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Abstract

The cinema and television industries are continuously working in the development
of image features that can provide a better visual experience to viewers; these
image attributes include large spatial resolution, high temporal resolution (frame
rate), greater contrast, and recently, with emerging display technologies, much
wider color gamut. The gamut of a device is the set of colors that this device is
capable of reproducing. Gamut Mapping Algorithms (GMAs) transform colors of
the original content to the color palette of the display device with the simultaneous
goals of (a) reproducing content accurately while preserving the artistic intent of
the original content’s creator and (b) exploiting the full color rendering potential
of the target display device. There are two types of gamut mapping: Gamut
Reduction (GR) and Gamut Extension (GE). GR involves the transformation of
colors from a larger source gamut to a smaller destination gamut. Whereas in GE,
colors are mapped from a smaller source gamut to a larger destination gamut.

In this thesis we propose three spatial Gamut Reduction Algorithms (GRAs)
and four spatial Gamut Extension Algorithms (GEAs). These methods comply
with some basic global and local perceptual properties of human vision, producing
state of the art results that appear natural and are perceptually faithful to the
original material. Moreover, we present a psychophysical evaluation of GEAs
specifically for cinema using a digital cinema projector under cinematic (low
ambient light) conditions; to the best of our knowledge this is the first evaluation
of this kind reported in the literature. We also show how currently available image
quality metrics, when applied to the gamut extension problem, provide results
that do not correlate well with users’ choices.
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Resum

Les indústries de cinema i televisió estan treballant contı́nuament en el desenvolu-
pament de diferents caracterı́stiques de la imatge que puguin proporcionar una
millor experiència visual per als espectadors; aquests atributs d’imatge inclouen la
resolució espacial, la resolució temporal (fotogrames per segon), major contrast i,
recentment, amb les noves tecnologies de visualització emergents, una gamma de
colors (gamut) molt més ampli. El gamut d’un dispositiu és el conjunt de colors
que aquest dispositiu és capa de reproduir. Els algoritmes de modificació de
gamut (GMA, de les seves sigles en anglés) transformen els colors del contingut
original a la paleta de color del dispositiu de visualització amb els objectius de
(a) reproduir el contingut amb precisió preservant al mateix temps la intenció
artı́stica del creador del contingut original i (b) utilitzar tot el gamut de color del
dispositiu de visualització. Hi ha dos tipus d’algoritmes de modificació de gamut:
Reducció de Gamut (GR) i Extensió de Gamut (GE). GR implica la transformació
dels colors d’un gamut d’origen més gran a un gamut de destinació més petit.
Mentre que a GE, els colors s’assignen d’un gamut d’origen petit a un gamut de
destinació més gran.

En aquesta tesi es proposen tres algoritmes de Reducció de Gamut (GRAs)
i quatre algoritmes d’extensió de Gamut (GEAs). Aquests mètodes compleixen
amb algunes propietats perceptives globals i locals bàsiques de la visió humana,
produint resultats que són estat de l’art, i que són naturals i perceptualment fidels
al material original. D’altra banda, es presenta una avaluació psicofı́sica del
problema d’extensió de Gamut especı́ficament dissenyada per a cinema utilitzant
un projector de cinema digital en condicions cinemàtiques (baixa llum ambiental);
aquest estudi creiem que és el primer del seu tipus a la literatura. També mostrem
com les mètriques de qualitat d’imatge disponibles actualment proporcionen
resultats que no es correlacionen bé amb l’elecció dels usuaris quan s’apliquen al
problema d’Extensió de Gamut.
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CHAPTER 1

Introduction

To enhance the overall viewing experience both for cinema and television (TV),
the media industry is continuously striving to improve image quality with higher
frame rates, larger resolution, vivid colors, and greater contrast. The normal
human eye contains three types of cone cells that respond to incident light to
produce the sensation of color. Two lights that produce the same cone response
triplet are perceived as having the same color, even if they have a different
physical power distribution. This allows to generate any perceivable color by
a proper mixture of any three given lights (as long as they are colorimetrically
independent, i.e. that the mixing of two of them does not produce the same color
as the remaining one), in what is known as the trichromacy property. Therefore,
given three light ‘primaries’, any color is characterized by the triplet of weights
with which it can be generated as a mixture of the primaries. So colors can be
represented as points in a three-dimensional space, although it is common to
ignore light intensity and just represent the chromatic content of light as two-
dimensional points on a plane: Fig. 1.1 shows the standard CIE (International
Commission on Illumination) xy chromaticity diagram, where the horseshoe-
shaped region corresponds to the chromaticities of all the colors a standard
observer can physiologically see. While the trichromacy property states that any
color can be expressed as a linear combination of a given set of primaries, it is
important to note that the weights for the linear combination can be negative.
Since most display systems are based on mixing three primary lights by regulating
the power contribution of each, the color set that a display can generate (its color
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Visible Spectrum

Pointer's Gamut

BT.709 Gamut
DCI-P3 Gamut

BT.2020 Gamut

Figure 1.1: Gamuts on CIE xy chromaticity diagram.

gamut) is limited to the colors that can be obtained with linear combinations that
use positive weights, because negative weights imply a physically-unrealizable
light of negative power. Given that each primary can be represented as a point
in the CIE xy diagram, the color gamut of a display is therefore the triangle that
has the primaries as its vertices, i.e. the region covered by linear combinations
with positive weights, and as a consequence trichromatic displays are unable to
reproduce many colors that we can see. With the goal of making a display device
that can reproduce more of the colors that our visual system can perceive, several
multiple-primary displays have been proposed that make use of four [Chino
et al., 2006], five [Ueki et al., 2009], [Cheng et al., 2010], and even six color
primaries [Yang et al., 2005], [Sugiura et al., 2006b], [Sugiura et al., 2006a], [Ajito
et al., 2000], [Roth et al., 2003], however, the quest to make an optimal display
still continues.

State of the art digital movie cameras (ARRI Alexa, RED Epic, Canon EOS
C700, etc.) are capable of shooting content with a large range of colors. However,
before a movie is released, its colors have to be reproduced according to the
standard gamuts: DCI-P3 [SMPTE, 2011] is used for digital cinema projection
and it is based on the gamut of Xenon lamps, and BT.709 [ITU-R, 2002], with
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primaries close to the phosphor primaries of cathode ray tubes (CRTs), is used
for cable and broadcast TV, DVD, Blu-Ray and streaming. These standard color
gamuts DCI-P3 and BT.709 (shown in Fig. 1.1) exist to ensure a consistent movie
presentation across different digital cinema projectors and TVs, respectively. This
adaptation to standard gamut implies altering the range of colors (and contrast)
of the original captured content. To reach the objective of color reproduction, in
the cinema industry, colorists (expert technicians) at the post-production stage
perform gamut modifications using three-dimensional look-up tables (LUTs).
These LUTs contain millions of entries and colorists only specify a few colors
manually, while the rest are interpolated without taking care of their spatial or
temporal context [Bertalmı́o, 2014]. Subsequently, the resulting video may have
false colors that were not present in the original material and intensive manual
correction is usually necessary, commonly performed in a shot-by-shot, object-
by-object basis. This process is difficult, time consuming and expensive, and
therefore it makes an automated procedure called Gamut Mapping (GM) very
desirable: GM transforms colors of an input image to the colors of a target device.

There are two types of GM: Gamut Reduction (GR) and Gamut Extension
(GE). Gamut reduction involves the mapping of colors from a larger source
gamut to a smaller destination gamut. For example, cinema footage needs to be
passed through a gamut reduction method in order to be displayed on a television
screen [Bankston, 2005] [Kennel, 2007]. On the other hand, gamut extension
refers to the transformation of colors from a smaller source gamut to a larger
destination gamut. Gamut extension is needed by state of the art digital cinema
projection systems, which often receive a cinema signal that is encoded with
a limited gamut as precaution against commonly poor projectors; therefore, in
order to realize the full potential of these projectors in terms of colors, a gamut
extension procedure is required [Bertalmı́o, 2014].

Informally, any color gamut that is larger than the BT.709 gamut is referred as
wide color gamut (WCG). Gamut mapping usually implies the use of a GR proce-
dure due to the fact that the professional movie cameras capture content that has a
wider color gamut than that of the standard gamuts. However, the process of GE
is gaining importance. [Pointer, 1980] analyzed frequently occurring real surface
colors and derived what is commonly known as “Pointer’s gamut”, shown in Fig.
1.1. Although both DCI-P3 and BT.709 cover a reasonable amount of Pointer’s
gamut, many interesting real world colors fall outside these standard gamuts. In
2012, the International Telecommunication Union-Radiocommunication (ITU-
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R) recommended a new standard gamut BT.2020 [ITU-R, 2012] for the next
generation ultra-high definition TV that encompasses DCI-P3 and BT.709 and
covers 99.9% of Pointer’s gamut. New laser projectors have pure (very saturated)
primaries [Beck, 2014] and therefore they are able to cover the very wide BT.2020
gamut [Silverstein et al., 2011], [Kusakabe et al., 2013], reproducing nearly every
color found in nature and providing the audience with a more compelling color
experience. But if the inputs are movies with DCI-P3 gamut, as virtually all
professional movies currently are, the full color rendering potential of these new
projectors cannot be realized. The same issue happens presently when DCI-P3
projectors are used to display pictures that come in BT.709 (usually because the
movie distributor wants to prevent issues with lower quality or older projectors,
or the movie was originally prepared for broadcast only). In both cases there is
a pressing need to develop gamut extension (GE) techniques that automatically
extend the gamut of the movie content, with the very challenging constraint that
this has to be done in a way that the appearance of the gamut extended result
preserves as much as possible the artistic intent of the content’s creator.

Gamut mapping is not only important in the film or the broadcast industry
but it is also an essential module in the image reproduction pipeline of printing
technologies, where the end goal is to minimize the perceptual difference of
the same image when it is viewed on a display device and when it is printed.
Other application domains of gamut mapping include handheld devices (mobile,
tablet computers), websites, photo-sharing online platforms, computer graphics,
animation and video games.

To summarize the aforementioned discussion, we would like to mention a
key difference between the application of gamut reduction and gamut extension.
Gamut reduction is a necessary procedure to perform when the colors of the input
image fall outside the display’s gamut in order to reproduce colors accurately; if
not, the display will reproduce the image with artifacts and loss of spatial detail.
On the contrary, gamut extension is not a mandatory procedure to apply, rather
it is considered as an enhancement operation [Morovič, 2008]. For example,
displaying BT.709 footage (represented in BT.2020 container) as it is on a wide-
gamut BT.2020 supported display device will not cause any visual color distortion,
but if we do not extend colors of the input footage to the gamut of the display we
will be missing the color rendering potential of the wide-gamut display device.
Thus the objective of this thesis is the following: to formulate gamut mapping
algorithms (GMAs) that can reproduce colors of a given footage according to
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the gamut of the display on which it is going to be displayed, while staying
perceptually faithful to the original material.

1.1 Main Contributions

A large number of GMAs have been proposed in the literature (as we shall see
in chapter 4). GMAs are generally classified into two broad categories. The
first category consists of global (also called non-local or non-adaptive) GMAs
that modify each color of an image independently, meaning that these methods
completely ignore the spatial color distribution in the image. However, this is
not how the visual system works. The human visual system is very effective in
processing the visual information in highly complex scenes. The interpretation of
stimulus occurs at different levels in the visual system, from retina to cortex. And
our perception of the color of an object is not completely determined by the light
coming from it, instead it is heavily influenced by the light coming from other
objects in its neighborhood [Land and McCann, 1971]. For example, the two inner
squares in Fig. 1.2 have physically the same color but appear to us differently
because of the surrounding colors. To incorporate such functionality, the second
category of gamut mapping methods involve local GMAs that modify pixel
values taking into account their local neighborhoods in order to better preserve
colors and details in the reproduction. This property certainly makes GMAs
adaptive and flexible but at the same time far more complex and computationally
expensive than global GMAs. As of today, in order to reproduce movie content,
the time consuming manual procedures by skilled technicians are preferred over
automatic gamut mapping algorithms, because colorists always work following

Figure 1.2: Effect of local neighborhood on color sensation. The small squares in both patches
have same color value but different color sensation.
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and respecting the vision of the movie creator [Van Hurkman, 2013], while
automatic methods are prone to issues for which audiences are very sensitive
and that therefore severely affect the quality of the results, like introducing
color artifacts, hue shifts, and not preserving the integrity of memory colors
(e.g. the blue of the sky, the green of grass) or skin tones [Heckaman and
Sullivan, 2011], [Pan and Daly, 2008], [Morovič, 2008]. Aiming at the accurate
reproduction but low computational cost, in this study we present several local
gamut reduction algorithms (GRAs) and gamut extension algorithms (GEAs).

1. We present two spatial GMAs (one GRA and one GEA) in RGB color space
that rely on a perceptually-based variational framework. Our algorithms
adapt the image energy functional of [Bertalmı́o et al., 2007] whose mini-
mization leads to image enhancement and contrast modification. We show
how by varying the importance of the contrast term in the image functional
we are able to perform both gamut reduction and gamut extension.

2. We propose a mathematical framework that allows us to modify our first
GRA in order to better respect the saliency of the original image in the
reproduced image.

3. We propose a spatial GEA, implemented as a partial differential equation-
based optimization procedure related to visual perception models, that
performs gamut extension in CIELAB color space by taking into account
the analysis of distortions in hue, chroma and saturation. Moreover, in order
to evaluate GEAs, we present user studies performed using a digital cinema
projector under cinematic (low ambient light, large screen) conditions. We
also show how currently available image quality metrics, when applied to
the gamut extension problem, provide results that do not correlate with
users’ choices.

4. We present two spatial GMAs (one GRA and one GEA) in HSV color
space that are based on the work of [Bertalmı́o et al., 2009]. The proposed
GEA adapts itself according to the color distribution of the input image. On
one side, the proposed GEA modifies in a controlled manner those colors
that require a special treatment such as skin tones, less saturated natural
objects, neutral colors and some particular memory colors. On the other
side, it extends normally colors of high chromatic (natural and artificial)
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objects. The proposed GRA is developed by introducing simple but key
modifications to the framework of our GEA (in HSV color space).

The goal of this research is to develop GMAs that can reproduce content
respecting as much as possible the artist’s vision. One important aspect that we
would like to discuss here is the role of the ground truth in the evaluation of
our GMAs. In general, and not only in the case of legacy material, the ground
truth data is never available. The original material is all there is, and under the
scenario of gamut mismatch (between the source material and the destination
device) this material has to have its gamut modified while preserving as much
as possible its original appearance. In our tests we include a ground truth for
evaluation purposes. To assess the performance of GRAs, we start from a wide-
gamut material, reduce its gamut using a GRA and then ask users to compare the
result with the wide-gamut ground truth. And in the gamut extension case, we
start from a wide-gamut material, reduce its gamut, extend it with a GEA and
then ask users to compare the result with the original wide-gamut ground truth.
Nonetheless, by showing that a GMA performs well as evaluated using ground
truth data, we expect that it also performs well when ground truth data is not
available. This way of evaluation is a common approach in image processing (e.g.
denoising algorithms are evaluated in terms of PSNR (peak signal to noise ratio)
by comparing with a ground truth “clean” image that is never available in real
scenarios, segmentation algorithms are evaluated by comparing their results to
those of manual segmentations, etc.) In this study, we ask users to choose the
most accurate result instead of the one they find most pleasant. The reason is
that, for a gamut mapping technique to be adopted by the movie industry, it must
yield gamut mapped results that preserve as much as possible the artistic intent
of the content’s creator. Therefore, user tests based on accuracy provide results
that are less subjective (as users are simply asked to estimate differences with
respect to the provided reference) and the preservation of the artistic intent is in a
sense “built-in” in the procedure, since the ground truth acts as a stand-in for the
content’s creator intent. Apart from the psychophysical testing, in this study we
also evaluate the performance of GMAs using several image quality metrics.
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1.1.1 Publications

This study yielded the following papers in international conferences and journals.

Journals:

• S.W. Zamir, J. Vazquez-Corral, and M. Bertalmı́o. Gamut Extension for
Cinema. IEEE Transactions on Image Processing, 26(4):1595-1606, 2017.

• S.W. Zamir, J. Vazquez-Corral, and M. Bertalmı́o. Gamut mapping in
cinematography through perceptually-based contrast modification. IEEE
Journal of Selected Topics in Signal Processing, 8(3):490-503, 2014.

Conferences:

• S.W. Zamir, J. Vazquez-Corral, and M. Bertalmı́o. Perceptually-based
gamut extension algorithm for emerging wide color gamut display and pro-
jection technologies. In proc. of Society of Motion Picture and Television
Engineers (SMPTE) Annual Technical Conference and Exhibition, 2016.

• J. Vazquez-Corral, S.W. Zamir, A. Galdran, D. Pardo, and M. Bertalmı́o.
Image processing applications through a variational perceptually-based
color correction related to Retinex. In proc. of IS&T Electronic Imaging
Conference, 2016.

• S.W. Zamir, J. Vazquez-Corral, and M. Bertalmı́o. Gamut extension for cin-
ema: psychophysical evaluation of the state of the art, and a new algorithm.
In proc. of IS&T Electronic Imaging Conference, 2015.

• J. Vazquez-Corral, S.W. Zamir, and M. Bertalmı́o. Considering saliency
in a perception inspired gamut reduction algorithm. In proc. of IS&T/SID
22nd Color and Imaging Conference, 2014.

• S.W. Zamir, J. Vazquez-Corral, and M. Bertalmı́o. Gamut Mapping through
Perceptually-based Contrast Reduction. Pacific-Rim Symposium on Image
and Video Technology (PSIVT), 2013.
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1.2 Thesis Outline

The rest of this document is organized as follows. In chapter 2, we cover some
basic concepts of color science including colorimetry and standard color spaces.
We also present details about the interaction of light with the human visual
system. Moreover, we discuss some global and local characteristics of the human
vision, and the effects of ambient lighting on perception. In chapter 3, we discuss
concepts of the image processing pipeline of digital cameras. Later we review
the standard color gamuts defined for television and digital cinema. There are a
variety of display devices available in the marketplace; each of which has its own
color gamut. We discuss briefly some of the most common types of television
and projector technologies, specifically mentioning those factors that contribute
in defining the color gamut of a display device. Chapter 4 presents a survey on
gamut mapping algorithms published in the literature. Then, it mentions several
ways of evaluating the performance of GMAs. Chapter 5 covers details of our
GMAs that we apply in RGB color space. These methods are listed in the previous
section as contribution 1 and 2. In chapter 6 we explain our GEA (mentioned
as contribution 3) that uses CIELAB color space. Chapter 7 presents details of
our proposed GMAs (contribution 4) that work in HSV color space. Finally, we
conclude this study in chapter 8 and suggest future work.
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CHAPTER 2

Fundamentals of Vision and Basic Color Science

2.1 Light

We live in a world full of electromagnetic radiations emitting either from natural
origin or from sources made by humans. The full spectrum of electromagnetic
radiation that the sun emits is shown in Fig. 2.1. However, we are only able to
see a very narrow band of wavelengths ranging from 380nm to 740nm to which
we commonly refer as visible light.

Light comes from several different sources such as the sun, lasers, candles,
tungsten bulbs, fluorescent tubes, light emitting diode (LED), just to name a

Figure 2.1: Electromagnetic spectrum and visible light. Image from [Bertalmı́o, 2014].
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few. Radio-metrically, a light source can be characterized by its spectral power
distribution (SPD) which is the physical composition of light as a function of
wavelength λ. Light can reach our eye either directly from a light emitting source,
or by first hitting a non-luminous object and then reaching to us. In the latter, more
common, situation the light is partly absorbed and the rest is reflected depending
on the absorption properties of the object. The reflected light that reaches our eye
is called radiance E(λ) which is the product of the SPD of the light source I(λ)
(irradiance) and the spectral reflectance R(λ) of the object:

E(λ) = I(λ)×R(λ) (2.1)

The pictorial representations in Fig. 2.2 and Fig. 2.3 show the irradiance
function of some light emitting sources and reflectances of different colored
patches, respectively.

1

0
400 500 600 700

wavelength l (nm)

re
la

ti
v
e
sp

e
ct

ra
l
p
o
w

e
r
d
is
tr
ib

u
ti
o
n

(a)

1

0
400 500 600 700

wavelength l (nm)

re
la

ti
v
e
sp

e
ct

ra
l
p
o
w

e
r
d
is
tr
ib

u
ti
o
n

(b)

1

0
400 500 600 700

wavelength l (nm)

re
la

ti
v
e
sp

e
ct

ra
l
p
o
w

e
r
d
is
tr
ib

u
ti
o
n

(c)

1

0
400 500 600 700

wavelength l (nm)

re
la

ti
v
e
sp

e
ct

ra
l
p
o
w

e
r
d
is
tr
ib

u
ti
o
n

(d)

Figure 2.2: Spectral power distributions of some common light emitting sources: (a) Sun, (b)
tungsten bulb, (c) fluorescent tube, and (d) LED. Figure from [Lam and Fung, 2008].
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Figure 2.3: Spectral reflectance of various colored patches: (a) red patch, (b) blue patch, (c) yellow
patch, and (d) gray patch. Figure from [Lam and Fung, 2008].

2.2 Human Eye Anatomy, Biology, and Vision Science

Once radiance reaches our eyes, it passes through the optics of the eye to the
retina and gets translated into nerve signals for the brain to process and interpret
the scene. The conversion from real world light to imagery completes by passing
through three main processing units of the human visual system: 1) the eye optics,
2) the retina and 3) the thalamus and visual cortex. The schematic diagram of an
human eye is illustrated in Fig. 2.4 and the explanation of the functionality of its
core components is presented in the following sections.

2.2.1 The Eye Optics

The optical part of the human eye includes cornea, iris, pupil and lens; they all
perform non-neural tasks. The cornea is a nearly transparent part of the eye that
lets light to enter into the visual system, and two-thirds of the light refraction
occurs at the boundary of cornea [Ferwerda, 2001]. At the cornea, 99% of ultra
violet rays at wavelength less than 300nm are absorbed and therefore it protects
the eye periphery from the excessive exposure of short wavelength rays [Packer
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Figure 2.4: Schematic diagram of the human eye. Figure is from [Fairchild, 2013].

and Williams, 2003]. The iris is a distinctive (unique for everyone) colored part
of the eye and in the center of the iris there is an opening called pupil. The iris
can contract and expand to adjust the size of the pupil in order to let through
a controlled amount of light to the other parts of the eye. In optical terms, the
pupil serves as the aperture of the eye and the iris acts as the aperture stop. Light
comes in through the cornea, gets regulated by the iris and then hits a biconvex
transparent lens that performs a minor refraction operation in order to focus
the incoming light to the back of the eye onto the retinal surface. Continual
adjustment of the lens enables us to change focus and therefore see objects at
various distances.

2.2.2 The Retina

The inner layer of neural tissues at the back of the eye is called retina. It serves
as an interface between non-neural and neural parts of the eye. The retina has
millions of photoreceptors that are responsible to transduce electromagnetic waves
into nerve signals. As shown in Fig. 2.5, the retina has several interconnected
cell layers, and it may seem somewhat unexpected, the light actually enters from
the top layer, passes through the intermediate layers, gets slightly scattered and
absorbed, before reaching to the light-sensitive layer of photoreceptors. The
human visual system operates over a large range of light levels. It has two types

14
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Light

Rod

Cone

Figure 2.5: Simplified diagram of the human retina. This figure is adapted from [Fairchild, 2013].

of photoreceptors that respond depending on the power of the incoming light:

• Rods initiate reliable vision at low light levels in the range 10−6 to 10
cd/m2 (candela per square meter) and register grayscale information, and
although remain activated at high luminances, they become saturated. Rods
are extremely sensitive to light; they get triggered and produce detectable
photocurrent response even in the presence of one photon [Wandell, 1995].
Vision at low illumination levels is called scotopic and it is colorless.

• Cones have pigments that are typically 100 times less sensitive to light
than rods [Kefalov et al., 2003]. Therefore, they only operate in bright
conditions (0.01 to 108 cd/m2) and detect fine details and colors. Vision
at high light levels is referred as photopic. The range of luminance levels
(0.01 to 10 cd/m2) where both rods and cones contribute to the vision are

15
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called mesopic levels, for example, in a typical movie theater we experiecne
mesopic vision [Bankston, 2005].

Cones are further divided into three varieties: S-cones, M-cones and L-cones,
where the capital letters denote short, medium and long wavelengths, respectively.
Historically, Thomas Young in the early 1800s and Hermann Von Helmholtz
in the 1850s realized that our eyes have three types of photoreceptors and each
one is sensitive to different wavelengths of light. But their trichromatic theory,
though mostly correct, was not based on experimental evidence, rather it was
based on scientific reasoning only. In the late 19th century, Arthur König was
the first to measure experimentally the spectral absorption function of each type
of photoreceptor [König and Dieterich, 1892]. The curves in Fig. 2.6 show
the region on the visible spectrum to which each of the three cone types are
sensitive to. S-cones are sensitive to short wavelengths, with a peak at 420nm.
M-cones operate in the middle wavelengths and their peak sensitivity is 533nm.
And L-cones provide response to long wavelengths, with a peak sensitivity of
584nm. Although these bell-shaped sensitivity curves are quite broad, each
type of photoreceptor peaks at a distinct wavelength and these three distinct
wavelength values, respectively, correspond to monochromatic violet, blue-green
and yellow-green light (or loosely associate to blue, green and red light [Hubel,
1995]).

Under fixed viewing conditions, the cones response to the incident light can
be modeled as a vector with three components, called tristimulus values. It is

Figure 2.6: Cones sensitivity functions. Figure from [Wikipedia, 2007].
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computed by taking the integral of the radiance E(λ) times the cone’s sensitivity,
both as a function of wavelength, over the visible spectrum.

L =

∫ 740

380
l(λ)E(λ)dλ

M =

∫ 740

380
m(λ)E(λ)dλ

S =

∫ 740

380
s(λ)E(λ)dλ

(2.2)

where l(λ),m(λ) and s(λ) denote sensitivity functions of long, medium and short
cones, respectively.

Compared to 120 million rods, there are only 6 million cones. Cones are
mostly concentrated in the central region of the retina named as fovea, that serves
to our finest spatial and color vision. The fovea covers an area that subtends about
two degrees of visual angle in the central field of vision. In order to see an object
in sharp focus, we move our eyes to make the light rays coming from it to fall
onto the fovea. The distribution of photoreceptors in Fig. 2.7 shows that the
density of cones at the center of the fovea is really high (and there are virtually
no rods in this part) and as we move away from the fovea, the concentration of
cones decreases rapidly and therefore the visual acuity becomes inferior. In the
same figure, it can also be seen that there is a region in the retina called blind spot
where photoreceptors are not present. However, we do not notice this because the

(a) (b)

Figure 2.7: Distribution of photoreceptors across the human retina: (a) visual angles relative to the
fovea, (b) concentration of cones and rods in the fovea. Figure is taken from [Wandell, 1995].
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human visual system fills this region with information of the observed scene.

In the illustration of retina (Fig. 2.5), the bipolar cells on one end are con-
nected with the photoreceptors and on the other end they have connection to the
ganglion cells which form the optic nerve. What is important to note is that many
photoreceptors provide input to multiple bipolar cells, and many bipolar cells
provide input to multiple ganglion cells. This straight line of retinal processing
ignores the horizontal cells and the amacrine cells, both of which provide lateral
connections: the former among photoreceptors and bipolar cells, and the latter
among bipolar and ganglion cells. The human retina is a legitimate part of the
brain and although researchers have spent enormous amount of time to under-
stand the specific processing that occurs at each type of cell, it is still not fully
understood.

The processing of visual information within the retina is significantly complex.
The output signal of retina that ganglion cells provide to the optic nerve is the
result of a series of complex operations performed by the layers of neural cells
within the retina. The retina has roughly 126 million photoreceptors, but only 1
million optic nerve fibers leave the eye; this indicates the occurrence of some sort
of data compression. Functionally, the retina is organized in the form of receptive
fields that are the basic units of visual coding [Hartline, 1940]. Each ganglion
cell receive inputs from multiple photoreceptors from a specific area. Receptive
fields have a very specific structure called center-surround: a central disk, the
“center,” and a concentric ring, the “surround,” each responds in opposite manner
to light [Kuffler, 1953].

There are two types of receptive fields: a) on-center field, and b) off-center
field. Both of these configurations are shown in Fig. 2.8. An on-center ganglion
cell fires rapidly when the center of its receptive field is stimulated with light,
whereas it is inhibited when the surround is exposed to light; the response of
such cell is highest for a white spot (filling the center of the receptive field) on a
black background. [Hubel, 1995] mentions that “if you listen to the discharges
of such a cell over a loudspeaker, you will first hear spontaneous firing, perhaps
an occasional click, and then, when the light goes on, you will hear a barrage of
impulses that sounds like a machine gun firing.” An off-center cell has just the
opposite behavior: firing when the surround is exposed to light, and inhibiting
when the center is stimulated with light; the reponse of an off-center cell is
maximum for a black spot (filling the center of the receptive field) on a white
background. Both on-center and off-center ganglion cells are equally common in
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(a) (b)

Figure 2.8: Typical center-surround receptive fields: (a) on-center and (b) off-center.

