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Abstract

Natural Language Processing (NLP) is the branch of Artificial Intelligence aimed
at understanding and generating language as close as possible to a human’s. To-
day, NLP benefits substantially of large amounts of unnanotated corpora with
which it derives state-of-the-art resources for text understanding such as vecto-
rial representations or knowledge graphs. In addition, NLP also leverages struc-
tured and semi-structured information in the form of ontologies, knowledge bases
(KBs), encyclopedias or dictionaries. In this dissertation, we present several im-
provements in NLP tasks such as Definition and Hypernym Extraction, Hypernym
Discovery, Taxonomy Learning or KB construction and completion, and in all of
them we take advantage of knowledge repositories of various kinds, showing that
these are essential enablers in text understanding. Conversely, we use NLP tech-
niques to create, improve or extend existing repositories, and release them along
with the associated code for the use of the community.

Resumen

El Procesamiento del Lenguaje Natural (PLN) es la rama de la Inteligencia Ar-
tificial que se ocupa de la comprensión y la generación de lenguage, tomando
como referencia el lenguaje humano. Hoy, el PLN se basa en gran medida en
la explotación de grandes cantidades de corpus sin anotar, a partir de los cuales
se derivan representaciones de gran calidad para la comprensión automática de
texto, tales como representaciones vectoriales o grafos de conocimiento. Además,
el PLN también explota información estructurada y parcialmente estructurada
como ontologías, bases de conocimiento (BCs), enciclopedias o diccionarios. En
esta tesis presentamos varias mejoras del estado del arte en tareas de PLN tales
como la extracción de definiciones e hiperónimos, descubrimiento de hiperóni-
mos, inducción de taxonomías o construcción y enriquecimiento de BCs, y en
todas ellas incorporamos repositorios de varios tipos, evaluando su contribución
en diferentes áreas del PLN. Por otra parte, también usamos técnicas de PLN para
crear, mejorar o extender repositorios ya existentes, y los publicamos junto con su
código asociado con el fin de que sean de utilidad para la comunidad.
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Chapter 1

PREAMBLE

1.1 Text is the Biggest of Data

Data is “the new oil”, a kind of highly valuable raw material, which, if unre-
fined, cannot really be used [Palmer, 2006]. The intelligent exploitation of data
has become a driving force in areas of diverse nature, such as healthcare [Raghu-
pathi and Raghupathi, 2014], energy [Kezunovic et al., 2013] or biology [Howe
et al., 2008]. This context, and the increasing rate at which information is created,
published, and shared online, has led to the coinage of big data, a term used to
describe datasets which follow the “three Vs” definition, which alludes to notions
of Volume, Velocity and Variety [Ward and Barker, 2013]. Thus, we usually con-
sider big datasets to be either too big, too complex and/or too fast moving to be
easily analyzed with traditional data processing applications.

In this scenario, text data plays a major role. In a study conducted in 20161, it
was shown that every minute, Google translates almost 70M words, SIRI answers
nearly 100k requests, and more than 3.5M text messages are sent in the US alone.
These figures are certainly impressive. However, how to automatically make sense
of all the textual information that is generated daily remains an unsolved problem,
mostly due to the fact that text is the embodiment of the challenges associated to
big data. First, text data is very big (the English Wikipedia alone grows at a rate of
800 articles a day, with 10 edits per second2). It is also clearly moving very fast,
with novel devices and communicative settings blossoming at a faster pace than
ever. But most importantly, and what constitutes the main motivation behind this
dissertation, is that text data is too complex to be processed without taking into
account meaning, ambiguity or communicative context. The automatic process-
ing of text requires a substantial effort in formalizing the underlying semantics

1www.domo.com/blog/data-never-sleeps-4-0/
2en.wikipedia.org/wiki/Wikipedia:Statistics

1
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contained in language, a task which concerns a research area known as Natural
Language Processing (NLP), which in turn is one of the long-lasting problems in
Artificial Intelligence (AI).

NLP is concerned with automatic text understanding, a broad and complex
problem, which has branched out into smaller and more tractable tasks, where
specific linguistic phenomena are addressed as standalone problems, often moti-
vated “by specific applications or by our belief that they capture something more
general about natural language” [Collobert et al., 2011]. Complexity in natural
language can be mostly attributed to the notion of ambiguity, which not only af-
fects individual words or phrases, but rather occurs comprehensively across all
levels of linguistic description. Indeed, it is widely acknowledged among NLP
specialists that “most or all tasks in speech and language processing can be viewed
as resolving ambiguity” at any of these levels [Jurafsky and Martin, 2000].

This means that ambiguity, as the backbone of creative language production,
has to be addressed by computational models at all its layers. For instance, for
resolving syntactic ambiguity, a system must parse the sentence and derive a
syntactic tree from which an interpretation can be obtained in terms of words,
phrases and the relations among them. To provide the reader with an illustra-
tive example, let us refer to an extensively studied type of syntactic ambiguity:
the PP-attachment3 ambiguity, consisting in selecting, in a sentence like “he saw
the woman with the telescope”, who was actually using a telescope (“he” or “the
woman”) [Hindle and Rooth, 1993]. A different type of ambiguity, namely lexical
ambiguity, occurs when words can be interpreted in multiple ways depending on
the context in which they appear. When faced with a problem of this nature, a
computational model has to perform what is known as Word Sense Disambigua-
tion (WSD), i.e. the computational identification of meaning for words in context
[Navigli, 2009].

The above are two of the many examples in which a case of ambiguity can
be resolved by relying to a certain extent on predefined knowledge encoded and
stored in a language resource, or knowledge repository (KR). For example, syn-
tactic parsing systems are trained on large amounts of annotated corpora, whereas
WSD systems may look up available senses (or meanings) associated to a sin-
gle lemma, and then decide which is the most appropriate for a specific commu-
nicative context. These resources, with machine-readable corpora as the earliest
and best known example, started to become widely available several decades ago.
Their potential impact was soon foreseen in fields like lexicography, the discipline
concerned with the principles and methods of writing dictionaries [Bowker, 2003].
For example, in [Church and Hanks, 1990], a corpus-based novel metric for mea-
suring association of words was introduced (the today well-known mutual infor-

3PP stands for prepositional phrase.

2
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mation), and rapidly it became a staple for evaluating multiword expressions such
as collocations or compounds. Similarly, FrameNet4, a manually annotated lexical
database where meaning is associated to semantic frames, and which seeded most
of today’s NLP tasks on Semantic Role Labeling [Gildea and Jurafsky, 2002],
was originally envisioned as “a lexicographic project” with applications to text
understanding [Fillmore and Baker, 2001].

KRs are useful in NLP because they can store meanings of words and phrases,
relations of any kind (e.g. syntactic, syntagmatic, semantic or ontologic) holding
among them, and also descriptions about entities or common sense facts. This in-
formation is essential in tasks requiring any degree of text understanding, and un-
surprisingly, NLP has traditionally leveraged whatever knowledge that was made
available in these resources. For example, they have played a major role in tasks
such as query expansion [Graupmann et al., 2005], semantic search [Auer et al.,
2007], clinical decision support systems [Demner-Fushman et al., 2009], ontol-
ogy learning [Lonsdale et al., 2002], automatic summarization [Reimer and Hahn,
1988], or distributional semantics [Faruqui et al., 2015, Camacho-Collados et al.,
2015].

KRs may differ in coverage and depth, may be purpose-built or domain-specific,
or may even be designed to capture comprehensive world knowledge in fine de-
tail [Medelyan et al., 2013]. And while today the number and quality of these
resources is certainly impressive, the fact that many of them are originally a (usu-
ally collaborative) manual effort, results in drawbacks such as scalability [Laparra
et al., 2010], as these resources are not designed to evolve at par with today’s
information and knowledge creation. This scenario has motivated the inception
of a research area in which NLP and machine learning techniques are applied for
automatically creating or enriching KRs, from annotated corpora to more struc-
tured resources like lexicons, terminological databases, dictionaries, taxonomies
or ontologies. This dissertation is concerned precisely with bridging the gap be-
tween today’s KRs and NLP in a twofold fashion. On the one hand, by improving
the state of the art in a variety of NLP tasks by leveraging information at various
degrees of structuring (from lexical databases to dictionaries or simply text cor-
pora), and on the other, by extending (and also creating from scratch) KRs via
NLP techniques.

In what follows, we provide the reader with a broad picture on KRs, inspired
by the original classification proposed in [Hovy et al., 2013]. We start by intro-
ducing basic notions on how knowledge is defined and represented (Section 1.2),
and continue by fleshing out different types of KRs, namely structured (Section
1.2.1), unstructured (Section 1.2.2) and semistructured (Section 1.2.3) resources.
Finally, we conclude this preamble with a conclusion and a critical view on the

4framenet.icsi.berkeley.edu/fndrupal

3

framenet.icsi.berkeley.edu/fndrupal


“output” — 2017/7/10 — 11:47 — page 4 — #22

current state of knowledge representation, together with specific research goals
pursued in this thesis (Section 1.3).

1.2 Defining and Representing Knowledge

Today, AI is facing challenges related to “the representation of linguistically ex-
pressible knowledge, the role of knowledge in language understanding, the use of
knowledge for several sorts of commonsense reasoning, and knowledge accumu-
lation” [Schubert, 2006]. The keyword ‘knowledge’ plays a crucial role in NLP
and AI. In fact, the idea of feedings intelligent systems and agents with general,
formalized knowledge of the world dates back to classic AI research in the 1980s
[Russell and Norvig, 1995].

Thus, it is important to have a broad and clear picture of what kinds of KRs
exist today, the process behind their construction (i.e., their knowledge acquisi-
tion pipeline), and how they are leveraged in NLP. According to [Hovy et al.,
2013], we may distinguish between structured resources such as Knowledge
Bases (KBs) or dictionaries, unstructured resources (such as statistical mod-
els derived from text corpora, or simply corpora), or semi-structured resources
(Wikipedia probably being the best known example). We thus will build up on
this original classification to provide a critical review of the kinds of KRs that are
currently available today both from the perspective of end users as well as NLP
practitioners. Specifically, we argue that lexicographic information, encoded in
the form of textual definitions, (which are the only quasi-unstructured content in
otherwise well structured resources like dictionaries or glossaries), has received
little attention from the NLP community, and that it can be processed and reshaped
as fully machine-readable information thanks, among others, to the algorithmic
novelties we present in this thesis. In fact, it has the potential to affect dramat-
ically current NLP applications, as it provides vast amounts of highly reliable
knowledge accumulated over time.

Finally, at the end of the survey, we state the research goals of this dissertation,
and anticipate our specific contributions, both in terms of experimental results and
language resources and software.

1.2.1 Structured Knowledge Resources
Manually-crafted fully structured resources undoubtedly represent knowledge at
the highest level of quality. They usually encode information entered by domain
experts, lexicographers or ontologists, and can be further leveraged with high con-
fidence by intelligent NLP systems. Although the terminology used to refer to
some of these resources is broad (e.g. WordNet [Miller et al., 1990] has been

4
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referred to as a lexical database, an ontology and also a lexicalized knowledge
base), we distinguish three broad groups of structured resources, namely lexico-
graphic resources, lexical databases and thesauri, and knowledge bases. Let dive
into each of them.

1.2.1.1 Lexicographic Resources

Defining a concept by making use of expressions other than the one mentioning
said concept is acknowledged to be one of the most valuable functions of language
[Barnbrook, 2002]. While the interest in definitions dates back to Aristotelian
times [Granger, 1984], their origin may be even more remote, and lexicographic
information may be traced as far back as to all societies with writing systems, and
some without [Béjoint, 1994].

Dictionaries are the paramount example of lexicographic resources, and they
may serve varying goals. From monolingual to bilingual dictionaries, these may
be designed for general purposes or domain-specific. Dictionaries are, by def-
inition, human readable, and provide a listing of concepts and their associated
senses, usually together with pronunciation, definitions, or examples or their lex-
ical combinations (e.g. collocations).

Naturally, dictionaries have a place in history much earlier than computers
ever existed, and therefore were not designed to fulfill a computational purpose.
However, although they are “far from ideal for computer use, they represent an
investment of resources that the computational linguistics research community
is in no position to match” [Sampson, 1990]. For this reason, dictionaries play
an important role in NLP, and even constitute the core of dictionary-based NLP,
a subarea in NLP concerned with the exploitation of dictionaries for improving
NLP tasks. These have proven useful in, among others, recognizing biomedical
concepts in free text [Xu et al., 2008], part-of-speech tagging [Coughlin, 1999], or
machine translation [Chowdhury, 2003]. Today, traditional dictionaries are grad-
ually being converted to machine-readable forms to develop substantial lexicons
for NLP in a resource-efficient fashion [Briscoe, 1991].

The main content of dictionaries are definitions, which are essential resources
to consult when the meaning of term is sought [Park et al., 2002, Navigli and
Velardi, 2010]. While there is a considerable amount of work on the philosoph-
ical and linguistic motivations behind certain classifications or taxonomies for
definitions, we provide in what follows simply a succint survey. Most defini-
tion classification proposals are based on the genus et differentia model, coined
by Aristotle. In this model, the structure of a definition resembles an equation,
where the definiendum (the term that is being defined) is placed on the left, and
the definiens (the cluster of words that differentiates the definiendum from others
of its kind) is placed on the right. This definiens is made of two parts: genus

5
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(the nearest general concept), and the differentiae specificae (the definiendum’s
differentiating characteristics) [Del Gaudio and Branco, 2009].

Definitions have been classified from several standpoints. For instance, (1)
based on their degree of formality and informativeness [Trimble, 1985]; (2) ac-
cording to their purpose [Robinson, 1972]; (3) according to the method followed
to define a concept [Borsodi, 1967]; (4) according to the textual pattern used in
the definitions [Westerhout and Monachesi, 2007b]; or (5) with regard to how def-
initional information is conveyed [Sierra et al., 2003, Aguilar et al., 2004, Sierra
et al., 2006a]. An extensive overview of definition classification is provided in
[Westerhout, 2010]. These definitional classification schemes, however, still have
not been incorporated into standardized NLP tasks. In fact, those lexicographic
repositories that are most used in NLP (and which do not follow a lexicographi-
cally motivated organization) are5:

• Wiktionary:6 It currently constitutes the largest available collaboratively
constructed lexicon for linguistic knowledge (see [Meyer and Gurevych,
2012] for a discussion on Wiktionary’s quality and its role in 21st century
lexicography), and has been used in several NLP applications [Etzioni et al.,
2007, Müller and Gurevych, 2008, Zesch et al., 2008, Schlippe et al., 2010].

• Urban Dictionary:7 Given the increasing interest in modeling the language
used in social networks, where jargon and slang are frequently utilized, Ur-
ban Dictionary has been used as a reference dictionary for sentiment analy-
sis [Wu et al., 2016].

• Domain-Specific Dictionaries: Similarly as in ontology engineering, domain-
specific dictionaries are still frequently used for modeling specific domains
of knowledge, which are usually either of interest for a specialized minor-
ity, or belong to highly specialized domains. Examples are diverse, and
range from dictionaries of soccer [Dunmore, 2011] to dictionaries of epi-
demiology [Last et al., 2001] or human geography [Johnston, 1981]. These
focused dictionaries have been taken advantage of for tasks such as seman-
tic taxonomy enrichment [Jurgens and Pilehvar, 2016].

There are certainly other specialized electronic lexicographic resources such
as dictionaries in languages others than English, bilingual dictionaries, which are
designed to help users understand, produce and translate texts [Nielsen, 1994,
Nielsen, 2010], or multilingual dictionaries8, but their impact in current NLP has

5We intentionally leave WordNet out of this list, as it will be discussed in Section 1.2.1.2.
6www.wiktionary.org
7www.urbandictionary.com
8Such as kdictionaries.com.

6
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yet to be measured, as many of them are only now slowly being made available
to the research community. Finally, as for specialized linguistic phenomena, dic-
tionaries may include synonyms, pronunciations, names (place names and per-
son names), phrases and idioms, dialect terms, slang, quotations or etymologies
[Cowie, 2009].

1.2.1.2 Lexical Databases and Thesauri

Two of the best known generic lexical databases and thesauri are Roget’s The-
saurus [Roget, 1911] and WordNet. In what follows we describe their main fea-
tures, as well as applications in NLP.

WordNet

WordNet [Miller et al., 1990, Miller, 1995, Fellbaum, 1998] represents senses by
grouping together synonyms referring to the same idea or concept. In WordNet,
there are more than 118,000 word forms and more than 90,000 word senses. Ap-
proximately 17% of the words contained in WordNet are polysemous, and roughly
40% of them have one or more synonyms. In WordNet, word forms like “back” or
“right”, which can have different parts of speech depending on their usage, are rep-
resented differently. Additionally, derivational and compound morphology are not
considered, and hence forms like “interpretation”, “interpreter” or “misinterpret”
are all considered distinct words. A highly exploited feature of WordNet in NLP
is the fact that it encodes semantic relations among synsets. Specifically, synsets
are related in terms of synonymy, antonymy (opposite), hyponymy (subordinate),
meronymy (part), troponymy (manner), and entailment (the last two relations be-
ing relevant only for verbs). As for its influence in NLP, it is indisputable that it
has played a major role in improving a wide range of tasks where lexical knowl-
edge is needed. In fact, the list of research papers using WordNet seems endless
[Hovy et al., 2013].

Roget’s Thesaurus

Roget’s provides a well-constructed concept classification, and features entries
written by professional lexicographers. One of its main advantages is its topical
distribution. As an example, according to [Jarmasz and Szpakowicz, 2004], Ro-
get’s allows linking the word bank, the business that provides financial services,
and the verb invest, i.e. to give money to a bank to get a profit, by placing in the
common head lending. Taking advantage of these topical characteristics, a num-
ber of NLP systems have benefited from Roget’s for tasks like sentiment analysis
[Aman and Szpakowicz, 2008]; computing semantic similarity and lexical cohe-
sion [McHale, 1998, Morris and Hirst, 1991]; or WSD [Yarowsky, 1992]. Finally,

7
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let us highlight the fact that, within the area of lexical access, Roget’s Thesaurus
is considered to be among the few resources that may be of help for language
producers rather than receivers (readers or listener). See, e.g. [Zock and Bilac,
2004, Zock and Schwab, 2008].

1.2.1.3 Knowledge Bases

KBs are “relational databases together with inference rules, with information ex-
tracted from documents and structured sources” [Ré et al., 2014]. Generally, we
expect KBs to be graph-like data structures where each node represent an entity
or concept (e.g. Nintendo or hope), and where edges between nodes may express
WordNet-like semantic relations, but also ontologic relations such as is-based-
in or is-CEO-in. KBs are essential in any knowledge-centric approach and
cognitive application, e.g. disambiguation, semantic search for entities and rela-
tions in web and enterprise data, and entity-oriented analytics over unstructured
contents [Suchanek and Weikum, 2013]. While a comprehensive review of KBs
is out of the scope of this dissertation, we provide in what follows a summary re-
view of the most relevant KBs in terms of coverage and/or applicability. We break
them down in three separate groups according to the methodology followed to
construct them, namely fully manual (either crowdsourced or by domain experts),
semi automatic (usually by performing automatic mappings or alignments among
manually built resources), and fully automatic, i.e. performing an unrestricted
acquisition and ranking of facts.

Manually built KBs

Manually built KBs can be broadly classified in two groups. In the first group
we find domain-specific KBs, usually the result of input by domain experts and
knowledge engineers. Systems containing only special-purpose domain knowl-
edge have accomplished extraordinary goals in a variety of fields [Matuszek et al.,
2006]. Indeed, the number of structured manually built KBs that exist in special-
ized areas of knowledge is very high, and some of them have trascended their
own domain by becoming core elements in research in knowledge representation.
Prominent examples include the Chemistry domain (CheBi9) [Degtyarenko et al.,
2008], Genetics (GeneOntology10) [Ashburner et al., 2000], Medicine (Snomed11)
[Spackman et al., 1997] or Music (MusicBrainz12) [Swartz, 2002]. However, the
truth is that in general, these resources are difficult to adapt to unforeseen prob-

9www.ebi.ac.uk/chebi/
10geneontology.org/
11browser.ihtsdotools.org
12musicbrainz.org/
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lems or areas. They may be too brittle for robust exportation [Friedland et al.,
2004], which is particularly impactful in any area involving natural language in-
teraction such as Question Answering, where the extension of the problem space
is very difficult to define a priori [Hovy et al., 2002].

The second group includes general-purpose KBs, which were originally en-
visioned as repositories which would encode vast amounts of information of any
kind (a sort of comprehensive world knowledge), from common sense knowledge
(e.g. “humans don’t like to get hurt”) to millions of facts about the world (e.g.
“the capital of Spain is Madrid”). Let us describe some of the most outstanding
general-purpose manually built KBS.

• Cyc: Cyc13 is a large KB containing a store of formalized background
knowledge [Matuszek et al., 2006]. Parts of this project are released as
OpenCyc, which provides an API, RDF endpoint, and a data dump under
an open source license. While it was initially designed as a fully manual
enterprise, it has strong focus in enabling NLP applications, and also to re-
cently to take advantage of NLP techniques for growing and improving its
ontology14.

• Freebase: Freebase is a tuple database used to structure human knowledge
[Bollacker et al., 2008]. The data it contains is collaboratively created,
structured and maintained. Originally, it was possible to access Freebase
information via an HTTP based graph-query API. However, since August
2016, the Freebase project was discontinued and all its information was
ported to Wikidata 15.

• Wikidata: Wikidata [Vrandečić and Krötzsch, 2014] is a document-oriented
semantic database operated by the Wikimedia Foundation16 with the goal
of providing a common source of data that can be used by other Wikimedia
projects.

Semi-automatically built KBs

We may define a semi-automatically built KB as any integrative project that com-
bines knowledge derived from manual interaction with automatic modules aimed
at either providing n-to-n mapping across different resources, by ontologizing un-
structured knowledge, or by leveraging human input for refinement and pruning
out incorrect facts. Outstanding cases include:

13www.opencyc.org
14www.cyc.com/natural-language-processing-in-cyc/
15plus.google.com/109936836907132434202/posts/bu3z2wVqcQc
16www.wikidata.org
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• ConceptNet: ConceptNet17 is defined as a “flexible, multilingual seman-
tic network for common sense knowledge” [Havasi et al., 2007]. It com-
bines automatic modules which perform pattern matching or reliability scor-
ing with manual interaction with users of the Open Mind Common Sense
project18, the umbrella infrastructure under which ConceptNet lives. Re-
cently, ConceptNet has also been leveraged, for instance, for learning vec-
torial representation of concepts and relations present in this KB [Speer
et al., 2016].

• BabelNet19: BabelNet [Navigli and Ponzetto, 2012] is a large multilin-
gual semantic network which originally was envisioned as a mapping be-
tween Wikipedia and WordNet. However, it currently integrates additional
resources such as Wiktionary, OmegaWiki and Wikidata. It also features
its own taxonomical organization, after taxonomizing the cyclic and dense
graph formed by Wikipedia page links and categories [Flati et al., 2014].
BabelNet has been exploited for many NLP applications, such as joint WSD
and Entity Linking (EL) [Moro et al., 2014], or distributed representations
of disambiguated linguistic items [Camacho-Collados et al., 2015, Iacobacci
et al., 2015].

• Yago20: Yago is an ontology based on Wikipedia, from which it benefits
from category pages, which in turn subsume entity pages. This categori-
cal information (rich but noisy and hardly usable) is combined with more
constrained but also more precise information from WordNet. Yago is de-
scribed as having “near-perfect accuracy” (97%) [Suchanek et al., 2007] ,
and has been enriched with n-ary relations, i.e. relations holding among
more than two entities.

• DBpedia21: DBpedia [Auer et al., 2007] is a community effort to extract
structured information from Wikipedia and to make this information avail-
able on the Web. It allows for sophisticated queries against datasets derived
from Wikipedia, and also to link other datasets on the Web to Wikipedia
data.

17conceptnet.io
18www.media.mit.edu/research/groups/5994/open-mind-common-sense
19babelnet.org
20yago-knowledge.org/
21wiki.dbpedia.org/
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Automatically built KBs

In the third group we refer to approaches where the main breaking point from the
above cases is that all knowledge is obtained and structured automatically. These
usually fall within the so-called Open Information Extraction (OIE) paradigm
[Banko et al., 2007], which roughly speaking can be summarized as (1) reading
the web; (2) learning facts; (3) scoring them; and (4) structuring them according
to some semantic criterion. While there exist minor differences in design (e.g.
NELL [Carlson et al., 2010] maps all facts to a manually predefined ontology,
while ReVerb [Fader et al., 2011] is purely unconstrained), the vision behind all
OIE systems is to acquire knowledge in an unrestrained fashion from fully un-
structured data (web documents). In the following we discuss two text-level OIE
systems, namely TextRunner [Banko et al., 2007] and ReVerb; and four semantic-
level (mapping facts to a reference KR) systems: NELL, PATTY [Nakashole et al.,
2012], DefIE [Delli Bovi et al., 2015] and Knowledge Vault [Dong et al., 2014].
We also cover DeepDive [Niu et al., 2012, Zhang et al., 2016], which performs
large-scale OIE not only on running text, but also leverages semi-structured infor-
mation from Wikipedia, as well as other resources such as Freebase.

• TextRunner: TextRunner is the first OIE project [Etzioni et al., 2011]. It
consists of three modules: A self-supervised learner which generates a clas-
sifier given a small corpus sample; a single-pass extractor that captures can-
didate tuples, which are further labeled as trustworthy or not by the classi-
fier; and a redundancy-based assessor, which assigns a probability to each
tuple based on its redundancy in text.

• ReVerb: ReVerb22 is an OIE approach designed to, among other capabili-
ties, reduce noise in the form of incoherent and uninformative extractions
(thus improving certain weaknesses identified in its predecessor TextRun-
ner). This is achieved thanks to a set of syntactic and lexical constraints.
The former enforces an extracted relation to comply with one of the set of
predefined POS-level patterns. Then, the latter is used to preserve only those
relations which are general and thus informative enough to be included into
the extracted learned facts. However, ReVerb’s technology remains inca-
pable to cope with certain linguistic phenomena such as n-ary or nested
relations.

• NELL: NELL (Never Ending Language Learning) is an OIE system de-
veloped at Carnegie Mellon University23. It differs e.g. from ReVerb in
that, in NELL, there is a starting ontology of 271 relations against which

22reverb.cs.washington.edu/
23rtw.ml.cmu.edu/rtw/
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each extracted fact is validated and eventually introduced into the resulting
KB. For example, it is possible to extract only the subset of taxonomic (is-
a) relations from a NELL’s output due to the fact that there is one specific
relation (in NELL’s own vocabulary, it is called generalization) that
encodes such relation.

• PATTY: PATTY is an OIE system which incorporates a further semantic
level by mapping relation arguments as well as relation types into a prede-
fined KB (e.g. relations are mapped to Wikipedia entities). It is defined as
a repository of semantically-typed relation patterns (also known as relation
synsets)24.

• DefIE: DefIE25 is a quasi OIE system, in that it does not require predefined
sets of relations to be extracted (like NELL), but on the other hand, it self-
limits its scope on definition sentences from Wikipedia, thus overcoming
one of the great challenges posed in OIE tasks, which is the degree of noise
usually encountered in processes involving knowledge gathering from the
web.

• Knowledge Vault: Knowledge Vault is a probabilistic knoweldge base con-
struction system, based on three main architectures: Extractors, for process-
ing large corpora for extracting 〈subject, predicate, object〉 triples; Graph-
based priors, i.e. using predefined knowledge stored in Freebase or Wiki-
data as prior knowledge; and Knowledge fusion, for ultimately scoring re-
lated facts according to a truthfulness and trustiness probability.

• DeepDive26: DeepDive is an automatic system for KB construction which
leverages various resources, e.g. Wikipedia, Freebase or the web. It is built
upon modules which perform various tasks, such as syntactic parsing, rela-
tion extraction pipelines, distributed computing, markov logic for statistical
inference, or EL (combining Named Entity Recognition techniques with
matching against Wikipedia pages).

The above survey should provide the reader with a broad picture of the current
state of structured KRs. As we have seen, it is not mandatory to have extensive
human input for building such resources, and in fact the current trend is gradually
favouring automatic approaches for improving or extending them. NLP can play
a very important role in this area, as intelligent processing of text can contribute
dramatically to identifying facts, infer novel truth for them, or discovering novel

24www.mpi-inf.mpg.de/yago-naga/patty/
25lcl.uniroma1.it/defie/
26deepdive.stanford.edu/
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domain specific terminology (inventions, patents, drugs or named entities). In
the following sections we discuss the two remaining types of KRs, namely fully
unstructured and semi-structured resources.

1.2.2 Unstructured Resources

According to [Hovy et al., 2013], text collections are “the main kind of unstruc-
tured resource”. Despite the fact that corpora provide some kind of organizational
structure (e.g. sentences, paragraphs, sections or documents), they do not provide
machine-readable knowledge because it is simply encoded as strings of text.

Since corpora are a massive resource in terms of coverage, we will narrow
down this subsection by defining corpora as the means for building distributional
(vector) representations of linguistic items (e.g. word-document frequencies and
co-occurrences matrices), arguably one of the hottest areas in recent NLP.

1.2.2.1 Distributed Semantic Models

According to the review provided in [Turney and Pantel, 2010], representing
words as vectors in a corpus-driven vector space model has applications in areas
such as automatic thesaurus generation [Crouch, 1988, Curran and Moens, 2002],
semantic similarity [Deerwester et al., 1990], word clustering [Pantel and Lin,
2002] or query expansion [Xu and Croft, 1996]. These representations, known
as Vector Space Models (VSMs) are prominent approaches for representing se-
mantics (and hence, knowledge). They “represent a linguistic item as a vector (or
a point) in an n-dimensional semantic space, i.e. a mathematical space wherein
each of the dimensions (hence, axes of the space) denotes a single linguistic entity,
such as a word” [Camacho-Collados et al., 2016].

VSMs can be broadly categorized as co-ocurrence based or as a newer predic-
tive branch (what we generally know today as word embeddings) [Baroni et al.,
2014], the lattter having become a staple in current research in NLP, with highly
impactful contributions such as word2vec [Mikolov et al., 2013c], paragraph vec-
tor [Le and Mikolov, 2014], GloVe [Pennington et al., 2014], skip-thoughts [Kiros
et al., 2015], or Word Mover’s Distance [Kusner et al., 2015]. According to [Ba-
roni et al., 2014], “the buzz is fully justified, as the context-predicting models
obtain a thorough and resounding victory against their count-based counterparts”.
In addition, these advances come hand in hand with the breakthrough of neural
models, which have further improved the state of the art in many semantics tasks
such as hypernym detection [Shwartz et al., 2016], textual entailment [Yu et al.,
2014], dependency parsing [Dyer et al., 2015] or named entity recognition [Lam-
ple et al., 2016].
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1.2.3 Semi-Structured Resources
[Hovy et al., 2013] suggest that, while other semi-structured resources exist (e.g.
Twitter messages27 or Yahoo! Answers28), Wikipedia constitutes “the largest and
most popular collaborative, multilingual resource of world and linguistic knowl-
edge containing semi-structured information”. Unsurprisingly, Wikipedia is the
core KR of many of the previously discussed KBs, and also the source for the
result of many datasets based on OIE.

1.2.3.1 Wikipedia

Wikipedia is the largest multilingual encyclopedia in the world, and it has for
many years now, been established as a reliable source for lexicographic, encyclo-
pedic and world knowledge. Its quality has been ascertained in studies which go
back as far as 2005, where a Nature article showed that Wikipedia “came close”
to Encyclopedia Britannica in scientific accuracy29.

Wikipedia articles are generally organized so that the first sentence constitutes
the definition of the page’s concept or entity, including etymological and phonetic
information. In addition to the text in the article (which as free running text is con-
sidered unstructured information), Wikipedia pages are linked to other pages via
inner hyperlinks, in addition to belong to a second organizational layer based on
Wikipedia Categories. Finally, many Wikipedia pages include infoboxes, which
provide domain-specific ontologic information. For example, an infobox about a
movie will include information about performing actors and actresses, or if it is
the sequel or prequel of another instalment of the saga.

As for its role in NLP, Wikipedia’s contribution has been massive. For in-
stance, it has been used for language normalization [Tan et al., 2015]; seman-
tic similarity [Pilehvar et al., 2013]; text simplification [Coster and Kauchak,
2011, Štajner et al., 2015]; or machine translation [Alegria et al., 2013], among
many others.

1.3 Conclusion and a critical view

1.3.1 Current limitations
From the previous survey, it stems that up to this date, research in knowledge
representation and knowledge acquisition in NLP is producing a large number
of high quality resources, pivoting in general around key components such as

27www.twitter.com
28answers.yahoo.com
29www.nature.com/nature/journal/v438/n7070/full/438900a.html
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Wikipedia (and its sister projects) or the web. Advances in novel algorithmic
approaches (especially in machine learning), along with an increasing awareness
of the importance of sharing datasets and language resources, have set the foun-
dations for a vibrant research area. However, certain issues seem to be slightly
far reached for the current state of the art. For example, the “middle ground”
which [Hovy et al., 2013] argued to be the best of both worlds (big data, and
good data), can potentially be increased in size and quality. Today, many state-of-
the-art approaches focus on processing larger data with existing NLP technology,
e.g. POS-based pattern matching [Fader et al., 2011], dependency-based match-
ing [Niu et al., 2012] or resource-specific heuristics [Auer et al., 2007, Suchanek
et al., 2007, Flati et al., 2014], and do not seem to take full advantage of NLP
at higher degrees of abstraction or discourse (e.g. semantic similarity, domain
pertinence or generalizations).

As for specific resource-wise drawbacks, they can be summarized as follows.
Regarding structured resources, they suffer from enormous creation and mainte-
nance effort, i.e. they do not scale and are extremely time-consuming to create.
Second, they show lack of coverage, meaning that they do not cover all knowledge
in their target domain (let alone world knowledge in general-purpose endeavours).
In addition, there is also the cultural bias, as these resources will inherently in-
clude more information from the cultural and historical background of the people
who curated them. Third, they are impossible to keep up-to-date, which is espe-
cially aggravated in dynamic domains such as AI. Finally, the language barrier
prevents multilingual text processing, as there is very little knowledge encoded in
languages other than English, primarily due to the fact that manual input of knowl-
ede implies repeating efforts according to the number of languages targeted.

On the other hand, unstructured resources also show serious problems when
it comes to representing knowledge. First, they are not able to automatically ac-
quire all the knowledge required for complex inference chains [Domingos, 2007].
For instance, dogs have four legs or birds can fly is information that almost never
occurs explicitly mentioned in language data30. Moreover, there is the issue of
the degree and quality of ontologization, meaning that systems that perform open-
ended fact extraction (such as OIE systems) usually do not have a reference ontol-
ogy against which all their potentially noisy information can be mapped to. This
is an issue that has received certain attention in the recent past, for example how
to deal with unlinkable entities, i.e. those concepts not prominent enough to have
their own entry in reference KRs such as Wikipedia [Lin et al., 2012]. A third
problem in unstructured resources, which also affects predictive VSMs, has to

30Predictive VSMs, however, seem to have greatly contributed towards this shortcoming, by
grouping in vector spaces semantically similar concepts, from which these properties may be
inferred.
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do with the notion of ambiguity, which we defined earlier as the most pervasive
problem in automatic language understanding. When projecting linguistic items
in vector spaces, the issue of conflated meanings into one vector arises [Pilehvar
and Collier, 2016] (e.g. only one vector for the polysemic word ‘bank’). Another
example can be found in antonyms, i.e. words with opposite semantic meanings
(‘big’ and ‘small’), which are often assigned similar vectors due to their tendency
to occur in similar contexts [Schwartz et al., 2015].

1.3.2 Research goals
In this dissertation, we propose to advance the state-of-the-art in knowledge ac-
quisition and representation by taking advantage of NLP techniques (both pre
existing and those developed and presented in this thesis), and propose to com-
bine them with KRs of varying nature. Specifically, our claim is that high quality
lexicographic data such as definitions or topical grouping (knowledge domains)
has had negligible impact in recent NLP. We therefore explore the extent to which
dictionaries and encyclopedias provide an additional layer in Hovy et al.’s catego-
rization, as they are not as structured as an ontology (since definitions are written
in free text, sometimes very creatively), but show a more refined semantic and
macrostructural organization than text corpora or Wikipedia. We thus coin the
notion of the virtuous cycle of NLP and lexicography, which we define as the suc-
cessful interplay between corpus-based statistical approaches for language repre-
sentation and semi-structured high quality data encoded in lexicographic material.
Based on this idea, we set two main areas of contribution. First, NLP for lexicog-
raphy, where we develop algorithms that perform intelligent text processing tasks
for improving the quality of current lexicographic resources. And second, we pro-
vide extensive experiments on lexicography for NLP, where we investigate how
lexicographic and terminological information can be useful for downstream NLP
and AI applications.

NLP for Lexicography

Throughout this preamble, we have discussed the strong influence of lexicographic
and terminological resources for NLP. We propose to further improve automati-
cally the quality of these resources via NLP. Specifically, the reader of this thesis
will find experimental results on:

• Automatic Extraction of Definitions: We set our goal in improving the
state of the art in Definition Extraction, a subtask of Information Extraction
consisting in identifying definitional text snippets from corpora, with the
ultimate goal to use them for creating or extending automatically existing
dictionaries or glossaries.
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• Automatic Hypernym Discovery: We aim at providing the research com-
munity with experimental results, resources and software designed for en-
coding is-a relations between pairs of concepts, which is a useful task, for
example, when attempting topical grouping of terms in a dictionary.

• Collocation Discovery: We investigate a fairly unexplored area in NLP,
which is the automatic acqusition of a very specific type of multiword ex-
pression, namely collocations associated by lexical functions [Mel’čuk, 1996].

Lexicography for NLP

Our research goals in this area are focused on improving the state-of-the-art in
NLP by leveraging lexicographic information of various types, specifically:

• Taxonomy Learning: We propose to extensively use definitional informa-
tion for creating domain-specific lexical taxonomies. We achieve state-of-
the-art performance in several evaluation benchmarks in this task.

• KB Unification: We put forward novel approaches for improving the qual-
ity of existing KRs. Specifically, we study the potential integration of arbi-
trary KRs.

• Domain-specific KB construction and extension: An additional goal this
dissertation also pursues is exploring difficult subtasks in this area, such as
working with highly specific domains or languages other than English. We
therefore investigate and evaluate use cases such as the creation of a music-
specific KB from scratch, as well as experiments in the medical domain in
the Spanish language.

To conclude this preamble, we provide the reader with the structural organization
of this thesis.

1.3.3 Organization of the thesis
So far we have provided an extensive discussion of the current state of knowl-
edge representation and automatic knowledge acquisition. We have touched upon
how knowledge is today represented in electronic format (Section 1.1), along with
the different types of KRs that are most leveraged today in NLP (Sections 1.2.1-
1.2.3). Next, we have addressed some of their weaknesses and have set the main
research goals that this dissertation pursues (Section 1.3). We finish this preamble
by providing the structural organization of this thesis.

First, in Chapter 2, we provide a literature review of the three areas in NLP
which are most related to this dissertation from the methodological point of view.
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Then, we flesh out our contribution in the area of definition extraction (Chapter
3). In Chapter 4, we delve into hypernym discovery, and provide a description
and evaluation of our proposed systems. We further focus, in Chapter 5, on the
task of taxonomy learning, where we evaluate a system for jointly providing a se-
mantic and hierarchical articulation to a flat domain terminology. We then present
and evaluate different language resources which have been created by exploiting
in different ways lexicographic knowledge (Chapter 6). We conclude the method
and contributions part of the thesis with Chapter 7, where we describe the different
assets which are published alongside this dissertation, both in terms of datasets
and software. We finalize this dissertation with a concluding Chapter 8, where
we highlight the contributions derived from our work, as well as limitations and
potential avenues for future research.

1.4 Our contribution

We have quoted [Jurafsky and Martin, 2000] in that the essence of NLP is to re-
solve ambiguity at any level of linguistic description (from phonetics and phonol-
ogy to discourse). In tasks which require high levels of semantic understanding,
such as the ones covered in this literature review (definition extraction, hypernym
discovery and taxonomy learning), the issue of lexical ambiguity has not been
specifically addressed (albeit notable exceptions such as [Kozareva and Hovy,
2010] or [Velardi et al., 2008]). This is a notable drawback in most approaches, as
they fall short when attempting, for instance, to find a proper definition in a corpus
for the concept round table (which could be a table of a circular shape, or a debate
among experts in a specific topic), or to discriminate between taxonomic relations
involving the term apple which are only relevant for the IT industry alone (and
not the food domain).

In this dissertation we discuss, in addition to linguistic and purely statistical
information, the extent to which knowledge-based approaches can contribute to
improving the state of the art in these tasks. By leveraging semantic informa-
tion explicitly encoded in collaboartively-built resources, we are able to model
(un)ambiguity in semantic models, which allows us to address issues such as the
domain pertinence of taxonomic relations.

Since we take extensive advantage of lexical and semantic resources, we in-
clude one additional set of experiments (Chapter 6) where the focus is not to
leverage existing KRs for NLP, but rather to use the combination of NLP and lexi-
cographic information as a means to extending, enriching or creating from scratch
additional knowledge resources. We will review the methodology behind the fol-
lowing specific use cases: (1) Creation and evaluation of a novel Knowledge Base
in the music domain created entirely from scratch (Section 6.1); (2) Unification of
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arbitrary outputs of OIE systems into one disambiguated and unified KB (Section
6.2); (3) Extension of the WordNet lexical database with collocational informa-
tion (Section 6.3); and (4) Extension of the Spanish version of Snomed Clinical
Terms, the reference medical terminology (Section 6.4).

In addition to these use cases, we also accompany this dissertation with a
number of language resources and software applications (Chapter 7), and show-
case their potential for replicating the experiments we report in this dissertation, in
addition to allowing any user to perform semantic tasks such as the extraction of
definitions from corpora, detection or discovery of hypernyms from either defini-
tions or vector space models, or using lexical taxonomies for inspecting a domain
of knowledge.

1.4.1 Publication Record
We provide below a chronologically ordered (most recent first) listing of papers
and journal articles successfully published in relevant NLP venues. Most of them
are either directly related with the content of this dissertation (in which case, they
are marked with the relevant chapter), or indirectly related, e.g. as part of larger
research projects.

1. Sergio Oramas, Luis Espinosa Anke, Mohamed Sordo, Horacio Saggion,
Xavier Serra: Information extraction for knowledge base construction
in the music domain. Data and Knowledge Engineering 106: 70-83 (2016)
- Chapter 6.1.

2. Luis Espinosa Anke, Jorge Tello, Alberto Pardo, Ignacio Medrano, Alberto
Ureña, Ignacio Salcedo, Horacio Saggion: Savana: A Global Information
Extraction and Terminology Expansion Framework in the Medical Do-
main. Procesamiento del Lenguaje Natural 57: 23-30 (2016) - Chapter 6.4

3. Sara Rodríguez-Fernández, Luis Espinosa Anke, Roberto Carlini, Leo Wan-
ner: Semantics-Driven Collocation Discovery. Procesamiento del Lenguaje
Natural 57: 57-64 (2016)

4. Luis Espinosa Anke, Horacio Saggion, Francesco Ronzano, Roberto Nav-
igli: ExTaSem! Extending, Taxonomizing and Semantifying Domain
Terminologies. AAAI 2016: 2594-2600 - Chapter 5.1

5. Sara Rodríguez-Fernández, Luis Espinosa Anke, Roberto Carlini, Leo Wan-
ner: Semantics-Driven Recognition of Collocations Using Word Embed-
dings. ACL (2) 2016
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6. Francesco Barbieri, Luis Espinosa Anke, Horacio Saggion: Revealing Pat-
terns of Twitter Emoji Usage in Barcelona and Madrid. CCIA 2016:
239-244

7. Luis Espinosa Anke, Sergio Oramas, José Camacho-Collados, Horacio Sag-
gion: Finding and Expanding Hypernymic Relations in the Music Do-
main. CCIA 2016: 291-296

8. Luis Espinosa Anke, José Camacho-Collados, Sara Rodríguez-Fernández,
Horacio Saggion, Leo Wanner: Extending WordNet with Fine-Grained
Collocational Information via Supervised Distributional Learning. COL-
ING 2016: 3422-3432 - Chapter 6.3

9. Luis Espinosa Anke, José Camacho-Collados, Claudio Delli Bovi, Horacio
Saggion: Supervised Distributional Hypernym Discovery via Domain
Adaptation. EMNLP 2016: 424-435 - Chapter 4.2

10. Sergio Oramas, Luis Espinosa Anke, Aonghus Lawlor, Xavier Serra, Hora-
cio Saggion: Exploring Customer Reviews for Music Genre Classifica-
tion and Evolutionary Studies. ISMIR 2016: 150-156

11. Sergio Oramas, Luis Espinosa Anke, Mohamed Sordo, Horacio Saggion,
Xavier Serra: ELMD: An Automatically Generated Entity Linking Gold
Standard Dataset in the Music Domain. LREC 2016

12. Sara Rodríguez-Fernández, Roberto Carlini, Luis Espinosa Anke, Leo Wan-
ner: Example-based Acquisition of Fine-grained Collocation Resources.
LREC 2016

13. Francesco Ronzano, Ahmed AbuRa’ed, Luis Espinosa Anke, Horacio Sag-
gion: TALN at SemEval-2016 Task 11: Modelling Complex Words by
Contextual, Lexical and Semantic Features. SemEval@NAACL-HLT
2016: 1011-1016

14. Luis Espinosa Anke, Francesco Ronzano, Horacio Saggion: TALN at SemEval-
2016 Task 14: Semantic Taxonomy Enrichment Via Sense-Based Em-
beddings. SemEval@NAACL-HLT 2016: 1332-1336

15. Luis Espinosa Anke, Roberto Carlini, Horacio Saggion, Francesco Ron-
zano: DefExt: A Semi Supervised Definition Extraction Tool. Globalex
Workshop, Co-located with LREC 2016.

16. Luis Espinosa Anke, Francesco Ronzano, Horacio Saggion: Hypernym
Extraction: Combining Machine-Learning and Dependency Grammar.
CICLing (1) 2015: 372-383 - Chapter 4.1
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17. Claudio Delli Bovi, Luis Espinosa Anke, Roberto Navigli: Knowledge
Base Unification via Sense Embeddings and Disambiguation. EMNLP
2015: 726-736 - Chapter 6.2

18. Sergio Oramas, Mohamed Sordo, Luis Espinosa Anke, Xavier Serra: A
Semantic-Based Approach for Artist Similarity. ISMIR 2015: 100-106

19. Mohamed Sordo, Sergio Oramas, Luis Espinosa Anke: Extracting Re-
lations from Unstructured Text Sources for Music Recommendation.
NLDB 2015: 369-382

20. Luis Espinosa Anke, Horacio Saggion, Francesco Ronzano: Weakly Su-
pervised Definition Extraction. RANLP 2015: 176-185 - Chapter 3.4

21. Luis Espinosa Anke, Horacio Saggion and Claudio Delli Bovi. Definition
Extraction Using Sense-Based Embeddings. Proceedings of the 2015 In-
ternational Workshop on Embeddings and Semantics (IWES), pages 10-15,
Alicante, Spain - Chapter 3.2

22. Luis Espinosa Anke, Horacio Saggion, Francesco Ronzano: TALN-UPF:
Taxonomy Learning Exploiting CRF-Based Hypernym Extraction on
Encyclopedic Definitions. SemEval@NAACL-HLT 2015: 949-954

23. Sergio Oramas, Mohamed Sordo, Luis Espinosa Anke: A Rule-Based Ap-
proach to Extracting Relations from Music Tidbits. WWW (Companion
Volume) 2015: 661-666

24. Luis Espinosa Anke, Horacio Saggion: Descripción y Evaluación de un
Sistema de Extracción de Definiciones para el Catalán. Procesamiento
del Lenguaje Natural 53: 69-76 (2014) - Chapter 3.3

25. Luis Espinosa Anke, Horacio Saggion: Applying Dependency Relations
to Definition Extraction NLDB 2014: 63-74 - Chapter 3.1
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Chapter 2

RELATED WORK

In order to provide a thorough, precise and relevant overview of those contri-
butions which are most relevant to this dissertation, we will narrow down our
literature review to those topics where the interaction between terminology and
lexicography, on one hand, and NLP and AI, on the other, is most clear.

We start, thus, by reviewing prominent work in the area of Definition Extrac-
tion, an NLP task aimed at automating the process of finding definitions from
corpora. Then, we focus on Hypernym Discovery, i.e. the task of finding, for a
given concept, its most likely hypernym(s). This is a very important task in NLP
due to the need of semantic search or Question Answering systems to be able to
disambiguate and generalize mentions of concepts or entities. Finally, we focus
on arguably the most difficult task of the three, namely Taxonomy Learning. It
consists in deriving, from a large collection of documents, a hierarchical repre-
sentation of concepts in a given domain. The resulting graph can be used as a
reference knowledge resource in inference tasks, as the backbone of ontologies
[Navigli et al., 2011].

2.1 Definition Extraction

Definition Extraction (DE) is the task to automatically identify definitional text
fragments (definitions, in short) in corpora. Automatically extracting definitional
knowledge has the potential to impact downstream applications such as automatic
glossary construction [Muresan and Klavans, 2002, Park et al., 2002, Faralli and
Navigli, 2013] and terminological databases [Nakamura and Nagao, 1988], Ques-
tion Answering systems [Saggion and Gaizauskas, 2004a, Cui et al., 2005], as
support for terminological applications [Meyer, 2001, Sierra et al., 2006a], e-
learning [Westerhout and Monachesi, 2007b], ontology learning [Navigli et al.,
2011, Velardi et al., 2013], hypernym detection [Flati et al., 2014], or paraphrase
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detection [Yan et al., 2013]. In addition, lexicographic information (the kind of
information one would expect to find in a dictionary, with definitions being the
most prototypical case) is key in many semi-structured resources (e.g. Wikipedia)
which are extensively exploited for KB creation, enrichment and completion.
With knowledge-based systems being on the rise, it is likely that automatically
creating and extending dictionaries will become a core task in intelligent applica-
tions involving natural language.

In this section, we provide the reader with a chronologically ordered survey
of the most prominent methods for identifying definitions in text collections. For
each relevant publication, we highlight key elements such as whether and which
linguistic cues are used, whether languages other than English were covered, the
corpora used, and method. For thematic clarity, we group all contributions in ei-
ther Rule-Based Approaches or Machine Learning Approaches. This overview
will serve as a contextualization for better understanding where our contributions
to DE fit in.

2.1.1 Rule-Based approaches
Exploiting linguistic regularities in how terms are defined in naturally occurring
text is a well-studied topic. In fact, these regularities have been used in more
sophisticated machine learning approaches, where presence or absence of certain
cues is used as indicative features in statistical models. However, before ML meth-
ods became a standard, most work reported results on pattern matching, exploiting
linguistic idiosyncrasies in definitions.

An early example of rule-based methods is [Rebeyrolle and Tanguy, 2000],
where a set of linguistic patterns are crafted for the French language in order to
extract definitions, or énoncés définitoires. These patterns were grouped accord-
ing to the type of definition the system is aiming to extract, e.g. designation (NP
désigner NP) or meaning definitions (NP signifier NP). In their work, the authors
report results based on Precision, Recall and F-score for different patterns, dif-
ferentiating between verb-based patterns and NP-based patterns like “NP such
as NP”. Similarly, [Klavans and Muresan, 2001] also leveraged indicative cue
phrases. However, these were combined with structural indicators with the pur-
pose of automatically constructing a glossary in the medical domain, taking as
input a medical corpus, where linguistic variability is scarce.

