least not without additional interference management
tailored to full-duplex, we next focus on microcells (cf. Table 6.1).
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Figure 6.4: CDF of reverse link local-average SIR as function of
Ay, (base stations/km?), for a full-duplex macrocell network with
Thouo = 100 m, N =1 and k = 0.1 (equivalently, 4,5, > 1066.7 m).

Example 6.10. Consider a microcell network with single-antenna
base stations, i.e., N = 1 and Ay, = A\y. Fig. 6.5 compares the
forward link ergodic spectral efficiency CDF's of full-duplex and half-
duplex (cf. (6.37) and (6.47)). Full-duplex is superior to half-duplex
in a vast majority of network situations and, as illustrated in the
inset of Fig. 6.5, it achieves a spectral efficiency gain factor of 1.9
in 80% of cases. Then, Fig. 6.6 presents the same comparison for
the reverse link, with two distinct values for k. When x = 3/4, i.e.,
when the first interfering base station is within a critical distance of
the receiving base station, full-duplex is markedly inferior to half-
duplex. However, for k = 1, full-duplex is uniformly superior to
half-duplex, pointing to the need for a careful planning in full-duplex
deployments.

Example 6.11. As a final step, we quantify the average benefits of
full-duplex. For the microcell settings in Table 6.1, the forward link
average spectral efficiencies (cf. (6.38) and (6.49)) for half-duplex
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Figure 6.5: Main plot: CDF of forward link ergodic spectral ef-
ficiency for a microcell network with half- and full-duplex. Inset:
CDF of the ratio of the two spectral efficiencies. In both plots,
single-antenna base stations are considered.

and full-duplex are presented in Table 6.3, where the gain factor due
to full-duplex is seen to exceed 1.9 for varying N. The corresponding
reverse link average spectral efficiencies (cf. (6.44) and (6.52)) are
presented in Fig. 6.7, as a function of k. The full-duplex average
spectral efficiency increases with « and, at x = 0.925, it equals the
value with half-duplex for N = 1; thereafter, the gain increases
rapidly. Therefore, full-duplex outperforms half-duplex only if the
base stations are apart by at least the critical distance. This is
indeed viable in microcell networks because of the relatively short
critical distances (hundreds of meters).

Although a blanket utilization of full-duplex is not beneficial, there
are situations (cf. Fig. 6.7) in which it is indeed advantageous.
This points to a hybrid-duplex system that resorts to full-duplex or
half-duplex, whichever is best, depending on the geometry. If the
base station density is Ap, then the probability that the neighboring
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Figure 6.6: CDF of reverse link ergodic spectral efficiency for a
single-antenna microcell network with half-duplex and full-duplex.

Table 6.3: Forward link average spectral efficiency (b/s/Hz) for a
microcell network with half-duplex and full-duplex

|

= :»HD‘

N | NC | NG| E)C
I [ 1784 0.906 | 1.969
2
3

2.657 | 1.350 1.968
3.325 | 1.690 1.967

base station is apart by at least the critical distance equals e~ bR ,
and the fraction of base stations favorable for full-duplex is e RS
Based on this, the average system-level benefits of such a hybrid-
duplex system can be quantified. Let us denote by C"¥"¢ and C"P
the average area spectral efficiencies (b/s/Hz/km?) of hybrid-duplex
and half-duplex, obtained by scaling the average link spectral effi-
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Figure 6.7: Reverse link average spectral efficiency for a microcell
network with half-duplex and full-duplex.

ciencies by the corresponding densities of base stations and users:

C_Hybrid _ e*ﬂ'/\bRg ()\ué + Ab 5) + (1 o e*ﬂ')\bRg)(AuC::HD " )\b 5HD)
(6.54)

SHD —->HD <HD
C' =XC +MC . (6.55)

Example 6.12. Shown in Fig. 6.8 are the average area spectral
efficiencies for half- and hybrid-duplex networks as a function of the
base station density, for the microcell settings in Table 6.1. The
fraction of full-duplex base stations, e‘”)‘bRE, decreases with the
base station density Ay, and consequently the average area spectral
efficiency of hybrid-duplex approaches the value of standalone half-
duplex. This manifests again that full-duplex does not blend well
with high densification.

As an alternative to gains in spectral efficiency, one can consider the
sparsification in infrastructure density that full-duplex can bring
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Figure 6.8: Average area spectral efficiency for a microcell network
with half-duplex and hybrid-duplex.

about for a given area spectral efficiency (b/s/Hz per unit area).

To achieve the same value thereof than a half-duplex network, only
—2HD =
C' /C as many base stations per unit area are needed under full-

duplex.

6.8.3 System-Level Benefits in a Vodafone Field Test
Network

To confirm the robustness of our PPP-based analytical findings, we
further consider a Vodafone LTE field test network consisting of
64 base stations over 1km? in the London area [175, Section III],
obtain Monte-Carlo results using the geometry of that network, and
contrast them with our analysis. As the test network density is
very high, the two-slope pathloss model is applied to base-to-user
and user-to-user links as well. Users are distributed such that the
distance between each base station and its intended user is uniform
within [10,40] m. Heights of 4 m and 1.75 m are considered for the
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Figure 6.9: Main plot: CDF of forward link spectral efficiency for a
Vodafone LTE field test network with half- and full-duplex. Inset:
CDF of the ratio of the two spectral efficiencies. In both plots,
single-antenna base stations are considered.

base station and user antenna, respectively, with typical 3GPP (3rd
generation partnership project) settings [171, Scenario 2].

