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Chapter 2

From theory to parameterizations

Radiative transfer parameterizations in atmospheric models are necessary for two important
reasons. On the one hand, the divergence of the flux in the vertical defines the heating and
cooling rates in the atmosphere, a significant contribution in the diabatic term of the Euler
equations (Montornès et al., 2015e). On the other hand, the surface fluxes have a significant
impact on the surface energy balance parameterized within the Land Surface Model (LSM).

Although there are exact or high precision methods for solving the radiative transfer prob-
lem in planetary and stellar atmospheres, they can not be directly included in NWP models
because i) they require high computational resources, unfeasible for an operative models and
ii) the radiative variables are not prognosticated or diagnosed by the governing equations of
the atmosphere and thus, they must be parameterized in terms of the thermodynamic fields
(i.e. temperature, density, etc) and the outcomes of other physical schemes (e.g. microphysics).

The state–of–the–art related with the set of approximations used in NWP models is very
extended. From text books that show a general overview with applications in modeling and
remote sensing such as in Liou (1992), Lenoble (1993) or Liou (2002), among others, to more
specific publications such as Stephens (1984) or Chou and Suarez (1999) that are directly
focused on the radiative transfer parameterizations.

Nevertheless, without dealing with this matter exhaustively, we think that a brief chapter
discussing the theoretical fundamentals of the approaches used by shortwave schemes can be
useful as an introduction and for a better understanding of the following chapters. Particularly,
Chapter 3 in which the solar parameterizations within the WRF-ARW model are analyzed.

The chapter starts from the beginning, with a presentation of the RTE in its general form
(Sect. 2.1) and its general solution (Sect. 2.2). After this short introduction, we will present the
approximated methods for solving the RTE implemented in NWP models (Sects. 2.3 and 2.4).
Finally, Sect. 2.5 includes a description of the typical parameterizations used for evaluating the
radiative transfer variables in terms of the meteorological fields provided by the NWP model,
the main feature of each solar parameterization.

2.1 Radiative transfer equation

A beam emitted by the Sun travels through the vacuum for around 149.600.000 km until it
reaches the Earth atmosphere. At this time, the atmospheric gases start absorbing one part
of the incoming energy, decreasing the radiation that reaches the Earth surface. Due to the
electronic distribution of each molecule, the different species in the atmosphere absorb energy
at different parts of the solar spectrum. For example, ozone absorbs practically all energy
contained in the ultraviolet region, being critical to protect the Deoxyribonucleic Acid (DNA)
molecules and allowing the terrestrial life.

As it its explained in manuals such as Liou (1992), for a given wavelength λ, a pencil of
solar radiation with a monochromatic intensity Iλ traveling through a medium with a thickness
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12 Chapter 2. From theory to parameterizations

ds and density ρ experiences an attenuation dIλ (Fig. 2.1) that can be expressed as

dIλ = −ρkλIλds, (2.1)

where kλ is the absorption coefficient, a physical property of the medium that represents
the efficiency of that medium for absorbing radiation.

Iλ + dIλIλ ρ, kλ

dss = 0 s = s1

Iλ(0) Iλ(s1)

Figure 2.1: Radiative absorption of
a layer represented by Eq. 2.1.

Concurrently, the solar beam is scattered by several
elements such as gas molecules, aerosols, cloud water
droplets, ice crystals, rain droplets or hail, among others.
The light scattering in the visible region of the electromag-
netic spectrum is something that we experience constantly.
For example, when an incident beam reaches a surface, one
part of the energy is scattered. This energy reaches our
eyes making possible our vision of the world. In addition,
gas molecules emit radiation that is overlapped with the
scattering phenomena.

The scattered and emitted radiation by the medium
(Fig. 2.2) increases the intensity with dIλ that, formally,
can be expressed as

dIλ = ρjλds, (2.2)

Iλ + dIλIλ ρ, jλ

ds

Figure 2.2: Radiative scattering rep-
resented by Eq. 2.2.

where jλ is called Source function coefficient and it
has an analog role as kλ but increasing the intensity.

Actually, absorption and scattering are physical pro-
cesses that occur simultaneously. Mathematically, the
combination of Eqs. 2.1 and 2.2 leads to

dIλ = −ρkλIλds+ ρjλds. (2.3)

Eq. 2.3 can be simplified by defining a new magnitude
called Source function as

Jλ =
jλ
kλ
. (2.4)

With Jλ, we can rewrite Eq. 2.3 as

1
kλρ

dIλ
ds

= −Iλ + Jλ. (2.5)

This equation is named RTE and it represents the most general expression for explaining
the interaction between the radiation and matter (i.e. the atmosphere, a glass, etc).

The key to solve the RTE is in the evaluation of the source function Jλ that, generally,
requires a complex treatment with successive approximations as will be explained in the next
sections.

The most simple case is to consider a non-scattering medium. In this case, Eq. 2.5 becomes
a simple differential equation expressed as

dIλ
kλρds

= −Iλ. (2.6)

Given a set of boundary conditions, the integration of Eq. 2.6 becomes trivial. If we assume
that at s = 0, Iλ = Iλ(0) and at s = s1, Iλ = Iλ(s1), as shown in Fig 2.1, then the solution
for Eq. 2.6 can be written as
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Iλ(s1) = Iλ(0)exp
(
−
∫ s1

0
kλρds

)
. (2.7)

As kλ is a material property, it becomes a constant in a homogeneous medium and it can
be replaced from the integral in Eq. 2.7. Moreover, by defining a new magnitude u named
path length,

u =
∫ s1

0
ρds, (2.8)

Eq. 2.7 can be expressed as

Iλ(s1) = Iλ(0)e−kλu. (2.9)

y

x

z

θ

φ

d~s

Figure 2.3: Solar beam in spheri-
cal coordinates.

This equation has different names as Beer’s law,
Lambert–Beer law, or the Beer–Lambert–Bouguer law. Note
that Eq. 2.9 is independent of the beam direction and hence,
it can be applied analogously to the flux computation and
for this reason, it is an expression used in many radiative
applications.

Based on Eq. 2.9, three new useful magnitudes can be
introduced. In the first place, by dividing Eq 2.9 by Iλ(0),
we have a new variable Tλ describing the part of the ra-
diation that travels through the medium without any scat-
tering interaction. This variable is named monochromatic
transmissivity or simply transmissivity and it can be written
as

Tλ =
Iλ(s1)
Iλ(0)

= e−kλu. (2.10)

The transmissivity ranges from 0 to 1 and it gives a quantification of how opaque is
a medium. In the limit of Tλ → 0, the medium is completely opaque in this wavelength while,
for Tλ → 1, the medium is transparent in this wavelength.

By the energy conservation principle, the radiation that is not transmitted, it is absorbed
by the medium. Hence, we can define the monochromatic absorptivity Aλ as

Aλ = 1− Tλ = 1− e−kλu. (2.11)

Furthermore, in a scattering medium, Eq. 2.9 describes the attenuation of the monochro-
matic intensity in the direct direction from the emission source without considering the scat-
tering interactions. Nevertheless, the radiation in these media is transmitted, absorbed but
also reflected in all directions due to the scattering processes. The magnitude that quantifies
this reflection is the monochromatic reflectivity Rλ. Hence, in a scattering medium the energy
conservation principle becomes

Aλ +Rλ + Tλ = 1. (2.12)

The determination of Rλ depends on the form of the source function, Jλ.

For most of the atmospheric applications, it is useful to assume that the atmosphere is
composed by plane-parallel portions. Under this framework, the variation of the variables
that describe the atmosphere (e.g. temperature, density or atmospheric composition) are
only allowed in the vertical direction. Moreover, this approximation is natural in a NWP
model because the simulation domain is composed by a set of vertical columns divided in
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several vertical levels, each one representing the spatial averaged thermodynamic state of the
meteorological fields.

Under the plane-parallel approximation, distances are convenient to be measured with
respect to the normal of the stratification plane (Fig. 2.3). In other words, if z denotes the
vertical distance and θ is the zenith angle of the emission source with respect to the normal,
then, ds can be expressed as

ds = zcosθ. (2.13)

Besides, under the plane-parallel approximation, Eq. 2.5 can be expressed as

µ
dIλ
kλρdz

= −Iλ(z;µ, φ) + Jλ(z;µ, φ), (2.14)

where µ = cosθ and φ is the azimuth angle. When µ and φ are referred to the Sun’s
position, they are represented as µ0 and φ0, respectively.

Eq. 2.14 can be simplified by defining a new magnitude named optical thickness or depth
τλ as

τλ ≡
∫ ∞
z

kλρdz
′, (2.15)

measured downward from the TOA.

In a homogeneous medium, τλ is, trivially,

τλ = kλu. (2.16)

Finally, by substituting Eq. 2.15 into Eq. 2.14, we can write the RTE as

µ
dIλ
dτλ

= −Iλ(τλ, µ, φ) + Jλ(τλ, µ, φ). (2.17)

This is the general form of the RTE in a plane-parallel atmosphere, the point of departure
for our discussion.

2.2 General solution of the RTE in the solar spectral region

In a scattering medium, the solution of the RTE (Eq. 2.17) depends on the form of the source
function Jλ. As we aforementioned, Jλ describes the strengthening of the monochromatic
intensity due to the molecular emission and the multiscattering processes, i.e.

Jλ = EMISSION + SCATTERING.

In Earth, the main emission source is found in the infrared (IR) region of the spectrum
and it is produced by the atmospheric gases and Earth surface that can be approximated to
a black body. As it is described in the literature, the source function of this emission can be
expressed in terms of the Planck’s function as

Jλ = Bλ(T ). (2.18)

This emission is modulated by an absorption coefficient βa,λ because the atmosphere ab-
sorbs partially this emission (i.e. greenhouse effect). Moreover, in virtue of the Kirchhoff law,
absorption is equal to the emission and thus, we have

Jλ = βa,λBλ(T ). (2.19)
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However, in the Earth atmosphere the solar radiation (or shortwave) and the terrestrial
radiation (or longwave) act in two well defined different spectral regions without practically
overlapping (Fig. 2.4). Consequently, for most of the solar applications the emission in the IR
region can be neglected. This consideration is useful for many of the atmospheric applications
because it allows to solve the radiative transfer problem for shortwave and for longwave radia-
tion, separately. In a NWP model, this approximation leads to two different parameterizations
for representing the solar and the terrestrial radiative transfer processes.

UV PAR near−IR IR
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Figure 2.4: Solar and terrestrial black body spec-
tral emission.

In the shortwave spectral region, the ra-
diative scattering can be considered as the
sum of two contributions: i) the scatter-
ing of the direct beam emitted by the Sun
and ii) the scattering of the diffuse radiation,
called multiscattering. In both cases, it is
necessary to know the angular distribution
of the scattered light. In order to incorpo-
rate this information, we define a function
named phase function, Pλ(cos Θ), expressed
in terms of the cosine of the scattering angle
Θ which depends on the air molecules, cloud
particles and aerosols. Trivially, in spherical
coordinates (Fig. 2.3), the scattering angle
can be written in terms of the input and out-
put zenith and azimuth angles µ′, φ′ and µ, φ,
respectively (Fig. 2.5).