A further extension of the above appeared in [Malaisé et al., 2004], where the
goal was twofold: first, identifying definitions in text corpora; and then, exploiting
predefined definition typologies to detect semantic relations (e.g. hypernymy and
synonymy) holding among terms included in a definition (e.g. the definiendum
and the genus).

Following the idea of leveraging linguistic cues for DE, this is exploited in the
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work by [Saggion and Gaizauskas, 2004a]. Their proposed system starts with a
set of seed patterns, which are specific to “What is X” or “Who is X” questions,
and mines sources like WordNet, Britannica online1 or the web. A methodologi-
cally similar approach is described in [Sarmento et al., 2006], who propose a DE
module within a knowledge engineering system (called Corpógrafo) which relies
on 135 definitional patterns such as “term (is OR are) * that *”. A remarkable
outcome of this work is that, in their evaluation study, they collected data from
the user base of Corpógrafo and concluded that this approach to DE could speed
up the task of finding correct definitions (even with a human post-editing step) by
several orders of magnitude. It contains patterns for Portuguese, English, Spanish,
Italian and French.

Continuing with work in languages other than English, [Storrer and Wellinghoff,
2006] proposed to detect definitions in the German language by exploiting “frames”
for 19 definitors, i.e. verbs that occur in definitional sentences. In their study, they
identify a recurrent problem in rule-based DE, which is that of overly generic pat-
terns having very high recall but low precision, due to the fact that they capture
many sentences that match all linguistic requirements but are, in fact, not defini-
tions.

Despite these concerns, rule-based approaches continued to be highly utilized
in subsequent years. This is the case in another set of works for Spanish DE
[Sierra et al., 2006b, Sierra et al., 2006c, Sierra, 2009, Alarcón, 2009]. The gen-
eral vision of these contributions is to develop a rule-based system able to capture
definitional knowledge (also known as definitional context or contexto definito-
rio, in Spanish), with the added value of discriminating among different definition
types. For example, by considering cases where a term is defined by giving ex-
amples, by simply enumerating its components, where the genus is missing in the
definiens, or whether the definition complies with the canonical genus et differen-
tia structure.

The clearest advantages of all these rule-based approaches are based on the
fact that, technically, it would be possible to craft extremely specific linguistic
pattern matching rules, particularly tailored to a given domain, register and lan-
gauge. These would probably achieve high precision, at the expense, however, of
low recall. To surmount this problem, machine learning methods have become the
standard in DE. The latter are useful for tackling some of the main issues arising
from rule-based methods, which according to [Del Gaudio et al., 2013], include
language dependence and domain specificity.

1http://www.britannica.com
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2.1.2 Machine Learning Approaches

In what follows, we review previous contributions to DE approached via ML tech-
niques. These include either supervised binary classification (the most common),
or other approaches like semi supervised methods, or sequence-to-sequence learn-
ing.

2.1.2.1 Supervised

The earliest work we refer to starts with standard pre-processing techniques (tok-
enization, part-of-speech taggin or partial parsing), and after applying lexical and
punctuation indicators, extracts metalinguistic fragments (definitions) and intro-
duces a classification module based on machine learning techniques [Rodríguez,
2004].

Next, [Cui et al., 2005] propose a soft pattern matching algorithm. This match-
ing is performed on lexico-syntactic structures, and used to model textual data ei-
ther as bigrams or as Profile Hidden Markov Models (PHMM), allowing in both
cases approaching the task as a probabilistic process. The main intuition behind
the inclusion of a more flexible probabilistic model like PHMM is to account
for slight variations in semi-fixed definitional cues. For instance, for the pattern
“term, which is known for ...”, a bigram model would fail to cover cases like
“term, which is best known for ...”, or “term, whose xxx is known for ...”.

In ML approaches there is also work in languages other than English. For
instance, the work by [Fahmi and Bouma, 2006] describes a system that oper-
ates on fully parsed Dutch text from Wikipedia. Pattern annotation consisted in
definitional cue phrases such as NP + Copula + V, and a sentence level manual
classification considered three classes: “definition”, “non-definition”, and “unde-
cided”. The process of training a model able to distinguish between definitional
and non definitional sentences is based on identifying features that account for
properties such as: (1) text properties, combining bag of words and bigrams with
punctuation, a feature also used in [Muresan and Klavans, 2002]; (2) document
properties, such as the position of a sentence in the document, the intuition being
that definitions may occur more frequently at the beginning of a document; (3)
syntactic properties, namely position of each subject and its complement; and (4)
named entity tags, using the regular typology of “location”, “person” and “orga-
nization”.

Following this line of combining recurrent linguistic patterns with ML, [West-
erhout and Monachesi, 2007a] describe a system where a grammar that matches
the syntactic structure of a definition sentence is applied in a first run in order to
obtain a set of candidates. Then, a machine learning component is incorporated.
It uses manually annotated data for training, and models each sentence taking ad-
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vantage of similar properties as [Fahmi and Bouma, 2006]. Another contribution
with similarities from the methodological standpoint was developed for the Polish
language, and showed that combining a simple grammar with a ML classification
step (using a bag of ngrams as the only feature set) yielded better results than
applying highly sophisticated linguistic grammar alone, or ML alone [Degórski
et al., 2008]. All of the above contributions are among the many outcomes result-
ing from the LT4eL2 project, which aimed at providing easier access to e-learning
technologies in several languages. In the DE area, notable work includes, in-
ter alia, [Degórski et al., 2008, Del Gaudio and Branco, 2007, Borg and Rosner,
2007].

Among all the contributions framed within the LT4eL project, let us discuss
with deeper detail the innovative work by [Borg et al., 2009]. Their proposed
method combines genetic programming for learning typical linguistic forms in
definitional sentences in corpora, together with genetic algorithms for learning
the weights for these forms. Still, while the algorithmic choice is novel in com-
parison with previous work, which used more traditional Naïve Bayes, SVM, or
Random Forests classifiers, the conceptual methodological approach based on re-
vealing linguistic regularities in definitions as opposed to distractors still remained
the core task. As such, the feature vector learned for each sentence contains infor-
mation on, for instance, whether the sentence contains the verb “to be” or the “is
a” sequence, whether there exists a foreign word in the sentence followed by “is”,
if there are possessive pronouns, or paralinguistic features (italics, bold, etc.)

Let us refer now to one of the most impactful systems (and its associated
dataset) of our survey, namely the WCL (Word-Class Lattices) system [Nav-
igli and Velardi, 2010]. The main idea is to model each sentence as directed
acyclic graphs, with the purpose of retaining salient differences among different
sequences, while at the same time eliminating redundant information. The au-
thors suggest that, in DE, “the variability of patterns is higher than for traditional
applications of lattices, such as translation and speech, however not as high as
in unconstrained sentences”, which makes modeling linguistic regularities in this
task viable. The approach consists in extracting WCLs from a training corpus, and
for classification, several configurations are tested, e.g. classifying as definition a
candidate sentence where a WCL matches, or selecting the combination of lattices
that best fit the sentence. The dataset used, which has become a de-facto standard
for DE, is described in [Navigli et al., 2010]. It consists of 1908 definitions (first
sentences from Wikipedia articles), along with 2711 distractors, or as the authors
call them, “syntactially plausible false definitions”, in order to account for the fact
that there may exist sentences that look like definitions in terms of their linguistic
structure, but are in fact non definitions.

2http://www.lt4el.eu/
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An improvement over the results published in [Navigli and Velardi, 2010] in
the same dataset were reported by [Boella et al., 2014]. This is another example
in which, in a supervised classification setting, linguistic patterns are used as fea-
tures to inform a classifier for DE. However, the novely lies in that, parting ways
from shallower syntactic approaches (e.g. the grammars in the LT4eL papers, or
the WCL approach), the authors propose to exploit syntactic dependencies, a lin-
guistic paradigm in which there exist head-dependent relations between words in a
sentence which define the role of each word towards its head, and where unlike in
constituency grammar, these relations are not phrasal [Nivre, 2005]. Specifically,
this system is an SVM-based classifier which takes as input features related to
head-dependent relations over the nouns in the sentence, under the intuition that
syntactic dependencies between nouns may reveal hypernymic (is-a) relations,
and classifies a sentence as being definitional or not.

In [Del Gaudio et al., 2013], a pervasive problem in DE, which is only marginally
addressed in previous publications, is brought up. Due to the nature of definitions
and their low frequency in free text, all training and evaluation datasets suffer from
the imbalanced dataset issue: The definition class being much more sparsely dis-
tributed than the non-definition class. This contribution describes experiments in
a fully supervised ML setting, along with an extensive discussion on the effect
of different resampling techniques (via either oversampling training definitions,
or undersampling negative instances). Moreover, another alternative discussed is
the possibility to adjusting the costs of misclassifying one or the other class, giv-
ing the classifier a higher penalty if, during training, misclassifies a definition (or,
more generally, an instance belonging to the minority class) instead of a non defi-
nition sentence. The authors present results in the context of DE, where data from
the LT4eL project is resampled using various techniques, and conclude that Naïve
Bayes outperforms other more sophisticated algorithms in most experiments.

So far, all the systems we have reviewed defined the DE task as a binary clas-
sification problem. However, this has inherent design flaws, which may be aggra-
vated depending on the intended application. For example, assuming an automatic
glossary generation scenario, only extracting definitions from corpora would not
suffice. A posterior step would have to detect definiendum and definiens, and this
may be another substantial research problem, as definienda may appear in arbi-
trary positions in a sentence. An approach that, by nature, would be able to cope
with these limitations is described in [Jin et al., 2013]. Here, DE is modeled as
a sequentail classification problem, where instead of discretely tagging sentences
as definitions or non-definitions, the problem is reformulated in a similar way as
POS tagging or chunking. The authors present a system based on Conditional
Random Fields (CRF) [Lafferty et al., 2001]. It learns the probability of sequen-
tially tagging a given sequence (i.e. a list of words) using a set of predefined
labels. These labels are the classic BIO tagset (Beginning, Inside or Outside), and
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refer to whether a word is at the beginning, included in, or not in a definition. At
training time, the individual probability of an element to have a certain label is
modeled, along with transition probabilities, i.e. how likely it is for the next word
to have the same or a different label as the current one. In this paper, evaluation
is carried out over a manually annotated subset of the ACL anthology [Bird et al.,
2008] corpus3.

Having reviewed the most prominent work in supervised DE, in the following
we provide the reader with a survey with the (fewer) works that attempted the au-
tomatic extraction of definitional knowledge from text corpora in an unsupervised
or semi-supervised manner.

2.1.2.2 Unsupervised

In [Reiplinger et al., 2012], a comparison is provided between bootstrapping ver-
sus leveraging linguistic analysis (in other words, exploiting linguistic regulari-
ties). Building up on the seminal paper by [Yarowsky, 1995], which introduced an
unsupervised bootstrapping algorithm for WSD, subsequent bootstrapping meth-
ods are based on the same core fundamentals: Bootstrapping algorithms are semi
or unsupervised classification methods which rely only on a few seeds, i.e. cor-
rectly labeled instances, for training a first version of the model. A self-training
algorithm bootstraps a development set extracting confidently classified instances,
and transfers these instances to the original training data. The training seeds are
expected to be of very good quality, as they constitute the core of the learning algo-
rithm, and the training data gradually increases in size as the bootstrapping process
advances. In the specific case of this contribution, the authors, after preprocess-
ing, obtain seed terms and definition patterns. After matching definition patterns
with one of the predefined terms, term-term pairs are ranked with the Pointwise
Mutual Information metric, and used iteratively to discover novel patterns, and so
on. This approach, much like in [Jin et al., 2013], is run and evaluated on the ACL
Anthology. In this specific case, however, the quality of extracted definitions is
rated by domain experts and thus direct comparison with [Jin et al., 2013] is not
possible.

The last publication we review is GlossBoot [Faralli and Navigli, 2013], a min-
imally supervised approach for the acquisition of multilingual domain glossaries
from the web. The system requires a potentially small set of term-hypernym pairs
and starts by collecting web pages with these terms, from which snippets starting
from the term and ending in the hypernym are extracted, broken down in term and
gloss, and added to a set of candidates. Then, glosses are ranked and filtered by

3Code and datasets are available for download at: https://github.com/YipingNUS/
DefMiner.
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domain pertinence and, finally, seeds are selected for the next iteration. This last
module is based on a re-ranking of newly acquired term-hypernym pairs.

2.1.3 Conclusion
It clearly stems from the works reviewed in this section that the DE task has tradi-
tionally benefited from two main sources of information. On the one hand, linguis-
tic information such as part of speech or syntax has proven to play a crucial role,
mostly due to certain regularities exhibited by definitional sentences. On the other
hand, annotated corpora (if available), can also contribute to improvement in per-
formance of DE systems, as statistical models are capable to identify definitions
which not necessarily comply with classic predefined definition patterns such as
the genus et differentia model. However, three main criticisms can be made to the
above contributions. First, syntactic information only exploits a kind of shallow
parsing in the case of [Navigli and Velardi, 2010], or head-modifier relations be-
tween pairs of words in a dependency syntactic tree [Boella et al., 2014]. This
leaves much room for improvement for encoding deeper syntactic information in
supervised models. Second, no semantic information is considered in any of the
above cases, which leaves out a highly informative feature in that definiendum
and definiens usually are semantically similar4 (e.g. the pair (mosque, building)
in a definition such as “a mosque is a building where muslims go to pray”). And
third, while a small number of semi-supervised approaches have been described,
none of them attempted domain adaptation, i.e. to design a DE model able to cope
with linguistic idiosyncrasies of a specific target domain, which arguably, in a real
world scenario would be highly desirable, as one of the most clear applications
of DE systems is the automatic creation of domain glossaries. These issues are
specificaly addressed throughout our contributions to DE in Chapter 3.

After having reviewed rule-based and ML learning approaches to DE, we
move to another closely related task in which this dissertation presents novel con-
tributions. This task is Hypernym Discovery. We will provide an overview of both
pattern-based and distributional methods, again aiming at providing the context of
the state of the art in this area, so that our contributions can be put in perspective.

2.2 Hypernym Discovery
Hypernymy, i.e. the capability for generalization, lies at the core of human cogni-
tion. Unsurprisingly, identifying hypernymic relations has been pursued in NLP
for approximately the last two decades [Shwartz et al., 2016], as successfully iden-
tifying this lexical relation not only improves the quality of Question Answering,

4This can be measured by looking at how often they occur with similar contexts in corpora.
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Textual Entailment or Semantic Search systems [Roller and Erk, 2016], but also is
the backbone of almost any taxonomy, ontology and semantic network [Yu et al.,
2015].

The terminology is unclear in terms of how this task is to be named, especially
since it seems to have branched out towards different but strongly related subtasks.
For example, in [Snow et al., 2004] the task receives the name of corpus-based hy-
pernym pair identification. Additionally, in [Navigli and Velardi, 2010, Flati et al.,
2014], the task is called hypernym extraction, since the focus is the extraction of
a hypernym for a given term in an already extracted snippet of text where both
co-occur (a definition). Moreover, in e.g. [Fu et al., 2014], they name the task
automatic discovery of hypernym-hyponym relations, framed within the broader
problem of constructing a lexical taxonomy. Alternatively, [Santus et al., 2014]
narrow down the task in (1) directionality identification, i.e. detecting the broader
term in a given hyponym-hypernym pair; and (2) hypernym detection, where the
task consists in, given a word pair among which there exists a semantic relation,
identify whether it is hypernymy or not. The term hypernym detection is also used
in [Shwartz et al., 2016], where the task also consists in deciding, for a given word
pair, whether there is a hypernymic relation holding between them, or not. This
discussion on terminology is important because in one of our key contributions,
we address the task of generalization as a more difficult hypernym discovery task
than the above methods. The task, specifically, consists in, given an input word,
finding its most likely hypernym in a large vocabulary, instead of predicting the
label of a relation existing in a predefined pair of concepts. For this reason, and
despite terminological nuances, we will henceforth refer to any task concerned
with the generalization of a concept as hypernym discovery (HD), although in
most previous work the task is usually reduced to sequence labeling or even bi-
nary classification.

There is a fair agreement in that most contributions to the HD task have ei-
ther relied on pattern-based methods or distributional approaches, with recent no-
table exceptions reporting very promising results by combining both into a neural
model [Shwartz et al., 2016]. In what follows, we review, first, contributions in
the pattern-based line of work, and second, distributional approaches. Let us
mention that, although theoretically the seminal work by Hearst [Hearst, 1992]
should fall into the pattern-based category, recent work has showed that these pat-
terns actually emerge in distributional methods as well, when inspecting common
contexts in vector space models [Roller and Erk, 2016].

2.2.1 Pattern-based approaches
The first pattern-based method we review is described in [Snow et al., 2004].
Here, the authors first identify sentences in corpora where two terms co-occur
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in the WordNet lexical taxonomy. The next step consists in obtaining the depen-
dency parsed representation of these sentences, and automatically extract syntactic
patterns from each parse trees. Finally, using patterns based on syntactic depen-
dencies, a hypernym detection classifier is trained.

Next, we refer again to [Navigli and Velardi, 2010], as in their paper they
jointly proposed the DE method we reviewed previously, along with an HD mod-
ule. Without providing any further detail of the WCL method, let us simply high-
light that, at training time, those terms corresponding to the hypernym label man-
ually introduced become special nodes which become part of the trained lattice
with a hypernym attribute, which later on is used by the classifier to detect the
hypernym in an unseen sentence.

Similarly (joint DE and HD), in [Boella et al., 2014], they exploit a system
for DE for also performing experiments in the extraction of hypernymic relations
from definitions. As explained in Section 2.1, they model each sentence as a set
of syntactic subtrees covering nodes performing any of a predefined set of defini-
tional functions (e.g. definiendum and definiens syntactic heads), and use these
as features to train a classifier. For HD, if the classifier identifies both term and
hypernym as key nodes, they are directly connected and the relation is extracted,
with the only constraint that both nodes must be connected in the same parse tree.
Their method obtains better results than the one in [Navigli and Velardi, 2010] in
the WCL hypernym-extraction portion of the WCL dataset.

Finally, in [Seitner et al., 2016], where the focus is to gather millions of hyper-
nymic relations from a the CommonCrawl5 web corpus, there is strong reliance
on lexical but also shallow syntactic patterns. The authors combine Hearst Pat-
terns with others coming from different sources, constructing a set of 44 patterns.
Some of these are “NPt kinds of NPh”, “compare NPt with NPh”, or “NPt forms
of NPh”. This contribution comes alongside an online web application, where a
user can input terms and categories, in addition with pre and post modifiers6.

All these approaches, while successful, have major disadvantages when com-
pared with distributional methods. This stems from a core limitation: they re-
quire both candidate hyponym and hypernym to occur nearby in text corpora, in
order for a predefined lexico-syntactic pattern to be able to capture any kind of
semantic relation between them [Shwartz et al., 2016]. In what follows we cover
distributinonal approaches to HD, which are inherently capable to infer a hyper-
nymic relation between two concepts that were never seen together or nearby in
text.

5www.commoncrawl.org
6http://webisadb.webdatacommons.org/webisadb/
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2.2.2 Distributional approaches

Distributional approaches to semantics may be defined as unsupervised methods
to build lexical semantic representations from corpus-derived co-occurrences en-
coded as distributional vectors [Santus et al., 2014]. Distributional approaches
stem, in general, from the Distributional Inclusion Hypothesis (DIH) [Zhitomirsky-
Geffet and Dagan, 2009], which states that more specific terms appear in a subset
of the distributional contexts in which more general terms appear. For instance,
the word animal may share all its contexts with dog, and may occur in additional
contexts in which dog will be unlikely to appear.

As for specific contributions, let us start with [Santus et al., 2014], where a
novel metric called SLQS is introduced in order to measure the semantic gener-
ality of a word by the entropy of its statistically most prominent contexts. This
metric is based on the observation that more specific (hyponyms) terms may have
linguistic contexts more informative than their corresponding hypernyms (e.g.
“bark” or “have fur” for dog, versus “eat” or “run” for dog). It is evaluated on
a randomly selected subset of the BLESS dataset [Baroni and Lenci, 2011].

The DIH is further explored in [Roller et al., 2014], who propose a simple
supervised distributional model to weight the importance of different context fea-
tures. Specifically, two classifiers are introduced. The first one is an SVM-based
classifier with concatenation of vectors as input features. The second one is a Lo-
gistic Regression model trained on difference vectors. The authors mention that,
despite usage of difference vectors as features has been reported unsuccessful in
previous approaches, they seem to be highly competitive given three modifica-
tions, namely: (1) Using a linear classifier, (2) normalizing vectors to magnitude
1, and (3) squared difference vectors should also be included as features. Evalua-
tion is also carried out in the BLESS dataset, as well as in a dataset for evaluating
textual entailment systems [Baroni et al., 2012].

Next, in [Fu et al., 2014], the task is to construct a “semantic hierarchy” (a
taxonomy) in the Chinese language. We include this work in the hypernym de-
tection section, however, because the authors acknowledge that, while “it is an
interesting problem how to construct a globally optimal semantic hierarchy con-
forming to the form of a DAG” (directed acyclic graph), this was not the ultimate
focus of their paper. The main idea is to exploit the semantic properties inher-
ent to word embeddings models [Mikolov et al., 2013c, Mikolov et al., 2013a].
Specifically, the observation that semantically similar embeddings in analogous
spaces have a linear relation between them. In [Mikolov et al., 2013b], experi-
ments were conducted in word-level machine translation, and it was shown that
“one” (in English), and “uno” (in Spanish) were linearly related. Then, this idea
is adapted to the HD task. One of their first findings is that, while linear rela-
tions do hold between hyponyms and hypernyms, this is only true if there is some
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kind of semantic relation among them. For instance, the offset between the vector
pair (“carpenter”,“man”) is different than the one for the pair (“dragonfly”, “in-
sect”). Their method consists in learning a linear projection specific for different
semantic clusters, which are obtained by K-Means clustering.

Another relevant contribution in the HD task learns term embeddings [Yu
et al., 2015]. The main idea is to learn an embeddings space with a distance-
margin neural network, learning hypernymic relations identified beforehand. Then,
a supervised method based on SVM is applied, using as novel features the con-
catenation of an input vector pair and their 1-norm distance. Their distance-
margin embeddings model leverages two separate spaces, one for hyponyms and
one for hypernyms, and the main objective is to minimize the margin between
targetted (hyponym, hypernym) pairs, while at the same time maximizing dis-
tances with distractors (randomly selected non-hypernymic pairs). Overall, their
newly learned embeddings space is expected to have the following three proper-
ties: (1) Hyponym-hypernym similarity, e.g. “dog” and “animal” are similar; (2)
co-hyponymy similarity, e.g. “dog” and “cat” are similar; and (3) co-hypernymy
similarity, e.g. “car” and “auto” are similar. In their experiments, they compare
their embedddings space with a vanilla space constructed using word2vec default
parameters, and with different ways of modeling vectors as features, including the
one proposed in [Roller et al., 2014].

Finally, let us review the recent work of [Roller and Erk, 2016], which ex-
plores intrinsic properties in the concat classifier for HD, described in [Roller
et al., 2014]. It consists in using as input features the concatenation of candidate
(hyponym, hypernym) pairs. The authors unveil the fact that the model learns to
identify this kind of semantic relations by strongly relying on Hearst-like patterns
as they appear in the vector space. Their model exploits this observation, in addi-
tion to well established observations in the HD task like the DHI and overall word
similarity.

2.2.3 Combined approaches
Recently, a novel line of work has opened up [Shwartz et al., 2016], which pro-
poses to combine the advantages found in pattern-based methods (high reliability
of hypernymic evidence found in corpora), with those inherent to distributional
approaches (less constrained and capable to infer hypernymic relations between
pairs of concepts not co-occurring). The proposed method, HypeNet, encodes de-
pendency paths (whose contribution to semantics has been extensively discussed
in previous chapters) into a Long-Short Term Memory neural network [Hochreiter
and Schmidhuber, 1997], a particular type of recurrent neural network architecture
well suited for sequence classification. Then, distributional signals are incorpo-
rated into the network, showing an overall increase in performance.
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2.2.4 Conclusion

In this section, we have provided a survey on the most notable (and thematically
relevant to this dissertation) contributions to the HD task. These have been divided
into pattern-based, distributional, and combined approaches. One clear criticism
that may be derived from the above survey is that in all experiments, the search
space is restricted to the evaluation data, which usually consists of hyponym-
hypernym pairs mixed up with distractors (e.g. the BLESS dataset [Baroni and
Lenci, 2011]). This evaluation setting does not account for the possible scenario
in which the task is not to classify a pair of words as having a hypernymic relation,
but rather to provide a hypernym out of a very large vocabulary. This and other
avenues for improvement are addressed in this thesis, in Chapter 4.

As for downstream tasks, one of the most straightforward application of an HD
system is its application to learning lexical taxonomies (hencefort, taxonomies)
or ontologies. This is important because taxonomies are of utmost importance
for many AI and NLP tasks involving any kind of reasoning, and constitute the
cornerstone of the so-called knowledge-based systems. Thus, in what follows,
we close the literature review chapter by covering prominent work in taxonomy
learning.

2.3 Taxonomy Learning

A taxonomy is a hierarchy of concepts that expresses parent-child or broader-
narrower relationships, and has applications in, among others, search, retrieval,
website navigation and records management [Bordea et al., 2015]. Taxonomy
Learning is the task of extracting hierarchical relations from text, and subse-
quently, the construction of a taxonomy. Research in taxonomy learning can
be grouped in two main directions, namely corpus-based taxonomy learning and
knowledge-based taxonomy learning. In the former, evidence gathered from large
corpora or the web is used to assess the hypernymic relationship between con-
cepts, and usually includes a graph induction module, where the final graph (ei-
ther tree-shaped or as a DAG) is built. Analogously, the latter research area mostly
concerns taxonomization of components of KBs, such as Wikipedia pages and cat-
egories. In this taxonomy learning literature review, we provide the reader with
contributions in both areas.

2.3.1 Corpus-based Taxonomy Learning

In this section, we review prominent research work on corpus-based taxonomy
learning, as well as providing a review of two shared tasks which ran in 2015
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and 2016. Their impact was threefold. First, they constituted a valuable testbed
where distributional, pattern based and machine learning approaches competed in
creating high quality lexical taxonomies. Second, multilinguality was specifically
addressed in [Bordea et al., 2016], as evaluation considered languages other than
English. Finally, the evaluation results of these tasks also unveiled issues related
to the controversial topic of taxonomy evaluation, which we further discuss in
Section 7.6.

In one of the earliest works in taxonomy learning, by [Snow et al., 2006],
taxonomies are incrementally constructed via a probabilistic approach. Evidence
from multiple classifiers over heterogeneous relationships is incorporated to op-
timize the entire structure of the taxonomy. Experimentally, this approach is not
strictly speaking concerned with learning a new taxonomy from scratch, but rather
with extending WordNet by attaching new concepts to it.

Further advances in taxonomy learning were later proposed in [Yang and
Callan, 2009], who introduce a semi-supervised taxonomy induction system that
factors in elements such as contextual and co-occurrence evidence, lexico-syntactic
patterns, or syntactic dependencies. An ontology metric is learned in order to
estimate the semantic distance existing between a pair of terms in a taxonomy.
This work hols certain similarities with [Snow et al., 2006], as it assumes that
the terminology is known, and hence the task is narrowed down to discovering
relations between pairs in this terminology. Evaluation is carried out in WordNet
sub-hierarchies, such as People, Building, Place or Meal.

Lexical patterns are further utilized in [Kozareva and Hovy, 2010]. Starting
from an initial seed set of root concepts, basic level terms, and Hearst patterns,
they mine the web with a doubly-anchored method (combining a general as well
as a domain-descriptive term in the query in order to implicitly disambiguate both
query terms dynamically). Moreover, their system includes several modules for
graph induction, such as removing nodes with low out-degree, or pruning cyclic
edges. Additionally, if several paths are available between two concepts in a tax-
onomy, they keep the longest one, which is standard practice as this is in general
preferred in taxonomy learning [Navigli et al., 2011]. Finally, this paper is accom-
panied with three datasets extracted from WordNet, which have been extensively
used for evaluation in subsequent publications. These are sub-hierarchies in the
Animals, Plants and Vehicles domains (henceforth, the APV dataset).

Continuing with the trend of developing taxonomy learning systems with lit-
tle or no supervision, in [Fountain and Lapata, 2012] the idea is to learn a taxon-
omy approaching the task as inferring a hierarchy from a network or graph. This
graph is initially constructed via clustering, which is initiated simply by encod-
ing hypernymic relations between semantically similar terms. Interestingly, this
work explicitly acknowledges that evaluating taxonomies is notoriously hard, and
hence there may occur that one single domain of knowledge may be equally well
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represented by different variations of the same taxonomy. Therefore, this work
does not seek to find a single correct taxonomical representation of a domain, but
rather valid approximations. Several experiments are conducted, comparing dif-
ferent configurations of the same systems over a semi-automatically constructed
validation dataset adapted from [McRae et al., 2005]. Their approach is also eval-
uated in terms of how well it constructs a taxonomy from large corpora (e.g. the
BNC), or how well automatic taxonomies would compare with a manually con-
structed ones.

Another relevant unsupervised system is ONTOLEARN RELOADED [Velardi
et al., 2013]7, a graph-based algorithm which constructs a taxonomy from scratch.
The first modules perform DE from corpora, using the WCL algorithm [Navigli
and Velardi, 2010]. Then, first, noisy definitions are pruned out using a domain-
pertinence statistical filter (called domain weight), and then, a dense hypernym
graph is constructed by including terms and hypernyms surviving this filtering
stage. The pruning step (removing redundant or cyclic edges) leverages various
observations, e.g. a node’s weight, an edge’s weight, or an ideal optimal branching
of the taxonomy (i.e. moving from a dense graph to a tree-like structure). It is
evaluated on the APV dataset, along with manual evaluation of newly constructed
taxonomies in the AI domain.

Corpus-based hypernymic evidence is also leveraged as the backbone of full-
fledged taxonomic graphs in [Bansal et al., 2014]. In their work, they combine
statistical and pattern-based information, along with heterogeneous relational ev-
idence of synonymy and siblinghood. Hypernymic relations are obtained with
Hearst-like patterns, while at the same time they factor in cues such as coordina-
tion (which may indicate that two concepts are siblings). Evaluation is carried out
by comparing different configurations of their system, in addition to comparison
with previous approaches in a subset of the APV dataset.

Statistical and pattern-based (linguistic) information are further extended with
additional taxonomic evidence in [Luu Anh et al., 2014], as the core of their sys-
tem leverages syntactic contexts of identified taxonomic relations. This essentially
introduces syntactic information to the DIH in the form of two measures, namely
web-based evidence, and contextual set inclusion. The graph-construction step,
in addition, exploits evidence scores method, as well as topological properties of
the graph. Evaluation is also performed on the AVP dataset, in addition to expert
judgement on the quality of automatically generated taxonomies. Novel compar-
ative evaluation is introduced versus the automatically generated taxonomy in the
AI domain by [Velardi et al., 2013].

The next contribution, proposed by [Luu Anh et al., 2015], takes [Luu Anh
et al., 2014] as a baseline, which is improved by incorporating “trustiness and col-

7ontolearn.org
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lective synonym/contrastive evidence” to the taxonomy learning task. The main
idea is the following: taxonomy learning systems, which are in general strongly
reliant of obtaining taxonomic relations from the web, may benefit from knowing
how trustworthy the textual source from which a hypernymic candidate relation
was obtained. In other words, if the web page from which textual evidence was
obtained complies with certain quality standards, the likelihood of this evidence
of being correct increases. The authors also incorporate synonymic reinforcement
and contrastive weakening of evidence, essentially assuming that if two synony-
mous terms occur in the same taxonomic relation, this is a strong indicator that
the relation is valid. Their evaluation, also on the AVP dataset, shows a consistent
improvement over several baselines, and includes experiments in other datasets
released by Velardi et al., namely Virus, Finance and AI.

Bringing back clustering based approaches (as in [Fountain and Lapata, 2012]),
in [Alfarone and Davis, 2015] a system called TAXIFY is introduced. Their
method consists in a clustering-based inference strategy for improving a taxon-
omy’s coverage. Then, a novel graph-based algorithm is used to prune out incor-
rect edges in the taxonomy. In this paper, the authors challenge the established
intuition that those edges covered by multiple paths are more likely to be correct,
by showing empirically that a taxonomy’s precision may increase if very popular
edges in a taxonomy are deleted.

Finally, in [Luu Anh et al., 2016], the idea is to learn term embeddings (simi-
larly as in [Yu et al., 2015]) via a dynamic weighting neural network. Then, these
embeddings are used in a supervised setting for identifying taxonomical relations.
Specifically, the concatenation of candidate hyponym-hypernym pair vectors is
used as features for an SVM classifier. They complete the feature set by intro-
ducing an additional feature, namely the offset vector (subtraction) that contains
the information of all the contextual words shared in the candidate term pair. The
authors not only evaluate on the AVP taxonomies, but also on the BLESS dataset
as well as the ENTAILMENT corpus described in [Baroni et al., 2012].

2.3.1.1 SemEval Taxonomy Learning Tasks: 2015-16

In 2015 and 2016, the interest in taxonomy learning derived in two tasks on lexical
taxonomy learning, TexEval [Bordea et al., 2015] and TexEval-2 [Bordea et al.,
2016], and one on semantic taxonomy enrichment [Jurgens and Pilehvar, 2016].
We proceed to describe these tasks and to briefly describe the best performing
systems.

In both TexEval tasks, systems were asked to perform a hierarchical organi-
zation of a domain terminology. In [Bordea et al., 2015], domains were food,
equipment, science and chemical, and all terminologies were provided in
the English language. Evaluation was conducted in terms of precision, recall and
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f-score at the edge level, as well as a manual evaluation of a random sample of 100
novel edges (in those cases where the submitted systems included novel nodes or
relations). A third evaluation criterion in these tasks concerned structural charac-
teristics of the graph itself, e.g. whether there were cycles, its average depth or the
number of connected components it included. The best system for this task was
[Grefenstette, 2015], which interestingly was entirely unsupervised, i.e. it did not
take advantage of any of the training data that was released nor any pre existing
taxonomical resource. The method was based on co-occurence statistics together
with substring inclusion counts. In one of our contributions, described in Chapter
5, we report an improvement in average performance with respect to this system.

In [Bordea et al., 2016], the best submitted run, called TAXI [Panchenko et al.,
2016] performed substring-based hypernymic relation extraction, which was sup-
ported with large domain-specific corpora evidence bootstrapped from the input
terminology. Evaluation was similar as in the previous task, but the domains
considered were different, i.e. the domains were environment, food and
science, and a multilingual challenge was included, by incorporating termi-
nologies in the Dutch, French and Italian languages.

Finally, in [Jurgens and Pilehvar, 2016], the task was to find the best point of
attachment for a novel lemma in the WordNet taxonomy. Terms came from highly
specific glossaries or terminologies, and were accompanied by a descriptive defi-
nition and the source url. For each novel term, a system had to decide whether
the novel term had to be inserted as a hyponym of an existing WordNet synset
(if there was no existing synonym in the taxonomy), or as a synonym of an al-
ready existing term. Evaluation was performed both in terms of lemma match and
via the Wu&Palmer similarity metric [Wu and Palmer, 1994] between predicted
WordNet synset and its gold standard. In this task, the best performing system
[Schlichtkrull and Alonso, 2016] disambiguated the words in each gloss, and then
used a supervised SVM classifier for predicting the goodness of fit for a candidate
attachment synset.

2.3.2 Knowledge-based Taxonomy Learning
Unlike corpus-based taxonomy learning systems, in this section we review al-
gorithms (and their associated outcome) which do not attempt to model a set of
concepts at the lexical level, but rather are aimed at providing a better (or new) tax-
onomization of existing semantic resources. The clearest example can be drawn
from the case of Wikipedia categories, which provide a certain taxonomization
of the pages they subsume, but usually only consist of lists of anchors to other
articles, which can be however useful for “capturing categorical information that
roughly contains a mixture of hyponymy and meronymy relations between arti-
cles” [Yeh et al., 2009]. In the following listing we describe several knowledge
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based taxonomies.

1. WikiTaxonomy: WikiTaxonomy [Ponzetto and Strube, 2008]8 constitutes
the first approach that attempted to taxonomize Wikipedia categories [Flati
et al., 2014]. It leverages lightweight yet effective heuristics to define whether
hypernymic relations hold between a category and its subcategories, gener-
ating about 100k category-wise is-a relations.

2. WikiNet: Wikinet [Nastase et al., 2010] is also based on heuristically lever-
aging different components of Wikipedia, i.e. not only categories but also
Wikipedia pages, in order to derive a semantic hierarchy including relations
beyond hyepernymy.

3. MENTA: In MENTA [de Melo and Weikum, 2010], a multilingual lexical
KB is created by linking together more than 10M articles in 271 languages.
An interesting feature is how the mapping between Wikipedia pages and
WordNet synsets is obtained. Specifically, they used a supervised ridge re-
gression system trained with manually labeled examples. It uses as features
signals such as term overlap, semantic similarity via cosine distance, and
presence or absence of what they call qualifications, i.e. the “explanation”
in brackets in ambiguous Wikipedia pages, e.g. (novel) in the page House
(novel).

4. WiBi: WiBi (which stands for Wikipedia Bitaxonomy9) [Flati et al., 2014]
is an approach to reconcile in one resource an automatically learned tax-
onomic structure of Wikipedia pages and categories. It performs several
NLP-intensive steps, e.g. hypernym extraction, disambiguation and linking.
Roughly, WiBi first performs a Wikipedia page taxonomization followed
by its integration into a page and category taxonomy. According to their
experiments, WiBi results in a wide-coverage and self-contained resource,
rivaling the granularity and average depth of WordNet, the reference lexical
resource.

2.3.3 Conclusion
We have provided the reader with a review on both corpus-based and knowledge-
based taxonomy learning systems and their associated assets. Both research direc-
tions seem to be fairly disconnected with one another in terms of methodological
design and evaluation (although interestingly, in both areas evaluation almost al-
ways concerns WordNet in one way or another). This disconnection provokes, for

8www.h-its.org/en/research/nlp/wikitaxonomy
9wibitaxonomy.org/
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instance, that semantically aware systems like the ones described in this section
are by design unable to capture novel terminology (as all nodes in the taxonomy
must exist a priori in the KB being taxonomized). The implicit overlap between
these two research areas is explicitly exploited in our novel system EXTASEM!
(cf. Chapter 5), where we leverage corpus-based evidence and the Wikipedia
graph structure to generate domain-specific lexical taxonomies, with many ad-
ditional terms derived from the extraction and parsing of hypernyms present in
definitions.
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Chapter 3

DEFINITION EXTRACTION

In this chapter, we describe our methodological contributions along with experi-
mental results in the field of DE. As we discussed in Chapter 2, current approaches
look mostly at linguistic and statistical evidence to model the DE problem, without
considering explicit semantic representations. In this chapter, we provide exper-
imental results that incorporating syntactic dependencies for modeling candidate
definition sentences, on one side, and semantics (e.g. WSD, Entity Linking and
distributional semantics), on the other, contributes decisively to the DE task, out-
performing competing approaches solely based on shallower linguistic and statis-
tical features.

Our first contribution leverages syntactic regularities, specifically, syntactic
dependencies, and uses them to model each individual sentence as a vector over
syntactic features such as presence or absence of prototypical definitional pat-
terns, or the syntactic neighbours of certain words acting as subject, predicative
complement or direct object. Henceforth, we refer to this method as Dependen-
cyDE. Second, we evalute the extent to which state-of-the-art WSD and entity
linking techniques, on one hand, and sense-based vector representations, on the
other, may contribute to the improvement in performance in supervised DE. We
will refer to this approach as SemanticDE. Next, we describe one additional ex-
periment on supervised DE, this time for a language other than English and with
a different methodological approach, which we denote as SequentialDE. Finally,
we delve into a more unexplored area, which is the one concerning unsupervised
DE, and we propose a system called WeakDE, with experiments carried out in
English, but easily portable to any other language.

Before focusing on the details of each proposed system, let us mention that in
both DependencyDE and SemanticDE, the dataset used was the WCL dataset
(cf. Section 2.1.2.1). Following the terminology generalization approach from
[Navigli and Velardi, 2010], all the definienda are generalized to a wildcard tar-
get token, which allows its inclusion as a feature for the learning algorithm.
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3.1 DependencyDE: Applying Dependency Relations
to Definition Extraction

3.1.1 Data Modeling
Our motivation stems from the observation that syntactic dependencies provide
a framework for parsing and analyzing deep linguistic structures in natural lan-
guage. These structures are described by the distribution of lexical elements linked
by asymmetrical relations called dependencies. One of its main characteristics is
that, unlike constituent structures, a dependency tree has no phrasal nodes. More-
over, dependency representations provide a direct encoding of predicate-argument
structures (see the dotted dependencies in Figure 3.1). Finally, the relations be-
tween units in a dependency tree are bilexical, which makes them beneficial for
disambiguation [Nivre, 2005]. Modeling each sentence as a set of syntactic re-
lations between words, where the most important ones act as heads and those
adding certain information act as modifiers, has proven useful in several applica-
tions, e.g. Information Extraction [Sudo et al., 2003] [Stevenson and Greenwood,
2006] [Afzal et al., 2011], paraphrase identification [Szpektor et al., 2004] or KB
construction [Delli Bovi et al., 2015].

DT NN VBZ DT NN CC NN IN DT NN CC NN IN DT NN
An1 abortion2 is3 the4 removal5 or6 expulsion7 of8 an9 embryo10 or11 fetus12 from13 the14 uterus15

root

SBJ

PRD

NMOD NMOD COORD

NMOD

CONJ

PMOD

NMOD COORD

NMOD

CONJ

NMOD

NMOD

Figure 3.1: Example definition parsed with syntactic dependencies

Specifically, and in the context of DE, the dependency structure of a sentence
may reveal syntactic regularities, indicating high likelihood of such sentence being
a definition. For example, sentences S1 and S2 below share the same surface
structure (target is * which was *). However, only S1 is a definition.

S1: target is the independent school which was opened.
S2: target is secure against CCA2 which was proved to be a secu-
rity hazard.

44



“output” — 2017/7/10 — 11:47 — page 45 — #63

The main difference is that the dependency relation between the verb and the
phrase “the independent school” is of object noun phrase, while in S2, the re-
lation with the adjective “secure” is of adjectival phrase. This is the kind of
information that (in S1) an ngram-based approach1 would be unable to tackle due
to the non-adjacent distance between the components.

In our approach, we model textual data as a “bag of subtrees”, i.e. we extract
all parent-child-grandchild (PCG) (left) and parent-child-child (PCC) (right) sub-
trees from dependency parsed training data, and use them as features for training.
In what follows, we distill the intuition of definitional information that may be
captured by any of these predefined syntactic structures.

(Parent)

��
(Child)

��
(Grandchild)

(Parent)

�� &&
(Child1) (Child2)

Syntactic dependency relations may reveal the domain or discipline governing
a definition, and can be expressed by a locative at the beginning of a sentence.
Consider the following sample sentence: In law, an abstract is a brief statement
that contains the most important points of a long legal document or of several
related legal papers. The highlighted words is root−−→ in

loc−→ law form a PCG
subtree, where the locative preposition in connects the definition’s domain or
topic with the verb. In the definitional split of the WCL dataset, almost 20% of all
the definitions include this syntactic pattern at the beginning of the sentence.

Additionally, while term-is-a-hypernym patterns constitute potential candi-
dates for any feature space exploiting syntactic dependencies, attempting an ngram-
based approach would present drawbacks. The task would be tackled as surface
pattern matching, perhaps including the Part-of-Speech of the candidate hyper-
nym (to disregard, for example, noun phrases whose first word is an adjective).
However, by looking at the syntactic function of the noun phrases involved (sbj
for term, and prd for the hypernym), it is possible to filter out some of the noisy
candidates that would be retrieved.

We discuss now on the potential of the PCC subtree. We argue that it can be
useful for identifying SVO relations [Stevenson and Greenwood, 2006], as well as
extracting multiword terminology. This can be further illustrated with the follow-
ing definition:

An abugida is a segmental writing system which is based on conso-
1For instance, using a sliding window of n words for matching definitional cue phrases.
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nants but in which vowel notation is obligatory.

The highlighted pattern has the following syntactic structure:

segmental
nmod←−−− system

nmod−−−→ writing

Since we know that system is the predicative complement of the sentence
root node (thanks to the syntactic parsing), we are highly confident that it may
constitute the hypernym of the term being defined. In addition to these examples,
additional informative instances of PCG and PCC can be indicative of definitional
knowledge. For example, (1) non-adjacent subject-predicate patterns; (2) descrip-
tion of the definiens’ head; and (3) synonymy relation among an enumeration of
heads, all acting as potential genus.

3.1.2 Features
After having provided a linguistically motivated description of our data modeling
process, we proceed to describe the features we designed, as well as experimen-
tal results. Syntactic information is obtained after running a graph-based parser
[Bohnet, 2010] over the corpus.

1. Subtrees: From all the available PCC and PCG subtree combinations, we
extract the following information for each node: Surface form (sf), Part-of-
Speech (pos), and Dependency Relation (dr). Each sentence is transformed
into a feature vector of the 15 most frequent subtrees of each type. Fea-
tures are binary, i.e. 1 for presence of the subtree, and 0 for absence. The
six combinations of linguistic information used in this feature set as well
as examples are shown in Table 3.12. Additionally, let us highlight that the
number of subtrees used as features is not arbitrary. It comes from a manual
analysis of the frequency distribution of each type across the dataset. The
definitional sentences in the Wikipedia corpus tend to have recurrent syntac-
tic patterns, which produce a long-tailed frequency distribution and thus a
remarkable gap between systematic and idiosyncratic features, and the rest.
By keeping only the 15 most frequent subtrees we design a balanced feature
set across the types while at the same time disregarding the long tail in each
type (Figure 3.2).

2For a comprehensive list of the tagset, refer to the CoNLL 2000 shared
task. dkpro.github.io/dkpro-core/releases/1.8.0/docs/tagset-
reference.html#tagset-en-conll2000-chunk
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Figure 3.2: Distribution of three selected types of hybrid subtrees illustrating the
asymmetry of their frequency distribution. The three most frequent instances of
each type are shown in their corresponding figure.

2. Degree of X: The degree of a node X in a graph is the number of edges
adjacent to it, i.e. the sum of of its children + 1 (its head). We reduce the
search space of X to

X ∈ {PRD, SBJ, APPO}

because in this way, subject nodes with many modifiers are given more
importance. For example, in the sample sentence in Figure 3.1, the degree
value of the fifth (prd) node is 4.

3. Morphosyntactic chains starting in node X: X may have the same node
value as in the previous feature, i.e. prd, sbj and appo. If it exists in the
sentence, we extract all the children from that node recursively until leaf
nodes are reached. We then extract POS and dependency relation chains
and order them according to their order in the sentence. This approach for
feature extraction has proven useful in other NLP tasks, such as Semantic
Role Labeling [Hacioglu, 2004]. For example, in our sample sentence3

we would extract the following chain from the prd node (in breadth-first
fashion): {nmod4,prd5,coord6,conj7,nmod8,pmod10, ... } until the last
child is reached (green and yellow colored dependencies in Figure 3.1).

3Subinidices indicate the word’s position.
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type of subtree example

〈 sf, sf, sf 〉
〈 TARGET, refers, to 〉
〈 is, used, in 〉

〈 pos, pos, pos 〉
〈 dt, jj, nn 〉
〈 in, nn, vbd 〉

〈 dr, dr, dr 〉
〈 sbj, root, prd 〉
〈 pmod, coord, conj 〉

〈 (sf,pos), (sf,pos), (sf,pos) 〉
〈 (is, vbz), (a, dt), (unit, nn) 〉
〈 (a, dt), (form, nn), (of, in) 〉

〈 (sf,dr), (sf,dr), (sf,dr) 〉
〈 (in, loc), (TARGET, sbj), (was, root) 〉
〈 (is, root), (any, prd), (of, nmod) 〉

〈 (pos, dr), (pos, dr), (pos, dr) 〉
〈 (nn, pmod), (cc, coord), (nn, conj) 〉
〈 (dt, nmod), (nnp, name), (nnp, pmod) 〉

Table 3.1: Summary of the types of subtrees used and examples of each type.
sf=surface form, pos=part of speech, dr=dependency relation.

4. Ordered cartesian product of two subtrees: The ordered cartesian prod-
uct of two graphs G1 and G2 produces a new graph H with the vertex
set V (G1) × V (G2), with the tuples {(i1, i2), (j1, j2)} forming an edge if
{i1, j1} forms an edge in G1 and i2 = j2, or {i2, j2} forms an edge in G2

and i2 = j2. Our intuition is that by extending the relationships between
pairs of specific head nodes and their children, deeper relations between
modifiers of sbj and prd nodes, for example, would be captured and rein-
forced. We perform this operation only if the head of G1 has the syntactic
function sbj and the head of G2 has the head prd or appo. The result is
a string that contains surface, POS information or dependency information,
chained over H . In our working example, the dependency level of this fea-
ture would be “(sbj+prd), (sbj+nmod), (sbj+coord), (nmod+prd),
(nmod+nmod), (nmod+coord)”.

5. Semantic similarity: We hypothesize that high semantic similarity between
words in candidate definiendum and definiens position, for example, might
point towards a definitional sentence. In our sample sentence, this would
be the case between abortion and removal. We extend this feature to other
nodes like appositives or their modifiers, and apply it to the following pairs:
(sbj,prd), (sbj, appo), (prd, jj+pmod) and (appo, jj+pmod). Us-
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ing WordNet as our reference semantic inventory, we compute the aver-
age similarity between all the synsets associated to a given lemma. In this
example, we would evaluate the similarity between (abortion.n.01,
abortion.n.02) and (removal.n.01, removal.n.02). Similar-
ity is computed using the Leacock Chodorow Similarity [Leacock et al.,
1998] measure LCsim, denoted as:

LCsim(ws1, ws2) = −log pathlen(ws1, ws2)

wherews1, ws2 are word senses, and pathlen(ws1, ws2) is the shortest number
of edges between those two word senses in WordNet.

3.1.3 Evaluation
The above features are incorporated into a sentence-level feature vector, and this
information is used for training different classification algorithms present in the
Weka workbench [Witten and Frank, 2005]. The evaluation results we report
are based on 10-fold cross-validation on the WCL dataset. Table 3.2 shows the
scores for the different setups on which the experiments were carried out. For each
algorithm, the different configurations are: S1, which includes the full feature
set, S2 disregards chain and cartesian product features, and S3 disregards chain,
cartesian product, degree and similarity features. Likewise, we show comparative
results with competitor systems in Table 3.3. These systems are:

• Bigrams: Baseline 1 based on the bigram classifier for soft pattern match-
ing proposed by [Cui et al., 2005].

• Star Patterns: Baseline 2 based on a pattern-matching approach in which
infrequent words are replaced by ’*’ and then matched against candidate
definitions [Navigli and Velardi, 2010].

• WCL 1: Implementation of the Word-Class Lattice model where a lattice
is learned for each cluster of sentences [Navigli and Velardi, 2010].