Shown in Fig. 6.9 is a comparison of the forward link ergodic spectral
efficiency CDF's of full-duplex and half-duplex. Consistent with our
analysis, full-duplex is virtually always superior to half-duplex and,
as illustrated in the inset of Fig. 6.9, it achieves a spectral efficiency
gain factor of 1.7 in 50% of cases. Then, the same comparison for
the reverse link is presented in Fig. 6.10. Again consistent with our
analysis, full-duplex is markedly inferior to half-duplex due to the
very dense deployment of base stations.

6.9 Chapter Summary

The introduction of full-duplex transceivers in wireless networks
would transform the interference landscape, foregoing long-standing
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Figure 6.10: CDF of reverse link spectral efficiency for a Vodafone
LTE field test network with half-duplex and full-duplex.

interference barriers that have been in place since the inception of
wireless communications, chiefly that base stations do not inter-
fere with other base stations. To assess the system-level impact of
introducing full-duplex transceivers, we have conducted a stochas-
tic geometry analysis of a full-duplex cellular network and derived
expressions for the system-wide distributions of local-average SIR
and ergodic spectral efficiency. Variations of the formulation for
both single-user and multiuser scenarios have been given. From
these expressions, complemented by supporting examples and by
simulations on a Vodafone LTE field network, we can conclude the
following.

e Full-duplex reverse link is not viable in macrocells due to
the excessive interference among base stations. In microcells,
where the base-to-base pathloss is higher because of the lower
elevations, full-duplex operation may be viable.

e Full-duplex consistently delivers a spectral efficiency gain fac-
tor of 1.9 in the forward link of microcell networks. In the
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corresponding reverse link, however, full-duplex outperforms
half-duplex only if the base stations are apart by at least the
critical distance. Thus, full-duplex is at odds with network
densification.

For N > 1, an interesting variation of the full-duplex architecture
considered in our analysis is one where only base stations are full-
duplex, while users are half-duplex. Each base station then receives
signals from a subset of users while transmitting to another (dis-
joint) subset. This variation is attractive from a hardware and power
consumption vantage, as it eliminates the need for self-interference
cancellation at the user devices (where form factors and power are
key aspects), and it relaxes the issue of user-user interference. The
base-to-base interference, however, is unaffected and thus the bulk
of our conclusions continue to apply.






CHAPTER 7

Conclusion

Excellence is a continuous process and not an accident.

A. P. J. Abdul Kalam

7.1 Dissertation Summary

This dissertation has advanced the interference models for wireless
network analysis and established the fundamental limits of wireless
communication systems underpinned by spatial frequency reuse and
interference suppression. Based on the analysis, complemented by
supporting examples and simulations, we have made progress on the
following questions:

1. What is the fundamental role of IA in cellular interference

management?

2. How much is the improvement in area spectral efficiency when
D2D networks incorporate channel allocation schemes?

3. Is full-duplex communication viable in dense cellular networks?

Interference Alignment

Distributed cooperative schemes such as antenna-domain IA can
reduce interference in exchange for a sacrifice in spatial signaling
dimensions. Through system-level analysis, IA is found to be bene-
ficial over the standard MIMO spatial multiplexing only in certain

139
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network geometries, corresponding to strong in-cluster and weak
out-of-cluster interference. However, these geometries are relatively
infrequent and the ensuing improvements in terms of average spec-
tral efficiency for the system are rather small. The above obser-
vations have been made under assumptions highly favorable to IA
and with a conservative baseline that does not even fully exploit
the available CSI. Next, through link-level analysis, the achievable
spectral efficiency of pilot-assisted IA has been quantified in the K-
user interference channel setting under typical operating conditions
such as fading selectivity. The insights obtained from the K-user in-
terference channel apply only to certain geometries of large cellular
networks such as cell-edges with high-levels of signal and in-cluster
interferences and low-level of out-of-cluster interference. If the chan-
nel estimation error and pilot signaling overheads are accounted for,
then pilot-assisted IA loses all its advantages over TDMA at vehic-
ular speeds, however remaining somewhat superior at pedestrian
speeds. The improvement is minor in the case of FDD, and more
significant in the case of TDD. Therefore, the range of operational
conditions where IA may be enticing would then be squeezed down
very substantially and it might be the case that TA would no longer
retain any potential to play a role in cellular interference manage-
ment.

Channelization Schemes

ITLinQ and FlashLinQ schemes operate by enforcing exclusion re-
gions around transmitters and receivers and avoid the situations
of excessive interference in D2D communication networks. Both
schemes outperform the unchannelized baseline, with about 20—
30% improvement in average area spectral efficiency. The gains
are much more sizeable (on the order of seven-fold) for the worst
10% of network geometries. ITLinQ exhibits marginal improve-
ment over FlashLinQ), i.e., the gains in area spectral efficiency are
not more than 10% on average. This is in contrast with the claims
of the original paper [11] that ITLinQ provides over 100% gain in
system spectral efficiency with respect to FlashLinQ. It should be
emphasized that, in [11], the tuning of the FlashLinQ parameters
was neglected, thus resulting in a conclusion favorable to I'TLinQ.
Given that there is a growing interest in D2D communication, this
information is useful and relevant in a practical sense when imple-
menting any of these advanced channel allocation schemes.
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Full-Duplex Communication

The introduction of full-duplex transceivers will disrupt the inter-
ference landscape in wireless networks, resulting in a doubling of
the co-channel interference sources at each receiver. In the forward
link, such additional interference is found to have minor impact and
a doubling in spectral efficiency could indeed be approached, es-
pecially in microcellular networks. In the reverse link, however, a
major difficulty arises in the form of exceedingly strong interference
among base stations. This would render full-duplex transmission all
but unfeasible in macrocellular networks (unless major countermea-
sures could be implemented) and undesirable in dense microcellular
networks. Only with microcells and sufficient spacing among base
stations, such that the base-to-base pathloss exponents are high,
does reverse link full duplex pay off. Thus, full duplex does not
seem to blend easily with densification.

