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RESUMEN

En estos mas de tres anos de investigacion hemos trabajado en uno de los
grandes problemas de la astrofisica de altas energias: cual es el mecanis-
mo de produccién de radiaciéon no térmica en fuentes relativistas. Noso-
tros hemos propuesto una serie de modelos centrandonos en la relacion
de outflows relativistas con su entorno, proponiendo que si éstos inter-
accionaban con ciertos obstaculos, formarian choques. En estos choques,
aunque en el caso relativista ain no se tiene un conocimiento profundo
de su funcionamiento, se sabe que se produce aceleracion de particulas
no térmicas, dando lugar también a emision de altas energias.

Distinguimos la emision no térmica (responsable de los fendmenos que
emiten rayos gamma, que son los que mas nos interesan) de la térmica
porque, a diferencia de ésta, no se produce por la agitacion aleatoria de
las particulas debido a su temperatura. La emisiéon no térmica involucra a
menudo la interaccion de las particulas con los campos electromagnéticos
de sus alrededores. En nuestro caso, nos hemos centrado en la emision IC
(Inverse Compton, interaccion particula-foton) y en la emision sincrotron
(interaccién particula-campo magnético) porque eran las mas relevantes
en nuestros casos de interés.

El método que hemos seguido para estudiar los distintos casos ha si-
do el siguiente: nuestros colaboradores hacian simulaciones hidrodina-
micas (2D, relativistas, con simetria cilindrica, para mas informacion, ver
Cap. 2) de la fuente de interés, obteniendo una red de datos en dos dimen-
siones. Después reducian el problema a una serie de lineas de fluido (ver
Sec. 2.1.1), que contenian los datos hidrodinamicos que nos facilitaban a
nosotros.

Con estas lineas de fluido nosotros calculabamos la inyeccion de parti-
culas no térmicas siguiendo una serie de prescripciones fenomenolégicas
sobre su distribucion de energias, su evolucion a lo largo de la linea de
fluido y del tiempo, y por altimo su radiaciéon no térmica (IC y sincro-
tron). Con este método podiamos obtener las distribuciones espectrales
de nuestras fuentes, asi como mapas de emisién.

Hemos empleado este método para estudiar tres tipos de fuentes:
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INTERACCIONES JET-ESTRELLA EN AGNS

Algunas galaxias que tienen un nucleo de galaxia activo (AGN, por sus si-
glas en inglés) presentan un par de chorros de particulas relativistas, muy
colimados y opuestos, también conocidos como jets. La formacién de es-
tos jets esta ligada a episodios de colision de galaxias, un proceso llamado
merging que también suele implicar que se dispare el ritmo de formacion
estelar. De esta forma, es esperable que el nimero de interacciones de
estos jets con las poblaciones de estrellas circundantes sea alto.

Nosotros nos centramos en una sola interaccion, para la que simulamos
un jet persistente interaccionando con una estrella individual (Cap. 3). El
resultado de estas simulaciones es que el area efectiva donde se produce
la emisién no térmica es mucho mayor que el area asociada a la region
donde el choque es mas intenso, por lo que la cantidad de radiacion que
puede generar es mayor de la que se esperaba. En cuanto a los resultados
radiativos, observamos que la orientacién del jet con respecto al observa-
dor (situado en la Tierra) es de vital importancia, debido al efecto Doppler
que sufre la radiacion, al ser el jet relativista. También observamos que un
campo magnetico relativamente alto puede atenuar mucho la componen-
te IC de la radiacion y, por tanto, disminuir la emisiéon por encima del
GeV. Los niveles energéticos que encontramos hacen pensar que una po-
blacion de estrellas interactuando con el jet de un AGN podrian dar lugar
a emision gamma detectable desde la Tierra.

PULSAR INTERACCIONANDO CON UN VIENTO ESTELAR INHOMOGENEO

Las binarias de rayos gamma son sistemas de dos cuerpos en los que uno
es un objeto compacto (basicamente, un agujero negro o una estrella de
neutrones) y el otro es una estrella, con la peculiaridad de que su distru-
bucidn espectral de emision (SED) tiene el maximo por encima de 1 MeV,
es decir, estan fuertemente dominados por procesos no térmicos. La emi-
sién en rayos gamma de estas binarias ha sido estudiada con anteriori-
dad, pero aqui nos centramos, de nuevo, en la interacciéon de un viento
relativista (en este caso, proveniente del pulsar) con un obstaculo de gran
inercia (en este caso, una inhomogeneidad del viento estelar). Estas inho-
mogeneidades, o grumos (clumps en inglés), pueden tener una densidad
considerablemente mayor que el resto del viento estelar, y se espera que
estén presentes en los vientos de las estrellas mas masivas (Cap. 4).



La interaccion del viento del pulsar con el grumo del viento estelar pro-
duce una region chocada alrededor de este ultimo. En funcion del tamano
y la densidad del grumo, esta region chocada puede acercarse mas al pul-
sar, siendo afectada asi por un viento mas potente, menos diluido, modifi-
cando los patrones de pérdidas de energia de las particulas. Con nuestros
calculos hemos podido comprobar como al introducir estas inhomogenei-
dades se consiguen efectivamente emisiones significativamente mayores
en la mayoria de configuraciones.

Este modelo se ha aplicado a una fuente concreta, la binaria PSR B1259—-
63, no siendo posible explicar los estallidos en la banda de los GeV obser-
vados por Fermi. Por otra parte, para esa misma fuente se encontré que si
se modelaba el disco de decrecion que se espera que tenga la estrella com-
panera como una inhomogeneidad grande interactuando con el viento del
pulsar, la SED se acercaba mas a las luminosidades en TeV observadas 20
dias después del periastro, apuntando a una relaciéon entre el objeto com-
pacto y el disco de decreciéon como fuente de rayos gamma en el rango
TeV.

INHOMOGENEIDADES DE UN VIENTO ESTELAR EN UN JET DE HMMQ

Los microquasares de alta masa (HMMQ, por sus siglas en inglés) con-
sisten en un objeto compacto orbitando alrededor de una estrella masiva.
Parte del material de la estrella, que en este caso tiene vientos muy pode-
rosos, es acretado por el objeto compacto formando una pareja de jets. En
nuestro estudio, hemos intentado modelar la emisiéon gamma explorando
el escenario en el que ciertas inhomogeneidades en el viento estelar (de
nuevo, grumos) eran capaces de entrar en el jet, provocando un choque y,
por lo tanto, acelerando particulas no térmicas.

El estudio, en este caso, tuvo dos componentes importantes, el calculo
de las condiciones necesarias para que la interaccion entre el grumo del
viento estelar y el jet fuera posible y eficiente, y la simulacién del proceso,
llevadas a cabo por nuestros colaboradores; y el posterior calculo de la
radiacion no térmica, llevada a cabo mediante el codigo desarrollado en
esta tesis. La primera parte del estudio estimaba que basicamente deberia-
mos esperar que mas o menos siempre hubiese una inhomogeneidad del
tamano y densidad estudiados interaccionando con el jet. Grumos mas
grandes serian menos probables y quiza demasiado masivos para el jet,
disgregandolo en el proceso, mientras que grumos mas pequenos, menos
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densos, o impactando en las zonas mas cercanas a la base del jet, serian
destruidos antes de poder penetrar.

En este caso, aunque el trabajo se hizo de forma genérica para cual-
quier microquasar de alta masa, nos centramos en los dos HMMQs que
emiten en rayos gamma que se conocen hasta la fecha, Cyg X-1 y Cyg X-3.
El resultado de nuestro trabajo es que con los parametros que nosotros
manejamos pueden reproducirse las luminosidades de estas fuentes im-
poniendo eficiencias no térmicas conservadoras. Incluso comparamos las
SED predichas con las observaciones Fermi de Cyg X-1, mostrando que
son compatibles empleando valores razonables del campo magnético, an-
gulo de vision y eficiencia en la aceleracién de particulas no térmicas.
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ASTROPHYSICAL SOURCES UNDER STUDY

1.1 HIGH-ENERGY ASTROPHYSICS

There have been a few moments in history when astronomy has jumped a
step ahead by opening a new observational window in the sky. The discov-
ery of gamma rays in astronomy is, in that sense, comparable to the use of
the first optical telescope, the first astronomical detections of non-visible
wavelengths (infrared, ultraviolet, radio, X-rays) or, more recently, the di-
rect detection of gravitational waves. With the gamma-ray astronomy we
enter the exciting domain of the non-thermal (NT) radiation: for the first
time we know positively that the origin of that light is not thermal; it
cannot be modelled by a black-body spectrum and must be generated by
accelerated particles. This allows us to explore the most extreme events in
the universe, far from equilibrium and, therefore, of non-thermal nature.
Motivated by the first discoveries in radio astronomy;, in the early 1950s
the interest in the most energetic band of the spectrum started to grow.
The first prediction of gamma rays from space was published by Hayakawa,
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1952, in a work predicting a galactic diffuse gamma ray background com-
ing from the decay of pions produced in the interaction between cosmic-
rays and interstellar matter. This pioneering publication was soon fol-
lowed by others, foreseeing an easy detection of this new light. However,
given that the atmosphere of Earth is opaque to gamma rays, the necessity
of placing the telescope in space delayed the first observations by several
years. The first gamma ray telescope (the Explorer XI) was launched in
April 27,1961, and managed to detect the first cosmic gamma ray photon
(Kraushaar et al., 1965). Since that pioneering detection until the first as-
tronomical discovery through gamma rays there was a span of more than
20 years: it was the detection of the Geminga pulsar by the NASA satel-
lite SAS-II (reported as an unidentified source by Thompson et al., 1977),
what paved the way of precision astronomy in gamma rays. Launched in
1975 and with a lifetime of ~ 7 years, the ESA satellite Cos-B detected
several binary systems and y-ray pulsars in the 2 keV - 5 GeV range.

The next big step forward in gamma-ray astronomy took place in the
1990s with the launch of the Compton Gamma-ray Observatory (CGRO),
with the key instruments Imaging Compton Telescope (COMPTEL) (0.75
- 30 MeV) and Energetic Gamma Ray Experiment Telescope (EGRET) (30
MeV - 20 GeV) on board. The latter conducted the first all sky survey
above 100 MeV and discovered 271 sources (Hartman et al., 1999). Cur-
rently, the high energy (HE) gamma-ray range (~ 0.1 — 100 GeV ) is ob-
served mainly by Fermi' (launched in 2008) and AGILE? (launched in
2009), with improved sensitivities and spectral, time and spacial resolu-
tions.

In the XXI century a window to even higher energies has been opened
with the operation of modern ground-based Imaging Atmostpheric Che-
renkov Telescopes (IATCs). These telescopes detect the Cherenkov light
produced by the electromagnetic cascades that take place in the Earth’s
atmosphere when a gamma-ray photon arrives to its upper layers. That
technique allows to reach decent sensitivities above 100 GeV, i. e. the very
high energy (VHE) range. The current most important IATC are MAGIC3,
H.E.S.S4, VERITAS5 and HAWC?®, and the future Cherenkov Telescope

Fermi Gamma-ray Space Telescope

Astro-Rivelatore Gamma a Immagini LEggero

Major Atmospheric Gamma Imaging Cherenkov Telescopes
High Energy Stereoscopic System

Very Energetic Radiation Imaging Telescope Array System
High-Altitude Water Cherenkov Observatory



1.2 GAMMA-RAY SOURCES

HE Gamma-rays VHE Gamma-rays

MAGIC/H.E.S.S.

Fermi / AGILE VERITAS
100

Figure 1.1: Electromagnetic spectrum above 100 eV, in logarithmic scale, show-
ing the effective energy range of the most important missions ongo-
ing at the moment of this thesis publication. The future CTA will
cover the range between 10 GeV and ~300 TeV. Please note that all
the missions operating below 10 GeV are space telescopes whereas
the ones above that threshold are ground-based IATCs.

Array (CTA) has been approved. An overview of the current and future
X-ray and gamma-ray telescopes is shown in Fig. 1.1.

1.2 GAMMA-RAY SOURCES

Among the identified gamma-ray sources we find a vast zoo of astronomi-
cal objects, of both galactic and extragalactic origin, transient and persis-
tent sources, point-like and extended emitters. An overview of the whole-
sky at gamma rays and very energetic gamma rays is shown in Figs. 1.2
and 1.3, respectively. The only intrinsic characteristic these sources have
in common is the existence of NT processes playing an important role on
their emission.

1.2.1  Thermal vs. non-thermal radiation

Thermal radiation is the electromagnetic radiation produced by a body
with a given temperature, due to the random (thermal) motion of its
charged particles. For a system, to reach gamma rays, it should get tem-
peratures of thousands of millions of Kelvin and be optically thin, which
is not found in nature. Hence, with gamma rays we can be sure that what
we observe is of non-thermal origin.

5
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Figure 1.2: All sky view at energies greater than 1 GeV, based on five years of
data from the LAT instrument on the Fermi Gamma-ray Space Tele-
scope. Credit: NASA/DOE/Fermi LAT Collaboration (http://fermi.

gsfc.nasa.gov/ssc/).

All NT processes involve the presence of accelerated particles (see Sec. 2.2),

and shocks and other sort of energy dissipation processes inside plas-
mas are good sites to accelerate charged particles, so we are very inter-
ested in sources presenting them. On the other hand, relativistic motion
of the emitter will boost the emitted radiation towards higher energies
and luminosities if the bulk velocity is roughly pointing towards us (see
Sec. 2.4.1). Taking this into account we have focused in this thesis on
sources with relativistic outflows that are embedded in complex environ-
ments, which favours the acceleration of particles, for instance, in shocks.

1.3 GAMMA-RAY SOURCES WITH RELATIVISTIC OUTFLOWS

Here we mostly overview the main types of gamma-ray sources with in-
trinsic motions comparable with ¢, the speed of light. This relativistic mo-
tion is the responsible for the Doppler boosting, described in 2.4.1, which,
if the outflow points towards the observer, amplifies the luminosity of the
source and shifts the spectrum to higher energies.

1.3.1 Active Galactic Nuclei

The centre of some galaxies presents an Active Galactic Nucleus (AGN), a
region of extraordinary luminosity in a wide range of wavelengths, both


http://fermi.gsfc.nasa.gov/ssc/
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1.3 GAMMA-RAY SOURCES WITH RELATIVISTIC OUTFLOWS

VHE y-ray sources

Blazar (HBL)
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Flat Spectrum Radio Quasar
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Figure 1.3: All sky view of the sources detected above 100 GeV. An up-to-date
plot is available at http://fermi.gsfc.nasa.gov/ssc/.

as continuum and spectroscopic line emission. These phenomena are re-
lated with the accretion of surrounding material onto the central super-
massive black hole (SMBH), supposedly through an accretion disk that
can create two relativistic collimated outflows, or jets.

In the optical range, a bright point-like continuum in the centre of the
galaxy may be present, as well as broad and/or narrow emission lines.
Also it may show reprocessed infrared (IR) emission, extended radio emis-
sion and both continuum and emission lines in X-rays. Some of these radi-
ation components are related to NT processes but in some cases it is hard
to disentangle from the thermal contribution of the host galaxy. In the
case of the gamma rays coming from these objects, the NT origin is clear,
as well as in general their relation with the relativistic jets. Moreover, if
the jet is pointing towards the observer, these objects can reach very high
luminosities, and therefore, can be seen even at cosmological distances.
The first observation of this kind of sources was the quasar? 3c 273, the
optically brightest AGN in the sky. A deeper description of these objects
from the point of view of their HE component can be found in Chap. 3.

Portmanteau of quasi-stellar object, due to their resemblance to stars in the optical range,
except for the broad emission lines.
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1.3.2 Gamma-ray binaries

A gamma-ray binary is a two-body system formed by a compact object
—namely, a neutron star (NS) or a black hole (BH)— and a companion
star, and with the NT spectral energy distribution (SED) peaking in the
gamma-ray range. These systems, given the shorter, human time-scale of
their periods and their extreme environments, are perfect laboratories
to study phenomena like particle acceleration, magnetic plasmas, radi-
ation absorption, etc. Although systems with low-mass companion may
exist, the companion stars in gamma-ray binaries are massive, presenting
high mass-loss rate and strong winds, which play an important role in the
NT emission of the system. Up to now, there are only a handful of these
sources, listed in Dubus, 2013; Paredes-Fortuny, 2016.

There are two main different scenarios for gamma-ray emitting bina-
ries, depending on whether the compact object is accreting or not. If the
compact object does not accrete material from the companion star, then
the NT radiation is produced by the collision of the relativistic pulsar
wind with the stellar wind, and it is the shock between the two winds
what accelerates particles. The accreting compact objects can also emit in
the gamma-ray range, but in this case the high-energy emission peak falls
in the X-ray band, and hence are known as X-ray binaries. The gamma-ray
emitting X-rays binaries pertain to the class of microquasars.

1.3.3 Microquasars

Among the X-ray binary population, microquasars are of special inter-
est for gamma-ray astronomy, given that two of these sources, Cyg X-1
and Cyg X-3 have been detected above GeV (Zanin et al., 2016; Tavani et
al., 2009, respectively). This kind of sources are binary systems that host
a compact object accreting material from its stellar companion, which
forms an accretion disk and two jets, in a similar manner to those formed
in a quasar, but orders of magnitude smaller and less powerful (this is
where its name comes from).

In the specific case of Cyg X-1 and Cyg X-3, the companion is a mas-
sive star with powerful winds, which, as has been stated before, has great
importance concerning NT processes.
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MICROQUASAR BINARY PULSAR

Cometary radio emmission

Companion star

Relativistic jets Pulsar

Compact object
of center

Accretion disk Disk outflow
Ultraviolet and —

optical emission { % y-rays

F Microblazar

Figure 1.4: Representation of the two classic models of gamma ray production in
binary systems, on the left the microquasar scenario and on the right
the binary pulsar scenario. Credit: Mirabel, 2006

1.3.4 Gamma-ray Bursts

Among the gamma-ray emitters with relativistic outflows, Gamma-ray
Bursts (GRBs) are the only kind that we have not studied within this
thesis. These sources were discovered in the 1960s by the military Vela
program during the cold war, while the US government was looking for
evidences of soviet nuclear tests. The discovery was declassified and pub-
lished years later, by Klebesadel et al., 1973.

GRBs appear to be fast transients® related to catastrophic events such as
compact-object mergers and core-collapse supernova. Also, the isotropic
distribution of GRBs in the sky (see Fig. 1.5) points towards an extra-
galactic origin. Given their enormous bolometric flux, these events are
supposed to be related to flows highly collimated towards the observer,
and presenting very high Lorentz factors.

GRBs are even more energetic than AGN but take place in time-scales
associated with stellar-mass objects, as microquasars; thus, GRBs can be
seen as an extreme version of these two other sources. Therefore, at this
stage we have decided to focus on AGN and high-mass microquasars, to-
gether with gamma-ray binaries hosting a non-accreting pulsar.

8 Between miliseconds, or short GRB, and seconds to minutes, or long GRB.
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Fermi GRBs as of 14021 8

1310 GBM GRBs
174 Swift GRBs
73 LAT GRBs

Figure 1.5: GRBs observed by the GBM instrument on board the Fermi Gamma-
ray Space Telescope (Fermi) satellite, along with the counterparts
found by the X-ray telescope Swift and the Large Area Telescope
(LAT) afterglow detection in gamma rays. See Gruber et al., 2014;
von Kienlin et al., 2014

1.3.5 Some examples of non-relativistic sources

Although they are not studied in this thesis, there are some examples of
systems with non-relativistic outflows that present gamma-ray emission.
The slower counterpart of the relativistic gamma-ray binaries would be
the massive star binaries (e.g., Eichler and Usov, 1993), in which the
acceleration of particles is produced at the site of stellar wind collision.
Analogous, but again, slower, than the microquasar jets, are the outflows
produced in high-mass young stellar objects, where the interaction with
the dense surrounding medium is of capital importance. The termination
shocks of the thermal jets are good candidates for particle acceleration
and HE emission (Araudo et al., 2007).