• WCL 3: Implementation of the Word-Class Lattice model where a lattice
is learned for each of the components of a definition, namely Definiendum,
Definitor and Definiens [Navigli and Velardi, 2010].

• DependencyDE: The best configuration of our approach.

In the light of these scores, it seems reasonable to argue that a classification ap-
proach for DE can improve substantially by including features that account for the
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NaïveBayes VPerceptron SVM LogisticR DTrees RandomF
P R F P R F P R F P R F P R F P R F

S1 81.9 78.0 75.9 78.9 85.2 84.4 85.9 85.3 85.4 83.4 82.7 84.7 85.7 85.3 85.2 83.4 82.9 82.2
S2 75.7 75.9 75.5 80.5 79.4 79.5 82.0 81.2 81.3 82.2 81.5 81.6 80.8 79.4 79.6 79.9 79.4 79.5
S3 53.1 58.6 49.0 56.9 59.8 52.2 56.9 59.8 52.2 56.9 59.8 52.2 55 59.2 49.3 56.9 59.8 52.2

Table 3.2: Scores of DependencyDE obtained using different machine learning
algorithms.

morphosyntactic structure of the sentence. Moreover, deep analyses of syntactic
trees and the relation among dependents contributes decisively to DE.

The highest scoring approach in terms of Precision is achieved by the WCL
systems, with almost 1. However, the highest score in terms of Recall (85.3)
and F-Measure (85.4), on the other hand, are achieved by DependencyDE. The
improvement in 2 points over WCL 3 shows that our linguistically-motivated fea-
tures are a better way to model differences between definition and non-definition
sentences in the encyclopedic genre than the lattices algorithm proposed in [Nav-
igli and Velardi, 2010].

DependencyDE WCL 1 WCL 2 Star Patterns Bigrams
Precision 85.9 99.8 99.8 86.7 66.7

Recall 85.3 42.1 60.7 66.1 82.7
F-Measure 85.4 59.2 83.5 75.1 73.9

Table 3.3: Comparative table of results between our approach and the reported
scores in Navigli and Velardi (2010).

3.1.4 Conclusion

In this section we have summarized a DE system which leverages syntactic de-
pendencies in a novel way. Parting ways from previous approaches, our method
specifically encodes semantic relations between two separate branches in the syn-
tactic tree, at any depth level. This allows for deeper understanding of the syn-
tactic structure of the sentence, and thus contributes decisively to outperforming
current methods for DE in the WCL corpus. However, we observed that neither
in this experiment, nor in our competitors, was semantic information considered.
While we have tangentially introduced this idea by incorporating a feature on se-
mantic similarity between term and (likely-to-be) hypernyms, in the next section
we specifically address the semantics of candidate definitions by means of their
distributed representations.
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3.2 SemanticDE: Definition Extraction Using Sense-
based Embeddings

We have reviewed our first contribution in the DE field, where we modeled defi-
nition sentences as feature vectors containing information derived from their syn-
tactic tree, and used this information for training a set of machine learning clas-
sifiers to discriminate between definitions and non-definitions. While our results
improved the state-of-the-art at the time of publication, we hypothesize that se-
mantic information, neglected insofar, contribute dramatically to achieving even
better results. The main intuition is that a term’s definition usually includes con-
cepts which are semantically related, and hence this relatedness may be modeled
by exploiting similarities across vector space models. In this section we describe
our approach to DE which puts this intuition into practice.

Specifically, we propose to investigate an approach which combines off-the-
shelf WSD and Entity Linking with sense-based vector representations as a cor-
nerstone for modeling textual data. Our experimental results confirm, indeed, that
semantic information contributes dramatically to extracting definitional knowl-
edge from corpora.

3.2.1 Entity Linking
The first step of our approach consists in running Babelfy [Moro et al., 2014], a
state-of-the-art WSD and Entity Linking tool which leverages BabelNet [Navigli
and Ponzetto, 2012] as its reference sense inventory, over the WCL dataset. In
this way, we obtain disambiguations for content text snippets, which are used to
build a semantically rich representation of each sentence. Consider the following
definition and its concepts, represented with their corresponding BabelNet synset
id:

The〈O〉 Abwehr〈01158579n〉 was〈O〉 a〈O〉 German〈00103560a〉 in-
telligence 〈00047026n〉 organization〈00047026n〉 from〈O〉 1921〈O〉
to〈O〉 1944〈O〉.

This disambiguation procedure yields two important pieces of information.
On the one hand, the set of concepts, represented as BabelNet synsets, e.g. the
synset with id bn:01158579n for the concept Abwehrbn

4. On the other hand, we
also obtain a set of non-disambiguated snippets (either single word or multiword
terms), which can be also used as indicators for spotting a definitional text frag-
ment in a corpus (from the above example: {the, was a, from 1921 to 1944}).

4For clarity, we use the subscript bn to refer to the concept’s BabelNet id, rather than using the
actual numeric id.
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3.2.2 Sense-Based Distributed Representations of Definitions
Our second step relies on SENSEMBED [Iacobacci et al., 2015]. This is a VSM
where not words, but rather senses are included in the vector space, along with
their BabelNet id. SENSEMBED vectors are the result of a two-step approach:
First, a large text corpus is disambiguated with Babelfy. Then, word2vec [Mikolov
et al., 2013c, Mikolov et al., 2013a] is applied to the disambiguated corpus, yield-
ing a vectorial latent representation of word senses. This enables a disambiguated
vector representation of concepts. For instance, for the term “New York” (Babel-
Net id bn:00041611n), there are vectors for lexicalizations such as “NY”, “New
York”, “Big Apple” or even “Fun City”. Similarly, one text-level concept may be
associated with more than one vector as well, one for each of the BabelNet synsets
that include such concept as its lexicalizations.

The representation of a sentence leveraging both Babelfy and SENSEMBED

is as follows. We first consider the text-level mentions provided by Babelfy. In
other words, we use this tool simply as a NER/phrase chunker in order to obtain
input concepts to look up in the sense embeddings model. Then, given a pair of
concept (e.g. intelligence organization) or entity (e.g. Abwehr) mentions (x, y),
we compute their semantic similarity SIM(·), which outputs the cosine score of
their two closest senses. These pairwise similarity scores are afterwards used for
computing a compactness graph over a sentence, and this information ultimately
becomes the input for our graph-based set of features (denoted as ∆).

We compute SIM(·) as follows. Let S be the set of senses included in SENSEM-
BED and Γ the set of associated vectors to each sense. We first retrieve all the
available senses in S of both x and y, namely S(x) = {s1

x, ..., s
m
x } and S(y) =

{s1
y, ..., s

z
y}. Then, we retrieve from Γ the corresponding sets of vectors V (x) =

{v1
x, ..., v

m
x } and V (y) = {v1

y, ..., v
z
y}. Finally, we compare each possible pair of

senses and select the one maximizing the cosine similarity between their corre-
sponding vectors, i.e.

SIM (x, y) = maxvx∈V (x),vy∈V (y)
vx · vy
||vx||||vy||

This disambiguation strategy at word or phrase level is further leveraged in
subsequent experiments throughout this dissertation. Hence, when we refer to
this approach (e.g. in Chapters 5 and 6), we denote it as L2S (Lemmas to Sense).

Let us illustrate the result of our L2S disambiguation strategy with an example.
Given the definition of the term bat, “A bat is a mammal in the order Chiroptera”,
we obtain a set D of three concepts: batbn, mammalbn and Chiropterabn. For each
pair of concepts ci, cj ∈ D, we compute SIM(ci, cj), and perform this operation
over all pairs in D.

In Table 3.4, we show the SIM representation of this definition (d) and one
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non-definitional sentence (n) also referring to bat: “This role explains environ-
mental concerns when a bat is introduced in a new setting". In this distrac-
tor sentence, disambiguated concepts are rolebn, environmental_concernbn and
batch_languagebn. Note the higher SIM scores for concept pairs in the definitional
sentence (in bold). Also, note that since the non-definition is less semantically
compact, our procedure assigned to one single term (e.g. batbn) vectors corre-
sponding to different lexicalizations depending on which concept it was being
disambiguated against (bat is incorrectly disambiguated as the batch program-
ming language and as a batch file). This also affects the connectiveness of the
resulting graph, which is more likely to be fully connected when concepts tend to
be semantically closer in the space, and hence are less likely to be disambiguated
differently (see Figure 3.3 for a visual representation of the resulting graph of a
definitional and a non definitional sentence about the term ‘bat’).

mammal

bat

chiroptera

0.59 0.29

0.31

environmental 
concern

role

purpose

batch 
language

batch file

conservation 
group

0.21 0.12 0.15

(a)

(b)

Figure 3.3: Graph representation of two sentences. In the definition (a) the se-
mantic compactness favours a fully connected graph, unlike the case of the non
definition (b).

3.2.3 Sense-based Features
We design three types of features: (1) Bag-of-Concepts; (2) Bag-of-non-disambiguated
text snippets; and (3) Similarity and compactness metrics over ∆. These features
are then used to train different classification algorithms, whose performance is
evaluated in 10-fold cross validation.
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Vector Vector’ SIM

batd mammald 0.59

batd chiropterad 0.29

mammald chiropterad 0.31

rolen environmental_concernn 0.21

purposen batch_languagen 0.15

conservation_groupn batch_filen 0.12

Table 3.4: Representation of a definition and a non-definition in terms of the sim-
ilarities of its concepts.

• Bag of disambiguated Concepts: We extract the 100 most frequent Babel-
Net synsets in the training data. Each concept behaves as a binary feature,
with value being either True or False, referring to whether such concept
was found in the sentence. In most folds, the most frequent synsets refer to
ancient languages such as Greek or Latin, or to scientific disciplines such
as Maths or Geography, typical indicators of definitions in the encyclopedic
genre.

• Bag of non-disambiguated Concepts: We extract the 500 most frequent
text snippets that Babelfy did not disambiguate. The vector construction
procedure is the same as in Bag-of-Concepts. In this case, we obtain results
consistent with previous studies in that the pattern “is a” is the most frequent
and hence a feature with high predictive power, followed by “is the”, “of a”
and “is any”.

• Semantic Features: We put forward a novel set of features stemming from
the semantic compactness hypothesis, described in Section 3.2.2. We build
on this intuition to propose the following features:

– AllSims: The sum of all the SIM scores in ∆.

– AvgSims: The average of the SIM scores in ∆.

– AvgBiggestSubGraph: As shown in Figure 3.3, we can represent a
candidate sentence as a non-directed graph, in which each node is a
concept and each edge is weighted according to their SIM score. How-
ever, there are cases in which not all components of the graph are con-
nected because one mention may be associated to n different senses
(vectors) depending on which concept it is disambiguated against.
This feature is the average of the cosine scores of the biggest con-

54



“output” — 2017/7/10 — 11:47 — page 55 — #73

nected subgraph generated from ∆5. Note that if the sentence graph is
complete, AvgSims and AvgBiggestSubGraph yield the same score.

– TopDegreeScore: First, we obtain the node with highest degree in
the graph representation described above, i.e. the most connected
node. Then, we compute the average SIM score over this node and
its neighbours. We hypothesize that this measure should reward con-
cepts whose disambiguation remains the same regardless of the con-
cept they are disambiguated against (meaning less ambiguity), which
can be seen as another semantic compactness measure.

– NumEdges: The number of edges of the graph described above. As
the disambiguation options for a given concept increases, so will in-
crease the number of edges of the graph representation.

– MaxScore and MinScore: The maximum and minimum SIM score
among all the concept pairs in ∆. We hypothesize that in a definitional
sentence, there will be at least one pair highly similar, the one between
the defined term and the hypernym.

These features are used to perform a set of experiments with the machine
learning toolkit WEKA [Witten and Frank, 2005].

3.2.4 Evaluation
Our approach (SemanticDE) shows competitive results, outperforming previous
systems on the same dataset. We compare against three main competitors: (1)
The WCL algorithm (WCL); (2) A supervised machine-learning setting (BdC) in
which syntactic dependencies are used to construct word representations in terms
of their direct descendants [Boella et al., 2014]; and (3) our approach based on
syntactic dependences: DependencyDE (Section 3.1).

As is the case in all the systems described, performance is evaluated with the
classic Precision, Recall and F-Score measures at sentence-level. Table 3.5 shows
the performance of all systems.

In addition, we complement our experiments by evaluating the relevance of
each individual feature from our feature set. To this end, we compute their In-
formation Gain score, which measures the decrease in entropy when the feature
is given vs. absent [Forman, 2003]. The feature ranking provided in Table 3.6
summarizes the discriminative power of the features derived from SENSEMBED,
reinforcing our claim that semantic information can be effectively applied to the
DE task.

5Graph operations performed in our experiments were done with the Python library NetworkX:
https://networkx.github.io/
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Precision Recall F-Score

WCL 98.8 60.7 75.2

BdC 88.1 76.2 81.6

DependencyDE 85.9 85.3 85.4

SemanticDE 86.1 86.0 86.0

Table 3.5: SemanticDE results on the WCL dataset

InfGain Score Feature

“Contains:is_a" 0.19

AvgSims 0.13

AvgBiggestSubGraph 0.12

MaxScore 0.07

MinScore 0.06

TopDegreeScore 0.04

“Contains:is_an" 0.03

“Contains:bn00103785a" 0.02

NumEdges 0.01

AllSims 0.01

Table 3.6: SemanticDE top 10 features, by Information Gain score

3.2.5 Conclusion

As a concluding remark, let us summarize the main contributions of the Seman-
ticDE experiments. This supervised approach for DE benefits substantially from
introducing quantitative and distributional information derived both from WSD
and Entity Linking (thanks to BABELFY), as well as sense-based embeddings
(specifically, SENSEMBED vectors). We showed that the semantic compactness of
a definition is a trait that can be exploited for improving the quality of DE systems.

Inspired by the results obtained with this set of semantic features, in addition
to the good performance of our previous contribution (DependencyDE), a natural
extension of this work would be combining both intuitions into one single model,
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which could potentially perform well in out-of-domain settings due to its combi-
nation of linguistic regularities and semantic information. This is a challenging
and motivating task that remains for future work.

3.3 SequentialDE: Description and Evaluation of a
DE system for the Catalan language

Multilingual DE remains a fairly unexplored area. This is usually due to lack of
domain-specific data, as well as little work on exporting existing DE systems to
other languages. For these reasons, we were compelled to explore the more diffi-
cult task of DE for a language other than English, on the same encyclopedic textual
genre as our two previous contributions (DependencyDE and SemanticDE). We
decided to opt for the Catalan language due to the fact that it constitutes an exam-
ple of a fairly under resourced language, for which lexical resources, corpora, as
well as validation datasets are scarce. Second, it is one of the languages included
in Wikicorpus [Reese et al., 2010], which allows us to concentrate on the exper-
iment itself without having to focus on a possibly noise-inducing step regarding
corpus acquisition and preprocessing.

In addition, and from a purely methodological perspective, in this experiment
we explore DE as a sequence-to-sequence classification task, rather a binary clas-
sification problem. This changes substantially the experimental setup. First, be-
cause we no longer model feature vectors over each sentence, but rather over each
token. And second, because in this kind of sequence-to-sequence classification
problem, the standard practice is to have three labels, namely B (beginning), I
(inside), and O (outside) the target class (in our case, definitions), rather than the
two labels used in binary classification.

3.3.1 Creating a Catalan corpus for DE

We use a reference corpus as a pivot between English and Catalan Wikipedias,
namely the WCL dataset. We produce a Catalan mapping from WCL, which
constitutes our evaluation set. We map all unambiguous terms that are defined
in this corpus, and which have an equivalent page in Viquipèdia6, the Catalan
Wikipedia. This process includes certain heuristics to ensure we are not mapping
any noisy page (e.g. a redirection page) or a blank page. The end result of this
mapping process is a set of definitional and non-definitional sentences extracted
from Wikipedia in the Catalan language. Distractors (non definitions) are obtained

6ca.wikipedia.org
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by randomly collecting sentences in the rest of a term’s corresponding Wikipedia
page where the target term is explicitly mentioned.

In what follows, we provide the reader with two examples of definitional and
non-definitional senteces from our Catalan corpus, both referring to the term iot
(yacht).

• Def - Un iot és una embarcació d’esbarjo o esportiva propulsada a vela o a
motor amb coberta i amb cabina per a viure-hi.

Def - A yacht is a recreational or sports vessel propelled by a sail or by an
engine, with deck and cabin to live in.

• Nodef - Tot i aixó la majoria de iots a vela privats solen tenir una eslora de
7 a 14m, ja que el seu cost augment ràpidament en proporció a l’eslora.

• Nodef - However, most private yachts propelled by sail usually have a
length between 7 and 14 metres, as their cost increases quickly with regard
to the length size.

For training, we compile a subset of Wikicorpus, following the same method
as for our validation dataset compiled from WCL. For each term and its corre-
sponding Wikipedia article, we extract the first sentence, which can be safely
assumed to be a definition. Distractors (syntactically plausible false definitions),
are obtained by collecting those sentences where the term is explicitly mentioned.

Each definitional sentence is tagged with two labels, namely B for its first
word, and I for the remaining words in the sentence. Conversely, non-definitional
(distractor) sentences have all their tokens tagged with the O label.

3.3.2 Data Modeling
Both datasets are preprocessed using the part of speech tagger included in Freeling
[Atserias et al., 2006a]. Since ours is a sequential labeling task, we take advan-
tage of a powerful graphical model for sequential tagging, namely Conditional
Random Fields (CRF) [Lafferty et al., 2001]7.

Formally, a sentence s is a sequence of word-level feature vectors, such that
s = [f1, f2...fn], where n = |s| and fi receives a label y ∈ {B, I, O}. Fea-
tures are computed, for each iteration, over both the current and the contextual
tokens, in a [−3, 3] window. This also allows for a finer grained evaluation, in
that we explore the label-wise performance of the algorithm, with particular fo-
cus on the “B” label. This is important because, in a definitional text snippet, the

7We use the CRF++ package https://taku910.github.io/crfpp/.
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first word usually corresponds to the definiendum, and therefore this can be use-
ful information for downstream applications such as dictionary/glossary building,
or dictionary example lookup. In what follows, we describe the features used to
model each fi ∈ s.

• sur: Surface form of the current word, with no normalization (i.e. no lower
casing, as we want to keep capitalization to account for acronyms, abbrevi-
ations or name entities which may be indicative of definitional knowledge).

• lem: Word lemma (normalized).

• pos: A word’s part of speech.

• pos-prob: The probability given to pos by Freeling.

• bio-np: First, we apply a simple shallow parsing stage over part of speech
tags using the regular expression [JN]*N. Then, BIO tags are assigned to
each identified noun phrase. Let us provide an example of what this tagging
would look like in a sample sentence:

– El〈b-np〉 verd〈i-np〉 és〈o-np〉 un〈o-np〉 dels〈o-np〉 tres〈o-np〉
colors〈b-np〉 primaris〈i-np〉 additius〈i-np〉

– Green〈b-np〉 is〈o-np〉 one〈o-np〉 of〈o-np〉 the〈o-np〉 three〈o-np〉
primary〈b-np〉 additive〈i-np〉 colors〈i-np〉

• def-tf A frequency count for each word over the definitional sentences in
our train set.

• gen-tf A frequency count for each word in a general purpose corpus, formed
by newswire texts8. We base our approach on the intuition that certain words
or expressions usually used to express definitional knowledge may show
significantly lower frequency in generic language, such as “es considera”
(it is considered) or “es defineix com” (is defined as).

• def-tf*idf We compute term frequency*inverse document frequency for each
word over the definitional subset of our training corpus. Document frequen-
cies are computed at sentence level. Formally:

tfidf(w, d,D) = tf(w, d)× idf(w,D)

8For the interest of the reader, the corpus was initially available from
www.corpora.heliohost.org, but the project seems to be discontinued.
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where tf(w, d) is the frequency of wordw in document d. Likewise, idf(w,D)
is computed as follows:

|D|
|{d ∈ D : w ∈ d}|

where D is a document collection and |D|, its cardinality.

• gen-tf*idf Based on a similar intuition as in def-tf*idf, we compute this
metric word-wise with the same corpus as in gen-tf.

• termhood This metric determines the likelihood of a single token to be part
of a terminological unit, i.e. a domain-specific expression, showing a much
higher occurrence in domain-specific corpora than in generic language [Kit
and Liu, 2008]. The termhood metrics measures this intuition as follows:

Termhood(w) =
rD(w)
|VD|

− rB(w)
|VB|

Where rD(w) refers to the frequency-wise ranking of word w in the specific
corpus (in this case, the definitional training data), and rB(w) refers to w’s
ranking in a generic corpus. Denominators denote the size of each corpus. If
wordw only appears in the general corpus, we set the value of Termhood(w)
to −∞, and to∞ in the opposite case.

• bio-D and bio-d For each sentence (definitional or not) in our training cor-
pus, we locate the first verb, and tag as definiendum (D) all tokens before
it. Then, we tag as definiens (d) all words that come after, until the end of
the sentence. Then, we use the information provided by the bio-np feature,
obtaining a tagging like the following:

– El〈b-definiendum〉 verd〈i-definiendum〉 és〈o-definiens〉
un〈o-definiens〉 dels〈o-definiens〉 tres〈o-definiens〉
colors〈b-definiens〉 primaris〈i-definiens〉 additius〈i-definiens〉

• def-prom We introduce the notion of definitional prominence, aiming at
modeling the likelihood of a word w to appear in a definitional sentence
(s = def ). To this end, we consider its frequency in both definitional and
non definitional sentences in our training corpus. Formally:

DefProm(w) =
DF
|Defs|

− NF
|Nodefs|
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where DF =
∑i=n

i=0 (si = def ∧w ∈ si) and NF =
∑i=n

i=0 (si = nodef ∧w ∈
si). Similarly as with the termhood feature, in cases where a word w is only
found in definitional sentences, we set the DefProm(w) value to∞, and to
−∞ if it was only seen in non-definitional sentences.

• D-prom We also introduce definiendum prominence in order to model the
intuition that a word appearing more often in position of potential definien-
dum might reveal its role as a definitional keyword. This feature is computed
as follows:

DP(w) =

∑i=n
i=0 wi ∈ termD

|DT |

where termD is a noun phrase (i.e. a term candidate) appearing in poten-
tial definiendum position and |DT| refers to the size of the candidate term
corpus in candidate definienda position.

• d-prom Similarly computed as D-prom, but considering position of poten-
tial definiens.

We will refer to this same feature set (which we denote as SeqDEFeats) in
further experiments described in this thesis (Section 3.4). Unless otherwise noted,
the number of features, learning algorithm and context windows remain the same.

Each feature vector is provied to a CRF learner, which models both label prob-
abilities (i.e. how likely is a given feature vector to be tagged as BIO) and tran-
sition probabilities (i.e. how likely is a feature vector with BIO tag, to transition
into the same or a different tag for the next token). We present in the following
section label-wise results for our system, as well as several baselines resulting
from ablation tests.

3.3.3 Evaluation
We compute Precision, Recall and F-measure for each of the three available labels.
While for practical purposes, labels B and I could both be considered correct as in
both cases both denote that a word is part of a definition, in our evaluation, only
exact matches are considered true positives.

We evaluate four systems, which we describe as follows:

• Baseline This configuration only considers for training the sur feature,
without looking at any contextual information.

• C-1 It learns only linguistic features (sur, lemma, pos, etc.) over a [−3, 3]
window.
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• C-2 It learns only statistical features (tf-def, tfidf-def, etc.) over the same
window as C-1.

• C-3 It considers both linguistic and statistical features in the same context
window.

Table 3.7 shows the results obtained with each of these configurations. Row
identifiers refer to: (1) Whether the score is on Precision, Recall or F-Measure;
and (2) Which of the BIO labels was being evaluated, or an average (M), which
reflects the overall behavior of the system. We can observe that, starting from a
baseline which only obtains 67.31 F-Score, we are able to substantially increase
our numbers by including linguistic and statistical features, which obtain F=75.85
and F=75.68 respectively. Moreover, combining both feature sets, performance
increases to F=86.69, which indicates that a combination of both linguistic and
statistical feature sets contribute to competitive performance in DE systems. Note
that this is an evaluation performed strictly at word-level, which means that an
additional heuristic would have to be applied in cases where a candidate sentence
contains words labeled both as definitional and non-definitional. If we aim at
selecting only full sentences in a real application, we would look at the proportion
of one class vs the other, and set a threshold to make an ultimate decision. For
example, in our next contribution (WeakDE, Section 3.4), we follow the criterion
to only tag as definitional those sentences where all words were labeled as such.

As for error analysis, we note certain patterns in the types of mistakes the
model makes. For instance, it seems to misclassify as definitions sentences which
(loosely) follow a genus-et-differentia structure, as in the following example, from
the Wikipedia page corresponding to the term “divendres” (Friday):

Tant és així que quan una persona és molt desgraciada es diu que deu
ser nascuda en divendres.
In fact, when someone is very unfortunate, it is said that he/she must
have been born on Friday.

Here, the model gets triggered by the fact that the first word “Tant”9 was tagged
as a proper noun by Freeling, which combined with the context in which appears,
i.e. followed by the verb to be (és), is a strong indicator of the sentence being a
definition, considering the type of register (encyclopedic language) used in this
experiment.

In terms of false negatives (FNs) (definition sentences incorrectly classified
as being non-definitional), it is more difficult to identify a recurrent error pattern

9The phrase “tant és així” translates roughly into English as “in fact”.
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in which the model may incur. A qualitative analysis of the resulting classifica-
tion hints towards the fact that a large portion of FNs are fairly irregular in their
linguistic articulation. However, we have detected errors in the following cases:

• Chemical compounds: In cases where the defined term is a chemical com-
pound, its acronym is mistakenly tagged as a sequence of proper nouns,
and thus the part-of-speech sequence as well as definitional and statistic
features fail to capture the sentence structure. Specifically, these sentences
would have two noun phrases in definiendum position, a very rare case in
definition sentences. For instance:

El triti, T o 3H és un d’els isòtops de l’hidrògen.
Tritium, T or 3H, is one of the isotopes of hydrogen.

Here, the acronym “T” is tagged as a proper noun, a piece of information
which propagates to other features reliant on part-of-speech, such as bio-
np and bio-D/bio-d. Specifically, it produces two detected noun phrases at
definiendum position (one very rare, being simply one capital “T”), which
is rare in encylopedic definitions.

• Long definiendum-genus distance: We have identified several definitions
where the heads of both definiendum and genus are very far apart, these
sentences tend to be misclassified as non-definitional, as in the following
case:

El brandi és el terme general utilitzat per nomenar la beguda
alcohòlica feta a partir de vi de baixa qualitat, aiguardent o fins i
tot most.
Brandy is the general term used to name the alcoholic drink
made from low-quality wine, schnapps or even must.

Having eight words separating brandi (brandy) and beguda (drink) makes
this a fairly non-standard definition, and we hypothesize it may be the
source of error. Further experiments where longer distances (or where dis-
tances are encoded in terms of syntactic dependencies) should be conducted
to verify this hypothesis.

• “Stop-hypernyms”: There are cases where a definition may not include an
explicit genus, as in:

L’estat confessional és aquell que declara una religió concreta
com a oficial, amb diversos graus de penetració en la vida pública.
A confessional state is that which declares a specific religion as
official, with different degrees of permeation in public life.
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Baseline C-1 C-2 C-3

P-B 67.50 89.29 80.68 93.60
R-B 51.72 57.47 88.62 85.87
F-B 58.57 69.93 84.47 89.57
P-I 58.49 84.89 72.25 90.71
R-I 49.58 51.82 88.80 83.48
F-I 53.67 64.35 79.68 86.95
P-O 88.03 89.19 77.24 79.36
R-O 91.43 97.76 53.08 88.23
F-O 89.79 93.28 62.92 83.56
P-Avg 71.34 87.78 76.72 87.89
R-Avg 64.24 69.01 76.83 85.85
F-Avg 67.31 75.85 75.68 86.69

Table 3.7: Results for each of the relevant labels (BIO), plus average results (*-
Avg), in terms of Precision, Recall and F-score.

Here, the fact that there is no clear hypernym for “estat confessional” (con-
fessional state), is a strong (and wrong) indicator that this is a non-definition
sentence.

3.3.4 Conclusion

In this section, we have described and evaluated a set of experiments on DE which
show two main outstanding features with respect to DependencyDE and Seman-
ticDE, namely the methodological approach (sequence to sequence classification
rather than sentence-level binary classification), and the language chosen for per-
forming the experiments (Catalan). One of our main conclusions is that the pro-
posed novel set of lexicographic and statistical features we introduce over defini-
tional corpora contribute to the learning process, as shown by our ablation tests.
In addition, we have provided insights for potential sources of misclassifiaction,
both in terms of false positives (i.e. non-definition words incorrectly classified
as pertaining to a definition) and false negatives. Our qualitative analysis opens
specific directions for improvement, for example in improving the encoding of
contexts (one of the powerful features of the CRF algorithm we used), as well as
better preprocessing for handling rarer cases such as acronyms.

64



“output” — 2017/7/10 — 11:47 — page 65 — #83

3.4 WeakDE: Weakly Supervised Definition Extrac-
tion

In the previous sections we have described experiments for DE in a supervised
manner. In all of them, we took advantage of the manually annotated and validated
WCL dataset (or an automatic adaptation to another language), which has become
since its release a standard benchmarking for DE systems. However, experiments
in this setting show two main inherent drawbacks. First, in a real word scenario, it
is less likely for a definition to appear following the canonical genus et differentia
model, and therefore a system trained only with encyclopedic information may fall
short. Second, any model learned over the WCL dataset is inherently constrained
by linguistic regularities showed in this type of textual genre, and therefore it may
not be useful in a domain where language may evolve over time.

In our next contribution, we aim at bridging this gap via Weakly Supervised
DE. We propose an approach which, from a starting set of encyclopedic defini-
tion seeds, self-trains iteratively and gradually fits its classification capability to a
target domain-specific test set. Let us first discuss the data creation step, which is
followed by the details of the algorithm, as well as evaluation results.

3.4.1 Corpus compilation
In terms of corpora, we part ways from previous approaches, which focused
mostly on encyclopedic or technical documents. Prominent examples include
German technical texts [Storrer and Wellinghoff, 2006], the IULA Technical Cor-
pus (in Spanish) [Alarcón et al., 2009], the BNC corpus [Rodríguez, 2004], Wiki-
pedia [Navigli and Velardi, 2010], ensembles of domain glossaries and Web doc-
uments [Velardi et al., 2008], or technical texts in various languages [Westerhout
and Monachesi, 2007b, Przepiórkowski et al., 2007, Borg et al., 2009, Degórski
et al., 2008, Del Gaudio et al., 2013].

Our proposed weakly DE system requires the following corpora: (1) a general-
domain (encyclopedic) set of seeds of definitions (denoted as TS), and (2) a
domain-specific development set, e.g. a collection of papers (DS). For our exper-
iments, we use as TS the WCL dataset. Let us highlight the fact that, while this
dataset includes semantic information manually annotated such as the definien-
dum or hypernymy, we do not exploit any of it, which makes the seed-construction
step highly flexible as it only requires the sentence definition/non-definition class.
We use as DS a subset of the ACL ARC corpus [Bird et al., 2008], processed
with ParsCit [Councill et al., 2008]. In this dataset, a well-formedness confidence
score is given to each sentence (as these come from pdf parsing and noise is intro-
duced in the process). For example, one of the papers included in this anthology
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corpus is [Yeh, 2000]. For illustrative purposes, we show a sentence (1) from the
original paper, and its correspondent version in the ACL-ARC corpus (2), where
noise (shown in italics) is introduced due to the pdf to text conversion.

(1) One cannot directly compare the two systems from the descrip-
tions given in Ferro et al. (1999) and Buchholz et al. (1999) ...

(2) One can not directly coral ) are the two systems from the descrip-
tions given in Ferro et al . ( 1999 ) and Buchholz et al ...

We exploit the given confidence score and keep 500k sentences with a well-
formedness confidence score of over .95. Still, noise is inevitably present even
at such a restrictive threshold, and it stems from issues related to font format-
ting, footnotes, presence of equations or examples from languages with non-ascii
encoding.

For evaluation, we use two datasets: First, a set of 50 abstracts of papers in the
field of NLP10. Here, the target term is defined in the first sentence, and additional
information may appear in the form of “syntactically plausible false definitions”.
Second, the W00 [Jin et al., 2013] corpus, a subset of the ACL Anthology man-
ually annotated with definitions, and which includes highly variable definitions
both in terms of content and syntax. The MSR-NLP is a manually constructed
small list of 50 abstracts in the NLP field, amounting to 304 sentences: 49 defi-
nitions and 255 non-definitions. They are extracted from the Microsoft Academic
Research website11, where abstracts including a definition provide a “Definition
Context” section. This small dataset complies with the stylistic requirements of
academic abstract writing, i.e. the use of well-developed, unified, coherent and
concise language, and understandability to a wide audience12. A different register
can be found in the W00 dataset, which includes many definitional sentences that
are highly domain-specific, sometimes including the definition of a very specific
concept, and showing higher linguistic variability (e.g. the definiendum might
not appear at the beginning of the sentence, and unlike most abstracts, citations
might be present). We illustrate this difference with two sentences containing a
definition from the MSR-NLP (1) and the W00 (2) corpora:

(1) The Hidden Markov Model (HMM) is a probabilistic model used widely in
the fields of Bioinformatics and Speech Recognition .

(2) This corpus is collected and annotated for the GNOME project (Poesio,
2000), which aims at developing general algorithms for generating nomi-
nal expressions

10Henceforth, we refer to this corpus as the MSR-NLP dataset.
11http://academic.research.microsoft.com/
12http://www.cameron.edu/˜carolynk/Abstracts.html
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Note that in the case of (2), only the sequence “GNOME project aims at devel-
oping general algorithms for generating nominal expressions” is labeled as defi-
nition in the original dataset. In this chapter a definitional sentence is generalized
as being or containing a definition, which enables casting the task as a sentence-
classification problem.

Intuitively, we would expect a general-purpose DE system to be more likely
to label sentence (1), as it includes the required elements for a canonical genus-
et-differentia definition. This motivates our experiments, where we attempt to fit
a model iteratively to be able to perform better in sentences like (2).

3.4.2 Data modeling
We approach the DE task as a sentence classification problem, where a sentence
can be either a definition (def ) or not (nodef ). However, instead of modeling
sentence-level features like sentence length or depth of the parse tree, we rather
encode word-level features in order to exploit individual items’ characteristics
in terms of position within the sentence, frequency or relevance in a definition
corpus. These word-level features are used for classifying each word in a sentence
(def |nodef ). This is a similar setting as the one of SequentialDE. In fact, the same
SeqDEFeats configuration is used in both experiments.

Iter Best definition in DS
MSR-NLP W00

P R F P R F

1 A term is a word or a word sequence 100 9.09 16.68 65.38 1.25 2.47

10
An abbreviation is defined as a shortened
form of a written word or phrase used in
place of the full form

83.13 44.4 57.88 69.84 11.35 19.53

120
A bunsetsu is one of the linguistic units in
Japanese and roughly corresponds to a basic
phrase in English

25.5 90.71 39.81 60.71 69.68 64.89

182

That is to say a site is a candidate site when
it is found to have either an English page
linking to its Chinese version or a Chinese
page linking to its English version

22.92 92.53 36.74 62.55 76.63 68.88

200
Figure 1 and Figure 2 present the overall
system configuration and data flow of the
integrated system

23.34 96.72 37.6 62.27 78.45 69.43

Table 3.8: Definitions extracted throughout the bootstrapping process from the
ACL ARC corpus and P/R/F results at that iteration on the two evaluation corpora
(without post-classification heuristics, described in Section 3.4.3). Note the grad-
ual increase in syntactic and terminological variability in the extracted definitions.

We adopt two extraction strategies depending on whether we operate over
DS or any of the two evaluation corpora (MSR-NLP and W00). In the case of
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DS, the goal is to extract complete high-quality definitional and non-definitional
sentences. Therefore, we only consider as potential candidates for bootstrapping
those sentences where all the words have the same label (i.e. discarding, for exam-
ple, a 10-word sentence where nine are tagged as def and one as nodef ). This is
in fact the most frequent case by a large margin, so we are confident that there are
very few potentially relevant sentences being left out. Since evaluation is carried
out at word level, this constraint does not apply.

3.4.3 Bootstrapping

As noted earlier, the initial TS consists of the WCL dataset, which makes our
model suitable for DE in well-formed encyclopedic texts. However, our hypothe-
sis that it would perform poorly in a linguistically more complex setting (e.g. in
a corpus like the W00 dataset) is confirmed by the results at iteration 1 (see Ta-
ble 3.8). Our bootstrapping approach is aimed at gradually obtaining a better fit
model for W00, starting from our generic baseline trained exclusively on the WCL
corpus. The following description of our approach is summarized in Algorithm 1.

As mentioned above, TS is a manually labelled dataset where each sentence
s ∈ S is given a label d ∈ D = {def, nodef}. Likewise, DS is an unlabelled
subset of the ACL-ARC corpus, which amounts to 500k sentences. The first step is
to initialize (1) the training set vocabulary V , which simply contains all the words
in TS; and (2) the feature set F associated to each word w ∈ V . Then, for each
iteration until we reach 200, the algorithm extracts the best-scoring sentences as
predicted by our CRF-based classififer (recall that only sentences where all words
are assigned the same label are considered) for both labels def and nodef (s′ and
s′′ respectively), and uses them to increase the initial feature set and vocabulary13.
Next, it removes s′ and s′′ from DS, trains and evaluates a model on both the
MSR-NLP and the W00 datasets, and repeats until it reaches our manually set end
point.

One important aspect to consider is that increasing the size of the training data
does not have an effect of the features associated to a word. Incorporating defini-
tions having concepts related to the target domain (NLP in our case) is a step for-
ward, but their definitional salience remains the same, as they were calculated be-
fore initializing the bootstrapping algorithm. For this reason, we include a feature
update step at iteration 100, our motivation being that, for evaluation purposes,
we will have the same number of iterations before and after such step. It consists
in resetting F to ∅ and recalculating it. We hypothesize that the new feature val-
ues can reflect better the linguistic idiosyncrasies of a domain-specific definitional

13The “stop at 200th iteration” is a stopping criterion arbitrarily set and in the future we plan to
investigate longer learning cycles.
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Algorithm 1 Bootstrapping for DE
Require:

TS = {(S, d ∈ D)} Initial labelled train seeds.
DS = {S} Subset of the ACL-ARC corpus.
MSR-NLP: Test set 1.
W00: Test set 2.

V := {w : ∃ (s, d) ∈ TS ∧ w ∈ s}
F := {fTS (w) : w ∈ V }

1: for i = 0, i < 200, i+ + do
s′ = argmaxs∈DS P (s = def)
s′′ = argmaxs∈DS P (s = nodef)

2: for w ∈ s′ ∪ s′′ do
3: if w /∈ V then

F = F ∪ {fTS (w)}
V = V ∪ {w}

4: end if
5: end for

TS = TS ∪ {(s′, def) , (s′′, nodef)}
DS = DS \ {(s′, def) , (s′′, nodef)}

6: if i = 100 then
F = ∅

7: for w ∈ V do
F = F ∪ {fTS (w)}

8: end for
9: end if
modeli = trainModel (TSi, Fi)
evaluateModel (modeli, {MSR-NLP,W00})

10: end for

corpus. After 200 iterations, our bootstrapped dataset TSboot includes the original
training data and 400 new sentences: 200 definitions and 200 non-definitions. As
the bootstrapping process advances, s′ and s′′ show greater linguistic variability
because the training data includes more non-canonical definitions (Table 3.8).

Finally, our last step consists in applying a post-classification heuristic in-
spired by [Cai et al., 2009]. It consists in a set of rules for label-switching aimed
at increasing recall without hurting precision significantly. Let wi be a word clas-
sified as not being part of a definition (nodef ) at iteration i, we can rectify its class
(wnewi ) to being part of a definition (def ) as follows:
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wnewi =

{
def if Pdef (wi) > θ

def if Pnodef (wi) < λ,wsyn
i = pred

Wherewsyni refers to the dependency relation of the word examined at iteration
i, and pred is the predicative complement syntactic function of the word.

Our goal is to increase the number of def words in a sentence in cases where
they were discarded by a small margin. We hypothesize that this could be par-
ticularly useful in “borderline” cases (some words classified in a sentence as def,
some as nodef ), where this heuristics helps our algorithm to make a decision al-
ways favouring definition labelling over non-definition. As for the constants, θ
and λ are empirically set to .35 and .8 respectively after experimenting with sev-
eral thresholds and inspecting manually the resulting classification.

3.4.4 Evaluation
We evaluate the performance of our approach at each iteration on both datasets
(MSR-NLP and W00) using the classic Precision, Recall and F-Measure scores.
All the scores reported in this chapter are at word-level.

The learning curves shown in Figure 3.4 demonstrate that our approach is suit-
able for fitting a model to a domain-specific dataset starting from general-purpose
encyclopedic seeds. Unsurprisingly, performance on the MSR-NLP corpus drops
soon after reaching its peak due to the fact that the training set gradually becomes
less standard. Interestingly, the feature-update step has a dramatic influence in
performance in both corpora: On one hand, the performance peak in a dataset
with less linguistic variability (MSR-NLP) is reached early, and after iteration
100, where the feature update step occurs, Precision decreases, while Recall re-
mains the same. On the other hand, the numbers in the W00 dataset are fairly
stable until iteration 100, where a significant improvement in both Precision and
Recall is achieved.

Let us look first at the results without applying recall-boosting post-classification
heuristics: The performance of our models decreases in the MSR-NLP corpus af-
ter a few iterations (our best model is reached at iteration 23, where F=76.23), and
this situation is unsurprisingly aggravated by the feature update step. However,
our results improve significantly in the W00 dataset14 after feature updating. Our
best-performing model reaches F=70.72 at iteration 198.

Moreover, we observed a minor improvement after incorporating the label-
switching heuristics in both corpora. Specifically, for the MSR-NLP corpus the
improvement was from the aforementioned F=76.34 to F=77.46, while in the W00

14Note that since the W00 corpus is also a subset of the ACL ARC dataset, we first confirmed
that it did not overlap with our dev-set.
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dataset, it improved from F=70.72 to F=71.85. Tables 3.9 and 3.10 show Preci-
sion, Recall and F-Score for our best models in both datasets.

These numbers confirm that we are able to generate a domain and genre-
sensitive model provided we have a development set available of similar charac-
teristics. The discrepancy in terms of performance as the bootstrapping algorithm
advances is an indicator that the models we obtain become more tailored towards
the specific corpus, and therefore less apt for performing well in the encyclopedic
genre. Our approach seems suitable for partially alleviating the lack of manually
labelled domain-specific data in the DE field.

Let us also refer to the importance of having a development set as close as
possible to the target corpus in terms of register and domain, and with a reason-
able level of quality. In relation to this, we also performed experiments with a
development set automatically constructed from the Web, but due to lack of pre-
processing for noise filtering, results were unsatisfactory and therefore unreported
in this dissertation.

Iteration P R F

Pre-PCH 198 62.69 81.11 70.72

Post-PCH 198 62.47 82.01 71.85

Table 3.9: Best results on the W00 dataset before (Pre-PCH) and after (Post-PCH)
applying the post-classification heuristics.

Iteration P R F

Pre-PCH 23 80.69 72.24 76.23

Post-PCH 20 78.2 76.7 77.44

Table 3.10: Best results on the MSR-NLP dataset before (Pre-PCH) and after
(Post-PCH) applying the post-classification heuristics.

As for comparative evaluation, we cannot contrast our results directly with the
ones reported in [Jin et al., 2013], since while in both cases word-level evaluation
is carried out, in our case we generalized all the words inside a sentence containing
a definition to the label def. In addition, as it is pointed out in [Jin et al., 2013],
only in [Reiplinger et al., 2012] there is an attempt to extract definitions from
the ACL ARC corpus, but their evaluation relies on human judgement, and their
reported coverage refers to a pre-defined list of terms.
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Figure 3.4: F-Score against iteration on the MSR-NLP (top row) and W00 datasets
(bottom row), with bootstrapping + post-classification heuristics (left column) and
only bootstrapping (right column).

In general, the results we report are consistent with the ones obtained in pre-
vious work for similar tasks. For instance, prior experiments on the WCL dataset
showed results ranging from F=54.42 to F=75.16 [Navigli and Velardi, 2010,
Boella et al., 2014]. In the case of the W00 dataset, [Jin et al., 2013] reported num-
bers between F=40 and F=56 for different configurations. Since the availability of
manually labelled gold standard is scarce, other authors evaluated Glossary/Def-
inition Extraction systems in terms of manually assessed precision [Reiplinger
et al., 2012, De Benedictis et al., 2013].

3.4.5 Feature analysis
In order to understand the discriminative power of the features designed for our
experiments, we computed Information Gain. We did this for the original training
set TS, and for the training set resulting at iteration 200 TSboot. Then, we captured
the top 30 features and averaged their Information Gain score over all the available
contexts. We compare these features in both datasets TS and TSboot (see Figure
3.5).

We observe an improvement of definitionally-motivated features after iteration
100, which combined with the gradual improvement in performance in the W00
dataset, suggests that def_prom and d_prom contribute decisively to domain-
specific DE, while D_prom proved less relevant. Note that in our setting, we do
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not focus in term/definition pairs, but rather a full-sentence definition. Therefore,
we do not know a priori which term is the definiendum, and thus we do not per-
form a generalization step to convert it to a wildcard, which is common practice
in the DE literature [Navigli and Velardi, 2010, Reiplinger et al., 2012, Jin et al.,
2013, Boella et al., 2014]. This provokes high sparsity in D_prom and we hy-
pothesize that this may be the reason for this feature to not gain predictive power
after many iterations or the feature update step.

Figure 3.5: Information Gain for the best features at the end of the bootstrapping
process. Note the substantial improvement in def_prom (definitional prominence).

3.4.6 Conclusion
In this section, we have described a weakly supervised DE approach that gradually
increments the size of the training set with high quality definitions and clear exam-
ples of non-definitions. Two main conclusions can be drawn: (1) The definition-
aware features we introduce show, in general, high informativeness for the task
of DE; and (2) Our approach is valid for generating genre and domain specific
training data capable of fitting corpora, even though this differs greatly in terms
of content and register from the encyclopedic genre. In addition, a small and
focused benchmarking dataset of real-world definitions in the NLP domain has
been released, which can be used both for linguistic and stylistic purposes and for
evaluating DE systems.

As for the limitations detected in this system, as derived from our exprimen-
tal results, we have identified three main areas where WeakDE could improve.
First, by providing a more thorough evaluating on longer cycles, and ideally,
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re-computing statistical features over training data at every iteration. Second,
it seems natural to also incorporate, in addition to corpus-based features, distri-
butional and dependency information, which on their own we have shown that
work well for identifying definitions in corpora. And third, it would be interesting
to expand this implementation to capture highly likely sequences of tokens with
high probability of being definitional (i.e. do not reformulate the task as sentence
classification using word-level information).
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Chapter 4

HYPERNYM DISCOVERY

In this chapter, we cover our two main contributions towards the identification of
hypernymic relations in corpora. Our first contribution, DefinitionHypernyms,
explores the extent to which a machine learning approach which extensively ex-
ploits syntactic information can be applied to the task of, given a textual def-
inition, discover the text fragment in which the hypernym of the definiendum
is mentioned. Our second contribution, TaxoEmbed, is a supervised distribu-
tional approach which takes as input a concept and a domain of knowledge (e.g.
tourism), and returns a ranked list of its most likely hypernyms, obtained from
all the available vocabulary in a word embeddings model.

4.1 DefinitionHypernyms: Combining CRF and De-
pendency Grammar

Previous contributions for discovering hypernyms in definitions where the WCL
dataset (presented and described in Chapter 2) was used as benchmark [Navigli
and Velardi, 2010, Boella and Di Caro, 2013] combined machine learning and
lexico syntactic cues. We improved these systems by putting forward a sequential
approach based on CRF. The main idea is to iterate token-wise over a candidate
sentence, and tag each token as being at the beginning (B), inside (I), or outside
(O) a hypernym. This is a similar idea as for WeakDE (Section 3.4), but in this
case the sequence to sequence learning scenario fits perfectly to our task. Input
instances are sentences which are already being identified as definitions, and the
challenge is to identify the best hypernym for a given definiendum.

For this task, we trained a model strongly reliant on linguistic cues, as pro-
vided by a sentence’ syntactic dependencies. For the specific case of identifying
hypernyms in definitions, this approach seemed particularly suitable considering,
for example, that over 98% of the definitions in the dataset have one word with
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the prd syntactic function. Additionally, we found over 850 cases where the
word with prd function was a direct dependent of the root verb, and it also was
the first word of a manually tagged hypernym: this means that 46% of the term-
hypernym relations in this dataset would be extracted applying a simple mapping
rule. This syntactic consistence, together with the good results shown previously
by machine learning approaches in this and other related tasks, motivates us to
leverage syntactic information as input features to our system.

4.1.1 Features

Our feature set is a combination of linguistic, syntactic and stochastic informa-
tion. We use a similar set of features as in the SequentialDE and WeakDE sys-
tems (Chapter 3). Specifically, those shared by both approaches are (recall they
are computed at word level): (1) A word’s surface form, part of speech and depen-
dency relation with its syntactic head; and (2) morphosyntactic chains. The set of
novel features we introduce for this specific model are the following:

1. Head Id (headID) and Dependency Relation (depen): These two features
refer to the syntactic function of the current word and the unique identifier
of its governor or head. For example, subject (sbj), object (obj), predica-
tive complement (prd) or nominal modifier (nmod).

2. Definiendum (term) and definiens (def-nodef ): Whether the word is a
definiendum term (i.e. it matches exactly the Wikipiedia page title to which
the text snippet belongs to), and whether such word is part of the definiens.
We apply a simple heuristic rule that tags all words after the first verb of the
sentence as definiens.

3. PageRank (p-rank): We compute the popularity of a node in a sentence
with the PageRank algorithm (this is achieved by considering a parsed sen-
tence as an undirected acyclic graph, where each word corresponds to a
single node). Our intuition is that hypernyms in encyclopedic definitions
usually have a higher number of modifiers than the rest of the words in
the definition, and therefore a PageRank-based metric should be helpful to
model this salient characteristic. As in previous graph-computation oper-
ations in this dissertation, we use the Python library NetworkX [Hagberg
et al., 2008].
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4. Node Outdegree (outdgr): The out-degree of a node in a syntactic depen-
dency tree is equal to the number of dependents. The intuition is similar as
in the previous case, but here we explicitly aim at encoding only first-level
modifiers for each node.

5. Syntactic Salience (syntS): In addition to the above features, we are inter-
ested in a more general metric to assess the extent to which a word and its
associated linguistic information describes a textual genre. Motivated by the
fact that in textual definitions not only are hypernyms likely to appear, but
they show syntactic regularities, we count how many times a word is part
of the most frequent subtrees in the dataset taking into consideration dif-
ferent ranges of linguistic information (from only the word’s surface form
to subtrees including the word’s surface form, part-of-speech and syntactic
funtion).

Numeric features such as node degree, pagerank or syntactic salience are dis-
cretized, i.e. within a range between the smallest and highest score, each value is
assigned a discrete type between 1 and 10. This coarse-grained set of attributes
allows us to understand better each feature’s effect in the learning process and
perform more sensible error analysis.

