UNIVERSITAT POLITECNICA DE CATALUNYA
BARCELONATECH

UP Departament d’Arquitectura de Computadors

On the Role of Performance
Interference in Consolidated
Environments

NAVANEETH RAMESHAN

PhD Thesis in Distributed Computing
by the Universitat Politecnica de Catalunya and KTH Royal Institute of
Technology

Advisor: LEANDRO NAVARRO MOLDES AND VLADIMIR VLASSOV
Barcelona, Spain 2016
Co-funded by the

Erasmus+ Programme
of the European Union

UNIVERSITAT POLITECNICA DE CATALUNYA
BARCELONATECH

Escola de Doctorat

Academic year:

Assessment results for the doctoral thesis
Full name

Navaneeth Rameshan

poctorai prograrmime

Erasmus Mundus Joint Doctorate in Distributed Computing (EMJD-DC)

Ao r o ___
Otiuciuial Uit 1l Cnailge o1 e piogiaimineg

Decision of the committee

In a meeting with the examination committee convened for this purpose, the doctoral candidate presented the
topic of his/her doctoral thesis entitled
On the Role of Performance Interference in Consolidated Environments

Once the candidate had defended the thesis and answered the questions put to him/her, the examiners decided

to award a mark of:

[] UNSATISFACTORY [| SATISFACTORY [] GooD [] VERYGOOD
(Full name and signature) (Full name and signature)
Chairperson Secretary
(Full name and signature) (Full name and signature) (Full name and signature)
Member Member Member

The votes of the members of the examination committee were counted by the Doctoral School at the behest of
the Doctoral Studies Committee of the UPC, and the result is to award the CUM LAUDE DISTINCTION:

1 ves 1 no

(Full name and signature) (Full name and signature)
Chair of the Standing Committee of the Doctoral School Secretary of the Standing Committee of the Doctoral School
Barcelona,

International doctoral degree statement

As the secretary of the examination committee, | hereby state that the thesis was partly (at least the abstract and
the conclusions) defended in a language commonly used in scientific communication in the field that is not an
official language of Spain. This does not apply if the stay, report or expert is from a Spanish-speaking country.

(Nom, cognoms i signatura)

Secretary of the Examination Commitee

Navaneeth Rameshan

Erasmus Mundus Joint Doctorate in Distributed Computing (EMJD-DC)

On the Role of Performance Interference in Consolidated Environments

Abstract

ITH the advent of resource shared environments such as the Cloud, vir-
tualization has become the de facto standard for server consolidation.
While consolidation improves utilization, it causes performance-interference
between Virtual Machines (VMs) from contention in shared resources such
as CPU, Last Level Cache (LLC) and memory bandwidth. Over-provisioning
resources for performance sensitive applications can guarantee Quality of Ser-
vice (QoS), however, it results in low machine utilization. Thus, assuring QoS
for performance sensitive applications while allowing co-location has been a
challenging problem. In this thesis, we identify ways to mitigate performance
interference without undue over-provisioning and also point out the need to
model and account for performance interference to improve the reliability
and accuracy of elastic scaling. The end goal of this research is to leverage
on the observations to provide efficient resource management that is both
performance and cost aware. Our main contributions are threefold; first, we
improve the overall machine utilization by executing best-effort applications
along side latency critical applications without violating its performance re-
quirements. Our solution is able to dynamically adapt and leverage on the
changing workload /phase behaviour to execute best-effort applications without
causing excessive interference on performance; second, we identify that certain
performance metrics used for elastic scaling decisions may become unreli-
able if performance interference is unaccounted. By modelling performance
interference, we show that these performance metrics become reliable in a
multi-tenant environment; and third, we identify and demonstrate the impact
of interference on the accuracy of elastic scaling and propose a solution to
significantly minimise performance violations at a reduced cost.

iii

Resumen

Con la apariciéon de entornos con recurso compartidos tales como la nube, la
virtualizacion se ha convertido en el estandar de facto para la consolidacién
de servidores. Mientras que la consolidacién mejora la utilizacién, también
causa interferencia en el rendimiento de las maquinas virtuales (VM) debido
a la contencién en recursos compartidos, tales como CPU, el ultimo nivel de
caché (LLC) y el ancho de banda de memoria. El exceso de aprovisionamiento
de recursos para aplicaciones sensibles al rendimiento puede garantizar la
calidad de servicio (QoS), sin embargo, resulta en una baja utilizacién de la
maquina. Por lo tanto, asegurar QoS en aplicaciones sensibles al rendimiento,
al tiempo que permitir la co-localizaciéon ha sido un problema dificil. En
esta tesis, se identifican las formas de mitigar la interferencia sin necesidad
de sobre-aprovisionamiento y también se seniala la necesidad de modelar
y contabilizar la interferencia en el desempeno para mejorar la fiabilidad
v la precisién del escalado elastico. El objetivo final de esta investigacién
consiste en aprovechar las observaciones para proporcionar una gestion eficiente
de los recursos considerando tanto el rendimiento como el coste. Nuestras
contribuciones principales son tres; primero, mejoramos la utilizacion total
de la maquina mediante la ejecucién de aplicaciones best-effort junto con
aplicaciones criticas en latencia sin vulnerar sus requisitos de rendimiento.
Nuestra solucién es capaz de adaptarse de forma dinamica y sacar provecho
del comportamiento cambiante de la carga de trabajo y sus cambios de fase
para ejecutar aplicaciones best-effort, sin causar interferencia excesiva en el
rendimiento; segundo, identificamos que ciertos pardmetros de rendimiento
utilizados para las decisiones de escalado eldstico pueden no ser fiables si no se
tiene en cuenta la interferencia en el rendimiento. Al modelar la interferencia
en el rendimiento, se muestra que estas métricas de rendimiento resultan
fiables en un entorno multi-proveedor; y tercero, se identifica y muestra el
impacto de la interferencia en la precision del escalado elastico y se propone
una soluciéon para minimizar significativamente vuneraciones de rendimiento
con un coste reducido.

Sammanfattning

I och med inférandet av resursdelande miljoer som t.ex. med Cloud-tjanster,
har virtualisering blivit de facto standard for konsolidering av servrar. Medan
konsolidering forbattrar utnyttjandet , orsakar det prestanda-interferens mellan
virtuella maskiner (VM) genom konflikter om delade resurser som CPU-er, sista
nivans cache (”Last-level-cache”, LLC) och minnesbandbredd. Att erbjuda
Overkapacitet av resurser for prestandakéansliga tillampningar kan garantera
servicekvaliteten (“Quality of Service”, QoS), men det resulterar i lagt utnytt-
jande av hardvaran. Sa, att garantera QoS for prestandakéansliga tillampningar
medan man samtidigt tillater “co-location” har varit ett utmanande problem.
I denna avhandling identifierar vi olika sétt att hantera prestandainterferens
utan att erbjuda onédig 6verkapacitet, och vi pekar ocksa ut behovet att mod-
ellera och ta i beaktande prestandainterferens for att forbattra palitligheten
och precisionen i elastisk skalning. Slutmalet for denna forskning &r att dra
nytta av observationerna for att erbjuda effektiv resursmanagement som tar
hénsyn till bade prestanda och kostnad. Vara viktigaste bidrag &r tre; forst
forbattrar vi utnyttjandegraden for hardvaran genom att exekvera “best-
effort”-tillampningar sida vid sida med latenskritiska tillimpningar utan att
paverka prestandakraven. Var l16sning kan dynamiskt anpassa sig till och dra
nytta av den forénderliga arbetslasten/fasbeteendet for att exekvera “best-
effort”-tillampningar utan att orsaka 6verdrivna interferenser i prestanda;
for det andra sa identifierar vi att vissa prestandametriker som anvands for
elastiska skalningsbeslut kan komma att bli opalitliga om prestanda interfererar
okontrollerat. Genom att modellera prestandainterferenser, sa kan vi visa
att dessa prestandametriker dr palitliga i en fleranvindarmiljo (“multi-tenant
environment”); och for det tredje sa identifierar vi och demonstrerar effekten
av interferens pa exaktheten i den elastiska skalningen och foreslar en 16sning
for att signifikant minimera prestandastorningarna med reducerad kostnad.

Acknowledgements

This work was supported in part by the Erasmus Mundus Joint Doctorate
in Distributed Computing (EMJD-DC) funded by the Education, Audio-
visual and Culture Executive Agency (EACEA) of the European Commission
under the FPA 2012-0030.

I’'m greatly indebted to Leandro Navarro and owe a lot to him for making this
PhD journey significantly easier and for all the advice and assistance he has
offered, even if it meant going out of his way. His selflessness and humility
is beyond what I have seen in anyone else. I consider myself fortunate to
have had the opportunity to know him and will strive to inculcate some of his
values in my everyday life.

I’d also like to sincerely thank Vladimir Vlassov for making my stay at KTH
pleasurable and for all the discussions and advice he has given throughout the
course of this PhD. His actions have always been in the best of interest for me
and I couldn’t have cruised through this journey without his help.

I also extend my sincere thanks to Manish Parashar, Omer Rana, Rosa Badia
and Ramin Yahyapour for their valuable feedback and for being a part of the
committee. It was truly an honour to have had you on my committee.

I can’t thank enough Ying, Leila, Enric Monte, Lydia, Robert Birke and
Jordi Guitart for all the technical discussions and brain storming sessions
that have been instrumental in shaping this thesis. To my friends Kiarash,
Lalith, Mario, Nick, Ying, Leila, Vasia, Davis, Maria, Gurjinder, Umar, Manos,
Jodo, Vamis, Leonardo, Amin, Ester, Davide, Veena, Saranya, and Menan
whose presence helped me stay motivated throughout the course of this PhD
and were constantly uplifting. To UPC colleagues for those much deserved
ping-pong breaks in the lab.

To my parents and my sister for their unconditional love, unfettered support,
understanding and sacrifice. I'm forever indebted to you.

To Veena, for her love and consistent moral support. Her frequent phone
conversations, without which, this thesis in its current form would have been
completed at least 6 months back!

vii

Contents

List of Publications xiii

Introduction 1
1.1 Performance vs. Utilization 2
1.2 Thesis Overview o 3
Background and Related Work 5
2.1 Background 5
2.2 Related Work 7
Contributions 15
3.1 Performance Interference from a single host perspective 15

3.2 Performance Interference from a distributed system perspective 17

Dynamic Reconfiguration to minimise Interference 21
4.1 Introductiono 22
4.2 Backgroundo 23
4.3 Stay-Away Mechanism 26

ix

4.4 Optimisations and Overhead 35
4.5 Scalability o 36
4.6 Template Properties L. 37
4.7 Evaluation 38
4.8 Summary e e e 46
Reliable Elastic Scaling Decisions 49
5.1 Introduction 50
5.2 Elastic Scaling 51
5.3 Motivation 54
5.4 Experimental Analysis 55
5.5 System Overview e 62
5.6 Characterising Contention 65
5.7 Elasticity Controller 71
5.8 Experimental Evaluation 75
5.9 Related Worko 81
5.10 Summary 82
Augment Elastic Scaling 85
6.1 Introductiono 86
6.2 Problem Definition oL 88
6.3 Experimental Analysis 90
6.4 Solution Overview 92
6.5 Middleware Interface to Quantify Capacity (MI) 94

6.6 Augmentation Engine

6.7 Experimental Evaluation.

6.8 Summary

7 Conclusions

Bibliography

xi

99
102
108

109

113

List of Publications

[P1] Navaneeth Rameshan, Ying Liu, Leandro Navarro and Vladimir Vlassov.
Augmenting Elasticity Controllers for Improved Accuracy 15th
IEEE/USENIX International Conference on Autonomic Computing
(ICAC) (Best Paper Candidate), July 2016.

[P2] Navaneeth Rameshan, R. Birke, V. Vlassov, L. Navarro, B. Urgaonkar, G.
Kesidis, M. Schmatz and L. Y. Chen. Profiling Memory Vulnerability
of Big-Data Applications 46th IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), Industrial track, June 2016.

[P3] Navaneeth Rameshan, Ying Liu, Vladimir Vlassov and Leandro Navarro.
Elastic Scaling: A Multi-Tenant Perspective 6th international work-
shop on Big Data and Cloud Performance (DCPerf), Co-located with
ICDCS (Invited Paper), June 2016.

[P4] Navaneeth Rameshan, Ying Liu, Leandro Navarro and Vladimir Vlassov.
Hubbub-Scale: Towards Reliable Scaling under Multi-Tenancy
16th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), May 2016.

[P5] Navaneeth Rameshan Leandro Navarro, Enric Monte and Vladimir
Vlassov. Stay-Away, Protecting Sensitive Applications from
Performance-Interference 15th ACM/IFIP/USENIX International
Middleware Conference (Middleware), December 2014.

[P6] Navaneeth Rameshan, Ioanna Tsalochidou and Leandro Navarro. A
Monitoring System for Community-lab The 16th ACM International
Conference on Modeling, Analysis and Simulation of Wireless and Mobile
Systems (MSWiM) (Best Demo Award), November 2013.

xiii

xXiv

Other Publications

[P7] Ying Liu, Navaneeth Rameshan, Enric Monte, Vladimir Vlassov and
Leandro Navarro. ProRenaTa: Proactive and Reactive Tuning to
Scale a Distributed Storage System 15th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), May 2015.

[P8] L. Sherifi, Navaneeth Rameshan , Freitag, F., and Veiga, L. Energy effi-
ciency dilemma: p2p-cloud vs. mega-datacenter IEEF 6th Interna-
tional Conference on Cloud Computing Technology and Science (CloudCom)
(Best Paper Nomination), December 2014.

[P9] Simao Jose, Navaneeth Rameshan, and Luis Veiga. Resource-Aware
Scaling of Multi-threaded Java Applications in Multi-tenancy
Scenarios IEEE 5th International Conference on Cloud Computing Tech-
nology and Science (CloudCom), December 2013.

CHAPTER

Introduction

In recent years, there has been an increasing amount of growth in large scale
distributed computing infrastructures aimed at satisfying diverse goals. The
increasing shift toward server side computing has resulted in a class of com-
puting systems called the warehouse-scale computers (WSCs). They typically
comprise of a massive scale of software infrastructure, data repositories, and
hardware platform and consists of multiple programs that interact with each
other to provide a complex service. One such infrastructure is the cloud and
marked the shift toward server-side computing. Cloud computing is widely
used for offloading computing, primarily due to the cost benefits for both the
end-users and the operators and other myriad of advantages it offers. Cloud
providers such as Amazon EC2, Microsoft Azure and Google compute engine
host tens of thousands of applications on a daily basis. Another class of
such distributed infrastructure are large scale testbeds such as Planet-lab [1]
and Community-lab [2], that aim to provide a platform for researchers to
experiment with planetary-scale network services.

Although both these infrastructures differ in their purposes, they must satisfy
a common goal of application isolation and resource efficiency. To achieve this,
the infrastructure economics must allow servers to be shared among multiple
users and at the same time guarantee operational isolation of applications.
To this end, virtualization is the most widely adopted solution to guarantee
these goals. It allows for the hardware infrastructure to be shared by various
users, without giving direct access to the underlying hardware. Virtualization
provides isolation and an illusion of dedicated hardware access to the users,
while in reality the provider retains complete control of the underlying hardware

infrastructure. While Virtualization guarantees application isolation, better
resource utilization and lower operational costs, it comes at the price of
application slow down and performance degradation in ways that cannot be
modelled or seen easily. In the next section, we explain this trade off.

1.1 Performance vs. Utilization

Host A Host B

- N N\

vm VM
Application Application
Service Service

T ||| e

R

(/ High Utilization x Low Utilization
x High Contention -y Low Contention
(Low Performance) (High Performance)

[Utilization
B Performance Interference

Figure 1.1: Trade-off between performance and utilization

In order for an infrastructure to be efficient and cost effective, it is important
to keep the resources highly utilised. Virtualization has become the de facto
standard to consolidate and improve resource utilization, as it allows for mul-
tiple users to share the available resources. Increased resource utilization can
in turn reduce costs, server purchases and also minimise power consumption.
However, increasing utilization alone is not a panacea as it involves a trade-off
with performance. As more and more virtual machines (VM) are consolidated
to increase utilization, they compete for shared resources and consequently
degrade each others performance, commonly known as performance interfer-
ence. Inter-VM performance interference happens when behavior of one VM
adversely affects the performance of another due to contention in the shared
resources in the system. For example, multiple VMs when consolidated on a
physical host, will share the last level cache. If any of the VMs aggressively use
the last level cache, it evicts the cached data of other VMs thereby degrading

the performance. Interference can happen at any level: CPU, memory, 1/0O
buffer, processor cache etc. On the other hand, difficulties to model and
predict performance interference has resulted in the heavy handed approach of
disallowing any co-locations with performance sensitive applications, a major
contributor to low machine utilization in data centers [3]. Figure 1.1 shows
such a tradeoff. Host A is highly utilised but the contention from co-located
VMs deteriorate the performance of the application service. Host B shows
the other end of the spectrum where there is low contention on the shared
resources but the system remains under-utilized. Therefore, to be efficient,
it is important to strike a right balance between increasing utilization and
guaranteeing performance.

1.2 Thesis Overview

This thesis, in whole, aims to improve the overall utilization of the resources
while respecting the performance bounds of latency critical applications. It
is divided into 2 parts, with the first part focusing on a single host and the
second part focusing on distributed hosts. On a single host, this thesis explores
dynamic reconfiguration to mitigate the impact of performance interference.
Specifically, on a single host, we aim to improve utilization by co-locating
latency critical application with best-effort batch applications. Performance
requirements of the latency critical applications are then guaranteed at the
expense of the batch applications by throttling them only when necessary.

In the second part, we investigate if there are consequences of performance
interference that go beyond performance degradation. This includes service
reliability and accuracy. With elastic scaling as a use case, we study how
reliability and accuracy of scaling decisions are affected in the presence of
performance interference. Driven by our observations, we finally demonstrate
how both reliability and accuracy can be improved without undue over-
provisioning, thereby guaranteeing performance.

Thesis organization

This thesis is organized as follows. In chapter 2 we build the necessary
background for the reader to gauge the contribution, and present the state
of the art on resource management techniques for dealing with interference.

Chapter 3 presents the main research questions addressed in this thesis and
summarizes the main contributions to provide the reader a coherent view of
the separate contributions detailed in chapters 4, 5 and 6. Finally, we present
our conclusions in chapter 7.

CHAPTER

Background and Related Work

In this chapter, we review background information and the related work
with specific focus on the most recent work regarding resource management
approaches for dealing with performance interference.

2.1 Background

Performance interference can happen at any level: memory, cache, 1/0
buffer etc. Resources themselves can be divided into partitionable and non-
partitionable types. For example, CPU can be virtualized and time shared
between multiple applications. Depending on the scheduling algorithm for
CPU sharing and the type of application, this can cause contention for CPU
and degrade performance. A simple way to mitigate such type of contention
is to partition the available CPUs across different applications and provide
isolated access to CPU. This is possible because CPU is a partitionable re-
source. There also exists utilities like nice [4] to manage application priorities
to deal with CPU interference. On the other hand, there are resources such as
the last level cache and memory controller that cannot be partitioned without
special hardware support. Therefore, it is challenging to mitigate interference
on such non-partitionable shared resources and requires careful consideration
from the software side to minimise performance degradation.

Mitigating interference on non-partitionable shared resources can be ap-
proached from different perspectives and may involve different steps. For
example, it can be seen as a VM placement problem. An immediate solution

5

that seems feasible is to classify applications based on its major share of re-
source consumed and treat it as an optimal placement problem. For example,
placing a memory intensive application with a CPU intensive application fares
better than placing 2 memory intensive applications together. Although an
application can have a dominant share of resource it consumes, it typically
goes through multiple phases during the life cycle of its execution and can use
multiple resources. Under such circumstances scheduling alone is insufficient
to guarantee performance. Although scheduling can minimize resource con-
tention, it does not entirely alleviate the problem. Another challenge with VM
placement is the temporal overlap of the execution phases between different
applications. Depending on how the temporal behaviours of applications
overlap, performance can vary significantly.

An alternative approach to overcome the problems with scheduling is to com-
bine dynamic re-configuration to further mitigate the limitations of changing
phase behaviour and temporal overlap. Dynamic re-configuration involves
techniques that adapt an application during run time. VM migration is
one such technique. For example: when an application severely suffers from
performance interference, it can be migrated to another host. There are
other reconfiguration approaches possible such as resource scaling, dynamic
frequency scaling etc. Cost of dynamic reconfiguration is also an important
concern. If the benefits accrued by reconfiguration does not outweigh the cost
involved, an adaptation can backfire.

If the goal of any of this approach is to maintain a desired level of performance
it becomes imperative to detect the presence of performance interference and
also quantify the same to know when/how much to reconfigure. Detecting
performance interference can itself be challenging since an application’s per-
formance can drop either from contention, surge in workload or even from
varying phase behaviour that may result in a resource bottleneck. On the
other hand, measuring the intensity of interference is equally important to
quantify the reconfiguration approach. For example, resource scaling can be
used upon detecting interference but the exact amount of resource to be scaled
depends on the level of interference. Aggressively scaling in the presence of
light interference can starve the co-located application from making progress
and diffident scaling in the presence of high interference can be insufficient to
guarantee performance. Thus, it is important to quantify interference so as to
guarantee performance without being overly aggressive.

Another class of approach to mitigate interference involves resource partition-
ing at a fine grained level. On the memory subsystem, cache partitioning
techniques are prevalent that aim to guarantee an isolated share of last level
cache for different applications. There also exists hardware partitioning ap-
proaches that achieve this level of guarantees on the hardware. Intel recently
released a set of Xeon machines with Cache Allocation Technology (CAT)
[5] that guarantees cache space for any application at the hardware level.
However, there have been no large scale deployments of such servers and we
do not envision large scale hardware replacement in the near future.

In the next section, we highlight the most relevant related work in the context of
scheduling, dynamic reconfiguration, interference detection and quantification.
Most of the works overlap across multiple context and we present them in the
category we deem most apt.

2.2 Related Work

2.2.1 Dynamic Reconfiguration

DejaVu [6] relies on a online-clustering algorithm to adapt to load variations
by comparing the performance of a production VM and a replica of it that
runs in a sand-box to detect interference. It mitigates interference by over-
provisioning resources. Unfortunately, DejaVu has a high cost as it requires
an additional sand-box for executing the replica. A similar system, DeepDive
[7], first relies on a warning system running in the VMM to conduct early
interference analysis. When the system suspects that one or more VMs are
subjected to interference, it clones the VM on-demand and executes it in a
sandboxed environment to detect interference by comparing the differences
in relevant measured metrics. If interference exists, the most aggressive VM
is migrated on to another physical machine. It incurs overhead in the form
of cloning and migrating VMs. Migrating VMs is an expensive and time
consuming operation.

Another approach to managing performance interference by measuring it in situ
was presented by Nathuji et al. [8]. Their approach uses an online MIMO model
to capture the performance interference effects in terms of resource allocations.
The method then adjusts the processor allocation for each application based

on the required performance level, in effect compensating for performance
degradation by allocating additional resources. It achieves this by giving
unallocated resources to an application to prevent falling below the QoS
requirement. Q-Clouds improves performance as long as there is headroom
available.

Lingjia et al. [9] present a compilation approach that identifies code regions
that cause contention and transforms those regions to reduce their contentious
nature. In essence, it recompiles the application to throttle down memory
access rate to reduce interference on high priority applications.

Heracles [10] aims to leverage periods of low utilization when running latency-
critical workloads to execute batch-applications. It uses a feedback-based
controller that enables safe co-location of batch applications alongside latency-
critical tasks. It dynamically manages multiple hardware and software isolation
mechanisms to ensure performance guarantees for latency-critical applications.
Specifically it relies on Cache Allocation Technology (CAT), scaling down
the number of cores, DVFS and network bandwidth limiting to tune the
performance of best-effort applications when they begin to degrade the perfor-
mance of latency-critical applications. This is achieved through a hierarchical
controller with sub-controllers for each resource (CPU, Memory and Network)
that work in unison to decide which isolation mechanism to use.

iAware [11] focuses on how to make live migration of VMs interference
aware. It empirically captures the essential relationship between performance
interference and different metrics by executing benchmark workloads. It then
jointly estimates and minimizes both migration and co-location interference
by designing a simple multi-resource demand supply model.

Amiya et al. [12] guarantee performance of webservers through application
reconfiguration techniques. They use cache-miss rate along with application
reports on throughput and response time to detect interference. Upon de-
tecting interference their solution tunes web server specific parameters such
as MaxClients and KeepaliveTimeout to mitigate the detrimental effects of
interference maintain the performance requirement.

2.2.2 Partitioning

Another class of work has also investigated providing QoS management for
different applications on multicore by partitioning shared resources [13, 14, 15].
While demonstrating promising results, resource partitioning typically requires
changes to the hardware design, which is not feasible for existing systems.

In Ubik [16] the authors show that guaranteeing average performance is not
enough to maintain tail latency. They show that resources such as cache
and cores exert inertia on the instantaneous workload performance, and these
resources when shared degrades the tail latency significantly. While other
works on cache partitioning can be adapted to provide capacity isolation
and improve cache utilization, ignoring inertia sacrifices the performance
of batch applications that are co-located with latency-critical applications.
They propose a dynamic partitioning technique that predicts and exploits the
transient behaviour of latency-critical workloads to dynamically manage cache
allocations without degrading tail latencies.

2.2.3 Quantifying Degradation

Recent efforts [17, 18, 19] demonstrate that it is possible to accurately predict
the degradation caused by interference by prior analysis of workload. However,
in practice, applications are not available prior to their deployment and often
run for a long time, so it may not feasible to perform this analysis for all kinds
of application. Koh et al [20] propose a technique for predicting performance
degradation of co-located applications based on their resource usage statistics.
When a new application is hosted, its resource vector is compared with that
of known applications and is mapped to the weighted average of one or
more known applications whose resource vectors it closely resembles. Then
the performance degradation of the new application is predicted based on
already recorded performance degradation of the mapped /representative known
applications. It requires the need to have an already profiled application that
closely resembles an incoming application and does not capture the temporal
properties of the application.

