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Abstract

This thesis proposes specific signal processing and machine learning method-
ologies for automatically aligning the lyrics of a song to its corresponding audio
recording. The research carried out falls in the broader field of music informa-
tion retrieval (MIR) and in this respect, we aim at improving some existing
state-of-the-art methodologies, by introducing domain-specific knowledge.

The goal of this work is to devise models capable of tracking in the music audio
signal the sequential aspect of one particular element of lyrics - the phonemes.
Music can be understood as comprising different facets, one of which is lyrics.
The models we build take into account the complementary context that exists
around lyrics, which is any musical facet complementary to lyrics. The facets
used in this thesis include the structure of the music composition, structure
of a melodic phrase, the structure of a metrical cycle. From this perspec-
tive, we analyse not only the low-level acoustic characteristics, representing
the timbre of the phonemes, but also higher-level characteristics, in which
the complementary context manifests. We propose specific probabilistic mod-
els to represent how the transitions between consecutive sung phonemes are
conditioned by different facets of complementary context.

The complementary context, which we address, unfolds in time according to
principles that are particular of a music tradition. To capture these, we created
corpora and datasets for two music traditions, which have a rich set of such
principles: Ottoman Turkish makam and Beijing opera. The datasets and
the corpora comprise different data types: audio recordings, music scores, and
metadata. From this perspective, the proposed models can take advantage
both of the data and the music-domain knowledge of particular musical styles
to improve existing baseline approaches.

As a baseline, we choose a phonetic recognizer based on hidden Markov mod-
els (HMM): a widely-used methodology for tracking phonemes both in singing
and speech processing problems. We present refinements in the typical steps
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of existing phonetic recognizer approaches, tailored towards the characteris-
tics of the studied music traditions. On top of the refined baseline, we device
probabilistic models, based on dynamic Bayesian networks (DBN) that repre-
sent the relation of phoneme transitions to its complementary context. Two
separate models are built for two granularities of complementary context: the
structure of a melodic phrase (higher-level) and the structure of the metrical
cycle (finer-level). In one model we exploit the fact the syllable durations
depend on their position within a melodic phrase. Information about the
melodic phrases is obtained from the score, as well as from music-specific
knowledge.Then in another model, we analyse how vocal note onsets, esti-
mated from audio recordings, influence the transitions between consecutive
vowels and consonants. We also propose how to detect the time positions of
vocal note onsets in melodic phrases by tracking simultaneously the positions
in a metrical cycle (i.e. metrical accents).

In order to evaluate the potential of the proposed models, we use the lyrics-
to-audio alignment as a concrete task. Each model improves the alignment
accuracy, compared to the baseline, which is based solely on the acoustics of
the phonetic timbre. This validates our hypothesis that knowledge of comple-
mentary context is an important stepping stone for computationally tracking
lyrics, especially in the challenging case of singing with instrumental accom-
paniment.

The outcomes of this study are not only theoretic methodologies and data,
but also specific software tools that have been integrated into Dunya - a suite
of tools, built in the context of CompMusic, a project for advancing the com-
putational analysis of the world’s music. With this application, we have also
shown that the developed methodologies are useful not only for tracking lyrics,
but also for other use cases, such as enriched music listening and appreciation,
or for educational purposes.



Resum

La tesi aqui presentada proposa metodologies d’aprenentatge automatic i pro-
cessament de senyal per alinear automaticament el text d’una cangé amb el seu
corresponent enregistrament d’audio. La recerca duta a terme s’engloba en
Pampli camp de lextracci6é d’informacié musical (Music Information Retrieval
o MIR). Dins aquest context la tesi pretén millorar algunes de les metodologies
d’altima generacié del camp introduint coneixement especific de ’ambit.

L’objectiu d’aquest treball és dissenyar models que siguin capacos de detectar
en la senyal d’audio 'aspecte seqiiencial d’un element particular dels textos
musicals; els fonemes.

Podem entendre la musica com la composicié de diversos elements entre els
quals podem trobar el text. Els models que construim tenen en compte el
context complementari del text. El context sén tots aquells aspectes musicals
que complementen el text, dels quals hem utilitzat en aquest tesi: la estructura
de la composicié musical, la estructura de les frases melodiques i els accents
ritmics. Des d’aquesta prespectiva analitzem no només les caracteristiques
acustiques de baix nivell, que representen el timbre musical dels fonemes,
siné també les caracteristiques d’alt nivell en les quals es fa patent el context
complementari. En aquest treball proposem models probabilistics especifics
que representen com les transicions entre fonemes consecutius de veu cantanda
es veuen afectats per diversos aspectes del context complementari.

El context complementari que tractem aqui es desenvolupa en el temps en
funcié de les caracteristiques particulars de cada tradicié musical. Per tal
de modelar aquestes caracteristiques hem creat corpus i conjunts de dades de
dues tradicions musicals que presenten una gran riquesa en aquest aspectes; la
musica de 'opera de Beijing i la musica makam turc-otomana. Les dades sén
de diversos tipus; enregistraments d’audio, partitures musicals i metadades.
Des d’aquesta prespectiva els models proposats poden aprofitar-se tant de les
dades en si mateixes com del coneixement especific de la tradicié musical per
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a millorar els resultats de referéncia actuals.

Com a resultat de referéncia prenem un reconeixedor de fonemes basat en
models ocults de Markov (Hidden Markov Models o HMM), una metodolo-
gia abastament emprada per a detectar fonemes tant en la veu cantada com
en la parlada. Presentem millores en els processos comuns dels reconeixe-
dors de fonemes actuals, ajustant-los a les caracteristiques de les tradicions
musicals estudiades. A més de millorar els resultats de referéncia també dis-
senyem models probabilistics basats en xarxes dinamiques de Bayes (Dynamic
Bayesian Networks o DBN) que respresenten la relaci6 entre la transicié dels
fonemes i el context complementari. Hem creat dos models diferents per dos
aspectes del context complementari; la estructura de la frase melodica (alt
nivell) i la estructura metrica (nivell subtil). En un dels models explotem
el fet que la duracié de les sil - labes depén de la seva posicié en la frase
melodica. Obtenim aquesta informacié sobre les frases musical de la partitura
i del coneixement especific de la tradicié musical. En ’altre model analitzem
com els atacs de les notes vocals, estimats directament dels enregistraments
d’audio, influencien les transicions entre vocals i consonants consecutives. A
més també proposem com detectar les posicions temporals dels atacs de les
notes en les frases melodiques a base de localitzar simultaniament els accents
en un cicle metric musical.

Per tal d’evaluar el potencial dels metodes proposats utlitzem la tasca especi-
fica d’alineament de text amb audio. Cada model proposat millora la precisié
de I'alineament en comparacié als resultats de referéncia, que es basen exclusi-
vament en les caracteristiques acustiques timbriques dels fonemes. D’aquesta
manera validem la nostra hipotesi de que el coneixement del context comple-
mentari ajuda a la deteccié automatica de text musical, especialment en el
cas de veu cantada amb acompanyament instrumental.

Els resultats d’aquest treball no consisteixen només en metodologies tedriques
i dades, sin6 també en eines programatiques especifiques que han sigut in-
tegrades a Dunya, un paquet d’eines creat en el context del projecte de re-
cerca CompMusic, 'objectiu del qual és promoure 'analisi computacional de
les musiques del mén. Gracies a aquestes eines demostrem també que les
metodologies desenvolupades es poden fer servir per a altres aplicacions en el
context de la educacié musical o la escolta musical enriquida.

(Translated from English by Oriol Romani Picas)
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Chapter 1

Introduction

The way music is created, shared, distributed and listened to has been recently
changing rapidly due to advancements in Information Technology. Music In-
formation Retrieval (MIR) is a research subfield of music technology that aims
to advance in automatic music processing. Some of the subjects addressed
in MIR research include building computational models for describing music
structures and phenomena, as well as their temporal progression.

Any musical instrument along with carrying a melody, is characterized also by
an unique timbre. Classes representing the perceived ’timbral colour’ of the
singing voice can be described by abstract categories, such as ‘mellow’, ‘harsh’.
This reflects a quality described as ‘instrumental’ timbre by musicologists
[ , ]. Still, the belonging of a singing excerpt to one particular colour
class is rather subjective and varies from one listener to another. This means
that there may not be a mutual agreement on where the time positions of
transitions between these classes are.

Few instruments, including singing voice, have their timbre continuously vary
in time, premising frequent timbral alterations. Unlike other instruments
though, the singing voice has a unique characteristic: its ability to articulate
actual lyrics. Lyrics are one of the most important musical aspects. They
carry a message or a story and attract the attention of the listener. She/he
will naturally follow the lyrics while listening to the melody of the main singing
voice.

Phonemes - the building block of words - can be considered as a discrete
number of timbral classes, wherein each class has a characteristic spectral
template. The ability to articulate phonemes is an innate characteristic of
human speakers. In fact, singers articulate by means of given vowels even
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when not singing with actual lyrics. The transitions between consecutive
phonemes can be considered as slow gradual changes of timbre as opposed to
the short-term timbral fluctuations, which are rather related to the instability
of the human vocal tract. That is to say, the timbre of singing voice, in
addition to carrying the identity and ‘instrumental quality’, is the reason why
we distinguish a particular phoneme in a given time instant. Therefore, despite
varying continuously, the singing voice timbre can be considered to belong to
one of a discrete set of phonemes at a particular point in time. Unlike the
transitions among classes of ‘instrumental’ timbre, the exact time positions, in
which singers transition from one phoneme to another, can be distinguished
by most listeners unambiguously. For brevity, in the rest of this work we
will refer to the aspect of singing voice timbre that makes humans distinguish
between the identity of different phonemes as ‘phonetic timbre’.

The research carried out in this dissertation focuses on the acoustics of the
lyrics of singing voice in polyphonic music and their relation to written lyrics.
Sung lyrics can be studied from many different perspectives, whereas this
work takes an MIR viewpoint, aiming at the analysis of temporal changes of
lyrics content with an end goal of automatic synchronization between sung
and written lyrics.

1.1 Scientific Context

Singing voice processing is still one of the most challenging subfields of MIR:
Allegedly, none of the problems related to the singing voice could be considered
nearly solved. Challenging remain especially the problems of singing voice
detection; transcription of the singing melody and transcription of the lyrics.
The timbre of singing voice has multiple functions: Apart from articulating
actual phonemes and representing the ‘instrumental quality’, singers use some
timbral aspects to stand out from the rest of the accompanying instruments
[ ) |. Despite all these, there is not much work on
describing the singing voice timbre in a computational way. Some of the
problems related to timbre are summarized in [ ] as 'vocal timbre
analysis’ and include automatic lyrics processing of voice, singer identification,
comparison of timbral similarity.

Looking at MIR in general, there is still a wide gap between what can be au-
tomatically extracted from audio recordings and the semantically meaningful
high-level musical concepts, which listeners associate with singing | ,

]. A possible reason for this semantic gap might be that the approach usu-
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ally taken is bottom up: low-level features are extracted and then high-level
concepts are inferred by aggregating these features. In such approaches often
high-level musical knowledge is not reflected in the computational model itself.
Most MIR research outcomes have been validated against eurogenetic music
and do not generalize to other music cultures of the world. Applying state of
the art methods for analysis of non-eurogenetic’ music yields suboptimal re-
sults [ , |. The lack of explicit modeling of music knowledge becomes
a more evident disadvantage for non-eurogenetic music compositions, because
they are characterized by their own specific music principles. In fact most
music to the east of Europe has elaborate rhythmic and melodic framework.
Thus extending state of the art approaches by fusing all music-specific con-
cepts, relevant for a given task, would exploit the full potential of the studied
music. With this end goal in mind, the project CompMusic? (Computational
Models for the Discovery of the World’s Music) was envisioned | ,

]. Art music of five different cultures are being studied in the project:
Hindustani (North India), Carnatic (South India), Turkish-makam (Turkey),
Arab-Andalusian (Maghreb) and Beijing opera (China). The art Makam mu-
sic of Turkey, a focus of this study, proliferated in the Ottoman Empire and
continues its legacy mainly in modern Turkey. In this thesis we will refer to
it as Ottoman Turkish Makam Music (OTMM)?.

In particular for singing voice, in current MIR research little work focuses
on methods, which model sung lyrics together with its interdependence on
complementary musical aspects like, for example, the progression of a melodic
phrase. One possible reason for that could be that such a model is hard to
design and develop, because it has to be considerably generic to represent
such interdependencies for any music genre in the broad sense. In contrast
to that, for each of the music traditions of CompMusic there is a well-defined
framework of specific music principles. Therefore it may be more feasible
to develop a singing voice model that represents jointly phonetic timbre and
these music principles for a particular music tradition. This is mainly because
these principles for a one music tradition could be summarized into a model
in a much more straight-forward way, than for multiple genres of music.

The work covered in this thesis has been developed to focus on OTMM. A

!The term Eurogenetic is coined in [ ] to avoid the misleading division
music into Western and non-Western. It designates the discussed theoretical constructs are
motivated by the European common practice period.

Zhttp://compmusic.upf.edu

3For the sake of compliance, this naming is adopted from a related computational study

- [2016]
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personal motivation for me is that OTMM has nature very akin to the tra-
ditional music of Bulgaria - the music with which I have grown. Being the
official music of the Ottoman Empire, it has influenced enormously all Balkan
music, and to a rather high extent Bulgarian traditional music. This made me
naturally understand and appreciate its musically rich melodic and rhythmic
framework throughout the research conducted in this thesis.

1.2 Motivation

1.2.1 Why consider complementary context?

The progression of lyrics in singing is not an isolated phenomenon: lyrics
have an inherent correlation with other music phenomena. In an abstract
sense lyrics can be imagined as the ‘flesh’ and the musical facets as the ‘music
skeleton’: the lyrics progress, driven by the transitions of the ‘skeleton’ mu-
sic phenomena, such as melodic events and rhythmic events. In this respect,
studying the temporal aspects of sung lyrics also requires describing the re-
lations of the lyrical units to the temporal progression of underlying musical
events. In this work we will refer to unit of lyrics (or lyrical units) as a general
concept that stands for different linguistic granularity: lyrics line, a phrase of
words, word, syllable, phoneme.

These relations jointly unfold in time to form a complementary musical con-
text of the sung lyrics. By complementary musical context (or simply com-
plementary context) we will refer to any musical facet, manifesting in events
simultaneously to the transitions of lyrical units and having an influence on
them®. In this work we suggest to divide the complementary context of lyrics
into three hierarchical levels with respect to its time granularity: the overall
structure of the composition (coarse-level), the structure of a melodic phrase
(middle-level) and the structure of a metrical cycle (fine-level).

Each facet of the complementary context manifests itself as the time progres-
sion of concrete musical events: Firstly, at the highest context level, the overall
structure of the composition determines the highest-level of lyrics units: lyrics
lines. The transition from current structural section (e.g. verse, chorus) to
another one can be considered a musical events, which signals the transition

4We adopted the term musical context from [ ], where it is introduced for the
task of chord estimation to serve a similar function. The authors use it to represent any
musical facet, which is complementary to the harmonic content of chords - the main facet
being tracked. We decided to use complementary instead of musical to emphasize the fact
it is complementary to phonetic timbre.
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to another lyrics line (or whole lyrics paragraph). Then on the middle level
of context, the position of a lyrics syllable in a melodic phrase influences its
duration. Singers may prolong or shorten syllables, in order to align them
with accents of the melodic phrase. On an even finer context granularity,
the transitions between syllables are aligned with the accents of the metrical
cycle.

These interdependences become even more important in OTMM, which has
some very specific principles of the main musical facets. In OTMM, the musi-
cal concepts are based on a well-grounded theory. Also, as already mentioned,
the sung melodic phrases of in OTMM music, are rich in expressive elements.
From all these reasons, OTMM provides an excellent framework to incorporate
domain-specific knowledge into a context-aware model of sung lyrics.

The well-grounded theory of OTMM also paved the way to computational
work on some of these aspects, including among others predominant melody
extraction | , ]; relation of metrical accents and vocal note onsets
[ ) |; score-informed structural section discovery | ,

]. In this context, we can benefit from those studies and use their out-
comes as facets of complementary context.

1.2.2 Why lyrics-to-audio alignment?

In this thesis, we will focus on the concrete problem of lyrics-to-audio align-
ment (LAA). LAA aims to automatically synchronize the lyrics in their two
representations: sung in an audio recording and written as text. An audio
recording and its corresponding lyrics are input to a LAA system. It estimates
their temporal relationship, providing as output the start and end timestamps
of the phoneme sequence, comprising the lyrics. Among all research questions,
related to sung lyrics defined in the context of MIR, we chose to work on LAA
for several reasons.

Firstly, the accuracy of a LAA system provides a quantitative way to measure
the influence of the complementary context on the transitions in the phonetic
timbre of singing voice. From this perspective, we only focused on one aspect
of singing voice timbre: the slow timbre changes, which account for the tran-
sitions between consecutive phonemes. In addition, automating the LAA has
numerous user applications. Building a piece of work with market potential is
also a major motivation behind this research. Some applications of context-
aware LAA include karaoke-like lyrics visualization, automatic thumbnailing
and enriched music listening.
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Note that some related singing voice language content modeling tasks like
singer identification and language identification are not the goals of this thesis,
because they can be solved by solely signal processing methods, wherein the
use of complementary context does not necessarily provide a clear advantage.

1.2.3 Why predominant singing voice?

Characterizing the lyrics content of singing when accompanying instruments
are present is challenging. One of the reasons for this is that the audio spec-
trum is a mixture of many different sources, which for computers are not easily
separable from each other. This complexity is significantly mitigated in music
traditions, which are centered around the singing voice, wherein the number
of accompanying instruments is often small. That is why, being a largely
vocal-centered tradition, OTMM provides a feasible context to validate the
modeling developed in this study.

In addition to all the reasons listed above, a strong motivation to pursue
this research is that, to our knowledge, this is the first work that designs a
computational model of lyrics by considering (relatively) comprehensively the
facets of its complementary context.

1.3 Opportunities and Challenges

Computational modeling of the singing voice has been focused to a large ex-
tent on transcribing the perceived melodic pitch, leaving other musical facets,
among which is sung lyrics, less investigated. In the broad area of computa-
tional analysis of the language content of the singing voice, MIR, researchers
have explored tasks such as singing language identification, LAA, keyword
spotting, lyrics transcription [ ]. In total, however, there have been
very few studies per each of these particular lyrics-related tasks.

The topics related to tracking sung lyrics in particular have been approached
mostly by adopting the phonetic recognizer paradigm from speech recognition
[ , |. The main idea is that for each phoneme a separate
acoustic model is created, which describes the overall timbre of the phoneme
[ , ]. However, compared to speech, singing voice has
several substantially different acoustic characteristics. Among them, the pres-
ence of accompanying instruments poses a major challenge to automatic lyrics
tracking. The spectral peaks of instrumental sounds might occlude the spec-



CHAPTER 1. INTRODUCTION 7

tral content of voice, resulting in missing or distorted key singing timbral
characteristics.

1.3.1 Challenges of Makam music

In contrast to to western music, in non-eurogenetic traditions of music a spe-
cial type of interaction (termed heterophony) is present. The consequence of
heterophony is that the harmonics of singing voice spectrum are interwoven
with the harmonics from the spectrum of other instruments. In particular,
certain harmonics of the voice can overlap with those of accompanying in-
struments, and thus be distorted by the energy of the harmonics of these
instruments. Applying most hitherto singing voice extraction techniques to
OTMM will not result in optimal estimation of phonetic timbre. A reason
for this is because existing works have been focused on music with very small
degree of heterophony. Therefore a model for lyrics tracking, based on the
traditional way of extracting phonetic timbre can easily loose track in music
with heterophonic voice-instrument interplay. For this reason, we expect that
the use the complementary context, complementary to phonetic timbre can
provide the ‘stepping stones’ to the process of lyrics tracking.

1.3.2 Opportunities of Makam music

Due to the heterophonic characteristics of OTMM, vocal melody contours can
be extracted quite reliably. Several temporal phenomena of singing voice,
such as note onsets, vibrato, glissando are evident from the melodic contours.
Therefore, the contextual information from events, present in the melodic
contours, can be rather reliably obtained automatically.

Modeling lyrics is coupled with the particular language: the pronunciations
of the phonemes of any language form an unique set of sounds. Therefore
classical approaches on modeling speech are trained and tested on material
from the same language. Being a relatively new research field, lyrics modeling
follows to a large extent this paradigm. Switching to another target language
in this sense would require the complete replacement of the lyrics model with
one of the new target language. Building such a model might be a bottleneck,
mainly because it depends on the availability of annotated speech/singing
corpus (for complete justification see the Background section). This thesis,
although focused on OTMM music, aims at building an approach that is not
restricted to one specific language. An important motivation for this are the
similar characteristics of the traditions within the CompMusic project (in
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particular being vocal-centered), whereas language is one of the few differing
aspects.

