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Abstract

The envisioned rapid and exponential increase of wireless data traffic demand in the next years
imposes rethinking current wireless cellular networks due to the scarcity of the available spec-
trum. In this regard, three main drivers are considered to increase the capacity of today’s most
advanced (4G systems) and future (5G systems and beyond) cellular networks:

• use more bandwidth (more Hz) through spectral aggregation,

• enhance the spectral efficiency per base station (BS) (more bits/s/Hz/BS) by using mul-
tiple antennas at BSs and users (i.e. MIMO systems), and

• increase the density of BSs (more BSs/km2) through a dense and heterogeneous deploy-
ment (known as dense heterogeneous cellular networks).

We focus on the last two drivers. First, the use of multi-antenna systems allows exploiting
the spatial dimension for several purposes: improving the capacity of a conventional point-to-
point wireless link, increasing the number of served users, and reducing unwanted emissions
(interference). Second, dense heterogeneous networks are a simple and cost-effective way to
boost the area spectral efficiency by densifying the network with BSs that dispose of different
coverage areas and by improving the spatial re-use of the spectrum.

However, increasing the density of BSs entails two main technical challenges:

• the interference in the network increases because neighboring BSs/users are nearer, and

• the amount of data traffic, as well as the downlink (DL) and uplink (UL) traffic asymmetry,
varies over space and time more drastically since the number of users per BS is reduced.

The increase of interference in the network makes the development of efficient interference
management techniques a key enabler for MIMO dense heterogeneous networks. But, as we
move towards denser networks, interference management is becoming increasingly challenging.

On the other hand, the variability of the per-BS data traffic amount and of the DL/UL traffic
asymmetry convert flexible duplexing (i.e. flexible and dynamic allocation of DL/UL resources
per BS, either in time or frequency domain) into a necessity for an efficient radio resource
usage that meets the non-uniform and time-varying DL/UL per-BS traffic loads. Therefore,
the development of traffic-aware resource management schemes capable of adapting to the
varying traffic load, as well as interference management, become crucial.

Accordingly, this doctoral thesis focuses on:

1. the development of advanced interference management techniques to deal with inter-cell
interference in MIMO dense cellular networks, and

2. the design of traffic-aware and interference-aware resource management schemes for flexible
duplexing systems in asymmetric traffic conditions.
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ii Abstract

To these goals, the wide deployment of MIMO systems is capitalized to develop advanced
multi-antenna signal processing techniques when full reuse of time and frequency resources
among densely deployed BSs is adopted.

In the first part of this work, different statistical characterizations of the transmitted signals
are analyzed so as to improve the capacity of wireless interference channels. In this regard,
advanced signaling schemes are developed and the use of improper Gaussian signaling (IGS)
is investigated, which allows taking advantage of the real and imaginary dimensions of the MIMO
channels by splitting one spatial dimension into two halves. Majorization theory is exploited
to demonstrate the strict superiority of IGS. Then, the benefits of IGS are applied to different
MIMO interference-limited scenarios.

Another way to manage interference under full frequency reuse is through the coordination
and/or cooperation of BSs. Coordination among BSs allows adjusting in a coordinated manner
the transmit strategies at different BSs so as to reduce the impact of interference in the network.
In contrast, cooperation among BSs allows BSs to act as a single multi-antenna transmitter and
has the great advantage of converting interference into useful signal through the joint trans-
mission of cooperative BSs towards the same user. However, cooperation comes at the cost
of a tight synchronization and high backhaul capacity to share user data among cooperative
BSs. For that reason, in practical implementations, it can only be achieved between a limited
number of BSs (which form a cluster) and coordination among clusters is still needed to deal
with interference. Both coordination and cooperation, either implemented in a centralized or
decentralized fashion, require knowledge of all channel matrices in the network, which imposes
stringent channel estimation requirements for interference management in dense networks.

In the second part of the Ph.D. dissertation, transmit coordination strategies are pro-
posed to manage interference in extremely dense cellular networks. The focus is on the DL data
transmission. The design of the BSs transmit strategies (involving design of the spatial transmit
and receive filters, transmit power control, and scheduling of users) is coordinated with the ob-
jective of optimizing different network functions (as, for instance, the weighted sum of the user
throughputs) while reducing the stringent requirements needed for channel estimation in dense
networks. Coordination strategies for the case in which different signaling schemes (proper and
improper) coexist in the network are also derived. Further, the thesis develops coordination
strategies for cluster-based joint transmissions, where BSs are grouped into clusters formed by
a low number of cooperative BSs and different clusters interfere to each other. In this case, the
transmit strategy is jointly optimized together with the user-centric cluster formation.

Finally, we address traffic-aware and interference-aware resource management in flexible du-
plexing systems, where resources have to be properly distributed between DL and UL according
to the traffic load and traffic asymmetries of each BSs. Under reuse of resources among densely
deployed BSs, the use of flexible duplexing entails changes to the interference generated between
neighbor BSs/users. As a consequence, new kinds of interference (like BS to BS) arise.

The third part of this thesis focuses on the design of traffic-aware duplexing techniques
for resource management and interference management. In contrast to the previous parts, DL
and UL data transmissions are considered for each BS. The main objective is to make a better
use of the available time/frequency resources by taking into account the asymmetric traffic
conditions that arise in dense networks as well as managing the new kinds of interference that
come up under flexible duplexing. Short-term and long-term optimizations are investigated,
being therefore the interference managed instantaneously and statistically, respectively.



Resumen

El aumento rápido y exponencial previsto para la demanda de tráfico de datos en los próximos
años impone rediseñar las redes celulares inalámbricas actuales debido a la escasez del espectro
radioeléctrico disponible. En este sentido, se consideran tres ejes directores para aumentar la
capacidad de las redes celulares más avanzadas de hoy en d́ıa (sistemas 4G) y las del futuro
(sistemas 5G y más allá):

• utilizar más ancho de banda (más Hz) a través de la agregación de espectro,

• mejorar la eficiencia espectral por estación base (BS) (más bits/s/Hz/BS) utilizando
múltiples antenas en las BSs y los usuarios (sistemas MIMO), e

• incrementar la densidad de BSs (más BSs/km2) mediante un despliegue denso y het-
erogéneo (conocido como redes densas y heterogéneas).

Esta tesis se centra en los dos últimos ejes directores. En primer lugar, el uso de sistemas
multi-antena permite explotar la dimensión espacial con varias finalidades: mejorar la capaci-
dad de un enlace inalámbrico convencional punto a punto, incrementar el número de usuarios
servidos y reducir emisiones indeseadas (interferencias). En segundo lugar, las redes densas y
heterogéneas son una manera simple y rentable de mejorar la eficiencia espectral por área a
través de la densificación de la red con BSs de diferentes caracteŕısticas y de la reutilización
espacial del espectro radioeléctrico.

Sin embargo, el incremento de la densidad de BSs plantea dos principales desaf́ıos técnicos:

• las interferencias en la red aumentan porque BSs/usuarios vecinos están más próximos y

• la cantidad de tráfico de datos, aśı como la asimetŕıa del tráfico de bajada (DL) y de
subida (UL), fluctúa con el tiempo y el espacio más drásticamente debido a que el número
de usuarios por BS se reduce.

El aumento de interferencias en la red hace que un factor clave para las redes MIMO densas
y heterogéneas sea el desarrollo de técnicas eficientes de gestión de interferencias. Pero, a
medida que avanzamos hacia redes más densas, la gestión de interferencias se convierte cada vez
en un reto más desafiante.

Por otro lado, la variabilidad de la cantidad de tráfico de datos por BS y de la asimetŕıa del
tráfico DL/UL convierten en una necesidad el duplexado flexible (es decir, asignaciones flexibles
y dinámicas de recursos DL/UL por BS, ya sea en el dominio temporal o frecuencial) para
conseguir un uso eficiente de los recursos radio que satisfaga las cargas de tráfico no uniformes
en espacio y variantes en tiempo. Por lo tanto, se vuelve crucial el desarrollo de esquemas de
gestión de recursos capaces de adaptarse a cargas de tráfico variable y de, a su vez, gestionar
las interferencias.
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iv Resumen

En este sentido, esta tesis doctoral se centra en:

1. el desarrollo de técnicas avanzadas de gestión de interferencias para hacer frente a las
interferencias entre celdas en redes celulares MIMO densas, y

2. el diseño de esquemas de gestión de recursos que tengan en cuenta el tráfico y la interfer-
encia para sistemas de duplexado flexible bajo condiciones de tráfico asimétricas.

Para alcanzar estos objetivos, se aprovecha el amplio despliegue de sistemas MIMO con el
fin de desarrollar técnicas multi-antena avanzadas de procesado de señales cuando se adopta un
reúso completo de los recursos en tiempo y en frecuencia entre BSs densamente desplegadas en
la red.

En la primera parte de la tesis, se analizan diferentes caracterizaciones estad́ısticas de las
señales de transmisión para mejorar la capacidad de los canales inalámbricos interferentes. En
este sentido, se desarrollan esquemas de señalización avanzados y se investiga el uso de
la señalización Gaussiana improper (IGS), la cual permite aprovechar las dimensiones reales e
imaginarias de los canales de propagación MIMO mediante la división de una dimensión espacial
en dos mitades. La teoria de la majorización se explota para demostrar la superioridad estricta
de IGS. Después, los beneficios de IGS se aplican a diferentes escenarios MIMO limitados por
interferencia.

Otra forma de gestionar la interferencia con reuso completo de los recursos frecuenciales es
mediante la coordinación y/o cooperación de BSs. La coordinación entre BSs permite ajustar
de manera coordinada las estrategias de transmisión de diferentes BSs con el objetivo de reducir
el impacto de las interferencias en la red. Por el contrario, la cooperación entre BSs permite que
las BSs actuen como un único transmisor multi-antena y tiene la gran ventaja de que convierte
la interferencia en señal útil a través de la transmisión conjunta de BSs cooperativas hacia un
mismo usuario. Sin embargo, la cooperación requiere sincronización estricta y alta capacidad
de backhaul para compartir datos de usuario entre BSs. Por esta razón, en implementaciones
prácticas, la cooperación sólo se puede lograr entre un número reducido de BSs (las cuales
forman un grupo) y la coordinación entre grupos sigue siendo necesaria para hacer frente a las
interferencias. Tanto la coordinación como la cooperación, ya sean implementadas de forma
centralizada o descentralizada, requieren el conocimiento de todos los canales de propagación
de la red, lo cual impone requisitos estrictos en cuanto a estimación de canal para la gestión de
interferencias en redes densas.

En la segunda parte de este trabajo se proponen estrategias de transmisión coordinadas
para gestionar interferencias en las redes celulares extremadamente densas. El foco está en la
transmisión DL. El diseño de las estrategias de transmisión en las BSs (incluyendo el diseño de
los filtros espaciales de transmisión y recepción, el control de potencia y la selección de usuarios)
es coordinado con tal de optimizar diferentes funciones de red (como, por ejemplo, la suma
ponderada de las tasas de transmisión), mientras que se reducen los estrictos requisitos necesarios
para estimación de canal en redes densas. También se analizan estrategias de coordinación
para el caso en que diferentes esquemas de señalización (proper e improper) coexisten en la
red. Además, la tesis deriva estrategias de coordinación para transmisiones conjuntas basadas
en grupos, donde las BSs se agrupan en grupos formados por un número reducido de BSs
cooperativas y grupos vecinos se interfieren entre śı. En este caso, la estrategia de transmisión
se optimiza conjuntamente con la formación de los grupos.
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Por último, se aborda la gestión de recursos en sistemas de duplexado flexible, donde los
recursos tienen que ser distribuidos adecuadamente entre las transmisiones DL y UL de acuerdo
con las asimetŕıas y la cantidad de tráfico de cada BS. Bajo una reutilización de recursos en BSs
densamente desplegadas, el uso del duplexado flexible conlleva cambios en la interferencia gen-
erada entre BSs y/o usuarios vecinos. Como consecuencia, surgen nuevos tipos de interferencias
(como la interferencia de BS a BS).

La tercera parte de la tesis se centra en el diseño de técnicas de duplexado flexible que
tienen en cuenta el tráfico para la gestión de recursos y de interferencias. En contraste con las
partes anteriores, se consideran transmisiones DL y UL para cada BS. El objetivo principal es
hacer un mejor uso de los recursos tiempo/frecuencia disponibles, teniendo en cuenta las condi-
ciones de tráfico asimétricas que surgen en redes densas aśı como la gestión de los nuevos tipos
de interferencias que aparecen bajo sistemas de duplexado flexible. Se investigan optimizaciones
a corto plazo y a largo plazo, siendo entonces la interferencia gestionada de manera instantánea
y de manera estad́ıstica, respectivamente.
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Acronyms and Abbreviations

2G 2nd Generation mobile networks (GSM, CDMA 1x).

3D 3 Dimensions.

3G 3rd Generation mobile networks (WCDMA/HSPA, TD-SCDMA, CDMA

EV-DO, Mobile WiMAX).

3GPP 3rd Generation Partnership Project.

4G 4th Generation mobile networks (LTE, LTE-A).

5G 5th Generation mobile networks (not yet standardized).

ABS Almost Blank Subframes.

AWGN Additive White Gaussian Noise.

BC Broadcast Channel.

BCD Block Coordinate Descent.

BF Beamforming.

BS Base Station.

CDF Cumulative Distribution Function.

CDMA Code Division Multiple Access.

CE Calibration Error.

CoMP Coordinated Multi-Point.

CoMP-CB Coordinated Multi-Point Coordinated Beamforming.

CoMP-CS Coordinated Multi-Point Coordinated Scheduling.

CoMP-DPS Coordinated Multi-Point Dynamic Point Selection.

CoMP-JR Coordinated Multi-Point Joint Reception.

CoMP-JT Coordinated Multi-Point Joint Transmission.

Co-SRS Coordinated Sounding Reference Signals.

CQI Channel Quality Indicator.

CSCG Circularly Symmetric Complex Gaussian.

CS-CP-CD Coordinated Scheduling, Coordinated Precoding and Coordinated Direction.

CS-CP-uD Coordinated Scheduling, Coordinated Precoding and uncoordinated Direction.

CSI Channel State Information.

CSIT Channel State Information at the Transmitter.

D2D Device-to-Device.
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x Acronyms and Abbreviations

D-CoP Decentralized Coordinated Precoding.

DJCP Decentralized Joint Clustering and Precoding.

DL Downlink.

DM-RS Demodulation Reference Signals.

DoF Degrees of Freedom.

DPC Dirty Paper Coding.

e.g. for example.

eICIC enhanced Inter-Cell Interference Coordination.

eIMTA enhanced DL-UL Interference Management and Traffic Adaptation.

eNB evolved Node B.

EVD Eigenvalue Decomposition.

FeICIC Further enhanced Inter-Cell Interference Coordination.

FDD Frequency Division Duplex.

FDMA Frequency Division Multiple Access.

FFR Fractional Frequency Reuse.

FR Frequency Reuse.

FTP File Transfer Protocol.

FTP3 File Transfer Protocol model 3.

GP Guard Period.

HCN Heterogeneous Cellular Network.

HeNB Home evolved Node B.

HetTX Heterogeneous Transmitters.

IA Interference Alignment.

IC Interference Channel.

ICIC Inter-Cell Interference Coordination.

i.e. that is.

IEEE Institute of Electrical and Electronics Engineers.

IGS Improper Gaussian Signaling.

i.i.d. independent and identically distributed.

INR Interference-to-Noise Ratio.

IRC Interference Rejection Combining.

ISIM Interference Suppressing Interference Mitigation.

ITU International Telecommunication Union.

IW Iterative Water-filling.

KKT Karush-Kuhn-Tucker.

LE Linear Estimation.

LMMSE-IRC Linear Minimum Mean Square Error - Interference Rejection Combining.

LOS Line-of-Sight.



xi

LP Linear Precoding.

LTE Long Term Evolution.

LTE-A Long Term Evolution - Advanced.

MAC Multiple Access Channel.

MC Macro Cell.

MCS Modulation and Coding Scheme.

MeNB Macro evolved Node B.

MIMO Multiple-Input Multiple-Output.

MISO Multiple-Input Single-Output.

ML Maximum Likelihood.

MMSE Minimum Mean Square Error.

MMSE-IRC Minimum Mean Square Error - Interference Rejection Combining.

MP2MP Multiple-Point to Multiple-Point.

MRC Maximum Ratio Combining.

MRT Maximum Ratio Transmission.

MSE Mean Square Error.

MTC Machine Type Communications.

MUE Macrocell User Equipment.

NAICS Network Assisted Interference Cancellation and Suppression.

NIB Non-Ideal Backhaul.

NLOS Non-Line-of-Sight.

NP Nondeterministic Polynomial time.

OFDM Orthogonal Frequency Division Multiplexing.

OFDMA Orthogonal Frequency Division Multiple Access.

OPA Optimal Power Allocation.

P2P Point-to-Point channel.

P2P-I Point-to-Point channel with Interference.

PDSCH Physical Downlink Shared Channel.

PF Proportional Fair.

PGS Proper Gaussian Signaling.

PMI Precoding Matrix Indicator.

PUCCH Physical Uplink Control Channel.

PUSCH Physical Uplink Shared Channel.

QoS Quality of Service.

RB Resource Block.

REB Range Extension Bias.

RF Radio-Frequency.

RI Rank Indicator.



xii Acronyms and Abbreviations

RNTP Relative Narrow-band Transmit Power.

RSRP Reference Signal Received Power.

RSRQ Reference Signal Received Quality.

RU Resource Utilization.

RX Receiver.

SB Subband.

SC Smallcell.

SCN Smallcell Network.

SeNB Small evolved Node B.

SFN Subframe Number.

SIC Successive Interference Cancellation.

SIMO Single-Input Multiple-Output.

SINR Signal-to-Interference-plus-Noise Ratio.

SIR Signal-to-Interference Ratio.

SISO Single-Input Single-Output.

SLNR Signal-to-Leackage-and-Noise Ratio.

SNR Signal-to-Noise Ratio.

SR Sum-Rate.

SRS Sounding Reference Signal.

SUE Smallcell User Equipment.

SVD Singular Value Decomposition.

SYNC Synchronization.

TDD Time Division Duplex.

TDMA Time Division Multiple Access.

THP Tomlinson-Harashima precoding.

TM Transmission Mode.

TR Technical Report.

TSG-RAN Technical Specification Group - Radio Access Network.

TTI Transmission Time Interval.

TX Transmitter.

UE User Equipment.

UL Uplink.

UMTS Universal Mobile Telecommunications System.

UPA Uniform Power Allocation.

UpPTS Uplink Pilot Time Slot.

UPT User Packet Throughput.

uS-uP-uD Uncoordinated Scheduling, uncoordinated Precoding and uncoordinated Di-

rection.



xiii

UT User Throughput.

vs. versus.

WG Working Group.

WiMAX Worldwide Interoperability for Microwave Access.

WLE Widely Linear Estimation.

WLP Widely Linear Precoding.

WMSE Weighted Mean Square Error.

WMMSE Weighted Minimum Mean Square Error.

w.r.t. with respect to.

WSR Weighted Sum-Rate.

ZF Zero Forcing.

Z-IC Z-Interference Channel.





Notation

x A scalar.

x A column vector.

X A matrix.

X A set.

I The identity matrix.

J The anti-identity matrix.

0 The zero vector/matrix.

∅ The empty set.

Matrices

XT The transpose matrix of matrix X.

XH The hermitian matrix of matrix X.

X∗ The conjugate matrix of matrix X.

X−1 The inverse matrix of matrix X.

X+ The Moore-Penrose pseudoinverse matrix of matrix X.

X
1
2 The square root matrix of a positive semi-definite matrix X, i.e. X =

X
1
2 (X

1
2 )H .

Tr(X) The trace of matrix X.

|X| The determinant of matrix X.

rank(X) The rank of matrix X.

‖X‖2F The squared Frobenius norm of matrix X, i.e. ‖X‖2F =
∑

i

∑
j |xi,j |2.

E [X] The expectation of matrix X.

E [X|Y] The expectation of matrix X for a known matrix Y.

<{X} The real part of matrix X.

={X} The imaginary part of matrix X.

1{X} The indicator function defined as 1{X} = 0 if X = 0, otherwise 1{X} = 1.
df(X)
dX The derivative of function f(X) with respect to matrix X.

{Xk} The set of matrices {X1,X2, . . . ,XK}.
X � 0 Matrix X is positive semi-definite.
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xvi Notation

X = diag(x1 . . . xn) The diagonal matrix of size n× n with values x1, x2, . . . , xn in its diagonal

and 0 in the non-diagonal elements.

x = diag(X) The vector containing the diagonal values of matrix X.

x = eig(X) The vector that stacks the eigenvalues of matrix X in decreasing order.

x = eig(X)i The i-th eigenvalue of matrix X.

Vectors

x−1 The vector that contains the inverse of each element of vector x in decreas-

ing order, for a positive real-valued vector x.

x̄ The double-sized real-valued vector of vector x, which stacks its real and

imaginary parts as: x̄ =
[
<{x}T ={x}T

]T
.

x The double-sized complex-valued vector of vector x, which stacks the vector

and its complex conjugate as: x =
[
xT (x∗)T

]T
.

‖x‖2 The squared 2-norm of vector x, i.e. ‖x‖2 =
∑

i |xi|2.

x ◦ y The Hadamard product of vectors x and y, i.e. it returns a vector with the

component-wise product of the vectors x and y.

x � y Vector x strongly majorizes vector y.

x �w y Vector x weakly majorizes vector y.

x �w log y Vector x weakly log-majorizes vector y.

x = min(x) The minimum value of the elements in vector x.

Scalars

|x| The complex modulus of scalar x.

log2(x) The base-2 logarithm of real-valued scalar x.

ln(x) The natural logarithm of real-valued scalar x.

bxc The floor of real-valued scalar x.

min(x, y) The minimum between real-valued scalars x and y.

(x)+ The maximum between real-valued scalars x and 0.

Pr(x < y) The probability of real-valued scalar x being smaller than real-valued scalar

y.

df(x)
dx The derivative of function f(x) with respect to scalar x.

f(x)|y Function f(x) evaluated at x = y.

Sets

|X | The cardinality of set X .

X ∩ Y The intersection of sets X and Y.

X ∪ Y The union of sets X and Y.

X ⊆ Y Set X is a subset of set Y (i.e. set X is included in set Y).



xvii

x ∈ X Scalar x belongs to set X .

x /∈ X Scalar x does not belong to set X .

Other

, Defined as.

≈ Approximately equal to.

∼ Distributed according to.

Cm×n The m by n dimensional complex space.

Rm×n The m by n dimensional real space.

Rm×n+ The m by n dimensional real positive space.

CN (m,C) The circularly symmetric complex normal distribution with mean m and

covariance matrix C of appropriate dimensions.

T N (m,C, x, y) The circularly symmetric real truncated normal distribution in the interval

[x, y] with mean m and covariance matrix C of appropriate dimensions.
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Chapter 1

Introduction

With the advent of new sophisticated terminals and bandwidth-demanding services, which are
changing our every-day life, data traffic demand in wireless networks is experiencing an explo-
sive growth. Thus, system designers of cellular networks are pushed towards satisfying the strict
requirements of: enhancing the area spectral efficiency [in bits/s/Hz/km2], providing homoge-
neous coverage, improving the per-user data rate (or link capacity) [in bits/s], reducing the
energy consumption and cost, diminishing the end-to-end latency, addressing massive connec-
tions of devices, and providing ultra-reliable and low-latency communications.

In order to address such massive data demands and to meet the strict requirements, con-
strained to the fact that the available spectrum is scarce, today’s most advanced cellular networks
(as Long-Term Evolution Advanced (LTE-A) for fourth generation (4G) systems [1, 2]) and fu-
ture cellular networks (as fifth generation (5G) systems and beyond [3, 4]) consider three main
drivers for wireless evolution [5, 6] (see Fig. 1.1):

1. Use more bandwidth (more Hz) through spectral aggregation. Spectral aggregation con-
sists on utilizing larger portions of the spectrum in diverse bands, including the unlicensed
spectrum (as the 5 GHz band used by Wi-Fi) [7] and the millimeter-wave bands (30-300
GHz) [8]. Bands over the 6 GHz have not been already licensed, but the advantage is that
larger bandwidths are available there. However, the aggregation of disparate frequency
bands unleashes a spate of challenges for antenna and radio-frequency transceiver design
that need to be overcome to support spectral aggregation [6].

2. Enhance the spectral efficiency per base station (BS) (more bits/s/Hz/BS). One of the
main technologies considered to improve the spectral efficiency is the use of multi-antenna
terminals at BSs and users (i.e. multiple-input multiple output (MIMO) systems).
The case where the number of antennas at the BSs is very large is receiving much atten-
tion for 5G systems, namely massive MIMO or large-scale MIMO [9]. Also, coordinated
multi-point (CoMP) strategies and interference suppression/cancellation techniques are
key enablers to enhance the spectral efficiency of the system [10–12].

3. Increase the density of BSs and devices deployed per geographical area (more loaded
BSs/km2), i.e. spatial densification. Usually, spatial densification is done through BSs
of different characteristics (e.g. with different coverage areas), hence conforming the so-
called dense heterogeneous cellular networks (HCNs) [11,13]. Also, device-to-device
(D2D) communications and machine type communications (MTC) are part of the so-called
network densification [14,15].

1
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4G

Density (more loaded BSs/km2)
• heterogeneous networks
• more smallcells, Wi-Fi, D2D, MTC

Bandwidth (more Hz)
• mm-wave
• LTE unlicensed spectrum

Spectral efficiency (more bits/s/Hz/BS)
• spatial dimension (MIMO, massive MIMO)
• coordinated multi-point (CoMP)
• interference suppression/cancellation

5G

Figure 1.1: Drivers for wireless evolution.

The product of the three aforementioned drivers constitutes the network capacity in terms
of bits/s/km2. Among them, the most promising driver to significantly improve the network
capacity has been shown to be the spatial densification [5] (although the three do contribute).

Remark 1.1. This doctoral thesis focuses on spatial densification and spectral efficiency en-
hancement for systems with scarce bandwidth availability. Spectral aggregation to support using
more bandwidth is out of the scope of the thesis.

Increasing the density of BSs involves [6]:

• a reduction of the load factor (or number of users per BS) because user data traffic is
sparsely distributed among BSs, and

• an increase of both the desired signal power and the received interference due to the fact
that the serving BS as well as the interfering BSs are closer to the user.

The former contributes to the improvement of the per-link capacity because more resources can
be devoted per user. Regarding the latter, the increase of the desired signal power is beneficial in
terms of spectral efficiency provided that the increased level of interference is properly managed,
otherwise the spectral efficiency gain vanish (and so does the per-link capacity). The gains of
spatial densification are obtained at the cost of increased interference in the network [16].

? Challenge 1 of spatial densification: interference levels increase significantly.

Consequently, interference management becomes a key enabler for future cellular sys-
tems. But, the denser is the network the more challenging interference management is [11]. For
that reason, it has received much attention in the last years and has been extensively studied
in academia, industry, and standardization bodies such as third Generation Partnership Project
(3GPP)1 [17]. On the whole, interference management involves many approaches (avoid, cancel,
reduce, exploit), multiple domains (space, frequency, time, modulation, user, power, code, trans-
mit direction), mechanisms (coordination, cooperation), and kinds of optimizations (short-term,
long-term) to tackle interference (a complete review is included in Section 1.2).

13GPP is a collaboration between groups of telecommunications associations that is in charge of the develop-
ment and maintenance of: (i) GSM and related 2G and 2.5G standards including GPRS and EDGE, (ii) UMTS
and related 3G standards including HSPA, (iii) LTE and related 4G standards, and (iv) 5G standards.
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A classical approach to address interference is through the medium access control and
medium sharing techniques, which severely compromise network performance to manage inter-
ference due to explicit time sharing over the common resources. Previous generations of cellular
network standards employed orthogonal frequency reuse-n schemes, where the total bandwidth
is partitioned into n orthogonal sets of frequency resources (bands) and neighboring BSs employ
different bands. Hence, BSs do not interfere to each other (i.e. interference is avoided) at the
expenses of reducing the area spectral efficiency of the system. Differently, Universal Mobile
Telecommunications System (UMTS) (i.e. third generation (3G) systems) [18] and LTE/LTE-A
(i.e. 4G systems) [2] moved from reuse-n to reuse-1 (i.e. full reuse), hence allowing a better
reuse of the resources while rendering interference to its limits [10]. We follow this direction in
the present work.

Remark 1.2. This Ph.D. dissertation capitalizes on the wide deployment of MIMO systems to
develop advanced multi-antenna signal processing techniques capable of managing interference
when full reuse (i.e. reuse-1) of time and frequency resources among BSs densely deployed in
the network is adopted.

From a system perspective, the reduction of the load factor in dense networks raises an
additional challenge. The per-BS traffic is more user dependent and thus the amount of data
traffic and the downlink (DL) and uplink (UL) traffic asymmetries vary over space (i.e. BSs)
and time more drastically as compared to conventional macrocell-based networks.

? Challenge 2 of spatial densification: traffic is increasingly asymmetric.

In this sense, flexible duplexing systems (i.e. systems that allow a flexible allocation of
DL/UL resources among BSs) are being considered a key component of future cellular networks
in order to satisfy asymmetric data traffic demands and allow an efficient use of the available
spectrum [19]. Under flexible duplexing, new kinds of interference arise when neighboring BSs
select different transmission patterns (e.g. one BS in DL and one BS in UL). Therefore, traffic-
aware and interference-aware resource management schemes are crucial to meet the
non-uniform and time-varying DL/UL per-BS traffic load while managing interference.

Remark 1.3. This Ph.D. dissertation derives traffic-aware and interference-aware resource
management schemes for flexible duplexing systems in asymmetric traffic conditions. For short-
term management, the deployment of MIMO systems is leveraged to develop advanced coordi-
nated strategies. For long-term management, graph coloring is exploited to distribute resources
among densely deployed BSs.

This chapter provides an overview of interference management for MIMO dense HCNs and
presents the organization of the present document and the main results produced. First, Sec-
tion 1.1 describes the dense HCN deployments, including co-channel and non-co-channel deploy-
ments, and its main impairments due to interference. Next, Section 1.2 introduces interference
management, describing the available approaches, domains, mechanisms, and optimizations for
interference management. Then, Section 1.3 presents the interference scenarios to be addressed
in the thesis. After that, Section 1.4 contains a review of the available techniques for interfer-
ence management in 3GPP standardization body [17] and Section 1.5 states the main challenges
related to interference management in multi-cell scenarios with full reuse of resources. Section
1.6 specifies the mathematical tools and the knowledge required for the completion of the thesis.
Finally, Section 1.7 presents the organization and contents of the Ph.D. dissertation and Section
1.8 details the research contributions that have been produced from the present work.
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Figure 1.2: Co-channel deployment with uniformly deployed SeNBs. Major impairment: cross-tier interference.
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Figure 1.3: Non-co-channel deployment with densely deployed SeNBs. Major impairment: co-tier interference.

1.1 Dense Heterogeneous Cellular Networks

Dense HCNs consist of a multi-tier multi-cell deployment of macrocells and densely deployed
smallcells (encompassing picocells, femtocells, and relays), which are being extensively studied
in academia, industry, and standardization bodies such as 3GPP [17]. Each tier corresponds
to a deployment of a different type of BSs2. Generally, dense HCNs correspond to a two-tier
deployment if we include all smallcells in the same tier, i.e. the macro-tier and the small-tier.
Macrocells are covered by macro evolved Node Bs (MeNBs), which are intended to provide
general coverage and service to high mobility User Equipments (UEs). Differently, smallcells
are served by small evolved Node Bs (SeNBs), which dispose of a lower transmit power, cover
smaller areas than MeNBs, and are intended to serve a small number of low mobility UEs [13].

Dense HCNs consider two kinds of deployments [16]:

• co-channel deployments, where MeNBs and SeNBs use the same band (e.g. carrier
frequency f1 in Fig. 1.2), and

• non-co-channel deployments, where MeNBs and SeNBs use different bands (e.g. MeNBs
work at carrier frequency f1 and SeNBs operate at f2, as shown in Fig. 1.3).

Each deployment has its own peculiarities.

2Through this Ph.D. dissertation, the term BSs is used to refer to general access points, encompassing MeNBs
and SeNBs.
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Co-channel deployments have to deal with a major impairment: the cross-tier interference
[1], i.e. interference that is created between the macro-tier and the small-tier (e.g. interference
from MeNBs towards UEs served by the SeNBs (denoted by smallcell UEs, SUEs) or interference
from SeNBs towards UEs served by the MeNBs (denoted by macrocell UEs, MUEs)). Cross-tier
interference can be very detrimental specially in the direction from MeNBs towards SUEs due
to the difference in the transmitted power of the useful signal (from SeNB) and the interfering
signal (from MeNB) (see Fig. 1.2).

In contrast, non-co-channel deployments eliminate the cross-tier interference due to the use of
different bands among tiers. This comes at the cost of a possible reduction of the system spectral
efficiency. Even though, they are interesting from the point of view of operators because MeNBs
may keep on working as usual and traffic can be offloaded to the new underlying dense smallcell
network (SCN) [20–22]. In non-co-channel deployments, co-tier interference between SeNBs
can, however, become a major problem in concentrated clusters that serve hot-spot areas with
high user data traffic demands [23] (see Fig. 1.3).

Traditionally, frequency division duplex (FDD) is adopted at MeNBs, i.e. DL and UL
transmissions are duplexed in frequency domain. In FDD, the amount of band devoted for DL
and UL is fixed and equally divided. In contrast, time division duplex (TDD), where DL and
UL transmissions are duplexed in time domain, allows for asymmetric DL-UL allocations (i.e.
asymmetric distribution of resources to DL and UL transmissions). Thus, TDD provides higher
flexibility than FDD to adapt the system configuration to the UL/DL traffic asymmetries [24].
It is therefore more useful in scenarios where the amount of DL and UL traffic per cell varies
and dynamic adaptation is required.

The advantage of a new band for the SCN in non-co-channel deployments is that SeNBs can
operate in TDD so as to better match the UL/DL traffic asymmetries. Said traffic asymmetries
arise in SCN because the number of users that are expected to be served per SeNB is reduced and
hence the amount of DL and UL traffic per SeNB can vary over space and time more drastically
in SCNs than in conventional macrocell-based networks [25]. In addition to the higher flexibility
for UL/DL traffic asymmetries adaptation, TDD allows exploiting the reciprocity of UL and DL
propagation channels to design advanced interference management techniques through the use
of MIMO precoding. This allows improving the performance of the TDD SCN and reducing the
channel feedback signaling needed as compared to the FDD case [24].

Anyway, both co-channel and non-co-channel deployments in MIMO dense HCNs have to
deal with some kind of interference. Thus, advanced interference management techniques acquire
a crucial role in future cellular systems.

1.2 Interference Management: Approaches and Domains

In a general multi-cell multi-user cellular system with full reuse of resources, two types of inter-
ference might appear (see Fig. 1.4):

• intra-cell interference: interference caused due to the simultaneous transmission (re-
ception) of a BS towards (from) multiple users on the same time/frequency resource, and

• inter-cell interference: interference generated among different BSs and/or UEs asso-
ciated to different BSs due to the simultaneous transmission (reception) on the same
time/frequency resource.
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Figure 1.4: Inter-cell and intra-cell interference in multi-cell multi-user scenarios.

Remark 1.4. The present work gives special attention to inter-cell interference management
for dense BSs deployments, but intra-cell interference is also considered whenever within-cell
multi-user transmissions are appointed.

The focus on inter-cell interference management is due to the following reasons:

1. The upcoming network densification with heterogeneous BSs imposes that the main source
of interference in future cellular systems is inter-cell interference. Two kinds of inter-cell
interference arise in dense HCNs (as described in Section 1.1):

• cross-tier interference and
• co-tier interference.

2. The co-channel deployment in dense HCNs, where BSs employing different transmit pow-
ers coexist in the same band (see Fig. 1.2), introduces high-levels of inter-cell interference
which predominate over intra-cell interference owing to the differences between the trans-
mitted powers at MeNBs and SeNBs (e.g. high-level of inter-cell interference is received
at SUEs from MeNBs, as MeNBs transmit with higher power than SeNBs).

3. A commonly adopted radio access technology in communication systems is orthogonal
frequency division multiple access (OFDMA), which is employed in DL transmission
of 3GPP LTE and LTE-A systems [2], in both UL and DL of IEEE 802.16m advanced
WiMAX [26], and is one of the major candidates for different use cases of future 5G
systems [27]. In OFDMA-based networks, the intra-cell users are assumed to be orthogonal
to each other and the primary source of interference is inter-cell interference.

4. Under a flexible TDD system where each BS can decide its duplexing transmission pat-
tern, i.e. switching instants between DL and UL transmissions, new types of inter-cell
interference appear in the network (see Fig. 1.4.(b)) [19]:

• DL-to-UL interference: interference created by a BS transmitting in DL towards
another BS that is receiving in UL, and
• UL-to-DL interference: interference created by a UE transmitting in UL towards

another UE that is receiving in DL.

These inter-cell interference predominate over intra-cell interference due to the likely line-
of-sight (LOS) conditions of neighboring BSs and because of the differences between the
transmitted power at UEs and BSs. The most harmful interference is DL-to-UL inter-
ference, while UL-to-DL interference is statistically negligible (UEs should be in short
distance to be interfered) but when it appears it can also seriously harm the transmission.
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Figure 1.5: Approaches and domains for interference management.

In next sections we describe the approaches and domains for interference management (see
Fig. 1.5)3, as well as the mechanisms that allow them and the optimizations that can be em-
ployed. As BSs and users can act either as transmitters (TXs) or as receivers (RXs), depending
if they are operating in DL or UL, we refer to general TXs/RXs.

1.2.1 Approaches

The approaches to treat interference can be classified in five groups (see Fig. 1.5.(a)):

• Ignore: generation/reception of interference is simply ignored. It can be adopted at
TX and/or RX side. At TX side, no interference management is done (e.g. maximum-
ratio transmission (MRT) beamformer [28]). At RX side, interference is simply treated as
additive noise (e.g. maximum ratio combining (MRC) receiver [29]).

• Avoid: the TX avoids the generation of interference through the orthogonalization of the
transmit resources. It is adopted at TX side and applies both to single-cell and multi-cell
scenarios. It is useful when the RX is equipped with low-complexity receive filters that
dispose of little or none interference rejection capabilities. For the single-cell multi-user
case, resources are orthogonalized among different RXs to avoid intra-cell interference.
Examples are time division multiple access (TDMA), frequency division multiple access
(FDMA) and code division multiple access (CDMA), which use orthogonal time resources,
frequency resources or codes, respectively. In the multi-cell case, orthogonalization of
time/frequency resources among the different TXs is required to avoid inter-cell interfer-
ence. So, TDMA/FDMA/CDMA among TXs do also apply. The distribution of resources
among TXs can follow either static or dynamic assignments. Examples of static assign-
ments are the frequency reuse-n (FR-n) scheme, where the total bandwidth is partitioned
into n subsets and each one is assigned to one TX, or the fractional frequency reuse (FFR)
scheme [30, 31], where the total bandwidth is partitioned such that (i) cell-edge users of
neighbor TXs do not interfere with each other and (ii) interference received by (and cre-
ated by) cell-interior users is reduced. In the dynamic assignment case, the distribution of
resources among TXs is dynamically optimized [32]. Hence, it provides higher flexibility
to adapt the distribution to the actual channel conditions, but coordination among TXs
is required to determine the specific time/frequency resources to be used by each TX.

• Cancel4: the generated/received interference is canceled out, not through the use of
different resources but through the exploitation of signal processing and multi-antenna

3This is a classification made by the author. Alternative classifications and definitions can be found elsewhere.
4Cancel approach is also known as ’reject’ approach when referring to cancellation at the RX side.



8 Chapter 1. Introduction

techniques. It can be adopted at TX and/or RX side and applies both to single-cell
and multi-cell scenarios. At TX side, the generated interference can be totally canceled
through linear beamforming if there are enough antennas (e.g. zero-forcing (ZF) scheme,
which allows setting zeros towards specific spatial directions [33,34]) or partially canceled
through non-linear precoding (e.g. dirty paper coding (DPC) scheme [35] and Tomlinson-
Harashima precoding (THP) [36], i.e. the practical and suboptimal DPC variant, where
interference for some users are totally canceled out while others are not [37]). At RX
side, the RX has capabilities to cancel out the received interference through two main
approaches: direct rejection based on linear beamforming (e.g. ZF receiver or interference
rejection combining (IRC) receiver [29]) or interference decoding followed by subtraction
(e.g. successive interference cancellation (SIC) receiver [29]), which requires knowledge of
codebook and modulations used by the interferer and achieves a partial cancellation (simi-
larly as the DPC scheme for transmission). From a system level point of view, interference
cancellation techniques require coordination among the different TXs/RXs and establish
a clear trade-off between the degrees of freedom for interference cancellation and the avail-
able ones for useful signal transmission/reception. Therefore, two kinds of interference
cancellation arise: total cancellation, where all the generated/received interference is can-
celed, or partial cancellation, where only a part of the generated/received interference is
canceled while degrees of freedom are reserved for useful signal transmission/detection.

• Reduce: TXs coordinate their transmit strategy so as to reduce the level of received
interference. It is adopted at TX side and applies to multi-cell scenarios. The TX does
not avoid or cancel out interference but facilitates the rejection at the RXs. In this case
it is important to maximize some system performance metric and hence optimize the
interference distribution so as to minimize its impact. Examples of interference reduction
are: power control (where the transmitted power is adjusted in a coordinated manner
among TXs), coordinated scheduling and coordinated beamforming (where decisions on
the user scheduling or transmit beamforming are done in a coordinated manner so as to
maximize a system utility function and reduce interference) (known as coordinated multi-
point coordinated scheduling/coordinated beamforming (CoMP CS/CB) in LTE-A) [38],
signal-to-leackage-and-noise ratio (SLNR) precoding [39], Pareto optimal beamforming
[40–42], and interference alignment (IA) [43], among others.

• Exploit: interference is converted into useful signal through the cooperation5 (or joint
transmission/reception) of TXs/RXs [44]. It can be adopted at TX and/or RX side and
applies to multi-cell scenarios. When TXs perform a joint transmission to serve a user,
they act as a single big TX with geographically separated antennas. Conversely, when
RXs perform a joint reception to receive from a user, they act as a single big RX with
geographically separated antennas. Therefore, this approach requires tight channel state
information (CSI), synchronization control, as well as data sharing of useful data messages
among the TXs/RXs that perform the joint transmission/reception to exploit interfer-
ence. An example of transmit cooperation is network MIMO [45], which is also known as
coordinated multi-point joint transmission/joint reception (CoMP-JT/JR) in LTE-A [38].

5Through this Ph.D. dissertation we make a clear distinction between transmit coordination and transmit
cooperation. Transmit cooperation refers to a joint transmission (i.e. same data is transmitted from multiple BSs)
while transmit coordination refers to any kind of coordination among BSs (at the control-plane but without data
sharing) to adjust the BS transmit strategy. Thus, coordination can be understood as control-plane coordination
among BSs while cooperation refers to control-plane plus data-plane coordination between BSs.
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Table 1.1: Some Well-Known Techniques for Intra-Cell and Inter-Cell Interference Management.

Approach Applies at Intra-cell interference Inter-cell interference

Ignore TXs/RXs MRT [28], MRC [29] MRT [28], MRC [29]

Avoid TXs TDMA, FDMA, CDMA
TDMA, FDMA, CDMA, FR-n,
FFR [30–32], ICIC [46]

Cancel TXs/RXs

linear: ZF [33,34], IRC [29]
non-linear: DPC [35,37], THP [36],
SIC [29,37]

linear: multi-cell ZF [47], IRC [29]
non-linear: multi-cell DPC [48,49],
SIC [29,37]

Reduce TXs not applicable

CoMP-CS/CB [12,38,50,51],
SLNR [39], Pareto optimal [40–42],
IA [43,52–55], eICIC [56–58]

Exploit TXs/RXs not applicable
CoMP-JT/JR (or network-MIMO)
[38,44,45,50,59,60]

Table 1.1 summarizes some existing techniques in the literature for intra-cell and inter-cell
interference management, separately, classified according to the different approaches.

Depending on whether interference management approaches at TX sides and RX sides are
combined or not, different levels of collaboration are obtained:

• Isolated RX-side (or TX-side) interference management : interference management ap-
proaches are only applied at RX sides (or TX sides).

• Network-side collaboration: interference management approaches at TX sides and RX sides
are properly combined.

Ideally, interference management approaches should be properly combined so as to obtain a
network-side collaboration, e.g. we should take into account that if a specific RX has capabilities
for interference cancellation then there is no need to do so at the TX side.

1.2.2 Domains

There are multiple domains to tackle interference (see Fig. 1.5.(b)):

• space-domain (e.g. MIMO, beamforming),

• frequency-domain (e.g. frequency allocation),

• time-domain (e.g. time allocation),

• user-domain (e.g. scheduling of users),

• power-domain (e.g. transmit power control),

• code-domain (e.g. code assignation in CDMA-based systems),

• modulation-domain6 (e.g. proper or improper Gaussian signaling), and

• transmit direction-domain (i.e. selecting transmission in DL or in UL).

In MIMO systems, the space-domain acquires a special role. Many leading concepts for
interference management rely on it. Even though, it may be properly combined with the others.

6As modulation-domain we refer to the domain that allows treating in a different manner the signal and the
complex conjugate of the signal. More details are given in Section 1.4.5.
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Table 1.2: Mechanisms Required for Inter-Cell Interference Management in each Approach.

Approach Mechanism

Ignore -

Avoid TXs coordination

Cancel TXs/RXs coordination

Reduce TXs coordination

Exploit TXs/RXs cooperation

1.2.3 Mechanisms

In case of inter-cell interference management, there are two different mechanisms that allow the
implementation of the approaches presented in Section 1.2.1:

• Coordination: exchange of control-plane messages between TXs/RXs. Coordination
among TXs/RXs is required to perform the avoid, cancel, reduce and exploit approaches
for inter-cell interference management.

• Cooperation: exchange of control-plane messages and data-plane information between
TXs/RXs. Cooperation among TXs/RXs is needed to implement the exploit approach for
inter-cell interference management.

Table 1.2 includes the mechanisms (coordination/cooperation) required for inter-cell inter-
ference management in each of the approaches.

1.2.4 Optimization time frame

The interference management approaches described in Section 1.2.1 can be applied by following
two types of optimizations:

• Short-term optimization: instantaneous information of the network is available at TXs
and/or RXs (like instantaneous channel conditions or instantaneous load conditions) and
the optimization is performed and applied at the short-term.

• Long-term optimization: statistical information of the network is available at TXs and/or
RXs (like channel statistics or load statistics) and the optimization is performed in the
long-term7, hence not matching the instantaneous network conditions.

Remark 1.5. Among the previously presented approaches, domains, mechanisms, and optimiza-
tions, this doctoral thesis considers8:

• cancel approach at RXs,

• avoid/ reduce/ exploit approaches at TXs (specially, the reduce approach),

• space/ frequency/ time/ user/ power/ modulation/ transmit direction-domains (mostly, the
space domain),

• coordination/ cooperation mechanisms (with emphasis on coordination), and

• short-term/ long-term optimizations (with special focus on the short-term optimization).

7Long-term optimization involves optimization for several consecutive transmission time intervals (TTIs),
rather than dynamically performing the optimization at each TTI.

8The specific chapters of this work in which they are applied are detailed in Table 1.3 of Section 1.7.
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1.3 Interference Scenarios

The main scenarios considered for MIMO dense HCNs that are tackled in this Ph.D. dissertation
are (see Fig. 1.6):

• single-cell MIMO (both single-user and multi-user),

• multi-cell MIMO (both single-user and multi-user), and

• cooperative multi-cell MIMO (multi-user).

Single-user and multi-user refer, respectively, to the cases in which each BS serves a single-
user or has capabilities to serve multiple users simultaneously on the same time/frequency re-
source. In the multi-cell MIMO scenario, multiple BSs serve simultaneously one or multiple
users and hence they might interfere each other (see red dashed lines in Fig. 1.6.(c)-(d)).

In the cooperative multi-cell MIMO scenario, some BSs are allowed to cooperate through
a joint transmission (and hence exploit interference) while others generate interference among
them. Two approaches for joint transmission arise depending on how the BSs cluster for transmit
cooperation is performed (see Fig. 1.6.(e)-(f)): (i) BS-disjoint clustering, where clusters are
formed from the network-side perspective and each cluster is formed by a disjoint group of BSs,
and (ii) UE-centric clustering, where a cluster is defined per user and each BS can belong to
multiple clusters (see more details in Section 1.4.2).

Single-cell single-user MIMO 
(MIMO point-to-point with interference)

Particular 2-cell single-user MIMO
(MIMO Z-interference channel) 

Multi-cell single-user MIMO
(K-user MIMO interference channel)

Multi-cell multi-user MIMO

Cooperative multi-cell multi-user MIMO 
with BS-disjoint clustering for CoMP-JT

Cooperative multi-cell multi-user MIMO 
with UE-centric clustering for CoMP-JT

(a)

(e)

(c)

(b)

(f)

(d)

Figure 1.6: Interference scenarios addressed in this Ph.D. dissertation.
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Scenarios in Fig. 1.6 are useful to model dense HCNs and dense SCNs as follows:

• The particular 2-cell single-user MIMO (MIMO Z-interference channel) in Fig. 1.6.(b)
models the major cross-tier interference generated from a MeNB (that serves its MUE)
towards a SUE (served by the SeNB) in co-channel deployments of HCNs (see Fig. 1.2).

• The multi-cell single/multi-user MIMO scenarios in Fig. 1.6.(c)-(d) are useful to model
dense SCNs in non-co-channel deployments (see Fig. 1.3), where significant interference
arises in many spatial directions due to the dense deployment of SeNBs.

• The cooperative multi-cell multi-user MIMO scenario with BS-disjoint clustering in Fig.
1.6.(e) can be adopted in regular network deployments formed by MeNBs, where static
clusters of MeNBs can be used for joint transmission.

• The cooperative multi-cell multi-user MIMO scenario with UE-centric clustering in Fig.
1.6.(f) can be employed in irregular network deployments, as the dense SCNs, where the
cluster formation is not trivial and having a cluster per user might be more convenient.

Let us finally recall that under flexible duplexing, the multi-cell single/multi-user MIMO
scenarios in Fig. 1.6.(c)-(d) apply but the role of TXs and RXs can correspond either to BSs or
to users depending on the transmit direction (i.e. DL or UL) that is selected at BSs.

1.4 Interference Management Techniques in 3GPP

Most advanced cellular network standardization, i.e. 3GPP LTE-A [2], considers four main
techniques to deal with interference in MIMO dense HCNs:

• enhanced inter-cell interference coordination (eICIC) [61],

• coordinated multi-point transmission (CoMP) [62],

• network assisted interference cancellation and suppression (NAICS) [29], and

• enhanced DL-UL interference management and traffic adaptation (eIMTA) [63].

1.4.1 eICIC

eICIC is the main technique considered in 3GPP to improve the spectral efficiency in DL trans-
missions (BSs to UEs) in co-channel deployments of HCNs (see Fig. 1.2). eICIC is based on
the avoid approach and time/user-domain coordination. It encompasses: (i) almost blank sub-
frames (ABS), subframes during which the MeNBs remain silent in the data-plane to avoid the
generation of cross-tier interference, and (ii) biased user association, in which a bias is added
over the reference signals measurements used for the user-BS association process so as to allow
offloading more users to the SeNBs [56,57].

3GPP has analyzed an improvement of eICIC, namely further eICIC (FeICIC), in order
to deal with interference not only at the data-plane level but also at the control-plane level.
FeICIC considers interference cancellation capabilities at UEs, and muting and reduced power
control at BSs for interference coordination (so cancel/reduce approaches and power/space-
domain coordination were added). However, although performance improvements are obtained
with eICIC/FeICIC based on ABS, the implicit muting of the MeNB in some sub-frames can
lead to a spectral efficiency loss.

Remark 1.6. This Ph.D. dissertation uses eICIC technique for comparison purposes in co-
channel HCN deployments.
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1.4.2 CoMP

CoMP is a potential technique for interference management that is based on the reduce/exploit
approaches and space/power/user-domain coordination. CoMP allows dealing with inter-cell
interference through the coordination of BSs [38, 50] and is proposed both for non-co-channel
and co-channel deployments in HCNs. 3GPP LTE-A mainly distinguishes between the following
categories of CoMP for DL transmission (i.e. BSs to UEs) [62]:

• CoMP coordinated scheduling-coordinated beamforming (CoMP-CS/CB): user data is only
available in one BS, the so-called serving BS, but user scheduling and beamforming de-
cisions are dynamically coordinated among the BSs in order to control and reduce the
interference level between different transmissions (reduce approach).

• CoMP dynamic point selection (CoMP-DPS): user data is available at multiple BSs in the
network but the serving cell is dynamically selected among them, such that the transmis-
sion is done from one BS at a time (reduce approach).

• CoMP joint transmission (CoMP-JT): user data is simultaneously transmitted from mul-
tiple BSs in the network, which cooperate in order to work as a single transmitter with
geographically separated transmit antennas. CoMP-JT has the benefit that it resolves the
interference created by the strongest interferers (exploit approach).

In the UL transmission (i.e. UEs to BSs), two categories of CoMP are considered [62]:

• CoMP coordinated scheduling (CoMP-CS): user scheduling and precoding selection deci-
sions are coordinated among the BSs that act as RXs (reduce approach).

• CoMP joint reception (CoMP-JR): multiple UEs transmit simultaneously to multiple BSs
and a joint reception is performed at BSs (exploit approach).

Remark 1.7. This doctoral thesis investigates advanced techniques for CoMP-CS/CB ( re-duce
approach) (both for DL and UL) and CoMP-JT ( exploit approach) (for DL).

CoMP-CS/CB

In CoMP-CS/CB, multiple geographically separated BSs coordinate their scheduling and/or
beamforming (i.e. precoding) decisions so as to maximize a global system utility function. The
BSs transmissions are coupled by interference and the system can be modeled by the general
multi-cell multi-user MIMO system (see Fig. 1.6.(d)): a system where multiple BSs, each
equipped with multiple antennas, wish to simultaneously send independent messages to its served
UEs while generating interference to unintended UEs.

CoMP-JT

In CoMP-JT multiple geographically separated BSs jointly transmit data to each user, such that
data has to be shared among the cooperative BSs. Although large theoretical capacity gains are
obtained, in practical implementations the gains of CoMP-JT are saturated with the number
of cooperating BSs due to the overhead required to acquire knowledge of the channel matrices,
the use of non-ideal backhaul links, and the impact of channel estimation errors [64]. For that
reason, the number of BSs in which CoMP-JT can take place (called the cluster size or CoMP
set) has to be limited. The setup can be modeled by the cooperative multi-cell multi-user
MIMO system shown in Fig. 1.6.(e)-(f) where, due to the limited number of BSs cooperating
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Figure 1.7: BSs clustering schemes for CoMP-JT.

for CoMP-JT and the multi-user scenario, interference is still present. In LTE-A the cluster
size is 3, being suitable for classical regular deployments [22]. However, in a dense and irregular
deployments of smallcells, the best BSs clustering and cluster size selection for CoMP-JT is a
problem still under discussion.

There are mainly two types of BSs clustering schemes for CoMP-JT (as shown in Fig. 1.7):

• BS-disjoint clustering: non-overlapping clusters of BSs are formed according to the
deployment and BSs in each cluster jointly serve all users within their coverage area.
This way, users at the cluster-edge still suffer from considerable inter-cluster interference
(see red dashed lines in Fig. 1.7.(a)) and other kinds of coordination might be needed.
Although it is useful for regular and classical BS deployments, it might not be the most
suitable scheme from the perspective of users (cluster-edge users still appear) and it might
not be adequate for dense and irregular deployments of BSs.

• UE-centric clustering: a cluster of BSs is selected per user. This way, clusters associated
to different users might overlap as they may share some BSs (see Fig. 1.7.(b)). In this
case, the concept of cluster-edge users disappears but not the interference in the network.
It is more adequate than the BS-disjoint clustering scheme from the perspective of the
users and also for dense and irregular deployment of BSs.

1.4.3 NAICS

NAICS enables more effective and robust RX-side interference cancellation and/or suppression
with possible network coordination. NAICS receivers are based on the cancel approach and
space-domain coordination. They are classified as [29]:

• Interference suppression receivers (e.g. linear minimum mean square error - interference
rejection combining (LMMSE-IRC), enhanced LMMSE-IRC, widely LMMSE-IRC),

• Maximum likelihood receivers (ML) (e.g. ML, reduced complexity ML),

• Interference cancellation receivers (e.g. linear code word level successive interference can-
cellation, symbol level interference cancellation, parallel interference cancellation).

Remark 1.8. Through the present work, we usually assume that NAICS with interference sup-
pression is applied at receivers. Transmit coordination strategies are derived by taking such as-
sumption into consideration. Therefore, a network-side collaboration (where interference man-
agement approaches at TX sides and RX sides are combined) is obtained as a result.
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1.4.4 eIMTA

eIMTA develops mechanisms for dynamic allocation of DL and UL subframes in LTE TDD so as
to match the instantaneous data traffic situation [63]. eIMTA is based on the avoid/cancel/reduce
approaches and time/user/power/transmit direction-domain coordination. Four different poten-
tial interference management schemes have been investigated for eIMTA:

• Cell clustering interference mitigation: BSs are grouped into clusters and all BSs within
each cluster use the same transmission pattern (i.e. all use either UL or DL in any sub-
frame), hence DL-to-UL and UL-to-DL interference are avoided within each cluster.

• Scheduling-dependent interference mitigation: each BS adjusts the scheduling strategies
(resource allocation, transmit power, transmit direction) considering the DL and UL chan-
nel quality, the DL-to-UL and UL-to-DL interference, and the traffic load.

• Interference mitigation based on eICIC/FeICIC : the interference mitigation schemes and
procedures from eICIC/FeICIC are reused to TDD UL-DL reconfiguration based on traffic
adaptation.

• Interference suppressing interference mitigation (ISIM): ISIM is considered for UL trans-
mission of either smallcells or macrocells hence allowing suppression of one or more of the
dominant DL-to-UL interfering signals, e.g. by LMMSE-IRC.

Remark 1.9. This Ph.D. dissertation focuses on eIMTA with scheduling-dependent interference
mitigation to develop traffic-aware and interference-aware resource management techniques for
flexible duplexing systems.

1.4.5 IGS

In addition to the previous mentioned techniques, we also consider the optimization of the
modulation-domain or, more explicitly, the use of improper Gaussian signaling (IGS). IGS
differs from the conventional proper Gaussian signaling (PGS) in the characterization of the
second order statistics: real and imaginary parts of IGS are correlated or have unequal power,
while those of PGS are uncorrelated with equal power. Therefore, IGS adds more flexibility to the
transmission since it allows exploiting the real and imaginary dimensions of the MIMO channel
more effectively. IGS arises naturally in communications, e.g. due to the gain imbalance between
the in-phase and in-quadrature components or due to the use of specific digital modulations that
exhibit improper characteristics. In this sense, IGS has also been analyzed in 3GPP LTE-A from
the receiver perspective when improper constellations are employed, see [22].

In order to generate and estimate IGS with linear processing, widely linear precoding (WLP)
and widely linear estimation (WLE) [65] need to be adopted at transmitter and receiver sides,
respectively, instead of the commonly used linear precoding (LP) and linear estimation (LE)
techniques that maintain the proper Gaussian distribution. WLE is a generalized concept used
in estimation theory whenever improper noise is encountered [66] and in systems that transmit
improper signal constellations [67]. On the other hand, WLP can be used to generate IGS even
when departing from proper signal constellations [68,69], but there are no studies analyzing the
benefits of coordinated WLP designs. This is studied in the present work.

Remark 1.10. In this doctoral thesis we develop advanced IGS schemes, derive new insights
on the use of IGS, and address the coexistence of linear and widely linear transceivers in the
network.



16 Chapter 1. Introduction

1.5 Relevant Challenges related to Reduce/Exploit Approaches

All interference management approaches presented in Section 1.2.1 (avoid/cancel/reduce/exploit)
require some kind of coordination among BSs (which can either act as TXs or RXs). In addition,
exploit approach (e.g. CoMP-JT and CoMP-JR in LTE-A) needs cooperation among BSs.
Among them, reduce and exploit approaches allow to significantly enhance the system spectral
efficiency and the cell-edge throughput from a theoretical point of view [50]. But, they impose
additional signaling overhead related to the coordination/cooperation mechanisms (see Section
1.2.3). Therefore, new requirements are imposed to the backhaul network, especially in terms of
latency, capacity, and synchronization precision between the coordinated/cooperative BSs [51].
These requirements are more stringent in the exploit approach.

From a practical point of view, in multi-cell environments under full reuse of resources, the
main challenges related to the implementation of short-term interference management techniques
based on reduce/exploit approaches are [50]:

• channel knowledge,

• synchronization,

• backhaul,

• clustering,

• centralized versus decentralized architecture.

1.5.1 Channel knowledge

Acquisition of channel knowledge (i.e. the channel matrices in MIMO systems) - referring to
both desired channels and the interfering channels - at the BSs is usually required to derive
interference management techniques based on reduce/exploit approaches.

Usually, in FDD systems, the channel is estimated at the UEs and then fed back to the BSs.
In this sense, standard channel estimation and feedback concepts can principally be extended
to estimate the channels observed at the UEs from multiple BSs and thus enable BSs coordina-
tion/cooperation [50]. However, estimating the channel matrices towards a high number of BSs
is questionable in practice due to the fact that weak links cannot be estimated accurately and
the involved pilot planning and feedback overhead may become prohibitive [64].

An alternative approach to acquire channel knowledge at BSs is through the exploitation of
propagation channel reciprocity in TDD systems [24]: as DL and UL channels are reciprocal
within the channel coherence time, the BSs can directly acquire channel knowledge from an
UL pilot-based transmission. In this case, as compared to FDD, the overhead required to
feed back the estimated channel at UEs and the effect of imperfect feedback links is avoided.
Nevertheless, perfect propagation channel reciprocity requires perfect hardware calibration of
the DL/UL radio-frequency (RF) chains at BSs and UEs [70, 71]. Effective channel reciprocity
calibration techniques have been proposed and analyzed in the literature [72, 73]. Although
perfect calibration can be achieved in practice at BSs (because the variability of surrounding
scenario is relatively slow and hardware performances tend to be stable), calibration at UEs may
be imperfect due to environmental variations caused by time, power and/or temperature [74].
Hence, non-ideal calibration might result in channel estimation errors.
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In practice, channel knowledge at TXs in dense networks implies:

• additional computational cost associated to the estimation of multiple channels,

• network planning required for pilot signals,

• performance loss due to imperfect estimation of the interfering channel matrices that are
estimated with a low SNR,

• performance loss due to imperfect feedback links (in case of FDD systems),

• additional overhead required to feed back the estimated channels (in case of FDD systems),

• performance loss due to imperfect calibration of the RF chains (in case of TDD systems).

To avoid performance losses due to imperfect channel knowledge (that can come due to
imperfect estimation, imperfect feedback in FDD, and imperfect calibration in TDD), robust
designs that consider statistical channel knowledge and statistical error characterization have
been analyzed in the literature [75,76].

Remark 1.11. This work goes a step further than existing interference management techniques
to overcome channel acquisition problems in practical implementations: we derive transmit coor-
dination strategies that do not require estimation of the interfering channel matrices while they
are still able to manage interference effectively (i.e. as a strategy with knowledge of all channel
matrices could do). Thus, the impairments/requirements listed above are reduced.

1.5.2 Synchronization

In multi-cell environments under full resource reuse, synchronization of coordinated/cooperative
BSs and coordinately/cooperatively served UEs in time and frequency is required. In particular,
strict requirements in clock synchronization, as well as compensation of signal timing offsets [77]
and carrier frequency offsets [78] are indispensable (e.g. signals from different BSs should arrive
at each UE synchronized in time and frequency) [79]. For cooperation, time synchronization at
the symbol level is required, while for coordination, time synchronization at the frame level is
needed. In BC (point to multi-point) and MAC (multi-point to point), time synchronization
may be readily achieved with the aid of traditional time synchronization techniques, which use
estimated signal time offsets to pre-compensate or post-compensate possible desynchronizations
at BSs and UEs, respectively. These techniques do not readily apply to systems comprised of
multiple BSs that transmit simultaneously to multiple UEs in the same resource. In this sense,
pre-compensation and post-compensation algorithms have been proposed in the literature to
synchronize the signals in a multi-point to multi-point communication links [80].

Remark 1.12. Through this Ph.D. dissertation, we assume that signals are synchronized in
time and frequency, which can be achieved with existing pre-compensation and post-compensation
techniques (e.g. [80]). However, the impact of imperfect synchronization as well as the non-
feasibility of synchronization in dense networks are topics of current interest.

1.5.3 Backhaul

Depending on the existing infrastructure of a mobile operator, both backhaul capacity and
latency requirements of CoMP-based techniques may be the main cost drivers or potential
stoppers of its theoretical capacity gains [6]. For that reason, 3GPP devoted a full study item [81]
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to analyze the effect of non-ideal backhaul (NIB) links for CoMP, in which results of the present
work were included. The study item aimed at evaluating the performance benefits and identifying
potential standardization impacts for candidate CoMP techniques involving multiple BSs with
NIB. It was observed that the gain of CoMP with NIB varies according to the deployment
scenario, backhaul delay, coordination scheme, resource utilization factor, and coordination size.
The main limiting factor was the backhaul delay: for 5 ms backhaul delay, gains of CoMP were
still observed and significant, while for 50 ms backhaul delay, the implementation of CoMP
techniques was detrimental for the system performance.