(a) (b)

Figure 2.9: Spectral-opponency in receptive fields of ganglion cells: (a) red-green opponency (b)
yellow-blue opponency.

the retina and the receptive fields these cells form can be of different sizes and
overlapped [Wandell, 1995], [Hubel, 1995]. The ganglion cells do not provide
any response to a uniform stimulus when the negative and positive areas of
the receptive fields (shown in Fig. 2.8) are balanced. This behavior of spatial
opponency enables ganglion cells to perform data compression.

In addition to spatial opponency, ganglion cells behave in spectrally-opponent
manner as well [Hurvich and Jameson, 1957], [Ferwerda, 2001]. As illustrated
in Fig. 2.9, the red-green opponent cells take their input from the antagonism
of L-cones and M-cones, whereas the yellow-blue opponent cells are excited
by the S-cones and are inhibited by the combined response of L-cones and M-
cones [Mollon and Cavonius, 1987]. The electrical signal leaving the retina via
the optic nerve is basically the visual space representation of the real world scene,
and this signal does not have a point-to-point relationship with photoreceptors,
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but instead it carries information about the local relationships.

2.2.3 Thalamus and Visual Cortex

The electrical signal then reaches the thalamus which is a way station for sensory
pathways. In the thalamus lies a sub-nucleus that is specifically related to vision
and is called the lateral geniculate nucleus (LGN). This is the place where local
relationships of the signal are maintained because ganglion cells terminate at this
point after making one-to-one correspondences with LGN cells [Hubel, 1995].
Hence, LGN cells have the same receptive fields as those of ganglion cells.
Finally, the signal arrives in the primary visual cortex where in the first level of
processing, the visual cortex simply maps the input from the center-surround
receptive fields. The second level of processing involves arranging these center-
surround receptive fields in rows in order to find lines or edges. The visual cortex
has several subdivisions that perform further processing to analyze the signal’s
features such as motion, form, orientation, color, depth perception, and many other
cerebral modalities [Wandell, 1995]. Movement, form and depth perceptions
are processed near the parietal lobe. Detail and color are processed near the
temporal lobe. Eventually, all the processed information from the visual cortex’s
subdivisions are recombined into a coherent image that reaches our conscious
recognition somewhere in the brain that has yet to be identified.

2.3 Characteristics of Human Vision

In the following sections, some of the basic global and local perceptual properties
of the human visual system are discussed. All these sections are going to show
how our perception of the light coming from an object is heavily influenced by
factors such as the light coming from other objects in the scene and the ambient
lighting conditions.

2.3.1 Effects of Ambient Illumination on Perception

Visual Adaptation

In the real world a large range of luminance levels are present, going from dim
starlight to bright sunlight as it can be seen in Fig. 2.10a. During the course of
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the day, typically we experience scenes that, at the same time, have both very
bright and very dark regions. For instance, in Fig. 2.10b, measured luminance
levels of several spots are shown and we can see that below the car, the intensity
is 15 nits (nit is a convenient name for the light unit cd/m2), whereas on the
hood of the car, we have specular highlights and reflections with luminance of
300, 000 nits. Even though our visual system is capable of perceiving a huge
range of illumination levels (on the orders of 1010), the issue is that it cannot
perceive bright and dark regions of a scene at the same time. In such situation, the
mechanism of adaptation starts which allows us to see only a small part of the
full dynamic range present in a scene. The dynamic range of a scene is defined as
a ratio of the brightest and the darkest intensity level present in it.

The adaptation process is controlled by the total retinal illumination and it
is closely related to the mean luminance in the field of view. The process of
adaptation is slow in dark conditions (often taking several minutes), whereas
one could adapt in a matter of seconds in bright conditions [Kalloniatis and Luu,

(a)

(b)

Figure 2.10: Visual Adaptation. (a) Dynamic range of real world and steady state dynamic range of
human vision. (b) Example of dynamic range present in a scene.
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2007]. The adapted small part of the full dynamic range is called the steady-state
dynamic range. Thus, with this efficient phenomenon of the photoreceptors and
the brain, we get to operate over the full dynamic range present in the real world.
The response of photoreceptors to the incident light can be described using the
Naka-Rushton (or Michaelis-Menten) equation:

R

Rmax
=

Y n

Y n + σn
(2.3)

where Y denotes the input luminance and σ is the semi-saturation constant which
forms the inflection point of the sigmoidal curve. R is the output response of the
photoreceptor. Figure 2.11 presents photoreceptor response curves for several
semi-saturation values. One may conclude from the same figure that the steady
state dynamic range (in logarithmic base 10 scale) is 4 log units. However,
in natural scenes, this range is much lower due to various factors such as light
scattering in the eye, limited neurons in the primary visual pathway, etc. Therefore,
the problem is that the boundary of the steady state dynamic range is not precisely
defined. Different studies reported different steady state dynamic ranges, for
example, 2 log units in [Myers, 2003], 3 log units in [Purves and Lotto, 2003],
3.5 log units in [Normann and Perlman, 1979], and 3.6 orders of magnitude
in [Kunkel and Reinhard, 2010].

Figure 2.11: Photoreceptor response curves for several semi-saturation values; the x-axis is in
logarithmic scale (base 10) and the y-axis is linear. Figure is taken from [Mantiuk, 2007].
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(a)

(b)

Figure 2.12: (a) The Hunt effect: saturation decreases with decreasing illumination. (b) The Stevens
effect: contrast decreases with diminishing illumination. Image from [Fairchild, 2004]

Hunt Effect and Stevens Effect

Our perception of saturation depends on ambient lighting conditions: colorfulness
of objects decreases when the illumination decreases. This phenomenon is known
as the Hunt effect and it is illustrated in Fig. 2.12a. The Hunt effect indicates that
a color present in dim viewing conditions would perceptually match to a much
less saturated color under brighter lighting conditions. Figure 2.12b shows the
effect of diminishing illumination on our contrast perception: light colors look
darker and dark colors seem lighter. This is called the Stevens effect.

Bezold-Brücke (B-B) Effect

The B-B effect [Fairchild, 2013], [Pridmore, 1999] describes that when two stimuli
of the same wavelength but having different luminance are viewed simultaneously
or successively, they will appear to us as of having different hues. At high
luminance levels, stimuli having wavelength below 500nm will appear bluer and
stimuli of wavelength above 500nm will appear yellower except for three so-
called invariant hues: blue (476nm), green (507nm) and yellow (574nm) [Purdy,
1931].
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Figure 2.13: The simultaneous contrast effect. Image from [Bertalmı́o, 2014].

2.3.2 Local Behavior of Visual System

In our daily life we rarely see colors in isolation. Our perception of a color is
strongly influenced by other colors present in its vicinity. In this section we will
review several phenomena related to the spatial behavior of the human vision.

Simultaneous Contrast

In Fig. 2.13, the intermediate squares have exactly the same shade of gray but the
one with the dark immediate surround seems lighter than the other center square.
Another way to test this phenomenon is by taking a sheet of paper that would
otherwise seem white to us, but when it is used to shield the eyes while looking
directly at the bright sky, it can appear totally black [Poynton, 2012].

Mach Bands

Mach bands is another striking phenomenon demonstrating that the human per-
ception is not a simple function of luminance. When two solid gray stripes of
slightly different shades are put together, our visual system performs undershoot
and overshoot at the common edge of the stripes. Fig. 2.14 shows one such
example where the visual system exaggerates contrast at the boundaries of the
stripes of constant luminance.
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Actual intensity

Perceived intensity

Figure 2.14: The simultaneous contrast effect. Image from [Gonzalez and Woods, 2006].

Figure 2.15: Chromatic induction: the centrally located test-rings are identical, but they appear
different due to the influence of surrounding colors. Figure from [Monnier, 2008].

Chromatic Induction

Figure 2.15 shows the phenomenon of what we call chromatic induction: the light
reaching our eyes from the inner test-rings in both sets of concentric rings is the
same, yet they appear to us as of having different colors, because of the influence
from their surrounding colors.
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Figure 2.16: Example of Helmholtz-Kohlrausch effect. In the top row, each color square and the
background has the same luminance and yet they appear different. Figure from [Wikipedia, 2017a].

Helmholtz-Kohlrausch Effect

Helmholtz-Kohlrausch Effect states that colored stimuli appears brighter to human
observers than achromatic stimuli of the same luminance. An illustration of
Helmholtz-Kohlrausch effect is shown in Fig. 2.16 where all the colored patches
and the gray background in the top row has the same luminance but they appear
to us differently. Furthermore, it is also noticeable that some colors (hues) do
seem brighter than the others, but they all are perceived significantly brighter than
the gray background. If the image in the top row is converted into grayscale we
obtain an image that has the same shade of gray as illustrated in the bottom row
of Fig. 2.16.

2.3.3 Human Color Constancy

As explained in section 2.1, the light E(λ) that reaches our eyes is basically
a product of the spectral power distribution of the illuminant I(λ) and the re-
flectance property R(λ) of the object. As illustrated in Fig. 2.17, when the same
tomato is observed under three different scene illuminations, in theory the color
of tomato should appear to us differently because in all three cases the object
(tomato) is reflecting different composition of wavelengths to our eyes. But in
reality we perceive the tomato’s color nearly the same, i.e. the red. It implies
that the human visual system somehow manages to ‘discount’ the effect of the
illuminant and therefore the color of the object appears relatively same under
different illuminations; this perceptual feature of our visual system is known as
color constancy.

26



“PhD˙Thesis˙RevM2” — 2017/4/4 — 16:20 — page 27 — #53

λ λ λ

Figure 2.17: An example depicting the phenomenon of color constancy. Figure is adapted from
[Brown, 2016].

Retinex Theory of Color Vision

In this section we briefly describe the main concepts of the Retinex theory [Land
and McCann, 1971], [Land, 1977], a popular model of how the human visual
system perceives colors. The Retinex model was developed starting from two
main assumptions: a) that our perception of the color of an object is not completely
determined by the light coming from it; instead it is heavily influenced by the
light coming from other objects in the scene, and b) that the human visual
system operates with three retinal-cortical systems that are responsible to process
independently the corresponding short, medium, and long wavelength bands of
the visible light and form three separate images with lightness L information that
determine, by superposition, the perception of what we call colors.

In order to develop a method to compute lightness L, Land summerizes
in [Land, 1977] a color-matching test for which the experimental setup is shown
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LEFT EYE RIGHT EYE 

Figure 2.18: Color matching experiment of Retinex theory of color vision. Figure from [Land,
1977].

in Fig. 2.18. On the left side, we can see 17 colored sheets of paper arranged to
form a panel to which Land calls the “Mondrian”. To illuminate any color area of
the Mondrian, three spectral lights with wavelengths 630nm for red, 530nm for
green and 450nm for blue were used that can be mixed to any desired proportion
to generate an experimental illuminant. On the right side, chips from the Munsell
Book of Color were illuminated by a constant white illuminant obtained by
adjusting the same set of spectral lights. The format of the experiment was to
make observers use their left eye to view the Mondrian and their right eye to view
chips.

In the experiment, the observer was asked to look at a given color of the
Mondrian and find a chip from the Munsell book that best matches its color. In
each run of the test, the experimental illuminant was adjusted such that the radiant
energy coming to the observer’s left eye from any colored sheet of the Mondrian
is the same regardless of its reflectance: gray, yellow, red, green, and blue areas
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were sending the same radiance and hence a photometer would have declared all
of them identical. But in each and every case, the observer was able to match the
Mondrian sheet to the closest Munsell chip, i.e. blue sheet to blue chip, yellow
sheet to yellow chip, etc. The experiments showed that, in each matching pair,
Mondrian sheet and Munsell chip had different radiances but the same (scaled)
integrated reflectances, which is defined, for each waveband (short, medium and
long) as a fraction: its numerator is the integral of the radiance of the patch over a
given waveband, and its denominator is the integral (over the same waveband) of
the radiance of a white object under the same scene illuminant.

The following text is reproduced from our article [Zamir et al., 2014]. “ The
scaling is a non-linear function that relates reflectance to lightness sensation. But
this implies that in order to perceive the color of an object somehow our visual
system is comparing the light coming from the object with the light coming from
a reference white, and Land wondered how we are able to find this reference white

‘in the unevenly light world without reference sheets of white paper’ [Land, 1977].
The sensation of white will be generated by the area of maximum radiance in all
three bands (this is the von Kries’ model or ‘white-patch’ assumption, although
Land does not cite it); this area could be used as reference, but Land did not
know how our visual system could ‘ascertain the reflectance of an area without in
effect placing a comparison standard next to the area’ [Land, 1977]. The solution
he proposed consisted of comparing far-away points through paths: the ratio of
the values at the two end-points of the path can be computed as the sequential
product of the ratios of each point of the path with the following point. The
Retinex algorithm consists of assigning, for each point and each waveband (long,
middle, short), an estimate reflectance obtained as the average of the sequential
products obtained on many paths, all ending in the given point. Land thought that
this was a plausible explanation of how our visual system estimates reflectances
but he did not want to venture where exactly this type of operations were being
carried out, in the retina or at the cortex; therefore he chose the name ‘Retinex’
for his approach. The Retinex algorithm is directly applied to digital images in a
straightforward way, where the pixels will be the points and the three chromatic
channels play the role of the wavebands.”
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2.4 Colorimetry

Colorimetry is the branch of color science that deals with assigning numbers to
the colors of a physical stimulus in such a manner that another stimuli with the
same physical properties will have a complete color-match with it, under the same
observing conditions [Wyszecki and Stiles, 1982].

2.4.1 Color Matching Experiment

Light is expressed by its spectral power distribution. In the spectral reproduction
approach, a color is reproduced by directly reproducing its SPD. For example,
one could divide the visible spectrum (380nm to 740nm) into 37 bands of 10nm
each and then use these 37 components for coding each pixel in an image. While
such system could be suitable to reproduce a single color or a few colors, it
becomes highly impractical for image coding [Poynton, 2012].

The normal human eye contains three types of cone cells that respond to
incident light to produce the sensation of color. This allows to generate any
perceivable color by a proper mixture of any three given lights (as long as they
are colorimetrically independent, i.e. that the mixing of two of them does not
produce the same color as the remaining one), in what is known as the trichromacy
property:

C = RC(R) +GC(G) +BC(B). (2.4)

The way to interpret this equation is that any color C can be matched by
mixing RC units of the R primary, GC units of the G primary and BC units of the
B primary; this is also known as Grassmann’s first law of additive color mixture.
The terms, R, G and B, define the particular primary set, which implies that for a
different set of primaries, different mixing proportions will be needed to make a
match. Two lights that produce the same cone response triplet (L, M , S from Eq.
(2.2)) are perceived as having the same color, even if they have a different power
spectrum; such lights are called metamers.

Cone sensitivity functions were not available in the 1920s. Owing to the
trichromatic nature of the human vision, W. David Wright [Wright, 1929] and,
independently, John Guild [Guild, 1932] conducted the same color matching
experiment for which the setup is shown in Fig. 2.19. The observers were asked

30



“PhD˙Thesis˙RevM2” — 2017/4/4 — 16:20 — page 31 — #57

Observer
Test 

Match 

Figure 2.19: Color matching experiment.

Figure 2.20: Color matching functions r(λ), g(λ) and b(λ). Figure is taken from [Wikipedia,
2007].

to see through a circular split screen. On one half of the screen a test color
(monochromatic light) was shown. Observers were given the control of three
monochromatic lights (red = 700nm, green = 546.1nm, blue = 435.8nm) and by
varying the intensity of these lights, observers had to make a color on the other
half of the screen that would match the test color. This process was repeated
for each monochromatic spectral test light. Figure 2.20 shows, average over all
observers, the amount of primary colors (r(λ) for the red, g(λ) for the green,
and b(λ) for the blue) needed to match the test light of a specific wavelength of
the visible spectrum. For example, by adding 0.16 units of the red and green
lights, one could match the spectral light of wavelength 575nm (which we would
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perceive as yellow color). Note that in the same figure the red curve has negative
values, because it turned out that it was not possible to match test stimulus in
that region by simply mixing the three primary lights. Therefore, in this region,
a certain amount of red had to be added into the test spectral color in order to
obtain a match by mixing the blue and green primary lights.

Once we have the color matching functions, we can calculate the (R,G,B)
tristimulus values for any light with spectral power distribution E(λ) as:

R =

∫ 740

380
r(λ)E(λ)dλ

G =

∫ 740

380
g(λ)E(λ)dλ

B =

∫ 740

380
b(λ)E(λ)dλ

(2.5)

2.4.2 The First Standard Color Spaces

As it is noted in the previous section, any given color can be matched with a
set of three primary colors. A color space is a method to describe and visualize
colors. In 1931, CIE defined a system to classify colors based on the mean results
obtained from Wright and Guild’s data [Fairman et al., 1997]. Two sets of color
matching functions were proposed: one is known as the CIE RGB colorimetry
system which uses the same color matching functions as mentioned in Eq. 2.5, and
the other is the CIE XYZ system which is still to this day a very popular method
for specifying colors in the industry because this system is device independent,
meaning that a set of parameters used to specify a color will produce the same
color on whatever equipment they are applied [Ford and Roberts, 1998]. There
were two main objectives behind defining the CIE XYZ color matching functions
x(λ), y(λ) and z(λ): first, to eliminate the negative values from the functions
r(λ), g(λ) and b(λ) (see Fig. 2.20), and second, to deliberately match one of
the color matching functions to the 1924 CIE standard luminosity function V (λ),
which describes the intensity of light seen as coming from a stimulus (however,
not in a perceptually uniform way). Therefore, integrating the SPD of a color
stimulus with y(λ) would correspond to its luminance.

The CIE XYZ color matching functions are shown in Fig. 2.21, and for any
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Figure 2.21: Color matching functions x(λ), y(λ) and z(λ). Image from [Wikipedia, 2007].

given color stimulus with spectral distribution E(λ), the (X,Y, Z) tristimulus
values can be computed in the same fashion as the (R,G,B) tristimulus values:

X =

∫ 740

380
x(λ)E(λ)dλ

Y =

∫ 740

380
y(λ)E(λ)dλ

Z =

∫ 740

380
z(λ)E(λ)dλ

(2.6)

CIE xyY Color Space and CIE Chromaticity Diagram

Numerically, it is possible to match a wide range of colors by mixing three
properly chosen color primaries, resulting in a three-dimensional figure where
each point represents a color. The sensation of a given color can be described
with three main quantities:

• its hue, which is what we normally refer as perceived color (red, green,
yellow, and so on).

• its brightness, which is an attribute according to which the color appears to
have more or less light intensity.

• its saturation, that defines how pure the color is relative to its own bright-
ness.
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When describing colors it is convenient, for better conceptual understanding
and clear visualization, to decouple luminance from the hue-saturation pair that is
referred as chromaticity using the standardized normalization procedure defined
by the CIE:

x =
X

X + Y + Z

y =
Y

X + Y + Z

Y = Y

(2.7)

Figure 2.22 shows the standard CIE xy chromaticity diagram, where the
tongue-shaped region corresponds to the chromaticities of all the colors a standard
observer can perceive. The horse-shoe shaped curve at the upper boundary
represents monochromatic colors with their wavelengths labeled, and it is called
spectral locus [Sharma, 2002]. The line at the lower boundary is called the line of
purples and it corresponds to mixtures of blue and red lights from the two ends of
the spectral locus. These are not spectral colors, which is why there is not any
wavelength labeled with them.

Figure 2.22: CIE xy chromaticity diagram. Image is from [Wikipedia, 2007].
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A perfect white light with completely flat power spectrum lies at x = y = 1/3
where the saturation is 0%. Such white light is called equal energy white, and we
will see in detail some other white lights in section 2.4.5. A pure monochromatic
light has 100% saturation, and as we mix it with white, its chromaticity moves
inward and therefore the saturation gets reduced. While the trichromacy property
states that any color can be expressed as a linear combination of a given set of
three primaries, it is important to note that any color that a device can create will
always lie within the triangle determined by the chromaticities of its primaries.
Furthermore, due to the convex shape of the spectral locus, any such triangle will
not be able to cover the full chromaticty diagram. As a consequence tri-chromatic
systems are unable to reproduce many colors that we can perceive.

2.4.3 Perceptually-uniform Color Spaces

Although CIE XYZ and CIE xyY color spaces are easy to implement [Poynton,
2012], they are perceptually non-linear. For example, the distance between
two colors in XYZ color space (or in xyY color space) does not correspond to
the perceptual difference between those two colors. Figure 2.23 shows a plot
where colors within the contour of each ellipse are perceptually indistinguishable
when compared with the color at the center of the ellipse. It is evident that the
perceptual differences of the same magnitude has produced ellipses of different
sizes, therefore affirming that these color spaces are perceptually non-uniform.

Several researchers have devoted their efforts to develop color spaces that have
perceptual uniformity because it is an extremely important feature as it allows to
define error tolerances in color reproduction systems [Bertalmı́o, 2014]. In 1976
the CIE defined two new color spaces: CIE L*a*b* (abbreviated CIELAB) and
CIE L*u*v* (abbreviated CIELUV). These spaces are designed to be linear with
visual perception. In both color spaces, L* represents lightness that is the standard
estimate of the perceptual response to the luminance value Y , whereas the other
two components denote chromaticity (albeit defined differently). u* and v* are
defined so that just noticeably different colors are roughly equi-spaced. Whereas,
a* and b* are chosen such that the euclidean distance between two points match
the perceptual difference between the colors corresponding to those points. The
lightness coordinate L*, same for both spaces, is computed as:
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Figure 2.23: Ellipses representing the perceptual difference of the same magnitude. Figure
from [Judd, 1979].

L∗ =



(
29

3

)3 Y

Yn
if

Y

Yn
≤ 0.008856

116

(
Y

Yn

) 1
3

− 16 otherwise

(2.8)

and the chromaticities for CIELAB are computed as:

a∗ = 500

(
f

(
X

Xn

)
− f

(
Y

Yn

))

b∗ = 200

(
f

(
Y

Yn

)
− f

(
Z

Zn

)) (2.9)

where (Xn, Yn, Zn) denote the tristimulus values of a reference white, more
commonly referred as the “white point” which is the brightest point in the field
of view (more detail on this topic will be covered in section 2.4.5). The function
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f(·) is defined as

f(x) =


x

1
3 if x > 0.008856

1

3

(
29

6

)2

x+
4

29
otherwise

(2.10)

Whereas, the chromaticities for CIELUV are calculated as:

u∗ = 13L∗(u′ − u′n)

v∗ = 13L∗(v′ − v′n)
(2.11)

where u′n and v′n are the chromaticity coordinates of the reference white and

u′ =
4X

X + 15Y + 3Z

v′ =
9Y

X + 15Y + 3Z

(2.12)

From the CIELAB model, we can obtain another color space known as
CIELCh (L for lightness, C for chroma, and h for hue). In this system, by
using the Cartesian [a*, b*] pair, a polar-coordinate pair of chroma and hue can
be defined as:

C∗ab =
√
a∗2 + b∗2

hab = tan−1

(
b∗

a∗

) (2.13)

Note that the CIE has not defined saturation term in the CIELCh color space.
But by converting [u*, v*] pair into polar coordinates as:

C∗uv =
√
u∗2 + v∗2

huv = tan−1

(
v∗

u∗

)
,

(2.14)

one can measure the psychometric saturation term as [Ford and Roberts, 1998]:

suv =
C∗

L∗
(2.15)

37



“PhD˙Thesis˙RevM2” — 2017/4/4 — 16:20 — page 38 — #64

Limitations of CIELAB, and CIELUV

Even though the CIELAB and CIELUV color spaces are more perceptual than
tristimulus color spaces, they are not perfectly perceptual. CIELAB suffers
from cross-contamination in some of its parts [Morovič, 2008]. For instance,
in the blue region, making changes only in one attribute (such as hue) causes
perceptual change in another attribute (such as saturation). CIELUV also have
poor hue correlation in some regions. Although in 1976, it was difficult for the
CIE to choose one color space over the other, recent studies recommend using
CIELAB [Fairchild, 2013].

2.4.4 HSV Color Space

HSV (H for hue, S for saturation, and V for value) is a commonly used color
space that is a linear transformation of RGB color model into cylindrical repre-
sentation. Since RGB is not a perceptually uniform space, this system is also
perceptually non-linear and device-dependent. However, its main advantage lies
in the extremely intuitive way of specifying colors. This may be the reason that
colorists have three sliders to control hue, saturation and luminance in their work
stations, because color grading task becomes much simpler and comes naturally
to artists in HSV (or alternatively HSL (lightness), HSI (intensity)) color space
compared to RGB color space.

2.4.5 Color Temperature and Different Reference White Points

A light source is characterized by its power spectrum and as it is mentioned before,
a perfect white light has a flat spectral power distribution known as equal-energy
illuminant. However, in reality, white lights never have a completely flat spectrum.
The CIE recommended a set of standard illuminants: A for incandescent light,
B for sunlight, C for average daylight, D for phases of daylight, E is the equal-
energy illuminant, while illuminants F represent fluorescent lamps of various
compositions [Wikipedia, 2017b]. It indicates that there is no unique physical or
perceptual white. Illuminants A and B have already become obsolete [Poynton,
2012]. The D series of illuminants are the most widely used. Since, many
illuminants have, at their core, a heated object (black-body radiator that does not
reflect light and emits radiation), it is useful to define illuminants simply by the
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temperature in Kelvin (K) degrees. Although the CIE recommends using D65
illuminant that represents natural daylight with a temperature of approximately
6504K, the print industry uses D50, and in photography D55 is commonly used.
The broadcast industry uses D65, whereas the cinema industry does not use D
series illuminant as we shall see in chapter 3. Many computer displays and
televisions have a default setting of 9300K which gives a bluish white, and this
temperature is commonly used in consumer and studio displays in Asia due to
cultural preferences [Poynton, 2012].

It is convenient to calculate the white point of an D-illuminant in terms of
(x, y) coordinates of the CIE 1931 chromaticity diagram, and for this the CIE
defined the following formulas:

xD =



−4.6070× 109

T 3
+

2.9678× 106

T 2
+

0.09911× 103

T
+ 0.244063,

for 4000K ≤ T ≤ 7000K

−2.0064× 109

T 3
+

1.9018× 106

T 2
+

0.24748× 103

T
+ 0.237040,

for 7000K < T ≤ 25000K

yD = −3.000x2
D + 2.870xD − 0.275

(2.16)
where T represents the correlated color temperature in Kelvin. Chromaticity
coordinates of several standard illuminants are summarized in Table 2.1.

Table 2.1: Standard illuminants by the CIE.

A C D50 D55 D65 E (equal-energy)

x 0.44757 0.31006 0.34570 0.33250 0.312727 0.333334
y 0.40745 0.31616 0.35870 0.34760 0.329024 0.333330
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CHAPTER 3

Cameras, Displays, and Color Gamuts: The Need for
Gamut Mapping

In this chapter we first discuss about the basic components of digital cameras and
the common in-camera imaging pipeline that shows how these state of the art
cameras are not just light measuring devices but apply several image processing
algorithms based on the basic characteristics of visual perception in order to
produce visually pleasant imagery. Later we will present various display tech-
nologies that are being used in computer monitors, televisions, regular projectors
and digital cinema projectors. Particularly, we will explain what are the main
factors that contribute in defining the color gamut of a display device. We will
show why there is a significant gamut variation among displays and how gamut
mapping can enable these devices to use their full color rendering potential. We
will present details of standard color gamuts recommended for generating content
for cinema, television broadcast and image exchange on the internet.

3.1 Color Image Processing Pipeline of a Digital Camera

Cameras capture incoming light and by processing it through a series of opera-
tions they provide us with a displayable image that represents the actual scene.
Though the sequence in which these operations are performed may differ from
manufacturer to manufacturer and usually they do not make this information
public, Fig. 3.1 shows the basic steps that are common to all standard digital
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Figure 3.1: Image processing pipeline of digital cameras. Figure from [Ramanath et al., 2005].

cameras. In the following sections we briefly explain the color image processing
pipeline of a camera. Particularly, we will discuss at which stage of the pipeline
the process of gamut mapping is performed.

3.1.1 Lens, Aperture, Shutter, and Sensor

The incoming light rays first pass through the lens of the camera where they
undergo a process of refraction and get focused onto the sensor. In order to
regulate the amount of focused light that reaches the sensor, aperture and shutter
are used. The aperture of a camera is a small opening that controls the amount of
light: narrow aperture allows less light to enter, whereas wide aperture permits
more light to pass. The shutter is a window in front of the sensor which basically
opens for a specific time in order to expose the sensor to light; if the shutter speed
is fast, the sensor will be exposed to light for less time, whereas slow shutter speed
will allow light rays to strike the sensor for a longer period of time. Together, the
lens, aperture and shutter of the camera assist in capturing the scene radiance onto
the sensor.

An image sensor is a semiconductor device that contains an array of cells
to capture the light photons and convert them into an electrical signal using the
photoelectric effect [Nakamura, 2005]. There are two types of sensors: charged
coupled device (CCD) and complementary metal oxide semiconductor (CMOS).
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Figure 3.2: Classes of camera sensor. Left: CCD scanning. Right: CMOS charge transfer scheme.
Figure is taken from [Nakamura, 2005].