One interesting characteristic of singing in OTMM is that sung vowels could
be prolonged to a significant extent, when compared to vowels in euroge-
netic music, in particular eurogenetic popular music. This lowers the quotient
of consonants (a big portion of the language-specific sounds) from the total
singing duration and thus mitigates their significance. This allows focusing
on modeling of the acoustics of vowels, which makes it easier to adapt the
constructed model of lyrics to another language.

When this PhD was started, OTMM was the only CompMusic tradition, for
which an extensive collection of machine-readable musical scores was avail-
able. Music scores provide important contextual information complementary
to lyrics, including but not limited to boundaries of structural sections, note
durations and metric cycles. Exploiting the information in the musical score
to its full extent is a major opportunity, in alignment with the goal of Comp-
Music to pursue a data-driven study on a music tradition.

1.4 Research Objectives

In alignment with the goals of CompMusic, the goal of this thesis is to build
a culture-specific computational approach, which is meaningful for a concrete
music repertoire. We have focused on OTMM due to the reasons listed above.
While CompMusic addresses four other music traditions, we study the influ-
ence of one particular aspect of complementary context in only one tradition:
Beijing Opera.

This thesis exploits computational approaches for analysis of music recordings.
The approaches applied are taken from the fields of signal processing and ma-
chine learning. Signal processing is needed to extract the phonetic timbre of
lyrics from the audio signal. The recorded audio is the primary source of infor-
mation together with the given lyrics. Using complementary context, the pro-
posed alignment model outputs words together with their aligned timestamps
(Fig. 1.1). Two separate phonetic recognizers are created: One represents the
influence of the structure of melodic phrases on syllable transitions. Another
one represents the influence of the structure of the metrical cycle. Depending
on the nature of the complementary context, different additional data sources
or domain knowledge are explored.

A supervised learning method represents the temporal aspect of the singing
voice of sequential transiting from a phoneme to another one. It is an extension
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around the concept of hidden Markov models (HMMs) [Rabiner and Juang,
1993]. HMMs are preferred because their probabilistic generative nature can
describe adequately the temporal progression of the singing voice. The degree
of temporal variability is particularly increased by the expressive singing style
of OTMM and Beijing opera.

input
T~
A

word1 word2

v

phonetic
recognizer

A4
phonetic
recognizer

“.Wofd Mword.’_)l
T

aligned lyrics aligned lyrics

Figure 1.1: Use of different facets of complementary context in the automatic
lyrics-to-audio alignment. Structural segmentation of a musical recording into
melodic phrases is considered a ’black box’. The audio signal of the obtained
musical phrases, along with its corresponding lyrics, is input to two separate
phonetic recognizers. Both of them perform alignment of the audio signal to
lyrics. Timestamps of aligned lyrics units are output.
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1.4.1 Broad research objectives

Create a data-driven computational approach to describe
transitions between sung lyrics that is aware of specific
complementary context

The goal is to address these bits of knowledge from the complementary con-
text, which have a clear influence on the slow changes of the singing voice
timbre, related to the transitions between consecutive phonemes. The way
music events evolve in time for a given music tradition can be expressed as a
set of music principles. As a result of the work of computational musicologists,
such principles specific to a music tradition have been aggregated in terms of
concrete patterns and constraints. We aim to create a music-specific machine
learning method of tracking sung lyrics, which benefits from the knowledge,
compacted in these music patterns. The model has to jointly represent them
and their influence on the transitions between consecutive units of lyrics. More
precisely, such a joint model will allow the transitions of phoneme timbre be
conditioned not only on the acoustic timbral features, but also on the simul-
taneously occurring complementary context events.

Probabilistic graphical models provide an effective framework to integrate
complementary context knowledge in terms of the components of the model.
In this thesis, we will extensively use dynamic Bayesian networks (DBNs) - a
particular graphical model that can represent not only dependencies between
concepts, but also their temporal progression | , ]. The phonetic
recognizer baseline provides a probabilistic framework, which allows to be
extended easily to a DBN. We suggest a method that captures the influence
on the lyrics transitions of each considered facet of complementary context. To
this end, we represent events from complementary context as components in
a DBN and their influence on the lyrics as a hierarchical dependence between
the components.

The complementary contexts relevant for phonetic transitions, which we ex-
plore in this study, are:

o structure of the composition (coarse-level)
o structure of a melodic phrase (middle-level)

o structure of the metrical cycle (fine-level)

We do not aim to explicitly model the influence of the structure of the music
composition on lyrics. Instead, the segmentation of a recording into its sections
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is obtained from an external method, which is considered as a ’black box’.
Each obtained section contains one or more melodic phrase. We use melodic
phrase as a generic term to represent a musically meaningful melodic entity,
usually delimited by an instrumental break and usually corresponding to a
lyrics line.”. The audio signal of each obtained melodic phrase, along with its
corresponding lyrics line, is input to the proposed phonetic recognizers (see
Fig. 1.1). We aim at building a separate phonetic recognizer with middle-level
context and a separate one with fine-level context, each of which is a DBN.
The middle-level one considers the influence of the structure of a melodic
phrase on the transitions between consecutive syllables. In particular, we
focus on representing how the position of a lyrics syllable in a melodic phrase
influences its duration. As to the fine-level context, we aim at studying how
phoneme transitions interact with the position of the accents in the metrical
cycle (i.e. the metrical accents). In an initial step we estimate the timestamps
of the vocal note onsets (the initial time segments of sung tones), in a manner
informed by the metrical accents. Then the goal is to represent how the
transition to a consecutive sung syllable is conditioned on the transition to a
consecutive note onset.

Since some of these complementary context relations to lyrics have not been
previously strictly formalized in a computational study, a major effort of this
thesis is conceptualizing them in terms of compact bits of probabilistic knowl-
edge.

Develop a method for lyrics-to-audio alignment

The proposed contextual models are designed with the intention to be generic
enough and applicable in different end-tasks in the broader research area of
sung lyrics. Having in mind the time limitation of this study, we focused
on the particular task of LAA as a way to evaluate the performance of the
proposed generic model. However, we expect that due to the ubiquity of the
addressed facets of complementary context, the behaviour of our model that
we asses on LAA will be comparable on neighbouring tasks including keyword
spotting and lyrics recognition.

As a baseline for LAA we chose phonetic recognizer approach, adopted from
speech-to-text alignment, based on HMMs. HMMs not only have proven to
be the most successful strategy for LAA, but they also provide an appropri-

5The term melodic phrase is used intentionally instead of a melodic motif, which usually
stands for a short segment/pattern being a part of a complete melodic phrase
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ate temporal probabilistic framework, which we can extend for representing
complementary context.

The alignment method, designed in this thesis, is evaluated mainly with
singing in Turkish language. Nevertheless, to assure its application to other
music genres we aim at devising ways for the easy transfer of the built models
of Turkish phonemes to other languages. An ideal solution would be a univer-
sal language-independent model of a superset of phonemes representing a set
of all languages of interest. Having in mind the reasonable differences between
the languages in the CompMusic traditions, this is an elaborate linguistic task,
outside the scope of this work. In contrast, the approach commonly taken in
existing work is rebuilding a complete model for each language in turn. Train-
ing models of phonemes in singing is in fact a laborious task (see Background
Chapter) and in general not a flexible strategy. Instead, we set as a reason-
able objective to find an adequate scheme for mapping the phoneme models
among two different languages. To our knowledge, there has been no work
so far in computational modeling of sung lyrics addressing the problem of
inter-language phoneme mapping.

Evaluate the contribution of each piece of complementary context
knowledge for modeling sung lyrics

Using LAA as a concrete end task allows evaluating the contribution of any
particular facet of complementary context in a quantitative way and compar-
ing them.

The novelty of the presented models is that they suggest a strategy of how to
integrate facets of complementary context into the main alignment step. Some
of the context facets explored in this work have also been addressed in previous
work on LAA | , ]. However their relation to phonetic
timbre is not represented explicitly in the main alignment model. Often knowl-
edge from complementary context is part of a preprocessing or postprocessing
step relative to the main alignment step (see Background Chapter). With the
exception of [ |, almost no work has evaluated the contri-
bution of these separate steps. To address this research vacuum, we compare
the alignment accuracy for each different piece of complementary context and
the baseline phonetic recognizer, agnostic to any complementary context.
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Explore extensions and generalizations of the music-specific
models to other traditions in the context of CompMusic

Working in tradition-specific context, there is a danger that the devised models
become overfitted to the unique characteristics of the music tradition. To avoid
that, the model should not reflect cases, unique for OTMM, but instead induce
patterns that are applicable also to other musics with similar characteristics.

When a song is performed, the degree of deviation from the musical score for
OTMM is arguably the least, compared to other CompMusic traditions. For
example, in Beijing opera the duration of sung syllables frequently deviates
to a bigger extent from the score and could span a very long time interval. To
proof the transferability of some of the proposed models outside of OTMM, we
evaluate on material from another music tradition. We focused on a particular
aspect of complementary context - the structure of a melodic phrase, for a
particular tradition - Beijing opera. Comparing the application of the syllable-
duration aware model for two traditions also serves to quantitatively evaluate
if a facet of complementary context contributes to a different degree for each
of them (see Chapter 4).

1.4.2 Contributions

In pursuing the above presented goals we build methodologies, which can be
seen as concrete technical and scientific contributions:

1. We extend the existing state of the art phonetic recognizer scheme for
tracking sung lyrics in a way that involves selected facets of complemen-
tary context knowledge. We conceptualize the interaction of phoneme
transitions and these facets in a compact way as probabilistic depen-
dencies. These dependences are represented as hidden variables in a
DBN.

2. We suggest several implementation strategies for detection with the pro-
posed DBNs. In some cases the topology of a DBN becomes relatively
complex, because of, for example, the big number of hidden variables.
This makes the inference with DBNs computationally demanding and
thus model simplifications are required:

a) integrate the musical-context knowledge in the inference method,
instead of being hidden variable

b) reduce the range of the state-space exploiting all available musical-
context-knowledge
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c) integrate the musical-context knowledge as a modification of the
transition model

3. We develop a clean and modular software framework, which can be easily
used to reproduce or extend the outcomes of the research, conducted in
this thesis.

1.5 Outline

The thesis is organized into six chapters, wherein the main contributions are
contained in Chapters 4 and 5. Chapter 2 covers the research background,
summarizing the principles of the musics studied: OTMM and Beijing Opera.
It also overviews the state of the art in the methodologies used in lyrics-
to-audio alignment. A focus is put on describing the pipeline of a phonetic
recognizer alignment approach. Finally, the chapter outlines related research
on DBNs - the main probabilistic model, used throughout the thesis. Chap-
ter 3 presents the developed baseline system for lyrics to audio alignment,
which is also based on a phonetic recognizer. Refinements in some of the rec-
ognizer steps, which makes it tailored to OTMM, are discussed. Chapter 4
describes the first core proposal of the thesis, a lyrics-to-audio alignment sys-
tem that considers some context facets complementary to lyrics, in particular
the structure of the sung melodic line. Chapter 5 presents a separate model
for lyrics-to-audio alignment that considers another facet of complementary
information, the accents in the metrical cycle of music. Finally, Chapter 6
concludes the thesis with a review of the key findings and a summary of the
contributions.



Chapter 2

Background

In Section 2.1.1 we first summarize some of the principles of OTMM, the main
music tradition analysed in this thesis, which influence directly or implicitly
the way phonetic timbre progresses in time. We put a focus among all princi-
ples on the ones related to the structural form of the compositions; the vocal
melodic phrases of singing voice and their underlying metric patterns. Lan-
guage, being one of the important aspects of lyrics, is reviewed in terms of the
acoustic characteristics of the phonemes. Analogously, for Beijing opera we
review the language and some relevant principles of complementary context
(Section 2.1.2). We emphasize the structure of a melodic phrase, being the
specific context facet we exploit later in Chapter 4.

Then in Section 2.2 we summarize the hitherto approaches to the LAA align-
ment problem whereby the focus is put on those based on the phonetic recog-
nizer paradigm. Common shortcomings as well as opportunities for extension
are identified.

Finally, after introducing briefly the concept of dynamic Bayesian networks
(Section 2.3), we review in Section 2.4 particular examples of related work
on sung lyrics, in which consideration of concepts of complementary context,
complementary to phonetic timbre, proved to be beneficial.

15
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2.1 Background on the music traditions

As complementary context in this thesis we refer to any musical events that
occur simultaneously to and are complementary to the transitions of the
phonemes. Most traditional musics have well-defined music principles and
theory. In this section we recapitulate the particular principles that guide
how the vocal melodic phrases are structured.

2.1.1 Ottoman Turkish makam music

In a large geographical region of Asia, north Africa and east Europe, there are
numerous music traditions described around the concepts “makam/maqam/-
mugam”, which share similar practice and terminology. Ottoman Turkish
makam music (OTMM) - the makam music tradition, which proliferated in
the Ottoman Empire and continues its legacy principally in Turkey, is the
focus of this thesis.

Language

Unlike modern Turkish, Ottoman Turkish is characterized by more loanwords
from Arabic and Persian origin. The lyrics language for the sarki compo-
sitions in our evaluation dataset spans both modern and Ottoman Turkish.
The Turkish phonology comprises 38 distinctive phonetic sounds, 8 of which
are vowels. There are no diphthongs, and when vowels come together, they
retain their individual sounding. Lengthening of vowels is realized by a non-
pronounced character g. However vowel lengths have a negligible importance
in sung Turkish.

Principles of complementary context

Examples of complementary context principles can be organized by the levels
of granularity, as we suggested in the Introduction Chapter.

Coarse-level: (structure of the composition) Vocal melodic phrases
are organised in the course of the performance according to principles of the
composition structure. The sarki form adheres to a well-defined verse-refrain-
like structure: a sarki contains three vocal sections: zemin (verse), nakarat
(refrain), meyan (second verse). They are preceded/surrounded by aranagme
(an instrumental interlude) | , |. Each section is rather short and
contains usually one (or 2-3) melodic phrases. In a vocal section through
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almost all its duration a singing voice is present, except for short instrumental
interludes (at the end of a melodic phrase).

Middle-level: (structure of a melodic phrase) A melodic phrase in
the sarki form represents a musically-meaningful and complete segment of the
melodic line. In this work we did not exploit any OTMM-specific principles
of the melodic phrase, because their correlation to the lyrics transitions was
not obvious. Instead, we utilized information about musical note events from
complementary source of music representation - the music scores. OTMM has
been predominantly an oral tradition for centuries. Since early 20th century,
a score representation extending the traditional Western music notation has
been used as a complement to the oral practice. The scores contain not only
notes, but also the lyrics organized into sections. [ ]
presented a machine-readable score collection, in which melodic phrases are
annotated into smaller melodic units (motives). A melodic unit in this collec-
tion corresponds roughly to a metrical cycle.

Fine-level: (structure of the metrical cycle) The metric structure in
OTMM is explained by wusul. A certain wusul roughly defines the metrical
cycle, and it can be described by a group of strokes with different velocities,
which imply the beats and downbeats in the rhythmic pattern. Some of the
common usuls include diyek with 8/8 time signature; aksak (9/8); curcuna
(10/8). In contrast to the eurogenetic music, a metrical cycle can be rather
long and have a complex rhythmic pattern with an odd number of beats. The
number of pulses (finest metrical accents) in an usul cycle might be up to
120. The progression of the events in a melodic phrase is correlated tightly to
the underlying metric pulsation. Studies on symbolic music data showed that
the likelihoods of vocal note events are influenced by the their position in a
metrical cycle | , ]

Singing style

OTMM is predominantly a voice-centered tradition. This implies not only
that singing voice is the source of predominant melody. It also entails that
in performances the vocal melodies are rich in expressive embellishment. Em-
bellishments of the melodic line is, in fact, a fundamental aesthetic aspect of
OTMM. Singers typically perform simultaneous variations of the same melody
in their own register, a phenomenon commonly referred to as heterophony. In
particular the vocal lines are especially embellished, because this way singers
can ‘stand out’ from the instrumental mix and show their virtuosity.
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The melody lines of singing voice are not flat: skilled singers can control
the variation of their voice’s pitch to articulate expressive figures such as
portamentos, vibratos and melismas. FExamples of singers very versed at that
are Zeki Miiren, Melihat Giilses, Kani Karaga. Melodic phrases have often a
‘slow start’ - the first tone is approached after a long portamento or a slur
[ , ]. Detecting the exact onset timestamp of vocal onsets is hard
because of the 'slow start’ effect. A further challenge is the ambiguity of note
transitions - the transitions to another note are often ’enriched’ by melismas.

For a comprehensive introduction on the concepts of OTMM from a computa-
tional point of view, the interested reader is referred to | , , Section
2.1].

2.1.2 Beijing opera

Beijing opera (also known as Jingju) is a form of Chinese opera that emerged
in 18th century.

Language

The language of Jingju is standard Mandarin with some slight dialect. In
Mandarin, there is no notion of words, but written language is grouped in-
stead into a syllables. Each syllable represents a unique object and therefore
has a dedicated character. Lyrics are represented as a sequence of Mandarin
characters. Therefore it makes sense naturally that LAA is evaluated on the
syllable level. When referring to Jingju we will use the term syllable as equiv-
alent to one written character. In Mandarin each syllable is divided into three
constituent parts: head (initial part), belly (middle part) and tail (final part)
[ , ]. The belly, the middle part can be a pure vowel, diphthong
or triphthong. A syllable head (always a consonant) and a tail (a group of
consonants) are both optional.

Principles of complementary context

Coarse-level: (structure of the composition) Lyrics in Jingju are a
central musical facet. Lyrics come from poetry and are thus commonly struc-
tured into couplets. Each couplet has two lyrics lines and can be considered
a structural section. The lyrics describe the story of the act and thus never
repeat, even though some melodic motives could recur.

Meter is another musical facet that creates the impression of progression in the
structure of an aria. Each aria can have one or more metrical pattern (banshi):
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it indicates the mood of the story and is correlated to tempo[ , ].
Usually an aria starts with a slow banshi which changes a couple of times to one
with faster tempo. In this way the overall tempo of the aria increases gradually
up to the fastest tempo to express more intense mood at the culmination point
of the aria.

Middle-level: (structure of a melodic phrase) In contrast to OTMM,
in Jingju machine-readable music scores are rarely available. In fact actors,
learn to sing by imitating a master artist. To this end the durations in scores
play a secondary role, after the example of the master actor. During time,
as part of the practice of imitation, specific principles for the structure of the
melodic phrase have emerged.

We consider as a melodic phrase a segment of the vocal line, that corresponds
to a line of the lyrics. in Jingju to a lyrics line (sentence) is usually divided into
3 syllable groupings, called dou. Each lyrics line can be considered a melodic
phrase. Interestingly, in Jingju there exist some rules of the durations of the
dous, which serve as guidance to actors. A dou consists of 2 to 4 syllables
[ , , Chapter III]. To emphasize the semantics of a phrase, or
according to the plot, an actor has the option to sustain the vocal of the dou’s
final syllable. There is also some guidances about the number of dous. If a
poetry line of the lyrics has 10 syllables, a rule of thumb is that it consists
of 2 3-syllable dous, followed by a 4-syllable dou. Respectively, if a poetry
line has 7 syllables, it is a rule of thumb that it consists of 2 2-syllable dous,
followed by a 3-syllable dou. These rule-like relations present a clear example
of some music-specific knowledge that could be probabilistically modeled in a
lyrics tracking approach as a complementary source of information.

Another typical characteristic of Jingju is the relatively long durations of sung
vowels. The vowel(s) in the belly part bear(s) the main tone of the melody
and as such can be prolonged substantially for artistic purposes.
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2.2 Background on Lyrics-to-Audio Alignment

Although humans are very versed in making sense of the lyrics, sung in songs,
for machines the task of automatically tracking lyrics is very challenging. LAA
refers to the automatic synchronization between sung lyrics and their writ-
ten representation. Omne of the ultimate goals of research in sung lyrics is
the automatic transcription of lyrics (a.k.a. lyrics recognition) from a mix-
ture of singing voice and accompaniment [from , ].
The recognition of ordinary speech in noisy environments itself only recently
started reaching satisfactory results. From this perspective it is not realistic
at this stage to strive for reasonable results of automatic lyrics recognition.
Despite the few research attempts, none of them has succeeded in achiev-
ing satisfactory performance with instrumental-accompanied musical signals
[ , , , ]. In this context, LAA can
be seen as a stepping stone to disentangling the puzzle of lyrics recognition,
because while tackling LAA we could gain precious insights of general validity
to lyrics-related tasks. LAA relates to lyrics recognition much in the same
way speech-to-text alignment relates to speech recognition.