Remark 1.13. This Ph.D. dissertation overcomes backhaul requirements problems: we derive
decentralized transmit coordination strategies where all the information required for interference
management is obtained through the air-interface thus avoiding the information excess to be
exchanged among BSs through the backhaul.

Remark 1.14. High-speed backhaul links are crucial to implement transmit cooperation (i.e.
CoMP-JT with exploit approach) but, when it is adopted in this thesis, the cooperative cluster
size is limited to a small number of BSs.

1.5.4 Clustering

In case of the exploit approach (i.e. CoMP-JT), due to the large amount of required signaling
overhead and high-speed backhaul, only a limited number of BSs can cooperate in order to
keep the overhead manageable. This raises the question of which BSs should form cooperative
clusters in order to exploit the advantages of transmit cooperation at limited complexity. The
clusters can be either static or dynamic, conformed by disjoint BSs or overlapping BSs, formed
from the point of view of either the BS deployment (BS-centric) or the specific UEs to be served
(UE-centric). An overview is presented in [50]. In the literature, mainly two kinds of BSs
clustering schemes are adopted: BS-disjoint clustering (static, conformed by disjoint BSs, and
BS-centric) [59] and UE-centric clustering (dynamic, conformed by possibly overlapping BSs,
and UE-centric) [60,82] (see Section 1.4.2).

Remark 1.15. When the exploit approach is investigated in this work, we adopt a UE-centric
clustering scheme and derive procedures that jointly optimize the cluster formation and the pre-
coding design by setting a maximum cluster size per user (which could be imposed, e.g., by the
mobile network infrastructure based on the user position).

1.5.5 Centralized versus Decentralized Architecture

Interference management can be performed either in a centralized or decentralized manner,
depending on two distinct architectures.

In the centralized architecture, a network controller placed in the core network is responsible
for some network functions [83]. Generally, the network controller has to: i) gather CSI of all
users both in DL and UL and ii) perform the interference/resource management through the
optimization of a global objective function. The centralized-based concept is being considered
as a promising solution for 5G systems. However, as the number of BSs increases so does the
computation required for centralized management. Therefore, parallel management techniques
are still preferred to eliminate high computation loads in centralized architectures [84]. Anyway,
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the main drawback of the centralized interference/resource management techniques in dense
networks is the added cost of a network controller required to collect the CSI of all users and
the scalability of the solution.

An alternative solution for dense networks is the decentralized architecture. In this case,
each BS has its own baseband unit and there is no need for a network controller. However, so as
to being able to optimize a global objective function in a parallelized manner among BSs, BSs
have to exchange information (e.g. the CSI of some users). Decentralized interference/resource
management has the advantages of: scalability, robustness against failures, the inherent paral-
lelization related to decentralized implementation (and hence the associated distribution of the
computational load), and the lower backhaul requirements. Hence, it might be more suitable
for dense and irregular networks.

Remark 1.16. Through this doctoral thesis, both centralized and decentralized architectures are
considered. Special attention is given to the decentralized case due to its suitable application to
dense networks.

1.6 Mathematical Tools and Knowledge

The completion of this thesis has required knowledge of some important mathematical tools.
Also, knowledge of standardization and patent filing aspects has been needed.

The mathematical tools that are used through the Ph.D. dissertation are:

• Matrix algebra: Matrix algebra allows operating with matrices, including matrix func-
tions, matrix decompositions and factorizations, matrix structures and matrix equations.
It is a tool constantly used throughout this work because matrix variables naturally appear
due to the adoption of MIMO systems. A complete reference for matrix algebra can be
found in [85]. Additional material is available at [86,87].

• Matrix calculus: Matrix calculus refers to the tool needed to perform matrix differentials
and matrix derivatives. It is constantly used in the present work because matrix derivatives
are needed to solve (in closed-form) optimization problems that involve matrix variables. A
complete reference for complex-valued matrices is found in [88], which extends the matrix
derivatives for real-valued matrices that are introduced in [89]. An important summary
that is key for developing this Ph.D. dissertation is presented in [90], where derivatives
of complex-valued matrix functions with respect to a complex-valued matrix variable and
the complex conjugate of this variable are reviewed.

• Constrained optimization theory: Most problems of practical interest can be appro-
priately formulated as constrained optimization problems, whereby a function is minimized
subject to either one or multiple constraints. Constrained optimization theory refers to
the framework that allows solving these king of problems. In some cases, possibly after
some mathematical manipulations, the problems can be expressed in convex form and thus
they can be optimally solved through very efficient methods [91]. A complete reference
for convex optimization theory can be found in [92]. In other cases, it would be of inter-
est to decompose the problems through decomposition methods to achieve decentralized
and/or parallelized solutions that work iteratively. See overviews on how to decompose a
constrained optimization problem into separable parts in [93–95].
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• Improper Gaussian random processes: Improper Gaussian signals have special prop-
erties and second-order statistics. In wireless communications, the statistical properties
of the signals are very important because they might impact on the system performance,
and therefore a full understanding of these signals might be profitable. A complete char-
acterization of improper Gaussian signals, as well as the tools needed for estimating and
detecting them, can be found in [65]. Also, a new line of research has been recently
proposed to generate improper Gaussian signals and exploit their benefits in interference
scenarios [68]. An overview is presented in Appendix 2.A.

• Majorization theory: Majorization makes precise the vague notion that the components
of a real-valued vector y are ”more spread out” or ”less nearly equal” than are the compo-
nents of another real-valued vector x. In this sense, majorization theory provides a general
framework that allows comparing different solutions and solving complicated non-convex
constrained optimization problems. A complete reference for majorization theory can be
found in [96]. Also, interesting applications in wireless communications are analyzed in [97]
and [98]. An overview is provided in Appendix 2.B.

• Graph theory: Graph theory is a wide area of discrete mathematics that deals with
graphs (i.e. a mathematical structure consisting of a finite set of vertices and a finite set
of edges that connect the vertices). In includes a lot of different graph structures, analysis
of graph properties and graph coloring (i.e. assignation of colors to either the vertices or
the edges of a graph). To complete this Ph.D. dissertation, knowledge of graph properties,
recognizing special graph structures [99,100] and graph coloring algorithms [101] have been
needed. A complete reference for graph theory can be found in [102]. An overview of the
graph theory topics that are needed for this thesis is given in Appendix 7.A.

In addition to the mathematical tools, the following aspects have been needed to exploit the
results:

• 3GPP standardization: knowledge required to submit contributions to 3GPP LTE-A
standard and to send contributions to specific technical reports.

• Patent filing: knowledge required to write and file a patent and to follow the associated
processes.

1.7 Organization

Figure 1.8 shows the organization of this document. The technical contributions of this thesis
are included in Chapters 2-7, which are structured in three blocks:

• development of advanced signaling schemes (Chapter 2),

• design of transmit coordination strategies (Chapters 3-4-5), including transmit coor-
dination and transmit cooperation as well as signaling coexistence, and

• analysis of traffic-aware duplexing techniques (Chapters 6-7).

In the advanced signaling block, i.e. Chapter 2, we study advanced signaling schemes (in
particular, the use of IGS) and analyze its potential benefits for MIMO interference-limited
scenarios (including co-channel HCNs). The employed approaches and optimized domains are:
reduce approach at TXs, cancel approach at RXs, space domain (through MIMO precoding
design) and modulation domain (though the use of PGS/IGS). Chapter 2 serves as an input for
Chapter 5, where the coexistence of different signaling schemes is investigated.
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Figure 1.8: Organization of this Ph.D. dissertation.

In the transmit coordination block, the thesis develops transmit coordination and transmit
cooperation strategies for interference management.

First, Chapter 3 analyzes transmit coordination for multi-cell multi-user MIMO scenarios.
It presents decentralized coordinated precoding designs assuming either perfect or imperfect
channel state information, and analyzes its application to dense SCNs. The adopted approaches
and optimized domains are: reduce approach at TXs (BSs), cancel approach at RXs (UEs),
space/power/user domains (through MIMO precoding design). Chapter 3 serves as an input
for Chapters 4, 5, and 6, which do all exploit the interference-cost concept for interference
management presented in Chapter 3.

Second, Chapter 4 investigates the joint implementation of transmit coordination and trans-
mit cooperation for cooperative multi-cell multi-user MIMO scenarios. Cooperation among a
limited number of BSs (which form a cluster) is assumed and coordination between clusters is
adopted (for which the concepts presented in Chapter 3 are used). In this sense, the joint design
of decentralized coordinated precoding and BSs clustering is analyzed by following a UE-centric
clustering scheme (see Fig. (1.7)). The proposed technique can be easily adopted when using a
BS-centric clustering scheme. The used approaches and optimized domains are: reduce/exploit
approaches at TXs (BSs), cancel approach at RXs (UEs), space/power/user domains (through
MIMO precoding design).

Finally, Chapter 5 develops transmit coordination strategies to address the coexistence
of linear and widely linear transceivers in multi-cell MIMO scenarios. The heterogeneous
transceiver deployment arises due to the use of different signaling schemes: PGS and IGS,
which are analyzed in Chapter 2. In this sense, Chapter 5 derives coordinated precoding de-
signs and generalizes the results in Chapter 3 for an heterogeneous transceiver deployment. The
addressed approaches and optimized domains are: reduce approach at TXs, cancel approach
at RXs, space/power/user domains (through MIMO precoding design) and modulation domain
(through the use of PGS/IGS).
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In the traffic-aware duplex block, advanced traffic-aware and interference-aware resource
management techniques are investigated for flexible duplexing in TDD multi-cell MIMO scenar-
ios. We aim at making a better use of the available time/frequency resources by taking into
account the DL/UL per-BS data traffic asymmetries that arise in dense networks.

Short-term resource management is included in Chapter 6, where advanced 5G system
architectures and frame structures are assumed to implement flexible TDD. Algorithms for the
joint optimization of user scheduling, transmit direction selection, and precoding design are
developed assuming instantaneous knowledge of the channel conditions and average knowledge
of the DL/UL traffic asymmetry conditions. The adopted approaches and optimized domains
are: reduce approach at TXs, cancel approach at RXs, space/power/user /transmit direction
domains (through MIMO precoding design) and time domain.

In contrast, Chapter 7 analyzes long-term resource management, where the distribution of
frequency resources among BSs is done in the long-term hence being independent of the specific
users to be served but dynamic enough to follow significant variations on the DL/UL traffic
load conditions per-BS. Differently from previous chapters, the proposed techniques focus on
the avoid approach at TXs and the optimized domains are time/frequency/transmit direction.

Let us recall that Chapters 2 and 5 refer to general TXs/RXs. Chapters 3 and 4 focus on
the DL transmission, and hence TXs are BSs and RXs are UEs. Finally, in Chapters 6 and 7
the role of TXs and RXs can be either adopted at BSs or at UEs owing to the flexible duplexing.

For each chapter of the present document where technical contributions are reported, Table
1.3 details the approaches (at TXs and at RXs), mechanisms, optimization, and domains for
interference management (see detailed description in Section 1.2) that are considered therein.

Table 1.3: Approaches, Mechanisms, Optimization, and Domains for Interference Management Adopted
on each Chapter of the Ph.D. Dissertation.

Chapter TX app. RX app. Mechanism Optimiz. Domain

2: Improper Signaling reduce cancel coordination short-term
space,
modulation

3: Transmit Coordination reduce cancel coordination short-term
space, power,
user

4: Transmit Cooperation
reduce,
exploit

cancel
coordination,
cooperation

short-term
space, power,
user

5: Signaling Coexistence reduce cancel coordination short-term
space, power,
user, modulation

6: Short-term Management reduce cancel coordination short-term
space, time, user,
power, direction

7: Long-term Management avoid - coordination long-term
frequency, time,
direction

Table 1.4 contains the challenges of interference management (see Section 1.5) that are
addressed on each technical chapter. The architecture considered on each one is also detailed.
Let us remark that: i) challenges described in Section 1.5 mainly apply for the reduce/exploit
approaches (i.e. they are not addressed in Chapter 7), ii) synchronization is a requirement for
all the techniques presented in this doctoral thesis (hence not included in Table 1.4), and iii)
clustering challenge only applies for the exploit approach (i.e. Chapter 4).
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Table 1.4: Challenges of Interference Management Addressed on each Chapter of the Ph.D. Dissertation.

Chapter Channel knowledge Backhaul Clustering Architecture

2: Improper Signaling
√ √

decentralized

3: Transmit Coordination
√ √

decentralized

4: Transmit Cooperation
√ √ √

decentralized

5: Signaling Coexistence
√ √

decentralized

6: Short-term Management centralized

7: Long-term Management centralized

Table 1.5: Mathematical Tools Required for each Chapter of the Ph.D. Dissertation.

Chapter
Matrix
algebra

Matrix
calculus

Optimi-
zation

Improper
signals

Majori-
zation

Graph
theory

2: Improper Signaling
√ √ √ √ √

3: Transmit Coordination
√ √ √

4: Transmit Cooperation
√ √ √

5: Signaling Coexistence
√ √ √ √

6: Short-term Management
√ √ √

7: Long-term Management
√ √

Table 1.6: Research Contributions Produced from each Chapter of the Ph.D. Dissertation.

Chapter Journal Confer. Patent WG/TR Project

2: Improper Signaling 1 1 - -/- Tropic D312

3: Transmit Coordination 1 1 1 7/1 Tropic D322 and D61

4: Transmit Cooperation - 2 - -/- Tropic D322

5: Signaling Coexistence 1 1 - -/- Tropic D322

6: Short-term Management 1 1 - -/- Huawei D13

7: Long-term Management - 1 - -/- Huawei D13

Table 1.5 specifies the mathematical tools (see Section 1.6) that have been required to derive
the contributions on each technical chapter: matrix algebra, matrix calculus (matrix differentia-
tion), constrained optimization theory, improper Gaussian random vectors, majorization theory,
and graph theory.

Table 1.6 summarizes the research contributions that have been produced from each tech-
nical chapter in terms of publication of journal articles, publication of conference papers, filed
patents, contributions to 3GPP working groups (WG) and 3GPP technical reports (TR), and
contributions to projects. The specific details can be found in Section 1.8.

Finally, let us note that all the proposed techniques are evaluated in a Matlabr [103] sim-
ulator compliant with 3GPP LTE-A evaluation methodology specifications [104]. They are
compared with the already existing solutions in the literature and with the techniques available
in 3GPP documents.
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1.8 Research Contributions

1.8.1 Publication of journal/conference papers

The research contributions to journals and conferences that have been derived from each tech-
nical chapter of this Ph.D. dissertation are detailed in the following.

Chapter 2

The main results in this chapter are regarding the demonstration of the strict superiority of IGS
over conventional PGS and its application to MIMO interference scenarios. They have been
published in one journal paper and one conference paper:

[J1] S. Lagen, A. Agustin, J. Vidal, ”On the Superiority of Improper Gaussian Signaling
in Wireless Interference MIMO scenarios”, IEEE Trans. on Commun., vol. 64, no. 8,
pp. 3350-3368, Aug. 2016. doi: 10.1109/TCOMM.2016.2584601.

[C1] S. Lagen, A. Agustin, J. Vidal, ”Improper Gaussian signaling for the Z-Interference
Channel”, IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP),
Florence (Italy), May 2014. doi: 10.1109/ICASSP.2014.6853775.

Chapter 3

The main results in this chapter involve the derivation of decentralized coordinated precoding
strategies for interference management in dense multi-cell multi-user scenarios and the analy-
sis of its practical implementation in 3GPP-based networks. They have produced one patent
application, several contributions to 3GPP LTE, one journal paper and one conference paper:

[J2] S. Lagen, A. Agustin, J. Vidal, ”Decentralized Coordinated Precoding for Dense TDD
Small Cell Networks”, IEEE Trans. on Wireless Commun., vol. 14, no. 8, pp. 4546 -
4561, Aug. 2015. doi: 10.1109/TWC.2015.2422704.

[C2] S. Lagen, A. Agustin, J. Vidal, ”Decentralized Beamforming with Coordinated Sound-
ing for Inter-Cell Interference Management”, European Wireless 2014, Barcelona (Spain),
May 2014.

Chapter 4

The main results in this chapter refer to the development of decentralized techniques for interfer-
ence coordination among clusters of BSs where transmit cooperation (i.e. CoMP-JT) is applied.
As a result, two conference papers have been obtained (being one related to the BS-disjoint
clustering and the other to the UE-centric clustering for CoMP-JT):

[C3] S. Lagen, A. Agustin, J. Vidal, ”Distributed Inter-Cluster Interference Management
for CoMP-based cellular networks”, IEEE Global Commun. Conf. (GLOBECOM),
Atlanta (USA), Dec. 2013. doi: 10.1109/GLOCOM.2013.6831733.

[C4] S. Lagen, A. Agustin, J. Vidal, B. Soret, K. I. Pedersen, ”Distributed User-Centric
Clustering and Precoding Design for CoMP Joint Transmission”, IEEE Global Com-
mun. Conf. (GLOBECOM), San Diego (USA), Dec. 2015. doi: 10.1109/GLO-
COM.2015.7417090.



1.8. Research Contributions 25

Chapter 5

The main results in this chapter include the design of transmit coordination strategies to address
the coexistence of linear and widely linear transceivers (which correspond to different signaling
schemes) in multi-cell scenarios. One journal paper, which addresses the coexistence of WLP
and LP transmitters for sum-rate maximization, and one conference paper, which deals with
the coexistence of WLE and LE receivers for sum mean square error (MSE) minimization, have
been published:

[J3] S. Lagen, A. Agustin, J. Vidal, ”Coexisting Linear and Widely Linear Transceivers in
the MIMO Interference Channel”, IEEE Trans. on Signal Processing, vol. 64, no. 3,
pp. 652 - 664, Jan. 2016. doi: 10.1109/TSP.2015.2489604.

[C5] S. Lagen, A. Agustin, J. Vidal, ”Decentralized Interference Management with Im-
proper Gaussian Signaling for MIMO-IC”, IEEE Global Commun. Conf. (GLOBE-
COM), 3rd Int. Workshop on Emerging Technologies for 5G Wireless Cellular Net-
works, Austin (USA), Dec. 2014. doi: 10.1109/GLOCOMW.2014.7063526.

Chapter 6

The main results in this chapter are related to the development of traffic-aware and interference-
aware resource management techniques for flexible TDD systems in dense networks, where the
transmit direction selection, user scheduling and transmit precoding design are jointly optimized.
They have produced one journal paper (that contains the MIMO case) and one conference paper
(that considers the SISO case):

[J4] S. Lagen, A. Agustin, J. Vidal, ”Joint User Scheduling, Precoder Design and Transmit
Direction Selection in MIMO TDD Small Cell Networks”, under minor revision at IEEE
Trans. on Wireless Commun., Oct. 2016.

[C6] S. Lagen, A. Agustin, J. Vidal, ”Joint User Scheduling and Transmit Direction Selec-
tion in 5G TDD Dense Small Cell Networks”, IEEE Int. Symp. on Personal, Indoor
and Mobile Radio Commun. (PIMRC), Valencia (Spain), Sep. 2016.

Chapter 7

The main results in this chapter are regarding the derivation of long-term traffic-aware and
interference-aware resource management schemes for dense OFDMA-based networks. They have
resulted in one conference paper:

[C7] S. Lagen, O. Muñoz, A. Pascual-Iserte, J. Vidal, A. Agustin, ”Long-term Provisioning
of Radio Resources Based on their Utilization in Dense OFDMA Networks”, IEEE Int.
Symp. on Personal, Indoor and Mobile Radio Commun. (PIMRC), Valencia (Spain),
Sep. 2016.
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1.8.2 Other journal/conference papers

Although related but not included in the doctoral thesis, the author has contributed to the
publication of the following journal papers and conference papers that refer to different research
topics.

Benefits of CoMP-JT in relay-assisted transmissions

[J5] S. Lagen, A. Agustin, and J. Vidal, ”Network MIMO for downlink in-band relay
transmissions”, EURASIP Journal on Wireless Commun. and Networking, Jan. 2013.
doi: 10.1186/1687-1499-2013-13.

[C8] J. Vidal, A. Agustin, S. Lagen, E. Valera, O. Muñoz, A. G. Armada, M. Sanchez,
”Network-MIMO Backhauling for QoS-Constrained Relay Transmission”, IEEE Int.
Conf. on Acoustics, Speech and Signal Processing (ICASSP), Prague (Czech Republic),
May 2011. doi: 10.1109/ICASSP.2011.5947098.

[C9] A. Agustin, J. Vidal, S. Lagen, and E. Valera, ”Network MIMO for Downlink in-band
Relay Transmissions with Relaying Phases of Fixed Duration”, 19th European Signal
Processing Conf. (EUSIPCO), Barcelona (Spain), Sep. 2011.

Energy efficient communications and offloading techniques

[J6] A. Pascual-Iserte, O. Muñoz, S. Lagen, and J. Vidal, ”Energy Efficiency in Latency-
Constrained Application Offloading for Multiple Virtual Machines”, submitted to IEEE
Trans. on Vehicular Techn., Feb. 2016.

[C10] A. Agustin, S. Lagen, and J. Vidal, ”Energy Efficient Cell Load-aware Coverage Op-
timization for Small-Cell Networks”, IEEE Int. Conf. on Commun. (ICC), London
(United Kingdom), Jun. 2015. doi: 10.1109/ICC.2015.7248625.

Pilot design for channel estimation in dense networks

[C11] A. Agustin, S. Lagen, and J. Vidal, ”Channel Training Procedures for MIMO Inter-
fering Point-to-Multipoint Channel”, IEEE Global Commun. Conf. (GLOBECOM),
Austin (USA), Dec. 2014, doi: 10.1109/GLOCOM.2014.7037450.

Time synchronization in dense networks

[C12] A. Agustin, S. Lagen, and J. Vidal, ”Signal-Timing-Offset Compensation in TDD
SeNBs OFDM-based Networks”, submitted to IEEE Int. Conf. on Commun. (ICC),
Paris (France), May. 2017.

Massive machine type communications

[C13] S. Lagen, J. Garćıa, A. Agustin, and J. Vidal, ”Throughput, Delay and Energy Anal-
ysis of Finite-User Slotted Random Access with Feedback-free Collision Resolution”,
submitted to IEEE Int. Conf. on Commun. (ICC), Paris (France), May. 2017.

[J7] S. Lagen, A. Agustin, J. Vidal, and J. Garćıa, ”Throughput, Delay and Energy Anal-
ysis of Finite-User Slotted Random Access with Feedback-free Collision Resolution for
massive MTC”, in preparation, Oct. 2016.
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1.8.3 Patent applications

In connection with Chapter 3 of this document, a patent application was filed in the U.S. Patent
and Trademark Office on 6th August 2014, as U.S. Patent Application Serial No.: 14/452,968.
The details are as follows:

[P] S. Lagen, A. Agustin, J. Vidal, ”Methods and systems for decentralized interference
management in a multi-antenna wireless communication system”, U.S. Patent 14/452,968,
Aug. 6, 2014.

The patent has been accepted and is available at:
http://www.freepatentsonline.com/20150078186.pdf.

1.8.4 Contributions to 3GPP

As a result of the research included in Chapter 3 of this Ph.D. dissertation, several contributions
to 3GPP LTE release 12 have been produced. They were addressed to the technical specification
group on radio access network (RAN) - working group 1 (i.e. TSG-RAN WG1)9:

[lte1] R1-133213, Beamforming with Coordinated Sounding (BF-CoS) exploiting TDD chan-
nel reciprocity, 3GPP TSG-RAN WG1 #74, Barcelona, Spain, 19-23 August 2013.

[lte2] R1-133214, Coordinated Sounding for CoMP BF (CoMP BF-CoS) exploiting TDD
channel reciprocity, 3GPP TSG-RAN WG1 #74, Barcelona, Spain, 19-23 August 2013.

[lte3] R1-134291, Coordinated Sounding for CoMP BF (CoMP BF-CoS) exploiting TDD
channel reciprocity, 3GPP TSG-RAN WG1 #74bis, Guangzhou, China, 7-11 October
2013.

[lte4] R1-135239, Coordinated Sounding for CoMP BF (CoMP BF-CoS) including calibration
information, 3GPP TSG-RAN WG1 #75, San Francisco, USA, 11-15 November 2013.

[lte5] R1-140510, Analysis and proposals for the enhancement of X2 signaling, 3GPP TSG-
RAN WG1 #76, Prague, Czech Republic, 10-14 February 2014.

[lte6] R1-141234, Signaling of PDSCH and PUSCH usage for CoMP Hypothesis and En-
hanced RNTP, 3GPP TSG-RAN WG1 #76bis, Shenzhen, China, 31 March - 4 April
2014.

[lte7] R1-141625, Signaling of SRS scheduling for CoMP Hypothesis, 3GPP TSG-RAN WG1
#76bis, Shenzhen, China, 31 March - 4 April 2014.

In addition, although related but not included in the present work, the author has partici-
pated in the following contributions to 3GPP LTE release 11 and 12 (that were also intended
to TSG-RAN WG1):

[lte8] R1-112096, Proposal of a CoMP study focused on relay-based networks, 3GPP TSG-
RAN WG1 #66, Athens, Greece, 22-26 August 2011.

[lte9] R1-133215, Collaborative distributed scheduling, 3GPP TSG-RAN WG1 meeting #74,
Barcelona, Spain, 19-23 August 2013.

9The 3GPP specification work is done in technical specification groups (TSGs) and working groups (WGs).
There are four TSGs: GERAN, RAN, SA, and CT, each of which consists of multiple WGs [17].

http://www.freepatentsonline.com/20150078186.pdf
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[lte10] R1-134292, Collaborative distributed scheduling, 3GPP TSG-RAN WG1 #74bis, Guang-
zhou, China, 7-11 October 2013.

[lte11] R1-135241, Collaborative distributed scheduling - updated information, 3GPP TSG-
RAN WG1 #75, San Francisco, USA, 11-15 November 2013.

[lte12] R1-135241, Assessment of differences between centralized and knowledge-based dis-
tributed scheduling, 3GPP TSG-RAN WG1 #75, San Francisco, USA, 11-15 November
2013.

The contributions R1-135239 and R1-135241 were both included in a technical report (TR)
of 3GPP LTE release 12, whose details are:

[TR] 3GPP TR 36.874, 3rd Generation Partnership Project, Technical Specification Group
Radio Access Network, ”Coordinated multi-point operation for LTE with non-ideal
backhaul (Release 12)”, v.12.0.0, Dec. 2013.

The technical report can be found online at: http://www.3gpp.org/dynareport/36874.htm.

1.8.5 Contributions to projects

TROPIC project

The results obtained in Chapters 2-3-4-5 of this doctoral thesis have allowed the contribution
to the collaborative project ICT-318784 TROPIC: ’Distributed computing, storage and radio
resource allocation over cooperative femtocells’, which aims at exploiting the convergence of
smallcells network infrastructure and cloud computing paradigms for virtualization/distribution
of applications and services. The TROPIC project was funded by the European Comission
under the 7th framework program and had a duration from September 2012 to April 2015.

More specifically, the author has contributed to the following deliverables of the project:

• D21: Scenarios and requirements

• D312: MP2MP communication systems for LTE-A HeNB deployments

• D321: Cooperative and distributed interference estimation-detection

• D322: HeNB network coordination

• D61: Performance assessment of the femto-clouding

• D71: Dissemination report

• D72: Standardization report

• D73: IPR management report

The documents are available at: http://ict-tropic.eu/.

Let us remark that, within the framework of the TROPIC project, one of the techniques
developed in this thesis (in particular, in Chapter 3) was implemented in a real-time simulator
that emulates a complete protocol stack (including the LTE stack for the radio links and the IP
stack for the network links). The details can be found in deliverable D61.

http://www.3gpp.org/dynareport/36874.htm
http://ict-tropic.eu/
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Huawei-UPC Cooperation

Some of the research work presented in Chapters 6-7 of this Ph.D. dissertation have been carried
out within a research and development cooperative project between Huawei and UPC, which
was entitled: ’Study of methods leading to a more efficient utilization of frequency bands in
asymmetric traffic conditions’. The project was funded by Huawei and had a duration from
May 2015 to May 2016.

The author has contributed to all the deliverables of the project:

• D11: Traffic models and scenarios

• D12: Advanced use of paired bands for asymmetric traffic

• D13: Interference management in a multi-cell scenario

• D14: Time Synchronization and SIC implementation for TDD SeNBs deployed in the FDD
UL spectrum

• D21: IPR generation report

• D22: Dissemination report

The documents are not available owing to confidentiality reasons.

1.8.6 Keynote talks

In the context of the TROPIC project, the author gave a keynote talk at the TROPIC Train-
ing Workshop: ’Edge Cloud Empowered 5G Networks’. The talk was held in Rome (Italy) in
February 2015, and was entitled:

• PHY layer enablers to edge cloud assisted application offloading

In particular, the talk dealt with physical layer optimization to enable offloading of applications
to the edge cloud by means of enhancing the spectral efficiency in dense smallcell networks and
providing physical(PHY)-layer support to offloading techniques.

The slides can be downloaded from the project website: http://ict-tropic.eu/.

1.8.7 Research Appointment

From March to May 2015 the author did a 3-month research appointment at Nokia Networks
and Aalborg University in Aalborg, Denmark. As a result of the collaboration, the conference
paper [C4] related to Chapter 4 of the doctoral thesis arose.

http://ict-tropic.eu/




Chapter 2

Advanced Signaling Schemes

This chapter investigates the use of advanced signaling schemes. In particular, it exploits ma-
jorization theory tools to formally quantify the gains of improper Gaussian signaling (IGS) along
with widely linear transceivers as compared to conventional proper Gaussian signaling (PGS)
in interference-limited MIMO scenarios. The MIMO point-to-point channel with interference
(P2P-I) is analyzed, assuming that received interference can be either proper or improper. We
demonstrate that the use of the optimal IGS, when received interference is improper, strictly
outperforms (in terms of achievable rate and mean square error (MSE)) the use of the optimal
PGS when interference is proper. Then, these results are extended to two practical situations.
First, the MIMO Z-interference channel (Z-IC) is investigated, where a trade-off arises: with IGS
we could increase the achievable rate of the interfered user while gracefully degrading the rate of
the non-interfered user. Second, these concepts are applied to a two-tier heterogeneous cellular
network (HCN) where macrocells and smallcells coexist and multiple MIMO Z-IC appear.

The technical papers related to this chapter are:

[J1] S. Lagen, A. Agustin, J. Vidal, ”On the Superiority of Improper Gaussian Signaling in Wireless
Interference MIMO scenarios”, IEEE Trans. on Commun., vol. 64, no. 8, pp. 3350-3368, Aug.
2016. doi: 10.1109/TCOMM.2016.2584601.

[C1] S. Lagen, A. Agustin, J. Vidal, ”Improper Gaussian signaling for the Z-Interference Channel”,
IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Florence (Italy), May 2014. doi:
10.1109/ICASSP.2014.6853775.

This chapter is structured as follows. Section 2.1 contains the state of the art for IGS. The
main contributions of the chapter are detailed in Section 2.2. Section 2.3 presents the system
model for the use of IGS in the MIMO P2P-I, as well as the optimal signaling and the associated
transmission scheme. In Section 2.4, the superiority of IGS in the MIMO P2P-I is demonstrated
in terms of achievable rate and MSE. In Section 2.5, a practical improper-based scheme for the
MIMO Z-IC is proposed and evaluated. Then, the proposed scheme is applied and evaluated in
an HCN deployment in Section 2.6. Finally, concluding remarks are included in Section 2.7.

Appendix 2.A presents preliminaries for improper Gaussian random vectors. Preliminaries
for majorization theory are included in Appendix 2.B.
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2.1 State of the Art

It is well known that the statistical characteristics of the signals affect the maximum achievable
rate of a wireless communication. In this sense, conventional PGS has been shown to be optimal
in terms of capacity for the Gaussian MIMO P2P channel [105], for the Gaussian MIMO broad-
cast channel (BC) with DPC as the capacity achieving strategy and for the Gaussian MIMO
multiple access channel (MAC) [48,49]. Due to that, PGS is usually also assumed in multi-user
wireless communications. Nevertheless, recently, it has been shown that IGS, or circularly asym-
metric complex Gaussian signaling, is able to improve the achievable rate in interference-limited
scenarios [52,69,106].

The key difference between PGS and IGS is the characterization of the second order statistics:
while a proper Gaussian random vector x is fully specified by the covariance matrix Cx=E[xxH ]
under the zero-mean assumption, an improper Gaussian random vector x is characterized not
only by the covariance matrix but also by the pseudo-covariance matrix C̃x=E[xxT ], which
means that the improper Gaussian random vector x is correlated with its complex conjugate
x∗ [65,107]. Thus, the real and imaginary parts of an improper Gaussian random vector are cor-
related or have unequal power [65]. This adds more flexibility to the system, as it allows treating
in a different manner the real and imaginary parts of the random vectors. IGS arises naturally
in communications, e.g. due to the gain imbalance between the in-phase and in-quadrature
components or due to the use of specific digital modulations that exhibit improper character-
istics, such as binary phase shift keying (BPSK), Gaussian minimum shift keying (GMSK), or
continuous phase modulation (CPM).

It is shown in [108, 109] that optimality of PGS does not necessarily hold for the MIMO
BC when transceivers are restricted to be linear and that capacity gains can be obtained by
employing IGS because, in the absence of non-linear interference cancellation, the MIMO BC
becomes an interference-limited scenario [110]. The same applies in the Gaussian MIMO inter-
ference channel (IC), where IGS is able to improve the known achievable rates when interference
is treated as noise. For example, in [69] it is shown that for a fixed set of transmit covariance
matrices, the achievable rate of a specific user could be increased by optimizing the transmit
pseudo-covariance matrices. Even so, the capacity of the MIMO IC is still an open problem:
it is difficult to be analyzed when linear transceivers are considered due to the non-convexity
of the problem and, for that reason, performance gains with IGS in the MIMO IC have been
only shown in terms of degrees of freedom at high SNR [52,106,111,112] or in terms of capacity
and rate region in specific MIMO configurations [68,69,113]. In addition to the MIMO IC, IGS
has also been shown to be beneficial in other interference scenarios, as underlay cognitive radio
systems [114–117] or full-duplex systems [118,119].

In order to generate and estimate IGS with linear processing, widely linear precoding (WLP)
[69] and widely linear estimation (WLE) [65] need to be adopted at transmitter and receiver
side, respectively, instead of the commonly used linear precoding (LP) and linear estimation
(LE) techniques that maintain the proper Gaussian distribution. WLE is a generalized concept
used in estimation theory whenever improper noise is encountered [66] and in systems that
transmit improper signal constellations [67], as is already investigated in 3GPP LTE-A [22]. On
the other hand, WLP can be used to generate IGS even when departing from proper signal
constellations [108]. While WLE has been extensively studied in literature, the generation of
IGS through WLP to handle interference more effectively is a rather new line of research.
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2.2 Contribution

In this chapter we focus on gaining more insights on the use of IGS along with widely linear
transceivers for MIMO systems in interference-limited conditions. To do so we use the equiv-
alent composite real representation [105], whereby real and imaginary parts of the MIMO
channel are separated, and exploit majorization theory [96,97] to formally quantify the benefits.
We analyze the MIMO P2P channel with interference (MIMO P2P-I), in which a transmitter
(TX) equipped with M antennas wish to send information to a receiver (RX) equipped with N
antennas that is receiving noise-plus-interference.

The optimal signaling (PGS or IGS) and the associated transmit/receive scheme (linear or
widely linear) for the MIMO P2P-I are well known in the literature and can be obtained from
the minimization of any Schur-concave function of the MSE-matrix [98,120], like maximization
of the achievable rate or minimization of the MSE of the transmitted symbols. Their solutions
are determined by the statistics of the interference, which can be modeled either as a PGS or
IGS depending on the transmission strategy of the interferer: if interference is proper then the
optimal signaling is PGS, while if interference is improper then the optimal signaling is IGS. In
this sense, we focus on the following question:

Assuming the optimal signaling on each case, is it better to use IGS (and improper interfer-
ence) or to use PGS (and proper interference) in the MIMO P2P-I?

By using majorization theory tools (see [96,97]), we demonstrate that the use of IGS allows
obtaining a strict improvement in terms of achievable rate and MSE for M≥N and full rank
channel matrix. The proof sheds light on why the use of IGS is better. Then, we investigate
how to exploit these properties in different interference-limited scenarios.

On the one hand, we study the MIMO Z-IC [121], a two-transmitter two-receiver multi-
antenna interfering scenario where one of the receivers (RXB) just observes noise while the other
(RXA) receives interference. Certain situations in cellular networks can be modeled through the
MIMO Z-IC, as shown in Fig. 2.1 where RXA is in the cell-edge. Under the condition of treating
interference as noise, the optimal transmission scheme for sum-rate maximization in the Z-IC
is only known for the SISO case [122], case for which the optimal rate region boundary has
been derived in [123]. In both cases, a set of five possible solutions that subsume PGS and IGS
depending on the channel conditions is obtained. The MIMO Z-IC is interesting because TXB

should apply conventional PGS for optimally transmitting to its intended receiver (RXB) but,
according to the properties derived in the sequel for the MIMO P2P-I, it will be beneficial for
RXA that TXB employs IGS such that the interference injected onto RXA is improper and TXA

can design WLP to improve the performance of RXA (see Fig. 2.1). Clearly this comes at the
cost of reducing the performance of RXB, such that a clear trade-off in the rates of the two
receivers arises. In this regard, we analyze the trade-off and propose a simple improper-based
scheme for TXB that allows improving the fairness and controlling the sum-rate performance.

Interfering signal
Desired signal

RXB

TXA TXB

RXA

Figure 2.1: Example of the MIMO Z-IC.
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SeNB

MeNB

SUE

SeNB

SeNB
SUE

SUE

MUE

Figure 2.2: Predominant cross-tier interference (red dashed lines) in HCNs, which lead to multiple MIMO Z-IC.

On the other hand, we apply the aforementioned properties to MIMO HCNs [6], a promising
deployment for future cellular systems. HCNs consist of a multi-tier deployment of MeNBs
and SeNBs that allow boosting the spectral efficiency of the system thanks to the network
densification and the spatial re-use of the spectrum among MeNBs and SeNBs (see description in
Section 1.1). However, HCNs have to deal with a major impairment: the cross-tier interference,
which can be very detrimental specially in the direction from MeNBs towards the users served by
SeNBs with a lower transmit power [1]10, as illustrated in Fig. 2.2. Interestingly, the interfering
channel that models the major cross-tier interference impairment in HCNs is the MIMO Z-IC.
Furthermore, there will appear as many MIMO Z-IC as the number of SeNBs deployed within
the MeNB coverage area, see Fig. 2.2. Hence, the derived improper-based scheme for the MIMO
Z-IC could be adopted at the MeNB (corresponding to TXB in Fig. 2.1) and a performance
improvement of all the users served by SeNBs would be guaranteed thanks to the properties
derived for the MIMO P2P-I.

To summarize, the main contributions of this chapter are:

• In the MIMO P2P-I with M≥N , when uniform power allocation (UPA) is adopted, we
demonstrate that the use of optimal IGS when received interference is improper strictly
outperforms in terms of achievable rate and MSE the use of optimal PGS when interference
is proper. If optimal power allocation (OPA) is used, then the achievable rate is shown to
be equal or larger with IGS, and strict superiority is shown for a particular case.

• In the MIMO Z-IC, we propose a simple improper-based scheme without any claim about
optimality that allows improving the achievable rate of the most impaired user and control-
ling the rate loss of the non-interfered user. The scheme is characterized by a parameter
that provides two extreme solutions: PGS or maximal IGS. If such parameter is fixed
(e.g. maximal IGS is used), then its implementation does not require knowledge of the
interfering channel either at TXs or at RXs.

• The proposed improper-based scheme is evaluated in an HCN deployment compliant with
3GPP LTE-A specifications [2]. The scheme is compared with eICIC technique (used in
3GPP LTE-A for HCNs [1, 56]), time-sharing solutions, and proper-based schemes with
full-reuse of time and frequency resources at MeNB and SeNBs. Simulations show signifi-
cant gains in terms of 5%-tile and mean user throughput, with a reduced implementation
complexity and a simpler coordination, as compared to conventional interference coordi-
nation techniques.

10Note that if SeNBs were deployed in concentrated areas then the co-tier interference would become relevant
and additional techniques would be required, see [J2]. We explicitly focus on the dense SCN in Chapters 3-4-6.
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TX RX
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M N

1

noise-plus-interference random vector 

b x y

n

H b̂

Figure 2.3: MIMO P2P channel with interference (MIMO P2P-I).

2.3 System Model

Consider a MIMO P2P-I between one TX equipped with M antennas and one RX with N receive
antenna elements, as shown in Fig. 2.3. The MIMO channel is described by a matrix H∈CN×M
containing complex-valued channel gains of the different antenna-pairs. In the following we
assume M≥N and full rank channel matrix H. Hence, assuming narrow-band transmissions,
the equivalent baseband signal observed at the receiver y ∈ CN×1 is expressed as:

y = Hx + n, n = v + i, (2.1)

where x∈CM×1 is the complex-valued transmitted vector and n∈CN×1 denotes the noise-plus-
interference received vector (see Fig. 2.3), which contains a proper Gaussian noise v∼CN (0, σ2I)
and a Gaussian interference component i that is caused by an interfering TX. Different from the
conventional transmission setup where PGS is assumed (i.e. x∼CN (0,Cx)), in this chapter the
more general IGS is adopted for x.

Any improper Gaussian signal x can be generated from a proper Gaussian information-
bearing signal b∈CN×1 with unitary power (i.e. b∼CN (0, I))) and the use of WLP (see Lemma
2.6 in Appendix 2.A) as follows:

x = T1b + T2b
∗, (2.2)

where matrices T1 and T2∈CM×N denote the linear transmit precoders for the information-
bearing signal b and its complex conjugate b∗. The conventional LP scheme is a special case of
WLP in which T2=0 such that x in (2.2) is PGS. It is assumed that each user has N parallel
data streams, although some of the streams can have a rate of zero, and let us recall that
E[bbH ]=I and E[bbT ]=0. Then, the covariance matrix Cx=E[xxH ] and the pseudo-covariance
matrix C̃x=E[xxT ] of x in (2.2) are:

Cx = T1T
H
1 + T2T

H
2 , C̃x = T1T

T
2 + T2T

T
1 . (2.3)

Similarly, since the Gaussian interference component i in (2.1) can be either proper or improper
depending on the transmission scheme adopted by the interferer, we denote by Cn=E[nnH ]
and C̃n=E[nnT ] the covariance matrix and the pseudo-covariance matrix of the noise-plus-
interference vector n=v+i in (2.1), respectively.

In order to access the information contained in the received signal y, WLE should be applied
at the RX [65]. Hence, the information-bearing signal b is linearly estimated according to:

b̂ = RH
1 y + RH

2 y∗, (2.4)

where R1 and R2∈CN×N are the linear receive filters applied over y and y∗, respectively. The
well-known LE is a particular case of WLE in which R2=0.
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2.3.1 Composite real formulation

The signal model for the MIMO P2P-I can be equivalently expressed using the composite real
representation [105], in which real and imaginary parts of the signals are separated. Accordingly,
for any complex vector a, let us denote by ā to the double-sized real-valued vector that stacks

its real and imaginary parts as: ā=
[
<{a}T ={a}T

]T
. The composite real formulation is useful

to derive the optimal signaling and the associated transmission scheme in (2.2). This way, the
input-output relation in (2.1) can be equivalently written as:

ȳ =

[
<{y}
={y}

]
= H̄x̄ + n̄, H̄ =

[
<{H} −={H}
={H} <{H}

]
, (2.5)

where ȳ∈R2N×1, H̄∈R2N×2M , n̄∈R2N×1, and x̄∈R2M×1 (following WLP in (2.2)) is given by:

x̄ =

[
<{x}
={x}

]
= T̄b̄, T̄ =

[
<{T1 + T2} −={T1 −T2}
={T1 + T2} <{T1 −T2}

]
. (2.6)

This way, the covariance matrix of x̄ in (2.6) is related to Cx and C̃x in (2.3) as:

Cx̄ = E[x̄x̄T ] = 1
2

[
<{Cx + C̃x} −={Cx − C̃x}
={Cx + C̃x} <{Cx − C̃x}

]
. (2.7)

Finally, following WLE in (2.4), the double-sized real-valued vector of the estimated information-

bearing signal
¯̂
b∈R2N×1 is estimated at the receiver from ȳ in (2.5) as:

¯̂
b =

[
<{b̂}
={b̂}

]
= R̄

T
ȳ, R̄

T
=

[
<{RH

1 + RH
2 } −={RH

1 −RH
2 }

={RH
1 + RH

2 } <{RH
1 −RH

2 }

]
. (2.8)

2.3.2 Achievable rate and MSE-matrix

The achievable rate (R) with IGS is given by [107]:

R = I(x; y) = I(x̄; ȳ) = h(ȳ)−h(ȳ/x̄) = h(ȳ)−h(n̄) = 1
2 log2|I2N + 1

2H̄T̄T̄
T
H̄
T
Cn̄
−1|, (2.9)

where I(x̄; ȳ) denotes the mutual information between real random vectors x̄ and ȳ, h(x̄) refers

to the entropy of x̄ [107], and the 1
2 factor inside the determinant comes from E[b̄b̄

H
]=1

2I.
Cn̄=E[n̄n̄T ]∈R2N×2N accounts for the covariance matrix of n̄ in (2.5), which can be written in
terms of Cn and C̃n through a transformation matrix Z∈C2N×2N as (see details in Lemma 2.5
of Appendix 2.A):

Cn̄ = E[n̄n̄T ] = Z

[
Cn C̃n

C̃
∗
n C∗n

]
ZH , Z = 1

2

[
I I
−jI jI

]
. (2.10)

The MSE of the transmitted symbols is expressed as: ε= Tr(E), being E the MSE-matrix
E=E[(b−b̂)(b−b̂)H ]∈CN×N . It can be similarly obtained from the MSE-matrix in the compos-
ite real formulation as:

ε = Tr(Ē) = Tr(E[(b̄−¯̂
b)(b̄− ¯̂

b)T ]). (2.11)



2.3. System Model 37

Assuming optimum WLE for R̄ in (2.8) (see details in [65]), the MSE-matrix results:

Ē = 1
2

(
I + 1

2T̄
T
H̄
T
Cn̄
−1H̄T̄

)−1
. (2.12)

Equations (2.9) and (2.12) are directly related. Moreover, the relation between the MSE-
matrices (Ē and E) and the achievable rate R can be extracted from the composite real repre-
sentation. The result is given in the following Lemma.

Lemma 2.1. When IGS is adopted in a MIMO P2P-I, the achievable rate R is related to the
MSE-matrix in the composite real form Ē in (2.12) and to the MSE-matrix E through:

R = −1
2 log2|2Ē| = −1

2 log2|E| − 1
2 log2|E∗ − Ẽ∗E−1Ẽ|, (2.13)

where Ẽ=E[(b−b̂)(b−b̂)T ]. Further, using the Schur complement of |Ē| and applying the im-
proved Fischer determinant inequality [124], the achievable rate in (2.13) is lower bounded by:

R ≥
(a)
−log2|E|+ 1

2 log2

(
1+1

2 |Ẽ||Ẽ
∗||Ē|−1

)
≥
(b)
−log2|E|, (2.14)

where (a) is satisfied with equality if E is a scalar (i.e. for SISO, MISO, or SIMO systems) and
(b) is satisfied with equality for the PGS case.

Proof. See Appendix 2.C. �

Note that in case of PGS (i.e. Ẽ=0), the conventional relation between the MSE-matrix
E and the achievable rate R is obtained from (2.13): R=− log2 |E| [125]. The lower bound in
(2.14) indicates that, for a given MSE-matrix E, the rate achieved with IGS is equal to or larger
than the rate obtained with PGS. Moreover, it also shows that both E and Ẽ are required to
determine the transmission rate, and not only |E| as in the PGS case.

2.3.3 MSE-based optimal scheme

This section presents the optimal design for transmit precoder T̄ in (2.6), a result that is already
known in the literature but that is needed to demonstrate the superiority of IGS in Section 2.4.
In the most general MSE-based designs (including minimum MSE and maximum achievable rate
designs) [98,120], the optimal transmit precoder T̄ in (2.6) is obtained from the minimization of
a Schur-concave function of the MSE-matrix Ē in (2.12) subject to a maximum transmit power
constraint:

(P2,1) : minimize
T̄

f(Ē) (2.15)

subject to 1
2Tr(T̄T̄

T
) = Pmax,

where f(.) is any Schur-concave function of Ē in (2.12) and Pmax is the maximum available
power at the TX. For instance:

• f(Ē)=ε= Tr(Ē) defines the minimum MSE problem, while

• f(Ē)=−R=1
2 log2|2Ē| defines the maximum achievable rate problem.
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Consider the following eigenvalue decomposition (EVD):

1
2H̄

T
C−1

n̄ H̄ = Q̄Λ̄Q̄
H
, (2.16)

where Λ̄=diag(λ̄1 . . . λ̄2N )∈R2M×2N is a diagonal matrix containing the positive eigenvalues of
1
2H̄

T
C−1

n̄ H̄ and Q̄∈R2M×2N corresponds to a unitary matrix that contains the associated eigen-

vectors stacked in columns. Recall that the rank of 1
2H̄

T
C−1

n̄ H̄ (i.e. the number of positive eigen-
values) is given by 2N and does not depend on the interference statistics, since rank(C−1

n̄ )=2N ,

H̄ is a full row rank matrix, and hence rank(1
2H̄

T
C−1

n̄ H̄)=rank(C−1
n̄ )=2N .

Then, the optimal transmit precoder T̄
opt

to problem (P2,1) in (2.15) presents the following
structure [120]:

T̄
opt

= Q̄P̄
1
2 , (2.17)

where P̄=diag(p̄1 . . . p̄2N )∈R2M×2N is a diagonal matrix that describes the power allocation per
stream, satisfies 1

2 Tr(P̄)=Pmax (see problem (P2,1) in (2.15)), and depends on the optimization
criterion (i.e. f(Ē) in (2.15) [126]) and on the channel knowledge we dispose of (see Sections
2.4.1 and 2.4.2). The optimal transmit precoder in (2.17) allows diagonalizing the MSE-matrix
in (2.12):

Ē
opt

= 1
2

(
I + P̄Λ̄

)−1
. (2.18)

So, the optimal achievable rate and the optimal MSE become, respectively:

Ropt(p̄ ◦ λ̄) = −1
2 log2|2Ē

opt| = 1
2

∑2N

i=1
log2

(
1 + p̄iλ̄i

)
, (2.19)

εopt(p̄ ◦ λ̄) = Tr(Ē
opt

) = 1
2

∑2N

i=1

1

1 + p̄iλ̄i
, (2.20)

where p̄◦λ̄ denotes the Hadamard product (component-wise product) of vectors p̄=diag(P̄) =
[p̄1 . . . p̄2N ]T and λ̄=diag(Λ̄)=[λ̄1 . . . λ̄2N ]T . We occasionally use the notations Ropt(p̄◦λ̄) and
εopt(p̄◦λ̄) to make their dependencies on p̄◦λ̄ explicit.

The key aspect of the optimal solution in (2.17) is the EVD in (2.16), for which two cases
are differentiated:

• proper interference (C̃n=0) or

• improper interference (C̃n 6=0).

It is well known that if received interference is proper the optimum signaling is PGS (i.e. C̃x=0),
while if received interference is improper the optimum signaling is IGS (i.e. C̃x 6=0).

Proper interference

When received interference is proper Gaussian distributed (i.e. C̃n=0), the solution for Q̄ in
(2.16) can be obtained without making use of the equivalent double-sized real-valued decompo-

sition. By developing 1
2H̄

T
C−1

n̄ H̄ with the structure of H̄ in (2.5) and with the structure of Cn̄

in (2.10) where C̃n=0, we get:

1
2H̄

T
C−1

n̄ H̄ =

[
<{HHC−1

n H} −={HHC−1
n H}

={HHC−1
n H} <{HHC−1

n H}

]
. (2.21)
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Consequently, with some matrix manipulations, it can be shown that the solution for Q̄ in (2.17)
is equivalently obtained from the eigenvectors of HHC−1

n H=QΛQH stacked as follows:

Q̄ =

[
<{Q} −={Q}
={Q} <{Q}

]
. (2.22)

By comparing (2.22) and (2.6), the following transmit precoders in (2.17) are obtained for PGS:

Topt
1 =QP

1
2 , Topt

2 =0, and hence C̃x=0 in (2.3) such that PGS is optimum.

Improper interference

When received interference is improper Gaussian distributed (i.e. C̃n 6=0), relation in (2.21) is
not further satisfied and the optimal solution has to be obtained from the EVD in (2.16). Thus,
the optimum transmit strategy leads to a precoder T̄

opt
in (2.17) with non-equal block diagonal

matrices for Cx̄ in (2.7) and hence C̃x 6=0, i.e. the optimal transmit strategy is given by IGS as
it is the only one able to diagonalize the MSE-matrix Ē in (2.12).

2.4 Superiority of IGS for the MIMO P2P-I

In this section we focus on comparing the optimal schemes when interference is either proper or
improper so as to determine if IGS is beneficial (in terms of achievable rate and MSE) or not
even in the simple MIMO P2P-I. The comparison reduces to relate the eigenvalues (see (2.19)-
(2.20)) of the following two matrices (which are obtained from (2.16) by using the structure of
Cn̄ in (2.10)) for a fixed Cn:

Proper: λ̄I = eig
(

1
2H̄

T
Z−H

[
Cn 0
0 C∗n

]−1

Z−1H̄
)
,

Improper: λ̄P = eig
(

1
2H̄

T
Z−H

[
Cn C̃n

C̃
∗
n C∗n

]−1

Z−1H̄
)
,

(2.23)

where λ̄I∈R2N×1
+ and λ̄P∈R2N×1

+ denote the vectors of positive eigenvalues in decreasing order
under the reception of improper and proper Gaussian interference, respectively. The comparison
in the sequel is based on fixing the same Cn, so the level of received interference-plus-noise power
is the same but the difference comes from the proper or improper statistics of the interference
(i.e. C̃n=0 or C̃n 6=0, see (2.23)) and the corresponding optimal signaling (i.e. PGS or IGS).

In Lemma 2.2 we show how the eigenvalues in (2.23) are related and, afterwards, how their
relation impacts on the optimal achievable rate in (2.19) and the optimal MSE in (2.20).

Lemma 2.2. For M≥N and full rank channel matrix H, the eigenvalues in (2.23) are related
by the following majorization relations:

λ̄
−1
I �λ̄

−1
P and λ̄I�w logλ̄P , (2.24)

where � refers to strong majorization, �w log denotes weak log-majorization, and λ̄
−1
I ∈R2N×1

+

and λ̄
−1
P ∈R2N×1

+ refer to vectors where each component is obtained from the inverse of the
components in λ̄I and λ̄P , respectively, in decreasing order.

Proof. See Appendix 2.D. �
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The strong majorization relation in (2.24) accounts for (see Definition 2.5 in Appendix 2.A):∑n

i=1

1

λ̄I,i
≤
∑n

i=1

1

λ̄P,i
n = 1, ..., 2N − 1 and

∑2N

i=1

1

λ̄I,i
=
∑2N

i=1

1

λ̄P,i
. (2.25)

On the other hand, the weak log-majorization relation in (2.24) is equivalent to (see Definition
2.7 in Appendix 2.A):∏n

i=1
λ̄I,i ≥

∏n

i=1
λ̄P,i n = 1, ..., 2N and

∑n

i=1
λ̄I,i ≥

∑n

i=1
λ̄P,i n = 1, ..., 2N. (2.26)

Therefore, when receiving improper interference and using IGS in the MIMO P2P-I, the eigen-
values of the equivalent channel are more spread out having an equal or larger sum, an equal or
larger product, and an equal sum of the inverses, as compared to receiving proper interference
and using PGS. In other words, the arithmetic mean and the geometric mean of the eigenvalues
are equal or larger, while the harmonic mean of the eigenvalues is equal.

The proof of the strong majorization result in Lemma 2.2 (i.e. λ̄
−1
I �λ̄

−1
P ) is only valid for

M≥N and the channel matrix H being full rank. Otherwise, the inverse in (2.80) (see Appendix
2.D) does not exist. This is due to the fact that if the desired signal subspace at the receiver
has less than N dimensions (which happens either if M<N or if the channel is rank deficient),
then the strong majorization result is not valid since the properties of the noise-plus-interference
in the noise-plus-interference subspace can be chosen arbitrarily without influencing the desired
signal space. In case that either M<N or the channel matrix H is rank deficient, then the
weak-log majorization result in Lemma 2.2 is satisfied, i.e. λ̄I�w logλ̄P (see [C1]), but the
strong majorization result in Lemma 2.2 (which is key to demonstrate the strict superiority of
IGS in what follows) is not further valid.

Now we show how Lemma 2.2 allows determining the superiority of IGS in terms of achievable
rate in (2.19) and MSE in (2.20). The strong majorization result in (2.24) allows us to set
the superiority in terms of achievable rate and MSE when uniform power allocation (UPA) is
adopted, while the weak-log majorization result in (2.24) allows deriving the superiority in terms
of achievable rate when optimal power allocation (OPA) is used.

2.4.1 Superiority for uniform power allocation

When adopting a UPA strategy, the solution for P̄=diag(p̄1 . . . p̄2N ) in (2.17) is given by:

p̄i = P̄ = Pmax/N,∀i, (2.27)

such that p̄◦λ̄=P̄ λ̄. Thus, the optimal achievable rate in (2.19) and the optimal MSE in (2.20)
become, respectively:

Ropt(P̄ λ̄) = 1
2

∑2N

i=1
log2

(
1 + P̄ λ̄i

)
, (2.28)

εopt(P̄ λ̄) = 1
2

∑2N

i=1

1

1 + P̄ λ̄i
. (2.29)

In the following theorems majorization theory is exploited over the relations in Lemma 2.2
to strictly quantify the achievable rate and MSE improvement under UPA strategy.
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Theorem 2.1. Assume a MIMO P2P-I, M≥N , full rank channel matrix H, receiving noise-
plus-interference with a given covariance matrix Cn. When applying the optimal signaling and
the associated transmission scheme with UPA, the achievable rate Ropt in (2.19) is strictly in-
creased in the improper interference scenario (i.e. C̃n 6=0) as compared to the proper interference
scenario (i.e. C̃n=0):

Ropt(P̄ λ̄I)−Ropt(P̄ λ̄P ) ≥ cupa
R

(
‖λ̄−1

I ‖2 − ‖λ̄
−1
P ‖2

)
, (2.30)

with a positive constant cupa
R :

cupa
R =

P̄ λ3
min

(
1 + 0.5P̄ λmin

)
2 ln(2)

(
1 + P̄ λmin

)2 > 0, (2.31)

where λmin denotes the minimum eigenvalue within the vector λ̄I and P̄ is defined in (2.27).

Since ‖λ̄−1
I ‖2≥‖λ̄

−1
P ‖2, the rate gap (i.e. right-hand side in (2.30)) is strictly positive provided

that λ̄I 6=λ̄P .

Proof. See Appendix 2.E. The proof departs from Lemma 2.2 and exploits majorization theory
on strongly Schur-convex functions (see Definition 2.9 in Appendix 2.B). �

The rate gap increases as the difference among the squared 2-norm of the inverses of the
eigenvalues increases (i.e. as the impropriety of the interference increases or, equivalently, as
C̃n ”increases”, see (2.23)). Further, we can determine the rate gap behavior when varying the
desired signal power (i.e. P̄ ) for a fixed interference-plus-noise power level or, equivalently, when
varying the signal-to-interference-plus-noise ratio (SINR):

• At high SINR, cupa
R in (2.31) scales as cupa

R ∼
1

4 ln(2)λ
2
min such that the rate gap in (2.30)

is constant as the SINR increases. This means that, at the high SINR regime, the rates
grow with the same slope with PGS and IGS but there is a constant difference among said
achievable rates such that the use of IGS is always beneficial.

• At low SINR, cupa
R in (2.31) scales as cupa

R ∼
1

2 ln(2) P̄ λ
3
min and hence the rate gap in (2.30)

increases with the SINR.

Theorem 2.2. Assume a MIMO P2P-I, M≥N , full rank channel matrix H, receiving noise-
plus-interference with a given covariance matrix Cn. When applying the optimal signaling and
the associated transmission scheme with UPA, the MSE εopt in (2.20) is strictly reduced in the
improper interference scenario (i.e. C̃n 6=0) as compared to the proper interference scenario (i.e.
C̃n=0):

εopt(P̄ λ̄P )− εopt(P̄ λ̄I) ≥ cupa
ε

(
‖λ̄−1

I ‖2 − ‖λ̄
−1
P ‖2

)
, (2.32)

with a positive constant cupa
ε :

cupa
ε =

P̄ λ3
min

2
(
1 + P̄ λmin

)3 > 0. (2.33)

The error gap (i.e. right-hand side in (2.32)) is strictly positive provided that λ̄I 6=λ̄P .

Proof. See Appendix 2.F. The proof departs from Lemma 2.2 and exploits majorization theory
on strongly Schur-concave functions (see Definition 2.9 in Appendix 2.B). �
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Similarly as in Theorem 2.1, the error gap increases as the difference among the squared
2-norm of the inverses of the eigenvalues increases (i.e. as the impropriety of the interference
increases). The error gap behavior with respect to the SINR is as follows:

• At high SINR, the term cE
P̄ 2 in (2.33) scales as cE

P̄ 2∼1
2 P̄
−2 such that the error gap in (2.32)

decreases as the SINR increases. This is related to the fact that the rate gap in (2.30) is
constant at high SINR, because due to the convex rate-MSE relation in (2.13) the rate
gap being constant implies the error gap being reduced as the SINR increases.

• At low SINR, the term cE
P̄ 2 in (2.33) scales as cE

P̄ 2∼1
2 P̄ λ

3
min and therefore the error gap in

(2.32) increases as the SINR increases.

Corollary 2.1. If UPA is used in a MIMO P2P-I such that M≥N and H is full rank, the
achievable rate Ropt in (2.19) and the MSE εopt in (2.20) are strictly outperformed when received
interference is improper Gaussian distributed (i.e. C̃n 6=0).

Proof. through Theorem 2.1 and Theorem 2.2. �

2.4.2 Superiority for optimal power allocation

When adopting an OPA strategy to maximize the achievable rate (i.e. f(Ē)=−R=1
2 log2|2Ē| in

(2.15)), the optimal solution for P̄=diag(p̄1 . . . p̄2N ) in (2.17) is given by [126]:

p̄i =
(
µ− λ̄−1

i

)+
, ∀i, µ =

1

k

(
2Pmax +

∑k

i=1
λ̄−1
i

)
, (2.34)

where k≤2N is the number of active streams after the water-filling solution in (2.34). Ac-
cordingly, let us denote by p̄P and p̄I the vectors with power allocation in (2.34) (ordered in
decreasing order) for the proper and improper interference cases, respectively.

Due to the water-filling solution in (2.34), some streams can have a power equal to 0 and
the number of active streams in the proper and improper interference cases might differ. Thus,
as the power allocation in (2.34) depends on the eigenvalues, we cannot exploit majorization
theory on strongly Schur-convex functions to guarantee a strict rate improvement with OPA.

Theorem 2.3. Assume a MIMO P2P-I, M≥N , full rank channel matrix H, receiving noise-
plus-interference with a given covariance matrix Cn. When applying the optimal signaling and
the associated transmission scheme with OPA in (2.34) for maximum achievable rate, the achiev-
able rate Ropt in (2.19) is equal or larger in the improper interference scenario (i.e. C̃n 6=0) as
compared to the proper interference scenario (i.e. C̃n=0):

Ropt(p̄I ◦ λ̄I) ≥ Ropt(p̄P ◦ λ̄P ). (2.35)

The equality in (2.35) is obtained if and only if λ̄I=λ̄P , i.e. C̃n=0, such that p̄I=p̄P (see
(2.34)) and hence p̄I◦λ̄I=p̄P ◦λ̄P .

Proof. See Appendix 2.G. The proof departs from Lemma 2.2 and is valid even if the number
of streams with OPA in (2.34) is different in the proper and improper interference cases. �

There is, however, a particular case in which the strict superiority of IGS over PGS under
OPA strategy can be demonstrated through the application of majorization theory tools. In
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case that all steams are active both with IGS and PGS, i.e. kI=kP=2N in (2.34), then the
water-level µ in (2.34) is equal with IGS and PGS: µ=µI=µP because

∑2N
i=1 λ̄

−1
I,i=

∑2N
i=1 λ̄

−1
P,i (see

(2.25)). In this case, the optimal achievable rate in (2.19) becomes:

Ropt(p̄ ◦ λ̄) = 1
2

∑2N

i=1
log2

(
µλ̄i
)
. (2.36)

Theorem 2.4. Assume a MIMO P2P-I, M≥N , full rank channel matrix H, receiving noise-
plus-interference with a given covariance matrix Cn. When applying the optimal signaling and
the associated transmission scheme with OPA in (2.34) for maximum achievable rate and all
streams are active for IGS and PGS, the achievable rate Ropt in (2.19) is strictly increased in
the improper interference scenario (i.e. C̃n 6=0) as compared to the proper interference scenario
(i.e. C̃n=0):

Ropt(p̄I ◦ λ̄I)−Ropt(p̄P ◦ λ̄P ) ≥ copa
R

(
‖λ̄−1

I ‖2 − ‖λ̄
−1
P ‖2

)
, (2.37)

with a positive constant copa
R :

copa
R =

λ2
min

4 ln(2)
> 0. (2.38)

The rate gap (i.e. right-hand side in (2.37)) is strictly positive provided that λ̄I 6=λ̄P .

