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Abstract 
Application of mineral fertilizers, mainly nitrogen (N), is one of the most important 
methods that can be used to increase crop yields. Insufficient application of N can have 
serious economic consequences for the farmer, while excessive fertilization increases 
the risk of environmental pollution. For this reason, the quantification of the optimum 
in-season N requirement is an important step towards an economically and 
environmentally sustainable crop production system. High-yielding agricultural 
ecosystems in particular, such as those of the Ebro valley, suppose a challenge to N 
management. The present PhD thesis aims to contribute to the development of more 
sustainable agricultural systems by improving N efficiency. Soil sampling protocols and 
techniques, multispectral aerial images and double-annual cropping strategies and 
methods were analysed in this PhD thesis to improve N fertilization practices. Soil 
sampling protocols for N and organic matter (OM) were analysed to provide farmers 
with decision support tools for predicting crop N requirements. The results (study done 
in the USA) showed that sampling density should be adapted according to the object of 
study. Optimum soil sampling densities of 3.75 and 12.5 samples ha−1 were determined 
for OM and nitrates, respectively. Vegetation indices derived from multispectral aerial 
images differentiated among maize N status and determined in-season N requirements, 
contributing to better management of the timing and placement of N fertilizer. Green-
based vegetation indices (VIs) were more accurate than red-based ones in predicting 
grain yield and in determining the optimum N rate for maize at V12 stage. In fact, the 
Green Chlorophyll Index (GCI) was the most notable of the VIs due to its ability to 
distinguish among maize N status up to 84% of maximum grain yield. In Mediterranean 
environments, the double-annual barley-maize system average annual grain and biomass 
yields of 20 and 35 Mg ha−1, respectively, with N rates split between the two crops of 
230-240 kg N ha−1 yr−1. This fact shows the higher yield potential and stability of 
double-annual cropping strategies when compared with mono-cropping strategies. 
Moreover, double-annual cropping system contributed by adding complexity that allow 
to exploit the residual N content in the soil after harvest. Barley was especially able to 
use maize residual N and, when maize residual N was high, showed no yield response to 
N fertilization. In summary, the improvement in N use efficiency (NUE) in high-
yielding environments will be more effective if several of the strategies studied in this 
research are used together.  
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Resumen 
La aplicación de fertilizantes minerales, principalmente nitrógeno (N), es uno de los 
métodos más importantes que se pueden utilizar para aumentar los rendimientos de los 
cultivos. Aplicaciones insuficientes de N pueden tener graves consecuencias 
económicas para el agricultor, mientras que la fertilización excesiva aumenta el riesgo 
de contaminación ambiental. Por esta razón, la determinación de la dosis de N óptima 
para cada cultivo es un paso importante hacia un sistema de producción 
económicamente y ambientalmente sostenible. Los ecosistemas agrícolas de alto 
rendimiento en particular, como los del valle del Ebro, suponen un reto para la gestión 
de N. La presente tesis doctoral pretende contribuir al desarrollo de sistemas agrícolas 
más sostenibles mejorando la eficiencia del N. Con el objetivo de mejorar las prácticas 
de fertilización nitrogenada, se han analizado protocolos y técnicas de muestreo de 
suelos, imágenes aéreas multiespectrales y estrategias y métodos de doble cultivo 
anuales. Protocolos de muestreo del N y la materia orgánica (MO) del suelo fueron 
evaluados para proporcionar a los agricultores herramientas para la toma de decisiones y 
la predicción de los requerimientos de N del cultivo. Los resultados obtenidos (estudio 
llevado a en los EE.UU.) muestran que la densidad de muestreo debe adaptarse al objeto 
de estudio. Se determinaron que las densidades de muestreo óptimas eran de 3,75 y 12,5 
muestras ha−1 para MO y nitratos, respectivamente. Los índices de vegetación derivados 
de imágenes aéreas multiespectrales diferenciaron entre los estados nutricionales (en 
cuanto a N) del maíz y determinaron los requerimientos de N, lo que contribuyó a una 
mejor gestión del momento y la localización del fertilizante nitrogenado. Los índices de 
vegetación basados en el verde (VIs) fueron más precisos que los basados en rojo para 
predecir el rendimiento de grano y determinar la dosis óptima de N para el maíz en 
estado de V12. De hecho, el Índice de Clorofila Verde (GCI) fue el más destacado de 
los VIs debido a su capacidad para distinguir entre estados nutricionales (en cuanto a N) 
del maíz hasta el 84% del rendimiento máximo de grano. En ambientes mediterráneos, 
los sistemas de producción en doble cultivo anual cebada-maíz obtuvieron rendimientos 
medios anuales de grano y biomasa de 20 y 35 Mg ha−1, respectivamente, con 
aplicaciones de N divididas entre los dos cultivos de 230-240 kg N ha−1 año−1. Este 
hecho demuestra el mayor potencial de rendimiento y estabilidad de las estrategias de 
doble cultivo anuales en comparación con las estrategias de monocultivo. Por otra parte, 
el sistema de doble cultivo anual contribuyó a añadir complejidad al sistema que 
permitió utilizar el N residual en el suelo después de la cosecha. La cebada fue 
especialmente capaz de utilizar el N residual de maíz y, cuando N residual del maíz fue 
alto, no mostró respuesta de rendimiento a la fertilización N. En resumen, la mejora de 
la eficiencia del uso del N (NUE) en sistemas de alto rendimiento será más eficaz si se 
utilizan conjuntamente varias de las estrategias estudiadas en esta investigación. 
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Resum 
L'aplicació de fertilitzants minerals, principalment nitrogen (N), és un dels mètodes més 
importants que es poden utilitzar per augmentar els rendiments dels cultius. Aplicacions 
insuficients de N poden tenir greus conseqüències econòmiques per a l'agricultor, 
mentre que la fertilització excessiva augmenta el risc de contaminació ambiental. Per 
aquesta raó, la determinació de la dosi de N òptima per a cada cultiu és un pas important 
cap a sistemes de producció econòmicament i ambientalment sostenibles. Els 
ecosistemes agrícoles d'alt rendiment,  en particular, com els de la vall de l'Ebre, 
suposen un repte per a la gestió de N. La present tesi doctoral pretén contribuir al 
desenvolupament de sistemes agrícoles més sostenibles millorant l'eficiència del N. 
Amb l'objectiu de millorar les pràctiques de fertilització nitrogenada, s'han analitzat 
protocols i tècniques de mostreig de sòls, imatges aèries multiespectrals i estratègies i 
mètodes de producció en doble cultiu anuals. Protocols de mostreig del N i la matèria 
orgànica (MO) del sòl van ser avaluats per proporcionar als agricultors eines per a la 
presa de decisions i per a la predicció de les necessitats de N del cultiu. Els resultats 
obtinguts (estudi fet als EUA) mostren que la densitat de mostreig se ha d'adaptar a 
l'objecte d'estudi. Es van determinar que les densitats de mostreig òptimes eren de 3,75 i 
12,5 mostres ha−1 per a MO i nitrats, respectivament. Els índexs de vegetació derivats 
d'imatges aèries multiespectrals van diferenciar entre els estats nutricionals (pel que fa a 
N) del blat de moro i van determinar les necessitats de N, la qual cosa va contribuir a 
una millor gestió del estadi fenològic  i de la localització del fertilitzant nitrogenat. Els 
índexs de vegetació basats en el verd (VIs) van ser més precisos que els basats en el 
vermell per predir el rendiment de gra i determinar la dosi òptima de N per al blat de 
moro en estat de V12. De fet, l'Índex de Clorofil·la Verd (GCI) es l’índex que va ser el 
més destacat dels VIs causa de la seva capacitat per distingir entre estats nutricionals 
(pel que fa a N) del blat de moro fins al 84% del rendiment màxim de gra. En ambients 
mediterranis, els sistemes de doble cultiu anual ordi-blat de moro van obtenir 
rendiments mitjans anuals de gra i biomassa de 20 i 35 Mg ha−1, respectivament, amb 
aplicacions de N dividides entre els dos cultius de 230-240 kg N ha−1 any−1. Aquest fet 
demostra el gran potencial de rendiment i estabilitat de les estratègies de doble cultiu 
anuals en comparació amb les estratègies de producció en monocultiu. D'altra banda, el 
sistema de doble cultiu anual va contribuir a afegir complexitat al sistema que va 
permetre utilitzar el N residual en el sòl després de la collita. L'ordi va ser especialment 
capaç d'utilitzar el N residual de blat de moro i, quan N residual del blat de moro va ser 
alt, no va mostrar resposta de rendiment a la fertilització N. En resum, la millora de 
l'eficiència de l'ús del N (NUE) en sistemes de alt rendiment serà més eficaç si 
s'utilitzen conjuntament diverses de les estratègies estudiades en aquesta investigació.
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General Introduction 
Agriculture is currently facing unprecedented challenges globally. There is a 

need to increase world food production to meet global demand (Bodirsky et al., 2014), 

while reducing productions costs and sustaining the environment. Nowadays, the main 

method to increase yields and to maintain or restore soil nutrients is the application of 

mineral fertilizers, mainly nitrogen (N) (Hirel et al., 2011). Indeed, N is often 

considered the most limiting nutrient for crop production (Fageria and Baligar, 2005). 

Although the benefits of adding N fertilizer to agricultural systems are straightforward, 

they are accompanied by substantial economic and environmental costs (Robertson and 

Vitousek, 2009). Insufficient application of N can have serious economic consequences 

for the farmer, whereas excessive fertilization increases the risk of environmental 

pollution (Khan et al., 2001). In most intensive agricultural production systems, over 

50% and up to 75% of the N applied to the field is not used by the plant (Raun and 

Johnson, 1999). This means that more than half N used for crop fertilization is currently 

lost into the environment (Lassaletta et al., 2014). Hence, improving nitrogen-use 

efficiency (NUE) in worldwide cropping systems is utterly necessary, as it is one of the 

most effective means of increasing crop productivity while decreasing environmental 

degradation (Cassman et al., 2002; Davidson et al., 2015). 

Traditionally, N fertilization of field crops, such as maize, has been adjusted by 

yield-based N recommendations methods (Mulvaney et al., 2006). However, without a 

widespread reliable soil test to predict soil N mineralization, variation in soil N supply 

(mineralizable soil N) provides a significant challenge to the yield-based approach, as 

does uncertainty about how yield goals should be determined (Sawyer et al., 2006).  

Crop N requirements change from year to year, and quantifying the optimum in-

season N requirement is an important step towards an economically and 

environmentally viable crop production system (Sripada et al., 2005). The accurate 

quantification of N requirements in maize becomes especially interesting in high-

yielding environments, such as those of the Ebro Valley (NE Spain), where high N rates 

are applied in order to cover crop N requirements.  

 

1. The Ebro Valley (semiarid irrigated area in NE Spain) 

The Ebro Valley is an extensive area located in the northeast of Spain (Fig. 1), 

characterized by a semiarid climate, with average annual rainfall ranging from 200 to 
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400 mm. Despite its semi-aridity, this valley is one of the most important areas for 

agriculture and livestock farming in Spain, due to the presence of considerable irrigation 

infrastructure. In the Ebro Valley there are 906,000 ha irrigated with an average water 

consume of 7.370 hm3 yr−1 (CHE, 2017). The irrigation surface is divided into flood-

irrigation (55%), sprinkle irrigation (25%), and drip irrigation (20%), this latter mainly 

for fruit production (CHE, 2017). Alfalfa (Medicago sativa L.), wheat (Triticum 

aestivum L.) and especially maize (Zea mays L.), are the most important field crops in 

the Ebro valley and have higher yields in comparison with other rainfed production 

areas of the world (Cela, 2011). 

 

Figure 1. Ebro river basis (MAPA). Adapted from: Confederación Hidrográfica del 
Ebro (2017).  The blue shady area around rivers represents the main irrigated zone.  
 

Average maize yields in the area range from 10 to 15 Mg ha−1 (14% moisture) 

under sprinkler irrigation (Berenguer et al., 2008; Cela et al., 2011; Yagüe and Quílez, 

2010), although under good agronomical conditions, the most efficient farms can 

produce more than 18-19 Mg ha−1 (Biau et al., 2011). High yielding maize grown in 

Spanish agro-systems require water but also a satisfactory input of available nitrogen 

(N) and a long growing season. 

Data from surveys in the Ebro Valley about N fertilization in maize indicate that 

farmers apply rates of 318–453 kg N ha−1 yr−1 (Cavero et al., 2003; Isidoro et al., 2006; 

Sisquella et al., 2004). As total plant N uptake is normally between 250 to 300 kg ha−1 

(Berenguer et al., 2008; Cela et al., 2011; Yagüe and Quílez, 2010), there is a high risk 

of not using N efficiently. 
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2. How could be the NUE improved in high-yielding environments? 

Many approaches for improving the NUE of high-productivity annual cropping 

systems have been identified (Cherry et al., 2008). Some of the more outstanding are:  

I) Provide farmers with decision support tools that allow them to better predict crop 

N requirements and avoid overfertilization. 

II) Better manage the timing, placement, and formulation of fertilizer N in cropping 

systems to ensure N is available where and when plant demand for N is greatest. 

III) Adjust crop rotation to add complexity that improves to take up more available N. 

 

2.1. Provide farmers with decision support tools 

The determination of the soil organic matter (OM) and N, as major determinants 

and indicators of soil fertility and quality, is important to have real information of the 

agricultural productivity (Al-Kaisi et al., 2005; Fageria and Baligar, 2005; Reeves et al., 

1997). However, within field variability is affected by both temporal and spatial 

processes (Sogbedji et al., 2001; Wall et al., 2010). Thus, the determination of available 

N can vary spatially and temporally among fields influencing the N optimal rates to 

achieve maximum yields. Soil sampling protocols for OM and N determination could be 

used to determine patterns in soil N supply potential that will contribute for site-specific 

applications of N fertilizer. 

 

2.2. Timing and placement of N fertilizer 

The temporal and spatial change in crop N requirements within the same field 

entails a challenge to N fertilization. Image-based remote sensing can be used to 

monitor seasonal variability of soil and crop characteristics. Multispectral aerial images 

could be used to detect N deficiencies, predict grain yield and determine N fertilizer 

requirements of maize for site-specific application (Blackmer et al., 1996; Scharf and 

Lory, 2002; Sripada et al., 2005). 

 

2.3. Crop rotations to add complexity 

One of the simplest means for capturing more of the N added to annual cropping 

systems is to include cover crops in a rotation (Robertson and Vitousek, 2009). In 

particular environments the wheatear conditions allow cover crops to achieve maturity 

and being harvest (secondary crop), considering the system as double-annual cropping. 
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In double-annual cropping systems, soil is covered during larger period of the 

year than with monocropped systems. This entails several benefits, as prevention of soil 

erosion by wind and water (Hirel et al., 2011), an increase of total dry matter production 

(Lloveras, 1987a, 1987b; Yagüe and Quílez, 2013), increase of field gross margin (Gil, 

2013;) per land unit, and a reduction of the NO3
−-N run-off (Gabriel and Quemada, 

2011; Heggenstaller et al., 2008; Krueger et al., 2012) (Figure 2), among others. 

 

Figure 2. Hypothesized representation of the seasonal dynamics of dry matter 
production and NO3

−-N leaching in (A) double-annual cropping system and (B) mono-
cropping system. Adapted from: (Heggenstaller et al., 2008). 
 

2.4. Personal view 

In summary, the improvement of the NUE in high-yielding environment will be 

more effective if several approaches are used together. Farming N fertilization practices 

could start by soil sampling to estimate the soil N supply for the growing season and to 

determine the N fertilization. Subsequently, in-season N determination of maize N 

status by image-based remote sensing could help to fine-tune the N fertilization rates 

estimated for each part of the field. These practices will reduce the N application to 

farming systems while maintaining productivity, as it will be more adjusted to crop N 

requirements. The NUE of monocropping systems could also be improved by the 

implementation of another crop in the inter-crop period that will use the residual N of 

the main crop. 

 

3. The challenge 

The present Ph.D. thesis aims to contribute to the development of more 

sustainable agricultural systems by improving the nitrogen (N) efficiency. Soil sampling 

protocols, multispectral aerial images and double-annual cropping strategies were the 

analysed in this research to improve the N fertilizer practices that will impacted yields 
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and crop’s profitability. Farmers have been encouraged to: 

I) Adjust soil sampling densities according to the soil parameter that want to be 

determined. 

II) Adjust maize N fertilization at V12 stage with the aid of multispectral aerial 

images. 

III)  Introduce double-cropping (barley-maize) strategies, which are more N efficient 

systems than traditional monocropping maize in the Ebro Valley.  

 

Finally, it is need to remember and maintain the social mandate to develop a safe 

agricultural system that uses efficiently the nutrients to provide the maximum yields 

while reduce the waste of fertilizers while maintaining the sustainability of the cropping 

systems.  

 

4. General Objectives 

The main objective of this thesis was to explore nitrogen (N) management 

strategies to improve the efficiency of N fertilization, particularly in high-yielding 

irrigated Mediterranean agro-ecosystems. A better N management will contribute to 

increase yields and profitability while decreasing environmental pollution risk.  

To achieve this general objective, different experiments were conducted in field 

trials located in Gimenells, Almacelles and Algerri (Ebro Valley, NE, Spain). 

Moreover, results from a field trial in Cayuga County (USA) were evaluated with the 

aim of extrapolating new perspectives for continuing with the improvement of N 

management in Mediterranean conditions in the future. 

 

The main objective was divided into several specific objectives as follows: 

1. To study the effects of soil sample density on field N determination and its 

spatial and temporal variability. 

2. To determine in-season maize N requirements by the use of vegetation indices 

derived from multispectral aerial images acquired by a) Unmanned aerial 

vehicles and b) Aircraft. 

3. To evaluate the profitability and sustainability of the double-annual barley-

maize cropping system, determining the optimum annual N rate and its temporal 

distribution for agronomic, economic and environmental goals. 
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5. Outline of the present Thesis 

 This Thesis is divided into seven sections: the general introduction, four 

experimental chapters, general discussion and general conclusions. The four 

experimental chapters are independent and presented in the format of journal articles. 

For this reason, some parts, such as the material and methods sections, may contain 

some repetitions. One of the chapters has been already published in a scientific SCI 

journal, while the rest are currently under revision  

 In particular, Chapter I was carried out in USA as part of an international 

research experience in Cornell University during the duration of the Ph.D. 
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Abstract 

The Illinois soil nitrogen test (ISNT) with loss-on-ignition at 500°C (LOI500) 

adjustment was effective in identifying fields or areas within fields with high soil N 

supply potential in New York. However, spatial and seasonal variability in ISNT-N and 

LOI500 can impact interpretations. Our objectives were to determine (1) impact of soil 

sample density on ISNT-N, (2) implications of a change in spatial and temporal 

variability of ISNT-N results, (3) probability of obtaining an accurate interpretation as 

impacted by sampling intensity, and (4) impact of using LOI500 equivalents (derived 

from LOI360) on ISNT-N interpretation. Two 4-ha corn (Zea mays L.) fields were 

sampled (150 samples/field, 0-20 cm depth; 64 in regular grid, the remainder in a 

pattern that optimized lag distance distribution; fall-applied manure in one field) in July 

and after corn harvest. Semi-variograms were constructed to investigate spatial 

dependence. Nitrate showed the weakest spatial dependence. Increasing the sampling 

intensity to 15 cores per 4-ha (3.75 samples ha−1) reduced the CI for ISNT-N 

interpretation to < ±6% resulting in consistent classification. The LOI500 and LOI360 

results were well correlated (r2 = 0.78). Use of LOI500 equivalents derived from LOI360 

resulted in identical soil N supply classifications for 92% of the samples. We conclude 

that practical and effective sampling protocols for soil N supply potential in the 

northeast cannot be based on soil nitrate and should be 3.75 samples ha−1 or  more 

where greater accuracy is needed for ISNT-N interpretations, while LOI500 equivalents 

can be used to derive ISNT-N critical values.  

 

Abbreviations: Soil Organic matter, SOM; nitrogen, N; pre-plant nitrate test, PPNT; 

pre-sidedress nitrate test, PSNT; Loss-on-ignition, LOI; Soil organic carbon, SOC; 

Illinois soil nitrogen test, ISNT;  
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1. Introduction 

Soil organic matter (SOM) and soil nitrogen (N) are major determinants and 

indicators of soil fertility and quality, being closely related to soil productivity in 

agricultural ecosystems (Reeves, 1997; Al-Kaisi et al., 2005; Fageria and Baligar, 

2005). Nitrogen is often the most limiting nutrient for crop production; insufficient 

application of N can have serious economic consequences for the farmer, whereas 

excessive fertilization increases the risk of environmental pollution (Khan et al., 2001). 

As a result, efficient use of N is important for the economic sustainability of food, feed, 

and fiber production. In addition, the dynamic nature of N and its propensity for loss 

from soil-plant systems into the environment create unique challenges for agriculture 

and environmental management (Fageria and Baligar, 2005). 

Yield-based N recommendation methods have predominated field-based for 

several decades, despite the fact that their original intent was to provide long-term 

generalized fertilizer N recommendations on a more regional scale (Mulvaney et al., 

2006). Soil is the principal source of N for most field crops which obtain 50-80% of its 

N requirement from the soil even where N fertilizer is applied at higher rates (Kundu 

and Ladha, 1995). Knowing the total amount of N available for a crop at times when the 

crop can utilize it will greatly enhance field-based N management. However, a better 

understanding of within field variability is needed too as soil N dynamics, SOM 

content, and nitrate availability are affected by both temporal and spatial processes 

(Wall et al., 2010; Sogbedji et al., 2001), with the greatest influences in the top 10 cm of 

the soil (Wall et al., 2010). Studies by Robertson et al. (1988) and Cambardella et al. 

(1994) have shown that soil pH, SOM, and assorted mineral element concentrations can 

vary by an order of magnitude at spatial scales of 5 m or less. This with-in field 

variability in soil N supply can greatly impact the assessment of N availability and 

hence the N use efficiency of any applied N. 

The exact number of samples needed to represent soil variability in a field has 

been a matter of discussion since the 1920s (Linsley and Bauer, 1929). Geostatistical 

methods provide tools to describe spatial variation quantitatively and can be used 

predictively (Webster and Oliver, 1992). A variogram describes the spatial correlation 

structure in variables examined and will allow for identification of spatial patterns 

(Baxter et al., 2003) that can be used to design optimal sampling strategies for 

individual fields. Without prior background information on the field, geostatistical 
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modeling for soil sampling strategies typically results in more accurate estimates of 

field averages than random sampling (Franzen and Peck, 1995). However, 

determination of spatial patterns of a field requires collection and analysis of a large 

number of soil samples, which is costly and time-consuming. This is especially the case 

with soil parameters that have low or moderate spatial structures such as soil nitrate 

(Cambardella et al., 1994; Cambardella and Karlen, 1999; López-Granados et al., 2002; 

Mallarino and Wittry, 2004). 

Two soil tests that have been used to guide N management of corn are the pre-

plant nitrate test (PPNT) and pre-sidedress nitrate test (PSNT). In the humid 

northeastern region of the USA, the spatial and temporal variability in soil nitrate tend 

to be large and neither test considers the fraction of the organic N that can be 

mineralized during the crop growing season. Thus, the PPNT is not a common test in 

the Northeast, while the PSNT has only been adopted by a small number of farmers and 

farm advisors in the region. 

Soil organic matter typically shows much less spatial and temporal variability in 

agricultural fields but laboratory measurements of various forms of SOM can be time-

consuming and costly. Wet chemical oxidation methods require the use of hazardous 

materials and automated dry combustion equipment is expensive with time-consuming 

maintenance. The loss-on-ignition (LOI) method, where soil is exposed to a high 

temperature for a set amount of time, is more rapid and inexpensive. The results of LOI 

analyses (combusted 360°C for 2h in a muffle furnace) and analyses of soil organic 

carbon (SOC) were highly correlated (r2 ranging from 0.94 to 0.98) for soils of the north 

central USA (Konen et al., 2002). As a result, the LOI methodology was integrated into 

many basic soil fertility assessment packages by both Land Grant University and 

commercial analytical facilities. However, LOI results are seldom used to develop N 

recommendations as the methodology itself does not distinguish among various forms 

of organic matter, and unique relationships exist for different soil geographic areas 

(Konen et al., 2002). This limited usefulness of an LOI assessment was shown in the 

eastern region of the USA by Klapwyk and Ketterings (2006) who concluded that LOI 

results alone could not predict N responsiveness of corn in NY soils.  

The Illinois Soil Nitrogen Test (ISNT) was introduced 15 years ago as a means 

to estimate soil N supply potential for field-specific adjustment to N recommendations. 

The ISNT estimates ammonium-N plus a labile pool of soil N that can mineralize 
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during the growing season and supply mineral N to the growing crop (Khan et al., 2001; 

Mulvaney et al., 2001). The test does not measure soil nitrate but rather gives an 

estimate of soil N supply potential from organic N sources. 

Research in NY showed ISNT-N results, adjusted for SOM determined by LOI, 

to be usefulness in adjusting soil N supply potential estimated, specifically in manured 

field and fields where corn is rotated with hay (Klapwyk and Ketterings, 2006). For 

example, Ketterings et al. (2013) showed that for fields with optimal ISNT-N, manure 

could replace starter N without a decline in corn silage yield or quality but starter N 

fertilizer application was needed for optimal yield in fields deficient or marginal in 

ISNT-N and without a manure history. Lawrence et al. (2009) presented an overall 

accuracy of 83% of the ISNT-N with LOI adjustment of critical values in determining 

responsiveness to N fertilizer in 2nd or higher year corn after hay, while PSNT only 

predict correctly the 47% of the times.  

In the work by Klapwyk and Ketterings (2006), Ketterings et al. (2003) and 

Lawrence et al. (2009), LOI was estimated by heating the soil samples at 500°C for two 

hours (Storer, 1984), hereafter referred to as LOI500. Many routine soil testing facilities 

includes determination of SOM by LOI but use 360°C (Schulte and Hopkins, 1996), 

hereafter referred to as LOI360. Results can differ depending on the composition of the 

soil (Matthiessen et al., 2005). Where LOI500 and LOI360 are similar, or linearly 

correlated, it is hypothesized that LOI360 data could be used (possibly with an 

adjustment factor) to interpret ISNT-N results in NY. Further research is needed to 

evaluate this hypothesis across a larger number of soil samples and soils. 