2.2.1 Evaluation metrics

The accuracy of alignment can be evaluated at different granularity, which
depends on the application. In this sense the accuracy is measured in different
level of entities, which we will refer to in what follows as lyrical units. A unit
could be either phoneme, syllable, word, lyrics line/phrase, or complete lyrics
paragraph/section. When generating subtitles for music videos, for instance,
line- or phrase-level alignment might suffice. On the contrary, when precise
alignment is required, as in the case of automatic generation of highlights for
karaoke, syllable- or even phoneme-level is required.

Being a rather under-researched problem, there has not been established
a standard evaluation metric. There have been proposed several metrics,
whereby each one has been used in only one or two works.

Average absolute error/deviation Initially utilized in

[ |, the absolute error measures the time displacement between the
actual timestamp and its estimate at the beginning and the end of each lyrical
unit. The error is then averaged over all individual errors. Evaluation was
carried on timestamps at boundaries of lyrics lines. The authors themselves
note that an error in absolute terms has the drawback that the perception
of an error with the same duration can be different depending on the tempo



CHAPTER 2. BACKGROUND 21

Figure 2.1: Evaluation by percentage of correct segments

of the song. The granularity of the lyrical units was refined in Mauch et al.
[2012], where alignment was evaluated on the word level and further in Chang
and Lee [2017] on the syllable level.

Percentage of correct segments The perceptual dependence on tempo
is mitigated by measuring the percentage of the total length of the segments,
labeled correctly to the total duration of the song - a metric, suggested by
Fujihara et al. [2011, Figure 9]. Figure 2.1 illustrates the metric by an example.

The granularity, on which the authors evaluated, was lyric lines. This metric
can be seen as a special case of the frame clustering metric for evaluating
structural segmentation proposed in the work of Levy and Sandler [2008]. This
is essentially the same as the percentage of correct segments if we consider a
lyrical unit acting as a ’section’. Despite being rather unbiased by tempo and
rather strict, the percentage of frames does not give a very intuitive estimate
from a perceptual point of view, because the correlation to the extent of the
absolute error is not obvious.

Percentage of correct estimates according to a tolerance window
A metric that takes into consideration that displacements from ground truth
below a certain threshold could be tolerated by human listeners, was suggested
in Mauch et al. [2012]. The authors evaluate the mean percentage of start time
estimates t; that fall within 7 seconds of the start time ¢; of the corresponding
ground truth lyrics unit:
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where k is the count of words in a given song. The final metric is computed
averaging p¥ over all songs.

In that particular work evaluation was carried out on the level of words, and
T was set to 1 second. Later in alignment was evaluated for both words and
syllables. Further, the authors investigated more elaborately the influence of
the its window 7, ranging tolerance values from 0 to 2 seconds.

2.2.2 Phonetic recognizer overview

A complete overview of recent LAA approaches can be found in

[ , Literature Review]. Here we review only the approaches based
on what the authors call a ‘phonetic recognizer’, because it is the alignment
strategy, which has resulted in most promising results. The core machine
learning algorithm used in phonetic recognizers is HMMs. They are suitably
representing the time-changing nature of lyrics, because HMMs can model
time-contiguous, non-overlapping events.

The task of automatically converting spoken speech into text is known as auto-
matic speech recognition (ASR) and has been one of the most well researched
acoustic processing research problems. The typical way speech recognition
is approached is by building a model for each phoneme based on the char-
acteristics of its timbral acoustics | , ]. The acoustic
properties of spoken phonemes can be induced by the spectral envelope of
speech.

An end-task, related to ASR is the automatic alignment between speech and
its written transcript, also known as text-to-speech alignment. The classical
approach of alignment is conducted by using the so called ‘forced alignment’
method: a transcribed piece of text is expanded to a network of phonetic
models and matched to an audio recording of a speaker speaking this partic-
ular text. Each phonetic model represents the acoustic characteristics of the
phoneme and is used to compare the likelihoods of feature vectors, extracted
from the audio. A phonetic model is usually a HMM consisting of 1 up to 3
states representing the initial, middle and final acoustic state of a phoneme.
The audio is aligned to the phonemes by finding the most likely path for the
extracted sequence of feature vectors in the phoneme network [

, 1993].
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When the vocal recordings are a cappella (a.k.a. monophonic) LAA can
be considered a special case of text-to-speech alignment, which is essentially
solved. Since the forced alignment technique was originally developed for clean
speech, the presence of accompanying instruments and non-vocal sections pose
a challenge to migrating it as-it-is to accompanied singing. Therefore, accom-
paniment attenuation and the detection of singing voice (a.k.a. vocal detec-
tion) are mandatory prerequisites before executing the actual alignment. A
LAA that is based on phonetic recognizer with forced alignment comprises a
sequence of typical steps, depicted in Figure 2.2.

lyrics audio signal
grapheme-to- accompaniment
phoneme attenuation
conversion

leading instrumental signal

feature vocal
extraction detection
feature vocal
vectors sections
phoneme forced alignment
network
phoneme time stamps
models of lyrics units
training
model
a cappella
voice

Figure 2.2: Typical steps of lyrics-to-audio phonetic recognizer approach

The goal of accompaniment attenuation (AA) is to isolate from the mixture
signal the spectral content, which has its origin in singing voice, while atten-
uating the rest of the spectrum, generated by accompanying instruments.

Singing Voice Detection (SVD) a.k.a. as vocal detection has an aim to identify
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’ Author ‘ Features ‘ Training approach >1 language
Mesaros MFCC Speech + adaptation N
Fujihara MFCC Speech + singer adaptation Y
Kruspe | MFCC+PLP Singing N

Table 2.1: Seminal LAA works based on the phonetic recognizer approach.
These are respectively: Mesaros - [ |; Fujihara -
[2011]; Kruspe - | , 2016]

time intervals of the complete audio signal, in which singing voice is present.
In the context of LAA the presence entails that it is a leading voice, compared
to backing vocals, because written lyrics represents the sung content of only
the main vocal.

Since AA and SVD can be considered separate problems on their own, in
some related work existing prior methods are adopted. Then lyrics lines are
expanded to a sequence of phonemes based on language-specific grapheme-
to-phoneme rules. In this way, the HMMs are concatenated into a phoneme
network. Phonetic models are trained on acoustic characteristics of material
from either clean speech or a cappella singing.

In what follows we take a reviewing journey through the subsets of existing
approaches from Table 2.1, staying some time at each of these steps and
scrutinizing how some of the approaches address it. Notably, the approach of

[ ] is trained on a cappella singing, which excludes
the need of both the AA and SVD steps.

2.2.3 Accompaniment attenuation

Compared to a cappella, the automatic alignment of lyrics in singing voice
signal accompanied by various instruments, is much more challenging. The
phonetic models trained on features, extracted from unaccompanied voice rep-
resent entirely the singing voice properties. In polyphonic mixture of voice and
accompaniment, however, the vocal properties are interfered from the instru-
mental sounds. Spectral peaks from harmonics of accompanying instruments
might occlude the harmonic components of voice. This means that some
timbral characteristics, pivotal for distinguishing the vowel identity, can be
distorted. In this setting, the phonetic models, trained on a cappella singing
voice lose their discriminative power. To address this problem researchers
have come up with techniques that isolate as much as possible the spectral
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content, which has its origin in singing voice, while attenuating the rest of the
spectrum.

In [2011], [ ] a method for segregat-
ing the predominant melodic line is utilized: First the spectral components
that are multiples of the fundamental frequency of the vocal melody (also
known as harmonic partials) are extracted from the sound mixture. Then
they could be optionally refined and eventually grouped together to form the
vocal signal. In the end, the vocal content is resynthesized from these by
means of a sinusoidal model. At the core of representing singing voice content
in polyphonic mixtures is a model, capable of representing the complex inter-
actions between the vocal harmonic partials and other instrumental sources in
the mix. Several strategies of harmonic modeling have been proposed [ ,
, , ]. A key challenge to such models is how to tackle
partials from two different sources that have spectral overlap.
[ | describes the expected amplitude of two overlapping partials based on
the assumption that the partials overlap at the same frequency.

A drawback of the harmonic modeling presented above is that unvoiced conso-
nant regions are not detected due to their lack of predominant pitch.

[ | suggest as a solution a method for fricative (unvoiced conso-
nants) detection. In the alignment stage the time intervals, for which the
presence of fricative sounds is unlikely, are forbidden to be matched to frica-
tives (actually only ‘sh’) from the phonemes network. A slight improvement
in alignment accuracy was registered, supposedly because phoneme gaps in
the middle of lyrics phrases were shorter than they were without fricative de-
tection. However, since alignment accuracy was measured on lyrics phrase
level, the effectiveness of the proposed fricative recognition method could not
be fully evaluated.

The importance of the accompaniment attenuation method has been con-
firmed by comparing the alignment performance when disabling it. The
phrase-level accuracy was improved by 4.8 absolute percent when MFCCs
were extracted from the vocal segregated signal compared to when extracted
directly from the polyphonic mix. Apart from that, the quality of the atten-
uation process can be objectively judged with the metrics used for evaluation
of source separation on the segregated vocal (ideally vocal-only) signal. It
is however hard to interpret how much the quality of attenuation affects the
subsequent processing. To our knowledge no study has taken efforts in care-
fully examining the correlation of the degree of attenuation on the alignment
accuracy, despite it being an important element in dealing with real-world
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accompanied singing.

2.2.4 Singing voice detection

In early LAA approaches (including the work of [ )]
no automatic singing voice detection method was applied. Instead the authors
annotate manually structural sections (verse, chorus, bridge) with singing
voice present. The sections durations range from 9 to 40 seconds. Then the
assumption is made that in all vocal sections the predominant source is the
voice. This permits to apply the harmonic modeling melody extraction strat-
egy of accompaniment attenuation, presented in the previous section without
the need of explicitly determining if the source of the main melody is voice
or another instrument. Short instrumental interludes are accommodated by
training a model for instrumental accompaniment, which ideally will get ac-
tivated in such interludes.

2.2.5 Acoustic Features

The timbre of singing voice is described by its harmonic partials. The timbral
properties of a sung note depend on the distribution of the energy of its
harmonic partials, whereas more energy is concentrated in harmonics around
formant frequencies.

Formant frequencies

The formant frequencies represent resonances of the vocal tract and cavities,
and can be controlled to some extent by changing the length and shape of the
vocal tract, and the shape and position of the tongue and lips [from ,

]. Formant regions are ordered according to their energy with first for-
mant (F1) representing the spectral frequency region with highest energy.
Findings in singing research have indicated that the two lower order formants
(F1-F2) are most important for understanding spoken speech, whereas higher
order ones (F3-F5) are related to the identity of the singer. The first formant
is known to change with varying the jaw opening, while the second is corre-
lated to the tongue shape. The vowels of speech are determined by specific
combinations of F1 and F2, which are relatively stable for a vowel and among
different speakers | , ]-
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Mel frequency cepstral coefficients

MFCCs are reliable descriptor of phonetic timbre. Usually the first 12 mel-
frequency cepstral coefficients (MFCCs) and their difference to the previous
time instants are used.

Ideally the efforts on reducing the influence of accompanying instruments can
be mitigated by focusing on designing features that capture phonetic timbre in
a way robust to background instruments. There has been some efforts recently
to use end-to-end learning: for example encouraging results for singing voice
detection were presented in [ |. Hopefully in the future insights
from this approach can be adopted to recognizing not only if bits of spectral
content originated from singing voice, but also its phonetic class. However,
since no such features are yet designed, the working strategy for recognition
of phonemes remains to extract features after the accompaniment has been
reduced from the original polyphonic mix.

2.2.6 Decoding with HMMs and Forced Alignment

Since HMMs are not only the main machine learning algorithm behind the
phonetic recognizer approaches, but also can be considered a special case of
dynamic Bayesian networks, which we rely on in our own method, we will now
give a very brief overview of HMMs.

HMDMs are probabilistic finite-state automata, where transitions between states
xp € 1,...,5, where S is the number of states, are ruled by probability func-
tions. The states in a phonetic recognizer are the phonemes. Transition
probabilities are assumed to depend only on a finite number of previous tran-
sitions.

P(xk\xk,l,wk,g,...) = P(xk]xk,l) (2.1)

This is known as the Markov property, i.e. the current state directly depends
only on a limited number of previous states (in this example only one). The
specification of the righthand side in 2.1 is known as the state transition
model, which can be expressed in a stochastic transition matrix (A;;), where
a;j = P(xy = j|xg—1 = i). For two given phonemes, the transition matrix
describes the probability of the one following the other. Transitions can be
trained from annotated data or hand-crafted by imposing some musically-
meaningful constraints.
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States (in our case the time phases of the phonemes) are not observable. In-
stead we observe features (in our case phonetic timbre), which are modeled
as random variables Y; and are assumed to depend exclusively on the current
state, i.e. the observations’ distribution is P(yg|zr). The emission proba-
bilities, can be trained to maximize the probability of emitting a given set of
observation sequences and although traditionally modeled by GMMs, could be
virtually any (usually generative) machine learning model, which can express
its output in terms of class probabilities. A complete discussion on theory and
applications of HMMs can be found in | , ].

2.2.7 Phoneme network

The goal of the grapheme-to-phoneme conversion is to create a phoneme tran-
scription out of the word sequence, comprising the input lyrics. The conversion
is carried out using a set of the phonemes from a phonetic alphabet, based on
a pronunciation dictionary, prepared by linguists.

As inherited from HMM-based speech recognition, it is assumed that the ob-
served feature sequence is generated from an HMM. Traditionally, a 3-state
HMM model for each phonemes is trained, as well as for a silent pause. An
HMM has left-to-right topology, which corresponds to how the acoustics of
the voice evolve sequentially in time from an initial, through a middle and to
a final state. [ | adopted the 3-state paradigm and
trained for each state a 10-mixture Gaussian distribution fitted on the feature
vector The resulting phoneme network is a super-HMM, concatenated from
the HMMs of the individual phonemes in the sequence. At inter-phoneme
transitions, the network ‘forces’ only a single possible transition: to the fol-
lowing phoneme from the transcript. The only exception are special case
phonemes for short silent pauses, which can be optionally skipped.

Cross-language modeling

As a rule of thumb the phoneme models, used in the recognition are trained
from the same target language to assure the integrity of the models. However,
often there might not be enough training material for the language of interest,
which opens a necessity for finding a cross-language phoneme mapping strat-
egy as an alternative. As a matter of fact cross-language mapping has been
important research direction in speech recognition for long time, but only re-
cently some substantial results were achieved for the particular task of speech
synthesis | , ]. One of the few LAA researches using phonemes
trained on a different language was done by [ |. To be able
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to align English songs the authors mapped English phonemes to their closest
approximates from a set of Japanese phoneme models. This resulted in sub-
optimal alignment results though due to the different language phonetics: In
Japanese all vowels are pure, part of monophthongs, which is a clear limitation
for the more complex acoustic characteristics of English diphthongs.

2.2.8 Training procedure

In the absence of enough singing material with annotated phonemes, phonetic
models are trained on a big corpus of speech with annotated sentences. Later
these phonetic speech models are adapted to match the acoustic characteristics
of clean singing voice using a small singing dataset with annotated phonemes.
The adaptation techniques are borrowed from research carried on adapting
universal speech models to characteristics of a particular speaker.

Training on speech

Compared to speech, singing voice evinces more complex frequency and dy-
namic characteristics: fluctuation of fundamental frequency (F0) and loudness
of singing voices are far stronger than those of speech sounds |

) ]. The fundamental frequency of women in speech is between
165 and 200 Hz, while in singing it can reach 1000 Hz. This is much higher
than the normal for speech value range of the first formant (500 Hz). In such
cases the first formant moves higher in frequency, so that it corresponds ap-
proximately to the fundamental frequency, while the second formant might
also move higher. Therefore the first two formants of singing voice are less
stable than speech and harder to predict. In addition, some skillful singers
are capable of changing drastically their position by moving their vocal cavity,
tongue and lips. On top of that, compared to speech, some phenomena includ-
ing vibrato and singer’s formant are present only in singing. To address all
these discrepancies an adaptation of the acoustic properties of spoken phoneme
models is needed.

[ ] proposed to borrow a technique from speech
recognition that adapts an universal speech model to the speech for a partic-
ular speaker. They used the method Maximum Likelihood Linear Regression
(MLLR). In [ | after applying a MLLR, another statisti-
cal adaptation technique - the Maximum a posteriori (MAP) transform - was
run. MAP shifts the mean and variance components of the Gaussians of the
each spoken phoneme model in an acoustic space towards the characteristics
of the corresponding sung phoneme. An advantage of the MAP transform
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compared to other adaptation techniques is that it allows the manipulation of
each phoneme model independently.

Training on singing voice

Another fundamental difference between speech and singing voice is that the
time a vowel is held in singing is much longer and much varying than in
speech. In a recent study [ | compared the accuracy of recognition
of individual phonemes with model trained on speech and a model trained
on the same speech modified with ‘sing-like’ transformations: In turn pitch
shifting, time-stretching and vibrato addition were applied on the same data.
The author obtained 18% correctly classified audio frames with the model
with all three modifications jointly, improving from the baseline of 12% with
the speech model. Furthermore, result showed that a significant accuracy
improvement was observed mainly due to time-stretching. The adaptation
strategy presented above might compensate to a certain extent for most of the
acoustic difference, except arguably for the variation of phoneme durations.
One reason might be that when sung vowels are prolonged their transitions to
neighbouring phonemes have more variability than in speech, too.

A bottleneck for training on actual singing is the lack of phonetically anno-
tated singing material. [ | proposed a viable strat-
egy for annotation: they trained monophone one-state HMMs on a speech
corpus, wherein each observation model is a GMM. Then they preselected
around 6000 recordings of full songs from the DAMP dataset from Stanford
University!. DAMP is a huge collection of a cappella popular music, sung
by amateur singers with lyrics available, but not aligned whatsoever. The
authors aligned the a cappella audio on the phoneme level to its lyrics by
means of forced alignment with the fitted speech-trained GMMs. The aligned
phoneme timestamps have been fed as if they were manual annotations into a
3-hidden-layer Multi-Layer Perceptron (MLP) with sigmoid activation func-
tion. On material from DAMP the resulting model reached a remarkable
phoneme recognition of 25% of correctly classified frames compared to 12%
with a model trained only on the speech dataset. Results on the word-level
alignment were however not reported.

Thttps://ccrma.stanford.edu/damp/
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In summary, the problem of LAA has been quite researched. However:

1. Each of the presented approaches is trained on material from the lan-
guage, on which it was tested. This means each time an aligner for a new
language (for example Turkish) is required, reuse of existing work as a
baseline is not feasible without a modification /adaptation of the acoustic
model. This problem is inherited from speech-to-text alignment.

2. In most approaches the extracted acoustic features are agglomerated into
classes (phonemes and non-vocal states) in a bottom-up fashion, with-
out considering the dependence of simultaneously occurring melodic and
rhythmic musical events. It is not very good idea to rely only on timbral
features trained from material, which might have quite some mismatch
with the test dataset. This mismatch is further aggravated by the arti-
facts of extracting only the vocal content in the case of polyphony. A
crucial limitation of existing alignment methods is that lyrics are tracked
with hidden Markov models, which have only one latent variable. It can
represents the state of lyrics being in one of all possible phonemes or
in a non-vocal region. One hidden state does not have the expressiv-
ity to represent sufficiently well the influence of interrelated concepts of
the complementary context (as we defined it in the Introduction chap-
ter). Therefore the forced alignment step itself has limited knowledge
of simultaneous events of the complementary context. As a result, it is
integrated as a preprocessing or postprocessing step relative to the main
alignment step. For example, the events of transition of one structural
section to the next are used to manually segment a whole recording into
sections and then alignment is run separately on each segment

3. There is (almost) no reproducible work on LAA with accompaniment.
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2.3 Background on dynamic Bayesian networks

A probabilistic graphical model is a probabilistic model that expresses con-
ditional dependence between random variables using a graph. HMMSs can be
considered a probabilistic graphical model with a single hidden random vari-
able. A bayesian network is a probabilistic graphical model that represents a
set of random variables and their (conditional) dependencies with a directed
acyclic graph.

A dynamic Bayesian network (DBN) is an extension of Bayesian networks that
can relate variables over time | , ]. To build a meaningful model
of sung lyrics we have at our disposal sequential data from audio features, as
well as complementary context events that are interrelated to phonetic timbre
in terms of musical patterns or rules. DBNs hence provide an effective and
explicit way to encode dependence relationships between phonetic timbre and
different pieces of complementary context, addressed in this work. Excellent
resources on graphical probabilistic models and inference is

[ | and for Bayesian models in time, in particular, is | ,

]

Research by [ ] introduced DBNs to music computing. The
authors emphasize the fact that DBNs can natively model higher-level musical
qualities more intuitively and efficiently than an HMM.