Having prepared our sets of features, these are used for training and evaluating
a CRF classifier. Given the inherent ability of CRF for learning prior and posterior
contextual information in a sequential classification task, we design three experi-
ments where three context windows are considered: [-1,1], [-2,2] and [-3,3]. For
each window, we design feature sets incrementally adding one feature at a time
(see in Table 4.1 a matrix outlining all the feature sets used in our experiments).
We report scores derived from 10-fold cross validation.

4.1.2 Recall-Boosting heuristics
After manually inspecting the output of the classifier, we observe that there are
cases in which the discrepancy between the predicted label and the gold stan-
dard can be, at best, questionable. In fact, [Boella et al., 2014] mention issues
derived from the complexity of what actually constitutes a valid hypernym in
a textual definition and its effect on the quality of the annotation of the WCL
dataset (introduced and described in Chapter 2). Among others, they refer to in-
correct relationships, e.g. incorrectly annotating a meronym as a hypernym, or
inconsistent modifier attachment, e.g. cases where the same modifier attached to
two semantically-related concepts is sometimes included as part of a multiword
hypernymic phrase, and others not.
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sur lemma pos headID depen def-ndef term p-rank outdgr chains syntS

FeatSet1 x

FeatSet2 x x

FeatSet3 x x x

FeatSet4 x x x x

FeatSet5 x x x x x

FeatSet6 x x x x x x

FeatSet7 x x x x x x x

FeatSet8 x x x x x x x x

FeatSet9 x x x x x x x x x

FeatSet10 x x x x x x x x x x

FeatSet11 x x x x x x x x x x x

Table 4.1: Different feature sets adding one feature at a time.

This motivated a post-classification heuristic in a similar fashion as in Section
3.4. Specifically, let tokeni be a word classified as not being part of a hypernymic
phrase (O). We perform a label-switching step replacing its current label with
either B or I, yielding tokenupdatei . The following conditions are considered:

tokenupdatei =


B if PB(tokeni) > θ ∧ PB(tokeni) > PI(tokeni)
I if PI(tokeni) > θ ∧ PI(tokeni) > PB(tokeni)
B if PO(tokeni) < λ ∧ tokenSynti = prd

Where tokenSynti refers to the syntactic function of the word tokeni, and where
θ and λ are constants empirically set to the same values as in the WeakDE ap-
proach (.35 and .8 respectively).

These heuristics contribute to increase F-Score in feature sets 1 and 2 when
considering [-1,1] contexts. Likewise, F-Score also improves after this step in fea-
ture sets 1, 2 and 3 when considering [-2,2] and [-3,3] contexts. In many configu-
rations, Recall improves almost 10 points, and while in strict comparison against
gold standard the drop in precision affects negatively the overall F-Score in the
majority of feature sets considered, we found that in some cases our greedier ap-
proach detected a better hypernym than the one manually annotated in the gold
standard. Let us look at the following sample definition:

An abzyme (from antibody and enzyme), also called catmab (from
catalytic monoclonal antibody), is a monoclonal antibody with cat-
alytic activity.
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In the manually annotated dataset, the hypernym is “antibody”, and in the
majority of our experiments our algorithm identifies “monoclonal antibody”, thus
producing a false positive in our word-level evaluation. However, it is not clear
that “antibody” is a better hypernym for “abzyme” than “monoclonal antibody”.
In fact, there is a Wikipedia entry for “monoclonal antibody”1, which suggests that
the prediction of our algorithm is correct since “monoclonal” is not a property of
“antibody” but rather defines a monosemic type of antibody.

4.1.3 Evaluation

We evaluated at token-level in terms of Precision, Recall and F-Measure by adding
one feature at a time to the CRF-trained model. These results are shown in Ta-
ble 4.2 (DC for the CRF-based definition configuration as is, and Boost for the
recall-boosted configurations). Four main conclusions can be drawn: (1) Word-
level morphosyntactic features are highly informative in the encyclopedic genre
(see the boost in performance after these features are added to the model), which
reinforces our intuition that encyclopedic definitions do follow follow certain syn-
tactic patterns and show regularities that can be exploited; (2) The best-performing
model (highest F-Score) is FeatSet8, which includes all linguistic features, defini-
tional information, and page-rank; (3) Unsurprisingly, the best performing models
for each feature set are those including the largest context window ([-3,3]); and (4)
Recall-Boosting post-classification rules increase F-Score only in the most basic
feature sets. We provide further discussion on feature relevance in Section 4.1.3.1.

Finally, we compared our best-performing model with existing state-of-the-
art systems reported in the literature. Firstly, the Word-Class Lattices algorithm
[Navigli and Velardi, 2010], and secondly an approach conceptually similar to
ours that also modelled the problem in terms of syntactic dependencies [Boella
et al., 2014] (Table 4.3).

As for error analysis, similarly as in Section 3.3, it seems easier to infer sys-
tematic patterns of errors in false positives (words or sequences of words misclas-
sified as being hypernyms) rather than false negatives (the opposite case). First,
let us recall the already mentioned case of longer hypernyms detected by our sys-
tem. This may be due to either to the annotation procedure followed during the
construction of the WCL corpus, but also derived from the fact that some appar-
ently valid hypernyms do not have a corresponding Wikipedia page. Consider the
following example:

An alexandrine is a line of poetic meter.

1http://en.wikipedia.org/wiki/Monoclonal_antibody
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DC-1:1 DC-2:2 DC-3:3 Boost-1:1 Boost-2:2 Boost-3:3

P 48.51 65.22 70.33 30.35 40.22 46.46

FeatSet1 R 31.96 41.45 48.34 65.44 72.06 75.23

F 38.49 50.64 57.25 41.43 51.6 57.41

P 49.36 61.87 66.55 32.12 41.77 47.84

FeatSet2 R 33.92 44.33 51.13 64.52 71.26 74.27

F 40.17 51.58 57.79 42.85 52.66 58.18

P 64.93 67.58 72.65 41.98 49.38 55.32

FeatSet3 R 33.17 47.23 56.62 64.68 71.34 75.36

F 43.85 55.54 63.31 50.86 58.34 63.79

P 70.32 72.41 74.32 48.05 53.2 58.47

FeatSet4 R 44.98 55.37 60.87 70.07 74.63 76.37

F 54.8 62.71 66.89 56.99 62.1 66.22

P 76.04 75.85 76.17 56.03 58.67 62.05

FeatSet5 R 54.33 61.52 64.73 74.68 76.86 78.49

F 63.34 67.88 69.94 64.01 66.51 69.31

P 80.19 82.99 84.22 62.44 68.14 73.08

FeatSet6 R 63.26 72.04 75.69 79.85 82.42 84.99
F 70.68 77.12 79.71 70.04 74.59 78.58

P 80.08 83.05 84.15 62 68.43 73.25

FeatSet7 R 63.15 72.04 75.51 79.57 82.47 84.96

F 70.57 77.13 79.58 69.66 74.77 78.67

P 80.11 82.56 84.01 62.67 68.34 72.59

FeatSet8 R 63.47 72.02 76.12 79.68 82.27 84.82

F 70.79 76.91 79.85 70.13 74.64 78.22

P 79.94 82.31 83.82 62.01 68.04 72.44

FeatSet9 R 63.68 72.06 75.94 79.58 82.26 84.64

F 70.86 76.82 79.66 69.67 74.46 78.06

P 79.6 81.86 83.6 62.4 68.64 72.71

FeatSet10 R 63.86 71.35 75.74 79.02 81.69 84.51

F 70.85 76.23 79.47 69.7 74.59 78.15

P 79.72 81.87 83.43 62.69 68.7 73.1

FeatSet11 R 64.48 71.62 75.36 79.22 82.13 84.16

F 71.28 76.03 79.17 69.94 74.81 78.22

Table 4.2: Performance of DefinitionHypernyms at three context windows ([-1:1],
[-2:2] and [-3:3]). 80
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Precision Recall F-Score

N&V WCL-1 77 42.09 54.42

N&V WCL-3 78.58 60.74 68.56

B&DiC 83.05 68.64 75.16

DefinitionHypernyms 84.01 76.12 79.85

Table 4.3: Comparative Evaluation between our best performing model
(FeatSet8 with no post-classification heuristics) and the results reported in [Nav-
igli and Velardi, 2010] and [Boella et al., 2014].

The hypernym in italics is the prediction of our algorithm, while the bold
hypernym is the gold standard. It could be argued that using “poetic meter” as a
hypernym for alexandrine is at least an option as valid as simply using “meter”2.

Other cases of error, however, stem clearly from a convoluted morphosyntactic
structure in the definition, as in the following case.

Bioterrorism is terrorism by international release or dissemina-
tion of biological agents (bacteria, viruses or toxins); these may be in
a naturally-occurring or in a human-modified form.

Here, our model made two mistakes. First, it disregarded terrorism as a hy-
pernym for bioterrorism, while selecting another term for it (dissemination). As
mentioned, this may be due to the several nested prepositional phrases that oc-
cur in the sentence. Finally, let us refer to cases where a term’s hypernym has a
high number of modifiers, which results in discrepancies in terms of selecting a
nested noun phrase which is acting as a modifier of a higher head noun as valid
hypernym, as in the following example:

A broch is an iron age drystone hollow-walled structure of a type
found only in Scotland.

The bold hypernym (iron age drystone) was not selected by our model, which
however captured hollow-walled structure as a valid hypernym of the term broch.
It seems that selecting one option over the other may owe to contextual facts
which are not accounted for only in this textual piece (e.g. the purpose of any
downstream task, or the domain in which this definition appears).

2In fact, this hypernym is used in another definition of a type of “alexandrine”, namely the
“French alexandrine” en.wikipedia.org/wiki/French_alexandrine.

81

en.wikipedia.org/wiki/French_alexandrine


“output” — 2017/7/10 — 11:47 — page 82 — #100

4.1.3.1 Information Gain

Recall that Information Gain (IG) measures the decrease in entropy when the fea-
ture is present vs. absent. We rank our features according to their IG score. We
denote each feature as featurenamePositionX =featurevalue, where X
is the relative position of that feature at the current iteration during training. For
instance, the feature deprelPosition-1=nmodmeans that the algorithm is consider-
ing, for the prediction of word wi (where i is its position in the sentence), whether
the previous word (i − 1) functions as a noun modifier (nmod). Looking at the
best features in our model (Table 4.4), we can conclude the following3: (1) Hyper-
nym extraction algorithms improve by a huge margin if provided with syntactic
information; (2) Previous work has demonstrated improvement in the task of DE
by informing the classifier with terminological information [Jin et al., 2013]. This
seems to hold the other way round as well; (3) We also observe an interesting set
of features clumped together with the same value and the same Information Gain
score. These are no_value feature scores, which means that the context specified
(e.g. i = −1) is null due to the current iteration being at the beginning or end of
the sentence. This might point to hypernyms being consistently mentioned at a
certain position in a sentence; (4) the discretization of our numeric values might
have been too coarse-grained for being discriminative enough in a classification
task. Finally, (5) After looking at the last row in Table 4.4, we observe the highest
graph-based ranking feature (in position 24) referring to the fact that a word has a
child with nnp part-of-speech and dependency relation sbj.

4.1.4 Conclusions
We have described a system for Hypernym Extraction from textual definitions in
the WCL corpus. We experimented with linguistic, definitional and graph-based
features which operated over the sentence parse tree. Our best model achieves
better results than existing approaches on this dataset. The experiments carried
out also showed that linguistic and definitional information are by far the most
important features in our configuration, and only few exceptions among the graph-
based features can be considered informative.

Finally, these experimental results open several avenues for future work. For
example, we would like to draw statistics to measure accurately how many of the
false positives in which our approach incurred after applying the Recall-Boosting
heuristics could be correct hypernyms by looking at generic encyclopedias or
domain-specific knowledge bases. Also, since the contribution of graph-based

3The full set of features and their Information Gain rank can be accessed at: The com-
plete Information Gain score list can be accessed at bitbucket.org/luisespinosa/
definitionhypernyms. There are 2,111 features with non-zero IG score.
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Rank Feature InfoGain

1 deprelPosition0=PRD 0.0682345

2 posPosition0=nn 0.0538957

3 deprelPosition-1=NMOD 0.0517277

4 defnodefPositiond0=def 0.0349189

5 defnodefPosition0=nodef 0.0349189

6 defnodefPosition1=def 0.0349189

7 headIDPosition-1 0.0320474

8 deprelPosition-2=ROOT 0.0315236

9 defnodefPosition+1=nodef 0.0300525

10 defnodefPosition-3=nodef 0.0300255

24 chainsPosition0=dt_NMOD&nnp_SBJ 0.0182301

Table 4.4: Selected best features for Hypernym Extraction. Each feature reads
as follows: $featureName$Position=value, where Position refers to the context
in which appears at the current iteration. For instance, Position=-1 refers to one
word before the word at the current iteration.
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features was very limited, we would like to explore with finer-grained discretiza-
tion heuristics as well as with the raw numeric values. Finally, it would be inter-
esting to test our approach on other large datasets, such as WiBi [Flati et al., 2014]
or the Linked Hypernyms Dataset [Kliegr, 2014].

4.2 TaxoEmbed: Supervised Distributional Hyper-
nym Discovery via Domain Adaption

In this section, we explore an approach for supervised distributional HD which is
purely distributional, i.e. it does not rely on any corpus co-occurrence of candidate
hyponym-hypernym pair (unlike, for example, our previously discussed Defini-
tionHypernyms algorithm). We also propose to use a very large KB containing
thousands of term-hypernym relations both for training and evaluation (with dif-
ferent train and test splits), namely Wikidata. The remainder of this section is
organized as follows. First, we introduce the resources we exploit in the design
and training of TaxoEmbed4, then we describe how we incorporate training data
from various resources, along with a description of the training algorithm, and
conclude with evaluation and conclusion.

4.2.1 Preliminaries
TAXOEMBED leverages the vast amounts of training data available from struc-
tured and unstructured knowledge resources, along with the mapping among these
resources and a state-of-the-art vector representation of word senses.

BabelNet constitutes our sense inventory, as it is currently the largest single
multilingual repository of named entities and concepts, integrating various re-
sources such as WordNet, Wikipedia or Wikidata. As in WordNet, BabelNet is
structured in synsets. Each synset is composed of a set of words (lexicalizations
or senses) representing the same meaning. For instance, the synset referring to the
members of a business organization is represented by the set of senses firm, house,
business firm. BabelNet contains around 14M synsets in total. We exploit Babel-
Net as (1) A repository for the manually-curated hypernymic relations included
in Wikidata; (2) A semantic pivot of the integration of several Open Information
Extraction (OIE) systems into one single resource, namely KB-UNIFY(we pro-
vide further details about KB-U in Section 6.2); and (3) A sense inventory for

4Note that while in some cases these resources have already been described, we feel the need to
provide a refresher, which will also serve to point to specific characteristics particularly important
in these experiments.
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SensEmbed, the sense-based vector representation we use in our experiment. In
the following we provide further details about (1) and (2), as (3) has already been
covered earlier in this dissertation (Section 3.2).

4.2.2 Training Data
Wikidata is a semantic database that is both human and machine-readable, and
which includes information stemming not only from direct input from Wikime-
dia editors, but also facts ported from the Google project Freebase (cf. Section
1.2.1.3). Specifically, our initial training setW consists of the hypernym branch
of Wikidata, specifically the version included in BabelNet. Note that we collapse
under hypernym all Wikidata relations under the instance-of relation, which en-
codes pairs such as {(Barack Obama, human)}, {(puma, taxon)} or {(Barcelona,
municipality of Spain), (Barcelona, city), (Barcelona, tourist destination) · · · }.
Each term-hypernym ∈ W is in fact a pair of BabelNet synsets, e.g. the synset for
Apple (with the company sense), and the concept company

KB-UNIFY (KB-U)5 is a knowledge-based approach, based on BabelNet, for in-
tegrating the output of different OIE systems into a single unified and disam-
biguated knowledge repository. For now, let us simply note that KB-U generates a
KB of triples where arguments are linked to their corresponding BabelNet synsets,
and relations are replaced by relation synsets of semantically similar OIE-derived
relation patterns (see Chapter 6 for a full description of the method behind KB-U).
The original experimental setup of KB-U includes NELL [Carlson et al., 2010] as
one of its input resources: since NELL features its own manually-built taxonomic
structure and relation type inventory (hence its own is-a relation type), we iden-
tified the relation synset containing NELL’s is-a6 and then drew from the unified
KB all the corresponding triples, which we denote as K. These triples constitute,
similarly as in the previous case, a set of term-hypernym pairs automatically ex-
tracted from OIE-derived resources, with a disambiguation confidence of above
0.9 according to KB-U’s scoring policy.

Prior to any preprocessing or further mapping, initially our two main training
sets have the following size: |W| = 5,301,867 and |K| = 1,358,949.

4.2.3 TaxoEmbed Algorithm
Our approach can be summarized as follows. First, we take advantage of a cluster-
ing algorithm for allocating each BabelNet synset of the training set into a domain

5http://lcl.uniroma1.it/kb-unify
6represented by the relation generalizations.
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cluster C (Section 4.2.3.1). Then, we expand the training set by exploiting the dif-
ferent lexicalizations available for each BabelNet synset (Section 4.2.3.2). Finally,
we learn a cluster-wise linear projection (a hypernym transformation matrix) over
all pairs (term-hypernym) of the expanded training set (Section 4.2.3.3).

4.2.3.1 Domain Clustering

[Fu et al., 2014] induced semantic clusters via k-means in a HD task for Chi-
nese, where k was tuned on a development set. Instead, we aim at learning a
function sensitive to a predefined knowledge domain, under the assumption that
vectors clustered with this criterion are likely to exhibit similar semantic proper-
ties (e.g. similarity). First, we allocate each synset into its most representative
domain, which is achieved by exploiting the set of thirty four domains available
in the Wikipedia featured articles page7. Warfare, transport, or music are
some of these domains. In the Wikipedia featured articles page each domain is
composed of 128 Wikipedia pages on average. Then, in order to expand the set of
concepts associated with each domain, we leverage NASARI8 [Camacho-Collados
et al., 2015, Camacho-Collados et al., 2016], a distributional approach that has
been used to construct explicit vector representations of BabelNet synsets. In vec-
tor space modeling jargon, explicit means that each dimension is interpretable,
i.e. it is associated with either words or BabelNet synsets. These interpertable
dimensions come from leveraging both corpus-based statistics from Wikipedia as
well as knowledge from WordNet. Thus, domains are built via building a lexical
vector for each Wikipedia domain by concatenating all Wikipedia pages repre-
senting the given domain into a single text. Finally, given a BabelNet synset b, we
calculate the similarity between its corresponding NASARI lexical vector and all
the domain vectors, selecting the domain leading to the highest similarity score:

d̂(b) = max
d∈D

WO(~d,~b) (4.1)

whereD is the set of all thirty-three domains, ~d is the vector of the domain d ∈ D,
~b is the vector of the BabelNet synset b, and WO refers to the Weighted Overlap
comparison measure [Pilehvar et al., 2013], which is defined as follows:

WO(~v1, ~v2) =

√√√√∑w∈O
(
rankw, ~v1 + rankw, ~v2

)−1∑|O|
i=1(2i)

−1
(4.2)

where rankw,~vi is the rank of the word w in the vector ~vi according to its weight,
and O is the set of overlapping words between the two vectors. In order to have

7https://en.wikipedia.org/wiki/Wikipedia:Featured_articles
8http://lcl.uniroma1.it/nasari
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a highly reliable set of domain labels, those synsets whose maximum similarity
score is below a certain threshold are not annotated with any domain. We fixed
the threshold to 0.35, which provided a fine balance between precision and recall
in our development set. By following this approach almost 2 million synsets are
labelled with a domain. See [Camacho-Collados et al., 2016] for an in-depth
evaluation of the NASARI vectors.

4.2.3.2 Training Data Expansion

Prior to training our model, we benefit from the fact that a given BabelNet synset
may be associated with a fixed number of senses, i.e. different ways of referring
to the same concept, to expand our set of training pairs9. For instance, the synset
b associated with the concept music_album is represented by the set of lexical-
izations Lb = {album, music_album . . . album_project}. We take advantage of
this synset representation to expand each term-hypernym synset pair. For each
term-hypernym pair, both concepts are expanded to their given lexicalizations and
thus, each synset pair term-hypernym in the training data is expanded to a set of
|Lt|.|Lh| sense training pairs.

This expansion step results in much larger sets W∗ and K∗, where |W∗| =
18,291,330 and |K∗| = 15,362,268. Specifically, they are 3 and 11 times bigger
than the original training sets described in Section 4.2.2. These numbers are also
higher than those reported in recent approaches for hypernym detection, which
exploited Chinese semantic thesauri along with manual validation of hypernym
pairs [Fu et al., 2014] (obtaining a total of 1,391 instances), or pairs from knowl-
edge resources such as Wikidata, Yago, WordNet and DBpedia [Shwartz et al.,
2016], where the maximum reported split for training data (70%) amounted to
49,475 pairs.

4.2.3.3 Learning a Hypernym Discovery Matrix

The gist of our approach lies on the property of current semantic vector space
models to capture relations between vectors, in our case hypernymy. This can be
found even in disjoint spaces, where this property has been exploited for machine
translation [Mikolov et al., 2013b] or language normalization [Tan et al., 2015].
For our purposes, however, instead of learning a global linear transformation func-
tion in two spaces over a broad relation like hypernymy, we learn a function sen-
sitive to a given domain of knowledge. Thus, our training data becomes restricted

9However, in these cases data is less prone to noise as it is in its majority derived only from
manual efforts (with the exception of Yago’s automatic mapping between WordNet synsets and
Wikipedia cateegories).
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to those term-hypernym BabelNet sense pairs
(
xd, yd

)
∈ Cd × Cd, where Cd is

the cluster of BabelNet synsets labelled with the domain d.
For each domain-wise expanded training set T d, we construct a hyponym ma-

trix Xd = [~xd1 . . . ~x
d
n] and a hypernym matrix Yd = [~ydi . . . ~y

d
n], which are com-

posed by the corresponding SENSEMBED vectors of the training pairs
(
xdi , y

d
i

)
∈

Cd × Cd, 0 ≤ i ≤ n.
Under the intuition that there exists a matrix Ψ so that ~yd = Ψ~xd, we learn a

transformation matrix for each domain cluster Cd by minimizing:

min
ΨC

|T d|∑
i=1

||ΨC~xdi − ~ydi ||2 (4.3)

The resulting matrix ΨC is a Moore-Penrose pseudoinverse [Penrose, 1956] of
X, obtained by using its singular-value decomposition and including all its “large”
values10. Then, for any unseen term xd, we obtain a ranked list of the most likely
hypernyms of its lexicalization vectors ~xjd, using as measure cosine similarity:

argmax~v∈S
~v ·ΨC ~xj

d

||~v||||ΨC ~xj
d||

(4.4)

At this point, we have associated with each sense vector a ranked list of can-
didate hypernym vectors. However, in the (frequent) cases in which one synset
has more than one lexicalization, we condense the results into one single list of
candidates, which we achieve with a simple ranking function λ(·), which we com-
pute as λ(~v) = cos(~v,ΨC~xd)

rank(~v)
, where rank(~v) is the rank of ~v according to its cosine

similarity with ΨC~xd. We adopt this policy to have an additional factor that re-
wards candidate hypernyms with low cosine but which are nevertheless the best
candidates found by the system in the vector space (not necessarily found nearby
the product of the hyponym’s vector and Ψ).

The above operations allow us to cast the hypernym discovery task as a rank-
ing problem. This is also particularly interesting to enable a flexible evaluation
framework where we can combine highly demanding metrics for the quality of
the candidate given at a certain rank, as well as other measures which consider the
rank of the first valid retrieved candidate.

4.2.4 Evaluation
The performance of TAXOEMBED is evaluated by conducting several experi-
ments, both automatic and manual. Specifically, we assess its ability to return
valid hypernyms for a given unseen term with a held-out evaluation dataset of

10The cutoff for defining large values is set to largest_singular_value×1e− 15.
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250 Wikidata term-hypernym pairs (Section 4.2.4.1). In addition, we assess the
extent to which TAXOEMBED is able to correctly identify hypernyms outside of
Wikidata (Section 4.2.4.2).

4.2.4.1 Experiment 1: Automatic Evaluation

For each domain, we retain 5k, 10k, 15k, 20k and 25k Wikidata term-hypernym
training pairs for different experiments, and evaluate on 250 test pairs for each of
the 10 domains. Moreover, we aim at improving TAXOEMBED by including 1k
and 25k extra OIE-derived training pairs per domain (generating two more sys-
tems, namely 25k+Kd

1k and 25k+Kd
25k). These OIE-derived instances are those

contained in KB-U (see Section 4.2.2). Moreover, in order to quantify the empir-
ically grounded intuition of the need to train a cluster-wise transformation matrix
[Fu et al., 2014], we also introduce an additional configuration at 25k (25k+Kr

50k),
where we include 50k additional pairs randomly drawn from KB-U, and two
more settings with only random pairs coming from Wikidata (100krwd) and KB-U
(100k+rkbu).

We also include a distributional supervised baseline11 based on word analogies
[Mikolov et al., 2013a], computed as follows (denoted as Baseline). First, we
calculate the difference vector of each training SENSEMBED vector pair (~xd,~yd)
of a given domain d. Then, we average all the difference vectors of all training
pairs to obtain a global vector ~Vd for the domain d. Finally, given a test term t we
calculate the closest vector of the sum of the corresponding term vector and ~Vd:

ĥ = argmax~h∈Scos(
~Vd + ~t, h) (4.5)

This baseline has shown to capture different semantic relations and to improve
as training data increases [Mikolov et al., 2013a].

Evaluation metrics.

We computed, for each domain and for the above configurations, the following
metrics: Mean Reciprocal Rank (MRR), Mean Average Precision (MAP), and
R-Precision (R-P). They are defined as follows:

1. MRR takes into account the position of the first valid candidate in a ranked
list of options. Formally,

MRR =
1

|Q|

|Q|∑
i=1

1

ranki

11Using the 25k domain-filtered expanded Wikidata pairs as training set.
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art biology education geography health

Train MRR MAP R-P MRR MAP R-P MRR MAP R-P MRR MAP R-P MRR MAP R-P
5k 0.12 0.12 0.12 0.63 0.63 0.59 0.00 0.00 0.00 0.08 0.07 0.07 0.08 0.08 0.07
15k 0.21 0.20 0.18 0.84 0.72 0.79 0.22 0.22 0.21 0.15 0.14 0.14 0.08 0.07 0.07
25k 0.29 0.27 0.26 0.84 0.83 0.81 0.33 0.32 0.30 0.23 0.22 0.21 0.09 0.09 0.08
25k+Kd

1k 0.29 0.28 0.26 0.84 0.80 0.79 0.32 0.29 0.27 0.22 0.22 0.21 0.09 0.09 0.08
25k+Kd

25k 0.26 0.24 0.22 0.70 0.63 0.56 0.38 0.36 0.33 0.15 0.13 0.12 0.11 0.11 0.10
25k+Kr

50k 0.28 0.26 0.24 0.82 0.77 0.72 0.36 0.33 0.30 0.17 0.16 0.16 0.12 0.11 0.10
100krwd 0.00 0.00 0.00 0.84 0.81 0.77 0.00 0.00 0.00 0.01 0.01 0.01 0.07 0.06 0.06
100krkbu 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.12 0.12 0.11

Baseline 0.13 0.12 0.10 0.58 0.57 0.57 0.10 0.10 0.09 0.12 0.09 0.05 0.07 0.13 0.14
media music physics transport warfare

Train MRR MAP R-P MRR MAP R-P MRR MAP R-P MRR MAP R-P MRR MAP R-P
5k 0.28 0.28 0.27 0.10 0.10 0.09 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01
15k 0.14 0.13 0.12 0.08 0.07 0.07 0.36 0.35 0.34 0.25 0.23 0.21 0.01 0.01 0.01
25k 0.46 0.45 0.43 0.30 0.28 0.26 0.41 0.40 0.38 0.46 0.43 0.39 0.05 0.05 0.04
25k+Kd

1k 0.43 0.42 0.41 0.32 0.30 0.28 0.39 0.38 0.37 0.47 0.44 0.40 0.04 0.04 0.01
25k+Kd

25k 0.52 0.51 0.49 0.26 0.25 0.23 0.37 0.36 0.34 0.48 0.45 0.41 0.04 0.03 0.03
25k+Kr

50k 0.46 0.45 0.43 0.29 0.28 0.25 0.31 0.30 0.29 0.52 0.49 0.46 0.05 0.04 0.04
100krwd 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.01
100krkbu 0.08 0.07 0.07 0.01 0.01 0.00 0.00 0.00 0.00 0.10 0.10 0.10 0.00 0.00 0.00

Baseline 0.57 0.43 0.52 0.03 0.03 0.03 0.05 0.04 0.04 0.29 0.25 0.21 0.04 0.04 0.04

Table 4.5: Overview of the performance of TAXOEMBED using different training
data samples.

whereQ is a sample of experiment runs and ranki refers to the rank position
of the first relevant outcome for the ith run. For our task, this is probably
the most important metric, as it reveals, if we were only to select one valid
hypernym for a given term, how often this first valid hypernym would be
provided in the first positions of the returned candidates.

2. MAP is a complementary metric to MRR, which disregards the order of the
correct retrieved candidates, and only takes into account whether these were
retrieved within the k first positions in a predefined Precision@k measure.
This is particularly useful in the case of TAXOEMBED, as for each candidate
synset, we perform several queries, as many as its associated senses.

3. R-Precision is a sort of MAP, which only differs in the fact that it uses the
number of valid hypernyms for a given synset, and uses this number as a
cutoff (hence, the R variable). In practice, both MAP and R-Precision are
strongly correlated.

We summarize the main outcome of our experiments in Table 4.5. Results
suggest that the performance of TAXOEMBED increases as training data expands.
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This is consistent with the findings shown in [Mikolov et al., 2013b], who showed
a substantial improvement in accuracy in the machine translation task by gradually
increasing the training set. Additionally, the improvement of TAXOEMBED over
the baseline is consistent across most evaluation domain clusters and metrics, with
domain-filtered data from KB-U contributing to the learning process in about two
thirds of the evaluated configurations. These are very encouraging results con-
sidering the noisy nature of OIE systems, and that the resource we obtained from
KB-U is the result of error-prone steps such as Word Sense Disambiguation and
Entity Linking, as well as relation clustering.

As far as the individual domains are concerned, the biology domain seems
to be easier to model than the rest, likely due to the fact that fauna and flora are ar-
eas where hierarchical division of species is a field of study in itself, which traces
back to Aristotelian times [Mayr, 1982], and therefore has been constantly refined
over the years. Also, it is notable how well the 100krwd configuration performs on
this domain. This is the only domain in which training with no semantic aware-
ness gives good results. We argue that this is highly likely due to the fact that
a vast amount of synsets are allocated into the biology cluster (60% of them,
and up to 80% in hypernym position). This produces the so-called lexical mem-
orization phenomenon [Levy et al., 2015], as the system memorizes prototypical
biology-related hypernyms like taxon as valid hypernyms for many concepts. This
contrasts with the lower presence of other domains, e.g. 5% in media, 4% in
music, or 2% in transport.

Another remarkable case involves the education and media domains, which
experience the highest improvement when training with KB-U (5 and 6 MRR
points, respectively). One of the main sources for is-a relations in KB-U is
NELL, which contains a vast amount of relation triples between North Ameri-
can academic entities (professors, sports teams, alumni, donators; as well as me-
dia celebrities). Many of these entities are missing in Wikidata, and relations
among them encoded in NELL are likely to be correct because in most cases
these are unambiguous entities which occur in the same communicative con-
texts. For example, leveraging KB-U we were able to include the pair (univer-
sity_of_north_wales, four_year_college), an is-a relation missing in Wikidata. In
fact, many high quality is-a pairs like this can be found in KB-U for these two
domains.

We also computed P@k (number of valid hypernyms on the first k returned
candidates), where k ranges from 1 to 5. Numbers are on the line of the results
shown in Table 4.5 and therefore are not provided in detail. The main trend we
found is showcased in Figure 4.1, which shows the illustrative example of the
transport domain. As we can see, all values of k exhibit a similar P@k curve,
with a gradual increase of performance as the training set becomes larger.
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Figure 4.1: P@k scores for the transport domain.

4.2.4.1.1 False positives. We complement this experiment with a manual eval-
uation of theoretical false positives. Our intuition is that due to the nature of the
task, some domains may be more flexible in allowing two terms to encode an
is-a relation, while others may be more restrictive. We asked human judges to
manually validate a sample of 200 wrong pairs from our best run in each do-
main, and estimated precision over them. As expected, hard science domains
like physics obtain very low results (about 1% precision). In contrast, other
domains like education (12% precision), or transport (16% precision),
probably due to their multidisciplinary nature, allow more valid hypernyms for a
given term than what is currently encoded in Wikidata.

4.2.4.2 Experiment 2: Extra-Coverage

In this experiment we evaluate the performance of TAXOEMBED on instances not
included in Wikidata. For this experiment we use two configurations: the first one
includes 25k domain-wise expanded training pairs (TaxE25k), whereas the second
one adds 1k pairs from KB-U (TaxE25k+Kd). The idea is to assess whether the
inclusion of additional training data, even if it is coming from potentially noisy
sources, results in an improvement in coverage. We randomly extract 200 test
BabelNet synsets (20 per domain) whose hypernyms are missing in Wikidata.

We compare against the taxonomy learning and Information Extraction sys-
tems Yago [Suchanek et al., 2007], WiBi [Flati et al., 2014] and DefIE [Delli Bovi
et al., 2015]. Yago and WiBi are used as upper bounds due to the nature of their
hypernymic relations (this is why their numbers are not highlighted in bold in
Table 4.6). They include a great number of manually-encoded taxonomies (e.g.
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art biology education geography health

P R F P R F P R F P R F P R F
TaxE25k 0.45 0.45 0.45 0.40 0.40 0.40 0.60 0.60 0.60 0.35 0.35 0.35 0.45 0.45 0.45
TaxE25k+Kd 0.50 0.50 0.50 0.40 0.40 0.40 0.55 0.55 0.55 0.35 0.35 0.35 0.45 0.45 0.45
DefIE 0.63 0.35 0.45 0.36 0.20 0.25 0.57 0.20 0.29 0.66 0.40 0.50 0.25 0.15 0.18
Yago 0.88 0.75 0.81 0.62 0.25 0.36 0.94 0.80 0.86 0.79 0.75 0.77 0.28 0.10 0.15
Wibi 0.70 0.70 0.70 0.58 0.50 0.54 0.94 0.80 0.86 0.75 0.75 0.75 0.66 0.50 0.57

media music physics transport warfare

P R F P R F P R F P R F P R F
TaxE25k 0.10 0.10 0.10 0.45 0.45 0.45 0.15 0.15 0.15 0.35 0.35 0.35 0.25 0.25 0.25
TaxE25k+Kd 0.10 0.10 0.10 0.40 0.40 0.40 0.15 0.15 0.15 0.25 0.25 0.25 0.45 0.45 0.45
DefIE 0.81 0.45 0.58 0.71 0.50 0.58 0.42 0.15 0.22 0.54 0.30 0.38 0.60 0.30 0.40
Yago 0.76 0.65 0.70 0.84 0.55 0.67 0.80 0.40 0.53 0.93 0.70 0.80 0.81 0.65 0.72
Wibi 0.90 0.90 0.90 0.89 0.85 0.87 0.68 0.55 0.61 0.87 0.70 0.77 0.66 0.50 0.57

Table 4.6: Precision, recall and F-Measure between TAXOEMBED, two taxonomy
learning systems (Yago and WiBi), and a pattern-based approach that performs
hypernym extraction (DefIE).

exploiting WordNet and Wikipedia categories). Yago derives its taxonomic re-
lations from an automatic mapping between WordNet and Wikipedia categories.
WiBi, on the other hand, exploits, among a number of different Wikipedia-specific
heuristics, categories and the syntactic structure of the introductory sentence of
Wikipedia pages. Finally, DefIE is an automaic OIE system relying on the syn-
tactic structure of pre-disambiguated definitions12. Three annotators manually
evaluated the validity of the hypernyms extracted by each system (one per test
instance).

Table 4.6 shows the results of TAXOEMBED and all comparison systems. As
expected, Yago and WiBi achieve the best overall results. However, TAXOEM-
BED, based solely on distributional information, performed competitively in de-
tecting new hypernyms when compared to DefIE, improving its recall in most
domains, and even surpassing Yago in technical areas like biology or health.
However, our model does not perform particularly well on media and physics.
In most domains our model is able to discover novel hypernym relations that are
not captured by any other system (e.g. therapy for radiation treatment planning
in the health domain or decoration for molding in the art domain).

In fact, the overlap between our approach and the remaining systems is actu-
ally quite small (on average less than 25% with all of them on the Extra-Coverage
experiment). This is mainly due to the fact that TAXOEMBED only exploits dis-
tributional information and does not make use of predefined syntactic heuristics,
suggesting that the information it provides and the rule-based comparison sys-

12For this experiment, we included DefIE’s is-a relations only.
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tems may be complementary. We foresee a potential avenue focused on combin-
ing a supervised distributional approach such as TAXOEMBED with syntactically-
motivated systems such as Wibi or Yago. This combination of a distributional
system and manual patterns was already introduced by [Shwartz et al., 2016] on
the hypernym detection task with highly encouraging results.

4.2.5 Conclusion
We have presented TAXOEMBED, a supervised taxonomy learning framework ex-
ploiting the property that was observed in [Fu et al., 2014], namely that there
exists, for a given domain-specific terminology, a shared linear projection among
term-hypernym pairs. We showed how this can be used to learn a hypernym trans-
formation matrix for discovering novel is-a relations, which are the backbone of
lexical taxonomies. First, we allocate almost 2M BabelNet synsets into a prede-
fined domain of knowledge. Then, we collect training data both from a manually
constructed knowledge base (Wikidata), and from OIE systems. We substantially
expand our initial training set by expanding both terms and hypernyms to all their
available senses, and in a last step, to their corresponding disambiguated vector
representations. w Evaluation shows that the general trend is that our hypernym
matrix improves consistently as training data is increased as long as it comes from
high quality sources (Wikidata). In addition, inclusion of OIE-derived informa-
tion is more questionable, although we find that in half of the domains studied, in
at least one of the metrics the best performing system included information from
KB-U of any kind (with or without domain specificity).

Our best domain-wise configuration combines 25k training pairs from Wiki-
data and additional pairs from an OIE-derived KB. The domains in which the
addition of the OIE-based information contributed the most are education,
transport and media. For instance, in the case of education, this may
be due to the over representation of the North American educational system in IE
systems like NELL. We accompany this quantitative evaluation with manual as-
sessment of precision of false positives, and an analysis of the potential coverage
comparing it with knowledge taxonomies like Yago or WiBi, and with DefIE, a
quasi-OIE system.
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Chapter 5

TAXONOMY LEARNING

Previous chapters have focused on the identification of definitions from corpora,
hypernym extraction from definitions, or hypernym discovery from embeddings
spaces. In this chapter we describe a novel taxonomy learning system called EX-
TASEM!. Our algorithm takes as input a domain terminology (e.g. a list of terms
in the Food domain), and returns an extended version of this terminology, with
many concepts linked with high confidence to a reference sense inventory, and
fully taxonomized, in the form of a directed acyclic graph where edges encode
hypernymic relations.

5.1 ExTaSem! Extending, Taxonomizing and Seman-
tifying Domain Terminologies

As explained in Chapter 2, previous methods for inducing taxonomic relations
can be (broadly) classified into linguistic or statistic. Linguistic methods are those
that, extending Hearst’s patterns [Hearst, 1992], exploit linguistic evidence for un-
veiling hypernym relations [Kozareva and Hovy, 2010, Navigli et al., 2011, Flati
et al., 2014, Luu Anh et al., 2014]. Other approaches are based purely on statis-
tical evidence and graph-based measures [Fountain and Lapata, 2012, Alfarone
and Davis, 2015]. However, none of these approaches addressed explicitly the
problem of ambiguity and semantically-motivated domain pertinence, albeit a few
cases in which all this was tackled tangentially [Kozareva and Hovy, 2010, Velardi
et al., 2013]. EXTASEM! is designed to bridge the gap between relation extraction
and graph construction, on one hand, and domain pertinence on the other. Start-
ing from a list of domain terms, EXTASEM! induces a full-fledged taxonomy by
leveraging a large semantic network, from which high quality knowledge in the
form of textual definitions is retrieved for each domain. Then, (hyponym, hyper-
nym) pairs are extracted via a CRF-based sequential classifier. In addition, a state-
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of-the-art vector space representation of individual word senses is exploited for
constructing a domain taxonomy only made up of semantically pertinent edges1.
Finally, our approach does not require a step for graph pruning or trimming, a
must in some of the systems mentioned above.

In terms of taxonomy evaluation, EXTASEM! is able to reliably reconstruct
gold standard taxonomies of interdisciplinary domains such as science, ter-
rorism or artificial intelligence, as well as more specific ones like
food or equipment. In addition, it has the capacity to extend and semantify
an input taxonomy, i.e. increase its size and link many of its nodes to a reference
sense inventory.

In what follows we describe the pipeline of EXTASEM! and the resources en-
abling its semantic properties. Let Iϕ be a set of terms in domain ϕ, where:
ϕ ∈ {Food,Equipment,Science,Chemical,AI,Terrorism}2, and let Tϕ be the fi-
nal domain taxonomy, which can be described as a directed acyclic graph. The
root node of the taxonomy corresponds with a generic umbrella term of the target
domain ϕ. In the following we describe how EXTASEM! learns Tϕ from Iϕ.

5.1.1 Domain Definition Harvesting

Following previous work in Definition Extraction [Saggion, 2004, Navigli and
Velardi, 2010], EXTASEM! extracts candidate hypernyms of terms by mining
textual definitions retrieved from reliable knowledge sources. In this way we can
focus on the semantic coherence and the completeness of the taxonomy we build
with respect to both the addition of novel terms and edges and the evaluation of
their quality against reference sense inventories. Moreover, by gathering defini-
tions from reliable knowledge sources we reduce the risk of semantic drift in our
taxonomy and the need of costly and often imprecise pruning approaches. These
approaches are usually adopted when evidence is harvested from non-curated data
like the web [Kozareva and Hovy, 2010] or the output of Open Information Ex-
traction (OIE) systems [Alfarone and Davis, 2015].

The first component of the EXTASEM! pipeline is the Domain Definition
Harvesting (DDH) module. Given a domain terminology Iϕ, the DDH module
collects a corpus of domain definition sentences Dϕ retrieved from BABELNET

that constitutes our global definition repository.
The DDH module consists of two sequential phases (see Figs. 5.1 and 5.2): the

Domain Pertinence Scorer of Wiki-Categories (DDH-CatDPScorer) and the Do-
main Definitions Gathering (DDH-DefGath). The DDH-CatDPScorer generates
a list of Wikipedia Categories, each one characterized by a score that quantifies

1Taxonomies available at http://bitbucket.com/luisespinosa/extasem
2See Section 5.1.5 for the motivation behind the choice of these domains.

96



“output” — 2017/7/10 — 11:47 — page 97 — #115

its pertinence to the domain of the input terminology Iϕ. Then, the DDH-DefGath
further prunes this list of Wikipedia Categories with respect to their domain rel-
evance and semantic coherence and, then, exploits the pruned Category list to
populate the corpus of domain definition sentences (Dϕ). Hereafter we describe
each phase in detail.

Figure 5.1: DDH: DPS computation phase.

DDH-CatDPScorer (see Fig. 5.1): for each term τ belonging to the input
domain terminology Iϕ, we collect the BABELNET synsets BNτ that include the
term τ as one of their lexicalizations. Then, exploiting the Wikipedia Bitaxonomy
[Flati et al., 2014] integrated in BABELNET, for each set of BABELNET synsets
BNτ , we compute cats(BNτ ), i.e. the set of Wikipedia Categories that include at
least one BABELNET synset in BNτ . We compute the Domain Pertinence Score
(DPS) of each Wikipedia Category CATn:

Figure 5.2: DDH: Domain Definitions Gathering phase.
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DPS(CATn) =
∑
τ∈Iϕ

{
1 if CATn ∈ cats(BNτ )

0 if CATn /∈ cats(BNτ )

The DPS of each Category is equal to the number of terms τ that represent one
of the lexicalizations of a BABELNET synset included in the same Category (thus
belonging toBNτ ). We rely on the intuition that the greater the DPS of a Category
is, the higher is the relevance of that Category to the domain of the terminology Iϕ.
The output of the DDH-CatDPScorer phase is the list of all Wikipedia Categories
that have a DPS greater than zero.

DDH-DefGath (see Fig. 5.2): from the list of Wikipedia Categories that have
a DPS greater than zero, we filter out those that include more than η synsets. We
applied this procedure since we noted that often Wikipedia Categories that include
large amounts of synsets are one-size-fits-all repositories. These Categories may
not be relevant to characterize our domain of interest since they often group huge
amounts of semantically heterogeneous synsets, thus showing low semantic co-
herence. Examples of these Categories are: Living People or English Language
Films. As a consequence of the analysis of several cases, we empirically set the
Category exclusion threshold η to 1000. From the filtered list of Categories, we
select the κ Categories with the highest DPS (top-κ). From each BABELNET

synset that is included in a top-κ Category or one of its sub-Categories, we collect
all the full-sentence definitions in BABELNET (which includes Wikipedia, Wiki-
Data, OmegaWiki, WordNet, and Wiktionary definitions). In all the experiments
we report, we set κ equal to 10. The set of full-sentence definitions we collect
constitutes our corpus of domain definition sentences Dϕ.

In short, the DDH module generates a set of Wikipedia Categories that are per-
tinent to the domain of the input terminology Iϕ. The corpus of domain definition
sentences Dϕ consists of all the definitions of the synsets included in these Cate-
gories and in their sub-Categories. For instance, if our input domain terminology
is about food and includes the term orange, we will retrieve from BabelNet all
its senses (i.e. BabelNet synsets). Possible senses of orange are: ’the color of car-
rots, pumpkins and apricots’ and ’the fruit of citrus’. Orange as a color is included
in the Wikipedia Category Optical spectrum, while orange as a fruit belongs to
the Category Fruit. Since in the input terminology there are many other names of
fruits that are lexicalizations of synsets included in the category Fruit, the DPS of
this Category will be considerably higher than the DPS of the Category Optical
spectrum. In this way we can select the synset definitions of the most domain-
pertinent Categories (with highest DPS values) to populate our corpus of domain
definition sentences Dϕ.
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5.1.2 Hypernym Extraction

A core component of our pipeline is the Hypernym Extraction (HE) module.
Given a textual definition dτ ∈ Dϕ, we obtain the longest and most specific hyper-
nym of τ . Then, exploiting the syntactic structure of each multiword hypernym,
we propose a hypernym-decomposition step for increasing the depth of the graph,
which is preferred in taxonomy learning [Navigli et al., 2011]. Method-wise, we
cast this HE subtask as a sequence-to-sequence classification problem, where we
train a model similarly as in Section 3.4 (same feature set, and also using CRF as
learning algorithm).

The model (which is trained to sequentially predict whether a word in a def-
inition constitutes the definiendum’s hypernym) is applied to Dϕ to extract a set
Hϕ of (hyponym, hypernym) pairs. At this stage, τ may be associated with more
than one hypernym, as we may extract several candidates from different defini-
tion sources. For example, for τ = TRUFFLE, extracted candidates are CONFEC-
TION, GANACHE CENTER, and CHOCOLATE CANDY. Note that GANACHE CENTER is
a wrong hypernym for TRUFFLE, and will eventually be pruned out.

5.1.3 Fine-Graining Hyponym - Hypernym Pairs

We propose a hypernym decomposition heuristic over the syntactic dependencies
in a definition dτ as follows: (1) Extract from the sentence the dependency subtree
rooted at the head of the hypernym candidate; (2) Remove one modifier at a time
until the hypernym candidate consists only of one token. A syntactic constraint is
introduced to retain only relevant modifiers, i.e. only nouns, adjectives and verbs
are kept. This procedure outputs a finer-grained set of relations, denoted as H′ϕ.
For example, JAPANESE SNACK FOOD 7→ {JAPANESE SNACK FOOD, SNACK FOOD,
FOOD}.3

We take advantage of the fact that in many cases the extracted hypernyms are
multi-word terms and propose a hypernym decomposition heuristic that leverages
the syntactic dependencies in dτ . The main idea is, for each hypernym hyper ∈
dτ , to get the subtree of the dependency parsed sentence rooted at hyper, and
construct further hypernym candidates derived from hyper, pivoting over the head
of the hypernym. Our syntactic constraint ξ states that syntactic dependants of the
hypernym’s head are valid modifiers only if their part-of-speech is either JJ, NN*
or V*, and if their syntactic function is nmod (noun modifier). The procedure
(summarized in Algorithm 2) outputs a finer-grained set of relations, denoted as
H ′.

3A manual analysis over a random sample of 100 edges in the AI domain showed that compo-
sitionality failed in less than 6% of the cases.
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Algorithm 2 Hypernym Decomposition
Require: Hϕ // (hyponym, hypernym) pairs.
Output: H′ϕ // Finer-grained (hyponym, hypernym) pairs
//pos = A word’s position in a sentence
//ℵx = Returns the syntactic head of phrase x
//dP (x, y) = Obtains the dependency parse rooted as term x in sentence y
H′ϕ = Hϕ

for (τ, hyp)dτ ∈ Hϕ do
h′ = hyp
while |h′| >= 2 : do

s = leftmost successor of h′ in dP (h′, dτ )
if pos (s) < pos

(
ℵdP (h′,dτ )

)
then

if ξ = True then
H′ = H′ ∪ {(h′, h′ − s)}

end if
end if
h′ = h′ − s

end while
end for
return H′

After the hypernym decomposition step, we construct a set of candidate paths
Pϕ from H′ϕ. A candidate path pϕτ ∈ Pϕ is defined as a path from a term node τ to
the root node ϕ, and includes as intermediate nodes those created during the syn-
tactic decomposition step. From our previous example, {JAPANESE SNACK FOOD,
SNACK FOOD, FOOD} 7→ {JAPANESE SNACK FOOD → SNACK FOOD → FOOD}4. In
the following section, we explain how EXTASEM! constructs a domain-pertinent
taxonomy from Pϕ.

5.1.4 Path Weighting and Taxonomy Induction

We expect good paths to be relevant to the domain. In previous work, this has been
approached in a plethora of ways. For instance, by leveraging syntactic evidence,
by capturing in domain corpora hyponym, hypernym pairs related by a prede-
fined syntactic relation [Luu Anh et al., 2014]. Relevance of candidate (sets of)
hypernymic relations has also been computed by combining the aforementioned
syntactic evidence in triples extracted by OIE systems [Alfarone and Davis, 2015],
or by “forcing” a kind of domain pertinence by querying the web with a term and

4Henceforth, we denote edges as term→hypernym.
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a generic hypernym (which inherently is performing an a priori disambiguation)
[Kozareva and Hovy, 2010]. However, recent work in vectorial representations
of semantically-enhanced items has shown state-of-the-art performance in several
word similarity and word relatedness tasks [Camacho-Collados et al., 2015, Speer
et al., 2016]. This suggests that these representations may be much more suitable
for our semantics-intensive path weighting policy. Thus, we incorporate a module
based on SENSEMBED, which operates on the back of a sense inventory S with a
corresponding vector space Γ.