Although the studies in NY show promise for use of ISNT-N with LOI 

adjustment to fine-tune N guidelines for corn, the ISNT and LOI research conducted in 

NY did not take into account within-field spatial variability. As pointed out by Ruffo et 

al. (2005), there is limited research on the spatial and temporal variability of ISNT-N 

while such variability can have implications for sampling density for accurate 

assessment of this pool of soil organic N. A better understanding of the spatial 

dependency of ISNT-N, LOI, soil nitrate, and the relationships between LOI500 and 

LOI360 is needed to develop more accurate and precise recommendations for soil 

sampling for N management. 

The objectives of the current study were to (1) evaluate the impact of soil sample 

density (number of samples per field) on field-level ISNT-N during the growing season 
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and after harvest, with and without manure application, (2) quantify implications of a 

change in spatial and temporal variability of ISNT-N results, (3) determine the 

maximum coefficient of variation (CV) accepted and probability of obtaining a mean 

within the accepted CV as impacted by sampling intensity, and (4) determine the 

relationship between LOI500 and LOI360 and implications of use of an LOI500 equivalent 

(based on LOI360 data) on ISNT-N interpretation.  

 

2. Materials and methods 

2.1. Sites 
Two 4-ha corn (Zea mays L.) fields in Cayuga County, NY, in a corn and after 

alfalfa (Medicago sativa L.) were sampled and analyzed. Field 1 was 200 by 200 m 

while field 2 was 300 by 130 m (Figure 1).  

    

Figure 1. Soil sampling schemes for spatial and seasonal variability assessment of corn 
fields in Aurora, NY. The sampling protocol consisted of a regular grid sampling to 
ensure coverage of the fields and more intense sampling within a smaller area of the 
field to give the most uniform distribution of lag distances possible using lag distance 
classes of  9 m. The regular grid included 64 points spaced 25 m by 25 m (Field 1) or 23 
m by 27 m (Field 2). 
 

The soils were Lima silt loams (fine-loamy, mixed, active, mesic Oxyaquic 

Hapludalf) with within-field slopes between 0 and 3%. At planting in early May, 170 kg 
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ha−1 of 18-13-0 (N-P2O5-K2O) was banded 5 cm below and to the side of the corn seed, 

and in mid-June, 45 kg ha−1 of N were sidedressed as a 30% urea ammonium nitrate 

solution. For further details on the two fields and assessment of spatial and temporal 

variability in soil test phosphorus, see Grandt et al. (2010). 

2.2. Soil Sampling and Analysis 
Fields 1 and 2 were sampled twice, once in the first week of July and again two 

wk after harvest at the end of Nov. Field markers were used to identify sampling 

locations. For each sampling season, 150 samples were taken per field to enable 

geostatistical analysis using semi-variograms (Webster and Oliver, 1992). The protocol 

of Warrick and Myers (1987) consisting of a regular grid sampling to ensure coverage 

of the fields with additional points was followed. Lag distance classes of 9 m were used 

to give the most uniform distribution. No two samples were closer than 1.2 m to each 

other. The regular grid included 64 points spaced 25 m apart in Field 1 while in Field 2 

samples were 23 m by 27 m apart (Figure 1). These grid distances were chosen to 

balance funding limitation and the risk of sampling at too large a grid spacing to assess 

spatial variation (Grandt et al., 2010; Lauzon et al., 2005). 

A composite of six individual cores was taken in each sample point. Samples 

were taken randomly from within a 0.6 m diameter of the actual point while avoiding 

sampling of the fertilizer band (76 cm row spacing for corn in both fields). Each core 

was taken to a depth of 0.2 m, the recommended depth for soil sampling in NY 

(Ketterings et al., 2003). Soils were analyzed for Morgan extractable nitrate (Morgan, 

1941), organic matter by LOI for 2 h at 500°C (Storer, 1984) and 360°C (Schulte and 

Hopkins, 1996), and ISNT-N according to Khan et al. (2001) with the enclosed-griddle 

modification (Klapwyk and Ketterings, 2005). The LOI500 and ISNT-N results were 

classified using the ISNT-N/critical ISNT-N ratio: (i) “deficient in soil N supply 

potential” (ratio <0.93), (ii) “marginal in soil N supply potential” (ratio 0.93-1.07) and 

(iii) “optimal in soil N supply potential” (ratio >1.07) according to Ketterings et al. 

(2013). 

Field 2 received a manure application of 110 Mg ha−1 after corn harvest using a 

drag hose and Aerway aeration system (Holland Group of Companies, Norwich, 

Ontario) set at 15° (sharpest angle). Manure contained 0.98 g kg−1 organic N, 1.58 g 

kg−1 ammonium-N, 0.36 g kg−1 P, and 1.71 g kg−1 K. The field was sampled two weeks 
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after manure application. Field 1 did not receive manure. It was seeded to a cereal rye 

(Secale cereale L.) cover crop within days after corn harvest. 

2.3. Statistical analysis 
Conventional statistics to indicate the degree of overall variation, and 

geostatistics to examine whether or not that variability is spatially structured, were used 

to analyze the spatial features of the measured variables. Of the 600 soil samples that 

were analyzed for this study, the results of twelve samples were deleted. For these 

twelve samples, the standard deviation of LOI500 and estimated LOI500 from LOI360 

exceeded ±3, more likely reflecting a sample labeling or laboratory analytical error.  

For each field and sampling season, descriptive statistics (mean, standard 

deviation, minimum, maximum) were derived from samples taken in the regular grid 

(64 samples) using SAS® 9.4 software (SAS Institute Inc., Cary, NC, USA). Changes in 

soil test means between sampling seasons (within the same fields) were tested using a 

two-tailed, paired t-test and, additionally, the 95% CIs of the mean soil test levels for 

both fields and both seasons were determined. A simulation of sampling intensities of 3, 

5, 10, 15, 20, 25, 30, 35, and 50 samples per 4-ha field for each sampling season was 

carried out using simple random sampling without replacement of grid samples. For 

each variable, 1000 simulations were done to reduce the range in results to less than 5% 

for the most unfavorable sampling intensity tested (3 samples per 4-ha field) using the 

Microsoft® Excel 2007 software (Microsoft Corp., Redmond, WA). The probability that 

the estimate produces a value within the mean and acceptable CV of 6.4% of nitrate, 

LOI500, LOI360, ISNT-N and ratio ISNT-N/Critical ISNT-N for a group of samples of 

each size was calculated. A maximum CV of ± 6.4% was accepted to reduce the risk of 

incorrect ISNT-N/critical ISNT-N ratio classification between the deficient and optimal 

N supply potential; the ratio is classified as “deficient in soil N supply potential” when 

<0.93 (extra N needed for corn production) and “optimal in soil N supply potential” 

when >1.07 (no extra N needed for corn production) (Ketterings et al., 2013).  

Non-directional semivariograms were derived with GS+® 9.0 software (Gamma 

design, Plainwell, MI, USA) using all samples for each field and sampling time. 

Skewness of data distribution suggested normal distribution of soil parameters 

(skewness of between −0.5 and 0.5) and hence no transformation was used for 

geostatistical analysis. Lag distance classes of 9 m were used and models allowed for 
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the presence of a non-zero nugget value. The best-fit model (linear, spherical, 

exponential, or gaussian) was determined by GS+® based on the residual sum of squares 

(RSS). In addition to the semivariograms themselves, parameters derived from the 

analysis including nugget (Co), range, sill variance (C + Co), and the proportion of the 

estimated total sample variation (the “sill”; C + Co) explained by structural variance (C) 

was calculated. The proportion structural variation index [C/(C+Co)] ranges from 0 to 1; 

a higher index value indicates that variability in the dataset is strongly structured (Gross 

et al., 1995; Wang et al., 2009). Here we classified spatial correlation based on the 

proportion structural variation index: (i) index < 0.25 = weak spatial structure, (ii) 0.25 

< index > 0.75 = moderate spatial structure, and (iii) index > 0.75 = strong spatial 

structure. 

A generalized linear model (GLM) was used to compare LOI500 and LOI360 

values using JMP® pro 12 software (SAS Institute Inc., Cary, NC, USA). A multiple 

regression model was used to determine if the time of sampling (season) or manure 

addition (field) impacted the relationship between LOI500 and LOI360: 

 

LOI500 = Bo + B1 (LOI360) + B2 (field) + B3 (season) + B4 (LOI360) (field)  

 + B5 (LOI360) (season) + B6 (field) (season) + B7 (LOI360) (field) (season)  

 

Moreover, the converted values from LOI360 to LOI500 were used in the formula 

together with the ISNT-N results to predict the N supply potential of the field, after 

which the predictions (deficient, marginal and optimal) were compared with the ones 

obtained using the original LOI500 and ISNT-N data. The comparison was done three 

ways: (1) using one conversion equation per field (sampling times combined), (2) using 

an equation that combined fields but excluded the fall sampling where manure had been 

applied, and (3) using one equation that combined both fields and sampling seasons. 

 

3. Results and discussion 

3.1. Descriptive Statistics 
 Nitrate was not impacted by time of sampling for Field 1 (Table 1), presenting 

average values of 5.7 and 5.9 mg kg−1 in summer and fall, respectively. In contrast, the 

mean nitrate value of Field 2 increased (P <0.05) by two fold (from 7.0 to 13.5 mg kg−1) 
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from summer to the fall consistent with the impact of manure addition on available N 

(Ketterings et al., 2003). In both fields, high variability was observed among samples 

and between sampling seasons agreeing with N heterogeneity of soils (Cambardella et 

al., 1994).  

 

Table 1. Descriptive statistics of soil test values for two corn fields. Field 2 received 
manure in the fall 2 weeks before soil sampling. 

Statistic Field 1 (no manure)   Field 2 (with manure)   
Summer Fall Change † Summer Fall Change † 

NITRATE-N --- mg kg−1 --- --%--  --- mg kg−1 --- --%--  
Mean 5.7 5.9 2.9 

 
7.0 13.5 93.4 ‡ 

SD 4.4 5.6 26.9 
 

3.9 9.4 141.0 
 Minimum 0.05 0.05 0.0 

 
0.05 0.05 0.0 

 Maximum 17.5 23.2 32.7 
 

23.7 44.6 88.4 
 LOI360 --- g kg−1 --- --%--  --- g kg−1 --- --%--  

Mean 41.9 41.1 -1.9 ‡ 41.3 41.8 1.4 
 SD 4.7 4.4 -6.8 

 
4.1 4.0 -2.2 

 Minimum 30.3 31.2 3.0 
 

28.2 28.6 1.4 
 Maximum 56.7 54.4 -4.1 

 
51.3 52.5 2.3 

 LOI500 --- g kg−1 --- --%--  --- g kg−1 --- --%--  
Mean 48.1 45.9 -4.7 ‡ 47.0 49.5 5.4 ‡ 
SD 5.6 5.0 -11.8 

 
4.9 4.6 -5.2 

 Minimum 34.9 34.8 -0.3 
 

33.0 34.9 5.8 
 Maximum 63.4 62.1 -2.1 

 
62.4 61.8 -1.0 

 ISNT-N --- mg kg−1 --- --%--  --- mg kg−1 --- --%--  
Mean 300.3 288.5 -3.9 ‡ 291.7 295.8 1.4 

 SD 35.4 37.1 4.6 
 

30.7 35.6 15.9 
 Minimum 207.5 197.7 -4.7 

 
190.1 192.4 1.2 

 Maximum 392.8 412.2 4.9 
 

363.4 411.5 13.2 
 ISNT-N / Critical ISNT-N --- ratio --- --%--  --- ratio --- --%--  

Mean 1.08 1.06 -2.2 ‡ 1.06 1.06 -0.6 
 SD 0.09 0.10 18.0 

 
0.08 0.10 19.7 

 Minimum 0.85 0.79 -7.1 
 

0.75 0.75 -0.5 
 Maximum 1.32 1.36 3.1 

 
1.27 1.36 7.2 

 † The significance of the difference between the summer and fall seasons was 
calculated using a two-tailed, paired t-test.‡ Fall mean significantly different from 
summer mean at P <0.05. 

 

The mean LOI500 value of Field 1 decreased from 48.1 g kg−1 to 45.9 g kg−1 from 

summer to fall, consistent with Wall et al. (2010) who reported higher LOI360 values 

during summer in four of the five sites in their work. For field 2, the mean LOI500
 was 

47.0 g kg−1 in the summer and 49.5 g kg−1 in the fall, possibly reflecting the manure 
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application that took place after harvest of the corn. The mean LOI360 values followed 

the same trends but where manure had been applied (field 2) differences in LOI360 

between sampling seasons were smaller for LOI500, consistent with the higher 

temperatures used to determine LOI500 (Schulte et al., 1991; Matthiessen et al., 2005). 

  The mean ISNT-N value of Field 1 was 3.9% higher in the summer sampling 

round than in the fall sampling. A lower value in the fall is consistent with Wall et al. 

(2010) who showed a decline in available N later in the growing season as crops take up 

N (Wall et al., 2010). The average ISNT-N level of Field 2 was not impacted by 

sampling time, suggesting the manure addition compensated for a decline in ISNT-N 

possibly due to N mineralization (Jokela, 1992) and reflecting a temporary increase in 

ammonium-N when sampling takes place within 4-5 weeks after manure addition 

(Klapwyk et al., 2006).   

The ratio ISNT-N/Critical ISNT-N, in Field 1, was 2.2% lower in the fall than in 

the summer, primarily affected by the reduced ISNT-N in fall. This difference could be 

meaningful for individual fields, as it changed the N supply potential classification 

according to Ketterings et al. (2013) from optimal “No extra N is needed” in summer to 

marginal “May extra N is needed” in fall. No significant differences were detected in 

the ISNT-N/Critical ISNT-N ratio between seasons in Field 2, reflecting increases in 

both LOI and ISNT-N following application of manure in the fall.  

3.2. Spatial Statistics 
Nitrate presented moderate spatial structure (Table 2), with the exception of fall 

sampling in Field 1 where a weak spatial correlation was found (C/(C+Co) = 0.16), 

probably affected by the linear model of the semivariogram that was fitted to the data. 

However, in both sampling seasons and fields, all semivariograms had relatively low r2 

values (r2 ≈ 0.5), which impact the reliability of the interpretations of spatial structure. 

Spatial dependence can be soil depth specific. For example, Robertson et al. 

(1988) showed that 20% of the total variance was represented by the nugget in a 0.5-ha 

study where samples were taken over 0-15 cm depth. However, López-Granados et al. 

(2002) found no spatial correlation for nitrate distribution in the top soil (0-10 cm) but 

strong spatial correlation in the subsoil (between 25 and 35 cm depth). Several studies 

presented moderate structure in nitrate distribution with ranges < 20 m (Jackson and 

Caldwell, 1993; Gross et al., 1995). Cambardella et al. (1994) showed moderate nitrate 
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spatial dependency in the non-till fields while weak dependency in the plowed fields, 

suggesting extrinsic management such as tillage and residue removal affected the spatial 

dependency. In a follow-up study, Cambardella and Karlen (1999) showed moderate 

spatial dependence for nitrate in fields treated with inorganic fertilizer but random 

distribution in organically fertilized (manure/municipal sludge-kilns dust mixture) 

fields. Ranges varied from 0 to 182 m depending of soil depth, consistent with the 

results of the current study where the ranges in both seasons were about 80 and 30 m for 

Field 1 and Field 2, respectively. 

 
Table 2. Best fit models† for semi-variograms of nitrate-N, loss-on-ignition at 360oC 
(LOI360) or 500oC (LOI500), Illinois soil nitrogen test-N (ISNT-N), and the ratio of 
ISNT-N and critical ISNT-N (based on Ketterings et al., 2013) for two corn fields 
sampled in summer and following corn harvest in the fall. Field 2 received manure in 
the fall two weeks prior to soil sampling. 

    
Nugget Sill 

    Field Season Skew Model (Co) (C + Co)  Range  (C/C + Co) r2 RSS 
Nitrate-N    --- (mg kg−1)2 ---    (m) 

  1 Summer 0.21 Spherical 8 27   75 0.71 0.42 485 
Fall 0.40 Linear 27 32   87 0.16 0.57 18 

2 Summer 0.75 Spherical 4 10   25 0.63 0.36 27 
Fall 0.59 Exponential 42 97   34 0.57 0.48 1108 

LOI360      --- (g kg−1)2 ---  (m)   1 Summer 0.49 Spherical 0.011 0.311   79 0.97 0.91 0.008 
Fall 0.49 Spherical 0.220 0.212   50 0.90 0.90 0.003 

2 Summer 0.09 Spherical 0.007 0.167   57 0.96 0.83 0.005 
Fall -0.47 Spherical 0.028 0.162   38 0.83 0.66 0.006 

LOI500      --- (g kg−1)2 ---  (m)   1 Summer 0.47 Spherical 0.035 0.421   79 0.92 0.93 0.011 
Fall 0.58 Spherical 0.073 0.289   75 0.75 0.91 0.005 

2 Summer -0.11 Spherical 0.059 0.240   52 0.76 0.61 0.018 
Fall -0.13 Spherical 0.074 0.214   49 0.66 0.80 0.004 

ISNT-N   --- (mg kg−1)2 ---  (m)   1 Summer 0.36 Spherical 76 1661   74 0.95 0.90 260117 
Fall 0.43 Spherical 125 1512   41 0.92 0.93 103863 

2 Summer 0.15 Spherical 42 927   53 0.96 0.77 210819 
Fall -0.32 Exponential 537 1189   43 0.55 0.51 175705 

ISNT-N / Critical ISNT-N      --- (ratio)2 ---  (m)   1 Summer 0.16 Spherical 9.20E-04 0.010   68 0.91 0.89 1.07E-05 
Fall 0.18 Spherical 3.51E-03 0.118   37 0.70 0.90 4.57E-06 

2 Summer 0.12 Spherical 8.70E-04 0.007   53 0.87 0.84 5.38E-06 
Fall -0.39 Exponential 1.50E-04 0.009   13 0.98 0.30 9.90E-06 

† The best fit model was based on 150 samples taken per sampling round per field. 
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In contrast to nitrate, LOI360 and LOI500 showed a high spatial correlation 

(Figure 2) with higher C/(C+Co) for the summer sampling than for the fall sampling for 

both fields. Field 2 showed the biggest differences between the two sampling seasons, 

most likely reflecting increased variability resulting from the manure application after 

corn silage harvest. The LOI500 results were impacted more by the manure application 

than the LOI360 results. The lowest spatial correlation in LOI, independent of 

temperature of combustion, was found for the fall sampling in Field 2 (C/(C+Co) = 

0.66). The LOI range was between 40 and 80 m for both fields and seasons, with 

smaller ranges when manure was applied. 

Baxter et al. (2003) reported comparable results, with an LOI range distance of 

49 m. These ranges are smaller than ranges reported in Cambardella et al. (1994), who 

showed range values for SOC that exceeded 100 m and Cambardella and Karlen (1999) 

who determined ranges from 75 to 182 m by the automated dry combustion method. 

Similarly, Geypens et al. (1999) reported bigger ranges  for SOC (160 m) determined by 

the Walkley-Black method. Our results are different from those obtained by Jackson 

and Caldwell (1993), who found a lack of autocorrelation of SOM at scales greater than 

1 m using the colorimetrically with potassium dichromate method suggesting site to site 

differences, possibly impacted by field management and manure management histories.  

Field cultivation history can also impact spatial dependence as shown by 

Robertson et al. (1993) who examined SOC spatial dependence for both a 4-ha 

cultivated and a 1-ha uncultivated field. Their results showed a moderate correlation in 

the cultivated field, in contrasting with the strong correlation of the LOI in our study, 

but also suggested a range of 50 m.  

Both ISNT-N and ISNT-N/Critical ISNT-N reflected a high spatial structure 

(Table 2). Fall sampling in Field 2 showed the lowest correlation coefficient, potentially 

reflecting the impact of manure application on spatial dependency and supporting the 

recommendation to not sample fields for ISNT-N within 4-5 weeks after manure 

addition (Klapwyk et al., 2006). The ranges for ISNT-N varied from 41 to 74 m, smaller 

than range values presented by Gardner et al. (2008) who found spatial correlation over 

distances of 100 m. Range values of ISNT-N/Critical ISNT-N were consistent with the 

values presented for LOI and ISNT-N for each field and season. 

 



 

 

 

        
Figure 2. Graphs of best fitted semi-variograms for nitrate-N, loss-on-ignition at 360°C (LOI360), at 500°C (LOI500), Illinois Soil Nitrogen 
Test-N (ISNT-N) and ISNT-N/Critical ISNT-N in two corn fields during summer and fall. Field 2 received manure in the fall two wk prior 
to soil sampling. 
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A greater spatial dependency was found for summer sampling as compared to 

fall sampling. Ranges around 75 m and 55 m were determined for LOI360, LOI500, ISNT-

N, and ISNT-N/Critical ISNT-N for Field 1 and 2, respectively. Fall sampling reflected 

shorter ranges and greater variation among sampling points. In this study, the two fields 

showed similar ranges, possibly reflecting similar parent material and management 

history (both fields were managed by the same farmer). Robertson et al. (1993) suggest 

that the spatial pattern and scale of soil variability can differ markedly among 

edaphically identical sites and that these differences can be related to disturbance 

history. Thus, Kerry and Oliver (2004) concluded that average variograms that are not 

parent material specific would not provide a suitable guide to sampling on all parent 

materials.  

Assessment of spatial dependence of additional fields varying in soil type and 

management history is recommended if field-specific guidance is to be developed. Our 

results, however, show the limited spatial dependence of nitrate compared to LOI and 

ISNT-N and hence greater potential for use on farms of LOI and ISNT-N as indicators 

of soil N supply. 

3.3. Sampling Simulation 
The smallest 95% CIs obtained in the simulation were 1.2 mg kg−1, 1.2 g kg−1, 

1.3 g kg−1, 10 mg kg−1 and 3%, for nitrate, LOI360, LOI500, ISNT-N, and ISNT-

N/Critical ISNT-N, respectively (Table 3). Increasing the number of samples from 1 to 

15 per 4-ha field reduced the 95% CI and also increased the probability of obtaining 

value within the mean ± 6.4% CV (to >95%) for all parameters except nitrate (Table 3). 

This is consistent with findings by Wollenhaupt and Crawford (1997) who showed that 

soil properties with larger CV values (such as nitrate) require more intensive sampling 

than properties with smaller CV values.  

The simulations showed large variability of soil nitrate and low accuracy in 

determining an average field value. Even with a sampling density of 50 cores in a 4-ha 

field (12.5 samples per ha), there was only an 85% of probability of obtaining an 

estimate within ± 6.4% of the true average of the field. These findings are consistent 

with work by Cameron et al. (1971) who showed nitrate-N levels were more closely 

related to weather conditions than soil zones.  



 

 

 

Table 3. Average confidence interval (and the probability of obtaining an estimate within the mean ± CV of 6.4%†) of nitrate-N, loss-on-
ignition at 360oC (LOI360) or 500oC (LOI500), Illinois soil nitrogen test-N (ISNT-N), and the ratio of ISNT-N and critical ISNT-N (based on 
Ketterings et al., 2013) as a function of the number of subsamples taken in two corn fields during summer and fall. Field 2 received manure 
in the fall 2-wk prior to soil sampling. 

Number of samples in a 4-ha field 
Field Season 3 5 10 15 20 25 30 35 50 All 
Nitrate-N ± mg kg−1  (%) 

1 summer 4.4 (15) 3.6 (18) 3.0 (23) 2.4 (24) 2.2 (29) 2.0 (34) 1.8 (38) 1.7 (47) 1.5 (77) 1.4 (100) 
fall 6.0 (7) 5.0 (12) 3.6 (16) 3.0 (24) 2.6 (26) 2.3 (30) 2.1 (37) 2.0 (42) 1.7 (68) 1.5 (100) 

2 summer 3.9 (19) 3.4 (25) 2.6 (27) 2.2 (32) 1.9 (39) 1.7 (46) 1.6 (48) 1.5 (54) 1.3 (85) 1.2 (100) 
fall 9.1 (14) 7.5 (18) 5.4 (26) 4.5 (32) 3.9 (37) 3.5 (46) 3.2 (51) 2.9 (59) 2.5 (83) 2.2 (100) 

LOI360 
 

 ± g kg−1  (%) 

1 summer 5.8 (59) 4.8 (73) 3.5 (92) 2.9 (97) 2.5 (99) 2.3 (100) 2.1 (100) 1.9 (100) 1.6 (100) 1.4 (100) 
fall 5.2 (64) 4.3 (77) 3.1 (92) 2.6 (98) 2.2 (100) 2.0 (100) 1.8 (100) 1.7 (100) 1.4 (100) 1.3 (100) 

2 summer 5.5 (61) 4.5 (72) 3.3 (90) 2.7 (97) 2.4 (99) 2.1 (100) 1.9 (100) 1.8 (100) 1.5 (100) 1.3 (100) 
fall 5.3 (63) 4.2 (77) 3.1 (93) 2.5 (99) 2.2 (100) 2.0 (100) 1.8 (100) 1.7 (100) 1.4 (100) 1.2 (100) 

LOI500 
 

 ± g kg−1
  (%) 

1 summer 7.0 (60) 5.8 (70) 4.2 (89) 3.5 (96) 3.0 (98) 2.7 (100) 2.5 (100) 2.3 (100) 1.9 (100) 1.7 (100) 
fall 5.9 (63) 4.9 (77) 3.6 (92) 2.9 (99) 2.6 (100) 2.3 (100) 2.1 (100) 1.9 (100) 1.6 (100) 1.5 (100) 

2 summer 5.8 (62) 4.9 (74) 3.6 (92) 2.9 (98) 2.6 (99) 2.3 (100) 2.1 (100) 1.9 (100) 1.6 (100) 1.4 (100) 
fall 5.4 (65) 4.7 (80) 3.3 (95) 2.8 (99) 2.4 (100) 2.1 (100) 2.0 (100) 1.8 (100) 1.5 (100) 1.3 (100) 

ISNT-N 
 

 ± mg kg−1  (%) 

1 summer 46 (54) 39 (71) 28 (86) 23 (95) 20 (98) 18 (99) 16 (100) 15 (100) 13 (100) 11 (100) 
fall 46 (54) 37 (65) 27 (85) 22 (94) 20 (98) 18 (100) 16 (100) 15 (100) 12 (100) 11 (100) 

2 summer 40 (59) 33 (74) 24 (88) 20 (96) 17 (99) 16 (100) 14 (100) 13 (100) 11 (100) 10 (100) 
fall 41 (62) 33 (74) 25 (88) 20 (96) 17 (99) 16 (100) 14 (100) 13 (100) 11 (100) 10 (100) 

ISNT-N / Critical ISNT-N x 100                                                                                             ± % (%) 

1 summer 12 (71) 10 (86) 7 (98) 6 (100) 5 (100) 4 (100) 4 (100) 4 (100) 3 (100) 3 (100) 
fall 12 (66) 10 (80) 7 (94) 6 (99) 5 (100) 5 (100) 4 (100) 4 (100) 3 (100) 3 (100) 

2 summer 11 (75) 9 (85) 7 (97) 5 (100) 5 (100) 4 (100) 4 (100) 4 (100) 3 (100) 3 (100) 
fall 11 (71) 9 (83) 7 (96) 6 (99) 5 (100) 4 (100) 4 (100) 4 (100) 3 (100) 3 (100) 

 † The 6.4% CV was calculated using 100 randomly selected sets of samples (25 m grid) to determine the average confidence interval for each sample size. 
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Ferguson et al. (1996) concluded that grid soil sampling is an accurate means of 

developing variable rate N application maps in some fields. However, they also 

recognized that a recommendation system based on grid-sampling to determine annual 

residual soil nitrate-N is not likely to be widely adopted because of the time and 

expense involved.  