2.3.1 Inference in DBNs

Inference with in probabilistic models refers to the operation, in which we
estimate the probability distribution of one or more unknown variables, given
that we know the values of other variables.

Exact inference in DBNs, in its simplest form involves marginalizing over
variables to obtain the distribution over the required set of variables, achieved
by direct marginalization, factoring, variable elimination and other techniques
[ , |. However, in practice exact inference is complex and with-
out closed form solutions. Therefore, in this thesis a viable workaround taken
is to reduce the proposed DBNs, without losing their encoded dependence
between musical phenomena, to HMMs and resort to the Viterbi decoding.
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2.4 Background on sung lyrics with
complementary context

In what follows we review existing studies on sung lyrics, in which knowledge
from complementary context contributed to improvement in accuracy. We
have organised these studies broadly according to the levels of granularity
of complementary context, to which we comply in this thesis. As some ap-
proaches can be considered to benefit from more than one level, we do not aim
at strict subdivision, but rather at laying out the background in a structured
way, which we can start off extending systematically, to address the goals of
this thesis.

2.4.1 Coarse-level context

An experimental evaluation of the relation of structure and sung lyrics remains
outside the scope of this study. Instead, we utilize automatic segmentation of
complete song recording into its structural segments as a preprocessing step
to LAA. However, in a future work, it is desirable to incorporate structural
information into the phonetic recognizers, proposed in this thesis.

The use of music structural information has provided guidance for alignments
on the higher-level in previous works | ) , ,

] [ | showed that the results of rough structure seg-
mentation can be used for paragraph-level alignment of lyrics. First a struc-
tural segmentation of the audio recording is performed using acoustic features.
Then the chorus section is determined by a clustering method, whereas the vo-
cal ones are determined by a SVD method. The resulting sections are aligned
to the hand-labeled lyrics paragraphs by means of dynamic programming.

2.4.2 Middle-level context

Musical chords are a piece of complementary context parallel to lyrics in the
granularity of a lyrics lines. [ | proposed the integration of
textual chord information into the baseline phonetic recognizer approach of

[ ], which we described above. The authors assume that
the complete chord annotation is provided together with lyrics in the format
of song sheets, which can be obtained from web-sites such as UltimateGuitar.
The song sheet provides chord annotations anchored to words. To handle the
ambiguous mapping of the word-level annotation to the finer-level of syllables,
Mauch suggests a ‘a flexible chord onset’ strategy: To allow a chord change in
any of the syllable of its corresponding word, for each syllable alternative paths
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is constructed in the syllable-HMM network . The syllable-HMM-network can
be unambiguously expanded to a phoneme-HMM-network.

In this setting, since the phoneme sequence is fixed, a hidden phoneme state h
determines several possibilities with equal likelihood for a hidden chord state
¢, which can be represented as a DBN The combined transition probability is
‘inherited’ from the trained phoneme transitions. In addition to the baseline
phoneme emission y™ an emission feature y¢ for chroma is added, which are
combined in one mutual observation probability on inference. The approach
greatly improves the word-level accuracy of the baseline, from 46.4% to 87.5
% in terms of the percentage of correct estimates according to a tolerance
window of 1 second.

[ | described a method to deal with both syllable- and word-
level lyrics-to audio alignments of accompanied music recordings in Korean
and English. The approach is to discover repetitive acoustic patterns of vowels
in the target audio by referencing vowel patterns appearing in lyrics.

2.4.3 Fine-level context

Few works for tracking lyrics in singing voice have proposed a method that
represent features, describing phoneme timbre jointly with other melodic char-
acteristics | , .

[ | concurrently estimates the phoneme classes and funda-
mental frequency of singing voice from recordings with instrumental accom-
paniment. They suggest the use of probabilistic spectral templates of singing
voice, that represents both phoneme identity and the predominant f0. No
temporal progression from one template to the next is modeled though. An
important advantage of the approach is that the templates can be trained di-
rectly from the polyphonic mix without segregating the predominant voice or
affecting the instrumental accompaniment, which is often a necessity in other
studies. Accuracy for phoneme estimation is evaluated in terms of the ratio
of the number of frames that are correctly estimated to the total number of
frames. Frames taken into consideration in this calculation were only the five
Japanese vowels a,e,i,o,u. The ratio of 55 % for a baseline with GMMs and
MFCCs was increased to 60.1 % with the proposed model, which is arguably
the best vowel recognition system in accompanied singing.

In | , | a hidden state space is proposed that combines the
typical 3-state left-to-right HMMs for phonemes with the note state space
introduced in [ ]: each note has 3 states corresponding
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to its temporal phases attack, sustain and release. The goal of the study
is to improve automatic score-to-audio alignment by integrating information
from the lyrics timbre, available in parallel to the score. However, due to
the humongous state space, result of the the cartesian combination of the
note and phoneme state space, the authors were not able to implement this
strategy. Instead they used the note HMM and incorporated vowel information
as additional feature (together with pitch, loudness, etc.) via the observation
probabilities of the states.

Summarizing, almost none of the related work that considers complementary
context is based on the proved to be most successful LAA strategy - phonetic
recognizer. The only exception is the approach of [ ], which
is however limited to music traditions, for which the concept of chords is ap-
plicable. Due to the heterophonic interaction of accompaniment instruments
with singing voice for traditions like OTMM the harmony does not occur in
the form of chords and we cannot benefit from this work.



Chapter 3

Baseline Lyrics-to-audio
Alignment Model

3.1 Introduction

In this chapter we depict our lyrics-to-audio alignment (LAA) baseline system.
It is a phonetic recognizer, based on phoneme HMMs. To date most of the
studies on LAA are based on the phonetic recognizer approach, as described in
Section 2.2. The goal is to describe the key elements of the baseline approach,
which are not related to complementary context. In this way we ’set the scene’
for the methodologies that consider context - the main contribution of this
thesis. They will be the focus of the following two chapters. To this end, in
this chapter we go through the key steps of a phonetic recognizer and describe
which existing methodologies we plugged in. Some of these are tailored to the
specific characteristics of OTMM (see Section 2.1.1). In particular, we explain
how we utilized a method for linking structural sections of the composition to
their respective audio segments in a recording. Further, we describe the bene-
fit of a predominant melody extraction method. We comment on tuning their
parameters. We present in more details the construction of the phoneme net-
work from the lyrics transcription, for which some rules for Turkish language
are required.

A major contribution of this chapter is a strategy to represent phonemes in
Turkish language by mapping them to phonemes in English. This enables the
use of a reliable model for English as a viable replacement for Turkish, for
which the available training material is scarce. We also describe the datasets
used to evaluate the LAA methods, presented throughout this thesis. Com-

36
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piling datasets, representative of the music tradition and the key facets of
complementary context, is an important effort of this study.

We start the chapter by describing the evaluation datasets, comprising both
a cappella and multi-instrumental recordings from OTMM (Section 3.2). We
then introduce our choices for each of the steps of the standard phonetic rec-
ognizer in Section 3.3. We describe the construction of the phoneme network
in Section 3.3.2. In Section 3.4, we present a comparison of three strategies to
train the acoustic model for Turkish language. Finally, in Section 3.5 we dis-
cuss the alignment results by evaluating the baseline model on the presented
datasets.

3.2 Datasets

In this thesis we have evaluated the proposed lyrics tracking approaches on a
dataset of selected recordings from OTMM repertoire. To this end we prepared
two datasets: multi-instrumental lyrics OTMM dataset, which encompasses
original studio recordings with accompaniment of multiple instruments, and
an a cappella lyrics OTMM dataset, which contains solo signing voice. Addi-
tionally, we compiled a multi-instrumental vocal onsets OTMM dataset with
annotations of vocal note onsets containing performances with well-perceived
percussive accents. In all datasets we payed special attention to annotating
carefully the timestamps of the music events, in which complementary context
manifests.

3.2.1 Multi-instrumental lyrics OTMM dataset

The multi-instrumental lyrics OTMM dataset, which we compiled, consists
of 13 performances with a soloing singer - 5 with male and 8 with female
one. The performances are from 11 compositions in the sarki form and have
total duration of 19 minutes. They are drawn from the CompMusic corpus
of OTMM repertoire | , ] and have varying recording quality,
including historic recordings not necessarily with good studio quality. Music
scores are provided in a custom machine-readable format, called symbTr, com-
plying with the humdrum notation philosophy [ , ]. These
scores contain annotations of the structural sections of the sarki form. The
words in a section are further split adopting the division into melodic phrases,
proposed by [ ]. What the authors call a musical
phrase represents a musically-meaningful motif of the melodic line. A phrase
spans roughly the same number of metrical cycles depending on the tempo (1
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total #sections F#phrases per section #words per phrase

75 2tob 1to4

Table 3.1: Phrase and section statistics for the OTMM dataset

or 2 cycles). This corresponds to up to 4 words depending on their length. A
melodic phrase often also contains short instrumental motives before or after
the vocal line. If an original phrase boundary splits a word we have modified
it to include the complete word, in order to assure appropriate evaluation on
word or phrase level. Table 3.1 presents statistics about phrases. The total
number of words in melodic phrases are 732.

The performance recordings contain the annotations of the boundaries of seg-
ments corresponding to the score sections, which have been done in the study
of [ ]. We annotated further the melodic phrase boundaries
using the Praat annotation tool. Whenever needed, we split or merged some
melodic phrases with outlier duration so that phrases within a recording have
approximately equal duration !.

3.2.2 A cappella lyrics OTMM dataset

Due to the lack of appropriate a cappella material in the sarki form, we
recorded especially for this study an a cappella version of the accompanied
vocal OTMM dataset.

The vocal parts of the multi-instrumental lyrics OTMM dataset have been
sung by professional singers, especially recorded for this study, A performance
has been recorded while listening to the original recording, whereby instrumen-
tal sections are left as silence. This assures that the order, in which sections
are performed, is kept the same. This assures that the generated timestamps
are valid for the accompanied version, too. Although each recorded singer has
some peculiar time advances and delays of given syllables, the recordings are
to a very high degree in-sync with the originals. We carefully checked that by
listening simultaneously to both the original and the a cappella version. The
annotated phrase boundaries are available at 2.

!The dataset is available at http://compmusic.upf.edu/turkish-sarki
2The audio and the annotations are available under a CC license at
http://compmusic.upf.edu/turkish-makam-acapella-sections-dataset


http://compmusic.upf.edu/turkish-sarki
http://compmusic.upf.edu/turkish-makam-acapella-sections-dataset
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Additionally, the singing voice for 6 recordings (with a total duration of 10
minutes) from the dataset has been annotated with MIDI notes inferred by
the music score®. On annotation special care is taken to place the note onset
on the time instant, when voiced sound starts. If a syllable starts with an
unvoiced phoneme, the onset is placed at the beginning of the vowel (see
Figure 5.3). In addition, as onset is considered the point in time in which a
transition to a new note is started, because slurs and portamentos are common
in OTMM *.

3.2.3 Multi-instrumental vocal onsets OTMM dataset

Unlike the previous two datasets, being designed for LAA, we compiled the
multi-instrumental vocal onsets OTMM dataset to be used for note onset de-
tection of singing voice in multi-instrumental recordings. We utilize it for
automatic note onset detection, informed by underlying metrical accents. To
that end, all recordings have clearly audible percussive strokes, at some of
the beats in a metrical cycle. Except for vocal onsets, timestamps of beats
are also annotated. It is a subset of the dataset, presented in

[ ], including only the recordings with singing voice present. It is divided
into training and test dataset. The test dataset comprises 5 1-minute excerpts
from recordings with solo singing voice for each of two meter classes, referred
to as usuls in Turkish makam: the 9/8-usul aksak and the 8/8-usul diiyek.
All excerpts are manually annotated with beats, downbeats and vocal note
onsets”. Interestingly, each usul has a characteristic pattern of beat positions,
on which percussive strokes are hit. For example, in aksak the beats 1,3,4,5,7
and 9 have strokes. Musicians observe these patterns rather conservatively.

The training set spans around 7 minutes of audio from each of the two usuls,
annotated also manually with beats and downbeats. Due to the scarcity of
material with solo singing voice, several excerpts with choir sections were
included.

3.2.4 A cappella lyrics Jingju dataset

The dataset has been especially compiled for this study and consists of excerpts
from 15 arias, chosen from the CompMusic corpus of Jingju arias
[ ]. It has total duration of 67 minutes and comprises two female

3Creating the annotation is a time-consuming task, but we plan to annotate the whole
dataset in the future

4Onset annotations are available at http://compmusic.upf.edu/node/233

"The dataset is available at http://compmusic.upf.edu/otmm-vocal-onsets-dataset
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#sentences per aria 9.2

#syllables per sentence 10.7

avrg sentence duration (sec) 18.3

avrg syllable duration (sec) 2.4

Table 3.2: Sentence and syllable statistics for the Jingju dataset

singers. For a given aria were present two versions: a recording with voice plus
accompaniment and an accompaniment-only one. From these, we generated
a cappella singing by subtracting manually the instrumental accompaniment
from the complete version °. Table 3.2 presents the average values per sentence
and syllable.

Each aria is annotated on different event granularities: from the banshi type,
through boundaries of lyrics sentences, down to boundaries of syllables and
boundaries of phonemes. Annotations are carefully done by native Chinese
speakers and a Jingju opera musicologist”. The phoneme set has 29 phonemes
and is derived from Chinese pinyin, and represented using the x-sampa stan-
dard®. To assure enough training data for each model, certain underrepre-
sented phonemes are grouped into phonetic classes, based on their perceptual
similarity.

3.3 Steps of the phonetic recognizer

An overview of the steps of the proposed approach can be seen in Figure 3.1.
These steps comply with the typical steps of a generic phonetic recognizer
approach (presented in Fig. 2.2 of the Background Chapter). In what follows
we discuss in details the design choices and the preferred solutions for each
step.

3.3.1 Structural segmentation

Being a challenging problem itself, a full-fledged SVD is outside the scope
of this study. We instead divided manually each audio recording into sec-

5The resulting monophonic singing is perceived as clean as if it were a cappella, having
slightly audible artifacts from percussion on the non-vocal regions

"These are the CompMusic team members Rong Gong, Yile Yang and Rafael Caro
Repetto

8 Annotations are made available at http://compmusic.upf.edu/node/286
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structural
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alar son conversion accompaniment training
to phoneme attenuation phoneme
network

ben tavul models
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Figure 3.1: Overview of the steps of the baseline lyrics-to-audio alignment
system

tions (e.g. zemin, nakarat, meyan) as indicated in the music score, whereby
instrumental-only sections were discarded. In the sarki form each vocal seg-
ment corresponds to a structural section (zemin, nakarat, or meyan). We
assign manually to each segmented vocal section its corresponding lyrical line,
in order to assure correct lyrics.

All alignment throughout this thesis is performed on an audio recording and
text for each vocal section separately. LAA on complete audio recordings was
not desirable due to the unpredictability of the sections order and addition of
improvisation sections during performance.

To verify the feasibility of automating the structural segmentation, we utilized
a method for linking score sections to their beginning and ending timestamps
in a recording with Makam singing [Sentiirk et al,, 2014]. Due to the high
accuracy of this method, almost all sections are mapped correctly with minor
section boundary displacements. We showed that integrating section link-
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ing as a preprocessing step yields estimated section boundaries that are not
detrimental to matching the correct lyrics sections | , ].

3.3.2 Accompaniment attenuation

It is rather infeasible to successfully track the phonemes in multi-instrumental
music signals by using the models, trained solely on a cappella singing. The
harmonic partials in unaccompanied singing are relatively straightforward to
extract because they form clear intensity peaks in the spectrogram. A simple
intensity-peak-picking strategy is however prone to failure in accompanied
singing, because of the interference with instrumental harmonic partials. To
handle this case many harmonic partial extraction methods were proposed
(see Section 2.2.3).

Such a method requires as input a melody contour, generated by a melodic
source. We first extract the vocal contour of the singing voice. Then, based
on it, its harmonic partials are derived from the spectrum. Then the vocal
harmonic partials are resynthesized into an interpolated vocal spectrum Xj;.
Finally, we extract acoustic features from X instead of the original polyphonic
spectrum.

Singing voice melody extraction

To extract the contour of the predominant singing voice in music with in-
strumental accompaniment, we utilized the algorithm, described in

[ |. It is a method for extraction of the melody of a predominant instru-
ment. It relies on the basic methodology of [ |, but
modifies the way in which the final melody contour is selected from a set of
candidate contours, in order to reflect the specificities of OTMM.:

1. It chooses a finer bin resolution of only 7.5 cents that approximately
corresponds to the smallest noticeable change in Makam melodic scales.

2. Unlike the original methodology, it does not discard time intervals where
the peaks of the pitch contours have relatively low magnitude. This
accommodates time intervals at the end of the melodic phrases, where
Makam singers might sing softer.

In addition to generating fO values, the algorithm performs in the same time
a predominant source detection: it returns zero for f0 in regions with no dom-
inant melody. The melody contour obtained this way has its origin not only
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from singing voice but also from accompanying instruments. This happens
in short instrumental interludes, where an accompanying instruments carries
the main melody.

Harmonic model

We utilized the harmonic model of [ | to filter the spectral peaks
corresponding to the the harmonic partials of the singing voice. The spectral
peaks are computed at the expected location of harmonic partials at multi-
ples of the fundamental frequency f* ~ h,f° , where h,, is the harmonic
index (3.1). Parabolic interpolation refines the exact frequency locations. We
estimated X; with a relatively huge number of harmonics (30), in order to
preserve as much as possible the phoneme identity information.

R
Yhlk] => AWk —rfo] (3.1)

r=1

It should be noted that it is not an end goal of this study to segregate the
singing voice from the polyphonic mix. Methods that are focusing on a good
separation of the singing voice strive to obtain a representation of the vocal
content with the least amount of introduced artifacts. By contrast, in our case
some artifacts may be acceptable as long as they do not distort significantly
the distinction of the identity of vowels. Nevertheless, as a benchmark, we
carried out a study, in which we evaluated the quality of voice segregation
using the harmonic model | , ].

Resynthesis

The interpolated vocal harmonic partials are resynthesized by means of a
constant overlap add resynthesis with the sms-tools package”’. Despite being
distorted by energy leaks from instruments, the interpolated partials seem
to preserve well the overall spectral shape of the singing voice, including the
formant frequencies, which encode the phoneme identities. The resynthesis
allowed us to listen and verify that vocals are still to a large extent intelligible.

Note that melody resynthesis usually results in singing voice with perceivably
worse intelligibility of the phonemes than the original signal. Some unvoiced

%http://mtg.upf.edu/technologies /sms
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(a) Extracted predominant melody

(b) Detected harmonic partials with the harmonic model, based
on the predominant melody

Figure 3.2: Example of extracting harmonic partials of predominant voice
with the harmonic model

consonants are dropped, as well as some artifacts are introduced. However,
for computers, which are not as versed as human listeners in distinguishing
among sources, the accompaniment reduction is an imperative step.

An example for the audio segment with the lyrics phrase bakmaiyor cesmi siyah
can be seen in Figure 3.3b.

3.3.3 Acoustic Features

MFCCs have several parameters, that could be tuned according to the appli-
cation use case. A standard for extracting MFCCs for the characterization
of singing voice are the default parameters of the HMM toolkit (htk), which
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(a) Original spectrogram

rCe.  § mi

(b) Resynthesized singing voice. Note that some unvoiced con-
sonants are replaced with silences

Figure 3.3: An example of the resynthesized harmonic partials for the lyrics
phrase bakmayor cesmi siyah

is tailored to speech recognition. We adopted these to assure consistency to
previous work (see Table 3.3).

3.3.4 Phoneme network

The phonetic recognizer is a HMM, wherein the states of the HMM represent
the sequence of phonemes from the phoneme transcription of the lyrics. As
we described in Section 2.2.7 the goal of the grapheme-to-phoneme conversion
is to create the phoneme transcription out of the word sequence, comprising
the input lyrics for a particular vocal section.
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TARGETKIND = MFCC 0 D A 7
TARGETRATE = 100000.0
WINDOWSIZE = 250000.0
USEHAMMING = T

PREEMCOEF = 0.97

NUMCHANS = 26

CEPLIFTER = 22

NUMCEPS = 12

HIFREQ=8000

Table 3.3: Parameters of MFCC extraction (in the HMM toolkit format)

A phonetic recognizer HMM can be represented as a DBN with a single hidden
state for the current phoneme (Figure 3.4). In all DBN diagrams in this
thesis we use circles and squares to denote continuous and discrete variables,
respectively. Also gray nodes and white nodes represent observed and hidden
variables, respectively. Although in initial experiments we trained a 3-state-
HMM per phoneme, in most of the work in this study a single-state HMM
was preferred. Preliminary experiments revealed that the alignment accuracy
with 3-states is not noticeably better than that with one state. In this section
we present the derivation of the phoneme network for Turkish language, in
alignment with the focus of this chapter on the OTMM music. While in
general the derivation of the phoneme network used for Jingju is following the
same principles, some Mandarin-particular details are discussed in Section
4.5.1.