7.2 Impact of the Work

Based on this thesis work, the following are the positive take-away
points for 5G:

e Given its meager gains in spectral efficiencies over standard
spatial multiplexing, TA is not a particularly attractive in-
gredient of 5G. It may, however, have other fruitful applica-
tions such as coding solutions for distributed storage exact
repair [176-178].

e Due to its incompatibility with network densification and lim-
ited system-level benefits for cellular access communication,
full duplexing is not expected to play a vital role in 5G wire-
less systems.

e The potential of D2D communication for 5G wireless systems
is promising due to its scalability. Both overlay and under-
lay options can enhance the area spectral efficiency as long
as there exists a reasonable protection against the co-channel
interference by means of channel allocation schemes.

e In a nutshell, it is beneficial to concentrate on densifying net-
works and adding more antennas at the transmitters and re-
ceivers, and on utilizing the larger bandwidths available at
higher frequencies.
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7.3 Future Research Directions

The methodologies and results presented in this dissertation unfold
several research avenues of both theoretical and practical interest.

Interference Alignment

Our work settles the inefficacy of TA only in the context of large
macrocell networks with dynamic interference patterns. IA might
be more favorable to non-cellular network topologies with relatively
static environments.

e Indoor local area network, where access points suffer from mu-
tual interference (e.g., apartment area, office building) [179,
180].

e Wearable wireless network, where different devices communi-
cate in and around human bodies in an enclosed space (e.g.,
commuter train, subway). A finite number of unintended
transmitting devices within close proximity create a highly
interfering environment [181, 182].

Performance characterizations of IA in the above settings would be
desirable.

Channel Allocation Schemes

In all the schemes investigated in the dissertation, power was fixed
at each D2D transmitter. Due to the scarcity of power at the
battery-operated devices, it is desirable to have power control poli-
cies [183, 184], where transmit power levels are adjusted to achieve a
specified target SINR at the receivers or to maximize system perfor-
mance. Power control, an intensely researched topic in the context
of wireless networks, can improve spatial frequency reuse by con-
trolling interference in the system.

An improved version of ITLinQ has recently been formulated in [185],
which allows for a tighter packing of co-channel D2D links [185].
This scheme, termed ITLinQ+, implements both channel alloca-
tion and power control in a distributed fashion. ITLinQ+ is shown
(through Monte-Carlo simulations) to improve the system spectral
efficiency by 5-20% over ITLinQ in a typical D2D network setup.
The analytical characterization of I'TLinQ+ could constitute an in-
teresting follow-up within the context of channel allocation schemes.
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Full-Duplex Communication

Full-duplex communication is introduced in Chapter 6 without ad-
ditional base-to-base or user-to-user interference management, and
our findings on the potential of full-duplex communication for 5G
wireless systems are mostly negative. Further work would be wel-
come to solidify or tone down these conclusions, and we outline
several directions of interest.

e The performance tail of full duplexing in the forward link is
curbed by user-to-user interference. Given the availability of
multiple channels, users could be parsed onto various sets in
ways that avoided excessive interference, and schemes formu-
lated in the context of D2D communication (cf. Chapter 5)
could be readily applied.

e In the reverse link, base-to-base interference limits the perfor-
mance. This issue is well studied in the context of dynamic
TDD [171], but for distance base stations. It remains to be
seen whether potential solutions such as null forming in ele-
vation [186], cloud radio access network processing [187], or
IA (cf. Chapter 3) could achieve sufficient interference sup-
pression. Advantageously, base-to-base links are very stable,
hardly subject to fading, but according to our analysis several
tens of dB of suppression might be necessary.

e Full duplex improvements in spectral efficiency come at the
expense of increased power consumption due to the sophis-
ticated self-interference cancellation circuits [164]. It is thus
worth studying full-duplex operation in the context of energy
efficiency, a key desideratum for 5G [3, 4].

e Base station antenna patterns in the elevation domain may
alleviate base-to-base interference (probably only slightly be-
cause their effect on the adjacent base stations is minor).
Quantifying this effect would be another interesting refine-
ment of our work.

e The balance between forward link and reverse link traffic,
which is immaterial under half-duplex because the correspond-
ing signals do not interfere, becomes relevant with full-duplex.
While in the dissertation we have considered balanced traffic,
studying the impact of imbalances would be yet another rele-
vant extension.
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Apart from the above, one aspect ignored throughout the disserta-
tion is sectorization. Borrowing techniques from [59], the analyses
could be extended in that direction. While quantitatively very in-
teresting, however, this extension is not expected to modify the
qualitative conclusions in the dissertation.
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APPENDIX A

Appendix to Chapter 2

A.1 Proof of Lemma 2.2

Utilizing the PDF f,. ., (-,-) in (2.13) corresponding to k = N — 1,
the joint PDF of r,, and a,, = r,/rn_1 can be computed as

8(TH>TN—1)
frn,an(Tn,an) = f'f’n,T’N_l(T’rlaerl) W (A.l)
4(77)\)N r2 ) N—-n—2 r721n+3 _%
~ (N—n-2)nl <a% N ”) g ©
(A.2)

which reduces to (2.15) after further simplification.