In [21], the authors show that it is important to consider temporal properties
(phases) when applications are scheduled. They show that applications can
experience different amount of degradation depending on which phases overlap

10

between the scheduled applications. The authors propose a method for effi-
ciently investigating the performance variability due to cache contention while
taking into account phase behaviour. They capture input data from isolated
execution of the application and is combined with a phase-aware performance
model that quickly evaluates hundreds of overlappings. Their results show
that taking into account the temporal properties can improve and significantly
improve the accuracy of the model.

In works [22] and [23], the authors use a stress application (called Stressmark)
to steal cache from a co-run target application. Stressmark steals cache space
and the amount of cache space stolen is determined from an analysis of its
known Miss Ratio Curve (MRC). However, a limitation with this approach
is that MRC is determined by its interaction with the target applications
cache footprint. This behaviour varies during execution and they are only
able to determine the average cache-utilization for a given execution. For a
target application with varying cache foot print, performance modelling using
this approach can be significantly affected. The problems of this approach is
mitigated by Cache Pirate [24].

In Cache Pirating [24], the authors present a low-overhead method to measure
the performance of an application as a function of cache space availability.
Cache Pirating does not require any modification to the existing hardware or
the operating system. It is achieved by co-running a pirate application that
steals cache space from the target application. The pirate needs to ensure that
its working set is always retained in the last level cache, while being tunable.
It works in unison with the cache replacement policy and manages it access
pattern such that the data of the pirate is always retained in the cache. By
tuning the pirate application to steal varying amounts of cache space, they
are able to model the performance of the target application.

Fairness via Source Throttling (FST) [25] and Per-thread cycle accounting
(PTCA) [26] estimate slowdown due to both shared cache and main memory
interference. They determine the effect of interference on slowdown at a
per-request granularity. Specifically, to estimate an application’s isolated
execution time, both FST and PTCA determine the number of cycles by
which each request of the application is delayed due to interference at the
shared cache and main memory. The drawback of this approach is that with
the abundant amounts of parallelism in the memory subsystem, the service

11

of different requests will likely overlap. As a result, estimating the effect of
interference on slowdown at an individual request granularity is difficult and
leads to inaccurate estimates for FST and PTCA.

Application Slowdown Model (ASM) [27] is a new technique that accurately
estimates application slowdowns due to interference at both the shared cache
and main memory without a priori application knowledge. It is based on the
observation that an applications performance is strongly correlated to the
rate at which the applications accesses the shared cache. The slowdown is
then determined dynamically by two steps: First, by estimating the average
cache-miss service time had it been run alone, and second, by estimating the
number of cache-misses that would have been hits if the application did not
share the cache with other applications. The first estimation is achieved by
prioritising the memory requests of the application for short time periods and
the second estimation by using an auxiliary tag store. ASM works better than
FST and PTCA as it does not consider per-request effect and instead takes
into account aggregated behaviour.

2.2.4 Scheduling

In [28] the application is profiled statically to predict interference and identify
safe co-locations for VMs. It mainly focuses on predicting which applications
can be co-run with a given application without degrading its QoS beyond a
certain threshold. The limitation of static profiling introduces a lack of ability
to adapt to changes in application dynamic behaviour. Paragon [29] tries to
overcome the problem of complete static profiling by profiling only a part of the
application and relies on a recommendation system, based on the knowledge
of previous execution, to identify the best placement for applications with
respect to interference. Since only a part of the application is profiled, dynamic
behaviours such as phase changes and workload changes are not captured and
can lead to a suboptimal schedule resulting in severe performance degradation.
Quasar [30], extends Paragon and takes an alternative approach to cluster
management that does not require users to specify cluster requirements in the
form of resource reservations but instead takes it in the form of performance
constraints. Quasar is then capable of determining the right amount of
resources required to meet the constraints. Bubble-Flex [31] is a runtime
method for mitigating performance interference by phasing in and phasing out

12

batch applications upon detecting QoS violations. It predicts QoS violations by
generating load in the memory subsystem in bursts during runtime to generate
a sensitivity curve. Their approach introduces additional stress on the memory
subsystem, which can itself cause interference and batch applications are
unable to fully exploit periods of low utilization. Interference Management
for Distributed Parallel Applications in Consolidated Clusters [32] studies the
impact of local interference on the execution of distributed applications. The
major difference for a distributed application is that interference on a local
node can affect the end to end performance of the application spanning many
nodes. The authors characterize the effect of interference for various distributed
applications with varying intensities and distribution of interference. Based
on this characterization, the authors design a interference propagation model
that estimates how interference on a subset of nodes affects the end-to-end
performance. Using the proposed method, they develop an interference-aware
placement based on simulated annealing, which can efficiently consolidate
multiple distributed applications

Tracon [33] utilizes modeling and control techniques from statistical machine
learning to achieve interference aware scheduling. Essentially, it consists of
an interference prediction model that infers application performance from
resource consumption observed from different VMs and adapts the model at
runtime for efficient resource management.

2.2.5 Detecting Contention

Several detection techniques have been proposed to identify contention. Most
works [34], [35] use the hosts’ hardware performance counters to detect inter-
ference. LLC miss rate is widely used to detect contention [12]. CPI2 [36] rely
on cycles per instruction and look for significant statistical deviation to detect
interference. It relies on the existence of thousands of tasks for a job to find
statistical outliers from normal behaviour. Hardware performance counters
and operating system metrics need access to host information and as such is
more suited as a cloud provider solution. Mukerjee et al. [37] uses a software
probe that executes sections of micro-benchmark code specifically designed to
detect contention on the memory hierarchy. The execution time of the probe
is then compared against the execution time during an isolated run and any
statistical difference is used to flag interference.

13

Yasaman et al. [38] propose a machine learning based interference detection
technique. It specifically uses collaborative filtering to predict whether a given
transaction is adversely suffering from interference and does not require explicit
authoring of models. The major difference from the remaining work is that
they don’t rely on hardware performance counters and as such is applicable
for the cloud subscriber to detect contention.

Casale et al. [39] also propose a subscriber centric solution to detect contention
on processor cache. It continuously monitors the execution times of a set of
benchmarks which is then compared with isolated execution of the benchmark
and CPU steal metric to predict whether or not a VM is affected by interference.

CHAPTER

Contributions

In this chapter, the main research questions and the challenges are presented.
Each set of questions is then discussed and the related contributions are
summarized according to the approach we chose. The specific contributions of
this thesis are presented in detail in chapters 4, 5 and 6.

The research aims to address questions from different perspectives, which in-
crementally add up to build a solution that is capable of efficient resource man-
agement that is performance aware while providing high utilization. Achieving
this entails understanding the effects of performance interference and we
approach it from 2 perspectives:

3.1 Performance Interference from a single host per-
spective

Single host perspective deals with performance degradation that manifest
purely from contention in shared resources and does not consider scenarios
where the application workload overloads the hosts capacity. Difficulties
to model and predict performance interference has resulted in the heavy
handed approach of disallowing any co-locations with performance sensitive
applications, a major contributor to low machine utilization in data centers
[3]. Recent work has seen proposals to predict interference and minimise
QoS degradations by relying on static approaches based on prior profiling of
applications [40, 28]. Even with an ideal profiling technique, it is impossible to
fully characterize an application before run-time in order to prevent interference

15

16

and improve utilisation. This is because applications can have varying and
sometimes unpredictable inputs/workloads during run-time and services may
run for extended periods making it infeasible to profile. Addressing these
challenges to mitigate performance interference requires analysis during the
run-time to deal with long running jobs and varying workloads. Thus, assuring
QoS for sensitive applications while allowing co-location continues to remain a
challenging problem. The specific challenges that exacerbates the difficulty in
providing performance guarantees while ensuring high utilization stems from
the following reasons:

e Unknown Application: Application never seen before, hence no infor-
mation about the application behaviour is available. Consequently, the
optimal performance is unknown.

e Dynamic Workload: Varying and sometimes unpredictable workload
voids any kind of offline characterization.

e Unknown Expiration: Web applications for example run for extended
periods. Such applications cannot be fully characterized offline.

e Quantifying Degradation: Predicting and quantifying the degradation
experienced from contention is application specific and difficult to model.

Q1: Is it possible to improve machine utilization without violating SLO of
performance-sensitive services using a black-box approach? What are the
right dynamic configuration techniques to achieve the same? What kind of
prediction helps minimise SLO violations in a co-located setting?

The challenges outlined in the previous section motivate the need for a solution
that is dynamic and run-time aware in order to improve utilization without
sacrificing the QoS requirement of latency critical services. We design Stay-
Away, a generic and adaptive mechanism capable of performing a run-time
analysis to execute best-effort batch applications without sacrificing the QoS
of latency sensitive applications. Applications typically don’t use all the
requested resources during the life cycle of their execution because of changes
in workload intensity and inherent phase changes. A phase change is defined
as a change in the major share of resource consumed by an application. For
example, an application can be mostly CPU intensive for a certain period

17

and be I/O intensive at other times. As a result, not all the resources are
used at all times. Apart from these phase changes, varying workloads often
result in periods of low utilisation. Stay-Away leverages on these periods of
low workload intensity and phase changes to improve utilisation by executing
best-effort batch applications without sacrificing the QoS of latency sensitive
applications.

To summarize, the specific contributions in this chapter are:

e We present the design of Stay-Away, a generic and adaptive mechanism to
improve machine utilization by executing best-effort batch applications
alongside latency sensitive applications while providing performance
guarantees. Stay-away learns QoS violations when application execute
together and progressively learns a model to avoid the learned QoS
violations by throttling batch applications.

e We design a methodology to model real-time transitions of the VM
states to be aware of dynamic changes across the environment in order
to prevent known QoS violations before they occur.

3.2 Performance Interference from a distributed sys-
tem perspective

In this section, we focus on scenarios where an application workload can
overload a hosts capacity and necessitates the need for elastic scaling to
provide performance guarantees. Under such circumstances, we show that
performance interference introduces additional challenges that impact the
accuracy of elastic scaling. Although the eventual impact of performance
interference is always performance degradation, the performance degradation
manifests from not accounting for the role of contention. Huang et al. [41]
show that contention in one shared resource has a cascading effect on other
resources and results in performance consequences that may not be easy to
model. Similarly, we explore the implications of performance interference that
go beyond performance degradation. With Elastic scaling as a use case, we
demonstrate that not accounting for performance interference can affect the
reliability of decision making phase and the accuracy of the actuation phase.
As a result, not only does it degrade the performance but it can also result in

18

undue resource provisioning subsequently increasing the cost. We provide an
overview of elastic resource provisioning and then present the contributions.

Elastic resource provisioning is used to guarantee service level objective (SLO)
with reduced cost in a Cloud platform. Elastic scaling typically consists
of an elasticity controller that allows to meet the demands of the changing
workload by adding or removing resources when required. It consists of a
decision making phase that decides when to scale out/down and an actuation
phase that acts as an interface to resource infrastructure and adds/removes
resources. We show that performance interference affects both the decision-
making phase and the actuation phase. Existing elasticity controllers are
either unaware of performance interference or over-provision resources to meet
the SLO requirements. In this thesis, we take a holistic view on elastic scaling
from a multi-tenant perspective and show that performance interference affects
both service reliability and accuracy.

3.2.1 Service Reliability (Decision Making):

Specifically, we try to answer the following research questions:

Q2: What are the consequences of performance interference apart from
degradation in performance? Do these consequences have any implication
on the reliability of metrics used for elastic scaling? Is it possible to circum-
vent /mitigate the negative implications?

CPU utilization [42, 43, 44, 45, 46] and workload intensity [47, 48, 49, 50, 51]
are two widely used indirect metrics in the decision-making phase to decide
when to scale a system. They are widely used as they are easily available
without any significant overhead and correlate well with the measure of service
quality such as latency. For example, high CPU utilization corresponds to
high latency and low CPU utilization corresponds to low latency. An elasticity
controller that relies on CPU utilization learns a model that captures this
correlation which is then used in the decision making phase to decide when
to scale. These metrics work well in an isolated environment and are widely
used. We explore the reliability of these indirect metrics in a multi-tenant
environment and find that these metrics become unreliable when performance

19

interference is unaccounted. Our results show that performance interference
skews their correlation with latency thereby resulting in inaccurate decisions.

Our main contribution is Hubbub-Scale; an elasticity controller that achieves
predictable performance in the face of resource contention without any signifi-
cant overhead. We facilitate this by designing a middleware that provides an
API to quantify the amount of pressure the co-running VMs put on the target
system. Specifically our contributions are:

e We show that OS configuration, performance interference and power-
saving optimisations stand in the way of predictable performance and
impact the decision making phase. While OS configuration and power-
saving optimisations can be controlled, performance interference is in-
evitable in a multi-tenant system and needs to be modelled.

e In the presence of performance interference, indirect metrics used for
elastic scaling cease to accurately reflect the measure of service quality,
consequently affecting the scaling accuracy and reliability of indirect
metrics.

e We build Hubbub-scale, an elasticity controller that is reliable in the pres-
ence of performance interference and achieves high resource utilization
without violating the SLO.

3.2.2 Service Accuracy (Actuation):

Q3: Does performance interference impact the accuracy of elastic scaling? Is it
possible to augment existing elasticity controllers to be aware of performance
interference? Does augmentation reduce SLO violations and improve the
scaling accuracy? Can the augmentation also improve the system utilization?

Here, we focus on the actuation phase of the elasticity controller that acts
as an interface to the resource infrastructure. We show that when elasticity
controllers are unaware of interference during the actuation phase, it either
results in long periods of unmet capacity that manifest as Service Level
Objective (SLO) violations or results in higher costs from over provisioning.
We augment the elasticity controller to be aware of interference and significantly
reduce SLO violations and save provisioning costs. We consider Memcached

20

for elastic scaling, as it is widely used as a caching layer, and present a
practical solution to augment existing elasticity controllers in 3 ways: (i)
At the ingress point by load balancer reconfiguration (ii) by reducing the
convergence time when scaling out and (iii) by taking informed decisions when
scaling down/removing instances. We achieve this with the help of hardware
performance counters to quantify the intensity of interference on the host.
This is achieved with the help of a middleware that exposes an API for VMs
to query the amount of interference in the host. Decisions by the elasticity
controller is then augmented with the help of this information. Our main
contributions are:

1. We show that the maximum workload any VM can serve within a SLO
constraint is severely impacted by interference. An immediate consequence
of this impact is an increase in the time taken for the scaling out process to
converge which results in increased SLO violations. We also show that this
resulting period of SLO violation is directly proportional to the time taken to
spawn and prepare VMs.

2. We design and develop a solution to augment elasticity controllers to be
aware of interference. Our solution quantifies the capacity of a VM based on
the interference experienced on the host by modelling the performance of the
target application. With this we are able to reduce the impact of interference
on SLO violations by reconfiguring the load balancer, reducing the convergence
time when scaling out and by removing highly interfered instances from the
cluster when scaling down.

3. We perform experiments with Memcached and compare our solution against
a baseline elasticity controller that is unaware of performance interference.
We find that with augmentation we can not only reduce SLO violations
significantly but also save provisioning costs compared to an interference
oblivious controller.

CHAPTER

Stay-Away: Protecting Sensitive
Applications from Performance
Interference

Abstract

While co-locating virtual machines improves utilization in resource shared
environments, the resulting performance interference between VMs is
difficult to model or predict. QoS of sensitive applications can suffer
from resource co-location with other resource intensive applications. The
common practice of overprovisioning resources helps to avoid performance
interference and guarantee QoS but leads to low machine utilization. Re-
cent work that rely on static approaches suffer from practical limitations
due to assumptions such as a-priori knowledge of application behaviour
and workload. To address these limitations, we present Stay-Away, a
generic and adaptive mechanism to mitigate the detrimental effects of
performance interference on sensitive applications when co-located with
best-effort applications. Our mechanism complements the allocation de-
cisions of resource schedulers by continuously learning the favourable and
unfavourable states of co-execution and mapping them to a state-space
representation. Trajectories in this representation are used to predict
and prevent any transition towards performance degradation of sensitive
applications by proactively throttling the execution of batch applications.
Experimental results with realistic applications show that it is possible
to guarantee a high level of QoS for latency sensitive applications while
also improving machine utilization.

21

22

Wikipedia Workload

/\ ﬂm

06 08 1.0

Normalized Workload
0.4

0.2

0.0
1

T T
0 1 3 4

Time(Days)

Figure 4.1: Total Workload variation of Wikipedia during the period 1/1/2011
to 5/1/2011

4.1 Introduction

In this chapter, we present Stay-Away, a generic and adaptive mechanism
capable of performing a runtime analysis to execute best-effort batch appli-
cations co-located with latency sensitive applications without sacrificing the
QoS of latency sensitive applications. Applications typically don’t use all the
requested resources during the life cycle of their execution because of changes
in workload intensity and inherent phase changes. A phase change is defined
as a change in the major share of resource consumed by an application. For
example, An application can be mostly CPU intensive for a certain period
and be I/O intensive at other times. As a result, not all the resources are used
at all times. Apart from these phase changes, varying workloads often result
in periods of low utilisation. Figure 4.1 shows the total read workload for
Wikipedia obtained from trace [52]. The workload follows a diurnal pattern
with clear periods of low workload intensity. Stay-Away leverages on these
periods on low workload intensity and phase changes to improve utilisation by
executing best-effort batch applications without sacrificing the QoS of latency
sensitive applications.

Stay-Away periodically monitors the resource usage metrics of every Virtual
Machine in the host, yielding a time series of measurement vectors. These
vectors are then mapped onto a two dimensional space such that similar mea-

23

surement vectors group together. QoS violations manifest during executions
when VMs contend for a resource. This results in measurement vectors that
deviate significantly from the measurement vectors of normal executions. As
a result measurement vectors of QoS violations are mapped farther away from
the group of normal executions. Once this mapping is done, Stay-Away then
predicts any progression towards a QoS violation by performing a continuous
spatial and temporal analysis of the two dimensional space to identify tran-
sitions, their rate and direction. Upon detection of any transition towards a
QoS violation, Stay-Away throttles the batch application to avoid a contention
before it occurs.

To summarize, the specific contributions in this work are:

e We present the design of Stay-Away, generic and adaptive mechanism to
mitigate the detrimental effects of performance interference on sensitive
applications when co-located with batch applications.

e We design a methodology to model real-time transitions of the VM
states to be aware of dynamic changes across the environment in order
to prevent known QoS violations before they occur.

e Additionally, we discuss how this methodology can serve as a template
for repeatable experiments.

We experiment with VLC streaming server and a Webservice, co-located with
different set of batch applications. Our results indicate that using Stay-Away,
we are able to guarantee a high level of QoS, and are able to increase the
machine untilization by 10%-70%, depending on the type of co-located batch
application.

4.2 Background

In this section, we highlight the differences between scheduling and dynamic
reconfiguration, and provide the necessary background for understanding Multi
Dimensional Scaling (MDS), a key component of our approach.

24

4.2.1 VM Placement

The problem of mitigating inter-VM interference can be seen from two different
perspectives: VM placement and dynamic reconfiguration. The VMs can be
scheduled to co-locate in a manner such that they minimize performance
interference between each other. For instance, co-locating a memory intensive
application with a CPU intensive application is much better than co-locating
2 memory intensive applications together. Papers like Bubble-up [28] and
Paragon [29] solve the problem of interference by deciding which VMs to co-
locate. In other words, these systems leverage the freedom to co-locate VMs
such that there is minimal interference. Their techniques rely on application
characterization and fails to address the challenges of dynamic workload and
long running applications.

Alternatively, interference can be alleviated even after VMs are co-located. This
can be achieved through dynamic reconfiguration. Dynamic reconfiguration
may include resource scaling (dynamically increasing the amount of resources
allocated to a VM), VM migration or relaxing the guarantees on some VMs.
For example, a VM might be sharing a socket with other VMs leading to an
interference at cache level, but by dynamically reconfiguring the VM to use
the entire socket in an isolated way, the processing power increases and also
VMs do not interfere at cache level anymore. This is possible only if additional
resources are available for scaling. Cost of dynamic reconfiguration is an
important concern. An adaptation is feasible only If the benefits accrued by
reconfiguration outweighs the cost involved. VM migration is slow and involves
a high cost.Yet another dynamic reconfiguration technique is to throttle the
VMs that cause interference and don’t need strict guarantees with performance.
This does not incur a high cost and is instantaneous.

For these reasons, Stay-Away relies on throttling VMs when resource con-
tentions are about to happen. This affects the performance of the throttled
VMs and require them to be best-effort. We introduce the constraint that
only best-effort batch applications can be scheduled with latency sensitive
applications. With this constraint in place, we are able to achieve a high level
of QoS and improved utilisation. Stay-Away is not a scheduler. It relies on
dynamic reconfiguration and can complement from schedulers like Choosy[53]
that allows scheduling with constraints.

25

Violation of QoS can happen because of 2 reasons: the system being unable to
meet the demands because of unusual or extremely high workload overloading
the host or because the system is unable to meet the demands because of
interference from co-located VMs. In this chapter, we assume that any violation
is only because of interference, and workloads overloading hosts that require
scaling are discussed in chapter 5 and 6

4.2.2 Multi-Dimensional Scaling

Multi-Dimensional Scaling (MDS)[54] has the property of being able to repre-
sent a high dimensional space R™ in a lower dimensional one, for instance
R2, preserving the relative distances, i.e. the absolute value of the distances is
lost, but the points are rearranged in a 2D space so that the relative distances
between points in the plane correspond to the relative distances in the high
dimensional space. Each object or event is represented by a point in a 2D
space. The points are arranged in this space so that the distances between
pairs of points have the strongest possible relation to the similarities among
the pairs of objects. That is, two similar objects are represented by two points
that are close together, and two dissimilar objects are represented by two
points that are far apart. Unlike a projection operator such as PCA [55] or a
manifold discovery algorithm [56], which gives superposition in the direction of
projection, MDS creates a new representation based on the distances between
points

The algorithm for assigning the points in a lower dimensional space preserving
the relative distances between points is based on the idea of stress majorization,
which assigns the coordinates by minimizing a loss function based on the
weighted sum of the differences between the euclidean distances on the original
space and the distances on the representation plane. The loss function is
defined as Loss(X) = Y0} > i1 (Dist(w, x5) — 8;.;)%, where z;,z; € R™,
the matrix X consist of the concatenation of the state vectors x; and d; ;
corresponds to the relative distance of the represented points ¢, 7 on the plane
R2. The loss function can be minimized by using Scaling by majorizing a
convex function (SMACOF) algorithm, which minimizes a quadratic form
iteratively.

26

CPU, Mem, Net,
- 039 06_0.10,
CPU. Mem, Net..... :i‘

0.29 056 0.21,. -
050 0.31 0.33,. .

Map Transition

048 0.40 0.24,.
051 045 0.28,.

Action

Figure 4.2: Stay-Away mechanism. This figure illustrates the 3 steps: Mapping,
Predicting Transition and Action. The darker circle on the top of the map
represents a QoS violation.

4.3 Stay-Away Mechanism

The key insight of Stay-Away is that, the closer the resource usage resembles
a contention that was previously responsible for QoS degradation, the more
the sensitive application progresses towards a QoS violation. The Stay-Away
runtime is a middleware between the VMs and the underlying resource, and
runs on each host periodically following a three step mechanism: Mapping,
Prediction and Action as shown in figure 4.2. All the three steps are performed
in each period.

4.3.1 Mapping

Stay-Away employs a set of continuous VM-state resource usage snapshots to
capture patterns of VM behaviour during application runs. Specifically, the
runtime-learning phase begins by periodically measuring a set of VM metrics
such as CPU, memory, 1/O, network traffic for all VMs in the physical host as
a vector of measurements M(t) = <VM;-CPU, VM;-Memory, VM;-1/O, VM;-
network> for all VMs at time ¢. Stay-Away does not impose any limitation
on the choice of metrics to be used. Ideally, the right metrics to use are
those that characterize the load on the resource subsystem we are interested
in. For example, the performance counter bus transactions for each VM can
be used to characterize the load on the memory bus. These measurement
vectors are then mapped into a lower dimension using MDS. This maintains

27

the topological properties (relative distances) of the high dimensional space
and similar measurement vectors remain close to each other, while dissimilar
measurement vectors are placed farther apart. The mapped measurement
vector in the lower dimensional space is called a mapped-state.

The mapping of each measurement vector over time captures the temporal
behaviour of the execution. The path traced by the mapped-state is the
trajectory of execution. Stay-Away relies on the application to report whenever
a QoS violation happens in order to label the mapped state corresponding to
the QoS violation. Alternatively, using IPC to detect QoS violation is explored
in other works[31]. The mapped-state corresponding to a QoS violation is
called a violation-state.

The measurement vectors can be mapped on to any lower dimension, we
specifically selected a 2D representation for the following reasons:

o Interpretability: As MDS preserves the relative distances between mea-
surement vectors, it helps understand the patterns and behaviours during
the temporal evolution of the co-located VM execution. The metric
preservation property of MDS also maintains the angles and the direc-
tions of the trajectories, which means that a prediction in a plane (y, x),
gives a reliable representation of the behaviour on the high dimensional
space.

e Parameter Estimation: A natural technique for forecasting in high dimen-
sions is Vector Autoregressive Models (VAR)[55]. In high dimensional
spaces, the number of samples needed for a reliable estimation of pa-
rameters by means of histograms (explained in section 4.3.2.3) increases
exponentially with the dimensionality and also the domain of values for
the parameters increases with increasing dimensions, leading to unreli-
able parameter estimation. A 2D representation of the trajectories gives
prediction models with two parameters, which can be estimated reliably
from a small sample.