1.4 COMPLEX ENVIRONMENTS

As already mentioned, shocks and other processes dissipate energy from
the outflows accelerating particles, although acceleration in shocks is pos-
sibly the most common mechanism?. To produce these shocks a number

9 Shocks are conventional accelerators in the non-relativistic regime. The acceleration in

relativistic shocks is not well understood yet.
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of scenarios have been proposed, depending on the specific characteris-
tics, structure and size of the source, such as different velocities inside
the outflow (Rees, 1978) or asymmetric recollimation shocks produced
by external factors (e.g. Perucho and Bosch-Ramon, 2008). However, a
general idea can be applied to all supersonic outflows: the formation of
shocks due to the interaction of the flow with a massive obstacle. When
the flow impacts the obstacle, a shock forms in the former potentially ac-
celerating particles, and if the obstacle has enough inertia, the outflow
will not be able to destroy it (at least, immediately). The presence of a
complex environment around the source is, then, clearly important.

In the context of AGNs, the interaction of jets with their surroundings
(stars, gas, and clouds), and in particular their dynamical impact on the
jet, have been studied since long ago (Komissarov, 1994; Bowman et al.,
1996). Later on, several authors (Bednarek and Protheroe, 1997; Bosch-
Ramon et al., 2012a; Khangulyan et al., 2013; Bosch-Ramon, 2015) pro-
posed these encounters, and specifically jet-red giant interactions, as plau-
sible acceleration sites and, moreover, efficient NT emitters.

For galactic sources, the scenario is even more complex, given that the
relativistic outflows we found in nature do not appear only in the form of
jets, but may exhibit different geometries, such as the broader wind of a
pulsar. In this context, the obstacles found interacting with the outflows
are expected to be related with a close star. Density inhomogeneities are
thought to be present in the stellar winds of early-type stars'® (Lucy and
Solomon, 1970; Runacres and Owocki, 2002; Moffat, 2008) and these over-
densities (or clumps) can be massive enough to have a dynamical effect
in the outflow (e. g. Perucho and Bosch-Ramon, 2012 for microquasars
or Paredes-Fortuny et al., 2015 for pulsar winds). Such interactions has
been proposed to have a close relation with high energy NT radiation
(e. g., Araudo et al., 2009; Owocki et al., 2009; Romero et al., 2010; Bosch-
Ramon, 2013).

Also, in some cases the inhomogeneity of the environment can be even
more extreme, like in the case of fast-rotating Be stars. This type of object
are early-type stars with such a fast rotation that their winds are strongly
dependent on their latitude, even forming a decretion disc around them,
where the material is significantly denser than the spherical wind. These
objects are present in some gamma-ray and X-ray binaries and therefore
are thought to play a role in the NT emission of these sources (Maraschi
and Treves, 1981; Tavani and Arons, 1997; Khangulyan et al., 2007).

10 Namely, O-, B- and A-type stars, the most massive kinds.






COUPLING HYDRODYNAMICS AND NON-THERMAL
RADIATION

Hydrodynamic simulations have been an extremely useful tool in the
study of astrophysical problems since the advent of computers. The com-
plexity of these simulations has grown at the same pace as the computa-
tional power available, from simple simulations with very few parameters
to the modern three-dimensional (3D) codes, gradually including more
and more physics. The study of NT sources has also made use of these
techniques to understand the dynamical evolution of the systems, but up
to now most of the NT radiation computation codes where one-zone; i.e.,
they could not address properly the spacial complexity and extent of the
high-energy source.

In this thesis we couple the results of (relativistic) hydrodynamic simu-
lations with the computation of the NT emission, allowing us to take into
account the structure of the sources in the model of their emission. The
different positions and velocities of the fluid elements of the emmitting
flow may be of capital importance to characterize the high-energy radi-
ation, and therefore its precise determination is needed for the study of
their interaction with the ambient photon and magnetic fields through
inverse Compton (IC) scattering or synchrotron losses, for instance. Also,

13
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a proper characterisation of the fluid allows us to compute more precisely
the NT radiation, accounting more accurately for effects like photon ab-
sorption or Doppler boosting.

Given the nature of the problems addressed throughout this thesis, we
have focused on a specific kind of simulations. First of all, the systems
simulated present an axial symmetry that allow us to perform 2D sim-
ulations, less complex and time consuming than 3D ones. Also, at this
stage, we focus on stationary hydrodynamic solutions, which is enough
for our purposes. And finally, we treat only problems in which the radia-
tive efficient population consist of electrons and positrons, specifically
with losses and radiation dominated by IC and synchrotron.

In this context, we have followed the next workflow:

* We perform relativistic hydrodynamical (RHD) simulations, obtain-
ing a 2D grid of hydrodynamical data.

* We compute the streamlines (Sec. 2.1.1) from the hydrodynamical
results’.

* We identify the shocks in the streamline, where the acceleration of
particles takes place, and assume what fraction of the fluid energy
is transferred to a NT population of particles (Sec. 2.2).

* We let the NT population evolve along the streamline, affected by a
number of energy losses (Sec. 2.3).

* Finally we compute the IC and synchrotron radiation, accounting
for the relevant absorption processes and Doppler boosting (Sec. 2.4).

2.1 RELATIVISTIC HYDRODYNAMICS

Although the hydrodynamic simulations performed in the context of this
thesis, were carried out by our colaborators, it is worth to introduce some
concepts to understand the methods employed, given that we have made
use of hydrodynamical results to compute the NT radiation. Through-
out this thesis we have used the results of finite-difference codes based
on a high-resolution shock-capturing scheme that solves the equations of
RHD in two dimensions (2D) in a conservation form (Marti et al., 1997).
An ideal gas with a constant adiabatic index of » = 4/3, between a rel-
ativistic and a non-relativistic index, was adopted for most of the cases,
and the magnetic field was assumed to be dynamically negligible.

1 These first two items are done by our collaborators.
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Figure 2.1: Sketch of two cells of the same streamline in the 2D axisymmetric
representation (left) and in the real 3D space (right). In the latter, the
azimuthal angle ; is also shown.

In each study we specify the particular characteristics of the set-up, so
we will not extend here on this issue, but in all cases we have worked
with axisymmetric 2D simulations, performed over the same computer: a
workstation with two Intel(R) Xenon(R) CPU E5-2643 (3.30 GHz, 4 cores
each, with two threads for each core) and four modules of 4096 MB of
memory (DDR3 at 1600 MHz).

The output of these simulations is a 2D grid with the hydrodynamic
information of each point, which is of little help for our purposes in its
raw form. Given that we want to follow the evolution of the NT particles,
we need to keep track of each fluid element throughout its life inside the
grid. To do so, we can identify different fluid elements the locations they
are injected in the grid, and compute their spacial trajectories, obtaining
the corresponding streamlines.

Before going into detail, there is an important note to be done. All the
thesis is developed in the cgs system of units, so unless it is explicitely
said, energies are given in ergs, masses in grams, times in seconds, and
so on. The vectors are shown in boldface and, in general, any quantity ex-
pressed in the comoving frame will have a prime, whereas the quantities
in the laboratory frame will not have it.

15
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2.1.1 Streamline computation

To compute the streamlines we need the simulation to reach a station-
ary state, that is, the time it takes for a fluid element to cross the entire
streamline has to be shorter than the scale of times of any relevant dy-
namical change. Then we can introduce a stream function, @, as

V@xe¢

Tpv = (2.1)

27y

Then the whole grid can be divided into a set of regions, V;, based on
the value of the stream function: ®;_; < ®(r,z) < D;, where 1 <i < N and
®y = 0. We have chosen this condition to impose that the cross section of
all of these regions is crossed by the same amount of matter.

In all our simulations the main relativistic outflow is represented along
the z axis, pointing upwards, so the beginning of the streamlines is at the
bottom of the grid. Given that the grid of hydrodynamic results is 2D, but
represents a 3D space, each region forms a 2D layer with axial symmetry
in the 3D space, and the cross sections of the regions V; correspond to a
sequence of annular surfaces: r;_; <r <r; (see, in blue, in Fig. 2.1).

If the thickness of these regions is small enough they can be consid-
ered homogeneous in the directions perpendicular to the fluid motion,
and we can select a streamline that shares characteristics with any other
within the same region. Later we divide the streamline into segments by
an equidistant time step At:

Ts,j = Ts,j-1 + Vr,j—lAtz
Zs,j = zs,j—l + Vz,j—lAtl (2.2)

where At is the size of the smallest cell divided by the highest speed in
the simulation. After each time step, a new position is reached, and we
have to apply bilinear interpolation (Press et al., 1992) to get the physical
values of interest v,, v,, density p, and pressure P. The initial point for the
streamline in the region V; is selected as 1y = (r;_; +1;)/2 and z5 ¢ = 0.
This division of the streamlines leads to the splitting of the regions V; into
annular cells. Given that the whole fluid has been divided in a number of
streamlines, we can easily pass the information of the entire grid to our
radiative code.
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The cross sections transversal to the flow velocity of the cells, S, can be
computed assuming conservation of the energy crossing those sections
per time unit:

pol¢hovo

§=S
O pl2hy

(2.3)

where

e T =1/+/1-(vg/c)? is the Lorentz factor,

ch=1+5+ % the specific enthalpy, and
* v the modulus of the three-velocity.

The subscript 0 denotes the conditions at the bottom boundary of the
region V;, that is, in particular,

So=Tm (rlz - riz_l) . (2.4)

We finally downsample each streamline to 200 cells, to reduce the compu-
tation time in the non-thermal particle evolution without compromising
the accuracy of the final radiation results.

2.1.2  Magnetic field

The simulations we have performed do not include the dynamical effect
of magnetic fields (i. e., we have not computed magneto-hydrodynamics).
Taking them into account requires simulations far more complex, and
more time-expensive, and in general the magnetic fields present in the
systems of study are weak enough to be safely considered not to be dy-
namically relevant to first order.

Throughout this thesis we have imposed a value for the magnetic field
in the fluid frame (FF) at the beginning of the streamlines equal to a frac-
tion xp of the Poynting flux:

B2
20 _ h )
in XBpPohcv. (2.5

Then, assuming an ideal plasma, we have applied the Alfvén’s theorem
(or frozen in theorem, Alfvén, 1942) which states that in an ideal plasma
the conductivity is infinite and therefore the electric field vanishes in the
FF. This implies that the magnetic field lines are frozen into the plasma
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and have to move along with it, and also that the magnetic field value in
the FF B’ would evolve along the fluid lines proportional to the section of
the streamlines. From Eq. (2.5), we can write, then:

Y vaTO
B’ = B4 /—povr . (2.6)

We note that x cannot be too large (formally xp <« 1) because otherwise
this would collide with the assumption of a dynamically negligible mag-
netic field made when using a purely RHD code.

2.2 NON-THERMAL PARTICLE INJECTION

With the data from the hydrodynamic simulations we are ready to com-
pute the injection, cooling and radiation of the NT population. The stream-
lines are divided in 200 cells considered homogeneous, characterised by
their position and velocity vector information, pressure (P), density (p),
section (S), magnetic field (B’), and the flow velocity divergence (V(I'v)) to
compute adiabatic losses (Sec. 2.3.1). A parameter accounting for wind/wind
or wind/jet mixing is also computed, given that in our simulations there
is always material of two different origins (e.g. AGN jet + stellar wind).
This tracer goes from 0 (100% relativistic outflow) to 1 (100% stellar
wind).

Before computing the NT particle evolution, we have to prepare the
hydrodynamic data, following some instructions:

1. Read the hydrodynamic data from the streamlines.

2. Read the simulation parameters: the intensity of the magnetic field
X, the angle between the line of sight and the z axis in the labora-
tory frame ¢, the position, temperature T, and luminosity L, of the
source of target thermal photons (typically, a star), and the acceler-
ation efficiency (7N, see Sec. 2.2).

3. Cut the line if the mixing tracer is higher than 0.5 to avoid strong
numerical mixing, which affects the radiation results.

4. Identify the sites of acceleration (we call it injection of NT parti-
cles in the code) and determine the energetics (luminosity) of the

injected population (Li’nj).
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Here we do not choose any specific acceleration mechanism; we just as-
sume that acceleartion takes place in the shocks and we assign a certain
efficiency #yt to the process. To track the position of the shocks, we as-
sume that they take place at the cells where there is an increment in the
internal energy and a decrement in the fluid velocity.

The rate of energy injection in the form of NT particles in the FF Li’nj isa
fraction 7 < 1 of the generated internal energy per second in the cell U’,
that is, the time derivative of the 00-component of the energy-momentum
tensor times the volume in the FF:?

Lt = xntU’%

2 2
vy v\ (2.7)
=XNTURLY X (5+th+0+02 (1 + C_z) - S I?h_p_c? (1 + c_Z)) ,

wherev, ,_and I ,_are the velocities and Lorentz factors in the cell right
(+) and left () boundaries, respectively. This energy rate Li’nj gives us the
energetics of the injected particles. Now we have to assign them a spectral
distribution. This is assumed to follow a power-law of index -2, typical

for shock acceleration, with two cutoffs at low and high energies:

_E,l 5 _E/
Q'(E') < E'™ [exp( C’,OW)] exp[,—). (2.8)
E Ec,high
The steep low-energy cutoff is fixed arbitrarily at E; =1 MeV to avoid

numerical artefacts, given that it has a moderate impact on the high-
energy emission we are interested in. The highe-energy cutoff is more
delicate, since it is dependent on the rate at which particles gain energy
and determines the highest energy spectrum.

The cutoff is fixed at the energy at which the acceleration timescale
is equal to the shortest cooling (diffusion) timescale. For the accelera-
tion times, given that acceleration in relativistic shocks is not well under-
stood yet, we adopt a phenomenological prescription. Therefore, we take
t).. = nE’/qB’c with 1 = 27t(c/v)?, which tends to ~ 10 when v — c. This
expression is correct for acceleration in strong non-relativistic shocks (e. g.
Drury, 1983). The shortest cooling or escape timescales are given by the
synchrotron timescale, dominant at high energies, #;,,,, =1/ asB”’E’ (as =
1.6 x 1073, cgs units3), and the Bohm diffusion timescale, téliff = R/?/2D’,

Reminder: the quantities with prime are expressed in the fluid (comoving) frame.
Here we have averaged over the particle momentum-magnetic field pinch angle (see

Sect. 2.3.1).
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Figure 2.2: Example of SED of the NT particle population injected. The normal-
isation is fixed to 1 here, in the code is given by L;,j, computed as in

Eq. 2.7.

with R} being the typical size of the emitter, and Dgopy, = cE’/3gB’ being
the Bohm diffusion coefficient. The high-energy cutoff can be obtained by
combining the different mentioned timescales:

, . [ 94 5.6x107'1°B'R]
E¢ pignh = min

\/ﬂ) NG . (2.9)

Once we have the spectral distribution of the injected particles we can
normalise it taking into account the energy rate in the fluid frame Lyr:

JE’Q’(E’)dE’ = Lip. (2.10)

2.3 PARTICLE EVOLUTION ALONG THE STREAMLINES

The number of different timescales that play a role in the whole physical
problem is large. However, there is a hierarchy between them that has
to be respected to ensure the validity of our calculations. Any dynami-
cally relevant time in the system has to be much larger than the time step
of the hydrodynamic simulation, in order not to lose important details.
Also, the typical hydrodynamical evolution timescale, set by the slowest
flow (i. e.the stellar wind) has to be longer than the total amount of time
it takes to the NT population to reach the steady state, ¢ty (set by the rel-
ativistic outflow). And finally the time steps in the particle spacial evolu-
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tion code At; have to be shorter than the cell-crossing time of the particles.
Taking this into account, the advection time steps of this code are chosen
to be 1/4 of the shortest cell crossing time:

1 .
tt = ZAti = szm[Axkﬂ-/vk’i] , (2.11)

where the subindex i relates to the time step at time t; in the laboratory
frame (LF), k to the cell, and Ax; ; being the cell length.

The computation of the evolution is done in the (relativistic) fluid frame,
so in fact the advection time steps in the code are At; = At;/T. This com-
putation is done in three stages:

1. The first step is to inject the particles according to the Q’(E’) distri-
bution computed before. After a time step At; the SED in the cell is:

/) / 1 E;ff * /) *
N{(E',t) = = dE*Q’(E"), (2.12)
El Je/
where E_ < E] high is the energy that particles had before advancing
the FF time a At’, and is given implicitly by

E/ "

e E

At = J ff ii : (2.13)
o [E7(EY)]

Eq. 2.12 is the solution of the equation adapted from Ginzburg and
Syrovatskii, 1964 to compute the evolution of particles in an homo-
geneous region,

on'(E',AY) | I(E'(E)n(E),A))
ot JE’

=Q'(E'), (2.14)

where E’ is the particle energy-loss rate including all the relevant
losses in the FF.

2. Secondly, even if no particles are accelerated in a cell, there may
be particles that had come at a previous time from the previous
cell following an energy distribution N’(E 4, t;_1). These particles
evolve as

E’(Elq tio1)

N, (E',t;) = N'(Ejgp ti1) E'(EL) ; (2.15)

/

although under steady cooling conditions, E'(E g, t;_1) = E"(E, t;).
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3. After particles are evolved in energy, flow advection has to be taken
into account to include the contribution from the previous cell, and
to eliminate the particles that flow to the next one. In the cell k the
advection effect is

ey , , Atvk—l(ti) ey Atvk(ti)
N:(E’,t;) =N E t)|—————=|-N,(E, t;))|———=1, (2.16
s(E511) k1 Z)( Axi_1 () (B 4) Axp(t;) (2.16)
where
N (E’,t;) = N{(E",t;) + N2 (E', 1;), (2.17)

and (Atvi(t;)/Ax(t;)) is the fraction of particles of a given cell k
leaving that cell.

Now we will make a detailed description of the different cooling mech-
anisms that we take into account. Given that the code has been used for
non-thermal electrons but not protons, we list the most relevant channels
for leptons in the cases studied in this thesis.

2.3.1  Non-thermal and adiabatic losses

Given that the computation of the losses and the NT radiation is done in
the comoving FF, every quantity (energy, angle, volume, etc.) expressed
in the formulas is referred to the FF, so to be consistent with the rest of the
text they should have a prime. However, in some parts we have dropped
the primes for the sake of clarity, stating clearly with a note in the margin
when this happens (Fluid frame/Lab. frame).

1c LosseEs  For the IC losses one has to use approximations that are valid
both in the Thompson and the Klein-Nishina (KN) regimes. The most
complete study on this issue was done by Khangulyan et al., 2014b and
we use a prescription based on their expression for the energy losses of
an electron of energy E and in a Planckian photon field of temperature T

2r§mSC4KT2
7h3
with tg = 2E(1 — cos0), 0 being the scattering angle in the FF and x =

(R, /2R)? the factor of dilution of the stellar photons (R is the distance to
the star).

EIC = X Fani(to), (2.18)

 Caniutlog (1 +2.16u/cyp;)
N 14 copit/0.822 '

FL (u)

ani

(2.19)
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For a value c,,; = 6.13 the accuracy of this approximation is of about 1%

SYNCHROTRON LOssEs Following the description in the textbook Pad-
manabhan, 2001, the energy loss-rate of a charged particle with energy E
inside a magnetic field is given by:

Esync = %(O-TC(E/me)zﬁz) x Ug, (2.20)

where Uz = B?/87 is the magnetic energy density, § = /1 - (E/m,)2,
and o = 87/3(e?/m,)? is the electron Thompson cross-section.

Other losses, like bremsstrahlung, are of much less importance in the
systems studied here, and have therefore not been taken into account.
They were implemented in the code, but we noticed that they were irrele-
vant and ignored them to save computational time.