Increasing sampling intensity from 3 to 15 samples per 4-ha reduced the 95% CI 

for LOI360 from ±5.5 to ±2.8 g kg−1 and for LOI500 from ±6.2 to ±3 g kg−1. For ISNT-N 

the CI reduced from ±42 (3 samples) to ±22 mg kg−1 (15 samples) while the CI for the 

ISNT-N/Critical ISNT-N ratio was reduced from ±12 to ±6%. Our results demonstrated 

as sampling density increases, the variation between samples decreases, consistent with 

the results of Franzen and Peck (1995) for P, K and pH, and by Grandt et al. (2010) for 

P.  

Intense sampling is important primarily when field means are close to critical 

classification values such as the agronomic critical soil test value or an environmental 

threshold level (Grandt et al., 2010). In our study, at a sampling density of 3 samples 

per 4-ha (0.75 samples ha−1), in the Field 1 the mean ISNT-N/Critical ISNT-N value for 

the fall sampling round was 1.06 with a CI of ±12%. Given a critical value of 1.07 to 

separate optimal from marginal in NY (Ketterings et al., 2013), a low sampling intensity 

could impact interpretations. Increasing the sampling intensity to 15 samples per 4-ha 

(3.75 samples ha−1) reduced the CI to < ±6% which classified the field as marginal in 

most cases. These findings stress the importance of use of ranges for soil test 

interpretations, as done in NY for interpretation of ISNT-N data (Ketterings et al., 

2013), as well as the importance of increasing sampling intensity to 3.75 samples ha−1 

or more when field means are close to fertilizer or manure application agronomic or 

environmental cutoffs.  

Despite the reduction in spatial correlation with manure addition in fields (Table 

2), the simulation of sampling at different intensities did not suggest that a recently 

manured field needed a higher sampling density to obtain the same accuracy as a non-

manured field. Although fall sampling, or sampling at least 2 mo after the most recent 

fertilizer application, did result in more stable results for P and K in studies by Lockman 

and Molloy (1984) and for N in studies by Wollenhaupt and Crawford (1997), our 

results agree with Grandt et al. (2010) who concluded that the manure application in this 

study did suggest greater intensity of soil sampling for P within fields was needed. 
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Consistent with these findings, current sampling guidelines suggest sampling to be 

delayed until 4-5 weeks after manure application to avoid elevated ISNT-N values 

(Klapwyk et al., 2006), but do not suggest a need for additional samples after manure or 

other fertilizer application (Cornell Cooperative Extension, 2014).  

Sampling intensity determined in this study for the various soil parameters might 

be extrapolated to bigger fields as Cameron et al. (1971) reported that the number of 

samples needed to estimate the field average did not increase drastically with an 

increase in field size. It must, however, be recognized that in the sampling protocol used 

in this study, six subsamples were taken within very short distance and composited to 

obtain enough samples mass to conduct the various laboratory analyses. Thus, micro 

variability across short distances (< 0.6 m) was averaged across the six subsamples and 

could not be evaluated in this study. 

3.4. Relationship between LOI500 and LOI360 

Results of LOI500 and LOI360 were closely related (Table 1) although manure 

application in Field 2 impacted the intercept but not the slope of the relationship 

between LOI500 and LOI360 (Table 4; Figure 3). The lack of a change in slope suggests 

that manure application increased LOI500 and LOI360 equally.  

 
Table 4. The results of a multiple regression between organic matter as determined by 
loss-on-ignition at 500oC (LOI500), time of sampling (season), field (independent 
variables)† and organic matter as determined by loss-on-ignition at 360oC (LOI360, 
dependent variable). 
Parameter Fit regression 

Summary 
r2                      0.8165 

   r2 adjusted                      0.8143 
   Parameter Estimates 

Term Estimate          Standard Error        t ratio          P > |t|       
Intercept 4.2732 0.9059 4.72 <0.0001 
LOI360 1.0434 0.0217 48.07 <.0001 
Season  0.1262 0.0927 1.36 0.1738 
Field -5.9880 0.0927 -6.46 <0.0001 
Season*LOI360 -0.0226 0.0217 -1.04 0.297 
Field*LOI360 0.0232 0.0217 1.07 0.2842 
Season*Field               -0.8453 0.0927 -9.12 <.0001 
Season*Field*LOI360             -0.0180 0.0217 -0.83 0.4067 
† Season is a binary variable to distinguish between two sampling rounds (summer and 
fall). Field is a binary variable to distinguish between two fields, one of which received 
manure two weeks prior to fall sampling. 
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The r2 values of the correlations between the two LOI methodologies were 0.82 

(summer) and 0.85 (fall) for Field 1 versus 0.78 (summer) and 0.75 (fall) in Field 2. The 

differences between fields could reflect soil composition differences (Veres, 2002) as 

heating above 450°C can destroy inorganic carbonates (Davies, 1974; Schumacher, 

2002). Similarly, Howard and Howard (1990) concluded that due to differences in the 

nature of the organic matter among soils and horizons within a soil type, knowing more 

about the soils is essential before converting LOI values, consistent with the conclusion 

reached by Konen et al. (2002) that unique relationships exist for different soil 

geographic areas. 

 

 
Figure 3. Loss-on-ignition at 360°C (LOI360) values compared to 500°C (LOI500) values 
for two fields in Aurora, NY, sampled in the summer and fall (150 per sampling round 
per field). Field 2 received manure in the fall two wk prior to soil sampling. 
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The prediction of the soil N supply potential for fields using LOI500 equivalents 

derived from LOI360 measurements resulted in similar classifications as those obtained 

using the original LOI500 values (Table 5). Across both fields and sampling seasons, 

LOI360 and LOI500 were linearly related: 
 

LOI500 = 1.064 LOI360 + 3.46   (r2 = 0.78)     [1] 
 

Use of this equation to determine LOI500 equivalents, resulted in an identical 

classification for the ISNT-N/Critical ISNT-N ratio for 92% of the samples analyzed for 

the study (table 5), with slightly better predictions in the fall (94% identical 

classification) than in the summer (90% identical classification). This is an 

improvement over use of LOI360 values without converting to LOI500 equivalents for 

ISNT-N interpretations; without the conversion only 76% of the samples were classified 

the same. 

 
Table 5. Percentage of samples for which the soil N supply potential prediction using 
the Illinois soil nitrogen test (ISNT) results adjusted for loss-on-ignition at 500oC 
(LOI500) (as done in Ketterings et al., 2013) was identical to predictions made using 
LOI500 equivalents derived from LOI data obtained at 360oC for two fields samples in 
the summer and the fall. Field 2 received manure after corn silage harvest and two week 
prior to fall sampling.  
  Summer Fall Average 

Scenario A: one equation†   
 Field 1 93.9 95.9 91.8 

Field 2 85.3 92.7 
Scenario B: two equations‡  

 Field 1 94.6 96.6 92.6 
Field 2 83.9 95.3 

Scenario C: four equations§ 
 Field 1 94.6 98.6 93.2 

Field 2 84.6 95.3 
† Scenario A (one equation) refers to a single regression equation for both fields and 
sampling seasons. 
‡ Scenario B (two equations) uses an equation for the fields and sampling rounds not 
impacted by recent manure additions (Field 1 both sampling rounds and Field 2 summer 
sampling) and a second equation for the field that had received manure in the fall (Field 
2 fall sampling).  
§Scenario C (four equations) has a single regression equation for each field and 
sampling round. 
 



Chapter I 

 

 

35 

Use of a single conversion equation for each season increased the predictions for 

fall slightly (to 97%) while not impacting the predictions for the summer sampling 

rounds. The use of a specific conversion equation for fall for Field 2 only (where 

manure had been applied) did not improve the accuracy of the prediction based on 

ISNT-N. These results suggest that a single linear regression conversion equation 

(Equation [1]) can be used. 

 

4. Conclusions 

For the two tilled cropland fields in this study, 15 or more samples per a 4-ha 

field were needed to obtain a 95% or greater probability of a means that was within the 

true mean of the field ± CV (6.4%) for LOI360, LOI500, ISNT-N, and ISNT-N/Critical 

ISNT-N, independent of timing of sampling or manure history. High spatial correlations 

were found for LOI, ISNT-N and ISNT-N/Critical ISNT-N. Soil nitrate was more 

variable and less spatially dependent. Despite reduced spatial dependence upon manure 

application, sampling intensity did not need to increase to obtain reliable field means. 

Because of a strong relationship between LOI500 and LOI360 across both fields and 

sampling times, LOI360 data could be transformed to LOI500 equivalents and then used 

to determine soil N supply potential as measure by ISNT-N/Critical ISNT-N. Fall 

sampling after harvest presented slightly better accuracy in determining the soil N 

supply potential (based on ISNT-N/Critical ISNT-N) than sampling the summer. 

Sampling protocols should be adjusted (3.75 samples ha-1 or more) where greater 

accuracy is needed for LOI, ISNT-N and ISNT-N/Critical ISNT-N. Soil nitrate 

sampling is less practical due to the large number of samples needed to accurately 

quantify soil nitrate levels of a field.  
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Abstract 

The growing use of commercial unmanned aerial vehicles (UAV) and the need to 

adjust N fertilization rates in maize (Zea mays L.) currently constitute a key research issue. 

In this study, different multispectral vegetation indices (green-band and red-band based 

indices), SPAD and crop height (derived from a multispectral compact camera mounted 

on a UAV) were analysed to predict grain yield and determine whether an additional 

sidedress application of N fertilizer was required just before flowering. Seven different 

inorganic N rates (0, 100, 150, 200, 250, 300, 400 kg·N·ha−1), two different pig slurry 

manure rates (Ps) (150 or 250 kg·N·ha−1) and four different inorganic-organic N 

combinations (N100Ps150, N100Ps250, N200Ps150, N200Ps250) were applied to maize 

experimental plots. The spectral index that best explained final grain yield for the N 

treatments was the Wide Dynamic Range Vegetation Index (WDRVI). It identified a key 

threshold above/below 250–300 kg·N·ha−1. WDRVI, NDVI and crop height showed no 

significant response to extra N application at the economic optimum rate of fertilization 

(239.8 kg·N·ha−1), for which a grain yield of 16.12 Mg·ha−1 was obtained. This 

demonstrates their potential as yield predictors at V12 stage. Finally, a ranking of different 

vegetation indices and crop height is proposed to overcome the uncertainty associated with 

basing decisions on a single index. 

 

Keywords: maize; nitrogen; multispectral vegetation indices; crop height; UAV 

 

Abbreviations: Chlorophyll meter, CM; Digital surface model, DSM; Digital ground 

model, DGM; Economic optimum nitrogen rate, EONR; Green normalized difference 

vegetation index, GNDVI; Nitrogen, N; Normalized difference index, NDVI; Near infrared, 

NIR; Pig slurry, PS; Unmanned aerial vehicle; UAV; Wide dynamic range vegetation 

index, WDRVI. 

 

 

 



Chapter II 

 45 

1. Introduction 
Nitrogen (N) fertilization of maize (Zea mays L.) is an important research topic. 

Nitrogen, together with genetic improvement, is one of the most important factors affecting 

production and can account for up to 30% of the total cost of producing maize [1]. N 

fertilization is universally accepted as a key input for increasing maize grain yields and 

optimizing economic returns [2]. In many irrigated Mediterranean areas, maize is one of the 

most important field crops. In the Ebro valley (NE Spain), grain yields commonly range 

from 12 to 15 Mg·ha−1, with a total plant nitrogen uptake of 250–300 kg·ha−1 [3]. Farmers 

usually decide N application rates on the expected crop N uptake which is, in turn, based on 

yield goals. However, they do not often consider the possible effect of having high N levels 

in the soil prior to planting, conditions which are common in many crop-growing areas [4]. 

In irrigated maize, most of the N fertilizer tends to be applied at planting or during the 

earliest stages of crop growth, as this simplifies crop management. This may constitute a 

problem since N uptake does not all occur at the same time. Under favourable soil moisture 

conditions, approximately one-third of the total N uptake occurs after pollination [5]. 

Consequently, consideration should be given to N applications via sidedress, applied at or 

near flowering (VT stage or tasseling, [6]), with appropriate doses of N being applied at 

planting and/or at lay-by (e.g., V7–8, 7–8 leaves with visible leaf collars) in order to 

maintain yield potential [7].  

Over-fertilization can occur as a consequence of N fertilization in early stages of 

crop growth. This does not increase grain yield but, instead, wastes fertilizer, increases 

costs, and can cause nitrate pollution [8]. This problem has led farmers, scientist and 

politicians to explore how to improve N efficiency, reduce N inputs and prevent water and 

soil pollution associated with maize production [9–11].  

In recent years, the use of chlorophyll meters (CM), which measure leaf chlorophyll 

content to estimate N nutrition status, has increased among researchers and farmers [10,11]. 

Hawkings et al. [12] found that the adjusted R2 of the relationship between CM readings 

and the nitrogen rate difference (ND) for the economic optimum nitrogen rate (EONR) was 

0.76 for a maize-maize rotation. However, despite the good correlations, these methods fail 

to capture the spatial variability that is often present within plots. Data acquisition also 

tends to be time-consuming and can be hindered by a series of practical limitations [8,9]. 

One alternative to ground-based measurements involves image-based (satellite or airborne) 

remote-sensing. This technique, either using active or passive sensors, has been recognized 
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as a potential tool for both spatial and temporal improvement of N management in field 

crops [13,14], and can also be used to detect N deficiencies in maize [15]. Cilia et al. [16], 

using multispectral airborne images, created a variable rate N fertilization map based on the 

difference between actual and optimal crop N content. This map of maize N content also 

related well to the real maize N content obtained using traditional destructive measurement 

techniques (R2 = 0.70). In this respect, multispectral satellite images, such as Aster and 

QuickBird, and manned-flight airborne images have been used to assess irrigated maize N 

status at V12 (12 leaves with visible leaf collars) and later stages of crop growth, as well as 

to determine field variability for in-season N management in order to complement ground-

based measurements [9,10,17]. In fact, most previous studies have shown that both real and 

false colour images acquired between growth stages V7 and VT could be used to predict N 

deficiencies and N requirements in maize [18]. Combining CM readings and aerial and/or 

satellite remote sensing images would therefore seem to offer a practical solution to in-

season site-specific N applications in large fields [19]. 

Image acquisition at stage V12 is generally preferred to other alternatives because 

the observed maize N uptake at this stage tends to be about 40% of the total [6], and crop 

response to N fertilizer is high if N deficiencies are detected. In addition, when taking aerial 

images at stage V12, strong background reflectance from the soil is minimized. This is one 

of the most challenging obstacles to detecting maize N deficiencies in the early stages of 

crop growth [18]. At the same time, tassel colour interference, which can occur if the 

images are taken at later stages, is also avoided. Readings for earlier vegetation stages can 

usually be discarded since only weak correlations are found (R2 ≤ 0.29) for the prediction of 

optimum N rates [20]. 

Despite the apparent advantages offered by remote sensing from satellites and 

manned aircraft, the cost of obtaining high-resolution multispectral images for relatively 

small areas is considered an important drawback [10,21]. At present, this can be overcome 

by using unmanned aerial vehicles (UAV), mounted with multispectral cameras. Image 

acquisition with UAV can be deployed quickly and repeatedly, meaning lower costs, 

greater flexibility in terms of flying heights and mission timing, and higher spatial 

resolutions [22]. In recent years, UAV-based research has been carried out to monitor 

vegetation for agricultural purposes [16]. Most of these applications have been possible due 

to the miniaturization of multispectral and thermal cameras. However, radiometric and 

geometric calibrations are required to provide images that are similar to those available 

from traditional satellite-mounted sensors [23]. 
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Several studies on the use of UAV in the assessment of N status in maize have been 

published. These have mainly focused on standardizing NDVI (Normalized Difference 

Vegetation Index) values for their use as part of an N sufficiency index (the NDVI reading 

divided by the NDVI value of a corresponding well-fertilized N field) [24], and on 

comparing ground-sensor measurements with hyperspectral images [11]. In [11], indices 

based on UAV hyperspectral imagery were used to calculate greenness, chlorophyll and 

photochemical indices. These indices were found to be as reliable as ground-level 

measurements for assessing crop nitrogen (N) status. This finding was also in line with the 

work of Isla et al. [17], who investigated the N nutritional status of maize using 

multispectral data acquired from an aircraft. Scharf and Lory [14] also showed that maize 

colour measured using aerial photography could be used to predict N sidedress 

requirements. Correlations between colour and the EONR ranged from 0.60 to 0.79 after 

the removal of soil pixels. 

Other multispectral indices have been reported as being particularly useful for 

assessing maize N status. McMurtrey et al. [25] reported that as N deficiencies increased, 

leaf reflectance increased in the green band (0.55 µm), decreased in the NIR (Near-

Infrared) (0.70 µm) and remained almost unvaried in the red band (0.67 µm). Along the 

same lines, Bausch and Duke [8] proposed an N reflectance index for maize based on the 

Green Ratio Vegetation Index (GRVI), which correlated highly with the N sufficiency 

index (average SPAD reading for a given treatment divided by the average SPAD reading 

for a well-fertilized N field; with SPAD being a device for indirect chlorophyll 

measurement) after stage V11 (11 leaves with visible leaf collars). More recently, other 

authors have reported the greater sensitivity of the GRVI than red-based indices for 

assessing N deficiencies in maize [26]. Other green-based vegetation indices have also been 

qualified as particularly useful for assessing maize N status at V12 or later growth stages 

[9]. For example, Schlemmer et al. [27] and Li et al. [28] showed the significance of the 

green and red-edge bands for estimating chlorophyll and N content in maize. The GNDVI 

(Green Normalized Difference Vegetation Index) has also been considered useful for 

assessing leaf chlorophyll variability when the leaf area index is moderately high [29]. In 

other cases, green-based indices have shown high correlations with maize grain yield, 

explaining 86% of the observed variance [17].  

In view of the growing application of UAV services and of the importance of N 

fertilization in maize production, the purpose of the present study was to analyse the 

potential utility of different multispectral vegetation indices in conjunction with crop height 
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to support decisions regarding the need to apply N fertilizer just before flowering (V12). 

The study involved the use of a standard UAV service for acquiring multispectral images 

with a broad-band compact camera, from which crop height data were automatically 

derived. It explores the possibilities of using this type of service in commercial farms on a 

day-to-day basis. 

 

2. Materials and methods 

2.1. Study Area  
The experimental field was located at the IRTA Research Station in Gimenells 

(Lleida, NE Spain, 41°65′N, 0°39′E) and had an area of 110 × 130 m2 (Figure 1). Soils 

were well-drained, had no salinity problems, and were characterized by the presence of a 

petrocalcic horizon at a depth of 80–100 cm, being classified as Petrocalcic Calcixerept 

[30]. The area has a semi-arid climate with a mean temperature of 19.1 °C and low 

precipitation during the maize growing season (192 mm) [31]. Irrigation is therefore 

required to achieve high grain yields. The field was irrigated using a sprinkler irrigation 

system, which provided approximately 750 mm of water (with no appreciable nitrate 

content) over the maize growing season. Conventional tillage was applied, which included 

disc ploughing and cultivation to a depth of 25–30 cm. The study field was divided into 45 

experimental plots, each of 10 × 15 m2. These plots were sown with maize of the variety 

PR33Y72 (FAO cycle 600) on 10 April 2014. 

A pre-emergence herbicide (S-Metolachlor 40% and Terbutilazine 18.75%) was 

applied at 3 L ha−1 to control weeds. At post-emergence, 1 L ha−1 of Dimethylamine salt of 

dicamba 48.2% (3.6-dichloro-o-anisic acid) and 0.75 L·ha−1 Nicosulfuron 6% were applied 

to control Abutilon theophrasti M. and Sorghum halepense L., respectively. 

The maize was harvested on 29 October 2014. Grain yield was determined by 

harvesting two complete central rows (1.5 × 10 m2) using a small-plot combine. A grain 

sample of 250 g was taken from each plot to determine moisture content (GAC II, Dickey-

John, Auburn, IL, USA) and adjust grain yield to 14% moisture. 

It should be noted that the plots had been continually used throughout the previous 

12-year period as an experimental field for studies related to maize N fertilization. It should 

also be noted, in this respect, that the same treatments were applied to each individual plot 

as in the previous years. As a result, the effect of the different N treatments would have 

been expected to be more evident.  
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Figure 1. Location of the study area and detail of the experimental plot layout for the maize 
nitrogen treatments. The background picture is a false colour composition (NIR, Red, and 
Green) of the image acquired by the UAV on 30 June2014. The label “N” refers to 
inorganic nitrogen, “Ps” refers to pig slurry manure, and the numerals express the rate of N 
applied in kg·ha−1 for each N source. 

2.2. Fertilizer Treatments 
Seven different inorganic N rates were applied: 0, 100, 150, 200, 250, 300 and 400 

kg·N·ha−1. Two different pig slurry manure rates (Ps): 150 and 250 kg of organic N·ha−1 

were used in the study (Figure 1) and four different inorganic-organic combinations were 

also applied: N100Ps150, N100Ps250, N200Ps150, and N200Ps250. 

Each N treatment included four replications (except for the treatments with Ps250, 

with three replications) under a split plot design. Pig slurry (Ps) applications were done 

before sowing and the slurry was then ploughed into the soil between 3–5 hours after 

application to reduce ammonia (NH3) volatilization losses. Inorganic N fertilization (33.5% 

N, as ammonium nitrate) was applied by hand, in two equal parts: 50% at the first sidedress 

(stage V3–V4: 3–4 leaves with visible leaf collars) and 50% at the second sidedress (stage 

V6–V7: 6–7 leaves with visible leaf collars) [31]. In the case of the N400 treatment, a third 

sidedress was applied at stage V12 (when the UAV images were acquired). In this case, N 
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application was distributed differently (37.5% at stage V3–V4, 37.5% at V6–V7 and 25% 

at V12) with a view to reducing the risk of pollution by nitrate leaching, which is associated 

with high rates of N application. Additionally, phosphorus and potassium fertilizations 

were applied before planting, at rates of 150 kg·P2O5·ha−1 and 250 kg·K2O·ha−1, to ensure 

no deficit of either of these elements. This type of fertilization had been performed each 2 

years based on previous soil analysis. 

2.3. Remote and Proximal Sensing Data Acquisition and Analysis 
An aerial survey was carried out with the Atmos-6 UAV (CATUAV, Moià, 

Catalonia, Spain) (Figure 2). This drone has a wingspan of 1.80 m, a length of 1.29 m and a 

payload of 500 g. The survey was conducted on 30 June 2014, at 10 h (GMT), with maize 

at V12 stage. The flight height was 180 m above ground, with a speed of 38 km h−1. The 

time of flight was very short since the area to capture was only about 0.8 ha, and irradiance 

conditions did not vary during image acquisition. The images were acquired using a 

VEGCAM-Pro camera, with a 14 Mp Foveon X3 image sensor. This camera has a total 

weight of 307 g and a size of 110 × 85 × 78 mm. It works in three wide spectral bands: 

green (525–575 nm), red (615–685 nm) and near infrared (755–805 nm), with a radiometric 

resolution of 8 bits/pixel (with a pixel value range of 0–255). Other characteristics of the 

camera include: objective 16.6 mm / F4, sensor size 20.7 × 13.8 mm2, effective pixels 2650 

× 1768 × 3 layers, instantaneous field of view (IFOV) 0.0265 × 0.0265 deg. 

The photos were acquired with a horizontal overlap of at least 60% to allow the use 

of stereoscopy to compute the elevation in each pixel. The images were then rectified and 

mosaicked with the aid of Pix4D software (Pix4D SA, Lausanne, Switzerland) to produce 

images at a spatial resolution of 0.15 m. The geometry of the camera was accurately 

calibrated using a calibration panel and the RapidCal software (PIEneering, Helsinki, 

Finland), yielding standard errors for the principal point of ±0.0122 mm and ±0.0098 mm 

in X and Y respectively. The photos were georeferenced on the basis of ground control 

points selected on a 1:2500 scale orthophoto, produced by the Cartographic and Geologic 

Institute of Catalonia. Due to the small size of the experimental field (0.8 ha), only three 

sequential photos were needed to produce the mosaic, and artifacts were not produced. 

Reflectance values were computed for each band by dividing the pixel values by those of a 

calibrated diffuse Spectralon reflectance target (Labsphere, North Sutton, NH, USA).  
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Figure 2. The Atmos-6 UAV operated by CATUAV (Moià, Catalonia, Spain), which was 
used as the platform for multispectral data acquisition. 
 

