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Abstract

Spontaneous brain activity, measured under the absence of any overt task,
has been investigated under the label of “resting state” for about 20 years
with rising interest. While it was known since the beginnings of modern
electrophysiology that the brain exhibits spontaneous fluctuations also dur-
ing rest, the discovery, in 1995, that these fluctuations possess a robust
spatio-temporal structure had a profound impact on how we understand
and investigate brain activity. In this dissertation, we characterize the
spatio-temporal dynamics of resting state on a macroscopic level using fMRI
recordings from humans and combining novel data analysis tools with theo-
retical models on the level of the whole brain. We demonstrate the presence
of common patterns of functional connectivity, known as resting state net-
works (RSNs), that evolve in time in both empirical and model data. We
show that spontaneous fluctuations and their statistics are determined by
the structure of the brain network and its dynamics.



Resumen

La actividad cerebral espontanea, o actividad de reposo, es aquella que
uno puede registrar cuando el cerebro no estd involucrado en ninguna tarea
impuesta del exterior (tal como serfa la presentacién de un estimulo). El
estudio de la actividad de reposo ha conocido un interés creciente durante
los ultimos 20 afios. Si bien las fluctuaciones en la actividad de reposo
eran conocidas desde los inicios de la electrofisiologia moderna, el descubri-
miento, en 1995, de que estas fluctuaciones muestran patrones espaciotem-
porales robustos ha tenido un impacto profundo en la manera de entender
e investigar la actividad del cerebro. En esta disertacién caracterizamos la
dindmica espaciotemporal de la actividad de reposo a nivel macroscépico
usando registros de fMRI en humanos y combinando nuevas herramientas
de analisis y modelos tedricos del cerebro a gran escala. Observamos pa-
trones comunes de conectividad funcional evolviendo en el tiempo tanto en
los datos empiricos como en las simulaciones. Demostramos que las fluc-
tuaciones de reposo y su estadistica son determinadas por la estructura de
la red cerebral y su dinamica.

vi



Preface

The brain is the basis of behavior, personality, and conscious experience.
One of the main challenges it faces is to balance flexibility and stability in
order to enable us to survive in unknown situations, develop new solutions,
and learn, in other words: to adapt, and at the same time draw from expe-
rience and remember. This is illustrated in an important concept of brain
function: segregation versus integration. Segregation is necessary in order
to be able to optimally perform a certain function in a specialized brain
region, something that we have studied extensively over the last decades
by identifying countless brain areas that support certain functions tested in
experiments, like decision making, perception, problem solving, emotional
processing, and many more. This endeavor has been immensely aided by
imaging methods such as functional magnetic resonance imaging (fMRI).
Nevertheless, we have always been interested in how brain regions commu-
nicate, recognizing that flexible integration between functions is necessary
to perform complex cognitive functions.

Computational neuroscience is an approach that casts the idea of a “func-
tion” into the concept of computations and asks what kind of computation
a brain area is suited for and why. Interplay between different kinds of
computations over a staggeringly large range of temporal and spatial scales
in a hierarchical fashion is the basis for performing tasks like navigating a
car on a crowded highway, learning how to speak, or writing a PhD thesis.

We have long since learned that what fires together, wires together. A main
topic in this thesis is the connectivity between brain areas that allows this
teamwork to occur, and which structures a bunch of brain regions into a
hierarchy inside of which flexible integration and segregation of functions
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viii PREFACE

takes place. On a microscopic level, this entails synaptic plasticity, on a
mesoscopic scale, neural assemblies, but the scale that is important here is
the macroscopic one, the one that is measured with fMRI.

About 20 years ago, fMRI was instrumental to a discovery that radically
changed the way we think about macroscopic connectivity: Even in the
fMRI scans that were taken while subjects were not performing any tasks -
until then referred to as “noise scans” - the correlation between fluctuations
in the involved brain regions (in this case, motor regions) was very close to
that observed during task. On the one hand, this meant that activations
that are observed during task could no longer be considered as merely dif-
fering from a flat baseline consisting of uncorrelated noise. On the other, it
allowed scientists to map distributed brain networks that are jointly involved
in similar tasks - i.e. they are functionally connected - without having to
design specific experiments. The emerging term “resting state” stands as
much for an “idling” brain state as for an experimental paradigm. Immedi-
ately the question arises of what supports these functional relationships, and
computational models have been invaluable in linking temporal and spatial
scales and thus findings from different fields of neuroscience ranging from
single cell recordings to fMRI. But it becomes more complicated: About
a decade ago, scientists started realizing that this spatially very complex
baseline also had a temporal structure, meaning that functional relation-
ships between brain regions change all the time. Chapter [I] of this thesis
will introduce “Resting state and its dynamics”.

Chapter 2| “Robust extraction of spatio-temporal patterns from resting
state fMRI”, contains the first study that was conducted within this PhD.
Its goal is to show that a certain dynamic model of resting state, the dynamic
mean field model, does not only reproduce the average functional connec-
tivity, as was already shown elsewhere, but also exhibits specific functional
patterns over time. It shows how a decomposition technique that is rou-
tinely in use in other fields, but so far not in neuroscience, namely tensor
factorization, can be used to obtain common sets of regions that tend to
be functionally connected from empirical as well as simulated data; these
“sets of regions”, or communities, are well-known in the literature as resting
state networks. A discussion of which consequences our findings have for
our understanding of the dynamics present in resting state is also included.

Chapter [3] “Temporal dynamics of human resting state fMRI”, continues
where chapter [2| leaves off and characterizes the temporal changes in func-
tional connectivity. We establish suitable measures to track these changes
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and show that they are not explained by random fluctuations in global con-
nectivity, but are a specific signature of resting state dynamics. This is tied
to the temporal evolution of the resting state networks mentioned above.
Furthermore, we discuss which properties a model that reproduces these
dynamics should have.

Chapter [4] contains the “General discussion” and ties together all the find-
ings presented in this thesis, including a discussion of future steps.

The work presented in chapters [2] and [3| could not have been done without
collaboration, and two manuscripts resulting from it, carrying the same ti-
tles as the chapters of this dissertation, list the authors as follows: Katharina
Glomb, Adridn Ponce-Alvarez, Matthieu Gilson, Petra Ritter, and Gustavo
Deco.
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CHAPTER ].

Introduction: Resting state
and its dynamics

1.1 Overview

Biswal et al.| (1995]) showed that low-frequency fMRI signals are correlated
among anatomically separate regions even under the absence of any task.
Specifically, they showed that the correlation pattern between voxels that
were found to be activated during a finger tapping task was very much
the same while this task was not being performed. This was true even for
voxels located in the opposite hemisphere to the region used as seed. The
authors make the point that the fluctuations observed in the band below
0.1 Hz are of neural origin, which has since then been corroborated by
other authors (Shmuel and Leopold, 2008; [Nir et al., [2008; |Scholvinck et al.,
2010; Britz et al., 2010; de Pasquale et al., 2010). Likewise, they state that
their observations are not due to the subjects imagining themselves doing
the same task because such imagery studies had yielded slightly different
results. Thus, they showed that spontaneous brain activity is spatially and
temporally structured.

Today, this publication is nearing 5000 citations, and many of the papers
that cite it have thousands of citations themselves. Let us consider two
reasons for the popularity of the authors’ discovery.

On the one hand, it raised the question as to what exactly the brain is doing
during rest. The idea of a “default mode of brain function” (Raichle et al.,
2001; Greicius et al., 2003) states that during rest, the brain is busy with

1



2 INTRODUCTION: RESTING STATE AND ITS DYNAMICS

Minimum
Decrease

Maximum
Decrease

Figure 1.1: Areas of the brain that decrease their activity in attention- demanding
tasks and external stimulation, as measured with PET. Image from |Raichle et al.
(2001))

certain self-referential tasks which are put on hold as soon as an external
task arrives (Fransson, [2006) (figure [1.1)). While this has been connected
to cognitive correlates like mind wandering (Mason et al. 2007), similar
patterns have been observed under anaesthesia in macaques (Vincent et
al 2007), suggesting that spontaneous fluctuations are (also) a network
effect. Thus, spontaneous activity is not only relevant under the absence
of task (“resting state”, RS) but also for any study that has as its goal the
localization of a function to a brain area, because we can no longer assume
a “flat” baseline, i.e. uncorrelated fluctuations that can be averaged out.

On the other hand, it was realized that these correlations can be used to
map the functional connectivity (FC) structure of the brain without having
to apply a large number (or a small number, for that matter) of tasks, and
thus, large-scale connectivity can be mapped for many functions (Lowe et
al., [1998; |Cordes et al.l 2000; De Luca et al.] 2005 Vincent et al., [2006) in
any person that is able to lie still for five minutes (Van Dijk et al., |2010).

FC can be defined at the level appropriate for fMRI as any kind of statis-
tical dependence between the measured activity of voxels or brain regions,
for example Pearson correlation, covariance, or mutual information (Friston
et al.l [1993). This is taken to be indicative of coherence in the activities of
the brain regions. Thereby we assume that brain regions that show coher-
ent activity patterns exchange information and thus, integrate it in order
to subserve a specific function. The coherent sets of regions that were re-
vealed using correlations between time courses of spontaneous activity dur-
ing RS were named “resting state networks” (RSNs). This term, however,
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is slightly misleading, because these correlation patterns are not abolished
during task, and specific tasks evoke co-activation patterns that are similar
to RSNs (De Luca et al., [2005; |Cole et al., [2014;|Glasser et al.,2015). There-
fore, some authors use the term “intrinsic connectivity networks” (ICNs)
instead; see for example |Calhoun and Adali (2012). On a systems level,
Fox et al.| (2005) observed sets of regions whose time courses were corre-
lated with each other, but anticorrelated with other sets (figure [1.2)). This
lead to the notion that “the human brain is intrinsically organized into |...]
anticorrelated functional networks” (Fox et al., [2005)). This organisation is
also apparent during rest, where the spontaneous activity of task-negative
regions is anticorrelated with that of a number of other regions; thus the
definition of the “default mode network” (DMN) - perhaps the best-known
RSN - and the “task-positive network” (TPN) (Fox et al., 2005]).

The DMN seems to play a particularly important role in mental disorders
(Broyd et al., 2009)), and it has been linked to consciousness (Gusnard et
al.; 2001) and recently, to many real-life behavioral measures (Smith et
al., 2015) like IQ, life satisfaction, or cannabis use. Its level of activation
is predictive of participants’ performance or behavior (Boly et al., 2007;
Hesselmann et al., 2008; Sadaghiani et al., 2009; Coste et al.,|2011]). Specif-
ically, higher levels of activity in the DMN are typically reported to yield
weaker performance, while lower levels together with stronger activation
of attention-related regions and networks linked to the task modality pre-
dict better performance. These observations have lead to the integration
of the “default mode”-hypothesis into Bayesian ideas of predictive coding
(Ringach| 2009; Sadaghiani et al., 2010; |(Carhart-Harris and Friston, [2010)).
In this framework, fluctuations represent the brain’s attempt to prepare for
potential incoming stimuli and facilitate a swift reaction (Deco et al., 2013)),
as well as being indicative of the hierarchical organization of the brain, where
higher areas (DMN, salience network) minimize prediction errors in lower
ones (sensory cortices).

Put bluntly, information is believed to be integrated inside of RSNs/ICNs,
and segregated between them. Instead of using seeds to unveil functional
networks, this idea of integration /segregation motivates another, more data-
driven formulation of the problem as blind source separation: the signals of
a limited number of spatially independent sources (the RSNs/ICNs) mix to
produce the data that we pick up in the MRI voxels. The goal is to find the
unmixing matrix that allows us to extract the original components. Due to
the segregation idea, it is reasonable to apply the constraint of spatial in-
dependence, which leads to spatial independent component analysis (SICA,
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Time (seconds)

Figure 1.2: Illustration of anticorrelated networks in the human brain. The seed
is located in the posterior cingulate cortex (PCC; yellow curve), i.e. in the task-
negative network. Positive correlations are obtained with other voxels within this
network (medial prefrontal cortex, MPF; orange curve), and negative ones with the
“task-positive network” (intraparietal sulcus, IPS; blue curve). Image from Foz et
al.| (2005)

or just ICA) (Bell and Sejnowskil 1995; McKeown et al., [1998; Hyvarinen
et al., |2004). Using this technique, all RSNs can be extracted simultane-
ously (Kiviniemi et al., 2003} Beckmann et al., [2005) (figure . It was
shown that they are reproducible across subjects (Beckmann and Smith)
2005; [Damoiseaux et al., 2006} [Yeo et al.l [2011) and related to functional
networks found in activation studies (Smith et al., 2009)). It is also possible
to apply the independence constraint on the temporal domain (tICA), but
this is rarely done (Brookes et al., [2011; Smith et al.l 2012) because of the
limited number of time points in a typical scanning session. In section
below, we present a more thorough introduction to this topic since it is of
particular relevance to this thesis.

Given the connection between fundamental concepts like integration and
segregation and RSN, it is not surprising that the methods developed for
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Figure 1.3: RSNs extracted with (spatial) ICA, image from|Beckmann et al.| (2005).
RSNs are labelled as follows: (a) medial visual cortical areas, (b) lateral visual cor-
tical areas, (¢) auditory system, (d) sensorymotor system, (e) visuo-spatial system,
(f) executive control, (g, h) dorsal visual stream.

investigating FC in RS have been used to search for, and lead to the discov-
ery of, changes of FC linked to ageing (Damoiseaux et al., 2008; Dosenbach
et al., [2010; |Chan et al., 2014} Betzel et al. 2014), different disorders (Gre-
icius et al., [2004; (Cherkassky et al., [2006}; [Yu-Feng et al., |2007; |Castellanos
et al., |2008; (Greicius|, [2008}; |[Rotarska-Jagiela et al.l [2010} |Veer et al., [2010;
Kihn and Gallinat, 2013), and brain states (Horovitz et al., 2008; Boveroux
et al.l 2010; Brewer et al., [2011; Carhart-Harris et al., |2012)). Importantly,
the described changes are often not merely markers, but they establish that
RSNs are functionally significant and rooted in the underlying anatomical
connections. For example, it was shown (Sorg et al., |2007; |Seeley et al.,
2009) that different neurodegenerative disorders spread through a particu-
lar RSN after initiating in a spatially delimited seed region. Recently, it was
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Figure 1.4: Example for how the brain is modelled as a graph. The color of each
node stands for its degree, i.e. how many other nodes it is connected to, yellow =
1, green = 2, red = 3, blue = 4, other colours > 4, and the blue edges stand for
functional connections in one hemisphere. Image from Sporns et al.| (2004))

found that gene expression patterns are correlated with RSNs (Richiardi et
, 2015)), a finding that illustrates how different fields like neuroscience and
molecular biology can link and produce new insights.

In the present context, the FC we are interested in is on a macroscopic scale,
incorporating the entire brain; we are interested in how distributed, large-
scale networks integrate information in order to subserve complex cognitive
functions. Therefore, it makes sense to conceptualize the brain as a graph,
i.e. a network consisting of (essentially equal) nodes and edges
1}, 2004} [Rubinov and Sporns| 2010) (figure [1.4). On the one hand, this
allows us to assess the brain in terms of its network properties (W.
m m, providing interesting insights into how the brain network is
optimized for processing information, cost and efficiency, and resisting dam-
age (Sporns et all 2004; Kaiser and Hilgetag, 2004; [Bullmore and Sporns,
2012). The focus is on the modular structure and the hierarchy of regions
and groups of regions (Meunier et al.| 2010)).

Furthermore, using graphs provides an entry point for modelling studies
which strive to uncover the relationship between structure and function
(Sporns et al., 2004, 2005; Honey et al., [2009; Deco et al) 2010). This
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topic received a boost not only from whole-brain FC obtained from RS
scans, but also from the development of non-invasive imaging techniques
for structural connectivity, diffusion-weighted MRI (dwMRI) or diffusion
tensor imaging (DTI) (Basser et al., 1994). Combining these techniques, it
is possible to map both the functional and structural connectome (Sporns
et al., [2005; Van Dijk et al., 2010) of the human brain, one of the main
efforts of neuroscience today (Van Essen et al., [2013)).

In terms of the graph formalism, the edges can stand for different kinds of
relationships between the nodes (Sporns et al., 2004). In the case of FC,
they stand for the strength of the statistical dependence found between the
time courses of brain regions; in the case of structural connectivity, they
stand for fiber densities, anisotropy, or some other measure derived from
DTT describing the physical, anatomical connections that exist in the brain;
a third possibility is to use effective connectivity (Friston),[1994), which, via a
model, uses causal influences that brain regions exert upon each other. Also
the nodes can be defined in different ways, depending on the parcellation.
We have to consider not only the resolution (i.e., using more or fewer nodes),
but also what criterion we use to define a brain region. This can happen
purely anatomically, based on landmarks or cell types (Tzourio-Mazoyer et
al., 2002; |[Fischl et al.| 2004), or functionally, using findings from activation
studies (Glasser et al., 2015)), or even uniformity of RS activity (Shen et al.,
2013)).

Even though this way of modelling the brain has been extremely useful, it
is important to understand that it has its limitations. Actually, the data do
not warrant a clear-cut modular structure because interactions over time are
influenced by the hierarchy of brain regions between and across RSNs/ICNs
(Sadaghiani et al., [2010). When taking into account actual anatomy (Kopell
et al., |2014])), we realize that the brain is a continuous sheet of tissue which
is not easily divided into “nodes” and “edges”; brain signals like local field
potentials or travelling waves do not stop at the border of a “node”, nor
are they transmitted solely through “edges”. Furthermore, the hierarchi-
cal organization of the brain is heavily influenced by the laminar structure
of feedforward and feedback projections (Markov et al., 2014; Wang and
Kennedyl, 2016), something that is rather hard to include in a graph repre-
sentation.

While the initial focus of RS research was on delineating RSNs/ICNS, i.e.
entities that are thought to be more or less separated in both time and space,
the fluctuations themselves have received more and more interest over the
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last years. Indeed, it has been appreciated already two decades ago that
the brain state directly preceding a stimulus linearly superimposes with the
responses of neurons to a repeated visual stimulus (Arieli et al., |1996), ex-
plaining a large part of the inter-trial variability in neuronal responses. This
was shown in fMRI by [Fox et al.| (2006]). Thus, neuronal responses to incom-
ing stimuli are state-dependent (the stimulus-evoked activity interacts with
the ongoing activity). [Horovitz et al.| (2008) corroborated this on a global
level by comparing the magnitude of spontaneous fluctuations between RS,
task, and sleep. Likewise, Garrett et al| (2010) demonstrated changes over
the life span.