Graphene-to-phoneme conversion

The words are expanded to phonemes based on a phonetic alphabet, designed
for each particular language. For this sake linguists have developed the in-
ternational phonetic alphabet (IPA) - a language-independent notation sys-
tem of phoneme sounds '°. For each language exists one or several options
for an alphabet of machine-readable representation of IPA. For Turkish we
have adopted the alphabet METUbet, proposed for one of the speech recog-
nition state-of-the art systems for Turkish | , , Table
1]. METUbet is very easy to interpret, because of its intuitiveness. All latin
written characters are mapped to their corresponding latin phoneme, while
the characters ¢, s, 1, 0, i unique for Turkish language, are mapped to capital

Ohttps://en.wikipedia.org/wiki/International Phonetic_ Alphabet
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v
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l !

Vi Yi mfcc

phoneme

k

Figure 3.4: DBN for the baseline phonetic recognizer: a hidden state repre-
sents the phoneme state. Circles and squares denote continuous and discrete
variables, respectively. Gray nodes and white nodes represent observed and
hidden variables, respectively.

letters - respectively C, S, E, OE, UE. The unpronounced g is omitted from
the transcript, whereas g is represented as GG.

After the grapheme-to-phoneme conversion optional filler silence tokens are
inserted in between words. A silence model represents short non-voiced time
intervals, when singing voice is not active to accommodate silent pauses or
breaths between words. Using METUbet the lyrics phrase bakmayor cesmi
siyah is expanded to a phoneme sequence seen in Figure 3.5a. Square brackets
denote zero or one occurrence of a token, and vertical bars denote alternatives.
Its corresponding phoneme network is depicted in Figure 3.5b.

spjbakmIyor[sp] CeSmilsp]siyah [sp

(a) Phoneme sequence for the lyrics phrase bakmayor cesmi siyah.
/s})\ sp sp) sﬁp\
MW(G D—C--E-m-O—EC--y-a-b

(b) Phoneme network for the lyrics phrase bakmuyor ¢cesmi siyah.

Figure 3.5: An example of the phoneme sequence and phoneme network for
the phrase bakmayor cesmi siyah for a cappella voice. The phoneme set used
is the Turkish METUbet
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Handling accompaniment artifacts

The phoneme network for accompanied singing ideally should be identical to
the a cappella one presented above. In practice however, some of the phonemes
in the accompaniment attenuation process are not accurately resynthesized.
To address such cases, we build the network in a flexible way.

Except for silences, another filler model for non-vocal parts is introduced:
a model for the instrumental background. We assume that the stochastic
characteristics of the background music could be approximated by those of
the instrumental-only regions in a music recording. We trained therefore a
GMM for accompaniment instruments (ACC) from the time intervals, which
are not annotated as words in the test dataset. It has a substantial amount of
mixtures (40) to be able to capture the diverse timbral characteristics of back-
ground instruments. It is integrated as a single-state-HMM in the phoneme
network. Setting the filler models as optional lets the phonetic recognizer
activate the ACC model, depending on whether sound from background in-
struments was re-synthesized by the sinusoidal model, due to short regions,
detected falsely as being vocal (see accompaniment attenuation step). In
addition, this also accommodates potential instrumental leaks due to auto-
matically detected boundary timestamps of vocal sections, displaced from the
actual boundaries of sung lyrics.

A side effect of the resynthesis is that non-voiced consonants are not synthe-
sized, which leaves short time intervals of silence. Looking carefully at Figure
3.3b one can notice that the time intervals for most METUbet unvoiced con-
sonants: k, S, s, and h are converted into silences. [ ]
suggested to tackle this problem by incorporating a separate method for de-
tection of unvoiced consonants in the musical audio. The strategy we used
instead is replacing unvoiced consonants by silence in the phoneme sequence.
For example, for the phrase bakmuyor cesmi siyah it will look accordingly in
Figure 3.6a.

Figure 3.6b presents its corresponding phoneme network. We evaluated the
contribution of this simple resynthesis handling strategy by comparing to the
performance of alignment between the resynthesizes audio and the phoneme
network of Figure 3.5b that is meant for a cappella singing. The results
(see Table 3.6) outlined a slight improvement with the accompaniment aware
network. We inspected carefully the flawed alignment cases with the a cappella
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[sp]ACC] baspmIyor[sp|ACC] spespmi[sp|ACC]spiy asp [sp]ACC]

(a) Phoneme sequence for the lyrics phrase bakmayor ¢cesmi siyah.

\/sp\ ) (s p\ J/s;;\\ /s;;\‘
PN A I N2

i enn0aen,  mes O OO

(ACC) KACC (acc) (ACC)

(b) Phoneme network for the lyrics phrase bakmaiyor ¢esmi siyah.

Figure 3.6: An example of the phoneme sequence and phoneme network for
the phrase bakmayor cesmi styah when accompanying instruments are present.
The phoneme set used is the Turkish METUbet

phoneme network. This revealed that sometimes when there is a fricative
in the vicinity of an inter-word sp (for example the § from ¢esmi following
the sp between bakmuiyor and ¢esmi) the Viterbi would confuse the model
of sp with the MFCCs for the fricative sound, due to the similarity of the
phoneme acoustics of the two. This means that usually a couple of phoneme
models (¢ and e in this example) are assigned falsely to the MFCCs frames
of the inter-word silence, which is extended in longer time than it should
be. Respectively sometimes instead of such ’delays’ os the sp model there
are premature 'jumps’ due to the same fricative confusion. In contrast, when
there are leaks of accompaniment sounds, the added ACC model helps in
distinguishing between the fricative and silence/ACC.

3.4 Training the acoustic model

To represent the probability p(yx|xy) of observing the MFCC feature vector yy
at a time instant k, given a phoneme x, a classifier of the different phonemes
is needed. In essence, for a phonetic recognizer a hidden variable is the current
phoneme class zj(see Figure 3.4). The phoneme classifier has to represent the
acoustic specificities between the different phoneme classes. In this Section
we present how to train GMMs and MLPs - two types of classifiers. In short,
we refer to the phoneme models as the acoustic model.

3.4.1 Gaussian mixture models

As presented in Section 2.2.7 the GMMs until recently have been the de facto
choice of phonetic timbre classifier. GMMs have the ability, given enough
mixtures, to approximate arbitrarily shaped densities. It is reasonable to as-
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sume that each mixture represents a broad class of a phonetic timbre event.
Another major reason to be utilized for representing phonetic timbre is that by
means of the so called embedded reestimation technique it is relatively straight-
forward to train the GMM parameters even from material with no phoneme
annotations. Embedded reestimation is an generalization of the Expectation
Maximization algorithm over time-series of feature vectors and has an efficient

implementation in the HMM toolkit (htk) [ , |. Applying htk we fit-
ted a 9-component GMM for each phoneme on feature vectors extracted from
a dataset of Turkish speech . It encompasses diverse

speech recordings totaling to approximately 500 minutes. Preliminary exper-
iments confirmed that the trained models can successfully recognize withheld
material from the same dataset.

To address the acoustic differences between speech and singing an adaptation
of the trained GMMs to singing material is needed. However due to lack of
sufficient adaptation material we did not perform any adaptation. Instead
of that we explored the option of using neural networks for the observation
model.

3.4.2 Multilayer perceptron neural networks

Recent work on keyword spotting in English a cappella singing showed that
a MLP trained on singing-like material results in much better accuracy, com-
pared to a GMM, trained on speech [ ].

This motivated us to take the opportunity to consider the deep MLP model
the authors trained from amateur singers in their subsequent work - |

, |. We introduced their training procedure in Section
2.2.8 and will refer to their model as MLP-English. The MLP-English has 3
hidden layers with sigmoid activation function. The layers have respectively
1024, 850 and 1024 neurons and have as input the first 13 MFCCs, extracted
with the htk extraction parameters, described in 3.3.3 plus their deltas and
accelerations. This results in a 39-dimensional feature vector. The phonetic
alphabet used is the English-specific encoding of IPA from Carnegie Mellon
University (CMU)!L.

Since we did not have as many Turkish singing voice phoneme annotations
sufficient for training a deep MLP, we simply adapted the MLP-FEnglish to
Turkish. We exploited two cross-language phoneme mapping strategies: direct
mapping and fuzzy mapping

"http://cmusphinx.sourceforge.net /
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METUbet | IY | AA|UE | E |LL| I | O M| U |OE | NN |VV

CMU iy | aa y |eh| 1 |ax |ao|m |uw | ow | n v

METUbet | Z | C|ZH | H |CH|B|D |GG |F |KK|P|S|RR
CMU z |jh| zh [hh | ch | b | d

g f| k |[p|s| r

Table 3.4: Direct mapping of English CMU phonemes to Turkish METUbet.
Upper row vowels and liquids. Lower row all the rest consonants.

Direct cross-language mapping

As observation probability for each Turkish phoneme we substituted the prob-
ability of an English phoneme from the output layer of the MLP-English. The
mappings we used are listed in Table 3.4.

To most phonemes in Turkish corresponds an English phoneme that repre-
sents a sound with perceivably the same acoustics. The only two Turkish
phonemes not existing in English are OE and UE, for which we experimented
with different mappings and ended up with respectively ow and y as most
optimal.

Fuzzy cross-language mapping

A more reasonable alternative to enforcing a phoneme to be represented by
exactly one phoneme from another language is a weighted sum of the acoustics
of a set of similar phonemes. Such types of ’fuzzy’ many-to-one mapping
strategy has been proposed for speech synthesis of a given speaker from her
mother tongue to another language by [ ]. Adopting the core idea
of their concept we trained GMM model in the steps presented in Figure 3.7.
First the extracted MFCC features from a cappella vocal OTMM dataset are
input to the English-MLP and a vector of the posterior probabilities p(s,|x)
of the n = 39 English phoneme classes for each time frame k are generated (see
left half of Figure 3.7). These phonetic posterior probabilities are commonly
known as posteriograms. Then in a second stage, a new model is trained to
capture the mapping relationships between the posteriograms p(s,|z;) and the
38 Turkish phoneme classes. The posteriograms are fed into the classifier as if
they were the acoustic feature vectors. While [ | built another
deep neural network, we preferred a 2-component GMM classifier, because
GMDMs could handle training material with data size as small as 30 minutes
of phoneme-annotated singing. Note that arguably one could train GMMs by
embedded reestimation to avoid the need of phoneme annotations. However
we preferred carefully done manual annotations of phoneme boundaries to
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‘source language: - “target language:
English Turkish
(Kruspe, 2016)

feed—f(g\ward' Aljetwork
> / Va

recogniiton |«

v

phoneme
GMMs

phoneme annotations

phoneme posteriograms

Figure 3.7: Cross-language phoneme mapping strategy from the source lan-
guage (English) to the target language (Turkish). The English-MLP feed-
forward network is trained on a huge singing voice dataset, whereas the GMMs
are trained with phoneme annotations of a subset of the small a cappella vocal
Makam dataset.

make sure proper mappings. Then on recognition the English posteriograms
are generated in the same way as in training. Training of the GMMs was
conducted with leave-one-recording-out cross validation.

We compared the two mapping strategies with the GMM model trained with
Turkish by evaluating the percent of correctly identified phoneme time frames.
The percent of correct frames has been used to evaluate the accuracy of the
MLP-FEnglish model. This is done by setting to 1 the phonemes with maximum
posterior probability for each time frame and zero to the rest of the phonemes.
Then this sparse activation matrix is intersected with an oracle matrix, in-
ferred from manually annotated phoneme boundaries.The first two models
were evaluated on the whole phoneme-annotated subset of the a cappella vo-
cal OTMM dataset, whereas the MLP-FuzzyM in the leave-one-recording-out
cross validation manner.

The direct mapping of the English-MLP evidences a major improvement over
the GMMs trained on speech (Table 3.5). It still scores reasonably worse than
the reported 23 % in [ | on excerpts from the same
English dataset with which it was trained. This large margin indicates that the
direct mapping strategy may not be the most optimal one. Surprisingly the
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’ model \ % correct frames ‘
GMM 9.8
MLP-DirectM 154
MLP-FuzzyM 9.2

Table 3.5: Percent of correctly identified phoneme frames for the 3 different
phoneme models utilized: GMM trained from Turkish speech, MLP-FEnglish
model mapped directly to Turkish phonemes, MLP-FEnglish model mapped by
the proposed fuzzy phoneme mapping strategy.

fuzzy mapping strategy did not yield improvement over the baseline GMM. We
believe that the explanation lies in the very small size of the training singing
dataset with phoneme annotations. We attribute the remarkable improvement
of the English-to-Turkish directly mapped model to the big learning capacity
of a deep feedforward neural network.

3.5 Experiments

We compared the performance of the baseline phonetic recognizer for OTMM
with different variants of the acoustic model: with GMM models and direct
mapping to English-phonemes MLP. Experiments are carried out on the a cap-
pella lyrics OTMM dataset (Section 3.2.2) and the multi-instrumental lyrics
OTMM dataset (Section 3.2.1). To assess the effectiveness of the accompa-
niment attenuation (AA) step, we aligned the multi-instrumental recordings
from the a cappella lyrics OTMM dataset with and without AA. We presents
also results of the GMM with instrumental accompaniment and omitting the
AA step. When accompanying instruments are present, we employed the mod-
ified phoneme network, which can handle possible artifacts from the AA step
(see Section 3.3.4).

3.5.1 Evaluation metrics

Throughout this thesis, we evaluate the LAA by the metrics average absolute
error and accuracy (percentage of correct segments), introduced in Section
2.2.1.The alignment error and accuracy are computed at boundaries of the
lyrics phrases, as manually annotated.
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accuracy error

a cappella GMM 70.2 1.14

a cappella direct mapping 79.2 0.57

accompanied GMM (no AA) 52.1 2.15

accompanied GMM (no accompaniment handling) 63.2 1.98

accompanied GMM 67.5 1.26

HMM+adaptation [ ] - 1.4
HMM+ singer adaptation [ ] 85.2 -

Table 3.6: Comparison of performance of the baseline phonetic recognizer
with different variants of the acoustic model. Evaluation is performed on
both a cappella and accompanied singing from OTMM. Alignment accuracy
and alignment error on the boundaries of lyrics phrases and reported on total
for all recordings.

3.5.2 Discussion

Table 3.6 lists results for the different system variants and steps of the recog-
nizer.

We observed that a problem is that alignment performs poorly towards the
end of longer sections, which results in outliers of huge magnitude.

Although coming from different genre and language, we compare our align-
ment results to the best hitherto alignment systems for English pop songs
[ ) | and for Japanese pop | , ].
These are abbreviated in Table 3.6 respectively as HMM + adaptation and
HMM + singer adaptation. In these works alignment is evaluated also on
the level of a lyrical line/phrase. Our baseline approach differs from both
works essentially in that they conduct speech-to-singing-voice adaptation. In
comparison, we did not perform any adaptation of the original speech model.
Adaptation data of clean singing voice for a particular singer might not al-
ways be available and thus does not allow the system to scale to data from
unknown singers. Our baseline’s best error on the multi-instrumental mate-
rial is comparable to the system of [ ], but still far
from the accuracy of [ |. The most possible explanation is
the acoustic mismatch between our phoneme GMMs and the characteristics
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of singing voice. This is confirmed by the rather low results on a cappella
singing. Training phoneme acoustics merely on speech is clearly suboptimal.
The high score of the English-MLP confirms that training on singing voice is
a big advantage.

Moreover, [ | trains a SVD module on data selected from
material with same acoustic characteristics as the test data. The SVD module
showed to notably increase the average accuracy of 72.1 % for a baseline to
accuracy of 85.2 % for their final system. Investigating our results with low
accuracy revealed that false positives of our AA module is a considerable
reason for misalignment. Unlike [ ], we did not tailor the
parameters of the harmonic model (built for Western popular music) to the
specificities of our test dataset.

3.6 Summary

In this chapter we described our lyrics-to-audio alignment (LAA) baseline sys-
tem. It is a phonetic recognizer, based on phoneme HMMs. We described the
choices of the key steps of the phonetic recognizer, which are not related to
modeling complementary context. Phoneme observation modeled as GMMs,
trained on Turkish speech proved to be not the most optimal acoustic model.
The alignment accuracy on a cappella (70.2 %) is rather low; whereas on
multi-instrumental recordings (67.5%) is below the state of the art on LAA
on English pop songs (85.2 %). The most possible explanation is the acous-
tic mismatch between our phoneme GMMs and the characteristics of singing
voice. To address this mismatch, we proposed a strategy of mapping a state-
of-the-art model for English, trained on English pop songs, to Turkish. We
explored two different mapping strategies. The simpler direct mapping in-
creased significantly the alignment accuracy (79.2 %). To our knowledge, this
is the first work on computational modeling of sung lyrics, addressing the
problem of inter-language phoneme mapping.

All the experiments presented in the following two thesis chapters are car-
ried out with phoneme GMMs. This is because the mapping strategies were
explored once the English-MLP became available (towards the end of this
study'?). However, the validity of the experiments in this thesis is not neg-
atively influenced by that. Since the ultimate goal is to show that musical-
context-aware modeling outperforms the baseline approach presented in this
chapter, the absolute score of the baseline itself is of lesser importance.

12 August 2016



Chapter 4

Lyrics-to-audio Alignment
with Middle-level
Complementary Context

4.1 Introduction

In this chapter we propose how to improve the baseline lyrics-to-audio align-
ment method by considering some context facets, complementary to lyrics. We
focus on one particular middle-level facet - the structure of the sung melodic
line. To this end, we study the influence of the structure of the sung melodic
line on its lyrics. Studies of sheet music have indicated that there is a cor-
relation between the accents of sung syllables and the accents in the melodic
phrase | , ]. Singers may often prolong or reduce the duration
of some syllables, in order to align them with the melodic accents.

Music scores provide important contextual information complementary to
lyrics, including note durations. Nevertheless, the length of sung syllables
could deviate considerably from the durations indicated in the music score.
Singers in OTMM in particular tend to deviate from the music score to a sig-
nificantly larger extent, in comparison to, for example, eurogenetic pop music
or classical music. To address this, we propose an extension of the phonetic
recognizer that models explicitly syllable durations. The proposed duration
aware model is designed to accommodate duration variations. The major
technical contribution of this chapter is the derivation an inference method
for the model. Information about the durations is obtained from the music
score. To our knowledge, this study is the first application of modeling of

56
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music-score-induced duration for sung syllables.

To proof the transferability of the proposed explicit-duration model outside of
OTMM, we evaluate on material from Jingju. The comparison to Jingju has
an aim to quantitatively evaluate if the the duration knowledge contributes to
a different degree for another music tradition. Jingju is a music tradition, char-
acterized by sung syllables that span particularly long time intervals. Being
a largely oral tradition, it rarely has machine-readable music scores. Instead,
to determine how long to sustain a given syllable, actors follow specific princi-
ples for the structure of the melodic phrase. Therefore we apply the same core
probabilistic model, whereby syllable durations are derived from these princi-
ples, instead of score. Among all the approaches presented in this thesis, this
is the clearest example of an approach informed by music-specific knowledge.

The chapter is organized as follows: We start off by introducing existing com-
putational approaches of lyrics tracking, which explicitly model durations of
syllables (Section 4.2). In Section 4.3 we introduce the core probabilistic
model. Then we describe the application of the inference in two different use
cases: Firstly, in Section 4.4 we study how durations parsed from music scores
in OTMM can be utilized as input reference syllable durations. Secondly, the
core model is applied also to Jingju, for which reference durations are obtained
from music-specific knowledge in the form of rules (Section 4.5).

4.2 Background on duration aware lyrics-to-audio
alignment

The phonetic recognizer approach is based on phoneme HMMs. Standard
HMMs have the drawback that they do not impose any restrictions on the
waiting time in a state, resulting in geometric distribution. This does not
correspond to the naturally occurring durations of phonemes in speech. Intro-
ducing restrictions on the state waiting time of the phoneme HMMSs improves
speech recognition results | , ].