Under spherical geometry (e.g. plane-
parallel approximation), the scattering angle
can be written as

cos Θ = µµ′ + (1− µ2)1/2(1− µ′2)1/2 cos(φ′ − φ). (2.20)

Therefore, the scattering of the solar beam emitted by the Sun can be expressed in terms
of the cosine of the solar zenith angle, µ0 and a scattering coefficient βs,λ that quantifies the
efficiency for the scattering light as

Jλ = βs,λF�,λe
−τλ/µ0Pλ(µ, φ;−µ0, φ0)

1
4π
, (2.21)

where F�,λ is the fraction of the solar flux at the TOA at this wavelength λ, Pλ(µ, φ;−µ0, φ0)
is the angular distribution of the scattered beam and 1

4π is the portion of solid angle. By defi-
nition, downward angles are taken with a minus sign.

Multiscattering processes require the consideration of the contribution of each infinitesimal
element of the solid angle to the source function, i.e

Jλ = βs,λ

∫ 2π

0

∫ 1

−1
Iλ(τ, µ′φ′)Pλ(µ, φ;µ′, φ′)

dµ′dφ′

4π
. (2.22)

We can define a new variable named single scattering albedo ω0,λ as the ratio between the
scattering (i.e. βs,λ) and the extinction (i.e. βext,λ = kλ + βs,λ),

ω0,λ =
βs,λ
βext,λ

=
βs,λ

kλ + βs,λ
. (2.23)

This magnitude is a very useful variable in radiative transfer. If in the case of τλ, we
have seen that it represents the opacity of a medium, now ω0,λ quantifies how the radiation
is scattered by the medium. A medium with ω0,λ = 1 indicates that all the light is scattered



16 Chapter 2. From theory to parameterizations

and it is called conservative case. In contrast, ω0,λ = 0 implies non-scattering, i.e. the Beer’s
law (Eq. 2.9).

By substituting Eqs. 2.21, 2.22 and 2.23 into Eq. 2.17, we get

µ
dIλ
dτλ

=− Iλ(τλ, µ, φ)+

ω0,λ

4π

∫ 2π

0

∫ 1

−1
Iλ(τλ, µ′φ′)Pλ(µ, φ;µ′, φ′)dµ′dφ′+

ω0,λ

4π
F�,λe

−τλ/µ0Pλ(µ, φ;−µ0, φ0).

(2.24)

P (µ, φ;µ′, φ′)

µ′, φ′ µ, φ
In Out

Figure 2.5: The phase function rep-
resents the angular distribution of the
scattered radiation.

From Eq. 2.24, the radiative transfer problem for short-
wave radiation requires to obtain an expression for τλ, ω0,λ

and Pλ(cos Θ). As we will discuss through the following
chapters, the phase function is the most difficult to deter-
mine.

Due to the mathematical properties of the Legendre
polynomials, they are the best candidates to deal with the
phase function. If we express Pλ(cos Θ) in terms of these
polynomials, we get

Pλ(cos Θ) =
N∑
l=0

ωl,λPl(cos Θ), (2.25)

where the coefficients ωl,λ are

ωl,λ =
2l + 1

2

∫ 1

−1
Pλ(cos Θ)Pl(cos Θ)d cos Θ (2.26)

with l = 0, 1, ..., N and Pl is the Legendre polynomial of order l.
The first moment of the phase function (i.e. l = 1) can be expressed as

gλ =
ω1

3
=

1
2

∫ 1

−1
P (cos Θ)d cos Θ, (2.27)

This parameter is widely used and it is named asymmetry factor. Physically, gλ describes
how the scattered radiation is propagated through the space. In an isotropic scattering medium
(e.g. Rayleigh scattering), gλ = 1, while in a non-isotropic cases, gλ increases as the diffraction
peak becomes more significant and it can be negative if the peak is at the opposite direction
of the beam propagation.

At this point, the reader may note that the dependence of all variables on λ becomes so
tedious. For this reason, hereinafter we will omit this subscript with the exception of cases
focused on the spectral integration.

By substituting Eq. 2.20 into Eq. 2.25, we have

P (µ, φ;µ′, φ′) =
N∑
l=0

ωlPl
(
µµ′ + (1− µ2)1/2(1− µ′2)1/2 cos(φ′ − φ)

)
. (2.28)

The mathematical properties of the Legendre polynomials (e.g. Spiegel, 1968) allow to
decompose Eq. 2.28 in spherical harmonics as

P (µ, φ;µ′, φ′) =
N∑
m=0

N∑
l=0

ωml P
m
l (µ)Pml (µ′) cosm(φ′ − φ). (2.29)
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where

ωml = (2− δ0,m)ωl
(l −m)!
(l +m)!

(2.30)

with l = m, ..., N and 0 ≤ m ≤ N . Pml are the associated Legendre polynomials and δ0,m

is the Dirac Delta function being 1 when m = 0 and 0 otherwise.
Similarly, the monochromatic intensity can be decomposed in spherical harmonics as

I(τ, µ, φ) =
N∑
m=0

Im(τ, µ) cosm(φ0 − φ) (2.31)

By substituting Eqs. 2.29 and 2.31 into Eq. 2.24 and taking into account the orthogonality
of the associated Legendre polynomials, we have N + 1 independent equations as

µ
dIm(τ, µ)

dτ
=Im(τ, µ)− (1 + δ0,m)

ω0

4

N∑
l=m

ωml P
m
l (µ)

∫ 1

−1
Pml (µ′)Im(τ, µ′)dµ′−

− ω0

4π

N∑
l=m

ωml P
m
l (µ)Pml (−µ0)F�e−τ/µ0 .

(2.32)

Note that we started with the general form of the RTE equation in plane-parallel atmo-
spheres given by Eq. 2.24 and now, we have a set of N + 1 equations linearly independent
expressed in terms of the associated Legendre polynomials. Therefore, we can solve the RTE
for each Im and then we can recover the total monochromatic intensity using Eq. 2.31.

Moreover, for most of the meteorological applications, the medium can be considered as
homogeneous in the horizontal direction and thus, the dependence with the azimuth angle can
be neglected. Under this approximation the phase function becomes directly,

P (µ, µ′) =
N∑
l=0

ωlPl(µ)Pl(µ′). (2.33)

Therefore, the RTE is simplified to

µ
dI(τ, µ)
dτ

=I(τ, µ)− ω

2

∫ 1

−1
I(τ, µ′)P (µ, µ′)dµ′−

− ω

4π
P (µ,−µ0)F�e−τ/µ0 .

(2.34)

We may assume that Eq. 2.34 has an analytic solution given by I(τ, µ). The amount of
radiation crossing one hemisphere of solid angle defines the monochromatic flux as

F ↑↓ = 2π
∫ ±1

0
I(τ, µ)µdµ, (2.35)

where the upward and downward arrows indicate the upward and downward fluxes for each
hemisphere defined as normal to the surface, respectively. This integration is represented by
the sign +/- in Eq. 2.35.

However, Eq. 2.35 is uncompleted because the RTE has been considered in a scattering
medium and consequently, this equation is only valid for solving the diffuse component of the
flux, but not the single attenuation of the direct beam without scattering interactions. As
a consequence, we have to include the contribution of the direct beam into the downward flux
based on the Beer’s law given by Eq. 2.9.
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In other words, we have

F ↑ = 2π
∫ 1

0
I(τ, µ)µdµ, (2.36)

for the upward flux or diffuse upward flux, and

F ↓ = 2π
∫ −1

0
I(τ, µ)µdµ+ µ0F�e

−τ/µ0 , (2.37)

for the downward flux. The first term in Eq. 2.37 is named diffuse downward flux or, more
commonly, diffuse flux, while the second term is named direct flux.

Finally, the difference between both fluxes defines the monochromatic net flux Fλ,

Fλ = F ↓λ − F
↑
λ , (2.38)

that is always positive in the shortwave part of the electromagnetic spectrum.
Eq. 2.38 can be integrated for the entire solar spectrum (i.e. from λ = λsolar,min to

λ = λsolar,max producing the net flux F ,

F =
∫ λsolar,max

λsolar,min

Fλdλ. (2.39)

Due to the energy conservation principle this difference between the downward and upward
fluxes must be absorbed by the atmosphere that finally is transformed into heat. The shortwave
heating rate is defined as the divergence of the solar flux

∂T

∂t
= − 1

ρcp

∂F

∂z
, (2.40)

where cp is the air specific heat at constant pressure.
In NWP models, the spectral integrated fluxes at the surface and the vertical profile of the

heating rate play an important role (Montornès et al., 2015e). The first one because interacts
with the LSM warming the surface and producing the day-night patterns, and the second
one because it contributes through the diabatic term of the energy equation to the thermal
structure of the atmosphere.

The downward components of the flux are also important in solar energy applications.
Generally, the interest of these fields is at the surface (i.e. vertically integrated) and they
use a slightly different notation. The downward total flux is typically called global horizontal
irradiance, GHI, the diffuse downward flux is called diffuse irradiance, DIF and the direct
component is called direct horizontal irradiance, DHI, if it is projected with respect to the
normal axis, or direct normal irradiance, DNI, if it is referred to the beam direction. The
nomenclature of GHI, DHI and DIF differs slightly in some of the solar industry reports.

In this chapter, we have presented the general form of the RTE. With some general as-
sumptions, such as the plane-parallel atmosphere approximation and horizontal homogeneity,
we have reduced the complexity of the problem, providing the general form of the RTE for
most of the atmospheric applications represented by Eq. 2.34. This equation is expressed in
terms of three radiative variables or also called single-scattering variables: the optical thickness
τ , the single scattering albedo ω0 and the first moment of the phase function called asymmetry
factor g.

At this point, we can identify some important limitations for building a solar parameteriza-
tion. First, Eq. 2.34 is still complicated and it can not be transformed into an easy algorithm.
In Sect. 2.3, we will discuss the most common used algorithms for solving the RTE in solar
parameterizations.

The second issue is related with the vertical integration. All the discussion carried out
in this chapter is valid for homogeneous mediums. However, the Earth atmosphere shows an
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important non-homogeneity, mainly in the vertical fro the region represented by one grid-point.
The treatment of the vertical integration will be discussed in Sect. 2.4.

Other important issues are the spectral integration and the evaluation of the radiative
variables. Due to the atmospheric composition by many molecules and particles with different
physical properties, the spectral integration given by Eq. 2.39 can be very complex. Moreover,
the radiative variables are not a solution of the Euler equations solved by the NWP model
and hence, they must be parameterized in terms of the meteorological fields available in the
model (e.g. temperature, water mixing ratio or cloud droplets mixing ratio, among others).
A general overview of the typical approaches for transforming the atmospheric fields to the
radiative variables and performing the spectral integration will be treated in Sect. 2.5.