A number of recent studies have focused on the temporal integration of
RSNs/ICNs in rest and task (de Pasquale et al. [2012; Cole et al., [2013;
Mitra et al. [2014). The rich dynamics present in the fMRI time series are
currently being explored, and a number of methods is being employed in
this endeavor (Chang and Glover} 2010; |Allen et al.,[2012; |Jones et al.,[2012}
LLiu and Duyn| 2013} Betzel et al., [2016]). This adds another layer to the
question of how the brain integrates and segregates information because we
need to take into account that areas can be integrated at one point and
segregated at another (Hutchison et al., 2013; |Calhoun et al., 2014; [Kopelll
2014). Likewise, there are differences depending on age, brain state,
or due to disorders, with studies on these topics already emerging @
all, 2008} |Garrett et all,2010; [Jones et all, 2012; Barttfeld et al., [2015). We
go more into detail below since this topic is crucial to the present thesis

(section [L.2)).

In general, the question arises as to how a relatively unchanging anatomical
connectivity can at the same time support extremely versatile and adaptive
cognitive function. Computational models are invaluable because they pro-
vide simulated time courses which can be tested against the data
et al.l [2013; [Hansen et al., 2014} Messé et al., [2014). Importantly, this can
help answer a questions that is overarching to the mere characterization, de-
scription and reproduction of time courses and their properties: What kind
of dynamical system is the brain? In this framework, co-activation patterns
that occur repeatedly and reliably are formalized as attractors, and the pat-
terns themselves as well as the dynamics which govern their activation and
the transition between them are abstracted as a “dynamical repertoire” of
the brain. This “repertoire” subserves the flexibility and adaptiveness that
is necessary for cognitive function.

How is the observed “dynamical repertoire” generated? How does switching
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occur between different states? How is dynamical behavior organized across
spatial and temporal scales, spanning from the firing of single neurons to
complex behaviors? In multistability (Schoner and Kelso, |1988; Freyer et al.,
2011)), several stable states co-exist and the system switches between them
due to noise. In metastability (Kelso,|1995; |Friston,|1997; (Tognoli and Kelso,
2014)), the switching behavior itself follows a stable pattern and does not
require any additional drive, be it by external inputs or noise. This can be
explained in terms of “ghost attractors” (Deco and Jirsal 2012; Kelsol 2012]),
thereby establishing a link between multi- and metastability. A related ap-
proach is that of self-organized criticality (Chialvo, 2010; Tagliazucchi et
al., 2012; [Haimovici et al.l 2013), where changing attractor landscapes are
explained by small events “avalanching” to larger scales. Common themes
are the gradual transition between integration and segregation via coupling
of the elements of the system, and generally, phase transitions and bifur-
cations, close to which attractors emerge from the system’s constituent el-
ements - i.e., single neurons and small circuits. Importantly, this theory of
dynamical systems strives to explain brain dynamics as emergent from a
relatively low-dimensional system, a point of view that is particularly inter-
esting in the age of the human brain project (www.humanbrainproject.eu)
which aspires to ever-growing detail in theoretical models of the brain.

If the discovery of RS FC structure triggered a paradigm shift from assuming
a “flat” baseline to taking into account a spatially and temporally complex
baseline, the characterization of temporal dynamics should trigger a further
shift towards understanding task as a deviation from RS. In the following,
we will go into more detail with two topics of special relevance to this thesis,
and then describe the studies presented in the next chapters.

1.2 Temporal dynamics of resting state

1.2.1 Methodological approaches

One of the first, and an influential, study on the temporal dynamics of
human RS as measured with fMRI is (Chang and Glover| (2010). The au-
thors analyze how the connectivity of the posterior cingulate cortex (PCC)
fluctuates over time; the PCC is a node in the DMN, and connectivity
to other nodes inside and outside of the DMN is quantified. They apply
two techniques that subsequently were adopted in other publications: time-
frequency analysis using wavelet transform coherence (WTC), and sliding
window FC. The former measures the power of interactions between pairs
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of brain regions over time depending on both frequency and phase. This is
valuable because the FC between two regions can fluctuate on several time
scales. Thus, for each point in time, for each pair of regions, we obtain the
power and the phase lag of the interaction for each frequency (see figure
for an example), as was previously done by |Sato et al. (2006)). The latter
simply works by sliding a window (rectangular or with tapered edges) of
fixed width along the time courses of a pair of regions and computing the
correlation inside this window (see figure for an example from a subse-
quent study by [Hutchison et al.| (2012))). The advantages and disadvantages
of both techniques become obvious: while using WTC is more specific and
allows us to examine all temporal scales involved, it also produces a large
amount of data that can be difficult to interpret, in part due to the large
variability across subjects. The sliding window approach allows only one
width at a time and thereby fixes the time scale, but it is much simpler and
easier to do. By combining both, the authors established that 1) FC be-
tween the examined nodes (brain regions) varies over time, 2) the variations
are scale-dependent.

Sliding windows have been used in different ways. Valuable insights were
provided by studies that combined them with ICA, investigating the changes
of relationships between RSNs/ICNs at different spatial scales (Calhoun et
al., [2008; [Sakoglu et al.l [2010}; |Kiviniemi et al., 2011; |Jones et al.l [2012}
Allen et al., 2012). This way, it was established that changes occur on
the level of large-scale configurations of inter-network relationships, where
some regions belonging to attention networks and the DMN act as “hubs”
not only in terms of their static connectedness, but also in terms of the
variability of their connections. This argues against the rigid assignment of
brain regions to a functional network, and stresses that at certain points in
time, the FC patterns can diverge greatly from the average. Furthermore,
the idea of “connectivity states” was introduced: Along with relatively fixed
FC patterns that recur over time, the way in which they interact also is
recurrent in time.

When analyzing “states” occurring over time, it is also possible to directly
consider co-activation of voxels, as was done by Tagliazucchi et al.| (2012]);
Liu and Duyn (2013). They show that maps defined this way generally
resemble those found using FC (although there are also some differences),
suggesting that a big part of the occurrence of RSNs can be explained based
on discrete events confined to a small number of time points.

A way to quantify global changes in network configurations is to use graph
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Figure 1.5: Example for the result of a time-frequency analysis via WTC for three
subjects, using the PCC seed and another DMN node (medial prefrontal cortex).
For each point in time (x-axes), the phase is plotted for each Fourier period (y-
axes). Dark blue regions indicate no significant coherence, bright blue stands for a
phase difference of 0 &+ 7 /4, orange: 7/2 £ 7/4, green: —w/2 + /4, red: m £+ w/4.
Image from |Chang and Glover (2010)

measures as done for example by Bassett et al. (2011); |Jones et al.| (2012));
Zalesky et al.|(2014); Betzel et al. (2016). Here, the modular structure plays
the most important role because it is a fingerprint of integration and seg-
regation (Sporns and Betzel, 2016) and allows the examination of network
organization on different spatial and temporal scales.

1.2.2 Bridging scales

The question of how observations from different imaging modalities fit to-
gether has always been of importance, emphasizing the relevance of different
scales. Mantini et al.|(2007) were the first to directly compare RSNs found in
fMRI to patterns of power variations in different bands of EEG. Since EEG
(as well as MEG, and electrophysiological recordings) possesses a much bet-
ter temporal resolution than fMRI, it is no surprise that it has been known
for a long time that measurements exhibit transiently stable configurations,
termed “microstates”. A number of papers (Britz et al.| [2010; Musso et
2010; [Van de Ville et all [2010) established a link between RSNs and
EEG microstates, thus relating different temporal and spatial scales. Im-
portantly, this speaks to a neural origin of RS fluctuations because EEG
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Figure 1.6: Time courses of windowed correlations, averaged over voxels belonging
to “oculomotor” network (OCM, red), ventral premotor network (vPM, blue), and
white matter (WM, cyan), from one monkey in the study of|Hutchison et al.| (2012)

recordings are not influenced by the neurovascular coupling.

In MEG, it was found that maps similar to RSNs can be obtained by cor-
relating the power envelopes of signals filtered in different frequency bands
(band limited power), meaning that in MEG, RSNs are based on the modu-
lations of the power in these bands (de Pasquale et al., 2010)). Interestingly,
coherence between nodes was found to exhibit a local maximum in the same
band that was reported for fMRI, suggesting that slow fluctuations (below
0.1 Hz) are of neural origin (de Pasquale et al. |2010; Brookes et al.| [2011}
Hipp et al., 2012)). In concordance with findings in EEG, correlations within
(de Pasquale et al., 2010 and between (de Pasquale et al.,[2012)) networks
depend on the frequency band, and occur transiently. [Brookes et al| (2011))
reported that fMRI-based RSNs share temporal patterns of fluctuations ob-
tained via temporal ICA. This approach was also applied to fMRI data by
Smith et al.| (2012), who stressed that temporal modes differ in important
points from spatial maps because RSNs interact over time.

Even though the temporal resolution of M/EEG is much higher than that
of fMRI, the spatial resolution is in both cases very limited and requires
complicated source reconstruction procedures. Although fMRI is superior
in that regard, it is still not enough to resolve single cell populations, de-
spite progress in decoding cortical columns (Yacoub et al.| 2008). The only
method that can provide both is that of electrophysiological recordings.
The problem here, however, is the limited coverage and difficulties with in
vivo recordings, especially in humans, and we can assume that this is the
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reason why for a long time, the activity of the brain during rest was con-
sidered noise: when recording from a limited area, the coherent activity of
macroscopic populations due to long-range connectivity is not evident.

Findings from simultaneous fMRI and electrophysiological recordings in an-
imals (Shmuel and Leopold, [2008} |Scholvinck et al., 2010; Pan et al., 2013)
and humans (Nir et al), [2008) show that slow BOLD oscillations are cor-
related with neural activity, including LFP modulations, but also directly
with slow components of the LFP (He and Raichle, |2009; Pan et al., 2013).
This is consistent with abovementioned findings in M/EEG.

Another prominent feature in animal recordings are propagating waves dur-
ing rest (Ferezou et al., 2007} |[Luczak et al., 2007; Matsui et al., 2016); they
are believed to be directly related to the firing of single neurons. Travelling
waves have also been reported with fMRI in rats (Majeed et al., |2011)) and
have recently been proposed as a mechanism for RSN generation for humans
(Mitra et al., [2014).

1.2.3 Origin and function of spontaneous slow fluctuations

While it seems fairly clear that fluctuation in RS observed with f{MRI BOLD
are at least in part due to underlying neural activity, this does not answer
the question as to how these fluctuations are generated. A first hint comes
from the fact that the spatial patterns are greatly shaped by the underly-
ing connectivity, both on the micro- (Bosking et al., |1997; Tsodyks et al.,
1999; [Kenet et all, [2003) and macroscopic level (Vincent et all, [2007; [Hag|
mann et all |2008; |Greicius et al., 2009). Computational models provide
valuable insights into how different kinds of dynamics on the microscopic
level together with the anatomical connectivity can lead to the correlated
slow fluctuations observed in fMRI (Ghosh et al., 2008} [Honey et al., 2009;
Deco et al, [2009) and MEG (Cabral et al.| 2011, 2014). Specifically, this
way it can be shown how slow whole-brain oscillations can emerge from
faster (30-80 Hz) oscillations on a smaller scale. This direction argues that
despite the low-pass filtering properties of the hemodynamic response and
neurovascular coupling, correlations can be transmitted through spatial and
temporal scales due to the dynamical system sitting close to a bifurcation.

As mentioned above, a number of studies has reported that slow fluctuations
are not only the result of filtering from smaller to larger scales, but are
present in the LFP or M/EEG measurements themselves (de Pasquale et|
2010; [Pan et all) 2013)). This speaks to the fact that investigations of
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long range connectivity in low frequency bands did not just arise as a side-
effect of the properties of fMRI, but that communication between neural
assemblies at long distances might involve lower frequencies due to longer
delays (Varela et al., |2001; Monto et al., |2008). The discovery of resting
state slow fluctuations at lower levels has lead to the hypothesis that they
are related to consciousness (He and Raichle), [2009) by virtue of integrating
information across the entire brain. Also on the level of higher cognition,
the notion has been put forward that fast and slow fluctuations are part of
a hierarchy between fast, lower-order (sensory, motor, emotions) functions
and slow, higher-order ones (deliberation, forming of beliefs) (Kringelbach
et al.l 2015). This is in line with the predictive coding-framework in which
spontaneous activity has been placed (Ringach, 2009; Sadaghiani et al.,
2010; (Carhart-Harris and Friston, [2010). In this view, ongoing activity is
modulated by top-down expectations, thereby influencing the processing of
incoming stimuli.

While it is tempting to speculate about the functional significance of spon-
taneous fluctuations, on the level of BOLD, it has been shown that surpris-
ingly big fluctuations can be explained by null models that do not assume
any non-stationarity of interregional FC (Handwerker et al., [2012; |Lindquist
et al.l 2014; [Hindriks et al., |2015; [Laumann et al., |2016)). This is illustrated
in |Betzel et al.| (2016) by the fact that the fluctuations are bounded by
the average correlation. Several approaches have been employed to identify
“real” non-stationary deviations (Sakoglu et al., 2010; [Zalesky et al.l 2014;
Hindriks et al., [2015), and the interpretation of the results is controversial.

1.3 Tensor factorization for neural data

We will now turn our attention to a more technical topic, which is nonethe-
less of immense importance in the field of RS fMRI. The extraction of “fea-
tures” is a very important element when identifying modules and large-scale
networks, and in this thesis, some unconventional methods are introduced,
which require clarification beforehand.

1.3.1 Formulation of the problem

Blind source separation is a very general problem, perhaps best-known as
the “cocktail party problem”, where a number of microphones placed in
different locations in a room full of people having different conversations
picks up different mixtures of the audio signal emitted by the people. The
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goal is to isolate the original signals, i.e. single conversations or people.
Mathematically, the problem can be stated in matrix form as follows:

Y =AX+E (1.1)

Here, Y is an I x T matrix containing the recordings of 7' time points
from I microphones (or generally, sensors), which are assumed to be the
result of a mixing process encoded in the matrix A which is applied to the
original conversations, encoded in X. X is of dimensionality J x T, i.e. the
number of sources can be different from the number of signals recorded by
the sensors, and is usually unknown; this leaves the mixing matrix A to be
of dimensionality I x J. E is the noise matrix. In element-wise form, this
equation becomes

J
vit) =) aija;(t) + eilt) (1.2)
j=1

Here, we have made the time dependence explicit. Translated to fMRI,
or neural recordings in general, X represents the neural signals that we
want to estimate, which undergo some unknown transformation and filtering
encoded in A and are corrupted by noise E before arriving at our sensors,
which record the data in Y. Estimating X from Y is also known as the
inverse problem. This leads us to another way of formulating the problem,
which is connected to the general linear model (GLM):

y(t) = Ax(t) + (! (13)

Now, y(¢) is a vector containing observations from the sensors at a certain
point in time. The fact that I and J are not necessarily equal means that
we have an ill-conditioned set of equations, i.e. the system is under- or
overdetermined. Indeed, most of the time, the number of neural sources
is unknown and large, and the number of signals is not big enough to ac-
curately estimate them, for example the number of surface electrodes in
EEG.

There are a number of well-known methods to deal with the inverse problem

X = WY, (1.4)
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where W = A is the estimated unmixing matrix with () denoting the
Moore-Penrose inverse. Thus, the task is to estimate W such that it is
optimal, i.e. minimizes the error between the estimated X and the real
X. In an under-determined system, this is achieved by imposing additional
constraints. For example, in principal component analysis (PCA) as well as
in singular value decomposition (SVD), it is assumed that the vectors in X
are orthogonal and that the original data are low-dimensional. Independent
component analysis (ICA) assumes independence between the vectors in
X. In non-negative matrix factorization (NMF), the constraint is non-
negativity, which can be sensible depending on the interpretation of the
results. For example, if the vectors in X are assumed to be membership
weights, it makes sense to assume that they should be non-negative.

1.3.2 Generalization to tensors

The methods sketched above can be extended to higher dimensional arrays.
In order to not confuse the dimensionality of a matrix, for example Y in
equation being of dimensionality I x T', with the fact that Y is a matrix
and therefore a two-dimensional array, we will use the term “2-way array”
and refer to the “ways” of the arrays as “modes”. We will denote tensors in
the following way: Y to distinguish them from matrices, although a tensor
could also be 2-way and thus, a matrix (or even a vector).

Mostly, multiway arrays are known in neuroscience from group analysis,
where additionally to the temporal and the sensor (spatial) dimension, we
have a subject- and/or session dimension, or from time-frequency analysis,
where frequency is an additional dimension. For the former, and most
relevant to fMRI, a generalization of ICA has been developed and finds
wide application (Beckmann and Smith, 2005).

The most general way of formulating this problem is known as the Tucker-
N-model:

Y =G x{U} +E, (1.5)

Figure shows an illustration. x denotes the n-mode product (the mean-
ing of which will become clear in equation . For ease of description, we
will limit our explanation to three modes, but it is easy to see that this can
be generalized to any number of modes. Y is the data tensor and {U} con-
sists of three matrices A, B and C which contain components or features,
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one set for each of the three modes of the tensor. The data is of dimension-
ality I x T x @, and the matrices A, Band Care I x J, T x R, and Q x P,
respectively. Y and {U} are linked by the core tensor, G, of dimensionality
J x R x P, which describes interactions between the components (Cichocki
et al., |2009; |Cichockil [2013).

This can be written in element-wise form as for two dimensions in equa-
tion

J R P
Yitq = Z Z Z gjrpaijbt’rcqp + €itq (16)

It is important to note a few properties of this decomposition which are
quite counter-intuitive and are due to the generality of this approach:

1. The number of components can differ from mode to mode, i.e. J #
R # P. For example, we could have J modules/communities (spatial
dimension), R temporal patterns, and P patterns of variability across
subjects.