Both families of sensors essentially perform the same task of converting light into
voltage but they use different readout technologies. As illustrated on the left side
of Fig. 3.2, the CCD sensor transfers the charge vertically, row-by-row, from each
cell array to the serial shift register. The shift register then transfers the charge
horizontally to be converted into analog voltage at just one output amplifier. On
the right side of the same figure, it can be seen that the CMOS sensor has one
amplifier at each cell location where charge gets converted directly into analog
voltage. Finally, the analog-to-digital converter converts the analog voltage to
digital values. At the image sensor, the real world scene gets discretized and
therefore the number of cells (or pixels) present in a sensor defines the spatial
resolution of the image that it will produce.

The process we have just mentioned would produce a grayscale image because
the camera sensor captures only the light intensity, but then how do we obtain
the color information? As we have previously noted, the human visual system
has three types of cones (short, medium and long) that respond to different
wavelengths of light in order to produce the color sensation. A digital camera
works on a similar principle: it filters the incoming light rays into triplets of red,
green and blue colors in order to produce a color image. To acquire these primary
colors, the following two main configurations are in use [Adams et al., 1998]:

• Three-sensor system: uses a beam splitter (assembled by combining two
dichroic prisms) to separate the incoming light into three different color
channels. An image for each channel is then recorded on each sensor. See
Fig. 3.3 (left).
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Figure 3.3: Classes of camera. Left: a three-sensor system that a beam splitter camera uses. Right:
Bayer CFA that is used in a mosaic single-sensor camera. Image is taken from [Bertalmı́o, 2014].

• Color filter array (CFA): is added to the sensor of a single-sensor camera
either by a dye process or a pigment process. The CFA allows only a
particular color (wavelengths) of light to enter into the sensor’s cavity.
The most popular and a very simple CFA is the Bayer pattern. As shown
in the right column of Fig. 3.3, there are two green squares for each
red and blue square because of the fact that the human visual system is
more sensitive to the green color than to the blue or red color. Depending
on the set of dyes used in the CFA, the color capturing capability varies
among cameras. Camera makers use different set of dyes for different
camera models. One may ask why camera manufacturers do not use dyes
that would enable cameras to capture the content with the widest possible
gamut. The main reason is the intended market of cameras in which they
are going to be used [Bertalmı́o, 2014]. For example, if the camera content
will be displayed on regular TVs (which follow the limited standard gamut
of the broadcast industry), then there is no need to capture those colors that
will never be reproduced by these display devices.

Virtually all digital cameras have a single sensor and use the CFA, therefore,
the remaining steps of the image processing pipeline are explained according to
the single-sensor camera system.

3.1.2 Preprocessing

At this stage the camera tries to compensate for a few problems that might have
occurred due to several reasons such as light scattering in the lens, defective cells
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of the sensor, non-linearity introduced by amplifiers and other circuitry, and dark
current that occurs due to thermally-generated electrons and that can increase
the output level corresponding to dark scene detail, thus reducing the dynamic
range [Ramanath et al., 2005].

Some cameras provide an option to save data in RAW image format without
applying any further image processing. RAW image generally represents the
sensor values and this image has a camera-specific color space. Professional
filmmakers (and photographers) prefer shooting content in RAW format and
processing it offline (to make it ready for display) as it provides them more control,
flexibility and freedom to make artistic and computational imaging related choices
in order to enhance their storytelling [Bertalmı́o, 2014].

3.1.3 White Balance

Let us recall from section 2.3.3 that our visual system has an essential property
that enables us to discount the effect of the illuminant and therefore the color of
an object appears constant under different lighting conditions. For example, if
we see a white sheet of paper in daylight, or in fluorescent light, or even under
tungsten light, we continue to perceive the paper as being white even though the
light reaching our eyes is different under different light sources. It indicates that
if cameras do not attempt to replicate such behavior of human vision, they will
produce images that would never seem correct in color appearance, and we may
notice color casts in them. In order to perform white balance (also known as
computational color constancy), cameras seek to estimate the scene illuminant
and then discount its effects from the captured data [Buchsbaum, 1980], [Cardei
and Funt, 1999], [Land, 1977], [Lam and Fung, 2008], [Vazquez-Corral et al.,
2012].

3.1.4 Demosaicking

The image sensor produces a mosaic image as shown on the left side in Fig.
3.4. At each pixel of the mosaic image, the information of only one color is
present because of the CFA, and the camera has to estimate the other two colors
in order to generate a true color image. This approximation of the missing two
colors is performed by using a demosaicking algorithm [Ramanath et al., 2002].
Most of the demosaicking algorithms [Hamilton and Adams, 1997] [Hibbard,
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Figure 3.4: Example of demosaicking. Left: mosaic image. Right: demosaic image.

1995] [Cok, 1987], due to the configuration of Bayer filter and to obtain a high
resolution image, first interpolate the green channel using bilinear or anisotropic
interpolation, and then they use the new green channel to interpolate the red
and blue channels. However, these algorithms may introduce artifacts such as
false colors and Moiré patterns. To deal with such issues, some approaches
use a combination of a demosaicking method and a denoising method. For
instance, [Buades et al., 2009] proposed a self-similarity driven demosaicking
(SSD) algorithm where they first interpolate a mosaic image to obtain a demosaic
image and then apply a non-local image denoising algorithm [Buades et al., 2005]
to suppress the interpolation noise. The resultant image is a true color image that
is free from artifacts as shown in Fig. 3.4.

3.1.5 In-camera Color Transformations

One may think that, ideally, a camera sensor should have spectral sensitivities
identical to the cone sensitivity functions of the human vision, so that when it
captures colors, they accurately match with the human perception. But this is not
an appropriate option due to several practical reasons. Primarily, as Fig. 3.5a
shows, the long and medium wavelength cone curves have a large amount of
spectral overlap, and therefore making camera filters that could produce similar
curves would be extremely difficult [Bertalmı́o, 2014] and very expensive [Poyn-
ton, 2010b]. Even if a perfect colorimetric filter was easy to develop, there
is a good engineering reason not to use one; because reconstructing an RGB
image from such sensor will introduce significant noise implications [Poynton,
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Figure 3.5: Comparison of spectral sensitivities of: (a) the three types of cones in a human eye, and
(b) a typical digital camera. Figure from [Lam and Fung, 2008].

2012], [Hubel et al., 1997]. An example of a typical digital camera’s spectral
sensitivity functions is shown in Fig. 3.5b, and it is clear that they are different
compared to the cone sensitivities, and therefore the camera will not perfectly
mimic the response of the human eye. While from a signal-to-noise point of view
it is not practical to mimic cone responses for image capture, it is important to
obtain a colorimetric estimate of the original scene. To achieve this, the image
signal must be transformed from the sensor’s RGB color space to the CIE XYZ
color space (that uses color matching functions of a standard observer [Sharma,
2002]), and eventually into a desired output color space. In case the camera color
space is larger than the standard output color space, a gamut mapping procedure
is needed to reproduce images without spurious colors and artifacts.

3.1.6 Gamma Correction

Most RGB imaging systems encode images using a non-linear transfer function
called gamma correction, and there are several reasons for doing this. First, in
cathode ray tube (CRT) displays, it was observed that the luminance produced
at the face of the screen has a non-linear relation with the device’s input voltage:
L = αV γ , where L denotes luminance, V represents the voltage, γ is the exponent
of the power function with a value of 2.4, and α is the proportionality coefficient.
Therefore, this was the original reason to perform gamma correction in order
to pre-compensate the non-linearity of the CRT by adding the inverse exponent
of the CRT’s power function to the camera signal. Consequently, both non-
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Figure 3.6: Gamma correction on a CRT.

Figure 3.7: Perceived lightness as a function of luminance is approximately a power function of
exponent 0.42. Plot from [MacEvoy, 2015].

linearities cancel each other out, and therefore CRT will provide the intended
scene luminance to viewers. The plot of gamma correction on a CRT is shown in
Fig. 3.6.

Secondly, at that time it was well known that the relationship between per-
ceived lightness and physical luminance is non-linear and it can be approximated
as a pure power function with an exponent of 0.42, see Fig. 3.7. This indicates
that our visual system is more perceptible to small changes in the dark parts of
an image than in the bright parts. Given that over-the-air analog transmission
introduced noise in the TV signal, linearly transmitting luminance captured by the
camera would make noise very prominent in the dark regions of the image, but
transmitting an image encoded with a power function of exponent 0.42 will re-
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duce the visibility of noise. Thanks to the amazing coincidence, the non-linearity
of the CRT turned out to be remarkably similar to the inverse of the perceptual
luminance-to-lightness function. This indicates that even if we never had the need
of gamma correction for physical reasons at the CRT, we still had to develop it
for perceptual reasons [Bertalmı́o, 2014], [Poynton, 2012].

Although today when the TV technology is digital and CRTs are obsolete, we
are still using gamma correction. The reason is that each pixel of an image is
required to be coded with a limited number of bits. Since we are more sensitive to
changes in the dark regions, it is better to allocate more number of bits to code low
luminance values and use less number of bits for high luminance values where we
are less perceptible to changes of the same amount, and for this the application of
gamma correction is inevitable.

In color imaging, the primes on the R’G’B’ triplet represent that the values
are non-linearly coded. There exists several standardized color spaces intended
for different display technologies: BT.709 for high-definition television (HDTV)
[ITU-R, 2002], BT.2020 for ultra high-definition television (UHDTV) [ITU-
R, 2012], DCI-P3 for digital cinema [SMPTE, 2011], and sRGB for computer
monitors and internet [Stokes et al., 1996]. All of these color spaces use different
transfer functions to implement gamma correction as we shall see in more detail
later in this chapter.

3.1.7 Post Processing

It is worth mentioning that up until this stage, colors of the image are linearly
related to the original scene light. But from this point forward cameras apply
non-linear operations in order to add style and make aesthetic adjustments in
images such that they appear pleasant to viewers. Some commonly used post
processing operations include edge enhancement, color-artifact removal, noise
removal and tone mapping. All these operations are proprietary and very much
camera-specific. Tone mapping is a non-linear operation to modify image values
in order to achieve some preferred tone-reproduction; this is not the standard
(sRGB) gamma correction which is publicly known. There is a large body
of research [Debevec and Malik, 1997], [Nayar and Mitsunaga, 2000], [Farid,
2001], [Grossberg and Nayar, 2003], [Grossberg and Nayar, 2004], [Kim and
Pollefeys, 2008], [Vazquez-Corral and Bertalmı́o, 2015] that aims at estimating
this non-linearity so that the radiance of the scene can be recovered.
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3.1.8 Compression

A 2-hour long movie with a spatial resolution of 2048× 1080 pixels, temporal
resolution of 24 frames per second and with 8 bits per color channel requires
1.15 terabytes of memory. Recording movies with such high data rate is well
beyond the capabilities of regular cameras. And even if state of the art cameras
are able to capture memory intensive content, this amount of data storage is not
available in regularly used devices such as computers, mobiles, etc. Therefore,
it is necessary to perform compression to reduce the size of the data in order to
use memory efficiently. Image compression can be lossless or lossy. To store
RAW images in CinemaDNG format or TIFF/EP format, lossless compression
is generally used which is based on Huffman coding and run-length encoding.
Lossy compression can be performed by using either the discrete cosine transform
(DCT) or the wavelet transform. The most commonly used formats based on the
DCT are JPEG for still images and MPEG-4/AVC H.264 for videos.

3.2 Color Gamuts

As we have mentioned in section 2.4.2, the physical spectra of an original scene
produces sensation in our visual system, and this response can very well be
estimated by integrating the spectra with the color matching functions, that
provides us with XYZ tristimulus values representing colors of the scene. One
may try to directly visualize these tristimulus values using a display device
such as TV screen, digital projector, or computer monitor, but this will produce
false colors because this is not how display devices reproduce colors. For them
to accurately display media, we must convert the XYZ tristimulus values to a
standard RGB color space.

A trichromatic device such as a digital projector uses three well chosen color
primaries that can be mixed in proper proportions to create different colors. One
such illustration of additive color reproduction is shown in Fig. 3.8 where it
can be seen that each primary has an independent spectral power distribution that
are physically summed to generate a new spectra that will cause sensation of the
corresponding color in the human visual system.

It is very important to note that each display device has its own RGB color
space, and we cannot just use the original RGB values coming from cameras on
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Figure 3.8: Example of Additive reproduction. Figure from [Poynton, 2012].

every type of display devices, rather we have to perform a transformation between
the color spaces in order to obtain correct values. This transformation requires
the white point and the xy chromaticities of the RGB primaries of both the input
image and the target display device. We will see how to transform from the color
space of one device to another device later in this chapter, but let us first explain
more about color primaries and color gamuts.

The xy coordinates of the three RGB primaries of a display device define
its gamut: which is the range of colors it can reproduce. In the xy chromaticity
diagram, the set of RGB primaries forms a triangle with vertices in the points
(xR, yR), (xG, yG) and (xB, yB). Since colors are created as a linear combination
of the three primaries, they will all lie inside this triangle. In Fig. 3.9, we show an
example of the color gamut of a device. It is evident that there is no set of three
physical primaries that can create a gamut capable of covering the full visible
spectrum; in fact no finite set of primaries can cover all colors due to the odd and
squiggly shape of the spectral locus. This implies that there are many colors that
we are able to see but display devices are not able to reproduce. Hence, a device
gamut is a subset of the human vision gamut.

The range of colors (gamut triangle) shown in Fig. 3.9 are only achievable
at low values of luminance. But as the luminance increases, the range of colors
is reduced, and at the maximum relative luminance of 1, the gamut becomes a
single point (being the white point) on the chromaticity diagram; an illustration
of this behavior is presented in Fig. 3.10a. Hence, a 2D gamut representation is
good for simplicity but a 3D color volume is a more complete way to describe the
actual color palette that a device can reproduce. An example of color gamut in
3D is depicted in Fig. 3.10b.
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Figure 3.9: An example of color gamut in the CIE xy chromaticity diagram.
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Figure 3.10: (a) An example showing horizontal cross section of 3D color volume at several
luminance levels. (b) 3D color gamut.

3.2.1 Pointer’s Gamut

While working at Kodak Research, [Pointer, 1980] collected a database of 4089
samples of frequently occurring real surface colors. He made an analysis of this
color set and derived a color gamut to which we commonly refer as Pointer’s
gamut. As shown in Fig. 3.11, Pointer’s gamut covers 47.9% area of the visible
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Figure 3.11: Pointer’s gamut in the CIE xy chromaticity diagram.

spectrum (when plotted in the CIE xy chromaticity diagram). However, due to the
irregular shape of Pointer’s gamut, making a display that could reproduce nearly
all colors present in the Pointer’s gamut would require either three monochromatic
RGB primaries or more than three regular primaries. Since many real world
surface colors lie within Pointer’s gamut, it may be a good reference gamut for
display makers to aim for.

3.2.2 Broadcast Standard: BT.709

In 1990, participants in the ITU-R meeting reached to an agreement of standardiz-
ing a format for HDTV production and program exchange. The standard is com-
monly denoted either as Recommendation ITU-R BT.709, or as Rec. 709 [ITU-R,
2002]. We will be using BT.709 abbreviation throughout this document. BT.709
(and other standards that we will explain in the following sections) describes
various technical aspects of image display, but we are mainly going to discuss
and specify color primaries, white point, peak luminance and transfer function.
The BT.709 standard is used in studio production, HD broadcast and cable TV,
Blu-ray discs and DVD. The color primaries of BT.709 and its D65 white point
chromaticities are mentioned in Table 3.1. The BT.709 gamut is visually illus-
trated in Fig. 3.12, from where it becomes immediately apparent that it covers
a small range (33.5%) of colors that we can see, and 69.4% colors of Pointer’s
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Table 3.1: ITU-R BT.709 primaries and its white point.

Red Green Blue White, D65

x 0.64 0.30 0.15 0.3127
y 0.33 0.60 0.06 0.3290

Visible Spectrum

Pointer's Gamut

BT.709 Gamut

Figure 3.12: BT.709 gamut in the CIE xy chromaticity diagram.

gamut. Currently, HDTV content is mastered with peak luminance of 100 nits
and it has minimum luminance below 0.01 nits [ITU-R, 2013].

The gamma correction, formally known as opto-electrical transfer function
(OETF), that the BT.709 standard recommends to encode real world scene tris-
timulus values is:

V709 =

{
4.5Z, 0 ≤ Z < 0.018
1.099Z0.45 − 0.099, 0.018 ≤ Z ≤ 1

(3.1)

where Z represents (linear-light) R, G or B component and V709 corresponds
to gamma-corrected R’, G’ or B’ value. It is important to recall from section
3.1.6 that, theoretically, a pure power function could be good enough for gamma
correction, but notice in Fig. 3.13 that the OETF of BT.709 is not a pure power
function: it has a linear segment with a slope of 4.5 near black. There is a practical
reason for this: the slope of a pure power function with an exponent less than one
is infinite at zero. Therefore, using a pure power function in a practical system
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Figure 3.13: BT.709 OETF to map scene tristimulus to video code. Image from [Poynton, 2012].

(such as in a video camera) would produce infinite gain for values near black, and
consequently, producing images with a significant noise in dark regions [Poynton,
2012], [Bertalmı́o, 2014].

Provided that the camera was operated with factory BT.709 settings, the
encoded R’G’B’ values can be converted into linear RGB signal by inverting Eq.
(3.1) as:

Z =

{
V709
4.5 , 0 ≤ V709 < 0.018(
V709+0.099

1.099

) 1
0.45 , 0.018 ≤ V709 ≤ 1

(3.2)

Poynton mentions in his book [Poynton, 2012] that some people describe
the OETF (or alternatively called as encoding gamma) of BT.709 as γE ≈ 0.45
for picture rendering at the camera side, however, it is not accurate because the
effect of linear segment for low values and offset terms make the overall transfer
function very similar to a square root (γE ≈ 0.5). Although television engineers
approximated the non-linearity of CRT displays as a power law with an exponent
of 2.4, it was never documented in BT.709 standard due to the fact that the
physics of CRTs implicitly provided this behavior and there was not any need to
explicitly specify the value of this non-linearity in the BT.709 standard. But with
the popularity of digital flat panel displays that differ greatly in technology, ITU-R
proposed a standard [ITU-R, 2011] in which the value for decoding gamma or
electro-optical transfer function (EOTF) is specified as γD = 2.4, so that the
modern displays produce consistent results among them and also emulate the
EOTF of the legacy CRT.

In practice the effective power law with 0.5 exponent is used in the camera and
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when it is combined with a display gamma of 2.4, we obtain an end-to-end gamma
of 1.2, which is commonly known as system gamma or alternatively known as
opto-optical transfer function (OOTF) [Borer, 2014]. The system gamma is a
deliberate attempt of keeping a non-linearity in the signal in order to compensate
for the subjective effects of viewing images in different ambient conditions.

Note that the values in Eq. (3.1) are described in the nominal range 0 to
1. For the 8-bit quantization in digital video standards, these values are scaled
by 219 and offset by +16, thus giving 219 total steps between reference black
to reference white. Values below 16 and above 235 are reserved for providing
footroom and headroom that are necessary to preserve filter transients (over and
under shoots) [Poynton, 2012].

3.2.3 sRGB system

With a joint effort of Hewlett-Packard and Microsoft in 1996, a new standard color
space was proposed for computer monitors and image exchange on the internet.
This standard, known as sRGB [Stokes et al., 1996], uses intentionally the same
color primaries and white point as of BT.709, but a different transfer function
for gamma correction. Because of its popularity and widespread use in operating
systems, consumer software applications, internet browsers, desktop graphics,
regular digital cameras and printers, it is considered as a default color space for
image coding, meaning that if we receive an image without any information about
its color primaries and white point, it is safe to assume that the image data is
in sRGB format [Poynton, 2012]. To compensate the high levels of ambient
luminance and flare that are typically found in office or home viewing conditions
(unlike broadcast studios), the sRGB standard specifies an appropriate OETF to
encode image values:

VsRGB =

{
12.92Z, 0 ≤ Z ≤ 0.0031308

1.055Z( 1
2.4) − 0.055, 0.0031308 < Z ≤ 1

(3.3)

Again, practically cameras use a pure power law to transform the tristimulus
values of the original scene into the target display tristimulus values. And from
the exponent (1/2.4) in Eq. (3.3), one may tend to use γE = 1/2.4 ≈ 0.42, however,
the correct approximation, due to the large offset and scale factor, is γE ≈ 0.45.
Such encoded image when displayed on a device that uses γD = 2.4 would
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Figure 3.14: A comparison of BT.709, sRGB and CIE L* encoding functions. Image from [Poynton,
2012].

produce a system gamma of 1.1 that is significantly lower than the system gamma
of BT.709 (i.e. 1.2). In sRGB 8-bit image coding, each R, G or B component is
encoded by utilizing the full range from 0 to 255, with no headroom or footroom.
An illustration comparing the perceptual luminance-to-lightness function and the
encoding functions of sRGB and BT.709 is depicted in Fig. 3.14 where it can be
seen that all three curves are, although quite similar, not sufficiently close to be
used interchangeably.

3.2.4 Cinema Standard: DCI-P3

In 2002, major motion picture studios formed an alliance, formally known as
Digital Cinema Initiatives (DCI), to develop a standard architecture and document
technical specifications for digital cinema. After arguing about what should be the
appropriate set of color primaries to encode image data, it was mutually decided to
use the widest gamut that could enclose the full visible spectrum in order to make
a future proof standard [Kennel, 2007]. Hence, the DCI opted for the CIE XYZ
color primaries having xy chromaticities [1, 0], [0, 1] and [0, 0] and equal-energy
white reference with chromaticities [1/3,1/3].

Even though DCI recommended to use the XYZ primaries for image coding,
practically all movies for digital cinema are mastered using the DCI-P3 color pri-
maries that were proposed by Society of Motion Picture & Television Engineers
(SMPTE) in [SMPTE, 2011] standard. This standard provides a comprehensive
set of guidelines for movie encoding and environment conditions so that when
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Table 3.2: DCI-P3 primaries and its white point.

Red Green Blue White

x 0.680 0.265 0.150 0.314
y 0.320 0.690 0.060 0.351

Visible Spectrum

Pointer's Gamut

BT.709 Gamut
DCI-P3 Gamut

Figure 3.15: DCI-P3 gamut in the CIE xy chromaticity diagram.

the same movie is viewed using different projectors in different theaters, it has a
similar and consistent visual appearance. The DCI-P3 standard uses a monochro-
matic (615nm) red primary, a non-monochromatic green primary, and it has the
same blue primary as of BT.709/sRGB color space. In Table 3.2, the chromaticity
coordinates of the DCI-P3 primaries and white point are listed. The DCI-P3
gamut is represented in Fig. 3.15 where it can be seen that it covers 45.5% area of
the visible spectrum and 86.9% area of Pointer’s gamut. The standard [SMPTE,
2011] specifies the exponent value of 2.6 for the decoding gamma transfer func-
tion and 12-bits per component are recommended for quantization. Movies that
are inteded for cinema projection are graded with peak luminance of 48 nits and
minimum luminance of 0.02 nits [Kennel, 2007].
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3.2.5 Next-Generation Broadcast Standards: BT.2020 and BT.2100

In 2012, ITU-R recommended a new standard called BT.2020 [ITU-R, 2012] for
the next generation ultra-high definition television. The key features of BT.2020
include two versions of spatial resolution (4K: 3840×2160 and 8K: 7680×4320),
a larger bit depth of 12-bits per component, a higher frame rate frequency up to
120 Hz (progressive scan only), and a wider color gamut. The red, green and
blue primaries of the BT.2020 standard are monochromatic. These primaries
form a gamut that encompasses the DCI-P3 and BT.709/sRGB gamuts and covers
99.9% area of Pointer’s gamut as shown in Fig. 3.16. It indicates that any
display capable of realizing the full BT.2020 gamut will provide enhanced visual
experience by reproducing nearly every color found in nature. BT.2020 [ITU-R,
2012] recommends converting scene radiance to digital code values using the
same transfer function as used by BT.709, see Eq. (3.1). The color primaries and
reference white of BT.2020 are summarized in Table 3.3.

Both BT.709 and BT.2020 provide images with a very limited dynamic range
because they aim at emulating the characteristics of legacy CRTs: limited image
brightness and less detail in dark regions. But state of the art display devices are
capable of reproducing images with higher contrast ratio as they can produce very
bright whites and extremely dark blacks on a pixel basis. Therefore, in 2016, ITU-
R modified the BT.2020 standard and provided two important extensions: support

Visible Spectrum

Pointer's Gamut

BT.709 Gamut
DCI-P3 Gamut

BT.2020 Gamut

Figure 3.16: BT.2020 gamut in the CIE xy chromaticity diagram.
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Table 3.3: ITU-R BT.2020 primaries and its white point.

Red Green Blue White, D65

x 0.708 0.170 0.797 0.3127
y 0.292 0.797 0.046 0.3290

for full HD resolution (1920× 1080) and support for high dynamic range (HDR)
imagery. This standard is commonly known as BT.2100 [ITU-R, 2016]. There are
two types of HDR image encoding methods specified in BT.2100. The first one is
the Perceptual Quantizer (PQ) [Miller et al., 2013], [SMPTE, 2014] from Dolby
that is developed through psychophysical experiments [Daly et al., 2013b] and
therefore matches well with the human perception. The other one is called Hybrid
Log Gamma (HLG) curve [Borer and Cotton, 2016] that is jointly developed
by BBC and NHK through an engineering approach, so that it stays compatible
with legacy display devices and matches closely with the already established TV
transfer functions. Moreover, unlike PQ, the HLG transfer function takes into
consideration the ambient luminance and produces images adjusted according
to the viewing conditions. It is important to mention that, from production to
display, one of these methods should be used consistently, and they should not be
intermixed at any stage.

3.3 Significant Gamut Variation Among Displays

We have just seen that the standard color gamuts are significantly different from
each other. There are a variety of display devices available in the market-place:
each of which has its own color gamut. While each display device is capable
of encompassing atleast one standard gamut defined for each specific market
(broadcast, film, web, etc.), it may have color primaries that do not exactly match
with any standard color gamut. In the following sections, we are going to discuss
briefly some of the most common types of display devices.

3.3.1 What Makes the Gamut of a Display Wide?

There are two factors that contribute in defining the color gamut of a display
device: its light source and its color filter array. The color filter array contains
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triplets of red, green and blue color filters, and each triplet of color filters cor-
responds to a pixel of the display. The job of these color filters is to separate
the incoming light into the red, green and blue components. Thus, for example,
the green color filter will allow only certain wavelengths of green light to pass,
while attempting to block the undesired red and blue light components. In order
to generate a highly saturated green color, either the filter needs to have a very
narrow spectra, or the green component present in the incoming light must have
a narrow spectrum that is finely aligned with the peak wavelength of the color
filter. The same is true for reproducing highly-saturated red and blue primary
colors. (TVs use color filter array, but in digital projectors either a prism or a
color filtering wheel is used, as we shall see.)

The process of making filters with narrow spectrum is extremely difficult
[Bertalmı́o, 2014] and very expensive [Poynton, 2010b]. Moreover, it is not opti-
mum from the engineering point of view because such filters will incur significant
noise penalty [Poynton, 2012], [Hubel et al., 1997] and loss of luminance [Jian
et al., 2014]. This is why, all major display makers are investing efforts in devel-
oping light sources that can produce a pure white light containing the red, green
and blue components that are either completely monochromatic or have a narrow
spectrum.

3.3.2 Cathode Ray Tube (CRT)

The pioneering (and the most dominant in the past century) display technology
was the CRT. A schematic in Fig. 3.17 shows some basic elements of a color
CRT [Wandell and Silverstein, 2003]. The CRT uses a vacuum tube and at its neck
lie three electron guns (one for each red, green and blue primaries) to which the
input video signal is applied. Together the focusing electrode and the deflection
plates modulate each electron beam that eventually strikes the inside face of the
phosphorescent screen. The phosphorescent screen contains three different types
of colored phosphors, each emits either red, green or blue light when stimulated
by the electron beam. A metal sheet perforated with small holes is placed in
front of the screen to ensure that when three electron beams sweep across the
entire screen, each beam illuminates only the intended phosphor and no others.
Following a process called cathodoluminescence [Wandell and Silverstein, 2003],
phosphors absorb electrons and emit visible light at the screen for us to perceive.

As illustrated in Fig. 3.18, the spectral power distributions of the red, green
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Figure 3.17: The basic architecture of a color CRT. Image is from [Wandell and Silverstein, 2003].

