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Introduction

The theory of L-functions plays a key role in modern number theory. After Iwasawa’s new insight on
this theory, p-adic L-functions became an interesting alternative to classical ones.

A central feature of the theory of L-functions (classical or p-adic) is the study of their special values:
this is where the analytic and the algebraic data meet.

Let us describe the most basic example. Let K be a number field of discriminant Dg and denote by
O its ring of integers. The seminal example is the Dedekind zeta function of the field K, denoted by
Cr(s). It is defined for R(s) > 1 as an Euler product indexed by all prime ideals in Ok as follows:

) = [ —

K s
©COK ]' - NQ (@)

As was first proved by Hecke, this function admits a meromorphic continuation, and satisfies a functional
equation of the form:

D |% - Ceoo(s) - G (5) = D] T - Gl = 8) - Cie(1 = 9)
where (x oo (s) is an adequate product of Gamma factors. The integral point s = 0 lies outside the domain
of definition and mathematicians were interested in understanding the nature of this value.

Let us recall Dirichlet’s unit theorem: the group of units O} is a finitely generated abelian group,
whose free part has rank r; + r9 — 1, where 71 is the number of real embeddings K — R and rg is the
number of complex embeddings K < C up to conjugation, so that r| + 2ry = [K : Q.

The behaviour of (x(s) at s = 0 is the content of the so-called analytic class number formula, which
we state here as follows:

Theorem 0.1 (Class number formula). The following are true:

CNFO0 The zeta function (k(s) admits an analytic continuation and a functional equation relating values at
s and 1 — s;

CNF1 The order of vanishing of (k(s) at s = 0 equals the rank of O, i.e. ords—oCx(s) =7 (analytic rank
= algebraic rank);

CNF2 The following formula holds true:
_ hkRk

WK

lim 5™ Cre () =
where:

— hg is the class number of K;
— wg is the number of roots of unity of O ;

— Ry is the complex regulator involving the logarithm of units of Ok .
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One generally refers to the analytic class number formula when speaking about the following result:

2" (2m)"2hg R
Resy—1(k (s) = M
WK |DK|

which can be easily proven to be equivalent to CFN1 and CFN2 together.

In the 1970’s Stark developed in [Stark] an equivariant conjectural refinement of the above formula,
now known as Stark’s conjectures. More precisely, for any field extension H | K, the Artin formalism
allows one to decompose the zeta function (g (s) as a product of L-functions over K twisted by irreducible
Artin representations p of Gal (H|K). The Stark conjectures aim to describe vanishing properties and
special values of these twists at s = 0 in terms of invariants linked to the objects involved in a Gal (H|K)-
equivariant way.

Not surprisingly, one can formulate a similar conjecture for elliptic curves, which will be the main
motivation for the present thesis. More precisely, we consider:

e an elliptic curve F defined over K. We denote by V(F) the compatible system of Galois represen-
tations induced by its Tate module;

e an Artin representation p : Gal (H|K) — GL, (L), where L C C is the field of coefficients of p. We
associate to it a compatible system of Galois representations V (p).

Our main object of interest is the Hasse-Weil-Artin L-function of E twisted by p:
L(E,p,s) == L(V(E) @ V(p),s),

This function is defined as an Euler product similar to that of (x(s), which converges for R(s) > 3/2.
When p = 1k, the twisted L-function L(FE, p, s) is equal to the original one L(E/K, s).

According to the Mordell-Weil theorem, F(K) is a finitely generated abelian group. The rank of its
free part is called the algebraic rang of E over K, that we denote by r = r(E/K). In the early 60’s, Birch
and Swinnerton-Dyer formulated in [BSD] the following:

Conjecture 0.2 (Birch and Swinnerton-Dyer). The following are true:

BSDO The zeta function L(E/K,s) admits an analytic continuation and a functional equation relating
values at s and 2 — s;

BSD1 The order of vanishing at s = 1 equals the rank E over K, i.e. ords—1L(E/K,s) =r (analytic rank
= algebraic rank);

BSD2 The following formula holds true:

. _r #ShaE/K
513%5 L(E/K,s) = Qp/x (p!@[ %)W ‘Rp/k
K

where:

— Qg is the complex period attached to E over K;

cp is the Tamagawa number of E at p;
— Shag,k is the Shafarevich-Tate group;

— Rp/k is the complex regulator involving Néron-Tate heights of a basis of the free part of the
Mordell-Weil group.
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It is remarkable how theorem 0.1 and conjecture 0.2 share many similarities. Moreover there are
equivariant refinements of the BSD conjecture, too. This sets up the basis for a vast generalization known
as the equivariant Tamagawa number conjecture (ETNC) which includes, as special cases, both the Stark
conjectures and the equivariant Birch and Swinnerton-Dyer conjecture.

In this dissertation we are mainly motivated by the equivariant BSD conjecture as an elliptic curve
analogue of the Stark conjecture for number fields.

Let E/K be an elliptic curve and let p : Gal (H|K) — GL,, (L) and consider the twisted L-function
L(E, p,s). Assuming the BSD0O we can define the analytic rank associated with E twisted by p as:

ran(E, p) := ords=1 L(E, p, s).

On the algebraic side we consider the vector space V, underlying the representation and the set of Galois
equivariant homomorphisms ¢ : V, — E(H)r,, where E(H), := E(H)® L. In other words, we consider the
possible ways to embed the representation V), inside the Mordell-Weil group. In particular, the algebraic
rank measures how many times the representation V), occurs in E(H):

rag(E, p) := dimy, Homeg . (V,, E(H)L).

We also define the p-isotypical component of the Mordell-Weil group as follows:

EH) = Y ()
Y:V,—E(H)
1 basis

The rank part of the equivariant BSD conjecture predicts that the analytic rank and the algebraic rank
are equal, so that:

?
ran(Ev p) = ra1g<E7 p)'

The equality has been established in few cases only: there are results when the base field is Q, r.n (F, p) < 1
and p has dimension at most 2, under some additional specific hypothesis. The common feature of these
results is the use of Euler systems.

In order to overcome the rank part of the problem and give a unified vision of the Euler systems,
Darmon, Lauder and Rotgers formulated in [DLR15] a p-adic analogue of the equivariant BSD conjecture
which they call the elliptic Stark conjecture. We now briefly describe the result of their article. Consider
a self-dual representation p : Gal (H|Q) — SL4(L) which is the tensor product of two odd representations
p1 and po of dimension 2. By the modularity results of Khare and Winterberger (see [KW09]) we know
that such representations arise from modular forms of weight one, so that p; = pg, p2 = pr and p = pgn, =
Pg ® pr, where:

g € Mi(Ng,X) and h € My (N, x)-

In this sense we can write L(E, pgn,s) = L(f ® g ® h, s), so that the L-function can be viewed as the
Garrett’s triple product L-function. In order to describe the elliptic Stark conjecture in detail, we first
need to discuss the hypothesis under which it is formulated.

Hypotheses A and B of [DLR15] say that the L-function L(E, p,s) vanishes to order at least two at
s = 1 and that the order of vanishing is even. In particular it is assumed that the local signs of the
functional equation of L(E, p, s) are all positive.

Hypotheses C and C’ of loc.cit. are important for the very definition of p-adic iterated integrals that
we now describe. Given a module M on which the good Hecke operators T}, act and a common eigenform
¢, we define M[¢] to be the subspace of M composed by vectors which have the same eigenvalues for all
of the T},’s. For a test vector

(’3//7]57 ;L) € Ml(Np7 X)X[goz] X SZ(va]l)L[f] X Ml(va X)L[h]
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the associated p-adic iterated integral is defined as follows:
/f-ﬁ =4 (egx eora(F - h)) (1)
5

where F is the overconvergent primitive of f , €g.+ 18 the projector onto the g -isotypical component and
eord is Hida’s ordinary projector. Hypothesis C and C’ ensure us that the definition is meaningful by
declaring that the g -isotypical component of the space of overconvergent modular forms in weight one is
made solely of classical forms, so that, in particular, e - eord(F . ;L) is classical, too. Then we have the:

Conjecture 0.3 (Elliptic Stark conjecture). Let p{ Ny}, be a prime at which E has ordinary reduction,
let Ny be the tame part of Ng and N = lem(Ny, Ny, Ni,). Assume hypothesis A, B, and C,C’ of [DLR15].
Then:

o if ran(F, p) = 2, then there exists a test vector:

(%, 1) € Mi(Np, x)}[ga) x Sa(Np, 1)[f] x Mi(Np,x)r[h]

for which:

/f i, — Ry(E, p)ga
¥ logp(uga)

is nonzero, where:

— ug,, 15 the Gross-Stark unit associated with the adjoint representation associated with gu;

— R,(E,p)g., is a p-adic p-equivariant requlator which is defined as the determinant of a 2 by 2
matriz involving elliptic logarithm of points in E(H)] .

o if ran(E,p) > 2, then f,y f-h =0 for every possible choice of test vector (¥, f,h).

Let us point out the presence of g,: this is a choice of a p-stabilization of ¢ which is needed to formulate
the conjecture—this will be discussed later.

The proposition 2.6 of loc.cit. motivates the terminology of “elliptic Stark conjecture”. More precisely,
the p-adic iterated integral can be interpreted as the special value of the Garrett-Hida p-adic L-function,
which is a p-adic avatar of L(E,p,s), and the conjecture contains information about both the order of
vanishing of this L-function and its leading term.

In [DLR15] the authors provide several heuristics in support of the conjecture, and they prove it in
some special cases. More precisely, they consider the case in which g and h are theta series associated
with Galois characters of a quadratic imaginary field K = Q(v/—D) and (f, K) satisfies the Heegner
hypothesis. In this setting, the Heegner hypothesis ensures us that hypothesis A and B are satisfied and
also, in most cases, that theta series satisfy hypothesis C and C’ (see the discussion of section 4.2). Then
the representation p splits as the direct sum of two representations p; and py (not necessarily irreducible),
and the availability of Heegner points and elliptic units allows the construction, respectively, of canonical
elements P; € E(H)% which satisfy the already existent p-adic Gross-Zagier formula studied in [BDP12],
and of global units u,, € (Oﬁ)éd(g“) satisfying the Katz-Kronecker limit formula. Using those tools the
authors achieve the following:

Theorem 0.4 (Darmon, Lauder, Rotger). Assume that N = lem(Ng, Ny, Ny) is square-free and that
p12N. Assume also that hypothesis C and C’ hold. Then:

o if ran(E, p;) = 1, then there exists a test vector:

(ﬁ»fv FL) € Ml(va X)X[ga} X SQ(Np7]l)L[f] X Ml(va X)L[h]



X

and a scalar X € L™ for which:

/ f h=M\- logE’P(Pl) IOgE,p(PQ)
g Ing(Uga)

o ifron(E,pi) > 1 fori=1 ori=2, then fx, f-h =0 for any choice of test vector (¥, f,h).

Proof. This is achieved using the Garrett-Hida method, by p-adically interpolating the triple product
L-function and comparing it with other p-adic L-functions (cf. [DLR15, §3]). O

Let us point out that this formula is qualitative: no computation is made to make \ explicit. It would
be interesting to see what happens to the constant A if one makes a specific choice for the test vector
(%, f,h). In particular, it is worth to make here the following:

Remark 0.5. The quantity on the left depends on f (in fact f ) while the quantity on the right contains the
elliptic logarithm, which is usually taken in the literature to be the logarithm associated with the Néron
differential wg. In particular, the Néron differential is pulled back to a multiple of wy := 2mwif(7)dr, via
the modular parametrization 7 : Xo(Ng) — E, i.e. 7*(wg) = Cg -wy. The constant Cg would be a
product of the Manin constant and the degree of the isogeny from the elliptic curve E, associated with f
via Eichler-Shimura construction, and our elliptic curve FE.

We use the result [BDP12, Theorem 3.12] and we want to avoid the constant Cg. For this reason, we
consider the logarithm associated with the differential w on E defined by:

(W) = wy.

This is a non-canonical choice but the results that we obtain can be easily translated in terms of the usual
logarithm by adding the constant C'g. For a qualitative result this fact does not matter, but for a precise
computation of A it is important.

In [DLR15, remark 3.4], assuming that N = D is square-free, that p t N and that g = h = Eq,, €
M; (D, xk) is the Eisenstein series associated with the quadratic character xx attached to the extension
K|Q, the authors verified experimentally that:

)

[ oSBT by
y pp—Dhr  log,(up)

where hx is the class number of K, (u,) = "< and Px € E(K) = E(H)}*. In this specific case the
condition N = D ensures us that the choice (v, f, h) is canonical, where v is the dual of g.
This raises two main questions:

(i) are we able to uncover some nice arithmetical meaning of the scalar A, possibly after making some
canonical choice of test vector (¥, f, h)?

(ii) can we establish the conjecture in other cases?

The first question was answered using the Rankin method instead of the Garrett method, but restricting
to the case in which h = Ey .. In this case p; = p3 = pg, so that p = pg and we have a factorization of
L-functions:

L(E,p,s) = L(E, pg, s)*

The function L(E, ps,s) = L(f ® g,s) can be interpolated p-adically with Hida-Rankin’s method and
its special value can also be interpreted as a p-adic iterated integral. Since g has CM by x g, it can be
seen as the theta series associated with a finite order Hecke character ¢ : G — C*. In this setting,
Py = Py = Py, uy, = g and the main result of [CR1] is the following:
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Theorem 0.6 (C.-Rotger). Assume that (Ng, Ng/D) =1 and take N = lem(Ng, Ny) and a prime p{ 2N.
Assume also that hypothesis C' and C’ hold and that ran(E,pg) = 1. Let us call h = Ey ,, and let us
choose the test vector:

(%, f,h) € Mi(Np, x)¥1gal X Sa(Np, 1)[f] x Mi(Np,x)z[h]

as follows: f and g are normalized eigenforms for all the Hecke operators, v is the dual of § and h = Eix,
as defined in equation (1.10). Then there exists an explicit non-zero complex number \(f,§) € (@w(f) for
which )

logE,p(PJ))
log,, (u2)
In particular, in the case Ng = D the following formula holds true for f =f,0=9:
_ (p—ap(NY(p) +¥%(9)* Ao¥(V-D)

Lf~ﬁx(f,§>-

A -
(9 pp— 1) hicar
) 1 if Y2 =1, that is to say, if g is Fisenstein
0= _ . . o )
p—(p+1)11/)2*(€(@1))+w*4(@) if w2 # 1, that is to say, if g is cuspidal.

Note that in this result we do not assume that N is square-free. In fact, the choice of h forces Ny /D to
be a non-trivial square, unless N, = D. In this sense the use of Hida-Rankin’s method, although restrictive
for the choice of h, also proves new cases of the elliptic Stark conjecture in a more explicit way than it is
done by Garrett’s method, answering both questions (i) and (ii).

The above theorem, together with theorem 0.4, furnishes good theoretical evidence for the elliptic Stark
conjecture, but it is far from proving it in general. This leaves spaces for the examination of other cases.
The first and natural idea is to see what happens in the case of bad reduction for F at p. For this reason,
we decided to prove the case of multiplicative reduction for E, i.e. when p||Ng. Define Ny = Ng/p, then
we have the following;:

Theorem 0.7. The results of theorem 0.4 and 0.6 hold still if we assume that p||Ng, p { NgNp,. The
explicit formula of theorem 0.6 is true replacing Ng by Ny.

Although this result is very similar to the previous theorems, we need to substitute the Bertolini-
Darmon-Prasanna p-adic L-function with a two variables extension due to Castella in order to overcome
some technical problem.

Let us review briefly the contents of this thesis.

In the first chapter we introduce some background material about modular forms, p-adic modular forms
and various operators acting on these spaces. We introduce Coleman’s classicality result: overconvergent
modular forms of small slope are classical. We also discuss complex multiplication points and elliptic units
in a way that fulfills our needs.

The second chapter is dedicated to the basics of complex L-functions. We introduce the L-function
associated with a compatible system of Galois representations, then we treat several special L-functions of
this kind. In particular, we introduce the notation and some results which will be used in the subsequent
chapters.

Chapter three is the central part: it contains background material on all the p-adic L-functions that we
need. In particular, for each of them we introduce the region of interpolation, the relation with the complex
L-function and the results on special values. Most results discussed in this section are already present in
the literature but we slightly generalize a few of them and we adapt the notation for our treatment.

The fourth chapter contains the proof of theorems 0.6 and 0.7 that are discussed in the introduction.
We start by explaining the elliptic Stark conjecture in the cases we treat and we list the hypotheses for the
comfort of the reader. We also discuss in more detail hypothesis C and C’ which are needed to formulate
the result. These results are the content of the articles [CR1] and [CR2].



Chapter 1

Background material

1.1 Modular forms for I';(N)

Consider the Poincaré upper half plane:
H:={z€C|S(z) >0}

and the space of real analytic functions C*(H, C). For any integer k € Z we define the weight-k-action of
GL2(Q)* on f: H — C as follows:

Fley(2) = det()* ez + d) " f(y2). (1.1)
We say that f is:

(i) slowly increasing (or that f has moderate growth) at infinity if for any v € SLa(Z), there exist positive
numbers ¢, e such that |f|xy| < (1 +y~¢) as y — co.

(ii) rapidly decreasing (or that f has rapid decay) at infinity if for any e € R and v € SLo(Z), there exists
a positive ¢ such that |f|ry| < ¢(1+ y°) as y — oo;

Let I' C SLy(Z) be a finite index subgroup. The set of real analytic modular forms MZ"(T') (resp. cusp
forms Si™(I)) of weight k and level T is the subset of real analytic functions f € C*°(H, C) having moderate
growth (resp. rapid decay) at infinity such that f|py = f for all v € T".

For a couple (f, g) € M (I')x S2%(T'), the product f(z)g(z)y* is both I-invariant and rapidly decreasing
at infinity. Since y~2dxdy is also I'-invariant, we can define the Petersson scalar product on the space

SN T) x ME™(T') as follows:
(fig)n ::/ f(z)g(z)yk_2dxdy. (1.2)
\'H

Let N > 1 be an integer and consider the standard congruence subgroups:

Ty (N) = {’y: (z z> €SLy(Z) [a—l=c=d—1=0 (modN)},

To(N) = {’yz (C Z) €SLy(Z) [¢=0 (mod N)}.

S

We are mainly interested in modular forms for I' = I'; (IV), hence we will write M (N) := M™(T'1(V)),
SEHN) == S (I(N).

Definition 1.1. The set of modular forms My (N) (resp. cusp forms S (N)) of weight k and level N is the
finite dimensional sub-vector space consisting of the holomorphic functions in M7*(N) (resp. Sp*(N)).

1



2 CHAPTER 1. BACKGROUND MATERIAL

Let f € Mi(N). Since
1 1
(0 1) e I'1 (),

we have f(z + 1) = f(z) and we can consider the Fourier expansion of f at infinity, which is given by:

fl@)=> an(f)d",  q=e"",

n>0
where a,(f) € C, because a modular form has moderate growth at infinity. In particular:
o f € S,(N) if and only if ag(f|xy) = 0 for all v € SLy(Z) (in particular, ag(f) = 0);
e we say that f € My(N) is normalized if a1 (f) = 1;

e we define the modular forms with coefficients in some subring A of C, as the set of modular forms
whose g-expansion has coefficients in A, and we write My (N)4 and Si(IN)4 for those sets;

e we can define an action of Aut(C) on the g-expansion.