ADIABATIC LOSSES The adiabatic losses are computed using the diver-
gence of the spatial components of the flow four-velocity:

By (E) = —%V(Fv) E. (2.1)

2.4 NON-THERMAL RADIATION

The radiation produced by a black body with temperature T is described
by the Plank Law:

haw’ « 1
473¢2 " exp (hw /kgT) -1’

B(w,T) = (2.22)
where kg is the Boltzmann constant, % is the reduced Planck constant, and
hw is the energy of the resulting photon. As we stated before, this mech-
anism is not able to reach gamma-ray energies, so in our work we have
focused on NT mechanisms of radiation. Here we present the most im-
portant channels of emission for a population of leptons (electrons and
positrons) interacting with electromagnetic and external photon fields,
but a number of other mechanisms exist if the NT population is domi-
nated by hadrons (Bosch-Ramon and Khangulyan, 2009).

We note here that in all the cases of study, the non-thermal emitters
are 3D structures, whereas the hydrodynamic simulations are 2D. There-
fore, the streamlines have to be distributed in azimuthal angle around the
axis of symmetry to properly account for IC, gamma-ray absorption, and
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Doppler boosting for an observer looking from a certain direction. To do
so, an azimuthal random position has been assigned to each streamline
cell conserving the values of the r- and z-components for position and
velocity (see Fig. 2.1). This transformation, only concerned with the ob-
server direction, as long as the source of target photons is in the symme-
try axis4, it affects just the radiative part of the code; the particle energy
distribution in each cell is determined by axisymmetric processes and re-
mains unaffected.

In what follows, we designate the energy of the NT particle with E and
the energy of the gamma-ray photon with €. The thermal photons that
serve as targets in IC scattering have an energy noted by e.

2.4.1  Inverse Compton

For the computation of the IC radiation we have to take into account that,
given that the source of target photons in our works is treated as a point-
like emitter (a small star compared with the grid size), the IC scattering
operates in the anisotropic regime (see e.g. Bogovalov and Aharonian,
2000). We have therefore adopted the expression for the spectrum of the
up-scattered radiation when a mono-energetic beam of low energy pho-
tons € interacts with an electron of energy E, at a given angle O relative
to the initial photon beam (Aharonian, 2004):

<11+ z? B 2z n 222 (2.23)
2(1-2) be(l-2)  B(1-22| =7

dN(9,€) o 30'T
dedQ)  16meyE?

where bg = 2(1-cos0)eyE, z= €/E, and o7 is the Thomson cross section.
Knowing the spectrum we can convolute it with the number density of
electrons N (E), assumed isotropic, and target photons Ny(eq) as follows:

max dN 9
eL, —47tcej dE—[ deg dedge)N(E)No(eO). (2.24)

One has to compute the density of target photons and the scattering
angle in the FF. Here we present our approach to take this into account.

We consider a 2D hydrodynamic flow and a coordinate system with the
z-axis being the symmetry axis. The source of target photons is located at

This is not the case in the system studied in Chap. 5, there we make a small adaptation
of the code.
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v = (X4, V%, 2¢) and the observer is in the rz-plane, that is, the plane in
which the simulation takes place, and the line of sight is parallel to

Nops = (sing,0,cos ). (2.25)

A fluid element located at r = (rcos,rsiny,z) (with r, i and z being
cylindrical coordinates) moves with four-velocity

u=(T,u,costp,u,sin,u,) =T(1,v,/ccos,v,/csin,v,/c) (2.26)
along the direction represented by

(u, cos W,D;Zur su;v,b, ) . (2.27)
V ur + uZ

Here, > = 1 + u? + u? is the fluid element Lorenz factor. Particles in the
flow are illuminated by photons with velocity directed along

n, =

o = (rcosth — x,, rsiny — vy, z— 2z, ) . (2.28)

\/(rcosz,b—x*)2 + (rsin — )2 + (2 —24)?

Doppler boosting

Not only the IC, but for other non-thermal emission calculations as well,
we have to transform the output luminosity, which is computed in the FF,
to the LF. The Doppler factor is given by the following expression:

1 1

o= = )
I'(1-pn,ng,s) TI'—u,cospsing —u,cos

(2.29)

where g = v/u? + uZ?/T. The output luminosity (both for IC and synchrotron)

is therefore corrected taking:

e=0x¢e (2.30)
and

€L =0*x €Ll (2.31)
Stellar photon field

To compute the IC losses, we need to transform the target photon field
to the FF. This transformation is determined by the Doppler factor of the
stellar photons:
1
Oy = . (2.32)
F(l - ﬁnunph)
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Scattering angle

Another important issue in the computation of anisotropic IC radiation
in the relativistic regime is the computation of the scattering angle in the
FF. To derive ngbsnl’)h, let k = (k,kngp) be the momentum of a photon
propagating towards the observer, and w = (w, wn,y,) the momentum of
a photon emitted by the star towards the fluid element. Since the scalar
products (ku) and (wu) are Lorentz invariant and the four-velocity of the
fluid element in the FF is u” = (1,0), we obtain that

@' = w(T = \uf + uin,np) = wd, !, (2.33)
K =k(T —Ju? 4+ uln,ngs) = koL, (2.34)

Since (kw) is an invariant,

and

kow(1 —nobsnph) =k w'(1 —ngbsn;h) , (2.35)

and consequently,

ngbsn;h =1- (1 _nobsnph)(S O . (2.36)

2.4.2 Synchrotron

To compute the synchrotron radiation we follow the steps described in
the third chapter of Pacholczyk, 1970, where both the photon energies
and the particle energies are given in units of m,c?. For a given photon
energy €, the emission coefficient j(¢€) is given by:

Emax
j(e) =C3Bsin9f N(E)F(x)dE. (2.37)

E min

In this equation, c; = V3e3/4mmc? and O is the angle between the mag-
netic field B and the direction towards the observer. We consider the mag-
netic field inside the cell to be isotropized for simplicity, and we make the
following approximation: B — Bv2/3. Also, we know that the motion of
the particles inside the cell is also isotropic in the FF, so we do not have
to consider every direction, and the integral over the solid angle reduces
to a pre-factor 4m before the integral.
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With regards to the function F(x), firstly we define x as:

BE?
x =€/€,, where €, = a o (2.38)

where €, is the critical energy of the process, c; = 3e/4nm2c>, and h is
the Planck constant.

The function F(x) is defined through an integral of the Ks5,3(z) Bessel
function, but we take an approximation from Aharonian, 2004 valid in
the interval 0.1 <x < 10:

F(x) = J- Ks;3(z)dz ~1.85x!/3¢™. (2.39)
X

Finally, the expression of €L, for the synchrotron emission can be writ-
ten as:

el — 263 'hB v2/3 J-OON(E)F(x) dE. (2.40)
0

As we mentioned in the case of the IC emission, this expression is valid
in the comoving FF and we have to transform the output to the LF, multi-
plying e = 6-¢’ and €L, = 6*- €Ll

2.4.3 Absorption of gamma rays through pair creation

The photons coming from the source would have sometimes to go through
an external, low energy photon field, e. g. from a companion/nearby star.
Given the high energy of the radiation, some photon-photon collisions
can produce electron-positron pairs. This process would absorb part of
the emission, reducing the luminosity at certain energies. For the process
y+ v — e + et the total cross section (Gould and Schréder, 1967) is:

1+ Be
1_ﬁe

where ry = e2/m,c? is the classical electron radius and f, is the electron
(and positron) velocity in the centre-of-mass frame in c units. If we con-
sider a high-energy photon (€) and a low energy one (€() colliding with
an angle 6, we can use the invariance of the total 4-momentum of the
particles to get an expression for f:

Pe=V1-1/s, (2.42)

~2B.(2-82) | (2.41)

TC
Opair = Erg(l _/53) (3—ﬁ§)ll’1
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with
€ - 60
2m2ct

s= (1 -cos9). (2.43)
So the threshold for pair production to occur is (in the most extreme case:
a head-on collision) € - ¢y = m2c*, which is equivalent to impose s > 1.

Now we just have to compute the optical depth 7 associated with this
process and correct the luminosity by eL, = €L, o x e”*. The computation
of T has been done as follows:

Xmax €0,max
T = J de degng(eg)P(€,€0,0), (2.44)
€0,min

where here P is the probability of interaction, given by P(e,€9,0) = 0pair(1-
cos0).



Part I1

EXTRAGALACTIC SOURCES

This part of the thesis is the result of the work published in
the article Coupling hydrodynamics and radiation calculations
for star-jet interactions in active galactic nuclei, V. M. de la Cita
etal. A&A 591, A15 (2016)






STAR-JET INTERACTIONS IN AGN

3.1 INTRODUCTION

The winds and atmospheres of stars have been studied as an important
factor in the propagation, stability, matter content, and potential disrup-
tion of the jets of AGN (e.g. Komissarov, 1994; Bowman et al., 1996; Hub-
bard and Blackman, 2006; Bosch-Ramon et al., 2012a; Perucho et al., 2014).
Furthermore, the interaction of jets with stellar atmospheres or winds
have also been suggested to be responsible of the radiation of NT emis-
sion, in both blazar and non-blazar AGN, and in the form of both tran-
sient and persistent radiation (e.g. Bednarek and Protheroe, 1997; Barkov
et al., 2010, 2012b,a; Khangulyan et al., 2013; Bosch-Ramon et al., 2012a;
Araudo et al., 2013; Bosch-Ramon, 2015; Bednarek and Banasinski, 2015).
Indeed, there might already be direct observational evidence of such an
interaction (e.g. Hardcastle et al., 2003; Muller et al., 2014), and some
authors have pointed out that high-energy phenomena observed in some
AGN might be interpreted in the context of jet-star interactions (e.g. Barkov
et al., 2010, 2012b,a; Khangulyan et al., 2013). The actual extent of the
dynamical and radiative impact of these interactions is however still un-
known.
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In the jet-star interaction scenario, stars are expected to cross AGN jets
at different distances from the jet base, producing shocks that can transfer
kinetic energy to non-thermal particles. In the case of highly magnetized
jets, these would present different mechanisms to transfer jet energy, now
in the magnetic field instead of being in kinetic form, to non-thermal
particles (see, e.g. Bosch-Ramon, 2012, and references therein). Electric
fields produced by jet-stretched magnetic field lines around an obstacle
could also accelerate particles (e.g. Jones et al., 1996).

In the inner-most jet regions, stars are expected to move fast and the jet
is narrower, which means that only a few stars can interact with the jet at
a time. Here the emission might be released during relatively short events
that are triggered by high-inertia targets, such as the external weakly
bound layers of evolved giants (e.g. Barkov et al., 2010), or stars with
very high mass-loss (e.g. Araudo et al., 2013). Persistent emission might
also take place far from the jet base, as the jet propagates through the
inner-most kpc regions of the galaxy, and even farther out (Araudo et
al., 2013; Bednarek and Banasinski, 2015). In all these situations, several
ingredients are required to accurately estimate the interaction duration,
rate, effect on the jet properties, and related radiation: a proper charac-
terization of the stellar populations and their spatial distribution, both
galaxy-type dependent, and a detailed description of the physics of the
jet-star interaction and the associated non-thermal processes. An approx-
imate study by Bosch-Ramon, 2015 combining both hydrodynamics and
radiation estimates was carried out, the result of which was that the emis-
sion from individual jet-star interactions may be significantly higher than
previously thought.

A proper understanding of the AGN jet radiation and its underlying
physics needs an accurate characterization of the emission produced in
stars interacting with AGN jets. To proceed in this direction, we make use
of the tools developed throughout the thesis and described in Chap. 2.
We combine RHD simulations and radiation calculations, assuming no
dynamical feedback from non-thermal processes (a rather good assump-
tion in the cases studied in this chapter), to characterize the emission pro-
duced in the shocked jet region that forms when the jet flow is stopped by
a stellar wind. First we simulate the interaction of a stellar wind and a rel-
ativistic jet until the steady-state is reached. Then, the obtained hydrody-
namical information is used to characterize the injection of non-thermal
particles, their propagation, and emission. As matter and radiation den-
sities are generally low unless interactions occur close to the jet base (see
Barkov et al., 2012b; Khangulyan et al., 2013), hadronic processes are
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not expected to be relevant. Thus, the emitting particles are assumed to
be leptons here, which might be electrons for a proton-dominated jet, or
electrons and positrons (e*) for a e*-dominated jet. We consider a situa-
tion in which a star of relatively high mass-loss and luminosity, such as
a red giant or a moderately early star, interacts with a jet of intermediate
power. The results can be scaled, which allows deriving broader conclu-
sions. As in the rest of this thesis, primed quantities are in the FF.

3.2 HYDRODYNAMICS
3.2.1 Simulated cases

The hydrodynamic simulations performed for this work were done by
our collaborators as described in 2.1, here we present the specific details
to give context to our NT calculations.

We assumed a collisionless adiabatic and relativistic ideal gas with a
dynamically negligible magnetic field. For simplicity, the gas has one par-
ticle species with a constant relativistic adiabatic index y of 4/3 for both
the jet and the stellar wind material. The physical size of the domain is
r€[0,1,] with [, = 2x 10!> cm, and z € [0,1,] with [, = 1.5 x 10!> cm. The
total number of cells is 400 and 300 in the radial and axial directions,
respectively. This resolution was chosen to have enough numerical dissi-
pation to avoid a growth of instabilities that is fast enough to prevent the
formation of a quasi-steady state (see Sect. 3.2.2). All these parameters
are summarized in Table 3.1.

The star was located at (rg,z9) = (0,0.3 x 10'°) cm, and its spherical
wind was injected through a region with radius 7, = 7x10'3 cm (14 cells),
small enough not to be affected by the shock terminating this wind. The
jet was injected at the bottom boundary of the grid. The jet streamlines
were approximated as parallel instead of radially extending from the jet
origin because the scales of the simulation were much smaller than the
height of the jet at which the interaction takes place. The upper and right
boundaries of the grid were set to outflow, while the left boundary was
set to reflection.

The physical parameters of the jet, which is in an inflow condition at the
bottom of the computational grid, are the total jet power within the grid,
Lo~ 4x10% ergs™! (~ 10* ergs! for a 1 pcjet radius), the Lorentz factor
Io = 1/+/1=(vg/c)? = 10, with vy = v, = 0.995 ¢ and v, = 0, and the
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Parameter Jet-stellar wind simulation

4 4/3
L, 2x 101 cm
1, 1.5x 10" cm
n, 400
1, 300

Table 3.1: Simulation parameters. Adiabatic index y, physical r-grid size I,, phys-
ical z-grid size I,, number of cells in the r-axis n,, and number of cells
in the z-axis n,.

specific internal energy ey = 9 x 10'8 erg ¢~!. The jet power is computed
as

Lo = 117 Topo (holo 1) vo, (3.1)
where pg = 1.24 x 10727 g cm™3 is the jet density, py = (7 —1) poeg its
pressure, and hg =1 + ‘;—g + % its specific enthalpy.

The stellar wind is a spherical inflow condition imposed at 7 x 10'3 cm
from the star centre. The wind physical parameters at injection are the
mass-loss rate M = 1077 Mg, yr~!, the radial velocity vg,, = 2x 108 cm s71,
and the specific internal energy ey, = 9x 1013 erg g~!. The derived stellar
wind density at injection is pgy =~ 5.2x 1072 g cm™3. The stellar wind was
taken to be homogeneous, meaning that it is not clumpy, and since it is su-
personic, its density profile from the injection radius up to its termination
is oc 1/R?, with R being the distance to the star centre. The wind proper-
ties correspond to those of a high-mass star with a modest mass-loss rate.
The thrust of this wind, Mvg, ~ 1.3 x 10> g cm s~2, would correspond
to that of a red giant, although if a red giant wind had been simulated,
the velocity would have been an order of magnitude lower (with M scal-
ing accordingly), making the simulation much longer. However, since the
relation between the jet momentum flux and the wind thrust determines
to first order the shape of the interaction region, a lighter wind of equal
thrust can be used to reduce the computational costs.

The star was assumed to be at rest. This is a reasonable assumption as
long as the stellar velocity is much lower than vg,,. Otherwise, the jet-wind
interaction geometry will strongly depart from axisymmetry, making the
results obtained here less realistic. The Keplerian velocity for a 108 Mg
central black hole at a distance of 10 pcis vg * 2x 107 cm s7!, a 10% of
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Parameter Jet Stellar wind
0 1.24x107% gecm™3 5.12x1072' gcm™3
€ 9x 1018 erg g1 9x 1013 erg g1
v 0.995 ¢ 2000 km s7!

Table 3.2: Jet and stellar wind physical parameters. Density p, specific internal
energy €, and velocity v at z =1 x 10'® cm for the jet (boundary condi-
tion), at a distance r;, <7 x 1013 cm with respect to the star centre at
(9,29) = (0,0.3x101%) cm (boundary condition).

the adopted v, -value. We considered this vg-value low enough at this
stage, but a caveat must be made: for a more realistic red giant wind, vk
would become of the order of v, and the star motion would then have
to be taken into account. This requires 3D simulations, however, which
are much more computationally expensive than the axisymmetric simu-
lations carried out here, which are meant as a first step in coupling radi-
ation and hydrodynamics studying jet-star interactions. Finally we note
that in general the jet-crossing time will be much longer than the simu-
lated times (given in Sect. 3.2.2).

The grid was initially filled with the jet properties except within the
stellar wind injection region, which was filled with the stellar wind prop-
erties. The jet and stellar wind physical parameters are summarized in
Table 3.2.

The jet momentum flux (thermal plus kinetic pressure) at the bottom
of the computational grid is

Fo = polyviho + po. (3.2)
and the stellar wind momentum flux at a distance R is

Mvyg,
Fow = SS + Psw (3-3)
SW

where S, = 41R?, and pg,y = (P — 1) pswEsw is the pressure of the stellar
wind. Equations (3.2) and (3.3) allow us to set the point where the jet and
the stellar wind momentum fluxes are equal, at Rep = 0.1 x10!> cm from
the star centre, locating the contact discontinuity (CD) on the simulation
axis. This corresponds to a position zcp = zy — Rcp = 0.2 x 10'> cm with
respect to the bottom of the grid (z = 0).
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3.2.2  Results

3.2.2.1 Steady-state

Figure 3.1 shows the density map and the trajectories of the computed
streamlines for the jet-stellar wind simulation when a (quasi-) steady-
state is reached at t = 3.3x 107 s. The dynamical timescale of the problem
is determined by the stellar wind, which is ~ I,/vg, = 7.5 x 10° s, as it
carries more mass and v, < vg. Thus, the t-value reached seems appro-
priate. The two shocks formed are bow-shaped towards the star, which
has a much lower thrust than the jet within the grid. The CD in the sim-
ulation is at z23" ~ 0.2 x 10'° cm, as obtained analytically in Sect. 3.2.1.
Figure 3.2 illustrates the re-acceleration of the shocked jet material as it
is advected upwards. This feature has a strong effect on the radiation be-
cause Doppler-boosting effects cannot be neglected. This is also shown in
Fig. 3.3, where the Doppler-boosting enhancement of the emission in the
jet direction is presented.

3.2.2.2 Instability growth

The simulation reaches a quasi-stationary numerical solution, with the
shocked flow structure in a metastable state. There are recurrent per-
turbations coming from the numerical, spatial, and temporal discretiza-
tion that grow as a result of the developing instabilities. Although the
perturbations are of numerical origin, they can be considered to mimic
the irregularities expected in real flows because they are hardly com-
pletely smooth or laminar. The double-shock structure presents varia-
tions in time caused by irregularities originated in the CD that grow
as they are advected with the flow. The growth of these irregularities
is mostly linked to the Kelvin-Helmholtz instability (KHI) because the
velocity of the shocked jet flow along the CD grows very quickly from
the simulation axis, which leads to a strong velocity difference with re-
spect to the shocked wind; if the velocity of the CD perpendicular to it-
self were not zero, the Rayleigh-Taylor instability (RTI) would develop as
well (Chandrasekhar, 1961). In our case, the average velocity of the CD
was zero (although there are small fluctuations in its position). The KHI
is thus the dominant source of perturbation growth in the CD close and
far from the axis.

