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Abstract 

Nowadays, due to the growing fresh water demand, several processes are used to purify 

seawater by means of desalination or industrial brackish water by different treatment 

processes. The main limitation of these techniques is the production of rejected brines. For 

this reason, new management techniques for brines valorization are being studied to achieve 

the maximum water recovery, avoid liquid streams disposal and recover the valuable 

compounds from the concentrated streams. In this thesis, four membrane technologies were 

used to promote resources recovery, including water, depending on the valorization way of 

the concentrated stream: electrodialysis (ED) was used for its concentration, nanofiltration 

(NF) for its purification, selectrodialysis (SED) for its ions separation and ED with bipolar 

membranes (EDBM) for acid and base production from the brines. The integration of these 

membrane techniques provided brines reuse and promoted potential circular economy based 

on solutions where a waste is transformed into a resource. 

Seawater reverse osmosis (SWRO) brine was treated by ED in order to concentrate NaCl for 

the chlor-alkali industry. An ED pilot plant was used to concentrate the brine up to 150-250 g 

NaCl/L, depending on temperature and current density conditions. Then, a mathematical 

algorithm was developed to predict the concentration evolution during the ED process. The 

model was able to describe the NaCl concentration evolution and the energy consumption 

taking into account temperature changes and longtime operation. Moreover, monovalent 

selective cationic (MVC) membranes were synthetized using several mixtures of 

polyvinylidene fluoride (PVDF) and sulfonated PVDF (S-PVDF). Then, surface 

polymerization of polyaniline (PANi) doped with p-toluene sulfonic acid (pTSA) or L-valine was 

applied in order to improve their cationic monovalent selectivity. Results indicated that sodium 

selectivity increased when using doping agents (higher sodium selectivity when using valine 

than pTSA) or increasing the voltage applied.  

Besides, NF was used as a purification treatment for the SWRO brine. Different membrane 

configurations (flat sheet (FS) and spiral wound (SW)) were tested to study ions rejection 

behavior. The solution-diffusion-electromigration-film model (SDEFM) was successfully 

applied in order to fit the experimental rejections and calculate the membrane permeances to 

each ion. Ions rejection and permeances calculated for both membrane configurations were 
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similar. These results indicated that lab-scale results could be used for the NF scale up. Also, 

the dominant salt effect on the trace ion rejection was determined by means of a FS 

membrane indicating that a higher initial dominant salt concentration implied a lower rejection 

for the dominant salt itself and also for the trace ions.  

Furthermore, two ED-based technologies were used. SED was utilized to separate chloride 

from sulfate ions of an industrial wastewater rich in sodium chloride and sodium sulfate, 

achieving separation factors around 80-90 %. EDBM was employed to produce sodium 

hydroxide/hydrochloric acid from sodium chloride and sodium hydroxide/sulfuric acid from 

sodium sulfate. 

Finally, ED, NF and SED were used as pre-treatments for EDBM. With the NF and EDBM 

system it was possible to purify the SWRO brine working with NF membranes at 20 bar. 

However, the permeate stream was treated by chemical precipitation in order to diminish the 

calcium and magnesium concentration before being introduced in the EDBM system. 

Maximum NaOH and HCl concentrations of 1 M were obtained. ED was used prior to the 

EDBM in order to concentrate the SWRO brine up to 200 gNaCl/L and be able to produce 2 

M acid and base. SED was used to separate chloride from sulfate ions of an industrial 

wastewater. Both streams, sodium chloride-rich and sodium sulfate-rich were introduced in 

the EDBM stack and pure sodium hydroxide, hydrochloric acid (87 %) and sulfuric acid (93 %) 

were produced. 
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Glossary 
AAS: Atomic absorption spectrophotometry 

AEM: Anion-exchange membrane 

APS: Ammonium peroxodisulfate 

BM: Bipolar membrane 

CAPEX: Capital expenditure 

CCD: Central composite design 

CEM: Cation-exchange membrane 

CF: Concentration factor 

Ec: Energy consumption 

ED: Electrodialysis  

EDBM: Electrodialysis with bipolar membranes  

EDM: Electrodialysis metathesis 

EDS: Energy dispersion X-ray spectroscopy 

FS: Flat-sheet 

FTIR: Fourier transform infrared spectroscopy 

HX: Acid 

IC: Ion conductivity / Ionic chromatography 

ICP-OES: Inductively coupled plasma atomic emission spectroscopy 

Ie: Current efficiency 

IEC: Ion exchange capacity 

IEM / IXM: Ion-exchange membrane 

LCD: Limiting current density 

MED: Multiple-effect distillation 

MOH: Base 

MSF: Multi-stage flash distillation 

MVA: Monovalent selective anionic 
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MVC: Monovalent selective cationic 

MX: Salt 

NF: Nanofiltration 

NMP: N-methyl-2-pyrrolidone 

OPEX: Operating expenditure 

PANi: Polyaniline 

PC: Potentiostatic conditions 

PEC: Polyelectrolyte complex 

PEI: Polyethylenimine 

PS: Permselectivity 

pTSA: p-toluene sulfonic acid 

PVDF: Polyvinylidene fluoride 

R: Rejection  

RO: Reverse Osmosis 

RSM: Response surface methodology 

SDEFM: Solution-diffusion-electromigration-film model 

SED: Selectrodialysis 

SEM: Scanning electron microscopy 

SKM: Spiegler-Kedem model 

S-PVDF: Sulfonated PVDF  

SW: Spiral wound 

SWD: Seawater desalination 

SWD-RO: Seawater desalination reverse osmosis 

SWRO: Seawater reverse osmosis 

TMP: Trans-membrane pressure 

WU: Water uptake 

XRD: X-ray diffraction 

ZLD: Zero liquid discharge 
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1. Introduction 

1.1. Challenges on brines and concentrates management: from 
disposal to valorization for by-products recovery 

As water shortage has become a global issue in the urban and industrial cycles, water 

reuse, waste water reclamation and desalination of industrial brines are crucial strategies 

to generate water. In order to attend the growing demand for fresh water, nowadays a large 

number of treatment processes of industrial brackish water and seawater desalination to 

produce purified water generate brine rejection streams. Examples of such rich-salt streams 

are brines generated as by-products by membrane-based technologies such as 

electrodialysis (ED), reverse osmosis (RO) and nanofiltration (NF) in the desalination field. For 

example, for seawater RO systems, the typical water recovery varies between 40 and 50 %, 

so 50 - 60 % of the feed stream is wasted as concentrate. Brackish water RO desalination 

plants operate at recoveries of 75 - 85 %, but due to scaling or energy saving considerations 

occasionally some plants operate at only 50 - 65 %. On the other hand, water recovery of 

brackish water and reclaimed water can increase to 85 - 95 % depending on feed water 

quality when ED is used [1]. 

Traditional management of concentrates from desalination plants is mainly conditioned by the 

location of the plant. In coastal desalination plants, RO concentrates are directly discharged 

into the sea, while in inland plants the traditional option consists in reducing the concentrate 

volume prior to disposal [2]. Unfortunately, in both cases, their discharged streams into the 

environment results in a waste and environmental pollution. One mechanism that has been 

applied to reduce environmental effects of these brines relies on their dilution either with 

power plant cooling waters [3] or with seawater or municipal wastewaters to reduce salinity 

prior to discharge [4,5]. However, the effects of disposal of diluted concentrates can also 

affect sensitive species so the solution should be appropriate to local conditions [4].  