Since a modular form is determined by its g-expansion, we will often define a modular form and work with
it using its Fourier coefficients a,(f). This will be very important in the rest of the dissertation.
On the space of real analytic modular forms we define the Shimura-Maass derivative operator as

1 d k
= — | — 4 — ) : M™(N) — M, (N L.
P o (dz + 2iy> i (N) ir2(V) (1.3)
and we also consider its iterate 0}, := Opqop - -+ - O + MP(N) — Mp",,(N) (impose 8y := 1). The

Shimura-Maass operator does not respect the spaces of modular forms: given f € My(N), d;f does not
belong to My (N) in general, although it is still a real analytic modular form. For an integer 0 < ¢t < k/2
we define the spaces of nearly overconvergent modular forms and cuspforms as follows:

t t
M{"(N) := EBai—szk—Zj(N)v Sl?h(N) = @(gi—QjSk—?j(N)'
j=0 j=0

This is not the most general definition, but it will suit our needs. In particular, we can define the

holomorphic projection as the map:
el . MY (N) — My (N)

induced by the above decomposition. It clearly respects the subspace of cuspforms and, as shown in
[Hid93, §10.1], it is both SLg(Z)-equivariant under the weight-k-action and Aut(C)-equivariant for the
action defined on g-expansions.

Proposition 1.2. Suppose that f € Sg(N) and g € MM (N). Then:

<f7 g>N = <f7 Hh01(9)>N
Proof. See [Hid93, Theorem 10.2]. O

1.2 Nebentype decomposition and Hecke operators

We have a short exact sequence:

1—-T1(N)—Tog(N)— (Z/NZ)* —1

(Z Z>Hd
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which defines the action of (Z/NZ)* on MZ"(N) via the weight-k-action. For d € (Z/NZ)* we call this
operator the Diamond operator and we denote it by (d). This operator induces a decomposition of the
various spaces of modular forms in y-component, for every Dirichlet character x : (Z/NZ)* — C*. If
denote by M"(N, x) the set of elements of M2"(N) on which (d) acts as x(d), then we can write:

M (N) = @ M™ (N, x)

When x = 1 we recover M2"(T'o(N)). If f € M2"(N,x), we say that f has nebentype character x. The
nebentype decomposition respects:

e the subspace of real analytic cusp forms;
e the subspaces of modular forms and cusp forms;
e the subspaces of nearly holomorphic modular forms;

We can summarize the situation in the following diagram of inclusions:

Sk(N.x) <€ SPMN,x) C SR(N,X)
N N N (1.4)
Mk(N7X) - Mlgh(NaX) - M?(H(N7X)

Given a modular form f € My(N,x)a we can consider the modular form f* obtained by applying the
complex conjugation to the coefficients, i.e.:

f* _ qun.

n>0

We observe that f* € My(N,X)a.

If we take (f,g) € M (N, x) x S2(N,x), then f(2)g(z)y* and y~2dzdy are not only 'y (IV)-invariant
but also T'g(N)-invariant. For this reason we consider the following normalization of the Petersson scalar
product:

(awi= [ FEgEt ey, (15)
To(N)\H
Notice that if N | M, then (f,g)p = [Lo(N) : To(M)] - (f,g,)n. Define S(N) := [SLa(Z) : T'o(N)], then:
_ S(M)

We now present a short exposition of the Hecke operators and we refer to [DS05, §5] and [Hid93, §5.3]
for more details. Given a prime number p we consider the double coset operator:

nm) (o o) n={s(; o)1 en}.

This double coset can be written as a disjoint union:
10 - 10 0
_ p .
Iy (N) <0 p> I'i(N) = EﬁOI‘l(N) <2 p)UI‘l(N) (0 1) if pt N

Ty (N) ((1) g) Fl(N):jZ:Fl(N) C 2) itp|N.
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This decomposition allows us to define the Hecke operators as the double coset operator acting on the
space of modular forms via the weight k action defined in equation 1.1. We denote them by T, when p{ N
and U, when p | N and we call them, respectively, good and bad Hecke operators. For f € My (N, x) we
have:

an(Tp(f)) = anp(f) + X(p)pk_lan/p(f)‘
where a,,/,(f) = 0 whenever p { n. In particular, if f is normalized we have:

ar(T,(f)) = ap(f)

The Hecke operators commute with each other and with the Diamond operator. This allows us to define
operators T, for all n which satisfy aq (T, (f)) = an(f)-

For a vector space V' on which T), are acting, we write h(V') for the subset of End(V) generated by
the Hecke operators and h(V)y for the subset generated by good Hecke operators. We use the notation
hi(A) := h(Sk(N)a) and hy(A) N, since this does not create ambiguities on the level. We have the following:

Theorem 1.3. For every subring A C C we have a perfect pairing:

bk(A) XSk(N)AHA
(T, f)ra(T(f))

Proof. See [Hid93, §5.3, Theorem 1]. O

We say that f € Mp(N,x) is a normalized eigenform if it is normalized (ai(f) = 1) and it is an
eigenform for all the Hecke operators, i.e. for by (or, if specified, for all good Hecke operators, i.e. for
b ~). Normalized eigenforms have algebraic integer coefficients and we can define:

Q(f) == Q(an(f) | n = 0).

This field is called the field of rationality of f. It is known to be a number field. Using theorem 1.3 we see
that every normalized eigenform f arises as a morphism of A-algebras Ay : hi(A) — A, hence it defines a
prime ideal Iy C by, n(A) as follows:

Iy := ker(Ay) = (To, — an(f) | Vn € Zs1, (n, N) = 1)

If f € Mi(N,y) is a normalized eigenform for all good Hecke operators, we define the f-isotypical com-
ponent of My (N, x) as:

Mi(N,x)1f] = {g € Mx(N,x) | Tpg = a(f)g,Vpt N}.
Then Mj(N, x)[f] = kerI; and it is the set of eigenforms g € Mjy(N,x) which have the same system of
eigenvalues as f for all good Hecke operators.
1.3 Oldforms, newforms and basis
For each integer d | N and each modular form f € Si(N/d) we can consider the map:
f(g) = f(a®) € Sp(N)

This gives rise to a dichotomy: in Si(NN) some modular forms are linear combination of modular forms of
lower level and some others are not. To be more precise, we consider the map:

Lq - Sk(N/d)2 — Sk(N)
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given by (f,9) — f(q) + g(q?). Then we define:

Se(N)? =" 1, (Sk(N/p)?)

p|N

and we denote by Si(N)"" the orthogonal complement of S;,(N)°'9 with respect to the Petersson scalar
product. Since those spaces are stable under the action of the Hecke operators we have that:

Theorem 1.4. The spaces Sk(N)° admits an orthogonal basis of eigenforms for by n. The space
Sk (N admits an orthogonal basis of eigenforms for by.

In particular we can fix a basis {f} of normalized eigenforms for the set S (V, x)™" and we have the
following decomposition:

SN = @ S0,
fe{f}

which is a decomposition in one-dimensional spaces, i.e. Si(N,x)[f] =C- f.

For the space of oldforms we have a different situation. In fact if f is new in level M | N we have that
the space Si(N, x)[f] admits a basis of normalized eigenforms. In order to describe it, we consider the
Hecke polynomial of f at a prime p defined as follows:

T? — a,(f)T + x(p)p* "

This polynomial admits two roots that we will call a,,(f) and 5,(f). It is easy to check that

(@) = Bp(f)f(q") € My(Mp, x)

is a normalized eigenform which admits o, (f) as eigenvalue for U,,. Consider a choice p1 := {1, (f) }pin/ar €
{ap(f): Bp(f)}pin/ar- Then a basis of Si(N, x)[f] is determined by the set of elements of the form

ful) == @) = > mp(f)- (g™, (1.7)

pIN/M

for all possible choices of y. In particular, the space My(N,x)[f] has dimension 2#{PIN/M} = Given an
element g € My (N, x)[f], we say that f is the associated primitive newform and that M is the conductor
of g.

1.4 Eisenstein series

Let x : (Z/N,Z)* — C be a Dirichlet character of conductor N,, and let Q,, denote the finite extension
of Q generated by the values of y. Let

be the Gauss sum associated with the Dirichlet character x.

Consider an integer k such that x(—1) = (—1). If either k > 2 or k > 1 and ¥ is non-trivial, then we
define the holomorphic Eisenstein series Ek,x of weight k£ and nebentype character y to be the modular
form defined by:

. X~ H(n)
Epy(2) = Z N7 F ) € My(Ny, X).
(m,n)€Z2\{0}
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It admits a Fourier expansion, but in this form it is not normalized (a; # 1). We define the normalized
holomorphic Eisenstein series Ey, , (z) of weight k and nebentype character x as:

k(k— 1) N
Ek,x(z) = 2(]V2>;T(Z]§k7'(1)()1) 'Ek,x(z)~ (18)

Proposition 1.5. Let oy,_1 ,, denote the function on the positive integers defined by o1 (n) = Zd\n x(d)d*F—1.
Then Ey, . is a newform of level Ny, and its g-expansion is

Lix,1—k .
Bi(2) = TR S o " € M)
n>1
Proof. Tt is a classical result, see for instance [Hid93, Prop. 5.1}, [Shi76, (3.4)], or [Mia76] O

Consider a multiple N of N, and let x, denote the character mod N induced by x. For every k > 1
such that x(—1) = (=1)¥, we define the non-holomorphic Eisenstein series of weight k and level N attached
to the character x, as the function on H x C given by the rule

Bin, (225) = 3 Xy~ '(n) y

ko 2s "
(m,n)€Z2\{(0,0)} (mNz+n)* [mNz+n

S

(1.9)

This series only converges for (s) > 1 — k/2, but we have the following result:

Theorem 1.6. The FEisenstein series Ek,xzv (2, 8) admits a continuation to a meromorphic function of the
variable s and satisfies a functional equation relating values at s and at 1 — k — s.

Proof. See [Hid93, §9.3, Theorem 1] or [Mia76, §7.2]. O

For any fixed s in the region of convergence, EN';C,XN (z, s) is a real analytic modular form. For k& > 2, or
k > 1 but x # 1, the series arising by setting s = 0 is holomorphic in z and gives rise to a modular form

Ek:XN (Z) = EkaXN (Za 0) € Mkr(N7 X)
In a way similar to that of equation (1.8) we can define the normalization of Ek,xN as follows:

NE(k—1)! =
Eiy, (2) = 20m)F (1) By, (5) (1.10)
Proposition 1.7. The Eisenstein series Ey y () and Ey () have the same eigenvalues for all the good
Hecke operators Ty, n{ N.

Proof. 1t can be easily seen from [Shi76, (3.3)] that Ej , (2) is a linear combination of Ej (dz) for
d | N/N,, hence the result follows. This can also be seen by specializing the formula of [Mia76, Theorem
7.1.3] in our case. Notice that with respect to the latter reference, the normalization we adopt here is
non-canonical. In fact aq(Eg ) # 1 in general, but it always lies in Q. O

We can explicitly describe the action of the Shimura-Maass derivative operator on the Eisenstein series
with the following:

Proposition 1.8. Fort < k/2 we have that E’th (z,—t) € MP(N,x). In particular:

~ (k—2t—1)! .
By, (2, 1) = m(—m)t&,’;_gtEk_gm (2). (1.11)
Proof. For any value of s, the series Ekny (z,s) belongs to MP" (N, x) and one verifies that:
~ s+ k ~
0k Bk x (z,8) = — g Bty (z,s —1).

Continue by induction on ¢t and put s = 0 to get the result. O
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1.5 Algebraic modular forms

For this section we follow the approach of [Kat73] as explained in [BDP13]. Let R be a ring in which
N is invertible and let A be an elliptic curve over R.

We say that a couple (A,t) is an elliptic curve with T'y(N)-level structure if ¢ is a closed immersion
of the scheme Z/NZ in A defined over R. This immersion gives rise to a section s : Spec(R) — A of
order N which is the image of the section 1 of Z/NZ. We write E(N) for the set of isomorphism classes
of elliptic curves with I'y (N)-level structure, where we consider isomorphisms of elliptic curves preserving
the 'y (IV)-level structure.

We say that a triple (A/R,t,w) is a marked elliptic curve if (A,t) is an elliptic curve with T'y (IV)-level
structure and w is a global section of the sheaf or relative differentials Q /g over R. We write & (N) for
the set of isomorphism classes of marked elliptic curves, where the isomorphism is given by the pullback
at the level of differentials.

Define the Tate elliptic curve Tate(q) := G,,/q” over Z[[q]] equipped with some level structure ¢ defined
over Q((¢*/?)), for some d | N, and the canonical differential weay := du/u. Then the triple (Tate(q), , Wean)
is defined over Q((¢'/4)).

Definition 1.9. An algebraic modular form of weight k and level IV defined over a field F' is a rule
which associates to every marked elliptic curve (4,t,w) € E(N)g defined over an F-algebra R an element
f(A,t,w) € R such that:

(1) (base change compatibility) For all F-algebra homomorphisms ¢ : R — R’, f((A,t,w) ® R') =
O(f(A,t,w));
(2) (weight k condition) for all A € RX, f(A,t, \w) = A\"Ff(A, t,w);
(3) (g-expansion) f(Tate(q),t,wean) € F[[g"/4]].
We say that f is a cusp form if f(Tate(q),t, wean) € ¢~/ F[[¢g"/4]].

Consider now the open modular curve Y;(N) classifying the elliptic curves with I'y (IV)-level structure
and its compactification X;(N) obtained by adding the cusps. For N > 3, I';(N) is torsion free, hence
Y1 (V) is a fine moduli scheme admitting a smooth proper model over Z[1/N], representing the functor
R — &(N)g, whose set of C-points can be identified with the quotient H/I'; (). An algebraic modular
form defines a modular form in the classical sense by mean of the following rule: for each 7 € H,

f(7) = F(C/(1,7),1/N, 2midz),

where z is the standard coordinate of H.

Let # : € — Y1(N) be the universal elliptic curve with level N structure over Y;(N) and w :=
7T.Q¢ /v, (n)- An algebraic modular form f gives rise to an element of H O(Y1(N),w"*) via the following
map:

wr(A,t) = f(A,t, w)w”,

where (A,t) € Y1(N) and w is any generator for Q}E/R. Assuming that N > 5, the cusps of X (V) are

regular in the sense of [DS05, §3.2], hence the line bundle w admits an extension to Xo(N) characterized
by the property that H(Xo(N)p,w®) = M (N)p.

1.6 Overconvergent modular forms and Coleman classicality re-
sult

Fix a prime number p{ N and continue writing X; (V) for the rigid analytic space associated with the
curve X;(N)g,. Take the Eisenstein series £, 1 as a lift of the Hasse invariant and consider the ordinary
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locus:

Xy (V) = (o € X1(N)(Cy) | ordy By (2) = 0}

and also, for € > 0:
X1(N)<¢:={z € X1(N)(C,) | ord, E,—1(x) < €}.

Then for any complete subfield K C C, we can define:

MP (N)g = HOX (N)%EL k), MEE(N)k = lim HO(X1(N) 55, w").
e>0

In particular, MP°(N)g C M,gp) (N)k. On these spaces we have an action of the Hecke operators and
Diamond operators and we can consider the bad Hecke operator U = U, and the V operator, acting on
g-expansions by the rules:

Uf(q) = apng",  VF(@) = ang"

n>0 n>0

We also define the Serre derivative operator as follows:

Finally, we define the p-depletion of f:

fPl=(1-VU)f(g) = ) ang"™
ptn

that we can see as the derivative of the modular form F defined by:

a n
Fg) =3 g
pin
more precisely:

dF = fl,

We call such a F the overconvergent primitive of f, it can be defined as =1 f := lim,_,_, d*f.

The operator U is completely continuous on Mp°(N)g and it induces a slope decomposition. If f is
an eigenform, U(f) = a,(f) - f and its slope is the p-order of its eigenvalue, i.e. ord,(a,(f)). We say that
f has slope j if ord,(a,(f)) = j and that f is ordinary if ord,(a,(f)) = 0, i.e. if a,(f) is a p-adic unit.
Hida’s ordinary projector is defined as the following operator:

Cord := lim U™, (1.12)

n—oo

This defines a Hecke equivariant projection from MP°(N)k to its ordinary subspace
rd
M;;C’O (N)K = eordM]SC(N>K-

Consider now the roots a and 3 of the Hecke polynomial of f at p. We can order them in such a way that
ord,(a) < ord,(8). We can define two p-stabilizations of f as follows:

fa(q) == f(q) — Bf(¢") and f5(q) == f(q) — af(q’),

in particular we have that Uf, = af, and Ufs = Bfg. If f is ordinary, then ord,(«) = 0 and we call f,
the ordinary p-stabilization of f. For an ordinary modular form we always have an ordinary p-stabilization.
In weight £ = 1 we might have 2 distinct ordinary p-stabilizations.



1.7. CM POINTS AND ELLIPTIC UNITS 9

Theorem 1.10. For every k > 2, all overconvergent modular forms of slope strictly less than k — 1 are
classical. In particular, for every f € M,?C’Ord(N) there exists a modular form g € My(N) such that f is
the ordinary p-stabilization of g.

Proof. See [Col95]. O

From this theorem we can identify M{“°"*(N) with the space M (I'1(N) N To(p)). For a Dirichlet
character x modulo N, the above results can be summarized in the following diagram:

S« Np.X)e, C SP(N,x) < SP(N,x)
N N N (1.13)
Mi(Np,x)e, C ME(N,x) < MP(N,x).

1.7 CM points and elliptic units

Let K = Q(v—D) be a quadratic imaginary field with ring of integers O. For every ¢ € Z>1 we
denote the unique order of conductor ¢ in K by:

Oc = Z —|— COK.

In particular, O; = Ok. We say that an elliptic curve A/C has complex multiplication by O, if End(A) =
O.. Consider the Picard group Pic(O.) of rank one projective O.-modules up to isomorphisms, then to
every element a € Pic(O.) we can associate the elliptic curve C/a, which has complex multiplication by
O.. Let us write Eom(O,) for the set of elliptic curves having CM by O. up to isomorphism and let:

Eom = Ue>1Ecm(Oe).

Every elliptic curve with complex multiplication by O, can be seen as a point j(a) := j(A4,) € X (1) via the
j-invariant, hence Ecy € X (1). We may write X (1)cy for the set of CM points on X (1) and, similarly,
Xo(N)em and X5 (N)em for the fiber of X (1)cm via the obvious projection maps.

We have an action of Pic(O,.) on the set Ecm(O,) defined as follows: ax A = A/Ala], for a € Pic(O,).
Since the action is simply transitive, if we fix A to be the elliptic curve with complex multiplication:

A:=C/O., (1.14)

we can obtain all the other ones via the action of the Picard group, hence we can define A, = axA = C/a"1.
If H is the ring class field of K of conductor ¢ we know that Pic(O.) ~ Gal (H|K) via the reciprocity map
of global class field theory, arithmetically normalized, i.e. a prime ideal o maps to the Frobenius element
0. The Shimura reciprocity law tells us that:

j(Aa) = 04j(A).