The development of instabilities has imposed a limitation on the sim-
ulation parameters. At the onset of the simulation, instabilities develop
in the interacting flows, with the related growing irregularities being ad-
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vected out of the grid and leaving the quasi-steady interaction structure
described above. For lighter jets, heavier winds, or a higher resolution, the
development and growth of the perturbations are enhanced and produce
smaller and denser fragments of stellar wind able to penetrate deeper
into the jet flow and generate shocks in the entire computational domain.
This is caused by instability growth, which causes small wind structures
to quickly develop and propagate within the grid, triggering shocks in the
jet flow. This can lead to a grid that is partially occupied by hot material
that reaches the grid boundaries with subsonic velocities. This renders the
simulation results unrealistic because waves develop in the grid bound-
aries and bounce back, which affects the flow dynamics inside the grid. In
addition, since the flow is subsonic at the grid boundaries, the subsonic
flow is evacuated too slowly and accumulates and can potentially end up
filling the whole grid. This could be avoided by a larger grid, although if a
higher resolution were used, the disruptive effect of instabilities (see e.g.
Perucho et al., 2004) would be enhanced, pushing the grid size require-
ments even further.

Strong sensitivity to resolution and flow density contrast was already
faced in previous similar axisymmetric simulations. The fast growth of
perturbations close to the axis was seen for instance in Paredes-Fortuny
et al., 2015 in the context of a relativistic pulsar wind interacting with
a non-relativistic stellar wind. It was noted that this effect might have a
partially numerical origin in the coordinate singularity plus a reflective
boundary at r = 0. However, a similarly fast perturbation growth also
appeared in relativistic 2D simulations for that scenario (Bosch-Ramon
et al., 2012b; Lamberts et al., 2013) in planar geometry, which shows that
the perturbations were not only due to an artefact of the conditions at
r = 0. For the jet-stellar wind scenario, we ran low-resolution 3D simu-
lations (not presented here) focusing on the region close to the star. We
found that the shocked structure was also prone to develop instabilities,
although the small grid size prevented a deeper analysis.

3.2.2.3 Perturbed state

Although the fast growth of the instabilities may be partially linked to
the axisymmetry of the simulations, judging from the discussion above,
this growth seems to be a physical effect to a large extent. It is thus worth
considering some instance of the interaction region when it is affected by
a strong perturbation before reaching the steady-state. Such an instance is
shown in the lower pannel in Fig. 3.1, which presents the density map and
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trajectories of the computed streamlines at t = 3.7 x 10° s. As seen in the
figure, the perturbations deeply penetrate the jet, increasing the size of
the interaction region and strongly modifying the streamline trajectories.
This is an example of how important physical instability growth might be
for the effective size of the stellar target the jet meets.

In the corner of the map in lower pannel of Fig. 3.1 where the top
and right boundaries join, a reflection shock is visible in a small region.
This reflection shock is an example of the presence of subsonic flow at
the boundaries. However, this shock only affects a minor region of the
simulation, even accounting for the cylindrical symmetry, so we have al-
lowed for the presence of this small artefact. At our level of resolution,
our simulation did reach a physically realistic steady-state (with the men-
tioned small fluctuations in the CD), although the hydrodynamical solu-
tion shown in the lower pannel of Fig. 3.1 does not correspond to steady-
state. Nevertheless, as radiation is computed from the shocked jet mate-
rial with a dynamical timescale ~ I,/c < I,/ v, we can assume that the
flow shown in Fig. 3.1, lower panel, is in a pseudo-steady state for emis-
sion computation purposes.

When characterizing the non-thermal emitters through streamlines, we
discarded the lines that presented mixing between jet and stellar wind flu-
ids that exceeded 50% in at least one cell of the streamline for the jet-star
interactions in steady-state. The surface of any discarded streamline was
added to the line immediate adjacent along the radial coordinate. This
compensates for the lack of lines close to the jet axis because the hydro-
dynamical conditions are relatively similar there. On the other hand, the
streamlines of the jet-star interaction in the perturbed state were com-
puted regardless of the level of mixing because many lines were numeri-
cally affected. For this case, we just removed the segments of the stream-
lines that were affected by a mixing level > 50%.

3.3 RADIATION

We applied the radiative code described in Chap. 2 in conjunction with
the RHD results of Sect. 3.2 to compute the radiation in the two studied
scenarios: the star-jet interaction in the steady and the perturbed states.
We let three parameters vary: the angle between the jet axis and the line
of sight, ¢; the initial ratio of Poynting-to-matter energy flux (see Eq. 2.5),
xB; and the height in the jet with respect to the jet base, where the jet-star
interaction takes place, z;,;.The values considered for these parameters
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Figure 3.1: Upper pannel: Density distribution by colour at time t = 3.3x 107 s
for the star-jet interaction in its steady configuration. Lower pannel:
Density distribution by colour at time t = 3.7 x 10° s for the star-
jet interaction in a perturbed state. In both cases the star is located at
(r0,20) = (0,3x10'%) cm and the jet is injected at z = 1x10'3 cm. The
grey lines show the computed streamline trajectories; the numbers
and the grey scale are added just for visualization.



40 STAR-JET INTERACTIONS IN AGN

x 1013

z [cm]

1.5 2.0

0.0 0.5 1.0
x1013

r [cm]

Figure 3.2: Distribution by colour of the module of the spatial component of the
four-velocity at time t = 3.3 x 107 s for the star-jet interaction in its

steady configuration.
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Figure 3.3: Distribution by colour of the Doppler-boosting enhancement of the
emission, as seen from the top, at time t = 3.3 x 107 s for the star-jet

interaction in its steady configuration.
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Figure 3.4: Distribution by colour of the module of the spatial component of the
four-velocity at time ¢t = 3.7 x 10° s for the star-jet interaction in a

perturbed state.
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Figure 3.5: Distribution by colour of the Doppler boosting enhancement of the
emission, as seen from the top, at time t = 3.7 x 10° s, for the star-jet

interaction in a perturbed state.
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Parameter Set of values

Jet observation angle ¢ 0, 45, 90, 135°
Fraction xp 10_4, 1071

Height z;, 1, 10, 100, 1000 PC

Table 3.3: Set of parameters for the two scenarios considered.

are summarized in Table 4.2. We recall that the simulations were com-
puted with a purely RHD code, meaning that the magnetic field is not dy-
namically relevant and only high enough to allow the plasma to behave
as a fluid. However, we adopted xz = 107! in some cases, which is still
small enough to avoid violating the low-B condition, to have an example
of a relatively high B-case.

3.3.1  Scalability of the results

Throughout this chapter, the jet power, Lj, opening angle (taken ~ 1/Tj,
as in Bosch-Ramon, 20135, see references therein), and wind thrust, My,
were fixed to the following reference values: ~ 1044 erg s71 0.1 rad, and
1.3 x 102> dyn, respectively. The star temperature and luminosity were
also fixed to those of a red giant. However, the obtained results for the
different values of ¢, xp, and z;,; explored can be easily generalized if [
and T, are fixed, and L, is approximated as ~ Mvg,,c (Bosch-Ramon, 2015).
An additional assumption to perform the generalization is that the radi-
ation on the particle energy distribution (e.g. through synchrotron self-
Compton) or the radiation itself (e.g. through internal pair creation) do
not significantly interact. Under these conditions, the SEDs and mapped
quantities presented below can be scaled as follows:

(i) The spectrum does not change if the escape-to-radiative timescale

ratio,
tesc/trad o \/MvswLO /Zintl

is constant, where f.,4 o R%D /Mvg, and te. o Rcp. The quantity t.q
typically depends on the particle energy, which means that the timescale
ratio has to be computed by fixing this energy to some particular value.
The quantity t.,c would correspond to the typical timescale required for
particles to escape the emitting region (see Bosch-Ramon, 2015).
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(ii) The SED normalization changes as (Bosch-Ramon, 2015)
(od (RCD/R]')ZLO (o d MUSW,

where R; is the jet radius. In the adiabatic regime of the emitter, the SED
normalization is also o teg./ trag-

(iii) Thus, in the adiabatic regime, the non-thermal luminosity, either
synchrotron or IC, can be simply scaled as

y 2
& (Mvsw)g/zL(l)/ /Zinti

which is the product of the dependences stated in (ii).

These relations are more refined versions than, but based on, those pre-
sented in Egs. (6) and (9) in Bosch-Ramon, 2015.

For the jet Lorentz factor Ij;, Bosch-Ramon, 2015 indicated that the nor-
malization of the observer luminosity should approximately scale as « F()Z.
However, this is strictly valid in the ultra-relativistic regime, and far from
the shock and/or under fast expansion of the streamlines; the scaling is
less sensitive to Iy for relatively slow expansion and in the simulated re-
gion.

3.3.2  Spectral energy distributions and radiation maps

Figures 3.6 and 3.7 show the observer synchrotron and IC SEDs for the
star-jet interaction in the steady-state, for xg = 107%and 1071, ¢ =0°-
135°, and zj,; = 10 pc. For high magnetization, synchrotron emission
strongly dominates and reaches much higher photon energies. However,
even in this case, most of the particle energy distribution is dominated
by advection escape, and therefore the synchrotron and IC SED shapes
do not depend significantly on xp. The advection escape dominance also
implies that the non-thermal particle population behaves as an adiabatic
flow and that the ratio of non-thermal-to-thermal energy will approxi-
mately keep constant along the streamlines. As seen in the figures, the
emission is significantly boosted for the jet on axis. Interestingly, for yp =
107! the synchrotron SEDs for high ¢-values present softer spectra be-
cause particles coming from the more Doppler-boosted outer lines (thus
beamed away for high ¢) have higher maximum photon energies. This ef-
fect is not as clearly seen in the IC SED because the softening of the SED
is already strong as a result of the KN effect in the cross section.

In Fig. 3.8 the observer synchrotron and the IC SED are shown for dif-
ferent values of z,, from 1 to 1000 pc, and for x5 = 1074, and ¢ =0°TIt
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Figure 3.6: Synchrotron (thin) and IC (thick line) SEDs for the jet-star interaction
in the steady-state, taking z, = 10 pc, xg = 107%, and for ¢ = 0°,
45°,90° and 135°.

is clear from the figure that the closer to the jet base, the higher the ratio
of radiative versus advection energy loss, which as mentioned is oc 1/z;;,.

Figures 3.9 and 3.10 presents the distribution of the bolometric lu-
minosity per cell in the rz-plane for both synchrotron and IC, taking
xg = 107,z = 10 pc, and ¢ = 0°. We note that because of the az-
imuthal geometry, the computational cells correspond to annular physi-
cal regions. The maps show that the synchrotron emission is more widely
distributed than IC emission. This is because the IC target photon field is
concentrated towards the star.

Finally, in Figs. 3.11 and 3.12 we show the contribution of the differ-
ent lines for zj = 10 pc, xg = 1074, and ¢ = 0°, to the observer syn-
chrotron and IC SED, and total energy distribution in the LF, respectively.
The contribution to the emission varies substantially between different
streamlines, depending on the non-thermal particle content, the role of
adiabatic cooling or heating along the lines, the flow velocity and direc-
tion, the local magnetic field, and the relative position with respect to the
source of target photons.

Figure 3.13 shows the observer synchrotron and IC SEDs for the star-jet
interaction in the perturbed state, for yz = 107 and 107!, ¢ = 0° - 135°,
and z;,; = 10 pc. Figures 3.14 and 3.15 present the distribution in the rz-
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Figure 3.7: Same as in Fig. 3.6, but for yz = 107!
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Figure 3.8: Synchrotron (thin) and IC (thick line) SEDs for the jet-star interaction
in the steady-state, taking ¢ = 0°, xp = 1074, and for Zint = 1, 10, 100
and 1000 pc.
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Figure 3.9: Map in the rz-plane of the distribution of IC, bolometric luminosity
per cell, for the jet-star interaction in the steady-state. The adopted
parameters are ¢ = 0, x3 = 10™* and z =10 pc.
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Figure 3.10: Map in the rz-plane of the distribution of synchrotron, bolometric
luminosity per cell, for the jet-star interaction in the steady-state.
The adopted parameters are ¢ =0, g =10"*and z =10 pc.
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Figure 3.11: Synchrotron and IC SEDs for the different streamlines (thin brown
lines), and the sum of all of them (thick black line, dotted for syn-
chrotron) for the jet-star interaction in the steady-state and z;,; =
10 pc, xg = 10"*and ¢ = 0°.
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Figure 3.12: Particle energy distributions for the different streamlines (thin
brown lines), and the sum of all of them (thick black line) for the
jet-star interaction in the steady-state and z;,; = 10 pc, x5 = 1074,
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Figure 3.13: Synchrotron (thin) and IC (thick line) SEDs for the jet-star interac-
tion in the perturbed state, taking zj,; = 10 pc, xz = 107* -1, and
¢ =0°—135°.

plane of the bolometric luminosity per cell for both synchrotron and IC,
taking xg = 1074, zjp; = 10 pc, and ¢ = 0°.

Figure 3.16 shows the synchrotron and IC SEDs for the two cases stud-
ied in this thesis, in the low- and high-magnetization case and for ¢ = 0°
and z;,; = 10 pc. The figure shows that the synchrotron emission is sig-
nificantly higher for the star-jet interaction in the perturbed state than in
the steady state because a larger section of the jet is affected by the stel-
lar wind, which is apparent from comparing the two pannels in Fig. 3.1
in Sect. 3.2. This implies that more jet energy is available for radiation.
On the other hand, the IC radiation levels change very little when com-
pared to the synchrotron levels because the target photon density signifi-
cantly drops with distance from the star. In the high-magnetization case,
the differences between the two studied cases are smaller than for a low
magnetization, and the synchrotron SED of the perturbed case shows a
softer spectrum at the highest energies. This is most likely related to the
high magnetic field, which through severe synchrotron cooling prevents
the most energetic electrons from reaching regions of higher Doppler-
boosting. Otherwise, the radiation of these particles would have led to
more flux at the higher synchrotron energies and thus to a harder spec-
trum.
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Figure 3.14: Map in the rz-plane of the distribution of IC, bolometric luminos-
ity per cell for the jet-star interaction in the perturbed state. The
adopted parameters are ¢ =0, g = 10~ and z = 10 pc.
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The adopted parameters are ¢ =0, yz = 10"%and z =10 pc.
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3.4 CONCLUSIONS

The results of the radiation calculations carried out using hydrodynami-
cal information are in the line of those presented in Bosch-Ramon, 2015.
In that paper, it was noted that the effective size of the obstacle is much
larger than the distance at which this and the jet flow collided —the stag-
nation radius (i). It was also pointed out that Doppler-boosting plays a
significant role (ii). All this is confirmed here:

(i) For instance, for the jet-star interaction in the steady-state with ¢ =
0°, zint = 10 pc, and xp = 1074, the total observer luminosity is ~ 3.5 x
103! and 5x 1033 erg s~! for the synchrotron and IC components, respec-
tively, whereas the synchrotron and IC luminosities from a region with
r < Rcp are ~ 2x 10%% and 8 x 103! erg s1, respectively, which is a factor
~ 100 smaller than for the whole grid.

(ii) In addition, the total synchrotron and IC luminosity in the FF are
~1.3x10%% and 2x1032 erg s7!, respectively, which is a factor ~ 30 smaller
than the observer values when Doppler-boosting is not accounted for. It
is worth noting that jets on kpc and larger scales may be less relativistic,
as considered in Bednarek and Banasiniski, 2015, but closer to the galaxy
centre, they are likely to have much higher Lorentz factors. Farther out,
jet-boundary instabilities, shear-layer development, recollimation shocks,
and mass-loss from stellar winds work together to decelerate the jets (see
e.g. Perucho, 2014, 2015).

As expected from previous work (e.g. Araudo et al., 2013; Bednarek
and Banasiniski, 2015; Bosch-Ramon, 2015), we find that advection es-
cape dominates radiation losses in the star-jet interactions studied, that
is, for moderately powerful jets and stellar winds. Radiation peaks from
X-rays to MeV energies depending on xp for synchrotron emission, and
in the 100-1000 GeV range for IC, with the cooler, either older or less
massive, stars yielding a higher IC SED peak energy (~ 1 TeV, as in the
present work). A study of collective interactions of many stars with the
jet (see Araudo et al., 2013, for massive stars) is under way to also ac-
count for other stellar populations such as evolved stars and for the in-
creased effective section of the obstacles and relativistic effects. However,
Bosch-Ramon, 2015 predicted significant collective emission, for which
they took the stellar populations of the inner regions of the radio galaxy
M 87 as a reference. These predictions receive further support here be-
cause we obtain similar IC fluxes and general behaviour for individual
interactions, although we note that a more detailed prescription of the
stars and their winds in the inner regions of AGN is required.
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Instabilities might play an important role, and the shocked flow struc-
ture might be relatively unstable. This may enhance the emission for
some individual jet-star interactions, although the collective emission would
likely be at about steady-state radiation levels. Otherwise, for interactions
taking place in the innermost jet regions and bright enough to be de-
tectable by themselves, instability growth could temporary increase the
emission levels and induce variability on scales > Rcp/vg, in addition
to other types of variability, such as that associated with jet crossing. It
is worth noting that a longitudinal magnetic field in the jet would likely

reduce the instability growth.

3.5 FINAL REMARKS

The question whether electrons or e*-pairs are indeed accelerated in the
jet shock is a key point. Bosch-Ramon, 2015 showed that for luminosities
per interaction similar to those obtained by us and under the same in-
teraction conditions, collective jet-star interactions could yield detectable
levels of emission in M 87, for instance. Therefore, our results together
with those from Bosch-Ramon, 2015 indicate that for acceleration effi-
ciencies of ynr = 0.1, collective star-jet interactions may be detectable in
AGN in gamma rays unless (i) an AGN jet is a stronger emitter through a
different mechanism, and/or (ii) the source is far and the jet seen off-axis,
and/or (iii) the jet power is low. It is worth noting that the need of a rela-
tively high xnr-value applies particularly to the low-B scenario, because
for higher magnetizations the synchrotron component could overcome
the IC in the 100 MeV region, which would weaken this requirement.

The limited size of the grid makes accounting for all the emission pro-
duced in the interaction region difficult, in particular for the synchrotron
radiation. Bosch-Ramon, 2015 noted that non-negligible kinetic to inter-
nal energy transformation takes place far from the simulation axis, al-
though with a weak r-dependence. However, Doppler-boosting effects are
expected to be strong far from the obstacle, and synchrotron emission
can come from farther regions than IC because the latter is affected by
stellar field dilution with distance from the star. Larger grid simulations
or jet-scale semi-analytic calculations are required to determine the emis-
sion contribution of these farther regions. As a reference, we point out
that for the case with ¢ = 0°, z;,; = 10 pc, and x5 = 1074, ~ 10% of the
synchrotron and 30% of the IC total luminosity come from a distance
3 X Rcp from the simulation axis. Therefore, the trend of the IC emission
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indicates convergence, but the synchrotron emission may be still far from
that. This is linked to the fact that our simulations yield very low adia-
batic cooling rates. The dominant source by far of non-thermal energy
loss is advection escape from the grid. This is consistent with the modest
density decrease with z in the shocked jet flow, as the density maps in
Sect. 3.2.2 illustrate. Our results are complementary to those in Bednarek
and Banasinski, 2015, where jet emission from particles accelerated in
jet-obstacle interactions was computed by accounting for the jet B and
photon fields that are relevant on larger spatial scales, such as the galaxy
bulge or the CMB. A larger grid would also help to study more unsta-
ble configurations, such as adopting a higher density wind-jet contrast or
increasing the resolution for a more realistic setup, although the compu-
tation time required would severely increase. Finally, 3D simulations that
account for the star motion also need to be carried out.
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PULSAR WIND INTERACTING WITH A CLUMPY
STELLAR WIND

4.1 INTRODUCTION

In binaries hosting a high-mass star and a young non-accreting pulsar,
strong interaction between the relativistic pulsar wind and the stellar
wind is expected, as it was stated in Chap. 1. In these wind collisions,
efficient particle acceleration and non-thermal emission can take place
(e.g. Maraschi and Treves, 1981; Tavani et al., 1994), which would be be-
hind the emission observed from radio to gamma rays in some of these
objects, like PSR B1259 — 63 (e.g. Aharonian et al., 2005; Chernyakova et
al., 2014). Given that this emission, or at least a significant fraction of it, is
expected to originate in the region where the winds collide, a proper char-
acterization of the stellar and the pulsar wind is needed to understand the
involved physical processes.