Another important issue that must be taken into account is the cost of brine disposal. This 

cost depends on the brine characteristics (e.g. salinity), the level of treatment before disposal, 

brine volume and disposal methods [6,7]. Of course, the cost is higher for inland desalination 

plants than for costal plants where brine is discharged into the sea [6,8]. Though, the cost of 



Chapter 1 INTRODUCTION 

10 

 

brine disposal to the sea in coastal desalination plants ranges from 5 to 33 % of the total 

desalination cost [9].  

Then, proper handling and disposal of ED/RO/NF concentrates are being considered a critical 

environmental issue, particularly for inland communities where disposal of brine is usually 

problematic and solid by-products can be obtained and further reused. Moreover, the 

generate brines from inland desalination plants cannot be discharged into the sea and must 

rely upon disposal alternatives such as sanitary sewer discharge, evaporation pond, deep 

well injection and land application [10,11]. Each of them has some advantages or benefits, 

but the challenges and uncertainties are larger as it was summarized by Xu et al. [1] (Table 1). 
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Table 1. Comparison of concentrate management options [1].  
 
Concentrate management 
options 

Advantages and 
benefits Challenges and uncertainties 

Surface water discharge to 
rivers, lakes, ocean, or 
estuary via a dedicated 
outfall, or power plant 
outfall, or blending with 
wastewater 

- Used for facilities of all 
sizes 
- Cost effective 

 

- Environmental implications due to the 
differences in salinity and major ion imbalance 
between concentrate and ambient surface 
waters, resulting in adverse impact on aquatic life 
- Stringent regulations, for example, National 
Pollutant Discharge Elimination System (NPDES) 
- Complex and costly permitting 

Sewer discharge to an existing 
wastewater treatment system 

 

- Commonly used for 
brackish water and 
wastewater facilities 
- Low energy use and 
costs 

 

- Only feasible to small size facilities, limited by 
the hydraulic capacity of the sewer collection 
system and by the treatment capacity of the 
wastewater treatment plant receiving the 
discharge 
- May impact the operation of wastewater 
treatment plant and beneficial use of reclaimed 
water because of the concentrate salinity and 
specific constituents, such as sodium, chloride, 
boron, and bromide in the blended stream due to 
their potential negative impact on 
microorganisms, plants, and soil. 

Deep well injection into a deep 
geological formation, that 
permanently isolates the 
concentrate from shallower 
aquifers that may be used as a 
source of drinking water 

 

- Suitable for inland 
facilities 

 

- Typically expensive and often used in larger 
facilities 
- Requires appropriate geological formation and 
confined saline water aquifer, not feasible for 
areas of elevated seismic activity or near geologic 
faults 
- Permitting is becoming more stringent because 
of greater perceived potential for leakage to, and 
contamination of nearby water supply aquifers 

Evaporation ponds 
 

- Suitable for inland and 
coastal facilities 
- Easy to implement and 
low maintenance 
- Economical if land is 
inexpensive 

- Climate dependent 
- Large physical footprint 
- Regulatory permitting may be complicated 
- Limited to small flows 
- Need the control of erosion, seepage, and 
wildlife management 

Land application through 
percolation ponds, or 
beneficially used for irrigation 
of lawns, parks, golf courses, or 
crops 
 

- Relatively easy to 
implement and low costs 
- Beneficial use of 
concentrate 
 

- Limited to irrigation of salt tolerant grass, trees, 
and plants 
- Limited to small facilities 
- Dependent on seasonal irrigation needs and 
climate 
- Limited by groundwater protection laws 
-  Potential contamination of soil and 
groundwater 

Thermal zero and near-zero 
liquid discharge 
 

- Avoid a lengthy and 
tedious permitting 
process 
- Smaller environmental 
impact 
- Potential recovery of 
valuable salts 

- Costly, capital and energy intensive 
- Disposal of the final brine or salt can be 
expensive 
- Large carbon footprint 
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As it can be seen in Table 1, conventional treatments have several disadvantages such as 

extensive land use and low productivity. Moreover, these alternatives generate solid salts 

and/or liquid waste that require special handling [12]. Thus, investigation on new options to 

improve the management of concentrates is a current demand. 

Zero liquid discharge (ZLD) or near-ZLD schemes can be used in order to reduce the brine 

volume after water recovery for reuse and generation of a dry salt waste or a wet salt waste, 

respectively. The main objective of these schemes is to achieve the maximum water 

recovery, through several stages of treatment in order to avoid liquid effluent disposal and to 

recuperate the valuable compounds from concentrates. ZLD systems combining several 

concentration/separation technologies are seen as a promising methodology for inland 

desalination. However, these systems are usually expensive and high energy demanding, so 

are only partially implemented [13]. 

Favorable reuse of ED/RO/NF brines represents a promising and sustainable alternative to 

other approaches. It is an opportunity to: a) achieve a ZLD scheme strategy that so far has 

been applied only on a limited scale because of the large energy needs associated with the 

process [14] and b) develop a new paradigm of circular economy concept to transform a 

waste to a resource, which is promoted by the EU commission inside the SPIRE program 

[15,16]. 

In the case of industrial brines, there are some potential salts (NaCl, Na2SO4, CaCl2, 

MgSO4, NH4Cl, NH4NO3) whose direct reuse in the process itself is usually the most 

attractive option as was reported by the Water Supply and Sanitation Technology Platform 

Report of Brines Management [17]. However there is a limited demand of this kind of 

streams due to its composition. Research and development is still needed to ensure that 

the full-scale applications of brine treatment technologies achieve both water treatment 

and water and waste recycling. Besides, recycling and valorization of salts are having a 

main challenge to develop selective separation technologies and/or combined treatments 

in order to enhance the purity of the produced salts. When trying to apply valorization 

routes, especially for the NaCl/Na2SO4 mixtures, the desired quality requirements is to 

separate onto single concentrated streams of NaCl and Na2SO4 reducing the presence of 

other minor ionic or neutral species, and then the main target objective is the separation 

of Cl-/SO4
2-.  
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For this reason, different membranes technologies have been used in this thesis in order to 

valorize these brines, by means of purification, separation, concentration and/or chemical 

production from the salt. 

1.2. Electrically driven membrane separation processes using ion-
exchange membranes (ED/SED/EDBM) for brines purification 
and concentration 

Several separation processes are available for ions separation and fractionation, including 

solid-liquid extraction (e.g. ion exchange resins), liquid-liquid extraction (liquid ion exchangers), 

membrane separation processes (e.g. NF and ED) [18–24]. Pressure driven NF membranes, 

originally designed by Dow-Chem for the selective removal of sulfate ions in the treatment of 

water generated from the oil extraction wells, do not provide suitable separation factors due to 

the fact that although more than 99 % sulfate ions are rejected, monovalent ions are rejected 

in the range 20-60 % depending on the membrane properties and the aqueous solution 

composition [25,26]. NF has been reported for ions fractionation [27–31] and as reviewed by 

Van der Bruggen et al. [32] most of the applications have been devoted to organic ions with 

interest in pharmaceutical, food and sweetener industries. The main limitation of NF 

membranes is the lack of suitable separation factors even though new NF layer-by-layer or 

multilayered polyelectrolyte complex (PECs) have been reported to improve separation 

factors for the separation of Cl-, SO4
2- and HPO4

2- mixtures (e.g. 86% removal of for SO4
2- and 

HPO4
2-, and below 25% for Cl-) [33]. However, higher product purity may be desired in view of 

potential industrial applications. 