Figure 3.18: Spectra of color phosphors of a typical CRT. Image is from [Wikipedia, 2006].

and blue phosphors used in a common CRT are significantly spread across the
visible spectrum, therefore, it can only produce imagery with a limited gamut. In a
pitch-dark room, CRT monitors are capable of producing an excellent black level
of around 0.01 cd/m2 [Soneira, 2004] but ordinary peak luminance of around
100 cd/m2. Though this indicates that CRTs have a dynamic range of 4 orders of
magnitude, this is not the case in typical viewing conditions. Since the screen of
a CRT is coated with a fluorescent layer, it strongly reflects ambient light, and
consequently elevates the display black level, therefore reproducing content with
a limited dynamic range of just 2 orders of magnitude [Daly et al., 2013a].
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3.3.3 Liquid Crystal Display (LCD)

The first technology superseding CRTs, and currently evolving at a rapid pace,
is the flat-panel LCD [Lueder, 2010]. Figure 3.19 shows a few basic optical
components used in the imaging path of an LCD [Wandell and Silverstein, 2003].
Light from the illumination source first passes through a polarizer and acquires
a certain polarization state. The principle feature of an LCD is the use of liquid
crystal molecules (that act like shutters) between two polarized plates rotated by
90-degrees with respect to each other. In a normal state, these (nematic) liquid
crystals are arranged in a helix or a twisted structure and are properly aligned with
the second polarizer, so that when there is no voltage applied to these crystals, the
polarized light reaches the screen to what is known as the white mode of an LCD.
On the other hand, when a large electric charge is applied to the liquid crystals,
they react and rearrange themselves in a such a way that the light gets completely
blocked by the second polarization film and does not reach to the screen to which
we normally call the black mode of an LCD. By regulating the amount of voltage
applied to the liquid crystals, the intensity of the light that will reach to the screen
is controlled. There is a layer of color filters that contains pixels, and each pixel
further has the red, green and blue sub-pixels that filter out the incoming light
and produce color images at the screen. Provided an ideal backlight, the dyes and
pigments used for these color filters define the primary colors and therefore the
gamut of the display. But there is a limited variety of pigments and dyes that are
compatible with the liquid crystals [Wandell and Silverstein, 2003].
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Polarizer

Backlight
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filter array

Black matrix

TFTs

Pixel electrodes

Figure 3.19: The basic architecture of a color LCD. Image is from [Wandell and Silverstein, 2003].
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As it may have become clear from the above explanation, liquid crystals are
non-emissive; they respond to the light coming from an external light source to
produce visible images. Some of the commonly used LCD backlight technologies
are:

• Cold Cathode Fluorescent Lamp (CCFL): In general, small LCDs use
two CCFLs placed at the opposite edges and large LCDs utilize multiple
CCFLs arranged in parallel configuration for the backlighting. Most CCFLs
are very bright and produce a fairly white spectra, but they are less energy
efficient, and require costly and bulky apparatus to operate. Some display
manufacturers make use of Hot Cathode Fluorescent Lamps (HCFLs) as
they consume relatively less energy. LCDs with CCFL backlight are much
brighter compared to CRTs and have a peak luminance typically in the range
100-500 cd/m2. But their black levels are not as dim as of CRTs because
of the powerful backlight that remains on all the time while operating, and
even the best LCDs are not able to completely block the light reaching the
screen when not needed [Yeo et al., 2008]. Therefore, conventional LCDs
also provide dynamic range of 2 orders of magnitude.

• Light Emitting Diode (LED): LED-LCDs, or more commonly known as
LED TVs, use light emitting diodes as a light illumination source in two
different ways. The first conventional method of LED backlighting is to
use an array of white LEDs placed at one or more edges of the display. The
second way of implementing backlight is to use a grid of red, green and
blue LEDs. Since RGB-LEDs provide a more purer white than both CCFLs
and white-LEDs, they can produce a much wider color gamut. Apart from
being thinner and consume less energy, the main advantage of the displays
having LED backlighting is the ability to perform local dimming [Chen
et al., 2006]. The local dimming technology enables displays to dim just
those parts of the image that are required, while keeping the bright areas as
bright as possible and in turn providing a greater contrast. LED TVs, due
to local dimming, can provide a better dynamic range of around 3-4 orders
of magnitude.

LED displays do not use one LED for each pixel because it is not physically
possible for consumer displays. Instead, they use a limited number of LEDs to
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create the global backlight and a diffuser plate is used to spread the light evenly;
and the same is the case for the CCFL-LCD display devices.

3.3.4 Organic Light Emitting Diode (OLED)

Unlike LCDs, OLED displays [Mandle, 2010], [Hoffman et al., 2014] do not re-
quire an external backlight. An OLED panel has a layer of organic semiconductor
that emits light upon receiving an electric current. An OLED display works on a
pixel basis and it can completely switch off any pixel, therefore providing absolute
blacks. In general, OLED displays are much brighter than CRTs and get nearly
as bright as LCDs. These modern displays produce an incredible contrast ratio
by reproducing deep blacks and bright whites simultaneously, with a dynamic
range of 4 orders of magnitude, and therefore providing a better depiction of the
scene. OLED TVs exhibit a wide color gamut, and some models (LG B6, LG
C6, etc.) can reproduce almost full DCI-P3 color space [SMPTE, 2011]. Due to
their high production costs, OLEDs are yet to become mainstream, and as of early
2017, only LG is actively releasing different models of OLED displays in the
market-place, whereas Samsung has discontinued OLED production and moved
to a new TV technology called quantum dots that we discuss in the following
section.

3.3.5 Quantum Dots Technology

The light source at the back of a regular LCD has a wide spread power spectrum
that is rich in blue and yellow, but has poor red and green components. When
such light passes through the color filter array of the LCD, it generates suboptimal
(broadband) primary colors that subsequently produce images having a limited
gamut. To deal with this problem, Quantum Dot (QD) technology is employed in
LCDs [Luo et al., 2014].

Quantum dots [Anikeeva et al., 2009] are semiconductor nanocrystals that
emit colors when energized with a short-wavelength light i.e., blue light. The
main physical property of QDs is that their emission color depends on their size
rather than the material with which they are made. For example, Fig. 3.20 shows
several QDs varying in size from 2nm to 6nm, and when they are excited with
the same blue light, each of them will emit the light of a specific wavelength (or
color): the smallest QD will emit blue light, and the biggest QD will generate red
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Figure 3.20: Spectral characterisitics of quantum dots: emission color of a quantum dot relates to
its size. Image adapted from [Jian et al., 2014].

Figure 3.21: Spectral comparison of a conventional LCD with a QD TV. Image is from [Samsung,
2016].

light, with all other visible colors appearing in-between. However, it is important
to mention here that the light these QDs emit is not monochromatic, rather it has
a very narrow spectra in the range 30nm− 40nm [Jian et al., 2014]. This way
display makers tune QDs to emit light precisely at the desired peak red, green
and blue wavelengths, thus creating an optimal white light for LCDs that will
subsequently produce images with a very wide color gamut [Zhu et al., 2015].
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An example comparing the light spectrum of a conventional TV with a QD TV is
illustrated in Fig. 3.21.

3.4 Digital Projectors

The primary components that virtually every digital projector needs to generate
an image include a light source, a light processing engine, a set of color filters, a
prism and a lens. As illustrated in Fig. 3.22, light from the lamp goes through an
optical diffuser that focuses light onto a spatial modulator called the microdisplay.
Then from the microdisplay, the light passes through a projection lens and forms
a magnified image on the screen.

Before describing the various light sources used in digital projectors, we
are first going to explain the process of modulating light to form an image on
the projection screen. Currently, there are four major digital cinema projector
manufacturers: Barco, Christie, Sony and NEC. Except for Sony, all the rest use
the reflective Digital Light Processing (DLP) technology [Hornbeck, 1997] as a
microdisplay in their projectors. The other options for the microdisplay are the
LCD (explained above), and Liquid Crystal on Silicon (LCoS) that is a kind of
hybrid technology between the DLP and the LCD.

Figure 3.22: A highly simplified schemtic of a digital projector. Image is from the website of Laser
Illuminated Projector Association [LIPA, 2014].
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3.4.1 Digital Light Processing (DLP)

DLP technology [Hornbeck, 1997] by Texas Instruments modulates light using an
optical semiconductor chip called the Digital Micromirror Device (DMD) [Dudley
et al., 2003]. A DMD uses a rectangular array of microscopically small mirrors
where the light from each mirror corresponds to a pixel on the projected image.
Each DMD mirror has an electrode underneath which causes it to act as a light
switch; the mirror faces either toward the projection lens or toward the heat sink
(alternatively knows as light dump). In the former case, commonly referred as
‘on-pixel’, the mirror reflects light that then transmits through the lens and forms
a white pixel on the projection screen. Whereas in the latter case, known as ‘off-
pixel’, the reflected light does not reach the screen and therefore the corresponding
pixel space remains dark. The intermediate positions between on and off states of
the mirror correspond to 1024 different shades of gray, for which the mirror has
to move exceptionally fast. A very simple illustration of the on-pixel and off-pixel
mechanism is shown in Fig. 3.23.

Figure 3.23: Working of DMD: on-pixel and off-pixel mechanism. Image is courtesy of Texas
Instruments.
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Color in DLP Systems

In each DLP projector, one out of the following two configurations is used to
produce color images [Hornbeck, 1997].

• Single-chip DLP projector: A spinning wheel containing the red, green
and blue primary colors is placed between the light source and the DMD
as shown in the Fig. 3.24a. As the color wheel spins, depending on its
color sector, the corresponding filtered light falls onto the DMD panel
and subsequently reaches to the screen. For example, when the red filter
is in front of the light source, the DMD reflects the red channel of the
image at the projection screen. The same process is repeated for the green
and blue channels. But this process occurs so rapidly that the viewer
perceives a composite true color image. Single-chip DLP projectors are
mostly deployed in academic institutes, boardrooms and home theaters.
One disadvantage is that in the single-chip projectors two-third of the light
is lost.

• Three-chip DLP projector: In digital cinema projectors, manufacturers
use three DLP chips in order to provide higher brightness and greater color
fidelity. Figure 3.24b shows that the light first passes through a prism that
splits it into the red, green and blue primary colors. Each of these colored
lights then strikes its own DMD. The colored lights reflected from three

(a) (b)

Figure 3.24: Two different type of DLP systems. (a) Single-chip DLP projection. (b) Three-chip
DLP projection. Images are courtesy of Texas Instruments.
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DMD chips are combined together before passing through the projection
lens onto the screen.

3.4.2 Light Sources in Projectors

There are four types of light sources currently being used in digital projectors:
lamps, LEDs (explained above), lasers and laser phosphors.

Lamps

In cinema projectors, still the most dominant solid-state illumination source is
the lamp [Whelan and DeLair, 2012], mainly because of its price advantage
over other technologies. From the 1900s to the 1960s, initially incandescent
lamps and later carbon arc lamps were commonly used as a light source in movie
projectors. These lamps were replaced by the Xenon short-arc lamp and the ultra-
high pressure (UHP) lamp; current lamp-based projectors typically have either one
of them, mainly because they can be excellent “day-light” simulators [Wyszecki
and Stiles, 1982]. The brand new Xenon arc lamps can produce 33000 lumens
(the lumen lm is a unit to measure the total amount of light that a projector
emits) and they have an average lifetime of 500 hours [Belle, 2016]. But their
brightness fades drastically over time, for instance, after about 200 hours of use,
the brightness of a digital cinema projector drops to 22000 lm and it falls below
15000 lm within 800 hours [Beck, 2014]. The DCI compliant lamp-based digital
movie projectors are capable of reproducing the full DCI-P3 color gamut.

Laser RGB

A laser (light amplification by stimulated emission of radiation) is a solid-state
light source with three main characteristics: it is monochromatic, very bright and
coherent. Color primaries in a laser-RGB projector are generated by using the red,
green and blue lasers. Since laser projectors [Silverstein et al., 2011], [Kusakabe
et al., 2013] have monochromatic primaries with high color purity [Beck, 2014],
they are able to cover the very wide BT.2020 gamut, and therefore reproducing
nearly every color found in nature and providing the audience with a compelling
color experience. Conventional lamp-based projectors are often too dim for 3D
movies screening [Beck, 2014], meaning that the image may have a washed-out
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appearance due to lack of contrast. However, digital projectors with RGB laser
illumination can reach up to 60000 lm [Stojmenovik, 2014], which is not only
useful for 3D movies but for 2D movies too, because more brightness provides a
large range of luminance and therefore a greater contrast.

One undesirable phenomena caused by laser light is called speckle. It is
an interference pattern that occurs when coherent light gets scattered from an
optically rough surface, such as a screen. The shimmery speckle pattern is mostly
visible in uniform bright areas (e.g. sky) and it tends to decrease the perceived
contrast by masking information in the image. For this reason, it needs to be
suppressed. Common solutions to reduce speckle include the usage of an optical
diffuser [Trisnadi, 2002] or a vibrating projection screen [McKnight and Curtis,
2014].

Laser Phosphor

As of 2016, red and green lasers are very expensive to make, but the blue lasers
are inexpensive due to their mass production for blu-ray players. A laser-phosphor
digital cinema projector uses an array of blue lasers and a yellow phosphor wheel.
Light from the blue laser diode illuminates the phosphor wheel which then emits
the yellow light. The yellow light passes through a dichroic filter that splits it into
red and green primary lights. Later these red and green lights are combined with
the direct blue laser light using a light integrator to obtain a broadband white light.
Laser-phosphor projectors produce up to 6000 lm [Stojmenovik, 2014].

Advantages of Laser projectors over Lamp Projectors

There are several advantages that laser projectors have over lamp projectors:

• Image quality: when compared to lamp-based projector, laser projectors
reproduce images uniformly on the screen with better contrast, extremely
wide color gamut and high brightness. Laser projectors do not suffer with
the shortcoming of flicker as it is the case in the low-end lamp-based
projectors.

• Simplicity and high reliability: Lasers have a lifetime of 20000 hours,
which is a lot longer than a Xenon lamp. Lamp-based projectors need some
warm up time before showing any image, whereas laser projectors start
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up instantly. The brightness of laser projectors does not decay over time.
One of the major advantages of laser projectors is the redundancy of laser
diodes, meaning that if one or more laser diodes fail, the other diodes keep
on working and we still have the image on screen. In contrast, if there is a
sudden lamp failure (explosion), there would not be any image.

3.5 Color Transforms

Cameras yield content according to one of the following standard color gamuts:
BT.709 for HDTV, BT.2020 for UHDTV, DCI-P3 for digital cinema, and sRGB
for computer monitors. This standard procedure is necessary for cameras (and
the same is true in the movie postproduction) to follow, so that later on, displays
can decode the content accurately by adapting to these standard color gamuts.
The adaptation procedure requires the transformation of the content to a device
independent color space (e.g. CIE XYZ) and then to the native color space of the
display.

3.5.1 Transformations between RGB and CIE XYZ

To transform an RGB color space to the CIE XYZ color space, we need to use a
3× 3 transformation matrix M .XY

Z

 =
[
M
] RG
B

 (3.4)

Computing Transformation Matrix: Given the chromaticity coordinates
(xr, yr), (xr, yr), (xr, yr) of the color primaries and white point (XW , YW , ZW )
of an RGB system, the transformation matrix M can be computed as:

M =

SrXr SgXg SbXb

SrYr SgYg SbYb
SrZr SgZg SbZb

 (3.5)

where,
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Xr =
xr
yr

;Xg =
xg
yg

;Xb =
xb
yb

Yr = Yg = Yb = 1

Zr =
1− xr − yr

yr
;Zg =

1− xg − yg
yg

;Zb =
1− xb − yb

yb

(3.6)

and SrSg
Sb

 =

Xr Xg Xb

Yr Yg Yb
Zr Zg Zb

XW

YW
ZW

 (3.7)

For example, we can convert RGB values of an image represented in BT.709
color gamut (see primaries and white point in Table 3.1) into CIE XYZ values as:XY

Z

 =

0.412453 0.357580 0.180423
0.212671 0.715160 0.072169
0.019334 0.119193 0.950227

R709

G709

B709


The second row of this transformation matrix provides the luminance coeffi-

cients of BT.709 color space, and they sum to one because white is normalized
to one in RGB systems. Since the column vectors of the M matrix are the XYZ
tristimulus values, we can recover xy primaries from them using Eq. (2.7). Fur-
thermore, to recover white point, first transform RGB = [1, 1, 1] to XYZ triplet
and then calculate x and y chromaticities.

Similarly, the CIE XYZ values can be transformed into RGB values using the
inverse of the M matrix as: RG

B

 =
[
M
]−1

XY
Z

 (3.8)

3.5.2 Transformations among RGB Systems

Values from one RGB system to another RGB system can be transformed as:RDGD
BD

 =
[
MD

]−1 [
MS

] RSGS
BS

 (3.9)
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where MS and MD are the transformation matrices for the source and destination
color spaces, respectively; both of them are computed from their corresponding
primaries and white points. (Let us note that in Eq. (3.9) the product of MS and
RGB triplet produce a CIE XYZ triplet.)

Transformation among RGB systems may produce values that are negative or
greater than unity, meaning that these colors will fall outside the destination gamut.
One simple method to fix this issue is to set negative values to zero and values
greater than unity to one. However, this process of clipping may produce hue
shifts in the image. Therefore, instead of using this lossy and problematic method,
it is better to apply a gamut mapping procedure to obtain results perceptually
faithful to the original content and without artifacts.

While performing these transformations, we need to pay attention at two
important aspects:

• Conversion among RGB systems produce correct results only when it
is applied to linear-light tristimulus values. However, practically in all
standard RGB color spaces, each value is encoded using a non-linear
transfer function. Therefore, before applying transformations we need to
take out the effect of the transfer function in order to obtain linear-light
values.

• If the source and destination systems have the same white point, only then
the Eq. (3.9) will produce accurate results. In case white points differ
(for example, as among BT.709 and DCI-P3 color spaces), the process of
chromatic adaptation needs to be applied between MD

−1 and MS in Eq.
(3.9).

Chromatic Adaptation

Frequently it happens that the illumination source under which the image was
captured is different than that of the display device on which it is going to be
displayed. In fact it is a very common situation in gamut mapping, image editing,
etc. For example, the white point used in BT.709 image is (x = 0.3127, y =
0.3230) but if we display this image as it is using a digital cinema projector that
expects a white point of (x = 0.314, y = 0.351), then there will be a noticeable
color-shift from the actual captured colors. Content capturing is another situation
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during which keeping white points the same between different scenes (and even
within the same scene) is important. To deal with such issues a Chromatic
Adaptation Transform (CAT) [Susstrunk et al., 2000] is required that allows us to
perform illuminant to illuminant mapping in order to preserve the appearance of
image colors.

Given the source reference white (XWS , YWS , ZWS) and the target reference
white (XWD, YWD, ZWD), a source color (XS , YS , ZS) can be transformed into
a destination color (XD, YD, ZD) as:

XD

YD
ZD

 =
[
MCAT

]−1

ρD/ρS 0 0
0 ηD/ηS 0
0 0 λD/λS

 [MCAT

] XS

YS
ZS

 (3.10)

where MCAT denotes the chromatic adaptation matrix. The responses (ρ, η, λ)
are calculated as: ρSηS

λS

 =
[
MCAT

] XWS

YWS

ZWS


ρDηD
λD

 =
[
MCAT

] XWD

YWD

ZWD


The two most widely used MCAT matrices based on Bradford and Von-Kries

methods are:

MBradford =

 0.8951 0.2664 −0.1614
−0.7502 1.7135 0.0367
0.0389 −0.0685 1.0296



MV onKries =

 0.3897 0.6890 −0.0787
−0.2298 1.1834 0.0464

0 0 1



3.6 The Need for Gamut Mapping

In this section, let us briefly remark the need for gamut mapping in different
application domains. As we mentioned in section 3.1.5, different cameras have
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different color spaces, but they must produce content according to standard color
gamuts (e.g. BT.709 for home video, DCI-P3 for cinema, etc.). If cameras opt
to apply this process of color conversion using a 3 × 3 matrix, the reproduced
footage may have artifacts such as hue shifts, loss of spatial detail and spurious
colors. Therefore, there is a need for GMAs that are fast, accurate and automatic.
This is also the case in post-production, regardless of the color capabilities of
the cameras (in movies, the color gamut is chosen during grading). We have
also seen in previous sections how different technologies enable display devices
to generate significantly different color gamuts. Though some displays have
wider color gamuts than others, all these devices receive input signals encoded
with standard color gamuts. On one hand, gamut reduction is needed when the
colors of the input image fall outside the display’s gamut, in order to reproduce
colors accurately. On the other hand, gamut extension is required when the target
display’s gamut is wider than the gamut of the input image, so as to exploit the
full color rendering potential of the display device. Even though gamut extension
is considered as an enhancement procedure at the moment [Morovič, 2008], it
is gaining importance and becoming highly relevant with the introduction of
wide-gamut TVs and cinema projectors in the market-place. GMAs can also
be employed in printers, websites, photo-sharing online platforms, computer
graphics, video games, etc.
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CHAPTER 4

Literature Survey

A plethora of gamut mapping algorithms exists in the literature; the majority of
these methods perform gamut reduction, whereas only a few deal with the gamut
extension problem. For a detailed explanation of gamut mapping algorithms, we
refer the interested reader to the comprehensive book [Morovič, 2008].

In general, GMAs are divided into two broad categories: global GMAs and
local GMAs. Global (also called non-local or non-adaptive) GMAs modify each
color of an image independently, meaning that these methods completely ignore
the spatial color distribution in the image. On the other hand, local GMAs modify
pixel values by taking into account their neighborhoods.

4.1 Gamut Reduction Algorithms (GRAs)

4.1.1 Global GRAs

The global GRAs are further classified into two sub-classes: clipping and com-
pression methods. Gamut clipping is the simplest approach to perform gamut
mapping where colors that lie inside the destination gamut are left unmodified
while those colors that fall outside are projected onto the destination gamut
boundary by following a mapping criterion. An illustration of commonly used
clipping techniques is presented in Fig. 4.1a. [Sara, 1984] described GRAs us-
ing four different clipping strategies. The first method is the LCLIP that clips
the chroma of out-of-gamut (OOG) colors to the destination gamut boundary
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(a)

(b)

Figure 4.1: (a) An illustration of different commonly used clipping techniques. (b) An example
showing artifacts due to gamut clipping. Top: input image. Bottom: reproduced image by using
HPMINDE [Murch and Taylor, 1989]; notice the loss of texture on the head of the red parrot and
on the neck of the yellow parrot. Original image is from [Kodak, 1993].

along lines of constant hue and lightness (see example of straight clipping in
Fig. 4.1a). The second method is called SCLIP that maps the OOG colors to
the target gamut boundary towards mid gray point (L∗ = 50), while preserving
the hue (see clipping towards center in Fig. 4.1a). Both LCLIP and SCLIP
are used for benchmarking GRAs in recent studies of [Froehlich et al., 2013]
and [Masaoka et al., 2016]. The third approach (minimum ∆E) involves clipping
of the OOG color to that color of the destination gamut boundary which has the
smallest distance from it (see minimum distance clipping in Fig. 4.1a). The fourth
method uses 26 points and for each of them a center of gravity is defined towards
which the clipping is performed. [Montag and Fairchild, 1998] performed the
psychophysical evaluation of the first three GRAs of [Sara, 1984] and two other
clipping methods and they reported that the LCLIP method was preferred over
the other competing GRAs. The results obtained using the third method of [Sara,
1984] causes hue shifts. To fix this issue, [Murch and Taylor, 1989] proposed
Hue Preserving Minimum ∆E (HPMINDE) method that involves clipping of
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the OOG color to the closest color, in terms of ∆E error, on the boundary of
destination gamut along lines of constant hue. [Katoh and Ito, 1996] suggested
an algorithm that uses a weighted color difference formula in CIELAB color
space to map colors from source to destination gamuts. [Marcu and Abe, 1996]
reviewed several previously published GRAs and presented a new GRA that
first determines a center point on the lightness axis for each individual OOG
color, and then performs a clipping operation on the OOG colors towards their
corresponding centre points. [Masaoka et al., 2016] presented a GRA that aims at
mapping colors from a very wide gamut (BT.2020) to a small gamut (BT.709),
while preventing excessive chroma loss; this involves dealing differently with
colors of low luminance and high luminance, specifically the authors map bright
colors without respecting the constant hue lines in order to avoid a blown-out
appearance.

All gamut clipping methods project the whole OOG color segment to a single
point on the destination gamut boundary, and this may produce a gamut mapped
image with a visible loss of texture and color gradients. In Fig. 4.1b, we present
an example of mapping the input image to an extreme color gamut using the
HPMINDE method [Murch and Taylor, 1989]. In the reproduced image the
massive impact of gamut clipping can be seen in various regions, particularly on
the head of the red parrot and on the neck of the yellow parrot. To overcome the
issues associated with gamut clipping, gamut compression algorithms modify all
the colors present in an input image. [Johnson, 1979] presented a GM method that
linearly compresses the lightness and chroma. [Gentile et al., 1990] proposed two
approaches: one performs compression along lines of constant hue and lightness,
and the other involves compression along lines of constant saturation. [UGRA,
1995] uses chroma compression, and [Herzog and Müller, 1997] introduced linear
and non-linear compression functions to obtain gamut mapped images. Sigmoidal
Gaussian Cusp Knee (SGCK), recommended in [CIE, 2004], is a combination
of GCUSP method presented in [Morovič, 1998] and the sigmoidal lightness
mapping and cusp knee scaling proposed in [Braun and Fairchild, 1999]. At a
given hue, the color that has the maximum chroma is called the cusp. SGCK,
while keeping the perceived hue constant, compresses lightness and chroma
along lines toward the point on the lightness axis having the same lightness as
the cusp of the destination gamut, using a knee function. Gamut compression
algorithms map a larger OOG color segment to a smaller in-gamut color segment
and therefore they may cause a significant loss in saturation, especially when
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(a) (b)

Figure 4.2: Impact of gamut compression: (a) input image, and (b) reproduced image. Original
image is from [Kodak, 1993].

the difference between the source gamut and the target gamut is large. One such
example is presented in Fig. 4.2 where the effect of strong desaturation due
to linear gamut compression is evident. The hybrid approach of [Yuan et al.,
2015] uses a combination of a gamut clipping method and a gamut compression
method in order to perform gamut reduction. The methods of [Pytlarz et al., 2016]
and [Schweiger et al., 2016] make use of a soft-clipping operation that squeezes
colors near the target gamut boundary in order to accommodate OOG colors.

Both clipping and compression GRAs operate pixel-wise and completely
ignore the spatial color configuration of the source image. Consequently, such
GRAs produce gamut mapped images that may be contaminated with artifacts
and are perceptually off from the original images.

4.1.2 Local GRAs

Local GRAs are also known as ‘spatial’ methods. [Meyer and Barth, 1989]
proposed a spatial GRA where the lightness of the source image is first compressed
in the Fourier domain using a low pass filter followed by the chroma compression
along lines of constant hue and (mapped) lightness. Then, the high frequency
detail of the image is added back to the gamut compressed image. [Bala et al.,
2001] described a similar method where the source image is processed using
a gamut clipping algorithm, and as a second step the difference of luminance
between the original and the mapped image is calculated. Subsequently, a spatial
filter is applied to the difference and the result is added back to the gamut mapped
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image. Another similar approach is recently presented by [Zhu et al., 2016]. Their
method first decomposes the input image into a base layer (which contains large-
scale image-edge information) and a detail layer (that contains image-texture
information). Then a gamut clipping method is applied to the base layer to obtain
a gamut mapped image, to which the detail layer is added. In the algorithms
of [Meyer and Barth, 1989], [Bala et al., 2001], and [Zhu et al., 2016] another stage
of gamut clipping is integrated to process the resulting image in case the spatial
filtering operation places a few pixels outside the destination gamut. [Morovič
and Wang, 2003] introduced a multilevel, full color GRA that first decomposes
the image into a number of spatial frequency bands. Secondly, at the lowest
frequency band, the lightness compression is applied followed by the application
of initial gamut mapping. Then, the next higher frequency band is added to
the gamut mapped image and again gamut mapping is applied to the resulting
image. This step is repeated until the highest frequency band is reached. The core
idea was to transform the gamut of the original image into the destination gamut
while preserving the original image’s overall information into the reproduced
image. [Kimmel et al., 2005] presented a variational approach where the GM
problem is formulated as a quadratic programming optimization form, which
is guaranteed to have a unique optimal solution provided that the target device
has a convex gamut. They defined a functional to measure both the image
difference and its derivatives to perform gamut reduction operation. [McCann,
1999], [McCann, 2002] proposed a Retinex-inspired framework that performs
spatial comparisons to preserve the local gradients to obtain the final gamut
mapped image. A similar multi-resolution GR approach that adapts the original
image is suggested by [Farup et al., 2007]. [Zolliker and Simon, 2007] presented
an unsharp masking scheme that combines the spatial filtering with the global
GRA to retain the local contrast information in the reproduction. [Alsam and
Farup, 2012] proposed an iterative GRA that at iteration level zero behaves as a
gamut clipping algorithm, whereas, by increasing the number of iterations, the
solution approaches spatial gamut mapping. [Gatta and Farup, 2017] introduced
a Retinex-inspired method that performs gamut mapping in two stages. First
the relative luminance of the input images is mapped to the target gamut. Then
a clipping operation is applied on the saturation component of the image in
order to obtain the final gamut mapped image. [Nakauchi et al., 1999] defined
gamut mapping as an optimization problem where they use a perceptual metric to
minimize the perceived differences between the original and the reproduced image
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in order to obtain the final reduced-gamut image, and many other algorithms [Lau
et al., 2011], [Preiss and Urban, 2012], [Preiss et al., 2014] followed a similar
idea of optimization. The functionality of modifying pixel values taking into
account their local neighborhoods certainly makes GRAs adaptive and flexible
but at the same time far more complex and computationally expensive than global
GRAs. Spatial GRAs are often based on many assumptions, and may produce
halo artifacts.