Unlike speech, for which the variation of the durations of the vowels is rel-
atively small, sung vowels can have significantly bigger variations. HMMs
are by far not capable to represent well vowels with long and highly variable
durations. This is because the waiting time implied by a geometric distribu-
tion cannot be unlimitedly long [ , |. Durations can be modeled
instead by a duration-explicit hidden Markov model (DHMM) (also known
as hidden semi-Markov model). In DHMMs the underlying process is allowed
to be a semi-Markov chain with variable duration of each state [Yu, ].
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The idea of the DHMM is that the actual waiting time in a state can be seen
as being generated by any statistical distribution. Common choices are the
gamma distribution or normal distribution, whereby the distribution’s param-
eters can be set by using some a-priori knowledge about the waiting time. In
this respect, DHMM provide a flexible methodology that allows the injection
of some music-specific context knowledge, from which the expected waiting
time of a phoneme can be derived. An approach to detect keywords from
a cappella English pop songs exploiting knowledge about possible phoneme
durations is presented in | , ]. The author used a DHMM with
a gamma distribution, motivated by findings that gamma distribution repre-
sents well naturally observed phoneme durations in speech. The mean and
variance of each phoneme is empirically estimated from a small portion of a
cappella dataset. The precision of keyword detection increased when dura-
tions were limited. A limitation is that the learned phoneme parameters do
not take into account the structure of the melodic phrase, i.e. they estimate
the duration of a phoneme globally for given data. In addition, DHMMs have
been shown to be successful for modeling other problems from the domain of
music information retrieval. They have been successful in representing chord
durations in automatic chord recognition | , -



CHAPTER 4. LYRICS-TO-AUDIO ALIGNMENT WITH
MIDDLE-LEVEL COMPLEMENTARY CONTEXT 59

h,, » h, phoneme
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Figure 4.1: DBN representing the duration aware phonetic recognizer. A
duration counter h” keeps track of the waiting time in a phoneme state h.
When hp reaches 0, the binary indicator node f is fired, which triggers a
change to next phoneme.

4.3 Duration aware probabilistic model

In this section we describe the core syllable-duration aware probabilistic model,
presented first in [ |. In Figure 4.1 a DBN rep-
resented the duration time in a phoneme h explicitly as a duration counter
variable h”. When the duration counter expires (reaches 0), the indicator
node f; turns on, the current phoneme hj; can change state, and the next
duration counter, hf , is reset. The reason there is no h to f arc is that the
duration termination process is deterministic | , , Figure 2.22]. In-
ference in such a DBN with the Viterbi decoding will have time complexity
of O(TDH?), where D is the maximal duration of the counter, T is the total
time of a recording, and H is the number of phonemes in the phoneme net-
work. In comparison to speech, the range of D for sung phonemes (especially
in traditions like Jingju with reasonably long vowels ) can cause an extremely
big time complexity. In the case of forced alignment, however, it reduces to
O(TDH). Another limitation of the DBN is that due to the additional of a
hidden counter variables hp the size of the state space can become enormous.

To overcome that, we have adopted the idea of [ ] not to ex-
plicitly add the AP to the model, but instead to extend the Viterbi decoding
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to handle duration of states. Note that this does not reduce the time com-
plexity. In what follows we describe a variation of Viterbi decoding method,
in which maximization is carried over the most likely duration for each state.
The duration counter is controlled by a normal distribution with mean derived
from a lookup table of reference durations R;, where i is the i** phoneme in
the phoneme network. The way the lookup table is constructed is related to
how the complementary context is exploited and is the topic of sections 4.4
and 4.5

4.3.1 Parameter definitions

The Viterbi decoding is adapted from the procedure described in

[ ]. We assume that the duration d for a state i may vary according to
a normal distribution P;(d) with mean at the reference duration d = R; and
standard deviation 0. We will use a separate global standard deviation o, for
all vowels and a global one o, for all consonants. For the sake of representation
simplicity, in the following equations we will use only one standard deviation
o. Now let us define:

Ripar : max;(R;) + o

bi(Oy) : observation probability for state i for feature vector Oy (comply with
the notation of [ )

0(7) : probability for the path with highest probability ending in state i at
time & (comply with the notation of [ , 111. B]))
4.3.2 Recursion

The recursion step in the Viterbi algorithm is extended by adding the duration
distribution P;(d) factor.

For Ry <t <T
5k(l) = mgx{(sk_d(i — 1).
Py(d)™ [By (i, )]~} (4.1)

where
Bi(i,d) = ;44 1b:(O5) (4.2)
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is the observation probability of staying d frames in state ¢ until frame k. The
domain of d comes from the normal distribution (max{R; —o,1}, R; + o) and
is reduced for states with reference duration R; < o.

A duration back-pointer is defined as
xi(i) = argmax{dp—q(i —1).
Pi(d)* [By(i,d)]' =} (4.3)
Note that in forced alignment the source state could be only the previous

state from the phoneme sequence ¢ — 1, therefore the transition probabilities
are omitted.

To be able to control the influence of the duration we have introduced a
weighting factor c.. Note that setting a to zero is equivalent to using a uniform
distribution for P;(d).

4.3.3 Initialization

For t < Riaz

Su(i) = max{ou(i)", mii)} (4.4)

where a reduced-duration delta 0(7)* is defined in the same way as in Eq.
(4.1) but

tySet t<R;—
de mpryS et - 7 (4.5)
(R; —o,min{t —1,R; + 0}), else
reduces the duration to k when k < R; + 0.
Lastly the probability of staying at initial state ¢ at time k is defined as:
k(i) = m P (k) (=1 (05)] 170 (4.6)

for ke (1, R; + o).

4.3.4 Backtracking

Finally the decoded state sequence is derived by backtracking starting at the
last state N and switching to a source state a number of d = xy(i) frames
ahead according to the backpointer from Eq. 4.3.
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4.4 Durations derived from music score

In this section we present an application of the duration aware model to singing
from OTMM. Singers in OTMM tend to deviate from the music score to a
significantly large extent. The goal of this study is to show that the dura-
tion aware models is capable to accommodate these duration variations. The
lookup syllable duration table is constructed from information in the music
score.

A general overview of the proposed approach is presented in Figure 4.2. As
in all approaches presented in this thesis, first an audio recording is manually
divided into segments according to the coarse level complementary context
- the sections of the composition. In the case of Makam the boundaries of
vocal section (one of zemin, nakarat, meyan) are indicated in the music score.
An audio recording and its corresponding score are input. Relying on HMMs
of phonemes the DHMM returns start and end timestamps of aligned lyrics
phrases.
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Figure 4.2: Overview of the steps of the lyrics-to-audio alignment system
aware of phoneme durations. Durations are derived from the note values in
the music score. The phonetic recognizer is a duration-explicit HMM

4.4.1 Deriving phoneme durations

For each lyrics syllable a reference duration is derived by summing the values
of its corresponding musical notes (in units of 64th notes). Then the reference
duration is spread among its constituent phonemes, whereby consonants are
assigned constant duration and the rest is assigned to the vowel. Each conso-
nants in a syllable is assigned a constant reference duration R; = 0.3 seconds.
To align a given recording the score-inferred lengths are linearly rescaled to
match its musical tempo. After that scaling the unit of R; becomes the number
of acoustic frames.

4.4.2 Experiments

Alignment is performed on each manually divided audio section and results
are reported per recording (on total for its sections). To assess the benefit
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of the DHMM, results are compared to the baseline system, which is not
aware of reference durations. Experiments are carried out on the a cappella
lyrics OTMM dataset (Section 3.2.2) and the multi-instrumental lyrics OTMM
dataset (Section 3.2.1).

We present results for the most optimal o = 0.97. Most optimal standard
deviations for vowels o,was found to be 0.7, while we fixed the one for con-
sonants o to 0.1 seconds, based on the fact that consonant durations do not
vary significantly. These parameters were optimized by minimizing the align-
ment error on a separate development dataset of 20 minutes Turkish acapella
recordings. To assure precision, we measured alignment of the development
dataset on the word-level ground truth.

Evaluation metrics

Alignment accuracy is measured as the percentage of duration of correctly
aligned regions from total audio duration (see Figure 2.1 for an example).

In addition, we define a metric musical score in-sync (MSI) to measure the
approximate degree to which a singer performs a recording in synchronization
with note values indicated in the musical score. Thus low accuracy of MSI
indicates a higher temporal deviation from musical score. We compute MSI
per a recording as the AA of score-inferred reference durations R; compared
to ground-truth, as if they were results after alignment.

Discussion

Table 4.1 presents comparison of the proposed DHMM system performance
and the baseline system. It can be observed that modeling of durations with
DHMM increases the accuracy by 10 absolute percent. One reason for this
are cases of long vocals, in which the standard HMM switches to the next
phoneme prematurely (due to its inability to stay long in a given state). In
contrast, the duration-explicit decoding allows picking the optimal duration
(which can be traced in an example in figure 4.3).

Figure 4.4 allows a glance at results per recording, ordered according to MSI.
It can be observed that the DHMM performs consistently better than the
baseline (with some exceptions, for which accuracy is close). Unlike the rela-
tively stable accuracy for the a cappella case, when background instruments
are present, the accuracy variates more among recordings.

For the sake of comparison, the alignment results of the best hitherto LAA
systems for English pop songs | , | and for Japanese



CHAPTER 4. LYRICS-TO-AUDIO ALIGNMENT WITH

MIDDLE-LEVEL COMPLEMENTARY CONTEXT 65
System variant alignment alignment
accuracy error
musical score in-sync 88.14 0.32
baseline a cappella 70.2 1.14
DHMM acapella 90.04 0.26
baseline polyphonic 67.46 1.26
DHMM polyphonic 77.74 0.63
HMM+adaptation Mesaros - 1.4
and Virtanen [2008]
HMM+ 85.2 -
singer adaptation Fujihara
et al. [2011]

Table 4.1: Alignment accuracy (in percent) for musical score in-sync; differ-
ent system variants: baseline HMM and DHMM; state-of-the-art for other
languages. Alignment accuracy is reported as total for all recordings. Addi-
tionally the total mean phrase alignment error (in seconds) is reported

5000 Hz|

2405 Hz}---

1 KK Iy M S E
= 2 KK Y |M|S E |[Y|E|E T IME M S; KK AA
3 KK Iy M S E

Figure 4.3: Example of decoded phonemes. very top: resynthesized spectrum;
upper level: ground truth, middle level: HMM; bottom level: DHMM; (excerpt
from the recording Kimseye etmem sikayet by Bekir Unluater)
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Figure 4.4: Comparison between results from DHMM (for both polyphonic
and acapella) and the baseline HMM. Metric used is alignment accuracy. A
connected triple of shapes represents results for one recording. Results are
ordered according to musical score in-sync (on horizontal axis)

pop [ | are also listed. These are abbreviated in Table 4.1
respectively as HMM + adaptation and HMM + singer adaptation. In these
works alignment is evaluated also on the level of a lyrical line/phrase. Despite
the lack of adaptation, our DHMM system yields results comparable to these
reference approaches.

4.5 Durations derived from music knowledge

In Jingju the durations, indicated in scores are not so strictly observed as in
OTMM. Instead as a reference usually serve the orally transmitted singing
examples of master actors. During time, as part of this oral practice, specific
rules have been formed: For example, if a poetry lyrics line has 10 syllables,
a rule of thumb is that it consists of 2 3-syllable dous, followed by a 4-syllable
dou. Respectively, if a poetry line has 7 syllables, it is a rule of thumb that
it consist of 2 2-syllable dous, followed by a 3-syllable dou reference phoneme
durations. These rules provide an excellent source to derive the phonemes
reference durations for a duration-informed LAA. Therefore, we apply the
duration aware probabilistic model (see 4.3), whereby syllable reference du-
rations are derived from these principles, instead of the music score. The
experiments in this Section are first presented in [ ].
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Figure 4.5: Overview of the steps of the lyrics-to-audio alignment system
aware of phoneme durations. Durations are derived from music knowledge:
the rules of durations of dous (syllable groups). The phonetic recognizer is a
duration-explicit HMM

4.5.1 Steps of a phonetic recognizer

A general overview of the proposed approach is presented in Figure 4.5. As
in all approaches presented in this thesis, first an audio recording is manually
divided into segments according to the coarse level complementary context -
the sections of the composition. In the case of Jingju as a section serves a
lyrics line or a couplet (two lines). Because lyrics in Jingju are derived from
poetry a lyrics line is in fact a lyrics sentence.

Training phoneme models The lyrics transcription in pinyin, divided
into sentences for each aria, is expanded to phonemes based on grapheme-
to-phoneme rules for Mandarin. A syllable-to-phoneme mapping table for
Mandarin is used. Together with native Chinese speakers in the CompMusic
team we created a mapping of pinyin syllables to the x-sampa phonetic alpha-
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bet '. Due to the small amount of training material, and due to their relatively
small ratio in total recording duration, most unvoiced consonants have been
grouped into one class. Due to lack of publicly available Mandarin speech cor-
pus, we trained the phoneme models on the Jingju a cappella dataset (3.2.4).
To assure a reasonable amount of training data, we trained in a 3-fold man-
ner, using 10 of the arias from the dataset. Each fold has 5 arias of around
40 minutes each. A mapping from the MLP-English to Mandarin was not
endeavored, because it seemed infeasible due to the audibly significant differ-
ences in the acoustics of the Mandarin vowels. Diphthongs and triphthongs
make the sound of vowels very dependent on the acoustic context.

The first 13 MFCCs and their delta and accelerations are extracted from
25ms audio frames with the hop size of 10ms from the a cappella singing. The
extracted features are then fed to fit a GMM with 40 components for each
phoneme. Phoneme-level annotations were used to train GMMs. Phoneme-
level annotations were used to isolate the segments for each phoneme. For
Jingju we prefer such a big number of mixture components to assure that it
fits the varying acoustic conditions of the big number of diphtongs.

4.5.2 Music-knowledge-based durations

In Jingju an actor has the option to sustain the vocal of the dou’s final syllable.
We will refer to the final syllable of a dou as key syllable. Therefore, reference
phoneme durations are derived according to the key syllables, as follows:

Firstly, each key syllable in a dou is assigned longer reference duration, while
the rest gets equal durations. Additionally, we observed in the dataset (see
Section 3.2.4) that usually the last key syllable of the last sentence in a banshi is
prolonged additionally. Thus we lenghtened additionally the reference syllable
duration of these last key syllables. Figure 4.6 depicts an example. According
to dou groups the 3rd, 6th and last syllable are expected to be prolonged.
Note that these expectations often do not hold - in this example they do not
hold for the 3rd syllable.

To apply the duration aware probabilistic model, we need to segment fur-
ther the syllable reference durations down to phonemes reference durations
R;. To this end, the reference durations of syllables are divided among their
constituent phonemes, according to the head-belly-tail division of syllables in
Mandarin [ , ]. We assign consonants a fixed reference duration

'Part of the mapping (for  diphthongs) rules can be found at
https://github.com/georgid/AlignmentDuration/blob/noteOnsets/src/for_jingju/syl2ph.txt
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R. = 0.3 seconds, while the rest of the syllable is distributed equally among
vowels. The reference durations R; are linearly scaled to a reference number
of frames according to the ratio between the number of phonemes in a lyrics
line and the duration of its corresponding audio segment. In comparison to
the model presented for OTMM, we opted for a separate standard deviation
d. for consonants, and d,, for vowels. Proper values for d. and d, assure that
a phoneme sung longer or shorter than the expected R; can be adequately
handled.

Iyuanlwanglna]lshillil ting | fongjduan| ren | chang I:’;';{)';‘
I e D D B e e reference

durations

Figure 4.6: An example of 10-syllable sentence, being last in a banshi (before
the banshi changes). Actual syllable durations are in pinyin, whereas reference
durations are in orange parallelograms (below).

4.5.3 Experiments

Evaluation is carried on the dataset, presented in Section 3.2.4. Alignment
accuracy is measured as the percentage of duration of correctly aligned regions
from total audio duration (see Figure 2.1 for an example). In the context of
this work a value of 100 means perfect matching of all Mandarin syllable
boundaries from evaluated audio. Accuracy is measured for each manually
segmented lyrics sentence and accumulated on total for all the recordings.

To define a glass ceiling accuracy, alignment was performed considering phoneme
annotations as an oracle for acoustic features. Considering phoneme annota-
tions, we set the probability of a phoneme to 1 during its time interval and 0
otherwise. We found that the median accuracy per a sentence of lyrics is close
to 100%, which means that the model is generally capable of handling the
highly-varying vocal durations of Jingju singing. Most optimal results were
obtained with o, = 0.7; o0, = 3.0

As a baseline we employed a standard HMM with Viterbi decoding with the
htk toolkit Young [1993]. For both HMM and DHMM, because of the small
size of the dataset, evaluation is done by cross validation on 3 folds with
approximately equal number of syllables. Phoneme models are trained on 10
of the arias and evaluated on a 5-aria hold-out subset. Table 4.2 shows that the
proposed duration model outperforms substantially the baseline alignment.
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oracle baseline DHMM

average 98.5 56.6 89.9
median per sentence  98.3 75.2 92.3

Table 4.2: Comparison of total oracle, baseline and DHMM alignment. Accu-
racy is reported as accumulate correct duration over accumulate total duration
over all sentences from a set of arias.

Looking at oracle, one can conclude that reaching closer to it can be achieved
in the future by improving the phoneme models, to capture phoneme identities
in a more deterministic way.
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4.6 Summary

In this chapter we proposed how to extend an HMM-based phonetic recognizer
for lyrics-to-audio alignment by utilizing lyrics duration information as a cue,
complementary to phonetic timbre. An advantage of the presented model is
that it allows room for certain temporal flexibility to handle cases of significant
deviation of sung vowels from the expected reference durations. We evaluated
on material from two music traditions: OTMM and Jingju.

For OTMM reference phoneme durations are inferred from sheet music. The
proposed model is tested on polyphonic audio recordings, as well as on an
acapella dataset. Results show that the explicit modeling of phoneme dura-
tions outperforms a baseline approach, unaware of durations, by absolute 10
percent on the level of lyrics phrases. Information about durations can serves
as a an important ’stepping stone’ for the alignment process especially in the
case of polyphonic audio, for which timbral features may not be deterministic
enough. .

For Jingju we derived the expected syllable durations from music rules, specific
for this music genre.



Chapter 5

Lyrics-to-audio Alignment
with Fine-level
Complementary Context

5.1 Introduction

In this chapter, we propose how to improve the baseline lyrics-to-audio align-
ment method by considering facets of fine-level context, complementary to
lyrics. We focus on one particular fine-level facet - the accents in the metrical
cycle (i.e. metrical accents). Metrical accents are an important mechanism
that guides the structure of a melodic phrase. However, because it is not
obvious to conceptualize the direct relation of metrical accents to syllable
transitions. Instead, we investigate the relation of metrical accents to the
positions of onsets (attacks) of sung notes in a melodic phrase. In this way,
the influence of metrical events on syllable transitions is represented implicitly
through its influence on note onsets, which are in turn influenced by metrical
events. In this sense, metrical accents can be considered a facet of comple-
mentary context of lyrics.

With this motivation, we propose in the first part of the chapter a vocal on-
set detector that considers the simultaneously occurring accents in a metrical
cycle. Vocal onset detection can be seen as a subtask of singing voice tran-
scription. The model we propose extends a state of the art probabilistic model
for beat tracking, in which a priori probability of a note at a specific position
in the metrical cycle (i.e. metrical accent) interacts with the probability of
observing a vocal note onset. Designing the transitions in the model in a

72
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compact manner is the first major contribution of this chapter.

In the second part of the chapter, we address the relation of the phoneme
transitions to simultaneously occurring vocal onsets. A well known fact is
that when singing voice switches from the current syllable to another one, si-
multaneously with the change of timbre a vocal note onset is perceived. More
precisely, the first voiced sound in a syllable bears the onset of a new note.
Because such relations between vocal onsets and phonemes have not been pre-
viously formalized in a computational study, the second major contribution
of this chapter is conceptualizing onset-aware phoneme transition rules. We
propose also how to integrate these transition rules into the transition model
of a HMM, which contributes to a more intuitive inference logic. To test the
feasibility of the proposed model, we aligned lyrics to audio utilizing manually
annotated onsets. Further, we explore how automatically detected vocal on-
sets can replace the onset annotations. Using automatic singing transcription
to detect the vocal onsets instead of score-informed methods reduces the need
of music scores. Evaluation is carried out on a cappella material from OTMM.

We start this chapter off by reviewing existing methods for singing voice tran-
scription and existing methods for tracking metrical accents (i.e. beats) (Sec-
tion 5.2). In Section 5.3 we explore how the accuracy of vocal onset detection
can be increased by simultaneously tracking beats in a metrical cycle. Finally,
in Section 5.4 we present a study of how the detected note onsets influence
the transitions between consecutive phonemes. The novel phoneme transi-
tion rules and their integration into the transitions of a HMM are presented
respectively in Sections 5.4.1 and 5.4.2.