2. These components can interact whichever way possible, both between
and across modes, as encoded in the core tensor. This means that any
combination of components can contribute to the data.

3. Thus, components do not have any meaning per se.

Taken together, this obviously poses problems in the interpretation and
visualization of decomposition results, which makes this formulation too
general for neuroscience. Furthermore, there is usually a large number of
possible solutions, as is the case for underdetermined linear systems, and
consequently, any solution cannot be guaranteed to be optimal or unique.
Regardless of these problems, it is interesting to consider the Tucker-N-
model, because it reveals connections between approaches and makes it
possible to understand virtually any decomposition, from PCA to tensor
pICA, as a special case of the Tucker-N-model.
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Figure 1.7: Illustration of Tucker-N-decomposition when N = 3. Image from

1.3.3 Canonical Polyadic Decomposition and Non-negative
Tensor Factorization

The solution to the lack of optimality and uniqueness is to impose further
constraints, as is done in PCA, SVD, ICA, NMF, and other decomposition
methods that are in use. The choice of these constraints will have a huge
impact on the results and requires a priori knowledge of the problem. As
mentioned above, a non-negativity constraint can make intuitive sense, and
for the extraction of resting state networks, an independence constraint is
derived from notions about integration and segregation of brain function.

A particularly intuitive and useful approach is Canonical polyadic decom-
position (CPD), also known as CANDECOMP or parallel factor analysis
(PARAFAC). Describing this as a special case of the Tucker-N-model, CPD

can be denoted in three dimensions as

J
X:Z)\jajobjocj +E (17)
j=1

Here, )A; is a scaling factor of the components a;, b;, c;, meaning in turn
that each component is of unit length, and o is the outer product, defined
as
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J J
Y => ajobj+E=> a;b] +E, (1.8)
j=1 j=1

i.e. it contains all possible pairwise combinations of the elements of its con-
stituent vectors. A 3-way-tensor that can be represented by three vectors
is a rank-1 tensor and any tensor can be approximated by a sum of rank-1
tensors (see figure for an illustration). Using this concept, the problems
with uniqueness and optimality can be explained in terms of the impossibil-
ity to determine the true rank of a tensor, a problem which is readily solved
for a matrix. In CPD, the additional constraints come from a requirement
on the core tensor - which indeed does not even occur anymore in the above
formulation because it is assumed to be zero everywhere except on its su-
perdiagonal, where it is 1 everywhere (figure . As a consequence, the
number of components is the same for all modes, and there is a clear match-
ing between one component of each mode. For example, we can obtain one
spatial map with an associated time course which varies across subjects.

Decompositions rely on numerical solutions which gradually optimize an
objective function, subject to constraints. This function usually contains
the distance between the tensor which is reconstructed from the extracted
components and the original data tensor:

DF(XH[[A,B,C]]) = ”X_ [[A,B,C]]H% (19)

(-)r denotes the Frobenius norm. The equation is complemented with reg-
ularization terms according to the applied constraints.

Non-negative tensor factorization (NTF), then, is derived from CPD, adding
a non-negativity constraint. Adding constraints shrinks the space in which
the solution can reside, which typically leads to a poorer fit between the
original data and the approximation made by the extracted components.
However, the results are, if the constraint is appropriate, very interpretable
and meaningful.

1.3.4 CPD and NTF for community extraction and
relationship to ICA

ICA relies on the assumption of independence in one of the modes. In fMRI,
this is virtually always the spatial mode, with a few exceptions (Brookes
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Figure 1.8: Illustration of CPD. The core tensor G has ones on its superdiagonal
and is zero everywhere else. One set of features is extracted for each mode of the
tensor (A, B, C). Bottom: The tensor can then be approximated by rank-1 tensors
made up of unique combinations of rows/columns from the feature matrices. Image
from|Clichocki et al| (2009)

et al., 2011} Smith et al. 2012). The reason for this is that we have many
more voxels (usually tens of thousands) than time points (usually between
150 and 600, corresponding to scans of 5 to 20 minutes with a resolution of
1 frame per 2 seconds). Thus, ICA can be seen as a special case of a two-
way Tucker decomposition, with an additional independence constraint. In
order to do group analysis, which means handling an additional dimension,
the data is usually “flattened”, i.e. concatenated in the temporal dimension
(Calhoun et al., 2001a; Beckmann et al. 2009), thus making it possible to
apply matrix methods. The method by Beckmann and Smith| (2005) is an
exception because it explicitly takes advantage of the multiway structure of
the data. directly proposed tensor methods for the analysis
of neural data since tensors are a natural representation of these data in
many cases.

However, neither of the authors applied tensor methods directly for commu-
nity detection, i.e. starting from adjacency matrices. Community detection,
or detection of modular structure, has become a major field in data science
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because the representation of relationships between elements of a system
as a network is extremely intuitive and useful (Fortunatol 2010)). As men-
tioned above, this is also a major topic in neuroscience (Sporns et al., [2004;
Rubinov and Sporns| 2010). Gauvin et al. (2014)) used tensor techniques
to detect time-evolving community structure in a social context; this was
applied to neural data by Leonardi and Van de Ville| (2013)); [Ponce-Alvarez
et al| (2015)). When using adjacency matrices, which are usually symmetri-
cal, the first two modes become identical, i.e. the tensors have two spatial
modes and one temporal mode:

J
Y=Y ajoaj0b;+E (1.10)
j=1

While the contribution of ICA to science in general and neuroscience in
particular cannot be stressed enough, independence is a rather strong as-
sumption. CPD does not require such a constraint at all, and non-negativity,
which can be considered a weak constraint (Cichocki, 2013)), typically leads
to unique solutions in NTF decompositions. Thus, it is possible to con-
sider the spatial and the temporal dimension truly simultaneously, which
promises a different point of view and new insights into the problem of
community detection in neural data.

1.4 Studies in this thesis

In the following chapters, we will present two studies that make specific
contributions to the field of fMRI RS. In chapter we show explicitly
that a dynamic mean field model of resting state (Deco et al.| [2014])), which
relies on simple node dynamics and realistic anatomical connectivity, can
reproduce spatial patterns over time (not only on average). These patterns
resemble well-known RSNs and generalize across 24 healthy subjects. To
this end, we apply CPD and NTF to low-resolution fMRI RS data and
show under which circumstances this leads to a satisfying solution. Our
results confirm that underlying (structural or effective) connectivity shapes
functional connectivity to a large degree, although there are also important
differences to the FC. It is shown that simple dynamics are sufficient to
explain large-scale functional patterns, without the need for explicit non-
stationary or oscillatory elements. Furthermore, only a strikingly small
portion of the FC values over time is necessary to obtain these results, in
line with previous findings (Tagliazucchi et al., [2012; Liu and Duyn, 2013]).
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In the second study, the analysis is expanded to include the temporal dimen-
sion. We show that FC fluctuates strongly on a global level by introducing
three measures for assessing global changes in RS. We confirm that these
fluctuations can be largely explained by the presence of a long-term corre-
lation structure, but go on to identify certain elements that exhibit further
structure. The relationship to RSN activations is investigated, and suggests
a great degree of temporally specific integration across networks. Thus, we
propose an interpretation of RSNs that stresses their overlap on multiple
levels instead of their segregation. This thesis hopes to make its own con-
tribution to understanding the spatio-temporal dynamics of human resting
state, and triggering new directions in the approach of this topic.



CHAPTER 2

Robust extraction of
spatio-temporal patterns from
resting state fMRI

It is well-established that the patterns of correlation - or more generally,
functional connectivity (FC) - between pairs of voxels or regions found in
the human brain in many different tasks, are preserved in spontaneous ac-
tivity recorded during rest. Furthermore, these patterns are not static, but
fluctuate over time, exhibiting complex spatio-temporal dynamics. In this
study, we use a whole-brain approach combining data analysis and modelling
of FC dynamics between 66 ROIs covering the entire cortex. We simultane-
ously utilize temporal and spatial information by creating tensors that are
subsequently decomposed into sets of brain regions (“communities”) that
share similar temporal dynamics, and their associated time courses. The
tensors contain pairwise FC computed inside of overlapping sliding win-
dows. Communities are discovered by clustering features obtained from
24 healthy subjects, thereby ensuring that they generalize across subjects.
First, we determine that at this resolution, four communities that resemble
known RSNs can be clearly discerned in the empirical data: DMN, visual
network, control networks, and sensorimotor network. Second, we use a
noise-driven stationary mean field model which possesses simple node dy-
namics and realistic anatomical connectivity derived from DTI and fiber
tracking. It has been shown to explain resting state FC as averaged over
time and multiple subjects, however, this average FC summarizes the spa-
tial distribution of correlations while hiding their temporal dynamics. Thus,

23
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it is unclear whether the same type of model can reproduce FC at different
points in time. We find that this is the case for all four networks using
the spatio-temporal information revealed by tensor decomposition if nodes
in the simulation are connected according to model-based effective connec-
tivity. Furthermore, we find that these results require only a small part of
the FC values, namely the highest values that occur across time and ROI
pair. Our findings suggest that in resting state fMRI, FC patterns that
occur over time are mostly derived from the average FC, are shaped by un-
derlying structural connectivity, and that the activation of these patterns is
limited to brief periods in time. We provide an innovative method that does
not make strong assumptions about the underlying data and is generally ap-
plicable to resting state or task data from different subject populations.

2.1 Introduction

The question of how large-scale cortical function arises from underlying
anatomical connectivity has been the object of much investigation since the
advent of non-invasive imaging techniques (Vincent et al., 2007; Matsui et|
lal [2011; [Wang et al [2013), in particular since it was discovered that inter-
areal functional relationships found under task conditions are maintained
during rest (Biswal et al.l 1995 |(Cordes et al., 2000; Beckmann and Smith),
2004} Fox et al., 2005). With magnetic resonance imaging (MRI) it is pos-
sible to obtain both functional and structural connectivities (FC and SC,
respectively). Although there is large variability across subjects and ses-
sions, both in SC (Heiervang et al., 2006) and FC measures
2013} [Finn et al., 2015)), studies using group averages have revealed gen-
eral principles of information processing in the brain (Raichle et al., [2001}

Doucet et al., [2011;[Van den Heuvel and Sporns|,[2011};[Deco and Jirsal, 2012}
Haimovici et al., 2013]).

In order to connect SC and FC, computational models are an important
tool for understanding how activity propagates from one node to another to
produce the observed data (Honey et al., 2009; Cabral et al., 2012} Deco et
, . Most models optimize their parameters by fitting the average FC.
Only recently, the question of whether and how relevant information can be
extracted from the fluctuations in pairwise FC strength, and how to describe
the richness of the temporal dynamics, has received increasing attention in
data analysis (Chang and Glover, |2010; Hutchison et al., |2012; [Allen et al.,
2012} [Liu et all,[2013) and modelling (Hansen et al., [2014; [Ponce-Alvarez et|
@, . This has lead to the notion of dynamic functional connectivity
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(dFC).

Here, we use a dynamic mean field model (Wong and Wang, 2006) of the
human cortex which has been shown to reproduce average resting state
(RS) FC (Deco et all 2014). It is our goal to determine whether simulated
data exhibit FC patterns over time that resemble those of empirical data.
To this end, we analyze RS data from 24 healthy subjects (Schirner et al.,
2015) and compare to simulated data. The cortex is modelled by 66 nodes
corresponding to 66 brain areas also used to parcellate the empirical data.
The nodes are connected according to empirical SC derived from the same
subjects.

We opt for tensor decomposition for extracting relevant and general features
of the spatio-temporal dynamics. This method has been shown to work well
for community detection (Gauvin et al.,[2014) and has been applied to brain
data (Cichocki, 2013; Leonardi and Van de Ville, 2013} |Ponce-Alvarez et al.,
2015). Unlike ICA, which has become the standard method for extracting
RSNs (McKeown et al., [1998; |Beckmann et al. 2005; Mantini et al., 2007)),
tensor factorization does not assume spatial independence of the underlying
components, which is a strong constraint not directly motivated by the data.
Here, such a constraint is not required and hence, the space of possible
solutions is not unnecessarily restricted. Furthermore, it has the advantage
that it can readily be used at our level of coarse spatial resolution.

The modelling approach aims at linking FC and SC. One conceptual prob-
lem of SC is that it provides neither directionality information nor the
weights of the connections. These two points are addressed by the con-
cept of effective connectivity (EC). SC can be viewed as an approximation
to EC, and it is the latter that is genuinely related to the dynamics in
network models (Friston, [1994). Reversely, underlying connectivity (SC or
EC) can be inferred from FC, or more generally, from the dynamics found
in the data, through the same kinds of models. |Gilson et al.| (2016)) devel-
oped a method to extract EC from RS fMRI data using a noise diffusion
model. They show that the EC that accounts best for empirical FC signifi-
cantly differs from the SC in a number of points. We use both SC and EC
as underlying connectivity in our model and explore how their properties
are linked to the spatio-temporal patterns found in empirical and simulated
data.
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Table 2.1: Parameters of the DMF model.

Excitatory Inhibitory

ap = 310(nC™1) ar = 615(nC™1)

bp = 125(Hz) by = 177(Hz)

dg = 0.16(s) d; = 0.087(s)

TE = TNMDA = IOO(HIS) Tl — TGABA — 10(ms)
To.z = 0.382 To.s = 0.267

WEE = 0.21 wrr = 1, WIE = 0.15

2.2 Methods

2.2.1 Empirical data

RS fMRI as well as corresponding diffusion weighted (dw) MRI data were
collected from 24 healthy participants (11 female) at the Charité Berlin,
Germany, by Petra Ritter and co-workers. The original dataset consisted
of 49 subjects, but we chose only those aged 18 to 35 years (mean 25.7
years) since it is known that FC changes with age (Meunier et al., [2009).
Each dataset amounts to 661 time points recorded at TR=2s, i.e. about 21
minutes. In the same session, EEG was also recorded, but we do not use
the data here. RS BOLD was recorded while subjects were asked to stay
awake with their eyes closed, using a 3T Siemens Trim Trio scanner and a
12 channel Siemens head coil. Voxel time courses are averaged inside ROIs
defined by the Desikan-Killiany atlas (Desikan et al.l 2006)) as implemented
in FreeSurfer. We removed the areas labeled as corpus callosum on both
sides since they only contain white matter, amounting to 33 cortical ROIs
for each hemisphere. The dwMRI data were subjected to fiber tracking to
obtain structural connectivity (SC) matrices for each subject. Details are
available in Schirner et al.| (2015)).

2.2.2 Model data

A mean field approximation of a network of populations of leaky integrate
and fire neurons (Wong and Wang, 2006|) was used to simulate RS activity
as described in Deco et al. (2014). The excitatory populations are con-
nected using a) an average over the SC matrices derived from dwMRI data
(section [2.2.1)), and b) an effective connectivity (EC) matrix derived from
these SC matrices as described in section 2.2.9
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The activity of the populations is computed using a set of coupled nonlinear
stochastic differential equations:

Ii(E) =Io g + U)EESi(E) + GZ Cijsg(‘E) - wELiSi(I)
J

IZ-(I) =1Ips+ U)IESZ-(E) — wHSZ-(I)

CLEI(E)

i —bg

(B) _ p(E)7(E)y _
r =H (Ii ) =
1 — exp(—dp(apll” — bp))

(2

)

1 exp(—di(arI" — b))

7

0 a1y (2.1)

_ i (E) (E)
= - + (1 =87 )yr; 7 +ovi(t)

==t T’,EI) + ov;(t)

Constants are listed in table see figure for an illustration. Super-
/subscripts E and I denote the excitatory and inhibitory pools of population
1, respectively. I; denotes synaptic input currents, which are turned into
population firing rates r; via sigmoid transfer functions H(-). S; denotes
the average synaptic gating variable, or activity, and v(t) is Gaussian noise
with amplitude o = 0.01. The kinetic parameter v = 0.641.

S

Synaptic currents I; are a result of of inputs from the local network, i.e.

and Sl-(l), and inputs from other network nodes j, i.e. SJ(-E). Local inputs
are governed by four weights, wgg, wgr;, wig, and wyy. Additionally, there
are constant inputs to each population, denoted by Iy g and Iy ;. Inputs
from other parts of the network are provided by the excitatory populations
and weighted by the entries Cj; for the connectivity from region i to region
j, noted in the SC or EC. The diagonal of C is set to 0. Weights are scaled
by the global coupling parameter G.

The feedback inhibition, wgr;, is adjusted before the simulation to ensure
that the network is in its asynchronous state where we only have one stable
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fixed point with firing rates between 3 and 10 Hz for all regions (Deco
and Jirsa, 2012)). We can determine the stability of the system by taking
advantage of a semi-analytical solution (Deco et al., 2014]). We calculate
the Jacobian matrix and confirm that all eigenvalues are negative with zero
imaginary parts. Simulations were only performed for values of G that
warranted stability of the system.

Number and length of simulations are matched to the empirical data. BOLD
time courses are obtained from the synaptic activities of the excitatory pools
via the Balloon-Windkessel model (Friston et al., [2003; Deco et al., [2013)).
Time courses are downsampled to match the TR of the experimental data

(figure [2.1B,C).

Figure (see next page) Overview of analysis pipeline that leads to ten-
sorized data. For simulated data, panels A to E apply, for empirical data,
panels C to E. A Schematic view of dynamic mean field (DMF) model used
to simulate synaptic activity. Each brain area is modelled by a pair of ex-
citatory (E) and inhibitory (I) pools. The local connectivity is governed by
the four weights wgg, wgr;, wig, and wi, whereby wgr; is adjusted for each
population individually so as to keep the firing rates at a low level (3-10 Hz).
Black lines with spheres signify GABA connections, black arrows, NMDA.
Gray arrows are long range connections mediated by AMPA synapses and
whose weights are set by the SC or EC matrix. B Synaptic activity is sim-
ulated on a millisecond scale. C BOLD activity on the scale of seconds is
obtained from simulated activity by applying the Balloon-Windkessel hemo-
dynamic model. D Starting from these BOLD time courses, we compute
time dependent dFC(w)-matrices from overlapping time windows of width
120s (60 frames) starting at time points t = 1,2, ..., W. Each dFC(w)-matrix
has dimensions N x N, N being the total number of ROIs. E This results in
an N x N x W tensor. The entry at dF'Cyj(w) is the functional connectivity
value of ROIs ¢ and j in window ¢. dFC(w)-matrices are symmetric.
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2.2.3 Tensorization of the data

In order to take advantage of the temporal information, we adopt the
widely used approach of sliding windows to compute time-dependent dy-
namic FC (dFC). We use overlapping windows w of width 120s (60 data
points, TR=2s) that we advance along the time course in increments of 2s
(1 frame), which results in W = T'— 60 windows for each dataset (subject or
simulation), T" being the number of frames. For each window, we compute
an N x N matrix of pairwise connectivity values, dF'C'(w). By concatenat-
ing these matrices along the temporal dimension, we represent each dataset
as a tensor of dimensions N x N x W (see figures and E).