Proof. See Appendix 2.H. The proof departs from Lemma 2.2 and exploits majorization theory
on strongly Schur-convex functions (see Definition 2.9 in Appendix 2.B). �

Similarly as in Theorem 2.1, the rate gap increases as the difference among the squared
2-norm of the inverses of the eigenvalues increases (i.e. as the impropriety of the interference
increases). However, result in Theorem 2.4 is only valid when the number of active streams
under IGS and PGS is equal to 2N , which occurs at medium/high SINR regimes. The rate gap
under OPA strategy in (2.38) coincides with the one derived for UPA in (2.31) at high SINR.

2.4.3 Simulation results

First, let us show through simulations the strict rate and MSE improvement of IGS over PGS
derived from Theorems 2.1 and 2.2 for UPA strategy. We evaluate the gains in the MIMO
P2P-I for a single channel realization, when interference is either proper or improper Gaussian
distributed. Fig. 2.4.(a) and Fig. 2.4.(b) depict the actual rate gap and the actual MSE
gap versus the SINR, respectively, for an interference-to-noise ratio (INR) of INR=20 dB and
antenna configuration M=N=2 (2×2). The figures also display the lower bound of the gaps
presented in (2.30) for rate and in (2.32) for MSE. Further, the actual rate gap and the lower
bound of gap derived in Theorem 2.4 under OPA strategy are included in Fig. 2.4.(a).

With regard to the rate (see Fig. 2.4.(a)), it can be observed that the rate gap is constant
at high SINR and that it is increasing with the SINR at low SINR. Differently, in terms of
the MSE (see Fig. 2.4.(b)), the error gap is decreasing with the SINR at high SINR and it is
increasing with the SINR at low SINR. This corroborates the conclusions drawn from Theorems
2.1 and 2.2. The closer the lower bound of the gap is to the actual gap depends on the individual
channel realizations, but it is observed to be tighter in the MSE than in the rate. Also, it is
observed through simulations that the lower bound of the rate gap derived for UPA strategy is
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Figure 2.4: Gap in the achievable rate and in the MSE vs. SINR of a specific MIMO P2P-I. 2×2, INR=20 dB.
UPA and OPA strategies.
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Figure 2.5: Average relative rate gain (in %) of IGS over PGS vs. SINR for MIMO P2P-I with different antenna
configurations: 1×1, 2×2, 4×4, and 8×8. INR=20 dB. UPA and OPA strategies.

also valid for OPA strategy in all SINR regimes and antenna configurations (although this has
been mathematically demonstrated only for medium/high SINR regimes, see Theorem 2.4).

Second, we show how the rate improvement of IGS over PGS scales as the number of trans-
mit/receive antennas increases. 1000 channel realizations of the MIMO P2P-I are used to take
statistic results. Fig. 2.5 displays the average of the relative rate gain (in %) of IGS over PGS
versus the SINR for INR=20 dB and different antenna configurations: 1×1, 2×2, 4×4, and 8×8.
The relative rate gains decrease as the number of transmit/receive antennas increase. This is
due to the fact that IGS provides flexibility by splitting one dimension into two halves, which is
more useful when the number of transmit/receive antennas is low, otherwise extra dimensions
are already added to the system by adding antennas. Even though, it is important to recall
that for the 8×8 antenna case, relative rate gains are still obtained for all SINR regimes (see
Fig. 2.5). In addition, in Fig. 2.5 we can observe that the relative rate gains are larger for
low SINR regimes whereby the MIMO P2P-I is highly limited by interference. However, as the
SINR increases, rate gains are still obtained due to the use and reception of IGS.
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Figure 2.6: MIMO Z interference channel (MIMO Z-IC).

2.5 Application to the MIMO Z-IC

In this section we show how to exploit the benefits of using IGS for the MIMO Z-IC through a
simple WLP design. The MIMO Z-IC is shown in Fig. 2.6, where one of the receivers (RXB)
just observes noise while the other (RXA) receives interference. The signal model detailed in
Section 2.1 applies for each of the two MIMO P2P-I links that appear in the MIMO Z-IC. In
this regard, we add the subindex (.)A and (.)B to refer to the corresponding link, see Fig. 2.6.

Concerning RXB that is receiving only proper noise, the optimal scheme at TXB is a proper
scheme (i.e. LP) given by TB,1=Topt

B,1 and TB,2=0. Such proper-based scheme would generate
proper interference onto RXA. On the other hand, RXA could benefit in terms of achievable rate
from the reception of improper interference from TXB, as is demonstrated in Section 2.4, but
the fact that TXB transmits an improper Gaussian signal implies a degradation of the rate of
RXB due to the sub-optimality of the signaling scheme [105]. Therefore, a clear trade-off arises:
with IGS the rate of RXA could be increased but the rate of RXB would be decreased.

Assuming that we can tolerate a certain achievable rate loss at RXB, performance gains
at RXA would be guaranteed with IGS provided that TXB uses the same transmit covari-
ance matrix as in the optimum proper scheme for RXB (i.e. CxB=Topt

B,1T
optH
B,1 ), such that the

noise-plus-interference covariance matrix at RXA (CnA=HB,ACxBHH
B,A+σ2

AI) is the same as

in the case of proper interference. Therefore, due to the use of WLP with C̃xB 6=0 (and hence
C̃nA=HB,AC̃xBHT

B,A 6=0), the achievable rate of RXA would be increased by Theorem 2.1 for
UPA and by Theorem 2.3 for OPA.

2.5.1 WLP scheme

In order to guarantee a rate improvement of RXA we need to construct an improper-based
scheme at TXB (characterized by transmit precoders TB,1 and TB,2) that maintains the trans-

mit covariance matrix used in the optimal proper-based scheme for RXB (i.e. CxB=Topt
B,1T

optH
B,1 ).

We propose deriving a practical WLP scheme at TXB that does not degrade too much the per-
formance of RXB and generates improper interference onto RXA by right-multiply the transmit
precoder Topt

B,1 by two scaling factors
√
α and

√
1− α and two unitary matrices U1∈CN×N and

U2∈CN×N . The WLP scheme is then created as follows:

TB,1 =
√

1− αTopt
B,1U1, TB,2 =

√
αTopt

B,1U2, (2.39)

where α∈[0, 0.5] is a measure of impropriety.
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The improper-based scheme in (2.39) for TXB has the same transmit covariance matrix than
the optimal proper-based scheme for RXB provided that U1 and U2 are unitary:

CxB = TB,1T
H
B,1 + TB,2T

H
B,2 = Topt

B,1T
optH
B,1 , (2.40)

but the transmit pseudo-covariance matrix does not vanish to 0 and can be tunned with α:

C̃xB =
√
α(1− α)Topt

B,1(U1U
T
2 + U2U

T
1 )ToptT

B,1 . (2.41)

Hence, by performing WLP in (2.39) at TXB, the achievable rate of RXB is degraded while the
achievable rate of RXA is ensured to be increased as compared to the use of TB,1=Topt

B,1 and
TB,2=0. This is possible because the WLP scheme in (2.39) allows maintaining the transmit
covariance matrix CxB independently of the values of α, U1, and U2, such that the properties
in Section 2.4 apply.

Impropriety measure α

The range α∈[0, 0.5] is considered in (2.39) because C̃xB has a symmetric shape with respect to
α that is centered on α=0.5, i.e. the system performance of the MIMO Z-IC is equivalent when
selecting α or α′=1−α. The suitable selection of parameter α allows controlling the level of
impropriety : if α=0 the generated signal at TXB is proper, while if α>0 the generated signal at
TXB is improper and thus improper interference is generated towards RXA in Fig. 2.6. When
α=0.5, the generated signal at TXB achieves the maximum level of impropriety. Therefore, α
is a measure of impropriety11.

Spatial unitary matrices U1 and U2

Matrices U1 and U2 are included in (2.39) so as to get different MIMO spatial structures of
TB,1 and TB,2, although U1=U2=I is also an option. It is important to realize from (2.41)
that the performance of the MIMO Z-IC is affected by the term (U1U

T
2 +U2U

T
1 ) rather than

by the specific selection of U1 and U2. So, if we design U1 and U2 such that U1U
T
2 =U2U

T
1 ,

then a single choice would control the performance of the MIMO Z-IC. For N=2, [C1] proposes
a design for U1 and U2 that satisfies such condition and depends on one parameter. For the
general MIMO case, U1 and U2 are designed in order to get two totally opposite behaviors:

Option 1 (identity): U1U
T
2 = U2U

T
1 = I → U1 = U2 = I, (2.42)

Option 2 (anti-identity): U1U
T
2 = U2U

T
1 = J → U1 = J, U2 = I, (2.43)

being J the anti-identity matrix12 of size N . Both options have a trivial solution for unitary
matrices U1 and U2, as shown in (2.42)-(2.43).

11The impropriety measure α defined in this work differs from the circularity coefficients defined in [65, Sect.
3.2], which are also a measure or impropriety.

12We refer with anti-identity matrix (also known as reflection matrix) to a square matrix where all the entries
are 0 except those on the anti-diagonal that are equal to 1 (going from the lower left corner to the upper right
corner).
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2.5.2 Trade-off

Let us now show that the impropriety measure α allows trading-off on the achievable rates of
the MIMO Z-IC.

Rate improvement at RXA

The achievable rate improvement of RXA is guaranteed by Theorem 2.1 for UPA or by Theorem
2.3 for OPA. The exact rate improvement expression cannot be extracted, however, it is given
by how much the eigenvalues in the improper interference case majorize the eigenvalues in the
proper interference case, i.e. the difference in the majorization relations in (2.24). Said difference
becomes larger as C̃nA in (2.23) ”increases” because the stronger the off-diagonal blocks in (2.23)
are the more spread out the eigenvalues become (see Lemma 2.7 in Appendix 2.B).

Accordingly, the optimum value of the impropriety measure α to maximize the achiev-
able rate of RXA (RA) is α=0.5 (see (2.41)), as it allows ”increasing” C̃xB and, as conse-
quence, ”increasing” the pseudo-covariance matrix of the interference-plus-noise received at
RXA: C̃nA=HB,AC̃xBHT

B,A.

Rate degradation at RXB

Due to the use of WLP at TXB, the achievable rate of RXB is degraded as RXB only receives
proper noise (i.e. CnB=σ2

BI and C̃nB=0). When using the WLP scheme in (2.39) at TXB, the
achievable rate of RXB (RB) can be decomposed as (derived from [69]):

RB = log2

∣∣I + C−1
nB

HB,BCxBHH
B,B

∣∣︸ ︷︷ ︸
Ropt
B

+
1

2
log2

∣∣∣I−C−1
yB

C̃yBC−TyB
C̃H

yB

∣∣∣︸ ︷︷ ︸
Rpenalty
B ≤0

, (2.44)

where CyB=HB,BCxBHH
B,B+σ2

BI and C̃yB=HB,BC̃xBHT
B,B. The first term in (2.44) corre-

sponds to the achievable rate of RXB if the transmission scheme adopted at TXB was PGS
with linear precoding (the optimum one for RXB, with C̃xB=0). However, due to the use of an
improper-based scheme in which C̃xB 6=0, an achievable rate penalty is obtained at RXB, which

is given by the second term in (2.44) and is strictly negative. The fact that Rpenalty
B ≤0 can

be shown by using the Fischer’s inequality [85, Sect. 8.2] applied over the partitioned matrix
[CyB C̃yB ; C∗yB C̃∗yB ] that is positive semidefinite (see Theorem 2.5 in Appendix 2.A), from

which it is concluded that
∣∣I−C−1

yB
C̃yBC−TyB

C̃H
yB

∣∣≤1.

Consequently, the closer the impropriety measure α is to 0.5 (i.e. C̃yB in (2.44) ”increases”,
see (2.41)) the more the achievable rate of RXB is reduced.

2.5.3 Sum-rate performance

The selection of the impropriety measure α has a clear trade-off on the sum-rate performance:
RB in (2.44) is decreasing while RA is increasing with α∈[0, 0.5]. Let us consider α̃=

√
α(1− α)

∈[0, 0.5], being α̃ the parameter that impacts on the sum-rate performance of the MIMO Z-IC
(see (2.41)). In this sense, RB is decreasing and RA is increasing with respect to α̃∈[0, 0.5]. Let
us draw their rate expressions.
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The rate expression RB in (2.44) (using (2.40) and (2.41)) as a function of α̃ is:

RB(α̃) = Ropt
B + 1

2 log2

∣∣I− α̃2X
∣∣ , (2.45)

where X=C−1
yB

HB,BTopt
B,1UToptT

B,1 HT
B,BC−TyB

H∗B,BTopt∗
B,1 UHToptH

B,1 HH
B,B, U=U1U

T
2 +U2U

T
1 .

On the other hand, the rate expression RA (that is derived from (2.19) and (2.23)) as a
function of α̃ is:

RA(α̃) = 1
2

∑2N

i=1
log2(1 + p̄iλ̄i), (2.46)

λ̄ = eig
(

1
2H̄

T
A,AZ−H

[
CnA α̃Y
α̃Y∗ C∗nA

]−1

Z−1H̄A,A

)
, (2.47)

where Y=HB,ATopt
B,1UToptT

B,1 HT
B,A and CnA=HB,ATopt

B,1T
optH
B,1 HH

B,A+σ2
AI.

Then, constrained to the WLP design proposed in Section 2.5.1, the optimum α̃=
√
α(1− α)

in order to maximize the sum-rate performance of the MIMO Z-IC is obtained from the following
optimization problem:

(P2,2) : maximize
α̃

RA(α̃) +RB(α̃) (2.48)

subject to 0 ≤ α̃ ≤ 0.5.

The optimization problem (P2,2) in (2.48) can be solved by setting the first order derivative to
zero, and selecting the value of α̃ from the candidate points given by the extreme of the domain
(0 and 0.5) and the positive real roots of the first order derivative that lie within the domain
and have a negative second order derivative (i.e. are maximum points).

Remark 2.1. Through extensive numerical evaluations, we have observed that the optimal value
of α̃ always lies in the extremes of the domain (α̃opt=0 or α̃opt=0.5), which correspond to an
impropriety measure αopt=0 (i.e. PGS) or αopt=0.5 (i.e. IGS with maximum impropriety level).

Intuitively, for low interference regimes the optimal value is αopt=0 because increasing α
leads to an increase of the rate of RXA lower than the reduction of the rate of RXB. On the
contrary, for high interference regimes the optimal value is αopt=0.5 since reducing α leads to a
reduction of the rate of RXA larger than the increase of the rate of RXB.

For the MIMO Z-IC, the optimal value of the transmitted power at TXA corresponds always
to the maximum one, as RA is increasing with the available power and no interference is gener-
ated onto RXB [122]. Therefore, the operating points of the proposed scheme are obtained by
varying the values of the impropriety measure α from 0 to 0.5 (at maximum power of TXB) and
then varying the transmitted power at TXB from maximum power to 0.

2.5.4 Simulation results

The proposed improper-based scheme is evaluated for a MIMO Z-IC scenario (as the one dis-
played in Fig. 2.6). It is assumed that both TXs have the same available power Pmax. Signal-
to-noise ratio is defined as SNR=Pmax/σ2 and signal-to-interference ratio by SIR=1/η, where
factor η≥0 denotes the average ratio between interfering and direct channel attenuations. Chan-
nels are modeled through a Rayleigh distribution, such that HA,A ∼ CN (0, I), HB,B∼CN (0, I),
and HB,A∼CN (0, ηI).
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Achievable rate region

The figures below show the achievable rate region of the MIMO Z-IC for a specific channel
realization with SNR=10 dB and SNR=20 dB, η=1, M=N=2 (2×2). The MIMO channel
matrices are:

HA,A =

[
1.01e−j174.9 0.74ej152.8

0.86e−j55.5 0.82ej166.7

]
,

HB,B =

[
0.49ej162.3 1.30e−j101.0

0.70e−j43.8 0.46ej9.8

]
,

HB,A =

[
1.16e−j132.6 0.90e−j88.5

0.93e−j141.5 0.70ej67.1

]
. (2.49)

The following transmission schemes are evaluated:

• proper (LP): TXs use LP,

• improper (WLP) id: varying α: TXs use WLP, whereby TXB uses the improper-
based scheme in (2.39) with different values of the impropriety measure α and the identity
solution for U1 and U2 in (2.42),

• improper (WLP) anti-id: varying α: TXs use WLP, and TXB uses the improper-
based scheme in (2.39) with different values of the impropriety measure α and the anti-
identity solution for U1 and U2 in (2.43).

Fig. 2.7 displays the achievable rate region when UPA in (2.27) and OPA in (2.34) are used.
Another way to achieve a similar behavior than the one given by the proposed improper-based
scheme (i.e. reduce rate of RXB to increase rate of RXA) is by reducing the power used by
TXB (P≤Pmax), which can be applied both for LP and WLP cases. Such performance results
are depicted in the figures with the label ’varying P ’. Note that the optimal solution for TXA

corresponds to always using the maximum power Pmax, as it does not interfere RXB.
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Figure 2.7: Achievable rate region of a MIMO Z-IC with HA,A, HB,B , HB,A in (2.49).
2×2, SNR=10 dB and SNR=20 dB.
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By comparing ’improper (WLP) varying α’ with respect to ’proper (LP)’ at P=Pmax, it is
verified that the rate of RXA is always increased when received interference is improper (as is
demonstrated by Theorems 2.1 and 2.3) at the expenses of a reduced rate for RXB. Accordingly,
the proposed WLP scheme is beneficial when interference is non-negligible, such that the gain
at RXA is significant. The choice of U1 and U2 (i.e. identity or anti-identity) does not have a
significant impact on the rate of RXA, however it affects the rate of RXB, being the anti-identity
(Option 2 in (2.43)) shown to be the best solution. Therefore, in interference-limited scenarios,
the proposed improper-based scheme allows trading in transmission fairness mainly through the
impropriety measure α without adjusting the transmitted power. Even with time-sharing, the
improper-based scheme outperforms the proper-based scheme, as is shown with dashed lines in
Fig. 2.7. To conclude, it can be observed that the achievable rate region is enlarged when using
IGS through WLP and, additionally, both system sum-rate (i.e. RA+RB) and system fairness
(i.e. min(RA, RB)) are improved for this channel realization.

Averaged sum-rate and min-rate performance

The figures in the following display simulation results averaged over 1000 random channel re-
alizations when varying η for SNR=10 dB, OPA, and different antenna configurations. The
schemes that are evaluated are:

• proper (LP): TXs use LP (i.e. α=0 at TXB in (2.39)) and maximum power.

• improper (WLP) α=0.5: TXs use WLP and maximum power, whereby for TXB: α=0.5
(maximum impropriety level) and the anti-identity solution for U1 and U2 (i.e. Option 2
in (2.43)) are used in (2.39).

• only TXA (LP): TXA transmits through optimal LP design, and TXB is turned off.

• optimal scheme SISO: optimal sum-rate scheme presented in [122] for the SISO Z-IC.
It is valid for M=N=1 and encompasses PGS and IGS solutions.

• WMMSE: weighted minimum MSE algorithm presented in [127] for sum-rate maximiza-
tion in MIMO IC. To adopt IGS, the complex-valued MIMO Z-IC is transformed into an
equivalent double-sized real-valued MIMO Z-IC where the WMMSE algorithm applies. It
can be employed for any antenna configuration, encompasses PGS and IGS solutions, and
converges to a local optimum.

Fig. 2.8 displays the sum-rate (i.e. RA+RB) and the min-rate (i.e. min(RA, RB)) versus η for
1×1. Fig. 2.9 and Fig. 2.10 show the same for antenna configurations 2×2 and 4×4, respectively,
so as to see how the system performance scales with the number of transmit/receive antennas.

Note that ’optimal scheme SISO’ and ’WMMSE’ schemes are used as benchmarks in terms
of sum-rate. They involve larger complexity, coordination among TXs and knowledge of all
channel matrices. On the other hand, ’proper (LP)’, ’improper (WLP) α=0.5’, and ’only TXA’
do only require knowledge of the direct channels and no coordination among TXs is required.

Let us compare the proposed ’improper (WLP) α=0.5’ with ’proper (LP)’. In the 1×1
antenna case (see Fig. 2.8), it can be observed that the average sum-rate of the system is
increased with IGS for values of η≥1.25, but for values of η≥0.5 the use of IGS starts to be
important in some channel realizations (as shown by ’optimal scheme SISO’). On the other hand,
the average fairness of the system is increased with IGS for values of η≥0.5. In the 2×2 antenna
case (see Fig. 2.9), the average sum-rate is improved with IGS for η≥1.5 and the average fairness
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Figure 2.8: Average sum-rate and min-rate (in bits/s/Hz) for MIMO Z-IC vs. η. 1×1, OPA, SNR=10 dB.
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Figure 2.9: Average sum-rate and min-rate (in bits/s/Hz) for MIMO Z-IC vs. η. 2×2, OPA, SNR=10 dB.
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Figure 2.10: Average sum-rate and min-rate (in bits/s/Hz) for MIMO Z-IC vs. η. 4×4, OPA, SNR=10 dB.
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for η≥0.5. Finally, in the 4×4 antenna case (see Fig. 2.10), the average sum-rate is improved
for η≥2.75 and the average fairness for η≥0.75.

Therefore, the use of IGS is beneficial when interference exceeds a certain threshold, where
the proposed ’improper (WLP) α=0.5’ allows trading in transmission fairness and system sum-
rate. Such threshold increases as the number of transmit/receive antennas increase, due to the
fact that the larger is the number of transmit/receive antennas the larger are the dimensions of
the system and the lower are the gains of the flexibility provided by IGS.

In the SISO case (1×1), the sum-rate performance of the proposed ’improper (WLP) α=0.5’
is close to the optimal sum-rate performance of ’optimal scheme SISO’ (see Fig. 2.8.(a)), while
the average min-rate is improved (see Fig. 2.8.(b)). Recall that the proposed scheme has much
less complexity when α is fixed, as it does not require knowledge of the interfering channel.
Further, it can be adopted in any MIMO system such that M≥N .

2.6 Application to MIMO HCNs

In this section we show how to exploit the benefits of using IGS in HCNs through the simple
WLP design presented in Section 2.5. Let us focus on the deployment shown in Fig. 2.2 with
one MeNB and multiple SeNBs. We assume that on a given time/frequency resource the MeNB
serves a single user (called MUE) and each SeNB serves a single user (called SUE). Then, the
interference channel towards each SUE can be modeled by the MIMO Z-IC. More specifically,
the HCN in Fig. 2.2 is related to the MIMO Z-IC in Fig. 2.6 as follows:

• the MUE (that just receives noise) corresponds to RXB in Fig. 2.6, while

• each SUE (that might receive interference due to the active transmission of the MeNB on
the same time/frequency resource) corresponds to RXA in Fig. 2.6.

Moreover, due to the deployment of multiple SeNBs within the MeNB coverage area (see Fig.
2.2), there will appear as many MIMO Z-IC as the number of SUEs being served.

The interesting part is that the proposed improper-based scheme with WLP in Section 2.5.1
for TXB (i.e. the MeNB) when using maximal IGS (i.e. α=0.5 in (2.39)) can be applied inde-
pendently of the interfering channel, as it is based on generating improper interference towards
the SUEs (i.e. RXA) but does not depend on the specific SUE that is selected. Accordingly,
the proposed improper-based scheme can be easily applied to multi-tier HCN deployments de-
fined in 3GPP LTE-A [17] so as to increase the achievable rate of the SUEs. Furthermore, as
multiple MIMO Z-IC may appear, large gains could be obtained with the use of the proposed
improper-based scheme because all SUEs would be guaranteed to increase their rate according
to Theorem 2.1 for UPA and to Theorem 2.3 for OPA.

2.6.1 Practical implementation in 3GPP LTE-A compliant HCNs

The proposed WLP design can be easily applied to multi-tier HCN deployments defined in 3GPP
LTE-A [2]. We have to take into account that SeNBs resources are often underutilized, in which
case the MeNB should normally transmit with PGS or the rate of its MUE would be degraded.
Accordingly, a procedure to indicate the activation of IGS usage in each frame is required.
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Figure 2.11: Example of control signaling for IGS activation in a HCN consisting of 1 MeNB and 2 SeNBs.
2 parallel MIMO Z-IC appear.

The procedure for activation of IGS usage is done through the control-plane, as illustrated
in Fig. 2.11. First of all, the MeNB acquires knowledge of the eigenvectors (and eigenvalues for
OPA) of the equivalent MIMO channel towards its serving MUEs (i.e. HH

B,BC−1
nB

HB,B). This
can be done using the precoding matrix indicator (PMI), the rank indicator (RI) and channel
quality indicator (CQI) in LTE-A [22]. Then, relative narrow-band transmit power (RNTP)13 is
sent from the SeNBs towards the MeNB, such that the MeNB is aware of the resources employed
by the SeNB and high cross-tier interference will be generated. Based on this knowledge, the
MeNB changes the transmission scheme on such resources where any of the SeNB will transmit.
The scheme is changed to WLP in (2.39) by selecting α such that the rate requirements of
the serving MUE on such resource are satisfied. If the selected α is larger than 0 (improper is
selected) on a given resource, the neighbor SeNBs can transmit with WLP in order to improve
the rate of its associated SUEs, and all UEs should implement WLE for data decoding. But
before data decoding, the SeNBs should acquire knowledge of the eigenvectors (and eigenvalues
for OPA) of the equivalent real-valued MIMO channel towards its serving SUEs taking into

account the interference received from the MeNB (i.e. H̄
H
A,AC−1

n̄A
H̄A,A).

With this procedure, the signaling among TXs is minimum and no further coordination is
required. Only local information is required at MeNB/SeNBs and it is not needed to acquire
explicit knowledge about the interfering channel matrices either at BSs or users. The local
information required at MeNB and SeNBs to implement the proposed WLP design is:

• MeNB : associated MUE have to report the eigenvectors of HH
B,BC−1

nB
HB,B for UPA, or the

eigenvectors and the eigenvalues of HH
B,BC−1

nB
HB,B for OPA. From such reporting, Topt

B,1

can be selected at MeNB, and WLP scheme in (2.39) can be used to get TB,1 and TB,2.

• SeNB : associated SUE have to report the eigenvectors of H̄
T
A,AC−1

n̄A
H̄A,A for UPA, or the

eigenvectors and the eigenvalues of H̄
T
A,AC−1

n̄A
H̄A,A for OPA. From such reporting, T̄

opt
A in

(2.17) can be constructed at SeNB to obtain the equivalent widely linear precoders Topt
A,1

and Topt
A,2 using (2.6). This has to be done at all SeNBs.

13RNTP is an indicator per resource block (RB) signaled to neighboring eNBs, indicating the maximum antic-
ipated DL transmit power level per RB [2].
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2.6.2 Simulation results

The proposed improper-based scheme is evaluated through Monte Carlo simulations in a simu-
lator compliant with 3GPP LTE-A specifications in [104]. The network consists of a multi-tier
deployment where MeNBs and SeNBs use the same carrier frequency of 2 GHz with 10 MHz
bandwidth. It is used the Small Cell Scenario 1, following deployment and simulation param-
eters specified in [104]. The deployment consists of 1 MeNB and 4 SeNBs that are uniformly
distributed within the macrocell area. 60 UEs are deployed per macrocell area, being 2/3 of
them placed near the SeNBs, and the remaining UEs are uniformly distributed within the MeNB
coverage area. All UEs are placed outdoor. ITU Urban Macro and ITU Urban Micro models
with 3D distance are used for path loss and shadowing modeling for MeNB-UE and SeNB-UE
links, respectively. For frequency-selective fading modeling, the typical urban model is used.
Maximum transmit power at MeNB is Pmax

MeNB=46 dBm. At SeNBs we use two different maxi-
mum power values for simulation: either Pmax

SeNB=24 dBm or Pmax
SeNB=15 dBm. Antenna gains are

17 dBi at MeNB, 5 dBi at SeNB, and 0 dBi at UE. Noise spectral density is −174 dBm/Hz.
The number of antennas is MMeNB=MSeNB=2, and NUE=2 for all UEs.

Cell selection at each UE is based on best downlink reference signal receive power (RSRP)
[104]. A range extension bias (REB) is added at the RSRP received from each SeNB in order to
expand its cell-range and offload more UEs to the SeNBs [23]. REB=10 dB is used for Pmax

SeNB=24
dBm and REB=15 dB is employed for Pmax

SeNB=15 dBm, such that around 73% of the UEs (in
mean over different deployments) are offloaded to the SeNBs in both cases.

It is assumed that the LTE-A frame is composed of 8 downlink subframes and 2 uplink
subframes [17], but only downlink is evaluated in the sequel. Full-load traffic model is used,
where all UEs in the network have packets to be received. For each frame, the UEs associated
to the same MeNB or SeNB are uniformly distributed in frequency domain among the available
resource blocks (RBs), such that intra-cell interference is removed and only inter-cell interference
remains (both cross-tier and co-tier interference). The power available at each MeNB or SeNB
is uniformly distributed among the RBs where the UEs have been scheduled.

The following techniques are evaluated on each RB:

• time-sharing: time-sharing solution among MeNB and SeNBs. Different muting ratios
are used, represented by X/8 in the figures, which means that all SeNBs transmit in X
subframes, while MeNB transmits in the (8−X) subsequent subframes.

• eICIC ABS: eICIC technique defined in LTE-A with time-division muting based on
almost blank subframes (ABS) [56]. Different muting ratios are used, represented by
X/8 in the figures, which means that the MeNB is muted X subframes where the SeNBs
transmit, while in the (8−X) subsequent subframes all MeNB and SeNBs transmit.

• FR proper (LP): full-reuse of the frequency band and time slots for MeNB and SeNBs,
using proper-based schemes (i.e. LP) at MeNB and SeNBs with OPA in (2.34).

• FR improper (WLP): full-reuse of the frequency band and time slots for MeNB and
SeNBs, using improper-based schemes (i.e. WLP) at MeNB and SeNBs with OPA in
(2.34). The proposed scheme in (2.39) is employed at MeNB with α=0.5 and the anti-
identity solution for U1 and U2 in (2.43).

Fig. 2.12 displays the evaluated transmission schemes in a frequency/time grid corresponding
to 1 RB and 8 downlink subframes, showing the subframes in which MeNB and SeNBs are allowed
to transmit.
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Figure 2.12: Transmission schemes considered for HCNs, shown in a frequency/time grid corresponding to
1 RB and 8 downlink subframes.

The performance indicator is the user throughput (UT) measured in Mbits/s. Let us remark
that all the evaluated schemes have as main objective dealing with the cross-tier interference,
either with time-sharing or with an efficient spatial precoding design. However, the intra-tier
interference can degrade the system performance in some cases depending on the deployment
and the system parameters. In the case of a full-reuse, the cross-tier interference from the SeNB
to the MUEs can also be prejudicial in some deployments.

Fig. 2.13 displays the cumulative distribution function (CDF) of the achievable rates per
RB of the MUEs and the SUEs (in bits/s/Hz) separately for the case of Pmax

SeNB=24 dBm. In the
’eICIC ABS’ technique, as the muting ratio (X/8) increases, the achievable rate of the MUEs is
degraded while the achievable rate of the SUEs is improved because the cross-tier interference is
eliminated. As compared to the baseline ’FR proper (LP)’, the proposed ’FR improper (WLP)’
has a similar behavior than the ’eICIC ABS’: it degrades the achievable rate of the MUEs so as
to improve the achievable rate of the SUEs (as is also shown in Section 2.5.4). However, it can
be observed that, among all techniques, ’FR improper (WLP)’ achieves the fairest performance
when considering all the MUEs and the SUEs.

Fig. 2.14 displays the 5%-tile UT vs. the mean UT when considering all UEs for the case
of (a) Pmax

SeNB=24 dBm and (b) Pmax
SeNB=15 dBm. The use of ’time-sharing’ or ’eICIC ABS’ define

an oval area where the system can operate based on the variation of the muting ratio (X/8). As
the muting ratio increases, the mean UT is increased because the SeNBs have more subframes
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Figure 2.13: CDF of the achievable rates (in bits/s/Hz) per RB of the MUEs and the SUEs, separately,
for Pmax

SeNB=24 dBm.
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Figure 2.14: 5%-tile UT vs. mean UT (in Mbits/s) for different SeNB maximum transmit power (Pmax
SeNB).

Different muting ratios are displayed for time-sharing and eICIC solutions.

available with less interference (see Fig. 2.12). On the contrary, there is a limit in terms of
fairness (or 5%-tile UT) as when the muting ratio increases the resources devoted for the MUEs
decrease and there is a switching point in which the fairness passes from being limited by SUEs
to being constrained by the MUEs. However, it is important to realize that, although the ’FR
proper (LP)’ lies inside the oval areas delimited by the ’time-sharing’ or ’eICIC ABS’ solutions,
the proposed ’FR improper (WLP)’ allows to go out of these areas and improve both the system
fairness and the system sum-rate performance.

When reducing the SeNB transmit power to Pmax
SeNB=15 dBm (see Fig. 2.14.(b)), similar

conclusions can be extracted as for Pmax
SeNB=24 dBm. However, the 5%-tile and the mean UT

gains of ’FR improper (WLP)’ are larger than in the case of Pmax
SeNB=24 dBm, owing to the fact

that when reducing the power at SeNBs the interfering-to-direct ratio for the SUEs increases
(same interfering power from MeNB, but less direct power from SeNB) and hence the use of
IGS provides larger system performance gains.

In addition to the system fairness and performance gains, ’FR improper (WLP)’ has the
following advantages as compared to ’time-sharing’ or ’eICIC ABS’ solutions:

• there is no need to optimize the muting ratio, and

• the on/off switching of the MeNB does not need to be tackled.

Furthermore, the proposed ’FR improper (WLP)’ does not add any complexity in terms of
implementability, either in overhead or in additional information required.
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2.7 Conclusions

This chapter exploits majorization theory to formally quantify the benefits of improper Gaussian
signaling in the MIMO P2P-I, and then applies the derived concepts to the MIMO Z-IC and to co-
channel heterogeneous cellular networks through an efficient design of widely linear transceivers.

First, for the MIMO P2P-I, we show that the use of IGS allows:

• strictly improving the achievable rate and the mean square error when uniform power
allocation is performed and

• improving the achievable rate when optimal power allocation for maximum rate is adopted,
whereby the strict superiority is proved for a particular case.

Second, for the MIMO Z-IC, we propose a practical improper-based signaling scheme through
a simple WLP design, which allows:

• improving the achievable rate of the most impaired user and

• improving the system fairness and controlling the sum-rate performance through a single
parameter (the impropriety measure) in interference-limited conditions.

The proposed improper-based scheme is useful provided that the interference level in the MIMO
Z-IC is high, in which case the performance gains are significant.

Finally, such benefits are applied to co-channel HCNs where multiple MIMO Z-IC appear
with high interference levels. In this scenario, 3GPP-compliant simulations show that the 5%-tile
user throughput and the mean user throughput can be improved with the proposed improper-
based scheme as compared to conventional time-sharing solutions, proper-based schemes, and
the well-known eICIC technique, due to the fact that the proposed scheme can cope with a full
reuse of the frequency bands and time slots while providing enough flexibility to combat the
predominant cross-tier interference in co-channel HCNs.





Appendices

2.A Preliminaries for Improper Gaussian Random Vectors

In this section, some basic notions of improper random vectors are introduced. See [65] for more
details.

Definition 2.1 ([65]). Given a zero-mean complex random vector x∈Cn×1, Cx=E[xxH ] denotes
the covariance matrix of x and C̃x=E[xxT ] refers to the pseudo-covariance matrix of x.

By definition, it is easy to check that the covariance matrix Cx is Hermitian and positive
semidefinite while the pseudo-covariance matrix C̃x is symmetric.

Definition 2.2 ([128] - proper). A complex random vector x is called proper if its pseudo-
covariance matrix C̃x vanishes to a zero matrix, otherwise it is called improper.

A more restrictive definition than properness is known as circularly symmetric.

Definition 2.3 ([65] - circularly symmetric). A complex random vector x is circularly symmetric
if its distribution is rotationally invariant, i.e. if x and x̂=xejα have the same distribution for
any real value α.

For a circularly symmetric random vector x, we have C̃x=C̃x̂=E[x̂x̂T ]=ej2αC̃x, which im-
plies C̃x=0. Thus, circularity implies properness, but the converse is not true in general. Nev-
ertheless, if x is a zero-mean Gaussian random vector, then properness and circularity are
equivalent [65], as given by the following lemma.

Lemma 2.3 ([65]). A complex zero-mean Gaussian random vector x is circularly symmetric if
and only if it is proper.

For example, the commonly adopted assumption that the noise vector is zero-mean circularly
symmetric complex Gaussian (CSCG) is equivalent to say that the noise vector is a proper
Gaussian random vector.

For an arbitrary zero-mean complex random vector x∈Cn×1, two mathematical tools have
been used in the recent literature to represent them: the composite real representation, whereby

the real part and the imaginary part of x are separated: x̄=
[
<{x}T ={x}T

]T ∈R2n×1, and
the augmented complex representation, which works with the complex vector and its complex

conjugate: x=
[
xT (x∗)T

]T∈C2n×1 [129]. Both representations are mathematically equivalent

59
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in the sense that it is equivalent to work with one or the other, since they are related by the
following bijective transformation:

x̄ =

[
<{x}
={x}

]
= Z

[
x
x∗

]
= Zx, (2.50)

where

Z = 1
2

[
I I
−jI jI

]
. (2.51)

It is very important to recall that although x̄ is a real-valued vector, Z and x are complex-valued.
Thus, x̄T=xHZH .

Lemma 2.4 ([65]). Any arbitrary zero-mean complex random vector x∈Cn×1 is characterized
by the covariance matrix of the augmented vector x, which is given by:

Cx = E[xxH ] =

[
Cx C̃x

C̃∗x C∗x

]
. (2.52)

The augmented covariance matrix Cx has some built-in redundancy for the second-order
characterization of x. However, it is useful as shown in the following theorems.

Theorem 2.5 ([65]). Cx and C̃x are a valid set of covariance and pseudo-covariance matrices,
i.e., there exists a random vector x with covariance and pseudo-covariance matrices given by Cx

and C̃x, respectively, if and only if the augmented covariance matrix Cx is positive semidefinite,
i.e. Cx � 0.

The conditions of the covariance matrix Cx being Hermitian and positive semidefinite and the
pseudo-covariance matrix C̃x being symmetric are already implied by the augmented covariance
matrix Cx being positive semidefinite [65].

Furthermore, for the improper complex Gaussian random vectors, the differential entropy
is in general a function of both the covariance and pseudo-covariance matrices, which can be
expressed in terms of Cx as shown by the following theorem.

Theorem 2.6 ([65]). The entropy of a complex Gaussian random vector x of length n with
augmented covariance matrix Cx is:

h (x) =
1

2
log2

(
(πe)2n

∣∣Cx

∣∣) (2.53)

Theorem 2.6 generalizes the entropy result for proper Gaussian random vectors. If C̃x=0,
(2.53) reduces to the well-known entropy expression for proper Gaussian random vectors [128]:

h (x) = log2 ((πe)n |Cx|) (2.54)

The relation between the covariance matrix of the augmented vector x (i.e. Cx in (2.52))
and the covariance matrix of the real-valued vector x̄ (i.e. Cx̄) can be derived from (2.50). It is
included in the following lemma.
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Lemma 2.5. The covariance matrix of the real-valued vector x̄ is related to the covariance
matrix of the augmented vector x as:

Cx̄ = E[x̄x̄T ] = E[ZxxHZH ] = ZCxZH = Z

[
Cx C̃x

C̃∗x C∗x

]
ZH , (2.55)

being matrix Z the one defined in (2.51). Due to the bijective transformation in (2.50) and
Lemma 2.4, Cx̄ in (2.55) characterizes any arbitrary zero-mean complex random vector x.

In wireless communications, the information-bearing signals are usually selected from a
CSCG (i.e. proper Gaussian) codebook. Hence, the problem of how efficiently generate an im-
proper Gaussian signal x∈Cn×1 from a proper Gaussian signal b∈Cm×1 selected from a CSCG
codebook arises. Without loss of generality, assume that b∼CN (0, I), i.e. Cb=I and C̃b=0.
Note that the conventional linear precoding, i.e. x=Tb where T∈Cn×m is the precoding matrix,
it not able to map the proper Gaussian signal b into an improper Gaussian signal x, since the
pseudo-covariance matrix of x vanishes C̃x=TC̃bTT=0. However, widely linear precoding is
able to do it [69]. The main result is summarized in the following lemma.

Lemma 2.6 ([69]). Given a proper Gaussian information-bearing signal b∈Cm×1 characterized
by Cb=I and C̃b=0, an improper Gaussian signal x∈Cn×1 can be obtained by applying the
following widely linear precoding (WLP) to the proper Gaussian signal b:

x = T1b + T2b
∗, (2.56)

where T1∈Cn×m and T2∈Cn×m are the precoding matrices corresponding to the blocks of Cx in
(2.52):

C
1
2
x =

[
T1 T2

T∗2 T∗1

]
. (2.57)

Therefore, as Cx characterizes any arbitrary zero-mean complex random vector, any im-
proper Gaussian signal can be generated from a proper Gaussian signal through the use of
WLP [69, Sect. II.C].

In other words, Lemma 2.6 states the relation between the covariance and pseudo-covariance
matrices of signal x (Cx and C̃x) and the precoding matrices T1 and T2:

Cx = T1T
H
1 + T2T

H
2 (2.58)

C̃x = T1T
T
2 + T2T

T
1 (2.59)

Note that if T2=0, which is the case when Cx is block-diagonal (i.e. C̃x=0), then (2.56) reduces
to the conventional linear precoding used for proper Gaussian signaling: x=T1d.

2.B Preliminaries for Majorization Theory

In this section, some basic notions of majorization theory are presented. See [96] for a complete
reference and [97] for its applications in wireless communications. Majorization theory makes
precise the vague notion that the components of a real-valued vector y are ”more spread out”
or ”less nearly equal” than are the components of a real-valued vector x.
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Definition 2.4. For any real-valued vector x ∈ Rn×1, let

x[1] ≥ · · · ≥ x[n] (2.60)

denote the components of vector x in decreasing order. Similarly, let

x(1) ≤ · · · ≤ x(n) (2.61)

denote the components of vector x in increasing order.

Under this ordering of vectors, different kinds of majorization relations when comparing two
vectors arise: strong majorization, weak majorization, and weak log-majorization, defined in the
following.

Definition 2.5 ([96] - strong majorization). For any x,y∈Rn×1, y majorizes x (or x is ma-
jorized by y), written as y�x (or, equivalently, x≺y), if:∑m

i=1
y[i] ≥

∑m

i=1
x[i] m = 1, ..., n− 1 and

∑n

i=1
y[i] =

∑n

i=1
x[i]. (2.62)

Note that the conditions (2.62) are equivalent to:∑m

i=1
y(i) ≤

∑m

i=1
x(i) m = 1, ..., n− 1 and

∑n

i=1
y(i) =

∑n

i=1
x(i). (2.63)

Definition 2.6 ([96] - weak majorization). For any x,y∈Rn×1, y weakly majorizes x (or x is
weakly majorized by y), written as y�wx (or, equivalently, x≺wy), if:∑m

i=1
y[i] ≥

∑m

i=1
x[i] m = 1, ..., n. (2.64)

Note that y � x implies y �w x, so strong majorization is a more restrictive definition than
weak majorization.

Definition 2.7 ([96] - weak log-majorization). For any x,y∈Rn×1, y weakly log-majorizes x
(or x is weakly log-majorized by y), written as y�w logx (or, equivalently, x≺w logy), if:∏m

i=1
y[i] ≥

∏m

i=1
x[i] m = 1, ..., n. (2.65)

Note that y�w logx implies y�wx, so weak log-majorization is a stronger definition than
weak majorization.

Functions that preserve the ordering of majorization are said to be Schur-convex (or Schur-
concave if the order is reverted), as defined in the following.

Definition 2.8 ([96] - Schur-convex and Schur-concave functions). A real-valued function φ
defined on a set A∈Rn×1 is said to be Schur-convex on A if:

y � x on A ⇒ φ(y) ≥ φ(x). (2.66)

Similarly, φ is said to be Schur-concave on A if:

y � x on A ⇒ φ(y) ≤ φ(x). (2.67)
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The Schur-convex (Schur-concave) property of a function can be identified as follows.

Proposition 2.1 ([96]). If I∈R is an interval and g : I→R is convex, then:

φ(x) =
∑n

i=1
g(x[i]) (2.68)

is Schur-convex on In×1. Similarly, if g : I→R is concave, then: φ(x)=
∑n

i=1 g(x[i]) is Schur-
concave on In×1.

Furthermore, there is a stronger version of Schur-convexity (Schur-concavity) for functions
that preserve (revert) the ordering of majorization with a positive increment, as introduced in
the following.

Definition 2.9 ([130] - Strongly Schur-convex and Strongly Schur-concave functions). A real-
valued function φ defined on a set A∈Rn is said to be strongly Schur-convex with modulus c>0
on A if:

y � x on A ⇒ φ(y) ≥ φ(x) + c(||y||2 − ||x||2). (2.69)

Similarly, φ is said to be strongly Schur-concave with modulus c>0 on A if:

y � x on A ⇒ φ(y) ≤ φ(x)− c(||y||2 − ||x||2). (2.70)

Note that the usual Schur-convexity and Schur-concavity correspond to the case c=0.

The strongly Schur-convex (strongly Schur-concave) property of a function can be identified
as follows.

Proposition 2.2 ([130]). If I∈R is an interval and g:I→R is strongly convex with modulus c>0,
then:

φ(x) =
∑n

i=1
g(x[i]) (2.71)

is strongly Schur-convex with modulus c>0 on In×1. Similarly, if g:I→R is strongly concave with
modulus c>0, then: φ(x)=

∑n
i=1 g(x[i]) is strongly Schur-concave with modulus c>0 on In×1.

Finally, let us present an important majorization result for partitioned Hermitian matrices
which states that, for two Hermitian matrices with equal diagonal blocks, the stronger the off-
diagonal blocks are the more spread out the eigenvalues become, see [65, Result A3.7]. This
result can also be derived from the pinching inequality, see [86].

Lemma 2.7 ([65] - partitioned Hermitian matrices). For Hermitian matrices A, B in the form:

A =

[
A11 A12

AH
12 A22

]
, B =

[
A11 0
0 A22

]
, (2.72)

the following strong majorization result is fulfilled:

eig(A) � eig(B). (2.73)
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2.C Proof of Lemma 2.1

The relation among R in (2.9) and Ē in (2.12) can be easily obtained as: R=−1
2 log2|2Ē|. Further,

the MSE-matrix in the double-sized real-valued form Ē can be related to the MSE-matrix of the
transmitted symbols (i.e. E=E[(b−b̂)(b−b̂)H ]) as:

Ē = Z ¯̄EZH , ¯̄E=

[
E Ẽ

Ẽ
∗

E∗

]
, (2.74)

where Ẽ=E[(b−b̂)(b−b̂)T ] and transformation matrix Z is defined in (2.10). So, by plugging
(2.74) into the relation in (2.13) and applying the properties of the determinant and the fact
that Z−1Z−H=2I, we obtain the second equality of equation (2.13):

R = −1
2 log2|2Ē| = −1

2 log2| ¯̄E| = −1
2 log2|E| − 1

2 log2|E∗ − Ẽ
∗
E−1Ẽ|. (2.75)

Finally, R can be lower bounded by using the Fischer improved determinant inequality [124]
which states that: | ¯̄E|≤|E|2−|Ẽ||Ẽ∗|. Hence, applying logarithms to the inequality, we get:

−1
2 log2| ¯̄E|+ 1

2 log2|E|2 ≥ 1
2 log2(1 + |Ẽ||Ẽ∗|| ¯̄E|−1). (2.76)

So, by using | ¯̄E|=|2Ē|, inequality in (2.14) is derived from (2.76). Further, as the right-hand in
(2.14) is strictly positive, we can conclude:

R ≥ −log2|E|+ 1
2 log2

(
1 + 1

2 |Ẽ||Ẽ
∗||Ē|−1

)
≥ −log2|E|. (2.77)

2.D Proof of Lemma 2.2

Assume that the channel coefficients of H∈CN×M in (2.1) follow a Rayleigh distribution (i.e. H
is full rank) and M≥N . Then, let us write the vector of eigenvalues in (2.23) as follows:

λ̄P = eig
([ Cn 0

0 C∗n

]−1
1
2Z−1H̄H̄

T
Z−H

)
,

λ̄I = eig
([ Cn C̃n

C̃
∗
n C∗n

]−1
1
2Z−1H̄H̄

T
Z−H

)
,

(2.78)

in which we have used the fact that eig(XY)=eig(YX) for any matrix X and Y. Note that
the block-matrices [Cn 0; 0 C∗n] and [Cn C̃n; C̃

∗
n C∗n] in (2.78) are full rank, so their inverses

exist. By using the structure of H̄ in (2.5), the structure of Z in (2.10), and some matrix

manipulations, it can be shown that 1
2Z−1H̄H̄

T
Z−H in (2.78) is equal to:

1
2Z−1H̄H̄

T
Z−H =

[
HHH 0

0 H∗HT

]
. (2.79)

This relation is key for the proof. Note that 1
2Z−1H̄H̄

T
Z−H in (2.79) is full rank forM≥N and H

full rank, so its inverse exists and it is equal to (1
2Z−1H̄H̄

T
Z−H)−1=[(HHH)−1 0; 0 (HHH)−1].
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The inverses of the positive eigenvalues in (2.78) (i.e. λ̄
−1
P and λ̄

−1
I ) can be obtained from

the positive eigenvalues of the inverse matrix. Then, using the relation in (2.79), we get:

λ̄
−1
P = eig

([ Cn 0
0 C∗n

][
(HHH)−1 0

0 (H∗HT )−1

])
,

λ̄
−1
I = eig

([ Cn C̃n

C̃
∗
n C∗n

][
(HHH)−1 0

0 (H∗HT )−1

])
,

(2.80)

such that, multiplying the block-matrices, we have:

λ̄
−1
P =eig

([ Cn(HHH)−1 0

0 C∗n(H∗HT )−1

])
,

λ̄
−1
I =eig

([ Cn(HHH)−1 C̃n(H∗HT )−1

C̃
∗
n(HHH)−1 C∗n(H∗HT )−1

])
.

(2.81)

Therefore, as the diagonal blocks of the partitioned Hermitian matrices in (2.81) are equal, we
can make use of Lemma 2.7 in Appendix 2.B and hence, from (2.81), obtain:

λ̄
−1
I �λ̄

−1
P , (2.82)

which demonstrates the strong majorization result in (2.24) of Lemma 2.2.

The weak log-majorization result in (2.24) of Lemma 2.2 is demonstrated in continua-
tion by using some useful majorization theory properties that can be derived from (2.82).
The first useful majorization theory property is [96, Sect. 5.A.1.d]: if eig(A)�eig(B), then∏K
i=k eig(A)i≤

∏K
i=k eig(B)i, k = 1, ...,K, being eig(A)i the i-th eigenvalue of A and K the rank

of A. Due to the ordering of eigenvalues, the last components of the vectors in (2.82) correspond
to the first components of the eigenvalues in (2.78), such that as an implication of (2.82):∏n

i=1

1

λ̄I,i
≤
∏n

i=1

1

λ̄P,i
n = 1, ..., 2N, (2.83)

and hence: ∏n

i=1
λ̄I,i ≥

∏n

i=1
λ̄P,i n = 1, ..., 2N. (2.84)

The second useful majorization theory property is [96, Sect. 5.A.1]: if eig(A)�eig(B), then
we can apply a convex function g(.) over each component of the vectors and the following is
satisfied: g(eig(A))�wg(eig(B)). As g(x)= 1

x is a convex function, it follows from (2.82) that:∑n

i=1
λ̄I,i ≥

∑n

i=1
λ̄P,i n = 1, ..., 2N. (2.85)

Again, the ordering of eigenvalues is very important here. Finally, from (2.84) and (2.85), the
weak log-majorization result in (2.24) is demonstrated (see Definition 2.7 in Appendix 2.B).

2.E Proof of Theorem 2.1

The function 1
2 log2

(
1+ P̄

x

)
is convex w.r.t. x≥0 for P̄>0. Thus, as convex functions generate

Schur-convex sums (see Proposition 2.1 in Appendix 2.B), the function
∑

i
1
2 log2

(
1+ P̄

xi

)
is a
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Schur-convex function. The achievable rate in (2.28) can be written in such a form with xi=
1
λ̄i

:

Ropt=
∑2N

i=1
1
2 log2

(
1+ P̄

1/λ̄i

)
, so it is a Schur-convex function on λ̄

−1
for P̄>0. Therefore, due

to Lemma 2.2 (λ̄
−1
I �λ̄

−1
P ) and as the achievable rate is a Schur-convex function on λ̄

−1
, by

majorization theory on Schur-convex functions (see Definition 2.8 in Appendix 2.B) we get:

Ropt(P̄ λ̄I) ≥ Ropt(P̄ λ̄P ). (2.86)

To further extend this inequality, we make use of the results from strong Schur-convexity
(see Definition 2.9 in Appendix 2.B) [130]. Inequality in (2.30) of Theorem 2.1 is obtained by

showing that the rate expression Ropt=
∑2N

i=1
1
2 log2

(
1+ P̄

xi

)
with xi=

1
λ̄i

is a strongly Schur-convex

function with modulus cupa
R . As strongly convex functions generate strongly Schur-convex sums

(see Proposition 2.2 in Appendix 2.B), we need to prove that 1
2 log2

(
1+ P̄

x

)
is strongly convex14

with modulus cupa
R on interval x∈[0, xmax] or, equivalently, to show that 1

2 log2

(
1+ P̄

x

)
−cupa

R x2

is convex on the interval x∈[0, xmax] [130]. By checking the second order derivative, it is easy

to show that 1
2 log2(1+ P̄

x )−cupa
R x2 is convex for cupa

R ≤
P̄ (x+0.5P̄ )

2 ln(2)x2(x+P̄ )2
. Therefore, as the values

of xi=
1
λ̄i

are upper bounded by the minimum positive eigenvalue xmax= 1
min(λ̄i)

, there exists an

interval x∈[0, xmax] in which 1
2 log2

(
1+ P̄

x

)
is strongly convex with modulus:

cupa
R =

P̄ (xmax + 0.5P̄ )

2 ln(2)x2
max(xmax + P̄ )2

> 0. (2.87)

Consequently, due to Lemma 2.2 (λ̄
−1
I �λ̄

−1
P ) and as the achievable rate is a strongly Schur-

convex function on λ̄
−1

with modulus cupa
R (see Definition 2.9 in Appendix 2.B):

Ropt(P̄ λ̄I) ≥ Ropt(P̄ λ̄P ) + cupa
R

(
‖λ̄−1

I ‖2 − ‖λ̄
−1
P ‖2

)
. (2.88)

Note that due to the strong majorization result in Lemma 2.2: 1
min(λ̄P )

≤ 1
min(λ̄I)

, such that the

interval [0, xmax] is determined by the IGS case. Therefore, by setting xmax= 1
min(λ̄I)

in (2.87),

cupa
R in (2.31) is derived. Finally, as the squared 2-norm function is a Schur-convex function then(
‖λ̄−1

I ‖2−‖λ̄
−1
P ‖2

)
≥0 (with equality if and only if λ̄I=λ̄P ) [130]. So, the rate gap in (2.30) is

strictly positive provided that λ̄I 6=λ̄P .

2.F Proof of Theorem 2.2

The function 1
2

x
(P̄+x)

is a concave function on x≥0 for P̄>0. Then, as concave functions generate

Schur-concave sums (see Proposition 2.1 in Appendix 2.B), the function
∑

i
1
2

xi
(1+xi)

is a Schur-

concave function. The MSE in (2.29) can be written in such a form if we consider xi=
1
λ̄i

:

εopt=
∑2N

i=1
1
2

1/λ̄i
(P̄+1/λ̄i)

, so it is a Schur-concave function on λ̄
−1

for P̄>0. Therefore, due to

Lemma 2.2 (λ̄
−1
I �λ̄

−1
P ) and as the MSE is a Schur-concave function on λ̄

−1
, by majorization

14A twice continuously differentiable function f : (a, b)→R is strongly convex with modulus m if and only if
f ′′(x) ≥ m>0 for x∈(a, b).
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theory on Schur-concave functions (see Definition 2.8 in Appendix 2.B) we have:

εopt(P̄ λ̄I) ≤ εopt(P̄ λ̄P ). (2.89)

To further extend this inequality, we make use of the results from strong Schur-concavity
(see Definition 2.9 in Appendix 2.B) [130]. Inequality in (2.32) of Theorem 2.2 is obtained by
showing that the error expression εopt=

∑2N
i=1

1
2

xi
(P̄+xi)

with xi=
1
λ̄i

is a strongly Schur-concave

function with modulus cupa
ε . As strongly concave functions generate strongly Schur-concave

sums (see Proposition 2.2 in Appendix 2.B), we need to prove that 1
2

x
(P̄+x)

is strongly con-

cave15 with modulus cupa
ε on interval x∈[0, xmax] or, equivalently, to show that 1

2
x

(P̄+x)
+cupa

ε x2

is concave on interval x∈[0, xmax] [130]. By checking the second order derivative, one can show

that 1
2

x
(P̄+x)

+cupa
ε x2 is concave for cupa

ε ≤ P̄
2(x+P̄ )3

. Therefore, as the values of xi=
1
λ̄i

are upper

bounded by the minimum positive eigenvalue xmax= 1
min(λ̄i)

, there exists an interval x∈[0, xmax]

in which the function 1
2

x
(P̄+x)

is strongly concave with modulus:

cupa
ε =

P̄

2(xmax + P̄ )3
> 0. (2.90)

Consequently, due to Lemma 2.2 (λ̄
−1
I �λ̄

−1
P ) and as the MSE is a strongly Schur-concave

function on λ̄
−1

with modulus cupa
ε (see Definition 2.9 in Appendix 2.B):

εopt(P̄ λ̄I) ≤ εopt(P̄ λ̄P )− cupa
ε

(
‖λ̄−1

I ‖2 − ‖λ̄
−1
P ‖2

)
. (2.91)

By setting xmax= 1
min(λ̄I)

in (2.90), cupa
ε in (2.33) is derived. Also, as

(
‖λ̄−1

I ‖2−‖λ̄
−1
P ‖2

)
≥0, the

error gap in (2.32) is strictly positive provided that λ̄I 6=λ̄P .

2.G Proof of Theorem 2.3

In order to demonstrate an achievable rate improvement with the use of IGS when OPA in (2.34)
is implemented, let us focus on proving the following inequalities:

Ropt(p̄I ◦ λ̄I) ≥ R(p̄P ◦ λ̄I) ≥ Ropt(p̄P ◦ λ̄P ), (2.92)

where R(p̄P ◦λ̄I) refers to the achievable rate in the improper interference case when the power
allocation derived from the proper interference case is used (which is not the optimum, but a
valid power allocation). Regarding the second inequality in (2.92), in the following we introduce
some interesting properties that would allow us to demonstrate it.

• Property 1: [96, Prop. 3.H.3.b] states that if a�wb, then a◦u�wb◦u for any u∈D+, where
D+ denotes the set of vectors of length L such that {(u1, ..., uL) : u1≥ . . .≥uL≥0}. The
extension of this proposition to the weakly logarithm majorization is straightforward by
realizing the properties of the product operation. So we can state that: if a�wlogb, then

15A twice continuously differentiable function f : (a, b)→ R is strongly concave with modulus m if and only if
f ′′(x)≤m < 0 for x∈(a, b).
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a◦u�wlogb◦u for any u∈D+. Accordingly, as p̄P∈D+ and due to Lemma 2.2 (λ̄I�w logλ̄P ),
we can conclude that when using the power allocation derived of the proper interference
case (i.e. p̄P ), the following relation is satisfied:

p̄P ◦ λ̄I �w log p̄P ◦ λ̄P . (2.93)

• Property 2: [131, Prop. 1.3] claims that if a�wlogb, then
∑

i log2 (1+ai)≥
∑

i log2 (1+bi),
as log2(1+x) is an increasing function on x∈[0,∞) and log2(1+ex) is a convex function
w.r.t. x∈[0,∞). Accordingly, as the achievable rate in (2.19) has such a form and owing
to Property 1 (p̄P ◦λ̄I�w logp̄P ◦λ̄P ):

R(p̄P ◦ λ̄I) ≥ Ropt(p̄P ◦ λ̄P ). (2.94)

Hence, the second inequality in (2.92) is demonstrated. The first inequality in (2.92) is intrinsic
of the water-filling solution in (2.34), as for a given λ̄I the optimal power allocation in terms of
achievable rate is given by p̄I , so: Ropt(p̄I◦λ̄I)≥R(p̄P ◦λ̄I) and the proof is completed.

2.H Proof of Theorem 2.4

The function 1
2 log2

(µ
x

)
is a convex function w.r.t. x≥0 for µ>0. Thus, as convex functions

generate Schur-convex sums (see Proposition 2.1 in Appendix 2.B), the function
∑

i
1
2 log2

( µ
xi

)
is a Schur-convex function. The achievable rate in (2.36) can be written in such a form with

xi=
1
λ̄i

: Ropt=
∑2N

i=1
1
2 log2

( µ
1/λ̄i

)
, so it is a Schur-convex function on λ̄

−1
for µ>0. Furthermore,

by checking the second order derivative and following similar rationale as in Appendix 2.E, it can
be observed that the rate expression Ropt=

∑2N
i=1

1
2 log2

( µ
xi

)
is a strongly Schur-convex function

with modulus copa
R (i.e. 1

2 log2

(µ
x

)
is strongly convex with modulus copa

R on interval x∈[0, xmax]
or, equivalently, 1

2 log2

(µ
x

)
−copa

R x2 is convex on the interval x∈[0, xmax] [130]):

copa
R =

1

4 ln(2)x2
max

> 0. (2.95)

Consequently, due to Lemma 2.2 (λ̄
−1
I �λ̄

−1
P ) and as the achievable rate is a strongly Schur-

convex function on λ̄
−1

with modulus copa
R (see Definition 2.9 in Appendix 2.B):

Ropt(p̄I ◦ λ̄I) ≥ Ropt(p̄P ◦ λ̄P ) + copa
R

(
‖λ̄−1

I ‖2 − ‖λ̄
−1
P ‖2

)
. (2.96)

By setting xmax= 1
min(λ̄I)

in (2.95), copa
R in (2.38) is derived. Finally, as

(
‖λ̄−1

I ‖2−‖λ̄
−1
P ‖2

)
≥0,

the rate gap in (2.37) is strictly positive provided that λ̄I 6=λ̄P .



Chapter 3

Transmit Coordination Strategies

This chapter investigates transmit coordination strategies for weighted sum-rate (WSR) max-
imization in the downlink (DL) transmission of MIMO multi-cell multi-user systems. In this
sense, we focus on dense MIMO TDD smallcell networks (SCNs) and propose decentralized
coordinated precoding (D-CoP) designs. Each BS designs its own precoding matrices based
on channel state informacion (CSI) of the served users and knowledge of the interference-cost
matrix, which plays the role of an interference tax and allows managing interference towards
unintended users. A protocol is proposed to acquire the interference-cost matrix by processing
the covariance matrix of the uplink (UL) received signal provided that: (i) channel reciprocity
can be assumed and (ii) all users participating in DL can transmit in UL with an adequate
transmit filter. In contrast to existing transmit coordination techniques, D-CoP is fully scal-
able, avoids estimation of the interfering channels, and does not require information exchange
between BSs. In case all parameters are perfectly acquired, an iterative algorithm is presented
with demonstrated monotonic convergence when all BSs update their transmit precoders simul-
taneously. Further, the problem is reformulated to derive a robust D-CoP under imperfect CSI
conditions. Finally, simulations in 3GPP LTE-A SCNs show significant user packet throughput
gains without increasing the complexity associated to transmit coordination. Robustness to
imperfect CSI and non-ideal channel reciprocity is shown.

The technical papers and research contributions related to this chapter are:

[J2] S. Lagen, A. Agustin, J. Vidal, ”Decentralized Coordinated Precoding for Dense TDD Small
Cell Networks”, IEEE Trans. on Wireless Commun., vol. 14, no. 8, pp. 4546 - 4561, Aug.
2015. doi: 10.1109/TWC.2015.2422704.

[C2] S. Lagen, A. Agustin, J. Vidal, ”Decentralized Beamforming with Coordinated Sounding for
Inter-Cell Interference Management”, European Wireless 2014, Barcelona (Spain), May 2014.

[P] S. Lagen, A. Agustin, J. Vidal, ”Methods and systems for decentralized interference manage-
ment in a multi-antenna wireless communication system”, U.S. Patent 14/452,968, Aug. 6,
2014.

[lte1-7] 7 contributions to 3GPP LTE-A release 12 (see details in Section 1.8.4).

[TR] 3GPP TR 36.874, 3rd Generation Partnership Project, Technical Specification Group Radio
Access Network, ”Coordinated multi-point operation for LTE with non-ideal backhaul (Release
12)”, v.12.0.0, Dec. 2013.