4.3.2 Prediction

The second step of Stay-Away is to predict the future state of the execu-
tion based on the observations so far. The mapping phase produces a two-
dimensional map which is then used by the predictor to forecast the transition

28

of the execution behaviour. Specifically, we are interested only in knowing if
the execution progresses towards a wviolation-state. Once it is fairly certain
that a QoS violation is likely in the future, Stay-Away can then steer away
from QoS violation by throttling the batch application. The predictor has 2
goals:

e To prevent an impending violation

e To allow the system to progressively learn about new violation states

These are conflicting goals, since, letting the applications to execute till a
QoS violation happens in order to learn implies that a preventive action
should not be taken. This is overly conservative on the batch applications and
degrades the performance of sensitive applications. However,throttling the
batch application based on incomplete information is overly aggressive on the
batch applications and restricts state-space exploration. The predictor needs
to strike a balance between the two to consistently anneal to the correct QoS
value without being overly aggressive nor overly conservative. In the following
subsections, we explain how the predictor strikes a balance between the two
and how a future mapped-state is estimated.

4.3.2.1 Should a prediction rely only on known QoS violations?

When observing a resource contention causing a QoS violation, the system
state is mapped on to the state-space and marked as violation-state. During
every period, the predictor tries to estimate the position of the future mapped-
state. If the estimated mapped-state overlaps with the wviolated-state, then a
QoS violation is likely.

Any mapped-state or violation-state represent only the observed system be-
haviour. Since the violation-states also correspond to specific measurement
vectors, and is marked as a point in the 2D space. If throttling of batch
applications is done only based on exact overlap of the estimated mapped-state
with wviolation-state, it limits the prediction to only seen states of violation. It
is highly likely that the nearby neighbouring states around the wviolation-state
also correspond to a QoS violation as they are separated only by minor de-
viations. For example, in a QoS violation corresponding to a particular VM
consuming 250MB of memory, minor deviations such as 255MB of memory

29

usage would still cause a QoS violation even though the exact value of 255MB
was not seen. If the predictor can take advantage by extending the range to
account for unseen violations, it can prevent impending violations without
having to capture the violation explicitly.

Violation Range

Exploration range

Current State

° Previous State

Violation State
®

Nearest Safe State

Figure 4.3: State-space exploration

The unexplored neighbourhood area around the wviolation-state is called the
violation-range, marked as a circle and is shown in figure 4.3. The wviolation-
range is an approximation and corresponds to that area in the state space which
the system hasn’t seen yet but deems as the neighbourhood that would contain
violation-states if a state were to be mapped in that range. Consequently, if an
estimated mapped-state falls within a violation range, the batch application is
throttled. Thus, a violation-range with a big radius would lead to aggresively
throttling batch applications and a wviolation-range with a very small radius
could lead to multiple QoS violations. In the next subsection, we explain
how Stay-Away progressively attains accuracy and strikes a balance.The
exploration-range is that neighbourhood which the system assumes safe. The
predictor relies on a heuristic to predict the violation-range and progressively
aims to attain accuracy. The area of the violation-range depends on the nearest
known safe-state in the state-space. Mapped-states that do not correspond to
a violation are called safe-states.

30

10

* * Radius of Violation Range
gl|® @ Width of the Exploration range
— Distance between states

Radius

0 2 4 6 8 10
Distance between violation-state and nearest-safe-state

Figure 4.4: Variation of the radius of violation-range as distance between the
violation-state and nearest safe-state varies

4.3.2.2 How Far to explore?

The radius of the violation-range is modelled as opposing forces (repulsion)
between the violation-state and the nearest safe-state. The choice is intuitive:
the closer there is a known safe-state, the lesser is the area of the violation-
range. Initially the range is an approximation and as more states are explored,
the representation gets more accurate. The radius of the wviolation-range is
defined as the distance between violation-state and the nearest safe-state scaled
by a Rayleigh distribution. It is important not to define the entire distance
between a violation-state and the nearest safe-state as the radius of violation-
range as it would prevent the system from exploring new states closer to the
violation-range. A Rayleigh distribution is used to allow for the exploration
range to adapt depending on the distance between the nearest safe-state and
the wviolation-state. Ideally, the size of the exploration range should fade as
the distance between the nearest safe-state and the violation-state gets closer.
The radius of the violation range is given by:

_d2

R = de2?

where d is the distance between the nearest safe state and the violation state.
c is the shape factor and is defined as the median of the coordinate range of the
mapped space. It follows from the observations that as the distance between
these states increase, it is safer to increase the size of the exploration-range
as we are more likely to be farther away from any unseen wviolation-states.
However, as the distance between these states get closer, the exploration range

31

needs to fade. Figure 4.4 shows the variation of the radius of violation range
and the size of exploration range as the distance between these states vary.

4.3.2.3 When to act?

During the period of co-located execution, the system transitions through
different states determined by the extent and type of resources being used
by the VMs. In order to minimize the effect of performance interference,
Stay-Away needs to predict any transition towards a violation and take a
preventive action. The state transitions are specific to the applications running
on the VM and can be:

e Gradual transitions, marked by resource consumptions such as memory
usage where the memory allocated for the application typically varies
gradually over time and as a result presents a consistent transition.
Transitions are not marked by one application alone but instead by the
combination of resource usage from all applications. As a result, the
vector measurements in combination may or may not strictly follow a
linear movement. However, the rate and pattern in transition becomes
more apparent if the co-located application experiences minimal phase
transition during its period of execution.

e Instantaneous transitions, marked by resource types such as CPU usage
that could vary as instantaneous spikes. These sudden changes contribute
to state transition in quick successions reducing the reaction time for any
preventive action. For example, consider a wviolation-state characterised
by a measurement vector with a contention at the level of CPU. If in
future both applications contend for CPU, the transition to violated
state is very quick giving almost no time for the system to react.

We have seen that the extent of safe-states are defined by the exploration-range
and Stay-Away tries to avoid entering the wviolation-range to avoid violations.
While these ranges act as a demarcation in space, the rate and direction of
transition measure the temporal evolution or the progression over time.

State transitions are the result of complicated responses to an applications
internal behaviour, and interactions between the co-located applications. It

32

is not immediately obvious how a continuous movement process should be
modelled and parameterized, since movement is multi-dimensional, combining
both spatial and a temporal dimension. Because it is impossible to accurately
model all of these interactions, they need to be modelled stochastically i.e.
with intrinsically random velocities and orientations that can be summarized
by well-defined probability densities and associated parameters. However, we
observed that the accuracy of the prediction model suffers severely when all
the state transitions are modelled using a single model. This is because every
application has a characteristic behaviour and sometimes repetitive phases
[57]. At any point in time, one of these 4 execution modes hold true:

No application is running

Batch application runs alone

application

Latency-sensitive application runs alone

Co-located execution of both batch application and latency-sensitive

Soplex

@,o/‘

Distance Angle

0.0

mapped Y

-05
I

Co-located execution

No application is running

C streaming server

Figure 4.5: All 4 execution modes when VLC streaming is co-located with

Soplex from SPEC CPU 2006

mapped X

33

Figure 4.5 shows the state transition for an execution lifecycle comprising
of VLC streaming server and Soplex from the SPEC CPU 2006 benchmark
suite. The state transitions begins with no application running, followed by
executing VLC streaming. Shortly after, the batch application is scheduled
to execute and the states transition to co-located execution. Finally, VL.C
streaming finishes its execution and the batch application executes in an
isolated fashion until it finishes. We can clearly see that each execution mode
forms clusters and has a different pattern for trajectory. While VLC streaming
is characterised by short bursts of correlated movement, Soplex follows a
linear trajectory with a consistent orientation and slightly varying step length.
Co-located execution on the other hand experiences an oscillating trajectory
with bigger step lengths. As a result, modelling all the different execution
modes using a single model fails to capture the inherent patterns and sequence
specific to each execution mode. The trajectory pattern experienced in each
of these execution modes is different. We experimented with numerous other
co-locations of applications and observe that the life cycle of an execution steps
through different modes and the trajectory pattern has a high dependence on
the current execution mode. Our prediction model stems from this observation
and as such no single prediction model can accurately model all the state
transitions. The state transitions are broadly categorized into these 4 distinct
execution modes, each with a different prediction model. Since Stay-Away
runtime is a middleware managing the VMs, it can any time determine the
current execution mode the system is in.

Marsh et al. [58] noted that a good description of the trajectory is achieved
when the measured parameters and the relationships between them are suffi-
cient to reconstruct characteristic tracks without loosing any of their significant
properties while relying on a minimum set of relatively easily measured param-
eters. Based on a literature review [59], we have noticed that the trajectory
can be fairly accurately modelled by the following parameters:

e Distance: The distance d between successive positions

e Absolute angle: The absolute angle «; between the x direction and the
step built by transitions from positions i and i+1

No static trajectory model can be assumed even within an execution mode for
different sets of co-locations as each application has a different characteristic

34

behaviour of its own. For a particular combination of batch application and
latency sensitive application, co-located execution mode may show charac-
teristics of a Biased Random Walk [60] whereas for a different combination,
the execution mode may follow the trajectory model of levy flight [61]. Levy
flight trajectories were observed for applications that experiences sudden phase
changes. Because of these differences, we cannot rely on a static model and
have to learn the behaviour during the execution.

To characterize the trajectories, we capture the behaviour of each execution
mode by the probability density function (pdf) of the parameters: distance
d and absolute angle ;. The underlying measurement is a histogram. In
Figure 4.5, we plot the smoothed version of the histogram using kernel density
estimation and show the corresponding pdf of both distance and angles for
different execution modes. The skew in the distribution indicates that the
trajectory is biased and not random (with equal probabilities for all step lengths
and angles). The bias indicates that the likelihood of certain step lengths
and angles are higher than the others and this helps model the prediction
with high accuracy. We experimented with many different set of applications
and co-locations and always observe a bias in the trajectory. Therefore, after
a few observations have been made, a first approximation of the pdfs for
both parameters can be derived. A random set of samples are then generated
following the histogram using the inverse transform method, which computes
a mapping from a uniform distribution to an arbitrary distribution (i.e. the
distribution from the histogram) [62]. This allows us to predict a set of
new states around the current state and models the uncertainty in the likely
position of the future state. Because of the inherent behavioural patterns in
applications that cause a bias, with 5 samples to model uncertainty, we are able
to achieve more than 90% accuracy on average for all the different co-locations
we experimented with in section 4.7. Once the uncertainty is modelled, the
generated states are examined to see if they fall within a violation range.
Whenever a majority of the generated sample set fall within a violation range,
Stay-Away takes an action to prevent degradation.

4.3.3 What Action to take and When to Stop?

To throttle the execution of the batch application, Stay-Away sends a SIGSTOP
signal to pause the batch application and SIGCONT to resume its execution.

35

Once paused, the system does not resume the batch application until the
system believes that resuming the batch application will not cause a perfor-
mance degradation for the sensitive application.This belief is based on the
distance between the consecutive states of isolated execution of the sensitive
application. Upon throttling, the system moves to a different execution mode.
Only the sensitive application executes and prediction model is adapted to
the new execution mode. Note that, it is impossible to have a violation in
this execution mode as there is no interference. This is also conformed in the
state-space representation. If the performance-sensitive application continues
to remain in the same phase or continues with the same workload after the
batch application is paused, the states that follow roughly map to the same
vicinity in the 2D space. An increase in the distance indicates a phase change
or change in workload intensity of the sensitive application and is likely to
have transitioned from contending for the bottleneck resource. Stay-Away has
a learning parameter 3, which is the maximum allowed distance between the
states before resuming the batch application. Initially £ is set to 0.01. Once
the distance exceeds 3, the system resumes the batch application. However, if
resuming the batch application immediately leads to a violation, it indicates
that the phase change of the performance-sensitive application was not enough
to avoid degradation and the system increments § by a small amount. Over
time, [attains accuracy. It is possible that the sensitive application does not
experience any phase transition and in such scenarios, the batch application
would starve indefinitely. To account for this, Stay-Away uses a random
factor to resume the execution of the batch application when the distance
falls below 8 for a long time. This is done in hope that the batch application
may experience a phase transition and as such avoid degradation. However,
if the batch application continues to degrade performance of the sensitive
application, it is paused again.

4.4 Optimisations and Overhead

In order to achieve efficiency, we need to address a few pre-processing problems
before feeding the measurement vectors to MDS. Depending on the metrics
chosen, the range of values for each metric may vary significantly. For example,
while CPU usage ranges between 0 and 100, memory usage does not have a
fixed upper limit as each VM could be assigned different amounts of memory.
This variation causes higher values to introduce a bias that can affect the

36

accuracy of MDS mapping. The problem is overcome by normalizing all the
metric values between [0,1]. Normalisation also helps to cluster metrics with
slight variations in the form of noise around the same neighbourhood forming
visible clusters.

The SMACOF algorithm used to represent the high dimensional state to a
lower dimension solves a quadratic form iteratively and can become com-
putationally expensive as the number of samples increase. The cost of the
algorithm is quadratic and we significantly reduce this overhead by choosing
one representative sample from the set of samples that are very close to each
other (Eucledian distance) and discarding other similar samples. We noticed
that this optimization significantly reduces the computation time as it reduces
the size of the observation matrix, while preserving the relative position of
the different states, the temporal trajectories followed by the evolution of
the execution, and their relative position with respect to the violation state.
Alternatively, there is existing work in the literature that is capable of doing
incremental MDS with high performance and very low overhead[63, 64]. The
induced overhead by Stay-Away in terms of resource consumption is very
minimal and corresponds to an average 2% CPU usage and negligible memory
consumption.

4.5 Scalability

When the number of dimensions increase, finding an optimal configuration
of points in 2-dimensional space can become difficult. The best possible
configuration in two dimensions may be a poor, highly distorted, representation
of the data. This distortion will be reflected in a high stress value. When this
happens, the only possible way to find an optimal configuration is to increase
the number of dimensions in the mapped space. In our experiments, we found
that the representation in a 2-dimensional space is always optimal with low
stress value when there are 2 co-locations of VMs. It is not feasible to assume no
more than one batch application for co-location. This can, however, be easily
circumvented by considering all the batch applications as one logical VM. The
monitored metrics of all the batch application are aggregated together to model
their collective behaviour as a single logical VM. Since resources are shared
between all the batch applications, contention can be accurately represented
by a linear composition of resource usage values. However, identifying the

37

specific batch application responsible for contention becomes difficult by
considering their collective behaviour. Apart from the difficulty and the
computation involved in identifying the specific interfering batch application,
it is also possible that a single batch application alone does not cause a QoS
degradation, but a set of batch applications cause a contention. While one
batch application may cause a contention for CPU, another application may
contend at the level of memory subsystem. The overhead involved in identifying
the specific batch applications responsible for contention exceeds the benefits
gained. For this reason, upon detecting a transition towards QoS violation,
all the batch applications are collectively throttled. Alternatively, groups of
batch applications can be iteratively throttled till QoS is guaranteed and each
violation state labelled to identify groups of batch application responsible for
that specific type of violation. In our current implementation, we collectively
throttle all the batch application.

4.6 Template Properties

In case of repeatable latency sensitive applications, the wviolation-states in the
generated map from a previous execution can be used as a starting point and
is a valid map for a new execution with a different batch application. The
state representation for a performance sensitive application is independent
of the specific batch applications running on the co-located virtual machines.
Although the generated map from the co-located execution depends on the
specific batch application that was co-located, the mapped-states themselves
are representative of load at the resource level. As a result, the captured states
for a performance sensitive application doubles as a template that can be used
for future executions alongside a different set of application co-locations. For
example, consider a latency sensitive application (L) co-located with a batch
application(By4). Their co-located execution generates a map (map-A) with
safe states and violated states. The violated-states represent QoS violations.
If we execute the same latency sensitive application (L) with another batch
application (Bp), the violated-states from map-A would still correspond to a
valid violation-state for the new execution. The batch application (Bp) may
never map a state in that wviolation-state, but if the co-located execution were
to map a state, it will be a violation-state. However, it is also important to
note that this is highly dependent on the metrics used to capture the state

38

Workload Name Combination
Batch-1 Twitter-Analysis+Soplex
Batch-2 Twitter- Analysis+MemoryBomb

Table 4.1: Combination of Batch Applications

space transition and a bad choice can affect the accuracy of the template
properties.

4.7 Evaluation

We conducted our experiments with our Stay-Away prototype on a 3.2 GHz
dual-socket Intel Core i5 CPU with 4 cores. Each core has a 32KB L1 private
data cache, a 32KB L1 private instruction cache, a 256 KB L2 cache and a
shared 4 MB L3 cache. The OS is Ubuntu with GNU/Linux kernel version
3.5.0-22.

4.7.1 Experimental Setup

We chose Linux Containers (LXC)[65] because of its ability to provide near-
native performance for applications even though it is highly susceptible to
performance interference [66]. To evaluate Stay-Away, we use two different
types of latency-sensitive applications and show that LXC combined with Stay-
Away can achieve a high degree of QoS while improving machine utilisation.
We conducted experiments using the VLC[67] media player for video streaming
and a Webservice with a memory intensive, CPU intensive and a mix of both
CPU and memory intensive workload as the performance sensitive application.
Soplex from SPEC CPU 2006 benchmark [68], Twitter influence ranking from
the Cloud Suite benchmark [69], CPUBomb from the isolation benchmark
suite[70], VLC transcoding and a custom synthetic application that stresses
the memory(Memory Bomb) were used as batch applications. Memory Bomb
generates stress on the memory subsystem by allocating large chunks of
memory and occasionally reading the allocated content. In order to evaluate
the QoS and utilization with more than one co-location of a batch application,
we setup two different combinations of batch applications shown in table 4.1.
Each of the batch application were executed in a different LXC container. We
instrumented the source code of VLC 2.0.5 to capture performance metrics

39

when using VLC to stream a movie in real time to clients. The minimum
transcoding rate required to provide real time viewing without any loss of
frames at the server side is defined as the QoS threshold.

Action Status: False

1.0

D # Violation
0.8 * ¥ Current State |-

0.6 E

F
0.4} o L ; . c
%

0.2

0.0+

)SO
w

-0.2

X >

~0.4 -0.2 0.0 0.2 04 0.6 0.8 1.0

Figure 4.6: Snapshot of instantaneous transition of states when VLC transcod-
ing is co-located with CPUBomb in the mapped space. Action status:False
indicates that Stay-Away was not throttling the batch application during the
snapshot

The Webservice is setup for analysing and serving data. It consists of a Mem-
cached layer for in-memory data storage and performs analytics, if necessary,
before serving the data. The data used for storage and analysis is the open
dataset available from [71] and contains periodic network topology informa-
tion and monitored host metrics of more than 80 nodes which are a part
of the community-lab testbed [2]. The Webservice is capable of performing
statistical analysis and aggregation of data for each monitored metric and
to serve requested data for any specific period. The workload comprises of
CPU intensive, Memory intensive and mix of CPU and memory intensive
operations.

We begin by illustrating the state-space representation during different exe-
cution modes. To illustrate both instantaneous and gradual transitions, we
first run two batch applications: transcoding a video with VLC in one LXC
container and CPUBomb in another. We chose this co-location to simplify the
illustration as both batch applications experience minimal phase transitions

40

Action Status: True

0.4} .
0.2}

X *
0.0 K S .
%R

L I H i I i
-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.7: Snapshot of gradual transition of states when VLC streaming is
co-located with Twitter-Analysis in the mapped space. Action status:True
indicates that the batch application was being throttled during the snapshot

during isolated execution. In this contrived, yet representative example for
illustrating state space transitions, a violation is said to have occurred when
the rate of transcoding frames fall below a certain threshold. Figure4.6 shows
a snapshot of the different states the system experiences during the execution
life cycle. Darker points represents states with minor transitions that maps
closer to each other. In figure 4.6, A corresponds to the state when only
CPUBomb was executing. B corresponds to the state when VLC-transcoding
runs alongside CPUBomb and C' represents the violation state. When Stay-
Away takes an action to prevent violation, the corresponding state experienced
is represented by D. States F,F,G represent the states during the period of
transition. Figure 4.7 shows the gradual transition observed when VLC was
used as a streaming server (performance sensitive) and co-located with the
Twitter-Analysis (batch).

4.7.2 QoS and Utilization

We first evaluate the effectiveness of Stay-Away for enforcing targeted QoS
without any prior profiling of the application. Figures 4.8a and 4.9a show the
normalised QoS of VLC streaming server when co-located with CPUBomb
and Twitter-Analysis respectively. The minimum transcoding rate for the

41

100

- VLC Colocated with CPUBomb

1.0 — VLC Colocated with CPUBomb (StayAway)
* StayAway

© 0.9}/ * No prevention 80
g 0.8 -~ QoS Threshold
0. .
£ :
T 0.7p*
D 0.6F %
o

= 0.5¢

*
,,,,,,,,,,,,,,,,,, P S S &
$ 0.4 * *** %

60

40

*
%
>3

Gained Utilization(%)

0.3
= 0.2
0.1

0 5 10 15 20 25 30
Time (Mins) Time

ormalised

* QoS Violation

(a) VLC with CPUBomb (b) Gained Utilisation with CPUBomb

Figure 4.8: QoS violations of VLC streaming and utilization gained by co-
locating VLC streaming alongside CPUBomb

VLC server to ensure uninterrupted delivery of frames is shown as QoS
threshold. Whenever the rate of transcoding falls below this threshold the
clients experience degradation in the quality of service. We can see from figure
4.8a and 4.9a that without any prevention the system experiences numerous
violations as both these batch applications contend for resources with VLC
streaming. The qualitative effect of Stay-Away on QoS becomes clear when
reproducing the streamed video. Qualitatively, a choppy reproduction without
Stay-Away transforms into a smooth playback when including Stay-Away. The
QoS degradations are considerably reduced and most violations seen are in the
early phase of execution. This is because the system is unaware of the states
that correspond to a violation in the early phase and once seen, the system
proactively prevents future violations. Other violations arise from factors such
as instantaneous jumps to violation states characterised by sudden increase in
the use of CPU.

Figures 4.8b and 4.9b show the gain in machine utilisation from co-location.
Gained utilisation is the gain in utilisation in comparison to executing VLC
streaming service without any co-location. The upper band in the figure shows
the maximum utilisation that can be gained by co-locating the batch applica-
tion with VLC streaming service without any prevention from performance
interference. With Stay-Away deployed, we are able to achieve a good balance

42

100
- VLC Colocated with Twitter Analysis
1.0 _] ; i — VLC Colocated with Twitter Analysis (StayAway)
o * StayAway —
+2 0.9}% % No prevention X
o -~ QoS Threshold =
g 08 {} reshol 5
£ =]
E o7 +,. . * 3
é 0.6} * s ** x g
= 050, * ** ¥ 2
kP S [P I AN S LS SN c
204 * * * % S
= - * % * Kooy XX (G}
g 0.3k % .
S QoS Violation
202
0'10 5 10 15 20 25 30
Time (Mins) Time
(a) VLC with Twitter-Analysis (b) Gained Utilisation with Twitter-

Analysis

Figure 4.9: QoS violations of VLC streaming and utilization gained by co-
locating VLC streaming alongside Twitter-Analysis

in improving machine utilisation, shown in the lower band from figures 4.8b
and 4.9b, while still guaranteeing a high level of QoS. The gain in machine
utilisation depends on the characteristics of the co-located batch application.
In our setup, VLC streaming with Twitter-Analysis gains an average of 50%
machine utilisation when compared to an isolated run of the VLC streaming
server. The system gains substantial improvement in both utilisation and QoS.
This is because Stay-Away throttles only when the system progresses toward
resource contention. Co-location with CPUBomb as the batch application is
the worst case scenario since the batch application constantly contends for
CPU and does not experience any phase transition. As a result the gained
machine utilisation, as shown in figure 4.8b, is in spikes as Stay-Away throttles
in an attempt to mitigate performance degradation. The gain in utilisation for
CPUBomb is about 5% because CPUBomb constantly consumes CPU and it
is impossible to execute both VLC streaming and CPUBomb without violating
the QoS. However, with Stay-Away deployed, it learns this contention and
guarantees a high level of QoS.

Figures 4.11, 4.12 and 4.13 show the QoS achieved when different batch
applications are co-located with Webservice for different types of workload.
We can see that with Stay-Away, a high level of QoS is guaranteed. Figure 4.10

43

[Webservice(Mix) Hl Webservice(CPU Intensive)
I Webservice(Memory Intensive)
__ 100
x
c 80
o
8 60
S 40
el
(]
£ 20
©
(G
(P‘witter Analysis CPUBomb Soplex MemoryBomb Batch-1 Batch-2

Figure 4.10: Gained Utilization when Webservice is co-located with different
Batch Applications

‘I:I Without Stay-Away I With Stay-Away

1.0

Normalized QoS
© o o
S [*)] o]

o
[N

0'?witterAnaIysis CPUBomb Soplex MemoryBomb Batch-1 Batch-2

Figure 4.11: QoS of Webservice with a mix of CPU and Memory intensive
workload when co-located with different Batch Applications

shows the gained utilisation when Webservice is co-located with different batch
applications. The gained utilisation is different for different types of workload
and the gain is maximum when Twitter-Analysis is co-located with Webservice
for a memory intensive workload. This is because Twitter-Analysis experiences
a mix of both CPU and memory intensive phases, and is throttled only during
its memory intensive phase. The effect of performance interference caused by
Twitter-Analysis is seen only when its memory operation is intensive enough
to force the OS to swap pages of Webservice to disk, causing a degradation in
response time. As a result, Twitter-Analysis is throttled only when it performs
extensive memory operations. The gained utilisation is relatively low when
batch application is co-located with CPU intensive workload of Webservice
because all batch applications except MemoryBomb are mostly CPU intensive
and interfere negatively with the performance of Webservice.