2.3 Approximated solution to the RTE

As aforesaid in Sect. 2.2, the computation of F ↓, F ↑ and heating rate requires of solving
Eq. 2.32 or most specifically, Eq. 2.34. This is not an easy challenge by the wide range of
values that the radiative parameters can take in the real atmosphere (Joseph et al., 1976).

Under specific conditions, Eq. 2.32 has an exact solution. In 1950, Chandrasekhar de-
veloped an elegant mathematical method named Discrete-Ordinates method (Chandrasekhar,
1950) which allowed to find a solution of the monochromatic intensity Iλ in stellar and plan-
etary atmospheres. Lately, in 1970s and 1980s, authors such as Liou (1973) demonstrated
that the method was also useful under the presence of aerosols and cloud particles. Nowadays,
the method is fully detailed in many radiative transfer manuals such as in Lenoble (1993) or
in Liou (2002), among others.

Basically, this method takes Eq. 2.34, and it replaces the integral in the second term of
the right hand part by a finite sum of elements using the Gauss Formula (Spiegel, 1968). This
approximation is a quadrature rule and it will be recurrent in other sections of this chapter.
The idea is that if f(x) is a good function (i.e. continuous and derivable), then the integral
between -1 and 1 over a x domain can be substituted by a finite sum of points xi in which
the function is evaluated as ∫ 1

−1
f(x)dx '

n∑
i=1

wif(xi), (2.41)

where wi are a set of known weights.

Introducing this approximation into Eq. 2.34, the RTE becomes a first order nonhomoge-
neous differential equation or, in a more general way, i.e. Eq. 2.32, a set of N + 1 equations.

This method is used in the Discrete Ordinates Radiative Transfer Program for a Multi-
Layered Plane-Parallel Medium, DISORT (Stamnes et al., 1988; Stamnes, 2000), algorithm
that is the core of many radiative transfer codes used in research and remote sensing ap-
plications such as Streamer (Key and Schweiger, 1998), Moderate Resolution Atmospheric
Transmission, MODTRAN, (Berk et al., 1987), REST2 (Gueymard, 2008) or, Santa Barbara
DISORT Atmospheric Radiative Transfer, SBDART (Ricchiazzi et al., 1998), among others.

Nevertheless, the discrete ordinate method requires a high number of computations be-
coming unfeasible for a NWP model parameterization. To visualize this problem, let us
imagine a grid composed by 100 points in west-east and south-north directions and 51 ver-
tical levels (i.e. 50 layers). Moreover, let us assume a radiative parameterization that di-
vides the shortwave spectrum in 10 intervals. Therefore, if one has to solve the RTE for
each spherical harmonic (i.e. m = 0...N) and Gauss point (i.e. i = 1...n), this means
100x100x50x10x(N + 1)xn ∼ 106x(N + 1)xn computations at each radiative call, unfeasi-
ble taking in to account the typical NWP model applications (i.e. operational forecasting) and
the current hardware resources.
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With the goal of reducing the high usage of computational resources, the radiative transfer
schemes in NWP models reduce the computation of Iλ by using approximated methods. In
general, these methods are: the two-stream approximation, the Eddington approximation and
the four stream approximation. All of them will be briefly presented in Sects. 2.3.1, 2.3.2
and 2.3.4, respectively.

2.3.1 Two-stream approximation

The two-stream approximation (Liou, 1973, 1974) begins as the discrete ordinate method. In
virtue of the Gauss formula (Eq. 2.41), the second term in equation 2.34 is replaced by a sum
of a finite number of quadrature points as∫ 1

−1
f(µ)dµ ∼

n∑
j=−n

ajf(µj), (2.42)

where the weights aj are given by

aj =
1

P
′
2n(µj)

∫ 1

−1

P2n(µ)
µ− µj

dµ, (2.43)

µj are the zeros of the polynomials P2n, while P ′2n means the derivative with respect µ.
Using the Gauss formula, Eq. 2.34 can be written as

µi
dI(τ, µi)
dτ

= I(τ, µi)−
ω0

2

N∑
l=0

ωlPl(µi)
n∑

j=−n
ajPl(µj)I(τ, µj)−

ω0

4π
P (µ,−µ0)F�e−τ/µ0 ,

(2.44)
for i = −n...n.
The physical sense of the set of µi values with i = −n...n is each one of the directions in

which the beam is propagated.
Based on Eq. 2.44, the two-stream approximation assumes two beams or streams, i.e. i =

−1, 1 and N = 1. Under this assumption, the following relationships apply (e.g. Liou, 2002),

µ1 =
1√
3
, a1 = a−1 = 1, µ−1 = −µ1. (2.45)

Therefore, this approximation reduces the complicated analysis of the diffuse radiation to
two monochromatic intensities: one representing the upper hemisphere with I(τ, µ1) and the
other representing the lower hemisphere I(τ,−µ1). Hereinafter, we will write these intensities
as I↑ and I↓, respectively, in order to simplify the nomenclature.

Mathematically, Eq. 2.44 splits into two first order nonhomogeneous differential equations
representing each hemisphere as

µ1
dI↑

dτ
= I↑ − ω0(1− b)I↑ − ω0bI

↓ − S−e−τ/µ0 , (2.46)

µ1
dI↓

dτ
= I↓ − ω0(1− b)I↓ − ω0bI

↑ − S+e−τ/µ0 , (2.47)

where

b =
1− g

2
, S± =

F�ω0

4π
(1± 2gµ1µ0). (2.48)
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From Eqs. 2.46 and 2.47, we can note that the upward and downward intensities are
interrelated as it is expected. Examining the right hand part in both expressions, we observe
that the second term in Eq. 2.46 (Eq. 2.47) represents the scattering of I↑ (I↓) beam in the
upper hemisphere, the third term is the scattering of I↓ (I↑) beam in the lower hemisphere
and the last term is the scattering of the direct beam upward and downward.

The solution of Eqs. 2.46 and 2.47 requires two boundary conditions. In general, the diffuse
radiation at the TOA and at the surface is taken as zero.

Solving this system of equations, we have

I↑ = I(τ, µ1) = Kvekτ +Hue−kτ + εe−τ/µ0 (2.49)

and

I↓ = I(τ,−µ1) = Kuekτ +Hve−kτ + γe−τ/µ0 (2.50)

where

v =
1 + a

2
, (2.51)

u =
1− a

2
, a2 =

1− ω0

1− ω0g
, ε =

α+ β

2
, (2.52)

γ =
α− β

2
, α =

Z1µ
2
0

1− µ2
0k

2
,

β =
Z2µ

2
0

1− µ2
0k

2
. (2.53)

Z1 = −(1− ω0g)(S− + S+)
µ2

1

+
S− − S+

µ1µ0
Z2 = −(1− ω0)(S− − S+)

µ2
1

+
S− + S+

µ1µ0
.

(2.54)

H and K are two constants determined from the boundary conditions for the diffuse
intensity. Therefore, by assuming no diffuse radiation at the TOA and surface, H and K can
be expressed as

H = −εue
τ1/µ0 − γve−kτ1

v2ekτ1 − u2e−kτ1
, K = −εve

τ1/µ0 − γue−kτ1
v2ekτ1 − u2e−kτ1

. (2.55)

Further details regarding the development of these equations and the mathematical impli-
cations are presented in many manuals such as in Liou (2002).

With the assumption of no azimuth dependence, the computation of the fluxes becomes
trivial as it was discussed in Eq. 2.35. Therefore, based on Eqs. 2.49 and 2.50, the diffuse
fluxes are directly

F ↑ = 2πµ1I
↑, F ↓ = 2πµ1I

↓. (2.56)

The set of equations presented in this section are valid in non-conservative scattering
atmosphere (i.e. ω0 < 1). For conservative cases (i.e. ω0 = 1), the solution presented in
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Eqs. 2.49 and 2.50 is not defined. The solution for conservative atmospheres follows a similar
development and, thus, it is not included in this chapter. Moreover, for many applications,
ω0, is limited to be 0.9999, reducing the algorithm complexity.

2.3.2 Generalization of the two-stream approximation

The two-stream approximation was widely used during the 1970s and 1980s because it provided
a rapid and easy form for obtaining answers to the radiative transfer problem (Meador and
Weaver, 1980). As a consequence of different applications (e.g. studies related with planetary
albedo of haze and clouds, irradiance in nonhomogeneous turbid atmospheres or NWP model
applications), a high variety of approximations in the monochromatic intensity and in the phase
function appeared. Meador and Weaver (1980) and later other authors such as Liou (2002)
built a framework in which all these solutions were different approaches of the same method.
In this section, we will present briefly the general form of the two-stream methodology and
some of the most widely used approximations in the solar schemes analyzed in Chapter 3.

By integrating the fluxes in Eq. 2.34, we have

1
2π

dF ↑(τ)
dτ

=
∫ 1

0
I(τ, µ)dµ− ω0

2

∫ 1

0

∫ 1

−1
I(τ, µ)P (µ, µ′)dµ′dµ−

− ω0

4π
F�e

−τ/µ0

∫ 1

0
P (µ,−µ0)dµ,

(2.57)

1
2π

dF ↓(τ)
dτ

=−
∫ 1

0
I(τ,−µ)dµ+

ω0

2

∫ 1

0

∫ 1

−1
I(τ, µ′)P (−µ, µ′)dµ′dµ+

+
ω0

4π
F�e

−τ/µ0

∫ 1

0
P (−µ,−µ0)dµ.

(2.58)

These expressions may be written in a more compact form as

dF ↑(τ)
dτ

= γ1F
↑(τ)− γ2F

↓(τ)− γ3ω0F�e
−τ/µ0 , (2.59)

dF ↓(τ)
dτ

= γ2F
↓(τ)− γ1F

↑(τ) + (1− γ3)ω0F�e
−τ/µ0 . (2.60)

Both flux equations were firstly formulated by Schuster (1905) as it is detailed in Liou
(2002). The coefficients γ1, γ2 and γ3 depend on the set of approximations assumed in the
monochromatic intensity and in the phase function.

There are several approaches in the literature (e.g. Meador and Weaver, 1980). In Table 2.1,
we detail the two-stream approximations used in solar schemes presented in the next Section.
For example, in the two-stream approximation detailed in the previous section, we assume two
monochromatic intensities (i.e. the upward and downward) in the directions µ1 and −µ1, while
the phase function was expanded in two terms of Legendre polynomials.