This chapter is structured as follows. Section 3.1 contains the state of the art for WSR max-
imization in MIMO interference channels. The main contributions of the chapter are detailed in
Section 3.2. In Section 3.3 the system model is presented, including the signal model for channel
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estimation and DL and UL transmissions. In Section 3.4, the maximum WSR problem is formu-
lated. In Section 3.5 the proposed D-CoP is derived assuming either perfect CSI or imperfect
CSI conditions for the direct links, and how to acquire the required parameters for decentralized
transmit filters design at BS is detailed. The iterative algorithm for D-CoP is also presented
there (including convergence and complexity considerations) and practical impairments are ana-
lyzed. Section 3.6 investigates the practical implementation of D-CoP in a 3GPP-based network
and different methods are proposed. In Section 3.7 the proposed procedure is evaluated using a
3GPP LTE-A SCN. Finally, concluding remarks are included in Section 3.8.

3.1 State of the Art

SCNs arise due to the network densification and the spatial re-use of the spectrum considered
to improve the capacity of future cellular systems [6] (see Section 1.1). Differently from MeNB,
which are intended to provide general coverage and service to high mobility users (UEs), BSs
dispose of a lower transmit power, cover smaller areas, and are intended to serve low mobility UEs
so as to avoid frequent handovers. This allows obtaining a reliable estimation of the propagation
channel from the UE towards the serving BS due to the long channel coherence time [1].

An interesting type of deployment contemplated in 3GPP LTE-A networks is the non-co-
channel HCNs deployment, where MeNBs and SeNBs use different carrier frequencies (see Fig.
1.3). This way, MeNBs may keep on working as usual and traffic can be offloaded to the new
underlying SCN [22]. Although cross-tier interference is eliminated, the co-tier interference
between SeNBs becomes a major problem that can significantly reduce the system throughput
if SeNBs are densely deployed to serve hot-spot areas with high user traffic demands [104]. One
advantage of the SCN is that SeNBs are supposed to operate in TDD so as to better match the
UL:DL traffic asymmetry, which allows exploiting the reciprocity of UL and DL propagation
channels to design advanced precoding techniques and hence improving the performance of the
TDD SCN and reducing the channel feedback signaling needed as compared to FDD [24].

The dense TDD SCN can be modeled as a multi-cell multi-user MIMO system, a generic
model for multi-user cellular communication systems where multiple BSs, each equipped with
multiple antennas, wish to simultaneously send independent messages to its served users while
generating interference to unintended users.

Unfortunately, the optimal transmit/receive strategy with linear filters that maximizes the
WSR of said system is not known. From an optimization theory perspective, the maximum
WSR problem is non-convex and NP-hard even in the single-antenna case [132], but several
approaches that reach a local optima have been proposed in the literature. Some of them are
centralized methods, whose main drawback is the added cost of a central unit required to collect
the CSI of all users and the scalability of the solution. This has sparked a great interest in
developing decentralized approaches that work iteratively and are obtained by decomposing the
problem into separable parts, see [93–95].

Iterative methods in [133, 134] (and references therein) are based on the concept of the
so-called interference-cost, whereby each BS maximizes its own utility function minus the
interference-cost which reflects the interference created by the BS towards unintended UEs.
Methods are available to ensure the convergence of these algorithms by slightly reformulating
the problem (see for example [134]), nevertheless, all channel matrices (i.e. direct and interfering
channel matrices) have to be estimated and reported along with the interference-cost.
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An alternative approach for WSR maximization is presented in [127]. It relies on a iterative
minimization of the sum of weighted mean square errors (WMSE) [135], which was
initially introduced in [136] for the broadcast channel. The solution is achieved by iteratively
updating transmit filters at BSs and receive filters and weighting matrices at UEs. Although
monotonic convergence is demonstrated, its decentralized implementation in multi-cell systems
requires again estimation of all channel matrices and the existence of feedback links from each UE
towards all BSs is needed to report the updated receive filters and weighting matrices (see [127]).

Therefore, the main drawbacks of existing approaches to solve the maximization of the WSR
of multi-cell multi-user MIMO systems in the literature ([127,133]) are:

• the estimation of all channel matrices (as well as the associated computational cost and
required network planning for channel estimation),

• the impact of channel estimation errors of the interfering channel matrices that are esti-
mated with a low SNR, and

• the use of non-ideal backhaul and/or feedback links to exchange information among dif-
ferent terminals (BSs/UEs).

All has a detrimental effect on the overall potential performance gains of transmit coordination.

3.2 Contribution

In this chapter we exploit the fact that propagation channel reciprocity and a reliable estimation
of the direct channels are available in TDD SCNs in order to propose a decentralized, scalable,
and coordinated interference management procedure for maximizing the WSR in DL with lin-
ear transmit/receive filters. The WMSE formulation is used to face the maximization of the
WSR, but different from [127] we decentralize the minimum WMSE problem by following the
interference-cost concept such that a different transmit filters design at BSs is derived. Each
SeNB designs its own transmit filters (precoders) based on the knowledge of the direct channel
matrices towards the served UEs, the covariance matrix of the DL inter-cell interference plus
noise that can be acquired from a parameter reported by the served UEs, and the interference-
cost matrix that allows managing interference towards unintended users.

We propose that each BS acquires the interference-cost matrix over-the-air by using the UL
received signal, provided that all UEs currently participating in DL can transmit simultaneously
a specific pilot sequence in UL (as is shown in Fig. 3.1). By doing so, and in contrast to
previous works, the estimation of the interfering channel matrices is avoided, hence significantly
reducing its associated complexity in terms of computational cost and network planning for
pilot signals, and also reducing the performance degradation due to imperfect estimation of the
interfering channel matrices. Furthermore, information exchange among BSs is not required,
which alleviates the impact of non-ideal backhaul links, and the number of feedback links and
amount of information from UEs to BSs are significantly reduced as compared to [127].

The contributions of this chapter are:

• A decentralized coordinated precoding (D-CoP) for DL WSR maximization is proposed,
in which each BS solves its own subproblem to design transmit filters.

• The subproblem is reformulated to tackle imperfect CSI conditions and a robust D-CoP
is derived to overcome estimation errors of the direct channel matrices at BSs.
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Figure 3.1: Acquisition of the interference-cost matrix from the UL transmission for DL transmit coordination
in dense TDD smallcell networks.

• A new protocol is proposed to estimate the interference-cost matrix at each BS over-the-air
from an UL pilot-based transmission.

• An iterative algorithm for D-CoP is presented, subsuming the acquisition of the required
parameters at BSs and the simultaneous per-BS transmit filters design.

• Monotonic convergence of the algorithm for D-CoP is demonstrated if all parameters are
perfectly acquired.

• The proposed D-CoP is evaluated in a 3GPP LTE-A smallcell scenario [104], showing large
DL performance gains even when only 1 iteration is implemented.

Although the proposed D-CoP is applied to TDD SCNs in this chapter, it can be used to
control interference in the general multi-cell multi-user MIMO TDD systems.

3.3 System Model

Consider a synchronized TDD SCN composed of a set of K,{1, . . . ,K} BSs equipped with
Mk antennas each (k=1, . . . ,K). Each k-th BS serves a set of Ik,{1k, . . . , Ik} UEs. Let us
define ik to be the i-th UE served by the k-th BS and Nik the receive antenna elements at
the ik-th UE (i=1, . . . , Ik). The total set of users in the system is denoted by I =

⋃
k∈K Ik.

An example is shown in Fig. 3.1 for |K|=3 and |I|=7 (|I1|=2, |I2|=3, |I2|=2). Through this
chapter, we use i, j to indicate the UE index and k, l to indicate the BS index. All BSs present
in the cellular network transmit information simultaneously to its served UEs, such that severe
interference is created. Our focus is on DL interference management, including intra-cell and
inter-cell interference management.

Low mobility UEs are assumed to be connected to the synchronized TDD SCN. During the
channel coherence time, the communication is split into 2 phases (as shown in Fig. 3.2):

• Phase 1 (channel estimation): Phase 1 is devoted to acquire knowledge at each k-th
BS of the direct channel matrix towards its served ik-th UE, ∀ik∈Ik, which is denoted by
Hk,ik∈C

Nik×Mk and contains the complex-valued gains of the different antenna-pairs.

• Phase 2 (D-CoP algorithm): In phase 2, UL and DL transmissions are duplexed. The
proposed algorithm iterates between UL and DL: in UL transmissions parameters like the
DL inter-cell interference plus noise covariance matrix of the served ik-th UE (Nik , ∀ik∈Ik)



3.3. System Model 73

channel
estimation

phase 1 phase 2: D-CoP

DL (0) UL (1)           DL (1) UL (t)           DL (t) 

1) Acquire
2) Acquire k¡

ki
N

, kk i
H

channel coherence time

time
Simultaneous per-BS 

optimizations
Simultaneous per-BS 

optimizations
1) Acquire
2) Acquire

ki
N

k¡

...

Figure 3.2: Procedure for D-CoP in TDD smallcell networks.

and the interference-cost matrix for the k-th BS (Υk) are acquired at each k-th BS, which
are used for decentralized transmit filters design in the subsequent DL transmission. See
details in Section 3.5.

In TDD systems, channel estimation can be done either at the BS or at the UE. In the
later case, a feedback link is needed to report the channel matrix to the serving BS. For the
ease of exposition, we consider that the direct channel matrix is estimated at the BS from an
UL pilot-based transmission assuming perfect UL-DL propagation channel reciprocity (i.e. the

channel matrix in UL
←−
Hk,ik∈C

Mk×Nik is given by the transpose of the channel matrix in DL:
←−
Hk,ik=HT

k,ik
, ∀k, ∀ik). See details in Section 3.3.1.

Different from previous works ([127, 133]), the proposed D-CoP scheme does not need to
know the interfering channel matrices (i.e. Hk,jl∈C

Njl×Mk , between the k-th BS and the jl-th
UE served by l-th BS, ∀l 6=k) either at BSs or at UEs. Consequently, we avoid:

• the computational cost associated to channel estimation,

• the network planning required for pilot signals, and

• the performance loss due to imperfect estimation of the interfering channel matrices that
are estimated with a low SNR.

In addition, all the required information for interference management is obtained through the air-
interface without BS information exchange, such that the strict backhaul requirements usually
needed for transmit coordination are strongly reduced.

3.3.1 Signal model for channel estimation (phase 1)

For channel estimation at BSs we use a well-established orthogonal training-based scheme [137],
so interference between neighbor UEs for CSI acquisition is avoided. Hence, the signal received
by the k-th BS at the Mk receive antennas during T≥Nik channel uses Sk∈CMk×T is:

Sk = HT
k,ik

Pik+Vk, (3.1)

where Pik∈C
Nik×T is the known matrix of training sequences associated to the ik-th UE, and

Vk∈CMk×T is the collection of channel noise vectors, composed of Gaussian independent and
identically distributed (i.i.d.) components with distribution CN (0, σ2

v). Let us denote PT to
the total power for channel estimation, i.e. PT= Tr(PikP

H
ik

). Channel matrix Hk,ik is modeled
by Gaussian i.i.d. components with distribution CN (0, δk,ik), where δk,ik refers to the gain
introduced by path-loss and shadowing between the k-th BS and the ik-th UE.
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The channel estimation model is described by:

Hk,ik = Ĥk,ik+H̃k,ik , (3.2)

where Ĥk,ik is the estimated channel matrix and H̃k,ik is the channel estimation error matrix.
We assume that the channel matrix is estimated at BSs by applying a linear minimum mean
square error (MMSE) estimator [138], i.e.

Ĥ
T
k,ik

= E
[
HT
k,ik
|Sk
]

= SkP
H
ik

(
PikP

H
ik

+
σ2
v

δk,ik
I

)−1

. (3.3)

Then, assuming mutually white and orthogonal training sequences (i.e. Pik is a unitary matrix
scaled by

√
PT /Nik), the components of H̃k,ik in (3.2) turn out to be Gaussian and mutually

uncorrelated with a variance for each channel estimation error component given by [138]:

J̄k,ik =
1

MkNik

Tr
(
E
[
H̃
T
k,ik

H̃
∗
k,ik

])
=

(
1

δk,ik
+

PT
Nikσ

2
v

)−1

. (3.4)

For simplicity, it is assumed that noise power in the channel estimation phase is equal for all
links, such that the different variances in the estimation errors in (3.4) come from the path-loss
and shadowing variations of the different links.

3.3.2 Signal model for downlink (phase 2)

The signal transmitted by the k-th BS in DL is given by:

xk =
∑
ik∈Ik

Tikbik , (3.5)

where bik∈C
mik×1 contains the unit power independent Gaussian symbols for the ik-th UE

(i.e. bik∼CN (0, I)) and Tik∈C
Mk×mik denotes its associated transmit filter (or precoder), being

mik≤min(Nik ,Mk) the number of streams. The total power spent at the k-th BS is:

Pk =
∑
ik∈Ik

Tr
(
TikT

H
ik

)
. (3.6)

Under narrow-band transmissions, the baseband signal observed at the ik-th UE is:

yik = Hk,ikTikbik+
∑

jk∈Ik,jk 6=ik

Hk,ikTjkbjk︸ ︷︷ ︸
intra-cell interference

+
∑

l∈K,l 6=k

∑
jl∈Il

Hl,ikTjlbjl︸ ︷︷ ︸
inter-cell interference

+vik , (3.7)

where Hl,ik∈C
Nik×Ml is the channel matrix between the transmitting antennas at the l-th BS

and the receiving antennas at the ik-th UE. The second term in (3.7) contains the intra-cell
interference, the third term denotes the inter-cell interference, and the last term refers to the
additive zero-mean white Gaussian noise with distribution vik∼CN (0, σ2

ik
I). Hence, under the

independence assumption of {bik}∀ik,k and vik , the covariance matrix of the received signal at
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the ik-th UE is:

Cyik
= E

[
yiky

H
ik

]
= Hk,ikTikT

H
ik

HH
k,ik

+
∑

jk∈Ik,jk 6=ik

Hk,ikTjkT
H
jk

HH
k,ik

+Nik , (3.8)

where Nik is the covariance matrix of the inter-cell interference plus noise at the ik-th UE:

Nik =
∑

l∈K,l 6=k

∑
jl∈Il

Hl,ikTjlT
H
jl

HH
l,ik

+σ2
ik

I. (3.9)

The symbols are estimated at the ik-th UE assuming that interference is treated as noise
and that a linear receive filter Rik∈C

Nik×mik is applied at UE:

b̂ik = RH
ik

yik . (3.10)

Metrics for perfect CSI

The mean square error (MSE) for the symbols transmitted towards the ik-th UE can be expressed
through the so-called MSE-matrix: Eik=E

[
(b̂ik−bik)(b̂ik−bik)H

]
, which can be expressed in

terms of Rik in (3.10) and {Tik} in (3.5):

Eik(Rik , {Tik}) = I+RH
ik

( ∑
jk∈Ik

Hk,ikTjkT
H
jk

HH
k,ik

+Nik

)
Rik−RH

ik
Hk,ikTik−TH

ik
HH
k,ik

Rik .

(3.11)

The achievable rate of the ik-th UE is understood as the well-known ”log-det” capacity
formula that depends on the set of transmit filters:

Rik ({Tik}) = log2

∣∣∣I+Hk,ikTikT
H
ik

HH
k,ik

( ∑
jk∈Ik,jk 6=ik

Hk,ikTjkT
H
jk

HH
k,ik

+Nik

)−1∣∣∣. (3.12)

Let us emphasize that the optimal MMSE receive filter16 for the ik-th UE is [136]:

Rmmse
ik

= C−1
yik

Hk,ikTik =
( ∑
jk∈Ik

Hk,ikTjkT
H
jk

HH
k,ik

+Nik

)−1
Hk,ikTik . (3.13)

Then, by using the optimal MMSE receiver filter and applying the matrix inversion lemma, the
MSE-matrix in (3.11) results:

Emmse
ik

({Tik}) =
(
I+TH

ik
HH
k,ik

( ∑
jk∈Ik,jk 6=ik

Hk,ikTjkT
H
jk

HH
k,ik

+Nik

)−1
Hk,ikTik

)−1
. (3.14)

Accordingly, the expression that relates the achievable rate in (3.12) and the MSE-matrix in
(3.14) (when optimal MMSE receiver filter is used)17 is easily obtained [136]:

Rik ({Tik}) = − log2

∣∣Emmse
ik

({Tik})
∣∣. (3.15)

16The optimal MMSE receive filter is the one that minimizes the MSE, i.e. Tr(Eik ).
17Note that the MMSE receive filter is such that the achievable rate is preserved.
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Metrics for imperfect CSI

In case of imperfect CSI of the direct channel matrix Hk,ik , we have to use Hk,ik=Ĥk,ik+H̃k,ik

(see (3.2)) and the MSE-matrix in (3.11) has to be averaged with respect to the conditional
probability density function of the channel estimation errors H̃k,ik given the channel estimate

Ĥk,ik [75], i.e. Ēik=E
[
(b̂ik−bik)(b̂ik−bik)H |Ĥk,ik

]
. Therefore, by using the channel estimation

model in (3.2) and the channel estimation error characterization in (3.4), the averaged MSE-
matrix results:

Ēik(Rik , {Tik}) = I+RH
ik

( ∑
jk∈Ik

Ĥk,ikTjkT
H
jk

Ĥ
H
k,ik

+Nik

)
Rik

−RH
ik

Ĥk,ikTik−TH
ik

Ĥ
H
k,ik

Rik+J̄k,ik
∑
jk∈Ik

Tr
(
TjkT

H
jk

)
RH
ik

Rik , (3.16)

being J̄k,ik shown in (3.4). In the imperfect CSI case, the optimal MMSE receiver filter18 for
the ik-th UE derives as:

R̄
mmse
ik

=
( ∑
jk∈Ik

(
Ĥk,ikTjkT

H
jk

Ĥ
H
k,ik

+J̄k,ik Tr
(
TjkT

H
jk

)
I
)

+Nik

)−1
Ĥk,ikTik . (3.17)

So, the averaged MSE-matrix in (3.16) with the MMSE receive filter in (3.17) results:

Ē
mmse
ik

({Tik})=
(
I+TH

ik
Ĥ
H
k,ik

(∑
jk∈Ik
jk 6=ik

Ĥk,ikTjkT
H
jk

Ĥ
H
k,ik

+J̄k,ik
∑
jk∈Ik

Tr
(
TjkT

H
jk

)
I+Nik

)−1
Ĥk,ikTik

)−1
.

(3.18)

Under imperfect CSI, a lower bound for the achievable rate is derived in [137], whereby
channel estimation errors appear as Gaussian noise. Note that the MMSE channel estimation
for Ĥk,ik (see (3.3)) is the only channel estimate that satisfies that the equivalent additive noise
(including noise, interference, and the residual channel estimation error) and the desired signal
are uncorrelated [137]. This fact is exploited to derive the achievable rate lower bound in [137].
The lower bound for the ik-th UE is:

R̄LB
ik

({Tik})=log2

∣∣∣I+Ĥk,ikTikT
H
ik

Ĥ
H
k,ik

(∑
jk∈Ik
jk 6=ik

Ĥk,ikTjkT
H
jk

Ĥ
H
k,ik

+J̄k,ik
∑
jk∈Ik

Tr
(
TjkT

H
jk

)
I+Nik

)−1∣∣∣.
(3.19)

At this point, we can realize that the achievable rate lower bound in (3.19) and the averaged
MSE-matrix (under MMSE receive filter usage) in (3.18) are related as follows:

R̄LB
ik

({Tik}) =− log2

∣∣Ēmmse
ik

({Tik})
∣∣. (3.20)

Therefore, the same relation between the achievable rate lower bound and the averaged MSE-
matrix as in the perfect CSI case for the achievable rate and the MSE-matrix is obtained (see
(3.15)).

18The optimal MMSE receive filter under imperfect CSI is the one that minimizes the averaged MSE, i.e.
Tr(Ēik ).
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3.3.3 Signal model for uplink (phase 2)

Assuming perfect UL-DL propagation channel reciprocity (i.e.
←−
Hk,jl=HT

k,jl
, ∀k, ∀jl, ∀l), the

received signal at the k-th BS in the UL transmission is given by:

←−y k =
∑
ik∈Ik

HT
k,ik

←−
T ik
←−s ik+

∑
l∈K,l 6=k

∑
jl∈Il

HT
k,jl

←−
T jl
←−s jl︸ ︷︷ ︸

interference

+←−v k, (3.21)

where
←−
T ik denotes the transmit filter used at the ik-th UE, ←−s ik the stream of independent

symbols sent by the ik-th UE, and←−v k denotes the UL noise with distribution←−v k∼CN (0,←−σ 2
kI).

Thus, the covariance matrix of the received signal at the k-th BS C←−y k
is given by:

C←−y k
= E

[←−y k
←−y H
k

]
=
∑
ik∈Ik

HT
k,ik

←−
T ik

←−
TH
ik

H∗k,ik+
←−
Nk, (3.22)

where
←−
Nk denotes the covariance matrix of the received inter-cell interference plus noise at the

k-th BS: ←−
Nk =

∑
l∈K,l 6=k

∑
jl∈Il

HT
k,jl

←−
T jl

←−
TH
jl

H∗k,jl+
←−σ 2
kI. (3.23)

3.4 Problem Formulation

With the objective of maximizing the total DL WSR of the system with a maximum transmitted
power constraint per BS, the transmit filters at BSs (or, equivalently, the transmit precoding
matrices) are designed as the solution to the following optimization problem:

(P3,1) : maximize
{Tik}∀k,∀ik

∑
k∈K

∑
ik∈Ik

µikRik ({Tik}) (3.24)

subject to
∑
ik∈Ik

Tr
(
TikT

H
ik

)
≤ Pmax

k ∀k,

where µik is a weighting coefficient associated to the priority of the ik-th UE, Rik({Tik}) is the
achievable rate in (3.12), and Pmax

k is the available transmit power at the k-th BS.

Due to interference, problem (P3,1) in (3.24) is not convex w.r.t. {Tik} and the optimal
solution cannot be guaranteed. Nevertheless, it is shown in [127] that one solution for transmit
filters that attains a local optima of the maximum WSR problem (P3,1) in (3.24) can be obtained
by solving the following optimization problem that considers minimization of the total sum of
WMSE:

(P3,2) : minimize
{Tik},{Rik

},
{Wik

}∀k,∀ik

∑
k∈K

∑
ik∈Ik

(
Tr
(
WikEik (Rik , {Tik})

)
−µik log2

∣∣∣ ln(2)
µik

Wik

∣∣∣) (3.25)

subject to
∑
ik∈Ik

Tr
(
TikT

H
ik

)
≤ Pmax

k ∀k,

where Wik is a weighting matrix associated to the ik-th UE and Eik(Rik , {Tik}) corresponds
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to the MSE-matrix in (3.11). The main idea behind the equivalence of the maximum WSR
problem (P3,1) in (3.24) and the minimum sum WMSE problem (P3,2) in (3.25)) relies on the
relation between the rate and the MSE-matrix shown in (3.15).

Problem (P3,2) in (3.25) is not jointly convex w.r.t. all sets of optimization variables, but
it turns out to be convex w.r.t. each set of unknowns ({Tik}, {Rik}, and {Wik}) separately.
Furthermore, each of them can be derived analytically assuming that the other two sets of
variables are fixed. Therefore, a block coordinate descent (BCD) approach [139, 140] can be
followed to find a local optimum of the problem (P3,2) in (3.25) by alternate optimization
of transmit filters {Tik}, receive filters {Rik}, and weighting matrices {Wik}. The attained
solution is a local optimal solution of the maximum WSR problem (P3,1) in (3.24) (see more
details in [127] on the equivalence among the maximum WSR problem (P3,1) in (3.24) and the
minimum WMSE problem (P3,2) in (3.25)).

In case a centralized procedure was implemented, it is required that all channel matrices
from all BSs to all UEs (i.e. {Hk,jl}, ∀k, ∀jl, ∀l) are collected in a central processor node,
see [127]. The decentralized implementation proposed in [127], where {Tik} are updated at
BSs while {Rik} and {Wik} are updated at UEs, also requires that each k-th BS knows the
channel matrices towards all UEs in the network (i.e. {Hk,jl}, ∀jl, ∀l) and that feedback links
are available from each UEs towards all BSs to report the updated Rik and Wik .

3.5 Decentralized Coordinated Precoding

Different from [127,133], in this section a decentralized coordinated precoding (D-CoP) design for
maximizing the WSR in (3.24) with linear transmit/receive filters is presented. First, through the
use of the minimum WMSE problem (P3,2) in (3.25) the maximum WSR problem is decomposed
into parallel subproblems (one per BS) and a decentralized solution for DL transmit filters design
at BSs is derived in Section 3.5.1, either assuming perfect CSI or imperfect CSI of the direct
channel matrices. Section 3.5.2 details the receive filter to be used at each UE. Second, how
to acquire the required parameters for transmit filters design at each k-th BS is detailed in
Section 3.5.3, where it is shown how to acquire the inter-cell interference plus noise covariance
matrices ({Nik}, ∀ik∈Ik) and how to acquire the interference-cost matrix (Υk) by exploiting
an UL transmission. Finally, the iterative algorithm for D-CoP is presented in Section 3.5.4,
subsuming the acquisition of the required parameters at each BS from UL and the simultaneous
per-BS optimizations for DL, as shown in Fig. 3.2.

Let us define the following matrix that will allow us to decompose problem (P3,2) in (3.25):

Υk =
∑

l∈K,l 6=k

∑
jl∈Il

HH
k,jl

RjlWjlR
H
jl

Hk,jl , (3.26)

which is referred to as the interference-cost matrix because it reflects the interference that can
be created by the k-th BS towards the unintended UEs (i.e. jl, l 6=k) and it can be included as
a penalizing term for the design of the transmit filters at the k-th BS (see next decomposed
problem in (3.27)).



3.5. Decentralized Coordinated Precoding 79

Proposition 3.1. Problem (P3,2) in (3.25) can be decomposed into K parallel optimization
problems (one per BS). The problem to be solved at the k-th BS for fixed Υk and {Nik}, ∀ik∈Ik,
is:

(Pk3,3) : minimize
{Tik},{Rik

},
{Wik

}∀ik

∑
ik∈Ik

(
Tr
(
WikEik (Rik , {Tik},Nik)

)
−µik log2

∣∣∣ ln(2)
µik

Wik

∣∣∣+ Tr
(
ΥkTikT

H
ik

) )
(3.27)

subject to
∑
ik∈Ik

Tr
(
TikT

H
ik

)
≤ Pmax

k ,

where Eik(Rik , {Tik},Nik) is the MSE-matrix in (3.11) assuming that Nik is fixed.

Proof. See Appendix 3.A, where it is shown that the gradients of problem (P3,2) in (3.25) and
problem (Pk3,3) in (3.27) with respect to {Tik}, {Rik}, {Wik}, ∀ik, are the same if Υk and
{Nik}, ∀ik, are fixed. �

3.5.1 Optimization at each BS

Perfect CSI case

Problem (Pk3,3) in (3.27) is convex w.r.t. each set of variables separately, and each of them can
be derived analytically assuming that the other two sets are fixed. Therefore, each k-th BS
can solve problem (Pk3,3) in (3.27) for given Υk and {Nik}, ∀ik∈Ik, with alternate optimization
among the following three sets of variables:

i : R
(n)
ik

=
(
A

(n−1)
ik

+Nik

)−1
Hk,ikT

(n−1)
ik

,∀ik,

ii : W
(n)
ik

=
µik

ln(2)E
−1
ik

(
R

(n)
ik
, {T(n−1)

ik
},Nik

)
,∀ik, (3.28)

iii : T
(n)
ik

=
(
B

(n)
k +Υk+λ

(n)
k I
)−1

HH
k,ik

R
(n)
ik

W
(n)
ik
,∀ik,

where

A
(n−1)
ik

=
∑
jk∈Ik

Hk,ikT
(n−1)
jk

T
(n−1)H
jk

HH
k,ik

, B
(n)
k =

∑
jk∈Ik

HH
k,jk

R
(n)
jk

W
(n)
jk

R
(n)H
jk

Hk,jk ,

n is the iteration number, and λ
(n)
k denotes a non-negative dual variable associated to the

per-BS power constraint in (3.27). At each iteration, λ
(n)
k has to be optimized to meet the

power constraint, which can be efficiently solved using convex optimization techniques (e.g.
subgradient method) [92]. Hence, monotonic convergence of the decentralized problem (Pk3,3) in
(3.27) is ensured for given Υk and {Nik}, ∀ik∈Ik. However, due to inter-cell interference, so far
we cannot guarantee that if each k-th BS solves its own problem (Pk3,3) in (3.27) and all of them
do so simultaneously, convergence of (P3,2) in (3.25) would be achieved.

The proposed solution for DL transmit filters design in (3.28) differs from [127], where
each BS updates the transmit filters {Tik}, ∀ik, by following the last equation in (3.28) and
evaluating the expression of Υk in (3.26) that requires knowledge of all channel matrices, all
weighting matrices, and all receive filters used at all UEs (i.e. Hk,jl , Wjl and Rjl , ∀jl, ∀l).
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Imperfect CSI case

When the direct channel matrices towards the served UEs (i.e. {Hk,ik}, ∀ik) are acquired with
errors at the k-th BS, a stochastic (or Bayesian) robust design [75] can be used to overcome the
impact of channel estimation errors. In our case, so as to implement a robust DL transmit filters
design, the averaged MSE-matrix Ēik(Rik , {Tik},Nik) in (3.16) (assuming that Nik is fixed) has
to be considered under the assumption that Ĥk,ik in (3.3) and J̄k,ik in (3.4), ∀ik∈Ik, are known
at the k-th BS. Note that in this case the focus lies on the maximization of a weighted sum of
the achievable rate lower bounds (see (3.20)).

Therefore, the decentralized problem to be solved at the k-th BS is (Pk3,3) in (3.27) with
Ēik(Rik , {Tik},Nik) instead of Eik(Rik , {Tik},Nik). Similarly as for the perfect CSI case in
(3.27), the problem is convex w.r.t. each set of variables separately, and each of them can be
derived analytically assuming that the other two sets are fixed. Therefore, each k-th BS can find
a robust transmit filters design for given Υk and {Nik}, ∀ik∈Ik, with alternate optimization
among the following three sets of variables:

i : R
(n)
ik

=
(
A

(n−1)
ik

+Nik

)−1
Ĥk,ikT

(n−1)
ik

, ∀ik,

ii : W
(n)
ik

=
µik

ln(2)Ē
−1
ik

(
R

(n)
ik
, {T(n−1)

ik
},Nik

)
,∀ik, (3.29)

iii : T
(n)
ik

=
(
B

(n)
k +Υk+λ

(n)
k I
)−1

Ĥ
H
k,ik

R
(n)
ik

W
(n)
ik
,∀ik,

where

A
(n−1)
ik

=
∑
jk∈Ik

(
Ĥk,ikT

(n−1)
jk

T
(n−1)H
jk

Ĥ
H
k,ik

+J̄k,ik Tr
(
T

(n−1)
jk

T
(n−1)H
jk

)
I
)
,

B
(n)
k =

∑
jk∈Ik

(
Ĥ
H
k,jk

R
(n)
jk

W
(n)
jk

R
(n)H
jk

Ĥk,jk+J̄k,jk Tr
(
R

(n)
jk

W
(n)
jk

R
(n)H
jk

)
I
)
,

and Ēik(Rik , {Tik},Nik) is the averaged MSE-matrix in (3.16) assuming that Nik is fixed and

λ
(n)
k denotes the non-negative dual variable associated to the per-BS power constraint in (3.27)

(to be optimized at every n-th iteration).

3.5.2 Optimization at each UE

Given the transmit filters, {Tik}, the optimal DL receive filters for each ik-th UE are given by
the MMSE receivers [136] (see (3.13)):

Rik = C−1
yik

Hk,ikTik , (3.30)

where Cyik
is defined in (3.8). As it is done in real deployments [141], each UE can compute Rik

in (3.30) based on the estimation of the equivalent channel Hk,ikTik and the covariance matrix of
the received signal Cyik

. Then, each UE can also compute the weighting matrix Wik=
µik

ln(2)E
−1
ik

based on Cyik
, Hk,ikTik , and Rik using (3.11). In case of imperfect CSI, Hk,ikTik in (3.30) has

to be replaced by the equivalent channel estimate Ĥk,ikTik (see (3.17)).
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3.5.3 Acquisition of parameters at each BS

Acquisition of Nik , ∀ik∈Ik

We assume that Cyik
is reported from the UE towards the serving BS through an UL feedback

link (in Phase 2 - UL in Fig 3.2), such that the BS collects Cyik
, ∀ik∈Ik, from its served UEs.

Let us recall that, as compared to [127] where feedback links are required from each UE towards
all BSs in the network in order to report Rik and Wik , in our case only one feedback link is
needed from each UE towards the serving BS through which only Cyik

is reported. To reduce

the communication overhead, the fact that Cyik
is a positive semidefinite matrix (and hence

hermitian) can be exploited. Then, inter-cell interference plus noise covariance matrices {Nik},
∀ik∈Ik, can be easily estimated at the k-th BS based on {Hk,ik}, {Tik}, and {Cyik

}, ∀ik∈Ik,
by following (3.8):

Nik = Cyik
−
∑
jk∈Ik

Hk,ikTjkT
H
jk

HH
k,ik

. (3.31)

So it is not needed to estimate the interfering channel matrices (i.e. Hl,ik ,∀l 6=k) to compute Nik

in (3.9) at the k-th BS. Note, however, that acquisition of Nik , ∀ik∈Ik would not be required in
case each k-th BS was in charge of updating only the transmit filters Tik , ∀ik∈Ik, but in that
case feedback of Rik and Wik , ∀ik∈Ik, would be needed.

Acquisition of Υk

In order to avoid the complex task of estimating the most harmful interfering channel matrices
that are needed to compute the interference-cost matrix Υk in (3.26) (as is assumed in [127]),
we propose obtaining an estimate of Υk from the covariance matrix of the UL interference plus

noise (i.e.
←−
Nk in (3.23)) when properly designing UL transmit filters

←−
T jl (see Phase 2 - UL

in Fig 3.2). By doing so, estimation of interfering channel matrices is avoided as
←−
Nk can be

computed by subtracting the desired signals to the covariance matrix of the UL received signal
at the k-th BS (see (3.22)).

Notice that
←−
N∗k in (3.23) and Υk in (3.26) differ just in the noise term in case UEs employ as

UL transmit filter
←−
T jl=R∗jlW

1
2
∗

jl
, ∀jl, ∀l, where Wjl=W

1
2
jl
W

1
2
H

jl
. Therefore, in case the available

power at UEs is not a limiting factor, by using a precoded UL pilot-based transmission, we could

have a biased estimate of Υk as: Υ̂k=
←−
N∗k=Υk+

←−σ 2
kI.

Nevertheless, usually UL transmit filters cannot be applied as such unless we take into
account the maximum transmit power constraints for UL, i.e.

Tr
(←−
T jl

←−
TH
jl

)
≤ PUE

jl
, (3.32)

where PUE
jl

is the available power at the jl-th UE. The proposed solution is to scale the DL

receive filters in (3.30) by a common scaling cell-wide factor F<1 as:
←−
T jl=

√
FR∗jlW

1
2
∗

jl
. The

scaling cell-wide factor F would be designed beforehand in order to ensure that the ε% of the UEs

fulfill the transmit power constraint in (3.32), i.e. Pr
(

Tr
(
FR∗jlW

∗
jl
RT
jl

)
≤PUE

jl

)
=ε. However,

it is assumed that those UEs not satisfying the constraint in (3.32) with the a priori selected F
will transmit at maximum power by scaling the DL receive filters with a per-user factor fjl<F .
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Therefore, the proposed UL transmit filter is:

←−
T jl =

√
fjlR

∗
jl
W

1
2
∗

jl
, (3.33)

where

fjl =


F , if Tr

(
FR∗jlW

∗
jl
RT
jl

)
≤ PUE

jl
,

PUE
jl

Tr
(
R∗jl

W∗
jl

RT
jl

) , otherwise.
(3.34)

By using this approach, we can obtain a biased estimate of Υk in (3.26) from the covariance

matrix of the UL interference plus noise
←−
Nk in (3.23). Its expected value is:

Υ̂k =
1

F

←−
N∗k =

∑
l∈K,l 6=k

∑
jl∈Il

fjl
F

HH
k,jl

RjlWjlR
H
jl

Hk,jl+
←−σ 2
k

F
I = Υk+Υ̃k+

1

F
←−σ 2
kI, (3.35)

where Υ̃k describes the error introduced by those UEs served by neighbor BSs (l 6=k) that are
transmitting at maximum power (i.e. fjl<F ):

Υ̃k =
∑

l∈K,l 6=k

∑
jl∈Il

1

F
(fjl−F ) HH

k,jl
RjlWjlR

H
jl

Hk,jl . (3.36)

The proposed approach presents a bias that depends on the noise power increased by F−1

and an additional matrix associated to the non-serving UEs that are transmitting at maximum
power (see (3.35)). So, there is an evident trade-off when the UE transmit power is a limiting
factor: if F is small, the errors in the estimation of Υk in (3.35) come due to the increased noise
power, while if F is large the errors come due to Υ̃k in (3.36) as the major part of the UEs will
use a per-user scaling factor fjl lower than F (see (3.33)).

However, as is shown in [C3], the estimation errors in Υ̂k are negligible and do not affect the
system performance when properly selecting the scaling cell-wide factor F in (3.33) in such a
way that a certain percentage of the UEs (which depends on the deployment) fulfill the transmit
power constraint in (3.32) with fjl=F . The intuitive explanation for a SISO case comes in the
following: the UEs highly interfered in the DL have a lower absolute value of the receive filter in
the DL due to the interference (see (3.28)) such that they would use fjl=F as scaling factor in
(3.33). This way, no errors would appear from the contributions of the highly interfered users to
(3.35) and, as they are the users which contribute more to (3.35), the errors from the other users
would be negligible. The key point is the selection of the scaling cell-wide factor F to allow a
group of UEs to fulfill the constraint, while not making it too small such that the contribution
of the noise power predominates in (3.35).

Note that all what is needed to obtain Υ̂k in (3.35) from the UL transmission is the received

signal covariance matrix
←−
N∗k such that we can directly obtain the interference-cost matrix esti-

mate as: Υ̂k=
1
F

←−
N∗k.

←−
N∗k can be obtained from the coordinated use of UL pilots.

We would like to remark that the proposed scheme for estimating Υk avoids the estimation
errors of the interfering channel matrices that comes up in the procedure proposed in [127]. In
such a case, since every single channel matrix has to be estimated, the robust transmit filters
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Table 3.1: Interference-Cost Matrix Acquisition.

Technique Perfect CSI Imperfect CSI

D-WMMSE in [127] Υk in (3.26) Φk in (3.37)

proposed D-CoP Υ̂k in (3.35) Υ̂k in (3.35)

design in Section 3.5.1 should use the following matrix Φk instead of Υk in (3.29):

Φk =
∑

l∈K,l 6=k

∑
jl∈Il

(
Ĥ
H
k,jl

RjlWjlR
H
jl

Ĥk,jl+J̄k,jl Tr
(
RjlWjlR

H
jl

)
I
)
, (3.37)

which includes the estimation errors of the interfering channel matrices from the k-th BS to-
wards all the unintended UEs (i.e. jl, l 6=k). Nevertheless, in the proposed D-CoP an estimate
of Υk can be obtained from the UL transmission as a function of the real channel matrices
(see (3.35)), hence avoiding channel estimation errors of the interfering links and resulting in
enhanced robustness.

In this regard, Table 3.1 summarizes the interference-cost matrix that has to be used for
transmit coordination depending on whether the interfering channels are estimated (as in the
decentralized procedure in [127]) or not (as in the proposed D-CoP). Further, in case a centralized
approach was used then Nik in (3.29) should also include the estimation errors from all BSs (l 6=k)
towards the ik-th UE, resulting even in a worse performance.

3.5.4 Algorithm for D-CoP

Algorithm 3.1 summarizes the iterative procedure to solve problem (P3,2) in (3.25) in a decen-
tralized manner. The procedure follows the two phases shown in Fig. 3.2. During the channel
estimation phase (Phase 1), the direct channel matrices Hk,ik , ∀ik∈Ik, are acquired at each
k-th BS, which remain constant during the optimization (Phase 2) where the iterative algorithm
for D-CoP is implemented and DL/UL transmissions are duplexed. The algorithm for D-CoP
(Phase 2) includes the acquisition of the required parameters in UL (i.e. Nik as is detailed in
Section 3.5.3, ∀ik∈Ik, and Υk as is shown in Section 3.5.3) and the simultaneous transmit filters
designs that are performed at each BS for DL (i.e. (3.28) in Section 3.5.1 for perfect CSI or
(3.29) in Section 3.5.1 for imperfect CSI).

Niter denotes the number of iterations allowed, and t the iteration index. The algorithm starts

from an initialization of the transmit filters {T(0)
ik
}, ∀ik∈Ik, at each k-th BS that satisfy the

per-BS power constraint in (3.27). For simulation purposes, a suitable initialization of {T(0)
ik
},

∀ik∈Ik, can be obtained by solving (Pk3,3) in (3.27) using Υ
(0)
k =0. Then, a DL transmission is

carried out using {T(0)
ik
} (Phase 2 - DL(0)), where UEs can evaluate the covariance matrix of

the received signal Cyik
and update the receive filter R

(0)
ik

and the weighting matrix W
(0)
ik

using

(3.30) (line 3). See details in Section 3.5.2.

Then, at each iteration t=1, ..., Niter, the following steps are followed:

• Feedback of C
(t−1)
yik

to acquire N
(t−1)
ik

at BS (Phase 2 - UL(t)): Each UE reports C
(t−1)
yik

to

the serving BS (line 8), and hence the BS can acquire the inter-cell interference plus noise

covariance matrix N
(t−1)
ik

of served UEs using (3.31), ∀ik∈Ik (line 9). See Section 3.5.3.
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Algorithm 3.1 D-CoP to solve (P3,2) in (3.25) with simultaneous per-BS optimizations

1: # Phase 1: Channel estimation
2: All BSs (∀k): estimate direct channel matrices {Hk,ik}, ∀ik∈Ik
3: # Phase 2 - DL(0): DL transmission

4: All BSs (∀k): initialize {T(0)
ik
}, ∀ik∈Ik, and transmit with {T(0)

ik
}

5: All UEs (∀ik): compute R
(0)
ik

and W
(0)
ik

using (3.30) with Cyik
, T

(0)
ik

6: for t = 1, ..., Niter do

7: # Phase 2 - UL(t): Feedback of C(t−1)
yik

to acquire N
(t−1)
ik

at BS

8: All UEs (∀ik): report C(t−1)
yik

to the serving k-th BS

9: All BSs (∀k): compute N
(t−1)
ik

, ∀ik∈Ik, using (3.31) with C(t−1)
yik

, T
(t−1)
ik

10: # Phase 2 - UL(t): UL transmission to acquire Υ̂
(t)
k at BS

11: All UEs (∀ik): transmit a pilot signal with
←−
T

(t)
ik

in (3.33) computed from R
(t−1)
ik

, W
(t−1)
ik

12: All BSs (∀k): estimate Υ̂
(t)
k using (3.35)

13: # Reproduction of variables and initialization of {Tik} for per-BS optimization
14: All BSs (∀k):

15: - Reproduce R
(t−1)
ik

and W
(t−1)
ik

, ∀ik, using (3.30) with {T(t−1)
ik

}, ∀ik∈Ik, N
(t−1)
ik

16: - Compute Taux
ik

,∀ik∈Ik, using (3.28) if perfect CSI or (3.29) if imperfect CSI with R
(t−1)
ik

,

W
(t−1)
ik

, ∀ik∈Ik, Υ̂
(t)
k

17: # Simultaneous per-BS optimizations

18: All BSs (∀k, simultaneously): solve (Pk
3,3) in (3.27) for a fixed Υ̂

(t)
k and {N(t−1)

ik
}, ∀ik∈Ik, de-

parting from Taux
ik

,∀ik∈Ik, with alternate optimization of R
(n)

ik
, W

(n)

ik
, and T

(n)

ik
, ∀ik∈Ik, in (3.28) if

perfect CSI or R
(n)

ik
, W

(n)

ik
, and T

(n)

ik
, ∀ik∈Ik, in (3.29) if imperfect CSI, to finally get T

(t)
ik

19: # Phase 2 - DL(t): DL transmission

20: All BSs (∀k); transmit with {T(t)
ik
}, ∀ik∈Ik

21: All UEs (∀ik): compute R
(t)
ik

and W
(t)
ik

using (3.30) with C(t)
yik

, T
(t)
ik

22: end for

• UL transmission to acquire Υ̂
(t)
k at BS (Phase 2 - UL(t)): An UL transmission is carried

out, where all UEs transmit with
←−
T

(t)
ik

in (3.33) computed from R
(t−1)
ik

and W
(t−1)
ik

(line

11), such that each BS can acquire the interference-cost matrix Υ̂
(t)
k using (3.35) (line 12).

See details in Section 3.5.3.

• Reproduction of variables at BS and initialization of {Tik} for per-BS optimization: Each

BS reproduces {R(t−1)
ik
} and {W(t−1)

ik
}, ∀ik∈Ik, based on the acquired {N(t−1)

ik
}, ∀ik∈Ik,

and the transmit filters used in the previous iteration {T(t−1)
ik
}, ∀ik∈Ik (line 15). Note

that {R(t−1)
ik
} and {W(t−1)

ik
} coincide with the ones computed at the served UEs in the

previous iteration if C
(t−1)
yik

is perfectly reported. Then, with the reproduced {R(t−1)
ik
} and

{W(t−1)
ik
}, ∀ik∈Ik, each BS can update the transmit filters {Tik}, ∀ik∈Ik, (denoted by

{Taux
ik
}, ∀ik∈Ik) by using last equation in (3.28) if perfect CSI or in (3.29) if imperfect

CSI (line 16). {Taux
ik
} will be used as initialization for the optimization at BS.

• Simultaneous per-BS optimizations: By starting with {Taux
ik
}, ∀ik∈Ik, an alternate op-

timization is performed at each BS for fixed {N(t−1)
ik
}, ∀ik∈Ik, and Υ̂

(t)
k that have been

acquired in the previous steps. Receive filters {Rik}, weighting matrices {Wik}, and trans-
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mit filters {Tik}, ∀ik∈Ik, are iteratively computed by using (3.28) if perfect CSI or by
using (3.29) if imperfect CSI (line 18). See Section 3.5.1. The obtained transmit filters

design are denoted by {T(t)
ik
}.

• DL transmission (Phase 2 - DL(t)): DL transmission is carried out using {T(t)
ik
} (line 20),

where UEs can evaluate the covariance matrix of the received signal C
(t)
yik

and update the

receive filter R
(t)
ik

and the weighting matrix W
(t)
ik

using (3.30) (line 21). See details in
Section 3.5.2.

Let us emphasize the following key points about the proposed Algorithm 3.1 for D-CoP:

• it is not needed to feed back either the weighting matrix W
(t−1)
ik

or the updated receive

filter R
(t−1)
ik

from the UE to the serving BS. They can be reproduced at the BS based on

the acquired N
(t−1)
ik

and the transmit filter used in the previous iteration (T
(t−1)
ik

) which are
already known at the BS (see line 15). This way, the required feedback links are reduced
as compared to [127], where it was assumed that Wik and Rik were fed back from each
UE to all the BSs in the network, while we only need to feed back Cyik

from each UE to
the serving BS.

• it is not needed to report the updated transmit filter T
(t)
ik

from the BS to the served UE. In

practical implementations, the UE estimates the equivalent channel Hk,ikT
(t)
ik

every time

a DL data transmission is carried out, which is enough to compute R
(t)
ik

in (3.30) [141].

3.5.5 Convergence

Algorithm 3.1 ensures convergence (for Niter sufficiently large) to a stationary point of problem
(P3,2) in (3.25) (which is also a stationary point of problem (P3,1) in (3.24) [127]) if {Υk}, {Nik},
and {Hk,ik}, ∀ik∈Ik, are perfectly acquired at each k-th BS. Furthermore, the convergence of
Algorithm 3.1 for D-CoP is proven to be monotonic (i.e. at each iteration t, the WSR is
increased).

Theorem 3.1. If Υk, {Nik}, and {Hk,ik}, ∀ik∈Ik, are obtained without errors at each k-th
BS and all BSs solve simultaneously its decentralized problem (Pk3,3) in (3.27), Algorithm 3.1
converges in a finite number of iterations to a stationary point of the WSR problem (P3,1) in
(3.24) and the convergence is monotonic.

Proof. See Appendix 3.B. �

The monotonic convergence proof with simultaneous per-BS optimizations is highly relevant
for practical implementation issues, as when only one iteration (or a few) of the algorithm can be
performed such proof allows ensuring a performance improvement with parallel and independent
per-BS optimizations.

Remark 3.1. At the best of our knowledge, this is the first proof of monotonic convergence of
an algorithm where all BSs update simultaneously their transmit filters to maximize the system
WSR in (3.24) in an interfering multi-cell multi-user scenario with no information exchange
among non-associated terminals.
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The key point is that we exploit the convexity of the problem w.r.t. each variable and
then, even if we perform parallel and simultaneous per-BS optimizations, by updating first all
{Nik} and {Rik} (i.e. line 9 in Algorithm 3.1) and after performing the update of all {Υk} and
{Tik} (i.e. line 12 in Algorithm 3.1), convergence can be proven. Many proofs of convergence
(but not monotonic) with simultaneous per-BS optimizations in the literature are based on the
insertion of an additional term in the objective function of the problem that allows to linearize
the objective function with respect to the optimization variables (see for example [134]), which
is not needed in our case.

If errors appear in the estimation of Υk, Hk,ik , or Nik , the update of the DL transmit/receive
filters at each k-th BS can be controlled by slightly reformulating the problem (Pk3,3) in (3.27)
so as to include a proximal point term [139] that controls large deviations due to the estimation
errors, similarly as is done in [95]. However, as is pointed out before, the errors in the estimation
of Υk from the UL transmission are very low provided that the scaling cell-wide factor F in
(3.33) is properly designed, and we consistently observe convergence of the proposed Algorithm
3.1 without including the proximal point term.

3.5.6 Complexity

The complexity of the proposed algorithm is related to the number of iterations (Niter), as each
iteration requires an UL and a DL transmission and they have to be carried out during the
channel coherence time (see Fig. 3.2). In LTE-A TDD networks, UL and DL transmissions
are duplexed according to a set of predefined patterns [61], where in a frame of 10 ms up to
2 DL and 2 UL transmissions can be duplexed. Hence, 2 iterations of the algorithm could be
performed every 10 ms. In a low mobility scenario (mean user speed of 3 Km/h), the channel
coherence time at the 3.5 GHz band (band devoted to the SCN [104]) results approximately of
25 ms. This way, during the channel coherence time, up to 5 iterations of the algorithm could
be implemented. However, in many practical implementations only 1 iteration is allowed, and
for that reason in the evaluations Niter=1 is used in many cases (see Section 3.7), which allows
improving the WSR due to the monotonic convergence proof in Theorem 3.1.

3.5.7 Errors in the estimation of the interference-cost matrix

Two different sources of error arise in the practical estimation of the interference-cost matrix
Υ̂k in (3.35):

• the use of non-orthogonal pilot sequences and

• non-ideal channel reciprocity conditions.

The transmitted sequences should be orthogonal among neighbor UEs in order to properly
estimate Υ̂k. However, so as to avoid such coordination, pilot sequences composed of random
symbols can be used, such that if the sequence length is large enough the orthogonality of the
sequences is nearly achieved. In Section 3.7.4 we evaluate the performance loss due to the use
of non-orthogonal UL pilot signals to estimate Υ̂k.

On the other hand, the acquisition of Υ̂k in (3.35) assumes perfect UL-DL propagation
channel reciprocity, which requires perfect hardware calibration of the radio-frequency chains
in TDD systems [70, 71, 142]. Although perfect calibration can be achieved at BSs because
the variability of surrounding scenario is relatively slow and hardware performances tend to be
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stable, calibration at UEs may be imperfect due to environmental variations caused by time,
power and/or temperature [74]. In this case, the UL and DL propagation channel matrices from
the k-th BS to the jl-th UE are related by [70]:

←−
Hk,jl = HT

k,jl
Cjl , (3.38)

where Cjl is a diagonal matrix containing calibration errors at the jl-th UE. Therefore, calibra-

tion errors at UEs may affect the estimation of Υ̂k. In Section 3.7.4 we evaluate the performance
loss due to non-ideal propagation channel reciprocity conditions to estimate Υ̂k.

3.6 Practical Implementation in 3GPP LTE-A

The proposed D-CoP defines that inter-cell interference management can be done by means
of sensing the UL transmission and processing the received signal, provided that propagation
channel reciprocity is available. In order that each BS gets the desired information for interfer-
ence mitigation without disturbing the UL data transmission (i.e. Υ̂k in (3.35)), as all what is
needed is the UL received signal but not the decoded symbols, we propose to use the already
defined sounding reference signals (SRS) in 3GPP LTE-A standard [17, 22] and coordinate its
transmission. SRS can be used both to get channel knowledge Hk,ik and to get knowledge of

the interference-cost matrix Υ̂k at BS. In the latter case, we will refer to the SRS as Co-SRS
(coordinated SRS).

3.6.1 Basic principles

The basic principles of the proposed D-CoP with Co-SRS are:

• Data for a UE is only available at and transmitted from one BS.

• Interference-cost matrix is acquired at BS by exploiting the UL Co-SRS transmission.

• At each BS, precoding selection is performed to manage interference in a decentralized
manner by using channel knowledge Hk,ik of the serving UEs, the covariance matrix of the

received interference Nik (reported by serving UEs) and the interference cost matrix Υ̂k

(estimated at BS from the UL transmission).

• For the selected precoding, each BS conducts autonomous scheduling and modulation and
coding scheme (MCS) selection based on most recent CSI and interference information.

3.6.2 Procedure for D-CoP with Co-SRS

Fig. 3.3 shows the steps for D-CoP and the communication needed between a BS and its serving
UE, as described below.

(a) First of all, BS acquires the channel matrix Hk,ik using SRS transmitted by UE in the UL.

(b) Based on the channel knowledge Hk,ik , the BS selects a downlink filter and transmits
precoded demodulation reference signals (DM-RS) and precoded data through the physical
DL shared channel (PDSCH), while the UE estimates the equivalent precoded channel
using DM-RS and implements an MMSE-IRC receiver for data demodulation.

(c) UL transmission is carried out, in which the active UEs transmit simultaneously Co-SRS
so that the BS receives the signal not only from its served UE but also from UEs attached
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1. BS acquires channel knowledge 
towards the serving UE using 
channel reciprocity

(a) UL SRS

serving BS UE

(e2) DL PDSCH

5. BS selects a DL transmit filter 
based on channel knowledge, 
covariance of the UL received signal 
and DL received interference, and 
transmits precoded DM-RS and 
data

5. UE estimates the equivalent 
channel and implements the 
MMSE-IRC receiver for data 
demodulation

(e1) DL DM-RS

(b1) DL DM-RS2. BS selects a DL transmit filter 
based on channel knowledge, and 
transmits precoded DM-RS and 
precoded data

2. UE estimates the equivalent 
channel and implements the 
MMSE-IRC receiver for data 
demodulation

3. UE transmits SRS in the UL: 
UL link adaptation is executed 
according to the receiver

3. BS evaluates the covariance of 
the UL received signal

(b2) DL PDSCH

(c) UL Co-SRS

Channel knowledge acquisition phase

Data transmission phase

1. UE transmits SRS in the UL

4. UE feeds back the received 
interference covariance matrix

4. BS gets the received 
interference covariance

(d) UL PUCCH

Figure 3.3: Communication between serving BS and its associated UE for D-CoP based on coordinated sounding.

to neighbor BSs. Each UE executes the link adaptation as a function of the MMSE-
IRC receiver. Thanks to the use of this UL link adaptation and channel reciprocity, the
covariance matrix of the received signal at the SeNB contains information about how the
BS will interfere to unintended UEs present in neighbor BSs and Υ̂k can be estimated.

(d) UE feeds back the received interference Nik to the serving BS through the physical UL
control channel (PUCCH).

(e) Based on the channel knowledge Hk,ik (step (a)), the covariance matrix of the received

signal in the UL transmission (or, equivalently, Υ̂k) (step (c)) and the received interference
Nik (step (d)), the BS designs a new DL transmit filter following a WSR criterion (by
solving optimization problem (Pk3,3) in (3.27)) and the DL data transmission is carried out
through the PDSCH.

If steps (c), (d) and (e) were repeated, the system performance could be improved (see
convergence considerations in Section 3.5.5). However, in practical implementations a single
acquisition of Υ̂k and report of Nik is usually allowed (as it has been represented in Fig. 3.3),
which is shown through simulations to be enough to significantly improve the system throughput.

Co-SRS are useful to get knowledge of Υ̂k in (3.35) through the air interface provided that
UEs use an adequate link adaptation and that UL Co-SRS transmissions are simultaneous in
time for all the active UEs, which requires coordination between cells. Hence, UE behavior and
coordination/configuration of the Co-SRS transmissions are key points for the proposed D-CoP.
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In the following sections we review both aspects, and provide different methods for practical
implementation based on the modifications that the 3GPP LTE-A standard [17] could admit or
not. Let us recall that in a downlink LTE-A system, the proposed D-CoP has to be applied to
each subband (SB)19 because the DL interference to be managed varies among SBs.

3.6.3 Limitations in LTE-A for UL sounding

The limitations in the LTE-A release 11-12 [22] are:

• Component SB specific UL power control is not available. So, for a given time instant, the
user can only do the UL sounding adjusting UL link adaptation in a specific SB. Otherwise,
a user could be assigned to multiple SBs simultaneously in time.

• The baseline for SRS operation in LTE-A is non-precoded and antenna-specific, with a
minimum length equivalent to 4 resource blocks (RBs). This fact implies that if a UE
is equipped with multiple antennas then multiple SRS transmissions multiplexed in time
are needed to get the desired UL signal. If new precoded SRS were defined, only one
SRS transmission would be required and the SRS length could be set to 1 RB such that
more sounding granularity would be obtained to adapt the design according to channel
variations in frequency.

3.6.4 UE behavior

In the UL transmission, precoded Co-SRS could be used so as to get the desired information
Υ̂k without disturbing the UL data transmission. As it is shown in (3.33), the UL transmit
filter should be computed from the DL MMSE-IRC receiver. However, if non-precoded Co-
SRS are used, multiple time instants (the same number as the number of UE receive antennas)
are required to get the desired UL information Υ̂k: at each time instant Co-SRS should be
transmitted on a different antenna. This fact entails a noise power increase of 3 dB for each
additional antenna element in the estimation of the interference cost matrix Υ̂k.

3.6.5 Co-SRS configuration

For the proposed D-CoP, the proper configuration of the Co-SRS involves frequency-hopping
mode [22], in which for a given time instant the Co-SRS are transmitted on a specific SB. This
mode is needed because the sounding has to be different for each SB where the user is scheduled,
as the DL interference varies. The periodicity of the Co-SRS and the hopping scheduling depend
on the specific method adopted (which will be specified in next Section 3.6.6).

SRS are allocated to the last OFDM symbols of the Uplink Pilot Time Slot (UpPTS) in
the synchronization (SYNC) subframe of a TDD system [22]. Hence, the minimum periodicity
of the SRS is 5 ms, which corresponds to the DL-to-UL switch-point periodicity. Further, let
us recall that as UpPTS is devoted for channel sounding and random access, the utilization of
Co-SRS for D-CoP does not imply any additional overhead for coordination because UpPTS
cannot be used for data transmission even if they are not used for channel sounding.

19In LTE-A, a subband is a collection of n adjacent physical resource blocks where the value of n can be 2, 3,
4, 6, or 8 depending on the channel bandwidth and the CQI feedback mode.
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3.6.6 Methods for UL sounding

In the following, four different methods are described based on the modifications that LTE-A
could admit or not. Methods A and B do not require any modification in LTE-A release 11 [22].
In Method A, the sounding is done in all SBs simultaneously in time, so that each user can only
be scheduled to a single SB as the UE is not able to apply SB specific UL power control. In
Method B, the sounding for each SB is done in different time instants, hence implying that a
specific user could be scheduled to multiple SBs but the number of SBs is limited by the channel
coherence time.

Method C uses component SB specific UL power control. Hence, a specific user can be
assigned to multiple SBs simultaneously in time and do the UL sounding appropriately on each
SB. Such procedure becomes independent of the number of SBs and allows more flexibility in
the user scheduling process and Co-SRS periodicity than methods A and B.

Method D uses component SB specific UL power control and a new type of Co-SRS that
include precoding and a minimum length equivalent to 1 RB. Then, a specific user can be
assigned to multiple SBs simultaneously in time and do the UL sounding appropriately on each
RB, and only one SRS transmission would be required. Method D is independent of the number
of SBs, the number of antennas at the UE and inter-subband channel variations, hence allowing
more flexibility in the user scheduling process, Co-SRS periodicity and sounding granularity
than previous methods.

For each method, assumptions, Co-SRS configuration, requirements and implications are
detailed in Table 3.2. Small Cell Scenario 2a in [23] and a low mobility scenario are used, such
that the channel coherence time is 25 ms at the 3.5 GHz band and the maximum user speed
is assumed to be 3 Km/h. The maximum Co-SRS periodicity is set to 20 ms, conditioned by
the channel coherence time. The total bandwidth is described by the number of RBs, B, and S
refers to the number of SBs in which the B RBs are spread. Requirements in Table 3.2 refer to:

• req1: Component SB specific UL power control is available.

• req2: Precoded and non-antenna specific SRS are available with a minimum length equiv-
alent to 1 RB.

3.6.7 Signaling for Co-SRS

One example of the signaling required among BSs to implement D-CoP with Co-SRS is shown
in Fig. 3.4, whereby UE1 is served by BS1, UE2 is served by BS2, and UE1 might suffer strong
interference from BS2.

• Step 1: In subframe number 1 (SFN1) each BS serves its associated UE and, based on
the long-term channel information, each BS decides which cells should coordinate the SRS
transmissions and sends semi-static signaling (containing SRS configurations) to them. In
the example, BS2 should be coordinated with BS1 to avoid interference towards UE1, so
semi-static signaling (containing UE1 SRS configuration) is sent to BS2.

• Step 2: In SFN1+n (corresponding to a SYNC subframe) each BS has all the relevant SRS
configurations, so that the interference-cost matrix can be acquired by taking advantage
of channel reciprocity. In the example, BS2 gets the interference cost from UE1.

• Step 3: In the specified SFN1+m for DL transmission, all BSs start transmitting data to
its attached UE meanwhile mitigating the inter-cell interference towards victim UEs.
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Table 3.2: UL Sounding Methods using Co-SRS for B=16 RBs.

Method A Method B Method C Method D

Assumptions:

1) user scheduling for each BS, a single UE per SB is scheduled

2) SB length 4 RBs 4 RBs 4 RBs 1 RB

3) number of SBs: S 4 SBs 4 SBs 4 SBs 16 SBs

4) max. SBs per UE 1 S S S

Co-SRS configuration:

1) Co-SRS periodicity 20 ms 5 ms 20 ms 20 ms

2) Co-SRS mode frequency-hopping

Requirements: - - req1 req1&req2

Implications:

1) SRS granularity 4 RBs 4 RBs 4 RBs 1 RB

2) max. RBs per UE 4 RBs 16 RBs 16 RBs 16 RB

3) number of OFDM
symbols per SRS

Nik Nik Nik 1

data
UE1

BS1

BS2

UE2

CSI 1-1
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data
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Figure 3.4: Inter-BS signaling for D-CoP with Co-SRS in 3GPP LTE-A systems. Only one interfering BS is considered.

3.7 Simulation Results

The evaluation of the proposed approaches is done on a LTE-A non-co-channel HCNs deployment
[104], where macrocells and smallcells are not using the same carrier frequency: MeNBs operate
at 2 GHz band and SeNBs use the 3.5 GHz band, both with 10 MHz bandwidth conformed
of 50 RBs each. It is used the Small Cell Scenario 2a, following deployment and simulation
parameters specified in [104]. The deployment consists of an hexagonal grid with 21 macrocell
areas (each covered by a MeNB), as shown in Fig. 3.5. There are 7 macro-sites, each with 3
sector MeNBs. One cluster of SeNBs is deployed per macrocell area, each consisting of 4 or
10 SeNBs/cluster. 60 users are deployed per macrocell area, being 2/3 of them placed inside
the cluster and the remaining UEs are uniformly distributed within the macrocell area (see Fig.
3.5). 80% of users are indoor and 20% of the users are placed outdoor. ITU Urban Macro
and ITU Urban Micro models with 3D distance are used for path loss and shadowing modeling
for MeNB-UE and SeNB-UE links, respectively. For fast fading modeling, the typical urban
model is used. Transmit powers are 46 dBm, 30 dBm and 23 dBm at MeNB, SeNB and UE,
respectively, and antenna gain of 17 dBi at MeNB, 5 dBi at SeNB and 0 dBi at UE. Noise
spectral density is -174 dBm/Hz. The number of antennas is MMeNB=2, MSeNB=2 and NUE=2
(such that mik=2, ∀ik,∀k, in (3.5)).
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Figure 3.5: Cluster, MeNB, SeNB and UE deployment for different layout configurations: 4 and 10 SeNBs/cluster.

Cell selection at each UE is based on reference-signal-received-quality (RSRQ) for inter-
frequency selection and reference-signal-received-power (RSRP) for intra-frequency selection
[104]. After the cell selection we focus on the SCN, i.e. the UEs that have been associated
to SeNBs. The number (or percentage) of UEs offloaded to the SCN for each layout configura-
tion is: 68% for 4 SeNBs/cluster and 75% for 10 SeNBs/cluster [143] (i.e. 40 and 45 UEs/cluster,
respectively).