We use two measures of FC: on the one hand the most widely used one, i.e.
Pearson correlation, on the other, mutual information (MI), a non-negative
and nonlinear measure that allows us to constrain the tensor decomposition.
The calculation of MI follows Kraskov et al.| (2004) and is based on nearest
neighbor distances, thus being adaptive and continuous.

In short, when estimating the MI between the 60 data points inside our win-
dow, we determine the distance between any two points [z;,y;] and [z}, y;]
with ¢ # j and take the maximum norm, i.e.

dij =| zi — zj ||= max{|[ =i —2; |I, [| 9 —v; I} (2:2)

The nearest neighbor to each point [z;,y;] is the point with the minimum
d;j, and we term this distance ¢;. For each point [z;,v;], we count how
many points are within this minimum distance ¢;, separately for the x- and
y-directions, resulting in two numbers n,(7) and ny(i). We estimate MI as

I(X,Y) = (k) = (¥(ne + 1) + ¢(ny + 1)) + (V) (2.3)

where X and Y are the two time series, and (-) denotes the digamma
function

b(x) = %m(r@)) (2.4)

k = 1 because we consider the nearest neighbor; N is the number of data
points, i.e. 60. Since this is a continuous measure, it is possible for I(-,-)
to become negative whenever the following inequality is satisfied:



2.2. METHODS 31

(k) +(N) < ((ne +1) + ¥ (ny +1))

This happens when there is very little MI and many points are closer than
the nearest neighbor. In these cases, we simply set MI to zero.

2.2.4 Extracting communities from low resolution fMRI
data

We apply tensor factorization to both the empirical and the model data
(figure [2.2). The problem for the three-dimensional case treated here can
be formulated as follows (Cichocki et al., 2009):

F
X:ZGfObeCf+E:X+E (2.5)
f=1

where Y is the data tensor of dimensions N x N x W, defined as in
section 2.2.3l F is the number of features we wish to extract. A =
lai, az,...,af], B =1[b1,bo,...,b¢] and C = [c1, 2, ..., ¢f] are the factor matri-
ces that contain the features of each of the three dimensions, respectively.
Here, A = B due to the symmetry of the dF'C'(w) matrices. They contain F
vectors of length NV with weights that are interpreted as membership values
for a community. The third set C contains their associated time courses
and is of dimensions F' x W.

Y is an approximation of the data based on the features, and E is the er-
ror /noise not described by the features. Hence, the distance between Y and
Y can be used to assess how well the extracted features approximate the
data. We use the Frobenius norm in the case of continuous, non-thresholded
tensors and the Hamming distance for thresholded, binarized tensors (sec-
tion . Note that in the latter case, the result of the decomposition is
continuous although the input is binary, so we threshold and binarize the
reconstructed tensor such that the number of ones is preserved.

This technique is based on the very general Tucker model which can be
viewed as a generalization of SVD to tensors. Unlike for SVD, though, con-
vergence to a unique and optimal solution is not guaranteed. Consequently,
it is impossible to determine the true rank of the tensors and thus, the ap-
propriate number of features F'. This problem is mitigated by the inclusion
of further constraints, in this case, non-negativity when using absolute value
of correlation or MI to construct the tensors (section [2.2.3)).
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Figure 2.2: Illustration of tensor factorization with F' = 3 features. The original
data tensor (top left) is decomposed into three components, i.e. three communities
with their associated time courses are extracted. As shown in the bottom row,
each set of vectors, consisting of two identical “community vectors” ay and by and
a time course, c¢, constitutes a rank-1 tensor, which can be explicitly computed by
taking the outer product as in equation (taking the outer product of a; and by,
one would obtain an FC matrix like the “layers” of the tensor). By adding these
rank-1 tensors, we obtain an approximation of the data tensor, i.e. a reconstructed
tensor (top right), and can evaluate the fit between the two by taking the distance.
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To decompose tensors constructed using correlation, we use the algorithm
described in Phan et al. (2013)). For the non-negative measures (absolute
value of correlation, mutual information), we apply non-negativity of the re-
sulting features as an additional constraint and use the algorithm described
in Kim and Park (2012)). Both algorithms are implemented in Matlab,
requiring the tensor toolbox (Bader et al., [2015; Acar et al., 2011), and
available on-line.

2.2.5 Thresholding

We reduce noise by thresholding and binarizing the tensors. This approach
was also chosen in [Ponce-Alvarez et al| (2015)). It would perhaps be most
desirable to use only the dFC values that are significant. However, it is too
time demanding to generate the appropriate number of surrogate datasets
to achieve the desired significance level to account for the high number of
ROI pairs, windows and subjects/simulations. Hence, we simply use the
x-th percentile as a threshold 0, where z = {0, 75,80, 90,91, ...,99} and, for
x > 0, set all elements Y;j; of tensor Y which are bigger than or equal to
that percentile to one and everything else to zero. Note that we do not
make any claims about non-stationarity of the FC time courses.

2.2.6 Surrogate data

To further validate our results, we conduct analyses with surrogate data
alongside those for real data. Surrogate data are constructed by removing
the pairwise correlation structure of the original time series while keeping
the Fourier spectrum constant. More specifically, we Fourier transform our
original time courses z;(t) of region ¢ for time points ¢t = 1,2,...,T using
Fast Fourier Transform and add random phases ¢, to each frequency bin
before transforming back.

T
(k) = Y wit)e T
t=1
1 (2.6)
surr o ~ _ -27‘rkt+ -
() = = D |F (k)| I e

k=1

k=1,2,..T and ¢, is uniformly distributed between —m and 7. This results
in time courses that have the same spectral properties and autocorrelations
as the original data, but are uncorrelated.
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2.2.7 Constructing templates from empirical data

We construct spatial templates directly from the empirical data. First, we
decompose each subject’s data tensor as described above, using a range of
numbers F' of features. The true value of F' is impossible to determine due
to the aforementioned problems with uniqueness and optimality of the solu-
tion. In our case, the goal is to extract spatial maps that are common across
subjects, so we apply a simple clustering algorithm (K-means clustering) to
the set of all F'- S features (i.e. pooled from all subjects) with different
numbers K of clusters. We test the quality of the clustering by evaluating
the mean silhouette value (de Amorim and Hennig, 2015). The resulting
cluster centers of the parameter combination with the maximum silhouette
value are used as templates.

For each point i (here, an N-dimensional feature) the average distance (in
terms of correlation) to points assigned to the same cluster is evaluated,
denoted by a;, as well as the smallest average distance to all points assigned
to a different cluster (i.e., the closest cluster), denoted by b;. Then the
silhouette value is calculated as

bi—ai

s(i) = (2.7)

maz{a;, b;}

Obviously, s(7) will lie between -1 if the point is entirely in the wrong cluster,
and 1 if the assignment is perfect. Taking the mean over all features gives
an estimate of how well the data points are clustered.

2.2.8 Calculating the overlap between templates and
features

In order to determine how well, overall, communities extracted from simu-
lated data match those from empirical data, we compute the average overlap
between all simulated spatial features with any of the templates, compar-
ing connectivities (EC vs. SC) and using the full range of global coupling
parameter values (G), i.e. G = 0.5,0.6,...4 for simulations with the SC and
G =1,1.1,...6 for simulations with the EC.

Due to the high thresholds, the features are somewhat sparse. Therefore,
correlation is not a good choice to measure the distance between features
and templates. Instead, we use confusion matrices and Cohen’s kappa.
Briefly, we quantize the features on three levels and compute the overlap
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between any two vectors (one template, one feature extracted from simu-
lated data) by determining the overlap for each level, creating a confusion
matrix. Cohen’s kappa is a summary of the confusion matrix:

Pa_Pe
= - 2.8
=1 p (2.8)

P, is the overlap, P. is the expected overlap.

As the overall match between a feature extracted from simulated data and
the templates of the empirical data, we consider the mean over the maximum
k values for each feature in each simulation. In other words, we assume that
each simulated feature corresponds to only one template. We compute an
overall match for each value of G by averaging this value over the features
and simulations.

2.2.9 Effective connectivity

In this study, we compare simulation results from two different underlying
connectivities. On the one hand, we have dwMRI-derived SC containing
estimates of fiber densities from the same 24 subjects whose BOLD signals
are analyzed, on the other, model-based EC. In the following, be briefly
describe the method developed by |Gilson et al.| (2016)) for constructing EC
matrices by combining SC and FC. The key is to extract information about
cortical interactions from BOLD covariances with non-zero time shifts:

5= (af = ) (2T — 1)) (2.9)
QZ-Tj is the covariance between BOLD time courses x of ROIs ¢ and j, with
x; shifted by 7 against x;. The angular brackets denote averaging over ran-
domness due to noise in the model, such that the mean BOLD for node i
is ; = (x!). For T # 0, this matrix is non-symmetric. The goal is to esti-
mate the underlying connectivity such that the model minimizes the error

between model covariances (Q° and Q) and their empirical counterparts
(Q° and Q7), for a given T equal to 1 TR.

EC is model based, meaning that there is an underlying assumption of
how activity propagates through the brain using the present connections to
activate the nodes. We use a noise diffusion model with a static nonlinearity,
P:
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dﬁ::[—f§+¢(§:Ch@Z+e”(h+dBf (2.10)
r ki

Time course z; of region ¢ is subject to an exponential decay with time
constant 7, at each time point t. C is the connectivity matrix that contains
weights linking regions ¢ and j, and the sum is over all regions k from which
1 receives input. This means that activation is only provided by the input
from other nodes, weights for which are defined in C. The background input
e is shared by all 7. Fluctuations of the activities are driven by Gaussian
noise dB!. The model directly simulates BOLD activity, hence the Jacobian
of the system is simply:

J= T
.
T ki

where ¢;; is the Kronecker delta and Phi' denotes the first time derivative
of ®. Therefore, the model is solely constrained by C.

We want to estimate J and therefore C' such that it satisfies the steady
state of the second order fluctuations:

JQ+ Q%+ = 0 (2.12)
Q" = Q"exp(Jir)

¥ is the noise matrix with diagonal terms (0;)? = (dB! dB§>; T denotes
the matrix transpose and exp the matrix exponential. Since we are using
empirical covariances estimated from fMRI data, the objective covariances
QO and QT are very noisy and make a direct estimation via an analytical
approach unfeasible. Therefore, we use the iterative Lyapunov optimization
(LO) procedure described in (Gilson et al.| (2016]).

The update works by simulating the BOLD activity using the model de-
fined in equation [2.10| without noise and the current connectivity C, so as
to evaluate the mean activity Z; for all regions, yielding the Jacobian J in
equation Then, the model covariances QY and Q7 are given by equa-
tion [2.12] using the Bartels-Stewart algorithm for the first line and using
the current values for J and ¥. The model covariance matrices are com-
pared to the objective covariances QO and QT. Then, the Jacobian update
is evaluated according to:
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AT = 1[(Q°) 7 (AQ" + AQ7exp(~ )]l (213)

Finally, we obtain the connectivity update AC;; = AJ;;/®(>, Cinr, + €).

We apply a mask when updating C, thus only tuning connections that are
present in the SC as well and are above a certain threshold. The only
exception are the elements on the secondary diagonal, which are added
regardless of whether they are present in the SC or not, in order to account
for homotopic connections.

In addition, the noise matrix ¥ (see equation is optimized at the same
time as C'. We assume that each node receives independent noise, meaning
that X is diagonal. The update is performed such that the model variances
coincide with the empirical values:

ATy = en(Q — Q7)) (2.14)

It was shown that a time shift 7 equal to 1 or 2 TR gives a good estimation
performance (Gilson et al.l [2016). In fact, 7 has to roughly match the time
scale on which the neural activity decays, i.e. 7, in equation [2.11] The
latter is estimated from the slope of the autocorrelation of each region (the
slope is close to 1/7;), and results in 7 = 5.3s which leads us to set the time
shift to 1 TR=2s.

2.2.10 Analysis pipeline

To summarize the methodology of the paper, we give a brief overview of
the steps involved in obtaining the results described in the next section.
Mlustrations are shown in figures and We have S = 24 sets of
empirical resting state data (from 24 subjects) of length 7" = 661 frames
(TR=2s). Voxel time courses are averaged inside of N = 66 ROIs that
cover the entire cortex. To match this number, we simulate 24 times for
each one of evenly spaced values of the global coupling parameter G from
a suitable range, using the DMF model. We obtain 2 sets of simulations,
one using the SC matrix and one using the EC matrix to set the under-
lying connectivity between the 66 regions. Each dataset is tensorized by
computing dFC matrices inside of rectangular sliding windows w of width 2
minutes (60 frames) which are moved by one frame, resulting in W dF'C(w)
matrices for each subject/simulation. These matrices are concatenated into
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tensors of dimensions N x N x W. Entries of dFC(w) are calculated using
correlation (positive and negative values), the absolute value of correlation
(non-negative values) and mutual information (non-negative values). Each
tensor is then decomposed into sets of spatial (communities) and temporal
(time courses) features.

In a first step, in order to obtain community templates, we decompose the
empirical tensors using different thresholds €, binarizing the tensors in the
case of non-zero thresholds. Since the rank of the tensors is unknown, we
use different numbers F' of features, where F' ranges from 3 to 9. Hence, we
obtain F'-S spatial (and temporal) features for each F'. We do not expect the
temporal features to have anything in common except some general dynamic
properties, so we continue with only the spatial features and cluster them,
calculating the silhouette value as a quality measure for each instance of
clustering. We choose the combination of F'; K and 6 that yields the most
well-defined clusters, i.e. the highest silhouette value. The means of those
clusters are the templates (i.e., K is the number of templates). In a second
step we extract features from simulated data (S = 24 runs, different values
of G) using the same F' and #, and compare each feature to the templates.
We calculate an overall match for each value of G by taking the mean over
the maximum match of each feature with any of the templates.

2.3 Results

2.3.1 A method for extracting RSNs from single subject
data

Our general goal is to understand the spatio-temporal dynamics of human
resting state (RS) fMRI, using time-dependent, or dynamic, FC (Chang and
Glover, 2010; [Hutchison et al., [2012; |Allen et al., 2012 Liu et al. 2013).
To this end, we combine data analysis of long-range connectivity and and a
whole-brain modelling approach (Deco et al.; 2014)) to investigate whether
the dynamics of the model can reproduce the empirical data. We apply
tensor decomposition (Cichocki et al., |2014)), a method that allows us to
simultaneously consider spatial and temporal structure of FC. We compute
pair-wise dynamic FC (dFC) using mutual information (MI) (Kraskov et al.,
2004) inside of overlapping sliding time windows (Chang and Glover} 2010;
Kiviniemi et al., 2011} [Hutchison et al., |2012; |Allen et al.| 2012; [Leonardi
and Van de Ville| 2013)), obtaining a dFC matrix, dF'C(w), for each window
w. These matrices are then concatenated along the temporal dimension
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into a 3-way-tensor (figure [2.1JC-E). Additionally, we apply a binarization
threshold in order to reduce noise. This is done for both empirical as well
as simulated data.

Tensor factorization allows us to decompose dFC of a single subject (or
simulation run) into spatial patterns, so-called “communities”, and associ-
ated time courses. The spatial patterns are expected to be common among
subjects, while the temporal evolution of each community is specific to
a subject. We extract F' = 3,4,...9 communities/time courses (features)
(Beckmann and Smith| 2004; Mantini et al., 2007)) from each of S = 24 sub-
jects which gives a pool of F'- S communities. These are then grouped into
K =F +1,F + 2,...10 clusters using K-means clustering in order to find
common patterns. Goodness of clustering is assessed using the silhouette
value (section ; a high value indicates that the clusters represent the
data well, i.e. cluster centers can be seen as “prototype communities”, or
templates, that can be used on the whole group of subjects. In order to val-
idate our results, we compare them against surrogate data and consider the
difference in clustering performance. The surrogate data do no exhibit any
long-term correlations, so any clustering structure is due to their Fourier
spectrum, autocorrelations, and due to the method itself. We find that
F =3 and K = 4 results in the maximum value of 0.54. Phase randomized
surrogate data (section [2.2.6)), on the other hand, only reach 0.08. This in-
dicates that, while there are clearly still a lot of inter-individual differences,
assuming a cluster structure is supported by the data.

Figure shows the difference between silhouette values for real and
surrogate data for all combinations of F' and K. Panel B visualizes the
clusters by showing the correlations between communities. The clusters
are quite well separated and correspond to four common patterns that are
similar to previously described resting state networks, namely the default

mode network, somatomotor network, right and left control networks, and
visual network (figure [2.4)).

2.3.2 Mutual information and a high threshold produce
communities that generalize well

We use MI to compute dFC (Kraskov et al. 2004) because we find that
MI is a better choice than correlation, based on clustering performance as
well as reconstruction fits. Additionally, we apply a binarization threshold
to the MI values, keeping only the highest ones, in order to reduce noise,
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Figure 2.3: Result of template extraction with optimal parameter settings. A
Silhouette values for clustering all features extracted from MI tensors for the best
threshold, i.e. 98th percentile. B Correlation between the same features, ordered
by assignment to K = 4 clusters. The clusters are in the same order as the

templates in figure

which is in the following demonstrated to be necessary in order to obtain
the desired generalized communities.

We start out without applying a binarization threshold, computing pair-
wise dFC values with Pearson correlation. Decomposing these tensors and
clustering the resulting communities, we obtain the best silhouette value
at F' = K = 3 with a value of 0.31 for real data, and 0.19 for surrogates.
This means that most of the cluster structure is due to spectral properties
and autocorrelation of the data rather than real dFC. In comparison, when
using MI without a threshold, we obtain the best value at F' = K = 3 with
0.45 for real and 0.10 for surrogate data.