4.2 Gamut Extension Algorithms (GEAs)

The case of gamut extension is different from that of gamut reduction: only a
handful of GEAs exist in the literature. One could think of simply taking a GRA
and use it to perform one-to-one mapping in the reverse direction in order to
obtain a gamut extended image, as commented in [Morovič, 2008]. However, the
key struggle is to produce gamut extended images that are natural, pleasant and
perceptually as similar as possible to the original images. Same as with GRAs,
GEAs are also classified into two broad categories: global GEAs and local GEAs.

4.2.1 Global GEAs

[Hoshino, 1991] proposed the first non-local GEA that extends colors from
the limited-gamut printed images to the color gamut of high-definition TV. His
algorithm first maps the lightness using a non-linear tone reproduction curve, and
then the chroma is mapped along lines of constant lightness and hue. However,
the gamut extended images were unnatural in appearance and therefore a revised
version of that GEA was presented in [Hoshino, 1994]. [Kang et al., 2003]
performed numerical fitting of data obtained by allowing a group of observers to
manually extend lightness and chroma in a linear manner. [Anderson et al., 2007]
introduced a user assisted method where an expert was asked to expand the gamut
of some key frames and the rest of frames were corrected accordingly.

While all these aforementioned GEAs treat each color without analyzing
the content of the input image, [Pan and Daly, 2008], [Casella et al., 2008],
[Heckaman and Sullivan, 2011] introduced methods that first classify the colors
of the input image according to some criterion and then extend them. In particular,
the work of [Pan and Daly, 2008] labels each color of a given image as skin or
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non-skin, and then applies two sub-GEAs; out of which one is designated to
render skin colors and the other one expands the non-skin colors. Finally, the
wide-gamut image is obtained by blending the output of both sub-GEAs using a
linear combination. The GEA of [Casella et al., 2008] uses a sigmoid function into
linear mapping techniques to deal with objects of low chroma and high chroma
differently. And the method of [Heckaman and Sullivan, 2011] identifies certain
memory colors such as green grass and blue sky, and renders them independently
to make full use of the target device’s gamut while preserving the flesh tones.

The algorithm of [Liu et al., 2010] uses the CIELUV color space to expand
the color gamut of the input image from an anchor point while respecting the hue
lines. [Kim et al., 2004] described a GEA with three types of extension strategies:
chroma mapping, mapping along lines from the origin (which they called vector
mapping), and adaptive mapping that is a compromise between the first two
strategies. [Laird et al., 2009] proposed and evaluated the following five GEAs:

• True-color: The true-color algorithm maintains the color information of
the input image into the destination gamut without applying any sort of ex-
tension, meaning that the output of true-color is nothing but a representation
of the input image in a wide-gamut color space: R

G
B


true−color

= M−1
DestinationMSource

 R
G
B


Source

, (4.1)

where both MSource and MDestination are 3× 3 transformation matrices to
convert the values of RGB to XYZ color space.

• Same Drive Signal (SDS): The most commonly used GE algorithm is the
SDS, where the RGB primaries of the input material are linearly mapped
to the RGB primaries of the display device enabling the SDS algorithm to
make full use of the wide-gamut of the display.

• Hybrid Color Mapping (HCM): The HCM algorithm linearly combines
the output of the true-color and SDS algorithms based on the saturation of
the input image: R

G
B


HCM

= (1− κ)

 R
G
B


true−color

+ κ

 R
G
B


SDS

, (4.2)
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Figure 4.3: Mixing function for HCM.

where κ is a mixing factor that works as a function of saturation ( see Fig.
4.3).

• Chroma Extension (CE): The SDS algorithm works by extending the
input signal to the destination gamut. However, hue differences between
the source and destination gamuts may lead SDS to produce an image that
exhibits hue shifts. To tackle this problem, the chroma extension algorithm
maps colors of the source gamut to the reproduction gamut along lines of
the chroma axis in the CIELCh color space, while keeping lightness and
hue constant.

• Lightness Chroma Adaptive (LCA): The lightness-chroma adaptive al-
gorithm performs GE by altering both lightness and chroma while keeping
the hue constant. Both CE and LCA algorithms make use of the so called
high chroma boost (HCB) function which smoothly maps colors of an input
image in a manner that the high chroma objects get more boost in satura-
tion than the low chroma ones. This approach aims to preserve memory
color objects as they often have less saturated values, and extends colors of
artificial objects (such as plastics) that have high chroma.

There are a few other GEAs [Meng et al., 2013], [Song et al., 2014a], [Song
et al., 2014b] that mainly aim at preserving the skin tones in the reproductions. In
three different thesis works [Braun, 1999], [Ling, 2001], [Chen, 2002], authors
use GRAs in the reverse direction to obtain images with extended gamut.
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4.2.2 Local GEAs

To the best of our knowledge, apart from the GEAs that we have developed in
this thesis, there is only the following previous work that extends colors taking
into account their local neighborhoods. [Li et al., 2011] presented a multilevel
framework where first a non-linear hue-varying extension function is applied
globally to expand the color gamut of the input image. Then in the second
stage they make use of image dependent chroma smoothing to avoid an over-
enhancement of contrast and to retain in the result the local information of the
input image.

4.3 Reproduction Intent: Accuracy or Pleasantness

Every GMA aims at reproducing content according to the specific application
in which it is going to be employed. For instance, a GMA that is intended to be
used in the cinema industry needs to reproduce images that are faithful to the
vision of the content’s creator. Whereas in the television industry, TV makers
prefer distorting image attributes such as tones and colors in ways that they think
consumers may find visually pleasant [Poynton, 2010a].

On one hand, GMAs with accurate reproduction intent aim at reproducing
images that are perceptually faithful to the originals. On the other hand, GMAs
with pleasant reproduction intent reproduce images that a viewer deems pleasant.
The latter may imply departing from the original content as much as needed, and
incorporating steps that could modify the aesthetics (contrast, sharpness, etc.) of
images. In this study, our goal is to develop GMAs that comply with the accurate
reproduction intent, and the results these algorithms produce are evaluated with
the criterion of accuracy. One could question the choice of evaluation criteria:
why ask users to choose the most accurate result instead of the one they find most
pleasant? The reason is that, for a gamut mapping technique to be adopted by
the movie industry, it must yield gamut mapped results that preserve as much
as possible the artistic intent of the content’s creator. Designing GMAs for
pleasantness does not guarantee this, usually quite the opposite: apart from
general inter-subject variability in terms of preference, there is also a strong
correlation between colorfulness and perceived image quality [Fedorovskaya
et al., 1997], so user tests based on subject preference would rank higher those
GMAs that produce saturated images even if that implied a departure from a
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subdued color palette chosen by the movie artist. User tests based on accuracy,
on the other hand, are much less subjective (as users are simply asked to estimate
differences with respect to the provided reference) and the preservation of the
artistic intent is in a sense “built-in” in the procedure, since the ground truth acts
as a stand-in for the content’s creator intent.

4.4 Evaluation of GMAs

There are two possible ways of evaluating GMAs: subjective and objective
evaluation.

4.4.1 Subjective Evaluation

In the case of subjective evaluation, subjects take part in psychophysical experi-
ments where they have to choose or rate the reproductions based on a criterion
(preference or accuracy). Psychophysical studies to evaluate GMAs follow closely
the guidelines of [CIE, 2004] in which the conditions of the experimental setup
are detailed: for example, viewing conditions, method of comparison, minimum
number of observers and test images, maximum time duration per experiment
session, methods for subject’s color vision testing, etc.

Pair Comparison

The most common psychophysical method is the pair comparison, where two
different gamut mapped versions of an original image are shown to observers
in isolation or alongside the original image. Observers are then asked to select
the gamut mapped image which exhibits more of the property (pleasantness,
naturalness, or accuracy) being evaluated.

In the pair comparison evaluation, in order to calculate differences among
n chosen GMAs, observers need to compare n(n − 1)/2 number of pairs for
each test image. In such experiments, observers are either given an option of tie
in case the visual appearance of reproductions is equally close to the original
image, or forced to pick one of the reproductions anyway. For a given pair of
reproductions, a score of 1 is given to the reproduction which is selected by an
observer, and a score to 0 to the other reproduction. And when there is a case
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of tie, both reproductions receive a score of 0.5. The responses of an observer
are typically stored in a n× n raw matrix where the value in column i and row j
denote the score given to GMA i as compared with GMA j.

In this study, we use the pair comparison method to gather raw experiment
data. And to analyze the raw data we use the same approach as used in the work
of [Morovič, 1998] (see chapter 5 of his thesis), that is based on Thurstone’s law
of comparative judgement [Thurstone, 1927]. There are several other studies
that make use of the pair comparison scheme to evaluate GMAs such as the
works of [Montag and Fairchild, 1997], [Bonnier et al., 2006], [Muijs et al.,
2006], [Hardeberg et al., 2008], [Dugay et al., 2008], and [Laird et al., 2009].

Category Judgment

In a category judgement experiment the observer is shown, one at a time, several
images reproduced by different GMAs and asked to evaluate their pleasantness
by assigning them descriptive names (such as excellent, good, fair, poor, bad) or
just numbers from an integer scale (e.g., 1-10). This method is based on the law
of categorical judgement [Torgerson, 1954]. Before starting the main experiment,
it is recommended by [CIE, 2004] to show observers for training purposes a pair
of images, one of which serves as an example of the best quality image and the
other one as a worst case example.

Rank Order

In a rank order test, observers are asked to rank a given set of images from the
worst to the best (or the other way round) according to a perceptual attribute.

4.4.2 Objective Evaluation

Subjective evaluation is time consuming, expensive and often unreliable if the
number of observers is not sufficient. Therefore, an alternative is to use objective
quality metrics that are capable of finding specific distortions in reproduced
images. There exists a vast variety of image quality metrics [Berns, 1993], [Luo
et al., 2001], [Barańczuk et al., 2009], [Lissner et al., 2013], [Eskicioglu and
Fisher, 1995], [Preiss et al., 2014] in the literature that could in principle be used
to quantify the results of GMAs. [Hardeberg et al., 2008] and [Barańczuk et al.,
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2009] presented psychophysical studies where they identify the best performing
image quality metric for the gamut reduction problem. It is important to note
that the ranking of color metrics for gamut reduction may not be consistent in
the context of gamut extension if the metrics are not trained to predict well the
distortions found in gamut extended images. In the following section, we discuss
the image quality metrics that are widely used to evaluate GMAs.

CIE∆E76

The CIE XYZ color space is non-uniform in terms of visual perception. In
contrast, CIELAB is a more perceptual color space and it became popular in the
color industry mainly because it is straightforward to compute the color difference
between two images simply by using the Euclidean distance. The ∆E distance
between two colors x and y is defined as:

∆E76(x, y) = [(Lx − Ly)2 + (ax − ay)2 + (bx − br)2]
1
2 (4.3)

Even though the CIELAB color space is more perceptual than CIE XYZ
color space, it is not perfectly perceptual. Therefore, many attempts [Berns,
1993], [Berns, 2000], [Luo et al., 2001] were made to develop sophisticated error
metrics that can predict the color distortions more accurately.

CIE94

[Berns, 1993] proposed an error metric which is derived from a detailed analysis
of a large set of psychophysical data. It was later adopted by the CIE and given a
name CIE94;

∆E94(x, y) =

[(
Lx − Ly
kLSL

)2

+

(
Cx − Cy
kCSC

)2

+

(
Hx −Hy

kHSH

)2
] 1

2

(4.4)

where L, C andH denote lightness, chroma and hue, respectively. The parametric
variables kL, kC and kH are set to unity, and the weighting functions SL, SC and
SH as defined as
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SL = 1

SC = 1 + 0.045Cx

SH = 1 + 0.015Cx

(4.5)

CIEDE2000

The CIE94 comes with two major drawbacks; first it is only reliable for large color
differences (∆E > 5), and second its performance is suboptimal for blue colors.
To deal with these issues, [Luo et al., 2001] presented a method that estimates
the distortions not only in the lightness, chroma and hue components but also
incorporates an interactive term between chroma and hue differences. [CIE, 2001]
named it as the CIEDE2000 color difference metric:

∆E00(x, y) =

[(
Lx − Ly
kLSL

)2

+

(
Cx − Cy
kCSC

)2

+

(
Hx −Hy

kHSH

)2

+ ∆R

] 1
2

(4.6)

where,

∆R = RT f(∆C∆H) (4.7)

For more details regarding parametric variables kL, kC and kH , weighting
functions SL, SC and SH , and interactive term between chroma and hue differ-
ences RT , see [Luo et al., 2001] and [Sharma et al., 2005].

Combination of a ∆E Metric and a Contrast Measure

[Barańczuk et al., 2009] show that the ∆E metric and its variants do not measure
accurately enough the quality of GMAs since they neglect the structural details
of images. To better predict the quality of GMAs, [Barańczuk et al., 2009]
introduced a metric which is a linear combination of Delta-E measure Q∆E and
contrast preserving measure Q∆LC .

The image quality metric Q∆E is the average ∆E over the pixels of the two
images;
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Q∆E(X,Y ) =
1

mn

m∑
i=1

n∑
j=1

∆E(xij , yij) (4.8)

where ∆E could be replaced with any of its flavors (∆E76, ∆E94 or ∆E00).

The image quality metric Q∆LC computes the Michelson contrast [Michelson,
1927] on a k × k patch PX ⊂ X of the image X as follows:

LC(PX) =
xmax − xmin
xmax + xmin

(4.9)

where in a patch PX , xmax and xmin represent the highest and lowest luminance
values, respectively. Similarly, the local contrast value LC(PY ) for the corre-
sponding patch PY in the image Y is computed. Finally, the change in contrast is
defined as

∆LC(PX , PY ) = |LC(PX)− LC(PY )| (4.10)

Subsequently, the image quality measure Q∆LC finds the overall contrast
distortion by averaging the ∆LC over all possible patches in the images.

Color Image Difference Metric

The structural similarity index (SSIM) [Wang et al., 2004] is a widely used
perceptual metric to assess the quality of a reproduction by comparing it with a
reference image. Despite of its excellent prediction accuracy against distortions
such as lossy compression, noise, blur, and channel fading, the SSIM completely
ignores the changes in color since it operates on grayscale images only. But in
the case of gamut mapping the chromatic components (chroma and hue) are the
ones mainly affected, and therefore cannot be ignored in the quality assessment
process. To this end, [Lissner et al., 2013] presented a perceptual color image
difference (CID) metric based on SSIM. The CID metric is particularly tailored
to assess the quality of gamut mapped images and it predicts the quality by using
the following combination of five image difference features (IDFs): lightness-
difference LL, lightness-contrast CL, lightness-structure SL, chroma-difference
LC and hue-difference LH . Mathematically,

CID = 1− LLCLSLLCLH . (4.11)
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Note that the arguments are omitted from Eq. (4.11) for the sake of brevity, and
for the detailed explanation, see [Lissner et al., 2013].

Later, [Preiss et al., 2014] show that if the CID metric is used in the gamut
mapping optimization problem [Preiss and Urban, 2012], the results are often
contaminated with artifacts such as lightness inversion, chromatic ringing, chro-
matic edges, and lightness banding. To overcome these challenges, [Preiss et al.,
2014] proposed an improved color image difference (iCID) metric in which,
apart from the IDFs in [Lissner et al., 2013], two additional IDFs are introduced:
chroma-contrast CC and chroma-structure SC . The Eq. (4.11) is extended as

iCID = 1− LLCLSLLCLHCCSC . (4.12)
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CHAPTER 5

Gamut Mapping Algorithms in RGB Color Space

In this chapter we present our spatial gamut mapping algorithms that rely on
a perceptually-based variational framework. The text of this chapter is mainly
reproduced from our journal article titled “Gamut mapping in cinematography
through perceptually-based contrast modification” [Zamir et al., 2014], and our
conference publication titled “Considering saliency in a perception inspired gamut
reduction algorithm” [Vazquez-Corral et al., 2014].

The first half of this chapter provides detail of our GMAs (both GEA and
GRA) published in [Zamir et al., 2014]. Our algorithms adapt an image energy
functional [Bertalmı́o et al., 2007] whose minimization leads to image enhance-
ment and contrast modification. We show how by varying the importance of the
contrast term in the image functional we are able to perform gamut reduction
and gamut extension. We propose an iterative scheme that allows our algorithms
to successfully map the colors from the gamut of the original image to a given
destination gamut while keeping the perceived colors close to the original image.

In the second half of this chapter, we present a saliency inspired GRA by
making modifications in the GRA of [Zamir et al., 2014] in order to better respect
the saliency of the original image in the reproduced one. The results show that
the proposed approach [Vazquez-Corral et al., 2014] produces a gamut mapped
image whose saliency is closer to that of the original image with a minor loss of
accuracy.
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5.1 Perceptually-based Color and Contrast Enhancement

In this section we briefly recap the main concepts of the Retinex theory of Land,
arguably the most popular approach for perceptually-based color correction, and
its close relationship to the variational method for contrast enhancement which
we will adapt for our gamut mapping purposes (for details we refer the interested
reader to [Bertalmı́o, 2014]).

[Land, 1977] in his paper makes a very clear and detailed explanation of his
Retinex theory and the experiments that led to its postulation. After scores of
perceptual matching tests, his conclusion was that our perception of the color of
an object had a physical correlate in what he called scaled integrated reflectance,
which is defined, for each waveband (long, medium and short, corresponding to
cone response sensitivities,) as a ratio: the integral of the radiance of the object
over the waveband, divided by the integral over the same waveband of the radiance
of a white object under the same scene illuminant. The scaling is a non-linear
function that relates reflectance to lightness sensation. But this implies that in
order to perceive the color of an object somehow our visual system is comparing
the light coming from the object with the light coming from a reference white,
and Land wondered how we are able to find this reference white “in the unevenly
light world without reference sheets of white paper” [Land, 1977]. The sensation
of white will be generated by the area of maximum radiance in all three bands
(this is the von Kries’ model or “white-patch” assumption, although Land does
not cite it); this area could be used as reference, but Land did not know how our
visual system could “ascertain the reflectance of an area without in effect placing
a comparison standard next to the area” [Land, 1977]. The solution he proposed
consisted of comparing far-away points through paths: the ratio of the values at
the two end-points of the path can be computed as the sequential product of the
ratios of each point of the path with the following point. The Retinex algorithm
consists of assigning, for each point and each waveband (long, middle, short), an
estimate reflectance obtained as the average of the sequential products obtained on
many paths, all ending in the given point. Land thought that this was a plausible
explanation of how our visual system estimates reflectances but he did not want to
venture where exactly this type of operations were being carried out, in the retina
or at the cortex; therefore he chose the name “Retinex” for his approach. The
Retinex algorithm is directly applied to digital images in a straightforward way,
where the pixels will be the points and the three color channels R, G and B play
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the role of the wavebands. As proved in [Provenzi et al., 2005], Retinex always
increases brightness so it cannot be directly applied to overexposed pictures; also,
if the algorithm is iterated the results may improve but the convergence image
is flat white, so there is some “sweet spot” of the number of iterations yielding
the best output [Bertalmı́o et al., 2009]. Another major source of problems is
Retinex’s reliance on paths: their length, shape and number condition the results
and many works have been proposed trying to optimize the selection of these
variables.

The Automatic Color Enhancement (ACE) algorithm of [Rizzi et al., 2003]
is also based on perception, and its relationship with Retinex will become clear
shortly. ACE is designed to mimic some basic characteristics of the human visual
system, like the white patch and the grey world mechanisms, lateral inhibition,
the independence of chromatic channels, or the influence of spatial relationships
in the scene. [Rizzi et al., 2003] perform experiments that show how ACE has
several excellent properties: it allows to obtain very good color constancy, it
increases the dynamic range of the input and, unlike Retinex, it can deal both with
under- and over-exposed pictures, it can perform de-quantization (eliminating
quantization artifacts produced by encoding an image with an insufficient number
of bits per channel), and it can reproduce some visual perception illusions. Its
main limitation is its computational complexity, O(N2) where N is the number
of pixels.

In the work titled “Perceptual color correction through variational techniques,”
[Bertalmı́o et al., 2007] start by recalling the variational histogram equalization
method of [Sapiro and Caselles, 1997], in which it is shown that the minimization
of the energy functional

E(I) = 2
∑
x

(
I(x)− 1

2

)2

− 1

AB

∑
x

∑
y

|I(x)− I(y)| (5.1)

produces an image I with a flat histogram. The range of I is [0, 1], x, y are pixels
and A,B are the image dimensions.

In [Bertalmı́o et al., 2007] the energy in Eq. (5.1) is interpreted as the differ-
ence between two positive and competing terms

E(I) = D(I)− C(I), (5.2)

the first one measuring the dispersion around the average value of 1
2 (as in the

gray world hypothesis), the second term measuring the contrast as the sum of
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the absolute value of the pixel differences. But this measure of contrast is global,
not local, i.e. the differences are computed regardless of the spatial locations of
the pixels. This is not consistent with how we perceive contrast, which is in a
localized manner, at each point having neighbors exert a higher influence than
far-away points. Therefore, [Bertalmı́o et al., 2007] propose an adapted version of
the functional of Eq. (5.1) that complies with some very basic visual perception
principles, namely those of grey world, locality and not excessive departure from
the original data:

E(I) =
α

2

∑
x

(
I(x)− 1

2

)2

− γ

2

∑
x

∑
y

w(x, y)|I(x)− I(y)|

+
β

2

∑
x

(I(x)− I0(x))2 , (5.3)

where α, β and γ are constant and positive weights, I is a color channel (R,G
or B), w(x, y) is a normalized Gaussian kernel of standard deviation σ, and I(x)
and I(y) are two intensity levels at pixel locations x and y respectively.

By minimizing the image energy in Eq. (5.3) the aim is to maximize the
contrast (second term of the functional), while not departing too much from the
original image (third term) and also preserving the gray world hypothesis (first
term). We can intuitively explain how the contrast term operates by considering
the following. Since γ > 0, in order to minimize E(I) we need to increase∑

x

∑
y w(x, y)|I(x)−I(y)|, i.e. the local contrast, a weighted sum of local pixel

differences. So if a pixel has a larger value than all the pixels in its neighborhood,
then increasing the local contrast is achieved by enlarging these differences,
increasing the pixel value even more. Conversely, when a pixel has a smaller
value than all the pixels in its neighborhood, then increasing the local contrast is
achieved by making the pixel value even smaller. If γ < 0, then the minimization
of Eq. (5.3) reduces, not increases, the contrast, as pointed out in [Bertalmı́o
et al., 2009]. The radius σ of the kernel w(x, y) controls how local the contrast
enhancement is: a very large σ corresponds to the global case of Eq. (5.1),
whereas with a small σ value the contrast term is computed over small pixel
neighborhoods.

It is formulated in [Bertalmı́o et al., 2007] that the solution to the minimization
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of Eq. (5.3) can be found as the steady state of the evolution equation

Ik+1(x) =
Ik(x) + ∆t

(
α
2 + βI0(x) + γ

2RIk(x)
)

1 + ∆t(α+ β)
(5.4)

where the initial condition is Ik=0(x) = I0(x). The function RIk(x) indicates
the contrast function:

RIk(x) =

∑
y w(x, y)s

(
Ik(x)− Ik(y)

)∑
y w(x, y)

(5.5)

where x is a fixed image pixel and y varies across the image. The slope function
s(·) is a regularized approximation to the sign function, which appears as it is
the derivative of the absolute value function in the second term of the functional;
in [Bertalmı́o et al., 2007] they choose for s(·) a polynomial of degree 7.

In [Bertalmı́o et al., 2007] it is shown that Eq. (5.3) has a single minimum
and that it is also a fixed point of ACE. In other words, we can say that ACE is a
numerical implementation of the gradient descent of Eq. (5.3). The minimization
of Eq. (5.3) yields very good color constancy results and this method shares all
the good properties and possible applications of ACE, plus the numerical imple-
mentation in [Bertalmı́o et al., 2007] has a reduced complexity of O(NlogN),
where N is the number of pixels.

This method can be used for contrast enhancement since it produces good
results without halos, contrast reversals, spurious colors or any other kind of
visual artifact. The main reason for this, formally proven in [Bertalmı́o et al.,
2007], is that unless σ is too small, the minimization of Eq. (5.3) preserves the
ordering of the level lines of the original image. Furthermore, the algorithm has
a local but not pixel-wise nature: the value at each pixel is updated according
to comparisons with all its neighbors. This comparison procedure has a sort of
anchoring behavior, preventing pixel values from having sudden changes, which
helps to explain why the same algorithm applied independently to the frames of a
video produces results without temporal artifacts; we have corroborated this in
our experiments, as we shall see.

There is a very close connection between the formulation of [Bertalmı́o et al.,
2007] (Eq. (5.3)) and Retinex. In their kernel-based Retinex (KBR) formulation,
[Bertalmı́o et al., 2009] take all the essential elements of the Retinex theory
(channel independence, the ratio reset mechanism, local averages, non-linear
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correction) and propose an implementation that is intrinsically 2D, and therefore
free of the issues associated with paths. The results obtained with this algorithm
comply with all the expected properties of Retinex (such as performing color
constancy while being unable to deal with overexposed images) but do not suffer
from the usual shortcomings such as sensitivity to noise, appearance of halos,
etc. The KBR algorithm, as Retinex, always increases the values of the image it
is applied to, and therefore it is not suited to overexposed images; this issue is
linked in [Bertalmı́o et al., 2009] to the fact that there is not any energy that is
minimized by the iterative application of the KBR algorithm. Using the analysis
of contrast performed by [Palma-Amestoy et al., 2009], [Bertalmı́o et al., 2009]
are able to determine how to modify the basic KBR equation so that it can also
handle overexposed images, and the resulting, modified KBR equation turns
out to be essentially the gradient descent of the energy of Eq. (5.3). In this
way, the connection between Retinex, ACE, and the perceptual color correction
of [Bertalmı́o et al., 2007] (Eq. (5.3)) becomes explicit.

5.1.1 Gamut Mapping via Energy Functional Adaptation

In this section, we adapt the image energy functional defined in Eq. (5.3) in order
to perform gamut mapping from the gamut of the original image to the target
gamut of a given device. Firstly, we replace the first term of the functional (5.3)
as:

E(I) =
α

2

∑
x

(I(x)− µ)2 − γ

2

∑
x

∑
y

w(x, y)|I(x)− I(y)|

+
β

2

∑
x

(I(x)− I0(x))2 , (5.6)

where µ is the mean average of the original image I0. In this way we are
penalizing departures from the original mean, instead of imposing the gray world
assumption, which could cause a change in the color palette of the result. The
resulting evolution equation is

Ik+1(x) =
Ik(x) + ∆t

(
αµ+ βI0(x) + γ

2RIk(x)
)

1 + ∆t(α+ β)
(5.7)
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Also, we recall from [Bertalmı́o et al., 2009] that γ ∈ R in the functional is
positive or negative depending on whether we want to maximize or minimize the
contrast, respectively, and we will use positive values for gamut extension and
negative values for gamut reduction.

Gamut Reduction Algorithm (GRA-RGB)

In order to perform a gamut reduction operation we minimize the contrast of the
source image using Eq. (5.7) until the colors of the larger gamut converge to the
smaller destination gamut. In cases where we need to apply GR, the contrast
coefficient γ will be negative and the value of α will be small. The evolution Eq.
(5.7) has a steady state for each particular set of values for α, β, ∆t and γ. For
example, in Fig. 5.1a, a chromaticity diagram is shown with different gamuts
(visible spectrum, sRGB gamut, source gamut, target gamut and reproduced
gamut). It can be seen that when β = 1, α = 0, and γ = 0 the steady state of
the evolution equation is equivalent to the original image. In the same figure we
show that as γ decreases and α increases following a |γ|20 slope, the steady state
of Eq. (5.7) has a gamut which is gradually smaller. Fig. 5.1a shows that, just
by selecting a small enough value for γ (γ = −3.21 in this case) we are already
performing gamut reduction. However, in this case, colors that were originally
inside the target gamut move inwards too much, and the appearance of the image
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Figure 5.1: Perceptual GR Approach. (a) Gamuts on chromaticity diagram. (b) Contrast reduction
results. Top left: original image. Top right: γ = −0.22. Bottom left: γ = −0.83. Bottom right:
γ = −3.21. As gamma becomes smaller the image becomes more washed out.
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(a) (b) (c) (d)

Figure 5.2: Gradual mapping of colors. Out-of-gamut colors (in green) when (a) γ = 0, (b)
γ = −0.22, (c) γ = −0.83, (d) γ = −3.21. As gamma decreases the number of out-of-gamut
pixels is reduced.

becomes washed-up, as Fig. 5.1b shows.