Two traffic models are implemented:

• Full-load traffic model, where all UEs in the network have packets to be transmitted.

• FTP3 traffic model, with various packet arrival rates (λ, in packets/s) that lead to differ-
ent traffic load conditions [104]. In FTP3 traffic model, packets for the same UE arrive
according to a Poisson process with arrival rate λ. The packet size is 0.5 Mbytes.

The active UEs associated to the same SeNB are uniformly distributed among the available RBs
such that intra-cell interference is removed and only inter-cell interference remains. Hence, on
each RB each SeNB serves a single UE (i.e. |Ik|=1, ∀k, so |I|=|K|). The power available at each
SeNB is uniformly distributed among the RBs where the active UEs have been scheduled.

The following techniques are evaluated at every RB (in which the system model in Section
3.3 applies):

• D-IW: decentralized procedure where each SeNB designs its transmit filter based on the
channel knowledge Hk,ik and acquired Nik from the served UE, but Υk=0. It is equivalent
to perform simultaneous MIMO iterative water-filling (IW) algorithms [144].

• D-CoP: decentralized interference management technique detailed in Section 3.5 and Al-
gorithm 3.1 to solve problem (P3,2) in (3.25), where each SeNB designs its transmit filter

based on the knowledge of Hk,ik , Nik (acquired from its served UE), and Υ̂k (estimated
from an UL transmission as in (3.35)).

• D-CoP ideal: similar to D-CoP, but using the ideal value of Υk in (3.26) at each SeNB.

• D-WMMSE: decentralized procedure presented in [127] to solve problem (P3,2) in (3.25),
where channel matrices from each SeNB to all UEs in the network are known at each k-th
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SeNB (i.e. Hk,jl ,∀jl,∀l). Its performance is equal to C-WMMSE.

• C-WMMSE: centralized interference management procedure to solve problem (P3,2) in
(3.25), in which case a central unit processor is assumed to collect channel matrices from
all SeNBs to all UEs (i.e. Hk,jl ,∀k, ∀jl, ∀l).

For all techniques, two optimization strategies are evaluated:

• minWMSE : solves (P3,2) in (3.25) with Wik=I, ∀ik, ∀k,

• maxWSR: solves (P3,2) in (3.25) with Wik properly optimized so as to achieve the maxi-
mum WSR. µik=1, ∀ik,∀k, is used.

The number of iterations is set to Niter=1, except for the convergence evaluations in Section
3.7.1, and in some cases Niter=10 is used for comparison purposes.

The performance indicator is user packet throughput (UPT) measured in Mbits/s and defined
as the amount of data over the time needed to download data, without including the packet
waiting time in the buffer. Maximum modulation and coding schemes from LTE-A and 3 dB of
coding losses are used. For some purposes we evaluate the per-user achievable rate on a specific
RB, according to (3.12) and measured in bits/s/Hz.

3.7.1 Convergence

The monotonic convergence of the proposed D-CoP is demonstrated on a specific RB without
considering channel estimation errors, for the configuration of 4 and 10 SeNBs/cluster, when
using the full-load traffic model. Fig. 3.6.(a) shows the convergence in terms of per-user MSE
for minWMSE strategy (let us recall that mik=2 is used for all UEs in the problem set up). Fig.
3.6.(b) displays the convergence in terms of per-user achievable rate (in bits/s/Hz) for maxWSR
strategy. In both figures, the centralized solution is displayed with a dotted line.

It can be observed that D-CoP ideal has a monotonic convergence, while the proposed D-CoP
based on propagation channel reciprocity also converges due to the fact that estimation errors in
the acquisition of Υk from UL are not relevant (see justification in Section 3.5.3). The conver-
gence speed of D-CoP is faster than D-WMMSE [127] because with the proposed approach an
alternate optimization can be performed at each SeNB on each iteration of the algorithm, hence
achieving a faster convergence. C-WMMSE and D-WMMSE [127] approaches have the same
performance result when a large number of iterations is used, because the equations employed
to achieve the solution are equivalent.

The proposed D-CoP achieves a system performance very similar to C-WMMSE and D-
WMMSE [127] approaches, but with much less overhead and complexity (in fact, the complexity
of D-CoP is comparable to D-IW [144]). As the problem is non-convex w.r.t. all variables, all
the interference management approaches only achieve a local minimum, so in some channel
realizations they lead to the same solution (as in the minWMSE case in Fig. 3.6.(a)) while
in others the attained locally optimal solution is different (as in the maxWSR case in Fig.
3.6.(b)). As compared to the baseline D-IW scheme [144], the reduction in the per-user MSE
and the increase in the per-user achievable rate are larger in the layout of 10 SeNBs/cluster,
as more interference is present in the SCN. Furthermore, it is important to recall that when
performing only Niter = 1 iteration, the proposed D-CoP already outperforms the baseline D-
IW [144] scheme, which might not happen with D-WMMSE [127] because the decentralized
optimizations at SeNBs with D-CoP allow converging faster to a stable point.
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Figure 3.6: Convergence in terms of per-user MSE for minWMSE strategy and per-user achievable rate (in bits/s/Hz) for
maxWSR strategy on a specific RB. Layout configuration: 4 and 10 SeNBs/cluster.

3.7.2 Evaluations under perfect CSI conditions

Fig. 3.7 displays the 5%-tile UPT vs. the mean UPT for the configuration of 4 and 10
SeNBs/cluster, when using the full-load traffic model and minWMSE or maxWSR strategy.
The performance of D-CoP and D-WMMSE [127] are included for Niter=1 and Niter=10. On
the one side, the minWMSE strategy allows improving specially the 5%-tile UPT, and Niter=1
iteration is shown to be enough with D-CoP to get close to the performance given by the ideal
centralized approach. On the other side, the maxWSR strategy provides larger gains in the
mean UPT, but as the number of iterations increases the 5%-tile UPT is degraded. In this
case the number of iterations is relevant in some cases, as with 10 iterations the mean UPT is
enlarged specially for the layout of 10 SeNBs/cluster where more interference is present. How-
ever, the larger mean UPT gain with D-CoP comes in the first iteration, as is shown in Fig.
3.6.(b), because the decentralized optimization proposed at SeNBs with D-CoP allows a faster
convergence (and it does not happen with D-WMMSE [127]).

Fig. 3.8 shows the 5%-tile UPT vs. the mean UPT for different values of the packet
arrival rate (λ=0.5, 1, 1.5, 2 packets/s) of the Poisson distribution used in FTP3 traffic model,
for the configuration of 4 and 10 SeNBs/cluster. maxWSR optimization strategy and Niter=1
are used. D-CoP is compared to D-IW [144] that requires a similar complexity, and also to
D-WMMSE [127] that requires more channels to be estimated and more feedback links. As
expected, both the 5%-tile UPT and the mean UPT decrease as the offered load (i.e. λ) increases
for all simulation cases. The UPT gains of D-CoP are larger for the 10 SeNBs/cluster deployment
and they are also larger when λ increases, as more interference is present in the SCN either due
to a denser deployment of SeNBs or due to a traffic load increase. The UPT gains provided with
Niter = 1 iteration are larger for D-CoP than for D-WMMSE [127], as was already observed in
Fig. 3.6.(b).

In general, both in 5%-tile and mean UPT gains are obtained when using the maxWSR
strategy due to the fact that each SeNB has 50 RBs available where the served UEs are uniformly
distributed. Then, as each user is allocated to multiple RBs, the probability of being in outage
in all the assigned RBs is very low and, even if we maximize the system WSR on each RB,
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we get an increase in the 5%-tile UPT. This effect is more remarkable in the 10 SeNBs/cluster
deployment and for the FTP3 traffic model, where more resources are available.

To summarize, a significant UPT performance gain of the proposed D-CoP and Niter=1 with
respect to the baseline D-IW [144] scheme and with respect to D-WMMSE [127] is observed
in all layout configurations and traffic simulation conditions. The relative gains are larger for
medium-to-high traffic loads (up to a certain limit) and for denser deployments of SeNBs, due to
the fact that D-CoP allows a full reuse of subbands and subframes while preemptively managing
interference at UEs and, especially, at cell-edge UEs with a low complexity implementation. So
it can be concluded that D-CoP is a suitable approach for interference limited scenarios and
dense networks. It is important to recall that large UPT gains are obtained even if only one
iteration of the proposed D-CoP is performed and that no additional overhead is needed for D-
CoP if we use an UL pilot-based transmission to get the interference-cost matrix, which makes
the approach amenable for practical system implementations.
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3.7.3 Evaluations under imperfect CSI conditions

As is shown in Table 3.1 and in Section 3.5.1, robust precoders are designed according to the
adopted interference management procedure (D-WMMSE [127] or D-CoP). Fig. 3.9 displays
the per-user achievable rate on a specific RB (in bits/s/Hz) vs. PT /σ

2
v used during the training

phase (see definition in (3.4)) for the configuration of 4 SeNBs/cluster, when using the full-load
traffic model. Let us recall that the results with PT /σ

2
v=120 dB are nearly equal to the results

with perfect CSI. For low values of PT /σ
2
v , the performance loss due to imperfect CSI is larger

for Niter=10 than for Niter=1 due to the propagation of errors in the iterative algorithms for
D-WMMSE and D-CoP.

It can be observed that as PT /σ
2
v is reduced, the performance of the D-WMMSE [127]

decreases drastically with Niter=10 due to the errors in the estimation of interfering channels
(see Φk in (3.37)). However, the proposed D-CoP and the baseline D-IW [144] schemes are
shown to be more robust to imperfect CSI because they only involve estimation errors in the
direct channel matrix towards the serving SeNB. This shows that UPT gains can be obtained
with the proposed D-CoP technique even if the channels are estimated with a low SNR, which
is not the case with conventional transmit coordination techniques that require estimation of
all the channel matrices. Let us recall that in case C-WMMSE approach was used, then the
performance would be even worse than D-WMMSE [127] because Nik in (3.29) would also
include the estimation errors of the interfering channel matrices.

3.7.4 Evaluations under real impairments to acquire the interference-cost

In this Section we evaluate the effect of real impairments on the acquisition of the interference-
cost matrices Υ̂k in (3.35) for the proposed D-CoP, as discussed in Section 3.5.7.

First, we consider the case in which non-orthogonal UL pilot sequences are used to estimate
Υ̂k. Sequences composed of {+1,−1} random symbols are used, with a length equal to S. Fig.
3.10 shows the per-user achievable rate (in bits/s/Hz) on a specific RB vs. S when using the
full-load traffic model for the configuration of 10 SeNBs/cluster. Niter=1 is used for D-CoP. It
can be observed that if non-orthogonal random sequences are used to get Υ̂k, even with a low
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number of symbols (S), the performance is near to the one with orthogonal sequences among
all UEs. Let us recall that in practical LTE-A implementations S=12 can be used within a RB,
such that the effect of non-orthogonal UL pilot sequences would be negligible.

Second, we evaluate the impact of non-ideal channel reciprocity conditions to acquire Υ̂k.
The diagonal entries of the calibration error matrix Cjl in (3.38) are modeled by: (1+ajl)e

jφjl ,
being ajl∼T N (0, σ2

a,−1, 1) and φjl∼T N (0, σ2
φ,−π/6, π/6) random variables with a truncated

normal distribution that include the calibration error (CE) in amplitude and phase, respectively
[70]. The variance for amplitude and phase CE at UEs (σ2

a and σ2
φ) are assumed to be equal for

all UEs, and are taken as an input for the simulations. Fig. 3.11 shows the per-user achievable
rate (in bits/s/Hz) on a specific RB vs. σ2 (which either refers to the variance of the amplitude
CE, σ2

a, and/or to the variance of the phase CE, σ2
φ, as is indicated in the legend). We have

used the configuration of 10 SeNBs/cluster, the full-load traffic model and maxWSR strategy.
The performance of D-CoP is included for Niter=1 and Niter=10. It can be observed that the
relative performance loss as compared to the perfect calibration case is larger for Niter=10 than
for Niter=1, due to the propagation of errors in the iterative algorithm: at each iteration, the
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interference-cost matrix is acquired with errors which impacts on the transmit/receive filters
design and, on its turn, on the interference-cost matrix. As more iterations are done, higher
impact of these errors on performance is observed. The impact of amplitude CE is a bit more
harmful than phase CE, but in MIMO systems phase calibration at UEs is also important.
However, even with high variances of the CE (note that, for example [71] considers values of
σ2
a=σ

2
φ=0.01, while we are displaying values up to σ2

a=σ
2
φ=0.3), the performance of D-CoP

outperforms the baseline D-IW [144] scheme.

3.8 Conclusions

This chapter presents a decentralized coordinated precoding (D-CoP) design for weighted sum-
rate maximization in dense MIMO TDD smallcell networks. Precoding decisions are done at each
BS based on the knowledge of the propagation channel towards its served UEs, the acquired DL
interference, and the received signal in the UL. The received signal in the UL allows to estimate
the interference-cost matrix, which informs about how the BS is interfering to unintended UEs.
This way, it is not needed to estimate the interfering channels either at UEs or at BSs, no back-
haul traffic between BSs is required, and minimal reporting of information from the UEs to the
serving BS is needed. Then, an iterative algorithm for D-CoP is presented, which subsumes the
acquisition of the required parameters and the simultaneous per-BS optimizations. Monotonic
convergence of the algorithm is demonstrated when all BSs update its transmit precoders in
parallel. Both the monotonic convergence and the parallel optimizations are highly relevant for
practical implementation issues. Furthermore, a robust D-CoP is presented to tackle imperfect
CSI conditions, and the impact of non-ideal propagation channel reciprocity is analyzed.

Significant gains in terms of user packet throughput, and specially 5%-tile UPT, are observed
in 3GPP LTE-A SCNs for all layout configurations and all traffic simulation conditions, as
compared to a baseline scheme with comparable complexity. The UPT gains are comparable
to well-known centralized and decentralized interference management techniques, which involve
much more complexity. The use of only one iteration of the algorithm allows improving the UPT
and the relative gains are larger for medium-to-high traffic loads and for denser deployments
of BSs, which demonstrates the suitable applicability of the proposed D-CoP in interference-
limited scenarios. Further, the proposed scheme is shown through simulations to be robust to
imperfect CSI conditions as well as real impairments in the estimation of the interference-cost
matrix, like the use of non-orthogonal UL pilot sequences at UEs and the non-ideal propagation
channel reciprocity conditions.



Appendices

3.A Proof of Proposition 3.1

On the one hand, the Lagrangian function (L) of the problem (P3,2) in (3.25) is [92]:

L =
∑
k∈K

∑
ik∈Ik

(
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)
, (3.39)

being Eik(Rik , {Tik}) defined in (3.25).

On the other hand, the Lagrangian function (Lk) of the decentralized problem (Pk3,3) in
(3.27) for fixed Υk and Nik , ∀ik, is:

Lk =
∑
ik∈Ik

(
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)
, (3.40)

being Eik(Rik , {Tik},Nik) the MSE-matrix in (3.25) assuming that Nik is fixed. Note that
the Lagrangian function Lk and other Ll, ∀l 6=k, are not coupled through any variable as the
matrices containing inter-cell interference have been fixed (i.e. Υk and Nik , ∀ik).

It is easy to check that the derivative of the Lagrangian functions in (3.39) and (3.40) with
respect to Wik coincide, ∀ik, ∀k, when Υk is fixed. Further, it is also easy to check that the
derivatives with respect to Rik are equal when Υk is fixed, ∀ik, ∀k, as Rik is only included in
Eik . So, let us focus on checking that the gradients coincide when we derive with respect to Tik .

The derivative of L in (3.39) with respect to Tik is:

dL
dTik

=
( ∑
jk∈Ik

HH
k,jk

RjkWjkR
H
jk

Hk,jk

)
Tik−HH

k,ik
RikWik

+
( ∑
l∈K,l 6=k

∑
jl∈Il

HH
k,jl

RjlWjlR
H
jl

Hk,jl

)
Tik+λkTik , (3.41)

where we have taken into account that Tik affects not only Eik , but also the MSE-matrices of
the remaining UEs (i.e. Ejl , ∀jl, ∀l).
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The derivative of Lk in (3.40) with respect to Tik , when Υk and Nik , ∀ik, are fixed, is:

dLk
dTik

=
( ∑
jk∈Ik

HH
k,jk

RjkWjkR
H
jk

Hk,jk

)
Tik−HH

k,ik
RikWik+ΥkTik+λkTik , (3.42)

where it is important to recall that in this case Tik only affects the MSE-matrices of the UEs
served by the k-th BS (i.e. Ejk , ∀jk), as Nik , ∀ik, have been fixed. Therefore, the gradients in
(3.41) and in (3.42) are equal if Υk=

∑
l∈K,l 6=k

∑
jl∈Il H

H
k,jl

RjlWjlR
H
jl

Hk,jl is set.

3.B Proof of Theorem 3.1

Convergence of Algorithm 3.1 into a stationary point of the WSR problem (P3,1) in (3.24) can
be proved by grace of monotonic convergence of the objective function of the WMSE problem
(P3,2) in (3.25) [127]. Let us express the objective function of the WMSE problem (P3,2) in
(3.25) as follows:

fo ({Tik}, {Rik}, {Wik}) =
∑
k∈K

∑
ik∈Ik

(
Tr
(
WikEik (Rik , {Tik})

)
−χik

)
, (3.43)

where χik=µik log2

∣∣ ln(2)
µik

Wik

∣∣.
fo(.) in (3.43) is a convex function w.r.t. each set of optimization variables separately (i.e.

{Tik}, {Rik} and {Wik}). In particular, for fixed weighting matrices, fo(.) is convex w.r.t.
transmit (receive) filters for a set of given receive (transmit) filters. In our proposed D-CoP
procedure, we need to demonstrate a reduction of fo(.) in (3.43) whenever any of the three
sets of optimization variables is updated. In particular, when performing lines 16, 18 and 21 in
Algorithm 3.1. These updates are summarized in four steps:

• Step 1 (line 16) (for all BSs): Update of the transmit filters {Tik}, ∀ik∈Ik, (denoted by
{Taux

ik
}, ∀ik∈Ik) based on the acquired interference-cost matrix Υk at each BS.

• Step 2 (line 18) (for all BSs): Alternate optimization of the receive filters Rik , weighting
matrices Wik , and transmit filters Tik , ∀ik∈Ik, at each BS for a fixed {Nik}, ∀ik∈Ik, and
Υk.

• Step 3 (line 21) (for all UEs): Update of the receive filter Rik based on the actual
covariance matrix of the received inter-cell interference plus noise per UE Nik .

• Step 4 (line 21) (for all UEs): Update of the weighting matrix per UE Wik .

In the following proof it is assumed that Υk, {Nik}, and {Hk,ik}, ∀ik∈Ik, are acquired without
errors at each k-th BS (so we focus on the perfect CSI case in Section 3.5.1).

When solving the optimization problem at each BS, DL transmit filters are designed at each
k-th BS following the expressions in (3.28) for fixed {Nik},∀ik∈Ik, in (3.9) and Υk in (3.26).
As a consequence, fo(.) in (3.43) can be written as:

fo
(
{Tik(Υk)}, {Rik(Nik)}, {Wik}

)
=
∑
k∈K

∑
ik∈Ik

(
Tr
(
WikEik(Rik(Nik), {Tik(Υk)})

)
−χik

)
.

(3.44)



3.B. Proof of Theorem 3.1 101

The key point in the expression in (3.44) is that, for fixed weighting matrices {Wik}, each
transmit filter Tik depends on the receive filters {Rik} and on the interference-cost matrix Υk

that only depends on receive filters {Rik}. Similarly, for fixed weighting matrices {Wik}, each
receive filter Rik depends on the transmit filter {Tik} and on the covariance matrix of the
received inter-cell interference plus noise Nik that only depends on transmit filters {Tik}. Now
we are ready to prove convergence on each step of Algorithm 3.1. In the sequel, t denotes the
iteration number.

Proof of objective function reduction in Step 1

Step 1 consists on updating Υ
(t)
k and Taux

ik
,∀ik,∀k. If we use the fact that for the set of fixed

{R(t−1)
ik
} and {W(t−1)

ik
}, since f0(.) is convex w.r.t. {Tik}, we can update sequentially: (a) all

{Υ(t)
k }, (b) all {Taux

ik
} following (3.28), and then convergence is guaranteed because transmit

filters given by (3.28) are the optimum for a given set of {R(t−1)
ik
} and {W(t−1)

ik
} if {Υ(t)

k } is

computed from the same set of {R(t−1)
ik
} and {W(t−1)

ik
}. In other words:

fo
(
{T(t−1)

ik
}, {R(t−1)

ik
(N

(t−1)
ik

)}, {W(t−1)
ik
}
)
≥ fo

(
{Taux

ik
(Υ

(t)
k )}, {R(t−1)

ik
(N

(t−1)
ik

)}, {W(t−1)
ik
}
)
.

(3.45)

Proof of objective function reduction in Step 2

Precoding design at each BS follows a BCD method [139] with alternate optimization between re-
ceive filters, weighting matrices, and transmit filters in (3.28). Therefore, an objective reduction

for a fixed {N(t−1)
ik
}, ∀ik, and Υ

(t)
k at each k-th BS is guaranteed if the alternate optimization

starts from {Taux
ik
}. The variables as a result of the alternate optimization are denoted by:

{T(t)
ik
}, {Raux

ik
}, {Waux

ik
}. As each subproblem converges, convergence of the sum is guaranteed

for a fixed {N(t−1)
ik
} and Υ

(t)
k , ∀ik,∀k:

fo
(
{Taux

ik
(Υ

(t)
k )}, {R(t−1)

ik
(N

(t−1)
ik

)}, {W(t−1)
ik
}
)
≥ fo

(
{T(t)

ik
(Υ

(t)
k )}, {Raux

ik
(N

(t−1)
ik

)}, {Waux
ik
}
)
.

(3.46)

Proof of objective function reduction in Step 3

Step 3 consists on updating N
(t)
ik

and R
(t)
ik

, ∀ik,∀k. As f0(.) is convex w.r.t. {Rik} for a set of

fixed {T(t)
ik
} and {Waux

ik
}, we can update sequentially: (a) all {N(t)

ik
}, (b) all {R(t)

ik
} following

(3.30), and thereby convergence is guaranteed since receivers given by (3.30) are the optimum

for a given set of {T(t)
ik
} if the used {N(t)

ik
} is computed from the same set of transmit filters

{T(t)
ik
}. This way:

fo
(
{T(t)

ik
(Υ

(t)
k )}, {Raux

ik
(N

(t−1)
ik

)}, {Waux
ik
}
)
≥ fo

(
{T(t)

ik
(Υ

(t)
k )}, {R(t)

ik
(N

(t)
ik

)}, {Waux
ik
}
)
. (3.47)
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Proof of objective function reduction in Step 4

Step 4 consists on updating W
(t)
ik

, ∀ik, ∀k. As fo(.) is convex w.r.t. {Wik}, we can update

them all by following (3.28) for a set of fixed {T(t)
ik
} and {R(t)

ik
}, and thereby a reduction in the

objective function in (3.43) is guaranteed, i.e.

fo
(
{T(t)

ik
(Υ

(t)
k )}, {R(t)

ik
(N

(t)
ik

)}, {Waux
ik
}
)
≥ fo

(
{T(t)

ik
(Υ

(t)
k )}, {R(t)

ik
(N

(t)
ik

)}, {W(t)
ik
}
)
. (3.48)

Objective function reduction at each iteration

Therefore, with the proof of an objective function reduction in these 4 consecutive steps, mono-
tonic convergence of Algorithm 3.1 for D-CoP is demonstrated at each iteration t:

fo
(
{T(t−1)

ik
}, {R(t−1)

ik
(N

(t−1)
ik

)}, {W(t−1)
ik
}
)
≥ fo

(
{T(t)

ik
(Υ

(t)
k )}, {R(t)

ik
(N

(t)
ik

)}, {W(t)
ik
}
)
. (3.49)

Steps 3 and 4-1 could be interchanged and convergence would also be guaranteed. However, it
is indispensable to update {Nik} and {Υk} in different steps to guarantee convergence.



Chapter 4

Transmit Coordination for
Cluster-based Joint Transmissions

This chapter investigates decentralized interference management in downlink (DL) of multi-cell
MIMO TDD cellular networks where transmit cooperation is allowed at BSs. Each user (UE) is
associated with a UE-centric cluster of BSs, which cooperatively serve the user through a joint
transmission (or coordinated multi-point joint transmission (CoMP-JT)). Clusters of different
users possibly share some BSs such that they may overlap, being coupled by interference and
transmit power constraints at each BS. Our objective is the design of BSs clustering and precod-
ing matrices per-user in order to maximize the weighted sum-rate of the system by controlling
the interference and the power spent at BSs. In contrast to previous works where all channel
matrices in the system are needed, we propose a decentralized procedure whereby only channel
matrices towards a limited number of candidate BSs per user are required while interference is
still controlled by using the signal received from an uplink transmission. For an LTE-compliant
dense deployment of 2×2 MIMO BSs/users, results show gains of 6-16% in terms of sum-rate
and 49-84% in terms of 5%-tile user rate (depending on the maximum cluster size) as compared
to decentralized BS-disjoint clustering schemes.

The technical papers related to this topic are:

[C3] S. Lagen, A. Agustin, J. Vidal, ”Distributed Inter-Cluster Interference Management for CoMP-
based cellular networks”, IEEE Global Commun. Conf., Atlanta (USA), Dec. 2013. doi:
10.1109/GLOCOM.2013.6831733.

[C4] S. Lagen, A. Agustin, J. Vidal, B. Soret, K. I. Pedersen, ”Distributed User-Centric Clustering
and Precoding Design for CoMP Joint Transmission”, IEEE Global Commun. Conf., San Diego
(USA), Dec. 2015. doi: 10.1109/GLOCOMW.2014.7063526.

This chapter contains results published in [C4] that deal with the joint design of clustering and
precoding for CoMP-JT under a UE-centric clustering scheme. Differently, [C3] addresses the
coordinated precoding design for CoMP-JT under a BS-centric clustering scheme, but it can be
derived from [C4] with slight modifications when setting as fixed and disjoints the clusters for
CoMP-JT. Both approaches are compared in this chapter.

This chapter is structured as follows. Section 4.1 contains the state of the art for CoMP-JT.
The main contributions of the chapter are detailed in Section 4.2. In Section 4.3 the system model
is presented. The problem formulation is set in Section 4.4. In Section 4.5 the decentralized joint
clustering and precoding for cluster-based joint transmission is proposed. Simulation results are
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Figure 4.1: BSs clustering schemes for CoMP-JT.

included in Section 4.6 for a 3GPP LTE SCN, whereby the BS-centric clustering and the UE-
centric clustering schemes are compared. Section 4.7 analyzes the complementarities among
CoMP-JT and the use of multiple antennas at BSs (known as large-scale MIMO systems [9]).
Finally, concluding remarks are included in Section 4.8.

4.1 State of the Art

In CoMP-JT multiple geographically separated BSs transmit data to each user, such that data
has to be shared among the coordinated BSs that will jointly transmit. Although large theoret-
ical capacity gains are obtained, in practical implementations the observed gains of CoMP-JT
become saturated with the number of cooperating BSs due to [64]:

• the overhead required to acquire knowledge of the channel matrices and

• the impact of channel estimation errors.

For that reason, the number of BSs in which CoMP-JT can take place (called the cluster size
or CoMP set) has to be limited. In LTE-A the maximum cluster size is 3, see [38], being suitable
for classical regular deployments. However, in a dense deployment of smallcells how to form the
BSs clustering may not be trivial and challenging.

As it has been introduced in Section 1.4.2, there are two types of BSs clustering schemes for
CoMP-JT: BS-disjoint clustering and UE-centric clustering (see Fig. 4.1). In the BS-disjoint
clustering scheme, non-overlapping clusters of BSs are formed according to the deployment and
BSs in each cluster jointly serve all users within their coverage area. This way, users at the
cluster-edge still suffer from considerable interference and other kinds of coordination might be
needed (see [C3]). Therefore, it is not the most suitable scheme from the users perspective
and for dense and irregular deployments. In contrast, in the UE-centric clustering scheme, a
cluster of BSs is selected per user such that different clusters of different users might overlap. In
this case, the concept of cluster-edge users disappears but not the interference in the network.

Previous works in the literature have addressed the problem of coordinated precoding for
CoMP-JT with BS-disjoint clustering scheme, either in a centralized or decentralized manner.
For example, in [59] transmit beamformers filters are designed following an interference pre-
cancellation technique based on zero-forcing, in which each cluster uses some degrees of freedom
to pre-cancel interference to users in neighbor clusters. Recent procedures consider the exchange
of control-plane messages among transmitters (interference prices) to manage the interference
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in a decentralized manner [133] by selecting linear precoders, decoders and transmit powers.
Methods are available to ensure the convergence of those algorithms (see, e.g., [144]), never-
theless, their main drawback is that interfering channels have to be estimated and reported to
interfering transmitters along with the generated interference price. Hence, channel estimation
errors on the interfering links and the overhead associated to the reporting of channel gains have
a detrimental effect on the overall potential gains.

Previous works in the literature have addressed the problem of joint BSs clustering and
precoding for CoMP-JT with UE-centric clustering scheme assuming that all BSs in a given
area are candidates to form the cluster of each user [60, 82]. In [60], the problem is faced by
introducing sparsity over the precoding matrices and penalizing the objective function so as to
avoid larger cluster sizes. In [82], per-BS backhaul rate constraints are included in the problem
in order to limit the cluster size according to the data sharing condition among BSs involved for
CoMP-JT. However, in both cases the problem is solved in a centralized manner assuming that
knowledge of all channel matrices from all BSs towards all users is available. In [60] decentralized
implementation is discussed, but it requires again knowledge of all channel matrices at BSs.

4.2 Contribution

In this chapter we propose a decentralized procedure for joint BSs clustering and precoding
(DJCP) that avoids estimation of all channel matrices. Our objective is the maximization of
the DL WSR under per-BS power constraints (per-antenna power constraints could be imposed
easily). We assume that each user selects a limited number of candidate BSs for its cluster and
that one of them adopts the role of the BS master of the cluster. We decompose the maximum
WSR problem into parallel subproblems to be solved at each master, which decide the BSs
clustering and precoding for CoMP-JT in a coordinated manner with the rest of neighboring
masters (see Fig. 4.2). The decomposition takes into account both the inter-cluster interference
and the coupling per-BS power constraints, as one BS can be cooperating in the transmission
towards different clusters of different users. To tackle interference in a decentralized manner we
use the interference-cost concept [133] (presented in Chapter 3) and propose a procedure to
acquire the interference-cost by exploiting an uplink (UL) pilot-based transmission in TDD, such
that estimation of the interfering channel matrices is not needed while interference in the network
can be managed. Finally, to further reduce the cluster size, a penalizing term is introduced in
the formulation as a weighted sum of the power spent by candidate BSs in the cluster and we
propose a rule to update the weights iteratively so as to take out of the cluster those BSs using
too low power.

Different from previous works, [17, 60], in the proposed DJCP each master only requires
knowledge of the channel matrices between the user and the candidate BSs in the cluster and
estimation of the interfering channel matrices is not needed either at BSs or at users. Conse-
quently, we avoid:

• the computational cost associated to channel estimation,

• the network planning required for pilot signals, and

• the performance loss due to imperfect estimation of channel matrices that are estimated
with a low signal-to-noise ratio.
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Figure 4.2: Example of UE-centric clustering for CoMP-JT in a cellular network composed of |K|=4 BSs and |I|=3 users.
For decentralized implementation, each user selects a subset of candidate BSs to form its cluster. Candidate BSs will be

controlled by the BS master of the cluster.

4.3 System Model

Consider a DL multi-cell network composed of a set of K,{1, . . . ,K} TDD BSs equipped with
Mk antennas each (k=1, . . . ,K) and a set of I,{1, . . . , I} users with Ni antenna elements each
(i=1, . . . , I). An example is shown in Fig. 4.2 for |K|=4 BSs and |I|=3 users.

Assume that each i-th user selects a subset of potential candidate BSs to form its UE-centric
cluster, denoted by Ci⊆K. The subset of candidate BSs can be selected with different criteria:
a maximum number per user can be established; or each user can choose the BSs from which
the received power from the reference signals exceeds a certain threshold; or even a combination
of both criteria could be adopted. Assume that one of the candidate BSs for the i-th user (e.g.
the nearest BS) adopts the role of the BS master for the i-th cluster (see Fig. 4.2). The master
is assumed to be connected through high-speed backhaul links with the candidate BSs in the
cluster, and it will decide the BSs clustering and precoding design to serve the i-th user through
CoMP-JT in coordination with the rest of masters. The final cluster of BSs for the i-th user is
denoted by Bi⊆Ci.

To represent the BSs clustering and precoding in a compact form, we use network-wide ma-
trices defined in the following. Let Hk,i∈CNi×Mk denote the channel matrix between the trans-
mitting antennas at the k-th BS and the receiving antennas at the i-th user. Let Tk,i∈CMk×mi

denote the transmit precoder that the k-th BS uses to transmit mi streams towards the i-th
user. Define:

Hi , [H1,i, . . . ,HK,i] ∈ CNi×MT (4.1)

as the channel matrix between the transmitting antennas at all BSs and the receiving antennas
at the i-th user, being MT=

∑
k∈KMk. Similarly, define:

Ti , [TT
1,i, . . . ,T

T
K,i]

T ∈ CMT×mi (4.2)

as the collection of all transmit precoders intended for the i-th user. Note that precoders
corresponding to non-candidate BSs for the i-th user are directly set to 0: Tk,i=0, ∀k/∈Ci.
Furthermore, the BSs clustering for the i-th user (i.e. Bi) will be obtained after optimization
with the number of precoders Tk,i among k∈Ci that are different from 0.

We assume that for each i-th user only the channel matrices towards the candidate BSs (i.e.
Hk,i,∀k∈Ci) are known at the master of its cluster. Note that Hi in (4.1) contains both the
candidate channels and the interfering channels (i.e. Hk,i,∀k/∈Ci).
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Let x denote the collection of transmitted signals of all BSs: x,[xT1 , . . . ,x
T
K ]T∈CMT×1, being

xk∈CMk×1 the signal transmitted by the k-th BS, i.e.

x =
∑
i∈I

Tibi, xk =
∑
i∈I

Tk,ibi, (4.3)

where bi∈Cmi×1 contains the unit power independent Gaussian symbols of the i-th user (i.e.
bi∼CN (0, I)). The total power spent at the k-th BS is:

Pk =
∑
i∈I

Tr
(
Tk,iT

H
k,i

)
. (4.4)

Assuming narrow-band transmissions, the equivalent baseband signal yi∈CNi×1 observed at
the i-th user is:

yi = HiTibi +
∑

j∈I,j 6=i
HiTjbj + vi, (4.5)

where vi refers to the additive zero-mean white Gaussian noise with distribution vi∼CN (0, σ2
i I).

The symbols are estimated at the i-th user assuming that interference is treated as noise and
that a linear receive filter Ri∈CNi×mi is applied:

b̂i = RH
i yi. (4.6)

The MSE for the symbols transmitted towards the i-th user can be expressed through the
so-called MSE-matrix Ei=E

[
(b̂i−bi)(b̂i−bi)

H
]
∈Cmi×mi . Under the independence assumption

of {bi}∀i and vi, the MSE-matrix results:

Ei = I + RH
i CyiRi −RH

i HiTi −TH
i HH

i Ri, (4.7)

where Cyi=E
[
yiy

H
i

]
∈CNi×Ni is the covariance matrix of the received signal at the i-th user:

Cyi = HiTiT
H
i HH

i + Ni, (4.8)

where Ni denotes the interference-plus-noise covariance matrix for the i-th user:

Ni =
∑

j∈I,j 6=i
HiTjT

H
j HH

i + σ2
i I. (4.9)

The receive filter that minimizes the MSE, i.e. Tr(Ei), is the MMSE receiver [127]:

Rmmse
i = C−1

yi
HiTi, (4.10)

such that the MSE-matrix in (4.7) with Rmmse
i in (4.10) results:

Emmse
i = I−TH

i HH
i C−1

yi
HiTi =

(
I+TH

i HH
i N−1

i HiTi

)−1
. (4.11)

The achievable rate of the i-th user is:

Ri = log2

∣∣I + HiTiT
H
i HH

i N−1
i

∣∣ = −log2 |Emmse
i | . (4.12)
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4.4 Problem Formulation

With the objective of maximizing the total DL WSR of the system with a maximum power
constraint per BS as well as further reducing the cluster size if desirable, the joint BSs clustering
and precoding are obtained as the solution to the following problem (inspired by [60]):

(P4,1) : maximize
{Ti}∀i

∑
i∈I

(
µiRi−α

∑
k∈Ci

γk,i Tr
(
Tk,iT

H
k,i

) )
(4.13)

subject to
∑
i∈I

Tr
(
Tk,iT

H
k,i

)
≤ Pmax

k ∀k,

Tk,i = 0 ∀k /∈ Ci, ∀i,

where µi is a weighting coefficient associated to the priority of the i-th user, Ri is the achievable
rate shown in (4.12), and Pmax

k is the available transmit power at the k-th BS. α≥0 is a parameter
that trades-off between maximum WSR performance and minimum weighted power spent at BSs:

• if α=0 it reduces to plane maximum WSR, while

• if α>0 the power spent at the BSs is taken into account with the goal of reducing the
cluster size.

In addition to [60], we introduce the parameter γk,i (per user and per BS) in (4.13), which will
allow taking out of the cluster of the i-th user those BSs devoting little power towards that user
(see details in Section 4.5.4).

Due to interference, problem (P4,1) in (4.13) is not convex w.r.t. {Ti}∀i and the optimal
solution cannot be guaranteed. Nevertheless, one solution attaining a local optimum of (P4,1)
in (4.13) can be obtained by solving the minimization of the total weighted sum of MSEs [127]
while still keeping the minimization of the cluster size in the problem:

(P4,2) : minimize
{Ti},{Ri},{Wi}∀i

∑
i∈I

(
Tr
(
WiEi

)
−µi log2

∣∣∣ ln(2)
µi

Wi

∣∣∣+ α
∑
k∈Ci

γk,i Tr
(
Tk,iT

H
k,i

) )
(4.14)

subject to
∑
i∈I

Tr
(
Tk,iT

H
k,i

)
≤ Pmax

k ∀k,

Tk,i = 0 ∀k /∈ Ci,∀i,

where Wi∈Cmi×mi is a weighting matrix associated to the i-th user and Ei corresponds to the
MSE-matrix shown in (4.7).

Problem (P4,2) in (4.14) is convex w.r.t. each set of variables ({Ti}∀i, {Ri}∀i, and {Wi}∀i)
separately. Therefore, a block coordinate descent (BCD) approach [139] can be followed to find
a local optimum by alternating the optimization between {Ti}∀i, {Ri}∀i, and {Wi}∀i if all
channel matrices are known. The attained solution is a local optimal solution to problem (P4,1)
in (4.13), see [60] [127]. However, this procedure requires all channel matrices from all BSs to
all users to be collected.
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4.5 Decentralized Joint Clustering and Precoding

We focus on solving (P4,2) in (4.14) in a decentralized manner. To do so, we split the problem
in such a way that each master solves a subproblem in coordination with other masters. More
specifically, first, problem (P4,2) in (4.14) is decomposed into two problems:

• (Pi4,3) to be solved at the master of the i-th cluster so as to find the optimal BSs clustering
and precoding (included in Ti) when Ri and Wi are fixed, and

• (Pi4,4) to be solved at the i-th user so as to find Ri and Wi when Ti is fixed.

Then, how to acquire the required parameters for decentralized design is detailed. Finally, the
iterative algorithm is presented, which subsumes the acquisition of the required parameters at
the master of each i-th cluster and the simultaneous optimizations.

Let us define the following parameters that will allow decomposing problem (P4,2) in (4.14).

• The interference-cost matrix is defined as:

Υi =
∑

j∈I,j 6=i
HH
j RjWjR

H
j Hj , (4.15)

which reflects the DL interference that could be created by the i-th cluster towards un-
intended users (i.e. j 6=i, j∈I) and it is seen as a penalizing term for the design of BSs
clustering and precoding at the i-th cluster (see next problem in (4.20)). Let us partition
Υi in (4.15) as follows:

Υi =

 Υi[1, 1] · · · Υi[1,K]
...

. . .
...

Υi[K, 1] · · · Υi[K,K]

 , (4.16)

such that (as Hj=[H1,j , . . . ,HK,j ]):

Υi[k, l] =
∑

j∈I,j 6=i
HH
k,jRjWjR

H
j Hl,j . (4.17)

In Section 4.5.1 we show that not all blocks in (4.17) are needed to control interference,
and Section 4.5.3 explains how to obtain the needed ones without having to estimate every
single interfering channel matrix.

• The power spent by the k-th BS involved in the i-th cluster towards users in other clusters
(j 6=i, j∈I) is:

Pk,−i =
∑

j∈I,j 6=i
Tr
(
Tk,j(Tk,j)

H
)
, (4.18)

such that the per-BS power constraint in (4.14) can be decoupled as:

Tr
(
Tk,iT

H
k,i

)
+ Pk,−i ≤ Pmax

k . (4.19)

Differently from Chapter 3 where the precoding design at each BSs was coupled with neigh-
boring BSs designs due to the interference-cost matrices (i.e. Υi in (4.16)), a new coupling arises
owing to the per-BS power constraints because a specific BS can belong to different clusters.
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4.5.1 Optimization at the master of each cluster

Given {Pk,−i}∀i,∀k∈Ci , {Ri}∀i, and {Wi}∀i, problem (P4,2) in (4.14) can be decomposed into I
parallel optimization problems (one per master). The problem to be solved at the master of
the i-th cluster (considering only terms in (4.14) that are affected by Ti) for given {P k−i}∀k∈Ci ,
{Ri}∀i, and {Wi}∀i, is:

(Pi4,3) : minimize
Ti

fi + g−i (4.20)

subject to Tr
(
Tk,iT

H
k,i

)
+ Pk,−i ≤ Pmax

k ∀k ∈ Ci,
Tk,i = 0 ∀k /∈ Ci,

where fi measures the impact over the i-th user:

fi = Tr
(
WiR

H
i HiTiT

H
i HH

i Ri

)
− Tr

(
WiR

H
i HiTi

)
− Tr

(
WiT

H
i HH

i Ri

)
+α

∑
k∈Ci

γk,i Tr
(
Tk,iT

H
k,i

)
, (4.21)

and g−i considers the generated interference towards unintended users (j 6=i, see (4.15)):

g−i = Tr
(
ΥiTiT

H
i

)
. (4.22)

The main part of the algorithm is to find the optimal BSs clustering and precoding (both
included in Ti) from (Pi4,3). Problem (Pi4,3) in (4.20) is convex w.r.t. Ti and the optimal
structure for Ti could be directly obtained by deriving its Lagrangian function. However, as we
are interested in controlling the cluster size, we have to work with the blocks of the network-wide
matrix Ti=[TH

1,i, . . . ,T
H
K,i]

H , where only the blocks corresponding to candidate BSs selected by
the i-th user have to be optimized (i.e. Tk,i,∀k∈Ci). Accordingly, as only these block matrices
of Ti can be different from 0, the blocks of Υi in (4.16) that are needed for decentralized
optimization at the master of the i-th cluster are those Υi[k, l] such that k∈Ci and l∈Ci (see
(4.22)). Note that problem (Pi4,3) in (4.20) is formulated in a way such that only knowledge of
Υi[k, l]∀k,l∈Ci , {Pk,−i}∀k∈Ci , Ri, and Wi is required. So from now on, let us assume they are
given at the master of the i-th cluster (which is equivalent but less restrictive to assume that
{P k−i}∀k∈Ci , {Ri}∀i, and {Wi}∀i are given).

Interestingly, problem (Pi4,3) in (4.20) is separable among the precoders of different BSs,
such that a BCD method [139] can be applied with {Tk,i}∀k∈Ci as block variables. To do so,
we follow similar steps as in [60] but extended to the multi-stream case per user and applied to
solve problem (Pi4,3) in (4.20).

Define the following two sets of variables:

Ji , HH
i RiWiR

H
i Hi, Di , HH

i RiWi. (4.23)

Partition Ji∈CMT×MT and Di∈CMT×mi in (4.23) as:

Ji =

 Ji[1, 1] · · · Ji[1,K]
...

. . .
...

Ji[K, 1] · · · Ji[K,K]

 , Di =

 Di[1]
...

Di[K]

 . (4.24)
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It is important to emphasize here that:

Ji[k, l] = (Hk
i )
HRiWiR

H
i Hl

i, Di[k] = (Hk
i )
HRiWi. (4.25)

According to the definitions and partitions in (4.24) and (4.16), the gradient of the La-
grangian function of problem (Pi4,3) in (4.20) (L) with respect to Tk,i for k∈Ci is:

∇Tk,iL = Ji [k, k] Tk,i+
∑

l∈Ci,l 6=k
Ji [k, l] Tl,i −Di [k] +αγk,iTk,i

+Υi [k, k] Tk,i+
∑

l∈Ci,l 6=k
Υi [k, l] Tl,i + λkTk,i, (4.26)

where λk is a non-negative dual variable associated to the k-th per-BS power constraint in
(4.20). Then, by equating (4.26) to 0 we obtain the precoding structure Tk,i for k∈Ci (being 0
otherwise):

Tk,i =

{ (
Ji[k, k]+Υi[k, k]+(λk + αγk,i)I

)−1
Fk,i, if k ∈ Ci,

Tk,i = 0, if k /∈ Ci.
(4.27)

where
Fk,i = Di[k]−

∑
l∈Ci,l 6=k

Ji [k, l] Tl,i −
∑

l∈Ci,l 6=k
Υi [k, l] Tl,i. (4.28)

The precoder in (4.27) is coupled with the precoders of BSs in the i-th cluster (i.e. {Tl,i}∀l 6=k,l∈Ci).
So the solution for joint BSs clustering and precoding is achieved at the master of the cluster
of the i-th user by applying a BCD method among block variables {Tk,i}∀k∈Ci until a stop
condition (e.g. convergence or maximum number of iterations achieved) for given Ri, Wi,
Υi[k, l]∀k,l∈Ci and {Pk,−i}∀k∈Ci . Algorithm 4.1 summarizes the BCD method among block vari-
ables {Tk,i}∀k∈Ci . Section 4.5.3 details how to acquire the required parameters at each master.

As it can be observed in (4.27)-(4.28) and (4.25), for given Υi[k, l], ∀k, l∈Ci, the BSs clustering
and precoding design can be performed in a decentralized manner at each master by having
knowledge only of the channel matrices towards the candidate BSs selected by the user (i.e.
Hk,i, ∀k∈Ci).

Algorithm 4.1 Clustering and precoding design at the master of the i-th cluster for given
{Υi[k, l]}∀k,l∈Ci , {Pk,−i}∀k∈Ci , Ri, and Wi

1: Compute Ji[k, l] and Di[k] using (4.25) ∀k, l∈Ci
2: initialize: Tk,i,∀k∈Ci
3: repeat(cyclically pick a candidate BS k∈Ci)
4: Compute Tk,i using (4.27) with Ji[k, l], ∀l ∈ Ci, Di[k], Ri, Wi, and Υi[k, l], ∀l∈Ci (compute λk

with the bisection method [92] such that Tr(Tk,iT
H
k,i)+Pk,−i≤P k

max)
5: until stop condition
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4.5.2 Optimization at each user

Given all the precoding matrices, {Ti}∀i, problem (P4,2) in (4.14) can be easily decomposed into
I parallel optimization problems (one per user), where the optimal receive filter (Ri) and the
optimal weighting matrix (Wi) for the i-th user are obtained as the solution to:

(Pi4,4) : minimize
Ri,Wi

Tr (WiEi)−µi log2

∣∣∣ ln(2)
µi

Wi

∣∣∣ . (4.29)

The optimal receive filter Ri to (Pi4,4) in (4.29) is given by the MMSE receive filter Rmmse
i

in (4.10). As it is done in real deployments [141], each user can compute Rmmse
i in (4.10) based

on the estimation of the equivalent channel HiTi and Cyi . It is not needed to estimate the
interfering channels to get Cyi in (4.8), as it can be evaluated by averaging yiy

H
i [141].

Once the receive filter Ri is designed, the optimal weighting matrix Wi to (Pi4,4) in (4.29)
is given by [127]:

Wi = µi
ln(2)(Emmse

i )−1. (4.30)

So each user can compute Wi in (4.30) based on HiTi and Cyi , i.e. the same information
needed to compute Rmmse

i in (4.10).

4.5.3 Acquisition of parameters at the master of each cluster

Acquisition of the interference-cost matrix Υi

Similarly as in Chapter 3 (see Section 3.5.3), we can get an estimate of the interference-cost
matrix for the UE-centric clustering scheme by using an UL pilot-based transmission. More
specifically, the blocks needed for decentralized optimization from Υi in (4.17) can be estimated
from the covariance matrix of the interference-plus-noise received signal in UL when: i) channel
reciprocity is assumed (as in TDD systems) and ii) users in UL transmit with a specific pilot
signal that is precoded as a function of the receive filter Ri and the weighting matrix Wi. This
way, we avoid the complex task associated to the estimation of the most harmful interfering
channel matrices that would be needed to compute Υi by following (4.15) and we avoid also the
reporting of all receive filters and weighting matrices to non-serving BSs (i.e. Rj and Wj , ∀j 6=i,
see (4.15)). As pointed out before, the blocks of Υi in (4.16) that are needed for decentralized
optimization at the master of the i-th cluster are those such that Υi[k, l], ∀k, l∈Ci (see (4.22)).
The procedure to obtain them is described in the following.

From an UL pilot-based transmission and thanks to channel reciprocity in TDD, the covari-
ance matrix of the received interference-plus-noise signal at the BSs (∀k∈Ci) of the i-th cluster

in UL
←−
Ni∈CMUi

×MUi (being MUi=
∑

k∈CiMk) is:

←−
Ni =

∑
j∈I,j 6=i

H̄i,j
←−
T j
←−
TH
j (H̄i,j)

H +←−σ 2
i I, (4.31)

where
←−
T j∈CNj×mj denotes the UL precoder used at the j-th user, ←−σ 2

i the UL noise power, and
H̄i,j contains the channel matrices from the j-th user towards the BSs in the i-th cluster stacked

as: H̄i,j=[Hk,j , . . . ,Hl,j ]
T , ∀k, l∈Ci. Let us partition

←−
Ni as we did for the interference-cost

matrix Υi in (4.16), but the partition of
←−
Ni only contains the blocks of those candidate BSs
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in the cluster of the i-th user. Let us maintain the index of the BSs for referencing the blocks,
such that (∀k, l∈Ci): ←−

Ni[k, l] =
∑

j∈I,j 6=i
HT
k,j

←−
T j
←−
TH
j H∗l,j +←−σ 2

i I. (4.32)

If the UL precoder is designed according to:

←−
T j =

√
FR∗j (W

1
2
j )∗, (4.33)

being F<1 a scaling cell-wide factor that allows meeting the UL power constraint (see further

details in [C3]) and Wj=W
1
2
j (W

1
2
j )H , then the blocks of Υi in (4.16) that are needed for decen-

tralized optimization at the master of the i-th cluster (i.e. Υi[k, l], ∀k, l∈Ci) can be estimated
as:

Υ̂i[k, l] = F−1(
←−
Ni[k, l])

∗. (4.34)

As it is shown in [C3], the estimation errors in Υ̂i are negligible when properly selecting the
scaling factor F in (4.33). Note that it is not needed to estimate the interfering channels to

get
←−
Ni in (4.31) because it can be estimated by averaging the UL received signal if high-speed

backhaul links connect the BSs within each cluster. Further, it is not needed to decode the UL
transmitted symbols, so an UL pilot-based transmission is enough to get Υ̂i. In LTE-A we could
use the already defined sounding reference signals [62] with UL power control.

Acquisition of the power spent by candidate BSs in the cluster towards other clus-
ters {Pk,−i}∀k∈Ci

We assume that the master of each i-th cluster collects from the candidate BSs that form the
i-th cluster the power that they use towards other clusters, i.e. Pk,−i, ∀k∈Ci. So, only exchange
of control information with neighboring BSs is required.

Acquisition of Ri and Wi

We assume that Ri and Wi are reported from the i-th user towards the master of its i-th cluster
through an UL feedback link. As compared to [60] where feedback links are required from each
user towards all BSs in the network to report Ri and Wi, in our case only one feedback link is
needed per-user towards its BS master.

4.5.4 Design of the weighting power coefficients

The introduction of the weighting power coefficients γk,i in (P4,1) in (4.13) aims at the reduction
of the cluster size by taking out of the cluster those candidate BSs that use too low power. So
γk,i should decrease with the power spent by the k-th BS towards the i-th user. A suitable
selection is:

γk,i =
1

τ + Tr(T̄k,iT̄
H
k,i)

, (4.35)

where τ>0 is a small constant factor to avoid γk,i→∞ at any point in the iterations and

Tr(T̄k,iT̄
H
k,i) is the power spent by the k-th BS to the i-th user in the previous iteration. Note

that those candidate BSs using low power towards a specific user would have associated a high
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value for γk,i. Therefore, at the next iteration, the power at that BS would tend to 0 due to
the problem formulation, see (P4,1) in (4.13), and thus the cluster size of the i-th user would be
reduced.

4.5.5 Algorithm

Algorithm 4.2 summarizes the iterative procedure to solve (P4,2) in (4.14) in a decentralized
manner. First of all, each i-th user selects the candidate BSs to form its cluster (i.e. Ci)
and among them the BS being the master of its cluster (line 1), which acquires the channel
matrices from candidate BSs in the cluster towards the user (i.e. {Hk,i}∀k∈Ci) (line 2). Then,
the algorithm starts from an initialization of the precoders {Tk,i}∀k∈Ci , ∀i, that satisfies the
per-BS power constraints in (4.20) (line 3). For simulation purposes, a suitable initialization is
obtained by solving (Pi4,3) in (4.20) using Υi=0. Then, a DL transmission is carried out using
{Tk,i} (line 3) where users can evaluate the covariance matrix of the received signal Cyi and
update Ri and Wi as shown in Section 4.5.2 (line 4).

After the initialization, the iterative procedure is implemented assuming a TDD synchronized
system and alternate UL/DL transmissions. First, the required parameters for decentralized op-
timization are acquired at each master, as detailed in Section 4.5.3 (i.e. {Υi[k, l]}∀k,l∈Ci from
the UL, {P k−i}∀k∈Ci through inter-BS signaling, and Ri and Wi through feedback) (lines 7-9).
Also, the weighting power coefficients {γk,i}∀k∈Ci are updated (line 10). Next, the simultaneous
BSs clustering and precoding designs are performed at the master of each i-th cluster for DL
transmission, as shown in Section 4.5.1 (line 12). Let us recall that after the per-cluster opti-
mization the precoders have to be scaled so as to strictly satisfy the per-BS power constraint as,
due to the uncoupling of the per-BS transmit power, in a given iteration the constraint could
be violated. Finally, DL transmission is performed (line 13) such that the optimization at users
can be done as shown in Section 4.5.2 (line 15).

Algorithm 4.2 DJCP to solve (P4,2) in (4.14)

1: All users (∀i): select set of candidate BSs, Ci, one of them being the master of the i-th cluster
2: All masters (∀i): acquire knowledge of the channel matrix from candidate BSs towards the i-th user,
{Hk,i}∀k∈Ci

3: All masters (∀i): initialize {Tk,i}∀k∈Ci and transmit in DL
4: All users (∀i): compute Ri in (4.10) and Wi in (4.30)
5: repeat
6: # Acquisition of parameters
7: All users (∀i): transmit in UL a pilot signal properly precoded as in (4.33) using Ri and Wi, such

that each master acquires Υi[k, l],∀k, l∈Ci as in (4.34)
8: All masters (∀i): acquire power spent by BSs in the cluster towards other clusters, Pk,−i,∀k∈Ci
9: All users (∀i): report Ri and Wi to the master of the i-th cluster

10: All masters (∀i): update weights {γk,i}∀k∈Ci as in (4.35)
11: # Simultaneous optimizations at each master
12: All masters (∀i): do Algorithm 4.1 for fixed {Υi[k, l]}∀k,l∈Ci , {Pk,−i}∀k∈Ci , Ri, and Wi

13: All BSs (∀k): transmit in DL with {Tk,i}∀i
14: # Simultaneous optimizations at each user
15: All users (∀i): compute Ri in (4.10) and Wi in (4.30)
16: until stop condition
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Monotonic convergence of Algorithm 4.2 can be proven when all parameters are perfectly
acquired, γk,i is fixed, ∀i,∀k, and the optimizations at each cluster are performed in a sequential
manner. This can be demonstrated thanks to the special convex properties of problem (P4,2)
in (4.14) and by following a similar rationale as in Chapter 3 (see Section 3.5.5) (omitted
here due to space limit). If all clusters perform the optimization simultaneously, monotonic
convergence cannot be guaranteed due to the coupling of the per-BS power constraints among
clusters. However, even with simultaneous optimizations, convergence is consistently observed
in simulations. Convergence is also observed when including the rule to update γk,i in (4.35).

4.6 Simulation Results

The network scenario consists of a dense synchronized TDD deployment of |K| outdoor SeNBs
(that act as BSs) in a concentrated area, following specifications for Scenario 2a in [104]. BSs are
randomly placed within a circle of 50 m radius with a minimum distance of 20 m among them,
and |I| users are randomly placed in a concentric 70 m radius circle. All BSs operate on the
same carrier frequency at 3.5 GHz with 10 MHz bandwidth. ITU Urban Micro model with 3D
distance is used for path loss and shadowing modeling. The antenna pattern is omnidirectional
and the transmit power is 24 dBm. Noise spectral density is -174 dBm/Hz. The number of
antennas is Mk=2, ∀k, and Ni=2, ∀i (such that mi=2, ∀i). Full-load traffic model is adopted.

Two different criteria are used:

• sum-rate (SR) with µi=1, ∀i, in (4.13) and

• proportional fair (PF) where Wi=
1

ln(2)Ri
(Emmse

i )−1 is used in (4.30) (see [60]).

Results are averaged over 100 random deployments.

4.6.1 Performance versus the number of candidate BSs

First, we consider a network of |K|=8 BSs and |I|=8 users and study the performance of the
proposed DJCP when varying the number of candidate BSs selected by the users (i.e. |Ci|)
for α=0 in (4.13). Note that the larger is the value of |Ci|, the more channel matrices have
to be estimated. K=8 BSs is used so as to compare DJCP with the decentralized ’BS-disjoint
clustering’ scheme in [C3] using disjoint clusters of either 2 BSs or 4 BSs, in which inter-cluster
interference management is adopted and only channel matrices towards the BSs in the cluster
are needed (as in the proposed DJCP).

Fig. 4.3 shows the convergence of DJCP in a given random deployment for different values
of |Ci| (1, 2, 3, 4, 8) and SR criterion. Convergence is consistently achieved.

Fig. 4.4.(a) and Fig. 4.4.(b) display the sum-rate performance and the 5%-tile of the per-user
rates, respectively, versus the number of candidate BSs for SR and PF criteria. As benchmark
we use the ’WMMSE’ algorithm [127] for the broadcast channel, where the 8 BSs form a giant
virtual transmitter that serves all UEs, including per-BS power constraints and knowledge of all
channel matrices. By comparing the decentralized schemes with the same number of estimated
channel matrices (2 BSs or 4 BSs, marked with gray arrows in figures), it can be observed that
DJCP outperforms in terms of sum-rate and 5%-tile rate the decentralized BS-disjoint clustering
for both SR and PF criteria. The gains are: 8% (PF-4BSs), 16% (PF-2BSs), 6% (SR-4BSs), 10%
(SR-2BSs) in sum-rate and 84% (PF-4BSs), 49% (PF-2BSs) in 5%-tile rate. The gain is specially
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Figure 4.3: Convergence of DJCP in terms of sum-rate for different number of candidate BSs selected per user (|Ci|=1, 2,
3, or 4). |K|=8, |I|=8. α=0. SR as utility function.
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Figure 4.4: Sum-rate (in bits/s/Hz) and 5%-tile per-user rate (in bits/s/Hz) vs. the number of candidate BSs selected per
user (|Ci|). |K|=8, |I|=8. α=0. SR and PF as utility function.

remarkable in the 5%-tile rate, where ’PF DJCP’ with 3 candidate BSs already outperforms ’PF
BS-disjoint 4BSs’ and, in the case of 4 BSs in the cluster, ’SR DJCP’ gets a 5%-tile rate of 0.218
bits/s/Hz while BS-disjoint clustering gets 0.013 bits/s/Hz (see Fig. 4.4.(b)). This is due to the
high flexibility that DJCP offers for dense and irregular deployments of BSs.

4.6.2 Performance versus α

Second, we consider a network of |K|=10 BSs (as specified in [104]) and |I|=10 users and study
the performance of DJCP for different values of α in (4.13) when the number of candidate BSs
selected by the users is |Ci|=4. When α>0 we simulate two cases: γk,i=1, ∀i, k, and γk,i updated
as in (4.35) using τ=0.1. We use an α in (4.13) that is normalized by the maximum power at
BSs (P ).
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Figure 4.5: Percentage of users (%) having a cluster size (|Bi|) of 0, 1, 2, 3, or 4 BSs, for different DJCP optimization
cases and SR or PF criterion. |K|=10, |I|=10. |Ci|=4.
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Figure 4.6: Sum-rate vs. α. |K|=10, |I|=10. |Ci|=4. SR and PF as utility function.

Fig. 4.5 illustrates the percentage of users having a cluster size of 0, 1, 2, 3, or 4 BSs for SR
(Fig. 4.5.(a)) and PF (Fig. 4.5.(b)) criteria. Results are shown when using different values of α
for (P4,1) in (4.13): α={0, 0.2, 0.4, 0.6} for SR and α={0, 0.1, 0.2, 0.3} for PF. Different values
of α are considered for SR and PF criteria as the utility function is not of the same magnitude.
It can be observed that increasing α reduces the cluster size. The proposed rule to update
the parameter γk,i in (4.35) per user and per BS allows further reduction of the cluster size as
compared to γk,i=1 both for SR and PF criteria. In the case of SR, some users are assigned to
a cluster size of 0 BSs, which means they are not scheduled. This effect does not appear with
PF criterion (see Fig. 4.5.(b)).

Fig. 4.6 shows the sum-rate versus α when using γk,i=1 or γk,i updated as in (4.35) and
either SR or PF criterion. In the case of SR, the performance degradation is very mild, while the
number of BSs per cluster is significantly reduced with the proposed design of γk,i in (4.35) (see
Fig. 4.5.(a)). In the case of PF, the sum-rate is very sensitive to α when γk,i is designed as in
(4.35). However, it is worth comparing the case α=0.3 and γk,i=1 with respect to α=0.1 and γk,i
as in (4.35): both lead to similar sum-rate while the number of BSs per cluster is significantly
reduced in the later case (see Fig. 4.5.(b)).
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4.7 Complementarities of CoMP-JT and multi-antenna Systems

In this section we aim at determining the possible complementarities of CoMP-JT and the use
of multiple antennas at BSs, as well as to determine which approach can provide larger gains
in theory depending on the considered scenario and channel conditions. CoMP-JT allows that
different BSs act as a single transmitter with geographically separated antennas. This provides
diversity and allows converting interfering signals into useful signals, but requires a very tight
synchronization among the BSs cooperating for CoMP-JT. On the other hand, the use of multiple
antennas at BSs is recently receiving a lot of attention (specially when the number of antennas
is very large, i.e. large-scale MIMO, also known as massive-MIMO [9]) because it requires
simple linear signal processing approaches and it allows combating the small-scale fading. The
adoption of multiple antennas at BSs provides additional degrees of freedom which can be used
to simultaneously serve multiple users or to null interference towards unintended users.

In order to perform the analysis, we use the DJCP technique presented in Section 4.5. The
DJCP algorithm decides about the BSs clustering for CoMP-JT and the adequate precoding in
a user-centric manner, i.e. the cluster and precoding are decided per user. Due to the per-UE
centric clustering scheme, clusters for CoMP-JT might be overlapped (i.e. they may share some
BSs). In this sense, the main goal of DJCP technique is to deal with all the coupling issues
arising in the system: the inter-cluster interference and the coupling power constraint per BS.
With such approach we can play with the maximum number of candidate BSs in which CoMP-
JT can take place. This parameter will be an input for the simulations and will be fixed to be
equal for all users (i.e. the maximum CoMP-JT cluster size for all users will be the same).

In the present analysis we focus on the evaluation of DJCP when varying either:

• the number of candidate BSs for CoMP-JT or

• the number of available transmit antennas at BSs.

4.7.1 Simulation results in simplified scenarios

We consider a deployment of |K| BSs and |I|=|K| users. Each BSs is equipped with M antennas,
and each user has N receive antenna elements. The noise is assumed to be white proper Gaussian
with distribution ∼CN (0, σ2I). It is assumed that all BSs have the same available power P .
Signal-to-noise ratio is defined as SNR=P/σ2.