Assumption 1.11. There exists a cyclic ideal M of O of norm N i.e. such that O /M ~ Z/NZ. We
also assume that N is coprime to ¢

This is usually called Heegner hypothesis. The Shimura reciprocity law and the Heegner hypothesis
ensure that A is defined over H, hence j(A,) € X(1)(H) and that the fibers in X;(N) and Xo(N) are
defined over H, too.

CM points on X;(N): let us consider the map X;(IN) — X (1). We can consider the fiber of j(a) in
X1(N). It is the set of couples z(a) = (Aq,tq) Where tq is a 'y (N)-level structure induced by the choice
of a section t4 : Spec(H) — A[N].
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Remark 1.12. The choice of the I';(N)-structure ¢4 is not unique, then the map a — z(a) is not well
defined since we might have several choices for the level structure. For this reason we introduce here a
choice that will be useful in what follows. Consider z := z(O.) = (A,t) where ¢ is a choice of I'y(N)-
structure. Then we have a natural map A — A, which induces a I'y (IV)-structure on Ag: this determines
a point x(a) € X;1(N) uniquely. The set of points:

z(a) € X1(N)(H)

defined in this way is in a single orbit for the action of Pic(O,).

CM points and marked elliptic curves: it is useful to point out another choice that will be
considered later on. Starting from a CM point x = 2(O.) € X1(N) we can define a marked elliptic curve
Z(0,) = (A t,ws) by fixing a nonzero wy € Q}MH. Once such a choice is made, we can define in a
coherent way Z(a) := (Aq,tq,wq) such that (Aq,t,) = 2(a) and w, is chosen such that w is its pullback via
the map A — Ag, so that Z(a) are in a single orbit for the action of Pic(O,).

CM points on Xy(N): In a similar way to that of X;(N), we can consider Xo(N) — X(1) and the
fiber of j(a) in Xo(NN). It is a collection of points z(a) € Xo(IN)(H) consisting in couples (Aq, Aq[N]).
All of possible CM points of conductor ¢ on Xo(N) are obtained from x with the action of Galois group
Gal (H|K) and the Atkin-Lehner involutions as explained for instance in [Gro84]. Such a point is often
called in the literature a Heegner point. We use here the same notation as for X;(/N) since in what follows
it will not create ambiguities.

Elliptic units: As explained in [DD06, §1], we fix a choice of a modular unit U € O}X,O(N), that is,
a holomorphic and nowhere vanishing function on Yy(N) which extends to a meromorphic function on
Xo(N). Then the evaluation of U at CM points is an algebraic number. More precisely, if we consider
x € Xo(NV), then the element u := U(z) satisfies the following properties:

u e OH[I/N]X
(0 —1)(u) € OF, for all o € Gal (H|K);

In a similar way we can define u(a) and all of these units are in the same orbit via the action of Pic(O.).



Chapter 2

Complex L-functions

In this chapter we introduce one of the main tools that we are going to use in our dissertation: the
L-functions.

Their story started from the Riemman zeta function, the Dirichlet L-functions and the subsequent
generalizations: zeta function of number fields, Hecke L-functions, etc. The theory of motives is a unifying
framework which allows to undercover what an L-function should be in great generality.

The general philosophy is roughly the following: to a “motive” M we can associate an L-function
L(M, s) of a complex variable s which is defined as an Euler product for each prime p. For a prime ¢ # p
one considers the /-adic realization M, of the motive and defines:

Lp(M,T) = (det(l - TJP\M}’))

where oy, is the Frobenius element at p in Gg, and I, is the inertia subgroup at p. The L-function associated
to M is then:

L(M,s) = [[ Lp(M,p~)~".

This L-function (conjecturally) admits a meromorphic continuation and a functional equation. The study
of the special values of L(M, s) outside the region of definition contains key information on the motive M
and leads to a better understanding of its properties.

We have seen in the introduction the prototypical examples which are the analytic class number formula
(where the motive is a number field) and the Birch and Swinnerton-Dyer conjecture (where the motive is
an elliptic curve defined over a number field). Our main motivation in this dissertation is the Birch and
Swinnerton-Dyer conjecture and its equivariant refinement (see Chap. 4). All these are special cases of
the (much) more general equivariant Tamagawa number conjecture (ETNC) for motives.

Although the theory of motives and motivic L-functions is a very active and deep field of study,
it will be sufficient for our purposes to introduce L-functions in terms of compatible systems of A-adic
representations. Nevertheless, the compatible systems we are going to treat arise from motives (of an
elliptic curve, of a modular form, excetera). For this reason we will sometimes talk about the associated
motive as the object from which the compatible system that we are treating arise, without any further
explaination about the nature of motives.

Given a compatible system of A-adic representations V, its L-function is defined as:

L(V,s) =[] &™)

S

where ®,(p~*°) are the Euler factors of L(V,s). They are quite simple polynomials evaluated at p~*.
This L-function is a product indexed by the finite places but we can complete it with a factor at infinity

11
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Lo (V,s), a product of gamma functions which is strictly dependent on the object M that generates the
compatible system V.

In particular we will need the L-functions associated with modular forms, Hecke characters and Artin
Representations. The other L-functions will arise from those three cases by tensoring the associated
compatible systems of A-adic representations. Most important to our discussion will be the Rankin double
product L-function and the Garrett triple product L-function.

2.1 Compatible systems of \-adic representations

Let G be a profinite group and let E be a topological field. A representation of G of dimension n with
coefficients in E is a continuous group homomorphism:

p: G — GL,(E).

It is equivalent to ask for an n-dimensional vector space V over E on which G acts continuously and
linearly.

Given two representations p and p’ of G whose underlying vector spaces are V' and V', and given a
group extension G C GG, we can define new representations using linear algebra operations, for example:

o the dual representation (or contragradient representation) p¥ whose underlying vector space is VV =

Hompg(V, E);
e the direct sum representation p & p’, whose underlying vector space is V & V/;

e the tensor product representation p @ p’, whose underlying vector space is V @ V/;
e the induced representation from G to G Ind%(p), associated with the vector space V RE[q] E[G);

e the symmetric square representation Sym? (p) which is the subrepresentation of V@V invariant under
the map (v, w) — (w,v);

e the adjoint representation Ad(p), whose underlying vector space is the space of trace zero endomor-
phisms of V, End"(V);

e the determinant representation det p, whose underlying vector space is A"V

We will deal with Galois representations which are representations of the absolute Galois group Gx =
Gal (K*°P|K) of some field K. A Galois representation is said to be a global representation if K is a global
field and a local representation if K is a local field. A representation is said to be an Artin representation
if E C C. It is said to be an ¢-adic representation if E C Q,. Sometimes we call it A-adic, if A is the finite
place above ¢ induced by the inclusion.

Let now K | Q, be a finite extension and p : Gx — GL,(E). Let I C Gx be the inertia subgroup and
define:

VIi={veV|v =uvVocl}.

This is a sub vector space of V and it defines a representation p!. We say that p is unramified if p = p’
(i.e. if p(I) = {1}), otherwise we say that p is ramified. Denote by o, the arithmetic Frobenius of G, i.e.
a lift of the Frobenius morphism which acts on the residue fields as z — z#OK/mx

We define the characteristic polynomial of p as:

B(p)(T) = det(1 — Tp(o)|y+) € E[T]

We say that p is integral if ¢(p)(T) € Og[T).
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If K is a number field, we say that p : Gk — GLy(E) is unramified at p C Ok if pla,, is unramified
and that it is ramified at p otherwise. We define the characteristic polynomial of the Frobenius at @ as:

P(p) := ®(plax,) € EIT]

For unramified primes, the degree of the characteristic polynomial equals the dimension of the representa-
tion while for ramified primes it does not exceed it. Assume that F is a number field and X is a finite place
of E whose norm is £ = NA. A family of A-adic representations is a collection V = {py : Gx — GL,(E\)}
indexed by the finite places A of E (to ease the notation we drop the index).

Definition 2.1. A compatible system of A-adic representations of K is a family of A-adic representations
V = {pr} such that:

(1) there exists a finite set S of places of K, independent on ¢, such that each representation py is
unramified outside S U {L | ¢};

(2) the characteristic polynomials ®,(py) are in E[T]. Moreover they do not depend on A, if p 1 ¢.

The minimal set S for which this holds is the exzceptional set of V and the primes p € S (resp. p ¢ S) are
called bad primes (resp. good primes) of V.

Since a compatible system of A-adic representations is essentially a collection of vector spaces, we can
consider all of the fundamental operations that we can do with vector spaces, as seen above. In particular
we can take the dual, the direct sum, the tensor product, the induced, the symmetric square, the adjoint,
etc.

Up to an extension of the scalars in F, there is an obvious notion of isomorphism of representations. It
is important to remark that the characteristic polynomials are invariant under isomorphism so that we can
consider an isomorphism class of compatible systems of A-adic representations and we still denote them
by V.

Let V be an isomorphism class of compatible systems of A-adic Galois representations of K, with
exceptional set S and characteristic polynomials ®,(7"). Then we can associate to V' an L-function L(V, s)
defined as an Euler product as follows:

L(V,s) = [ @o((Np)™)~".

We will refer to the factors ®,((INp~*)) as the good Euler factors of L(V,s) if p ¢ S and as the bad Euler
factors of L(V,s) if p € S. For this L-function we have the following properties as for the Artin formalism:

L(Vi ® Va,s) = L(V1,5)L(Va,s),  L(Indk V,s) = L(V,s)

In general the L-function associated with a compatible system V' is only defined for R(s) > 0, but
in all of the cases of interest for us it will admit a meromorphic continuation to the complex plane. In
order to describe the functional equation one needs to consider the completed L-function which involves
the presence of the Gamma factors:

Tr(s) := F7(Ti522)7 Te(s) == ?;Sz

(2.1)

We define the completed L-function as:
L*(V,s) = Loo(V, s)L(V, s),

where L. (V,s) is an appropriate product of the above gamma factors. In the cases we consider, the
L-function admits a functional equation which is of the following form:

AV, s) =e(V)A(VY,w — ).
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where (V) is a complex number of norm one and A(V,s) = A(V)*/2L*(V, s), for a well defined positive
integer A(V). We do not describe here the general recipe for Lo (V, s) nor we will say more about (V)
or A(V). Instead we will give the explicit recipe of these objects in the specific cases we will treat. Notice
that neither the functional equation nor the meromorphic continuation are known to hold in general! The
proof of these properties is often obtained from an explicit integral representation of the L-function and
this integral representation is not known to exist in general.

We now briefly discuss the main sources of examples that will appear during the rest of our dissertation.

1) The compatible system arising from an Artin representation p : Gx — GL,,(C). Since p has finite
image, it takes value in a number field. Hence, by localization, it gives rise to a collection of A-adic
representations for every A. This obviously defines a compatible system V' (p) and we have:

L(V(p),) = L(p, s). (2.2)

2) The compatible system arising from a character of the ideal class group of a quadratic imaginary
number field K (a finite order Hecke character for K). Such a character:

P : Clg — C* (2.3)

can be seen as a Galois character of G via the reciprocity law of class field theory, which sends a
prime ideal @ to the arithmetic Frobenius o,. By abuse of notation, we still call ¢ the associated
Galois character so that 1(p) = 1(0,). In this way 1) is an Artin representation, hence it induces a
compatible system V(¢) and:

L(V(®),s) = L, s) == H(1 w(@))ﬂ

— Nos

The exceptional set S consists of the primes dividing Dg. In this case Lo (1, s) = T'c(s). We will
see the more general case of the Hecke characters of quadratic imaginary field in the next section.

3) The compatible system arising from a modular form f € Si(Ng,xy), for & > 1. Recall that a
representation is said to be odd if the image of the complex conjugations of Ggp has determinant
—1. The results of Shimura, Deligne and Serre-Deligne associate to any cuspidal modular form f an
irreducible, odd and 2-dimensional ¢-adic Galois representation of Gg such that for all primes p t N/
the characteristic polynomial at p is given by:

D, (p)(T) =T% = ap(/)T + x(p)p" "

These representations actually define a compatible system of representations V' = {py ¢} for which:

L(V(f),s)=L(f,s) (2.4)
The exceptional set S is composed by the primes dividing the level N¢. In this case, Loo(f,s) = T'c(s)

In the discussions which follow it is going to be important to distinguish very similar L-functions.
For this reason we introduce more notation. We will call an L-function primitive if it is the L-function
associated with a compatible system of Galois representations V. We will denote it by L(V,s). We will
call an L-function imprimitive if it is defined by the same Euler product of L(V,s) for almost all primes.
In particular if we remove the Euler factor corresponding to the set of primes above N, we will denote the
corresponding L-function by Ly (V,s). Sometimes imprimitive L-functions are a little bit trickier and they
are obtained by substituting the standard bad Euler factors with some other term. Altought we will not
use in general the standard notation, it is worth to remind that those imprimitive L-functions are often
denoted by Dg(V,s) (or simply D(V,s) when there is no ambiguity arising from the choice of the bad
Euler factors). In particular we can write:

Ln(V,s) = Euln(V,s)L(V,s), and Ds(V,s) = Euls(V,s)L(V, s)

where Euln (V. s) = [] ecp Po((Ngp) ™) and Euls(V,s) is an adequate elementary product of bad Euler
factor depending on the choice of Dg(Vs).
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2.2 Hecke characters and L-functions

Let K/Q be a number field and denote by ¥x = Hom(K, Q) the set of infinite places of K (remember
that we see Q C C via our fixed embedding). We say that Z[X k] is the set of infinity types. Any element
v € Z[E k] can be written as:

v = Z KoO.

oceEX K

Let ¢ C Ok be an integral ideal. Let I, denote the group of fractional ideals of K that are coprime to ¢
and J. := {(a) | > 0,a — 1 € ¢}, where a > 0 means that o(«) > 0 for every real embedding o € Xk ).

Definition 2.2. A Hecke character of infinity type v € Z[X k] for K is a homomorphism

¥:I. — C*, such that ¢((a))=a" = Ha(a)”", Va € J..

The largest ideal ¢, for which 1 is a Hecke character modulo ¢y is called conductor of 1.

Consider the norm characters of Q and K defned by:
N((a)) =la], =~ Ng=NoN§

and the trivial character 1k for any number field K. Their infinity types are, respectively, 1, > o and
0. They all have trivial conductor and their image lies in the positive real numbers.

If v = 0 we say that v is a finite order character. Such a character factors through I./P., where P,
is the set of principal ideals coprime with ¢. For this reason, it can be seen as a character of Gk via the
reciprocity map as explained in the previous section.

Given two Hecke characters 11,19 : I, — C of infinity type =, their quotient ¥ = 11 /19 is an Hecke
character of infinity type 0. Hence, given an Hecke character of infinity type -y, all the other characters
with the same infinity type can be recovered multiplying by a finite order Hecke character.

Definition 2.3. Consider an ideal ¢ C ¢,,. We define the L-function associated with the Hecke character
1) to be defined by the Dirichlet series:

B ¢(a) _ 1/1(@) -1
Le(y,s) = uCZOK Nk (a)s - (pl_)[_ (1 a W) .
(a,0)=1 o=

In particular, L(1,s) := L., (¥, s) is the primitive L-function associated with .

It is a classical result due to Hecke that the L-function L.(v, s) associated with the Hecke character 1
admits a meromorphic continuation to C and a functional equation relating values at s and 1 — s. This
result can be found in [Lan70, XIIT and XIV] proved both in the classical way and by means of Tate’s
argument (see also Tate’s thesis, [CF67, XV]). From the definitions it is easy to verify that for any k € Z
we have

L(1p,s) = L(yN ., s + k). (2.5)

There exists a number w(t) called weight of 9 such that x, + Kz = w(e)), for all o. We define the
central character of v, denoted by ey, to be an Hecke character of Q@ (which can be seen as a Dirichlet
character) such that:

P
vl = epNE.
We now restrict our attention to the case where K = Q(v/—D) is an imaginary quadratic field of

discriminant —D. For this, we fix an embedding o : K — C so that the only other complex embedding
is given by 4. In this way, we simply write « instead of o(«). In particular, a Hecke character ¢ of K of
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infinity type k10 + ko0 is given on J. by ¥((«)) = a*a”t. Thanks to our choice of o : K — C we will
write (K1, ko) for the infinity type of such a character.

For any Hecke character ¢ of infinity type (k1,%2) define ¢'(a) = (@), where T denotes complex
conjugation. We say that v is self-dual (or anticyclotomic) if ¢p = 1’. This forces ko = —k; so that an
anticyclotomic character has infinity type (k, —k).

The following lemma is well known.

Lemma 2.4. Let v be a finite order Hecke character of conductor ¢. The following are equivalent:
1. 9 is self-dual;
2. The central character of ¥ is trivial;

3. 1 is a ring class character of Gal (H.|K), where H,. is the ring class field associated with the order
O, and c is a positive generator of cy.

Proof. Tt is a representation-theoretical restatement of [Cox89, Theorem 9.18]. O

Given a Hecke character of K of infinity type (k — 1,0) (or (0,x — 1), we can associate to it a theta
series as follows: define the quantities

aEI{"w
where [{" is the set of the invertible ideals in I, with norm n. Define also ag(1) = hx /wk and ao(¢)) = 0

otherwise. As shown in [Zag08] or [Kanl2], the g-expansion

Op =D an($)q" =D an(0y)q" € Mu(DrNE (cy), xxE0) (2.6)
n>0 n>0

defines a normalized newform of weight &, level D KN{; (cy) and nebentype x xey. Moreover 6y, is Eisenstein
if and only if ¢ = 4)’; otherwise 6, is a cusp form.
Since 6y, is a modular form we can associate to it the L-function

L(0y,s) = ZM.

ns
n>1

From the definitions it is easy to see that L(fy,s) = L(1,s). In fact the compatible systems Ind% (1)
and V(6,) are the same. We will consider the completed L-function L*(v,s) = Lo (¢, s)L(¢, s), where

LOO(¢5 S) = FC(S)'

2.3 Double product L-function and Rankin’s method

2.3.1 Classical Rankin’s L-function

Let ¢ > k > 0 and consider

g= Zan(g)qn € SZ(Na Xg) and f= Zan(f)qn S Mk’(Na Xf)

n>1 n>1

We do not assume g and f to be newforms, but we do assume them to be eigenforms for all good and bad
Hecke operators. Set x := (xgxs)~" and let g* = >, an(9)q" € S¢(N,x, ") denote the modular form
whose Fourier coefficients are the complex conjugates of those of g. We have that a,(g*) = a,(9 ® X,) for
almost all p.
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For a rational prime g we let (cq(g¢), B4(g¢)) denote the pair of roots of the Hecke polynomial:

T? — ag(9)T + xg,n(0)g"

that we label in such a way that ord,(ay(g)) < ordq(B4(g)). Note that (aq(g),B84(9)) = (aq(g),0) when
q | N. If the weight is £ =1 and ¢ { N then both a4(g) and §,(g) are g-units. In that case we just choose
an arbitrary ordering of this pair. Adopt similar notations for f.