Three vegetation indices were computed based on the reflectance values: NDVI 

(Normalized Difference Vegetation Index, Equation (1), [32]), GRVI (Green Ratio 

Vegetation Index, Equation (2), [20]), and WDRVI (Wide Dynamic Range Vegetation 

Index, Equation (3), [33]). 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑅𝑅

 (1) 

𝐺𝐺𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑁𝑁𝑁𝑁𝑁𝑁
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝐺𝐺

 (2) 

𝑊𝑊𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
(𝛼𝛼 · 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑅𝑅)
(𝛼𝛼 · 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑅𝑅)

 (3) 

where NIR is the reflectance of the near infrared light, Red is the reflectance of the red light, 

Green is the reflectance of the green light and α a weighting coefficient that can vary from 

0.1 to 0.2. The WDRVI was created to increase correlations with the vegetation fraction for 

crops such as wheat, soybean and maize, thereby enabling a more robust characterization of 

the physiological and phenological characteristics of the crop [33]. In the present study, we 

used α = 0.1 because of its better fit to N dose and maize yield. 

In addition, the crop height in each pixel was calculated based on an intensive 

photogrammetric analysis of stereopairs with Pix4D software. This made possible the 

creation of a digital surface model (DSM) of the experimental plots. A digital ground 



Chapter II 

 52 

model (DGM) based on these data was also built by selecting bare soil pixels around the 

experimental plots and capturing their height from the DSM. By connecting the different 

bare soil pixels, it was then possible to create a triangulated irregular network representing 

ground elevation. Finally, maize plant height was calculated by subtracting DGM from 

DSM.  

In-field crop height measurements were taken at the VT stage (tasseling) (10 to 15 

days after the UAV flight). These measurements were then used to calculate their 

correlation with those obtained via the photogrammetric process. For this, the heights of 5 

plants were measured in each experimental plot using a tape measure. These height 

measurements were repeated until tassel insertion, in order to avoid the possibility of 

differences in height caused by the length of the tassel. According to Duncan et al. [34], 

tassel size varies with both plant population and variety. Linear regression analysis was 

performed between the image and in-field height, yielding an R2 coefficient of 0.82 (RMSE 

= 0.15 m and p-value < 0.001). This indicates a good correlation between the two types of 

measurement and that the height values obtained from the digital height model could be 

used as a good estimator of crop height at the moment of image acquisition. 

Non-destructive chlorophyll readings were also taken from plant leaves in the 

experimental plots at VT stage, with a view to comparing the measurements with the 

spectral indices and correlate them with yield. These measurements were taken using a 

small, lightweight, portable, hand-held meter (SPAD-502 indirect chlorophyll meter; 

Minolta Corp, Ramsey, NJ, USA). SPAD values calculate relative chlorophyll content 

based on the amount of light transmitted by the leaves at two different wavelengths: red 

(650 nm) and near infrared (940 nm). In agriculture, the SPAD meter is often used to 

improve N management and increase yields by predicting N status and determining 

fertilization requirements [35]. In this case, 5 plants were sampled from each plot and three 

readings were taken from each selected ear leaf: from the base, middle and top of each 

plant. The 15 measurements taken from each experimental plot were then averaged to 

obtain the plot SPAD value.  

2.4. Statistical Analysis 
To analyse the spectral indices and crop height according to the different N fertilizer 

treatments, fifty points were randomly sampled within each individual plot, excluding a 1 

m buffer from the borders. In addition, the points that lay on bare soil were moved to a 

nearby plant to avoid measurements in areas without crop. A multiple comparison analysis 
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using Tukey’s Honest Significant Difference (HSD) test at a significance level of 0.05 was 

then carried out. For each N treatment, this analysis compared the mean values of the 

spectral indices (included SPAD) and crop height, distinguishing different significant 

groups. JMP Pro 12 (SAS Institute, Cary, NC, USA) statistical package was used for the 

statistical analysis. 

Linear-plateau models were fitted for spectral indices, crop height and yield with the 

N fertilization treatments. In this way, the economic optimum rates of fertilization, as well 

as the saturation point for N fertilization of spectral indices and crop height were identified 

by locating the intersection of the two lines [36].  

Linear and quadratic regression analyses were also carried out between the mean 

values for the spectral indices and crop height from the different treatments and yield. 

These were used to determine the best variable to estimate yield at the V12 stage. 

 

3. Results and discussion 

3.1. Multiple-Rank Analysis of Spectral Indices, Crop Height and Yield 
Table 1 shows the mean values of the vegetation indices (n = 50 for each treatment 

replication), crop height (n = 50), SPAD (n = 15 for each treatment replication) and yield (n 

= 4) for the different N treatments applied on the experimental plots. The table also presents 

the mean values of the variables analysed. The treatments are sorted according to the total 

amount of N applied until stage V12. Treatments not connected by the same letter are 

significantly different at a p-value of <0.05. Figure 3 provides a visual comparison of the 

vegetation indices and crop heights in the experimental fields.  

For all the considered variables, the N fertilizer treatments were grouped in three to 

nine homogeneous groups. Of these, N0 (the control treatment) presented the lowest values 

for all of the variables and also for grain yield (3.16 Mg·ha−1). The N0 treatment was 

clearly identified as being totally different from the other N treatments, with no nitrogen 

applications in these plots over the 12 continuous years of the experiment. The treatments 

involving applications between 0 and 150 kg·N·ha−1 were separated into several different 

homogeneous groups, which in most cases exhibited clear N deficiencies in their spectral 

indices. The N100 and N0Ps150 treatments were associated with the lowest grain yields 

and the lowest index values after the N0 treatment. The N150 treatment resulted in higher 

grain yield than the N0Ps150 treatment due to the greater efficiency of applying N at 

sidedress rather than at planting [37,38]. 
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Table 1. Mean values of the vegetation indices and crop height (n = 50 for each treatment 
replication), SPAD (n = 15 for each treatment replication) and yield (n = 4) for the different 
nitrogen (N) treatments applied on the experimental plots. Tukey’s HSD test: different 
letters indicate homogeneous groups with respect to the mean differences at a p-value of < 
0.05. The total amount of N (kg·ha−1) applied up to vegetation stage V12 is given in 
brackets.  
N treatment NDVI WDRVI GRVI SPAD Crop Height 

(m) 
Yield 

(Mg·ha−1) 
N0 0.451 d −0.574 f 1.253 f 30.06 b 0.81 i 3.16 e 

N100 (100) 0.942 c 0.619 e 1.355 e 48.68 a 1.65 h 9.79 cd 

N150 (150) 0.963 b 0.747 d 1.366 cde 51.76 a 1.85 fg 12.02 bcd 

N0Ps150 (150) 0.926 c 0.584 e 1.362 cde 46.30 a 1.88 fg 8.70 de 

N200 (200) 0.974 ab 0.809 bcd 1.367 cde 56.30 a 1.88 fg 15.04 abc 

N250 (250) 0.967 ab 0.781 cd 1.363 de 56.71 a 1.86 fg 16.17 ab 

N0Ps250 (250) 0.971 ab 0.808 bcd 1.373 abcd 54.26 a 1.99 cde 15.14 abc 

N100Ps150 (250) 0.975 ab 0.834 abcd 1.377 abcd 56.30 a 1.99 cd 14.65 abc 

N300 (300) 0.971 ab 0.793 cd 1.366 cde 56.23 a 1.82 g 15.40 ab 

N400 (300) * 0.979 ab 0.846 abc 1.367 bcde ** 1.93 def 17.64 a 

N100Ps250 (350) 0.986 a 0.894 ab 1.385 a 56.48 a 2.11 ab 17.00 ab 

N200Ps150 (350) 0.987 a 0.900 a 1.383 ab 56.89 a 2.03 bc 17.56 a 

N200Ps250 (450) 0.987 a 0.899 ab 1.382 abc 57.36 a 2.16 a 16.98 ab 

* A total of 300 kg·N·ha−1 was applied up to stage V12 (image acquisition). ** Not measured 

The treatments that combined inorganic and organic N, with a total amount of 

applied N of between 350 and 450 Kg·N·ha−1 (N100Ps250, N200Ps150 and N200Ps250), 

were at the top of the ranking. This seems to indicate that up to V12 stage, the plots 

fertilized with a combination of organic and inorganic N performed better in terms of plant 

vigour than those only fertilized with inorganic N. The reason for this may be a progressive 

mineralization of organic N, which would have facilitated N availability during all 

development stages [39,40]. The experimental plots in which these treatments were applied 

also produced the highest grain yields, although not exclusively, as the N200, N250, 

N0Ps250, N100Ps150, N300 and N400 were also classified in homogeneous group “a”, the 

one with the highest yields. 

The results obtained for the N400 treatment require particular attention. Based on 

the total amount of N applied, this treatment might have been expected to be in the upper 

part of the homogeneous group classification (group “a” or “ab”) for the different variables 

considered. However, it was not, even though the N400 treatment did produce the highest 
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grain yield (17.64 Mg·ha−1). The explanation for this lack of correspondence is related to 

the total amount of N applied on the experimental plots before image acquisition. Sidedress 

applications were completed at stage V6-V7 for all treatments except the N400, with the 

final sidedress for the N400 plots being administered at stage V12. As result, only 75% of 

the N fertilizer (300 kg·N·ha−1) was applied in those plots before the image acquisition 

date. 

 
Figure 3. Vegetation indices and crop height for each experimental field (see the labels of 
the different nitrogen fertilizer treatments in Figure 1). 
 

According to the vegetation indices and crop height (Table 1), a total application of 

250–300 kg·N·ha−1 corresponds to the threshold value. Above this quantity, the mean 

values of the analysed variables were significantly higher than for the other N treatments 

(except for the SPAD, which showed a homogeneous response to the different treatments). 

This, together with the final performance of the N400 treatment, seems to indicate the 
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possibility at V12 stage of determining whether a supplementary N sidedress application is 

required to achieve a higher yield. 

Among the variables analysed (Table 1), the GRVI performed better than the NDVI 

at identifying the treatments equal to or below 300 kg·N·ha−1. The latter showed an 

increase in values that was in line with the total amount of applied N. However, this 

response was either more homogeneous or greater than for applications of 200 kg·N·ha−1, 

yet without showing a clear discrimination between the treatments occupying the highest 

positions in the ranking. Nevertheless, GRVI did not clearly differentiate between the N150 

and N300 treatments, and this created a certain degree of ambiguity. In addition, GRVI 

values for the N250 and N300 treatments did not directly correlate with the total amount of 

applied N. These results were in line with those published in other research work. Isla et al. 

[17] reported a better performance of green-based vegetation indices in determining maize 

vigour due to problems of saturation associated with NDVI for some types of vegetation 

during their later stages of growth. For example, indices such as the GNDVI have been 

considered more useful for assessing leaf chlorophyll variability when the leaf area index is 

moderately high [29]. Xiang and Tian [22] also reported that the GNDVI and GRVI offered 

the best ways to identify three different N treatments over the whole maize growing season, 

with the greatest differences in index values being observed during the V6–V8 stages. 

The WDRVI was the spectral index that best distinguished between N applications 

above 300 kg·N·ha−1, but also displayed a certain degree of ambiguity when it came to 

distinguishing between treatments within the range between N200 and N300. Only one 

exception to this general rule was observed; this occurred with the N100Ps150 treatment. 

This was included in the group of treatments classified as “a”, although its results also 

overlapped with those of other groups. According to this finding, mean WDRVI values for 

maize fields of less than 0.89 at V12 would be associated with an improvement in grain 

yield following the application of a third N sidedress around the VT stage.  

In the case of crop height measured from the UAV photogrammetric survey, it was 

observed that the combined inorganic and organic N treatments at doses of 350 and 450 

kg·N·ha−1 were clearly associated with the largest crop heights. Nine significant different 

responses were identified among the 13 N treatments. The treatments with total N rates of 

between 150 and 300 kg·N·ha−1 were not classified in ascending order. Nevertheless, a 

clear differentiation was achieved between treatments that included organic N and those 

that only contained inorganic N. This was probably due to the effect of higher N 
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availability in the organic plots during the earlier vegetative stages, prior to the sidedress 

application, which resulted in faster maize plant growth.  

With respect to grain yield, the fertilizer treatments N100Ps250, N200Ps150 and 

N400 showed the greatest response to N (with grain yields equal to or above 17 Mg·ha−1), 

and were classified in groups “ab” (N100Ps250) and “a” (N200Ps150 and N400). The N 

treatments with total N content of between 200 and 300 kg·ha−1 and the treatment with the 

highest N application rate (N200Ps250) were classified as either “ab” or “abc” and 

produced grain yields of between 15 and 17 Mg·ha−1. 

To clarify the type of relationships between the N rates and the analysed variables, 

linear-plateau models were fitted (Figure 4). In this way, it was possible to identify the 

economic optimum rates of fertilization, as well as the saturation point for N fertilization of 

vegetation indices and crop height at V12, SPAD at VT and grain yield. 

The predicted economic optimum rate of fertilization was determined at 239.8 

kg·N·ha−1 (Figure 4F). Except for the GRVI, the other vegetation indices and crop height 

showed no response to higher N rates above the economic optimum rate. Particularly useful 

to predict yield response in relation to N rates at V12 stage were the NDVI, WDRVI and 

crop height, with no response to N rates higher than 247.5, 243.1 and 243.0 kg·N·ha−1, 

respectively. For SPAD, saturation was determined at a lower N rate (203.8 kg·N·ha−1). 

This could imply an underestimation of the N requirements of maize, which could be 

translated into a reduction in final grain yield. The opposite was observed for the GRVI, 

where N requirements may well be overestimated, with an increase in GRVI values at 

higher N rates (up to 362.2 kg·N·ha−1). This was probably due to an increase in greenness 

as observed through the index, which was not translated into final grain yield (Figure 4B). 

As for grain yield (Figure 4F), there would be no interest in increasing N application 

above 239.8 kg·N·ha−1, partly because of potential environmental problems but also 

because of the subsequent reduction in the economic margin. However, higher N rates did 

present higher yields, suggesting the potential to increase grain yield, since yield values for 

N treatments N100Ps250, N200Ps150 N200Ps250 were above the linear-plateau which was 

reached at 16.12 Mg·ha−1. This suggests the potential possibility of increasing yield by 

increasing N fertilization, something which would be of particular interest in maize-

growing areas like the Ebro valley which have the appropriate environmental conditions 

and irrigation facilities to attain such high yields. 
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Figure 4. Response of (A) NDVI, (B) GRVI, (C) WDRVI vegetation indices and (D) crop 
height at V12, (E) SPAD at VT, and (F) grain yield to different N fertilization treatments. 
Saturation N dose is determined when there is no response to higher N fertilization 
(predicted economic optimum rate of fertilization). Organic, inorganic and combined 
organic-inorganic treatments are represented with different symbols. N0 and N400 
treatments were not included in the analysis. 
 

Table 2 was created to offer a summary of the results presented above, and shows 

the treatments ordered according to the mean values of the indices and crop height. These 

values are ranked (from lowest to highest mean value) for the different N treatments. For 

each variable, the lowest rank is equal to 1 and the highest rank is equal to 13. The “Sum” 

column in Table 2 indicates the sum of the ranks in each row (or for each N treatment). In 

this case, the sum of ranks represents an order of magnitude of each N treatment with 
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respect to its spectral response (vegetation index) and crop height. It is useful to compare 

the N treatments not only according to the values assigned to each vegetation index or crop 

height, but considering them all together. The “Rank” column shows the final ranking 

according to the Sum from the lowest to the highest value. 

The ranks shown in Table 2 indicate that the treatments with the highest responses 

in the spectral indices and in terms of crop height were those that combined inorganic and 

organic N, with total application rates of 350 or 450 kg·N·ha−1 (N200Ps150, N100Ps250 

and N200Ps250). These were followed, in descending order, by the treatments containing 

either only inorganic N or only organic N; the exceptions were treatments N0Ps250 and 

N100Ps150, which respectively occupied the 8th and 10th positions in the ranking. The 

control treatment (N0) occupied the lowest position. 

 

Table 2. Nitrogen fertilization treatments ordered by the mean values for each vegetation 
index and crop height at stage V12. The values are ordered from 1 to 13 (1 = lowest 
vegetation index and 13 = highest vegetation index). The treatments are ordered according 
to the “Rank” column, which orders the sum of the ranks. The total amount of N (kg ha−1) 
applied up to vegetation stage V12 is given in brackets. 

N Treatment NDVI GRVI WDRVI Crop Height Sum Rank 

N0 (0) 1 1 1 1 4 1 

N100 (100) 3 2 3 2 10 2 

N0Ps150 (150) 2 3 2 6 13 3 

N150 (150) 4 5 4 4 17 4 

N250 (250) 5 4 5 5 19 5 

N300 (300) 7 6 6 3 22 6 

N200 (200) 8 8 8 7 31 7 

N0Ps250 (250) 6 9 7 9 31 8 

N400 (300) 10 7 10 8 35 9 

N100Ps150 (250) 9 10 9 10 38 10 

N100Ps250 (350) 11 13 11 12 47 11 

N200Ps150 (350) 12 12 13 11 48 12 

N200Ps250 (450) 13 11 12 13 49 13 

 

Two treatments providing N from pig slurry manure (N0Ps250 and N100Ps150) 

were ranked in high positions, but did not finally achieve the corresponding yield rank (7th 
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and 5th respectively). This could have been due to differences in the timings of the N 

applications. The organic applications were applied before the maize was sown and the 

inorganic applications at sidedress. In addition, there were differences in the amount of N 

applied with respect to that applied in other treatments at the same time. These pig slurry 

applications would have conferred optimum conditions for crop development until V12, the 

stage at which the images were acquired. However, the reduced amount of total N applied 

(250 kg·N·ha−1) and/or the lack of a third sidedress had a determining influence on the final 

yields associated with these treatments. 

3.2. Relationship between the SPECTRAL Indices and Crop Height with Yield 
Table 3 presents the results of linear and quadratic regression analysis comparing 

the vegetation indices, SPAD and crop height with grain yield. In general, quadratic 

regression models did not significantly improve yield prediction with respect to the linear 

models, at the same time adding complexity. The best correlation was obtained with 

WDRVI (R2 = 0.92 and RMSE = 0.87 Mg·ha−1), followed by NDVI and SPAD (R2 = 0.90 

and 0.88, respectively). It should be noted that SPAD was measured at VT and did not 

show significant differences with respect to the different N treatments (except for the N0 

treatment, which was statistically different from the other N treatments, Table 1). 

 
Table 3. Linear and quadratic regression adjustments between the spectral indices and crop 
height with yield, considering all the total amounts of N applied in all the different 
treatments, except N0 and N400. 
Vegetation Index Linear Regression with Yield Quadratic Regression with Yield 

R2 RMSE Mg·ha−1 p-value R2 RMSE Mg·ha−1 p-value 

SPAD 0.88 0.82 <0.001 0.89 1.10 0.0002 

NDVI 0.90 0.98 <0.001 0.92 0.92 <0.001 

GRVI 0.64 1.86 0.003 0.71 1.78 0.0075 

WDRVI 0.92 0.87 <0.001 0.92 0.93 <0.001 

Crop height 0.60 1.97 <0.001 0.64 1.98 0.0174 

 

The GRVI performed worse than the red-based indices (R2 = 0.64 and RMSE = 1.86 

Mg·ha−1). These results differed from those obtained in other studies, in which green-based 

indices at V15 (e.g., GNDVI) were highly correlated with maize yield and explained 86% 

of the variance [17]. Other authors have also pointed to green-based vegetation indices 

being particularly useful for assessing N status at stage V12 or at later stages of maize 
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growth [9]. Crop height at V12 was not a good indicator of grain yield (R2 = 0.60 and 

RMSE = 1.97 Mg·ha−1). These results partially agree with those of Yin et al. [41], who 

presented crop height as a good predictor of yield in irrigated maize, varying between R2 = 

0.52 and 0.86, depending on the year in a three-year experiment. 

The WDRVI was the best spectral index obtained from the VEGCAM-Pro camera 

mounted on the drone in estimating yield at the V12 stage of maize development. This was 

in line with the outcomes of multiple rank analysis, which identified WDRVI as the best 

index for discriminating between total N applications at applications above 250–300 

kg·ha−1. The results agree with those from other studies, although those were conducted 

with data at a very different spatial resolution using the Moderate Resolution Imaging 

Spectroradiometer (MODIS, 250 m pixel resolution). For example, Sakamoto et al. 

developed a practical method for near real-time prediction of U.S. maize yield based on the 

WDRVI taken 7–10 days before the corn silking stage [42,43]. These authors found a 

strong linear correlation with maize grain yield at both field and regional scales. Wang et al. 

derived phenology-adjusted spectral indices from MODIS data to be used in developing 

linear regression models with maize yield data [44]. In this case, the peak correlation 

between the WDRVI and yield was detected 85 days after green-up date (R2 = 0.506). The 

correlation was generally low for NDVI (R2 = 0.385) and no obvious peak correlation 

existed. In other cases, the WDRVI also performed better than the NDVI with MODIS 

based data, and has been shown to be useful for assessing early stages of plant stress in 

maize and soybeans [45]. As far as we are aware, the WDRVI has been mainly applied in 

maize studies using MODIS data with 250 m pixel resolution. In the present study, it has 

been shown that good results in estimation of N nutritional state and grain yield can also be 

obtained at a very high resolution with data from UAV-mounted cameras.  

 

4. Conclusions  
This study was motivated by the growing demand for commercial UAV services in 

agriculture and the need to adjust N fertilization rates applied to maize crops. With this in 

mind, one green-based (GRVI) and two red-based (NDVI and WDRVI) vegetation indices, 

as well as SPAD and crop height (derived from a photogrammetric process), were analysed 

in order to determine crop status at stage V12 (12 leaves with visible leaf collars, just 

before flowering), associated with different amounts of supplied N. 
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The results obtained led us to conclude that the spectral index derived from the 

VEGCAM-Pro camera that explained the greatest variability between treatments was the 

WDRVI. This index had previously only been applied in maize studies at moderate 

resolution (250 m per pixel) with MODIS data on phenological characterization and yield 

prediction. In the present case study, at very high spatial resolutions, WDRVI was the best 

index for distinguishing between treatments with applications above or below 250–300 

kg·N·ha−1 and at grain yield prediction at the V12 stage. NDVI and crop height also showed 

no significant response to extra N application at the economic optimum rate of fertilization, 

demonstrating their potential as yield predictors at V12 stage. However, SPAD and GRVI 

either underestimated or overestimated the optimum N rate.  

Although there would theoretically be little interest in increasing N application 

above 239.8 kg·N·ha−1, the study does show a tendency for increased grain yield with 

higher N rates. This could be of particular interest in maize-growing areas such as the Ebro 

valley which have the appropriate environmental conditions and irrigation facilities to attain 

such high yields.  

The ranking of the spectral indices and crop height revealed that the treatments that 

conferred the greatest responses to N fertilization were those which combined inorganic 

and organic N with applications of 350 or 450 kg·N·ha−1. The proposed ranking system, 

which is based on the response of the crop to different multispectral indices and crop 

height, may help to overcome the uncertainty of decision-making based on a single index, 

such as the NDVI, which is the approach most frequently used in association with data 

obtained from multispectral cameras. 
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Abstract 

Vegetation indices (VIs) derived from active or passive sensors have been used 

for maize growth monitoring and real-time nitrogen (N) management at field scale. In 

the present multi-location two-year study, multispectral VIs (green and red-based 

indices), SPAD and plant height (PltH) measured at V12-VT stage of maize 

development, were used to determine in-season N fertilization, and to predict grain 

yield in high yielding environments. Evaluation of the available N (in the top-soil layer, 

0-30 cm) slightly improved the relationship between the VIs, SPAD and PltH with grain 

yield or with applied N rates. Green-based VIs were the most accurate indices to predict 

grain yield and to estimate the grain yield optimum N rate (GYONr) (216.8 kg N ha−1), 

but under-estimated the grain yield optimum N available (GYONa) (248.6 kg N ha−1). 

Red-based VIs slightly overestimated the GYONr and GYONa, while SPAD highly 

underestimated them. The green chlorophyll index (GCI) was particularly interesting 

due to its ability to distinguish maize that will yield less than 84% of the maximum 

yield. Hence, N deficiencies could be detected and corrected at least up to 84% of the 

maximum yield. The economic optimum nitrogen rate (EONr) and economic optimum 

nitrogen available (EONa) were determined below the GYONr and the GYONa, 

demonstrating that maximum grain yield strategies in maize are not normally the most 

profit-earning for farmers. Despite the usefulness of multispectral images to aid N 

management, the adoption of remote sensing technologies by farmers is still limited. 

Further research is needed to fine-tune the response of maize to N applications when 

deficiencies are detected at V12 stage. Airborne images could be useful for practical 

farming implementation because of their high potential to cover large cropping surfaces 

at a moderately low cost. 

 

Keywords: Vegetation index, airborne images, maize, N fertilization, economic return 

 

Abbreviations: Nitrogen, N; OM, organic matter; N rate, Nrate; available N, Navailable; 

optimum N, Nopt; Nitrogen use efficiency, NUE; Unmanned aerial vehicles, UAV; 

Digital Multi-Spectral Camera, DMSC; Grain yield optimum N rate, GYONr; Grain 

yield optimum N available, GYONa; Economic optimum nitrogen rate, EONr; 

Economic optimum nitrogen available, EONa. 
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1. Introduction 

Productivity and resource-use efficiency are desirable agronomic, economic and 

environmental goals in high-demanding resource crops such as maize (Zea mays L.) 

(Cardwell, 1982; Liang and Mackenzie, 1993). Nitrogen (N) is the most limiting 

nutrient for crop production in many of the world's agricultural areas (Fageria and 

Baligar, 2005). Nitrogen efficient use is important for economic and environmental 

sustainability, especially in high N demanding crops such as maize (Stanger and Lauer, 

2008). Insufficient application of N can have important economic consequences, 

whereas an excessive fertilization implies wasting resources while increasing the 

environmental pollution risk (Khan et al., 2001). Nitrogen fertilization can account for 

up to 30% of the total maize production cost (Lloveras and Cabases, 2015), having a 

huge impact on the crop economic returns. Hence, N fertilization clearly impacts the 

economic return of maize in high yielding environments (>16 Mg ha−1 of grain yield) 

such as those of the Ebro Valley (NE Spain). In our area, maize N extractions are about 

250-300 kg ha−1 (Berenguer et al., 2008; Yagüe and Quílez, 2010; Cela et al., 2011), 

therefore the N rates applied are high in order to cover maize N requirements. 