We model the relevance of pϕτ to ϕ (e.g. Food or Chemical) by computing its
domain pertinence. This is given by the weighting function w(·), computed as
the cumulative semantic similarity between each node n ∈ pϕτ and ϕ. We follow
an L2S cosine-based disambiguation strategy (cf. Chapter 3). This is aimed both
at accurately disambiguating an input text-level concept with respect to a target
domain, and to obtain a score for a whole candidate path, from leaf node to root
concept. For instance, our aim would be to assign to n =apple the closest sense
to ϕ so that for the node apple, the correct sense in the FOOD domain is that of the
fruit, and not that of the company.

Then, we weigh each path as follows:

w(pϕτ ) =
∑

l∈L(pϕτ )

COS(l, ϕ)

where COS(·) computes the cosine similarity between two vectors, and L(pϕτ )
is the set of linkable nodes in a path, i.e. those nodes with at least one vector
representation associated with them. This yields Pϕ

W , a weighted set of candi-
date edges. For instance, {(MIKADO→JAPANESE SNACK FOOD), (JAPANESE SNACK

FOOD→SNACK FOOD), (SNACK FOOD→FOOD)}w=0.3.
Finally, the taxonomy induction module generates a full-fledged semantified

taxonomy Tϕ with many intermediate nodes which were not present in Iϕ, as
well as a large number of novel non-redundant edges. This last step is described
in Algorithm 3. We empirically set a threshold θ to .135, and apply it over all
domains.

5.1.5 Evaluation
Evaluating the quality of lexical taxonomies is an extremely difficult task, even
for humans [Kozareva et al., 2009]. This is mainly because there is not a single
way to model a domain of interest [Velardi et al., 2013], and even a comparison
against a gold standard may not reflect the true quality of a taxonomy, as gold
standard taxonomies are not complete. This is especially relevant in multidisci-
plinary and evolving domains such as Science [Bordea et al., 2015]. Thus, we
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Algorithm 3 Taxonomy Induction

Require: Threshold θ, weighted paths Pϕ
W

Output: Disambiguated domain taxonomy Tϕ

A(term) = {ancestors of term}
Tϕ = ∅
for ρϕτ ∈ P

ϕ
W do

if w(ρϕτ ) > θ then
for (term, hyp) ∈ ρϕτ do

if hyp /∈ A(term) then
Tϕ = Tϕ ∪ {term→ hyp}

end if
end for

end if
end for
return Tϕ

evaluated EXTASEM! from two different standpoints, namely: (1) Reconstruct-
ing a gold-standard taxonomy; and (2) Taxonomy quality and semantic content,
where we look at structural features like number of edges or graph depth. We used
the following data for our experiments:

1. TexEval 2015: We evaluated on Semeval-2015 Task 17 (TexEval) domains
(cf. Chapter 2): Science (sci.), Food (food), Equipment (equip.) and Chem-
ical (chem.). For each domain, two terminologies and their corresponding
gold standard taxonomies were available. Such gold standards came from
both domain-specific sources (e.g. for chem., the ChEBI taxonomy5) and
the WordNet subgraph rooted at the domain concept (e.g. the WordNet
subtree rooted at chemical in the case of chem.). Note that since Word-
Net is integrated in BABELNET, evaluation over WordNet gold standard
would artificially favour our approach, so we decided to only evaluate on
the domain-specific taxonomies. We compared our results against the tax-
onomies produced by task participants.

2. Additional multidisciplinary domains: We assessed the EXTASEM! tax-
onomies in the domains of Artificial Intelligence (AI) [Velardi et al., 2013]
and Terrorism (terr.) [Luu Anh et al., 2014]. For the same fairness reason
as above, we avoid domains covered in previous work where the gold stan-
dard comes from WordNet, such as Animals, Plants and Vehicles, used in
[Velardi et al., 2013, Kozareva and Hovy, 2010, Alfarone and Davis, 2015].

5https://www.ebi.ac.uk/chebi/
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Food Science Chem. Equip.

P R F P R F P R F P R F

INRIASAC .18 .51 .27 .17 .44 .25 .08 .09 .09 .26 .49 .34

LT3 .28 .29 .29 .40 .38 .39 - - - .70 .32 .44

ntnu .07 .05 .06 .05 .04 .04 .02 .002 .001 .01 .006 .009

QASSIT .06 .06 .06 .20 .22 .21 - - - .24 .24 .24

TALN-UPF .03 .03 .03 .07 .25 .11 - - - .14 .15 .15

USAARWLV .15 .26 .20 .18 .37 .24 .07 .09 .08 .41 .36 .39

EXTASEM! .28 .66 .39 .27 .32 .29 .05 .02 .03 .51 .56 .54

Table 5.1: Comparative edge-level Precision, Recall and F-measure scores. Refer
to [Bordea et al., 2015] for a description of each of the systems listed.

5.1.5.1 Reconstructing a Gold Standard

Experiment 1 - TexEval 2015
For this experiment, we introduced a modification to the pipeline. We com-

plemented DDH with a web-search stage. We queried the Bing6 search engine
with terms whose definitions were not found in BabelNet, and from a concatena-
tion of web pages webτ , we kept as candidate hypernyms all the terms from the
initial terminology found in webτ . Then, applying the disambiguation procedure
described in Section 5.1.4, we kept at most the best three candidates (i.e. those
who were semantically closest to τ ) for each term, and added one edge between
each best candidate and τ 7.

The taxonomies generated by EXTASEM! are compared against participant
systems in TexEval. The evaluation criterion in this experiment is to assess how
well systems can replicate a gold standard in any of the four evaluated domains.
This is done via Precision, Recall and F-Score at edge level.

The results of this experiment suggest show that EXTASEM! ranks first in
half of the domains (Table 5.1), and second and third in Science and Chemical
respectively. As can be appreciated, if we average the results of all the systems

6https://datamarket.azure.com/dataset/bing/search
7We introduce this variation with respect to the original EXTASEM! pipeline to evaluate a

precision-oriented version of the system, where at most three candidate hypernyms are retrieved
for each term. If we were to include the whole pipeline (with the terminology expansion module),
our results would look artificially low, as we would have thousands of edges for each domain with
nodes initially absent in the original terminology.
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participating in this experiment across the four domains, our approach ranks first
(F=0.31, the second best system being LT3 with F=0.28).

5.1.5.1.1 Experiment 2 - Evaluation of a Subsample The Cumulative Fowlkes
& Mallows Measure (CFM) [Velardi et al., 2013] has become a de-facto standard
for evaluating lexical taxonomies against ground truth. It was introduced as a re-
work of the original Fowlkes&Mallows measure [Fowlkes and Mallows, 1983],
and was used as one of the evaluation criteria in TexEval 2015. This measure
assigns a score between 0 and 1 according to how well a system clusters similar
nodes at different cut levels.

Previous approaches evaluated the capacity of their systems to replicate a
lexical hierarchical structure given a terminology, mirroring their output against
WordNet in most cases [Navigli et al., 2011, Velardi et al., 2013, Fountain and
Lapata, 2012, Kozareva and Hovy, 2010, Luu Anh et al., 2014]. In this experi-
ment, we took advantage of extensive human input, and asked domain experts to
reconstruct a sample of 100 concepts from taxonomies produced by EXTASEM!.
The reason for having a sample of 100 terms is that it is a compact enough sample
to avoid the “messy organization” previous authors have reported [Velardi et al.,
2013, Kozareva and Hovy, 2010], while being a larger sample than experiments
performed similarly, e.g. in [Fountain and Lapata, 2012], where the terminologies
given to human judges were only of 12 terms.

For each 100-term sample, a domain expert was asked to order hierarchically
as many concepts as possible, but was allowed to leave out any node if it was
considered noisy. We used these expert taxonomies as gold standard. We also
evaluated a baseline method based on substring inclusion consisting in creating a
hyponym→hypernym pair between two terms if one is prefix or suffix substring
of the other. Table 5.2 shows results in terms of edge overlap (RECALL) and CFM.
The agreement between EXTASEM! and human experts was high, performing
much better than the baseline.

Baseline EXTASEM!
RECALL CFM RECALL CFM

Food 0.49 0.02 0.79 0.50
Science 0.22 0.01 0.57 0.64
Equip. 0.43 0.01 0.77 0.50
Terr. 0.54 0.07 0.69 0.27
AI 0.51 0.02 0.77 0.49

Table 5.2: CFM for domain 100-term gold standard comparison.
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5.1.5.2 Taxonomy Quality

Experiment 1 - Structural Evaluation
According to [Bordea et al., 2015], the purpose of taxonomy structural evalu-

ation is to: (1) Quantify its size in terms of nodes and edges; (2) Assess whether
all components are connected; and (3) Quantify semantic richness in terms of
proportion of intermediate nodes versus leaf nodes (which are considered less im-
portant). Thus, we compare automatic taxonomies produced by EXTASEM! with
gold standard taxonomies from TexEval 2015 (TEXE) in all domains, as well as
automatic taxonomies produced in Artificial Intelligence (AI) [Velardi et al., 2013]
and Terrorism (terr.) [Luu Anh et al., 2014]. We evaluated over these parame-
ters: Number of nodes (NODES); number of edges (EDGES); number of connected
components (C.C); number of intermediate nodes, i.e. those which are neither root
or leaf nodes (I.N); maximum depth of the taxonomy (MD); and average depth
(AD).

EXTASEM! produces bigger taxonomies with more intermediate nodes in
three out of four TexEval domains. This does not affect negatively the structural
properties of these taxonomies, as they also improve in terms of MD and are
only slightly behind in AD in some domains. The case of the Science domain is
remarkable, where the automatic EXTASEM! taxonomy shows greater AD than
the gold standard. The one domain that poses most difficulties for our approach is
Chemical due to the low coverage this domain has in BABELNET.

As for comparison against automatic taxonomies, while AD and MD are lower
than Velardi et al.’s OntoLearn Reloaded, note that in their approach many upper-
level (not domain-specific) nodes are introduced, which are described as “general
enough to fit most domains”8. Finally, our evaluation suggests that the Terrorism
taxonomy in [Luu Anh et al., 2014] does not have all the components connected.
We therefore report statistics on its biggest connected subgraph. Additionally,
since it was not constructed on the back of an umbrella root node, we do not
report numbers on depth. This reflects the complexity of the taxonomy learning
task, where perfectly valid domain-specific taxonomies may be shaped as trees or
as directed acyclic graphs, with or without root nodes. Full domain-wise details
are provided in Table 5.3.

5.1.5.2.1 Experiment 2 - Hypernym Extraction We considered WIBI as our
main competitor in the task of hypernym extraction due to the similarities in terms
of (hyponym, hypernym) extraction from a definition setting.

For each domain, two experts were presented with 100 randomly sampled
terms and two possible hypernyms, the hypernym selected by EXTASEM! and

8Some of these nodes are abstraction, entity, event or act.
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FOOD SCIENCE EQUIPMENT

Valid Best Valid Best Valid Best

WIBI 0.85 0.29 0.85 0.39 0.84 0.3

EXTASEM! 0.94 0.91 0.91 0.83 0.90 0.83

CHEMICAL AI TERRORISM

Valid Best Valid Best Valid Best

WIBI 0.75 0.03 0.76 0.39 0.79 0.24

EXTASEM! 0.64 0.32 0.84 0.80 0.78 0.73

Table 5.4: Human judgement on the quality of the hypernymic relations provided
by WIBI and EXTASEM! for 6 domains.

the one from WIBI. Each pair was shuffled to prevent evaluators from guessing
which could be the source. For each pair of hypernym candidates, evaluators
had to decide which of the two options constituted a valid hypernym in the given
domain. They were allowed to leave this field blank for both systems. If both the
hypernyms in WIBI and EXTASEM! were valid, evaluators were asked to decide
which system offered the best hypernym (or both if it was the same), and for this
we asked them to consider the hypernym’s semantic relatedness and closeness to
the hyponym, as well as relevance to the domain. For example, for the hyponym
CHUPA CHUPS, we would prefer LOLLIPOP over COMPANY in the food domain,
even if strictly speaking both options would be valid. We computed inter-rater
agreement with the Cohen’s Kappa metric over the valid and best classes, with
average results of 0.53 and 0.36.

The results in Table 5.4 suggest that in general the hypernyms extracted with
our procedure are better, i.e. more appropriate to the domain and more informa-
tive, than the ones extracted from the syntactically-motivated heuristic described
in [Flati et al., 2014].

5.1.6 Conclusion
This section presented and evaluated EXTASEM!, a system that constructs a domain-
specific semantically rich taxonomy from an input terminology. It consists of
three main modules, namely: (1) Domain Definition Harvesting, where BABEL-
NET and WIBI are leveraged in order to obtain a significant amount of defini-
tional evidence; (2) Hypernym Extraction and Decomposition, based on a CRF-
based sequential classifier and a syntactically-motivated hypernym decomposi-
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tion algorithm; and (3) Path Disambiguation and Graph Induction, on the back
of SENSEMBED, a state-of-the-art vector space representation of individual word
senses.

Parting ways from previous approaches in which is-a relation evidence was
gathered from non curated data like the web or OIE systems, EXTASEM! explic-
itly tackles the semantics of each candidate (hyponym, hypernym) pair, as well
as its pertinence to the target domain. Our system achieves state-of-the-art per-
formance in reconstructing gold standard taxonomies, and is able to extend them
retaining their domain relevance. We further discuss assets related to this system
in Chapter 7, as well as potential avenues for future work due to this system’s
limitations in Chapter 8.
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Chapter 6

CREATION, ENRICHMENT AND
UNIFICATION OF KNOWLEDGE
RESOURCES

The task of knowledge formalization can dramatically influence the construction,
extension and enrichment of existing knowledge resources. In this chapter, we
describe several experiments in this direction. First, we exploit the combina-
tion of semantic and syntactic information for learning a KB in the music do-
main entirely from scratch (Section 6.1). Then, we focus on: Making sense of
weakly structured (OIE systems) and polysemous (at the text level) information,
so that it becomes seamlessly integrated into one single resource (Section 6.2); en-
riching WordNet with collocational information, a very important component in
any lexicographic resource (Section 6.3); and extending the medical terminology
SnomedCT in Spanish, in Section 6.4.

6.1 MKB: Creating a Music Knowledge Base from
Scratch

Our first contribution in the area of KB creation and extension focuses on a highly
specific use case. The main idea is to explore whether NLP techniques can consti-
tute the methodological core behind the creation of a KB where content is (mostly)
non-textual. Specifically, we decided to investigate the music domain, as it has re-
ceived little attention by the NLP community, for example, for exploiting textual
data in Music Information Retrieval (MIR) and Music Recommendation systems.
Let us first, however, provide the reader with the necessary context to understand
the current state of music-related KBs, and what is missing. This project, a joint
effort from Luis Espinosa-Anke and Sergio Oramas, is a collaboration between
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the Music Technology Group and the Natural Language Processing group at Uni-
versitat Pompeu Fabra, in the context of the Music Meets NLP project, supported
by the Maria de Maeztu Units of Excellence Program.

6.1.1 Background

While the number of resources available in the music domain (at any degree of
structuring) is scarce, there are however some notable cases that currently con-
stitute the best examples of music-specific KRs. On one hand, we find special-
ized resources containing music-related information, such as MUSICBRAINZ and
DISCOGS, two manually curated Music Knowledge Bases (MKBS). They are
open music encyclopedias of music metadata built collaboratively and openly
available. MUSICBRAINZ, in addition, is regularly published as Linked Data by
the LINKEDBRAINZ project1. Another type of resources which contain musical
information are generic KRs with a music branch or subset, WIKIPEDIA being
an outstanding example. These resources include a remarkable amount of music
data, such as artist, album and song biographies, definitions of musical concepts
and genres, or articles about music institutions and venues. However, their cover-
age is biased towards the best known artists, and towards products from Western
culture. Finally, let us refer to the notable case of GROVE MUSIC ONLINE2, a mu-
sic encyclopedia containing over 60k articles written by music scholars. However,
it has the drawback of not being freely open, as it runs by subscription.

Other than the aforementioned curated repositories, to the best of our knowl-
edge, there is not a single automatically learned open MKB. A first step in this
direction was taken in [Oramas et al., 2014, Sordo et al., 2015], applying Infor-
mation Extraction (IE) techniques to big corpora of music related texts extracted
from the web. Moreover, in [Oramas et al., 2015a], a Flamenco MKB is created
by combining data from curated KBS and information extracted from blogs and
websites.

Despite their scarcity, MKBS are becoming increasingly popular in MIR ap-
plications, such as artist similarity and music recommendation [Celma and Serra,
2008, Oramas et al., 2015b, Leal et al., 2012, Ostuni et al., 2015]. MKBs have
also been exploited as sources of explanations in music recommender systems.
According to [Celma and Herrera, 2008], giving explanations of the recommen-
dations provides transparency to the recommendation process and increases the
confidence of the user in the system. In [Passant, 2010], explanations of recom-
mendations are created by exploiting DBPEDIA’s structured information, whilst
in [Sordo et al., 2015], explanations are based on an automatically learned MKB.

1http://linkedbrainz.org/
2http://www.oxfordmusiconline.com
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6.1.2 Methodology
We propose a pipeline that learns a full-fledged MKB taking as input a musical
text corpus (not lyrics, but rather text documents about music), coming from the
Songfacts3 website (see Section 6.1.3.1). This is a well suited resource both for
KB learning and as a testebed for IE due to its specificity. Songfacts documents,
while not being as rigid as encyclopedic or newswire text, remain well-formed,
sentences make sense, and there is no need for ad-hoc preprocessing (as it is
required in social networks, e.g. Twitter).

6.1.2.1 Notation

Our method focuses on the extraction of semantic relations between pairs of linked
entities (e.g. Born in the USAdbr, Bruce Springsteendbr4), which are in turn asso-
ciated to specific entity types (e.g. Album, MusicalArtist). In our KB, a relation
r is defined by the tuple 〈ed, er,υd,υr, p, c〉, where d and r refer to domain and
range positions, ed and er to the entities involved in the relation, υd and υr to
their associated entity types, p to a relation pattern, and c to a cluster pattern. A
relation pattern is a relation label that may be used in one or several relations (e.g
was recorded by frontman, was recorded by singer/songwriter). Relation patterns
with similar semantic and syntactic characteristics may be grouped into cluster
patterns (e.g. was recorded by). Moreover, we denote asR the set of all extracted
relations included in the KB. For each r ∈ R, triples of different nature can be
constructed by arbitrarily combining elements in r.

• tp : 〈ed, p, er〉 , e.g. {Born in the USAdbr - was recorded by frontman - Bruce
Springsteendbr}.

• tc : 〈ed, c, er〉 , e.g. {Born in the USAdbr - was recorded by - Bruce Spring-
steendbr}.

• τp : 〈υd, p,υr〉 , e.g. {Album - was recorded by frontman - MusicalArtist}.

• τc : 〈υd, c,υr〉 , e.g. {Album - was recorded by - MusicalArtist}.

Finally, different subsets of R may be constructed by selectively filtering all
r ∈ R.

• Rp = {rp1, ...rpn} All relations with a specific relation pattern p.

• Rc = {rc1, ...rcn} All relations with a specific cluster pattern c.

3http://www.songfacts.com
4We use the dbr subscript to refer to disambiguated entities linked to DBPEDIA resources.
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• Rτ p = {rτp1 , ...r
τp
n }All relations with a specific relation pattern, and domain

and range entity types.

• Rτ c = {rτc1 , ...r
τc
n } All relations with a specific cluster pattern, and domain

and range entity types.

In what follows, we describe a method for acquiring new entities, types and
relations, and combining them in a meaningful way for KB construction.

6.1.2.2 Morphosyntactic Processing

Our morphosyntactic preprocessing module takes as input a collection of text doc-
uments in the music domain. First, sentence splitting and tokenization is carried
out thanks to the Stanford NLP tokenizer5. Next, a dependency parse tree is ob-
tained similarly as in Chapter 3. The result is a syntactic representation for every
sentence, as can be seen in Figure 6.1.

NN NN VBD VBN IN NNP NNP
Sweet Freedom was written by Rod Temperton

root

SBJ VCNAME LGS

PMOD

NMOD

Figure 6.1: Example sentence with dependency parsing tree

6.1.2.3 Semantic Processing: Entity Linking

There is no benchmark of Entity Linking (EL) systems in the music domain [Ora-
mas et al., 2016]. Therefore, we do not know a priori how well each of them
works in music corpora. Musical entities may raise a plethora of challenges, de-
rived mostly from ambiguity and polysemy. For example, an album may have
the same name as the band who recorded it (e.g. Weezer the band and their first
album). Moreover, an artist, a song or an album may have words or expressions
much more common in another domain or area of knowledge (e.g. Berlin, The
Who). Thus, the choice of the best EL algorithm or off-the-shelf tool(s) is crucial,
as potential errors may propagate throughout the different modules and hinder
considerably the quality of the resulting KB.

Among the available EL systems we considered, namely TAGME [Ferragina
and Scaiella, 2010], BABELFY and DBPEDIA Spotlight [Mendes et al., 2011], we
opted for the latter, as it has shown to be the least prone to errors in musical texts
(further details are provided in Section 6.1.3.3).

5http://nlp.stanford.edu/software/tokenizer.shtml
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Adding Co-references

In the music domain, prototypical factoid documents such as artist biographies,
album reviews, or song tidbits, normally refer to one specific entity. Based on this
observation, we exploit co-referential pronouns and resource-specific co-references,
replacing them by the name of the reported entity. A similar approach is used in
[Voskarides and Meij, 2015], where the frequency of pronouns “he” and “she”
is computed in every document (Wikipedia articles in this specific case) to de-
termine the entity’s gender, and then, these pronouns are replaced by the entity
title. Similarly, in [Oramas et al., 2014], a gender identifier web service is used to
determine the gender of subjects in artist biographies as part of an IE pipeline.

We have observed an exploitable resource-specific co-reference in music re-
views, where terms like “this album” or “the song” can be replaced by the doc-
ument’s title. In the corpus used in these experiments (see Section 6.1.3.1), the
expressions “this song” and “the song” are replaced with the name of the song
as it appears in the document, and disambiguated with the URI of the entity they
unequivocally refer to.

Co-reference resolution is a difficult and crucial task in NLP, affecting tasks
such as Information Extraction [Soon et al., 2001] or document summarization
[Saggion and Gaizauskas, 2004b]. It is also sensitive to the domain in which it
appears (see, for instance, the case of the patents domain [Bouayad-Agha et al.,
2014]). We acknolwedge the difficulty of this task. However, while addressing
this problem in its entirety is out of the scope of this dissertation, the aforemen-
tioned strategy allows us to increase the coverage of entity mentions while main-
taining a high precision.

Type Filtering

In DBPEDIA, most resources are associated with types via the rdf:type prop-
erty. In addition, among the different types present in DBPEDIA (coming from the
DBPEDIA ontology, YAGO types, or schema.org), the DBPEDIA ontology pro-
vides a relatively small and tidy taxonomy of 685 classes based on WIKIPEDIA

infoboxes. Other KBS such as YAGO or Freebase have their own ontological
structure, which is in general broader and noisier. MUSICBRAINZ, in contrast,
has a very narrow set of entity types.

This type of information can be exploited in order to narrow down the set of
allowed types for a given candidate and its potential annotations. In this way, we
ensure that all entities will be, at least, related to the music domain. Restricting the
search space to types such as Artist or Song reduces considerably the number of
errors derived from cross-domain ambiguity. For instance, the EL system detects a
substantial amount of entities whose DBpedia type is FictionalCharacter,
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which are in most of the cases misleading song titles or band names with fictional
characters of the same name. This situation is observed also with other types of
entities such as Athlete, Species or Disease.

Depending on the envisioned application of the KB resulting from our pipeline,
the predefined set of entity types may vary. In our case we restricted them to Mu-
sical Artists, Other Artists, Songs, Albums, Genres, Films and Record Labels. In
Table 6.1 we present the mapping we designed between the DBPEDIA ontology,
MUSICBRAINZ entity types and our selected set of types.

Our MKB DBPEDIA ontology MUSICBRAINZ

MusicalArtist

Person/Artist/MusicalArtist

Artist
Organization/Band

Writer/MusicComposer

Writer/SongWriter

OtherArtist
Person/Artist (¬MusicalArtist)

—
Person/Writer(¬MusicComposer & ¬ SongWriter)

Album Work/MusicalWork/Album Release

Song
Work/MusicalWork/Song Recording

Work/MusicalWork/Single Work

Genre TopicalConcept/Genre —

Film Work/Film —

RecordLabel Agent/Organization/Company/RecordLabel Label

Table 6.1: Music type mapping across resources

6.1.2.4 Syntactic Semantic Integration

The information obtained from the syntactic and semantic processes is combined
into a graph representation of the sentence. For each music entity identified dur-
ing the semantic enrichment step (Section 6.1.2.3), all nodes in the dependency
tree with a correspondence with an entity mention are collapsed into one single
node: Sweet and Freedom into Seet Freedom (Album), and Rod and Temperton
into Rod Temperton (Artist). Figure 6.2 shows the resulting syntactic-semantic
representation of a sentence.

6.1.2.5 Relation Extraction and Filtering

Our approach to RE is lightweight, unsupervised and rule-based. Having syntac-
tic and semantic information available, potential relations between entities may
be discovered by traversing the dependency tree. Two entities in such tree are
considered to be related if there is a path between them that does not contain any
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Album VBD VBN IN Artist
Sweet Freedom was written by Rod Temperton

root

SBJ VC LGS PMOD

Figure 6.2: Semantic integration on syntactic dependencies.

other entity in between, and does not contain parentheses. If there is more than
one path, we consider only the shortest path as the most representative path of the
relation.

Our method encodes a relation pattern between two entities as all words in the
shortest path between them. In the example provided in Figure 6.2, the shortest
path between Sweet Freedom and Rod Temperton contains the words was, written
and by.

While RE via shortest path in syntactic trees is common practice in the litera-
ture [Delli Bovi et al., 2015, Moro and Navigli, 2013, Nakashole et al., 2012], not
all shortest paths are valid, and incorrect relations may be extracted from overly
long and syntactically complex sentences. We aim at surmounting these problems
by defining three filtering heuristics over surface forms (lemma-paths), part-of-
speach patterns (pos-paths), and labels of syntactic dependencies (dependency-
paths).

First, we filter out all relations with reporting verbs (e.g. “say”, “tell” or “ex-
press”) in the lemma-path. The intuition being that these verbs may tend to appear
in syntactically more complex sentences because they enforce the inclusion of at
least two verbs. Hence, semantic relations in them may not be encoded via short-
est paths. We illustrate this with the following sample sentence, where the relation
extracted with syntactic tree traversal by means of shortest path would be incor-
rect:

Sentence: Nile Rodgers told NME that the first album he bought was
Impressions by John Coltrane.

Relation: nile_rodgers told that was impressions by john_coltrane

Second, we only selected relations where the syntactic function that connects
in the dependency-path the first entity with the first word of the relation pattern
is a subject (which may be preceded by a nominal modifier or an apposition), a
direct or indirect object, a predicative complement or a verb chain. When this
condition holds, the relation is considered valid. If the above condition does not
hold, an extra validation step is applied over the POS-path in order to capture
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relations without verbs, which seem to be idiosyncratic of the music domain, e.g.
〈ed,frontman of, er〉, or 〈ed,guitarist and singer, er〉.

6.1.2.6 Dependency-Based Loose Clustering

In this section we describe a simple clustering algorithm aimed at reducing the
sparsity of the relation pattern set in the KB.

Let us consider the following three relation patterns: (1) was written by blunt
producer, (2) was written by singer/producer, and (3) was written by manager and
guitarist. Intuitively, these three relation patterns seem to be semantically similar,
and if all of them were expressed as was written by, the original meaning would
not be lost, and the set of relations would become more compact.

This observation, which we found to occur quite frequently, motivated the
inclusion of a dependency-based loose clustering module. First, we perform a
second run of dependency parsing over all relations extracted by our system, aim-
ing at discovering their root node. We apply this second run because the root of
the original sentence does not need to correspond with the relation pattern’s root.
Then, our algorithm considers all possible paths from the root to every leaf node of
the relation pattern dependency tree, and selects the path that complies with a pre-
defined syntactic constraint (e.g. a sequence of verbs plus adverb or preposition,
or adverb plus nominal and preposition modifiers) based on regular expressions
of syntactic labels. The sequence of tokens that matches this regular expression
constitutes the cluster pattern. The complete set of defined regular expressions is
included in the released source code (see Chapter 7).

As an illustrative case, consider the extracted relation pattern is track was
released on label from the sentence Sing Out The Song is the 7th track on
Wishbone Four which was released in the UK May 1973 on the MCA label. After
re-parsing the relation pattern, we obtain the parse tree shown in Figure 6.3 and
a cluster pattern over those nodes in the dependency tree that satisfy one of the
regular expressions crafted in the aforementioned syntactic constraint. Finally, the
obtained relation is Sing_out_the_songwas released on label MCA. Filtering
out spurious information in OIE following similar approaches has proven effective
while not being computationally expensive [Fader et al., 2011].

is track was released on label

root

SBJ VCNMOD ADV PMOD

Figure 6.3: Example of a parsed relation pattern and a valid cluster pattern.
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Ours is a loose clustering method because it does not enforce a pattern to
fully match all rules, but rather allows partial matching. This module provides
an enrichment of all r ∈ R such that r = 〈ed, er, υd, υr, p, c〉, where c is the
cluster pattern derived from the relation pattern p. A relation cluster is the set of
all relations with the same cluster pattern, and is denoted asRc.

Cluster pattern c Typed cluster pattern τc Relation triples tp

was written by

S was written by MA

s1 was writen by artist ma1

s2 was written by composer ma2

s3 was written by singer ma2

s4 was writen by ma1

s5 was written by frontman ma3

A was written by MA

a1 was written by frontman ma3

a2 was written by guitarist ma1

a3 was written by artist ma2

a4 was written by frontman ma5

Table 6.2: Example of a relation clusterRc, where c = was written by. S refers to
Song, MA to MusicalArtist and A to Album types, whilst sX refers to Song, maX
to MusicalArtist and aX to Album entities.

6.1.2.7 Scoring

So far, our approach has identified entity mentions in text and has linked them
in meaningful relations, filtering out those that did not comply with predefined
linguistic rules. We incorporate one additional factor score(r) that takes into
account statistical evidence computed over R. It has three main components,
which we flesh out as follows.

We hypothesize that the relevance of a cluster may be inferred by the number
and proportion of triples it encodes, and whether these are evenly distributed. Our
metric encompasses a combination of three different components. First, we focus
on the degree of specificity of the relation cluster, as previous work has demon-
strated that this can contribute to improving IE pipelines [Delli Bovi et al., 2015].
Second, we analyze intrinsic features of the relation pattern, such as frequency,
length and fluency6. Finally, we incorporate a smoothing factor, namely the pro-

6We adopt this term from Machine Translation, where it is used to assess how good an au-
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portion of the related typed cluster pattern in the cluster.
A cluster Rc may be decomposed into a set of typed cluster patterns τc (see

Table 6.2). The intuition behind the specificity measure of a cluster is that clusters
with one prominent τc are more specific, i.e. they are largely used for encoding one
specific type of relations. One example of this would be performed with, which
enforces a relation to include MusicalArtists on both the domain and range sides.
Thus, we define Lc as the list of cardinalities (number of triples) of every typed
cluster pattern τc ∈ Rc, being Lc = {|Rτ1c

|, ..., |Rτnc |}. We define the specificity
measure as the variance of L, expressed as s(Rc) = var(Lc).

Furthermore, we consider a relation’s fluency metric, which is aimed at captur-
ing its comprehensibility. Simply put, the more the sentence’s original word order
is preserved in the relation pattern, the more understandable it should be. This
metric is introduced due to the fact that word order is lost after modelling text
via syntactic dependencies, and so we design a penalty measure over the number
of jumps needed to reconstruct the original ordered word sequence. Let k be the
number of tokens in the relation pattern, wi the ith word in the pattern, and h(wi)
a function that returns the correspondent word index in the original sentence, we
put forward a fluency measure f defined as:

f(p) =

∑k
i=1 α|h(wi)− h(wi−1)|

k
(6.1)

where α = 2 if h(wi−1) > h(wi) and α = 1 otherwise. Note that higher
values of f means low fluency. For instance, for the relation pattern is hit for the
score would be much higher than a mixed-up order relation pattern such as joined
because added were and hit.

Finally, the global confidence measure for each relation r ∈ R is expressed as
follows:

score(r) =

(
s(Rc) +

|Rp|
|p|+ 2f(p)

)
× |Rτc|
|Rc|

(6.2)

As an illustrative example of the measure, the score of a relation with the typed
cluster pattern 〈Song, was released on, RecordLabel〉, will have a much higher
score than a relation whose typed cluster pattern is 〈Album, was released on,
MusicalArtist〉. This latter pattern is incorrect, probably due to a disambiguation
error in the EL step. Relations like this show the type of errors which our proposed
confidence score is expected to prune out.

tomatic translation is. In our case, a “translation” can be understood as creating a relation triple
(target) from an input sentence (source).
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6.1.3 Experiments
In this section, we describe our experimental setting. We refer first to the source
raw corpus, and second to the resulting KBS as output of different branches of our
approach.

6.1.3.1 Source dataset

Songfacts7 is an online database that collects, stores and provides facts, stories and
trivia about songs. These are collaboratively written by registered users, and re-
viewed by the website staff. It contains information about more than 30,000 songs
from nearly 6,000 artists. This information may refer to what the song is about,
who wrote it, who produced it, who collaborated with whom or who directed the
videoclip associated with the song. These texts are rich sources of information
not only for well-known music facts, but also for music-specific trivia, as in the
following sample sentence (about David Bowie’s Space Oddity): “Bowie wrote
this song after seeing the 1968 Stanley Kubrick movie 2001: A Space Odyssey".

We crawled the Songfacts website in mid-January 2014. Then, for each song
article, we performed a mapping between the song and its MUSICBRAINZ song
ID, using the MUSICBRAINZ Search API. We successfully mapped 27,655 songs.

The RE pipeline was run over the 27,655 document Songfacts corpus, which
amounts to 306,398 sentences. After the Semantic Processing step, we obtained
202,767 entity mentions (8,880 for Albums, 3,136 Record Labels, 74,908 Songs,
107,253 Musical Artists, 1,760 Genre labels, 3,467 for Other Artist, and 3,363 for
Film). There were 48,122 sentences with at least two entities, and it is on this
subset where we apply our RE pipeline.

6.1.3.2 Learned Knowledge Bases

Our aim is to assess to what extent each of the modules integrating our approach
contributes to the quality of the resulting KB. After executing the whole pipeline,
we generate two learned KBS (KBSF-ft and KBSF-th), two baseline KBS (KBSF-
co and KBSF-raw), and a competitor KB (KBSF-rv).

The learned KBS are the result of applying the RE method to the Songfacts
dataset under different conditions. KBSF-ft is derived from applying the RE
pipeline entirely, and KBSF-th comes from a selection of all triples in KBSF-ft
with a confidence score above a certain threshold (which comes from the metric
described in Section 6.1.2.7). To determine the best threshold to prune KBSF-ft,
we aimed at maximizing the number of triples and at the same time minimizing
the number of relation patterns. Our intuition is that less patterns means a tidier

7http://www.songfacts.com
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KB. Therefore, we computed the percentage of triples and relation patterns from
KBSF-ft that remain in a pruned KB, whose triples have a score greater than a
certain threshold θ. We computed these percentages for every θ value ranging
from 0 to 1 in bins of 0.01 (see Figure 6.4). Our goal was to discover the θ value
which maximizes the distance between the amount of triples and the amount of
relation patterns in a pruned KB. After confirming a maximized difference with
θ = 0.05, we created KBSF-th, whose triples have a score greater than or equal to
0.05. In this pruned KB, we have 36.56% of KBSF-ft triples, with only 12.52%
of its relation patterns.
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Figure 6.4: Percentage of triples and relation patterns from KBSF-ft that remain
after pruning at different values of θ. Maximum distance at θ = 0.05.

In addition, we created two baseline KBS for evaluation purposes. KBSF-co
is a baseline which consists of simple entity co-occurrence. More specifically, if
two entities are mentioned in the same sentence, an unlabelled triple that anchors
them is added to the KB. In addition, KBSF-raw was created following the RE
pipeline, but without applying the filtering process described in Section 6.1.2.5.
Finally, KBSF-rv constitutes the competitor KB, and is built as follows: After
running REVERB over the Songfacts dataset, we search coinciding relations, at
both domain and range positions, that include entity mentions identified in our
disambiguation step. These relations are included in KBSF-rv. Statistics about
the five KBS are reported in Table 6.3.

KB Entities Triples Relation Patterns Cluster Patterns

KBSF-ft 20,744 32,055 20,438 14,481

KBSF-th 10,977 11,720 2,484 828

KBSF-co 30,671 113,561 — —

KBSF-raw 29,280 71,517 47,089 32,712

KBSF-rv 9,255 7,532 2,830 —

Table 6.3: Statistics of all the learned KBS

120



“output” — 2017/7/10 — 11:47 — page 121 — #139

6.1.3.3 Quality of Entity Linking

We mentioned in Section 6.1.2.3 the lacking of both music-specific EL tools as
well as benchmarking datasets. For this reason, we performed a set of exper-
iments to select the best-suited EL tool for the music domain, among some of
the best known and reputed. Specifically, we perform evaluation experiments on
DBPEDIA Spotlight, TAGME and BABELFY.

As of now, most EL systems speak their own language, partially due to the fact
that they perform entity disambiguation with different KBs as reference. Since
their output is heterogeneous in format, performing a comparison between them is
not straightforward. In order to evaluate the aforementioned EL systems, we used
ELVIS8 [Oramas et al., 2016], an EL integration tool which provides a common
output for different EL system. In addition, we created a dataset of annotated
musical entities and applied both quantitative and qualitative evaluations in order
to verify which system performs better with musical entities, and is more suitable
for our task.

Let us begin the evaluation of the EL approach by describing the collection
and preparation of our evaluation data. The result of this process is an ad-hoc
gold standard dataset used to evaluate the different EL systems, with the Songfacts
corpus (Section 6.1.3.1) as our testbed. In Songfacts, each document univocously
refers to one single song. In addition, we have information about artist and song
names at our disposal. We used this information to obtain the MUSICBRAINZ ID
for songs and artists. In MUSICBRAINZ, artist and song items sometimes have
information about their equivalent WIKIPEDIA page. We leveraged this informa-
tion, when available, to obtain their corresponding DBPEDIA URIs. Finally, we
obtained a mapping with DBPEDIA of 7,691 songs and 3,670 artists. From the
DBPEDIA resources of each song, we gathered their corresponding album name
and URI, if available, obtaining information of about 2,092 albums. Then, for
every document, we looked for exact string matches of the reported song, and
its related album and artist names. Every detected entity is thus annotated with
its DBPEDIA URI. At the end of this process, the newly created gold standard
dataset contains 6,052 documents where 17,583 sentences are annotated with the
following entities: 5,981 Song, 12,137 Artist and 1,722 Album entities. As men-
tioned in Section 6.1.2.3, there are typical cases of ambiguity in musical entities
where songs, artists and albums can potentially share the same name. Therefore,
we manually corrected the entities detected in 212 documents where this kind of
ambiguity was present.

The three EL systems under review provide their own confidence measure.
Hence, we evaluated their output filtering out the entities with a confidence mea-
sure below to a certain threshold θ. We run the evaluation for different values of θ,

8https://github.com/sergiooramas/elvis
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Album Artist Song Macro Average

Prec Rec Prec Rec Prec Rec Prec Rec F-measure

Babelfy 0.93 0.28 0.98 0.55 0.96 0.31 0.96 0.38 0.54

Tagme 0.75 0.69 0.97 0.77 0.65 0.71 0.79 0.72 0.76

Spotlight 0.80 0.52 0.94 0.83 0.59 0.42 0.78 0.59 0.67

Table 6.4: Precision and recall of the EL Systems considered
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Figure 6.5: F-measure of the EL systems at different confidence thresholds

ranging from 0 to 0.9 in bins of 0.1. After evaluating on the gold dataset, the best
results in terms of F-measure were obtained by all the systems at θ = 0 (see Fig-
ure 6.5), which means that there is no need to apply any filtering process based on
the EL system own confidence score. Detailed results on the run of every system
at θ = 0 are shown in Table 6.4. We used macro-average Precision and Recall
measures, i.e. we averaged their values from the three sets of entities.

We may conclude from these results that Babelfy is the system with highest
Precision on musical entities. However, its recall is lower than the other systems
under consideration, and specifically with respect to Tagme, which in turn, shows
much lower precision. DBpedia Spotlight, on the other hand, achieves a similar
precision score as Tagme, but with a slightly lower recall.

This evaluation experiment is only focused on measuring the precision in the
annotation of entities present in the gold standard. However, since all possible
entities in a document may be not annotated, we also report on specific types
of false positives which emerged during a qualitative inspection of classification
results. For example, a frequent error that is not being evaluated concerns cases
in which a text span not annotated in the ground truth is identified incorrectly as
an entity by any system. Therefore, to complement the evaluation, we listed the
most frequently identified entities by each system (see Table 6.5). As we can see,
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Babelfy and Tagme are misidentifying common words as entities very frequently,
whereas DBpedia Spotlight is not doing so. These errors may propagate to the rest
of the IE pipeline, penalizing the accuracy of the final KB. Although a filtering
process could be applied to filter out misidentified entities by computing their tf-
idf score in each document, we opted for using DBpedia Spotlight, as it has shown
pretty good performance, its output does not require any further processing, and
it is released as open source, which means that there are no limitations on the
number of queries.

System Song Album Artist

Babelfy

Carey Debut John_Lennon

Stephen Song_For Eminem

Rap_Song Sort_Of Paul_McCartney

Singing_This_Song First_Song Bob_Dylan

A_Day_in_the_Life Debut_Album Drake

Tagme

The_Word Up! John_Lennon

The_End When_We_On The_Notorious_B.I.G.

If Up Do

Once Together Paul_McCartney

For_You By_the_Way Neil_Young

Spotlight

Sexy_Sadie The_Wall Madonna

Helter_Skelter Let_It_Be Eminem

Cleveland_Rocks Born_This_Way Rihanna

Stairway_to_Heaven Thriller John_Lennon

Minnie_the_Moocher Robyn Britney_Spears

Table 6.5: Top-5 most frequent entities by type and tool.

IE evaluation is a difficult task in restricted domains, where ground truth data
is usually scarce, and also semantic relations between entities may vary in terms of
correctness over time. Also, correct relations may be linguistically flawed, i.e. not
fluent. Previous approaches assessed automatically extracted relations in terms of
correctness according to human judgement [Fader et al., 2011, Mausam et al.,
2012]. Additionally, a finer grained analysis is carried out in [Banko et al., 2007],
adding a prior step in which relations are judged as being concrete or abstract.
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Figure 6.6: Precision of relations at sentence (s), relation pattern (p) and cluster
pattern (c) levels in top (top) and random (rnd) samples of relations

For this experiment, we made use of extensive human input and asked two
experts in Computational Linguistics to evaluate the top 100 scoring relations as
yielded by our weighting policy (Section 6.1.2.7), as well as a random sample
of 100 relations. The original sentence from which the relations came from was
available to them. This was done for all the KBS produced by our pipeline and for
KBSF-rv. Cohen’s kappa coefficient ranged from 0.60 to 0.81, which is generally
considered as substantial agreement.

In Figures 6.6a and 6.6b, where we compare random samples from each KB,
we observe a gradual improvement of the quality of relations as the different mod-
ules of our implementation are incorporated. The difference between these figures
is that in the former, a relation is deemed correct if it has extracted a relation
expressed in the original sentence, whereas the latter figure reports numbers on
whether the extracted relation pattern was correct, i.e. if it meant the same as it
was intended in the source sentence. We may infer from these results that co-
occurrence between entities does not guarantee an explicit relation, whereas the
presence of a path between two entities over a sentence dependency tree, with-
out any other entity mention in between, generally suggests a monsemous and
unambiguous relation.

It is remarkable how well REVERB performs (Figure 6.6b), only being sur-
passed by the KB resulting from our most sophisticated implementation of MKB.
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We note that the good results of the REVERB extractor are also due to the seman-
tic processing of our system, which is forcing REVERB to select good candidates
as relation arguments. Recall that the difference between KBSF-ft and KBSC-th
is the inclusion of the scoring module, and the increase in Precision confirms that
incorporating statistical evidence contributes to better relations.

This is further confirmed in the results showcased in Figure 6.6c, where we
provide a comparison between top 100 relations according to our ranking policy
against a random sample. Note that in all KBS, highly scoring relations are more
often marked as correct, which constitutes additional support for the contribution
of the scoring module. Together with the quality of the relation pattern, this figure
shows the quality of the cluster pattern associated with the evaluated relations. We
observe that cluster patterns inferred in our clustering module have similar quality
than relation patterns in the random sample, and slightly better in the top 100
sample. This result implies that the scoring module is rewarding good clusters.

Next, we present results on the coverage of the extracted KB. With this ex-
periment, we aim to compare the coverage of music relations in our KBS with
respect to other resources requiring human intervention, such as DBPEDIA, MU-
SICBRAINZ, as well as resources created fully automatically. For the latter, we
considered DEFIE as our closest competitor due to several methodological simi-
larities (e.g., the use of dependency parsing, EL and RE over shortest paths).

We selected all triples in KBSF-th whose domain and range entities could be
mapped to both DBPEDIA and MUSICBRAINZ. As our extracted KB has only
MusicBrainz ID of entities of types MusicalArtist and Song, the set of triples
to evaluate is restricted to relations between them. Since entities in DEFIE are
disambiguated against BABELNET ids, we mapped all DBPEDIA uris to their cor-
responding BABELNET id, which yielded a subset of 3,633 triples. From here,
we selected all possible domain-range entity pairs, and retrieved from the other
KBS all triples with the same pairs, and counted them. The procedure to do
so on DBPEDIA was via SPARQL queries. We discarded triples with predicate
wikiPageWikiLink, as this predicate means an unlabeled relation. However, the
mapping with MUSICBRAINZ was not trivial. MUSICBRAINZ is not a KB of
triples, but a relational database. Entities are stored in tables, and relations be-
tween entities are represented in a set of tables of relations, having one table for
each possible relation. The entities in the studied set of triples were only of type
MusicalArtist and Song. However, an entity of type Song in KBSF-th can be re-
lated to either a Recording or a Work entity in MUSICBRAINZ (see Section 6.1.2).
Therefore, for the analysis of relations involving a Song entity, we obtained the
equivalent Recording and Work MUSICBRAINZ entities, and looked up relations
where any of them where present.

Mapping results are shown in Table 6.6. Let us highlight the fact that most
semantic relations encoded in KBSF-th are novel, as they were not found in any
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of the other resources we compared against. In the overlapping cases, most of the
times the relation labels were semantically equivalent, and often the relation label
of KBSF-th triples was more specific than the ones retrieved from other KBs (e.g.
frontman and member of ). It could be argued that with our proposed approach, it
is possible to find complementary information about musical entities which is not
previously defined in general-purpose KBs.

KBSF-th MusicBrainz DBpedia DefIE

Relation instances 3,633 1,535 1,240 456

Table 6.6: Number of triples with labeled relations in the different KBs for the
same set of domain-range entity pairs

6.1.3.4 Interpretation of Music Recommendations

The main aim of this experiment is to evaluate the suitability of KBSF-th to
explain relations between songs, and study their impact on user’s experience in
music recommendation. Since our aim is not to measure the performance of a
recommender system, we implemented a baseline recommender approach. Rec-
ommendations are based on the concept of song similarity, which exploits the
graph-based structure of our KB, following [Oramas et al., 2015b].

We designed the experiment as an online survey, where the participant is first
asked to select 5 songs from different artists of his/her choice. From each selected
song, the system randomly selects 3 recommendations among the list of its top-
10 most similar songs. One of them is shown together with an explanation in
natural language (the source text), another with an explanation based on relation
patterns, and finally the third one appears without explanation. Participants can
listen to all songs with an embedded player. After listening to the recommendation
and reading the explanation attached to it, participants were asked to rate each
recommendation from 1 to 5 (1 being worst), and to mention whether they were
familiar or not with the recommended songs (see Figure 6.7).

The experiment involved 35 participants, 28 males and 7 females, ranging
from 26 to 38 years old and with different musical background and listening
habits. Most of the participants said that they had previous experience with rec-
ommendation systems. A total of 525 answers (corresponding to individual song
recommendations) were collected. In 38% of the cases, the user was familiar with
the recommended songs.

The average rating of recommendations with natural language explanations is
slightly higher (3.20±1.29) than recommendations without explanations (3.08±1.35),
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or with explanations based on relation labels (3.04±1.34). In addition, for mu-
sically educated individuals, recommendations of unfamiliar songs, whether ac-
companied with or without explanations, have similar average rating (2.87 and
2.95 respectively). However, for untrained users, recommendations with expla-
nations have a remarkable higher average rating (2.93) than without them (2.36).
Thus, we can infer that the introduction of explanations in recommender systems
improves the user experience of musically untrained subjects when discovering
songs.

We also asked the subjects to select among a set of adjectives those that better
described the recommendation experience. The general trend was to rate posi-
tively the experiment. Most users rated the experience as enjoyable (40%), fol-
lowed by useful (31%) and enriching (29%). Negativity was much lower in gen-
eral, with confusing being the most voted (17%), followed by complicated and
too geeky (8% in both cases). This suggests that the introduction of explanations
generated from our MKB in the recommendations was in general a satisfactory
experience to users.

Figure 6.7: User interface for the music recommendation experiment.

6.1.4 Conclusion
We have presented an NLP pipeline that learns a Knowledge Base in the music
domain taking raw text collections as input. It combines methods easily appli-
cable to a general purpose application with domain-specific heuristics which are
designed to exploit particularities of the domain.
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The result of applying our approach over a dataset of stories about songs is
a new Music Knowledge Base, which encodes semantic relations among musi-
cal entities. Our method relies on the syntactic structure (defined via dependency
parsing) of sentences and the use and adaptation of music-specific heuristics for
both EL and RE. In addition, we include modules for semantic clustering and
pattern scoring, aimed at the efficient removal of noisy relations. Our modular
evaluation shows that our RE module is able to capture a highly precise and com-
pact set of weighted triples, and demonstrates the positive impact of the novel
scoring metric we introduced. Moreover, we have shown that a high percentage
of the knowledge encoded in our MKB is not present in other KBs, both general
and domain-specific. Finally, regarding extrinsic evaluation, the experiment on
recommendation interpretation confirms that explanations based on the learned
KB are positively regarded by the users.

6.2 KB-Unify: Knowledge Base Unification via Sense
Embeddings and Disambiguation

So far, in this dissertation we have discussed extensively methods to formalize
knowledge from corpora. Either in the form of identifying relevant snippets of text
(definitions), inferring semantic relations (hypernymy), constructing full-fledged
lexical taxonomies, or creating domain-specific KBs from raw text. However, one
challenge remains when these and other systems have to “speak to each other”.
There are plenty of knowledge extraction systems which have shown high quality
performance in unrestrained settings, however they are mostly constrained by the
fact that their reference ontological structure is created ad-hoc (e.g. in NELL), or
they may lack one (e.g. ReVerb). This is an enormous bottleneck when it comes
to leveraging information obtained from heterogenous systems. In this context,
what follows is a description of our contribution for the seamless integration of the
output of OIE systems, a system called KB-Unify. This is a unification algorithm
that contains, into one single knowledge repository, disambiguated output in the
form of semantic triples (argument, relation, argument) coming from systems that
may or may note provide a disambiguated (linked) output.