In contrast to NF membranes, ion-exchange membrane (IXM), with electrical fixed groups, 

need an electrical potential as the driving force, which means that the ions are transported 

through the membrane by an electrical field [34]. There are different kind of IXM, such as, 

homopolar, bipolar, monovalent ions selective membranes, etc., which will be explained in the 

next sections.  

1.2.1. Electrodialysis 
ED is an electrically driven membrane process based on the selective passage of some 

constituents through an IXM while blocking the passage of others. IXM are generally very 

dense with the pore size around 1 nm. There are different types of IXM which can be 

applied in ED, either separately or in combination. Cation exchange membranes (CEM) 
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(with negative fixed charges, generally -SO4
2-, -PO3

2-, or =CO2
-) and anion exchange 

membranes (AEM) (with positive fixed charges, generally, -NH4
+ or =NH2

+), are well 

known for hindering the passage of co-ions (same charge) while allowing the passage of 

contra-ions (opposite charge) due to the Donnan repulsion. Figure 1 shows the membrane 

layout in a conventional ED stack. 

 
Figure 1. ED membranes layout scheme. 

 

The ion transfer in the ED stack takes place when the driving force is applied between the 

cathode and the anode. In the ideal case, anions are transported through the AEM and 

the cations across the CEM. 

An electrolyte concentrate solution (MX) is introduced into the “feed compartment”, which is 

limited by the CEM and the AEM, and through direct current supplied by the electrodes, the 

cations (M+) are moved towards the cathode (negative), crossing the cationic membranes, 

but not the anionic ones. For this reason they are retained in the “concentrate compartment”, 

which is delimitated between an AEM and a CEM as it is shown in Figure 1. Similarly, the 

anions (X-) are moved towards the anode (positive), crossing the anionic membranes but no 

the cationic ones. For this reason, they are also retained in the “concentrate compartment”. 

Finally, a concentrate stream is obtained in the concentrate compartment while a diluted salt 

solution stream is retained in the feed compartment. The transport phenomena called 
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migration flux is the one that makes that charged species in the solution are transported to the 

cathode or anode through the IXM. Nevertheless, there exist undesired transports of ions 

trough membranes which reduce the process efficiency [34–36]. For this reason, the 

migration flux is not the only phenomenon that takes place inside the stack when electrical 

potential is applied. Due to current intensity applied, an electro-osmosis or water migration flux 

is created because of migration of water solvating the ions through the IXM. Moreover, two 

more mass transport phenomena appear after a period of operation caused by the ion 

concentration gradient appeared between the diluate and concentrate compartments. On the 

one hand, ion diffusion from the concentrate compartment to the diluate one is known as 

diffusion flux or back diffusion. On the other hand, water transported from the diluate 

compartment to the concentrate one is called osmosis flux (Figure 2). 

 
 

Figure 2. NaCl and mass transport mechanisms scheme in an ED cell.  

 

ED technology has been studied for more than 100 years, and has been applied on a large 

industrial scale. The area of major application of the ED is the desalination of brackish 

water. It has also been used to produce ultrapure water, remove salt from cheese whey or 

soy, produce energy through reverse ED, concentrate solutions and brines or produce 
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organic acids [37,38]. ED technologies are gaining increasing attention in the water resource 

management field, because they offer promising possibilities: (i) to recover ions in the form of 

a concentrated stream by conventional ED [39], (ii) to purify solutions separating monovalent 

from divalent ions by using monovalent selective membranes [40], (iii) to recover and reuse 

valuable compounds from saline streams by using bipolar membranes [41] or (iv) for power 

production from saline waters and concentrated brines by using reverse ED [42–46]. ED is 

considered to be economically advantageous due to the fact that its main characteristic is 

the ability to concentrate brine at higher concentration than evaporation with less energy 

consumption [47].  

In this thesis, ED technology has been used with the purpose of concentrating the 

seawater desalination RO (SWD-RO) brines in order to be introduced as feed solution in 

the chlor-alkali industry to produce NaCl (Publication 1) or in an ED with bipolar 

membranes (EDBM) system to produce chemicals (Publication 7).  

 

Mathematical modeling of industrial processes is essential to predict the dynamic behavior 

of the system and optimize its design and operating conditions, so it can be a useful tool 

to reduce experimental time and costs. ED modelling for desalination has been 

extensively studied during the last years [48–60]. In the last decade, different models on 

seawater or high salinity brines have been implemented [60–65]. Sadrzadeh et al. [64] 

obtained concentration in the diluate compartment for various voltage, flow rates and feed 

concentration and modeled an one-pass flow process using mass balances. Moon et al. 

[65] studied the ionic transport across the membranes using a 2D or 3D continuous 

model. Tanaka [62,66] also studied ED models where current density distribution, mass 

transport, cells voltage and energy consumption are taken into account. These models 

have been applied to different ED configurations and lately, they have been applied for 

seawater concentration modeling by ED. Nevertheless, these models required several 

experimental parameters that should be determined previously and difficult their 

application. 

Casas et al. [67] described a mathematical model to predict NaCl concentration by means 

of ED taking into account that temperature remained constant. However, experimental 

results reported in Publication 1 [68] demonstrated that temperature changes do affect the 

final concentration obtained. Furthermore, the performance of an ED process is controlled 

by several designs and operational variables apart from temperature, such as, 
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membranes selectivity, feed and product concentration, flow rate, current density and 

voltage applied to the electrodes, etc. For this reason, a mathematical model was 

developed taking into account mass transport, energy consumption, electric current 

leakage, temperature changes, concentrate NaCl purity, pressure drop and limiting 

current density. Then, in this thesis the ED technology was not only evaluated 

experimentally, but also it was discussed with a computer simulation program (Publication 

2). 

 

As it has been explained, standard CEM were used in the experimental part of the thesis 

for the NaCl concentration by means of ED. Considering the trace ions contained in the 

SWD-RO brines, such as Ca2+ and Mg2+, the possibility of using monovalent selective 

cationic (MVC) membranes during the ED process was investigated. According to the 

literature, some attempts have been made to prepare CEM with permselectivity for 

specific cations. However, the efficiency of the resulting membranes were lower than 

expected and then ineffective [69,70]. 

In this thesis, novel MVC with different mixtures of polyvinylidene fluoride (PVDF) and 

sulfonated PVDF (S-PVDF) were synthesized. The selected composite membranes were 

modified by surface polymerization of polyaniline (PANi) to improve their monovalent cation 

selectivity. PANi is an electrically conducting polymer, which is easy to synthesize and has 

high chemical stability [71]. PANi was doped with p-toluene sulfonic acid (pTSA) or L-valine 

(2-amino-3-methylbutanoic acid) and the selectivity of each CEM was determined. The newly 

developed membranes were used for electrodialytic concentration of NaCl from synthetic RO 

brine (Publication 3).  

 

1.2.2. Selectrodialysis 
In general, IXM do not differentiate between different ions, although some differences in 

transport rate through the membranes can be observed (some membranes are selective for 

monovalent anions compared to multivalent anions). These differences, however, do not lead 

to fractionation of practical use by ED and the separation factor is limited [72] and similar to 

the effect that can be obtained with NF, as was proven previously by Van der Bruggen et al. 