To perform the analysis we either vary the number of antennas at BSs M or allow the use of
CoMP-JT among BSs by increasing the number of candidate BSs per user. All the remaining
parameters are kept constant: i.e. same transmit power P , same SNR, same number of BSs
and users K, and same number of receive antennas N . We evaluate two different homogeneous
scenarios (note that the same maximum power at all BSs is used) depending on the propagation
conditions:

• Symmetric scenario: pathloss from all BSs to all users is of the same magnitude. Prop-
agation channels are modeled by a Rayleigh distribution: Hk,i∼CN (0, I),∀k, i.
• Non-symmetric scenario: each user has a stronger (or predominant) BS. Propagation

channels are modeled through a Rayleigh distribution as: Hk,k∼CN (0, I), ∀k (predominant
BS), and Hk,i∼CN (0, ηk,iI), ∀i 6=k (for all remaining BSs), where factor ηk,i is modeled as
an uniformly distributed random variable that takes values between 0 and 1 (hence it
introduces the common asymmetry present in wireless communications).
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Due to the use of multiple antennas at BSs, we add spatial transmit correlation in the
channel modeling. So the equivalent channel is modeled as:

Heq
k,i = Hk,iR

1
2
T , ∀k,∀i (4.36)

In order to model the correlation among transmit antenna elements we use a common, simple
and scalable model usually adopted in the literature [138], where each component of the transmit
correlation matrix RT is given by:

RT [m,n] = ρ|m−n|,∀m,∀n (4.37)

where RT=R
T
2
T R

1
2
T , [m,n] refers to the m-th row n-th column element, and 0≤ρ<1 is the cor-

relation factor. This model is totally characterized by the value of the correlation factor ρ: the
larger values of ρ are related to higher correlation between the transmit antenna elements. For
simulation purposes we use different cases:

• ρ=0 (no correlation),

• ρ=0.9 (medium correlation),

• ρ=0.99 (high correlation).

In the following, the performance of DJCP is evaluated through Montecarlo simulations by
allowing CoMP-JT among a multiple BSs (i.e. by varying the number of candidate BSs per user)
and by using multiple antennas at BSs (i.e. by varying M). PF criterion is used. A deployment
of |K|=8 BSs and |I|=8 UEs is considered. SNR=10dB is used. 100 different channel realizations
are averaged. Antenna configurations are depicted in figures as M×N .

Rate versus number of candidate BSs and number of transmit antennas

The following figures display the average user rate (in bits/s/Hz) versus the number of candidate
BSs for CoMP-JT for different antenna configurations: 2×2, 4×2, 8×2, 16×2, and 32×2. The
symmetric scenario and the non-symmetric scenario are evaluated with the different antenna
correlation cases: no correlation, ρ=0.9, and ρ=0.99.

Fig. 4.7 displays the results for the symmetric scenario and Fig. 4.8 shows the results for
the non-symmetric scenario. From these figures several conclusions can be extracted.

First, both CoMP-JT with a larger cluster size and the use of a larger number of transmit
antennas provide significant rate gains. Further, its complementary can be observed in all the
considered scenarios (symmetric and non-symmetric) and in all channel conditions (correlated
and non-correlated). So we can conclude that the techniques are complementary. However, the
gains are not so large in the following cases:

• The gains of increasing the cluster size for CoMP-JT are lower in the non-symmetric
scenario when a large number of transmit antennas is used (observation 1), see Fig.
4.8.(a), where the rate tends to be saturated. This is due to the fact that if the number
of antennas is high then the major interference in the network can be suppressed and
all the users can already receive two streams, such that the gains of CoMP-JT are not
much significant (for example, for the 16×2 configuration case, gains are not significant
by increasing the cluster size more than 3 BSs).
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Figure 4.7: Mean rate (bits/s/Hz) vs. the number of candidate BSs for CoMP-JT for different antenna configurations.
Symmetric scenario.

• The gains of increasing the number of transmit antennas are lower in both symmetric and
non-symmetric scenarios for high transmit correlation see Fig. 4.7.(c) and Fig. 4.8.(c).
This is due to the high correlation of the transmit antenna elements. In these cases, it is
better to employ CoMP-JT as non-correlated antennas can be used to serve a user.

Second, as the power per BS and the number of users in the system are kept constant in the
simulations, we can focus on comparing the use of CoMP-JT and the use of a larger number of
antennas at BSs for the configurations in which the number of transmit antennas available to
serve a given user is the same. For example, we can compare the case of 2×2 with cooperation
of 4 BSs with the cases of: 4×2 with cooperation of 2 BSs, and 8×2 with no cooperation.
Similarly we can compare the case of 2×2 with cooperation of 8 BSs with the cases of: 4×2 with
cooperation of 4 BSs, 8×2 with cooperation of 2 BSs, and 16×2 with no cooperation. We can
also compare the case of 4×2 with cooperation of 8 BSs with the cases of: 8×2 with cooperation
of 4 BSs, 16×2 with cooperation of 2 BSs, and 32×2 with no cooperation. And so on. Under
this kind of comparison, depending on the scenario and the channel conditions we can decide
which technique (i.e. CoMP-JT or multiple transmit antennas at BSs) provides larger gains, as
detailed in the following.
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Figure 4.8: Mean rate (bits/s/Hz) vs. the number of candidate BSs for CoMP-JT for different antenna configurations.
Non-symmetric scenario.

• Symmetric scenario:

– if no correlation or medium correlation (see Fig. 4.7.(a) and Fig. 4.7.(b)): similar
gains are obtained by increasing the number of antennas at the BSs than by allow-
ing the use of CoMP-JT. This occurs because the channels are symmetric and it is
approximately the same in terms of performance if the antennas are distributed or
not.

– if high correlation (see Fig. 4.7.(c)): rate gains are obtained with CoMP-JT as
compared to adding more transmit antennas. This is due to the fact that CoMP-JT
allows having non-correlated antennas per user.

• Non-symmetric scenario:

– if no correlation (see Fig. 4.8.(a)): gains are obtained by adding antennas at the
BSs. This is owing to the fact that the scenario is non-symmetric and CoMP-JT is
implemented from BSs with different path-loss values, so if there is no correlation
among the antenna elements it is better to have them all at the strongest BS.

– if medium correlation (see Fig. 4.8.(b)): similar gains are obtained by increasing the
number of antennas at the BSs or by allowing the use of CoMP-JT.
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– if high correlation (see Fig. 4.8.(c)): rate gain are obtained with CoMP-JT as com-
pared to adding transmit antennas. Similarly as in the symmetric scenario, this
happens because CoMP-JT allows having non-correlated antennas per user. So, even
if the scenario is non-symmetric when the correlation is very high then CoMP-JT
provides the required diversity to increase the rate.

Let us recall that the results for the homogeneous non-symmetric scenario are valid for a
smallcell deployment where smallcells are deployed in clusters and CoMP-JT can be applied
among them.

Accordingly, the larger gains can be obtained by increasing the cluster size for CoMP-JT or
by using additional transmit antennas at BSs depending on the scenario and channel conditions.
However, it is not worth recalling that the complementarities of using CoMP-JT and adding
multiple antennas per BS are significant in all cases.

Justification of observation 1

In order to illustrate observation 1 with numerical results, we display in the following figures the
number of streams per user as the number of antennas increases or the number of candidate BSs
for CoMP-JT increases when using the non-symmetric scenario with high transmit correlation
among the antenna elements (corresponding to the rate performance shown in Fig. 4.8.(a)).

Fig. 4.9 shows the percentage of users having 1 stream and the percentage of users having
2 streams as the number of BSs for CoMP-JT increases (x-axis) and as the number of antennas
increases (shown in the different figures). As it is stated before, these results confirm that in the
16×2 antenna configuration case (see Fig. 4.9.(d)), most part of the users are already served
with 2 streams when no cooperation is used. Further, in the same configuration (16×2), when
the number of candidate BSs for CoMP-JT is equal to 2 then all the users are served with 2
streams, which indicates that the maximum rate might be obtained and interference is properly
suppressed. So in this scenario and channel conditions (non-symmetric scenario with no transmit
correlation), the gains of CoMP-JT are appreciable with a small number of cooperative BSs.
Such number is lower as the number of transmit antennas increase. However even in the 16×2
antenna configuration case, cooperation of 2 BSs is still useful in terms of rate (see Fig. 4.8.(a)).

Finally, from Fig. 4.9 we can conclude that the DJCP technique works as it was expected
and that the use of more antennas at BSs or the use of CoMP-JT have similar outcomes in terms
of number of streams: both techniques allow increasing the number of streams per user as the
number of antennas increases or as CoMP-JT is performed among a larger number of BSs.

4.7.2 Simulation results in 3GPP cluster-based scenarios

In this section we evaluate the performance of DJCP through Montecarlo simulations by allowing
CoMP-JT among a multiple BSs (i.e. by varying the number of candidate BSs per user) and
by using multiple antennas at BSs in a 3GPP-based scenario. The network scenario consists of
a dense synchronized TDD deployment of |K| SeNBs (that act as BSs) in a concentrated area,
following specifications for Scenario 2a in [104]. BSs are randomly placed within a circle of 50 m
radius with a minimum distance of 20 m among them, and |I|=|K| users are randomly placed
in a concentric 70 m radius circle. All BSs operate on the same carrier frequency at 3.5 GHz
with 10 MHz bandwidth. ITU Urban Micro model with 3D distance is used for path loss and
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Figure 4.9: Percentage of users having 1 stream and 2 streams. Non-symmetric scenario. No correlation case.

shadowing modeling. The antenna pattern is omnidirectional and the transmit power is 24 dBm.
Noise spectral density is -174 dBm/Hz. Transmit antenna correlation is used at BSs according
to the model detailed in Section 4.7.1. Full-load traffic model is adopted. PF criterion is used.
A deployment of |K|=8 BSs and |I|=8 UEs is considered. 100 different channel realizations are
averaged. Antenna configurations are depicted in figures as M×N .

Rate versus number of candidate BSs and number of transmit antennas

Fig. 4.10 shows the average user rate (in bits/s/Hz) versus the number of candidate BSs for
CoMP-JT for different antenna configurations: 2×2, 4×2, 8×2, 16×2, and 32×2. Two antenna
correlation cases detailed in Section 4.7.1 are evaluated (i.e. no correlation and ρ=0.9).

In this network deployment we can conclude that CoMP-JT and adding more transmit anten-
nas are complementary techniques. The conclusions are similar to the ones for the homogeneous
non-symmetric scenario in Section 4.7.1 as the cluster-based scenario is non-symmetric. The
mean rate is larger because the mean SNR is larger than 10dB for the strongest BSs (in general
with up to 4 BSs). However, the mean SNR with the remaining BSs is much lower than 10dB,
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Figure 4.10: Mean rate (bits/s/Hz) vs. the number of candidate BSs for CoMP-JT for different antenna configurations.
3GPP cluster-based scenario.

and in most of the cases lower than 0dB (observation 2). Note that 10dB was used in Section
4.7.1 as maximum, and only in the 10% of the cases a SNR lower than 0dB was observed by
the user. Therefore, the interference in the network is lower than in the non-symmetric scenario
considered in Section 4.7.1. Also, due to that, the gains of BSs transmit cooperation get satu-
rated earlier when increasing the number of BSs for CoMP-JT and/or the number of transmit
antennas at BSs.

We can conclude that 4 cooperative BSs is enough, because increasing the cluster size
larger than 4 BSs leads to a small rate improvement. On the contrary, increasing the number
of transmit antennas at BSs always leads to significant improvements.

If we perform the comparison in Section 4.7.1, i.e. compare the use of CoMP-JT and the use
of a larger number of antennas at BSs for the configurations in which the number of transmit
antennas available to serve a user is the same (note that the power per BS and the number of
users in the system are not modified in the simulations), we can conclude that in this cluster-
based scenario and for all antenna correlation cases (see Fig. 4.10) larger rate gains are obtained
by adding antennas at the BSs than by performing CoMP-JT. This is owing to the fact that
the scenario is non-symmetric and CoMP-JT is implemented from BSs with different path-loss
values, so it is better to have the antennas at the strongest BS even if the correlation is high.

Justification of observation 2

In order to illustrate observation 2 with numerical results, Fig. 4.11 displays the cumulative
distribution function (CDF) of the SNR (in dB) with the different candidate BSs as observed
by each user in a specific random deployment. It can be shown that a SNR in mean larger than
10dB is obtained with up to 4 candidate BSs. However, the 5th candidate BSs is observed in
general with a mean SNR of 5dB. Finally, the 6th, 7th, and 8th candidate BSs are observed with
a SNR lower than 0dB. For that reason, in the cluster-based scenario, appreciable rate gains are
obtained when including up to 4 BSs in the cluster for CoMP-JT.
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Figure 4.11: CDF of the SNR (in dB) as observed with the different candidate BSs.

4.8 Conclusions

This chapter proposes a decentralized joint BSs clustering and precoding for cooperative trans-
mission (CoMP-JT) in DL of multi-cell MIMO TDD systems. A UE-centric clustering scheme
is used, being the cluster size limited to a maximum number of candidate BSs selected by the
user. The problem is distributed among clusters by uncoupling the per-BS power constraints
and using the UL received signal as a way of reporting the impact of interference. This way,
only channel matrices towards candidate BSs need to be reported. Further, an additional term
is included in the problem so as to reduce the cluster size by taking out of the cluster those
candidate BSs that use too low power. Results in dense deployments of BSs show significant
gains as compared to distributed BS-disjoint clustering schemes and an effective reduction of
the cluster size with the proposed design.

Finally, the possible complementarities of CoMP-JT through a UE-centric clustering and
large-scale MIMO systems are analyzed. The complementarities are investigated in different
simplified interference scenarios (symmetric and non-symmetric) and under different antenna
correlation cases. Then, they are evaluated in dense SCN with realistic deployments and channel
conditions. Simulation results in 3GPP-compliant dense SCN scenarios show that 4 BSs are
enough for transmit cooperation in most of the correlation cases, otherwise increasing the cluster
size provides not enough performance benefits. It is also observed that potential gains are
obtained from the complementarity of using CoMP-JT and adding multiple antennas at BSs in
all cases.





Chapter 5

Transmit Coordination for
Coexisting Signaling Schemes

Motivated by a transitional scenario where legacy linear transmitters coexist with widely linear
ones, this chapter investigates the general K-user MIMO interference channel (IC) in a het-
erogeneous (linear and widely linear) transmitter deployment. Thus, this chapter generalizes
Chapter 3 with an heterogeneous deployment that arises due to the use of different signaling
schemes: proper Gaussian signaling (PGS) and improper Gaussian signaling (IGS), which have
been previously introduced in Chapter 2. In particular, we address the maximization of the
weighted sum-rate (WSR) for (widely) linear transmit filters design. To do so, we use of the
complex-valued formulation because it allows facing the problem. Since the maximum WSR
problem is non-convex, and thus difficult to be solved, we formulate an equivalent minimum
weighted mean square error (WMSE) problem that allows deriving closed-form expressions for
(widely) linear transceivers. Then an iterative procedure is proposed, which is proven to reach
a stationary point of the maximum WSR problem. Simulations show that the proposed pro-
cedure allows increasing the sum-rate as compared to coordinated linear transceiver schemes.
The gains are larger and significant in two different non-exclusive conditions: as the interference
level increases or when the number of antennas is low.

The technical papers related to this topic are:

[J3] S. Lagen, A. Agustin, J. Vidal, ”Coexisting Linear and Widely Linear Transceivers in the MIMO
Interference Channel”, IEEE Trans. on Signal Processing, vol. 64, no. 3, pp. 652 - 664, Jan.
2016. doi: 10.1109/TSP.2015.2489604.

[C5] S. Lagen, A. Agustin, J. Vidal, ”Decentralized Interference Management with Improper Gaus-
sian Signaling for MIMO-IC”, IEEE Global Commun. Conf., Workshop on Emerging Tech-
nologies for 5G Wireless Cellular Networks, Austin (USA), Dec. 2014. doi: 10.1109/GLO-
COMW.2014.7063526.

This chapter contains results presented in [J3], which deal with the coexistence of WLP and
LP transmitters for WSR maximization. Differently, [C5] addresses the coexistence of WLE
and LE receivers in terms of MSE minimization. Note that the coexistence of heterogeneous
receivers does not have an impact in terms of WSR, although it does in terms of MSE.

This chapter is structured as follows. Section 5.1 contains the state of the art for IGS
and WLP operations. The main contributions of the chapter are detailed in Section 5.2. In
Section 5.3 the system model for the MIMO IC with heterogeneous transmitters is presented
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and the signal model using the complex-valued channel model is detailed. In Section 5.4, the
maximum WSR problem for mixed transceiver design is formulated. An equivalent minimum
WMSE problem is proposed in Section 5.5. Then, in Section 5.6, closed-form expressions for
mixed transceiver design are derived, a centralized algorithm based on alternate optimization
is presented and decentralized implementations are detailed. Section 5.7 shows the simulation
results. Finally, concluding remarks are included in Section 5.8.

Preliminaries for improper Gaussian random vectors and widely linear processing operations
were presented in Appendix 2.A.

5.1 State of the Art

The K-user MIMO IC is a generic model for cellular communication systems that consists of K
transmitter-receiver pairs, each equipped with multiple antennas. All transmitters wish to send
independent streams to its intended receiver simultaneously, such that interference is generated
towards unintended receivers. Unfortunately, the optimal transmit/receive strategy with linear
filters that maximizes the WSR of the system is not known. From an optimization theory
perspective, the problem is non-convex and NP-hard even in the single-antenna case [132]. Even
so, there are two main approaches to find a stationary point to the maximum WSR problem.

On the one hand, strategies in [133, 134] (and references therein) focus on the coordination
among transmitters based on the interference-cost concept, where each transmitter maximizes its
own utility function minus the interference-cost, hence managing interference in a decentralized
manner. On the other hand, convergence to a stationary point can be obtained by iteratively
minimizing the weighted sum of WMSE, see [127], where transmit filters, receive filters, and
weighting matrices are alternatively optimized, being the weighting matrices chosen according
to the inherent relation between the achievable rate and the MSE [136]. Decentralized implemen-
tations of the WMSE approach are analyzed in [127] and Chapter 3 ([J2]). In [127] it is shown
that the WMSE approach and the strategies based on the interference-cost ([133, 134]) yield
almost the same WSR performance, but with less complexity in the WMSE case. In Chapter
3 (see [J2]), the WMSE approach and the interference-cost concept have been combined and,
by exploiting the channel reciprocity property available in TDD systems, almost the same WSR
results are obtained but with less stringent requirements for channel estimation and information
reporting than [127,133,134].

In all these works and related ones it is assumed that transmitted signals are proper (or
circularly symmetric complex) Gaussian distributed [128]. PGS has been shown to be optimal
in terms of capacity for the MIMO P2P channel [105], and also for the MIMO BC with DPC
as the capacity achieving strategy [48, 49]. However, recent results have shown that optimality
of PGS does not necessarily hold for the MIMO BC if the transmit strategy is restricted to
widely linear transceivers [108, 109]. It is shown there that capacity gains can be obtained by
employing improper (or circularly asymmetric complex) Gaussian signaling because,
in the absence of non-linear interference cancellation, the MIMO BC becomes interference-
limited [110]. The same happens in the MIMO IC, where IGS through the use of widely linear
precoding is able to improve the known achievable rates when interference is treated as Gaussian
noise [68, 69, 113] and is also shown to obtain larger degrees of freedom (DoF), i.e. slope of the
sum-rate as a function of the SNR at the high SNR regime, [52,106,111].
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An effective way to generate and estimate IGS is by using WLP [69] and WLE [65], respec-
tively, instead of the commonly used LP and LE techniques that maintain the proper Gaussian
distribution of the signals. WLE is a generalized concept used in communication channels that
encounter improper noise [66] and in systems that transmit improper signal constellations [67].
The later case is already under investigation in 3GPP LTE-A [1], see [29]. Recently, strategies
for WLP design in the MIMO BC are analyzed in [109], however, little has been done regarding
the coordinated design of WLP at transmitters for the MIMO IC.

There are two main approaches in the recent literature on IGS and widely linear operations
for the MIMO IC [129]:

• the composite real formulation, whereby real and imaginary parts of the MIMO channel
matrix are separated, and

• the complex-valued formulation.

Many works in the literature, e.g. [68, 106, 111], tackle the SISO IC with IGS through the
composite real formulation by reformulating the problem into an equivalent double-sized real-
valued MIMO IC. This way, most of the approaches already developed for the MIMO IC with
PGS can be applied. Further, this formulation has been used to state why IGS is better at
handling interference (and under which conditions) in the SISO Z-IC (a special IC setting) [122]
and in the MIMO Z-IC (see Chapter 2, [J1]). Nevertheless, in [69] it is shown that some new
insights on the use of IGS can be gained thanks to the use of the complex-valued formulation.
They show that for any given set of covariance matrices the achievable rates for the MIMO IC
can be improved with IGS by optimizing the transmit pseudo-covariance matrices. In this
regard, transmit covariance and pseudo-covariance optimization techniques are proposed for the
two-user SISO IC in [69] and for the K-user MISO IC in [113], but they are only valid for the
single-antenna receiver case.

5.2 Contribution

In this chapter we address the maximization of the WSR in the general K-user MIMO IC and we
focus on covering a backwards compatibility-oriented scenario where different types of linear and
widely linear transmitters coexist. This heterogeneous scenario is of relevance in legacy cellular
networks (as 3GPP LTE-A [1]), where user terminals of different releases coexist and different
transmission modes (TM) can be adopted at transmitters [145]. In the downlink transmission,
LTE-A considers different TM based on non-codebook-based precoding at the base stations,
which have been introduced in different releases [145]: TM7 in release 8, TM8 in release 9,
TM9 in release 10, and TM10 in release 11. Therefore, the heterogeneous transmitter scenario
can appear in the DL due to the use of TMs of different releases. In the UL transmission,
where transmitters are the UEs, the heterogeneous transmitter scenario naturally arises due to
the coexistence of UEs from different releases. To cover said situations, we assume that some
transmitters are constrained to employ conventional LP while other transmitters can apply
WLP. The scenario with mixed transmitters is shown in Fig. 5.1. As an example, transmitter
2 (TX 2) is restricted to use LP and the remaining transmitters can adopt WLP if required.

If all transmitters used WLP then the maximum WSR problem could be addressed with
the composite real formulation and conventional schemes developed for the MIMO IC could
be applied. However, the backwards compatibility-oriented scenario with mixed transmitters
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Figure 5.1: K-user MIMO IC for a backwards compatibility-oriented scenario with mixed transmitters. Solid lines
represent desired signals and dashed lines denote interfering signals. In this particular scenario, TX 2 is restricted to

employ LP while the other transmitters can adopt WLP if required.

cannot be tackled in a straightforward manner with the composite real formulation: working
with double-sized matrices and imposing particular structures over transmit filters (which are
needed for LP) entails a cumbersome formulation. On the contrary, the complex-valued for-
mulation allows facing the problem for transceiver design with mixed (linear and widely linear)
transmitters in a unified and more candid way.

In [C5] we use the complex-valued formulation to address the minimization of the sum of
MSEs in the K-user MIMO IC with heterogeneous receivers. In this chapter, as in [J3], we use
the complex-valued formulation to face the maximization of the WSR in the K-user MIMO IC
with an heterogeneous deployment of transmitters and assuming optimal receivers.

To summarize, the contributions of this chapter are:

• The relation between the mutual information and the MSE matrices is derived when
the transmitted signal and the interference-plus-noise signal are improper Gaussian dis-
tributed.

• The maximum WSR (maxWSR) problem for (widely) linear transceiver design in the most
general K-user MIMO IC is formulated in such a way to cover a backwards compatibility-
oriented scenario.

• An equivalent minimum WMSE (minWMSE) problem is proposed to solve the maxWSR
problem thanks to the use of the complex-valued channel model, and closed-form expres-
sions for mixed transceiver design are derived.

• An iterative algorithm with alternate optimization between (widely) linear transmit filters
(WLP-LP), widely linear receive filters (WLE), and weighting matrices is presented. Con-
vergence of the algorithm to a stationary point of the maxWSR problem is demonstrated.
Decentralized implementations are described.

We show through simulations that the sum-rate is enhanced with the proposed transceiver
design (that includes transmit coordination and IGS) as compared to interference coordination
procedures with PGS. In this regard, simulation results allow identifying the scenarios where
the gains are largest.
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5.3 System Model

Consider a MIMO IC composed of a set of K,{1, . . . ,K} transmitter-receiver pairs, where each
k-th transmitter is equipped with Mk antennas and each k-th receiver has Nk receive antenna
elements (k=1, . . . ,K). On a given time/frequency resource, each k-th transmitter serves its
associated k-th receiver and, therefore, interference is generated among non-associated terminals,
as shown in Fig. 5.1. Assume an heterogeneous scenario of linear and widely linear transmitters
(for example, in Fig. 5.1 TX2 is restricted to use LP while TX1 and TXK can adopt WLP).
Define the set of WLP transmitters as SWLP and the set of LP transmitters as SLP, such that
SWLP∩SLP=∅ and SWLP∪SLP=K.

Without loss of generality, we assume that each k-th transmitter intends to send a proper
Gaussian information-bearing signal with unitary power towards its intended k-th receiver, i.e.
bk∈Cmk×1∼CN (0, I), where mk= min(Nk,Mk) denotes the maximum number of streams to-
wards the k-th receiver. Unlike conventional transmit linear processing where the transmitted
signal is assumed to be proper Gaussian distributed (i.e. xk∈CMk×1∼CN (0,Cxk), being Cxk

the covariance matrix of the transmitted signal), in this chapter the general IGS is used. Hence,
the second order statistics of the transmitted signal xk are not only given by the covariance
matrix Cxk but also by the pseudo-covariance matrix C̃xk [65].

Any improper Gaussian signal xk can be generated from a proper Gaussian information-
bearing signal bk by using WLP (see [69, Sect. II.C]). We assume that legacy transmitters
(i.e. k∈SLP) will use the conventional LP scheme. Therefore, the transmitted signal at the k-th
transmitter is given by:

xk =

{
T1,kbk + T2,kb

∗
k if k ∈ SWLP

T1,kbk if k ∈ SLP , (5.1)

where matrices T1,k and T2,k∈CMk×mk are the transmit linear precoders for the information-
bearing signal bk and its complex conjugate b∗k, respectively. This way, the covariance matrix
Cxk and the pseudo-covariance matrix C̃xk of the transmitted signal xk in (5.1) result [65]:

Cxk = E[xkx
H
k ] = T1,kT

H
1,k + T2,kT

H
2,k, (5.2)

C̃xk = E[xkx
T
k ] = T1,kT

T
2,k + T2,kT

T
1,k. (5.3)

The conventional LP scheme is a special case of WLP in which T2,k=0 in (5.1), such that xk is
a proper Gaussian signal (i.e. C̃xk=0 in (5.3)). The power radiated by the k-th transmitter is
given by Tr(Cxk)= Tr(T1,kT

H
1,k+T2,kT

H
2,k).

Assuming narrow-band transmissions, the equivalent baseband signal observed at the k-th
receiver is expressed as:

yk = Hk,kxk + nk = Hk,kxk +
∑

j∈K,j 6=k
Hj,kxj + vk, (5.4)

where Hj,k∈CNk×Mj denotes the MIMO channel matrix between the j-th transmitter and
the k-th receiver (containing the complex-valued channel gains of the different antenna-pairs)
and nk∈CNk×1 refers to the received interference-plus-noise at the k-th receiver. nk is com-
posed by an interference component plus circularly symmetric complex (i.e. proper) Gaussian
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noise with distribution vk∼CN (0, σkI). Hence, under the independence assumption of vk and
{bk}={b1, . . . ,bK}, the covariance matrix Cyk and the pseudo-covariance matrix C̃yk of the
received signal yk in (5.4) are:

Cyk = E[yky
H
k ] = Hk,kCxkH

H
k,k + Cnk , Cnk =

∑
j∈K,j 6=k

Hj,kCxjH
H
j,k + σkI, (5.5)

C̃yk = E[yky
T
k ] = Hk,kC̃xkH

T
k,k + C̃nk , C̃nk =

∑
j∈K,j 6=k

Hj,kC̃xjH
T
j,k, (5.6)

where Cnk and C̃nk denote the covariance matrix and the pseudo-covariance matrix of the
received interference-plus-noise signal nk in (5.4), respectively.

In order to access the information contained in the received signal yk in (5.4), WLE should
be applied at the receiver [65]. Therefore, the information-bearing signal bk is estimated at the
receiver side according to:

b̂k = RH
1,kyk + RH

2,ky
∗
k, (5.7)

where R1,k and R2,k∈CNk×mk are the linear receive filters.

The MSE for the symbols transmitted towards the k-th receiver can be expressed through the
so-called MSE-matrix Ek=E[(bk−b̂k)(bk−b̂k)

H ]. As the different information-bearing signals
{bk} correspond to independent and proper Gaussian random vectors (and hence uncorrelated),
the MSE-matrix can be developed in terms of the transmit and receive filters in (5.1) and (5.7)
as:

Ek = I−RH
1,kHk,kT1,k−TH

1,kH
H
k,kR1,k−RH

2,kH
∗
k,kT

∗
2,k−TT

2,kH
T
k,kR2,k+RH

1,kCykR1,k

+RH
2,kC

∗
yk

R2,k+RH
1,kC̃ykR2,k+RH

2,kC̃
∗
yk

R1,k . (5.8)

Further, an additional matrix is of relevance when working with WLE receivers, which we
call the pseudo-MSE-matrix. The pseudo-MSE-matrix is defined as Ẽk=E[(bk−b̂k)(bk−b̂k)

T ].
Similarly as for the MSE-matrix in (5.8), we can develop Ẽk as a function of the transmit and
receive filters in (5.1) and (5.7):

Ẽk = −RH
1,kHk,kT2,k−TH

1,kH
H
k,kR

∗
2,k−RH

2,kH
∗
k,kT

∗
1,k−TT

2,kH
T
k,kR

∗
1,k+RH

1,kC̃ykR
∗
1,k

+RH
2,kC̃

∗
yk

R∗2,k+RH
1,kCykR

∗
2,k+RH

2,kC
H
yk

R∗1,k . (5.9)

Fixed all the transmit filters, {T1,k,T2,k}, the optimal widely linear receive filters for the k-
th receiver are well known in the literature. They are obtained from the minimization of the
MSE [65], i.e. Tr(Ek), and are given by:

R1,k =
(
Cyk−C̃ykC

−∗
yk

C̃
∗
yk

)−1
(Hk,kT1,k−C̃ykC

−∗
yk

H∗k,kT
∗
2,k), (5.10)

R2,k =
(
Cyk−C̃ykC

−∗
yk

C̃
∗
yk

)−1
(H∗k,kT

∗
2,k−C̃

∗
yk

C−1
yk

Hk,kT1,k). (5.11)

Under the assumption that interference is treated as Gaussian noise, the achievable rate for
the k-th receiver is given by [69]:

Rk = log2

∣∣Cyk

∣∣
|Cnk |

+1
2 log2

∣∣∣I−C−1
yk

C̃ykC
−T
yk

C̃
H
yk

∣∣∣− 1
2 log2

∣∣∣I−C−1
nk

C̃nkC
−T
nk

C̃
H
nk

∣∣∣ . (5.12)
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Further, it is shown in Chapter 2 (see (2.13)) that the achievable rate Rk in (5.12) is related to
the MSE-matrix Ek in (5.8) and to the pseudo-MSE-matrix Ẽk in (5.9) through:

Rk = maximize
R1,k,R2,k

−1
2 log2 |EkF

∗
k| , (5.13)

where
Fk = Ek − ẼkE

−∗
k Ẽ

∗
k. (5.14)

The optimal receive filters R1,k, R2,k maximizing the expression in (5.13) are those in (5.10)-
(5.11), which can be demonstrated either by using the composite real formulation [65][C1] or by
plugging the optimal structures of R1,k, R1,k in (5.10)-(5.11) into Ek in (5.8) and Ẽk in (5.9).
Therefore, the receive filters in (5.10)-(5.11) preserve the achievable rate in (5.12).

5.4 Problem Formulation

When adopting a maximum WSR (maxWSR) criterion, the problem of interest is to find (widely)
linear transmit filters (or precoders) such that the WSR is maximized while the power budget of
each transmitter is respected. Hence, (widely) linear transmit filters {T1,k}, {T2,k} are obtained
as the solution to the following maxWSR problem:

(P5,1) : maximize
{T1,k},{T2,k}

∑
k∈K

µkRk (5.15)

subject to

{
Tr(T1,kT

H
1,k + T2,kT

H
2,k) ≤ Pmax

k ∀k
T2,k = 0 ∀k∈SLP

where µk is a weighting coefficient associated to the priority of the k-th receiver (thus controlling
the quality-of-service of each receiver), Rk is the achievable rate for the k-th receiver given in
(5.12), and Pmax

k is the maximum power available at the k-th transmitter. The design of the pa-
rameter µk is not addressed in the chapter, but in Section 5.7.4 we analyze an alternative design
that allows guaranteeing fairness in the system. The second constraint in (5.15) imposes T2,k=0
for those transmitters that are restricted to use LP (i.e. k∈SLP). Due to interference, maxWSR
problem (P5,1) in (5.15) is not convex w.r.t. {T1,k}, {T2,k} (either jointly or separately), so the
optimal solution cannot be guaranteed.

By using the relation among the achievable rate and the MSE-matrices in (5.13), the
maxWSR problem (P5,1) in (5.15) can be equivalently written as follows [127, Sect. II.B]:

(P5,2) : minimize
{T1,k},{T2,k}
{R1,k},{R2,k}

∑
k∈K

µk
2 log2

∣∣EkF
∗
k

∣∣ (5.16)

subject to

{
Tr(T1,kT

H
1,k + T2,kT

H
2,k) ≤ Pmax

k ∀k
T2,k = 0 ∀k∈SLP

But again, due to interference, the maxWSR problem (P5,2) in (5.16) is not convex w.r.t. {T1,k},
{T2,k}, {R1,k}, {R2,k}. The equivalence among the maxWSR problems (P5,1) in (5.15) and
(P5,2) in (5.16) is in the sense that the global optimal solution {T?

1,k,T
?
2,k} for the two problems

is identical. Further, if {T?
1,k,T

?
2,k,R

?
1,k,R

?
2,k} is a stationary point of (P5,2) then {T?

1,k,T
?
2,k}



134 Chapter 5. Transmit Coordination for Coexisting Signaling Schemes

is a stationary point of (P5,1) (and the converse) [127].

5.5 Equivalent WMSE Formulation

In this section we propose an equivalent minimum weighted mean square error (minWMSE)
problem that will allow tackling the maxWSR problem (P5,2) presented in (5.16) for the case of
improper Gaussian signaling with mixed transceivers.

Let us introduce auxiliary weighting matrices W1,k and W2,k for the k-th receiver, being
W1,k an hermitian positive semidefinite matrix and W2,k a symmetric matrix. Then, the fol-
lowing result establishes the equivalence between the maxWSR problem (P5,2) in (5.16) and the
minWMSE problem (P5,3) proposed in (5.17).

Theorem 5.1. The maxWSR problem (P5,2) in (5.16) is equivalent to the following minWMSE
problem (P5,3):

(P5,3) : minimize
{T1,k},{T2,k}
{R1,k},{R2,k}
{W1,k},{W2,k}

∑
k∈K

(
1
2 Tr

(
W1,kEk+W∗

1,kE
∗
k+W∗

2,kẼk+W2,kẼ
∗
k

)
−µk

2 log2

∣∣∣ ln(2)
µk

Wk

∣∣∣ )

(5.17)

subject to

{
Tr(T1,kT

H
1,k+T2,kT

H
2,k) ≤ Pmax

k ∀k
T2,k = 0 ∀k∈SLP

where Ek and Ẽk correspond to the MSE-matrix and the pseudo-MSE-matrix for the k-th receiver
detailed in (5.8) and (5.9), respectively, and Wk is a block matrix given by:

Wk =

[
W1,k W2,k

W∗
2,k W∗

1,k

]
, (5.18)

which is hermitian positive semidefinite by construction.

The equivalence among the maxWSR problem (P5,2) in (5.16) and the minWMSE problem
(P5,3) in (5.17) is in the sense that the global optimal solution {T?

1,k,T
?
2,k,R

?
1,k,R

?
2,k} for the

two problems is identical. Furthermore, if {T?
1,k,T

?
2,k,R

?
1,k,R

?
2,k,W

?
1,k,W

?
2,k} is a stationary

point of (P5,3) then {T?
1,k,T

?
2,k,R

?
1,k,R

?
2,k} is a stationary point of (P5,2) (and the converse), as

they satisfy the first-order optimality conditions of both problems.

Proof. See Appendix 5.A. �

The advantage of problem (P5,3) in (5.17) as compared to (P5,1) in (5.15) and (P5,2) in (5.16)
is that it is convex w.r.t. each set of variables separately (i.e. it is convex w.r.t. {T1,k} given
{T2,k}, {R1,k}, {R2,k}, {W1,k}, and {W2,k}, and so on). This property suggests that a block
coordinate descent (BCD) method [139] can be used to find a stationary point to (P5,3) in (5.17).

Let us emphasize that problem (P5,3) in (5.17) is also valid to cover the minimization of the
sum of MSE in the K-user MIMO IC if we set W2,k=0 and W1,k=I, ∀k, such that the objective
function in (5.17) simply results:

∑
k∈K Tr (Ek). In this case, the use of heterogeneous (linear

and widely linear) receivers could be included into the problem formulation, see [C5], as the use
of LE or WLE affects the MSE but might not impact on the maximum achievable rate.
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5.6 Centralized Coordinated Precoding

In this section we exploit the convex properties of the minWMSE problem (P5,3) in (5.17) so
as to find a stationary point solution. First, by checking the first-order optimality conditions of
(P5,3) in (5.17) and manipulating the obtained equalities, we derive analytical expressions for
each paired-set of variables (i.e. {R1,k,R2,k}, {W1,k,W2,k}, and {T1,k,T2,k}) assuming that
the remaining paired-sets are fixed. The results are given in the following propositions. Then,
in Section 5.6.1 we propose an algorithm based on the BCD method with alternate optimization
among the paired-sets of variables that is shown to reach a stationary point to (P5,3) in (5.17).

The optimal widely linear receive filters {R1,k,R2,k} to the maxWSR problem (P5,2) in (5.16)
for given transmit filters {T1,k,T2,k} are those in (5.10)-(5.11), as the objective function can be
uncoupled for each receiver when considering the variables {R1,k,R2,k} and the receive filters in
(5.10)-(5.11) are known to preserve the achievable rate (see (5.13)). Accordingly, {R1,k,R2,k}
in (5.10)-(5.11) are the optimal widely linear receive filters to the minWMSE problem (P5,3) in
(5.17) for given transmit filters {T1,k,T2,k} and weighting matrices {W1,k,W2,k}.

The result for the optimal weighting matrices {W1,k,W2,k} when {T1,k,T2,k} and {R1,k,R2,k}
are fixed is detailed in the following corollary (as they were already derived within the proof of
Theorem 5.1). See derivation in Appendix 5.A.

Corollary 5.1. For given transmit filters {T1,k,T2,k} and receive filters {R1,k,R2,k}, the opti-
mal weighting matrices {W1,k,W2,k} to the minWMSE problem (P5,3) in (5.17) are:

W1,k = µk
ln(2)F

−1
k , (5.19)

W2,k = − µk
ln(2)E

−1
k ẼkF

−∗
k , (5.20)

where Fk is the one defined in (5.14).

In order to compact the (widely) linear transmit filter design, let us define the following
matrices:

Ak = HH
k,k(R1,kW1,kR

H
1,k+R∗2,kW

∗
1,kR

T
2,k)Hk,k+Υk, (5.21)

Υk =
∑

j∈K,j 6=k
HH
k,j(R1,jW1,jR

H
1,j+R∗2,jW

∗
1,jR

T
2,j)Hk,j , (5.22)

Bk = HH
k,k(R1,kW1,kR

H
2,k+R∗2,kW

∗
1,kR

T
1,k)H

∗
k,k+Γk, (5.23)

Γk =
∑

j∈K,j 6=k
HH
k,j(R1,jW1,jR

H
2,j+R∗2,jW

∗
1,jR

T
1,j)H

∗
k,j , (5.24)

Ck = HH
k,k(R1,kW2,kR

T
2,k+R∗2,kW

∗
2,kR

H
1,k)Hk,k+Φk, (5.25)

Φk =
∑

j∈K,j 6=k
HH
k,j(R1,jW2,jR

T
2,j+R∗2,jW

∗
2,jR

H
1,j)Hk,j , (5.26)

Dk = HH
k,k(R1,kW2,kR

T
1,k+R∗2,kW

∗
2,kR

H
2,k)H

∗
k,k+Ψk, (5.27)

Ψk =
∑

j∈K,j 6=k
HH
k,j(R1,jW2,jR

T
1,j+R∗2,jW

∗
2,jR

H
2,j)H

∗
k,j . (5.28)

The optimal (widely) linear transmit filters {T1,k,T2,k} for fixed {R1,k,R2,k} and fixed
{W1,k,W2,k} are detailed in the following proposition.
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Proposition 5.1. For given receive filters {R1,k,R2,k} and weighting matrices {W1,k,W2,k},
the optimal transmit filters {T1,k,T2,k} to the minWMSE problem (P5,3) in (5.17) are given by:

T1,k=

 G−1
k

(
HH
k,kR1,kW1,k+HH

k,kR
∗
2,kW

∗
2,k−Jk(H

T
k,kR2,kW1,k+HT

k,kR
∗
1,kW

∗
2,k)
)
∀k∈SWLP

(Ak+Ck+λkI)−1
(
HH
k,kR1,kW1,k+HH

k,kR
∗
2,kW

∗
2,k

)
∀k∈SLP

,

(5.29)

T2,k=

{
G−1
k

(
HH
k,kR

∗
2,kW

∗
1,k+HH

k,kR1,kW2,k−Jk(H
T
k,kR

∗
1,kW

∗
1,k+HT

k,kR2,kW2,k)
)
∀k∈SWLP

0 ∀k∈SLP
,

(5.30)
where

Gk = Ak+Ck+λkI− (Bk+Dk)(Ak+Ck+λkI)−∗(B∗k+D∗k), (5.31)

Jk = (Bk+Dk)(Ak+Ck+λkI)−∗, (5.32)

and λk is a non-negative dual variable associated to the k-th transmit power constraint in (5.17).
Since (Ak+Ck+λkI) is a full rank matrix, it can be proven by means of the Schur complement
property [92] that the inverse of Gk in (5.31) exists.

Proof. See Appendix 5.B. �

5.6.1 Algorithm

In order to solve (P5,3) in (5.17) we use the BCD method [139] with alternate optimization among
the three different paired-sets of variables (i.e. {R1,k,R2,k}, {W1,k,W2,k}, and {T1,k,T2,k}).
The alternate optimization is detailed in Algorithm 5.1. By departing from an initialization of
the (widely) linear transmit filters that satisfies the per-transmitter power constraints in (5.17),
then we alternatively update: i) receive filters {R1,k,R2,k} using (5.10)-(5.11), ii) weighting
matrices {W1,k,W2,k} using (5.19)-(5.20), and iii) transmit filters {T1,k,T2,k} using (5.29)-
(5.30). The procedure is iterated until a stop condition (e.g. convergence is achieved, tolerance
criterion is met, or maximum number of iterations is reached).

Note that if all transmit filters were initialized with LP (i.e. T2,k=0, ∀k), then all receivers
would get R2,k=0 in (5.11) since T2,k=0 and C̃yk=0, ∀k, and the proposed iterative procedure
would get stuck to a LP-LE scheme (i.e. proper-based solution). A similar observation was found
in [109] with iterative algorithms for the MIMO BC: it was shown that a WLP initialization was
required to get an improper-based solution. In Algorithm 5.1, so as to avoid getting stuck to a
proper-based solution, it is required that at least one transmitter is initialized with WLP.

The procedure detailed in Algorithm 5.1 can be implemented either in a centralized or
decentralized manner. In the centralized implementation, a central processing node gathers all
the channel matrices in the system (i.e. Hj,k, ∀k,∀j) and then performs the iterative procedure
in Algorithm 5.1. After that, transmitters are informed of the transmit filters to be used and
each receiver updates its receive filters based on the received signal and an estimation of the
equivalent channel (as it is done in practical implementations [29, 141]). On the other hand,
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Algorithm 5.1 Mixed transceiver design to solve minWMSE problem (P5,3) in (5.17)

1: initialize: {T1,k,T2,k}, ∀k
2: repeat
3: Compute {R1,k,R2,k}, ∀k, in (5.10)-(5.11) given {T1,k,T2,k}.
4: Compute {W1,k,W2,k}, ∀k, in (5.19)-(5.20) given {T1,k,T2,k}, {R1,k,R2,k}.
5: Compute {T1,k,T2,k}, ∀k, in (5.29)-(5.30) given {R1,k,R2,k}, {W1,k,W2,k} (update λk through

the bisection method [92] such that Tr(T1,kTH
1,k+T2,kTH

2,k) ≤ Pmax
k )

6: until stop condition

in the decentralized implementation, the alternate optimization in Algorithm 5.1 is combined
among transmitters and receivers: receivers perform lines 3 and 4 (i.e. update of receive filters
and weighting matrices), while transmitters execute line 5 (i.e. update of transmit filters).
To carry out such updates it is required that each k-th transmitter has available the channel
matrices towards all receivers in the network (i.e. Hk,j ,∀j). Further, it is also required that each
receiver has an additional link to feedback the updated receive filters and weighting matrices
to all transmitters in the network at each iteration (similar as in the linear transceiver case
in [127]). In order to avoid such large requirements for channel knowledge and feedback links,
in Section 5.6.4 we describe how the minWMSE problem (P5,3) in (5.17) could be decomposed
to obtain alternative decentralized procedures.

If Algorithm 5.1 is implemented in a central processing node, then LP transmitters do not
need to be aware that IGS is being used in the network. However, for decentralized implemen-
tations it is required that LP transmitters know that WLE is being applied at receivers.

5.6.2 Convergence

The minWMSE problem (P5,3) in (5.17) is convex w.r.t. each set of variables separately and
closed-form expressions have been derived. This ensures that if we update the sets of variables
one-by-one then a monotonic reduction of the objective function of (P5,3) is obtained. Further,
by checking the first-order optimality conditions we have arrived to a unique optimal solution
for each paired-set of variables given the other two paired-sets of variables (e.g. {T1,k,T2,k}
given {R1,k,R2,k} and {W1,k,W2,k}). This way, the two sets on each paired-set can be up-
dated simultaneously while maintaining the monotonic reduction properties of the BCD method
applied over the minWMSE problem (P5,3). Accordingly, with the alternating minimization
process in Algorithm 5.1, the objective function of (P5,3) in (5.17) decreases monotonically at
each iteration.

Theorem 5.2. Algorithm 5.1 converges to a stationary point of problem (P5,1) in (5.15).

Proof. Due to the equivalent relationships among the maxWSR problems (P5,1) in (5.15) and
(P5,2) in (5.16), and among the maxWSR problem (P5,2) in (5.16) and the minWMSE problem
(P5,3) in (5.17), it is sufficient to show that Algorithm 5.1 converges to a stationary point of
(P5,3). When we fix two of the paired-sets of variables (e.g. {R1,k,R2,k} and {W1,k,W2,k}), a
unique optimal solution is obtained for the remaining paired-set of variables (e.g. {T1,k,T2,k}).
Accordingly, the alternate optimization in Algorithm 5.1 ensures a monotonic reduction of the
objective function of (P5,3) at each iteration and, as the objective function is bounded by the
optimal value, convergence in terms of the objective function is achieved. Furthermore, since
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problem (P5,3) has a differentiable objective function, the constraint set is separable among the
paired-sets of variables, and the problem has a unique minimum point along any coordinate
direction, then it follows from general optimization theory (see [146, Sect. 8.9]) that Algorithm
5.1 (that is based on the BCD method) converges to a stationary point of (P5,3). Finally, due
to Theorem 5.1, the obtained solution is also a stationary point of the maxWSR problem (P5,2)
in (5.16) (and, equivalently, of problem (P5,1) in (5.15)). �

5.6.3 Complexity of centralized implementation

The complexity of the proposed Algorithm 5.1 is related to the number of iterations. Simula-
tions show that around 15-20 iterations are enough to reach a stationary point of the maxWSR
problem. However, the larger improvement is obtained in the first iterations (see Section 5.7.1).
For decentralized implementations, the number of iterations is relevant and should be limited.
In this case, Theorem 5.2 demonstrates that at each iteration the objective function of (P5,3)
in (5.17) is monotonically reduced, which in the general case leads to an improvement of the
objective function of (P5,3) in (5.15) (although a monotonic WSR improvement cannot be guar-
anteed). It is important to recall that the proposed Algorithm 5.1 already outperforms the
conventional coordinated linear transceiver schemes with a low number of iterations (e.g. 5, see
Section 5.7.1).

At each iteration of Algorithm 5.1, three different updates are performed (i.e. one update
for each paired-set of variables). For simplicity of the complexity analysis, let K be the total
number of transmit-receive pairs, let M , N denote the number of antennas at each transmitter
and receiver, respectively, and let m be the number of streams per receiver. We assume that all
transceivers are widely linear to compute an upper bound of the total complexity. For matrices
X∈Ca×b, Y∈Cb×c, Z∈Cd×d, the complexity of the product XY is O(abc), the complexity of the
sum X+X is O(ab), and the complexity of the inverse Z−1 is O(d3) [87]. Then, the complexity
at each step in one iteration of Algorithm 5.1 is:

• updating all receive filters (line 3): O(K2MNm+K2N2m+KN3),

• updating all weighting matrices (line 4): O(KN2m+Km2N+Km3),

• updating all transmit filters (line 5): O(K2MNm+K2M2m+K2Mm2+KM3).

If we use the upper bound m<M , the total complexity per iteration of the proposed Algorithm
5.1 is upper bounded by: O(K2M3+K2M2N+K2N2M+KN3). The order of complexity is the
same as the one associated to the algorithm proposed in [127] for the linear transceiver case.

5.6.4 Decentralized formulation

By taking into account the decompositions of matrices Ak in (5.21), Bk in (5.23), Ck in (5.25),
and Dk in (5.27), decentralized approaches could be derived if each k-th transmitter had knowl-
edge of Υk in (5.22), Γk in (5.24), Φk in (5.26), and Ψk in (5.28), Cnk in (5.5), and C̃nk in
(5.6). Υk, Γk, Φk, and Ψk are the terms that require knowledge of information not available
either at the k-th transmitter or at the k-th receiver, while Cnk and C̃nk could be reported by
the intended k-th receiver.
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Proposition 5.2. The minWMSE problem (P5,3) in (5.17) can be decomposed into K parallel
optimization problems (one per transmitter). The problem to be solved at the k-th transmitter
for a fixed Υk, Γk, Φk, Ψk, Cnk , and C̃nk , is:

(Pk5,4) : minimize
T1,k,T2,k,R1,k,R2,k,

W1,k,W2,k

fk+gk (5.33)

subject to

{
Tr(T1,kT

H
1,k+T2,kT

H
2,k) ≤ Pmax

k

T2,k = 0 ∀k∈SLP

where fk accounts for the impact over the intended receiver:

fk = 1
2 Tr

(
W1,kEk+W∗

1,kE
∗
k+W∗

2,kẼk+W2,kẼ
∗
k

)
−µk

2 log2

∣∣∣ ln(2)
µk

Wk

∣∣∣ , (5.34)

while gk reflects the impact over the unintended receivers:

gk = Tr
(
(Υk+Φk)(T1,kT

H
1,k+T2,kT

H
2,k)
)

+ Tr
(
(Γk+Ψk)(T

∗
2,kT

H
1,k+T1,kT

T
2,k)
)
. (5.35)

Proof. The first-order optimality conditions of the minWMSE problem (P5,3) in (5.17) and the
decomposed problem (Pk5,4) in (5.33) are the same for a fixed Υk, Γk, Φk, Ψk, Cnk , and C̃nk .
See the conditions in Appendices 5.A and 5.B. �

Problem (Pk5,4) in (5.33) is convex w.r.t. each variable separately and it leads to solutions
in (5.10)-(5.11), (5.19)-(5.20), and (5.29)-(5.30). Then, each k-th transmitter can solve problem
(Pk5,4) in (5.33) with alternate optimization between receive filters R1,k, R2,k, weighting matrices
W1,k, W2,k, and transmit filters T1,k, T2,k.

A possible mechanism to obtain the matrices Υk, Φk, Γk, and Ψk (also called the interference-
cost and pseudo-interference cost matrices [C5]) is by exchanging control-plane messages among
transmitters, as Υk, Φk, Γk, and Ψk can be seen as the sum of information from neighboring
transmitters. See details for the linear transceiver case in Chapter 3. However, such approach
requires knowledge of all the interfering channel matrices to compute Υk, Φk, Γk, and Ψk.

An alternative procedure to obtain matrices Υk, Φk, Γk, and Ψk is by exploiting UL-DL
propagation channel reciprocity, as is done in the proper signaling-based procedure in Chapter 3.
In that case, if we focus on DL interference coordination, matrices Υk, Γk, Φk, and Ψk, could be
obtained from a UL pilot-based transmission provided that receivers use a specific pilot precoder
for UL transmission that should be a function of the DL receive filters. By doing so, estimation of
the interfering channels is not required and information exchange among transmitters is avoided.
We omit the signal model here. See more details for the linear transceiver case in Chapter 3
([J2][C2]), and for the widely linear transceiver case with minimum MSE criterion in [C5].

5.6.5 Multi-user MIMO extension

The minWMSE problem (P5,3) in (5.17) (as well as its decomposed problem (Pk5,4) in (5.33)) can
easily be extended to the case in which each transmitter serves multiple receivers simultaneously
on the same time/frequency resource (multi-cell multi-user MIMO system). In this case, the
power constraint associated to each transmitter couples the design of the (widely) linear transmit
filters to be used to serve the associated receivers, but the solution can be derived by following
the approach in Section 5.5. See extension in Chapter 3 ([J2]) for the linear transceiver case.
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5.7 Simulation Results

In this section we evaluate through Montecarlo simulations the performance of the proposed
Algorithm 5.1 in Section 5.5. The procedure is compared to the one in [127] that uses lin-
ear transceivers and proper Gaussian signaling (i.e. LP-LE). A MIMO IC composed of |K|
transmitter-receiver pairs is considered. Channels are modeled through a Rayleigh distribu-
tion: Hk,k∼CN (0, I), ∀k, Hk,j∼CN (0, ηI), ∀j 6=k, where factor η≥0 models the relative average
interference strength. The noise is assumed to be white proper Gaussian, i.e. vk∼CN (0, σ2I),
∀k. All transmitters are assumed to have the same available power Pk=P , ∀k, such that the
signal-to-noise ratio is defined by SNR=P/σ2. All transmitters (or receivers) are assumed to
have the same number of antennas, which is denoted by M (or N). Antenna configurations are
depicted in figures as M×N . 500 channel realizations are averaged.

The following techniques are evaluated:

• LP-LE: interference coordination technique in [127] with linear transceivers (LP-LE).

• LP-LE IW: iterative water-filling (IW) algorithm [144] with linear transceivers (LP-LE).
It is equivalent to iteratively solve (Pk5,4) in (5.33) at each k-th transmitter with gk=0 (i.e.
no coordination) and LP-LE.

• WLP-WLE: interference coordination technique proposed in [127] but using the com-
posite real formulation (i.e. the equivalent double-sized real-valued MIMO IC) such that
widely linear transceivers are obtained (WLP-WLE)20. The proposed scheme in this chap-
ter would provide the same solution.

• WLP-WLE IW: IW algorithm with widely linear transceivers (WLP-WLE). It is equiv-
alent to iteratively solve (Pk5,4) in (5.33) at each k-th transmitter with gk=0 (i.e. no
coordination) and WLP-WLE.

• HetTX(l)-WLE: interference coordination technique proposed in this chapter for a sce-
nario of heterogeneous transmitters, whereby blc transmitters employ LP while the remain-
ing (|K|−blc) transmitters can adopt WLP. l=1 and l=|K|/2 are used for simulations.

The number of iterations of all algorithms is set to 50, and the best result among 3 random
transmit initializations is used. For the improper-based optimizations, a WLP initialization is
required at least in some transmitters (i.e. random {T1,k,T2,k} such that the power budget at
each k-th transmitter is respected), otherwise the proposed procedure would lead to a proper
Gaussian signaling solution (see discussion about initialization in Section 5.6.1).

The performance indicator is the sum of achievable rates measured in bits/s/Hz. µk=1 is
used in (5.15), ∀k, except for Section 5.7.4.

In Section 5.7.1 we show the convergence of Algorithm 5.1. The sum-rate performance
is evaluated in Section 5.7.2 for different antenna configurations when varying the number of
transmitter-receiver pairs (|K|) and the interference strength (η). In Section 5.7.3, the proposed
technique is compared with interference alignment schemes at different SNR regimes. Finally,
in Section 5.7.4, a slightly modified version of Algorithm 5.1 is presented to guarantee fairness
in the system and the performance is shown both in terms of sum-rate and 5%-tile rate.

20Recall that any approach (as the coordinated technique proposed in [127]) can be adopted to get WLP-WLE
solutions by using the equivalent double-sized real-valued MIMO IC provided that there are no constraints on the
linear and widely linear operation of the transceivers in the network.
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Figure 5.2: Sum-rate (in bits/s/Hz) vs. iteration number in a random channel realization of the K-user MIMO IC.
|K|=5, SNR=10 dB, η=1. Antenna configuration: 2×2 and 1×1.

5.7.1 Convergence

In this section we verify the convergence of the proposed Algorithm 5.1 for mixed transceiver
design. The performance is compared to the one obtained for the linear transceiver case (i.e.
LP-LE) in [127].

Fig. 5.2 shows the sum-rate versus the iteration number for a specific channel realization
with antenna configurations 2×2 and 1×1, |K|=5, SNR=10 dB, and η=1. Convergence in terms
of sum-rate is observed. Further, monotonic convergence is obtained in this channel realization.
Note that monotonic convergence is guaranteed in terms of the objective function of problem
(P5,3) in (5.17) but not necessarily in terms of sum-rate, although this is also often the case. The
convergence speed is a bit slower for ’WLP-WLE’ and ’HetTX-WLE’ as compared to ’LP-LE’,
although it varies depending on the individual channel realizations.

5.7.2 Impact of antenna configuration and interference strength

In this section we evaluate the performance of the proposed Algorithm 5.1 for different antenna
configurations (M×N), different |K| values, and different η values. SNR=10 dB is used.

Fig. 5.3 displays the sum-rate versus |K| for SNR=10 dB, η=1, and different antenna config-
urations: (a) for 1×1, (b) for 2×2, and (c) for 4×4. As it is expected, the sum-rate is increased
as |K| increases when transmit coordination is implemented. However, for the cases in which
transmit coordination is not used (i.e. IW solutions) the tendency is on the contrary because
all transmitters use the maximum transmit power, such that increasing |K| implies a signifi-
cant increase of the interference in the network and, consequently, a degradation of the system
performance.

Figure 5.4 depicts the sum-rate versus η for |K|=5, SNR=10 dB, and different antenna
configurations: (a) for 1×1 and (b) for 2×2.
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Figure 5.3: Sum-rate (in bits/s/Hz) vs. |K| for the K-user MIMO IC. SNR=10 dB, η=1.
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Figure 5.4: Sum-rate (in bits/s/Hz) vs. η (interference strength) for the K-user MIMO IC. |K|=5, SNR=10 dB.
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From Fig. 5.3 and Fig. 5.4 several conclusions can be extracted:

• Proper (LP-LE) vs. improper (WLP-WLE): In all cases it can be observed that ’WLP-
WLE IW’ outperforms ’LP-LE IW’. Also ’WLP-WLE’ and ’HetTX-WLE’ outperform ’LP-
LE’, as the proper-based optimization is a special case of the improper-based optimization
(but not the other way round).

• IW vs. interference coordination: The sum-rate gain obtained with interference coordi-
nation techniques is significant for all antenna configurations, all numbers of interfering
transmitters, and all interference levels.

• Number of transmitter-receiver pairs (|K|): The sum-rate increment provided by the use of
improper Gaussian signaling is larger as |K| increases due to the fact that the interference
to be managed is stronger, see Fig. 5.3. The |K| value for which the gains start to appear
depends on the antenna configuration, as detailed in next bullet.

• Antenna configuration (M×N): The sum-rate gain obtained with the use of improper
Gaussian signaling is larger for the 1×1 and 2×2 cases rather than for the 4×4 case, because
the use of improper Gaussian signaling provides flexibility by splitting one dimension into
two halves. This is more useful when the number of transmit/receive antennas is low
compared to the number of users. Otherwise, by adding antennas, extra dimensions are
already added to the system. For that reason, the gains of interference coordination and
improper Gaussian signaling are appreciable for |K|≥4 in the 2×2 case and for |K|≥8 in
the 4×4 case, while in the 1×1 case they are substantial for |K|≥2 (i.e. even for a scenario
with a single interferer), see Fig. 5.3.

• Interference strength (η): The sum-rate gain provided by improper Gaussian signaling is
larger as the interference level increases (i.e. for larger η), see Fig. 5.4.

• Heterogeneous scenarios: The sum-rate gains of improper Gaussian signaling in heteroge-
neous scenarios are not proportional to the number of widely linear transmitters in the
network. The largest gains are obtained when most of the transmitters are widely linear
(i.e. lower l in ’HetTX(l)-WLE’).

5.7.3 Performance versus SNR and comparison with IA

In this section we evaluate the performance of the proposed Algorithm 5.1 at different SNR
regimes. We compare the proposed technique with two algorithms based on interference align-
ment (IA) that are presented in [43]:

• IA: distributed iterative IA algorithm in [43].

• Max SINR: distributed Max-SINR algorithm in [43].

These two algorithms are optimal in terms of DoF (i.e. slope of the sum-rate at the high SNR
regime) for the MIMO IC with |K|=3 users and 2×2 antenna configuration, but not for other
configurations.

Figure 5.5 shows the sum-rate versus SNR for η=1, 2×2 antenna configuration, and different
|K| setups: (a) |K|=3 and (b) |K|=5. For |K|=3 and M=N=2, ’IA’ and ’Max SINR’ algorithms
attain the optimal DoF (i.e. 3 DoF), as shown in Fig. 5.5.(a). In contrast, the proposed scheme
attains only 2 DoF but it is able to provide significant sum-rate values at low-medium SNR
regimes. For |K|=5 and M=N=2, ’Max SINR’ and ’IA’ algorithms tend to become saturated
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Figure 5.5: Sum-rate (in bits/s/Hz) vs. SNR (in dB) for the K-user MIMO IC. η=1, 2×2.

in terms of sum-rate (thus 0 DoF), see Fig. 5.5.(b), while the proposed technique is able to get
2.2 DoF.

Many of the existing schemes for IA with improper Gaussian signaling are only valid for
specific antenna configurations and number of users. On the contrary, the proposed scheme can
be applied in all possible antenna/users configurations and still get some positive DoF.

For |K|=5, we can conclude that the gains of IGS are appreciable for all SNR regimes. |K|=3
has been used for comparison with the IA algorithms, but it was already shown in Fig. 5.3.(b)
that in the 2×2 case we should use |K|≥4 to get appreciable gains with IGS over ’LP-LE’.

5.7.4 Performance with fairness utility

In this section we evaluate the performance of a slightly modified version of the proposed Algo-
rithm 5.1. In [127] it is shown that general utility functions can be accommodated in the WMSE
problem formulation and only the design of the weighting matrices turns out to be affected. For
example, in the linear transceiver design case, if a proportional fair utility function is adopted
then the weighting matrices should be updated as: W1,k=

1
Rk ln(2)E

−1
k (see [127]). Similarly,

in order to guarantee fairness in the system with mixed transceivers, we update the weighting
matrices in Algorithm 5.1 as:

W1,k = 1
Rk ln(2)F

−1
k , W2,k = − 1

Rk ln(2)E
−1
k ẼkF

−∗
k , (5.36)

being Rk the achievable rate obtained in the previous iteration.

Figure 5.6 shows the performance in terms of sum-rate and 5%-tile rate versus |K| for
SNR=10 dB, η=1, and antenna configuration 2×2. It can be observed that ’WLP-WLE’ and
’HetTX-WLE’ techniques allow increasing the system fairness (as shown in terms of the 5%-tile
rate in Fig. 5.6.(b)) while large gains in terms of sum-rate are still obtained (see Fig. 5.6.(a)).



5.8. Conclusions 145

2 4 6 8 10 12
0

2

4

6

8

10

12

14

16

18

20

number of transmit−receive pairs (K)

su
m

−
ra

te
 [b

its
/s

/H
z]

 

 
LP−LE
LP−LE IW
WLP−WLE
WLP−WLE IW
HetTX(1)−WLE
HetTX(K/2)−WLE

(a) sum-rate

2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

3.5

number of transmit−receive pairs (K)

5%
−

til
e 

ra
te

 [b
its

/s
/H

z]

 

 
LP−LE
LP−LE IW
WLP−WLE
WLP−WLE IW
HetTX(1)−WLE
HetTX(K/2)−WLE

(b) 5%-tile rate

Figure 5.6: Performance vs. |K| for the K-user MIMO IC. SNR=10 dB, η=1, 2×2. Fairness utility.

5.8 Conclusions

In this chapter, transceiver design with improper Gaussian signaling for weighted sum-rate
maximization in the K-user MIMO interference channel has been investigated. Maximization
of the WSR is formulated using the complex-valued channel model, which allows covering a
scenario where different types of transmitters (linear and widely linear) coexist. The initial
maximum WSR problem is solved through the minimization of an equivalent WMSE problem
and closed-form expressions for mixed transceiver design are derived. In this regard, an iterative
algorithm is presented which allows reaching a stationary point of the maximum WSR problem.

The proposed transceiver design (including transmit coordination and the use of improper
Gaussian signaling) provides gains in terms of sum-rate as compared to conventional transmit
coordination techniques with proper Gaussian signaling. The largest gains are observed in the
following non-exclusive situations:

• when the level of interference is high (either due to a small number of strong interferers
or owing to multiple interfering nodes), or

• when the number of transmit/receive antennas is low.