One advantage of using MI is that it allows us to apply an additional con-
straint when decomposing the data, i.e. non-negativity. In order to exclude
that the poor result obtained with correlation is due to this, we repeat the
procedure replacing the negative correlations with their absolute values.
Again, I'= K = 3, and we obtain 0.44 for real data, i.e. just as high as for
MI, but again, 0.19 for surrogate data.
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Figure 2.4: Templates plotted in 3D. From top to bottom: default mode network,
somatomotor network, control networks, visual network. Although the templates
are obtained at a resolution of 66 cortical regions, for better visualization we use
998 centers of mass, each of which is clearly assigned to one of the 66 areas. The
opacity of each sphere is proportional to the weight assigned to it in the spatial
map of the template.
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Taken together, clustering can be improved by applying the non-negativity
constraint for both correlation and MI, but when using correlation, also
the surrogate data exhibit more of a cluster structure, which makes MI the
better choice in this application.

Another way to improve clustering is to reduce noise and thereby mitigate
the effect of inter-individual differences. In principle, it would be best to
apply significance testing and keep only the significant dFC pairs/windows,
however due to the large number of windows and pairs, this is computa-
tionally not feasible since we would have to generate thousands of surrogate
tensors to reach a satisfying significance level, which would prove prohibitive
in terms of computation time and storage space. Therefore, we just apply
different thresholds and decompose the resulting binary tensors. We use dif-
ferent percentiles as thresholds, 8 = 0, 75, 80,90, 91,92, ...99, and compare
the results, using the silhouette value.

For correlation, the absolute value of correlation, and MI, the thresholds are
determined to be the 98th, the 97th and the 98th percentile, respectively.
For all measures, FF = 3 and K = 4. Correlation reaches a maximum mean
silhouette value of 0.54 with a corresponding surrogate value of 0.13. The
two non-negative measures produce better and equally good results: using
the absolute value of correlation, we obtain silhouette values of 0.59 and
0.13 for real and surrogate data, respectively; for MI, the values are 0.54
and 0.08 (these templates are the ones shown in figure .

Apart from the clustering performance, we consider the reconstruction fits
that quantify how well the extracted features describe the original tensor.
At their best thresholds, MI and absolute value of correlation reach aver-
age fits of 0.39 and 0.48, respectively. The corresponding surrogate tensors
yielded 0.09 and 0.34, confirming that while using the absolute value of cor-
relation results in a good decomposition performance, the surrogate tensors
constructed in this way also exhibit a lot of structure. Taken together, MI
is the better choice.

2.3.3 Dynamic mean field model reproduces RSNs

In the next step, we use the templates shown in figure to determine
whether the dynamic mean field (DMF) model can produce data that ex-
hibit spatio-temporal patterns similar to those found in the empirical data.
We run S = 24 simulations of the same length as the empirical data and
use the parameters previously determined with the empirical data to the
resulting tensors, i.e. F' = 3 and 6§ = 98. The only free parameter is the
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global coupling, G (figure ) which is a factor by which the connectivity
matrix is multiplied and is hence related to the overall amount of activation
in the system. We determine for each of the F'- .S = 72 extracted features
the maximum correspondence to any of the K = 4 empirical templates and
use the mean across all features and all runs as a measure for the match
between features (simulated) and templates (empirical) and thus of how
well the model reproduces the empirical data. As before, we consider the
difference to matches obtained using surrogates, i.e. of features extracted
from tensors that are calculated from phase randomized simulated data to
empirical templates.

We use the parameters obtained from the empirical data instead of running
the same parameter selection procedure on the simulated data. This is be-
cause the simulations run on an average connectivity matrix and therefore,
clustering across simulation runs does not make sense; the variance in FC
structure is small across runs for a given value of G.

Figure shows the overall overlap between simulated features and tem-
plates depending on the global coupling parameter. The 95% confidence
intervals of real and surrogate data overlap for most values of G, except for
G=1.9,25-2.7,2.9, and 3.1 —3.7, the latter values matching the region in
which the fit of the average FC is best. For these values, the simulated data
can be shown to contain FC patterns that match empirical data to a higher
degree than surrogate features. However, even the best match at G = 3.7
is moderate. Figure [2.6] shows the simulated features next to the empirical
template it best agrees with. We display the communities in vector form,
and the ROIs are ordered as indicated in table in the appendix, i.e.
symmetrically. Translated to the communities on the cortex, it is obvious
that the main problem is that the features are not symmetrical, but rather,
lateralized. For example, all features that match with the somato-motor
template have their members in the right hemisphere. Surprisingly, the vi-
sual network, which has proven to be the most clearly pronounced one in
the empirical data, is not found at all.

2.3.4 Effective connectivity is crucial for modelling realistic
communities

SC is derived by applying fiber-tracking algorithms to diffusion tensors ob-
tained via dwMRI. We use the method developed by |Gilson et al.| (2016),
briefly described in section to obtain from this SC an effective con-
nectivity (EC) for our dataset. This EC contains meaningful weights as
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Figure 2.5: Overall template matches in comparison to correlation fits between FC
matrices, results for simulations using SC (top) and EC (bottom). Black curves:
template matches (left axes), thick black curve is real data, dashed line surrogate
data. Shaded areas indicate the 95% confidence interval. Red curves: correlation
of average FC matrices (right axes).

well as directionality information. Importantly, only the weights that are
also present in the SC are tuned by the procedure, plus the weights on
the secondary diagonal to account for homotopic connections that are not
represented well by fiber tracking.

Figure shows the overall overlap between simulated features and tem-
plates when EC is used (note that the scale on the y-axis is different). The
non-overlapping region of the 95% confidence intervals of real and surrogate
data covers a wider range of G (2.9 to 6.0), the maximum being at G = 4.2.
Figure shows the features extracted at this point next to the templates
in vector form. Clearly, they are now symmetrical and have much more in
common with the templates although the overlap in figure may still
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Figure 2.6: Spatial features extracted from 24 simulation runs using SC as un-
derlying connectivity and the G with the best match (figure G = 3.7) with
0 = 98th percentile and F' = 3, plotted next to the templates with which they
exhibit the best match. Templates correspond to DMN - default mode network,
SM - sensorimotor network, CTR - left and right control networks, VIS - visual
network. For each set of features, the number of matched features and the average

overlap for only this set is given.
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Figure 2.7: Spatial features extracted from 24 simulation runs using EC as un-
derlying connectivity and the G with the best match (figure G = 4.2) with
0 = 98th percentile and F' = 3, plotted next to the templates with which they
exhibit the highest match. Templates correspond to DMN - default mode network,
SM - sensorimotor network, CTR, - left and right control networks, VIS - visual
network. For each set of features, the number of matched features and the average
overlap for only this set is given.

seem somewhat modest.

We explain this better match by considering panels B and C of figure
Several differences between SC and EC are immediately obvious, although
we first note that both of them differ greatly from the FC shown in panel
A. First of all, homotopic connections that are missing in SC are prominent
in EC. This can explain the symmetry in the features obtained from EC-
based simulations. Furthermore, the weights are more uniformly distributed
in EC, making it appear more dense. Panel D of figure [2.8| reveals that the
node degrees are largely equalized, such that most of them range in the
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Figure 2.8: Connectivity matrices. A Functional connectivity matrix averaged over
24 subjects. Each entry is the correlation over the entire time course of a pair of
ROIs. B Average structural connectivity matrix from the same 24 subjects. C Ef-
fective connectivity matrix derived from the FC, using the method in section [2:2.9
D Degrees of the nodes. For SC (blue), in and out degree are identical. Here, nodes
are ordered according to their degree. EC nodes (in-degree: orange, out-degree:
yellow) are shown in the same order as for SC.

middle of the distribution. This explains the different ranges of G that
can be used in the simulations. For SC, the nodes with the largest degree
cause the firing rates in the corresponding excitatory pools to rise to the
point where the inhibitory pools cannot compensate for them any longer,
and the asynchronous, low-activity regime of the system becomes unstable.
The more uniform node degree distribution in the EC matrix allows for
higher values of G and thus, the communities become more pronounced due
to improved signal to noise-ratio. The EC matrix is also non-symmetric.
This property likely further contributes to the stability of the simulations
and more generally to the more realistic shape of extracted communities,
both on the spatial and temporal level because it allows for a more diverse



48 ROBUST EXTRACTION OF FC PATTERNS
propagation of the activity through the entire network.

2.4 Discussion

Our goal was to characterize spatio-temporal features of human resting state
(RS) fMRI and to quantify to what extent a noise-driven stationary mean
field model (Wong and Wangj, |2006; Deco et al., 2014]) can reproduce them.
Using tensor decomposition (Cichocki et al., 2009), we identify four com-
munities that generalize across subjects and resemble known RSNs (Fox et
al., 2005; [Beckmann et al., [2005; |Mantini et al., 2007). We utilize temporal
information by computing pair-wise dynamic FC (dFC) in sliding windows
of 2 minutes to build our tensors. We compare three dFC measures: cor-
relation, absolute value of correlation, and mutual information (MI). We
determine the dFC measure, number of extracted features F', number of
templates K, and binarization threshold 6, that yield the best clustering
performance, and take cluster centers as templates. We find that using a
low number of features (F' = 3) and of clusters (K = 4) combined with
a high threshold (6 = 98th percentile) applied to dFC calculated from MI

works best (figures 2.4).

We determine the range of global coupling for which the match of communi-
ties extracted from the model data to the templates is maximal (figure .
We compare two underlying connectivities of the model: dwMRI derived
structural connectivity (SC) and model-based effective connectivity (EC),
which estimates directionality and weights of connections using time-shifted
covariances(Gilson et al., 2016). EC produces more realistic FC patterns
than SC alone.

2.4.1 Few data points are sufficient to recover RSNs

We find that applying a threshold and binarizing the tensors much improves
the clustering performance. For MI, with 8 = 0, the maximum silhouette
value is 0.45 for real data and 0.10 for surrogates, finding only three tem-
plates that do not match known functional networks. For the best threshold
of 8 = 98, we find a silhouette value of 0.54 (surrogates: 0.09) and we suc-
ceed in extracting FC patterns that resemble RSNs (figures[2.3[2.4). 6 = 98
translates to using only the 2% biggest dFC values in the decomposition.

Tagliazucchi et al.| (2012) transformed RS fMRI time courses into a point
process, reducing the data by 94% and keeping only extreme events. Even
so, the authors were able to recover RSNs, suggesting that “avalanching
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Figure 2.9: Time courses of the number of supra-threshold FC pairs per window
for three subjects. The tensors were created using MI and 6 = 98th percentile.

events which involve short and long range cortical co-activations” explained
their results. Here, we find that only the very largest dFC values are nec-
essary to recover RSNs, suggesting that periods of highly structured FC
are equivalent to periods of high variance in the BOLD signal. Indeed,
figure shows a strongly fluctuating time course of information content
(as measured by supra-threshold MI pairs). We conclude that the peaks of
these fluctuations represent periods of high modularity which are detected
by the factorization algorithm. Modularity has been shown to dynamically
fluctuate by Betzel et al.| (2016).

Considering these large fluctuations, our findings are compatible with results
by |[Mitra et al. (2014). The authors explain observed data in terms of waves
of activity that propagate from regions acting as sources to others acting as
sinks, involving the entire cortex. This results in stereotypical dFC patterns
derived from average FC. Since so few data points are necessary to obtain
our findings, and since they are concentrated around a very small number of
peaks in each subject, it seems plausible to assume that in any given peak,
all encountered communities are present. This concurs with the notion of
a stereotypical global event. Furthermore, Messé et al.| (2014)) showed that
a stationary model assuming fluctuations around a single fixed point, i.e.,
the average FC, predicts spatial structure of FC more accurately than more
complex models, even when dFC is included. This is in parallel to what
we show here: even a model that possesses only one attractor can produce
time-varying FC patterns that are picked up by a decomposition algorithm.
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2.4.2 Why we use tensor decomposition

In this study, we use a method that is relatively unknown in neuroscience,
i.e. tensor decomposition (Cichocki, 2013; Leonardi and Van de Ville, |2013;
Gauvin et al) 2014; Ponce-Alvarez et al., 2015). There are several reasons
for our choice. First of all, with a resolution of 661 time frames and 66
ROIs, ICA cannot be readily applied. We would have to use temporal ICA
(Calhoun et al., 2001b) instead of the more widely used spatial ICA (McKe-
own et al., [1998; Beckmann and Smith) 2004; Calhoun et al., 2009)), making
it difficult to compare to studies that identify communities (Beckmann et
al., 2005; [Damoiseaux et al. 2006; De Luca et all 2006; [Mantini et al.|
2007; Van den Heuvel and Hulshoff Pol, [2010). However, the low spatial
resolution was necessary in order to assess whether our specific model -
the dynamic mean field model (Deco et al., 2014) - does indeed have the
capacity to reproduce RSNs. Apart from that, investigating specifically
long-range connections in a whole-brain approach has its own merit. In any
case, tensor decomposition is nothing more but a generalization of PCA or
SVD and is thus a fairly generic data analysis technique.

Our second reason is that this method allows us to use temporal fluctua-
tions of FC explicitly, but without making any assumptions. Indeed, non-
negativity is the only constraint we apply, and it is completely natural to
do so when using a non-negative FC measure like MI. In other words, while
ICA starts with the BOLD time courses, we use pair-wise FC, investigat-
ing time-evolving community structure explicitly. The result is that we get
spatial and temporal features at the same time, without having to assume
independence in either dimension.

Third of all, and importantly, this method allows us to extract features
from single subjects/simulations, making it unnecessary to map group re-
sults back to the individual like with dual regression in group ICA. It is
straightforward to match extracted features to a group template and esti-
mate how well a subject agrees with the group average, which is summarized
in the silhouette value used here to validate clustering results and tune pa-
rameters.

2.4.3 Correlation versus mutual information

Another perhaps slightly unusual choice is to favor MI over correlation as
a measure of FC. It has, however, several advantages. First, it is a non-
negative measure which allows us to further constrain the tensor decompo-
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sition, leading to more reliable results. Second, spurious dFC structure in
correlation-based tensors is reduced, as consistently shown by our results.

The reason for this difference has to lie in the spectral properties of the
data, because they are preserved in the surrogate data. We found many
time windows that contain outliers, i.e. a handful of time points with much
higher activity than the rest. MI as computed here (Kraskov et al., 2004)
is robust against these outliers, but correlation overestimates dFC in such
windows. We hypothesize that these outliers are a result of global slow
fluctuations in the signal that are preserved in the surrogates. MI as a
non-parametric measure is robust against these outliers while correlation
assumes normality and therefore is sensitive to them.

This observation calls into question the usefulness of Pearson correlation for
investigating dFC despite its popularity (Allen et al., |2012; |[Hutchison et al.,
2013; Hansen et al.l |2014)). Concerns have been addressed in some publi-
cations (Lindquist et al., 2014; Hindriks et al. 2015), and cross-validation
with appropriate surrogate data is highly commendable.

2.4.4 Using state-of-the-art connectivity matrices

In SC, each connection is symmetric and its weight is determined by the
number of fibers detected by the tracking algorithm. However, it is known
that many long-range connections are missed by these algorithms because
of crossing fibers, notably in the region of the corpus callosum but also
connections between frontal and occipital regions. Therefore, a lot of the
interhemispheric connections between homotopic areas are missing. Fur-
thermore, the results of fiber tracking do mot allow direct inference of the
weight of a connection. Lastly, fiber tracking results exhibit a high variabil-
ity across subjects and sessions (Jones et al., 2013; |Jeurissen et al., [2013)).

On top of these shortcomings, we know that, in vivo, the asymmetry of the
underlying connectivity shapes the dynamics of the system. To estimate
weights and directionality, we need suitable observables and a dynamical
model. We use the conceptual framework of EC (Friston, (1994), which de-
scribes the influence that one cortical area has over another. It depends,
in principle, on synaptic plasticity, previous brain activity, and neuromod-
ulation. Therefore, in vivo, EC changes dynamically depending on the
experimental condition, individual differences, etc.

The method developed in |Gilson et al| (2016]) allows us to extract a sin-
gle (group level) EC from our data that remains unchanged for all sim-
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ulations. Note that we constrain the optimization to direct connections
that are present in the SC, plus homotopic connections. Directionality and
weights of connections are estimated using time-shifted, i.e., asymmetric,
covariances as observables, as opposed to correlations, which allows us to
also estimate the noise matrix, i.e. the amount of variability in each node.
We apply a simple noise diffusion model, the type of model which has been
found to reproduce RS FC quite well (Messé et al., 2014).

The use of EC leads to more realistic communities that are impossible to
obtain with SC alone. One of the main benefits of using EC is that homo-
topic connections are strengthened, enabling realistic symmetric communi-
ties. [Messé et al,| (2014)) found that just adding homotopic connections by
setting them to a fixed value greatly improved predictive power. It would be
interesting to see how model performances play out when using EC, because
the shortcomings of SC are likely to impair modelling results very strongly.
Perhaps, once this limitation is mitigated, we would favor a more complex
model, as was the authors’ initial hypothesis.

We emphasize that the communities themselves do not contribute in any
way to the EC optimization procedure. They are extracted using tem-
poral information in the shape of dF'C(w) matrices that are obtained on
time scales that are far greater than those used in the optimization proce-
dure. Thus, the two methodologies make completely different use of dFC.
Furthermore, the template extraction which drives the adjustment of pa-
rameter setting (choice of F; K, dFC measure, and ) is done on the single
subject basis and is independent of any simulations.

2.4.5 Conclusion

We have shown that a dynamic mean field model with a single attractor that
is explored through noise is sufficient to explain a lot of the spatio-temporal
structure found in large-scale resting state fMRI. Noise-driven fluctuations
around the average functional connectivity structure are shaped by the un-
derlying connectivity and the simple dynamics of the model in such a way
that over time, known functional networks are expressed. We emphasize
that we added to previous findings according to which the average FC is re-
produced by the model by demonstrating that dFC patterns occurring over
time are contained in the simulated data. We achieved this by decompos-
ing tensors, or “stacks” of time-dependent dFC matrices. We also showed
that applying a high binarization threshold to these tensors, keeping only
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the overall largest pair-wise dFC values, is necessary to obtain communities
that generalize well across subjects.