The Rankin L-function of the convolution of g and f is defined as the Euler product

L(g®f75):HL(Q)(g®fvS)v (27)

where ¢ ranges over all prime numbers and
LD(g® f,5) =(1 = ag(g)aq(f)a=") " (1 = aq(9)B,(f)a~*) "
x (1= By(9)aq(f)a™) (1 = By(9)By(fla=*) 7"

Recall that our normalization of the Petersson scalar product on the space of real-analytic modular
forms SP™(N, x) x M (N, x) is given by equation (1.5):

— pdxd
o= [ amEy (28)
Lo(N)\H Y
Proposition 2.5 (Shimura). For all s € C with R(s) >> 0 we have:
1 (4m)® ~
Lo ® f5) = 3 S (0" () o, (28— (4 1) fED)ew (2.9
2 T(s) N
Proof. See for instance [Hid93, p. 317, (1)] or [Shi76, (2.4)]. O

This proposition and the functional equation for the Eisenstein series (theorem 1.6) yield the analytic
continuation and the functional equation for the L(f ® g, s).

Now we want to replace Eszz,x ~ With a rational modular form having coefficients in Q,. To do this
we essentially follow the computation of [BDR15]. Choose integers m, t such that

l=k+m+2t andset j=FCl+k+m—-2)/2=0—t—-1.

For m > 1 and t > 0, evaluating equation (2.9) at s = j and using equations (1.11) and (1.10) one finds
that

fRan(& k, m) ’ L(g ® fa]) = <g*(Z), 5:nEm-,XN (Z) : f(z)>£,Na (210)
e (1) + ¢ = DIG = DI(N)
—D)f(m+t— 1)l — DIEN)™
= . 11
fran (€, 5, m) 9i—1(2m)i+m=1 . r(x—1) (2.11)
One could consider the completed L-function L*(f ® g,5) = Loo(f ® g, 8)L(f ® g, s), where:
Loo(f ®g,8) =Tc(s)lc(s —k+1).
Since " F DG - 1)
. m+t—1)(y—1)!
L =
Oo(f®g7]) (27r)2+m71 )
we could restate equation (2.10) in the following manner:
“1)EEN) ‘ .
N 141 © 9.) = {972 8 By (2) - F (e (212)

2 ()
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Remark 2.6. The L-function above is actually very close to the L-function associated with the compatible
system of Galois representations given by:

V(f,9):=V(f)®V(g).

Since the eigenvalues of the Frobenius at p are exactly

{O‘p(f)o‘p(g)a ap(f)ﬁp(Q): ﬂp(f)ap(g)v ﬁp(f)ﬂp(g) 1,

the good Euler factors of L(V(f, g), s) coincide to those of L(f®g, s). Then L(f®g, s) is an imprimitive L-
function associated to V'(f, g). This means that the behaviors of L(f®g, s) and L(V(f, g), s) are essentially
the same, but there might be a discrepancy of bad Euler factors, so that:

L(f ®g,s) = Euln(f,9,5) L(Vp(f,9), )

where Euln(f, g, s) is a finite product of Euler factors. The Euler factor can be trivial, for instance in the
case when g is a theta series defined by an Hecke character of an imaginary quadratic field.

2.3.2 The Gross-Zagier formula

For more details we suggest to have a look at [Dar04]. Let us now consider an elliptic curve E defined
over Q of conductor N and a quadratic imaginary field K = Q(v/—D). Consider the following Heegner
hypothesis:

Assumption 2.7 (HH). There exists a cyclic ideal 9t € O, of order N, i.e. O./N ~ Z/NZ.

As we have seen in section 1.7, this implies the existence of a point z € Xy(N) arising from an elliptic
curve with complex multiplication by O.. We fix once and for all a choice of this point.

The theorem of modularity ensures a parametrization m : Xo(IN) — E defined over Q as well as the
existence of a modular form f € Sy(N, 1) such that:

L(f,s) = L(E,s).

Take a finite order anticyclotomic Hecke character ¢. By theorem 2.4 it is a character of Gal (H|K) for
H ring class field of conductor ¢ associated with the order O, of conductor ¢ € Z>q. Write E(H)c :=
E(H) ® C, define P := w(x) and consider the point:

Py:= Y. ¢ Yo)P? € E(H)E, (2.13)
o€Gal (H|K)

where:
E(H){ :={P € E(H)c | P” =(o)P}.

Consider also the L-function:
L(E/K,,s) = L(V(f) @ V(¢),s),

which coincides with L(f ® 6y, s) under our assumption (HH). The Rankin method gives the analytic
continuation and the functional equation. The Heegner hypothesis forces the L-function to have odd order
at s = 1 and the theorem of Gross-Zagier guarantees that:

LI(E/K7wa 1) = <P1ZMP1Z1>NTa

where the dotted equal implies the presence of an unspecified non-zero constant and (—, —)nT is the
Néron-Tate height pairing.

Theorem 2.8. If ords—1L(E,¢,s) =1, then dimg¢ E(H)% =1 and Py is a generator.
Proof. See the main theorem of [BD90]. O
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2.4 Petersson product and L-functions: comparison of various
formulae

A classical result due to Petersson (see [Pet49, Satz 6]) relates the special value of L-functions to the
Petersson inner product. We have already seen such a result in proposition 2.9. Following the article
[Shi76] we want to derive a formula for the Petersson product in the specific case of theta series associated
with Hecke characters ¢ of imaginary quadratic fields and integer conductor c¢. More specifically, if ¢) has
infinity type (¢ —1,0) (or (0,4 — 1)), we have:

<9¢’ 91/)> = L(¢2’€)7

where the dotted equal means that we hide a constant. In this section we want to explicitly write down
the constant in terms of the fundamental invariants of the quadratic order O, = Z + cOg. This result can
be derived directly from [Hid81, Theorem 5.1], but we prefer to give a direct argument here which only
relies on the result of Petersson.

For this, given two elements f € Si(N,xy) and g € My(N,x,) we can consider their convolution
L-function D(g, f,s) defined by:

D(fag,S) :ZW

whose Euler product is given by factors of the form:

Dy (f.9:5) = (1 - %(fmp(i)ﬁp(f)ﬁp(g)) (2.14)
_ (1 B ap(f;?p(g)>1 (1 3 ﬂp(f])jp(g)>1(1 B ap(f;fp(g))1<l 3 ﬁp(fgsﬁp(g)>1_

With our notation x = (x,xf) ! it is easy to check that:
L(f®gas) :LN(X_1a2S_k_€+2) 'D(f,g,3)7

where Ly (x, s) indicates the Dirichlet L-functions with factors at p | N removed. We have already seen in
proposition 2.9 that we have a relation between L-functions and Petersson product of real analytic modular
forms. The equation (2.5) of [Shi76] can be derived from the above result by computing the residue at

k = ¢ and it states that: (4"
3 47
s=kD ' 9, = TN T A *7 y
Res k (f g S) F%(N) (ﬂ _ 1)' <f g>
where $(N) = [SLy(Z) : To(V)] is the index of T'g(N) inside SLy(Z). The factor 3/(7S(N)) appears
because of the different normalization of the Petersson product adopted by Shimura. If we take f = g* =
> an(g)g™ to be the modular form obtained via the complex conjugation of the Fourier coefficients of g,

then we find:

3 (47)*
Res.—1.D(g"*, g, 8) = —————L (g g). 2.15
ess=kD (9", g, ) w%(N)(e—l)!@ 9) (2.15)
Notice that in [Shi76, (2.5)] the complex conjugation doesn’t appear. That is a misprint, since the formula
is derived from [Shi76, (2.3)], and it was already noticed by Hida in [Hid81, §5].
We introduce the symmetric square L-function associated with the modular form g. We define it by

the following Euler product:
2

L(Sym®(g), s) = H(l - M>_1(1 — 7%(9;?}’(9))_1(1 _Blo)”

p? p?

)_1. (2.16)

The result in [Hid81, §5] is expressed in terms of L(Sym?(g) ® X, ' s) which can also be seen as an
imprimitive adjoint L-function.
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Lemma 2.9. If g = g* we have that:
SWN)r (¢—-1)! Ly(x.1)
<gag> = : v 2
3 (4m)t  Ln(x*,2)
Proof. Starting from equation (2.14), if we put f = g we find:
2 2 2. -1 —2 2\ -1
D(g,9,5) = (1 ~ ap(9) fp(g) ) _ (1 ~ap(9) ) (1 -~ Oép(f)ﬂp(g)) (1 _ Bplg) ) ' (2.17)
p=* p? p? p?
Using the fact that a,(9)B,(9) = x(p)p*~! and working on the Euler products one can easily derive the
following decomposition of L-function:

LN(X2a2S - 2€+2) X D(g,g,s) = L(Sme(g),S) X LN(Xst - £+ 1) (218)

: ResS:EL(Sme (g>7 S)

We conclude by taking residues and using formula (2.15). O

We now specialize the discussion to the case of a theta series of an imaginary quadratic field associated
with an Hecke character of integral conductor ¢ and infinity type (¢ — 1,0).

Lemma 2.10. Consider g = 0, € S¢(Dc?, xk), where v is a Hecke character of an imaginary quadratic
field K = Q(v/—D) of conductor ¢ € Z and infinity type (¢ — 1,0), for £ > 1. Then we have the following
decomposition of L-functions:

L(Sme(g)7 s) = L(1?,8) - Cpe2(s — £+ 1)

Proof. Remember that a,(9)3,(9) = xx(p)p*~t. To prove the decomposition, we rearrange the Euler
factors in four categories and we write:

e p = 2, for those primes which ramifies, p | D and do not divide the conductor ¢. For these primes,
b(p) = ¥*(p) = ap(g)? = p*~ " (see [Hid81, (5.10a)];

e p = p@, for those primes which split in K and do not divide c;

e p = p for those primes which are inert in K and do not divide ¢. For these primes we have
ap(9)? = Bp(9)? = p~" and (p) = p*~ 1
o p | c for the primes dividing the conductor of ¢, for which «y,(g) = B,(g) = 0.

Then we have:

p—@(

o 2. —1 2. -1 /—1, 1
IO (- ) )
| (R (R Ay

and

p=p? P’
2 1 20 A\ —1
L0~ 22

(—1

x H(1—pp; )71(1+pps )71.
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An easy comparison of the factors shows that the discrepancy is exactly:
[T Q=0 =Cper(s — £+ 1).
ptDc?

O

Theorem 2.11. Consider the theta series 0y € Sk(Dc?, xk) as in the previous lemma and assume that
(D,c) = 1. Then we have:

<9¢’6¢> = aPet(g) ’ fPet(e) ’ L("/)Qag)’ (2-19)
where:

uPet(E) = (g ;41)' and fPet(g) =

Here h, = #Pic(O.) and w,. is the number of roots of unity of O, = Z + cOk.
Proof. Thanks to lemma 2.10 we have that:

heV De? g2-2
we

Ress—¢L(Sym?(g),s) = L(y?, k) H (1 — }9) (2.20)
p|Dc?

Since 6, has complex multiplication by Yk, i.e. a,(g) = a,(g ® xk) for all p{ Dc?, we have that g = g*.
Hence we can apply lemma 2.9 that, with equation (2.20), gives us:

_S(DA)T (0—1)! Lpea(xk,1) 1
(0, 0p) = 3 ’ (47)° ’ DCDC2(2) pll;lc2(1_p)L(1/’27k)~

Combining the Dirichlet class number formula with the classical formula:
We Xk (p)
he = <[ (1- *2)

we can deduce that Ly(xk,1) = 2wh./w.V Dc?. Since moreover (y(2) = %2 [Lpe(1— 1/p?) we find:

I(DA)w (£ —1)! 12wheV Dc? 9
<9¢79¢> = 3 ’ (47‘&')[ ’ 9 N 1 L(Qﬁ 7k)
WeT DC Hp‘Dcz (1 + 5)
We get the result noticing that I(N) = N[, (1 +1/p). O

The argument given above is in fact slightly different to that of [Hid81, §5]. Hida uses the L-function
L(Sym?(g) ® Xk, s) so that the same result reads as follows:

(t—1)! hvVDZ D

Oosb0) = gaimage =0 gy L0 (2:21)

where ¢ is the Euler function. Since D/¢(D) = [],p(1 — 1/p)~1, it coincides with the bad factors of
L(1?, ) hence it is equivalent to our result.

For a general theta function one can also find a closed formula, but it involves special values of Dirichlet
L-function that do not enjoy a straightforward interpretation in terms of the above invariants. Hence, for
a more general theta series we can always write:

(0, 05) = Aper(£) - Fpee (€) - L(¥2xg, 1), (2.22)
—1)!

where fp (¢) = ( —% and Apey(€) = Ay - 2272 for some constant Ay,
We want to conclude the section by recalling the theorem of Hida that holds for any modular form:
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Theorem 2.12. Let g € S¢(N, x) be a normalized newform, then:
9200+1

-
where Ag = (¢(N)) /(NN - ¢(N/Ny)) (here ¢ is the Euler phi).

L(Sym*(g) @ X, ) = Ag-{9,9)
Proof. See [Hid81, Theorem 5.1]. Pay attention to the different normalization of the Petersson product. [

We might aswell restate the above theorems using the completed L-function instead. It is obtained by
adding Lo, (Sym?(g),s) = Tr(s — £+ 1)T'¢(s) and Lo (12, s) = T'c(s), so that:

L*(Sym*(g) @ X, £) = 2“7 A4(g, 9) (2.23)
. ) B 22 1
L*(y*,4) = . \/—< s Op)- (2.24)

Sometimes in the literature, the result of Hida is described using the adjoint L-function associated with
g. In particular, since:

Ad(g) ~ Sym®(g) ® X Xiye
we have that:
L(Ad(g), s) = L(Sym*(9) ® X, s + £ — 1),

hence the formula can be written as:

L*(Ad(g),1) = 241 Ay (g, 9). (2.25)

2.5 Triple product L-function and Garrett’s method

Let us consider three normalized and primitive cuspidal eigenforms

f = Z an(f)qn S Sk(N7 Xf)v 9= Zan(g)qn € S@(Nv Xg) and h= Z an(h)qn € Sm(Nquh)
n>1 n>1 n>1
of weights k, ¢, m > 2 such that x,xsxn = 1. Let N :=lem(Ny, Ny, Ny) and let Qggp, := QyQ4Qp, be the
field generated by the Fourier coeflicients of the three modular forms.
We can consider the compatible system of Galois representations associated with the tensor product
of the three representations of f, g and h, i.e.:

Vo(f:9,h) = Vo (f) @ Vi (g9) © Vi (h).

Definition 2.13 (Garrett-Rankin triple product). We define the Garrett-Rankin triple product L-function
to be the L-function associated with the compatible system of Galois representations V,(f, g, h) and we
denote it by L(f ® g ® h, ).

Remark 2.14. Notice that we consider here the primitive L-function associated with V' (f, g, h). In partic-
ular, the Euler factors at ¢t N are given by the degree-8 polynomial:

L9(g® f,5) =(1 = ag(g)ag(fag(h)T) " (1 = ag(9)By(fag(W)T) ™!
x (1= Ba(9)aq(fag()T) (1 — B4(9)B(f)ag(R)T) ™
X (1= aq(g)aq(f)Be(h)T)~ Y- aq(9)Bq(f)Bq(R)T )~
% (1= Bq(g9)aq(f)Be(W)T)™ - Ba(9)Bq(f)Bq(R)T )~

evaluated at T = ¢~°. On the contrary, if ¢ | N the naive Euler factors at ¢ defined by the above formula
do not need to coincide with those of the L-function we are considering. For a precise recipe of the bad
Euler factors, see [PSR87].
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The result of Garrett (see [PSR87]) ensures that the L-function L(f ® g ® h, s), completed with the
adequate factor at infinity Lo (f ® g ® h), admits a holomorphic continuation and functional equation of
the following type:

Mfog@h,s)=c(f,g.h) Mf@g@hk+L+m—2—s)

The study of the global sign £(f, g, h) of the functional equation is always an important part in the
study of the L-function and its properties. In our specific case it gives us information about the vanishing
of the function L(f ® g ® h, s) at the central point:

_k+l+m—2

¢ 2

The global sign for the functional equation of L(f ® g ® h,s) can be decomposed as a product of local
signs:
e(f,9.0) = [[ a(f:9.1).
q|Noo
The triple (k, £, m) is said to be unbalanced if there is a dominant weight, i.e. if k > {+m (resp. £ > k+m,
resp. m > k+ £). In the case when none of the weights is dominant, we say that the triple (k, £, m) is
balanced. In [Pra90] it is proven that

—1, if (k, ¢, m) is balanced;

oco\J ah = : 1
€ (fg ) {Jrl’ if (k, ¢, m) is unbalanced.

From now on we will assume that the local signs &,(f,g,h) are all equal to +1. In particular we shall
assume that the triple of weights (k, ¢, m) is unbalanced and that the dominant weight is ¢, so that:

Loo(f®g®h,s) =T¢c(s)Tc(s —k+1)lc(s—m+ Dlc(s+2—k—m).

This implies of course that the global sign is 41 so that the order of vanishing at s = ¢ must be even
thanks to the functional equation.
Notice that the condition x rxgXx» = 1 implies that k£ 4 ¢ 4+ m must be even, hence we can write:

(=k+m+2t, t>0.

We define the trilinear period associated to the triple (f, g, h) € Mg(N, XOFIXMe(N, xg)[g]x M (N, xn)[R]
as follows:

I(fvgv ;L) = <§*75]tcf : ;L>N1

The main result of Ichino, Watson and Woodbury says that there exists a choice of test vector ( f ,J, 7L)
such that:

L*(f®g®h,c)

=C(f,g9,h) - L*(Ad(f),1)L*(Ad(g), 1)L*(Ad(h), 1)

(2.26)

where: o
C(fmg?h) = CPet : H Cy(f,g?, h) < QX.

v|N oo

In fact the result of Ichino guarantees the above equality for all of the possible choices of test vectors
while the refinements of Watson and Woodbury assure the rationality and non-triviality of the local factor
involved in the product. Here Cpet is an absolute constant only depending on the choice of the normal-
ization of the Petersson product while the C,( f , 3, fz) are encoding data on the admissible representations
of GL2(Q,) and on the local components at v of f ,g and h. In particular, the constant is independent on
the weights.