If the interference level is not significant or new dimensions are provided by adding multiple
antennas at transmitters and receivers, the proposed coordinated transceiver scheme leads to a
proper Gaussian signaling solution (i.e. solution in Chapter 3).





Appendices

5.A Proof of Theorem 5.1

The equivalence of the minWMSE problem (P5,3) in (5.17) and the maxWSR problem (P5,2) in
(5.16) is shown in the following by deriving the optimal weighting matrices {W1,k}, {W2,k}, for
(P5,3), plugging them into the objective function of (P5,3), and then showing that the resulting
optimization problem is exactly (P5,2).

The Lagrangian function (L) [92] of the minWMSE problem (P5,3) in (5.17) is given by:
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where λk denotes the non-negative dual variable associated to the k-th transmit power constraint
in (5.17). Recall that the determinant of ln(2)

µk
Wk in (5.37) (through the use of the structure in
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The first-order optimality conditions for W1,k and W2,k lead to:
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By identifying the expression in (5.39) inside (5.40) we obtain: Ẽk=−W−1
1,kW2,kE

∗
k, such that:

W2,k=−W1,kẼkE
−∗
k . Then, by including this relation into (5.39) we get a closed-form expression

for W1,k as a function of {T1,k,T2,k}, {R1,k,R2,k}. Similarly, by including W1,k=−W2,kE
∗
kẼ
−1
k

into (5.39) we obtain a closed-form expression for W2,k as a function of {T1,k,T2,k}, {R1,k,R2,k}.
The optimal structures for W1,k and W2,k given all {T1,k,T2,k}, {R1,k,R2,k} are:
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Finally, by plugging the optimal W1,k and W2,k in (5.41), ∀k, into the minWMSE problem
(P5,3) in (5.17), and using the determinant relation in (5.38) and the matrix inversion lemma,
we have the following equivalent optimization problem:

(P5,5) : minimize
{T1,k,T2,k}
{R1,k,R2,k}
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which is equal to (P5,2) in (5.16) and completes the proof. This means that (P5,2) in (5.16)
and (P5,3) in (5.17) have the same global optimal solution {T?
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is a stationary point of (P5,2) as they satisfy the first-order optimality conditions of both prob-
lems. The converse also holds (i.e. if {T?
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To give more details about how we arrive at (5.42), let us show it for a specific receiver.
First, by using the matrix inversion lemma, it can be shown that when including the structures
of W1,k and W2,k in (5.41) into 1
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such that the expression in (5.42) is obtained.

5.B Proof of Proposition 5.1

The optimal transmit filters, when keeping the remaining sets of variables fixed, are obtained
by equaling the derivatives with respect to T∗1,k and T∗2,k of the Lagrangian function of the
minWMSE problem (P5,3) in (5.17) to zero. The Lagrangian function (L) is shown in (5.37).
The derivatives result:
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where Ak, Bk, Ck, and Dk, are defined in (5.21), (5.23), (5.25), and (5.27), respectively.
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This way, if we isolate T1,k from (5.44) and substitute it to (5.45), we get an expression for
T2,k only as a function of {R1,k,R2,k}, {W1,k,W2,k}. Similarly, if we isolate T2,k from (5.45)
and substitute it to (5.44), we obtain T1,k as a function of {R1,k,R2,k}, {W1,k,W2,k}. The
derived expressions for T1,k and T2,k are those shown in (5.29)-(5.30).

In case the k-th transmitter is constrained to use LP, the solution for the transmit filter T1,k

is directly obtained from (5.44): T1,k= (Ak+Ck+λkI)−1 (HH
k,kR1,kW1,k+HH

k,kR
∗
2,kW

∗
2,k

)
.





Chapter 6

Short-Term Traffic-Aware Resource
Management

This chapter investigates flexible duplex techniques for short-term traffic-aware interference man-
agement. We focus on 5G TDD dense networks, where new short-length single-direction frame
structures are envisioned. Thus, a single transmit direction (i.e. either downlink (DL) or uplink
(UL)) can be independently chosen at each cell in every frame. This provides high flexibility
to match the per-cell DL/UL traffic asymmetries and hence allows full exploitation of dynamic
TDD. As a downside, interference coordination becomes crucial. In this sense, this chapter pro-
poses a joint user scheduling, precoding design and transmit direction selection procedure for
dynamic TDD in dense MIMO smallcell networks (SCNs), where the transmit direction selected
per BS is dynamically optimized together with the user scheduling and transmit precoding. We
focus on the maximization of a general utility function that takes into account the DL/UL traffic
asymmetries of each user and the interference conditions in the network. Although the problem
is non-convex and involves non-continuous constraints due to the user scheduling and transmit
direction selection, the problem it is decomposed thanks to the interference-cost concept and
then efficiently solved in parallel through semi-closed form expressions for MIMO systems and
closed form expressions for SISO systems. Simulation results show significant gains in DL and
UL average rates for different traffic asymmetries and network densities as compared to existing
schemes for dynamic TDD thanks to the joint optimization of the transmit direction and the
conventional allocation policies.

The technical papers related to this topic are:

[J4] S. Lagen, A. Agustin, J. Vidal, ”Joint User Scheduling, Precoder Design and Transmit Direction
Selection in MIMO TDD Small Cell Networks”, under minor revision at IEEE Trans. on
Wireless Commun., Oct. 2016.

[C6] S. Lagen, A. Agustin, J. Vidal, ”Joint User Scheduling and Transmit Direction Selection in 5G
TDD Dense Small Cell Networks”, IEEE Int. Symp. on Personal, Indoor and Mobile Radio
Commun., Valencia (Spain), Sep. 2016.

This chapter contains results presented in [J4] that address the joint optimization of user schedul-
ing, precoding design and transmit direction selection for MIMO dense networks. [C6] shows the
potential benefits of a joint user scheduling and transmit direction selection, but particularized
for the SISO case.
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This chapter is structured as follows. Section 6.1 contains the state of the art for dynamic
TDD and presents the new short-length single-direction frame structures envisioned for 5G
systems. The main contributions of the chapter are included in Section 6.2. In Section 6.3
the system model is presented. The problem for joint user scheduling, precoding design and
transmit direction selection is formulated and decomposed through frames in Section 6.4. Then,
in Section 6.5 the per-frame problem is parallelized into multiple subproblems (one per BS), the
optimal solution for each subproblem is derived, and the global iterative algorithm is presented.
Section 6.6 shows the simulation results. Finally, conclusions are included in Section 6.7.

6.1 State of the Art

Dense MIMO SCNs are considered a key technology for 5G systems as a result of their cost-
effectiveness in boosting the area spectral efficiency of cellular networks through densification
of the network with SeNBs [6]. SeNBs transmit low power and provide short range coverage,
so the expected number of users served per SeNB is reduced. As a consequence, the amount
of DL and UL traffic per cell can vary over space and time more drastically in SCNs than in
conventional macrocell-based networks [25].

Differently from LTE FDD systems where the amount of band devoted for DL and UL
is fixed and equally divided, LTE TDD systems allow for asymmetric DL-UL allocations by
providing seven different semi-statically configured UL-DL configurations [61]. The predefined
UL-DL configurations differ in the switching points between a DL and an UL transmission
within an LTE frame (composed of 10 subframes), hence providing DL-UL allocation ratios that
vary from 4:6 to 9:1 (DL:UL). Usually, the UL-DL configuration is the same for all cells and is
determined at the network level based on long-term traffic statistics, which might not match the
instantaneous per-cell traffic asymmetries.

In this regard, the new emerging dynamic TDD technique [19,63] offers the possibility of a
dynamic UL-DL reconfiguration so as to adapt the DL-UL allocation ratio to the instantaneous
traffic asymmetry at each cell. This higher flexibility is specially suited for dense MIMO SCNs.
As a downside, it introduces new types of interference in the system (i.e. DL-to-UL and UL-
to-DL interference). So, under these conditions, interference management procedures are key
enablers for dynamic TDD.

One may find works in the literature on dynamic TDD, which mainly focus on optimizing
the UL-DL configuration ([25,147,148]) or the DL-to-UL switching point decision within an LTE
frame ([149–151]) per BS or per group of BSs, in many cases constrained to the frame patterns
predefined in LTE TDD [63]. These works can be classified according to where and how such
decision is taken. References like [25, 147, 148, 152] consider a centralized and coordinated (i.e.
cluster-specific) decision, where the deployed BSs are divided into isolated groups of BSs (or
clusters) and the same UL-DL configuration is used within the cluster. This way, DL-to-UL and
UL-to-DL interference are not created inside the cluster but the flexibility of adapting to the per-
BS traffic asymmetries is reduced. On the other hand, decentralized solutions are investigated
in [149–151]. In [149], the decision on the DL-to-UL switching point is performed at each BS
in coordination with the neighboring BSs thanks to the exchange of backhaul control plane
messages (i.e. prices) that take into account the traffic asymmetry of the serving users but also
how such decision affects to the users associated to neighboring BSs. In [150], the problem is
formulated as a non-cooperative game so as to minimize the overall UL and DL delay in each cell.
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Figure 6.1: Frame structure suggested for dynamic TDD in 5G.

In [151], decentralized and uncoordinated (i.e. BS-specific) solutions are evaluated, where each
BS performs its own decision based on the traffic asymmetry of the serving users. Results in [151]
show that BS-specific decisions are sufficient if interference mitigation techniques are used at
reception. A similar conclusion is obtained in [147] when interference management techniques
are used at transmission, showing that BS-specific decisions with CoMP-CS/CB achieve better
performance than cluster-specific decisions with CoMP-CS-CB.

All these previous works on dynamic TDD keep the order of the transmit directions fixed (i.e.
first DL and then UL) and optimize the DL-to-UL switching point or the UL-DL configuration.
On the contrary, [153] shows the positive benefits in terms of interference reduction of optimizing
also the order in which UL and DL transmissions are performed at each cell. They present a
frame structure composed of two consecutive time slots, whereby in the 1st slot the transmission
is carried out in one direction and the reverse direction is used for transmission in the 2nd slot
(e.g. UL in 1st slot and DL in 2nd slot, or the other way round). In this sense, the optimization of
the order of transmit directions is investigated in conjunction with the design of linear precoding
and equalization for MIMO systems. However, the main drawbacks of the proposed scheme are
that the frame structure is equally partitioned between DL and UL and that traffic asymmetries
among cells are not incorporated.

In this sense, new short-length single-direction frame structures are envisioned for 5G
systems to meet the strict latency requirement of 1ms delay, which cannot be met with the cur-
rent frame structure in LTE. Low round trip times are required by some envisioned applications
for 5G such as tactile Internet. Under the frame structure suggested in [154], which is also pro-
posed in [155], the data part on each frame is assigned to a single transmit direction and each cell
can determine if is used either for DL or for UL. Such new frame structure is very powerful for
scenarios where the traffic varies drastically (as SCNs) and, due to its single transmit direction
per frame, avoids interference variability within the frame. The key point is that, under these
new frame structures envisioned for 5G systems, full exploitation of dynamic TDD is possible
without resorting to one of the predefined UL-DL configurations in LTE TDD or focusing on
the DL-to-UL switching point decision. To that end, new interference management procedures
being able to determine the transmit direction in a per-frame basis are needed.

A promising solution in 5G systems to perform interference management in dense deploy-
ments is the centralized-based concept, where a network controller is responsible for some net-
work functions [83]. Then, centralized interference management techniques can be performed.
However, as the number of BSs increases so does the computation required for centralized inter-
ference management. Therefore, parallel interference management techniques are still preferred
to eliminate high computation loads in centralized architectures [84].
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6.2 Contribution

In this chapter we assume a short-length single-direction frame structure for TDD systems,
similar to the one proposed in [154,155] and as shown in Fig. 6.1, where each BS is associated to
a transmit direction (DL or UL) at every frame. In this context, we propose a dynamic procedure
for joint user scheduling, precoding design and transmit direction selection in interfering MIMO
multi-cell scenarios that works on a per-frame basis (see Fig. 6.2). A network controller is in
charge of performing the optimization procedure for a set of short-length frames during which
the channel conditions do not vary.

We face the maximization of a general utility function that takes into account the DL/UL
traffic asymmetries of each user and the interference conditions in the network. First, the initial
problem is easily decoupled through frames. Then, the per-frame problem is decomposed per
BS by using the interference cost concept and a direct solution is obtained: it is obtained in
semi-closed form for MIMO systems and in closed-form for SISO systems. Thus, the per-frame
problem can be efficiently solved in a parallel way at the network controller.

6.3 System Model

Consider a synchronized TDD SCN21 composed of a set of K,{1, . . . ,K} BSs equipped with
Mk antennas each. Every k-th BS (k∈K) has a set of Ik,{1, . . . , Ik} associated users with Nik

antennas each. Let ik denote the i-th user associated to the k-th BS (ik∈Ik). The total set of
users in the system is denoted by I=

⋃
k∈K Ik. Subindexes {ik, jl} and {k, l} are used through

the chapter to denote users and BSs, respectively. An example of the scenario is shown in Fig.
4.2 for |K|=3 BSs and |I|=5 users (|I1|=2, |I2|=2, |I3|=1).

The short-length frame structure in [154] is assumed. Control and data planes are separated
in time, as shown in Fig. 6.1. A short guard period (GP) is inserted between every (possible)
switch of the transmit direction. The data part is entirely devoted either for UL or for DL
transmission, and the transmit direction in the data part (i.e. DL or UL) can vary at every
frame and every BS. As a consequence, we have a totally dynamic TDD system, as illustrated
in Fig. 6.2. Through the chapter, let supraindex d denote the transmit direction selected at a
BS in a given frame: d=D refers to DL and d=U refers to UL transmission.

Assume that CSI of all users remain constant over a set of short-length frames S,{1, . . . , S}.
Let Hik,l∈C

Ml×Nik , Hl,ik∈C
Nik×Ml , Hik,jl∈C

Njl×Nik , and Hk,l∈CMl×Mk denote the channel ma-
trix (including pathloss and shadowing) between the ik-th user and the l-th BS, the l-th BS and
the ik-th user, the ik-th user and the jl-th user, and the k-th BS and the l-th BS, respectively.

Assume a centralized architecture, in which there is a network controller (see Fig. 6.2) that
has two main functions: a) gathers CSI of all users both in DL and UL transmit directions
(which are valid for the whole set of short-length frames S) and b) is in charge of performing
the dynamic resource management, which involves the joint optimization of the user scheduling,
precoding design and transmit direction selection per frame. So, the time scale is as follows: the
optimization is done at each frame, while acquisition of CSI is done every S frames.

It is considered that, at each s-th frame (s=1, . . . , S), at most one user is scheduled in one
transmit direction (either DL or UL) at every k-th BS, see Fig. 6.2.

21Synchronization in time domain among BSs and users is assumed for the considered multi-cell scenario.
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Figure 6.2: Dynamic TDD in SCNs. At each frame every BS schedules one user in one transmit direction (DL or UL). An
example of the user scheduling and transmit direction selection is shown for frame 1 and frame 2.

Under narrow-band transmissions, the equivalent baseband signal observed at the ik-th user
in DL in the s-th frame (assuming DL is selected at the k-th BS and no other user is served by
the k-th BS at that frame) is expressed as:

yDik,s = Hk,ikx
D
ik,s

+
∑

l∈K,l 6=k

∑
jl∈Il

Hl,ikx
D
jl,s︸ ︷︷ ︸

DL-to-DL interference

+
∑

l∈K,l 6=k

∑
jl∈Il

Hjl,ikx
U
jl,s︸ ︷︷ ︸

UL-to-DL interference

+vDik,s, (6.1)

where xDik,s∈C
Mk×1, xDjl,s∈C

Ml×1, xUjl,s∈C
Njl×1 denote the transmitted signal at the k-th BS in

DL towards the ik-th user, the l-th BS in DL towards the jl-th user, and the jl-th user in UL
towards the l-th BS, respectively, and vDik,s refers to the received noise vector at the ik-th user
in DL in the s-th frame. Similarly, the equivalent baseband signal observed at the k-th BS in
UL in the s-th frame (assuming UL is selected at the k-th BS and only the ik-th user transmits)
is:

yUik,s = Hik,kx
U
ik,s

+
∑

l∈K,l 6=k

∑
jl∈Il

Hl,kx
D
jl,s︸ ︷︷ ︸

DL-to-UL interference

+
∑

l∈K,l 6=k

∑
jl∈Il

Hjl,kx
U
jl,s︸ ︷︷ ︸

UL-to-UL interference

+vUk,s, (6.2)

where xUik,s∈C
Nik×1 denotes the transmitted signal at the ik-th user in UL towards the k-th BS

and vUk,s refers to the received noise vector at the k-th BS in UL in the s-th frame. It is assumed

that vUk,s∼CN (0, σ2
k), vDik,s∼CN (0, σ2

ik
), ∀s, and that all {vUk,s} and {vDik,s} are independent.

We assume independent encoding across different BSs and users and that a Gaussian code-
book is used at each BS and user, i.e.:

xDik,s ∼ CN (0,QD
ik,s

), xUik,s ∼ CN (0,QU
ik,s

), (6.3)

where QD
ik,s
�0∈CMk×Mk denotes the transmit covariance matrix for the k-th BS to serve the

ik-th user in DL in the s-th frame, and QU
ik,s
�0∈CNik×Nik refers to the transmit covariance

matrix for the ik-th user to transmit towards the k-th BS in UL in the s-th frame.
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The optimization variables are the transmit covariance matrices {QD
ik,s

,QU
ik,s
}∀ik,k,s, which

contain information of the precoding design (including power control), user scheduling, and
transmit direction selection, as follows:

• the precoder design is directly obtained through the eigenvalue decomposition of the trans-
mit covariances matrices, i.e. Qd

ik,s
=Ud

ik,s
Pd
ik,s

(Ud
ik,s

)−1, where Ud
ik,s

is the unitary trans-
mit precoding matrix.

• the power employed by the k-th BS in DL to serve the ik-th user in the s-th frame is given
by: Tr

(
QD
ik,s

)
=Tr

(
PD
ik,s

)
, and the power used by the ik-th user to transmit in UL towards

the k-th BS in the s-th frame is: Tr
(
QU
ik,s

)
=Tr

(
PU
ik,s

)
.

• the user scheduling and transmit direction selection are contained in {QD
ik,s

,QU
ik,s
}∀ik,k,s

as detailed next. If Tr
(
Qd
ik,s

)
>0, then the ik-th user is scheduled and the d-th transmit

direction is selected at the k-th BS in the s-th frame, while if Tr
(
Qd
ik,s

)
=0 then the ik-th

user is not scheduled in the d-th transmit direction at the k-th BS in the s-th frame.

Said intrinsic information is valid if we impose certain constraints over the transmit precoding
matrices {QD

ik,s
,QU

ik,s
}∀ik,k,s, as shown in what follows.

The constraint that at most one user in one transmit direction is selected per BS and per
frame can be imposed directly over optimization variables {QD

ik,s
,QU

ik,s
}∀ik,k,s as:∑

ik∈Ik

(
1{QD

ik,s
}+ 1{QU

ik,s
}
)
≤ 1 ∀k, s, (6.4)

where 1{Qd
ik,s
} denotes the indicator function over transmit covariance matrix Qd

ik,s
:

1{Qd
ik,s
} =

{
1 if Qd

ik,s
6= 0

0 if Qd
ik,s

= 0
. (6.5)

Although the constraints in (6.4) are non-continuous and non-convex w.r.t. {QD
ik,s

,QU
ik,s
}∀ik,k,s,

said constraints do not couple frames and BSs. Constraint in (6.4) is required to be consis-
tent with the formulation presented in (6.1)-(6.2). Otherwise, in case multiple users could be
simultaneously served at a frame and within the same frequency resource, intra-cell interference
should be considered in the signal model.

Usually, in the literature, in addition to optimizing precoding matrices, designers need
to deal with integer variables that indicate the user scheduling and transmit direction selec-
tion (see [153]). Differently, thanks to the proposed formulation, a single set of variables (i.e.
{QD

ik,s
,QU

ik,s
}∀ik,k,s) need to be optimized.

Under this setting, assuming that interference is treated as Gaussian noise at receivers, the
achievable rates in DL and UL transmissions, respectively, of the ik-th user in the s-th frame,
RDik,s, R

U
ik,s

, are given by:

RDik,s = log2

∣∣∣I+Hk,ikQ
D
ik,s

HH
k,ik

(
ND
ik,s

)−1
∣∣∣ , RUik,s = log2

∣∣∣I+Hik,kQ
U
ik,s

HH
ik,k

(
NU
ik,s

)−1
∣∣∣ , (6.6)

where ND
ik,s

is the covariance matrix of the noise-plus-interference received in DL at the ik-th

user when the k-th BS transmits at the s-th frame and NU
ik,s

denotes the covariance matrix of
the noise-plus-interference received in UL at the k-th BS when the ik-th user transmits at the
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s-th frame:

ND
ik,s

= σ2
ik

I+
∑

l∈K,l 6=k

∑
jl∈Il

Hl,ikQ
D
jl,s

HH
l,ik

+Hjl,ikQ
U
jl,s

HH
jl,ik

, (6.7)

NU
ik,s

= σ2
kI+

∑
l∈K,l 6=k

∑
jl∈Il

Hl,kQ
D
jl,s

HH
l,k+Hjl,kQ

U
jl,s

HH
jl,k
. (6.8)

Therefore, as it can be observed in (6.7)-(6.8), interference received in DL and UL depend on
the user scheduling, precoding design, and transmit direction selected at neighbor BSs in the
s-th frame.

6.4 Problem Formulation

The problem for joint user scheduling, precoding design and transmit direction selection is
formulated by following the maximization of a general utility function that takes into account
the traffic asymmetries and interference conditions in the network under the constraints that at
most one user in one transmit direction is selected at each BS in every frame (see (6.4)) and
that a maximum power is available for DL and UL transmission at BSs and users, respectively:

(P6,1) : maximize
{Qd

ik,s
�0}∀ik,k,s,d

∑
k∈K

∑
ik∈Ik

(
aiku

(
R̄Dik
)

+ (1− aik)u
(
R̄Uik
))

(6.9)

subject to


∑
ik∈Ik

(
1{QD

ik,s
}+ 1{QU

ik,s
}
)
≤ 1 ∀k, s

Tr
(
QD
ik,s

)
≤ Pmax

BS ∀ik, k, s
Tr
(
QU
ik,s

)
≤ Pmax

UE ∀ik, k, s

where 0≤aik≤1 is related to the DL-UL data traffic asymmetry of the ik-th user, u(z) is a
concave and monotonically increasing function on the interval z∈[0,∞), Pmax

BS is the available
power at BSs, Pmax

UE is the available power at users, and R̄dik is the average rate of the ik-th user
in the d-th transmit direction (d={D,U}) over the set of frames S:

R̄dik =
1

|S|
∑
s∈S

Rdik,s, (6.10)

being Rdik,s the achievable rate shown in (6.6). A classical choice for the utility function in
(6.9) is u(z)= ln(z), which guarantees proportional fairness in the system [156]. Even though,
alternative choices that are suitable for different types of applications can be found in [157] (e.g.
u(z)=z for sum rate maximization or u(z)=−1/z for harmonic mean fairness).

Practical scheduling algorithms welcome on-line solutions that are capable of adapting weights
to obtain desirable DL/UL user fairness [158]. In this sense, and without loss of generality, the
average rate of the ik-th user in the d-th transmit direction can be updated at every frame using
standard stochastic approximation recursions (see [159]):

R̄dik,s+1 = R̄dik,s + αs
(
Rdik,s − R̄

d
ik,s

)
, (6.11)

where αs is a step-size that can be either asymptotically vanishing (e.g. αs=1/s) or constant
(αs=1/|S|), R̄dik,s is the average rate of the ik-th user in the d-th transmit direction in previous
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frames, and Rdik,s is the rate given to the ik-th user in the d-th transmit direction at the s-th
frame (see (6.6)). Using Taylor’s expansion with step-size αs sufficiently small over the on-line
averaging performed in the recursion in (6.11), we have [158]:

u
(
R̄dik,s+1

)
≈ u

(
R̄dik,s

)
+
δu
(
R̄dik,s

)
δR̄dik,s

αs
(
Rdik,s − R̄

d
ik,s

)
. (6.12)

Therefore, since R̄dik,s, u(R̄dik,s), and
δu(R̄dik,s

)

δR̄dik,s
are available at the s-th frame, maximizing

(P6,1) in (6.9) with u(R̄dik,s+1) in (6.12) instead of u(R̄dik) in (6.9) reduces to the following
maximization problem that has to be solved for every frame and corresponds to a weighted sum
of the achievable rates. The on-line solution for the s-th frame is obtained from:

(Ps6,2) : maximize
{Qd

ik,s
�0}∀ik,k,d

∑
k∈K

∑
ik∈Ik

(
µDik,sR

D
ik,s

+µUik,sR
U
ik,s

)
(6.13)

subject to


∑
ik∈Ik

(
1{QD

ik,s
}+ 1{QU

ik,s
}
)
≤ 1 ∀k

Tr
(
QD
ik,s

)
≤ Pmax

BS ∀ik, k
Tr
(
QU
ik,s

)
≤ Pmax

UE ∀ik, k

where µdik,s is a fixed weight associated to the ik-th user and d-th transmit direction in the s-th
frame that depends on the traffic asymmetry aik (see (6.9)) and on the derivative of the utility
function u(z) adopted for problem (P6,1) in (6.9) (see (6.12)):

µDik,s = aik
δu
(
R̄Dik,s

)
δR̄Dik,s

, µUik,s =
(
1− aik

)δu(R̄Uik,s)
δR̄Uik,s

. (6.14)

For example, in case u(z)= ln(z), then
δu
(
R̄dik,s

)
δR̄dik,s

=1/R̄dik,s such that a modified version of the well-

known proportional fair criterion [156] would be obtained. Note that the modification comes
from the inclusion of the traffic asymmetry conditions, see (6.14). However, the formulation
of problem (P6,1) in (6.9) allows accommodating general utility functions that correspond to
different traffic types and quality-of-service requirements (as best effort, non-real-time, and real-
time services) whereas only the design of the weights per user and transmit direction µdik,s for
problem (Ps6,2) in (6.13) are affected (see details in [158]).

The objective function of problem (Ps6,2) in (6.13) is non-convex due to interference (see
(6.6)) and some constraints are non-continuous. Therefore, finding the global optimum is a
challenging task. In this regard, Section 6.5 proposes an efficient algorithm that yields a local
optimum solution to problem (Ps6,2) in (6.13).

After optimizing problem (Ps6,2) in (6.13) for a given frame, the weights per user and transmit

direction, µDik,s+1, µUik,s+1, have to be updated and problem (Ps+1
6,2 ) in (6.13) can be subsequently

solved for the (s+1)-th frame. This provides an on-line solution, as the user scheduling, pre-
coding design and transmit direction selection at the s-th frame might impact on the weights
used in the subsequent frame (s+1). Note that the whole set of per-frame problems (Ps6,2) in
(6.13), ∀s∈S, can be solved at every frame or all together at the beginning of the set of frames
if channel coherence time allows it.
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P6,1

P6,2 …  P6,2

P6,3 …   P6,3

1 S

1,1 1,K

Figure 6.3: Decoupling of the global problem (P6,1) in (6.9) into S problems, one per frame (Ps6,2) in (6.13). Then,

problem (Ps6,2) is decomposed into multiple subproblems, one per BS (Ps,k6,3) in (6.20), to be solved in parallel in the s-th
frame at the network controller.

The sequence of average rates R̄dik,s obtained with the on-line solution converges as s→∞
to the sequence of average rates R̄dik that solves problem (P6,1) in (6.9), see [160] and [161].
When the number of frames is finite, convergence of both sequences to the same solution cannot
be guaranteed. Anyway, on-line solutions are desirable for practical scheduling algorithms. So,
from now on, we concentrate on solving the per-frame problem (Ps6,2) in (6.13).

6.5 Joint User Scheduling, Precoding Design and Transmit Di-
rection Selection

In this section we propose an algorithm to solve the per-frame problem (Ps6,2) in (6.13) and
hence obtaining the user scheduling, precoding design and transmit direction selection for each
BS at the s-th frame. Although the per-frame problem(Ps6,2) in (6.13) is non-convex, we exploit
decomposition techniques and the interference cost concept presented in [133] to solve it. To do
so, the per-frame problem (Ps6,2) in (6.13) is decomposed into |K| subproblems (one subproblem
per BS) and the solution is obtained by solving them iteratively at the cluster controller. The
subproblems are obtained by replacing the interference that renders the objective function of
problem (Ps6,2) in (6.13) non-convex by linear approximations, as it is done in [133, 162, 163].
Fig. 6.3 shows the whole decomposition.

6.5.1 Decomposition

As the constraints of problem (Ps6,2) in (6.13) can be directly decomposed per BS, we focus on
the objective function. To isolate the interference that renders the objective function of problem
(Ps6,2) in (6.13) non-convex, define the weighted sum-rate of the links different than those related
to the k-th BS as:

f−k
(
Qk,s,Q−k,s

)
=

∑
l 6=k,jl∈Il

(
µDjl,sR

D
jl,s

+ µUjl,sR
U
jl,s

)
, (6.15)

where Qk,s refers to the set of transmit covariance matrices of all users and transmit directions
related to the k-th BS and Q−k,s denotes the set of transmit covariance matrices of all users



160 Chapter 6. Short-Term Traffic-Aware Resource Management

and transmit directions not related to the k-th BS, i.e. Qk,s,{QD
1k,s

, . . . ,QD
Ik,s

,QU
1k,s

, . . . ,QU
Ik,s
}

and Q−k,s,{Q1,s, . . . ,Qk−1,s,Qk+1,s, . . . ,QK,s}.

Using first order Taylor’s expansion of f−k(Qk,s,Q−k,s) in (6.15) around Q̄k,s (i.e. Q̄
D
ik,s

and

Q̄
U
ik,s

, ∀ik∈Ik), we have:

f−k
(
Qk,s,Q−k,s

)
≈ f−k

(
Q̄k,s,Q−k,s

)
+
∑
ik∈Ik

Tr
((

QD
ik,s
− Q̄

D
ik,s

) δf−k(Qk,s,Q−k,s
)

δQD
ik,s

∣∣∣∣∣
Q̄
D
ik,s

)

+
∑
ik∈Ik

Tr
((

QU
ik,s
− Q̄

U
ik,s

) δf−k(Qk,s,Q−k,s
)

δQU
ik,s

∣∣∣∣∣
Q̄
U
ik,s

)
. (6.16)

The negative partial derivatives of f−k(Qk,s,Q−k,s) in (6.15) with respect to each of the matrices

composing the set Qk,s evaluated at Q̄k,s (i.e. Q̄
D
ik,s

and Q̄
U
ik,s

, ∀ik∈Ik, see (6.16)) are given by:

ΥD
ik,s

= −
δf−k

(
Qk,s,Q−k,s

)
δQD

ik,s

∣∣∣∣∣
Q̄
D
ik,s

= −
∑
l 6=k
jl∈Il

(
µDjl,s

δRDjl,s

δQD
ik,s

+µUjl,s
δRUjl,s

δQD
ik,s

)∣∣∣∣∣
Q̄
D
ik,s

, (6.17)

ΥU
ik,s

= −
δf−k

(
Qk,s,Q−k,s

)
δQU

ik,s

∣∣∣∣∣
Q̄
U
ik,s

= −
∑
l 6=k
jl∈Il

(
µDjl,s

δRDjl,s

δQU
ik,s

+µUjl,s
δRUjl,s

δQU
ik,s

)∣∣∣∣∣
Q̄
U
ik,s

, (6.18)

where
δRDjl,s

δQD
ik,s

denotes a matrix corresponding to the derivative of scalar function RDjl,s with respect

to transmit covariance matrix QD
ik,s

. The derivatives can be obtained using the framework

developed in [88] for complex-valued matrix differentiation. For example,
δRDjl,s

δQD
ik,s

and
δRDjl,s

δQU
ik,s

are

given by:

δRDjl,s

δQD
ik,s

=
1

ln(2)
HH
k,jl

ZDjl,sHk,jl ,
δRDjl,s

δQU
ik,s

=
1

ln(2)
HH
ik,jl

ZDjl,sHik,jl , (6.19)

with

ZDjl,s =
(
ND
jl,s

+Hl,jlQ
D
jl,s

HH
l,jl

)−1
−
(
ND
jl,s

)−1
.

The remaining derivatives
δRUjl,s

δQD
ik,s

and
δRUjl,s

δQU
ik,s

can be similarly obtained, but are omitted for brevity.

Matrices ΥD
ik,s

in (6.17) and ΥU
ik,s

in (6.18) are known as cost (or price) matrices because they
are related to the impact on neighboring BSs/users of selecting user ik at BS k in transmit
direction d=D and d=U , respectively.

Therefore, using Taylor’s expansion of f−k(Qk,s,Q−k,s) in (6.16) and discarding irrelevant
constant terms, it is possible to approximate the per-frame problem (Ps6,2) in (6.13) by a set of
|K| subproblems (one per BS).



6.5. Joint User Scheduling, Precoding Design and Transmit Direction Selection 161

The subproblem corresponding to the k-th BS is:

(Ps,k6,3) : maximize
{Qd

ik,s
�0}∀ik∈Ik,d

∑
ik∈Ik

(
µDik,sR

D
ik,s

(
QD
ik,s

)
+µUik,sR

U
ik,s

(
QU
ik,s

))
−
∑
ik∈Ik

(
Tr
(
QD
ik,s

ΥD
ik,s

)
+Tr

(
QU
ik,s

ΥU
ik,s

) )
(6.20)

subject to


∑
ik∈Ik

(
1{QD

ik,s
}+ 1{QU

ik,s
}
)
≤ 1

Tr
(
QD
ik,s

)
≤ Pmax

BS ∀ik ∈ Ik
Tr
(
QU
ik,s

)
≤ Pmax

UE ∀ik ∈ Ik

where RDik,s(Q
D
ik,s

) and RUik,s(Q
U
ik,s

) are the achievable rates in (6.6) for fixed interference-plus-

noise covariance matrices ND
ik,s

and NU
ik,s

. Q̄k,s is needed to compute ΥD
ik,s

,ΥU
ik,s

,∀ik∈Ik, in

(6.17)-(6.18), so Q̄k,s can be obtained from the previous iteration. The trace terms in the
objective function of (6.20) play the role of an interference tax, discouraging selfish behavior of
the ik-th user in the d-th transmit direction. In case Υd

ik,s
=0, the ik-th user in the d-th transmit

direction would otherwise just want to maximize its own achievable rate Rdik,s(Q
d
ik,s

).

Note that Rdik,s(Q
d
ik,s

) in (6.20) is concave w.r.t. Qd
ik,s

and Tr(Qd
ik,s

Υd
ik,s

) is linear. Then,

as the objective function of subproblem (Ps,k6,3) in (6.20) is separable among users and transmit

directions, the objective function of subproblem (Ps,k6,3) in (6.20) is concave w.r.t. {Qd
ik,s
}∀ik∈Ik,d.

Thus, after the whole decomposition steps (see Fig. 6.3), we only have to deal with the non-
continuous constraint (i.e. first constraint in (6.20)).

6.5.2 Solution to (6.20)

In case the first constraint in (6.20) was removed, subproblem (Ps,k6,3) in (6.20) would be a convex

optimization problem and an optimal solution for {Qd
ik,s
}∀ik∈Ik,d would exist. Even though, the

first constraint of subproblem (Ps,k6,3) in (6.20) only imposes that at most a user in one transmit
direction is selected at the k-th BS and the s-th frame. Therefore, as the objective function
of subproblem (Ps,k6,3) in (6.20) is separable among users and transmit directions, the optimal

solution to subproblem (Ps,k6,3) in (6.20) (even if non-convex) is either to allocate 0 power to all

users and transmit directions (i.e. Qd
ik,s

=0,∀ik∈Ik, d) or to allocate power only to the user and
transmit direction that provides a larger value of its best contribution to the objective function
in (6.20). As best contribution of a specific user in a specific transmit direction, we refer to
the transmit precoding matrix that maximizes the objective function in (6.20) satisfying the
associated power constraint. Note that, as the objective function is concave w.r.t. Qd

ik,s
and

the power constraint is linear, a single best contribution exists. So, we can optimally solve
subproblem (Ps,k6,3) in (6.20) (even though its non-convexity) through a two-step procedure that:

• Step 1: computes all the individual best contributions of the users and transmit directions
to the objective function in (6.20) (denoted by Q̄

d
ik,s

in what follows) and then

• Step 2: selects the one that contributes more to the objective function in (6.20) (as
imposed by the first constraint in (6.20)) and sets the remaining precoding matrices equal

to 0. This corresponds to the optimal solution to subproblem (Ps,k6,3) in (6.20) and is

denoted by Qd?
ik,s

in what follows.
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Step 1

The individual best contributions of each user and transmit direction to the objective function of
subproblem (Ps,k6,3) in (6.20) are obtained by removing the first constraint in (6.20). Focusing on
the contribution of the ik-th user in the d-th transmit direction, we obtain it from the following
optimization problem:

maximize
Qd
ik,s
�0

µdik,slog2

∣∣∣∣I+Hd
ik

Qd
ik,s

HdH
ik

(
Nd
ik,s

)−1
∣∣∣∣− Tr

(
Qd
ik,s

Υd
ik,s

)
(6.21)

subject to Tr
(
Qd
ik,s

)
≤ Pmax

where for the shake of presentation we have unified parts of the specific nomenclature for DL
and UL as:

Hd
ik

=

{
Hk,ik if d = D

Hik,k if d = U
, Pmax =

{
Pmax

BS if d = D

Pmax
UE if d = U

. (6.22)

Problem in (6.21) is a convex optimization problem w.r.t. Qd
ik,s

, and thus it can be solved
by the standard Lagrange duality method [92]. The result is included in Proposition 6.1 (and
particularized for SISO systems in Proposition 6.1).

Proposition 6.1. At the k-th BS, the best contribution of the ik-th user in the d-th transmit
direction to the objective function of (Ps,k6,3) in (6.20) (i.e. the optimal solution for the transmit

covariance matrix Q̄d
ik,s

in case the ik-th user in the d-th transmit direction was selected at the
k-th BS in the s-th frame) is given by:

Q̄d
ik,s

=
(
Bd
ik,s

)−H
2

Vd
ik,s

Σd
ik,s

(
Vd
ik,s

)H (
Bd
ik,s

)− 1
2
, (6.23)

where Σd
ik,s

=diag(σdik,s(1), . . . , σdik,s(M̃)) is a diagonal matrix of size M̃=Mk if d=D and M̃=Nik

if d=U , and

Bd
ik,s

= Υd
ik,s

+ λdik,sI, (6.24)

Vd
ik,s

Zdik,s(V
d
ik,s

)H =
(
Bd
ik,s

)− 1
2

HdH
ik

(
Nd
ik,s

)−1
Hd
ik

(
Bd
ik,s

)−H
2
, (6.25)

σdik,s(n) =

(
µdik,s
ln(2)

− 1

zdik,s(n)

)+

, n = 1, . . . , M̃ , (6.26)

being λdik,s the Lagrange multiplier associated to the power constraint in (6.21). (6.25) denotes

the eigenvalue decomposition of the matrix in the right-hand side, being Vd
ik,s
∈CM̃×M̃ a unitary

matrix and Zdik,s=diag(zdik,s(1), . . . , zdik,s(M̃)) a diagonal matrix.

Proof. See Appendix 6.A. �

Therefore, for general MIMO systems, the solution in (6.23) depends on a single parameter,
i.e. the Lagrange multiplier λdik,s associated to the transmit power constraint. The optimal value

for λdik,s can be efficiently obtained using, for instance, the bisection method or the ellipsoid
method [92] (see Appendix 6.A).
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For SISO systems (i.e. Mk=Nik=1, ∀ik∈Ik, ∀k∈K), where all parameters are complex scalars
and the optimization variables are the transmit power allocated to each user and transmit
direction (which is denoted by P dik,s), the solution in (6.23) can be obtained in closed-form.
The solution is derived from Proposition 6.1 and included in Corollary 6.1. Note also that
this solution corresponds to the distributed solution for power allocation in SISO interference
channels [164].

Corollary 6.1. For SISO systems, where all parameters are (complex) scalars and the optimiza-
tion variables are the powers allocated to each user and transmit direction (denoted by P dik,s); at
the k-th BS, the best contribution of the ik-th user in the d-th transmit direction to the objective
function of (Ps,k6,3) in (6.20) (i.e. the optimal solution for the transmit power P̄ dik,s in case the
ik-th user in the d-th transmit direction was selected at the k-th BS in the s-th frame) is given
by:

P̄ dik,s = min

(( µdik,s

ln(2)Υd
ik,s

−
Nd
ik,s

|Hd
ik
|2
)+
, Pmax

)
. (6.27)

Proof. The proof departs from Proposition 6.1 and is included in Appendix 6.B. �

The SISO case allows a better understanding of the obtained solution in (6.27). If the
cost Υd

ik,s
tends to infinity (i.e. selecting the ik-th user in the d-th transmit direction has a

detrimental impact in terms of achievable rate over neighboring BSs/users), then the associated
variable P̄ dik,s tends to 0. On the contrary, if the cost Υd

ik,s
goes to 0 (i.e. selecting the ik-th

user in the d-th transmit direction has not a detrimental impact in terms of achievable rate
over neighboring BSs/users) then the associated variable P̄ dik,s is given by the maximum power
(Pmax

BS , Pmax
UE ). So, the solution in (6.27) is coherent.

Step 2

Once obtained the individual best contribution of each user and transmit direction to the ob-
jective function of subproblem (Ps,k6,3) in (6.20), Q̄

d
ik,s

,∀ik∈Ik,∀d, as at most one user in a single

transmit direction can be scheduled per-BS, the optimal solution to subproblem (Ps,k6,3) in (6.20)
corresponds either to select the user ik ∈ Ik and the transmit direction d∈{D,U} at the k-th

BS and s-th frame providing a larger value of µdik,sR
d
ik,s

(Q̄
d
ik,s

)−Tr
(
Q̄
d
ik,s

Υd
ik,s

)
if the largest

value of µdik,sR
d
ik,s

(Q̄
d
ik,s

)−Tr
(
Q̄
d
ik,s

Υd
ik,s

)
is positive or to select none (any user in any transmit

direction) in case that the largest value of µdik,sR
d
ik,s

(Q̄
d
ik,s

)−Tr
(
Q̄
d
ik,s

Υd
ik,s

)
is lower or equal to

0 (see objective function of subproblem (Ps,k6,3) in (6.20)).

The two-step procedure is summarized in Algorithm 6.1. For the k-th BS, we have to check
all contributions of its associated users (i.e. search on the set Ik) in two transmit directions (i.e.
DL and UL), which renders a search among 2|Ik| possible values. But, let us recall that in SCNs
the expected number of users that are associated to each BS is much lower than in conventional
macrocell-based networks (i.e. low |Ik|). Therefore, the complexity associated to Algorithm 6.1
is limited and, more important, it is not scaled with the network density as the number of users
per BS is reducing with the BS density.

Remark 6.1. Algorithm 6.1 provides the global optimum solution to subproblem (Ps,k6,3) in (6.20)
for the k-th BS at the s-th frame.
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Algorithm 6.1 Procedure to optimally solve subproblem (Ps,k6,3) in (6.20) at the k-th BS and
the s-th frame
1: maxVal = 0
2: # compute best contributions:
3: for ik = 1, ..., Ik do
4: for d = D,U do

5: Compute Q̄
d
ik,s

as in (6.23)

6: val = µd
ik,s

Rd
ik,s

(Q̄
d
ik,s

)− Tr
(
Q̄

d
ik,s

Υd
ik,s

)
7: if val > maxVal then
8: user = ik
9: tx = d

10: maxVal = val
11: end if
12: end for
13: end for
14: # select the user and transmit direction that contributes more to the objective function:
15: if maxVal > 0 then
16: Qd?

ik,s
= Q̄

d
ik,s

, if ik = user and d = tx

17: Qd?
ik,s

= 0, otherwise
18: else
19: Qd?

ik,s
= 0,∀ik∈Ik,∀d

20: end if

6.5.3 Algorithm to solve (6.13)

The overall algorithm to solve problem (Ps6,2) in (6.13) essentially solves subproblems (Ps,k6,3) in
(6.20) iteratively until convergence. To that end, the Gauss-Seidel iteration (sequential opti-
mizations), the Jacobi iteration (sequential optimizations), or an entirely asynchronous iteration
(simultaneous optimizations) could be adopted, see [165].

Algorithm 6.2 details the procedure to solve problem (Ps6,2) in (6.13) at the s-th frame
by following a Gauss-Seidel iteration. It starts from an initialization of the transmit covariance
matrices {Qd

ik,s
} that meets constraints in (6.13) (line 1). A suitable initialization is to select (for

each BS k) the user (i?k) and transmit direction (d?) with largest µdik,sR
d
ik,s

(no cost) when using
the achievable rates in (6.6) as a function of the useful signal power (no interference), maximum
power, and precoding matrices that diagonalize the equivalent channel. After that, the iterative
algorithm is performed in which subproblems (Ps,k6,3) in (6.20) are solved sequentially for all BSs.
For each k-th BS: i) the cost matrices in (6.17)-(6.18) and the interference-plus-noise covariance
matrices in (6.7)-(6.8) are computed (lines 5-6), and ii) the optimization in Algorithm 6.1 is
performed to obtain the transmit covariances matrices (including user scheduling, precoding
design and transmit direction selection) for the k-th BS, i.e. {Qd?

ik,s
} (line 8). The procedure is

iterated until convergence is reached and provides {Qd?
ik,s
} as output.

Proposition 6.2. Algorithm 6.2 converges to a limit point satisfying the Karush-Kuhn-Tucker
(KKT) conditions of problem (Ps6,2) in (6.13).

Proof. See Appendix 6.C. �

Convergence of Algorithm 6.2 when the Gauss-Seidel iteration is applied can be proved by
following similar steps as in [166] since the objective function of problem (Ps6,2) in (6.13) is
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Algorithm 6.2 Procedure to solve problem (Ps6,2) in (6.13) at the s-th frame

1: Initialize {Qd
ik,s
}, ∀ik, k, d

2: repeat
3: for k = 1, . . . ,K do
4: # update variables:
5: Compute cost matrices Υd

ik,s
in (6.17)-(6.18), ∀ik∈Ik, d, for given {Qd

jl,s
},∀jl, l, d

6: Compute interference-plus-noise covariance matrices Nd
ik,s

in (6.7)-(6.8), ∀ik∈Ik, d, for given

{Qd
jl,s
},∀jl, l, d

7: # perform optimization for BS k:
8: Solve subproblem (Ps,k

6,3) in (6.20) through Algorithm 6.1 to select transmit covariance matrices,

i.e. {Qd?
ik,s
},∀ik∈Ik, d

9: Set Qd
ik,s

= Qd?
ik,s

,∀ik∈Ik, d
10: end for
11: until convergence

not decreased at every iteration when sequential updates are performed and, in addition, the
objective function is bounded from the above.

Recall also that with an entirely asynchronous iteration (simultaneous optimizations) con-
vergence could not be guaranteed because the objective function (weighted sum rate) of problem
(Ps6,2) in (6.13) could oscillate when the cost matrices were updated. In that case, some works
have shown through simulations that convergence is achieved by performing simultaneous op-
timizations provided that a memory in the cost matrices is included (for instance, through the
use of a low pass filter), see [162,167].

Remark 6.2. Algorithm 6.2 is executed at the network controller, which disposes of CSI of
all links. Alternatively, it could be performed in a distributed manner at each BS provided that
CSI was available at each BS and information exchange was used iteratively among BSs to get
the cost matrices Υd

ik,s
in (6.17)-(6.18). But, due to the short-length of the frame, distributed

implementation might not be feasible as it would entail longer delays.

Remark 6.3. The proposed Algorithm 6.2 can be used to determine the user scheduling, precod-
ing design and power control even if the transmit direction per BS is fixed at the s-th frame simply
by not optimizing the transmit covariance matrices Qd

ik,s
of transmit directions not allowed at

BSs.

Remark 6.4. For SISO systems, the proposed Algorithm 6.2 can be used to determine the user
scheduling and transmit direction selection when binary power control is adopted. In this case,
the computation of the optimal values for the power allocation in (6.27) is not needed. We should
simply replace the optimization rule in line 5 of Algorithm 6.1 by P̄Dik,s=P

max
BS and P̄Uik,s=P

max
UE .

Remark 6.5. Under Orthogonal Frequency Division Multiple Access (OFDMA)22 with a power
spectral mask, where users for the same BS are assigned to orthogonal frequency resources and
the primary source of interference is inter-cell interference, the proposed Algorithm 6.2 could
be employed to determine the user scheduling and precoding design on each frequency subband.

22OFDMA is the radio access technology employed in downlink transmission of 3GPP LTE and LTE-A systems
[2], as well as in both uplink and downlink of IEEE 802.16m advanced WiMAX [26]. Furthermore, it is one of
the major candidates for different use cases of future 5G systems [27].
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However, we have to impose that the same transmit direction is adopted for the whole set of
subbands on a given frame s at each BS, such that Algorithm 6.2 should be slightly redefined to
impose it: each BS should check all subbands in DL and all in UL and then chose the best.

6.5.4 Algorithm to solve (6.9)

Finally, and for completion, Algorithm 6.3 includes the dynamic user scheduling, precoding
design and transmit direction selection to solve the global problem (P6,1) in (6.9). At every
s-th frame, Algorithm 6.2 is executed to design the final {Qd?

ik,s
} (line 3) and, then, the weights

µdik,s+1 to be used in the subsequent frame (s+1) are updated (line 6).

Algorithm 6.3 Dynamic procedure for joint user scheduling, precoding design and transmit
direction selection, which aims at solving the global problem (P6,1) in (6.9)

1: for s = 1, ..., S do
2: # perform user scheduling, precoding design, transmit direction selection:
3: Solve the per-frame problem (Ps

6,2) in (6.13) by performing Algorithm 6.2 to select {Qd?
ik,s
},

∀ik, k, d
4: # update dynamic variables:
5: Compute achievable rates Rd

ik,s
in (6.6), ∀ik, k, d, with the selected {Qd?

ik,s
}

6: Update equivalent weights µd
ik,s+1 in (6.14), ∀ik, k, d

7: end for

6.6 Simulation Results

The simulation scenario consists of a synchronized TDD deployment of |K| outdoor SeNBs
(that act as BSs), which are randomly placed within a circular area of 100 m radius with a
minimum distance of 40 m among them. The |K| BSs are managed by the network controller.
|Ik| users are randomly placed around each BS k in a concentric 40 m radius circle. The
evaluation methodology including system parameters, propagation characteristics and traffic
modeling designed by 3GPP for outdoor pico scenario in [63] is adopted. All BSs/users operate
on the same carrier frequency at 2 GHz. Path loss and shadowing models follow specifications
in [63] for multi-cell pico scenario. The antenna pattern is omnidirectional and the transmit
power is 24 dBm at BS and 23 dBm at user. Noise power is -84 dBm. We assume the number
of antennas at BSs and UEs, respectively, is the same: Mk=M and Nik=N , ∀ik,∀k. Full load
traffic model is adopted.

For simulation purposes the same traffic asymmetry (aik) is used for all users, ∀ik,∀k. Dif-
ferent values of the traffic asymmetries (aik), network densities (|K|), and user densities (|Ik|)
are used for simulations. |S|=100 frames are used.

A proportional fair (PF) criterion for problem (P6,1) in (6.9) is adopted, i.e. u(z)= ln(z).
Therefore, the objective function of problem (P6,1) in (6.9) corresponds to a weighted sum of
the log of average rates:

fglobal =
∑
k∈K
ik∈Ik

(
aik ln

(
R̄Dik
)

+ (1− aik) ln
(
R̄Uik
))
. (6.28)
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The aim of the present simulations is to show the benefits of jointly optimizing the transmit
direction selection and the conventional allocation policies (including user scheduling and pre-
coding design) through the use of the proposed Algorithm 6.2 as compared to schemes where
the transmit direction is set at each BS according to the traffic asymmetries of the associated
users while the conventional allocation policies are coordinated among BSs.

Different MIMO antenna configurations are evaluated: M=N=1, M=N=2, and M=N=4
(depicted in figures as 1×1, 2×2, and 4×4, respectively). We compare the following schemes:

• CS-CP-CD: proposed scheme in this work where the user scheduling, precoding design
and transmit direction selection are dynamically optimized at every frame by following Al-
gorithm 6.2 under a PF criterion. Thus, in addition to conventional coordinated scheduling
and coordinated precoding (CS-CP), coordinated transmit direction (CD) is included.

• CS-CP-uD: BS-specific TDD scheme with coordinated scheduling and coordinated pre-
coding (CS-CP) but uncoordinated transmit direction (uD) [63, 147]. The transmit di-
rection per BS is set according to the traffic asymmetries of the associated users (e.g. if
aik=0.7 then 7 frames are used for DL and the consecutive 3 frames are used for UL)
while the user scheduling and transmit precoding matrices are dynamically optimized in
a coordinated manner among BSs at every frame under a PF criterion.

• uS-uP-uD: BS-specific TDD scheme without coordination. The transmit direction per
BS is set according to the traffic asymmetries of the associated users (similar to ’CS-CP-
uD’) while user scheduling and transmit precoding are selected at each BS independently
(in a selfish manner at each frame) by following a PF criterion.

Recall that, as stated in the introduction, BS-specific decisions combined with interference co-
ordination techniques (i.e. ’CS-CP-uD’ described above) achieve the best performance among
existing dynamic TDD schemes [147, 151]. Also note that as the same traffic asymmetry (aik)
is considered for all users, then all BSs use the same DL-UL pattern under ’CS-CP-uD’ and
’uS-uP-uD’ schemes (but possibly not under ’CS-CP-CD’).

6.6.1 Convergence of Algorithm 6.2

First, we demonstrate convergence of the proposed Algorithm 6.2 to solve the per-frame problem
(Ps6,2) in (6.13). It corresponds to ’CS-CP-CD’ for a specific frame and a concrete deployment.
Fig. 6.4 shows the evolution of the weighted sum-rate (in bits/s/Hz) for |K|=6, |Ik|=2, and
different antenna configurations (1×1, 2×2, and 4×4). For this specific evaluation, the weighting
coefficients for (Ps6,2) in (6.13) are set to µdik,s=0.5, ∀ik, k, d. It can be observed that the weighted
sum-rate converges quite fast. Also, the monotonic increase of the weighted sum-rate is verified.

6.6.2 Evolution of on-line solutions

Second, let us show how the proposed Algorithm 6.3 that solves the problem (P6,1) in (5.15)
evolves in time for a concrete deployment. Fig. 6.5 displays the evolution of the global objective
function fglobal in (6.28) versus the frame number (i.e. s = 1, . . . , S) for |K|=6, |Ik|=1, aik=0.7,
and two different antenna configurations (1×1 and 4×4). We can observe that the weighted
sum of the log average rates increases with the frames and then gets stabilized for all schemes,
such that the on-line solutions converge. The values in which each scheme gets stabilized will
be compared in what follows through simulation results averaged over different deployments.
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Figure 6.4: Convergence of Algorithm 6.2. Weighted sum-rate (objective function of problem (Ps6,2) in (6.13)) vs.

iteration number. |K|=6, |Ik|=2, µdik,s=0.5.
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Figure 6.5: Evolution of Algorithm 6.3. Weighted sum of the log average rate (objective function fglobal of problem (P6,1)
in (6.9)) vs. frame number. |K|=6, |Ik|=1, aik=0.7, |S|=100.

6.6.3 Results for different network/user densities and asymmetries

In this section we show results averaged over 500 different random deployments.

Fig. 6.6 depicts the mean of the objective function of the global problem (P6,1) in (6.9)
(i.e. fglobal in (6.28)) versus the number of BSs (|K|) for |Ik|=1, aik=0.7, |S|=100, and different
antenna configurations (1×1, 2×2, and 4×4).

Fig. 6.7 shows the mean of the objective function of the global problem (P6,1) in (6.9) (i.e.
fglobal in (6.28)) versus the number of users per BS (|Ik|) for |K|=4, aik=0.7, |S|=100, and
different antenna configurations (1×1, 2×2, and 4×4).

Fig. 6.8 displays the mean of the objective function of the global problem (P6,1) in (6.9) (i.e.
fglobal in (6.28)) versus the traffic asymmetry (aik) for |K|=4, |Ik|=1, |S|=100, and different
antenna configurations (1×1, 2×2, and 4×4).

We can observe in Fig. 6.6-6.7-6.8 that the proposed ’CS-CP-CD’ outperforms ’CS-CP-uD’
for all antenna configurations, traffic asymmetries, network densities and user densities. This
is thanks to the optimization of the transmit direction selection jointly with the conventional
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Figure 6.6: Mean weighted sum of the log average rate (objective function fglobal of problem (P6,1) in (6.9)) vs. number
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Figure 6.7: Mean weighted sum of the log average rate (objective function fglobal of problem (P6,1) in (6.9)) vs. number
of users per BS (|Ik|). |K|=4, aik=0.7, |S|=100.
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allocation policies. The gains of ’CS-CP-CD’ as compared to ’CS-CP-uD’ are larger for 1×1
than for 2×2 and 4×4 because when increasing the number of antennas more interference can be
already managed through CS-CP and thus ’CS-CP-uD’ does already provide significant gains
over ’uS-uP-uD’. The gains are not much dependent on the traffic asymmetry condition (see
Fig. 6.8) but, however, they do vary with the network density and the user density.

As the network density increases (i.e. as |K| increases, see Fig. 6.6), significant gains are ob-
tained with the coordinated strategies (’CS-CP-uD’ and ’CS-CP-CD’) because more interference
is present in the network and thus more important becomes the coordination of the transmit
strategies in the network. In addition, the gains of the proposed ’CS-CP-uD’ technique as com-
pared to ’CS-CP-CD’ also increase with the network density. So, the joint optimization of the
transmit direction and the allocation policies becomes important for interference management
in dense networks.

As the user density increases (i.e. as |Ik| increases, see Fig. 6.7), large gains are obtained
with the coordinated strategies (’CS-CP-uD’ and ’CS-CP-CD’) because there is more flexibility
to manage interference (i.e. there are more users to schedule). The largest gain from ’CS-
CP-CD’ over ’CS-CP-uD’ appear however in the 1×1 antenna configuration, owing to the fact
that in the 2×2 and 4×4 flexibility is already provided with the number of antennas and hence
the gains of ’CS-CP-CD’ over ’CS-CP-uD’ are not as remarkable as those of ’CS-CP-uD’ over
’uS-uP-uD’.

6.6.4 Results of the average rate

Figure 6.9 depicts the cumulative distribution function (CDF) of the average rates obtained
in DL and in UL, separately, for |K|=4, |Ik|=2, |S|=100, aik=0.7, and different antenna con-
figurations: 1×1, 2×2 and 4×4. Results are averaged over 500 different random deployments.
Table 6.1 summarizes the relative gains in the mean of the average rates of ’CS-CP-uD’ over
’uS-uP-uD’ and of ’CS-CP-CD’ over ’CS-CP-uD’ for the different antenna configurations.

As it is expected, for aik=0.7 (i.e. DL traffic is larger than UL traffic), DL average rates are
larger than UL average rates (see Fig. 6.9). For 1×1 (see Fig. 6.9.(a)), ’CS-CP-CD’ provides
a significant improvement of both the outage and the mean of the average rate in DL and UL.
The mean gains of ’CS-CP-CD’ over ’CS-CP-uD’ are 49-60% (see Table 6.1). For 2×2 and
4×4 cases (see Fig. 6.9.(b)-(c)), ’CS-CP-uD’ does already provide an important enlargement
of the outage rates and improves the mean average rate around 42-95% over ’uS-uP-uD’ (see
Table 6.1), thus leaving less improvement for ’CS-CP-CD’. However, ’CS-CP-CD’ allows still
improving the rates in both transmit directions as compared to ’CS-CP-uD’ and provides gains
between 10-16% (see Table 6.1). So the gains of ’CS-CP-CD’ over ’CS-CP-uD’ are reduced with
the number of antennas, but not depreciable.

Table 6.1: Relative Gains of ’CS-CP-uD’ over ’uS-uP-uD’ and of ’CS-CP-CD’ over ’CS-CP-uD’ in the Mean of
the Average Rates in DL and UL, separately. |K|=4, |Ik|=2, |S|=100, aik=0.7.

1× 1 2× 2 4× 4

DL UL DL UL DL UL

CS-CP-uD over uS-uP-uD 46% 7% 95% 45% 86% 42%

CS-CP-CD over CS-CP-uD 60% 49% 11% 16% 10% 15%
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Figure 6.9: CDF of the average rate (in bits/s/Hz) in DL and in UL. |K|=4, |Ik|=2, |S|=100, aik=0.7.

To conclude, from Fig. 6.6-6.7-6.8-6.9, we infer that:

• larger gains are obtained for 1×1 than for 2×2 and 4×4, because the 1×1 setup has
less flexibility for interference management and is therefore more benefited from the op-
timization of the transmit direction. Nevertheless, positive gains are still reported when
increasing the number of transmit/receive antennas.

• the gains of ’CS-CP-CD’ increase as the network density increases (i.e. as |K| increases),
due to the fact that as |K| increases then more interference is present and the optimization
of the transmit direction becomes important for interference management.

• the gains of ’CS-CP-CD’ increase as the user density increases (i.e. as |Ik| increases),
because by increasing |Ik| more flexibility is available to select the user and transmit
direction.

Therefore, the joint optimization of the transmit direction and the conventional allocation poli-
cies becomes key for interference management and it is specially important for interference-
limited systems with a low number of antennas.
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6.7 Conclusions

This chapter presents a dynamic procedure for joint user scheduling, precoding design and trans-
mit direction selection in dynamic TDD MIMO smallcell networks. Differently from previous
works, the transmit direction is optimized at every frame jointly with the conventional alloca-
tion policies that include user scheduling, precoding design and power control. Hence, a high
adaptability to the instantaneous traffic and interference conditions in the network is achieved.
The concepts for interference management presented in Chapter 3 have been used, but the whole
problem formulation has been modified to include DL/UL traffic asymmetry conditions among
BSs and to address the new types of interference that appear under flexible duplexing. To solve
the general problem, decomposition methods (including stochastic approximation recursions and
the interference-cost concept) have been applied.

Simulation results show gains in DL and UL average rates for different traffic asymmetries,
network densities and user densities as compared to existing schemes for dynamic TDD. The
gains are larger for systems with a low number of antennas because they have less flexibility for
interference management through the coordination of transmit/receive spatial filters and hence
larger gains are obtained by optimizing the transmit direction.



Appendices

6.A Proof of Proposition 6.1

Let λdik,s denote the Lagrange multiplier associated to the power constraint in (6.21). Thus, the
Lagrange function for problem in (6.21) can be written as:

Ldik,s
(
Qd
ik,s

, λdik,s

)
= µdik,slog2

∣∣∣∣I+Hd
ik

Qd
ik,s

HdH
ik

(
Nd
ik,s

)−1
∣∣∣∣− Tr

(
Qd
ik,s

Υd
ik,s

)
−λdik,s

(
Tr
(
Qd
ik,s

)
− Pmax

)
. (6.29)

The dual function for problem in (6.21) is given by:

g
(
λdik,s

)
= max

Qd
ik,s
�0
Ldik,s

(
Qd
ik,s

, λdik,s

)
. (6.30)

Then, the dual problem of (6.21) is defined as [92]:

minimize
λdik,s

≥0
g
(
λdik,s

)
. (6.31)

Since problem in (6.21) is convex with strictly feasible points [92], the duality gap between its
optimal value and that of the dual problem in (6.31) is zero.

Therefore, problem in (6.21) can be solved equivalently by solving its dual problem in (6.31).
In order to solve the dual problem, we need to obtain the dual function g

(
λdik,s

)
in (6.30) for any

given λdik,s≥0. This can be done by solving the maximization problem given in (6.30), which
can be explicitly written (by discarding irrelevant constant terms in (6.29)) as:

maximize
Qd
ik,s
�0

µdik,slog2

∣∣∣∣I+Hd
ik

Qd
ik,s

HdH
ik

(
Nd
ik,s

)−1
∣∣∣∣− Tr

(
Bd
ik,s

Qd
ik,s

)
, (6.32)

where Bd
ik,s

=Υd
ik,s

+λdik,sI. Bd
ik,s

is a full rank matrix and hence its inverse
(
Bd
ik,s

)−1
exists.