Future studies should try to further characterize the temporal structure,
for example determining how separate in time different networks are. This
would enable us to pinpoint differences between experimental groups (dif-
ferent ages, gender, patient groups) and regarding tasks (e.g. attention,
decision-making, motor) by describing and modelling how large-scale net-
works interact and how these characteristics are related to performance or
clinical markers.






CHAPTER 3

Temporal dynamics of human
resting state fMRI

It is well known that the pattern of pairwise correlations of BOLD signals
is preserved during rest. These correlations are more generally referred to
as functional connectivity (FC) because they are thought to reflect func-
tional integration between brain regions. Recently, it has been established
that FC is not static, but that it changes over time, however, the dynam-
ics that determine of these changes remain elusive. In this study, we use
a sliding windows approach to track global fluctuations in FC and BOLD
variance. We find that both go hand in hand, suggesting that one cannot
be interpreted without taking the other into account. Additionally, we an-
alyze activation time courses of resting state networks (RSNs) obtained via
tensor factorization, a method which makes very few assumptions about the
underlying structure of the data. RSN time courses exhibit a large amount
of co-activation which varies with global fluctuations in FC and BOLD. We
find that many properties of the observed fluctuations in FC and BOLD,
including their ranges and their correlations amongst each other, are pre-
dicted by the presence of long-term correlations. However, we also encounter
interesting characteristics that are not explained in this way. In particu-
lar, we find that fluctuations in the BOLD signal and fluctuations of FC
exhibit a non-linear relationship which suggests that the brain transitions
between states of high synchronization and states of low synchronization in
a non-trivial manner.

95
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3.1 Introduction

In their seminal paper, |Biswal et al.| (1995]) report that correlation patterns
in motor cortex during rest are remarkably similar to those found during a
finger tapping task. Following this discovery, a number of large-scale func-
tional networks was unveiled using the experimental paradigm of “resting
state” (RS) and the concept of functional connectivity (FC) (Lowe et al.

[1998; |Cordes et al., [2000; Kiviniemi et al., 2003} [Fox et al., [2005; Beckmann|
let al.l 2005} [De Luca et al.| 2006} [Damoiseaux et al.l 2006} [Mantini et al.,
2007; [Smith et al., 2009; [Yeo et al., |2011). Investigating these functional
networks, termed "resting state networks”, enables us to probe integration
(within networks) and segregation (between networks) in the brain.

Since the beginning of RS research, it was asked whether the observed fluc-
tuations are “meaningful” or not, i.e. if they are the signature of ongoing
computations. This question has been approached from three different an-
gles. First, there are several brain regions that are more active during rest
than during task, and their activity has been linked to mind-wandering
and consciousness (Raichle et al., 2001; |Gusnard et al., [2001; Mason et al.,
. In this line, the observed fluctuations are interpreted as an expres-
sion of ongoing self-referential tasks. Second, it has been discovered that
the statistical dependencies between brain regions’ activity persist at least
partially during sleep (Larson-Prior et al., [2009) and anaesthesia
et al., 2007; Bettinardi et al.l 2015]), and that even the magnitude of fluctua-
tions is maintained in states with different levels of consciousness
et al.l [2008; [Hutchison et al., [2013)). This suggests that the fluctuations are
(also) a result of a “network effect”, i.e. random noise reverberating through
a structured network, which nonetheless could be functionally relevant to
the maintenance of synaptic connections. Third, the statistical properties
of these fluctuations have been analyzed without assuming or rejecting any
functionality, simply investigating whether observations can be explained
by random noise or not. The focus has been mostly on the magnitude of
the fluctuations in FC, investigating whether correlations are stationary in
a strictly statistical sense, or not (Handwerker et all) |2012; Lindquist et
al [2014; Hindriks et all, [2015; Betzel et all, 2016} [Laumann et al., [2016).
Of course, these three approaches are by no means mutually exclusive, but
rather different aspects of the same question.

Only recently, studies have begun to investigate the rich temporal dynamics
of RS (Chang and Glover, 2010; Kiviniemi et al., 2011 |Allen et al. 2012}

Hutchison et all, [2012; [Liu et al., [2013} [Hutchison et al., 2013} [Zalesky et
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@, 2014). This lead to the idea of the “chronnectome” (Calhoun et al.,

2014) or “dynome” (Kopell et all [2014), where the notion is put forward
that the brain cannot be understood without considering temporal dynam-
ics of interactions. From a modelling point of view, the observed variability
is thought to constitute a “dynamic repertoire” of the brain. Analyzing
this repertoire is crucial for understanding the brain in terms of general
principles of information processing, pattern formation, integration across
temporal and spatial scales, etc. Computational models are an indispens-
able tool in this endeavor (Ghosh et al., [2008; [Honey et al., 2009; Deco and|
Jirsal 2012} Hansen et all, 2014; Messé et al. [2014)).

Fluctuations occur on many levels, for example, spatial configurations of
functional networks (Kiviniemi et al., 2011), correlations between spatially
fixed networks (Allen et all, 2012), network measures like modularity (Bet-|
zel et all 2016]), amount of co-activation in general (Tagliazucchi et al.l
2012), and co-activation patterns (Liu et al., |2013). Precisely characteriz-
ing the ongoing dynamics will help connect them to task (Fox et al., 2006]),
development (Grady and Garrett), |2014)), disorders (Frohlich et al., 2010,
and different states (Hudetz et al., [2015)).

The temporal dynamics of spontaneous fluctuations present in BOLD time
courses measured with fMRI are the focus of the present chapter. We start
by defining three measures of global RS dynamics and apply them to scans
of 24 healthy participants (the same data as used in the previous chap-
ter). We use these measures to characterize the dynamics and compare
our findings against those from surrogate data. These surrogates are con-
structed under the null hypothesis that fluctuations can be fully explained
by the presence of long-term correlations, or in other words, by random
fluctuations around the average FC. We then connect our results to the ac-
tivation time courses of resting state networks, showing that they strongly
co-activate during periods of increased global FC and strong BOLD fluctu-
ations. Our findings suggest that the brain transitions in a non-trivial way
between rather stereotypical states of high and low synchronization, and
that these dynamics influence the time courses of RSNs.
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3.2 Methods

3.2.1 Data and extraction of RSN time courses

We use the same data as in the previous chapter (section , ie. 21-
minute (T = 661 frames, TR=2s) RS scans from 24 healthy subjects aged
18 to 35 years. We apply non-negative tensor factorization and select the
parameters as summarized in section [2.2.10} This results in decomposing
each subject’s tensor into F' = 3 rank-1 tensors, as illustrated in figure
in section Previously, we focused only on the communities (ay and by
in the figure), whereas now, we work with the time courses that are associ-
ated with them (cy in the figure). In order to match them to RSNs, we use
the same clustering as before, resulting in four common RSNs being discov-
ered: default mode network, somatomotor network, right and left control
networks, and visual network (figure in section of chapter [2)).

3.2.2 Measures of RS dynamics

We use three measures to quantify global dynamics of RS, illustrated in
figure Two measures are related to changes in functional connectivity
(FC), and one to changes in the BOLD signal itself. For each of them,
one time course is created for each subject s (i.e., we end up with three
time courses for each subject) using sliding windows of width 120s, i.e. 60
frames, which are moved along the time course in increments of one frame
(TR=2s). This gives us a total of W = T — 60 = 601 windows w per
measure per subject.

The FC-related measures rely on pairwise correlations, i.e. for each window,
the correlation is computed for each pair of N ROIs using the 60 time points
falling inside this window. This results in an N X N dynamic FC matrix,
dFC(w) with w = 1,2, ..., W which is symmetrical and whose diagonal is
filled with ones. The FC strength is just the average over all unique pairs,
i.e. using the upper or lower triangle of the dFC(w) matrix, excluding the
diagonal:

1 -1
FC strg(w) = tanh (NN =N)2 Z Z tanh™" (Cjjuw) (3.1)

Cijw is the entry in the dFC(w) matrix at pair ij and window w, s is
the subject index, tanh™! is the arcus tangens hyperbolicus, needed to z-
transform the correlation values before averaging them, and likewise, tanh
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is the tangens hyperbolicus, needed to back-transform the result into a
correlation value.

We evaluate how similar each dF'C'(w) matrix is to the average FC (avFC)
matrix, i.e. the FC matrix obtained from correlating the full time courses
of the ROIs. This is done by simply correlating the upper or lower triangle
of the matrices with each other after flattening them into a vector.

sim to avFCg(w) = corr{vec [U(tanh(dFC(w)))} ,vec [U(tanh(avFC))}
(3.2)

vec(-) stands for the vectorization of a matrix, U is the upper triangle of a
matrix, and corr stands for Pearson correlation.

Additionally, we use a measure that tracks changes in the BOLD signal
itself, namely of its variance. For this, a normalization step is necessary be-
cause the variability of variances across subjects does not carry any meaning,
only the relative differences between ROIs within a subject do. Therefore,
for each subject, we normalize such that the variance of its most variable
ROI is 1. We then compute the variance of the signal x; for each ROI ¢
inside each window ranging from ¢ to ¢t + 60 (in frames) and average over
ROlIs, resulting in a measure for the mean variance of the signal, which we
refer to as “BOLD var”.

N
1
BOLD varg(w) = ~ E varg.;60(X;) (3:3)
i=1

Note that this is not the variance of the mean signal.

3.2.3 Surrogates

In the previous chapter, we used surrogates that preserve the Fourier spec-
trum of the data, but destroy any long-term correlations. This corresponded
to the null hypothesis that any cluster structure in extracted communities
was the result of just random fluctuations and not of the actual correla-
tion structure of the data. Here, we have a different null hypothesis, which
corresponds to the assumption that observed dynamics are a result of the
long-term correlations, but that no additional structure is present. In par-
allel to what is described in section of chapter [2| (equation , we use
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the Fast Fourier Transform (FFT) to obtain a representation of the signal
in frequency space and then add random phases to each bin.

In particular, we have x1, x2, ...,z and y1, y2, ..., yr, where x and y are two
ROIs signals in time whose long-term correlation we want to preserve. After
applying the FFT and obtaining signals X7, Xo,..., Xy and Y7, Yo, ..., Yy in
frequency space, a random phase vector ¢;.1, @2, ..., ¢r, N, values of which
are drawn from a uniform distribution in the interval [—m, 7], is used to
randomize phases in each frequency bin. The long-term correlations are
preserved by adding the same phases to both signals before transforming
back.

3.2.4 Statistical test for histograms

We frequently compute distributions using histograms. In order to test
whether two histograms are significantly different, we use the G-test, which
is similar to the x?-test. The G-test is generally applicable for contingency
tables, i.e. the bins used in a histogram in any number of dimensions are
interpreted as categories ¢. The test statistic G is computed as:

G:g}]@m%S (3.4)

O; is the number of observed samples in category i, F; is the expected
number of samples in that category, derived from a model distribution or
surrogates. That is, the total number of samples across all categories has to
be the same in the observed and expected case, and the category boundaries
have to be identical. The sum is over all non-empty categories. The factor
2 leads to the distribution of G' approximately fitting the y2-distribution
for large enough samples. Then, the p-value is computed as

p=1—x*G,df) (3.5)

Here, x2(G, df) is the value of the cumulative y2-function with df degrees
of freedom, at point G.
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3.3 Results

3.3.1 Three measures to track resting state dynamics

We start with the simple question whether spontaneous fluctuations mea-
sured during resting state (RS) are random or not. We use 21 minute long
RS scans from S = 24 healthy participants. We explore this temporal struc-
ture by looking at its changes in short (2 minutes, 60 frames) overlapping
(shifted by 1 frame) time windows (figure top). Since we are interested
in global changes and want to compare to surrogate data later, we do not
take the approach to compare ROI by ROI or pair by pair. Instead, we use
three global measures of RS fluctuations, all of which are illustrated in fig-
ure [3.1] This results in time courses of the measures, one for each measure
and each subject (figure . The measures are:

1. Average BOLD variance (BOLD var): Inside each window, the vari-
ance over time is computed for each region and averaged over all re-
gions (figure bottom left). Note that this is not the same as taking
the variance of the mean signal since in this case, strong fluctuations
in separate regions average each other out if they are uncorrelated.
This does not happen in our measure.

2. FC strength: Inside each window, the correlation between all pairs of
regions is computed, just like when assessing the average FC (avFC)
by computing correlations over the entire time course (figure bot-
tom right). This results in a time-dependent dynamic FC matrix,
dFC(w) with w = 1,2,..., W, W being the number of time windows.
The FC strength is just the average over all correlation values in the
upper (or lower) triangle part of this matrix, ignoring the diagonal.
It can be interpreted as a proxy for overall “synchronization” in the
system, although we do not explicitly examine oscillations.

3. Similarity to avFC (sim to avFC): The dF'C(w) matrix is correlated
with the avFC matrix (again using only the upper or lower triangle;

figure bottom right).

In figure top, we can clearly discern the “bands” of orange and blue
showing that almost all regions are participating in large fluctuations of the
BOLD signal. This observation raises the question whether and how much
these fluctuations in the BOLD activity contribute to fluctuations in FC.



62 TEMPORAL DYNAMICS OF HUMAN RESTING STATE FMRI

In the previous chapter, we hypothesized that the observed fluctuations in
suprathreshold FC values are related to the large BOLD fluctuations de-
scribed by Tagliazucchi et al. (2012). In order to pursue this, we include
measures for both, BOLD variance and FC variance, in this study. Fig-
ure [3.2 shows an example of the time courses of all three measures for one
subject. Strong infraslow (< 0.01 Hz) fluctuations are evident in all of them.

3.3.2 Specifying the null hypothesis

In order to determine whether the observed fluctuations are random or not,
we need to define very carefully what we mean by “random”, i.e. what our
null model is. For example, if one creates two time series by drawing random
numbers from a bivariate Gaussian distribution with a fixed covariance, the
degree to which they correlate fluctuates over time. Even if the two variables
are independent, there will be time windows in which they reach correlations
that would suggest otherwise. In other words, the true covariances between
the time series explain a lot of the variance in correlations over time. In our
BOLD data, the “true” correlation is estimated by taking into account the
entire time course.

However, BOLD signals cannot be modelled by Gaussian processes due to
their autoregressive properties. These properties result in autocorrelations
that are sustained over several seconds, and in a particular power spec-
trum. Clearly, our null model must include these properties because they
contribute to the statistics of the fluctuations. We use a method that ran-
domizes the phases while preserving the pairwise correlations (Handwerker
et al., 2012 Hindriks et al., |2015). This works by taking the Fourier trans-
form and adding to each frequency bin a random phase; the correlations are
preserved by using the same phase for both signals. This results in the avFC
being the same, as well as the autocorrelations and the spectra, but the
specific alignment of the fluctuations across regions is destroyed. Using this
kind of surrogates corresponds to testing the null hypothesis that observed
properties can be fully explained by the presence of long-term correlations.
Importantly, the model we used in the previous chapter also possesses only
one attractor, the avFC, and therefore, we have already shown that spatial
patterns can be explained by this null hypothesis.

Figure [3.3] shows the same signal as we used before together with a phase-
randomized version - the time courses are strikingly similar and the presence
of the “bands” mentioned above are preserved, although their timing is of
course different. This goes to illustrate just how much of the interesting
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BOLD signal
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Figure 3.1: Illustration of three measures of RS dynamics. Top: We use sliding
windows of width 120s (60 frames) and slide by 1 frame. Bottom left: Time courses
in one window. The variance of each ROI is computed. Averaging over all ROIs
yields the variance of the BOLD signal (“BOLD var”) for this window. Bottom
right: The average FC (avFC) is obtained by correlating the full time courses of
all pairs of ROIs (top). The same method is applied for each window, yielding the
dynamic FC matrix, dF'C(w) (bottom). Averaging over all “unique” pairs yields
the overall FC strength for this window, and correlating the unique pairs of the
dFC with those of the avFC yields the similarity to avFC (“sim to avFC”).
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Figure 3.2: Time courses of three measures BOLD variance, FC strength and
similarity to average FC for the same subject as in figure The measures are
normalized to lie between 0 and 1 for illustration purposes.

properties that we find in RS fMRI time series are a result of the general
properties of the BOLD signal (Fourier spectrum, autocorrelation) which in
turn result from the properties of the hemodynamic function, and can be
explained by the existence of long-term correlations.

3.3.3 Fluctuations are explained by surrogates

Figure shows time courses of the three measures taken from the same
subject as used before, together with one phase randomized version. It
is evident that there are considerable fluctuations in both cases, and that
the surrogates exhibit a range that is comparable to that of the real data.
We compute 100 surrogate data sets for each subject and count how many
times the surrogates reach values that are smaller than the minimum or
bigger than the maximum of the real data, respectively. Figure shows
the results for each subject.

The first thing we notice, independent of the surrogates, is that there is a
large inter-subject variability in where the ranges lie and how broad they
are. Likewise, while for some subjects all dots are within the range of the
bar, for others, there are many surrogates that reach higher and lower values
than the original data. A general observation is that BOLD variance seems
to be the measure that is best preserved in the surrogates, with a total of 403
(16.8%) out of 2400 surrogates reaching a higher and 165 (6.9%) reaching
a lower value than the original time courses they are derived from. For
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Figure 3.3: Original data of one example subject together with a phase randomized
version. The obvious similarity is due to the preservation of spectral properties and
long-term correlations.

FC strength, 21.8% of the surrogates have a higher maximum and 52.4% a
lower minimum; for similarity to avFC, these numbers are 81.0% and 11.6%.
Taken together, while on a single subject level, sometimes the surrogates
seem to fail to reproduce the ranges of the original time courses, on a group
level, the evidence is not sufficient to reject our null hypothesis. This is in
line with findings by Handwerker et al.| (2012); Hindriks et al. (2015)) who
used the same surrogates on different measures for RS dynamics.