Table 2.1: Coefficients in two-stream approximations used in the solar schemes

Method γ1 γ2 γ3

Two-stream 1−ω0(1+g)/2
µ1

ω0(1−g)
2µ1

1−3gµ1µ0

2

Eddington 7−(4+3g)ω0

4 −1−(4−3g)ω0

4
2−3gµ0

4
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The Eddington approach (Eddington, 1916; Irvin, 1965; Irvine, 1975; Kawata and Irvine,
1970; Shettle and Weinman, 1970) expands the monochromatic intensity and the phase func-
tion in two terms of Legendre polynomials, i.e. I(τ, µ) = I0(τ)+µI1(τ), P (µ, µ′) = 1+3gµµ′.
Details of the mathematical development leading to the results presented in Table 2.1 are not
presented in this text. Further information is presented in Shettle and Weinman (1970), Joseph
et al. (1976) or Briegleb (1992).

One can find in the literature a wide number of other methods and approximations as,
for example, the Hemispheric constant method (Coakley and Chylek, 1975) or the modified
version of the Eddington approach (Meador and Weaver, 1980), among others. Some au-
thors as Meador and Weaver (1980), Harshvardhan (1986) or King and Harshvardhan (1993)
presented interesting reviews of all these methods.

The solution of Eqs. 2.59 and 2.60 may be expressed such as

F ↑ = vKekτ + uHe−kτ + εe−τ/µ0 , (2.61)

F ↓ = uKekτ + vHe−kτ + γe−τ/µ0 . (2.62)

where

v =
1
2

(1 + (γ1 − γ2)/k) , (2.63)

u =
1
2

(1− (γ1 − γ2)/k) , k2 = γ2
1 − γ2

2 , (2.64)

ε = (γ3(1/µ0 − γ1)− γ2(1− γ3))µ2
0ω0F� γ = − ((1− γ3)(1/µ0 + γ1)− γ2γ3)µ2

0ω0F�.
(2.65)

Note that Eqs. 2.61 and 2.62 are simply a generalization of Eqs. 2.49 and 2.50 presented
in the previous section.

2.3.3 δ-function adjustment

The set of methods described in the previous section are good approximations for optically
thick layers with isotropic scattering. Nevertheless, these methods become inaccurate when
the forward peak becomes important (Joseph et al., 1976). The main problem is that the
scattering for atmospheric particles (e.g. cloud particles) has an important peak in the direction
of propagation being five or six orders of magnitude higher than the backward peak.

This issue can be solved including an adjustment in the absorption and scattering. The
method is detailed in many publications and manuals such as Joseph et al. (1976) or Liou
(2002). Basically, the fraction of energy contained in the forward peak, denoted by f , is
removed from the radiative variables τ , ω0 and g.

Formerly, the f is related with the second moment of the phase function derived from
Eq. 2.26 and it can be expressed as

f =
ω2

5
. (2.66)

The optical thickness associated to scattering processes τs is adjusted as

τ ′s = (1− f)τs, (2.67)
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while the optical thickness associated to absorption processes, τa, does not need a correc-
tion because it is not affected by the forward peak, i.e.

τ ′a = τa. (2.68)

The total adjusted optical thickness τ ′ is then,

τ ′ = τ ′s + τ ′a = τ(1− fω0), (2.69)

being τ the total non-adjusted optical thickness.
In a similar manner, the adjusted single scattering and asymmetry factor can be written as

ω′ =
τ ′s
τ ′

=
(1− f)ω
1− fω

, g′ =
g − f
1− f

. (2.70)

In virtue of the Similarity Principle for radiative transfer (Sobolev, 1975; de Hulst, 1980;
Liou, 2002), the methods detailed in the previous section can be used for determining the
intensity for the adjusted atmosphere.

The incorporation of the delta-function adjustment into the two-stream approximations
implied a high improvement in the accuracy of the flux computations when particles had
a significant forward scattering. Joseph et al. (1976) were the first to propose the application of
this method in the Eddington’s approximation producing the known as δ-Eddington’s approach.
This approach is used in many of the parameterizations (e.g. Briegleb, 1992) that will be
examined in Chapter 3.

Moreover, Zdunkowski et al. (1980) proposed a different approach in the treatment of the
two-stream approximation called Practical Improved Flux Method (PIFM) with a significant
improvement with respect to other investigated methods. Unfortunately, the original paper
is in German and it was not available in the preparation of this work. Details regarding this
method can be found in Harshvardhan (1986), Räisänen (2002) or Williams et al. (2006). The
set of γi coefficients for these methods is presented in Table 2.2.

Notwithstanding, authors such as Harshvardhan (1986) demonstrated that the assumptions
taken in Eddington and δ-Eddington’s approximations lead to model the scattering in thick
layers (e.g. clouds) and in a large range of µ0 values with a high accuracy. Consequently,
the δ-Eddington approach has been extensively used in many atmospheric models (Räisänen,
2002).

Table 2.2: Coefficients in two-stream approximations with delta-function adjustment used in the solar
schemes

Method γ1 γ2 γ3

δ-Eddington
7−(4+3g)ω′0

4 −1−(4−3g′)ω′0
4

2−3g′µ0

4

PIFM
8−ω′0(5+3g′)

4
1
4 (ω′0(1− g′)) 2−3g′µ0

4

2.3.4 Four-stream approximation

The four-stream approximation (Liou, 1974; Liou et al., 1988) assumes two streams in upper
and lower hemispheres (i.e. n=1 in Eq. 2.44), while the phase function is expanded into four
terms (i.e. N=3 in Eq. 2.44).

Defining I(τ , µ1), I(τ , µ2), I(τ , -µ1), I(τ , -µ2) as I1, I2, I−1 and I−2, respectively, Eq. 2.44
can be written in a matrix form as
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d

dτ


I2

I1

I−1

I−2

 =


b2,−2 b2,−1 b2,1 b2,2

b1,−2 b1,−1 b1,1 b1,2

−b1,2 −b1,1 −b1,−1 −b1,−2

−b2,2 −b2,1 −b2,−1 −b2,−2




I2

I1

I−1

I−2

−

b2,−0

b1,−0

b−1,0

b−2,−0

 I�, (2.71)

where the terms bi,j with i = ±1, 2 and j = −0,±1, 2 are given by

bi,j =

 ci,j/µi, i 6= j

(ci,j − 1)/µi, i = j.
(2.72)

The variables ci,j are

ci,j =
ω0

2
aj

N∑
l=0

ωlPl(µi)Pl(µj), j = −n, ..., 0, ...n. (2.73)

As it was discussed in the case of the two-stream approximation, the four-by-four array
represents the multiscattering processes in the atmosphere, while the second term in the right
hand part of Eq. 2.71 represents the scattering of the direct beam at the four directions.

Therefore, we have a system of four first order nonhomogeneous differential equations.
This system can be solved assuming four boundary conditions. Analogously as the 2-stream,
we assume that there is no diffuse radiation at the top and at the bottom (τ = τ1) of the
layer, i.e.

I−1,−2(τ = 0) = 0, I1,2(τ = τ1) = 0. (2.74)

The solution of Eq. 2.71 is formerly large and it does not add new information with respect
to the discussion presented in Sect. 2.3.2. For this reason, we do not include those equations
in this text. They can be found in the publications cited above or in manuals such as Liou
(2002).

Given the solution for I1, I2, I−1 and I−2, the upward and downward fluxes at a given level
τ are directly

F ↑(τ) = 2π(a1µ1I1 + a2µ2I2), (2.75)

F ↓(τ) = 2π(a1µ1I−1 + a2µ2I−2) + µ0F�e
−τ/µ0 . (2.76)

The values µ1, µ2, a1 and a2 correspond to the regular Gauss quadrature points and
weights presented in Table 2.3.

In virtue of the similarity principle of the radiative transfer (Sect. 2.3.3), we can include
the delta adjustment for considering the forward peak contribution (Cuzzi et al., 1982). In
that case, the method is called δ4-stream approximation.

As it was explained in Sect. 2.3.1, Eq. 2.71 is valid for non-conservative scattering at-
mospheres. The development for the conservative case is not detailed here because it does
not add relevant information for the following discussions. More details can be found in the
literature.
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Table 2.3: Gauss points and weights for two-stream and four-stream approximations. Extracted
from Liou (2002).

Method n N ±µn an

Two-stream 1 1 µ1=0.5773503 a1=1

Four-stream 2 3 µ1=0.3399810 a1=0.6521452

µ2=0.8611363 a1=0.3478548

2.4 Vertical integration

0

τ1

τ1 + τ2

F0µ0 R1

T̃1

T̃1T̃2

R2T̃1

T̃ ∗
1 R2T̃1

R∗
1R2T̃1

...

...

Figure 2.6: Representation of the
multiscattering interaction between
layers.

The set of approximations discussed in the previous chap-
ters are valid in homogeneous layers. Nevertheless, the
Earth atmosphere is vertically nonhomogeneous because
all the thermodynamic fields in the atmosphere show
a well defined stratification producing high variations with
height.

Initially, this problem can be easily solved by dividing
the atmosphere into a set of layers that are chosen to be
homogeneous. In this case, the RTE may be solved at
each layer determining the upward and downward fluxes
required for evaluating the heating rate.

The main problem in this approach is that multiscatter-
ing interactions between layers with different optical prop-
erties are not considered. In order to illustrate this prob-
lem, let us assume two contiguous homogeneous layers as
it is illustrated in Fig. 2.6, being τ1 and τ2 the optical thickness for layer 1 and 2, respectively.

When the solar beam µ0F� reaches the first layer, one part of the radiation is upward
reflected as diffuse radiation R1, while another part is transmitted as direct and diffuse radiation
T̃1 into the second layer.

After crossing the first layer, T̃1 interacts with the second one, experiencing an analogous
process. One part of the radiation is transmitted as direct and diffuse radiation T̃1T̃2 and
another part is upward reflected as diffuse radiation into the first layer R2T̃1.

Now, the first layer is illuminated from below by R2T̃1 and the process is repeated. One
part of the radiation is downward reflected as diffuse radiation, R∗1R2T̃1 and another part is
transmitted upward as T̃ ∗1R2T̃1.

Conceptually, we can repeat this process infinite times to describe the multiscattering
feedback between both layers. This process can be very difficult when the atmosphere is
divided in ez layers as it occurs in a NWP model.

Therefore, we need some method for a vertical integration of the radiative fluxes. Fur-
thermore, this method has to be efficient and should use low computational resources to be
feasible in a NWP model.

The most widely used method in radiative parameterizations is the Adding Method (Stokes,
1862; Hansen, 1971; de Hulst, 1980) that when is coupled to the δ2-stream or δ-Eddington ap-
proximations is typically referred as δ2-stream adding method and δ-Eddington adding method,
respectively.

Through the next pages, we will show a brief description of the method and its implemen-
tation in the case of ez homogeneous layers.
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2.4.1 Adding method

Let us assume a homogeneous atmospheric layer illuminated from above and from below by
diffuse radiation.

If we study the layer illuminated from above (Fig. 2.7), we find that an incoming monochro-
matic intensity Iin,top is reflected and transmitted as Iout,top and Iout,bottom described by a re-
flectivity R and a transmissivity T̃ .