Density inhomogeneities, or clumps, are thought to be present in the
stellar winds of early-type stars (Lucy and Solomon, 1970). The hydro-
dynamical and radiative consequences of the presence of clumps were
studied analytically in Bosch-Ramon, 2013, and relativistic, axisymmet-
ric, RHD simulations were carried out by Paredes-Fortuny et al., 2015
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to study in more detail the impact of different types of clumps on the
two-wind interaction region. It was found that clumps can noticeably
affect the shape, size, and the stability of the interaction structure, and
the variability patterns of the radiation coming from the structure. It was
also proposed that wind inhomogeneities could be responsible of the GeV
flare in PSR B1259 — 63 (Chernyakova et al., 2014), and may also play an
important role in the X-ray activity of some binaries (see e.g. the discus-
sion in Bosch-Ramon, 2013, and references therein). However, the impact
of the presence of inhomogeneities in the stellar wind in the high-energy
emission has not been accurately studied yet.

In this chaper we compute for the first time the synchrotron and IC
emission produced by the interaction of an inhomogeneous stellar wind
and a pulsar wind based on hydrodynamic simulations, obtaining the
SEDs and maps of the emitting region. To characterize the impact of
wind inhomogeneities on the non-thermal radiation, we have used the
flow information obtained from the RHD simulations done by Paredes-
Fortuny et al., 2015. From the flow hydrodynamical quantities, we have
obtained a number of streamlines, characterizing the fluid of interest in
the form of several 1D structures from which, following the method de-
scribed in Chap. 2, we compute the synchrotron and the IC radiation.
As the stellar photon field is very dense, gamma-ray absorption due to
electron-positron pair creation has been taken into account.

A region of a size similar to the star-pulsar separation distance is con-
sidered. The reasons are threefold: (i) in this thesis, we are mostly con-
cerned with the main radiation features resulting from the interaction of
a clump with the two-wind collision structure; (ii) we are interested in the
highest energies, which are expected to be produced on the binary scales
(however, see Zabalza et al., 2013); (iii) for reasons explained in Paredes-
Fortuny et al., 2015, simulation results were limited to these scales. Since
radio emission is expected to be produced far from the binary system (e.g.
Dubus, 2006b; Bosch-Ramon, 2011), the focus here is put on X-rays and
gamma rays.

Regarding the most recent simulations of stellar and pulsar winds colli-
sions, few important differences from our thesis are to be mentioned. The
simulations in Dubus et al,, 2015 are three-dimensional (3D), whereas
here the hydrodynamical results are taken from the simulations of Paredes-
Fortuny et al., 2015, carried out with axisymmetry (2D). In addition, the
grid was significantly larger in Dubus et al., 2015 than in Paredes-Fortuny
et al., 2015. Regarding Bosch-Ramon et al., 2015, the 3D simulations in-
cluded orbital motion, which proved to be important beyond few star-
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pulsar separation distances. That said, we note that the relatively small
size of the computational grid in the present work allows orbital motion
to be neglected, although instability development may be slower in our
2D simulations (see Sect. 4.2), and 3D calculations may yield remarkable
quantitative differences in general. We note as well that the dynamical
role of the magnetic field was not included in Paredes-Fortuny et al., 2015.
So far, only Bogovalov et al., 2012 have included the magnetic field when
computing the two-wind interaction structure in the context of binary
systems, whereas several works have studied the magnetohydrodynamics
in 1D, 2D and 3D, and in some cases the radiation for isolated pulsars in-
teracting with the environment in the relativistic regime (e.g. Bucciantini
et al., 2005; Volpi et al., 2008; Olmi et al., 2014; Porth et al., 2014; Morlino
et al., 2015; Yoon and Heinz, 2016, and references therein).

4.2 HYDRODYNAMICS

Our work is based in the axisymmetric RHD simulations of the inter-
action of a relativistic pulsar wind and an inhomogeneous stellar wind
performed by Paredes-Fortuny et al., 2015. We simulated first a stellar
wind without clumps until a steady state of the two-wind interaction re-
gion was achieved. Then, a spherical inhomogeneity centred at the axis
between the two stars was introduced.

The physical size of the domain is r € [0,1,] with [, = 2.4x10'? cm, and
z € [0,1,] with I, = 4.0 x 10!? cm. The star is located outside the simu-
lated grid at (r,,z,) = (0,4.8 x 10'?) cm, and its spherical wind is injected
as a boundary condition at the top of the grid. The pulsar is placed in-
side the grid at (r,2,) = (0,4x 10'") cm, and its spherical wind is in-
jected at a radius of 2.4 x 10! cm (15 cells). The star-pulsar separation is
d = 4.4x10'? cm. The lower and right boundaries of the grid were set
to outflow, whereas the left boundary was set to reflection. The selected
physical parameters for the stellar wind at a distance r = 8 x 10'? cm
with respect to the star centre were: the mass-loss rate M = 1077 Mg yr~!,
the stellar wind radial velocity vy, = 3000 km s71 and the specific inter-
nal energy €5, = 1.8 x 101> erg g7!; the derived stellar wind density is
Psw = 2.68 x 10713 g cm™3. Similarly, the chosen physical parameters for
the pulsar wind at a distance r = 8 x 10'? cm with respect to the pulsar
centre were: the pulsar wind Lorentz factor I' = 5; the specific internal
energy €py = 9.0 x 109 erg g7!; the density Ppw = 2 X 1071 g cm™3; the
derived total pulsar wind luminosity is L, = 1037 erg s71, and the pulsar-
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to-stellar wind momentum rate ratio r = 0.2. The two wind parameters
are summarized in Table 4.1.

The simulation adopted resolution was modest, 150 and 250 cells in
the radial and the vertical directions, respectively. This resolution is high
enough to get the main dynamical features of the two-wind interaction
structure, but low enough to avoid a too disruptive instability growth, as
explained in Paredes-Fortuny et al., 2015 (see also Perucho et al., 2004).
As noted in that work, the fast instability growth in the two-wind col-
lision region is physical (see also Bosch-Ramon et al., 2012b, 2015), al-
though the presence of a singularity in the radial coordinate may intro-
duce additional numerical perturbations to the colliding structure. A much
larger grid should have allowed the growing instabilities to leave the com-
putational domain without disrupting the simulation, although some tri-
als have indicated that even under the same resolution, grids that are two
to three times larger eventually also led to simulation disruption, filling
the whole grid with shocked flow. Therefore, being the goal in Paredes-
Fortuny et al., 2015 (and here) to carry out a preliminary analysis of the
problem, the choices adopted were a modest resolution (to keep pertur-
bation growth under control) and a relatively small grid size, which both
allow the simulation to reach a quasi-steady state solution for the case of
the pulsar-star wind interaction without clumps.

Once the (quasi)-steady state was reached, an inhomogeneity was intro-
duced to the stellar wind. The inhomogeneous wind was thus character-
ized by a single clump placed at (r,z) = (0,2.6x10'?) cm parametrized by
its radius R, and its density contrast y with respect to the density value at
the location where the clump was introduced. A thorough description of
the simulations and their results is given in Paredes-Fortuny et al., 2015.
Here, two cases among those considered in that work are studied: (i) a
clump with y = 10 and R. = 8 x 10'? ¢m; and (ii) a clump with xy = 10
and R. = 4 x 10! cm.

After obtaining the hydrodynamical information, and prior to the ra-
diative calculations, the streamlines of the pulsar wind have to be com-
puted, as it was detailed in Sec. 2.1.1. We computed the streamlines start-
ing from a distance 2.4 x 10'! cm from the pulsar centre. The magnetic
field, is computed as stated in Sec. 2.1.2.

The left panel of Fig. 4.1 shows the computed streamlines superim-
posed on the density map for the simulation steady state. The centre
panel of Fig. 4.1 illustrates the re-acceleration of the shocked pulsar wind
as it is advected along the shock. The right panel of Fig. 4.1 shows the
effect of Doppler boosting quantified by a factor 6% for the viewing an-
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Parameter Stellar wind Pulsar wind
v 3x108 cms7! 2.94%x10'0 ¢cm s7!
€ 1.8x 10 erg g7 9x 101 erg g7!
0 2.68x107%gecm™> 2x107% gem™3

(e/przesp)  (0,4.8x10'%cm)  (0,4x 10 cm)

Table 4.1: Stellar and pulsar parameters. Wind velocity v, specific internal en-
ergy €, and density p at a distance r = 8 x 1019 cm with respect to the
star/pulsar centres, located at (r*/p,z*/p).

gles with respect to the pulsar-star axis ¢ = 45° and 135°'. The same is
shown for the two cases with different wind inhomogeneity: Fig. 4.2 for
the clump with x = 10 and R, = 8 x 10'? cm and Fig. 4.3 for the clump
with y =10 and R. = 4 x 10! cm.

1 An observer with ¢ = 0° would be looking along the star-pulsar axis.
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Figure 4.1: Left panel: Density distribution by colour at time t = 5.8 x 10* s in the (quasi)-steady state. The star is located
at (r,,z,) = (0,4.8 x 10'2) cm and the pulsar wind is injected at a distance of 2.4 x 10'! cm with respect to the
pulsar centre at (,2,) = (0,4x10'!) cm. The grey lines show the obtained streamlines describing the trajectories
of the pulsar wind fluid cells; the grey scale and the numbers are only for visualization purposes. Centre panel:
Distribution by colour of the module of the 4-velocity at time t = 5.8 x10* s in the (quasi)-steady state. Right panel:
Distribution by colour of the Doppler boosting enhancement (%) for the emission produced in the shocked pulsar
wind, as seen from 45° (top) and 135° (bottom) from the pulsar-star axis, at time t = 5.8x10% s in the (quasi)-steady
state.
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inhomogeneous stellar wind with y = 10 and R. = 8 x 10!° cm. The remaining plot properties are the same as
those in Fig. 4.1. Centre panel: Module of the 4-velocity. Right panel: Doppler boosting enhancement as seen from
45° (top) and 135° (bottom)
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Figure 4.3: Left panel: Density distribution by colour at time t = 1.1 x 10* s (measured from the steady case) considering an
inhomogeneous stellar wind with y = 10 and R. = 4 x 10!! cm. The remaining plot properties are the same as
those in Fig. 4.1. Centre panel: Module of the 4-velocity. Right panel: Doppler boosting enhancement as seen from
45° (top) and 135° (bottom)
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4.3 RADIATION

4.3 RADIATION
4.3.1  Non-thermal emitter

In this work, we consider that the non-thermal emitter is restricted to
the shocked pulsar wind, i.e., particles are accelerated at the pulsar wind
termination shock, although the unshocked pulsar wind may also be an
efficient gamma-ray emitter for certain values of the wind Lorentz factor
(e.g. Aharonian and Bogovalov, 2003; Khangulyan et al., 2007).

Particle acceleration in pulsar wind termination shocks is not yet well
understood. Our main aim here, however, is just to show general trends
in the radiation due to the presence of clumps. Therefore, we follow the
phenomenological approach described in 2.2. A value for the fraction
of 0.1 is taken, but all the results scale linearly; currently, this quantity
cannot be derived from first principles.

Once the injection of non-thermal particles is characterized, we com-
pute the energy evolution and spatial propagation of particles along the
streamlines until they leave the grid, which eventually leads to a steady
state. Then, the synchrotron and IC emission for each cell, for all the
streamlines, are computed in the FF, and appropriately transformed af-
terwards to the observer frame, as described already in Sec. 2.4. In the
present scenario, the gamma-ray absorption due to electron-positron pair
creation in the stellar photon field cannot be neglected and is taken into
account.

To keep the calculations manageable, emission of secondary particles
from gamma-ray absorption (i) and IC cascading (ii) has not been con-
sidered, but these processes could indeed be important in close binaries,
mainly increasing the X-ray fluxes (i; high ambient magnetic field), or
enhancing the effective transparency of the system (ii; low ambient mag-
netic field) (e.g. Sierpowska and Bednarek, 2005; Aharonian et al., 2006b;
Sierpowska-Bartosik and Torres, 2007; Bosch-Ramon et al., 2008; Cerutti
et al., 2010; Bosch-Ramon and Khangulyan, 2011).

The companion star is by far the dominant source of target IC photons.
The stellar spectrum has been assumed to be typical for an O-type star:
a black body with a temperature and luminosity of T, = 4 x 10* K and
L, = 10%% erg s71, respectively. The high stellar luminosity allows us to
neglect the radiation field produced in the emitter itself, in particular the
role of synchrotron self-Compton radiation, which is a safe assumption as
long as L, > L, /1. The magnetic field is set as specified in Eq. (2.5) using
two values for xz, 1073 and 0.1, illustrative of a low and a high magnetic
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Parameter Set of values

Observation angle ¢ 45, 90, 135°
Fraction xp 1073,0.1

Table 4.2: Set of parameters for the three scenarios considered.

field case, respectively. Typically, pulsar winds at termination are thought
to be strongly dominated by their kinetic energy (e.g. Kennel and Coro-
niti, 1984; Bogovalov et al., 2012; Aharonian et al., 2012), although some
models predict a high magnetization up to the termination shock, where
the magnetic field would efficiently dissipate (e.g. Lyubarsky and Kirk,
2001). We note that for xp = 0.1 the condition of a negligible magnetic
field becomes only marginally fulfilled.

4.3.2 Results

The non-thermal emission was computed for three different stellar wind
scenarios: the steady state of the two-wind interaction structure with no
clump, the case with a small clump (x = 10, R, = 8 x 10! c¢m), and the
case with a large clump (x = 10, R. = 4 x 10!! cm). In addition to consid-
ering two magnetic field cases (xz = 103 and 0.1), three representative
viewing angles were also considered: ¢ = 45°, 90°, and 135°. The first
angle corresponds for instance to the superior conjunction (SUPC) of the
compact object and a system inclination of 45°, the second to an interme-
diate orbital phase, and the third might represent the inferior conjunc-
tion (INFC) for the same inclination; the parameter values are listed in
Table 4.2.

The simulation times adopted for the emission calculations, of the cases
including a clump, were chosen such that the clump was at its closest
point from the pulsar; the state of the emitting flow can be considered
steady given the short time needed for the particles to leave the grid. For
each of these scenarios, we obtained the corresponding synchrotron and
IC SEDs. These SEDs are presented in Figs. 4.4—4.9, the last of which
shows the contribution from each streamline. Figure 4.10 shows the par-
ticle energy distribution in the LF for each streamline, and the summa-
tion of all of them. Maps were also computed to show how the emission
is distributed in the rz-plane in the shocked pulsar wind region. These
maps are presented in Figs. 4.11 and 4.12. Figure 4.13 illustrates the
importance of the extended nature of the emitter comparing two SEDs:
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those obtained for the computed emitter geometry, and those computed
assuming that all the emitting cells have the pulsar location (keeping,
nonetheless, the particle distributions of the extended emitter). The ex-
tended emitter on the scales studied has a minor effect on IC, but a major
one in gamma-ray absorption for the represented case with ¢ = 45°.

The impact of energy losses on the non-thermal particles can be seen by
comparing the injected non-thermal luminosities with the energy leaving
the computational domain per time unit in the LF. Particles lose 1.6 x
103 erg s~! through radiative losses, or a ~ 23% of the injected non-
thermal luminosity in the no clump case; instead, in the large clump case
1.8 x 103° erg s7! is radiated, or ~ 20%. The adiabatic losses have more
impact, around 49% of the injected non-thermal luminosity for both no
clump and large clump cases. The total injected non-thermal luminosities
would be 7.1 x 10%> and 9.1 x 10%° erg s™! for the cases without a clump
and with a large clump, respectively. Doppler boosting shows up by com-
paring the synchrotron+IC total luminosity in the observer frame for the
case without clump, ¢ = 90° and xp = 1073, of 2.75x 103° erg s with
the same quantity in the fluid frame, of 1.2 x 103> erg s™!, where there is
an increase of a factor between 2 and 3 in the emission.

For informative purposes and completeness, we provide in Table 5.1
the luminosities in the energy bands 1-10 keV, 10-100 keV, 0.1-100 MeV,
0.1 -100 GeV, and 0.1 —100 TeV for the cases without and with clump,
focusing on the low magnetic field case (xg = 107%), which can be consid-
ered the more realistic one (see Sect. 4.3.1). It is clear that in the system
considered, whose properties are representative (Dubus, 2013), the radia-
tive cooling represents ~ 1/4 of the injected non-thermal luminosity, and
for nyt = 0.1, a small percentage of L. In the large clump case, adia-
batic losses get enhanced with respect to the no-clump case because of
the shrinking of the two-wind interaction region, a tendency previously
suggested in Bosch-Ramon, 2013. This effect can be seen as a suppression
of the lower energy part (where adiabatic losses are important) of the IC
spectra in Fig. 4.7.



Scenario ¢ 1-10keV diff., % 10-100keV diff, % 0.1-100MeV diff., % 0.1-100GeV diff.,% 0.1-100TeV diff.,, %
45 1.25x1033 4.51 x 1033 6.13x 1034 1.43x103 2.06 x 1034
No-Clump 9o 1.66x1033 5.97 x 1033 6.42x 1034 1.54x 103 4.91 x 103
135 1.15x1033 3.88x 1033 1.92x103% 1.50 x 1034 1.41 x 1034
45 1.27x10% 1.6 4.60x 1033 2.0 6.92 x 10%* 12.9 2.38x 1033 66.4  3.24x10% 573
Small Clump go 1.75x103 54 6.10 x 1033 2.2 553x10%*  -13.9  1.57x10% 1.9 4.66 x 1034 -5.1
135 1.98x10% 725  6.73x10% 3.5 3.14x 103 63.5 2.86x 103 90.7 2.32x10%  64.5
45 2.05x10%  64.0 6.38x10% 415 549x10%  -10.4  1.35x10%® 720  1.52x10%  -83.5
Big Clump 9o 3.25x103% go4  1.01x10%  69.2 7.43 %1034 15.7 1.71x10% 9.1 3.80x10%*  -17.5
135 4.07x10% 2539 1.21x10% 2119  5.24x10%* 1729  6.05x10%* 3033 5.16x10%*  266.0

Table 4.3: Values of the integrated emission in different bands for the case of weak magnetization, yg = 1073, given in erg s~

and the difference imposed by clumps to the homogeneous case, given in per cent.
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4.3.3 Applications to PSR B1259 — 63

The binary pulsar system PSR B1259 — 63 consists of a 47.7 ms radio pul-
sar (Johnston et al., 1992; Kijak et al., 2011) on an eccentric orbit around
a luminous O8.5 Ve star (Negueruela et al., 2011). The pulsar orbits are
characterized by the following orbital parameters: eccentricity e = 0.87,
period Py, = 3.5 yr, and semi-major axis a, = 6.9AU (see Negueruela
et al., 2011, and references therein). The stellar companion in the sys-
tem is thought to rapidly rotate (Negueruela et al., 2011). The rotation
results in a strong surface temperature gradient (T,oe = 3.4 x 10* K and
Toq =2.75x1 0% K), and in the formation of a circumstellar disc. The plane
of the orbit and the disc plane are expected to be misaligned. Negueruela
et al. (2011) derived the orbital inclination of i, ~ 23° and suggested
that the star rotation axis is inclined with respect to the line of sight by
32° (i.e., the star is mostly seen from the pole). Accounting for the uncer-
tainty of the star orientation, the IC emission/loss process can be well ap-
proximated by a black body with temperature T, = 3x10* K (Khangulyan
et al., 2011).