3.3.4 Measures are closely related

Furthermore, we observe that the three measures seem to be closely related,
especially BOLD variance and FC strength (figure . We compute the
correlations between all three possible pairs (BOLD var-FC strength, BOLD
var-sim to avFC, FC strength-sim to avFC) for each subject (figure .
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Figure 3.4: Illustration of the effect of phase randomization on the three measures
of global RS dynamics. The time courses computed from an example subject are
shown in blue, together with one phase shuffled version derived from the same
subject. Top: BOLD variance, middle: FC strength, bottom: similarity to average
FC. While specifics are clearly different, the ranges are the same.

The correlations are highly significant for all combinations and all subjects,
with five exceptions (empty circles). Again, there is a large variability across
the subjects, but the correlation between BOLD variance and FC strength
is the most reliable (average over subjects: 0.81). Correlations of these
measures with the similarity to avFC is high in many, but not all subjects,
suggesting a more complex relationship.

We repeat the analysis for surrogate data and find that also these cor-
relations are explained by the long-term correlation structure, with many
surrogates displaying a higher correlation than the original data. In fact,
in some cases, all 100 surrogates do so, suggesting that the correlations are
actually lower than expected. However, since this is again not consistent
over subjects, we do not reject the null hypothesis.

However simple the relationship between BOLD variance and FC strength
may be, it confirms that changes in BOLD activity and changes in FC
contribute to each other. Fluctuations observed in the BOLD signal (fig-
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Figure 3.5: Range of fluctuations for real data (black bars, marking minimum
and maximum of the time course) and surrogate data (colored dots). The empty
circles mark the medians of the real data. Each dot lying above the black bar
stands for a surrogate time course reaching a higher value than the original time
course from which it was derived; each orange dot lying below its bar stands for
a time course reaching a lower value. Top: BOLD variance, middle: FC strength,
bottom: similarity to average FC.
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Figure 3.6: Correlations between all combinations of measures for all subjects.

ure go hand in hand with fluctuations in FC. In general, the system is
most synchronized, and closest to its highly structured average FC, when
fluctuations in the BOLD signal are strongest. This means that these fluctu-
ations increase the signal to noise-ratio, rather than acting as perturbations,
and emphasizes that changes in FC cannot be interpreted without taking
changes in BOLD itself into account.

Our observation explains why similar observations have been reported by
so many studies using a diversity of analysis approaches which include co-
activations as well as correlations (Chang and Glover, 2010; [Kiviniemi et
al., 2011} |Allen et al.l 2012; [Hutchison et al. [2012; [Liu et al., [2013}; [Zalesky
et all 2014; Betzel et al., 2016). Although our finding may seem “trivial”,
it is not explicitly taken into account in the cited studies.

3.3.5 Significant differences between data and surrogates
are found when using full distributions of measures

So far, we have confirmed that neither the presence of large fluctuations
in BOLD variance, FC strength and similarity of pairwise FC structure to
the average structure, nor the correlation of these measures amongst each
other ought to be a surprise. They alone are not evidence that would allow
us to reject the null hypothesis that our observations can be explained by
the noisy fluctuation of the average FC structure. However, not only the
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Figure 3.7: Distributions of all three measures averaged across all subjects, using
20 bins. The bins do not represent the same values for all subjects, since their
ranges are different (see figure . Surrogate histograms use the same bins as
their respective subject.

range of fluctuations is important, but also the trajectory upon which the
system evolves from troughs to peaks. Therefore, our next step is to take
into account the entire distribution of each measure. For each measure
and each subject, we have W = 601 samples, which we distribute into 20
equally spaced bins. We apply a G-test, using the average histogram of
100 surrogates as a prediction against which the counts from the real data
are tested. We find that the distributions of all three measures of all 24
subjects are different from those predicted by the surrogates on a level of
a = 0.05, Bonferroni-corrected for S comparisons. This means that the
time courses exhibit dynamical properties that cannot be explained by the
average correlation structure. Figure |3.7] shows the distributions averaged
across subjects. Also on the group level, the distributions are significantly
different.

Thus, we have established that the shapes of the distributions differ from
the predictions made by the null hypothesis. Clearly, the dynamics are not
explained by the avFC alone even though the size of the fluctuations and
their relationships to each other are.

3.3.6 Extracting RSN time courses

We have introduced three new measures to evaluate dynamics of RS FC
and relate them to BOLD activity changes. In order to show that these
measures are relevant to existing research, we relate them to dynamics of
resting state networks (RSNs). We use tensor factorization to extract recur-
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ring FC patterns and associated time courses, as explained in chapter [2| and
illustrated in figure We select the number of features, F', the number
of clusters, K, and the binarization threshold, #, by considering how well
the communities (spatial features) cluster, i.e. generalize across subjects.
Each cluster is identified with an RSN known from the literature: default
mode network (DMN), somatomotor network (SMN), right and left control
networks (CTR), and visual network (VIS; figure 2.4). While in the pre-
vious chapter, we focussed only on the communities, we now analyze their
associated time courses, cy in the illustration in figure

Figure [3.8]shows two example subjects’ time courses. Note that not each of
the four RSNs occurs in each subject. This is due to the procedure used to
select the parameters of the algorithm, which results in F' = 3 communities
being extracted from each subject, but K = 4 communities being detected
on the group level. Furthermore, the activations are zero in some windows
because we use only the highest values of pairwise FC in the factorization
(see section . This leads to some windows possessing no or almost no
supra-threshold pairwise FC (see figure in chapter [2| for an example).

We compute the correlation between the sum of the activations recorded in
the RSN time courses and our three measures from above. The correlations
are significant for all subjects and all measures except for two instances for
similarity to avFC. Thus, RSNs are most strongly activated during windows
of high BOLD variance (mean correlation with activation: 0.81), high FC
strength (0.79), and strong similarity to avFC (0.49). Again, there is a large
variability across subjects, with one subject even displaying a significant
negative correlation between RSN activations and similarity to avFC. Still,
the group result is quite strong. Since we threshold the tensors, so that
only the highest FC values enter into the extraction of FC patterns and
the time courses analyzed here, it is perhaps not surprising to find a strong
correlation with FC strength. However, since we consider single pairs and
windows when thresholding, the fact that these values cluster in certain
windows - i.e. the windows that have the highest FC strength - is not
an a priori assumption. Although we have established that FC strength
and BOLD variance are highly correlated, it should be duly noted that the
variance of the BOLD signal itself does not contribute in any way to the
factorization. Thus, our finding establishes an interesting perspective on
the data where RSNs are most strongly expressed during periods of high
BOLD variance.
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Figure 3.8: Time courses associated to communities identified as the indicated
RSNs from two subjects. Thresholding the tensors before decomposing them leads
to the activations being 0 in some windows because the baseline is effectively re-
moved. DMN: Default mode network, SMN: somatomotor network, CTR: right
and left control networks, VIS: visual network

3.3.7 Co-activation of RSNs depends on dynamical
properties

From the time courses (figure , it is clear that the RSNs overlap in time
to a certain degree. In order to quantify the degree of co-activation, we
consider the “contributions” of each time course to the overall activation,
which is just the ratio between an activation and the sum of all activations in
this window. Figure (left), shows these contributions for the activation
time courses in figure (top). If this value is close to 1, it means that
this network dominates. If the value is close to 1/F, i.e. one third in this
case, it means that there is a large degree of co-activation; and if the value
is very small, it means that the network is not active at all.

The avFC is a summary of all FC patterns that occur over time. Therefore,
if RSNs are more strongly activated in windows with high similarity to FC,
we would expect that during those peaks, RSNs co-activate more strongly
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than away from the peaks. We use the maximum contribution in each
window to obtain a global index of co-activation. Indeed, we find that this
index is negatively correlated with our three measures. For BOLD variance,
FC strength, and similarity to avFC, 23, 24 and 20 out of 24 subject exhibit
a significant correlation, respectively. The mean correlations, averaging over
the significant values, are - 0.41, - 0.47, and - 0.48, respectively. Thus, there
is a tendency of the RSNs to co-activate more strongly during windows with
strong BOLD fluctuations, high FC strength and high similarity to avFC,
while dominance of a single RSN tends to occur during windows when these
measures are lower.

Figure (right) shows the contribution values for single RSNs (DMN,
somatomotor, control, visual). The distributions show a peak around 1/3,
a value which clearly indicates co-activation. There are also many zeros,
indicating windows in which the network was not active (windows in which
all three were zero were excluded from the analysis since “contribution”
cannot be defined in this case), but the number of values falling in a higher
range does not counter-balance this peak, suggesting that there is a bias
towards RSNs being co-activated or not active at all and away from single
RSNs being dominant. There seems to be a difference between the networks,
with the DMN showing the strongest tendency towards co-activation, which
is in line with its role as “hub” (Hagmann et al.l 2008).
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Figure 3.9: Co-activation analysis of RSNs extracted via tensor factorization. Left:
example time courses of “contributions” for the activation time courses shown in
figure (top). The sum over all values at each time point is 1. Right: Histogram
of contribution values for each RSN, pooled across all subjects. DMN: Default
mode network, SMN: somatomotor network, CTR: right and left control networks,
VIS: visual network

3.3.8 Evidence for non-linear relationship between BOLD
variance and FC

We have established that the dynamics of RS, tracked via our three mea-
sures BOLD variance, FC strength, and similarity to avFC, cannot be fully
explained by surrogate data which exhibit only a noisy fluctuation of the
avFC. However, we do not know what exactly the difference is. As men-
tioned above, the correlation between FC strength and BOLD variance is
very high (0.81 across all subjects), but the relationship of both measures
to the similarity to avFC is less clear. Likewise, RSNs are most strongly
activated during windows of high FC strength and high BOLD variance,
but the relationship to similarity to avFC is not as strong, the correlation
only an average of 0.49 across subjects, with two of them exhibiting no
significant correlation, and one even a slightly negative one.

Following these discrepancies, we consider the joint distribution of BOLD
variance and similarity to avFC. We use equally spaced bins in order to over-
come the problems posed by the large variability across subjects as before
when constructing the univariate distributions (figure . In other words,
we are not interested in the actual values of these measures, but only in the
temporal fluctuations that they exhibit. Figure (left) shows the joint
distribution of the two measures, averaged across all subjects. Although we
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Figure 3.10: Joint distribution of BOLD variance (x-axes) and similarity to avFC
(y-axes) for empirical data (left) and surrogates (right). The marginal distributions
are shown at the top and sides.

assessed the relationship between the two measures using correlation, it is
now evident that we are looking at a non-linear relationship, which explains
why the correlation values were not as high, averaging 0.53 (figure [3.6]).

The shape of the joint distribution hints at BOLD variance and similarity
to avFC being related over time in a non-trivial way. This is confirmed by
plotting the same distribution using the surrogates (ﬁgure right). The
marginal distributions differ significantly between empirical and surrogate
data (o < 0.001), and it is obvious that the joint distributions are very
different.

We conclude that BOLD variance and fluctuations in FC structure are tied
together in a way that is specific to the temporal dynamics of resting state
and not just an effect of the average spatial FC structure. Specifically, the
non-linear structure in the left panel of figure [3.10]shows that during periods
where BOLD variance increases (going from left to right on the x-axis), the
“expression” of the FC structure - i.e. the degree to which the dFC(w)
matrix resembles the avFC - increases more quickly than expected. This
suggests the presence of a mechanism that actively “boosts” this structure.
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Furthermore, there are many windows located at the bottom left of the joint
distribution of the empirical data that do not occur in the surrogates at all.
The presence of these windows is in line with the distribution in figure
(right) being shifted towards smaller values. Likewise, the distribution is
slightly shifted towards higher values as well, as is more easily visible in the
marginal distributions of the similarity to avFC (to the left and right). This
hints at the system exhibiting longer dwell times in states of high and low
values of the two measures than in states of intermediate values, suggesting
some degree of bistability in the system.

3.4 Discussion

With the help of three measures of resting state (RS) dynamics and surro-
gate data constructed under the appropriate null hypothesis, we have shown
that many statistical properties of spontaneous fluctuations in fMRI BOLD
are explained by the presence of long-term correlations. Both the range of
fluctuations in BOLD variance and FC, and the correlations between the
two are reproduced by the surrogates corresponding to the null hypothesis
of a fluctuating average FC (avFC). However, when considering the full dis-
tributions of the three measures we establish, it is revealed that dynamics
of the empirical data exhibit additional structure that is not explained by
the surrogates, and the null hypothesis is rejected.

We also find that the dynamic behavior of resting state networks (RSNs)
is intimately related to our measures in such a way that they activate most
strongly during periods of high BOLD variance, high FC strength (synchro-
nization), and strong expression of the average FC structure (high similarity
to avFC). They also tend to co-activate more during these windows.

By considering the joint distribution of two of our measures, BOLD vari-
ance and FC strength, we show a possible origin of the additional structure
present in the empirical data. Our results suggest that there is a mechanism
that leads to the average FC structure being expressed more strongly and
more quickly than predicted by the surrogates.

3.4.1 Are fluctuations during rest meaningful?

On the one hand, it has been asserted that ongoing spontaneous activ-
ity reflects self-referential tasks or mind-wandering (Raichle et al., 2001}
Greicius et al., [2003; Fransson, [2006; Mason et al., [2007)), on the other,
it has been contested that the observed fluctuations are an actual sign of
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non-stationarities, and proposed that observed “states” are explained by a
fluctuating average FC structure (Handwerker et al., 2012; Lindquist et al.,
2014; [Hindriks et al., [2015; Laumann et al., 2016)). If the latter case is true,
it is unlikely that observed fluctuations reflect any kind of switching between
states. We show that the relationship between fluctuations in activity and
fluctuations in FC is non-linear, and that RSN temporal dynamics are tied
to these fluctuations. This lends support to the hypothesis that “states” are
not fully determined by the average FC, but that excursions from it occur
at certain points in time, even though these excursions may be relatively
scarce.

However, it should be noted that there is a large inter-subject variability: for
some subjects and some measures, the surrogates do clearly not reproduce
the data (figure , in contradiction to what we find on the group level.
Determining the sources of this variability should be a goal in future studies
to make sure that findings accurately represent single subject data. Here
we tackled this problem by reporting results on both the single subject and
the group level, and making sure that differences existed on both. Even
0, there is no guarantee that these differences have the same direction in
all subjects. The three measures introduced here are an attempt to find
a low-dimensional representation of the temporal evolution of RS. Further
research is necessary to further explore and refine them.

3.4.2 Relationship between changes in activity and in FC

We have shown very clearly that there is a strong positive correlation be-
tween changes in BOLD activity and changes in FC, in parallel to findings
on a finer spatial and temporal scale (Chawla et al.,|1999)). While it may be
clear that this relationship is “trivial” in the sense that it is explained by the
long-term correlations, it is not necessarily intuitive or without alternative.
Such an alternative hypothesis could be that fluctuations in BOLD act as
noise which would lead to a negative correlation between BOLD variance
and similarity to avFC. Instead, we find the opposite, which implies that,
when reporting changes in FC, for example due to task, disease, anaesthe-
sia, etc., it should be carefully assessed which role the changes in activity
play. In other words, changes in FC could just be “apparent” changes and
not really indicate any difference in the communication between the areas
in question. In general, while it is easy to define FC in terms of statistical
dependency, it seems that to what exactly it refers in terms of the real brain
is not as clear.
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To quantify the contribution of BOLD fluctuations to observed changes in
FC, the surrogates used here could be useful because no real changes in
FC occur. A suitable metric to quantify the distance between distribu-
tions of measures of dynamics, for example based on entropy, could capture
the “residual” differences between surrogates and real data caused by real
changes in FC.

3.4.3 Time scales and possible origins of fluctuations

Since the Fourier spectra of the time courses are preserved in the surro-
gate data, the fluctuations exhibit the same time scales as per construction
(figure [3.4). Therefore, one limitation of our methods here is that we can-
not make clear predictions about the origin of the observed time scales. It
has been shown that slow (<0.1 Hz) fluctuations observed on the level of
BOLD activity can arise from gamma band oscillations on the neuronal level
(Cabral et al., 2011, 2014), and it has been suggested (Deco and Kringel-
bach, 2016) that they are a signature of long-range communication in the
communication through coherence (CTC)-framework (Fries, 2005). Fur-
thermore, it was recently found by Matsui et al.| (2016) in a mouse study
that global waves of activity occur in both Calcium signal and in the hemo-
dynamic signal, and that the latter follows the former, implying a causal
relationship. Therefore it seems that the observed fluctuations are at least
partly of neural origin. It remains to be seen what the exact relationship
between the slow fluctuations and the travelling waves is, but they might
originate from the same mechanisms.

Fluctuations of our three global measures occur on an even slower time
scale (=0.01 Hz, figure . The time scale reported here is consistent with
previous findings (Hutchison et al.,[2012; Hansen et al., [2014; Ponce-Alvarez
et al., 2015), and in particular, modelling studies (Hansen et al., 2014;
Ponce-Alvarez et al., 2015) have shown that they arise from spontaneous
fluctuations in the band around 0.1 Hz and are slow modulations in the
level of synchronization, manifesting as global state transitions.

3.4.4 RSN activation

Previous studies have suggested that RSN activation occurs as a sequence
of transients (Baker et al., [2014; [Ponce-Alvarez et al., |2015)), putting the
focus on their separateness in time. Here, we find that they co-activate a lot
of the time, which was also reported by de Pasquale et al.| (2012); Smith et
al. (2012)). We find that RSNs are most strongly activated and co-activated
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during periods of strong synchronization (i.e., high FC strength). This is
at odds with the idea that each peak in the measures represents a distinct
“state”, and suggests that, rather, we are looking at stereotypical events.
This is in line with the interpretation given in Mitra et al.| (2014)): the
activation of RSNs is embedded in stereotypical events triggered by global
waves of BOLD activity. It is conceivable that the sequences observed by
Baker et al.| (2014]) are due to the faster time scale in that study (MEG).
Matsui et al.| (2016) found that in mice, typical co-activations between brain
areas are embedded in global waves of activity, and that this is true both
on the level of Calcium signals and the hemodynamic signal.

If RSNs are most strongly activated and co-activated during periods of
high FC strength, high similarity to avFC, and high BOLD variance, the
activation of single RSNs should occur during periods of intermediate values
of these measures, as is indeed suggested by the negative correlation between
contribution index and all three measures (section [3.3.7).