If we repeat this process by the layer illuminated from below (Fig. 2.7), we find that
the monochromatic intensity Iin,bottom is reflected and transmitted as Iout,bottom and Iout,top
described by a reflectivity R∗ and a transmissivity T̃ ∗.

Iin,top Iout,top

Iout,bottom

Iout,top

Iin,bottom Iout,bottom

Above Below

T̃ R T̃ ∗ R∗

Figure 2.7: Reflectivity and trans-
missivity in a layer illuminated from
above and below

The computation of R, R∗, T̃ and T̃ ∗ is directly de-
rived from the RTE normalizing by Iin,top and Iin,bottom in
each case.

Based on this description, let us assume two layers:
1 and 2, one on top of the other as shown in Fig. 2.8.
Moreover, let us assume that R1 and T̃1 are the reflection
and total transmission (i.e. direct + diffuse) at the first
layer, while R2 and T̃2 are the same for the second one.
Finally, let us assume that U and D̃ are the reflection and
the transmission in the interface between 1 and 2.

We define R12 and T̃12 as the combined reflectivity
and transmissivity as a consequence of infinite reflections
and transmissions. Following the discussion presented at
the beginning of this section, we can write

R12 = R1 + T̃ ∗1R2T̃1 + T̃ ∗1R2R
∗
1R2T̃1 + T̃ ∗1R2R

∗
1R2R

∗
1R2T̃1 + ..., (2.77)

T12 = T̃2T̃1 + T̃2R
∗
1R2T̃1 + T̃2R

∗
1R2R

∗
1R2T̃1 + ..., (2.78)

U = R2T̃1 +R2R
∗
1R2T̃1 +R2R

∗
1R2R

∗
1R2T̃1 + ..., (2.79)

D̃ = T̃1 +R∗1R2T̃1 +R∗1R2R
∗
1R2T̃1 + ... (2.80)

The previous series converge and they may be written as

R12 = R1 + T̃ ∗1R2(1−R∗1R2)−1T̃1, (2.81)

T12 = T̃2(1−R∗1R2)−1T̃1, (2.82)

U = R2(1−R∗1R2)−1T̃1, (2.83)

D̃ = (1−R∗1R2)−1T̃1. (2.84)

Moreover, the following relationships will be useful for the next discussion about the method

S = R∗1R2(1−R∗1R2)−1, (2.85)

R12 = R1 + T̃ ∗1U, (2.86)

T12 = T̃2D̃, (2.87)

U = R2D̃. (2.88)

Eq. 2.86 shows that the combined reflection due to both layers is the result of the reflection
at the first layer (first term) plus the upward transmission of successive reflections between
both layers (second term). On the contrary, Eq. 2.87 shows that the combined transmission
is the result of the transmission through the second layer of D̃.
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As we defined at the beginning of this explanation, the total transmissivity T̃ is the sum
of the diffuse T and the direct beam given by the Beer’s law as e−τ/µ

′
where µ′ = µ0 when

the beam is from the Sun and µ′ = µ when the light comes directly from the µ direction.
Therefore, Eqs. 2.84 and 2.87 can be expressed as

D̃ = D + e−τ/µ0 = (1 + S)T1 + Se−τ1/µ0 + e−τ1/µ0 , (2.89)

T12 = e−τ2/µD + T2e
−τ1/µ0 + T2D + exp

(
− (τ1/µ0 + τ2/µ)

)
δ(µ− µ0). (2.90)

0

τ1

τ = τ1 + τ2

F0µ0 R1

T̃1

T̃2T̃1

R2T̃1

T̃ ∗
1 R2T̃1

R∗
1R2T̃1

...

...
τ1

T̃2R∗
1R2T̃1

R12

T̃12

U

D̃

Figure 2.8: Representation of the combined com-
bined reflectivity, R12, and transmissivity, T̃12

As it is shown in the literature (e.g. Liou,
2002), all these expressions can be written in
an iterative form. When the layers are illu-
minated from above, R12 and T12 are deter-
mined by the following equations

Q = R∗1R2, (2.91)

S = Q(1−Q)−1, (2.92)

D = T1 + ST1 + Se−τ1/µ0 , (2.93)

U = R2D +R2e
−τ1/µ0 , R12 = R1 + eτ1/µU + T ∗1U, (2.94)

T12 = e−τ2/µD + T2e
−τ1/µ0 + T2D. (2.95)

And when the layers are illuminated from below, R∗12 and T ∗12 may be computed as

Q = R2R
∗
1, S = Q(1−Q)−1, (2.96)

U = T ∗2 + ST ∗2 + Se−τ2/µ
′
, D = R∗1U +R∗1e

−τ2/µ′ , (2.97)

R∗12 = R∗2 + e−τ2/µD + T2D,
T ∗12 = e−τ1/µU + T ∗1 e

−τ2/µ′ + T ∗2U. (2.98)

From this discussion, the Adding method is shown as a useful approach to determine the
fluxes at the TOA and surface. Nevertheless, the fluxes in a NWP model are needed at each
layer in order to compute the heating rate.

Generally, we have ez vertical layers that are assumed as homogeneous. Each layer is
characterized by the radiative variables τ , ω0 and g that lead to Tl, Rl, T

∗
l and R∗l for

l = 1, ..., ez. As the set of layers are homogeneous, we can demonstrate that Tl = T ∗l and
Rl = R∗l .
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Then, layers are added one by one downward from the TOA to compute the R1,l and T1,l

for l = 2, ..., ez + 1 and R∗1,l for l = 2, ..., ez (Fig. 2.9). This process is repeated upwards from
the surface to compute Rl+1,ez+1 and Tl+1,ez+1 for l = ez − 1, ..., 1.

The layer ez + 1 corresponds to the surface with a reflectivity Rez+1 that is computed
assuming a Lambertian reflector described by the surface albedo, while the transmissivity is
assumed as zero (i.e. Tez+1 = 0).

By considering the composition of (1,l) layers, we can write

D = T1,l + ST1,l + Se−τ1,l/µ0 , (2.99)

where τ1,l is the optical thickness from the TOA to the level l, S is given by Eq. 2.96 and
Q is

Q = R∗1,lRl+1,ez+1. (2.100)

T̃1, R1

T̃2, R2

T̃l, Rl

T̃l+1, Rl+1

T̃ez , Rez

...

...

T̃ez+1 = 0, Rez

1

2

l

l+1

ez

ez +1

R1,l

T̃1,l

Rl+1,ez+1

T̃l+1,ez+1

Figure 2.9: Implementation of the adding method
in nonhomogeneous atmospheres

Contrarily, the composition of (l+1,ez+1)
layers is given by

U = Rl+1,ez+1D +Rl+1,ez+1e
−τ1,l/µ0 .

(2.101)
Using Eqs. 2.99 and 2.101, the flux com-

putation at each layer becomes

F ↑dif,l = µ0F�

(
2
∫ 1

0
U(µ, µ0)µdµ

)
,

(2.102)

F ↓dif,l = µ0F�

(
2
∫ 1

0
D(µ, µ0)µdµ

)
,

(2.103)

F ↓dir,l = µ0F�e
−τ1,l/µ0 , (2.104)

Fnet,l = (F ↓dif,l + F ↓dir,l)− F
↑
dif,l. (2.105)

2.5 Radiative variables and spectral integration

In Sect. 2.1, we have presented the general form of the RTE and its general solution in plane-
parallel atmospheres, valid for stellar and planetary atmospheres. We have noted that the
main problem is in the form of the source function. In Sect. 2.3, we have discussed a set of
approximations for reducing the complex integro-differential form of the RTE into a set of first
order differential equations. These equations are written in terms of three radiative variables,
the optical thickness τλ, the single scattering albedo ω0 and the asymmetry factor g. The set
of approximations presented in Sect. 2.3 is only valid assuming that layers are homogeneous.
However, the real atmosphere is not vertically homogeneous. For this reason, in Sect. 2.4,
we have discussed the adding method, useful for performing the vertical integration of the
shortwave fluxes as described by Eqs. 2.102, 2.103 and 2.104.

At this point, a further difficulty is that radiative variables are not a solution of the Euler
equations and hence, they must be parameterized in terms of the i) available prognosticated
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and/or diagnosed variables in the NWP model (i.e. air temperature, pressure, density, cloud
droplets mixing ratio, etc) and ii) static data-sets provided by look-up tables (i.e. ozone or
carbon dioxide, among others).

The form in which the physical contributions to absorption and scattering are parameterized
is the core of each radiative scheme and it determines the spectral division.

In general, solar parameterizations assume different definitions for the shortwave spectrum.
Typically, they start at ∼ 200 nm (i.e. the ultraviolet, UV), while the ending integration is more
open being in the near-IR (4,000 - 5,000 nm) or even in the thermal-IR region (∼ 10,000 nm).
The integration over the wavelength (or wave-number) space is reduced into a few bands: from
schemes that assume a single one (i.e. broadband integration) to parameterizations that use
less than 20 bands. Consequently, an averaged flux Fλ is evaluated for each spectral interval
and then, the total fluxes are computed as a sum over all intervals. In other words, if the solar
spectrum is divided into b intervals, the total solar flux given by Eq. 2.39 is

F =
b∑

j=1

Fλ,j∆wj , (2.106)

where ∆wj is the fractional solar flux for the band j.
Regarding to the atmospheric gases, water vapor and ozone are the most important ab-

sorbers of solar radiation in the Earth atmosphere in cloudless and clear (i.e. without aerosols)
sky conditions. These gases are parameterized with high detail. Other gases such as the
molecular carbon dioxide, oxygen an nitrogen have a significant role in the absorption of solar
radiation, but less important. In general, the effect of these gases are poorer represented in
solar schemes. Finally, other minor gases as nitrous oxide, carbon monoxide, nitric oxide or
methane exhibit an absorption spectra in the solar region (Liou, 1992) but they have a very
low contribution and their effects are neglected in most of the solar parameterizations.

Originally, the absorption by the atmospheric gases was represented with parametric equa-
tions as it is shown in Stephens (1984), instead of including the effect into the RTE. Never-
theless, with the increment of the computational resources, more radiative schemes included
a full description of ozone and water vapor.

The contribution of all elements (i.e. gases, clouds, aerosols) at each layer is typically
composed following Cess (1985) assuming that each element is independent one to each other
in the radiative transfer. Therefore, given one atmospheric layer, the total absorption optical
depth τa is defined as the sum of the contribution of all the species as

τa ≡ τH2O + τO3 + τCO2 + τO2 +O(τ), (2.107)

where τH2O, τO3, τCO2 and τO2 are the optical depth of each specie and O(τ) corresponds
to the contribution of the minor gases.