[73]. Ion fractionation has a great application potential in various industries but is difficult to 

achieve, especially to the ions with the same size and charge sign. 
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A solution to improve ED separation factors was the proposal presented by Van der Bruggen 

et al. [40], consisting in combining monovalent selective to anions (MVA) membranes and 

non-selective AEM to introduce improved separation patterns. This integration of selective 

and non-selective AEM or CEM, recognized as selectrodialysis (SED) or metathesis [74] is 

based on the same principle than ED, but one more membrane is introduced between the 

standard AEM and the CEM: a MVA one. Then, two different solutions, one rich in divalent 

ions and the other rich in monovalent ions, can be obtained [40]. Figure 3 shows the 

membrane scheme of a SED stack (repeating unit: MVA–AEM–CEM). Again, when electrical 

current is applied, anions (Cl- and SO4
2-) are attracted by the anode and cations (Na+) by the 

cathode. Then, in the feed compartment the solution is diluted due to the transport of cations 

through the CEM to the brine compartment and of anions through the AEM to the product 

compartment. A MVA membrane is located in the next compartments. In this case, only 

monovalent anions (Cl-) can pass through it obtaining a NaCl concentrated stream in the brine 

compartment (monovalent anions-rich) and a Na2SO4 concentrated solution in the product 

compartment (divalent anions-rich). 

 
Figure 3. SED membranes layout scheme. 
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Ion transport inside the SED stack follows the same rules as for ED. However, selective 

transport between monovalent and divalent ions through the MVA membranes arises. 

Membrane selectivity to different ions needs to be studied in more detail. Zhang et al. [40] 

postulated that charge differences and/or hydrophilicity difference between monovalent and 

divalent ions, size exclusion, or other membrane or ions characteristics might be the reason of 

the membrane selectivity. 

SED is a recently postulated technique which is still under development and for this reason 

few applications can be described so far. SED has been used for ion fractioning purposes, 

such as high salinity wastewater desalination [40] or phosphate streams pretreatments [75] 

and its subsequent recuperation as calcium phosphate [76]. 

Another application for SED is inside a ZLD circuit. In this case, Bond et al. [77] used a 

combination of CEM, AEM, MVA and MVC membranes named electrodialysis metathesis 

(EDM). By means of this membranes combination it is possible not only to separate different 

valence anions but also different valence cations. Then, on the one hand, a concentrated 

stream with all the anions accompanied by sodium is obtained, while on the other hand, all 

cations are accompanied by chloride. Moreover, because cations and anions are separated 

in two different compartments, precipitation problems, such as CaCO3 precipitation are solved 

and the majority of components can be recovered for its subsequent use in the ZLD unit [77].  

In this thesis, SED has been used as a separation technique for different valence anions in 

order to use the two streams obtained (one rich in monovalent ions and one rich in divalent 

ions) separately as feed solution for the EDBM and be able to produce monovalent acid or 

divalent acid and base (Publication 8). 

 

1.2.3. Electrodialysis with bipolar membranes 
A new application area of ED since 1980 is EDBM. Apart from CEM and AEM, a third type 

of IXM is used in EDBM: the bipolar membranes (BM). BM are used to cause water 

splitting inside them. Bipolar membranes were first developed in the 1950s although this 

technology has gained more attention in the last two decades since it was first introduced 

in industrial-scale processes in 1980s. Figure 4 shows the evolution on the number of 

publications on EDBM in the last five decades.  
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Figure 4. Chronology of EDBM publications according to Scopus Data Base [78]. 

 

The BM is a membrane that consists of a layered ion-exchange structure composed of a 

cation selective layer (with negative fixed charges) and an anion selective layer (with 

positive fixed charges) with a contact region between them. This interfacial layer facilitates 

the BM’s main function when it is subjected to a reverse potential bias: water splitting [79]. 

The desired water dissociation reaction occurs in the transition region when the electric 

potential is applied. The water splits into H+/OH- [38,80–84]. As it can be seen in Figure 5, 

the EDBM consists of a repeated unit BM-CEM-AEM-BM. An electrolyte concentrate 

solution (MX) is introduced into the “feed compartment”, which is limited by the CEM and 

the AEM, and through direct current applied by the electrodes, water splitting is produced 

inside the BM. Protons (H+) formed are moved towards the cathode and hydroxyl ions 

(OH-) towards the anode. At the same time, due to the electric current, cations (M+) are 

moved towards the cathode (negative), crossing the cationic membranes, but not towards 

the anionic ones. Then, they are retained in the “basic compartment”, which is delimitated 

between the anionic permeable side of the BM and the CEM. Similarly, anions (X-) are 

moved towards the anode (positive), crossing the anionic membranes but not towards the 

cationic ones. They are then retained in the “acid compartment”, which is delimitated by 

an AEM and the cationic permeable side of a BM. Finally, the products are formed: MOH 

(in the basic compartment) and HX (in the acid compartment). Also, there is a diluted salt 

solution stream in the feed compartment [35,37,79,85–87]. For this reason, EDBM may 
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have the potential to be environmentally sustainable and economically beneficial due to 

the fact that it is capable to create an acid and a base from its corresponding salt, by the 

union of its ions with the H+ and OH- ions supplied by the water splitting in the BM. 

 

Figure 5. EDBM membranes layout scheme. 

EDBM, as all processes, has many advantages but also some disadvantages. On the 

one hand, during the EDBM process the water dissociation is accelerated up to 50 million 

times compared to the rate of water dissociation in aqueous solutions. Therefore, the 

produced H+ and OH- ions can be used to generate acid (HX) and base (MOH) from salts 

(MX), for example NaCl from the chemical industry to produce HCl and NaOH, without 

production of hydrogen, oxygen or undesirable products. Moreover, it has low voltage 

drop, maximal energy utilization, space saving, easy installation and operation, low start-

up and running costs and last but not least, it can provide products of high quality. On the 

other hand, EDBM is not as economically competitive as other membrane separation 

technologies, due to the high cost of electrodes and IXM, relatively short life time of 

membrane and high capital cost. Despite this economical limitation, all the features 

previously commented have made EDBM an environmentally friendly technology with 

potential applications in many fields [12,34,81,88].  
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EDBM has been applied to or studied for many purposes, such as chemical and food 

processing, biochemical industries and environmental protection. The technology of 

EDBM is presented as an alternative in fields such as the recovery or the valorization of 

residues or the production of certain chemistry products, leading to its growing 

implementation in many industries [12,89–93].  

However, the EDBM technology has not been developed at a desirable pace. On one 

hand, there is a lack in recognition of the role EDBM plays in industrial ecology and 

sustainable development. On the other hand, there exist some hurdles to cross when 

bringing this technology to practice [82,94]. 

A clear application of EDBM is, thus, the salt-rich waste valorization for the production of 

acids and bases. Few authors [11,12,89–91,95] have been working with saline water to 

create acid and base with EDBM at lab or pilot scale. For instance, Badruzzaman et al. 

[12] treated RO concentrate in an EDBM pilot plant with an active membrane area of 64 

cm2 and 0.2 M of mixed acid and base was obtained in 10 h of operation. Ibañez et al. 

[95] used synthetic RO brines as feed solution in an EDBM pilot plant of 200 cm2 of 

membrane area and 1 M of acid and base concentration was produced. Table 2 

summarizes the main results and references dealing with EDBM at lab-scale and batch 

mode for acid and base production from brines. 
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Table 2. State of the art of acid and base production from salt using EDBM. 
 