Similarly as in [41], define variable Q̃
d
ik,s

as:

Q̃
d
ik,s

=
(
Bd
ik,s

)H
2

Qd
ik,s

(
Bd
ik,s

) 1
2
. (6.33)
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Substituting (6.33) into (6.32) leads to:

maximize
Q̃
d
ik,s
�0

µdik,slog2

∣∣∣∣I+Hd
ik

(
Bd
ik,s

)−H
2

Q̃
d
ik,s

(
Bd
ik,s

)− 1
2

HdH
ik

(
Nd
ik,s

)−1
∣∣∣∣− Tr

(
Q̃
d
ik,s

)
. (6.34)

Without loss of generality, define the following eigenvalue decomposition (EVD):(
Bd
ik,s

)− 1
2

HdH
ik

(
Nd
ik,s

)−1
Hd
ik

(
Bd
ik,s

)−H
2

= Vd
ik,s

Zdik,s(V
d
ik,s

)H , (6.35)

where Vd
ik,s
∈CM̃×M̃ is a unitary matrix and Zdik,s=diag(zdik,s(1), . . . , zdik,s(M̃))∈CM̃×M̃ is a diag-

onal matrix, being M̃=M if d=D and M̃=N if d=U . Substituting the above EVD in (6.35) into

(6.34) and applying the Hadamard’s inequality (e.g., see [168]), the optimal solution for Q̃
d
ik,s

in (6.34) is found as:

Q̃
d
ik,s

= Vd
ik,s

Σd
ik,s

(Vd
ik,s

)H , (6.36)

being Σd
ik,s

=diag(σdik,s(1), . . . , σdik,s(M̃))∈CM̃×M̃ a diagonal matrix whereby each diagonal ele-

ment σdik,s(n) is obtained applying the standard water-filling algorithm [168]:

σdik,s(n) =

(
µdik,s
ln(2)

− 1

zdik,s(n)

)+

. (6.37)

Finally, the optimal solution for Qd
ik,s

is obtained by including (6.36) into (6.33):

Qd
ik,s

=
(
Bd
ik,s

)−H
2

Q̃
d
ik,s

(
Bd
ik,s

)− 1
2

=
(
Bd
ik,s

)−H
2

Vd
ik,s

Σd
ik,s

(Vd
ik,s

)H
(
Bd
ik,s

)− 1
2
. (6.38)

With the obtained dual function g
(
λdik,s

)
for any given λdik,s, the dual problem (6.31) can be

solved by searching over λdik,s≥0 to minimize g
(
λdik,s

)
. This can be done, for example, through

the bisection method or the ellipsoid method [92]. When λdik,s converges to the optimal solution

for the dual problem, the corresponding Qd
ik,s

becomes the optimal solution for problem in (6.21).

6.B Proof of Proposition 6.1

For SISO systems, i.e. Mk=Nik=1, ∀ik, ∀k, all parameters in the system are scalars. Let
HD
ik

=Hk,ik and HU
ik

=Hik,k denote the DL and UL complex channels, respectively. Let ND
ik,s

and NU
ik,s

denote the interference-plus-noise received power in DL and UL, respectively (from

(6.7)-(6.8)). Let ΥD
ik,s

and ΥU
ik,s

denote the cost in DL and UL, respectively (from (6.17)-(6.18)).

Now, the optimization variables are the transmit power in DL (PDik,s) and in UL (PUik,s), instead
of transmit covariance matrices (see (6.3)). Furthermore, the design of the Lagrange multiplier
in (6.23) can be omitted in the SISO case, as the constraint of the maximum transmit power
can be directly imposed over optimization variables P dik,s≤P

max, see (6.21).

So let us show how the solution for the SISO case in (6.27) is derived from the general
MIMO solution in (6.23). Use λdik,s=0 in (6.24) such that: Bd

ik,s
=Υd

ik,s
. The EVD in (6.25)
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does not need to be performed in the SISO case, and we should simply set: V d
ik,s

=1 and

Zdik,s=|H
d
ik
|2/(Υd

ik,s
Nd
ik,s

). This way, substituting said values into (6.26) we have:

σdik,s =

(
µdik,s
ln(2)

−
Υd
ik,s

Nd
ik,s

|Hd
ik
|2

)+

, (6.39)

and finally from (6.23):

P dik,s =
σdik,s

Υd
ik,s

=

(
µdik,s

ln(2)Υd
ik,s

−
Nd
ik,s

|Hd
ik
|2

)+

. (6.40)

Therefore, the optimal solution for the power allocation (P̄ dik,s) in (6.27) is directly obtained by
constraining the value in (6.40) between 0 and the maximum available power (Pmax).

6.C Proof of Proposition 6.2

If Algorithm 6.2 converges, then it clearly converges to a limit point satisfying the set of KKT
conditions of subproblems (Ps,k6,3) in (6.20) (see line 8 in Algorithm 6.2). In addition, it can be

easily shown that the set of KKT conditions of subproblems (Ps,k6,3) in (6.20) constitute precisely
the KKT conditions of problem (Ps6,2) in (6.13). Therefore, if convergence is achieved, the limit
point will also satisfy the KKT conditions of problem (Ps6,2) in (6.13).

So, let us now show that Algorithm 6.2 converges. Note first that the function f−k(Qk,s,Q−k,s)

in (6.15) is jointly convex w.r.t. the set of matrices composing Qk,s (i.e. Qd
ik,s

, ∀ik∈Ik, d), since
f−k(Qk,s,Q−k,s) can be seen as the composition of a convex function and a linear function giving
then as result a convex function [92]. Then, in the following we show that after solving problem

(Ps,k6,3) in (6.20) for the k-th BS, the objective function of problem (Ps6,2) in (6.13) is not decreased.

Let Q?
k,s be the optimal solution to (Ps,k6,3) in (6.20), i.e. Q?

k,s,{QD?
1k,s

, . . . ,QD?
Ik,s

,QU?
1k,s

, . . . ,QU?
Ik,s
}.

Similarly as in (6.15), define the weighted sum-rate of the links related to the k-th BS as:

fk(Qk,s,Q−k,s) =
∑
ik∈Ik

(
µDik,sR

D
ik,s

+ µUik,sR
U
ik,s

)
, (6.41)

such that the objective function of (Ps6,2) in (6.13) is
∑

k∈K fk(Qk,s,Q−k,s). Hence,∑
k∈K

fk
(
Q?
k,s,Q−k,s

)
= fk

(
Q?
k,s,Q−k,s

)
+ f−k

(
Q?
k,s,Q−k,s

)
≥ fk

(
Q?
k,s,Q−k,s

)
+ f−k

(
Q̄k,s,Q−k,s

)
−
∑
ik∈Ik

(
Tr
(
(QD?

ik,s
−Q̄

D
ik,s

)ΥD
ik,s

)
+Tr

(
(QU?

ik,s
−Q̄

U
ik,s

)ΥU
ik,s

))
≥ fk

(
Q̄k,s,Q−k,s

)
+ f−k

(
Q̄k,s,Q−k,s

)
−
∑
ik∈Ik

(
Tr
(
(Q̄

D
ik,s
−Q̄

D
ik,s

)ΥD
ik,s

)
+Tr

(
(Q̄

U
ik,s
−Q̄

U
ik,s

)ΥU
ik,s

))
= fk

(
Q̄k,s,Q−k,s

)
+ f−k

(
Q̄k,s,Q−k,s

)
=
∑
k∈K

fk
(
Q̄k,s,Q−k,s

)
,

(6.42)
where the first inequality is a consequence of the function f−k

(
Qk,s,Q−k,s

)
being jointly convex
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w.r.t. the set of matrices composing Qk,s and the fact that the cost matrices Υd
ik,s

in (6.17)-(6.18)

are hermitian matrices23, and the second inequality holds since Q?
k,s (i.e. {Qd?

ik,s
}, ∀ik∈Ik, d) is

the optimal solution to problem (Ps,k6,3) in (6.20). Finally, as the objective function of problem
(Ps6,2) in (6.13) is bounded from above due to the maximum power constraints, the algorithm
must converge to (at least) a local optimum.

23For a differentiable convex function f(A), f(A) ≥ f(B) + Tr
( ( δf(A)

δA

)H ∣∣∣
B

(A −B)
)

holds, where the right-

hand side term corresponds to the first order Taylor expansion of f(A) evaluated at B.



Chapter 7

Long-Term Traffic-Aware Resource
Management

This chapter investigates how to reuse a fraction of spectrum by multiple TDD BSs in dense
OFDMA-based networks, where multiple BSs with possibly overlapping coverage areas compete
for the same set of resources. We propose procedures to distribute the frequency spectrum
in the long-term by taking into account the per-BS traffic loads in DL and UL as well as
their spectral efficiencies. The optimization is done over the long term, being independent of
the specific users connected to each BS but dynamic enough to follow significant variations of
the traffic load. In this sense, we focus on the average resource utilization (RU) and propose
schemes to minimize either the maximum RU or the weighted sum of RU of all BSs. Firstly, we
consider orthogonal resource usage among BSs. Optimal closed-form expressions for the long-
term resource provisioning are derived for this case. Secondly, we assume that resources can be
reused at non-overlapping BSs. In this case, the resource provisioning is solved in two steps:
i) the number of resources required per BS is obtained by discretizing the optimal solution of
a convex problem, and then ii) the specific resources to be utilized by each BS are determined
by using graph coloring. In contrast to previous works, graph coloring can be applied to get an
implementable solution for any condition of the BS loads. Simulation results show a significant
reduction of the maximum RU, which translates into an increase of the served traffic and a
reduction of the packet delay, as compared to static resource provisioning schemes.

The technical paper related to this chapter is:

[C7] S. Lagen, O. Muñoz, A. Pascual-Iserte, J. Vidal, A. Agustin, ”Long-term Provisioning of Radio
Resources Based on their Utilization in Dense OFDMA Networks”, IEEE Int. Symp. on
Personal, Indoor and Mobile Radio Commun., Valencia (Spain), Sep. 2016.

This chapter is structured as follows. Section 7.1 contains the state of the art for long-term
resource provisioning in OFDMA-based networks. The main contributions of the chapter are
detailed in Section 7.2. In Section 7.3 the system model is presented and the RU is defined,
detailing how all the required parameters to estimate the RU are computed. In Section 7.4, the
problem is formulated and solved in closed-form under orthogonal resource usage. In Section 7.5,
the problem is formulated and solved with graph coloring when reuse of resources among non-
overlapping BSs is permitted. Section 7.6 presents the simulation results. Finally, concluding
remarks are included in Section 7.7.

Preliminaries for graph theory are included in Appendix 7.A.
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7.1 State of the Art

OFDMA is the radio access technology employed in downlink transmission of 3GPP LTE and
LTE-A systems [2], as well as in both uplink and downlink of IEEE 802.16m advanced WiMAX
[26]. Furthermore, it is one of the major candidates for different uses cases of future 5G systems
[27]. In OFDMA-based networks, the intra-cell users are assumed to be orthogonal to each other
and the primary source of interference is inter-cell interference [46]. For that reason, due to the
upcoming network densification and scarcity of spectrum, efficient provisioning of radio resources
in multi-cell scenarios is crucial. Radio resource provisioning schemes should improve spatial
reuse while avoiding dominant inter-cell interference. In addition, for simplicity of operation and
implementability, they should be performed at the long-term24, i.e. should be independent of
the users to be served at a specific time instant.

The simplest resource provisioning scheme is frequency reuse-n, where the total bandwidth is
partitioned in n bands and different bands are assigned to neighbor BSs to avoid dominant inter-
cell interference. As an example, Fig. 7.1 shows a frequency reuse-2. To further improve the
spatial reuse while minimizing inter-cell interference impact, fractional frequency reuse (FFR)
was proposed [30], where the total bandwidth is partitioned such that i) cell-edge users of
neighbor BSs do not interfere with each other and ii) interference received by (and created by)
cell-interior users is reduced. Many different FFR schemes are analyzed in [31]. However, theses
schemes are static and independent of the traffic loads of the BSs. Hence, they might not be
suitable for dense and irregular deployments of BSs where the traffic load can vary drastically
over the space and time domains as compared to conventional macrocell-based networks (e.g.
in Fig. 7.1, BS2 has a higher number of users and could require larger bandwidth than BS1 and
BS3).

Figure 7.1: Example of frequency reuse-2 for long-term resource provisioning.

Mathematically speaking, resource provisioning in multi-cell scenarios (also known as the
dynamic channel assignment problem [169]) is a combinatorial optimization task that can be
mapped into a graph coloring problem and is therefore NP-hard. In this line, graph-based
approaches are proposed in [32] to allow dynamic FFR and distribute the resources in the long-
term according to the per-BS traffic loads. Similarly, [170] exploits graph coloring to perform the
resource provisioning at the short-term by adapting the resource allocations to the instantaneous
load of the specific users to be served. The procedure is summarized as follows, and shown
through an example in Fig. 7.2. First, each BS computes the number of resources required to

24Long-term resource provisioning involves provisioning of frequency resources for several consecutive transmis-
sion time intervals (TTIs). Rather than dynamically changing the resource provisioning at each TTI, long-term
resource provisioning is preferable for simplicity of operation/implementation. The periodicity might be therefore
of the order of minutes.
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Figure 7.2: Dynamic long-term resource provisioning based on graph coloring.

meet the user demands assuming interference free conditions. Then, a graph is set according to
the demands of each BS and any two BSs in an interference condition are connected through an
edge. Finally, the graph is colored through graph coloring algorithms, as it is shown in Fig. 7.2
where each color represents a frequency resource.

The drawback of all existing schemes based on graph coloring is that they employ a graph
(which varies according to the network deployment and per-BS traffic loads, see Fig. 7.2)
which might not be colorable with the number of colors (radio resources) that are available.
This means that proper coloring25 with the number of available resources may not be possible
or, equivalently, that an implementable solution satisfying the coloring constraints may not be
found. For example, the graph in Fig. 7.2 could not have been colored with less than 10 colors.

7.2 Contribution

In this chapter, we present a novel approach for long-term resource provisioning that is based
on optimizing the resource utilization, which measures the occupancy of a BS and is given by
the division among the amount of data traffic and the effective capacity per BS. We formulate
the resource provisioning strategy as a convex problem so as to minimize a function of the RU,
such as the maximum RU among BSs or the weighted sum of RU. Two different approaches are
considered:

• orthogonal resource provisioning (orthogonal access among BSs is adopted) and

• graph-based resource provisioining (reuse of resources among BSs is allowed).

When orthogonal resource usage among BSs is considered, closed-form expressions are derived.
When reuse of resources among non-overlapping cells is permitted, we propose an scheme that
works as follows. First, the optimization problem is formulated according to the interference
graph (wherein we impose that neighbor BSs must use different resources to avoid strong inter-
cell interference). The optimal resource provisioning per BS is obtained by solving the problem.
Then, such repartition is mapped into real resources by using graph coloring over a new extended
graph.

In contrast to previous works [32,170], we first solve an optimization problem which ensures
that proper coloring over the extended graph will be possible and, hence, that an implementable
solution will be found.

25A proper coloring of a graph is an assignment of colors to the vertices of the graph such that no two adjacent
vertices have the same color.
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7.3 System Model

Assume a TDD cellular network composed of a set of K={1, . . . ,K} randomly and densely
distributed BSs. Due to the random and dense geographical distribution, the coverage area of
some BSs may overlap, i.e. some users might be in a location covered by multiple BSs. So, if
these BSs use the same frequency resource, interference will be generated.

Assume OFDMA, as in LTE-A DL [2]. There are N effective frequency sub-channels, also
called RBs in LTE-A, available in the system each with a bandwidth of B. No power control is
assumed such that the transmit power per resource (or RB) is fixed or, equivalently, a spectral
power mask is adopted.

Our objective is to provide a method to decide the frequency resources assigned to each BS
in the long term, i.e.:

• it should not be adapted to a concrete set of users, as this would require to change the
amount of resources whenever a user appears o disappears in the BS, but

• it should be dynamic enough to adapt to significant changes in the average traffic load.

So the optimization will be performed every T time resources, which will be duplexed at each
TDD BS among DL and UL transmissions.

In addition, the proposed method must seek to:

• use the spectrum resources efficiently by avoiding over-provisioning of resources,

• avoid situations of high resource occupancy that will lead to high packet delays, and

• provide quality-of-service (QoS) to the users of the different BSs.

A suitable measure that captures all these requirements is the RU.

The strategy for long-term provisioning proposed in this chapter is performed at a central
controller that controls the |K| BSs and disposes of long-term information and network topology
information. As long-term information, only a single parameter per BS is required. As network
topology information we refer to knowledge of the interference graph [32].

The interference graph is constructed as follows:

• every BS in the network defines a vertex and

• any two BSs (represented through a vertex) in an interference situation are connected with
an edge.

Interference situations appear whenever the transmission of one BS could potentially interfere
the transmission of another BS if the same resource is used. For example, in one-tier networks, an
interference situation could be established when two BSs were closer than a threshold distance.
For multi-tier networks, where the coverage areas of BSs belonging to different tiers differ, a
threshold distance could be defined per tier and an interference situation would appear whenever
two BSs were closer than at least one of the threshold distances imposed by the respective BSs.

7.3.1 Estimation of the system parameters

The RU is a measure widely used in 3GPP evaluations to report the percentage of resources
employed by a BS [2]. It is given by the ratio between the total number of resources used over
the total number of resources available for data traffic. Therefore, we differentiate between the
RU for DL and UL transmissions of each BS.
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The RU of the k-th BS in the DL and UL transmit directions (ρDk for DL and ρUk for UL)
can be estimated as the average traffic load of the BS on each transmit direction (in bits/s) over
the amount of traffic that the BS can serve on said transmit direction (i.e. the effective capacity
in DL or UL, in bits/s). It is also referred to as the normalized load of a BS in DL and UL
transmit directions, respectively, see [171]:

ρDk =
λDk L

D
k

xkγkC
D
k

=
αDk
xkγk

, (7.1)

ρUk =
λUk L

U
k

xk(T − γk)CUk
=

αUk
xk(T − γk)

, (7.2)

where

αdk =
λdkL

d
k

Cdk
, (7.3)

λdk is the mean packet arrival rate in the d-th transmit direction (in packets/s), Ldk denotes the
mean packet length in the d-th transmit direction (in bits/packet), xk refers to the number of
frequency resources per BS, γk denotes the number of time resources used for DL, (T−γk) the
number of time resources used for UL being T the total number of time resources26, and Cdk is
the average spectral efficiency of the k-th BS in the d-th transmit direction(in bits/s/resource).

It can be observed in (7.1)-(7.2) that increasing the amount of frequency resources per BS
(xk) leads to low ρdk and hence an inefficient usage of resources (as they could be used for other
purposes). On the contrary, reducing the amount of frequency resources (xk) leads to high ρdk,
which implicitly increases the packet delay and reduces the QoS of the associated users due to
the high resource occupancy (see next (7.6)).

Note that, although the RU is a measure bounded between 0 and 1, the normalized load of
the BS on each transmit direction ρdk in (7.1)-(7.2) could be by definition larger than 1 if the
traffic load is very high. However, systems should be properly designed so as not to ”blow up”
the queues, i.e. the resource provisioning strategy should assure that ρdk≤1. Otherwise, if ρdk>1,
the system would be unstable, inducing large queue sizes, losses of packets, and unacceptable
packet delays. From now on we assume that the system will operate under this condition (ρdk≤1),
in which the normalized load ρdk is equivalent to the RU of the BS on the d-th transmit direction.

In the non-full buffer FTP traffic models used in 3GPP evaluations [61], the packet arrival
rate and the packet length are fixed (although they can be varied to emulate different load
conditions corresponding to different times of the day). This greatly simplifies the computation
of the RU in (7.1)-(7.2). Recall also that in FTP3 traffic model, see [61], the packet arrival rate
is defined per user and, consequently, λdk in (7.1)-(7.2) would be the product of the per-user
packet arrival rate on the d-th transmit direction and the number of users in the k-th BS.

26Among the whole set of time resources T , γk are used for DL and the remaining T − γk are used for UL.
Within each time resource, the xk frequency resources are used per BS on the associated transmit direction. Thus,
the total amount of time and frequency resources for DL is xkγk and the total amount of time and frequency
resources for UL is xk(T − γk), see (7.1)-(7.2).
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Parameters αdk, ∀k∈K, d∈{D,U} in (7.3) correspond to the long-term information required at
the central controller to perform the optimization. αdk can be estimated based on the average
traffic load (λdkL

d
k) and the average spectral efficiency (Cdk) of the k-th BS in the d-th transmit

direction. The later, Cdk , can be estimated based on the statistics of the previously served
transmission rates. There are two main approaches in the literature to estimate Cdk depending
on the scheduling strategy that is adopted. If a round-robin scheduler is used, Cdk is given by:

Cdk =
1

|I|
∑
i∈I

Rdi,k, (7.4)

where Rdi,k is the average transmission rate given to the i-th user at the k-th BS in the d-th
transmit direction (in bits/s/resource) and I denotes the set of users among which the statistics
are computed. Alternatively, if the scheduler is such that gives the same rate to all users, Cdk
can be estimated as [172,173]:

Cdk = |I|

(∑
i∈I

1

Rdi,k

)−1

. (7.5)

These estimations are valid if a spectral power mask is used (i.e. the transmit power per resource
is limited, as in LTE-A DL). Otherwise, Cdk would depend on the power control and hence on
the number of resources assigned to each BS.

If packet arrival instants are modeled as a Poisson process, for ρdk≤1, the average number of
bits in the queue of the k-th BS in the d-th transmit direction (W d

k ) is related to ρdk in (7.1)-(7.2)
as follows [171]:

W d
k =

ρdk
1− ρdk

ldk
2Ldk

, (7.6)

where ldk denotes the mean of the squared packet length. Clearly, longer queue sizes imply higher
packet delays. Therefore, in a single-cell system minimizing the RU is equivalent to minimize
the average number of bits in the system (or to minimize the average packet delay), see (7.6).

In a multi-cell scenario, where multiple BSs compete for the same set of frequency resources,
an efficient resource provisioning is such that the frequency resources are distributed among
all the BSs in a balanced way trying to avoid very different occupancies for different BSs. In
this sense, a suitable optimization criterion is the minimization of the maximum RU (max RU)
among the BSs, such that resources are fairly distributed and more resources are given to those
BSs with larger traffic loads and/or those BSs experiencing greater delays (see (7.1)-(7.2)).

7.3.2 Time duplexing

For a given BS k, the optimal repartition of the time resources (γk for DL, (T−γk) for UL)
in terms of RU is such that ρDk =ρUk (i.e. same occupancy for DL and UL), which leads to a
closed-form repartition:

γk =
αDk T

αDk + αUk
. (7.7)

This means that traffic asymmetries at each BS are taken into account to distribute the time
resources among DL and UL transmissions at each BS independently. Differently, total traffic
load at each BS will be considered to distribute frequency resources among BSs.
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Accordingly, γk can be determined per BS. So let us work with the occupancy per BS (ρk),
which will be equal for DL and UL transmit directions (ρk=ρ

D
k =ρUk ):

ρk =
αk
xk
, αk =

αDk
γk

=
αUk

(T − γk)
=
αDk + αUk

T
. (7.8)

Under this setting, we focus on optimizing the allocation of frequency resources ({xk}) in
the multi-cell scenario by working with RU variables per cell ρk defined in (7.8). Recall that the
resource provisioning in multi-cell environments is a combinatorial optimization problem that
involves high complexity [169]. For that reason, we focus on solving a relaxed version of the
optimization problem with continuous variables (corresponding to the distribution of resources,
{xk}) and then the obtained result is discretized.

7.4 Orthogonal Resource Provisioning

In this section, we derive a long-term resource provisioning scheme when orthogonal resource
usage among BSs is assumed (i.e. the total frequency resources are split into disjoint sets, and
each one is assigned to one BS). As optimization criteria we adopt the maximum RU and the
weighted sum of RU.

7.4.1 Minimization of the maximum RU

The minimization of the max RU (ρk=
αk
xk

) subject to the constraint that the sum of all resources
must be lower or equal to the total number of frequency resources is formulated as:

(P7,1) : minimize
{xk}

maxk

(
αk
xk

)
(7.9)

subject to
∑
k∈K

xk ≤ N,

where N is the total number of frequency resources. Problem (P7,1) in (7.9) is convex w.r.t.
{xk}. In the following we derive the optimal solution in closed-form.

Problem (P7,1) in (7.9) may be equivalently written as:

(P7,2) : minimize
{xk},t

t (7.10)

subject to

{
αk
xk
≤ t ∀n∑
k∈K xk ≤ N.

Problem (P7,2) in (7.10) is jointly convex w.r.t. {xk} and t. The optimal solution to (P7,2)
in (7.10) is such that all constraints are satisfied with equality [92]. This means that all RU are
equal: αk

xk
=ρ. Therefore, the optimal solution for {xk} in (P7,2) (and, consequently, in (P7,1))

has the following structure:

xk =
αk
ρ
. (7.11)
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By including (7.11) into the last constraint of problem (P7,2) in (7.10) we have:
∑

k∈K
αk
ρ =N ,

from which we can isolate ρ:

ρ =
1

N

∑
k∈K

αk. (7.12)

Then, by combining (7.11) and (7.12), the optimal solution for the resource provisioning
under orthogonal resource usage and minimum max RU is:

x∗k =
αk∑
l∈K αl

N. (7.13)

The optimal solution in (7.13) gives more frequency resources to those BSs experiencing higher
ratios among the average traffic load and the average spectral efficiency in DL and UL, i.e.
higher αk (see (7.8)).

7.4.2 Minimization of the weighted sum of RU

The minimization of the weighted sum of RU (ρk=
αk
xk

) subject to the constraint that the sum
of all resources must be lower or equal to the total number of frequency resources is given by:

(P7,3) : minimize
{xk}

∑
k∈K

µk
αk
xk

(7.14)

subject to
∑
k∈K

xk ≤ N,

where N is the total number of frequency resources and µk is the weighting coefficient associated
to the priority of the k-th BS. Problem (P7,3) in (7.14) is convex w.r.t. {xk}. Further, we can
solve it in closed-form as follows.

Let us denote by λ to the Lagrange multiplier associated to the constraint in (7.14). Then,
the Lagrangian function of problem (P7,3) in (7.14) is given by [92]:

L =
∑
k∈K

µk
αk
xk

+ λ

(∑
k∈K

xk −N

)
. (7.15)

The derivative of the Lagrangian function L in (7.15) equal to 0 leads to:

δL
δxk

= −µkαk
x2
k

+ λ = 0, (7.16)

such that the solution for xk is:

xk =

√
µkαk
λ

. (7.17)

By including (7.17) into the constraint of problem (P7,3) in (7.14), and setting the equality, we
obtain the optimal value for λ:

λ =

(∑
k∈K
√
µkαk

N

)2

. (7.18)
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Therefore, by combining (7.17) and (7.18), the optimal solution for the resource provisioning
under orthogonal resource usage and minimum weighted sum of RU is:

x∗k =

√
µkαk∑

l∈K
√
µlαl

N. (7.19)

Similarly as in the minimum max RU case (see (7.13)), the optimal solution in (7.19) gives more
frequency resources to those BSs experiencing higher αk (see (7.8)).

7.4.3 Mapping the solution into real resources

The optimal resource provisioning has been found as a continuous distribution of the total avail-
able spectrum. However, practical systems dispose of an integer number of frequency resources
to be allocated. So we should convert the optimal distribution into a discrete number of fre-
quency resources per-BS satisfying the constraint in (7.9):

∑
k∈K xk≤N , and then map it into

real frequency resources. The round down (i.e. use floor function) would always satisfy the con-
straint. But any other rounding that satisfies the constraint is a valid one. Afterwards, mapping
the number of frequency resources per-BS into real frequency resources is straightforward.

7.5 Graph-Based Resource Provisioning

In this section, we derive a long-term resource provisioning scheme when reuse of frequency
resources among BSs that have non-overlapping coverage areas is permitted. Similar criterion
as in Section 7.4 is adopted, but now we will impose orthogonality only among the sets of
frequency resources assigned to BSs in an interference situation. To do so, we use information
given by the interference graph (see Section 7.3) to formulate the problem and then exploit
graph coloring to solve it.

7.5.1 Problem formulation and resolution

Based on the interference graph, we impose that neighbor BSs (those connected through an edge
in the interference graph) cannot reuse frequency resources. This is done through the inclusion
of proper constraints into the optimization problem. We define an orthogonality constraint for
each maximal clique (see Definition 7.6 in Appendix 7.A) of the interference graph, where each
constraint includes the resources of all the vertices that conform each maximal clique.

As an example, Fig. 7.3 shows the interference graph in a one-tier network composed of
|K|=7 BSs. In this case, the set of orthogonality constraints derived from the interference graph
in Fig. 7.3, which will be represented by C in what follows, is given by:

C =

{
x1 + x2 + x4 ≤ N, x2 + x3 + x4 ≤ N,
x3 + x5 ≤ N, x5 + x6 + x7 ≤ N

}
. (7.20)

This set of orthogonality constraints defines a necessary condition for an implementable solution
to exist (i.e. any valid assignation of frequency resources that can be satisfied without conflicts
in the interference graph will satisfy the constraint set). Moreover, as we will see in Section 7.5.2,
said constraint set defines a necessary and sufficient condition for an implementable solution to
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Figure 7.3: Interference graph for a network of |K|=7 BSs.

exist and to be found if the interference graph has certain properties. Otherwise, the interference
graph can be slightly modified by adding some edges to meet the properties and hence ensuring
the sufficient condition.

According to the constraint set, we define the optimization problem by following the mini-
mization of a function of the RU (ρk=

αk
xk

) subject to the constraints extracted from the inter-
ference graph:

(P7,4) : minimize
{xk}

f

({
αk
xk

})
(7.21)

subject to C,

where the objective function f (.) depends on the optimization criterion:

f

({
αk
xk

})
=

{
maxk

(
αk
xk

)
if max RU∑

k∈K µk
αk
xk

if weighted sum RU
. (7.22)

Both max RU criterion and weighted sum of RU criterion have an objective function f
({

αk
xk

})
that is convex w.r.t. {xk}. Then, as the constraint set C is linear (and hence convex) on the
optimization variables, problem (P7,4) in (7.21) is convex w.r.t. {xk}. Although a closed-form
solution for resource provisioning cannot be obtained, problem (P7,4) in (7.21) can be solved in
polynomial time using convex optimization tools as, for instance, interior point methods [92].
Let us denote by {x∗k} to the optimal solution to problem (P7,4) in (7.21).

7.5.2 Mapping the solution into real resources

Once the optimal continuous distribution of spectrum to be assigned to each BS is obtained,
{x?k}, we should map it into specific frequency resources. First, rounding the optimal distribution
into an integer number of frequency resources per BS is required. Any rounding within the
constraint set C in (7.21) is a valid one. After the rounding, we should determine which are the
specific frequency resources to be used by each BS, i.e. we should map the number of frequency
resources per BS into real frequency resources. Multiple mappings may exist, but the key point
is to guarantee that there exists at least one implementable mapping. To obtain the mapping,
we define an extended graph and then use graph coloring to color it (where each color represents
a resource).



7.5. Graph-Based Resource Provisioning 187

Figure 7.4: Extended graph of the interference graph in Fig. 7.3. |K|=7 BSs, N=5 resources, x?1=2, x?2=1, x?3=1, x?4=2,
x?5=3, x?6=1, x?7=1.

The extended graph is built as follows:

• for each k-th BS, as many vertices as the number of frequency resources obtained from
discretizing the optimal solution to problem (P7,4) in (7.21) (i.e. x?k) are included, and

• all the vertices corresponding to the k-th BS have edges to all vertices corresponding to
all other BSs that were connected in the interference graph to the k-th BS.

Note that the extended graph is formed through the replication of vertices in the interference
graph according to the discretized solution of problem (P7,4) in (7.21). An example of the
extended graph corresponding to the interference graph in Fig. 7.3 is shown in Fig. 7.4 assuming
that N=5 frequency resources were available for optimization of problem (P7,4) in (7.21) and
that the obtained discretized solution was: x?1=2, x?2=1, x?3=1, x?4=2, x?5=3, x?6=1, x?7=1. Then,
we apply graph coloring over the extended graph.

Graph coloring is an NP-hard problem for arbitrary graphs. In addition, most of the coloring
algorithms were proposed to color a graph under the assumption that there are enough colors to
color the graph. When the number of colors is limited to N , proper N -coloring (see Definition
7.9 in Appendix 7.A) may not be possible. This is the reason why proper N -coloring cannot be
ensured in recent resource provisioning schemes provided in the literature (either in the long-
term [32] or in the short-term [170]): they use a graph that may not have a proper N -coloring
due to the randomness in the traffic loads and in the network deployment, see [32,170].

However, a well-known fact about graph coloring is that the chromatic number of a graph
X (G) (see Definition 7.10 in Appendix 7.A) is lower bounded by the clique number of the graph
ω(G) (see Definition 7.7 in Appendix 7.A): i.e. X (G)≥ω(G), being the bound tight for perfect
graphs [174, 175] (see Definition 7.12 in Appendix 7.A). In our case, the clique number of the
extended graph GE is exactly N : ω(GE)=N , as it was imposed in the constraint set (see (7.20)).
Therefore, as perfection is preserved through replication of vertices [175], if the interference graph
is a perfect graph then the extended graph will be a perfect graph with X (GE)=ω(GE)=N such
that the extended graph will have a proper N -coloring. So, for perfect graphs, the proposed
constraint set is a necessary and sufficient condition for an implementable solution to exist.

Note that the interference graph in Fig. 7.3 and its extended graph in Fig. 7.4, as well as
the interference graph used for simulations in Fig. 7.6, are perfect graphs.

Lemma 7.1. After determining the number of frequency resources required per BS by discretizing
the optimal solution to problem (P7,4) in (7.21) with N available frequency resources, proper N -
coloring of the extended graph is possible (i.e. an implementable mapping into real frequency
resources exists) if the interference graph is a perfect graph.
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Proof. The clique number of the extended graph is ω(GE)=N , as it is imposed by the constraints
to problem (P7,4) in (7.21) where N frequency resources are available (see (7.20)). Under the
assumption that the interference graph is a perfect graph (and, by replication, also the extended
graph is), then: X (GE)=N . So proper N -coloring of the extended graph is possible. �

Perfect graphs can be recognized in polynomial time [100]. There are many classes of perfect
graphs, see [99] where up to 120 classes are described. Moreover, any graph can be transformed
into a chordal graph (a class of perfect graphs, see Definition 7.14 in Appendix 7.A) by adding
few edges such that the graph possesses no cycles of length ≥4 [176]. Therefore, in case the
interference graph is not a perfect graph, we can transform it into a perfect graph, define the
constraint set accordingly, and hence ensure the sufficient condition.

Finally, optimal coloring of perfect graphs can be obtained with Greedy algorithms in poly-
nomial time [177, Sect. 9]. Therefore, an implementable solution does not only exist but can also
be found for any conditions of the BS loads. For example, we can color the extended graph with
X (GE)=N colors by applying any of the well-known low-complexity algorithms in [101], [178],
or [179].

7.6 Simulation Results

The scenario consists of a deployment of |K|=6 outdoor SeNBs (that act as BSs), which are
randomly placed within a circular area of 100 m radius with a minimum distance of 40 m
among them. |Ik| users are randomly placed around each k-th BS in a concentric 40 m radius
circle, with a minimum distance between users and BSs of 10 m. All BSs operate on the same
carrier frequency at 2 GHz with 10 MHz bandwidth, where there are N=50 RBs (i.e. frequency
resources) available. Path loss and shadowing models follow specifications in [63] for multi-cell
pico scenario. Downlink transmission is evaluated. The antenna pattern is omnidirectional and
the transmit power is 24 dBm at BS. Noise spectral density is -174 dBm/Hz.

As the objective of the following simulations is to show the benefits of the proposed long-term
resource provisioning schemes when the load varies per BS, the number of users associated to
each BS (|Ik|) is set to 20, 16, 6, 24, 8, 15 users, respectively. A deployment example is shown in
Fig. 7.5. DL transmission is considered for simulations.

The non-full buffer FTP3 traffic model [61] is used for traffic generation, where packets for
the same user arrive according to a Poisson process with arrival rate λ (in packets/s) and the
packet length is fixed and equal to L = 0.5 Mbits (i.e. Lk=L, ∀k). Then, the packet arrival rate
for the k-th BS is proportional to the number of users, i.e. λk=λ|Ik| in (7.2).

Results are averaged over 1000 random deployments of the users but, for simplicity, the BSs’
positions are kept fixed. We assume a threshold distance equal to 80 m. Hence, the interference
graph associated to the deployment in Fig. 7.5 is the one depicted in Fig. 7.6, from which the
set of orthogonality constraints for the graph-based reuse schemes are:

C=
{
x1 + x2 + x6 ≤ 50, x2 + x4 ≤ 50,
x1 + x5 ≤ 50, x4 + x5 ≤ 50, x3 + x4 ≤ 50

}
. (7.23)

1000 frames of 10 ms are simulated, being the simulation time equal to 10 s. On each frame,
the active users per BS (i.e. users with packets in the queues) are uniformly distributed among
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Figure 7.5: Example of network deployment used for simulations with |K|=6 BSs. The number of users at each BS is:
20, 16, 6, 24, 8, 15, respectively.
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Figure 7.6: Interference graph associated to the network deployment in Fig. 7.5. The threshold distance is 80 m.

the available RBs. The number of available RBs per BS is determined in the long-term based
on the different schemes.

The following techniques are evaluated:

• orthogonal uniform: the 50 RBs are orthogonally distributed among the 6 BSs in an
almost uniform manner.

• orthogonal maxRU: the 50 RBs are orthogonally distributed among the 6 BSs according
to the proposed resource provisioning in Section 7.4 to minimize the max RU (see (P7,1)
in (7.9)). The distribution follows the closed-form solution in (7.13).

• orthogonal sumRU: the 50 RBs are orthogonally distributed among the 6 BSs according
to the proposed resource provisioning in Section 7.4 to minimize the sum of RU (see (P7,3)
in (7.14)). µk=1 is used, ∀k. The distribution follows the closed-form solution in (7.19).

• full reuse: the 50 RBs can be employed by all the 6 BSs whenever they have packets to
transmit. Interference is generated if two neighboring BSs transmit on the same resource.

• frequency reuse 1/3: frequency reuse scheme with reuse factor equal to 1/3, i.e. the 50
RBs are split into three disjoint sets (or subbands) and the neighboring BSs transmit on
different subbands.
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• graph-based reuse maxRU: the 50 RBs are distributed among the 6 BSs according to
the proposed resource provisioning in Section 7.5 to minimize the max RU subject to the
constraints imposed by the interference graph in Fig. 7.6 (see (P7,4) in (7.21)).

• graph-based reuse sumRU: the 50 RBs are distributed among the 6 BSs according to
the proposed resource provisioning in Section 7.5 to minimize the sum of RU subject to
the constraints imposed by the interference graph in Fig. 7.6 (see (P7,4) in (7.21)). µk=1
is used, ∀k.

In all the proposed schemes based on RU optimization, i.e. ’orthogonal maxRU/sumRU’
and ’graph-based reuse maxRU/sumRU’, the average spectral efficiency is assumed to be equal
for all BSs (Ck=C,∀k) as all BSs (that correspond to SeNBs) dispose of the same power, users
are uniformly distributed within the same area, and a round-robin scheduler is adopted. Then,
as the packet arrival rate (λk=λ|Ik|) and the packet length (Lk=L) are fixed, the ratio among
the average traffic load and the average spectral efficiency is given by: αk=|Ik|λL/C (see (7.2)).

Fig. 7.7.(a) shows the maximum RU versus λ (in packets/s). The maximum RU corresponds
to the average over deployments of the maximum RU among the 6 BSs. It can be observed
that ’graph-based reuse maxRU’ reduces significantly the max RU as compared to all the other
schemes, except for very low traffic loads (λ=0.5) where full reuse is better. ’orthogonal maxRU’
reduces the max RU as compared to ’orthogonal uniform’ and, as the traffic load (i.e. λ)
increases, it also improves ’full reuse’ and ’frequency reuse-3’. This is because i) in ’full reuse’
there is an increased level of interference that cannot be controlled and ii) in ’frequency reuse-
3’ the resources are equally distributed, which make these schemes being saturated (in terms
of occupancy) earlier than ’orthogonal maxRU’ as λ increases. Therefore, resources are fairly
allocated with the proposed schemes based on RU optimization because they allow distributing
the resources by taking into account the per-BS traffic loads and spectral efficiencies such that
all BSs have a similar RU. To conclude, the scheme that provides the lowest max RU and can
work in a large range of traffic loads without being saturated is the proposed ’graph-based reuse
maxRU’, as it allows an efficient reuse and distribution of resources where strong interference
conditions are avoided.

Fig. 7.7.(b) shows the sum of RU versus λ (in packets/s). The sum RU corresponds to the
average over deployments of the sum of RU of the 6 BSs. Similar conclusions as in Fig. 7.7.(a)
can be extracted, but now in terms of sum RU. The scheme that provides the lowest sum RU and
can work in a large range of traffic loads without being saturated is the proposed ’graph-based
reuse sumRU’.

Fig. 7.8 displays the total traffic served by each scheme and the total offered traffic (in
Mbits/s) versus λ (in packets/s). All the orthogonal-based schemes (’orthogonal uniform’ and
’orthogonal maxRU/sumRU’) get saturated in terms of served traffic as λ increases because
the number of resources per BS is low and all BSs are highly occupied for high values of λ.
The remaining schemes have already not reached the maximum occupancy at all the BSs (al-
though maybe in some BSs) with λ=3 packets/s. It can be observed that ’graph-based reuse
maxRU/sumRU’ allow serving all data traffic for low values of λ but, in addition, it allow serving
the maximum quantity of the traffic as λ increases.

Fig. 7.9 depicts the mean packet delay (in s) versus λ (in packets/s). The packet delay
is computed from the moment the packet arrives at the queue to the moment in which the
transmission of the whole packet is completed. During the simulation time, only packets whose
transmission is completed are used to compute the mean. It can be observed that the mean
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Figure 7.7: RU-function vs. packet arrival rate per user (λ, in packets/s).
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Figure 7.8: Served traffic and offered traffic (in Mbits/s) vs. packet arrival rate per user (λ, in packets/s).
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Figure 7.9: Mean packet delay (in s) vs. packet arrival rate per user (λ, in packets/s).
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Figure 7.10: CDF of RU for λ=1.5 packets/s.
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Figure 7.11: CDF of packet delay (in s) for λ=1.5 packets/s.

packet delays are reduced with the proposed schemes for medium values of λ, and that ’graph-
based reuse maxRU’ scheme provides a significantly lower value of the mean packet delay for all
the simulated packet arrival rates λ.

Therefore, although we have focused on the minimization of the occupancies (or RU) of all
the BSs, it can be concluded from Fig. 7.8 and Fig. 7.9 that optimization of the RU is effectively
translated into an increase of the served traffic and a reduction of the mean packet delay in a
multi-cell scenario.

Fig. 7.10.(a) shows the cumulative distribution function (CDF) of the RU of all BSs in
the network for λ=1.5 packets/s. It can be observed that the dispersion of RU values with
’orthogonal uniform’, ’full reuse’, and ’frequency reuse 1/3’, is very large. On the contrary, the
proposed ’orthogonal maxRU’ and ’graph-based reuse maxRU’ allow having the RU of all BSs
in a reduced range of values, i.e. the variability in the occupancy of the BSs is much low thanks
to the efficient distribution of radio resources.

Fig. 7.10.(b) displays the CDF of the RU of each of the 6 BSs separately for λ=1.5 packets/s.
Again, the dispersion of the RU values can be observed to be different with each scheme, and to
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be more concentrated with ’orthogonal maxRU’ and ’graph-based reuse maxRU’ schemes. Also,
it is important to note that with ’orthogonal maxRU’ all BSs have a similar RU, because equal
RU for all BSs was the optimal solution to problem (P7,1) in (7.9). In contrast, in ’graph-based
reuse maxRU’, the RU values of the different BSs are not as concentrated as in ’orthogonal
maxRU’ because the optimal solution for the problem (P7,4) in (7.21) does not imply all BSs
having the same RU. It can also be observed that ’graph-based reuse maxRU’ is the scheme that
has a lowest max RU.

Fig. 7.11 shows the CDF of the packet delay for λ=1.5 packets/s. We can observe that the
packet delays are significantly reduced with the proposed schemes, and specially with ’graph-
based reuse maxRU’. Also, the dispersion of the packet delay values is much low in the proposed
schemes than in the static resource allocation approaches.

7.7 Conclusions

This chapter proposes long-term frequency resource provisioning schemes for dense OFDMA-
based networks. We derive procedures to allocate frequency resources among different TDD
BSs by following the optimization of the resource utilization factors, or occupancies, of the BSs
(both in DL and UL transmissions). The mean traffic load per BS in DL and UL transmit
directions as well as the average effective DL/UL capacity per BS are taken into account in the
problem formulation. The optimization is performed in the long-term, hence being independent
of the users to be served at a specific time instant but dynamic enough to follow significant
variations of the average DL/UL traffic load per BS. When orthogonal resource usage among
BSs is assumed, the optimal distribution of resources to be used per BS is obtained in closed-
form. In case of allowing to reuse resources among BSs, we present a procedure in which the
optimization problem is set according to the interference graph, then it is optimally solved using
convex optimization tools and discretized to get the number of resources per-BS, and finally
graph coloring is applied to map the obtained solution into real resources.

Simulation results show that the maximum RU and the sum of RU are significantly reduced
with the proposed graph-based reuse scheme, as it allows an efficient reuse of resources while
avoiding strong interference conditions. In addition, it is shown that the optimization of the RU
of all BSs translates into an improvement of the total amount of served traffic and an effective
reduction of the mean packet delay for all the simulated traffic load conditions.





Appendices

7.A Preliminaries for Graph Theory

Graph theory is a wide area of discrete mathematics, for which a complete reference can be
found in [102]. This section formalizes a few concepts about graph theory, and specially about
graph coloring.

Some basic definitions are presented next.

Definition 7.1. An undirected graph G is a mathematical structure consisting of an ordered
pair G=(V, E), where V is the finite set of elements called vertices and E is a finite unordered
pairs of vertices called edges.

Definition 7.2. Two vertices u, v∈V are called adjacent if {u, v}∈E. In other words, two vertices
are adjacent if there is a line, the edge, connecting them.

Definition 7.3 (Vertex degree). The degree of a vertex v∈V, denoted by deg(v), is the number
of edges incident to vertex v.

Definition 7.4 (Maximum vertex degree). The degree of a graph G, denoted by ∆(G), is the
maximum degree of a vertex in G, i.e. ∆(G)= maxv deg(v).

Definition 7.5 (Clique). A clique of a graph G is a complete subgraph of G, i.e. a subset of V
such that for every two vertices there exists an edge connecting the two.

Definition 7.6 (Maximal Clique). A maximal clique of a graph G is a complete subgraph of G
that cannot be extended by including one more adjacent vertex, meaning it is not a subset of a
larger complete subgraph of G.

Definition 7.7 (Clique number). The clique number of a graph G, denoted by ω(G), is the
cardinality of the largest maximal clique of the graph.

The degree (∆(G)) and the clique number (ω(G)) of a graph are two important measures.
The degree can be easily computed from the connections of the vertices. Algorithms to find all
the maximal cliques of a graph are available in the literature (e.g. in [180]), from which the
clique number can be determined.

Now, concepts about graph coloring (in the sense of vertex coloring) are presented27.

27Graph coloring can refer either to edge coloring or to vertex coloring. Within the Ph.D. dissertation, graph
coloring is used to refer to vertex coloring.
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Vertex coloring is an assignment of labels or colors to each vertex of a graph such that no
edge connects two identically colored vertices. The most common type of vertex coloring seeks
to minimize the number of colors for a given graph. Such a coloring is known as a minimum
vertex coloring, and the minimum number of colors which with the vertices of a graph may be
colored is called the chromatic number, denoted by X (G), as introduced in the following.

Definition 7.8 (Proper Coloring). A proper vertex coloring (or proper coloring) of a graph is
an assignment of colors to the vertices of the graph such that no adjacent vertices have the same
color.

Definition 7.9 (Proper N -coloring). A proper N -coloring of a graph is an assignment of colors
to the vertices of the graph such that no adjacent vertices have the same color when N colors
are available.

Definition 7.10 (Chromatic number). The chromatic number of a graph G, denoted by X (G),
is the minimum number of different colors required for a proper coloring of the graph.

Therefore, every graph has a proper N -coloring for N≥X (G).

Graph coloring is an NP-hard problem for arbitrary graphs. In addition, most of the vertex
coloring algorithms were proposed to color a graph under the assumption that there are enough
colors to color the graph. When the number of colors is limited to N , proper N -coloring may
not be possible (i.e. it might happen that N<X (G)).

However, a well-known fact about graph coloring is that the chromatic number X (G) is lower
and upper bounded as stated in the following theorem.

Theorem 7.1 (Bounds on the chromatic number). Every graph can be properly colored with
one more color than the maximum vertex degree and no less than the clique number, i.e.:

ω(G) ≤ X (G) ≤ ∆(G) + 1 (7.24)

The upper bound in (7.24) comes from the Greedy coloring algorithm [177], which shows
that every graph can be colored with one more color than the maximum vertex degree. The
upper bound in (7.24) is in fact improved by the Brook’s theorem, which states that X (G)≤∆(G)
unless G is a complete graph or an odd cycle.

The lower bound in (7.24) arises directly from the fact that if a graph has a maximum clique
of size ω(G) then at least ω(G) colors are required to color the vertices of that graph. The lower
bound in (7.24) is tight for perfect graphs [174,175] (which are also known as Berge graphs), for
which we pay a special attention.

Definition 7.11. An induced subgraph of a graph G is another graph, formed from a subset of
the vertices of G and all of the edges connecting pairs of vertices in that subset.

Definition 7.12 ([175] - Perfect graph). A perfect graph is a graph in which the chromatic
number of every induced subgraph, including the graph itself, equals the size of the largest maximal
clique of that subgraph.

Perfect graphs have many important properties. In all perfect graphs, the graph coloring
problem and the maximum clique problem can all be solved in polynomial time [177]. Another
important property is that perfection is preserved through the replication of vertices in the
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graph [175] (i.e. for a perfect graph, we can replicate any vertex of the graph and the resulting
graph is also a perfect graph).

For many years the complexity of recognizing perfect graphs remained open. Finally, subse-
quent to the proof of the strong perfect graph theorem (presented in what follows), a polynomial
time algorithm was discovered to recognize perfect graphs [100].

Definition 7.13. The complement or inverse of a graph G is a graph H on the same vertices
such that two distinct vertices of H are adjacent if and only if they are not adjacent in G.

Theorem 7.2 ([174] - Strong perfect graph theorem). A graph G is a perfect graph if and only
if neither G nor its complement have an odd-length induced cycle of length 5 or more.

There are many classes of perfect graphs, including many important families of graphs. Up
to 120 classes are described in [99]. Some important classes are: bipartite graphs, chordal graphs
(which include interval graphs as subclasses), line graphs, and comparability graphs.

Moreover, any graph can be transformed into a chordal graph (and, hence, a perfect graph)
by adding some edges such that the graph possesses no cycles of length 4 or more [176,181].

Definition 7.14 (Chordal graph). A chordal graph is a graph in which every cycle of length
four and greater has a cycle chord, i.e. an edge.
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Conclusions

This Ph.D. dissertation has focused on interference management for dense MIMO cellular net-
works. In particular, we have investigated:

• advanced signaling schemes (subsuming improper Gaussian signaling (IGS) and proper
Gaussian signaling (PGS)) in Chapter 2,

• transmit coordination strategies for inter-cell interference management in Chapters 3-4-5,
including transmit coordination and transmit cooperation as well as the coexistence of
linear and widely linear transceivers, and

• traffic-aware and interference-aware resource management techniques for flexible duplexing
in Chapters 6-7, comprising short-term and long-term optimizations.

Advanced signaling schemes

The first part of this work (i.e. Chapter 2) analyzes advanced signaling schemes for interference-
limited wireless scenarios by focusing on different statistical characterizations of the signals. In
this regard, majorization theory has been exploited to formally quantify the strict superiority of
IGS over PGS for the simple MIMO point-to-point channel with interference (P2P-I). Strictly
positive bounds have been derived for the achievable rate and the mean square error (MSE)
improvement when using IGS as compared to PGS. It has been observed that the achievable
rate and the MSE gains with IGS are larger as the interference level increases.

Based on these results, the potential benefits of IGS have been applied to different MIMO
interference-limited scenarios through an efficient design of widely linear transceivers that does
generate IGS. First, a practical IGS-based scheme is derived for the MIMO Z-interference channel
(Z-IC), which does not require knowledge of the interference channel but allows trading on
system fairness and sum-rate performance. In this case, it is again observed that the larger the
interference level is the larger the gain is obtained with IGS-based schemes.

Second, the benefits of IGS are applied to the downlink (DL) transmission of co-channel
heterogeneous cellular networks (HCNs) where macrocells and smallcells coexist and multiple
MIMO Z-IC (with high levels of interference) appear. In this scenario, 3GPP-compliant simula-
tions show that user throughputs are significantly improved with the proposed IGS-based scheme
as compared to conventional time-sharing solutions, PGS-based schemes, and eICIC techniques,
due to the fact that the proposed scheme can cope with a full reuse of the frequency bands and
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time slots while providing enough flexibility to combat the predominant cross-tier interference
generated from a macrocell to the users served by smallcells in co-channel HCNs. The proposed
IGS-based scheme does not only avoid the estimation of the interference channels but also avoids
optimization of the muting ratio and addressing the on/off switching of the macrocells (needed,
e.g., for eICIC and time-sharing). It is therefore highly recommended for systems where a single
strong interference appears such that the MIMO Z-IC can be identified.

Future research lines include:

• finding tighter bounds for the achievable rate and MSE improvement in the MIMO P2P-
I when using IGS as compared to PGS. Positive bounds have been derived so far, but
they have been shown to be loose and larger differences between IGS and PGS usage
are observed through simulations (see Fig. 2.4). In this sense, majorization theory for
strongly Schur-convex and strongly Schur-concave functions [130] should be followed as
well, but the strong-convexity and strong-concavity properties of the achievable rate and
MSE functions should be deeply characterized.

• the derivation of the optimal precoding design for weighted sum-rate maximization in the
MIMO Z-IC when IGS is adopted. In this work, a practical and heuristic design has been
proposed for the MIMO Z-IC (which does already outperform PGS-based solutions thanks
to the use of IGS), but the optimal scheme remains unknown. The optimal scheme for
the SISO Z-IC with IGS has been derived in [122]. Extension to MIMO systems could be
investigated.

• analyzing the application of IGS to more complex interference-limited scenarios, like the
multi-cell multi-user MIMO scenario where multiple potential interfering BSs might ap-
pear. Also, application to other interference-limited scenarios is highly relevant as well.
There are already some works available in the literature that show the superiority of IGS
for underlay cognitive radio systems (see [114–117]) and full-duplex systems (see [118,119]).

Transmit coordination strategies

The second part of the Ph.D. dissertation aims at deriving transmit coordination procedures to
manage interference in dense networks when full reuse of time and frequency resources among
BSs densely deployed in the network is adopted. To do so, a wide deployment of MIMO systems
has been leveraged to develop advanced multi-antenna signal processing techniques.

In Chapter 3, decentralized and coordinated precoding designs have been derived to manage
interference in the DL of a multi-cell multi-user MIMO system. The proposed procedures exploit
channel reciprocity in TDD systems so as to estimate the interference-cost matrix (which allows
managing inter-cell interference) based on the covariance matrix of the received interference-
plus-noise signal in a properly configured uplink (UL) transmission. Thus, the interference-cost
matrix is obtained over-the-air without requiring estimation of the interfering channel matrices.
Thanks to that, the impact of imperfect estimation of the interfering channel matrices and the
stringent backhaul requirements for transmit coordination in dense networks are alleviated, only
at the cost of a synchronized DL-UL protocol that has been defined. In this sense, decentralized
designs have been developed assuming either perfect or imperfect channel knowledge of the
direct channel matrices.

The monotonic convergence of the proposed decentralized and iterative procedure is demon-
strated when all parameters are perfectly acquired and simultaneous per-BS optimizations are
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performed. This proof is highly relevant for practical implementation issues, as when only one
iteration (or a few) of the algorithm can be performed a performance improvement with parallel
and independent per-BS optimizations is guaranteed.

Methods to implement the proposed technique by following 3GPP-based mechanisms have
been investigated. It has been recommended to use a coordinated transmission of the already
defined sounding reference signals (SRS) in LTE so as to estimate the interference-cost matrices.
Finally, robustness under imperfect acquisition of the interference-cost matrices (either due to the
use of non-orthogonal pilot signals or due to non-ideal TDD channel reciprocity) and imperfect
estimation of the direct channel matrices has been shown through simulations.

Next, in Chapter 4, the concepts presented in Chapter 3 have been extrapolated to manage
interference in the DL transmission of a multi-cell multi-user MIMO system where transmit
cooperation among a small number of BSs is allowed. We have derived procedures for the
joint design of BSs clustering and transmit precoding under a user-centric approach in which a
cluster of BSs is defined per user (i.e. UE-centric clustering). The problem has been properly
formulated so as to allow obtaining small cluster sizes by including a penalizing term in the
objective function that allows taking out of the cluster those BSs using low power. Differently
from Chapter 3, for decentralized implementation, not only the interference-cost matrices are
acquired but also the coupling in the transmit power among BSs belonging to different clusters
has been decoupled.

It is important to recall that the proposed procedure could also be used to optimize precoding
design for CoMP-JT under a BS-centric clustering scheme. In this sense, UE-centric clustering
and BS-centric clustering schemes have been compared through simulations. Results have shown
the suitable applicability of UE-centric clustering schemes for dense and irregular deployments
of smallcells, since a significant improvement is obtained in the 5%-tile per-user rate. Also, an
effective reduction of the cluster size is achieved with the proposed design.

To finalize the study, the complementarities of CoMP-JT and the use of multiple anten-
nas at BSs have been analyzed. Simulation results in 3GPP-compliant dense smallcell network
scenarios show that 4 smallcells are enough for transmit cooperation in most of the cases, other-
wise increasing the cluster size provides low performance benefits. Whether the larger gains are
obtained by increasing the cluster size for CoMP-JT or by using additional transmit antennas
at BSs depends on the scenario (symmetric or non-symmetric) and on the channel conditions
(high/medium/low antenna correlation). However, it is worth recalling that the potential com-
plementarities of using CoMP-JT and adding multiple antennas per BS are observed in all cases.

Then, in Chapter 5, the procedures derived in Chapter 3 have been extended to the case of an
heterogeneous (linear and widely linear) MIMO transceiver deployment in multi-cell scenarios.
The heterogeneous scenario arises naturally due to the use of different signaling schemes: IGS and
PGS (which have been previously analyzed in Chapter 2). In this sense, coordinated precoding
designs are proposed for multi-cell MIMO systems, which do jointly exploit the benefits of
transmit coordination and the use of IGS. Both centralized and decentralized implementations
have been investigated.

Simulation results show that the gains from the heterogeneity of linear and widely linear
transceivers in terms of sum-rate are significant in two different non-exclusive conditions: when
the interference level increases (either due to a large number of interfering BSs or owing to the
presence of a strong interfering BS) or when the number of transmit/receive antennas is low. If
the interference level is not significant or dimensions are already provided by adding multiple
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antennas at transmitters and receivers, the proposed coordinated transceiver scheme leads to a
PGS-based solution.

Let us recall that weighted sum-rate maximization in the MIMO interference broadcast
channel (which models a multi-cell multi-user MIMO system) is a non-convex (and NP-hard)
problem. In this sense, all the approaches for interference management presented in this part of
the doctoral thesis are not guaranteed to reach the global maximum weighted sum-rate solution,
but rather a local optimum is achieved. Accordingly, the weighted sum-rate maximization with
linear transceivers in MIMO interference broadcast channels is still an open problem.

Future work involves:

• the application of the proposed schemes to FDD systems, whereby transformations in
the frequency domain should be derived. Frequency-domain transformations have been
studied in [182, 183], and should be redefined to allow estimation of the interference-cost
matrix through an UL transmission that is carried out in a different band.

• investigating larger levels of decentralization for UE-centric clustering and precoding design
in cooperative-based transmissions (i.e. CoMP-JT). In Chapter 4, the decentralization is
achieved at the cluster-level (i.e. for a small set of BSs) assuming knowledge (at the BS
master of the cluster) of the channel matrices from the BSs in the cluster towards the user.
However, it would be interesting to perform a decentralization at the BS-level when only
local channel matrix knowledge is available (i.e. from the BS towards the user). This way,
processing among cooperative BSs that belong to the same cluster could be decoupled.
Such level of decentralization corresponds to the worst-case scenario for CoMP-JT, in
which only data sharing among BSs is assumed. Its investigation has already been started
in [184] for given cluster sizes. Extensions of the strategies presented in this work could
be used to find joint optimal clustering and precoding design for the fully decentralized
CoMP-JT case.

• including per-BS backhaul rate constraints into the problem formulation for joint clustering
and precoding design in cooperative-based transmissions (i.e. CoMP-JT). The resulting
optimization problem is very difficult to deal with. It has been addressed in [82] whereby,
after applying approximations of the norm function, the per-BS backhaul rate constraints
were approximated by a fixed value that was iteratively updated. Therefore, gap for further
improvement seems to be available.

Traffic-aware duplexing techniques

The last part of this thesis focuses on interference-awareness and traffic-awareness radio resource
allocation, where not only interference but also traffic load and traffic asymmetry conditions in
dense networks are taken into account for resource management. Two different optimization time
frames are followed in two separated chapters. For short-term management, the deployment
of MIMO systems is capitalized to develop advanced coordinated strategies. For long-term
management, graph coloring is exploited to distribute resources among densely deployed BSs.

In Chapter 6, short-term optimization procedures have been derived for flexible duplexing
in MIMO TDD systems when a full reuse of the spectrum is assumed and a short-length single-
direction frame structure is adopted. In this sense, the joint design of transmit precoding,
user scheduling and transmit direction selection is investigated. The concepts for interference
management presented in Chapter 3 have been used, but the whole problem formulation has
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been modified to include DL/UL traffic asymmetry conditions among BSs and to address the
new types of interference that appear under flexible duplexing. To solve the general problem,
decomposition methods (including stochastic approximation recursions and the interference-
cost concept) have been applied. The derived approach provides high flexibility to match the
average DL/UL traffic asymmetries at each BS while managing interference at the short-term,
but assumes knowledge of all channel matrices.

Simulation results show gains in DL and UL average rates for different traffic asymmetries,
network densities and user densities as compared to existing schemes for dynamic TDD. But the
gains are larger for systems with a low number of antennas because they have less flexibility for
interference management through the coordination of transmit/receive spatial filters and hence
larger gains can be obtained by jointly optimizing the transmit direction.

Interesting future work comprises:

• the investigation of the multi-user access (i.e. multiple users being simultaneously served at
every frame either in DL or in UL), whereby user grouping strategies should be optimized
together with the precoding design and the transmit direction selection. To do so, the
constraint in (6.4) should be modified (e.g. by setting a maximum number of simultaneous
users that the BS can serve) and the system model should be reformulated in order to
include intra-cell interference.

• the application of the proposed approaches to OFDMA-based networks, in which users
from the same BS are assigned to orthogonal resources at each frame (and each frame
can be either for DL or for UL). In this case, a new constraint should be included in the
problem formulation in (6.13), in a way such that a single transmit direction (either DL
or UL) is chosen for all frequency resources at every BS on each frame.

• the inclusion of per-user DL/UL minimum average rate constraints in (6.9) to allow ful-
filling quality of service requirements of the users. In this sense, one should investigate
how these constraints translate into instantaneous per-user DL/UL rate constraints to be
included in the decomposed per-frame problem in (6.13).

In Chapter 7, graph coloring has been exploited to derive long-term resource provisioning
schemes for OFDMA-based networks. We have focused on long-term resource management with
the objective of distributing frequency resources among BSs densely deployed in the network
according to their average traffic load and average traffic asymmetry conditions while avoiding
strong interference conditions. So, the distribution is independent of the specific users to be
served at a specific time instant. In this sense, a novel approach based on optimization of the
resource utilization (RU), or occupancies, of the BSs is proposed. The proposed approach is
based on solving an RU-based optimization problem and then uses graph coloring to map the
obtained result into real frequency resources. Differently from previous works, the proposed
approach ensures that the application of graph coloring will provide an implementable solution
for any conditions of the traffic loads.

In addition to improving load distribution and enhancing RU-based network metrics, simu-
lation results have shown that the optimization of the RU factors of all BSs is translated into
an improvement of the total amount of served traffic and an effective reduction of the mean
packet delay, since resources are fairly distributed among BSs according to their traffic loads
and spectral efficiencies. The proposed approaches are useful for dense, irregular, and interfered
wireless networks, in which neither the conventional long-term resource provisioning schemes
nor the full frequency reuse (without short-term coordination) are shown to be efficient.
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Potential research lines include:

• the use of power control in frequency-domain (i.e. per frequency resource, which can be
related to resource blocks, subbands, or component carriers) for the RU-based long-term
resource provisioning schemes. Note that in Chapter 7 we have assumed an spectral power
mask per frequency resource, such that the average spectral efficiencies in DL and UL do
not depend on the number of resources assigned per BS. However, under power control,
the average spectral efficiencies in DL and UL would depend on the number of actual
resources given to each BS as well as on the power distribution. To allow it, the RU
factors presented in (7.1)-(7.2) should be modified in order to include the DL/UL transmit
powers as optimization variables within the DL/UL average spectral efficiencies, and the
adequate problem should be formulated and solved.

• analyzing graph-based resource provisioning schemes (as the ones proposed in Section 7.5)
where the spatial reuse factor is further improved and, at the same time, inter-cell inter-
ference is controlled. This could be done, for instance, by using different power levels per
frequency resource and defining different interference-graphs according to the established
power levels. This way, a BS could reuse a frequency resource employed by a neighbor BS
provided that a low power level is used on that resource.

• investigating the decentralized implementation of the graph-based resource provisioning
schemes proposed in Section 7.5. Both the RU-based optimization problem in (7.21) and
the vertex-coloring algorithm are performed in a centralized fashion. But, as we move
towards dense networks, the decentralized implementation of resource allocation and in-
terference management problems (or, at least, hybrid solutions between centralized and
decentralized) is receiving much attention. Therefore, it would be interesting to find de-
centralized solutions to both: the RU-based optimization problem and the graph coloring.
Decentralized implementation of graph coloring algorithms can be found, e.g., in [185].
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