Temporal and spatial variation of crop N requirements (Varvel et al., 1997), 

together with within-field soil N supply variability, can influence the assessment of N-

field availability (Maresma and Ketterings, 2017). Nitrogen fertilization of extensive 

crops, such as maize, is mostly underpinned by the simplification of fieldwork 

management and by avoiding under-fertilization risk. The practice of applying high N 

rates (Nrates) at early crop stages can trigger over-fertilization. This occurs because, 

under favourable soil moisture conditions, approximately one-third of the total N uptake 

occurs after pollination (Hanway, 1962). In fact, the worldwide N recovery in crops is 

usually less than 50% (Fageria and Baligar, 2005), with the impact that this supposes on 

N resource efficiency and the pollution of agroecosystems (Bausch and Duke, 1996).  

Determination of within-field soil spatial patterns seems to be a useful tool for N 

management but requires the collection and analysis of a large number of samples. Soil 

(Magdoff et al., 1984), plant or chlorophyll concentration (Wood et al., 1992) sampling 

is costly, time-consuming and barely captures the spatial variability that is often present 

within plots. However, while plant analysis and chlorophyll meter readings have been 

used for confirmation of N responsive sites, soil tests for available N (Navailable) 

successfully predicted N crop needs in arid regions, but had less success in humid 

regions (Wood et al., 1993). Therefore, there is a need to develop a faster, more 
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accurate and possibly more economical method to gather crop information and to 

estimate and adjust N requirements (Sripada et al., 2005). 

Due to the link between net photosynthesis and steady-state fluorescence at 

airborne spectral level, field-spectral imaging is a very useful technology for crop 

growth monitoring and real-time management at field scale (Daughtry et al., 2000; 

Zhang et al., 2011; Zarco et al., 2013). Vegetation indices (VIs) derived from active or 

passive sensors have been used to distinguish temporal patterns in crop development 

(Strachan et al., 2002; Quemada et al., 2014). For example, VIs have been used for 

detecting N stress in maize at early development stages (V4-V7 stage, 4-7 leaves with 

visible leaf collar) (Sripada et al., 2006; Ma et al., 2014; Jones et al., 2015), though they 

have not been successfully implemented as yet in farming practices. This was attributed 

to the strong background soil reflectance. Hence, maize ground cover is vital if the pixel 

resolution does not allow removal of soil pixels (Scharf and Lory, 2002). However, 

image acquisition after V8 stage (8 leaves with visible leaf collar) seems to be 

consistently useful to determine maize N status and to predict yield (Bausch et al., 2008; 

Bausch and Khosla, 2010; Isla et al., 2011; Cilia et al., 2014; Quemada et al., 2014; 

Maresma et al., 2016), increasing progressively its accuracy up to VT stage (tasseling). 

Image acquisition at V12 stage (12 leaves with visible leaf collar) is generally preferred 

to other alternatives, because maize has already taken up about 40% of the total N 

(Ritchie et al. 1997) and crop response to N fertilizer is still high if N deficiencies are 

detected at this stage. Image acquisition after VT stage is affected by colour disturbance 

of the tassels, reducing the correlation between VIs and N status or yield (Solari et al., 

2008). Moreover, after VT the maize response to extra N application is more limited 

because the crop has less time than from the V8 to V12 stage to absorb the applied N 

(Shanahan et al., 2008). 

Despite the usefulness of multispectral images to aid N management, the 

adoption of remote sensing technologies by farmers is limited (Robert, 2002). Different 

technologies have been used for this purpose. Satellite images normally have lower 

spatial and temporal resolution and, in some areas, satellite images could be disturbed 

by cloud cover and/or sprinkler irrigation during the period of interest (Hunt et al., 

2005). Unmanned aerial vehicles (UAV) have tremendous potential for high-resolution 

requirements, as for example for detailed site-specific weed control treatments in early 

post-emergence (Peña et al., 2013). Such high-resolution is probably not necessary for 

determining maize N status at V12, and airborne images could be useful for practical 
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farming implementation because of their high potential to cover large cropping areas. 

While numerous studies have been conducted using remote sensing techniques 

to determine N status and predict maize grain yield (Daughtry et al., 2000; Bausch et al., 

2008; Bausch and Khosla, 2010; Isla et al., 2011; Cilia et al., 2014; Quemada et al., 

2014), no studies have been made comparing the effectiveness of these technologies in 

high-yielding irrigated environments where, even if N stress is not clearly manifested, a 

reduction in yield can occur.  

The objectives of the present study were to use VIs derived from multispectral 

aerial images: 1) to distinguish among N status of maize at V12 stage, 2) to predict 

grain yield and economic return, and 3) to determine the amount of N needed to achieve 

maximum grain yields and economic return in high-yielding environments. 

 

2. Materials and methods 

2.1. Study area 
 

 
Figure 1. Location of the study area and detail of the experimental fields: Almacelles 
(AL) and Gimenells (GI). 
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A two-year experiment (2014-2015) was carried out in two long-term N 

fertilization trial fields located in Lleida (NE Spain): Almacelles (AL) (41°73’ N, 0°50’ 

E) and Gimenells (GI) (41°65’ N, 0°39’ E) (Figure. 1).  
 
Table 1. Chemical and physical soil properties of the experimental fields (2014). 

Soil properties Almacelles (AL) Gimenells (GI) 
Depth, cm 0-30 30-60 60-110 0-30 30-60 60-110 

Sand, % 42 43 17 39 38 45 

Silt, % 33 36 63 40 42 38 

Clay, % 25 21 20 21 20 17 

pH 8.2 8.4 8.4 8.3 8.3 8.3 

Organic matter, % 3.3 - - 2.2 1.40 0.60 

Bulk density, g cm-3 1.64 - - 1.40 1.56 1.63 

EC, dS m−1 0.19 0.17 0.22 0.20 - - 

P (Olsen), mg kg−1 90 - - 31 - - 

K (NH4Ac), mg kg-1 383 - - 217 - - 

Soil class† Typic Calcixerept Petrocalcic Calcixerept 

Precedent crop maize maize 
† Soil Survey Staff (2014) 
 

In both locations and years conventional tillage was applied, including disc 

ploughing and cultivation to a depth of 30 cm to incorporate maize stover and to prepare 

the soil for the next sowing. Before planting maize in 2015, GI received three extra 

cultivation passes to mitigate an irrigation system fault that cause flooding during the 

previous winter. This did not affect the normal planting date in early April. The hybrid 

used in both fields was PR33Y72 (FAO cycle 600), at a rate of 90,000 plants ha−1, with 

71 cm between rows. Two herbicides treatments were applied: one at pre-emergence to 

control the majority of weeds (S-Metolachlor 40% and Terbuthylazine 18.75%, at 3 L 

ha−1) and the other at post-emergence to control Abutilon theophrasti M. and Sorghum 

halepense L. (Dimethylamine salt of dicamba 48.2% at 1 L ha−1 and Nicosulfuron 6% at 

0.75 L ha−1).  

Maize was harvested the last week of October with an experimental small-plot 

combine. Grain yield was determined in the two central rows (1.5×10 m) of each plot. 

To adjust grain yield to 14% moisture content, moisture content was determined in a 

250 g sample (GAC II, Dickey-John, Auburn, IL, USA).  
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The economic return of each plot was calculated as the difference between the 

income produced by the selling of the grain yield and the cost of the N fertilizer applied. 

The N:Maize price ratio is defined as the price per kilogram of N divided by the price 

per kilogram of maize (price ratio = price of fertilizer N, € kg−1 N/price of maize, € kg−1 

maize) (Sripada et al. 2005). In the present study, the N:Maize price ratio was 5.3:1, 

considering a N price (N fertilizer plus application cost) of 0.90 € kg−1 and a maize 

grain price of 0.17 € kg−1.  

2.2. Fertilizer treatment 
Five different inorganic fertilizer Nrates: 0, 100, 200, 300 and 400 kg N ha−1 (N0, 

N100, N200, N300 and N400, respectively), with four replications under a randomized 

block design were considered. The N fertilization treatments were randomized at the 

beginning of the experiments (2002 and 2010, in GI and AL, respectively) and applied 

in the same plots the following seasons. The N fertilizer (33.5% N, as ammonium 

nitrate) was manually applied and split into two equal sidedress applications (50% at 

V3-V4 and 50% at V6-V7 stage) for all plots except for N400 treatment, where a third 

sidedress was applied at V10 stage. Thus, the N distribution in the N400 treatment was 

37.5% at V3-V4, 37.5% at V6-V7 and 20% at V10 stage. The different N application of 

N400 was done in order to increase N use efficiency (NUE) and to reduce the risk of 

pollution by nitrate leaching associated with high Nrates at early stages. Phosphorus and 

potassium were also applied every two years in both locations before planting, at rates 

of 150 kg P2O5 ha−1 and 250 kg K2O ha−1, to avoid deficiencies of those elements. 

2.3. Remote and proximal sensing: data acquisition and analysis 
A Digital Multi-Spectral Camera (DMSC) with a DMSC-2k System sensor 

(Specterra-Services, Australia), mounted on an aeroplane (operated by RS Servicios de 

Teledetección, Lleida, Spain), was used to acquire multispectral aerial images of the 

experimental fields at V12 stage. The surveys were conducted under optimum flight 

conditions 880 m over the experimental plots on 30th and 25th of June 2014 and 2015, 

respectively. The time of flight was less than 1 hour between 12:30 and 1:30 h (GTM) 

on sunny days without cloud disturbance. The DMSC-2k System sensor consists of a 4 

interline transfer, a 2048×2048 pixel charge-coupled device (CCD) with a Nikon F 

mount, and 24-28 mm fixed focal length lenses. The spatial and radiometric resolutions 

were 0.25 m and 14 bit (recorded as 16 bit), respectively. The camera spectral resolution 

included four independent and replaceable narrow bandwidth spectral filters, which 
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were used to capture four spectral bands of 20 nm range width and centred at 450 nm 

(blue), 550 nm (green), 675 nm (red) and 780 nm (near infrared). The spectral bands 

were pre-processed by the provider to compensate for mis-registration due to lens 

distortion (less than 0.2 pixels) and for scene brightness due to the Bi-directional 

Reflectance Distribution Function (BRDF).  

Seven different VIs reported in the literature (NDVI, GNDVI, GCI, SAVI, 

GSAVI, WDRVI and EVI) were computed (Table 2). Then, to summarize the response 

of the different N treatments to each VI, fifty points within each individual experimental 

plot (excluding 1m buffers from the borders), were sampled and the VI values extracted. 

Soil distortion did not affect the VIs because soil pixels were avoided in the analysis. 

In addition to the VIs, the heights of five plants were manually measured in each 

experimental plot at VT stage (10 to 15 days after image acquisition). Plant height 

(PltH) was considered until the last leaf to avoid differences caused by tassel size and 

type, which varies with both plant population and variety (Duncan et al., 1967). Non-

destructive chlorophyll readings were also taken on plant leaves at the VT stage in order 

to verify the results provided by the VIs. The measurements were taken using a small, 

lightweight, portable, hand-held meter (SPAD-502, indirect chlorophyll meter; 

MinoltaCorp, Ramsey, NJ). In agriculture, the SPAD meter is widely accepted to 

improve N management by predicting N status and determining fertilization 

requirements (Bonneville and Fyles, 2006). SPAD values indirectly evaluate the leaf 

chlorophyll content based on the amount of light transmitted by the leaves at two 

different wavelengths: red (650 nm) and near infrared (940 nm).  

In the present study, SPAD values were determined by sampling three different 

parts of the ear leaf (base, middle and top) in five central row plants in each 

experimental plot (15 measurements per plot). The measures were then averaged to 

obtain a SPAD value per plot.  

Soil NO3
−- N was determined before planting at a depth of 0-30 cm by a 

composite of five individual cores. Soil nitrates were extracted using deionized water 

and measured using test strips with a Nitrachek® device calibrated according to the 

standard procedure (Bischoff et al., 1996). The Navailable for maize during the growing 

season was determined by the sum of the Nrate applied in the experimental plots and the 

NO3
—N determined at planting: Navailable = Nsoil at planting + Nrate.  
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Table 2. Vegetation indices (VIs) computed in the study to test the usefulness of 
multispectral aerial images to determine maize N status and predict grain yield†. 
 Vegetation index Formula Reference 

 

1) 
NDVI (Normalized 

Difference Vegetation Index) 
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑅𝑅

 Rouse et al., 1974 

2) GNDVI (Green NDVI) 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝐺𝐺
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝐺𝐺

 
Gitelson and 

Merzlyak, 1998 

3) GCI (Green Chlorophyll 

Index) 
𝑁𝑁𝑁𝑁𝑁𝑁
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝐺𝐺

− 1 
Gitelson et al., 2003; 

Gitelson et al., 2005 

4) ǂSAVI (Soil Adjusted 

Vegetation Index) 
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑅𝑅

(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑅𝑅 + 𝐿𝐿)
· (1 + 𝐿𝐿) Huete, 1988 

5) ǂGSAVI (Green SAVI) 
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝐺𝐺

(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝐺𝐺 + 𝐿𝐿)
· (1 + 𝐿𝐿) Sripada et al., 2006 

6) WDRVI (Wide Dynamic 

Range Vegetation Index) 
(∝ ·  𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑅𝑅)
(∝ ·  𝑁𝑁𝑁𝑁𝑁𝑁 +  𝑁𝑁𝑅𝑅𝑅𝑅)

 Gitelson, 2004 

7) EVI (Enhanced Vegetation 

Index) 
𝐺𝐺 

𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝐶𝐶1𝑁𝑁𝑅𝑅𝑅𝑅 − 𝐶𝐶2𝐵𝐵𝐵𝐵𝐵𝐵𝑅𝑅 + 𝐿𝐿2

 Huete et al., 2002 

ǂ𝐿𝐿 = 1 − 2·𝑠𝑠·(𝑁𝑁𝑁𝑁𝑁𝑁−𝑁𝑁𝑅𝑅𝑅𝑅)·(𝑁𝑁𝑁𝑁𝑁𝑁−𝑠𝑠·𝑁𝑁𝑅𝑅𝑅𝑅)
(𝑁𝑁𝑁𝑁𝑁𝑁+𝑁𝑁𝑅𝑅𝑅𝑅)

 
†Green, Red, Blue and NIR are the reflectance of the Green, Red, Blue and Near 
Infrared light. L is a correction factor (calculated by the formula presented at the bottom 
of the table), where s is the slope of the soil line. α is a weighting coefficient (α=0.2). 
In the EVI calculation, G is a gain factor, C1, C2 are the coefficients of the aerosol 
resistance term and L2 functions as the soil-adjustment factor (L2=1; C1=6; C2=7.5 
and G=2.5). 
 

In order to compare the results of the different Nrates and Navailable among fields 

and years, indices ratios were calculated dividing the plot average value of VIs, SPAD, 

PltH, grain yield and economic return by the maximum value in each field and year, 

which was normally obtained in the over-fertilized plots (400 kg N ha−1). Furthermore, 

the calculated ratios of VIs, SPAD and PltH were fitted to linear-plateau models with 

the Nrates and Navailable, and with grain yield to determine the accuracy of these variables 

to determine maize N status and to predict grain yield. 

2.4. Statistical analysis 
The experiment was analysed as a split-plot in time with completely randomized 

blocks and four replications. The location (GI or AL) was the main plot, and the Nrates 



Chapter III 

 78 

(N0, N100, N200, N300 and N400) were subplots. The ratios calculated from the 

extracted values in the sampling points were subjected to analysis of variance using the 

Mixed Model of the Statistical Analysis System (JMP Pro 12, SAS Institute, Cary, 

USA), considering Nrates, the year and the location as fixed factors and the replication as 

random effect. In addition, the grain yield and economic return means were separated 

by the LSMeans Tukey HSD test (p<0.05), with levels not connected by the same letter 

considered significantly different. 

Linear-plateau regression analyses were also carried out: 1) between the ratios of 

the VIs, SPAD, PltH and grain yield with the Nrates or Navailable to estimate the grain yield 

optimum N rate (GYONr) and the grain yield optimum N available (GYONa) (Cerrato 

and Blackmer, 1990), 2) between the ratios of the economic return with the Nrates or 

Navailable to determine the economic optimum nitrogen rate (EONr) and the economic 

optimum nitrogen available (EONa), and 3) between the ratios of the VIs, SPAD and 

PltH with the ratios of grain yield to determine their usefulness to predict grain yield at 

the V12 stage. Analysing together locations and years, the GYONr, the GYONa, the 

EONr and the EONa were determined where the plateau was reached, determining the 

non-responsiveness amount of N (saturation point) to extra N application. 

  

3. Results and discussion 

3.1. Vegetation indices, SPAD and plant height responses to N rates and available N  
 Table 3 presents the mean values and the ANOVA of the VIs at V12 

stage (n=50 for each plot), PltH and SPAD at VT stage (n=15 for each plot), grain yield 

and economic return (n=4) for the different Nrates applied in the experimental plots. The 

rates are sorted according to the total amount of applied N.  

The control treatment (0 kg N ha−1) presented the lowest VIs, SPAD and PltH 

values in both locations (p-value<0.05), which were more accentuated in GI probably 

because of the longer period of time (13 years) without any N application and its lower 

soil organic matter (OM) content producing less soil N mineralization. Higher VIs 

values and PltH in 2015 were observed in the N0 treatment in GI, probably because of a 

higher availability of N during this growing season. The higher summer temperatures in 

2015 together with the extra ploughing work done before planting could have 

contributed to mineralization of the OM (Kirschbaum, 1995; Katterer et al., 1998) and, 

consequently, to N availability.  



 

 

Table 3. Analysis of variance and mean values of the vegetation indices (n = 50 for each plot), crop height (n = 15 for each plot), SPAD (n = 15 
for each plot), yield and economic return (ECO-return) (n = 4) for the different nitrogen rates (Nrates) in the experiments of Almacelles (AL) and 
Gimenells (GI) during the 2014 and 2015 growing seasons. The results are presented as ratios dividing the indices values or the yield by the 
maximum observed in each field and year. 

Statistics NDVI GNDVI GCI SAVI GSAVI WDRVI2 EVI SPAD‡ HEIGHT‡ YIELD ECO-return 
2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 

R2 model 0.85 0.94 0.94 0.56 0.94 0.94 0.91 0.96 0.90 0.99 0.99 

 
Almacelles (AL) 

0 0.92 0.91 0.80 0.77 0.63 0.64 0.95 0.94 0.82 0.79 0.51 0.35 0.89 0.92 0.62 0.69 0.84 0.90 0.42 0.53 0.46 0.58 
100 0.95 0.94 0.90 0.88 0.79 0.80 0.97 0.96 0.92 0.90 0.67 0.54 0.93 0.96 0.88 0.80 0.90 0.97 0.75 0.79 0.80 0.83 
200 0.96 0.95 0.93 0.91 0.85 0.85 0.98 0.96 0.94 0.92 0.76 0.62 0.96 0.97 0.94 0.94 0.93 0.98 0.92 0.94 0.96 0.97 
300 0.97 0.96 0.94 0.93 0.88 0.88 0.98 0.97 0.95 0.94 0.78 0.69 0.96 0.98 0.95 0.96 0.95 0.98 0.94 0.96 0.95 0.96 
400 0.99 0.97 0.97 0.95 0.94 0.91 0.99 0.98 0.98 0.96 0.90 0.78 0.99 0.98 0.95 0.96 0.99 0.99 0.96 0.97 0.94 0.93 

 
Gimenells (GI) 

0 0.71 0.88 0.49 0.65 0.32 0.53 0.83 0.91 0.55 0.67 -1.49 -0.31 0.61 0.80 0.49 0.59 0.63 0.83 0.19 0.34 0.22 0.37 
100 0.90 0.88 0.79 0.81 0.73 0.78 0.90 0.88 0.80 0.83 0.49 0.47 0.86 0.87 0.85 0.86 0.95 0.91 0.50 0.61 0.53 0.63 
200 0.96 0.96 0.97 0.94 0.94 0.91 0.99 0.97 0.97 0.95 0.59 0.52 0.90 0.94 0.96 0.95 0.88 0.98 0.82 0.84 0.87 0.86 
300 0.98 0.98 0.98 0.98 0.96 0.97 0.98 0.99 0.94 0.99 0.85 0.77 0.97 0.96 0.93 0.93 0.94 0.96 0.88 0.93 0.89 0.92 
400 0.98 0.98 0.98 0.98 0.96 0.96 0.98 0.99 0.95 0.98 0.80 0.78 0.94 0.96 - 0.97 - 0.95 0.93 0.91 0.92 0.86 

 
ANOVA over locations and years 

Location (L) ** ** NS ** ** ** ** ** * ** ** 
N rates (N) ** ** ** ** ** ** ** ** ** ** ** 

L × N ** ** ** ** ** ** ** * ** ** ** 
Error a - - - - - - - - - - - 

Year (Y) * NS ** NS NS NS ** NS ** ** ** 
Y × L ** ** ** NS ** ** * NS NS NS NS 
Y × N ** ** ** * * ** ** NS ** ** ** 

Y × N × L ** ** ** NS ** ** ** NS ** NS NS 
Error b - - - - - - - - - - - 

 

NS No significance      * Significant at p-value < 0.05     ** Significant at p-value < 0.01 
 

 
‡ N400 values in Gimenells 2014 were missing. ANOVA was calculated without N400 treatment for these variables. 
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The N100 treatment presented significantly higher VIs, SPAD and PltH values 

than the control treatment (N0), but lower than the Nrates above 200 kg N ha−1. Indeed, 

there were very little and non-significant differences for most VIs, SPAD and PltH at 

Nrates between 200-400 kg N ha−1. Previous studies in the area determined the need for 

290 kg Navailable ha−1 (0-90 cm) to achieve maximum maize grain yields (Berenguer et 

al., 2008), with extractions up to 386 kg N ha−1 (Biau et al., 2012). The N400, and 

probably the N300 treatment, could easily provide enough N to cover maize’s 

extractions. Though the Nrate of 200 kg N ha−1 did not seem to cover maize N 

requirements, no N deficiencies were detected by the studied indices at V12-VT stage. 

The 200 kg N ha−1 applied, together with the initial soil N content at planting plus the N 

mineralization, seemed to provide enough N for maize development, at least until V12-

VT, when maize has already absorbed around 40-50% of the total N (Hanway, 1962).  

All VIs, SPAD and PltH were able to differentiate among different Nrates of the 

experiment (p-value<0.01), showing their usefulness for predicting N maize status at 

V12 stage (Ma et al., 1996; Solari et al., 2008; Xia et al., 2016). Most of the analysed 

indices statistically differentiated locations (GI-AL) but not years (2014-2015), except 

for the GCI, which differentiated years but not locations. This finding is considered very 

interesting, because GCI could be used for determining maize N status in different 

locations without changing its distribution. 

The interaction between location and Nrates (L×N) was significant, probably due 

to the higher indices values observed in AL with respect to GI in the N100 treatment. 

These differences between locations could be due to field conditions that contribute to 

soil fertility (Tremblay et al., 2011), as well as to different soil OM contents in AL than 

in GI, which would have produced higher N mineralization in Al than GI (Table 1). As 

mentioned above, the difference in the quantity of N mineralization in the two fields 

was evident. This can be observed with the grain yields obtained in the control 

treatments (N0), where AL (9.0 Mg ha−1) nearly doubled those of GI (4.8 Mg ha−1). 

Moreover, interactions between year and Nrates (Y×N) and between year and location 

(Y×L) were identified for most indices, except for SPAD. These interactions could 

mostly be explained by the better N status of the N0 treatment in GI in 2015 compared 

to 2014. The extra ploughing done before planting in 2015 probably developed 

oxidative conditions that contributed to increasing OM mineralization (Sinsabaugh, 

2010), and consequently, the Navailable during the growing season.  
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The VIs, PltH and SPAD were highly correlated with the Nrates applied (Figure 

2) and with the Navailable (Figure 3). All indices were fitted to a linear-plateau model 

when compared with the applied Nrates or Navailable. The GYONr and GYONa were 

determined when the plateau was reached (saturation point), indicating where the VIs, 

SPAD and PltH did not increase with additional N inputs. 

Green-based VIs obtained better correlations than red-based VIs with the Nrates 

or Navailable (Figures 2 and 3). Indeed, green-based VIs have been normally considered 

more useful for assessing leaf chlorophyll variability when the leaf area index is 

moderately high (Gitelson et al., 1996), as it is in maize. Sripada et al. (2005) showed 

the usefulness of green-based VIs at predicting the GYONr (R2=0.67) with aerial CIR 

(colour infrared) photographs. Bausch and Khosla (2010) used the GNDVI to determine 

the GYONr (R2=0.91) with QuickBird multi-spectral imagery (satellite). In our study, 

the highest correlations between Nrates and VIs were found for GCI (R2=0.80), GSAVI 

and GNDVI (R2=0.73). However, the best index to differentiate among Nrates was SPAD 

at VT stage (R2=0.89). Red-based VIs showed low correlation with the Nrates. The R2 

coefficient was 0.44 for PltH, 0.45 for EVI, SAVI, WDRVI and 0.51 for NDVI. 

The response of the VIs, SPAD and PltH to the Navailable for the crop in the 

topsoil layer (0-30 cm) was quite similar to that observed for the Nrates. However, a 

consistent increase in the R2 coefficient when fitting linear-plateau models was 

observed due to the extra information (initial soil NO3
−-N) added to the model (Figure 

3). The use of the Navailable explained better some variations of the indices values for the 

same Nrates applied. Thus, in-season nitrate analysis can be used for the fine-tuning of 

remote sensing prediction of N sufficiency rates (Papadopoulos et al., 2014). 