From this discussion we can derive the following:
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Theorem 2.15 (Harris-Kudla, Ichino, Watson). For an unbalanced triple of modular forms (f,g,h) such
that £ = k 4+ m + 2t, t > 0, there exists a triple of modular forms:

(f,9,h) € Mp(N,x7)[f] x Me(N,xg)[g] X M (N, x1)[1]

such that

v v

faar (ks tm) - L(f © g @ b ) = [1(f, g, )|
where
fau(k l,m) = (c— Dl(c — k)l(c —m)(c—k —m+ 1)lx= 2. 21 =3k=mo

and with Caar = C(f, 4, ﬁ)/(AngAh) which is independent on the triple of weights (k,£,m);

Proof. Starting from equation (2.26), substitute the adjoint L-function using equation (2.25) and make
explicit the factor at infinity of L*(f ® g ® h, ¢). O



Chapter 3

p-adic interpolation of classical
L-functions

The basic setting for the p-adic interpolation of a complex L-function L(M, s) is the following:

(1) one considers a set of special values for s € Y C C, which is large enough, and can see U as a subspace
of a p-adically complete space U,

(2) the complex values L(V, s) for s € U can be naturally seen as values in a p-adic Banach algebra A,
(3) those values enjoy good p-adic properties of continuity (or analyticity),

then one can create a p-adic L-function .Z,(M) : U — A via interpolation. This function satisfies an
interpolation and defining property of the form:

Zp(M)(s) =c¢(M,s)- L(M,s), Vs el (3.1)

where ¢(M, s) is a fudge factor that we discuss in more detail below. This new L-function is supposed to
encode data about the motive M which is the object of our study, even though it is not defined directly
in terms of M. In particular, evaluating the function .%,(M) at a special point outside the region of
interpolation U, the resulting value does not correspond anymore to a complex counterpart and might
reveal new information about M. It is important to stress that in some cases .2, (M) strongly depends on
the region of interpolation that one choses. Therefore, different choices for U could lead to the construction
of very different p-adic L-functions arising from the same complex L-function.

There is another way to interpret this interpolation by p-adically varying the motive M, instead of the
variable s. More precisely:

(1’) fix a variable s, for instance s = 0, and p-adically deform the motive i.e. consider a family M :=
{My}r, indexed by a p-adically continuous weight variable k € W such that My, = M for some
ko € W,

(2’) prove that there exists a dense subset W C W containing ko such that the family of complex
L-values L(Mj,0) lie in a p-adic Banach algebra A,

(3’) show that those values enjoy good p-adic interpolation properties.

The result of this process is a p-adic L-function .Z,(M) : W — A which interpolates the motive in the
following sense:
Z,(M)(k) = ¢(My,) - L(My,0),  Vk e W (3.2)

25
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In particular, Z,(M)(ko) = ¢(M) - L(M,0). This kind of L-functions can be interpreted as a sort of p-adic
analogous of the derivative of the classical L-function.

In the formulae (3.1) and (3.2) we did not explain in detail the fudge factors which are fundamental for
the creation of the p-adic L-function. Some of those might come from the fact that one uses the completed
or the uncompleted classical L-function, some might arise from a non-standard normalization of the L-
function and some other are needed to actually make the p-adic interpolation possible. The latter are the
most important in order to be able to realize the points (2), (2°) and (3), (3’) of the above discussion. In
particular:

(2),(2’) In order to perform a p-adic interpolation in an algebraic way one needs to remove the transcendental
part of the complex L-function, without removing too much information with it. The periods are
the canonical transcendental numbers generating an algebraic value out of the (a priori transcen-
dental) special value L(Mp,0) in such a way that the resulting function still contains interesting
data (we might pick the function itself as period, but the resulting p-adic analogue would not be so
interesting...).

Deligne defines a critical motive M as a motive such that L(M,0) is a critical value, i.e. such that
the factor at infinity L., (M, 0) is a non-zero number. For a critical motive, Deligne conjectures that
the motivic period Per(M) is the good candidate to canonically algebrize the special value L(M,0),
so that:

Per(M) - L(M,0) € Q.

(3),(3”) The Euler-like factors arise because in the Euler product definition of L there is ®,(p~*), the Euler
factor at p. Since the function k — p* is p-adically ugly, we need to remove it in order to ensure
continuity and perform the p-adic interpolation.

Putting everything together, the general (imprecise) form of a p-adic interpolation formula is the
following:
Z,(M)(k) = e(My) - a(k) - f(k) - Per(My) - L(My,0),  Vke W (3.3)

and this formula uniquely determines the p-adic L-function .Z,(M). Here

e ¢(My) denotes the Euler factors at p that we remove to perform the interpolation. Sometimes we
will simply write e(k) to lighten the notation, when no confusion is created.

e a(k) are the terms which do not behave nicely p-adically arising from the usage of the complete
L-function. In particular it will contain powers of m and factorials depending on the weight variable;

o f(k) are factors which contain the information about the normalization taken and they behave nicely
p-adically (possibly after a wise choice of p);

Apart from the general philosophy, in practice one first needs to construct those p-adic L-functions and
then prove the interpolation property. In this sense, a p-adic L-function is a power series in Z,[[T]], which
can be seen as the Amice transform of a bounded p-adic measure. It is not always an easy goal to achieve
the construction and we will not enter in the details of these constructions, although we might give some
brief explanations. In this chapter we want to introduce the p-adic L-functions that we need, explaining
in details the domain, the region of interpolation and stressing the importance of the constants that we
did not show here, expecially the periods. The outcome will be a list of p-adic L-function determined by
their respective interpolation properties.

3.1 Complex multiplication and p-adic L-functions

Let us fix a quadratic imaginary field K = Q(v/—D). In this section we will introduce:
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e Katz two variable p-adic L-function;
e Bertolini-Darmon-Prasanna p-adic L-function (BDP p-adic L-function from now on).

They interpolate special values of complex L-functions along an appropriate subspace of ¥k, the set of
Hecke characters of K. In order to make the p-adic interpolation meaningful we need to endow the space
Yk with a p-adic topology that we describe briefly.

We first recall the adelic interpretation of the Hecke characters. A Hecke character ¥ : I, — C* of
infinity type (k1,K2) can be seen as a character ¥, : Ax — C* on the idele group of K, which is trivial
on K*. The action of the character is described by:

Ya(A -2 Zoo) = Ua(xf) - 2 VT2, VN 25, 200) € K X K x KX

where K, = K®R and K> are the finite idele. In particular, the data of 14 is equivalent to the collection
of local characters {ta v}, for all places v of K. For ¢ € X, the correspondence 9 — 1, is determined
on ideals a coprime to the conductor ¢ by the following formula:

p(a) = [ [ van(m)",

vla

where we denote by v both the place and the corresponding prime ideal by abuse of notation. In particular,
since ¥4 (a) = 1 for every a € J; (in fact for every a € K*), we recover that ¥ ((«)) = @™

From now on we will denote by 1 both the classical Hecke character and its idepic interpretation. Let
us assume that ¢ € Y g. From our definitions it follows that:

e the image of 1 is an algebraic number;
e on the set A(I’()) of ideles prime to p, the image of the character lies in Zp.

This implies that we can embed X g inside the set of continuous functions C (A(Ig),zp). The latter is natu-
rally endowed with the compact open topology which is equivalent to the topology of uniform convergence
on Zp. Then we denote by X the completion of ¥ with respect to this topology.

In the definition of both Katz and BDP p-adic L-functions, the space of interpolation is some set
Yo C Xk of characters whose image is bounded, i.e. there exists a finite extension F' of Q,, with ring of
integers O, such that the image of any ¢ € ¥ lies in O.

3.1.1 Periods and complex multiplication

Periods need some more explanations than the other constants described in equation (3.3). Hence we
devote this subsection to the introduction of:

o the complex period 2(A) and the p-adic period €,(A) associated to an elliptic curve A with complex
multiplication by Ok;

o the complex period () and the p-adic period €, (1) associated to an Hecke character ¢ of infinity
type (K1, K2).

Since the theory of complex multiplication ensures us that every CM elliptic curve defines an Hecke
character of infinity type (1,0), it is not surprising that we have some relations among those periods.

The Q(v) are the motivic periods associated to an Hecke character ¢ of a quadratic imaginary field.
While we do not treat the definition here, which is essentially due to Deligne and it can be found in [Sch88],
we focus on their properties. In particular, the following proposition uncovers their importance:
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Proposition 3.1. If ¢ is a Hecke character of K of infinity type (ki1,k2), k1 > ko and m critical for
L(¢=1,s). Then the ratio:

L~tm)
(2m2) Q1)

—1
Ly d@),) is G i -equivariant.

lies in the field Qy and the assignement 1) — CEEe IO

Proof. See [GS81] and [Blag6]. O

In other terms, the motivic periods £2(¢)) describe in the best way the transcendental part of the Hecke
L-function. The reason for which we introduce at the same time the periods associated with A is the
following proposition which explains the link between them:

Proposition 3.2. If ¢ is a Hecke character of K of infinity type (k1,k2), then the ratio:

Qv)
(2mi)"2 Q(A)r 2

is algebraic.
Proof. See [Sch88, 11.1.8]. O

Moreover since we define

Q')
(2mi) "2 Q(A)ri—ra’

() := Q (A) 2

the quotient Q,(¢")/Q,(A) is also algebraic. Since we are only concerned with algebraicity properties, this
allows us to only define the periods Q(A) and Q,(A) in order to proceed in the discussion.

We fix now an elliptic curve A with complex multiplication by Ok, say C/Of, and define the complex
period ©(A). The theory of complex multiplication implies that A is defined over H, the Hilbert class
field of K. We chose a regular differential wy € Q'(A/H) and a non-zero element v € Hy(A(C), Q). The
complex period is then defined as:

wp = QA) - 2widz,

where z denotes the standard coordinate on C/Of. Notice that a different choice of w4 has the effect of
multiplying the period by a scalar in H*, so that ©(A) is only well defined in C*/H*. In particular, the
transcendental part is independent on this choice.

To define the p-adic period €2,(A) we consider the base change of A to C, via our fixed embedding
F C C,. If we assume that A has good reduction at the maximal ideal of Oc,, then we can extend Ac,
to a smooth and proper model A@CP and we can complete along the special fiber to get the formal scheme

AOcp- We have a non-canonical isomorphism of formal schemes:
tp: A — Gp.

The canonical regular differential on Gy, is defined as du/u, where u is the standard coordinate Gy We
can define the p-adic period Q,(A) as follows:

wa = Qp(A) - 1y (du/u).

Having fixed w4, the choice ¢, only affects the period €,(A) by a quantity in Z,™. Both the complex and
the p-adic period depend H-linearly on the choice of the regular differential w,. Since they depend upon
it in the same way, their ratio is independent on this choice.
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3.1.2 Katz p-adic L-function

Assume that D > 7 and let ¢ C Ok be an integral ideal. Fix a prime p, coprime with ¢, that splits in
K as p = p@ (we chose p as the prime defining the embedding K C Q).

Denote by Xk (c) the set of Hecke characters of K of conductor dividing ¢. We say that a character
Y € (c) is a critical character if L(1)~1,0) is critical in the sense of Deligne, i.e. Lo ()71, s) has no zeroes
nor poles at s = 0 (see also the discussion at the beginning of the chapter). We define Xyt (c) to be the
set of critical characters. This set is naturally the disjoint union of the two subsets

Zgi)t(c) = {9 € Xgit(c) of infinity type (k1,k2), k1 < 0,k2 > 1},
S00(0) = {¥ € Seu(c) of infinity type (1, 52), 51 > 1,z < 0}.

These sets are conjugates with respect to the involution 1 — )’ if and only if € = ¢. We denote by icrit(c)
the completion of Yt(c) with respect to the compact open topology discussed at the beginning of the
section. Since characters in % »?

crit cm(t) and viceversa,
we have that:

(¢) can be p-adically approximated by characters in

an
(6) = Zan (0
Katz constructs in [Kat76] a p-adic L-function by interpolating the suitably normalized values L(¢)~1,0)

i\]crit(c) = 2(2)

crit

as 1) ranges over 2&?. More precisely, there exists a p-adic analytic function
Zp(K) : it (¢) — C,
which is uniquely characterized by the following interpolation property:

-1
S — e(w) a(0) - Filw) - g (3.4)

for all ¢ € » (¢) of infinity type (K1, k2), where

crit

ex(0) = (1= 221 -y (o)),

awl) = 25 (Y2,
fK('(/]) = %

This p-adic L-function satisfies the functional equation:
ZLp(K)(¥) = Z,(K)((¢¥')'Nk) (3.5)
as shown in [Gro80, pp. 90-91].

The set icm(c) also contains finite order anticyclotomic characters of conductor ¢ dividing ¢, hence one
can approximate them using characters within the region of interpolation. Recall the choice of an elliptic

unit v done in section 1.7 and the Hilbert class field H of conductor ¢. Define:

A {EUEGHK Y o)u € (Of)a, it £ 1

1 1 h . (36)
any p-unit u, € Op[3]* s.t. (up) = p"*, if ¢ =1

The following result is commonly known as Katz’s Kronecker p-adic limit formula. It is an explicit
formula for the value of .Z,(K) at a finite order character ¢ of Gk (cf. [Kat76, §10.4, 10.5], [Gro80, p.90],
[deS87, Ch.1I, §5.2]):

Lp(K)() = fp(¢) - log,(ug), (3.7)
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where

B %(l —-1) ifyp=1
fp(w) = {246(1 —(p))(1 — @) if ¢ #£ 1. (3.8)

Here ¢ > 0 is the smallest positive integer in the conductor ideal of .

3.1.3 Bertolini-Darmon-Prasanna p-adic L-function

Let f € Si(Ny, x¢) be an eigenform and let K be an imaginary quadratic field of discriminant —D < —7
fulfilling the Heegner hypothesis relative to f, so that there exists a cyclic ideal 91 C Ok of order Ng.

For any Hecke character 4 of infinity type (k1, k2), let L(f, ), s) denote the L-function associated to the
compatible system of Galois representations afforded by the tensor product ofq, ® ¥ of the (restriction
to Gk of) the Galois representations attached to f and the character .

As usual, L(f,¢,s) = Hq L@ (g=%) is defined as a product of Euler factors ranging over the set of
prime numbers. The Euler factors at the primes ¢ such that ¢ { N are exactly the same as that of the
Rankin L-series L(6y ® f, s) introduced above, but may differ at the primes ¢ such that ¢ | N (details can
be found in [Gro84] for f modular form of weight 2).

The L-factor at infinity is given, for an hecke character of type (k1, k2), by the following formula:

Loo(f,1,8) =Tc(s)lc(s — min(k — 1,m) — ko)

where m = |k — k2| and kg := min(ky, k2). Following our notation, the completed L-function A(f, x;, )
satisfies a functional equation of the form:

A(f7¢75) :E(f7X7S)A(f*a¥ak+ﬂl + Ko 75)

For our convenience we now switch the convention and deal with the L-function L(f,¢!,s) rather
than L(f,1,s). In particular we say that a Hecke character ¢ is critical if s = 0 is a critical point for
L(f,%~1,s). Critical values for this Rankin L-function were predicted by Deligne and proved by Shimura
in [Shi76]. An appropriate discussion of those results which serves our purposes is carried out in [BDP13,
§4.1]. The discussion in loc. cit. states that the set of critical character X i in the sense of Deligne can
be naturally seen as the disjoint union of the three subsets:

EE}}( = {¢ € ;g such that 1 < kq1,ke <k —1},

25»2}( = {¢ € Xy k such that kK1 > k, ko <0},

2P0 = {4 € £k such that ry > k, k; < 0}

The regions 2}2}( and 2;22 are interchanged by the involution 1) — 1’ and the associated complex period

is a power of the CM period Q(A). On the region E( ) the period is the Petersson inner product (f, f).
The so called Bertolini-Darmon-Prasanna p-adic L- functlon is obtained by an adequate interpolation of

the special values of L(f,1~1,s) for an appropriate subset of characters in » (2 )
In particular, we say that a character ¢ € Xy g is central critical if k1 + kg =k and ey = x5. In

this way the point s = 0 is critical for L(f,1~1,s) and we write ZEZC) for the characters in Z;)K which are
central critical. In particular we can express them as follows:

2 = {4 € B} i of infinity type (k + j,—j), where 1 —k < A < —1},

%2 = {4 € B} i of infinity type (k4 j,—5), A > 0},
Zg) = {9 € Xy k of infinity type (—j, k +j),A > 0}.
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Let ¢ € Z>1 be an integer such that (¢, NyDp) = 1. We define the set of characters qc(c, M, xr) to
be the subset of central critical Hecke character ¢ of finite type (c, M, xy), i.e. such that ¢y | ¢ and
eo(f,¥~1) = +1 for all finite places v. This set is naturally the disjoint union of two subsets:

S0 (e, M, xs) = {1 € Tee(e, M, x5) of infinity type (k + j, —j), where 1 —k < —j < —1},

Egi)(c, M, xr) ={Y € Tec(c, M, xy) of infinity type (k+ 5, —7j),5 > 0}.

If we take the completion of ¥¢.(c, M, xr) with respect to the compact open topology, the resulting space

CC(c M, x ) contains n@ (¢, M, xr) as a dense subset. On the set ni (c M, xr) the local sign e (f, ¢ 1)
is +1. Thus the global sign is also positive, hence the central critical value is non-zero most of the times.
The Bertolini-Darmon-Prasanna p-adic (Rankin) L-function attached to the pair (f, K) is the function:

(f/K) cc(cme) -G,

defined by the following interpolation formula:

Q0 (A)2E 1 1
Z(f/K) () = espp(¥) - Appp(¢) - fppp(¥) - QAFT L(f,¥7,0), (3.9)

for all characters ¥ € Z 1w of type (k + 4, —7), for j > 0, where:

o eppp(¥) = (1 — (NP1 (P = (N~ (),

e agpp(y) =j1(k+j — 1)!7rk+2j—1

. 2ﬁq‘(DK’NE) . quc Q*qX_Kl(q) ' w(f7w)71

* fepp(¥) = (c\/%)k+2j—l

The factor w(f,v) is defined in [BDP13, (5.1.11)], but we recall here its construction. For 1 of infinity
type (k + j,—j), we define ¢; := ¢N7.. Because of our hypothesis, N = M9 in O,. We can choose an
integral O.-ideal b and a nonzero element b € O, such that:

(b,Ne)=1, b0 =(b). (3.10)

If we call wy the generalized eigenvalue of the Atkin-Lehner operator Wy (see [BDP13, Lemma 5.2] for
more details), then:

w(f ) == wy - xp (NG (6) 71 b (b) (= N/ 2HTp=h =20 (3.11)

It is a root of unity in the field Qy(f,v—N) and it does not depend on the choice (b, b) made above (see
[BDP13, lemma 5.3)).

Remark 3.3. We would like to remark that the period appearing here is not the same used for the con-
struction of the p-adic L-function in [BDP13, (5.1.15)], where an auxiliary elliptic curve Ay having complex
multiplication by O, is used. Nevertheless, thanks to the theory of complex multiplication and proposition
3.2 both the complex and the p-adic periods arising from A and A, are compatible in the sense that

Q(4) _ 2,(A0)
Q(A) ~ 0(A)

hence the above formula holds. In particular one may chose an isomorphism AO — Gm such that the
associated canonical differential wey, on Ao is compatible with that of A
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Remark 3.4. We do not go into the details of the construction, but it is interesting to remark how the
values of the interpolation property are extended to a p-adic L-function. We have that:

2

appp (V) - Fopp (V) - w(f, )™ L(f, 07, 0)/QA) Y = [ 3" ¢rl(a)-61f(3() |, (3.12)

acePic(O,.)

where Z(a) is defined in section 1.7. On the p-adic side we have the following formula:

2

LKW = Y ¢ (@) Nk(@) 7 [P (3,(a) (3.13)
a€Pic(O.)
where Z,, := (Z,Wean), Tp(a) = (2(a), Wean,a), With wean,a is the pullback of wean via the map A — A,.