Given one layer bounded by heights z1 and z2 (with z1 < z2), the optical depth, τx, of
each specie, x, is evaluated following Eq. 2.16 as

τx =
∫ z2

z1

kρxdz. (2.108)

The density of the specie ρx can be expressed in terms of the dry air density ρ and the
mixing ratio of the specie x, qx leading to

τx =
∫ z2

z1

kqxρdz. (2.109)

NWP models solve the Euler equations in a discretized space and time, giving the averaged
state of the atmospheric fields at each grid-point, level and time-step and being unknown the
sub-grid information. Therefore, a reasonable approach is to consider the absorption coefficient
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as a constant within each layer. Under this assumption, Eq. 2.109 can be expressed in terms
of the averaged fields as

τx ∼ kqxρ∆z = kux, (2.110)

where qx and ρ are the mean values, ∆z is the layer thickness and ux is the averaged path
length (Eq. 2.8). By using the hydrostatic equation, Eq. 2.110 can be easily expressed in terms
of the pressure, more natural in a model that uses sigma levels or similar.

The Rayleigh scattering due to the gas molecules is evaluated in terms of the dry air
content without any particularization of the gas species. In a similar manner that in the
molecular absorption, we can define the optical depth due to the Rayleigh scattering, τs, as

τs ∼ βsρ∆z, (2.111)

where βs is the Rayleigh scattering extinction coefficient.
Considering both scattering and absorption, the total optical depth τ of a layer is directly

τ = τa + τs. (2.112)

If we assume that the absorption and scattering properties remain constant in a small
spectral band then, the single scattering albedo (Eq. 2.23) of the layer can be expressed as

ω0 =
τs
τ
. (2.113)

Eqs. 2.112 and 2.113 become more complex if we introduce the absorption and scattering
by aerosols and clouds particles. Both elements have an important role in the transfer of solar
radiation.

If τaer and τcld are the optical thickness of aerosols and clouds then, Eq. 2.112 can be
expressed as

τ = τa + τs + τaer + τcld (2.114)

and Eq. 2.113 as

ω =
τs + τaer + τcld

τ
= ωs + ωaer + ωcld. (2.115)

Each scattering process p has associated an asymmetry factor gp. Then, the composed
asymmetry factor is determined as

g =
∑P

i=1 giωiτi∑P
i=1 ωiτi

, (2.116)

where P is the number of scattering contributions.
When the δ-scaling approach is used (Sect. 2.3.3), the forward peak must be also evaluated

and then, Eqs. 2.69 and 2.70 can be used.

2.5.1 Atmospheric gases absorption

Absorption coefficient

The physical property that expresses the absorption efficiency of a molecule is the absorption
coefficient kλ. This coefficient depends on the atomic and electronic structure of the molecule
and it is formerly expressed in terms of the line strength S and the line-shape factor f(λ−λ0)
as

kλ = Sf(λ− λ0). (2.117)
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One molecule has three forms of internal energy: rotational, vibrational and electronic.
As it is described by the quantum mechanics (Gottfried, 1993), they are defined by a set of
quantum numbers. Moreover, these energies are added to the kinetic energy of the molecule
that is not quantized and thus, it can exist in a range of continuum values.

The radiation absorption and emission occur when the molecule changes from one quantum
state to another one. In the absorption, the molecule absorbs one photon increasing the internal
energy to a higher level. In contrast, when the molecule falls from one state to another with
lower energy, one photon is emitted.

The Planck’s Law describes that the absorbed/emitted energy ∆E of a photon is associated
with a fixed wavelength λ (or frequency) as

∆E =
h

λ
, (2.118)

where h is the Planck’s constant. This is called monochromatic absorption/emission.

In the atmosphere, the monochromatic absorption and emission is never observed. Due
to the Heisenberg’s Principle and the interaction between quantum systems, the absorption
lines are broadened. Basically, there are three types of broadening: i) due to the uncertainty
principle, ii) due to the pressure effect and iii) due to the Doppler effect. A full description of
these processes can be found in many manuals such as Liou (2002) and for this reason they
are not detailed in this chapter.

In the Earth atmosphere, the uncertainty principle can be neglected by comparison with the
others. Above 20 km, there is an overlapping of the effects produced by Doppler and pressure
due to the high velocity of the air molecules. Above 40 km, the Doppler broadening dominates.
Nevertheless, NWP models are usually focused on the troposphere and lower stratosphere with
a TOM set below 10 hPa and hence, these effects can be neglected.

Below 20 km, the pressure effects are the most important. The pressure broadening occurs
by the collision between molecules. As a consequence of these collisions, molecules have associ-
ated a higher energy allowing the transition between quantum states at a different wavelengths
that described by the Planck’s Law.

As it is demonstrated in the literature (e.g. Liou, 2002), the line-shape factor including the
pressure broadening follows the Lorentz profile and, consequently, kλ can be written as

kλ =
S

π

α

(λ− λ0)2 + α2
, (2.119)

being α a scaling function defined as

α(p, T ) = α0

(
p

p0

)(
T0

T

)n
. (2.120)

In Eq. 2.120, α0 is a reference value defined at T0 and p0 while n is a parameter that
depends on the specie. In general, the reference values are taken at 273 K and 1013 hPa used
in the set of experiments and measurements in the laboratory. In virtue of Eq. 2.120, it can
be demonstrated that a good approximation for kλ is

kλ(p, T ) ∼= kλ(p0, T0)
(
p

pr

)(
Tr
T

)n
(2.121)

This relationship is essential in the analysis and study of the radiative transfer in the Earth
atmosphere (i.e. nonhomogeneous medium) because we can evaluate a single kλ for each λ of
the spectrum in the laboratory or theoretically and then, we can correct this value for a given
pair of T and p values, in other words, at any height.

The approach presented in Eq. 2.121 assumes that the wavelength, temperature and pres-
sure are decoupled. This method is called one-parameter scaling approximation (Howard et al.,
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1956) and it is widely used in many of the solar schemes because it is simple and computa-
tionally fast (Stephens, 1984; Lacis and Oinas, 1991).

As kλ(p0, T0) does not vary with height, we can express the optical thickness in terms of
a scaled path length u′ as

τλ = kλ(p0, T0)u′, (2.122)

where u′ is expressed as

u′ =
∫
u

(
p

pr

)(
Tr
T

)n
du. (2.123)

The factor n has been largely discussed in the literature (e.g. Elsasser, 1960; Lacis and
Hansen, 1974), concluding that the optimal value for flux and the heating rate computations
is n = 1/2.

There are many sources of data-sets for the absorption line parameters covering a large
number of spectral intervals. The most widely used in the solar parameterizations is the High-
Resolution Transmission Molecular Absorption database, HITRAN, (McClatchey et al., 1973;
Rothman et al., 2013). These data-sets contain information for more than 1 million lines in
the range from the ultraviolet to the microwaves and including ∼50 species such as H2O, CO2,
O3 or O2, among others. The absorption line is expressed in terms of four parameters: line
intensity, line position, air-broadened half-width and lower-state energy, all of them defined at
296 K.

Given a set of species N and one wavelength λ, the total optical thickness τλ can be
evaluated as the sum of the N spectral lines in λ as

τλ =
N∑
j=1

τλ,j =
∫
u

N∑
j=1

kλ,j(u)du. (2.124)

This equation leads to express the absorption coefficient as

kλ(p, T ) =
N∑
j=1

Sj(T )fλ,j(p, T ). (2.125)

Spectral integration

The only way to represent each jth absorption line in Eq. 2.124 is computing kλ at inter-
vals smaller than the line half-width. As it is detailed in the literature (e.g. Liou, 2002), this
means that kλ must be evaluated for more than half million points. This method is called
line-by-line integration (LBL) (e.g. Shulyak et al., 2004) and it is used in many high spectral
resolution radiative transfer applications such as in stellar atmospheres, for instance. Although
it is the most realistic method for integrating the electromagnetic spectrum, it is not feasi-
ble for most of the atmospheric modeling applications due to the high computational costs.
Therefore, radiative schemes in NWP models require some simplifications in order to increase
the performance.

Typically, the spectrum is divided in few bands: from one interval covering all the spectrum
in called broadband spectral parameterizations to the order of tens in the most realistic schemes.

As a first order approach, we can assume the gray atmosphere approximation typically used
in the study of stellar atmospheres. This simplification assumes that the absorption coefficient
kλ is independent of the wavelength between λ and λ+dλ, hence, the name of gray or without
color.

Notwithstanding, this approximation is not appropriate for some atmospherics gases such
as ozone, water vapor or carbon dioxide because they have a high number of spectral lines
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(i.e. ∼105−6) in the shortwave and longwave spectral ranges. Consequently, different approx-
imations for considering the non-gray behavior of the Earth atmosphere are necessary.

In general, one uses a method with an acceptable accuracy that reduces significantly the
number of iterations with respect to the LBL method. This approach is called k-distribution
method (Ambarzumian and Kosirev, 1927; Arking and Grossman, 1972; Domoto, 1974; Chou
and Arking, 1980). Conceptually, this method brings together the spectral transmittances, Tλ,
of the gases in terms of the absorption coefficient kλ.

As it is shown in Lacis and Oinas (1991), the spectral transmittance in homogeneous
atmosphere is independent of how the k values are ordered in a given spectral interval ∆λ. In
this case, the integration in the space of λ can be substituted by an integration in the space
of k. In other words,

Tλ(u) =
∫

∆λ
e−kλu

dλ

∆λ
=
∫ ∞

0
e−kuf(k)dk, (2.126)

where f(k) is the normalized probability distribution for kλ at the interval ∆λ.

We can note that the function f(k) in Eq. 2.126 is just the inverse of the Laplace trans-
formation of the spectral transmittance,

f(k) = L −1 (Tλ(u)) . (2.127)

Additionally, we can define the cumulative probability function as

g(k) =
∫ k

0
f(k)dk. (2.128)

In virtue of the Gauss formula (Eq. 2.41), we can rewrite Eq. 2.126 as

Tλ(u) =
∫ 1

0
e−k(g)udg ∼

M∑
j=1

e−k(gj)u∆gj , (2.129)

Therefore, the spectral integration between λ and λ+ dλ can be simplified as a finite sum
of elements expressed in terms of the k(gj) and gj data-sets that can be evaluated previously
and saved in look-up tables.

Once the monochromatic flux computations are carried out for all the sub-spectral intervals,
the solar flux for a spectral interval ∆λ can be computed as the sum of all the M intervals as

Fλ =
∫

∆λ
Fλ

dλ

∆λ
=

M∑
j=1

Fj∆gj (2.130)

The variant of the k-distribution method for nonhomogenous atmospheres is the Correlated
K-distribution method (CKD), firstly proposed by Lacis and Oinas (1991) and later developed
by other authors as Fu and Liou (1992) or Kato and Ackerman (1999), among others.