To improve the previous result, we present an iterative method in terms of
the contrast coefficient γ. At each iteration, we run Eq. (5.7) for some particular
α, β, and γ until we reach the steady state. The steady state of each iteration
will provide us with some pixels of the final result. At iteration 1, we set β = 1,
α = 0, and γ = 0, and therefore the original image is obtained as the steady
state. We select the pixels that are inside the destination gamut for the final image
and leave them untouched for the following iterations. We move to iteration 2,
where we decrease γ (for example, setting γ = −0.05) and increase α in relation
to γ by |γ|20 . We run again Eq. (5.7) until steady state, and we check whether
any of the colors that were outside the gamut at the previous iteration have been
moved inside the destination gamut. If this is the case, we select them for the final
image and leave them untouched for the following iterations. We keep iterating
by decreasing γ (and increasing α accordingly) until all the out-of-gamut colors
come inside the destination gamut. An example of this iterative procedure is
shown in Fig. 5.2, where green pixels represent out-of-gamut pixels remaining in
that iteration. It can be seen in Fig. 5.3a that the reproduced gamut is covering
a much wider range of colors than previously. It is shown in Fig. 5.3b that the
colors are better preserved as compared to the previous example (see Fig. 5.1b).

We also want to note that the standard deviation σ of the Gaussian kernel w is
of great importance; we observe in Fig. 5.4 that a small value of σ leads to the
preservation of colors but may introduce a few artifacts, whereas for the larger
values of σ each color pixel is strongly influenced by the surrounding colors.
Therefore, our method computes several gamut mapped images Iσ by using
four different values of standard deviations σ ∈ {σ1, · · · , σ4}. Subsequently, in
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Figure 5.3: Modified Perceptual GR Approach. (a) Gamuts on chromaticity diagram. (b) Top left:
original image. Top right: γ = −0.22. Bottom left: γ = −0.83. Bottom right: γ = −3.21. In
the modified perceptual GR approach, the reproduced image covers a wider range of gamut and
appears pleasant in appearance.

(a) (b) (c) (d) (e)

Figure 5.4: Effect of standard deviation (σ). (a) Original image. (b) Iσ , σ = 25. (c) Iσ , σ = 100.
(d) Iσ , σ = 200. (e) Ifinal, using (5.8). The small values of standard deviation (σ) of the Gaussian
kernel (w) preserve colors but introduce artifacts. The larger values of σ produce the gamut reduced
images that are free from artifacts, but where colors are less saturated.

order to obtain a final gamut mapped image Ifinal, we select for each pixel x, a
value out of four gamut mapped images Iσ(x) which has the minimum Lab ∆E
distance with compared to the original image value Iorig(x)

Ifinal(x) =arg min
Iσ

(Lab(Iσ(x))− Lab(Iorig(x)))2 ,

∀x, σ ∈ {σ1, · · · , σ4}. (5.8)

This procedure increases the computational cost, but the quality of the reproduced
image improves to a great extent.
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Gamut Extension Algorithm (GEA-RGB)

In this section, the goal is to develop a gamut extension algorithm that is capable
of accurately expanding the colors from a smaller source gamut to a larger
destination gamut. To this end, we enhance the contrast of the source image
by running the evolution Eq. (5.7) to the steady state while keeping the sign of
γ positive and defining α as |γ|20 . To select the value of γ that is adequate for
the extension, we pick the minimum γ for which any of the colors touches the
boundary of the target gamut as it is presented in Fig. 5.5a. The drawback in this
case is that the reproduced image (Fig. 5.5b) is less saturated, so we cannot realize
the full potential of the reproduction device in terms of colors. To overcome this
problem, we apply Eq. (5.7) to larger values of γ and let the original gamut
exceed the destination gamut up to a certain threshold level (Te). This threshold
Te controls the level of saturation; a large value of Te indicates a higher saturation
level, whereas a small value of Te yields a less saturated output (however, the
higher saturation level comes at the cost of less perceptually valid results). After
this, the colors that were placed outside the destination gamut in the previous
stage are mapped back inside using our gamut reduction algorithm. It is shown in
Fig. 5.6b that the reproduced image is more pleasing and exhibits a wider gamut
(Fig. 5.6a) as compared with the gamut extended image in Fig. 5.5b.

A preprocessing might be needed in cases where the source image has a
medium-to-large dynamic range, since in this case when we apply the GEA-RGB
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Figure 5.5: Perceptual GE Approach. (a) Gamuts on chromaticity diagram. (b) Left: input image.
Right: result of first trial of perceptual GEA. As any of the colors from the source image touches
the boundary of the target gamut, the reproduction is achieved.
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Figure 5.6: Modified Perceptual GE Approach. (a) Gamuts on chromaticity diagram. (b) Left:
input image. Right: result of proposed perceptual GEA. The result of GEA are pleasingly saturated
(see the grass, water, roof of the house) and covers a wider range of gamut.

(a) (b) (c) (d)

Figure 5.7: Effect of preprocessing stage in GEA-RGB. (a) Input image. (b) GE without preprocess-
ing. (c) Histogram shifted image. (d) GE with preprocessing. Notice the trees in the background;
the colors are preserved when GE is applied after preprocessing.

the colors with low intensity levels tend to go towards black, something which is
evident in Fig. 5.7b (see trees and forearms of the man). This indicates that the
image content has a significant impact on the results of the GEA. To cope with
this, we introduce a preprocessing step in our GEA where we give a shift to the
histogram of each channel of the source image, from low towards high intensity
values. The shift in histograms depends on the difference between the source
and the target gamut; the shift is larger if the difference between gamuts is large,
whereas a small shift is required when the difference between gamuts is smaller.
As we mentioned earlier, we let our GE method extend the color gamut of the
source image outside a certain threshold (Te) of the destination gamut. Once the
threshold Te is achieved, we then take the corresponding γ and estimate the shift
value as
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shift(c) =
γIc
γref

c ∈ {R,G,B} (5.9)

where Ic denotes the mean of the color channel Ic. In our GE experiments we
observe that even for a large difference between the source and the target gamuts,
a maximum amount of contrast coefficient γ = 2 is required, therefore we fix the
reference gamma value γref = 2 to calculate the shift factor for the histograms.
We perform preprocessing on each channel of the image independently by nor-
malizing its values between the shift value (obtained using Eq. (5.9)) and the
maximum image channel value. Even though this improvement in the model
comes at the expense of some computational complexity, nonetheless the results
are much more enhanced as shown in Fig. 5.7d.

5.1.2 Experiments and Results

As stated in the introduction, good GMAs should not only reproduce the colors
accurately but they should also generate results that match the inputs in terms of
perception. In this section, we present both the qualitative and the quantitative
evaluation of our GMAs on some very commonly used color images in the litera-
ture for gamut mapping applications. The original sRGB images are illustrated in
Fig. 5.8 and these images exhibit a variety of spatial and chromatic characteristics.
Furthermore, we perform experiments on videos, confirming that our GMAs can
be applied independently on a frame-by-frame basis without producing temporal
artifacts.

To compute the results for our GMAs (GRA-RGB and GEA-RGB), we work
in the RGB color space by fixing the parameters β = 1, ∆t = 0.10 and α = |γ|

20 .
We apply Eq. (5.7) to the source image until convergence, which we assume that
has been reached when the difference between two consecutive steps falls below
0.5%. In case of GR, we decrease the gamma value with the change ∆γ = 0.03
in order to obtain the final gamut mapped image as explained in section 5.1.1. In
the case of GE we need to select a γ value which is enough to extend the gamut
of the source image to a certain threshold (Te).

The primaries of gamuts that are used in this chapter are summarised in Table
5.1, and we will refer the gamuts using the naming convention mentioned in the
same table.
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Figure 5.8: Original sRGB images. The first 2 images in row 3 are from [ISO, 2004], the third image
in row 3 and the last image of row 4 are from [CIE, 2004]. Rest of the images are from [Kodak,
1993].

Results of Gamut Reduction

To perform GR, we apply the procedure explained in section 5.1.1 to map the
colors of the original image inside the target gamut. We perform GR using
four different values for the standard deviation σ ∈ {50, 100, 150, 200} of the
Gaussian kernel w, and combine all the four gamut reduced versions into a final
gamut mapped image using Eq. (5.8).

Visual Quality Assessment: In order to validate the efficiency of our GRA-
RGB, we apply our method on a rather challenging target gamut named ‘Toy’
in Table 5.1. Given an image in sRGB, our algorithm maps the gamut of the
original image into the gamut ‘Toy’. The results presented in Fig. 5.9 show that
our proposed framework works well in preserving the colors, texture and color
gradients from the out-of-gamut regions while staying faithful to the perception
of the original image. For example, in Fig. 5.10, rows 1 and 4, it can be seen
that the colors reproduced by our GM algorithm (fifth column) are much more
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Table 5.1: Primaries of gamuts.

Gamuts Red Primaries Green Primaries Blue Primaries
x y x y x y

BT.709/sRGB 0.640 0.330 0.300 0.600 0.150 0.060
DCI-P3 0.680 0.320 0.265 0.690 0.150 0.060
Simulated BT.709 0.610 0.330 0.330 0.530 0.150 0.060
Simulated DCI-P3 0.640 0.330 0.300 0.600 0.150 0.060
Toast 0.570 0.320 0.300 0.530 0.190 0.130
Toy 0.510 0.320 0.310 0.480 0.230 0.190

Figure 5.9: Results of GRAs on still images. Column 1: original images. Column 2: output of
HPMINDE [Murch and Taylor, 1989]. Column 3: output of [Lau et al., 2011]. Column 4: output
of [Alsam and Farup, 2012]. Column 5: output of our GRA-RGB.

saturated than those of HPMINDE [Murch and Taylor, 1989] (second column),
and the state of the art algorithms of [Lau et al., 2011] (third column) and [Alsam
and Farup, 2012] (fourth column). Similarly, in Fig. 5.10, row 2, our algorithm
not only reproduces the color efficiently but also preserves a great amount of
texture. In Fig. 5.10, row 3, we can see that our method accurately represents the
difference in the lightness of identical hue (see the pink socks and pink beanie).

In Fig. 5.11 we show the results for our gamut reduction method and for the
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Figure 5.10: Detail preservation using GRAs on still images. Column 1: original cropped regions.
Column 2: output of HPMINDE [Murch and Taylor, 1989]. Column 3: output of [Lau et al., 2011].
Column 4: output of [Alsam and Farup, 2012]. Column 5: output of our GRA-RGB. This is a
closer (zoomed-in) view of the regions cropped from Fig. 5.9.

state of the art algorithm of [Alsam and Farup, 2012] on two different image
sequences, one professional and the other amateur, from which we have selected
challenging shots that are colorful and have noticeable camera and object motion.
Both GRAs are applied to each frame independently. We used the target gamuts
‘Toy’ and ‘Toast’ to reduce the gamut of image sequence 1 and image sequence
2, respectively. It can be seen that, for both sequences (selected frames) shown
in the figure, our algorithm produces more saturated results as compared with
the method of [Alsam and Farup, 2012]. For example, in Fig. 5.12, the color
reproduction of the girl’s skin (column 1) is perceptually more faithful in our
results than in those of [Alsam and Farup, 2012]. Furthermore, in columns 2 and 6,
we can see that the method of [Alsam and Farup, 2012] has problems preserving
the color of the very bright regions, whereas our algorithm efficiently reproduces
those regions. It can be seen in column 4 that the algorithm of [Alsam and Farup,
2012] introduces a shift in the hue (see blue color), while on the other hand our
method represents colors more faithfully. Moreover, the colors reproduced by our
algorithm are more saturated and pleasant as compared with [Alsam and Farup,
2012] (see column 5).
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(a)

(b)

Figure 5.11: Results of GRAs. (a) Image sequence 1 (professional footage). (b) Image sequence 2
(amateur video). In both image sequences: top row, original frames; middle row, output of [Alsam
and Farup, 2012]; bottom row, output of our GRA-RGB. In the first 3 columns of image sequence
1, notice the color of the girl’s skin, her shirt and the poster on wall, whereas in the last 2 columns
notice the colors of the door, cushions on sofas and the lamp. In image sequence 2, differences in
perception and color reproduction can be seen in almost every region of the frames such as floor,
inside the shop, and clothes of pedestrians and street artists. Original image sequence 1 is property
of CBS Interactive and taken from [CBS, 2013]. Original image sequence 2 is from [Kupaev, 2012].
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Figure 5.12: Detail preservation using GRAs on video, all regions are cropped from Fig. 5.11.
Top row: original cropped regions. Middle row: output of [Alsam and Farup, 2012]. Bottom row:
output of our GRA-RGB.

Since we are using an extreme target gamut to map the colors of image
sequence 1, we experience a few spatial artifacts in our results; similar artifacts
are observed in the results obtained with the method in [Alsam and Farup, 2012].
In cinematography, the content of digital video needs to be mapped from the
camera gamut to the BT.709 gamut, and these gamuts exhibit not so extreme
differences with respect to each other. Therefore, to test our algorithm under a
real scenario, we obtain a new target gamut by simulating the difference between
DCI-P3 and BT.709 gamuts inside the BT.709 gamut. The simulation of gamuts is
shown in Fig. 5.13. It turns out that our GRA performs efficiently under realistic
settings without introducing any spatial artifacts as it can be seen in Fig. 5.14.
Moreover, we observed that it makes sense to apply our method on each frame
independently, since there are no temporal artifacts and therefore no coherence
between frames is required.

Objective Quality Assessment: Visually, the results presented so far under-
line the good performance of our GR method in terms of visual quality. This
subjective outcome is backed by using the perceptual color quality measure pre-
sented in [Lissner et al., 2013]: the Color Image Difference (CID) metric estimates
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Figure 5.13: Simulation of relationship between DCI-P3 and BT.709 gamuts. Left: original gamuts.
Right: simulated gamuts.

Figure 5.14: Spatial artifacts due to GRA-RGB. Top row: original images. Middle row: effect of
extreme target gamut. Bottom row: effect of realistic target gamut. The relationship of target gamut
and spatial artifacts can be seen at the forehead of the person, cup and on the pants.

the perceptual differences given by the changes, from one image to the other, in
features such as hue, lightness, chroma, contrast, and structure.

Comparisons using the CID metric in the still images of Fig. 5.8 are provided
in Fig. 5.15. In this figure, we can see that our algorithm outperforms the other
methods in 15 out of 17 test images. Moreover, the CID statistical data (mean,
median and root mean square) is also presented in Table 5.2, which justifies the
reliable performance of our algorithm over the other approaches. In addition to
objective quality tests on still images we also compare, using the CID metric,
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HPMINDE Clipping 

[Lau et al., 2011]

[Alsam and Farup, 2012]

Our GRA

Figure 5.15: Quality assessment of GRAs on the still images from Fig. 5.8 using the CID [Lissner
et al., 2013]. Horizontal axis: row-wise image number of Fig. 5.8. Vertical axis: perceptual error.

Table 5.2: Quality assessment of GRAs on still images (Fig. 5.8): CID perceptual error.

Mean Median RMS
HPMINDE [Murch and Taylor, 1989] 0.0674 0.0514 0.0873
[Lau et al., 2011] 0.0665 0.0695 0.0807
[Alsam and Farup, 2012] 0.0472 0.0398 0.0627

Our GRA-RGB 0.0368 0.0285 0.0495

Table 5.3: Quality assessment of GRAs on videos: CID perceptual error.

Mean Median RMS
[Alsam and Farup, 2012] 0.0528 0.0413 0.0623
Our GRA-RGB 0.0372 0.0221 0.0474

the perceptually-based efficiency of our algorithm and [Alsam and Farup, 2012]
on the image sequences shown in Fig. 5.11 and on an animated video (where
we perform reduction from the BT.709 to the ‘Toast’ gamut). The graphs shown
in Fig. 5.16 and the CID statistical data presented in Table 5.3 depict that our
method produces results with less perceptual error than the other method.

In conclusion, both the visual inspection and the objective assessment show
that our GR method produces a gamut reduced video which is, perceptually, more
faithful to the original video as compared with the other methods.
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Figure 5.16: Quality assessment of GRAs on videos using the perceptual difference measure
CID [Lissner et al., 2013]. (a) Image sequence 1 (Fig. 5.11a). (b) Image sequence 2 (Fig. 5.11b).
(c) Animated video. Horizontal axis: time (in frame numbers). Vertical axis: perceptual error.

Results of Gamut Extension

Visual Quality Assessment: To quantify the performance of our GE approach,
we use ‘BT.709’ as a target gamut and set the saturation threshold Te = 10%
of the total number of pixels. We apply the proposed GEA-RGB on videos that
have the starting color gamut equal to the ‘Toast’ gamut (for the sake of fair
comparisons, these videos are reduced to the ‘Toast’ gamut using clipping in the
CIELAB color space). We compare our algorithm with the SDS algorithm [Laird
et al., 2009], which is similar to the industrial method of performing gamut
extension in new TV screens [Poynton, 2007]. We evaluate results of our GE
method and SDS [Laird et al., 2009] by comparing them with the ground truth in
order to analyze their efficiency. In Fig. 5.17, we present the results of our gamut
extension procedure on videos where it can be seen that our expansion algorithm
generates images that are pleasant and realistic in appearance. Fig. 5.18 shows
zoomed-in details from Fig. 5.17. In columns 1 and 5 of Fig. 5.18, it can be seen
that our GEA enhances the color of trees while keeping the sky color closer to the
ground truth, whereas SDS [Laird et al., 2009] noticeably changes the color of
sky regions. It is shown in columns 2 and 4 that the reproduction of skin color
(face of the man and woman’s arms) by our GEA is realistic in appearance, but
the SDS algorithm [Laird et al., 2009] reproduces flesh tones very much departed
from the ground truth. The results also show that the SDS approach [Laird et al.,
2009] over-saturates some regions, which in turn looks artificial. For example, in
columns 3 and 6, it is clearly noticeable that our GEA achieves very good color
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(a)

(b)

Figure 5.17: Results of GEAs. (a) Image sequence 1. (b) Image sequence 2. In both image
sequences; top row, ground truth (BT.709 gamut); middle row, output of Same Drive Signal
algorithm [Laird et al., 2009]; bottom row, output of our GEA. In both image sequences, the results
of our GEA are more pleasing and perceptually faithful to the ground truth as compared with the
output of the SDS algorithm [Laird et al., 2009]; see zoomed-in details in Fig. 5.18. Both image
sequences are the property of Paramount Pictures and taken from [Pictures, 2013].

reproduction (wall, hood of the shed and hat) without introducing any unnatural
colors. On the other hand, the results produced by [Laird et al., 2009] are highly
saturated and quite different from the original content. We have noticed that our
GEA not only extends the color gamut perceptually but also performs contrast
enhancement, which is evident in Fig. 5.18 (columns 3 and 6); if this were a
problem, the original contrast could easily be restored with a very small amount
of simple blurring.
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Figure 5.18: Comparison of GEAs, details from Fig. 5.17; top row, ground truth; middle row,
output of Same Drive Signal algorithm [Laird et al., 2009]; bottom row, output of our GE method.
The results of the SDS algorithm [Laird et al., 2009] are highly saturated and off from the ground
truth. See the reproduction of sky, trees, skin tone, wall, clothes, fruit bucket and hat.

Our GE approach shows a robust performance in both image sequences. It can
also be seen that the results obtained using our algorithm are less saturated than
those of SDS [Laird et al., 2009] in a few regions. If we increase the saturation
threshold (Te) our algorithm will achieve more saturated colors, at the expense of
increasing the perceptual error of the results.

Objective Quality Assessment: The primary purpose of our gamut extension
algorithm is to process the colors of a digital video in order to display it with
digital cinema projectors. In this case, a video should be mapped from the BT.709
source gamut to the DCI-P3 target gamut. However, proper evaluation of the
results would require a wide gamut digital cinema projector to display the mapped
video under special (cinematic) lighting conditions and/or a way to present the
DCI-P3 results in this document, as we are limited by sRGB gamut for the paper.
Therefore, to quantify the performance of our gamut expansion method, we take
an experimental approach where we simulate the difference between DCI-P3
and BT.709 gamuts inside the BT.709 gamut. Thereafter, we convert the BT.709
videos to the simulated sRGB gamut using a clipping on the xy components in
the xyY color space while keeping the luminance component unchanged. Finally,
we map the videos from the simulated BT.709 gamut to the simulated DCI-P3
gamut. Since in this case we have a ground truth to compare with (simulated
DCI-P3 gamut is equal to the original BT.709 gamut), we can assess our gamut
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(a) (b) (c) (d)

SDS [Laird et al., 2009]

Our GEA

Figure 5.19: Quality assessment of GEAs on videos using the perceptual metric CID [Lissner et al.,
2013]. (a) Sequence 1, Fig. 5.11a. (b) Sequence 2, Fig. 5.11b. (c) Sequence 1, Fig. 5.17. (d)
Sequence 2, Fig. 5.11b. Horizontal axis: time (in frame numbers). Vertical axis: perceptual error.

Table 5.4: Quality assessment of GEAs on videos: CID perceptual error.

Mean Median RMS
SDS [Laird et al., 2009] 0.0105 0.0060 0.0128
Our GEA-RGB 0.0031 0.0024 0.0041

extension algorithm quantitatively using the CID metric. For this experiment we
set Te = 3% since source and target gamuts have small color differences. The
results are presented in Fig. 5.19, where it can be seen that our reproduction is
perceptually more faithful to the original content than the results of SDS. The
CID statistical data is summarized in Table 5.4, which justifies the good the
performance of our GEA-RGB on videos.

We have observed in our experiments that the quality of the input signal also
matters; if there exist any artifacts due to compression or noise in the input video
they may become prominent once passed through the GE module. A possible
way to deal with such kind of input material is to perform preprocessing using
the approach reported in [Palma-Amestoy et al., 2009]. Finally, we want to stress
that, as it was the case with our GRA, no temporal artifacts appear in the results
of our GEA either.
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5.2 Saliency-based Gamut Reduction Algorithm
(SBGRA)

Image saliency predicts the attentional gaze of observers viewing a scene [Murray
et al., 2013], [Seo and Milanfar, 2009]. It has been used as a cue to aid in
the performance of both image processing and computer vision applications
such as color to gray conversion [Gooch et al., 2005], [Ancuti et al., 2011],
image detail visibility [Pedersen et al., 2013], and motion-compensated frame
interpolation [Jacobson and Nguyen, 2011]. In a domain closer to that of gamut
mapping, it has been used to decide whether a black point compensation algorithm
is needed when printing an image [Lindner et al., 2011]. However, despite the fact
that the goal of gamut reduction is to emulate the experience felt by the viewer
in the original image, there is a limited amount of research relating saliency
and gamut mapping. In the work of [Chen and Beghdadi, 2011] the authors
considered saliency in their Image Gamut Boundary Reduction (IGBR) algorithm.
The IGBR method was proposed as a preprocessing stage for gamut mapping
algorithms. The idea is that the gamut boundary in the non-salient regions can be
reduced without losing any discriminative power. Saliency models have also been
proposed as gamut mapping artifact detectors by [Cao et al., 2010] and [Raja and
Pedersen, 2013].

The goal of this particular work is to bring saliency one step closer to gamut
mapping by introducing it in the gamut reduction process. The hypothesis of
SBGRA is that it is possible to modify our GRA-RGB [Zamir et al., 2014] to
better represent the saliency of the original image without any significant loss of
the image reproduction quality.

5.2.1 Considering Saliency in Gamut Mapping

By using the GRA-RGB (explained in section 5.1.1), we can obtain a map of γ
values used at each pixel accounting for the amount of contrast reduction that is
necessary at that pixel. Let us use ΓGM to denote this map of γ values. In this map
all values are negative: the smaller the value is, the larger is the contrast reduction.
Since GRA-RGB follows an iterative approach based on the γ parameter, it may
result in a large difference of the contrast reduction performed in a region in
comparison to its surrounding regions. This will affect the saliency of the mapped
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image since contrast is known to be an important cue for human saliency, and
therefore, saliency in those regions where a small value of γ has been used might
be lost.

The idea pursued in this work is to modify the GRA-RGB [Zamir et al., 2014]
to obtain a gamut mapped image with a saliency map closer to that of the original
image. SBGRA is divided into three parts: detection of the regions where saliency
is lost, creation of a new map ΓSGM of γ values, and combination of the initial
gamut mapped image (obtained using the GRA of [Zamir et al., 2014]) and the
one obtained by using the new ΓSGM map. Figure 5.20 presents the work-flow of
our SBGRA which is explained in the following sections.

5.2.2 Detecting Regions of Lost Saliency

To compute the saliency of an image, in this work we use the saliency by induction
mechanisms (SIM) method [Murray et al., 2013]. Let us call Ior the original image
and IGM the gamut mapped image obtained by using our GRA-RGB [Zamir et al.,
2014]. We can measure the amount of saliency loss at each pixel by

L(IGM , Ior)(x) =



SIM(Ior)(x)

max(SIM(Ior))
− SIM(IGM )(x)

max(SIM(Ior))

if SIM(Ior)(x) > SIM(IGM )(x)

0 otherwise
(5.10)

In order to obtain binary regions to work with, we perform a threshold opera-
tion on L(IGM , Ior) as

Lthresh(IGM , Ior)(x) =

{
1 if L(IGM , Ior)(x) > ε1

0 otherwise
(5.11)

where ε1 is a real number. We are interested in those regions where the saliency
might have been lost due to a large difference between their gamma values and
the gamma values of their surrounds. Therefore, to refine those regions given by
Lthresh we compute a new map R(·) as
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Figure 5.20: Workflow of our method. From the original image and the output of GRA-RGB [Zamir
et al., 2014] method we obtain the saliency maps and the difference between them. We binarize
this image and combine it with the γ value map obtained using GRA-RGB [Zamir et al., 2014],
thus defining the set of interesting regions. Then, we compute the new map and apply the evolution
Eq. (5.7) in order to generate a new gamut mapped image.
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R(IGM , Ior)(x) =

{
1 if Lthresh(IGM , Ior)(x) · |ΓGM (x)| > ε2

0 otherwise
(5.12)

where ε2 is a real number. In other words, we select only those regions where the
value of γ is small enough so that the surrounds can be decreased.

The map R(·) is already defining those regions that we need to deal. However,
we have to be sure that the contours of the regions are consistent with the original
image data. To that end, we fill in the map R(IGM , Ior) with the adjacent pixels
that have a similar γ value.

5.2.3 Creating New γ Map

Our goal here is to reduce the difference in the γ values between the regions
where the saliency has been lost and their surrounds. But at the same time we do
not want to sacrifice reproduction accuracy to a great extent. Therefore, SBGRA
takes into account the distance of each pixel from a region of interest. By taking
this into consideration, our new map ΓSGM is defined as

ΓSGM (x) =


ΓGM (x) + τ · (1− d(x,R)) ·max(R(IGM , Ior) · ΓGM )

if R(x) = 0

ΓGM (x) + τ
2 ·max(R(IGM , Ior) · ΓGM ) otherwise

(5.13)
where d(x,R) is the distance between the pixel x and its closest region of interest
in R (that is, the closest pixel with R = 1) and τ is a real number between 0 and
1 that controls the decrements in the surrounding pixels.

Then, from the new map ΓSGM we can run evolution Eq. (5.7) for each of the
values and obtain a new gamut mapped image ISGM .

5.2.4 Combining Gamut Mapped Images

Let us note here that the image ISGM obtained by the map ΓSGM will have a
saliency similar to the original image in our regions of interest, but may lose some
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Table 5.5: Saliency difference between the original image and the gamut mapped image.

GRA-RGB SBGRA Improvement
Images [Kodak, 1993] (× 106) (× 106) (%)
Caps 3.02 2.67 11.77
Raft 2.63 2.59 1.71
Barn 2.03 1.98 2.61
Girl 1.10 1.06 3.51
Birds 2.56 2.53 1.22
Motorbikes 3.24 2.79 14.20
Boat 1.58 1.55 1.67
Beach 0.77 0.67 13.22
Party 8.20 8.14 0.81
Portrait 7.85 7.37 6.17
Picnic 10.90 9.29 15.27
Window 4.02 3.95 1.86
Woman with Hat 3.32 3.27 1.49
Sailing Boats 0.84 0.84 0
Statue 3.08 2.98 3.32
Model 5.76 5.70 1.09
Ski 2.88 2.62 8.99

saliency in other regions. Thus, the last step of our SBGRA combines both IGM
and ISGM . Our final image is then defined as

Ifinal(x) =

{
ISGM (x) if SIM(ISGM )(x) > SIM(IGM )(x)

IGM (x) otherwise
(5.14)

5.2.5 Results

We apply SBGRA on 17 still images that are presented in Fig. 5.8. After testing
different values of τ we select the image that better preserves saliency. d(x,R)
is defined as the normalization between 0 and 1 of the Euclidean distance in the
pixel domain. ε1 is obtained by using the method of [Otsu, 1979], while ε2 is
defined as the value given by the Otsu’s method divided by 4.

In order to measure the performance of SBGRA we define a measure of

120



“PhD˙Thesis˙RevM2” — 2017/4/4 — 16:20 — page 121 — #147

Table 5.6: CID error for GRAs.

Methods Mean Median RMSE
Our SBGRA 0.0414 0.0299 0.0576
Our GRA-RGB 0.0360 0.0280 0.0485
HPMINDE [Murch and Taylor, 1989] 0.0674 0.0514 0.0873
[Alsam and Farup, 2012] 0.0472 0.0398 0.0627
[Lau et al., 2011] 0.0665 0.0695 0.0807

saliency difference. This measure compares the saliency of a gamut mapped
image to the saliency of the original image as follows

S(IGM , Ior) =
∑
x

|(SIM(Ior)(x))− (SIM(IGM )(x))| (5.15)

Based on this formula, we compare the results of SBGRA to those of GRA-
RGB, and the saliency differences are presented in Table 5.5. We can see that
there is only one image where SBGRA fails to improve the saliency. In particular,
this method achieves a remarkable improvement of more than 10% in 4 of the
images.