A.2 Proof of Lemma 2.3

Applying Campbell’s theorem [51, Theorem 4.1] to expect over the
location of all those interferers whose distances lie within (Ry, Ra],
we can express E[Z] as

Ry
E[Z] = 27?)\/ = dr (A.3)

>R

from which (2.19) follows after solving the integral.

A.3 Proof of Lemma 2.4

Due to the independence of the locations, we can write

ﬁz(t) =E|e 2 kiRy <rg <Ry tBry" (A.4)
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—E I e (A.5)
k:R1<rip<Ra

Applying the probability generating functional of the PPP [51, The-
orem 4.9] to expect over the locations of all those transmitters that
lie outside By(R), we can simplify (A.5) as

La(t) = exp (—%A / " (1) rdr> (A.6)

Ry

from which (2.21) follows from the variable change ¢t 5r~" = 6.

A.4 Proof of Lemma 2.5

The CDF of py can be expressed as

Fpo(7) =Plpo <] (A7)
1

_p LO > 1/7} (A.8)

=1- F% (1/7) (A.9)

The closed-form solution of (A.9) is unwieldy in general. Alterna-
tively, we rely on the numerical inversion of the Laplace transform
of Fy/,,(+), which yields an accurate approximation in a series form

for F,,(vy) [59].

Fpy(y) ~ 11 ‘;L zL: (;) Mib (_;im w{cr, O} (a0

where t = w while Dg = 1 and Dy, = 1 for m > 1. By

utilizing the relation

Lr (1) = ) (A1)

we can rewrite (A.10) as in (2.27).

A.5 Proof of Eq. (2.45)

The link spectral efficiency averaged over all geometries in a cellular
network is
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& =E[Clpo)] (A.12)
= E[E [logy(1 + SIRo|po)]] (A.13)
=E /P[logQ(l + SIRo|po) > <] ds (A.14)

0
) UOOO :)i?f (1= Fsirgjpo (1)) dfy] (A.15)
_ /0 - {;)gjf (1—E [Fsiryip(1)]) dv (A.16)
= /OOO l;)iQfE [e77/] ay (A.17)

where the outer and inner expectations in (A.13) are over py and
over the fading, respectively, while (A.15) follows from the variable
change ¢ = logy(1 + ). Invoking (2.32) into (A.17), we arrive
at (2.45).
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Appendix to Chapter 3

B.1 Proof of Proposition 3.1

To obtain the CDF, we need the density function of ry conditioned
on ag = ro/rx_1, which can be obtained, by applying Lemma 2.2
with A=Ay, n=0and N = K, as

2K-1
2(m2) 6" T eay(ro/ao)® (B.1)

fr0|a0 (r0|a0) = T (K) a(Q)K

Then, (3.19) is obtained by setting rx_1 = ro/ap in (3.17) and
averaging (3.18) over r( via the above conditional PDF.
B.2 Proof of Proposition 3.3

First, by applying Lemma 2.2 with A = Ay, n =0 and N = K, we
can express the joint PDF of g and rx_1 as

Am) K rorK 1 a2
s ) = ARV (L

(B.2)

Then, the expectation of (3.18) over ro and rx_; via (B.2) yields

2mApd 70

0 [TR-1 =Y =5 iy 4(71')\b)K7"07“K71 — T A2
F = 1 — "K—1 T bTK_l
siR(Y) /0 /0 € (K-2)1 ¢
K-2
. (T%{—l _ ?”8) drodrg_—1 (B.3)
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which, after applying the binomial expansion and solving the inner
integral, becomes

K-2 . T K _ 2(nt1)
For(y) =1-) <Kn 2)(—1)"W ap "

_ |

ot n(K —2)

oo e—ﬂ')\br?(_l _ 2 n+1

/ 1, T ( ( ),CtlT'K_1> dTK_l
0 Tr-1
(B.4)
where o] = 2‘17%2’\" and
1 -2
u_Q(K—2—n+("+)(77)>. (B.5)
n

To solve the integral in (B.4), we effect the change of variable
r2._ | — x and leverage [89, (6.455.2)] to obtain, after some algebra,

K—2 n
Fsir(7) = 1- Z% o (K(—_;)—l;z()ll{(zz 1) (1+agy) "

2 1
R (1, K14 2Pl _aey (B.6)
n 1+agy

where as = 772—_‘12. Finally, we use the transformation formula [89,

(9.131.1)] to rewrite (B.6) in the more compact form claimed in
(3.21).

B.3 Proof of Proposition 3.4

The proofs of Propositions 3.4 and 3.6 rest on the solution to

@y
Il(ma y) - /0 (1 Ty (27 B 1))m+K dfy (B7)

for any reals m,y > 0. Next, we provide an explicit solution to this
integral.