Authors Feed saline water Material and 

methods Study Results 

Koter and 
Warszawski, 

2006 [90] 

Industrial brine 
(NaCl) 

- TS001 FuMATech 
- 1250 A/m2 

- Active membrane 
area: 49 cm2 

- NaOH and 
HCl production 

-  Bipolar membrane efficiency 85 - 90% 
- AEM lower selectivity than CEM 

Badruzzaman 
et al., 2009 

[12] 

1) Synthetic brine 
solution (NaCl) 

2) RO concentrate 
(Ca2+, Mg2+, Ba2+, 
K+, Fe2+/3+, SiO2, 
Na+, Mn2+, Sr2+, 

As2+, B3+, Cl-, SO4
2-

, NO3
-, PO4

3-) 

- PCCell ED 64-4 
- 100 to 900 A/m2 
- Active membrane 

area: 64 cm2 

1) Determine 
optimal 

operation 
parameters 

 
2)  Mixed acid 

and base 
production 

1) - Higher current density  more concentrated acid and base 
 current efficiency decrease 

- Concentration < 4g·L-1  constant current density (100 A/m2) 
 

2) *Divalent ions are removed in a pre-treatment step 
- 0.2 M of mixed acid and 0.2 M of mixed base in 10h 

- Salt concentration reduction from 9 to less than 2 mS·cm-1 in 
10h 

Ghyselbrecht 
et al., 2013 

[91] 

Industrial saline 
water (Cl-, SO4

2-, 
Na+, K+, Ca2+) 

- PCCell ED 64-4 
- 594 and 641 A/m2 

- Active membrane 
area: 64 cm2 

- Limiting 
current 

- Desalination 
and membrane 

selectivity 
- Current 
efficiency 

*Ca(OH)2 precipitation  5mg·L-1 maximum feed solution 
 

- No limiting current was observed 
- Concentration reduction in the diluate (Cl-: 91%; SO4

2-: 82%; 
Na+: 83%; K+:92%)  Non selective membranes 
- Anions and cations current efficiency: 47 - 73% 

- Mixed acid (HCl, H2SO4) and base (NaOH, KOH) production 

Ibañez et al., 
2013 [95] 

Synthetic RO 
brines (HCO3

-, 
CO3

2-, Cl-, SO4
2-, 

K+, Na+) without 
Ca2+, Mg2+. 

- Elektrolyse 
Project 

- 250 to 1000 A/m2 

- Active membrane 
area: 200 cm2 

- Salt removal 
- Determine 

acid and base 
concentration 

* Pre-treatment step must be done 
- Salt conductivity decrease (80%) faster at higher current 

densities 
- Acidification of the stack (pH 2-1.5) whatever current density 

used 
- HCl and NaOH production is faster at higher current density 
-  Approx. 0.8 M acid and 1 M base concentration produced 

- Current efficiency 50-80% 

Yang et al., 
2014 [89] 

1) Synthetic NaCl, 
Na2SO4 

2) RO seawater 
concentrate (Na+, 

K+, Ca2+, Mg2+, Cl-, 
SO4

2-, Br-, CO3
2-) 

- Shandong Co. 
- 340 to 570 A/m2 

- 2) Batch & 
continuous mode 

- Active membrane 
area: 88 cm2 

1) Operation 
parameters 
optimization 

 
2) Acid and 

base 
production  

* Pre-treatment to avoid Ca2+ and Mg2+ precipitation (pH=2) 
1) – Optimal current density: 57mA/cm2 
- No difference between NaCl or Na2SO4 

 
2) – Acid compartment: anions (<< cations) 
- Base compartment: cations (<< anions) 

- Salt compartment: OK (low levels of ions) 

David et al., 
2015 [96] 

Synthetic NaCl 
solutions mimicking 
RO or evaporating 

cools 

- PCCell EDQ380 
- 26 to 260 A/m2 

- Active membrane 
area: 380 cm2 

- Effect of feed 
salt 

concentration 

- Higher acid (0.3 M HCl) and base (0.3 M NaOH) concentration 
production at higher feed NaCl concentration (0.4 M NaCl) 

- Current use increased with increasing feed salt concentration 
- The energy required per mole of acid or base produced 

increased linearly with increasing current density 

Ghyselbrecht 
et al., 2013 

[97] 

Saline water (NaCl 
and organic matter) 

- PCCell ED 64-4 
- 523 to 769 A/m2 

- Active membrane 
area: 64 cm2 

- Electrical 
resistance & 

current 
efficiency of 2 
kind of BM: 
1) Fumasep 

2) PCA 

- Almost complete desalination was achieved 
 

1) Fumasep BM: - Better electrical resistance & current 
efficiency 

- 1.6 M HCl and 1.7 M NaOH production 
 

2) PCA BM: - Slightly higher current densities 
- 1.8 M HCl and 2 M NaOH production 

 

In this thesis, EDBM technology has been studied as a final treatment combined with 

other membrane processes in order to produce acid and base (Publication 6, 7 and 8). 

1.3. Integration of membrane technologies as pre-treatment for 
chemicals production 

One option for water treatment and resources recovery could be the membrane technologies 

integration. EDBM can be used for acid and base production, although a pre-treatment of the 

feed mixed solution, such as SWD-RO brines, may be needed. 
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As explained before, ED or SED can be applied as a pre-treatment for brines concentration or 

monovalent from divalent ions separation, respectively. In this thesis, it was possible to pre-

concentrate the SWD-RO brines by means of ED before being introduced in the EDBM 

system. If a NaCl concentrate stream is used, it is possible to purify the divalent concentration 

in the concentrate stream while concentrating the NaCl. Then, the concentrate NaCl solution 

can be introduced in the EDBM and HCl and NaOH can be obtained (Publication 7). On the 

other hand, SED could be applied as a separation pre-treatment of a high salinity effluent 

(NaCl and Na2SO4). After applying SED technology, a NaCl-rich stream and a Na2SO4-rich 

solution could be separated, apart from obtaining a diluate solution. Then, each stream 

obtained by SED could be used as feed solution for EDBM, producing HCl/NaOH from the 

first one and H2SO4/NaOH from the second one (Publication 8). 

Another membrane technique that can be used as SWD-RO purification pre-treatment is 

nanofiltration (NF). This membrane process is well known as a divalent purification technique 

in between RO and ultrafiltration. NF membranes are capable to reject divalent ions up to 99 

%, although rejecting less monovalent ions (from 20 to 70 %) [26,98,99]. Apart from high 

multivalent ions retention, NF has many other advantages, such as low operational pressure, 

high flux, relatively low investment (capital expenditure (CAPEX)) and low operation and 

maintenance costs (operating expenditure (OPEX)). NF has been studied for the production 

of potable water, because the remineralization process of the obtained water by means of NF 

can be reduced compared to the current treatment after RO [100,101]. Besides, NaCl 

rejection by NF membranes has been widely studied [102–106].  

In this thesis, NF has been used as a purification step previous to the EDBM (Publication 6). 