The GYONr and the GYONa undoubtedly gives interesting information for N 

management since they allow to differentiate between N-deficient and N-sufficient plots 

(Quemada et al., 2014). All VIs and PltH achieved saturation between applied Nrates of 

202.9 and 235.0 kg N ha−1. The SPAD units were much lower, achieving saturation at 

142.1 kg N ha−1. Low GYONr determined by the SPAD at reproductive stage (R1) was 

previously reported in a 5 Nrates study with lower yielding conditions by Liu and 

Wiatrak (2011). In their study, SPAD was able to distinguish between Nrates up to 135 

kg N ha−1. Likewise, in high-yielding environments, Malek (2015) reported saturation 

of SPAD at 173 kg N ha−1, an amount of N insufficient to achieve maximum maize 

grain yields. Therefore, in high-yielding environments, the usefulness of SPAD as a 

predictor of maize N status is probably limited. 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Response of (a) NDVI, (b) GNDVI, (c) GCI, (d) SAVI, (e) GSAVI, (f) WDRVI2, (g) EVI vegetation indices at V12 stage, (h) SPAD 
and (i) plant height (PltH) at VT stage to different nitrogen rates (Nrates) tested in the experiments. Saturation N dose was determined when there 
was no response to higher N fertilization. The results of Almacelles (AL) and Gimenells (GI) are presented as ratios dividing the indices values 
by the maximum observed in each year. ‘Both’ indicates that the two fields were analysed together. 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Response of (a) NDVI, (b) GNDVI, (c) GCI, (d) SAVI, (e) GSAVI, (f) WDRVI2, (g) EVI vegetation indices at V12 stage, (h) SPAD 
and (i) height at VT stage to the available nitrogen in the top soil layer (0-30 cm) (Navailable) determined in the experiments. Saturation N dose was 
determined when there was no response to higher N fertilization. The results of Almacelles (AL) and Gimenells (GI) are presented as ratios 
dividing the indices values by the maxim. 
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Generally, the GYONr determined by the green-based VIs (≈210 kg N ha−1) was 

lower than that determined by the red-based VIs (≈230 kg N ha−1). The GYONa was 

similar to the GYONr for the green-based Vis, while there was an increase to 250-270 

kg Navailable ha−1 for red-based VIs. SPAD increased the GYONa by 27% compared with 

its determined GYONr, but even so the GYONa was highly underestimated. The 

relationship between Navailable and the studied indices could also help to explain the 

better N status seen in 2015 compared to 2014 in GI, when higher indices values in the 

N0 treatment were correlated with higher Navailable (Figure 3).  

In our conditions, the GYONa determined by the VIs for maize production was 

between 200 and 270 kg N ha−1. These amounts of available N were similar to those 

reported in other studies in the Ebro Valley (Berenguer et al., 2009; Salmerón et al., 

2010; Biau et al., 2013; Cela et al., 2013). Thus, the tested VIs enabled the spatial 

characterisation of N status and were able to assess crop performance even under low-N 

stress (Zaman-Allah et al., 2015).  

3.2. Grain yield and economic return responses to N rates and available N  
Grain yield and economic return varied significantly according to Nrates (p-

value<0.01), location (p-value<0.01) and year (p-value<0.05) (Table 4). Moreover, 

interactions between location and Nrates (L×N), year and location (Y×L) and year and 

Nrates (Y×N) were detected and can be explained by the reasons described above.  

The maximum grain yields were achieved in the N400 treatments in AL and GI 

(19.96 and 17.0 Mg ha−1, respectively). However, there were small differences in grain 

yields among the highest Nrates (200-400 kg N ha−1) in each location. These findings 

agree with Maresma et al. (2016) and Yagüe and Quílez (2015), who respectively 

reported GYONr of 239.8 and 300 kg N ha−1, in our conditions. This suggests that in 

high-yielding environments, if N is provided when the crop needs it, maize efficiently 

uptakes the high N rates and translates them into grain yield. It is important to notice 

that Nrates were split into two equal applications during the growing period, with the aim 

of increasing N efficiency (Fageria and Baligar, 2005). 

Despite the observed tendency of increased grain yield above the N200 

treatment, there were no significant differences between treatments. Grain yields 

increased from 18.8 and 15.1 to 19.4 and 16.8 Mg ha−1 in AL and GI, respectively. 

There was an average difference between the N200 and N400 fertilization treatments of 

0.66 Mg ha−1 in AL, whereas in GI the difference was 1.75 Mg ha−1. Moreover, the 
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lower grain yields achieved in GI compared with AL, made the differences in yield 

between Nrates more evident. The grain yield increased by 10.5% and 3.5% in GI and 

AL, respectively between the N400 and N200 treatments. These differences in grain 

yield between locations could be mainly explained by the lower soil capacity of 

providing N from OM mineralization of GI, and by other natural fertility conditions 

(Tremblay et al., 2011).  

 
Table 4. Analysis of variance and mean values of yield and economic return (ECO-
return) for the different nitrogen rates (Nrates) in Almacelles (AL) and Gimenells (GI) 
during the 2014 and 2015 growing seasons.  

Nrates and 
statistics 

  YIELD (Mg ha−1)   ECO-return (€ ha−1 x 1000) 

 
2014 2015 Both Years 

 
2014 2015 Both Years 

  

 
Almacelles (AL) 

0 
 

8.7 g 9.2 fg 9.0 d 
 

1.5 ef 1.6 ef 1.5 c 
100 

 
15.6 de 16.1 de 15.9 bc 

 
2.6 cd 2.7 bcd 2.6 b 

200 
 

19.1 a 18.4 abc 18.8 a 
 

3.1 a 3.0 ab 3.0 a 
300 

 
19.6 a 18.9 ab 19.2 a 

 
3.1 a 2.9 ab 3.0 a 

400 
 

20.0 a 18.9 a 19.4 a 
 

3.0 a 2.9 abc 3.0 a 

  
Gimenells (GI) 

0 
 

3.5 i 6.1 h 4.8 e 
 

0.6 h 1.0 g 0.8 d 
100 

 
9.1 g 11.0 f 10.0 d 

 
1.5 f 1.8 e 1.6 c 

200 
 

15.0 e 15.2 de 15.1 bc 
 

2.4 d 2.4 d 2.4 b 
300 

 
16.0 de 16.8 cde 16.4 bc 

 
2.5 d 2.6 cd 2.5 b 

400 
 

17.2 bcd 16.4 de 16.8 b 
 

2.5 d 2.4 d 2.5 b 

  
ANOVA over locations and years 

Location (L) 
 

                 ** 
 

                ** 
N rates (N) 

 
** 

 
** 

L × N 
 

** 
 

** 
Year (Y) 

 
* 

 
* 

Y × L 
 

** 
 

** 
Y × N 

 
** 

 
** 

Y × N × L   NS 
 

NS 
NS No significance    * Significant at p-value < 0.05    ** Significant at p-value < 0.01 

 

Consistently, with high grain yields, higher economic returns were found at high 

Nrates. Nevertheless, the maximum economic return was determined in an N200 

treatment in AL (3,068 € ha−1) and in an N300 treatment in GI (2,578 € ha−1). The 

economic return was mostly determined by grain yield at the studied N:Maize price 

ratio (5.3:1), so a slight reduction in grain yield was drastically penalized by the 

economic return. It was evident that, at higher N:Maize price ratios (worse relation of 
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prices for farmers), the efficiency of the N will affect more the economic return of the 

crop. Sripada et al. (2008) tested price ratios from 4:1 to 14:1 (N:Maize), so the 5.3:1 

price ratio used in our study was close to the optimum for farmers and highly affected 

by the grain yield. 

However, the economic return is important not only for N management in maize 

production system. In addition, the reduction in N contamination of groundwater has to 

be considered (Varvel et al., 1997). As EONr for maize is usually consistent with good 

environmental stewardship, it could therefore be used as a tool to determine maize N 

requirements (Sripada et al., 2008), and could be considered essential for responsible N 

management of maize crops.  

In the present study, when analysing both locations together, the ratios of grain 

yield and economic return were highly correlated with the Nrates (R2=0.82 and 0.77, 

respectively) and Navailable (R2=0.89 and 0.87, respectively) in linear-plateau models 

(Figure 4). In that case, as observed for the VIs, knowledge of the Navailable in the topsoil 

layer slightly increased the accuracy of the model. In our study, the GYONr and GYONa 

were determined at 216.8 and 248.6 kg N ha−1, respectively, agreeing with the values 

reported in previous studies in the area (Berenguer et al., 2008, 2009; Biau et al., 2013; 

Cela et al., 2013; Yagüe and Quílez, 2015). Maize N extractions were probably not 

completely covered by the determined GYONr and GYONa in the linear-plateau model. 

In similar conditions, Biau et al. (2012) reported maize N uptake of 386 kg N ha−1 for 

grain yields of 16 Mg ha−1. The difference between applied N and N uptake was 

probably supplied by soil OM mineralization during the growing season. In our 

conditions, the mineralized N could be around 100 kg N ha−1 (Berenguer et al., 2008). 

Moreover, the practice carried out in the study of incorporating maize stover into the 

soil over a long-term period contributed to increasing soil OM content which, in 

specific conditions of temperature and moisture, each year can mineralize and provide a 

significant amount of N (Biau et al., 2013).  

The EONr was lower than the GYONr because the NUE is reduced when 

applying higher N rates. Di Paolo and Rinaldi (2008) reported a reduction of 25 kg of 

maize per kg of N fertilizer when applying high amounts of N fertilizer (300 kg N ha−1) 

in irrigated maize in Mediterranean conditions (14 Mg maize grain ha−1). Therefore, the 

maize yield per kg of applied N is reduced when increasing the Nrates and, consequently, 

the last yield increment normally entails a decrease in crop profitability. This is because 

the income obtained per kg of grain is lower than the cost of the N fertilizer input. At an 



Chapter III 

 87 

N:Maize price ratio of 5.3:1, and considering both site location and year, the EONr was 

176.6 kg N ha−1 while the EONa was 209.4 kg N ha−1. Rudnick et al. (2016), in a 4-year 

experiment (2011-2014), determined the EONr between 196 and 252 kg of N ha−1 for 

non-irrigated maize that yielded 10-15 Mg ha−1 of grain. Although EONr could vary 

depending on the prices of maize and N (Sripada et al. 2008), Schlegel et al. (1996) 

concluded that in same fields, the EONr was relatively insensitive to changes in these 

prices. In their study, the EONr was similar for low-, medium-, and high-yielding years, 

concluding that application of insurance N reduced crop profitability. Therefore, as 

EONr and EONa could be considered stable in same fields, the EONr (176.6 kg N ha−1) 

and the EONa (216.8 kg N ha−1) reported in this study could be useful for N 

management in maize fields located in high yielding environments. 

 

 
Figure 4. Response of (a) yield to nitrogen rates (Nrates), (b) yield to available nitrogen 
(Navailable), (c) economic return to Nrates and (d) economic return to Navailable as tested and 
determined in the experiments. Saturation N dose was determined when there was no 
response to higher N fertilization. The results of Almacelles (AL) and Gimenells (GI) 
are presented as ratios dividing the yield and economic return values by the maximum 
observed in each year. ‘Both’ indicates that the two fields were analysed together. 
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3.3. Correlation between vegetation indices, SPAD and plant height with grain yield 
The calculated ratios of VIs at V12, SPAD and PltH at VT stage showed 

moderate to high correlations with the grain yield ratios (R2 between 0.45 and 0.90) 

(Figure 5). Several studies have proven the usefulness of red-based VIs, as NDVI, for 

predicting grain yield in different conditions (Sripada et al., 2006; Teal et al., 2006; 

Inman et al., 2007; Islam et al., 2011; Liu and Wiatrak, 2011; Shaver et al., 2011; 

Zaman-Allah et al., 2015). However, in the present study the green-based VIs and 

SPAD showed higher correlation with grain yield than the red-based VIs and PltH. In a 

two-year study and under similar conditions, Bausch et al. (2008) demonstrated the 

usefulness of green-based indices at V12 and later growth stages for predicting grain 

yield (R2=0.81) and its variability within a field for in-season N management. Isla et al. 

(2011) also reported better grain yield predictions with GNDVI and SPAD (R2=0.93) 

than with red-based VIs (R2=0.65). 

Higher grain yields were achieved when higher indices values were determined 

by VIs at V12 stage. However, there was variability among the highest indices values 

that was not clearly translated into grain response. Linear-plateau models were fitted to 

identify the saturation of the indices for predicting grain yield. This saturation provided 

information about the percentage of maximum grain yield up to which the index can 

differentiate. Therefore, the indices that presented saturation at higher grain yields were 

determined to be more useful due to their capacity to distinguish between nearly optimal 

maize N statuses.  

In this case, green-based VIs performed better than red-based VIs in determining 

maize vigour. This fact could be explained by problems of saturation associated with 

red-based indices for some types of vegetation during their later growth stages (Isla et 

al., 2011).  

The highest saturation of VIs for grain yield prediction corresponded to SAVI 

(at 86% of maximum yield). The usefulness for predicting leaf chlorophyll content and 

N status in maize in different growth stages of VIs derived from SAVI has been 

reported by authors such as Zhang et al. (2011) or Naveed Tahir et al. (2013). However, 

its low correlation with grain yield (R2=0.48) demonstrated that its usefulness for grain 

yield prediction is still uncertain. 



 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Response of (a) NDVI, (b) GNDVI, (c) GCI, (d) SAVI, (e) GSAVI, (f) WDRVI2, (g) EVI vegetation indices at V12 stage, (h) SPAD 
and (i) plant height (PltH) at VT stage to yield achieved at harvest in the experiments. Saturation N dose was determined when there was no 
response to higher N fertilization. The results of Almacelles (AL) and Gimenells (GI) are presented as ratios dividing the indices values by the 
maximum observed in each year. ‘Both’ indicates that the two fields were analysed together. 
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The best VI to predict grain yield was GCI, which was able to differentiate up to 

84% of the maximum yield showing high correlation with the linear-plateau model 

(R2=0.87). Hence, small N deficiencies in maize at V12 stage could be detected by GCI 

and solved by an extra N application. It is known that intra-field yield spatial variability 

can be occasioned by different stress problems (Liu et al., 2004; Pagano and Maddonni, 

2007), resulting in a grain yield variability of 15-38% with respect to non-stress 

conditions. Therefore, under N deficits these differences would probably be higher. 

Detection of maize N status that would yield less than 84% of maximum yield would 

improve the average maize grain yields and, consequently, N management. Similarly, 

the other two green-based VIs tested in the study showed similar trends to GCI at V12. 

GNDVI and GSAVI saturated at 80% and 79% of the maximum grain yield, 

respectively. 

Higher variability was observed among the red-based VIs. NDVI predicted grain 

yield accurately (R2=0.73), but was able to differentiate only up to 64% of the 

maximum yield. WDRVI and EVI were saturated at 45% and 58%, respectively, of the 

maximum yield, and, together with the PltH (56%), were the least accurate at 

differentiating among the highest grain yields. These results partially disagree with 

those presented by Maresma et al. (2016), who found the WDRVI to be the best grain 

predictor using a high-resolution UAV service. Nevertheless, although in the present 

study the plateau was not reached for high relative grain yield, there was a clear 

tendency of increasing WDRVI values when increasing the yield (Figure 5f). This trend 

might corroborate the potential of this index to distinguish yield at high Nrates. 

SPAD and PltH measured at VT proved their potential to predict grain yield. 

SPAD differentiated up to 86% of the maximum yield, confirming the usefulness of 

chlorophyll meters for predicting grain yield (Piekielek et al., 1995; Bonneville and 

Fyles, 2006; Solari et al., 2008). However, PltH was partially useful for grain yield 

prediction (differentiating up to 56% of the maximum grain yield). Although Liu and 

Wiatrak (2011) did not find a correlation between PltH and grain yield at V8 stage 

(R2=0.03), our results do concur with Yin et al. (2011), who predicted grain yield with 

PltH at VT stage (R2 between 0.52 and 0.86, depending on the year).  
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3.4. Vegetation indices, SPAD and plant height to predict GYONr, GYONa, EONr and 
EONa 

 The VIs, SPAD and PltH were useful at determining the GYONr (216.8 kg N 

ha−1) in our study. Linear-plateau models (R2=0.73-0.80) demonstrated that green-based 

VIs were saturated at rates of 210 kg N ha−1, which makes them the best predictors of 

GYONr at V12 stage. Despite red-based VIs at V12 stage or PltH at VT stage also 

predicting the GYONr (206-235 kg N ha−1), the lower correlation with the linear-plateau 

model (R2=0.44-0.51) causes uncertainty. Although the SPAD showed its usefulness for 

predicting grain yield, the GYONr was widely underestimated (142.1 kg N ha−1) in 

concurrence with the results of Maresma et al. (2016).  

 The GYONa (in the first 30 cm of soil) was 248.6 kg N ha−1. The red-based VIs 

accurately predicted the GYONa (252-271 kg N ha−1) and slightly increased their 

correlation with the linear-plateau model (R2=0.48-0.58) compared with the GYONr. 

However, the effectiveness of green-based VIs, WDRVI and PltH at determining the 

GYONa was negatively impacted by adding the Navailable to the model. SPAD, as was 

observed for the GYONr, highly underestimated the GYONa (181.9 kg N ha−1). 

The EONr (and EONa) were determined below the GYONr (and GYONa). 

Therefore, since the VIs proved their usefulness for determining the GYONr and 

GYONa, they would over-estimate the EONr (and EONa). However, at low N:Maize 

price ratios, EONr (and EONa) will be more accurately predicted by the indices since 

the economic return is mainly affected by the grain yield. 

 

4. Conclusions 

Vegetation indices derived from multispectral airborne images showed their 

usefulness to distinguish maize grain yield potential. Similarly, VIs have proven to be 

an outstanding tool to accurately determine maize N status at V12 stage, when N 

deficits can still be corrected by late sidedress applications. Therefore, VIs could help 

farmers to overcome the uncertainty of N fertilization by determining the N responsive 

and the N non-responsive areas of the field. Green-based VIs, especially GCI, were the 

most accurate at predicting the GYONr, whereas Red-based VIs slightly overestimated 

it. The EONr was overestimated by the VIs, confirming their higher potential to predict 

grain yield than economic return. 
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The determination of the Navailable did not improve the accuracy of the VIs to 

predict grain yield. However, in our study N fertilization treatments were maintained 

during a long-term period and probably the residual N in the soil was stabilized for each 

N treatment. Commercial fields might have larger differences in N patterns within 

fields, and Navailable calculation could be very useful to determine N responsive and N 

non-responsive areas. 

Overall, VIs could contribute to enhancing N management in farming practices. 

The VIs would reduce the risk of contamination by over-fertilization, improve the 

economic return and increase the NUE by reducing N inputs while maintaining grain 

yield. Nevertheless, the adoption of remote sensing technologies by farmers is still 

limited. Further research is needed to fine-tune the response of maize to N applications 

when deficiencies are detected at V12 stage. Airborne images could be useful for 

practical farming implementation because of their high potential to cover large cropping 

surfaces at a moderately low cost. 
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Abstract 
 

Improving nitrogen (N) use efficiency (NUE) is an agricultural necessity, as it 

can contribute to increasing crop productivity while decreasing environmental 

degradation. Double-annual cropping systems appear to be a solution to reducing losses 

of residual N, while increasing productivity and profitability per land unit. In the present 

three-year N fertilization study (2013-2016), combinations of N fertilization rates (Nrate) 

applied to barley (0 and 100 kg N ha−1) and maize (0, 100, 200 and 300 kg N ha−1) were 

evaluated. Grain and biomass yields and N content, plant N uptake, residual N, N 

efficiency, soil organic carbon (SOC) and economic returns of the double-annual 

barley-maize cropping system were determined. The annual optimum Nrate to achieve 

maximum yields in the barley-maize system was 230-240 kg N ha−1 split between maize 

and barley, with potential total annual yields that could be as high as 20 and 35 Mg ha−1 

yr−1 of grain and biomass, respectively. The longer growing period of these double-

cropping systems contributed to promoting higher efficiency of post-harvest residual N 

in each crop. Barley was especially efficient at using maize residual N, whereas maize 

was not as clearly affected by barley residual N. After three years of the study, SOC had 

not changed in any of the N treatments, even in the N treatments with highest N 

deficiency (0 kg N ha−1 yr−1 applied). Further research is needed to fine-tune the N 

fertilization strategy of the double-annual barley-maize cropping system over long-term 

periods. 

 

Keywords: Double-annual cropping, barley, maize, nitrogen fertilization, NUE 

 

Abbreviations: Nitrogen, N; Organic matter; OM; N rate, Nrate; available N, Navailable; 

optimum N, Nopt; Nitrogen use efficiency, NUE; Apparent nitrogen recovery, ANR; 

Nitrogen recovery efficiency, NRE; Soil organic carbon, SOC; Economic optimum 

nitrogen rate, EONR. 
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1. Introduction 

  World agriculture is currently facing unprecedented challenges. There is a need 

to increase food production to meet global food demand (Bodirsky et al., 2014), while 

reducing production and pollution costs. Nowadays, the main method to increase crop 

yields and to maintain or restore soil nutrients is the application of mineral fertilizers, 

mainly N (Hirel et al., 2011). However, anthropogenic reactive N input to the biosphere 

has already exceeded a proposed planetary boundary (Kros, 2013).  

The reliable supply of N and other macronutrients, as well as plant breeding 

improvements, has allowed a large increase in crop production per land unit over the 

past century. Nitrogen fertilization has promoted economic development, allowing the 

increase of populations, and sparing forests that would probably otherwise have been 

converted to agricultural land to meet food demand (Foley et al., 2011). In the most 

intensive agricultural production systems, over 50% and up to 75% of the N applied to 

the field is not used by the plant and is leached into the soil (Raun and Johnson, 1999). 

This means that more than half of the N used for crop fertilization is currently lost into 

the environment (Lassaletta et al., 2014). Hence, improving nitrogen use efficiency 

(NUE) in cropping systems across the globe is an absolute necessity, as it is one of the 

most effective means of increasing crop productivity while decreasing environmental 

degradation (Cassman et al., 2002; Davidson et al., 2015). 

Data from surveys in the Ebro Valley (a semi-arid irrigated area in NE Spain), 

where irrigated maize is one of the most important and high N-demanding crops 

(Maresma et al., 2016), indicate that farmers apply rates of 318-453 kg N ha−1 yr−1 

(Cavero et al., 2003; Isidoro et al., 2006; Sisquella et al., 2004). Normal maize grain 

yields in the area range from 12 to 15 Mg ha−1, with total plant N uptake of 250-300 kg 

ha−1 (Berenguer et al., 2008; Cela et al., 2011; Yagüe and Quílez, 2010). Therefore, 

when excess N fertilizer is applied, there is a high risk of N leaching during the maize 

intercrop period (October to April) (Moreno et al., 1996), depending on the rainfall 

distribution under semi-arid conditions (Salmerón et al., 2011).  

To avoid post-harvest leaching of residual N and to increase profitability per 

land unit, double-annual cropping systems could be implanted. Winter cover crops after 

summer crops can provide environmental benefits that make them suitable for 

enhancing NUE in a maize cropping system (Miguez, 2005; Quemada et al., 2013). In 

double-annual cropping systems, soil is covered during a longer period of the year than 

with mono-cropping systems. This entails several benefits, including prevention of soil 
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erosion by wind and water (Hirel et al., 2011), an increase of total dry matter production 

(Lloveras, 1987a, 1987b; Yagüe and Quílez, 2013), increase of land gross margin (Gil, 

2013) per land unit, and a reduction of NO3
−-N run-off (Gabriel and Quemada, 2011; 

Krueger et al., 2012), among others. However, the increased uptake of N and other 

nutrients with double-cropping systems, coupled with higher productivity, present a 

significant challenge for maintenance of soil fertility, mandating higher rates of 

fertilization, and potentially leading to reductions in soil organic C if crop residues are 

not retained in fields (Heggenstaller et al., 2008). 

Double-annual forage cropping strategies (summer crop-winter crop) have been 

increasingly applied in the NE of Spain during recent years (Ovejero et al., 2016). A 

summer crop (sorghum or maize) is grown from June to October, and in November a 

winter cereal such as barley or triticale is subsequently sown as in other forage 

production areas (Lloveras, 1987a, 1987b; Monaco et al., 2008; Trindade et al., 2001). 

Indeed, double-annual forage crop production is usually associated with dynamic 

livestock farming where animals are fed with forages and their faeces, usually mixed 

with straw, are applied to crops as fertilizer (Lloveras, 1987a; Perramon et al., 2016). 

Several authors have reported studies of double-annual cropping systems with N 

organic fertilization in Mediterranean environments (Grignani et al., 2007; Ovejero et 

al., 2016; Perramon et al., 2016; Yagüe and Quílez, 2010). However, in irrigated 

Mediterranean environments, there is limited research on the sustainability and 

economic profitability of a double-annual cropping system (barley-maize), unlinked to 

livestock farming. Thus, there is a need to evaluate the possible advantages of double-

annual cropping systems in irrigated Mediterranean environments unlinked to livestock 

farming, and if appropriate, encourage farmers to adapt this practice to improve N 

management and increase the economic benefit. 

 

The objectives of the present research conducted under sprinkler irrigation in a 

double-cropping system of maize-barley, were i) to determine the effect of annual N 

fertilization on grain and biomass yields, N uptake, soil NO3
−-N content, N efficiencies, 

soil organic carbon (SOC) and economic return, and ii) to assess and optimize the Nrate 

and its temporal distribution in a double-annual cropping system (barley-maize) under 

irrigated Mediterranean environments. 
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2. Materials and methods 

2.1. Study area 
A three-year experiment (2013-2016) was conducted in Algerri (Lleida, NE of 

Spain) under irrigated conditions (41º 46.5' N, 0º 38.7' E). The field experiment 

comprised an area of approximately 190×18 m2 with an individual plot size of 60 m2. 

The study area is characterized by a semi-arid climate with low annual 

precipitation (373 mm) and high annual average temperature (14.3 ºC). Each growing 

season, around 150 and 700 mm of irrigation water (lacking nitrate) were respectively 

provided to barley and maize, to achieve maximum yields. Soils were classified as 

Petrocalcic Calcixerepts (Soil Survey Staff, 2014). Soil quality indicators and 

physicochemical parameters were analysed in samples using standard methods (MAPA, 

1994): soil texture, pH, electrical conductivity (EC), bulk density, available P (Olsen P) 

and extractable K (NH4Ac) (Table 1).  

 

Table 1. Chemical and physical soil properties at the beginning of the experiment 
(2013). 

 

   † Soil Survey Staff (2014) 

2.2. Experimental design 
Eight different N combinations in the double-annual cropping system (barley-

maize) were considered in a split-plot design with four replications. The N treatment in 

barley (winter crop) was the main plot (0 and 100 kg N ha−1) and the N treatments in 

maize (summer crop) were the subplots (0, 100, 200 and 300 kg N ha−1). 

Soil properties Horizon    
 Ap. 