44

3 Without Stay-Away I With Stay-Away

1.0

Normalized QoS
e o o
B ()] o«

o
[N

0"‘FwitterAnaIysis CPUBomb Soplex MemoryBomb Batch-1 Batch-2

Figure 4.12: QoS of Webservice with CPU intensive workload when co-located
with different Batch Applications

‘:] Without Stay-Away BN With Stay-Away
1.0
0.8
w
o
o
© 0.6
[
N
204
2
0.2
0._? - -
witter Analysis CPUBomb Soplex MemoryBomb Batch-1 Batch-2

Figure 4.13: QoS of Webservice with Memory intensive workload when co-
located with different Batch Applications

Figure 4.14a shows the execution timeline when Web service with a CPU
Intensive workload is co-located with Twitter-Analysis. We vary the intensity
of workload to show that Stay-Away is capable of detecting and using such
periods of low utilisation without violating QoS. The stress on Webservice is
measured by monitoring the number of transactions completed per second and
is done only to illustrate the functioning of our middleware. Stay-Away does
not have any access to this information. Twitter-Analysis begins execution
at timestamp 10. This causes a stress on Webservice and leads to a QoS
violation shown by a dark band. Stay-Away learns this and immediately
throttles Twitter-Analysis. Soon after this, there is a period of low workload,
which Stay-Away detects and the execution of Twitter-Analysis is resumed.
Subsection 4.3.3 explains how Stay-Away detects this. At timestamp 18, the
workload of Webservice increases and the execution of Twitter-Analysis begins

45

Execution Timeline
WebService | a | B |

Twitter-Analysis |

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

(a) Webservice(CPU Intensive) co-located with Twitter-Analysis

Execution Timeline
WebService | |]] |

Twitter-Analysis |

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54

(b) Webservice(mix) co-located with Twitter-Analysis

Figure 4.14: The colour gradient for Webservice is a measure of the stress on
its performance. Darker colour indicates higher stress. Dark colour bands for
Twitter-Analysis represents period of its execution and lighter colour bands
represents the period it is throttled.

to cause a stress on its performance, but hasn’t violated QoS yet. Stay-Away
predicts this and throttles Twitter- Analysis before a QoS violation happens.
Figure 4.14b shows the execution timeline when Web service with a mix of
CPU and memory intensive workload is co-located with Twitter-Analysis. We
introduce a period of change in the workload phase from timestamp 30 to 36.
We can see from the figure that Twitter-Analysis executes in an uninterrupted
manner during this period as Stay-Away identifies the period as a phase
change and believes that executing Twitter-Analysis would cause no stress.
Stay-Away detects this from the state space mapping as the change in phase
maps the corresponding states to a different space in the map and farther
away from the violation state.

4.7.3 Template Validation

This section validates how a map generated for a latency sensitive application
can be reused for future executions with a different set of batch applications.
We conduct an experiment by streaming a video file using VLC running
alongside CPUBomb as the batch application. The Stay-Away component is
active during the run, capturing the states and preventing violation. Figure

46

Action Status: True

0.2

Figure 4.15: Template with CPUBomb

4.15 shows a snapshot of the states that characterises the VLC streaming
service for a given video and is used as the template for future executions
of VLC alongside a different batch application. In order to validate that
the captured states correspond to the properties of VLC independent of the
co-location with any specific batch application, we use the template as the
initial state of VLC for streaming the same file alongside Soplex. We disable
the Stay-Away component from taking any action to show that the states
corresponding to violation in figure 4.15 continue to correspond to violation
alongside Soplex. Figure 4.16 shows a snapshot of the state of VLC run
alongside Twitter-Analysis. While new states are seen during the execution,
we can see that there are more violations and they correspond to the area
characterised by violations from figure4.15.

4.8 Summary

In this chapter, we design and demonstrate Stay-Away, a generic and adaptive
mechanism to mitigate the detrimental effects of performance interference on
sensitive applications when co-located with other batch-like applications and
improve resource utilization. Unlike earlier previous work that requires apriori
knowledge and static models, Stay-Away continuously learns and maps to a
state-space representation the favourable and unfavourable states of execution

47

Action Status: False

0.2

Figure 4.16: VLC with soplex

among multiple VM. The representation allows to visualise and interpret
co-located VM execution. This is used to predict real-time transitions of the
co-located VM states continuously and prevent performance degradation in
selected VMs. Additionally, we discuss how this mechanism doubles as a
template engine for repeatable experiments or services.

The evaluation of a proof-of-concept prototype of Stay-Away with Linux
Containers and several batch and interactive applications confirm the expected
effect, validity and stability of the mechanism in general.

CHAPTER

Hubbub-Scale: Reliable Elastic
Scaling Decisions

Abstract

Elastic resource provisioning is used to guarantee service level objective
(SLO) with reduced cost in a Cloud platform. However, performance
interference in the hosting platform introduces uncertainty in the perfor-
mance guarantees of provisioned services. Existing elasticity controllers
are either unaware of this interference or over-provision resources to meet
the SLO. In this chapter, we specifically focus on the metrics used for
elastic scaling decisions and show that assuming predictable performance
of VMs to build an elasticity controller will fail if interference is not mod-
elled. We identify and control the different sources of unpredictability
and build Hubbub-Scale; an elasticity controller that is reliable in the
presence of performance interference. Our evaluation with Redis and
Memcached show that Hubbub-Scale efficiently conforms to the SLO
requirements under scenarios where standard modelling approaches fail.

49

50

5.1 Introduction

Services that are elastically provisioned in the Cloud are able to use platform
resources on demand. Instances can be spawned to meet the Service Level
Objective (SLO) during periods of increasing workload and removed when
workload drops. Enabling elastic provisioning saves the cost of hosting services
in the Cloud, since Cloud users only pay for the resources that are used to
serve their workload. Virtualization is a key enabler for elasticity as it ensures
operational isolation for Cloud users and provides management convenience for
Cloud providers. However, it does not provide performance isolation on many
shared resources, such as memory sub-system. In other words, consolidation of
multiple VMs comes at the price of application slow down and VM performance
interference in ways that cannot be modelled easily.

The already hard problem of building a general-purpose elasticity controller
that guarantees SLO with adequate resource provisioning becomes exacerbated
by the role of performance interference. Previous works have proposed multiple
models ranging from simple threshold based scaling [72, 73] to complex models
based on reinforcement learning [74, 75|, control modelling [76, 48, 45, 77],
and time series analysis [44, 43] to drive the scaling decisions. While every
model comes with its host of benefits and demerits, the impact of performance
interference on elastic scaling is often overlooked.

CPU utilization [42, 43, 44, 45, 46] and workload intensity [47, 48, 49, 50, 51] are
two widely used indirect metrics for elastic scaling since they are easily available
and correlate well with the measure of service quality such as latency. In this
chapter, we investigate if the performance interference from consolidation has
a role to play on the metrics used for making scaling decisions. We find that
it becomes imperative to quantify the contention in the system in order to
achieve accurate scaling.

Our main contribution is Hubbub-Scale; an elasticity controller that achieves
predictable performance in the face of resource contention without any signifi-
cant overhead. We facilitate this by designing a middleware that provides an
API to quantify the amount of pressure the co-running VMs put on the target
system. Specifically our contributions are:

51

e We show that OS configuration, performance interference and power-
saving optimisations stand in the way of predictable performance. While
OS configuration and power-saving optimisations can be controlled,
performance interference is inevitable in a multi-tenant system and
needs to be modelled.

e In the presence of performance interference, indirect metrics used for
elastic scaling cease to accurately reflect the measure of service quality,
consequently affecting the scaling accuracy.

e In the presence of performance interference, even relying on direct metrics
like latency to scale can lead to SLO violations.

o We build Hubbub-scale, an elasticity controller that is reliable in the pres-
ence of performance interference and achieves high resource utilization
without violating the SLO.

5.2 Elastic Scaling

A typical elastic scaling process involves 2 steps: making a decision on when
to scale and choosing the right number of instances to be added/removed
to serve the changing workload. Figure 5.1 shows the components of an
elasticity controller. The sensor gathers relevant performance metrics from
the service which is then fed to the decision making module. The decision
making module infers meaning from the gathered metrics to decide when to
scale. The actuator is then responsible for carrying out the decisions of the
decision making module and acts on the resource infrastructure. Both decision
making and actuation depends on the capacity of a VM. Capacity is defined
as the maximum amount of workload a VM can serve within a certain level
of QoS. A decision to scale-out is established when the elasticity controller
detects that the workload exceeds the current capacity of the VMs. It then
determines the additional capacity needed to serve the excess workload and
spawns the required number of VMs. The accuracy of scaling depends on the
agility of the controller in detecting workload changes (decision making) and
in satisfying the additional capacity (actuation). In this chapter, we focus
only on the decision making phase, that determines when to make a scaling
decision.

52

- .
(Controller A
Decision-Making
[Sensor ‘ [Actuator ‘ |
A& ~C —
Host Host \
[e N N
N S, Codocated ul, Co-located
~ \:\\ Hopliostion *T " Application Aoplontion T Application
‘\7 Memory ~ /’ \\ Memory ~ /

Figure 5.1: Architecture of a typical elastic scaling process

We give a brief background on load-based elastic scaling and the required
properties for the metrics used to drive the scaling decision.

5.2.1 Scaling Type

Load-based scaling handle variable loads by starting additional instances when
the workload increases and stopping instances when workload decreases, based
on any of load metrics, such as request intensity (RPS). It can be achieved in
three ways: reactive control, proactive control and a combination of reactive
and proactive control. With reactive control, the system relies on reacting to
changes in a system metric such as request intensity, intensity of I/O operations,
CPU utilization, or direct metrics like latency to make scaling decisions. While
this approach can scale the system with good accuracy, the system reacts to a
workload metric change only after the change occurs and is observed. This
may result in SLO violation if the reaction is too late. Proactive control, on
the other hand, explores the historic access patterns of the workload, in order
to conduct workload prediction and perform model-predictive control. With
this approach, it is possible to prepare the instances in advance and avoid any
disruption in the service when auto-scaling. Despite their respective merits
and demerits, both approaches require run-time measurement of a metric to
make the scaling decision and to drive the elasticity control.

93

5.2.2 Choice of Metrics

The right choice of metrics (control input) is critical for efficient elastic scaling
since the performance, effectiveness and precision of the elasticity controller
depends on the quality of the control input metric and the overhead in
measuring and monitoring the control input [78]. In literature, authors have
used a variety of metrics to make scaling decisions and to drive the elasticity
control. An extensive list of those metrics is provided in [79]. A good choice of
metric for the target environment should satisfy the following properties: (i) the
metric should be easy to measure accurately without intrusive instrumentation
because the controller is typically external to the guest application, (ii) the
metric should be reasonably stable with little variations, (iii) should allow for
quick reaction and (iv) the metric should correlate to the measure of level
of quality of service (e.g, the service’s average response time or latency) as
specified in the SLO.

Direct Metric: A straightforward approach to scale is to directly rely on
the metric (latency, response-time) specified in the SLO to drive the scaling
decisions. However, it does not satisfy the properties of a good metric, since
monitoring latency /response-time involves an overhead in measuring, needs
instrumentation and reacts slower than an indirect metric. Some developers
are however willing to incur the overhead in view of the benefits they accrue
from easier scaling since response variable to be tuned is measured directly.

Indirect Metric: Scaling using indirect metrics do not measure the response
variable directly, instead use other metrics that correlate well the measure of
service quality (latency) and satisfies the properties of a good metric. CPU
utilization is one such widely used metric [42, 43, 44, 45, 46]. It can be obtained
from the operating system or the virtual machine without instrumenting
application code. CPU utilization is also a more stable signal than metrics
like response time and correlates well with the measure of service quality such
as latency/throughput [45]. Another widely used metric for elastic scaling
is workload in terms of Requests-per-second (RPS) [47, 48, 49, 50, 51]. RPS
can be an important way to measure system performance and is mostly used
for proactive control. Netflix developed a system called scryer [47] that uses
workload to drive their proactive control for scaling decisions. Because CPU
utilization and workload intensity are widely used in a large number of elasticity
controllers, our work focuses on these two indirect metrics.

54

5.3 Motivation

There are 2 key aspects in elastic scaling that determine the effectiveness of
the scaling model: when to add or remove instances, and, how many instances
to add/remove. Any lapse in the accuracy of these two steps translates to SLO
violations or increased cost from over-provisioning of resources. For example,
a delay in adapting to an increasing load will result in SLO violations, and
erroneously adding more instances than required will result in under utilized
instances. All scaling models aim to minimise SLO violations and improve the
resource utilization. However, existing scaling models fail to guarantee these
properties in a multi-tenant setting. We explain this from two perspectives:

— ©
E o — Latency P/e__e——a—e—%—Q*H
= -- SLO
oy Contending co-runner /
c
© o |lmmmmmmmmmmnommmmiii e e S eSS s
© —
— G—6—0—0 9~ oo+
T T
5 10 15 20
Time (min)

Figure 5.2: Variation of latency over time for a constant workload (RPS). Until
10 mins, the application runs in isolation. After 10 mins, other applications
are executed on the physical host, generating contention at the shared system
resources.

Using an indirect metric to scale: For ease of explanation, consider a
simple control model that reacts to indirect system metrics to scale an applica-
tion. The model learns the relationship between the system metrics (workload
intensity (RPS), CPU utilization) and latency during a characterization phase,
and decides when to add/remove instances and how many instances to add or
remove in order to conform to its SLO. Figure 5.2 shows the latency of the
application for a constant workload (RPS). After 10 mins, we introduce inter-
ference on the host and see that the model learnt by the elasticity controller
becomes void and violates the SLO. This is because the system metrics do not
accurately reflect the degradation caused by performance interference and the
model is unable to discern the need to scale out. In other words, the system
metrics correlate differently with latency in the presence of interference. It is

95

important to note that a dynamic learning model will also fail in the presence
of interference as these metrics cannot attribute accurately for resource con-
tention. Our experimental analysis in section 5.4 sheds more light on why this
happens. Without quantifying the amount of contention in the system, it is
not possible to achieve accurate scaling in a multi-tenant environment.

Using a direct metric to scale: In the presence of interference, even though
the effect of degradation from contention is reflected directly on latency,
and accurately aids the decision making phase, it can lead to over/under
subscription of resources during the scaling phase. Without any additional
information about contention, it is not possible to know the exact number of
instances needed to scale the system.

For example, first consider an isolated setting where an elastic application
receives the workload W, handled by X instances, that corresponds to latency
Lsro. Without losing generality, we assume a round-robin load balancer. For
an increased workload W, + n, the total number of instances needed to ensure
that SLO is not violated can be calculated as chvit” x X. Next, consider the case
when the application is provided in a multi-tenant virtualized environment. In
this case, the application can experience performance interference that causes
performance degradation. The same latency Lgro is then reached by a smaller
workload W;. = W, — § because of performance degradation. If the latency-
driven elasticity controller is unaware of interference, it will allocate chvitn x X
instances to handle the increased workload W, 4+ n. This means that each
instance will receive a workload greater than Wj., thereby under subscribing
to resources and violating SLO. Without quantifying the interference (I) and
knowing W, the elasticity controller cannot make accurate scaling decisions
even when using a direct metric. There are further problems despite using a
direct metric in a multi-tenant environment and is explained in chapter 6.

5.4 Experimental Analysis

Given the wide use of CPU utilization and workload intensity for driving the
scaling decision, we set out to explore the reliability of these metrics in a
multi-tenant environment. Our objective in this section is to answer if these
metrics are reliable in the face of performance interference and to identify the
different sources responsible for introducing unpredictability in the metrics.

56

To enable effective and accurate model control for elastic scaling, the control
input (CPU utilization, Workload intensity etc) should be reliably predictable.

We perform experiments with Memcached [80] under a controlled setting. We
execute SPEC CPU benchmarks [68] to create interference on the memory
subsystem. The experiment is carried out in 3 phases: no interference (isola-
tion), 1x contention (when 1 SPEC CPU benchmark instance runs alongside
Memcached) and 2x contention (when 2 SPEC CPU benchmark instances run
alongside Memcached). We study Memcached in progressive configurations,
beginning with default settings of the kernel and later moving toward cus-
tomized configurations, identifying the different sources of unpredictability
and progressively ameliorating them. We eventually reach a configuration,
where interference is the only source of unpredictability for CPU utilization
and workload based model. In the rest of this chapter, we use the terms
contention and interference interchangeably.

= Isolation = Isolation = Isolation
= Contention

u[ﬂ M :.-[I[i[i['m'ﬂ ,;d[l[idmwl

1000 15000 25000 35000 1000 10000 30000 50000 80000 1000 20000 50000 70000
Workload(RPS) Workload(RPS) Workload(RPS)

80
80
80

40
40

CPU usage(%)
40

CPU usage(%)
CPU usage(%)

0
0
0

(a) Interrupts served on its (b) Interrupts served by a dif{c) Power saving optimisa-
own core (Config 1) ferent core (Config 2) tions disabled (Config 3)

Figure 5.3: CPU utilization (%) vs. Workload intensity (RPS) for Memcached
with and without co-location for different configurations. Config 3 brings down
the unpredictability solely to the intensity in contention and the number of
co-located VMs.

We begin with the default kernel configuration and measure the variation of
CPU utilization for different workloads when all the network interrupts of
Memcached are served by the cores running the Memcached service. In the
default settings (figure 5.3a), the interrupts were served on the core running
the Memcached service. The cores responsible for handling Memcached spends
most of its cycles processing network interrupts and this impacts the CPU
utilization. To eliminate the additional impact of serving all the network

o7

interrupts, the interrupts are configured to be served exclusively by a different
core. Figure 5.3b shows the results for this configuration. Comparing figure
5.3b and figure 5.3a, it is evident that the maximum amount of workload that
can be served before the CPU saturates is different under each setting. When
interrupts are served by a different core, the application is able to handle a
much higher workload before CPU saturation. It thus becomes imperative
to have the same interrupt schedule enabled before a control model based on
CPU utilization is designed for elastic scaling.

However, even with a core exclusively serving the interrupts (Figure 5.3b),
the CPU utilization for a given workload, in some cases, drops in the face of
resource contention. This is counter-intuitive because contention at the memory
subsystem and the consequent delay results in increased processing time which
should reflect in the form of increased CPU utilization. Somehow contention
seems to improve the latency at reduced CPU usage. Upon investigation we
found that at lower utilization levels, hardware power saving optimizations
come into play and cause this behaviour. Our server, like nearly all machines
today, incorporates several CPU power saving optimizations, such as idle
power states and frequency scaling. These optimizations save precious energy
resources and cause a counter-intuitive effect. We show in figure 5.3c that
when power saving optimisations are disabled, this effect disappears and CPU
usage increases with contention.

Once power saving optimisations are disabled (config 3), we see a more
predictable correlation between CPU utilization and workload intensity (RPS).
For a given workload, as the intensity of contention increases, the CPU
utilization increases as expected. However in the following subsection, we
explain why despite this predictability, elasticity controller still needs to be
aware of contention in order to achieve accurate scaling.

5.4.1 CPU Utilization vs. Latency

In this section we show that although CPU utilization reflect the measure of
service quality (latency) when running in isolation, they correlate differently
in the presence and absence of interference.

Figure 5.4 shows the variation of CPU utilization with latency for different
configurations. Each point in the graph corresponds to a specific workload.

58

6

— Isolation
—— Contention

2xContention fo 7

4

Latency(ms)
2

Latency(ms)
Latency(ms)

0

© T ©
— lIsolation — lIsolation
— Contention — Contention
< xContentio P < xContentio
) ,,Mﬁ ° M
: .
60 80 100

° o -o—t—e0e——25 o
T T T T T T T T T T
0 20 40 60 80 100 0 20 40 0 20 40 60 80 100
CPU usage(%) CPU usage(%) CPU usage(%)

(a) Interrupts served on its (b) Interrupts served by a dif{c¢) Power saving optimisa-
own core (Config 1) ferent core (Config 2) tions disabled (Config 3)

Figure 5.4: Variation of Latency (ms) vs. CPU utilization (%) in Memcached
with and without co-location for different configurations. Config 3 brings down
the unpredictability solely to the intensity in contention and the number of
co-located VMs.

Although the latency remains fairly similar for smaller workloads (lower CPU
utilization) under different levels of contention, they begin to deviate as CPU
utilization increases. As CPU utilization increases, contention begins to have
a significant effect on the CPU time spent for serving the requests and, as
expected, latency increases. However, in config 1 and config 2, 2x contention
performs better than 1x contention (labelled as contention in figure). Similar
to our observations in the previous section, this randomness is ameliorated
in config 3 by disabling power saving optimizations and higher amounts of
contention corresponds to higher latency. However, despite this predictable
behaviour, CPU utilization remains unreliable for making scaling decisions
because the elasticity controller is unaware of contention in the system as
it is external to the VM and cannot attribute the CPU cycles affected by
interference. For example, in figure 5.4c, consider that the application has a
service level objective of guaranteeing requests within a latency of 3ms. When
building a model in an isolated environment, we learn that the system hits 3ms
limit around 70-75% CPU utilization. Even by a conservative estimate, if the
CPU threshold for scaling out is set to 65%, the system would experience SLO
violations under 2x contention. we can see that in the presence of 2x contention
the SLO (3 ms) would be violated at 40% CPU usage. The elasticity controller
only takes as input the CPU utilization and is unaware of the presence of
interference. Since the elasticity controller is unaware of the contention, even
with an online learning model, it becomes challenging to make an accurate

99

decision. For the same latency value of 3ms, CPU utilization varies between
40% and 75% and ceases to reflect the measure of service quality.

Observation: In the presence of performance interference, CPU wutilization
ceases to accurately reflect the measure of service quality if the amount of
contention is not taken into account.

5.4.2 Workload-Intensity (RPS) vs. Latency

Latency(ms)
Latency(ms)
Latency(ms)

: . . : : ' : . ; : s '
0 10000 20000 30000 40000 0 20000 60000 100000 0 20000 40000 60000 80000
Workload(RPS) Workload(RPS) Workload(RPS)

(a) Interrupts served on its (b) Interrupts served by a dif{c) Power saving optimisa-
own core (Config 1) ferent core (Config 2) tions disabled (Config 3)

Figure 5.5: Variation of Latency (ms) versus Workload (RPS) in Memcached
with and without co-location for different configurations. Config 3 brings down

the unpredictability solely to the intensity in contention and the number of
co-located VMs.

Figure 5.5 shows the variation of latency with increasing intensities in workload.
In the previous section, we discussed why CPU utilization becomes unreliable
in the face of performance interference. We can draw similar conclusions from
this figure and clearly see that the amount of workload that can be handled
within a certain latency bound varies significantly in presence of performance
interference. The intensity in workload ceases to reflect the level of service
quality in the presence of performance interference. In figure 5.5¢, consider for
example an SLO of guaranteeing requests within 2 ms latency. A proactive
elastic controller can model the workload and predict in advance the decision of
when to scale up/down an instance based on the incoming load. The proactive
controller has to know when (at what workload) it should trigger a scaling
action based on the prediction of the workload. However, with no information
on the amount of contention experienced from the co-located VMs, it becomes
almost impossible to make this decision accurately. This is because 5000

60

requests per second (RPS), 20000 RPS and 55000 RPS, all correspond to same
SLO of 2ms. While a request of 20000 RPS doesn’t violate the SLO when the
service runs in isolation, the same workload violates the SLO in the presence
of 2x contention. The controller is unaware of the interference experienced
and cannot make an efficient decision.

Observation: The mazimum amount of workload that can be handled within
some SLO bound varies significantly in presence of performance interference
and is dependant on the behaviour of the co-located VMs.

5.4.3 Putting them in perspective

In the previous subsection, we made a few observations from the experimental
analysis. CPU utilization and workload intensity correlate well with latency in
an isolated environment and can be reliably used for elastic scaling decisions.
However, in a multi-tenant setting this correlation gets skewed. Our major
goal was to understand how CPU utilization and workload intensity can be
used reliably for elastic scaling decisions even in a multi-tenant setting. To
this end, our first observation was that network interrupts and frequency
scaling introduces randomness in the presence of contention. We also show in
Figure 5.6a and figure 5.6b that when frequency-scaling is enabled, the CPU
driver can scale the frequency of the processor depending on frequency governor
enabled on the operating system resulting in unpredictable performance. With
frequency scaling enabled in figure 5.6a, we see that under 2x contention
Memcached performs better than 1x contention. Therefore to achieve our goal
of using CPU utilization and workload intensity for scaling in a multi-tenant
environment, the first step is to eliminate this randomness and we do this by
disabling power saving optimisations. Once the frequency of the processor
is fixed (blue line in figure 5.6a and figure 5.6b), Memcached behaves in a
predictable manner with latency acting directly proportional to the amount of
contention. Once this randomness is controlled, we can see that these metrics
can be used for elastic scaling if the level of contention can be accounted for.