The temperature and luminosity of the UV companion correspond to a
late O star, but because of the fast rotation a Be star-type disc is formed.
Thus the stellar wind in PSR B1259 — 63 should consist of two distinct
regions: a dense Keplerian disc, which is crossed by the pulsar approx-
imately —16 and +18 days to periastron passage and a fast low-density
polar wind. The mass-loss rate and density of the discs around Be stars
can vary significantly, but the density should be significantly higher than
in the polar wind, and the azimuthal velocity should be Keplerian, i.e.,
vg ~2x10%kms™! (at a distance of 10'3cm from the star). Based on the
shape of the X-ray light curve, Takata et al. (2012) predicted that the den-
sity of the disc base in PSR B1259-63 might be very high pg ~ 107" gcm =3,
but this conclusion is likely affected by large uncertainties. The polar
wind should be similar to a wind from a O-type star, vy, ~ 2x 103kms™!.
Both these winds might be inhomogeneous, but the disc clumps can be
significantly more massive, so in what follows we consider the possible
impact of a disc clump on the non-thermal emission in the system.

The system displays variable broadband non-thermal radio, X-ray, and
TeV gamma-ray emission close to periastron passage (Grove et al., 1995;
Johnston et al., 2005; Chernyakova et al., 2006; Aharonian et al., 2005,

2009; Uchiyama et al., 2009; H.E.S.S. Collaboration et al., 2013; Chernyakova

et al., 2014, 2015; Caliandro et al., 2015; Romoli et al., 2015). Although
the light curves of the non-thermal emission clearly diverge in different
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energy bands, the general tendency is similar. Approximately 30 days to
periastron passage the flux starts to increase and reaches its maximum
around 20-10 days before periastron passage (depending on the energy
band). When the pulsar approaches periastron, a decreasing tendency in
the flux level is apparent. In the post-periastron epoch the flux increases
again, and then gradually decreases. This two-hump structure is less pro-
nounced in the radio band, probably because of the long cooling time of
the radio-emitting electrons, and in TeV gamma rays, possibly because of
larger data uncertainties. The X-ray light curve displays quite stable orbit-
to-orbit behaviour with two clear maxima. The pre- and post-periastron
maxima of the X-ray light curve are characterized by similar patterns: a
sharp increase and a slower decay, with a larger maximum flux level in
the post-periastron epoch (Chernyakova et al., 2015). The X-ray peaking
fluxes are reached close to the epochs when the pulsed radio emission
disappears. The weakening of the pulsed emission is conventionally as-
sociated with the pulsar eclipse by the circumstellar disc approximately
during the epoch (-16,+418) days to periastron passage. The location of
the light curve maxima suggests that the circumstellar disc may play an
important role in the formation of the non-thermal emission. In turn, as
indicated by the change of the equivalent width of Ha (Chernyakova et
al., 2015), the pulsar also affects the disc. This complex interplay makes
modelling the emission in this system a very challenging task, thus a
consistent multi-wavelength interpretation is currently missing (however,
see Takata et al., 2012).

In addition to TeV gamma rays, bight GeV flares have been detected
from the system with Fermi in 2011 January and 2014 May (see Calian-
dro et al., 2015, and references therein). In both epochs the onset of the
flares occurred approximately one month after periastron passage. Dur-
ing the flare summit the measured GeV luminosity in 2011 was a factor
of ~ 1.5 higher than, but the flare duration was similar to, that in 2014
(see e.g. Romoli et al., 2015). The typical flare flux is ~ 10" phcm™2s71,
which means a GeV output ~ 10% of the pulsar spin-down luminosity
(Lp ~ 8 1033 erg s~!, Johnston et al. 1992) for the distance to the sys-
tem of 2.3 pc (Negueruela et al., 2011). No detectable change in the TeV
emission was observed during the onset of the GeV flare in 2011 (H.E.S.S.
Collaboration et al., 2013). Hard X-ray emission detected with during the
GeV flare suggests that the GeV emission might be generated by the same
radiation mechanism as the multi-keV X-ray emission, namely through
the synchrotron channel (Tam et al., 2015; Chernyakova et al., 2015).
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In what follows we qualitatively consider the possible contribution of
the emission generated by the interaction of stellar wind clumps with the
pulsar wind to the radiation detected from PSR B1259 — 63, for the GeV
flare, and the disc crossing in TeV.

4.3.3.1  GeV flare

As discussed in Paredes-Fortuny et al., 2015, the GeV flare detected from
PSR B1259 — 63 by Fermi could be related to the impact of a dense, large
clump of material, probably associated with the decretion disc of the Be
star (Chernyakova et al., 2014). This GeV flare seems to follow a repeti-
tive pattern (e.g. Caliandro et al., 2015; Chernyakova et al., 2015), which
in the scenario just sketched would imply that the disc is similarly af-
fected orbit to orbit, and parts of it are torn apart and directed towards
the pulsar. The ram pressure of such a piece of circumstellar disc could
have a strong impact on the two-wind interaction structure. As shown by
Paredes-Fortuny et al., 2015, just a small fraction of the disc mass in the
form of a clump of matter would be enough to strongly reduce the size of
the interaction region. As was outlined above, the flare onset occurs ap-
proximately two weeks after the reappearance of the pulsed radio signal,
and thus the pulsar has moved relatively far from the disc. We neverthe-
less assume that a dense cloud can still collide with the pulsar wind at
this epoch.

The arrival of a large, dense piece of disc could potentially enhance,
by compressing the emitting region, the energy density of the local radia-
tion field (e.g. X-rays from the collision region, Dubus and Cerutti 2013;
see also Khangulyan et al. 2012 for a related scenario based on IR tar-
get photons) to a point when synchrotron self-Compton (SSC) becomes
dominant over external IC. This process seems nevertheless unlikely in
PSR B1259 - 63. Given the pulsar spin-down and the stellar luminosities
(L, ~ 3 x10%8 erg s™! ,Negueruela et al. 2011), even optimistically assum-
ing that most of L, goes to the target photons for SSC, adopting the Thom-
son approximation for IC, and neglecting IC angular effects, to increase
the local photon energy density above the stellar level, the two-wind inter-
action region should become < 1/40 times the size typically considered.
This is ~ 10% of the pulsar-star separation distance (Dubus and Cerutti
2013 obtained a similarly small emitting region). Although a detailed ac-
count of this possibility is still not available, such a huge reduction in size
requires an increase in stellar material ram pressure by several orders of
magnitude and does not seem plausible.
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The arrival of a clump may by itself be enough to substantially en-
hance the IC emission for a combination of Doppler boosting, pulsar
wind shock obliqueness, etc. To check this possibility, we computed the
emission of the steady and the large clump cases adopting the parame-
ters of PSR B1259 — 63 at the time of the flare in GeV (not shown here).
We took the orbital phase to be around the inferior conjunction of the
compact object, an inclination of 23°, and scaled the hydrodynamic solu-
tion (Paredes-Fortuny et al., 2015) to a star-pulsar separation distance in
accordance with the source properties. This scaling yields a clump mass
~10%! g, and a clump destruction time of about a week (the actual flare
lasted for a few weeks). For instance, in the low B case, a jump in gamma-
ray luminosity by a factor of ~ 2 was obtained, not far from the difference
between the flare and the periastron Fermi luminosity in PSR B1259 - 63
(e.g. Caliandro et al., 2015). Unfortunately, the energetics in our case was
short by about two orders of magnitude, even when adopting xn7 = 1.
Therefore, the simulated scenario is, in its present form, far from being
able to explain the GeV flare in PSR B1259 - 63.

4.3.3.2 Disc crossing and TeV emission

We also studied the interaction of the pulsar wind with the Be star disc
assuming that this may be roughly approximated as the encounter be-
tween the pulsar wind and a large inhomogeneity. From a hydrodynami-
cal point of view, as shown in Okazaki et al., 2011, the disc may be of great
dynamical importance for the geometry of the pulsar wind termination
shock, and thus in the overall non-thermal emitting region (see Takata et
al., 2012, for non-relativistic calculations without particle energy losses).
The effects of the disc in the non-thermal emission in PSR B1259 — 63has
already been discussed, for instance in Khangulyan et al., 2007 (see also
Chernyakova et al. 2006).

We computed the SED for both the steady and the large clump cases
when the pulsar is supposed to cross the Be disc after periastron passage.
Assuming that the beginning of the disc crossing could be roughly mod-
elled by the encounter with a large clump, we tried to semi-quantitatively
reproduce the energetics and increase in flux above 100 GeV observed
around those orbital phases. As the results were slightly improved, and
given the inclination uncertainty, we adopted i = 30° instead of 23°. As
shown in Fig. 4.14, with minor changes in the calculation set-up and a lit-
tle parameter tuning (1t = 1; xg = 1073)2, similar flux levels and evolu-

2 Nontheless, we want to point out the high non-thermal efficiency needed.
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tion (a rise by a factor of several) are obtained, although with a somewhat
steeper spectrum than the average one given in Romoli et al., 2015.

4.4 CONCLUSIONS

The results shown in Figs. 4.4—4.10 are partially determined by several
well-known effects. First, there is a competition between synchrotron and
IC losses at particle energies high enough for radiation cooling to domi-
nate over adiabatic losses. Different magnetic-to-target radiation energy
density ratios yield different synchrotron-to-IC luminosity ratios. Domi-
nant synchrotron or IC in the Thomson regime (for IC photons <10 GeV)
lead to a spectral softening, whereas dominant IC in Klein Nishina (for
IC photons > 10 GeV) leads to a spectral hardening (e.g. Khangulyan
and Aharonian, 2005). Second, an important factor is IC scattering on
an anisotropic target photon field, which softens and boosts the gamma-
ray emission for close to head-on collisions (around SUPC), and hardens
and reduces the gamma-ray emission for small scattering angles (around
INFC) (e.g. Khangulyan et al., 2008; Dubus et al., 2008). Third, at the
highest energies there is absorption through pair creation in the anisotropic
photon field of the star. This process has its minimum threshold energy of
the absorbed gamma rays (~ m2c*/2.7kT, ~ 30 GeV), and the strongest
attenuation, for close to head-on collisions (around SUPC), whereas it
presents a high absorption threshold, and weak attenuation, for small
photon-photon interaction angles (around INFC) (e.g. Bottcher and Der-
mer, 2005; Dubus, 2006a; Khangulyan et al., 2008). For the adopted stel-

lar luminosity and orbital separation distance, gamma-ray absorption around

1 TeV is very strong for ¢ < 90°. This suggests that the bright TeV emis-
sion detected from several close binary systems, e.g. LS 5039 (Aharonian
et al., 2006a), cannot be entirely generated in the inner part of the col-
liding wind structure, and some additional production sites should be
considered (e. g. Zabalza et al., 2013).

The importance of synchrotron losses was discussed in Bosch-Ramon,
2013 in the context of a clump large enough to significantly reduce the
size of the two-wind interaction region, which is expected to enhance the
magnetic field in the shocked pulsar wind. This effect is seen in our re-
sults (see Table 5.1) when comparing the synchrotron and IC luminosi-
ties in different energy bands, and in the absence or presence of clumps.
Adiabatic losses are also increased by the reduction of the two-wind inter-
action region, as noted in Sect. 4.3.2.
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Figure 4.4: Spectral energy distribution of synchrotron and IC for the no clump
scenario, in the low (xg = 1073) and high (xg = 0.1) magnetic field
cases (top and bottom pannels, respectively). We note that the un-
absorbed (thin lines) and the absorbed (thick lines) IC emission are
distinguishable only for ¢ = 45° and 9o°.
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Figure 4.6: Same as Fig. 4.4, but for the large clump scenario (x = 10,
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Figure 4.7: Spectral energy distribution of synchrotron and IC for ¢ = 90°, in
the low (xg = 1073) and high (xp = 0.1) magnetic field cases (top
and bottom pannels, respectively).
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Figure 4.8: Spectral energy distribution of synchrotron and IC for a fixed mag-
netic field (low case, xz = 1073) and different ¢-values: 45 and 135°
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Figure 4.10: Particle energy distributions for the different streamlines (thin
lines) and the sum of all of them (thick black line) in the LF, for
the low magnetic field (xz = 107) no clump scenario.

Doppler boosting is a very important factor characterizing the observer
synchrotron and IC luminosities (by 6%), and to a lesser extent spectra
through photon energy boosting (by 9), in the scenario studied here. Doppler
boosting has been already discussed (e.g. Khangulyan et al., 2008; Dubus
et al., 2010a; Kong et al., 2012; Khangulyan et al., 2014a; del Palacio et
al., 2015; Dubus et al., 2015) in the framework of a homogeneous stel-
lar wind; in this context we obtain similar results, as Doppler boosting
induces luminosity variations of up to a factor of a few by comparing dif-
ferent viewing angles in certain bands (see Table 5.1, no clump scenario).
Radiation enhancement in the cases computed here is well illustrated by
the maps presented in the right panels of Figs. 4.1, 4.2, and 4.3. For com-
parison, the impact of clump absence/presence is also shown in the left
panel of Figs. 4.1, 4.2, and 4.3 for the general direction of the streamlines.
for the shocked pulsar wind speed distribution. The effects on radiation
are seen in the SEDs and maps shown in Figs. 4.11 and 4.12 (and again
in Table 5.1, comparing the same energy bands and ¢ values for the three
cases).

If the stellar wind is homogeneous, the two-wind interaction structure
is already prone to suffer hydrodynamical instabilities (e.g. Bosch-Ramon
et al., 2012b; Lamberts et al., 2013; Paredes-Fortuny et al., 2015; Bosch-
Ramon et al., 2015), i.e. the tinniest irregularities in the wind act as inho-
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Figure 4.11: Maps of the bolometric luminosity per cell for the no clump sce-
nario, taking a low magnetic field x3 = 1073. Top panels: Map in the
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¢ = 45°. Bottom panels: Same as the top panels, but for ¢ = 135°.
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and synchrotron radiation (right) for ¢ = 45°. Bottom panels: Same
as the top panels, but for ¢ = 135°.
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Figure 4.14: Comparison of the spectral energy distribution for the steady and
the large clump case adapting the hydrodynamical results to the
case of PSR B1259 — 63around 20 days after periastron, roughly at
the second disc passage.

mogeneity seeds. The corresponding dispersion in the velocity field cou-
pled with Doppler boosting can thus introduce a chaotic variability com-
ponent to the emission even in the absence of clumps. Therefore, even
rather small clumps enhance instability formation and growth, making
the emission variability more complex.

It is interesting to compare the cases without and with a small clump
in Table 5.1 for the same viewing angle. In these two cases, the overall
two-wind interaction structure does not change significantly, and the flux
difference is determined by the perturbations in the flow velocity. This
already leads to luminosity variations of almost a factor of ~ 2 in certain
bands. Large clumps add perturbations to the shocked flow structure, and
also change the overall distribution of the streamline directions as the
shock approaches the pulsar significantly. This induces a characteristic
pattern, with its evolution determined by the shocked clump dynamics.
We note that in the more realistic case of using a 3D simulation to com-
pute the emission, the lack of symmetry in the azimuthal direction with
respect to the pulsar-star axis would likely lead to an even more chaotic
velocity field, and thus to stronger differences between clump scenarios.
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It is worth noting that the shock becomes more perpendicular when
approaching the pulsar in the large clump case. Therefore, the transfer
of energy to non-thermal particles is increased, and thus the clump pres-
ence enhances particle acceleration at the pulsar wind shock, as shown
by the injected luminosity into non-thermal particles, which in the large
clump case is ~ 50% larger than without a clump (see Sect. 4.3.2). How-
ever, this effect may be difficult to disentangle from Doppler boosting in
the radiation results. Also, if magnetic field reconnection plays a sensible
role in particle acceleration, chaotic perturbations of the magnetic field
structure induced by clumps may have a strong impact on the particle
acceleration (Sironi and Spitkovsky, 2011).

From a direct application of our radiation calculations using hydrody-
namical information about the post-periastron GeV flare, and the post-
periastron disc crossing in TeV, in PSR B1259 — 63, twe see that the for-
mer is hard to reproduce in our simplified scenario, whereas the second
semi-quantitatively agrees with our results.

4.5 FINAL REMARKS

This chapter provides some illustrative examples of how different types of
clumps can affect the emitting region and the radiation itself in the case
of an inhomogeneous stellar wind interacting with a pulsar wind. The
studied effects (clump presence, velocity field dispersion, Doppler boost-
ing for a given observer, instability development, magnetic field increase,
and closing of the pulsar wind shock) acting together can either cancel out
to some extent or combine rather unpredictably. There are also many dif-
ferent timescales, as instability growth, region shrinking, and magnetic
field growth depend on the clump evolution timescale, which itself de-
pends to first order on the clump size and density. On the other hand, the
shocked pulsar wind flow can change direction much more quickly, and
the rapidly changing, non-uniform, beaming of radiation in the emitting
region is an important factor shaping variability. One can thus conclude
that flares could occasionally be seen in some or all bands of the spec-
trum, with their duration determined by the dominant variability origin,
whereas in general emission may vary more smoothly. There are periodic
emission features in the systems studied that originate in repetitive physi-
cal phenomena (e.g. orbit-related IC, orbit-related Doppler boosting, pair
creation angular effects, changes in radiative and non-radiative cooling
along the orbit, etc.), but non-periodic variability originates from a com-
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bination of different, equally important, factors, and they can be hard to
disentangle. A study of the X-ray light curve can provide information on
the different processes shaping the non-thermal emission. We note that
Kishishita et al., 2009 have found that the X-ray light curve of the pulsar
binary candidate LS 5039 in the years 1999—2007 was rather stable, with
even fine structures such as spikes and dips similar from one orbit to an-
other. This non-chaotic behaviour, if confirmed, would not be explained
by the processes discussed in this thesis.

A quantitative assessment of the importance of the different factors in
the clump wind scenario is the next step to be carried out. The reason is
that the shocked pulsar wind accelerates as it propagates (e.g. Bogovalov
et al., 2008), and it does so in parallel with instability growth. Therefore,
a quantitative prediction of the impact of instability growth on the emis-
sion, induced either by small perturbations or large clumps, requires a
larger computational grid to properly capture all these processes. Mul-
tiple clump interactions should be also simulated. In this regard, a stel-
lar wind with a distribution of clump properties (e.g. Moffat, 2008) is
likely to be an additional variability source affecting the non-linear hy-
drodynamical processes occurring in the two-wind interaction structure.
Finally, the dynamical role of the magnetic field cannot be forgotten if
the pulsar wind is weakly magnetized, as the flow magnetization may sig-
nificantly grow in specific regions of the shocked pulsar wind (see e.g.
Fig. 6 in Bogovalov et al., 2012)3. This growth can be important enough
to moderate the development of hydrodynamical instabilities, or induce
anisotropy and thus further complexity to their development.