By means of NF it could be reasonable to concentrate divalent ions, but not monovalent 

ones. Then, the NaCl-rich stream filtered by NF can be used as feed solution for the EDBM to 

obtain HCl and NaOH. Firstly, ion rejection was studied in a flat-sheet (FS) and spiral wound 

(SW) NF configuration membranes (Publication 4). Synthetic solutions were prepared in this 

case using a dominant salt and trace ions mimicking natural waters. Then, the dominant salt 

effect on the trace ions was investigated in this thesis (Publication 5). In both publications, the 

solution-diffusion-electromigration-film model (SDEFM) was used in order to describe the 

experimental data of electrolyte mixtures transport through the NF membrane [107,108]. This 

model assumes that ion transport through the NF membrane occurs via solution-diffusion, 

electric migration phenomena within the active layer and takes into account the external 
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concentration polarization [107]. By means of the SDEFM it is possible to describe and fit the 

experimental rejection curves of both dominant salt and trace ions and also from these 

fittings, the membrane permeance with respect to each ion can be estimated [108].  
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2. Thesis overview 

In this work, membrane technologies have been used for water treatment and resources 

recovery. Mainly, ED was studied as concentration treatment of the brines in order to produce 

NaCl for the chlor-alkali industry (Publication 1). Moreover, modelling was used in order to 

understand the behavior of the process (Publication 2). Besides, MVC membranes were 

synthetized in order to perform ED experiments (Publication 3). 

Furthermore, a purification step was studied by means of NF. Ion rejection by means of NF 

was studied by means of different membrane configurations (Publication 4) and the dominant 

salt effect on the trace ion rejection was also investigated (Publication 5). 

SED was studied to understand its capacity in separating monovalent from divalent anions, 

such as Cl- and SO4
2-. And EDBM was used in order to produce acid and base from its 

corresponding salt.  

ED, NF and SED have been used as pre-treatments for EDBM. Then, by integration of two of 

these membrane processes, it could be possible to pretreat the feed brines and promote 

circular economy in the same company. Firstly, NF and EDBM were integrated in order to 

purify and produce acid and bases from the brines (Publication 6). Also, ED and EDBM were 

used together in order to concentrate the feed brine and then produce acid and base from 

them (Publication 7). Finally, SED and EDBM were integrated in order to separate different 

charge anions from a high salinity wastewater effluent and to produce acid and base 

(Publication 8).  
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Figure 6. Thesis overview. 

 

Publication 1: Mònica Reig, Sandra Casas, Carlos Aladjem, César Valderrama, Oriol Gibert, 
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of NaCl from seawater reverse osmosis brines for the chlor-alkali industry by electrodialysis. 
Desalination 342, (2014), 107–117 

Publication 2: Tanaka, Y., Reig M., Casas S., Aladjem C., Cortina J.L. Computer simulation 
of ion-exchange membrane electrodialysis for salt concentration and reduction of RO 
discharged brine for salt production and marine environment conservation. Desalination. 
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3. Objective 

The main objective of the current PhD thesis was to study, understand and integrate different 
membrane technologies for water treatment and resource recovery. 

 

Figure 7. Thesis diagram scheme: membrane integration for resource recovery. 
 

As it is shown in Figure 7, EDBM process has been used as main technology for the 

valorization of SWD-RO brines producing acid and base in order to achieve a circular 

economy scheme using NF, ED and SED as pre-treatments. 

 

3.1. Specific objectives 

The specific objectives were to find optimal operation conditions of the valorization process, to 

determine final acid and base concentration and to calculate specific energy consumption 

when using pretreatment concentration (ED), purification (NF) or separation (SED) steps to 

treat the SWD-RO brines. 

Table 3 summarizes the specific objectives depending on the membrane technology studied: 
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Table 3. Specific objectives depending on the membrane technology. 
  

Membrane 
technology 

Specific objective 

ED 

- To produce NaCl for the chlor-alkali industry by ED concentration 

- To understand the behavior of the process by modelling 

- To synthetize cationic monovalent selective membranes 

NF 

- To understand ion rejection by means of different membrane 
configurations 

- To study the dominant salt effect on the trace ion rejection 

SED 
- To quantify the capacity in separating monovalent from divalent ions 

- To evaluate the best initial product composition and concentration 

EDBM 
- To produce acid and base from its corresponding salt 

- To estimate the NaOH, HCl and H2SO4 concentration reached 

Membrane technology integration 

NF + EDBM - To purify brines and produce acid and base 

ED + EDBM - To concentrate brines and produce acid and base 

SED + EDBM 
- To separate different charge ions from wastewater and produce acid 
and base 
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12. Results 
The most relevant results of each technology are discussed below. 

12.1. Key findings in electrodialysis (ED) 

ED was a suitable membrane process to concentrate NaCl from SWRO brine providing a 

suitable feed solution for the chlor-alkali industry. By means this membrane technology it 

was possible to increment the NaCl concentration up to 150 - 220 g NaCl/L depending on 

the intensity and temperature conditions. During the summer time (higher inlet 

temperatures), lower NaCl concentrations were obtained, although lower energy 

consumption values were reached. The best conditions tested (higher NaCl concentration 

and lower energy consumption) were working at 0.35 kA/m2 and 27 ºC concentrating NaCl 

up to 185 g/L with an energy consumption of 0.12 kWh/kg NaCl. Besides, because 

SWRO brine contains more elements than NaCl, it was proved that ED was capable to 

purify this brine from polyvalent ions (Ca2+, Mg2+, SO4
2-, …), which were diluted due to 

osmosis and electro-osmosis phenomena (except nickel and copper, which were in the 

form of single charged compounds in the operation pH and they were able to pass 

through the membranes).  

A mathematical modeling of the system was developed to predict the concentration 

evolution of the NaCl in SWRO brines using an ED pilot plant. This model took into 

consideration the effect of temperature and electric current density. In the program, the 

algorithm computed not only mass transport and energy consumption, but also electric 

current leakage and pressure drop. Although the experimental results fluctuated due to 

temperature changes and longtime pilot plant operations, the numerical algorithm 

provided a good description of the NaCl concentration evolution and also the energy 

consumption by ED operation. By means of the computer simulation program, a 

prediction was carried out decreasing the linear velocity of desalting cells (from around 10 

to 1 cm/s) keeping the temperature at 25 ºC and the current density at 4 A/dm2. Results 

demonstrated that it was possible to increase the RO recovery by working at a desalting 

ratio of 0.5 and recirculating the desalted ED solution into the RO system. Then, NaCl 

concentration could be reduced to seawater levels (around 30 g/L), although the energy 

consumption increased (0.19 kWh/kg NaCl). As a summary, ED allowed to concentrate 
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SWRO brine and produce NaCl, which could be competitive in the edible market by 

acceptable energy consumption. Unfortunately, for industrial use of NaCl, higher 

concentrations and lower energy consumption values should be obtained to be 

competitive. 

As it has been mentioned, SWRO brine contained some divalent ions, whose presence 

should be reduced to trace levels when applied in the chlor-alkali industry. It is known that 

ED membranes typically exhibit moderate selectivities between monovalent and divalent 

ions. For this reason, novel MVC membranes were synthetized by surface polymerization 

of polyaniline (PANi) with two different doping agents (pTSA and L-valine) on s-

PVDF/PVDF composite membranes. The formation of the PANi layer on the membrane 

surface modified the functional groups and ordered its structure. These properties were 

corroborated by FTIR and XRD, respectively. A PVDF solution mixed with 30 % of S-

PVDF was used as base solution (S-30) due to the fact that the related CEM was found in 

a previous work to have the lowest divalent selectivity. It was though that this initial 

mixture could be the best option to obtain high monovalent cation selectivity after surface 

modification by pTSA or valine (especially for NaCl saturation for chlor-alkali application). 