The observation that latency increases as contention increases indicates that
the correlation between input metrics and latency gets skewed in the presence
of interference. i.e., for the same amount of workload intensity /CPU utilization,
Memcached can experience different latencies. Without quantifying contention
it is not possible to attribute this variation in correlation. Therefore, to achieve

61

[T}
—o6— With Frequency-Scaling
— —+— Without requgncy-Sca ing |
wn <
£
= ™
8 [RRRTR S
@ N
©
a - GRS REE G BABRGE,
No-interference 1x interference 2x interference
o
T 1 T T
0 50 100 150
Time (mins)

(a) Variation of latency when CPU utilisation is maintained between 65 and 70%

(o]
—6— With Frefguency-Scalinq,
— —+— Without Frequéncy-Scaling
»
S
= ™
g W
N
Qo ey R
© o S
- ¥
No-interference 1x interference 2x interference
o
T 1 T T
0 50 100 150

Time (mins)
(b) Variation of latency when Workload (RPS) is fixed at 40000 RPS

Figure 5.6: Frequency-scaling affects performance predictability. Once
frequency-scaling is controlled, performance variation from interference be-
comes predictable as shown by blue line.

our goal it becomes imperative to not only take into account interference but
also be able to quantify the same in order to make reliable scaling decisions.
Performance interference just like frequency scaling skews the correlation
unless modelled. Table 5.1 provides a summary of the different sources of
variation, their impact on modelling and potential ways to minimize this
unpredictability. The metrics (CPU utilization, Workload intensity) achieve
more predictability when all the sources of variation are controlled. However,
minimizing the unpredictability comes with significant trade-offs and not all
parameters can be completely controlled. Contention is one such source as it
manifests in multi-tenant environments. While frequency-scaling and interrupt

62

processing can be controlled, performance interference is unavoidable in a
multi-tenant setting and needs to be accounted for.

Source of How to Trade-offs in- Impact on Modelling

Variation minimize volved
variation

Interrupt Assign Lower throughput Minimal, since the inter-

Schedule dedicated when running at rupt schedule remains
cores for low utilization the same throughout the
interrupts life cycle of the service

Frequency Disable C- Results in in- High, Affects both CPU

Scaling states and creased power and Workload based
P-states usage modelling.

Contention Over- Results in under- High, Affects both CPU
provision utilized machines and Workload based
resources modelling

Table 5.1: Source of variation in CPU Utilization and Workload based mod-
elling

5.5 System Overview

We say that the storage system co-runs with other applications when they
all run on different cores of the same physical host; we refer to all these
applications as co-runners.

If we are able to model contention, then it is possible to attribute the variation
in correlation and still rely on these input metrics to achieve reliable scaling.
Contention can be seen as the amount of pressure an application puts on
different shared resources such as memory-bandwidth or the cache. Each
application may have a different amount of cache and memory-bandwidth
usage and this determines the contentiousness of the application. However,
sensitivity to contention depends on the application’s reliance on the shared
memory subsystem and how much an application progress benefits from this
reliance. Contention and sensitivity need not always be correlated [34] and
they need to be modelled separately during the run-time. In our case, we are
interested in the contentiousness of the co-runners and the sensitivity of the

63

target system. Prior works [81, 82, 35, 83] use the target systems last level
cache (LLC) miss rate/ratio as an indicator to detect contention and classify
application for contention aware scheduling. While LLC miss rate/ratio can
be a good indicator of contention, it suffers from the following limitation:
An application can have varying run-time behaviour and depending on the
application access patterns, LLC misses can vary over time making it difficult
to attribute if contention is the sole cause for LLC misses. While it may be
possible to detect contention in some cases based on LLC misses, it still cannot
quantify the amount of degradation.

[|
| ‘ ’ ‘ ’ ‘ ’l Time-Frame
VM-1 VM-2 VM-3
| | o
I?_ | Counter | |vM-2
TR TT T — Value | | 1
| APl | | |
J | VM-3
1 Classifier To 11 12 T3 >
o Time
Middleware u e]
: [Shared Cache] :
‘ Aggregator |4 PMU Monitor } i :
. Memory Subsystem]

Figure 5.7: Architecture of the Middleware

PMU based approximation: For the reasons mentioned above, instead
of relying on the behaviour of the target system alone, we take into account
the co-runners behaviour for quantifying the contention. We use performance
monitoring units (PMU) to approximate this behaviour. PMU’s are special
registers in modern CPUs that can collect low level hardware characteristics
of an application without any additional overhead. The goals are two-fold:
to identify the existence of contention from the co-runners and to quantify
the amount of the pressure exerted on the target system. It is important
to quantify the amount of pressure exerted by the co-runners since this has
a direct impact on the amount of performance degradation suffered by the
target system. Different amount of contention causes different amount of
degradation.

Middleware: Figure 5.7 shows the architecture of the middleware to
quantify contention on the memory subsystem. The middleware provides an
API that can be queried to access information about the contention from the

64

co-runners. The different components of the middleware provide the following
function: The classifier is responsible for identifying the VMs that need to
be monitored for contention. It optimises the number of co-runners to be
monitored. The role of the classifier is to only select those VMs that are
potential candidates for creating contention at the memory subsystem. This
minimizes the overhead of unnecessarily analysing VMs that are idle or not
memory-subsystem intensive. The classifier maintains a moving window of
the average CPU utilization of different VMs and selects only those VMs
that consistently have a CPU utilization over a certain threshold. This is
because any application that is intensive on the memory-subsystem has a high
CPU utilization. In our experiments we set our threshold to 30%. The list of
selected VMs are then passed on to the PMU Monitor. The PMU Monitor
monitors the performance counters of the VM using the ”burst-approach” as
explained in the next section. The measured counter values are then passed
on to the aggregator that calculates a metric called the interference-index
(explained in section 5.6) . Interference-index approximates the pressure the
co-runners put on the target system. The aggregator subsequently makes them
available for the API along with the monitored counter values to allow for a
user specific composition for quantifying contention. By exposing different
counter metrics through the API, it also allows the users to compose their
own index of pressure for any subsystem.

Burst-Approach: Typically performance counters are saved/restored when
a context switch changes to a different process, which costs a couple of
microseconds. Since these counters can hold context for only a single process
at a time, monitoring the behaviour of the co-runners during runtime requires
the middleware to adapt to this limitation. We circumvent this limitation by
using a ”burst-approach” where different co-runners are monitored in bursts
and their values composed together within a single time-frame. A time-frame is
defined as the period during which an application is assumed to have minimal
variations in its behaviour. Consider, for example 2 VMs co-located on a
physical host. In order to monitor their behaviour, the middleware collects the
counters of each VM one after another in cycles. The time chosen to measure
the counters of all the VMs exactly once defines a time-frame. Figure 6.4
shows one time-frame of execution. It is important to ensure that the chosen
time-frame is neither too long nor too short. A very short time-frame can
leave no time for the counters to be monitored since releasing and reacquiring

65

the counters costs a couple of microseconds. Also, very short durations do
not accurately capture the application behaviour. On the other hand, long
time-frames aren’t ideal either because it increases the probability of variation
in the application behaviour and violates the assumption that the application
experiences minimal variations. This is important because the behaviour of
every co-runner is composed together each time-frame. Major variations in
the application behaviour during a time-frame can thus result in misleading
conclusions.

5.6 Characterising Contention
ETOEOOE| OO0
@@@@ OQQQ

(a) C’s data is remote, hence S contends with C’s only for L3 cache (config-a)

& |(WEOOO)| [OEE0)
QOOQ @@@Q

(b) C runs on a different processor, hence S contends with C’s only for memory
bandwidth (config-b)

2 |(WOCEE)| OO0
@@@@ QOO0

MEMORY

M(C)

MEMORY

L3 Cache

(¢) S and C share both memory bandwidth and L3 cache and hence contend for both
(config-c)

Figure 5.8: Configurations for generating contention at different resources.
S denotes the storage system and M(S) denotes the memory allocation of S.
C denotes the co-runners and M(C) denotes the memory allocation of C. I
denotes the core serving interrupts.

66

In order to characterise contention, we choose in-memory storage systems, i.e.
Memcached and Redis, as demonstrative target systems to show the scaling of
services under performance interference. We identify which resources, upon
contention, degrade the performance of the storage system and the properties
of the co-runners that determine the level of contention. In order to understand
the properties of the storage systems and the memory sub-system they are
sensitive to, we characterise them on a NUMA machine.

We denote the storage system by S and each of its co-runners by C. In our
experiments, we compute the performance drop as follows: First, we measure
the average latency L; of the storage system when running in isolation. Then
we measure the average latency L. of the storage system when it co-runs with

other processes. Performance drop suffered is %
1

5.6.1 Sources of degradation

100
200

Performance Drop (%)

5 15
Performance Drop (%)
0 50 100

60

Performance Drop (%)

T T T t T T T ‘ T T T T
5000 10000 15000 20000 25000 5000 10000 15000 20000 25000 5000 10000 15000 20000 25000
Workload(RPS) Workload(RPS) Workload(RPS)

(a) Contention for L3 cache (b) Contention for memory(c) Contention for both re-
(config-a) bandwidth (config-b) sources (config-c)

Figure 5.9: The drop in performance of Memcached for different throughputs.
Memcached is run alongside 6 instances of different co-runners.

There are 2 main subsystems responsible for contention: the cache and the
memory bandwidth. In order to assess the impact of contention on these
subsystems, we use three system configurations illustrated in figure 5.8. They
are designed to generate contention at different resources: the first configuration
generates contention only on the cache, the second only on the memory
bandwidth and the third one on both. Figure 5.9 and 5.10 show the drop in
performance experienced by Memcached and Redis respectively.

For both Memcached and Redis, it is clear that cache is the dominant source of
performance degradation. In the case of Redis, cache contributes to a maximum

67

of 30% drop in performance (figure 5.10a) while bandwidth only causes 8%
(figure 5.10b). Similar observations can be made for Memcached, with cache
contributing upto 65% drop in performance and bandwidth contributing less
than 10%. However, the over all drop in performance drop of Redis is much
higher in comparison to Memcached. Upon deeper analysis, we found that
beyond 10000 RPS, Redis reaches a point of saturation in terms of available
CPU. With proper configuration and optimization, it is possible to improve the
throughput of Redis much beyond this limit. Since our intent is to demonstrate
the impact of interference, we do not consider optimization or configuration
set up to improve throughput. The results show that both the storage system
benefits more from it’s reliance on the cache than from memory bandwidth.

Our results are related to the conclusion drawn by running packet processing
workloads on multicore platforms. The dominant contention source was
found to be the cache [17]. As we will show, the difference comes from our
observation that memory access pattern also impacts the performance of
in-memory storage systems. On the contrary, SPEC CPU benchmarks are
more sensitive on memory bandwidth [34].

—*— stream % stream

mbw mbw
—— |bm == Ibm
—— povray —— povray

L S S— U S E——
5000 10000 15000 20000 5000 10000 15000 20000 5000 10000 15000 20000
Workload(RPS) Workload(RPS) Workload(RPS)

w0
&

300
t
g

0 100
| \+

Performance Drop (%)
15
Performance Drop (%)
0 2 4 6 8 10
Performance Drop (%)

©
o

(a) Contention for L3 cache (b) Contention for memory(c) Contention for both re-
(config-a) bandwidth (config-b) sources (config-c)

Figure 5.10: The drop in performance of Redis for different throughputs. Redis
is run alongside 6 instances of different co-runners.

5.6.2 Properties that determine degradation

We investigate properties of the co-running application that cause performance
degradation. In both figures 5.9 and 5.10, all the different co-runners cause
degradation in the same order; ie. mbw consistently causes the highest
amount of performance degradation, followed by stream, Ibm, and povray. In
order to understand the properties that define the aggressiveness of the co-

68

Co- Cache Cache L3 L3 Memory
runner Refer- Misses | Prefetch| Prefetch| band-
(6X) ences (mil- (mil- miss width
(mil- lions) lions) (mil- (GB/s)
lions) lions)
mbw 150.1 54.1 73.76 68.29 20.3
stream 133.2 47.3 107.2 98.6 20.5
Ibm 63.1 25.5 135.1 102.2 18.8
linearwalk | 228 84.6 150.5 91.2 22.4
libquantum | 242.5 91.6 93.3 57.7 21.2
randomwalk | 1055.5 137.7 0.165 0.132 8.4
povray 24.6 0.015 37.6 0.009 0.01

Table 5.2: Memory-subsystem behaviour of co-runners sorted by performance
drop (highest to lowest) experienced by Redis and Memcached

runners, we rely on PMUs. L3 cache-references of the co-running applications
were consistent with our observation and appears to mostly determine the
degradation suffered. mbw has the highest number of cache-references and
povray the lowest. This makes sense because higher cache references from the
co-runners effectively reduces the cache space of the storage system, resulting
in a drop in performance.

However, table 5.2 (sorted by descending order of performance degradation)
shows that cache-references alone does not determine the performance drop of
the storage system. For example: randomwalk, linearwalk and libquantum
have higher cache references than mbw, but they cause much lesser degrada-
tion. Linearwalk does a walk through the memory in a linear fashion being
completely predictable, while randomwalk pseudo randomly walks within a
page. Our results show that the sensitivity of the storage system also depends
on the memory access patterns of the co-runner. We designed the application
linearwalk and randomwalk precisely to study this property. Cache references
do not capture the memory access patterns of the application. However, cache
misses along with prefetch misses can provide hints about the memory access
patterns of the application. In order to identify all relevant counters that affect

69

the sensitivity of the storage system, we run a typical feature selection process
that evaluates the effect of different performance counters on the sensitivity
of the storage system. The chosen performance counters are shown in 5.3.
The chosen metrics correlate well with our observation on memory access
patterns and cache access intensity of the co-runner. The feature selection
process however indicated that DTLB loads and stores of the co-runner also
reflect the sensitivity of the storage system. When we quantify the interference
index we found that the impact of DTLB loads and stores are minimal and
cache-references, cache-misses, prefetch and prefetch-misses are the strongest
indicators to model sensitivity. Our model also includes cache-references of
the target system to take into account different workloads. It inherently allows
to generate a performance degradation model for different workloads. In
the following section we explain the process of constructing the measure of
degradation (interference-index) from these performance counters.

Summary: Although the dominant contention factor is the cache, sensitivity
of the storage system is not determined only by the number of cache references of
the co-runners. The memory access pattern of the co-runner plays a significant
role in determining the performance of the storage system.

5.6.3 Interference-Index

The goal of characterising contention is to quantify the properties of the co-
runners that lead to performance degradation of the storage system. We call
this metric interference-index and it approximates the performance degradation
suffered by the storage system. In order to be useful for elastic scaling, the
metric must correlate with the performance drop suffered by the storage
system.

We derive a set of N representative performance counters W.S = my,ma, ..., my
where m; represents the metric i. For applicability across heterogeneous
machines, we rely only on generic counters to approximate this pressure. We
find that even relying on a very coarse approximation to quantify contention
can improve the accuracy of the scaling decisions significantly. Using the
counters in 5.3 and a training data set of co-runners, our system then builds a
model that correlates co-runner properties with performance drop suffered by
the storage system. We then use linear regression on these counter to construct
the interference index. Figure 5.11 shows the interference-index constructed

70

Name Description Name Description
cpu-clk Reference cycles | inst-retired Instructions
retired
cache-ref (Co- References to L3 | cache-miss L3 cache misses
runner& cache
Target-
system)
llc-prefetch L3 prefetches llc-prefetch- L3 prefetch
miss misses
dtlb-loads DTLB loads dtlb-load-miss load misses in
DTLB that cause
page walks
dtlb-store DTLB stores dtlb-store- store misses in
miss DTLB that cause
page walks

Table 5.3: Performance counters included in characterising contention

for Memcached. Since the modeling is data-driven, the interference index
generated is application-dependent. We however do not view this as an issue
since modeling can be fully automated.

From figure 5.11, we see that interference-index correlates with performance
drop suffered by the storage system. Higher the interference-index, greater the
performance drop experienced by the storage system. Also similar interference-
index should correspond to similar drop in performance. For example, mbw4
and stream4 indicate 4 instances of the co-runners mbw and stream respectively
and are not included in the training set. stream4 causes similar degradation as
linear walk and they both correspond to the similar interference indexes. mbw4
causes a degradation that is greater than linear walk but lesser than lbm and is
also captured by the model as expected. We also test our model on a different
set of co-runner, omnetpp from the SPEC benchmark. Our model is able to
predict the drop with a good accuracy. Once interference-index is quantified, it
is then used as a control input along with CPU utilization/workload intensity
for the elasticity controller.

71

o
. bguantim==="
oway ﬁ/@ﬁma'k ‘

0.0 0.5 1.0 1.5

Interference Index

Performance drop(X)

0.0 05 10 15

Figure 5.11: Interference-index quantifies the performance drop suffered by
Memecached based on the behaviour of the co-runner.

5.7 Elasticity Controller

The main goal of an elasticity controller is to allocate adequate resource to
a provisioned system in order to make the system operating in a healthy
region that matches the control goal, e.g. Service Level Objective (SLO).
The elasticity controller also optimizes the provisioning cost and prevents
over-provisioning by allocating resources only when needed and freeing them
when they are no longer needed. In our scenario, we define average service
latency in small epochs (10 second) as our control goal, which is one of the
common metrics specified in SLO between service providers and consumers. In
the scenario of cloud computing, the amount of resources is translated to the
number of virtual machines (VMs). As mentioned before, we target elasticity
controllers that monitor system metrics, i.e. CPU utilization or incoming
workload, i.e. read and write request rates, and model them as inputs. The
former metric is commonly used to build an elasticity controller based on
control theory [45, 72, 73] while the latter one is widely used to construct an
elasticity controller using model-based control [51, 50, 48], such as Statistical
Machine Learning (SML). Our observations from section 5.4 show that the
number of VMs in the system cannot be directly and linearly translated to
the capability of the system to handle workload. Specifically, handling a
workload under SLO constraint requires different numbers of virtual machines
depending on the presence and intensity of VM interference. In Hubbub-

72

Scale, we quantify the interference experienced in the system by querying the
middleware API for interference index. Apart from this, the controller also
takes CPU utilization and incoming workload intensity to model the load in
the system.

Hubbub-scale is implemented as a centralized elasticity controller and its
scaling decision is made by consulting control models that are built in an
online fashion. There are two separate processes running in the Hubbub-scale
controller that we call the model training process and the scaling process.
Both processes run in parallel at different frequencies and do not interfere
with each other. The model training process is used to continuously learn the
application behaviours under different loads and intensities of interferences and
update the control model. The load of the system is learnt from the sampled
workload intensity or the CPU utilization on each VM. The monitored system
behavior is narrowed down to the interested control goal, which is average
service latency in small epochs. It is achieved by instrumenting the system to
sample read and write latencies. We keep the monitoring overhead minimal by
reducing the percentage of the sampled requests and the reporting frequency
of the statistics to the model training process. The model training process
updates the model with a simple data fading algorithm that uses weighted
averages of service latencies from the most recent 10 epochs.

The scaling process consults the updated model with the monitored load
of the system and the interference index from our API to make scaling
decisions. To be specific, Hubbub-scale models the load of a system in two
ways: workload-based modeling and CPU-based modeling The parameters
used in workload-based and CPU-based models are firstly trained offline, and
then improved during our online training process.

Workload-based Modelling: In workload-based modeling, the model is
built and trained in a form of a binary classifier, which is widely used in
recent works [51, 50, 48]. The classifier classifies the operational status of the
modeled system. In our case, it models whether the system is operating in a
state where its service latency violates the SLOs or not. Figure 5.12 shows a
simplified version of Hubbub classifier, which uses finer data granularity, for
explanation purposes. The binary classifier assumes that a certain VM is able
to handle a specific load of the system, incoming read and write request rates,
within the SLO constraint. The classifier is trained by having VMs operating

73

with different intensity of workloads and monitoring the achievement of SLO.
For example, when training the model without interference, an operating state
with SLO violated is marked as a red cross in Figure 5.12 and an operating
state complying SLO is marked as a green dot. The boundary of the red
crosses and green dots is learnt using SVM (Support Vector Machine), which
forms the classifier (the black border). Hubbub-scale provisions the underlying
system to be operated just under the boundary of the classifier to save the
provisioning cost while satisfying the SLO. Hubbub-scale trains the classifier
not only based on the incoming workload in terms of read and write request
rate, but also takes into account the interference experienced on VMs, which
is indicated from our interference index. Specifically, the amount of workload
that can be handled by a VM is also learnt under different interference indexes
with respect to the latency SLO constraint. The blue and pink borders in
Figure 5.12 illustrate the learnt classifiers under 0.3 and 0.6 interference index.
Thus, the binary classifier used in Hubbub-scale has 3 dimensions. It has an
additional interference index dimension compared to the classifier proposed in
[50], which has only 2 dimensions.

By obtaining the current workload and interference index, Hubbub-scale
controller is able to calculate the number of VMs needed in the system
using the following formula, where AverageThroughputperServer denotes
the throughput that can be handled by a server within the SLO constraint in
the current level of the interference index.

CurrentWorkload
AverageT hroughputperServer

NewNumberofServers =

CPU-based Modelling: Hubbub-scale can also model system’s load using
CPU utilization on each VM. A classical integral controller is built because
of its self-correcting and provably stable performance in the application of
a wide range of scenarios, and has been used successfully in state of the art
systems [45, 84, 85, 86]. The core of the integral controller is the following
formula:

a1 = a + Ki * (Yres — Yk) (5.1)

ay, and ag41 are continuous integers that represent system capability at current
control period and the next control period, which is then translated to the
number of VMs that are needed in the system. K; is the integral gain
parameter [85]. yy is the current input and y,.f is the desired input. The

74

ﬂ‘%- y o — No interference

i o - = Interference index 0.3
6 - m\ e ---- Interference index 0.6

3000 6000

Writes per second

0

- T T == T T T 1
0 1000 2000 3000 4000 5000 6000
Reads per second

Figure 5.12: Throughput Performance Model for different levels of Interference.
Red and green points mark the detailed profiling region of SLO violation and
safe operation respectively in the case of no interference.

inputs are the monitored aggregated CPU utilization. Different values of
desired CPU utilization y,.s are obtained with respect to a certain level of
interference and the latency SLO. The controller obtains the desired VM
numbers a1 from the previous time step ai proportionally to the deviation
between the current y;, and desired ¥,y values of the CPU utilization in the
current control period.

The difference between Hubbub-scale and a standard scaling approach is that
Hubbub-scale takes into account the interference index in its model building.
Standard scaling approaches rely on the standard modelling techniques, i.e.,
workload-based modeling and CPU-based modeling, used in the state of the art
systems [50, 45, 51]. Specifically, standard workload-based modeling assumes
a VM performs in an ideal scenario and is always capable of handling a specific
workload without any knowledge of interference, similar to the implementation
in [50, 48]. Standard CPU-based modeling only has one reference value (y.f)
in the model with respect to the latency SLO. In our evaluation, we show the
inaccuracy of the standard modeling in the presence of interference and the
accuracy of Hubbub-scale in conforming to SLO requirements.

Overhead: Our middleware has a very minimal overhead since it only
samples the counters every few seconds. It has a negligible CPU consumption
of less than 3% and does not perform any instrumentation to the application
that result in performance loss. Hubbub-Scale incurs very negligible overhead
in comparison to standard modelling approaches since the only additional

75

step involved is the construction of interference index, which in itself relies on
non-intrusive monitoring.

5.8 Experimental Evaluation

We implemented our middleware on top of a KVM virtualization platform
and conducted extensive evaluation using Memcached and Redis for varying
types of workload and varying degrees of interference. This section describes
our experiment setups and results.

5.8.1 Experiment Setup

All our experiments were conducted on the KTH private Cloud which is
managed by Openstack [87]. Each host is an Intel Xeon 3.00 GHz CPU with
24 cores, 42GB memory and runs Ubuntu 12.04 on 3.2.0-63-generic kernel. It
has a 12 MB L3 cache and uses KVM virtualization. The guest runs Ubuntu
12.04 with varying resource provisioning depending on the experiment. We
co-locate memory intensive VMs with the storage system on the same socket
for varying degrees of interference by adding and removing the number of
instances. MBW, Stream and SPEC CPU benchmarks are run in different
combinations to generate interference. In all our experiments we disable DVFS
from the host OS using the Linux CPU-freq subsystem.

Our middleware performs fine-grained monitoring by frequently sampling the
CPU utilization and the different performance counters for all the VMs on
the host and repeatedly updates the interference index every 1 min. The
time-frame chosen for monitoring the selected VMs after classification is 15
seconds and the counters are released for use by other processes for 45 seconds.
The hosts running our experiments also run VMs from other users which
introduces some amount of noise to our evaluation. However, our middleware
also takes into account those VMs to quantify the amount of pressure exerted
by them on the memory subsystem.

To focus on Hubbub-Scale rather than on the idiosyncrasies of our private
Cloud environment, our experiments assume that the VM instances to be
added are pre-created and stopped. These pre-created VMs are ready for
immediate use and state management across the service is the responsibility of
the running service, not Hubbub-Scale. Alternatively, interference generated

76

from data migration can be accounted for by the middleware to redefine the
SLO border to avoid excessive SLO violations from state transfer. In order to
demonstrate the exact impact of varying interference on Hubbub-Scale, we
generate equal amounts of interference on all physical hosts and decisions for
scaling out are based on the model from any one of the hosts. The load is
balanced in a round robin fashion to ensure all the instances receive an equal
share of the workload. We note that none of this is a limitation of Hubbub-
Scale and is performed only to accurately demonstrate the effectiveness of the
system in adapting to varying levels of workload and interference with respect
to the latency SLO.

The control model of Hubbub-scale is partially trained offline before putting
it online. Offline training is highly recommended but not mandatory. It
identifies the operational region of the controlled system on a particular VM in
an interference-free environment. Also, it improves the accuracy of the scaling
during warm up phase. However, the Hubbub-scale control model can never
be fully trained offline, because inter-VM interferences are hard to artificially
produce as a cloud tenant. So, this part of the model can only get trained in
an online fashion. The control models used in our evaluations are well warmed
up by training them with different workloads and interferences online.

5.8.2 Results

Our experiments are designed to demonstrate the ability of Hubbub-Scale to
dynamically adapt the number of instances to varying workload intensity and
varying levels of interference, without compromising the latency SLO. The
experiments are carried out in four phases, shown in figure 5.13 with each
phase (separated by a vertical line) corresponding to a different combination of
workload and interference setting. We begin with a workload that increases and
then drops with no interference in the system. The second phase corresponds
to a constant workload with an increasing amount of interference and later
drops. The third phase consists of a varying workload with a constant amount
of interference and in the final phase, both workload and interference vary.
We carry out this experiment for 2 different types of control models: workload-
based modelling and CPU-based modelling.