Lemma B.1. For any reals m,y > 0,

I'K)T(m+1)
I'(K+m+1)

21 (L Ksm+ K+ 11 —y).
(B.8)

Ti(m, y) = logy(e)
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Proof. With a simple change of variable and rescaling,

logye [ e 7K (1 —e ™
Tim.y) = 2525 [ ) T
Y 0 (1 + %6_7>

which can be solved by virtue of [89, Eq. 3.312.3] giving

logoe T'(K) I'(m + 1)
T =
1(ﬂl,y) y]( I‘(l(‘+*7n‘+'1)

1
-2F1<m+K,K;m+K+1;1—). (B.10)
Yy

Transforming the hypergeometric function as per [89, Eq. 9.131.1],
(B.10) reduces to (B.8).

0
From (3.30), rewritten as
C*(ap) =d /000 (1= Foirjao (27 = 1)) dy (B.11)
with Fgirje,(-) as given in (3.19),
" (ag) = d /OO (1 L 2a8d o 1)> - dy (B.12)
0 n—2
—d7 <0727a_g;1> (B.13)

2agd
n—27

and applying Lemma B.1 with m = 0 and y = we obtain the

claimed expression in (3.31).

B.4 Proof of Proposition 3.6

Recall that, under joint decoding, the spectral efficiency of TA is that
of a d x d Rayleigh-faded MIMO channel with IID entries, which
is computed via the marginal distribution of the eigenvalues of a
Wishart matrix [105]. Thus,

€ (ag) = d /0 FSon (2 — 1)y (B.14)
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where F5|ao(') is the complementary CDF, conditioned on ag, of the
(unordered) eigenvalues of the Wishart matrix

IA
Y = %WJHOVOVO*H(}*WO. (B.15)

From [105, Eq. 42], the complementary CDF of an (unordered)
eigenvalue conditioned on pg* equals

d-1 i 2 (1) <g+ 1 L:E) N e e
- 1 ? pIA 21— 25\ (25\ (27
lep%)A(m) = az . Z 22’i—ﬁ£! g ( )( )<€>

i=0 j=0 ¢=0 U VAN
(B.16)
n—2
To obtain F¢ _(-), we set pi* = K1 n=2 and rg_1 = 70/ag in
wlag Po 27 Ap
To
(B.16) and expect over conditional density (B.1) obtaining
d—1 & 2j ¢ . . . .
1 (=1)° [(2i—25\ (25 (25
C —
SJao () = Z; > 2 i < i ) (j, ;)@ (B.17)
=0 7=0 ¢=0
where
o° 2 \pall 2r2d 2 (wAb)KrzK_l 2
— r|¢+ 1, 0 0 0 —7Ap(Tr0/a0) d
Cirmer)  (Fe)
m + n—2
=/ Z — (B.18)
| +K
m:Om' F(K) (1+?7[lfg;x)m

where (B.18) follows from the expansion of the incomplete Gamma
function [89, Eq. 8.352.2], which allows solving the integral with
the change of variable 73 — r'.

Combining (B.17) and (B.18) and plugging the resulting expression
for £ (-) in (B.14), we arrive at

S5SNI

lao

=0 7=0 /=0
L
1 T'(m+K) 2a]d
B N D ) (Pt B.1
2 T () (mrm3) e

where Z; (-, -) is the integral in Lemma B.1, from which (3.33) follows
after further simplifications.



B.5. Proof of Proposition 3.7 155

B.5 Proof of Proposition 3.7

The proofs of Propositions 3.7 and 3.8 rest on the solution to

To(mym,y) = / Y@ - 1)
0

R (K4+m,m+nsm+1+7;—y(27—1)) dy
(B.20)

for any reals m,y > 0 and ' = @ with real n > 0. Next, we

provide an explicit solution to this integral.
Lemma B.2. For any reals m,y > 0,

(m +n)y™+!
I'(K +m)

G2 (y ‘_(er 1)’_(m+K)’_m_”,> . (B.21)

I2 (mv n, y) = 10g2 €

—(m+1),-1,-m—-1—-7/

Proof. The change of variable (27 — 1) — z in (B.20) yields

xm

o0
T =1 m
2(m,n,y) 0g2(6)y/0 T2

. 2F1(K—|—m,m+77/;m—|— 1—}—17’;—3/:6) dz.
(B.22)

By virtue of [89, Eq. 9.34.7], the hypergeometric function in (B.22)
can be expressed in terms of the Meijer-G function and the resulting

integral has the explicit solution in (B.21) according to [89, Eq.
7.811.5]. 0

The spectral efficiency is computed as
C= d/ (1 - Fsr(27 — 1)) dy (B.23)
0

with F5r(+) as given in (3.21). Plugging (3.21) into (B.23),

_ 2d
C:dnz%n!(K—Q—n)!(n+1)IQ<O’n’77—2> (B.24)

where Zo(m, n, y) was given in Lemma B.2, from which (3.36) follows
2(n+1)

p and simplifying.

after replacing ' —
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B.6 Proof of Proposition 3.8

This proof follows an approach similar to the one in Appendix B.4
and some details are thus omitted for brevity. Here, we need to
obtain FJ(-), the complementary CDF of the eigenvalues of Y av-
eraged over all possible cluster geometries. To that end, we average
F:%A(-) in (B.16) over rp and rx_; via its joint density, given in

(B.2), arriving at

o J 5SS G (5 () (Y) ke
where

0o TK_1 2 n 4 K
K(z) = / / r{e+1, mAbd TO x () e T
o Jo n—=2¢172" | (K —2)!