The two results are, respectively, theorems 5.4 with theorem 5.5 and theorem 5.9 of [BDP13]. The second
equation is obtained from the first with a comparison of the Shimura-Maass derivative and the Serre
derivative of f at CM points, i.e.

Or f (#(a)) = df (2(a)).
which is essentially the content of [BDP13, Proposition 1.12 (3)].

If ¢ is a finite order anticyclotomic character of conductor ¢ | ¢, then )N lies outside the region of
interpolation but it can be approximated using characters of ¥c.(¢, M, xf). The main theorem of [BDP12]
asserts that

gp(.ﬂ K)(wilNK) = fp(faw) X logE,p(Pl/J)Q (314)
where f,(f, ) = (1 = ¢(p)p~ ap(f) +¥2(0)p~ 1)

3.2 Hida’s work and p-adic L-functions

We now want to detail what we informally described in the introduction of the chapter as deformation
of a motive. Roughly speaking, given a motive M we expect to find a collection M = { My} of motives
indexed by a p-adic variable which gives a deformation of M, i.e. there exists ko such that My, = M and
two motives My, and My, are in some sense close enough whenever k and k' are close enough p-adically.

We treat here a very specific instance of this: Hida families. Informally, a Hida family is a collection
of modular forms { fx }s such that the induced residual representations are all equal. In particular we have
congruences between two members of the family which tell us that f and fy/ are p-adically close whenever
k and k" are p-adically close. In this case, the concept of being close for two modular forms can be made
precise by working on the coefficients of the g-expansions.

In order to describe Hida’s result and explain its usefulness for the creation of p-adic L-functions we
first need to discuss the set W in which the weight variable k lives and define precisely what an Hida family
is for us. We closely follow the definitions given in [DR14, §2.6], but it might be useful for the reader to
also have a look to [Hid93], [Wil88], [How07, §2], [Cal, §2.1] and [Was80].

3.2.1 Iwasawa algebrae and the weight space

We fix a rational prime p and we assume for simplicity that p > 3. We will use the notation Ay =
(Z/NZ)*. Let O be the ring of integers of a finite extension F' | Q, and fix a uniformizer 7 € O. Write
q for the residual characteristic of O/7O. A basic structure result, which can be found for instance in
[Neu9l, II, prop. 5.7], tells us that:

O >~ g1 x (1+70),
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so that we also have F* = 7% x O. The second component 1 + 7O can be further decomposed into
ttge X Wg, where Wi = ZP[F:Q”} is the Z,-free part. In the case of O = Z, we have:

Zp* >~ pp—1 x T, where T':= 1+ pZ,.

The projection w : Z,” — p,—1 induces a Dirichlet character modulo p that we denote by the same
letter w : A, >~ p,—1 (notice that p,—1 C @, hence it can be seen both as complex and p-adic number via
our fixed embeddings). The latter is called the Teichmuller character. It associates to each class d € A,
the unique root of unity of Z,, congruent to d modulo p — 1. This allows us to identify Z,” ~ A, x . The
second projection (=) : ZX — T is none other then (z) = w™'(z) - x.

The Iwasawa logarithm induces the isomorphism log, : I' ~ pZ, which implies that I' is a free Z,-
module of rank one. Remember that log, is the unique morphism defined by the usual power series on I'
which extends trivially outside T', i.e. it sends p and the roots of unity to 0.

We fix now a topological generator u for I' once and for all. This choice induces an isomorphism that
we will denote as the base u-logarithm:

log, : ' ~7Z, (3.15)

£ logy (1)
where log, (z) = log,(z)/log,(u). In contrast to the Iwasawa logarithm, this is a non-canonical isomor-
phism, since it depends on the choice of u. The inverse is given by z — u* := exp(z log(u)), which gives a

parametrization of IT'.
Recall that if we consider a profinite group G = @i G, then we define the Iwasawa algebra associated

to G as Ag == O[[G]] := lim, O[G/G;]. Given d € G we write [d] for the corresponding element in Ag. Fix
a positive integer N coprime to p and define the three Iwasawa algebrae:

A=O[I], Ay :=O[AN][Z,*]] ~ O[AN,][T]] and A=A, =O][Z,].

It is well-known that A ~ O[[T]] via the non-canonical isomorphism v — T + 1.
For x € Apy, consider the projectors:

1 _ ~
= AT > x7Md)d) € Ay,
| Np| dG&N

using the fact that eXJNXN = Ae, ~ A, we obtain the decomposition:

KN: @ €X/~\N’Z @ A (316)

XEAN;) XEENP

so that we can identify every element y € Ay with a collection of power series 9 (T) € O[[T]] indexed by
X € Anp (see [Was80, p. 243]).

Lemma 3.5. For every d € Ay, we have: ey [d] = x(d)ey.

Remark 3.6. When considering A (N = 1), every character x € ﬁp is a power of the Teichmiiller character,
so that x = w’ for some i € Z/(p — 1)Z and we can write e; := e,.

Since Ay is a topological O-algebra endowed with the p-adic topology defined by the ideal (, [u] — 1),
we can consider the formal scheme:

WN = Spf(KN) = Homofcont (KNa _) =~ HOHI(F, Gm(_))
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Similarly we define W := Spf(A) and W= Spf(/NX). For any topological O-algebra B, the B-points of the
above scheme are:

Wi (B) := Homo —cont (A, B) = Homeont (Anp x T, BX) ~ Hom(A np, B*) x Homeens (I, BX).

This determines a decomposition:
Wy (B)~ [[ Hom(A,B),
XEANp

hence we have a decomposition of formal schemes:

Wy = @ Wy, (3.17)

XEEN;;

where W, ~ W, for all x. Explicitly, for any O-algebra B an element v € W, (B) is characterized by the
fact that if d € Apyp, then v([d]) = x(d) so that, in particular, v(e,) =1 and v(ey) = 0 for ¥ # x.
We embed Z into the set of O-points of W as follows:

Z — W(0) = Hompe —cont (A, O) (3.18)

ke {vg : [u] — uF}

We write W for the set Zso inside W(O) via the map defined in equation (3.18). We call W¢! the set
of classical points or arithmetic primes of A. The evaluation map v € W(O) corresponds to the unique
prime ideal Py = ([u] —u*) C A such that vy : A - A/P, — O. The map v}, can be represented on O[[T]]
under the isomorphism defined by 7"+ [u] — 1 and it is given by v4(T') = u* — 1 i.e. the prime ideal Py is
the one generated by (T + 1) — u*.

We explicitly translate the action of the evaluation map for the y-component of VNVN, i.e. we write the
corresponding embeddings Z <— Wy (O) under the decomposition (3.17) which is given, for each k € Z,
by:

v (6,6) — x(6)EF,  V(5,6) € Ay, x T

It can be useful to think Ay, x I' as Ay x Z,” under the correspondence (4,€) — (d,z). In this sense,
since any character of A, is a power of the Teichmuller character for ¢ € {0,...p — 2} and since p{ N, we
can write x = y;w’, where x; is the tame character. In this way, v} acts on (d, z) as follows:

v¥(d,x) = xu(d) - *(x) - 2"

Thanks to the rigid GAGA theory we can see WN, W and W as rigid analytic spaces. Under the same
morphism of equation (3.18) we can see Z, as a rigid analytic subspace of the weight space W(O). In this
sense, elements of the Iwasawa algebra A can be interpreted as analytic functions on W while passing to
the fraction field we deal with analytic meromorphic functions.

3.2.2 A-adic modular forms and Hida main result

The first attempts made by Serre to define p-adic modular forms led him to the study of congruences
between modular forms via the study of congruences between the Fourier coefficients. These congru-
ences give rise to the following naive definition of compatible family of modular forms as a collection
{fr =  an(k)q™}, for almost all positive integers k (i.e. all but finitely many), such that the following
congruence relation is respected:

k=k (mod ¢(p%)) = an(k) = an(k’) (mod p®). (3.19)

where ¢ is the Euler totient function. In particular, & and &’ lie in the same residue class modulo p — 1.
Let us recall that by the work of Deligne we can associate to each f; a compatible system of A-adic
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representations V. These congruences imply that if we reduce modulo p, the residual representations of
each member of the family are equal. This is the basic concept behind the theory of p-adic deformation of
Galois representations.

In a sense that we now make precise, the Iwasawa algebra gives a better description of those congruences
and the concept of p-adic family of modular forms, allowing them to enjoy a geometric interpretation. Let
us consider at first an element a € A, which can be thought of as a power series in O[[T]]. It is easy to
check that:

k=k (mod ¢(p%)) = vx(a) = vr(a) (mod p*). (3.20)

This is quite natural if we consider a € A being a rigid analytic function on W(O). Hence, given v € W(O),
we also denote v(a) by a(v) or a,. In particular, the function vg(a) must behave nicely for the p-adic
topology, so that it is an analytic function of the variable k. Being an element in the Iwasawa algebra we
refer to it as an Jwasawa function, as does the literature, too (cf. [Was80, §12.2]).

If Ay | A is a finite flat extension, then we have a natural map W; — W, called weight map, and we
can define W' C W;(0) as the pull-back of W< along this map. The set W is called set of arithmetic
primes of Ay. We say that a point v € W;}l has weight k € Z>5 if v |o= v5. In terms of prime ideals, v
and vy, correspond to P C Ay and P, C A and the weight map is just P +— P := PNA.

If we consider a formal power series f = >" ., a,¢" € Ay[[g]] it is natural to define the action of
v € W(C,) on g as follows: -

v(f) =Y v(a)g" € Cyllg]]-
n>1
In light of the above discussion we know that if two classical points have weights congruent modulo ¢(p®)
then the g-expansions of the corresponding specializations of f are congruent modulo p®. In other terms,
a formal g-expansion as above is a p-adic analytic family of g-expansions in C,[[¢]]. To mimic the naive
definition of p-adic family of modular form, we need to impose that the realizations v(f) for v € W]Ccl are
classical modular forms.

Remark 3.7. In order to lighten the notation we will often write f, to mean v(f).

To properly define the concept of compatible family of modular forms, that we call A-adic modular
forms, we fix now a component of the weight space W, ~ W of Wy and the decomposition x = x jw’ into
tame and wild character. Recall that a modular form f is called p-ordinary (or ordinary at p) if its p-th
Fourier coefficient is a p-adic unit, i.e. |ay(f)|, = 1.

Definition 3.8. A A-adic modular form (resp. cusp form) of tame level N and tame character x; is a
quadruple (Ay, Uy, L{;l, f) where:

(i) Ay is a complete, finitely generated and flat extension of A;
(ii) Uy is a non-empty open subset of W;(C,) and L{J'El C WJ‘%I is dense in Uy;
(iii) f € Af[[¢]] is a formal g-expansion such that, for all v € L[;l of weight k, f, € C,[[¢]] is the g-expansion
of a classical ordinary modular form form in My (Np, x jw' )¢, (resp. Sk(Np, xjw'F)c,).

We denote M(N, xf)a, (reap. S(N, xy)a,) the space of A-adic modular forms (resp. cusp forms) of tame
level N and tame character x; having coeflicients in Ay.

On the spaces of A-adic modular forms M(N, xf)a, and S(N, xs)a, we have the A-adic analogue of
the usual Hecke operators T),,. They are compatible with the weight k specializations, i.e. given a A-adic
modular form f and a classical weight k point v € U$', we have that:

T.(£), = T.(f,).

This property can be used to define the Hecke operators on A-adic modular forms (see [Hid93, §7.3] for
more details). In this sense, the multiplication by [d] € Ay, whose specialization in weight k& is given by
xf(d)w'=*(d)d*, is the A-adic version of the Diamond operator.
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Remark 3.9. In the literature people ofter refer to classical weights (or arithmetic primes) in a more general
way. They are points of the form v : [u] — e(u)u¥, for a finite order character € on I'. Since we only
restrict to the case in which ¢ is trivial, we shall often (but not always!) denote without creating ambiguity:

£, = f,

for a weight-k classical point v. Moreover, since the set of integers k € Z>5 such that £k =4 (mod p — 1)
is p-adically dense in Z,, in what follows we will often shrink UJ?I to classical points of such weight. With
this convention, definition 3.8(iii) will simply becomes:

fr. € Sk(Np, x¢)

for all k£ € U}'ﬁl.

Consider now an ordinary eigenform f. Since |a,(f)|, = 1, the two roots a,(f) and 5,(f) can be
ordered in such a way that a,(f) is a p-adic unit. We define the ordinary p-stabilization of f to be:

fa(q) == f(q) = Bp(f) f(d")-

The modular form f, is the only normalized eigenform of level Np such that:

Té(fa) = aé(f)fa, Ve #p and Up(fa) = ap(f)fa

A form that satisfies these properties is said to be ordinary and p-stabilized. If 8,(f) =0, then f = f, is
already stabilized.

Definition 3.10. A Hida family of tame level N and tame character xs is a A-adic modular form
(Af,uf,u;;l,f), such that Ay is finite flat over A and for all v € Wj‘il of weight k, f, is an ordinary
p-stabilized N-new modular form, i.e. there exists f; of new level N or Np such that f, = fj .

Theorem 3.11 (Hida, 1986). Let fo € Si(N¢p, xsw®) be an ordinary newform of tame level Ny and
tame character xy (not necessarily new at p). Consider F := Q,[fa], let O be its ring of integers and
A = O[[I']]. Then there exists a unique Hida family (Af,Z/lf,Z/l]‘El, f) of tame level Ny and tame character

Xs such that £, = fo for a unique point v € WJ%I of weight k.

Proof. See [Hid86]. O

From now on, we will denote a Hida family by f, its specializations by f,, and the modular form whose
p-satabilization equals f, will be denoted by f, (in the simplified settings in which we will identify v with
its weight k, we will write respectively fj, and fi). A priori it is unclear wether the weight k specialization
of an Hida family f is always old at p or not. The following lemma clarifies this situation:

Lemma 3.12. Given a Hida family (Af,L[f,L{J‘%l,f), and a weight k > 2 classical point v € US, the
specialization £, of the Hida family at v is always old at p (i.e. £, # fi). On the contrary, we may have
fo = fo.

Proof. See [How07, Lemma 2.1.1] for & > 2. The fact that f = f consider, for instance, the modular
form associated with an elliptic curve over Q having multiplicative reduction at p). O

The theorem of Hida is a machine to create A-adic modular form. Since we now know they exist,
we can combine them to create more. Given A-adic modular forms (Ag,ug,u_gl,g), (Af,uf,uﬁl,f) and

(AhJ/{hJj{le, h) it is possible to construct new ones, in particular:
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e given N such that N, | N and an extension A} | Ay, we can consider for each d [ N/N, an Iwasawa
function Ag € A'g and define:

g:= Y Aa-glg?) € M(N,xg)n,-
d|N/N,

For a weight ¢ specialization map v € Z/Igl we have that:

& Y v(Aa)-g.(a”) € Me(N, xy)
d|N/Ng

is a oldform in weight ¢ and level N. When we consider such a g we write g € M(N, Xg)Ag g].

e the expression g* € A, is the A-adic modular form determined on v € Z/l_gl by:
(87)y =8

o the ordinary product of A-adic modular forms eora(f X g8) € Agp = Ay ®o Ayp,, which is uniquely
determined on (v, u) € L{]‘il x U by:

(eord(f X g))u,u - eord(fu X hu) - eord(fll,(x X hu,a)-

The A-algebra structure on Ay, is given by the diagonal embedding on group-like elements so that
if v has weight k and p has weight m, (v, u) has weight k& + m;

e by [DR14, Prop. 2.18], the expression of the form ey.q(d*fP! x h) € Ay =A@ Ay @Ay is a A-adic
modular form, uniquely determined on (,v, u) € W< x Z/Iﬁl x US! by:

Ve (€ord (A°FP) x h)) = eora(d'fF x hy,) = eora(d fIF, X hyua). (3.21)

The A-algebra structure on A, is given by the embedding [u] — [u]* ® [u] @ [u], so that if v has
weight k and p has weight m, then (¢, v, u) has weight 2t + k 4+ m (here we are using on purpose the
letter ¢ both for the specialization and for the weight).

3.2.3 Castella’s p-adic L-function

We now present a two variables extension of BDP’s p-adic L-function .2, (f/K) by allowing the variation
of f in Hida family. The resulting two variables p-adic L-function is a slight variation of the one first studied
by Castella in [Cal]. We propose here a very down to earth construction which better serves our scopes
and also provide a slight extension of Castella’s p-adic L-function.

Let us consider a Hida family f € S(N;,1) and let assume that L{;él is fibered over a single residue
class modulo p — 1 for simplicity. Fix for now a weight k specialization v € Z/ljcpl and we identify it with its
weight since it shall mean no harm. Denote by fi the specialization of the Hida family at v and by fj the
associated newform. Take a quadratic imaginary field K = Q(v/—D) where p = p@ splits and satisfying
the Heegner hypothesis. Consider the choice of the ideal 91 above N; from this assumption. We write K,
for the completion of K at (.

As seen in section 3.1.3, BDP p-adic L-function satisfies the equation (3.13) which we restate here for
a classical weight k specialization of an Hida family f as follows: for any character ¢ in X¢.(¢,M, 1) of
infinity type (k + 7, —j) (with 7 > 0) and conductor ¢ we have that:

LB = S v a)Ng(@) T (@(a)) (3.22)

aePic(O.)



38 CHAPTER 3. P-ADIC INTERPOLATION OF CLASSICAL L-FUNCTIONS

where Z,(a) = a* (A,?,wcan) as seen in remark 3.4. To ease the exposition we restrict to a single residue
class modulo p — 1 for j, too.

The idea is to let those characters appearing in equation (3.22) vary in p-adic family, i.e. define some
A-adic characters which interpolate them. Let us consider a p-adic Hecke character A of infinity type (0,1)
and conductor @, having image in O, where O is the ring of integer of a F|K,, finite extension containing
the values of \. We can consider the character (\) whose image is in the torsion free subgroup of O*.
Define the character: ‘

Yoo 1= (N)THTINEFI,

Since both 1, and 1 are of infinity type (k + j, —j) there exists a finite order character v, of conductor
c such that:

Y = Vst
We call v, the branch character associated with 1 and 1o the infinity part. _
We consider now the two variables Iwasawa algebra R := Ay ®o O[[I']] where we write I' = T" in

order to distinguish the variable to which we are referring. We also write d — [d] for the second variable
embedding. We can define the R-adic version of ¢, as follows:

oo ) 58]

This R-adic character satisfy the following interpolation property:

Voo (k,j) = (\)TF2NGH,

Similarly ¥ := ¢, U, so that U(k, j) = . In this way, for every fixed a € Pic(O..), ¥(a) € R is an element
in A/ [T

In [Cal] the author constructs a A j-adic measure p associated to fP! and a € Pic(O,) such that the
weight-k-specialization is given by:

/ = / ) () = ()

We can then define, in a similar way to that of [Cal], a p-adic L-function in the following way:

L@/ = Y @ Na(@] ([ Flau)

aePic(0O,)

such that the specialization in weights k and j is given by:

LK) k)= 3 V@) Ne@] G- ([ Fldue) () =

acPic(O.) P

= Y (@) @) N () / gy =

a€Pic(O,) Zp

= 3 (M) ¥Ng(a) )" N (a) - /£ (a(a)) =
a€Pic(O.)