5.2 Background

5.2.1 Automatic transcription of singing voice

The process of converting an audio recording into some form of musical no-
tation is commonly known as automatic music transcription. Current tran-
scription methods use general purpose models, which are unable to capture
the rich diversity found in music signals [ |. In particular,
singing voice poses a challenge to transcription algorithms because of its high
degree of expressive elements such as soft onsets, portamento and vibrato.
One of the core subtasks of singing voice transcription (SVT) is detecting
note events with a discrete pitch value, an onset time and an offset time from
the estimated time-pitch representation.



CHAPTER 5. LYRICS-TO-AUDIO ALIGNMENT WITH FINE-LEVEL
COMPLEMENTARY CONTEXT 74

In recent years there has been a substantial amount of work on the extraction
of pitch from both a cappella singing | , , , ]
and predominant singing voice from polyphonic music | , ].
This has paved the way to an increased accuracy of singing voice transcription
algorithms. Omne of the reasons for this is that a correctly detected melody
contour is a fundamental precondition for SVT.

A probabilistic note HMM is presented in [ |, where a note has
3 states: attack (onset), stable pitch state and silent state. The transition
probabilities are learned from data. Recently [ | suggested to

compact the musical knowledge into rules as a way to describe the observation
and transition likelihoods, instead of learning them from data. The authors
cover a range with distinct pitch from lowest MIDI C2 up to B7. Each MIDI
pitch is further divided into 3 sub-pitches, resulting in n = 207 notes with
different pitch, each having the 3 note states. Although being conceptually
capable of tracking onsets in singing voice audio with accompaniments, these
approaches were tested only on a cappella singing. In multi-instrumental
recordings, an essential first step is to extract reliably the predominant vocal
melody. One of the few works dealing with SVT for polyphonic recordings

[2016], [2016] rely on the algorithm of for

predominant melody extraction [ |. Time deviations
of sung vocal onsets from the onsets indicated in musical score are modeled in
a probabilistic way in [ |. As a primary step of the note

transcription stage, notes are segmented by a set of flamenco-specific onset
detection rules, based on pitch contour and volume characteristics.

5.2.2 Beat Detection

Recently a Bayesian approach, referred to as the bar-pointer model, has been
presented | ) ]. Tt describes events in music as being driven
by their current position in a metrical cycle (i.e. musical bar). The model
represents as hidden variables in a hidden Markov model (HMM) the current
position in a bar, the tempo, and the type of musical meter.

The work of [ | applied this model to recordings from
non-Western music, in order handle jointly beat and downbeat tracking. The
authors showed that the original model can be adapted to different rhythmic
styles and time signatures, and an evaluation is presented on Indian, Cretan
and Turkish music datasets.

A modification of the bar-tempo state used in this work that optimizes its
size, was later suggested by [ ]
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5.3 Beat-aware note onset detection

Metrical accents are a facet of complementary context that defines the rhyth-
mic backbone of a melodic phrase. As such, metrical accents are an important
mechanism behind the structure of a melodic phrase. Therefore it is worth
studying how the transitions between syllables and words interacts with these
accents. By metrical accents we will refer to notes that are emphasized as a
result of the context of the musical meter. Naturally, accents occur on the
beats, whereby downbeats (the first beat in a meter) will be perceived as be-
ing stronger accentuated. Detecting the times of vocal note onsets can benefit
from automatically detected events from complementary musical facets, such
as musical meter. In fact, the accents in a metrical cycle determine to a large
extent the temporal backbone of singing melody lines. Studies on symbolic
music data showed that the timestamps where vocal note onsets occur are
influenced by the their position in a metrical cycle | , , ,

] .

Vocal onsets are usually soft, in contrast to some instruments with percussive
onsets, which makes it hard to be automatically located. Vocal onset detection
in multi-instrumental music is, in fact, one of the hardest MIR problems.
Determining their exact onset timestamp is even harder in OTMM because of
expressive singing phenomena: melodic onsets are often approached by slurs
and melismas. Therefore any complementary information can be an important
"stepping stone’ for increased detection accuracy.

In this section we make a hypothesis that the knowledge of the current position
in a metrical cycle (i.e. metrical accent) can improve the accuracy of vocal
note onset detection. To this end we propose a novel probabilistic model to
jointly track beats and vocal note onsets.

5.3.1 Model Architecture

The proposed approach extends the beat and meter tracking model, presented
in [ |. We adopt from that model the variables for the po-
sition in a metircal cycle (bar position) ¢, the instantaneous tempo (b and the
rhythmic pattern r, related to the metrical cycle type. We also adopt the ob-
servation model, which describes how the metrical accents (beats) are related
to an observed onset feature vector ys. All variables and their conditional
dependencies are represented as the hidden variables in a DBN (see Figure

=

5.1).

In this chapter we study how the a priori probability of a note at a specific
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metrical accent interacts with the probability of observing a vocal note onset.
To represent that interaction we add a hidden state for vocal note n, which
depends on the current position in the metrical cycle. The probability of
observing a vocal onset is derived from the emitted pitch y, of the vocal
melody.

In a DBN, an observed sequence of features derived from an audio signal
y1.x = {y,..,yx} is generated by a sequence of hidden (unknown) variables
x1.x = {1, ...,z }, where K is the length of the sequence (number of audio
frames in an audio excerpt). The joint probability distribution of hidden and
observed variables factorizes as:

P(21.1¢, y1:xc) = P(w0) I P(wg|wp—1) P(yx|zr) (5.1)

where P(x¢) is the initial state distribution; P(x|zx—_1) is the transition model
and P(yg|zy) is the observation model.

5.3.2 Hidden variables

At each audio frame k, the hidden variables describe the state of a hypothetical
bar pointer xy = [k, ¢, nk, Tk], representing the instantaneous tempo, the bar
position, the note state, and a rhythmic pattern indicator, respectively.

Tempo state qﬁ and bar position state ¢

The bar position ¢ points to the current position in the metrical cycle (bar).
The instantaneous tempo ¢ encodes how much bar positions the pointer ad-
vances from the current to the next time instant. To assure feasible com-
putational time we relied on the combined bar-tempo efficient state space,
presented in [ |. To keep the size of the bar-tempo state space
small, we input the ground truth tempo for each recording, allowing qﬁ to de-
viate within +10 bpm from it. Another motivation to limit the tempo in such
a way is avoiding possible octave errors in the beat tracking, which would not
be desirable for beat-aware note onset detection. This yields around 100-1000
states for the bar positions within a single beat (around 10K for usuls).

Note state ny

The note states represent the temporal segments of a sung note. They are a
modified version of these suggested in the note transcription model of
[ ]. We adopted the first two segments: attack region (A), stable pitch
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Figure 5.1: DBN for the proposed beat and vocal onset detection model.
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region (S). We replaced the silent segment with non-vocal state (N). Because
full-fledged note transcription is outside the scope of this work, instead of 3
steps per semitone, we used for simplicity only a single one, which deteriorated
just slightly the note onset detection accuracy. Also, to reflect the pitch range
in the datasets, on which we evaluate, we set as minimal MIDI note E3 covering
almost 3 octaves up to B5 (35 semitones). This totals to 105 note states.

Rhythmic pattern r;

A rhythmic patterns indicates the pattern of accents in a metrical cycle. For
simplicity we use only one rhythmic pattern for each metric cycle. Let also
O(r) denote the number of beats in a rhythmic pattern r. Since the metrical
type for each recording from the dataset is known a priori, a hidden state for
the rhythm pattern is not modeled explicitly.

To be able to represent the DBN as a hidden Markov model, the bar-tempo
efficient state space is combined with the note state space into a joint state
space z. The joint state space is a cartesian product of the two state spaces,
resulting in up to 10K x 105 = 1M states.

5.3.3 Transition model

Due to the conditional dependence relations in Figure 5.1 the transitional
model factorizes as

P(zg|rg-1) = P(¢r|dr—1) x (5.2)

P(¢p|dr—1,Pk-1) X P(ng|ng—1, k)
The tempo transition probability p(dﬁk]d)k,l) and bar position probability
P(k|dr—1, Pr—1) are the same as in [ |. Transition from one
tempo to another is allowed only at bar positions, at which the beat changes.
This is a reasonable assumption for the local tempo deviations in the analyzed
datasets, which can be considered to occur relatively beat-wise.

Note transition probability

The probability of advancing to a next note state is based on the transitions
of the note-HMM, introduced in [2015]. Let use briefly review it:
From a given note segment the only possibility is to progress to its following
note segment. To ensure continuity each of the self-transition probabilities
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is rather high, given by constants c4, cg and ¢y for A, S and N segments
respectively (c4=0.9; c5=0.99; cx = 0.9999). Let Py, a; be the probability of
transition from non-vocal state N; after note i to attack state A; of its following
note j. The authors assume that it depends on the difference between the pitch
values of notes i and j and the difference can be approximated by a normal
distribution centered at change of zero ( [ ], Figure 1.b). This
implies that small pitch changes are more likely than larger ones. Now we can
formalize their note transition as:

(PNiAj, ng—1=N; np=A4A;

CN, ng—1 =ng = N;

1—ca, np—1=4A; np=25;

p(ning—1) = < ca, np—1=ng =4 (5.3)
1—05 nkzlei nk:Nj

cs, Ng—1="ng =5

0 else

Note also that for the self-transitions in non-vocal states IV; it should hold
that

en=1-> Pna, (5.4)
7

In this study, we modify Py, 4, to allow vacation in time, depending on the
current bar position ¢y.

P, 4,0(ér), np—1=N; np=A4,;
p(nklng—1,08) = ¢ 1 = O(dx) >_; Pnia;, nk—1 = nk = N; (5.5)

where

O(¢k) : function weighting the contribution of a beat adjacent to current bar
position ¢y

The non-vocal self-transition probability is updated so that all non-vocal out-
bound transitions sum to 1. The transition probabilities in all the rest of the
cases remain the same.

We explored two variants of the weighting function O(¢y) :
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Time-window redistribution In performance singers often advance or de-
lay slightly note onsets in relation to the beats. The work

[ | presented an idea of how to describe off-beat time-deviations of vocal
onsets by stochastic distribution. Similarly, we introduce a normal distribu-
tion Ny, centered around 0 to re-distribute the importance of beats over a
time window around a beat. Let bi be the beat, closest in time to a current
bar position ¢p. Now:

O(¢r) = [No,o (d(¢k, bi))] " e(b,) (5.6)

where

e(b) : probability of a note onset co-occurring with the b beat in the metrical
cycle (b €6(r))

w : sensitivity of vocal onset probability to beats

d(¢k, by) : the distance from current bar position ¢y to closest beat position
by,

Equation 5.5 means essentially that the original Py, 4, is scaled accordingly
to how close in time to a beat it is.

Simple weighting The transition probability Py, 4; is modified only at beat
positions, i.e. the weighting function is set to the peak of Ny, only at bar
positions corresponding to beat positions, and to 1 elsewhere.

[Noo(0)]"e(br),  d(dk,bk) =0

5.7
1 else (5:7)

O(¢r) = {

5.3.4 Observation models

The observation probability P(yg|zx) describes the relation between the hid-
den states and the (observed) audio signal. In this work we make the as-
sumption that the observed vocal pitch and the observed metrical accent are
conditionally independent from each other. This assumption may not hold in
cases when energy accents of singing voice, which contribute to the total en-
ergy of the signal, are correlated to changes in pitch. However, for music with
percussive instruments the importance of singing voice accents is diminished
to a significant extent by percussive accents. Now we can rewrite Eq. 5.1 as
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P(xlzKa y{;K’ yzle) =

Pao) T Pl op 1) Pl ) P2 2) (58)

This means essentially that the observation probability can be represented as
the product of the observation probability of a metrical accent P(y,}: |xg) and
the observation probability of vocal pitch P(yp|xs).

Accent observation model

In this paper for P(y,{]a:k) we train GMMs on the spectral flux-like feature
yf, extracted from the audio signal using the same parameters as in

[ ] and [ ]. The feature y/ summarizes the energy
changes (accents) that are likely to be related to the onsets of all instruments
together. The probability of observing an energy change depends on the po-
sition in the bar and the rhythmic pattern, P(y,’:]a:k) = P(y,’:!%, k)

Pitch observation model

The pitch probability P(y;|xx) reduces to P(y,|n), because it depends only
the current note state. We adopt the idea proposed in [ ]
that a vocal note state emits pitch yP according to a normal distribution,
centered around its average pitch. The standard deviation of stable states
and the one of the onset states are kept the same as in the original model,
respectively 0.9 and 5 semitones. The melody contour of singing is extracted
in a preprocessing step. We utilized an algorithm, extended from

[ | and tailored to Turkish makam. Each audio frame k gets
assigned a pitch value and probability of being voiced vy [ ].
Based on frames with zero probabilities, one can infer which segments are
vocal and which not. Since correct vocal segments is crucial for the sake of
this study and the voicing estimation of these melody extraction algorithms
are not state of the art, we preferred to rely on manual vocal annotations and
thus assigned vy = 0 for all frames, annotated as non-vocal.

For each state the observation probability P(yi!nk) of vocal states is normal-
ized to sum to vi (unlike the original model which sums to a global constant
v). This leaves the probability for each non-vocal state be 1-vk/n.
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5.3.5 Learning model parameters
Accent observation model

We trained the accent probability patterns P(y,J: |¢k, 71) on the training sub-
set of the multi-instrumental vocal onsets OTMM dataset (see section 3.2.3).
For each usul we trained one rhythmic pattern by fitting a 2-mixture GMM
on the spectral-flux-like feature vector y/. Analogously to

[ | we pooled the bar positions down to 16 patterns per beat. The feature
vector is normalized to zero mean, unit variance and taking moving average.
Normalization is done per song.

Probability of note onset

The probability of a vocal note onset co-occurring at a given bar position
e(b) is obtained from studies on sheet music. Many notes are aligned with
a beat in the music score, meaning a higher probability of a note at beats
compared to inter-beat bar positions. A separate distribution e(b) is applied
for each different metrical cycle. For the diiyek and aksak usuls e(b) has been
inferred from a recent study [ , Figure 5. a-c]. The authors used
a corpus of music scores, on data from the same corpus, from which we derived
the dataset. The patterns reveal that notes are expected to be located with
much higher likelihoods on those beats with percussive strokes than on the
rest.

5.3.6 Inference
With manually annotated beats

We explored the option that beats are given as input from a preprocessing
step (i.e. when they are manually annotated). In this case, the detection
of vocal onsets can be carried out by a reduced model with a single hidden
variable: the note state. The observation model is then reduced to the pitch
observation probability. The transition model is reduced to bar-position aware
transition probability a;;(k) = p(ny = jlng—1 = i,¢x)(see Eq. 5.5). To
represent this time-dependent self-transition probabilities we we utilize time-
varying transition matrix. It falls in the general category of variable-time
HMMs (VITHMNMs) [ ]. The standard transition probabilities
in the Viterbi maximization step are substituted for the bar-position aware
transitions a;;(k)
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0k(j) =  max bp_1(i) aij(k) bj(Ok) (5.9)
i€(j,5—1)

Here b;(Oy,) is the observation probability for state ¢ for feature vector Oy and
0k(j) is the probability for the path with highest probability ending in state
j at time k (complying with the notation of [ , 111. B

Full model

We obtain the most optimal state sequence z1.x by decoding with the well-
known Viterbi algorithm. A Beat is detected when the bar position variable
hits one of (r) positions of beats within the metrical cycle. A vocal note
onset is detected when the state path enters an attack note state after being
in non-vocal state.

Note that the size of the state space poses a memory requirement. A recording
of 1 minute has around 10K frames at a hopsize of 5.8 ms. To use Viterbi thus
requires to store in memory pointers to up to 4G states, which amounts to
40G RAM (with uint32 python data type).

5.3.7 Experiments

Vocal detection is evaluated on 5 1-minute excerpts from each of the two usuls
from the multi-instrumental vocal onsets OTMM dataset (see Section 3.2.3),
totaling in 10 minutes of audio. The hopsize of computing the spectral flux
feature, which resulted in most optimal beat detection accuracy in

[ ] is hy = 20ms. In comparison, the hopsize of predominant vocal
melody detection is usually of smaller order i.e. h, = 5.8 ms (corresponding
to 256 frames at sampling rate of 44100). Preliminary experiments showed
that extracting pitch with values of h, bigger than this values reasonably
deteriorated the vocal onset accuracy. Therefore in this work we used hopsize
of 5.8 ms for the extraction of both features. The time difference parameter
for the spectral flux computation remains unaffected by this change in hopsize,
because it can be set separately.

As a baseline we run the algorithm of [ | with the 105 note
states, we introduced in Section 5.3.2'. The note transition probability is
the original as presented in Eq. 5.3, i.e. not aware of beats. Note that
in [ | the authors introduce a post-processing step, in which
onsets of consecutive sung notes with same pitch are detected considering their

'We ported the original VAMP plugin implementation to python
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meter beat Fmeas | P R | Fmeas
Mauch - 33.1 | 31.6 | 31.6
diiyek | Ex-1 - 404 | 39.5 | 39.0
Ex-2 86.4 378 | 36.1 | 36.1
Mauch - 42.1 1 369 | 37.9
aksak | Ex-1 - 48.4 | 39.1 | 43.0
Ex-2 72.9 45.0 | 39.0 | 40.3

Table 5.1: Evaluation results for Experiment 1 (shown as Ex-1) and Exper-
iment 2 (shown as Ex-2). Mauch stands for the baseline, following the ap-
proach of [ ]. P, R and Fmeas denote the precision, recall
and f-measure of detected vocal onsets. Results are averaged per usul.

intensity difference. We excluded this step in all system variants presented,
because it could not be integrated in the proposed observation model in a
trivial way. This means that, essentially, in this paper cases of consecutive
same-pitch notes are missed, which decreases somewhat the recall compared
to the original algorithm.

Evaluation metrics

Beat detection Since improvement of the beat detector is outside the scope
of this study, we report accuracy of detected beats only in terms of their f-
measure. This serves solely as reference to existing work?. The f-measure can
take a maximum value of 1, while beats tapped on the off-beat relative to
annotations will be assigned an f-measure of 0. We used the default tolerance
window of 70ms, also applied in [ ].

Vocal onset detection We measured vocal onset accuracy in terms of pre-
cision and recall. Unlike a cappella singing, the exact onset times of singing
voice accompanied by instruments, might be much more ambiguous. To ac-
commodate this fact, we adopted the tolerance of ¢t = 50ms, used for vocal
onsets in accompanied flamenco singing by [ ]. Note
transcription accuracy remains outside the scope of this study.

2Note that f-measure is agnostic to the phase of the detected beats, which is clearly not
optimal.
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Experiment 1: With manually annotated beats

As a precursor to evaluating the full-fledged model, we conducted an exper-
iment with manually annotated beats. This is done to test the general fea-
sibility of the proposed note transition model (presented in 5.3.3), unbiased
from errors in the beat detection.

We did apply both the simple and the time-redistribution weighting schemes
for ©(¢y), presented respectively in Eq. 5.7 and in Eq. 5.6. In preliminary
experiments we saw that with annotated beats the simple weighting results
in much worse onset accuracy than the time-redistributed one. Therefore the
experimental results reported are conducted with the latter weighting scheme.

We have tested different pairs of values for w and o from Eq. 5.5.The onset
detection accuracy peaked at w=1.2 and ¢ = 30ms. Table 5.1 presents the
accuracies compared to the baseline. Inspection of detections showed that the
proposed model added some onsets around beats, which are missed by the
baseline.

Experiment 2: Full model

To assure computational efficiency, we did an efficient implementation of the
joint state space®. The average f-measure of detected beats for the different
metrical cycles can be seen in Table 5.1. The beat tracking accuracy for the
Turkish usuls is on par with the results reported in [ ,
Table 1.a-c, R=1]. The results reported are only with the simple weighting
scheme for the vocal note onset transition model. Table 5.1 shows a reasonable
improvement of vocal onset detection accuracy for both usuls.

For simple weighting, adding the automatic beat tracking results in improve-
ment over the baseline, whereas this was not the case with manual beats. This
suggests that the concurrent tracking of beats and vocal onsets is a flexible
strategy and can accommodate some off-beat vocal onsets. We observed also
that the vocal onset accuracy is on average almost the same as that with
manual beat annotations (done with the time-redistribution weighting).

3We extended the python toolbox for beat tracking
https://github.com/CPJKU/madmom/
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5.4 Omnset-aware lyrics-to-audio alignment

In the previous section we investigated the relation of metrical accents to the
positions of vocal onsets in a melodic phrase. We proposed a method for
automatic vocal onset detection in a way aware of metrical accents.