6.2.1 Introduction
The breakthrough of the OIE paradigm has opened up a research area where Web-
scale unconstrained IE systems are developed to acquire and formalize large quan-
tities of knowledge. However, while successful, to date most state-of-the-art OIE
systems have been developed with their own type inventories, and no portable on-
tological structure. In fact, OIE systems can be very different in nature. Early
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approaches [Etzioni et al., 2008, Wu and Weld, 2010, Fader et al., 2011] fo-
cused on extracting a large number of relations from massive unstructured cor-
pora, mostly relying on dependencies at the level of surface text. Systems like
[Carlson et al., 2010] combine a hand-crafted taxonomy of entities and relations
with self-supervised large-scale extraction from the Web, but they require addi-
tional processing for linking and integration [Dutta et al., 2014].

More recent work has focused, instead, on deeper language understanding, es-
pecially at the level of syntax and semantics [Nakashole et al., 2012, Moro and
Navigli, 2013]. By leveraging semantic analysis, knowledge gathered from un-
structured text can be adequately integrated and used to enrich existing knowl-
edge bases, such as YAGO, FREEBASE [Bollacker et al., 2008] or DBPEDIA. A
large amount of reliable structured knowledge is crucial for OIE approaches based
on distant supervision [Mintz et al., 2009, Riedel et al., 2010], even when multi-
instance multi-learning algorithms [Surdeanu et al., 2012] or matrix factorization
techniques [Riedel et al., 2013, Fan et al., 2014] come into play to deal with noisy
extractions. For this reason a recent trend of research has focused on KB com-
pletion [Nickel et al., 2012, Bordes et al., 2013], exploiting the fact that distantly
supervised OIE and structured knowledge can complement each other. However,
the majority of integration approaches nowadays are not designed to deal with
many different resources at the same time.

Hence, we propose an approach where the key idea is to bring together knowl-
edge drawn from an arbitrary number of OIE systems, regardless of whether these
systems provide links to some general-purpose inventory, come with their own
ad-hoc structure, or have no structure at all. Knowledge from each source, in the
form of 〈subject, predicate, object〉 triples, is disambiguated and linked to a sin-
gle large sense inventory. This enables us to discover alignments at a semantic
level between relations from different KBs, and to generate a unified, fully disam-
biguated KB of entities and semantic relations. KB-UNIFY achieves state-of-the-
art disambiguation and provides a general, resource-independent representation
of semantic relations, suitable for any kind of KB.

6.2.1.1 An Example

Different OIE systems may encode the same relation with a slightly different word
choice. This can be caused by being used to process different corpora, their scor-
ing algorithm, or the quality of any library or text processing tool used (e.g. POS
taggers or parsers). Let us look at a few illustrative sample relations, used to
refer to entities or concepts which are known for “dropping” (we leave the inter-
pretation open enough to acomodate different senses for this word). In ReVerb,
for instance, we find triples such as 〈educational standard, has dropped below,
acceptable level〉 or 〈temperatures, get below, freezing〉, while in WiseNet, there
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exists the triple 〈outside temperature, was below the, freezing〉.
It would be desirable, for an automatically generated KB, to consider such rich

and fine-grained relations as the ones acquired by these (and other) OIE systems,
and unify them into one relation synset which could be defined as the accumu-
lation of several verbalizations used for referring to the same fact. This unified
knowledge can further be exploited to improve ontologies or directly in inference
and semantic systems which today are expected to be aware of world knowledge
(e.g. the fact that temperatures, prices or educational standards, to name extremely
unrelated concepts, can “drop below”, “go down” or “get below” a certain degree,
a certain level, or below a certain threshold).

KB-UNIFY explicitly addresses this challenging problem, with the added value
of not requiring an input system to be previously disambiguated against any ref-
erence ontology or sense inventory (e.g. ReVerb relations, which are at the text
string level, are perfectly valid). Following our running example, KB-UNIFY en-
coded as one relation synset the following relations (coming from ReVerb and
WiseNet)9: have drop below, can go below, stay below, can fall below, hover just
above, reach below, climb above, range from below, be expect to remain below,
was below the, may drop below, get below. Note that the climb above relation is
incorrectly included in this synset. This is explained by the tendency of antonyms
to co-occur in the same context, and thus distributional approaches (such as the
one we follow in KB-UNIFY) may tend to assign them similar vectors, as we
discussed in Chapter 1.

After having provided a motivation and a working example on how the result
of our approach can be further leveraged for providing better quality information
to intelligent systems, we proceed in what follows to describe our method for
constructing KB-UNIFY.

6.2.2 Knowledge Base Unification: Overview

KB-UNIFY takes as input a set of KBs K = {KB1, ...,KBn} and outputs a single,
unified and fully disambiguated KB, denoted as KB∗. For our purposes we can
define a KB KB i as a triple 〈Ei, Ri, Ti〉, where Ei is a set of entities, Ri is a set
of semantic relations, and Ti is a set of triples (facts) 〈ed, r, eg〉 with subject and
object ed, eg ∈ Ei and predicate r ∈ Ri. Depending on the nature of each KB i,
entities in Ei might be disambiguated and linked to an external inventory (e.g.
the entity Washington linked to the Wikipedia page GEORGE WASHINGTON), or
unlinked and only available as ambiguous mentions (e.g. the bare word washing-
ton might refer to the president, the city or the state). We can thus partition K
into a subset of linked resources KD, and one of unlinked resources KU . In order

9Note that relations are lemmatized in ReVerb.
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Figure 6.8: Unification algorithm workflow

to align very different and heterogeneous KBs at the semantic level, KB-UNIFY

exploits:

• A unified sense inventory S, which acts as a superset for the inventories of
individual KBs. We choose BabelNet for this purpose: by merging com-
plementary knowledge from different resources (e.g. Wikipedia, WordNet,
Wikidata and Wiktionary, among others), BabelNet provides a wide cov-
erage of entities and concepts whilst at the same time enabling convenient
inter-resource mappings for KB i in KD. For instance, each Wikipedia page
(or Wikidata item) has a corresponding synset in BabelNet, which enables
a one-to-one mapping between BabelNet’s synsets and entries in, e.g., DB-
PEDIA or FREEBASE;

• A vector space model VS that enables a semantic representation for every
item in S. Current distributional models, like word embeddings, are not
suitable to our setting: they are constrained to surface word forms, and
hence they inherently retain ambiguity of polysemous words and entity
mentions. We thus leverage SENSEMBED (cf. Chapter 3).

Figure 6.8 illustrates the workflow of our KB unification approach. Entities
coming from any KB i ∈ KD can be directly (and unambiguously) mapped to the
corresponding entries in S via BabelNet inter-resource linking (Figure 6.8(a)): in
the above example, the entity Washington linked to the Wikipedia page GEORGE

WASHINGTON is included in the BabelNet synset Washingtonbn. In contrast,
unlinked (and potentially ambiguous) entities need an explicit disambiguation step
(Figure 6.8(b)) connecting them to appropriate entries, i.e. synsets, in S: this is
the case, in the above example, for the ambiguous mention washington that has
to be linked to either the president, the city, the state or any other entity named
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washington which may or may not be included in BabelNet10. Our approach, thus,
comprises two successive stages:

• A disambiguation stage (Section 6.2.3) where all KB i ∈ K are linked to S,
either by inter-resource mapping (Figure 6.8(a)) or disambiguation (Figure
6.8(b)), and all Ei are merged into a unified set of entities E∗. As a result of
this process we obtain a set KS comprising all the KBs in K redefined using
the common sense inventory S;

• An alignment stage (Section 6.2.7, Figure 6.8(c)) where, for each pair of
KBs KBS

i ,KBS
j ∈ KS , we compare any relation pair 〈ri, rj〉, ri ∈ RS

i and
rj ∈ RS

j , in order to identify cross-resource alignments and merge rela-
tions sharing equivalent semantics into relation clusters (relation synsets).
This process yields a unified set of relation synsets R∗. The overall result
is KB∗ = 〈E∗, R∗, T ∗〉, where T ∗ is the set of all disambiguated triples
redefined over E∗ and R∗.

Figure 6.9: Disambiguation algorithm workflow

6.2.3 Disambiguation
In the disambiguation phase (Figure 6.8(b)), all KBi ∈ KU are linked to the uni-
fied sense inventory S and added to the set of redefined KBs KS . As explained in
Section 6.2.2, while each KB in KD can be unambiguously redefined via BabelNet
inter-resource links and added to KS , KBs in KU require an explicit disambigua-
tion step. Given a KB i ∈ KU , our disambiguation module (Figure 6.9) takes as
input its set of unlinked triples Ti and outputs a set T Si ⊆ Ti of disambiguated
triples with subject-object pairs linked to S. The triples in T Si , together with their

10Modeling unseen entities and incorporating them to a reference ontology or KB remains a
task for future work.
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corresponding entity sets and relation sets, constitute the redefined KBS
i which

is then added to KS . However, applying a straightforward approach that disam-
biguates all triples in isolation might lead to very imprecise results, due to the lack
of available context for each individual triple. We thus devised a disambiguation
strategy that comprises three stages:

1. We identify a set of high-confidence seeds from Ti (Section 6.2.4), i.e.
triples 〈ed, r, eg〉 where subject ed and object eg are highly semantically re-
lated, and disambiguate them using the senses that maximize their similarity
in our vector space VS;

2. We use the seeds to generate a ranking of the relations in Ri according to
their degree of specificity (Section 6.2.5). We represent each r ∈ Ri in our
vector space VS and assign higher specificity to relations whose arguments
are closer in VS;

3. We finally disambiguate the remaining non-seed triples in Ti (Section 6.2.6)
starting from the most specific relations, and jointly using all participating
argument pairs as context.

6.2.4 Identifying Seed Argument Pairs

The first stage of our disambiguation approach aims at extracting reliable seeds
from Ti, i.e. triples 〈ed, r, eg〉 where subject ed and object eg can be confidently
disambiguated without additional context. In order to do this we leverage the
sense embeddings associated with each candidate disambiguation for ed and eg,
and perform the same disambiguation strategy as in Section 5.1.4, obtaining dis-
ambiguated triples 〈s∗d, r, s∗g〉. The cosine similarity value associated with 〈v∗d, v∗g〉
represents the disambiguation confidence ζdis. We rank all such triples according
to their confidence, and select those above a given threshold δdis. The underly-
ing assumption is that, for high-confidence subject-object pairs, the embeddings
associated with the correct senses s∗d and s∗g will be closest in VS compared to
any other candidate pair. Intuitively, the more the relation r between ed and eg
is semantically well defined, the more this assumption is justified. As an exam-
ple, consider the triple 〈Armstrong, worked for, NASA〉: among all the possible
senses for Armstrong (the astronaut, the jazz musician or the cyclist) and NASA
(the space agency, the racing organization or the Swedish band) we expect the
vectors corresponding to the astronaut and the space agency to be closest in the
vector space model VS .
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6.2.5 Relation Specificity Ranking
The assumption that, given an ambiguous subject-object pair, correct argument
senses are the closest pair in the vector space (Section 6.2.4) is easily verifiable
for general relations (e.g. is a, is part of ). However, as a semantic relation be-
comes specific, its arguments are less guaranteed to be semantically related (e.g.
is a professor in the university of ) and a disambiguation approach based exclu-
sively on similarity is prone to errors. On the other hand, specific relations tend
to narrow down the scope of possible entity types occurring as subject and object.
In the above example, is a professor in the university of requires entity pairs with
professors as subjects and cities as objects. Our disambiguation strategy should
thus vary according to the specificity of the relations taken into account. In order
to consider this observation in our disambiguation pipeline, we first need to esti-
mate the degree of specificity for each relation in the relation set Ri of the target
KB to be disambiguated. GivenRi and a set of seeds from the previous stage (Sec-
tion 6.2.4), we apply a specificity ranking policy and sort relations in Ri from the
most general to the most specific. We compute the generality Gen(r) of a given
relation r by looking at the spatial dispersion of the sense embeddings associated
with its seed subjects and objects. Let vD (vG) be the set of sense embeddings
associated with the domain (range) seed arguments of r. For both vD and vG, we
compute the corresponding centroid vectors µD and µG as:

µk =
1

|vk|
∑
v∈vk

v

‖v‖
, k ∈ {D,G} (6.3)

Then, the variances σ2
D and σ2

G are given by:

σ2
k =

1

|vk|
∑
v∈vk

(1− cos (v, µk))
2 (6.4)

with k ∈ {D,G} as before. We finally compute Gen(r) as the average of σ2
D

and σ2
G. The result of this procedure is a relation specificity ranking that asso-

ciates each relation r with its generality Gen(r). Intuitively, we expect more gen-
eral relations to show higher variance (hence higherGen(r)), as their subjects and
objects are likely to be rather disperse throughout the vector space; instead, argu-
ments of very specific relations are more likely to be clustered together in compact
regions, yielding lower values of Gen(r) (see Section 6.2.8.2 for an evaluation of
this approach).

6.2.6 Disambiguation with Relation Context
In the third step, both the specificity ranking and the seeds are exploited to disam-
biguate the remaining triples in Ti. To do this we leverage the EL and WSD system
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BABELFY [Moro et al., 2014] (introduced in Section 3.2.1). As we observe in Sec-
tion 6.2.8.2, specific relations impose constraints on their subject-object types and
tend to show compact domains and ranges in the vector space. Therefore, given
a triple 〈ed, r, eg〉, knowing that r is specific enables us to put together all the
triples in Ti where r occurs, and use them to provide meaningful context for dis-
ambiguation. If r is general, instead, its subject-object types are less constrained
and additional triples do not guarantee to provide semantically related context.

At this stage, our algorithm takes as input the set of triples Ti, along with the
associated disambiguation seeds (Section 6.2.4), the specificity ranking (Section
6.2.5) and a specificity threshold δspec. Ti is first partitioned into two subsets:
T speci , comprising all the triples for which Gen(r) < δspec, and T geni = Ti \ T speci .
We then employ two different disambiguation strategies:

• For each distinct relation r occurring in T speci , we first retrieve the subset
T speci,r ⊂ T speci of triples where r occurs, and then disambiguate T speci,r as a
whole with BABELFY. For each triple in T speci,r , context is provided by all
the remaining triples along with the disambiguated seeds extracted for r.

• We disambiguate the remaining triples in T geni one by one in isolation with
BABELFY, providing for each triple only the predicate string r as additional
context.

6.2.7 Cross-Resource Relation Alignment
After disambiguation (Section 6.2.3) each KB in K is linked to the unified sense
inventory S and added to KS . However, each KBS

i ∈ KS still provides its own
relation setRS

i ⊆ Ri. Instead, in the unified KB∗, relations with equivalent seman-
tics should be considered as part of a single relation synset even when they come
from different KBs. Therefore, at this stage, we apply an alignment algorithm to
identify pairs of relations from different KBs having equivalent semantics. We
exploit the fact that each relation r is now defined over entity pairs linked to S,
and we generate a semantic representation of r in the vector space VS based on
the centroid vectors of its domain and range. Due to representing the semantics
of relations on this common ground, we can compare them by computing their
domain and range similarity in VS . We first consider each KBS

i ∈ KS and, for
each relation ri in RS

i , we compute the corresponding centroid vectors µrid and µrig
using formula 6.3. Then, for each pair of KBs 〈KBS

i , KB
S
j 〉 ∈ KS × KS , we

compare all relation pairs 〈ri, rj〉 ∈ RS
i × RS

j by computing the cosine similarity
between domain centroids sD and between range centroids sG:

sk =
µrik · µ

rj
k

‖µrik ‖ ‖µ
rj
k ‖

(6.5)
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KU KD

NELL REVERB PATTY WISENET

# relations 298 1,299,844 1,631,531 245 935

# triples 2,245,050 14,728,268 15,802,946 2,271 807

# entities 1,996,021 3,327,425 1,087,907 1,636 307

Table 6.7: Statistics on the input KBs for KBU

where µrk denotes the centroid associated with relation r and k ∈ {D,G}. The
average of sD and sG gives us an alignment confidence ζalign for the pair 〈ri, rj〉.
If confidence is above a given threshold δalign then ri and rj are merged into the
same relation synset. Relations for which no alignment is found are turned into
singleton relation synsets. As a result of this alignment procedure we obtain the
unified set of relations R∗.

6.2.8 Evaluation
The setting for our experimental evaluation was the following:

• We used BabelNet 3.0 as our unified sense inventory for the unification pro-
cedure as well as the underlying inventory for both BABELFY and SENSEM-
BED. Currently, BabelNet contains around 14M synsets and represents the
largest single multilingual repository of entities and concepts;

• We selected PATTY [Nakashole et al., 2012] and WISENET [Moro and Nav-
igli, 2013] as linked resources. We used PATTY with FREEBASE types and
pattern synsets derived from Wikipedia, and WISENET 2.0 with Wikipedia
relational phrases;

• We selected NELL [Carlson et al., 2010] and REVERB [Fader et al., 2011]
as unlinked resources. We used KB beliefs updated to November 2014 for
the former, and the set of relation instances from ClueWeb09 for the latter.

Comparative statistics in Table 6.7 show that the input KBs are rather differ-
ent in nature: NELL is based on 298 predefined relations and contains beliefs for
about 2 million entities. The distribution of entities over relations is however very
skewed, with 80.33% of the triples being instances of the generalizations
relationship. In contrast, REVERB contains a highly sparse relation set (1,299,844
distinct relations) and more than 3 million distinct entities. PATTY features the

136



“output” — 2017/7/10 — 11:47 — page 137 — #155

largest (and, together with WISENET, sparsest) set of triples, with 1,631,531 dis-
tinct relations and less than 10 triples per relation on average.

(a)

(b)

Figure 6.10: Precision (left) and coverage (right) of disambiguated seeds at dif-
ferent values of δdis for (a) the whole set of triples in PATTY and (b) the subset of
ambiguous triples

6.2.8.1 Disambiguation

We tested our disambiguation approach experimentally in terms of both disam-
biguated seed quality and overall disambiguation performance. We created a de-
velopment set by extracting a subset of 6 million triples from the largest linked
KB in our experimental setup, i.e. PATTY. Triples in PATTY are automatically
linked to YAGO, which is in turn linked to WordNet and DBPEDIA. Since both
resources are also linked by BabelNet, we mapped the original triples to the Ba-
belNet sense inventory and used them to tune our disambiguation module. We
also provide two baseline approaches: (1) direct disambiguation on individual
triples with BABELFY alone (without the seeds) and (2) direct disambiguation of
the seeds only (without BABELFY).

137



“output” — 2017/7/10 — 11:47 — page 138 — #156

SENSEMBED Baseline

ζdis 0.5-0.7 0.7-0.9 0.9-1.0 0.5-0.7 0.7-0.9 0.9-1.0

PATTY .980 .980 1.000 .793 .780 1.000

WISENET .958 .960 .973 .726 .786 .791

NELL .955 .995 1.000 .800 .770 .885

REVERB .930 .940 .950 .775 .725 .920

Table 6.8: Disambiguation precision for all KBs

δspec = 0.8 δspec = 0.5 δspec = 0.3

all o-s all o-s all o-s

PATTY 62.15 26.60 52.49 24.06 40.75 21.41

WISENET 60.00 37.46 54.44 22.26 53.58 16.62

NELL 76.97 62.98 50.95 20.71 44.70 4.36

REVERB 41.20 38.57 25.14 23.70 13.37 12.75

Table 6.9: Coverage results (%) for all KBs considering both the “only seeds”
approach alone (o-s), and combined with Babelfy (all).

We tuned our disambiguation algorithm by studying the quality of the disam-
biguated seeds (Section 6.2.4) extracted from the surface text triples of PATTY.
Figure 6.10 shows precision and coverage for increasing values of the confidence
threshold δdis. We computed precision by checking each disambiguated seed
against the corresponding linked triple in the development set, and coverage as
the ratio of covered triples. We analyzed results for both the whole set of triples
in PATTY (Fig. 6.10a) and the subset of ambiguous triples (Fig. 6.10b), i.e. those
triples whose subjects and objects have at least two candidate senses each in the
BabelNet inventory. In both cases, precision of disambiguated seeds increases
rapidly with δdis, stabilizing above 90% with δdis > 0.25. Coverage displays the
opposite behavior, decreasing exponentially with more confident outcomes, from
6 million triples to less than a thousand (for seeds with confidence δdis > 0.95).
As a result, we chose δdis = 0.25 as optimal threshold value throughout the rest
of the evaluations.

In addition, we manually evaluated the disambiguated seeds extracted from
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both linked KBs (PATTY and WISENET) and unlinked KBs (NELL and RE-
VERB). For each KB, we extracted up to three random samples of 150 triples
according to different levels of confidence ζdis: the first sample included extrac-
tion with 0.5 ≤ ζdis < 0.7, the second with 0.7 ≤ ζdis < 0.9, and the third with
ζdis ≥ 0.9. Each sample was evaluated by two human judges: for each disam-
biguated triple 〈ed, r, eg〉, we presented our judges with the surface text arguments
ed, eg and the relation string r, along with the two BabelNet synsets corresponding
to the disambiguated arguments s∗d, s

∗
g, and we asked whether the association of

each subject and object with the proposed BabelNet synset was correct. We then
estimated precision as the average proportion of correctly disambiguated triples.
For each sample we compared disambiguation precision using SENSEMBED, as
in Section 6.2.4, against the first baseline with BABELFY alone. Results, reported
in Table 6.8, show that our approach consistently outperforms the baseline and
provides high precision over all samples and KBs.

We then evaluated the overall disambiguation output after specificity ranking
(Section 6.2.5) and disambiguation with relation context using BABELFY (Section
6.2.6). We analyzed three configurations of the disambiguation pipeline, namely
δspec ∈ {0.8, 0.5, 0.3}. We ran the algorithm over both linked and unlinked KBs
of our experimental setup, and computed the coverage for each KB as the overall
ratio of disambiguated triples. Results are reported in Table 6.9 and compared to
the coverage obtained from the disambiguated seeds only: context-aware disam-
biguation substantially increases coverage over all KBs. Table 6.9 also shows that
a restrictive δspec results in lower coverage values, due to the increased number of
triples disambiguated without context.

KB-UNIFY Dutta et al. Baseline

all only seeds (α = 0.5)

Precision .852 .957 .931 .749

Recall .875 .117 .799 .608

F-score .864 .197 .857 .671

Table 6.10: Disambiguation results over NELL gold standard

Finally, we evaluated the quality of disambiguation on a publicly available
dataset [Dutta et al., 2014] comprising manual annotations for NELL. This dataset
provides a gold standard of 1,200 triples whose subjects and objects are manually
assigned a proper DBpedia URI. We again used BabelNet’s inter-resource links
to express DBpedia annotations with our sense inventory and then sought, for
each annotated triple in the dataset, the corresponding triple in our disambiguated
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version of NELL with δdis = 0.25 and δspec = 0.8. We then repeated this process
considering only the disambiguated seeds instead of the whole disambiguation
pipeline. In line with [Dutta et al., 2014], we computed precision, recall and F-
score for each setting. Results are reported in Table 6.10 and compared against
those of [Dutta et al., 2014] and against our first baseline with BABELFY alone.
KB-UNIFY achieves the best result, showing that a baseline based on state-of-the-
art disambiguation is negatively affected by the lack of context for each individual
triple. In contrast, an approach that relies only on the disambiguated seeds affords
very high precision, but suffers from dramatically lower coverage.

6.2.8.2 Specificity Ranking

We evaluated the specificity ranking (Section 6.2.5) generated by KB-UNIFY for
all KBs of our experimental setup. First of all, we empirically validated our scor-
ing function Gen(r) over each resource: for each relation we computed the aver-
age cosine similarity among all its domain arguments s̄D and among all its range
arguments s̄G. We then plotted the average s̄ of s̄D and s̄G against Gen(r) for
each relation r (Figure 6.11). The resulting trend seems to confirm our intuition,
introduced in Section 6.2.5, since the average similarity among domain and range
arguments decreases for increasing values ofGen(r), indicating that more general
relations allow less semantically constrained subject-object types.

NELL REVERB PATTY WISENET

Precision .660 .715 .625 .750

Cohen’s kappa - .430 .620 .600

Table 6.11: Specificity ranking evaluation

We then used human judgement to assess the quality of our specificity rank-
ings. First, each ranking was split into four quartiles, and two human evaluators
were presented with a sample from the top quartile (i.e. a relation falling into
the most general category) and a sample from the bottom quartile (i.e. a relation
falling into the most specific category). We shuffled each relation pair, showed
it to our human judges, and then asked which of the two relations they consid-
ered to be the more specific. Ranking precision was computed by considering
those pairs where human choice agreed with the ranking. Finally, we computed
inter-annotator agreement on each specificity ranking (except for NELL, due to
the small sample size) with Cohen’s kappa coefficient [Cohen, 1968]. Results
for each ranking are reported in Table 6.11, while some examples of general and
specific relations for each KB are shown in Table 6.12. Disagreement between
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Figure 6.11: Average argument similarity against Gen(r)

human choice and ranking is higher in NELL (where the set of relations is quite
small compared to other KBs) and in PATTY (due to a sparser set of relations,
biased towards very specific patterns). Inter-annotator agreement is instead lower
for REVERB, where unconstrained Web harvesting often results in ambiguous
relation strings.

6.2.8.3 Alignment

Due to the novelty of our approach, and hence the lack of widely accepted gold
standards and testbeds, we evaluated our cross-resource relation alignment algo-
rithm (Section 6.2.7) by exploiting human judgement once again. Given the re-
sults of Section 6.2.8.1, we considered the top 10k frequent relations for each KB
and ran the algorithm over each possible pair of KBs with two different config-
urations: δalign = 0.7 and δalign = 0.9. From each pair of KBs 〈KBi, KBj〉
we obtained a list of candidate alignments, i.e. pairs of relations 〈ri, rj〉 where
ri ∈ KBi and rj ∈ KBj .

From each list we then extracted a random sample of 150 candidate align-
ments. We showed each alignment11 〈ri, rj〉 to two human judges, and asked

11In the case of relation synsets, such as PATTY and WISENET, we selected up to three random
relation strings from each synset.
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NELL

High Gen(r) agent created
at location

Low Gen(r) person in economic sector
restaurant in city

REVERB

High Gen(r) is for
is in

Low Gen(r) enter Taurus in
carry oxygen to

PATTY

High Gen(r) located in
later served to

Low Gen(r) starting pitcher who played
league coach for

WISENET

High Gen(r) include
is a type of

Low Gen(r) lobe-finned fish lived during
took part in the Eurovision
contest

Table 6.12: Examples of general and specific relations for all KBs

whether ri and rj represented the same relation. The problem was presented
in terms of paraphrasing: for each pair, we asked whether exchanging ri and
rj within a sentence would have changed that sentence’s meaning. In line with
Section 6.2.8.2 we computed precision based on the agreement between human
choice and automatic alignments. Results are reported in Table 6.13. Our align-
ment algorithm shows high precision in all pairings where δalign = 0.9. Alignment
reliability decreases for lower δalign, as relation pairs where ri is a generalization
of rj (or vice versa) tend to have similar centroids in VS . The same holds for pairs
where ri is the negation of rj (or vice versa). Even though we could have utilized
measures based on relation string similarity [Dutta et al., 2015] to reduce wrong

142



“output” — 2017/7/10 — 11:47 — page 143 — #161

PATTY-WISENET PATTY-REVERB NELL-REVERB

δalign 0.7 0.9 0.7 0.9 0.7 0.9

Prec. .68 .80 .58 .74 .61 .75

# Align. 128k 1.2k 47k 643 2.6k 88

PATTY-NELL WISENET-NELL WISENET-REVERB

δalign 0.7 0.9 0.7 0.9 0.7 0.9

Prec. .66 1.00 .70 .84 .59 .87

# Align. 2.6k 57 381 34 9.9k 169

Table 6.13: Cross-resource alignment evaluation

alignments in these cases, by relying on a purely semantic criterion we removed
any prior assumption on the format of input KBs. Some examples of alignments
are shown in Table 6.14.

To conclude, we report statistics regarding the unified KB∗ produced from the
initial set of resources in our experimental setup (cf. Section 6.2.8). We validated
our thresholds for high-precision, and selected δdis = 0.25, δspec = 0.8 and δalign =
0.8. Our alignment algorithm produced 56,673 confident alignments, out of which
2,207 relation synsets were derived, with an average size of 16.82 individual re-
lations per synset. As a result, we obtained a unified KB∗ comprising 24,221,856
disambiguated triples defined over 1,952,716 distinct entities and 2,675,296 dis-
tinct relations.

6.2.9 Conclusion
In this section, we described KB-UNIFY, a novel, general approach for disam-
biguating and seamlessly unifying KBs produced by different OIE systems. KB-
UNIFY represents entities and relations using a shared semantic representation,
leveraging a unified sense inventory together with a semantically-enhanced vector
space model and a disambiguation algorithm. This enables us to disambiguate un-
linked resources (like NELL and REVERB) with high precision and coverage, and
to discover relation-level cross-resource alignments effectively. One of the key
features of our strategy is its generality: by representing each KB on a common
ground, we need no prior assumption on the nature and format of the knowledge
it encodes. We tested our approach experimentally on a set of four very different
KBs, both linked and unlinked, and we evaluated disambiguation and alignment
results extensively at every stage, exploiting both human evaluations and public
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PATTY-WISENET ζalign

portrayed ’s character 0.84

debuted in first appeared in 0.86

PATTY-REVERB ζalign

language in is spoken in 0.81

mostly known for plays the role of 0.70

NELL-REVERB ζalign

bookwriter is a novel by 0.88

personleadscity is the mayor of 0.60

NELL-PATTY ζalign

worksfor was hired by 0.72

riveremptiesintoriver tributary of 0.89

NELL-WISENET ζalign

animaleatfood feeds on 0.72

teamhomestadium play their home games at 0.88

REVERB-WISENET ζalign

has a selection of offers 0.82

had grown up in was born and raised in 0.85

Table 6.14: Examples of cross resource relation alignments

gold standard datasets (when available).

6.3 ColWordNet: Extending WordNet with Fine-Grained
Collocational Information via Supervised Dis-
tributional Learning

The importance of WordNet as a key knowledge enabler is indisputable. In this
dissertation we have where WordNet played a key role. Given its usefulness, but
also its inherent limitations, there is a strong line of research in NLP concerned
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with the improvement of WordNet. One of its main drawbacks is that it is not up-
dated frequently, and thus it omits many lemmas and senses, such as those from
domain specific lexicons, creative slang usages, or those for technology or entities
that came into recent existence (e.g., selfie, mp3) [Jurgens and Pilehvar, 2016].
Another limitation is that it does not account for collocational information, i.e.,
idiosyncratic binary lexical co-occurrences. As a standalone research topic, collo-
cations have been the focus of a substantial amount of work, e.g. for automatically
retrieving them from corpora [Choueka, 1988, Church and Hanks, 1990, Smadja,
1993, Kilgariff, 2006, Evert, 2007, Pecina, 2008, Bouma, 2010, Gao, 2013], and
for their semantic classification according to different typologies [Wanner et al.,
2006, Gelbukh and Kolesnikova., 2012, Moreno et al., 2013, Wanner et al., 2016].
However, to the best of our knowledge, no previous work attempted the automatic
enrichment of WordNet with collocational information. The only related attempt
consisted in designing a schema for the manual inclusion of lexical functions from
Explanatory Combinatorial Lexicology (ECL) [Mel’čuk, 1996] into the Spanish
EuroWordNet [Wanner et al., 2004]. We propose to bridge this gap by introducing
ColWordNet (CWN), an automatic extension of WordNet with collocational in-
formation, which is obtained thanks to leveraging sense-level embeddings and the
semantic relations holding between the two components of a collocation, namely
the base and the collocate (e.g. rain and heavy respectively, in the collocation
“heavy rain”).

6.3.1 Background
Collocations are restricted lexical co-occurrences of two syntactically related lex-
ical items, the base and the collocate. In a collocation, the base is freely chosen
by the speaker, while the choice of the collocate depends on the base; see, e.g.,
[Cowie, 1994, Mel’čuk, 1996, Kilgariff, 2006] for a theoretical discussion. For
instance, in the collocations take [a] step, solve [a] problem, pay attention, deep
sorrow, and strong tea, the bases are step, problem, attention, sorrow and tea, and
take, solve, pay, deep and strong are their respective collocates.

Besides a syntactic dependency, between the base and the collocate a seman-
tic relation holds. Some of these semantic relations, such as ‘intense’, ‘weak’,
‘perform’, ‘cause’, etc. can be found across a large number of collocations. For
instance, an ‘intense’ applause is a thundering applause, an ‘intense’ emotion
is deep, ‘intense’ rain is heavy, and so on. In our experiments, we focused on a
subset of eight prominent semantic collocation relations (or categories), which are
listed in the first column of Table 6.15. These semantic categories are a generaliza-
tion of the lexical functions (LFs) from ECL already used in [Wanner et al., 2004].
We have decided to use somewhat more generic categories instead of LFs because,
on the one hand, some of the LFs differ only in terms of their syntactic structure
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(i.e. they capture the same semantic relation), and, on the other hand, LFs pose
a great challenge for annotation due to their syntactic granularity (for example,
certain semantic relations such as ‘perform’ may be further distinguished across
three different finer-grained LFs depending on their role in a surface-syntactic rep-
resentation of the sentence). To sum up our linguistic motivation, let us note that
in the specific set of categories we address in this experiment, we aim at captur-
ing two of the most studied groups of LFs, namely intensifiers (noun+adjective,
as in ‘deep’ commitment) and collocations triggered by semi-auxiliary verbs (also
called suppport or light verbs), such as ‘give’ [an] order [Melčuk, 1998].

As for external resources, in our work we take advantage of BABELNET

and SENSEMBED. We used SENSEMBED for automatically disambiguating our
training data, and as our bases model; and (3) the SW2V (Senses and Words
to Vectors) vector space model [Mancini et al., 2016] as our collocates model.
The SW2V vector space is moeled with a source web corpus of 3 billion words
[Han et al., 2013],12. Similarly to SENSEMBED, this model is based on a pre-
disambiguation of text corpora using BabelNet as sense inventory. However, un-
like SENSEMBED, which learns vector representations for individual word senses,
this provides fine-grained information in the form of both plain text words and
synsets in a shared vector space. We used the algorithm of [Mancini et al., 2016]13

for training word and synset embeddings in the same vector space. This approach
modifies the objective function of Word2Vec14 so that words and senses can be
learned jointly in a single training.

6.3.2 Methodology

In this section, we provide a detailed description of the algorithm behind the con-
struction of CWN. The system takes as input the WordNet lexical database and
a set of collocation lists pertaining to predefined semantic categories, and out-
puts CWN. First, we collect training data and perform automatic disambiguation.
Then, we use this disambiguated data for training a linear transformation matrix
from the base vector space, i.e., SENSEMBED, to the collocate vector space, i.e.,
SHAREDEMBED. Finally, we exploit the WordNet taxonomy to select input base
collocates to which we apply the transformation matrix in order to obtain a sorted
list of candidate collocates.

12ebiquity.umbc.edu/blogger/2013/05/01/umbc-webbase-corpus-of-3b-english-words/
13Available at http://lcl.uniroma1.it/sw2v
14We used the Continous Bag-Of-Words (CBOW) model with standard hyperparameters: 300

dimensions and a window size of 8 words.
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Sem. Category Example # instances

‘intense’ absolute certainty 586

‘weak’ remote chance 70

‘perform’ give chase 393

‘begin to perform’ take up a chase 79

‘increase’ improve concentration 73

‘decrease’ limit [a] choice 73

‘create’, ‘cause’ pose [a] challenge 195

‘put an end’ break [the] calm 79

Table 6.15: CWN semantic categories and size of training set

6.3.2.1 Disambiguation and Training

As is common in previous work on semantic collocation classification [Moreno
et al., 2013, Wanner et al., 2016], our training set consists of a list of manu-
ally annotated collocations. For this purpose, we randomly selected nouns from
the Macmillan Dictionary and manually classified their corresponding collocates
with respect to their semantic categories.15 Note that there may be more than one
collocate for each base. Since collocations with different collocate meanings are
not evenly distributed in language (e.g., we may tend to use more often colloca-
tions conveying the idea of ‘intense’ and ‘perform’ than ‘begin to perform’), the
number of instances per category in our training data also varies significantly (see
Table 6.15).

Our training dataset consists at this stage of pairs of plain words, with the
inherent ambiguity this gives raise to. We surmount this problem by applying a
disambiguation strategy based on the notion that, from all the available senses for
a collocation’s base and collocate, their correct senses are those which are most
similar. We follow the L2S disambiguation strategy (cf. Section 3.2.2). Let us
recall that the main idea of this strategy is to, for a given pair of semantically
related words, obtain the set of associated SensEmbed vectors to each word, and
then assign the pair of vectors that maximizes cosine similarity between them.

This disambiguation process yields a set of disambiguated pairs D, where each
pair is denoted as 〈v′b, v′c〉, which constitutes the input for the next module of the
pipeline, the learning of a transformation matrix aimed at retrieving WordNet

15We do not consider phrasal verb collocates, e.g. stand up, give up or calm down.
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synset collocates for any given WordNet synset base. In a similar fashion as in
Section 4.2.3.3, we learn a linear transformation from v′b to v′c, aiming at reflect-
ing an inherent condition of collocations. Since collocations are a linguistic phe-
nomenon that is more frequent in the narrative discourse than in formal essays,
they are less likely to appear in an encyclopedic corpus (recall that SENSEMBED

vectors, which we use, are trained on the English Wikipedia). This motivates the
use of SENSEMBED (denoted as S) as ou base space, and our SHAREDEMBED X
as the collocate model, as it was trained over more varied language such as blog
posts or news items.

Then, we construct our linear transformation model as follows: For each dis-
ambiguated collocation 〈l′b, l′c〉 ∈ D, we first retrieve the corresponding base vec-
tors v′b. Next, we exploit the fact that X contains both BabelNet synsets and
words, and derive for each l′c two items, namely the vectors associated to its lex-
icalization (word-based) and its BabelNet synset. For example, for the training
pair 〈ardent_bn:00097467a,desire_bn:00026551n〉 ∈ D, we learn
two linear mappings, namely ardent_bn:00097467a 7→ desire and
ardent_bn:00097467a 7→ bn:00026551n. We opt for this strategy, which
doubles the size of the training data in most lexical functions (depending on cov-
erage), due to the lack of resources of manually-encoded classification of col-
locations. By following this strategy we obtain an extended training set D∗ =
{~bi,~ci}ni=1 (~bi ∈ X , ~ci ∈ S, n ≥ |D|). Then, we construct a base matrix B =[
~b1 . . .~bn

]
and a collocate matrix C = [~c1 . . .~cn] with the resulting set of train-

ing vector pairs. We use these matrices to learn a linear transformation matrix
Ψ ∈ RdS×dX , where dS and and dX are, respectively, the number of dimen-
sions of the base vector space (i.e., SENSEMBED) and the collocate vector space
(SHAREDEMBED).16 The transformation matrix is learned by minimizing the
least squared distance between each base and collocate pair, similar as the ap-
proach we described in Section 4.2.3.3.

Having trained Ψ, the next step of the pipeline is to apply it over a subset of
WordNet’s base concepts and their hyponyms. For each synset in this branch, we
apply a scoring and ranking procedure which assigns a collocates-with score. If
such score is higher than a predefined threshold, tuned over a development set,
this relation is included in CWN.

6.3.2.2 Retrieving and Sorting WordNet Collocate Synsets

During the task of enriching WordNet with collocational information, we first
gather a set of base WordNet synsets by traversing WordNet hypernym hierarchy
starting from those base concepts that are most fit for the input semantic cate-

16In our setting the numbers of dimensions are dS = 400 and dX = 300.
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gory17. Then, the transformation matrix is used to find candidate WordNet synset
collocates (mostly verbs or adjectives) for each base WordNet synset.

WordNet synsets are mapped to BabelNet synsets, which in turn map to as
many vectors in SENSEMBED as their associated lexicalizations. Formally, given
a base synset b, we apply the transformation matrix to all the SENSEMBED vec-
tors Vb = {v1

b , ..., v
n
b } associated with its lexicalizations. For each vib ∈ Vb, we

first get the vector ψib = vibΨ obtained as a result of applying the transformation
matrix and then we gather the subset W i

b = w1
b . . . w

10
b (wj

b ∈ X ) of the top ten
closest vectors by cosine similarity to ψib in the SHAREDEMBED vector space X .
Each ~wi,jb is ranked according to a scoring function λ(·), which is computed as

follows18: λ(wi,jb ) =
cos(ψib,w

i,j
b )

j
. This scoring function takes into account both

the cosine similarity as well as the relative position19 of the candidate collocate
with respect to other neighbors in the vector space. Apart from sorting the list of
candidate collocates, this scoring function is also used to measure the confidence
of the retrieved collocate synsets in CWN.

6.3.3 Evaluation
We evaluate CWN both intrinsically and extrinsically. Our intrinsic evaluation
consists of a manual scoring of the correctness of the newly introduced relations.
Extrinsic evaluation assesses the quality of CWN as an input resource for intro-
ducing collocational information into a word embeddings model.

6.3.3.1 Intrinsic: Precision of Collocate Relations

Sampling and evaluation are carried out as follows. First, for each semantic cate-
gory, we retrieve 50 random bases included in the aforementioned base concepts
and their hyponym branch. This results in an evaluation set Test of 800 col-
locations, as for each base we retrieve the 5 highest scoring candiates. These
collocations are evaluated in terms of correctness, i.e., if the associated synset is
an appropriate collocate for the input base. Note that not all bases in the test set
may be suitable for the given semantic category, and that is why we also perform
an evaluation on the test data restricted to only those bases manually selected for
being suitable for having at least one collocate. We denote the restricted test data
as Test∗. For example, the base synset putt.n.01 defined as hitting a golf ball

17These are: For ‘intense’ and ‘weak’, attitude.n.01, feeling.n.01 and
ability.n.02. For the rest of them, we select cognition.n.01, act.n.02 and
action.n.01.

18If wj
b appears in a different W j

b set (j 6= i), its scores are averaged.
19Position is arguably an important factor as there may be dense areas where cosine similarity

alone may not reflect entirely the fitness of a candidate.
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that is on the green using a putter does not admit any ‘decrease’ collocate, and
therefore its collocations are not considered in Test∗.

Since our algorithm returns a list of candidate collocate synsets for an input
base synset, the task naturally becomes that of a ranking problem, and therefore
ranking metrics such as Precision@K (P@K), Mean Average Precision (MAP)
and Mean Reciprocal Rank (MRR) are appropriate for evaluating this experi-
ment, in a very similar fashion as the experimental setup of our TAXOEMBED

approach for hypernym discovery, described and evaluated in Chapter 4. These
measures provide insights on e.g. how often valid collocates were retrieved in the
first positions of the rank (MRR), and if there were more than one valid collo-
cate, whether this set was correctly retrieved, (MAP and R-P). In Table 6.16 we
provide a detailed summary of the performance of our system (CWN), as com-
pared with a competitor unsupervised baseline which exploits word analogies (as
in ~man − ~king + ~woman = ~queen) [Rodríguez-Fernández et al., 2016]. This
baseline, which we deploy on the SHAREDEMBED space, takes as input a pro-
totypical collocation of a given semantic category (e.g. thunderous applause for
‘intense’) and an input base, and collects the top 10 Nearest Neighbours (NNs)
to the vector resulting of the aforementioned analogy operation. Due to the diffi-
culty of the task, and the restriction it imposes for collocates to be disambiguated
synsets rather than any text-based word, the unsupervised approach fails short
when compared to our supervised method, which is capable to find more and bet-
ter disambiguated collocates.

Note that for half of the semantic categories under evaluation, our approach
correlated well with human judgement, with the highest ranking candidates being
more often correct than those ranked lower. This is the case of ‘put an end’, ‘de-
crease’, ‘create/cause’ and ‘weak’. In fact, it is in ’put an end’, where our system
achieves the highest MRR score, which we claim to be the most relevant measure,
as it rewards cases where the first ranked returned collocation is correct without
measuring in the retrieved collocates at other positions. Moreover, let us highlight
the importance of two main factors. First, the need for a well-defined semantic re-
lation between bases and collocates. It has been shown in other tasks that exploit
linear transformations between embeddings models that even for one single rela-
tion there may be clusters that require certain specificity accounting, for instance,
for the domain or underlying semantics of the data [Fu et al., 2014]. Second,
the importance of having a reasonable amount of training pairs so that the model
can learn the idiosyncrasies of the semantic relation that is being encoded (e.g.,
[Mikolov et al., 2013b] report a major increase in performance as training data
increases in several orders of magnitude). This is reinforced in our experiments,
where we obtain the highest MAP score for ‘intense’, the semantic category for
which we have the largest training data available.
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‘intense’ ‘perform’ ‘put an end’ ‘increase’

Baseline CWN Baseline CWN Baseline CWN Baseline CWN

Test Test* Test Test* Test Test* Test Test* Test Test* Test Test* Test Test* Test Test*

P@1 0.00 0.00 0.35 0.46 0.15 0.16 0.20 0.36 0.05 0.08 0.15 0.50 0.05 0.14 0.15 0.42
P@5 0.03 0.30 0.43 0.57 0.06 0.06 0.13 0.23 0.02 0.03 0.12 0.40 0.04 0.11 0.18 0.51
MRR 0.05 0.41 0.48 0.65 0.18 0.19 0.32 0.59 0.07 0.12 0.20 0.68 0.07 0.21 0.22 0.65
MAP 0.05 0.45 0.48 0.64 0.15 0.18 0.32 0.59 0.07 0.12 0.19 0.64 0.07 0.20 0.22 0.64

‘decrease’ ‘create/cause’ ‘weak’ ‘begin to perform’

Baseline CWN Baseline CWN Baseline CWN Baseline CWN

Test Test* Test Test* Test Test* Test Test* Test Test* Test Test* Test Test* Test Test*

P@1 0.00 0.00 0.30 0.46 0.05 0.16 0.10 0.50 0.00 0.00 0.10 0.22 0.00 0.00 0.00 0.00

P@5 0.02 0.03 0.19 0.29 0.04 0.13 0.04 0.20 0.02 0.03 0.04 0.08 0.03 0.07 0.02 0.20
MRR 0.02 0.04 0.39 0.61 0.07 0.25 0.10 0.50 0.03 0.04 0.01 0.22 0.05 0.12 0.04 0.41
MAP 0.02 0.03 0.38 0.58 0.06 0.20 0.10 0.50 0.03 0.04 0.01 0.22 0.05 0.12 0.04 0.41

Table 6.16: Comparative evaluation of CWN and an unsupervised baseline.

6.3.3.2 Extrinsic evaluation: Retrofitting Vector Space Models to CWN

We complement our manual evaluation with an extrinsic experiment, where we
assess the extent to which our newly generated lexical resource can be used to
introduce collocational sensitivity to a generic word embeddings model, that is,
to draw closer in the space vectors that are related by collocational information
of a certain type, as defined in a complementary lexicon or semantic resource20.
To this end, we extract collocation clusters by extracting all the synsets associated
lemmas (e.g. for heavy.a.01 rain.n.01, we would extract the cluster [heavy, rain,
rainfall]). These are used as input for the Retrofitting algorithm [Faruqui et al.,
2015]21. This algorithm takes as input a vector space and a semantic lexicon which
may encode any semantic relation, and puts closer in the vector space words that
are related in the lexicon.

Previous approaches have encoded semantic relations by introducing some
kind of bias into a vector space model [Yu et al., 2015, Pham et al., 2015, Mrkšić
et al., 2016, Nguyen et al., 2016]. For instance, [Yu et al., 2015] encode term-
hypernym relations by grouping together terms and their hypernyms, rather than
semantically related items. In this way, their biased model puts closer to jaguar
terms like animal or vehicle, while an unbiased model would put nearby terms
such as lion, bmw or jungle. We aim at introducing a similar bias, but in terms
of collocational information. This is achieved, for each lexical function and each

20We use the Google News pre-trained Word2Vec vectors, available at code.google.com/
archive/p/word2vec/, as input for retrofitting.

21We used the code available at https://github.com/mfaruqui/retrofitting
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‘intense’ ‘weak’ ‘perform’ ‘create/cause’
correct dist. diff. correct dist. diff. correct dist. diff. correct dist. diff.

original 0.22 0.04 +0.18 0.17 0.05 +0.12 0.15 0.05 +0.10 0.17 0.06 +0.11

retrofitted 0.27 0.06 +0.21 0.19 0.06 +0.13 0.25 0.11 +0.14 0.28 0.12 +0.16

Table 6.17: Comparison of collocational sensitivity between original and
retrofitted embeddings models over four semantic categories.

synset in CWN, by obtaining its top 3 collocate candidates and incorporate infor-
mation on their collocationality into the model.

6.3.3.2.1 Collocational Sensitivity In this experiment, we assess the extent
to which a retrofitted model with collocational bias is able to discriminate be-
tween a correct collocation and a random combination of the same base with an
unrelated collocate. To this end, we manually constructed two datasets, one for
noun+adjective (‘intense’ and ‘weak’ semantic categories) and one for noun+verb
combinations, which we evaluate on the two most productive semantic categories,
namely ‘perform’ and ‘create/cause’. These datasets consist of 50 bases, each
base with one correct collocate according to the Macmillan Collocations Dictio-
nary, accompanied by four distractor (dist. in Table 6.17) collocates. For instance,
given the correct ‘perform’ collocation make a pledge, we expect our ‘perform’-
wise retrofitted model to increase the score in ~make + ~pledge substantially more
than a combination ~distractor + ~pledge. For each evaluated semantic category,
we computed the average increase of the cosine similarity between all correct col-
locations and all distractors (diff. in Table 6.17). As shown in Table 6.17, there is a
consistent increase over the four evaluated semantic categories, namely ‘intense’,
‘weak’, ‘perform’ and ‘create/cause’. This proves the potential of our retrofitted
model to discern between correct and wrong collocates. In the following section,
we explore the possibility to use this vector space for finding collocates giving a
base as input.

6.3.3.2.2 Exploring Nearest Neighbours for Collocate Discovery Inspired
by Yu et al.’s work on introducing hypernymic bias into a word embeddings
model, we explore the extent to which our retrofitted models can be used to dis-
cover alternative collocates given the composition of the words involved in a col-
location as input. In order to discover these collocates, we compose the base and
the collocate by averaging their respective word embeddings and retrieve its clos-
est words in the vector space according to cosine similarity. In Table 6.18, we
show a sample of five NNs for several input adjective+noun collocations. These
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‘intense’ ‘weak’
original retrofitted original retrofitted

ferocious + hatred

vicious fierce

dim +light

bright faint
fury fearsome dimmed unaccented

ferocity fury dimmer dense
savage hate dimming bright

hostility savage lights centaur

intense + sympathy

fierce considerable

mild + comment

milder modest
empathy tremendous NamedEntity meek

admiration enormous NamedEntity NamedEntity
anger encouragement NamedEntity NamedEntity

grudging respect immense NamedEntity NamedEntity

sheer + delight

amazement immense

modest + progress

progress mild
sheer unadulterated colossal pro gress meek

sheer joy delectation Modest dissatisfaction
joy disgust NamedEntity progess

astonishment stupendous strides slight

Table 6.18: Comparison of the five NNs of six sample adj+noun collocations
between a generic word embeddings model and a retrofitted version with semantic
collocation information (‘intense’ and ‘weak’). Note the increase in plausible
collocates in retrofitted models (in bold). NamedEntity refers to noisy entities
appearing among the top 5 NNs.

examples reveal how the vector space model retroffited using our collocations
tends to bring closer in the space modifiers (i.e., collocates), providing an inter-
esting method for automatic collocation discovery. Despite its simplicity, this
collocational discovery approach extracts a considerable amount of suitable fine-
grained collocates for a given base. For example, given the collocation intense
sympathy, the retrofitted space extracts considerable, tremendous, enormous and
immense as candidate collocates of intensity among the five nearest neighbours.
As future work we plan to further exploit and evaluate the impact of this property.