> () Ng(a) - d P (a(a)).

a€Pic(O.)

Hence, by equation (3.22) we have that:
L (£/K) (o, k, 5)* = 2, (f/K)(¥(k, 7). (3.23)
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Remark 3.13. Notice that the choice of the branch character is fundamental. In fact, a different choice
gives a totally different L-function since the space of characters naturally splits in branches. In this sense
we might see .Z,(f/K) as a three variables p-adic L-function

Z,(£/K) : Gal (Ho|K) x Uy x W — C,

but this terminology would be improper since v, is not actually a p-adic variable. This is the reason for
which we recast it as branch variable.

Remember that ¥(k, j) = ¢, U(2,—1) = ¢ Ng. Thanks to formula (3.23), the interpolation formula
for this p-adic L-function reads exactly as the formula for BDP p-adic L-function:

Qp (A)2k+4j

Qe L0, (3.24)

Ly (£/K) (4o, k, §)* = espp(¥) - @ppe(¥) - fopp (1) -
for all characters ¥ € E;Qk of type (k+ j,—j), for k > 0 and j > 0, where:

o eppp(¥) = (1 — ap(f)YH(P)(1 = Bp(f)v (),
o appp(¢) = jl(k+j — Plrk+2-t

>k+2j—1

. 9#4/(Dx ,NE) ,qu q_XKl(q) ~w(f, )t
c q— ’

* fapp(¥) = (C\/prK

with w(f,) as defined in section 3.1.3.

If 4 is a finite order anticyclotomic character of conductor dividing ¢, then ¥ (2, —1) = ¢,Ng lies
outside the region of interpolation but it can be approximated by letting (k,j) — (2,—1). The main
theorem of [BDP12] asserts that

-Zp(f/K)(Wn 27 _1) = fp(fa ¢b) X IngE (wa) (325)
where f,(f, 1) = (1 = o (f)u(@)p™*) (1 = Bp(f)vu(9)p™).

3.2.4 p-adic interpolation of trilinear periods

Let now f, g, h be three modular forms of weights k, ¢, m such that ¢ > k + m and let

(gvfa B) € Me(Nan)[g] X Mk(Na Xf)[f] X Mm(N7Xh)[h}

be a test vector. In sections 2.3.1 and 2.5 we have seen that trilinear periods of the form:
Ig(!ja f? E) = <§*76tf X 77’)

play a crucial role because they create a link between a complex L-function and a Petersson product, which
provides an integral representation of the function. The problem is that, in general, those periods are far
from being algebraic numbers. Luckily we have the following:

Lemma 3.14. Given an eigenform g € S¢(N, X4) K, for all § € Se(N)klg] and F € Si(N)k we have that
the product (g, F) is a K-rational multiple of the period {f, f).

Proof. See [DR14, Lemma 2.12]. O

Hence if we want to interpolate p-adically those values we have to consider the complex period (g, g).
We define: oo
¥y (g, 60 f x h)
JUG, [ h) =
(9%.9%)
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If we can interpolate those periods p-adically we can use the results of sections 2.3.1 and 2.5 to interpolate
p-adically the Rankin and the Garrett L-functions.

The idea can be simplified in this way: consider a number field K, a modular form g € S;(Ny, xq)x
(i.e. assume that Q,, C K) and two modular forms g € S;(N, x,4)k[g], ¢ € S¢(N)k. Then the expression
of the form

(9, 9)

(9,9)
is algebraic in light of the above lemma. Hence we want to interpolate p-adically this kind of expression,
which is to say that we want to give a meaning to an expression of the form:

sy(e ¢) = EL

for A-adic modular forms (Ag,L{g,L{gl, g), (Ag,ug,,ugl, g) and (A¢,L{¢,Z/{§)l, @) such that g € S(IV),, [g]. For
this we have the following;:

Proposition 3.15. Let K, be the fraction field of Ay. For all § € S(N)a,[g] and all ¢ € S(N)a, there
exists an element J9(&, @) € Kg @n Ay such that for all classical points (v, 1) € UL Xyya U;l we have:

J(g, ) =

T = Bl e 00)

Proof. Tt is [DR14, Lemma 2.19]. O

Notice that having (v, u) € Ugd X el Z/{;l implies that the weights of v and u are the same, so that the
Petersson product is well defined. The projection e,, appears because although ¢, is an ordinary p-adic
modular form, there is no need for it to be classical, hence the Petersson product might be not well defined.
Theorem 1.10 implies that its projection onto the g,-isotypical subspace is a classical modular form.

3.2.5 Hida-Rankin p-adic L-function

In [Hid93, §7.4] Hida constructed a three-variable p-adic L-function interpolating central critical values
of the Rankin L-function associated to the convolution of two Hida families of modular forms. We describe
here this p-adic L-function following the notations and normalizations adopted in [BDR15].

Consider two Hida families of tame level IV:

gE€S(N,xg) and feS(N,xy).

As seen in the previous section, g and f are parametrized by the rigid analytic covers U, and U of the
weight space W. It will be harmless for our purposes to assume that they are fibered over a single residue
class modulo p — 1 and to identify the classical specializations with their weights. With this in mind, for
each (£, k) € L{gl X Z/IJ‘El we can consider the newforms g, € S¢(IV, x4) and fr € Sp(V, xf) whose ordinary
p-stabilizations are gy and ;. We associate to them the Rankin product L-function L(g; ® fx, s) that we
have studied in §2.3.1. Assume from now on that ¢ > k + 1. By results of Deligne and Shimura we know
that the integer j is critical for L(ge ® f, s) if and only if j € [k, £ — 1], but we shall restrict to integers in
the range

l+k—-1
je [%,6—1 . (3.26)
For a given such j we set
t:=0—j—1 and m:={¢—k -2t (3.27)

We define the range of interpolation as the set

Uiy = {(t,k,j) € Z2, | €>k+1and j€[(L+k—1)/2,—1]}
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From equation (2.10) we can derive that for all (¢,k,j) € U§}p we have

fRan(évkaj) ’ L(gé ® fkaj) = <g;(z)’5£nEm7XN (Z) ’ fk(z)>£7N (328)

Define the algebraic part of L(g; ® fx,j) as in [BDR15, (9)]:

. ~L(ge ® fr,7) (97 (2), 61tnEm,X (2) - fr(2))en
Lalg = !k — N . 3.29
(gﬁ & fka]) fRan( ’ a]) <g;7gz>Z’N <gz;gz>l,N ( )

The notation L is justified since the ratio of Petersson products, the one of the right hand side of
the equation (3.29), is an algebraic number by lemma 3.14. More precisely, it represents the coefficient of
the holomorphic projection of 0y, Em y (2) - fr(2), as shown for instance [DR14, Lemma 2.12]). Since g,
and fj are specializations of a Hida family, we expect to p-adically interpolate those values as (¢, k) varies.

In order to interpolate the expression on the right-hand side of (3.29), we use the theorem 3.15. Define
the A-adic modular form E, = such that for m € U we have:

Exé - (me)ow

By the theorem 3.15 we know that there exists an Iwasawa function J9(g, eord(d'ng] x f)) such that:

(g5, eord(thgg}m x f1,))
(gr,8))

Jg(gaeord(d.Eg?] X f))(f,k,m,t) =

for every quadruple of (¢, k,m,t) € Ugd X pyel (Z/l)‘il X US x W).

Remark 3.16. The latter implies that £ = k + m + 2¢t. In this way, the choice of m determines ¢ and,
according to equations (3.26) and (3.27) we know that it is equivalent to choose m or to chose the central
critical value j. In particular, we have that:

€[1,¢— k.

For this reason, we will use the variable j as third variable instead of the variable m and remember the
definitions of m and ¢ in equations (3.26) and (3.27).

Definition 3.17. We define the Hida-Rankin (three variables) p-adic L-function as the element:
2,7(8,f) = JI(g, eora(A*EW) x £)) € Ky @4 (Ag ® Ap ® A)
When evaluating the p-adic L-function at a classical point (£, k, j) € U5, we get:

<g(7eord(th£€L]7x x fy))

47 (& Bk, 5) = (e7,80) o
Define
‘ onon fo ) o £ D0) (331
HRAGE Jk J) = E1(ge)€o(ge) .
where:

E(ges frrd) = (1= Byplge)ap(fi)p ™) (A = Bylge) Bp(fr)p' =)
X (1_ﬂp(9€)ap(fk) (p)p*~ Z+1)(1_6p(g£)ﬁp(fk) (p )ptie+1)7
&i(ge) = 1—@)(9@)2 ‘
Eolge) = 1—=0p(90)%p""
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The result of [DR14, Theorem 4.7] implies that we have:

(97(2): 00, By, (2) - fr(2))e,N
(95,9018

gpg(g,f)(z,khj) - eHR(géa fk,.j) .

?

so that we can find the interpolation formula which describes the three variable Hida-Rankin p-adic L-
function using equation (3.29):

gpg(g7f)(€7k7j) = eHR(.QmekHj) : Lalg(gf ® fk?]) =

= eHR(gfvfkvj) . aHR(Eakhj) ' fHR(g’kaj)M

. 3.32
(97,95)eN (3.32)
for all (f, k,j) S Z/{IC{lR7 where:

e eur(ge, fx,7) as in equation 3.31;

o aur(lk,m) = (m+t—1)(j—1)lxt-t-m
d fHR(g?k7m) = %

Notice that the point (1,2,1) is not in the region of interpolation Uz. The following result provides a
formula for the value of £,%(g, f)(1,2,1). Recall the p-adic iterated integrals from equation (1) of the
introduction.

Proposition 3.18. Suppose that g1 is a classical modular form. Then £,°(g,f) has no pole at (1,2,1)
and

"E’ﬂp(gaf)(l’Qal) = f2 'EI,XN- (333)

Y91

Proof. See [CR1, prop. 3.2 O

3.2.6 Garrett-Hida p-adic L-function

We now want to interpolate the triple product L-function. We essentially follow [DR14] and the
computations are totally similar to what we have done in the previous section. In particular, in virtue of
theorem 2.15 we are reduced to the interpolation of the trilinear periods

19(g, f,h) = (g, 8 f x I)

for a choice of test vector (f,g,h) € Sk(N, XS] %< Me(N, xg)lg] X Mp (N, xr)[R]. Let us recall that we
consider an unbalanced triple of weights (¢, k, m) with dominant weight ¢ and ¢t = (¢ — k — m)/2. Hence:
k,

Uehs = {(6kom) € 22, | €2k +m)
By the lemma 3.14 the quantity:
¢y (9,00 xh)
SIS g.h) =
( ) (9, 9)
is an algebraic number, so that we can define the algebraic part of the triple product L-function as:
LY(f @ g®h,c):= JO(f,5,h) (3.34)

In order to perform a p-adic interpolation in a similar way as we did for the Hida-Rankin p-adic L-
function, we consider three Hida families f,g,h of tame levels Ny, Ny, N} and describe the associated

A-adic test vector f', g, h.
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Definition 3.19. We define the Garrett-Hida (three variables) p-adic L-function to be:
2,°(g.£.h) = JI(g, eora(d*tF x h)) € Ay @ (Ay @ A @ A) (3.35)
In this way we have that:

f h 5% €5, Cor AP < h
gpg(gvﬂh)(f,k,m):<gf’egzeod( v X hp))

(7.87)
Define
¢ ( f h ):M (3 36)
GH(39e; Jky bm) - &1(90)80(92) .
where:

E(ge; feshm) = (L= Bp(ge)ap(fir)ap(hm)p™) (L = Bp(g¢) Bp (fr)ap(ham )p ™)
X (1= Bp(ge)ap(fr) Bp(hm)p™ ) (1 = Bp(9e) Bp(fx) Bp(hm )P ™€),
Eilge) = 1-By(9)%p",
&lge) = 1-06y(90)°p' "

A simple computation shows that ecu(ge, fx, hm) equals eur(ge, fr,j) as defined in (3.31) when h,, =
E,,. - Because of [DR14, Theorem 4.7] we have that:

. £ it o
fpg(g’ﬂh)((’k,m) = eGH(gé,fk7hm) . %
ARV

Since

|I(.fuagvil)|2:1(fvgvﬁ)I(fﬁévﬁ)zl(f7gaﬁ)I(f*vg*771*) and <gfvgf>:<gz<7g;>
using theorem 2.15 we find the interpolation formula which relates the p-adic L-function to the values
L(G¢ @ fx ® hm, ), where ¢ = (k + £ +m — 2)/2, for all (¢,k,m) € Uy. Tt is given by:

fk ®.€7€ ® Emvc)
(97,95)?

o oo Uk ek Lok L
gpg(gyfa h)(&kam)gpg(g 7f ah )(évkam) = eGH(géa fk7h'm)2 : fGar(kvé7 m) . ( . (337)

Being both .2,7(g, f, fl) and .2, (g*, £ fl*) Iwasawa meromorphic functions, we have that their quotient:

$p9<g7 f‘7 fl)(k7 E, m)

wl, k,m):= R
( ) 2,9(g*, 1, h*)(k, £,m)

(3.38)

is a meromorphic Iwasawa function, too. Hence we can rewrite the interpolation formula (3.37) as follows:

Lifegehc)

gpg(g’if])(f’ kvm)Q = eGH(gfv fk)hm)Q : aGH(kj7€a m) : fGH(k‘7£7 m) ’ <g* g*>2 (339)
IARV4

where:
e ecu(ge, fr, hm) as in equation (3.36);
o agu(k,£,m) = (= Diie — Wi —ml(e— b —m-+ Dir2,
o fau(k,€,m) = Cran - w(l, k,m) - 2173¢=F=m,

The point (k,¢,m) = (1,2,1) lies outside the region of interpolation, hence its special value is no more
related with its complex counterpart. Proposition 2.6 of [DLR15] describes it as a p-adic iterated integral
in the following way:

£ fh1,2,0)= [ f-h (3.40)

Yga
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Chapter 4

Proof of the main results

In this chapter, we describe and proof theorem 0.6 and theorem 0.7, which constitute the main results
of [CR1] and [CR2]. We begin by describing the general setting of the elliptic Stark conjectures, with
special emphasis on our case, then we move to the proofs of the theorems.

4.1 Elliptic Stark conjecture and p-adic Gross-Zagier formula

Let E/Q be an elliptic curve of conductor Ng and let f € S3(Ng, 1) be the modular form associated to
E by modularity. Fix once and for all a quadratic imaginary field K = Q(v/—D) and denote its associated
quadratic Dirichlet character by xx. Consider the two finite order Hecke characters

Vg, Yn : Gg — C*
of conductors ¢, and ¢;, which define theta series:
g:9wg GMl(DNK(Cg%X), and h:= ewh GMI(DNK(Ch>7X)'

Consider the associated representations Vy := Ind%(i/)g) and Vj, 1= Ind% (¥r). We define the four dimen-
sional representation p := py® pp, : Gg — SLa(L) whose underlying vector space is Vg, := Vy®@V},. If we let
1 1= gty and g = g1}, the representation Vy, splits as the direct sum Vi @V, where V; := Ind%(z/}i).
This automatically implies a decomposition of L-functions:

L(Evpas):L(E/Kvwlvs)L(E/KﬂpZaS)' (41)

Notice that the characters ¥; and 1, are ring class character of conductors ¢; and co because of lemma
2.4, since they have trivial central character. Let us define ¢ := lem(cq, ¢2). Let p be a prime number such
that ord,(Ng) < 1 and define Ny to be the tame part of Ng, i.e. Ny = Ng if p{ Ng and Ny = Ng/p if
pl|INE.

Assumption 4.1. We will assume from now on the following hypothesis:
(AR) the analytic rank hypotesis: ran(F, p, s) = 2;

(HH) The Heegner hypothests: there exists an ideal 91 C Ok such that Ox /M ~ Z/N¢Z. Fix such an ideal
M once and for all and assume also that (¢, NyD) = 1;

(PP) the prime p splits in K as pOx = p@, where p =mc, N K.

45
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The field H cut by p is the ring class field H. where ¢ = lem(cy, ¢2). Following the discussion of sections
1.7 and 2.3.2, we now fix a Heegner point P € E(H) and an elliptic unit v € O}; and define P, as in
equation (2.13) and wu, as in equation (3.6). Assumption (HH), in particular, implies that the order of
vanishing of L(E/K,;,s) and L(E/K,;,2) is odd at s = 1. Since we also assume (AR), we have that

ords—1 L(E/K, v, s) =1, ord,— L(E/K,;,8) =1

which implies, by theorem 2.8, that dimy, E(H)Y" = 1dim;, E(H)"" and that P, and Py, are generators
of these spaces.

Assumptions (HH) and (PP) ensure us that there is a cyclic ideal above the number Ng also when
p||Ng and it is Np.

Consider now assumption (PP). The choice of the ideal g determines a Frobenius element o, €
Gal (H.|K) and we set the eigenvalues of o, acting on V;, as follows:

a:=1g(op), B =1y (op) = a L

Since we are going to use the cuspidal Hida family passing through ¢ explicitly, we recall here the
construction which is described in [Hid93, p.235] with a little modification. Recall the A-adic character
[(A)] that we defined in section 3.2.3. We define g as follows:

8(0) = Y Po(a)(M@) " [(A@)]gNe @ € S(N,, %) (4.2)

acl.s

and consider U, fibered over the residue class of 1 modulo p — 1. Then, following the notation introduced
in equation (2.6), we have that:

gl(@) = > (@A @) LN @ = 3" a, (0 (N " € Mo(Ngp, X), VL€ UL

a€lep n>1

It is then natural to define, for all £ € Ugl, the Hecke character ip_1 as follows:

Yo (a) = Yg(a)Ma) ™, i Gia; (4.3)
o X(p)-pt!
Ye—1(p) = Vealo) (4.4)

so that if we define the theta series go := 0y, , € Mi(Ny,X) and if m is a prime that spits in O as
mQOx = mm, then we have that:

O‘m(gé) = wé—l(m)’ ﬁm(gf) = w@—l(ﬁl) (45)

In particular g¢ = gro and for £ = 1 we have that ¥y = 1, (hence g; = g), so that also the weight one
specialization is a classical modular form.
We end this section with the following technical:

Definition 4.2. Let L be a number field. A function

f M;l —-Q
is L-admissible if it extends to a meromorphic Iwasawa function on ¢/, having no pole at 1 and satisfying
f(1) € L*.
Similarly, a two variables function -
f: UJ% —-Q

is L-admissible if it extends to a meromorphic Iwasawa function on Uy, having no pole at (2,1) and
satisfying (2,1) € L*.
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4.2 Discussion on hypothesis C and C’

Theorem 1.10 is very important but it only works for k£ > 2. This is the reason for which we need
hypothesis C and C’ (see the discussion in the introduction). In the case & = 1 it might happen that
Sod(Np,x) € Sy Y(N,x) and the p-adic iterated integrals might lead to more exotic results. The
elliptic Stark conjecture in this setting is discussed in [DLR2] and it involves significant new features.