0-27 cm 
Bwk1. 
27-48 cm 

Bwk2. 
48-82 cm 

Bkm. 
82-120 cm 

Sand, % 35.6 16.3 13.1 - 

Silt, % 47.7 53.4 52.0 - 

Clay, % 16.7 14.8 15.8 - 

pH 8.1 8.2 8.3 - 

Organic matter, g kg−1 19.4 9.1 6.2 - 

EC1:5, dS m−1 0.42 0.29 0.27 - 

P (Olsen), mg kg−1 38 20 10 - 

K (NH4Ac), mg kg−1 241 94 59 - 

Soil class†  Petrocalcic calcixerept 



Chapter IV 

 106 

 The N fertilization treatments were randomized at the beginning of the 

experiment (2013) and applied in the same plots thereafter. The N fertilizer (ammonium 

nitrate, 34.5%) was applied in both crops. In barley, one sidedress was applied in early 

February (DC 25-27 of the scale of Zadoks et al., 1974), whereas in maize the N 

treatment was split into two equal sidedresses (50% at V5 and 50% at V10 stage, 5 and 

10 leaves with visible leaf collar). Phosphorus and potassium were also applied annually 

during winter at rates of 150 kg P2O5 ha−1 and 250 kg K2O ha−1, to avoid deficiencies of 

those elements. 

2.3. Cropping system 
Both crops were managed according to good and normal practices in the area.  

- Barley: Conventional tillage was done before planting, after the maize harvest. 

It included disc ploughing and cultivation to a depth of 30 cm to incorporate previous 

maize stover and to prepare the soil for the sowing of the barley. The variety Gustav 

was sown the three years of the experiment at 230 kg ha−1 and one herbicide treatment 

was applied post-emergence to control weeds (Fluroxipir 20%, at 1 L ha−1). The grain 

and biomass harvests were done between the first and second week of June.  

- Maize: The barley stover was removed from the field, and the maize planted 

with no tillage to reduce the time gap between barley harvest and maize planting. 

During the three years of the experiment, the hybrid PR32W86 (FAO cycle 600) was 

sown at a rate of 90,000 plants ha−1, with 71 cm between rows. Two herbicide 

treatments were applied: one at pre-emergence to control the majority of weeds (S-

Metolachlor 40% and Terbuthylazine 18.75%, at 3 L ha−1) and the other at post-

emergence to control Abutilon theophrasti M. and Sorghum halepense L. 

(Dimethylamine salt of dicamba 48.2% at 1 L ha−1 and Nicosulfuron 6% at 0.75 L ha−1). 

Biomass was evaluated during the first week of October at physiological maturity, and 

the grain harvest took place between the last week of October and first week of 

November. 

2.4. Sampling and analytical procedures 
Barley and maize grain yields were measured in the central part of each plot by 

harvesting with an experimental plot combine (1.5×10m). Grain moisture was 

determined using a GAC II grain analysis computer (Dickey-john, Auburn, IL, USA) 

with a 250g sample, and grain yields were adjusted to 14% moisture. Total biomass 

yield was measured in the field by harvesting an area of 1.5 and 7 m2 of barley and 
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maize, respectively. The dry matter content of the aboveground biomass was 

determined by drying the sample at 60ºC for 48h. As a consequence, the results 

presented are at constant humidity. Barley and maize sub-samples of grain and biomass 

were milled and used to determine N concentrations by near infrared (NIR) 

spectroscopy, using a previously calibrated 500 Infrared Analyser (Bran+Luebbe, 

Norderstedt, Germany). Total N uptake was calculated for each crop by multiplying 

plant N content by dry matter at harvest. 

Soil NO3
−-N was determined in each plot after the barley and maize harvest at a 

depth of 0-90 cm from three consecutive layers (30 cm each). Five cores per plot were 

taken and comprised an individual soil sample. Soil nitrates were extracted using 

deionized water and measured using test strips with a Nitrachek® device calibrated 

according to the standard procedure (Bischoff et al., 1996). NH4
+-N was not measured, 

because several previous research studies in the area had considered negligible the 

amount of N when compared to the N present in nitrate form (Villar-Mir et al., 2002; 

Berenguer et al., 2009). Soil sub-samples were used for determination of SOC content 

each year after the maize harvest. SOC was measured by dichromate oxidation 

(Walkley-Black method; Allison, 1965) and consisted of a mix of five soil samples per 

plot from the 0-30 cm soil layer.  

Three N-efficiency parameters were calculated for each fertilized treatment in 

both crops: the NUE (Quemada and Gabriel, 2016; Zhang et al., 2015; EUNEP, 2015), 

the N recovery efficiency (NRE) (Ladha et al., 2005) and the apparent nitrogen recovery 

fraction (ANR) (Fageria and Baligar, 2005; López-Bellido et al., 2005). NUE was 

determined as the ratio between the total N removed by the aboveground crops divided 

by the sum of all N inputs to a cropland (kg kg−1). The NRE was calculated as the ratio 

between aboveground plant N uptake and fertilizer N input. ANR (kg kg−1) was the 

ratio between aboveground plant N uptake at Nx – aboveground plant N uptake at N0 

and the amount of mineral N applied at Nx.  

The economic return of each plot was calculated as the difference between the 

income produced by the selling of the grain yield and the cost of the N fertilizer applied. 

The N:grain price ratio is defined as the price per kilogram of N divided by the price per 

kilogram of grain (price ratio = price of fertilizer N, € kg−1 N/price of grain, € kg−1 

grain) (Sripada et al., 2005). 
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In the present study, the N:grain price ratios used were 5.6:1 and 5.3:1 for barley 

and maize, respectively. The N price considered was 0.90 € kg−1 of N (N fertilizer plus 

application cost) and the grain prices were 0.16 and 0.17 € kg−1 for barley and maize, 

respectively. 

2.5. Statistical analysis 
Statistical analyses of data were performed using the JMP Pro 12 software (SAS 

Institute, Cary, USA). A mixed-design analysis of variance model (ANOVA), taking 

into account the growing seasons as repeated measurements, was carried out to evaluate 

the response of the variable measured to mineral N fertilization. In the mixed-design 

ANOVA model, the N treatment and the growing season were a between-subjects 

variable (a fixed effects factor) the replicate was a within-subjects variable (a random 

effects factor). Means were separated by LSMeans Tukey’s HSD test (p<0.05), where 

levels not connected by the same letter are significantly different. 

Linear-plateau regression analyses were carried out between grain and biomass 

yields with the total N applied to determine the Nrate to achieve maximum yields and 

economic return (EONR) with the double-annual (barley-maize) cropping system.  

 

3. Results  

3.1. Grain and biomass yields 
 Grain and biomass yields varied over the years with the same N treatments. 

Nevertheless, the average highest grain and biomass yields were achieved with the 

highest Nrate (Table 2). The barley N rates applied (0 and 100 kg N ha−1) significantly 

affected barley yields but did not statistically affect maize yields. On average, barley 

yields achieved in the non-fertilized (0 kg N ha−1) and fertilized (100 kg N ha−1) barley 

were 3.75 and 6.1 Mg of grain ha−1 and 6.4 and 9.5 Mg of biomass ha−1, respectively. 

Non-fertilized barley had lower grain and biomass yields than fertilized barley, except 

for the plots where a high Nrate was applied to maize (above 200 kg N ha−1) (Table 2). 

The Nrate applied to maize impacted significantly the grain and biomass yields of barley, 

maize and the annual sum of barley and maize. Maximum maize yields (about 13 and 

23 Mg ha−1 of grain and biomass, respectively) were achieved with maize Nrate above 

100 kg N ha−1, independently of the Nrate applied to the barley. However, a growing 

tendency in maize yields was seen when increasing N fertilization to at least 200 kg N 

ha−1. 



 

 

 
Table 2. Average grain and biomass yields, grain and biomass N contents for the different N rates tested in three consecutive growing seasons in 
Algerri (2013-2016). Tukey’s HSD test: different letters indicate homogeneous groups with respect to the mean differences at a p-value of <0.05. 
†N means N fertilizer treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NS No significance    * Significant at p-value < 0.05    ** Significant at p-value < 0.01

Treatments (N)  Grain Yield (Mg ha−1)  Biomass Yield (Mg ha−1)  N grain (g kg−1)  N biomass (g kg−1) 
Barley Maize 

 
Barley Maize Total 

 
Barley Maize Total 

 
Barley Maize 

 
Barley Maize 

          

0 

0 
 

2.07 c 7.86 b 9.93 d 
 

3.99 c 16.97 c 20.96 e 
 

16.3 abc 11.2 b  12.1 ab 9.0 c 
100 

 
2.77 c 12.73 a 15.50 bc 

 
4.73 c 22.48 ab 27.22 cd 

 
15.4 cd 12.1 ab  11.2 b 9.9 bc 

200 
 

4.37 b 13.34 a 17.71 a 
 

7.48 b 23.08 a 30.56 abc 
 

15.6 bcd 12.4 a  11.4 b 10.8 a 
300 

 
5.79 a 13.25 a 19.04 a 

 
9.41 ab 23.27 a 32.68 ab 

 
16.5 abc 12.6 a  12.4 ab 10.7 ab 

                          

100 

0 
 

5.70 ab 8.84 b 14.54 c 
 

8.93 ab 18.54 bc 27.47 cd 
 

14.6 d 11.8 ab  11.1 b 9.4 c 
100 

 
5.73 ab 12.45 a 18.18 ab 

 
9.08 ab 22.20 a 31.28 abc 

 
15.7 bcd 12.3 a  12.0 ab 10.0 abc 

200 
 

6.11 a 13.23 a 19.34 a 
 

9.26 ab 23.11 a 32.38 ac 
 

17.1 ab 12.5 a  12.1 ab 10.5 ab 
300 

 
6.71 a 13.42 a 20.13 a 

 
10.72 a 24.06 a 34.77 a 

 
17.6 a 12.7 a  13.9 a 10.5 ab 

ANOVA 
Barley †N (Nb) 

 
** NS ** 

 
** NS * 

 
NS NS 

 
NS NS 

Maize †N (Nm) 
 

** ** ** 
 

** ** ** 
 

** ** 
 

** ** 
Nb x Nm 

 
** NS ** 

 
** NS * 

 
** NS 

 
* NS 

Error a 
 

- - - 
 

- - - 
 

- - 
 

- - 
Season (GS) 

 
** ** ** 

 
** ** ** 

 
** ** 

 
** ** 

GS x Nb 
 

** * ** 
 

** NS NS 
 

** NS 
 

* NS 
GS x Nm 

 
** ** ** 

 
NS ** * 

 
** NS 

 
** NS 

GS x Nb x Nm 
 

NS NS NS 
 

NS NS NS 
 

NS NS 
 

NS NS 
Error b   - - -   - - -   - -   - - 
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The total grain and biomass yields per growing season were significantly 

affected by the Nrate applied in both crops. The control N treatment (0 kg N ha−1 yr−1 in 

both crops) obtained the lowest yields for barley and maize. The Nrate that totalled 100 

kg N ha−1 yr−1 between both crops yielded more than the control N treatment but less 

than higher N rates. The Nrate that totalled 200 kg N ha−1 yr−1 between both crops was 

statistically classified in the same group as the Nrate that totalled 300 kg N ha−1 yr−1, 

though an increase in grain and biomass yields was detected when applying higher N 

rates (Table 2). With applications of 200 kg N ha−1 yr−1, 18 Mg ha−1 of grain and 31 Mg 

ha−1 of biomass were achieved; yields slightly lower than the ones obtained with 300-

400 kg N ha−1 (20 and 33 Mg ha−1, respectively). 

3.2. Biomass and grain N content and total N uptake 
 Biomass and grain N content (both barley and maize) varied from year to year 

and were affected by maize N fertilization, but not by barley N fertilization (Table 2). 

Depending on the Nrate applied to barley and maize, barley N content varied from 15.4 

to 17.6 g kg−1 (grain) and from 11.2 to 13.9 g kg−1 (biomass), whereas the N content 

variation in maize was from 11.2 to 12.7 g kg−1 of grain and from 9.0 to 10.7 g kg−1 of 

biomass. The control N treatment (0 kg N ha−1) showed the lowest maize N content in 

grain and biomass, but did not clearly affect barley N grain or biomass content.  

The average total N uptake during a growing season varied from 201.8 to 398.7 

kg N ha−1 depending on the Nrate applied in barley and maize (Figure 1a). Maize N 

uptake was statistically affected by the growing season and by maize N fertilization, 

nevertheless, there was not affected by interaction between them. Barley N fertilization 

affected barley N uptake but not maize N uptake. Though the highest N uptakes per 

growing season were determined statistically with 200 kg N ha−1, a rising trend was 

seen of N uptake with higher Nrate. 
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Figure 1. Average barley, maize and the sum of both crops (both) a) N uptake and b) 
economic return for the different N rates tested in three consecutive growing seasons 
(Algerri, 2013-2016). Tukey’s HSD test: different letters indicate homogeneous groups 
with respect to the mean differences at a p-value of <0.05. Error bars indicate the 
standard error of the mean. †N means N fertilizer treatment. 

3.3. Soil NO3
−-N content 

Residual soil NO3
−-N content after the barley and maize harvests in the studied 

depths (0-30, 30-60, 60-90 and 0-90 cm) were statistically affected by growing season 

and by maize N fertilization (Figure 2). However, barley N fertilization did not affect 

the amount of N present in soil after the harvest of either barley or maize. A rising 

tendency in residual soil NO3
−-N was observed when increasing the Nrate applied in 

maize (Figure 2a and Figure 2b). Consequently, with the higher Nrate applied in maize 

(0-300 kg N ha−1) than barley (0-100 kg N ha−1), higher residual soil NO3
−-N contents 

were determined after the maize harvest than the barley harvest. Especially high was the 

residual soil NO3
−-N content determined at the highest Nrate applied in maize (300 kg N 

ha−1), between 326 and 410 kg N ha−1 in the first 90 cm of soil.  
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Figure 2. Average of the residual soil NO3
−-N in three consecutive layers (0-30, 30-60 

and 60-90 cm depth) after a) barley and b) maize harvests, in the different N rates 
tested in three consecutive growing seasons (Algerri 2013-2016). Tukey’s HSD test: 
different letters indicate homogeneous groups with respect to the mean differences at a 
p-value of <0.05. Error bars indicate the standard error of the mean. †N means N 
fertilizer treatment. 

 

After the maize harvest, most of the residual soil NO3
−-N was in the first 30 cm 

of soil (Figure 2b) for all the N treatments tested. However, after the barley harvest, 

most of the residual soil NO3
−-N was between 60 and 90 cm of depth (Figure 2a). 

3.4. N efficiencies 
 The NUE, the NRE and the ANR were significantly affected by maize N 

fertilization and growing season, except for barley ANR, which did not depend on the 

growing season (Table 3). Barley N fertilization did not significantly affect maize N 

efficiencies except for total (both crops together) NRE. Consistently, N efficiencies 

were significantly higher with lower Nrate applied (Table 3).  
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Table 3. Average N use efficiency (NUE), N recovery efficiency (NRE) and apparent N 
recovery (ANR) for the different N rates tested in three consecutive growing seasons 
(Algerri 2013-2016). Tukey’s HSD test: different letters indicate homogeneous groups 
with respect to the mean differences at a p-value of <0.05. †N means N fertilizer 
treatment. 

Treatments (N)    NUE  
(kg kg−1)   NRE  

(kg kg−1)   ANR  
(kg kg−1) 

Barley Maize 
 

Total 
 

Barley Maize Total 
 

Barley Maize Total 

        

0 

0 
 

1.06 a 
 

-  -  - 
  

-  -  - 
 100 

 
0.96 ab 

 
-  2.24 a 2.77 a 

 
-  0.69 ab 0.75 a 

200 
 

0.86 bcd 
 

-  1.26 b 1.69 b 
 

-  0.49 bc 0.68 a 
300 

 
0.75 cd 

 
-  0.84 c 1.22 c 

 
-  0.32 c 0.55 a 

                   

100 

0 
 

0.95 abc 
 

0.99 b -  - 
  

0.52 b -  - 
 100 

 
0.86 bcd 

 
1.09 ab 2.25 a 1.67 b 

 
0.62 ab 0.70 ab 0.66 a 

200 
 

0.73 d 
 

1.10 ab 1.23 b 1.19 c 
 

0.63 ab 0.46 bc 0.51 a 
300 

 
0.67 d 

 
1.45 a 0.84 c 1.00 c 

 
0.98 a 0.33 c 0.49 a 

ANOVA 
Barley †N (Nb) 

 
NS 

 
- NS ** 

 
- NS NS 

Maize †N (Nm) 
 

** 
 

* ** ** 
 

* ** * 
Nb x Nm 

 
NS 

 
- NS ** 

 
- NS NS 

Error a 
 

- 
 

- - - 
 

- - - 
Season (GS) 

 
** 

 
** ** ** 

 
NS ** ** 

GS x Nb 
 

* 
 

- NS NS 
 

- NS NS 
GS x Nm 

 
** 

 
NS ** ** 

 
NS NS NS 

GS x Nb x Nm 
 

NS 
 

- NS NS 
 

- NS NS 
Error b   -   - - -   - - - 

NS No significance    * Significant at p-value < 0.05    ** Significant at p-value < 0.01 
 

The highest NUE per growing season was determined for the non-fertilized 

treatment (1.06 kg biomass kg−1 N). Similar results were obtained for barley, maize and 

both crops together when evaluating the NRE and ANR. For instance, ANR was up to 

70% in maize and 80% in both crops together with applications of 100 kg N ha−1 yr−1. 

However, with applications of 300 kg N ha−1 yr−1 the corresponding values were, 

respectively, 30% and 60%. Barley NRE and ANR determined in the fertilized barley 

were higher when the N residual from maize was higher. 

3.5. Soil Organic Carbon 
 The SOC in the first 30 cm of soil did not change over the N treatments analysed 

in the study (Figure 3). An overall average of 56.9 Mg of C ha−1 was determined in the 

experimental field during the three growing seasons, with small differences among N 

treatments and growing seasons. 
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Figure 3. Average SOC in each growing season among the different N rates tested in 
the study (Algerri 2013-2016). Tukey’s HSD test: different letters indicate 
homogeneous groups with respect to the mean differences at a p-value of <0.05. Error 
bars indicate the standard error of the mean. †N means N fertilizer treatment. 

3.6. Economic return 
 The economic return of barley, maize and both crops together was affected by N 

fertilization of both crops (Figure 1b). The growing season had an impact on the 

economic return, and showed interaction with barley and maize N fertilization. The 200 

kg N ha−1 applied in maize obtained the maximum economic return (2,069-2,080 € 

ha−1), independently of the Nrate distribution among crops. However, the maximum 

economic return in barley was obtained when 300 kg N ha−1 were applied in the 

previous maize (927-984 € ha−1). The economic return of the fertilized barley did not 

depend on maize N fertilization. However, non-fertilized barley was clearly affected by 

N fertilization of the previous maize. In that case, the higher the Nrate applied in maize, 

the higher the economic return obtained. 

 

4. Discussion 

4.1. Grain and biomass yield 
 Grain and biomass yields were highly influenced by N fertilization of both crops 

(barley and maize), showing the large effect of N in increasing cereal yields (Shanahan 

et al., 2008). Total (barley + maize) grain yield (20 Mg ha−1) and biomass yield (35 Mg 

ha−1) (Table 2) were slightly higher than those reported in other double-annual cropping 

system areas, suggesting the high yield potential of a double-annual cropping strategy in 
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irrigated Mediterranean conditions. For example, grain yields in this experiment were 

higher than those achieved by Iguácel et al. (2010) (17.5 Mg ha−1), by Yagüe and 

Quílez (2013) (14.9 Mg ha−1) under irrigation in the Ebro Valley, or by Zhang et al. 

(2006) (11-14 Mg ha−1) with irrigated wheat-maize in China. In Mediterranean 

environments, biomass yields of 23-26 Mg ha−1 were reported in irrigated ryegrass-

maize (Grignani et al., 2007), rainfed ryegrass-maize (Perramon et al., 2016), and 

rainfed triticale-maize (Ovejero et al., 2016). In addition, annual mono-cropping 

strategies in the Ebro Valley, usually irrigated maize, also achieved lower annual grain 

and biomass yields than the total annual yields obtained in the present study (Berenguer 

et al., 2009; Biau et al., 2012; Isla et al., 2015; Maresma et al., 2016; Yagüe and Quílez, 

2013).  

 Normally, double-annual cropping strategies could significantly increase (25-

50%) total dry matter production compared to mono-cropping systems (Crookston et 

al., 1978; Heggenstaller et al., 2008; Lloveras, 1987b; Raphalen, 1980). Despite the 

variability of grain and biomass yields among growing seasons, double-annual cropping 

yields seem to be more stable than mono-cropping systems, mainly maize, in irrigated 

Mediterranean conditions (Berenguer et al., 2009, 2008; Biau et al., 2012; Cela et al., 

2013). This higher annual yield stability is probably because the total annual yield 

comes from two different harvests during a single growing season, which contributes to 

mitigating the yield variability of a single crop. Indeed, Borrelli et al. (2014) in a maize-

based forage system in Northern Italy, concluded that the increase in biodiversity in 

agricultural systems, as occurs with double-annual cropping systems, has important 

implications in reducing temporal variability in maize yields. Therefore, as grain and 

biomass yields are more stable, the N recommendations among years may also be more 

stable. 

The same amount of total annual N fertilizer split between the two crops 

achieved similar grain and biomass yields (barley + maize), independently of which 

crop received the N application. When applying a total of 200, 300 and 400 Kg N ha−1 

per growing season (between both crops), statistically similar yields were obtained, 

independently of the N distribution between the two crops (Table 2). However, the 

optimum total N rates to achieve maximum grain and biomass yields were 232.5 and 

240.5 kg N ha−1 yr−1, respectively (Figure 4a). 
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Figure 4. Response curves to total N applied (barley + maize) during a year of a) total 
grain and biomass and b) Economic-return. CNR: Critical fertilization N rate to 
achieve maximum yields. EONR: Economic optimum nitrogen rate. The N:cereal prices 
ratios were determined at 5.6:1 and 5.3:1 for barley and maize, respectively. Barley Nrate 
indicates if 0 or 100 kg N ha−1 were applied to barley. Error bars indicate the standard 
error of the mean. 

 

Probably, a significant amount of the N applied to each crop (barley or maize) 

that was not taken up by the crop was available for the following crop. This could be 

observed mainly in the non-fertilized barley, where the effect of maize residual N was 

evident in barley yield, with a rising tendency of grain and biomass yields when 

increasing the Nrate applied in maize (Table 2). However, the N residual effect of barley 

N fertilization in maize yields was not as evident as the N residual effect of maize in 

barley. Probably, the higher OM mineralization during summer (Magdoff et al., 1984), 

compared with the other seasons, provided a high amount of N to maize and masked the 

possible effect of the barley residual N. Moreover, N sequestration of the barley stover 

(Salmerón et al., 2011) did not occur it because it was removed in the experiment.  

4.2. Biomass and grain N content and total N uptake 
 Crop N uptake was highly influenced by yield because the differences in N 

content of the crops were lower than the yield differences among N treatments. The N 

content of both crops reported in this study was similar to that reported by other authors 

(Berenguer et al., 2008; Delogu et al., 1998; Perramon et al., 2016; Salmerón et al., 

2011). Differences in N grain and biomass contents between N treatments were more 

clearly seen in maize than in barley and in biomass than grain. Non-fertilized maize 

(independently of barley N fertilization) had the lowest maize N content (grain and 

biomass), reflecting high N deficit of the crop in these conditions. The biomass N 
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content of non-fertilized maize was clearly lower than the other N treatments (Table 3), 

probably because there was a high translocation of N from plant to grain to mitigate the 

N deficit (Cliquet et al., 1990).  

The total annual N treatments above 200 kg N ha−1 yr−1 seem to present similar 

N grain and biomass contents independently of the total annual Nrate. Nevertheless, the 

higher yields achieved with high total annual Nrate contributed to increasing total N 

uptake with the double-cropping system (Figure 1). As expected, the maximum annual 

N uptake determined in this study (398.7 kg N ha−1) was higher than that reported in 

other double-annual cropping studies (Grignani et al., 2007; Ovejero et al., 2016; 

Perramon et al., 2016). However, N uptake by each crop was in agreement with the 

reported percentages of total N uptake by the winter crop and summer crop in these 

previous works, which were 35% and 65%, respectively (Grignani et al., 2007; 

Perramon et al., 2016). 

4.3. Soil NO3
−-N content 

 The soil NO3
−-N content after the barley or maize harvest showed high variation 

between the compared maize N treatments. However, barley N fertilization did not 

seem to have an effect on the amount of residual NO3
−-N after barley or maize harvest. 

Higher soil NO3
−-N concentrations were determined in the topsoil layer (0-30 cm) than 

in deeper layers after the maize harvest. This suggests that a major part of maize 

residual N could probably be used by the barley if this crop is sowed immediately after 

the maize harvest. The faster the subsequent barley is established, the lower the 

probability of losing the residual NO3
−-N from maize.  

In double-annual cropping systems, the residual soil NO3
−-N from previous crops could 

potentially be taken up by the next crop thereby partially avoiding N leaching of nitrates 

(Ovejero et al., 2016). Winter crops mitigate N runoff after maize harvests caused by 

winter and early spring rains (Gabriel and Quemada, 2011; Hirel et al., 2011; Salmerón 

et al., 2011). Grignani et al. (2007), Perramon et al. (2016) and Ovejero et al. (2016) 

found an increase in winter crop yields after high Nrate applied to maize in double-

annual cropping systems. Heggenstaller et al. (2008) proved that the extended annual 

growth duration of crops in double-cropping systems would lead to both increased dry 

matter production and reduced potential for NO3
−-N leaching compared to the mono-

cropping corn system.  
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Though the highest amount of residual N after maize harvest was determined in 

the topsoil layer (0-30 cm), the residual N after the barley harvest was more 

concentrated in the deepest soil layer (60-90 cm). This fact suggests that the maize 

residual N that was not taken up by the barley, was leached to deeper layers and was 

more likely to be lost. When maize roots reach to explore these layers (60-90 cm), 

NO3
−-N would probably have been leached out of the system. The high temperatures 

during maize growing increased soil OM mineralization (Sinsabaugh, 2010). Thus, the 

low effects of residual N coming from barley N treatments (0 and 100 kg N ha−1) in 

maize suggest that N provided by OM mineralization could be higher than the effects of 

barley residual N. Confirming this, in our study the calculated N mineralized from OM 

during the maize growing season was 160-170 kg N ha−1, much higher than the residual 

amount of N after the barley harvest, 15 kg N ha−1 (Figure 2).  