Based on the definition of the optical thickness presented in Eq. 2.15, we can express the
optical thickness in a nonhomogenous optical length as

τλ =
∫ u

0
kλdu =

∑
i

kλ,i∆ui. (2.131)

From this equation, the spectral transmittance can be expressed as

Tλ(u) =
∫

∆λ
e−τλdλ =

∫ ∞
o

e−k
∗uf(k∗)dk∗, (2.132)

where
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k∗ =
τ

u
=
∑
i

kiai, (2.133)

ai =
∆ui
u

(2.134)

and f(k∗) is the probability density function of k∗. As in the case of the k-distribution
method, we can define the cumulative associated probability function g∗(k∗) as

g∗(k∗) =
∫ k∗

0
f(k∗

′
)dk∗

′
(2.135)

Now, g∗ is a function of the pressure and temperature along the nonhomogeneous path.
Therefore, the spectral transmittance in ∆λ is

Tλ(u) =
∫ 1

0
exp

(
−u
∑
i

ki(g)ai

)
dg∗ (2.136)

Assuming that g∗ is independent of the pressure and temperature, Eq. 2.136 can be ap-
proximated to

Tλ(u) ∼
∫ 1

0
exp

(
−u
∑
i

ki(g)ai

)
dg (2.137)

Formerly, this means that g is correlated throughout the atmosphere and is not a function
of the pressure and temperature. For this reason, Eq. 2.137 is called correlated k-distribution
method.

Ozone

This gas is found in two atmospheric regions with a different impact on the radiative trans-
fer (WMO, 2010). Most ozone (∼90%) is located in the stratosphere. A layer with the highest
ozone concentration that is typically found between 10 and 50 km above the surface is often
referred as the ozone layer. The remaining ozone (∼10%) is found in the troposphere. The
highest values in this layer are located near the surface and they are mainly related to human
activities.

The absorption by ozone in the solar spectral region occurs in three spectral bands (Inn
and Tanaka, 1953; Anderson and Mauersberger, 1992): Hartley, Huggins and Chappuis. The
Hartley bands are the strongest covering the ultraviolet (UV) from 200 to 300 nm. This
absorption of solar flux is located primarily in the upper stratosphere and in the mesosphere.
The other two bands are weaker. The Huggins bands operate in a UV region from 300 to
360 nm. Energy absorption in this spectral range occurs in the lower stratosphere and in the
troposphere. Finally, the Chappius bands cover the photosynthetic active region (PAR) and
the near-IR from 400 to 850 nm. The absorption by the Chappius bands is mainly located in
the troposphere.

The absorption of the solar flux by ozone produces a heating rate ranging from 10 to
30 K day−1 in the stratosphere. This absorbed energy is an important physical process in
maintaining the stratospheric thermal structure (Ramanathan and Dickinson, 1979).

NWP models, in general, and mesoscale NWP models, in particular, do not consider
prognostic or diagnostic equations for ozone and its photochemical processes. In order to
reduce the computational resources, the shortwave schemes in mesoscale NWP models simplify
the ozone information. These simplifications include zonal averages and latitudinal, vertical
and seasonal discretization that vary between shortwave parameterizations (Montornès et al.,
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2015d). However, as it is detailed in Montornès et al. (2015e), the ozone profile has an
important role for maintaining the thermal structure of the stratosphere during the simulation.

The absorption coefficient of ozone varies by several orders of magnitude in the UV and
PAR regions but smoothly with the wavelength (Chou and Suarez, 1999). Consequently, many
schemes assume the gray atmosphere approximation in the treatment of the ozone absorption,
i.e. assuming a constant kλ,O3 for each band interval. Moreover, as the absorption coefficient
of ozone shows a low variation with pressure and temperature, there are schemes that neglect
the scaling factor presented in Eq. 2.122.

Following Eq. 2.110, the optical thickness for a layer is generally evaluated as

τO3 ∼ kO3qO3ρ∆z = kO3uO3 = kO3qO3udry. (2.138)

Water vapor

Water vapor is particularly abundant in the troposphere and it shows a high variation in space
and time. This gas is mostly produced by evaporation or sublimation at surface and transported
through the atmosphere by different processes such as turbulent mixing, convection and cloud
microphysics. Concurrently, water vapor is removed from the atmosphere by condensation
(e.g. cloud droplets), freezing (e.g. ice crystals) and precipitation.

With CO2 and CH4, water vapor plays an important role in the greenhouse effect that
produce the appropriate conditions for life in Earth.

Since this gas is the main element of solar heating in the troposphere and due to its
importance for life and human activities, water vapor is included in the Euler equations solved
by NWP models and it is an input for most of the physical parameterizations such as the LSM,
the microphysics or the radiative transfer (Montornès et al., 2015e).

In the solar spectrum, water vapor absorption lines cover the near-IR (i.e. from 700 nm
to 4.000 nm). The form of the water vapor molecule leads to a more complex treatment
of the absorption than in the case of ozone. As it is indicated by Lacis and Hansen (1974)
this difficulty arises from three factors. First because kλ for water vapor is high wavelength-
dependent. Second because of absorption and scattering can appear in the same region of the
atmosphere. Finally, because the kλ shows a high dependence on pressure.

Typically, we found two different approaches to the problem. Some schemes incorporate
the contribution of the water absorption by using different parameterizations or empirical
relationships such as the proposed by Lacis and Hansen (1974) or Liou and Sasamori (1975),
among others. This kind of approaches were interesting when the computational costs were
too expensive to be assumed by the operational models.

The other approach consists into incorporating the water vapor in the RTE computation.
As kλ varies rapidly with the wavelength, the CKD method is the most suitable approach.
Therefore, following Eq. 2.137, each spectral band is divided into a set of pseudo-bands or
g-point values.

The computation at each layer is defined in terms of the water vapor path uH2O. Given
one layer ∆z, the optical length for water vapor uH2O is evaluated as

uH2O = qH2Oρ∆z = qH2Oudry. (2.139)

Minor gases

Generally, solar schemes have different sensibilities against the minor gasses. Some schemes
neglect their contribution and the others consider them with a lower detail than in the case of
ozone and water vapor.

Between all the minor gases, two are specially considered in most of the solar schemes:
CO2 and O2. Carbon dioxide shows several spectral bands in the solar region but most of
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them are so weak (e.g. 2,000 or 4,300 nm, among others) and for practical purposes can
be neglected (Liou, 1992). The band at 2,700 nm, that it is overlapped with water vapor,
exhibits a higher contribution to solar absorption in the lower stratosphere and it is considered
explicitly in some schemes. The concentration of this gas is typically considered as a constant
with height, coordinates and time.

The treatment of oxygen is easier to handle than CO2 because the absorption occurs in
a narrow spectral region free of other absorbers. In general, solar schemes assume simple
approximations for this gas with a concentration of about 23%.

The features of the other minor gasses are not discussed in this text and further details
can be found in the literature (e.g. Chou and Suarez, 1999 or Liou, 2002).

As the set of approaches for considering the contribution of these gases varies from one
scheme to the other. They will be discussed in the analysis of the different schemes presented
in Chapter 3.

2.5.2 Atmospheric gases scattering: Rayleigh

Typically, the effects of the molecular scattering are not considered explicitly for each gas
species and they are simplified assuming directly the dry air mass resulting of the integration
of the Euler equations. Therefore, the scattering variables (i.e. ω0 and g) for the different
species are not considered. In contrast, two variables ω0,R and gR are defined representing
the scattering of the air. The single scattering albedo and asymmetry factor are set to 1
(i.e. conservative case).

The extinction optical thickness τR is defined in terms of the averaged density of the layer
ρ, the layer thickness ∆z and a coefficient extinction kR as

τR = βRudry = βRρ∆z. (2.140)

Usually, solar schemes assume the gray atmosphere approximation considering βR as a
constant at each spectral band.

2.5.3 Aerosols

Aerosols are small particles related with many processes in the Earth atmosphere interacting
directly or indirectly with the radiation budget and climate. As direct effects, aerosols increase
the light scattering and opacity. By contrast, the indirect effect aerosols are involved in cloud
microphysics producing changes in clouds composition.

Despite of the interest of aerosols in the atmosphere, historically, operational mesoscale
models have not treated this issue in detail. On the one hand, due to the high complexity
for determining their spatial distribution, vertical profile and chemical properties. On the
other hand, because for an accurate fit, it is necessary a chemical package coupled to the
meteorological model.

For the radiative transfer studies, the direct effects of aerosols are the most relevant.
Contrary to air molecules, the common size of the aerosol particles lead to produce Mie
scattering. The solution of Mie scattering for spherical particles can be exactly determined.
However, this is not useful in solar schemes due to the elevated computational costs.

Instead of this, the radiative properties of the aerosols are summarized by integrated quan-
tities: the extinction coefficient, scattering efficiency, single scattering albedo and asymmetry
factor. These values are pre-computed for each species and wavelengths.

As NWP models do not solve prognostic or diagnostic equations for aerosols, many of the
solar parameterizations include background climate profiles with more or less complexity.

While for most of the weather (not climate) simulations, aerosols can be neglected, the
growth of the solar energy has increased the interest for improving these data-sets during the
last years (e.g. Ruiz-Arias et al., 2012; Jimenez et al., 2015).
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2.5.4 Clouds

Clouds are the atmospheric elements with the highest contribution in the radiative transfer.
They absorb, reflect and transmit solar radiation.

The optical thickness is the most important radiative variable in the description of the
optical properties of clouds (Stephens, 1978a). In the Earth atmosphere, we can find a high
variety of clouds (e.g. cumulonimbus, cirrus, etc) with large differences in the composition
that produce a wide range of values in τcld from 5 to 500. In general, the solar disk is hidden by
clouds (i.e. the direct component of the flux, F ↓dir becomes zero) when τcld ≤10 as discussed
in Twomey (1976).

Clouds are composed by different species of hydrometeors (e.g. water droplets, ice crystals,
rain droplets, etc) that in practice can be assumed as particles that absorb and scatter light.
Most of the solar schemes reduce these hydrometeors in to two classes: water droplets and ice
crystals. In some cases, the other hydrometeors are aggregated to these groups introducing
small corrections.

The need for a different treatment in cloud water droplets and cloud ice crystals is because
the extinction coefficient for ice clouds is lower than for water clouds. On the one hand, ice
crystals are bigger than water droplets and, on the other hand, the refraction indeces for both
particles are significantly different (e.g. Collins et al., 2004).

In terms of the radiative transfer, the optical properties of clouds required for radiative
schemes in NWP models are βext, ω0 and g. Assuming that cloud particles are spheres, these
properties can be derived from the Mie’s Theory (e.g. Hulst, 1957) and from the refraction
index of water (e.g. Palmer and Williams, 1974).

The extinction and scattering coefficients, βext and βsca, are formerly defined as

βext =
π

k3

∫ ∞
0

n(r)r2Qext(r, k)dr (2.141)

βsca =
π

k3

∫ ∞
0

n(r)r2Qsca(r, k)dr (2.142)

being r the radius of the droplet, k = 2π/λ, n(r) the size droplet distribution and Qext
and Qsca, two efficiency factors for extinction and scattering, respectively.