K—2
"TOTK -1 (7“%(_1 - 1"0) drodrg_1. (B.26)

\ =

Expanding the incomplete Gamma function as in [89, Eq. 8.352.2],
(B.26) turns into a sum where each term is a double integral of the
same type that (B.3), solved in Appendix B.2. The same steps are
followed here, yielding

K—2

25'2 | “1)"T(K +m) 2 Y
m! “— nl K 2—n)l(m+n) \n—2

—2d
2F1<K+m m+nim+1+1; — )

(B.27)
where 1/ = 2(n:1)
Combining (B.25) and (B.27) and integrating the result as
C= d/ FS(27 —1)dy (B.28)
0
yields the spectral efﬁciency
g d1 i Loy
o= ;zzzgm oD 2
=0 5=0 ¢=0 m=
1)"T(K 4+ m) 2d
T — B.29
Z wermme () e

where 7 (m n, y) was given in Lemma B.2, from which (3.38) follows
after replacing n’ — 2(n + 1)/n and simplifying.
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C.1 Proof of Eq. (4.29)

Post-multiplying Y by @kH , we obtain

S -1
Y@kH: \/ Nfbp < prP/Nt >

KN.N; \ 0% + N, P/N,
Hj ,
< || [EL e Hk]+zef (C.1)
H;
——
H;

Given the condition K Ny > Ny, the application of the orthogonality
principle yields the MMSE estimate of the forward channels corre-
sponding to receiver k as

o [ENN, ( N,:P/N; >‘1
k Nfbﬁ O—I%I + NPfP/Nt

(B H + QHH + Gy, )

1 .
HY®! (C.2)

where Hj, = [I:I k" JH k, K] represents the concatenated estimate
of Hk = [Hk,h ce >Hk,K] while
NtO-I%]
= C.3
Q PN, (C.3)
and
N;o? 2 KNy N, N,o?
(o= (1 + taN) <UN L N > (C.4)
PN, N, P 02 + N,.P/N,
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are the MMSE regularization parameters. Define the concatenated
estimation error matrix as Hy = [Hk:,la e 7HI<:,K]- Since writing

0% exactly yields rather cumbersome expressions and the MMSE

H
solution approaches the zero-forcing solution at high SNR, the vari-
ance of MMSE error is replaced with that of the zero-forcing solution
—as done in [165]—which enables neglecting the constants ¢; and

(2. Then, after further simplifications,

Nt(fl%
NP

NtO-I%I
NP

+,/KN‘3 tzel! ]

Hy=/1+ H} Hj

H +(H"H)'H (1 +

where the entries of I~{}; are

N (o o )
“\" o2+ N, PN, )’

the entries of H L, are
2
N(C 0, J—Nh
0% + N,.P/N;

and the entries of Z are uncorrelated N (0, Ny). Utilizing these
distributions, the columns of Hj are found to be independent with
scaled identity covariance matrices with diagonal entries given by

s Nio? No N2 KN.N, N;o?
NP (KNy — N;)P \ Npx N, N,. P

(C.6)

Again, by invoking the high SNR approximation as earlier and re-
placing the MMSE estimation error with the zero-forcing estimation
error, we obtain the final form as in (4.29).



APPENDIX D

Appendix to Chapter 5

D.1 Proof of Lemma 5.1

The density of a stationary point process is defined as the ratio
of the expected number of points in an arbitrary region B to the
Lebesgue measure of that region. Using this definition, the density
of ITLinQ type I can be written as

1
Ay, = (D) E bkgeqjl 1(b € B) (D.1)
1 -
= (B E bgeq)]l(ek = 1)1(by € B) (D.2)

where v(B) is the Lebesgue measure of B and (D.2) holds due to
the construction of Wi, i.e., the process of co-channel transmitter
locations for ITLinQ type I. Expanding the expectation in (D.2)
by means of the notion of Palm distribution (cf. Section 2.2.3), we
obtain

B ta-0itie®)| = [ ¥ 1eVi)P@g) (03)

bred br€ENB
= X 0(B) Py, (V) (D.4)
where (D.4) follows from the definition of Palm distribution of a
marked PPP [51, Section 8.8] while ¢ and ¢ are realizations of ®

and @, respectively, N is the sample space of ® and Pbo (V) is the
Palm distribution of a stationary marked point process d with a
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transmitter location conditioned at by and with V the property of
\Illa
V=V, (D.5
—{{bk}k lmBUO @}ﬂ{{u,}l 1me0( ) Q} (D'G)
which represents the channelization condition imposed by ITLinQ

type I (cf. Section 5.4.1), with a location conditioned at by.
Combining (D.2) and (D.4),

Ay,

AP (V)
AP (<i> € Vag € <1>) (D.8)

N
N> paP (<i> € Vl|zo € B, 1y 4 = dn> (D.9)
n=1

where (D.8) follows from expressing the Palm distribution Py, (V) in
terms of the Palm probability [51, 70], with dev meaning that o
has property V. Recalling (D.6), it can be seen that P(® € V|by €
D, ryyp, = dn) in (D.9) is a function of (i) the probability that
there exists no co-channel transmitter in the receiver exclusion cir-
cle B,,(Ry), and (7i) the probability that there exists no co-channel
receiver in the transmitter exclusion circle By, (Ry). Then, condi-
tioned on 7y, 4, = dn, we have