Traditional applications of 100 and 300 kg N ha−1 to barley and maize, 

respectively (Isidoro et al., 2006; Sisquella et al., 2004), seem to be excessive for our 

double-annual cropping system and could contribute to polluting the agro-ecosystem 

environment. However, with the lower Nrate (200-300 kg N ha−1 yr−1) applied in the 

double-annual cropping system, almost maximum grain and biomass yields were 

achieved while the build-up of soil NO3
−-N was prevented. Therefore, the risk of off-

site N transport is reduced (Krueger et al., 2012).  

4.4. N efficiencies 
The N efficiencies determined for the overall double-annual cropping system 

decreased as the Nrate increased, agreeing with the trend reported by Fageria and Baligar 

(2005) for cereal crops. The N efficiencies calculated in this study were similar or 

higher than the ones reported in similar conditions in mono-cropping maize (Berenguer 

et al., 2009; Martínez et al., 2016; López-Bellido et al., 2005; Bosch-Serra et al., 2015), 

or in double-cropping systems (Ovejero et al., 2016) fertilized with organic or inorganic 

N. Therefore, the increase of NUE contributed to mitigating N leaching while 

maintaining or increasing yields. Quemada et al. (2013) and Heggenstaller et al. (2008) 

concluded that replacing a fallow with a non-legume cover crop reduced N leaching by 

50% and 34%, respectively. The establishment of two crops in the same year could help 

promote the higher efficiency of residual N (Yagüe and Quílez, 2013). 
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The high annual NRE (up to 2.77 kg biomass kg−1 N) could be explained by N 

deposition and biological N fixation that could involve relevant N contributions in 

Mediterranean and semi-arid areas (Quemada and Gabriel, 2016). Indeed, the total 

annual N mineralized in our study was estimated at 190 kg N ha−1 yr−1 (with a soil OM 

of 19.4 g kg−1 %). The increase in the Nrate applied provoked a reduction of maize ANR 

whereas barley ANR was increased. This seems to indicate that maize residual N had 

more impact on barley yields than barley residual N on maize yields. There were no 

significant differences in the annual ANR among N treatments, but a decrease was 

detected when the total amount of N applied to both crops was increased. 

The total amount of N applied in a growing season below 200 kg N ha−1 could 

trigger a high risk of soil N mining (NUE > 0.9) (EUNEP, 2015). However, Nrate above 

200 kg N ha−1 yr−1 showed NUE > 0.5, with this being classified as desirable for crop 

production by the EUNEP (2015). Thus, the double-annual barley-maize system seems 

to require applications above 200 kg N ha−1 yr−1 to maintain the sustainability of the 

system. Nevertheless, the highest total annual Nrate tested in the study (400 kg N ha−1 

yr−1) did not achieve as high an NUE as the 300 kg N ha−1 yr−1 rate, confirming higher 

N losses when fertilizer management is not optimized according to crop N requirements 

(Quemada et al., 2013).  

4.5. Soil Organic Carbon 
 The non-variation of total SOC observed in the N treatments after 3 years of the 

double-annual cropping system (barley-maize) seems to indicate that in the short term 

the maize-barley system under study is sustainable. However, further trial years are 

required to confirm this sustainability. Heggenstaller et al. (2008) concluded that the 

increased extractions with the double-annual cropping system present a significant 

challenge for the maintenance of soil fertility and could potentially lead to SOC 

reductions if crop residues are not retained in fields. In a four-year study, Bertora et al. 

(2009) reported a higher induced C when residues were incorporated, but no SOC 

reduction when the residues were not incorporated. Therefore, the incorporation of 

maize stover, as was done during the 3 years in this study, seems to be sufficient to 

maintain SOC levels over a short-term period. 

Other researchers have found an increase in SOC as a result of double-annual 

cropping systems. Grignani et al. (2007) reported an increase in SOC after 7 years of a 

continuous double-annual maize-based irrigated cropping system, and Krueger et al. 
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(2012) reported a 26% increase in SOC concentration from 0 to 5 cm over 3 years in a 

rye-maize silage system. In both cases, the increase in SOC was attributed to the 

application of organic fertilizers. In wheat-maize rotation, Fuentes et al. (2009) reported 

an increase in SOC when the residues were incorporated. 

Even in the N treatments with the highest N deficit for crop growing (0 kg N 

ha−1 yr−1 applied), the SOC levels were maintained in the 3-year period of the 

experiment. Hence, further research is needed to guarantee the long-term sustainability 

of N fertilization strategies in double-annual cropping systems, especially, when a risk 

has been detected of soil N mining (NUE > 0.9).  

4.6. Economic return 
The economic return of the double-annual cropping system was strongly 

determined by the grain yields achieved. High grain yields were translated into high 

economic returns. The increase in total annual grain yields achieved in double-annual 

cropping systems compared with mono-cropping systems could entail higher 

profitability per land unit. However, the cost of field operations should be taken into 

account to adjust the real profit of each cropping strategy. In the Ebro Valley, and 

taking into account field operations, Gil (2013) reported a 13-22% gross margin 

increase of the double-annual cropping system (barley-maize) compared to mono-

cropping maize. Therefore, the establishment of two crops in the same year may help to 

increase economic savings (Yagüe and Quílez, 2013).  

Determination of the economic return of different N treatments is of interest 

because the optimum economic return is consistent with good environmental 

stewardship and could be used as a tool to determine crop N requirements (Sripada et 

al., 2008). Although the highest economic return was determined for the highest amount 

of total annual N applied (400 kg N ha−1 yr−1) for the studied N:cereal price ratio, non-

significant differences were detected with total Nrate above 200 kg N ha−1 yr−1. Indeed, 

the economic return showed similar behaviour to N uptake, increasing with high Nrate 

(Figure 1a and 1b). However, a trend was seen of increasing N uptake in the highest 

total annual N treatment (400 kg N ha−1 yr−1) which was not reflected in the economic 

return, suggesting luxury N consumption when there is excessive N in the soil. This 

could reduce the profitability of the system. 

 

 



  Chapter IV 

 121 

 It was evident that at higher N:cereal price ratios (worse price relation for 

farmers), N efficiency will greatly affect the economic return of the cropping system. 

Sripada et al. (2008) tested price ratios (N:Maize) from 4:1 to 14:1, so the 5.6:1 and 

5.3:1 price ratios used in our study were close to the optimum for farmers and were 

highly affected by grain yield. As the fertilizer to maize price ratio is positively 

correlated with NUE (Zhang et al., 2015); higher N:cereal price ratios will produce 

higher efficiencies according to the EONR. Similarly, Sripada et al. (2008) reported 

EONR variation according to the N:cereal price ratio. However, Schlegel et al. (1996) 

in an experiment with irrigated continuous maize concluded that in the same fields the 

EONR was relatively insensitive to cereal prices and the application of insurance N 

reduced crop profitability. 

In irrigated Mediterranean high-yielding maize, Maresma et al. (2017) 

concluded that a maximum yield strategy is not normally the most profit-earning for 

farmers. However, low N:cereal price ratios contributed to reducing differences 

between the EONR (215.1 kg N ha−1 yr−1) and the Nrate to achieve maximum yields 

(232.5 kg N ha−1 yr−1) (Figure 5b).  

 

5. Conclusions 

The double-annual cropping system (barley-maize) has proven its high yield 

potential and stability in Mediterranean irrigated environments. The total annual sum of 

grain or biomass yields in the barley-maize system could be up to 20 and 35 Mg ha−1 

yr−1 of grain and biomass, respectively. In Mediterranean conditions, these yields were 

rarely achieved by mono-cropping systems. In consequence, the double-annual cropping 

system could be an interesting alternative to increase yields without increasing the 

cultivated area. Moreover, the extended duration of the cropping season in double-

cropping systems contributed to reducing the potential for NO3
−-N leaching, compared 

to the mono-cropping system. In a double-annual rotation, the following crop could use 

the residual N of the previous crop, enhancing the NUE of the cropping system. In 

irrigated Mediterranean environments, barley was especially more efficient in the 

uptake of maize residual N than maize in the uptake of barley residual N. 

The total annual optimum N rates to achieve total annual maximum grain and 

biomass yields were 232.5 and 240.5 kg N ha−1 yr−1, respectively. In concordance, the 

EONR was determined below the maximum grain yield strategy (215.1 kg N ha−1 yr−1). 

However, at the determined EONR a very high NUE was obtained, suggesting some 
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risk of soil N mining. Indeed, even in the N treatments with the highest N deficit (0 kg 

N ha−1 yr−1 applied), the yields were maintained in a three-year period without 

decreasing SOC levels. Thus, the sustainability of the different N fertilizer rates where 

there exists a risk of soil N mining (NUE > 0.9) should be tested over a long-term 

period. Further research is needed to fine-tune the N fertilization strategy of double-

annual cropping system (barley-maize) over long-term periods. 
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General Discussion 
Traditionally, the aim of researchers in the field of nitrogen (N) fertilization has 

been the development of strategies that contribute to providing plants with enough N to 

maximize crop yields, while trying to keep N out of other ecosystems where it is 

harmful. Nitrogen excess has been recognized as a worldwide problem linked to 

agriculture for at least 40 years (Singh and Sekhon, 1979). Nowhere is N more 

important than in agricultural systems. The addition of N to sustain and increase crop 

yields is a pervasive and fundamental feature of modern crop management (Robertson 

and Vitousek, 2009). Proper N management is essential for the sustainability of 

agriculture. High-yielding ecosystems, as the studied in this thesis, pose an especially 

significant challenge to N management. As higher amounts of N are required to reach 

higher yields, higher N fertilization rates are applied, with the consequent risk of losing 

part of this nutrient and causing pollution.  

 

The present research is in concordance with some of the proposed approaches of 

Cherry et al. (2008) for improving the N use efficiency (NUE) in high-yielding 

agricultural systems:  

IV) Provide farmers with decision support tools that allow them to better predict 

crop N requirements and avoid overfertilization: the accuracy of soil sampling 

protocols, together with the usefulness of nitrate levels to fine-tune N 

fertilization of crops was tested in this thesis with a view to determining within-

field N fertilization responsiveness and non-responsiveness. 

V) Better manage the timing, placement, and formulation of fertilizer N in cropping 

systems to ensure N is available where and when plant demand for N is greatest: 

A relatively new technology for maize N assessment was tested: the use of high 

resolution multispectral aerial images. The methods developed can be used to 

determine in-season N requirements and to apply N more accurately where it is 

needed. 

VI) Adjust crop rotation to add complexity that improves uptake of available N: The 

viability of a double-annual cropping system (barley-maize) was tested in order 

to add complexity that contributes by taking advantage of residual N, and any 

subsequent increase or decrease in annual yield was determined. 
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An in-depth discussion of the results obtained in the field experiments of this 

PhD thesis and their contributions to improving N fertilization of the Mediterranean 

irrigated agricultural systems is provided in the following sections.  

 

1. Soil sampling protocols for OM and N determination 

 Determination of soil organic matter (OM) and N, as major determinants and 

indicators of soil fertility and quality, is important to have real information of the 

agricultural productivity of the soils (Al-Kaisi et al., 2005; Fageria and Baligar, 2005; 

Reeves et al., 1997). However, there is normally an important within-field variability 

that is affected by both temporal and spatial processes (Sogbedji et al., 2001; Wall et al., 

2010). Thus, the determination of available N can vary spatially and temporally among 

fields influencing the N optimal rates to achieve maximum yields.  

 Although high variability has been observed among samples (spatial) and 

between seasons (temporal) in nitrate determination (Cambardella et al., 1994), the 

results of the present research demonstrated that nitrate levels were not impacted by the 

time of sampling. The higher soil OM levels determined in summer compared to fall, as 

reported by Wall et al. (2010), were probably the result of higher OM mineralization 

caused by higher temperatures during this season (Katterer et al., 1998; Kirschbaum, 

1995). Soil nitrate distribution presented low-moderate spatial structure, suggesting 

high within-field variability. Several studies have shown a moderate correlation 

between nitrate values with ranges of <20 m (Gross et al., 1995; Jackson and Caldwell, 

1993). In contrast to soil nitrate, soil OM displayed a high spatial structure (Baxter et 

al., 2003; Cambardella et al., 1994; Geypens et al., 1999) with correlations for distances 

of up to 50 m. High soil nitrate heterogeneity results in low levels of accuracy in 

determining the average field value. Even with high sampling densities (12.5 samples 

per ha), the probability of obtaining the true average nitrate value of the field was 85%. 

However, the high within-field homogeneity of soil OM required just 3.75 samples per 

ha to accurately determine (> 95% of probability) the average soil OM of a field.  

The traditional practice in the Ebro Valley of adapting N fertilization based on 

soil N samples could be risky depending on the sampling intensity. It is undoubtedly 

better to have some information of soil N content than not to have any. However, 

accurate determination of the crop N rate to cover its N requirements will need a large 

number of samples. Grid soil sampling can be an accurate methodology to determine 

variable rate N application maps in some fields, but it is unlikely to be widely adopted 
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because of the time and expense required (Ferguson et al., 1996). 

To reduce the effect of soil nitrate heterogeneity in N fertilization, in this study 

the Illinois Soil Nitrogen Test (ISNT) was evaluated. The ISNT estimates the soil N 

supply potential for field specific recommendations (Khan et al., 2001; Mulvaney et al., 

2001). In the environments of New York (USA), the ISNT adjusted for soil OM has 

been successfully used to determine soil N supply potential. This determination has 

contributed to improving traditional N recommendations in maize (Klapwyk and 

Ketterings, 2006). Moreover, the ISNT reflects a high spatial structure that contributes 

to reducing the number of samples needed to fine-tune maize N fertilization. Further 

research is needed to verify the usefulness of the ISNT for adjusting N fertilization in 

Mediterranean conditions, but it could be an excellent tool for improving N practices.  

 

2. Use of multispectral aerial images to detect maize N deficiencies 

In the Ebro valley (NE Spain), high-yielding maize entails N uptakes of over 

300 kg N ha-1 yr-1 (Berenguer et al., 2008; Biau et al., 2012). These high N uptakes, 

together with the previously reported temporal and spatial within-field soil N 

variability, have motivated the development of technologies to accurately determine N 

fertilization requirements. Multispectral aerial images could be used for this purpose 

due to their ability to detect maize N deficiencies at growing stages when they can still 

be corrected. Aerial image acquisition after V8 stage (8 leaves with visible leaf collar) 

seems to be consistently useful to determine maize N status and to predict yield (Bausch 

et al., 2008; Bausch and Khosla, 2010; Isla et al., 2011; Cilia et al., 2014; Quemada et 

al., 2014). Sripada et al. (2005) described this technology as a fast and accurate method 

to determine in-season maize N requirements, which is needed to provide more precise 

and economical management and potentially decrease N pollution. 

In irrigated Mediterranean conditions, Isla et al. (2011) and Quemada et al. 

(2014) have also proven the usefulness of multispectral images to improve N 

management in maize. Nevertheless, in order to verify previous studies, the use of 

multispectral images to determine N fertilization of maize in high-yielding 

environments needs to be evaluated. The results of the present research suggest that 

green-based vegetation indices are highly correlated with maize N status. Moreover, 

green-based indices were able to predict grain yield and non-responsive maize N status 

with greater accuracy than red-based indices. This could be due to problems of 

saturation associated with red-based indices for some types of vegetation during their 



  General Discussion 

 134 

later growth stages (Isla et al., 2011). Therefore, green-based vegetation indices derived 

from multispectral aerial images could be used to improve N management. For instance, 

the Green Chlorophyll Index (GCI) was determined as the most useful index because of 

its capacity to distinguish among maize N statuses up to 84% of maximum yield. The 

detection of maize N status that would yield less than 84% of maximum yield and its 

correction by N fertilization could improve N management and possibly maize grain 

yields in irrigated Mediterranean conditions. In order to determine grain yield 

variability that vegetation indices could not distinguish in high-yielding areas (above 

84% of maximum yield), the Wide Dynamic Range Vegetation Index (WDRVI) could 

be used. At very high spatial resolutions, the WDRVI was the best index for 

distinguishing between treatments with applications above or below 250 kg N ha-1. 

Although there would theoretically be little interest in increasing N application above 

250 kg N ha-1, mainly because many areas have been declared N vulnerable areas 

(DOGC, 2009), the present research showed a tendency for increased grain yield with 

higher N rates. This could be of particular interest in maize-growing areas such as those 

of the Ebro valley, even with the N reduction regulations, which have the appropriate 

environmental conditions and irrigation facilities to attain such high yields. Probably, in 

these cases, the determination of the available N at planting or the N supply potential of 

the soil (by the ISNT method, suggested above) would also contribute to fine-tuning in-

season N recommendations. 

In this thesis, two different technologies were used to carry the camera to 

acquire the aerial images: the aircraft and the emerging Unmanned Aerial Vehicles 

(UAVs). Traditionally, aircrafts and satellites have been used successfully for growth 

monitoring and real-time management at field scale (Daughtry et al., 2000; Zhang et al., 

2011; Zarco et al., 2013) with the capacity to cover large surface areas. However, the 

growing use of commercial UAVs is seen as another possibility to quickly and 

repeatedly acquires multispectral images. 

Although both methods (aircraft and UAVs) can be used to capture aerial images 

of maize fields, several differences between UAVs and aircraft were detected in this 

study. The UAV system allowed higher spatial resolution than the aircraft (0.15 and 

0.25 m, respectively), but lower radiometric resolution (8 and 14 bits/pixel, 

respectively). In addition, the airborne camera used on the aircraft had 4 spectral bands 

(blue, green red and near infrared), whereas the UAV camera had 3 (green, red and near 

infrared). Therefore, the UAV image had more detail of the crop surface (higher spatial 
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resolution) than the aircraft camera, but the pixels were able to differentiate the 

reflectance in fewer categories. These findings can be useful for the implementation of 

this technology by farmers. UAV services could be used in early stages because soil 

pixels that distorted the images could be more accurately removed than with the aircraft 

images. Similarly, the UAV services could help farmers to detect weeds or irrigation 

defaults at very early stages (Peña et al., 2013). However, to determine sufficient and 

non-sufficient maize N status, the higher radiometric resolution of the airborne camera 

will probably contribute to a better assessment of N recommendations. 

 

3. Double-annual cropping systems 

 The high-yielding conditions of irrigated maize in the Ebro valley have 

influenced farmers in the application of high N rates to this crop. Indeed, vulnerable N 

zones have been declared in some areas of the Ebro Valley as a consequence of high N 

application over the years. Surveys in this area (Cavero et al., 2003; Isidoro et al., 2006) 

have shown an excess of N fertilizer applied to the agricultural systems. When an 

excess of N fertilizer is applied, there is a high risk of N leaching during the maize 

intercrop period (October to April) (Moreno et al., 1996) which contributes to reducing 

crop profitability. To avoid leaching of residual N and to increase profitability per land 

unit, double-annual cropping systems can be implanted. 

The results of the study undertaken for this thesis confirm that double-annual 

cropping systems increase the NUE compared to mono-cropping systems. This is 

mainly due to the clear residual effect of maize N fertilization on the subsequent barley. 

The winter crop (barley) was able to use the maize residual N and, when maize residual 

N was high, showed no yield response to N fertilization. However, barley residual N did 

not significantly affect maize yields. Probably, the high soil OM mineralization during 

summer (Magdoff et al., 1984), which was around 160 kg N ha−1, provided the maize 

with a high amount of N and masked the possible effect of barley residual N.  

Double-annual cropping strategies could also help farmers to increase total 

annual yields (Yagüe and Quílez, 2013) and field gross margin (Gil, 2013) per land unit, 

while reducing NO3
−-N runoff (Gabriel and Quemada, 2011; Krueger et al., 2012). The 

most efficient N fertilization strategies, in the double cropping systems used in the field 

trials, were the ones in which N was split between the two crops, avoiding the 

application of high N rates that account for a higher risk of N leaching. Though the total 

optimum N rates reported for double-annual cropping systems (230-240 kg N ha-1 yr-1) 
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were slightly lower than those determined for achieving maximum maize grain yields in 

mono-cropping conditions (Iguácel et al., 2010; Maresma et al., 2016), higher annual 

grain yields and NUE values were determined in the double-annual cropping system 

used. In this situation, soil sampling could be a useful technique because the N rate of 

one crop could be adjusted depending on the residual N of the previous crop. 

Nevertheless, as higher NUE values and annual yield stability were achieved in double-

annual cropping system compared to mono-cropping ones, there is a lower risk of N 

leaching if sustainable N management is continued over time. 

 

4. General overview 

 There is a global interest in improving agricultural practices to increase yields 

and NUE at the same time (Robertson and Vitousek, 2009). However, in many 

agricultural areas, N fertilization (especially of extensive crops) is mostly underpinned 

by the simplification of fieldwork management and by avoiding the risk of under-

fertilization. This practice normally leads to the application of high N rates at early crop 

stages, which can trigger over-fertilization. To avoid these practices, farmers should be 

supported with decision tools to predict crop N requirements and to determine its time 

of application. The present research aims to verify the usefulness of different strategies 

to improve NUE in Mediterranean irrigated environments. 

Despite the usefulness of the described tools to aid N management, their 

adoption by farmers is still limited. The implementation of an accurate soil sampling 

strategy as well as the adoption of remote sensing technologies require investment and 

knowledge that in most cases are seen as economically unrecoverable or difficult to 

acquire. On the other hand, the popularity of the double-annual cropping strategy is 

growing among farmers, who see increased annual yields and land profitability. The 

results of the double-annual cropping system have been especially interesting in new 

irrigation areas where high investments in efficient irrigation systems have been made. 

The increase in the gross margin of double-annual cropping systems compared to mono-

cropping ones contributes to recovering the investment made in irrigation systems. 

However, there are still cultural practices that make some farmers reluctant to adapt 

complex crop rotation systems. 

This study has attempted to underline the potential profitability that the 

implementation of various technologies to better adjust N fertilization could entail. 

Farmers will see a reduction in N fertilizer applied to the field (which entails a reduction 
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in N fertilizer cost), while maintaining yields. Both farmers and the environment will be 

taking advantage of technological advances to increase profitability and sustainability, 

respectively. 

 

5. Future research 

Successful achievements of studies can open the door to further research in 

many directions. By way of example, further studies in this field could focus on: 

I) Soil sampling protocols:  

- The evaluation of different soil N tests to better determine the N supply potential 

and the total N available for the crop in a growing season. The ISNT method 

could be tested in Mediterranean conditions to verify its usefulness in other parts 

of the world. 

- Determination of soil N patterns in cultivated fields in Mediterranean 

environments to determine optimum soil sampling intensity for accurate 

prediction of N availability for the subsequent crop.  

 

II) Multispectral aerial images: 

- Maize response to N fertilization when deficits are detected at V12 stage (image 

acquisition). As maize has absorbed around 40% of the total N at that stage, a 

high response to N fertilization is expected if N is applied at this stage. 

However, the efficiency of maize in terms of absorbing N after the V12 stage 

should be evaluated to fine-tune N management as determined by multispectral 

aerial images. 

- Assessment of maize N fertilization in double-annual cropping systems. In 

double-annual cropping systems lower maize yields are achieved and faster 

plant growing and development take place (compared to monocrop maize) due 

to the more favourable conditions (especially, temperature). Therefore, as less N 

application is provided to maize in this double-annual cropping system 

(compared to monocrop maize), there is less capacity for improving maize N 

fertilization. The usefulness and profitability of multispectral aerial images 

remain uncertain and should be evaluated in emerging maize-based double-

annual cropping systems. 
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III) Double-annual cropping systems: 

- Evaluation of the long-term sustainability of the proposed double-annual 

cropping system (barley-maize) unlinked to livestock farming. In this research, 

the maize stover was incorporated whereas the barley straw was removed. This 

management strategy did not entail a reduction in soil OM over a 3-year period 

(duration of the experiment). However, future long-term experiments could 

verify whether the high yields achieved in this crop rotation system do not 

jeopardize the sustainability of the agro-ecosystem over a long-term period. 

- Evaluation of alternative crops, such as pulses, to increment the complexity of 

the system and take advantage of the combination of an N-fixing crop (pulse) 

with a high N-demanding crop (maize). These alternatives could increase the 

NUE of the field due to lower N input requirements. However, the yields 

achieved by the winter crops must be analysed to verify their profitability. 
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General Conclusions 
The present research thesis addresses three key aspects in nitrogen (N) 

management strategies to improve the efficiency of N fertilization in high-yielding 

irrigated agro-ecosystems: a) the soil sampling strategy to determine the amount of 

organic matter and nitrates, b) the N status at V12 from multispectral aerial images and 

its relation to yield, and c) the convenience of a double-crop (barley-maize) system to 

improve N efficiency. In view of the results obtained, the following conclusions can be 

drawn. 
 
I) The Illinois soil nitrogen test (ISNT) is recognized as an alternative method to 

reduce the sampling density required to determine the amount of nitrates available 

in the soil. Its within-field homogeneity, together with its capacity to estimate soil 

N supply potential, could be useful to improve N fertilization. 

  
II) Sampling density should be adapted to the object of study. Optimum soil sampling 

densities of 3.75 and 12.5 samples ha−1 were determined for OM and nitrates, 

respectively. 
 
III) Green-based vegetation indices (VIs) are more accurate than red-based ones in 

predicting grain yield and determining the optimum N rate for maize at V12 stage. 

The Green Chlorophyll Index (GCI) was the most notable of the VIs due to its 

ability to distinguish among maize N status up to 84% of maximum grain yield. 
 
IV) The Wide Dynamic Range Vegetation Index (WDRVI), at V12 stage and at very 

high spatial resolution, could overcome the uncertainty of fertilizing apparently 

well-nourished maize areas that do not achieve maximum yields. It was able to 

distinguish between applications below or above 250 kg N ha−1. 
 
V) The double-annual cropping system (barley-maize) in irrigated Mediterranean 

environments shows higher yield potential and stability when compared to mono-

cropping systems. Average annual grain and biomass yields were as high as 20 and 

35 Mg ha−1, with N rates of 230-240 kg N ha−1 yr−1 split between the two crops. 
 
VI) Barley is able to efficiently use maize residual N, which contributes to increasing N 

use efficiency (NUE) of the double-annual cropping system compared to mono-

cropping strategies. 
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