Once it is proven that the SBGRA does reduce the saliency difference with
respect to the original image, a new question arises: does this improvement come
at the cost of bad imaqe quality? To answer this question, we use the Color
Image Difference (CID) metric [Lissner et al., 2013]. Results of the CID metric
in the form of mean, median and root mean squared error (RMSE) for the 17
images are presented in Table 5.6. In this Table we compare our SBGRA to our
GRA-RGB method as well as to other methods: HPMIMDE [Murch and Taylor,
1989], [Alsam and Farup, 2012], and [Lau et al., 2011]. Results for SBGRA are
slightly poorer than those obtained by the GRA-RGB, but they are still better
than the results of all other competing methods. In other words, we achieve better
saliency reproduction at the expense of a slight loss in image quality, but this loss
is affordable since none of the other methods outperforms our SBGRA.
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CHAPTER 6

Gamut Extension in CIELAB Color Space

This chapter presents some of our contributions to gamut extension problem.
The text of this chapter is derived from our publication in Electronic Imaging
conference titled “Gamut extension for cinema: psychophysical evaluation of
the state of the art, and a new algorithm” [Zamir et al., 2015], and our article
published in the IEEE Transactions on Image Processing titled “Gamut extension
for cinema” [Zamir et al., 2017].

6.1 One-Shot Gamut Extension Algorithm (GEA-LAB1)

Our GEA-RGB [Zamir et al., 2014] presented in the previous chapter (section
5.1.1), due to its inherent behavior of expanding colors by increasing the contrast
of the image, produces results with over-enhanced contrast, which in turn makes
a few colors go towards black (loss of saturation), as it is visible in Fig. 6.1b. It
can be seen that the overall contrast of the reproduction is increased noticeably,
making it depart from the original image. Also, the over-enhancement of contrast
causes loss of color details as it is shown in the area highlighted by a bounding
box in Fig. 6.1b. To overcome these problems, we propose a new GEA based
on [Zamir et al., 2014]; this method performs gamut extension using the same
energy functional (Eq. 5.6) and its corresponding evolution equation (Eq. 5.7)
as used by [Zamir et al., 2014], but uses the CIELAB color space. This key
modification eliminates not only the problems with saturation and contrast in the
reproduced images, but also the need to perform any sort of preprocessing as it
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(a) (b) (c)

Figure 6.1: Gamut extension example. (a) Input image. (b) Result of GEA-RGB [Zamir et al.,
2014]. (c) Result of GEA-LAB1 [Zamir et al., 2015]. Original image is courtesy of [Kodak, 1993].

was the case with the GEA-RGB [Zamir et al., 2014].

To perform gamut extension, our GEA-LAB1 [Zamir et al., 2015] first converts
the RGB input image to the CIELAB color space, and then only maximizes the
contrast of the chromatic components ‘a’ and ‘b’ using Eq. (5.7), while keeping
the lightness component constant. To show how the evolution Eq. (5.7) extends
the color gamut, an example with several different gamuts (visible spectrum,
source gamut, target gamut and reproduced gamut) on a chromaticity diagram is
shown in Fig. 6.2a. It is important to note that for each set of values for α, β, and
γ the evolution Eq. (5.7) has a steady state. For example, it is shown in Fig. 6.2a
that when β = 1, α = 0, and γ = 0 we obtain the original image as the steady
state of the evolution equation. Moreover, it can be seen in the same figure that as
we increase γ the steady state of Eq. (5.7) has a gamut which is gradually larger.
Fig. 6.2a also shows that the colors of the source gamut can be expanded to the
destination gamut just by using a large enough value for γ (γ = 0.35 in this case).
And to select an adequate γ value, we keep increasing the γ value and running
evolution Eq. (5.7) to steady state until the gamut of the input image exceeds
the target gamut up to a certain threshold T . This threshold T defines a stopping
criteria according to which if T% pixels of the original image move out of the
target gamut we should stop performing extension. Additionally, the threshold T
controls the amount of saturation; a large value of T provides a higher level of
saturation, whereas a small value of T produces a less saturated output. For each
γ value, the corresponding reproductions are shown in Fig. 6.2b. After this, the
colors that were placed outside the target gamut in previous iterations are mapped
back inside using our GRA-RGB [Zamir et al., 2014].
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Figure 6.2: Gamut extension approach. (a) Gamuts on chromaticity diagram. (b) Gamut extension
results. From left to right: input image (γ = 0), gamut extended image with γ = 0.17, γ = 0.23
and γ = 0.35. As the γ value increases the gamut becomes larger; notice the increment in saturation
of helmets, socks, ski suits and shoes. Original image is courtesy of [Kodak, 1993].

6.2 Gamut Extension Algorithm Driven by Hue, Satura-
tion and Chroma Constraints (GEA-LAB2)

Since our GEA-LAB1 [Zamir et al., 2015] used a fixed value of threshold T for
all the images, the results were often off from the ground truth. Moreover, the
GEA-LAB1 [Zamir et al., 2015] causes hue shifts in some of the reproductions. In
this section we present a new method that, unlike GEA-LAB1 [Zamir et al., 2015],
works iteratively with added constraints to perform gamut extension in terms of
the contrast coefficient γ. The general structure of our algorithm (GEA-LAB2),
that also operates on the ‘a’ and ‘b’ components in the CIELAB color space, is as
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follows.

At each iteration, we run the evolution Eq. (5.7) for some particular α, β,
and γ (in the first iteration the values are β = 1, α = 0, and γ = 0) until we
reach the steady state. For each pixel of this steady state image we check that
it simultaneously satisfies three constraints on saturation, hue and chroma: if
it does not, then the pixel is marked as “done” and subsequent iterations will
not modify its value (i.e. this pixel is now part of the final output, the gamut
extended image). We move to the next iteration, by slightly increasing the value
of γ and setting α = γ

20 . We run again evolution Eq. (5.7) until steady state
and check whether any of the pixels violated any condition: those pixels are left
unmodified for the following iterations. We keep repeating this process until the
gamut of the original image exceeds the destination gamut up to a threshold T , at
which point the iterations stop and all pixel values are final except for colors that
now lie outside the destination gamut: these are mapped back inside using the
GRA-RGB [Zamir et al., 2014].

In the following sections we describe in detail the constraints that are checked
after each iteration and the way the destination gamut is constructed.

Constraints

These are the three constraints that pixels must satisfy in order to continue with the
iterative process, otherwise we leave them untouched for the following iterations:

• Saturation Constraint: We define a condition to avoid pixels from getting
desaturated, therefore each pixel must satisfy this constraint

Sae − Sbe > 0, (6.1)

where Sae and Sbe denote saturation after extension and saturation before
extension, respectively.

• Hue Constraint: The human visual system is highly sensitive to the changes
in hue, and one major goal in GE is to produce images with unnoticeable
hue shifts. In order to make our GEA-LAB2 robust against unpleasant
color shifts, we make each pixel to comply with the hue constraint

|θae − θbe| < εh, (6.2)
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where θae, θbe and εh represent hue angle after extension, hue angle before
extension and hue threshold, respectively.

• Chroma Constraint: One of the main challenges in GE is that, after ex-
tension, colors of less saturated natural objects, skin tones, and shades of
memory colors may appear too colorful and unrealistic. To deal with it,
we manually segment a set of images that contain shades of sky and skin
colors. We then define the crucial region on the chromaticity diagram in
such a way that it encloses the chromaticity values of all the colors of these
segments of images. The crucial region is shown in Fig. 6.6, and colors
that fall inside this region should satisfy this chroma condition

|Cae − Cbe| < εc, (6.3)

where Cae, Cbe and εc indicate chroma after extension, chroma before
extension and chroma threshold, respectively.

We want to mention that the values of the parameters εh and εc are of great
importance; an example of an image with smooth color gradients is shown in Fig.
6.3 where it is evident that too small values of εh and εc produce an image with
noticeable artifacts, whereas for slightly larger values of εh and εc the reproduction
is free from false edges but may have hue shifts. Therefore, these values should
be adjusted in a way that the artifacts (false edges and hue shifts) stay below the
visibility level. In the experiment section we propose values for these parameters
that are suitable even for large differences between source and destination gamuts.

Scaled Destination Gamut Computation

One of the problems in gamut extension is that the majority of GEAs are either
image dependent or perform well for a few combinations of source and destination
gamuts [Morovič, 2008]. To reduce this dependency issue, we compute a scaled
version of the original image gamut and use it as the destination gamut.

Given two points p0 and p1, the following parametric representation describes
the line passing through them

p = p0 + η(p1 − p0), (6.4)
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(a) Input image.
(b) Gamut extended image with εh = 5 and
εc = 2.

(c) Gamut extended image with εh = 15 and
εc = 4.

Figure 6.3: Effect of parameters εh and εc. The red bounding boxes indicate the regions where
artifacts (false edges) appear.

where η is a scaling factor and η > 1 will provide a point p on the line further
from p0 than p1.

To obtain the scaled target gamut, given an original image I0 and a target gamut
(TG), we first convert the image colors into luminance (Y ) and chromaticity
values (x and y) [Sharma, 2002]. Next we calculate a reference point pr1 by taking
the mean of those chromaticity points (x and y) that make the two-dimensional
convex hull of the image I0. Both the reference point pr1 and the convex hull of
I0 are shown in Fig. 6.4a. We then define a set of lines (L) by substituting the
reference point p0 = pr1 and each vertex of the convex hull of I0 as p1 in Eq.
(6.4). Finally, we generate new points (one from each line in L) using a same
value of scaling factor (η1 > 1) that is chosen in such a way that none of the new
points falls outside the TG and at least one of them touches the boundary of the
TG as shown in Fig. 6.4a. Similarly, we calculate another scaling factor η2, but
this time using the mean of all chromaticity values of the image as reference point
pr2 and vertices of the convex hull of I0.

Once we have the scaling factors η1 and η2, we apply them using Eq. (6.4) on
the xyY triplets that make the three-dimensional (3D) convex hull of the original

128



“PhD˙Thesis˙RevM2” — 2017/4/4 — 16:20 — page 129 — #155

(a)

0

0

0.5

0.2

Y

1

x

0.4

1

1.5

0.6 0.8

y

0.6
0.4

0.20.8
0

Visible Spectrum

Target Gamut (TG)

Convex Hull of Image I
0

(b)

Final Scaled 

Destination Gamut

(c)

-0.5

0

0

0.5

Y

1

x

0.5

1.5

1
0.8

y

0.6
0.4

0.21
0

Visible Spectrum

Target Gamut (TG)

Convex Hull of Image I
0

Final Scaled 

Destination Gamut

(d)

Figure 6.4: Scaled destination gamut computation.

image I0 (shown in Fig. 6.4b) to obtain two 3D scaled gamuts. Note that these
two scaled gamuts, depicted in Fig. 6.4c, are obtained using two reference points
(pr1 and pr2); one of which is the mean of the xyY points that make the 3D
convex hull of the input image, and the other is the mean of all xyY values of the
image. Finally, we create the final scaled destination gamut by computing the
intersection of both 3D scaled gamuts as illustrated in Fig. 6.4c. An example with
all the relevant gamuts is shown Fig. 6.4d.
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6.3 Qualitative Experiments and Results

6.3.1 Methodology

One major goal of this study is to investigate psychophysically the performance
of GEAs in cinematic conditions using a digital cinema projector (Barco DP-
1200 [Barco, 2007]). A GEA must respect as much as possible the artist’s vision,
and in this sense it is completely different from a process like colorization of black
and white pictures. In general, and not only in the case of legacy material, there
never is a ground truth. The original material in a reduced gamut is all there is, and
this material has to have its gamut extended while preserving as much as possible
its original appearance. In our tests we actually have a ground truth because for
evaluation purposes we start from a wide gamut material, reduce its gamut, extend
it with a GEA and then ask users to compare the result with the wide gamut ground
truth, but in general a wide-gamut ground truth is never available. Nonetheless, by
showing that a GEA performs well as evaluated using ground truth data, we expect
that it also performs well when ground truth data is not available, which is a most
common approach in image processing (e.g. denoising algorithms are evaluated
in terms of PSNR by comparing with a ground truth “clean” image that is never
available in real scenarios, segmentation algorithms are evaluated by comparing
their results to those of manual segmentations, etc.). One could question the
choice of evaluation criteria: why ask users to choose the most accurate result
instead of the one they find most pleasant? The reason is that, for a GE technique
to be adopted by the movie industry, it must yield gamut extended results that
preserve as much as possible the artistic intent of the content’s creator. Designing
GEAs for pleasantness does not guarantee this, usually quite the opposite: apart
from general inter-subject variability in terms of preference, there is also a strong
correlation between colorfulness and perceived image quality [Fedorovskaya
et al., 1997], so user tests based on subject preference would rank higher those
GEAs that increased color saturation even if that implied a departure from a
subdued color palette chosen by the movie artist. User tests based on accuracy,
on the other hand, are much less subjective (as users are simply asked to estimate
differences with respect to the provided reference) and the preservation of the
artistic intent is in a sense “built-in” in the procedure, since the ground truth acts
as a stand-in for the content’s creator intent.

We show all the stages of our experimental framework in Fig. 6.5. The first
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Figure 6.5: A schematic of the evaluation for GEA-LAB2.

task is to obtain both the wide-gamut ground truth images and the limited-gamut
input images from the given wide-gamut test images. The wide-gamut test images
may have colors that fall outside the gamut of our cinema projector, therefore,
to create the ground truth, we map the colors of the test images to the gamut of
the projector by using the state of the art gamut reduction algorithm of [Alsam
and Farup, 2012]. It is important to note that in our experiments we make use
of a cinema projector that has the same red and green primaries as those of the
DCI-P3 standard but has a slightly different blue primary. Nonetheless, both the
DCI-P3 gamut and the projector’s gamut cover almost the same amount of area on
the chromaticity diagram as it can be seen in Fig. 6.6. Therefore, we refer to the
projector’s gamut as DCI-P3 in the rest of this chapter for the sake of simplicity.
Next, to create the limited-gamut input images, we apply the gamut reduction
method of [Alsam and Farup, 2012]. Once we have the input images ready, we
apply to them our GEA-LAB2 and four competing GEAs [Laird et al., 2009] to
generate reproductions for the following two different experimental setups:

1. Mapping from small gamut to DCI-P3 gamut: as laser displays with their
extended gamut capabilities are becoming popular, in the near future the
common case will be to have large color differences between the standard
gamuts and displays’ gamuts. Therefore, we create this setup to investigate
the behavior of GEAs when the difference between source and target gamut
is large. To this end, we map the source images from the small ‘Toy’ gamut
(slightly smaller than the BT.709 gamut, see primaries in Table 6.1) to
the large DCI-P3 gamut. On the chromaticity diagram, the difference in
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Figure 6.6: Gamuts on chromaticity diagram.

Table 6.1: Primaries of gamuts.

Gamuts Red Primaries Green Primaries Blue Primaries
x y x y x y

BT.2020 0.708 0.292 0.170 0.797 0.131 0.046
BT.709/sRGB 0.640 0.330 0.300 0.600 0.150 0.060
DCI-P3 0.680 0.320 0.265 0.690 0.150 0.060
Projector 0.680 0.320 0.265 0.690 0.140 0.070
Toy 0.570 0.320 0.300 0.530 0.190 0.130

gamuts for this setup is almost equal to the difference between BT.709 and
BT.2020.

2. Mapping from BT.709 to DCI-P3 gamut: in this setup we mimic the practi-
cal situation where the source material has BT.709 gamut and we map the
source colors to the colors of the DCI-P3 gamut.

Next we performed a subjective evaluation (for both experimental setups) with
15 observers of which ten were male and five female and their age was between 27
and 44 years, with average of 32 years. All observers were tested for normal color
vision using the Ishihara color blindness test. To mimic the lighting conditions of
a real cinema, we created a low light ambience where the illumination measured
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at the screen was around 750 lux and the ambient illuminance was 1 lux. During
the experiment there was not any strong colored object in the field of view of the
observers. The glare-free screen used in our experiments was 3 meters wide and
2 meters high. Each observer was instructed to sit approximately 5 meters away
from the screen.

In the psychophysical experiments, we used a forced-choice pairwise compari-
son technique where observers were shown three images on the projection screen:
the target gamut ground truth image (in the middle) and a pair of reproductions
(one image on the left side and the other on the right side of the ground truth). For
both setups, observers were asked to make selections according to the instructions:
a) if there are any sort of artifacts in one of the reproductions, choose the other,
and b) if both of the reproductions have artifacts or are free from artifacts, choose
the one which is perceptually more closer to the ground truth. Since there were
30 test images, 5 algorithms and 2 experimental setups, each participant had 600
comparisons to judge in total, but to avoid fatigue, we split these comparisons in
four sessions that were conducted on four different days. Although there was no
time restriction to make choices, each observer took approximately 30 minutes
to complete one session. Finally, we analyze the psychophysical data using the
same work as used by [Morovič, 1998] (see chapter 5 of his thesis), that is based
on Thurstone’s law of comparative judgement [Thurstone, 1927].

Moreover, in order to validate the robustness of the competing GEAs explicitly,
9 experienced observers (who belong to the image processing community and
participated in various psychophysical studies) were shown a pair of images
on the projection screen; one of which was the ground truth and the other was
the reproduction. We asked them to examine artifacts and hue shifts in the
reproductions as compared with the originals.

6.3.2 Creation of Wide Gamut Test Images

To the best of our knowledge, there is not any publicly available colorful wide-
gamut dataset that can be used to assess the performance of GEAs. Therefore, we
create wide-gamut images using a camera that is capable of capturing images in
RAW format. Once we have RAW images, we associate with them the wide-gamut
color space (ProPhoto RGB) to obtain true color images in Adobe Lightroom.
Along with the 21 images shown in Fig. 6.7, we use 9 other test images that
come from professional feature films such as ‘Amazing Spider-Man’, ‘127 Hours’,
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Figure 6.7: Some of the wide-gamut images used in our tests. Note that only the central part of the
images is shown.

‘Tangled’, ‘Rio’, and ‘Requisitos para ser una persona normal’.

6.3.3 Settings for Proposed Method

We work in CIELAB color space and the parameter values that we use in all
our experiments are β = 1, εh = 15◦, εc = 4, ∆t = 0.10, T = 1% of
the total number of pixels, and the gamma increment of ∆γ = 0.01 between
two consecutive iterations. The proposed GEA in a non-optimized MATLAB
implementation running on a machine with 8 cores 3.4-GHz CPU takes (on
average) 4.5 minutes to process an image of resolution 656× 1080 pixels.

6.3.4 Results

In order to compute the accuracy scores from the raw psychophysical data, we
use the same data analysis procedure as used by [Morovič, 1998] in his gamut
mapping study. The analysis of psychophysical data of the setup 1 presented in
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Fig. 6.8a shows that, when there is a large difference among the source-target
gamut pair, our GEA-LAB2 produces images that are perceptually more faithful
to the originals as compared with the other competing algorithms. The four state
of the art GEAs [Laird et al., 2009] that we compare with our algorithm are briefly
described in section 4.2.1 of chapter 4. The observers declared LCA [Laird et al.,
2009] as the least accurate algorithm, whereas both the CE [Laird et al., 2009]
and the HCM [Laird et al., 2009] algorithms rank third and fourth, respectively.

In Fig. 6.9, we report the percentage of reproductions for which 9 experienced
observers, on average, noticed the visual distortions: artifacts or hue shifts. For
the setup 1, the LCA and CE algorithms produce images with loss of texture
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Figure 6.8: Accuracy scores using 15 observers and 30 images.

SDS HCM CE LCA Our GEA-LAB2
0

5

10

15

20

25

P
e
rc

e
n
ta

g
e
 o

f 
R

e
p
ro

d
u
c
ti

o
n
s

Artifacts

Hue Shifts

(a) Setup 1.

SDS HCM CE LCA Our GEA-LAB2
0

2

4

6

8

10

12

14

P
e
rc

e
n
ta

g
e
 o

f 
R

e
p
ro

d
u
c
ti

o
n
s

Artifacts

Hue Shifts

(b) Setup 2.

Figure 6.9: Percentage of reproductions in which 9 experienced observers noticed visual distortions.
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due to over-saturation and it can be seen in Fig. 6.9a that the subjects noticed
artifacts in 25% of the reproductions obtained using the LCA algorithm and in
12% of the images in the case of the CE algorithm. The observers confirmed
that the GEA-LAB2 produces images with very low error rate, around 2%. One
such example is shown in Fig. 6.10 where it is clearly visible that the colors
reproduced by our method are artifact free and perceptually more faithful to the
ground truth than those of LCA and CE algorithms. Moreover, it can also be seen
in the said figure that the LCA and CE algorithms turn subtle spatial color details
of the woman’s apron into noticeable unpleasant color gradients.

Even though both the SDS [Laird et al., 2009] and HCM algorithms do not
introduce much noticeable artifacts, their reproductions show strong hue shifts.
We show an example in Fig. 6.11 where the hue shifts are evident on the floor in
the results of the SDS and HCM methods. Note that the images depicted in Fig.
6.10 and Fig. 6.11 were in DCI-P3 format, originally. Since we are limited by

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.10: Example of artifacts. (a) Ground Truth. (b) Output of CE algorithm [Laird et al.,
2009]. (c) Output of LCA algorithm [Laird et al., 2009]. (d) Output of our GEA-LAB2. (e)-(h)
Zoomed-in view of the regions cropped from the top row. Note that these are wide-gamut images
where out-of-sRGB pixels are masked green.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.11: Example of hue shifts. (a) Ground Truth. (b) Output of SDS algorithm [Laird et al.,
2009]. (c) Output of HCM algorithm [Laird et al., 2009]. (d) Output of our GEA-LAB2. (e)-(h)
Zoomed-in view of the regions cropped from the top row. Note that these are wide-gamut images
where out-of-sRGB pixels are masked green.

sRGB standard (that has the same primaries as of BT.709) for the paper, in order
to present results we show only those colors that are inside the sRGB gamut and
mask (in green) the rest of the colors.

In Fig. 6.8b we show the results of setup 2 where it can be seen that, when
the difference between source and target gamut is smaller, the ranking order of
the GEAs changes dramatically. The HCM algorithm that ranked as the second
least accurate in the previous setup becomes the most accurate method. Our GEA
shows comparable performance with the HCM algorithm. Similar to the results
of setup 1, the LCA algorithm produces gamut extended images that are least
faithful with the original content. It is also evident from Fig. 6.8b that the SDS
method, unlike in setup 1, shows poor performance under setup 2. Fig. 6.9b
shows that the SDS and HCM algorithms produce gamut extended images with
strong color shifts for 13.6% and 7% of the input images, respectively. It can be
seen in the same figure that none of the competing algorithms produces images
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with distinct visual artifacts for setup 2, in which there are small color differences
between source and target gamut.

Trends for both experimental setups show that our GEA-LAB2 is the most
consistent and reliable method for both small and large color differences among
the source-target gamut pair.

Temporal Consistency Test

In order to examine the temporal consistency of GEAs, we conducted a psy-
chophysical study with 9 experienced observers and two colorful image sequences
with different levels of motion. The representative frames for both image se-
quences are shown in Fig. 6.12. In this experiment, the gamut extended videos
obtained using different GEAs were shown in isolation (without any ground truth)
to each observer and they were asked to inspect the following attributes: temporal
color consistency (objects should retain the same hue, chroma and brightness),
global flickering, local region flickering, and excessive noise. None of the ob-
servers noticed any temporal artifacts, which supports our choice to apply all
competing GEAs on each frame independently. Finally, we want to stress that the
quality of the input video is of high importance; if it contains any spatial artifacts
due to compression or noise they may become prominent in the reproduced video.

(a) Image sequence 1

(b) Image sequence 2

Figure 6.12: Representative frames of image sequences with toy gamut.
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6.4 Identification of Error Metric Suitable for the GE
Problem

We would like to find out whether or not there exists an error metric that is suitable
for the gamut extension problem. First, we examine the prediction quality of
nine error metrics: CIE∆E, CIE∆E94 [Berns, 1993], CIE∆E2000 [Luo et al.,
2001], color image difference (CID) [Lissner et al., 2013], and the ones presented
in [Eskicioglu and Fisher, 1995] such as mean square error (MSE), structural
content (SC), maximum difference (MD), Laplacian mean square error (LMSE)
and normalized absolute error (NAE). We test the efficiency of the GEAs for
setup 1 and setup 2 using these error metrics, that find distortions between ground
truth and reproductions. We list the overall error for all the images in Table 6.2.
There it can be seen that for setup 1, only two out of nine error metrics selected
the observers’ preferred GEA (our proposed algorithm) as the best performing
algorithm. Both the LCA and the HCM algorithms were chosen as the most
accurate methods by three different error metrics, whereas none of the tested
metrics picks SDS as a good performing method: all these results contradict the
findings of the psychophysical experiment.

For setup 2, five out of the nine error metrics tested declare HCM as the most
efficient algorithm, which is consistent with the results of the psychophysical
experiment. However, the same image quality metrics rank other GEAs very
differently as compared with the observers’ choices. Another notable finding

Table 6.2: Predictions of image quality measures: error across all images. Note that the values of
∆E, ∆E94 and ∆E00 are normalized in the range [0,1].

Error
Metrics

Setup 1: Toy to DCI-P3 gamut Setup 2: BT.709 to DCI-P3 gamut

SDS HCM CE LCA Our GEA SDS HCM CE LCA Our GEA
CID 0.0903 0.0858 0.0862 0.1013 0.0987 0.0645 0.0624 0.0658 0.0657 0.0681
∆E 0.1926 0.1766 0.1636 0.1396 0.1796 0.1603 0.1401 0.1679 0.1680 0.1896
∆E94 0.2941 0.2684 0.2527 0.2203 0.2766 0.2203 0.1927 0.2141 0.2142 0.2194
∆E00 0.3058 0.2802 0.2489 0.2315 0.2670 0.2302 0.2037 0.2317 0.2301 0.2326
MSE 0.0060 0.0059 0.0109 0.0144 0.0116 0.2034 0.2192 0.1318 0.1317 0.1205
SC 0.6157 0.6052 0.5449 0.5212 0.5037 0.4885 0.4933 0.5268 0.5269 0.5209
MD 0.3442 0.3435 0.5096 0.5853 0.4393 0.3698 0.3172 0.3644 0.3651 0.2586
LMSE 0.3133 0.3154 0.2361 0.3124 0.2093 0.2034 0.2192 0.1318 0.1317 0.1205
NAE 0.1005 0.0967 0.0953 0.0977 0.1031 0.0636 0.0503 0.0748 0.0747 0.0640
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is that the CIE∆E metric and its variants (CIE∆E94 and CIE∆E2000) show a
similar trend and pick LCA and HCM as the most efficient algorithms for setup 1
and setup 2, respectively.

Even tough some error metrics were able to make right predictions, we check
the correlation between the choices made by our observers in the psychophysical
experiments and the predictions of the error metrics to confirm the reliability of
these image metrics. To achieve this, we use the hit rate (h) approach that is
defined as

h =
c

N
(6.5)

where N is the total number of choices for any experimental setup and c is
the number of correctly predicted choices. We operate on the raw visual data,
and as we know the choice of the observer for each paired comparison in the
psychophysical experiment, we consider a choice is correctly predicted if an
image quality metric gives less error for the image selected by the observer. Any
quality measure that makes random predictions is expected to achieve a hit rate of
h = 0.5. Since each image pair is compared by several observers and considering
that not all of them have made the same choice, we computed the maximum
achievable hit rate to which an error metric will approach if its predictions are in
agreement with the majority of observers’ choices for all image pairs.

Since our purpose is to find a metric that works for both small and large color
differences between source and target gamuts, in Fig. 6.13 we present the hit rates
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Figure 6.13: Hit rates obtained by image quality metrics for experimental setups.
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to validate the image quality metrics for both setup 1 and setup 2. It can be seen
that the error metrics made, most of the time, random predictions and their hit
rates are significantly lower than the maximum achievable hit rate. Note that if
an error metric has a very low hit rate (i.e. less than 0.2), one can make it a good
image quality measure by inverting its predictions for all image pairs. However,
none of these metrics achieves either a very low hit rate or a very high hit rate
and therefore they are unreliable to be used for evaluating results in the gamut
extension problem.

Without an efficient error metric, gamut extension cannot be posed as an
optimization scheme as in [Nakauchi et al., 1999], [Preiss et al., 2014] where,
given a reference image and its gamut mapped version, the idea is to alter the
gamut mapped image to minimize the distortions as computed by an objective
metric. Consequently, it leaves us with only one option for the moment to validate
GEAs, that is to perform subjective studies which are cumbersome and time
consuming.
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CHAPTER 7

Gamut Mapping Algorithms in HSV Color Space

The main limitations of the GEA-LAB2 [Zamir et al., 2017] presented in the
previous chapter are, on one hand, its sensitivity to the correct choice of parameter
values and, on the other hand, its significant computational cost: a non-optimized
MATLAB implementation running on a machine with 8 cores 3.4-GHz CPU takes
(on average) 4.5 minutes to process an image of resolution 656× 1080 pixels.