If non-thermal radiation losses were to be accounted for (say nnT < 1)
when modelling the properties of the shocked pulsar wind, full radiation-
(magneto)hydrodynamic simulations should be carried out. We must point
out though that, in addition to this effect, it is also necessary to account
for the fact that IC emission on stellar photons is already anisotropic in
the FF. This anisotropy in the FF implies that there will be momentum lost
in the direction of the star, a form of Compton rocket (e.g. Odell, 1981).
Thus, if IC radiation is important for the flow internal (non-thermal) en-
ergy losses, its dynamical impact will also be important for the emitting
flow through the loss of momentum in specific directions. Synchrotron
emission may also be anisotropic if the magnetic field is ordered, but un-
less the field presents a strong gradient emission by particles moving in

Although the general impact for a moderate magnetization value was found to be negli-
gible in that work.
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opposite directions along the field lines would effectively cancel the mo-
mentum loss out.



CLUMPY WIND-JET INTERACTIONS IN HIGH-MASS
MICROQUASARS

5.1 INTRODUCTION

High-mass microquasars (HMMQs) are binary systems hosting a massive
star, and a compact object able to produce jets in which HE processes can
take place (see, e.g., Bosch-Ramon and Khangulyan, 2009; Dubus, 2013;
Bednarek, 2013, and references therein). To date, gamma rays have been
robustly detected from two HMMQs, Cyg X-3 and Cyg X-1 (Tavani et al.,
2009; Zanin et al., 2016, respectively). Variability of the detected emission
indicates that the high-energy source should be located relatively close to
the compact object, at a distance comparable to the binary separation dis-
tance (Dubus et al., 2010b; Zanin et al., 2016). There is a tentative detec-
tion of another HMMAQ, SS 433, although in this case the emission would
be likely coming from the jet-termination region (Bordas et al., 2015).
The energies at which Cyg X-1 and Cyg X-3 were detected are in the
GeV range, except for a flare-like detection of Cyg X-1 with the Major At-
mospheric Gamma Imaging Cherenkov Telescopes (MAGIC) Cherenkov
telescope in the TeV range with post-trial significance of 4.10 (Albert et
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al., 2007). Both sources present long-term gamma-ray emission, overlap-
ping with possible day-scale flares, all associated with jet activity (Albert
et al., 2007; Tavani et al., 2009; Fermi LAT Collaboration et al., 2009; Saba-
tini et al., 2010; Malyshev et al., 2013; Bodaghee et al., 2013; Zanin et al.,
2016; Zdziarski et al., 2016b,a). In what follows, we will carry a mixed
approach considering HMMQs in general, while adopting Cyg X-1 and
Cyg X-3 as reference sources to check our results in the context of real
objects.

Massive stars produce dense and fast winds that are thought to be in-
homogeneous (e.g. Runacres and Owocki, 2002; Moffat, 2008; Puls et al.,
2008, and references therein). The specific properties of these inhomo-
geneous winds may depend on the stellar type and evolutionary phase,
but in general they can be described in terms of dense clumps in a dilute
medium. In particular, Cyg X-1 hosts a black hole and an O-type super-
giant, and Cyg X-3 either a neutron star or a black hole, and a Wolf-Rayet
star, and clumpy winds have been suggested to be present in both systems
(see, e.g. Szostek and Zdziarski, 2008; Rahoui et al., 2011; MiSkovicova et
al., 2016).

Detection of gamma-ray emission from galactic jet sources requires effi-
cient particle acceleration, which is conventionally associated with shocks.
The propagation of a jet through the binary system environment may
come along with the formation of shocks at binary scales in addition to
the jet termination shock. For example, internal shocks form when por-
tions of jet material, moving with different velocities, collide to each other
(e.g. Bosch-Ramon et al., 2006). Furthermore, the stellar wind lateral im-
pact should produce asymmetric recollimation shocks and induce non-
thermal emission (e.g. Romero et al., 2003; Perucho and Bosch-Ramon,
2008; Dubus et al., 2010a; Yoon et al., 2016). But it cannot be neglected
that when wind density inhomogeneities or clumps penetrate inside the
jets, they should trigger strong shocks as well. Thus, the wind clumps
in HMMQs may have a significant influence on the jet dynamics (Peru-
cho and Bosch-Ramon, 2012) and on the non-thermal HE processes oc-
curring on the scales of the binary system (Owocki et al., 2009; Araudo
et al., 2009; Romero et al., 2010). Therefore, despite all these shocks can
be sites of efficient particle acceleration and HE emission, one expects
the strongest kinetic-to-internal energy conversion for shocks associated
with wind clumps present inside the jet (Bosch-Ramon, 2015). Moreover,
besides this high-conversion efficiency, the Doppler boosting of the non-
thermal emission associated with wind clumps, in addition to being im-
portant, might be also favourable for relatively off-axis observers.



5.2 CLUMP-JET INTERACTION: BASIC ESTIMATES

In this chapter, we present numerical calculations of the HE emission
produced by a clump-jet interaction in a HMMQ using the hydrodynam-
ical information obtained from a simplified relativistic, hydrodynamical
(RHD) axi-symmetric simulation of such an interaction. Particle accelera-
tion is assumed to occur in the jet shock, as this is much more energetic
than the one initially crossing the clump. The parameters adopted have
been chosen such that the simulation can be taken as a reference case, i.e.
a clump of realistic parameters being inside the jet at a typical interac-
tion jet height, similar to the binary size. Interactions taking place signif-
icantly closer, or farther, from the jet base, would be either very unlikely,
or too oblique for the clump to penetrate into the jet (see Eq. 5.1). There-
fore, the calculations performed can be used as a reference to establish the
typical radiation outcome from one interaction, choosing also suitably the
orbital phase, although some of the results have been checked for differ-
ent orbital phases. The radiation results can be then generalized to the
realistic case of multiple wind clumps interacting with the jet, adopting a
phenomenological prescription for the inhomogeneous wind properties,
similarly to what was done in Bosch-Ramon, 2013 in the context of a high-
mass binary hosting a young pulsar.

5.2 CLUMP-JET INTERACTION: BASIC ESTIMATES

In this section we present the analytical study of the main characteristics
of a clump-jet interaction, and show that even for conservative assump-
tions it is likely that clumps penetrate the jet. This part of the work was
done by our collaborators, but is presented here to give context to the NT
calculations. The following quantities are required for the analysis: (i) the
stellar mass-loss rate (M,,), wind velocity (v,,), and wind density (p); (ii)
the jet luminosity (without accounting for the rest-mass energy; L;), ve-
locity (vj, or Lorentz factor [}), radius (R;), height (z;), density (p;), and jet
half opening angle (6; = R;/z); (iii) the clump characteristic radius (R.),
and density (p.) (assuming spherical uniform clumps), which relates to
the average wind density through the density contrast or clumping factor
(X = pc/pw > 1); and finally (iv) the distance between the star and the
base of the jet, or orbital separation distance (Ry,). In this work, the jet
is assumed to be perpendicular to the orbital plane. We also consider a
mildly relativistic jet (see Sect. 2 in Bosch-Ramon and Barkov 2016), with
[; = 2. The hydrodynamic approximation for the clump-jet interaction is
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adopted, as the gyroradii of the particles involved are much smaller than
the typical size of the interacting structures.

We consider the emission of a clump interacting with the jet at a dis-
tance from the jet base similar to R,. On these scales, clump-jet in-
teractions are more numerous because the jet is thicker; the jet is also
more dilute than further upstream, and the clump velocity is still rather
perpendicular to the jet, favouring jet penetration. Moreover, at smaller
distances from the compact object, the jet ram pressure is too strong for
the clumps to survive penetration. For high density contrast values, i.e.
X > 1, wind-jet interactions may occur just through clumps entering into
the jet. In that case, the clumps would be surrounded by a very dilute,
hot medium of little dynamical impact either for the jet, or the clumps.
We adopt here however the more conservative assumption that, even if
x ~ 10, the wind interacts with the jet forming a relatively smooth re-
gion of shocked material that circumvents the jet (see Perucho and Bosch-
Ramon 2012; see also Pittard 2007 in the context of colliding wind bina-
ries). This shocked wind can prevent small clumps from reaching the jet,
which sets the first condition for clump-jet interaction to occur. Moreover,
the impact of the jet in a clump generates a shock that propagates in the
latter, eventually destroying it. Therefore, a second condition is that the
forward shock in the clump is slower than the clump velocity perpendic-
ular to the jet, to allow the clump to enter deep enough into the jet before
its destruction (see, e.g. Araudo et al., 2009).

To formalize the first condition, let us consider a clump that travels
with velocity ~ v,, perpendicular to the jet and reaches the region where
the wind interacts with the jet boundary. To successfully penetrate the
jet, the clump has to go through the shocked wind, with respect to which
the clump is moving also at ~ v,,, without significantly slowing down.
Such a region has a thickness ~ R; and exerts a drag on the clump that
can be quantified through a ram pressure P, ~ p,,v2. The acceleration
exerted on the clump, which has a characteristic surface s, ~ ©R2? and
volume V. ~ 4/35.R. ~ sc R, by this pressure is a,.. ~ sc Py/m.. Using
that m. = V.p., V./s. ~ R, and p. = xpy, one can obtain the expres-
sion: d,ec ~ Py/(xpwRc). Therefore, the typical distance required to sig-
nificantly slow down the clump in the shocked wind surrounding the jet
isl ~ szv/ﬂacc ~ xR, which as noted above should be | > Rj, and therefore
R. 2 Rj/ x, setting a lower limit on the clump size:

0; \/10 R
R.>R,=3x1010(— (—)($) . .
¢ Rp =X (0.1) x \3x102em )™ (5:1)
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The second condition for clumps to fully penetrate into the jet at z; <
Rorp 18 vsh S vy ', where vy, is the velocity of the shock produced within
the clump by the jet impact. For a cold jet, its pressure B is dominated by
the kinetic component of the momentum flux, i.e. B ~ szpjvjz. Assuming
equilibrium between the jet ram pressure and shocked clump pressure,
we obtain v, ~ (P, /o) ~ I’j(pj/pc)l/zvj. Considering that
- (5:2)
P = , 5.2

nRT (I — 1)vjc?
XMy
2
4TR, | Uy

Pc ’ (5-3)

and fixing zj ~ Rypp, 1. €. Rj ~ 6;R,rp,, one gets the following limitation for
the jet power:

-1 /
Lj51.4x1o37(’—)(1)( M _1)
L 10/\3x10"°Mgyr
0: \? v pi—1
J w J -1
(0_1) (108cms—1)(?) ergs - (54)

For a hot jet, the specific enthalpy should be included to derive B.

For the typical parameters of Cyg X-3 and Cyg X-1 (see Yoon et al., 2016;
Bosch-Ramon and Barkov, 2016, and references therein), and adopting
X ~10 and [; ~ 2, clumps will be able to penetrate into the jets of these
HMMAQ for R. ~ 3 x 102 and 3 x 10'% ¢m, and Lj <1038 and 1037 erg s L
respectively. These jet powers are actually similar to the values estimated
for these sources, although the uncertainties in the clumpy wind and the
jet properties are large.

5.3 CLUMP-JET INTERACTION: NUMERICAL CALCULATIONS
5.3.1  Hydrodynamics

The clump-jet interaction was simulated in two dimensions (2D) assum-
ing axisymmetry, i.e. neglecting the clump motion with respect to, say, the
compact object frame, and a dynamically negligible magnetic field. In this
case the code is the same as the one used in Bosch-Ramon, 2015, but the

A more precise relation is vy, < vy, , but for simplicity in this analysis we assume that
Uy ~ Uy in the regions of interest.
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spatial reconstruction scheme has been improved from 2nd to 3rd order
applying the piecewise parabolic method reconstruction scheme (Colella
and Woodward, 1984; Marti and Miiller, 1996; Mignone et al., 2005).

The resolution of the calculations is 300 cells in the vertical direction,
the z-axis, and 150 in the radial direction, the r-axis, and the physical
size is Z;nr?:i( = 9x 10! ¢m in the z-direction, and rgr‘iac’l‘ =4.5x%x10" c¢m in
the r-direction. The resolution was chosen such that no significant differ-
ences could be seen in the hydrodynamical results when going to higher
resolution simulations. Inflow conditions (the jet) are imposed at the bot-
tom of the grid, reflection at the axis, and outflow in the remaining grid
boundaries. On the scales of the grid, for simplicity we approximate the
jet streamlines at injection as oriented along the z-direction despite the

jet is actually assumed to be conical.

The injected jet power without accounting for the jet rest-mass energy
is ~ 2.3x10% erg s~! for the whole grid, up to rg;iaé‘, with a Lorentz factor
[ = 2. The initial clump radius is R, = 3 x 10'? ¢m, and its density, p. ~
5x107'% g cm™3. This density would correspond to that of a clump located
at zj ~ 3 x 1012 cm, for a stellar wind with M ~ 3 x 107° Mo yr‘l, Vy X
2x 108 cm s7!, and x = 10 (plus Ry, = 3 x 10!2 cm). The initial clump
location in the grid is (0,10'! cm).

With the jet impact, the clump gets shocked, expands, disrupts, and
eventually leaves the grid (see, e.g., Bosch-Ramon, 2012, in the context of
extragalactic jets). The whole duration of the simulation was ~ 820 s. Five
snapshots of the density distribution, illustrating the clump evolution af-
ter ~ 73, 521, 596, 708, and 822 s, are presented in Fig. 5.1. The shocked
jet material is seen in light blue, forming a sort of cometary tail pointing
upwards and surrounding the clump shocked material, red with green
borders.

The grid size has been chosen such that the simulation captures the
first stages of the clump-jet interaction. This is enough to compute the
non-thermal emission for two typical instances of the shocked clump
evolution: (i) a quasi-stationary shock in the jet flow is present, but the
clump has not expanded, nor it has been displaced, due to the jet im-
pact; (ii) the clump has already expanded, disrupted, and moved along
the jet axis. A simulation with a significantly larger computational grid,
and a much longer simulated time, is required for an accurate description
of the clump-jet interaction until the clump has reached an asymptotic
speed (and probably fully fragmented and spread in the jet), i.e. when
no shock is present in the jet flow or it is much weaker. This should not
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affect qualitatively the high-energy emission predictions, but quantita-
tive differences are expected. An accurate study of this (clump-jet mixing,
lightcurves, etc.) is left for future work. The presence of the magnetic
field, or 3D calculations, are likely to introduce further complexity to
the problem through effects such as suppression, anisotropy, or enhance-
ment, of the growth of instabilities. These effects should be thoroughly
studied through devoted simulations, although such an investigation is
out of the scope of the present thesis and left for the future. Other ef-
fects may be included also for accuracy, as a more realistic equation of
state, or the back-reaction effects of non-thermal processes in the (mag-
neto)hydrodynamics.
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5.3.2 Radiation results

To compute the injection, evolution and radiation of the non-thermal par-
ticles, we need to model the shocked jet flow as a set of streamlines, as
described in Sect. 2.1.1. With this information we can compute the evo-
lution of the NT particles, adopting two different values for the ratio of
Poynting-to-matter energy flux xz = 107> and 1 (see Eq. 2.5). Note that
the latter value is formally inconsistent with the hydrodynamical assump-
tion of the simulations, but we still consider this case useful, as it ap-
proximately sets a lower limit on the IC with respect to the synchrotron
emission.

For simplicity, we consider in what follows the radiation results for a
typical orbital phase: assuming a circular orbit, we considered an orbital
phase right in the middle between inferior and superior conjunction, i.e.,
the compact object is in the plane of the sky. This provides a sort of typ-
ical high-energy SED. A more detailed analysis of the overall spectra in
the different explored cases, and for different orbital phases, is out of the
scope of this thesis and left for future work, as we are interested here in
the average behavior when the jet is present. We are also mostly interested
in the o.1-100 GeV band luminosity because this band is not strongly
sensitive to parameters such as the maximum particle energy, and re-
acts smoothly to magnetic field and system-observer orientation changes,
whereas the TeV band is very sensitive to all these factors through IC
effects and gamma-ray absorption (e.g. Bosch-Ramon and Khangulyan,
2009, gamma-ray absorption is included in the present work). The GeV
luminosity is also available for Cyg X-1 and Cyg X-3, as these sources
have been detected in this energy band. For low-to-moderate B-values,
this band is also a good proxy for the source energetics and, unlike X-rays,
is certainly of non-thermal nature.

Two illustrative stages of the clump evolution are considered when
presenting the results of our computations: (i) the first stage, when the
clump is compressed by the jet ram pressure (hereafter called compres-
sion phase), the longest and more stable phase of the clump evolution;
and (ii) a later, shorter stage when the clump is disrupted (hereafter called
disruption phase), presenting a larger shock and therefore higher non-
thermal emission; both stages are shown in Fig. 5.1, first and third panels
starting from the left. We also present in Fig. 5.4 the SEDs of all 5 snap-
shots of the hydrodynamical flow shown in Fig. 5.1. This illustrates how
the high-energy emission varies with the clump evolution. The disrup-
tion phase is chosen as the maximum luminosity snapshot among those
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computed (i.e. number 3). From the point of view of the hydrodynam-
ics, snapshot number 4 is characterized by a largest cross-section of the
shocked jet, but the apparent non-thermal luminosity is higher for the
hydrodynamic configuration shown in snapshot 3. This is likely related
to a reduced Doppler boosting caused by streamline stronger deflection
in 4; also, some additional weakening of the emission can be caused by
the limited grid size.

In the three panels of Fig. 5.6, we first focus on the compression phase
and vary B, and then we compare the compression and disruption phases.
It can be seen that, in the case of a weak magnetic field, the transition
from the compression to the disruption phase is accompanied by a flux
increase by a factor of ~ 5. In the high B case, the emission enhancement
is modest, within a factor of two.

To illustrate the importance of the radiation losses, we can compare the
energy injected per time unit in the form of non-thermal particles with
that leaving the computational grid, after suffering energy losses, in the
laboratory frame. For the compression phase, the total injected luminos-
ity is = 1.6 x 103° (5157 /0.1) erg s! and about 33% of the energy is kept
by the particles when leaving the grid in the low B case, being this per-
centage smaller (= 15%) for the high B case. In that stage, particles lose
a ~ 49% of the injected energy through adiabatic losses, which means
~ 7.7 x 103 erg s7!; the synchrotron+IC losses are ~ 19% of the injected
energy in the low B case, which means ~ 3 x 10%* erg s™! (= 36% and
~ 5.8x10%* erg s~! in the high B case). In the disruption phase, the total in-
jected luminosity is ~ 10%® (y1/0.1) erg s~1. In that stage, particles actu-
ally gain energy through adiabatic heating as in some streamlines the flow
is compressed, approximately ~ 2x 103> erg s™! (~ 20% of the injected en-
ergy); the synchrotron+IC losses are ~ 50% of the injected energy in the
low B case, which means ~ 5x 103> erg g1 (=~ 95% and =~ 9.5 x 1032 erg 571
in the high B case). For the sake of discussion (see Sect. 5.5), we provide
in Table 5.1 the integrated luminosity in the range o.1—100 GeV for the
different cases studied here: the compression and disruption phases, for
the low and the high B cases, and ¢, = 30°, given that this observing
angle may be representative of both Cyg X-1 and Cyg X-3.

5.4 COLLECTIVE EFFECTS OF A CLUMPY WIND

Clumping is universal in massive star winds: these winds are stochasti-
cally inhomogeneous, believed to be composed by a hierarchy of clumps,
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Figure 5.2: Doppler boosting factor for ¢,,s = 0°. The grey lines represent the
computed streamlines, which are numbered.
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Stage Low B (xg=1073) High B(xg=1)
1.30x 1033 2.15x 1034
1.12 x 1036 4.71 x 1034

Compression phase

Disruption phase

Table 5.1: Values of the integrated emission in the o.1-100 GeV band, given in
erg s~!, considering an observer angle of ¢,ps = 30°. The compression
and disruption states are computed based on the first and third snap-

shots in Fig. 5.1, respectively.
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Figure 5.3: Compression-phase electron energy distribution for the individual
streamlines (thin lines), and the total electron distribution (thick
lines). The left panel corresponds to the low magnetic field case
(xg = 107%), and the right panel to the high magnetic field case

(xp=1).
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Figure 5.4: Spectral Energy Distributions for the 5 stages shown in Fig. 5.1. Stage
1 corresponds to the compression phase, whereas stage 3 is the dis-
ruption phase; xz = 1072 is adopted, and ¢ps = 30°.

with few large ones and increasingly many more small ones, being the
clump size and mass distributed as a power-law (Moffat and Corcoran,
2009). The X-ray spectrum of single and binary massive stars is com-
patible with this picture of dominant small-scale clumps and rarer large
clumps Moffat, 2008.