77

k]

S e

8 « | |

838 B [s
g5 [! 11

2 JJ L J

83 S

35 O T T T T T T T
&~ 0 50 100 150 200 250 300 350

control periods

@

Interference Index
00 04 08

(®)

T T

0 50 160 150 260 250 300 350
control periods

©

Interference Index
00 04 038

Figure 5.13: Experimental setup. The workload and interference are divided
into 4 phases of different combinations demarcated by vertical lines. (b) is
the interference index generated when running Memcached and (c) is the
interference index generated when running Redis.

5.8.2.1 Scaling Out using a Workload based Model with/without
Interference

Figure 5.14(b) and 5.15(b) compares the latency of a standard control model
based on throughput performance modelling against Hubbub-Scale for all
the four different phases for Memcached and Redis respectively. Without
any interference (first phase), both systems perform equally well. However,
in the presence of interference, the SLO guarantees of a standard control
model begins to deteriorate significantly (figure 5.14(b), plotted in log scale
to show the scale of deterioration). Hubbub-scale performs well in the face
of interference and upholds the SLO commitment. The occasional spikes

78

8 —— #VM Hubbub-scale
--- #VM Standard-scale
** vc—> 7 "_'J_l_l——lj_':'__‘_ __________ =i A
o f
’a T T I T T
£
1) -
8 | —— Hubbub-scale
? o 4| --- Standard-scale
8 <
=
£ i
3w
c o
2
<
8 | — #VM Hubbub-scale
s Al -=- #WM Standard-scalle_j SEL
£ 2 £
o |
T T I T T
©
* I
@ © || — Hubbub-scale !
g/ N --- Standard-scale I '
> 1 A
o o | M ‘. A .."
é - F Ik)GaUCJM' '_:H_M (I B = 71 Lk
= o
S

O 50 1 00 1 50 200 250 300 350

control periods
@

Figure 5.14: Results of running Memcached across the different phases. (a)
and (b) shows the number of VMs and latency of Memcached for a workload
based model. (c¢) and (d) hows the number of VMs and latency of Memcached
for a CPU based model.

are observed because the system reacts to the changes only after they are
seen. Figure5.13(b) plots the interference index captured by the middleware
during the run-time corresponding to the intensity of interference generated
in the system. The index captures the pressure on the storage system for
different intensities of interference. Certain phases of the interference index in
the second phase do not overlap because of the interference from other users
sharing the physical host (apart from generated interference). We found that
during these periods services such as Zookeeper and Storm client were running
alongside our experiments increasing the effective interference generated in the
system. Figure 5.14(a) and 5.15(a) plots the number of active VM instances

79

B]
8 || — #VM Hubbub-scale —L_J—FJ'“L
--- #VM Standard-scale T 1
S o] T e o g g
2 _J_rr-‘ﬂ___r'-' LR
""""" T Tiik | sty
TR I e
o 1 i

I |
—— Hubbub-scale EA toonh
--- Standard-scale \.' Vel - i
/

latency (ms)
5
1

[T}
d B T T T
(®)
B]

© || — #VM Hubbub-scale I _L
s N || -—=- #VM Standard-scale :Tl_l_rjli—a L|
ge{ o o

— " T

| ! ; L
o 1 L i
T T T T
©

9@ \
7 N —— Hubbub-scale !
£ 7| | --- Standard-scale : :
3 w |
c /u
[-+ o Lk N
8 Mﬁm\w« o W b AR

a -

50 1 00 1 50 200 250 300 350
control periods

@

Figure 5.15: Results of running Redis across the different phases. (a) and (b)
shows the number of VMs and latency of Redis for a workload based model.
(c) and (d) hows the number of VMs and latency of Redis for a CPU based
model.

and shows that Hubbub-Scale is aware of interference and spawns enough
instances to satisfy the SLO. In section 5.8.3 we show that Hubbub-scale does
not over-provision instances to maintain the SLO.

5.8.2.2 Scaling Out using a CPU based Model with/without Inter-
ference

We construct a control model based on CPU as explained in section 5. Figure
5.14(d) and 5.15(d) plots the results from scaling out Memcached and Redis
during the four different phases. Figure 5.14(c) and 5.15(c) plots the number
of active VM instances as the workload intensity and interference intensity

80

changes in four phases. Hubbub-Scale is aware of interference and adapts to
it by spawning the right number of instances. Both Hubbub-Scale and the
standard scaling perform equally well during the first phase and provision
the same number of VMs to deal with the increasing workload in the absence
of any interference. Hubbub-Scale adapts to the increasing interference and
spawns more VMs to maintain the SLO requirement while standard modelling
approaches fail. Figure 5.13(c) shows the interference index captured during
the runtime. Despite running a mix of different interfering applications, the
index retains relative meaning and is robust enough to capture the pressure
on the memory subsystem.

Our experiments indicate that a standard control model fails to capture the
correlation between workload and latency in a multi-tenant scenario. Even a
coarse approximation of resource contention is enough to drive the accuracy
of the controller by a significant scale and minimize SLO violations.

5.8.3 Utility Measure

An efficient elasticity controller must be able to achieve high resource utilization
and at the same time guarantee SLO commitments. Since achieving low latency
and high resource utilization are contradictory goals, the utility measure needs
to capture the goodness in achieving both these properties. While a system
can outperform another in any one of these properties, a fair comparison
between different systems can be drawn only when both the aspects are taken
into account in composition. To this order, we define the utility measure as
the cost incurred:
U = VM _hours + Penalty

Penalty = DurationO fSLAViolations % penalty_factor

DurationO fSLAViolations is the duration through the period of the exper-
iment the SLA is violated. We vary the penalty factor which captures the
different cost incurred for SLO violations. Figure 5.16 shows the utility measure
for 5 different scaling approaches. Ideal scaling represents the theoretical best
scaling possible with right VM allocation and no SLO violations. Without any
penalty for SLO violations, standard modelling incurs the lowest cost because
it allocates only a few instances but results in SLO violations. But as the
penalty for SLO violations increase, Hubbub-Scale achieves low utility (cost),
which is much better than both standard scaling methods and comparable to

81

ideal approach. Results with penalty=0 also shows that Hubbub-scale allocates
a comparable number of VMs to ideal approach and does not achieve SLO
guarantees by unfairly over-provisioning resources. We also note that this is a
consequence of the way our experiments are carried out with interference on
all physical hosts. With a round robin scheduler, the elasticity controller does
over provision to some extent since each host roughly receive the same number
of requests, and the maximum requests per server is capped by the lowest
amount of workload that can be handled without violating the SLO. This
over-provisioning can be mitigated by making the load balancer interference
aware.

penalty factor=0 penalty factor=1 penalty factor=3 penalty_factor =5

1500
W#VMs_ideal
>1000 #VMs_c_hubbub
. BW#VMs_c_standard
5 W #VMs_hubbub

500 _I . —III -II .gVMslt_standard
enal
0 a0 B0 BAS m BT B

Figure 5.16: Utility measure for different Scaling approaches. VMs_ideal
represents the theoretically best scaling possible without any over-provisioning
or SLO violations. VMs_c_hubbub and VMs_c_standard represents the util-
ity measure of CPU based scaling using Hubbub and standard modelling
respectively. VMs_hubbub and VMs_standard represents the utility measure
of workload based scaling using Hubbub and standard modelling respectively.

5.9 Related Work

Elastic Scaling: Amazon Auto Scaling [72] is an existing production cloud
system which depends on the user to define thresholds for scaling up/down
resources. However, it is difficult for the user to know the right scaling
conditions. Rightscale [73] is an industrial elastic scaling mechanism and uses
load-based threshold to automatically trigger creation of new virtual instances.
It uses an additive-increase controller and can take a long time to converge
and know the requisite amount of machines for handling the increasing load.

82

Reinforcement learning is usually used to understand the application behaviors
by building empirical models either online or offline. Simon [74] presents
an elasticity controller that integrates several empirical models and switches
among them to obtain better performance predictions. The elasticity controller
built in [75] uses analytical modeling and machine-learning. They argued
that by combining both approaches, it results in better controller accuracy.
Although reinforcement-learning mechanisms converge to an optimal policy
after a relatively long time, it reward mechanisms cannot adapt to rapidly
changing interference as it is unaware of the amount of contention in the
system.

Control theory aims to define either a proactive or a reactive controller to
automatically adjust the resources based on application demands. Previous
works [76, 48, 45, 77] have extensively studied applying control theory to
achieve fine grained resource allocations that conform to a given SLO. However,
the existing approaches are unaware of interference and will consequently fail
to meet the SLO.

In Time series based approach, a given performance metric is sampled period-
ically at fixed intervals and analysed to make future predictions. Typically
these techniques are employed for workload or resource usage prediction and
is used to derive a suitable scaling action plan. Chandra et al.[88] perform
workload prediction using a histogram and auto-regression methods. Gmach et
al.[89] used a Fourier transform-based scheme to perform offline extraction of
long-term cyclic workload patterns. PRESS [43] and CloudScale [44] perform
long-term cyclic pattern extraction and resource demand prediction to scale up.
Although these approaches account for performance interference inherently,
they are known to perform well only when periodic patterns exist, which is not
always true in a dynamic environment such as Cloud. Our proposed approach
using a control model, combines both online and offline training to achieve
efficient scaling plans.

5.10 Summary

We conducted systematic experiments to understand the impact of performance
interference on CPU utilization and workload, two widely used metrics in
elastic scaling. Our observations show that metrics become unreliable and do
not accurately reflect the measure of service quality in the face of performance

83

interference. Discounting the number of VMs in a physical host and the amount
of interference generated can lead to inefficient scaling decisions that result in
under-provisioning or over-provisioning of resources. It becomes imperative to
be aware of interference to facilitate accurate scaling decisions. The implication
of this observation introduces significant challenges in answering the following
questions under multi-tenancy scenarios on: when to scale, how many VMs to
launch, and where to place VMs.

We model and quantify performance interference as an index that can be used
in the models of elasticity controllers. We demonstrate the usage of this index
with CPU utilization and workload intensity by building Hubbub-scale, an
elasticity controller that can reliably make scaling decisions in the presence of
interference.

CHAPTER

Augmenting Elastic Scaling for
improved accuracy

Abstract

Elastic resource provisioning is used to guarantee service level objective
(SLO) with reduced cost in a Cloud platform. However, performance
interference in the hosting platform introduces uncertainty in the perfor-
mance guarantees of provisioned services. In this chapter, we show that
assuming predictable performance of VMs in a multi-tenant environment
to scale, will result in long periods of QoS degradations. We augment
the elasticity controller to be aware of interference and improve the
performance in one of three ways: interference aware load-balancing,
reduced convergence time when scaling out and informed scaling down.
We perform experiments with Memcached and compare our solution
against a baseline elasticity controller that is unaware of performance
interference. Our results show that augmentation can significantly re-
duce SLO violations and also save provisioning costs compared to an
interference oblivious controller.

85

86

6.1 Introduction

With the rise in web services, application and content have moved from being
static to more dynamic. This includes social media and networking services
that see massive growth in the amount of community generated content. The
shift to dynamic content along with increased traffic puts a strain on the
sites providing these services. This has resulted in the evolution of caching
systems such as Memcached [80], that runs in-memory and act as a caching
layer to deliver content at low latency. For example, popular content that is
frequently accessed can be replicated in these caching layers to provide low
latency access to multiple users. These caching layers must be able to adapt
to the varying loads in traffic in order to save provisioning costs and to deliver
content at high speeds. Cloud providers such as Amazon provide support for
elastic scaling of resources to meet the dynamic demands in traffic. Previous
works have proposed multiple models ranging from simple threshold based
scaling [72, 73] to complex models based on reinforcement learning [74, 75|,
control modelling [76, 48, 45, 77], and time series analysis [44, 43] to drive
elastic provisioning of resources. The major challenge is to decide when to
add/remove resources and to decide the right amount of resources to provision.
These challenges are further exacerbated by performance variability issues that
are specific to cloud such as performance interference. None of the previous
work consider performance variability from interference. Existing research
shows that interference is a frequent occurrence in large scale data centers [36].
Therefore, web services hosted in the cloud must be aware of such issues and
adapt when needed.

Performance interference happens when behavior of one VM adversely affect
the performance of another due to contention in the use of shared resources
such as memory bandwidth, last level cache etc. Prior work indicate that,
despite having (arguably the best of) schedulers, the public cloud service,
Amazon Web Service, shows significant amount of interference [12, 7, 90].
Existing solutions primarily mitigate performance interference and guarantee
performance in either one or a combination of these 3 ways: (i) Hardware
partitioning (ii) at the scheduling level or (iii) by dynamic reconfiguration.
Hardware partitioning techniques involve partitioning the shared resources to
provide isolated access to the VMs [13, 14, 15]. They may not be feasible for
the existing systems and requires changes to the hardware design. Scheduling

87

mechanisms look at ways to place together those VMs or threads that do
not contend for the same shared resource, essentially minimising the impact
of contention [28, 29]. This knowledge is typically accrued through static
profiling of the applications. Dynamic reconfiguration involves techniques such
as throttling best effort applications or live VM migration upon detecting
interference [91]. Reconfiguration techniques such as VM migration involves a
huge overhead and throttling best effort applications are possible only if they
are co-located on the same host. All these solutions, look at ways to guarantee
performance in a multi-tenant setting by either resorting to VM placement or
reconfiguring the VMs. Elastic scaling in a cloud environment does not come
with the convenience of choosing where to spawn a new VM.

We show that when elasticity controllers are unaware of interference, it either
results in long periods of unmet capacity that manifest as Service Level
Objective (SLO) violations or results in higher costs from over provisioning.
We augment them to be aware of interference to significantly reduce SLO
violations and save provisioning costs. We consider Memcached for elastic
scaling, as it is widely used as a caching layer, and present a practical solution
to augment existing elasticity controllers in 3 ways: (i) At the ingress point
by load balancer reconfiguration (ii) by reducing the convergence time when
scaling out and (iii) by taking informed decisions when scaling down/removing
instances. We achieve this with the help of hardware performance counters
to quantify the intensity of interference on the host. We do not rely just
on the counters of the target application as they are insufficient to detect
interference. We take into account the behaviour of the co-running VMs to
quantify interference. This is achieved with the help of a middleware that
exposes an API for VMs to query the amount of interference in the host.
Decisions by the elasticity controller is then augmented with the help of this
information. Our main contributions are:

1. We show that the maximum workload any VM can serve within a SLO
constraint is severely impacted by interference. An immediate consequence
of this impact is an increase in the time taken for the scaling out process to
converge which results in increased SLO violations. We also show that this
resulting period of SLO violation is directly proportional to the time taken
to spawn and prepare VMs. Our tests on Amazon Web Service (AWS) show
that preparing VMs take anywhere between 2 mins to 28 mins depending on
the size of data to be transferred.

88

2. We design and develop a solution to augment elasticity controllers to be
aware of interference. Our solution quantifies the capacity of a VM based on
the interference experienced on the host by modelling the performance of the
target application. With this we are able to reduce the impact of interference
on SLO violations by reconfiguring the load balancer, reducing the convergence
time when scaling out and by removing highly interfered instances from the
cluster when scaling down.

3. We perform experiments with Memcached and compare our solution against
a baseline elasticity controller that is unaware of performance interference. We
find that with augmentation we can reduce SLO violations by 65% and also
save provisioning costs compared to an interference oblivious controller.

6.2 Problem Definition

Any scaling process involves 2 steps: making a decision on when to scale and
choosing the right number of instances to be added/removed to serve the
changing workload. Both these steps depend on the capacity of a VM. Capacity
is defined as the maximum amount of workload a VM can serve within a
certain level of QoS. A decision to scale-out is established when the elasticity
controller detects that the workload exceeds the current capacity of the VMs.
It then determines the additional capacity needed to serve the excess workload
and spawns the required number of VMs. The accuracy of scaling thus depends
on the agility of the controller in detecting workload changes and satisfying the
additional capacity. Although modelling techniques [50, 51, 48, 45] can help
determine the required capacity, it is difficult to identify the right number of
VM instances required to meet the new workload demand. This is because, the
capacity of a VM is not determined by the resource specification of a VM alone.
Performance interference also impacts the VM capacity. We demonstrate the
consequences of this problem through a representative example shown in
figure 6.1.

Convergence of Scaling: Convergence time of scaling is the time it takes an
elasticity controller to reach a stable desirable state. Figure 6.1 demonstrates
the undue delay in convergence of a scaling process because of unmet capacity.
From time 0-50 secs, the cluster is able to handle the workload and latency
remains below the SLO. After 50 secs the workload increases and the elasticity
controller detects the need for additional capacity to serve the increased

89

‘ —— Latency —— Workload--- SLO | 8

L ©

S
3 L— |85

— N
@ 7] |m T 1 == o
£ Sr _ Spawn Prepare Iy ! ! o x
> 1Spawn Preparel | el
o | o ®©
2 . e~] N I L 8
Det o <
2 Q1 o AR {D\wj":':’_‘:‘ll S %4
— . Unmet Capacity: A _ .| =

|
o4 L ___. Detect+Remove | o

T T

T T T T
0 50 100 150 200 250 300 350
Time (Secs)

Figure 6.1: Memcached service experiencing a long period of SLO violation
during periods or scaling out and scaling down because of unmet capacity
from performance interference.

workload. It then spawns the required number of VM instances and prepares
the instance with the necessary data to serve the additional workload. The
number of instances spawned to serve the additional workload is based on its
knowledge of additional capacity needed. We call this the first phase of scaling.
Although latency reduces after the first phase of scaling, it still violates the
SLO. The new instance (V Mju¢er) happened to be spawned on a server highly
impacted by interference. As a result, the VM does not have enough capacity
to serve the additional workload within the SLO. This is because performance
interference reduces VM capacity. More details on how interference affects
capacity is explained in section 6.3.1. Had there been no interference, the SLO
would have been maintained after the first phase of scaling. The elasticity
controller is unaware of this interference and detects SLO violations at 150
secs and immediately spawns and prepares another instance to maintain the
SLO. The period between 150 to 250 secs is the period of unmet capacity from
interference and increases the convergence time of the elasticity controller.
This period is directly proportional to the time it takes to spawn and prepare
a new instance. It results in SLO violations and can only be discovered by
the controller after the first phase of scaling. This is because, the elasticity
controller is oblivious to interference and cannot know the capacity of the VM
before it starts serving the workload. Once another VM is spawned, the SLO

90

is maintained. The cluster converges to a desirable state only after spawning
and preparing this additional VM.

Scaling Down: In the same figure (figure 6.1), we see that the workload
drops at around 300 seconds and the elasticity controller detects and removes
an instance based on its model of capacity. However, removing the instance
immediately results in SLO violations. This is because the controller is unaware
of interference and randomly chose a VM to remove and it so happened to
be a VM with high capacity (least interfered). The excess workload from
removing this VM overwhelms V M., and exceeds the capacity V M;pter can
handle. With augmentation, we make informed decisions on choosing which
VM to remove.

6.3 Experimental Analysis

We perform experiments for studying the impact of interference on load and
VM capacity on a private cloud testbed. It comprises of Intel Xeon X5660
nodes, each with 6 physical cores operating at 2.8GhZ and 12MB of L3 cache.
Note that the hardware specification of the physical machine is different from
the ones used in the previous chapter. We focus primarily on the performance
of in-memory storage systems and run experiments using Memcached to
study the impact of interference. Interference is generated using a slew of
realistic applications from SPEC CPU benchmark [68] and benchmarks such
as mbw [92] and Stream [93]. The experiment to study the time taken to
prepare a VM is carried out on AWS, using 2 large instances. We chose to do
the experiments of interference on our private testbed because of the difficulty
in co-locating VM instances on the same host in AWS.

6.3.1 Interference reduces VM Capacity

In this experiment, we generate different amounts of interference on the
memory subsystem when Memcached is serving workload. We set our SLO at
1.8ms and workout the maximum workload that can be handled just within
this SLO, for different amounts of interference. The capacity of a VM, i.e.,
the maximum amount of workload it can handle without violating the SLO
is inversely proportional to the amount of performance interference in the
host. Figure 6.2 shows this behaviour. The VM has the highest capacity when

91

running in isolation. As the amount of interference in the host increases, the
capacity diminishes. This means that an elasticity controller that is unaware
of performance interference will always spawn VMs assuming a much higher
capacity than achievable (in the presence of interference) leading to longer
periods of SLO violations. With 5x interference the capacity diminishes by
upto 35%. This means that, even if an elasticity controller over provisions
every VM assuming the capacity at 5x interference, we end up effectively
paying an unnecessary cost of 1 VM for every 3 VMs spawned (33% higher
cost). We therefore need to augment the elasticity controller with knowledge
of interference to minimize provisioning cost and SLO violations.

100000

|| sx —— 4x —¥— 3x —+— 2x Isolated

VM Capacity(RPS)
80000
3

60000

0 50 100 150

Time (Secs)

Figure 6.2: VM capacity reduces with increasing performance interference. In
this example the SLO is set to 1.8 ms.

6.3.2 Interference vs. Load

In this experiment, we run a standalone instance of Memcached at different
loads for a fixed amount of interference. Interference has a significant impact
only at high loads. Figure6.3a shows the results from the experiment. Each
data point in the figure is an average of a 10 minute run. The impact of
interference is negligible until 55000 requests per second and they overlap
with each other but as the load increases (> 55000) latency begins to rise
sharply in the presence of interference. This observation implies that the
impact of interference can be mitigated to a large extent by reducing the
workload served on impacted VMs. For example, the load balancer can be
configured with weights corresponding to the interference to minimize the
impact of interference.

92

L B — | &]
—6— [solated | o | |~ 320Mbps |
2 ~ 1|~ Interference o & N7 |—— 128Mbps 3
£ /| £ w0 T |
g " /] $ 7 |
5 o | g2 / |
2 £

4 - i o5 i
| |
< T T T ; e T T T T T }

20000 40000 60000 80000 5 10 15 20 25

Workload (RPS) Size (GB)
(a) (b)

Figure 6.3: (a) Impact of interference for different load on Memcached. In-
terference impacts performance only at higher loads. (b) Time taken to load
Memcached data on a AWS large instance for different data sizes.

6.3.3 Preparation Time

Recall from the previous section that the period of unmet capacity directly
depends on the time taken to spawn and prepare a VM instance. We found
that the time taken to spawn a VM on AWS takes between 1 to 2 minutes. In
this experiment, we evaluate if the time taken to prepare the instance with
necessary data is long enough to be a significant problem. Our results from
AWS are shown in figure 6.3b. For a caching layer, data loading is done either
by the backend server or by any of the other caching instance. This process
of data migration by itself affects the performance of the cluster. We loaded
data at 2 different data rates, one at full capacity of the data generator and
another at a throttled rate. We find that the time taken to load is significant
enough and is in the order of minutes. It takes anywhere between 2 to 28
minutes which is significant enough to be considered a problem when met with
SLO violations for that period. In the next section we present the design and
implementation of the approach to augment elasticity controllers for improved
accuracy.

6.4 Solution Overview

Our solution primarily consists of 2 components: i) An Augmentation Engine
(AE) and ii) a Middleware Interface to quantify capacity (MI). MI resides on

93

all the hosts in the cluster and exposes an API that can quantify the maximum
amount of workload a VM on the host can handle without violating the SLO.
MI computes this based on the amount of contention in the shared resources of
the host. The Augmentation Engine orchestrates with the MI to make scaling
decisions. The architecture of the system components are shown in figure6.4

e Controller N

Ii’ Decision-Making ,}:I
\ | Sensor ‘ ‘ Actuator (TTmmmmmmmme N
~ = - Augmentation

Gather '
peformance N @200 0 @ @INm===o======-
metrics /
_ [Host Host \
\ / : Mol Cod \ «/ 7 Ve Co-located
Gl | (L b BR[| SES
N =~ ~ S A
S (=) (=)
----- '\ I Middleware) 1 Middleware 1
- [) N e e mmmmme—-)
- e e
] | | 1
\ Memory / o Memory 4

Figure 6.4: Architecture of the system components

First the AE receives the decision from the elasticity controller (EC) to scale
out/scale down. It also receives the number of instances to add/remove
respectively. In essence, the AE acts as a delegator to act on the decisions of
the EC. Before acting on the input, the AE consults the MI on all hosts to
quantify the capacity of each host. AE takes a decision by itself only when
it has enough historical evidence to believe that the interference is sustained.
Based on this knowledge of host capacity, along with the current workload, AE
first tries to generate a plan to balance the load among hosts without adding
new VM instances. The plan aims to reduce the load on highly interfered VMs
by diverting the workload to VMs that are less interfered. If such a plan is
feasible, then the decision from the EC is overruled and the AE reconfigures the
load balancer. This is the first level of reconfiguration. However, such a plan
may not always be possible. If the AE learns that a rebalancing solution alone
cannot maintain the SLO, it then directly acts on the decision of the EC. If the

94

decision of the EC is to remove instances, it consults the MI, recomputes the
overall capacity needed to serve the workload and removes the right number
of highly interfered instances. If the decision is to add new instances, the
AE adds only so many instances as directed by the EC. It then waits for the
new VMs to spawn. As soon as they are spawned, the MI on the hosts of the
newly spawned VMs are consulted to learn the capacity of these VMs. Note
that the MI need not wait for the VMs to finish preparing the instance to
know the capacity. This is because the only hardware performance counter
of Memcached that the MI relies on, to quantify interference, is the cache-
reference rate (for other counters used from co-running VMs, see section 6.5 for
more details) and this is unaffected by the hit rate of requests on Memcached.
This counter only captures the effective rate at which the cache is accessed,
which is only dependent on the rate at which the instance receives the requests.
The preparation phase is briefly paused for a few seconds to determine the
capacity based on the current level of interference. It is precisely because of
this capability that the AE can determine if the newly spawned instances are
enough to handle the increased workload even before the preparation phase is
fully complete. If the newly added instances are incapable of maintaining the
SLO, the AE spawns additional instances in parallel with the prepare phase
of the previous instantiation. This process of parallel instantiation along side
the prepare phase significantly reduces the duration of SLO violations.