Using as input the detected vocal onsets, in this chapter we propose a strategy
to improve LAA by representing the interaction of vocal onsets to syllable
transitions. In this way the influence of metrical events on syllable transitions
is represented implicitly through its influence on vocal note events, which are
in turn influenced by metrical events. The note onset is the initial segment
of the three temporal segments of a vocal note: onset, sustain and release.
The other vocal events - sustain and release (offset) also have undoubtedly
impact on the transition of phonemes. However, due to the time limitation
of this study, we considered only the impact of vocal note onsets. The reason
to focus on note onsets among the three vocal note events is that onsets have
arguably the more evident influence on syllable transitions.

As we saw in the previous chapter, automatically determining the time po-
sitions of transitions between sung syllables can be greatly assisted by infor-
mation from the music score. Similarly, by relying on music score, one can
infer automatically the timestamps of vocal note onsets. Such timestamps
are estimated reasonably well by a recent study on automatic score-to—audio
alignment [ , chapter 6]. In contrast, with the help of automatic
singing voice transcription, vocal note onsets can be derived without the need
of music score. Since we intend that the proposed methodologies can be ap-
plicable for material with no music scores available, we preferred to apply
automatic vocal onset detection instead of score-to-audio alignment. Detect-
ing vocal onsets in any setting is arguably one of the hardest MIR problems.
Still for the study of onset-aware phoneme transitions, it is important that on-
sets timestamps are as correct as possible. To assure correctly detected onset
timestamps, experiments in this section are conducted on a cappella material
from OTMM.

A general overview of the proposed approach is presented in Figure 5.2. As
in all approaches presented in this thesis, first an audio recording is manually
divided into segments according to the coarse level complementary context -
the sections of the composition. The boundaries of vocal section (one of zemin,
nakarat, meyan) are taken from manual annotations. An audio recording
and its corresponding lyrics are input. The vocal note onsets (automatically
detected or manually annotated) together with phoneme transition rules are
fed as input to the transition model. The phonetic recognizer, guided by the
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phoneme transition rules, returns start and end timestamps of aligned words.
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Figure 5.2: Overview of the modules of the proposed approach. The transition
model is derived from phoneme transition rules and onset positions from the
singing voice transcription. Then it input to the phonetic recognizer, together
with the phonemes network and the features, extracted from audio segments.

5.4.1 Phoneme transition rules

The transition to a consecutive lyrics syllable implies a concurrent transition
to a new note. The onset of the new note occurs usually at the start of the
first voiced sound in the syllable. If we look at this reversely, the occurrence of
note attack in a sung melody can signal a phonetic transition. The transition
depends on the phoneme types, since, for example, a new note cannot start
at unvoiced consonants. Taking advantage of that fact, we formulate rules
that guide the transition between consecutive phonemes when a note onset
is present. In general, we consider note onsets (attack) events as a comple-
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mentary context of phonetic timbre. Similar phoneme transitions rules have
been used successfully to enhance the naturalness of synthesized singing voice
[ , ]. The onset aware phoneme transitions rules, we designed,
have been presented in [ ].

We formalize transition rules described in this Section for Turkish language,
in which each syllable has exactly one vowel. In this sense, the rules could be
transferred to another language with single-vowel syllables. *.

Let V denote a vowel, C denote a consonant and L denote a vowel, liquid
(LL, M, NN) or the semivowel Y. Rules R1 and R2 represent inter-syllable
transition, e.g. phoneme i is followed by phoneme j from the following syllable:

Rl: i=V j=-L

] ] (5.10)
R2: i=C j=1L

For example, for rule R2 if a syllable ends in a consonant, a note onset im-
poses with high probability that a transition to the following syllable is done,
provided that it starts with a vowel. Same rule applies if it starts with a
liquid, according to the observation that pitch change takes place during a
liquid preceding the vowel [ , timing of pitch change]. Rule R2
is valid also for intra-syllabic phoneme patterns, together with rule R3:

R3: i=V j=C (5.11)

Essentially, if the current phoneme is vocal and the next is non-voiced (e.g.
R1, R3) the transition no next phoneme is discouraged. An example of the
intra-syllable R2 can be seen for the syllable KK-AA in Figure 5.3 where the
note onset triggers the change to the vowel AA. Unlike that, an onset for
example, to the syllable Y to onset at Y for the syllable Y-E-T.

5.4.2 Transition model

The phoneme transitions are dependent on the current note state. When
a note is in its onset phrase, the transition between phonemes is different

4 Among single-vowel syllabic languages are also Japanese and to some extent Italian
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Figure 5.3: Ground truth annotation of syllables (in orange/top), phonemes
(in red/middle) and notes (with blue/changing position). Audio excerpt cor-
responding to word sikayet with syllables SH-1Y, KK-AA and Y-E-T.

compared to when a note is in a non-onset phase. This dependence can be
represented in a DBN in Figure 5.4.
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Figure 5.4: A DBN for the simultaneous musical note and phoneme states. A
phoneme transition is conditoined on the vocal note state. If a note onset is
present the likelihood of transition is modifies according to what the current
hi_1 and its following hj, phoneme are.

For particular states, transitions are modified depending on the presence of
time-adjacent note onset. Let &’ be the timestamp of the onset Any = 1,
which is closest to given time k. Now the transition probability can be rewrit-
ten as

i —g(k,k)q, RlorR3
az‘j(k?):{a] alk K')g o (5.12)

aij +g(k, k' )q, R2

R1 to R3 stand the phoneme transition rules, which are applied in the phonemes
network by picking the states 7 and j for two consecutive phonemes. The term
q is a constant whereas g(k, k') is a weighting factor sampled from a normal
distribution with its peak (mean) at k’:

g(k, k) = (5.13)

else

{f(ka k/a02) ~ N(k/702)7 |k - k/| <o
0
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Since singing voice onsets are regions in time, they span over multiple con-
secutive frames. To reflect that fact, g(k,k’) serves to smooth in time the
influence of the discrete detected Anyg, where o has been selected to be 0.075
seconds. In this way an onset influences a region of 0.15 seconds - a value we
found empirically to be most optimal. Furthermore, this allows to handle
slight timestamp inaccuracies of the estimated note onsets.

5.4.3 Inference

The most likely state sequence is found by means of a forced alignment Viterbi
decoding. Similarly to the inference for metrical-accent aware detection of vo-
cal onsets (see Section 5.3.6) we apply a variable-time HMM decoding. The
standard transition probabilities in the Viterbi maximization step are substi-
tuted for the onset aware transitions a;;(k) from Eq. 5.12:

0k(j) =  max 6p_1(i) aij(k) bj(Ok) (5.14)
i€(j,J-1)

5.4.4 With automatically detected onsets

We employed the note onset detection methodology developed for flamenco
singing [ , ]. However, this algorithm does not allow
to be integrated in a HMM. Therefore note onset segmentation is performed
as preprocessing step to the actual decoding of the phoneme sequence.

To obtain reliable estimate of singing note onsets, we adapt the automatic
singing transcription method, developed for polyphonic flamenco recordings

[ |. It has been designed to handle singing with high
degree of vocal pitch ornamentation. We expect that this makes it suitable
for material from OTMM singing having heavily vibrato and melismas, too.
We replace the original first stage predominant vocal extraction method with
the vocal pitch detection method of [2014], which we described in
Section 3.3.2.

The algorithm of [ ] considers two cases of onsets:
interval onsets and steady pitch onsets. A Gaussian derivative filter detects
interval onsets as long-term change of the pitch contour, whereas steady-pitch
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onsets are inferred from pitch discontinuities. As in the current work phoneme
transitions are modified only when onsets are present, we opt for increasing
recall at the cost of losing precision. This is achieved by reducing the value of
the parameter cF': the minimum output of the Gaussian filter. The extracted
note onsets are converted, as in the case of manually annotated onsets, to a
binary onset activation at each frame An; = (0,1).

5.4.5 Experiments

With manually annotated onsets

The above presented DBN has the drawback that the integrity of phoneme
transitions depends largely on the accuracy of the detected note onsets. Un-
fortunately, as we saw in Section 5.2 note onsets could not be estimated from
polyphonic recordings with high accuracy. To assure reasonable accuracy, we
utilized manually annotated note onsets. This is done to test the general fea-
sibility of the proposed model, unbiased from errors in the note segmentation
algorithm, and to set a glass-ceiling alignment accuracy.

Firstly, lyrics-to-audio alignment is run on 6 recordings with manually anno-
tated MIDI notes, which serve as an oracle for note onsets. We have tested
with different values of ¢ from Eq. 5.12 achieving best accuracy of 83.5% at
q = 0.23, which is used on all further reported experiments.

With automatically detected onsets

As a baseline we conduct alignment of the test dataset with unaffected phoneme
transition probabilities, e.g. setting all An; = 0, which resulted in alignment
accuracy of 70.2%. Further, we measured the impact of the note segmentation
approach of [2016] (introduced in Section 5.2), varying on-
set detection recall by changing the minimum output of the Gaussian filter
(controlled by the parameter cF'). Table 5.2 summarizes the alignment accu-
racy with VITHMM depending on recall. On a cappella best improvement over
the baseline is achieved at recall of 72.3% (at ¢F = 3.5). This is somewhat
lower than the best recall of 81-84% achieved for flamenco

[ |. Setting recall higher than that degraded performance because there
are too many false alarms, resulting in forcing false transitions.

Figure 5.5 allows a glance at the level of detected phonemes: the baseline
HMM switches to the following phoneme after some amount of time, similar
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cF ) 4.5 4.0 3.5 3.0

OR 572 59.7 66.8 723 73.2
a cappella

AA 711 733 745 75.7 720

OR 528 582 659 662 684

polyphonic
AA 612 63.3 64.8 64.6 60.3

Table 5.2: VIHMM performance on a cappella and polyphonic audio, de-
pending on onset detection recall (OR). Alignment accuracy (AA) is reported
as a total for all the recordings.

for all phonemes. One reason for this might be that the waiting time in a state
in HMMs with a fixed transition matrix cannot be randomly long Yu [ ]. In
contrast, for VITHMM the presence of note onsets at vowels activates rules R1
or R3, which allows waiting in the same state longer, as there are more onsets
(for example AA from the word SH-IY-KK-AA-Y-E-T has five associated
onsets). We chose to modify c¢F' because setting it to lower values increases
the recall of interval onsets: Often in our dataset several consecutive notes
with different pitch correspond to the same vowel. In fact, it is characteristic
of Turkish classical music that a single syllable may have a complex melodic
progression spanning many notes (up to 12 in our dataset) [ , ].
However, for cases of vowels held long on same pitch, conceptually VITHMM
is not capable of bringing any benefit. This is illustrated in Figure 5.5 by the
prematurely detected end boundary of E from the word SH-IY-KK-AA-Y-E-
T.
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SH Y KK| AA Y E T AA L AA -

lonsets.
(38)
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(39)

SH Iy g AA Y E T AA LL AA

Figure 5.5: Example of boundaries of phonemes for the word sikayet (SH-IY-
KK-AA-Y-E-T): on top: spectrum and pitch; then from top to bottom: ground
truth boundaries, phonemes detected with HMM, detected onsets, phonemes
detected with VITHMM; (excerpt from the recording 'Kimseye etmem sikayet’
by Bekir Unluater).
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5.5 Summary

In this chapter we assessed the contribution of explicitly representing met-
rical accents (fine-level complementary context) for improving the tracking
of sung lyrics. We studied the relation of metrical accents to lyrics in two
steps: how metrical accents interact with vocal onsets and how the latter, in
turn, interact with phoneme transitions. In this way, the influence of metrical
events on syllable transitions is represented implicitly through its influence on
note onsets, which are in turn influenced by metrical events. Therefore, we
presented two separate probabilistic models for two separate tasks: metrical-
accent aware vocal onset detection and onset aware lyrics-to-audio alignment.
We carry out an evaluation on material from OTMM.

Metrical-accent aware vocal onset detection We strived to improve
the automatic vocal note onset detection by incorporating information about
their position in a metrical cycle (i.e. metrical accents). To this end we
proposed a DBN for the simultaneous tracking of metrical position and vocal
onsets. The main contribution is that the approach integrates in one coherent
model two existing state of the art probabilistic approaches for different tasks:
beat tracking and singing voice transcription. We carried out an evaluation
on a multi-instrument dataset from OTMM with two different usul types.
Results confirmed that the proposed model reasonably improves vocal note
onset detection accuracy compared to a baseline model that does not take the
metrical position into account.

Detecting vocal onsets is polyphonic audio is arguably one of the hardest MIR
problems. Although, not the goal of this thesis, the presented DBN can be
used for full-fledged singing voice transcription.

Onset aware lyrics-to-audio alignment. We extended the phonetic
recognizer approach by modeling the singing voice onsets, occurring simulta-
neously with phoneme transitions. We conceptualized onset-aware phoneme
transition rules and proposed how to integrate them into the transition model
of the phonetic recognizer. The method was tested on the a cappella OTMM
dataset. The new model resulted in an improvement of absolute 5.5 percent
over baseline unaware of singing voice onsets. In particular, due to rules dis-
couraging premature transition, the states of sustained vowels were allowed to
have longer durations. Results showed that the proposed model outperforms
a baseline approach unaware of onset transition rules. This is, to our knowl-
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edge, the first attempt to model explicitly onsets from the vocal melody in the
LAA decoding process itself.



Chapter 6

Conclusions

Broadly, this dissertation aimed to build culture-aware and domain-specific
MIR approaches using probabilistic models for tracking lyrics in music au-
dio signals. We proposed specific probabilistic models to represent how the
transitions between consecutive sung phonemes are conditioned by different
facets of music-domain knowledge. The models we build take into account
some of these facets and consider them as 'temporal complementary context’
that exists around lyrics.

In order to evaluate the potential of the proposed models, we built a com-
plete methodology for the automatic alignment of lyrics to an audio recording
(LAA) and evaluated its performance by the accuracy of the LAA. As a base-
line we chose a phonetic recognizer based on hidden Markov models (HMM):
a methodology applied in most of hitherto computational studies on lyrics
tracking. We applied the proposed methodologies on compMusic datasets of
OTMM and Beijing opera. These music traditions present a challenge to LAA
because of their expressive singing style and its resulting high degree of tempo-
ral variability. The low accuracy of the baseline phonetic recognizer confirmed
that.

We built two separate extensions of the phonetic recognizer: one for middle-
level complementary context and a separate one one for fine-level context. As
middle-level we modeled the influence of the structure of a melodic phrase on
the phoneme transitions of lyrics. As to the fine-level context, modeled how
phoneme transitions interact with the position of the accents in the metrical
cycle.

97
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6.1 Importance of complementary context

We represent events from complementary context as components in a DBN
and their influence on the lyrics as a hierarchical dependence between the
components. The presented solutions provide an alternative to the prevailing
music-knowledge-uninformed MIR approach to modeling musical aspects, re-
lated to lyrics, in which the extracted acoustic features are agglomerated in a
bottom-up fashion.

6.1.1 Middle-level context

We first proposed a phonetic recognizer that utilizes lyrics duration informa-
tion as a cue, complementary to phonetic timbre. It is representing how the
position of a lyrics syllable in a melodic phrase influences its duration. An
advantage of the presented model is that it allows room for certain tempo-
ral flexibility to handle cases of significant deviation of sung vowels from the
expected reference durations. Evaluation showed that syllable durations is
the facet of complementary context with biggest contribution to improvement
of LAA. For Jingju the relative improvement was somewhat bigger than for
OTMM. One explanation is the very long durations of sung vowels in Jingju,
which is a challenge to conventional HMMs.

6.1.2 Fine-level context

In this thesis we focused on one particular fine-level facet - the accents in
the metric cycle. We studied the relation of metrical accents to lyrics in two
steps: how metrical accents interact with vocal onsets and how the latter, in
turn, interact with phoneme transitions. Therefore, we devised two separate
probabilistic models for two separate tasks: vocal-onset aware lyrics-to-audio
alignment and metrical-accent aware vocal onset detection. We tested the
model on OTMM. Results confirmed that its well-grounded rhythmic frame-
work provided an excellent piece of domain knowledge context.

For vocal-onset aware lyrics-to-audio alignment we conceptualized phoneme
transition rules that consider in parallel the presence of note onsets. We
integrated these into the transition model of the phonetic recognizer. Results
showed that the improvement of alignment is not very big even with manually
annotated onsets. However, the derived rules are an important contribution
that can be easily transferred to other languages and singing styles.

A limitation of the duration aware model is the requirement for external source
of syllable reference durations - usually the music scores. To reduce this lim-
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itation, we built a separate methodology to extract vocal note onsets auto-
matically. Based on evidence that in OTMM the position of note events in a
melodic phrase is influenced by the position in a metrical cycle, we designed
a model for simultaneously tracking vocal onsets and metrical accents. Vo-
cal onset detection in multi-instrumental music is, in fact, one of the hardest
MIR problems. It is even harder in OTMM because of the expressive singing
phenomena: melodic onsets are often approached by slurs and melismas. The
complementary metrical accent context proved to be an important ’stepping
stone’: the accuracy of vocal onset detection was increased reasonably for two
different usul types. We believe that the biggest potential of the model lies in
its generalisibility - applying it to singing material with different singing style
and meter is as easy as tuning its parameters.

The most important advantage of the metric-accent models is that they do not
necessarily depend on external sources of information such as music scores.

6.2 Summary of contributions

A summary of the specific contributions from the work presented in the dis-
sertation are listed below.

6.2.1 Musicological contributions

We hope that the outcomes of this work will motivate researchers to use more
often music context knowledge in future work. Some particular contributions
are:

o We showed that a model of complementary context can be adapted to a
different music tradition (the duration aware model has been applied to
two different traditions). None of the facets of complementary context
modeled are unique for a music tradition. This means that transferring
the model to another music tradition is a matter of reducing the music
knowledge context to an appropriate set of rules/patterns.

e We compiled several datasets of OTMM and Jingju with annotations of
different music facets including lyrics, vocal sections, onsets of singing
voice, beats.

e The most successful LAA approach developed, the syllable-duration
aware LAA was integrated into Dunya-web. It can enable musicologists
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to track not only the aligned lyrics, but also complementary musical
facets and music-specific phenomena.

6.2.2 Technical and scientific contributions

¢ We conceptualized the interaction of phoneme transitions to other mu-
sical facets. These interactions were represented as hidden variables and
their dependences in DBNs. DBNs are an elegant modeling tool (we
presented illustrated the model dependencies in diagrams)

¢ Inference in DBNs is computationally demanding. Therefore, we pro-
posed several implementation simplifications.

o All the methodologies presented in this thesis are implemented as modu-
lar and easy-to-extend software. A special focus has been put on making
them reproducible. To our knowledge this is the first open source soft-
ware for lyrics-to-audio alignment that is based on computational study.

Applying insights and methodologies from this culture-specific study can open
up and make the existing computational methods more versatile. We hope
that in the future researchers can apply and extend the outcomes of this work
to improve and enrich existing MIR methodologies, thus fulfilling one of the
ultimate goals of the CompMusic project [ , ]



Appendix A

Applications

Researcher of the CompMusic team have created a web application called
Dunya-web' to showcase the technologies developed within the CompMusic
project. Dunya-web is an application aimed at culture-aware music discov-
ery. Dunya-web has a makam part, representing algorithms developed for the
computational analysis of OTMM. Dunya-web stores all the audio recordings
(including the OTMM datasets described in Section 3.2) and music scores,
together with the lyrics.

The users can navigate the audio collection by searching or filtering by record-
ings, compositions, artists, makams, forms and/or usuls. Users can play the
recordings and examine musical facets synchronous to the audio playback.
Facets like pitch, the score, the tonic are visualized in a user-intuitive way.

The most successful lyrics-to-audio alignment (LAA) approach for OTMM,
developed in this thesis, is the phonetic recognizer informed by phoneme du-
rations. We integrated its python implementation into Dunya-web for a sub-
set of the OTMM corpus available in Dunya-web (see Fig. A.1). This subset
includes vocal recordings in the garki form with music scores and lyrics infor-
mation available.

The ease of use of Dunya-web and intuitive interface allows expert users (e.g.
music aficionados, musicologists and/or music students) to follow the aligned
lyrics, while listening to the audio. Simultaneously, the acoustic features (in-
verse spectral representation of MFCCs) representing the timbral differences
of phonemes are displayed.

Thttp://dunya.compmusic.upf.edu/makam
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Figure A.1: Dunya-web: an interface for the dicovery of the music traditions
of the world. The part on aligning automatically lyrics in vocal recordings of
the OTMM sarki form is presented.
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