6.3.4 Conclusions and Future Work
We have described a system for an automatic enrichment of the WordNet lexical
database with fine-grained collocational information, yielding a resource called
ColWordNet (CWN). Our approach is based on the intuition that there is a linear
transformation in vector spaces between bases and collocates of the same seman-
tic category, e.g. between heavy and rain, or between ardent and desire. We
have exploited sense-based embedding models to train an algorithm designed to
retrieve valid collocates for a given input base. This pipeline is carried out at the
sense level (rather than the word level), by leveraging models which use BabelNet
as a reference sense inventory. We evaluated CWN both intrinsically and extrinsi-
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cally, and verified that our algorithm is able to encode fine-grained collocates-with
relations at synset level.

6.4 Savana: Enriching the Spanish Snomed via De-
pendency Parsing and Distributional Semantics

Up until this far, we have presented a number of methods for formalizing knowl-
edge in various forms (definitions, hypernymic relations, and lexical taxonomies),
and have explored three approaches for improving knowledge representation both
in a general (KB-U), and a specific (MKB) sense. We have also targeted a specific
semantic relation in CWN. We complement these contributions with an experi-
ment which poses two major challanges. First, it is carried out in a language other
than English, which results in less availability of resources and software. And
second, it aims at improving a medical terminological database, which due to the
specificity and idiosyncrasy of the domain, makes it more difficult than modeling
other less variable domains.

Thus, in this section we present the first approach (to the best of our knowl-
edge) that attempts to extend the Spanish version of the Snomed Clinical Terms
medical terminology [Spackman et al., 1997].

6.4.1 Motivation and Background
Among the many fields of knowledge that are sensitive to the dramatic changes ig-
nited by the advent of the Information Age, the medical domain is probably one of
the most prolific. There is a considerable amount of research focused on aggregat-
ing knowledge contained in medical research papers [Giuliano et al., 2006, Rind-
flesch et al., 2000, Pustejovsky et al., 2001, Subramaniam et al., 2003, Donaldson
et al., 2003], also in Spanish [Bedmar et al., 2008, Gálvez, 2012], and machine
learning is gaining popularity as well in the medical field as decision support
tools22. In this context, the scenario of a comprehensive Evidence-Based Medicine
[Kumar, 2011] seems to be more plausible than ever. However, one of the great
challenges for enabling data-driven support to clinical decisions is making sense
of unstructured information appearing in Clinical Health Records (CHR). These
are documents where doctors take notes on a patient’s medical condition, his or
her progress, and suggest possible medication and treatment. They are a rich
source of information because they provide personalized empirical data on treat-

22see e.g. the recent sucessful case of Watson in predicting cancer’s treatments
https://futurism.com/ibms-watson-ai-recommends-same-treatment-
as-doctors-in-99-of-cancer-cases/
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ment and evolution of medical conditions, and hence this type of document is
receiving interest from the NLP community as enabler not only for medical sup-
port systems but also for its potential as training and evaluation data for Machine
Learning algorithms in the field of Bioinformatics.

Examples of the interaction between NLP and CHRs include MEDEX [Xu
et al., 2010], a system for extracting medication information from clinical narra-
tives, or a system for drug reaction event extraction [Santiso et al., 2016]. How-
ever, and despite their potential, CHRs pose great challenges for automatic pro-
cessing, as they are often unstructured, ill-defined and arduous to analyse at scale
[Iqbal et al., 2015].

In this context, Medical Terminological Databases (MTDs) play a crucial role,
as they provide a structured ground where medical concepts and their relations
are encoded by medical experts and can be used as a benchmark for developing
algorithms that leverage medical concept extraction to some extent. One of the
best known MTDs is SnomedCT, which is part of the Unified Medical Language
System (UMLS) [Bodenreider, 2004]. One of the main drawbacks of MTDs is that
creating and maintaining them manually is arduous. More importantly, keeping
them up to date is not possible considering the amount of novel information that
is generated daily. Furthermore, even if they are manually created, there is certain
discussion even on their quality, since it is difficult to control the fitness of every
single addition to the database [Morrey et al., 2009] (cf. Chapter 1).

In this chapter, we propose to bridge the gap between unstructured medical
knowledge stored arbitrarily in CHRs, on one hand, and the automatic maintaining
of MTDs, on the other. In the remainder of this paper, we first describe SAVANA,
a Biomedical Information Extraction system, which we run on a large collection
of CHRs. In a second phase, SAVANA’s predictions are presented to medical
practitioners, who validate novel associations between SnomedCT concepts and
their lexicalizations (i.e. the way they are expressed in free text). We exploit the
combination of SAVANA and the validation stage to obtain a validation dataset of
nearly 500 novel medical terms in Spanish, on which we evaluate several unsu-
pervised systems aimed at finding, for each candidate novel term, its best point
of attachment in the Spanish SnomedCT Database. These systems are based on
both syntactic and semantic properties. Our results suggest that this is a promising
direction for performing large-scale medical terminology extraction for Spanish,
along with its semantification.

6.4.1.1 Brief background of MTDs

The availability of MTDs is in constant growth. Examples range from well-
established collaborative efforts like UMLS [Bodenreider, 2004], umbrella termi-
nologies for multilingual resources such as SnomedCT [Spackman et al., 1997],
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or even the CIE database (Clasificación Internacional de Enfermedades), pub-
lished by the Panamerican Health Organization (Organización Panamericana de
la Salud). In addition, general purpose resources are increasingly playing more
important roles in biomedical NLP tasks, as is the case of Wikipedia, which has
been exploited for identifying medical disorders in CHRs [Bodnari et al., 2013].

The medical domain has also received attention in terms of automatically ex-
panding existing resources. Prominent examples include (1) The development of
novel MTDs from Wikipedia [Pedro et al., 2008]; (2) Enriching SnomedCT ter-
minology with associated definitions [Ma and Distel, 2013]; and in multilingual
settings, (3) Expansion of SnomedCT in Swedish by processing CHRs [Henriks-
son et al., 2013].

6.4.2 Savana

We use SAVANA, a Biomedical Information Extraction System23, integrated in
several public and private healthcare institutions in Spain, for obtaining and val-
idating ground truth data. The SAVANA algorithm is designed to retrieve promi-
nent biomedical information from CHRs in the Spanish language. It does so by
combining in its pipeline modules for, among others, sentence segmentation, to-
kenization, spell checking, acronym detection and expansion, negation identifica-
tion, and a multi-dimensional ranking scheme which combines linguistic knowl-
edge, statistical evidence, and state-of-the-art continuous vector representations
of words and documents in the biomedical domain learned via shallow neural
networks. We run SAVANA over several thousand CHRs, and ask medical prac-
titioners to validate matches of SAVANA’s association between a mention of a
medical concept in text, and an existing SnomedCT entry, by means of a web in-
terface (Figure 6.12). The subset of the Spanish SnomedCT branch on which we
run our experiments contains over 401,126 concepts, which are linked by means
of 2,722,877 hypernymic (is-a) relations. The validation procedure may yield
novel terminology in terms of either novel lexicalizations for an existing term (syn-
onyms), or novel terms which can be attached to a more general SnomedCT con-
cept (hyponyms). In this experiment, we are interested in the latter case: Finding
the best point of attachment for novel concepts, rather than finding additional ways
of expressing the same idea. At validation stage, if human experts consider that a
concept identified by SAVANA has a meaning which is missing in SnomedCT, this
concept makes it to our ground truth novel terminology, and hence will consti-
tute the testbed for the experiments we describe in Section 6.4.3. We collect gold
standard data of up to 492 novel terms, with an average of 3.2 hypernymic rela-
tions encoded by human experts. There was no restriction in the type of concept

23http://www.savanamed.com/
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Figure 6.12: A snapshot of the validation web interface. Let us highlight how the
validation procedure allows the medical expert to assign to the SnomedCT con-
cept departamento de pediatría, a novel lexicalization in the context of
CHRs, namely the string su pediatra.

to be included. Therefore, this dataset includes diverse terms which are related
to infrastructure, e.g. SERVICIO DE ODONTOLOGÍA→ {servicio hospitalario}24,
or actual medical conditions, e.g. GONARTROSIS→ {trastorno de la rodilla, en-
fermedad de la rodilla}. In the following section, we describe the experiments
carried out to discover the most appropriate hypernym for each of the 492 novel
terms we incorporated to SnomedCT thanks to combining the SAVANA algorithm
with an expert validation stage.

6.4.3 Enriching SnomedCT

In this section we describe the SnomedCT enrichment experiments. Given a novel
term, we aim at finding its best point of attachment, expressed as its closest hy-
pernym. Our approach is unsupervised and hence requires no prior annotation or
training. Moreover, we do not exploit any web or Wikipedia-based textual evi-
dence (which we may investigate in future work). However, we do leverage two
main resources in our experiments, which are described briefly.

• For syntactic parsing, we use a transition-based parser based on the parsing
technology included in the Mate framework [Bohnet, 2010].

24As usual during this dissertation, we denote is-a relations between terms and sets of hyper-
nyms as term→{hypernym1· · · hypernymn}.
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• For computing similarities between concepts, we exploit word embeddings
derived from training a shallow neural net model [Mikolov et al., 2013c]
with the word2vec tool, implemented in gensim25. The model used for our
experiments comes from a 2015 dump of the Spanish Wikipedia prepro-
cessed and lemmatized with Freeling [Atserias et al., 2006b]. Our model is
300-dimensional, and is trained using the skip-gram with negative sampling
algorithm, using a minimum count of 10 for each word.

Having described the two main technological pivots of our approach, let us
describe each of the systems evaluated:

• Substring*26 This is a substring inclusion baseline which, for each novel
term, assigns as term hypernyms all Snomed concepts that are subsumed
in the novel term. For example, given the unseen concept GONARTROSIS,
candidate hypernyms are ARTROSIS and ARTROSIS (TRASTORNO). Note
that this approach fails short when dealing with longer and more complex
terminology, as in the case of the concept NO OTROS HÁBITOS TÓXICOS,
where incorrect hypernyms are captured, such as TOS or OTRO.

• Head Fuzzy Match* Multiword terms (mwt) may be generalized via their
syntactic dependencies. For example, given the novel concept INSUFICIEN-
CIA CARDÍACA CONGESTIVA LEVE, after dependency parsing we are able
to isolate INSUFICIENCIA as the mwt’s head. This configuration of our ap-
proach collects all Snomed concepts of which this head is substring. In this
example, we would correctly match INSUFICIENCIA CARDÍACA, but also
generate false positives such as INSUFICIENCIA HEPÁTICA or INSUFICIEN-
CIA RESPIRATORIA TIPO 2.

• Head Exact Match This is a restricted version of Head Fuzzy Match, in
which in most cases we only obtain one candidate, i.e. the Snomed con-
cept which matches exactly the out-of-vocabulary (OOV) term’s head. For
instance, for the concept NO OTROS HÁBITOS TÓXICOS, the retrieved can-
didate would be the Snomed concept HÁBITO.

• Distributional The first of our distributional approaches, exploiting word
embeddings, stems from the intuition that similar concepts may occur in
similar contexts. This property has been confirmed to hold in many seman-
tic relations [Mikolov et al., 2013c, Mikolov et al., 2013a]. In this configu-
ration of our system, given a term t consisting of a set of words {wi, ...wn}

25radimrehurek.com/gensim/models/word2vec.html
26We distinguish baseline systems with *.
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(after stopword removal), we compute the centroid vector µ of the set of
associated word vectors −→w ∈ t. We obtain µ(t) as follows:

µ(t) =
1

|t|
∑
−→w∈t

−→w
||−→w ||

(6.6)

We perform the same operation on all candidate Snomed concepts. Specif-
ically, we obtain, given a Snomed terminology S, for each Snomed term
ts ∈ S, its corresponding centroid vector µ(ts). Then, our algorithm returns
as best match the Snomed concept maximizing the semantic similarity be-
tween t and ts, denoted as SIM(t, ts), and computed via cosine score as
follows:

SIM(t, ts) =
µ(t) · µ(ts)

µ(t)µ(ts)
(6.7)

This operation yields a ranked list of candidates by score, where score is the
cosine score above, and thus the predicted candidate is the term ts with the
highest similarity with the input term t.

• DistDep Our last system is performed with the DistDep system, which
combines head word lookup with similarities derived from word embed-
dings. It simply consists in comparing the vector associated to the head
node (as extracted in any of the Head-based approaches) of the novel term
with the centroid of all available concepts in S, and keeping as best match
the highest scoring candidate.

6.4.4 Evaluation

6.4.4.1 Distance-based Evaluation

The evaluation of a system’s performance in terms of its ability to attach novel
terminology to an existing knowledge repository is traditionally performed by
considering distance between reference nodes and predicted nodes, i.e. the best
point of attachment, and the decision made by the system. While evaluation met-
rics exist for computing semantic similarity over lexical databases like WordNet,
these are not suitable in our case because our branch of Snomed is designed in a
slightly different fashion, as it can be considered a multiroot directed acyclic graph
(DAG), and hence in many cases, given two concepts, there is no least common
subsumer other than the root node. For instance, the path between TRASTORNO

CON TALLA BAJA and PRUEBA DE VARIANTE DE HEMOGLOBINA includes one of
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the root nodes in the SnomedCT taxonomy, namely SNOMED CLINICAL TERMS

(ENERO 2014).

This makes metrics like Wu&Palmer Similarity [Wu and Palmer, 1994], which
considers lowest common subsumers in their similarity computation, unsuitable.
For this reason, we propose a distance metric for evaluation purposes sensitive to
terminological databases shaped as DAGs rather than trees (like WordNet). We
account for the fact that there may be several valid points of attachment and hence
compute an average of node-based shortest path sp(·) over all predicted candidates
and all gold standard nodes.

Let G be the set of gold standard points of attachment to a novel term t, and P
the set of predictions generated by a system. We define an Error-Score function
E that, given a novel term t, computes the average shortest path of all predicted
points of attachment p ∈ P:

E(t) =
1

|P|
∑
p∈P

∑
g∈G sp(p, g)

|G|
(6.8)

In addition, we report a second evaluation based on whether a system is able
to capture all the gold standard points of attachment, regardless of additional in-
correct predictions. This is performed only on those systems which return a set
of candidates, which is not the case of the distributional systems Distributional
and DistDep. We included evaluation under this Recall score, which we denote
as R(t), as we foresee a real world scenario where human post-edition of false
positives may be less time-consuming than finding in SnomedCT the best points
of attachment for each novel term. We simply set R(t) = 1 if a given approach is
able to cover, with its n predictions, all the possible gold standard attachments, and
R(t) = 0 otherwise, and average results over the total prediction sets. We provide
the evaluation results for both criteria in Table 6.19 (note the N/A value for Recall
in systems that do not return a set of candidates). The two main conclusions that
can be drawn from our experimental results are that, first, leveraging similarities
derived from word embeddings improve the performance of MTD enrichment
systems, and second, that exploiting a greedy approach of fuzzy syntactic head
matching is a reasonable strategy for increasing recall.

Finally, we plotted the performance in Error-Score of our proposed systems
(not baselines) over all the novel terms present in the evaluation data. We can
observe that the two distributional systems based on word embeddings show a
similar behaviour, much better in general than the third best system, Head Exact
(Figure 6.13).
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Error-Score Recall

Substring* 8.51 26%

Head Fuzzy 7.07 84%

Head Exact 4.72 13%

Distributional 3.34 N/A

DistDep 3.36 N/A

Table 6.19: Evaluation results for our proposed systems in terms of average per-
formance of all its predictions (Error-Score), and Recall. Note the N/A values for
distributional systems, for which only the best candidate is considered for evalua-
tion.

Novel Term G Novel PoA (fp) Correctness

dermatitis seborreica leve eccema seborreico dermatitis Yes

servicio de cardiología pediátrica servicio hospitalario servicio de cardiología Yes

artrosis cervical artrosis linfadenopatía cervical No

talla baja idiopática trastorno con baja estatura al examen: estatura baja No

Table 6.20: Illustrative cases where some of the novel concepts discovered by
our approach, and evaluated as false positive (fp) by the automatic criteria, were
considered correct in a second pass by human domain experts.

6.4.4.2 Human Evaluation

We assume in our automatic evaluation that human experts in the biomedical do-
main will provide a solid ground truth against which system predictions can be
evaluated. However, given the size of SnomedCT, our system may provide cor-
rect points of attachment for novel terminology which were not included in the
first place, and this is penalized in the automatic evaluation. For this reason, we
presented human experts with the set difference between the sets of gold and pre-
dicted points of attachment, and asked them to label them as correct or incorrect.
We find an average of 27% correctness over all systems, which suggests that cer-
tain cases of false positives were actually correct predictions and hence were valid
inclusions of novel terms along with their associated hypernymic relations. We il-
lustrate a few cases of false positives in Table 6.20 together with their correctness
according to a domain expert.
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HeadExact ····· Distributional ----- DistDep

Figure 6.13: Unnormalized (range [0,+∞[) error-Score results (y axis) for the
three systems we propose, namely Distributional (dotted), DistDep (dashed),
and Head Exact Match (line), over the whole test terminology (x axis).

6.4.5 Conclusion
The rapidly growing interplay between Artificial Intelligence and healthcare is
producing innovative assistive technologies (e.g. adaptive and rehabilitative de-
vices), as well as medical support systems which leverage large quantities of het-
erogeneous data. Among the latter, let us highlight SAVANAMED, which thanks
to the SAVANA algorithm, provides a real-time medical support system by making
sense of textual information present in CHRs. In this paper, we described how the
SAVANA algorithm, backed up by a validation stage carried out by medical prac-
titioners, was used to produce a ground truth for evaluating a system in the task of
MTD enrichment. We evaluated several systems against this data and found that
combining linguistic information derived from syntactic dependencies, as well
as similarities computed over word produces the best results. To the best of our
knowledge, both SAVANA and the MTD enrichment system are the first systems
of their kind developed for the Spanish language.
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Chapter 7

LANGUAGE RESOURCES AND
SOFTWARE

Owing to the very nature of this dissertation, which has a strong focus on the auto-
matic creation, enrichment and extension of knowledge resources, in this chapter
we present and describe a set of assets associated with the experiments described
and evaluated so far. We release datasets for the use of the research community,
as well as a number of software applications in the hope to foster research in this
area of NLP and AI. Specifically, we accompany this thesis with: (1) Train and
test corpora and precomputed definition-wise noun phrase frequencies derived
from SequentialDE (in Catalan), which can be further leveraged for DE in the
Catalan language; (2) A python toolkit that implements a lightweight version
of WeakDE, along with train, development and test datasets; (3) A python API
for TaxoEmbed, along with associated training and evaluation data; (4) Automat-
ically constructed taxonomies in several domains of knowledge, generated by the
ExTaSem! taxonomy learning system; (5) Different resources associated with
KB-Unify, including disambiguated output from OIE systems, pairwise align-
ment and the final KB-Unify resource; (6) ColWordNet, the collocational exten-
sion of WordNet, as well as a python API for enabling custom experiments; and
(7) Several versions of our Music Knowledge Base.

7.1 SequentialDE: Datasets description
We release train and test datasets with definitions and distractors in the Catalan
language, extracted from the Catalan Wikicorpus1. The only difference between
them is that the test data has undergone a manual validation of a portion of the
data (it remains as future work to comprehensively evaluate the quality of the test

1Data available at bitbucket.org/luisespinosa/catalande
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set). These corpora are provided in CoNLL format (tab-separated files, where
each row corresponds to one word, and columns represent features). Columns
provide information derived from a preprocessing stage, as the result of running
the Freeling [Atserias et al., 2006a] linguistic workbench on them. For example,
given a definition such as:

Un metabòlit és qualsevol molècula utilitzada o produïda durant el
metabolisme

the processed version contains the information shown in Table 7.1.

Un un DI0MS0 0.95 b_def

metabòlit metabòlit NCMS000 1.00 i_def

és ser VSIP3S0 1.00 i_def

qualsevol qualsevol DI0CS0 0.99 i_def

molècula molècula NCFS000 1.00 i_def

utilitzada utilitzar VMP00SF 1.00 i_def

o o CC 0.99 i_def

produïda produir VMP00SF 1.00 i_def

durant durant SPS00 1.00 i_def

el el DA0MS0 0.99 i_def

metabolisme metabolisme NCMS000 0.99 i_def

Table 7.1: Example of a definition sentence, preprocessed with Freeling. It con-
tains surface form information (column 1), lemma (column 2), part of speech (col-
umn 3), probability for such part of speech (column 4), as well as the classification
label for the token (column 5).

The train corpus we release contains 195,071 sentences, with 111,470 def-
initions. Likewise, the test set contains 4,281 sentences, out of which 2,825 are
definitions. Let us recall that the process of constructing these datasets follows the
idea introduced in [Navigli and Velardi, 2010], in that non definitions or distrac-
tors are “syntactically plausible false definitions”, or contain an explicit mention
of a term (the title of the Wikipiedia page in which the sentence appear), as in the
following example:

Definition: “El dadaisme, també conegut com a moviment dadà, va
ser un moviment intel·lectual, literari i estètic d’avantguarda, desen-
volupat entre el 1916 i el 1925, precedent immediat del surrealisme.
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Non Definition: “A Catalunya, la relació amb el dadaisme va ser
molt directa, a causa d’un grup d’artistes d’avantguarda que per mitjà
les Galeries Dalmau van donar a conèixer les obres del moviment
(...)”.

Finally, we complement these corpora with additional support data in the hope
that it can constitute a valuable resource for feature engineering. This data is di-
vided in three releases: (1) frequency list of all tokens in the training set that
appear in definiendum position; (2) complementary frequency list for tokens ap-
pearing in definiens position; and (3) frequency distribution of all noun phrases
(including multiword expressions as detected by Freeling) both at definiendum
and definiens position.

7.2 DefExt: Definition Extraction Tool

In GlobaLex (2016) we presented DefExt, a lightweight python implementation
of WeakDE (Section 3.4). The main idea behind DefExt is to allow any user to
quickly extract features useful for the DE task (and to easily extend the initial fea-
ture set), and to run a bootstrapping algorithm which iteratively identifies highly
confident definitions, removes them from the target data, retrains and applies the
model again as many times as the user decides (or until convergence). A summary
of the workflow of DefExt is illustrated in Figure 7.1.

Figure 7.1: Workflow of DefExt, a lightweight implementation of the WeakDE
bootstrapping algorithm.
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In the repository2, we make available raw and processed training data from
the WCL dataset [Navigli and Velardi, 2010], as well as access to preprocessed
versions of the ACL-ARC corpus [Bird et al., 2008].

7.3 TaxoEmbed domains and associated datasets

In addition to the experiments reported in Section 4.2, we also provide the research
community with the following datasets and software3:

• Domain Clustering of BabelNet synsets according to the approach de-
scribed in [Camacho-Collados et al., 2016]. This synset-level clustering is
essential for training what [Fu et al., 2014] named piecewise linear transfor-
mation matrix, in our case operating at the sense level. The current release
contains more than 1.6M BabelNet synsets in a tab-separated file associated
to at least one domain of knowledge (e.g. art or physics).

• Wikidata Hypernym Branch, which contains one hyponym-hypernym pair
per line in a tab separated file (first column including the hyponym, and
second column, the hypernym). In the current release, we provide a total of
5.3M term-hypernym pairs at the synset level.

• KB-Unify isa-0.9 Branch, where we release an automatically constructed
dataset with term-hypernym pairs in the same format as the Wikidata pairs.
Note that in this case, this is an automatic mapping from NELL to BabelNet,
and even if the disambiguation threshold is set to 0.9, the veracity of these
relations was not manually assessed. Our release contains 13.5M term-
hypernym pairs.

• Taxoembed Python API, which can be used to load text, synset or sense-
level training data, and executes the pipeline described in [Espinosa-Anke
et al., 2016]. It also includes a script that can be run in interactive mode,
which prompts the user for an input BabelNet synset, and returns its most
likely hypernym in a predefined embeddings model. Finally, reproducibility
allowing potential extensions is also possible, for example by improving the
construction of BabelNet domains [Camacho-Collados and Navigli, 2017].

2bitbucket.org/luisespinosa/defext
3Available at bitbucket.luisespinosa.com/taxoembed
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7.4 ExTaSem!: Evaluation Data and Taxonomies
In addition to the experiments we report in Chapter 5, where we described ex-
periments evaluating the performance of EXTASEM!, we release taxonomies for
the following domains: AI, Chemical, Equipment, Food, Science and Terrorism4.
Each taxonomy comes in two formats: (1) Easy to read html files (with hyper-
links to disambiguated nodes to their corresponding BabelNet page, where pos-
sible), along with the score provided by the system (Section 7.4.1); and (2) CSV
files formatted so that they can be opened and inspected with the gephi graph vi-
sualization tool5. Visualizations for manual inspection of semantic clusters, along
with a discussion on how these could be beneficial for NLP, are provided in Sec-
tion 7.4.2.

7.4.1 HTML Taxonomies
In Figure 7.2 we show a screenshot of an html taxonomy in the EQUIPMENT

domain, one of the benchmarking domains in TexEval [Bordea et al., 2015]. An
example of the capability of EXTASEM! to encode novel taxonomic relations can
be found in the example concerning the BabelNet synset “bn:02795723n” (edge id
12). This synset corresponds to NETRA, an eye diagnostic device6. In the original
BabelNet page, this concept is not associated to any hypernym (no relation in
Wikidata or Wikipedia, other than it belongs to the Sensors and Optical metrology
categories). In EXTASEM!, however, the encoded hypernym is as informative as
“mobile eye diagnostic device”.

Finally, the sample taxonomy also provides examples of the hypernym de-
composition module (Section 5.1.3). For instance, in edge id 31, the taxonomic
relation is digital datalink system→datalink system.

7.4.2 Visualizing and inspecting semantic clusters
It is possible to visualize EXTASEM! taxonomies, and use these visualizations
to manually inspect clusters or sub-domains. We illustrate this potential via the
gephi visualization tool, and use the food domain as a use case.

A general overview of a domain taxonomy can be useful to examine structural
properties such average depth, presence of cycles or whether all components are

4Data available at bitbucket.org/luisespinosa/extasem
5gephi.org
6http://babelnet.org/synset?word=bn%3A02795723n&lang=

EN&details=1&orig=bn%3A02795723n
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Figure 7.2: Sample of the html page for the equipment domain taxonomy.

connected. In addition, well defined domains seem to show a higher proportion of
semantic clusters (i.e. a higher number of well defined sub-domains), and visual-
ization can constitute a straightforward evaluation tool, complementary to specific
metrics based on evaluation of (possibly hierarchical) clusters. In fact, evaluation
reports of TexEval include qualitative discussion based on taxonomy visualiza-
tion. In the specific case of the food taxonomy we automatically built, it can be
clearly seen from Figure 7.3 that there are well defined clusters.

An interesting aspect of these taxonomies is that they combine highly specific
concepts at the text level, with many disambiguated nodes (against the Babel-
Net semantic network). See, for example, a zoom-in of the “cake” cluster in
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bn:00274466n