The results from augmenting the elasticity controller in figure 6.1 is shown in
figure 6.5. Note how the periods of unmet capacity are significantly reduced.
Spawning and preparing VMs in parallel with the preparation of the VMs in
the first phase of scaling minimises SLO violations. Similarly, when scaling
down, there are no SLO violations since the augmented approach is aware of
interference and removes the VM that is highly interfered (V M;per).

6.5 Middleware Interface to Quantify Capacity (MI)

The middleware interface (MI) exposes an API that is responsible for quan-
tifying the capacity of the VM in terms of the maximum workload it can
handle for a given SLO. In order to quantify the capacity, MI first needs to
quantify the amount of interference in the host. The primary role of MI is to
quantify the drop in the performance of target application from interference

95

‘ —— Latency —— Workload--- SLO | 8

L ©
o | S
-~ © Unmet Capacity ; 7("8 [70]
%) - F———- o
§, o | Spawn Prepare | ! | E
5 ¥ e S 3

1 MM WA

g o e -8 L
'.(G AN | M T T 7 L o =
3 Detect | 1 L~ O
= S n | ;

o - e Detect+Remove | o

T

T T T T
0 50 100 150 200 250 300 350
Time (Secs)

Figure 6.5: Unmet capacity from figure 6.1 pruned by augmenting the elasticity
controller to detect and quantify interference.

and to translate this performance degradation to capacity. We use the same
middleware designed and explained in chapter 5.

6.5.1 Characterising Contention:

In order to characterise contention, we choose in-memory storage system
Memcached as a demonstrative target system to show the scaling of services
under performance interference.

We say that the storage system co-runs with other applications when they
all run on different cores of the same physical host; we refer to all these
applications as co-runners. In our experiments, we compute the performance
drop as follows: First, we measure the average latency L; of the storage
system when running in isolation. Then we measure the average latency L. of
the storage system when it co-runs with other processes. Performance drop
suffered is LCL;ZI”

Sources of degradation: There are 2 main subsystems responsible for
contention: the cache and the memory bandwidth. In order to assess the impact
of contention on these subsystems, we use different system configurations
that are designed to generate contention at different resources: the first
configuration generates contention only on the cache, the second only on the
memory bandwidth and the third one on both. Figure 6.6 show the drop

96

in performance experienced by Memcached for all the three configurations.
It is clear that cache is the dominant source of performance degradation,
contributing upto 15X drop in performance and bandwidth contributing less
than 1X. The results show that Memcached benefits more from it’s reliance
on the cache than from memory bandwidth. What is also interesting to note
is that the drop in latency increases linearly for the same co-runner. We only
plot the characterisation of Memcached 60000 RPS and up, since, Memcached
remains unaffected by interference below that workload (see figure 6.3a).

—%— stream

I

—e— Ibm

5 10 15 20 25
tt
z
58
5

\

5 10 15 20 25

L

\f

Performance Drop (X)
Performance Drop (X)

0.0 02 04 06 08 1.0
Performance Drop (X)

S T T S T T S T T
60000 62000 64000 66000 68000 60000 62000 64000 66000 68000 60000 62000 64000 66000 68000
Workload(RPS) Workload(RPS) Workload(RPS)

0

o

(a) Contention for L3 cache (b) Contention for memory(c) Contention for both re-
bandwidth sources

Figure 6.6: The drop in performance of Memcached for contention at different
levels of memory subsystem. Memcached is run alongside multiple instances
of different co-runners.

Properties that determine degradation: We investigate properties of
the co-running application that cause performance degradation. In figure
6.6, all the different co-runners cause degradation in the same order; ie. 1bm
consistently causes the highest amount of performance degradation, followed by
mbw, stream, and povray. Note that this is different from the order observed
in the previous chapter. This difference arises from the heterogeneity in the
hardware used for the experiments. In order to understand the properties
that define the aggressiveness of the co-runners, we rely on PMUs. Since
cache is the dominant source of degradation, cache references and cache
misses of the co-runner is a good indicator of cache contention. Intutively,
higher cache references from the co-runners effectively reduces the cache
space of Memcached, resulting in a drop in performance. However, this
alone is insufficient to model the sensitivity of Memcached. Upon deeper
analysis, we find that the order of co-runners that cause performance drop

97

(Ibm>mbw=stream>libquantum>povray) does not correspond with their
cache access rate. This is because cache access rate alone does not take into
account the memory access patterns of the co-runners. LLC prefetches and
LLC prefetch misses of the co-running application gives an approximation of
the memory access patterns. Finally, the extent of degradation suffered by
cache access reduction is captured by cache-reference counter for Memcached.
The higher the degradation suffered, the lesser the cache-reference counter for
Memcached. From our experiments, we find that these counters provide a
good model to quantify sensitivity of Memcached. The final list of performance
counters chosen to quantify sensitivity are shown in table 6.1.

Interference-Index: The goal of characterising contention is to quantify
the properties of the co-runners that lead to performance degradation of the
storage system. We call this metric interference-index and it approximates
the performance degradation suffered by the storage system. In order to be
useful, the metric must correlate with the performance drop suffered by the
storage system.

Name Description Name Description
cpu-clk Reference cy- | inst- Instructions re-
cles retired tired
cache- References to | cache- L3 cache

ref L3 cache miss misses
llc- L3 prefetches llc- L3 prefetch
prefetch prefetch- misses

miss

Table 6.1: Performance counters included in characterising contention

We derive a set of N representative performance counters (shown in table
6.1) WS = mq,ma,...,my where m; represents the metric i. Using these
counters and a training data set of co-runners, our system then builds a model
that correlates co-runner properties with performance drop suffered by the
storage system. We then use linear regression on these counters to construct
the interference index. Figure 6.7 shows the interference-index constructed
for Memcached. Since the modeling is data-driven, the interference index
generated is application-dependent. We however do not view this as an
issue since modeling can be fully automated. From figure 6.7, we see that

98

interference-index correlates with performance drop suffered by Memcached.
Higher the interference-index, greater the performance drop suffered. In this
example, our training set consists of lbm,mbw,libquantum and povray. We
then fit stream, milc and omnetpp into the generated model. Stream causes
similar degradation as mbw and they both correspond to similar interference
indexes. milc causes a degradation that is greater than povray and omnetpp
but lesser than mbw and is also captured by the model as expected. The value
of interference index approximately corresponds to the drop in performance of
Memcached. Once interference-index is quantified, it is then used as a control
input to determine the capacity of the VM. Note that because of the linear
trend in performance drop above 60000 RPS (figure 6.6), knowing a workload
and interference index, it is possible to estimate the drop in latency for any
other workload.

20
|

0 5 10

0 5 10 15

Interference index

Drop in perfromance(X)

Figure 6.7: Interference-index quantifies the performance drop suffered by
Memcached based on the behaviour of the co-runner.

Capacity: We apply a binary classifier used in the state of the art ap-
proaches [50, 51] to approximate the capacity of a VM, which defines its ability
to handle workloads under the SLO. In state of the art approaches, models
are built by finding correlations between Monitored Parameters (MP), which
reflects the operating state of the system, and the Target Parameter (TP), in
which the SLO is defined. The MPs are chosen by analyzing whether they
have remarkable influences on the SLO. Previous works adopt CPU utilization,
workload intensity and workload composition, including read/write ratio, data
size as typical MPs. In addition, our model includes the interference index,
which, as shown in previous sections, significantly influences the SLO. With
sufficient training data, the classifier uses SVM (support vector machine) to

99

estimate a function, which outputs satisfying (true) or not satisfying (false)
the SLO by giving the MPs and the constraint of the TP. Then, we are able
to obtain the maximum supported workload intensity under the current MPs
while satisfying the SLO. The maximum supported workload intensity defines
the capacity of a VM.

The model used is trained offline using the training data collected when
running Memcached under different intensities of the interference and workload.
Various kinds of workload, including varying compositions and RPS, are
generated for Memcached. Multiple intensities of interference and workload
provide sufficient variance in the interference index, which covers most of the
operating space of the model. With little modifications, the model can also be
adapted and automated to get trained online.

Overhead: Our middleware has a very minimal overhead since it only
samples the counters every few seconds. It has a negligible CPU consumption
of less than 3% and does not perform any instrumentation to the application
that result in performance loss. Augmentation incurs very negligible overhead
since the only additional step involved is the construction of interference index,
which in itself relies on non-intrusive monitoring.

6.6 Augmentation Engine

The AE operates with the estimation of the capacities of VMs using an
empirical model explained in Section 6.5. The capacity of a VM defines the
ability of the VM to serve workload, in terms of requests per second, under
the current workload composition. Without knowing the interference index
of a VM, the capacity estimation is the most optimistic and is denoted by C,
which is a function of the current workload composition and the VM flavor
(C = f(W, F)). Taking into account of the interference index, the capacity
of a VM is represented by C, which is a function of the current workload
composition, the VM flavor and the interference index (C' = g(Wy, F, I))). Let
L; denotes the total amount of workload received by the system at time ¢ and
each procedure starts with n VMs in the cluster providing)" ; C; capacity.
The procedures during load balancer reconfiguration, scaling out and scaling
down are described in Algorithm 1

100

Load Balancer Reconfiguration: The load balancer reconfiguration
procedure is triggered when the AE receives a scaling out decision from the EC
or after scaling out/down. Assuming the capacities of each VM in the current
cluster setup are Cq,Cs...C), and the total capacity provided is 2?21 ;.
When ", C; = Ly, the cluster is able to operate under the SLO using
load balancer reconfiguration. Then, the AE reset weights (W1, W ... W,,),
that are proportional to the capacity of each VM (Cy,Cs...C,,), in the load
balancer. Otherwise, the AE continues with the scaling out approach.

Scaling out: During scaling out procedure, the AE spawns the number
of VMs indicated by the EC. After the VMs are spawned, their interference
index are assessed and their capacities ACt, ACs ... AC,, under the current
workload are estimated. In the meantime, these VMs start to prepare. Whether
the current setup with proper load balancing is able to satisfy the current
workload L; under the SLO is evaluated by > """, C; + Z;n:1 ACj = Ly. If the
above inequality holds, proper weights of both existing and additional VMs are
reset in the load balancer and the scaling out procedure exits. Otherwise, the
unmet capacity Cunmet = Lt — (31, Ci + E;n:l AC}) needs to be handled by
spawning another batch of VMs, whose capacities are optimistically estimated
(C1,Cy ... Ck), where Y571 Oy < Cunmer < S2F_| €. Then, the AE spawns
the corresponding k VMs like executing scaling out commands from the EC.
This procedure iterates until Cypnmer =< 0.

Scaling down: When the EC issues a scaling down decision, the AE
overrules the amount of VMs to be removed issued by the EC and judiciously
removes the most interfered VMs. This is because the most interfered VM
serves the least amount of workload within the SLO for the same price as a
non-interfered VM. The number of VMs to be removed by the AE satisfies
Yot AC; X Cegtra = Z:’:{l AC;, where Cegirq = y 1y Ci — Ly. By selecting
and removing the highly interfered VMs, the AE usually removes more VMs
than the amount issued by the EC, which saves the provisioning cost.

101

Algorithm 1 Augmentation Engine

1. procedure LOADBALANCERRECONFIGURATION()
2 if >, C; = L; then
3: > Calculate capacity of VMs C1,Cs...Cp
4: with C; = g(Wt, F, It)
5: . > Reset weights Wy, Wo ... W),
. t
o % O
6 with W; Z?:l G, C;
7 else
8: ScalingOut()

9: procedure SCALINGOUT(M)
10: Spawn m VMs as indicated by the EC

11: Prepare these m VMs immediately and concurrently

12: > Calculate extra capacity Z;"Zl AC;
13: with CZ = g(Wt, F, It)

14: > Calculate unmet capacity

15: with Cynmet = Lt — (Z?:l C; + Z;nzl AC])
16: while C\pmer = 0 do

17: Spawn extra kK VMs

18 with Y2721 Ci X Cunmer < 3521 Cs

19: Prepare these k£ VMs immediately and concurrently

20: > Update unmet capacity
21: with Cunmet = Cunmet — Y n_y AC)

22: LoadBalancerReconfiguration()

23: procedure SCALINGDOWN(M)

24: > Calculate extra capacity
25: with Ceptrq = Z?:l C; — Ly

26: > identify VMs to remove

o7: with 37 AC; < Cegira < St AC;
28: where these m VMs are highly interfered
29: Remove VMs

30: LoadBalancerReconfiguration()

102

6.7 Experimental Evaluation

6.7.1 Assumptions

In this work we focus on Memcached for elastic scaling. In [94], Nishtala et.al
show how they scale Memcached at Facebook and maintain consistency across
regions. Our approach is complementary to this work and enables elastic scaling
under SLO constraints in a multi-tenant environment. Cache invalidation
and consistency is orthogonal to this work and the storage infrastructure is
expected to manage the same. We particularly focus on replication and the
backend server is responsible for populating and preparing the VMs. As a
result the Memcached instances already present in the cluster don’t incur any
additional overhead of migrating data.

6.7.2 Experiment Setup

Our experiment setup is the same as in section 6.3. We co-locate memory
intensive VMs with the storage system on the same socket for varying degrees
of interference by adding and removing the number of instances. MBW,
Stream and SPEC CPU benchmarks are run in different combinations to
generate interference. We use HAproxy for load balancing the request. In all
our experiments we disable DVF'S from the host OS using the Linux CPU-freq
subsystem. Our middleware performs fine-grained monitoring by frequently
sampling the CPU utilization and the different performance counters for all
the VMs on the host and repeatedly updates the interference index every 10
secs.

Since the design of elasticity controller is not the focus of this work, we build
a simplified version of an elasticity controller similar to [45]. The elasticity
controller relies on sampled request latency instead of CPU utilization on each
VM. Given our evaluation scenarios, we ensure that the elasticity controller is
able to make ideal scaling decisions when interference is not present.

6.7.3 Results

We design our experiments to highlight the inefficiencies in elastic scaling
when performance interference is not taken into account and answer the

103

following questions: i) How much reduction in SLO violations is achieved with
augmentation as compared to standard approach without any augmentation?
ii) Can augmentation save cost of the hosting services? Specifically, we
demonstrate the benefits of load-balancer reconfiguration, and the role of
augmentation in minimising SLO violations and saving provisioning costs in a
multi-tenant environment.

Server Timeline: FEach experiment has a server timeline that is depicted to
explain the following status of the servers (i) Whether a Memcached instance
is running on the server. White indicates that there is no instance on the
server. (ii) Blue indicates that the instance on the server is preparing the data
and (iii) Gradient of red indicates the amount of interference on the server.
Dark red indicates high interference. The gradient of interference intensity
is plotted according to the interference index computed on each server. S1,
S2 and S3 indicate the different servers used in the experiment. The server
timeline graph is presented for both approaches; scaling with augmentation
and without augmentation, which we call the standard/baseline approach.
The server timeline essentially aids in understanding and reasoning about the
choices made from augmentation and helps compare the cost involved.

6.7.3.1 Load Balancer Reconfiguration

Our first experiment is focused at showing the advantages of load-balancer
reconfiguration when compared to a statically configured cluster (i.e. all the
nodes in the cluster receive equal number of requests). In this experiment,
the cluster receives a constant workload and interference is introduced around
120 secs in one of the servers. The results of the experiment is shown in
Figure 6.8. Latency vs. time shows the comparison of latency when the
cluster is augmented to reconfigure the load balancer against the standard
approach (baseline) with no reconfiguration. The standard approach without
augmentation experiences long periods of SLO violation. The same figure also
depicts a server timeline of all the servers (shown as S1,S2 and S3) to visualise
the server status.

Looking at the standard server timeline, we see that Memcached instances are
running only on S1 and S2 initially and they are able to serve the workload
without violating the SLO until 120 seconds. The latency remains far below the
SLO before 120 seconds. We note that the servers are not over provisioned. The

104

[
. i —e— Augmented
o 2 —— Standard
= ~ - Laon ar
- _ Interference
o
e T T o oot S . P O STt s e oo o e o T PR e et o
m® v BB _CReRL D8 Rrlen o 0o Dol Rr BP0 ccon Qeaora.
- |
o
Py \ : : e s nssis s " |
0 100 200 300 400 500
Time (Seconds)
s1| Standard Server Timeline |

0 100 200 300 400 500
Augmented Server Timeline
S1| J
S2 [TN e e T o T Y TS T T e
S3 | |
0 100 200 300 400 500

Figure 6.8: Results demonstrating load balancer reconfiguration by AE. Server
timeline shows the status of the server over time. White indicates that there
is no instance on the server. Blue indicates that the instance on the server is
preparing the data. Gradient of red indicates the amount of interference on
the server. Dark red indicates high interference

latency stays far below the SLO because of the granularity of VM specification.
The workload generated at these 2 machines cannot be served within the SLO
by one server alone and having a additional server drops the latency far below
the SLO. At 120 seconds, S2 experiences a high amount of interference that
causes a spike in latency resulting in SLO violations. As soon as sustained
SLO violations are detected, the standard approach spawns a new instance
on S3 (not shown in the server timeline, as nothing resides on S3 to show
spawning) and just after 200 seconds begins to prepare the instance on S3.
This instance cannot serve any workload during the preparation phase and
the SLO continues to remain violated. The preparation phase finishes around
350 secs and the Memcached instance on S3 is up and running and begins to
serve the workload thereby maintaining the SLO.

105

The augmented approach behaves differently when compared to the standard
approach. After around 120 seconds, when the augmentation engine (AE)
detects sustained SLO violations, it first tries to generate a plan for load
balancer reconfiguration. AE learns that there is excess capacity on S1 and
reroutes the traffic to reduce the load on S2 which is highly interfered. We
found that AE routed 60% of the workload to S2 and 40% to S1. This
reconfiguration was enough to maintain the SLO. From the augmented server
timeline in figure 6.8, we see that no Memcached instance was instantiated
on S3. With augmentation, the AE was able to avoid instantiating a new
instance, while minimising SLO violations without any additional cost.

6.7.3.2 Convergence when scaling out

Next, we highlight the problem of unmet capacity as a result of delayed
convergence. Our experiment shows how augmentation converges quicker in
the presence of performance interference while scaling out. In this experiment
the total workload served to the cluster is increased so that it has to scale
out to maintain the SLO. Figure 6.9 shows the results from the experiment.
The workload increases at around 100 seconds and the SLO is violated. The
elasticity controller decides to spawn a new VM to handle the increased
workload. The standard server timeline in the same figure shows the status of
the server. Only S1 was serving the requests initially, but when the workload
increases, a new instance is spawned and prepared on S2. S2 is very highly
interfered and although the latency dropped, it is still unable to meet the
workload demands within the SLO. The elasticity controller learns this only
after the instance is prepared and begins to serve the requests. Another
instance is then spawned and prepared on S3 and the SLO is maintained.

Augmented approach functions similar to the standard approach up until the
point of spawning S2. This can be seen from the augmented server timeline
in figure 6.9. But as soon as S2 is spawned, AE learns that S2 is very highly
interfered and does not have enough capacity to serve the workload within
the SLO. In this particular scenario, even a load balancer reconfiguration does
not help. So the AE immediately spawns and prepares another instance on S3
in parallel with the preparation phase on S2. By preparing the new instance
in parallel, we minimise SLO violations proportional to the preparation time.
In this experiment, the preparation time was a little over 3 minutes and SLO
violations are significantly reduced.

106

© 4 memieGacemeEaas . v
. |- Augmented
0 X 1|~ Standard
) ' == SLO
E < - : :
g ' '
% ™ - Workload |Increases :
LT ORI i S SOtttk Yoo L O
]
I I !
0 200 400 600 800 1000
Time (Seconds)
s1| Standard Server Timeline |

0 100 200 300 400 500 600 700 800
Augmented Server Timeline
S1] |
S2[' 1 T T e AT T T AR
S3 | | |
0 100 200 300 400 500 600 700 800

Figure 6.9: Results demonstrating convergence time with AE and without
AE. Server timeline shows the status of the server over time. White indicates
that there is no instance on the server. Blue indicates that the instance on
the server is preparing the data. Gradient of red indicates the amount of
interference on the server. Dark red indicates high interference

6.7.3.3 Scaling Down

In this experiment, we highlight how informed decision when scaling down can
lower cost and also reduce SLO violations. Initially the cluster has 3 servers
running Memcached instances, all of them serving the workload. Around 100
secs later, the workload drops so much that a VM can be removed. In the
standard approach without augmentation, the elasticity controller precisely
does that when it sees sustained drop in latency and removes a VM. The results
are shown in figure 6.10. From the standard server timeline in the same figure
we see that the VM on S3 was removed. Since the elasticity controller has no
information about the interference on different servers, it randomly chose a
server to remove the VM. However, this decision ends up costing more in terms
of SLO violations. This is because, the VM on S3 had a high capacity and also

107

a lot of spare capacity. By removing the VM instance on S3, S2 and S1 have
to serve a higher number of requests. Ideally, this should not have caused any
SLO violations if all the VMs had the same capacity. But since S2 is highly
interfered, it was already serving out on its max capacity and by removing
S3, S2 didn’t have enough spare capacity to serve the additional workload,
resulting in SLO violations. Note that, in the standard approach the cluster
is statically configured and all the servers receive equal number of requests.
When the controller notices sustained SLO violations, it reinstantiates S3 and
the SLO conditions are met.

| » —6— Augmented
. . —— Standard
m - — SLO
S
E = 4
3 Workload Drops
& N ’
T T < et et s St Sttt s Bt Sttt st St et ot
=
o .
I I I I | I
0 100 200 300 400 500
Time (Seconds)
s1| Standard Server Timeline |

Figure 6.10: Results demonstrating informed scaling down with AE. Server
timeline shows the status of the server over time. White indicates that there
is no instance on the server. Blue indicates that the instance on the server is
preparing the data. Gradient of red indicates the amount of interference on
the server. Dark red indicates high interference

By augmenting the elasticity controller, the AE knows the capacity of each VM
and upon receiving a decision from the controller to remove a VM, it removes
the VM with the least capacity, VM on S2 in this example. Since S2 was
not contributing enough to serving the workload, removing S2 doesn’t impact

108

the cluster load significantly and the SLO is maintained. This can be seen in
the augmented server timeline in figure 6.10. This experiment demonstrates
that augmentation can help make informed decisions when scaling down and
remove VM instances with smaller capacity, thereby reducing the cost.

6.7.4 Quantifying gains

An efficient elasticity controller must be able to achieve high resource utilization
and at the same time guarantee SLO commitments. Figure 6.11a shows the
gains in performance and figure 6.11b shows the corresponding VM time
spent. Augmenting an interference oblivious controller not only reduces SLO
violations but also saves provisioning cost.

@ Standard Scaling @ Standard Scaling

W Augmented Scaling W Augmented Scaling ['

Load-Balance Scale-Out Scale-Down Load-Balance Scale-Out Scale-Down

SLO Violations (%)

0 20 40 60 80
VM Time (%)

0 20 40 60 80

(a) SLO violations suffered for different (b) VM time spent for different scenarios
scenarios

Figure 6.11

6.8 Summary

In this chapter, we show that an elasticity controller cannot make accurate
scaling decisions under the interference imposed by co-running applications
sharing the infrastructure. It becomes imperative to be aware of interference
to facilitate accurate scaling decisions. We design and implement a middleware
that augments the decisions made by elasticity controllers. Evaluations have
shown that, with our middleware, an elasticity controller is able to experience
significantly less SLO violations and provisioning cost under the presence of
interference.

CHAPTER

Conclusions

We have investigated the role of performance interference and how it can be
mitigated to not only provide performance guarantees but also alleviate the
need for undue over-provisioning.

The methods proposed were designed with a specific scenario in mind. The first
challenge was to improve the system utilisation in a single host environment
where we assume that the workload for the performance sensitive application
does not overload the host. We proposed co-locating such performance sensi-
tive applications with best effort batch application to improve utilisation. The
batch applications are only executed during periods of low utilisation by the
performance sensitive applications. We designed and proposed a methodology
to seamlessly and progressively learn the collective behaviour of all the appli-
cations in the host to predictively avoid performance interference without the
need for any additional instrumentation.

Our next challenge was to address the role of performance interference in a
distributed context, where the workload of a performance sensitive application
can overload a single host and requires elastic scaling to handle the increased
workload. We identified that the typical system metrics used for deciding
when to scale become unreliable in a multi-tenant environment and can result
in highly inefficient scaling. We proposed a middleware that relies on low level
hardware performance counters to quantify the impact of interference and
demonstrated that accounting for its role makes the system metrics reliable
for elastic scaling decisions.

109

110

The last challenge we addressed in this thesis was to reduce the overall
provisioning cost and at the same time improve performance during elastic
scaling. We identified three major consequences of performance interference
that when unaccounted for severely degrades performance and increases cost.
We proposed a solution consisting of performance interference aware load-
balancing, scaling out, and scaling down that when considered in unison
reduces provisioning costs and significantly boosts performance.

We believe that our contribution in whole is a step towards efficient resource
management in consolidated environments. The solutions proposed require
the service provider to incorporate and expose mechanisms for the users to
handle performance interference. Moving complex decisions away from the
service provider and towards users allows important management actions —be
it managing resource requirements, scheduling tasks— to reside on the users-end
who are better aware of the application, while the service provider facilitates
this by providing the users with a rich set of information to aid management
actions.