For simplicity, we consider the clumps to be spherical, and neglect
vorosity (i.e. porosity in velocity space, see e.g. Muijres et al., 2011), which
in the present context can be considered as a minor effect. An empirical
number density distribution of clumps with radius R, is adopted:

dN _
n(RC) = dR dV = nORC a’
C

(5-5)

with clump radii ranging R in < R¢ < R max- The value of R i, can
be considered close to the Sobolev length, Rg,, ~ 0.01R, (e.g. Owocki and
Cohen, 2006), while the clump size is at most of the order of R, (Liermann
et al., 2010), although it may be significantly smaller. As clumps propa-
gate from the region where they form, at ~ 1 — 2R, from the star centre,
they can grow linearly with the stellar distance or somewhat slower for a
slab geometry, but they can be also broken down by instabilities (see the
discussion at the end of sect. 3.3 in Bosch-Ramon, 2013).
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Figure 5.5: Top panel: Synchrotron and IC SEDs for the compression phase for
$obs = 0, 30, and 90°, and xp = 107>. The thin lines represent the
emission without taking into account gamma-ray absorption due
to electron-positron pair creation, i.e. the production SED. Bottom
panel: the same as for the top panel but for xz = 1.
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Figure 5.6: A comparison between the SEDs of the compression and disruption
phases, for ¢ps = 30°.

Assuming that all clumps have the same density and that the inter-
clump medium is void, the clump volume filling factor is simply f = x~!
(e.g. Hamann et al., 2008), and the distribution function should meet the
following normalization condition:

47-( Rc,max

3 Rgn(Rc)dRc :f- (5.6)

Re,min
Fixing R, min = 0.01R, and R ,.x = 0.5R,, we can solve Eq. (5.6) to obtain
the normalization constant n,.

Whether clump-jet interactions appear as a transient or as a persistent
phenomenon is determined by the duty-cycle (DC) of these events. To
determine DC we need to estimate the jet penetration rate of the clumps,
N, and their lifetime, t. (Bosch-Ramon, 2013). The jet crossing time will
be more relevant than f. for jet powers R./R; times the limit provided in
Eq. (5.4). In this chapter we are interested in bright sources, and therefore
the jet power will be assumed to be close to the limit provided in Eq. (5.4).
In fact, this is likely the case in the powerful jet sources Cyg X-3 and Cyg X-
1.

The jet subtends a certain solid angle, (), as seen from the optical star.
To interact with the jet, a clump must propagate within this solid an-
gle. Considering a conical jet with R; = 6z and that the clump enters
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the jet roughly between 0.5R,, < z < 1.5Ryp (so Az ~ R,.p), we obtain
() =~ 0;/2 = 0.05. The differential rate of arrival to the jet for clumps of
radius R, can be estimated as dN = Qd?v,,n(R.)dR,, where for simplic-

ity d ~ \JR2, + zjz. The differential DC for those clumps is dDC = t.dN,

with t. ~ R./vg,, which we approximate here to t. = R./v,, as we deal
with powerful jets®. From all this, the following estimate for the arrival
of clumps with radius between R; and R, can be obtained:

R, 9 R,
DC(Rl,Rz):QdZnOL Rg““dRCz?]dznoL R;TUdR.. (5.7)
1 1

We explore different values of the power-law index: 2.5 < a < 6. Values
of @ > 4 imply that small clumps dominate the wind mass. Interestingly,
as the energy emitted by one clump-jet interaction is expected to be o
t.x R? oc R3, one also obtains that for a > 3 the non-thermal radiation will
be dominated by the smallest clumps that can enter into the jet, i.e. those
with R. ~ Rjy. On the other hand, values of @ = 2.5 are in accordance to
the values inferred for WR stars (Moffat, 2008)3.

The non-thermal luminosity of the clump-jet collective interactions de-
pends on the dominant clump size; gamma rays can be mostly produced
by small or large clumps. The DC may be dominated by small clumps,
and still the luminosity may be dominated by the largest ones. Neverthe-
less, the simulations show that clumps significantly larger than R cannot
increase considerably the luminosity output, and may even radiate less
than smaller clumps interacting with the jet. The reason is that, unless
(6;/0.1)(10/ x) is well below one (see Eq. 5.1), larger clumps will likely
disrupt the whole jet, strongly reduce the effect of Doppler boosting, and
might even switch off particle acceleration. For the parameters adopted in
this work, it seems therefore natural to consider clumps of radii between
~ Ry and few times larger.

The top panel of Fig. 5.7 shows the DC dependence on a, whereas the
bottom panel shows the same but for the average luminosity of the collec-
tive clump-jet interactions. We have focused on 1 Ry < R. < 3R, splitting
this range into 1 Ry < R. < 2R( and 2R < R, < 3Ry, although a curve for
R. > 3Ry is also shown. The radius 3 R has been considered as the upper-
limit for the clumps to be relevant from the radiation point of view in the

This assumption makes the estimate of the luminosity for collective interactions more
conservative.

The value given is actually N (m) oc m?, with = 1.5+ 0.1. Assuming constant density,
spherical clumps, one derives a = 2.5.
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Figure 5.7: Top panel: Duty-cycle in the radius ranges 1 —2R, 2—- 3Ry, 1 — 3R,
and > 3R for a wind clump number distribution n oc R.™%. A value
a = 5 represents a wind dominated by small clumps, whereas a; =
2.5 is an observational value for WR stars; R is the minimum clump
size given by Eq. (5.1). Bottom panel: Duty-cycle weighted by the
effective section of the shock, and therefore its potential luminosity,
shown in units of the luminosity L; produced in the interaction of
one clump of R = R\ with the jet. The case > 3R is not shown as it
may imply jet disruption.
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context of this thesis, that is (6;/0.1)(10/x) ~ 1. The results obtained al-
low the derivation of a rather robust conclusion: clumps with R. > R, will
be always present inside the jet unless the @ parameter deviates strongly
from the expected values. Also, the averaged total luminosity should be a
factor of a few larger than the estimate obtained for a jet interacting with
one clump of radius R (again unless « is in the extremes of the explored
range). We studied cases with different R ,,x-values (not shown here),
and found that our conclusions hold for a wide range of R ax ~ 0.1 -1R,.

For jet powers well below the value given in Eq. (5.4), the clump-jet
interaction luminosity is oc L; and therefore lower than the reference case,

but the event duration is longer by « vs_hl oc Lj_l/ ? (recall that vg, must be
used instead of v,,, see above). Thus, to first order, the decrease in the
radiation luminosity will effectively be o le/ 2, although a more accurate
relation should be derived numerically.

If clumps with R. > 3R are present and DC > 0.5, the jet will be likely
disrupted most of the time in the region of interest, z; ~ Ryp. As noted,
this is expected to significantly reduce the effects of Doppler boosting,
and potentially might even switch off particle acceleration. In the sce-
nario explored, i.e. (6;/0.1)(10/x) ~ 1, a value DC ~ 0.5 for R > 3R,
will be achieved only for a < 3 and R« ~ 0.2 R,. This sets limits on the
wind properties that allow clump-jet interactions to produce significant
gamma-ray emission. These are however somewhat extreme, possibly un-
realistic, wind parameters, in particular concerning the constraint on «,
as in that case the wind mass would be dominated by the largest clumps.

Finally, let us explore situations different from (6;/0.1)(10/x) ~ 1:

1. Fixing (6;/0.1) ~ 1: Sources with (10/x) > 1 would imply that R,
would be larger, and there may be no clumps big enough to cross
the shocked wind surrounding the jet. In addition, a x well below
10 would mean a rather homogeneous wind. On the other hand, for
(10/ x) <1, Ry would be smaller; all the clumps may be able to reach
the jet, and they may be also dense enough to fully enter inside.
This would have the disrupting effect of a wind with most of its
mass in large, penetrating clumps (this kind of scenario is simulated
in Perucho and Bosch-Ramon, 2012). Additionally, the number of
clumps would be lower by x~! « f (see Eq. (5.6)), but because t, is
actually o f71/2 o x1/2, the radiation luminosity would be oc f1/2 o
x 12 lower.

2. Fixing (10/x) ~ 1: Taking (6;/0.1) < 1 would imply that smaller
clumps could reach the jet but the latter would be denser, making
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Figure 5.8: Synchrotron and IC SEDs (thin lines, red) computed for the compres-

5-5

sion phase and the sum of the two contributions (thick, orange line)
plotted together with the Fermi data of Cyg X-1 published in Zanin
et al., 2016. In this case, we have adopted a rather strong magnetic
field (xg = 0.5) and fixed the acceleration efficiency to #yt = 0.01.
The observing angle is ¢ops = 30°.

clump penetration more difficult. Also, jet penetration would be less
frequent (DC o« Q o« 6;). On the other hand, if (6;/0.1) > 1, jet pene-
tration would be significantly easier and more frequent, but clumps
should be larger to first cross the shocked wind surrounding the jet.

DISCUSSION AND SUMMARY

For typical values of the clumping factor of massive star winds, and of the
jet geometry and power, we obtain that clumps of intermediate size, say
a few % of the stellar radius, can overcome the shocked wind surround-
ing the jet, and penetrate into the latter. For x ~ 10, clumps can already
sustain the jet impact long enough for fully penetrate into the jet, allow-
ing for a dynamically strong interaction. Under such circumstances, and
assuming moderate acceleration efficiencies, say #jn7 ~ 0.01 — 0.1, we pre-
dict significant gamma-ray luminosities for galactic sources at few kpc
distances. For mildly relativistic jets, the impact of Doppler boosting is
non-negligible even for relatively large jet viewing angles, ~ 30°. If [}
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were higher, clump-jet interactions would be detected for viewing angles
within a relatively narrow cone around the jet orientation, whereas I; — 1
would mean lower luminosities, although potentially still detectable if
non-thermal efficiencies were high.

In what follows we focus on the possibility of explaining the persistent
GeV emission detected from Cyg X-1 and Cyg X-3 during the low-hard
state and GeV activity periods, respectively. The calculations presented in
Sect. 5.3 for one clump-jet interaction were carried out for a system with
similar properties to those of Cyg X-1. For Cyg X-3, the results would
be similar, but R, and thus Ry would be ~ 10 times smaller, and the
jet power and therefore the non-thermal emission ~ 10 times higher (see
Yoon et al., 2016, and references therein for a comparison of these two
sources). The IC luminosity in the high B case would be lower though
with respect to the injected luminosity because of the higher jet power.
From the one-clump interaction properties, one can extrapolate the char-
acteristic gamma-ray luminosity in the context of collective clump-jet in-
teractions.

The collective clump-jet interaction luminosity, in the GeV (0.1-100 GeV)
range, calculated averaging over one orbit4, and the computed clump
evolution, for a jet inclination with the line of sight of ¢,,s = 30°, is
~ 103 (nN1/0.1) erg st for Cyg X-1 and (~ 1036 (ynr/0.1) erg s7! for
Cyg X-3), with an uncertainty of a factor ~ 0.5-2 (including the high and
the low B cases in that range). Assuming that the jet in Cyg X-1 is per-
pendicular to the orbital plane, its inclination with respect to the line
of sight is ¢ops ~ 30° (Orosz et al., 2011). In Cyg X-3, the jet inclina-
tion may be similar or even smaller (see, e.g., Mioduszewski et al. 2001;
Dubus et al. 2010a; see however Marti et al. 2001). Section 5.4 shows that
DC ~ 1 are expected. Therefore, taking into account that the GeV lumi-
nosity in Cyg X-1 and Cyg X-3 are ~ 5 x 1033 (Zanin et al., 2016) and
~3x103% erg s~! (Fermi LAT Collaboration et al., 2009), respectively, one
can derive the required non-thermal efficiency to be (yn1/0.1) ~ 0.05 for
Cyg X-1, and ~ 3 for Cyg X-3 (for ¢ops = 30°; ~ 0.5 for ¢pyps ~ 0°).

For Cyg X-1 the observational constraints only require a very modest
non-thermal fraction (~ 1%). A comparison with Fermi data published
in Zanin et al., 2016 is shown in Fig. 5.8, where a rather strong mag-
netic field (xg = 0.5) and a fixed acceleration efficiency (ynt = 0.01) were
needed to reproduce the observational data, assuming DC = 1. We note
that this is a simplified model, but it is interesting that even so it can

4 The GeV luminosity was also computed in inferior and superior conjunction so that the
estimate was more representative.
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approximately match the Fermi data. A similar toy-application of our
model to Cyg X-3 could be also performed (not shown here), for similar
parameters to those of Cyg X-1 but a much larger non-thermal fraction.
In this case, the energetics is however rather demanding (~ 30%). Nev-
ertheless, the presented calculations are obtained fixing I’] = 2, while in
fact different [;-values are possible, and despite the relation between [
and the Lorentz factor of the shocked jet flow is non-trivial (it depends
on the postshock flow re-acceleration), slightly faster jets could alleviate
the tight energetics for the Cyg X-3-like scenario. In addition, adopting a
low magnetic field and the (probable) possibility of DC of a few would
relax further the energetic constraints. Finally, the numerical calculations
carried out are also likely to underestimate the non-thermal emission be-
cause the computational grid encloses a relatively small region, and part
of the radiation, and the last stages of the clump evolution, are not ac-
counted for (see Sect. 5.3).

Values of DC <« 1 would lead to flares rather than to a smoother clump-
jet interaction continuum. This requires a much higher degree of inho-
mogeneity than the assumed in most of this work, as strong changes in
Rcmin and R .« are not plausible, and DC is not very sensitive to a.
However, as noted in Sect. 5.4, the radiation luminosity is o x~ 12, mean-
ing that for the same parameters, very inhomogeneous winds interacting
with jets will be on average less radiatively efficient than moderately in-
homogeneous ones.
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CONCLUDING REMARKS

Throughout this thesis we have developed a tool to study the non-thermal
radiation of different sources with relativistic emitters. Making use of the
results of hydrodynamic simulations, we built a code to compute the evo-
lution of NT particles and their IC and synchrotron radiation. Then we
applied this tool to three different scenarios, of either extragalactic and
galactic nature. These scenarios have several features in common:

1. The emitting flow moves at relativistic speeds, making the compu-
tation of the Doppler boosting of key importance.

2. They present an axis of symmetry and therefore can be studied at
first order through 2D axisymmetric simulations.

3. The magnetic field is not expected, to first order, to be strong enough
to be dynamically relevant, so the study can be performed without
magneto-hydrodynamic simulations.

4. The most efficient non-thermal radiation processes are IC and syn-
chrotron emission.
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5. The environment of the source is rich, and we put the focus on its
interaction with the relativistic fluid, where the NT particles are ac-
celerated.

With this last point in mind, this thesis shows the importance of a com-
plex environment in relativistic sources, where an inhomogeneity in the
region of the fluid can act as a source of inertia in the system and produce
shocks. We have shown the impact of this interactions in several contexts.
Here we outline the most important remarks of each one.

STAR-JET INTERACTIONS IN AGN

In the case of the AGN jet interacting with a star, the work done appeared
published in de la Cita et al., 2016, and we found that:

* The size of the emitter is enhanced; a large-scale bow-shock struc-
ture is produced increasing the NT luminosity.

* The Doppler boosting is of key importance given the relativistic na-
ture of the (collimated) jet. This implies that the angle between the
jet direction and the line of sight determines the observed luminos-

1ty.

* The luminosity levels found by our work point towards detectable
gamma-ray emission in AGN, under the adopted assumptions and
with a rich stellar population.

PULSAR WIND INTERACTING WITH A CLUMPLY STELLAR WIND

In this case, the work done has been published in de la Cita et al., 2017b,
and has the following remarkable conclusions:

* We have shown that the clump makes the contact discontinuity move
closer to the pulsar, with the whole emitting region experimenting a
more powerful, less diluted pulsar wind, which modifies the escape
and synchrotron energy losses of particles.

* In the majority of the configurations studied, the appearance of a
clump boosts the luminosity significantly, pointing out the impor-
tance of these interactions.
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* A specific study of the binary PSR B1259 — 63 was performed, both
addressing the GeV Fermi flare, and the TeV observations. For the
first case, our model was unable to reproduce the data, but in the
second case we model the passage of the compact object through the
decretion disc of the companion as an encounter with a big clump.
This second model was more successful, showing how the impact of
such an interaction can reproduce the SED in the TeV range.

CLUMPY WIND-JET INTERACTIONS IN HMMAQS

The third main study of this thesis (de la Cita et al., 2017a) has been
submitted to A&A and accepted for publication. Here we outline its most
important conclusions:

 For the clump size, density contrast and height with respect to the
base of the jet considered, being in fact rather characteristic param-
eters, the clump is able so survive enough time to emit gamma rays
before disruption.

* The luminosity levels found could be enough to explain the obser-
vations of Cyg X-1 and Cyg X-3 adopting conservative parameters.

* A specific study for Cyg X-1 was carried out, finding a good match
with the Fermi observations.

* We have shown that such a clump-jet interactions would have a duty
cycle of ~1, it is to say, at every time at least one clump with the
studied characteristics would penetrate inside the jet.

FUTURE WORK

The obvious step forward in this research is twofold: on one hand, to ex-
tend the methods developed in the thesis to cover aspects as synchrotron
self-Compton internal pair creation or hadronic mechanisms for non-thermal
radiation, in order to cover a wider range of emitters. On the other hand,
the application of this method to either 3D, or MHD simulations (or both)
would allow us to have a more realistic picture of the emitters. This would
lead to more accurate SEDs, to less a priori assumptions and, if the time-
resolution of the simulations is good enough, also to light-curves in the
cases where they would be relevant.
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Such improvements in our methods would eventually lead to a change
in our approach in the study. Instead of focusing on more general works
like those presented in this thesis, where we were interested in show-
ing the importance of different mechanisms of emission in certain con-
texts without focusing on a specific source, we could start trying to re-
produce the observations of these sources. Spectral energy distributions,

light-curves and/or maps of the emitting region should match the avail-
able observations in future studies.
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LIST OF ACRONYMS

AGILE Astro-Rivelatore Gamma a Immagini LEggero.
AGN Active Galactic Nucleus.

BH black hole.

CGRO Compton Gamma-ray Observatory.
COMPTEL Imaging Compton Telescope.

CTA Cherenkov Telescope Array.

EGRET Energetic Gamma Ray Experiment Telescope.
Fermi Fermi Gamma-ray Space Telescope.

FF fluid frame.

GRB Gamma-ray Burst.

H.E.S.S. High Energy Stereoscopic System.

HAWC High-Altitude Water Cherenkov Observatory.
HE high energy.

HMMQ High-mass microquasar.

IATC Imaging Atmostpheric Cherenkov Telescope.
IC inverse Compton.

INFC inferior conjunction.

IR infrared.

KN Klein-Nishina.

LAT Large Area Telescope.

LF laboratory frame.

MAGIC Major Atmospheric Gamma Imaging Cherenkov Telescopes.

NS neutron star.
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NT non-thermal.

RHD relativistic hydrodynamical.

SED spectral energy distribution.

SMBH supermassive black hole.

SUPC superior conjunction.

VERITAS Very Energetic Radiation Imaging Telescope Array System.
VHE very high energy.
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