In both cases, results showed that the hypothesis was true: sodium selectivity increased 

when doping agents were introduced in the membrane structure. All the synthetized 

membranes were tested by an ED lab-scale set-up by means of a synthetic solution 

mimicking SWRO brine (containing Na+, Mg2+, Ca2+, Cl- and SO4
2-). Higher Na+ selectivity 

results were obtained for S30-valine (  =0.09,  =0.8) than for S30-pTSA (  =0.13, 

 =3.59), although both were better than for the composites ones (  =0.63,  

=6.82). In all cases, better Na+ to Mg2+ selectivity than Na+ to Ca2+ were achieved. 

Moreover, valine surface polymerization did not decrease the Na+ concentration and kept 

the Na+ flux, the surface hydrophobicity and the IEC value as high as S-30. Finally, the 

influence of the applied voltage in ED was also studied finding that an increase of it (from 

5 to 7 V) resulted in an increase of the selectivity for monovalent ions due to the fact that 

a lower flux of divalent cations appeared at the higher voltage (more powerful attraction of 

cations by the cathode). 
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12.2. Key findings in nanofiltration (NF) 

NF was studied first at lab-scale with a FS module by means of synthetic solutions composed 

of a dominant salt and trace ions. Then, the same initial solutions were used to feed a small 

pilot plant set-up working with a NF SW membrane. Because different membrane 

configurations and different scales were used in each set-up, results were compared and the 

reliability of the data obtained was studied. Comparing the rejections and permeances 

obtained for both configurations, it could be said that, in general terms, both configurations 

had a similar behavior. Of course, this is a positive conclusion for testing NF membranes at 

lab-scale, but implementing them in an industrial scale NF system. The only difference 

between both configurations was the higher trans-membrane flux when working with the FS 

configuration. The SDEFM was used to fit the experimental rejections as a function of the 

trans-membrane flux and to calculate the membrane permeances to each ion taking into 

account the polarization layer and the effect of the arising electric field during the NF process. 

On the other hand, the dominant salt effect on the trace ions rejection was studied using 

synthetic feed solutions containing NaCl as dominant salt and NH4
+ and NO3

- (ions associated 

with fertilizer pollution of groundwater) as trace ions by a FS configuration set-up. Utilizing 

different NaCl concentrations (from 0.05 to 0.3 M) it was observed that higher rejections of 

both dominant salt and trace ions were achieved when using the lowest initial concentration. 

Again, SDEFM was implemented to fit the experimental results satisfactorily even for negative 

rejections (NO3
-) and also to calculate the membrane permeances to each ion. Results 

showed that the dominant salt also affected those permeance values: because the 

membrane permeances differed depending on the dominant ions (permeance was higher 

toward Na+ than toward Cl-), an electric field appeared causing negative rejections for the 

NO3
- ions (accelerating them) and increasing the NH4

+ rejections due to the fact that the 

electric filed retarded these cations. 

 

12.3. Key findings in selectrodialysis (SED) 

The main purpose of using SED was to improve separation factors of common 

monovalent/divalent ion mixtures typically found in many industrial process waters (e.g. SO4
2- 
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and Cl-, or Na+ and Ca2+ and Mg2+). In this case, the potential separation of Cl- and SO4
2- ions 

from a chemical industry waste effluent was evaluated as a model example. For this reason, 

MVA membranes were used in the SED stack between the standard AEM and CEM. In first 

place, the optimal initial composition for each stream of the SED process was investigated in 

order to obtain the maximum monovalent/divalent separation. NaCl, Na2SO4 and a mixture of 

both salts were tested. The best separation factors were obtained when using the single NaCl 

(50 % Cl- in the monovalent anion-rich stream (brine) and 50 % SO4
2- in the divalent anion-rich 

stream (product)), although they seemed to be far from the total separation. The incorporation 

of sulfate in the product stream increased its diffusion through the MVA membrane. Then, 

different NaCl concentrations were tested and the best separation was reached when using 

double Cl- concentration than in the feed solution. With this initial composition it was possible 

to increase the purity of each stream and obtain a monovalent brine stream with 80 % Cl-, 

while producing a divalent product stream containing 90 % SO4
2-. Moreover, it can be 

concluded that concentrations in the brine and product stream increased over time, but when 

they reached a steady stage, the energy consumption of the SED system increased 

drastically. Operation ranges that make SED economically affordable were determined.  

12.4. Key findings in ED with bipolar membranes (EDBM) 

It was proved that EDBM is a suitable method for desalinating salt solutions producing acid 

and base: in this thesis HCl and NaOH were obtained from NaCl, while H2SO4 and NaOH 

from Na2SO4. As it was seen before, EDBM requires initial acid and base solutions apart from 

the feed solution for an electrical current to be applied. Voltage and initial acid and base 

concentration effect on the final concentration obtained were evaluated. With regard to the 

effect of voltage and current density, it was found that an increase of both parameters implied 

higher acid and base concentration. Besides, initial acid and base concentrations represented 

no substantial effect on the overall performance. For this reason, the minimum initial acid and 

base concentrations were advised to be used as initial solutions. Finally, the dependence on 

the initial salt concentration for the acid and base production was studied. A directly 

proportional relation between initial NaCl concentration and final acid and base production 

was observed. Results showed that it was possible to produce HCl and NaOH up to 2 M from 

200 g NaCl/L working at constant voltage of 9 V. Depending on the voltage and the initial 

concentrations used, energy consumption values for NaOH production from NaCl were 
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ranged from 1.8 to 3.6 kWh/kgNaOH. Furthermore, by using a factorial design a general lineal 

model was defined considering the initial acid (HCl), base (NaOH) and salt (NaCl) 

concentration. A minimum energy consumption of 1.7 kWh/kg NaOH was calculated working 

at constant voltage of 9 V, an initial concentration of 104 g NaCl/L, and 0.24 M HCl and 

NaOH. Acid and base produced by means of EDBM could be used in-situ in the factory or 

industry to adjust the pH in their own processes. 

 

12.5. Key findings in membrane technology integration 

After each membrane technology was tested and analyzed separately, NF, ED and SED 

were used one by one as a pre-treatment for EDBM to promote resources recovery as a 

potential example of circular economy by using SWRO brines or industrial streams as waste 

sources. 

NF was used to purify SWRO brines and create a NaCl-rich stream suitable for HCl and 

NaOH production by EDBM. Working at 20 bars, NF was capable to reject divalent ions more 

than monovalent ones, obtaining a NaCl purity up to 98 %. However, a chemical purification 

step was needed to reduce Ca2+ and Mg2+ concentration of the final NF permeate solution 

before being introduced in the EDBM process. By means of precipitation with Na2CO3 and 

NaOH removals higher than 95 % were achieved. The benefit of purifying the SWRO brine by 

NF and chemical precipitation was to produce low concentration HCl and NaOH (around 1 M) 

from SWRO brines by EDBM. 