Although this thesis is geared towards improving performance in consolidated
environments, it does not consider end-to-end performance. End-to-end per-
formance guarantees in a distributed system is not the same as guaranteeing
performance for a single component of a system. Depending on the type of
application, a component may or may not be in the critical path of the applica-
tion work flow. The presence of interference further exacerbates the challenges,
as it introduces the need for additional knowledge on how the distribution of
interference between the different components of the system affect the overall
end-to-end performance. To this end, we did some preliminary experiments
with Apache spark and our results indicate that different classes of application
experience different amounts of degradation depending on the intensity of
interference and the distribution of interference. In particular, distributed
triangle counting was extremely sensitive to performance interference. Even
the presence of interference on a single host, resulted in severe performance
degradation overall. On the other hand, application like k-means was more
robust and experienced degradation only in the presence of high interference
on majority of the physical hosts comprising the application. This knowledge
of interference distribution is critical in addressing end-to-end performance
guarantees for distributed systems. With the plethora of real time streaming
analytics, the need for end-to-end guarantees are becoming increasingly im-

111

portant and, as we pointed out, addressing this in an efficient manner involves
numerous challenges and is part of our future work.

Bibliography

1]

Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry Peterson,
Mike Wawrzoniak, and Mic Bowman. Planetlab: an overlay testbed for
broad-coverage services. ACM SIGCOMM Computer Communication
Review, 33(3):3-12, 2003.

1

Bart Braem, Chris Blondia, Christoph Barz, Henning Rogge, Felix Freitag,
Leandro Navarro, Joseph Bonicioli, Stavros Papathanasiou, Pau Escrich,
Roger Baig Vinas, et al. A case for research with and on community

networks. ACM SIGCOMM Computer Communication Review, 43(3):68-
73, 2013.

1, 39

Luiz André Barroso and Urs Holzle. The case for energy-proportional
computing. IEEE computer, 40(12):33-37, 2007.

3,15

Linux Nice Utility. https://en.wikipedia.org/wiki/Nice_(Unix).

5

Intel CAT Technology. http://www.
intel.com/content/www/us/en/communications/

cache-monitoring-cache-allocation-technologies.html. accessed:

July 2016.
7

Nedeljko Vasi¢, Dejan Novakovié, Svetozar Miuc¢in, Dejan Kosti¢, and
Ricardo Bianchini. Dejavu: accelerating resource allocation in virtualized

113

https://en.wikipedia.org/wiki/Nice_(Unix)
http://www.intel.com/content/www/us/en/communications/cache-monitoring-cache-allocation-technologies.html
http://www.intel.com/content/www/us/en/communications/cache-monitoring-cache-allocation-technologies.html
http://www.intel.com/content/www/us/en/communications/cache-monitoring-cache-allocation-technologies.html

114

[11]

[12]

environments. ACM SIGARCH Computer Architecture News, 40(1):423—
436, 2012.

7

Dejan Novakovic, Nedeljko Vasic, Stanko Novakovic, Dejan Kostic, and
Ricardo Bianchini. Deepdive: Transparently identifying and managing
performance interference in virtualized environments. Technical report,
2013.

7, 86

Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah. Q-clouds: manag-
ing performance interference effects for qos-aware clouds. In Proceedings

of the 5th European conference on Computer systems, pages 237-250.
ACM, 2010.

7

Lingjia Tang, Jason Mars, and Mary Lou Soffa. Compiling for niceness:
Mitigating contention for qos in warehouse scale computers. In Pro-
ceedings of the Tenth International Symposium on Code Generation and
Optimization, pages 1-12. ACM, 2012.

8

David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan,
and Christos Kozyrakis. Heracles: improving resource efficiency at scale.
In ACM SIGARCH Computer Architecture News, volume 43, pages 450—
462. ACM, 2015.

8
Fei Xu, Fangming Liu, Linghui Liu, Hai Jin, Bo Li, and Baochun Li.

iaware: Making live migration of virtual machines interference-aware in
the cloud. IEEE Transactions on Computers, 63(12):3012-3025, 2014.

8
Amiya K Maji, Subrata Mitra, Bowen Zhou, Saurabh Bagchi, and Akshat
Verma. Mitigating interference in cloud services by middleware reconfigu-

ration. In Proceedings of the 15th International Middleware Conference,
pages 277-288. ACM, 2014.

8, 12, 86

[13]

[14]

[17]

[19]

115

Fei Guo, Yan Solihin, Li Zhao, and Ravishankar Iyer. A framework for
providing quality of service in chip multi-processors. In Proceedings of the
40th Annual IEEE/ACM International Symposium on Microarchitecture,
pages 343-355. IEEE Computer Society, 2007.

9, 86

Miquel Moreto, Francisco J Cazorla, Alex Ramirez, Rizos Sakellariou,
and Mateo Valero. Flexdcp: a qos framework for cmp architectures. ACM
SIGOPS Operating Systems Review, 43(2):86-96, 2009.

9, 86

Ravi Iyer, Li Zhao, Fei Guo, Ramesh Illikkal, Srihari Makineni, Don
Newell, Yan Solihin, Lisa Hsu, and Steve Reinhardt. Qos policies and
architecture for cache/memory in cmp platforms. In ACM SIGMETRICS
Performance Evaluation Review, volume 35, pages 25-36. ACM, 2007.

9, 86

Harshad Kasture and Daniel Sanchez. Ubik: efficient cache sharing with
strict qos for latency-critical workloads. In ACM SIGPLAN Notices,
volume 49, pages 729-742. ACM, 2014.

9

Mihai Dobrescu, Katerina Argyraki, and Sylvia Ratnasamy. Toward
predictable performance in software packet-processing platforms. In
Proceedings of the 9th USENIX conference on Networked Systems Design
and Implementation, pages 11-11. USENIX Association, 2012.

9, 67

Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fedorova. Address-
ing shared resource contention in multicore processors via scheduling. In
ACM SIGARCH Computer Architecture News, volume 38, pages 129-142.
ACM, 2010.

9

Jacob Machina and Angela Sodan. Predicting cache needs and cache
sensitivity for applications in cloud computing on cmp servers with con-
figurable caches. In Parallel & Distributed Processing, 2009. IPDPS 2009.
IEEE International Symposium on, pages 1-8. IEEE, 2009.

116

[20]

[21]

[23]

[24]

[25]

9

Younggyun Koh, Rob C Knauerhase, Paul Brett, Mic Bowman, Zhihua
Wen, and Calton Pu. An analysis of performance interference effects in
virtual environments. In ISPASS, pages 200-209, 2007.

9

Andreas Sandberg, Andreas Sembrant, Erik Hagersten, and David Black-
Schaffer. Modeling performance variation due to cache sharing. In
High Performance Computer Architecture (HPCA2013), 2018 IEEE 19th
International Symposium on, pages 155-166. IEEE, 2013.

9

Chi Xu, Xi Chen, Robert P Dick, and Zhuoqging Morley Mao. Cache
contention and application performance prediction for multi-core systems.
In Performance Analysis of Systems € Software (ISPASS), 2010 IEEE
International Symposium on, pages 76-86. IEEE, 2010.

10

Xi Chen, Chi Xu, Robert P Dick, and Zhuoqing Morley Mao. Performance
and power modeling in a multi-programmed multi-core environment. In

Proceedings of the 47th Design Automation Conference, pages 813—-818.
ACM, 2010.

10

David Eklov, Nikos Nikoleris, David Black-Schaffer, and Erik Hager-
sten. Cache pirating: Measuring the curse of the shared cache. In 2011
International Conference on Parallel Processing, pages 165-175. IEEE,
2011.

10
Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N Patt. Fairness
via source throttling: a configurable and high-performance fairness sub-

strate for multi-core memory systems. In ACM Sigplan Notices, volume 45,
pages 335-346. ACM, 2010.

10

[26]

[29]

[31]

32]

117

Stijn Eyerman and Lieven Eeckhout. Per-thread cycle accounting. IEEE
micro, 30(1):71-80, 2010.

10

Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan,
and Onur Mutlu. The application slowdown model: Quantifying and
controlling the impact of inter-application interference at shared caches
and main memory. In Proceedings of the 48th International Symposium
on Microarchitecture, pages 62—-75. ACM, 2015.

11

Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou
Soffa. Bubble-up: Increasing utilization in modern warehouse scale
computers via sensible co-locations. In Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 248—
259. ACM, 2011.

11, 15, 24, 87

Christina Delimitrou and Christos Kozyrakis. Paragon: Qos-aware
scheduling for heterogeneous datacenters. ACM SIGARCH Computer
Architecture News, 41(1):77-88, 2013.

11, 24, 87

Christina Delimitrou and Christos Kozyrakis. Quasar: resource-efficient
and qos-aware cluster management. In ACM SIGPLAN Notices, vol-
ume 49, pages 127-144. ACM, 2014.

11

Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang. Bubble-flux:
Precise online qos management for increased utilization in warehouse scale
computers. In Proceedings of the 40th Annual International Symposium
on Computer Architecture, ISCA ’13, pages 607-618, New York, NY, USA,
2013. ACM.

11, 27

Jaeung Han, Seungheun Jeon, Young-ri Choi, and Jaehyuk Huh. Inter-
ference management for distributed parallel applications in consolidated

118

[34]

[36]

clusters. In Proceedings of the Twenty-First International Conference on
Architectural Support for Programming Languages and Operating Systems,
pages 443-456. ACM, 2016.

12

Ron C Chiang and H Howie Huang. Tracon: interference-aware scheduling
for data-intensive applications in virtualized environments. In Proceed-
ings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, page 47. ACM, 2011.

12

Lingjia Tang, Jason Mars, and Mary Lou Soffa. Contentiousness vs.
sensitivity: improving contention aware runtime systems on multicore
architectures. In Proceedings of the 1st International Workshop on Adap-
tive Self-Tuning Computing Systems for the FExaflop Era, pages 12-21.
ACM, 2011.

12, 62, 67

Alexandra Fedorova, Sergey Blagodurov, and Sergey Zhuravlev. Managing
contention for shared resources on multicore processors. Communications
of the ACM, 53(2):49-57, 2010.

12, 63

Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale,
and John Wilkes. Cpi 2: Cpu performance isolation for shared com-
pute clusters. In Proceedings of the 8th ACM Furopean Conference on
Computer Systems, pages 379-391. ACM, 2013.

12, 86

Joydeep Mukherjee, Diwakar Krishnamurthy, and Jerry Rolia. Resource
contention detection in virtualized environments. IEEE Transactions on
Network and Service Management, 12(2):217-231, 2015.

12

Yasaman Amannejad, Diwakar Krishnamurthy, and Behrouz Far. De-
tecting performance interference in cloud-based web services. In 2015
IFIP/IEEFE International Symposium on Integrated Network Management
(IM), pages 423-431. IEEE, 2015.

[39]

[41]

[42]

[44]

119

13

Giuliano Casale, Carmelo Ragusa, and Panos Parpas. A feasibility study
of host-level contention detection by guest virtual machines. In Cloud
Computing Technology and Science (CloudCom), 2013 IEEE 5th Interna-
tional Conference on, volume 2, pages 152-157. IEEE, 2013.

13

Jian Zhang and Renato J Figueiredo. Application classification through
monitoring and learning of resource consumption patterns. In Parallel and
Distributed Processing Symposium, 2006. IPDPS 2006. 20th International,
pages 10-pp. IEEE, 2006.

15

Qun Huang and Patrick PC Lee. An experimental study of cascading per-
formance interference in a virtualized environment. ACM SIGMETRICS
Performance Evaluation Review, 40(4):43-52, 2013.

17

Wesam Dawoud, Ibrahim Takouna, and Christoph Meinel. Elastic vm for
cloud resources provisioning optimization. In Ajith Abraham, Jaime
Lloret Mauri, JohnF. Buford, Junichi Suzuki, and SabuM. Thampi,
editors, Advances in Computing and Communications, volume 190 of
Communications in Computer and Information Science, pages 431-445.
Springer Berlin Heidelberg, 2011.

18, 50, 53
Zhenhuan Gong, Xiaohui Gu, and J. Wilkes. Press: Predictive elastic

resource scaling for cloud systems. In Network and Service Management
(CNSM), 2010 International Conference on, pages 9-16, Oct 2010.

18, 50, 53, 82, 86
Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes.
Cloudscale: Elastic resource scaling for multi-tenant cloud systems. In

Proceedings of the 2Nd ACM Symposium on Cloud Computing, SOCC
11, pages 5:1-5:14, New York, NY, USA, 2011. ACM.

18, 50, 53, 82, 86

120

[45]

[46]

[49]

[51]

Harold C Lim, Shivnath Babu, and Jeffrey S Chase. Automated control
for elastic storage. In Proceedings of the 7th international conference on
Autonomic computing, pages 1-10. ACM, 2010.

18, 50, 53, 71, 73, 74, 82, 86, 88, 102

Hiep Nguyen, Zhiming Shen, Xiaohui Gu, Sethuraman Subbiah, and John
Wilkes. Agile: Elastic distributed resource scaling for infrastructure-as-a-
service. In Proceedings of the 10th International Conference on Autonomic
Computing (ICAC 13), pages 69-82, San Jose, CA, 2013. USENIX.

18, 50, 53

Scryer. http://techblog.netflix.com/2013/11/
scryer-netflixs-predictive-auto-scaling.html.

18, 50, 53

Ahmad Al-Shishtawy and Vladimir Vlassov. Elastman: autonomic elastic-
ity manager for cloud-based key-value stores. In Proceedings of the 22nd
international symposium on High-performance parallel and distributed
computing, pages 115-116. ACM, 2013.

18, 50, 53, 71, 72, 74, 82, 86, 88

N. Roy, A. Dubey, and A. Gokhale. Efficient autoscaling in the cloud
using predictive models for workload forecasting. In Cloud Computing
(CLOUD), 2011 IEEE International Conference on, pages 500-507, July
2011.

18, 50, 53

Beth Trushkowsky, Peter Bodik, Armando Fox, Michael J. Franklin,
Michael I. Jordan, and David A. Patterson. The scads director: Scaling
a distributed storage system under stringent performance requirements.
In Proceedings of the 9th USENIX Conference on File and Stroage Tech-
nologies, FAST 11, pages 12-12, Berkeley, CA, USA, 2011. USENIX
Association.

18, 50, 53, 71, 72, 73, 74, 88, 98

Ying Liu, N. Rameshan, E. Monte, V. Vlassov, and L. Navarro. Prorenata:
Proactive and reactive tuning to scale a distributed storage system. In

http://techblog.netflix.com/2013/11/scryer-netflixs-predictive-auto-scaling.html
http://techblog.netflix.com/2013/11/scryer-netflixs-predictive-auto-scaling.html

[53]

[54]

121

Cluster, Cloud and Grid Computing (CCGrid), 2015 15th IEEE/ACM
International Symposium on, pages 453464, May 2015.

18, 50, 53, 71, 72, 74, 88, 98

Wikipedia Trace Data. https://aws.amazon.com/datasets/
6025882142118545. 2012.

22

Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion Stoica. Choosy: max-

min fair sharing for datacenter jobs with constraints. In Proceedings of
the 8th ACM FEuropean Conference on Computer Systems, pages 365-378.
ACM, 2013.

24

Trevor F Cox and Michael AA Cox. Multidimensional scaling. CRC Press,
2010.

25

David Williams and David Williams. Weighing the odds: a course in
probability and statistics, volume 548. Springer, 2001.

25, 27

Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global

geometric framework for nonlinear dimensionality reduction. Science,

290(5500):2319-2323, 2000.
25
Timothy Sherwood, Erez Perelman, Greg Hamerly, Suleyman Sair, and

Brad Calder. Discovering and exploiting program phases. Micro, IEEE,
23(6):84-93, 2003.

32
LM Marsh and RE Jones. The form and consequences of random walk
movement models. Journal of Theoretical Biology, 133(1):113-131, 1988.
33

https://aws.amazon.com/datasets/6025882142118545
https://aws.amazon.com/datasets/6025882142118545

122

[59]

[65]

[66]

Ferdinando Urbano, Francesca Cagnacci, Clément Calenge, Holger Dettki,
Alison Cameron, and Markus Neteler. Wildlife tracking data management:
a new vision. Philosophical Transactions of the Royal Society B: Biological
Sciences, 365(1550):2177-2185, 2010.

33

Edward Alexander Codling. Biased random walks in biology. PhD thesis,
The University of Leeds, 2003.

34

Michael F Shlesinger and Joseph Klafter. Lévy walks versus 1évy flights.
In On growth and form, pages 279-283. Springer, 1986.

34

A Papoulis Probability. Random variables and stochastic processes.
McGrow, Hill Series Elastical Eng, NY, 1984.

34

Matt Williams and Tamara Munzner. Steerable, progressive multidimen-
sional scaling. In Information Visualization, 2004. INFOVIS 2004. IEEE
Symposium on, pages 57-64. IEEE, 2004.

36

Tynia Yang, Jinze Liu, Leonard McMillan, and Wei Wang. A fast approxi-
mation to multidimensional scaling. In Proceedings of the ECCV Workshop
on Computation Intensive Methods for Computer Vision (CIMCYV), pages
354-359, 2006.

36

Linux Containers. 2012.
38

Miguel G Xavier, Marcelo V Neves, Fabio D Rossi, Tiago C Ferreto,
Timoteo Lange, and Cesar AF De Rose. Performance evaluation of
container-based virtualization for high performance computing environ-
ments. In Parallel, Distributed and Network-Based Processing (PDP),
2013 21st Furomicro International Conference on, pages 233-240. IEEE,
2013.

[67]

[68]

[69]

[70]

123

38

VLC. accessed:2014.

38

John L Henning. Spec cpu2006 benchmark descriptions. ACM SIGARCH
Computer Architecture News, 34(4):1-17, 2006.

38, 56, 90

Cloud Suite Benchmark. accessed:2014.
38

Jeanna Neefe Matthews, Wenjin Hu, Madhujith Hapuarachchi, Todd De-
shane, Demetrios Dimatos, Gary Hamilton, Michael McCabe, and James
Owens. Quantifying the performance isolation properties of virtualization
systems. In Proceedings of the 2007 workshop on Experimental computer
science, page 6. ACM, 2007.

38

Confine Open Dataset. https://wiki.confine-project.eu/
experiments:datasets. 2012.

39

Amazon Elastic Compute Cloud. http://aws.amazon.com/ec2/.

50, 71, 81, 86

Right Scale. http://www.rightscale.com/.
50, 71, 81, 86

Simon J. Malkowski, Markus Hedwig, Jack Li, Calton Pu, and Dirk Neu-
mann. Automated control for elastic n-tier workloads based on empirical
modeling. In Proceedings of the 8th ACM International Conference on
Autonomic Computing, ICAC 11, pages 131-140, New York, NY, USA,
2011. ACM.

50, 82, 86

https://wiki.confine-project.eu/experiments:datasets
https://wiki.confine-project.eu/experiments:datasets
http://aws.amazon.com/ec2/
http://www.rightscale.com/

124

[75]

[77]

(78]

[79]

Diego Didona, Paolo Romano, Sebastiano Peluso, and Francesco Quaglia.
Transactional auto scaler: Elastic scaling of in-memory transactional data
grids. In Proceedings of the 9th International Conference on Autonomic
Computing, ICAC 12, pages 125-134, New York, NY, USA, 2012. ACM.

50, 82, 86

X Zhu, D Young, BJ Watson, Z Wang, J Rolia, S Singhal, B McKee,
C Hyser, D Gmach, R Gardner, et al. Integrated capacity and workload
management for the next generation data center. In ICAC’08: Proceedings
of the 5th International Conference on Autonomic Computing, 2008.

50, 82, 86

Sujay Parekh, Neha Gandhi, Joseph Hellerstein, Dawn Tilbury, T Jayram,
and Joe Bigus. Using control theory to achieve service level objectives in
performance management. Real-Time Systems, 23(1-2):127-141, 2002.

50, 82, 86

Khalid Alhamazani, Rajiv Ranjan, Karan Mitra, Fethi Rabhi,
Prem Prakash Jayaraman, Samee Ullah Khan, Adnene Guabtni, and
Vasudha Bhatnagar. An overview of the commercial cloud monitoring

tools: research dimensions, design issues, and state-of-the-art. Computing,
pages 1-21, 2014.

53
Hamoun Ghanbari, Bradley Simmons, Marin Litoiu, and Gabriel Iszlai.
Exploring alternative approaches to implement an elasticity policy. In

Cloud Computing (CLOUD), 2011 IEEE International Conference on,
pages 716-723. IEEE, 2011.

53

Memcached. http://memcached.org/. accessed: April 2015.
56, 86
Ravi Iyer, Ramesh Illikkal, Omesh Tickoo, Li Zhao, Padma Apparao,

and Don Newell. Vm 3: Measuring, modeling and managing vm shared
resources. Computer Networks, 53(17):2873-2887, 2009.

63

http://memcached.org/

[82]

[84]

[36]

125

Richard West, Puneet Zaroo, Carl A Waldspurger, and Xiao Zhang.
Online cache modeling for commodity multicore processors. ACM SIGOPS
Operating Systems Review, 44(4):19-29, 2010.

63

Jason Mars, Lingjia Tang, and Mary Lou Soffa. Directly characterizing
cross core interference through contention synthesis. In Proceedings of
the 6th International Conference on High Performance and Embedded
Architectures and Compilers, pages 167-176. ACM, 2011.

63

Pradeep Padala, Kang G. Shin, Xiaoyun Zhu, Mustafa Uysal, Zhikui
Wang, Sharad Singhal, Arif Merchant, and Kenneth Salem. Adaptive
control of virtualized resources in utility computing environments. In
Proceedings of the 2Nd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2007, EuroSys 07, pages 289-302, New York, NY,
USA, 2007. ACM.

73

S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, T. Jayram, and J. Bigus.
Using control theory to achieve service level objectives in performance
management. Real-Time Syst., 23(1/2):127-141, July 2002.

73

Zhikui Wang, Xiaoyun Zhu, and Sharad Singhal. Utilization and slo-based
control for dynamic sizing of resource partitions. In Jiirgen Schonwélder
and Joan Serrat, editors, Ambient Networks, volume 3775 of Lecture Notes
in Computer Science, pages 133-144. Springer Berlin Heidelberg, 2005.

73

Open Stack. http://www.openstack.org.
75
Abhishek Chandra, Weibo Gong, and Prashant Shenoy. Dynamic resource

allocation for shared data centers using online measurements. In Quality
of Service—IW QoS 2003, pages 381-398. Springer, 2003.

82

http://www.openstack.org

126

[89]

[91]

Daniel Gmach, Jerry Rolia, Ludmila Cherkasova, and Alfons Kemper.
Capacity management and demand prediction for next generation data
centers. In Web Services, 2007. ICWS 2007. IEEE International Confer-
ence on, pages 43-50. IEEE, 2007.

82
Jiang Dejun, Guillaume Pierre, and Chi-Hung Chi. Ec2 performance anal-
ysis for resource provisioning of service-oriented applications. In Service-

Oriented Computing. ICSOC/Service Wave 2009 Workshops, pages 197
207. Springer, 2010.

86
Navaneeth Rameshan, Leandro Navarro, Enric Monte, and Vladimir
Vlassov. Stay-away, protecting sensitive applications from performance

interference. In Proceedings of the 15th International Middleware Confer-
ence, pages 301-312. ACM, 2014.

87

MBW. http://manpages.ubuntu.com/manpages/utopic/manl/mbw.1.
html. accessed: April 2015.

90

Stream Benchmark. http://www.cs.virginia.edu/stream/. accessed:
Feb 2015.

90

Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman
Lee, Harry C Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab,

et al. Scaling memcache at facebook. In nsdi, volume 13, pages 385-398,
2013.

102

http://manpages.ubuntu.com/manpages/utopic/man1/mbw.1.html
http://manpages.ubuntu.com/manpages/utopic/man1/mbw.1.html
http://www.cs.virginia.edu/stream/

	dissertation
	List of Publications
	Introduction
	Performance vs. Utilization
	Thesis Overview

	Background and Related Work
	Background
	Related Work
	Dynamic Reconfiguration
	Partitioning
	Quantifying Degradation
	Scheduling
	Detecting Contention

	Contributions
	Performance Interference from a single host perspective
	Performance Interference from a distributed system perspective
	Service Reliability (Decision Making):
	Service Accuracy (Actuation):

	Dynamic Reconfiguration to minimise Interference
	Introduction
	Background
	VM Placement
	Multi-Dimensional Scaling

	Stay-Away Mechanism
	Mapping
	Prediction
	Should a prediction rely only on known QoS violations?
	How Far to explore?
	When to act?

	What Action to take and When to Stop?

	Optimisations and Overhead
	Scalability
	Template Properties
	Evaluation
	Experimental Setup
	QoS and Utilization
	Template Validation

	Summary

	Reliable Elastic Scaling Decisions
	Introduction
	Elastic Scaling
	Scaling Type
	Choice of Metrics

	Motivation
	Experimental Analysis
	CPU Utilization vs. Latency
	 Workload-Intensity (RPS) vs. Latency
	Putting them in perspective

	System Overview
	Characterising Contention
	Sources of degradation
	Properties that determine degradation
	Interference-Index

	Elasticity Controller
	Experimental Evaluation
	Experiment Setup
	Results
	Scaling Out using a Workload based Model with/without Interference
	Scaling Out using a CPU based Model with/without Interference

	Utility Measure

	Related Work
	Summary

	Augment Elastic Scaling
	Introduction
	Problem Definition
	Experimental Analysis
	Interference reduces VM Capacity
	Interference vs. Load
	Preparation Time

	Solution Overview
	Middleware Interface to Quantify Capacity (MI)
	Characterising Contention:

	Augmentation Engine
	Experimental Evaluation
	Assumptions
	Experiment Setup
	Results
	Load Balancer Reconfiguration
	Convergence when scaling out
	Scaling Down

	Quantifying gains

	Summary

	Conclusions
	Bibliography

	impres_acta_qualificacio_tesi-1_MI_EN
	dissertation