P(® € V|by € )
=P ({{oc}7Z1 N Buy(Rn) = @} N {{vi}iZ) N Byy(Rn) = 2}})

(D.10)
=P ({ui}21 N By (Rn) = G{br}zZ1 N Buy(Rn) = 9)
X P ({bp}32, N By (Rn) = ). (D.11)
We can affirm that
P ({032, N By (Ry) = @) = e ™Ra (D.12)

is the probability that, within a given area, there exists no point
of the PPP [51, 70]. Considering Fig. D.1, which illustrates the
geometry of the transmitters and receivers of link 0 and link i, we
can express the probability P ({u;}5°, N By, (Ry,) = @), conditioned
ON Ty by = dpn and {{by}32, N Buy(Rp) = @}, as
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P ({vi}iZ1 N By (Rn) = 9)

=P (ﬂb eo {ui & By, (Rn)}) (D.13)
=E | [T 1(ui ¢ Be(Rn)) (D.14)
| bie®
=E | [T E1(u: ¢ Byy(Ra))Ibi] (D.15)
b,e®
=E | [T P(ui ¢ By (Ro)bi) (D.16)
b,e®
ot
=[IE | JI P (ui & Bb(Ra)|bi) (D.17)
(=1 b;ed,
= < AZP@/ P (ui & Bby(Rn)|bi, T b, = de)) dbi)
(D.18)

where @, in (D.17) represents the process of transmitters whose in-
tended link distance is dy and (D.18) follows from the probability
generating functional of the PPP & with density Ay; the circular
region By, (Ry) (the shaded circular region in Fig. D.1) is excluded
from the integration limit in (D.18) because the transmitters be-
longing to that region are already deactivated.

As can be seen in Fig. D.1, P (u; ¢ By, (Rn)|bi, 7y, p, = dp) is com-
pletely characterized by the distance from the ith link transmitter
to the Oth link transmitter rp,p,. First, for 0 < rp, p, < |Rp — dyl,
P(u; & By, (Rn)|bi, u; 0, = de) = 1(Ry, < dy). Next, by applying the
law of cosines to the triangle byb;u; in Fig. D.1, we can write

riibo = rZibo + d% — 27y, by de cos(Lbobiu;). (D.19)

Then, for |R,, — d¢| < 74,5, < Rp + dy, we can compute

P (’LLZ §é Bbo(Rn)‘bhru@',bi = dé) =P (ruz'7bo > Rn|biv Tu; by = df)
(D.20)

1 rghbo +d? —RZ
=1 — — arccos
T 27, bode

(D.21)
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dg
X
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Figure D.1: Illustration of two transmitter-receiver links

where (D.21) follows from invoking 7, 5, and then evaluating the
probability by making use of the uniform distribution of Zbgb;u; in
[0,7‘1’]. Finally, for Tb; by > R, + dy, }P’(u, Qé BbO(Rn)’bi,Tthi = dg) =
1.

Putting (D.12) and (D.18) into (D.11), we get
P (ci) € V]bo € B, gy = dn) — exp (—Ay7R2)

N
- eXp <_)\u Zpg/(l — P(uz Qé BbO(Rn)|biarui,bi = dg)) dbl>
/=1
(D.22)

with integration over By, (Ry,+d¢)\ By, (Ry) and then, plugging (D.22)
into (D.9), we arrive at (5.17), the co-channel link density of ITLinQ

type L

We now derive A\y,,. Conditioned on mark m, the transmitters (or
links) with priority lower than m can be viewed as an independently
sampled version of the process ® and the density of links with a lower
mark than m is mA,. By leveraging the derivation of type I density
(cf. (5.17)), the probability of retaining a given link with priority m
is e~ mAuARRde) with A(R,,d,) given in (5.19) . Unconditioning on
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m,

N
Avy = Au Z/O e~mAuARndD) gy (D.23)
n=1

which yields (5.18), the co-channel link density of ITLinQ type II.

D.2 Proof of Proposition 5.4

The link spectral efficiency averaged over all geometries is computed
as

C(Aa, M, 1) = E[C(po)] (D.24)
where the expectation is over pg. Expanding the above equation
C(huy M, 1) = E[E [logy(1 + SINRo| )] (D.25)
=E /]P’[logQ(l + SINRg|po) > <] dg (D.26)
0
* logy €
=E 1— F d D.2
[/0 N+ 1 ( S|NR0|p0(7)) 7] (D.27)
ol > log, €
_ 2
= z_: /0 o (1 _FSINR0|ruO,b0:dn('7)> dy
(D.28)

where the outer and inner expectations in (D.25) are over py and
over the fading, respectively, while (D.27) follows from the variable
change ¢ = logy(1 + ) and g, is the fraction of co-channel links
with distance d,,.