In this chapter, we propose new GMAs (a GEA and a GRA) that are signif-
icantly faster than our previous methods. First, we are going to present a GEA
published as a conference paper titled “Perceptually-based gamut extension algo-
rithm for emerging wide color gamut display and projection technologies” [Zamir
et al., 2016]. After this, we will provide details and results of our GRA.

7.1 Gamut Extension Using Kernel Based Retinex
(GEA-KBR)

Since the human visual system is very sensitive to changes in hue, it is rec-
ommended in the gamut mapping literature to leave the image hues unmodified,
whenever possible [CIE, 2004], [Morovič, 2008]. Therefore, we introduced in [Za-
mir et al., 2016] a new GEA that works in the HSV color space and modifies only
the saturation component while keeping hue and value constant. Working in HSV
color space allows us to add hue, chroma and saturation constraints within the
main framework, rather than including them in separate stages as it was the case
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with our GEA-LAB2 (presented in previous chapter). Our new GEA is based on
the kernel-based Retinex (KBR) method [Bertalmı́o et al., 2009]. By using KBR
we can pose the gamut extension problem as one of increasing saturation.

One fundamental mechanism of the KBR algorithm [Bertalmı́o et al., 2009] is
that it is capable of increasing contrast while being monotonically increasing, i.e.
it can increase the contrast without decreasing the image values. [Bertalmı́o et al.,
2009] propose the following formula to convert the intensity values I of an image
into perceived lightness values L:

L(x) =
∑
y

w(x, y)f

(
I(x)

I(y)

)
sign+(I(y)− I(x))

+
∑
y

w(x, y) sign−(I(y)− I(x)),
(7.1)

where I(x) and I(y) represent image values at pixel locations x and y, respec-
tively, and I is an image channel. Since Eq. (7.1) involves ratios, we normalize
the dynamic range of I in (0, 1] so as to avoid dividing by zero. This, for example,
could be done on a 8-bit-per-channel image just by adding 1 to each pixel and
dividing by 256. The scaling function f is monotonically increasing such that
f(r) ≥ r, ∀r, w(x, y) is a normalized Gaussian kernel of standard deviation of σ,
and the functions sign+(·) and sign−(·) are, respectively, defined as:

sign+(a) =


1, if a > 0,
1
2 , if a = 0,
0, if a < 0,

(7.2)

sign−(a) = 1− sign+(a). (7.3)

In [Bertalmı́o et al., 2009] it is shown that the KBR is not idempotent. There-
fore, instead of manually choosing the number of times the KBR should be applied
to obtain the best enhanced image, it is better to rewrite Eq. (7.1) in the form of
a partial differential equation (PDE): It(x) = L(x, t) − I(x, t), into which we
can introduce an attachment to data term that leaves the image unmodified once
it has departed too much from the original image. We use this framework in the
GM context by applying this PDE to the saturation channel only, while keeping
the hue and value channels fixed: we know that KBR will increase the saturation
values, which implies that the gamut will be extended. In the PDE we also attach
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a chroma term C = SV (from [Ford and Roberts, 1998]) to treat low chromatic
and high chromatic pixels differently. Taking Eq. (7.1) for the saturation channel
S and adding also the chroma attachment we get:

St(x, t) =γ
∑
y

w(x, y)

[
f

(
S(x, t)

S(y, t)

)
sign+(S(y, t)

−S(x, t)) + sign−(S(y, t)− S(x, t))

]
− S(x, t)− β(S(x, t)− S0(x))

− τ(S0(x))(S(x, t)V0(x)− S0(x)V0(x)),

(7.4)

where β > 0 controls the strength of the original data attachment term S0 and
γ is a positive constant. V0 is the value component of the original image. In
gamut extension, certain colors require a special treatment in order to look natural
and pleasant such as skin tones, less saturated natural objects, neutral colors
and some particular memory colors. To incorporate such a functionality into the
proposed GEA-KBR, the function τ(·), shown in Fig. 7.1, takes as an argument
the saturation of the original image and associates weights with the pixels of the
image. These weights indicate the amount of special treatment we provide to
colors of the input image. For example, the low saturated colors of the input
image that require little to no extension are given higher weights τ(·), whereas
low weights are attached to extend normally the high saturated (artificial objects)
colors. With this we can extend the gamut of the input image in a controlled
manner treating objects of low saturation and high saturation differently. To

Figure 7.1: Logistic function.
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compute the weights for each pixel, we use the following adapted version of the
generalised logistic function [Wikipedia, 2016]:

τ(S0(x)) = τmax

(
1− 1

1 + 0.55e−1.74S0(x)2

)
(7.5)

where τmax is a positive constant. The values used in Eq. (7.5) have been chosen
based on tests we performed on several images with different color characteristics.
(Note that the function τ(·) effects only the chroma of the image and this is a
much smoother way of implementing chroma constraint than defining a crucial
region on chromaticity diagram and treating pixels differently as we did for our
GEA-LAB2 presented in section 6.2).

Let us now discretize the derivative and apply a forward-time numerical
scheme on Eq. (7.4) as

Sk+1(x) =γ∆tRSk(x) + Sk(x)[1−∆t(1 + β)]

+ ∆t[βS0(x) + τ(S0(x))V0(x)(S0(x)− Sk(x))],
(7.6)

where ∆t is the time step and k ∈ N denotes the iteration number. The initial
condition is Sk=0(x) = S0(x), and the function RSk(x) indicates the contrast
modification function:

RSk(x) =
∑
y∈I

w(x, y)

[
f

(
Sk(x)

Sk(y)

)
sign+(Sk(y)− Sk(x))

+ sign−(Sk(y)− Sk(x))

]
.

(7.7)

Following the work of [Bertalmı́o et al., 2009] we can rewrite Eq. (7.6) as

Sk+1(x) =
Sk(x) + ∆t

(
S0(x)(β + τ(S0(x))V0(x)2) + γ

2RSk(x)
)

1 + ∆t(β + τ(S0(x))V0(x)2)
(7.8)

7.1.1 Action of the GEA-KBR on an Image

In order to perform gamut extension, we first convert the RGB input image to the
HSV color space, and then apply Eq. (7.8) to the saturation component only. The
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evolution Eq. (7.8) reaches steady state for each set of values for parameters β,
∆t, and γ, and to show how it modifies the color gamut, an example with several
different gamuts on a chromaticity diagram is shown in Fig. 7.2a where it can
be seen that when β = 1, ∆t = 0.10, and γ = 0 the steady state of the evolution
equation produces the original image, and as we increase the value of γ the steady
state of Eq. (7.8) yields an image with a larger gamut. Fig. 7.2a also shows that
one can map the colors of an input image to the larger destination gamut just
by using a large enough value for γ (γ = 0.40 in this case). For each γ value,
the corresponding reproduced images are shown in Fig. 7.2b in which we can
notice that the colors of sky, grass and skin have a limited (controlled) increase in
saturation, whereas some objects are extended normally such as the bottles, the
fruits, the cloths in the basket and the pink shirt. Since we are using a fixed value
of γ for all the input images with different spatial and chromatic characteristics,
our GEA-KBR may place a few colors outside the destination gamut that we can
map back inside using a gamut reduction algorithm, e.g. our GRA-RGB [Zamir
et al., 2014].

In order to compute the optimal value for γ that allows us to perform GE,
we make use of the information provided by the color differences between the
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Figure 7.2: Gamut extension approach. (a) Gamuts on chromaticity diagram. (b) Gamut extension
results. Top left: input image (γ = 0). Top right: gamut extended image with γ = 0.10. Bottom
left: gamut extended image with γ = 0.25. Bottom right: gamut extended image with γ = 0.40.
Original image is from [CIE, 2004].
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source and the destination gamuts (triangle-shaped due to the use of three color
primaries):

γ = 3
√
|SGarea −DGarea| (7.9)

where SGarea andDGarea denote the area of the source gamut and the destination
gamut, respectively.

7.1.2 Experiments and Results

In this section we assess the visual quality of the reproductions produced by the
proposed GEA-KBR and other methods using the publicly available datasets
[Andriani et al., 2013], [Froehlich et al., 2014]. To compute the results for our
method, we work in HSV color space and in Eq. (7.8) the parameter values that we
use are β = 1, ∆t = 0.10. The non-linear scaling function is f(r) = A log(r)+1,
where A = 1

log(256) . The value for σ, the standard deviation for w(x, y), is equal
to one-third of the number of rows or columns of the input image (whichever is
larger). Since we are limited by the sRGB standard (that has the same primaries
as of BT.709) for the paper, all results presented in this section are mapped from
‘Toy’ gamut to sRGB gamut (the primaries of gamuts used in our experiments are
mentioned in Table 7.1). To see the reproductions obtained using our GEA-KBR
when mapping colors from ‘Toy’ to DCI-P3 gamut and from BT.709 to DCI-P3,
visit the web page: http://ip4ec.upf.edu/GamutExtension.

While the capability of emerging wide-gamut displays in reproducing more
vibrant colors helps generating a richer visual experience, it is highly important
to render flesh tones in a very careful manner so as to avoid departing away

Table 7.1: Primaries of gamuts.

Gamuts Red Primaries Green Primaries Blue Primaries
x y x y x y

BT.2020 0.708 0.292 0.170 0.797 0.131 0.046
DCI-P3 0.680 0.320 0.265 0.690 0.150 0.060
BT.709/sRGB 0.640 0.330 0.300 0.600 0.150 0.060
Toy 0.570 0.320 0.300 0.530 0.190 0.130
Mock 0.510 0.320 0.310 0.480 0.230 0.190
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Figure 7.3: Results: mapping from Toy to sRGB gamut. Column 1: Input image. Column 2:
HCM [Laird et al., 2009]. Column 3: SDS [Laird et al., 2009]. Column 4: Chroma extension [Laird
et al., 2009]. Column 5: LCA [Laird et al., 2009]. Column 6: Our GEA-KBR. Original images are
from [Andriani et al., 2013] and [Froehlich et al., 2014].

from the content creator’s intent. In Fig. 7.3 we compare how different GEAs
reproduce skin colors, which is always a key issue in movie postproduction. It
can be seen in row 2 and row 4 that our GEA-KBR applies a limited extension
to skin tones but the artificial objects undergo a normal color extension so that
the final reproduction appears natural and pleasant, whereas in the same figure
it is noticeable that other methods such as same-drive signal (SDS) [Laird et al.,
2009] and chroma extension [Laird et al., 2009] have issues with skin tones
and over-saturation. For better comparison, we show in Fig. 7.4 the zoomed-in
view of regions cropped from Fig. 7.3. The lightness chroma adaptive (LCA)
algorithm [Laird et al., 2009], due to its inherent behavior of modifying lightness
and chroma, produces images with artifacts and the over-enhancement of contrast
makes a few colors go towards black (loss of saturation and detail). For example
in Fig. 7.4, see the napkin in row 2 for artifacts, and the picture of the elephant in
the last row depicting some loss of detail. The chroma extension method [Laird
et al., 2009] shows poor performance when there is a high chromatic object in the
scene; one such example is shown in row 4 of Fig. 7.4 where it can be seen that
the colors of the character are highly saturated.
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Figure 7.4: Zoomed-in view of the regions cropped from Fig. 7.3. Column 1: Input image.
Column 2: HCM [Laird et al., 2009]. Column 3: SDS [Laird et al., 2009]. Column 4: Chroma
extension [Laird et al., 2009]. Column 5: LCA [Laird et al., 2009]. Column 6: Our GEA-KBR.

In general, viewers tend to prefer more saturated colors [Fedorovskaya et al.,
1997] when they are not aware of the original colors of either natural or man-made
objects, but they are less welcoming to the change in colors of those objects for
which they have memory such as shades of sky and grass, etc. Therefore, care
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Figure 7.5: Representative frames of image sequences with sRGB gamut. Original images are
from [Andriani et al., 2013] and [Froehlich et al., 2014].

should be taken while extending these colors. In Fig. 7.3, row 1, we present an
example showing that our method performs controlled extension and reproduces
the color of the grass accurately, whereas the hybrid color mapping (HCM), and
SDS methods over-saturate the grass region, making it look artificial.

To test the temporal consistency of our method, we apply the GEA-KBR on a
variety of image sequences with different levels of motion. Representative frames
are shown in Fig. 7.5 and the complete resultant image sequences with extended
gamut are added to the web page for which the link is given above. We confirm
that the gamut extended videos obtained using our GEA are free from noticeable
spatial and temporal artifacts, hue shifts, flickering and unexpected changes in
chroma and brightness of objects.

7.1.3 Making the GEA-KBR Faster

The proposed GEA-KBR in a non-optimized MATLAB implementation running
on a machine with 8 cores 3.4-GHz CPU takes (on average) 11 seconds to process
an image of resolution 656× 1080 pixels. However, the computational cost can
be reduced drastically by applying a series of operations (only on the saturation
component of an image represented in the HSV color space) that are shown in
Fig. 7.6 and explained as follows:

• Sub-sampling: the first step is to take the full resolution image and sub-
sample it by a scaling factor. The scaling factor of 0.40 provides a good
trade-off between the speed and the quality of the reproduction.

• Apply GEA: next apply the proposed GEA-KBR on the downsampled
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Figure 7.6: A schematic to reduce the computational cost of the proposed framework.

(a) (b) (c)

Figure 7.7: Example of reducing computational time. (a) Input image. (b) Result of GEA-KBR
applied on a full resolution image. (c) Result of GEA-KBR applied on a sub-sampled image.
Original image is from [Kodak, 1993].

image in order to obtain a reduced-size gamut extended image.

• Histogram Matching: finally we perform histogram matching of the full
resolution input image and the subsampled image with extended gamut to
obtain the final full resolution gamut extended image.

As shown in Fig. 7.7, using the above mentioned steps we can produce results
having the same visual appearance but at a fraction (25%) of the time.
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7.2 Gamut Reduction Using Kernel Based Retinex
(GRA-KBR)

This section is devoted to present a key modification in the framework of GEA-
KBR that will allow us to perform gamut reduction. Let us note that the chroma
term in the PDE (Eq. 7.4) was exclusively used to deal with the gamut extension
problem in which we need to treat low-saturated and high-saturated colors differ-
ently. So by removing the effect of the chroma term from Eq. (7.4), i.e. by setting
τ(·) to zero, we obtain the following corresponding evolution equation

Sk+1(x) =
Sk(x) + ∆t

(
βS0(x) + γ

2RSk(x)
)

1 + β∆t
, (7.10)

and by using γ < 0 in this equation we can decrease the saturation of the input
image and subsequently reduce the color gamut.

7.2.1 Implementation

Let us note that it is a very common and recommended practice to leave those
colors of the input image unchanged that are already inside the destination gamut
and apply gamut reduction operation to the out-of-gamut colors only. To follow
this approach, the proposed GRA-KBR works iteratively. The general structure
of our iterative GRA-KBR, though similar to GRA-RGB (section 5.1.1), is as
follows: at each iteration, we run Eq. (7.10) for some particular values of β and
γ until we reach the steady state (in the first iteration the values are β = 1, and
γ = 0). The steady state of each iteration will provide us with some pixels that we
mark as “done” and we would not modify their values in subsequent iterations (i.e.
these pixels are now part of the final output). We move to the next iteration where
we make a small decrement in the γ value (for example, setting γ = −0.05) and
run again Eq. (7.10) until steady state, and then check whether any of the pixels
that were outside the gamut at the previous iteration are now inside the destination
gamut: we select those pixels for the final image and leave them untouched for
the following iterations. We keep repeating this process until all the out-of-gamut
colors are mapped inside the 2D destination gamut. An example of this iterative
procedure is shown in Fig. 7.8b, where pixels in color magenta represent the
out-of-gamut pixels remaining in that iteration. The corresponding evolution of
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Figure 7.8: Gamut reduction procedure. (a) Gamuts on chromaticity diagram. (b) Results of gamut
reduction. Top left: input image. Top right: reduced gamut image (same as of input image) when
γ = 0. Bottom left: reduced-gamut image with γ = −2.13. Bottom right: reduced-gamut image
with γ = −4.67. Out-of-gamut colors are masked with magenta color; as we reduced γ value the
number of out-of-gamut colors is also decreased.

the gamut is illustrated in Fig. 7.8a, showing that as γ decreases the gamut is
gradually reduced. It is important to mention that in the aforementioned iterative
process we use a 2D plane to define the destination gamut rather than a 3D volume.
This was a deliberate attempt in order to avoid excessive desaturation in bright
colors. However, the image we obtain after the iterative procedure may have some
colors that are still outside the ‘3D’ destination gamut. Therefore, we perform
post-clipping using a 3× 3 matrix to map these remaining colors to the boundary
of the destination gamut; see section 3.5.2 for the process of post-clipping.

7.2.2 Experiments and Results

In this section we compare, visually and by using a perceptual error metric
[Lissner et al., 2013], the performance of our GRA with other methods such as
LCLIP [Sara, 1984], HPMINDE [Murch and Taylor, 1989] and the algorithms
of [Schweiger et al., 2016] and [Alsam and Farup, 2012]. In order to map colors
from a larger source gamut to a smaller destination gamut, we keep iterating
the evolution equation (7.10) for each γ value until the difference between two
consecutive steps falls below 0.5%.
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Figure 7.9: sRGB test images. From left to right, top to bottom: first 2 images are from [ISO,
2004], image 3 and 4 are from [CIE, 2004], image 5 is from [Farup et al., 2007] and the last two
images are from the photographer Ole Jakob Bøe Skattum.

Visual Quality Assessment

To evaluate the image reproduction quality, we map colors of sRGB images
(Kodak dataset [Kodak, 1993] and images of Fig. 7.9) to a challenging smaller
‘Mock’ gamut using the competing GRAs. The color primaries of sRGB and
‘Mock’ gamuts are given in Table 7.1. The results presented in Fig. 7.10 show
that the proposed GRA-KBR produces images that are perceptually more faithful
to the original images than the other methods, preserving hues and retaining
texture and color gradients. In the close-ups shown in Fig. 7.11 we can see that
HPMINDE may introduce noticeable artifacts in the reproductions because it
may project two nearby out-of-gamut colors to far-away points on the destination
gamut. Also, the HPMINDE algorithm can produce images with loss of spatial
detail, as it can be observed in rows 1 and 4 of Fig. 7.11. The methods of LCLIP
and Schweiger et al. [Schweiger et al., 2016] may produce results with excessive
desaturation in bright regions, as shown on the close-ups of the helmet and on
the neck of the yellow parrot. The algorithm of Alsam et al. [Alsam and Farup,
2012] can over-compensate the contrast, as shown in the example of the first row
of 7.11. In the example of the second row of Fig. 7.11, all tested GRAs except
the proposed one produce tonal discontinuities on the face of the woman.
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Figure 7.10: Reproductions of GRAs. Column 1: input images. Column 2: LCLIP [Sara, 1984].
Column 3: HPMINDE [Murch and Taylor, 1989]. Column 4: Schweiger et al. [Schweiger et al.,
2016]. Column 5: Alsam et al. [Alsam and Farup, 2012]. Column 6: Our GRA. The original image
in the last row is from [CIE, 2004], while rest of the input images are from Kodak dataset [Kodak,
1993].

Quantitative Assessment

This section is devoted to examining the quality of the compared GRAs using
the CID metric [Lissner et al., 2013], which is particularly tailored to assess the
quality of gamut reduction results. We apply the competing GRAs on the Kodak
dataset [Kodak, 1993] and on seven other images (that are shown in Fig. 7.9). In
Table 7.2 we summarize the results obtained using the CID measure. It can be
seen that our GRA outperforms the other methods in 24 out of 31 test images.
Furthermore, the statistical data (mean, median and root mean square) presented
in Table 7.3 also underlines the good performance of the proposed algorithm over
the other GRAs.
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Figure 7.11: Comparison of GRAs: crops are from Fig. 7.10. Column 1: original cropped regions.
Column 2: LCLIP [Sara, 1984]. Column 3: HPMINDE [Murch and Taylor, 1989]. Column
4: Schweiger et al. [Schweiger et al., 2016]. Column 5: Alsam et al. [Alsam and Farup, 2012].
Column 6: Our GRA.
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Table 7.2: Quantitative assessment using CID metric [Lissner et al., 2013]. The first 24 images are
from Kodak dataset [Kodak, 1993] and the rest of the images are sequentially shown from left to
right in Fig. 7.9.

Image #
LCLIP

[Sara, 1984]
HPMINDE

[Schweiger
et al., 2016]

[Alsam and
Farup, 2012]

Our
GRA-KBR

1 0.0046 0.0242 0.0059 0.0255 0.0051
2 0.1098 0.3238 0.1195 0.1668 0.1135
3 0.0397 0.0831 0.0405 0.0631 0.0291
4 0.0114 0.0766 0.0131 0.0398 0.0101
5 0.0158 0.0252 0.0188 0.0330 0.0061
6 0.0275 0.0155 0.0324 0.0792 0.0002
7 0.0123 0.0369 0.0121 0.0504 0.0109
8 0.0067 0.0061 0.0157 0.0326 0.0001
9 0.0037 0.0097 0.0047 0.0525 0.0047
10 0.0010 0.0019 0.0012 0.0216 0.0004
11 0.0014 0.0055 0.0022 0.0277 0.0010
12 0.0077 0.0114 0.0082 0.0453 0.0008
13 0.0038 0.0060 0.0049 0.0231 0.0012
14 0.0238 0.0635 0.0252 0.0473 0.0224
15 0.0278 0.0452 0.0275 0.0716 0.0157
16 0.0014 0.0032 0.0018 0.0214 0.0003
17 0.0018 0.0012 0.0030 0.0116 0.0003
18 0.0082 0.0175 0.0134 0.0325 0.0056
19 0.0042 0.0096 0.0086 0.0428 0.0013
20 0.0478 0.0358 0.0517 0.0945 0.0041
21 0.0071 0.0037 0.0095 0.0293 0.0001
22 0.0080 0.0157 0.0121 0.0327 0.0009
23 0.0309 0.1480 0.0336 0.0668 0.0308
24 0.0028 0.0017 0.0057 0.0175 0.0001
25 0.0040 0.0175 0.0038 0.0284 0.0045
26 0.0142 0.0413 0.0145 0.0467 0.0156
27 0.0087 0.0443 0.0094 0.0321 0.0100
28 0.0752 0.1503 0.0741 0.1067 0.0832
29 0.1476 0.2081 0.1333 0.1324 0.1148
30 0.0299 0.0769 0.0372 0.0830 0.0289
31 0.0083 0.0130 0.0102 0.0230 0.0098
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Table 7.3: Quantitative assessment: statistical data

LCLIP
[Sara, 1984]

HPMINDE
[Schweiger
et al., 2016]

[Alsam and
Farup, 2012]

Our
GRA-KBR

Mean 0.0225 0.0491 0.0243 0.0510 0.0171
Median 0.0083 0.0175 0.0121 0.0398 0.0051
RMS 0.0396 0.0855 0.0397 0.0618 0.0346
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CHAPTER 8

Conclusion and Future Work

The aim of this thesis was to develop gamut mapping algorithms that take into
account some basic perceptual properties of the human visual system such that
the content reproduced by these algorithms appears natural, pleasant and, most
importantly, perceptually faithful to the original material. With this goal, we
have presented several gamut reduction and gamut extension algorithms that
are capable of mapping colors of an input image (or video) to a challenging
destination gamut.

In chapter 5, we presented spatial gamut mapping algorithms (a GRA and a
GEA) that rely on a perceptually-based variational framework. Our algorithms
adapt an existing image energy functional [Bertalmı́o et al., 2007] whose mini-
mization leads to image enhancement and contrast modification. We showed how
by varying the importance of the contrast term in the image functional we are
able to perform gamut reduction and gamut extension. We proposed an iterative
scheme that allows our algorithms to successfully map the colors from the gamut
of the original image to a given destination gamut while keeping the perceived
colors close to the original image. Both the visual quality assessment and the
objective evaluation presented in chapter 5 validate the good results achieved
using our proposed algorithms. Later in the same chapter, we presented another
spatial GRA that is capable of better preserving the saliency of the original image
in the gamut mapped image, but with a minor loss in overall image quality. All
three of these GMAs work in RGB color space.

Our GEA of chapter 5, due to its inherent behavior to expand colors by increas-
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ing the contrast of the image, may produce results with over-enhanced contrast,
which in turn makes a few colors to go towards black (loss of saturation). To over-
come this problem, we proposed a new spatial GEA (in chapter 6) that performs
gamut extension by modifying only the chromatic components in the CIELAB
color space while keeping the lightness constant, and therefore preserving the
contrast of the image. Even though our GEA did provide a functionality through a
threshold parameter to set the amount of color extension that we want to perform,
the reproductions were sometimes off (over-saturated, or under-saturated) from
the ground truth for a few images. Furthermore, we noticed that the proposed
GEA introduced hue shifts in some images. To deal with these issues, we pre-
sented another GEA in chapter 6 that adapts itself according to the content of the
input image. This novel GEA was implemented as a PDE-based optimization
procedure related to visual perception models that performs gamut extension by
taking into account the analysis of distortions in hue, chroma and saturation. User
studies performed using a digital cinema projector under cinema-like environment
showed that the proposed algorithm outperforms the state of the art, producing
gamut extended images that are perceptually more faithful to the wide-gamut
ground truth, as well as free from noticeable color artifacts and hue shifts. We
also concluded how currently available image quality metrics, when applied to
the gamut extension problem, provide results that do not correlate with users’
choices.

Although the proposed GEA (chapter 6) showed promising and consistent
performance under different settings of source and destination gamuts, there were
some limitations associated with it. We presented an example showing that a poor
choice of parameters for the constraints used in the GEA to make binary deci-
sions may produce results with noticeable hue shifts, false edges, and undesirable
chroma extension of memory colors. Additionally, the computational cost was
significantly high, taking upward of seven minutes to process a full HD image
using a non-optimized MATLAB implementation running on a desktop PC. To
cope with these challenges, we presented a new local GEA in chapter 7 that works
in the HSV color space and operates only on the saturation channel of the image,
while keeping hue and value constant. This GEA extends gamut by analyzing the
color characteristics of the input image. On one side, the proposed GEA modifies
less those colors that require a special treatment such as skin tones, less saturated
natural objects, neutral colors and some particular memory colors in a controlled
manner. On the other side, it extends normally colors of high chromatic (natural
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and artificial) objects. Our GEA produces gamut extended images and videos that
look natural and pleasant in appearance. Though this method is able to extend
the gamut of a full HD image in nine seconds, we also presented a procedure that
enables our GEA to produce results having the same visual appearance but at a
fraction (25%) of the time. In the second half of the chapter 7 we introduced a
spatially-variant iterative GRA that comes from inverting the sign of a parameter
of our GEA framework presented in the same chapter. This method also operates
in the HSV color space and iteratively reduces the saturation component of the
input image in order to perform gamut reduction. The results show that our GRA
outperforms the state of the art both according to a quantitative metric and in
terms of subjective visual appearance.

Future Work:
The following are some possible directions in gamut mapping that we would like
to investigate as future works.

• Our user study (chapter 6) showed that the current image quality metrics,
when applied to the gamut extension problem, provide results that do not
correlate well with users’ choices [Zamir et al., 2017]. Therefore, there
is the need to develop an error metric specifically for gamut extension.
Without a suitable image quality metric, the gamut extension problem
cannot be posed as an optimization procedure; moreover, we are forced to
conduct psychophysical tests for evaluating GEAs but these subjective tests
are cumbersome, time-consuming and expensive.

• Although the spatial GMAs that we have proposed are adaptive and flexible,
at the same time they are computationally expensive. These local GMAs
need to be fast so that they can yield color reproductions on the fly in live
broadcasts. The development of fast spatial GMAs is also important if we
want to implement them in the image processing pipeline of a camera.

• The industry has been treating high dynamic range (HDR) and wide color
gamut (WCG) as independent image attributes (so did we in this thesis),
for example a picture may have a high dynamic range but a reduced color
gamut such as BT.709, or the other way around [François et al., 2016]. The
standardization of these technologies occurred in two separate routes [ITU-
R, 2012], [SMPTE, 2014], mainly because the HDR displays were although
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bright enough, they were not able to reproduce very wide color gamut.
However, it is now foreseeable that the laser displays (which are capable
of generating vivid colors and greater contrast) will become mainstream
in near future. Therefore, we should look into studying HDR and WCG in
combination.

• While performing gamut mapping, the proposed algorithms do not take into
account the effect of ambient lighting. It would be interesting to develop
GMAs that can generate content according to intended viewing conditions,
for example reproducing a footage differently for home viewing (that has
moderate light levels) and for cinema viewing (which has a dark ambiance).

• GMAs should preserve the artistic intent of the content’s creator in the
reproduced image if they are to be adopted by the movie industry. In this
thesis we developed and psychophysically evaluated GMAs considering
this accurate reproduction intent. However in the television industry, TV
manufacturers prefer distorting image attributes such as tones and colors
in ways that they think consumers may find visually pleasant [Poynton,
2010a]. This may imply departing from the original content as much as
needed, and incorporating steps that may modify the aesthetic choices
of the content’s creator. As a future work we would like to develop and
investigate GMAs that aim at generating content with pleasant reproduction
intent.
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