From Eq. 2.141, the optical thickness of a cloud can be expressed as

τcld =
∫ ∆z

0

∫ ∞
0

n(r)Qext(r, k)πr2drdz, (2.143)

being ∆z is the cloud thickness.
Slingo and Schrecker (1982) demonstrated a small variation of Qext with k, overall when

k is high, tending to a asymptotic value near to 2,

lim
k→∞

Qext ∼ 2. (2.144)

Therefore, for small wavelengths, as in the case of the solar radiation, τcld can be approx-
imated as

τcld =
∫ ∆z

0
2π
(∫ ∞

0
n(r)r2dr

)
dz. (2.145)

In practice, the integral over all the hydrometeors sizes in a cloud presented in Eq. 2.145 is
useless because this information is not produced by a NWP model. Hansen and Travis (1974)
proposed an effective radius as the ratio between the total volume and the cross section area,

re =

∫∞
0 n(r)r3dr∫∞
0 n(r)r2dr

, (2.146)
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that simplifies this problem.
By inserting Eq. 2.146 into Eq. 2.145, the optical thickness for one type of hydrometeor

h, τcld,h becomes simply

τcld,h =
3
2
Wh

re,h
, (2.147)

where Wh is the content of the hydrometeor h in ∆z.
Typically, radiative codes assume that clouds are uniform with respect to the distribution

of sizes (Stephens, 1978a). In this case, Wh is directly

Wh = wh∆z = qhρ∆z = qhudry. (2.148)

For water clouds Wh is called liquid water content (LWC) while for ice clouds Wh is named
ice water content (IWC).

The physical sense of the variable re is slightly different for cloud droplets and for ice
crystal. In the first case, we assume spherical particles with an effective radius re,w given by

re,w =
3

4ρw
C

Ac
, (2.149)

where ρw is the water density, Ac is the effective cloud fraction and C is the cloud mass
concentration per unit of volume.

Instead, ice crystals are assumed as hexagonal and randomly oriented in the space. In this
case, re is called effective size re,i defined as

re,i =
2
√

3
3ρi

C

Ac
, (2.150)

with ρi, the ice density.
The discussion for ω0,cld and gcld becomes more complicated and, consequently, there are

several approximations as detailed in Chou and Suarez (1999). Physically, the single scattering
albedo for cloud particles varies several orders of magnitude within the shortwave spectrum.
Thus, it is extremely difficult to find an effective single scattering albedo for broad spectral
bands that can be used in situations of strong and weak absorption.

Furthermore, the solar absorption by clouds is a function of the water vapor amount and
the phase of the particles (i.e. liquid or ice). Consequently, there is not an optimal way for
evaluating the ω0 in a broad spectral interval.

In contrast to ω0 and g, βs varies smoothly with the wavelength. As it is detailed in Chou
and Suarez (1999), theoretical works such as Tsay et al. (1989), Hu and Stamnes (1993)
or Fu (1996), among others have demonstrated that the radiative variables for clouds are
not significantly affected by factors as the particle size distribution and thus, they can be
parameterized in terms of the effective radius/size described above.

Typically, it is used the approach presented by Slingo and Schrecker (1982), or with small
variations, in which the radiative variables are defined as

βs = a0,s +
a1,s

re,s
, (2.151)

1− ω0,s = b0,s + b1,sre,s + b2,sr
2
e,s, (2.152)

gs = c0,s + c1,sre,s + c2,sr
2
e,s, (2.153)

where ai,s, bi,s and ci,s are the regression coefficients that fit empirical data-sets and the
subscript s indicates that they are different for each cloud particle specie (i.e. cloud droplets,
ice crystals). The idea for ice crystals is similar as it is shown in Liou et al. (2008).
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Using Eq. 2.151, the optical thickness τs in a layer ∆z is directly

τs = βsqsρ∆z (2.154)

Although, the radiative variables can be determined in a more or less easy way, the addition
of clouds into the radiative computations presents important problems. In the atmosphere,
clouds are located at different heights with different sky covering and optical properties. Nev-
ertheless, the set of approximations presented in Sects. 2.2 and 2.3 assume the plane-parallel
approach, hence, the horizontal nonhomogeneity is not allowed.

For illustrating this problem, suppose a domain R of tens or hundreds of kilometers with
a 3-dimension distribution of the cloud properties known exactly as proposed in Pincus et al.
(2003). In this domain, the averaged and spectral integrated flux < F > can be written as

< F >=
1

∆x∆y∆z

∫
S(λ)

(∫ ∫ ∫
R
F3D(x, y, z, λ)dzdxdy

)
dλ, (2.155)

where S(λ) is the portion of energy at dλ and F3D(x, y, z, λ) is the analytic form of the
monochromatic flux. ∆x, ∆y and ∆z are the domain dimensions.

For the characteristic scales occurring in the synoptic scale and mesoscale the horizontal
variations of the flux can be considered as negligible and therefore, we can assume atmospheric
columns as independent one to each other. This is called independent column approximation
(ICA). Under this approximation, the vertical integration in Eq. 2.155 can be performed with
the methods discussed in the previous sections. Therefore, we can write < F ICA > such as

< F ICA >=
1

∆x∆y

∫
S(λ)

(∫ ∫
R
F2D(x, y, λ)dxdy

)
dλ, (2.156)

The main problem in this approach is that fluxes are more horizontally homogeneous in clear
sky scenarios than in cloudy ones due to the texture of clouds that can show complex spatial
distributions. The most commonly used approximation for solving this issue is to consider the
clear sky flux < F ICAclr > and the cloudy sky flux < F ICAcld > separately, i.e.

< F ICA >= (1− C) < F ICAclr > +C < F ICAcld >, (2.157)

being C the cloud cover.

One typical approach in the treatment of the partial cloud coverage is dividing each layer
in sections. At each section, the atmosphere is assumed as fully cloudless or overcasted by a
homogeneous cloud. Then, the radiative fluxes are evaluated at each region and the results
are summed weighting with the cloud fraction. In other words, we can express Eq. 2.156 as
an integral over the distribution p(s) of all possible cloudy configurations s,

< F ICA >= (1− C)
∫
S(λ)F (λ)dλ+ C

∫
S(λ)

(∫
p(s)F (s, λ)ds

)
dλ, (2.158)

In a NWP model, the ICA can be applied naturally over each grid-point producing the
averaged flux at each node.

The main problem in this method is that depending on the number of layers with clouds
and the manner in which these clouds are overlapped, the computational costs can increase
considerably because these steps must be performed for each spectral band

There are many strategies for reducing the number of computations. In the next sections,
we will discuss the most widely used in the solar schemes analyzed in Chapter 3: Maximum-
random cloud overlapping and Monte Carlo Independent Column, MICA (Pincus et al., 2003).
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Maximum-random cloud overlapping

The maximum cloud overlapping is a particular case of the available techniques for considering
the cloud overlap (Morcrette and Fouquart, 1986): random, minimum, maximum or a linear
combination of layer transmissivities and reflectivities. Typically, the most widely used methods
are the random overlapping, the maximum overlapping or an hybrid of both.

However, as it is suggested by some authors such as Morcrette and Fouquart (1986), the
selection of one approach or another should be linked with the spatial scale resolved by the
model. In the same paper, the author provides some examples that illustrates the problem.
For example, in a model with a coarse resolution, one grid cell of 10x10 km may represent a
cumulus cloud in one corner and a cirrus located in the opposite corner without overlap. In
that case, the minimum overlapping method should be the most appropriated approach.

Random Maximum Minimum

Ch

Cm

Cl Cl

Cl

Cl

Cm

Cm

Cm

Figure 2.10: Conceptual idea of the techniques for considering the cloud
overlapping (Morcrette and Fouquart, 1986).

In order to figure
out the differences
between these meth-
ods, let us assume
three layers with clouds:
low, mid and high
with the respective
cloud covers Cl, Cm
and Ch.

In the random
overlap method, lay-

ers with clouds are considered as independent (Fig. 2.10). In that case, we can define eight
combined cloud covers representing different cloud distributions. The combined clear sky
fraction Cclr is easily

Cclr = (1− Cl)(1− Cm)(1− Ch) =
3∏
i=1

(1− Ci). (2.159)

We can consider three combined fractions, C1
j , in which only one layer is covered by clouds

C1
j = Cj

i=1,2,3∏
i 6=j

(1− Ci), (2.160)

three combined fractions, C2
j , in which two layers are overlapped

C2
j = CiCj(1− Ck), (2.161)

and one combined fraction with all layers overlapped, C3,

C3 = CiCjCk, (2.162)

where i,j,k represent each layer.
In a similar manner, we can define four combined cloud fractions in the maximum overlap

case as

Cclr = 1−max(Cl, Cm, Ch), (2.163)

C1
j = max(0, Cj −max(Ci, Ck)), (2.164)

C2
j = max(0,min(Ci, Cj)− C3)), (2.165)

C3 = min(Cl, Cm, Ch). (2.166)
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Maximum Random Maximum random

Figure 2.11: Conceptual idea of the maximum random overlap based on Mor-
crette and Fouquart (1986).

The random case
implies the computa-
tion of the RTE for
eight different sce-
narios while the max-
imum case the RTE
has to be evaluated
for four scenarios.
Logically, this ap-
proach increases sig-
nificantly the compu-

tational time. Finally, the composed flux is evaluated as a linear combination of these config-
urations weighted by the fractions Cclr, C

1
j , C2

j and C3 as

Fλ =
N∑
j=1

CjFj,λ. (2.167)

The assumption of all the cloud layers in a column of a grid cell overlapped is in many
cases an exaggeration, overall in a mesoscale simulation. This problem is solved with an hybrid
approach called maximum random overlap. In this strategy, clouds layers are clustered in three
groups: low, mid and high with boundaries often set to 700 and 400 hPa. Then, clouds in
adjacent layers are considered as maximally overlapped while the groups of clouds are assumed
as randomly overlapped (Fig. 2.11).

Monte Carlo Independent Column Approximation (MCICA)

The term containing the cloud contribution in Eq. 2.158 includes a two dimensional integration:
on the one hand, we have the integration over the wavelength, and on the other hand, we
have the integration over all the cloud configurations.

One way to reduce the computational costs is substituting the contribution of each con-
figuration at each λ by a set of random configurations for each interval spectra as

< F ICAcld >∼
K∑
k=1

w(λk)S(λk)F (srandom, λk). (2.168)

This means that the flux at each spectral interval is evaluated as a random configuration
based on the probability distribution p(s) of all the possible configurations in a column. This
description is just the Monte Carlo method in statistics. For this reason, this method in called
Monte Carlo Independent Column Approximation.

As discussed in Pincus et al. (2003), this approximation introduces a sampling error when
K is small. However, this is a random error and, for K → ∞, it reaches a near 0 averaged
bias.
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