For this reason we need to have some control on the space of overconvergent modular forms of weight
one. More precisely, let g € M1(Ng, x4) be a normalized eigenform of weight one. We say that g is regular
at pif ap,(f) # Bp(f), otherwise we say that g is irregular at p. Take g, to be a p-stabilization and consider
the generalized eigenspace:

ST, xo)llgal] = | ker(132).

n>1

Then we consider the following:

Assumption 4.3 (Hypothesis C). The generalized eigenspace SY°(N, x4)[[g]] is non-trivial and it only
consists in classical modular forms.

Assumption 4.4 (Hypothesis C’). The following holds:

e if g is a cusp form then it is regular at p and is not the theta series of a character of a real quadratic
field in which p splits;

e if g is an Eisenstein series then it is irregular at p.

The following proposition explains the relations between the two items in hypothesis C’ and hypothesis

C:

Proposition 4.5. (1) If g is a cusp form and it is regular at p, then the natural inclusion:

S1(NP. Xg)c, [9a] € ST (N, xg)[lg2]]

s an isomorphism if and only if g is not induced from a character of a real quadratic field in which
p splits.

(2) If g is an Eisenstein series then the space 83" (N, xo)[[g]] is non-trivial if and only if g is irregular.
Proof. This is proven in [DLR15, prop. 1.1, prop. 1.2] building on the results of [BeDil6]. O

As explained in [DLR15, §1], while hypothesis C and C’ are equivalent when g is a cusp form, hypothesis
C’ could be weaker than hypothesis C when g is Eisenstein.

In the special case of theta series induced by ring class characters of an imaginary quadratic field K,
hypothesis C’ for Eisenstein series is automatic, since g = 6, is an Eisenstein series if and only if 9% = 1,
hence op,(g) = Bp(g). When g = 0y is a cusp forms, the regularity assumption is sufficient for hypothesis
C’ (hence hypothesis C) to hold, because p, = Ind%(w) and if pg = Indg (&) for a character £ of a real
quadratic field F', then Gal (H|K) = Cy and F is the single real quadratic subfield of F. In this setting, p
cannot split in F.

4.3 Proof of theorem 0.6

In this section we will treat the proof of theorem 0.6. Its hypothesis are slightly more restrictive than
the ones from the general setting. More precisely:

Assumption 4.6. The following are assumed through all this section:
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(ES) ¢ =1 is the trivial character, so that h = Eq . We write ¢ 1= 1,.
(GR) the prime p in assumption 4.1(PP)is such that p{ N := lem(Ng, Dc?)

Assumption (GR) implies that all the modular forms involved have good reduction at p. Under as-
sumption (ES) and the self-duality condition for p we have some consequences that we list for the comfort
of the reader:

e 1) is a ring class character cutting H = H., the ring class field of K of conductor ¢ € Z>1;
o V=V, = Vo = Ind%(y);
o L(E,p,s) = L(E/K,,s)%

We want to apply Rankin’s method as described in section 2.3.1 to L(E/K,v,s) = L(f ® g,s). In order
to do this, we chose

feSQ(N)[f]a and geMl(NaXK)[g]

two normalized eigenform for all Hecke operators. To be explicit, we can write:

90) =9(a) = D pa(9)g(q?).

d|N/N,

as explained in section 1.3 and we define the A-adic modular form g as follows:

&) :=gl@)— Y ra(9)ela),

d|N/N,
Lemma 4.7. There exists a meromorphic function SulN(ﬁf], s) such that:

L(® f,s) = Euln(f.g,5) - L(}.9.5)
and Euly (f,5.1) € Qu(£)*

Proof. Comparing the naive Euler factors of L( f®g, s) with those of L(f,,s) using [Gro84, equation
(20.2)], we find that:

B L(f®§,s) B HqHNE,qJ(D(l —ag(f)g*)? Hq|D,qJ{NE(1 —ay(fag(9)g +¢" %)

" L(f,9) Ty w0y (1 — g (Hag(@)a—) ’

5UZN(f,§a S) :

which is of course a meromorphic function whose values at integes lie in Qy( f ). An easy verification of
the factors shows that Euln(f, g,1) is well defined and nonzero. O

Lemma 4.8. For every { € L{;l U {1} we define the Hecke character U, of conductor ¢ as follows:

41 {—3 (-3
Uy =1, N2, of infinity type (2+ T’_?)'

9

Then there exists a number Sul%R(gz,f) € Q¢(f) such that we have the following equality of critical
L-values:

L(Ge® f,(0+1)/2) = Eul(ge, f) - L(f, 9,7, 0)
and Euly* (41, ) # 0.
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Proof. The Euler factors defining L(g, ® 1, s) and L(f, 1/1[_11, s) at good primes coincide, so that the only

.

discrepancies arise for primes ¢ | N. Those factors arise from Hecke polynomials with coefficients in Qy (f)
and lemma 4.7 guarantees that Sul%R(fh, f) #0. O

Lemma 4.9. Consider the factor w(f, ;) appearing in BDP interpolation formula 3.9. Then:

w(f ) = ()P (g = ).

Ng*

Proof. For simplicity call ¥ := ¥, the Hecke character of infinity type (k + A, —\), where k = 2 and
A= (¢ —3)/2. Define
U, = UN%.

Following the definition of equation (3.11), choose an ideal b C O, relatively prime to pcNg and an element
by € O, such that b1 = (by). Since in our case wy =1 and €y = 1, equation (3.11) gives

W(f, W) = Wa(b) - (—1)" AN, (4.6)

Since
Ux(b) WA () = Wa((bn)) = bR

We can substitute into (4.6) and find:

_(_1\Kk/2 ANE/2+>\ _(_1\K/2 )\Ng/Q

Using now the definition of ¥ and the fact that kK + 2A = ¢ — 1 and k = 2, we find

=1 Y1 (MN =1 Y1 (M)
W W)= ()T e = () e
Ng? Ng*
as claimed.
O
Lemma 4.10. For every { € M;l U {1} we define the Hecke character ®, of conductor ¢ as follows:
Oy =, 2 N, of infinity type (¢,2 — 1).
Then there exists a non-zero number <5'uliCt (ge) € ij such that we have the following equality:
e . 3(Dc? ot /o _
(e = ) Eule (5) - Qpen(6) - o 0) - L2710,
S(N)
where @pet(£) and Ypo, (¢) are as defined in theorem 2.11.
Proof. By proposition 3.15 we know that the function:
gUIRet(,éZ) — <g€7.g£>N (47)

<g€7 g€>N

interpolates well p-adically and we may compute it explicitly using equation (2.15). We get the result
using theorem 2.11. O
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Lemma 4.11. The following formulae hold true:

Bp(ge)® _ ' P
@ = B (P = =5 \I/ =
E(p) pg_z E(p) ﬁp(g[)Q Z(p) ﬁp(gf)
Proof. Tt is a straightforward computation using equation (4.5). O
We now define:
£ lHR v 3
Euly (t) = EUN (0. 1)

Eul's (G¢)
_ Jun(0) - Fi(®)
fBDP(‘I’f) : fPet (6)

foo (£)

consider the function:
foiy —Cp ()= Euln(0) - Foo(0).

From section 3.2.5 we can restrict Hida-Rankin p-adic L-function to the line (¢, k,j) = (¢,2,(¢+1)/2) €
Unr. In particular, (£,2, (£ +1)/2) € Uy for every £ € US' and the interpolation formula (3.32) reads as

follows .
. ¥ L(ge® f,(t+1)/2)
2,2(&, f)(0) = eur(?) - aur(f) - fup(4) - e
(G5, 90N
where we write 2,9 (g, f)(0) == Z,9(&, [)(£,2,(( +1)/2), eur(£) = eur(ge, f, (£ +1)/2) and similarly for
the other terms. Before the main theorem we need a last:

; (4.8)

Lemma 4.12. The following equalities are true:

Proof. The first part follows from lemma 4.11, the second part is a straightforward comparison. O
Then we have the following;:

Theorem 4.13. The function | is Qw(f)—admissible in the sense of definition 4.2, i.e. it interpolates

to a meromorphic Iwasawa function on U, and §(1) € @w(f)x, For all £ € Uy we have the following
factorization of p-adic L-functions:

2,28, [)(0) - Zp(K)(@0) = F(0) - Z,(f/ K)(Vo).
Proof. First of all notice that for £ € US' N Z>3, we have that:
e (£,2,(£+1)/2) € Uy, following section 3.2.5,
o U, e 2% (e, M, 1), following section 3.1.3,
o &, € 2% (), following section 3.1.2,

hence it is meaningful to compare the values of the three L-functions. Using Lemmas 4.8 and 4.10 we can
restate formula (4.8) as follows:

Fur(0)  L(£,971,0)

2 (& 1)) = Eul (1) - enm(0) - A (6) - £ - =T
et L >
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Substituting Katz interpolation formula (3.4) and BDP interpolation formula (3.9), the complex and the
p-adic periods defined in section 3.1.1 are simplified and we find that:

enr(0)ex(®)  anr(f)-ax(®)  Fur() - fx(®)  L(f/K)(Te)
espp(¥e)  Appp(Ve) Apet(f) Fppp(We) - Fpe(6) LK) ()

Using lemma 4.12 we find that for all £ € Z/lgl NZ>3

2,9(8. F)(0) = Euln () -

2,78, )(0) - L (K) (@) = F(0) - L, (F/K) (o).

It remains to prove that f_ (¢) extends to an analytic function. Using the explicit expressions for the
various factors involved and lemma 4.4, we derive that:

_ S(DA) ra—xr(g) N-2790E=D) g, ()

- (4.9)
i 471 R D ooy

Since p { N, the factor f__(¢) extends to an meromorphic Iwasawa function on U,. The value at 1 is
non-zero and the same holds for Euly (1) as seen in lemmas 4.8 and 4.10. This proves the result. O

Since we have a factorization of p-adic L-functions on the whole space U, which is fibered over 1
modulo p — 1, we may ask ourselves what happens at £ = 1. In particular, because of lemmas 4.8 and 4.10,
the number Eul(1) is well-defined and non-zero. Using the explicit equation (4.9) we find:

f (1)——(5(D62) q—xx(g) N-279W=D)
<V S(N) g—1 he - Dc?

P #0

gle

hence § (1) # 0 and §(¢) is (@w(f)—admissible. With the help of Katz functional equation (3.5) we find:
2,98 F)1) - Z(K)(2) = F(1) - Z(//K) (6" N).

The formulae for the special values of BDP and Katz p-adic L-functions (equations (3.7) and (3.14)) allow

us to conclude that:
Dip(f.1) 1081,(Py)’
fp(w) 1ng (U’!]a)

The proof of theorem 0.6 then follows from proposition 3.18. To be specific, the factor A( f ,J) appearing
in theorem 0.6 is given by:

2508 H(1) = Euly(1) - It

A(f.9) = Euln (1) W

4.4 Proof of theorem 0.7 and elliptic Stark conjecture when p||Ng

Remember assumption (PP)and consider now the setting in which p||Ng, i.e. we have multiplicative
reduction at p. We denote by Ny the tame level of f, by which we mean that Ny = Ng/p, so that
f € Sa(pNy), and p does not divide eNyD.

In a setting of bad reduction for f, the omega factor contained in BDP’s interpolation formula and
the local factors C, of Garrett-Hida p-adic L-function are difficult to analyze in family. Moreover, to get
the explicit formula for the constant appearing in the elliptic Stark conjecture in the good reduction case,
we needed to assume that the levels were all equal. In order to avoid these problems we let f vary in
Hida family, too. In this way, the higher weight specializations are the p-stabilizations of modular forms
of level Ny not divisible by p. In this way all of the constants are easy to treat. For this reason we need
to consider Castella’s extension of BDP’s p-adic L-function.
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Let f be a cuspidal Hida familiy passing through f and let g be the Hida family described in equation
(4.2) passing through g,. In particular we have that
fo=f and g1 = ga.

Recall the three ring class characters 11, 1o defined in section 4.1 and set g := 94/ 1/1;. We define the
following families of characters:

k+2—1

\I/gh(k',e) = (1/Jg7g_11/}h)71NK 2 s.t. \Ijgh(27 1) = 1/)/1NK (410)
k+£—1

U (b 0) i= (Yg0-19') "Nz, st Uon(2,1) = P4Nk, (4.11)

(I)g(g) = ( g,é—lX)ilNg(v s.t. (I)g(l) = T%NK- (4.12)

Then, we consider the space of classical interpolation Z/{gc} as the set:
Uy ={(t,k) €Z? | k>2,0>k+1}

and notice that, for (¢,k) € L{]‘%Ig,

o (0,k,1) € Uy, following section 3.2.6,

the following holds:

o Uk, 0),Wop (k.)€ »@ (¢, M, 1), following section 3.1.3, since they have infinity type (k + A, —)),
where k =k and A = ({ — k —1)/2 > 0. Moreover, following the notation of section 3.2.3, they have
branch characters i1 and 15 respectively.

o O,(0) € »® (¢), following section 3.1.2, since it has infinity type (K1, k2) = (¢,2 — £).

crit

Since we restrict to the plane U,y C Unr via the above map, we shall denote
gpg(g7 f‘a Fl) (Ea k) = gpg(ga i;7 }3‘)(67 ka 1); eGH(ka f) = eGH(gb fk7 h)
and use a similar notation for all the other constants appearing in the various interpolation formulae.

Lemma 4.14. The following formulae hold true:

2 ¢
x(p) _ p
D, (0)(p) = 25—, D, (0)(9) = ;
9( )( ) pg_2 9( )( ) gZX(p)
L+k—1 L+k—1
Wi (k, 0)(9) = 2 Wy (k, 0)(9) = 2—
o B o By.aun
Proof. This is similar to lemma 4.11 and is obtained using equation (4.5). O

Lemma 4.15. The following equalities hold true:

ex(Py(0)* - ean(k,)* = eppp(k, on(k, €)) espp (k, Yo (k, 0))?,

acu(k,0) - ax(®y(0)* = appp(Ygn(k,0)) - Appp(Pen (k,0)) - Aper(€).
Proof. This again follows from a straight-forward computation using Lemma 4.14 for the first equality. O
Lemma 4.16. The following identities hold true:

A (k1)) = (1) Lot OVOY =g 1,0 = (1) 5 Lt CUUROD
N2 N,?
In particular we have

w(f, \I/gh(Qv]-)) = 1)1)1(%) and w(fv \Ijgh(2a1)) = w2(m)
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Proof. The proof is the same as for lemma with Ng substituted with Ny. O

Let

LO = %J/Jm ﬁam

denote the extension of Q generated by the values of the Hecke characters 1, and v, the Gauss sum
associated to the Dirichlet character x and the square-roots of Ny and Nj,. Fix test vectors f, g and h as
in §3.2.6, giving rise to the p-adic L-function .Z,%(f, g, h).

Theorem 4.17. There exists a quadratic extension L/Lo and a L-admissible function § on Uy, (in the
sense of definition 4.2) such that the following factorization of two-variable p-adic L-functions holds:

20 (£, 1) (k. ) - L, (K)(2(0) =
f(k,1) - Zp(£/K) (W1, k, €) - Z,(£/K) (2, k. 0).

Proof. We have a decomposition of classical L-functions given by

k+0—-1

: ) = Euln (b, 0) - L(fr, Ugn (k. 0)1,0) - L(fie, g (k, )2, 0). (4.13)

L(fk ® ge ® h,

Since p 1 N, the Euler factor in Euly(k,¥) interpolates p-adically and gives rise to an Lgp-admissible
function. Combine theorem 2.11 and equation (4.13) with the interpolation formula (3.39). Then use
equations (3.9) and (3.4) to replace the classical L-functions with their respective p-adic avatar. An easy
check shows that the periods simplify.

Thanks to Lemma 4.15 one obtains the following equality, true for every (k,¢) € Z/{]‘%lg

L0 (8,8, 1) (k, )? - 2, (K) (y(6)) = (4.14)
folk. 0) - Lo(E/K) (1, k, €)% - L, (£) K) (2, k., €)

where

(ko) = Sk 0) - Fan(bk D) - fie(@e(0)? Lo W
7 Fpet Yeop(Yon (k. 0) - Fppp (Yan (k. 0)) w(k, )

Let us show that fo is Lo-admissible. Notice that the Lg-admissibility of almost all terms appearing in
the numerator and denominator of §,(k, ¢) follows directly from the definitions. Lemma 4.16 determines
the Lo-admissibility of w(fx, Ygn)w(fk, Ygns), since pt N¢, and the constant Cran appearing in fqy (4, k, 1)
is independent on the weights k and /.

The Lo-admissibility of the function w(k, ¢) appearing in § (¢, k, 1) follows by the same argument as
in the last part of the proof of [DLR15, Theorem 3.9]. Hence we have proved that fy is Lo-admissible and
the theorem follows after taking the square-roots on both sides of (4.14). O

We now make in force the assumption 4.6(ES), i.e. ¢ = 1), is a ring class character of conductor
¢ € Z>1 and ¢y, = 1 is the trivial character. In this setting the characters defined in equations (4.10) and
(4.11) coincide, i.e. gy, = Uy, thus we simply denote this character by ¥4, which have branch character

1/) = wg~
Assumption 4.18. (BR) the prime p of assumption 4.1(PP) is such that p{ N :=lem(Ny, Dc?).

Theorem 4.19. There exists a two-variable L-admissible function §(k,£) such that the following factor-
ization of p-adic L-functions holds:

2, (£,8)(k, () - Z,(K)(@y(0)) = f(k,0) - L, (£/K) (b, k, 0)*.
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Proof. After setting ¥ := ¥, (k, ), it is easy to verify that
L(Ge @ fr, (€ 4+ k —1)/2) = Euln (k, £) - L(f5, ¥, 0)

where Euly (k, £) stands for a product of Euler factors at primes dividing N. The function Euly (k, ¢) gives
rise to an admissible function as shown in lemma 4.7. From this, the proof proceeds along similar lines as
in the proof of Theorem 4.13, replacing the BDP p-adic L-function with Castella’s two variable extension
described in §3.2.3.

The explicit expression for the admissible function appearing in the above statement is very similar to
that of the case pt Ng, namely

f(k, ) = Euln(k, ) - (—1)%C5(DKC2) N - 2-a(DwNp) qp, ()

. 4.15
S(N) he - Dy Cssz;%l ( )

O

Theorem 0.7 relative to the extension of theorem 0.4 and 0.6 in the case of bad reduction is then achieved
by evaluating the factorizations of theorems 4.17 and 4.19 at the point (k,¢) = (2,1) and applying the
various formulae for the special values (3.40), (3.18), (3.25) and (3.7)
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