rice_cake

bn:02196905n

japanese_snack_food

traditional_fish_stew

fish_stew

bn:00018656n

ganache_center

confection

chocolate_candy

bn:02401157n

chocolate

bn:01151287n

classical_french_herb_sauce

bn:03442380n

traditional_side_dish

canadian_meal

meal

beetroot/beet_soup

soup

bn:02437105n

popular_side_dish

dry_pasta_variety

pasta_variety

bn:03071761n

traditional_breakfast_soup

bn:01000433n

alsatian_dish

popular_sandwich_cookie

sandwich_cookie

pure_unsweetened_chocolate

unsweetened_chocolate

bn:00016385n

tapioca

starchy_pulp bn:03770944n

bn:00036246n

pastry

traditional_french_dish

french_dish

bn:00010925noval-shaped_cinnamon-bun-like_sweet_roll

traditional_sheet_cake

sheet_cake

bn:00673334n

french_rustic_cheese

provençal_traditional_sauce

traditional_sauce

noodle_dish_noodle_dish

dish_noodle_dish

bn:01021843n

cured_pork_product

salty_italian_cheese

italian_cheese

bn:02530344nbread
bn:00068055n

small_fruit_cake

small_cake

edible_plant

plant

bn:03333962n

italian_fish_stew

israeli_food_product

food_product

ring-shaped_cakecake

bn:02885417n

bread_dough

bn:02564269n

sweet_filipino_delicacy

bn:03845467n

chocolate_cake

bn:03709904n

potato

crisp_cake

bulgarian_salad

salad

bn:00518517n

christmas_dinner

cold_egg_sauce

egg_sauce

licensed_snack_food

snack_food

bn:00037716n

round_caribbean_fruit

bn:00076109n

provençal_dish

popular_breakfast

breakfast

acidic_juice

juice

toasted-wheat_cereal

cereal

swabian_specialty_food

specialty_food

japanese_sweet_roll

sweet_roll

national_dish

dish
bn:00683394n

liquorice_candy

american_confection

bn:02288616n

dry-cured_smoked_ham

bn:03179918n

milk_drink

bn:01357306n

kernel

austrian_roll

roll

bn:03432396n

bn:00905187n

filled_bread_dish

bn:02260762n

mexican_snack

dairy_product

product

rice_pudding

pudding

flower_bud

bud

finnish_dish

bn:00007641n

eastern_coffee_cake

sweet_yeast_cake

moist_bread

bn:01556263n

swedish_sausage

bn:00001477n

greek_soup

traditional_portuguese_cake

portuguese_cake

bn:00036702n

rich_cake

scottish_soup_dish

soup_dish

bn:02523456nsauce

dog_treat

treat

bn:02713091n

chewing_gum

toroidal_bread_roll

bread_roll

potato_chip

chip

bn:03293531n

bubble_gum

bottled_sauce

bn:00028448n

young_domestic_pigeon

flesh

savoury_dish

meringue_dessert

dessert

vietnamese_dish

flavoured_candy

candy
casseroled_dish

liquoricefood
cafe_retailer

retailer

spiced_cake

bn:02632133n

french_cuisine

bn:01719715n

crisp_wheat_snack

herb

bn:00132167n

viennoiserie_pastry

oat_breakfast_cereal

breakfast_cereal

bn:01426780n

traditional_georgian_soup

warm_food

bn:03076402n

pancake-like_bread

typical_dutch_pastry

dutch_pastry

bn:00063848n

deep-fried_pastry

bn:03744997n

traditional_christmas_dessert

spicy_peruvian_sauce

peruvian_sauce

substance

bn:03442965n

street_food

decorated_cake

bn:03745985n

native_dish

semi-frozen_dessert

bn:01187051n

whey-based_chocolate_drink

bn:02528894n

traditional_french_flemish_dish

fresh_sausage

sausage

bn:00061786n

tasty_sauce

dense_cake

bn:01462881n

common_local_snack

warm_sauce

bn:03429075n

popular_tamarind-flavored_candy

traditional_javanese_pancake-like_snack

javanese_pancake-like_snack

bn:03228721n

dehydrated_food

bn:03194772n

wide_flat_casserole/pasta_dish

flat_casserole/pasta_dish

bn:00058415n
cereal_grain

small_rounded_bread

rounded_bread

bn:00371759n

food_paste

cereal_grass

grass

mould-ripened_cheese

cheese

rich_dense_cake

bn:00690275n

japanese_savoury_pancake

irish_dish

bn:00050832n

annual_plant

green_leafy_vegetable

bn:00034464n

food_mixture

bn:00080516n

pungent_green_japanese_condiment

typical_austrian_roll

bn:01201377n

light_chicken_broth

bn:02066442n

rice_porridge

neapolitan-italian_cold_cut

cold_cut

bn:01949378n

greek_dish

bn:00068666n

bn:00007163n

french_cheese

bn:00077693n

bn:00583718n

sugary_toffee

bn:03337578n

hard_candy

chewy_liquorice

bn:01788948n

classic_french_dish

bn:03172534n

bn:03292773n

calzone-type_snack

bn:00059014n

yeast-raised_roll

type

bn:03802789n

iconic_ice-cream

bn:01589388n

traditional_alsatian_dish

austrian_dessert

baked_pastry

traditional_batter_treat

batter_treat

british_soup

bn:00550023n

italian_pasta_dish

dressing

bn:00263831n

traditional_gruel

bn:01108747n

traditional_bulgarian_salad

simple_salad

savoury_snack

snack

sweet_yeast_dough

yeast_dough

bn:02584703n

filipino_dessert

chocolate_bar_snack

bar_snack

pressed_fish

fish

bn:01298635n

normandy_bread

bn:02352057n

indonesian_culinary_food

béchamel_sauce

macaroni_cheese

fat_free_potato_chips

free_potato_chips

smoked_sausage

american_snack_food

bn:00040303n

egg

dough

italian_meat

meat

bn:00081929n

milk-based_product

custard-like_food

root

bn:03338149n

pizza-like_dish

bn:01560822n

dark_sweet_dessert_wine

sweet_dessert_wine

bn:00012266n

russian_soup

bn:00007408n

domesticated_plant

squash_fruit

gourd-like_squash

savory_snack

foods

bourbon-laden_baked_cake

baked_cake

chip_snack

bn:01003655n

bn:00860790n

independent_doughnut_shop

bn:00029930n

sweetened_dairy-based_beverage

fruit_snack

bn:00912988n

silesian_potato_salad

simple_white_bread

white_bread

bn:03783365n

traditional_british_dish

christmas_pastry

cinnamon-bun-like_sweet_roll

hot

bn:03505700n

pizza

bn:03197197n

atlantic_canadian_dish

domestic_pigeon

pigeon

bn:01195684n

thin_crisp_indian_preparation

delicacy

swedish_drinkdrink

danish_dish

romanian_cuisine

cuisine

bn:01585721n

tasting_vegetable_oil

vegetable_oil

bn:01329274n

gummy_candy

japanese_leaf_vegetable

leaf_vegetable

round_bread_product

bread_product

french_casserole

casserole

flour_dough

bn:00299090n

vietnamese_cake

bn:03702264n

eritrean_food

bn:03703705nclassic_swedish_drink

bn:02904297n

danish_candy

coarse_flour

flour

bn:00020694n

tropical_plant

colocasia

bn:00020838n

nondrying_oil

thick_brownish-yellow_oil

bn:03856728n

thin_cookie-like_deep-fried_pastry

bn:00120890n

traditional_mexican_dish

bn:00012818n

sweet_breakfast_food

breakfast_food

commercial_mix

mix

bn:00050065n
italian_baked_dish

spicy_powder

powder

bn:00874930n

fried_snack

traditional_danish_dessert

danish_dessert

dry_toast

toast

offal

sweet_bun

bun

bn:01399907n

noodle_soup_dish

cold_dessert

common_food

ceremonial_congee_dish

congee_dish

bn:02500965n

foodstuff

bn:00003735n

edible_seed

bn:03255299n

finnish_pastry

bn:00756312n

thick_tasty_soup

bn:01714480n

pasta

bn:00000279n

bn:00073072n

bn:03124805n

small_ring-shaped_friedcake

ring-shaped_friedcake

fermented_wheat_bran

wheat_bran

bn:00041697n

stews

cold_cut_dish

cut_dish

food_preparation

preparation

bn:01141381n

charcuterie

sweetened_breadlike_cake

breadlike_cake

soft_italian_cheese

french-styled_restaurant_chain

restaurant_chain

coffee

bn:00197605n

cream_flavor

cream_cone

cone

italian_sponge_cake

sponge_cake

flat_pastry

traditional_southern_breakfast_dish

southern_breakfast_dish

bn:03241864n

decorative_cake

south_indian_soup

indian_soup

bn:02079794n

small_french_cake

bn:02375308n

grilled_ham

austrian_pastry

chinese_bakery_product

bakery_product

bn:00079934n

thick_creamy_soup

creamy_potato_soup

thick_soup

french_soup

bn:03107663n

traditional_polish_doughnut

bn:00248792n

molded_ice_cream

popular_vegetable

vegetable

filipino_delicacy

nutlike_fruit

fruit

chopped_mixture

mixture

bn:01304309n

traditional_sweet_crisp_pastry

traditional_mori_bread

mori_bread

bn:00063913n

rich_loaf_cake

bn:00006815n

juniper-flavored_ham

good

bn:01544012n

bn:03038144n

meat_curry

fruit_cake

cornbread

cheese_cake

italian_traditional_easter_cake

traditional_easter_cake

regional_dish

bn:00034185n

bn:03354368n

small_potato

meat-based_sauce

catalan_dish

bn:02479978n

porridge

yellow_maize_flour

maize_porridge

bn:03765415n

diamond-shaped_candy

italian_salt-cured_ham

salt-cured_ham

cheap_snack_food

bn:00774511n

sourdough_bread

bn:01995440n

baked_french_dessert

thin_folded_waferfolded_wafer

yellow_condiment

condiment

bn:01799903n

bn:00052382n

traditional_dish

traditional_russian_soup

local_snack

south_indian_breakfast_dish

indian_breakfast_dish

sweet_toffee-like_dessert

toffee-like_dessert

okinawan_simple_pancake-like_dish

simple_pancake-like_dish

bn:02820184n italian_short-grain_rice

clear_russian_soup

bn:02795867n

jelly-like_dessert

italian_appetizer

appetizer

citrus-based_sauce

chopped_herb_condiment

herb_condiment

bn:01964206n

bean_soup

french_compound_sauce

compound_sauce

bn:00007619n

southern_italian_tomato_sauce

italian_tomato_sauce

bn:02895025n

classic_northern_italian_stew

spicy_horseradish_sauce

horseradish_sauce

seafood_dish

fermented_thick_vermicelli_soup

thick_vermicelli_soup

tuscan_soup

friedcake

aniseed_flavored_chewing_gum

flavored_chewing_gum

bn:01382379n

traditional_vegetable_dish

bn:00050183n

pancake

bn:01983377n

cows_milk_cheese

bn:02957361n

creamed_pea-tomato_soup

bn:03553521ncookie

savory_dish

japanese_dessert

non-dairy_beverage beverage

round_pocket_bread

pocket_bread

bn:03564496n

florentine_salad

bn:00048635n

bn:00443281n

sticky_sweet_delicacy

bn:00272120n

chili_pepper

hard_cheese

bn:00061148n

pepper

bn:02270145n

bagel_doughnut

circular_bread

bn:01592878n

flavored_liquid

seasoned_minced_meat

minced_meat

bn:00018641n

bn:00015692n

italian_coffee_drink

espresso

alsacian_recipe

recipe

lettuce

compound_french_sauce

french_sauce

french_stew

stew

side_dish

veal_cutlet

cutlet

bn:03749922n

noodle_soup

leavened_flour_bread

flour_bread

confectionery

bn:00052645n

bn:02639002n

bn:02215291n

traditional_south-eastern_finnish_dish

black-colored_chinese_sauce

chinese_sauce

bn:00556086n

popular_dessert

gourd-like_fruit

french_dessert

bn:00571555n

round_cake

dessert_cake

green_vegetable

popular_vietnamese_soup

vietnamese_soup

bn:00013201n

caramelized_sugar

leafy_salad_vegetable

salad_vegetable

bn:02885293n

simple_sauce

bn:00071034n

pie

bn:00040804n

leguminous_plant

black_sweet

plant_native

dark_brown-or_black-colored_chinese_sauce

brown-or_black-colored_chinese_sauce

butter

bn:01041017n

canadian_casual_restaurant_chain

bn:02963725n

calabrian_dish

bn:00857801n

cheese_noodle_dish_noodle_dish

bn:00869436n

fairtrade_chocolate_bar

semi-gelatinous_turkish_confectionery

turkish_confectionery

bn:03127838n

traditional_italian_pasta_sauce

bn:00355309n

milk_cheese

licorice_candy

bn:00816653n

saxon_dish

hot_drink

bn:00063565n
corn

bn:00370028n

pureed_tomato_sauce

bn:00060961n

small_meat_pie

breakfast_dish

tree

indian_lankan_breakfast_dish

lankan_breakfast_dish

bn:01499184n
easter_confectionery

matter

rape_plant

bn:00063576n

egg_batter

bn:01348132n

famous_goat_cheese

light_dumpling

dumpling

bn:03743786n

strong_tasting

bn:00018333n

light_cake

bn:02466410n

flavored_fruit_chewing_gum

traditional_christmas_dish

christmas_dish

afghan_rice_pudding

bn:01738370n

meat_pie

chocolate-covered_mint_candy

mint_candy

large_yellow_root

yellow_root

aromatic_spice

spice

bn:03673844n

starchy_libyan_food

high_quality_chocolate

quality_chocolate

bn:00078325n

edible_offal

latin-american_soup

seed

two-step_bread

bn:00982200n

bn:02704068n yeast-based_bread

frothy_drink

bn:03175538n

grain

spiced_porridge

bn:00015878n

casual_restaurant_chain

bn:03867653n

staple

african_staple

staple_dish

fresh_cheese

bn:03131349n

pastry_dessert

polish_doughnut

doughnut

staple_soup

reproductive_body

body

mild_white_italian_cheese

white_italian_cheese

bn:01860158n

bn:01599893n

traditional_eastern_nigeria_dish

goat_cheese

popular_indian_vegetarian

indian_vegetarian

bn:00621753n

hard-shelled_seed

bn:00545725n

round_flat_unleavened_bread

italian_pasta

gravy

cylindrical_cake

bn:00071413n

flatbread_wrap

wrap

bn:00535015n
peanut_butter

sweet_pastry

italian_sauce

bn:03491173n

buckwheat_flour

bn:01738341n

italian_blue_cheese

blue_cheese

bn:02883146n

bn:01041593n

combination_meal

traditional_georgian_bread georgian_bread

catalan_pastry

bn:02474430n

baked_corn_snack

bn:03801882n

layered_cake

flat_oven-baked_italian_bread

oven-baked_italian_bread

baked_greek_meat_dish

greek_meat_dish

bavarian_cheese_delicacy

cheese_delicacy

bn:03689563n

strong_liquorice_candy

tuber_native

native

cereal_porridge

plant_matter

bn:00077692n

thin_unleavened_pancake

bn:03700643n

french_restaurant

bn:00320868n

spicy_gravy

scottish_delicacy

southern_italian_dish

italian_dish

popular_noodle_dish

noodle_dish

bn:00059258n

bottled_juice

bn:01910249n

bruneian_dish

bn:01372960n
iranian_cuisine

bn:03270829n

bn:00410940n chocolate_powder

bn:01905612n

flat_bread

traditional_tea_bread

tea_bread

bn:01249560n

traditional_irish_dish

tangy_salty_italian_pasta_dish

salty_italian_pasta_dish

traditional_iranian_treat

iranian_treat

russian_cold_soup

cold_soup

polish_soup

bn:00281969n

tibetan_staple_foodstuff

malted_bread

bn:00020911n

greek_baked_pasta_dish

baked_pasta_dish

kale

bn:03636829n

mildly-sweet_roll_bread

bn:03113811n

goat_milk_cheese

pungent_bottled_sauce

flat_tortilla

tortilla

french_cake

bn:02217171n

popular_soup

sugar

rich

bn:00716222n

traditional_italian_dessert

bn:03102329n

classic_french_sauce

rice

popular_brazilian_snack

brazilian_snack

bn:00009754n

rice_milk

milk

flat_ring-shaped_cake

squash

bn:03749045n

southern_german_dish

bn:03610734n

bn:00763607n

common_dish

mexican_snack_cake

snack_cake

small_edible_fruit

edible_fruit

bn:00081675n

sandwich

bn:00024134n

griddle_cake

thick_soft_cake

bn:03875064n

italian_dessert

relish

bn:00627304n

sweetened_delicacy

bn:00024129n

fried_pastry

curry-like_beef_soup

beef_soup

bar

bn:03550802n popular_milk_beverage

popular_filipino_dessert

bn:03253827n

bn:00075805n

spicy_hot_sauce

brand

spicy_sauce

bn:00015843n

biennial_plant

eurasian_plant

bn:03434124n

typical_food

casserole/pasta_dish

bn:01774563n

small_swedish_sausage

mediterranean_herb

bn:03161832n

ukrainian_bread

snack_cracker

cracker

steak

bn:02550725n

modified_potato

bn:01951537n

sweet_specialty

bn:03836750n

typical_breakfast_soup

bn:00063625n

bn:01106595n

traditional_cassava_flatbread

liquor

german_dessert

trademarked_dessert

sturgeon

bn:00330737n

herbaceous_perennial_plant

sweet_crisp_pastry

bn:01803328n

bread_soup

white_icing

icing

bn:03527377n

vegetable_soup

bn:03472437n

soft_thin_flatbread

bn:03319114n

ice_cream

maldivian_breakfast

bn:00020319n

low-fat_component

bn:00053372n

dried_latex

latex

tasty_soup

bn:00067058n

cooked_sauce

bn:00249245n

popular_breakfast_dish

bn:01976301n

traditional_sicilian_bread

chocolate-flavoured_paste

paste

bn:00002184n

bn:00823763n

south_american_crunchy_bread

british_breakfast_dish

scottish_dish

bn:03389409n

chocolate_syrup

traditional_ukrainian_bread_roll

ukrainian_bread_roll

traditional_roman_dish

roman_dish

bn:03256194n

bn:02476503n

typical_brazilian_dessert

cornish_dish

pakistani_indian_snack_food

indian_snack_food

course_dinner_dish

dinner_dish

bn:00036525n

cooked_dish

corn-based_snack

bn:00053312n

syrup

maize_flour

bn:02675118n

ham

mashed_potato_dish

potato_dish

bn:03269898n

romanian_basic_food

basic_food

bn:03420954n

bn:02288304n

sweet_semolina_dessert_porridge

bn:03843784n

bn:00553725n

unpasteurized_natural-rind_french_goat_cheese

natural-rind_french_goat_cheese

treelike_plant

bn:00012300n

whole_grain_flour

dark_steamed_bread

potato_salad

typical_dessert

bran

bn:00018643n

drop_cookie

bn:00040043n

nettle_yielding_fiber

south_asian_bread

asian_bread

small_cafe

cafe

open_pie

sweetened_milk

indonesian_chicken_congee

chicken_congee

bn:00064334n

southwestern_asian_plant

bn:02618465n

preparation_utensil

utensil

italian_bread

bn:02419038n

italian_white_bread

baked_potato_dish

bn:00917279n

popular_breakfast_food

bn:01695420n

beef

bn:01620342n

breakfast_sandwich

sumerian_twice-baked_barley_bread

twice-baked_barley_bread

parsley

bn:00066231n

vegetable_stew

traditional_french_provençal_stewed_vegetable_dish

beer

crop_potato

oval_nut

nut

batter_cake

creamy_french_cheese

bn:00048218n

bn:02502385n

bn:03569856n

chinese_fried_dough_food

fried_dough_food

bn:03633746n

bn:03186043n

japanese_fish-shaped_cake

fish-shaped_cake

classic_pasta_dish

pasta_dish

bn:03261004n

bn:00034186n

bn:00078638n

large_poultry_bird

climbing_vine

vine

sweet_italian_dish

semisweet_whole-wheat_cracker

whole-wheat_cracker

bn:00037348n

compound_butter

bn:03610972n

bn:00859915n

dutch_waffle

bn:02817553n

american_popcorn_retailer

sausage-like_food

dense_white_bread

root_vegetable

bn:00016491n

nigeria_dish

bn:00923229n

traditional_portuguese_bread

portuguese_bread

irish_yeasted_bread yeasted_bread

bn:00055431n

english_soup

latin_american_fast_food_dish

american_fast_food_dish

bn:00067802n

tubular_pasta
short-lived_antacid_gum

antacid_gum

northern_italian_stew

italian_stew

vegetable_salad

french_canadian_meal

bn:00022650n

dried_seed

bn:00056640n

hard_aromatic_seed

small_grey_seed

grey_seed

italian_yeast

yeast

bn:03735655n

silesian_bread_soup

bn:03321370n

traditional_ready-to-eat_indian_sweet

bn:00037561n

tomato-based_vegetable_soup

cold_spanish_soup

bn:02920890n

german_country_breakfast_dish

bn:01397126n

yellow_chicken_soup

allium_sativum

sativum

bn:00672486n

irish_potato

bn:00015936n

pungent_aromatic_spice

bn:01277274n

bn:00022769n

bn:03307320n

bn:00324342n

bn:01910112n

hawaiian_dessert

leg_dish

sheep_milk

wafer_candy

bn:01136916n

small_compound_sauce

bn:02875309n

thin_slice

slice

bn:00568428n

bn:03551736n

milky_liquid

bn:00439295n

traditional_masa-based_mexican_hot_drink

bn:00024386n

semolina_dessert_porridge

heavy_sweet_rye_bread

sweet_rye_bread

bn:01006714n

fruit_roll

bn:00937015n

classic_provencal_stew

bn:00055552n

bn:00072369n

erect_herb

bn:00022724n

hash

bn:01881420n

traditional_street_food

europe_pastry

ground_meat

bn:00022688n

brownish-yellow_oil

oil

bn:00265880n

icelandic_rye_flatbread

rye_flatbread

bn:00041139n

veined_italian_blue_cheese

bn:01718427n

used_sandwich

bn:02057467n

staple_food

bn:00660554n

italian_seafood_dish

bn:00018801n

bn:00080312n

kitchen_appliance

savoury_pancake

bn:00036437n

vinegar

dominican_traditional_side_dish

malaysian_soup

layered_breakfast_dish

bn:01049200n

fish_soup

coffee_drink

dairy-based_beverage

bn:00730850n

italian_egg-drop_soup

bn:00017556n

traditional_bread

bn:01005369n

deep-fried_ball-shaped_doughnut

bn:00045726n

ice

bn:03488412n

water

bn:01851970n

fried_bread

meringue-based_dessert

watery_porridge

spread

bn:00010209n

small_roll

flat_bread_roll

sweet_baked_egg-and-flour_dish

baked_egg-and-flour_dish

english_dish

afghan_soup_dish

bn:00059456n

bn:00069350n

liquid_food

flavorful_relish

bn:00055226n

diluted_vinegar

bn:00936373n

chilean_cake

bn:00926245n

bn:00055897n

bn:01300615n

bn:03201690n

convenience_food

philippine_soup

bn:03356205ntraditional_bavarian_sausage

boiled_sausage

bn:02330209n

hungarian_dessert

italian_sausage

flavoring

leafy_green_vegetable

bn:03230510n

traditional_dutch_dish

bn:01330086n

bn:02225976n

popular_baked_snack_cracker

bn:00013870n

small_bread_roll

bn:03703865n

variety

indian_preparation

bn:02154736n

bn:01905551n

hot_alcoholic_beverage

bn:03764676ntypical_south_indian_snack

bn:02297126n

british_sauce

bn:00309817n

chinese_soup

egg-drop_soup

hard-shelled_oval_nut

bn:03439853n

bn:00588894n

refrigerated_sum_dessert

bn:00068832n

powdery_starch

powdered_starch

bn:03217426n

african_spice

bn:00072953n

traditional_maize_meal_dish

maize_meal_dish

bn:00029918n

romanian_round_bread

round_bread

bn:01538332n

regional_culinary_specialty

bn:02737837n

country_group

group

north_malabar_delicacy

malabar_delicacy

bn:00065895n

yielding_fiber

bn:00023751n

buttery_flaky_bread_roll

french_pastry

crescent-shaped_biscuit

flaky_roll

bn:00043237n

bn:00072921n

popular_spanish_cold_soup

spanish_cold_soup

small_sponge_cake

lithuanian_national_dish

bn:00040503n

sweet_food_product

bn:00015236n

bn:00373496n

sour_soup

popular_levantine_food

levantine_food

bn:00024425n

chocolate-coated_marshmallow_treat

marshmallow_treat

bn:03256379n

popular_vegetarian

layered_dessert

bn:01049009n

gruel

bn:00041994n

thin_porridge

thin_watery_porridge

bn:00077433n

dinner

bn:00560642n

plain_flour_cake

flour_cake

breakfast_cereal_dish

cereal_dish

curry

flatbread

traditional_maize-based_american_food

maize-based_american_food

swedish_country_group

bn:03495930n

bn:01447491n

raw_vegetable

bn:00008449n

soft_bread_roll

small_round_piece

jellied_candy

bn:01884568n

bn:01434115n

american_dish

bn:00010697n

bn:00053311n

traditional_sweetener

spicy_spreadable_sausage

spreadable_sausage

spicy_dish

substantial_breakfast_meal

breakfast_meal

caribbean_fruit

bn:01481121n

everyday_finnish_dish

christmas_treat

baked_good

famous_alsacian_recipe

typical_florentine_peasant_dish

florentine_peasant_dish

chocolate_beverage

french_savoury_dish

fried_type_food

type_food

bn:01127378n

soft_cake

tart_georgian_sauce

georgian_sauce

round_dessert_cake

sweet_yeast-raised_roll

offering

chocolate_drink

bn:03704174n

famous_austrian_dessert

bn:00007850n

hotel_breakfast

bn:00075558n

apple_juice

sharp-flavored_italian_cheese

sweetener

terrestrial_snail

snail

bn:02101299n

bn:03768126n

popular_soup_item

genuine_italian_pasta

bn:00023722n

custard

bn:03147042n

traditional_baked_potato_dish

bn:00002903n

goan_curry

spicy_tangy_salty_italian_pasta_dish

bn:02193129n limburgian_pastry

bn:03379046n

french_blue_cheese

bn:03616360n

simple_white_sauce

italian_american_pasta_dish

american_pasta_dish

white_wheat_bread

wheat_bread

dessert_dish

country_breakfast_dish

flat_round_cake

beef_steak

bn:00529935n

soured_cream

bn:00183215n

quenelle

french_food_dish

bn:01126624n

greek_savory_pastry

wholemeal_bread

chicken_broth

bn:00062748n

restaurant

victorian_british_breakfast_dish

bn:02795825n

skinned_potato

soft_goat_cheese

creamy_soup

bn:00023969n

spiced_sweet_bun

light_italian_dish

deep-fried_flatbread

bn:00061183n

bn:00284956n

sweet_chewy_sponge_cake

bn:01500560n

korean_porridge

astringent_fruit

bn:02351501n

bn:02942973n

fried-dough_pastry

bn:01152704n

first_early_potato

early_potato

bn:01994680n

popular_dish

bn:02932627n

spice_cake

baked_chocolate_cake

waffle

bn:03618238n

stiff_porridge

bn:00136966n

famous_dish

bn:00023560n

thin_pancake

small_thin_pancake

bn:00075572n

bn:03223587n

rich_sweet_roll

bn:03306160n

bn:02540029n

dutch_food_item

swiss_pastry

fruit_chewing_gum

bn:03491371n

traditional_breakfast_food

bn:03188443n

flat_potato_dish

british_tablet_confectionery

tablet_confectionery

bn:00499312n

bn:00884753n

outer_pod

pod

bn:01662690n

chain

baked_specialty

specialty

bn:03434084n

savory_bread

bn:00068962n

yeast_bread

traditional_danish_dish

roe

bn:03265374n

bn:00028238n

deep-fried_piece

bn:03498364n

popular_indonesian_tamarind_dish

bn:03460387n

herb_cheese

croatian_pastry

bn:00068652n

flavored_rum

rum

bn:01363548n

popular_philippine_dessert

bn:03613823n

traditional_normandy_bread

bn:00147261n

bn:03362216n

pressed_cheese

bn:00026132n

rich_brown_sauce

soft_flavoured_candy

ancient_roll_pastry

roll_pastry

yeast_pastry

bn:00017606n

sparkling_white_wine

sparkling_wine

chip_flavor

flavor

bn:02489145n

dipping_sauce

bn:00144929n

bn:02300365n

bn:00036432n crusty_sourdough_bread

stick-shaped_roll

bn:00069730n

small_british_quick_bread

classic_acidic_sauce

acidic_sauce

japanese_condiment

flat_cut

cut

south_indian_snackindian_snack

bn:00061215n

bn:02846757n

typical_salad_dish

bn:00058183n

chewy_candy

hot_sauce

annual_legume

legume

loaf_cake

bn:00989881n

gum

item

african_berber_dish

berber_dish

thin_unleavened_bread

unleavened_bread

bn:00002794n

bn:00042973n

biscuit

bn:00013541n

traditional_english_dish

cabbage

skewer

bn:02304647n

grape_tomato

brittle_candy

dip

british_quick_bread

cereal_food

bn:01107725n

pork

bn:01358796n

italian_food

seasoning

bn:00010137n

traditional_north_american_pie

north_american_pie

bn:03517225n

bn:03831274n

traditional_acadian_dish

acadian_dish

breton_cake

substitute

indian_annual_erect_herb

annual_erect_herb

tomato

thick_white_liquid

white_liquid

typical_chilean_cake

bn:03667314n

aromatic_rusk_bread

bn:00036004n

crisp_cookie

fillet

bn:00052536n

bn:02349083n

bn:01190962n

bn:00015735n

traditional_scottish_fruit_cake

scottish_fruit_cake

bn:03467049n

mexican_rice_milk

bn:00075211n

bn:03228103n

wide_variety

bn:02851932n

romanian_traditional_sour_soup

bn:03434416n

australian_snack_food

bn:01042086n

crisp_wafer

wafer

dessert_wine

bn:01088670n

pastry_dough

bn:03537708n

bn:03895151n

fruit-flavoured_taffy_candy

chinese_indonesian_frog_leg_dish

indonesian_frog_leg_dish

flat_unleavened_indian_bread

unleavened_indian_bread

bn:02025291n

popular_condiment

bn:00868075n

firm_cheese

bn:03591213n

chewy_translucent_jelly-like_food_product

bn:00281011n

bn:00589582n

bn:01405705n

traditional_italian_pasta_dish

pudding-like_dish

bn:00002899n

yeast-leavened_sweet_bun

bn:03851471n

sweet_soup

crisp_stick-shaped_roll

poultry_bird

warm_dip

liquid

bn:00009345n

yeast-raised_pastry

mayonnaise-based_product

bn:00514438n

simple_potato_preparation

bn:01786044n

bn:00061480n

bn:03203352n

light_sponge_cake

scottish_soup

mustard_sauce

bn:01952777n

crisp_fried_potato

fried_potato

bn:01349735n

bn:00644051n

bn:02647058n

norwegian_sweet_bread

bn:01449855n

traditional_chinese_food

bn:02964952n

main_course_dinner_dish

american_pie

bn:00010721n

bn:01879290n

type_bread

bn:03174436n

pancake-like_indian_pastry

bn:00361947n

traditional_sour_soup

braided_yeast_pastry

bn:00013432n

salvadoran_soup

bn:00572274n

thin_crisp_wafer

bn:00014477n

theobroma_cacao

cacao_tree

malay

bn:00079554n

bn:01568578n

french_steak_dish

rye_bread

bn:03129612n

small_round_sweet_rice_cake

bn:03117446n

original_fruit_roll

bn:02380842n

ordinary_leavened_bread

bn:02028647n

popular_novelty_pizza

coarse_eurasian_plant

bn:00064026n

bn:00512762n

clear_fish_broth

fish_broth

bn:03547214n

diner_specialty

bn:00013762n

popular_breakfast_meal

bn:00683162n

traditional_ukrainian_bread

sicilian_bread

toffee

typical_soup

bn:03419353n

bn:03379328n

simple_bread

staple_foodstuff

bn:01838315n

fruit-flavored_candy

bn:00018645n

bn:01215888n

italian_fried_type_food

onion_soup

bn:00035579n

pate

canadian_snack_food

bn:01682529n

bn:03326096n

italian-american_soup

rice_dish

bn:03479164n

vegetarian

bn:01258372n

hungarian_curd_cheese_noodle_dish_noodle_dish

passover_bread bn:00060695n

bn:00070257n

bn:00020612n

bn:03749370n

nicaraguan_dessert

bn:00028695n

cocktail

bn:03779521n

bn:00063313n

yellow_maize

cornmeal

bn:00081816n

bn:02930654n

bn:01366917n

bn:03773498n

cod

crepe

bn:03049039n

hungarian_candy

popular_brown_sauce

brown_sauce

bn:01823031n
traditional_cuisine

bn:00185395n

fluffy_dish

double-crust_meat_pie

bn:03591574n

traditional_soft_unpasteurized_natural-rind_french_goat_cheese

hot_breakfast_cereal_dish

bn:03731960n

milk_pudding

bn:00079800n

bn:01624293n

hearty_salvadoran_soup

bn:01300844n

moist_quick_bread

quick_bread

bn:00617563n

viennoiserie_sweet_roll

bite-sized_cookie_snack

cookie_snack

bn:03561515n

multilayered_cake

goats-milk_cheese

bn:03659166n

complex_butter-based_sauce

rich_dessert_sauce

dessert_sauce

inexpensive_snack_food

bn:00160016n

marshmallow_candy

bn:00015006n

rich_soft_creamy_french_cheese

cow_milk_cheese

cacao

bn:00744578n

chinese_dessert

bn:02929517n

southern_cuisine

bn:02618469n

mashed_potato

bn:03528568n

bn:01500570n

traditional_snack

bn:00277871n

layered_chocolate_cake

odorless_starch

starch

italian_dop_cheese

dop_cheese

sweet_rice_cake

bn:00352790n

traditional_ham_dish

cut_cabbage

commercial_bakery

bakery

bn:00306380n

salt-cured_beef_fillet

beef_fillet

bn:01416492n

social_gathering

cooked_ground_meat

bn:00400697n

nicola_pizza

bn:02679139n

bn:00048132n
lean_meat

ham_dish

bn:01006696n
italian_snack_food

fish_sauce

bn:00009952n

tropical_asian_plant

bn:00056221n

bn:01647628n

chocolate_flavored_milk

flavored_milk

bn:00065189n

leguminous_crop

annual_leguminous_crop

bn:01356732n

bn:00880565n

moroccan_doughnut

bn:00576561n

traditional_flatbread

creamy_salad_dressing

salad_dressing

italian_soup

traditional_british_cake

british_cake

fermented_crepe

bn:00018298n

chicken

dessert_pie

bn:02964985n

bn:02734738n

famous_traditional_scottish_fruit_cake

bn:02131478n

cotton_candy

bn:00766663n

bn:03565973n

layer_cake

bn:00874225n

australian_savoury_snack

milk_italian_cheese

wheat_flour

bn:01600363n

lebanese_almond-semolina_cake

bn:01026438n

container

thin_batter_cake

culinary_dessert_specialty

dessert_specialty

austrian_cake

horseradish

food_dish

bn:00002898n

young_onion

onion

bn:00078763n

american_snack_cake

bn:03249248n

bn:03400462n

spice_mixture

rich_jamaican_cake

jamaican_cake

cocoa_powder

german_dish

bn:02514526n

colombian_potato_soup

korean_pressed_fish

bn:00006223n

bn:02007626n

bn:03865944n

bn:03801647n

popular_chinese_dessert

milk_beverage

edible_part

part

peruvian_dessert

bn:00068688n

custard-like_dessert

chinese-inspired_snack_food

bn:01664532n

sweet_caramel_sauce

caramel_sauce

bn:00834114n

large_annual_leafy_vegetable

annual_leafy_vegetable

rich_yeast-leavened_sweet_bun

bird

popular_milanese_sweet_frothy_drink

milanese_sweet_frothy_drink

clear_liquid

bn:00552023n

bn:02845052n

thing

bn:02475403n

fermented_fish_sauce

bn:00008020n

important_food

bn:02022640n

bn:00012814n

tall_cereal_grass

bn:00256815n

traditional_first_early_potato

bn:00687798n

molded_chocolate_candy

bn:00013411n

bn:00048115n

bn:00887201n

traditional_korean_pressed_fish

small_yeast_cake

yeast_cake

bn:03529587n

bn:02400088n

typical_maldivian_breakfast

culinary_food

bn:00017785n

delicatessen

georgian_soup

bn:01808142n

creamy_cheesy_mixture

baked_cornbread

french_candy

bn:00054237n

traditional_soft_armenian_bread

soft_armenian_bread

bn:00049673n

small_finger-shaped_sponge_cake

schlager

bn:01253850n

holy_bread

bn:03738424n

hot_appetizer

chocolate_flavor

bn:01985162n

open_sandwich

bn:00020320n

large_hard-shelled_oval_nut

bn:03392278n

sweet_almond-flavored_milk

almond-flavored_milk

luxury_food

bn:00979136n

traditional_polish_soup

melted_butter

bn:00053194n

chowder

bn:00058933n

bn:00169964n

sweet_food_delicacy

food_delicacy

bn:03252244n

whey_cheese

fast_food_dish

bn:00920987n

bn:03889863n

bn:02496458n

traditional_meat_broth

meat_broth

translucent_jelly-like_food_product

savoury_sauce

bn:02094282n

dark_bread

norwegian_porridge

gathering

traditional_sweet_dessert

sweet_dessert

bn:00080649n

edible_aquatic_perennial_plant

aromatic_seed

bn:03776694n

crunchy_savoury_snack

bn:00068368n

traditional_porridge

baked_dessert

kong-style_bread

simple_recipe

bn:00075563n

dicotyledonous_plant

snack_mix

italian_pasta_sauce

pasta_sauce

bn:01134043n

bordelaise_sauce

culinary_specialty

bn:00029914n

oval_reproductive_body

ordered_dish

masa-based_mexican_hot_drink

bn:00727755n

sweet_beverage

bn:03581127n

american_food

bn:03133986n

spicy

sweet_frothy_drink

bn:00018653nsweet_chocolate

small_coconut_cake

coconut_cake

french_confectionery

bn:02388357n

bn:03120002n

bn:00475060n

seafood

bn:03139800n

indonesian_sauce

croatian_dessert

bn:01350015n

sweet_meringue-based_confectionery

meringue-based_confectionery

bn:00055687n

wine

popcorn_retailer

bn:00057980n

string

shop

bn:00903952n

bn:03461205n

typical_dish

cultivated_american_plant

american_plant

tamarind-flavored_candy

bn:00004278n

seed-like_fruit

cow_cheese

bn:00004070n

fibre

batter-based_cake

bn:00248501n

food_container

bn:02523876n

spicy_cured_pork_product

bn:02288516n

bn:00062619n

edible_nutlike_fruit

bn:02586046n

spicy_curry-like_beef_soup

cuisine_soup

raw_food

bn:00058422n

platki oat

bn:00055138n

traditional_indian_candy

indian_candy

bn:00050688n

israeli_chocolate_candy

bn:01505165n

sweet_traditional_hungarian_cake

cookie-like_deep-fried_pastry

bn:03249775n

typical_traditional_dish

bn:00022678n

bn:03560505n

bn:02824555n

poverty_food

national_bulgarian_dish

bulgarian_dish

bn:00269756n

bn:01815601n

doughnut_treat

indian_bread

white_sauce

bn:03826008n

bn:02070499n

bn:00550530n

dark_sweet_dense_condiment

italian_yeast_bread

pork_product

small_round_bread

french_flemish_dish

flemish_dish

bn:00059608n

eggnog-like_alcoholic_beverage

alcoholic_beverage

southern_food

tropical_cake

bn:00063829n

meat_dish

popular_food

common_latin-american_soup

italian-style_dish

bn:01416216n

bn:03233047n

bacon-flavoured_corn-based_snack

indian_pastry

bn:00325195n

bn:00010458n

cured_meat

tuberous_plant

bn:00012401n

clear_seasoned_broth

based_sauce

creamy_white_sauce

mild_tasting_vegetable_oil

bn:00601784n

bn:00053886n

bn:03702269n

italian_custard-based_dessert

custard-based_dessert

baked_snack_cracker

french_provençal_stewed_vegetable_dish

provençal_stewed_vegetable_dish

western_norwegian_traditional_dish

norwegian_traditional_dish

canadian_dish

bn:03557745n

local_specialty

bn:00014565n

espresso_coffee

strong_espresso_coffee

bn:03078002n

native_american_food

sweet_pie

bn:01875299n

bn:00068904n

creamy_yellow_condiment

chocolate_caramelcaramel

bn:00856995n

famous_tuscan_soup

bn:00017324n

coarse-ground_edible_part

bn:00008268n

tropical_treelike_plant

small_double-crust_meat_pie

light_fruit_cake

bn:00058341nlarge_hard-shelled_seed

bn:00225823n

traditional_scottish_dish

indian_flat-bread

flat-bread

bn:03790019n

popular_south_indian_breakfast_dish

bn:00262690n

traditional_soft_norwegian_flatbread

hard_salty_italian_cheese

light_fluffy_dish

glucose-based_confectionery

bn:00580913n

leavened_bread

bn:03890342n

tea

bn:00037049n

boned_poultry

uzbek_pasta_dish

unleavened_passover_bread

bn:03605627n

onion-flavored_corn_snack

catalan_fresh_cheese

bn:03106775n

traditional_dessert

bn:00292689ntraditional_neapolitan-italian_cold_cut

traditional_italian_cold_cut

small_brown_sauce

swiss_dish

powder_condiment

bn:02740762n

lamb

cake_dessert

bn:02253568n

bn:00680724n

pink_soft_drink

bn:01728417n

bn:02017850n

bn:00056703n

bn:00800688n

american_baked_good

australian_soda_bread

soda_bread

red_wine

typical_party_candy

party_candy

bn:02848798n

primary_staple_food

bn:00757962n

cinnamon-flavored_chewing_gum

bn:00381722n

crumb

extra_sour_bubble_gum

sour_bubble_gum

simple_german_cake

german_cake

jewish_snack_food

aged_salami

salami

indonesian_tamarind_dish

savory_soup

traditional_australian_soda_bread

rich_round_sweet_roll

round_sweet_roll

berber_soup

bn:02283325n

bn:00041273n

soft-ripened_pungent_cheese

pungent_cheese

bn:03211590n

stretched-curd_cheese

bn:01141771n

classical_french_sauce

congee

bn:00018650n

liquid_mass

pure_chocolate

sausage_snack

bn:00549610n

key_seasoning

indian_cuisine_dish

cuisine_dish

combination

ready-to-eat_indian_sweet

indian_sweet

bn:03444629n

bn:03693255n

first_candy

easter_cake

dry_sharp-flavored_italian_cheese

soft_creamy_french_cheese

popular_submarine-style_sandwich

submarine-style_sandwich

baby_food_product

bn:00073977n

soft_norwegian_flatbread

bn:03765884n

hungarian_cake

tomato_sauce

vietnamese_dessert

baguette

malaysian_fritter_snack

fritter_snack

component

traditional_swedish_cake

swedish_cake

bn:02661051n

puff

savoury_food

cream

bn:00014297n

bavarian_sausage

bn:00607397n

german_soup

bn:00667332n

bn:00005281n

bn:01225884n

hamburger

bn:03681080nfritter-type_snack

veal

bn:01151021n
thick_french_soup

swedish_dish

bn:01372205n

filipino_soup

crust_dish

taffy_candy

ribs_soup

money

unsweetened_brown_powder

brown_powder

bn:00049340n

bn:00696107n

midwestern_diner_specialty

thin_crisp_cake

mixed_drink

bn:01164070n

thick_stew

bn:00552725n

popular_bread

bn:03428825n

bn:00011102n

chinese_soup_dish

traditional_breakfast_dish

bn:01239356n

thin_bread

frozen_dessert

sum_dessert

light_pastry_dough

banana_cake

bn:03882994n

wheaten_yeast_bread

bn:03177992n

popular_noodle_soup

bn:00581639n

american_crunchy_bread

crunchy_bread

small_serving_beer

serving_beer

small_restaurant

bn:02235604n

bn:00034828n

bn:01065065n

chocolate_liquor

bn:01424517n

raw_beef

bn:03114160n

cheese-flavored_cheese_puff

cheese_puff

bn:01551302n

traditional_french_recipe

bn:00019064n

bn:00012400n

seasoned_mediterranean_soup

bn:00288692n

bn:03167215n

viscera

onion_sauce

vegetarian_dish

bn:03084490n

dosa-like_dish

thick_sweet_caramel_sauce

bn:00052529n

small_biscuit-like_cake

biscuit-like_cake

bn:00056265n

mulled_wine

wine_red_wine

bn:02950974n

bn:00077754n

bn:01983482n

maize

ice-cream

doughnut_retailer

bn:00679153n

bn:03458136n

bn:02576200n

bn:00910686n

common_noodle_soup

bn:00012873n

bavarian_cake

almond-semolina_cake

peasant_dish

bn:01606300n

bn:00152236n

bn:01298604n

bn:03819445n

liked_chewing_gum

bn:00662360n

sweet_delicacy

thin_spaghetti

spaghetti

french_recipe

nepalese_noodle_soup

hong_kong-style_bread

bn:00012054n

bn:00928186n

crepe-like_bread

aquatic_perennial_plant

appetite-suppressant_candy

breakfast_pastry

bn:03668743n

brown_mustard_sauce

bn:01132694n

bn:00048828n

chocolate_milk

bn:00043102n

bn:01036717n

cinnamon_candy

chicken_casserole

brown_seed

philippine_dessert

bn:00035102n

traditional_norwegian_unleavened_bread

bn:02236023n

short_fat_rustic_pork_sausage

fat_rustic_pork_sausage

pea-tomato_soup

french_stick_loaf

stick_loaf

bn:00062641n

bn:01524598n

bn:00305955n

bn:00528579n

provençal_sauce

bn:03557039n

classic_everyday_italian_yeast_bread

everyday_italian_yeast_bread

fudge-like_candy

bn:00077542n

thick_sauce

bn:00066181n

bn:01647191n

bn:01666570n

sweet_food

cassava_flatbread

bn:03606876n

bn:03149888n

traditional_sweet_sauce

sweet_sauce

round_piece

balsamic_vinegar

northern/central_italian_recipe

italian_recipe

thin_flat_unleavened_cake

flat_unleavened_cake

dutch_dish

vietnamese_noodle_soup

rice_flour

spicy_seafood

luxemburgish_bean_soup

chewy_sponge_cake

appliance

bn:03335438n

bn:01020427n

starter

savory_pastry

popular_ghanaian_snack_dish

ghanaian_snack_dish

jelly-like_food_product

egg-and-flour_dish

bn:01326722n

bn:03233168n fruitcake

delight_confectionery

hearty_british_soup

herb_sauce

bn:01026597n

asian_plant

bn:00059999n

vegetable_dish

bn:00065686n

savory_open-faced_crust_dish

smoked_ham

bn:02692078n

bn:00079557n

bn:00583059n

inexpensive_food_counter

food_counter

bn:03686417n

thick_rou_soup

rou_soup

bn:03391858n

rich_stew

baked_product

bn:03623303n

coca-cola-flavored_batter

bn:00019416n

inexpensive_bar

european-style_restaurant

stewed_vegetable_dish

bn:01198287n

spherical_confection

spice_bread

hard_white_icing

thick_scottish_soup

bn:03414450n

frozen_breakfast_pastry

bn:03227302n

bn:00022773n

thick_cornmeal

rice_gruel

breton_dish

bn:00045722n

bn:00014256n

edible_sweet_syrup

sweet_syrup

bn:00972032n

bn:01304733n

mass

norwegian_flatbread

bn:03654091n

rich_soup

chinese_condiment

lebanese_vegetable_dish

bn:03374774n

national_bread

tapioca_snack

bn:00941542n

traditional_hungarian_cake

bn:00063583n

oilseed

bn:00036711n

sweet_spiced_porridge

hulled_corn

brazilian_dessert

bn:00014478n

bn:00056515n

bn:02842335n

sour_candy

eastern_nigeria_dish

boneless_pork

bn:00268259n

bn:01230201n

bn:03327369n

perennial_plant

bn:00960379n

christmas_dessert

starchy_food

rustic_cheese

white_bean_dish

bean_dish

creamy_white_cheese

white_cheese

special_chocolate_drink

traditional_italian_sweet_yeast_bread

italian_sweet_yeast_bread

bn:00154819n

bn:00015227n

potato_soup

bn:01319735n

bn:00056178n

bn:00165555n

soft_drink

bn:03147995n

fermented_cereal_porridge

bn:02467339n

bn:00018370n

mixed_salad

bn:01047718n

semifreddo_dessert

bn:03744838n

cold_sauce

bn:00642937n

frog_leg_dish

bn:00285637n

french_cheese_spread

bn:03359702n

butter-based_sauce

pancake-like_dish

perennial_legume

bn:00018239n

flavoured_preparation

bn:03583175n

typical_appetizer

bn:03666389n

ethiopian_celebration_bread

goat_soup

bn:03489094n

bn:01686407n

indian_dessert

bn:03707159n

chocolate-covered_candy

bn:01558657n

bn:03257950n

fiber

bn:02363862n

small_thin_crisp_cake

bn:03290110n

bn:03750668n

puffed_snack_food

bn:03431549n

licensed_dog_treat

romanian_sponge_cake

short-grain_rice

bn:03436915n

edible_annual_plant

bn:02438070n

bn:00719511n

fruit_dish

greek_cake

bn:00528401n

cheesy_mixture

bn:00582230n

rich_vegetarian_dish

bn:02139682n

bn:01707876n

bn:00438673n

vermicelli_soup

bn:00060981n

bn:00525135n

popular_street_food

bn:00005774n

pungent_condiment

bn:00051125n

chewy_caramel

bn:02758613n

soup_item

bn:00066066n

bn:03326472n

chicken_soup

bn:00010696n

small_bread

bn:03272557n

king_cake_pastry

cake_pastry

bn:00034073n

bn:00036467n

raised_doughnut

bn:03872238n

traditional_luxemburgish_bean_soup

steamed_bread

bn:01293521n

bn:00031560n

edible_terrestrial_snail

african_food

bn:02083110n

bn:02965041n

jellied_stew

bn:00023528n

sausage-shaped_thing

unleavened_pancake

chocolate_bar

informal_restaurant

bn:01501444n
puff_pastry

plant_tuber

tuber

novelty_pizza

bn:02208000n

traditional_soup

bn:02147274n

bn:00020325n

grain-like_crop

crop

dessert_foods

bn:00346218n

popular_chicken_soup

bn:00912991n

bn:03466940n

czech_cuisine_soup

bn:03566939n

flavorless_colorless_odorless_starch

colorless_odorless_starch

dough_food

bn:00015208n

apple

filling_soup

snack_dish

garlic_bread_appetizer

bread_appetizer

bn:00014632n

bn:03330278n

bn:03228854n

bn:02231418n

chilean_dumpling

soft_unpasteurized_natural-rind_french_goat_cheese

bn:00081017n

thick_cream

bn:02883523n

bn:00355669n

bn:03837202n

bn:01372208n

bn:01890074n american_chocolate_beverage

bn:00035101n

bn:02431596n

bn:00143296n

peanut_butter-flavored_snack

bn:02416293n

stuffed_pastry

bn:01822211n

armenian_bread

chilean_fish_dish
fish_dish

bn:01790135n

oil-rich_seed

breakfast_sausage

bn:01775852n

peanut-shaped_marshmallow_candy

turnover

bn:01744396n

shanghai_snack

bn:00062695n

philippine_snack

bn:02143244n

bn:03829942n

spanish_typical_soup

barley_bread

bn:00003745n

chinese_noodle_soup

bn:00154850n

dessert_porridge

bn:02018471n
clear_german_soup

bn:02165227n

bn:02847898n

sweet_bread

bn:02321825n

popular_snack_food

bn:01586850n

roman_pasta_dish

bn:03279239n

bn:00287375n

bn:00041377n

bn:00476685n

vietnamese_vermicelli_soup

bn:00018527n

bn:01420323n

seasoned_broth

broth

bn:00781596n

bn:00023474n

regional_food

bn:00229884n

bn:03444850n

spanish_soup

salad_dish

bn:01708569n

bn:02395108n

popular_african_food

bn:00003714n

complex_carbohydrate

bn:00068993n

quebec_dish

bn:03284132n

candy-coated_popcorn

bn:01511522n

soup-based_dish

bn:03638443n

bn:03573942n

mediterranean_cuisine

bn:01637010n

tropical_vegetable

butter-flavored_snack

sweet_rich_dessert_sauce

rich_tasting

tasting

bn:01037552n

traditional_delicacy

traditional_sammarinese_cake

sammarinese_cake

potato_chips

chips

bn:01856955n

popular_fast_food_dish

bn:00023904n

oven-baked_flatbread

bn:03248046n

triangular_sandwich

bn:02604192n

black_candy

bn:00018638n

heated_beverage

bn:02309177n

bn:00076287n

sweet

bn:01280013n

bn:03290050n

sweet_snack

bn:03417471n

bn:00059654n

chocolate-based_dessert_pie

bn:00651152n

american_candy_bar

candy_bar

bn:00055003n

cocoa

bn:00619697n

bn:00060717n

hard_granular_cheese

hard_full-fat_italian_cheese

bn:01277333n

bn:01450657n

bn:01298643n

new_snack_food

bn:00063638n

bn:02211252n

brie_cheese

bn:03387561n

bn:00034082n

bn:00079556n

bean-like_fruit

bn:03815601n

bn:00917960n

bn:02822408n

bn:00530135n

bn:03559158n

shredded_cabbage

bn:00050634n

emulsified_butter_sauce

butter_sauce

spicy_wheat_dish

wheat_dish

bn:01513015n

bn:02514025n

bn:01937454n

star-shaped_bread

bn:03724701n

bn:02323554n

bn:00222602n

bn:03268050n

popular_sponge_cake

bn:00533176n

carbohydrate

traditional_swedish_dish

bn:02031078n

bn:00497644n

bn:01871702n

strong_rich_tasting

bn:03355998n

bn:02555938n

bn:00012876n

bn:03456293n

bn:03187312n

bn:00013150n

light_roll

mexican_dish

bn:01028640n

bn:00482009n

simple_brown_sauce

bn:00798699n

bn:01641409n

sweet_yeast_bread

bn:01644038n

sweet_pudding-like_dish

traditional_dessert_foods

bn:01881524n

bn:00058418n

bn:00074580n

bn:00394146n

south-eastern_finnish_dish

bn:00050306n

sweet_dish

bn:03391710n

indonesian_dish

bn:01871921n

bn:00019146n

frito-lay_chip_snack

bn:01318166n

bn:00136610n

bn:00018640n

bn:00280476n

breakfast_soup

bn:00124382n

bn:03549122n

bn:00170135n

traditional_smoked_sausage

bn:01129861n

bn:00000960n

persian_dish

celebration_bread

hardy_cabbage

bn:02780993n

traditional_salad_dish

flat_unleavened_bread

bn:02219426n

italian_cold_cut

toffee-like_sweet_food_delicacy

adaptable_dish

bitter_brown_seed

bn:02018894n

bn:03872228n

peruvian_salad

acadian_meal

bn:02990868n

bn:00033674n

bn:01107276n

bn:03573653n

bn:02159573n

animal

bn:00923648n

bn:00036731n

soft_creamy_candy

bn:00005773n

bn:00022774n

bn:03359727n

bn:03025181n

bn:00542000n

thick_dark_brown-or_black-colored_chinese_sauce

bn:01220115n

traditional_bulgarian_dish

legume_plant

bn:00063893n

bn:02436139n

bn:01660308n

flake_pastry

bn:01467402n

mexican_breakfast

bn:00023847n

bn:00337725n

italian_cake

bn:00434584n

rustic_pork_sausage

bn:00020324n

bn:00148123n

burmese_dish

batter

white_wine

bn:01503944n

bn:03865385n

bn:01552442n

bn:00275788n

bn:02726649n

bn:03165026n

bn:01567191n

bn:00061472n

bn:00047718n

risotto

bn:00257875n

traditional_french_stew

bn:01770021n

pink_italian_sauce

bn:00076168n

bn:03626695n

bn:02002992n

traditional_catalan_food
catalan_food

bn:00955038n

bn:03567185n

sweet_sweetened_milk

bn:00056440n

cream_based_sauce

bn:00075884n

soft_chewy_candy

bn:00076120n

sweet_pudding

bn:00048718n

layered_flatbread

spicy_clear_soup

clear_soup

bn:00454620n

bn:02514375n

sweet_cornmeal

bn:00071966n

bn:01323615n

spanish_dish

bn:00062694n

italian_open_pie

oven-baked_flat_round_bread

baked_italian_dish

beef_stew

bn:00035364n

bn:00073330n

bn:01598251n

bn:00069405n

afghan_dessert_dish

bn:00454786n

traditional_acadian_meal

bn:02308740n

small_round_cake

bn:02939720n

bn:02435457n

small_confectionery

bn:00044495n

bn:03439509n

loaf

bn:03423629n

libyan_food

multi-layered_cake

swollen_root

bn:00074369n

bn:00493206n

bn:02370018n

bn:01740187n

spicy_soup

center

coffee_cake

bn:01229967n

bn:00025192n

light_sweet_yeast-raised_roll

bn:00053235n

edible_substance

bn:02307465n

pancake_batter

bn:00674941n

soft_blue_cheese

bn:03822594n

narrow_french_stick_loaf

english_cake

bn:03667104n

catalan_sauce

bn:03252288n

bn:02662143n

large_italian_sausage

bn:00166919n

bn:03351935n

bn:01447731n

bn:00018648n

halophytic_perennial_plant

bn:00767377n

aromatic_flower_bud

bn:01025351n

bn:00018639n

bn:01280363n

bn:01366653n

rolled_bread

unleavened_cake

whole_oat_breakfast_cereal

bn:00752543n

bn:02636651n

bn:01241630n

bn:00022719n

bn:00986391n

flat_round_bread

bn:02213914n

baked_macaroni_dish

bn:01348189n

bn:01831675n

fermentation_starter

norwegian_unleavened_bread

bn:02384831n

chicken-based_soup

easter_bread

mint

bn:03534154n

rusk_bread

bn:01738351n

bn:02811589n

bn:01172729n

bn:01153967n

bn:03101613n

bn:00078680n

bn:00077689n

rich_multilayered_cake

bn:00622169n

local_dish

bn:02407455n

full-fat_italian_cheese

bn:00037229n

bn:00119128n

bn:01682331n

bn:01092823n

bn:00041508n

bn:02657003n

bn:00210921n

traditional_malaysian_fritter_snack

thin_italian_flatbread

italian_flatbread

bn:00323128n

bn:02182441n

bn:00010029n

bn:03678602n

bn:02795182n

tamarind_dish

british_sweet_pie

puffed_corn_snack

corn_snack

bn:00010725n

small_european-style_restaurant

small_informal_restaurant

bn:02647905n

bn:00323240n

nigerian_food

bn:03351627n

bn:00020327n

bn:02722411n

bn:03137448n

bn:03203038n

balkan_dish

bn:03492933n

swedish_pastry

italian_condiment

bn:02116773n

bn:00063823n

french_beef_stew

ball-shaped_doughnut

bn:00522708n

sugarless_chewing_gum
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Figure 7.3: Food taxonomy generated with ExTaSem! The node at the center is
the root node food. The density of the graph has been scaled down for illustrative
purposes.

our working example (Figure 7.4). In the current version of BabelNet, the con-
cept for ‘wedding cake’ (BabelNet id “bn:00013073n”, highlighted in green in
the figure) only has one (hypernymic) relation with the ‘cake’ concept. Thanks to
EXTASEM!, we introduce four intermediate nodes between ‘wedding cake’ and
‘cake’, namely ‘rich cake’, ‘multi-layered cake’, ‘decorated cake’ and ‘traditional
cake’.
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Figure 7.4: A highlight of the cluster for the concept “cake”. Note the mixture
between disambiguated concepts (BabelNet synsets) and specific terms such as
“small cake” or “multi-layered cake”.

Finally, by resizing nodes by degree, it is possible to manually inspect the
most prominent sub-domains (or semantic clusters) generated by our algorithm.
An additional visualization of these clusters is shown in Figure 7.5, where generic
food-related terms such as “dish”, “candy”, “snack”, “sauce”, “bread” or “dessert”
appear. This kind of information may be useful for ontology engineering, WSD,
semantic search, or any task requiring some kind of hierarchical modeling of a
target domain of knowledge.

Based on how useful this information can be for discovering patterns in lexi-
cal taxonomies, we encourage the research community in taxonomy and ontology
learning to incorporate to evaluation procedures visualization-based assessments.
It is important not only to have many correct relations, but to have them inte-
grated in a homogeneous knowledge graph whose most salient entities can be
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Figure 7.5: Most prominent clusters in the ExTaSem! food taxonomy. Many node
labels have been removed for clarity.

clearly identified. It would make little sense to have a taxonomy on the food do-
main without top concepts such as the ones highlighted in Figure 7.5. In addition,
visualization techniques also provide the means to easily inspect potential discon-
nected nodes, presence of cycles, and to get the gist of the structural properties of
the graph, which can be complementary with quantitative metrics.

Let us point to another interesting scenario, this time involving the chemical
domain. In TexEval 2015, this domain proved to be the most difficult to model by
all participating systems (the best system achieved an average Cumulative F&M
score of 0.23, more than 20 points lower than the following domain). The chem-
ical domain is extremely technical, difficult to model, and with abnormally long
and convoluted concepts (e.g., glutamic acid-2,3,3,4,4-d5, a type of molecular
entity). By inspecting the result of ExTaSem! on this domain (Figure 7.6), we
observe that rather than a root concept chemical, it may be desirable to evaluate
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a chemical taxonomy learning system on subdomains such as chemical com-
pound or even organic compound (which is defined as any chemical compound
containing carbon), which have shown to emerge (degree-wise) as highly promi-
nent concepts.

Figure 7.6: Illustration of how non-root concepts in the chemical domain, such as
“organic compound” or “chemical compound” rival frequency and popularity of
the term “chemical” as yielded by the EXTASEM! taxonomy.

Finally, our last argument for incorporating visualization-based techniques in
taxonomy evaluation concerns error analysis. In very large domains (the food
taxonomy we have discussed in this section contains 3930 edges, for example), the
potentially correct domain-specific taxonomic models is very large. By being able
to “hover” over a taxonomy, a human expert may detect inconsistencies easier than
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going over a sample of randomly selected edges (which was the choice in TexEval
2015), or by looking at edges involving popular nodes (which are more likely
to be correct, as generic or top concepts occur more frequently in corpora and
thus there is extensive textual evidence for defining their position in a taxonomy).
As an example, consider Figure 7.4, where one may argue that rich cake is an
incorrect hypernym for the concept wedding cake. In fact, this node comes from
extracting the hypernym from the following Wiktionary definition: “rich or highly
ornamented cake, to be distributed to the guests at a wedding, or sent to friends
after the wedding”. This kind of qualitative analysis can be arguably carried out
more effectively with the aid of proper visualizations for lexical taxonomies.

7.5 KB-U: Disambiguated and aligned OIE systems

We release the KB-Unify associated dataset as follows7:

• KB-Unify: The KB resulting from the disambiguation and alignment algo-
rithm.

• KB-Unify Alignments: Final pairwise alignments between the KBs de-
scribed in Section 6.2 In the current 1.0 release of KB-Unify, these KBs are
NELL, ReVerb, PATTY and WiseNet.

• Disambiguated KBs: We also provide a disambiguated version of each
of the “unlinked” KBs that are part of KB-Unify 1.0 (namely NELL and
ReVerb8).

• Evaluation Data: We also release the evaluation data that accompanies
the experiments reported in Section 6.2.8. Specifically, these evaluation
datasets are used to assess the modules on automatic disambiguation, speci-
ficity and alignment.

7.6 CWN: Data and API
In the CWN project (described in Chapter 6), we aimed at providing the research
community with a useful extension of WordNet which included collocational in-
formation. This information was automatically obtained thanks to a distributional

7Available in the following url: http://lcl.uniroma1.it/kb-unify/
8We include both disambiguated versions of ReVerb’s output, one resulting from running its

pipeline on Wikipedia, and another one derived from its execution over the ClueWeb corpus
[Callan et al., 2009].
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pipeline based on sense-level embeddings. We complement those experiments
with one additional contribution, namely a Python API that replicates the whole
CWN pipeline, allowing for any user to replicate our results, and more impor-
tantly, use the implementation with custom data, generating subsets of WordNet
(e.g. only with collocations of intensity, or introducing collocations only for hy-
ponyms of ‘sorrow’). Finally, in addition to the CWN resource and its associated
API, we also make available pre-trained vectors retrofitted [Faruqui et al., 2015]
with collocational information for the four semantic categories evaluated in the
original CWN publication9.

7.7 MKB: Music Knowledge Base

The last release accompanying this dissertation is derived from the experiments
described in Chapter 6, where we constructed a full-fledged Music Knowledge
Base (MKB) from scratch. We release several versions of our automatically con-
structed MKB10, in addition to the evaluation data used to assess the quality of the
extraction algorithm. The dataset derived from our best configuration is a graph of
11,010 nodes disambiguated against DBpedia and MusicBrainz (where possible),
connected by 11,835 relations expressed in natural language. In addition, evalua-
tion data used to validate the quality of the extracted relations is also provided. In
Figure 7.7, we show a sentence, two identified entities, and a relation expressed
among them. The evaluator then is asked to mark whether there is a relation ex-
pressed between them in the sentence or the pattern extracted. We also provide
the extractions performed by ReVerb.

7.7.1 The MKB Dataset
All versions of MKB are released in json format. Each entry is a relation, which
contains the following fields:

• clustered: How many relation clusters contain this relation.

• dep_freq: Frequency of the dependeny relation between domain and range.

• dep_path: Part of speech path in the dependency tree between domain and
range (e.g. sbj-obj).

9Data and code available at bitbucket.org/luisespinosa/cwn
10Available at http://mtg.upf.edu/download/datasets/kbsf
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Figure 7.7: Screenshot of the evaluation procedure for the extracted relations of
MKB.

• dep_path_cluster: Part of speech cluster that subsumes this relation (e.g.
‘nmod’)11.

• domain: First argument of the relation, disambiguated against DBpedia,
where possible (e.g. dbpedia.org/resource/Ride_(Ciara_song)).

• domain_mbid: MusicBrainz id of the domain.

• domain_offset: Character offset of the domain.

• domain_tfidf: tf*idf score of the domain (considering as individual docu-
ments each biography).

• domain_type: Music type of the domain (e.g. Song)12.

• id: Relation id.
11There are entries for these attributes for part-of-speech and surface form.
12The same attributes are included for the entity appearing in range position.
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• num_neighbours: Number of nodes at a distance of one edge from both
domain and range.

• num_nodes: Number of nodes encoded by this relation.

• num_paths_in_path: Number of subsumed relation paths contained in the
current relation.

• score: A score provided by our relation weighting policy.

• sentence: The original sentence from which this relation was obtained, e.g.
“The song features Ciara ’s fellow Atlantan , Ludacris”.

• score: A score provided by our relation weighting policy.

Similarly as in the EXTASEM! release (Section 7.6), a gephi compatible
file is released for MKB, allowing visualization of artist clusters. This KB has
the particularity that it integrates in one single unified resource entities musical
entities detected in the Songfacts corpus, and which may be encoded in DBpedia,
MusicBrainz, or both. We also release evaluation data, illustrated in Figure 7.7.
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Chapter 8

CONCLUSIONS

The vision behind this dissertation was to provide solid proof that combining what
[Hovy et al., 2013] called structured resources like dictionaries, along with un-
structured resources (e.g. vector space models, or simply text corpora), it is pos-
sible to achieve very competitive results in several NLP tasks, while at the same
time providing frameworks for the creation and extension of knowledge reposito-
ries. Motivated by the good results the interplay between structured and unstruc-
tured resources had shown in the past, in this thesis we aimed at contributing to
the current state of the art in NLP from several standpoints, namely: (1) devel-
oping and evaluating different strategies for sentence representation, WSD, and
entity linking, leveraging techniques derived from lexical semantics; (2) we have
improved tasks like Definition or Hypernym Extraction, and have coined a novel
task called Hypernym Discovery, which parts ways from previous and less re-
alistic approaches to inferring hypernymy based on binary classification given a
term-hypernym candidate pair; (3) we have achieved the best results in a num-
ber of subtasks and knowledge domains related to taxonomy learning, and have
proposed directions for future work in taxonomy evaluation, and (4) we have de-
veloped systems for automatic KB enrichment for compositional meaning as well
as knowledge representation in restricted domains.

In addition, and in the hope that this thesis contributes significantly to im-
proving knowledge-based Artificial Intelligence and NLP systems, we provide a
large number of automatically generated (and thoroughly evaluated) datasets, both
domain-specific and generic. It does not seem to be adventurous to claim that the
trend today in NLP is the exploitation of huge amounts of data with minimal an-
notation, as the field of ML is advancing at such a fast pace that there seems to be
the case that the more data, the better, even if it is noisy, as long as it is enough
to be overall useful for any statistical model. The dominance of approaches based
on neural architectures, which do not require a feature engineering step in the
“traditional” machine learning way, seems to have closed a few doors for many
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knowledge-based applications. However, the knowledge and capacity for reason-
ing that humans exhibit is still an asset which we cannot obviate, and for this
reason, it seems obvious that any approach capable to take advantage of both big
data and human expertise will have an edge versus purely statistical models.

Furthermore, this dissertation is also a call for commitment to the NLP com-
munity in that data and software must be not only easily accessible, but well docu-
mented, to foster collaboration between institutions and to make seemingly distant
worlds like lexicography or knowledge engineering, and NLP or ML, to interact
more often. We expect that, by incorporating human knowledge to highly sophis-
ticated technical approaches, artificial agents will learn faster (e.g. learning better
paraphrases, generalizations or multiword expressions); but also lexicographers
and professionals in the digital humanities field will benefit dramatically from all
this exciting technology and data that is swarming research centers.

Moreover, in this thesis we have come to the following key findings, which
we list and describe as follows:

• DE systems largely improve with syntactic and distributional information.

• It is possible to improve the quality of Hypernym Discovery systems by
aggregating seemingly noisy information coming from OIE systems. There
is, however, a notable difference across domains depending on how over (or
under) represented they are in standard OIE triple collections.

• In tasks concerning the modeling of linear transformations between seman-
tically related linguistic items using the translation matrix approach intro-
duced in [Mikolov et al., 2013b], the quality of the data and the homogeneity
of the semantic relation that is to be modeled rivals importance with the size
of the data used.

• The taxonomy learning task benefits substantially by introducing defini-
tional information, on one hand, as well as our novel domain-pertinence
distributional scheme for candidate taxonomic paths.

• Domain-specific terminological databases and KBs can be extended and
improved by means of the combination of syntactic, statistical and distribu-
tional information.

With regards to the limitations of the approaches developed and evaluated
throughout this dissertation, we have identified the following. First, with regard
to DE, we have not explored neural approaches to classification [Ling et al., 2016]
or generation [Noraset et al., 2016]. Moreover, it remains for a future challenge
to combine our two DependencyDE and SemanticDE systems, so that the inter-
play between linguistic and distributional information is quantitatively explored.
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Second, previous research in the Hypernym Discovery/Detection task has exten-
sively leveraged hypernymic embeddings models [Yu et al., 2015], supervised ap-
proaches that learn distributional relations from large datasets of term-hypernym
pairs [Roller et al., 2014] and train linear models for prediction, or introducing
neural approaches for modeling is-a relations [Shwartz et al., 2016]. We acknowl-
edge that these are areas where we have not delved in detail, and thus our experi-
ments may be improved by considering the above contributions. Third, while the
resources we have automatically created have gone through meticulous evaluation,
we feel that their usefulness still remains to be assessed, ideally in semantically
motivated downstream tasks. For instance, it would be interesting to evaluate the
improvement of a natural language generation system when leveraging ColWord-
Net or KB-UNIFY. Fourth, our experiments in Section 6.2 are inevitably derived
from a “closed world assumption”, as in these experiments BabelNet constitutes
the reference sense inventory for concepts and entities. In cases where new infor-
mation or knowledge appears, it remains as an open avenue for future work how to
decide whether these should be incorporated in a KR, and how. And fifth, we feel
that there are unadressed issues in the evaluation of EXTASEM!, as it is unclear
sometimes, for a given node, whether it “deserves” to be included in a taxonomy
as full entity, or rather as a property of an existing concept (e.g. should we include
the small cake node in a food taxonomy, or would it be better to include small as
a property of the key concept cake?).

Finally, as for specific directions of future work, this thesis opens specific
lines for future directions in three main areas. First, the improvement of existing
semantic networks and KBs by incorporating automatically gathered information
from the web in various forms, from OIE systems to domain-specific collabora-
tively built resources (e.g. Songfacts). Second, we have reported good results in
tasks related to computational lexicography, such as Definition Extraction, Hyper-
nym Discovery or Collocation Acquisition. However, there is not one single sys-
tem yet out there that automatically builds a full-fledged dictionary entirely from
scratch, using as input unstructured corpora (e.g. a collection of papers). This is a
very exciting opportunity that can complement very well the current state-of-the-
art in Information Extraction in the area of scientific publishing. Finally, we have
presented extensive results, evaluation and reflections on the Taxonomy Learning
task. This is an area where there is not one single gold standard, as a domain
of knowledge can be modeled in many different ways. For this reason, we find
it essential that the community puts stronger emphasis on automatic taxonomy
evaluation, so that it makes sense to carry out research on developing very large
lexical taxonomies without having to rely on comparison against WordNet, or on
manual evaluation of Precision at edge level, which by necessity is done only on
a sample, and therefore its reliability is always subject to a certain random factor.

As a final conclusion, this thesis has taken the reader through experiments
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on the interplay between lexicography and knowledge-based NLP. Bringing back
the notion of the virtuous cycle of NLP and lexicography, which we introduced
in Chapter 1, our main idea was to show empiric proof that lexicography can
constitute a game-changer in NLP by providing high-quality knowledge. This
knowledge, in addition, is no longer dependent on the efforts carried out by pro-
fessional lexicographers, but rather, is growing at an increasingly fast pace due to
the rapid growth of collaborative resources. On the other hand, moreover, we have
released several resources for improving the workflow in lexicography, providing
some kind of automation to tasks such as finding definitions in domain corpora,
or typing novel concepts by means of finding their best associated (set of) hyper-
nym(s). We hope that this contribution ignites further research where dictionaries,
glossaries and other KRs are combined with cutting edge machine learning tech-
nology for making knowledge acquisition and formalization faster, easier and of
better quality.
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