To compute the average link spectral efficiency, it is more convenient

to replace the average interference O'g’out with its exact value ag’out

in the definition of pg, i.e., we don’t apply the averaging over K

dominant interferers. This relaxation can only make the model,

whose goodness was already validated, even tighter. Then,
P.Bury

u0,bo
“ 1 P.B.ex T‘uO b, o2

The conditional CDF of SINRO, given {7y, p, 172, and {ex}32, is

FSINRg|po (V) = 1 — exp [—’Y ( P.B.r —nu + Zek Tug zk ug,bo>

Tuo,bo

(D.30)
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Y -
—1—exp< D3 ) Hexp( ’Yekruobk u0b0>.

uo bo =
(D.31)

First, we average FsinRrg|p, (7) over the interference, conditioned on
Tug,bo = dn, to obtain

2
v o
FSINR |1, py=dn (7) = 1—€XP < - )

dp ™ Puf.
[e.9]
-E H exp <—’y ek rug"gkdzu) (D.32)
k=1

where the expectation is over the process of co-channel transmitter
locations ¥ of ITLinQ with density Ay. To proceed with the analy-
sis, we recall Assumption 1 (cf. Section 5.4.4) that the locations of
co-channel transmitters outside the receiver’s exclusion region be-
long to a homogeneous PPP with the density Ag. At this point,
we can apply Lemma 2.4 (cf. (2.22) with Ry — R,, n — 7, and
A — Ag) to expect over the locations of all those transmitters that
lie outside By, (R,,) and simplify (D.32) into

2
7 On
FsiNrg|ry . 4. =d, (7) =1 —exp < - )
olruo.tg d™ P.B,
27T>\\p’7’7lud2 - (=2 d, \™
cexp [ mAgR2 4 2w dn g <,7 (“) )
T]U 77\1 R’n

Next, plugging the resulting conditional CDF Feingy|r,,, 4 =d» ()
into (D.28), we obtain the final expression for C'(Ay, M, 1) in (5.30).
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E.1 Proof of Proposition 6.1

The distribution of pp can be computed over the spatial locations
of all interferers in the network. By virtue of Lemma 2.5, the CDF
of pp can be expressed as

F (1) = Li()MZM {2l my

m

Conditioned on 7, p, = 0, the Laplace transform of 1/pp is derived
as

L1)ojro (t) = Ele™"/7|rg] (E.2)
= T o~ Tug g
=E |exp —NZ ui’nkt - quz (i’n]t Iro
k=1 "0 =1 To
(E.3)
ug,
=Eg, H exp —ﬁNt 70
k=1 0
H exp ( O’UJ Nw, t 7“0] (E.4)
2mA 2 - 2
:exp<7r)\br(2)+ dla r2(Nt 7271“ _=
77
2 2
- exp <—7TN)\b (rdNw, t) T <1 — 77)) (E.5)
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where (E.2) follows by invoking the definition Lp, . and then eval-
uating integration by parts, (E.3) follows from substltutlng (6.17)
n (E.2), (E.4) follows from the fact that the locations of base sta-
tions and users are two independent PPPs, and (E.5) follows by
separately invoking Lemma 2.4 for base station and user processes
®y, and Dy, ie., (2.22) with Ry — rg, A — Ap, and (2.23) with
n — n, and A — NX\p,. Invoking (E.5) into (E.1), we obtain the
conditional CDF Fj, .. (-) as in (6.19).

polro

E.2 Proof of Proposition 6.3

By leveraging the derivation of its forward link counterpart, condi-
tioned on rpy 4, = Tn, Thguy_; = 'N—1 and a, =1, /rNn_1, the CDF
of the reverse link local-average SIR can be expressed as

A L M+b
e2 L (_1)m El/f) yn\'rn,an(L)
F;O_O,nlr"7a" (’7) = 1 B ’y ? Z <€) Z Dm % { ° L

=0 m=0
(E.6)
and the Laplace transform Ly 5 |, 4, (t) is derived as
El/ﬁo,nlrn,an (t)= E[eit/ﬁo’" |7 @n) (E.7)
e r, -n ,rb*Wg)
=FE |exp | — Ou]tf 2k o t
Z " Z ! ’
j=N ke
—"B
=N ot || (BS)
kgk ' n
o] ,rb_77
=Es Hexp (— 0% t)
u —1
j=N n
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n
9 TR, t
B (G )))

- exp <7r)\bn2R3
27 Ap n 2 = 2 T?L
o (raws ) I ’RTBwBt '

(E.10)

Putting (E.10) into (E.6) with a,, = 7, /ry—1, we obtain Fj; |, 4. (V)
as in (6.28).

E.3 Proof of Proposition 6.5

The user spectral efficiency averaged over all geometries in a full-
duplex network is

é(ﬁoﬂ (E.11)
E

[logz + SIRo|50) H (E.12)

—E L]O]P) [1og2(1 + SIRo|70) > <} de (E.13)

_E UOOO l;’i?f (1~ P ) dv} (E.14)

- 0°° 170%5; (1 -k [FsTFEO|,;O(V)D dy (E.15)
N /OOO ljgffE {eﬂ/ﬁo} dv (E.16)

where the outer and inner expectations in (E.12) are over gy and
over the fading, respectively, while (E.14) follows from the variable
change ¢ = logy(1 + 7). Invoking (E.5) into (E.16) and then aver-
aging the resulting expression using the density function in (2.14)
(with A = Ap), we arrive at (6.38).
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E.4 Proof of Proposition 6.8

The per-base station spectral efficiency averaged over all geometries
in a full-duplex network is

=

C= Y E|Cl)] (E-17)
n=0
N-—1
e o)
:]::01/0 5’?; *v/pOn} dy (E.19)
_ sz / :’i?f *7/ﬁo«n|rn,anﬂ dr. (E.20)

Plugging (E.10) into (E.20) and then averaging the resulting expres-
sion by means of the PDF in (2.15) with A = N\, we obtain the
result in (6.44).
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