ED was also used as pretreatment, but in this case to concentrate the SWRO brines before 

being introduced in the EDBM stack. ED assays were carried out using an initial NaCl stream 

in the concentrate loop and varying the brine stream temperatures conditions (summer and 

spring-winter season). Results showed that concentrations around 200 g NaCl/L were 

achieved working at lower temperatures (15-18 ºC) and approximately 100 g NaCl/L were 

reached at summer time (22-28 ºC). The initial NaCl stream in the concentrate loop was 

suitable to reduce the divalent ions levels in the final ED concentrated stream, which was 

appropriated to be introduced as feed solution in the EDBM stack. ED energy consumption 

was calculated during both seasons working at 0.30 – 0.40 kA/m2 and the values varied from 
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0.10 to 0.17 kWh/kg NaCl produced. The advantage of concentrating the initial EDBM feed by 

ED was a higher acid and base concentration (up to 2 M) when using the EDBM. 

Finally, SED was also used as a pretreatment step to separate monovalent from divalent ions 

(SO4
2- / Cl-) from a chemical industry process wastewater effluent with high salinity (containing 

NaCl and Na2SO4). By means of SED it was possible to separate anions resulting in a 

monovalent anion-rich stream with around 90 % Cl- and also a divalent anion-rich stream with 

more than 90 % SO4
2- by using an initial NaCl solution in each stream. Energy consumption in 

this case was acceptable until the product and brine concentration reached a constant value, 

then the energy consumption increased drastically. After the SED treatment, each stream 

was introduced separately in the EDBM stack to produce HCl and NaOH from the 

monovalent anion-rich stream and H2SO4 and NaOH from the divalent anion-rich solution. 

Because the feed salt streams introduced in the EDBM were not pure in only one anion, pure 

NaOH was produced in both cases in the base tank, although a mixture of both acids (HCl 

and H2SO4) was obtained in the acid compartment in both cases. These acids were HCl-rich 

(up to 87 %) in the monovalent case and H2SO4-rich (up to 93 %) for the divalent test. Then, it 

could be concluded that SED was a viable pretreatment before EDBM to separate anions 

from an industrial brine rich in Cl- and SO4
2- ions and also to valorize these effluents as pure 

NaOH and a mixture of acids, which could be used in the same industry. 
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13. Conclusions 

Nowadays there is an increase of industrial process water and wastewater effluents and 

many of them are not sufficiently well managed. While organic pollution has been 

removed traditionally by biological processes, total dissolved solids (e.g. salinity and 

organic and inorganic micropollutants) should be removed using membrane technologies. 

RO has been widely used in desalination of industrial effluents due to its strong 

deployment in seawater desalination. However, it is associated with the drawback of the 

concentrated waste generated. Traditionally, the industrial concentrates are discharged 

into natural water bodies (with or without dilution depending on the discharge regulations) 

or treated by evaporation. The former method is not environmentally friendly and the latter 

process is very costly due to the high energy consumption, although it is promoted as an 

alternative to recover water and salts under the ZLD concept. ZLD processes for 

concentrates recovery (thermal evaporators, crystallizers, brine concentrators and spray 

dryers) are technically feasible but more efforts have to be done to reduce the capital and 

operational cost. Although they provide a solution to reduce the volume of concentrates, 

with feed water recovery ratios of 95-98%, they are considered as an uneconomical 

option and are employed in limited cases. 

Then, a new paradigm of circular economy has been postulated through the EU SPIRE 

program for resource recovery in the industry. In this thesis, the valorization of 

concentrated dissolved salts has been implemented promoting the development of new 

technological pathways. 

In this thesis, several membrane processes (ED, NF, SED and EDBM) have been studied 

for industrial process water treatment and resource recovery in order to provide more 

sustainable treatment trains and potential management solutions. For this reason, NF, ED 

and SED have also been integrated separately with EDBM to obtain chemicals and close a 

circular economy loop reusing a waste water effluent of an industry. Particularly, it was proved 

that: 

a)  It was possible to concentrate the SWD-RO brine up to 200 g NaCl/L by means of ED and 

then to produce HCl and NaOH up to approximately 2 M. Also, it was possible to purify the 

brine removing its divalent ions by ED, although higher divalent cations removal would be 
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obtained using MVC membranes. For this reason, synthesis of novel MVC membrane was 

carried out and tested by ED providing higher sodium selectivity results than commercial 

membranes. Also, the ED technology results were modeled in order to predict the NaCl 

concentration evolution.  

b) SWD-RO brine purification of divalent ions was done by NF and chemical precipitation. NF 

membranes were tested to pretreat the SWD-RO obtaining a high NaCl purity, although 

magnesium and calcium concentrations were not low enough to be introduced in the EDBM 

stack. Then, chemical precipitation was used achieving a 95 % of calcium and magnesium 

removal. After that, it was possible to produce HCl and NaOH up to 1 M. Moreover, several 

experiments were carried out to understand the NF process by means of different membrane 

configuration indicating that qualitatively both configurations provided the same ion rejections 

results. Also, experiments with different feed solution concentrations were conducted 

obtaining lower rejections when using the higher initial concentration. NF rejection results 

were modeled by the SDFM and the membrane permeabilities to each ion were calculated. 

c) SED was used to separate monovalent from divalent ions (Cl- from SO4
2-). SED was used 

as a membrane technology which allowed separation factors around 90 %. Then, both 

streams were used separately as feed solution for the EDBM producing pure NaOH in both 

cases. The acids obtained were a mixture of HCl and H2SO4 in both cases, although a rich 

HCl (87 % purity) was produced with the NaCl-rich stream from SED and a rich H2SO4 acid 

(93 % purity) from the SED Na2SO4-rich stream. 

As a final conclusion, it can be said that this work has demonstrated that solutions to provide 

brines valorization routes could be developed by integration of membrane driven process with 

physicochemical processes. Membrane processes (ED, NF, SED and EDBM) are attractive 

as they fulfill the requirements of process intensification and process integration: shrinking 

equipment size, boosting plant efficiency or minimizing waste production, which eventually 

result in smaller, cleaner, more energy efficient and higher productive technologies. Different 

examples where membrane technologies, such as ED, NF, SED and EDBM, have been 

coupled and provided solutions to industrial brines management generating resources 

recovery alternatives. 
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14. Future research 

After the results obtained in this thesis, some recommendations for future research to answer 

some arising questions can be done. Between them, the most relevant ones are listed below: 

 To enhance ions selectivity coefficients of IXM in order to improve the SED 

separation between monovalent and divalent ions by developing new membranes or 

modifying commercial ones. 

 To study the temperature and pH influence on ions transport with IXM (e.g.  SED 

and EDBM). 

 To develop a mathematical model to describe ions transport on IXM in SED and 

EDBM configurations. 

 To redesign the experimental ED-based units to evaluate higher voltages, a higher 

number of membranes inside the stack and/or different types of membranes from 

different companies. 

 To test different NF, ED, EDBM and SED membranes to increase ion rejection by 

NF, salt concentration by ED, acid and base production by EDBM or ion selectivity by 

SED. 

 To study the fouling and scaling phenomena on brines concentration and 

valorization with IXM-based process, to identify the need of purifying (i.e. removing 

divalent ions) from brines: determination of membranes life time. 

 To determine ions separation and ions selectivity factors for common ionic species 

in industrial brines by means of SED. 

 To experimentally determine further energy consumption values in ED, SED and 

EDBM technologies when applied on brines concentration and valorization. 

 To compare the energy and chemicals consumption values of electrically 

membrane driven processes with conventional treatment processes for brines 

concentration and valorization. 
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