3.4.5 Conclusion: Modelling of RS dynamics

We have shown in the previous chapter (chapter [2]) that no additional as-
sumptions about dynamics are necessary to model time-evolving community
structure. There, we found that RSNs can be extracted from brief intervals
which correspond to the peaks in the global measures used here. However,
here, we do find interesting properties in the dynamics not explained by a
fluctuating avFC.

The fluctuating global BOLD variance could represent an “echo” of global
waves of activity occurring on a finer spatial and temporal scale (Matsui
et al.l 2016). Each wave can be understood as a stereotypical event (Mitra
et al., 2014)) which evolves from a state of low BOLD variance, low FC
strength and low “expression” of the avFC structure, i.e. low similarity
of FC structure to avFC, to a state where these measures are high. The
transition from “low” to “high” does not happen linearly, as is evident
from 1) the fact that the expression of the avFC grows faster than BOLD
variance, and 2) the fact that there are many more “low” windows than
expected, and also slightly more “high” windows. Both facts in conjunction
lead to a strongly non-linear relationship between the two measures. The
underlying mechanism could be the particular structure of the connectome
or a boosting mechanism, perhaps resonance (Atasoy et al., 2016]).

The model used in the previous chapter (Deco et al., 2014) is unlikely to
reproduce these properties because it only possess one attractor. Possibly a
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model which has previously been linked to multistability at the level of neu-
ral fluctuations (Freyer et al., 2011)), and which has recently been shown to
reproduce features of fMRI RS temporal dynamics (Deco and Kringelbach)
2016), could be of interest. As before, they key is that the system is close
to a bifurcation, in this case, a subcritical Hopf bifurcation. Cast in these
terms, the system would be in a regime of damped oscillations when the
global measures are low, and in an oscillatory regime when they are high;
switching occurs due to noise.

In terms of RSNs, the transition from “low” to “high” means a transition
from none of them being activated to all of them being co-activated. Here,
the non-linear relationship is evident from the histograms of the contribu-
tions (figure right), where both strong co-activation (“high” windows)
and absence of activation (“low” windows) are over-represented. The re-
cruitment of single RSNs occurs at intermediate values, and could be seen
as excursions from the stereotypical path from “low” to “high” and thus
from the mere fluctuation of avFC. Therefore, more data will be necessary
to obtain a sufficient sampling of different kinds of excursions, i.e. to tie the
activation of certain RSNs to certain configurations of our three measures.
This could provide a promising entry point to pinpoint differences between
rest and task, in that specific recruitment of task-related networks should
happen more strongly and reliably in task than in rest.






CHAPTER 4

General Discussion

The goal of this thesis was to elucidate the temporal dynamics of rest-
ing state (RS) as measured with fMRI in humans. In chapter |1, we gave
an introduction to the field which developed over the last 20 years and
whose perhaps best-known discovery is that of coherent sets of brain regions
that form distributed functional networks, so-called resting state networks
(RSNs). On the one hand, RSNs are stable, reproducible patterns of co-
activated and correlated brain regions - which we have called communities
in this thesis - that are functionally related. On the other hand, these RSNs
have been shown to interact over time, exhibiting rich spatio-temporal dy-
namics. This places spontaneous fluctuations at the heart of one of the main
topics in neuroscience: integration and segregation; both specialization and
cooperation are necessary for brain function, cognition and behavior.

We have reviewed some evidence for the neural basis of the fluctuations
observed with fMRI, stemming from electrophysiological recordings in hu-
mans and animals, as well as MEG and EEG. Computational models have
demonstrated that gamma band oscillations on the neuronal level can lead
to the slow (< 0.1 Hz) fluctuations on the macroscopic scale. Dynamical
systems theory explains the transmission of these phenomena through many
levels of spatial and temporal resolution by placing the brain at the edge
of a bifurcation, or phase transition. This can lead from local seemingly
random fluctuations to well-ordered macroscopic relationships.

Another important point is the concept of graph models, which also under-
lies many of the computational models that are in use. In this view, activity
propagates from one brain region (node) to another via a connection (edge)
between them. Using such concepts, we can explore the properties of the
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brain network which are at the base of its functional organization, like
hierarchy, modularity, efficiency of communication, and resilience against
damage, and, using simulations, their effect on the dynamics.

On the methodological side, an overview was given over decomposition tech-
niques and the very general ideas behind them like inverse problem solving,
dimensionality reduction, and feature extraction. We hope to have con-
vinced the reader that, while ICA is one of the most widely-applied de-
composition technique in fMRI today, there is neither a mathematical nor a
biological reason why it should be the best, let alone only, possible approach.
Especially for community detection, tensor factorization is a method whose
results should be considered alongside those from established techniques
because they can provide a different, and complementary, perspective on
the data. It is important to understand that the data can only be approxi-
mated by a strictly modular structure, so any method attempting this has
its limitations.

In the main part of the thesis, which contains the studies done in this
PhD, chapters [2] and [3, we presented data from 21-minute fMRI resting
state scans (TR=2 min) of 24 healthy subjects, coarsely parcellated into 66
regions covering the cortex.

In chapter [2| we used tensor factorization to extract communities that are
representative for all subjects from the BOLD time courses and showed that
they are also present in simulated data. In order to do so, communities were
extracted from each subject individually and then clustered. Clustering per-
formance was used to tune the parameters of the analysis pipeline, namely
number of extracted features F', number of clusters K, and binarization
threshold 6. This approach was chosen in order to make sure that the fac-
torization extracts features that generalize across subjects. We succeeded
in doing so and identified four RSNs: the DMN, the visual network, the
sensorimotor network, and the control networks.

We revealed a number of important points that should to be taken into
account in future studies. First, the use of correlation-based measures for
estimating functional connectivity was demonstrated to have its limitations
in that it picked up on “residual” structure, meaning that a slight cluster
structure could also be found in surrogate data that do not have any long-
term correlations between the ROIs. This resulted in the real data only
exhibiting slightly more clustering than the surrogates. We suggested mu-
tual information as a measure that was superior in this application because
it was shown not to be sensitive to this residual structure. Second, using
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a non-negativity constraint lead to better clustering, and resulting features
were more easily interpreted as membership weights. This is a constraint
that is justified by the data and does not limit the space of solutions un-
necessarily as ICA does. Third, we used a high threshold to binarize the
tensors before decomposing them, the best clustering result being achieved
when keeping only 2% of the pairwise FC values over the entire time course.

Subsequently, we employed a dynamic mean field model of the cortex to
obtain simulated data, and showed that also in tensors created from these
time courses, the abovementioned networks could be extracted. Using effec-
tive connectivity (EC) to couple the nodes of the network in our simulations
proved essential, not only because it added missing interhemispheric connec-
tions, but also because it included asymmetrical weights of the connections.
As a result, the node degrees were shown to be more or less uniformly dis-
tributed (as opposed to the SC, where there are a few nodes with much
higher degrees than the rest). This, and the asymmetry, allows the activity
to propagate throughout the entire network in a more diverse way, leading
to more patterns that were more clearly pronounced.

In chapter |3 we developed a simple but effective approach which allowed
us to directly analyze temporal dynamics. We used both the BOLD signals
themselves as well as the time courses obtained from the tensor factorization
which quantify RSN activation. We introduced three global measures of RS
dynamics which were computed inside of sliding windows for each subject.
Because we wanted to connect fluctuations in activity with fluctuations
in FC, we chose one measure that tracks the former - namely the BOLD
variance averaged over all regions - and two that track the latter - namely FC
strength, i.e. correlation averaged over all pairs of ROIs, as well as similarity
to average FC. This last measure was motivated by the null hypothesis
applied in this chapter, stating that observations can be explained by a
single fluctuating FC structure instead of transitions between (more or less)
discrete states. Therefore, we measured, for each window, how similar the
correlation structure was to the average one. To compare our results against
the null hypothesis, we used surrogates, as before, but this time, the long-
term correlations were preserved.

While we confirmed that the presence of fluctuations of the magnitude that
we observed can be considered an effect of the long-term correlations, we
also showed that the full distributions are significantly different from what is
predicted by the surrogates. In particular, we found that there is a slightly
bimodal structure in the three measures as well as the RSN time courses,
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which lead us to postulate a “high” and a “low” state. The “high” state is
characterized by high FC strength, high avearge BOLD variance, and high
similarity to the average FC structure, as well as strong RSN activation
and, importantly, co-activation; the opposite is the case for the “low” state.
Furthermore, the transitions between “high” and “low” states were found
to be non-linear, as was demonstrated by the joint distribution of BOLD
variance and similarity to average FC. RSNs are largely co-activated during
“high” periods, leading us to hypothesize that activation of single RSNs
happens during periods of transition between highly and less synchronized
states.

We take our results to support the idea that temporal dynamics of RS
are due to underlying global waves of activity which spread over the entire
cortex. Our findings contest the notion that the slow fluctuations themselves
are the signatures of the brain transitioning between distinct states. Rather,
we suggest that these states are embedded in the global fluctuations, and
that the fluctuations themselves are the signatures of stereotypical events
whose origin remains to be determined.

Future steps include the application of the methods developed here to task
data. The goal is to define task dynamics in terms of a deviation from
resting dynamics, or in other words, to determine how the brain prepares
for task during rest, a notion that is firmly rooted in the predictive cod-
ing framework. One problem is that performing a task causes fluctuations
in the brain that are related to the specifics of the experimental design,
which would make it difficult to compare to RS. Furthermore, it is a major
goal to model the temporal dynamics using the propositions made here and
to test whether they produce meaningful predictions. Perhaps these pre-
dictions could even help with formulating hypotheses for the task-related
analysis. For the modelling, the large inter-subject variability is definitely
an obstacle, and clear criteria are needed in order to decide whether a model
“reproduces” a certain property of the data or not. In this study, we used
surrogate data to accomplish this goal, a practice that we will continue.

4.1 Contributions

In this dissertation, we make some unique contributions to the investigation
of spatio-temporal dynamics of human fMRI RS. We employ a whole-brain
perspective, using coarse parcellations, long-range connectivity, and mean
field modelling. This way, we add to the evidence suggesting that impor-
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tant insights can be had by considering the macroscopic level of description
instead of striving for more and more detail. Indeed, especially in this
field, the most remarkable observations can only be made when considering
anatomically far away brain regions; considering small regions gives the ap-
pearance of randomness and leaves us blind for the beautiful regularities in
brain dynamics.

To begin with, we describe in detail a methodology based on non-negative
tensor factorization that can be applied for community detection in em-
pirical and model data. Importantly, it works on the spatial resolution
that is common for whole-brain modelling and graph analysis. It is based
on generic models of n-way-decomposition which can be seen as a general-
ization of common methods such as PCA and SVD to higher-dimensional
arrays. The main point about this method is that, in a natural way, it al-
lows us to analyze space and time in a truly simultaneous fashion, without
having to make any assumptions about independence in either dimension.
A crucial part of our methodology is the way we validate our results. Since
the factorization is applied to each subject’s data separately, we use the
clustering of the extracted communities to tune the parameters of the de-
composition. This means we do not have to assume anything about the
communities, except that they are common across subjects. Furthermore,
we use surrogates which enable us to quantify which amount of clustering
is obtained by chance, without any true cluster structure being present in
the data. The pipeline we have developed can easily be applied to datasets
of similar resolutions and will be made available on-line.

With this approach, we explicitly show that RSNs are present in data sim-
ulated by a dynamic mean field model of RS. Previously, it had been es-
tablished that this model reproduces the average FC (Deco et al., [2014),
but not that RSNs themselves can be isolated from the time courses. This
lends support to the idea that a single attractor is sufficient to explain the
presence of RSNs, and that they are largely derived from the average FC.
Of course, this does not mean that this kind of model can reproduce the
temporal dynamics, which indeed we contest with our results in chapter [3]

By using two different connectivities in the simulations of the model data,
we also confirm that an underlying complex network and simple dynamics
work together to produce FC patterns. Specifically, we apply a very recent
method that allows us to derive an EC on the group level for our dataset,
and we demonstrate that 1) interhemispheric connections, 2) asymmetry of
in- and out-degree, and 3) relatively uniform distribution of node degrees
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contribute to producing realistic communities. Further studies are necessary
to determine how exactly the dynamics on the EC play out based on these
properties.

Another notable result presented in this thesis is that brief instances of
maximum FC are sufficient to obtain RSNs. It is remarkable that only the
highest 2% of pairwise FC values, over all windows, are necessary for the
tensor factorization algorithm to characterize the spatial dynamics. This
speaks to its infraslow evolution and its stereotypical nature, and suggests
that, while RSNs are undoubtedly of special interest, they may represent
the most basic components of brain dynamics, much like the first princi-
pal component in PCA. Much work remains to be done in characterizing
and explaining inter-individual differences, something that also whole-brain
computational models are to date not able to account for.

We introduce three measure of resting state dynamics, which are very simple
and capture global changes in FC and BOLD activity. As mentioned above,
the whole-brain approach lies at the heart of this thesis, and using these
measures works around statistical problems when considering measures pair
by pair. We show that they exhibit ultraslow fluctuations (=~ 0.01 Hz) as
reported in other studies using different measures of global RS dynamics.
Despite their simplicity, they are shown to carry meaning by connecting
them to RSN activation time courses which are obtained in a completely
different way (using tensor factorization). Instances of high overall FC are
equivalent to periods of maximum variance. We suggest this in chapter [2| by
demonstrating that the amount of FC pairs which exceed a high (98th per-
centile) threshold fluctuates strongly over time, and confirm it in chapter
by unambiguously connecting global measures of FC with one of activity,
such that it becomes clear that they are two sides of the same coin. While
this finding may be “trivial” in the sense that surrogates readily repro-
duce it, this perspective has not been thoroughly investigated and calls
for a careful evaluation of the meaning of “FC” because measured changes
between experimental conditions could be due to temporary changes in ac-
tivity instead of any changes in the connections themselves. Furthermore,
it is shown that the measures and the RSN time courses exhibit a strong
positive correlation, suggesting that their temporal evolution is governed by
these global properties.

We make our contribution to a growing body of literature that emphasizes
that RSNs are not clearly separated in time. ICA, which is widely applied
and has unquestionable merits, has had a big influence on how we under-
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stand and interpret RSNs. By using an alternative approach which does not
assume independence (tensor factorization), and deriving from the obtained
time courses a very simple index of co-activation, we show that they have a
preference for co-activating strongly. This co-activation occurs mostly dur-
ing periods of high FC strength, high similarity to average FC, and strong
BOLD variance. We conclude, therefore, that the ultraslow fluctuations
do not represent different FC patterns, but instead, the transitions of the
system from a “low” to a “high” synchronization state, which happens in a
fairly stereotypical manner.

Concerning these “states”, we furthermore establish that the joint distribu-
tions of two of the three measures, BOLD variance and similarity to avFC,
as well as that of RSN (co-)activations, shows a non-linear and bimodal
distribution, i.e. the “high” and “low” states actually exhibit longer dwell
times than intermediate states. Furthermore, the transition between the
states does not seem to happen at a constant speed, but the similarity to
average FC grows faster than is predicted by the surrogates. This suggests
an additional mechanism, perhaps resonance, caused by the underlying con-
nectivity, perhaps a synchronization effect caused by a Hopf bifurcation.
Future modelling studies should try to explain this bimodal behavior, and
we suggest to use the Hopf model which can exhibit bi- and multistable
behavior, with transitions between states being driven by noise. We hy-
pothesize here that using effective connectivity to connect nodes could lead
to the desired dynamics in FC due to asymmetries.

4.2 Conclusion

One of the points that this thesis hopes to make is that it is not clear what
kind of dynamics leads to the emergence of RSNs. It could be that we have a
multistable or metastable system which transitions between different states
identified with the dominance of a certain RSN; it could be that we only have
one attractor and RSNs are nothing but a result of the modular structure
of the underlying anatomical connections; or we could consider travelling
waves which propagate through the connectome in a specific way, leading
to the expression of subnetworks at different points in time. Computational
models will be the key to further understanding these scenarios, making
predictions for empirical data, and refining the ideas we have about the
relationship between micro- and macroscale, and between structure and
function. While it is clear that we have not fully reached the ambitious goal
stated above - i.e. “to elucidate the temporal dynamics of resting state”
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- we have developed numerous methods to investigate this question, have
clarified many details, and identified promising future directions based on
hypotheses derived from the results presented here.
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Table A.1: ROIs in the same order in which they appear in the vectors in figures[2.6]

APPENDIX

and as well as in the matrices in figure

name

name

© 00 N T W

W W W WNNNNDNNDNDNDNNNDNRFERFE R = = ==
WNFHF OO0 Uk WNDEFE O OO Utk WwNn—~OoO

R entorhinal cortex

R parahippocampal gyrus
R temp pole

R front pole

R fusiform gyrus

R transverse temp cortex

R lateral occipital cortex

R sup parietal cortex

R inf temp gyrus

R inf parietal cortex

R supramarginal gyrus

R banks sup temp sulcus

R middle temp gyrus

R sup temp gyrus

R postcentral gyrus

R precentral gyrus

R caudal middle front gyrus
R pars opercularis

R pars triangularis

R rostral middle front gyrus
R pars orbitalis

R lateral orbital front cortex
R caudal ant-cing cortex

R rostral ant cing cortex

R sup front gyrus

R medial orbital front cortex
R lingual gyrus

R pericalcarine cortex

R cuneus cortex

R paracentral lobule

R isthmuscing cortex

R precuneus cortex

R posterior-cing cortex

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
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52
53
o4
95
56
o7
o8
59
60
61
62
63
64
65
66

L posterior-cing cortex

L precuneus cortex

L isthmuscing cortex

L paracentral lobule

L cuneus cortex

L pericalcarine cortex

L lingual gyrus

L medial orbital front cortex
L sup front gyrus

L rostral ant cing cortex

L caudal ant-cing cortex

L lateral orbital front cortex
L pars orbitalis

L rostral middle front gyrus
L pars triangularis

L pars opercularis

L caudal middle front gyrus
L precentral gyrus

L postcentral gyrus

L sup temp gyrus

L middle temp gyrus

L banks sup temp sulcus

L supramarginal gyrus

L inf parietal cortex

L inf temp gyrus

L sup parietal cortex

L lateral occipital cortex

L transverse temp cortex

L fusiform gyrus

L front pole

L temp pole

L parahippocampal gyrus

L entorhinal cortex
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